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Abstract

Automatic speech recognition is a crucial component for voice centric human-machine
interfaces and has seen large improvements in terms of accuracy in recent years. These
gains were largely driven by the switch to models based on deep neural networks
which are able to exploit vast amounts of training data. But despite all improvements,
recognition of far-field speech in noisy environments remains challenging.
In these far-field scenarios, spatial cues can help to improve the recognition perfor-

mance by amplifying the target speech signal and dampening other interfering sources.
Commonly this is achieved by classical signal processing and so-called beamforming
which exploits time di↵erences between the individual signals of multiple microphones
to amplify signals from a certain region of space while suppressing signal from other
directions. In this work, we leverage powerful neural networks which have been applied
successfully to speech recognition and also to the signal processing component. But
instead of replacing one model with another, we combine them and support statistical
beamformers with a neural network to get the best of both worlds. We show that this
setup can reduce the recognition error rates by more than half on two benchmarking
datasets compared to a single-channel baseline. We then successively extend this system
by reducing the latency to a frame-online operating mode, removing the need for
simulated parallel data and optimizing the signal processing component jointly with
the acoustic model.
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Zusammenfassung

Die automatische Spracherkennung ist eine wichtige Komponente für eine sprachgestützte
Mensch-Maschine Kommunikation und hat wurde in den letzten Jahre signifikant
verbessert. Diese Verbesserungen sind größtenteils auf die Verwendung von tiefen
Neuronalen Netzwerken zurückzuführen, welche in der Lage sind, große Menge an Train-
ingsdaten zu nutzen und davon zu profitieren. Dennoch ist die Erkennung von Sprache
aus größeren Entfernungen vor allem in lauten Umgebungen immer noch problematisch
und fehlerbehaftet.
In diesen Fernfeld-Szenarien können räumliche Merkmale die Erkennungsleistung

steigern, indem sie die Sprache des zu erkennenden Sprechers verstärken und andere
Umgebungsgeräusche dämpfen. In der Regel wird hierzu klassische Signalverarbeitung
in Form des so genannten statistischen Beamformings verwendet. Dieses nutzt die
zeitlichen Di↵erenzen zwischen den einzelnen Signalen bei einer Aufnahme mit mehreren
Mikrofonen, um Signale aus einer bestimmten räumlichen Richtung zu verstärken und
die aus anderen Richtungen zu dämpfen.
In dieser Arbeit wird die Nutzung leistungsstarker Neuronaler Netzwerke, welche

bereits erfolgreich in der Spracherkennung angewendet werden, auch für die Signalver-
arbeitungskomponente erforscht. Anstatt jedoch nur ein Modell durch ein anderes
zu ersetzen, werde diese kombiniert und statistisches Beamforming mit Neuronalen
Netzen unterstützt, um das Beste aus beiden Welten zu vereinen. Wir zeigen, dass
diese Kombination die Erkennungsfehler, verglichen mit der einkanaligen Baseline, auf
zwei Testdatensätzen mehr als halbiert. Darauf aufbauend, erweitern wir dieses System
Schritt für Schritt, indem wir die Latenz auf ein Frame reduzieren, die Abhängigkeit
von parallelen simulierten Daten entfernen und die Signalverarbeitungskomponente
gemeinsam mit der Spracherkennungskomponente trainieren.
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1 Introduction

In April 2011 Apple introduced Siri, the first commercially available digital personal
assistant with a voice interface. Three years later, Amazon presented the Amazon Echo,
the first smart speaker. A smart speaker is a device which allows the user to interact
with a digital personal assistant from anywhere in a room just by using his voice. This
new product category quickly gained traction and other major tech companies like
Google (Google Home) and Apple (HomePod) released similar devices in the following
years. By the end of 2020, 75% of the (english speaking) households will own at least
one smart speaker according to a recent report1. Apart from smart speakers, other
devices such as televisions are now also adapting a voice centric interface.
One key enabling technology for such devices is a solid automatic speech recognition

(ASR) system. ASR aims at recognizing the spoken words from an audio recording.
While the first ASR systems in the 1960s were only able to recognize a few standalone
words (e.g. the IBM Shoebox2), technological advances and a statistical modeling view
allowed for systems usable for dictation tasks in the late 1990s. Supported by the
drastically increased computational power and a vast amount of transcribed audio data,
the usage of deep neural networks (DNNs) finally lead to accuracies high enough for a
voice centric interface.

The other important technology is speech signal processing or speech enhancement.
ASR becomes much more challenging once the distance between the speaker and the
microphone increases. In a typical smart speaker use case, the speaker is located a
few meters away from the device which then not only captures the desired speech
signal, but also the signal of other sound emitting sources and reverberations. The
reverberations have a smearing e↵ect on the signal and the other sound sources introduce
diverse non-stationary noise which cannot be removed easily. Those two e↵ects have a
detrimental impact on the performance of an ASR system. Speech signal processing
can compensate for these interferences up to a certain extent and significantly reduces
the error rates of an ASR system in a far-field scenario.
An especially e↵ective processing technique for far-field scenarios is spatial filtering

or acoustic beamforming. In fact, it has been considered as a front-end processing
technique for ASR for many years. As early as 1990 Compernolle et al. showed that
significant word error rate (WER) improvements are achievable by acoustic beam-
forming [Com+90]. Today, almost all smart speakers have multiple microphones –
a prerequisite for beamforming which is based on the time di↵erences between the

1https://about.ads.microsoft.com/en-us/insights/2019-voice-report
2https://en.wikipedia.org/wiki/IBM Shoebox

1
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Introduction 2

recorded signal caused by di↵erent lengths of the sound propagation paths.
Classically, speech signal processing is based on signal statistics and distributions to

model these statistics. However, to keep those models tractable, simplifying assumptions
like temporal independence are made which might not hold in practice and result in
a rather crude approximation of the real underlying distribution. On the other hand,
recent progress in acoustic modeling shows that DNNs are very well suited to handle
and classify speech signals. In recent years, a tendency to replace statistical models
with a DNN can be observed. And indeed, many of those publications demonstrate
oftentimes drastically improved performance by doing so.
So should statistical models for speech signal processing be just abandoned and

replaced by neural networks? In this thesis we argue for a di↵erent approach. Instead
of replacing one with the other, we combine them in an attempt to preserve the best
of both worlds: the classification accuracy of a neural network and the generalization
qualities of a statistical model. We especially focus on beamforming with the goal to
exploit spatial information to improve the accuracy of an ASR system in challenging
environments.
This work is structured as follows. In the first three chapters, we provide the necessary

theoretical background and review existing approaches. In particular, Ch. 2 quickly
recaps the basic building blocks of a neural network and then focuses on the gradient
computation required to train the model. The next chapter (Ch. 3) then explains
the foundations of an ASR and discusses ways to utilize multi-channel data for the
presented model. This then brings us to classical speech signal processing in Ch. 4 where
we first model the physical signal and then, based on this model, focus on statistical
beamforming and dereverberation. That concludes the background part.
Next, we present the two datasets which will be used in this thesis to evaluate

proposed models. Results from the literature are summarized and serve as a baseline
for comparison in later chapters. Ch. 6 outlines the main contributions of this work
and shows how it relates to the publications which have been made over the course of
the PhD program.
The second half of this thesis then presents these contributions and discusses them in

detail. Starting with the main contribution, a neural network supported beamformer, in
Ch. 7, we extend this idea in the following chapters. In Ch. 8 we present a low-latency
variant of the system and Ch. 9 discusses a way to train it in an unsupervised fashion.
Finally, in Ch. 10 we remove the distinction between signal processing and speech
recognition with a joint model and analyze it thoroughly. We opt for directly evaluating
the presented model and discuss the results in each of the chapters individually rather
than presenting a single big evaluation.
At the end of each chapter we give a short summary of the main takeaways and

conclude this thesis with an overall summary in Ch. 11.



2 Neural networks

The first forms of a neural network (NN) were already described in the 1950s (e.g. [Ros58])
and first promising results were reported on various tasks in the late 1980s and 1990s
(see [Sch15] Sec. 5.6 onwards for numerous examples). However, NNs were mainly
a research topic while applications were dominated by statistical modeling based
approaches with strong priors and hand crafted features. This changed dramatically
with the ability to train deep networks, i.e., networks that consists of several layers and
can easily have millions of parameters. Another key factor enabling the use of NNs was
the availability of large amounts of data and drastically increased computational power,
especially with the use of powerful graphics processing units (GPUs) or more recently
also specialized hardware [WB+19]. The probably final breakthrough was achieved
in 2012 when a NN-based system [KSH12] won the Large Scale Visual Recognition
Challenge [Rus+15] by a large margin.
NNs are particularly good at classifying high dimensional sensory data, outperforming

all previous approaches in applications like image recognition. In this work we will also
make extensive use of NNs, specifically to process and classify speech signals. Due to
their current popularity, new network architectures, applications and also methods are
published nearly on a daily basis. In this chapter we therefore only shortly introduce
the very basics of NNs and the most common layers in 2.1. Otherwise, we solely focus
on the training of NNs with backpropagation (Sec. 2.2.2), especially with the concept of
computational graphs which allow for automatic di↵erentiation (Sec. 2.2.3). With the
help of the Wirtinger calculus (Sec. 2.2.4) this will enable us to backpropagate through
complex-valued signal processing algorithms later in this work.
A more detailed overview of the history of NNs and current developments is given

in [Sch15]. For further details and technical background we refer the reader to recent
books (e.g. [GBC16]).

2.1 Layers

Layers can be viewed as the building blocks of a NN. For example, a typical network
for ASR consists of 5 – 10 consecutive layers, but the number of layers might also well
exceed 100 for application such as image recognition [He+16a]. The following reviews
the three basic types of layers which we will use for our networks in this work.

3



Neural networks 4

2.1.1 Fully connected layers

The fully connected (or feedforward (FF) or dense) layer might be considered as the
most basic but also the most general layer. Its naming originates from the fact that
each input is connected to each output with a learnable weight. It consists of an a�ne
transformation with learnable parameters followed by a non-linearity. Given an input
vector x, the output y of the layer is computed as

y = f (Wx+ b) (2.1)

with the non-linearity f (·), the learnable projection (or weight) matrix W and the
likewise learnable bias b. Typical non-linearities include the tanh function family
(including sigmoid) and nowadays mostly rectified linear units (ReLUs) and derived
variants. The latter ones promise a better convergence due to their mostly linear
operating point which helps gradient propagation [NH10].

2.1.2 Convolutional layers

For data where features are independent of the spatial location they appear in (e.g. for
images), sharing the weights for di↵erent parts of the input leads to a more e↵ective
use of the parameters [GBC16]. Convolutional neural networks (CNNs) perform an
N -dimensional convolution on the input with learnable filters. The input, filters and
output can have multiple channels. For sensory input this can, e.g., correspond to
the color channels of an image. Each filter has the same number of channels as the
input whereas the number of channels of the output is determined by the number of
filters, i.e., each filter produces its own output, also referred to as feature map. More
specifically, the 2-dimensional convolutional layer we will use in this work computes Cout

two dimensional feature maps Ycout from an input1 A 2 RCin⇥X⇥Y with Cin channels
using learnable filters Wcout 2 RCin⇥Fx⇥Fy as2

Ycout(i, j) =
Cin�1X

c=0

Fx�1X

x=0

Fy�1X

y=0

X(c, i+ x, j + y)Wcout(c, x, y). (2.2)

The outputs Ycout for each filter are then stacked to obtain the final output Y 2
RCout⇥X⇥Y . For dimensionality reduction it is also possible to use striding, i.e., to
advance the filter with a step size > 1 along one or more dimensions, e↵ectively
subsampling the input.

2.1.3 Recurrent layers

For time series like speech signals, the value at the current time step is usually correlated
with values from past time steps and the output does not only depend on the current
input but also on previous inputs. Recurrent layers model this dependency by recursively

1In this work we pad the input with zeros such that the resulting feature map has the same size as
the input.

2Although it is called convolution, the layer actually computes a cross-correlation. However, since
the filters are learned, one can also interpret it as a convolution learning a flipped filter.
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conditioning the output at one time step on (a projection) of the previous time step.
Given a sequence of input vectors x0:T , the output vector yt at time step t of a recurrent
layer with parameters ⇥ is computed as

y(t) = F (x(t),y(t� 1);⇥) , (2.3)

whereas the most basic recurrent neural networks (RNNs) compute

y(t) = � (Wxx(t) +Wyy(t� 1) + b) (2.4)

with some non-linearity �.
Since the same parameter matrix Wy is used for all time steps, these layers especially

su↵er from what is known as the vanishing or exploding gradient problem [Hoc91].
This problem can be alleviated using more complex architectures which provide

a more direct path for the gradient to propagate. One e↵ective and also popular
architecture are long short-term memory (LSTM) networks [HS97] which compute

i(t) = � (Wxix(t) +Wyiy(t� 1) + bi) (2.5)

f(t) = � (Wxfx(t) +Wyfy(t� 1) + bf )

o(t) = � (Wxox(t) +Wyoy(t� 1) + bo)

g(t) = tanh (Wxgx(t) +Wygy(t� 1) + bg)

c(t) = f(t) � c(t� 1) + i(t) � g(t)
h(t) = o(t) � tanh(c(t))

and will be used extensively in this work. Recurrent neural networks can work in
an uni-directional or bi-directional fashion. While the former can only exploit past
input information, the latter consists of two recurrent networks where one operates
on the reversed feature sequence. This allows to also take into account future context
but introduces the requirement to already have the complete time series available for
processing.

2.2 Training

NNs are parametric models whose many parameters are learned from data points during
an explicit training phase. The by far most common and also very generic approach
to train a NN is by using stochastic gradient descent (SGD). In the following we will
first describe the update rule for the parameters and then discuss in detail how the
necessary gradients can be computed e�ciently.

2.2.1 Update rule

In the supervised setup, consider a dataset D of N data points (xn,yn), a NN with pa-
rameters ✓✓✓ that estimates ŷn = F(xn;✓✓✓) and a per-example loss function Lexample(ŷn,yn)
which allows to estimate the overall loss Ltotal(D;✓✓✓) as

Ltotal(D;✓✓✓) =
1

N

NX

n=1

Lexample(F(xn;✓✓✓),yn). (2.6)
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Besides the popular per-example loss functions like the mean squared error (MSE)
for, e.g., regression tasks and the cross-entropy (CE) for classification tasks, there
are numerous task specific loss functions. One example in the ASR context is the
connectionist temporal classification (CTC) loss which will be discussed in Sec. 3.1.2.
SGD aims to minimize the overall loss Ltotal by iteratively first estimating a gradient
on a small random subset B ⇢ D of the data called (mini-) batch

@Ltotal(D;✓✓✓)

@✓✓✓
⇡ @Ltotal(B;✓✓✓)

@✓✓✓
=

1

|B|
X

(xm,ym)2B

@Lexample(F(xm;✓✓✓),ym)

@✓✓✓
(2.7)

and then updating the parameters with a learning rate µ

✓✓✓(new) = ✓✓✓(old) � µ
@Ltotal(B;✓✓✓(old))

@✓✓✓(old)
. (2.8)

For the scope of this thesis, the important point to realize is that in order to train
a NN, we need the gradient of a di↵erentiable loss function w.r.t. the parameters of
the network. There is a multitude of literature on SGD and its convergence properties
and we refer the reader to this for more details. A good starting point with a focus
on deep learning is Sec. 4.3+ in [GBC16]. In this work, we will mostly use a modified
update rule called ADAM [KB14] which also takes into account adaptive estimates of
lower-order moments to modify the e↵ective learning rate for each parameter.

2.2.2 Backpropagation

For NNs the gradient w.r.t. to each individual parameter can be calculated e�ciently
by exploiting the chain rule as we will see in the following.
First, consider the scalar chain rule. Given N nested functions3 f1, f2, . . . , fN :

R ⇥ R ! R parameterized by some ✓i, y = fN(hN�1; ✓N�1), hi+1 = fi+1(hi; ✓i) and
h0 = x with x, y 2 R, the derivative @y

@✓i
can be written as

@y

@✓i
=

@y

@hN�1

@hN�1

@hN�2

. . .
@hi+1

@✓i
=

@y

@hi+1

@hi+1

@✓i
. (2.9)

In order to calculate @y
@✓i�1

we can reuse the result for @y
@hi+1

already calculated for @y
@✓i

by
exploiting the chain rule

@y

@✓i�1

=
@y

@hN�1

@hN�1

@hN�2

. . .
@hi+1

@hi

@hi

@✓i�1

=
@y

@hi+1

@hi+1

@hi

@hi

@✓i�1

. (2.10)

Looking at the layers briefly described in the previous section, it becomes apparent
that NNs operate on vectors and matrices rather than scalar values. To generalize the
operations, we will consider tensors here. A tensor is D-dimensional grid of scalar values.
Special cases include a vector (D = 1) or a matrix (D = 2). A D-dimensional vector
i 2 ZD is used to index the individual elements within the grid. For a matrix, e.g., the
vector i = [i1, i2] indexes the element in the i1-th row and i2-th column. To obtain a

3The functions must be at least point-wise di↵erentiable w.r.t. to their inputs
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chain rule similar to the scalar case, we have to introduce a generalized Jacobian and a
generalized inner product.
Given a tensor

A 2 RN
(A)

1
⇥N

(A)

2
⇥...N

(A)

Da (2.11)

and a function f mapping it to a tensor

B 2 RN
(B)

1
⇥N

(B)

2
⇥...N

(B)

Db (2.12)

with B = f(A), we define the generalized Jacobian @̂B
@̂A

as a generalized matrix with
the dimensionality

h
N (B)

1
⇥N (B)

2
⇥ . . . N (B)

Db

i
⇥
h
N (A)

1
⇥N (A)

2
⇥ . . . N (A)

Da

i
. (2.13)

Note that there are two groups and we use @̂ to distinguish the generalized form from
the partial derivative which is denoted using @. The first group corresponds to what
can be interpreted as the rows of a generalized matrix and has the same dimension
as B, whereas the second group corresponds to the columns of a generalized matrix
and has the same dimension as A. This generalized matrix is indexed by two vectors
i 2 ZDa and j 2 ZDb and its elements are

 
@̂B

@̂A

!

j,i

=
@ (B)

j

@ (A)
i

(2.14)

Note that (B)
j
and (A)

i
are scalar values.

We can also define a product between generalized matrices

X 2 R
h
N

(X1)

1
⇥···⇥N

(X1)

Dx1

i
⇥
h
N

(X2)

1
⇥···⇥N

(X2)

Dx2

i

(2.15)

and

Y 2 R
h
N

(Y1)
1

⇥···⇥N
(Y1)
Dy1

i
⇥
h
N

(Y2)
1

⇥···⇥N
(Y2)
Dy2

i

(2.16)

as

XY =
X

j

X:,jYj,: = Z (2.17)

with

Z 2 R
h
N

(X1)

1
⇥···⇥N

(X1)

Dx1

i
⇥
h
N

(Y2)
1

⇥···⇥N
(Y2)
Dy2

i

. (2.18)

Note that the dimension of the second group of the left operand must match the
dimension of the first group of the right operand, i.e., Dx2

= Dy1 and N (X2)

k = N (Y1)

k

8k 2 [1, Dx2
]. For the special case where Dx1

= Dx2
= Dy1 = Dy2 = 1, i.e., where X

and Y are matrices, this operation corresponds to the matrix multiplication. Further,
a generalized scalar can be represented as x 2 R[ ]⇥[ ], a generalized row vector as
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x 2 R
h
N

(X1)

1
⇥···⇥N

(X1)

Dx1

i
⇥
h i

and a generalized column vector as x 2 R
h i

⇥
h
N

(X2)

1
⇥···⇥N

(X2)

Dx2

i

.
The later two can be again seen as tensors.

With these definitions, we can now formulate the chain rule for tensors. Suppose we
have the functions4

f1, f2, . . . , fK : R
N

(fk)

1
⇥···⇥N

(fk)

Dfkin ! R
N

(fk)

1
⇥···⇥N

(fk)

Dfkout , Dfkout
= Df(k+1)in

(2.19)

with y = fK(hK�1), ki+1 = fi+1(hi) and a scalar J = fJ(y) resulting from a loss

function fJ . The generalized Jacobian @̂J
@̂hi

can be calculated as

@̂J

@̂hi

=
@̂J

@̂y

@̂y

@̂hK�1

@̂hK�1

@̂hK�2

. . .
@̂hi+1

@̂hi

=
@̂J

@̂hi+1

@̂hi+1

@̂hi

. (2.20)

Note that the dimensions are

@̂J

@̂hi

2 R
 �

⇥

N

(fi)
1

⇥···⇥N
(fi)
Dfiout

�

, (2.21)

@̂J

@̂hi+1

2 R
 �

⇥

N

(fi+1)

1
⇥···⇥N

(fi+1)

Dfi+1out

�

, (2.22)

and

@̂hi+1

@̂hi

2 R

N

(hi+1)

1
⇥···⇥N

(hi+1)

Dfi+1out

�
⇥

K

(hi)
1

⇥···⇥K
(hi)
Dfiout

�

. (2.23)

The generalized Jacobian o↵ers a convenient way to write the chain rule, but a look
at its size in Eq. 2.23 shows that it is costly to compute and to store in memory. In a
practical setting, however, most of the values of the generalized Jacobian are zero as
not all outputs depend on all inputs. So a naive implementation of the formulas above
will not be very e�cient and there is a lot of optimization potential by skipping the
computations where we can analytically show that the gradient is zero. Nevertheless
the generalized Jacobian allows us to treat the computation in a principled way and, as
we will see in the following, also allows us to recover the lost e�ciency.

2.2.3 Computational graphs and automatic di↵erentiation

A slightly di↵erent way to look at a neural network is in the form of a computational
graph. Each node of this graph corresponds to an atomic operation which, in its most
general form, computes output tensors from input tensors. Example operations include,
e.g., element-wise addition and multiplication but also matrix multiplication or more
complex operations like matrix decompositions. A computational graph describes the
connections between individual operations and allows for automatic di↵erentiation
(AD) (see, e.g., [Bay+18] for a survey). AD can be implemented in two di↵erent ways:

4For readability we omit the parameters as it is directly comparable to the scalar case.
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in forward mode and in reverse mode. Roughly speaking, the forward mode calculates
the gradient by computing the chain rule from right to left (or inner to outer), while
the reverse mode computes the chain rule from left to right (or outer to inner). Most of
the available software frameworks implement the reverse mode which we will quickly
summarize in the following. For a more detailed introduction (also to the forward mode)
see, e.g., [Bay+18].
In the reverse mode, the gradient for all nodes is computed by reversing the order

of the computation and, starting from a final node (e.g. the scalar loss for a neural
network), propagating the gradient w.r.t. an input of each node to the output of all
nodes connected to this input. Consider a node mapping the input tensors I1, . . . , IN to
the output tensors O1, . . . ,OM with some function f . Given the gradients of a scalar
loss J w.r.t. the M outputs @̂J

@̂Om
, the node calculates the gradient for the n-th input as

@̂J

@̂In
=
X

m

@̂J

@̂Om

@̂Om

@̂In
(2.24)

during the backpropagation phase.
The specific gradient for each input is then passed to all nodes connected to the

input, i.e. those nodes who provided the input values during the forward propagation.
In this view, all parameters of a model can be seen as nodes with a state (the current
parameter values) and no input.
The computational graph simplifies the implementation of the gradient calculation

significantly. Instead of implementing the gradient w.r.t. all parameters manually,
it is su�cient to implement all operations as individual nodes which can calculate
the gradient w.r.t. to their inputs according to Eq. 2.24. These nodes can then be
connected in an arbitrary way to achieve the desired functionality. The gradients
w.r.t. the parameters are obtained in a principled way following the chain rule and
backpropagating them through the (reverse) computational graph.
The computational graph and AD do not only simplify the implementation of a

complex network, they also help to solve the issue with the shape of the generalized
Jacobian and the associated computational e�ciency. To see this, note that each node
calculates the gradient of J w.r.t. to its inputs given the gradient of J w.r.t. its outputs.
One key insight is that we can exploit the fact that not all outputs depend on all inputs
and avoid implementing the generalized Jacobian by finding an analytical solutions for
Eq. 2.24. This can best be seen for some concrete examples.
One class of operations that can be readily simplified are element-wise operation.

Consider a node mapping an input tensor

A 2 RN1⇥N2⇥...ND (2.25)

to a tensor

B 2 RN1⇥N2⇥...ND (2.26)

with the same dimension by applying a function f : R ! R to each element of A

(B)
i
= f((A)

i
). (2.27)
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Let G 2 RN1⇥N2⇥...ND be a tensor with

(G)
i
=

@ (B)
i

@ (A)
i

. (2.28)

Note that each element of G is just a scalar partial derivative. Then, Eq. 2.24 can be
computed as

@̂J

@̂A
=

@̂J

@̂B
�G (2.29)

where � denotes an element-wise multiplication (also known as the Hadamard product)

and @̂J
@̂B

is the gradient of the loss J w.r.t. the output of the node. Note that the

dimension of G and @̂J
@̂B

is only

RN1⇥N2⇥...ND (2.30)

whereas the generalized Jacobian @̂B
@̂A

has the shape

R[N1⇥N2⇥...ND]⇥[N1⇥N2⇥...ND]. (2.31)

Another example is the matrix product between a matrix A 2 RN⇥M and a vector
b 2 RM resulting in the vector c 2 RN with c = Ab. This projection is a very
common operation for neural networks where the elements of the projection matrix A
are learnable parameters5. In the computational graph view, the node has two inputs
(A and b) and one output C. The gradient of a scalar loss J w.r.t. A given the gradient
@J
@C is given by [Böd+17]

@J

@A
=

✓
@J

@C

◆T

b (2.32)

and w.r.t. b by

@J

@b
= AT

@J

@C
. (2.33)

Comparing the dimensions to the ones of the generalized Jacobians, the operands in
both equations are smaller and thus require less memory and computations. However,
the savings are not as big as the ones achieved in the previous example since here, a
single output depends on multiple inputs, resulting in a denser generalized Jacobian.
For the general case of an arbitrary tensor operation, there is no generic way to find

an e�cient expression for Eq. 2.24. In the case where the node performs an operation

C = f(A,B) with A 2 RN
(a)
1

⇥N
(a)
2 , B 2 RN

(b)
1

⇥N
(b)
2 , C 2 RN

(c)
1

⇥N
(c)
2 , however, one can

find such an expression in a principle way [Gil08]. Suppose A and B depend on a scalar

5In practice, this operation is implemented as an inner product of two matrices since an additional
batch dimension is introduced. This enables a better parallelization of the computation when
working with mini-batches but the principle remains the same.



Neural networks 11

x themselves, i.e. C(x) = f(A(x),B(x)). Further let J = g(C). Then we can express
@J
@x as

@J

@x
=
X

n,m

@J

@Cn,m

@Cn,m

@x
= tr

(✓
@J

@C

◆T@C

@x

)
. (2.34)

Note that we use @ here to explicitly distinguish from a generalized Jacobian where,
e.g., we have not defined a transpose. Here, both derivatives are matrices. The forward
mode AD is expressed by

@C

@x
=

@f

@A

@A

@x
+

@f

@B

@B

@x
, (2.35)

where @f
@A and @f

@B respectively describe the sensitivity of the function towards a small
perturbation of the inputs and have the same shape as their inputs [Gil08].
Inserting Eq. 2.35 into Eq. 2.34 and exploiting tr{Y + Z} = tr{Y}+ tr{Z} yields

@J

@x
= tr

(✓
@J

@C

◆T @C

@A

@A

@x

)
+ tr

(✓
@J

@C

◆T@C

@B

@B

@x

)
. (2.36)

At the same time

@J

@x
= tr

(✓
@J

@A

◆T@A

@x

)
+ tr

(✓
@J

@B

◆T@B

@x

)
=

@̂J

@̂A

@̂A

@̂x
+

@̂J

@̂B

@̂B

@̂x
. (2.37)

Comparing the coe�cients and comparing to our definition of the generalized Jacobian
shows that [Gil08]

@J

@A
=

✓
@C

@A

◆T @J

@C
=

@̂J

@̂A
(2.38)

@J

@B
=

✓
@C

@B

◆T @J

@C
=

@̂J

@̂B
.

For C = f(A,B) an e�cient expression for @̂J
@̂A

and @̂J
@̂B

is found by determining the

sensitivity (i.e. forward mode AD) and then rearranging @J
@x such that

@J

@x
= tr

⇢
(. . .)T

@A

@x

�
+ tr

⇢
(. . .)T

@B

@x

�
. (2.39)

A big advantage of the described procedure is that it is also possible to find an
expression for more complicated cases such as C = A�1B by considering the more
simpler implicit expression AC = B.
In this particular example we have

@B

@x
=

@A

@x
C+A

@C

@x
(2.40)

, @C

@x
= A�1

@B

@x
�A�1

@A

@x
C.
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Inserting in Eq. 2.34 yields

@J

@x
= tr

(✓
@J

@C

◆T✓
A�1

@B

@x
�A�1

@A

@x
C

◆)
(2.41)

= tr

(✓
A�T

@J

@C

◆T@B

@x

)
� tr

(
C

✓
@J

@C

◆T

A�1
@A

@x

)

= tr

(✓
A�T

@J

@C

◆T@B

@x

)
� tr

(✓
A�T

@J

@C
CT

◆T@A

@x

)
.

Comparing the coe�cients results in the desired expression for the gradient w.r.t. A
and B respectively

�J

�A
= �A�T

@J

@C
CT (2.42)

�J

�B
= A�T

@J

@C
.

2.2.4 Wirtinger calculus

Later in this work, we will integrate signal processing algorithms into a neural network.
Digital signal processing (DSP) usually uses a complex valued spectral representation
of a signal, i.e. a representation where the signal is decomposed into its harmonics. In
order to be able to e�ciently train DSP related networks with gradient descent, the
backpropagation algorithm must support intermediate complex valued tensors.
The Wirtinger calculus [Bra83] expresses the partial derivative w.r.t. to a complex

valued scalar z = x+ jy as

@

@z⇤
=

1

2
(
@

@x
+ j

@

@y
) (2.43)

@

@z
=

1

2
(
@

@x
� j

@

@y
) (2.44)

and obeys the chain rule, i.e., given two functions f : C ! R and g : C ! C with
J = f(u+ jv) = f(h) and h = g (z) = g(x+ jy) the partial derivative @J

@z⇤ is given by

@J

@z⇤
=

✓
@J

@h⇤

◆⇤ @h

@z⇤
+

@J

@h⇤

✓
@h

@z

◆⇤

(2.45)

as can be shown (e.g. [Böd+17]) by using the real valued chain rule and Eq. 2.43.
Starting from this, the same methodology as for the real valued case can be developed

([DRH16; Böd+17]. Note that from the computational graph perspective only one
partial derivative (i.e., Eq. 2.43 or Eq. 2.44) has to be calculated and propagated to
the node connected to the inputs as one equation can be readily computed from the
respective other one [DRH16]. Also, the same method can be applied to find an e�cient

expression for �J
�A and �J

�B when C = f(A,B) and A 2 CN
(a)
1

⇥N
(a)
2 , B 2 CN

(b)
1

⇥N
(b)
2 ,
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C 2 CN
(c)
1

⇥N
(c)
2 . For the complex valued case, Eq. 2.37 becomes

@J

@z⇤
= tr

(✓
@J

@A⇤

◆H @A

@z⇤
+

✓
@J

@A⇤

◆T✓@A

@z

◆⇤
)

+ tr

(✓
@J

@B⇤

◆H @B

@z⇤
+

✓
@J

@B⇤

◆T✓@B

@z

◆⇤
)

(2.46)

and Eq. 2.39

@J

@z⇤
= tr

⇢
(. . .)H

@A

@z⇤
+ (. . .)T

✓
@A

@z

◆⇤�
+ tr

⇢
(. . .)H

@B

@z⇤
+ (. . .)T

✓
@B

@z

◆⇤�
. (2.47)

Again, comparing the coe�cients yields the desired expressions for �J
�A and �J

�B .

2.2.5 Summary

This section briefly introduces NNs and important layers like the convolutional layer and
the LSTM layer. Their parameters are optimized using stochastic gradient descent which
requires to compute the gradient of a real valued loss function w.r.t. each parameter of
the network. Exploiting the chain rule, this computation can be carried out e�ciently
with the backpropagation algorithm. Viewing the network as a computational graph in
which each node defines a forward function and the gradient w.r.t. its inputs given the
gradient of the loss w.r.t. its outputs allows for a modular implementation. Instead of
implementing the gradient computation for a specific network, only the local gradient
of the node needs to be implemented. These nodes can then be connected to build an
arbitrary network structure with automatic di↵erentiation. This mechanism still works
if intermediate inputs and outputs are complex valued and allows the use of complex
valued algorithms within a neural network architecture.



3 Automatic speech recognition

The ultimate goal of ASR is to find the most likely sequence of discrete linguistic tokens
(usually words, the terms will be used interchangeably) for a given audio signal. The
Maximum-a-posteriori (MAP) decision rule is expressed by the fundamental equation
of ASR

!̂
1:L̂ = argmax

!1:L,L
Pr(!1:L|z1:N). (3.1)

Here, !̂
1:L̂ = [!̂1, !̂2, . . . , !̂L̂] is the decoded sequence of tokens and the probability

is conditioned on the sequence of input features z1:N = [z1, z2, . . . , zN ]. According
to Eq. 3.1, !̂

1:L̂ is the sequence of tokens among all possible token sequences which
maximizes the posterior probability Pr(!1:L|z1:N) given the observed feature sequence
z1:N .
The di�culty of solving this maximization problem depends foremostly on the

application. If the distance from the speaker to the sensor(s) is small, the number of
possible interferences reduces significantly and the feature sequence is more predictive
for the task at hand. For larger distances (> 1m) this situation changes significantly.
Interfering sources can now be captured with the same, or even greater power than the
target source itself and realizations of the features are consequently less dependent on
the target. Worse, di↵erent environments can lead to feature sequences very di↵erent
to any comparable sequence available in the training data for the model as even big
corpora cannot cover all possible interferences. This challenging scenario is termed
far-field ASR and the ultimate goal is to build robust ASR systems, i.e. systems capable
of dealing with severe environmental distortions, whether these are interfering sources,
reverberation or a combination of both.
Another major factor for the di�culty of the task is the size of the vocabulary, i.e.,

the number of words the system knows about. With an increasing size, the classification
becomes much more challenging as the number of possible sequences grows exponentially.
If the size exceeds a few thousand words, one commonly refers to the task as large
vocabulary ASR. This work concentrates on the problem of (robust) far-field large
vocabulary ASR.
Today, the approaches to ASR can be roughly divided into two di↵erent ones: A

statistical approach and the so called end-to-end approach which directly translates
audio into text using a single model1. While the former benefits from neural networks

1The end-to-end approaches are technically still of statistical nature but there is no explicit generative
modeling.

14
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in terms of better performance, the latter was only made possible recently by the ability
to train large networks. The statistical approach has a long history and is (still) used
in most of the production systems for real world applications. We therefore also refer
to it as the conventional approach. In the following, both approaches are reviewed with
a focus on the statistical one as this one will be used throughout this work.

3.1 Statistical ASR

The statistical way to tackle the problem is to decompose the conditional probability in
Eq 3.1 by applying Bayes’ rule

!̂
1:L̂ = argmax

!1:L,L

Pr(!1:L)p(z1:N |!1:L)

p(z1:N)
/ Pr(!1:L)p(z1:N |!1:L). (3.2)

The normalizing probability of the acoustic realization p(z1:N ) can be neglected since it
does not depend on the word sequence. Each factor is modeled by a distinct model2.

Language model The first factor (Pr(!1:L)) can be identified as modeling the word sequence. Since
the order of the words matters in a language and each word has an individual
(context dependent) frequency, a certain probability can be assigned to any specific
sequence of words. Thus, the corresponding model is referred to as the language
model.

Acoustic model The second factor (p(z1:N |!1:L)) is of a generative nature and describes the
probability of an acoustic realization for a given word sequence. The model for
this probability is consequently called the acoustic model.

Apart from these models, three other major components complete an ASR system.

Lexicon Instead of modeling p(z1:N |!1:L) directly, it is beneficial to introduce a mapping �
which maps a sequence of words to a sequence of so-called phonemes. A phoneme
is the smallest acoustic unit that distinguishes one word from another for a
particular language. Its relation to the acoustic realization and the, compared
to the words, small size of the set of all phonemes, makes a phoneme sequence
particularly suitable in this context. The mapping from a word to a phoneme
sequence is called the lexicon. Note that this mapping is not unique; a word can
be mapped to multiple phoneme sequences and vice versa.

Decoder The decoder combines the acoustic and the language model by solving Eq 3.2 and
searching for the most likely transcription.

2Splitting the distribution not only makes the modeling easier but also has an important practical
implication. Training the language model only requires text data while training an acoustic model
requires labeled (i.e. transcribed) speech data. While the latter is time consuming and costly to
acquire, the former is readily available for many domains.
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Feature extraction Usually3, the acoustic model does not model the raw waveform directly but rather
models a sequence of features extracted from it. The feature extraction component
extracts features suitable for the model from the raw waveform.

The following describes all of these components, except for the lexicon, in greater
detail. Details for the lexicon are described whenever needed as it is the connecting
element between the acoustic and language model.

3.1.1 Feature extraction

Extracting features from the raw audio signal is the task of the front-end. Ideally, these
features should preserve all information necessary to distinguish the di↵erent acoustic
units (i.e. phonemes) while being insensitive to acoustic variations introduced by the
environment. Usually there is a trade-o↵ between the compactness of the features and
the information discarded while producing them. For a long time, the by far most
commonly used features for ASR were the so-called Mel frequency cepstral coe�cients
(MFCCs). These features are partly motivated by the human auditory system and
their extraction process has been standardized by the European Telecommunication
Standards Institute (ETSI) [Pro03]. The following shortly explains how they are
extracted.
After the analog-to-digital conversion (usually with a sampling rate of 8 kHz or 16 kHz),

the signal is processed by a pre-emphasis block to compensate for an 6 dB/octave
attenuation of the voiced speech [Owe93]. Analysis windows wA(t) of length Lwindow

and with an overlap of B samples then segments the signal y(t) into a sequence of T
overlapping frames to which the discrete Fourier transform (DFT) is applied.

yDFT(k, f) =
Lwindow�1X

t=0

w(t)y(t+ kB) exp

⇢
�j

2⇡

F
tf

�
, f 2 {0, 1, . . . , F � 1} (3.3)

The phase information of these F spectral coe�cients is discarded4 and only the
magnitude (or power) of the current frame is considered. To these frequency coe�cients,
another set of N filters with N < F is applied. Each of these overlapping bandpass filters
has a triangular shape with a di↵erent center frequency and bandwidth. Motivated
by the human perception, the frequency resolution is chosen in a non-linear way such
that it results in a linear spacing on the Mel scale. This means that the bandwidth
and the spacing between the center frequencies increase approximately logarithmically
with frequency and also gives the array of filters the name Mel filter bank. Each filter
⇤n with the lower and upper cuto↵ frequencies F lower

n and F upper

n yields a Mel spectral
coe�cient (MSC)

yMSC(k, n) =
Fupper

nX

f=F lower
n

⇤n(f)|yDFT(k, f)|. (3.4)

3Exceptions will be discussed later in this section.
4Phase information has only a minor impact on human speech perception for the used fast Fourier
transform (FFT) parameters [PA03]
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Table 3.1: Typical parameters used for the feature extraction process depending on the
acoustic model (AM).

AM Frame shift Frame length FFT length #LMSCs #MFCCs

GMM 160 400 512 23 13

generic NN 160 400 512 40 40

CNN 160 400 512 80 –

To account for the also non-linear human perception of the intensity, the natural
logarithm is applied afterwards and the resulting value is called log Mel spectral
coe�cient (LMSC)

yLMSC(k, n) = ln yMSC(k, n). (3.5)

Finally, a discrete cosine transformation (DCT) is applied to the stacked vector of
LMSCs resulting in the MFCC feature vector

yMFCC(k) = DCT([yMSC(k, 0), yMSC(k, 1), . . . , yMSC(k,N � 1)]). (3.6)

The DCT approximately decorrelates the coe�cients which is a helpful property when
modeling the features with gaussian mixture models (GMMs) as it allows to assume
a diagonal covariance matrix. Most of the useful information is contained in the
first coe�cients and consequently the remaining ones are discarded to reduce the
dimensionality of the final feature vector. While the DCT only removes the so-called
intra-frame correlations, the vectors themselves are highly correlated (inter-frame
correlation), mainly because of the overlapping windows during frame extraction. For
models that are only exposed to a single frame (such as the GMM), the context provides
helpful information. To incorporate this, � (delta) and �� (delta-delta) features are
concatenated to the vector of MFCCs resulting in dynamic features. The � and ��
features approximate the first and second order temporal derivative of the sequence of
MFCCs feature vectors respectively.
With neural networks replacing the GMM to model the acoustic observations, the

feature extraction pipeline also changes. While MFCCs are still heavily used (e.g., by
most Kaldi recipes), their dimensionality increased (see Tbl. 3.1) as the benefits of
keeping even weakly informative features outweighs the benefits of dimensionality
reduction for a powerful discriminative model. But, depending on the architecture
of the network, MFCCs might not be the right choice. For example, when using two
dimensional CNNs, the decorrelation along the feature dimension becomes an undesired
property. The LMSCs are more suitable for these architectures. And since the networks
can learn to dismiss unimportant information and warp the frequency resolution by
themselves, it is also possible to just use the magnitude spectrogram although this
might require more training data. Also, the model is usually exposed to many frames
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at once, eliminating the need for the � and �� components. In fact, when using
convolutional layers, a neural network can learn appropriate filters to produce these
components if they are useful for the classification task.
It is also possible to dismiss the feature extraction altogether and use the raw audio

signal. This has been successfully shown in, e.g., [Tüs+14] but also imposes a higher
requirement on the amount of training data. Such architectures imitate most of the
described extraction process (i.e. framing, filtering, logarithmic compression) but treat
the filters as learnable parameters rather than manually determine them. Interestingly,
the final filters after training show a lot of similarities to the fixed ones, especially the
frequency resolution seems to match closely.
A discussion of suitable features for the multi-channel scenario considered in this

work follows in Sec. 3.3.
Typical parameters for the extraction process are shown in Tbl. 3.1.

3.1.2 Acoustic model

The acoustic model estimates the probability p(z1:N |!1:L) of the observations given the
label sequence. Note that the length of the two sequences di↵ers, i.e. N > L. This
results in an alignment or attribution problem since it is unknown which frames are
associated with one specific label. To solve this, a hidden markov model (HMM) is
used. This model introduces a sequence of latent states

p(z1:N |!1:L) =
X

s1:N2S

p(z1:N , s1:N |!1:L). (3.7)

Assuming each state sequence uniquely maps to a word sequence5, describing the set of
possible state sequences for the word sequence !1:L with S!1:L and applying factorization
yields

p(z1:N |!1:L) =
X

s1:N2S!1:L

NY

n=1

p(zn|z1:n�1, s1:n) Pr(sn|z1:n�1, s1:n�1). (3.8)

The two densities are still conditioned on all previous observations which makes them
hard to model. Two assumptions further simplify the equation above. The first one is
referred to as conditional independence assumption and assumes that the probability
for an observation only depends on the current state

p(zn|z1:n�1, s1:n) ⇡ p(zn|sn). (3.9)

The second one approximates the stochastic process of state emissions as a first order
Markov process

Pr(sn|z1:n�1, s1:n�1) ⇡ Pr(sn|sn�1). (3.10)

5To ensure this, disambiguation symbols are introduced in practice.
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The resulting approximation for the probability of an observation sequence given a word
sequence is now related to the observation density and state transition probabilities by

p(z1:N |!1:L) ⇡
X

s1:N2S!1:L

NY

n=1

p(zn|sn) Pr(sn|sn�1). (3.11)

The states used in this model represent context-dependent phonemes also called senones.
They describe a phoneme with its left and right context. The reasoning behind this choice
is that an acoustic realization of a specific phoneme can be very di↵erent depending on
the context it is used in. Since the number of possible context-dependent phonemes is
usually too large, a clustering mechanism is used to combine contexts which result in a
similar acoustic realization of the phoneme. In practice, depending on the size of the
training data, a few thousand states are used.

GMM-HMM models

Despite many e↵orts to find alternatives, until the early 2010s the predominant way to
model the observation density in Eq. 3.9 was to use a GMM resulting in a GMM-HMM
model. These models can be trained e�ciently with the expectation maximization (EM)
and forward-backward algorithm [RJ86; MK07]. However, despite a wide variety of
methods and great e↵orts to improve the performance, it eventually plateaued especially
in challenging environmental conditions. Nevertheless the GMM-HMM models still
play an important role as of today.

DNN-HMM models

First investigations of using neural networks for ASR started in the late 1980s and are
reviewed in [Lip89]. The first works showed good performance on phoneme recognition
tasks. Here, the alignment is known and the task is to infer a single phoneme class
from a specific number of frames. Few works also demonstrated promising results for
large vocabulary ASR tasks [RHR96]. However, GMM-HMM were easier to train and
showed better performance. With more computational power, more data and the ability
to train deeper networks [SLY11] this picture changed. The first works reporting a
big performance gain for (applied) ASR using neural networks are [SLY11; Hin+12].
Di↵erent model architectures and training methods as well as even more computational
power and data have led to significant improvements since then and no other type of
(statistical) model has been shown to be competitive as of today. Some publications
even report human like performance for specific tasks [Xio+17]. This work focuses on
the so called hybrid models6 that still make use of the HMM framework but instead of
using a GMM to model the observation density found in Eq. 3.9, a neural network is

6 There also exists the so-called TANDEM approach where a network is purely used as a feature
extractor and the acoustic model is still a GMM-HMM. Sophisticated discriminatively trained
TANDEM system achieve about the same performance as hybrid systems (see, e.g., [Tüs+17]) and
some techniques developed for GMM-HMM systems can readily by applied. However, the majority
of works including this thesis focuses on hybrid systems.
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used. To this extent, Eq. 3.9 is rewritten using Bayes’ rule to obtain

p(zn|sn) =
Pr(sn|zn)p(zn)

Pr(sn)
/ Pr(sn|zn)

Pr(sn)
. (3.12)

The state probability p(sn) is usually estimated on the training corpus from the
occurrence frequencies of the states and p(sn|zn) is estimated with a neural network.
To further improve the accuracy it is possible to include some frames as context
p(sn|zn�cl:n+cr) or, if there are no requirements on latency, even condition on the whole
observation p(sn|z1:N) by using, e.g., recurrent models. Since neural networks are able
to handle highly correlated input data, this is a clear advantage over the GMMs where
decorrelated data is beneficial. Additionally, a GMM-HMM system has an independent
GMM per state which is usually not aware7 of the models from other states whereas in
a DNN-HMM system a single model is used for all states.
The reformulation in Eq. 3.12 transforms the problem into a classification task neural

networks are particularly good at and also allows for a fast inference since the posterior
probabilities can be calculated from the input independent of a hypothesis for the word
sequence. Note that in this scenario a posterior is still estimated for each frame and its
context independently, i.e. this does not lift the conditional independence assumption
but might reduce the resulting approximation error by also considering neighboring
frames (or even the whole sequence).
In order to train the network with a cross-entropy criterion in this setting, the state

for each frame is required as supervision, i.e. the alignment must be known. This is
commonly solved by using the hard alignment from a GMM-HMM system. A hard
alignment can be extracted with a trained GMM-HMM system utilizing the Viterbi
algorithm which yields the most likely state sequence8. The network can now be
optimized to predict the most likely state for each frame, e↵ectively minimizing the
expected frame error rate.
One can identify this frame-wise training as the main drawback of this approach.

First, the expected frame error rate is only a loosely related proxy for the actual target
(minimizing the expected word error rate). And second, a GMM-HMM system is
still required to obtain the alignment. Not only does this add additional complexity,
it also introduces a dependency. The quality of the alignments is determined by
the performance of the GMM-HMM system. And while neural networks are able to
handle a certain amount of label noise [Kra+15] and even benefit from it as a form of
regularization [Chi+17; Sze+15], empirical evidence shows that an erroneous alignment
hurts the performance of the DNN-HMM system [Del+13; NW14]. Especially for low
signal-to-noise ratio (SNR) or highly reverberant scenarios investigated in this work,
the quality of the alignments can become an issue. If parallel data is available, one way
to overcome this is to use the clean speech data to train the GMM-HMM system and to
extract alignments which are then used for the distorted data of interest. Thus, when
working with reverberation, care has to be taken that the reverberated data still aligns
with the clean data as most room impulse responses (RIRs) introduce a group delay.
One way to overcome the problem of extracting the right frame labels that also

addresses the loose relationship with the actual target is to switch from a frame-wise

7Training with a maximum mutual information (MMI) criterion addresses this issue
8A simple count of these is used to estimate the previously mentioned state probability p(sn)
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criterion to a sequence-wise one. CTC is one criterion that directly optimizes a variant
of Eq. 3.11. Modifications include omitting the transition model as well as the state
prior (i.e. assuming that both are fixed and uniformly distributed) and extending the
frame context to the full sequence. The criterion also introduces an additional state
called blank, changing the set of possible state sequence from S!1:L to S̃!1:L . The blank
state corresponds to no output and is ignored during decode. It is crucial for the
convergence of the system and seems especially beneficial if recurrent neural networks
are used as found by studies on the related task of handwriting recognition in [Blu+15].
The CTC likelihood is then expressed by

LCTC =
X

s1:N2S̃!1:L

NY

n=1

p(sn|z1:N). (3.13)

With the help of the forward-backward algorithm, this criterion and its gradient can be
computed e�ciently during training. CTC thus eliminates the need for an alignment
by considering all valid state sequences mapping to the target transcription. However,
this assumes that all sequences are equally likely a priori and neglects the e↵ects of the
language model leading to a mismatch when both models are combined.
Sequence discriminative criteria such as MMI [Bah+86], minimum phone error

(MPE) [Pov05] or state-level minimum Bayes risk (sMBR) [Kin09; Ves+13] account
for the fact that not all sequences are equally likely and further close the gap be-
tween the training and evaluation criterion. One variant is the so called lattice-free
maximum mutual information (LF-MMI) [Pov+16] which, as of today, is used by the
popular open-source toolkit Kaldi [Pov+11] where it achieves the best performance
on many di↵erent datasets. The MMI criterion for ASR relates the likelihood of
the observation sequence given the state sequence p(z1:N |s1:N) to the likelihood of
the observation

P
s02S p(z1:N |s01:N) Pr(s01:N) which is obtained by marginalizing over all

possible sequences. This way the model is encouraged to maximize the likelihood of
the observation sequence conditioned on a valid state sequence such that it does not
increase the likelihood of the observation sequence when conditioned on a di↵erent
state sequence. Since the set of all possible sequences S is huge, the marginalization
over all state sequences to compute the (unconditional) likelihood of the observation is
computationally demanding and several simplifications are necessary to achieve practical
speeds. LF-MMI for example uses a simplified transition model, a phone-level language
model and a reduced frame-rate [Pov+16].

3.1.3 Language model

The language model estimates the probability Pr(!1:L) of a word sequence. In its
factorized form, this probability is expressed by

Pr(!1:L) = Pr(!0)
LY

i=1

Pr(!i|!0:i�1). (3.14)
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This can again be approximated by limiting the context length to the last n� 1 words.
Left padding the sequence with n� 1 special sentence start labels then yields

Pr(!1:L) ⇡
LY

i=0

Pr(!i|!i�n:i�1). (3.15)

A language model based on this approximation is called an n-gram language model.
The probabilities can be estimated by counting the occurrences in a large training
dataset9. But even for a relatively small vocabulary size of 5000 words and a tri-gram
language model there are 50003 = 125.000.000.000 possible n-grams. Considering that
the frequency of words approximately follows a power law [GOO53], even for a very
large corpus many n-grams will never been seen and thus zero probability will be
assigned to them if trained using the maximum-likelihood (ML) criterion. This issue
can be mitigated by employing smoothing techniques and/or backo↵ methods [NEK94].
The former introduces pseudo counts for non-existing n-gram while the latter uses the
probability of a reduced context multiplied with some back-o↵ probability. During the
combination with the acoustic model, the size of the search space is mainly determined
by the size of the vocabulary and order of the language model. In practice, a good
trade-o↵ is found by using a tri-gram language model to narrow down the number of
hypotheses (first pass) followed by a rescoring of these hypotheses with, e.g., a 5-gram
language model.
A more powerful recurrent neural network language model (RNN-LM) [Mik+11] does

not limit the size of the context and approximates the sequence probability as

Pr(!1:L) ⇡
LY

i=0

Pr(!i|hi�1). (3.16)

The state hi of the recurrent network can, at least in theory, store all relevant information
from all previous words. An analysis shows that the context spans roughly 200 words
but the order is only important for the words nearby [Kha+18]. Even more context
can be captured using a di↵erent architecture termed transformer [AlR+18; Dai+19]
However, the statefulness of the recurrent model becomes an issue when combining
the probabilities with the ones from the acoustic model since for each search path a
state vector has to be stored now and due to the infinite context fewer states can be
combined. Some works suggest that such a model can still be used within a single
decoding pass, e.g., by using caches [HZD14; Bec+19]. But mostly the model is used to
rescore n-best hypotheses during a second decoding pass.

3.1.4 Decoder

The decoder searches for the most probable word sequence combining the probabilities10

of the acoustic and the language model, i.e. it solves the optimization problem from
Eq. 3.2. This can be done in a frame synchronous or in a label synchronous way. The

9 Contrary to transcribed speech data, a vast amount of plain text data is available for many domains
(e.g., [Che+13]) or can be aggregated by, e.g., scraping the web.

10For numerical reasons the actual implementation uses log-probabilities also referred to as scores
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hybrid approach considered in this work uses the former one but for other architectures
the latter one is beneficial (see the following Sec. 3.2). Frame synchronous means that
the decoder advances one step with each frame processed by the acoustic model. In
order to find the most likely sequence, the decoder would theoretically need to evaluate
the probabilities for all possible word sequences. This is computationally infeasible and
the decoder uses a heuristic algorithm called beam search and dismisses paths with low
probability after each step.
Typically, the decoder is e�ciently implemented utilizing weighted finite state trans-

ducers (WFSTs) (see, e.g., [MPR02; MPR08]). To compute the probability of a
hypothesis, the probabilities of the acoustic and language model are combined by
adding them in the log domain. A weight factor, the so-called language model weight, is
multiplied with the language model score to trade-o↵ the influence between the acoustic
and the language model.
After having described all components of a statistical ASR framework, we now

turn to end-to-end ASR systems. These systems roughly consist of a single model
directly transcribing the audio (features). In the following, the two major architectures,
sequence-to-sequence models with attention and the RNN transducer (RNN-T) are
briefly described.

3.2 End-to-end ASR

3.2.1 Sequence-to-sequence models

The initial work by Chorowski et al. [Cho+14b] in 2014 paved the way for all-neural
sequence-to-sequence (Seq2Seq) models which directly transform audio (features) into
a sequence of labels. They consist of an encoder network which transforms the audio
features into some learned representation and a decoder network which is similar to
a RNN-LM but conditioned on the representation of the encoder. For long sequences
such as those occurring in ASR, it is not su�cient to just initialize the decoder with,
e.g., the state of the encoder like the first models of this architecture did for di↵erent
tasks [Cho+14a]. Instead, a mechanism introduced for machine translation tasks to
address this issue [BCB14] called attention is used. This mechanism gives the decoder
access to the whole representation for each decode step in form of a weighted sum where
the weights are dynamically computed depending on a vector representation issued by
the decoder. A follow-up work titled listen attend and spell (LAS) [Cha+16] changed
the output labels from phonemes to characters e↵ectively also learning the spelling
(i.e. the lexicon).

One can identify three major advantages of the Seq2Seq models compared to the sta-
tistical approach. First, it allows to eliminate the conditional independence assumption
which is crucial for the statistical HMM based system. Second, lifting the requirement
for a lexicon greatly reduces the manual labor needed to build a system for a new
language or domain. And third, it significantly simplifies the toolchain necessary to
train the model. These advantages triggered a big research interest and there has
been a significant progress in this area since the first work was published. Notably,
recent systems now start to outperform the conventional ones on datasets with 1000 h
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of speech data or more (e.g., [Chi+18; Iri+19; Par+19]). However, for smaller amounts
of training data statistical approaches are still more e↵ective than the end-to-end ones
as we will demonstrate later. This can partly be attributed to one drawback caused by
having a single model. As mentioned earlier, there is usually much more training data
available for the language model than for the acoustic one. For an end-to-end approach
however, the decoder is only trained using the transcribed audio data and despite some
e↵orts to overcome this issue (e.g., [Kar+19]), it is still an open research problem.
Better performance can be achieved by integrating an auxiliary language model during
decode time [CJ17; Gül+15] or even during training [Sri+18]. But even then there is a
remaining performance gap for smaller datasets compared to the statistical approach.
The vanilla Seq2Seq also has another drawback, namely its latency caused by the
attention that spans over the whole encoded input. Thus the system needs to consume
the full audio signal to be transcribed while conventional systems can operate in a
streaming and even frame-by-frame fashion. Models with a block-wise processing of the
audio stream are subject to current research and have yet to reach the performance of
their o✏ine counterparts [Sai+18].

3.2.2 RNN transducer

A di↵erent end-to-end model which is closer related to the conventional systems is called
RNN-T [Gra12]. Roughly speaking, it is a combination of the CTC idea combined
with an RNN-LM and a loss function for joint training. The model interpolates the
token probabilities from the transcription network (acoustic model) for each frame with
the token probabilities for each token from the prediction network (RNN-LM). Here,
token refers to either a grapheme or some other sub-word unit. By also considering the
probabilities from the prediction network the model e↵ectively relaxes the conditional
independence assumption since the prediction network has access to the full hypothesis
history up until the current label. Calculation of the likelihood for training can again
be implemented e�ciently using the forward-backward algorithm [Gra12]. The newly
introduced dependency of the probability distribution for one frame on the history of
hypothesized tokens complicates the decoding process which can either operate in a
label or in a frame synchronous fashion.
Note that di↵erent from the language model in the statistical system the prediction

network here does not describe word dependencies but rather works with the same tokens
as the transcription network. This allows to again also implicitly learn the spelling
(lexicon) but also might hurt the performance slightly as word level language models
outperform those based on sub-units. Since the prediction network is nothing else then
a RNN-LM, it can be pre-trained without any modifications allowing to exploit large
text corpora. The biggest di↵erence between RNN-T and Seq2Seq models is the way the
alignment problem is solved. For Seq2Seq models this happens implicitly by learning
the attention while for RNN-T there is an explicit mechanism of marginalization during
the loss calculation and search phase. This explicit mechanism also incorporates a
monotonic prior which seems suitable for the ASR task. It also allows RNN-T models to
operate in a streaming fashion for low latency applications, even on resource constrained
hardware such as mobile phones [He+19].
All systems described so far use features from a single microphone. In the following,
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we discuss how the neural network can be extended upon to benefit from additional
information provided by multiple microphones. These methods concentrate either on
the feature extraction and/or the model architecture but can in principle be applied to
both, statistical ASR as well as to end-to-end approaches.

3.3 Multi-channel ASR

Multiple approaches exist in order to exploit the additional information contained in a
multi-channel input signal for NN-based ASR systems.
One straightforward option is to use the same feature extraction as described in

Sec. 3.1.1 for each input channel individually and then either stack the resulting
vectors to obtain a single multi-channel feature vector or use a CNN architecture with
multiple input channels. This approach has been investigated in [SGR14] where it
yields performance improvements over a single-channel system. It only uses magnitude
information since the phase is dropped during the feature extraction (see Sec. 3.1.1).
However, for a microphone array with no occlusion, the magnitudes of the individual
signals are nearly identical, especially when the spacing between the microphones is
small. Thus, the possible gains this approach can achieve are limited and no spatial
information is exploited.
Finding a feature representation of the phase information that can be utilized ef-

fectively by a neural network to provide spatial information but that is also invariant
to the array geometry and room characteristics remains an open challenge. Recently,
interchannel phase di↵erence (IPD) features showed improvements for a multi-channel
speech separation task [WLH18]. They have also been used for acoustic modeling in the
context of the CHiME 5 challenge and showed promising results [Kan+18]. However, for
the speech separation task, only pairs of microphones are considered and the information
of those pairs is aggregated in an embedding space. This allows for handling arbitrary
microphone configurations. And although some techniques exist to combine information
later in the process for the acoustic model (e.g., ROVER [Fis97]), the proposed method
aggregates the information at the input level rendering it specific to the microphone
configuration during training.
A di↵erent approach to exploit spatial information is to directly work on the raw

waveform and leveraging temporal di↵erences between the input signals. Previous works
have already shown that neural networks with a suitable architecture can learn to extract
useful information from the raw waveform in the single-channel case and even outperform
similar models which rely on the manually designed feature extraction [Tüs+14; Sai+15c].
In [HWW15] Hoshen et al. report noticeable performance improvements when using
multiple raw waveform signals on a larger scale voice search task. Further improvements
in performance as well as reduction in computational demands were achieved in follow-
up works [Sai+15a; Sai+16]. An analysis of the learned filters in [Sai+15a] shows some
interesting properties of the system. First, the filters have a bandpass characteristic and
spatial selectivity. Performance increases with a higher number of channels but only if the
number of filters is also increased. Using a di↵erent array geometry during inference and
training degrades the results. This can be avoided by sampling di↵erent microphone
configurations during training but only 30% of the learned filters remain spatially
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selective afterwards. However, evaluation shows that this restores the performance
gain achieved in the first place and now even for di↵erent microphone configurations.
This suggests that multiple beamformers are learnt for di↵erent critical bands and the
network is able to select one that supports classification depending on the observation.
But while this is possible for two channels where the only variable is microphone spacing,
a system with support for more channels will need to learn many more filters to achieve
the same invariance. Also, the number of channel is determined at training time. If
a channel is missing the system presumably cannot adapt and if additional channels
become available, the system will not benefit.

3.4 Summary

This chapter reviewed the underlying methods of ASR systems. It introduced the
statistical view and the split into an acoustic and language model. For both, a
shorter context or independence assumption is key to obtain equations with tractable
models. The conventional acoustic model is based on a HMM with GMMs to model the
observation. Large improvements are achieved by replacing the GMMs with a DNN,
leading to the so-called hybrid approach where the DNN classifies the states given the
acoustic feature(s). Further improvements can be realized using a sequence training
criterion. Besides the statistical approach, end-to-end models were discussed. These
models make fewer assumptions, crucially they dismiss the independence assumption
but need more data to reach comparable performance and are subject to active research.
In this work we will use HMM-DNN models which are more suitable for smaller datasets.
Several options to exploit multiple microphones with neural network architectures

were reviewed. Exploiting phase information is hard with neural networks. One major
drawback of the current approaches is that they are not adaptive. Once trained,
their filters are fixed and only work for certain microphone configurations and acoustic
scenarios encountered during training. This prohibits, e.g., tracking a speaker movement
during a longer utterance.



4 Speech signal processing

In the last chapter we already described the processing of the raw audio to obtain
useful features for the ASR system. We also briefly discussed how to exploit multi-
channel audio data recorded by an array of microphones. This discussion, however, was
primarily focused on the (NN-based) acoustic model and its ability to directly handle
multi-channel data.
Another approach is to perform signal processing on the audio data beforehand

and, e.g., condense it to an enhanced single-channel signal from which the features for
acoustic model are extracted afterwards. Speech signal enhancement aims to reduce the
negative impact of interferences and reverberation on speech intelligibility for humans
as well as for machines. It is based on a physical and/or statistical model of the involved
signals and acoustic scenario. These models will be explained in Sec. 4.1. With this
prerequisite, a physical (Sec. 4.2.1) and statistical method (Sec. 4.2.2) for acoustic
beamforming is reviewed. We will focus on statistical beamforming, explain di↵erent
optimization criteria to obtain the filter coe�cient and relate them afterwards. All
presented methods make use of signal statistics which need to be estimated (Sec. 4.3).
One way these statistics can be obtained is by estimating a class a�liation for each
time frequency bin (tf-bin). Spatial characteristics can be modeled by a statistical
model for this task (Sec. 4.4). Finally, we will present methods specially designed to
deal with reverberation. One of them is called weighted prediction error (WPE) and
will be discussed in Sec. 4.5.2. But we can also use beamforming for this task as will be
detailed in Sec. 4.5.1.

4.1 Signal model

4.1.1 General model

In general, we assume that the acoustic scene consists of Q direct sources as well as a
di↵use signal which is a superposition of the signal of several di↵use sources. Direct
sources are point sources which emit sound in a very limited region of space, while
di↵use sources emit the sound in a very broad region of space. This acoustic scene is
captured using M sensors which are usually part of one sensor array. The geometry of
such an array can have a specific design to support the disentanglement of the signals
(see, e.g., the beampattern in following Sec. 4.2.1) but is assumed to be unknown for
most parts of this thesis. Because of the linear propagation of a sound wave [Kut16], an
individual sensor m of such an array records the following superposition of time signals:

27
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ym(t) =
Q�1X

q=0

1X

⌧=0

am,q(t, ⌧)xq(t� ⌧) + dm(t). (4.1)

xq(t) is the signal emitted by the q-th direct source, dm(t) is the superposition of
all di↵use sources as captured by the m-th microphone and am,q(t, ⌧) is the acoustic
impulse response (AIR) from the q-th source to the m-th microphone at the current
time t.
The AIR (or RIR) is the result of the summation of all propagation paths and can be

decomposed into three (including the delay four) distinct parts as depicted in Fig. 4.1.
First, there is the direct path from the source to the sensor. Because this is also the
shortest path, it is characterized by the first peak in the AIR. This peak is followed by a
number of smaller peaks, the so called early echos which are the result of waves reflected
by nearby objects and the room boundaries. Finally, there is the long reverberation
tail produced by signals which are reflected multiple times by various objects or walls.
For this part, the individual peaks cannot be distinguished from each other anymore
because of the high number of di↵erent paths with the same length. The power of
the reverberation signal decreases exponentially as only a part of the signal energy is
reflected each time the paths encounters a surface. The ratio of the absorbed power
and the reflected power depends on the material and the angle of incidence. High ratios
are usually encountered for, e.g., carpets (15%). Harder materials reflect more signal
power and the ratio is 7% for a concrete wall and only 1% for a tiled floor [Mar+14].

4.1.2 Simplified model

Without any simplifying assumptions, any enhancement of a (speech) signal ym(t) is
di�cult due to the time-varying and possibly infinitely long AIR. In this work, we
therefore limit ourselves to a more specific acoustic scenario. Namely, we make the
following main assumptions:

1. There is exactly one target source we want to recover and this source is a human
speaker uttering a sentence we aim to transcribe. For most cases, we will not
make any assumptions about the other sources except that these are non-speech
sources. In a typical scenario, these sources will be noises typically encountered
in a household setting (e.g., vacuum cleaner, television, appliances, ventilation /
air conditioning, etc.) or an outdoor setting (e.g., cars, construction sites, di↵use
babble, etc.).

2. The AIR is time invariant for a certain period of time. Depending on the concrete
system, the length of this time span ranges from a few hundred milliseconds to a
few seconds (e.g., the length of a sentence) and will be specified individually later.
This assumption translates to a static scene where no source nor any object is
moving. While this is still a strong assumption for some scenarios, in many cases
it is reasonable given the short time period over which time invariance is assumed.

3. The length of the AIR is finite.
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direct signal
early reflections
reverberation tail

Figure 4.1: Example of a (simulated) RIR with colors to highlight the di↵erent parts of
the signal. After a delay (yellow) caused by the distance between the source
and the sensor, the direct signal (lighter green) arrives first. This also has
the highest amplitude since it exhibits no reflections which absorb some of
the power. Signals arriving within a range of 50ms after the direct signal
are the early reflections (darker green). Their individual peaks can still be
distinguished. Afterwards, the reverberation tail (purple) is composed of
numerous reflected signals of weak power with indistinguishable peaks.
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Taking these assumptions into account, we can write Eq. 4.1 as

ym(t) =

Am,sX

⌧=0

am,s(⌧)s(t� ⌧) +
Q�1X

q=1

Am,qX

⌧=0

am,q(⌧)nq(t� ⌧) + dm(t). (4.2)

Here, we explicitly distinguished between the speech source s(t) and the Q� 1 noise
sources nq(t). Note that, due to the second assumption formulated above, the AIRs do
not depend on the time t anymore and the third assumptions leads to a finite length
Am,q. The signal resulting from the convolution of an AIR and a source is called the
spatial image of the source in the following.
Although simplified, this model is still unsuitable for most signal processing methods.

The length of the AIR usually ranges from hundreds to several thousand samples (taps).
The computational requirements to estimate this AIR to, for example, compute an
inverse filter, are too high for many applications due to the large matrices involved
when calculating, e.g., second order statistics.

4.1.3 Spectral model

A common way to solve this issue is to work with a spectral representation of the
signals. In this representation, the signal is decomposed into its individual frequency
components. Throughout this thesis, all signals are considered in this domain if not
explicitly noted otherwise.
Using the short-time Fourier transform (STFT) and k as the frame and f as the

frequency index respectively, the spectral representation of the signal from Eq. 4.2 can
be approximated as

ym(k, f) = am,s(f)s(k, f) +
Q�1X

q=1

am,q(f)nq(k, f) + dm(k, f). (4.3)

To arrive at this equation, additional assumptions are necessary: The frame length of
the STFT must be large enough to capture the longest AIR such that the di↵erences be-
tween the circular convolution and a normal convolution can be neglected. Additionally,
all adversarial e↵ects (e.g., the leakage e↵ect) must be su�ciently small.
The above approximation is also called the narrowband approximation [Gan+17] and

is widely adopted by the speech enhancement community.
Decoupling the individual frequencies reduces the dimension of the problem signifi-

cantly and allows complex algorithms to be computed e�ciently. This, however, also
comes at a cost: The gain and permutation ambiguity arise because many algorithms
solve a problem locally for each frequency without access to global scaling and / or
permutation [Gan+17]. Concrete realizations of these problems and possible solutions
are presented later in this work.
To represent the complete captured signal, we now switch to vector notation, stack

the signals of the individual microphones and arrive at

y(k, f) = as(f)s(k, f) +An(f)n(k, f) + d(k, f) . (4.4)
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Here, y(k, f) is an M -dimensional vector

y(k, f) = [y0(k, f), y1(k, f), . . . , yM�1(k, f)]
T,

as is an M -dimensional vector

as(f) = [a0,x(f), a1,x(f), . . . , aM�1,x(f)]
T,

An is a M ⇥Q� 1-dimensional matrix

An =

2

64
a0,1 a0,2 . . . a0,Q�1

...
. . .

...
aM�1,1 . . . aM�1,Q�1

3

75

n(k, f) is a Q� 1-dimensional vector

n(k, f) = [n1(k, f), n1(k, f), . . . , nQ�1(k, f)]
T,

and d(k, f) is a M -dimensional vector

d(k, f) = [d0(k, f), d1(k, f), . . . , dM�1(k, f)]
T.

Equipped with a spectral representation of the audio signal, we now turn to acoustic
beamforming. Acoustic beamforming can exploit spatial information to enhance the
speech signal and also combines the individual channels resulting in an enhanced
single-channel audio signal.

4.2 Acoustic beamforming

The goal of acoustic beamforming is to amplify the target speech signal s(k, f) and
suppress the interference signals n(k, f) and d(k, f) by exploiting spatial characteristics.
Formally, we seek to find filter coe�cients w(k, f), such that

ŝ(k, f) = wH(k, f)y(k, f). (4.5)

Note that this is a linear filter operation. The filter itself is frequency dependent and,
in general, also time dependent. With the second assumption from above, this can be
relaxed and the filter is assumed to be static for the period of an utterance or a block
of frames. Depending on the application, di↵erent constraints can be imposed on the
filter. If the perceptual quality is important (e.g., for hearing aids), the distortions
of the speech signal should be as small as possible and deteriorating e↵ects on the
intelligibility should be minimized. For an automatic transcription system on the other
hand, the perceptual quality is not important as long as the features extracted from
the signal are helpful for the classification. This leads to di↵erent optimization goals
and trade-o↵s.
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4.2.1 Physical model

If no reverberation is present1 and the distance between the sources and sensors is
large compared to the distances between sensors2, the signals captured by the array
di↵er only in a delay. Normalizing the AIR with an arbitrarily chosen reference channel
(e.g., the 0-th sensor) leads to the relative transfer function (RTF). In this case, the
RTF for source q is expressed by

aq(f) =
⇥
1, exp(�j⌦f�⌧1,q), . . . , exp

�
�j⌦f�⌧M�1,q

�⇤T
(4.6)

with the discrete angular frequency index ⌦f = 2⇡ f
Lfft

and the time di↵erence of arrival

(TDOA) for the q-th source �⌧m,q.
The TDOA is given by the distance of the reference and the m-th sensor projected

onto the directional vector of the impinging wavefront from angle ✓q divided by the
speed of sound

�⌧(m),q =
dist(m,mref ) sin(✓q)

c
. (4.7)

For the anechoic case specified before, the expression 4.6 is also called the steering
vector. If we multiply the signal 4.4 with the hermitian of the steering vector for the
target, we obtain

z(k, f) = ax(f)
Hy(k, f) = Mx(k, f) + ax(f)

HAn(f)n(k, f) + ax(f)
Hd(k, f). (4.8)

The target signal is amplified with a gain equal to the number of microphones. Other
directional sources will be attenuated depending on the cosine similarity between the
steering vector and their respective AIR. The di↵use noise is also reduced depending
on its characteristics. If the noise is spatially white, i.e., is independent noise at each
sensor, it will be more dampened compared to spatially correlated noise.
The operation 4.8 can be interpreted as acoustically “looking” or “steering the beam”

into a certain direction in space. It is also called Delay-and-Sum beamformer since,
in the time-domain, the resulting signal is the sum of all signals where each one has
a specific delay to compensate for the TDOA. From the presence of the sine function
in Eq. 4.7 it becomes clear that – depending on the array configuration – the steering
vector is ambiguous. Di↵erent steering (or beamforming) vectors can lead to the same
beampattern for a specific arrangement of the sensors. The plot of the sensitivity of
an array steered towards a source is called beampattern. Exemplary ones for an array
with two sensors with a spacing of 10 cm and 20 cm respectively are depicted in Fig 4.2.
Note that the pattern depends on the frequency and the resolution increases with the
frequency and microphone spacing at the cost of additional side lobes again caused by
the sine function.
1Reverberation can be seen as introducing new mirrored sources with a specific delay from the early
reflections and a di↵use source with the late reverberation.

2In free space, the signal is attenuated proportional to the inverse of the distance between the source
and the sensor. If this distance is large, the attenuation is approximately the same for all sensors
since the distances between the sensors is usually small.
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a) b)

1kHz
2kHz
4kHz

c) d)

Figure 4.2: Example beampattern for frequencies of 1 kHz, 2 kHz and 4 kHz and for a
microphone spacing a) of 10 cm and a source at an angle of 3

2
⇡ b) of 10 cm

and a source at an angle of ⇡ c) of 20 cm and a source at an angle of 3

2
⇡

d) of 20 cm and a source at an angle of ⇡ The sensors are represented by
red dots and assumed to be omnidirectional. The source is represented by a
black dot. The distance between the source and the center of the array is
always 3m. The beampatterns are calculate such that the steering vector
points towards the source.
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4.2.2 Statistical model

The previous subsection gave a physical motivation of beamforming. In many situations,
however, it is beneficial to approach the problem from a statistical point of view. One
reason for this is that the mapping from a specific beampattern to a beamforming
vector requires knowledge about the array configuration. That is, even if the desired
beampattern is known, the steering vector is not. A second reason is the estimation of
the desired beampattern itself. In the presence of reverberation it is not intuitively clear
how a beampattern optimized for the goal formulated above looks like. For example,
capturing early reflections instead of only the direct path can improve the perceptual
quality as well as the recognition performance of ASR systems.
The following paragraph reviews three di↵erent criteria, each leading to a statistically

optimal beamforming vector under the specific criterion. All of them make use of
second-order spatial statistics of a multi-channel signal z(k, f):

�zz(k, f) = E
⇥
z(k, f)zH(k, f)

⇤
(4.9)

The spatial covariance matrix (SCM) �zz(k, f) has the dimension M ⇥ M and
captures how correlated the sensor signals are with each other. In general, the matrix
is time-variant but can be approximated as time-invariant for many applications. The
matrix has two properties which will be important:

1. It is hermitian, i.e. �zz(k, f) = �zz
H(k, f).

2. It is positive-semidefinite, i.e. uH�zz(k, f)u � 0.

If we further assume that the target signal is uncorrelated to all noise sources, the
SCM of the observation can be written as

�yy(k, f) =E
⇥
y(k, f)yH(k, f)

⇤
(4.10)

=E
h
(as(f)s(k, f)) (as(f)s(k, f))

H

+ (An(f)n(k, f) + d(k, f)) (An(f)n(k, f) + d(k, f))H
i

=as(f)as
H(f)E [s(k, f)s⇤(k, f)] +An(f)E

⇥
n(k, f)nH(k, f)

⇤
An

H(f)

+ E
⇥
d(k, f)dH(k, f)

⇤

=�ss(f) + �̃nn(f) +�dd(f)

=�ss(f) +�nn(f)

=�yy(f).

Note that, due to the assumptions about the AIRs formulated in Sec. 4.1.2, the SCM
does not depend on the frame index k. Ways to estimate the matrix for a specific signal
are discussed later in greater detail.
The following first reviews three important optimization criteria, their solutions and

discusses their similarities and di↵erences afterwards. To improve the readability, the
time and frequency dependency will be omitted whenever it is not ambiguous.
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Multi-channel Wiener filter

The multi-channel Wiener filter (MWF) aims to reduce the expected MSE between the
beamformed signal and the target signal at a reference microphone3:

wMWF = argmin
w

E
h
|wHy � s|2

i
(4.11)

With y = ass+Ann+d and the introduction of a trade-o↵ parameter µ, the problem
can be reformulated as [Wan+18]

wMWF = argmin
w

E
h
|(wHas � 1)s|2

i
+ µE

h
|wH(Ann+ d)|2

i
. (4.12)

The first expectation describes the speech distortion while the second expectation
describes the residual noise power. The factor µ controls the trade-o↵ between both
terms.
Using the SCM for Eq. 4.11 and the one-hot vector uref = [1, 0, . . . , 0] which points

to the reference microphone, the solution to this optimization problem is [SMW04]

wMWF = �ss (�ss + µ�nn)
�1 uref . (4.13)

MPDR/MVDR beamformer

The minimum power distortionless response (MPDR) and minimum variance distor-
tionless response (MVDR) beamformers share a similar criterion. While the MPDR
aims to minimize the power of the beamformed signal, the MVDR aims to minimize
the power of the residual noise. Both impose the constraint that the filter response is
equal to one for a desired direction h. Mathematically, this is expressed with the help
of a Lagrange multiplier:

wMPDR = argmin
w

E
⇥
wH�yyw

⇤
subject to wHh = 1, (4.14)

wMVDR = argmin
w

E
⇥
wH�nnw

⇤
subject to wHh = 1. (4.15)

The solutions to these optimization problems are the MPDR and MVDR beamforming
vector respectively

wMPDR =
�yy

�1h

hH�yy
�1h

, (4.16)

wMVDR =
�nn

�1h

hH�nn
�1h

. (4.17)

3Here we assume the RTF, i.e., aref = 1
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Although di↵erent covariance matrices are used, the resulting beamforming vectors
are theoretically identical under the assumed signal model [BSH08, p. 275]. However,
in practice the results may di↵er due to numerical issues and estimation errors. The
MPDR is usually easier to estimate since the SCM of the observation is available
whereas it is more di�cult to estimate the statistics for the interferences only. However,
the SCM of the observation is in general subject to a higher time variance compared to
the SCM of the interferences which is why the MVDR is preferred in many applications.

GEV beamformer

The generalized eigenvalue (GEV) beamformer aims to maximize the SNR after the
beamforming operation

wGEV = argmax
w

wH�ssw

wH�nnw
. (4.18)

The ratio in Eq. 4.18 is also known as the Rayleigh quotient and the solution to
Eq 4.18 leads to the generalized eigenvalue problem

�ssw = ��nnw. (4.19)

With the help of the Cholesky factorization4 �nn = LLH this can be reformulated as a
regular eigenvalue problem5

�
L�1�ssL

-H
� �

LHw
�
= �

�
LHw

�
(4.20)

for the transformed vector w̃ = LHw and matrix �̃ = L�1�ssL-H. The vector maxi-
mizing the right hand side expression of Eq. 4.18 is the eigenvector corresponding to
the largest eigenvalue, i.e.

e,V = P
⇣
�̃
⌘

(4.21)

wGEV = L-Hvemax
, (4.22)

where e andV are the eigenvalues and eigenvectors of �̃ respectively. The transformation
with L-H is necessary to get back from the space of the regular eigenvalue problem to
the one of the generalized eigenvalue problem.

4 The factorization requires a positive-definite matrix. While covariance matrices are always positive-
definite, the estimated empirical covariance matrices are not guaranteed to be positive-definite
due to numerical issues. This can be mitigated by a proper conditioning of the matrices in the
implementation.

5 Another way is to multiply with the inverse of �nn but the resulting matrix �nn
�1�ss is not

hermitian anymore, which is why this approach is not recommend.
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Rank-1 constraint

While the previous solutions exploit the assumption that the target and interference
are uncorrelated, they do not take into account another assumption of the signal model.
Namely the Rank-1 property of the SCM of the target. Considering this constraint
reveals the connections between the di↵erent beamformer variants.
With �ss = asas

H�ss, the MWF solution from Eq. 4.13 can be written as [Wan+18]

wMWFR1
=

�nn
�1asas

H�ss

µ+ tr
�
�nn

�1asas
H�ss

 uref. (4.23)

Setting µ = 0 and using tr
�
��1

nnasas
H�ss

 
= as

H��1

nnas�ss recovers the MVDR solution
from Eq. 4.15 when the distortionless direction is chosen such that h = as

wMWFR1

����
µ=0

=
��1

nnas

as
H��1

nnas
= wMVDR

����
h=as

. (4.24)

For the GEV-criterion, Eq. 4.20 becomes

�
L�1asas

HL-H
� �

LHw
�
=

�

�ss

�
LHw

�
, (4.25)

with the Rank-1 matrix
�
L�1asas

HL-H
�
= �̃ = uvH where u and v are the right and

left eigenvectors respectively [Mon05]. In this case, the desired beamforming vector is

wGEVR1
= L-HL�1as = ��1

nnas. (4.26)

Comparing Eq. 4.24 with Eq. 4.26 reveals that – under the Rank-1 constraint – all
three beamforming vectors point in the same direction in space but scale the signal
di↵erently.
In a real scenario, the spatial covariance matrix of the speech signal must be estimated

and will never be exactly of Rank-1. To improve the estimate, it is possible to enforce
the Rank-1 property. The simplest solution is to use the eigenvector with the largest
eigenvalue as âsEVD

and

�̂ssR1-EVD
= âsEVD

âH

sEVD

tr{�ss}
tr
�
âsEVD

âH
sEVD

 (4.27)

as an approximation of the Rank-1 spatial covariance matrix [Wan+18].
A more robust estimation also includes the spatial covariance matrix of the noise

during the approximation of âxGEVD
[Wan+18] [MGC09]

âsGEVD
= �nnwGEV (4.28)

�̂ssR1-GEVD
= âsGEVD

âH

sGEVD

tr{�ss}
tr
�
âsGEVD

âH
sGEVD

 . (4.29)
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Including the spatial covariance matrix of the noise is especially beneficial if the estimate
of �ss also includes interference sources [MGC09]. With this approximation all three
beamformers again point in the same direction and are equal up to a complex scalar
factor.

Scaling

Recalling that the beamforming vectors are computed for each frequency independently
shows that their scaling can have a big impact on the whole signal. For example,
frequencies with high noise power can be almost muted by the GEV beamformer (due to
the projection with ��1

nn) leading to hearable distortions. As mentioned, this might be a
desirable behavior when the task is speech recognition and the acoustic model handles
such distortions (i.e. missing/suppressed frequency bands) better than certain noises.
But for a perceptually motivated goal these distortions are almost always undesired. A
way to mitigate them is to apply a post-filter. Note that this issue does not arise for
the MVDR due to the distortionless constraint and the MWF because of the criterion
which aims to recover the speech image at a reference microphone. In [WH07] the
authors propose what they call a blind analytical normalization

wBAN

GEV
=

p
wGEV

H�nn�nnwGEV/M

wGEV
H�nnwGEV

wGEV. (4.30)

Again, the Rank-1 approximation reveals the connection to the other beamformer
formulations. Under this constraint, the beamforming vector becomes

wBAN

GEVR1
=

p
as

Has/M

as
H�nn

�1as

�nn
�1as. (4.31)

Comparing this with Eq. 4.24 shows that this corresponds to the distortionless MWF
and MVDR except that it is scaled with the square-root of the mean power of the AIR
vector instead of a reference value of this vector.

In this work we propose and use a di↵erent normalization. We divide the noise SCM

by its trace which results in L0-H = L

tr�nn

-H

=
qP

j ej
H�nnejL-H and thus the scaled

GEV beamforming vector

wtrace

GEV
=

sX

j

ejH�nnejwGEV. (4.32)

Using the Rank-1 approximation yields

wtrace

GEVR1
=

sX

j

ejH�nnej�nn
�1as (4.33)
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4.3 Spatial covariance matrix estimation

All di↵erent beamformer formulations presented in Sec. 4.2.2 rely on the estimation
of either the SCM of the target source and/or the SCM of the interferences. This
information is not available in practice and has to be estimated from the observed
signals.
A rather simple way to estimate the SCM for the interferences it to assume that

the target is not active in the first seconds of a recording. The SCM can then simply
be calculated with Eq. 4.9 using the observed signal. Depending on the beamformer,
a direction of distortionless response or the SCM of the target speech must then be
estimated. A coarse estimation can be achieved with a voice activity detection (VAD)
extracting frames containing mostly the target speaker. However, working on the frame
level inevitably introduces estimation errors. These can be avoided with a more fine
grained consideration of individual tf-bins.
Defining continuous spectral masks 2 [0, 1] for the k-th frame and frequency bin

f as �target(k, f) and �interferences(k, f) respectively, the SCMs can be approximated
as [Sou+13]

�ss(f) =
1

K

X

k

�target(k, f)y(k, f)y(k, f)
H (4.34)

and

�nn(f) =
1

K

X

k

�interferences(k, f)y(k, f)y(k, f)
H. (4.35)

Estimating the SCMs with this weighted sum of outer products of the observed signals
assumes that these signals are ergodic (i.e. averaging over time gives the same results
as averaging over realizations). In other words, it is assumed that the speaker does not
move and the scenario, i.e., the interferences, does not change during the aggregation
of the statistics. Further assumptions are that the speech signal and interferences are
sparse, uncorrelated and disjoint [Aok+01; YR04]. The later property implies that
each tf-bin is dominated by one source and most of that source energy is captured by
accumulating those tf-bins it dominates. Those tf-bins are indicated by �target(k, f) and
�interferences(k, f) respectively which are also referred to as speech presence probability
(SPP) and noise presence probability (NPP)6.

4.4 Statistical mask estimation

Traditionally, the SPP and NPP have been estimated using statistical signal mod-
els [SAM07; Ito+14; IAN13; Yos+15; AN11; Ara+16]. Noticeable, the system presented
in [Yos+15] showed the best performance in the third Computational Hearing in Multi-
source Environments (CHiME) challenge7. It uses a time-varying complex Gaussian
mixture model (CGMM) [Ito+14] to estimate a spectral mask for the target speech

6During this work we will use the term mask and SPP/NPP synonymously
7http://spandh.dcs.shef.ac.uk/chime challenge/chime2015/results.html

http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/results.html
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source to compute the SCMs for an MVDR beamformer. In [IAN16] Ito et al. introduce
the closely related complex angular central Gaussian mixture model (cACGMM) model,
show that the EM algorithm is equivalent to the one used for the time-variant CGMM
and conclude that it can achieve the same (mask estimation) performance with less
information as the (instantaneous) signal power is not used. The following explains
this model in greater detail. It serves as the baseline for a statistical model for the
evaluation and also plays an important role for the unsupervised training which will be
presented later in Ch. 9.
Assuming sparseness of the target speech source as already mentioned in Sec. 4.3,

the observations are modeled with a mixture model with Q classes. For the scenario
considered in this work, we set Q = 2, i.e. one class for speech and one for the
interferences. But in general, more classes can be represented, for example in blind
source separation (BSS) scenarios with multiple speakers.
The distribution of the multi-channel observation can be modeled as a mixture of

class conditional distributions p(y(k, f);✓q) with class dependent parameters ✓q for the
q-th class

p(y(k, f);✓) =
X

q

⇡q(f)p(y(k, f);✓q). (4.36)

The a-priori probability, that an observation belongs to mixture component q, is
frequency dependent and expressed by ⇡q(f). This generic formulation marginalizes
over all classes and assumes that all observations are i.i.d. given the class a�liation.
As suggested above, there are multiple suitable conditional distributions p(y(k, f);✓q)

to choose from to obtain a concrete model. Successfully used examples include Gaussian
distributions [MEJ07; Ara+09], complex Watson distribution [TH10; SAM11] and
the mentioned time-varying complex Gaussian [Ito+14] and complex angular central
Gaussian distribution [Ken97; IAN16].
The latter distribution with the class dependent parameter matrix Bq(f) is specified

by

p(ỹ(k, f);Bq(f)) =
(M � 1)!

2⇡M detBq(f)

1

(ỹ(k, f)HBq(f)�1ỹ(k, f))M
. (4.37)

Instead of the observation itself, the distribution of the normalized observation ỹ(k, f) =
y(k, f)/ky(k, f)k is modeled. This way it does not account for the time-varying power
of the observation but can still capture inter-channel level di↵erences. Also, while
inter-channel phase di↵erences can be captured, the model is invariant to the absolute
phase as can be seen by

(ỹ(k, f) exp(j�))H Bq(f)
�1ỹ(k, f) exp(j�) = ỹ(k, f)HBq(f)

�1ỹ(k, f). (4.38)

Note, that each tf-bin is treated independently. In other words, the model does not take
into account any spectral or temporal correlations. As a consequence, this is a spatial
only model, i.e. it cannot learn any concept of speech (spectro-temporal patterns) but
rather models the spatial distribution of the signal and clusters it into Q classes. The
model parameters ✓ are estimated using the EM algorithm and the alternating updates
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take the following form [IAN16]

�q(k, f) =
⇡q(f)

1

detBq(f)
1

(ỹ(k,f)HB
�1
q (f)ỹ(k,f))MP

q ⇡q(f)
1

detBq(f)
1

(ỹ(k,f)HB
�1
q (f)ỹ(k,f))M

, (4.39)

⇡q(f) =
1

K

X

k

�q(k, f), (4.40)

Bq(f) = M
X

k

�q(k, f)
ỹ(k, f)ỹ(k, f)H

ỹ(k, f)B�1
q (f)ỹ(k, f)H

�X

t

�q(k, f). (4.41)

For the task at hand (mask estimation), we are interested in �q(k, f) which is the
posterior probability that the frequency bin of the k-th frame and frequency f is
dominated by the source of class q given the observation. This can be plugged into
Eq. 4.34 and Eq. 4.35 to obtain the estimates for the target and interferences SCM
respectively.
Note that the update rules themselves contain an inner iteration due to the implicit

definition of the covariance matrix Bq(f) in Eq. 4.41. The number of inner iterations
and EM update steps can be chosen by optimization on sample data. In order to start
with the iterations, the EM algorithm needs an initialization. There are two possible
options here. If prior knowledge about the spatial characteristics of the scenario is
available, this can be used to initialize the covariance matrices Bq(f) combined with
informed or uninformative values for the mixture weights ⇡q(f). This information is
su�cient to obtain a first estimate of the a�liation posteriors �q(k, f) and the iterative
process can be started from there. However, for many scenarios such information is
not available a priori. For these cases, one can start with Eq. 4.41, initially assume an
identity matrix for the covariances Bq(f) and an initialization of the posteriors �q(k, f).
Again, prior knowledge can be exploited here for example by using an initialization
depending on an estimated or known source activity (see e.g., [Boe+18a]). In more
uninformed settings, the posteriors are initialized more or less randomly according to
heuristics found to be working well for specific scenarios.
A big advantage of the statistical approach is that it is completely unsupervised8.

The model parameters are estimated from the current observation and the spatial
information contained in it. No knowledge about the characteristics of the sources is
required, it is invariant against global scaling of the signals and no adaptation is needed
for di↵erent domains. This flexibility, however, comes at a cost.
Since the model treats each frequency independently, a permutation problem arises

(see Sec. 4.1.3). This frequency permutation problem [SAM07] describes the fact that
the class indices are inconsistent over the frequency bins, i.e. for one frequency the target
could be assigned to class index 0 while for other frequencies it is associated with index
1. The assignment is ultimately determined by the initialization of the EM algorithm
described above. In the worst case this means that the initialization and therefore the
assignment is random. An additional permutation solver step addresses this issue but
cannot completely eliminate it [SAM07]. This work uses a method proposed in [SAM07]

8The number of classes has to be specified for the presented approach but is assumed to be known in
the considered scenario.
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which maximizes the correlation of the masks along neighboring frequencies to compute
a permutation alignment.
The frequency permutation problem is not the only issue that arises due to the

unsupervised nature of the statistical approach. Even if this permutation problem is
solved and the class assignments are aligned perfectly across frequencies, there is still
the problem of assigning one class to the target and one class to the noise. We refer to
this as the global permutation problem and it needs to be solved before the posteriors
can be used in a downstream task such as beamforming. Again, several heuristics exist
to find a suitable alignment for a given scenario. In this work, we opt for a rather simple
but yet e↵ective one which exploits the sparsity of the target, namely the speech source.
Since we assume there are only two classes and the posteriors for each time-frequency
bin sum to one, the other class must broadly capture all other source of the acoustic
scene. Therefore, the class with a lower value for the summation of the respective
posterior over all tf-bins is associated with the target.

4.5 Dereverberation

The acoustic beamforming detailed in the previous section mainly aims at reducing the
impact of undesired sources at di↵erent spatial locations. However, the signal can also
be deteriorated without the presence of other sound sources due to delayed reflections
of the target signal itself, i.e., reverberation. We now focus on this phenomenon.
We assume that there is only one source present (the speaker) and that the AIR is

long and its power decays slowly. The delayed source signals then cause distortions
which have a severe impact on the intelligibility of the speech signal and significantly
impacts the performance of an ASR system, irrespective of the size of the training
corpus [Li+17; Har15]. A common way to specify the reverberation is the T60 time
(also called reverberation time (RT)). This measures the time it takes until the power
of the AIR tail decays by 60 dB. Typical values range from 0.2 s – 2 s and are largely
dependent on the room size, its floor and wall materials as well as objects positioned
in the room absorbing the sound waves. Dereverberation aims to shorten this length,
keeping the direct components and early reflections while suppressing the reverberation
tail. The combination of the direct components and early reflections is called the speech
image or also anechoic speech in the following.
Starting with the signal model from Eq. 4.2 and by splitting the AIR into two parts,

the signal recorded by the m-th sensor can be decomposed into

ym(t) =

LearlyX

⌧=0

am,s(⌧)s(t� ⌧) +

Am,sX

⌧=Learly+1

am,s(⌧)s(t� ⌧). (4.42)

The length Learly should be chosen such that the direct signal and early reflections are
captured9. Neglecting subband energy leakage and switching to vector notation, the

9A common choice, which is also adopted here, is 50ms which corresponds to Learly = 800 samples
for a 16 kHz signal



Speech signal processing 43

observed signal in the STFT-domain is denoted as [YN12]

y(k, f) =
LAX

⌧=0

a(⌧, f)s(k � ⌧, f) (4.43)

and can be decomposed into

y(k, f) =
�X

⌧=0

a(⌧, f)s(k � ⌧, f) +
LAX

⌧=�+1

a(⌧, f)s(k � ⌧, f). (4.44)

Here, LA = Amx/B is the length of the AIR filter in the STFT domain [Nak+10]. �
distinguishes between the part regarded as the image and the one regarded as the
reverberation tail10.
There are many approaches tackling the task of dereverberation. They can be

broadly categorized in two categories: Linear filter approaches and spectral subtraction
methods [Li+15]. This work focuses on the first category which has shown to be e↵ective
for ASR [Kin+16].

4.5.1 Dereverberation with beamforming

Due to the multiple paths, the reverberation tail is received by the array as a spatially
di↵use signal and some early reflections are received as spatial point sources originating
from the point of reflection. Consequently, it is possible to use one of the spatial filters
discussed in the previous section to enhance the signal. Doing so obviously violates
some of the assumptions made earlier. First, depending on the choice of �, the target,
i.e., the anechoic speech, and interfering signals, i.e., the late reverberations, are likely
to be correlated since

E

2

4
�X

⌧=0

a(⌧, f)s(k � ⌧, f)

 
LAX

⌧=�+1

a(⌧, f)s(k � ⌧, f)

!H
3

5 6= 0. (4.45)

Or, in other words, the cross-terms when calculating the SCM in Eq. 4.11 are not zero
and the SCM of the observation cannot simply be expressed as the sum of the SCMs of
the target and the interference.
Second, the AIR for the target signal is not a single vector anymore and the corre-

sponding SCM �ss is not a Rank-1 matrix.
However, despite these violations, such an approach shows good performance in

practice.

4.5.2 Weighted predictive error

A di↵erent approach, WPE, has shown good performance in the REVERB chal-
lenge [Kin+13] and also found its way into a commercial product [Li+17]. It operates

10In practice, depending on the STFT transformation parameters, a reasonable value for � ranges
from 1 to 3.
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on a single channel or in a multiple-input multiple-output fashion on multi-channel
data.
WPE estimates the current reverberation tail using previous samples and then

subtracts the estimate from the observation. This results in an optimal estimate of the
anechoic speech in a maximum likelihood sense:

ŝ(k, f) = y(k, f)�G(f)Hȳ(k ��, f). (4.46)

The entries of the matrix G(f)H 2 CM⇥MLtaps are the filter coe�cients and

ȳ(k ��, f) =
⇥
yT(k ��, f), . . . ,yT(k ��� Ltaps + 1, f)

⇤T 2 CMLtaps (4.47)

is a stacked representation of the previous observations. Note that using � � 1 avoids
whitening of the speech source.

To obtain the filter coe�cients, WPE maximizes the likelihood of the model under the
assumption that the anechoic signal is a realization of a zero-mean circularly-symmetric
complex Gaussian with an unknown time-varying variance �t,f . This value, which
represents the power spectral density (PSD) of the speech image, needs to be estimated
well enough in order to achieve good dereverberation performance. Because this signal is
unknown in the first place, there is no closed form solution for the likelihood optimization
and WPE is an iterative method which alternates between two steps:

Step 1) �(k, f) =
1

(� + 1 + �)M

k+�X

⌧=k��

M�1X

m=0

|ŝ(⌧, f,m)|2 (4.48)

Step 2) R(f) =
X

k

ỹ(k ��, f)ỹ(k ��, f)H

�(k, f)
2 CMLtaps⇥MLtaps ,

(4.49)

p(f, d) =
X

k

ỹ(k ��, f)y(k, f)H

�(k, f)
2 CMLtaps⇥M , (4.50)

G(f) = R(f)�1p(f) 2 CDLtaps⇥M . (4.51)

The first step estimates the PSD given the current estimate of the anechoic signal using
a heuristic smoothing scheme to improve the estimate [YN12]. The second step updates
the filter coe�cients given the estimate of the PSD.

4.6 Summary

This chapter introduced signal processing methods aiming to extract a (speech) source
in the presence of interferences from a multi-channel mixture. Starting from a signal
model for the mixture we especially focused on statistical beamforming methods.
These methods estimate a linear spatial filter from the SCMs of the target and the
interferences. Three di↵erent criteria to estimate these filters were presented, namely the
MWF, the MVDR and GEV beamformer. We showed that, under a Rank-1 assumption
of the target SCM, all of these criteria result in the same look direction but scale the
frequencies di↵erently. Afterwards, we discussed how the SCMs can be estimated from
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the observation. A mask attributes individual tf-bins to one of the sources and the
SCM is then estimated by a weighted average of the outer products. The masks can be
obtained as the posterior for the class a�liations of a spatial mixture model. For this
scenario, the cACGMM has been proven to be especially suitable and we extensively
discussed this specific model. Finally, we focused on distortions caused by reverberation.
These can also be mitigated with the help of a statistical beamformer when we divide
the RIR into two parts and estimate the SCM for each. Another particular successful
technique for dereverberation is WPE which predicts the current reverberation from
past observations with a linear filter and then subtracts it from the current observation.



5 Datasets, setup and baselines

This chapter introduces two datasets that will be used throughout this thesis to evaluate
and compare proposed systems. Namely, the CHiME (3) task and the Reverberant
Voice Enhancement and Recognition Benchmark (REVERB) task. Both were created in
the context of an o�cial challenge to benchmark and advance ASR systems. While the
di�culty of the CHiME corpus is mainly due to distorting noise sources, the REVERB
data focus, as the name already suggests, on deterioration caused by reverberation.
Combined, the two corpora cover the two main challenging environmental distortions
for ASR discussed in this thesis. Using them allows for a meaningful evaluation and
comparison of the systems which will be proposed in the next chapters. The evaluation
setup and metrics will be the same for all of these systems throughout this thesis. They
are detailed in Sec. 5.2. Finally, Sec. 5.3 summarizes results of other works on the two
corpora which will serve as baselines for a comparison.

5.1 Datasets

5.1.1 CHiME

CHiME is a series of challenges with the goal of comparing and improving speech
recognition in everyday environments. The first challenge dataset comprised artificial
mixtures of speech commands and recorded noise typical of everyday listening con-
ditions [Bar+13]. A larger vocabulary size and a more realistic mixing process was
used in the second challenge to increase the level of di�culty [Vin+13]. The third and
the fourth challenge share the same dataset which, compared to the second challenge,
featured real recordings in noisy environments and a custom recording device [Bar+15].
While the previous challenges all used perfectly separated read speech sentences, the
latest challenge, CHiME 5, deals with conversational speech recognition with recordings
from a cocktail party scenario.
This work uses the dataset from the third and forth challenge to evaluate the presented

systems.
The dataset consists of real and simulated recordings in four di↵erent environments,

namely, in a cafe, a bus, a pedestrian area and on a street junction. For the real
recordings, a tablet with six microphones is used. The microphones are located in
the upper and lower frame with a spacing of 10 cm and aligned to the center. Five of
them face forward towards the speaker in front of the tablet. The one in the center of
the upper frame faces backwards. All channels are recorded sample synchronous. 12

46
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Task Name Type #utterances #words #hours

Training
simulated 7138 129410 15.1

real 1600 26759 2.9

Development
simulated 1640 27118 2.9

real 1640 21409 2.8

Evaluation
SIMU simulated 1320 21411 2.3
REAL real 1320 21409 2.2

Table 5.1: Summary of the CHiME corpus.

speakers (6 male, 6 female) read prompts taken from the Wall Street Journal (WSJ)
dataset (WSJ0 [Gar+93]) displayed by the tablet. Each speaker made roughly 100
recordings in each of the environments.
For the simulated data, speech recordings from the WSJ0 dataset are mixed with

multi-channel noise recordings from the tablet device in one of the four environments.
A time-varying filter is used to model the acoustic path between the speaker and the
microphones before the filtered speech signal is added to the noise. To avoid larger
mismatches with the real recordings, this filter is estimated from one of them.
Overall, there are 7138 simulated and 1600 real recordings available for training which

are evenly distributed across the four environments. Further, two development and two
evaluation sets are available.
One set with real recordings and one with simulated recordings. The development

sets contain 410 real and simulated recordings for each environment, i.e. one set consists
of 1640 recordings. The evaluation sets are a bit smaller with 330 recordings for each
condition. Both sets have a closed vocabulary, i.e. all words appearing in these sets are
known in advance and included in the lexicon and language model. In total, there are
5000 di↵erent words. Specific to this task are microphone failures during the recording
of several utterances which might degrade overall system performance [Bar+17]. An
overview of the whole dataset is given in Tbl. 5.1.

5.1.2 REVERB

The REVERB challenge [Kin+13; Kin+16] from 2013 had the goal to compare and
advance di↵erent approaches to far-field ASR. More precisely, the main focus of the
challenge was on the deterioration of the recorded speech signal due to reverberation.
Additional non-stationary noise sources were not considered. Similar to the CHiME
task described above, there are simulated as well as recorded data available.
For the simulated data, RIRs are recorded using a circular array equipped with eight

microphones in six di↵erent scenarios. Three di↵erent room sizes (small, medium and
large) are considered as well as two di↵erent speaker positions for each room. One
50 cm away from the array (near) and one 2m away from the array (far). This results
in RIRs with T60 times between 200ms and 800ms. Clean speech data from the British
english WSJCAM0 [Rob+95] corpus is used to generate reverberated speech signals
by convolving the speech signal with one of the recorded RIRs. Recorded broadband
noise (mostly originating from air conditioning) is added afterwards such that the ratio



Datasets, setup and baselines 48

Task Name Type distance #utterances #words #hours

Training simulated mixed 7861 132778 15.5

Development
real near 90 1463 0.17
real far 89 1603 0.17

Evaluation EVAL[+10dB]
real near 186 3131 0.35
real far 186 2962 0.32

Table 5.2: Summary of the REVERB corpus.

between the reverberant speech signal and the noise (reverberant-to-noise ratio (RNR))
is approximately 20 dB. The resulting data is split into a set for training, development
and evaluation according to the WSJCAM0 corpus. The training set consists of 7861
utterances from 92 di↵erent speakers (53 male, 39 female).
The real recordings are only used for development and evaluation purposes. They are

taken from the MC-WSJ-AV corpus [Lin+05] and recorded in a reverberant meeting
room not used to record one of the RIRs for the simulated data. Two di↵erent speaker
distances (100 cm: near and 200 cm: far) and multiple positions are covered. Exact
T60 times are unknown but are estimated to be within 600ms – 800ms. Similar to the
CHiME dataset, this is a closed vocabulary task with 5000 words. There is a significant
mismatch between the simulated and the real recorded data as shown by the challenge
results with the real recordings being more challenging [Kin+16].
A quantitative summary of the corpus is given by Tbl. 5.2.

5.2 Evaluation setup

The ultimate goal of our system is to transcribe speech data, even though only the
signal processing part might have been replaced compared to the baseline system. This
work therefore concentrates on a single metric for evaluation, namely the WER. It is
calculated as the total Levenshtein [Lev66] distance divided by the number of words
on an evaluation set and expressed as a percentage. In other words, it measures the
average minimal number of insertions, substitutions and deletions needed to obtain the
ground truth transcription per 100 words.
For evaluation, we use the same language modeling components as the baseline

system provided by the specific task. I.e. neither the lexicon, nor the language model is
modified and the only changes we make concern the estimation of the state posteriors
(see Sec. 3.1.2). We also refrain from rescoring the hypotheses with a more sophisticated
language model with the assumption1 that this performance increase is orthogonal
to the one we aim to achieve in this work and primarily because evaluation becomes
computationally less demanding. For both datasets, the language model probabilities are
estimated by a pre-computed closed vocabulary 3-gram language model which includes
around 5000 di↵erent words and is provided by the respective dataset. The language

1Experience with the CHiME task has shown that the improvements obtained by rescoring are
independent of the once obtained by a more sophisticated signal processing / acoustic model
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Name Reference # channels WER on REAL

CHiME 3 DNN baseline [Bar+15] 6 33.4
CHiME 4 baseline [Hor+15] 6 11.51
NTT CHiME 3 I [Yos+15] 1 15.60
NTT CHiME 3 II [Yos+15] 6 8.32
NTT CHiME 3 III [Yos+15] 6 5.83
Kaldi setup I [Che+18] 1 16.36
Kaldi setup II [Che+18] 1 12.92
Kaldi setup III [Che+18] 6 6.84
Kaldi setup IV [Che+18] 6 4.01

Table 5.3: Reference results for the CHiME task on the real recordings evaluation set.

model score (see Sec. 3.1.4) is always optimized by a line search on the development set
and then held fixed during the actual evaluation.
As described above, there is a simulated as well as a real evaluation set available

for both datasets. For the CHiME task, both conditions are about equally challenging
and we evaluate both sets. But for the REVERB task, the performance of a system
on the simulated data can merely serve as a coarse approximation for the performance
on the real dataset [Kin+16]. Additionally, the WERs achieved on the simulated data
are already so low, that any enhancement can only hardly be distinguished from noise
caused by di↵erent training runs and a likely non-optimal choice of hyper-parameters
for the specific systems.
Ultimately, we are interested in the system performance in a real-world application

and therefore only focus on the real evaluation set in this work for this task. A main
di↵erence between the evaluation and the training set can be the recording volume,
i.e. the power of the observed signal. While for the CHiME task this is similar, there
is a large di↵erence for the REVERB task. As not all methods in the following are
invariant to scale, an additional evaluation set is created for the REVERB dataset by
increasing the power of the original one by 10 dB. Also for the REVERB task, there
is only a minor di↵erence between the far and near set and reporting them separately
yields no new insights. We report the average WER across both.

Besides the multi-channel track with 6 and 8 microphones respectively, both tasks also
feature a 2 channel and a single-channel track. We will use the single-channel track to
evaluate performance of the acoustic model on unprocessed data and the multi-channel
track to evaluate the overall system performance. This multi-channel system can also be
applied to the two channel track with some performance loss as shown in, e.g., [HDH16b].
Since we do not develop a specialized system for the two-channel track, we opt to not
evaluate all systems on this track since we do not expect to gain new insights from this
evaluation. Di↵erent microphone configurations and their impact will be considered in
Sec. 7.4.7.
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Name Reference # channels WER

Challenge baseline [Kin+13] 8 47.23
NTT REVERB I [Del+14b] 1 27.5
NTT REVERB II [Del+14b] 1 21.7
NTT REVERB III [Del+14b] 8 17.8
NTT REVERB IV [Del+14b] 8 12.8
NTT REVERB V [Del+14b] 8 9.0
Kaldi setup I [Szu18] 1 19.78
Kaldi setup II [Szu18] 8 10.25
NTT unified I [NK19] 8 13.11
NTT unified II [NK19] 8 9.27

Table 5.4: Reference results for the REVERB task averaged over the two real recordings
evaluation set.

5.3 Baselines

In order to compare the performance of a proposed method, we specify di↵erent baselines
for each of the tasks. The baselines are chosen such that they include the original
challenge baseline, the winning system of the challenge as well as the current state-of-
the-art system for both tasks. An overview of the CHiME baselines is given in Tbl 5.3
whereas those for the REVERB task can be found in Tbl. 5.4

5.4 Summary

The CHiME and the REVERB corpus will be used throughout this thesis to evaluate
the models. While the former features everyday environmental distortions but little
reverberation, the latter exclusively focuses on signal deterioration caused by rever-
beration. We also defined baselines for both tasks which reflect challenge as well as
state-of-the-art results.



6 Contributions

The overall theme of this work is to develop a system for robust multi-channel ASR
with improved recognition performance for far-field scenarios in everyday environments.
Specifically, we set the following scientific goals:

• As few assumptions as possible should be made regarding the type of the distor-
tions1, environment and the microphone array.

• If possible, the system should make use of available data to learn to exploit
spectro-temporal patterns and to avoid tedious manual tuning of parameters and
erroneous model assumptions.

• The system should not only work in theory or controlled conditions but also be
practical and deployable. A real-time factor < 1 should be possible with moderate
computational resources and, ideally, the latency should be low such that it can
be used in interactive voice response systems.

• If data is used for training, the supervision needed should be as small as possible
to avoid costly labeling e↵orts.

• The interaction of the speech enhancement and the acoustic model and their joint
optimization should be considered.

Pursuing these goals resulted in several publications which form the basis for this
thesis. In this work, they are presented in a concise way, put into context and extended
upon in many ways. All previously presented systems have been updated to include all
insights gained during the course of this thesis work. They are trained from scratch and
evaluated to obtain consistent results and to allow for a fair comparison. Additionally,
new aspects and insights are discussed in this thesis that have not been published
yet. The contributions of the publications and thus this work are highlighted in the
following.
The main contribution of this work is the so-called neural network supported beam-

former [Hey+15a; HDH17; HDH16a]. It combines classical statistical signal processing
for beamforming with a neural network to estimate the necessary statistics from the
high dimensional observation. The system is designed in a way that the advantages of
both approaches are kept, the flexibility and optimality of the statistical beamforming

1The system should not be designed to distinguish between two competing speaker but should be
able to handle concurrent speech as a di↵use noise source such as background babble.

51



Contributions 52

and the classification capabilities of the data-driven neural network. Because of the first
property, the system works with any microphone array and the second one ensures that
statistics can be inferred even in challenging environments by exploiting temporal as
well as spectral correlations for estimating the SPP and NPP. The system is described
and evaluated in detail in Ch. 7. All other contributions are based on this system and
they all have the goal to make the system more suitable for real-world applications.
The first improvement deals with latency. Although this is a factor of minor im-

portance for many applications as long as computations are tractable, one important
use case of far-field ASR are smart speakers with integrated virtual assistance where
a low latency is crucial for a satisfactory user experience. The originally proposed
neural network supported beamformer has a latency of at least a whole utterance as
it aggregates the statistics over all available data. In order to reduce the latency, the
network architecture as well as the beamformer itself has to be modified. Investigations
on these modifications are published in [HHH18; Kit+16]. Additional to these prior
works, further simplifications of the network architecture are explored and evaluated
with a focus on scale invariance in Ch. 8.
The second improvement eliminates the need for parallel training data. With the

introduction of a data-driven method comes the need for large amounts of data to train
the system. In this specific case, parallel data is needed, i.e. data where the signal is
separated into the target signal and the superposition of all interfering signals. But
this kind of data is only available for simulated recordings with artificial mixtures of
a clean target signal and interfering sources. Especially in the case of multi-channel
signals, recording large amounts of this data is costly whereas real recordings become
available just by using the system. Additionally, simulated data does not account for
all e↵ects, e.g., the Lombard e↵ect [GHD10]. Thus, a domain mismatch between the
training data and the actual real-world data is introduced. The publication [DHH19b]
solves this problem by introducing a new loss function which maximizes the likelihood
of a mixture model in a completely unsupervised way. This contribution is presented in
Ch. 9.
Lastly, the signal processing part with the beamformer and mask estimator is inte-

grated into the AM for a joint optimization. Not only does this mitigate the training
data problem by just requiring a transcription for a real recording to train the mask
estimator. It also promises to optimize the front-end model with an objective that is
much more closely related to the ultimate goal of recognizing the correct word sequence
than any signal level objective. To unify the two models it is necessary to backpropagate
the gradients from the acoustic model through the complex valued beamforming opera-
tion. The required math was published in [Böd+17], and the whole system in [Hey+17].
All of this will be presented in Ch. 10. This thesis also includes unpublished further
experiments and analysis of the system yielding new insights.
All contributions discussed above focus on the front-end part of the system. And

although this is the central topic of this thesis, the back-end was not left out completely.
For the CHiME 4 challenge, an acoustic model called wide residual bidirectional long
short-term memory (BLSTM) network (WRBN) was presented which was among the
top performing models in the challenge [HDH16b; Vin+]. This, along with an improved
and simplified version of it will be presented in Ch. 7 and used throughout this thesis.
Collaboration with peers resulted in several other publications which are not all
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focused on topics discussed in this work. A complete list of publications with (co-
) authorship can be found appended to this thesis.
Besides publishing scientific articles, contributions were made to open-source projects

during the work on this thesis. This includes an open-source variant of the presented
neural network beamformer2 and the WPE dereverberation algorithm [Dru+18a]3. Both
are now used within recipes of the Kaldi toolkit to achieve state-of-the art results on
several datasets [Che+18]. Contributions were made to another open-source end-to-end
speech recognition toolkit called ESPNet [Wat+18]. Additionally, the gradients for the
operations needed for beamforming were implemented4 and are now publicly available
in the Tensorflow framework [Mar+15].

2https://github.com/fgnt/nn-gev
3https://github.com/fgnt/nara wpe
4This work was done during an internship.

https://github.com/fgnt/nn-gev
https://github.com/fgnt/nara_wpe


7 Robust multi-channel ASR with neu-
ral network supported beamforming

This chapter describes the proposed system for robust multi-channel ASR. Instead of
finding a way to e↵ectively handle multi-channel data with the acoustic model, this
work adheres to a more conventional approach based on classical signal processing. A
statistical beamformer condenses the multiple input channels into one channel which is
then fed to a standard single-channel acoustic model. The system neither makes any
assumptions about the microphone array configuration and interfering noise sources, nor
about the RTF which encodes speaker position and room characteristics. All necessary
signal statistics are estimated directly from the observed multi-channel signal. To
achieve this, a neural network is integrated into the beamforming process. We call this
model the neural mask estimator and the whole beamforming process neural network
supported beamforming. Another neural network is specifically designed for the acoustic
model. Combined, the system can leverage spatial information and is robust against
interfering noise and reverberation. In the following, we describe this system in detail
and extensively evaluate it on the two datasets discussed in Sec. 5.1.

7.1 Neural network mask estimation

In Sec. 4.3 we already described how SCMs necessary for the beamforming can be
obtained using spectral masks which in turn can be estimated using statistical spatial
models. But with some notable exceptions [TH12; TH13a; TH13b; Tra15], statistical
models as described in Sec 4.4 make the conventional i.i.d. assumption and ignore the
spectral and temporal dependencies. The mentioned works already show that incorpo-
rating these dependencies complicates parameter inference, can become computationally
very expensive and requires other assumptions like first order Markov chains which
might not be suitable to capture, e.g., the harmonics of a speech signal.
When dependencies become hard to model, data-driven methods and especially neural

networks are known to excel. Indeed, many works consider using neural networks in the
context of single-channel speech enhancement and mask estimation (see, e.g., [WC18] for
an overview). For single-channel enhancement, the network either outputs the enhanced
spectrogram or a gain which is multiplied with the signal to obtain the enhanced version.
For multi-channel enhancement we propose to output a mask for the target and one

for the interferences to estimate the SCMs and then use beamforming to obtain the
enhanced signal [Hey+15a; HDH17]. A schematic overview of this system is depicted

54
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Figure 7.1: Schematic representation of the neural network supported beamformer.
Depth illustrates multiple channels and copies of the network respectively.
Multi-channel signals are indicated by bold arrows.

in Fig 7.1. While the task of the neural network is comparable to the single-channel
enhancement with gain estimation, the overall system is very di↵erent. Using a gain
(or directly approximating the spectral signal) can introduce arbitrary distortions like
musical tones. Beamforming on the other hand is a linear filter operation based on
signal statistics. And although it can introduce distortions due to an arbitrary scaling of
the individual frequencies (see Sec. 4.2), the enhanced signal is a linear combination of
all channels with di↵erent time shifts for each frequency and still represents a plausible
signal. In other words, instead of having a neural network directly influencing the signal,
we rely on classical signal processing and a statistical model which is only supported
by a neural network in order to estimate necessary statistics. This combines the best
of both worlds: the good classification performance of a data-driven neural network
approach and the flexibility and interpretability of a statistical model.
To avoid making any assumptions about the microphone configuration, the system

estimates the masks for each signal separately followed by a pooling operation to
condense these masks into one for the target and one for the distortion. The pooling
operates on each tf-bin individually across the available channels. While there are
multiple operations (i.e. min/max, average, median, etc.) possible, we opt for the
median. The reasoning behind this is that this operation still yields a reasonable mask
even if some (and at most (M�1)/2) of the M sensors are defect. Such a malfunctioning
is observed in the data of the CHiME challenge (see 5.1.1) for example.
Compared with the statistical approach from Sec 4.4, instead of relying on the

spatial distribution of the sources, neural networks use spectro-temporal patterns of
the individual sources to distinguish between them. In order to learn the characteristic
patterns, a training step is necessary. This will be described in greater detail in Sec. 7.3.1.
One advantage of this data-driven approach is that we do not need to make assumptions
about the spectro-temporal patterns in the acoustic signal but instead infer those
directly from the data itself. As another advantage, the class a�liation is already
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Table 7.1: BLSTM network configuration for mask estimation

Units Type (Non-Linearity) pdropout

L1 2⇥ 1024 BLSTM 0.5

L2 1024 FF (ELU) 0.5

L3 1024 FF (ELU) 0.5

L4 2⇥ 257 FF (Sigmoid) 0.0

determined during the training and neither the frequency nor the global permutation
problem arises. This, however, first comes at the cost of needing the right training data
which in this case means that a separate signal for the two classes must be available.
But in Sec. 9 and Sec. 10 this requirement will also be lifted.
We did not yet specify any particular architecture of the model and in this chapter

we consider two di↵erent variants for the mask estimator. One is based on a BLSTM
while the other one is a CNN. Both are detailed in the following.

BLSTM mask estimator

The considered BLSTM model for mask estimation is composed of a BLSTM layer (L1)
with 1024 units for each direction. The output is concatenated and fed to a stack of
two fully connected layers (L2 + L3) with 1024 units and an exponential linear unit
(ELU) activation function. Masks for both classes are then estimated by two additional
linear layers, this time with 257 units each. This naturally corresponds to the number
of frequency bins.
We do not consider the masks to be mutually exclusive for this task, or, in other

words, the masks are not forced to sum to one. This is motivated by the fact that for
the estimation of the SCMs it is su�cient to only account for those tf-bins where one
source certainly dominates. Tf-bins where both sources are about equally active or
inactive at all are ignored. Consequently, instead of using a softmax for the output
(which would mean mutually exclusive sources), we use a sigmoid here. The performance
gain achieved with this choice will be analyzed later when discussing the unsupervised
extension in Sec. 9.3.3.
To achieve a better generalization, we use dropout for the input of all layers except

for the output layer. The dropout rate is fixed at pdropout = 0.5 for every layer. Table 7.1
summarizes the network configuration. This architecture is a bigger variant of the
network first proposed in [Hey+15a].
Using a BLSTM allows the network to take temporal context into account and

therefore learn temporal patterns of speech and noise. The network also operates on the
whole frame, making it possible to discover and exploit spectral patterns. As mentioned
earlier, the network treats each channel separately but the parameters are shared among
them.
The input to the network is the magnitude spectrogram of an observation. In

general, the network is not invariant to a shift or the scaling of the data. However,



Robust multi-channel ASR with neural network supported beamforming 57

the output masks should be the same irrespective of the global gain which depends
on the used sensors and the distance of the sources. To establish this invariance, the
input is normalized using the mean and variance of the current utterance. In the spirit
of batch normalization [IS15], we do not only normalize the input to the first layer
but also the activations before the non-linearity for layers L2 and L3. Contrary to
batch normalization where the statistics are calculated along the batch dimension, the
statistics are calculated along the temporal dimension here. We therefore also refer to
this kind of normalization as sequence normalization. A similar approach was presented
in [Lau+16] where the normalization is calculated along the time and batch dimension.
One advantage of our approach is that it can also be used during inference, allowing
the network to adapt to the data and avoiding a (gain) mismatch between training
and test. The drawback is that the whole utterance has to be available first which is
prohibitive for low latency scenarios. Alternative approaches for these scenarios will be
discussed later in this work in Ch. 8.

U-Net mask estimator

As an alternative to a recurrent structure, we also consider a convolutional structure.
The U-Net architecture is named after its U-shaped schematic illustration and was
proposed in [RPB15] for medical image segmentation. Since then it has been extensively
(as of the time of writing, the paper has been cited 6925 times) and successfully used
within the computer vision community for segmentation tasks (e.g. [Che+17; BKC17])
and beyond [Iso+17]. It is an all convolutional architecture, i.e. it is only composed of
convolutional, pooling and stacking operations. As such, it is able to handle variable
sized input without any modification. The main idea behind the architecture is to use
clues from di↵erent scales of the signal to produce the final segmentation result. This is
achieved by downscaling feature maps, applying a block of filters, upscaling it and then
concatenate the result as additional feature maps to the original ones. The block of
filters includes the same mechanism of reducing the resolution. Thus some filters are
applied at the original resolution capturing local features, while others are applied at a
much lower resolution and can capture more global features.
For the task at hand, the magnitude spectrogram can be interpreted as an image

and its segmentation yields a class a�nity for each tf-bin. Consequently, little changes
are necessary to apply the architecture for spectral mask estimation. The biggest
di↵erence between the spectrogram and an image is that the temporal dimension of
the spectrogram varies between the utterances while for images the corresponding
dimension is assumed to be fixed. But since the architecture is all convolutional, no
major changes are required. The only modification is to make sure that for each block
the devision by the pooling factor yields an integer number. This is achieved by padding
the spectograms with zeros at the end such that this requirement is fulfilled. At the
final output of the network we append an additional 2-dimensional convolution with
filter size 3⇥ 3, two output channels and a final (sigmoid) non-linearity to obtain the
masks for the target and distortions.
The whole architecture of the network used here is shown in Fig. 7.2
Having described the two architectures of the neural mask estimator we now turn to

the acoustic model.
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Figure 7.2: U-Net mask estimator. Red arrows indicate a max-pooling with size 2⇥ 2.
The green arrows indicate a bi-linear upsampling by a factor of 2, the yellow
arrows copy the feature map and the two gray arrows are the input and
output respectively. The “[., .]” operator concatenates the two feature maps
along the channel dimension. The details of the convolutional block “BlockU”
are given in Fig. 7.3. Note that as we increase depths, the spatial resolution
of the feature maps decreases while the number of channels increases. This
allows the network to incorporate spectral as well as temporal context.
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Figure 7.3: A single convolutional block as used by the U-Net shown in Fig. 7.2 above.
The block is parameterized by the number of filter channels C for the
2-dimensional convolution. Dropout is only applied during training. The
2-dimensional convolution block Conv2D(F,C) is parameterized by the filter
size F ⇥ F and the number of filters C.

7.2 Wide Residual BLSTM Network acoustic
model

The network architecture used for the acoustic model in this work draws major inspira-
tion from three other works. The first one is the Convolutional long short-term memory
fully connected deep neural network (CLDNN) architecture [Sai+15b] which combines
CNN, LSTM and feed-forward layers to profit from the characteristic advantages of
each layer type. Second are the works by Sercu et al. [Ser+15; SG16]. In [Ser+15] the
authors show that a slightly modified architecture from an image recognition task also
works well for a speech recognition task. While previous works used large filter sizes
for CNN layers, this work shows that filters of size 3⇥ 3 also work well when multiple
layers are stacked. The follow-up work [SG16] describes full sequence training with
these networks which leads to a much more e�cient inference step when working on a
whole utterance. We adopt this approach as it allows to use sequence normalization
during test time and is suitable for combination with a BLSTM layer which anyway
requires to process a longer sequence.
Additional inspiration is drawn from the findings about CNNs by the image com-

munity [ZK16; He+16a; He+16b] where residual connections improve convergence
properties and wide CNN layers (i.e. a larger number of feature maps) show good
performance even if the network is relatively shallow and compared to a network with
100+ layers.

We name the resulting architecture WRBN and presented it first in [HDH16b].
Fig. 7.4 gives an overview of the complete architecture. The details for the building
blocks are shown in Fig. 7.6 and Fig. 7.5.
The first part, a wide residual network (WRN) adopted for sequence processing,
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Figure 7.4: Overview of the back-end structure. The annotations in gray indicate the
dimension of the tensors where B is the batch size and T is the number of
frames of the largest utterance within the batch. “ResBlock”s are further
explained in Fig. 7.5 and Fig. 7.6. The instance norm normalizes across
the width and height of a feature channel which roughly corresponds to the
time and frequency dimension. |S| is the number of unique states of the
HMM.
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Figure 7.5: Detailed view of a ResBlock. A ResBlock is parameterized by its height
striding S, the number of output channels C and the number of inner blocks
N. Accordingly, BlockB is repeated N-1 times.
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Figure 7.6: Detailed view of the building blocks BlockA and BlockB respectively. A
convolution block Conv2D(F,C, S) is parameterized by the filter size F ⇥F ,
the number of filters C and the striding S in the height dimension. The
striding for the time dimension, i.e. the width, is always 1. The input is
padded with zeros such that the output has the same size.
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consists of three residual building blocks. Each of these blocks consist itself of smaller
building blocks, BlockA and BlockB. BlockA is always the first block in the chain of
smaller building blocks. It can have a stride � 1 to reduce the frequency resolution and
it increases the number of channels. This prohibits a direct residual connection to the
output of the block and an additional convolution operation with filter size 1⇥ 1 acts as
the residual connection changing resolution and size accordingly. After BlockA a couple
of BlockB blocks can follow. These are nearly identical but do not alter the resolution
nor the number of feature maps, allowing for a direct residual connection. All blocks use
an ELU non-linearity. Instead of batch normalization, we use an instance normalization
which calculates the statistics for each feature map individually over height (frequency)
and width (time). Reliable statistics can be estimated because we are working with
full sequences. Similar to the mask estimator, this again allows to normalize within
the network also during test time with the actual statistics of an utterance rather than
accumulated ones from the training data. In [HDH16b] we show that this yields relative
improvements of about 10%.
The output of the WRN are 320 feature maps of size 10 ⇥ K. I.e. the frequency

dimension has been reduced to 10 while there are still K frames. A max-pooling
operation reduces the frequency dimension completely, yielding K features of size 320
which are provided to the two BLSTM layers. The first of these has 512 units for each
direction and its final output is the sum of both directions. The second also has 512 units
for each direction but this time the two outputs are stacked to K features of size 1024.
These features then serve as an input to a feed-forward layer with an ELU non-linearity
and a sequence normalization of its activations. A final linear transformation yields the
logits for the senones (see Sec. 3.1.2).

7.3 Training

The system includes two models, the mask estimator and the acoustic model, which are
trained separately. A joint training scheme will be discussed later in Ch. 10. Both models
are trained in a supervised fashion. If not noted otherwise, a variant of multi-style
training [LMP87] is used. This multi-style training directly uses the noisy observations
instead of e.g. the clean speech image.
We use the same STFT parameters for all models. The window size is 400 samples

which translates to 25ms for the 16 kHz recordings. We shift the window by 160 samples
(10ms) and transform the signal with a FFT of size 512.

In order to avoid overfitting, a process on a separate workstation constantly evaluates
the WER on the development set once the last evaluation finished and a new checkpoint
is available. If the WER did not improve over the last 10 evaluations, the last best
checkpoint is restored and the learning rate is multiplied by 0.5. Training is stopped
after the learning rate has been decayed three times and the current best model is saved
for final evaluation. To measure the WER for a mask estimator, it is combined with a
GEV beamformer and a pre-trained acoustic model.
The training of the individual models including further optional regularizations like

gradient clipping is described in more detail in the following.
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7.3.1 Mask estimator

The training of the mask estimator requires parallel data. I.e. for a given observation
knowledge of the predominant class (speech or interferences) for each tf-bin is required.
This information is only available for simulated data where interferences and speech are
mixed artificially such that the original signal is still available for each class. Di↵erent
approaches exist to calculate a target from this signal. In [WNW14], Wang et al. compare
an ideal binary mask (IBM) and an ideal ratio mask (IRM) in the context of speech
separation. The IBM is one for all tf-bins where the SNR is greater than a pre-defined
threshold while the IRM is the ratio between the instantaneous speech power and the
instantaneous observation power for each tf-bin. While the IBM is of discrete nature
and can only take a value out of {0, 1}, the value of the IRM is continuous and lies in the
interval [0, 1]. Both targets are suitable for the task of SCM estimation. However, there
is a notable di↵erence between SCM estimation and source separation. The estimation
of the SCM averages the contributions over time. Contrary to the direct application of
the mask for speech separation, this estimation does not su↵er from missing tf-bins as
long as enough bins with a major contribution are available. In other words, while for
speech separation both, precision and recall are equally important, in the context of
SCM estimation a higher emphasis can be put on precision. Since we use the whole
utterance to calculate the SCM and can thus deal with sparse masks, we favor IBMs
over IRMs. In particular, the oracle masks for each channel are calculated as follows

�̂target(k, f) =

(
1, ||s(k,f)||

||n(k,f)|| > 10ths(f),

0, else,
(7.1)

and

�̂noise(k, f) =

(
1, ||n(k,f)||

||s(k,f)|| > 10thn(f),

0, else.
(7.2)

Note that the two thresholds ths and thn are frequency dependent and not identical.
Both thresholds are hand-tuned on a few utterances of the development set and their
values range from �5 to 10 depending on the frequency1. They are optimized for
precision and sparsity and chosen such that a decision for speech/noise requires an
instantaneous SNR which is high/low enough to ensure a low false acceptance rate.
Note that these masks do not sum to one and are also not mutually exclusive. They can
both be zero at the same time and also both be one at the same although the former
case should happen much more frequently than the latter case.
The signals s(k, f) and n(k, f) describe the image of the target speech signal and

the superposition of all interferences respectively. For a speaker vs. interfering noise
sources scenario, these signals are clearly defined. But in the case of reverberation the
distinction is not well defined. We follow the practice to attribute the first 50ms after
the first peak of the RTF to the speech image [Kin+13] and the remaining part to
the distortion (see also Sec. 4.5). To generate the data, we accordingly split the RIRs
for the target source into two parts to obtain a filter which, when convolved with the

1The concrete implementation with the default values can be found in the open source version here:
https://github.com/fgnt/nn-gev/blob/master/fgnt/mask estimation.py

https://github.com/fgnt/nn-gev/blob/master/fgnt/mask_estimation.py
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speech signal, outputs the speech image and one for the late reverberation. The latter
signal is then regarded as interferences and its energy is added to the noise energy
before calculating the masks.
As discussed before, we interpret the task as a binary classification problem (dominant

/ not dominant) for each class and tf-bin independently and consequently use the binary
cross-entropy (BCE) loss for each output. For a single example and class q, where q
indicates either speech or noise class, this loss is defined as

Lq =
1

K

1

F

X

k

X

f

�(�̂q(k, f) log pq(k, f) + (1� �̂q(k, f)) log (1� pq(k, f))). (7.3)

This is the BCE averaged over all tf-bins with the oracle target m̂q(k, f) 2 {0, 1} and
the network prediction2 pq(k, f) 2]0, 1[ for the class q at tf-bin (k, f). The total loss for

a batch of size B is then calculate as 1

B

P
b L

(b)
s + L(b)

n .
The resulting loss function is minimized using Adam [KB14] with an initial learning

rate of ↵ = 0.001 and a limited gradient norm of 5 [PMB12]. To fully utilize the
sequence normalization (see Sec. 7.1), one example always consists of a full utterance
and for recurrent models full backpropagation through time [Wer90] is used.
As described before, the input to the network is only a single channel signal. To

fully use the available data, all channels are used for training and randomly selected for
each utterance for each iteration. One batch consists of 18 examples. In order to foster
generalization for a broad range of SNRs, we modify the signal on-the-fly and alter its
original SNR by randomly sampling a value between �5 dB and 3 dB.

7.3.2 Acoustic model

The alignments for the training of the acoustic model are obtained by training a
GMM-HMM system according to the task baseline recipe provided by Kaldi34. This
model is then used to force align the training data to get the target state for each
frame. Note that contrary to the training of the mask estimator, the acoustic model
can also be trained on real recordings where only the observation is available. Previous
work [Yos+15] also has shown the benefits of including all channels in the training
process and we follow this advice and sample the channel randomly for each example
at each iteration.
With the obtained targets, the acoustic model is trained with a standard cross-entropy

loss and LMSCs are used as input features. Although subsequent sequence training
generally improves the performance, as with the language model, these improvements
are assumed to be mostly orthogonal to the methods presented and evaluated in this
work. We refrain from it in favor of a simpler and faster training process.
Like before, Adam is used as the optimization method but this time the initial

learning rate is lower and set to ↵ = 0.0001 and the batch-size is 2. The gradient is
likewise clipped when its norm exceeds 5.
Again, we always use a full utterance as an example to exploit the benefits of

normalization. We also modify the SNR of the observation for simulated examples as

2In the implementation the value is clipped to avoid numerical issues.
3https://github.com/kaldi-asr/kaldi/tree/master/egs/chime4/s5 1ch
4https://github.com/kaldi-asr/kaldi/tree/master/egs/reverb/s5

https://github.com/kaldi-asr/kaldi/tree/master/egs/chime4/s5_1ch
https://github.com/kaldi-asr/kaldi/tree/master/egs/reverb/s5
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Table 7.2: Baseline WERs on single-channel track for the acoustic model described
in 7.2 for the CHiME and REVERB task in comparison to results published
by others as described in 5.3.

CHiME SIMU CHiME REAL REVERB

WRBN 17.42 16.05 15.52

Kaldi setup I ([Szu18]) - - 19.78

NTT REVERB I ([Del+14b]) - - 27.5

Kaldi setup I ([Che+18]) - 16.36 -

NTT CHiME 3 I ([Yos+15]) - 15.60 -

already described for the mask estimator but increase the range of the SNR change to
�7 dB – 7 dB. The inclusion of higher SNR values aims at better performance when
used in combination with the multi-channel front-end, which, as we will demonstrate
soon, can achieve high SNR gains.

7.4 Evaluation

Results for the di↵erent systems are reported on the CHiME and REVERB task. First,
we focus on the acoustic model with di↵erent configuration. Afterwards, the whole
system is evaluated. The di↵erent approaches to mask estimation are compared as well
as the di↵erent beamforming criteria. Finally, the influence of the number of channels
is analyzed.

7.4.1 Acoustic model

The results for our baseline acoustic model as described in Sec. 7.2 for the CHiME
and REVERB task are shown in Tbl. 7.2. Note that these are the results for the
single-channel track of both tasks and without any processing of the observed signal.
The results for the CHiME dataset are on par with the ones reported in Kaldi setup
I ([Che+18]) which is, as of the time of writing, regarded as state-of-the art. They are
also close to the ones of the winning CHiME 3 system [Yos+15] but without using a
strong language model to rescore the hypotheses. Compared to the baseline system
of the CHiME 3 challenge, the WER is reduced by nearly 50% although the baseline
system uses all channels and a beamformer to process the signal. Slightly worse results
are achieved on the simulated set compared to the real set but this is a common
phenomenon observed across di↵erent systems [Vin+].
On the REVERB task, the WER is improved by 20% over the Kaldi setup I Baseline

([Szu18]). When compared to the winning solution of the challenge (NTT REVERB
I [Del+14b]), the error rate is reduced by over 40%.
Next, we analyze the impact of multi-style training exemplarily for the CHiME task.

The results are reported in Tbl. 7.3. If only clean data is used during training, the
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Table 7.3: E↵ect of multi-style training on the CHiME task.

training data SIMU REAL

clean 42.73 48.25

multi 17.42 16.05

Table 7.4: Performance of the acoustic model when modifying its architecture for the
CHiME task.

Modification Name SIMU REAL

None WBRN 17.42 16.05

– norm 21.12 20.60

– CNN 22.46 22.61

– BLSTM WRN 16.03 15.23

– BLSTM; – norm 20.00 21.10

performance severely degrades and the WER increases from 16.05% to 48.25% on the
real evaluation set. The performance hit is slightly less for the simulated data but still
large. This is expected as there is a huge mismatch between the evaluation set and the
clean training data. In order to cope with distortions, the model needs to be trained on
distorted data, the more similar the distortions, the better. This will become important
again later in Ch 10 when discussing a joint optimization of the models.
To gain some insights on what drives the performance of the acoustic model, we

remove important components of its architecture. Again results are reported on the
CHiME task in Tbl. 7.4.
The first modification (– norm) removes all normalizations from the network and

replaces them with a single normalization of the input features using the training data
statistics. This modification has a significant impact on the systems performance and
results in a WER increase of nearly 30%.
For the second and third change, we remove either all CNN (– CNN) or all BLSTM

Table 7.5: Performance of the WRN acoustic model when trained with di↵erent seeds
for the CHiME task.

Model SIMU REAL

WRN 16.03 15.23

WRN #2 16.01 15.47

WRN #3 15.91 15.36
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Table 7.6: Performance of the WRN and WRBN acoustic model for the CHiME and
REVERB task.

Model EVAL EVAL+10dB

WRBN 15.52 15.52

WRN 15.02 15.02

(– BLSTM) layers. While for the former the performance significantly degrades, the
latter, which we refer to as WRN, surprisingly outperforms the baseline model even
though it has much fewer parameters.
We also remove the normalization from the WRN (– BLSTM; – norm) which results

in an even bigger performance drop than for the WRBN and again highlights the
important role of the sequence normalization.
But the training process includes a lot of randomness. This starts with the random

initialization of the network parameters and also includes things like the composition of
examples to form a batch. Additionally, there are a lot of hyper-parameters governing
the training process and although these are chosen from a vast experience, they are likely
not the best ones possible for the specific model. On the other hand, the computational
power required to train a single acoustic model is large, rendering it infeasible to run
the training multiple times with di↵erent random seeds for all experiments and much
less running a search to optimize the hyper-parameters for each system. But before
drawing conclusions from a single run, we at the least want a rough estimate of the
magnitude of the variance caused by the randomness of the training process. To this
extent we train the same WRN model three times with di↵erent random seeds but
the same hyper-parameters on the CHiME dataset. Results for this experiment are
given in Tbl. 7.5. The range of the WER is fairly narrow. For the real set, absolute
di↵erence between the best and the worst run are 0.33 percent points. Again, this also
cannot serve as a test for any statistical significance and should solely be regarded as
an indication of the variance. So whenever we use the term significant in the following,
this does not relate to statistical significance.
With this, we can conclude that there is a chance that the WRN and WRBN are

actually on par but removing the normalization is most certainly harmful. This result
also indicates that the broad receptive field of the CNN layers combined with the
underlying HMM models the temporal dependencies su�ciently well such that no
recurrent model is needed. Though it should be noted that the training corpus for both
tasks is considered small5 and the picture might change when more data is available. In
the following, we will evaluate both, the WRBN and WRN for most of the upcoming
experiments to test for any di↵erent behavior when the data is preprocessed.
Finally we also evaluate the WRN model on the REVERB task. The result is shown

in comparison with the ones from the WRBN in Tbl. 7.6 for the o�cial (EVAL) as
well as for the amplified (EVAL+10dB ) test set with real recordings. Again, the WER
achieved by the WRN is slightly better compared to the WRBN (15.02 vs. 15.52) but

5Big corpora include thousands of hours of speech.
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Table 7.7: Comparison between a BLSTM (Sec. 7.1) and a cACGMM (Sec. 4.4) mask
estimator with a GEV beamformer for the CHiME task.

WRBN WRN

Mask estimator SIMU REAL SIMU REAL

None 17.42 16.05 16.03 15.23

BLSTM 6.93 7.79 6.78 7.34

cACGMM 9.49 13.07 9.28 12.95

the di↵erence is not large enough to draw any strong conclusions. Not surprisingly, the
results are the same for both test sets. While this rather serves as a sanity check for the
normalization rendering the acoustic model invariant against any scaling of the signal
here, the gain di↵erence will become more important in the experiments to follow.

7.4.2 cACGMM vs. neural network based mask estimator

Next, we evaluate and compare the performance of a neural network and cACGMM
based mask estimator. Here, only the BLSTM mask estimator described in Sec. 7.1 is
considered. Other estimators are assessed later in this work.
For the experiments, the respective mask estimator is used to obtain the weights

for calculation of the SCMs (see Sec. 4.3). For each utterance, a single target and
noise SCM is estimated for each frequency, i.e., we average the statistics over a whole
signal. The SCMs are then used to estimate the filter coe�cients of a GEV beamformer
which are applied to the observation to obtain a single-channel STFT representation
of the enhanced signal6. For the scaling we divide the interferences SCM by its trace
as discussed in Sec. 4.2.2. LMSCs are then extracted from the enhance spectral
representation and fed to the WRBN or WRN acoustic model trained in the previous
experiments. Finally, the WER is evaluated based on the decoded transcription. Note
that the acoustic model is not adapted in any way to the front-end processing method.
The enhancement is simply plugged into the feature extraction process. A more detailed
analysis on the integration will follow in Ch. 10.
The results for the CHiME task are shown in Tbl. 7.7 together with the results of

the single-channel acoustic model for reference. Overall system performance improves
for both estimators, showing the e↵ectiveness of beamforming. However, the WER is
considerably lower for the system with the neural network based mask estimator. These
results are in line with our findings in [HDH16a] which also evaluates systems with
a MVDR beamformer, i.e., this phenomenon is not specific to the GEV beamformer.
With the BLSTM mask estimator, the WER on the real recordings reduces by a bit
more than 50% for both acoustic models. Using the cACGMM to estimate masks
results in a reduction of about 18% with the WRBN and 15% with the WRN acoustic

6Note that we do transform the signal back to the time domain to extract the features. This avoids
distortions which can be introduced by, e.g., a phase mismatch among the individually processed
sub-bands and thus improves the overall system performance.
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Figure 7.7: Histogram of the WERs for the systems with the BLSTM and cACGMM
mask estimator. For the latter, there are several utterances with a WER
>80%, i.e. cases, where the system completely fails.

model. For the simulated data, the cACGMM performs slightly better, yet, the BLSTM
system achieves lower WERs.
Further insights can be gained from the histograms in Fig 7.7. They show the

distribution of the WERs for the real evaluation set for both systems. It is noticeable,
that for the cACGMM system the distribution is not just slightly shifted towards higher
WERs, but that there is a significant number of utterances where the system does not
work at all. To be precise, 46 utterances have a WER >80% while for the BLSTM
system there are only 2 with this property. Analyzing these cases reveals two main
causes.
For utterances with specifically low SNR, the frequency permutation problem is not

solved correctly. An example for this is shown in Fig 7.8 which also shows the estimated
mask from the BLSTM mask estimator for the same utterance. The other source of
failure is the global permutation problem. Especially when one or more microphones
are distorted, the system tends to focus on the artifacts introduced by this distortion.
An example of the phenomenon is shown in Fig. 7.9.
For the only two utterances where the neural network based system has a WER

>80%, the acoustic model can be identified as the cause. The two utterances are
very short (2 and 3 words respectively) and the masks for the two systems for one
of these utterances is shown in Fig 7.10. Both masks look reasonable, yet the WER
for the systems is 100%. The same WER is obtained without any processing by the
single-channel system.
When excluding all hard utterances, i.e., those with a WER >60% for the cACGMM

system, it achieves a WER on the remaining set of real recordings of 9.31% while the
neural network based system achieves a WER of 6.43% on the same set. This demon-
strates that, although the cACGMM clearly su↵ers from the permutation alignment
problem, the neural network based system still outperforms the statistical one, even
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Figure 7.8: Masks for the utterance m06 442c020g bus. Left: cACGMMmask estimator
(100% WER), right: BLSTM mask estimator (10% WER). The frequency
permutation alignment failed for the cACGMM model due to low SNR.
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Figure 7.9: Masks for the utterance m05 445c020g bus. Left: cACGMMmask estimator
(100% WER), right: BLSTM mask estimator (20% WER). The global
permutation alignment failed for the cACGMM model due to a microphone
failure.
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Figure 7.10: Masks for the utterance m05 446c020p str. Left: cACGMM mask esti-
mator (100% WER), right: BLSTM mask estimator (100% WER). Both
models yield reasonable masks but all decoded words are wrong.

when factoring out most of the permutation issue.
Comparing the results with the baselines from Tbl. 5.3, we can see that the neural

network based system yields a lower WER than the NTT CHiME3 II system, i.e. the
winning contribution without the speaker adaptation. This confirms the results from
the previous comparison as the NTT system also employs a mixture model with a time-
varying complex distribution to obtain masks to estimate the SCMs. Their permutation
alignment is more sophisticated than the one used for the previous experiments and
their system can probably be regarded as the upper bound in terms of performance of
a mixture model based system on this task.
Another interesting comparison is with the Kaldi setup III which uses a comparably

strong acoustic model (although followed by a rescoring step with a RNN-LM) and
the BeamformIt! [AWH07] beamformer to preprocess the multi-channel signal. This
system achieves a WER of 6.84% and therefore a slightly lower one than the BLSTM
mask estimator system from this work. However, there is a significant gain from using a
language model rescoring step as can be seen when also considering the Kaldi setup IV
which uses our open source version of the BLSTM mask estimator and GEV beamformer
and is conceptually identical to the system evaluated here. With a RNN-LM rescoring
step, this setup yields a WER of 4.01% which is significantly lower than the one achieved
by the identical system but with the BeamformIt! beamformer. Indeed, analysis in our
work for the CHiME 4 challenge [HDH16b] showed a similar performance improvement
when replacing BeamformIt! with a neural network supported GEV beamformer.
While the previous analysis was concerned with speech signals deteriorated by

interfering sources, we now turn to the REVERB dataset where the deterioration is
mainly caused by the speech signal itself, namely by its reverberation. The two systems
are set up in the same way as in the previous evaluations but this time the beamformer
is used to remove the reverberant part of the signal (see Sec. 4.5.1). For the cACGMM
model this does not change anything and for the neural network model this means that
the targets during the training of the mask estimator are calculated di↵erently (see
Sec. 7.3.1).
We include a third system in this comparison. This system uses WPE (see Sec. 4.5.2)
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Table 7.8: Comparison between a BLSTM (Sec. 7.1) and a cACGMM (Sec. 4.4) mask
estimator with a GEV beamformer and WPE for the REVERB task.

WRBN WRN

Mask estimator Beamformer WPE EVAL EVAL+10dB EVAL EVAL+10dB

None – 7 15.52 15.52 15.02 15.02

None – 3 13.77 13.55 13.13 12.96

BLSTM GEV 7 8.71 7.86 8.43 8.09

cACGMM GEV 7 13.23 12.66 13.07 12.54

to process and dereverberate the signal prior to feature extraction. In contrast to
the beamforming based systems, WPE is a multiple inputs multiple outputs (MIMO)
method. As the acoustic model only handles one channel, we select it according to
the filelist for the single-channel task of the REVERB challenge after dereverberation.
We use the same STFT parameters as in all previous experiments (a window size of
25ms and a shift of 10ms). The delay � and number of filter taps Ltaps (see Sec. 4.5.2)
is optimized to yield the best performance on the development set with a grid search
where � 2 {1, 2, 3} and Ltaps 2 {5, 10, 15}. Again, this method just extends the feature
extraction process and the acoustic model is not adapted in any way.
The results are shown in Tbl. 7.8. We first note, that all systems show some

sensitivity to the overall power of the signal. Simply increasing it by 10 dB improves
the performance for all configurations where the signal is enhanced prior to feature
extraction. For the two systems relying on beamforming the sensitivity is caused by
the beamforming operation and not by the mask estimation. The latter is invariant
to scale for both, the cACGMM and BLSTM since both models normalize the signal
prior to processing. Again, the systems using the WRN acoustic model achieve lower
WERs compared to the WRBN systems for all except one case. With the BLSTM mask
estimator the WRBN acoustic model yields a WER of 7.86% while with the WRN
the WER is 8.09%. However, as mentioned earlier, this is within a range where no
conclusions can be drawn from a single experiment.
Overall, the system employing the neural network based mask estimator significantly

outperforms the other approaches. It should be mentioned that the cACGMM was not
designed for the task of dereverberation. Yet, it performs surprisingly well compared to
WPE. It is also worth noting that all of the evaluated enhancement methods improve
the performance over the corresponding single-channel baseline. This again highlights
the benefits of exploiting multiple channels in a principled way. The WER of the
best multi-channel system is nearly 50% lower than the one of the best single-channel
system.
Comparing the results with the baseline results from Tbl. 5.4 shows that the system

with the BLSTM mask estimator achieves the lowest WER of all approaches, even
though no language model (LM) rescoring is used. Compared to the challenge baseline
result from 2014, the WER is reduced by over 80%. It can even improve over the
winning solution despite being a much simpler system with only a few components.
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Figure 7.11: WERs (left scale) for di↵erent SNR conditions on the simulated develop-
ment set from the CHiME task using only channel 5 (“Single-channel”)
or the output of a beamformer system (“Beamformer”). The orange line
shows the SNR gain (right scale) achieved by the beamformer. See text
for details.

7.4.3 Performance over SNR

The previous results show that the neural mask estimator performs well on the two
datasets used for evaluation. For both, all utterances in the test sets have a fixed
SNR. But an interesting property of an enhancement system to evaluate is its behavior
for di↵erent SNR conditions. We already saw that significant gains are achieved in
the low SNR regime (the average SNR for the CHiME test set is estimated to be
around 4 dB [Bar+17]). However, for an enhancement system to be of practical use,
the performance for high SNR conditions is equally important as the performance for
the default scenario with no interferences should not degrade.
To evaluate the performance for di↵erent SNR conditions, we use the simulated

data from the development set of the CHiME task and adjust the power of the target
and interferences such that all utterances have the same SNR. We consider SNRs of
�10 dB, �5 dB, �2.5 dB, 0 dB, 2.5 dB, 5 dB, 10 dB, 15 dB and 20 dB. Our baseline are
the WERs achieved using only a single channel (the lower center microphone) with
the WRN acoustic model. We compare this against a system using the BLSTM mask
estimator in combination with the GEV beamformer to enhance the multi-channel data
first and then the same WRN acoustic model to transcribe it. For this system, we also
calculate the SNR gain by first estimating the beamforming filter, applying it to the
spatial images of the target speech and interference signal and then calculating their
ratio in dB.
Results are shown in Fig. 7.11 with the numbers given in Tbl 7.9. Up until an SNR

of 2.5 dB, the WERs with the enhanced signal are decreased by more than 50% relative.
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Table 7.9: WERs for di↵erent SNR conditions on the simulated development set from
the CHiME task using only channel 5 (“Single-channel”) or the output of a
beamformer system (“Beamformer”).

SNR in dB

System -10 -5 -2.5 0 2.5 5 10 15 20

Single-channel 75.16 44.72 30.97 12.22 14.19 10.14 6.39 4.82 4.28

Beamformed 37.92 13.84 9.68 5.77 6.29 5.52 4.72 4.57 4.78

Afterwards, the di↵erence monotonically gets smaller such that for a SNR of 15 dB, the
WER is only improved by 5%. In the 20 dB scenario, the multi-channel system finally
performs worse compared to the single-channel baseline.
The SNR gain achieved by the system ranges between 7.5 dB and 15 dB, with a visible

peak at 0 dB. This might be explained by the training data, which, after augmentation,
roughly has an average of 0 dB. Otherwise, it is surprisingly constant even for high
input SNR values where the gain measured in WERs vanishes. This underlines that
the SNR is only loosely related to the WER, supporting the choice of our evaluation
criterion to be the WER.
In summary, the beamformer system shows good performance until a SNR > 15 dB

is reached. In these higher SNR scenarios, processing the signal actually degrades the
performance. A possible solution would be to include more data with high SNR values
in the training process although this might degrade accuracy in low SNR scenarios.
An alternative would be to coarsely estimate the SNR upfront and only process the
multi-channel signal when the estimated SNR is below a certain threshold.

7.4.4 Comparison of di↵erent beamformers

So far, only the GEV has been considered for the beamforming operation. But the
application of the mask estimator is not limited to this specific beamformer and Sec. 4.2.2
already presented di↵erent statistical beamformer criteria. These are evaluated using
the BLSTM mask estimator to estimate the SCMs in the following. Note that the mask
estimator is agnostic to the specific choice of the beamformer and the same model can
be used to evaluate all of them. The same is true for the AM which we do not adapt
to a specific front-end (this will be discussed in-depth in Sec. 10.2.4). For the MVDR,
we make use of the Rank-1 approximation discussed in Sec 4.2.2 and set the direction
of distortionless responses to h = P(�ss). The reference channel for the MVDR and
MWF is chosen to be the center microphone on the bottom frame.
WERs for the CHiME task are shown in Tbl. 7.10. All evaluated beamformers

improve the performance and there is little di↵erentiation among them. For the WRN
acoustic model, the di↵erence between the best and worst performing beamformer are
merely 0.34 percentage points in the WER. A similar gap exists for the real recordings
and the WRBN acoustic model. Only with the simulated recordings and the WRBN
AM the di↵erence is slightly higher (0.63 percent points). Given the fact that this is just
a single configuration and implementation and the large amount of hyper-parameters, no
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Table 7.10: Comparison of di↵erent beamformers with a BLSTM mask estimator for
the CHIME task. Best results are marked in bold.

WRBN WRN

Beamformer SIMU REAL SIMU REAL

GEV 6.93 7.79 6.78 7.34

MVDR 7.33 8.11 6.85 7.53

MWF 6.70 8.06 6.51 7.21

MWF with Rank-1 approx. 6.93 7.83 6.77 7.38

Table 7.11: Comparison of di↵erent beamformers with a BLSTM mask estimator for
the REVERB task.

WRBN WRN

EVAL EVAL+10dB EVAL EVAL+10dB

Beamformer

GEV 8.71 7.86 8.43 8.09

MVDR 8.45 7.86 8.50 8.41

MWF 9.41 9.13 8.71 8.34

MWF with Rank-1 approx. 8.41 8.52 8.49 8.14

definite conclusions can be drawn from this result. The distortions possibly introduced
by the GEV do not harm the system performance in this scenario. Also, contrary to
the findings in [Wan+18], the Rank-1 approximation does not improve the results for
our system.
As shown in Sec. 4.2.2, all vectors approximately (i.e., under the Rank-1 assumption)

point into the same direction and the only di↵erence is a frequency dependent scaling
factor. Despite the sequence normalization this can have an influence since the feature
extraction combines multiple frequencies. But the results suggests that this influence is
rather small.
The results for the REVERB task as shown in Tbl. 7.11 speak roughly the same

language. This time, the GEV gives the best results while the MWF lags behind
especially in combination with the WRBN acoustic model. Again, the results can be
improved by a simple gain factor for all beamformer types although the di↵erences vary
among them.
We conclude from these results that at least for the o✏ine case there is no significant

di↵erence in performance between the evaluated beamforming methods. For the
following experiments in this work, we will stick with the GEV beamformer as the one
with an overall solid performance. However, we assume that any insights gained with
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this beamformer apply to the other variants as well.

7.4.5 Combination with WPE

WPE can be formulated as a MIMO system and as such also has the property of
preserving directional information contained in the signal [Del+14a]. Consequently,
it can be combined with beamforming in a straightforward way by simply first using
WPE to dereverberate the signal followed by a beamformer to condense it into a single-
channel signal for ASR. While WPE and beamforming have been already evaluated
separately for the REVERB task, we now evaluate a system that combines both
methods. As before, the number of filter taps and the delay is optimized on the
development set for the individual models. The system allows for many di↵erent ways
to incorporate the dereverberated signal since there are three components which can
use the signal independently. These are the mask estimation, the SCMs estimation and
the beamforming operation itself. For example, one could estimate the masks and the
SCMs on the original observation and then use the resulting beamforming vector to
filter the dereverberated signal. Not all possible combinations are intuitively reasonable
and in the following we only investigate to use the WPE dereverberated signal for:

1. The mask estimation

2. The mask and SCMs estimation

3. The mask, SCMs estimation and the beamforming operation

4. The SCMs estimation and the beamforming operation

5. The beamforming operation

All results of this evaluation are shown in Tbl. 7.12. We first note that even though
WPE on its own was not able to improve the results as much as the beamformer alone,
a front-end combining the two methods achieves the best performance. Adding WPE
as an additional enhancement step before the mask estimation, SCM estimation and
beamforming operation improves the WER by 10% – 18%.
The biggest gains are achieved for the matched condition, i.e. when the dereverberated

signal is used for all components. Using it only for the mask estimation improves the
WERs by about one percent point absolute. Also using the dereverberated signal for
the SCM estimation deteriorates this result slightly when the estimated filter is then
applied to the unprocessed observation. This is to be expected as the resulting filter will
not try remove reverberation from the signal which was already removed by WPE. Yet,
the performance of this setup is still reasonable, indicating that there is still enough
reverberation left in the WPE signal to estimate spatial fiters to remove it. When
the unprocessed signal is used for mask estimation and the dereverberated signal for
SCM estimation and beamforming, the performance is on-par with the case where the
dereverberated signal is used for all components. This result underlines how well the
mask estimator can cope also with reverberation.
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Table 7.12: Performance for a system with WPE, a BLSTM mask estimator and a GEV
beamformer for the REVERB task. Reference results for WPE and GEV
beamformer only are shown in gray. A checkmark in columns 2 – 4 indicates
if the dereverberated signal has been used for the respective component
while a cross denotes the use of the unmodified observation.

WPE WRBN WRN

Front-End ME SCM BF EVAL EVAL+10dB EVAL EVAL+10dB

GEV BF 7 7 7 8.71 7.86 8.43 8.09

WPE 7 7 7 13.77 13.55 13.13 12.96

GEV BF 3 3 3 7.22 7.02 7.23 7.31

GEV BF 3 7 7 7.76 7.49 7.92 7.95

GEV BF 3 3 7 7.93 7.96 8.04 7.96

GEV BF 7 7 3 7.37 7.38 7.45 7.49

GEV BF 7 3 3 7.36 7.14 7.08 7.09

7.4.6 Comparison between BLSTM and U-Net

In the previous experiments only the BLSTM based mask estimator was considered.
In the following, we now compare the performance with one based on the U-Net
architecture, i.e. a fully convolutional one. For the U-Net, we investigate two di↵erent
variants. One, which operates on each sensor individually and one, which estimates a
single mask for all available sensors. The latter configuration leaves the pooling of the
masks to the network. It might be able to learn to select appropriate channels resulting
in a greater robustness against broken sensors. Also, inter-channel relationships could
be exploited and further improve the estimation. Note however, that the input for
the network is still the magnitude spectrogram, i.e. it is not possible to use phase
information. It also sacrifices the array independence property and the network is
specific to the microphone configuration which was used during training. But depending
on the application, this might be an acceptable trade-o↵ as long as it yields improved
results.
All systems are evaluated using the GEV beamformer.
Results for the CHiME task are shown in Tbl. 7.13. The U-Net operating on a

single channel achieves WERs which are around 4% better than those achieved by
the BLSTM mask estimator. Given the already low WERs, one can conclude that
both mask estimators work equally well. However, one advantage of the U-Net is the
possibility to process all frames in parallel while for the BLSTM the frames need to be
processed sequentially. With an appropriate hardware setup, this results in a significant
improvement in execution time. Similar to the findings for the acoustic model, this again
indicates that the receptive field of the CNN captures enough temporal information
and recurrence might not be needed.
When all channels are used as an input, the performance on the simulated data
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Figure 7.12: First eight feature maps calculated from the input for a U-Net operating
on all channels for a real recording.
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Figure 7.13: First eight feature maps calculated from the input for a U-Net operating on
separate channels for a simulated recording and the lower center microphone
channel.
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Table 7.13: Performance comparison between the BLSTM and U-Net mask estimator on
the CHiME task. U-Net single-channel treats each channel independently
while U-Net all channels works on all channels simultaneously. See text for
details.

WRBN WRN

Mask estimator SIMU REAL SIMU REAL

BLSTM 6.93 7.79 6.78 7.34

U-Net single-channel 6.63 7.54 6.69 7.11

U-Net all channels 6.58 38.78 6.24 38.82

improves slightly. But for the real recordings, the system breaks and the WERs are
higher than the ones achieved without any beamforming. For a further investigation of
this issue, we look at the first feature maps which are calculated from the input. The
first eight of them are shown in Fig. 7.12 for an exemplary real recording (which does
not su↵er from any microphone failures) while Fig. 7.13 shows them for a simulated
recording. We can see that for example the first filter is already able to extract speech
patterns from simulated recordings but only produces artifacts for the real recordings.
Similarly, the forth filter seems to focus on background noise but again only works
for the simulated recordings. These observations can be made for many of the filters
and are also not specific to this example but apply generally when looking at other
utterances. Since this feature map is the first one and directly computed from the input,
this suggests that there is already a mismatch in the microphone configuration for the
CHiME task between simulated and real data7. And while the system has learned to
account for inter-channel di↵erences on the simulated training data, this cannot be
transferred to real recordings. Even worse, the system becomes very sensitive to a slight
mismatch and fails once applied to real data. This highlights the benefits of processing
each channel individually and pooling the estimated masks later. Not only can such
a system cope with arbitrary array geometry mismatches, but also yields very similar
performance compared to a system that uses the information of all channels.
Although there is a significant gain mismatch between the training and evaluation

data for the REVERB task, the U-Net using all channels achieves similar performance
compared to the single-channel version as can be seen in Tbl. 7.14. Note that for this
task the array geometry does not change and no microphones fail. Overall, the WERs
are even marginally better, but given the test set size the di↵erence is not significant
and does not justify giving up the array geometry independence.
Both CNN based models are more sensitive to a gain mismatch compared to BLSTM

mask estimator. The reason for this is probably the use of batch normalization instead
of sequence normalization, rendering the network sensitive to the scaling of the signal.
As a consequence, for this task, the BLSTM performs better than the U-Net(s) but
the di↵erence can be attributed to the di↵erent normalization rather than the di↵erent

7Recall that the mask estimator is trained only on simulated data.
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Table 7.14: Performance comparison between the BLSTM and U-Net mask estimator on
the REVERB task. U-Net single-channel treats each channel independently
while U-Net all channels works on all channels simultaneously. See text for
details.

WBRN WRN

Mask estimator EVAL EVAL+10dB EVAL EVAL+10dB

BLSTM 8.71 7.86 8.43 8.09

U-Net single-channel 9.48 8.33 10.38 8.36

U-Net all channels 9.32 8.28 9.75 8.46

architecture.
In summary, there is no big di↵erence between the mask estimators in terms of

performance for both tasks. Using all channels as input does not significantly improve
the results in case of matching array geometry and is too sensitive against possible
mismatches. As long as no phase di↵erences can be exploited, using a single-channel
mask estimator is the better option.

7.4.7 Array independence

The system was designed with the goal of being independent of the array geometry,
including the number of microphones. But the performance will inevitably depend on the
number of microphones as more microphones allow to create a sharper beampattern with
better attenuation of interfering sources (see Sec. 4.2.1). In the previous experiments
we always used all available channels in the same order. The following experiments now
examine the di↵erences in performance for di↵erent numbers of microphones. For all
experiments we use the BLSTM mask estimator, the GEV beamformer and the WRN
acoustic model. As the previous findings suggest, the results are likely also valid for
other configurations although the absolute numbers may di↵er slightly.
For the CHiME task, we conduct two experiments.
The first one gradually decreases the number of microphones from six to two. Note

that the same components (mask estimator, beamformer, acoustic model) are used for
all configurations without any specific training or adaptation. The only di↵erence is
the dimension of the SCMs and the beamforming vector. For the six microphones, we
permute the order to show that the system is indeed invariant to a permutation of the
microphones. The other configurations are chosen in a way that results in a symmetric
configuration with a varying amount of microphone spacings but are arbitrary otherwise.
In the second experiment we test for the influence of the individual microphones by

leaving out a single microphone.
Results for the di↵erent microphone configurations are shown in Tbl. 7.15. As

expected, permuting the channels does not change the WER as can be seen in the first
row of the results table where the order of the microphones in inverted. There is also a
visible trend towards higher WERs when less microphones are considered. Again, this
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Table 7.15: WERs on the CHiME task for di↵erent microphone configurations.

SIMU REAL

Microphone #

6+5+4+3+2+1 6.78 7.34

1+3+4+5+6 7.32 7.67

1+3+4+6 8.08 8.75

2+4+6 7.90 10.03

5+2 8.48 12.57

Table 7.16: WERs on the CHiME task when leaving out one single microphone.

SIMU REAL

Microphone #

2+3+4+5+6 6.84 7.80

1+3+4+5+6 7.32 7.67

1+2+4+5+6 6.82 7.62

1+2+3+5+6 7.32 7.97

1+2+3+4+6 7.20 8.14

1+2+3+4+5 6.98 7.92

is an expected behavior as elaborated before. What stands out is the di↵erence between
the simulated and the real recordings. While reducing the number of microphones from
six to two leads to relative WER increase of 25% for the simulated data, the WER for
the real data increases by over 70%. A major jump in WER can be observed when
reducing the number of microphones from four to three for the real recordings while for
the simulated recordings the WER even decreases slightly. This might be attributed
to the specific choice of the microphones which includes the backwards facing one
(microphone #2) for the three and two microphones configuration. Additionally, the
robustness to a microphone failure also decreases with fewer microphones considered.
The influence of individual microphones can be inferred from Tbl. 7.16. All configu-

rations perform worse compared to using all channels, i.e. the system is able to exploit
additional information from any of the microphones. Interestingly this is even true for
the microphone facing backwards. The microphone in the middle of the bottom frame
contributes the most, not including it leads to the worst WER (on real recordings).
This is in agreement with the findings of the authors of the dataset who identified this
channel as the most reliable one and used it for the baseline system [Bar+15]. But
overall, the WER only varies in a narrow range and no single microphone has a huge
influence on the performance.
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Table 7.17: WERs on the REVERB task for di↵erent microphone configurations.

EVAL EVAL+10dB

Microphone #

7+6+5+4+3+2+1+0 8.43 8.36

7+5+3+1 9.37 9.14

0+4 11.83 11.30

For the REVERB task we only consider three di↵erent configurations. One with a
flipped ordering and all channels, one with four channels and one with two channels.
The microphones are again arbitrarily chosen but such that the minimum distance
between any two microphones is maximized for the circular array.
The results are displayed in Tbl. 7.17 Reducing the number of microphones from

eight to four increases the WER by a little more than 10% while a reduction to only
two microphones leads to a degradation by 40%. Again, this was expected although
the magnitude of the decline was unknown. The impact of reducing the number of
microphones is smaller compared to the CHiME task. One explanation for this might
be that the array for the REVERB task is circular and symmetric, i.e. the channels are
interchangeable. For the very same reason we refrain from evaluating the influence of
individual channels for this task.
Overall, the results show that the system profits from multiple microphones although

the achievable gains saturate as the number of microphone increases. However, at least
in this study the performance never degrades by adding a microphone. Combined with
the geometry independence property of the system this is a desirable feature since
performance can be improved by simply switching to a larger array without any further
modifications required. In Sec. 3.3 we discussed several alternatives to exploit multiple
channels for ASR and found that the ones using IPD features and those working on the
raw waveform cannot easily be scaled to using more microphones. This is a distinctive
advantage of the presented approach made possible by the classical statistical signal
processing ultimately combining the channels.

7.5 Related work

It should be mentioned that, although we were the first to publicly describe neural
network supported beamforming in our CHiME 3 submission [Hey+15a], we were not
the only ones working on this idea. Notably, the works by Erdogan et al. pursue a similar
idea and were published shortly afterwards [Erd+16]. A slightly di↵erent approach is
taken by [PZP17] where the authors use features based on the eigenvectors as an input
for a neural network which then estimates the masks for the SCM estimation.
Others have built upon this system an extended it in di↵erent ways. Examples

include the works by Žmoĺıková et al. [Kat+17] where an additional speaker embedding
vector allows to extract a specific speaker from a mixture. The embedding vector guides
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the mask estimator to only mark those tf-bins where a certain speaker is active. This
speaker is then extracted from a mixture via beamforming. In [Liu+18] the system is
specifically tailored towards a setting where only two microphones are available. The
IPD features already discussed in Sec. 3.3 are used to provide the mask estimator
with spatial information. With some other additional improvements, the authors
were able to achieve significant performance gains for their dataset. Nakatani et al.
combine the neural network based mask estimator with the cACGMM and obtain better
performance on the real recordings for the CHiME task [Nak+17]. An unsupervised
extension building upon this will be presented in Ch. 9.
A similar concept is also used for multi-channel source separation. Here, the task

is to separate multiple (speech) sources from a mixture. This problem can be tackled
by increasing the number of outputs of the mask estimator to match the (maximum)
number of sources. In this setting, the global permutation problem arises even for the
network as it is not defined which output will correspond to which source. During
training, this problem can be avoided with permutation invariant training [Yu+17]. If
the number of sources is unknown upfront and the system should be able to handle an
arbitrary number of sources, techniques like deep clustering [Her+16] or deep attractor
networks [CLM17] can be used to estimate the masks for each source. These can also
be integrated with a spatial mixture model for improved performance [DH19].
Overall, the use of neural networks for mask based beamforming has been widely

adopted by the community8 and is regarded as the current state-of-art. For example,
nearly all submissions for the CHiME 4 challenge use a neural network based beamformer
as a front-end processing technique [Vin+16]. Kaldi recipes using it as a front-end
technique outperform all previous baselines, sometimes by a large margin [Che+18].
Works by the author of this thesis [HBS18] and by Boeddeker et al. [Boe+18b] show
that the technique also works on large scale data and in more practical settings for
smart home devices. In fact, with slight modifications and additional components, the
neural network based beamforming also found its way into commercial products such
as the Apple HomePod9. Some of the necessary modifications which reduce the latency
of the system will be presented and discussed in the next chapter.

7.6 Summary

The biggest advantages of using a neural network to estimate masks for beamforming
lie in its ability to exploit spectro-temporal correlation and the avoidance of any
permutation problem. While the parameters of a spatial model have to be estimated on
the signal we aim to enhance, the parameters of the neural network are inferred from a
big training corpus and generalize well so they can be readily used for new signals. And
since the output classes are determined and specified during the training, no additional
steps are necessary to determine which class is which – a problem that can be hard
to solve when only considering the spatial distribution and no spectral patterns. This

8On March 30th 2020 the relevant publication ([Hey+15a], [HDH16a], [HDH16b] and [Hey+17]) had
a total of 379 citation according to Google Scholar.

9https://machinelearning.apple.com/2018/12/03/optimizing-siri-on-homepod-in-far-field-
settings.html

https://machinelearning.apple.com/2018/12/03/optimizing-siri-on-homepod-in-far-field-settings.html
https://machinelearning.apple.com/2018/12/03/optimizing-siri-on-homepod-in-far-field-settings.html
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makes neural networks especially suitable for the task at hand. For the CHiME as well
as for the REVERB task, performance improvements of about 50% can be achieved
compared to a single-channel system which is considerably higher than those achieved
by a cACGMM based system. The gains are stable over a wide SNR range and can be
achieved with a BLSTM based mask estimator as well as one based on CNNs. For all
systems, the choice of the beamformer criterion plays a minor role and has little influence
on the final performance. The system is agnostic to the microphone configuration and
can profit from adding more sensors without any modification necessary.



8 Reducing latencies

In the previous chapter we presented and evaluated a neural network supported beam-
former and the WRBN / WRN acoustic model. We could show that combined,
state-of-the art results are achieved for the CHiME and REVERB task. However, all
considered configurations of the system operated in batch-mode and required access
to the whole utterance, i.e. the latency is at least the length of the utterance plus the
computational time required by the system.
Especially for applications with immediate interaction with the user, such a high

latency is not practical and has a severe impact on the user experience. This chapter
builds upon the developed system with the goal of reducing the latency to only a few
frames. In particular, with a frame shift of 10ms we aim for an inherent latency <
100ms. With inherent, we mean the latency of the system without taking into account
the computational time required for the models.
The system can be broadly divided into three components; The mask estimator, the

beamformer and the ASR back-end. In the following we will analyze the dominant
source of latency for each of those components and propose ways to reduce the latency.
We mainly focus on the front-end (i.e. the mask estimator and the beamformer) and
only consider the back-end for completeness.

8.1 Mask estimator

In principle, the mask estimator could operate in a frame-online fashion, i.e. process
each frame as soon as it becomes available and estimate the class a�liations for each
frequency bin. But one single frame does not always contain all necessary information
to solve this task and, intuitively, adding temporal context helps to resolve many arising
ambiguities. It is, for example, very hard to distinguish fricatives from noise from a
single frame.
Another problem is related to the signal power. Neural networks, as a non-linear

model, are sensitive to the scaling of the input signal. I.e. if the power of the signal is
doubled (e.g. by using sensors with a di↵erent dynamic range or simply by placing the
sensors closer to the sources), the output can be very di↵erent although the acoustic
scene did not change. To circumvent this issue, the input to the model is usually
normalized. When the whole utterance is available upfront, this can be done on an
utterance level by calculating the (frequency-wise) mean and variance to normalize the
signal. However, in the low-latency setting, the required statistics are not available.
One option is to calculate a global mean and variance on, for example, the training set

86
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Table 8.1: Feedforward network configuration for mask estimation

Units Type Non-Linearity pdropout

L1 2048 FF RELU 0.0

L2 1024 FF RELU 0.0

L3 512 FF RELU 0.0

L4 2⇥ 257 FF Sigmoid 0.0

and use these values to normalize the signal. While this strategy works well when the
power levels for this set are comparable to the ones encountered in practice, performance
deteriorates severely once this assumption does not hold anymore. One example for
this is the REVERB task where the test set deviates significantly from the training set.
This also conflicts with the goal of being independent of the microphone configuration
as using microphones with di↵erent gain characteristics will also lead to the same issue
with this approach.

We explore three di↵erent approaches to cope with the two problems.
The first one is a LSTM based network with di↵erent normalizations of the input.

The second and the third one are based on simple feedforward networks operating on a
window of frames.

8.1.1 LSTM

The LSTM mask estimator basically resembles the BLSTM mask estimator (see Tbl. 7.1)
but without the time-reverse LSTM layer and normalizations. To compensate for the
sequence normalization, we experiment with three di↵erent input normalizations. Two
which update the signal statistics with each new frame and one which calculates the
statistics on the training set. As already discussed, the latter is sensitive to a gain
mismatch but serves as a baseline. The former two calculate the running average
(variant 1) and the running variance (variant 2). Statistics are updated with each new
frame and the current frame is centered (and scaled) with the most recent estimate
of the mean (and variance). Note that only the second variant is actually invariant
to a constant gain but the variance may be too susceptible to estimation errors so a
mean-only normalization is provided as a reference.
Both, the normalization and the model work in a frame-online fashion, i.e. as soon as

a new frame becomes available, the mask can be calculated immediately without any
additional latency (except for the computation time which we ignore here). Nevertheless,
a large context in form of all past frames can be utilized for the current estimation.

8.1.2 Instance norm feedforward network

Instead of storing the context in an aggregated vector and working on a single frame
only, the instance norm feedforward (IN-FF) network uses a left and right context of
two frames. A single mean and variance value is calculated for the resulting feature
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vector with 5 ⇤ 257 = 1285 elements. The mean and variance value is then used to
normalize the vector, rendering the estimator invariant to the scaling of the signal and
also contributing the instance norm [UVL16] part in the name. The network, whose
configuration is summarized in Tbl. 8.1, simply consists of four feedforward layers.
Masks are estimated only for the center frame and thus the step size of the context
window is one. Using only two past and future frames is a trade-o↵ between the context
information available, the latency and the size of the feature vector. With the shift size
of 10ms, the future frames introduce a latency of only 20ms. Contrary to the LSTM
network, we do not use any dropout during training as it hindered learning during
initial experiments.

8.1.3 Scale invariant feedforward network

The gain ambiguity of the IN-FF network is achieved by normalizing each feature
vector. But this might cause (numerical) problems for those parts of the signal where
no source is active at all. As an alternative, we here propose an architecture we term
scale invariant feedforward (SI-FF) network. This network does not require any feature
normalization and is, as the name suggests, invariant to a scaling of the input signal.
To derive the network, we start by identifying which parts of the network are not scale
invariant and replace them with appropriate operations.
The a�ne transformation Wx + b becomes scale invariant once we only keep the

linear mapping and avoid the translation. For the non-linearities we have the ReLU,
i.e. max(x,0) which is already scale invariant and the sigmoid, which is not invariant.
However, if we slightly reframe the problem and consider1 IRMs instead of IBMs, we
can replace this non-linearity by the ratio of the output for one class and the sum over
all classes. This ratio is scale invariant. With these minimal changes, the network is
now completely invariant to any scaling of the input signal as we have

Ms =
M̃s

M̃s + M̃n

,

Mn =
M̃n

M̃s + M̃n

(8.1)

M̃i = (max (WiL4 (max (WL3 (max (WL2 (max (WL1ycontext,0)) ,0)) ,0)) ,0)) , (8.2)

and

↵M̃i = (max (WiL4 (max (WL3 (max (WL2 (max (WL1↵ycontext,0)) ,0)) ,0)) ,0)) .
(8.3)

8.2 Beamformer

Once the beamforming vector is estimated, applying it to the signal does not introduce
any additional latency. Also, for any criterion presented in Sec. 4.2.2, the optimal filter

1See Sec. 9.3.3 for a discussion and implications on the performance.
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can be readily calculated once the SCMs are known. The estimation of the latter is the
main issue when it comes to low latency applications as the statistics are aggregated
over time.
A possible solution, which we will use in this work, is a block-wise processing with

an exponential smoothing of the estimated SCMs. The SCM for the block b and signal
x is then calculated as

�xx(b, f) = ↵�xx(b� 1, f) + (1� ↵)
bLbX

k=(b�1)Lb

Mx(k, f)x(k, f)x
H(k, f), (8.4)

with a block length of Lb and a smoothing factor ↵. The block length determines the
latency of the system and, in combination with ↵, the rate at which the system can
adapt to a changing scenario (e.g. if the speaker moves).
If prior information about the target position and/or noise is available, this can be

integrated by choosing the initial estimate �ss(0, f) accordingly. Information for the
target can be obtained for example from a wake word interaction.
However, here we assume that no information is available and initialize the SCM for

the target with zeros and the one for the interferences with an identity matrix scaled
by 0.001.
The exponential smoothing biases the estimates towards the prior for the first blocks2.

For larger values of ↵ and/or block length Lb this can become an issue. We therefore
divide the SCMs by (1� ↵b) to compensate for the bias in the beginning.
Another problem arises at the beginning of an utterance when the target has not

been active yet. As we consider each frequency separately, this problem becomes even
more pronounced. One way to mitigate this is to wait until the target becomes active by
choosing a threshold on the sum of its mask as we proposed in [Kit+16]. The threshold
allows to trade-o↵ latency against estimation errors but also is another hyper-parameter
to tune and the threshold works on a global scale, i.e. individual frequencies can still be
a↵ected. This can be solved by smoothing across frequencies as presented in [HHH18].
Here, however, we propose a di↵erent solution which exploits a property of the GEV

beamformer. Namely, the GEV allows to replace the SCM of the target with the SCM
of the observation under the assumption that the target signal and interferences are
uncorrelated (also see Sec. 4.2.2). This can be easily seen by looking at the criterion
itself:

wGEV = argmax
w

wH�ssw

wH�nnw
(8.5)

= argmax
w

wH�ssw

wH�nnw
+ 1 (8.6)

= argmax
w

wH�ssw

wH�nnw
+

wH�nnw

wH�nnw
(8.7)

= argmax
w

wH(�ss +�nn)w

wH�nnw
. (8.8)

2 The same problem appears when an optimizer estimates the first two moments of the gradients and
is solved in the same way by ADAM [KB14]
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Contrary to the MPDR beamformer (where the SCM of the observation replaced the
SCM of the interferences) the SCM of the observation is unlikely to have a much higher
time variance than the SCM of the target (speech) signal. The SCM of the observation
can be estimated at any point in time, also at the beginning when the target is not
yet active. However, this will inevitably introduce an error but might capture some
statistics for the target for those tf-bins misclassified by the mask estimator.

8.3 ASR back-end

As mentioned earlier, we do not focus on the back-end here and so the only measure we
take to reduce the latency of the acoustic model is to remove the normalizations within
the layers and replace the sequence normalization of the input with one that uses fixed
values inferred from the training data (see Sec 7.4.1).

8.4 Evaluation

We evaluate the influence of each individual component described in the previous three
sections by replacing the o✏ine components with the proposed low latency ones one
after another. Beginning with the mask estimator and followed by the beamformer
and acoustic model, we successively transform the baseline system into one that works
in an online fashion. For all evaluations we use the (modified) GEV beamformer and
(modified) WRN acoustic model. All models are trained as described in Sec.7.3.2 and
Sec. 7.3.1 respectively.

8.4.1 Online mask estimation

First, we compare the di↵erent approaches to reduce the latency of the mask estimator
presented in Sec. 8.1. To assess the influence of the mask estimator only, we evaluate
the models with a GEV beamformer and WRN acoustic model both operating in
batch-mode, i.e. we use the same models as in the previous chapter.
Results for the CHiME task are shown in Tbl. 8.2. The WERs for all low latency

variants are higher compared to the baseline BLSTM mask estimator. However the
di↵erences are small when compared to the IN-FF and SI-FF and can be mostly
explained by the reduced context and lower model complexity as the results for the FF
network with sequence normalization shows. This holds for both, simulated and real
recordings. Not using any future context has no noticeable e↵ect as can be seen from the
results for the LSTM with sequence normalization. Replacing the normalization with
one that relies on the training statistics also barely has any influence for the simulated
data but performance degrades for real recordings by 20% relative. Removing o↵sets
with a running mean works better and leads to WERs roughly on par with the FF
networks. But additional estimation of the variance to scale the signal fails, resulting
in very high WERs. This is mostly due to an unstable training process which does not
converge3.

3We tried to alter the learning rate but did not find a setting where the training would converge.
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Table 8.2: Comparison of di↵erent low-latency mask estimators for the CHiME task.
Results for the BLSTM mask estimator are given as reference. All systems
use the GEV beamformer and the WRN acoustic model operating in batch-
mode. Training for the system with the running variance did not converge
(see text).

Mask estimator Input normalization SIMU REAL

BLSTM Sequence 6.78 7.34

FF Sequence 6.86 7.59

IN-FF Instance 6.81 7.87

SI-FF – 6.81 7.63

LSTM Sequence 6.83 7.37

LSTM Training statistics 6.87 8.95

LSTM Running mean 6.95 7.93

LSTM Running mean & variance (33.96) (37.30)

Table 8.3: Comparison of di↵erent low-latency mask estimators for the REVERB task.
Results for the BLSTM mask estimator are given as reference. All systems use
the GEV beamformer and the WRN acoustic model operating in batch-mode.

Mask estimator Input normalization EVAL EVAL+10dB

BLSTM Sequence 8.43 8.09

FF Sequence 8.61 8.03

IN-FF Instance 9.63 7.98

SI-FF – 10.95 8.54

LSTM Sequence 8.52 7.96

LSTM Training statistics 11.01 8.31

LSTM Running mean 12.11 8.16

LSTM Running mean & variance 11.04 8.14
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The WERs for the REVERB task are given in Tbl. 8.3. Again, switching the network
architecture to a LSTM or FF network while keeping the same normalization does
not have any significant e↵ect on the results. But the other proposed systems behave
di↵erently here. While the IN-FF again shows a slight drop in performance compared
to the baseline, this gap further increases for the SI-FF. We speculate that this might
be caused by the type of distortion which includes the same speech pattern but with
a lower energy making it hard to distinguish for the scale invariant network and also
harder to classify when the normalization only relies on five frames.
The gap when using the training statistics widens, especially for the unamplified

data. The system relying on the running mean normalization also only achieves the
baseline results for the test set with the gain. This time, a running estimation of the
variance does work (i.e., the training converged), but cannot close the gap for the EVAL
set. These observations can be explained by the big mismatch between the training
and (unamplified) test set for this task. While a similar trend was already visible for
the real recordings of the CHiME task which features only a slight mismatch, the big
mismatch ed here highlights the gain sensitivity of the system. As discussed before,
using pre-computed values or only removing the mean inevitably leads to a performance
loss.
Overall, it is possible to design a low-latency variant of the mask estimator with

only little impact on the performance of the overall system. The biggest issue is a gain
mismatch between training and test.

8.4.2 Online front-end

We now turn to the estimation of the SCMs and evaluate the block online variant
as described in Sec. 8.2. For the block-size we choose a value of 5, resulting in an
additional latency of 50ms and a size of 1 which corresponds to frame-online processing.
The smoothing factor ↵ is set to 0.999 in all experiments motivated by the fact that
the scenes are mostly static for both datasets. Masks are estimated with either one of
the low-latency mask estimators SI-FF and IN-FF respectively, or the BLSTM mask
estimator to evaluate the impact of the low-latency SCM estimation. We do not include
the LSTM mask estimator in this experiment as the feedforward networks worked
on-par or better in the previous experiment. The beamforming filters are calculated
using the GEV criterion in the two variants also described in Sec. 8.2. One variant uses
the target speech and noise SCMs while the other one uses the SCMs of the observation
and the noise. For all combinations we use the WRN acoustic model to obtain the
WERs.

Results for the CHiME task are shown in Tbl. 8.4. Switching from an o✏ine to an
online estimation of the SCMs imposes a performance penalty of about 1 percentage
point or 15% relative when no other components are modified. With an online mask
estimator, the gap increases to more than 20% for the real recordings. Using �yy

instead of �ss yields on-par (with the BLSTM mask estimator (ME)) or better WERs.
Especially for the online estimation and with a weaker mask estimator, this improves
the results. This supports the discussion of the issue above. Interestingly, the frame-
online variant performs slightly better on average compared to the block-online variant
although the di↵erences are small. A possible reason for this could be the choice of
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Table 8.4: Comparison of di↵erent block-size for low-latency SCM estimation combined
with di↵erent mask estimators for the CHiME task. All systems use the
WRN acoustic model. A block-size of 1 corresponds to the o✏ine variant
which serves as a baseline.

SIMU REAL

Block-size SCMs BLSTM SI-FF IN-FF BLSTM SI-FF IN-FF

1 �ss,�nn 6.66 6.81 6.81 7.29 7.63 7.87

1 �yy,�nn 6.66 6.81 6.75 7.29 7.62 7.71

5 �ss,�nn 7.57 8.38 8.04 8.68 9.68 9.68

5 �yy,�nn 7.55 8.25 7.91 8.49 9.56 9.52

1 �ss,�nn 7.38 7.76 7.87 8.46 9.79 9.58

1 �yy,�nn 7.34 7.73 7.79 8.11 9.64 9.40

the smoothing factor which is maybe too high for the block-online variant which only
performs 1

5
of the updates compared to the frame-online variant.

For the REVERB task, where the results are shown in Tbl. 8.5, the benefit of using
�yy is even bigger and this time also apparent for the BLSTM. Here, the WER increases
by 22% instead of 32% when switching to an online SCMs estimation on the o�cial
test set. Scaling the signal reduces the impact to 8% and 12% respectively, again
highlighting the scale sensitivity. Results are especially worse for the SI-FF on the
o�cial test set. For the scaled set, the relative decrease in performance is within the
same range as with the BLSTM. Again the frame-online variant yields slightly better
results compared to the block-online variant which might be caused by the same reason
hypothesized for the CHiME task.
Overall, replacing the SCM estimation with a low-latency version degrades the

performance by roughly 15%. This e↵ect is in addition to the impact of replacing the
mask estimator with an online variant but both seem to be orthogonal. The proposed
modification of the GEV beamformer (using �yy instead of �ss) shows its desired e↵ect
and helps to slightly improve the results in a low-latency setting.

8.4.3 Online system

Finally, we also evaluate the low-latency front-ends with a block-online version of the
acoustic model (see Sec. 8.3).
Results for the CHiME task are reported in Tbl 8.6. Compared to the results with

the o✏ine AM (see Tbl. 8.4), the performance again degrades by roughly an additional
20%. But all tendencies identified in the experiments above still hold true for the
block-online AM. Recalling the results without any enhancement (see Tbl. 7.4), the
drop in performance is also expected and within a reasonable range. Yet, given the
same block-online AM, replacing the single-channel front-end with a multi-channel
front-end with the low-latency components leads to a relative improvement of nearly
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Table 8.5: Comparison of di↵erent block-size for low-latency SCM estimation combined
with di↵erent mask estimators for the REVERB task. All systems use the
WRN acoustic model. A block-size of 1 corresponds to the o✏ine variant
which serves as a baseline.

EVAL EVAL+10dB

Block-size SCMs BLSTM SI-FF IN-FF BLSTM SI-FF IN-FF

1 �ss,�nn 8.43 10.95 9.63 8.09 8.54 7.98

1 �yy,�nn 8.60 10.75 12.69 8.09 8.49 8.79

5 �ss,�nn 11.26 18.44 11.48 9.16 10.13 9.02

5 �yy,�nn 10.64 17.22 11.21 8.76 9.39 8.91

1 �ss,�nn 11.06 14.31 12.05 9.02 9.30 8.66

1 �yy,�nn 10.54 14.28 11.40 8.82 9.08 8.79

Table 8.6: Comparison of di↵erent block-size for low-latency SCM estimation combined
with di↵erent low-latency mask estimators for the CHiME task. All systems
use the WRN acoustic model without normalization, i.e., a block-online
variant.

SIMU REAL

Block-size SCMs SI-FF IN-FF SI-FF IN-FF

5 �ss,�nn 8.87 8.45 11.90 11.72

5 �yy,�nn 8.77 8.18 11.87 11.36

1 �ss,�nn 8.45 8.14 11.63 11.18

1 �yy,�nn 8.45 8.07 11.93 11.22
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Table 8.7: Comparison of di↵erent block-size for low-latency SCM estimation combined
with di↵erent low-latency mask estimators for the REVERB task. All systems
use the WRN acoustic model without normalization, i.e., a block-online
variant.

EVAL EVAL+10dB

Block-size SCMs SI-FF IN-FF SI-FF IN-FF

5 �ss,�nn 32.37 26.09 25.42 20.66

5 �yy,�nn 32.20 26.41 24.94 20.61

1 �ss,�nn 30.04 26.23 24.85 20.68

1 �yy,�nn 30.13 26.16 24.65 20.64

50% for the real recordings and even more for the simulated ones.
Results for the REVERB task are worse as can be seen from Tbl. 8.7. The WERs

are more than twice as high with the block-online model compared to the previous
experiment with the o✏ine model, especially for the amplified test set. We hypothesize
that this is again mainly due to a scaling issue but leave this issue to future work as
our focus here lies on the front-end part.

8.5 Discussion

Both, the mask estimator as well as the beamformer can be modified to work with a very
low latency (2 frames or 20ms respectively). For the mask estimator, there is nearly no
performance penalty when switching to the low-latency variant when the distortions are
caused by interfering source. Reverberation impacts performance slightly. The biggest
challenge seems to result from gain mismatches. Compared to the statistical model,
the ability to work seamlessly in a low-latency setting is a distinct advantage of the
neural mask estimator. Although work exist on block-online processing with spatial
mixture models (e.g., [Hig+16] and [Hig+18]), they require a good prior for the spatial
scene and also require to solve the permutation alignment problem. The neural network
mask estimator on the other hand profits from its ability to recognize tempo-spectral
patterns learned from the training data. In some sense this can also be regarded as a
prior (information) but, compared to spatial priors, it generalizes better. As we will
see in the next chapter, it is also possible to combine both, the data-driven and the
statistical model approach, and consequently exploit both prior information. Especially
for voice assistants which are activated by a wake word interaction, this interaction can
also be used to extract spectral and spatial priors for the target speaker. Works in this
direction include, e.g., [Mar+19].
The results in this chapter should also be interpreted with care. According to

the numbers, using low-latency components instead of o✏ine ones roughly leads to a
performance loss of 10% – 15% for each replaced component. But the datasets used
throughout this thesis heavily favor the o✏ine system due to their mostly static nature.
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For a scenario with a moving speaker or with a quickly changing noise environment, the
impact is likely less severe and the ability of the low-latency SCM estimation to adapt
to a changing signal statistic might actually outweigh the loss caused by an inaccurate
estimation of the SCMs.

8.6 Summary

In this chapter we presented a low-latency variant of all three major components of the
robust ASR system from the previous chapter: the mask estimator, the beamformer
and the acoustic model. For the mask estimator, we focused on the problem of a gain
mismatch and discussed a scale invariant variant. We explained a frame-online and
block-online SCM estimation and finally a block-online acoustic model. Evaluation
showed the performance impact of each individual component which turned out to be
mostly negative for the datasets used in this work. Leaving aside issues due to a gain
mismatch, the online mask estimator achieves comparable performance to its o✏ine
variant. But the SCM estimation with a sliding window increases the WER noticeably.
However, in the succeeding discussion we hypothesized that the impact will be less
severe for more dynamic scenarios.



9 Unsupervised neural mask estima-
tor training

While in the previous chapters we were able to show that a system with a neural network
based mask estimator achieves excellent performance and works in low-latency scenarios,
there is one major drawback when compared to a spatial mixture model based mask
estimator: The neural network requires parallel training data and cannot be trained on
real recordings. In this chapter, we lift this requirement and devise a method to train
the neural network using observed data only, not even requiring a teacher model. To
achieve this, we combine the cACGMM and the neural network. More concretely, we
use the spatial mixture model to calculate the likelihood of the observation given class
a�liations provided by the neural mask estimator. We then optimize the likelihood
with gradient descent, i.e. by di↵erentiating the likelihood function to calculate the
gradients w.r.t. the parameters of the neural network and update them accordingly.
A di↵erent way to utilize the cACGMM is to use it as a teacher model in a student-

teacher training scheme [HVD15]. This also avoids the need for parallel data and will
be explored as an alternative direction. The following describes both methods in detail
and evaluates them by comparing their results to the ones obtained with the supervised
system.

9.1 cACGMM likelihood loss

With Eq. 4.36 and Eq. 4.37, the log-likelihood [Bis+06, Eq. 9.28] of the normalized
observation ỹ(k, f) = y(k, f)/ky(k, f)k under the cACGMM is

L =
X

k,f

ln
X

q

⇡q(f)
(M � 1)!

2⇡M detBq(f)

1
⇣
ỹ(k, f)HBq(f)

�1ỹ(k, f)
⌘M (9.1)

=
X

k,f

ln
X

q

⇡q(f) cACG(ỹ(k, f);Bq(f)).

It is parameterized by the mixture weights ⇡q(f) and the SCMs Bq(f) for the Q classes.
Like before, we only consider two classes here (i.e. Q = 2), namely the target (speaker)
and the superposition of all interferences. In Sec. 4.4 the model parameters were
estimated with the EM algorithm (compare Eq. 4.39 – Eq. 4.41) but ultimately our
interest was to obtain �q(k, f) – the posterior probability that the frequency bin of the

97
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k-th frame and frequency f is dominated by the source of class q. Once this is known,
all other parameters can be inferred with Eq. 4.40 and Eq. 4.41 respectively.
In Ch. 7 we already demonstrated that a neural network can successfully estimate a

value very similar to the posterior from the observation. Note that previously we did
not exactly estimate the posterior since the two estimated masks did not necessarily
sum to one for each tf-bin. But we can easily enforce this property by using a softmax
instead of a sigmoid for the outputs. As a consequence, the model has to spread the
probability mass among the two classes for each tf-bin while it could previously opt
to ignore certain bins. In Sec. 9.3 we will examine the influence of this change on the
system performance.
But for now this allows us to obtain an estimate for �q(k, f) which we can plug into

Eq. 4.40 and Eq. 4.41 to compute1 the parameters for the log-likelihood. To make
the dependency on the parameters of the neural network more explicit, we denote
the cACGMM parameters in a vector as ⇡(✓✓✓NNET)

q (f) and B(✓✓✓NNET)

q (f) and obtain the
following log-likelihood:

L =
X

k,f

ln
X

q

⇡(✓✓✓NNET)

q (f) cACG(ỹ(k, f);B(✓✓✓NNET)

q (f)). (9.2)

Now, we can optimize the log-likelihood by calculating the gradient w.r.t. the network
parameter using backpropagation. Note that this is the derivative of a single real valued
scalar w.r.t. real valued parameters but involves complex valued operations. We use
the Wirtinger calculus reviewed in Sec. 2.2.4 and AD o↵ered by a computation graph
(see Sec. 2.2.3) implemented in the Tensorflow [Mar+15] framework to compute the
gradients. Detailed derivations for the necessary complex valued derivatives can be
found in our technical report [Böd+17].
When explaining the cACGMM mask estimator in Sec. 4.4, we also discussed the two

permutation problems that arise due to the invariance of the model, namely the local
and the global permutation problem. Both are also present when using the likelihood
to train a neural network based mask estimator and need to be considered in this
context. Here, they correspond to a random permutation of a pair of two rows of the
weight matrix and bias of the output layer. Since the likelihood and thus the gradient
is independent of the order within a pair (they depend on the output value, not the
index) the parameters of the output layer will be updated with the same gradient,
irrespective of the ordering. The gradient for a single unit’s activation of the last layer
is the weighted sum of the gradients for the output layer. Reordering the summands
does not change the total gradient and, as a result, the permutation invariance does
not influence the network training.
Nonetheless, the downstream task requires a solution for the permutation problem

since the class correspondence needs to be known. But crucially, this is much easier and
reliable than for the spatial mixture model alone because the permutation only needs
to be resolved once. The weight matrix and bias vector of the output layer can then be

1 As mentioned in Sec. 4.4, the SCM is defined implicitly and can be solved by iterating [IAN16].
When using the likelihood to train a neural network, this can quickly become computational too
demanding. We therefore opt to initialize the matrix with an identity matrix followed by a single
update according to Eq. 4.41. The evaluation will show that this is su�cient to train the network
properly.
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reordered accordingly. Also, several utterances can be taken into account for solving
the problem and the final solution can then be obtained by, e.g., a majority vote. In
practice, we solve the permutation problem in the beginning of the training2 by using
the same method as for the cACGMM mask estimator in the first 100 iterations. This
is already su�cient to fix the class correspondence for the model outputs.
Due to the i.i.d. assumption, the spatial mixture model has no concept of speech,

i.e., it does not use any spectral cues and only performs a spatial clustering. This is
also true for the likelihood and can be the cause of degenerated solutions. It is, for
example, possible to select only a few tf-bins which can be modeled almost perfectly
with a specific SCM and allocate the rest to the other class. Although the second
component will have a low likelihood, the overall likelihood can be reasonably high due
to the contribution of the first component. Another scenario would be that a few tf-bins
which are hard to explain under the model are compounded into a single component
while the rest is left to the other one which explains them reasonably well. Because of
the resulting high mixture weight of the second component, the likelihood can again
improve over the course of the training but ultimately reach a sub-optimal value. We
therefore also experiment with di↵erent optimization goals: One where we replace the
mixture weights with the constant 1

Q = 1

2
for all classes and one where we replace the

log-likelihood with the auxiliary function [Bis+06, Eq. 9.30]. The motivation for the
latter is the direct influence of the neural network output on the loss function which
might improve the feedback, i.e. the gradient. These variants are formulated as follows:

L(equal) =
X

k,f

ln
X

q

1

Q
cACG(ỹ(k, f);B(✓NNET)

q (f)), (9.3)

L(auxiliary) =
X

q,k,f

�q(k, f) ln ⇡
(✓NNET)

q (f) cACG(ỹ(k, f);B(✓NNET)

q (f)). (9.4)

The mixture weights in Eq. 9.2 and the posteriors in Eq. 9.4 can also be calculated in
di↵erent ways. We can perform the E-step of the EM algorithm (Eq. 4.39) and use the
obtained posteriors in Eq. 9.4 to calculate the mixture weights in Eq. 9.2. Or we can
skip the E-step and use the outputs of the neural network �(✓NNET)

q (k, f) directly. The
argument for the former would be that the posteriors better match the model under
which we want to calculate the likelihood while an argument for the latter is again the
more direct gradient. In the limit, i.e. if the network estimates the posteriors perfectly
(that is according to the model) both variants yield the same result.

At inference time, two ways to determine a class a�liation mask are now possible.
The first one dismisses the whole spatial model and just uses the outputs of the neural
network. Once trained, this system is essentially the same as the ones discussed in
the chapters before with the only di↵erence being that the estimate is now a proper
probability, i.e. the class a�liation sum to one for all tf-bins. The second option is to
use the neural network outputs as an initial guess for the posteriors and then do some
EM iterations to increase the likelihood of the current observation under the cACGMM.
One important benefit of this method is that it includes spatial (the cACGMM) as well
as tempo-spectral cues (the neural network). Ambiguities present in the spectral signal

2 We already solve it during the training for an easier monitoring of the process, not because it is
required for the model to work.
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might be resolved spatially. Please note that this does not reintroduce the permutation
problem from which the cACGMM su↵ered before due to the strong prior from the
posteriors. One drawback might be that the resulting estimate of the posterior is
ultimately limited by the assumptions introduced with the cACGMM.

9.2 cACGMM teacher

Another possibility to exploit the cACGMM for training the neural mask estimator
and lifting the requirement for parallel data is a student-teacher training scheme. In
this scheme, the cACGMM is used to estimate masks with are in turn used as oracle
targets for the neural network. At first it might seem that such a training would limit
the neural network to the performance of the (teacher) cACGMM. However, two e↵ects
allow the student to actually supersede its teacher. First, the feature both systems
can access are very di↵erent. While the cACGMM uses spatial information, the neural
network uses spectral cues. It thus cannot simply replicate its teacher but has to find
di↵erent representations to infer the targets. The second one is of statistical nature and
concerns the permutation alignment. When this fails for single utterances, the network
will not immediately adapt to this. So if it works for the larger amount of observations,
the errors will average out and the network will learn a correct alignment.

9.3 Evaluation

We now evaluate the di↵erent presented optimization criteria and compare the likelihood-
based approach to the student-teacher approach. Finally we analyze the influence of
the output non-linearity.
All experiments are conducted using the GEV beamformer and the WRN acoustic

model which is the same as in Sec 7.4.1, or, in other words, a model trained on
noisy observations only without any adaptation. For the mask estimator, we use the
(modified)3 BLSTM mask estimator model as presented in Sec. 7.1. Note that we do
not require any oracle target masks anymore and can therefore extend the training set
for the CHiME task to also include the real recordings. As mentioned, it is also possible
to use the network output to initialize the cACGMM during inference. Here, we found
that in practice a single EM iteration is su�cient as the likelihood does not increase
with additional iterations. Consequently we fix the number of iterations to one.

9.3.1 Optimization criterion

First, we asses the performance after training with di↵erent variants of the log-likelihood
loss. We only conduct this experiment for the CHiME task and will use the best
configuration in the following. The optimization criteria considered are the log-likelihood
(Eq. 9.2), the likelihood the under assumption of equal mixture weights (Eq. 9.3) and
the auxiliary function (Eq. 9.4). Where applicable, we either calculate the posterior
according to the E-step (Eq. 4.39) or use the posterior predicted by the network directly.

3 The non-linearity of the output units is – depending on the use-case – either the sigmoid or the
softmax function.
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Table 9.1: WERs for the CHiME task and di↵erent loss functions for the likelihood
training. The additional EM step determines if a single EM step is used at
inference time.

SIMU REAL

Additional EM step

Loss function � no yes no yes

Eq. 9.2
�(✓NNET)

q 8.09 7.39 8.83 8.25

Eq. 4.39 7.86 7.29 8.73 8.00

Eq. 9.3 1/Q 7.43 7.09 8.36 7.88

Eq. 9.4
�(✓NNET)

q 7.71 7.26 8.83 8.18

Eq. 4.39 7.94 7.26 8.82 8.15

Table 9.2: WERs for the CHiME task with an estimator trained on oracle targets
(typeset in gray) and using the likelihood loss with equal class weights
(Eq. 9.3). The additional EM step determines if a single EM step is used at
inference time or if the output of the network is used directly.

SIMU REAL

Additional EM step

Training target Eq. no yes no yes

BCE (oracle targets) (7.3) 6.93 – 7.46 –

Likelihood (9.3) 7.43 7.09 8.36 7.88

Results are reported in Tbl. 9.1. For all configurations, the additional EM-step on
the test utterance which includes the spatial information to estimate the class a�liation
posteriors improves the WERs compared to using the output of the network directly.
For the loss functions Eq. 9.2 and Eq. 9.4, performing an E-step to obtain an updated
estimate of the posterior during training (Eq. 4.39) slightly improves the results. Overall,
the best performance is achieved by the loss function which assumes an equal a-priori
probability for each mixture component (Eq. 9.3) but the di↵erences compared to the
other loss functions are small. Nonetheless, we will use this loss function in the following
experiments.

9.3.2 Comparison with oracle target training

Next, we compare the results of the likelihood training with the ones obtained by a
system trained with oracle targets from Ch. 7. WERs for the CHiME and REVERB
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Table 9.3: WERs for the REVERB task with an estimator trained on oracle targets
(typeset in gray) and using the likelihood loss with equal class weights
(Eq. 9.3). The additional EM step determines if a single EM step is used at
inference time or if the output of the network is used directly.

EVAL EVAL+10dB

Additional EM step

Training target Eq. no yes no yes

BCE (oracle targets) (7.3) 8.71 – 7.86 –

Likelihood (9.3) 8.63 7.90 7.97 7.36

task are shown in Tbl. 9.2 and Tbl. 9.3 respectively. For the CHiME task, the system
trained with the likelihood criterion and without an additional EM step yields a WER
which is about 10% higher than the one from the baseline system trained on oracle
targets. Adding the EM step during inference and thus using the cACGMM posterior,
reduces the gap and the performance of the system trained with the likelihood criterion
is only slightly worse. As the likelihood criterion includes the cACGMM during training,
this is not surprising.
Whereas for the REVERB challenge, training with the likelihood criterion leads to an

improved system performance with the additional EM step and an on-par performance
without it. Note that for the CHiME challenge, the system with oracle targets is trained
on simulated data only while the unsupervised training also includes the real recordings.
In theory, this should be an advantage of the unsupervisedly trained system. However,
the results show that this does not translate in a better performance on real recordings
during inference.

9.3.3 Softmax vs. Sigmoid

Apart from the training procedure, one major di↵erence between the baseline system
and the one trained with the likelihood loss is the non-linearity at the output of the
network. While the baseline system views the a�liations independently for each class
and is not forced to assign a tf-bin to either of the classes, the proposed unsupervised
system estimates a proper posterior over two classes. To assess how that influences
the results, we train a system with oracle targets but with a softmax at the output
rather than a sigmoid. Consequently, we use the cross-entropy criterion instead of the
independent binary cross-entropy. The oracle targets are calculated by determining the
dominant class (in terms of instantaneous power) for each tf-bin.
We report the WERs with and without an additional EM step during inference in

Tbl 9.4 for the CHiME task and Tbl. 9.5 for the REVERB task respectively. From the
results we can see that the CHiME task profits slightly when not all tf-bins need to
be considered. For the real recordings this improves the WER by about 5% relative.
Again we can see a di↵erent picture for the REVERB task where estimating a proper
posterior improves the WER by 10% relative for the mismatch case with no gain factor.



Unsupervised neural mask estimator training 103

Table 9.4: WERs for the CHiME task with an estimator with a sigmoid non-linearity at
the output and one with a softmax. Both estimators are trained with oracle
masks. The additional EM step determines if a single EM step is used at
inference time or if the output of the network is used directly.

SIMU REAL

Additional EM step

Non-linearity no yes no yes

Sigmoid 6.93 6.84 7.46 7.71

Softmax 7.05 6.84 7.97 7.71

Table 9.5: WERs for the REVERB task with an estimator with a sigmoid non-linearity
at the output and one with a softmax. Both estimators are trained with
oracle masks. The additional EM step determines, if a single EM step is
used at inference time or if the output of the network is used directly.

EVAL EVAL+10dB

Additional EM step

Non-linearity no yes no yes

Sigmoid 8.71 7.96 7.86 7.02

Softmax 7.74 7.52 7.85 6.87

For the set with a gain, there is no di↵erence between the systems. The additional
EM step reduces the di↵erences between the two systems and both achieve the same
WERs for the CHiME task and comparable WERs for the REVERB task. This is to
be expected as the masks from both systems are very similar and are likely to converge
to the same posterior when used as an initial guess for the cACGMM.
These results suggest that there is no clear advantage for either case. While in the

noisy scenario (CHiME) using the softmax degrades the performance slightly, it likewise
improves in reverberant environments (REVERB).

9.3.4 Comparison with teacher-student training

Sec. 9.2 describes an alternative way to avoid the need for parallel data with the help
of a cACGMM, namely using it as a teacher system. We train two systems, one with a
sigmoid output and one with a softmax output and compare them against a system
trained with the likelihood criterion. Note that the student-teacher scheme also allows
to train on the real recordings which we therefore include during the training.
A comparison can be found in Tbl. 9.6 for the CHiME task and Tbl. 9.7 for the

REVERB task. These results show that the student-teacher system achieves better
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Table 9.6: WERs for the CHiME task with an estimator with a sigmoid non-linearity
at the output and one with a softmax. Both estimators are trained using a
cACGMM teacher and compared against a system trained with the likelihood
criterion. The additional EM step determines, if a single EM step is used at
inference time or if the output of the network is used directly.

SIMU REAL

Additional EM step

Training scheme Non-linearity no yes no yes

Student-Teacher Sigmoid 7.08 7.13 7.79 7.86

Student-Teacher Softmax 7.08 7.07 7.95 7.86

Likelihood Softmax 7.43 7.09 8.36 7.88

Table 9.7: WERs for the REVERB task with an estimator with a sigmoid non-linearity
at the output and one with a softmax. Both estimators are trained using a
cACGMM teacher and compared against a system trained with the likelihood
criterion. The additional EM step determines, if a single EM step is used at
inference time or if the output of the network is used directly.

EVAL EVAL+10dB

Additional EM step

Training scheme Non-linearity no yes no yes

Student-Teacher Sigmoid 9.38 7.71 8.41 8.39

Student-Teacher Softmax 9.45 7.75 8.37 8.37

Likelihood Softmax 8.63 7.90 7.97 7.36

WERs when using the outputs of the neural network directly but once the EM step is
added the WERs are on-par. Again, this is not surprising as the likelihood criterion does
not optimize for the output of the neural network explicitly but for the whole system
including the cACGMM. The student-teacher training on the other hand, although
using a cACGMM as the teacher, directly optimizes the output of the network during
training.
In summary, both unsupervised methods show competitive performance compared

to the supervised training. Comparing both methods directly, there is a trade-o↵
between training and inference. The student-teacher system requires a reasonably well
performing teacher. For new tasks this can translate into tedious manual tuning of the
cACGMM system and the EM algorithm, especially when it comes to initialization
and solving the permutation problems. On the other hand, the system trained with
the likelihood criterion requires an additional EM step during inference to achieve
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comparable performance. But this can be an obstacle for example in low-latency
settings considered in the previous chapter. One way to circumvent this problem would
be to train a system with the likelihood criterion first and then use this system as a
teacher to train a network which does not require the EM step. However, we will leave
this to future work.
Application of the two presented methods are not limited to this particular use-case but

can also be extended to blind source separation of multiple sources in general. A student-
teacher system for this scenario has already been presented in e.g. [DHH19a]. It should
be noted though, that the teacher in this work uses a guided source separation [Boe+18a],
requiring a speaker diarization as annotation and is thus not completely unsupervised.
Using the likelihood approach might allow to drop this requirement and is subject to
ongoing research.

9.4 Summary

The likelihood of the observation under a spatial mixture model initialized by a neural
network can be used as a training criterion for the latter. The presented approach thus
allows for an unsupervised training of a neural mask estimator with almost no drop in
performance on the evaluated datasets. It also enables training on real recordings where
no targets can be computed, extending the applicability of the system. During inference,
spatial cues can be integrated which might help to further improve the performance
on other datasets similar to [Nak+17] and [DH19]. We also explored using a spatial
mixture model as a teacher which yields on-par results compared to training the model
with oracle targets. Both methods share the same benefit of unsupervised training
but with di↵erent trade-o↵s. The likelihood based approach requires an additional EM
step during inference while the student-teacher approach requires a (manually) tuned
teacher model.



10 Joint optimization

So far we have treated the mask estimator and the acoustic model separately. This
corresponds to the classical view of a front-end responsible for signal processing and
feature extraction and a back-end to infer a word sequence from the features. Both
systems are optimized and tuned for their respective task and are unaware of each
other. A loose coupling can be achieved in a straightforward way by using enhanced
features during the training of the acoustic model, but there usually is no feedback
from the back-end to the front-end. Notable exceptions include e.g. [SRS04], where the
criterion for the beamformer is to enhance the signal in a way that the extracted features
maximize the likelihood of generating the correct transcription (under a GMM-HMM
acoustic model).
A di↵erent way of combining the front-end with the back-end is to directly use the

waveform as the input modality for the acoustic model as mentioned in Sec 3.3. For
these systems, no distinction can be made anymore between the two parts as they
are merged into a single neural network with the already discussed advantages and
drawbacks.
In general, a tighter coupling of both components seems to be a desirable goal.

Especially optimizing the front-end with a criterion much more closely related to the
final goal of a low word error rate rather than signal level criteria promises better results.
Another benefit would be the possibility to train on transcribed data only. Similar to
the unsupervised training presented in the previous chapter, this eliminates the need
for parallel data and allows to train the system on real recordings.
The proposed system with its neural network based mask estimator has the best

prerequisites for a tight integration with the acoustic model. All parameters of the
combined system are parameters of a neural network and trained with gradient descent.
The gradients can be e�ciently computed with backpropagation for both models.
Connecting them only requires to calculate the partial derivative of the feature vectors
w.r.t. to the estimated mask. Crucially, we need to backpropagate the gradients
through the complex valued beamforming operation. Once the derivative is known, the
beamformer essentially just becomes another layer (without parameters) of the neural
network and, similar to the systems working on the raw waveform, the distinction
between the front-end and back-end vanishes. However, compared to direct waveform
approach discussed above, the signal processing part of this model is still interpretable
using classical signal processing. It also promises to be more flexible regarding the array
configuration and acoustic scenario in general. Yet, it is trained jointly with an ASR
related goal.

106
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Figure 10.1: Schematic representation of the joint system with a neural network sup-
ported beamformer and the acoustic model. Depth illustrates multiple
channels and copies of the network respectively. Multi-channel signals
are indicated by bold arrows. Violet blocks have trainable variables while
yellow indicates that the block uses complex values. The gradient flow is
sketched by the red arrow.

In the following, we detail the necessary steps to connect the two components followed
by an extensive evaluation of the joint system. We especially focus on di↵erent training
schemes and also analyze the importance of the data the acoustic model is ultimately
trained with.

10.1 Backpropagating gradients

Since the gradients are propagated from the loss to the parameters, the order of the
nodes flips (reverse computational graph, see Sec. 2.2.3) and in the following we will
adhere to this order when describing relations. As sketched in the overview of the
system in Fig. 10.1, the gradient has to be backpropagated through four major blocks.

1. Feature extraction
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2. Acoustic beamformer

3. SCM estimation

4. Pooling

Note that the loss is real valued and so is the gradient of the LMSC features. The
same holds for the application of the logarithm and the Mel-filterbank which can be
formulated as matrix-matrix product. Afterwards, the gradient becomes complex valued,
representing the one of the spectogram. To cope with the complex valued gradients we
again turn to the Wirtinger calculus as described in Sec. 2.2.4.
The spectogram is the outcome of the beamforming operation, i.e. the frequency-wise

weighted sum of the spectograms from all channels. We are interested in the gradient
for the weights wBF of the individual sums which are straightforward to compute.
Now, depending on the beamformer criterion, the math gets more complicated when
calculating the partial derivative of the filter coe�cients w.r.t. the SCMs. Formally,
given the gradient @̂J

@̂wBF
⇤ of the (conjugated) beamforming vector w.r.t. to the loss J ,

we seek to calculate

@̂J

@̂�⇤
=

@̂J

@̂wBF
⇤

@̂wBF

@̂�⇤
. (10.1)

Here, we focus on the GEV beamformer which, with the generalized eigenvalue problem,
is probably the most challenging one among the statistical beamformers presented in
Sec 4.2.2. In this case, we have

wGEV = L-Hvemax
, (10.2)

� =
�
L�1�ssL

�H
�
, (10.3)

and

�nn = LLH. (10.4)

To backpropagate the gradient to the SCMs, we need the generalized Jacobians @̂wGEV

@̂�ss

and @̂wGEV

@̂�nn
. These involve the gradients of the Cholesky factorization (see A.1), the ma-

trix inverse and the eigenvalue problem (see A.2). All gradients have been implemented
in the Tensorflow [Mar+15] framework and additional derivations can also be found
in our technical report [Böd+17]. The crucial gradient is the one of the eigenvalue
problem E,V = P(�) which is given by

@J

@�⇤ = V-H

✓
@J

@E
+ F⇤ �VH

@J

@V

◆
VH. (10.5)

with Fij = (ej � ei)
�1 and Fii = 0, i.e. the element in the i-th row and j-th column of

the matrix F is the reciprocal of the di↵erence between the j-th and i-th eigenvalue1.

1 This property can lead to exploding gradients during training if the first and second eigenvalue
become almost equal. In practice, we continuously monitor the di↵erence between the two and skip
utterances for which the values are too close. However, we did not encounter such a singularity
during our experiments.
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Table 10.1: Initial results for a jointly trained system compared to the same system
where the mask estimator and the acoustic model is trained independently.

ME training AM training SIMU REAL

independent independent 6.78 7.34

jointly jointly 6.95 9.12

Note that for @J
@V all rows except for one are equal to zero as only the eigenvector with

the highest eigenvalue receives a gradient. Also, the eigenvectors are scaled to have unit
norm during the forward path by the algorithm solving the eigenvalue problem. We
make this scaling explicit by calculating

wGEV = L-H
vemax

||vemax
|| , (10.6)

in the implementation.
Now that we have obtained the gradient for the SCMs, calculation of the gradient

for the outputs of the mask estimator is again straightforward as the calculation of
the SCM in Eq. 4.9 shows. However, note that we limit the masks to be real valued
and consequently drop the imaginary part of the gradient (see [Böd+17]). For the
pooling we use the average instead of the median during training to avoid sparse and,
for some points, not well defined gradients. From the outputs of the network we can
then calculate the gradients for the parameters of the mask estimator using the usual
calculus for backpropagation for neural networks.

10.2 Evaluation

10.2.1 Initial experiment

As an initial experiment, we evaluate the performance of a system where the mask
estimator is jointly trained with the acoustic model from scratch using the CE loss only
on the CHiME task. We use the BLSTM mask estimator, the GEV beamformer and
the WRN acoustic model for this experiment. Except for the joint optimization, the
system is trained as described in Sec. 7.3 and Sec. 7.3.2. Note that, contrary to the
baseline system, the mask estimator is also trained on the 1600 real recordings of the
training set.
From the results and the comparison to the independently trained system in Tbl 10.1

we can see that for the simulated evaluation data, the jointly trained system performs
almost on-par. For the real recordings however, there is a noticeable gap of nearly 2
percent points. This is especially surprising since the mask estimator of the jointly
trained system was already exposed to real recordings during training.

10.2.2 Research questions

Several questions arise from this result
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a Can the performance loss be attributed to only one of the models or do both perform
worse?

b Previously the acoustic model has been trained using all available channels, increasing
the size of the training data by a factor of six (for CHiME) although the e↵ective
factor might be less as the samples are still highly correlated. When training the
model jointly, all channels are used and condensed into one by the beamformer. The
acoustic model is thus trained with a single fold of the training corpus only. How
does this a↵ect the final system performance?

c When training jointly and assuming that the mask estimator is trained reasonably
well, the features for the acoustic model have a higher SNR as the training progresses.
Does this hurt the robustness of the acoustic model?

d Although the influence of the mask estimator on the beamformed signal is restricted
by the linear filtering of the beamformer, it could potentially lead to filters tailored
towards the specific acoustic model it is optimized with. Does the mask estimator
overfit to the acoustic model it is optimized with?

e The acoustic model itself is already robust against interferences to a certain extent
when trained with multi-style data. As a consequence, particular interferences only
have a minor impact on the estimation of the state posteriors as the model has learned
to ignore those variations in the features. But this also means that the magnitude of
the gradient will be small and the acoustic model will not strongly encourage the
front-end to remove these interferences. Can a better mask estimator be trained by
using an acoustic model which has been trained on clean data only?

f If training both models from scratch leads to a performance drop, we can pre-train
some components before jointly optimizing them. Ultimately, what is the best training
strategy for the joint system?

In the following we seek to answer those questions by conducting various experiments
on the CHiME and REVERB task.

10.2.3 Impact of the training data

First, we investigate the impact of the training data on the performance of the acoustic
model. This is directly related to the questions (b) and (c).
We train the WRN acoustic model on five di↵erent data sources:

1. On all available channels with noisy data

2. On 1., additionally augmented with beamformed data

3. On beamformed data only

4. On noisy data from the fifth microphone only

5. On clean data only
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Table 10.2: Impact of the training data used to train the acoustic model on the perfor-
mance on beamformed and single-channel (channel 5) data for the CHiME
task.

SIMU REAL

Training data Beamformed Channel #5 Beamformed Channel #5

All channels 6.78 16.03 7.34 15.23

All channels + Beamformed 6.40 18.22 7.66 17.28

Beamformed 6.89 55.89 9.64 30.97

Channel #5 6.94 17.48 7.62 17.60

Clean 11.69 42.73 16.31 48.25

This varies the total size of the training corpus as well as the average SNR during the
training. We then evaluate all five models on the beamformed test sets (using a BLSTM
mask estimator and the GEV beamformer) and on the (unprocessed) signal as recorded
by by the lower center microphone (microphone #5).
The results are summarized in Tbl. 10.2. When the model is trained on beamformed

data only, its performance significantly degrades compared to the baseline model trained
on all channels. But this cannot be attributed to the smaller size of the training data.
Using only data from the fifth microphone results in the same size of the training
corpus, however, this model achieves noticeable lower WERs for all but the beamformed
simulated test set. The di↵erences are especially visible when the model is evaluated
on the single-channel data. At the same time, the model trained on all channels is
only marginally better than the one trained on a single channel only. This suggests
that in this specific case, the size of the training corpus is not the decisive factor for
the performance of the acoustic model. Further evidence is found by looking at the
performance of the model trained on all channels plus the beamformed data. This
model performs nearly on-par with the model trained on single-channel data and worse
than the baseline model. In other words, adding additional training data even hurts the
performance in this case. Overall, the results are a clear indication that the acoustic
model trained on beamformed data is not as robust against variations as the one trained
on all channels. Another observation is that the beamforming seemingly works better
for the simulated data, i.e. the features have less variations due to interferences after
the beamforming. This is supported by the performance of the models trained on data
with higher SNRs (beamformed and clean).

10.2.4 Model analysis

To gain insights into specific properties of the model and find answers for the questions
formulated above, we evaluate various variants of training and combinations of the two
model components. One of these variants has already been explored exhaustively in
the previous chapters: training and evaluating both models independently. On the
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other side of the spectrum, both models can be trained jointly from scratch using the
acoustic model cross-entropy loss only. In between exist a multitude of strategies using
pre-trained models and possibly finetuning and/or mixing them.
The di↵erent variants we evaluate are explained in the following.

I The ME and the AM are trained independently with their own loss.

II Both models are optimized jointly from scratch using the cross-entropy loss between
the predicted senone probabilities and the alignment, e↵ectively turning the whole
system into a single model.

III Uses both models from I as initialization. The AM is then fine-tuned using
(pre-computed) beamformed data (related questions: a, b, c, f)

IV Uses both models from I as initialization. The ME is then fine-tuned using the CE
loss while the parameters of the AM are fixed during this fine-tuning stage (related
questions: a, d, f)

V Uses both models from I as initialization. Both models are then fine-tuned jointly
using the CE loss (related questions: a, c, d, f).

VI Uses the AM from II and combines it with the ME from I (related questions: a, b,
c, f).

VII Uses the AM from I and combines it with the ME from II (related questions: a, d,
f).

VIII Uses the ME from I to calculate beamformed features. The AM is then trained
(from scratch) using pre-computed data. (related questions: a, b, c, f).

IX Uses the AM from I. The ME is then trained (from scratch) using the CE loss
while the parameters of the pre-trained AM are held fixed (related questions: a, e,
f).

X The AM is trained independently on clean data. The ME is then trained (from
scratch) using the CE loss while the parameters of the pre-trained AM are held
fixed. For evaluation, the AM is swapped for one trained independently with
multi-style data. (related questions: a, e, f).

XI Similar to (II) except that for each example, the AM receives an unprocessed
single-channel observation with a 50% chance or the output of the beamformer
otherwise (related questions: f)

For all variants, we follow the same training setup as described in Sec. 7.3.2 and
Sec. 7.3.1. When fine-tuning a model, we start with 1

10
-th of the initial learning rate for

the respective model. As described in Sec. 7.3, we continuously monitor the WER to
stop the training before the model starts to overfit.
The WERs on the CHiME task for the di↵erent variants are shown in Tbl. 10.3.

Fine-tuning the mask estimator or the whole model (variant (IV) and (V) respectively)
yields no improvements over the pre-initialized model. Also, fine-tuning the acoustic
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Table 10.3: WERs for di↵erent training variants and combinations on the CHiME task.
Please refer to Listing 10.2.4 for an overview of the variants and the text
for further explanations. For the variants (IV) and (V) no best model
was exported during training, i.e. the WER during cross-validation did no
improve over the pre-initialized model. We therefore report the numbers of
(I).

Variant SIMU REAL

I 6.78 7.34

II 6.95 9.12

III 6.67 7.41

IV (6.78) (7.34)

V (6.78) (7.34)

VI 6.59 8.94

VII 7.43 7.64

VIII 6.89 9.64

IX 7.03 8.63

X 6.73 7.18

XI 6.90 8.50



Joint optimization 114

model with data from the beamformer results in small improvements on the simulated
data but also slightly deteriorates the performance for the real recordings. This shows
that the beamformer with the mask estimator trained with the BCE loss is already a
very good match for the acoustic model (trained with noisy data). A finding, that is
surprising since the mask estimator was optimized with a very loosely related criterion
at best and the beamformer maximizes the signal level SNR which is only weakly
correlated to the WER.
The results for the variants (VI), (VII) and (VIII) provide further evidence for the

hypothesis that the worse result of the jointly trained model can be attributed solely to
a weaker acoustic model. When the jointly trained acoustic model is combined with a
separately trained mask estimator, there is still a significant performance degradation for
the real recordings (compare with (II) and (I)). However, if we use the mask estimator
from the jointly trained model and combine it with a separately trained acoustic model,
the performance on the real recordings are much closer to those of the separately trained
system (I) and the performance on simulated data degrades. The variant (VIII) shows
a result we already saw in the last section. Namely, the WERs increase noticeably when
the acoustic model is trained (from scratch) on beamformed data. In summary, these
results support the claim that the acoustic model is the problem when the system is
optimized jointly. Although a small portion of the performance gap can be attributed
to the mask estimator, the largest part is caused by the acoustic model.
The reason for the performance loss of the mask estimator can be inferred from the

variants (IX) and (X). When the mask estimator is trained with the CE loss and an
acoustic model trained on noisy data, the resulting WERs are higher compared to the
separately optimized model with the BCE loss ((IX) vs. (I)). However, when we use
an acoustic model trained on clean data and then combine the trained mask estimator
with the acoustic model from (I), we achieve on-par WERs compared to the baseline
system (I). This shows that the gradients from the acoustic model trained with noisy
data are indeed not the best choice to train the mask estimator as they are presumably
small for interferences that the acoustic model already learnt to ignore.
Sampling the features for the acoustic model as in (XI) partly mitigates the training

data issue arising in (II) but still su↵ers from the finding about the gradient discussed
above.

10.2.5 Performance on REVERB

Next, we evaluate the di↵erent variants on the REVERB task. The results are shown
in Tbl 10.4. Variants (III) – (V) were left out this time as the fine-tuning again did
not show improvements over the pre-initialized model. For this task, we get a di↵erent
picture. The WERs for the jointly trained system (II) are actually slightly better than
the baseline with separately trained components (I). When the jointly trained acoustic
model is combined with a pre-trained mask estimator there is no clear performance hit
as observed for the CHiME task ((VI) vs. (I)). The same holds true when the acoustic
model is trained on dereverberated data (VIII). But the jointly trained mask estimator
is able to improve the performance when combined with a separate acoustic model
((VII) vs. (I) + (II)). Similar results are achieved when training the mask estimator
with an acoustic model trained on reverberant data (IX) and on clean data (X). Finally,
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Table 10.4: WERs for di↵erent training variants and combinations on the REVERB
task. Please refer to Listing 10.2.4 for an overview of the variants and the
text for further explanations.

Variant EVAL EVAL+10dB

I 8.43 8.09

II 8.04 7.91

VI 8.49 8.23

VII 7.62 7.55

VIII 8.57 8.12

IX 7.71 7.63

X 7.65 7.57

XI 7.44 7.47

when the system is trained jointly and the input to the acoustic model is sampled from
the unprocessed and processed training data, the lowest WERs are reached. But overall,
with a relative gap of 10% between the worst and best WER, the di↵erences between
the systems are rather small.
These results are in contrast to the ones on the CHiME task. First, the performance

of the acoustic model is not a↵ected in the same way as seen before and a model trained
on dereverberated data performs almost on-par with the one trained on unprocessed
data. And second, the results for a mask estimator trained with the CE objective are
better compared to the ones achieved by a mask estimator trained with the BCE loss.
A possible explanation for the first di↵erence is that the training data of the REVERB

corpus is only simulated and for most utterances the distortion due to reverberation is
small. In fact, as mentioned in Sec. 5.2, we refrained from evaluating the system on
the simulated test sets for exactly the same reason. The distortions do not noticeably
degrade the performance of the acoustic model. Training on an enhanced set might thus
make little di↵erence. We hypothesize that this is a specific observation for this task
and cannot be attributed to the fact that the distortions are caused by reverberation
instead of noise sources. For a task with real recordings (like in the test set), we expect
to see the same results as for the CHiME task.
The second di↵erence might actually reveal a benefit of the joint optimization. While

for the CHiME task we can clearly distinguish between the target speech and the
interferences, this is not possible for reverberation. As described in Sec. 4.5, the signal
can be decomposed into three parts and we aim to attenuate the late reverberation
which is the third part. However, it is unclear at which point the line should be drawn,
i.e. which part of the signal is still useful and when does it become harmful for the
acoustic model. But in order to calculate the targets for the training of the mask
estimator with the BCE loss, we need to specify this point. And although we made an
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informed choice, it was likely not the optimal one, especially for the specific acoustic
model. On the other hand, when the mask estimator is trained with the gradients
from the acoustic model, this choice becomes part of the optimization problem and the
system intrinsically learns where to make the distinction to achieve an optimal state
classification accuracy.
Fig 10.2 shows the estimated interferences masks for an example utterance from the

training set to visualize the di↵erence between the jointly and separately trained model.
Additionally, the spectogram of one channel of the observed signal and the target for
the separately trained model are depicted. The separately trained model learned to
reproduce the target very well, only some details are missing and overall it looks like a
slightly blurred version of the target. A very di↵erent mask is produced by the jointly
trained system. At first it looks very much like the output of a VAD system on a frame
level. However, some of the “stripes” are longer than others and seemingly do capture
some of the reverberation visible in the observed signal. The mask does not look very
intuitive but from the results we know that this model works best. Also, it is not a
phenomenon of this specific example, masks for other utterances look very similar and
show the same pattern.

10.2.6 Answers

Equipped with the insights from the evaluations above, we can now answer the questions
raised in Sec 10.2.2.

a Yes. Most of the performance loss (for the CHiME task) can be attributed to the
acoustic model which is less robust as it is exposed to less diverse, i.e. noisy, data
during training.

b For the CHiME task, training the model on a single fold of the training data (i.e.
a single channel or beamformed data) does only slightly degrade the performance
compared to using all channels and is not the reason for the worse performance of
the jointly optimized system. The same holds for the REVERB task although there
is no performance loss at all.

c Yes. When the acoustic model is trained on enhanced features, the final performance
su↵ers (see also (a)). This holds true for the CHiME data. For the REVERB task,
we cannot observe this behavior but hypothesize that this is caused by the training
data already showing little distortions.

d No. A mask estimator trained jointly with an acoustic model can be used with any
acoustic model.

e Yes. Using an acoustic model trained on clean data to train the mask estimator
yields a better performing model. Again, this is based on the CHiME task while for
the REVERB task is not conclusive in this point due to the training data (see (c)).

f The acoustic model should not be optimized jointly with the mask estimator. Instead,
the acoustic model can be trained on noisy data and then used to train the mask
estimator. If clean data is available, performance can be improved by using an
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Figure 10.2: Comparison of masks estimated by a BLSTM mask estimator trained
with the BCE and one trained with the CE loss. The first picture shows
the spectogram for one channel of the observed signal. Below that is the
interference mask estimated by the jointly trained mask estimator. The
two pictures on the bottom show the mask estimated by the separately
trained model and the target it was trained with.
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acoustic model trained on clean data to train the mask estimator. Surprisingly,
training the models separately is a very strong baseline worth considering if parallel
data is available and good training targets for the mask estimator can be extracted.

10.3 Summary

Merging the beamformer front-end and the acoustic back-end into one model by
propagating the gradients through the beamforming filter allows to train the system
jointly using data only annotated with their transcription. Compared to an approach
directly operating on the waveform, this keeps the flexibility of the statistical signal
processing with regard to the microphone configuration combined with its interpretability.
But care has to be taken when jointly training the system. As the front-end learns to
enhance the features, the acoustic model becomes less robust, resulting in a performance
degradation during inference. An appropriate training schedule is to train the acoustic
model first on multi-style data and then use it to train the front-end or, alternatively,
sample from enhanced and unprocessed features and jointly train both models. But
this might only be true for datasets where a performant acoustic model can be trained
on the available data. For hard tasks, like for example the CHiME 5 challenge, where
the recordings are so distorted that it is very hard to train an acoustic model in the
first place, a di↵erent strategy likely leads to better results. At this point, however,
we leave an appropriate evaluation for future work. Another interesting direction to
explore is how the architecture of the acoustic model influences the front-end training.
Parallels to the influence of the discriminator in a generative adversarial network
framework [Goo+14] might exist, although the front-end (generator) here is much more
restricted due to the linear beamforming filter operation.
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The role of ASR fundamentally changed in the last few years. While the first systems
were only designed for close-talk dictation tasks or pre-defined commands with a limited
vocabulary, the systems nowadays have become a commodity and serve as a complete
user interface, even in far-field scenarios. However, these scenarios are especially
challenging and the systems are still far away from human level perception in those
cases. One key question is how to use multi-channel data in a way that allows the
system to exploit spatial information to reduce the number of transcription mistakes.
NNs have been established as the model of choice for many tasks, including speech

recognition. Particularly using a NN as the acoustic model drove down error rates in
more challenging scenarios to a level which was unreachable before and allows many new
practical applications. The model parameters are optimized using stochastic gradient
descent on a vast amount of training data. In Ch. 2 we shortly reviewed the basic
building blocks of a NN and focused on the gradient computation necessary for the
update rule. We showed how by viewing the network as a computational graph and
exploiting the chain rule we can derive the gradient computation in a principled way,
also if intermediate values are complex valued. This enabled us later to integrate
beamforming into the neural network.
Statistical beamforming is at the center of this thesis and was thoroughly discussed in

Ch 4. Starting from a general signal model for the multi-channel mixture we obtained
a spectral model with a couple of assumptions. With this model, we introduced the
MWF, the MVDR and GEV beamformer and showed that, under a Rank-1 assumption
of the target SCM, all of these criteria result in the same look direction but scale the
frequencies di↵erently. All of these beamformers rely on the estimation of the SCM
which can be estimated with the help of a mask from the observation. We showed of
such masks can be estimated with a statistical model, namely the cACGMM. Finally,
we focused on reverberation and how it can be mitigated with the help of either a
beamformer or WPE.
Equipped with the necessary background knowledge, we then presented the main

contribution of this thesis: a neural network support beamformer. In a comprehensive
evaluation in Ch. 7, we showed how this can achieve improvements of about 50%
compared to a single-channel system for the CHiME and REVERB corpora which were
presented in Ch. 5. We also demonstrated advantages of this approach compared to
the statistical cACGMM approach. The biggest advantages are the ability to exploit
spectro-temporal correlation and the avoidance of any permutation problem. We also
showed that the gains are stable over a wide SNR range and two di↵erent types of neural
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networks, namely a LSTM and CNN based one. As formulated in one of the goals, the
system is indeed agnostic to the microphone configuration and can scale to an arbitrary
number of microphones without modification. After having presented the approach, we
also discussed it in the context of other works which happened simultaneously or built
upon the neural network supported beamformer.
The rest of the thesis was dedicated to extensions of the presented system. Motivated

by a smart home scenario with a seamless user interaction, a low-latency variant of the
mask estimator and a frame-online and block-online SCM estimation was introduced
in Ch. 8. We also presented an alternative formulation of the GEV beamformer more
suitable for online-processing. Evaluation showed that the performance loss due to a
low latency mask estimator is minimal and the major factor is the SCM estimation. We
discussed how this can be mitigated by, e.g., using statistics from wake word utterances
and pointed to further and future work.
The limitation of requiring parallel data for training was lifted in two di↵erent ways

in the next chapters. First, in Ch. 9 we used the likelihood of an observation under
a spatial mixture model as a loss criterion. This connected the previously discussed
cACGMM approach and the neural network based beamformer. We showed, that the
resulting system can be trained without any supervision on observed multi-channel data
and achieve comparable results to the system trained in a supervised fashion. As an
additional benefit, spatial cues can be integrated during inference. We also considered
a student-teacher approach which shows the same performance and concluded by
discussing the di↵erent trade-o↵s and giving an outlook on further use-cases of the
presented method.
Finally, in Ch. 10 we considered a joint training approach which combines the

mask estimator and the acoustic model into a single model with the beamformer
as a specialized signal processing layer. After initial results revealed an unexpected
performance gap to the separately trained baseline, we devised di↵erent training and
evaluation strategies to analyze the model behavior. We found that as the front-end
learns to enhance the features, the acoustic model becomes less robust, resulting in a
performance degradation during inference. Two ways to mitigate this e↵ect without
requiring additional (parallel) data or information were presented. Either one first
trains the acoustic model on multi-style data and then use it to train the front-end, or,
more in the spirit of joint training, the acoustic model is randomly presented either an
enhanced or an unprocessed feature. Both methods were able to match the performance
of the baseline but do not require parallel data.
Overall, this thesis shows that (classical) signal processing can provide several benefits

in combination with powerful neural networks.



Appendix

A.1 Gradient for the Cholesky factorization

In the following we will derive the gradient for the Cholesky factorization of a positive
definite hermitian matrix as published in [Böd+17]. The factorization is defined as

C = L = cholesky (A) (A.1)

such that

A = LLH, (A.2)

where L is a lower left triangular matrix (L 2 ). In the following we will exploit some
properties of L and triangular matrices:

1. L 2 ) L�1 2

2. A 2 ,B 2 ) AB 2
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� C = L where is a

lower triangular matrix filled with ones and � is the element-wise multiplication
(Hadamard product).

With these properties we start with the definition in Eq. A.2 and the forward
sensitivity (see, e.g. [Gil08])
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From 1. and 2. we can see that L�1 @L
@z⇤ 2 . Further, from 3. and 4., it follows

that [L�1]ii 2 R+. The diagonal elements of A are all real valued ( A = AH )
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Following the instructions given in Sec. 2.2.3 and Sec. 2.2.4 we insert Eq. A.8 in
Eq. 2.46 resulting in
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��

X �YT
�
Z
 
the above equation can be rewritten as

@J

@z⇤
= tr

(  ✓
@J

@L⇤

◆H

L

!
�
✓

� 1

2
I

◆T
!
L�1

@A

@z⇤
L-H

)
+ . . .

@J

@z⇤
= tr

(
L-H

  ✓
@J

@L⇤

◆H

L

!
�
✓

� 1

2
I

◆T
!
L�1

@A

@z⇤

)
+ . . .

@J

@z⇤
= tr

(✓
L-H

✓✓
LH

@J

@L⇤

◆
�
✓

� 1

2
I

◆◆
L�1

◆H @A

@z⇤

)
+ . . .

Comparing this result to Eq. 2.47 finally yields the desired gradient
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A.2 Gradient for the complex valued eigenvalue
decomposition

In the following we will derive the gradient for the eigenvalue decomposition of a complex
valued hermitian matrix. Again, this has been published in [Böd+17] and inspired by
the works by Giles on the real valued problem [Gil08]. The implicit definition of the
eigenvalue decomposition of a quadratic matrix A is given by

AV = VE. (A.11)

As described in Sec. 4.2.2, for the specific application of beamforming, A corresponds
to the (projected) SCM � and we seek to find the eigenvector v which corresponds
to the highest eigenvalue emax. So in Eq. A.11 above V is a quadratic matrix with all
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eigenvectors and E is a diagonal matrix with the eigenvalues. The forward sensitivity is
then expressed as
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Multiplying Eq. A.12 with V�1 from the left-hand side yields
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and rearranging the terms
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Using A = VEV�1 results in
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For a diagonal matrix ⇤, the following equation holds [Gil08; Böd+17]:

C⇤�⇤C = D �C (A.16)

with [D]ij = �j � �i and ”�“ denoting the Hadamard product. We apply this rule to
Eq. A.15 to obtain
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From this equation, the forward sensitivity for the eigenvalues can be calculated
by realizing that @E

@z⇤ is a diagonal matrix, applying the Hadamard product with the
identity matrix I to both sides and exploiting that diag (D) = 0 and thus I �D = 0.
This results in
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To obtain the forward sensitivity for the eigenvectors, we introduce with F the
Hadamard inverse of D whose elements are defined as [F]ij =

1

�j��i
and [F]ii = 0, i.e.,
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Noting that F � @E
@z⇤ is zero since the diagonal elements of F are zero and that any

change of input does not influence the magnitude of the eigenvectors resulting in
diag
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= 0 (see [Gil08]), the equation can be simplified to
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Rearranging the terms finally results in the desired formulation
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Again, we follow the instructions given in Sec. 2.2.3 but since we have two outputs
now, we reformulate Eq. 2.46 using the chain rule resulting in
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Inserting the forward mode sensitivities derived above yields
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which, with the help of the following rules
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can be reformulated to obtain
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A comparison of the coe�cients with Eq. 2.47 finally yields the desired gradient
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A.3 Reproducibility

The main model described in Ch. 7 for the CHiME data is released on GitHub1.
This is also part of some Kaldi recipes2. The code for WPE dereverberation has
been made available also on Github3. Otherwise, all code required to reproduce the
experiments presented in this thesis is available to the communications engineering
group at Paderborn University and can be found in the git repository.

1https://github.com/fgnt/nn-gev
2https://github.com/kaldi-asr/kaldi/tree/master/egs/chime4/
3https://github.com/fgnt/nara wpe

https://github.com/fgnt/nn-gev
https://github.com/kaldi-asr/kaldi/tree/master/egs/chime4/
https://github.com/fgnt/nara_wpe


Symbols and notation

We use a lower-case bold character for one-dimensional vectors. A matrix or other
higher dimensional tensors use a bold upper-case character. Sequences are denoted by
a subscript and their start and end index, e.g., ⇤1:N . For distributions over a set of
discrete values we use Pr(·) and over continuous values p(·).
Most of the symbols in this thesis have a local context and are introduced on a

need-by basis whenever they appear first. But some are used throughout the thesis and
listed in Lst. 1. For time-domain signals we use t to index the sample while for spectral
signals we use k as the frame and f as the frequency index. Sources are indexed by q
and microphones by m. Whenever there is no ambiguity we omit the indices for brevity.

ym(t) Signal as captured by the m-th sensor

am,q(t, ⌧) AIR from source q to sensor m at time t

xq(t) Signal emitted by the q-th source

dm(t) Di↵use signal as captured by the m-th sensor

s(t) Target (speech) signal

nq(t)
Signal of the q-th interfering source with
q 2 {1, . . . , Q� 1}

ym(k, f) Signal as captured by the m-th sensor

amq(f)
AIR from source q to sensor m for frequency f at frame
k

xq(k, f) Signal emitted by the q-th source

dm(k, f) Di↵use signal as captured by the m-th sensor

s(k, f) Target (speech) signal

�qq(k, f)
Spatial covariance matrix of multi-channel signal
sq(k, f)

e Vector with eigenvalues of an eigenvalue decomposition

V
Matrix of all eigenvectors of an eigenvalue
decomposition

w Beamforming vector

J Loss function or value
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[Ves+13] K. Veselỳ, A. Ghoshal, L. Burget, and D. Povey. “Sequence-discriminative
training of deep neural networks.” In: Annual Conference of the Interna-
tional Speech Communication Association (INTERSPEECH). 2013.

[Vin+] E. Vincent, S. Watanabe, J. Barker, and R. Marxer. CHiME4 result
overview. http://spandh.dcs.shef.ac.uk/chime challenge/chime2016/
results.html. Accessed: 2019-01-31.

[Vin+13] E. Vincent, J. Barker, S. Watanabe, J. Le Roux, F. Nesta, and M. Matas-
soni. “The second ‘CHiME’speech separation and recognition challenge:
Datasets, tasks and baselines”. In: 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE. 2013, pp. 126–130.

[Vin+16] E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer. “An
analysis of environment, microphone and data simulation mismatches in
robust speech recognition”. In: Computer Speech & Language (2016).

[Wan+18] Z. Wang, E. Vincent, R. Serizel, and Y. Yan. “Rank-1 constrained Multi-
channel Wiener Filter for speech recognition in noisy environments”. In:
Computer Speech & Language 49 (2018), pp. 37–51.

[WB+19] G.-Y. Wei, D. Brooks, et al. Benchmarking TPU, GPU, and CPU Platforms
for Deep Learning. 2019. eprint: ArXiv:1907.10701.

[WC18] D. Wang and J. Chen. “Supervised speech separation based on deep
learning: An overview”. In: IEEE/ACM Transactions on Audio, Speech,
and Language Processing 26.10 (2018), pp. 1702–1726.

[Wer90] P. J. Werbos. “Backpropagation through time: what it does and how to
do it”. In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

[WH07] E. Warsitz and R. Haeb-Umbach. “Blind acoustic beamforming based on
generalized eigenvalue decomposition”. In: IEEE Transactions on Audio,
Speech, and Language Processing 15.5 (2007), pp. 1529–1539.

ArXiv:1607.08022
http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/results.html
http://spandh.dcs.shef.ac.uk/chime_challenge/chime2016/results.html
ArXiv:1907.10701


Bibliography 149

[WLH18] Z.-Q. Wang, J. Le Roux, and J. R. Hershey. “Multi-channel deep clustering:
Discriminative spectral and spatial embeddings for speaker-independent
speech separation”. In: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2018, pp. 1–5.

[WNW14] Y. Wang, A. Narayanan, and D. Wang. “On Training Targets for Supervised
Speech Separation”. In: IEEE/ACM Transactions on Audio, Speech, and
Language Processing 22.12 (Dec. 2014), pp. 1849–1858.

[Xio+17] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke. The
Microsoft 2017 Conversational Speech Recognition System. 2017. eprint:
ArXiv:1708.06073.

[YN12] T. Yoshioka and T. Nakatani. “Generalization of multi-channel linear
prediction methods for blind MIMO impulse response shortening”. In:
IEEE Transactions on Audio, Speech, and Language Processing 20.10
(2012), pp. 2707–2720.

[Yos+15] T. Yoshioka, N. Ito, M. Delcroix, A. Ogawa, K. Kinoshita, M. Fujimoto,
C. Yu, W. J. Fabian, M. Espi, T. Higuchi, S. Araki, and T. Nakatani.
“The NTT CHiME-3 system: Advances in speech enhancement and recog-
nition for mobile multi-microphone devices”. In: IEEE 2011 Workshop on
Automatic Speech Recognition and Understanding (ASRU). 2015.

[YR04] O. Yilmaz and S. Rickard. “Blind separation of speech mixtures via time-
frequency masking”. In: IEEE Transactions on Signal Processing 52.7
(2004), pp. 1830–1847.

[Yu+17] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen. “Permutation invariant
training of deep models for speaker-independent multi-talker speech sep-
aration”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2017.

[ZK16] S. Zagoruyko and N. Komodakis. Wide Residual Networks. 2016. eprint:
ArXiv:1605.07146v4.

ArXiv:%201708.06073
ArXiv:1605.07146v4


Own publications

[Böd+17] C. Böddeker, P. Hanebrink, L. Drude, J. Heymann, and R. Haeb-Umbach.
On the Computation of Complex-valued Gradients with Application to
Statistically Optimum Beamforming. 2017. eprint: ArXiv:1701.00392.

[Boe+17] C. Boeddeker, P. Hanebrink, L. Drude, J. Heymann, and R. Haeb-Umbach.
“Optimizing neural-network supported acoustic beamforming by algorith-
mic di↵erentiation”. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2017.

[Boe+18a] C. Boeddecker, J. Heitkaemper, J. Schmalenstroeer, L. Drude, J. Heymann,
and R. Haeb-Umbach. “Front-end processing for the CHiME-5 dinner party
scenario”. In: International Workshop on Speech Processing in Everyday
Environments (CHiME’18). 2018.

[Chi+16] A. Chinaev, J. Heymann, L. Drude, and R. Haeb-Umbach. “Noise-presence-
probability-based noise PSD estimation by using DNNs”. In: Speech Com-
munication; 12. ITG Symposium. 2016.

[DHH19b] L. Drude, J. Heymann, and R. Haeb-Umbach. “Unsupervised training of
neural mask-based beamforming”. In: Annual Conference of the Interna-
tional Speech Communication Association (INTERSPEECH). 2019.

[Dru+18a] L. Drude, J. Heymann, C. Boeddeker, and R. Haeb-Umbach. “NARA-
WPE: A Python package for weighted prediction error dereverberation
in Numpy and Tensorflow for online and o✏ine processing”. In: Speech
Communication; 13. ITG-Symposium. 2018.

[Dru+18b] L. Drude, C. Boeddeker, J. Heymann, R. Haeb-Umbach, K. Kinoshita,
M. Delcroix, and T. Nakatani. “Integrating Neural Network Based Beam-
forming and Weighted Prediction Error Dereverberation.” In: Annual
Conference of the International Speech Communication Association (IN-
TERSPEECH). 2018.

[Ebb+17] J. Ebbers, J. Heymann, L. Drude, T. Glarner, R. Haeb-Umbach, and B. Raj.
“Hidden Markov Model Variational Autoencoder for Acoustic Unit Discov-
ery.” In: Annual Conference of the International Speech Communication
Association (INTERSPEECH). 2017.

[HBS18] J. Heymann, M. Bacchiani, and T. N. Sainath. “Performance of mask based
statistical beamforming in a smart home scenario”. In: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018.

150

ArXiv:%201701.00392


Own publications 151

[HDH16a] J. Heymann, L. Drude, and R. Haeb-Umbach. “Neural network based spec-
tral mask estimation for acoustic beamforming”. In: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2016.

[HDH16b] J. Heymann, L. Drude, and R. Haeb-Umbach. “Wide residual BLSTM
network with discriminative speaker adaptation for robust speech recog-
nition”. In: International Workshop on Speech Processing in Everyday
Environments (CHiME’16). 2016.

[HDH17] J. Heymann, L. Drude, and R. Haeb-Umbach. “A Generic Neural Acoustic
Beamforming Architecture for Robust Multi-Channel Speech Processing”.
In: Computer Speech & Language (2017).

[Hey+13] J. Heymann, O. Walter, R. Haeb-Umbach, and B. Raj. “Unsupervised word
segmentation from noisy input”. In: IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding (ASRU). 2013.

[Hey+14] J. Heymann, O. Walter, R. Haeb-Umbach, and B. Raj. “Iterative Bayesian
word segmentation for unsupervised vocabulary discovery from phoneme
lattices”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2014.

[Hey+15a] J. Heymann, L. Drude, A. Chinaev, and R. Haeb-Umbach. “BLSTM
supported GEV beamformer front-end for the 3rd CHiME challenge”. In:
IEEE 2011 Workshop on Automatic Speech Recognition and Understanding
(ASRU). 2015.

[Hey+15b] J. Heymann, R. Haeb-Umbach, P. Golik, and R. Schlüter. “Unsupervised
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