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Abstract

Software testing plays an important role in the context of software migration as it is used
to validate and ensure functional equivalence as a key requirement. As the creation of test
cases is an expensive and time-consuming activity, whenever test cases are existing, their
reuse should be considered, thus implying their co-migration. However, reusing test cases is
beneficial, only when the test cases have some value. Migrating test cases that cover parts of
the system that are not used anymore or test cases with low quality can result in migrated test
cases which cannot properly validate the migrated system. Therefore, before doing anything
with the test cases, their quality needs to be evaluated. During the actual co-migration of test
cases, two main challenges have to be addressed: situativity and co-evolution. The first one
suggests that when a test migration method is developed, the situational context has to be
considered as it influences the quality and the effort regarding the test case migration. The
latter suggests that the changes that happen to the system have to be considered and eventually
reflected to the test cases. Lastly, as the migrated test cases are used as safeguards for the
system migration, their correct migration is crucial. Once migrated and executed, the test
report may also contain some false positives and false negatives which could potentially lead
to false conclusions about the correctness of the migrated system. Therefore, the validation
of the test case migration itself is also necessary.

We address the aforementioned challenges by proposing a framework which provides an
end-to-end solution by addressing the three general migration phases: pre-migration, migra-
tion, and post-migration. Firstly, in the pre-migration phase, a test case quality evaluation is
performed to evaluate the quality of the existing test cases. This phase mainly relies on our
approach for development of quality plans for test case quality evaluation. Then, during the
migration phase, by employing situational method engineering, a situational method for the
test cases is developed and enacted. This development of situation-specific test migration
methods is centered around the idea of double horseshoe model, which incorporates two
horseshoe models, one for the system and another for the test case migration. We extend the
basic method development process with a co-evolution analysis in order to detect and reflect
the changes from the system migration to the test cases. Finally, during the post-migration
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phase, we validate the test case migration by applying our novel approach for test case
migration which is based on mutation analysis.

In order to demonstrate the applicability of the developed framework in practice, we per-
formed two feasibility studies in which parts of the well-known Eclipse Modeling Framework
(EMF) along with the Object Constraint Language (OCL) were migrated to the multi-platform
enabled modelling framework CrossEcore. The feasibility studies addressed two different
languages in the target environment, namely C# and TypeScript, and consequently two
different target testing frameworks, MSUnit and Jasmine.



Zusammenfassung

Das Testen von Software spielt im Kontext der Softwaremigration eine wichtige Rolle, da
es zur Validierung und Sicherstellung der Funktionsäquivalenz als Schlüsselanforderung
verwendet wird. Da die Erstellung von Testfällen eine teure und zeitaufwändige Aktivität ist,
sollte ihre Wiederverwendung in Betracht gezogen werden, wenn Testfälle vorhanden sind,
was ihre Co-Migration impliziert. Die Wiederverwendung von Testfällen ist jedoch nur dann
von Vorteil, wenn die Testfälle einen gewissen Wert haben. Das Migrieren von Testfällen,
die Teile des Systems abdecken, die nicht mehr verwendet werden, oder von Testfällen
mit geringer Qualität kann zu migrierten Testfällen führen, die das migrierte System nicht
ordnungsgemäß validieren können. Bevor etwas mit den Testfällen gemacht wird, muss daher
deren Qualität bewertet werden. Während der eigentlichen Co-Migration von Testfällen
müssen zwei Hauptherausforderungen angegangen werden: Situativität und Co-Evolution.
Die Testmigrationsmethode sollte den Situationskontext berücksichtigt, da er die Qualität und
den Aufwand für die Testfallmigration beeinflusst. Letzteres legt nahe, dass die Änderungen,
die am System auftreten, berücksichtigt und schließlich in den Testfällen abgespiegelt
werden müssen. Da die migrierten Testfälle als Schutzmaßnahmen für die Systemmigration
verwendet werden, ist ihre korrekte Migration von entscheidender Bedeutung. Nach der
Migration und Ausführung kann der Testbericht auch einige falsch positive und falsch
negative Ergebnisse enthalten, die möglicherweise zu falschen Schlussfolgerungen über
die Richtigkeit des migrierten Systems führen können. Daher ist auch die Validierung der
Testfallmigration selbst erforderlich.

Wir begegnen den oben genannten Herausforderungen, indem wir ein Framework
vorschlagen, das eine End-zu-End-Lösung bietet, indem wir die drei allgemeinen Migra-
tionsphasen behandeln: Vormigration, Migration und Nachmigration. Zunächst wird in der
Vormigrationsphase eine Bewertung der Testfallqualität durchgeführt, um die Qualität der
vorhandenen Testfälle zu bewerten. Diese Phase basiert hauptsächlich auf unserem Ansatz
zur Entwicklung von Qualitätsplänen für die Bewertung der Testfallqualität.

Während der Migrationsphase wird dann unter Verwendung von Situationsmethoden-
Engineering eine Situationsmethode für die Testfälle entwickelt und implementiert. Diese
Entwicklung situationsspezifischer Testmigrationsmethoden konzentriert sich auf die Idee
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des Doppelhufeisenmodells, das Hufeisenmodelle sowohl für das System als auch für die
Testfallmigration umfasst. Wir erweitern den grundlegenden Methodenentwicklungsprozess
um eine Co-Evolutions-Analyse, um die Änderungen von der Systemmigration zu den
Testfällen zu erkennen und widerzuspiegeln. Schließlich validieren wir während der Nachmi-
grationsphase die Testfallmigration, indem wir unseren neuartigen Ansatz für die Testfallmi-
gration anwenden, der auf Mutationsanalyse basiert.

Um die Anwendbarkeit des entwickelten Frameworks in der Praxis zu demonstrieren,
haben wir zwei Machbarkeitsstudien durchgeführt, in denen Teile des bekannten Eclipse
Modeling Framework (EMF) zusammen mit der Object Constraint Language (OCL) auf
die plattformübergreifende Modellierungsframework CrossEcore migriert wurden. Die
Machbarkeitsstudien befassten sich mit zwei verschiedenen Sprachen in der Zielumgebung,
nämlich C# und TypeScript, und folglich mit zwei verschiedenen Ziel-Testing-Frameworks,
MSUnit und Jasmine.
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Chapter 1

Introduction

In this chapter, we describe the motivation and problem statement of this thesis. Then, we
present our solution approach and main contributions. In the end, we present an overview
of publications that are related to the solution concept defined in this thesis and provide a
structural overview of the thesis.

1.1 Motivation

Software systems are nowadays critical assets for many companies, as their everyday business
highly relies on them. But, as business or legal requirements evolve, an existing system
has to evolve as well, so that it still fits the changed requirements. Moreover, improving
non-functional characteristics or removing bugs also changes an existing system [SHT05].
Over time, an existing system, as anything else, ages and it becomes more difficult for further
maintenance, i.e., its evolvability decreases. But, if such a system still has some value for the
ongoing business, it is called a legacy software system.

Different solutions exist in practice when it comes to the legacy system problem [SWH10].
Software migration is a well-established method for transferring software systems in new
environments while keeping the data and the functionality of the system [BLWG99]. By
systematically transforming the system, it minimizes the risk of losing business-critical
requirements.

When migrating an existing system into a new environment, a crucial requirement that
must be fulfilled, as already mentioned, is that the original system and the migrated system
are equal in terms of functionality. In other words, behavioral equivalence must be satisfied
after the migration is performed. We define the behavioral equivalence based on the term of
exchangeability, i.e., as long as two systems are exchangeable and provide the same behavior
to an observer, they are said to be behaviorally equivalent. Hence, migration validation is
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a very important step that comes directly after the migration is performed. It assesses the
migration’s success by checking the behavioral equivalence between the original and the
migrated system.

A widely used validation technique in software migration projects is software test-
ing [MA14, Moh10]. Software testing is a method for asserting, among others, whether
a software system provides a required functionality [SL09]. A central artifact in software
testing is a test case which, in general, is a construct that consists of input data, actions,
i.e., test steps, and expected result. In a process called test case design, based on previously
defined functional requirements, test cases are created and then executed against the system.
When executed, a test case produces an actual result which is then compared to the specified
expected result. In case they match, the functionality being tested is said to be validated.
Considering a migration context, when all defined test cases pass, it implies that the migrated
system behaves as intended and the system migration is considered to be successful. The
success of this strategy depends on the test coverage regarding the functional requirements.

Depending on the test case design, which has been seen as an expensive and time-
consuming activity [Sne99], the software testing-based approaches used in software migration
projects can be grouped into several groups. In a worst-case scenario, the original system is
without any documentation, meaning neither a system functional description nor a system
design is present. In that case, test cases can be created by observing the system’s behavior
or system code of the original system. However, this requires a good knowledge about the
existing system and a lot of manual work thus resulting in higher costs in terms of time
and money. Another scenario is when some kind of system documentation like functional
requirements or system design are already given. If that is the case, then these artifacts can
be used as a starting point for the design of test cases. However, the lack of structure and
some level of formality in these artifacts, especially in the case of legacy software migration,
makes the test cases test design a pretty tedious activity. Due to this fact and the fact that the
test cases are manually created, this scenario also tends to be risky [Sne99].

As a result, whenever existing test cases for the original system are available, reusing
them to test the migrated system is certainly worth considering. Reusing test cases can not
only substantially reduce the cost of testing the migrated system but can also help retain
valuable information about the expected functionality of the original system and thus the
desired functionality of the migrated system. Furthermore, the existing test cases contain
very useful test data in terms of test inputs and expected results.

The existing test cases, like any other software artifact, after their initial creation, are often
being changed, e.g., due to system changes [FB99] or due to test case refactoring [Mes07].
Existing test cases are being updated or deleted or new test cases are being created. These
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actions influence the quality of the test cases which could be expressed by characteristics
like effectiveness, understandability, or structuredness. Moreover, some of the existing test
cases might no longer test the updated behavior, i.e., they might become obsolete or even
erroneous. This basically means that such test cases are useless for the existing system and,
thus, for the migrated system as well. In such a scenario, according to the phrase "garbage
in, garbage out", migrating useless test cases, would result in useless test cases while still
spending resources on migrating them. Therefore, before performing any further migration
activities, the value, i.e., the quality of the test cases needs to be considered, to decide whether
to migrate the test cases or not.

The migration of the test cases comes down to the problem of co-migration, i.e., the
test cases have to be migrated along with the system as their migration is dependent on
the migration of the system they are testing (Figure 1.1). The co-migration is practically
defined by the co-evolution of the test cases and the corresponding system. In general,
co-evolution refers to two or more objects evolving alongside each other, such that there is a
relationship between the two that must be maintained [MD08]. In our case, this refers to the
test cases evolving alongside the migrating code, such that the test cases remain correct for
testing the migrated code. According to [MD08], the co-evolution process consists of the
following consecutive activities: Change Detection, Impact Analysis, Change Propagation,
and Validation. Firstly, in Change Detection, all changed parts of the system being migrated
are identified. Having these changes identified, in the next step called Impact Analysis,
all affected parts of the test cases are identified and an estimate of the efforts required to
accomplish the change together with involved risks is determined. Then, based on the results

System
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Environment Y

Migrated
System

Environment X

test test

Test Case
Migration

Original
Test

Cases

Migrated
Test

Cases

Co-Migration

Original
System

influencesinfluences

Figure 1.1 The co-migration problem: test case migration and system migration
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of the impact analysis, as part of the Change Propagation step, the actual propagation of
the changes to transform the test cases is performed. In the end, Validation is carried out to
ensure that all test cases subjected to change have evolved consistently. These steps should
be incorporated in the test case migration to provide a proper evolution of the test cases and
thus, their proper migration to the target platform.

When performing a software migration, a transformation method is being enacted. Such
a transformation method serves as a technical guideline and describes the activities necessary
to perform, tools to be used, and roles to be involved to migrate a given system. In the
case of software migration, the transformation methods are instances of the reengineering
horseshoe model [KWC98] and it comes from the fact that software migration is a kind
of reengineering. The reengineering methods, as shown in Figure 1.2, consist in general
of the following consecutive phases Reverse Engineering, Restructuring, and Forward
Engineering [CC90]. When performing the transformation, a given original system is being
represented on different levels of abstraction in terms of different artifacts. When applying
reverse engineering, representations on a higher level of abstraction are represented by
applying parsing for example. These representations are then restructured so that they are
suitable for the new environment. In the end, by applying forward engineering techniques, the
high-level representations are concretized in the target environment by eventually generating
executable source code. In general, the whole concept of reengineering is applicable to
the domain of test case migration, thus enabling a basis to define test case transformation
methods. However, so far, there is still no established reengineering horseshoe model for test
cases which could be directly applied in test case migration.

During a software migration project, a transformation method firstly needs to be de-
veloped. This is a very important task as it influences the overall success of the migration
project in terms of effectiveness and efficiency. As defined in [GFEK16], effectiveness relates
to properties of the resulting migrated system, e.g., non-functional properties. Efficiency
relates to the properties of the actual process applied to realize the transformation, e.g., the
time required or the budget. Being efficient and effective at the same time means having
a transformation method that minimizes the effort required while maximizing certain non-
functional properties. To achieve this, the situational context of the migration project should
be taken into consideration when a transformation method is being developed. The developed
transformation method is then considered to be situation-specific. The situational context
comprises different influence factors like characteristics of the original system, characteristics
of the target environment, the goals of the stakeholders, etc. Concerning test case migration,
the situational context gets even more complex as beside the influence factors of the system
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Figure 1.2 The reengineering horseshoe model [KWC98]

migration, influence factors from the test migration like characteristics of the original test
cases or characteristics of the test target environment have to be considered as well.

Developing a situation-specific transformation method is an important and challenging
task, as a transformation method not suitable for a particular situation may result in a
migration project that is inefficient and ineffective thus raising the risk of failure. To minimize
this risk, a common practice is to support and/or guide the development of transformation
methods by a specific method engineering approach. Ideally, such an approach should
provide a transformation method suitable, i.e., applicable in a given situation, by either
providing successfully applied methods before or guiding the development of new ones.
The applicability of a given method in different contexts mainly depends on the degree
of controlled flexibility. Flexibility in this context means, to what extent a transformation
method may be adapted to a specific situation, whereas control refers to the degree of
guidance provided during the development of the method. As shown in [GFEK16], the
modular construction of transformation methods provides the highest degree of controlled
flexibility by assembling predefined method parts. Moreover, this approach also provides
construction guidelines on how to perform the assembly itself. Providing an effective and
efficient test case transformation method is also the main goal in test case migration. So, this
implies the same requirement as in the software system migration, namely the consideration
of the situational context. This is, however, a bit more complex task as the previously
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discussed co-evolution aspect should be incorporated when identifying the situational context
of both the system and test case migration. Only then, a developed test case migration method
could migrate the test cases efficiently and effectively.

As we already mentioned about system migration, a crucial requirement that must be
fulfilled, is that the original system and the migrated system are functionally equivalent.
Similarly, test case migration is the process of transferring test cases to a new environment
without changing their "functionality", i.e., without changing the expected behavior of the
migrated system the test cases assert. As migrated test cases are used to validate system
migration, validating test case migration is clearly very important. However, test case
migration is in general far from trivial as several challenges need to be addressed [JGY16]
and, due to the tight coupling of system migration and test migration, validating test case
migration is especially challenging.

1.2 Problem Statement

Based on the discussion in the previous section, providing an end-to-end solution for test
case migration is quite challenging. Starting even before the actual migration, a decision
is necessary whether it is beneficial to perform a migration of the existing test cases. If
yes, a proper test case migration method should be developed. As previously discussed, the
development of the migration method is important and it should be guided. Furthermore,
the method development should incorporate the co-evolution analysis to enable a proper
migration of the test cases. Last but not least, it should be assured that one can have
confidence in the migrated test cases when executing them against the migrated system.
Based on this and the discussion in the previous section, in the following, we discuss the
general challenges related to test case migration.

C1: How to make a systematic quality evaluation of test cases?
Reusing test cases is beneficial, only when the test cases have some value. Migrating

test cases that are redundant or cover unused parts of the system or if they have low quality,
e.g., if their structuredness or effectiveness is low, can result in migrated test cases that
cannot properly validate the migrated system. The execution of the migrated test cases would
not be efficient and in a worse case, it could lead to a false conclusion about the migrated
system. Therefore, to counteract this problem, before doing anything with the test cases,
their quality needs to be evaluated. For this purpose, relevant quality characteristics, e.g.,
effectiveness or structuredness need to be assessed. Such a quality assessment should provide
clear indications on the quality aspects and on this basis, one can decide whether it is worth
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investing time and effort in migrating the existing test cases. However, checking thousands
of test cases against given quality criteria is quite challenging if no systematic approach is
available.

C2: How to incorporate the co-evolution analysis in test case migration?
The migration of the test cases is coupled with the migration of the system they are

testing. In other words, reusing test cases implies a co-migration together with the system.
Therefore, the system changes need to be detected, and then their impact on the test cases
analyzed, and if necessary propagated. This implies that the co-evolution process [MD08]
has to be considered in the test case migration. However, this is far from trivial, because, first
of all, the changes in the system have to be detected, analyzed, and understood. Then, their
impact on the test cases has to be identified, so that the relevant changes could be propagated
to the test cases when the test case transformation method is being enacted. As the system
changes could be diverse, as different types of migration exist, e.g., language migration
or architectural migration, providing a generic solution for the co-evolution could be quite
challenging.

C3: How to transform the test cases in an automated way?
When migrating a large number of test cases, the test case migration should be ideally

completely automated. The existing test cases may be structurally complex and as a result, a
direct transformation would be hardly possible. Furthermore, the system migration may be
performed on a higher level of abstraction thus requiring reverse engineering techniques for
test cases. Also, the migrated test cases should be appropriate for the target environment,
i.e., the test cases have to be adapted for the target environment, this requiring appropriate
restructuring activities and tools that would ease and automate the transformation of the test
cases. Last but not least, the generation of the test code for the migrated test cases is also a
step that should be automated. All in all, the solution approach should support the typical
reengineering activities like reverse engineering, restructuring, and forward engineering for
test cases.

C4: How to provide a situation-specific test case transformation method?
As each migration project is performed in a specific migration scenario, a "one-size-fits-

all" test case migration method is not a viable solution. That means, in different migration
contexts, e.g., a language migration versus architectural migration, a different set of changes
should be applied to the test cases. Whereas in the language migration, the test cases have to
be transformed in the new language, in the architectural migration the test cases have to be
modified structurally due to the structural changes of the system. Furthermore, the language
migration imposes also a change of the testing framework, as for different languages different
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test frameworks exist. This means the test cases have to be also transformed in that way so
they can be executed in a specific target testing framework. Often, a language migration
is coupled with an architectural migration, thus making the development of an appropriate
transformation method for the test cases even more challenging. In general, the test case
changes depend on the system changes as well as on the requirements imposed by the new
test environment. Not considering the complete situational context may result in test case
transformation methods that are inefficient and/or ineffective.

C5: How to validate a test case migration?
The main requirement in test case migration, similarly to system migration, is to transfer

the test cases to a new environment without changing their "functionality". Regarding test
case migration, this means without changing the expected behavior asserted by the test cases.
As the migrated test cases are used as safeguards for the system migration, their correct
migration is crucial. But, as the test cases change along with the system, it is challenging
to validate their migration. Once migrated and executed, the test report may also contain
some false positives and false negatives which could potentially lead to false conclusions
about the correctness of the migrated system. Therefore, validating the migrated test cases is
a crucial activity for establishing adequate trust in the test case migration and consequently
in the migrated system as well.

C6: How to provide the different phases of the test case migration with appropriate
tooling?

If each solution of the previously introduced challenges requires manual work, it would
result in a lot of time and effort. Firstly, if the quality evaluation of the test cases is not
supported by proper tooling which provides guidance up to some extent, it would require
a lot of time only to create a quality plan. Then, the development and enactment of test
transformation methods without proper tool support and guidance could lead to a quite
complex manual work and consequently would require a lot of time. Also, the validation of
the test cases, when not supported by tooling, would require a lot of manual work to ensure
the success of the test case migration. All in all, to achieve a more effective and efficient test
case transformation as well as better acceptance of the approach in practice, the different
phases should be tool-supported.

In summary, all the challenges previously stated form the research question of this thesis:

How to enable an end-to-end migration approach for test cases that supports
the evaluation of the test case quality, the construction of situation-specific automated

co-migration methods, and the migration validation?
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1.3 Solution Overview

In order to address the aforementioned challenges that led to the research question, we
propose a Test Co-Migration (TeCoMi) framework which provides an end-to-end solution
for test case co-migration. The basic idea, as shown in Figure 1.3, evolves around the double
horseshoe reengineering model [KWC98] which we propose as a solution to the co-migration
problem.
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Figure 1.3 The double horseshoe reengineering model for co-migration of test cases

Motivated by the idea of model-driven software migration [FWE+12], the solution ap-
proach applies the Model-Driven Engineering (MDE) principles to the test case migration
domain. Furthermore, it combines techniques from Software Evolution and Situational
Method Engineering (SME) to address the co-evolution and situativity challenges, respec-
tively. Thus, the resulting model-driven migration methods enable automated co-evolution of
test cases for a specific migration context. Additionally, as shown in the bottom left-hand
corner of Figure 1.3, Test Case Quality Evaluation provides a means to check the quality
of the existing test cases. Similarly, in the bottom right-side corner of Figure 1.3, Test Case
Migration Validation provides a means to validate the migrated test cases.

Having the basic solution idea introduced, Figure 1.4 shows how the test case migration
framework supports the three general migration phases: Pre-Migration Phase, Migration
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Phase, and Post-Migration Phase. The labels from C1 to C5 represent the previously
introduced challenges and show which part of the solution addresses which challenge.
Tooling was also developed to support the three phases, but it is not explicitly shown
in Figure 1.4 and for this reason, C6 is not depicted in the figure.

I. Pre-Migration Phase

II. Migration Phase

III. Post-Migration Phase

Method Development

Test Case
Quality

Evaluation

Test Case 
Migration
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Situational
Context
Model
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Figure 1.4 The general phases with the corresponding activities of our approach

During the Pre-Migration Phase, Test Case Quality Evaluation is performed to evaluate
the quality of the existing test cases. Our approach enables a systematic tool-supported
development of test case quality plans [JNES18] which consider the context information and
integrate a standardized quality model, namely the ISO/IEC 25010 [ISO11a]. A quality plan
serves as a guideline for the quality evaluation of test cases and emphasizes the context of use
of test cases as a major factor of influence for the whole quality evaluation. After a quality
evaluation is performed, an indication of the quality of the test cases is obtained. Based on
this quality results a decision is made whether the existing test cases should be migrated and
if yes to what extent, or not.

The Migration Phase, which is the main phase, has activities that are split into the two
main disciplines: Method Development and Method Enactment. It represents the part of the
framework which is actually the implementation of the idea of the double horseshoe model.
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Following the basic idea of the existing Method Engineering Framework for Situation-
Specific Software Transformation Methods (MEFiSTo) [GFBEK16], which is further based
on Situational Method Engineering (SME) [HSRÅR14], during Method Development and
Method Enactment respectively, a situation-specific test case migration method is developed
and enacted.

The general idea is to use predefined method blocks, called Method Fragments which
are stored in a Method Base. A method fragment is an atomic building block of a migration
method, i.e., an activity, artifact, or tool [HSRÅR14]. As we follow the idea of model-
driven software migration [FWE+12], our method fragments belong to one of the following
reengineering processes: reverse engineering, restructuring, or forward engineering [CC90].
Method Patterns, on the other hand, represent a proven migration strategy and show how
different migration fragments could be combined to realize this strategy. Each pattern has a
set of characteristics that express its suitability to a certain situation. Besides the Method
Patterns, the repository also contains a set of co-migration method patterns. They express
the dependency between the system and the test case migration patterns, thus supporting the
co-evolution analysis.

Having the method fragments and method patterns, guidance is needed on how to create
a test migration method for a specific context. This is done by a method engineering process,
which guides the development and the enactment of the context-specific test migration
method. The method engineering process begins with Context Characterization considering
Co-Evolution which takes the original test code as the main input. During this activity,
both the system migration and testing contexts are being characterized, and additionally,
co-evolution analysis is performed. Namely, the two previously introduced co-evolution
activities, change detection, and impact analysis are applied. The overall outcome of the
analysis defines what kinds of modifications of the test cases are necessary in terms of test
case changes.

Then, based on the previously collected context information in terms of Situational
Context Model, an appropriate method pattern is selected and configured. The result of
this activity, Situation-Specific Test Migration Method Specification, is used as a base input
for the Tool Implementation, where for every specified activity that shall be performed
(semi-)automatically, an appropriate tool is implemented. The migration phase ends with
the Transformation step, where based on of the Situation-Specific Test Migration Method
Specification and the Situation-Specific Tool Chain the actual transformation of the test cases
is performed.

Last but not least, in the Post-Migration Phase, the migrated test cases are validated.
With the help of a novel validation method, it is checked whether the test cases are migrated
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without changing their behavior, i.e., without changing what they actually test. As the main
goal of the migration validation is to identify false positives and false negatives among the
migrated test cases, the validation method relies on mutation analysis.

1.4 Publication Overview

In the course of this PhD thesis, a number of publications were created and published on
different workshops and conferences. As shown in Figure 1.5, the classification is made
according to the phase of the solution approach a given publication is related to.

I. Pre-Migration Phase

II. Migration Phase

III. Post-Migration Phase

[JNES18]
[JYAS18]

[JGGT16] [JGY16] [JGG16] [Jov17]

General Idea and Challenges

[JNY+20]

[JS17] [JYS18] [JEAS18]

[JYG+19]

Method Engineering and Co-Evolution

[JYSE20a] [JYSE20b]

[JWY+20]

[JG18]

Figure 1.5 Overview of the publications related to this thesis

Regarding the Pre-Migration Phase, the test case quality evaluation is addressed by
[JNES18], which presents a method for test case quality assessment called Test Case Quality
Plans (TCQP). The method enables the creation of appropriate test case quality plans which
can be executed against a particular test case suite and provide insight on the quality of the
test cases.

The main idea about applying the model-driven engineering principles in the field of test
case migration was presented in [JGGT16]. More specifically, in this paper, the problem
domain and the challenges in test case reengineering as part of software migration are
discussed.
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Providing a model-driven method for reusing test cases in software migration projects was
firstly presented in [JGY16]. Based on a set of challenges, a migration method represented
as a test case reengineering horseshoe model was introduced. This reengineering horseshoe
model follows the already existing system reengineering horseshoe model thus representing
the co-evolution of the test cases.

As our method is model-driven, in [JGG16] we discussed its close relation to model-based
testing [PP04]. In general, there are several model-based testing scenarios, depending on the
source of the test model. Accordingly, our method can be characterized as a combination of
the existing scenarios.

Providing a one-size-fits-all migration method is not possible, and for this reason, in [JS17,
Jov17], we discussed the initial idea about providing a framework for the construction of
situation-specific test case migration methods which support co-evolution. In [JYS18], we
provided a reference migration method in terms of a test case reengineering model as a
constituting part of the framework. A detailed description of the test horseshoe model,
covering all basic artifacts, activities, and tools needed for test method construction is
presented in [JEAS18]. The co-evolution analysis which is combined with the concept
modeling is presented in [JYSE20a]. Furthermore, the co-migration patterns are presented
in [JYSE20b]. The complete solution on the modular construction of context-specific test
case migration methods is presented in [JYG+19].

A basic idea about test case migration validation applied in the Post-Migration Phase was
initially presented in [JYAS18, JG18]. The method, based on mutation analysis, provides
different scenarios and guidelines to identify false positives and false negatives among
the migrated test cases. The complete validation method based on mutation analysis was
presented in [JNY+20]. The supporting model-driven mutation framework was presented
in [JWY+20].

1.5 Structure of the Thesis

An overview of the structure of this thesis is shown in Figure 1.6.
In Chapter 2, we introduce the needed foundation for different research areas related

to our work, particularly Model-Driven Engineering, Software Reengineering, Software
Evolution, and Method Engineering.

In Chapter 3, we present a general overview of the related work. Firstly, we describe in
detail the requirements which should be fulfilled by a solution concept. Then, we identify
and classify the existing approaches in four different areas: Model-Based/Model-Driven
Testing, Test Case Reengineering, Test Case Evolution, and Software Migration.
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Figure 1.6 Overview of the thesis structure

In Chapter 4, we present our general solution idea by introducing the three main phases
supported by our framework: Pre-Migration, Migration, and Post-Migration Phase. We
briefly describe first how a quality assessment is performed. Then, how by considering
co-evolution analysis, a situation-specific test migration method can be constructed. Finally,
we present a validation method for test case migration. We also define a set of evaluation
criteria which fulfillment is discussed by two feasibility studies.

In Chapter 5, we present the first phase of our solution approach, the Pre-Migration Phase,
which addresses the quality evaluation of test cases. Therefore, we present our method for
quality evaluation of test cases called Test Case Quality Plans (TCQP) and we discuss its
main constituting parts, process, and the metamodel. The process specifies the steps needed
to create a quality plan and the metamodel how such a test case plan could look like.
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In Chapter 6, we present the main phase of the solution approach, namely the Migration
Phase. We firstly introduce the method base by introducing its constituents, namely the test-
specific method fragments and the method patterns as well as the co-migration patterns. After
this, we introduce the method engineering process for the development and enactment of test
transformation methods. The process also considers, the test case co-evolution analysis, with
the two main activities: change detection and change impact analysis.

In Chapter 7, we present the Post-Migration Phase, i.e., the migration validation. We
firstly introduce the mutation analysis repository with its main constituents, namely mutation
analysis scenarios, mutation patterns, and mutation operators. Thereafter, we introduce the
test case migration validation process that relies on the mutation analysis repository.

In Chapter 8, we firstly state a set of evaluation questions whose fulfillment we aim to
discuss by feasibility studies. Thereafter, we present the feasibility studies that we have
performed in practice to demonstrate the applicability of the TeCoMi framework. We
performed two feasibility studies in which we transformed real-world test cases to different
target platforms. Based on the findings, we discuss the previously introduced evaluation
questions.

In Chapter 9, we conclude the thesis with a summary of our main contributions and we
give an outlook on possible future work.



Chapter 2

Foundations

In this chapter, an overview of foundations is given that are relevant for this thesis. As shown
in Figure 2.1, we grouped the foundations into five main areas that form the basis for the
development of the solution concept. Firstly, we introduce in Section 2.1 the general concepts
of Software Reengineering. In Section 2.2, we introduce Software Co-Evolution. Further,
in Section 2.3, we introduce the essential foundation of Method Engineering. In Section 2.4,
we introduce the fundamentals of Software Testing. Finally, in Section 2.5, we give an
overview of Used Technologies.

Software
Reengineering

Software
Co-Evolution

Solution Approach

Method
Engineering

Software
Testing

Used
Technologies

Sec 2.1 Sec 2.2 Sec 2.3 Sec 2.4 Sec 2.5

Figure 2.1 Research areas relevant to this thesis

2.1 Software Reengineering

In this section, we introduce the area of software reengineering as our approach employs
different reengineering techniques. According to [CC90], software reengineering is defined
as "examination and alteration of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form". We firstly describe software migration, as a
manifestation of software reengineering and we also discuss the transformation methods in
the software migration context. Thereafter, we introduce concept modeling, a technique that
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can be used to represent the functionality of a software system as well as the functionality of
test cases.

2.1.1 Software Migration

Software migration is a well-established method for transferring software systems into new
environments while keeping the data and the functionality of the system [BLWG99]. As this
definition suggests, software migration is related to two main characteristics: environment
change and functionality and data preservation. An environment change can be a change
regarding the architecture and/or the programming language. Functionality and data preser-
vation suggest that the functionality of the system as well as the data should stay unchanged
after the migration is performed.

Model-Driven Engineering (MDE) has been established to deal with the increasing com-
plexity of development, maintenance, and evolution of nowadays software systems. In order
to achieve this, it relies on models and model transformations [BCW12]. Model-Driven
Architecture (MDA), proposed by the Object Management Group (OMG), defines several
software models on different levels of abstraction, thus clearly separating the business com-
plexity from the implementation details [OMG14]. MDA defines three levels of abstraction:
Computational-Independent Model (CIM), Platform-Independent Model (PIM), and Platform-
Specific Model (PSM). The Computational-Independent Model (CIM) focuses on the context
and the requirements of the system. The main focus of the Platform-Independent Model
(PIM) is on the operational capabilities of the system without consideration of a specific
technology. Finally, the Platform-Specific Model (PSM) focuses on a specific platform.

In case when MDA principles are followed, migration approaches are known as model-
driven software migration (MDSD) [FWE+12]. In general, software reengineering consists
of three consecutive phases: Reverse Engineering, Restructuring, and Forward Engineer-
ing [KWC98]. Reverse Engineering, according to [CC90], is the process of analyzing
a subject system to create representations of the system in another form or on a higher
level of abstraction. Restructuring, as defined by [CC90], is "the transformation from one
representation form to another at the same relative abstraction level, while preserving the
subject system’s external behavior (functionality and semantics)". Forward Engineering
is defined as "the traditional process of moving from high-level abstractions and logical,
implementation-independent designs to the physical implementation of a system" [CC90].
As already mentioned, we define software migration as a manifestation of software reengi-
neering:
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Notation 1 (Software Migration). Software migration is a kind of software reengineering
dealing with the transition of an existing system to a new environment while retaining the
functionality and the data of the system [BLWG99].

Migration of existing systems, i.e., transferring them into a new environment is a complex
endeavor. For this reason, commonly, a migration project is established and a software
migration method gets enacted. Such a method guides the complete endeavor of software
migration. We define a software migration method as follows:

Notation 2 (Software Migration Method). A software migration method is a method that is
used to guide a software migration endeavor.

During a software migration, a transformation of the existing system on a technical level is
performed. How to perform this technical alteration is defined by the software transformation
method which is actually an instance of the horseshoe model shown in Figure 1.2. We define
a software transformation method as follows:

Notation 3 (Software Transformation Method). A software transformation method is an
instance of the horseshoe model and used to guide the technical transition of an existing
system into a new environment during a software migration endeavor.

2.1.2 Concept Modeling

Concept modeling is a technique to represent a software system by a set of concepts [KNE92].
Thereby, each concept belongs to a particular level of abstraction and refers to a specific part
of the software system‘s source code. The general idea of concept modeling is illustrated
in Figure 2.2. The concepts are split into two different groups, namely language concepts
and abstract concepts. Language concepts directly correspond to syntactic entities of the
programming language, like variables, declarations, statements, etc. [KNE92]. The abstract
concepts, on the contrary, represent language-independent ideas of computation and problem-
solving methods [KNE92]. Abstract concepts are further classified into architectural and
programming concepts.

Notation 4 (Language Concept). A language concept is a syntactic entity of a programming
language.

Abstract concepts reside on higher levels of abstraction. They represent a general idea of
computation or problem-solving principle [KNE92]. Thereby, they are not associated with a
specific programming language but represent language-independent principles. In this thesis,
we define an abstract concept as follows:
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Notation 5 (Abstract Concept). An abstract concept represents a language-independent idea
of computation or problem-solving principle.

Abstract concepts can be further classified into programming concepts and architectural
concepts. A programming concept represents general programming strategies, data structures
or algorithms [KNE92]. In this thesis, we define a programming concept as follows:

Notation 6 (Programming Concept). A programming concept is an abstract concept and
represents general programming strategies, data structures or algorithms.

An architectural concept represents components or interfaces that reside within a soft-
ware system [KNE92]. In contrast to programming concepts, they do not represent some
functionality of the system but focus on describing its overall structure. In this thesis, we
define an architectural concept as follows:

Notation 7 (Architectural Concept). A programming concept is an abstract concept and
represents general programming strategies, data structures or algorithms.

The architectural concepts are associated with interfaces or components whereas the
programming concepts represent a general coding strategy, data structure or algorithm.
Concepts can be related to each other by is-a relation, to express a hierarchy between different
concepts, and consists-of relation to express dependencies between concepts. In [Gri16],
when applying the idea of concept modeling to software modernization, three classes of
concepts are distinguished, source concepts, target system concepts, and shared system
concepts. Regarding the original system, the language concepts are determined by the
language elements that are already used, whereas target system concepts are those that will
be used after the transformation. Finally, a shared concept is an abstract concept of the
original system that can be realized in the target environment. All in all, the concept model

A1

Shared Concepts

L1

L2

L3

Source Concepts Target Concepts

A2

L5

L6

L4
L7

L8

consists-of relation

is-a relation

Language Concept

Abstract Concept

Set of Concepts

Figure 2.2 Representation of a software system as a set of concepts (based on [Gri16])
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is defined as a directed, acyclic and connected graph. The nodes represent the concepts,
whereas the edges between them represent is-a or consists-of relations.

We have seen that the software reengineering techniques like software migration and
concept modeling deal with the transformation of a given software artifact. Very often, when
some artifact changes, the depending artifacts have to be also correspondingly changed.
Therefore, the following section deals with the topic of Software Co-Evolution to describe
the process of analyzing changes, identify their impact, and propagating them if needed.

2.2 Software Co-Evolution

Co-migration of test cases includes their co-evolution. Therefore, in this section, we introduce
the basic co-evolution process and we subsequently explain each step of the process. Modern
software systems are rapidly evolving due to continuously changing technological and
business requirements [MD08]. These systems must often undergo changes to fulfill these
changed requirements. The number of new requirements and maintenance requests often
grows faster than software developer’s abilities to implement them [MWD+05]. Changing
some requirements affects other related and dependent artifacts such as design specifications,
source code, test cases, and documentation. Therefore, changes to one artifact may not be
reflected immediately to all other interdependent artifacts, which results in inconsistency
among dependent artifacts. A key process of managing consistency between software artifacts
is co-evolution and it is defined as follows:

Notation 8 (Software Co-Evolution). Software co-evolution refers to two or more artifacts
evolving alongside each other, such that there is a relationship between the two that must be
maintained [MD08].

We distinguish between two types of artifacts: evolving artifact and depending artifact.
We define them as follows:

Notation 9 (Evolving Artifact). The artifact that undergoes changes is called evolving
artifact.

Notation 10 (Depending Artifact). On the other hand, those artifacts which are affected by
changes to the evolving artifact are known as depending artifacts.

For example, when a change (e.g., adding a feature) is applied to a system, not only
its code should evolve (evolving artifact), but also its design models (depending artifact)
should evolve. The common process proposed by [MD08], as shown in Figure 2.3, consists
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Figure 2.3 The staged process model for co-evolution [MD08]

of the following activities: Change Detection, Impact Analysis, Change Propagation, and
Validation.

Firstly, in Change Detection, all changed parts of the system are identified. Having these
changes identified, in the next step called Impact Analysis, all affected artifacts are identified
and an estimation of the effort required to accomplish the change together with involved
risks is determined. Then, based on the results of the impact analysis, as part of the Change
Propagation step, the actual propagation of the changes to transform the dependent artifact is
performed. In the end, Validation is carried out to ensure that all dependent artifacts subjected
to change have evolved consistently.

2.2.1 Change Detection

In the first step of the co-evolution process, it should be determined how and which changes
can be detected. According to the kind of detection, there are three main approach types:
state-based, operation-based, manual, and hybrid. State-based approaches match the original
version and the evolved version of the artifact in order to derive the applied changes. On the
contrary, the operation-based approaches rely on the recorded or logged applied changes.
In the manual approaches, one needs to define the changes by hand. As a last option
hybrid approaches which combine the previously mentioned types can be applied. The
granularity of change is another characteristic of a change detection approach and according
to it two different types of approaches: those that detect changes as atomic units, i.e., not
interconnected single changes, or as composite units, i.e., a sequence of changes which are
semantically connected.

2.2.2 Impact Analysis

The identified changes may have an impact on the depending artifacts and this should be
determined as part of the impact analysis step. Firstly, a detailed analysis is necessary on
the depending artifacts, to reveal the potential effects on the artifacts. For example, when
analyzing a relation between source code and tests, the relationship "is-tested-by" can be
utilized to identify the test cases that could be possibly affected. The outcome of the analysis
should be usable for user intervention, i.e., it should clearly indicate the affected artifacts and
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the type of impact on them. The impacts may be detected on a different level of granularity,
ranging from fine-grained to coarse-grained level. In the case of models, on a fine-grained
level is for example when the features are impacted, whereas on a coarse-grained level is for
example when a whole package is impacted.

2.2.3 Change Propagation

Based on the outcome of the impact analysis, it should be determined how the identified
changes should be propagated to the depending artifacts and how the consistency between
the artifacts may be ensured. There are different strategies when it comes to the actual
propagation of the changes, the different approaches may offer existing predefined strategies
which could be further customized, e.g., parameterized, adapted or completely overwritten.
The propagation can be either done automatically, without any intervention of the user, or
semi-automatic, i.e., with user intervention. As the last point comes the consistency between
the artifacts, i.e., the intra-artifact consistency. Namely, in the case of code and test case
co-evolution, when a set of test cases are impacted by a given code change, then this change
has to be propagated to all of the impacted test cases.

2.2.4 Validation

In the final step, also an optional step, the consistency between the artifacts has to be checked.
Namely, after the propagation of the changes, it must be ensured that artifacts have co-evolved
in a consistent way. Two types of validation are possible: a syntactical and a semantical
validation. A syntactical validation may be performed by using consistency rules and a
semantical validation by applying regression testing. The validation may be performed on a
given instance of an artifact, or all instances of a given kind or all instances of all kinds.

Software co-evolution defines the exact steps on how to keep the artifacts synchronized
when changes happen. Combined with the software reengineering techniques, this enables
the transformation of multiple artifacts, e.g., a system and the corresponding test cases, in
an automated way. How to exactly perform a transformation is described by the means
of a transformation method. Therefore, in the following section, we introduce Method
Engineering which deals with the topic of development and adaptation of transformation
methods.
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2.3 Method Engineering

Migrating test cases means the enactment of a transformation method which would transform
the test cases for the target environment. Therefore, in this section, we introduce foundations
in the area of method engineering which is the discipline to systematically develop or adapt
methods [Bri96]. A method guides a complex software engineering endeavor, like the
development of a software system or its transformation. This endeavor is guided by the
method by specifying the activities to enact, artifacts to generate, tools to use or roles to
involve [ES10]. According to [ES10, Gri16], a method is defined as follows:

Notation 11 (Method). A method is a description of how to systematically perform an
endeavor. This comprises a process and its contained activities, artifacts, roles, tools, and
relationships between these elements on varying levels of granularity.

In the following, we describe Situational Method Engineering (SME) which is a spe-
cific manifestation of method engineering. Subsequently, we introduce two concrete SME
approaches that form the base for our approach.

2.3.1 Situational Method Engineering

Situational Method Engineering (SME) is a kind of method engineering which encompasses
all aspects of creating a method for a specific situation [HSRÅR14]. During the development
of the method, the SME approaches take into consideration the situational context in which
a method will be applied. As a result, the created method is situation-specific as it can be
adapted to the context. An SME approach can be realized in various ways depending on the
degree of controlled flexibility which is the degree of freedom given during the development
of a method to adapt it to the given situation. Flexibility refers to the degree of freedom
given during the method’s development to adapt the method to the given situation. In order
to sustain the quality of the resulting method, the development additionally needs to be
controlled. Therefrom, control refers to the degree of guidance given during the method’s
development. With such guidance, one can ensure the result of the development, e.g., the
correctness or quality of the method.

In this thesis, we focus on the class of approaches with the highest level of controlled flex-
ibility by enabling a modular construction of situation-specific methods. Those approaches
usually define two main constituents, namely the method base and the method engineering
process. A method base constitutes a repository that contains reusable building blocks of
methods whereas a method engineering process is defined to systematically construct a
method. According to [HSRÅR14], the building blocks of methods are called method parts
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and common examples are method fragments, method chunks or method components. On
the one hand, a method fragment can be seen as an atomic building block of a method. On
the other hand chunks as well as components aggregate multiple fragments. The focus in this
thesis is on the method fragments which we define as follows:

Notation 12 (Method Fragment). A method fragment is a reusable, atomic building block of
a method, i.e., a single activity, artifact, role or tool [HSRÅR14].

However, developing a complete method by solely using method fragments is a cumber-
some task, as methods can become large in practice. One way to address this problem is to
use larger method parts than method fragments. This increases the efficiency of the method
development as fewer elements of the method base need to be considered [HSGPR08]. The
solution concept of this thesis follows another way by using method patterns. A pattern,
in general, is associated with a reoccurring problem in a certain context [AIS77]. For the
associated problem, it describes the core of a solution. A method pattern transfers this idea
to the field of method engineering [FBLE13]. Each pattern is associated with a problem that
shall be addressed by enacting a method. The solution to the problem is encoded by the
pattern in the form of construction guidelines for the method [RP96]. As method patterns are
an essential part of this thesis, we define them as follows:

Notation 13 (Method Pattern). A method pattern is associated with a problem that shall
be addressed by enacting a method. It encodes the solution in the form of construction
guidelines for a method, i.e., it specifies which method fragments to use and how to assemble
them [Gri16].

2.3.2 Project-Specific Software Engineering Methods

The MESP framework (Method Engineering with Method Services and Method Patterns) is
a solution for software engineering method management.

It consists of two main types of method building blocks: method services and method
patterns. A method service is a reusable, compositional, interoperable, and executable unit
of a method based on the service-oriented paradigm. A method pattern provides a means
to capture abstract orderings of activities as guidance for the project method engineer. As
shown in Figure 2.4, the method engineering process comprises three main layers: Method
Content Definition, Method Tailoring, and Method Enactment. For the tasks on each layer, the
framework defines a responsible role based on the software engineering method management
hierarchy as each layer requires a different level of knowledge and experience.

First of all, based on lessons learned or a description of methods on literature, a senior
method engineer extracts reusable method content. On this basis, the basic method and
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Figure 2.4 Overview of the MESP framework [FB16]

characterization elements are modeled (Define Basic Method Elements & Basic Characteri-
zation Elements). Consequently, as part of the Define Method Building Blocks, the actual
method building blocks are defined, and they can be used to create situation-specific software
engineering method models.

At the Method Tailoring layer, the project method engineers firstly characterize the
project in order to ease the finding of suitable building blocks for the project. Having the
suitable method building blocks for their project chosen, the building blocks are composed to
a tailored method model. As last task of the tailoring layer, quality assurance of the tailored
method is performed in order to check for some quality issues like missing building blocks,
contradictions in control-flow and data-flow, etc.

As part of the Method Enactment layer, the project team firstly creates the software for
their project by following the previously tailored method. The composed method model is
then executed with a process engine whose role is to coordinate the activities of the project
team members. Furthermore, it should provide guidance on the pending tasks so that the
method is enacted as prescribed. Finally, with the Reflect Method task, the project team
collects feedback about the method enactment. This knowledge can be used by the senior
method engineer in improving method building blocks.
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2.3.3 Concept-Based Engineering of Situation-Specific Methods

The MEFiSTo framework (Method Engineering Framework for Situation-Specific Software
Transformation Methods) [Gri16] is a method engineering framework that enables the
modular construction of situation-specific software transformation methods.

As can be seen in Figure 2.5, the framework consists of a method base and a method
engineering process. The method base provides the basic building blocks for assembling trans-
formation methods and it consists of Method Fragments and Method Patterns. The method en-
gineering process provides guidance on the development and enactment of situation-specific
methods. Consequently, as shown in [Gri16], the activities of the method engineering process
are separated into the two main disciplines: Method Development and Method Enactment.
To develop a situation-specific transformation method, activities of the former discipline are
performed. By performing activities of the latter discipline, the developed method actually
transforms the original system.

The purpose of the Situational Context Characterization activity is to systematically
identify the situational context, e.g., characteristics of the original and the migrated system.
The outcome of this activity is obtained in terms of a Situational Context Model. The
identified situational context serves as input for the next activity, namely the Transformation
Method Construction, which guides the endeavor of constructing the transformation method.
This includes selecting suitable method patterns and customizing method fragments. For
those activities that shall either be performed automatically or semi-automatically, during
Tool Implementation, a corresponding tool as part of an integrated toolchain is implemented.

Once the transformation method and the required tools have been developed, the actual
transformation of the original system needs to take place as part of the Transformation
activity.
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So far, we have seen different methods and techniques on how to develop methods
(Method Engineering) that can transform (Software Reengineering) multiple artifacts while
keeping them consistent (Software Co-Evolution). As we intend to do this in the domain of
test cases, in the following section, we give an overview of the area of software testing.

2.4 Software Testing

In this section, we introduce foundations in the area of software testing as we deal with the
migration of the central artifact in software testing, namely the test cases. Software testing
is a well-known method for asserting, among others, whether a software system provides
a required functionality [SL09]. Different testing techniques on different levels of testing
like unit, integration or system testing can be applied to assert a system’s functionality. A
central artifact in software testing is a test case which is a construct that consists of input
data, actions, i.e., test steps, and expected result. Therefore, in a process called test case
design, based on previously defined functional requirements, test cases are created and then
executed against the migrated system. When executed, a test case produces an actual result
which is then compared to the specified expected result. In case they match, i.e., a test case
results in a positive overall outcome, the functionality being tested is said to be validated.

In the following, we introduce Model-Based Testing, a software testing methodology
which aims at the automation of creation and execution of test cases. Then, we introduce
Mutation Testing which is used as a technique to check the quality of the test cases. Lastly,
we introduce quality models in general as well as test case quality models.

2.4.1 Model-based Testing

Model-based Testing (MBT) [PP04] is a software testing methodology that relies on using
(semi-)formal models that encode the expected behavior of the system under test to derive
test artifacts like test cases, test data or test configuration. A testing process that is MBT-
based addresses not only the creation of test cases, rather it involves another starting with
the definition of test models and ending up with the analysis of the test coverage after the
tests are executed. According to [PP04] (shown in Figure 2.6), a typical MBT-based testing
process involves the following activities:

1. Defining a test model - a test model gets defined for example by a tester based on the
requirements or the system specification

2. Defining a test case specification addressing selection criteria
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Figure 2.6 The general MBT approach [PP04]

3. Generation of test cases from a test model with respect to test selection criteria

4. Execution of test cases - the generated test cases are then executed against the system

5. Evaluation of test results - the results of the execution like the success or the test
coverage are analyzed

Regarding the origin of the models, six different scenarios have been identified so
far [PP04, GMS10]. In the context of test case migration, the most interesting scenario is
Models from Test Cases where the test models are reverse engineered from the existing test
cases.

This scenario assumes that an existing set of test cases contains relevant information
about the system under test as well as about the test inputs and expected results. The existing
test cases are basically reused and by using reverse engineering techniques, the test models
are automatically derived from these test cases. This scenario is described as useful in the
case of migration from classical to model-based testing [GMS10]. After applying reverse
engineering, the obtained test models could be used for the generation of new test cases.

Model-Driven Testing (MDT) [HL03, EGL06] is a type of model-based testing that fol-
lows the Model-driven Engineering principles, i.e., the test cases are automatically generated
from a test model using model transformations.

2.4.2 Testing Languages and Testing Frameworks

UML Testing Profile [OMG13b] is a language standardized by OMG which supports testing
on model level. It can be divided into four main parts: Test Architecture, Test Behavior, Test
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Data, and Test Management. Test Architecture is used for the specification of the structural
aspects of the test environment and the corresponding test configuration. Test Behavior
specifies the stimulation and observation of the system under test (SUT) by using any kind of
UML behavior diagram. Using Test Data one can specify the pre- and post-conditions as well
as the input and expected output of the SUT. Last but not least, using Test Management one
can manage, for example, the test planning, scheduling or execution of test specifications.

Test Description Language (TDL) [ETS16] is a testing language standardized by the
European Telecommunications Standards Institute (ETSI)1 bridges the gap between high-
level test purpose specifications and executable test cases [Ulr14]. The language is scenario-
based and it can be used for design, documentation, and representation of formalized test
descriptions. The main ingredients of the language are Test Data, Test Configuration, Test
Behavior, Test Objectives, and Time. Test Data specifies the elements needed to express data
sets and data instances that are used in test descriptions. Then, Test Configuration typed
components and gates and the connections among the gates. Test Behavior defines expected
behavior. Using Test Objectives one can define the objectives of the testing by attaching them
to behavior or to a whole test description.

Testing and Test Control Notation version 3 (TTCN-3) [ETS05] is a testing language for
test specification and implementation standardized by the European Telecommunications
Standards Institute (ETSI). It supports the creation of abstract test specifications which can
be executed by providing additional implementation components, such as a SUT adapter.

xUnit [Mes07] is a family of unit-testing frameworks that share common characteristics.
Probably the most popular frameworks of this family are JUnit [JUn] and nUnit [NUn] used
for testing Java for C# software systems receptively. MSUnit [Mic] is a Microsoft’s testing
framework for unit testing integrated into Visual Studio which has a similar, but still a little
bit different structure compared to the xUnit-family frameworks.

2.4.3 Mutation Testing

Mutation testing or mutation analysis is a technique used to create new test cases as well as
examine the quality of available test cases [LS78, HG77]. The standard process of mutation
testing is depicted in Figure 2.7. In general, applying mutation analysis on a System S starts
with the System Mutation activity, where System S is modified to create System Mutant S’.
The mutant is obtained by making atomic syntactic changes by using so-called mutation
operators.

1http://www.etsi.org/
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Notation 14 (Mutation Operator). Let T be a transformation T: S ! S’ that happens during the
System Mutation activity and creates a mutant by modifying an existing System S in System S’.
T is called mutation operator (also known as the mutant operator, mutation rule) [Won01].

Test
Execution

Mutation Score
Calculation

System
S

System
Mutation

System
Mutant

S’

Mutation
Score
Report

Test
Cases

Test
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Figure 2.7 The basic mutation testing process

As part of the next activity, namely Test Execution, Test Cases are executed against the
mutated system, which results in two possible outcomes [Won01]. The first possible outcome
is the deterministic case, where the mutant is detected, i.e., killed. In case that more mutants
are generated at a time, then it is checked that all generated mutants are killed in order to
ensure that all system mutants, i.e., incorrect systems, are rejected by the existing test cases.
The other possible outcome is a bit more complex as it deals with the equivalent mutants.

Notation 15 (Equivalent Mutant). An equivalent system mutant is a system mutant whose
behavior is the same as that of the existing system but, syntactically different.

The detection of an equivalent mutant is, in general, very difficult [BA82, JEF14]. Af-
ter obtaining the execution results in terms of Test Execution Report, the mutation score
is calculated as part of the Mutation Score Calculation activity. Equation 2.1 defines the
mutation score as the ratio between the total number of killed mutants (KilledMutants) and
the total number of non-equivalent mutants (TotalNumberOfMutants - NumberOfEquivalent-
Mutants) [WAS14]. The final result is provided in terms of Mutation Score Report.

MutationScore =
NumberO f KilledMutants

TotalNumberO f Mutants−NumberO f EquivalentMutants
(2.1)

This Mutation Score is an indicator for the quality of the test cases and it value can range
from 0 to 1, meaning the closer to 1, the better. In case the mutation score is 1, it means that
the test suite was able to detect all seeded faults [WAS14]. In case it is less than 1, it suggests
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that the test suite cannot detect all some of the faults in the source code and additional test
cases should be created in order to detect those faults [HG77].

2.4.4 Test Case Quality

The work in test case quality area is currently split into two main areas: approaches that
identify and provide a set or a catalog of metrics and approaches that provide a general and a
standardized quality model that is applicable in any setting. In general, quality models divide
the term quality into its essential quality characteristics. Each of these characteristics can be
subdivided into more detailed quality sub-characteristics and finally into quality attributes.

Quality Model for Test Specification

The international ISO/IEC standard 9126 defines a general quality model for software
products and it contains a quality model for the external and internal quality [ISO01]. It
categories software quality attributes into six characteristics, which are further subdivided
into sub-characteristics. For each characteristic and sub-characteristic, the capability of the
software is determined by a set of internal attributes that can be measured. The characteristics
and sub-characteristics can be measured externally by the extent to which the capability
is provided by the system containing the software. As this general quality model can
be instantiated for a particular domain, in [ZVS+07], an adaptation of the ISO/IEC 9126
quality model to test specification is presented (shown in Figure 2.8). This quality model
is an instantiation for test specifications written in the Testing and Test Control Notation
(TTCN-3). The discussed general quality model contains a two-part quality model. One
part of the quality model is applicable for modeling the internal and external quality of a
software product, whereas the other part is intended to model the quality in use of a software
product [ISO01]. These product qualities are used during different stages of development
and are not completely independent but influence each other. Thus, internal metrics may be
used to predict the quality of the final product, also in early development stages [ZVS+07].
For this reason, the quality model for test specification addresses only the internal quality
characteristics.

The model is divided into seven main characteristics: Test Effectivity, Reliability, Usabil-
ity, Efficiency, Maintainability, Portability, and Reusability. Each main quality characteristic
is structured into several sub-characteristics. The definition for most of the characteristics
are generously re-interpreted from the ISO/IEC 9126 and applied for test specification. How-
ever, some of the characteristics are renamed in the context of testing, e.g., Functionality
to Test Effectivity. The relationship of the quality model to ISO/IEC 9126 is indicated by
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Figure 2.8 The Test Specification Quality Model [ZVS+07] based on the ISO/IEC 9126-1
Quality Model for External and Internal Quality [ISO01]

providing the corresponding name of the ISO/IEC 9126 characteristics in parenthesis. The
quality characteristics which have no corresponding aspect in the general ISO/IEC 9126
quality model, are denoted by the sign (*). The quality model for test specification added
the quality characteristic Reusability which is not explicitly covered in ISO/IEC 9126. This
characteristic is added for a reason because, test specifications and parts of them are often
reused for different kinds of testing, e.g. test cases, and test data for system level testing
may be reused for regression testing, performance testing, or testing different versions of
the System Under Test (SUT). Thus, design for reusability is an important quality criterion
for test specifications [ZVS+07]. The quality model for test specification presents a set
of metrics for each sub-characteristic, gathered through the Goal-Question-Metric (GQM)
approach [BCR94].

Model Quality Plan (MQP) approach

The Model Quality Plan (MQP) approach [VE08] defines a procedure for building a quality
plan for the quality assessment of software models. This approach combines the advantages of
both Goal Question Metric (GQM) and quality models [VGE08]. The quality plan generated
from the MQP approach forms the basis for carrying out the quality assessment.
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The MQP approach is based on a top-down process and a related metamodel. The
incremental and iterative process, illustrated in Figure 2.9, serves as a guideline for defining
a quality plan. All the relevant information contained in a model quality plan is formalized
by the metamodel shown in Figure 2.10. Hence, the metamodel defines how a model quality
plan may look like, and the process guides one how to build it up [VGE08].

At first, during the Characterization of Context step, the context factors of a software
model are documented to find out what is accurate for the considered software model (e.g.
used modeling language, diagram types, development phase). Then, as part of the Identifi-
cation of Information Needs step, the context factors are used for identifying information
needs specified by goals and questions. Goals and questions are described based on quality
characteristics and quality attributes respectively. These derived characteristics and attributes
are the first set-up for the quality model. During the Definition of Quality Understanding step,
the quality model is extended (e.g. sub-characteristics are introduced) and all characteristics
and attributes are interrelated and defined. In the last step, namely the Definition of Measure-
ments, the measurement of the bottom level of the quality model (the quality attributes) is
documented. The measurements are classified into base measures, derived measures, and
indicators. The documentation of a base measure includes, for example, a name, acronym,
type, and unit of measurement, informal or formal definition of the measurement method,
scale, and scale type. The MQP metamodel groups classes according to the main steps of the
MQP process by several packages shown in Figure 2.10.
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Figure 2.9 The MQP Process [VE08]
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Figure 2.10 An excerpt of the MQP metamodel [VE08]

The packaged classes possess a strong interrelated structure which can be noticed by the
imported classes (e.g. ContextElement) point out the seamless transitions between two given
steps.

2.5 Technologies

In this section, we give a brief overview of the technologies used to implement the solution
approach of this thesis. Subsequently, we introduce the Eclipse Modeling Framework (EMF),
Xtend, and Object Constraint Language (OCL).

2.5.1 Eclipse Modeling Framework

The Eclipse Modeling Framework [SBPM09] is a modeling framework for the Integrated
Development Environment Eclipse. The central part of the framework is the Ecore modeling
language which is used to describe domain models. The models can be created by using
different tools provided by EMF, e.g., a graphical editor. Subsequently, based on the domain
model, a code generator can be used to create Java code. EMF consists of three main parts:
EMF, EMF.Edit, and EMF.Codegen. EMF or the core part of the EMF framework includes
a metamodel (Ecore) which is used to describe models. It also provides runtime support
for the models including, persistence support, change notification, and a reflective API to
manipulate EMF objects in a generic way. EMF.Edit provides generic reusable classes
for building editors for EMF models. It is a command framework, that includes a set of
generic command implementation classes so that one can build editors with the full support
of automatic undo and redo functions. The EMF.Codegen part provides a code generation
facility that is capable of generating the necessary artifacts in order to build an editor for an
EMF model. The generation facility relies on the JDT (Java Development Tools) component



2.5 Technologies 36

of Eclipse. As JDT is of high importance for our work, as it was used in the case study we
present in Chapter 8, we describe it in more detail.

The JDT component provides APIs to access and manipulate Java source code. Generally,
it provides a set of plug-ins, one very important for our work, namely the JDT Core. JDT
Core deals with the non-UI infrastructure and it includes Java Model that provides API
for navigating as well as the Java Abstract Syntax Tree (AST). By using the Java Model
each Java project is internally represented as a model which is a lightweight and fault-
tolerant representation of the project. Compared to the AST representation, it contains less
information but is fast to create. The Java model is represented as a tree structure and it is
defined in the org.eclipse.jdt.core plug-in. For example, a Java project is represented
as IJavaProject java model element, each package is represented as the IPackageFragment
java model element.

The AST on the other hand, is a detailed tree representation of the Java source code
and it provides an API to manipulate the source code (modify, create, read, and delete).
The AST is located in the org.eclipse.jdt.core plug-in, or more precisely in the
org.eclipse.jdt.core.dom package. Each Java source element is represented as a sub-
class of the ASTNode class and it provides specific information about the object it represents.
For example, MethodDeclaration is used for methods, VariableDeclarationFragment, for
variable declarations, SimpleName for any string which is not a Java keyword, a Boolean
literal (true or false) or the null literal.

The process of working with AST is typically the following: Firstly, by using the AST-
Parser located in org.eclipse.jdt.core.dom.ASTParser, a java source code is parsed
and its AST is obtained. Then, if modifications are necessary then the AST of the source
code is manipulated. An AST Node could be found by checking the different levels in the
AST or by using the visitor pattern via the ASTVisitor class. In the end, the changes are
written back to the source code from the AST.

2.5.2 Xtend

Xtend2 is a statically-typed programming language which translates to comprehensible Java
source code. Syntactically and semantically Xtend has its roots in the Java programming
language and as it uses the Java type system, it is fully interoperable with Java. Hence,
any existing Java library could be used seamlessly. Xtend also supports specification of
multi-line code templates, thus making it suitable for implementation of code generators, i.e.,
Model-to-Text (M2T) transformations. The compiled output is readable and pretty-printed

2https://www.eclipse.org/xtend/

https://www.eclipse.org/xtend/
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and tends to run as fast as the equivalent handwritten Java code. Xtend improves Java in many
aspects, but we focus mainly on those that were relevant for our work, namely extension
methods, switch expressions, and template expressions.

Extension methods are a useful feature of Xtend which allows adding new methods to
existing types without modifying them. As shown in Code Excerpt 2.1, one option would
be to pass the first argument of an extension method inside the parentheses of a method
invocation. By using extension methods, the method can be called with the first argument as
its receiver, i.e., it can be called as if the method was one of the argument type’s members.
Doing so, the code becomes more readable which is especially advantageous when method
calls are chained.

1 class MyClass {
2 def static void main ( String [] args ){
3 Object obj = new Object ();
4

5 doSomething(obj); // passing as argument to the method
6 obj.doSomething (); // calling the extension method as
7

8 }
9 }

Code Excerpt 2.1 Extension method example

Xtend provides a powerful switch expression which is type-based with implicit casts.
Compared to Java’s switch expressions, it is very different as it is not limited to certain values.
The switch expression can be used for any object reference as Object.equals(Object) is used
to compare the value in the case with the value one is switching over, as shown in Code
Excerpt 2.2.

1 switch exampleString {
2 case exampleString.length > 10 : "a long string."
3 case ’simple ’ : "simple string."
4 default : "another simple string."
5 }

Code Excerpt 2.2 Switch expression example

Xtend also provides specification of templates with intelligent white space handling thus
enabling a readable string concatenation. A template starts and ends with a triple single quote
(”’) and can span multiple lines. Furthermore, a template expression can be nested which are
evaluated and the resulting string representation is inserted at the exact position of the nested
expression. To interpolate an expression, guillemet terminals are used, namely «expression».
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Code Excerpt 2.3 shows a specification of a template and Code Excerpt 2.4 shows its return
value.

1 def generateClass(List <Entity > entities) ’’’
2 «FOR e : entities»
3 public class «e.name» {
4 «FOR f : e.features»
5 «IF f instanceOf Attribute»
6 «generateField(f)»
7 «ENDIF»
8 «ENDFOR»
9 }

10 «ENDFOR»
11 ’’’
12

13 def generateField(Attribute a) ’’’
14 private «f.type.toFirstUpper» «f.name.toFirstLower»;
15 ’’’

Code Excerpt 2.3 Template expression example

1 public class Car {
2 private Integer numberOfDoors;
3 private Integer numberOfSeats;
4 private String description;
5 }

Code Excerpt 2.4 Return value of a template expression

2.5.3 Object Constraint Language (OCL)

Object Constraint Language (OCL) [OCL] is a formal language, originally introduced to
describe expressions over UML models as UML alone is not sufficient. For example, by
solely using the features of the UML class diagram, there is no way to specify constraints on
model elements. One alternative would be to describe the constraints in natural language,
but they are commonly ambiguous. Another alternative would be to use formal languages
like predicate logic, which is unambiguous, but is cumbersome to use. Furthermore, domain
experts commonly do not have the expertise to use a formal language. Therefrom, OCL
is a compromise between formality on the one side and usability on the other side. It was
designed to be read and written more easily than traditional languages but still formal enough.
Using OCL, values of instances can be accessed, connected instances can be navigated or
collections of instances can be iterated.
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OCL is a typed, side-effect free, and declarative specification language. Firstly, each
OCL expression evaluates to a type (either a predefined OCL type or a type in the model
being evaluated). Furthermore, it must conform to the rules and operations of that type.
Side-effect free means that OCL expressions can query or constrain the state of the system
but not modify the system itself. Declarative means that OCL specifies what shout be done
but not how. Finally, specification refers to the fact that the language definition does not
provide any implementation details nor implementation guidelines. In the following, we
discuss the most common applications of OCL.

Invariants
In order to specify integrity constraints in OCL, invariants are defined in the context of a

specific type also known as the context type of the constraint. The boolean condition, which
forms the body of the invariant, is checked. An invariant holds when it is satisfied by all
instances of the context type. As shown in the example in Code Excerpt 2.5, all Students
must have at least one passed exam.

1 context Student
2 inv PassedExamsOverZero:self.numberOfPassedExams >0

Code Excerpt 2.5 OCL invariant example

Certainly, invariants are the most commonly used OCL expression as they provide the
designers with an easy and intuitive way to specify all kinds of conditions that the system
must conform to.

Initialization Expressions
OCL can be also used to specify the initial value of a property upon the object’s creation.

Consequently, the type of expression and type of the initialized property must conform. As
shown in the example in Code Excerpt 2.6, every Student has not passed exams at its very
beginning, i.e., once it is created in the system.

1 context Student :: hasPassedExams: boolean init: false

Code Excerpt 2.6 OCL initialization example

Derived Element
By using derived elements one can define elements whose value is inferred from the value

of other model elements. The logic of the derivation is defined in the element’s derivation
rule. As shown in the example in Code Excerpt 2.7, the element qualifiedForProjectGroup is
of boolean type and it is defined as positive if the student has at least four passed exams.

1 context Student :: qualifiedForProjectGroup:boolean derive:
2 if self.exams ->select(e|e.status=’passed ’)->size() >=4
3 then true else false endif

Code Excerpt 2.7 OCL derivation element example



2.5 Technologies 40

Query operations
In order to query the system data and return some useful information, a query operation,

which is a wrapped OCL expression, can be used. As shown in the example in Code
Excerpt 2.8, the query returns all the publications of the given status.

1 context Student :: examsWithStatus(s:ExamStatus):Set(Exam)
2 body: self.exams ->select(e|e.status=s);

Code Excerpt 2.8 OCL query operation example



Chapter 3

Requirements and Related Work

In this chapter, we give an overview of the related work of this thesis. For this purpose, we
first describe a real-world co-migration scenario in Section 3.1 that resulted in the problem
statement addressed by this thesis. Based on this scenario, we derive in Section 3.2 a set of
requirements that a solution concept should fulfill. We identify and classify related work
in Section 3.3 and evaluate it against the specified requirements. The findings of this chapter
are summarized in Section 3.4.

3.1 Test Case Co-Migration Scenario

As a running example, we use a real-world migration project (shown in Figure 3.1) where a
co-migration was observed [SJGE18] eventually resulting in the problem statement of this
thesis (cf. Section 1.2). More specifically, in this context, the problem of enabling cross-
platform availability of the well-known Eclipse Modeling Framework (EMF) [SBPM09]
was addressed. EMF is highly adopted in practice and generates Java code from platform
independent models with embedded Object Constraint Language (OCL) [OCL] expressions.
However, applications that target multiple platforms like Windows, macOS, Android, iOS
or web browsers usually need to be implemented in different programming languages. As
feature-complete Ecore and OCL runtime APIs are not available for all these platforms,
their functionality has to be re-implemented. Hence, the reuse of the created models across
different technologies is quite difficult and requires time and costs for re-development.

To address this drawback of EMF, a migration to CrossEcore [SJGE18], a multi-platform
enabled modeling framework, was performed. By following a generic migration method
also presented in [SJGE18], language and architectural migrations were performed so that
CrossEcore can generate C#, Swift, TypeScript, and JavaScript code from Ecore models with
embedded OCL. The OCL expressions are translated into expressions of the target language
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by an OCL compiler. As a result, the CrossEcore’s Ecore and OCL API can be consistently
used across platforms, thus facilitating application portability.

In order to ensure that the migration of the EMF framework, i.e., the migration of the OCL
implementation particularly, was correct, a validation method was needed. As the EMF’s
OCL implementation is well-tested, with the test cases available in the EMF public code
repositories, their reuse was a very intuitive solution to be selected. However, their reuse was
not that straightforward as the CrossEcore’s OCL implementation was completely different in
comparison to the EMF’s OCL implementation. But, before even starting with the migration,
the large set of existing test cases had to be analyzed whether it is beneficial to migrate
them at all. It may be that some parts of the OCL were omitted purposely, thus making
the corresponding OCL test cases not needed anymore. Then, no transformation method
was existent to guide the migration endeavor and which would address the fundamentally
different implementations of OCL. Further, as the migration was performed to different
targeting platforms, i.e., programming languages, a "one-size-fits-all" approach is not a
perfect solution. This implies usage of a situation-specific transformation method, suitable
for the situation for example regarding the target language or the target testing platform.
Finally, after the migration of the tests is performed, a validation of the migrated test cases is
necessary to avoid possible false conclusions about the success of the migration.

The solution concept provided by this thesis shall address the aforementioned problems,
i.e., to provide an end-to-end approach that guides the evaluation of the quality of the
test cases, the development of a situation specific transformation method to migrate to the
different target platforms and the validation of the test case migration. In the following, we
describe both the system and test case migration.
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Modelling Framework

test test
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OCL
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OCL
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Figure 3.1 The co-migration problem: Migration of a part of the EMF framework to provide
cross-platform availability
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3.1.1 System Migration

The Eclipse Modeling Framework (EMF) is a modeling framework and a code genera-
tion facility for building tools and other applications based on a structured data model for
the Integrated Development Environment Eclipse. Ecore, a concrete implementation of
the Meta-Object-Facility (MOF) [OMG13a], is the core component of EMF and it is the
metametamodel for describing metamodels.

OCL Implementation in EMF

EMF provides an implementation of the Object Constraint Language (OCL) which is an
OMG standardized formal language used to describe expressions over UML models. More
specifically, OCL expressions are embedded within Ecore models where it can be used
to derive the values, execute parameterized model queries, define preconditions and post-
conditions, and define class invariants. As shown on the left-hand side left in Figure 3.2), the
EMF Code Generator component embeds native string-based OCL expressions directly in
the emitted Java code with the help of Java Emitter Templates. The interpretation of the OCL
expressions is delegated by EMF Runtime API to the OCL Interpreter which firstly parses
the OCL expressions from strings and executes them at run-time, i.e., in Just-In-Time (JIT)
manner. All in all, as EMF mostly focuses on Java, the reuse of the created models across
different technologies is quite difficult and requires time and costs for re-development.

OCL Implementation in CrossEcore

CrossEcore [SJGE18], a cross-platform enabled modeling framework, addresses this problem
by providing a code generation of platform-specific model code from platform-independent
Ecore models with embedded OCL expressions. As shown on the right-hand side left in

Figure 3.2 OCL implementation in EMF in JIT-fashion (left), CrossEcore’s AOT implemen-
tation of OCL (right) [SJGE18]
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Figure 3.2), the framework includes an Ecore and OCL API (CrossEcore Runtime API)
that can be used consistently across the platform, as it has a nearly identical structure and
behavior on every platform. The OCL compiler (OCL Visitor), as part of the CrossEcore
Code Generator, transcompiles the string-based OCL expressions embedded in a platform-
independent model into expressions of the target programming language. The operation
bodies, invariants, and derived attributes are automatically translated into expressions of the
target language. Hence, the OCL expressions are translated at design-time and ahead of
compilation, i.e., in Ahead-Of-Time (AOT) manner. As a result, this increases the productivity
of the software engineers as they do not have to implement the features and OCL expressions
for each platform individually.

The Migration Approach

The system migration was performed by applying the generic migration method provided by
Schwichtenberg et al. [SJGE18]. Firstly, the Base Classes of Ecore and OCL are implemented.
Then, primitive type mappings are defined between platform-independent Ecore/OCL data
types to platform-specific types. In the next step, the Ecore code templates are implemented
in Xtend [Xte] which is a Java dialect with a simplified syntax. Most of the templates are
easy to adjust, as they contain no or simple program logic. Then, the OCL compiler for
the new programming language is adopted by providing an individual OCL Visitor method.
In the next step, the previously defined templates are used for the generation of the Ecore
classes. Last but not least, the migration to CrossEcore for the new target programming
language is validated. The validation step checks whether the CrossEcore’s code generator
emits code that correctly implements the functionality of Ecore and OCL.

3.1.2 Test Case Migration

From a migration validation perspective, as already mentioned, we had to check whether
the OCL implementation in the migrated CrossEcore framework is functionally equal to the
OCL implementation in the EMF framework. A proven technique that validates whether a
system provides the desired functionality is software testing.

OCL Test Cases in EMF

As EMF is a well-tested framework, with more than 4000 JUnit [JUn] test cases being
available on public code repositories1, a major goal was to reuse these test cases to validate

1http://git.eclipse.org/c/ocl/org.eclipse.ocl.git/tree/tests/
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the migrated OCL implementation in CrossEcore. An OCL test case tests a specific part
of the OCL implementation, by executing and asserting a particular OCL expression, e.g.,
filtering or casting of a given collection. The OCL implementation in EMF is in a Just-In-
Time (JIT) manner, and therefore, the test cases testing the OCL implementation in EMF
as well. This means that they also contain native string-based OCL expressions as shown
in Figure 3.3 written in JUnit. The particular test case tests the casting functionality, i.e.,
it checks whether the execution of the asBag() function on the Sequence{1, 2.0, "3"}
collection, results in Bag{1, 2.0, "3"}, which is the expected result. The assert function
assertQueryResults(), compares the values of the expected result and the particular OCL
functionality which are specified as strings.

Figure 3.3 Implementation of an OCL Test Case in EMF (Just-In-Time (JIT) Compilation)

OCL Test Cases in CrossEcore

As we have already seen in Section 3.1.1, the OCL implementation in CrossEcore dif-
fers fundamentally compared to the OCL implementation in EMF. In contrast to the JIT-
implementation of OCL in EMF, Ahead-Of-Time (AOT) compilation is used for the OCL
implementation in CrossEcore. Consequently, in the migrated OCL test cases, the OCL
expressions have to be translated into equivalent expressions of the target programming
language which suggests that they are compiled before the test code is being executed.
Figure 3.4 shows the should-be state or the projected transformation of the test case already
shown in Figure 3.3. The test case addresses the C# API realization of the CrossEcore and
is written in MSUnit [Mic]. As can be seen, the expected result as well as the particular
OCL functionality being tested are defined as C# code, i.e., in accordance with the changes
previously defined and performed in the system migration. Similarly to the previous example,

Figure 3.4 Implementation of an OCL Test Case in CrossEcore (Ahead-Of-Time (AOT)
Compilation)
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this test tests the casting functionality, i.e., it checks whether the execution of the asBag()
function on the Sequence{1, 2.0, "3"} collection defined as a C# object, results in the
object Bag{1, 2.0, "3"}, which is the basically the expected result. The assert function
assertQueryResults(), compares the values of the expected result and the casting OCL
function.

3.2 Solution Requirements

In this section, based on the co-migration scenario described in the previous section, as well
as on the challenges defined in Section 1.2, we derive a set of requirements that a general
solution to the test case migration problem should address. We classify the requirements into
three main categories according to the three main phases: Pre-Migration Phase: Test Case
Quality Evaluation, Migration Phase: Co-Evolution and Migration, and Post-Migration
Phase: Migration Validation.

3.2.1 Pre-Migration Phase: Test Case Quality Evaluation

R1. Quality Assessment of Test Cases. This requirement states that the solution approach
should provide means to perform a quality evaluation of test cases, which in turn means
a feasibility analysis of the test case migration. To address this requirement, the solution
approach needs to provide a test case quality assessment method for the existing test cases
for the original system.

• R1.1 - Common Quality Understanding: The solution should use definitions for
qualities of test cases for a consistent and common quality understanding. Among
the stakeholders, every team member should have the same understanding of quality
related to the test case domain. False interpretations can lead to misunderstandings
and incorrect results.

• R1.2 - Context Characterization: The solution should be able to provide a minimum
set of context factors. The quality of test cases strongly depends on the context of use,
in which they are created, managed, and applied. This means that different factors like
the available artifacts, the environment of the test, test case type (code-based or natural
language-based), etc. should be considered.

• R1.3 - Definition of Measurements: The solution should distinguish between objec-
tive and subjective measurements. The evaluation of test cases requires measurements
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to ensure the attainment of numerical quality goals. For this reason, metrics are in-
troduced to quantify different quality aspects of test cases or software artifacts in
general.

• R1.4 - Systematic Approach: The quality evaluation of test cases should be a sys-
tematic process that guides the stakeholders based on the context factors. Existing
evaluation approaches define a set of measurements that applies to test cases. But,
according to the context and information needs, this set of measurements might be re-
duced or extended. Hence, a systematic process is required that guides the stakeholders
based on the test case’s context factors.

3.2.2 Migration Phase: Co-Evolution and Migration

R2. Co-evolution of Test Cases. This requirement states that the solution approach should
provide means to perform a co-evolution analysis between the system and its test cases
and incorporate the results in the method engineering of the transformation method. To
address this requirement, the solution approach shall address the three main activities from
the co-evolution process, namely the change detection, the impact analysis, and the change
propagation and incorporate them in the method engineering process.

• R2.1 - Change Detection: The change detection regarding the system migration
should be performed on a conceptual level. To address this requirement, the solution
approach needs to provide a change detection method for the original and migrated
system as well as a description of the changes in a structured way.

• R2.2 - Impact Analysis The impact analysis should be supported by a method that
performs the analysis on a conceptual level. To address this requirement, the solution
approach needs to provide an impact analysis method that provides the impact of the
system migration to the test case migration in terms of an impact mode that describes
the necessary changes to the existing test cases of the original system.

• R2.3 - Change Propagation The change propagation of the detected system changes
to the test cases should be on a conceptual level. To address this requirement, the
solution approach needs to provide a change propagation method that defines the
necessary changes relevant in the test case migration.

R3. Automated Transformation of Test Cases. This requirement states that the solution
approach should enable automated transformation, i.e., migration of the test cases whenever
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possible. To address this requirement, the solution approach shall provide a set of methods to
apply reengineering activities.

• R3.1 - Reverse Engineering: The reverse engineering activity should be supported
by a (semi-)automated extraction of meaningful standardized test models on a different
level of abstraction. Initial extraction of a test model out of the existing test code,
with the help of text-to-model transformation, should be supported. Furthermore,
model-to-model transformations from lower to a higher level of abstraction should be
also supported.

• R3.2 - Restructuring The restructuring activity should be supported by a (semi-
) automated transformation and adaptation of test models at a different level of
abstraction. Restructuring test cases means dealing directly with their structural
complexity in order to perform, if necessary, a set of relevant changes.

• R3.3 - Forward Engineering The forward engineering activity should be supported
by an automated transformation of test models from higher to lower abstraction
level, i.e., to perform concretization. Concretization activities, i.e., model-to-model
transformations from higher to lower abstraction level, should be supported. The
last step of forward engineering should enable test case code generation out of the
previously concretized test models.

R4. Situativity of Test Case Migration Method. This requirement states that the solution
approach should enable high flexibility to different migration scenarios. To address this re-
quirement, the solution approach shall provide a meta-method which allows easy construction
of situation-specific transformation methods for test cases.

• R4.1 - Test-specific Method Base: This method base should provide test-specific
method fragments and method patterns. The method fragments and the method
patterns, as constituting part of a method base, should be test-specific which means
that they have to properly reflect the different test concepts like the test artifacts, test
code, and test model and appropriate activities like test case extraction, test case
understanding, etc.

• R4.2 - Test-specific Method Engineering Process: The method engineering process
should support method development and method enactment of test transformation
methods for test cases. The method engineering process should rely on the situational
context model which contains also test case characteristics. Furthermore, it should rely
on the test-specific migration patterns, which provide common test case transformation
strategies.
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• R4.3 - Co-evolution inclusion: The method engineering approach should use the
obtained results from the co-evolution activities (change detection, impact analysis,
and change propagation). The method engineering process, consisting of method
development and method enactment should use the results obtained from the co-
evolution analysis step.

3.2.3 Post-Migration Phase: Migration Validation

R5. Validation of Migrated Test Cases. This requirement states that the solution approach
should indicate the success of the test case migration. To address this requirement, the
solution approach shall provide a validation method that could identify bad smells for the
test case migration, i.e., identify false positives and false negatives among the migrated test
cases.

• R5.1 - Systematic process The solution approach must be a systematic process that
guides the stakeholders in a co-migration setting to perform a validation process.
The result of such a process should ideally indicate that problematic, i.e., erroneous
migrated test cases exist.

• R5.2 - Automation The validation of the test cases shall be automated in order to deal
with a high number of test cases. To address this requirement, the solution approach
should provide a light-weight framework for (semi-)automated test case migration
validation.

• R5.3 - Generality The applicability of the validation approach shall not be limited to
a single migration context. To address this requirement, the solution approach cannot
assume that the original system and test cases and the migrated system and test cases
were developed in a specific technology or employ a specific software architecture.

3.3 Related Work

In this section, we give an overview of the related work of this thesis. Thereby, the related
work falls into three categories: test case quality evaluation, then evolution, reengineering
and migration, and finally, test case migration validation.
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3.3.1 Quality Evaluation

The work in the test case quality assessment area is currently split into two main areas:
approaches that identify and provide a set or a catalog of metrics and approaches that provide
a general and a standardized quality model that is applicable in any setting. The existing work
which is done regarding the metrics is predominantly considering test effectiveness [SWH11,
MNDT09, GJG14, EBI06, Che01a]. As there are other quality aspects for test cases besides
effectiveness, all these approaches fulfill partially only the requirement R1.3.

The introduction of metrics to quantify different quality aspects of test cases is considered
in [Sne03]. The intention of Sneed [Sne03] is to provide a set of internationally standardized
and recognized test metrics from which the software development teams can select to plan
their test projects and evaluate their test operation. This addresses fully the requirement R1.3.
However, these metrics do not consider the context of use of test cases. Moreover, a common
definition for the quality characteristics is also missing.

Bowes et al. [BHP+17], provide a list of 15 testing principles that represent the basis of
testing goals and best practices and how they can be quantified as indicators for test case
quality, thus addressing partially requirements R1.2 and R1.3. However, their main focus is
not on relation to an existing quality standard and consideration of the context of use.

Kaner argues in [Kan03] that it depends on the purpose of how good given test cases are.
According to Kaner, test cases can be "good" in different ways, but it is impossible that is
good at all of them. As test cases are created according to different styles in different domains,
a good test case in one domain is different from a good test in another domain. Thereby,
Kaner clearly emphasizes the importance of the context of use of test cases, thus addressing
the requirement R1.2. However, neither relation to a quality standard nor a systematic quality
assessment approach is presented.

In general, quality models divide the term quality into its essential quality characteristics.
Each of these characteristics can be subdivided into more detailed quality sub-characteristics
and finally into quality attributes. In [ZVS+07], an adaptation of the ISO/IEC 9126 quality
model [ISO01] to test specifications is presented. The definition for most of the characteris-
tics are generously re-interpreted from the ISO/IEC 9126 and applied for test specification.
Moreover, this approach introduces sub-characteristics, quality attributes, and even measure-
ments for some of the quality attributes. So, this approach addresses fully the requirements
R1.2 and R1.3. However, quality models do not document their assumptions about the
context and it remains unclear to which degree a quality model is applicable to a given set of
test cases. Moreover, this approach does not provide a systematic process on how to perform
a quality evaluation. Lastly, the ISO/IEC 9126 was replaced by the ISO/IEC 25010 [ISO11c]
standard in 2011.
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A well-known methodology to find appropriate metrics for an explicitly stated purpose is
the GQM approach [BCR94]. GQM considers the characterization of context factors for the
organization and development projects. The Model Quality Plan (MQP) approach [VE08]
specializes GQM to describe a procedure for building a quality plan for quality assessment
of both static and dynamic software models. It combines the advantages of both GQM and
quality models [VGE08] and thus basically addresses up to some extent all of the previously
defined requirements. However, MQP does not explicitly focus on test cases. This means,
that the common quality understanding is not based on a common, standardized quality
model for test cases, meaning that the requirement R1.1 is partially fulfilled. Then it does not
provide all required context factors from a testing perspective implying that the requirement
R1.2 is also partially fulfilled. The measures defined in the method are specialized for the
software models and therefore is the requirement R1.3 also partially fulfilled. Finally, the
requirement R1.4 is fully addressed as it defines a process that is generic and can be reused
in the domain of test cases.

Voigt and Engels [VE08] 

Zeiss et al. [ZVS+07]

Kaner [Kan03]

Bowes et al. [BHP+17]

R 1.4R 1.3R 1.2R 1.1
Sneed [Sne03]

fulfilled partly
fulfilled

not
fulfilled

Figure 3.5 Evaluation of selected test case quality evaluation approaches against requirements

In summary, as it could be seen in the evaluation matrix shown in Figure 3.5, the
existing approaches are not fully addressing the previously identified requirements on test
case quality evaluation (R1.1 - R1.4). However, the evaluation matrix suggests a possible
complete solution, namely a combination of the last two approaches, i.e., the adaptation of
the ISO/IEC 9126 quality model for test specifications [ZVS+07] and the Model Quality Plan
(MQP) approach [VE08]. By combining the benefits of these two approaches, we present
in Chapter 5 a novel approach for test quality evaluation.

3.3.2 Evolution, Reengineering, and Migration

The related work regarding the migration phase is split into three main areas: Test Case
Evolution, Test Case Reengineering, and Software & Test Case Migration.
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Test Case Evolution

In the area of test case evolution, there is already a lot of work, which is predominantly
oriented on the continuous evolution of test cases with the system. Compared to the evolution
of test cases in a migration setting, it is much more fine granular. This means that small
changes in the system are detected, analyzed, and propagated to the test cases.

Zaidman et al. [ZRDvD08] study the co-evolution by mining software repositories.
The overall goal of the approach is to investigate whether the production code and the
accompanying tests co-evolve by exploring a project’s versioning system, code coverage
reports, and size metrics. The approach deals with unit and integration tests. The automated
approach provides a tool called TeMo(Test Monitor) three different views on the co-evolution:
change history view which visualizes the commit-behavior of the developers, growth history
view which shows the relative growth of the production code and test code over time, and
finally test quality evolution view which plots the test coverage of a system against the
fraction of test code at discrete times. As this approach focuses on continuous co-evolution,
it partially the three defined evolution requirements.

Farooq et al. [FIMR10] propose a model-based regression testing approach for evolving
systems with flexible tool support. Based on the analysis of the relationship between system
class diagram and system state-machines the changes are firstly detected and then propagated
to the corresponding test suites. The semi-automatic approach takes as input the system
models and the test cases in XML format. Then, an XMI parser firstly parses the input
models and then, a state machine comparator computes the delta between the models. A test
suite classifier classifies the baseline test suite into obsolete, reusable, and re-testable test
cases. As this approach is model-driven, it is close to fulfilling the specified requirements.
However, as the goal is to understand the conceptual changes in the system migration as well
as their impact on the test cases, this method only partially addresses evolution requirements.

In order to understand the myths and the realities in test suite evolution, Pinto et
al. [PSO12] study the test suite evolution in a systematic and comprehensive manner. The
outcome of the approach provides an understanding of how and why unit tests evolve (i.e.,
how and why tests are modified, added, and deleted). The semi-automatic approach combines
various static and dynamic analysis techniques that compute the difference between test
suites associated with two versions of a program and categorization of such changes along
two dimensions: the static differences between tests in the two test suites and the behavioral
differences between such tests. The tool called TestEvol takes as input a Java program and
JUnit test cases and automatically computes differences in the behavior of the test suites on
the two program versions, classifies the actual repairs performed between the versions, and
computes the coverage attained by the tests on the two program versions. This work mainly
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focuses on the evolution of test cases and does not analyze the co-evolution, i.e., the impact a
system changes could have. Hence, only the R2.1 requirement is partially addressed.

Mirzaaghaei et. al [MPP12] provide a semi-automatic approach that supports test suite
evolution through test case adaptations by automatically repairing and generating test cases
during software evolution. In their work, they identify frequent actions for adapting test cases
that software developers commonly adopt to repair and generate test cases. Furthermore, they
define five algorithms for evolving test cases as a solution to support software developers. The
solution approach, firstly, analyzes the software changes by diffing the original and modified
version of a software. Then, by using one of the five test evolution algorithms, on the base of
the previously identified common test case adaptations, the test cases are properly adapted.
The authors also provide a prototypical framework implementation called TestCareAssistant
(TCA) which takes the original and the modified version of the program and applies the
previously described steps. As this approach deals with the problem of repairing existing test
cases and generating new ones to react to incremental changes in software systems, it only
partially addresses the requirements.

Lastly, Rapos [Rap15] analyzes the co-evolution of model-based tests for industrial
automotive software. He proposes a method which should improve the model-based test
efficiency by co-evolving test models alongside system models. To enable this, he studies
software model evolution patterns and their effects on test models in order to apply updates
directly to the tests. The solution approach is automated and is used for system testing. The
tool, an extension of SimuLink, takes two consecutive versions of a model or set of models
along with the first version’s test models. As output, a set of relevant changes that need to be
made to the test model is provided. These changes should ensure that the updated test model
is a correct test for the newly updated model. Again, this approach analyzes the incremental
changes in software systems, thus only partially addresses the three requirements.

In summary, as shown in Figure 3.6, the existing evolution or co-evolution approaches
address just partly the three defined requirements. The main drawback of the existing
approaches is that they are meant to deal with incremental changes and not coarse-grained
changes, i.e., conceptual changes. Most of them describe change detection and impact
analysis on a very fine granular level, i.e., how to deal with relatively simple, incremental
code or model changes. As a consequence, none of the methods defines means to detect
conceptual changes and analyze their impact on the test cases. Nevertheless, the analysis
of the existing methods helped us to come to a novel approach for applying co-evolution
analysis on a conceptual level by leveraging the concept modeling technique.
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Figure 3.6 Evaluation of selected test case evolution approaches against requirements

Test Case Reengineering

In enabling automated test case migration, similarly to system migration, an important
role plays the reengineering. For this purpose, we analyze different existing reengineering
approaches for test cases.

Smartesting [BL14] is an approach that enables the transition from classical to model-
based testing. That means, in a semi-automated way, from a set of existing test cases a
test model is extracted thus enabling easier refactoring and maintenance of the test cases.
The approach focuses on system testing and starts with the refactoring of the test legacy.
Then, using model inference, a test model in the form of BPMN is obtained. Using the test
model, test cases are generated that further could be imported into a specific test management
tool. The whole process is supported by the Impulse tool. The Smartesting approach fulfills
partially the R3.1 requirement, as only a single level of abstraction is supported by the reverse
engineering method. It also fulfills partially the R3.3 requirement, as only the test code
generation is supported.

FormTester [DLW15] is an approach that enables the effective integration of model-based
and manually specified test cases. The overall goal is to convert existing test projects to
model-based testing by extracting test models from existing test cases in a semi-automated
way. The approach focuses on system testing and takes as input test cases specified in Gherkin
format and applies reverse engineering techniques that produce a test model represented as a
finite state machine. In the next step, the test models are used as the basis for the test case
generation. In the end, the test cases are executed in online-testing fashion in order to identify
untestable parts of a web application. This approach partially fulfills the R3.1 requirement,
as it supports reverse engineering with a single level of abstraction. Besides, it also partially
fulfills the R3.3 requirement, as it only supports the test code generation.

In [JKK+09], a similar approach for synthesizing of test models from test cases is
presented. The overall goal of the method is to improve the defect detection capability in
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system testing. The approach relies on the method of parallel composition and allows the
creation of a single test model from a number of test cases. Firstly, it takes the existing test
cases as input and relevant actions are listed parameterized. In order to hold some of the state
information of the SUT, variables are created. Then, the SUT is initialized and recurring
states within test cases are marked and labeled. Finally, the test cases merged with the
variables and the initialization to form a new test model in terms of a labeled state transition
system (LSTS). This approach only addresses the R3.1 requirement as it only provides a
reverse engineering method. However, as it only provides a single level of abstraction, we
consider that it partially fulfills this requirement.

Milani Fard et al. [FMM14] present an approach that leverages existing tests in automated
test generation for web applications. The basic idea comes from the fact that a human-written
test suite is a valuable source of domain knowledge, which can be used to enable automated
test generation for web applications. The approach mines the human knowledge present in
the form of input values, event sequences, and assertions. It takes Selenium test cases as
input and outputs state-flow graph as test models. It combines the inferred knowledge with
the power of automated crawling and extends the test suite for uncovered/unchecked portions
of the web application under test. The approach is supported by a tool called Testilizer. This
approach supports reverse engineering with a single level of abstraction, and therefore, it only
partially fulfills the R3.1 requirement. Besides, as it only supports the test code generation,
it also partially fulfills the R3.3 requirement.

Werner et al. [WG11] propose a state-merging approach termed semantic state-merging
for model reconstruction by mining test cases. The reconstructed model should serve for
online monitoring. For a given set of smaller test suites, a behavioral specification is learned.
The approach relies on the learning algorithm L* to mine the existing test case. Firstly, the
semantic properties of test cases are exploited in order to detect implicitly defined behavior.
The available test cases are stored in a data structure, a trace graph. Then, based on defined
merging rules for cyclic test cases and for test cases with default branches the trace graph is
completed. As this approach only provides a reverse engineering method with a single level
of abstraction, we conclude that it partially fulfills only the R3.1 requirement.

Xu et al. [XXBW12] present an approach for mining executable specifications of web
applications from Selenium IDE tests thus enabling model-based testing. They mine a
behavior specification that captures the behavior of the tests at a high level of abstraction.
The extracted specification can be used to simulate the behavior of the system. As shown,
all the tests previously used to mine the specification are completely reproducible. Before
starting with the actual mining of the test, pre-synthesis-activities are performed in order to
prepare the test for the mining activity. Firstly, clustering of similar test actions is performed
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by identifying similar test actions context-sensitive clustering to normalize the given Selenium
IDE tests. Then, pattern mining of test actions that represent meaningful functions. Finally, a
transformation of Selenium IDE tests into abstract tests is performed, which are similar to the
tests used in the existing model-mining techniques. Thereafter, comes the actual synthesis of
a high-level Petri-net from the abstract tests. The semi-automatic approach works for system
tests and relies on a process mining tool called ProM, and Selenium IDE. This approach
provides a reverse engineering method with a single level of abstraction, and therefore, we
conclude that it only partially fulfills the R3.1 requirement. Besides, it also partially fulfills
the R3.3 requirement, as it only supports the test code generation.

Hungar et al. [HMS03] propose a method for constructing models utilizing automata
learning. The goal is to enhance error detection and diagnosis, to support regression testing,
to enable coverage analysis, and to support online testing. Firstly, the existing test cases are
observed and abstraction is performed. Then, by applying L* learning algorithm, models
in terms of finite automata are constructed. The method is semi-automated and deals with
system testing. This approach also addresses only the R3.1 requirement as it only provides a
reverse engineering method. As it only provides a single level of abstraction, we consider
that it partially fulfills this requirement.
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Milani Fard et al. [MFMM14]
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Figure 3.7 Evaluation of selected test case reengineering approaches against requirements

In summary, as shown in Figure 3.7, the existing reengineering approaches address
just partly the three defined requirements. The main drawback of the existing approaches,
as Figure 3.7 clearly shows, is that they do not support the restructuring as an integral part
of the reengineering process. However, this does not mean that no changes are applied
to the extracted models, but rather an implicit restructuring either done as part of the
reverse engineering or forward engineering. Furthermore, all of them only support reverse
engineering to a single level of abstraction with pretty much different modeling notations
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and languages. Similarly, regarding forward engineering only on the basis of model-to-text
transformation, test code is being generated from the previously extracted test model. Even
though the evaluation matrix shown in Figure 3.7 does not suggest a clear combination of
some of the existing works, it helped us regarding the definition of the method base, where
we had to define the relevant method fragments in terms of artifacts, (code and models),
activities (extraction and generation), tools, etc.

Software & Test Case Migration

In the area of software and test case migration, we analyze different software migration
projects and frameworks that also cover up to some extent the migration of test cases. Each
project was dominantly analyzed from a testing perspective and against the following set of
features: migration type, overall testing goal, test level, testing strategy and testing method,
degree of automation, and tooling.

In the Remics (REuse and Migration of legacy applications to Interoperable Cloud
Services [Moh10]) project, an architectural migration to the cloud was performed. Seen
from a testing point of view, the overall goal was to safeguard the functional compliance
between the modernized and the legacy system as well as to validate some non-functional
requirements (performance, reliability, security). To fulfill these goals the following testing
strategies were applied: integration testing, regression testing, functional testing, online
testing, and performance testing (load testing). As no test cases were reused from the legacy
system, a model-based approach was applied to derive the test cases for the migrated system.
For that purpose, the previously reengineered functional requirements were compiled into
software/systems requirements specification and a test model was manually derived. Then,
out of the test model, functional system tests were automatically generated and executed. The
test modeling was performed by using the UML Testing Profile (UTP) in the TestFokus!MBT
tool. The UTP tests were then concretized in terms of TTCN-3 test cases and such were
executed in the TTCN-3 test execution system TTworkbench. This approach partially fulfills
the requirement R4.2, as it only defines model-based testing based on the extracted system
models.

In the SOAMIG [ZWH+11] project, two different types of migration to the cloud were
performed, a language migration and an architectural migration. In the language migration
from COBOL to Java, the overall testing goal was to ensure the syntactical correctness
and semantical equivalence. Regarding the syntactical check, the testing was performed
by manual creation of test cases for each construct in COBOL thus covering all syntactic
and semantic variations. On the other hand, the transformed Java code was verified to be
syntactically correct by compiling it. The semantical check was performed by comparing the
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results of the legacy COBOL constructs with those of the migrated Java constructs. In the
case of the architectural cloud migration, the overall test goal was to ensure the equivalent
behavior of legacy and migrated system in the cloud. As the testing discipline was outside of
the project scope only manually testing was performed. The correctness of each service was
verified by unit tests (JUnit) and the interaction of services, the Enterprise Service Bus, the
business process layer and the view layer were checked by manual integration and system
tests. Additionally, manual regression and acceptance tests were performed by the developers
of the legacy system ensured that the service-oriented system did behave like the legacy
system. As the approach only defines model-based testing based on the extracted system
models., it partially fulfills the requirement R4.2.

The DynaMod [vHFG+11] project is dealing with model-driven modernization and
architectural migration. The overall testing goal is to perform performance testing based
on workload generation, allowing to compare quality properties, such as performance and
reliability, among the modernized and the outdated system. To create the performance tests,
a model-based testing approach was followed. Namely, the test cases were derived from
the usage models extracted from the legacy system under the production workload. The
approach is semi-automatic as the test models are created manually whereas the generation
and execution of test cases are automatic. The load testing and performance testing was
performed by using Apache JMeter and Markov4JMeter. This approach addresses partially
the requirement R4.2, as it provides only a rudimentary approach to generate test cases out
of the system models.

The Artist [MKA+14] migration project aims at supporting the migration and mod-
ernization of legacy software assets and businesses to the cloud. Therefore, it provides a
generic customizable model-based methodology and corresponding open source tooling for
migrating such applications to the cloud. It covers the traditional reverse engineering and
forward engineering phases, i.e., the actual migration. Furthermore, it also addresses the
pre-migration by providing feasibility analysis from both technical and business perspectives
as well as post-migration by providing verification and certification of the migrated system.
From testing point of view, it aims at ensuring behavioral equivalence (functional goals)
and fulfillment of non-behavioral characteristics like performance efficiency and reliability
(non-functional goals). Regarding the testing methods used, it supports model-based testing,
end-user functional (typical user scenarios executed on both the legacy and the migrated
system) and non-functional testing. In the model-based testing approach, the test cases are
migrated in a model-driven way, by applying the same reengineering tool as for the system
code. During the transformation of the test cases, relevant changes are mirrored on the test
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cases, i.e., the changes of the system that also influence the test cases, thus fully addressing
the requirement R4.2 and partially the requirementR4.3.

The MEFiSTo (Method Engineering Framework for Situation-Specific Software Transfor-
mation Methods) framework [Gri16] is a Situational Method Engineering (SME) framework.
SME is an established engineering discipline for developing situation-specific methods by
considering the situational context in which the method will be applied. In the domain of
software modernization, the context comprises the characteristics of the legacy system, the
intended target design, and the characteristics of the modernization project. The MEFiSTo
framework is an approach that enables the modular construction of transformation methods
thus enabling a high degree of controlled flexibility. The transformation methods are devel-
oped by assembling reusable building blocks of methods which are stored in a repository
called method base [Bri96]. MEFiSTo, uses two different types of building blocks, namely
method fragments and method patterns. The method fragments are the atomic building blocks
of migration methods, whereas the method patterns are representing strategies and indicate
which fragments should be used. Furthermore, it defines a method engineering process which
describes the main activities to be followed in order to create a situation-specific migration
method as well as their relation to the method base. However, this approach addresses solely
the system artifacts, as it deals with software modernization. This implies that it partially
addresses the requirements R4.1 and R4.2. Consequently, the co-evolution of test cases is
not considered when the situational context is characterized.

Compared to the previous migration projects, MoDisco [BCJM10a] is a generic and
extensible framework that relies on MDE principles and techniques that can be efficiently
applied in the domain of reverse engineering by addressing both the model discovery and
model understanding activities. In a case study where architectural migration from VB6 to
JEE was performed, the aim was to verify that the transformation has not caused unintended
effects and that the new system still behaves like the initial one. The testing strategy was
to combine reference testing and regression testing. Firstly, before the migration is even
performed, based on scenarios described as Unit Tests the original system is tested. Then, the
migration is performed and by applying regression testing and reusing the same test scenarios,
the migrated system is tested. In the end, the results of both testing activities are compared.
When all equal, the migration is considered to be successful. The implementation of MoDisco
comes as an Eclipse open-source project which provides an extensible and customizable
MDRE framework. Using this framework, model-driven tools can be developed that support
different reengineering scenarios such as legacy migration or modernization. This approach
is quite generic, thus making it applicable in almost any context. But, on the other hand,
there is no support on migrating specific artifacts like test cases, which means it fulfills only
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partially the requirements R4.1 and R4.2. Consequently, the co-evolution of test cases is
also not considered.
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Figure 3.8 Evaluation of selected software migration and modernization projects against
requirements

In summary, as shown in Figure 3.8, the existing reengineering approaches address just
partly the three defined requirements. Most of them provide some kind of process to apply
some kind of testing, mostly model-based testing based on the extracted system models.
Most of the approaches (except [Gri16]), do not support the specification of reusable blocks
like method fragments or method patterns. However, as the main drawback of most of the
existing approaches (except [MKA+14]) is the missing support for the co-evolution of test
cases. Exactly by combining the last two mentioned approaches, namely the MEFiSTo
approach [Gri16] and the ARTIST framework [MKA+14], lead us to a solution approach
that combines the benefits of both.

3.3.3 Migration Validation

Code and test case refactoring are similar to system and test case migration as observable
behavior is to be preserved in both cases while improving the “internal” structure of what
is to be refactored/migrated. As we also advocate for test case migration, the first step in
(code) refactoring is to provide a solid set of test cases that should ensure that the observable
behavior is preserved after refactoring is done [FB99]. The refactored code is considered to
be correct as long as all test cases pass. In this manner, the test cases can serve as a safeguard
for code refactoring.

Concerning test case refactoring, Deursen et al. [DMBK01] describe a set of test smells
that indicate problems in test code together with a set of test refactorings, which describe
how to overcome some of these problems by applying small modifications. They do not,
however, describe how to validate the correctness of the refactoring process.
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The refactoring patterns proposed by Meszaros [Mes07] are presented as "safe refactor-
ings" that should minimize the risk of introducing a change in the behavior of test cases. To
additionally minimize this risk, Meszaros also suggests that major refactorings should be
avoided. Similarly to Deursen et al. [DMBK01], however, the question of validation is not
handled.

Guerra et al. [GF07] also propose a set of test case refactoring patterns and do propose a
validation approach that can be applied after a particular refactoring pattern is applied. The
general idea is to identify whether behavior, in their case defined on a level of test suites, is
unchanged after the test refactoring is applied. To do this, the behavior is characterized as a
set of verifications, i.e., a combination of one assertion and all the actions that appear before
the assertion that is related to the same assertion’s test target [GF07]. As long as two test
suites perform the same verifications, they are considered to be equivalent.

Refactored/migrated test cases can be faulty in two distinct ways: either as false positives
(rejecting correct system behavior) or as false negatives (accepting incorrect system behavior).
Avoiding the latter appears to be particularly challenging and has been addressed via mutation
testing [LS78] in the context of test case refactoring.

All mentioned approaches have served as inspiration but cannot be directly applied to the
task of validating the coupled system and test case migration; the additional challenge being
that both system and test cases are typically changed in the migration process.

Concerning behavioral equivalence as a notion of correctness, Park [Par81] suggests
using bisimulation to define the behavioral equivalence of test cases. The work presented by
Makedonski et al. [MGN09] addresses the issue of validation of behavioral equivalence in the
domain of TTCN-3 [GHR+03] by showing that the observable behavior of test cases before
and after refactoring remains unchanged. To do this they apply weak bi-simulation, which
compared to strong bi-simulation, ignores the internal actions that occur between observable
events [MGN09]. It is questionable, however, if these approaches can be directly applied to
test case migration, which is always coupled with a corresponding system migration.

Makedonski et al. [MGN09]

Guerra and Fernandes [GF07]

Meszaros [Mes07]

R 5.3R 5.2R 5.1
Deursen [DMBK01]

fulfilled partly
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Figure 3.9 Evaluation of selected test case validation approaches against requirements
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In summary, as shown in Figure 3.9, the existing validation approaches address just partly
the three defined requirements. The first two approaches deal with the problem of refactoring
and provide some tooling, thus addressing the requirement R5.2 up to some extent. The last
two approaches fulfill all the requirements, the requirement regarding automation (R5.2)
fully, and the other ones partially. However, due to the highly complex domain of test case
co-migration, none of the existing approaches was directly applicable. However, they served
as a basis to define the basic concepts for migration validation and as inspiration to look for
alternative techniques. In the end, we came up with a novel approach for validating a test
case migration by applying mutation analysis as the main goal was to identify possible false
positives and false negatives among the migrated test cases.

3.4 Summary

In this chapter, we introduced the test case co-migration scenario wherefrom the problem
statement in this thesis originated. Then, on this basis, we derived corresponding requirements
that a solution concept should address. Lastly, we introduced related work, i.e. we introduced
existing approaches regarding the test case co-migration scenario and evaluated them against
the specified requirements. As the evaluation of related work showed, that existing approaches
have various shortcomings and an integrated solution for test case migration is still missing.

Firstly, we introduced the co-migration scenario of this thesis in Section 3.1. We described
how the system migration and the test case migration are coupled when one migrates the
test cases along with the system. We described both the system and test environments on
an architectural level and described their differences. In Section 3.2, we discussed a set of
requirements that arise due to the considered co-migration scenario. These requirements
should be fulfilled by a solution concept in order to be applicable in the co-migration scenario.
In Section 3.3, we introduced the related work of this thesis. More specifically, we introduced
and classified existing test quality evaluation approaches, evolution approaches, migration
and reengineering frameworks, and migration validation approaches that could have been
applied in the co-migration scenario. In the end, we evaluated them against the previously
identified requirements and various shortcomings were identified. Additionally, we also
discussed how the solution concept of this thesis addresses these shortcomings, i.e., how it
addresses the requirements.

All in all, the analysis of the related work regarding the different migration phases has
shown that an integrated, end-to-end solution is not available. Moreover, zooming into
each of the phases, one can see that even there no established approaches, methodologies or



3.4 Summary 63

frameworks could be found. However, the existing work served as a solid starting point in
coping with the complex problem of test case co-migration.

Starting with the first phase, the pre-migration phase, where a test case quality evaluation
has to be performed, we have identified two approaches, namely, the adaptation of the
ISO/IEC 9126 quality model for test specifications [ZVS+07] and the Model Quality Plan
(MQP) approach [VE08], which lead us to a novel approach for test case quality evaluation
presented in Chapter 5.

Then, regarding the migration phase, which is actually the main phase, three main related
domains were analyzed, test case co-evolution, test case reengineering, and migration.

The main drawback of the existing co-evolution approaches is that they analyze incre-
mental changes and not conceptual changes. Nevertheless, these approaches served as a
good basis for understanding the problem better and eventually come to a novel approach
for applying co-evolution analysis on a conceptual level by leveraging the concept modeling
technique.

Two main problems regarding the test case reengineering approaches were identified: no
support for explicit restructuring and no support for different abstraction levels. Namely,
most of the identified approaches support only implicitly restructuring either as part of
reverse engineering or forward engineering. Regarding the second problem, the missing
support for different abstraction levels, the existing approaches only support a single level
of abstraction regarding reverse engineering as well as forward engineering with different
modeling notations and languages. However, the identified approaches still provided useful
information regarding the definition of the method base, regarding the definition of relevant
method fragments artifacts, activities, tools, etc.

Most of the analyzed existing migration projects and frameworks rely on software testing
as a validation technique. The ARTIST framework [MKA+14] is the only approach that
defines a method for the migration of test cases. Additionally, this method also provides
initial steps towards supporting co-evolution as the relevant system changes are propagated to
the test cases. The only drawback of this approach is that it provides a static method created
for the particular migration context making it not applicable to a broader scope of migration
contexts. On the other hand, the MEFiSTo approach [Gri16]) supports the specification of
reusable blocks like method fragments and method patterns. So, the combination of these
two approaches, lead us to a solution approach that combines the benefits of both.

Finally, regarding the post-migration phase, we analyzed validation approaches dealing
with the behavioral equivalence of test cases. Even though not directly applicable to the
complex domain of test case co-migration, the identified approaches served as a basis to
define the basic concepts for migration validation, among which is the definition of the main
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validation goal: detection of possible false positives and false negatives among the migrated
test cases. This served as an inspiration to search for alternative techniques, eventually ending
with a novel approach for validation of test case migration based on mutation analysis.



Part II

Solution Concept



Chapter 4

Solution Overview

In the previous chapter, we have seen that the existing approaches address certain aspects
of the test case migration domain, but no solution addresses all the requirements we have
previously introduced. In this chapter, we give an overview of the solution concept which
addresses all these requirements. In the beginning, in Section 4.1, we explain the general idea
of the solution and provide an overview of the main constituents. Then, we firstly introduce
the pre-migration phase, i.e., the test case quality evaluation in Section 4.2. Thereafter,
in Section 4.3, we introduce the migration phase, i.e., the phase that addresses co-evolution
analysis and method engineering. Lastly, we introduce the post-migration phase, i.e., the test
case migration validation in Section 4.4. These phases are then revisited and discussed in
more detail in the subsequent chapters. Finally, in Section 4.5, the findings of this chapter
are summarized and discussed.

4.1 Overview of the TeCoMi Framework

To enable a situation-specific co-migration of test cases, we propose a test case migration
framework called TeCoMi. It as an end-to-end solution for the test case migration as it
addresses the three main phases of test case migration: pre-migration, migration, and post-
migration phase, as shown in Figure 4.1. Besides the migration phase, it also addresses
the pre-migration phase to ensure migration of test cases with good quality and the post-
migration phase in order to ensure that the migration was properly done. Figure 4.1 depicts
the three different levels of the solution approach, namely the Requirements Level, the Method
Development Level, and finally, the Method Enactment Level. As the name suggests, on the
Requirements Level, we have the requirements which were previously stated in Section 3.2.
On the Method Development Level, we present the approaches that we have developed in
order to address those requirements. Finally, on the Method Enactment Level, we have the
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actual steps of the end-to-end migration process that are actually supported by the approaches
on the level above.

Starting with the Pre-Migration Phase, we have defined the first requirement R1 regarding
the quality assessment of the test cases and it was addressed by the Test Case Quality Plan
approach. This approach supports the Test Case Quality Evaluation step of the end-to-end
migration process. We describe the Pre-Migration Phase in Section 4.2.

Then, regarding the Migration Phase, we have defined three requirements in total, namely
R2 regarding the co-evolution of the test cases, then, R2 regarding the automated transfor-
mation of the test cases, and finally, R4 regarding the situativity of the test case migration
methods. These requirements were addressed by the Situational Method Engineering ap-
proach which also incorporates co-evolution analysis. This approach supports the Test Case
Migration step of the end-to-end migration process. We describe the Migration Phase
in Section 4.3.

Finally, regarding the Post-Migration Phase, we have defined the R5 requirement which
relates to the validation of the test case migration. This requirement was addressed by the
Migration Validation approach, which relies on Mutation Analysis. This approach supports
the Test Case Migration Validation step of the end-to-end migration process. We describe the
Post-Migration Phase in Section 4.4.
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4.2 Pre-Migration Phase: Test Case Quality Evaluation

In this section, we introduce the first phase of TeCoMi, namely the quality evaluation of
test cases. Before performing any activity towards the migration of the test cases, their
quality needs to be evaluated. As shown in Figure 4.2, the activities are split into two main
disciplines, namely Test Case Quality Plan Development and Test Case Quality Evaluation.

The activities of the first discipline rely on our approach called Test Case Quality Plan
(TCQP) [JNES18] that has been developed as part of this thesis. The TCQP approach
provides a systematic process that considers the context information and integrates a stan-
dardized quality model. It consists of a top-down process, called TCQP Process, and a
related metamodel, called TCQP Metamodel. The TCQP Process serves as a guideline
for establishing a quality plan for the quality evaluation of test cases, whereas the TCQP
Metamodel contains all relevant information concerning the quality plan. So, first of all, a
suitable quality plan is being developed for a given migration context by performing the
activities Context Characterization and Test Case Quality Plan Creation. These two activities
basically execute the activities defined in the TCQP Process, which comprises four main
activities, as shown in the upper part of Figure 4.2.

As part of the Context Characterization activity, firstly the context information specific
to a given set of test cases is identified. This corresponds to the TCQP’s Characterization
of Context activity. Context factors are essential elements that may affect the outcome of
the evaluation. Therefore, identifying the relevant test case context factors which include
the environment, domain, and associated artifacts, assists in selecting suitable measures for
evaluating the test cases [PWGW08]. The test case-relevant context factors are defined by
the Context Metamodel.

As part of the Test Case Quality Plan Creation activity, the next three activities of the
TCQP process are being executed, namely Identification of Information Needs, Definition of
Common Understanding, and Definition of Measurement.

During the Identification of Information Needs activity, the quality goals for the evaluation
of test cases are documented. By documenting the information needs, an insight necessary to
manage the objectives, goals, and risks related to a specific quality goal of the test cases is
identified and documented. Further, each identified goal is refined into a question. Both the
goals and questions are specified through interviews and structured brainstorming sessions
with the stakeholders. The corresponding metamodel for this activity is the Information Need
Metamodel.

The quality goals and their related quality focus had to be described in common terms so
that everyone who is involved in the evaluation has the same perception of the term quality.
In the Definition of a Common Understanding activity, we utilize the Quality Model for Test



4.2 Pre-Migration Phase: Test Case Quality Evaluation 69

Specification [ZVS+07] for establishing a common quality understanding. With this general
quality understanding the stakeholders would not understand quality characteristics like Test
Effectivity or Usability differently. Further, the goals defined with a certain quality focus
are mapped to quality (sub-)characteristics of the standardized model. For the identified
questions, corresponding quality attributes are identified and documented.

Lastly, in the Definition of Measurement activity, suitable measures are documented for
the quality attributes identified in the previous phase. The measures are specified according
to the ISO/IEC 15939 standard [ISO02]. This standard provides the Measurement Informa-
tion Model (MIM) that defines what has to be defined during measurement planning and
evaluation. The standard defines base measures, derived measures, and indicators. The
corresponding metamodel for this activity is the Measurement Metamodel. As we have
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seen, each TCQP process activity has a corresponding metamodel package in the TCQP
metamodel. The first two activities of the process regarding the context characterization and
test case quality plan creation are supported by TCQEval (Test Case Quality Evaluator), an
Angular1 application that has been implemented as part of this thesis.

Once the quality plan is prepared, the necessary tools have to be implemented so that the
quality evaluation of the test cases is performed automatically. For this reason, the activities
of the Test Case Quality Evaluation discipline are performed. Based on the developed
Context-Specific Test Case Quality Plan, as part of the Measurement Tool Implementation
activity, the required tools for the specified measures are developed. At this step, either
existing tools are identified and reused, or new tools are developed. We assume that associated
tool developers use the specification of measures and indicators as some kind of guidance.
Having the tools implemented, the test case quality plan can be executed as part of the last
activity of the whole process, namely, Execution and Decision-Making. The outcome of
the execution, i.e., the quality report is then analyzed, and the decision is made whether to
migrate the test cases and which of them or not. This last activity is also supported by the
TCQEval tool which supports the import of the evaluation results and visualization in terms
of dashboards regarding the different quality aspects.

The TCQP approach as well as its usage in TeCoMi is discussed in detail in Chapter 5.

4.2.1 Roles

The test case quality evaluation process consists of four core activities and such segmentation
provides a clear separation of concerns regarding the required expertise. For instance, for the
development of a test case quality plan knowledge of software testing and software migration
is required, whereas for the actual execution of the developed quality plan tool development
skills are required. As shown in Figure 4.2, the core activities are associated with their
respective roles.

The first two activities deal with the development of the test quality plan and both
activities are performed by persons in the role of Test Expert and Migration Expert. These
experts need to have knowledge of the source and the target system and test environment
as well as software migration so that the context could be characterized properly. Firstly,
the knowledge of the involved test environments is required to systematically identify the
context factors, e.g., the identification of the characteristics of the original test cases. Then,
through a series of interviews, the actual quality goals are identified and expressed in terms of
quality attributes. Finally, for each quality attributes quality metrics are defined. To perform

1https://angular.io/

https://angular.io/
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the construction of the quality plan, knowledge of quality assessment is required, which are
provided by a person with the role of Quality Manager.

The third activity, namely the Measurement Tool Implementation, is performed to develop
the tool to automate (part of) the quality assessment. This activity is performed by one or
multiple persons in the role of a Tool Developer who needs to know about developing a tool
for static code analysis. This knowledge is necessary in order to implement a tool addressing
the metrics previously defined in the quality plan.

The fourth and last activity, namely the Execution and Decision-Making, is performed to
actually perform the quality assessment by enacting the developed test quality plan supported
by the developed tool. A person in the role of a Software Developer executes the quality plan
and analysis of the obtained quality report. Additionally, a person in the role of a Test Expert
is involved in order to support the decision making on the migration of the test cases.

4.3 Migration Phase: Co-Evolution Analysis and Method
Engineering

The migration of the test cases comes down to the problem of co-migration, i.e., the test
cases have to be migrated along with the system as their migration is dependent on the
system migration. In order to address the previously mentioned challenges, based on the
Method Engineering Framework for Situation-Specific Software Transformation Methods
(MEFiSTo) [Gri16], we provide a solution that combines techniques from Situational Method
Engineering (SME) [HSRÅR14] and Software Evolution [MD08].

Figure 4.4 depicts an overview of our method engineering process whose activities are
split into two main disciplines: Method Development and Method Enactment. Besides the
Method Engineering Process, another integral part of the solution approach is the Method
Base. In the following, we describe both the Method Base as well as the Method Engineering
Process.

4.3.1 Method Base

The Method Base contains the building blocks, Method Fragments, Method Patterns, needed
for assembling the test migration method. Method Fragments are atomic building blocks of a
test migration method, e.g., an artifact or an activity. Method Patterns represent a proven
migration strategy and define which fragments are necessary and how to assemble them. The
suitability of each pattern to a certain situation is expressed by a set of characteristics. To
additionally support the co-evolution analysis and to express the relation between the system
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and the test case migration directly, we extend the method base with Co-Migration Patterns.
Technically, a co-migration method pattern is a combination of a test method pattern and a
system method pattern, visually represented as a double horseshoe model.

4.3.2 Method Engineering Process

Using the Method Base, the Method Engineering Process guides the development and the
enactment of the situation-specific test migration method. By performing activities of the
Method Development discipline, a situation-specific test method gets developed. It comprises
the following two activities: Situational Context Identification and Transformation Method
Construction. During this activity, the situational context is analyzed and characterized
from both system migration and testing perspective. Firstly, in the Concept Identification
activity, both the source and the target tests and system are represented as a set of concepts by
applying concept modeling. Then, based on this concept representation in terms of a Concept
Model the impact of the system changes on the test cases is identified and captured in terms of
an Impact Model in the Co-Evolution Analysis activity. Lastly, as part of the Influence Factor
Identification activity, the influence factors are identified. Having the context information
collected in terms of a Situational Context Model, the Method Construction activity can be
initiated and a situation-specific test migration method gets constructed.

The overall outcome of Method Development is a Situation-Specific Test Migration
Method Specification which defines how to do the migration by defining the activities to be
performed and the artifacts that should be generated. The two activities belonging to the
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Figure 4.4 Overview of the method engineering process

Method Development discipline are supported by a graphical editor that has been implemented
as part of this thesis in Eclipse Sirius2.

During the first activity of Method Enactment, namely the Tool Implementation, a
Situation-Specific Toolchain is developed that is required for the automation of the migration
method, e.g., a parser or a code generator. Thereafter, during the Transformation activity, the
test migration method is enacted as defined in the test migration method specification.

The method base and the method engineering process are discussed in detail in Chapter 6.

2https://www.eclipse.org/sirius/

https://www.eclipse.org/sirius/
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4.3.3 Roles

The method engineering process consists of four core activities which are common for
SME approaches including the MEFiSTo framework [Gri16]. Also, such segmentation
provides a clear separation of concerns regarding the required expertise. For instance, for the
development of the transformation method, a knowledge of software migration is required,
whereas for the enactment of the developed method tool development skills are required. As
we clearly distinguish the core activities, we enable the inclusion of external experts. As
shown in Figure 4.4, the core activities are associated with the respective roles.

The first two activities deal with the development of the transformation method and both
activities are performed by a person in the role of a Migration Expert. The expert needs
to have knowledge of the source and the target system and test environment. Moreover,
knowledge of software migration and co-evolution as well as method engineering is nec-
essary. Firstly, the knowledge of the involved system and test environments is required to
systematically identify the situational context, e.g., the identification of the characteristics of
the original test cases or the characteristics of the migrated system. Then, the knowledge of
migration enables relating the identified test context to the characteristics of different trans-
formation strategies, namely test method patterns stored in the method base. Furthermore,
the knowledge of co-evolution enables relating the identified test context to the identified
system concepts.

To perform the construction of the test transformation method, e.g., selection and config-
uration of the transformation method, method engineering skills are required. Additionally, a
person with the role of a Tool Specialist is also involved. So, the Migration Expert needs
to have knowledge of both reengineering tools and method engineering. Knowledge about
reengineering tools is important for the effort assessment of adapting or developing tools.
More precisely, knowledge of model-driven reengineering tools is necessary as the solution
framework is focused on the construction of model-driven toolchains. To specify the use of
the tools or their adaptation, method engineering skills are required.

The third activity, namely the Tool Implementation, is performed to develop the toolchain
to automate (part of) the transformation. This activity is performed by one or multiple persons
in the role of a Tool Developer who needs to have knowledge of model-driven engineering
developing reengineering tools. This knowledge is necessary in order to implement a
toolchain as previously defined by the transformation method specification.

The fourth and last activity, namely the Transformation, is performed to actually transform
the original test cases by enacting the developed test transformation method supported by the
developed toolchain. General development skills are required for this activity, provided by
one or multiple persons in the role of a Software Developer. It can be required to additionally
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include Test Experts with specific knowledge, e.g., regarding decisions about the resulting
test architecture.

4.4 Post-Migration: Migration Validation

Test case migration is the process of transferring test cases to a new environment without
changing the expected system behavior they assert. As migrated test cases are used to validate
system migration, validating test case migration is clearly important. The main goal in the
validation phase is to identify false positives and false negatives among the migrated test
cases. A migrated test case is considered to be a false positive if it fails and the system is
correct. Similarly, a migrated test case is considered to be a false negative if it passes but the
system is incorrect.

Motivated by the idea of the application of mutation analysis in test code refactoring,
we propose a novel method for validation of software migration. The central part of our
approach is the mutation analysis repository which contains mutation analysis scenarios,
predefined mutation operators, and mutation patterns. Based on what is being mutated, we
have defined six mutation analysis scenarios in total. Each scenario is defined by a set of
assumptions and indications which describe how to perform mutation analysis and how to
interpret the results. Besides the scenarios, we provide predefined mutation operators, which
are split into three main groups, namely test mutation operators, language mutation operators,
and domain specific mutation operators. Lastly, the repository contains a set of mutation
patterns, which represent construction guidelines for mutation methods and follows a certain
strategy

As shown in Figure 4.5, the activities of the migration phase are split into two main
disciplines, namely Validation Method Development and Validation Method Enactment. As
part of the Validation Method Development discipline, firstly the Context Characterization
activity is performed, as the validation method being developed should be suitable to the
context. For this purpose, the artifacts created in the previous phase, namely, e.g., Situational
Context Model, can be reused. Based on this Context Information, a suitable mutation method
is being constructed as part of the Mutation Method Construction activity. Firstly, a mutation
analysis scenario is selected as well as mutation operators. Based on these selections and also
on the previously identified context information, a mutation method pattern is selected and
configured. The outcome of this activity is a Context-Specific Mutation Method Specification
As part of Validation Method Enactment, firstly the Mutation Tool Implementation activity is
performed in order to develop the necessary tools that should automate the mutation process.
For example, depending on the functionality being asserted in the test cases, a set of mutation
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operators in terms of model transformations has to be implemented. To improve the process of
automated mutation and to increase the reuse of existing components, we introduce a flexible
and extensible model-driven mutation framework. The mutation framework should serve
as a project-independent tool infrastructure and it is based on the eMoflon3 transformation
framework, which is a tool suite for applying Model-Driven Engineering (MDE) and provides
visual and formal languages for (meta)modeling and model management.
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Figure 4.5 Overview of the post-migration phase, i.e., the migration validation

Lastly, the Mutation, Test Execution, and Analysis activity is performed. The created
mutation method together with the developed tools are enacted, resulting in mutated test
cases. Thereafter, the mutated test cases are then executed against the migrated system. The
outcome of the test case execution of the mutated test cases is then analyzed. If no false
positives and false negatives are identified, the migration of the test cases is considered to be

3https://emoflon.org/

https://emoflon.org/
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successful. Otherwise, the identified false positives and false negatives have to be analyzed
in order to fix them. The migration validation approach is discussed in detail in Chapter 7.

4.4.1 Roles

The migration validation process consists of four core activities thus providing a clear sep-
aration of concerns regarding the required expertise. For instance, for the development of
a validation method knowledge of software testing, more specifically mutation testing is
required, whereas for the actual execution of the developed migration method tool develop-
ment skills are required. As shown in Figure 4.5, the core activities of the first phase are
associated with their respective roles.

The first two activities deal with the development of the mutation method and both
activities are performed by persons in the role of Quality Manager and Test Expert. These
experts need to have knowledge of the source and the target system and test environment as
well as software migration so that the context could be characterized properly. Firstly, the
knowledge of the involved test environments is required to systematically identify the context,
e.g., the identification of the characteristics of the original test cases. Then, based on this
knowledge, a mutation method is getting constructed specifically for the identified context.
To perform the construction of the mutation method, knowledge of the quality assessment is
required, which are provided by a person with the role of Quality Manager.

The third activity, namely the Mutation Tool Implementation, is performed to develop
the tool to automate (part of) the migration validation. This activity is performed by one
or multiple persons in the role of a Tool Developer who needs to have a knowledge of
developing tools for mutation analysis. This knowledge is necessary in order to implement a
tool addressing the mutation operators previously defined by the method.

The fourth and last activity, namely the Mutation, Test Execution, and Analysis, is
performed to actually perform the mutation by enacting the developed method, thus creating
mutants and then executing the tests. A person in the role of a Tester executes the mutation
method and then the obtained test cases. Persons in the role of a Test Expert and Quality
Manager are involved in order to support the decision on the success of test migration.

4.5 Summary

Currently, there is no end-to-end test case migration approach that supports all three migration
phases. In this chapter, we introduced the solution concept which addresses this problem.
In Section 4.1, we introduced the solution concept which is represented in terms of a
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framework that addresses the three main phases in test case migration. Firstly, it provides a
method for test case quality evaluation based on which a decision is made whether to migrate
the test cases or not (Section 4.2). Then, by using the method engineering process, which
considers co-evolution analysis and the method base, a situation-specific test case migration
method is developed and enacted (Section 4.3). Finally, a validation method is developed
and enacted to assess the success of the test case migration (Section 4.4).

In the next three chapters, we will go into detail on the three main phases of the framework.
In Chapter 5, details on the pre-migration phase, i.e., test case quality evaluation are given.
Then, details of the migration phase, i.e., the method engineering process and the method base
are described in Chapter 6. Finally, details on the post-migration phase, i.e., the migration
validation are provided in Chapter 7.



Chapter 5

Pre-Migration Phase:
Test Case Quality Evaluation

In the previous chapter, an overview of the TeCoMi framework for the construction of
situation-specific migration methods was given. In this chapter, we introduce the first phase
of the solution approach, namely the Test Case Quality Evaluation. In Section 5.1, we
introduce our approach for test case quality evaluation, the Test Case Quality Plan (TCQP)
defined by its process and the corresponding metamodel. In Section 5.2, we introduce the
actual process for the quality evaluation of test cases which relies on the TCQP approach.
As already introduced in the previous chapter, it consists of four core activities: Context
Characterization, Test Case Quality Plan Creation, Measurement Tool Implementation,
and Execution and Decision-Making. Finally, the findings of this chapter are summarized
in Section 5.3.

5.1 The Test Case Quality Plan Approach

In this section, we introduce our approach for quality evaluation of test cases, called Test
Case Quality Plan (TCQP) [JNES18]. This approach provides the basis for the activities in
the pre-migration phase. TCQP builds upon the Model Quality Plan (MQP) approach [VE08]
which is relevant in the domain of software models. To apply conceptually the MQP approach
in the domain of test cases, we provided a new metamodel relevant to the domain of test
cases. The TCQP approach consists of a top-down process, called TCQP Process and a
related metamodel, called TCQP metamodel (Figure 5.1). The TCQP process serves as a
guideline for establishing a quality plan for the quality evaluation of test cases. The TCQP
metamodel contains all relevant information concerning the quality plan and it is structured
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Figure 5.1 Test Case Quality Plan Process.

into packages which are linked to their respective activities in the TCQP process. In the
following, we give an overview of the process steps and the corresponding metamodels.

The TCQP process, shown on left in Figure 5.1, consists of four activities, similar to
the MQP process [VE08]. As can be seen on the right side of Figure 5.1, each of the four
activities is supported by a suitable metamodel.

Firstly, the Characterization of Context activity involves identifying the context informa-
tion specific to a given set of test cases. Context factors are essential elements that may affect
the outcome of the evaluation. Test cases are usually derived from requirement specifications,
directly from the structure of a component or system or they can be also based on tester’s
experience and intuition. Identifying the relevant test case context factors which include
the environment, domain, and associated artifacts, assists in selecting suitable measures for
evaluating the test cases [PWGW08]. The test case relevant context factors are defined by
the Context Description Metamodel shown in Figure 5.2.

Secondly, any successful evaluation is performed towards an explicitly stated purpose.
In the Identification of Information Needs activity, the quality goals for the evaluation of
test cases are documented. By documenting the information needs, an insight necessary to
manage the objectives, goals, risks, and problems related to a specific quality goal of the
test cases is identified and documented. As identifying the information needs is a creative
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process and requires a significant human resource, the context factors determined in the
previous activity are used as an additional input. The GQM (Goal Question Metric) [BCR94]
approach is used to select the insights mentioned above targeting a specific quality goal. The
corresponding metamodel for this step is the Information Need Metamodel and an excerpt of
it is shown in Figure 5.4.

Third, the quality goals and their related quality focus had to be described in com-
mon terms, so that everyone who is involved in the evaluation has the same perception
of the term quality. In the Definition of a Common Understanding activity, we utilize the
Quality Model for Test Specification [ZVS+07] for establishing a common quality under-
standing. As the quality model for test specifications presented in [ZVS+07] relies on the
ISO/IEC 9126 [ISO01] quality standard, which was replaced in 2011 by the new ISO/IEC
25010 [ISO11b], we have compared the differences and extended the quality model for test
specifications.

Fourth, in the Definition of Measurement activity, suitable measures are documented for
the quality attributes identified in the previous activity. The measures are specified according
to the ISO/IEC 15939 standard [ISO02]. This standard provides the Measurement Informa-
tion Model (MIM) that helps in determining what has to be defined during measurement
planning and evaluation [ISO02].

Having the brief overview of the process and the corresponding metamodels, in the
following sections, we explain each process activity in detail. Additionally, each part of the
metamodel is explained in detail when the corresponding process step is discussed.

5.1.1 Characterization of Context

In this section, we present the first activity of the TCQP process for evaluating the quality test
cases which involves the identification of the context information specific to a given set of
test cases. Firstly, we present the context metamodel which includes a set of context factors
along with their description as well as the relation between them. Thereafter, we discuss the
objectives, input documents, process description, and the results of this activity.

Context Metamodel

The overview of the Context Metamodel in Figure 5.2 shows the identified relevant concepts
and the relation between them. Each of the identified concepts represents a context factor
as shown in Figure 5.3. The central class in the metamodel is, intuitively, the Test Case and
therefore, it is important to determine the deriving sources of these test cases. Although
we consider the complete test suite for measurement, the context description is about one



5.1 The Test Case Quality Plan Approach 82

TestCase

name: String
purpose: String
supportDocument: String

TestEnvironment

testingFramework: String
language: String
languageVersion: String
database: String

1..*

constructed in

TestSuite

name: String
description: String

SoftwareDevelopmentPhase

developmentPhase:DevelopmentPhase

Domain

name: String
criticality: String

1 0..1

scopeOfApplication

TestLevel

testLevel:TestLevel

<<enumeration>>
DevelopmentPhase

<<enum>>
requirementAnalysis
design
implementation
testing
maintenance
migration

<<enumeration>>
TestLevel

<<enum>>
unitTesting
integrationTesting
systemTesting
acceptanceTesting

1 1..*tested by

1..*

TestObject

name: String
description: String

1..*

1..*

tested in

SoftwareDevelopmentArtifact

name: String
status: String
version: Double

DesignDocumentSpecification SourceCodeSoftwareRequirementsSpecification

Role

name: String
description: String

produces
1..*

1..*

0..* 0..*

utilizes

derived from derived fromderived from

<<enumeration>>
TestType

<<enum>>
code-based
naturalLanguage-based

TestType

testType:TestType

1

0..*

1..*

TestItem

name: String
description: String

Core::ContextDescription

Figure 5.2 The context description metamodel

test case belonging to a particular context. In the following, we provide definitions for each
context factor:

Definition 1. Software Development Artifact: A software development artifact is a tangible
by-product or a product produced during a software development phase [PP16]

Definition 2. Software Development Phase: Software development is the set of phases that
results in software products. In each software development phase, a variety of activities take
place [PP16]

Definition 3. Software Requirements Specification: A software requirements specification
(SRS) is a complete description of the requirements that a software system to be developed
must or should fulfill [ISO09].
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Definition 4. Source Code: Computer instructions and data definitions expressed in a form
suitable for input to an assembler, compiler, or other translator. Note: A source program is
made up of source code [IEE91].

Definition 5. Role: A Role depicts a set of related skills, competencies, and responsibilities
in a software development process [OMG08].

Definition 6. Test Case: A set of test inputs, execution conditions, and expected results
developed for a particular objective, such as to exercise a particular program path or to
verify compliance with a specific requirement [IEE91].

Definition 7. Test Suite: A set of several test cases for a component or system under test,
where the postcondition of one test is often used as the precondition for the next one [IST].

Definition 8. Test Level: A group of test activities that are organized and managed together.
A test level is linked to the responsibilities in a project. Examples of test levels are component
test, integration test, system test and acceptance test [IEE91].

Definition 9. Test Object: The component or system to be tested [IEE91].

Definition 10. Test Item: A software item which is an object of testing [IST].
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Definition 11. Test Environment: An environment containing hardware, instrumentation,
simulators, software tools, and other support elements needed to conduct a test [IST].

Definition 12. Software Requirement Specification: Documentation of the essential re-
quirements (functions, performance, design constraints, and attributes) of the software and
its external interfaces [IEE91].

Definition 13. Software Design Specification: A representation of software created to
facilitate analysis, planning, implementation, and decision making. The software design
specification is used as a medium for communicating software design information and may
be though as a blueprint or a model of the system [IEE91].

The Process Step

The intention behind describing the context is to enable the deriving of information needs in
terms of questions and quality attributes and then to find suitable measures. The Characteri-
zation of Context activity involves identifying the context factors specific to considered test
cases. Context factors are essential elements that may affect the outcome of the evaluation.
Test cases are usually derived from requirement specifications, directly from the structure of
a component or system or can also be based on tester’s experience and intuition. Identifying
these relevant test case context factors which include the environment, domain, and associated
artifacts, assists in selecting suitable measures for evaluating the test cases.

Objective: The objective of this activity is to document the context description of the
selected test suite. This activity explicitly describes in which context the test suites are
measured.

Input Document: Documentation of the project, Project Plan, Test plan

Result: TCQP ContextDescription

Participants: Quality Manager and Tester

Process Description: For example, the following questions can be asked:

• What is the test level of the test cases?

• What is the criticality of the domain the test cases are used in?

• From which artifact are derived the test cases?
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Characterizing the context involves the stakeholders who are interested in evaluating
the quality of a set of test cases. The stakeholders are usually the quality managers and
testers who analyze and describe the context according to the context factors presented
in Section 5.1.1. Characterizing the context serves as an additional input in defining the
information needs, e.g., the goals of the stakeholders. As the identification of information
needs is a creative process, the document context information would assist in deriving the
quality goals specific to the context.

The Context Metamodel, which is depicted in Figure 5.2, shows the relations between the
context factors. The object of study in our approach is the test suite as a quality statement
about single test cases is hardly needed. As an initial step, it is important to determine the
deriving sources of these test cases. Test cases are usually derived from artifacts such as the
software requirement specifications, user manual, source codes, test results or failure reports.
It is also important to identify the environment of the test which would influence later on
the specification of the measures. Besides the environment, it is also important to determine
what type of test cases taken are into account. Test case type defines whether the test cases
are code-based or natural language-based.

5.1.2 Identification of Information Needs

In this section, we present the Identification of Information Needs activity where based on
the context factors collected in the previous activity goals are identified. Firstly, we introduce
the Information Needs Metamodel. Then, the goal definition template is introduced. Finally,
questions and attributes related to the described context are defined.

Information Needs Metamodel

Having the context identified, the information needs are discussed and described. The
identification of information needs involves various stakeholders working together to set
the goals for the quality evaluation. The main concepts of this activity are shown in the
Information needs metamodel in Figure 5.4.

This metamodel consists of a set of goals, which are refined by a question or set of
questions. By using the goal template, each goal is described by the object of study, the
purpose of the evaluation, the quality characteristics that are in focus, the viewpoint, and the
context which is being analyzed. Each identified goal is related to a set of questions which
are then related to corresponding quality attributes.
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Goal Template for the Quality Evaluation of Test Cases

In our approach, we apply GQM (Goal Question Metric) [BCR94] to define relevant goals
for the quality evaluation test cases. GQM provides a systematic approach for integrating
goals to models based on specific needs. Firstly, measurement goals are defined which are
further refined to operational level questions and then relevant metrics are selected. The
metrics provide all the necessary information for answering those questions. But before
defining metrics, the corresponding quality attributes are identified. Quality attributes are
atomic properties of the test cases that can be measured directly.

Goal specify "What is to be achieved?" and they are systematically documented by
using the structured goal template. A goal template includes aspects such as object of
study, purpose, quality focus, viewpoint, and context. In the following, we provide a short
description of each of this aspect:

• Object of study: Identifies the object to be evaluated

• Purpose: Indicates the purpose of the quality evaluation

• Quality Focus: Identifies the quality characteristic to be evaluated

• Viewpoint: Defines the persons who are interested in the measurement results

• Context: Refers to the context characterized by the context factors
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The Process Step

The context factors, identified in the previous activity, are used in Identification of Information
Needs activity. Using the GQM (Goal Question Metric) approach, the insights like goals
based on the quality focus are selected.

Objective: The objective of this activity is to document the information needs which
describe the quality goals for the evaluation. The selected goals state what is important to
measure. The evaluation of test cases does not depend on a fixed quality goal, but always
relative to the given QualityFocus. The QualityFocus, in turn, is dependent upon the Con-
textDescription.

Input Document: Context Description from the previous activity; Existing TCQP or
TCQP rules that are relevant to the context

Result: TCQP Information Needs

Participants: Quality Managers; Developers; Testers

Process Description: For processing this activity, the source from which the information
needs could be identified is given in the following:

• The interviews among the stakeholders (managers, developers and testers)

• More refined information need is gathered through the additional input ContextDe-
scription, the information need could also be independent of the ContextDescription

• If there are existing TCQPs or TCQP rules for similar contexts, we can reduce the
effort of human resources by reusing this experience from the existing plans and rules.

The measurement goals are now determined from the goal dimension template. The next
step is to refine the goals into questions and then into quality attributes. The questions focus
on the object of study and characterize the evaluation of a specific goal. This characterization
would help in finding a suitable quality attribute for the given goal. Figure 5.4 also shows the
relation between the Information Needs Metamodel and the Context Description Metamodel
and the Quality Metamodel. A goal is specified for the context and is then refined by questions.
Each question is described concerning a quality attribute. The process of identifying the
goals, questions, and quality attributes is performed through conducting interviews with
the stakeholders. The goals are further refined into questions by structured brainstorming
sessions and other similar methods.
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5.1.3 Definition of a Common Quality Understanding

In this section, we present how a quality model for test specifications is used to define a
general interpretation of the term quality related to test cases. Firstly, we present the extended
quality model for test specification based on the ISO/IEC 25010 quality model. Thereafter,
we illustrate the process of defining a quality model with respect to the information needs
defined in the previous step.

Extended Quality Model for Test Specification

Quality models are well-accepted means to evaluate and set goals for the quality of a
software product [DJLW09]. The term quality is decomposed by these models into quality
characteristics and can be further subdivided into more specific quality sub-characteristics and
finally into quality attributes. In contrast to the quality characteristics and sub-characteristics,
attributes are atomic properties and can be measured directly.

The quality model for test specification presented in [ZVS+07] is a specialization of the
ISO/IEC standard 9126 quality model. This quality model focuses on the different quality
aspects of test specifications. As the ISO/IEC 9126 quality model has been replaced in 2011
by the ISO/IEC 25010 quality model, we analyzed the differences and we extended the test
case quality model presented in [ZVS+07]. Figure 5.5 depicts the extended quality model
for test cases and as can be seen it comprises eight main characteristics: Test Effectivity,
Reliability, Usability, Performance Efficiency, Security, Maintainability, Portability, and
Reusability. As can be seen, each main characteristic is further refined by multiple sub-
characteristics. The definitions for the unchanged characteristics from ISO/IEC 9126 to
ISO/IEC 25010 standard are directly reused from [ZVS+07]. Those quality characteristics
from the ISO/IEC 25010 quality model, which have no corresponding quality characteristics
in the quality model for test specifications [ZVS+07] were adapted to the test domain. For
example, the Security characteristic is not any longer a sub-characteristic of Reliability
characteristic, but a separate characteristic and it contains three sub-characteristics, namely
Confidentiality, Accountability, and Security Compliance.

The quality model discussed so far is kept abstract to support the application to different
types of test cases. Each main characteristic contains a compliance sub-characteristic which
denotes the capability of the test cases to adhere to standards, conventions or regulations
relating to the main characteristic. This quality model can be adapted to various contexts,
and the characteristics can be defined with a fitting description with respect to the context.
Depending on the context, the relevant quality attributes are identified with respect to these
characteristics.
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Figure 5.5 The ISO/IEC 25000 Standard-based Test Case Quality Model

Process Step

The Definition of a Common Understanding activity relies on the quality model previously
introduced in Section 5.1.3. Defining such a quality understanding should enable the project
team to have the same perception of quality related to their context. As part of this activity,
we utilize the extended quality model for test cases introduced previously. Further, the goals
defined with a quality focus mapped with the quality characteristics and the quality attributes
are mapped with the sub-characteristics as shown in Figure 5.6.

Objective: The objective of this activity is to provide a common quality understanding
of the quality goals. The quality model for test specification contains the relevant quality
characteristics, sub-characteristics, and quality attributes. This activity describes what is
measured by providing a common description that is interpretable for all the stakeholders

Input Document: InformationNeeds from the previous phase; Existing TCQPs or TCQP
rules for a similar context; Existing quality models for test specification

Result: TCQP QualityModel

Participants: Quality Managers; Project Team

Process Description: As part of the Definition of Common Quality Understanding
activity, the quality models are fully integrated into the GQM approach [Voi09]. Quality
models provide a definition for the goals and attributes and acts as a link between questions
and measurements. A quality model is used to specify quality understanding and the attributes
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Figure 5.6 Quality Metamodel based on [Voi09] ant its relation the Information Need Meta-
model and the Measurement Metamodel

of test cases that are measured as shown in Figure 5.6. Based on the quality focus defined in
the goal dimension templates, the characteristics are mapped to the existing quality model by
the quality manager. At the same time, the quality sub-characteristics and quality attributes
are also identified.

5.1.4 Definition of Measurements

This section describes how measurements are defined for the identified quality attributes.
The definition of the measurement plan is based on the Measurement Information Model
(MIM) [ISO02]. Firstly, we discuss the measurement metamodel, and thereafter, we illustrate
the process of defining the measures.

Measurement Metamodel

In the previous activity, for each question, a quality attribute was identified. As the quality
attributes are the atomic properties of test cases, they can be quantified using measure-
ments. hence, a measurement provides a quantitative insight into the quality of a set of
test cases. By using measurements, problems can be identified as well as improvement
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opportunities [ISO02]. Therefore, in this section, we address the approach for describing the
measurements.

The ISO/IEC 15939 standard provides the “activities and tasks that are necessary to
identify, define, select, apply, and improve measurement within an overall project or orga-
nizational measurement structure” [ISO02]. This standard defines a measurement process
applicable to system and software engineering and management disciplines.
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Figure 5.7 Overview of the Measurement Metamodel as defined in [Voi09]

The specification of a measurement plan in the TCQP approach is based on the ISO/IEC
15939 standard. It relies on the measurement metamodel which is shown in Figure 5.7.
Mainly, a measure is described as follows: To refer to a given measure either a Name or an
Acronym is used. The Scale Type of a measure depends on the nature of the relationship
between values on the scale. According to the standard [ISO02], the commonly defined
scales are Nominal, Ordinal, Absolute, and Ratio. Metrics enable the quantification of quality
attributes. They are classified into three measures base measures, derived measures, and
indicators.

A base measure is functionally independent of other measures. For a particular quality at-
tribute, a measurement method is used to obtain a base measure. These methods usually work
on the object of study, which is identified previously, e.g., a test suite. Derived measures, on
the other hand, are defined as functions of two or more base measures. The derived measures
are applied in the analysis model along with the associated decision criteria. Indicators
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provide a qualifying statement and related analysis about the quality attributes. They provide
an estimation or the evaluation of the measured attribute. Additionally, the measurements are
differentiated into subjective and objective measurements. Subjective measurements depend
on a human judgment. As a consequence, they cannot be fully automated for computation and
are more expensive than the objective measurements. The measurement method for subjective
measurements is specified by an informal definition which should be understandable for all
stakeholders. On the other hand, objective measurements are more efficient as they can be
completely automated. For objective measurements, besides the informal definition, a formal
definition of the measurement method should be specified to enable automatic computing.

The Process Step

As part of this activity, the measurements that quantify the quality attributes are documented.
We distinguish between three types of metrics: base measures, derived measures, and
indicators. In general, some metrics would be used as a denominator in derived measures. In
the following, the process of defining measurements is explained:

Objective: The objective of this activity is to document the measurements that would
complete the quality plan. This activity describes how the quality attributes are measured
by providing an explicit description of the measures. From a conceptual point of view, this
measurement plan is used for carrying out the quality evaluation of test cases [Voi09].

Input Document: Quality model for test specification; Existing TCQPs or TCQP rules for a
similar context; Existing collection of measurements

Result: TCQP MeasurementPlan

Participants: Quality Managers; Project Team

Process Description: Definition of Measurement activity involves tailoring the ISO/IEC
standard 15939 for defining the measurements for the quality attributes of test cases.

Quality attributes are the atomic quality properties that can be measured directly. For
each identified quality attribute, the quality manager selects relevant metrics. The metrics
are either selected from the existing collection of measurements or new measurements are
defined. A base measure can be either objective or subjective measurement. The more
fine-grained the description of the measure is, the more comprehensible and reusable it is. It
is important to mention that, when a decision criteria for indicators is defined, in particular
for subjective measurements, the decision criteria must be checked thoroughly. Otherwise,
incorrect decision criteria could lead to serious consequences due to wrong interpretation.



5.1 The Test Case Quality Plan Approach 93

In the following, we present examples for the definition of measurement. Firstly, in Ta-
ble 5.1, we show a base measure which deals with counting the number of all test cases in a
test suite. This base measure can be used in other derived measures.

Base Measure
Name (Acronym) Number of Test Cases in a Test Suite (NTCTS)

Informal Definition Count the number of test cases in a test suite
Type of Measurement Objective
Scale (Type of scale) Integer from Zero to Infinity (Absolute)

Table 5.1 A base measure counting all test cases

The example depicted in Table 5.2 shows a measure which deals with counting of test
cases with the expected result specified.

Base Measure
Name (Acronym) Number of Test Cases with Expected Result in a Test Suite

(NTCWERTS)
Informal Definition Count the number of test cases having expected result specified

Type of Measurement Subjective
Scale (Type of scale) Integer from Zero to Infinity (Absolute)

Table 5.2 A base measure counting test cases with a specified expected result

Indicator
Name
(Acronym)

Ratio of Test Cases with Expected Result (RTCWER)

Informal Defini-
tion

Divide the number of test cases with a specified Expected Result
(NTCWERTS) by the number of test cases (NTCTS)

Analysis Model RTCWER <0.05 - "Acceptable"
RTCWER <0.1 - "Moderate"
RTCWER >0.2 - "Not Acceptable"

Type of Mea-
surement

Objective

Scale (Type of
scale)

Real from Zero to One (Ratio)

Table 5.3 An Example of defining an Indicator

The example shown in Table 5.3 shows a definition of an indicator for the measure that
computes the ratio of test cases with a specified expected result. The analysis model shows
the decision criteria which helps in interpreting the results and assists in the decision making.
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5.1.5 Tool Support

In order to support the TCQP process, i.e., the creation as well as the visualization and
interpretation of the evaluation results, we developed the Test Case Quality Evaluator
(TCQEval).

The tool, shown in Figure 5.8, consists of the following modules: module for quality
plans, module for quality assessments i.e., executed quality plans, module for management
of measurement tools, and documentation module.

Figure 5.8 A screenshot of the initial dashboard of TCQEval

The module for quality plans includes two features, the creation of new and overview of
existing quality plans. The feature regarding the creation of a quality plan supports actually
the TCQP process, i.e., the four activities of the quality evaluation process, by providing
a wizard-like user interface that guides the user through the creation process. The second
feature provides an overview of the already created quality plans with details about the
context, the defined goals and questions, as well as defined measures.

The module for quality assessments, i.e., executed quality plans, includes also two
features, import of quality assessment results and overview of the already executed quality
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plans, i.e., it provides an overview of the respective quality reports. It provides a dashboard
that gives an insight into the quality of the test cases on three different levels of granularity:
general quality of all test cases, quality of a specific test suite, and quality of a single test
case. This enables the user to easily locate a test case or a group of test cases that need
quality improvement, i.e., to locate those test cases with a lower score regarding a specific
characteristic or sub-characteristic. This module provides multiple views regarding the
quality of the assessed test cases: an overview area, which as its name suggests, gives
a general overview of the test case quality regarding all characteristics. Using charts, the
quality level of each quality characteristics and sub-characteristics is displayed. The graphical
representation of the test case quality eases the interpretation of evaluation results. A detailed
quality section of this module gives more precise information by providing the measured
values of quality attributes for each respective quality characteristic and sub-characteristic.
This module also supports the import of results generated by a measurement tool in a JSON
format which should follow a format defined by the TCQP metamodel.

The module for management of measurement tools supports the import of existing
measurement tools concerning specific quality attributes. Lastly, there is a module that
provides documentation for the complete approach.

Seen from a technological perspective, the tool is an Angular1 web application with a
node.js2 backend and a MongoDB3 database. In the next section, as part of the Context
Characterization activity (Section 5.2.1), a screenshot of TCQEval is shown in Figure 5.10.

5.2 The Quality Evaluation Process

In this section, we give an overview of the process which is part of the first phase of our
approach, namely the Test Case Quality Evaluation. The purpose of this process is to guide
the process of systematic quality evaluation of test cases which, at the end, should support
the decision-making whether to migrate the test cases or not. In Section 4.2, we briefly
introduced the core activities of the test quality evaluation process. These activities are also
shown in Figure 5.9. It is important to mention that the first two steps rely on the previously
introduced TCQP approach. Namely, the first activity Context Characterization corresponds
to the TCQP’s Characterization of Context activity, whereas the second activity, i.e., Test
Case Quality Plan Creation, makes use of the last three activities of the TCQP approach. In
the following, we refine each activity by describing its emphasis.

1https://angular.io/
2https://nodejs.org/
3https://www.mongodb.com/

https://angular.io/
https://nodejs.org/
https://www.mongodb.com/
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5.2.1 Context Characterization

The purpose of the Context Characterization activity is to systematically discover the context
of a given set of test cases. As already mentioned, this activity fully corresponds to the
TCQP’s activity Characterization of Context introduced in Section 5.1.1. An excerpt from a
context model created in the TCQEval tool is presented in Figure 5.10.

5.2.2 Test Case Quality Plan Creation

The purpose of the Test Case Quality Plan Creation activity is the creation of a context-
specific test case quality plan on the basis of the previously identified context information.
This activity encompasses the last three activities of the TCQP approach. Namely, first, as
part of the Identification of Information Needs activity, through interviews and structured
brainstorming sessions with the stakeholders, the goals and questions are specified. Then, as
part of the Definition of a Common Understanding activity, the identified goals are mapped
to quality (sub-)characteristics, and for the corresponding questions, quality attributes are
identified and documented. Lastly, as part of the Definition of Measurement activity, suitable
measures are documented for the identified quality attributes are defined. As we have already
introduced the three steps in Section 5.1, we do not go into detail. Figure 5.11 shows
an excerpt of a quality plan. Based on the previously introduced context model shown
in Figure 5.10, we have identified two goals, focusing on Test Effectivity and Usability. Each
goal was refined by defining questions and for each question, a quality attribute was selected.
For the Line Coverage quality attribute, a measurement named Code coverage was defined
(shown in the bottom part of Figure 5.11).
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Figure 5.9 Core activities of the test case quality evaluation process
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Figure 5.10 An excerpt of a context model created in the TCQEval tool

5.2.3 Measurement Tool Implementation

So far, a context-specific test case quality plan has been developed. The purpose of the
Measurement Tool Implementation is to develop the required tools for the specified measures.
We assume that associated tool developers use the specification of measures and indicators
as some kind of guidance.

The developers can use the measurement model, i.e., the measurement specification to get
an overview of a given measure or indicator. By doing so, they can get an understanding of
what should be exactly measured, i.e., they can understand what the developed measurement
tool is supposed to measure. Furthermore, the part that specifies the measurement method,
i.e., the formal or the informal definition, can be used to understand how it needs to be
measured. Here we envision two possible outcomes, either development of a measurement
tool from scratch or reuse of existing tools that evaluate test code quality. For example,
there are a lot of existing tools that already provide code coverage support, e.g., Eclipse for
JUnit [JUn]. If a quality measure needs this information, then such an existing tool could
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Metric Definition
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Type of Measurement

Measurement Method
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Interpretation

Tool Dependency

Divide the number of source code lines covered by the 
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x 100
# of source code lines covered by the test cases

# of lines in the source code

Goal Dimension Quality 
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Quality
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Attribute
Analyze the PivotTestSuite 
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Figure 5.11 An excerpt of a quality plan

be reused. However, if a base measure needs a property which is not covered by an existing
test quality tool, then it needs to be developed. In that case, the developers can analyze the
complete measurement specification and identify derived measures that share base measures
and implement the tooling in a more modular thus providing a more flexible and extensible
architecture of the tool.

The result of the measurement should be as correct as possible so that the right decision
regarding the migration of the test cases can be made. Therefore, during and after the
implementation of the required measurement tool, its quality needs to be validated. For sure,
one could think of checking a characteristic like performance, but we focus here more on the
functional correctness of the measurement tool, i.e., whether the implemented measurement
function is according to the specification of the measure, i.e., the measurement method with
the respective formal and informal definition. For this purpose, we assume that the developers
use a small amount of the original test cases to test the developed measurement tool.

The use of the measurement tool, i.e., the usage of the different measurement functions
should be documented so that it can be used by non-experts as well. In order to be able to use
the TCQEval tool for the visualization of the results, the measurement tool should provide
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an export functionality. The exported results should follow a defined format by the TCQP
metamodel and should be exportable in JSON format.

5.2.4 Execution and Decision-Making

So far, a context-specific quality plan has been developed and specified according to the TCQP
metamodel. Also, a tool required for the measurement has been implemented. Here, we
discuss the Execution and Decision-Making activity which, as its name suggests, comprises
two sub-activities, namely the execution of the test case quality and the decision-making.
The purpose of the former sub-activity is to perform the actual quality assessment of the
test cases whereas the purpose of the latter sub-activity is the decision-making regarding the
migration of the test cases based on the obtained evaluation results.

We assume that associated test developers as well as quality managers and system experts
use the test case quality plan as some kind of guidance. The people involved can browse
the quality plan to get an overview of the actual measurement that shall take place. When
executing the different measurement functions, the people can read the provided definitions
of the measures so that they can easily interpret the score at the end.

We also foresee the use of separate guidance documents in terms of a tooling manual. In
case such documents are used, then they should be read instead. As most of the activities
belonging to the first sub-activity, i.e., the execution of the quality plan, are performed
automatically, the interaction between people and tools during the measurement needs to
be addressed. More specifically, people must get notified whenever a tool has created an
output, based on which they need to perform the export of the results. Having the results
obtained, they should be exported and imported in TCQEval, the tool that we introduced
in Section 5.1.5.

The TCQEval tool, as already described, provides an insight of the overall quality of the
test cases according to the created test case quality plan as well as detailed insight regarding
each quality characteristic, sub-characteristic or quality attribute. Based on this information,
the Quality Manager and the Test Expert can decide whether to migrate the test cases or not.
Potentially, a specific test suite or test cases could be selected for migration or improvement
before being migrated.

5.3 Summary and Discussion

In this chapter, we have introduced the first phase of our approach, namely the Test Case
Quality Evaluation. Firstly, we introduced a novel approach for quality evaluation of test
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cases called Test Case Quality Plan (TCQP) which enables a systematic development of
context-specific quality plans for test cases. Then, we introduced the process for quality
evaluation which makes use of the TCQP approach. Some of the findings presented in this
chapter are based on master theses [Nar17, Cha20].

In Section 5.1, we gave an overview of the TCQP approach which consists of a process
and a corresponding metamodel. The process has the role of guiding in developing a test
case quality plan, whereas the metamodel defines how a quality plan looks like. First, we
introduced and discussed the various context factors which are relevant for the test case
domain. Identification of context factor is important because they impact the outcome of the
quality evaluation. Then, we presented the goal definition template and we define questions
and attributes related to the test case context. Information needs provide an insight to manage
objectives goals, risks, and problems. Subsequently, we presented the extended quality model
for test specifications based on the ISO/IEC 25010 standard. We also discussed in detail
the quality characteristics, sub-characteristics, and quality attributes and we illustrated the
process of defining a common quality understanding using the quality model. Afterward, we
presented the measurement model and we also illustrated the different types of measures
with examples.

In the second part of this section, i.e., in Section 5.2, we introduced the main four
activities of the first phase: Context Characterization, Test Case Quality Plan Creation,
Measurement Tool Implementation, and Execution and Decision Making. Firstly, as part of
the Context Characterization activity, the context of the test cases has to be characterized
so that in the second step a suitable quality plan for the test cases can be created. Having
the context characterized, as part of the second activity, namely the Test Case Quality Plan
Creation, the main goals and questions of the stakeholders are identified. Based on them,
appropriate quality attributes are identified as well as the corresponding quality characteristics
and sub-characteristics leading to establishing a common quality understanding. Finally,
for each of the identified quality characteristics, measures are defined. As part of the third
activity, namely the Measurement Tool Implementation, tools are developed to automate the
measurement process. In the last activity, i.e., Execution and Decision Making, the developed
quality plan is being executed. The outcome of the execution in terms of a quality report
containing the different scores is used to make a decision regarding the eventual migration of
evaluated the test cases.

The context characterization and the creation of the quality plans are supported by
the TCQEval (Test Case Quality Evaluator) tool. Such support is still missing for the
next two activities, namely measurement tool implementation and execution and decision-
making. A flexible component-based measurement tool infrastructure would definitely the
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tool implementation activity. For example, by providing a flexible plug-and-play mechanism
for existing quality tools as well as those that are specifically developed for a given project.
Furthermore, an automated or semi-automated import of the evaluation results would largely
improve the analysis process. The quality evaluation approach that we have presented
focuses on assessing the quality of the test cases, but these results are not used for the
eventual improvement of the test cases. As a quality report provides an insight into different
quality aspects, the test cases with lower quality could be identified and improved. For
example, test cases with low fault-revealing capability can be improved by applying mutation
testing.

In the next chapter, we will go into detail on the main phase of our approach. i.e., the
migration phase. If the quality evaluation results coming from the execution of the quality
plan developed according to the TCQP approach suggest reuse of the existing test cases, a
co-evolution analysis as well as a systematic development of test case migration methods are
performed.



Chapter 6

Migration Phase: Method Engineering
considering Co-Evolution Analysis

In the previous chapter, the pre-migration phase was introduced where the quality evaluation
of the original test cases was performed. In this chapter, we introduce the main phase, i.e.,
the migration phase, by introducing the content of the method base as well as the method
engineering process. First, we give an overview of the migration phase in Section 6.1
by giving an overview of the basic structure of the method base and the core activities
of the process. In Section 6.2, we refine the structure of the method base and describe
its content. Basically, the method base consists of two constituents, namely test method
fragments and test method patterns. In Section 6.3, we introduce the method engineering
process. Essentially, the activities of the engineering process are split into two disciplines:
method development and method enactment. The findings of this chapter are summarized
in Section 6.4.

6.1 Overview of the Migration Phase

In this section, we give an overview of the migration phase of the Test Case Co-Migration
(TeCoMi) framework where method construction considering co-evolution analysis as well
method enactment are performed. As shown in Figure 6.1, we support this phase by providing
an extended method engineering process that relies on a method base that contains test-
specific fragments and patterns. In the following, we briefly give an overview of the content
of the method base and the method engineering process.
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Figure 6.1 Core activities of the method engineering process of TeCoMi

Method Base

The purpose of the Method Base is to provide reusable building blocks for transformation
method specifications. As already briefly introduced in Section 4.3.1, the method base
contains two types of building blocks: Method Fragments and Method Patterns. The method
fragments are atomic building blocks that can be combined to compose a transformation
method.

We classify the method fragments at the highest level, based on the phase they primarily
belong to, which is either the tool implementation or transformation phase. The fragments
that are related to the tool implementation phase can be used to specify tool development
activities, whereas the fragments related to the transformation phase can be used to describe
the transformation. As shown in Figure 6.2, we further classify the fragments of both phases
based on their type, namely, artifacts, activities, tools, and roles. The method fragments
provided in this thesis are based upon the method fragments provided by the MEFiSTo
framework. However, they have been either adopted or new test-specific fragments were
created as the method fragments in MEFiSTo are defined specifically for the system migration
domain.

How to combine the method fragments is encoded in the method patterns which provide
construction guidelines for a method. The proposed patterns in this thesis are based upon
the method patterns from the MEFiSTo framework. However, these patterns served only as
an initial inspiration. The newly created test method patterns are completely reworked and
adapted to the test domain because the method patterns in MEFiSTo are defined according to
the system artifacts and the abstraction levels they are belonging. The test method patterns
we present are functionality preserving patterns as they deal with the transformation of the
test cases which preserves their functionality, by following a transformation strategy, e.g.,
conversion or reimplementation. As the test method patterns do not express the dependency
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between the system and the test case migration, we additionally propose a set of co-migration
method patterns. Technically, a co-migration method pattern is a combination of a system
method pattern and a test method pattern visually resembling a double horseshoe model.
A co-migration pattern encodes the relation between the applied system migration pattern
and the selected test method pattern. The details about the method base are presented
in Section 6.2.

Method Base
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Figure 6.2 Overview of the structure of the method base in TeCoMi

Method Engineering Process

Relying on the method base, the method engineering process, shown in Figure 6.1, guides
the development and the enactment of the situation-specific test migration method. In Sec-
tion 4.3.2, we briefly introduced the core activities of the method engineering process. Each
of the four core activities is assigned to one of the two main disciplines, namely Method
Development and Method Enactment. By performing activities of the Method Development
discipline, a situation-specific test method gets developed. It comprises the following two
activities: Situational Context Identification considering Co-Evolution and Transformation
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Method Construction. During the Situational Context Identification considering Co-Evolution
activity, the situational context is systematically discovered by analyzing and characterizing it
from both the system migration and as well as testing perspective. Firstly, both the source and
the target tests and systems are represented as a set of concepts by applying concept modeling.
This basically decomposes both the system and the tests into distinct parts so that for different
parts different patterns could be applied. Then, based on this decomposed representation,
the impact of the system changes on the test cases is identified and captured in terms of an
impact model. Lastly, the influence factors are systematically identified. These influence
factors are used by the next activity when selecting a suitable method pattern. Having the
context information collected in terms of a Situational Context Model, the Transformation
Method Construction activity guides the pattern-based development of a test transformation
method.

Firstly, the method fragments are systematically customized as the fragments in the
method base are not associated with a specific technology, but rather generically described.
We aim to provide systematic guidance on the customization of the fragments. Secondly,
the selected migration patterns have to be integrated as simply applying different patterns
on different tests or different parts of the tests would result in an unconnected method.
Therefore, to avoid this problem, we also provide guidance on the systematic integration
of the patterns. The overall outcome of Method Development is a Situation-Specific Test
Migration Method Specification which specifies how to do the migration by defining the
activities to be performed and the artifacts that should be generated. In contrast to the first
two core activities, which are concerned with the development of the transformation method
specification, the last two core activities are concerned with its enactment. During the first
activity of Method Enactment, namely the Tool Implementation, a Situation-Specific Tool
Chain is developed that is required for the automation of the migration method. Namely,
it enacts those parts of the method specification that describe the development of the tools
which are required to automate (parts of) the transformation. We assume that a generic
tool infrastructure is available when using the TeCoMi framework so that a foundation for
the development of the situation-specific tools is provided. Thereafter, during the last core
activity, namely the Transformation activity, the test migration method is enacted by enacting
those parts of the test migration method specification that describe the actual transformation
of the original test cases, using the tools developed.
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6.2 Method Base

The Method Base contains the knowledge of the available migration strategies. It is actu-
ally a repository containing reusable building blocks of methods and includes test method
fragments and test method patterns. Test method fragments are the atomic building blocks
of test migration methods, whereas the test method patterns are representing strategies and
indicate which fragments should be used. We classify the fragments based on the phase
they belong to, namely the transformation phase (Section 6.2.1) or the tool implementation
phase (Section 6.2.2). Besides the test method patterns, the repository contains a set of
co-migration method patterns which express the dependency between the system and the test
case migration patterns. In the following, we present the main constituents of the method
base, namely the test method fragments, test method patterns, and the co-migration patterns.

6.2.1 Transformation Phase Fragments

Here, we introduce the method fragments used to specify the actual transformation also
known as transformation phase fragments. A method fragment is an atomic building block
of a migration method, i.e., an artifact or an activity. Artifacts are constituting parts of each
migration method and are distinguished by the level of abstraction they are belonging to.
More precisely each artifact belongs to a different level of abstraction, namely, the System
Layer, Platform-Specific Layer, or Platform-Independent Layer. Activities, on the other hand,
produce or consume appropriate artifacts. As we follow the idea of model-driven software
migration [FWE+12], our method fragments belong to one of the following reengineering
processes: Reverse Engineering, Restructuring, and Forward Engineering [CC90].

Therefore, the activities as well as the artifacts are represented in Figure 6.3 to Figure 6.5
as horseshoe models [KWC98]. More particularly, we present a series of double horseshoe
models, i.e., a combination of a test case horseshoe and a system horseshoe model, according
to the above-mentioned abstraction layers.

Activities and Artifacts

Firstly, we introduce the artifacts and the activities and we start with the lowest level of
abstraction, namely the System Layer. Seen from a testing perspective, on the System Layer,
textual artifacts representing test code and models of the test code are placed (Figure 6.3).
Regarding the textual artifacts, this is either the Original Test Code or the Migrated Test
Code. The test code can be either the test cases, implemented in a specific testing framework,
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e.g., JUnit1 or MSUnit2, test configuration scripts or a manually implemented additional test
framework. Similarly, regarding the models of the code, it is either the Model of Original
Test Code or the Model of Migrated Test Code. These models represent the test code in a
form of Abstract Syntax Tree [OMG11a] of the appropriate language of the original or the
target environment.
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Figure 6.3 Test method fragments of the transformation phase on the system layer

Regarding the activities, as can be seen in Figure 6.3, we distinguish between five
types of activities: Endogenous Model Transformation, Exogenous Model Transformation,
Model-to-Text Transformation, Text-to-Model Transformation, and No Transformation (re-
moval/deletion of particular parts). These activities can be further distinguished by the

1http://junit.org/junit4/
2https://msdn.microsoft.com/en-us/library/ms243147.aspx

http://junit.org/junit4/
https://msdn.microsoft.com/en-us/library/ms243147.aspx
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reengineering process they belong to, namely Reverse Engineering, Restructuring or For-
ward Engineering [BCJM10b]. On the system layer, we have the first reverse engineering
activity namely the Model Discovery. The Model Discovery activity relies on syntactical
analysis and by using a parser it allows automatic text-to-model transformation to create a
model of the test case source code represented as an Abstract Syntax Tree (AST) [OMG11a].
The obtained model, the Model of Original Test Code, is known as the initial model because
it has a direct correspondence to the test cases. Optionally, the Enrichment activity can be ap-
plied to the Model of Original Test Code. By applying this activity, e.g., by using annotation,
additional information could be inserted into the tests. The Language Transformation also
known as AST-based transformation [KWC98], defines a direct mapping between the Model
of Original Test Code and the Model of Migrated Test Code. The Model of Migrated Test
Code is already specific for a particular testing framework and can be used for the generation
of the Test Code by executing the Test Code Generation activity, which is a model-to-text
transformation. As test cases are generated from the test model, this can be seen as e typical
model-based testing activity [JGG16]. The tools which support forward engineering are
known as generators and for each specific target platform, an appropriate generator is needed.
Custom code generators can be built by using Xtend3 which is a statically typed program-
ming language which offers features like template expressions and intelligent white-space
management. As part of this double horseshoe model, we also introduce Reimplementation
which is a text-to-text transformation. This activity is performed by developers or testers
manually by observing the original test cases and then implementing them for the target
testing environment. Finally, the Test Code Removal activity is used to specify on which
part of the test case code a transformation should not be performed. Intuitively, this activity
compared to all other is the only one that does not produce output.

The system method fragments, provided by the MEFiSTo framework, which belong
to the system layer, are only code artifacts and reimplementation and removal activities.
Nevertheless, any of these activities can potentially have an influence on the activities defined
by the test horseshoe model, namely the language transformation, reimplementation or
removal. For example, a reimplementation guideline can be used when performing manual
transformation of the test cases, i.e., when performing the Reimplementation activity on the
test cases. It can also influence the definition of the model transformation rules if Language
Transformation of the test cases is performed. Or, if a part of the system is removed by
applying the Removal activity, then, consequently, this has to be done for those test cases
that test that part of the system. Also, the Test Code Generation activity is influenced by the

3http://www.eclipse.org/xtend/

http://www.eclipse.org/xtend/
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Reimplementation activity of the system or from the Transformed Source Code as they are
directly defining the system in the target environment.

The Platform-Specific Layer is a higher level of abstraction compared to the system layer.
As shown in Figure 6.4, technology-specific test concepts are used to represent the test cases
for both the source and the target environment. The Model of Original Executable Tests and
Model of Migrated Executable Tests are considered as platform-specific as they represent
executable test cases by using testing concepts which are specific for a particular testing
framework, e.g., JUnit or MSUnit.
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Figure 6.4 Test method fragments of the transformation phase on the platform-specific layer

In order to obtain the Model of Original Executable Tests, firstly the initial model, i.e.,
the Model of Original Test Code is explored by navigating through its structure in an activity
called Test Case Understanding. Model elements which represent test relevant concepts
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like test suite, test case or assertion are identified and then, by applying a model-to-model
transformation, the Model of Original Executable Tests is obtained. This model is platform-
specific and it is an instance of a metamodel of a particular testing framework, e.g., JUnit,
MSUnit or TTCN-3. The Model of Original Executable Tests can be directly obtained from
the Original Test Code by performing Direct Test Case Understanding. The Test Language-
based Transformation activity defines a mapping directly between two testing frameworks,
i.e., it defines a mapping between the testing concepts inside the original and the target testing
framework. By applying this transformation on the Model of Original Executable Tests, the
Model of Migrated Executable Tests is obtained. Having the Model of Migrated Executable
Tests, by applying the forward engineering activity called Test Concretization a Model of
Migrated Test Code is obtained. The Model of Migrated Test Code can be directly obtained
from the Model of Migrated Executable Tests by performing Direct Test Code Generation.

Seen from a system perspective, according to MEFiSTo, we have the Model Discovery,
Language Transformation, and Code Generation activities as well the Model of the Legacy
System’s Source Code and its Environment and Model of the Transformed System’s Source
Code and its Environment. In the following, we discuss the dependencies between the
activities and the artifacts from the double horseshoe model shown in Figure 6.4. Firstly,
the Model Discovery activity for both the test and the system horseshoe model is the same.
This suggests that it could be completely reused, if available, to obtain the Model of Original
Test Code. Analogously, the same applies to the Code Generation and Test Code Generation
activities, with eventual minor adjustments of the code generation templates. The same
applies to the metamodels on this level the reverse engineered Model of Original Test Code
has to be conform to. This comes from the fact that both Model of Original Test Code and
Model of the Legacy System’s Source Code and its Environment are actually abstract syntax
trees of the same language. The Test Language-based Transformation is directly influenced
by the Language Transformation applied to the system. More details on the dependencies
are presented in Section 6.2.4.

On the Platform-Independent Layer, the models representing the test cases are indepen-
dent of any particular testing framework or testing technology. On this level of abstraction,
as shown in Figure 6.4, the Model of Abstract Tests is placed. The Model of Abstract Tests is
considered to be platform-independent as it is independent of any concrete testing framework.
Standardized languages like UML Testing Profile (UTP) [OMG13b] and Test Description
Language (TDL) [ETS16] are used for modeling the abstract tests.

By applying the Test Abstraction activity, which is a model-to-model transformation
as well, one can obtain a model of the abstract test cases which is platform-independent.
Regarding the technical side of the model-to-model transformations, different transformation
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Figure 6.5 Test method fragments of the transformation phase on the platform-independent
layer

languages can be used, e.g., QVT [OMG11b], JDT4 or ATL[JABK08]. At this point, a Re-
structuring activity has been foreseen on the Model of Abstract Tests. According to [CC90],
Restructuring is "the transformation from one representation form to another at the same rel-
ative abstraction level, while preserving the subject system’s external behavior (functionality
and semantics)". In the testing domain, we define test restructuring as the transformation
from one test representation to another at the same relative abstraction level, while preserving

4https://www.eclipse.org/jdt/

https://www.eclipse.org/jdt/
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the "semantics" of the tests. Here, with "semantics" we mean the functionality that is being
checked by a particular test. The Restructuring activity is of course influenced by the target
testing environment, testing tool, or by requirements on improving the quality of the test
cases (e.g., maintainability). However, it could also be influenced by the changes that happen
in system migration. As these changes may be relevant for the test models, they have to be
reflected in the tests as well. The Enrichment activity can be applied to various models, e.g.,
Model of Executable Tests, Model of Abstract Tests. By using annotations, one can insert
additional information to the tests.

As defined by [CC90], Forward Engineering is "the traditional process of moving from
high-level abstractions and logical, implementation-independent designs to the physical
implementation of a system". In the field of software testing, this can be paraphrased as a
process of moving of high-level test abstractions and logical implementation-independent
design to the physical implementation of the test cases. The complete Forward Engineering
side can be seen as Model-Based Testing, or more specifically Model-Driven Testing [HL03,
EGL06]. The test models are used as input for a chain of model-to-model transformations,
ending with a model-to-text transformation, which provides the test code as output. By
applying Test Concretization a Model of Migrated Executable Tests is obtained.

Seen from a system perspective, according to MEFiSTo, we have to consider two different
paths in the system horseshoe model. Firstly, we consider the path starting with Program
Comprehension, Restructuring, Enrichment, and Concretization. The artifact obtained after
applying Program Comprehension is the Model of the Software System’s Functionality. The
Restructuring and eventually Enrichment which are performed on this model can influence
the Restructuring and the Enrichment of the Model of Abstract Tests as this is the point
where the actual changes in the system can happen. The same applies when Architectural
Recovery is performed, i.e., when Model of the Software System’s Architecture is obtained
and Architecture Recovery or Enrichment are performed. Section 6.2.4 provides further
insight into these dependencies.

The three abstraction layers analyzed so far, can be mapped to two testing abstraction lay-
ers defined by the Test Description Language standard [ETS16]. The Platform-Independent
Layer corresponds to the Test Design Layer, where the initial test model is designed, namely
the Model of Abstract Tests. Then, on the Test Implementation Layer, Model of Original
Executable Tests and Model of Migrated Executable Tests are placed. These two models rep-
resent a test implementation with concrete test data. Finally, at the lowest level of abstraction,
we have Model of Original Test Code and Model of Migrated Test Code as well as Original
Test Code and Migrated Test Code.
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Tools

In order to support the previously introduced activities, thus enabling a (semi-) automatic
transformation, we foresee in total three types of tools that are needed (Figure 6.6). Firstly,
a Parser is needed to obtain the initial models out of the textual artifacts, i.e., to perform
the Model Discovery activity. Then, in a series of model-to-model transformations, which
are specified by transformation rules, initial models are obtained. The specified rules are
then executed by a Model Transformation Engine. Finally, a Code Generator is needed
to perform the model-to-text transformation by executing the test code generation rules
previously specified, thus generating the test code for the migrated test cases.

Roles

Regarding the transformation phase, two roles are associated, as already discussed in Sec-
tion 4.3, namely, Test Expert and Software Developer. Consequently, we provide correspond-
ing method fragments for both roles, shown in Figure 6.6.
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Figure 6.6 Roles and Tools of the transformation phase

A Test Expert, on the other hand, can be involved in tasks which require knowledge of
certain aspects. For example, a test expert could be a tester of the original system. During
the transformation of the test cases, her knowledge can be used to perform some enrichment
activities on the test cases. Another example for a system expert is a test engineer who could
be involved in an architectural restructuring of the test cases. For example, when performing
such a restructuring, decisions between different alternatives should be made regarding the
structure of the test suites and test cases in the target testing environment. A person in the
role of Software Developer is responsible for performing reimplementation activities.

6.2.2 Tool Implementation Phase Fragments

In this section, method fragments for the tool implementation phase are introduced. These
fragments are used to specify the development of the required tools and can be derived
from the previously introduced method fragments that specify the actual transformation. For
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example, the method fragments of the transformation phase are used to specify that a Test
Language-based Transformation activity shall be performed. This kind of transformation
means that an original platform-specific test model is transformed into another target test
model. In order to perform the transformation activity, an artifact should be available, namely
the Model Transformation Rules. Hence, developing the model transformation rules is a
necessary preparation. Considering this relation between the method fragments of both
phases, the method fragments of the tool implementation phase were derived from the ones
of the transformation phase. Figure 6.7 depicts the resulting method fragments in terms of
activities, artifacts, and tools.

Artifacts & Activities

We have identified six method fragments including both activities and their corresponding
artifacts, similar to the MEFiSTo framework, which served as a starting point. Automated
transformations of test cases are based on the use of test models, thus implying corresponding
test metamodels. Therefore, we introduce the Test Metamodel Definition activity which
represents the definition of a required test metamodel. The corresponding artifact is specified
by the Test Metamodel fragment. Regarding the actual definition metamodel, we foresee three
different ways to realize it. For sure, as a first option, a metamodel can be developed from
scratch. But, in the case of transformation methods, metamodels either for programming
languages or test languages used in the source or target environment are required. In general,
these metamodels are well-defined and stable. This gives the second option, namely the reuse
of those metamodels which are available. Sometime, however, the available metamodels
should be adapted to specific needs. Hence, a third option would be to use a profiling
mechanism to adapt an existing metamodel.
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Figure 6.7 Test method fragments of the tool implementation phase
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Some activities may require the use of tools. For example, performing Model Discovery
requires using parsers or Test Understanding requires reverse engineering tools. The Tool
Definition activity represents the development of such tools. Similarly to metamodels, one
can either develop a required tool from scratch or reuse an existing one. As can be seen
in Figure 6.7, the output of this activity is a tool and not an artifact, compared to the other
activities.

Those activities that specify a transformation between test models rely on model trans-
formations which are executed automatically. The definition of the required transformation
rules is represented by the Test Model Transformation Rules Definition activity. The resulting
artifact of this activity is represented by the Test Model Transformation Rules fragment. Sim-
ilarly, the activity Test Code Generation Rules Definition is used to represent the definition
of the generation rules. The resulting artifact in this case is represented in terms of the Test
Code Generation Rules fragment. The Reimplementation activity is performed manually by
software developers and therefore it needs to be guided. The definition of such guidance is
represented by the activity Reimplementation Guidance Specification. The corresponding
resulting artifact is specified in terms of the Reimplementation Guidance fragment. The
Reimplementation Guidance is used by the developers when the actual manual transformation
of the test cases takes place.

Roles

There is only one role associated to the implementation phase and that is a Tool Developer.
Accordingly, we provide a corresponding method fragment. Intuitively, the Tool Developer
is responsible for the previously introduced activities, e.g., reimplementation guidance, the
definition of test metamodels or definition of any tool which is required. Consequently, we
expect that a person in this role has knowledge of model-driven engineering and developing
reengineering tools for test cases.

Tools

Regarding tools, two types of tools are distinguished: kind of general tools which are required
by any transformation method and method-specific tools, i.e., tools which are specific to
a certain method. The general tools, on the one hand, are required by any method that
contains automated parts of the transformation. A good example of such a tool is a model
transformation engine which is required for the execution of test model transformation rules.
We have already introduced the method fragments which specify these kinds of tools as part
of the transformation phase fragments, like Parser and Test Code Generator. Method-specific
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tools on the other hand are those tools which are specifically developed for a certain method.
For example, reverse engineering tools or clustering tools are developed for each method.
For the specification of this kind of tool, we provide a generic fragment.

6.2.3 Test Method Patterns

Having only method fragments like artifacts, activities or tools is not sufficient as no guidance
is provided on how to assemble them and thus create a test case migration method. For this
purpose, we additionally provide method patterns.

Functionality Preserving Test Method patterns

Test Language-based 
Test Transformation

Language-based 
Test Transformation

Test Reimplementation

Test Code Removal
X

Conceptual 
Test Transformation

Figure 6.8 Basic test transformation method patterns.

A method pattern, intuitively, represents construction guidelines for migration methods
and follows a certain strategy. It contains the methodological knowledge with the purpose
to address the problem associated with it. Technically seen, a method pattern defines
which method fragments should be customized and how to put them together. Functionality
preservation is the main requirement in any migration project, and therefore, in test case
migration too [BLWG99]. To preserve this functionality, a consistent path in the horseshoe
model has to be realized from the Original Test Code to the Migrated Test Code. In the
following, as shown in Figure 6.8, we present the basic test method patterns that preserve
functionality. We describe each pattern according to the schema depicted in Figure 6.9,
which is also used in [Gri16]. The tabular description of the schema summarizes the most
important characteristics of each test method pattern. Additionally, we provide a description
to better understand these characteristics in detail.
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Which artifacts or tools have to be developed in advance of the
transformation when applying the pattern?Preparation

Applicability In which situations is the pattern suitable? What are the most important 
influence factors on its efficiency or effectiveness?

The structure of the pattern, depicted as a path in the horseshoe modelStructure

Strategy Which methodological solution does the pattern provide?

What problem does the pattern address?Intent

Figure 6.9 Schema to characterize test method patterns

Language-based Test Transformation

The Language-based Test Transformation (Figure 6.10) pattern defines the migration of the
functionality of the test cases by defining a mapping between the language constructs in
both the original and target environment. The mapping is applied by a direct transformation
between the Model of Original Test Code and the Model of Migrated Test Code. Theoretically
seen, this pattern could be applied actually in any migration scenario, but its suitability
mainly depends on the complexity of the model transformations between both models.

Firstly, the extracted Model of Original Test Code needs to be interpreted to identify the
test concepts to be transformed. Then, it could be necessary to restructure the explicit test
concepts, like test behavior or test assertions. Once prepared, the test concepts on the original
environment have to be mapped to the test concepts of the target environment. Thus, this
pattern could be considered suitable if the effort of test interpretation and restructuring is
relatively low. However, seen from a test perspective, it basically means, the transformation
of the test concepts has to be done implicitly.

Test Language-based Test Transformation

The Test Language-based Test Transformation (Figure 6.11) patterns define to migrate the
functionality of the test cases by using an intermediate test representation on platform-specific
layer.

The testing concepts together with the test data are explicitly represented by a Model
of Original Executable Tests. By applying the separation of concerns principle, this pattern
makes the transformation step less complex compared to the Language-based Test Transfor-
mation. Namely, the first concern of interpretation is explicitly addressed by the Test Case
Understanding activity. Then, the Restructuring could be applied to the Model of Original
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Applying this pattern essentially requires realizing a test code parser,
model-to-model transformations and test code generation rules.Preparation

Applicability

Use when the test logic that should be transformed is realized 
comparably in the source and target test environment and a high number 
of test cases is considered. The difference in the realization determines 

the complexity of the mapping between the languages involved, 
influencing the efficiency and effectiveness of the pattern

Structure

Strategy

Definition of a direct mapping between the programming languages of
the source and target environment. This is realized by representing the 
original test cases as a model of the AST of the programming language 

on a platform-specific layer. A model transformation that transforms 
this model into an AST of the target environment is a realization of the 

mapping between the programming languages involved.

Perform an automated transformation of the original test cases into a 
new environment, following a conversion-based transformation strategyIntent

Figure 6.10 Characterization of the Language-based Test Transformation Pattern

Executable Tests, which enables direct manipulation of the test concepts, e.g. test assertions.
After Restructuring, the mapping to the target test framework, i.e., mapping to the Model
of Migrated Executable Tests is performed. Finally, Direct Test Code Generation is applied
either directly or via Test Concretization and Model of Migrated Test Code, the Migrated
Test Code is generated. This pattern could be considered suitable when the difference of
the test case implementation is significantly different in the original and the target testing
frameworks. Compared to the Language-based Test Transformation pattern, this pattern
enables direct, i.e., explicit representation and manipulation of test constructs.

Conceptual Test Transformation

The Conceptual Test Transformation (Figure 6.12) pattern defines to migrate the test func-
tionality by using an intermediate representation in terms of a Model of Abstract Tests on
a platform-independent layer. This improves the dependent framework transformation on
the platform-specific layer by explicitly representing some test concepts on a higher level of
abstraction as part of the Model of Abstract Tests.

For example, seen from the test design perspective, the test architecture or test behavior
could be explicitly represented with this model. This pattern could be considered suitable



6.2 Method Base 119

Applying this pattern essentially requires realizing a test code parser,
model-to-model transformations and test code generation rules.Preparation

Applicability

Use when the test logic to transform is realized comparably in the
original and target test environment and a high number of test cases is 
considered. The complexity of the mapping between the test languages 

involved is determined by the difference in the realization, which 
further influences the efficiency and effectiveness of the pattern

Structure

Strategy

Definition of a direct mapping between the test languages of
the test environments involved. This is realized by representing the 

original executable test cases as a model on a platform-specific layer.
A model transformation that transforms this test model of executable 
tests into a model of executable tests of the target environment is a 

realization of the mapping between the test languages involved.

Perform an automated transformation of the original test cases into a 
new environment, following a conversion-based transformation strategy

Intent

Figure 6.11 Characterization of the Test Language-based Test Transformation Pattern

when some test concepts are realized completely different in both environments or when a
restructuring of the test architecture or test data is necessary.

Test Reimplementation

The Reimplementation (Figure 6.13) pattern defines to migrate the test functionality by
having it manually transformed by software developers. Firstly, they explore the existing test
cases and try to identify the functionality being tested. Then, they try to implement the same
test cases, testing the same functionality in the target environment. This pattern could be
suitable in cases when an automatic migration is difficult to be implemented, i.e., when the
number of the test cases is not that high or when they are of no such high complexity.

Test Code Removal

The Test Code Removal (Figure 6.14) pattern defines not to migrate certain parts of the test
code, i.e., no transformation should be performed on it. Due to the evolutionary development
of the system as well as of the test cases, inconsistencies between the test code and the system
code may exist, i.e., it may happen that no longer supported features or non-existing parts
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Applying this pattern essentially requires realizing a test code parser,
model-to-model transformations and test code generation rules. Preparation

Applicability

Use when the test cases to transform is realized significantly
different in the source and target test environment and a high number of 

test cases is considered. The use of a model of abstract tests can
reduce the complexity of the transformation by separating the

concerns of reverse engineering, restructuring, and mapping the
functionality. The efficiency and effectiveness of this pattern is 

essentially influenced by the complexity of these concerns

Structure

Strategy

Use a model of abstract cases to transform on a platform-independent 
layer. The representation is reverse engineered from model of original 

executable test on a platform-specific layer. After a potential 
restructuring, it is transformed into a model of executable test of the 

target environment,  before test code gets generated

Perform an automated transformation of the original test cases into a 
new environment, following a conversion-based transformation strategyIntent

Figure 6.12 Characterization of the Conceptual Test Transformation Pattern

Applying this pattern essentially requires defining guidance
documents to systematize the reimplementation.Preparation

Applicability
Use when automatic approaches are either inefficient or ineffective.

The amount of available developers / testers and their experience has an
essential influence on the efficiency and effectiveness of the pattern

Structure

Strategy Provide guidance for software developers / testers who manually 
reimplement the test cases in the target test environment

Perform a manual transformation of the original test cases into a new test 
environment, following a reimplementation-based transformation strategyIntent

Figure 6.13 Characterization of the Test Reimplementation Pattern

of the system are still being tested. Furthermore, it could be that some parts of the original
system are now being implicitly supported in the new environment, e.g., by a library or a
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framework, so it no longer needs to be tested. Consequently, on those parts of the test code
with obsolete test cases, a transformation is not performed.

/Preparation

Applicability
Use when the functionality under test is not present any longer in the target 

environment (dead code) or if it is implicitly provided
by the target system environment

Structure

Strategy Ignore corresponding test code

Perform no transformation of some test casesIntent

X

Figure 6.14 Characterization of the Test Code Removal Pattern

6.2.4 Co-Migration Method Patterns

As the test method patterns do not express the relation between the system and the test case
migration, we propose a set of co-migration method patterns. We have already introduced
in Section 6.2.1 the test method fragments in the form of test horseshoe model paired with the
system horseshoe model at three different levels of abstraction. This is actually the starting
point for defining the co-migration patterns. Technically, a co-migration method pattern is
a combination of a system method pattern and a test method pattern, visually resembling
a double horseshoe model. More precisely, we define a co-migration method pattern as
follows:

Notation 16 (Co-migration method pattern). A co-migration method pattern is a method
pattern which relates a test method pattern and a system method pattern by explicitly
establishing the relation between the corresponding method fragments.

By explicitly establishing the relation between test and system method patterns, we aim
to ease the process of the selection and configuration of a test method pattern. An already
configured system method pattern, with selected and concertized method fragments, i.e.,
artifacts and activities, suggests in what way the test method fragments should be selected
and configured. Consequently, it suggests in what way the tools supporting the different
method fragments should be developed.

The co-migration patterns also facilitate the reuse of existing artifacts and activities from
the system migration method. As an explicit relation between the system and test method
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patterns exists, it facilitates the reuse of the already existing artifacts and activities defined
for the system transformation method. Furthermore, the developed and used tooling for the
system migration, e.g., a language parser or a language meta-model, which corresponds to
an activity or an artifact, could be reused.

Our test method patterns were mainly inspired by the method patterns presented in
[GFEK16], where four different functionality preserving method patterns were defined,
namely: Reimplementation, Language-based Transformation, Conceptual Transformation,
and Code Removal. As we already said at the beginning of this section, a co-migration
comprises a test method pattern and a system method pattern. We created the co-migration
patterns by combining each of the test method patterns with each of the system method
patterns, excluding the Code Removal pattern. The Code Removal was not taken into
consideration as it does not influence the reuse of method fragments. In the following, we
analyze each co-migration method pattern regarding two aspects, namely reusable method
fragments and impacted method fragments. Reusable method fragments are those method
fragments from the system transformation method which could be directly reused in the test
transformation method. Impacted method fragments are those test method fragments which
are impacted by the system method fragments.

Co-Migration Patterns containing Test Reimplementation

Figure 6.15 depicts the co-migration patterns that combine the Test Reimplementation method
pattern (CMP1 to CPM3) with the three possible system migration patterns Reimplementation,
Language-based Transformation, and Conceptual Transformation.

TMP: Test Reimplementation
SMP: Language-based Transformation

TMP: Test Reimplementation
SMP: Reimplementation

TMP: Test Reimplementation
SMP: Conceptual Transformation

CMP1 CMP2 CMP3

Test Code Manual
Activity

Automated
ActivityCode

Model SMP System Method Pattern
TMP Test Method Pattern
CMP Co-Migration Method Pattern

influences

Figure 6.15 Co-Migration Patterns containing Test Reimplementation
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The pattern CMP1 is a combination of two reimplementation method patterns and it
is a very simple pattern which suggests a manual migration of the test cases. The ease of
reimplementation of the test cases depends on the documentation of the system transfor-
mation method, the more structured the better. In the case of CMP2 and CMP3 patterns,
Test Reimplementation is combined with Language-based Transformation and Conceptual
Transformation, respectively. In this constellation, the reimplementation of the test cases
should be easier as the transformation of the system is specified explicitly in terms of trans-
formation rules. However, no system method fragments could be directly reused as part of
the reimplementation of the test cases.

Co-Migration Patterns containing Language-based Test Transformation

Figure 6.16 depicts the co-migration patterns that combine the Language-based Test Transfor-
mation method pattern with the three possible system migration patterns Reimplementation
(CMP4), Language-based Transformation (CMP5), and Conceptual Transformation (CMP6).

TMP: Language-based
          Test Transformation
SMP: Reimplementation

CMP4

TMP: Language-based
          Test Transformation
SMP: Language-based Transformation

CMP5

TMP: Language-based
          Test Transformation
SMP: Conceptual Transformation

CMP6

Test Code

Test Model Manual
Activity

Automated
ActivityCode

Model SMP System Method Pattern
TMP Test Method Pattern
CMP Co-Migration Method Pattern

influences

Figure 6.16 Co-Migration Patterns containing Language-based Test Transformation

The pattern CMP4 is a combination of a Language-based Test Transformation and
a Reimplementation. This pattern is suitable if the system reimplementation was well
documented so that some transformation or code generation rules can be derived in order to
automate the transformation of the test cases. However, it suggests the implementation of a
parser for the source language as well as a code generator for the target language. Similar to
the previous co-migration patterns, no system method fragments could be directly reused.
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The pattern CMP5 is a combination of Language-based Test Transformation and Language-
based Transformation. This pattern has symmetric constellation, as two transformations on
the same abstraction level are combined. In such a constellation, both the reverse engineering
and forward engineering fragments, Model Discovery and Test Code Generation respectively,
can be completely reused. The reuse of existing method fragments is also possible in the
scope of the transformation step (e.g., metamodels or transformation rules). However, the
complexity of the transformation could be higher if the source and the target frameworks dif-
ferentiate a lot, meaning that the transformation of the test relevant concepts should be done
implicitly. Regarding the impacted test method fragments, the Language Transformation
activity is impacted by the corresponding method fragment from the system transformation
method.

The pattern CMP6 is a combination of Language-based Test Transformation and Con-
ceptual Transformation. In such a constellation, both the reverse engineering and forward
engineering fragments, Model Discovery and Test Code Generation respectively, can be
completely reused. Due to the difference in the abstraction levels, the reuse of existing
method fragments in the scope of the transformation step is only possible in an indirect
way. Namely, the transformation on the conceptual level could be used as an input when the
language transformation of the test cases is performed, i.e., the conceptual transformation pa-
rameterizes the language-based test transformation. Similarly as with CMP5, the complexity
of the transformation could be higher if the source and the target frameworks differentiate a
lot due to the implicit transformation of the test concepts.

Co-Migration Patterns containing Test Language-based Test Transformation

Figure 6.17 depicts the co-migration patterns that combine the Test Language-based Test
Transformation method pattern with the three possible system migration patterns Reimplemen-
tation (CMP7), Language-based Transformation (CMP8), and Conceptual Transformation
(CMP9).

The pattern CMP7 is a combination of a Test Language-based Test Transformation
and Reimplementation. This pattern is suitable if the system reimplementation was well
documented so that some transformation rules can be derived in order to automate the
transformation of the test cases. However, it suggests the implementation of a parser for
the source language as well as a code generator for the target language. Furthermore, a test
case understanding fragment and test case concretization fragment should be configured and
implemented in terms of model-to-model transformations.
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TMP: Test Language-based
          Test Transformation
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CMP7

TMP: Test Language based
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Figure 6.17 Co-Migration Patterns containing Test Language-based Test Transformation

The pattern CMP8 is a combination of Test Language-based Test Transformation and
Language-based Transformation. In such a constellation, both the reverse engineering and
forward engineering fragments, Model Discovery and Test Code Generation respectively, can
be reused. Reuse of existing method fragments is also possible in the scope of the transforma-
tion step. But a test case understanding fragment and test case concretization fragment should
be still selected and implemented in terms of model-to-model transformations. However,
the complexity of the transformation is lower compared to CMP7, as the transformation
activity from the system method pattern could be reused to a higher extent as it is specified
explicitly through a model-to-model transformation. On the other side, the complexity of the
transformation is lowered as an explicit mapping between the testing languages is defined.

The pattern CMP9 is a combination of Test Language-based Test Transformation and
Conceptual Transformation. In such a constellation, both the reverse engineering and forward
engineering fragments, Model Discovery and Test Code Generation respectively, can be
completely reused. Due to the difference in the abstraction levels, the reuse of existing
method fragments in the scope of the transformation step is only possible in an indirect
way. Namely, the transformation on a conceptual level could be used as an input when
the Test Language-based Test Transformation is configured performed, i.e., the Conceptual
Transformation parameterizes the Test Language-based Test Transformation. Similarly to
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CMP8, the complexity of the transformation is lowered as an implicit mapping between the
testing languages is defined.

Co-Migration Patterns containing Conceptual Test Transformation

Figure 6.18 depicts the co-migration patterns that combine the Conceptual Test Transfor-
mation method pattern with the three possible system migration patterns Reimplementa-
tion (CMP10), Language-based Transformation (CMP11), and Conceptual Transformation
(CMP12).

Test Code

Test Model Manual
Activity

Automated
ActivityCode

Model SMP System Method Pattern
TMP Test Method Pattern
CMP Co-Migration Method Pattern

TMP: Conceptual Test Transformation
SMP: Reimplementation

CMP10

TMP: Conceptual Test Transformation
SMP: Reimplementation

CMP11

TMP: Conceptual Test Transformation
SMP: Reimplementation

CMP12

influences

Figure 6.18 Co-Migration Patterns containing Conceptual Test Transformation

The pattern CMP10 is a combination of Conceptual Test Transformation and Reimple-
mentation. The suitability of this pattern depends on the system reimplementation, whether it
was well documented so that some transformation rules can be derived in order to automate
the transformation of the test cases. However, it suggests the implementation of a parser for
the source language as well as a code generator for the target language. Furthermore, a test
case understanding fragment and test case concretization fragment should be configured and
implemented in terms of model-to-model transformations.

The pattern CMP11 is a combination of Conceptual Test Transformation and Language-
based Transformation. In such a constellation, both the reverse engineering and forward
engineering fragments, Model Discovery and Test Code Generation respectively, can be
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reused. The reuse of existing method fragments is also possible in the scope of the transforma-
tion step. But a test case understanding fragment and test case concretization fragment should
be still selected and implemented in terms of model-to-model transformations. However,
the complexity of the transformation is lower compared to CMP10, as the transformation
activity from the system method pattern could be reused to a higher extent as it is specified
explicitly through a model-to-model transformation. On the other side, the complexity of the
transformation is lowered as an explicit mapping between the testing languages is defined.

The pattern CMP12 is a combination of Conceptual Test Transformation and Conceptual
Transformation. In such a constellation, both the reverse engineering and forward engineering
fragments, Model Discovery and Test Code Generation respectively, can be completely
reused. Due to the difference in the abstraction levels, the reuse of existing method fragments
in the scope of the transformation step is only possible in an indirect way. Namely, the
transformation on a conceptual level could be used as an input when a Test Language-based
Test Transformation method pattern is configured, i.e., a Conceptual Transformation pattern
parameterizes the Conceptual Test Transformation. Similarly to CMP11, the complexity
of the transformation is lowered as an implicit mapping between the testing languages is
defined.

6.2.5 Formalization

In the previous sections, we have introduced the test method fragments and test method
patterns. We formalize them by introducing an intermediate representation called TeCoMi
Intermediate Modelling Language (TIML). It extends the MEFiSTo Intermediate Modeling
Language (MIML) [Gri16] by providing additional classes in the metamodel in order to
address the test specific fragments and patterns.

Figure 6.19 shows an excerpt of the TIML metamodel with the two main packages,
namely the Fragment and the Pattern package. The Fragment package contains the
elements which are essential for specifying test methods, like artifacts, activities, tools,
and roles. These rather generic method fragments are further refined to explicit language
elements, e.g., ModelDiscovery activity or TestParser as a tool.

The Pattern package, on the other hand, enables the specification of Test Method
Patterns and Co-Migration Patterns. A Method Pattern, in general, consists of frag-
ments, namely, TransformationPhaseFragments and ToolImplementationFragments.
Consequently, the same applies to the Test Method Pattern. As can be seen in Fig-
ure 6.19, Co-Migration Pattern consists of a Test Method Pattern and a System
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Figure 6.19 An excerpt of the TeCoMi Intermediate Modelling Language (TIML)

Method Pattern. Similarly to the Fragment package, for the generic classes, e.g., TestMethod
Pattern, we provide explicit language elements, i.e., TestLanguageTestTransformation.
Additionally, constraints can be used to specify, for example, which fragments can only be
part of a given Test Method Pattern or Co-Migration Pattern.

6.3 Method Engineering Process

The process describes the main activities to be followed in order to create a context-specific
test case migration method as well as their relation to the method base. As already shown in
Figure 6.1, the activities are split into two main disciplines: Method Development and Method
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Enactment. The essential process input is the Original Test Code, which gets transformed to
Migrated Test Code once the process is being enacted. The Migrated Test Code represents
the test cases which can be run in the target environment and validate the system migration.
The activities of both disciplines are associated with a flow with attached Context-Specific
Migration Method Specification which describes the actual migration method.

By performing activities of the Method Development discipline, a situation-specific
method gets developed. The main activities are Situational Context Identification and
Transformation Method Construction. During Method Enactment the situation-specific
tools are developed that are required for the automation of the migration method or part
of it. Thereafter, the migration method is performed as defined in the migration method
specification. The main activities are Tool Implementation and Transformation.

6.3.1 Situational Context Identification

The first activity of the method engineering process is Situational Context Identification,
in which the migration context is analyzed and characterized, from both system migration
and testing perspective. Furthermore, co-evolution analysis is also performed to identify the
impact that the system changes have on the test cases. The gathered knowledge about the
migration context is required in order to develop a suitable test case migration method.
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Figure 6.20 Situational context identification process
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Concept Identification

The purpose of the Concept Identification activity is to model a decomposition of the system
and the testing artifacts into distinct parts for both the source and the target environment.
We use the principles of Concept Modeling [KNE92] to represent the functionality of the
system as a set of concepts. The concepts are split into two different groups, namely language
concepts and abstract concepts. Language concepts directly correspond to syntactic entities
of the programming language, like variables, declarations, statements, etc. [KNE92]. The
abstract concepts, on the contrary, represent language-independent ideas of computation and
problem-solving methods [KNE92]. Abstract concepts are further classified into architectural
and programming concepts.

Constraint InheritanceArtifact CompositionAssociation

Concept
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Concern

concerns

concept
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ConceptClass

SharedConcept
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ProgrammingConcept ArchitecturalConcept

self.consistsOf.oclIsTypeOf(SystemtConcept)

Concept

Figure 6.21 The concept metamodel to formalize the concept models in co-migration context

The architectural concepts are associated with interfaces or components whereas the
programming concepts represent a general coding strategy, data structure or algorithm.
Concepts can be related to each by isA relation, to express a hierarchy between concepts and
consistsOf relation to express dependencies between concepts. In [Gri16], when applying
the idea of Concept Modeling to software modernization, three classes of concepts are
distinguished: original system concepts, target system concepts, and shared system concepts.
Regarding the original system, the language concepts are determined by the language
elements that are already used, whereas language concepts regarding the target system
concepts are those language concepts that will be used after the transformation. Finally, a
shared concept is an abstract concept of the original system that can be realized in the target
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environment. All in all, the concept model is defined as a directed, acyclic, and connected
graph. The nodes represent the concepts, whereas the edges between them represent isA or
consistsOf relations. In the following, we present the concept model as well as the concept
identification process.

As shown in Figure 6.21, our Concept Model is a part of the Situational Context Model.
The Concept Model, which extends the concept model introduced in [Gri16], can contain a
set of Concerns which can further contain sub-Concerns and a set of Concepts. Besides the
SystemConcept subclass which expresses system related concepts, the ConceptModel contains
an additional subclass for expressing test-related concepts, namely the TestConcept class.
This class has additional subclasses like the AbstractTestConcept which is further specialized
into ProgrammingTestConcept and ArchitecturalTestConcept, and the LanguageTestConcept
for expressing concrete syntactic entities related to testing. As defined by the conceptClass
attribute in the Concept class, each Concept belongs to one out of six classes as defined by the
enumeration type ConceptClass. Furthermore, a Concept can be related to other concepts by
the consists-of and is-a relations. The invariants of the concept model instances are ensured
by the OCL constraints. For example, the two OCL constraints shown in Figure 6.21 define
that the target of a consists-of relation for a SystemConcept or a TestConcept can only be
another SystemConcept or ProgrammingConcept, respectively.

The concept identification process defines the necessary steps to be performed in order to
capture the test and system concepts for both source and target environment.

Concern Identification 
based on Target 
System and Test

Architecture

Concept Identification 
per Concern, based 
on Target System 
and Target Tests

Validation of Identified 
Concepts per Concern, 

based on Original System 
and Original Tests

Concept Identification
per Concern, based
on Original System
and Original Tests
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have been
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Figure 6.22 Concept Identification Process

The process is target-driven as the desired transformation outcome that is desired delivers
the concepts to be identified. Firstly, a set of concerns is identified based on the system and test
target architectures, which in turn provides a coarse-grained structure of the concept model.
The next three activities are performed repeatedly for each concern. Firstly, concepts for the
current concern are identified based on the target system and the target tests. This activity
is based solely on the experience of the expert or by evaluating supporting materials like
development or test tutorials. Figure 6.23 shows the concept model of the example introduced
in Chapter 3. From a system perspective, we have identified the abstract architectural concept



6.3 Method Engineering Process 132

OCL (AOT) which represents the Ahead-of-Time (AOT) realization of the shared abstract
concept Object Constraint Language (OCL) in CrossEcore.

Test 
Programming Concept

consists-Of
Relation

Applied System
Method Pattern

System
Programming Concept

is-A
Relation

Test 
Abstract Concept

System 
Abstract Concept

Figure 6.23 Concept model of the example scenario

It further consists of a concrete programming concept named Language-Specific OCL-
Expression, which represents the OCL expression that is defined in CrossEcore by using
language constructs. From a testing perspective, we have identified the OCL Test Case as a
shared abstract test concept. As a target test concept, we have identified the language test
concept OCL Test Case (AOT). Secondly, by performing a detailed analysis of the original
system and original tests the identified concepts are validated. This is necessary because the
concepts have so far been identified without considering the original system and the original
tests. Thirdly, a concluding source-driven identification takes place as the original system and
original tests are analyzed to eventually identify additional concepts that are specific to the
original system and the original test cases. From a system perspective, we have identified the
abstract architectural concept OCL (JIT) which represents the Just-in-Time (JIT) realization
of the shared abstract concept Object Constraint Language (OCL) in EMF. It consists of a
concrete programming concept named Native OCL-Expression which represents the OCL
expression in EMF. From a testing perspective, we have identified the source test concept
OCL Test Case (AOT). The obtained model which shown in Figure 6.23, contains system and
test concepts. A more detailed version of this model is presented in the first feasibility study
in Section 8.2.
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Co-Evolution Analysis

Having identified the concepts, from both system and test perspective, in terms of a concept
model, in this step a co-evolution analysis is performed. According to [MD08], the co-
evolution process consists of several activities from which Change Detection and Impact
Analysis are relevant during the situational context identification. During Change Detection,
all changed parts of the system being migrated are identified. Having identified these changes,
all affected parts of the test cases are identified in the next step called Impact Analysis. Finally,
an estimate of the effort required to accomplish the changes together with involved risks is
made. Therefrom, the main idea is to describe the changes that happened to the system by
identifying and relating corresponding source and target system concepts to each other.
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Figure 6.24 The impact metamodel to formalize the relation between the test and system
concepts in the co-migration context

Then, the relation between the source and target test concepts to their corresponding
system concepts is also established. Having these relations, the impact of the system changes
on the test cases can be derived. In order to enable these activities, we provide a metamodel
(shown in Figure 6.24) that formalizes the relations between the system and test concepts in
terms of traces. Furthermore, we also introduce the impact analysis process which defines
the necessary actions to perform the impact analysis.

As can be seen in the upper left of Figure 6.24, we consider the ImpactModel to be a part
of the SituationalContextModel. The ImpactModel can contain a set of Traces which can
be either CorrespondsToTrace or a DependsOnTrace. Each Trace has a source and a target
Concept. These traces are needed in order to express the different types of relations between
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Figure 6.25 Co-Evolution Analysis Process

the concepts. In the case of a CorrespondsToTrace, as defined by the related OCL constraint,
both target and source are of the type SystemConcept. This type of trace is used to express
the relation between source system concepts and target system concepts, i.e., to relate the
corresponding concepts from the two environments. On the other hand, a DependsOnTrace,
as defined by the related OCL constraint, has as target a TestConcept and a SystemConcept
as source. This type of trace is used to express the relation between test and system concepts
in both the source and target environment. More precisely, it expresses the dependency the
test concepts have on the system concepts.

As previously introduced, the co-evolution analysis has two main concerns, namely,
to identify changes in how system concepts are realized system changes and to identify
their impact on the test concepts (Figure 6.25). The co-evolution analysis process starts
with the activity that addresses Change Detection. On the basis of the previously created
Concept Model, for each source system concept, a corresponding target system concept is
identified and a CorrespondsToTrace is created. The main idea behind the activity is to
identify the differences, i.e., to detect the changes that happen to the realization of the system
concepts. Then, as part of Impact Analysis, two activities are performed. Firstly, each test
concept, both source and target, is related to the system concept that it tests by establishing a
DependsOnTrace. Doing so, it is explicitly modeled on which system concepts a given test
concept depends on. Finally, to complete the Impact Model, the correspondences between
the source and the target test concepts are also established.

After the second activity is done, a complete traceability model is produced in terms of an
ImpactModel. The traces in the ImpactModel express the actual impact the system changes
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have on the test cases. Related to the example shown in Figure 6.26, the source system
concept Native OCL-Expression corresponds to the target system concept Language-specific
OCL-Expression.
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Figure 6.26 Impact model of the example scenario.

Regarding the test concepts, on the one hand, the source test concept OCL Test Case
(JIT) depends on the source system concept Native OCL-Expression. On the other hand,
the target test concept OCL Test Case (AOT) depends on the corresponding system target
concept Language-specific OCL-Expression. These relations suggest indirectly in which
way the tests are influenced by the system changes. Namely, the test cases have to be
changed in a way that the contained part of the system should be changed in accordance
with the correspondence relation between the system concepts Native OCL-Expression and
Language-specific OCL-Expression.

Influence Factor Identification

In this activity, similarly to [Gri16], for each identified concept, a test method pattern is
chosen. In order to decide which test method pattern to use, one needs to systematically
search for characteristics that influence the pattern’s efficiency or effectiveness. Each pattern
has a set of characteristics which actually express its suitability to a certain situation. To
support the influence factor identification, we provide an influence factor metamodel and a
general guideline for identifying influence factors. The InfluenceFactorModel is a part of the
SituationalContextModel (Figure 6.27).
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Figure 6.27 The influence factor metamodel for the co-migration context

It can contain a set of InfluenceFactors, further split into two subclasses: TestInfluence-
Factor and SystemInfluenceFactor. An influence factor is defined as a characteristic of a
co-migration project that has some impact on the efficiency or effectiveness of a transforma-
tion method. The TestInfluenceFactor is used to describe the test-related influence factors
for both source and target environments as well as organizational and test tooling-related
influence factors. Similarly, one can use the SystemInfluenceFactor to specify influence
factors from a system perspective. Note that an additional class appears, namely the Transfor-
mationInfluenceFactor, which has the role to specify the influence that the system migration
could eventually have on the test case migration. A given Concept is associated with a set
of suitable MethodPatternAlternatives, showing that each MethodPatternAlternative can be
influenced by InfluenceFactors.

Then, one pattern can be chosen to be applied, which is expressed by the Applied-
MethodPattern class. For both MethodPatternAlternative AppliedMethodPattern classes,
we distinguish between test and system migration patterns, indicated by the subclasses
SystemMethodPatternAlternative and TestMethodPatternAlternative, and AppliedSystem-
MethodPattern and AppliedTestMethodPattern, respectively. For example, the realization of
a concept in the original system will influence all suitable method patterns. However, the
InfluenceFactor only needs to be specified once and can be linked to all affected Method-
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PatternAlternatives. In order to ensure invariants in the model, OCL constraints are used.
For example, the OCL constraint related to the class TestInfluenceFactor defines that each
TestInfluenceFactor can influence only a TestMethodPatternAlternative.

In the following, we describe the process necessary for the instantiation of an influence
factor model (Figure 6.28).
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Figure 6.28 Influence Factor Identification Process

Firstly, a fine-grained analysis of the test and system realization, both source and target,
for each concept is performed. In contrast to the coarse-grained superficial analysis from
context identification, here we identify influence factors that may allow the exclusion of
some of the possible test method patterns, thus reducing the overall analysis effort. For
example, if the realization of the given concept in the original and the target environment is
significantly different, the patterns which do not include conceptual transformation are not
suitable. Once a set of suitable test method patterns is obtained, influence factors for each
pattern are identified and described.

In order to systematize the process of identifying influence factors, each test method
pattern is analyzed from a perspective of the comprising method fragments. For example, as
illustrated in the third pattern (from the left to the right) in Figure 6.29, a method fragment
defines that a parser is needed.

In this case, the availability of such a parser is an influence factor. The situational context
model contains the identified abstract test concept, namely the OCL Test Case, its realization
in the source test environment as well as the planned realization in the target test environment.
Additionally, it also contains the assessed suitability of the possible test method patterns, in
terms of effectiveness and efficiency. For example, regarding the leftmost method pattern, the
testers would be challenged with re-implementing the test cases as they are not experienced
with CrossEcore. The second pattern has been identified as not suitable as it does not provide
a way to interact directly with the test concepts like the expected result or the test action.
Having the influence factors identified, all suitable test method patterns are analyzed and
assessed.
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6.3.2 Transformation Method Construction

Having the context information collected, the Transformation Method Construction, as shown
in Figure 6.30 activity can be initiated. In this activity, on the basis of the previously identified
context information, a situation-specific migration method gets constructed.

First of all, a suitable pattern is selected, which in turn means a decision on how to
transform the test cases. Once a pattern is selected, then it has to be configured, i.e.,
a set of method fragments has to be instantiated. Then, the instantiated fragments are
customized regarding the functionality they are transforming. Customization of fragments
means specifying them at a level of detail so that it provides guidance during the enactment.
The outcome of this step and thus from the Method Development part is the Context-Specific
Migration Method Specification. It describes how to perform the migration by defining the
activities to be performed and the artifacts that should be generated and it serves as guidance
during the enactment of the migration method.
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Figure 6.29 Excerpt of the situational context model showing the evaluated suitability of the
test method patterns
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Figure 6.30 Transformation method construction process

Method Pattern Selection and Configuration

Until now, we have collected knowledge about the migration project in terms of a situational
context model. This model is used to systematically derive a situation-specific test trans-
formation method. Firstly, for each identified test concept, we select and configure a test
method pattern. The core of the idea of this activity, namely Method Pattern Selection and
Configuration, is shown in Figure 6.31.
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Figure 6.31 Instantiating a fragmented test transformation method specification from a
situational context model

This activity starts with the situational context model, which, as already introduced
in Section 6.3.1, contains a concept, an impact, and an influence factor model. The test
concepts in the concept model decompose a test suite or the whole testware into distinct
parts so that each part can be transformed by using a test method pattern. Each different
identified concept can be, if necessary, transformed by applying a different pattern. Firstly, as
we have already presented in Section 6.3.1, for each identified test concept a set of suitable
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test method patterns has been identified. Furthermore, for each identified pattern a set of
influence factors is associated which can be interpreted in order to determine how effective
and efficient is the analyzed pattern.

The activity Method Pattern Selection and Configuration is an activity which consists of
several sub-activities as shown in Figure 6.32. Firstly, a test method pattern has to be selected
for each test concept, i.e., a decision on how a test concept should be transformed needs to be
performed. This decision will essentially influence the overall efficiency of the transformation
method and, therefore, it should be based on the identified influence factors. We assume,
however, that in the situational context model, method patterns are already selected for each
system concept. After performing the selection, as can be seen in Figure 6.31, each test
concept contained in the situational context model is associated with an Applied Method
Pattern. Then, a test transformation method specification gets automatically instantiated,
on the basis of the obtained situational context model. However, the specification, at this
point, contains only instances from elements of the Pattern package in TIML, e.g., Method
Pattern and Method Pattern Configuration instances. Therefore, in order to obtain an initial
test transformation method specification, as second the part of the process, a configuration of
the instantiated transformation method needs to be performed. The configuration of the test
transformation method is two-step. Firstly, a coarse-granular configuration of the applied
method patterns is performed which comprises a selection of optional parts, e.g., enrichment
activities, and the provisioning of meaningful names. This configuration is essential, as on its
basis, a set of customized test method fragments gets automatically instantiated as prescribed
by the applied test method pattern. The instantiated test method fragments are part of the
Fragments package in TIML, e.g., Model Discovery or Model of Original Executed
Tests. Once the customized test method fragments for one test concept according to the
test method pattern applied are instantiated, the resulting set of fragments forms a horseshoe
model. Similarly to the definition in [Gri16], we define a horseshoe model as follows:

Notation 17 (Horseshoe Model). A horseshoe model is a model which consists of a set of
customized method fragments and conforms to a method pattern. The fragments specify a
method to transform a concept.

Finally, as a last activity, a fine-granular configuration takes place and the resulting set of
test method fragments can be additionally configured. For example, the generated fragments
can be renamed or removed, or additional ones can be added. As shown in Figure 6.31, the
overall output of the Method Pattern Selection and Configuration activity is a fragmented
test transformation method specification, i.e., a test method specification which comprises
distinct horseshoe models. Similarly to the definition in [Gri16], we define a fragmented
transformation method specification as follows:
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Figure 6.32 Method pattern selection and configuration process

Notation 18 (Fragmented Transformation Method Specification). A fragmented transforma-
tion method specification is a specification that consists of a set of horseshoe models that
have not been integrated.

Having the fragmented transformation specification, the next step is to integrate the
different test method patterns and is addressed by the next activity of the method engineering
process called Method Pattern Integration.

Method Pattern Integration

Until now, we have selected and configured test method patterns for all identified test concepts
and based on this we have derived a fragmented test transformation method specification,
as shown in Figure 6.31. In order to obtain a coherent specification, the distinct parts need
to be systematically integrated. This is the purpose of the activity called Method Pattern
Integration and its core idea is shown in Figure 6.33.
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Figure 6.33 Integrating a fragmented test transformation method specification
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So, the starting point of this activity is a fragmented test transformation specification. As
we have already seen, this specification consists of customized test method fragments for
each applied pattern. The customized test fragments inside one pattern form a horseshoe
model and there is a relation between the fragments in terms of control-flow or data-flow
relations. However, there is no relation between the different applied test method patterns,
i.e., their horseshoe model manifestation. So, what we basically have, is a specification
consisting of a set of separated specifications, as depicted on the left side of Figure 6.33.
Therefore, we aim to integrate the separated specifications as part of this activity. The main
goal is to establish relations between fragments from the different horseshoe models. In
the end, this activity shall result in an integrated specification, as depicted on the right side
of Figure 6.33. Similarly to the definition in [Gri16], we define an integrated transformation
method specification as follows:

Notation 19 (Integrated Test Transformation Method Specification). An integrated test
transformation method specification is a specification that consists of a set of horseshoe
models whose method fragments have been integrated.

The process of integrating the fragments needs to be systematized and according to [Gri16],
there are different types of operations that can be executed. In general, there are two forms
of integration of activities and artifacts. Interleaving is the most basic form of integration.
When this form of integration is performed, then either control-flow or data-flow relations
between fragments from the different applied patterns are introduced. This basically means,
that the interleaving-based operations only introduce additional relations between method
fragments. Merging-based operations, on the contrary, modify the method fragments, i.e.,
the application of the merging-based operations results in merging of two or more fragments.
Hence, the merging fragments should originate from different applied patterns and should
have the same type.

Instantiation of Tool Implementation Phase Fragments

So far, we have developed an integrated test transformation method specification. As
we have already described, this specification consists of customized method fragments
that describe the transformation phase. Within this activity, namely Instantiation of Tool
Implementation Phase Fragments, the tool implementation phase is covered, and therefore
the related customized fragments are added. Figure 6.34 visualizes the core idea of this
activity.

As shown in the left side of Figure 6.34, the current state of the test transformation method
specification contains only customized method fragments. These fragments, however, are
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not enough for the enactment of the transformation as various tools are needed. For example,
in order to instantiate a test model, a test metamodel is required or manually performed
reimplementation activities require guidance documents. So, the purpose of the Instantiation
of Tool Implementation Phase Fragments activity is to enrich the existing specification by
fragments to guide the development of the tools which are required, and it is shown in
the right side of Figure 6.34. The tool implementation fragments are derived from the test
transformation specification. Generally, the specification comprises two specifications, one
specification that contains the fragments that specify the actual transformation, and another
one that contains fragments that specify the development of the tools which are required.

6.3.3 Tool Implementation

Having the situation-specific method specification developed, we proceed to the enactment of
the method. The first activity is the Tool Implementation activity and during this activity, we
enact only those parts of the transformation method specification that specify the development
of tools. We assume that the specification is used by the associated tool developers as some
kind of guidance. In this case, we foresee at least two kinds of uses of the specification.
The developers can use the specification to get an overview of the test migration method.
By checking the transformation phase, they can get an understanding of how the actual
transformation of the test cases should be performed. On the contrary, the part regarding the
tool implementation phase specifies what needs to be developed. Furthermore, by reading the
description of the tool implementation activities, the tool developers can stepwise enact the
specification. These descriptions define what to do as part of each activity in order to develop
the necessary tools. Currently, we assume this kind of more flexible kind of guidance.

Here we envision two possible outcomes, either development of a tool from scratch or
reuse of existing tools. For example, if parser for parsing the test cases is needed, the one
used for the system migration can be reused. Analogously, the metamodels can be reused as
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well. However, if a tool deals with the transformation of test specific model elements, new
transformation rules have to be created.

The result of the transformation of the test cases should be as correct as possible so
that they can be used to validate the migrated system. Therefore, during and after the
implementation of the required tools, their quality needs to be validated. Here, we focus more
on the functional correctness of the tools, i.e., whether the implemented tool is functionally
correct with respect to the tool specification. Therefore, we assume that the tool developers
use a small amount of the original test cases to test the developed tools. Detailed examples
about the development and the use of real tools are provided in Chapter 8 as part of the case
study. In the following, we rather focus on the capabilities of a generic, project-independent
tool infrastructure that should ease the implementation of the necessary tools. Similarly
to the MEFiSTo framework, we expect that such tools need to be developed always when
applying our framework.

The set of the capabilities described in the following is based on the method fragments
that we have proposed in Section 6.2.1 and Section 6.2.2. In the following, we introduce the
capabilities that support the automated, i.e., conversion-based, transformation strategies.

Model Repository. Test models representing a high number of test cases could be large.
Furthermore, test models on different levels of abstraction, related to each other, may arise.
A tool infrastructure shall, therefore, support their integrated management by providing a
model repository for persisting or versioning of test models. In our case, we used Neo4J5, a
graph database management system, which provides high scalability for model management
tasks.

Model Transformation. Transforming test models is essential when defining an auto-
mated transformation method in the TeCoMi framework. Therefore, this feature should be
supported by the tool infrastructure. In the case study, we used the Java Development Tools
(JDT)6 for specifying model transformations.

Code Generation. Generating test code out of test models is essential when defining an
automated transformation method in the TeCoMi framework. Therefore, this feature should
be supported by the tool infrastructure. In TeCoMi, we rely upon Xtend7, a statically typed
programming language, which enables the specification of custom test code generators.

Parser Generation. The first activity when defining an automated transformation method
using the TeCoMi framework is the parsing of test source code. The results of this activity are
represented in the form of an Abstract Syntax Tree (AST) of executable test cases. Parsers
for various programming languages already exist and can be used directly. However, if a

5https://neo4j.com/
6https://www.eclipse.org/jdt/
7http://www.eclipse.org/xtend/

https://neo4j.com/
https://www.eclipse.org/jdt/
http://www.eclipse.org/xtend/
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suitable parser does not exist, it should be developed. The development of a parser can be
supported by a parser generator, which in turn is a tool that generates a parser on the basis of
proper grammar [ALSU06]. Therefore, the tool infrastructure should support the generation
of a parser. Regarding the case study, as we had to parse JUnit test cases, we used an existing
Java parser, namely the JDT parser, provided by the above-mentioned Java Development
Tools.

6.3.4 Transformation

Up to this point, a situation-specific transformation method for the test cases has been
developed. Additionally, tools which are required for the transformation have been developed.
In this section, we present the last activity, namely the Transformation activity, of the method
engineering process which deals with the enactment of the method as specified. The purpose
of Transformation activity is to perform the actual transformation of original test cases as
specified. Therefore, when performing this activity, only the specification parts that specify
the transformation itself are enacted. We assume that associated software developers as
well as test experts use the method specification as some kind of guidance. Similarly to
the tool implementation activity, we foresee the same kinds of use. The people involved
can browse the method to get an overview of the actual transformation of the test cases that
shall happen. Moreover, they can enact the specification in a stepwise manner, as it specifies
which activities and in what order they need to perform. When an activity gets performed,
the provided descriptions can be used. Furthermore, separate guidance documents in terms
of tooling manuals are also foreseen and if used, they have to be read. Compared to the
activities belonging to the Tool Implementation activity, where all activities are performed
manually, some of the activities belonging to the Transformation activity are performed
automatically. This implies that the interaction between people using the tools and tools
during the transformation needs to be addressed. More specifically, whenever a tool creates
an output, the people using them must be notified on which basis they need to perform an
activity. Furthermore, whenever an activity is performed, and a tool needs that output, the
person who performed the activity must know which tool shall be invoked and how. Detailed
examples of the transformation of real-world test cases are provided in Chapter 8 as part
of the case study. Similarly to MEFiSTo [Gri16], we apply an incremental enactment of
the test transformation method. The incremental enactment shall enable the incremental
transformation of the test cases and not transforming all the test cases at once. Doing so, we
reduce the for the test case migration project to fail.
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6.4 Summary and Discussion

The TeCoMi framework enables the modular construction of situation-specific test transfor-
mation methods based on the reuse of methodological knowledge stored in a method base. In
this chapter, we introduced the main phase of the TeCoMi framework, namely the migration
phase, with its two main constituents, the method base and the method engineering process.
In the first part of the chapter, we introduced the content of the method base, namely a set
of test method fragments, test method patterns, and co-migration patterns. Thereafter, we
introduced a process to develop and enact situation-specific test transformation methods
which considers co-evolution analysis. Some of the findings presented in this chapter are
based on master theses [Tho20, Vin20].

First, in Section 6.1, we gave an overview of the migration phase, by giving an overview
of the structure of the method base as well as the structure of the method engineering process.
Then, in Section 6.2, we proposed a set of test method fragments that are stored in the method
base of TeCoMi. In the context of the TeCoMi framework, a method fragment is an atomic
part of a method, namely an artifact, activity, role or tool. The fragments are classified
based on the phase they belong to, namely the tool implementation or transformation phase.
Thereafter, we proposed a set of test method patterns that are also stored in the method base of
TeCoMi. In the context of the TeCoMi framework, a method pattern encodes methodological
knowledge of transformation methods. Basically, each test method pattern defines a specific
transformation strategy by indicating which test method fragments to customize and also
how to assemble them. Besides the test method patterns, we introduced the co-migration
patterns which are a combination of a system method pattern and a test method pattern and
encode the relation between those two patterns. Both test method patterns and co-migration
patterns were discussed in terms of their characteristics and also examples were provided.

In Section 6.3, we introduced the method engineering process, by discussing in detail
each of the core activities. Firstly, we introduced a process to systematically discover and
model the situational context from both system and test perspective, and also to identify the
impact the system changes may have on the test cases. We firstly develop the concept model
that describes the test cases through a set of distinct concepts. Based on this model and
the concept model containing the system concepts, we analyze the dependencies between
the system and test concepts and model those relations by an impact model. Lastly, for
each identified test concept a set of suitable test method patterns is identified. Subsequently,
for each test method pattern, a set of related influence factors that affect their efficiency
or effectiveness is also identified and modeled as an influence factor model. Based on the
discovered situational context, as part of the next activity of the method engineering process,
we described the process to systematically construct a test transformation method. Firstly,
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for each concept in the concept model is decided how to be transformed by selecting which
test method pattern should be applied, thus configuring the concept model. Then, a set of
horseshoe models is derived and each of them specifies a test transformation method. In
order to form a coherent method, the horseshoe models are integrated. Additionally, the
specification is extended by a part which guides the development of the project-specific tools.
Next, the capabilities of a generic tool infrastructure are discussed so that support for the
development of project-specific tools is provided. Finally, we discuss the last two activities
of the method engineering process which are concerned with the enactment of the developed
transformation method specification. The more detailed description of the method enactment
can be found in Chapter 8 as part of the feasibility study.

The test method fragments we have presented are placed on different levels of abstraction,
from system layer to platform-independent layer. However, as was out of the scope of this
work, we did not focus on the behavioral model of the system. This model is actually the basis
for the creation of the abstract model of the test cases. For example, a standardized language
like the OMG’s UML Testing Profile (UTP) [OMG13b] can be used for the representation
of behavioral models. Providing this artifact as well as the corresponding activities for
abstraction and concretization would enable migration towards model-based or even model-
driven testing. As we have seen, the concept modeling is supported by A Sirius modeling
editor but it is a manual activity, performed by the migration and test experts. Once test
and system concepts are modeled, as part of the impact analysis, the correspondences and
dependencies are also manually identified and modeled. This manually performed step
requires a lot of knowledge and could be error-prone. Incorporating analysis of the code
dependencies between test code and system code into the impact-analysis part could assist
the experts when performing this activity. Lastly, the co-migration patterns are used to
support the creation of test method patterns by explicitly showing the relation between the
system and the test case method fragments. Still, at the current version of the Sirius modeling
editor, the configuration of the test method fragments should be done manually. As the
co-migration patterns provide the relations between the system and test fragments, an already
configured system transformation method could be used as a starting point to configure a test
transformation method. Doing so, it can save time and can reduce the chance for error when
performing the method configuration.

In the next chapter, we introduce the third and final phase of the TeCoMi framework,
namely the Post-Migration Phase, which deals with the validation of test migration.



Chapter 7

Post-Migration Phase: Migration
Validation

In the previous two chapters, the pre-migration and migration phases of the TeCoMi frame-
work were introduced. In this chapter, we introduce the third and the last phase, namely
migration validation. First, in Section 7.1, we give an overview of the mutation analysis
repository and the migration validation process. Subsequently, in Section 7.2, we introduce
the mutation analysis repository which contains mutation analysis strategies to identify false
positives and false negatives among the migrated test cases. More precisely, we present a
set of different mutation scenarios, mutation operators, and mutation method patterns. Then,
in Section 7.3, we introduce the migration validation process which guides the process of
development and enactment of validation methods. Finally, in Section 7.4 the findings of this
chapter are summarized.

7.1 Overview of the Post-Migration Phase

In this section, we firstly give a brief introduction to the problem of validation of test case
migration and, then, we introduce our solution approach. Test case migration is the process
of transferring test cases to a new environment without changing their ”functionality”, i.e.,
without changing the expected system behavior the test cases assert. As migrated test cases are
used to validate system migration, validating test case migration is clearly crucial. Test case
migration is in general far from trivial as several challenges need to be addressed [JGY16]
and, due to the tight coupling of system migration and test migration, validating test case
migration is especially challenging.
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According to Fowler [FB99], refactoring is defined as the process of improving the
internal structure of a system without changing its observable behavior. Code refactoring is
similar to system migration but is simpler as correctness can be clearly equated to all test
cases passing. Test cases with an adequate coverage of the system are thus a safeguard for
code refactoring. Test case refactoring is more challenging than code refactoring as it is
no longer trivial to ensure correctness. Clearly, a refactored test case must still pass when
executed against the current system (which is correct with respect to the original test cases).
This is not sufficient, however, to guarantee that the refactored test cases reject all incorrect
systems. To tackle this challenge, mutation analysis [LS78] can be used to examine the
quality of the refactored test cases; mutants of the system are created and these should be
detected (killed) by the refactored test cases.

While this has inspired our application of mutation analysis to test case migration, it is
also clear that there is a substantial difference: refactored test cases can be executed on the
same system as the original tests while this is typically not the case for test case migration.
Test case migration is typically coupled with corresponding system migration and migrated
test cases can only be executed on the migrated system. As a consequence, applying mutation
analysis to validate test case migration is a challenging task.

In the following, we give an overview of the post-migration phase of TeCoMi, where
a context-specific validation method gets developed and enacted in order to validate the
migrated test cases. As shown in Figure 7.1, we support this phase by providing a migration
validation process which relies on mutation analysis repository that provides mutation
analysis scenarios, patterns, and mutation operators.
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Figure 7.1 Core activities of the migration validation process of TeCoMi

In the following, we briefly give an overview of the content of the mutation analysis
repository and the migration validation process.
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Mutation Analysis Repository

The purpose of the Mutation Analysis Repository is to provide guidelines in terms of scenarios
of mutation analysis and patterns for the specification of test case validation methods. As
shown in Figure 7.2, the Mutation Analysis Repository contains Mutation Analysis Scenarios,
Mutation Method Patterns, and Mutation Operators.
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Figure 7.2 Core Components of the Mutation Analysis Repository

In total, we have defined six usage scenarios depending on what is mutated: the original
or the migrated system, the original or the migrated test cases, or the system or test cases
migration. For each usage scenario, we define a set of assumptions which must hold for a
particular scenario to be feasible, e.g., that an appropriate mutation framework exists or that
existing test cases can actually be executed. Based on these assumptions, we provide an
in-depth analysis of indications that can be obtained. Indications are presented as “bad smells”
for the test case migration, i.e., problematic test cases. Finally, we provide a discussion of
the suitability of each usage scenario, taking implied assumptions into account.

A Mutation Method Pattern is the technical implementation of a given scenario. Depend-
ing on the test case and system migration context, an appropriate mutation method pattern
regarding the abstraction level has to be selected. After a pattern is selected, a set of suitable
Mutation Operators has to be defined. Depending on the abstraction level the mutation is
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defined on, the mutation operators have to be correspondingly specified. Mutation operators
can be either language-specific, test framework-specific or domain-specific.

Migration Validation Process

Relying on the mutation analysis repository, the migration validation process, shown in Fig-
ure 7.1, guides the development and the enactment of the situation-specific validation method.
In Section 4.4, we briefly introduced the core activities of the migration validation process.
Each of the four core activities is assigned to one of the two main disciplines, namely Method
Development and Method Enactment. By performing activities of the Method Development
discipline, a situation-specific validation method gets developed. It comprises the following
two activities: Context Identification and Mutation Method Construction.

Firstly, during the Context Identification activity, information is collected about the
context where the mutation should take place. This analysis relies on the Situational Context
Model, the Test Transformation Method Specification, and the Situation-Specific Tool Chain
from the migration phase of the TeCoMi framework. Based on this information, as part
of the Mutation Method Construction activity, firstly, a suitable mutation analysis scenario
is selected. Then, depending on the functionality being asserted in the test cases, a set of
mutation operators is chosen. Finally, a suitable mutation method pattern for the selected
scenario and mutation operators is selected. The outcome of this activity is specified in terms
of a Context-Specific Mutation Method Specification.

Once this specification is obtained, during the Mutation Tool Implementation activity,
a toolchain is implemented in order to automate the process of test case mutation. At this
point, we rely on our generic and flexible model-driven tool infrastructure, which enables a
common platform for performing mutation analysis in an automated way. Finally, as part of
the Mutation, Test Execution, and Analysis activity, the method is enacted and the mutants
are created. The mutated test cases are then executed against the migrated system and the
outcome of test case execution is then analyzed. If no false positives and false negatives
are identified, the migration of the test cases is considered to be successful. Otherwise, the
identified false positives and false negatives have to be further analyzed.

7.2 Mutation Analysis Repository

In this section, we introduce the Mutation Analysis Repository which contains the knowledge
of the available mutation validation strategies in terms of Mutation Analysis Scenarios,
Mutation Method Patterns, and Mutation Operators. The central constituent of the repository
are the Mutation Analysis Scenarios which describe how mutation analysis can be performed
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and how the results are interpreted. A mutation cannot be performed without mutation
operators and, therefore, we have Mutation Operators in the repository as well. As the
mutation analysis scenarios describe a mutation analysis from a conceptual point of view,
we present a set of Mutation Method Patterns, which are used for the technical realization
of the scenarios. In the following, we describe each constituent of the Mutation Analysis
Repository.

7.2.1 Mutation Analysis Scenarios

Mutation analysis or mutation testing is a technique used to create migrated test cases as well
as to evaluate the quality of existing test cases [LS78, HG77]. It involves the modification
or mutation of an existing system S by making small syntactic changes to create mutants S’,
S”, etc. A transformation that creates a mutant from an existing program is called a mutation
operator (also known as a mutant operator, mutagenic operator, mutation rule [Won01]).
Ideally, there should be no equivalent mutants among generated mutants, i.e., mutants whose
behavior is indistinguishable from that of the original system.

The general idea of mutation analysis is to seed small faults in the system and then
execute an existing test suite TS against the mutants. There are in general two possible
outcomes: (i) there is at least one test case that “detects” the change introduced in the mutant
or (ii) no test case “detects” the change. In the first case, the mutant is considered to be killed,
in the second case not. In general, there are two possible explanations why a mutant is not
killed: (i) either the mutant is equivalent, or (ii) the test cases were not able to detect and
reject the erroneous system behavior.

In order to explain the applicability of mutation analysis in the test case migration domain,
we have analyzed the basic migration setting depicted in Figure 7.3. Our running example,
which we already introduced in Section 3.1, is depicted again in Figure 7.4. It can be seen as
a concrete instance of the abstract schema depicted in Figure 7.3.

To prepare for the presentation of the scenarios, in the following, we define the funda-
mental concepts to give, at least in the scope of this thesis, precise meaning to sentences such
as “the system migration is correct” or “the test case migration is buggy”:

Definition 14 (System). A collection of components organized to accomplish a specific
function or set of functions [IEE90].

Definition 15 (System Migration). System migration is a (manually performed or automated)
transformation that takes an old (software) system as input and produces the migrated
(software) system as output.



7.2 Mutation Analysis Repository 153

Original
Test Cases

Migrated 
Test Cases

Original 
System

Migrated 
System

Test Case Migration

System Migration
1 23

4 56

System or 
Test Cases

Migration

Execution

Figure 7.3 Overview of mutation analysis usage scenarios

System migration is considered correct if the functional equivalence of the original and
migrated system is ensured. The notion of equivalence has different definitions in different
areas of computer science like software design, program verification or database theory.
Generally speaking, two things can be considered equivalent if they are “regarded as mu-
tually compensating each other, or as exchangeable” [SW89]. Similarly to [MA14], we
define the equivalence around the term exchangeability. Hence, two equivalent systems are
indistinguishable to an external observer which means that the observable behavior won’t be
changed when the systems are exchanged.

Definition 16 (Correctness of System Migration). Given a system migration that transforms
an original system S to a migrated system S′, let sm denote the corresponding transformation
of the original system S to the migrated system S′. The system migration is correct if S and S′

are equivalent according to a particular equivalence relation.

As our framework is meant to deal with real-world, very often also large, software
systems, it is very difficult to formally verify full equivalence. Therefore, the notion of
behavioral equivalence is, similarly to [MA14], relaxed to ad hoc equivalence which refers
to equivalence relation that is satisfied for a particular purpose.
We now move on to test cases. On the same abstraction level as for the system, a test case is
“executed” (see the arrows labeled ex in Figure 7.4) on the system by using it to stimulate and
assert the beginning and end state of the corresponding system behavior.

Definition 17 (Test Case). A test case consists of a set of test inputs, execution conditions,
and expected results developed for a particular objective, such as to exercise a particular
program path or to verify compliance with a specific requirement [IEE90].
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Figure 7.4 System and test case migration in the context of our running example

Definition 18 (Test Case Migration). Test case migration is a (manually performed or
automated) transformation that takes a set of original test cases as input and produces a set
of migrated test cases as output.

Definition 19 (Correctness of Test Case Migration). Let assume that sm is a correct system
migration. A test case migration tm is correct if the original system S passes the original test
suite TS and the migrated system sm(S) passes the migrated test suite tm(TS) or the original
system S fails to pass the original test suite TS and the migrated system sm(S) also fails to
pass the migrated test suite tm(TS).

Remark (Correctness of Test Case Migration). (1) This definition is sufficient but not
necessary. So, if this holds for a test case migration tm then it can be considered correct.
However, there might be a correct test case migration tm for which this does not hold. For
example, when system migration sm fixes erroneous systems such as when replacing code
with a call to a standard library. (2) In practice, a software migration sm is never perfect.
So, you have to be able to work with buggy software migrations in practice too. For these
reasons, the definition is nice on a conceptual level but otherwise idle.

This leads us actually to the idea of applying mutation analysis and bad smell indications.

Based on our definition of correctness for system and test case migration, we can now classify
old and migrated test cases:

Definition 20 (Classification of Migrated Test Cases).
Let a system migration and a corresponding test case migration be given for an original
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system and original test cases, respectively.
A migrated test case is a true/false positive if it fails and the system migration is incorrect/-
correct.
A migrated test case is a false/true negative if it passes and the system migration is incorrec-
t/correct.

Having covered the basics of mutation analysis, we now present the identified mutation
analysis scenarios for validating test case migration. We started by analyzing a simple
constellation of test case and system migration performed together (Figure 7.3).

Typical mutation analysis scenarios are when the system under test is mutated. In our
case, there are two such scenarios as both the old and migrated system can be mutated. These
scenarios correspond to Scenario 1 and Scenario 2 in Figure 7.3, respectively. Mutation
analysis can, however, also be used to mutate test cases. As we have original test cases and
migrated test cases, we have two such scenarios (Scenario 5 and Scenario 6 in Figure 7.3,
respectively). The last two scenarios can be viewed as variants of Scenario 2 and Scenario
6. By mutating the system migration or the test case migration, one indirectly mutates the
result of the migration transformation, which is either the migrated system or the migrated
test cases. Hence Scenario 3 is comparable to Scenario 2, and Scenario 4 to Scenario 6.
Before each usage scenario is explained in-depth, we first introduce the following general
assumptions for all usage scenarios:

(A1) All original test cases as well as migrated test cases can be executed and pass for the
old and migrated system, respectively.

(A2) The Competent Programmer Hypothesis [ABD+79, LS78] is applied.

(A3) For simplicity and clarity, the problem of equivalent mutants is ignored for generated
mutants.

These general assumptions are crucial for applying mutation analysis in the context of
validation of test case migration. Regarding Assumption (A1), we assume for simplicity
that all test cases are executable. Although this might not be the case for legacy migration,
handling the case where original test cases are not executable deserves a separate discussion
and goes beyond the scope of work.

Analogously to the general case of mutation analysis [ABD+79, LS78], we assume
with (A2) that the programmers (in this case, the migration specialists) are competent and
that they tend to implement migration transformations that are already close to the correct
migration transformations. The last assumption, Assumption (A3) concerns the well-known
Equivalent Mutant problem [OP97, ABD+79, JH11] from mutation analysis. This problem
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appears when a generated mutant is syntactically different but behaviorally equivalent to the
original program. As shown in [OP97, ABD+79], it is impossible to automatically detect
all equivalent mutants as program equivalence is undecidable [BA82] in general. There are,
however, some approaches that deal with this problem quite successfully [AHH04, BS79,
GSZ09]. To simplify our analysis, we ignore the problem of equivalent mutants for generated
mutants, i.e., we consider generated mutants to be always non-equivalent.

In the following, we present all six usage mutation scenarios. Each scenario is presented
following the same structure: a short description providing general information about the sce-
nario, and then two parts: Assumptions presenting additional scenario-specific assumptions,
and Indications discussing the results of applying mutation analysis for the specific scenario.

Scenario 1: Mutation of Original System

In the first scenario, the mutated object is the original system, i.e., the system before migration.
As depicted in Figure 7.5, generated original system mutants can be either tested against
the original test cases (sub-scenario that follows the sequence 1a, 2a) or transformed with
the system migration to produce migrated system mutants (sub-scenario that follows the
sequence 1b, 2b, 3b).
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Figure 7.5 Mutation of Original System

Sub-Scenario 1a-2a: Mutation of Original System

The first sub-scenario (1a-2a in Figure 7.5), is a standard mutation analysis scenario that
can be used to evaluate the quality of the original test cases.
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Assumptions

(A1a.1) A suitable mutation framework for the original system exists.

Indications
The outcome of this analysis indicates how good the original test cases are. The higher
the mutation coverage, the better the quality of the original test cases. For low mutation
coverage, it makes sense to invest initial effort in improving the original test suite by
creating additional test cases before starting with the task of validating the test case
migration.

This scenario imposes just a single additional assumption, Assumption A1a.1, namely the
existence of a suitable mutation framework for the original system. In our running example,
for instance, the original system is a Java program for which there exist plenty of mutation
techniques and frameworks [PIT, MOK05, KCM01, KKCM00, JJCM99, KCM99, CT03,
Che01b].

Suitability. The first sub-scenario, namely the one following the steps 1a and 2a in
Figure 7.5), is a standard mutation analysis scenario that can be used to evaluate the quality
of the original test cases. It can be used as a quality evaluation strategy to improve the
fault-revealing capability of the original test cases.

Sub-Scenario 1b-2b-3b: Mutation of Original System with Migration

The second sub-scenario (1b-2b-3b in Figure 7.5) analyzes original system mutants
from a system migration perspective. The generated original system mutants are migrated
using the system migration and then the obtained migrated system mutants are tested against
the migrated test cases.

Assumptions

(A1.1) A suitable mutation framework for the original system exists.

(A1.2) System migration is (semi-)automated.

(A1.3) Original system mutants are killed by original test cases (if not, see 1a).

(A1.4) Original system mutants can be migrated.

Indications
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if migrated system mutant is killed then
if migrated system mutant is equivalent then

At least one migrated test case is a false positive
else

Expected case
end

else
if migrated system mutant is equivalent then

No indication
else

At least one migrated test case is a false negative
end

end

The general idea in this scenario is to check for inconsistencies in the test or system
migration by migrating the generated mutant of the original system. If the migrated system
mutant is killed by the migrated test cases, but it is equivalent w.r.t. the migrated system, then
at least one migrated test case is a false positive. Due to Assumption (A1), this is, however,
unlikely as the migrated test cases are assumed to accept a correct migrated system (an
equivalent migrated system mutant would be such a correct migrated system). Note that even
with Assumption (A3), we still have to discuss equivalent mutants as these can be produced
by the migration from non-equivalent generated mutants. For example, when the system
migration replaces functionality with an off-the-shelf library, mutating these parts in the
original system would lead to equivalent and correct migrated system mutants. The expected
case, increasing trust in the test case migration, is when a non-equivalent migrated mutant is
killed by the migrated test cases, as the mutant’s behavior differs from the desired behavior.

The other half of the analysis in this scenario deals with the case when the migrated
system mutant is not killed. When the migrated system mutant is equivalent this gives no
indications, and it neither reduces nor increases trust in both migrations. When the migrated
system mutant is non-equivalent, however, then it means that at least one test case is a false
negative. A trivial example for this would be when all migrated test cases are erroneously set
to always result in true, irrespective of the migrated system under test.

Suitability. The second sub-scenario (the one following the steps 1b, 2b, and 3b in
Figure 7.5) focuses on the mutation of the original system and migrating the mutants in the
target environment. The obtained migrated system mutants are tested against the migrated test
cases. This scenario is suitable when the creation of the original system is easier compared
to the mutation of the migrated system.
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Scenario 2: Mutation of Migrated System

In this scenario, the mutated object is the migrated system. For this scenario, we have the
following assumptions:
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Figure 7.6 Mutation of Migrated System

Assumptions

(A2.1) System migration is (semi-)automated.

(A2.2) A suitable mutation framework for the migrated system exists.

(A2.3) It is possible to derive original system mutants from migrated system mutants via
reverse engineering.

Indications

In this scenario, we start first with the case when the migrated system mutant is killed. A
corresponding original system mutant is obtained via reverse engineering. If the obtained
system mutant is killed as well, then this represents the expected case that increases the trust
in the migration. If the obtained original system mutant was not killed, however, then it
is either equivalent (no indications) or non-equivalent meaning that we have an erroneous
original system that is not detected by the original test cases (see Scenario 1a).

The other half of the analysis deals with the case when the migrated system mutant is not
killed. If the reverse engineered original system mutant is killed, however, this suggests that
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if migrated system mutant is killed then
if original system mutant is killed then

Expected case
else

if original system mutant is equivalent then
No indication

else
Scenario 1a should be revisited

end
end

else
if original system mutant is killed then

At least one migrated test case is a false negative
else

if original system mutant is equivalent then
No indication

else
Scenario 1a should be revisited

end
end

end

at least one migrated test case is a false negative. If the reverse engineered original system
mutant is not killed and it is equivalent, then no indications can be derived. If the reverse
engineered original system mutant is not equivalent, then Scenario 1a should be revisited as
an erroneous original system obtained via reverse engineering is not detected as such.

An important requirement that can be derived from Assumption (A2.3) concerns the
choice of transformation language for the system migration. To simplify the reengineer-
ing of original system mutants, for example, a suitable bidirectional transformation lan-
guage [CFH+09] could be used.

Suitability. In general, this scenario is suitable when the mutation of the migrated system
is easier compared to the mutation of the original system. According to Assumption (A2.1),
a suitable mutation framework for the migrated system is required. In our running example,
this is a C# program for which there exist numerous techniques and frameworks [DS07,
DS08, Der06].
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Scenario 3: Mutation of System Migration

In this scenario, the mutated object is the system migration. This scenario can be seen as an
indirect mutation of the migrated system, i.e., another way to apply Scenario 2.
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Figure 7.7 Mutation of System Migration

Assumptions

(A3.1) A suitable mutation framework for the system migration exists.

(A3.2) System migration is (semi-)automated.

(A3.3) Backward transformation is possible for migrated system mutants.

Indications

if migrated system mutant is not equivalent then
Apply Scenario 2

else
Apply Scenario 1b

end

The challenge in this scenario is to decide whether the system mutant is non-equivalent
one by means of reverse transformation or with an explicit inspection. Otherwise, it does not
make sense to analyze further a system equivalent.
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Suitability. The advantage in applying this scenario and not directly Scenario 2, is that it
might be easier to mutate the system migration depending on the context and the mutation
framework that is used. The obtained migrated mutants via mutation of the system migration,
according to Scenario 2. Assumption A3.1 requires the existence of a suitable mutation
framework of the system mutation. Due to the limitation of the classical mutation operators,
Mottu et al. [MBLT06] propose a set of specific mutation operators for applying mutation
analysis to model transformations.

Scenario 4: Mutation of Original Test Cases

In this scenario, the mutated objects are the original test cases, i.e., the test cases before
migration. If the original test case mutants are executed against the original system, this sce-
nario can be seen as an augmentation of the original test cases with negative test cases [SJ16].
Furthermore, the original test case mutants can be migrated and executed against the mi-
grated system. In that case, they check the correctness of the migrated system and the actual
indications are presented in the following.
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Figure 7.8 Mutation of Original Test Cases

Assumptions

(A4.1) A suitable mutation framework for original test cases exists.
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Indications

if original test case mutant is killed then
if original test case mutant is equivalent then

Impossible (would contradict Assumption A1)
else

if migrated test case mutant is killed then
Expected case

else
Migrated test case mutant is a false negative

end
end

else
if original test case mutant is equivalent then

if migrated test case mutant is not killed then
Expected case

else
At least one migrated test case is a false positive

end
else

Scenario 1a should be revisited
end

end

First, we start with the case where the original test case mutant is killed. If the original
test case mutant is equivalent, then it will contradict with Assumption A1. If the original
test case mutant is killed, then we also expect the migrated test case mutant to get killed.
Otherwise, this suggests that the migrated test case is a false negative.

The other half of the analysis deals with the case where the original test case mutant is
not killed. If the original test case mutant is equivalent, then we also expect the migrated test
case mutant to be equivalent as well giving out no indication. Otherwise, this suggests that at
least one migrated test case is a false positive. However, if the original test case mutant is not
killed and not equivalent, then it suggests that Scenario 1a should be revisited.

Suitability. This scenario is suitable for improving the overall quality of the original
test cases prior to the migration if an indication for low quality exists. Furthermore, if the
mutated original test cases are migrated, then, they can be used to check the migrated system.
This strategy can be suitable if the mutation of the original tests is easier than the mutation of
the migrated tests.
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Scenario 5: Mutation of Migrated Test Cases

In this scenario, the mutated objects are the migrated test cases.
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Figure 7.9 Mutation of Migrated Test Cases

Assumptions

(A5.1) A suitable mutation framework for the migrated test cases exists.

(A5.2) Backward transformation of migrated test case mutants is possible.

Indications

if original test case mutant fails then
Expected case

else
if original test case mutant is equivalent then

No indication
else

Bad smell for test case migration
end

end
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This scenario requires that the backward transformation of the migrated test case mutant
is possible. If the original test case mutant fails, then that is something that is expected. If
it does not fail, then if the original test case is an equivalent test case mutant, no indication
could be seen. This could happen when an API library is used in the migrated system and
in the case of the original system it was manually implemented. However, if the original
test case mutant is not equivalent, then it suggests that it is a false positive as it validates a
correct system, which in turn means that the test case migration may be buggy and should be
checked.

Suitability. This scenario is suitable when the mutation of the migrated test cases is
easier compared to the mutation of the original test cases.

Scenario 6: Mutation for Test Case Migration

In this last scenario, the mutated object is the test case migration. This scenario is basically
an indirect mutation of the migrated test cases.
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Figure 7.10 Mutation for Test Case Migration

Assumptions

(A6.1) A suitable mutation framework exists for the test case migration.

(A6.2) Test case migration is (semi-)automated.
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(A6.3) Backward transformation of migrated test case mutants is possible.

Indications

if migrated test case mutant passes for migrated system then
if migrated test case mutant is equivalent then

No indication
else

Bad smell for system migration
end

else
if migrated test case mutant is equivalent then

Impossible (would contradict Assumption A1)
else

Apply Scenario 5
end

end

If the migrated test case mutant passes, then it is either equivalent (no indication can be
obtained) or non-equivalent (indicating a bad smell for system migration as the migrated
system exhibits non-expected behavior). The second half of the analysis is the case when the
migrated test case mutant fails. Due to Assumption (A1), the migrated test case mutant must
be non-equivalent, meaning that Scenario 5 can be applied.

Suitability. In general, this scenario is suitable when the mutation of the test case
migration is easier compared to the mutation of the migrated test cases. Therefore, it can be
seen as an alternative to Scenario 5. Instead of directly mutating the migrated test cases, the
test case migration is mutated, indirectly producing migrated test case mutants.

7.2.2 Mutation Operators

A mutation operator, also known as a mutagenic operator or mutation rule, is a transformation
that creates a mutant from an existing program or existing test case. In our case, as shown
in Figure 7.11, we distinguish between three different types of mutants, Language Mutation
Operator, Test Mutation Operator, and Domain-specific Operator.

Language Mutation Operators

Numerous mutation operators have been defined for languages such as Java [MOK05, PIT,
KCM99] or C# [Vis, Str]. The process of designing mutation operators is usually based on
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Figure 7.11 Overview of the mutation operator types

examining elements of the languages or motivated from other mutation operators designed for
similar languages. By combining the existing language mutation operators, we defined our
set of mutation operators as shown in Figure 7.12. As can be seen, we distinguish between
two main types of language mutation operators according to the level of mutation namely
Method Level and Class Level mutation operators.
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Figure 7.12 Overview of the language mutation operators

Test Mutation Operators

Compared to the language mutation operators, which are more general, the test mutation
operators are more specific as their name already suggests, namely, they deal with the test
constructs. As defined in the test horseshoe model, on the platform-specific and platform
independent layer we have models that represent the test cases by using test-specific modeling
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Figure 7.13 Example set of test mutation operators for the JUnit framework

elements, e.g., assertion, expected result, or actual result. The role of a test mutation operator
is to make atomic changes regarding these model elements, e.g., swap the expected result
with the actual result or switch from one type of assertion to another. As shown in Figure 7.13,
for the JUnit framework we distinguish between two different levels of mutation, namely
Test Case Level and Test Class Level. On the Test Case Level, we have mutation operators
like Assertion Type Mutator which would change the type of the assertion used in a given
test case, e.g., assertTrue to assertFalse. Another example is the Order of Execution
Annotation Mutator which switches @After annotation to @Before which means that a given
the statement being affected will not be executed after each test case but before each test
case. The same example applies to the Order of Execution Annotation Mutator defined on
the Test Class Level.

Domain-specific Operators

The third type of mutation operators we have are the domain-specific operators. These types
of operators as their name suggests are specific to the domain and should be accordingly
defined. For example, in our migration scenario, we are dealing with the migration of OCL
test cases. As we have seen in the migration phase, the OCL implementation had to be
changed from Just-in-Time execution to Ahead-of-Time execution. This means, possibly in
the OCL logic there could be the same unwanted changes that we want to detect. However,
by none of the previous two types of mutation operators, this could be addressed. Hence, a
mutation operator has to be defined for the OCL language. For example, Collection Type
Replacement is a mutation operator that swaps the type of collection, e.g., from BAG to SET.
Further domain-specific mutation operators for the OCL language are shown in Figure 7.14.
This set of mutation operators is largely based on the OCL operators proposed by [Str16].
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Figure 7.14 Example set of domain-specific mutation operators for the OCL Language

7.2.3 Mutation Method Patterns

Having only the different scenarios, on a rather conceptual level is not enough to perform
the actual mutation analysis in practice. For this reason, we additionally provide a set of
mutation method patterns, similar to the migration patterns introduced in Section 6.2.3, in
order to support the mutation of test cases on different levels of abstraction.

Similarly to method patterns, a mutation method pattern represents construction guide-
lines for mutation methods and follows a certain strategy. In the following, as shown
in Figure 7.15, we present the basic mutation method patterns that can be applied to mutate
test cases.
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Language-based Test Mutation

The Language-based Test Transformation pattern defines the mutation of test cases by
defining a mutation of the language constructs contained by the Model of Test Code. So,
as shown in Figure 7.15, the mutation is applied as a direct transformation of the Model of
the Test Code and results in the Model of Mutated Test Code. This pattern could be applied
actually in any migration context, but its suitability depends on the applied method pattern as
well as the selected mutation operators that have to be applied. If the applied test method
pattern is on a lower level of abstraction, in this case, it means a Test Reimplementation
was applied, then, besides the Mutation activity, a Model Discovery activity has also to
implemented and applied. In any other case, the Model Discovery would be already applied.
The second aspect that defines the suitability of this pattern are the selected operators to
be applied. If basic mutation operators are selected, e.g., swapping logical operators then,
the implementation of the model transformation that supports the Mutation activity, then
this will not result in a high effort. More particularly, the model transformations for the
selected mutation operators will not be complex as they use directly the Abstract Syntax
Tree elements. However, if test-specific mutation operators are selected to be applied, e.g.,
swapping expected value to actual value, then the complexity of the model transformation
will be higher as these concepts are not existing explicitly.

Test Language-based Test Mutation

The Test Language-based Test Transformation pattern (Figure 7.15) defines the mutation of
test cases by defining a mutation of the platform-specific test constructs contained by the
Model of Executable Tests. In other words, the mutation is applied as a direct transformation
of the Model of Executable Tests and results in the Model of Mutated Executable Tests. As
for any mutation method pattern, the suitability of this mutation method pattern depends
on the applied method pattern as well as the selected mutation operators that have to be
applied. If the applied test method pattern is on a lower level of abstraction, in this case, it
means wither Test Reimplementation or Language-based Transformation was applied, then,
besides the Mutation activity, a Model Discovery as well as Test Understanding have also to
be implemented and applied in order to obtain the Model of Executable Tests. In cases when
Test Language-based Test Transformation or Conceptual Test Transformation is applied,
Model Discovery and Test Understanding would be already applied. As this pattern enables
direct, i.e., explicit representation and manipulation of test constructs, e.g., test assertion or
expected result, it is suitable when test-specific mutation operators have to be applied, like
swapping test assertion from isTrue to isFalse.



7.3 Test Case Migration Validation Process 171

Conceptual Test Mutation

The Conceptual Test Mutation pattern (Figure 7.15) defines the mutation of test cases by
defining a mutation of the platform-independent test constructs contained by the Model of
Executable Tests. That means, the mutation is applied as a direct transformation of the Model
of Abstract Tests and results in the Model of Mutated Abstract Tests. Regarding the first
aspect that influences the suitability of this pattern, namely the applied test method pattern,
this pattern is most suitable when Conceptual Test Transformation was applied and the Model
of Abstract Tests is already given. Otherwise, all the reverse engineering activities leading to
the Model of Abstract Tests, i.e., Model Discovery, Test Understanding, and Test Abstraction
have also to implemented and applied. Similarly to the Test Language-based Mutation, this
pattern enables direct, i.e., explicit representation and manipulation of test constructs, e.g.,
test assertion or expected result but rather on the platform-independent level. For example,
from the test design perspective, the test architecture or test behavior could be explicitly
represented with this model.

7.3 Test Case Migration Validation Process

In this section, we give an overview of the post-migration phase of TeCoMi where a context-
specific validation method gets developed and enacted. As shown in Figure 7.1, we support
this phase by providing an extended process which relies on the previously introduced
mutation analysis-based validation approach. Firstly, a mutation method suitable for the
context has to be developed. This means that firstly context information has to be analyzed.
Based on this, a suitable mutation analysis scenario (Section 7.2.1) or multiple suitable
scenarios are selected. Thereafter, depending on the functionality being asserted in the test
cases, a set of suitable mutation operators (Section 7.2.2) is selected. Based on the selected
mutation operators and selected mutation analysis scenarios, a suitable mutation method
pattern (Section 7.2.3) is selected. Then, the selected set of mutation operators has to be
implemented in terms of model transformations. Once the validation method is created,
it can be executed and the mutated test cases will be created. The mutated test cases are
then executed against the migrated system. The outcome of the test case execution of the
mutated test cases is then analyzed. If no false positives and false negatives are identified,
the migration of the test cases is considered to be successful. Otherwise, the identified false
positives and false negatives have to be analyzed in order to fix them.
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7.3.1 Context Characterization

The first activity of the validation process is Context Characterization, in which the migration
context is analyzed and characterized, from both system migration and testing perspective.
However, as this activity was performed already in the previous phase, the obtained Situa-
tional Context Model can be reused for the development of a suitable test case validation
method. Moreover, the Situation-Specific Test Migration Method Specification as well as the
Situation-Specific Tool Chain contain also important information about the context of the test
migration. In the following, we discuss how each of the above-mentioned artifacts is utilized
by this activity.

Firstly, we analyze the Situational Context Model which, as presented in Section 6.3.1,
comprises Concept Model, Impact Model, and Influence Factor Model. The Concept Model
represents the functionality of the system and the test cases in terms of concepts. These
concepts are analyzed by a person in the role Test Expert, who can clearly see which
concepts could be potentially selected for mutation. The Impact Model additionally provides
information on the influence the system concepts have on the test concepts which can also
point out at what place the mutation should take place. This comes from the fact that the
relations provided by the Impact Model show exactly what is the relation between the system
concepts being changed and the test concepts. Figure 7.16 shows the same situational context
model we used in Section 6.3.1. Based on this example, the Test Expert can identify and
select the artifacts for mutation. In this concrete example, the source test concept OCL
Test Case (JIT) depends on the Native OCL-Expression. This has changed in the target
environment, and the target test concept OCL Test Case (AOT) depends on the Language-
Specific OCL-Expression. So, this suggests where actual the focus of the mutation should
be, i.e., the part of the test cases that has changed, and that is the part containing the OCL
expressions. This further suggests that Domain-Specific Mutation Operators are needed for
the mutation of the OCL expressions.

Then, the Situation-Specific Test Migration Method Specification provides information
on the applied test transformation patterns, which is important for the next activity when
the actual mutation method gets constructed. The information about the different test
transformation patterns selected for the test cases influences the selection of the migration
scenario and the mutation method pattern. Furthermore, the Situation-Specific Tool Chain
also influences the selection of the migration scenario and the mutation method pattern from
the implementation perspective. Related to the previously introduced situational context
model, the test transformation method shown in Figure 7.17 was performed. It also shows
the tool specification, i.e., the tools used for the method enactment. The test method pattern
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used here, namely the Test Language-based Transformation Pattern suggests using the Test
Language-based Mutation Pattern as most of the developed tools can be reused.
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Figure 7.17 An example of a test transformation method specification

7.3.2 Mutation Method Construction

The purpose of this activity is the construction of a suitable mutation method. As shown
in Figure 7.18, the process comprises three activities, namely Selection of Mutation Analysis
Scenario, Selection of Mutation Operators, and Selection and Configuration of Mutation
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Method Pattern. Before proceeding with the discussion on each of these activities, in the
following, we refer to the three artifacts from the migration phase as context information (the
artifact at the bottom in Figure 7.18).
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Figure 7.18 Mutation method construction process

Firstly, as part of the Selection of Mutation Analysis Scenario, a suitable mutation
scenario is being selected from the Mutation Analysis Repository. As we already described
in Section 7.2.1, each mutation scenario contains a discussion on its suitability. So, upon
these characteristics and the context information, a suitable scenario is being selected.

Related to the example we introduced in the previous section (Figure 7.16 and Fig-
ure 7.17), the Mutation of Original Test Cases scenario was selected, as it is easier to mutate
native OCL expressions than language-specific expressions defined in the target environ-
ment. The mutation of the system code was not considered as the migration was performed
manually.

The outcome of this step is an Incomplete Mutation Method Specification as it contains
only the selected mutation analysis scenario.

Secondly, based on the context information, and the previously selected mutation analysis
scenario, as part of the Selection of Mutation Operators, a set of mutation operators is
selected from the Mutation Analysis Repository. As already discussed in Section 7.2.2, three
types of changes are provided in the repository, namely language mutation operators, test
mutation operators, and domain-specific operators. Depending on the context information,
more precisely on the test concepts being changed as well as the corresponding applied
transformation pattern, mutation operators are being selected For example, if a test language-
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based transformation was applied, where a test model elements are being transformed from
source testing framework to a target testing framework, then applying test mutation operator
are reasonable choice as they address exactly the test elements. Also, related to the running
example (Figure 7.16 and Figure 7.17), applying domain-specific mutation operators is
reasonable as the test cases contain OCL expressions that have been transformed. The
outcome of this step is still an Incomplete Mutation Method Specification as it still misses a
mutation method pattern which is selected in the next step.

Finally, as part of the last activity, namely Selection of Mutation Method Pattern, a
mutation method pattern is being selected for the selected mutation analysis scenario and the
selected mutation operators. As already discussed in Section 7.2.3, three mutation method
patterns are defined in the repository, a language-based mutation, a test language-based
mutation, and a conceptual mutation.

Depending on the context information, and on the selected mutation analysis scenarios and
mutation operators, one of the three mutation patterns is selected. The context information,
more specifically the applied test transformation method influences strongly the selection
of the mutation method pattern. For example, if a language-based transformation was
applied for the migration of the test cases, then a mutation on higher level of abstraction
requires additional model transformations and metamodels on a higher level of abstraction.
Furthermore, the selected mutation operators can be also seen as an influence factor when
selecting a mutation method pattern. For example, if test mutation operators were selected, a
test language-based mutation method pattern is more suitable than a language-based mutation
method pattern as the test concepts like assertion or expected and an actual result that should
be mutated are explicitly represented and thus easier to be implemented. Related to the
running example (Figure 7.16 and Figure 7.17), the Test Language-based Mutation Pattern
would be the pattern to implement as the Test Language-based Test Transformation was
performed.

The configuration of the selected pattern is dependent on the applied test transformation
method. Namely, the same method fragments are reused for the mutation method. For
example, regarding the artifacts, the same Model of the Test Code or the same Model of the
Executable Tests are used. The same applies to the activities, e.g., Model Discovery or Test
Case Understanding. According to the example we have shown in Figure 7.17, the same
fragments regarding reverse engineering and forward engineering activities and artifacts can
be reused. The only difference is the transformation activity, that should be changed to a
mutation activity.

The outcome of this step and at the same time of the overall Mutation Method Construc-
tion activity is a Mutation Method Specification as shown in Figure 7.19. On the left-hand side
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of the specification, the selected mutation analysis scenario is shown, namely the Mutation of
Original Test Cases scenario. The graphical representation at the top describes which steps
have to be performed and in what order. Below the graphical representation is the algorithm
which provides knowledge on the interpretation of the execution results. This information
is important for the last activity of the migration validation process, namely for the Muta-
tion, Test Execution, Analysis activity. Furthermore, on the right-hand side of Figure 7.19,
the selected test mutation operators are shown, in this case, the Domain-Specific Mutation
Operators. Finally, the selected mutation method pattern, namely the Test Language-based
Mutation pattern shows how the technical realization of the mutation scenario should be done,
showing the artifacts and the activities to be used. The configuration of the mutation pattern
was largely influenced by the configured test transformation method shown in Figure 7.17.
The selected pattern as well as selected mutation operators are relevant to the tool developers
in the next activity, namely the Mutation Tool Implementation.
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7.3.3 Mutation Tool Implementation

Having the mutation method specification developed, we proceed to the development of the
tools to automate the mutation. We assume that the specification is used by the associated
tool developers as some kind of guidance. The developers can use the specification to get an
overview of the validation method. By checking the mutation method pattern, they can get
an understanding of how the actual mutation of the test cases should be performed and what
needs to be developed. Currently, we assume this kind of more flexible kind of guidance.

To improve the process of automated mutation and to increase the reuse of existing
components, we introduce a flexible and extensible model-driven mutation framework which
should serve as a project-independent tool infrastructure. It is a component-based framework,
consisting of three main components, Input Module, Mutation Module, and an Output Module,
as shown in Figure 7.20. The Input Module deals with providing the proper data for the
main component, the Mutation Module, which provides means to specify mutation operators
and apply mutation on the input data. The Output Module deals with the generation of
the mutated code. The component-based architecture guarantees an easy adaptation of the
framework to any situation.

Mutation Tool Infrastructure

The solution architecture of the mutation framework is depicted in Figure 7.20 and shows
the three main components of the framework, Input Module, Mutation Module, and Output
Module.
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Figure 7.20 The architecture of the mutation framework

The leftmost component, namely the Input Module, as the name suggests, handles the
input data, i.e., the test cases that have to be mutated. It consists of three components, namely
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Test Metamodel, Test Code Parser, and Data Provider. The Test Code Parser requires the
metamodel of the test cases that have to be parsed. The Test Metamodel component provides
the metamodel to the parser, as shown in Figure 7.20. The test cases are provided by the
Data Provider to the Test Code Parser. The Input Module component provides the parsed
data in terms of a test model to the main component of the mutation framework, namely the
Mutation Module.

The Mutation Module component is based on the eMoflon transformation framework,
which is a tool suite for applying Model-Driven Engineering (MDE) and provides visual
and formal languages for (meta)modeling and model management1. It consists of three
components, Mutation Rules, Rule Executor, and Transformation Engine. The Mutation
Rules component is responsible for the specification of the mutation operators in terms of
mutation rules which are basically model transformation rules. The specified mutation rules
can be executed by the Rule Executor and completely relies on eMoflon. This requires the
mutation operators as well as the outcome of the Test Code Parser component, namely the
test model. Having this input, the Rule Executor applies the rules and mutates the test model,
i.e., the test cases which are part of the test model. Regarding the execution, the application
of the mutation rules can be configured. By default, each mutation rule is applied to the first
match in a test case. For efficient execution, the transformation rules are executed to the
Transformation Engine which relies on Neo4J, which is a graph database that exchanges data
via Cypher queries. Cypher2 is Neo4j’s graph query language that allows users to store and
retrieve data from the graph database. Cypher’s syntax provides a visual and logical way to
match patterns of nodes and relationships in the graph. Once the mutation rules are executed,
i.e., the mutation of the test model is performed, the mutated test model is used by the Output
Module.

The Output Module component consists of three main components, Test Metamodel,
Test Code Generator, and Test Code Templates. The central component is the Test Code
Generator component, which is concerned with the generation of the executable mutated test
cases. It requires the test metamodel as well as the test code templates so that the test code
generation can be performed.

Figure 7.21 shows the general mutation process of the mutation framework. The horse-
shoe model as a common representation in the area of reengineering is used to visualize
the model-driven approach. In general, the process consists of three main activities, Test
Model Discovery, Mutation, and Test Code Generation. Besides the activities, we distinguish
between two types of artifacts, models and textual artifacts. Lastly, we have also visualized

1https://emoflon.org/
2https://neo4j.com/developer/cypher-query-language/

https://emoflon.org/
https://neo4j.com/developer/cypher-query-language/
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Figure 7.21 The general process of the mutation framework

the tools, i.e., the framework components introduced in the previous section, necessary for
the automation of the whole process.

In the first activity, i.e., Test Model Discovery (shown on the left-hand side of Figure 7.21),
Test Model out of the Test Code is extracted by using the previously introduced Test Code
Parser. Having the outcome of this activity, i.e., the Test Model which conforms to Test
Metamodel, the actual model mutation can be performed. For the Mutation activity, first of
all, a set of relevant Mutation Rules has to be specified in terms of model transformation
rules specified in EMSL3, a uniform language for model management. Then, the Mutation
Module, takes the Mutation Rules and executes them against the previously obtained Test
Model. The outcome of the Mutation activity is a Mutated Test Model, which also conforms
to the Test Metamodel.

In the third and the last activity of the mutation process, namely the Test Code Generation
activity, based on the Mutated Test Model, and the Test Code Templates, the Test Code
Generator generates executable mutated test cases, i.e., Mutated Test Code.

The mutation framework was implemented as a composition of three different Eclipse
plugins which correspond to the three main components shown in Figure 7.20. Such an
architecture enables flexibility and extensibility towards supporting mutation for different
types of testing frameworks as well as mutation of different types of systems.

Firstly, the plugin corresponding to the Input Module component, was implemented to
support the two main activities of the Test Model Discovery process, namely the parsing and
the understanding activities. The parsing activity firstly parses the code and the test code

3https://emoflon.org/

https://emoflon.org/
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and extracts an abstract syntax tree. In the case of JUnit4 test cases, this means that firstly, a
suitable Java parser is necessary (e.g., JDT Parser). Having the abstract syntax tree, a more
concrete model can be obtained by applying model-to-model transformation as part of the
understanding activity. When considering, JUnit, a suitable metamodel is necessary to enable
this activity. As an outcome of the understanding activity, a test model is obtained in terms
of a JUnit test model or if necessary, a more general representation is possible in terms of
xUnit metamodel.

The main component, namely the Mutation Module, was realized also as an Eclipse
plugin, which highly relies on the eMoflon framework. Among others, eMoflon has own
language for specifying model transformation rules, namely the EMSL (eMoflon Specification
Language). Consequently, the rules in the Mutation Rules component are specified in EMSL.
Rule Executor further provides means to execute the specified rules. The management
of the data is realized by the Transformation Engine, which is Neo4J5, a graph database
management system, which provides high scalability for model management tasks [WAF+19].
The outcome of this plugin is the mutated test model, e.g., a JUnit test model.

The last Eclipse plugin realizes the Output Module component. The central component,
i.e., the Test Code Generator is realized with the help of Xtend6, a statically typed program-
ming language being placed on top of Java known for developing code generators. The
generator needs the Test Code Templates, which are defined as Xtend templates and are
dependent on the target framework, i.e., the testing framework for which the mutated exe-
cutable test cases have to be generated. Furthermore, the generator needs the Test Metamodel
which in the concrete implementation is a xUnit metamodel. The outcome of the Test Case
Generation activity and at the same time of the whole mutation process is the Mutated Test
Code, which in the concrete example are JUnit test cases.

So, for the particular mutation method specification in Figure 7.19, we created the
toolchain shown in Figure 7.22.

Namely, first of all, we developed the Test Case Parser and the Test Metamodel. In
this particular case, we used the JDT Parser7 to parse the test code and then we developed
model transformations to obtain the test model conform to the xUnit metamodel. Having
the test model, we had to develop meaningful mutation operators. As the original test cases
were testing the OCL functionality, we had to define mutation operators that will change
the semantics of the OCL expressions, contained in the test cases, either as the action to be
performed or the expected result to be checked.

4https://junit.org/junit5/
5https://neo4j.com/
6https://www.eclipse.org/xtend/
7https://www.eclipse.org/jdt/

https://junit.org/junit5/
https://neo4j.com/
https://www.eclipse.org/xtend/
https://www.eclipse.org/jdt/
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Figure 7.22 Implemented mutation tool chain

For this reason, an additional parser for the string-based OCL expressions was also
developed. Having the OCL expressions interpreted, we then developed a set of OCL
mutation operators in terms of model transformation rules. They were the practical im-
plementation of the OCL-specific mutation operators shown in the bottom right corner
in Figure 7.19. Figure 7.23 shows two mutation operators implemented in terms of trans-
formation rules. The transformation rule on the left-hand side shows the implementa-
tion of the Collection Type Replacement mutation operator. As it can be seen, this rule,
technically named as collectionTypeBagToOrderedSet rule, swaps a Collection of
a type BAG to ORDERED_SET. The other transformation rule shows the implementation
of the Collection Method Replacement mutation operator. Namely, this rule, technically
named as methodCallApendToApendAll rule, swaps a MethodCall of a type APPEND to
APPEND_ALL. Once the mutation operators were defined, they can be applied on the test cases
and create their mutants.

Collection Type Replacement Collection Method Replacement

Figure 7.23 OCL-specific mutation operators specified as transformation rules
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7.3.4 Mutation Execution and Analysis

So far, the mutation method for the test cases has been developed. Also, the mutation tools
which are required for the mutation have been developed. Here, we present the last activity
of the Migration Validation Phase, namely the Mutation Execution and Analysis activity, that
deals with the enactment of the mutation method and the analysis of the results as specified
in Figure 7.19.

Mutation Execution

The purpose of Mutation Execution part is to perform the actual mutation of test cases as
specified. We assume that the associated testers as well as test experts use the mutation
method specification as some kind of guidance. The previously illustrated example of
a mutation method specification in Figure 7.19, combined with the toolchain illustrated
in Figure 7.22, shows how to perform the mutation of the test cases.

Figure 7.24 and Figure 7.25 show concrete executions of the two mutation operators
we have previously defined in Figure 7.23. The upper part of the examples shows the
original test case before the mutation, the middle part shows the mutation operators, i.e.,
the transformation rule, and the bottom part the mutated test case. The test case before
the mutation step in the first example shown in Figure 7.24 tests the append functionality,
i.e., it checks whether the execution of the append(’c’) function on the Bag{’a’,’b’}
collection, results in Bag{’a’,’b’,’c’}, which is the expected result. The assert function
assertQueryResults(), compares the values of the expected result and the particular OCL
functionality which are specified as strings. When applied, the transformation rule looks for
the first appearance of a collection of type Bag and swaps it to OrderedSet.

Test Code

Mutated
Test Code

Mutation
Rule

Figure 7.24 Execution of Collection Type Replacement mutation operator specified as a
transformation rule

The test case before the mutation step in the second example Figure 7.25, is basically the
same as the one in the previous example. However, the difference is that the transformation
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rule looks for the first appearance of a method call of type Append and swaps it to AppendAll.
It is important to mention, that we skip the activities and artifacts, dealing with reverse
engineering and forward engineering parts (Figure 7.22), as we have explained this multiple
times already, especially in the migration phase.

Test Code

Mutated
Test Code

Mutation
Rule

Figure 7.25 Execution of Collection Method Replacement mutation operator specified as a
transformation rule

Analysis The purpose of Analysis Execution part is to analyze the test execution of the
mutated test cases. After the mutation is performed and mutated test cases are executed,
in the selected mutation analysis scenario there is an indication part which shows how to
interpret the test execution results. Each mutation scenario defines when a problematic case
can be identified by providing an algorithm defined in the pseudo code. The two examples
we have previously introduced in Figure 7.24 and Figure 7.25, were executed against the
original system, and as expected they failed. Then they were migrated and executed against
the migrated system and also failed. So, according to Scenario 4 defined in Section 7.2.1, this
es the expected case, meaning no problems were discovered. In the following, we present an
additional mutated test case which was identified as a bad smell according to Scenario 4.

The problem occurred when a collection entity such as Bag, Set, OrderedSet, and
Sequence is converted to another type. In Figure 7.26, a Sequence is converted to Bag
where we created a mutant converting a Sequence to Sequence.

@Test
public void testCollectionAsBag() {
  //Original
  //ocl.assertQueryResults("Bag{1,2.0,'3'}",
                           "Sequence{1,2.0,'3'}->asBag()");
  //Mutant – Applied mutation operator: Method mutator
  ocl.assertQueryResults("Bag{1,2.0,'3'}",
                         "Sequence{1,2.0,'3'}->asSequence()");
}

Figure 7.26 Scenario 4: Original and mutated old test case (Bad Smell 1)
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The created original test case mutant was killed in the original system as the expected
result is a Bag but not in the migrated system though the migration is similar (see Figure 7.27).
This happened due to the incorrect implementation of assert method in the target testing
environment (see Figure 7.28), which asserts only elements between two objects but not the
type associated with the object. This suggests, the implementation of the assert function in
the target environment is improper and it should be fixed. Thereafter, the test cases have to
be executed again in the target environment.

[TestMethod]
  public void testCollectionAsBag() {
  var expectedResult = new Bag<object>{1,2.0,"3"};
  var actualResult = new Sequence<object>{1, 2.0,"3"}.asSequence();
  ocl.assertQueryResults(expectedResult,actualResult);
}

Figure 7.27 Scenario 4: Mutated migrated test case (bad smell)

public void assertQueryResults<T>(
AbstractCollection<T> expectedResult,
AbstractCollection<T> actualResult) {
  CollectionAssert.AreEqual(expectedResult,actualResult);
}

Figure 7.28 Scenario 4: Incorrect implementation of the assertion function

We kept this section rather short as a migration validation of developed mutation was
performed as part of the feasibility studies presented in the next chapter.

7.4 Summary and Discussion

In this chapter, we introduced the third, and the last phase of the TeCoMi framework, namely
the post-migration or test case migration validation phase, with its two main constituents, the
mutation analysis repository and the validation engineering process. In the first part of the
chapter, we introduced the content of the mutation analysis repository base, namely a set of
mutation analysis scenarios, mutation operators, and mutation method patterns. Thereafter,
we introduced a process to develop and enact validation methods, by using the mutation
scenarios and mutation method patterns of the mutation analysis repository. Some of the
findings presented in this chapter are based on a master’s thesis [Bal19].
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First, in Section 7.1, we gave an overview of the post-migration phase, by giving an
overview of the structure of the mutation analysis repository as well as the structure of the
migration validation process.

Then, in Section 7.2, we proposed a set of mutation analysis scenarios, mutation operators,
and mutation method patterns stored in the mutation analysis repository. In the context of the
TeCoMi framework, a mutation analysis scenario describes a particular strategy in terms of
assumptions, guidelines, and suitability. In total, six different mutation analysis scenarios
have been introduced depending on what is being mutated, either the original the target tests,
original or the target systems or their transformations, i.e., test case or system migration.
We further introduced three different categories of mutation operators that can be applied,
namely, language mutation operators, test mutation operators, and domain-specific operators.
Lastly, we introduced a set of three different mutation method patterns and depending on
the abstraction level the mutation is performed, we distinguished between language-based
test mutation, test language-based test mutation, and conceptual test mutation. A mutation
method pattern can be seen as a technical implementation of the mutation analysis scenarios.
In Section 7.3, we introduced the migration validation process, by discussing in detail each
of the core activities. Firstly, we introduced a process to characterize the context from both
the system and test perspective. As this was already addressed in the migration phase, we
explained how the existing situational context model can be reused. However, seen from a
validation perspective, we extended this with the created situation-specific test transformation
specification and the developed situation-specific toolchain as part of the overall context
information relevant for the migration validation process. Based on the discovered context
information, as part of the next activity of the migration validation process, we described the
process to systematically construct a validation method. Firstly, a proper mutation analysis
scenario is selected. Based on this selection, a set of mutation operators is chosen and finally,
a suitable mutation method pattern is selected and configured. Then, based on our mutation
framework, tools are developed in order to automate the mutation of the test cases. Finally,
the mutation is performed, the test cases are executed, and the execution results are analyzed
based on the algorithms provided in the selected scenarios in order to eventually identify
false positives or false negatives.

Currently, the specification of the mutation methods is mostly manual. However, the
information from the previous phases can be used for automating certain parts of the speci-
fication of mutation methods. For example, suggestions for the optimal mutation scenario
and mutation patterns can be made based on the situational context. We also introduced
the model-driven mutation framework that addresses the automated generation of mutants.
However, the part dealing with the test case execution and identification of bad smells is still
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performed manually. By extending the mutation framework with automated execution and
identification of problematic cases, the overall efficiency and effectiveness of the validation
method can be improved.

In the next chapter, we present the two feasibility studies we have performed as part of
the evaluation of the TeCoMi framework.



Part III

Evaluation and Conclusion



Chapter 8

Evaluation

In the previous chapters, the three main phases of the TeCoMi framework have been defined
that enable the development and enactment of situation-specific test transformation methods.
In this chapter, we describe two feasibility studies in which TeCoMi had been used to
demonstrate the applicability of the framework. First, in Section 8.1, we present a set of
evaluation questions related to the solution concept. The feasibility studies are described
in Section 8.2 and Section 8.3. Thereafter, we discuss the evaluation questions based on the
experiences made when performing the study in Section 8.4. The findings of this chapter are
summarized in Section 8.5.

8.1 Evaluation Questions

In this section, we define a set of evaluation questions that address the main characteristics of
the solution framework. The questions are then answered in Section 8.4 when discussing
the outcome of the feasibility study that we have performed. We derived the evaluation
questions from the requirements originally defined in Section 3.2. For each requirement,
a corresponding evaluation question was derived which addresses two aspects, namely
fulfillment and feasibility. The fulfillment aspect covers whether the solution approach
addresses that requirement completely, whereas the feasibility aspect covers whether a certain
task can be accomplished when using the solution approach. Therefrom, the corresponding
evaluation questions are formulated as follows:

EQ1: Does the solution approach support the context-specific quality assessment of test
cases in a systematic way?

EQ2: Does the solution support co-evolution analysis (i.e., change detection, impact analysis,
and change propagation) between a system being migrated and its test cases?
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EQ3: Does the solution approach enable automated transformation, i.e., migration of the test
cases whenever possible?

EQ4: Does the solution support the construction of situation-specific transformation methods
for test cases?

EQ5: Does the solution approach support the creation of a validation method for the valida-
tion of the test case migration?

In the following, we present the feasibility studies and discuss for each of them the
previously described evaluation questions.

8.2 Feasibility Study 1: Junit OCL Test Cases to MSUnit
OCL Test Cases

In this feasibility study, we migrated test cases of the well-known Eclipse Modeling Frame-
work (EMF) [SBPM09] into a new environment by using the TeCoMi framework. EMF
is highly adopted in practice which can generate source code from platform independent
models with embedded Object Constraint Language (OCL) [OCL] expressions. Nowadays,
more and more applications target multiple platforms like Windows, macOS, web browsers
or mobile platforms like Android or iOS, which means that they need to be implemented in
different programming languages. However, since its introduction in 2003, EMF is focused
solely on Java as a target language. Hence, no feature-complete Ecore and OCL runtime APIs
are available for all the platforms implying that their functionality has to be re-implemented.

CrossEcore [SJGE18], a multi-platform enabled modeling framework, addresses this
drawback of EMF by supporting other target languages like C#, Swift, TypeScript, and
JavaScript. Using CrossEcore, code from Ecore models with embedded OCL expressions can
be generated. An OCL compiler translates OCL native expressions into expressions of the
target language. Hence, CrossEcore’s Ecore and OCL API can be consistently used across
platforms. So, migration to CrossEcore was performed by applying the generic migration
method that is used to adopt the CrossEcore’s code generator for C# [SJGE18]. CrossEcore
includes an OCL compiler that translates OCL expressions into respective expressions
of the C# language. The migration strategy used was a semi-automated language-based
transformation.

Once the system migration was completed, we used the TeCoMi framework to migrate
the existing test cases addressing particularly the OCL implementation. The EMF’s OCL
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implementation is well-tested, with test cases available in the EMF public code repositories1

(more than 4000 test cases). So, we decided to reuse. i.e., to co-migrate, these test cases by
applying our framework. However, as we did not have any insight about the quality of the
large set of test cases, before eventually starting with the actual migration, we had to analyze
whether it is beneficial to migrate them all, part of them or none of them. It may be that some
parts of the OCL were omitted purposely, thus making the corresponding OCL test cases not
needed anymore.

Then, no transformation method was existent to guide the migration endeavor and
which would address the fundamentally different implementations of OCL. Further, as the
migration was performed to different targeting platforms, i.e., programming languages, a
"one-size-fits-all" approach is not a perfect solution. This implies usage of a situation-specific
transformation method, suitable for the situation for example regarding the target language
or the target testing platform. The original test cases were written in JUnit which is the
most commonly used Java Unit Testing framework. As the target environment, MSUnit,
a C# unit testing framework, was selected, as we focused on the C# implementation in
the CrossEcore framework. EMF and CrossEcore are significantly different in terms of
the OCL implementation. The difference, namely the CrossEcore’s "Ahead-of-Time" OCL
implementation versus the EMF’s "Just-in-Time" OCL implementation (cf. Section 3.1.1),
was inherently relevant for the test cases. This comes from the dependency the test cases
have to the system they test, i.e., the OCL implementation. So, those changes in the OCL
implementation had to be reflected on the test cases in the target environment as well. Finally,
once the test cases are migrated, a validation of the migrated test cases had to be performed
in order to establish trust in the test results the migrated test cases would provide.

In the following, we describe the application of the TeCoMi framework to co-migrate the
existing JUnit OCL test cases. We briefly describe the execution of all three phases of the
approach, focusing mostly on the migration phase, i.e., on the enactment of all activities of
the method engineering process. Additionally, the transformation of a selected test suite is
described in detail.

8.2.1 Pre-Migration Phase

During this phase, the quality evaluation of test cases is performed, before performing any
activity towards the migration of the test cases. For this purpose, we applied our approach
called Test Case Quality Plan (TCQP). By following its systematic process which considers
the context information and integrates a standardized quality model, we created a quality

1http://git.eclipse.org/c/ocl/org.eclipse.ocl.git/tree/tests/
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plan for our migration context. All activities were supported by our web-based tool TCQEval
(Test Case Quality Evaluator), which was introduced in Section 5.1.5. The tool provides
a user interface for the creation and edit of quality plans as well as for the analysis of the
obtained evaluation results in terms of dashboards. In the following, we describe the activities
of the pre-migration process we performed to evaluate the quality of the test cases.

Context Characterization

During this activity, the context information specific for the test cases to be migrated was
identified (cf. Section 5.1.1). Context factors are essential elements that may affect the
outcome of the evaluation and therefore we identified the test case context factors which
include the environment, domain, and associated artifacts. During this activity, questions
regarding the context, according to the context meta-model presented in Section 5.1.1, of
the examined test cases were asked. For example, what is the framework the test cases are
designed and executed in, what is the test level of the test cases, what is the criticality of
the domain the test cases are used in, etc. The overall result is the context model shown
in Figure 8.1.

PivotTestSuite

ValueContext Factor

Test Object

Unit testing

OCL implementation in EMF

Migration

JUnit
MSUnit

Test Collection Operations

Code-based test cases

Test Suite
Test Level

Development Phase
Test Case Type

Source Testing Framework
Target Testing Framework

Test Item
JUnit plugin for EclipseTest Tool

Figure 8.1 Context Model

Test Case Quality Plan Creation

Based on the identified context, the test case quality plan was constructed. Firstly, we
identified and documented the quality goals for the evaluation (cf. Section 5.1.2). As
shown in Figure 8.2, we have identified four main goals related to Test Effectivity, Usability,
Maintainability, and Reusability. We further refined the identified goals into questions as
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shown in the Question column in Figure 8.2. The goals and the questions were specified
through interviews and structured brainstorming sessions with the stakeholders, namely
the Quality Manager and the Tester. For establishing a common quality understanding
(cf. Section 5.1.3), the goals defined were mapped to quality characteristics. Furthermore,
for the corresponding questions, quality attributes were identified and documented, as shown
in the Quality Attribute column in Figure 8.2.

Goal Dimension

Analyze the PivotTestSuite 
for the purpose of Quality 

Assessment with respect to 
Test Effectivity from the 

viewpoint of Quality 
Managers and Testers, in the 

previously defined context

Quality 
Characteristic

Quality
Sub-Characteristic

Test Effectivity

Test Coverage

Question Quality
Attribute

Analyze the PivotTestSuite 
for the purpose of Quality 

Assessment with respect to 
Usability from the viewpoint of 

Testers, in the previously 
defined context

Analyze the PivotTestSuite 
for the purpose of Quality 

Assessment with respect to 
Modifiability from the 
viewpoint of Quality 

Managers and Testers, in the 
previously defined context

Usability

Maintainability

Analyze the PivotTestSuite 
for the purpose of Quality 

Assessment with respect to 
Reusability from the 
viewpoint of Quality 

Managers and Testers, in the 
previously defined context

Reusability

  What is the code coverage (line 
coverage)?

Operability

Modifiability

Flexibility

Do all the test cases have 
expected result specified?
Do all the test cases have 
assertion specified?
Do all the test cases have actual 
result specified?

Are the test cases executable?

Are the test cases easily 
modifiable?
Is there a test logic written in 
production code?

Are there hard-coded values in 
the test cases?

Are there any test smells?

Are there test cases with external 
data dependency?

Line Coverage

Specified expected 
result

Specified assertion

Specified actual result

Test Correctness

Understandability

Is there redundant code in the 
test cases?

Test case compilation

Test case execution

Proper documentation

Test case modification

Test code dependency

Test code redundancy

Hardcoded values

Test smells

External data 
dependencyCoupling

Are the test cases compilable?

Are the test cases properly 
commented?

Figure 8.2 Context-specific quality plan

Lastly, suitable measures were defined for all identified quality attributes (cf. Sec-
tion 5.1.4), as illustrated in Figure 8.3.

Measurement Tool Implementation

Based on the defined measures shown in Figure 8.3, we approached to the implementation of
the corresponding tools in order to execute the quality plan. The associated tool developers
used the specification of measures and indicators as some kind of guidance. Here different
strategies were applied, namely, development of a measurement tool from scratch and
reuse of existing tools. For example, for the measure Code Coverage shown at the top-left
corner of Figure 8.3, we decided to use the code coverage feature of the Eclipse Plugin for
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Divide the number of source code lines covered by the 
test cases by the total number of lines in the source code.

Metric Definition
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Informal Definition
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Interpretation

Tool Dependency

x 100
# of source code lines covered by the test cases
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Divide the number of test cases with expected results 
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Metric Definition

Name

Objective

Ratio of Test Cases with Expected Results Specified
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Yes (Test Case Parser)

0 to 100 (ratio)

Informal Definition
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Measurement Method

Scale (Type)

Interpretation

Tool Dependency

x 100
# of test cases with expected results 

# of test cases

Divide the number of test cases with redundant code by 
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Metric Definition

Name
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Ratio of Test Cases with Redundant Code
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Yes (CodePro / UCDetector)
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Measurement Method
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Interpretation

Tool Dependency

x 100
# of test cases with redundant code

# of test cases

Divide the number of executable test cases by the 
total number of test cases

Metric Definition

Name

Objective

Ratio of Executable Test Cases

closer to 100 is better
No (simple execution is enough)

0 to 100 (ratio)

Informal Definition

Type of Measurement

Measurement Method

Scale (Type)

Interpretation

Tool Dependency

x 100
# of executable test cases

# of test cases

Figure 8.3 Excerpt of the defined base measures

JUnit [JUn]. The same applies to the measure dealing with redundant code (bottom-left
corner of Figure 8.3). For some measures, no special tool was needed, as the condition in the
measure was relatively trivial, namely, whether test cases are executable or not. In that case,
a simple run of the test cases was sufficient. For other measures, like the one dealing with
the presence of the expected result (top-right corner of Figure 8.3), the development of a tool,
namely, a test case parser was necessary.

Execution and Decision-Making

Based on the developed quality plan and measurement tools, we performed the actual
quality evaluation of the test cases. Figure 8.4 depicts the results obtained per each quality
characteristic, quality sub-characteristic, and quality attributes in the TCQEval tool. The
scores presented in this dashboard are calculated firstly for each quality attribute (bottom
part in Figure 8.4) based on the measures previously defined in Figure 8.3. Each quality
sub-characteristic’s score is an average score of the corresponding quality attributes’ scores.
Similarly, each quality characteristic’s score is an average score of the corresponding quality
sub-characteristics’ scores. For example, the Test Effectivity score is about 80The reason for
this is the Test Coverage, which was about 60The Test Correctness was 100% as all of the
test cases had specified an expected result, assertion, and actual result. To closely identify
the problem with the Test Coverage, we checked the quality attribute Line Coverage, and
the corresponding tool that measured it. The results were lower as expected as the tool was
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measuring also the test code as part of the line coverage, which was strange. The actual
system code coverage was about 99%, which was a clear suggestion that almost the complete
code was covered with the existing tests. In a similar way, the other quality scores were
analyzed with the test experts and migration experts and the decision was made that all of the
test cases have to be migrated without any a priori changes of the test cases. The structural
changes that were desired by the test expert were planned to be performed as part of the
migration phase. Having a positive outcome of the decision-making process, we proceeded
to the actual migration of the test cases.

Figure 8.4 TCQEval dashboard showing the results of the performed quality evaluation

8.2.2 Migration Phase

During the migration phase, activities of the two main disciplines, namely, Method Devel-
opment and Method Enactment were performed. As part of the first discipline, firstly the
situational context was identified, which also included co-evolution analysis. Thereafter, we
created the situation-specific test transformation method. As part of the latter discipline, a
situation-specific toolchain was implemented and the test cases were transformed by enacting
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the developed test transformation method. In the following, we present each activity that was
performed in detail.

Situational Context Identification

During the first activity of the method engineering process, the migration context was
analyzed and characterized, from both system migration and testing perspective. Thereafter,
co-evolution analysis was performed to identify the impact that the system changes have
on the test cases. Finally, we also analyzed the influence factors for each test concept. The
resulting concept model is depicted in Figure 8.5. As can be seen, besides the concepts,
this model contains also the dependencies between test and system concepts as well as the
suitable patterns for the test concept.

Firstly, the concept model of the OCL implementation in both the source and target
environment had to be identified and modeled. Regarding the identification of the system
concepts, firstly the shared concept OCL was identified, which corresponds to the Object
Constraint Language. Then, for both source and the target environment, this shared concept
was refined to concepts showing the type of the OCL implementation, namely, OCL (Just-
in-Time) as a source concept, and OCL (Ahead-of-Time) as a target concept. The source
concept OCL (Just-in-Time) consists of Native OCL-Expressions, whereas the target concept
OCL (Ahead-of-Time) consists of Language-specific OCL-Expressions. This basically shows
the crucial differences in the implementation of the OCL language in the source and target
environments. Further, both these concepts were further refined to Derived Expression,
Operation, and Constraint, as core features of the OCL language. All of these three concepts
are represented as String Literal concepts, as they are implemented in that in the source
environment. In the target environment, however, a Derived Expression and an Operation
consist of a Function and a Constraint consists of a Logical Expression. Furthermore, the
transformation strategy used for the system has been addressed too. The applied system
pattern Language Transformation represents the strategy used to perform the migration of
the system. Having the system concepts identified and modeled, the test concepts had been
addressed. As a shared test concept, the OCL Test Case was identified. This abstract test
concept was refined into the concrete test concept OCL Test Case (JIT), which represents a
concrete test case implemented in a JIT manner. As a test case in the source environment
contains an assertion function, an Assertion concept was added. Further, each Assertion
consists of an Action and an Expected Result. Thereafter, the target test concepts, i.e., the test
concepts in the target environment had been also modeled. Firstly, the shared test concept
was refined into OCL Test Case (AOT), which represents a concrete test case which should
be implemented in AOT manner. This comes from the fact that this change can be seen
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in the system concepts as well. Furthermore, there is a structural difference in the target
realization of the OCL test cases, namely, the Action, the Assertion, and the Expected Result
concepts are on the same level. Having the concepts identified, the impact analysis had been
performed. Firstly, the corresponding source and target concepts had been identified, i.e.,
the OCL (JIT) and OCL (AOT) had been related as corresponding concepts. The same is
done for the corresponding source and target test concepts, i.e., for OCL Test Case (JIT) and
OCL Test Case (AOT). Next, the dependencies between system and test concepts had been
identified. Firstly, the dependency between the shared test concept OCL Test Case and the
shared system concept OCL had been established. Then, on the basis of this dependency and
by following the refined concepts, the dependencies between the concrete system and test
concepts had been established. Hence, the source test concepts Action and Expected Result
had been related to the source system concept Native OCL-Expression as they depend on this
concept. The same thing had been performed for the target system and test concepts. Having
the concepts as well as the correspondences and dependencies identified, the influence factors
had been identified. Namely, for the shared test concept OCL Test Case, the suitable test
patterns had been identified and analyzed.

Test 
Programming Concept

consists-Of
RelationApplied System

Method Pattern

System
Programming Concept

is-A
Relation

Test 
Abstract Concept

System 
Abstract Concept

depends-On
Relation

corresponds-To
Relation

Suitable Test
Method Pattern

Figure 8.5 Configured concept model with the dependencies between the test and system
concepts

On the right side of Figure 8.5, the envisioned realization of the test concepts in the
target environment is shown. So, as the system concepts are realized in a different way in the
target environment, namely, in an Ahead-of-Time manner, and due to the dependency, the
test concepts have to the system concepts, we intended to do the same for the test concepts.
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Furthermore, there were additional test requirements regarding the restructuring of the test
cases in the target environment. As the system concepts would be realized differently in
both environments, i.e., Just-in-Time and Ahead-of-Time, and therefore the test concepts
as well, the experts assumed that the Test Language-based Test Transformation Pattern
would be suitable. By further analyzing the method fragments of this pattern as well as the
corresponding co-migration patterns, this hypothesis was further reinforced by the identified
influence factors:

• For Java, an open-source parser was available, namely, the JDT Parser provided by the
Java Development Tools (JDT)2.

• Platform-specific test metamodels could be created based on [JSW07].

• The parsing of the OCL native strings contained by the original platform-specific
model can be reused from the system migration (according to the Co-Migration Pattern
CMP8 in Section 6.2.4).

• The transformation, i.e., the test concretization from the migrated platform-specific
model to the model of the migrated test code can be reused from the system migration
(according to the Co-Migration Pattern CMP8 Section 6.2.4).

• The test code generation templates could partly be derived from the code generation
templates defined for the system code generation.

Transformation Method Construction

On the basis of the identified situational context, the test transformation method was con-
structed. Firstly, a method pattern is been selected, namely, the Test Language-based Test
Transformation Pattern and has been coarse granularly configured for each test concept.
Due to the good structure of the realization of the source test concepts, it was possible to
transform all of the identified test concepts automatically. The completed horseshoe model is
shown in Figure 8.6.

As shown in the concept model in Figure 8.5, the test concept OCL Test Case (Just-in-
Time) consists of an Assertion which further consists of an Action and an Expected Result.
Consequently, as part of the Test Case Understanding fragment, these concepts are extracted
from the Model of the Test Code (MOTC), or more specifically, the Java AST (Abstract
Syntax Tree). For each of the three concepts, a corresponding action as part of the Test
Case Understanding fragment is instantiated. Namely, Extract Assertion, Extract Expected

2https://www.eclipse.org/jdt/

https://www.eclipse.org/jdt/
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Figure 8.6 Horseshoe model for the OCL test case concept

Result, and Extract Action are the three automated activities that extract the concepts from
the abstract syntax tree. The result of the Test Case Understanding is specified in terms of
an xUnit Model which is a Model of the Executable Tests. So, due to the similarity of these
concepts, namely, they all depend on the Native OCL Expression system concept, the same
pattern was selected for all of them. Another reason for the selection of this pattern was that
the target test framework namely the MSUnit testing framework is comparable to the JUnit
framework regarding the architecture.

Also, at this level of abstraction was relatively easy to apply the same transformation
rules for the OCL expressions to the target environment which were used in the system
migration [SJGE18]. Finally, as part of the Test Code Generation fragment, three different
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automated generation activities (Generate Expected Result, Generate Action, and Generate
Assertion) are instantiated for each of the three test concepts. Namely, by combining the
result of each of these activities, which rely also on the existing transformation rules for the
OCL expressions from the system migration, the Migrated Test Code. More specifically, the
OCL test cases for the CrossEcore implementation of OCL in C# are obtained.

Tool Implementation

Having the transformation method specification developed, the required tools were developed.
As shown in Figure 8.7, the tool infrastructure has a component-based architecture, namely,
there are three general components Input Module, Transformation Module, and Output Model.
Some components within this architecture are project-independent, thus enabling further
reuse in the next projects.
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Figure 8.7 Generic Tool Infrastructure

The Input Module comprises the Test Code Parser and the Test Model Discoverer. The
Test Code Parser component was responsible for the initial parsing of the original test cases
written in JUnit. Technically, this component was based on the JDT Java Parser which
delivers a Java Abstract Syntax Tree of the original test code. The Test Model Discoverer
component takes the outcome of the Test Code Parser and extracts a model of the executable
test cases conform to the xUnit metamodel [JSW07].

The models produced by the Test Model Parser as well as the Test Model Discoverer are
provided to the Transformation Module or more specifically, to the Model Transformator
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component. The Model Transformator relies on the Transformation Rules specified to
perform the actual adaptation and restructuring of the test models. Technically, the Model
Transformator was implemented in Java and the Transformation Rules rely on the Java
xUnit API of the test models. The Transformation Module, i.e., the Model Transformator
component is a project-independent component, hence it can be reused for subsequent
projects.

The transformed model produced by the Model Transformator is input for the third
module, namely the Output Module. More precisely, the Test Code Generator takes the
model of executable code and on the base of Test Code Templates, generates the test cases
for the MSUnit framework. The Test Code Templates were implemented in Xtend and rely
on the xUnit metamodel.

Transformation

As the required tools were implemented, the actual test transformation of the original test
cases into the target test environment was carried out. By using the developed tools on the
original test cases, the automatic conversion was performed. Namely, around 4000 test cases
of 12 different test suites were migrated. Each of the different test suites was targeting differ-
ent parts of the OCL language, like Collection Operations, Boolean Operations, Classifier
Operations, etc. In total, about 3700 test cases with more than 40.000 LOC were generated
by the toolchain, thus achieving an automation rate of 92%.

Figure 8.8 shows an excerpt from the models and the entities which are arising when
converting the test concepts Assertion, Expected Result, and Action. This figure shows
actually the enactment of the transformation method specified in Figure 8.6. Firstly, the test
code of the original test cases in JUnit was parsed in order to obtain the Model of the Test
Code as shown in the lower left of Figure 8.8. In the concrete example, a test case named
testCollectionAsBag was parsed. As can be seen, it contains a single assertion function,
namely assertQueryResults which has three input parameters. The second parameter and
the third parameter, the expected result and the action to be performed, respectively, show
the Just-in-Time realization of the OCL as they are native OCL expressions specified as
strings. The outcome of the parsing activity is a Java abstract syntax tree, which still does not
contain any test-specific constructs like assertion or expected result. The obtained abstract
syntax tree is the input for the next activity which extracts xUnit test-specific constructs
like TestCase, ExpectedValue or Assertion. The model containing these constructs
is the platform-specific Model of the Executable Test Cases, shown in the top left corner
of Figure 8.8. By further applying transformations, the xUnit model is transformed to a
MSUnit model of the executable tests, as MSUnit is the target framework. As one can
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Figure 8.8 Enacting a transformation method to transform the test concepts

observe, ExpectedValue and the Action are no longer contained by the corresponding
Assertion. The transformed model of the executable test cases was thereafter concretized
in the target environment, i.e., the test code for the MSUnit test cases was generated. In
order to address this task, based on test code generation rules provided for each of the three
concepts, namely, Generate Expected Result, Generate Action, and Generate Assertion), the
test code was generated. The native OCL expression strings contained by the model of the
executable test cases were concretized to the target framework, i.e., CrossEcore, by applying
the OCL to C# transformation used in the system migration. Note the difference of the test
code in the bottom right corner of Figure 8.8, where corresponding API classes and functions
were used instead of native OCL expressions.
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8.2.3 Post-Migration Phase

After the test cases have been transformed, i.e., migrated, a migration validation has taken
place with the main goal to identify false positives and false negatives among them when
executed. In the following, we discuss the activities we performed to develop and execute
the validation method.

Situational Context Identification

The obtained Situational Context Model, obtained in the previous phase, was here reused for
the development of a suitable test case validation method. Therefore, we elaborate more on
the usage of the context information in the subsequent activity, namely the Mutation Method
Construction.

Mutation Method Construction

Firstly, according to the process we presented in Section 7.3, one mutation scenario had to be
selected from the Mutation Analysis Repository. As we already described in Section 7.2.1,
each mutation scenario contains a discussion on its suitability. However, at this step, we
decided to apply multiple scenarios, and try to identify as many bad smells as possible.
Namely, the target system was mutated (Scenario 2), the original and the migrated test cases
were mutated (Scenario 5 and 6 respectively) and the migration of the test cases was mutated
(Scenario 6). So, all scenarios except Scenario 1 and Scenario 3 were used. According to
the description of Scenario 1 in Section 7.2.1, it addresses the addition of adequate tests to
increase the quality of an existing test suite. As OCL is a well-tested framework, this scenario
was not carried out. Also, Scenarios 3 was not performed, as the migration of the system was
done manually. As the transformation performed on the test cases was test language-based,
the mutation of the test cases was also test language-based. The mutations of the migrated
system and the migration of the test cases were performed manually. The mutation operators
were based on the structure of the test cases checking the collections and the corresponding
methods like Append, AsBag, AsSequence, AsSet, Excludes, ExcludesAll, Excluding,
First, Includes, etc. A complete list of these mutation operators was already presented
in Figure 7.14. Also, in Section 7.3.2, a comprehensive discussion on the mutation method
construction as well as on the decisions made was presented.

Mutation Tool Implementation

To improve the process of automated mutation and to increase the reuse of existing compo-
nents, we have already introduced a flexible and extensible model-driven mutation framework
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in Section 7.3.3. Similar to the tool architecture of the main phase, it is a component-based
framework, consisting of three main components, Input Module, Mutation Engine, Output
Module, as shown in Figure 7.20. The Input Module was completely reused from the migra-
tion tool infrastructure, namely, the parser of the test cases as well as the extractor of the
xUnit test cases were reused. Then, for the Mutation Module, a set of Mutation Operators
has been implemented in terms of transformation rules in EMSL3, a uniform language for
model management of eMoflon. The Output Module had to be implemented as the mutated
test cases shad to be generated for the same language, namely Java, i.e., the JUnit testing
framework. In the case of MSUnit, the test code generator from the main phase could be
reused. The realization of the test code generator was done in Xtend.

Mutation, Test Execution, and Analysis

After the required tooling is developed, the validation approach was performed. The evalua-
tion was carried out in a systematic way generating 5 mutants in a cycle for each scenario
and then, repeating the same procedure. The non-uniform number of mutants created is due
to the fact that importance was given to that scenario where we could not identify a bad smell.
Figure 8.9 shows for each evaluated scenario the number of created mutants, killed mutants,
bad smells and no indication cases, i.e., the equivalent mutants. In the following, we explain
each of them in detail.
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Figure 8.9 Evaluation Results

Scenario 2: Mutation of Migrated System. As we have not performed Scenario 1, part of
Scenario 2, which involves generating old system mutants from migrated system mutants
using the backward transformation is not carried out and hence, Scenario 2 is only partially
performed. Out of 37 created migrated system mutants, 31 mutants got killed and 6 mutants
were found to be equivalent mutants.
Scenario 4: Mutation of Old Test Cases. Concerning Scenario 4, 30 old test case mutants
were created to validate the implementation of the old system followed by transforming them
into the target environment and validating the implementation of the migrated system. Out of

3https://emoflon.org/

https://emoflon.org/
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30 created mutants, 23 mutants got killed in the old and migrated environment, 3 mutants
were found to be equivalent mutants and 4 mutants were classified as a bad smell. In the
following, we describe two of them.

Bad smell 1. This bad smell occurs when a collection entity such as Bag, Set, OrderedSet,
and Sequence is converted to another type. In Figure 8.10, a Sequence is converted to Bag
where we created a mutant by applying the method mutator4 to convert a Sequence to
Sequence.

@Test
public void testCollectionAsBag() {
  //Original
  //ocl.assertQueryResults("Bag{1,2.0,'3'}",
                           "Sequence{1,2.0,'3'}->asBag()");
  //Mutant – Applied mutation operator: Method mutator
  ocl.assertQueryResults("Bag{1,2.0,'3'}",
                         "Sequence{1,2.0,'3'}->asSequence()");
}

Figure 8.10 Scenario 4: Original and mutated old test case (Bad Smell 1)

The created old system mutant was killed in the old system as the expected result is
a Bag but not in the migrated system though the migration is similar (see Figure 8.11).
This happened due to the incorrect implementation of the assert method in the target (see
Figure 8.12), which asserts only elements between two objects but not the type associated
with the object.

Bad smell 2. This bad smell occurs when the type of expected result is modified.
In Figure 8.13, the original test case expects an OrderedSet with a set of elements where
we created a mutant by changing the type of the object expected to a Set, which is killed in
the old system as the expected result is an OrderedSet but not in the migrated system (see
Figure 8.14). The reason is again due to the incorrect implementation of assert method in the
target testing environment.
Scenario 5: Mutation of Migrated Test Cases. In the case of this scenario, 31 migrated
test case mutants were created. When migrated to the old environment, 25 mutants got killed
in the old and migrated environment, 4 mutants were found to be equivalent mutants and 2
mutants were classified as bad smells, basically, the same bad smells as those in Scenario 4.
Scenario 6: Mutation of Test Case Migration. Concerning Scenario 6, 30 migrated test
case mutants were created by mutating the transformation. Out of 30 created mutants,
28 mutants got killed in the old and migrated environment, no mutants were found to be
equivalent mutants and 2 mutants were classified as bad smells. In the following, we explain
one of them:

4https://github.com/stryker-mutator/stryker-handbook

https://github.com/stryker-mutator/stryker-handbook
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[TestMethod]
  public void testCollectionAsBag() {
  var expectedResult = new Bag<object>{1,2.0,"3"};
  var actualResult = new Sequence<object>{1, 2.0,"3"}.asSequence();
  ocl.assertQueryResults(expectedResult,actualResult);
}

Figure 8.11 Scenario 4: Mutated migrated test case (Bad Smell 1)

public void assertQueryResults<T>(
AbstractCollection<T> expectedResult,
AbstractCollection<T> actualResult) {
  CollectionAssert.AreEqual(expectedResult,actualResult);
}

Figure 8.12 Scenario 4: Incorrect implementation of the assertion function

@Test
public void testCollectionAppend() {
  //Original
  //ocl.assertQueryResults("OrderedSet{1,3,4,2}",
                           "OrderedSet{1..4}->append(2)");
  //Mutant – Applied mutation operator: Method mutator
  ocl.assertQueryResults("Set{1,3,4,2}",
                         "OrderedSet{1..4}->append(2)");
}

Figure 8.13 Scenario 4: Original and mutated old test case (Bad Smell 2)

[TestMethod]
public void testCollectionAppend() {
  var expectedResult = new Set<int>{1,3,4,2};
  var actualResult = new OrderedSet<int>{1,2,3,4}.append(2);
  ocl.assertQueryResults(expectedResult,actualResult);
}

Figure 8.14 Scenario 4: Mutated migrated test case (Bad Smell 2)

Bad smell: The bad smell in this scenario is related to the transformation used in
the migration of test cases which is found when conditional boundary mutator is applied.
Figure 8.15 shows the original test cases that assert the greater than operator applied on
numbers. Figure 8.16 shows the mutated test case transformation by swapping the greater
than operator (“>") with greater than or equal operator (“≥"). Four mutants were expected,
two being equivalent and two being killed. However, as shown in Figure 8.16, only two
mutants got created, which resulted in an incorrect transformation. Also, only one mutant got
killed, which indicates a bug in the test case transformation and requires further investigation.
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@Test
public void testNumberGreaterThan() {
  ocl.assertQueryTrue("3 > 2");
  ocl.assertQueryTrue("3.0 > 2.0");
  ocl.assertQueryFalse("3.0 > 3");
  ocl.assertQueryFalse("3 > 3.0");
}

Figure 8.15 Scenario 6: Original test cases asserting results of the greater than operator

...
if(callExp.referredOperation.EContainingClass.name.equals("Integer_Class")) {
  if(callExp.referredOperation.name.equals(">")) {
    //Original
    //return '''«sourceResult» > «argumentResults.get(0)»''';
    //Mutant – Applied mutation operator: Conditionals boundary mutator
    return '''«sourceResult» >= «argumentResults.get(0)»''';
  }
}
...

Figure 8.16 Scenario 6: Original and mutated test case transformation

[TestMethod]
public void testNumberGreaterThan_1() {
  var actualResult = 3 >= 2;// Mutant
  ocl.assertQueryTrue(actualResult);
}
[TestMethod]
public void testNumberGreaterThan_2() {
  var actualResult = 3.0 > 2.0;// Not a mutant
  ocl.assertQueryTrue(actualResult);
}

[TestMethod]
public void testNumberGreaterThan_3() {
  var actualResult = 3.0 > 3;// Not a mutant
  ocl.assertQueryFalse(actualResult);
}
[TestMethod]
public void testNumberGreaterThan_4() {
  var actualResult = 3 >= 3.0;// Mutant
  ocl.assertQueryFalse(actualResult);
}

Figure 8.17 Scenario 6: Generated migrated test case mutants showing missing migrated test
case mutants

In summary, this evaluation shows that the proposed scenarios can be used in real-world
migration projects to identify false positives and false negatives among the migrated test
cases. Even with a moderate number of mutants, we were able to identify problematic test
cases. The question is, however, which scenarios should be used for which purposes. As
each scenario has its own set of assumptions and indications, they define practically to which
migration situation is suitable. For example, the evaluation with the running example, we
have taken, gave us more bad smells concerning Scenario 4. However, Scenario 5 gave us
the already occurred bad smells of Scenario 4 which makes it being redundant. Nevertheless,
based on the investigation of Scenario 4 bad smells, we can confirm that they are false
negatives, which occur when the system migration is incorrect but when we take Scenario 6,
the occurred bad smells are due to bugs in the test case transformation, which calls for an
investigation in the transformation itself. As each basic mutation scenario, according to its
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assumptions, suits a given situation, some situations may require a combination of multiple
basic scenarios, i.e., a composed mutation scenario. For example, a part of the test cases may
be migrated automatically, requiring usage of Scenario 6, and another part may be migrated
manually, thus requiring usage of Scenario 5. In that case, a combination of both mutation
scenarios would be the strategy to be followed.

So, all in all, this feasibility study demonstrated the benefit of our approach for supporting
the co-migration of test cases. By using our method engineering process which includes
co-evolution analysis and is supported by a modeling tool, we were able to develop a situation-
specific test migration method and to migrate the original test cases to the target testing
framework, namely MSUnit.

8.3 Feasibility Study 2: JUnit OCL Test Cases to Jasmine
OCL Test Cases

As we already mentioned in the previous feasibility study, the CrossEcore [SJGE18] is a
multi-platform enabled modeling framework which besides C# also addresses TypeScript
as target language. In order to test the CrossEcore’s OCL implementation in this language,
we used once again the TeCoMi framework. In comparison with the first feasibility study,
we focus here on the migration phase. So, we skip the pre-migration phase and the quality
evaluation of test cases as the original test cases and the source environment, in general,
are the same. Regarding the migration phase, as the target testing platform is different
compared to the first feasibility study, we cannot reuse the same method. Seen from a
testing perspective, as target testing framework Jasmine5, a JavaScript behavior-driven
testing framework that follows the BDD (Behavior-Driven Development [N+06]) principle
was selected. Seen from an architectural perspective, this testing framework is completely
different compared to the JUnit testing framework. Namely, it follows the Given-When-Then
structure for the specification of test cases. So, due to this fundamental difference between
the source and the target testing framework, the migration needed to be performed on a higher
level of abstraction. Seen from a system migration perspective, the EMF and CrossEcore
are significantly different in terms of the OCL implementation, namely the CrossEcore’s
"Ahead-of-Time" versus the EMF’s "Just-in-Time" OCL implementation. Those changes
in the OCL implementation had to be reflected on the test cases in the JavaScript target
environment as well. In the following, we describe the application of the TeCoMi framework
to migrate the JUnit OCL test cases to the Jasmine testing framework. We mainly focus on

5https://jasmine.github.io/

https://jasmine.github.io/
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the migration phase, as the architectural difference between the source and the target testing
frameworks has the strongest manifestation there.

8.3.1 Migration Phase

During the migration phase, firstly, the situational context was identified, also including the
co-evolution analysis. Thereafter, a situation-specific test transformation method was created
and a situation-specific toolchain was implemented. Next, the test cases were transformed by
enacting the developed test transformation method to the target testing framework namely,
Jasmine. In the following, each activity that was performed is presented in detail.

Context Characterization

During this activity, the migration context was analyzed from system migration as well as
testing perspective. Then, to identify the impact that the system changes have on the test
cases, co-evolution analysis was performed. Finally, the influence factors were identified and
analyzed for each test concept. Figure 8.18 depicts the resulting concept model. Besides the
concepts, also the dependencies between test and system concepts as well as the suitable
patterns for the test concepts are shown.

As the concept model of the OCL implementation in both source and target environment
is similar to the concept model presented in the first feasibility study (Figure 8.5), we do
not present the same details again. The same applies to the source test concepts, whose
explanation can be found in Section 8.2.2. In the following, we only focus on the target test
concepts as they are different due to the different target testing environment.

So, after having the system concepts identified and modeled, the test concepts had been
addressed and as a shared test concept, the OCL Test Case was identified. This abstract test
concept was refined into the concrete test concept OCL Test Case (JIT), which represents a
concrete test case implemented in a JIT manner. As a test case in the source environment
contains an assertion function, an Assertion concept was added. Further, each Assertion
consists of an Action and an Expected Result. Thereafter, the target test concepts, i.e., the
test concepts in the target environment had been also modeled. Firstly, the shared test
concept was refined into OCL Test Case (AOT + BDD), which represents a concrete test case
which should be realized in the target environment. The "AOT + BDD" references actually
the two main characteristics of the test case. The AOT (Ahead-of-Time) part, similarly as
with the first feasibility study, deals with the AOT implementation of OCL in the target
environment. The BDD (Behavior Driven Development) part addresses the way the test
cases are realized in the target environment, namely, they follow the BDD principle. Hence,
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the target realization of the OCL test cases is structurally different, namely they follow the
Given-When-Then pattern6. The Given part defines the initial state, the When part defines
the action that transforms the state, and finally, the Then checks the state. Therefore, each of
them is defined as a test concept and is contained by the OCL Test Case (AOT + BDD).

Thereafter, based on the identified system and test concepts, the impact analysis had
been performed. Again, we focus on the part which deals with the target test concepts. The
source test concepts we have identified, namely the Given, When and Then test concepts had
been related to the source system concept Language-based OCL-Expression as they depend
on this concept. After the concepts and their correspondences and dependencies have been
identified, the influence factors had been also identified. Namely, again, for the shared test
concept OCL Test Case suitable test patterns had been identified and their advantages and
disadvantages have been analyzed.
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Figure 8.18 Configured concept model with the dependencies between the test and system
concepts

As we have already presented, on the right-hand side of Figure 8.5, the envisioned
realization of the test concepts in the target environment is shown. So, as have already
concluded, the different realization of system concepts in the target environment, namely
in an Ahead-of-Time manner, implies that the test concepts have to be realized in the same
manner. However, the planned realization of the test cases, namely the Given-When-Then
style in the Jasmine testing framework, is completely different compared to the xUnit style

6https://martinfowler.com/bliki/GivenWhenThen.html

https://martinfowler.com/bliki/GivenWhenThen.html
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of realization of the original test cases. Due to these differences that come from both system
and testing side, the experts assumed that the Conceptual Test Transformation Pattern would
be suitable. Therefore, the method fragments of this pattern as well as the corresponding
co-migration patterns have been analyzed. The outcome of this analysis, namely the identified
influence factors, have further reinforced this hypothesis:

• An open-source parser was available for Java, namely the JDT Parser provided by the
Java Development Tools (JDT)7.

• Platform-specific test metamodels could be based on the xUnit metamodel presented
in [JSW07].

• The parsing of the OCL native strings contained by the original platform-specific
model can be reused from the system migration (according to the Co-Migration Pattern
CMP8 in Section 6.2.4).

• Due to the difference in the architecture of the testing frameworks, the conceptual
transformation is a more suitable approach.

• UML Testing Profile [OMG13b] can be used for representing the Model of Abstract
Tests.

• The transformation, i.e., the test concretization from the migrated platform-specific
model to the model of the migrated test code can be reused from the system migration
(according to the Co-Migration Pattern CMP8 Section 6.2.4).

• The test code generation templates could partly be derived from the code generation
templates defined for the system code generation.

Transformation Method Construction

Based on the identified situational context, the test transformation method had been con-
structed. First, the Conceptual Test Transformation method pattern had been selected and a
coarse granular configuration for each test concept has been done. As the realization source
test concepts had a good structure, all of the identified test concepts could be transformed
automatically. The completed horseshoe model is shown in Figure 8.19.

The test concept OCL Test Case (Just-in-Time), according to the concept model shown
in Figure 8.18, consists of an Assertion which further consists of an Action and an Expected
Result. As all these test concepts are very similar as all of them depend on the Native

7https://www.eclipse.org/jdt/

https://www.eclipse.org/jdt/
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Figure 8.19 Horseshoe Model

OCL Expression system concept, the same transformation pattern was selected for all of
them. Another reason for the selection of this pattern was that the target test framework
namely the Jasmine testing framework is architecturally different compared to the JUnit
framework. In case of a direct mapping between the testing frameworks, i.e., a Test Language-
based Transformation, would mean that more logic had to be put in the transformation
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rules. Therefore, after the Model of the Executable Tests (MOET), an abstraction activity is
performed, i.e., Extraction of Abstract Tests. The result of this activity is a Model of Abstract
Tests (MAT) or more concretely a model conforms to the UML Testing Profile. This model is
then concretized into Model of Transformed Executable Tests (MTET) which in this case is a
model conform to the Jasmine metamodel which follows the BDD principle. Namely, this
model contains the structural parts Given, When and Then. Finally, as part of the Test Code
Generation fragment, three different automated generation activities (Generate GIVEN-Part,
Generate WHEN-Part, and Generate THEN-Part) are instantiated for each of the three test
concepts. Namely, by combining the result of each of these activities, which rely also on
the existing transformation rules for the OCL expressions from the system migration, the
Migrated Test Code. More specifically, the OCL test cases for the CrossEcore implementation
of OCL in TypeScript are obtained.

Tool Implementation

Having the transformation method specification developed, the required tools were developed.
For the second feasibility study, the same architecture as for the first one was used, which is
shown in Figure 8.7 on page 199. The Input Module with the Test Code Parser and the Test
Model Discoverer was completely reused.

The extraction of the abstract tests was done as part of the Transformation Module.
Namely, the Transformation Rules component was extended with the extraction rules which
were executed by the Model Transformator. The Test Metamodel used here was based on the
UML Testing Profile. Furthermore, the rules for the concretization of the model of abstract
tests were added to the Transformation Rules component. The components in the Output
Module have been exchanged with the project-specific ones. Namely, we developed a Test
Metamodel for the Jasmine test cases based on the BDD profile presented in [LMP10] and
we also defined Test Code Templates. Based on these templates, the Test Code Generator
generated the Jasmine test code, i.e., the Jasmine test cases.

Transformation

Using the implemented tools, the actual test transformation of the original test cases into the
target test environment was performed. Similarly to the first feasibility study, 12 different
test suites with around 4000 test cases have been migrated. In total, about 3700 test cases
were generated by the toolchain, thus achieving an automation rate of over 90%.
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Figure 8.20 Enacting a transformation method to transform the test concepts

Figure 8.20 shows the enactment of the transformation method specified in Figure 8.19.
More specifically, it shows an excerpt from the models and the entities which are arising
when converting the test concepts Assertion, Expected Result and Action.

Firstly, as shown in the lower left of Figure 8.20, the original test cases written in
JUnit were parsed in order to obtain the Model of the Test Code. The concrete example
shows the JUnit test case named testCollectionAsBag. This test case contains a single
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assertion function, namely assertQueryResults which has three input parameters. The
first parameter is irrelevant for this consideration as it was used as a context variable in
the source environment which is irrelevant in the target environment. The second and the
third parameter, expected result and the action to be performed, respectively, are native OCL
expressions specified as strings. As an outcome of the parsing activity, a Java abstract syntax
tree is obtained. This abstract syntax tree is further the input for the next activity which
extracts xUnit test-specific constructs like TestCase, ExpectedValue or Assertion. The
outcome of this activity is the platform-specific Model of the Executable Test Cases, shown
in the top left corner of Figure 8.20.

The next activity (Extract Abstract Tests) takes this model as input and transforms it
into an abstract model of test cases which conforms to UTP (UML Testing Profile). This
metamodel contains an abstract description of the test cases which is platform-independent
and can be transformed into any concrete test model. Further, by applying the Concretize
Abstract Tests, a platform-specific model is obtained, in this case, it is the model of the
Jasmine test cases. This model contains the three structural elements specific for the testing
framework following the BDD principle, namely, Given, When, and Then.

The next three activities (Generate GIVEN-Part, Generate WHEN-Part, and Generate
THEN-Part), support the generation of test code out of the three main elements of Jasmine’s
Model of Executable Tests. It is important to mention, that as all of these elements contain
OCL expressions which were concretized by using the CrossEcore’s OCL to TypeScript
transformation were used in the system migration.

This feasibility study demonstrated the benefit of our approach for supporting the co-
migration of test cases. By using our method engineering process which includes co-evolution
analysis and is supported by a modeling tool, we were able to develop a situation-specific test
migration method and to migrate the original test cases to the target testing framework, namely
Jasmine. By this feasibility study, we have shown that even in the cases of architecturally
different testing frameworks, a suitable migration method can be developed and enacted
with the help of our framework. So, we have basically addressed two important differences
at once, one from a system perspective and one from a testing perspective. Namely, the
conceptual transformation transforms the test cases regarding the difference of the OCL
implementation, i.e., the EMF’s "Ahead-of-Time" style versus the CrossEcore’s "Just-in-
Time" style. Furthermore, the architectural differences of the source and the target testing
frameworks, JUnit and Jasmine, respectively, are also addressed by the test migration method.



8.4 Discussion 215

8.4 Discussion

In this section, we discuss and answer the evaluation questions introduced in Section 8.1
based on our experiences made as part of the feasibility study.

EQ1: Does the solution approach support the context-specific quality assessment of test
cases in a systematic way?

Our experiences gathered during the feasibility studies have shown that our solution
approach regarding the quality assessment of test cases provides support in terms of the
systematic approach called Test Case Quality Plan (TCQP) [JNES18]. The whole process
is guided by the so-called TCQP Process with tool support in terms of the TCQEval web
application. This approach considers the context of the test cases, which is important to
get relevant insight into the quality of the test cases. Also, it takes into consideration the
goals of all stakeholders, and refines them into questions, which are further mapped to
quality attributes which can be measured. The tool also supports the analysis of the quality
assessment results by providing a dashboard-like interface that visualizes the assessment
results.

Nevertheless, a limitation of our quality assessment approach is that it does not provide
an existing measurement tool infrastructure, but it rather relies on existing tools for test
case quality. The results of these tools have to be gathered and manually inserted into the
TCQEval tool for further analysis which means more effort and higher chance for error.
However, this is an important aspect that should be addressed as part of feature work, as
sometimes certain quality attributes selected by the stakeholders may be of great importance
for the overall quality score. For example, if the fault-revealing capability of the test cases
is a selected quality focus, a mutation testing is typically applied. For Java or C# there are
well-known tools that could be used out of the box, but not all languages are supported. In
that case, a tool needs to be implemented, otherwise, this quality aspect cannot be assessed.

EQ2: Does the solution support co-evolution analysis (i.e., change detection, impact analysis,
and change propagation) between a system being migrated and its test cases?

Based on the experiences we got in the feasibility studies, we can say that our approach
supports the co-evolution analysis. Namely, as part of the situational context identification
activity of the migration phase, there is a dedicated activity for the co-evolution analysis
which relies on concept-modeling [JYSE20a]. In that way, test cases can be modeled as a set
of concepts representing their structure, for both the source and target environment as their
realization may differ. Similarly, the functionality of the system, the original and migrated
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one, is represented as a set of concepts. By using the impact model, one can express the
dependencies between the system and the test concepts, thus encoding basically the impact
the system changes can potentially have on the test cases. As the next steps are based on this
model, this dependency is propagated until the end, i.e., it is part of the test transformation
method that is enacted to migrate the test cases.

However, even though it works in this way, it is a manual activity performed by the
migration and test experts and does not use the dependencies that exist between the system
and test code. A future improvement would definitely be to automate this process or part of
it. For example, by analyzing the dependencies that exist between test suite or test cases and
the system under test, one can get recommendations on how to model the relations, i.e., the
dependencies between the test and the system concepts.

EQ3: Does the solution approach enables automated transformation, i.e., migration of the
test cases whenever possible?

Based on our experiences with migrating the test cases for both feasibility studies, we
conclude that our solution approach enables the automated transformation whenever it is
possible. This conclusion is based on two observations. First, our approach is based on
the principles of model-driven architecture and model-driven software migration. This
suggests that artifacts on different levels of abstraction are used as well as activities that
enable the transitions between the different levels of abstraction in both directions, namely
abstraction and concretization. These transitions are based on model transformation thus
enabling automated transformation overall of the test cases. Second, the structure of our
method base is built in that way that it supports the three basic activities of the reengineering
process, namely reverse engineering, restructuring, and forward engineering [JEAS18]. The
method base contains method fragments (artifacts and activities) that are on different levels
of abstraction and also method patterns which are typical strategies to perform among the
others also automated transformation of the test cases.

Nevertheless, not all abstraction levels are covered by the method fragments currently
defined in the method base. For example, the behavioral model of the system which is
actually the starting point for the creation of the abstract model of the test cases is not part
of the method base. The same applies to the corresponding activities in both direction,
abstraction and concretization.

EQ4: Does the solution support the construction of situation-specific transformation methods
for test cases?
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Based on the experience with the transformation of these test cases, we conclude that
the TeCoMi Framework supports the construction of situation-specific transformation meth-
ods [JYG+19]. As we have already defined in Section 6.3.1, a method is said to be situation-
specific if it is effective and efficient. Regarding the migration of test cases, effectiveness
is related to the properties of the migrated test cases, whereas the efficiency related to the
enacted migration process. To check the effectiveness of the applied method, we need to
analyze whether we have migrated the test cases as intended. Our intention was in both of
the feasibility studies to migrate the test cases to the same target framework but in different
languages and to test the OCL implementation. Together with the migration expert, we
executed the test cases in both source and target environment, test suite by test suite, and
we could observe that they were checking the intended functionality. Namely, it could be
observed that the test cases were transformed in the same way as the implementation of OCL
was transformed into the target environment. Nevertheless, there were still some limitations
of the approach when it comes to dealing with regression tests which is hard to be properly
adapted to the target environment due to the lack of structure inside them. Regarding effi-
ciency, we would need to compare all transformation methods in order to determine whether
the selected transformation method was the most efficient one. A meaningful comparison
to that extent was not performed as part of the thesis. However, in discussion with the
migration and test experts, we conclude that the migration of the test cases was efficient.
Even though the number of test cases was not that high (roughly 4000 test cases), in their
opinion, reimplementing that amount of test cases, with embedded OCL expressions, would
have resulted in a lot of time and effort. Moreover, debugging and error identification would
have been more difficult.

EQ5: Does the solution approach support the creation of a validation method for the valida-
tion of the test case migration?

Based on the experiences we got in the feasibility studies, we can say that our approach
supports the validation of the test case migration. It is a novel approach based on mutation
analysis [JNY+20] that detects false positives and false negatives among the migrated test
cases. The solution approach supports first of all the creation of a suitable mutation method.
In order to ease the process of applying mutation analysis, which is powerful, but at the same
time a very complex technique, we also provide a set of different mutation analysis scenarios
that explain the interpretation of the results. Furthermore, a tool infrastructure is provided,
which is project-independent when it comes to the specification of mutation operators and
can be reused for different projects. However, a full study on this technique was still not
performed as it is a topic on its own and we left it for future work. Nevertheless, even in a
limited setting, it has shown quite a good potential for validating test case migration.
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8.5 Summary

In this chapter, we described two feasibility studies for which we applied the TeCoMi
framework. We migrated test cases from one source platform to two different platforms.
Firstly, in Section 8.1, we introduced the evaluation questions upon which we discussed the
feasibility studies.

Then, we described the feasibility studies in Sections 8.2 and 8.3. The first feasibility
study was dealing with the co-migration of test cases from Java to C# whereas the second
feasibility study was dealing with the co-migration of test cases from Java to TypeScript. We
described for both studies the actual application of the TeCoMi framework.

We introduced and discussed the main artifacts and findings of each activity of all three
phases. Additionally, we described in detail the transformation of selected test suites. Finally,
in Section 8.4, based on the experiences made, the evaluation questions were discussed. In
summary, we concluded that the TeCoMi framework enables an end-to-end co-migration of
test cases and it is not limited to a specific context.



Chapter 9

Conclusion and Future Work

In the previous chapters, the TeCoMi framework has been defined and its application in
practice has been demonstrated. In this chapter, we conclude the main findings of this thesis
and discuss future work. In Section 9.1, we describe the main contributions of this thesis.
In Section 9.2, we discuss in which way the TeCoMi framework fulfills the requirements that
have been identified in Section 3.2. Finally, we give an overview of future work in Section 9.3.

9.1 Summary of Contributions

The development of situation-specific test co-migration methods is a challenging but very
important part of a software migration project.

Firstly, even before the actual migration of the test cases, a quality assessment of the
existing test cases is necessary to check whether it is beneficial to perform the migration.
Then, a suitable test case migration method should be developed and it should be guided.
As the test cases depend on the system that is being migrated, the method development
should incorporate the co-evolution analysis in order to enable a proper migration of the test
cases. Last but not least, the migrated test cases have to be validated whether they have been
correctly migrated.

In this thesis, we addressed this problem by defining a framework called TeCoMi (Test
Co-Migration) which supports the three phases. The framework supports the (i) pre-migration
assessment of the test case quality, (ii) the development of model-driven situation-specific
test case co-migration methods, and (iii) the post-migration validation of the migrated test
cases. In the following, we discuss these three contributions of this thesis.
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Pre-Migration Phase: Test Case Quality Evaluation
The first phase of the approach supports the quality evaluation of test cases. We introduced

the Test Case Quality Plan (TCQP) approach which enables the creation of context-specific
quality plans for the quality evaluation of test cases. A quality plan serves as a guideline
for the quality evaluation of test cases and emphasizes the context of use of test cases
as a major factor of influence for the whole quality evaluation. TCQP builds upon the
Model Quality Plan (MQP) approach [VE08] which is relevant in the domain of software
models. In this course, we developed a top-down process, called TCQP Process and a related
metamodel, called TCQP metamodel. The TCQP Process guides the creation of quality
plans by considering the context of use of the test cases. The TCQP Metamodel contains
all relevant information for a quality plan and it is structured into packages that are linked
to their respective activities in the TCQP Process. The creation of quality plans as well as
the visualization of the evaluation results is supported by a web application called TCQEval
(Test Case Quality Evaluator).

Migration Phase: Method Construction considering Co-Evolution Analysis and Method
Enactment

The second phase of the approach supports the method construction considering co-
evolution analysis as well as method enactment of test case co-migration methods. Our
approach builds upon the MEFiSTo approach [Gri16] which is relevant in the domain of
software modernization.

We introduced a method base that contains test-specific fragments and patterns. The
method base is a repository that contains reusable building blocks needed for assembling
test migration methods. The two main constituents of the method base are test-specific
method fragments and method patterns. Method fragments are atomic building blocks of a
test migration method, i.e., activities, artifacts, tools or roles. The method fragments that we
proposed, enable the specification of the actual transformation of test cases. They also enable
expressing different test transformation strategies, e.g., an automated test conversion based
on tools. Method patterns are proven migration strategies and indicate which fragments are
necessary for a method that follows a particular strategy and how to assemble them. We
enable for each pattern a fine-granular adaptation to the situation at hand. The suitability of
each pattern to a certain situation is expressed by a set of characteristics. Besides the test
method patterns, the method base also contains co-migration patterns. The co-migration
patterns express the relation between the system and the test case migration on a level of
fragments, thus supporting the co-evolution analysis.

We introduced a method engineering process that guides the modular construction of
situation-specific test case co-migration methods. We described the purpose of each activity
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within the process supported by detailed examples. Also, we provided an extension to the
MEFiSTo intermediate language called xMIML (Extended MEFiSTo Intermediate Modeling
Language) that also covers test relevant aspects. More specifically, all parts of the existing
language were extended to support test concepts and we additionally provided means to
express the dependencies between the system and test concepts. The method engineering
process has been designed to support test case co-migration scenarios. Therefore, we focused
the process around establishing the relation between identified system concepts and test
concepts by using the technique of concept modeling. A concept represents either systems’
or tests’ functionality on a higher level of abstraction. Having the system and test concepts
represented, the dependencies can be identified and modeled, thus enabling the following
steps regarding the test transformation method construction. Based on an assessment of the
situation, experts can decide which test method pattern to apply. To support the decision-
making process of the experts, the process defines the identification of the situational context
and documentation of the influence factors.

Post-Migration Phase: Migration Validation
The last phase supports the validation of the migrated test cases. We introduced a novel

validation method for the test case migration which relies on mutation analysis. The validation
method checks whether the test cases are migrated without changing their behavior, i.e.,
without changing what they test. In other words, the main goal of the migration validation is
to identify false positives and false negatives among the migrated test cases. We introduced a
mutation analysis repository to provide guidelines in terms of scenarios of mutation analysis
and patterns for the specification of test case mutation methods. The repository contains
mutation analysis scenarios, mutation method patterns, and mutation operators. Six mutation
analysis scenarios are identified depending on what is mutated: the original or the migrated
system, the original or the migrated test cases, or the system or test cases migration. We
defined for each usage scenario, a set of assumptions which must hold for a particular
scenario to be feasible, e.g., that an appropriate mutation framework exists. We provided
also an in-depth analysis of indications that can be obtained in terms of “bad smells” for
the test case migration, i.e., problematic test cases. Finally, we provided a discussion of the
suitability of each usage scenario. We introduced mutation patterns which are the technical
implementations of the given scenarios. The mutation patterns are defined on a different
level of abstraction and their suitability depends on the test case and system migration
context. Finally, we proposed a set of mutation operators that can be language-specific, test
framework-specific or domain-specific.
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Evaluation
To evaluate the feasibility in practice, we applied the TeCoMi framework in an industrial

context. More specifically, we performed two feasibility studies and discussed the outcomes.
The first feasibility study was dealing with the co-migration of OCL test cases from the EMF
framework to the CrossEcore framework. Namely, the EMF’s OCL test cases written in the
JUnit framework and in Just-in-Time manner were transformed into the CrossEcore’s OCL
test cases written in the MSUnit framework and in Ahead-of-Time manner. By this study,
we were able to show that the TeCoMi framework can be used to co-migrate test cases in a
project context. In the second feasibility study, we co-migrated the same OCL test cases to
a different platform, namely the TypeScript implementation of CrossEcore. The test target
framework was Jasmine, which implements test cases in BDD style which is structurally
different from the representational style of JUnit. In this study, we were able to show that the
TeCoMi framework was able to address this changed context.

9.2 Requirements Revisited

In Section 3.2, we defined a set of requirements that an end-to-end solution approach needs
to fulfill in order to enable the development of test transformation methods in the context of
test case co-migration. Subsequently, we describe how our solution framework fulfills these
requirements.

Pre-Migration Phase: Test Case Quality Evaluation
The general requirement for this phase (R1) states that the solution approach should

provide a means to perform a quality evaluation of test cases. More specifically, the solu-
tion should use definitions for qualities of test cases for a consistent and common quality
understanding (R1.1). Also, the solution should be able to provide a minimum set of context
factors (R1.2) and it should distinguish between objective and subjective measurements
(R1.3). Finally, the quality evaluation of test cases should be a systematic process that guides
the stakeholders based on the context factors (R1.4).

The TeCoMi framework provides the Test Case Quality Plan (TCQP) approach for
specifying test case quality plans for the evaluation of test case quality. The TCQP approach
relies on a standardized quality model, namely ISO 25010 standard [ISO11b] to provide a
common quality understanding (R1.1). The TCQP metamodel provides a context model
that contains a set of context factors needed to describe the context of use of test cases
(R1.2). Furthermore, the TCQP metamodel provides a measurement metamodel that relies
on the ISO/IEC 15939 standard [ISO02] and the measurements are classified into subjective
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and objective measurements (R1.3). The whole process is guided by the TCQP process of
creating context-specific quality plans for the quality evaluation of test cases (R1.4).

Migration Phase: Method Construction considering Co-Evolution Analysis and Method
Enactment

The general requirements for this phase (R2 - R4) state that the solution approach
should provide means to perform a co-evolution analysis (R2), it should enable automated
transformation when possible (R3), and finally, it should enable high flexibility to different
migration scenarios (R4). The requirement regarding the co-evolution (R2), states the change
detection (R2.1), impact analysis (R2.2), and change propagation (R2.3) regarding the
system migration should be performed on a conceptual level. The requirement regarding the
automated transformation (R3) states that the three main reengineering activities, namely
reverse engineering (R3.1), restructuring (R3.2), and forward engineering (R3.3) should
be supported. Finally, the requirement regarding situativity (R4) states that the method
base should provide test-specific method fragments and method patterns (R4.1), the method
engineering process should support method development and method enactment of test
transformation methods (R4.2), and it should comprise co-evolution analysis (R4.3).

The TeCoMi framework provides a method engineering process that addresses the co-
migration of test cases. Namely, as part of the process, the system and test concepts are
modeled, by applying the concept modeling technique. Firstly, the different realizations of
the source and target system concepts are explicitly related so that the change is obvious
(R2.1). Then, the dependencies between the test and system concepts are identified, on which
basis the impact of the system changes can be explored (R2.2). The identified dependencies
are part of the situational model, which is input for the activity dealing the test transformation
method construction which ensures that the identified impact will be propagated to the test
cases in the end (R2.3).

The TeCoMi framework provides a method base that contains method fragments that
we represented in terms of a test case reengineering horseshoe model. The method frag-
ments belong to one of the reengineering activities Reverse engineering, Restructuring, and
Forward Engineering and are placed on different levels of abstraction. Regarding reverse
engineering, some activities support an initial extraction of a test model out of the existing
test code, with the help of text-to-model transformation. Then, by applying model-to-model
transformations, a model on a higher level of abstraction, i.e., a model of executable tests is
obtained (R3.1). Furthermore, there are activities dealing with the architectural restructuring
of the obtained model of abstract tests as well as diverse enrichment activities on different
levels of abstraction (R3.2). The method base also contains concretization activities, i.e.,
model-to-model transformations to transform models from higher to lower abstraction level.
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Lastly, as part of the forward engineering, there is an activity dealing with the test case code
generation (R3.3).

The TeCoMi framework provides a method base that contains test-specific method frag-
ments and patterns. Namely, as already explained when discussing the previous requirement,
there are test method fragments that address test-specific artifacts (e.g., Model of Executable
Tests) and reengineering activities (e.g., Test Case Understanding) represented in terms of
test case reengineering horseshoe model. Furthermore, a set of test method patterns (e.g.,
Test Language-based Test Transformation or Conceptual Test Transformation) is provided,
that is based on this horseshoe model (R4.1). The TeCoMi framework provides a method
engineering process that comprises activities from the two main disciplines, method develop-
ment and method enactment (R4.2). By performing activities of the method development
discipline, a situation-specific method gets developed. During the first activity of method
development, namely situational context identification, co-evolution analysis is performed
to identify the impact that the system changes have on the test cases (R4.3). As part of
the method enactment, the situation-specific tools are developed that are required for the
automation of the migration method and in the end, the developed method is enacted.

Post-Migration Phase: Migration Validation
The general requirement for this phase (R5) states that the solution approach should

indicate the success of the test case migration. More specifically, the solution approach must
be a systematic process that guides the stakeholders in a co-migration setting to perform a
validation process (R5.1). Then, the validation process shall be automated in order to deal
with a high number of test cases (R5.2). Finally, the applicability of the validation approach
shall not be limited to a single migration context (R5.3).

The TeCoMi framework provides a validation method for the test case migration. The
framework provides a systematic process that guides the creation of a validation method
which contains context identification, construction of the validation method, the implemen-
tation of the necessary tools and finally, the analysis of the validation results (R5.1). As
we have seen, the process contains an activity which deals with the implementation of the
tools that automate the validation method (R5.2). Furthermore, we provide a model-driven
mutation framework which in turn can be seen as a project-independent tool infrastructure.
Finally, as we mentioned, the process starts with the consideration of the context, making the
creation of the validation method specific to the context at hand, which actually makes our
approach general and applicable in any context (R5.3).
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9.3 Future Work

In this thesis, we presented an end-to-end approach for the co-migration of test cases. Apart
from its current features, certain aspects can be addressed in future work to further advance
the solution approach. In this section, based on the phases of our approach, we discuss
possible extensions and ideas for follow-up research.

Pre-Migration Phase: Test Case Quality Evaluation
Our approach aims to support the first phase of the quality evaluation of test cases. The

context characterization and the creation of the quality plans are supported by the TCQP
(Test Case Quality Plan) approach and by the TCQEval (Test Case Quality Evaluator)
tool. However, such support is still missing for the measurement tool implementation and
execution and decision-making activities. Namely, first of all, a flexible component-based
measurement tool infrastructure would bring a lot of improvement to the overall process. It
should enable a flexible plug-and-play mechanism for the different existing tools as well as
the inclusion of newly developed project-specific tools. Currently, the results of different
tools have to be gathered and manually inserted into the TCQEval tool for further analysis
which can result in more effort and higher chance for error. Therefore, an automated or at
least a semi-automated import of the evaluation results would improve the quality of the
evaluation process. As any tool has its export format of the results, the TCQEval shall support
the import of results by providing a dedicated flexible import module. This module shall
enable the specification of mappings between the report structure of the external tool and the
test case quality plan’s structure.

Currently, the quality evaluation approach focuses on assessing the quality of the test
cases, but not on the eventual improvement. However, the quality report provides a clear
insight into the different quality aspects on different levels of granularity (quality charac-
teristics, quality sub-characteristics, and quality attributes). Having this information, the
test cases could be improved regarding the lower quality scores they have. For example, if
the fault-revealing capability of the test cases is not high enough, a mutation testing can be
applied. For Java or C# there are well-known tools that could be used out of the box, but
not all languages are supported. However, we already provided a model-driven mutation
framework in the post-migration phase, that can be applied in any context as it performs the
mutation testing on a higher level of abstraction.

Migration Phase: Method Construction considering Co-Evolution Analysis and Method
Enactment

Currently, the test case horseshoe reengineering model, which represents the method
fragments in the method base, contains fragments until the model of abstract tests on the
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platform-independent layer. However, not all artifacts and activities are covered by the
method fragments currently defined in the method base as this was out of the scope of this
work. For example, a behavioral model of the system which is actually the starting point
for the creation of the abstract model of the test cases is not part of the method base. The
same applies to the corresponding activities which involve this artifact, namely abstraction
and concretization. Existing standardized languages like the OMG’s UML Testing Profile
(UTP) [OMG13b] or the ETSI’s Test Description Language (TDL) [ETS16] can be used
for the representation of behavioral models. The benefit of having the behavioral model
is twofold, for the test migration as well as for the system migration. Seen from a testing
perspective, it would enable migration to model-based or even model-driven testing in the
target environment. The extracted behavioral model can be analyzed and when needed
modified by the system and text experts. Seen from a system perspective, it can provide
information on the actual system implementation in the source environment. This strategy is
already used in some migration projects to get insight into the structure of legacy systems.

At the current state, the co-migration patterns are used to support the creation of test
method patterns. They express explicitly the relation between the system and the test case
migration on a level of fragments thus supporting the co-evolution analysis. However, cur-
rently, the configuration of the instantiated test migration methods should be done manually
in the Sirius modeling editor we have provided. At this point, we envision supported con-
figuration of those test fragments which have corresponding system fragments according to
the co-migration patterns. Even just a fragment-completion (based on the well-established
code-completion term), could speed-up the configuration of test transformation methods.

The concept modeling is a manual activity, performed by the migration and test experts.
After the initial modeling of test and system concepts, during the impact analysis, correspon-
dences and dependencies are identified and modeled, also manually. This requires a lot of
knowledge from the experts and could be error-prone. On the other hand, the current process
does not use the dependencies that exist between the system and the test code. Incorporation
of the code-dependencies into the impact-analysis part would be a great improvement. For
example, by analyzing the dependencies that exist between test suite or test cases and the
system under test, the experts can get recommendations on how to model the relations, i.e.,
the dependencies between the test and the system concepts.

By the evaluation performed as part of this thesis, we were able to demonstrate that it is
feasible to apply the TeCoMi framework in practice to co-migrate test cases (Section 8.4).
However, it is still an open task to evaluate other characteristics (e.g., effectiveness, efficiency
or usability) of the framework that are relevant for its use in practice. For example, it needs to
be assessed whether the framework could be used to transform legacy test cases, for example,
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written in COBOL, to a modern platform. Furthermore, it needs to be determined whether it
could be used to transform an even larger number of test cases consisting of millions of lines
of code.

Post-Migration Phase: Migration Validation
The application of mutation analysis as a technique for the migration validation has

shown promising results (Section 8.2.3). However, the specification of the mutation methods
requires still a lot of manual activities. This can be significantly improved if more knowledge
from the previous phases is used for automation. For example, the situational context
identified in the first two phases can be used to make suggestions for the optimal mutation
scenario and mutation patterns. To address to some extent the automation problem, we
introduced the model-driven mutation framework (Section 7.3.3). The framework addresses
the most demanding part of the mutation analysis part, namely the automated generation of
mutants. However, the test case execution and identification of bad smells are performed by
the testers. By further extending the mutation framework with the automated execution and
identification of problematic cases would largely improve the efficiency of the validation
method.

The evaluation results presented in this work are obtained by applying the validation
approach to a single migration project for two different scenarios as proof of concept.
Therefore, more empirical analysis is needed, i.e., more different migration projects have to
be validated by applying our validation approach. Due to the importance of validation of test
case migration, we see further research of this topic as a follow-up work which is described
in the following.

Follow-up Work: Optimal Selection of Mutation Operators in Test Case Migration
Validation

Mutation analysis or mutation testing is a strategy that besides the basic usage of assessing
and improving test effectivity, can be used to identify false positives and false negatives
in test case migration. The main factor that defines the success of the mutation analysis is
the selection of mutation operators. This depends on a lot of factors in a migration context,
from both test and system migration perspectives. First of all, it depends on what is being
migrated and what kind of transformation has been performed. Then, on what abstraction
level the system was migrated, on what level the test cases have been migrated. In our
work, we distinguish between mutation operators that can be either language-specific, test
framework-specific or domain-specific. However, at this point, a big part of the decision
regarding the selection and implementation of test mutation operators is done by the testing
expert and the tester. Therefore, more intensive empirical research is needed on the optimal
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selection of mutation operators in order to improve the mutation’s efficiency. For example,
machine learning algorithms can be used in order to come up with mutation operators an
optimal set of mutation operators for a particular migration context.

Follow-up Work: Test Case Modernization
Proprietary testing frameworks are still common nowadays. The test cases written in such

frameworks can be difficult to maintain or reuse. Therefore, a migration to a newer, standard-
based framework, or other testing methodologies like BDD (Behavioral Driven Development)
or MBT (Model-Based Testing), can be beneficial from both practical and economical reasons.
With our framework, we established the basis for transformation and migration of test cases in
any setting and it can serve as a good basis to address the problem of test case modernization.
However, there are still some open questions that need to be additionally addressed. Namely,
seen from a constructive perspective, the test cases have to be properly adapted to the targeting
testing framework to fully benefit from the migration. By applying concept modeling and
considering the target system and test environment, our solution establishes the basis for
test case modernization. However, the development of the test transformation method
should consider even more the target environment characteristics. Seen from the analytic
perspective, after the migration some quality properties (e.g., performance or test effectivity)
of the migrated test cases have to be evaluated. This evaluation should assess whether the
adaptation to the target framework was properly done.

Follow-up Work: Benchmarking Environment for Testing Frameworks
Nowadays, there is a plethora of testing frameworks for any existing language especially

for the most used ones like Java, C#, C, C++, etc. Each testing framework has different
characteristics, described through a set of features like the used representational style, sup-
port for mocks, handling of exceptions, etc. When selecting the right testing framework
for a given project setting, the testing frameworks can be compared against the aforemen-
tioned static features. However, when comparing multiple frameworks, the practitioners are
interested beyond the static features. Namely, a comparison against the efficiency of the
testing frameworks is also required. In that case, unless a set of test cases is executed in a
given framework, no conclusions can be drawn, and therefore no comparison is possible.
Furthermore, some frameworks support different representational styles like xUnit or BDD.
A set of test cases, written in the same framework but in a different representational style,
may impact the efficiency of the testing framework. So, multiple factors can influence the
efficiency of a testing framework. Therefore, a flexible, model-based (or even model-driven)
benchmarking framework is needed.
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Follow-up Work: Co-Evolution of Framework-based Applications
The development of an information system is based on the usage of frameworks. When a

given framework that is applied in some application evolves, i.e., then it should be replaced
with the newer version, e.g., in order to use some new functionality. However, there may
be incompatibility which would imply changes in the application. In order to check where
exactly these discrepancies are, a compatibility analysis is needed. Based on the outcome of
this analysis it can be decided whether to migrate the application or not. At this point, we
envision the application of the double horseshoe model we have used in our approach. The
difference is, however, that the inside horseshoe represents the evolution i.e., the migration of
the framework whereas the outer horseshoe model represents the evolution of the applications.
By executing the activities belonging to the reverse engineering phase of both horseshoe
models, the framework and the application can be compared on a higher level of abstraction. If
a decision to migrate the application is made, then, by subsequently applying the restructuring
and forward engineering phases, the application can be migrated to the newer version. The
actual migration method, implementing a suitable migration strategy, can be developed and
enacted by following the principles of situational method engineering.
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Appendix A

Extended Quality Model for Test Cases

A.1 Extended Quality Model for Test Cases

Test Case
Quality Model

Test Effectivity Reliability Usability Efficiency Maintainability Portability Reusability (—)

Test Coverage

Test Correctness

Fault-Revealing
Capability

Test Confidence 
(—) (*)

Test Effectivity
Compliance

Test Repeatability

Maturity

Fault-Tolerance

Recoverability

Reliability 
Compliance

Understandability

Learnability

Operability

Test Evaluability

Usability
Compliance

Time Behaviour

Resource
Utilisation

Efficiency
Compliance

Analysability

Changeability

Stability

Maintainability
Compliance

Adaptability

Installability

Portability
Compliance

Coupling (—)

Flexibility (—)

Reusability
compliance (—)

(*): No corresponding (sub-)characteristic in Test Specification Quality Model ISO/IEC 9126
(—): No corresponding (sub-)characteristic in the general ISO/IEC 25010 quality model

Security (*)

Confidentiality (*)

Accountability (*)

Security
Compliance (*)

Figure A.1 The ISO/IEC 25010 Standard-based Quality Model for Test Cases

Test Effectivity The test effectivity characteristic represents the degree to which the
specified test cases fulfil a given test purpose [ZVS+07]. The test effectivity of the test cases
could be expressed in terms of the sub-characteristics shown in Table A.1

Reliability The reliability characteristic represents the degree to which the specified
test cases perform specified conditions for a specified period of time [ZVS+07]. The test
cases have to maintain a specific level of performance under different conditions. The sub-
characteristics test repeatability and security was introduced in [ZVS+07]. However, the
current standard has a dedicated main characteristic for security. Hence, security is removed
and added as a main characteristic. The reliability of the test cases could be expressed in
terms of the sub-characteristics shown in Table A.2.
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Sub-characteristics Description
Test Coverage The degree to which the test cases are complete for a par-

ticular coverage criterion [ZVS+07]. The completeness of
test cases could be measured on different coverage crite-
rion, e.g. test purpose coverage, system model coverage,
requirements coverage, architectural coverage and code
coverage [Sne04]

Test Correctness The degree of correctness of the test cases with respect to
the system specification or the test purposes[ZVS+07]

Fault-revealing Capability The capability of the test cases to reveal faults
Test Confidence* The degree of confidence of the test cases with respect to

the errors reported by the tester and the user [Sne04]
Table A.1 Sub-characteristics of Test Effectivity

Sub-characteristics Description
Test Repeatability The degree to which the test cases reproduce the same test result

in subsequent test runs. Otherwise, debugging the SUT to locate a
defect becomes hard to impossible. Test repeatability includes the
demand for deterministic test specifications [ZVS+07]

Maturity The degree to which the test cases are reliable to be executed under
normal operation [ZVS+07]

Fault-tolerance The degree to which the test cases could be used despite the pres-
ence of hardware or software faults [ZVS+07]

Recoverability The degree to which, in the event of an interruption or a failure, test
cases can recover and re-establish the desired state of execution.
The test cases should be able to log the reason for failure [ZVS+07]
Table A.2 Sub-characteristics of Reliability

Usability The usability characteristic represents the degree to which the specified test
cases could be used with ease [ZVS+07]. This characteristic represents the degree to which
the test cases could be used with at most satisfaction during a particular condition [ZVS+07].
The usability of test cases could be expressed in terms of the sub-characteristics shown
in Table A.3.

Performance Efficiency The efficiency characteristic in the ISO/IEC standard 9126 has
been renamed as performance efficiency in the ISO/IEC standard 25010. This character-
istic represents the degree to which the specified test cases could provide an acceptable
performance in terms of speed in executing the tests and resource usage [ISO11b]. The
performance efficiency of test cases could be expressed in terms of the sub-characteristics
shown in Table A.4.
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Sub-characteristics Description
Understandability The degree to which the test cases are understandable for a partic-

ular need. Documentation and description of the overall purpose
of the test specification are important factors and guides in finding
the suitable test cases [ZVS+07]

Learnability The degree to which the test cases contain documents describing
how it is configured, what kinds of parameters are involved, and
how they affect the test behavior [ZVS+07]. Proper documentation
or style guides have positive influence on this quality as well

Operability The degree to which the test cases are operable, i.e., measure to
check if a test suite contains appropriate default values or a lot of
non-automatable actions are required in the actual test execution.
Such factors make it hard to set-up a test suite for execution or
they make execution time-consuming due to a limited automation
degree [ZVS+07]

Test Evaluability The degree to which, in the event of an interruption or a failure, test
cases can recover and re-establish the desired state of execution.
The test cases should be able to log the reason for failure [ZVS+07]

Consistency* The degree to which the test cases are free from contradiction
and are coherent with other test cases in a specific context of use.
Proper documentation or style guides have positive influence on
this quality as well [ISO11b]

Completeness The degree to which the test cases have information completely
specified about their objective, inputs, outcomes, environmental
needs. This information increases the understandability of test
cases and could also be a factor in determining whether the test
cases are created for the right objective [ISO11d]
Table A.3 Sub-characteristics of Usability

Sub-characteristics Description
Time Behavior The degree to which the execution times of the test cases, when

performing its functions, meet requirements [ISO11b]
Resource Utilization The amounts and types of resources used by the test cases, meet

requirements [ISO11b]
Table A.4 Sub-characteristics of Performance Efficiency

Security The term security was a sub-characteristic in the ISO/IEC standard 9126, and it
has been termed as the main characteristic in the ISO/IEC standard 25010. This characteristic
represents the degree to which the specified test cases have information and data that are
protected and are only available depending upon the levels of authorization [ISO11b]. This
characteristic also covers issues such as included plain-text passwords that play a role when
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test cases are made publicly available or are exchanged between development teams. The
level of security of test cases could be expressed in terms of the sub-characteristics shown
in Table A.5.

Sub-characteristics Description
Confidentiality* The degree to which the test cases has attributes that ensure that

it is only accessible and interpretable by authorized users in a
particular context of use [ISO11b]

Accountability* The degree to which the test case actions could be traced, e.g.,
Details about the tester accountable for a particular test case has
to be documented for further clarifications. In huge projects, such
details are not maintained [ISO11b]
Table A.5 Sub-characteristics of Security

Maintainability The maintainability characteristic represents the degree to which the
specified test cases could be modified with ease due to changes in the software. Main-
tainability of test specifications is critical when test developers are faced with changing or
expanding a test specification. It characterizes the capability of a test specification to be
modified for error correction, improvement, or adaptation to changes in the environment or
requirements [ZVS+07]. The maintainability of test cases could be expressed in terms of the
sub-characteristics shown in Table A.6.

Sub-characteristics Description
Analyzability The degree to which the test cases can be diagnosed for deficiencies.

For example, test cases should be well-structured to allow code
reviews. Test architecture, style guides, documentation, and well-
structured code are elements that have influence in the quality of
this property

Changeability The degree to which the test cases could undergo modification
when required. For example, poorly structured code, hard coded
values or test cases that could not be expandable may have negative
impact on quality

Stability The degree to which the test case could be stable due to unexpected
side effects. This depends on the test case language used, unex-
pected side effects due to a modification have an adverse impact
on the stability aspect

Complexity* The degree to which the test cases contain complex test data types
and its instances. Test cases with long preconditions and procedure
may also have an adverse impact on the complexity aspect

Table A.6 Sub-characteristics of Maintainability
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Portability The portability characteristic represents the degree to which the specified test
cases could be transferred from one operational or usage environment to another [ZVS+07].
The level of portability of test cases could be expressed in terms of the sub-characteristics
shown in Table A.7.

Sub-characteristics Description
Adaptability The degree to which the test cases a capable to be adaptable to

different system under tests or environments [ZVS+07]
Table A.7 Sub-characteristics of Portability

Reusability The reusability characteristic represents the degree to which the specified
test cases could be reused for different test types [ZVS+07]. The level of reusability of test
cases could be expressed in terms of the sub-characteristics shown in Table A.8.

Sub-characteristics Description
Coupling The degree to which the test cases have test data and other resources

that are coupled with other sets of test cases [ZVS+07]. It is a
measure to verify the test cases are loosely coupled and have a
strong cohesion

Flexibility The degree to which the test cases a capable to be adaptable to
different system under tests or environments. For example, if fixed
values appear in a part of a test specification, a parametrization
likely increases its reusability [ZVS+07]

Comprehensibility The degree to which the test cases are unambiguous and might
not contain any conditional logic. Test cases with ambiguity or
conditional logic can have an adverse impact on the comprehen-
sibility aspect. Good documentation, comments, and style guides
are necessary to achieve this goal [ISO11d]

Table A.8 Sub-characteristics of Reusability
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