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Abstract

Despite a lot of progress in speech separation, enhancement, and automatic speech recognition
realistic meeting recognition is still fairly unsolved. Most research on speech separation either
focuses on spectral cues to address single-channel recordings or spatial cues to separate multi-
channel recordings and exclusively either rely on neural networks or probabilistic graphical
models. Integrating a spatial clustering approach and a deep learning approach using spectral
cues in a single framework can significantly improve automatic speech recognition performance
and improve generalizability given that a neural network profits from a vast amount of training
data while the probabilistic counterpart adapts to the current scene. This thesis at hand,
therefore, concentrates on the integration of two fairly disjoint research streams, namely
single-channel deep learning-based source separation and multi-channel probabilistic model-
based source separation. It provides a general framework to integrate spatial and spectral
cues in which neural networks and probabilistic graphical models complement each other
in achieving state of the art performance in blind source separation on noisy, reverberant
data. The efficacy of the proposed approaches is evaluated on simulated artificial mixtures as
well as real recordings of simultaneously active speakers. The key findings are (1) a cascade
integration in which a neural network initializes a probabilistic graphical model provides
substantial improvement, (2) spatial cues can be used for unsupervised training of neural
networks, (3) tight integration, an integration in which a joint agreement between both
modalities and models is found, leads to lowest word error rates and best generalizability to
unseen real mixtures.

i



Acknowledgments

First and foremost I thank my supervisor Prof. Dr.-Ing. Reinhold Haeb-Umbach for granting
me the academic freedom to explore topics of speech enhancement and recognition without
restrictions in mind. Being able to freely decide led to a few dead ends but ultimately allowed
me to explore the field of robust automatic speech recognition more holistically, resulted
in many ideas outside of the beaten tracks, and a thesis topic worth working on. Many
published scientific contributions not directly related to this thesis find their roots in this
freedom and the encouragement to stay curious.

I thank Prof. Dr.-Ing. Timo Gerkmann for being part of the committee and contributing to
the outcome of the thesis with just the right amount of constructive criticism.

I thank my colleagues for their collaboration, fruitful discussions, and uncountable coffee
chats. A big thank-you belongs to Jahn Heymann with whom I shared almost the entire
time span of my employment at the Paderborn University. Due to Jahn I have grown as a
researcher, have become more self-critical, and have become more agile when adopting new
technological advancements. Working with him led to many joint scientific contributions
that go well beyond what one would have done alone. The joint participation in the CHiME
challenges is one highlight in which mutual support resulted in great outcomes and a lot
of fun. I thank Christoph Boeddeker who joined our research group later for the endless
discussions which really let into the details of why things are as they are, ranging from topics
such as LaTeX formatting to dereverberation.

I thank Prof. Bhiksha Raj for hosting me during my research exchange at the Language
Technologies Institute (LTI) at Carnegie Mellon University (CMU), Pittsburgh, USA. I really
enjoyed my stay with him who did not stop surprising me with unconventional ideas and
loopholes in my work on complex backpropagation. I enjoyed his way of teaching with much
more focus on the intuition behind the methods which served as a complementary view to
the rigid proof-oriented way I was more used to.

I would like to cordially thank Tomohiro Nakatani, Shoko Araki, Keisuke Kinoshita, Marc
Delcroix, Nabutako Ito, and Takuya Higuchi from NTT Communication Science Laboratories,
Kyoto, Japan for their great support leading to and during my internship in their department.
They made me feel very welcome in an entirely new research environment. To me, they are
one of the most important research groups in our field and I enjoyed their great focus on
scientific details although researching in a corporate setup.

I am grateful for the additional funding by a Google Research Grant and two consecutive
research projects with NTT Communication Science Laboratories, Kyoto, Japan. Computa-
tional resources were provided by the Paderborn Center for Parallel Computing.

I thank my family for their help and a place to come back to when I needed to forget about
my thesis. Finally, I thank my wonderful wife for supporting me during my time at Paderborn
University and beyond. I could not have done it without you.

ii



Contents

Abstract i

Acknowledgments ii

1 Introduction 1

2 Prerequisites 3
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Overview table of variable names . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Latent variable models and the expectation maximization algorithm . . . . . 7

2.5.1 Latent variable models . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.2 Mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.3 Expectation maximization algorithm . . . . . . . . . . . . . . . . . . 8

3 Blind source separation principles 19
3.1 Principles of single-channel approaches . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Shallow methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Deep-learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2.1 DC: Deep clustering . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2.2 DAN: Deep attractor network . . . . . . . . . . . . . . . . . 23
3.1.2.3 PIT: Permutation invariant training . . . . . . . . . . . . . 25

3.1.3 Discussion of single-channel deep-learning methods . . . . . . . . . . 25
3.2 Principles of multi-channel approaches . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Probabilistic spatial mixture models . . . . . . . . . . . . . . . . . . . 28
3.2.1.1 Frequency permutation problem . . . . . . . . . . . . . . . . 29
3.2.1.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1.3 Influence of the mixture weight . . . . . . . . . . . . . . . . 30
3.2.1.4 Complex Watson mixture model . . . . . . . . . . . . . . . 30
3.2.1.5 Complex Bingham mixture model . . . . . . . . . . . . . . . 33
3.2.1.6 Full-Bayesian complex Watson mixture model . . . . . . . . 34
3.2.1.7 Time-variant complex Gaussian mixture model . . . . . . . 35
3.2.1.8 Complex angular central Gaussian mixture model . . . . . . 36
3.2.1.9 Guided source separation . . . . . . . . . . . . . . . . . . . 38

3.2.2 Spatial features for neural networks . . . . . . . . . . . . . . . . . . . 39
3.3 Principles of source extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Spectral subtraction/ masking . . . . . . . . . . . . . . . . . . . . . . 39

iii



Contents iv

3.3.2 Spatial filtering/ beamforming . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2.1 Spatial covariance matrix estimation . . . . . . . . . . . . . 41
3.3.2.2 MaxSNR/GEV . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2.3 MVDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2.4 Linearly constrained minimum variance beamformer . . . . 44
3.3.2.5 Weighted multi-channel Wiener filter . . . . . . . . . . . . . 45
3.3.2.6 Magnitude and phase normalization of beamforming vectors 46

3.3.3 Combination of beamforming and masking . . . . . . . . . . . . . . . 46

4 Integration of neural networks and probabilistic graphical models 47
4.1 Existing integration approaches . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Cascade approach: Integration by initialization . . . . . . . . . . . . . . . . 50
4.3 Tight integration of spatial and spectral features . . . . . . . . . . . . . . . . 51

4.3.1 vMFcACGMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Additional constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Unsupervised training using multi-channel features . . . . . . . . . . . . . . 56

5 Evaluation 58
5.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Database design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 WSJ0-2mix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 WSJ-BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 WSJ-MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Acoustic model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Deep-learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Deep clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 Deep attractor network . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.3 Permutation invariant training . . . . . . . . . . . . . . . . . . . . . . 73
5.4.4 Comparison with reference publications on WSJ0-2mix . . . . . . . . 75

5.5 Probabilistic spatial mixture models . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.1 Type of the spatial observation model . . . . . . . . . . . . . . . . . . 76
5.5.2 Parameter choice for the cACGMM . . . . . . . . . . . . . . . . . . . 78

5.6 Source extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.7 Integration of neural networks and probabilistic graphical models . . . . . . 85

5.7.1 Weak integration: A cascade approach . . . . . . . . . . . . . . . . . 86
5.7.2 Strong integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7.3 Comparison of integration models with single-/ multi-channel encoder 89

5.8 Unsupervised training of deep clustering . . . . . . . . . . . . . . . . . . . . 92
5.9 Overview of all methods on WSJ-BSS . . . . . . . . . . . . . . . . . . . . . . 94

5.9.1 Analysis of splits of the WSJ-BSS database . . . . . . . . . . . . . . 96
5.9.2 Analysis with matched training of the acoustic model . . . . . . . . . 100

5.10 Overview of all methods on WSJ-MC . . . . . . . . . . . . . . . . . . . . . . 102
5.11 Reproducibility and statistical significance . . . . . . . . . . . . . . . . . . . 104

6 Conclusion 111



Contents v

A Appendix 113
A.1 Properties of the complex Bingham distribution . . . . . . . . . . . . . . . . 113

A.1.1 Eigenvalue shift in the normalization term . . . . . . . . . . . . . . . 113
A.1.2 Eigenvalue shift in the distribution . . . . . . . . . . . . . . . . . . . 113

A.2 Non-negativity of the Kullback-Leibler divergence . . . . . . . . . . . . . . . 113
A.3 Mixture weights without Lagrange’s method . . . . . . . . . . . . . . . . . . 114
A.4 Remarks on complex derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.5 GEV/MaxSNR beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.5.1 Solution with constraint optimization . . . . . . . . . . . . . . . . . . 117
A.5.2 Solution without constraint optimization . . . . . . . . . . . . . . . . 117

A.6 MVDR beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.7 Permutation formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.8 Comparison of WSJ-BSS and SMS-WSJ . . . . . . . . . . . . . . . . . . . . 119
A.9 More detailed evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . 119

Glossary 123

List of peer-reviewed publications with own contributions (OC) 124

Bibliography 127



1 Introduction

Blind source separation addresses the problem to separate signal components originating
from different sources, while only the mixture single can be observed. In the audio domain,
when multiple speakers are active simultaneously, humans are able to concentrate fairly well
on a particular speaker and get the idea of what is being said. The problem of separating
overlapping speech was coined cocktail party problem most likely in 1953 by Colin Cherry.
Since then, many researchers have addressed simplifications of this problem. Early work
concentrated on instantaneous mixtures and later got extended to cover convolutive mixtures,
i.e., acoustic conditions in which a room impulse response due to the multi-path transmission
in an acoustic enclosure causes a temporal smearing effect of the source signals. While
blind source separation (BSS) systems were analyzed on their own for most of the time,
more recently – mainly due to improved performance of separation methods and improved
robustness of acoustic models – researchers started addressing the more challenging problem
of multi-speaker automatic speech recognition (ASR). In fact, BSS for human listeners poses
its own challenges such as the demand for low latency, avoidance of audible artifacts, and
naturalness of the separation result.

The goal of this thesis is to propose and describe new methods to separate speech sources
and automatically transcribe each utterance present in a mixture. Although there are quite
many attempts at improving recognition of overlapped speech, the focus of this work is
on two distinct aspects: (1) the integration of probabilistic graphical models and deep
neural networks, and (2) the integration of spatial and spectral cues. The key motivating
factors why integration along both aspects is promising are summarized in Figure 1.1.

Probabilistic model Neural network Spatial features Spectral features

• Physically motivated

• Unsupervised

• Generalizes better

• Interpretable

• Scales with more

training data

• Better performance

• Speech agnostic

• Scales with more

channels

• Speech specific

• Independent of

movement

• Applicable for

single-channel

Figure 1.1: Key motivating pieces which illustrate why an integration framework is promising.
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Introduction 2

Probabilistic graphical models and neural networks have very complementary strengths.
While deep neural networks (DNNs) are purely data-driven approaches and therefore contain
very little priors introduced by a possibly error-prone human being, probabilistic models
allow capturing a physical understanding of the world. Depending on the model choice, they
may encapsulate our human understanding of the physics of wave propagation while a neural
network has to guess all relevant statistical dependencies from data only. Interestingly, the
data-driven approach has beaten statistical models by a great margin in very many domains.
Nevertheless, their generalizability is often limited and performance on an unseen database
can hardly be predicted. In contrast, while the base performance of unsupervised probabilistic
graphical models may be inferior, they shine when it comes to new databases since they
are just as unaware of that one as they were on the primary database of interest. The first
integration aspect worth to analyze and capitalize upon is the complementarity of neural
networks and probabilistic graphical models.

Addressing the second integration aspect, spatial features have long been the feature of
choice in a multi-channel setup: Phase- and level differences between microphones can
be very informative and lead to high separability given that the geometry is fairly static
and the transfer characteristics of each source are sufficiently different. On the contrary,
spectral features are either derived from or learned based on individual speakers’ speech. The
performance heavily depends on the discriminability of the speakers’ voices and movement
within limits does not impact performance at all.

Given these two dimensions (1) modeling paradigm and (2) feature modality, it is almost
self-explanatory that an integration framework is to be sought after and can provide gains in
terms of generalizability and overall performance.

To reach this goal and lead through fundamentals towards an integrated solution, the thesis
is structured as follows: Chapter 2 introduces some fundamental concepts and sets up the
notation and terminology used throughout this work. Chapter 3 provides a broader overview
of source separation approaches and then quickly focuses on three deep learning-based
separation concepts and a limited number of spatial clustering models, which all serve as a
baseline as well as potential candidates to be used within an integration framework. Chapter 3
finishes with a review of source extraction methods, namely masking and beamforming. While
a short overview of other integration approaches is compiled at the beginning of Chapter 4,
it also develops the key aspects of this thesis, namely the cascade integration and the
tight integration for blind source separation. Chapter 4 also details how a neural network-
based source separation system can be trained without supervision. Chapter 5 contains an
extensive evaluation not just of the proposed framework but also of the underlying integration
components and the baseline systems – to prove that the proposed framework actually is
an advancement, it is particularly important to demonstrate that the baseline systems are
carefully tuned. Each part of Chapter 5 contains a brief exposition of the key findings to
more easily capture the essence of the evaluation. Finally, conclusions and remarks on future
directions of study are located in Chapter 6.



2 Prerequisites

This chapter introduces the notation and signal model in Section 2.1 and Section 2.2 and
continues with an overview in Section 2.3. Most importantly, it introduces random variables
and probabilistic graphical models in Section 2.4 and Section 2.5, respectively. Most impor-
tantly, Section 2.5 contains estimation techniques which are used in most systems proposed
within this work.

2.1 Notation

• Scalars, vectors and matrices are distinguished by using small characters, bold characters
and bold capital characters, e.g., x, x and X, respectively. More abstract sets of values
or variables, without necessarily specifying the shapes of the set elements are denoted
by calligraphic symbols such as Y .

• Whenever it becomes necessary to distinguish random variables from their realization
a breve symbol is used, e.g., x̆, x̆, X̆, X̆ . However, this is avoided in the following by
using the shorthand notation p(x) instead of px̆(x̆ = x) if possible.

• To more quickly identify corresponding indices and boundaries, the indices are denoted
by lower case characters and are upper-bound by the corresponding upper case character,
e.g., t ∈ {0, . . . , T − 1} or t ∈ {1, . . . , T}.

• Within the scope of this thesis probability density functions for continuous and discrete
random variables as well as probability mass functions for discrete random variables
share the same notation, e.g., p(x). The most important reasons are: (a) The probability
density function and the probability mass function for a discrete random variable are
both defined with the same set of parameters – the probability of each class. Thus,
they are used synonymously anyway. (b) Joint distributions of discrete and continuous
random variables are not an edge case anymore, they can simply be written as p(x, y).

• As common in an engineering context, this thesis does not distinguish between, e.g., a
function f and the value f(x) obtained by calling the function on some input x.

• The expected value of a random variable is denoted as E {·}. In case the distribution
under which the expected value is calculated is unclear, this is denoted with the
distribution/ probability density function (PDF) as a subscript: Eq(·) {·}.

• Limits for sum or product symbols are simplified to just the index in case the sum or
product is carried out over all possible values.

3



Prerequisites 4

(a) Reverberation (b) Noise (c) Cross-talk

Figure 2.1: Illustration of typical signal quality impairments. In a real-world setting it is practically
impossible to obtain reverberation-free (dry) recordings or entirely noise-free (clean) recordings.
Some image elements are created and their reuse is permitted by Randall Munroe (xkcd.com).

2.2 Signal model

The typical obstacles for far-field ASR are first and foremost reverberation [1], noise sources [1],
and interfering speakers. Although this thesis focuses on source separation, correctly handling
reverberation and background noise is crucial when assessing the real-world applicability of
the proposed algorithms. Figure 2.1 illustrates these impairments.

The signal propagation process, namely the reverberation of the source signals is caused by
an infinite amount of reflections and potentially the direct transmission path. This process
can be modeled as a convolution of a room impulse response (RIR) with the source signal in
time domain [2, Equation 3]. If we further suppose that the dominant part of the RIR fits
approximately into one analysis window, we can conveniently model the entire reverberation
process as a multiplication in the short time Fourier transform (STFT) domain [3, Page 8 ff.].
This simplification is often called narrowband approximation [2, Section II.B]. Since the wave
equation can be considered linear for room acoustics [2, Section II.A], we can deduct that
the whole mixing process is sufficiently well modeled by a sum of all source images and the
noise received at each of the D microphones:

yt,f =
∑

k

hk,f sk,t,f + nt,f =
∑

k

xk,t,f + nt,f . (2.1)

Here, sk,t,f represents the source signal of each of the k ∈ {1, . . . K} speakers, hk,f , represents
the vector of acoustic transfer functions (ATFs) for each speaker [2, Section II.B], and nt,f

is the noise vector summarizing each noise signal at each of the microphones. Further, the
indices t ∈ {1, . . . T} and f ∈ {1, . . . F} specify the time frame and frequency bin, respectively.
The speech image, which is the reverberant version of the source signal as it is received by each
microphone is denoted by xk,t,f while the mixed signal is written as yt,f . Correspondingly,
each of the vectors contains a complex-valued scalar for each of the D microphone channels
(see Table 2.1 for an overview). It is worth noting that inter-frame and inter-band convolution
effects are neglected [4] when the mixing process is modeled in the STFT domain as in
Equation 2.1. In the context of this thesis, no distinction between the noise and the noise
image is made and both terms are used synonymously. Depending on the application it is
now desired to either find an estimate of the speech image xk,t,f or the underlying source
signal sk,t,f . The signals are later reconstructed using the corresponding inverse transform
either for a human listener or a subsequent speech recognizer.
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2.3 Overview table of variable names

Table 2.1: Overview table of most frequently used variables. Variables with a more limited scope
are only introduced in the corresponding chapters and not summarized here.

Variable Values Description

l {1, . . . , L} Sample index in the discrete time domain

d {1, . . . , D} Channel (sensor) index

t {1, . . . , T} Time frame index in the STFT domain

f {1, . . . , F} Frequency bin index in the STFT domain

k {1, . . . , K} Class index (e.g., for mixture models) or speaker index

i {1, . . . , I} Iteration index

e {1, . . . , E} Embedding dimension index

st,f C Speech source signal in the STFT domain

hk,d,t,f C ATF in the STFT domain

hk,t,f C
D Vector of ATFs in the STFT domain

xk,d,t,f C Speech image in the STFT domain

xk,t,f C
D Vector of speech image channels in the STFT domain

nd,t,f C Noise image in the STFT domain

nt,f C
D Vector of noise image channels in the STFT domain

yt,f ,d C Mixture in the STFT domain

yt,f C
D Vector of mixture channels in the STFT domain

ỹt,f CSD−1 Unit-length normalized vector of mixture channels

et,f R
E Embedding vector (e.g., in a DC system)

wf C
D Beamforming vector in the STFT domain

x̂k,t,f C Predicted speech signal

ck,t,f {0, 1} Indicator variable is 1 if slot (t, f) is dominated by class k.

ct,f One-hot vector indicating which class dominates the observation.

γk,t,f [0, 1] Posterior affiliation/ estimated mask

2.4 Random variables

Although basic knowledge about random variables might be common sense for the like-minded,
it is very worth to point out different notational variations which often turn out to be the
main nuisance factor in teaching.
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Let us first address discrete random variables by acknowledging that the following statements
all share the same information:

• The scalar random variable c̆ can have the realization k. The probability of this event
is given by pc̆(c̆ = k) = p(k). Due to the second Kolmogorov axiom, all probabilities
have to sum up to one, i.e., the probability that one element of the sample space Ω
occurs is one:

p(Ω) =
∑

k

p(k) = 1.

• The probability of the one-hot random vector c̆ having the realization c is denoted by
pc̆(c̆ = c) = p(c). The one-hot vector is then defined such that the k-th entry is 1,
when c = k, otherwise 0. Again, the second Kolmogorov axiom has to hold:

p(Ω) =
∑

c

p(c) = 1.

• We can describe p(k) as a categorical distribution1 [5, Page 35] parameterized by the
parameter vector π = (π1, . . . , πK)

T:

p(k) = p(k̆ = k) = p(c̆k = 1) = p(c̆ = c) = Cat(k̆ = k;π), with πk = p(k).

• We may also interpret p(k) as a probability density function. As long as the concept
of p(k) just encodes how likely certain outcomes are, it is not further necessary to
distinguish between a probability mass function and a probability density function
written with Dirac pulses:

p(k) = π1δ(k − 1) + · · ·+ πKδ(k −K) =
∑

k′

πk′δ(k − k′).

By not distinguishing between the notation of probability mass functions and probability
density functions, we avoid a common notational issue with respect to mixed distributions.
The joint distribution of a continuous and a discrete random variable can simply be written
as follows:

p(x, k) = px̆,c̆(x̆ = x, c̆k = 1).

By extension of the notation for expected values above, we here write entropy, cross-entropy
or Kullback-Leibler divergence in terms of the probability density functions they evaluate
much rather than the random variable:

H(p(x̆)) = −Ep(x) {ln p(x̆)} = −
∫ ∞

−∞

p(x) ln p(x) dx,

CE(p(x̆), q(x̆)) = −Ep(x) {ln q(x̆)} = −
∫ ∞

−∞

p(x) ln q(x) dx,

KL(p(x̆)‖q(x̆)) = CE(p(x̆), q(x̆))−H(p(x̆)) = Ep(x)

{

ln
p(x̆)

q(x̆)

}

=

∫ ∞

−∞

p(x) ln
p(x)

q(x)
dx.

1 The term Multinoulli distribution, an alternative name for the categorical distribution, apparently stems
from Gustavo Lacerda [5, Page 35].
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2.5 Latent variable models and the expectation

maximization algorithm

Since latent variable models play an integral role throughout this thesis this section in-
troduces latent variable models, mixture models, and methods to obtain corresponding
parameters.

2.5.1 Latent variable models

Probabilistic models p(Y ,θ) ideally represent the distribution of the observation Y as accu-
rately as possible with a parameterization captured in θ. Often times, when the observations
share a common cause or are a manifestation of an underlying process it is advisable to design
a model with latent (or hidden) random variables [5, Page 337]. These latent variables Z then
influence the distribution of the observations, often introduce some hierarchy of the random
variables, and may serve as an information bottleneck [5]. In particular, in unsupervised
learning, this information bottleneck is of main interest as a condensed representation of the
observation itself [5] and may then be used in a downstream task.

Most latent variable models exhibit a parameter identifiability problem [5, Section 11.3.1],
[6, Section 11.2]. Reciting [6, Definition 11.2.1] a parameter θ for a family of distributions
{p(x|θ) : θ ∈ Dθ} is identifiable if distinct values of θ correspond to distinct distributions. In
the case of discrete latent random variables, this may also be called label switching problem [5,
Page 341] or permutation problem. This problem can also be understood as multimodality,
in the sense of multiple peaks, of the likelihood in the parameter space: different locations in
the parameter space lead to equal likelihood values. How this manifests in BSS applications
is addressed in more detail in Section 3.2.1.1.

2.5.2 Mixture models

A particular instance of latent variable models are mixture models. In a mixture model one
assumes the following generative process:

1. A class affiliation is sampled from, e.g., a categorical distribution p(cn) = Cat(cn;π),

where π =
(
π1, . . . , πK

)T
summarizes all class probabilities.

2. The observation itself is sampled from a class-conditional distribution. The class-
conditional distribution is also termed class-dependent observation model.

The marginal distribution is then a weighted sum of class-conditional distributions:

p(yn;θ) =
∑

k

πkp(yn|ck,n=1) =
∑

k

πkp(yn;θk), (2.2)

where k is a class index and θk contains the class-dependent parameters of the class-conditional
distribution p(yn|θk). The mixture weights π = (π1, . . . , πK)

T with 0 ≤ πk ≤ 1 sum up to one
such that p(cn) = Cat(cn;π) is a valid probability mass distribution.
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y̆nc̆nπk

µk

Σk

Figure 2.2: Graphical model of a Gaussian mixture model (GMM) as an example of a mixture model.
Circles depict random variables, while doubly circled elements are observable random variables.
Boxes are model parameters which are estimated during test time. Arrows indicate statistical
dependencies.

In case the observation model is a Gaussian distribution, this model is called a GMM as
illustrated in Figure 2.2:

p(yn;θ) =
∑

k

πkN (yn;µk,Σk) =
∑

k

πk
1

√

det(2πΣk)
e− 1

2
(yn−µk)

TΣ
−1
k

(yn−µk), (2.3)

where πk, µk, Σk are the class-dependent mixture weight, mean vector, and covariance matrix,
respectively. For compactness reasons, all parameters are captured in

θ =
{
θk|k ∈ {1, . . . , K}

}
=
{
πk,µk,Σk|k ∈ {1, . . . , K}

}
. (2.4)

It was already in 1894 that Karl Pearson proposed methods to identify parameters of a
GMM. At that time, due to a lack of today’s nomenclature, he called this process dissection
of abnormal frequency curves into normal curves [7]. The next section introduces the most
common approaches used nowadays to estimate parameters of a mixture model, e.g., a
GMM.

2.5.3 Expectation maximization algorithm

The expectation maximization (EM) algorithm is quite a famous2 method to obtain maximum
likelihood estimates of a latent variable model when an explicit estimation formula cannot be
derived [8]. It is by no means the only way to approach this problem, e.g., Everitt mentions
and compares a whole list of algorithms just to estimate parameters of a GMM [9]. The EM
algorithm can be seen as a special case of the variational expectation maximization (VEM)
algorithm as well as a special case of the majorize-minimization or minorize-maximization
(MM) algorithm [10, Section 4.2].

Different authors tend to prefer different ways to motivate the EM algorithm. This work
summarizes a selection of approaches: (a) A direct derivation which does not rely on an
external formalism but rather heuristically defines cutting points to create a two-step iterative
algorithm. (b) One version which motivates the auxiliary function by arguing that the
marginal likelihood is just intractable. This version still leaves it rather unclear where the
auxiliary function stems from and why optimizing it is indeed maximizing the likelihood we

2 It is without doubt famous, since the work [8] alone has already received more than 50 000 citations.
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were originally interested in. (c) A derivation which starts by decomposing the marginal
likelihood and therefore is the most rigid approach arguing from first principles only. (d) An
approach which shows that the EM is a special case of the VEM. (e) An approach motivating
the EM as a special case of a MM algorithm.

a) Direct derivation The likelihood of a latent variable model which is compactly param-
eterized with θ can be written as follows:

L = p(Y ;θ) =

∫

Z

p(Y|Z;θ)p(Z;θ)dZ, (2.5)

where Y represents all realizations of observable random variables and Z captures all re-
alizations of hidden or latent random variables.3 Likewise, we may prefer to work with
the log-likelihood function which often turns out slightly easier to handle and imple-
ment:

ℓ = ln p(Y ;θ) = ln

∫

Z

p(Y|Z;θ)p(Z;θ)dZ. (2.6)

To find a maximum of the likelihood function, the necessary condition ∂ℓ/∂θ
!
= 0 leads to

a system of equations which needs to hold for the likelihood to be maximized. Therefore,
we may simply calculate all derivatives first. Then, if we do not obtain explicit parameter
estimation formulas directly, we may identify cutting points to partition the equations into a
multi-step iterative algorithm. A similar argumentation can be found in [11, Section 9.2.2]
and [12, Page 104].

Here, we use a GMM as an illustrative example because we may later reuse some results when
motivating the mixture models applied to speech data. The log-likelihood of a GMM for the
observations yn with the observation index n = 1, . . . , N is denoted by

ℓ =
∑

n

ln
∑

k

πkp(yn;µk,Σk) with
∑

k

πk = 1. (2.7)

To first find an equation for the mixture weights πk, we modify the objective function ℓ by in-
troducing the sum-1 condition according to the Lagrange method [13]:4

ℓ′ =
∑

n

ln
∑

k

πkp(yn;µk,Σk) + λ

(
∑

k

πk − 1

)

. (2.8)

3 One may be willing to write p
Y̆
(Y̆ = Y;θ) but we here use the simplified notation p(Y;θ).

4 An alternative would have been to parameterize the categorical distribution with αk

/∑

k′ αk′ , where
the parameter αk is then unconstrained. See Section A.3 for a brief derivation.
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We obtain the necessary optimality conditions by setting the derivatives to zero:

∂ℓ′

∂πk
=
∑

n

p(yn;µk,Σk)
∑

k′ πk′p(yn;µk′ ,Σk′)
+ λ

!
= 0

∣
∣
∣
∣
· πk

⇔
∑

n

πkp(yn;µk,Σk)
∑

k′ πk′p(yn;µk′ ,Σk′)
︸ ︷︷ ︸

=:γk,n

+λπk = 0

⇔
∑

n

γk,n + λπk = 0 (2.9)

When we now sum up Equation 2.9 for each k, we obtain an expression for λ:

∑

k,n

γk,n + λ
∑

k

πk

︸ ︷︷ ︸
=1

= 0 ⇔ N + λ = 0 ⇔ λ = −N. (2.10)

With this result we can now separate πk in Equation 2.9:

πk = −1

λ

∑

n

γk,n =
1

N

∑

n

γk,n. (2.11)

With a similar procedure we find two more necessary conditions which have to hold for a
likelihood maximum [11, Equation 9.17 and 9.19] given by

µk =
∑

n

γk,nyn

/
∑

n

γk,n, (2.12)

Σk =
∑

n

γk,n(yn − µk)(yn − µk)
T

/
∑

n

γk,n. (2.13)

We may now identify an iterative two-step algorithm by first evaluating γk,n and then
updating the parameters as in Equations 2.11 – 2.13. However, this does neither tell us
whether this is a maximum or a minimum nor are there any convergence guarantees visible.
Evaluating second-order derivatives allows us to examine if the solution indeed corresponds
to a maximum.

It is worth noting that the direct derivations of the update equations up to this point did not
require explicit handling of latent random variables.

b) Auxiliary function An alternative to the direct approach is given as follows. First, we
state the log-likelihood ℓ of the observations. Then, we introduce the latent random variables
as a reverse marginalization [11, Equation 9.29] resulting in

ℓ = ln p(Y ;θ) = ln

(∫

Z

p(Y ,Z;θ)dZ
)

. (2.14)
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One may now argue that the integral in the logarithm (or the sum in case of discrete latent
random variables) is overcomplicating the matter and one rather wishes to optimize the
likelihood of the complete data (Y ,Z) – a tuple of the observations and realizations of latent
random variables. The alternative maximum likelihood term can then be written in the
form

ℓ′ = ln p(Y ,Z;θ). (2.15)

However, we neither know the realizations of the latent random variables nor do we know
their distributions. At most, we may have a guess for the parameters θold from a previous
step or from an initialization. Therefore, we can make use of (a possibly wrong or premature)
posterior distribution p(Z|Y ;θold) and calculate the expected value of the log-likelihood of
the complete data under the assumption that p(Z|Y ;θold) is true, which is called a rather
heuristic idea in [8, Page 6]. Nevertheless, a presentation like this is fairly common and also
appears in Moon’s comparably popular tutorial [14] as well as McLachlan’s book on EM
algorithms [15, Page 19]. The auxiliary function is then given by

Q(θ,θold) = Ep(Z|Y;θold) {ℓ′}
= Ep(Z|Y;θold)

{

ln p(Y , Z̆;θ)
}

=

∫

Z

p(Z|Y ;θold) ln p(Y ,Z;θ)dZ. (2.16)

We may now read this integral as a more structured way of dissecting the algorithm:

• In the expectation step (E-step) we evaluate p(Z|Y ;θold) – the distribution under which
the expectation is calculated. This step is called expectation step because in principle
we evaluate the expectation operator and then have a single expression for the auxiliary
function without the expectation operator.

• In the maximization step, we maximize the resulting expression for the auxiliary function
with respect to the new parameters θ by calculating the derivative of the auxiliary
function with respect to the parameters and equating this to zero.

For our concrete GMM example the posterior distribution of the latent random variables
then turns out to be

p(ck,n = 1|yn;θ
old) = γk,n =

πold
k′ p(yn;µ

old
k ,Σold

k )
∑

k′ π
old
k′ p(yn;µold

k′ ,Σ
old
k′ )

. (2.17)

First, we recognize that yn only depends on cn and neither on other observations yn′ nor
other latent affiliations cn′ , where n′ 6= n:

Q(θ,θold) = Ep(Z|Y;θold)

{

ln p(Y , Z̆;θ)
}

=
∑

n

Ep(cn|yn;θ
old) {ln p(yn, c̆n;θ)} . (2.18)
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This results in the expectation-free expression of the auxiliary function:

Q(θ,θold) =
∑

k,n

p(ck,n = 1|yn;π
old,µold,Σold) ln p(yn, ck,n = 1;π,µ,Σ)

=
∑

k,n

γk,n ln p(yn, ck,n = 1;π,µ,Σ)

=
∑

k,n

γk,n ln p(ck,n = 1;π)
︸ ︷︷ ︸

lnπk

ln p(yn|ck,n = 1;µ,Σ)
︸ ︷︷ ︸

ln p(yn;µk,Σk)

=
∑

k,n

γk,n

(

ln πk − 1
2
ln
(
(2π)DdetΣk

)
− 1

2
(yn−µk)

TΣ−1
k (yn−µk)

)

. (2.19)

When we now calculate derivatives of the auxiliary function from Equation 2.19 with respect
to the parameters θ, we obtain the same update equations as in the direct derivations
(compare Equations 2.11 – 2.13), for example:

∂Q(θ,θold)

∂µk

= 1
2

∑

n

γk,nΣ
−1
k (yn − µk)

!
= 0

∃Σ−1
k⇔
∑

n

γk,nyn = µk

∑

n

γk,n

⇔ µk =
∑

n

γk,nyn

/
∑

n

γk,n. (2.20)

Interestingly, although it seems like using the expectation operator in Equation 2.16 is
an approximation, this led us to the same parameter updates as before. Furthermore,
this derivation led us to two distinct processing steps and made their naming rather intu-
itive.

We now briefly prove that maximizing the auxiliary function in the M-step indeed maximizes
the likelihood and thereby roughly follow the suggestions in [8, beginning of Section 3] with
updated notation. To do so, we first decompose the auxiliary function into the log-likelihood
term and a negative cross entropy term by making use of the definition of conditional
probabilities and the linearity of the expectation operator:

Q(θ,θold) = Ep(Z|Y;θold)

{

ln p(Y , Z̆;θ)
}

= Ep(Z|Y;θold)

{

ln p(Y ;θ) + ln p(Z̆|Y ;θ)
}

= Ep(Z|Y;θold) {ln p(Y ;θ)}+ Ep(Z|Y;θold)

{

ln p(Z̆|Y ;θ)
}

= ln p(Y ;θ) + Ep(Z|Y;θold)

{

ln p(Z̆|Y ;θ)
}

︸ ︷︷ ︸

−CE(p(Z̆|Y;θold),p(Z̆|Y;θ))

. (2.21)

Hence, it follows:

ln p(Y ;θ) = Q(θ,θold) + CE
(

p(Z̆|Y ;θold), p(Z̆|Y ;θ)
)

. (2.22)
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We can now calculate the difference between the log-likelihood after the M-step and before
the M-step using a short hand notation for the cross entropy:

∆ℓ = ln p(Y ;θ)− ln p(Y ;θold)

=

(

Q(θ,θold)−Q(θold,θold)

)

+

(

CE
(
θold,θ)

)
− CE

(
θold,θold

)

︸ ︷︷ ︸

KL(θold‖θ)

)

. (2.23)

The difference of auxiliary functions increases by definition of the M-step – after all, the
M-step is defined as maximizing the auxiliary function with respect to the parameters θ. The
difference of cross entropy terms is positive or zero, because the expected code length under
the wrong distribution CE

(
θold,θ)

)
is always larger than the entropy CE

(
θold,θold

)
or equal

when the distributions are equal. This is also known as the Gibb’s inequality which can itself
be proven by applying Jensen’s inequality (compare Section A.2). Consequently, ∆ℓ ≥ 0 and
the M-step for the auxiliary function indeed maximizes the likelihood.5

c) Decomposition of the likelihood Alternatively, we may decompose the likelihood
into a lower bound and a Kullback-Leibler divergence. This view of the EM algorithm is
closest to [16] although Neal et al. do not demonstrate the decomposition. Similarly to the
decomposition in the last section we first introduce a latent random variable Z by multiplying
the log-likelihood with the integral of the PDF of the latent random variable, here denoted
as q(Z) [17, Equation 3.1]:

ℓ = ln p(Y ;θ) = ln p(Y ;θ)

∫

Z

q(Z) dZ

=

∫

Z

q(Z)

(

ln p(Y ;θ) + ln

(
p(Z|Y ;θ)

q(Z)

)

− ln

(
p(Z|Y ;θ)

q(Z)

))

dZ

=

∫

Z

q(Z)

(

ln

(
p(Y ,Z;θ)

q(Z)

)

− ln

(
p(Z|Y ;θ)

q(Z)

))

dZ

=

∫

Z

q(Z) ln

(
p(Y ,Z;θ)

q(Z)

)

dZ

︸ ︷︷ ︸

=: F (q,θ)

−
∫

Z

q(Z) ln

(
p(Z|Y ;θ)

q (Z)

)

dZ

︸ ︷︷ ︸

= KL(q‖p)

.

We have now obtained a decomposition of the log-likelihood into a lower bound F (q,θ) and
a Kullback-Leibler divergence KL(q‖p):

ℓ = ln p(Y ;θ) = F (q,θ) + KL(q‖p). (2.24)

The term F (q,θ) is a lower bound of the log-likelihood since the Kullback-Leibler divergence
is always greater or equal to zero (compare Section A.2).

5 It is worth noting that this actually proves a bit more: It also proves that a generalized EM algorithm
improves the likelihood even when the M-step did not find the maximum and just improved the auxiliary
function a bit [8], [16].
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It is now possible to maximize the likelihood purely by optimizing the lower bound F (q,θ).
Neal et al. formulated the corresponding EM algorithm as follows and proved that this is indeed
equal to the auxiliary function optimization as stated before [16]:

• Find a posterior distribution q which maximizes the lower bound F (q,θ) while keeping
the parameters θ fixed.

• Maximize the lower bound F (q,θ) with respect to the parameters θ under the assump-
tion that the posterior q is the true distribution.

Arguably, it might still be a bit nebulous how to maximize the lower bound F (q,θ) (a
functional) with respect to a function. In general, it is rather complicated to find a function q
without implying further constraints. Keeping in mind that F (q,θ) is a lower bound for the
log-likelihood and that the Kullback-Leibler divergence is always positive or zero, it becomes
clear that the lower bound can at most reach the log-likelihood. Then, the Kullback-Leibler
divergence equals zero, i.e., q and p coincide [18, Page 135]:

q(Z) = p(Z|Y ;θ). (2.25)

At least for our timeless GMM example we may now maximize the lower bound with respect
to the candidate distribution q without arguing via the Kullback-Leibler divergence, i.e.,
by directly differentiating with respect to the parameters of the candidate distribution
q(ck,n=1) = Cat(k,γn), where γn =

(
γ1,n, . . . , γK,n

)T
. We start by adding a constraint that

the distribution has to sum up to one by introducing a Lagrange multiplier [13] for each
observation indexed by n:

F ′ = F (q,θ) +
∑

n

λn

(
∑

k

γk,n − 1

)

=
∑

k,n

γk,n ln p(yn, ck,n=1,θ)−
∑

k,n

γk,n ln γk,n +
∑

k,n

λnγk,n +
∑

n

λn. (2.26)

We now differentiate with respect to the parameters of the candidate distribution q:

∂F ′

∂γk,n
= ln p(yn, ck,n=1,θ)− (1 + ln γk,n) + λn

!
= 0

⇔ ln γk,n = ln p(yn, ck,n=1,θ) + λn − 1

⇔ γk,n = p(yn, ck,n=1,θ) · eλn−1. (2.27)

By using the constraint again, we can identify the constant eλn−1:

∂F ′

∂λn

!
= 0 ⇒

∑

k

p(yn, ck,n=1,θ) · eλn−1 = 1 ⇔ eλn−1 =
1

∑

k p(yn, ck,n=1,θ)
. (2.28)
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Plugging Equation 2.28 into Equation 2.27 confirms our previous observation that the lower
bound is indeed maximized when the candidate distribution q coincides with the posterior
distribution p(Z|Y ;θ):

q(ck,n=1) = γk,n =
πkp(yn;µk,Σk)

∑

k′ πk′p(yn;µk′ ,Σk′)
. (2.29)

It remains to be argued that maximizing the lower bound F (q,θ) with respect to θ is, in
fact, equal to the M-step of the auxiliary function approach described in Section 2.5.3. To do
so, the lower bound is rewritten slightly:

F (q,θ) =

∫

Z

q(Z) ln

(
p(Y ,Z;θ)

q(Z)

)

dZ

=

∫

Z

q(Z) ln p(Y ,Z;θ)dZ

︸ ︷︷ ︸

= Q(θ,θold)

−
∫

Z

q(Z) ln q(Z)dZ

︸ ︷︷ ︸

= H(q(Z̆))

. (2.30)

The last term, which turns out to the entropy of the candidate distribution, is constant with
respect to the parameters. Consequently, since the first term is the auxiliary function and
the entropy does not depend on the parameters, maximizing the lower bound with respect to
the parameters θ is indeed equivalent to maximizing the auxiliary function with respect to
the same parameters. In [18, Equation 10] Tzikas et al. argue similarly, however, in contrast
to their presentation we actually did not need to plug in the result of the E-step to prove our
point.

d) Special case of the VEM algorithm Based on the likelihood decomposition approach
in Section 2.5.3 we argue that the likelihood is maximized when the lower bound is maximized
(repetition of Equation 2.24):

ℓ = ln p(Y ;θ) = F (q,θ) + KL(q‖p).

To derive a VEM algorithm, we, therefore, thrive to maximize the lower bound with respect
to q. To do so, no constraints on q are imposed in general. Specifically, we do not impose
any functional form such as polynomial. Much rather, we want to perform a free-form
optimization (also called variational optimization) of the functional F with respect to the
function q. The only structural choice necessary for the derivation in the following is that
the variational posterior factorizes with respect to each latent random variable or at least
with respect to subgroups of latent random variables. Here, m indexed the latent variable
subgroup:

q(Z) =
∏

m

q(Zm). (2.31)

According to this argumentation the successive derivation loosely follows [17, Section 3.2] and
[18, Equation 15] with adjusted notation and slightly more focus on transparent intermediate
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steps. To do so, we need to insert the factorization in Equation 2.31 into the lower bound.
For clarity, we make use of the decomposition in Equation 2.30 and insert the factorization
into the auxiliary function and into the entropy independently.

Q(θ,θold) =

∫

Z

q(Z) ln p(Y ,Z;θ)dZ

=

∫

Z

∏

m

q(Zm) ln p(Y ,Z;θ)dZ

=

∫

Zm

q(Zm)

∫

Z\Zm

∏

m′ 6=m

q(Zm′) ln p(Y ,Z;θ) d(Z \ Zm′)

︸ ︷︷ ︸

=: ln p̃(Y ,Zm;θ)

dZm, (2.32)

where d(Z \ Zm′) should be read as the product of all but dZm′ . We identify p̃(Y ,Zm;θ) as
that distribution which contains only one of the latent variable subgroups: all others have
disappeared due to the marginalization.

We now continue by inserting the factorization in Equation 2.31 into the entropy term on the
very right hand side of Equation 2.30:

H(q(Z̆)) = −
∫

Z

q(Z) ln q(Z)dZ

= −
∫

Z

∏

m′

q(Zm′) ln
∏

m

q(Zm)dZ

= −
∫

Z

∏

m′

q(Zm′)
∑

m

ln q(Zm)dZ. (2.33)

Applying the distributive law, we can now move the product over m′ into the summation
over m: the multiplication is distributive over addition. Finally, the integration and the
summation are switched and the known property that the entropy of independent sources is
additive is obtained:

H(q(Z̆)) = −
∑

m

∫

Z

∏

m′

q(Zm′) ln q(Zm)dZ

= −
∑

m

∫

Z\Zm

∏

m′ 6=m

q(Zm′)

∫

Zm

q(Zm) ln q(Zm)dZm

︸ ︷︷ ︸

= H(q(Z̆m))

d(Z \ Zm)

=
∑

m

H(q(Z̆m))

∫

Z\Zm

∏

m′ 6=m

q(Zm′) d(Z \ Zm)

︸ ︷︷ ︸
=1

=
∑

m

H(q(Z̆m)). (2.34)
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We can now combine both previous findings and apply them to the lower bound:

F (q,θ) =

∫

Zm

q(Zm) ln p̃(Y ,Zm;θ)dZm +H(q(Zm)) +
∑

m′ 6=m

H(q(Z̆m′))

=

∫

Zm

q(Zm) ln p̃(Y ,Zm;θ)dZm +

∫

Zm

q(Zm) ln q(Zm)dZm

︸ ︷︷ ︸

= −KL(q(Z̆m)‖p̃(Y , Z̆m;θ))

+ const. (2.35)

Now, it can be deduced that the lower bound can be maximized by adjusting q(Zm) for each
m independently by minimizing the Kullback-Leibler divergence between the approximate
posterior q(Zm) and the partially marginalized distribution p̃(Y ,Zm;θ). Since the Kullback-
Leibler divergence is always positive or zero and only zero when both distributions coincide,
the approximate posterior has to be equal to the partially marginalized distribution in
order to maximize the lower bound. To make it more clear, we can obtain the candidate
distribution for a latent variable Zm by evaluating the expectation operator under all
distributions q but the candidate distribution [11, Equation 10.9], [18, Equation 16], [17,
Equation 3.16]:

ln qm(Zm) = Eq(Z\Zm)

{

ln p(Y , Z̆,θ)
}

+ const., (2.36)

where Z̆ are all latent random variables and Z̆m is a single latent random variable or a
subset of latent random variables and Z̆ \ Z̆m stands for all latent random variables but Z̆m.
Therefore, our new E-step is to cycle through this equation for each latent random variable
Z̆m and evaluate the expectation operator to obtain q(Zm).

The VEM algorithm can then be summarized [17, Page 13]:

E-step Cycle through Equation 2.36 for each latent random variable.

M-step Maximize the lower bound F (q,θ) with respect to θ.

If there is only one group of latent variables, the expectation operator in Equation 2.36 becomes
obsolete: there is no other latent random variable. Consequently, we can simplify the expres-
sion and capture all terms not depending on Z in the additive constant:

ln q(Z) = ln p(Y ,Z;θ) + const.

= ln p(Z|Y ;θ) + ln p(Y ;θ) + const.

= ln p(Z|Y ;θ) + const. (2.37)

For the classic GMM example this results in the expected solution:

ln q(cn) = ln p(cn|yn;θ) + const. ⇔ q(cn) = p(cn|yn;θ) = γk,n. (2.38)

The M-step is the same optimization problem as discussed in Section 2.5.3 before. In summary,
the EM algorithm is de facto a special case of the VEM algorithm.
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e) Special case of the MM algorithm The EM algorithm can be identified as a special
case of the very general MM algorithm [10], [19]. This is mentioned here for reasons of
completeness but is not shown in detail. Falling back to the MM algorithm is advantageous
when the variational approximation is not sufficient to find a solution.6 An example in which
Azcarreta et al. applied the MM algorithm to spatial clustering of multi-channel speech
signals can be found in [20].

6 An example in which MM has not been applied yet, but in which it might lead to a better model is a
prior distribution for the concentration parameter of a complex Watson distribution. Although first
derivations were performed to find such a prior, efficient parameter updates were unavailable at that
time.



3 Blind source separation principles

This chapter introduces the relevant foundations of BSS upon which this thesis is built. It
is organized as follows: First, a general overview of source separation algorithms and their
goal is provided. Second, single-channel as well as multi-channel approaches that yield an
intermediate signal, e.g., a time-frequency mask, are introduced in Section 3.1 and Section 3.2,
respectively. Third, two instances of source extraction categories which are informed by
the aforementioned masks are discussed in Section 3.3. Although fixed (data-independent)
approaches are known, we constrain the discussion to data-dependent source extraction
techniques, namely masking and spatial filtering/ beamforming.

BSS aims at estimating the underlying signal components of an observed mixture without
access to parts of the source signals or the transfer characteristics from the source to the
receiving sensor. Although its applicability generally ranges from medical applications such
as disentangling electroencephalography (EEG) signals to seismographic signals to detect
earthquakes, we here want to constrain ourselves to approaches particularly derived for speech
mixtures.

When separating speech mixtures, the goal is to either obtain an estimate of each speech
image or an estimate of each speech source signal. The goal is sometimes defined rather
vaguely, since a source separation system may inherently also partially dereverberate a signal
and, therefore, might approximate a scaled and dereverberated version of the source signal
better than the speech image itself.

The term blind refers to the degree of how much a priori knowledge is assumed to be available
to a system. Generally speaking, no BSS system is entirely blind. Most systems make
some assumptions about the source signal, here speech, which informs how the system itself
is designed. This may include the assumption that speech is rather sparse in the STFT
domain [21], [22] which led to sparsity-based methods or the assumption that speech is
limited in frequency, leading to systems operating on only up to 8 kHz or 16 kHz. More
practically, source separation systems within the scope of this thesis are considered blind
when they do not use knowledge of the geometry of the setup, e.g., the source locations or the
array geometry, when they do not make use of externally provided diarization information,
speaker identity or any other kind of speaker information, and do not assume knowledge of
interference signals beforehand.

In case signals do not overlap, it seems natural to select the relevant signal simply by masking.
In particular, this is used in digital communications in which a communication channel can be
occupied by multiple participants using, e.g., time-division multiplexing or frequency-division
multiplexing. Yilmaz et al. nicely demonstrated that a sparsity assumption is well valid for
speech signals in the STFT domain (with a certain orthogonality measure, namely W-disjoint
orthogonality, [22, Section II.]). In other words: although speech signals may overlap in

19
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the time domain the assumption that speech signals overlap rarely in the STFT domain
approximately holds [21], [22]. Rickard demonstrates in [23, Figure 8.4] that the W-disjoint
orthogonality is maximized for K = 2 up to K = 8 speakers for a discrete Fourier transform
(DFT) window size of 1024 (64ms) for a 16 kHz speech signal.

Although being aware of time-domain source separation, we here constrain the discussion
to frequency domain approaches which, at least to some degree, rely on sparseness in the
STFT domain or derived domains. The general processing pipeline, therefore, consists of
(1) obtaining a speech mixture from a multi-channel microphone array, (2) analyzing the
waveform with a STFT to obtain an STFT signal, (3) applying a clustering or separation
algorithm in the STFT domain that yields some form of masks, (4) extracting each source
in the STFT domain by either using the mask directly (compare Section 3.3.1) or within
a mask-based beamforming step (compare Section 3.3.2), and finally (5) a synthesis of the
waveform with an inverse short time Fourier transform (ISTFT). The reconstruction result
in the time-domain can then be evaluated with signal-level metrics or be transcribed in a
speech recognizer to obtain word error rates (WERs).

3.1 Principles of single-channel approaches

This section addresses single-channel approaches to BSS. To be able to separate sources
given only one channel one needs to rely on additional constraints such as independence
of the source signals, sparseness in a particular domain, or sophisticated source models.
This section is organized into shallow methods in Section 3.1.1 more heavily relying on the
aforementioned assumptions or grouping principles and Section 3.1.2 containing selected
DNN-based approaches in which less structure is enforced and knowledge is first and foremost
obtained through excessive training on dedicated databases.

3.1.1 Shallow methods

In an entirely blind setup and without additional constraints, it is generally impossible
to separate sources in a single-channel recording [24]. Such constraints that enable sep-
aration are independence constraints [25], sparseness constraints, or constraints on the
source itself [26] leading to different well-known algorithms, as briefly introduced in the
following.

Constraints on the source itself can be encapsulated into a source model. Ellis groups these
into explicit source models, which aim to memorize realistic source signals and implicit
source models, in which particular cues encoded into functions are tested against the source
signal [24]. Factorial models [27] treat the separation problem as an inference problem, in
which the sources are assumed to be well modeled one just needs to figure out how they
explain the given mixture. However, this requires learned models for each source beforehand.
Given additional sequential constraints, these can also be speaker-independent, e.g., by
introducing a (hard) transition matrix between states as nicely illustrated in [24, Figure 3.2]
or state transition probabilities resulting in factorial hidden Markov models (HMMs) [28],
[29]. Slightly differently, computational auditory scene analysis (CASA) models encode
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knowledge about source properties into functions applied to the signal [30]–[32]. Such a
grouping principle can be for example proximity in time and frequency, harmonicity, common
onsets, or other hand-crafted properties.

In contrast, while the aforementioned models assume independence since no cross-source
statistics are captured, independent component analysis (ICA) explicitly maximizes some
measure of independence [33], [34], e.g., by approximating uncorrelatedness of any function of
the source signals (not just uncorrelatedness of the signals themselves). Smaragdis compares
ICA with CASA and goes so far as to argue that the rather heuristically obtained grouping
principles in CASA are better captured with independence assumptions naturally leading to
ICA [35].

Sparse decomposition can be seen as a generalization of independence and sparsity. Source
signals themselves are not directly assumed to be independent or sparse. Much rather, it
is assumed that their decomposition coefficients given a possibly overcomplete dictionary
are independent and sparse [36]. In that sense, nonnegative matrix factorization (NMF)
is a decomposition technique into a dictionary of bases and corresponding activations [37].
Subsequently, NMF has been extensively applied to mixtures of audio signals [38] adding
additional constraints or generalizing to convolutive NMF [39].

Although the aforementioned approaches are not directly compared in the remainder of
this work, a brief understanding of the underlying assumptions helps to better understand
other algorithms referred to in the following. Especially when discussing other integration
approaches, e.g., in Section 3.2 or more extensively in Section 4.1 beyond the ones derived
in this thesis, the aforementioned shallow approaches are going to reappear either in a
generalized form or as a sub-model.

3.1.2 Deep-learning methods

Motivated by the success of deep learning in domains such as speech recognition, image
recognition, and segmentation researchers have applied neural networks to speech enhancement
as well as speech separation. Early deep learning approaches to source separation trained a
separate network for each target speaker which maps from the mixture signal to the speech
signal of the target speaker [40] and were, thus, only applicable when the speaker at test
time had already been seen during training (closed condition). Tu et al. introduced training
networks with a mean squared error (MSE) loss not just for the target speaker but also for
the interfering speaker and claim that this training scheme leads to better generalizability
when it comes to unseen interferers [41]. They encourage temporal continuity by using
neighboring context frames for separation and already encourage multi-style training with
varying mixture ratios. That work and its follow-up improvement can certainly be seen
as a generalization of [40] in the sense that although the target test speaker needs to be
known during training the interference test speaker can differ from training interferences [41,
Section 3.3], [42].

The development of deep clustering (DC) is an important breakthrough as it can operate
with entirely unseen speakers at test time (open condition) [43]. Not much later Yu et al.
published the first successful system, which addresses the source separation problem similarly
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Figure 3.1: Overview of the DC processing steps. The vanilla implementation operates on a single-
channel which in this case is, without loss of generality, set to d = 1. Furthermore, ck,t,f represents
a ground-truth supervision mask such as an ideal binary mask (IBM).

to [41] while allowing the prediction to be arbitrarily permuted [44], [45]. This concept,
allegedly solving the permutation problem, was already mentioned briefly in [43] while not
being successfully applied. Deep attractor networks (DANs) are an interesting variant of
DC in the sense that they infer a latent embedding representation which is intrinsically
permutation invariant while enforcing separability with a reconstruction loss without the
need for a permutation invariant training (PIT) strategy [46].

3.1.2.1 DC: Deep clustering

DC is a method to separate a single-channel speech mixture into an estimate for each
speaker’s contribution to the mixture [43]. It is probably the first neural network-based
source separation approach that addresses the label ambiguity problem: one is interested
in separated source estimates but the actual ordering (e.g., the youngest speaker first) does
not matter. The key component is to train a neural network that translates an amplitude
spectrogram into an embedding vector per time-frequency bin. Then, applying a clustering
algorithm such as k-means on the embedding vectors allows one to obtain a posterior mask
for each source. The underlying idea is that the DNN transforms the information in such a
way that separability by a simple clustering algorithm is alleviated. Figure 3.1 summarizes
these processing steps.

Training embeddings, e.g., to group similar images or to find similar words can be seen as
weakly-supervised training: instead of using the class label as supervision, one just uses the
information that objects belong or do not belong to the same class. The standard loss is a
contrastive loss which encourages to move embeddings belonging to the same class closer
together and embeddings belonging to different classes further apart. Figure 3.2 illustrates
this behavior.
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Figure 3.2: Different sketches to illustrate a contrastive embedding loss. From left to right: two
embedding vectors from the same class attract each other, two embedding vectors from different
classes repel each other, both effects complement each other.

Although there are many variants to the contrastive loss, such as triplet loss, Hershey et al.
decided to use a very specific variant of the contrastive loss which can be reformulated in a fairly
resource-efficient way. The DC loss is given as follows [43, Equation 1]:

J (DC) =
∥
∥
∥Â−A

∥
∥
∥

2

F
=
∥
∥
∥EET −CCT

∥
∥
∥

2

F
. (3.1)

Here, Â and A are the estimated and the ground truth affinity matrices with shape TF ×TF .
The entries in A encode if two time-frequency slots belong to the same class. The matrices E
and C consist of the stacked embedding vectors and the stacked ground-truth class affiliation
vectors, respectively:

E =
(
e1,1 . . . eT ,F

)T ∈ R
TF×E, C =

(
c1,1 . . . cT ,F

)T ∈ R
TF×K . (3.2)

Regardless of the fact that Equation 3.1 suggests that (TF )2 inner products need to be
calculated, [43] demonstrates that the effective number of inner products is much lower when
an appropriate reformulation of Equation 3.1 is performed.

An early extension added a subsequent mask refinement network and trained that jointly with
the embedding network [47]. Other noteworthy extensions of DC are alternative objective
functions [48] and multi-channel DC as better explained in Section 3.2.2 [49]. Another larger
performance boost was achieved by combining the DC loss with an additional permutation
invariant mask inference loss (compare Section 3.1.2.3) [48], [50]. Further, DANs are a
noteworthy variant of DC which allow a signal reconstruction loss. DANs are explained in
the next section.

3.1.2.2 DAN: Deep attractor network

Just as DC, DANs were developed to separate speech from a single-channel mixture [46]. To
do so, a DAN relies on an embedding network similar to DC but avoids the DC loss function.
First, the embedding vectors et,f are calculated by a DNN. Second, a weighted average of
the embedding vectors is calculated using an oracle class affiliation mask to obtain mean
embeddings:

µk =
∑

t,f

ck,t,fet,f

/
∑

t,f

ck,t,f . (3.3)



Blind source separation principles 24

during

inference

during

training

Embedding
network

k-means
clustering

Weighted
mean

×

softmax ×

MSE
yt,f ,1

ck,t,f

et,f

x̂k,t,f

xk,t,f J (MSE)

γk,t,f

Figure 3.3: Overview of the DAN processing steps with a signal reconstruction loss. During training,
an oracle class affiliation mask is used to calculate attractors similar to an M-step in GMM clustering.

Referring to alleged brain mechanisms, these mean vectors are called attractors in the original
work [46]. Interestingly, although the authors of [46] did not mention this connection, this
is reminiscent of supervised GMM parameter estimation: Given the latent class affiliations
the mean vectors of a GMM are calculated just as in Equation 3.3. Third, an inner product
between each embedding vector and each attractor is calculated to obtain logits,1 which can
then be mapped to probabilities with a softmax function over k [46]:

γk,t,f = softmax
k

(
µT

k et,f
)
= eµ

T

k
et,f

/
∑

k′

eµ
T

k′
et,f . (3.4)

Finally, the embedding network can be trained either with a mask loss (such as cross entropy
(CE) comparing a predicted mask with an oracle mask) or with a signal level loss by applying
the mask to the mixture spectrogram first [46]. Figure 3.3 shows the training and inference
steps for a reconstruction loss.

Albeit avoiding the DC loss function and being able to train with a reconstruction loss, the
training conditions still differ slightly from the test conditions: During test time, the oracle
masks are replaced by the output of the k-means clustering algorithm. This mismatch can
be addressed by training a mask-refinement network similar to [47] or by retraining the
downstream task, e.g., ASR as in [51, Table 3].

1 Here, logit refers to the log-probability before applying the sigmoid or softmax function. The term goes
back to 1944 when Joseph Berkson used the logistic function to map probabilities in [0, 1] to [−∞,∞].
However, there is no logistic function involved here.
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Figure 3.4: Overview of the PIT processing steps. The PIT loss calculates a given metric, e.g., MSE
for each possible permutation of classes and then just forwards the minimal loss.

3.1.2.3 PIT: Permutation invariant training

PIT [44], [45] is a different approach to address the global speaker label ambiguity which
greatly streamlined the processing scheme and led to many top-performing separation models
such as TasNet [52] or DPRNN [53]. The idea is to skip the embedding representation entirely
and train a network that directly estimates posterior masks from the observation. In doing so,
the neural network cannot be aware of the order in which the different target signals appear.
Ideally, one would like to take the oracle permutation and just calculate a mask loss such as
CE or a signal reconstruction loss such as MSE on the accordingly permuted signals. One
option is to externally calculate the ideal assignment, possibly with a different metric. A much
more self-contained solution is to calculate the desired loss for each possible permutation and
then use that loss for backpropagation which led to the lowest value [44], [45], where Π is
any permutation of

(
1, . . . , K

)
(compare Appendix A.7):

J (PIT) = argmin
Π

∑

k,t,f

MSE
(
x̂Π(k),t,f , xk,t,f

)
. (3.5)

When training with an additional noise class, one can keep the position of the noise output
fixed to somewhat reduce the number of permutations to test. However, although the number
of permutations needed for Equation 3.5 is the factorial of the number of classes, the number
of MSE losses which actually need to be calculated scales proportional to the square of the
number of classes: One can first calculate the quadratic matrix containing the loss of each
image xk,t,f with each prediction x̂k′,t,f and then pick those precomputed losses from that
matrix to evaluate Equation 3.5.

3.1.3 Discussion of single-channel deep-learning methods

The main advantage of DC and DANs over PIT is that the embedding network is entirely
independent of the number of speakers, i.e., the same weights can be used to infer two and
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Table 3.1: Conceptual comparison of single-channel deep learning-based approaches to BSS each
appearing as baseline systems in Chapter 5.

DC DAN PIT

Embedding ✓ ✓ ✗

Allows reconstruction loss ✗ ✓ ✓

Number of sources arbitrary during inference ✓ ✓ ✗

Computational complexity of the loss high low low

three speaker mixtures [43, Table 3]. However, the number of speakers has to be known before
the k-means step during inference, or at least estimated by an external system. The advantage
of DANs and PIT over DC is that they allow a signal reconstruction loss: the resulting
masks during training can be multiplied with the input spectrogram and the resulting speech
estimate can be compared with the ground truth source signals. However, DC variants such
as [47] and Chimera++ [48] again allow to train with a signal reconstruction loss, regardless.
Another advantage of PIT over DC and DANs is that it is easier to design a frame-online
algorithm using PIT than DC or DANs. This is caused by the fact that DC and DANs both
require k-means to run on a certain minimum signal length. However, all methods can be
generalized to block processing by, e.g., separating blocks independently and then solving the
block permutation problem (the problem that the speaker index may be inconsistent across
blocks) later. Table 3.1 roughly summarizes the key differences between DC, DANs, and PIT.

3.2 Principles of multi-channel approaches

The main cue for multi-channel separation are cross-channel features: the spatial character-
istics of each source can be obtained by using inter-channel phase differences (IPDs) and
inter-channel level differences (ILDs). Figure 1 and Figure 3 in [55] conceptually visualize
IPDs and ILDs, respectively. Although single-channel approaches such as DC may already
profit from additional channels due to the added redundancy (see, e.g., Table 5.26 for a
limited comparison), cross-channel dependencies add an additional source of information
and, depending on the complexity of the scenario, can lead to good source separation
results.

Multi-channel approaches consist of a variety of methods developed in parallel [54]. Figure 3.2
shows an overview of selected algorithms.

Widely known methods include multi-channel NMF [56], [57], a method bending the term
nonnegative to some degree: To also capture IPDs multi-channel NMF is, in fact, a semi-
nonnegative modeling approach in which the latent source power is modeled with NMF and
the mixing conditions are addressed with other means [58, Page 74]. An introduction to
multi-channel NMF can be found in [58, Chapter 4].

Additional methods are independent vector analysis (IVA) [59]–[61] and independent low-rank
matrix analysis (ILRMA) [62] (an approach unifying multi-channel NMF and IVA) which
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Table 3.2: Conceptual comparison of multi-channel approaches to BSS. The visualization closely
follows [54, Figure 1]. The approaches marked with an asterisk require an additional dimensionality
reduction. Approaches highlighted with a blue box are discussed in more detail in this work.
Other single-channel approaches are briefly introduced in Section 3.1.1, while other multi-channel
approaches are referenced in the introduction of Section 3.2.

Training

data

Single-channel Multi-channel

Underdetermined Determined Overdetermined

D = 1 K > D K = D K < D

✗

✗

✗

✗

✓

✓

ICA*ICA

ILRMA*ILRMA

Multi-channel NMF

Spatial clustering in Section 3.2.1

NMF

DNN-based methods in Section 3.1.2

are focusing on the determined case: the number of speakers coincides with the number of
channels. These can be generalized to overdetermined scenarios, i.e., situations in which
the number of channels exceeds the number of speakers, by preprocessing the observations
with a dimensionality reduction. Nevertheless, in the following, we will not address these
independence assumption-based methods in any more detail.

A more versatile class of multi-channel separation methods are clustering-based formula-
tions [22], [55], [63]–[66]. These concepts in principle allow to address the underdetermined
case (fewer sensors than sources) by assuming that the observations stem from a structured
generative model: first, class labels are sampled which indicate which observation belongs to
which source or noise, second, the observations are sampled from differently parameterized
distributions based on their class affiliation. Although the underdetermined case is supported,
in practice, these methods are often applied with six or more channels – more channels result
in better separation performance nonetheless.

A rather early overview of spatial features for clustering-based techniques can be found in
[23, Section 9.4]. Although Table 9.2 in [23] compares many heuristically motivated spatial
features, it already provides features quite similar to normalized observations as used in
modern spatial clustering approaches (compare Section 3.2.1). The choice of the actual
spatial feature, potentially a transformation of the observation vector yt,f , heavily depends
on the separation approach at hand. For probabilistic mixture model-based approaches,
the feature choice depends on the availability of adequate probability density functions and
the complexity of the parameter estimation process. In contrast, for multi-channel neural
network-based approaches, features are typically selected in such a way that the range of
possible values is limited and that discontinuities are avoided: to name an example, phase
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difference is often avoided due to the discontinuity at the wrapping point, whereas sine and
cosine of the phase difference are continuous and bound to [−1, 1].

Quite a different approach, not further analyzed within this work, is to precalculate a set
of fixed beamforming vectors for a given microphone array. Then a subsequent system just
selects the channels which lead to the best source separation results. To name an example,
Chen et al. suggests to apply a DAN to a limited number of fixed beamformer outputs and
then uses an additional system to select the best separation result [67].

First, Section 3.2.1 introduces spatial clustering approaches with their corresponding spatial
features. Then, Section 3.2.2 highlights, how spatial features can be used with neural networks.
Although beamforming is often introduced as a multi-channel source separation approach
(see, e.g., [68]), it is here introduced as an instance of source extraction methods alongside
masking approaches in Section 3.3.

3.2.1 Probabilistic spatial mixture models

Probabilistic spatial mixture models are a way to address the cocktail party problem based
on the sparseness assumption of speech in the STFT domain: speech occupies a small
fraction of time-frequency bins in the STFT domain. This assumption holds well for
the instantaneous mixing of a few sources in a noise-free scenario. However, in more
realistic scenarios reverberation effects cause the different source signals to cover more
time-frequency bins. In particular, background noise almost always violates the sparseness
assumption.

However, this sparseness assumption can be relaxed: it is sufficient to assume that each
time-frequency bin is dominated by one source or noise. By doing so, one can again assign
class labels to each time-frequency bin and model the multi-channel observation with a
weighted sum of component distributions:

p(f(yt,f )) = Ep(ct,f ) {p(f(yt,f ), c̆t,f )} =
∑

k

p(ck,t,f=1)p(f(yt,f )|ck,t,f=1), (3.6)

where f(·) is a feature extraction method and ck,t,f is the latent class affiliation modeling
from which class a particular time-frequency bin stems: each class models either a source or
the background noise.

All algorithms in the remaining part of this chapter either use the observation vectors yt,f

directly or use normalized features ỹt,f [69, Equation 12]:

yt,f =
(
yt,f ,1, . . . , yt,f ,D

)T ∈ C
D, (3.7)

ỹt,f = yt,f

/
‖yt,f‖ ∈ CSD−1 with CSD−1 =

{
ỹ ∈ C

D : ỹHỹ = 1
}
. (3.8)

This normalization ensures that neither the power in a particular time-frequency bin nor the
scaling of the entire input signal influences the clustering result. This elegantly incorporates
the scale ambiguity [2, Section III.C] but at the same time avoids using the power information,
e.g., as a reliability cue.



Blind source separation principles 29

The sparseness assumption can be relaxed further by assuming a nonsparse (not to say dense)
noise source while sticking to sparse speech sources at the cost of increased computational
requirements [70]. Another way is to improve sparseness by either applying a dereverberation
algorithm such as weighted prediction error (WPE) [71], [72] first, or formulating a joint
separation and dereverberation algorithm [73].

The remainder of this section is organized as follows: Section 3.2.1.1 introduces the fre-
quency permutation problem. Section 3.2.1.2 addresses different initialization schemes and
Section 3.2.1.3 discusses particular choices of mixture weights. The remaining sections discuss
concrete manifestations of spatial mixture models and corresponding parameter update
rules.

3.2.1.1 Frequency permutation problem

The aforementioned spatial mixture models neglect frequency dependencies. Although, under
some conditions, a normalization of the features in such a way that all can be processed
frequency-independently is possible [74] almost all recent publications suggest to operate at
least in part independently of frequency. Thus, when clustering is performed without any kind
of guidance, it will yield a solution in which the speaker index is inconsistent over frequency
bins. This issue is the so-called frequency permutation problem [75]. This can be addressed
by a variety of approaches [2, Page 14] which may or may not be already incorporated into
the optimization process: a linear constraint such as in minimum variance distortionless
response (MVDR) beamforming can be applied [76], a similarity measure between neighboring
beamforming vectors/ relative transfer functions (RTFs) may be used [77], or a similarity
to the corresponding anechoic steering vector can be considered [78]. However, within the
scope of this work permutation alignment is used as a separate post-processing step which
maximizes the correlation of neighboring frequency bins [75] [66], [79], [80]. In particular, a
greedy maximization of the similarity of the posterior mask of neighboring frequency bins
as proposed by Tran Vu [81, Section 5.6] is used where indicated. It is mainly influenced
by [66], [75], [80], [82] and nicely visualized in [83, Section 4.4].

3.2.1.2 Initialization

Probabilistic spatial mixture models tend to be very susceptible to initialization. The two pos-
sibilities are to either initialize with values for the class affiliation posteriors γk,t,f or to initialize
with values for the class-dependent parameters and the mixture weights.

To be able to initialize with values for the class-dependent parameters one often needs external
knowledge such as the approximate source positions [84]. It is also possible to distribute the
initial values randomly in their domain of definition, e.g., in [17, Page 33] complex Watson
mode vectors were drawn from a uniform distribution on the surface of the complex unit
hypersphere.

Initialization with values for the class affiliation posteriors γk,t,f tends to be easier to implement
because knowledge of the class-dependent distribution is not required. One option is to sample
the class affiliation posteriors γk,t,f i.i.d. from, e.g., a Dirichlet distribution or even from
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a uniform distribution with a subsequent normalization. Alternatively, one may randomly
assign wider vertical stripes to each of the classes, which alleviates the frequency permutation
problem a bit and encourages the class-dependent parameters to initially be more spread
out.

A more elaborate way is to better analyze the observation first. Tran Vu et al. proposed a
deflation scheme that selects high energy regions first and then calculates class-dependent
parameters on those for initialization [85]. Duong et al. proposed a hierarchical agglomerative
clustering approach for initialization [86]. Further, one can perform some form of preclustering,
e.g., with an online preclustering as done in [87] or simply with k-means [88] or variants
thereof [89].

Keeping in mind that a good separation result is, of course, an excellent initialization, we here
refer to the proposed weak integration in Section 4.2. A comparison of different initialization
schemes is given in [85, Figure 2], [83, Section 6.8], and in Section 5.5.2.

3.2.1.3 Influence of the mixture weight

The formulation in Equation 3.6 intentionally omits the particular shape of the mixture
weight p(ck,t,f=1) = πk,t,f . However, in a given instance of this formulation, the a priori
distribution is often set to be constant along at least one of the indices (k, t, or f). Although
in terms of notational burden, this is a minor change, it can have an interesting impact on
the overall solution. A constant mixture weight πk,t,f := 1/K tends to lead to a more even
distribution and, thus, avoids to cancel all speakers when a large portion of the signal is
noise-only. A time-independent mixture weight πk,t,f := πk,f is the most common choice.
It allows us to entirely model each frequency bin independently, which may be advisable
since a few frequencies tend to be purely noise. A frequency-independent mixture weight
πk,t,f := πk,t is seen less often but has the desirable property that it alleviates the permutation
problem to some degree [90]. It is also possible to use a Dirichlet prior for the mixture weight
to more carefully control how many observations are assigned to one class on average [17],
[66].

3.2.1.4 Complex Watson mixture model

The complex Watson mixture model (cWMM) is a spatial clustering model which is used
to separate different sound sources based on spatial cues, namely IPDs and ILDs [91], [92].
These cues are encoded in the normalized complex-valued observation vector which is defined
on the complex unit hypersphere CSD−1 which itself is a subset of the complex domain C

D

according to Equation 3.8. The motivation for operating on the normalized observation
vectors ỹt,f is to maintain as much information in the signal which is related to the acoustic
mixing conditions but to remove all audio source related properties.

A cWMM is a spatial mixture model with complex Watson distributions [93] as class
conditional distributions. Typically, it is applied independently per frequency bin f [91],
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[92]. In its generic form, the distribution is the marginal of the complete data distribu-
tion:

p(ỹt,f ) =
∑

k

p(ck,t,f=1)p(ỹt,f |ck,t,f=1), (3.9)

where p(ck,t,f=1) is a categorical distribution which is parameterized with the mixture weights
πf = (π1,f , . . . , πK,f )

T and p(ỹt,f |ct,f ) is a complex Watson distribution.

The complex Watson distribution is defined as follows [93, Equation 1]:

p(ỹt,f |ck,t,f=1) = CW(ỹt,f ;κk,f ,wk,f ) =
1

cW(κk,f )
eκk,f |wH

k,f
ỹt,f |2 , (3.10)

with the class-conditional concentration parameters κk,f and mode vectors wk,f for each
frequency bin. The mode vectors are constrained to unit-length and define the direction
around which the observations accumulate. A potential precursor of the cWMM is the
line-orientation model in [66, Section III.A]. The concentration parameters influence how
much the observations are concentrated around the mode vectors and are forced to be
nonnegative. A concentration of zero implies that the observations are distributed uniformly
on the complex unit hypersphere. It is worth noting that the distribution is circularly-
symmetric, i.e., p(ỹt,f |ck,t,f=1) = p(ỹt,fe

jϕ|ck,t,f=1). This elegantly addresses the absolute
phase ambiguity of an observation received at a sensor array: the time of flight from the
source to the array is unknown anyway and, therefore, the absolute phase should not be used
for clustering.

The normalization constant cW(κk,f) can be obtained by integration of the PDF over the
surface CSK−1 of the complex unit hypersphere and then separating cW(κk,f ). The resulting
analytic form is given as follow [93, Equation 1]:

cW(κk,f ) =
2πD

1F1(1, D, κk,f )

(D − 1)!
, (3.11)

where 1F1(·, ·, ·) is the confluent hypergeometric function [94, Equation 13.2.2]. Issues
regarding numerical stability can be found in [17, Appendix 1].2

To obtain a maximum likelihood estimate of all involved parameters, an EM algorithm
is used (compare Section 2.5.3). The E-step evaluates the posterior of the class labels
γk,t,f = p(k̆t,f = k|ỹt,f ) according to, e.g., Equation 2.25:

ln γk,t,f = ln πk,f − ln 1F1(1, D, κk,f ) + κk,fw
H

k,f ỹk,f ỹ
H

k,fwk,f + const. (3.12)

During the M-step the lower bound is maximized with respect to the parameters. We obtain
the following updates [93, Section 4], [81, Appendix B.5], [83, Section 2.4.2]:

πk,f =
1

T

∑

t

γk,t,f , (3.13)

2 A numerical implementation in Matlab can be found in libDirectional [95]. A Python implementation
can be found in pb bss (https://github.com/fgnt/pb bss).
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˘̃yt,fc̆t,fπk,f

κk,f

wk,f

Figure 3.5: Graphical model of a cWMM. The complex-valued distribution is visualized by its real-
valued counterpart. Circles depict random variables, while doubly circled elements are observable
random variables. Boxes are model parameters which are estimated during test time. Arrows
indicate statistical dependencies.

wk,f = P (Φỹỹ,k,f ) with Φỹỹ,k,f =
∑

t

γk,t,f ỹt,f ỹ
H

t,f

/
∑

t

γk,t,f , (3.14)

1F1(2, D + 1, κk,f )

D 1F1(1, D, κk,f )
= wH

k,fΦỹỹ,k,fwk,f , (3.15)

where P(·) calculates the principle component of the provided matrix.

The update equation for the concentration parameter κk,f is implicit and an explicit update
is not available. One can either rely on an approximation, e.g., for high concentration values
[93, Equation 9] or evaluate the hypergeometric ratio for a certain number of points to obtain
a lookup table. A cubic spline interpolation turned out to be sufficiently fast and accurate
both in terms of initialization of the spline parameters as well as in terms of evaluation time.3

Furthermore, it is worth noting that the right hand side of Equation 3.15 is exactly the
largest eigenvalue of the covariance matrix Φỹỹ,k,f .

Complex spherical k-mode clustering This section describes a clustering algorithm for
sound sources based on spatial cues. It is a simplified version of the complex Watson mixture
model by enforcing shared concentration parameters for each class, i.e., κk,f = κ > 0 and
a one-hot selection instead of the soft assignment during the E-step in a regular complex
Watson mixture model maximum likelihood estimation [89].

Consequently, the E-step can be evaluated rather quickly:

ĉk,t,f = 1 for k = argmax
k′

|ỹH

t,fwk′,f |2. (3.16)

During the M-step we just need to estimate the mode directions. The update coincides with
Equation 3.14.

In terms of computational complexity, the complex spherical k-mode clustering is more expen-
sive than k-means on complex observation vectors but especially the E-step is considerably
faster than the E-step of the complex Watson mixture model. The contribution [89] evaluates
the algorithm in comparison to k-means clustering and different complex Watson mixture
model variants.

3 An implementation of the spline interpolation can be found in pb bss whereas libDirectional uses a
linear lookup table interpolation to obtain the concentration parameter.
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3.2.1.5 Complex Bingham mixture model

Ito et al. proposed a complex Bingham mixture model to cluster sound sources in a multi-
channel recording based on spatial cues [96]. The features are again normalized observation
vectors as in Equation 3.8. The complex Bingham distribution is defined as follows [97,
Equation 1]:

p(ỹt,f |ck,t,f=1) = CB(ỹt,f ;Bk,f ) =
1

cB(Bk,f )
e ỹH

t,f
Bk,f ỹt,f . (3.17)

Ito et al. argue that the complex Watson distribution has limited expressiveness due to
the reduction of the covariance matrix to a single mode direction [96, Section 3.3]: The
complex Watson distribution is a special case of the complex Bingham distribution for the
parameterization Bk,f = κwk,fw

H

k,f .

An analytic expression for the normalization constant can be found by integrating p(ỹt,f |ct,f )
over the complex unit hypersphere [97, Equation 2.3]:

cB(Bk,f ) = 4π 1F1(
1
2
, 3
2
,Bk,f )

= 2πD
∑

d

ak,f,de
λk,f,d with a−1

k,f,d =
∏

d 6=d′

(λk,f,d − λk,f,d′), (3.18)

where λk,f,d are the eigenvalues of the parameter matrix Bk,f . The latter expression assumes
that the eigenvalues are distinct. However, in many cases, some eigenvalues may coincide. It
is an interesting finger exercise to derive these special cases via l’Hospital’s rule. In practice,
however, it is often sufficient to guarantee distinct eigenvalues by slightly modifying the
eigenvalues. Moreover, the entire expression can be evaluated using a symbolic toolbox to
generate functions depending on D.

It is worth noting that the normalization constant depends only on the eigenvalues of
the parameter matrix. More precisely, a constant eigenvalue offset can be factored out of
the normalization constant (compare Appendix A.1.1). Similarly, offsetting all eigenvalues
with a constant does not change the shape of the distribution(compare Appendix A.1.2).
Consequently, for numerical stability, the eigenvalues can be normalized such that the
maximum eigenvalue is zero:

λd′ = λd −max
d
λd. (3.19)

Maximum likelihood estimates can again be obtained using the EM algorithm. The E-step
turns out to be:

ln γk,t,f = ln πk,f − ln 1F1(
1
2
, 3
2
,Bk,f ) + ỹH

t,fBk,f ỹt,f + const. (3.20)

During the M-step the parameters have to be estimated [97, Section 3]:

πk,f =
1

T

∑

t

γk,t,f , (3.21)
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˘̃yt,fc̆t,fπk,f Bk,f

Figure 3.6: Graphical model of a complex Bingham mixture model (cBMM). The complex-valued
distribution is visualized by its real-valued counterpart. Circles depict random variables, while
doubly circled elements are observable random variables. Boxes are model parameters which are
estimated during test time. Arrows indicate statistical dependencies.

Φỹỹ,k,f =
∑

t

γk,t,f ỹt,f ỹ
H

t,f

/
∑

t

γk,t,f , (3.22)

Bk,f = VH

k,fΛk,fVk,f , (3.23)

where Vk,f coincides with the eigenvector matrix of Φỹỹ,k,f and the eigenvalues λk,f,d have
to be solved numerically.4 The following equation relates the eigenvalues lk,f,d of Φỹỹ,k,f to
the eigenvalues λk,f,d of Bk,f :

∂ ln cB(Λk,f )

∂λk,f,d
= lk,f,d. (3.24)

3.2.1.6 Full-Bayesian complex Watson mixture model

Drude et al. proposed a full-Bayesian complex Watson mixture model [17], [98]. This model
is a generalization of the complex Watson mixture model in the sense that it treats the
mixture weights as a random variable by introducing a Dirichlet prior and treats the mode
vectors as a random variable by introducing a complex Bingham prior. The main advantage
of this model is that it has the tendency to determine the number of speakers automatically.
Mixture components which do not represent an audio source tend to have a mixture weight
of almost zero. The EM update equations can be found in [98, Equation 8 – 14] and [17,
Table 4.1]:

ln γk,t,f = Eq(πk) {ln π̆k} − 1F1(1, D, κk,f )

+ κk,f Eq(wk,f )

{
w̆H

k,f ỹt,f ỹ
H

t,fw̆k,f

}
, (3.25)

Nk,f =
∑

t

γk,t,f , (3.26)

αk,f = α0,k,f +Nk,f , (3.27)

Φỹỹ,k,f =
1

Nk,f

∑

t

γk,t,f ỹt,f ỹ
H

t,f , (3.28)

Bk,f = κk,fNk,fΦỹỹ,k,f +B0,k,f , (3.29)

1F1(2, D + 1, κk,f )

D 1F1(1, D, κk,f )
= Eq(wk,f )

{
w̆H

k,fΦỹỹ,k,fw̆k,f

}
. (3.30)

4 For example, by nonlinear least-squares fitting as in libDirectional.



Blind source separation principles 35

˘̃yt,fc̆t,fπ̆k,f
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w̆k,f Bk,f
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Figure 3.7: Graphical model of a full Bayesian cWMM. The complex-valued distribution is visualized
by its real-valued counterpart. Circles depict random variables, while doubly circled elements are
observable random variables. Boxes are model parameters which are estimated during test time.
Arrows indicate statistical dependencies.

The expected value Eq(πk) {ln π̆k}, which is the negative entropy −H(q(πk)) is evaluated using
the digamma function ψ(·) [11, Equation B.21], [17, Equation 4.40]:5

Eq(πk) {ln π̆k} = ψ(αk,f )− ψ

(
∑

k′

αk′,f

)

. (3.31)

Calculating the remaining expected values is a bit more convoluted and corresponding
equations can be found in [98, Appendix] or [17, Section 4.2].6

3.2.1.7 Time-variant complex Gaussian mixture model

Different authors have introduced a time-variant complex Gaussian mixture model (TV-
cGMM) to separate sound sources based on spatial cues. Févotte and Cardoso used a
factorized covariance matrix for the source images [100]. Vincent and Gribonval introduced it
as a local Gaussian model. They argue that this model is suited for speech mixtures due to the
local stationarity but global sparseness of speech signals in the STFT domain [101, Section 3].
Although [102] already presented an integration of a TV-cGMM with an NMF-based source
model more widespread use can probably be attributed to [73] due to its more accessible
notation and [103] due to its successful application in context of the CHiME 3 challenge [104].
The TV-cGMM is related to the full-rank model by Duong, Vincent, and Gribonval [86] but
assumes sparse mixing instead of additive mixing.

The TV-cGMM directly uses the observation vectors yt,f as in Equation 3.7. The distribution
of the mixture is a marginalization over the latent class affiliations:

p(yt,f ) =
∑

k

p(ck,t,f=1)p(yt,f |ck,t,f=1), (3.32)

5 The digamma function is defined as the derivative of the logarithm of the Gamma function [99, Page 258]:

ψ(x) =
d

dx
ln
(
Γ(x)

)
=

Γ′(x)

Γ(x)

6 A numerical implementation is publicly available in libDirectional.
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where the class labels are categorically distributed and the class-conditional observation
distribution is a time-variant complex Gaussian distribution:

p(yt,f |ck,t,f=1) = CN (0, σk,t,fBk,f ) =
1

det(πσk,t,fBk,f )
e−yH

t,f
σ−1
k,t,f

B
−1
k,f

yt,f . (3.33)

It differs from the widely-used parameterization of a complex circularly symmetric Gaus-
sian [105, Theoreme 3.1] only by the factorization of the covariance matrix.

During the E-step the posterior distribution of the class labels is given by

ln γk,t,f = ln πk − ln det(πσk,t,fBk,f )− yH

t,fσ
−1
k,t,fB

−1
k,fyt,f + const. (3.34)

During the M-step the mixture weights, the time-dependent scalar as well as the time-
independent matrix are updated using

πk,f =
Nk,f

T
with Nk,f =

∑

t

γk,t,f , (3.35)

σk,t,f =
1

D
yH

t,fB
−1
k,fyt,f , (3.36)

Bk,f =
1

Nk,f

∑

t

γk,t,f
yt,fy

H

t,f

σk,t,f
. (3.37)

It is worth noting that the M-step updates are dependent on each other. Although this
may require a nonlinear solver, in practice, it turned out to be sufficient to update each
parameter only once per M-step and initialize, e.g., the time-dependent scalar σk,t,f with
ones. Moreover, the correlation matrix inverse can be obtained via an eigenvalue decom-
position thereby clipping the eigenvalues for additional stability (see [106] and pb bss for
details).

3.2.1.8 Complex angular central Gaussian mixture model

The real-valued angular central Gaussian distribution was introduced by Tyler [107] as an
alternative to the Bingham distribution due to the rather complicated normalization constant
and maximum likelihood estimation for the Bingham parameter matrix [108, Page 182]. To
illustrate the real-valued angular central Gaussian distribution Figure 3.8 shows samples for
different parameterizations. The maximum likelihood parameter estimates for a real-valued
angular central Gaussian can be found in [107].

The complex angular central Gaussian mixture model (cACGMM) is a probabilistic spatial
mixture model that can be used to separate sound sources in a multi-channel recording. The
probabilistic dependencies are illustrated in Figure 3.9. It was proposed by Ito et al. in
2016 [111] with a proof that the update equations coincide with the update equations of
the TV-cGMM [111, Appendix]. Consequently, the EM algorithms for each are identical. A
similar proof is that when yt,f is TV-cGMM distributed, the normalized features ỹt,f are
cACGMM distributed.
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(a) B = diag
(
(1, 1, 1)T

)
(b) B = diag

(
(1, 1000, 1)T

)
(c) B = diag

(
(10, 1000, 1)T

)

Figure 3.8: Samples from a real-valued angular central Gaussian distribution with different pa-
rameters. The first parameter set yields a uniform distribution, the second parameter set yields a
symmetric distribution around the mode axis and the third parameter set results in an elliptically
symmetric distribution around the mode axis. Visualizations in [109] and [110] inspired this figure.

˘̃yt,fc̆t,fπk,f Bk,f

Figure 3.9: Graphical model of a cACGMM. The complex-valued distribution is visualized by
its real-valued counterpart. Circles depict random variables, while doubly circled elements are
observable random variables. Boxes are model parameters which are estimated during test time.
Arrows indicate statistical dependencies.

It operates on normalized observation vectors defined on the complex unit hypersphere CSD−1

and, therefore, can only capture IPDs and ILDs:

ỹt,f = yt,f

/
‖yt,f‖ ∈ CSD−1. (3.38)

The class conditional distribution (observation model) is a complex angular central Gaussian
distribution [112, Equation 3.1], for which all class-dependent parameters are summarized in
the correlation matrix Bk,f :

p(ỹt,f |ck,t,f=1) = cACG(ỹt,f ;Bk,f ) =
(D − 1)!

2πD detBk,f

1

(ỹH

t,fB
−1
k,f ỹt,f )

D
. (3.39)

This parametric form can be obtained by applying a random variable transformation, in
this case y/‖y‖, to a multi-variate complex circularly-symmetric Gaussian random variable
y [110, Page 12f].

The maximum likelihood estimates of the parameters of a cACGMM can be determined
by applying the EM algorithm. The posterior probabilities in the E-step are then obtained
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via

ln γk,t,f = ln πk − ln detBk,f −D ln
(
ỹH

t,fB
−1
k,f ỹt,f

)
+ const. (3.40)

The update equations in the M-step result from calculating the derivative of the auxiliary
function with respect to all parameters. While this does not lead to a closed form solution,
the parameter updates are then given by [111, Equation 13 and 14], for which [110] provides
a step-by-step derivation of the updates:

πk,f =
Nk,f

T
with Nk,f =

∑

t

γk,t,f , (3.41)

Bk,f =
D

Nk,f

∑

t

γk,t,f
ỹH

t,f ỹt,f

ỹH

t,fB
−1
k,f ỹt,f

. (3.42)

3.2.1.9 Guided source separation

Although the previous models clearly classify as blind source separation approaches, often
times external knowledge is available. We may have a priori knowledge about the array
geometry or may have a previous algorithm estimating voice activity detection (VAD)
information. This kind of side information either obtained through some oracle or estimated
from the signal can guide the source separation algorithm and significantly influence its
performance [113].

An obligatory example for side information is saliency maps indicating which observations
should be trusted more [114, Page 127], [17, Equation 6.3]. It is typical for many speech
mixture databases that the mixture recording is already cut in such a way that the beginning
contains a few noise frames as well as that the mixture ends with a few noise frames. The
authors of the CHiME 5 challenge went a bit further and provided start and stop timings
for each speaker. This can be exploited by influencing the separation process with soft
weights [115] or even forcing the mixture weights of each speaker to zero when the annotation
claims that the speaker should indeed be inactive [116, Equation 5]:

πk,t,f = πk,fak,t

/
∑

k′

πk′,fak′,t, (3.43)

where ak,t encodes if speaker k is active during time frame t, e.g., it is one when the speaker
is active and zero otherwise. The noise class can be assumed to be active in all time frames.
Consequently, a minimum value for ak,t is not required.

This is a great example of external guidance resulting in almost completely avoiding the
permutation problem (see Section 3.2.1.1) and boosting the performance of a cACGMM
further. Its efficacy was shown with promising WERs on the CHiME 5 dataset [116], [117].
Further, it is worth noting that many integration approaches better covered in Chapter 4
can be interpreted as guided source separation since the spectral cues guide the spatial
model.

Clearly, the interpretability of probabilistic spatial mixture models helps to integrate external
side-channel information. It is much less clear how to integrate, e.g., time annotations in a
pretrained neural network-based source separator.
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3.2.2 Spatial features for neural networks

It is worth noting that a very valid alternative to probabilistic spatial models is to use spatial
features for neural network-based source separation. In that case, the training encourages
DNN to understand and use spatial diversity for source separation. Multi-channel deep
clustering [49] in particular demonstrated that even simple IPD features can boost the source
separation performance quite a bit over single-channel approaches.

Typical spatial features employed in the context of neural network-based speech enhancement
are the sine and cosine of IPDs as used in [49]:

cosIPDt,f ,d,d′ = cos (arg yt,f ,d − arg yt,f ,d′) = cos arg
(
y∗t,f ,d′yt,f ,d

)
, (3.44)

sinIPDt,f ,d,d′ = sin (arg yt,f ,d − arg yt,f ,d′) = sin arg
(
y∗t,f ,d′yt,f ,d

)
. (3.45)

An alternative is to use generalized cross-correlation (GCC) features obtained by comparing
the actual complex vectors to precalculated steering vectors obtained according to the array
geometry [49, Equation 5], [55]. A comparison of proposed systems and baseline systems
with and without spatial features can be found in Section 5.7.3.

3.3 Principles of source extraction

Source extraction refers to techniques developed to extract a single speech source. We here
constrain ourselves to spectral masking and spatial filtering in the frequency domain. A
common factor of both approaches presented here is that they rely on a previously calculated
mask possibly stemming from a blind source separation algorithm.

3.3.1 Spectral subtraction/ masking

Spectral subtraction was originally developed as a noise reduction scheme [118]. Already
in Boll’s 1979 formulation an STFT estimate is obtained as the product of a mask and the
observation STFT [118, Section III.F]:

x̂k,t,f = γk,t,f yt,f ,d, (3.46)

where d identifies an arbitrarily selected reference channel, e.g., d = 1. Although the
original work relied on a first estimate of the distortion power, we here just adopt the idea
to extract a mask first, instead of designing a system which directly outputs the speech
spectrogram.

Barker et al. suggested already early on to limit the range of the mask, e.g., to [0, 1] by
employing a squashing function [119]. In 2004 Seltzer et al. used a Bayesian approach to
generate masks in the form of posterior probabilities grounded on a set of hand-crafted
features laying the foundations for data-driven approaches [120].

Interestingly, the idea to generate masks first has survived the neural revolution and neural
network-based speech enhancement systems often perform better when they are tasked to



Blind source separation principles 40

provide a mask instead of directly providing the speech spectrogram. This can mainly be
addressed to the limited dynamic range the neural network has to produce when estimating
masks only.

To train a system with the goal of predicting a mask suitable to extract one or more sources,
one needs to rely – in almost all cases – on a supervision mask which is obtained, e.g., from the
oracle source signal and the oracle noise signal during training. For further reading, Erdogan
et al. present a structured overview of different ideal masks as targets for a learning-based
approach to mask estimation [121] and argue, why masking is likely to work better than
directly predicting the spectrogram.

3.3.2 Spatial filtering/ beamforming

Spatial filtering is a widely-used technique to extract a desired signal by combining the
different channels of a multi-channel observation either using linear or nonlinear approaches
with its origins mainly in radar, radio astronomy, sonar, communications, and seismology
(see, e.g., [122, Section 1.2] or [123, Section 1.2] for some historic insights). Linear spatial
filtering, namely beamforming, extracts a particular source signal by linearly filtering different
microphones (channels) so that the desired parts of a mixture signal positively interfere while
undesired parts cancel out [2], [124]. In the STFT domain this results in complex-valued linear
filter vectors wk,f =

(
wk,1,f , . . . , wk,D,f

)T
which lead to a speech estimate by calculating an

inner product of the beamforming vector with the observation vector:

x̂k,t,f = wH

k,fyt,f . (3.47)

The term beamforming originally stems from the geometric interpretation in which a beam
was steered towards a particular direction of arrival (DoA) [2]. However, a beamformer may
exploit early reflections or in some other way contain values that extract sources but does
not have a geometric counterpart. This even allows us to separate sources with equal DoAs
but different distances to the array [125, Section 5].

Beamformer design criteria can be categorized into fixed beamforming and data-dependent
beamforming.7 Fixed beamforming relies on a priori knowledge of the DoA or even RTFs
and requires knowledge of the exact sensor geometry and channel gain. Fixed beamforming
with, e.g., superdirective beamformers [126] can be used for source separation systems, e.g.,
by cleverly switching between output channels of a set of fixed beamforming vectors [67]. In
contrast, data-dependent beamformers rely on statistics obtained from the current observation,
e.g., second-order statistics for the sources and noise [2, Section V]. Therefore, they avoid
the need for exact knowledge of the sensor array geometry as well as the need for additional
gain adjustment of each channel [127, Page 56].

The remainder of this section introduces how the necessary second-order statistics, namely
the spatial covariance matrices, can be obtained. Moreover, it introduces a limited number of
beamforming approaches suitable to extract a speaker from a speech mixture.

7 Data-dependent beamforming is often named adaptive beamforming. This term is avoided here since it
does not clearly differentiate between offline data-dependent beamforming and online data-dependent
beamforming.



Blind source separation principles 41

3.3.2.1 Spatial covariance matrix estimation

Each element of the observation vector is assumed to be a circularly symmetric zero-mean
complex random variable.8 Relevant second-order statistics which can be extracted from the
observed mixture are the observation spatial covariance matrix Φyy,f , the target covariance
matrix Φxx,k,f and the interference covariance matrix Φnn,k,f . The observation spatial
covariance matrix Φyy,f can be obtained by approximating the expected value with a time
average implicitly assuming at least wide-sense stationarity:

Φyy,f = E
{
y̆t,f y̆

H

t,f

}
≈ 1

T

∑

t

yt,fy
H

t,f . (3.48)

Different authors have proposed a variety of variants to estimate the target covariance matrix
for each source. One variant provides an estimate of the spatial covariance matrix normalized
to the entire utterance and ensures that the target and interference spatial covariance matrices
add up to the observation spatial covariance matrix as long as the masks γ1,t,f , . . . , γK,t,f

sum up to one. The covariance matrix estimate is then obtained with:

Φxx,k,f = E
{
x̆t,f x̆

H

t,f

}
≈ 1

T

∑

t

γk,t,fyt,fy
H

t,f . (3.49)

An alternative variant – which is closer to how covariance matrices in an EM algorithm
for, e.g., GMMs are calculated – scales up the spatial covariance matrix as if the spatial
covariance matrix is estimated only on the active bins:

Φxx,k,f = E
{
x̆t,f x̆

H

t,f

}
≈
∑

t

γk,t,fyt,fy
H

t,f

/
∑

t

γk,t,f . (3.50)

In [128, Equation 13] and [129, Equation 3] we propose no normalization altogether and argue
that some beamforming design criteria are independent of the scale of the covariance matrix.
However, in retrospect, one has to state more carefully, how the particular implementation at
hand reacts to differently scaled matrices.

Additionally, one may argue that the noise is not that sparse and an additional subtraction
of the interference spatial covariance matrix from the target spatial covariance matrix is
needed [130, Equation 7]. This, however, would require additional measures to avoid negative
eigenvalues. In other words, it validates the expectation that all spatial covariance matrices
are Hermitian and positive semi-definite.

Another variant is to estimate a masked signal first and then feed this into the spatial
covariance matrix estimation [131]. This effectively results in the mask γk,t,f being replaced
by the quadratic term γ2k,t,f :

Φxx,k,f = E
{
x̆t,f x̆

H

t,f

}
≈ 1

T

∑

t

(γk,t,fyt,f )(γk,t,fyt,f )
H =

1

T

∑

t

γ2k,t,fyt,fy
H

t,f . (3.51)

8 A complex random variable z̆ is circularly symmetric when pz̆(z) = pz̆(e
jϕz).
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The interference covariance matrix, which in general may represent interfering speakers as
well as the noise signal, can be calculated similarly. In correspondence to Equation 3.49, it
can be obtained as follows:

Φnn,k,f = E
{
n̆t,f n̆

H

t,f

}
≈ 1

T

∑

t

( ∑

k′,k′ 6=k

γk′,t,f

)

yt,fy
H

t,f

∑

k

γk,t,f=1

=
1

T

∑

t

(1− γk,t,f )yt,fy
H

t,f , (3.52)

which assumes that the masks sum up to one. The formulation here does not necessarily
require one of the masks representing the noise signal.

Even though, in this case, we constrain ourselves to offline processing, it can be beneficial to
allow a time-dependent interference covariance matrix. For example Kubo et al. suggested
changing the interference covariance matrix depending on how likely the interfering speakers
are active [132]. It may also be beneficial in an offline setup when the scenario geometry is likely
to change, e.g., the speakers might move in a sufficiently long recording.

All results reported in Chapter 5 were obtained with masks normalized as in Equation 3.50
to imitate the covariance matrices used in mixture models.

3.3.2.2 MaxSNR/GEV

MaxSNR beamforming, also called generalized eigenvalue (GEV) beamforming, is an instance
of statistically optimal data-dependent beamforming [133]. The two names stem from the fact
that MaxSNR has long been seen as inappropriate for speech processing since the narrowband
signal to noise ratio (SNR) maximization may introduce arbitrary signal distortions [134,
Page 2]. However, this did not stop Warsitz et al. to introduce it to the speech community
(under the name GEV beamforming) anyway [134], alleviating the effect of distortions using a
blind analytic normalization (BAN) postfilter (see Section 3.3.2.6). In our subsequent research,
the terms GEV beamforming and MaxSNR beamforming have been used synonymously.
However, to avoid additional confusion, GEV is the preferred term throughout the remainder
of this thesis.

In the framework of GEV beamforming, the optimal filter coefficients are obtained by
maximizing the expected output SNR after applying a beamforming vector wf to the
observation signal:

wk,f = argmax
wk,f

E

{∣
∣wH

k,f x̆t,f

∣
∣
2
}

E

{∣
∣wH

k,f n̆t,f

∣
∣
2
} = argmax

wk,f

wH

k,fΦxx,k,fwk,f

wH

k,fΦnn,k,fwk,f

. (3.53)

The latter term is a generalized Rayleigh quotient.9 The maximization can be addressed
either with a constrained optimization problem (see Section A.5.1) or as an unconstrained

9 The Rayleigh quotient is defined as xHAx/xHx [135, Section 4.2]. Therefore, the additional matrix in
the denominator is a generalization.
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optimization problem (see Section A.5.2). Either way, one obtains the optimal coefficients
with a generalized eigenvalue decomposition:

Φxx,k,fwk,f = λk,fΦnn,k,fwk,f ⇒ wk,f = P{Φ−1
nn,k,fΦxx,k,f}, (3.54)

where P {·} extracts the principal component (the eigenvector corresponding to the largest
eigenvalue) with a yet undefined scale.

However, it is worth noting that an explicit inverse of the interference covariance matrix
is not necessary since some generalized eigenvalue decomposition algorithms avoid this
step entirely, e.g., one may apply spatial whitening first and then extract the principal
component of the resulting covariance matrix as detailed in [136, Section A.5]. The thesis
[137] contains a detailed analysis of the effect of the exact algorithm on noise reduction
performance.

Another crucial point is that the aforementioned eigenvalue decomposition does not constrain
the scale of the beamforming vector altogether. Multiplying the solution with a complex-
valued scalar does not change its validity:

Φxx,k,fwk,f = λk,fΦnn,k,fwk,f ⇔ Φxx,k,f (cwk,f ) = λk,fΦnn,k,f (cwk,f ) with c ∈ C.

Some implementations normalize each eigenvector to unit length. In the context of this
work, I rely on an implementation that obtains the principal eigenvector by first performing
a Cholesky decomposition of the interference covariance matrix. Then, the beamforming
vector is obtained as the product of the inverse of such a decomposition and the principal
component of the target covariance matrix. This coincides with the aforementioned constraint
wH

k,fΦnn,k,fwk,f = 1 but interestingly, this contradicts with [133, Equation 61.16]. See
Section 3.3.2.6 for further normalization concepts.

The GEV beamformer has proven to be quite robust with respect to numerical instabilities
in comparison to a MVDR beamformer, e.g., [129, Figure 1] demonstrates that the GEV
beamformer performance suffers less from a higher condition number of the interference
spatial covariance matrix.

3.3.2.3 MVDR

The MVDR beamformer, also known as the Capon beamformer, is designed to minimize
the output variance [138]. To avoid the trivial solution wk,f = 0 the optimization is
performed under the constraint that the signal from a particular look direction has unity
gain [138]:

wk,f = argmin
wk,f

wH

k,fΦnn,k,fwk,f s.t. wH

k,fdk,f = 1. (3.55)

Assuming the intermediate vector dk,f is given, this constrained optimization problem can
again be solved using Lagrange multipliers (see Section A.6). The well-known solution turns
out to be just a slight adjustment of the intermediate vector dk,f :

wk,f =
Φ−1

nn,k,fdk,f

dH

k,fΦ
−1
nn,k,fdk,f

. (3.56)
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It has already become apparent that the precision of the intermediate vector dk,f greatly
impacts performance. Traditionally, the intermediate vector can be obtained by using DoA
information and a known array geometry (then rightfully called steering vector). However, to
allow blind beamforming – purely data-dependent beamforming – the intermediate vector
should be calculated from statistics obtained on the audio signal itself (since it then captures
the (possibly scaled) RTF it is called RTF vector occasionally [139], [140]). One alternative
is to identify the intermediate vector as the principal component of the speech spatial
covariance matrix obtained with Equation 3.49, Equation 3.50, or Equation 3.51, e.g.,
via

dk,f = P{Φxx,k,f}. (3.57)

Another alternative is to extract the intermediate vector dk,f according to the GEV beam-
forming criterion just as in Equation 3.54 as was proposed by Araki et al. in the context
of online meeting recognition [141, Equation 5]. Table 5.23 in the evaluation section com-
pares different intermediate vector estimation variants and lists references with additional
details.

Alternative MVDR formulation (Souden-MVDR) To avoid an estimation of an inter-
mediate beamforming vector altogether, Souden et al. proposed a reformulation which depends
directly on the second-order statistics and an arbitrarily chosen reference channel [142, Equa-
tion 14] and, therefore, avoids the rank-one assumption for Φxx,k,f :

wk,f = wk,f (uk) =
Φ−1

nn,k,fΦxx,k,fuk

tr{Φ−1
nn,k,fΦxx,k,f}

, (3.58)

where uk is a one-hot vector indicating the (possibly class-dependent) reference chan-
nel. This alternative MVDR formulation will be called Souden-MVDR in the follow-
ing.

To avoid the rather arbitrary choice of the reference channel and to further improve perfor-
mance Erdogan et al. suggested to select the reference channel depending on the average
expected output SNR [131, Page 3]:

uk = argmax
uk

∑

f wk,f (uk)
HΦxx,k,fwk,f (uk)

∑

f wk,f (uk)HΦnn,k,fwk,f (uk)
. (3.59)

Although in the absence of estimation errors, the MVDR result should already be distortionless
it is occasionally still beneficial to apply a BAN postfilter [143, Page 2].

3.3.2.4 Linearly constrained minimum variance beamformer

The linearly constrained minimum variance (LCMV) beamformer design criterion was intro-
duced by Frost [144] as a means to enforce one or more constraints on the beamforming filter
coefficients. In that sense, it can be seen as a generalization of MVDR beamforming. It was
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originally derived in the time-domain assuming that the source location and array geometry
are known. The optimization criterion is again applied to minimize the output power or
output variance subject to a set of linear constraints compactly written as a vector-valued
constraint [144, Equation 16]:

wk,f = argmin
wk,f

wH

k,fΦnn,k,fwk,f s.t. CH

k,fwk,f = gk,f , (3.60)

where the right hand side vector gk,f defines if a source is suppressed or emphasized. Typical
linear constraints are either distortionless constraints for one or more speakers or spatial
zeros (or small epsilon values in gk,f ) to suppress point source interferences. The number of
constraints is limited by the number of microphone channels D. It is worth mentioning that
there are scenarios in which a controlled attenuation of an interference speaker is desired, e.g.,
Aroudi et al. suggest to not suppress the interfering speaker entirely to still allow auditory
attention switching for cognitive-driven hearing aids [145].

Again with the help of Lagrange multipliers the optimal filter coefficients are obtained:

wk,f = Φ−1
nn,k,fCk,f (C

H

k,fΦnn,k,fCk,f )
−1gk,f . (3.61)

Although the LCMV is used rather rarely in combination with a DNN or DNN-based
mask estimator Chazan et al. successfully employ a neural network-based LCMV beam-
former [146].

3.3.2.5 Weighted multi-channel Wiener filter

The multi-channel Wiener filter (MWF) is an optimal filtering approach in the sense that it
minimizes the mean squared error between the estimated signal and the desired signal at a
reference microphone [147, Equation 8], [140, Equation 4–5]:

wk,f = argmin
wk,f

E

{∣
∣
∣wH

k,f y̆t,f − x̆k,d,t,f

∣
∣
∣

2
}

= argmin
wk,f

(

E

{∣
∣
∣wH

k,f x̆k,t,f − x̆k,d,t,f

∣
∣
∣

2
}

+ E

{∣
∣
∣wH

k,f n̆k,t,f

∣
∣
∣

2
})

, (3.62)

where n̆k,t,f contains all but the target speaker.

Following [140, Equation 6] a distortion weight µ can be introduced to control the influence
of both terms. Higher values result in better noise suppression at the cost of more speech
distortion. The MWF is obtained for µ = 1. The optimization problem is now given as
follows [148]:

wk,f = argmin
wk,f

(

E

{∣
∣
∣wH

k,f x̆k,t,f − x̆k,d,t,f

∣
∣
∣

2
}

+ µE

{∣
∣
∣wH

k,f n̆k,t,f

∣
∣
∣

2
})

. (3.63)

The resulting beamformer is then called speech distortion-weighted MWF or, more concisely,
weighted multi-channel Wiener filter (WMWF). The optimal solution can be found by
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differentiating the optimization criterion with respect to wk,f and setting the result equal to
zero [140, Equation 7], [148]:

wk,f = (Φxx,k,f + µΦnn,k,f )
−1 Φxx,k,fuk, (3.64)

where again uk is a one-hot vector indicating an arbitrary reference channel. Similarly to
the Souden-MVDR mentioned above, the WMWF does not require an explicit RTF vector
calculation. However, the optimal reference channel can either be fixed or estimated based
on expected output SNR (compare Equation 3.59).

3.3.2.6 Magnitude and phase normalization of beamforming vectors

Instead of arbitrarily scaling the beamforming vectors, one may resort to an analytically-
motivated normalization. Warsitz et al. proposed a BAN postfilter to compensate the
distortion introduced by GEV beamforming which relies on the already obtained second-order
statistics of the noise signal [134, Equation 17]:

gk,f =

√

wH

k,fΦnn,k,fΦnn,k,fwk,f/D

wH

k,fΦnn,k,fwk,f

. (3.65)

Although this does not solve the issue of an arbitrary absolute phase ejφ, it reduces the
frequency-dependent distortions effectively. One way to solve this is to enforce a zero-
phase-sum constraint [81, Equation 2.13]. An alternative is to arbitrarily set the phase of
a reference channel to zero [149, Equation 21] or to minimize the group delay introduced
by the filter [149, Equation 22]. For a comparison of phase corrections, please again refer to
[137].

3.3.3 Combination of beamforming and masking

What can be gained by additional postfiltering if the [...] beamformer already
provides the optimum solution for a given sound field? [150]

First of all, the aforementioned beamformers are only optimal for the narrowband they were
derived on. In a wideband signal such as speech, it is not guaranteed that they provide the op-
timal linear spatial filter, e.g., in an SNR sense [150]. Moreover, beamforming is constrained to
linear filtering. To allow arbitrary changes to the signal while still leveraging beamforming it
is not far-fetched to use beamforming and masking together. Since masking is a single-channel
approach, masking can be used as a single-channel postfilter (compare, e.g., [151, Equation 9]):

x̂k,t,f = gk,t,fw
H

f yt,f , (3.66)

where gk,t,f is an arbitrary mask, potentially the posterior mask γk,t,f or a toned-down
variant by introducing a minimum gain Gmin to retain the noise naturalness during speech
absence [152, Page 879]:

gk,t,f = max(γk,t,f , Gmin). (3.67)

The combination of beamforming and masking was successfully employed in a system proposed
for front-end processing for the CHiME 5 challenge [116].



4 Integration of neural networks and
probabilistic graphical models

Integration of neural networks and probabilistic graphical models for BSS, as discussed in
this chapter, was first proposed in [106]. Although, in general, integration is quite vaguely
defined, we here want to focus on the integration of neural network-based models to primarily
capture spectral cues and probabilistic models to primarily capture spatial cues. We aim to
carefully distinguish cascade approaches from a tight integration and want to briefly mention
similarities to ensemble methods.

Integration approaches, in the sense of this work, constitute systems which either address
different sub-problems in a single formulation or combine diverse knowledge sources to obtain
a single estimate for a given problem. In the chapter at hand source separation systems are
addressed which (1) rely on two distinct sources of information, namely spatial and spectral
cues and (2) combine a neural network-based algorithm with a probabilistic model-based
algorithm. To this effect, the approaches at hand can be seen as instances of information
fusion as well as instances of ensemble methods. However, in ensemble methods, systems
are typically run independently and the final prediction is obtained through, e.g., majority
voting [153], averaging [153], or more advanced domain-specific ensemble methods such as
ROVER [154], [155]. In contrast, the integration approaches discussed in Section 4.3 estimate
parameters relevant for both input modalities during the prediction step jointly. With this
in mind, the discussed integration cannot be seen as an ensemble method realized as a
post-processing step.

Integrating different cues helps to improve overall system performance. Ideally, they degrade
due to different causes and therefore can lead to meaningful results even when one cue is
unreliable. In the work at hand, the aim is to integrate spatial and spectral cues. When
speakers are moving slightly or speakers are located close to each other, the spatial cues
might be less reliable but the observed spectral cues might very well still lead to sufficient
separation results. Vice versa, even in very noisy conditions spatial cues can still be sufficient
as demonstrated, for instance, on the CHiME 5 database.

The advantage of combining probabilistic models and neural networks stems from their
complementary properties. On the one hand, probabilistic models do not suffer from overfitting
to a particular scene or set of speakers when all parameters are estimated on the test utterance.
On the other hand, neural networks trained with supervision signals can profit from a vast
amount of training data and can model fine-grained dependencies that have otherwise been
hard for humans to encode in rules or exact probabilistic models.

47
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The remainder of this chapter is organized as follows: Section 4.1 is a short literature
review of existing integration variants. Section 4.2 introduces a cascade approach to in-
tegrate spatial and spectral features. Section 4.3 discusses integration approaches with
jointly estimated parameters in a single EM framework during the prediction step, whereas
Section 4.3.1 introduces a von-Mises-Fisher complex angular central Gaussian mixture model
(vMFcACGMM) as a concrete example of the tight integration framework and Section 4.3.2
highlights model specifics. Rounding off, Section 4.4 introduces quite a different inter-
pretation of how knowledge from multi-channel features can be integrated into training
single-channel systems resulting in unsupervised training of neural network-based source
separation models.

4.1 Existing integration approaches

Due to the diversity of integration variants and the rather loose definition of an integration
system we here provide a brief literature review of approaches which (1) combine spatial
and spectral cues, and (2) do so by relying on pretrained neural networks while estimating
observation-dependent parameters on the test mixture. Table 4.1 provides a selection of
integration approaches grouped into methods based on a local Gaussian model [86] and
models relying on a sparsity assumption and contain a mixture of densities in the sense of the
models introduced in Section 3.2.1. The underlying assumption of the former group is that the
class-conditional spatial covariance matrices of the spatial observations mix linearly (Compare
linearity of mixing in [156, Section 2].). The latter group relies on the sparsity assumption
(see Section 3.2.1) and the observation distribution is a weighted sum of class-conditional
distributions (see Equation 3.6).

One way to elicit an integrated solution to BSS is to design a statistically-motivated source
model and a statistically-motivated spatial model. The parameters of both models can then
either be partially pretrained on a training database, estimated successively, namely in a
cascade approach, or jointly during the prediction step when a joint EM formulation can be
found.

According to [58, Page 74], multi-channel NMF, as briefly mentioned in Section 3.2, is the
first principled attempt to unify modeling of spatial and spectral cues: [57] relies on a NMF
source model and Duong’s full-rank local Gaussian model [86] to handle spatial cues. Ozerov
et al. generalize [57] into a generic framework with a wide choice of spectral models [156]
([156, Table 1] is an elaborated overview of integration models based on a local Gaussian
model.). A TV-cGMM with a NMF source model and reduced computational demands is
proposed in [102] building upon [156]. The system presented in [157] is the first integration
of a local Gaussian model and a DNN: a pretrained DNN is applied in each EM-iteration and
replaces the source model. Mogami et al. integrate IRLMA [54] with a pretrained DNN [158].
Kameoka et al. employ a variational auto-encoder (VAE) as a source model while relying on
a local Gaussian model to characterize the spatial observations [159].

The larger group of integration models in Table 4.1 rely on the sparseness assumption. Early
on, Nakatani et al. proposed the DOLPHIN framework which integrates a HMM source model
with a Gaussian distribution on IPD features as a spatial observation model [160]. Subsequent
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Table 4.1: Overview of a selection of integration methods: all models integrate spatial and spectral
models. Fields denoted with an asterisk (∗) are ambiguous since more than one option is analyzed.
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Local Gaussian models additive in spatial covariance space:

Arberet et al. [57] ✓ ✓ NMF ✗ ✗ ✓ ✗ TV-cG ✗

Ozerov et al. [156] ✓ ✓ ∗ ∗ ✗ ✓ ✗ TV-cG ✗

Thiemann et al. [102] ✓ ✓ NMF ✗ ✗ ✓ ✗ TV-cG ✗

Nugraha et al. [157] ✓ ✓ DNN ✓ ✗ ✓ ✓ TV-cG ✗

Mogami et al. [158] ✓ ✓ DNN ✓ ✗ ✓ ✓ TV-cG ✓

Kameoka et al. [159] ✓ ✓ VAE ✓ ✗ ✓ ✗ TV-cG ✗

Sparseness-based mixture densities additive in PDF space:

Nakatani et al. [160] ✓ ✓ HMM ✓ ✗ ✓ ✗ Gaussian ✗

Nakatani et al. [161] ✓ ✓ HMM ✗ ✗ ✓ ✗ cG ✗

Nakatani et al. [162] ✗ ✓ GMM ✓ ✗ ✓ ✗ cG ✗

Souden et al. [151] ✓ ✓ GMM ✓ ✗ ✓ ✗ cG ✗

Meutzner et al. [163] ✗ ✓ DNN ✓ ✗ ✓ ✗ cG ✗

Tran Vu et al. [164] ✓ ✓ HMM ✓ ✗ ✓ ✗ cW ✗

Nakatani et al. [165] ✗ ✗ DNN ✓ ✗ ✗ ✓ cACG ✗

Drude et al. [106] ✓ ✓ DNN ✓ ✓ ✗ ✓ TV-cG ✗

Drude et al. [166] ✓ ∗ DNN ✓ ✓ ✗ ✓ TV-cG ✗

Drude et al. [167] ✓ ✗ DNN ✓ ✓ ✗ ✓ cACG ✗

Drude et al. [51] ✓ ∗ DNN ✓ ✓ ✗ ✓ cACG ✗
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approaches replaced the rather simplistic Gaussian model with a complex Gaussian line
orientation model and allowed to train HMM parameters on the test utterance [161], [162].
Souden et al. formalized this approach further into an integrated framework for BSS including
statistically optimal beamforming based on the clustering results [151]. The DOLPHIN
approach was integrated with a neural mask estimator later to improve speech enhancement
results in a single speaker setup [163]. Tran Vu et al. integrated a cWMM with a pretrained
2D-HMM spectral model: both HMM directions allowed spectro-temporal smoothing of the
class affiliation posteriors for a multi-source scenario [164].

In 2017 Nakatani et al. presented an integration of a neural mask estimator with a cACGMM
as a spatial model: the neural mask estimator provides the initialization as well as the time-
and frequency-dependent mixture weight of the subsequent cACGMM for a single-speaker
scenario [165]. This model can be seen as the predecessor of the cascade approaches introduced
in Section 4.2.

Also in 2017 we introduced the tight integration approach [106]. In contrast to the afore-
mentioned DNN integrations, [106] does not use the DNN as a source model. Much rather,
the pretrained DNN, e.g., a DC network transforms the observation spectrogram into fea-
tures that can be grouped better with a rather simple clustering algorithm. In comparison
to, for instance, [157] this allows us to run the DNN only once and not in every EM-
iteration. The tight integration approach is formalized into a more general framework
in [51].

4.2 Cascade approach: Integration by initialization

One of the main weaknesses of probabilistic spatial clustering with the help of EM algorithms
is the initialization. Although convergence guarantees for the EM algorithm suggest that
the steps never decrease the likelihood, the initial state heavily influences the outcome of
the algorithm (see Section 5.5.2 for some examples). Typically, these issues have either
been addressed with preclustering [11, Page 427], e.g., with k-means [88], k-means++ [168]
or similar approaches (compare, for example, k-mode clustering developed for directional
data [89]), or with a heuristic selection of initial mean vectors/ mode directions, for instance,
with a deflation algorithm [85].

Given that the single-channel separation algorithms already provide a solid separation result, it
is not far to seek that they may serve well as an initialization for spatial clustering. Motivated
by the initialization of a spatial clustering model with a mask estimation network in [165]1,
we here analyze this cascade approaches for multi-speaker scenarios.

To initialize a spatial mixture model one can either set initial class affiliation posteriors γk,t,f
or set initial values for the class-dependent parameters, e.g., mode vectors or covariance
matrices. Since DC, DANs, and PIT use soft masks as an intermediate representation before
calculating the separated speech signals, one can set the initial class affiliation posteriors
γk,t,f to the masks obtained with the single-channel separation approach. Initializing with

1 In [165] the mask from the DNN is used as an initialization as well as a time- and frequency-dependent
prior.
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γ′′k,t,f x̂k,t,f

Figure 4.1: Cascade approach to integrated BSS. A neural network-based approach is used to obtain
masks γ′k,t,f as an initialization to a subsequent spatial clustering. Posterior masks γ′′k,t,f resulting
from the spatial clustering can then be used for source extraction with beamforming and/or masking.

DC masks can cause numerical instabilities since the embeddings are clustered with k-means
and hard assignments may result in no observation belonging to a particular class for a given
frequency. This can be alleviated by clipping the masks to a limited range, e.g., [ǫ, 1 − ǫ],
where ǫ is a very small value, e.g., 10−6. Depending on the final output nonlinearity DANs
and PIT can lead to masks which do not sum up to one. Proper re-normalization or clipping
can again be used to adjust the initialization.

Additionally, since the single-channel results do not suffer from a frequency permutation
problem (compare Section 3.2.1.1) the frequency permutation problem of the subsequent
spatial clustering is eased albeit not solved entirely (A corresponding evaluation can be found
in Table 5.24.).

It is worth noting that the cascade approach does not only allow us to initialize the subsequent
model with the result of the first model. To be precise, [165] uses the masks obtained from
the neural network to initialize the class affiliation posterior of the spatial clustering model
as well as to set a fixed time- and frequency-dependent prior π

(fix)
k,t,f . Analogously, [166]

contrasts two cascade approaches and a full update model as described in Section 4.3:
one cascade approach first runs a spatial clustering model providing an initialization as
well as a time- and frequency-dependent prior for a spectral clustering model while the
complementary model does just the opposite (Compare [166, Figure 1] for a visualization of
all three variants.).

Figure 4.1 shows the cascade processing pipeline. In general, the neural network-based
separation step can use single- or multi-channel features. However, in most cases, it is
sufficient to obtain the initialization on a single-channel and then use all channels for the
subsequent spatial clustering step. Finally, separated signals can be obtained by masking
and/or beamforming.

4.3 Tight integration of spatial and spectral features

This section describes tight integration as proposed in [51], [106], [166]. The overall processing
flow is illustrated in Figure 4.2, in which a neural network calculates deep features, namely
embedding vectors et,f , from the observed spectrogram. In an integrated clustering approach,
these spectral features are together with spatial observations to find a consensus for the
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Neural
network

Integrated
clustering

Masking/
beamforming

yt,f et,f γk,t,f x̂k,t,f

Figure 4.2: Processing steps of a tight integration approach to BSS. A pretrained neural network-
based approach is used to obtain embedding vectors as a form of deep features. These embeddings
are then jointly clustered together with spatial features. In contrast to Figure 4.1 the embeddings
can be seen as deep features which do not just serve as initialization but contribute to the estimation
result in each EM step.

clustering result. Consequently, the neural network weights are obtained on separate training
data while the parameters of the probabilistic graphical model are estimated on a given mixture
at test time. Intuitively, the deep features then incorporate knowledge of a potentially large
database while the estimation of the parameters of the probabilistic graphical model on the
given mixture at test time facilitates adaptation to unseen conditions.

To concisely capture spatial and spectral cues, one can formulate a single probabilistic model
capturing both cues as separate observable random variables. Doing so, the resulting model can
be seen as a clustering model with multiple independent observation models (sometimes called
observation heads) conditional on the latent random class affiliation:

p
(

f1(yt,f ), f2(yt,f ), . . .
)

= Ep(ct,f )

{

p
(

f1(yt,f ), f2(yt,f ), . . . , ct,f

)}

=
∑

k

p(ck,t,f=1) p
(

f1(yt,f ), f2(yt,f ), . . .
∣
∣
∣ck,t,f=1

)

≈
∑

k

p(ck,t,f=1) p
(

f1(yt,f )
∣
∣
∣ck,t,f=1

)

p
(

f2(yt,f )
∣
∣
∣ck,t,f=1

)

. . . , (4.1)

in which f1, f2, . . . are appropriate feature extraction methods or preprocessing steps. To
name an example in line with Figure 4.2 f1(yt,f ) could extract spectral features by calculating
embedding vectors et,f with, e.g., DC while f2(yt,f) could capture spatial cues, e.g., by
removing the magnitude of the observation as in Equation 3.8.

However, to be able to factorize the conditional distribution into conditional distributions
for each observation type, the transformed random variables f1(yt,f ), f2(yt,f ), . . . need to be
conditionally independent. Although this is possible, in the case of the spatial and spectral
features at hand, the conditional independence only holds approximately: intuitively, the
variance of the spatial cues is lower when the spectral cues indicate that a speaker is likely
to be present. Ignoring this in the following and relying on the conditional independence
assumption, the resulting posterior masks may be overly confident.

The advantage of tight integration over the approaches using a single feature is obvious:
spectral features alone lack spatial information and vice versa. When using only spatial
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Table 4.2: Different manifestations of the tight integration framework for BSS. Different deep features
require either a von-Mises-Fisher (vMF) distribution, a Gaussian distribution, or a Beta distribution
as a spectral model. In that sense, the abbreviations in the following can be understood as, e.g.,
GTV-cGMM = (G+TV-cG)-MM, where G abbreviates the spectral and TV-cG the spatial model.

Spatial

model

DNN for deep features/ corresponding spectral model

DC/ vMF DAN/ Gaussian (G) PIT/ Beta (B)

TV-cG vMFTV-cGMM [106] GTV-cGMM [166]

cACG vMFcACGMM [51] GcACGMM [51] BcACGMM [170]

cues, a system is likely to confuse speakers which are very close to each other or even stand
behind each other (compare Figure 5.10). When using only spectral cues, it is likely to
confuse speakers with similar voices (compare Figure 5.12a or [169] for an analysis of how
voice similarity influences DC performance). In comparison to the cascade approach in
Section 4.2, the tight integration updates all parameters jointly while the cascade approach
can potentially forget the spectral information after sufficiently many EM steps. This is
conceptually different from ensemble learning [153] in the sense that all the class-dependent
parameters are updated independently given the current joint estimate of the posterior
affiliation γk,t,f . In that sense, each E-step in each iteration can be seen as the ensemble
result of the prior, the spectral model from the previous M-step and the spatial model from
the previous M-step:

ln γk,t,f = ln p(ck,t,f=1) + ln p
(

f1(yt,f )
∣
∣
∣ck,t,f=1

)

+ ln p
(

f2(yt,f )
∣
∣
∣ck,t,f=1

)

+ · · ·+ const.

(4.2)

In general, this tight integration framework allows for the use of any spatial observation model.
A TV-cGMM was used in [106] and [166], while [51] used a cACGMM for all integration
variants. However, there is no conceptual issue with using any of the spatial observation
models mentioned in Section 3.2.1 and beyond. While we here compare DC and DANs as
neural networks to obtain embedding vectors (or deep features) in [106] and [166], respectively,
one may use any neural network which can improve separability of the spectral features over
using STFT features. To name an example, [170] directly interprets the soft masks produced
by a PIT system as deep spectral features for a tight integration approach. Table 4.2 provides
an overview of different variants of the tight integration framework.

4.3.1 vMFcACGMM

Exemplary, this section introduces the vMFcACGMM – a concrete realization of the afore-
mentioned tight integration framework. In a vMFcACGMM, the latent class affiliations
ck,t,f represent which time-frequency bin belongs to which speaker or noise. A multivariate
vMF distribution [171] models spectral features obtained from a DC model in the form of



Integration of neural networks and probabilistic graphical models 54

˘̃yt,fc̆t,f

πk,f

Bk,fĕt,fµk

κk

Figure 4.3: Graphical model of a vMFcACGMM. The complex-valued distribution is visualized by
its real-valued counterpart. Please note that the spatial model is frequency-dependent while the
spectral model is not. Circles depict random variables, while doubly circled elements are observable
random variables. Boxes are model parameters which are estimated during test time. Arrows
indicate statistical dependencies.

embedding vectors et,f conditional on ck,t,f :

p(et,f |ck,t,f=1) = vMF(et,f ;µk, κk) =
1

cvMF(κk)
eκkµ

T

k
et,f , (4.3)

where cvMF(κk) is an appropriate normalization term [171]. The DC model is trained on
separate training data to translate a mixture spectrogram into embedding vectors which are
more easily separable by a subsequent clustering algorithm (compare Section 3.1.2.1). The
vMF distribution is an adequate distribution to model DC embedding vectors since they
are normalized to unit norm and therefore lie on a unit hypersphere. A complex angular
central Gaussian (cACG) distribution (compare Section 3.2.1.8) models the normalized spatial
observations ỹt,f obtained according to Equation 3.8. Typically, due to a frequency-dependent
ATF as described in Section 3.2.1.8 parameters for the cACG distribution need to be obtained
for each frequency bin independently. In contrast, the embedding vectors obtained with DC
are consistent across all time-frequency bins in a given mixture and can, therefore, be modeled
with a single vMF distribution per class (each speaker and noise). Figure 4.3 illustrates the
underlying probabilistic graphical model. Referring to the processing blocks in Figure 4.2,
the neural network, in this case, is the DC network and the integrated clustering model is
the vMFcACGMM. Just as in Figure 4.2 a subsequent masking or beamforming step can
then be used to obtain speech signals for each source.

Following from Equation 4.1 the probabilistic graphical model is formulated as follows:

p(et,f , ỹt,f ) =
∑

k

p(ck,t,f=1) p(et,f |ck,t,f=1) p(ỹt,f |ck,t,f=1)

=
∑

k

πk,f vMF(et,f ;µk, κk) cACG(ỹt,f ;Bk,f ). (4.4)

With any of the methods listed in Section 2.5.3 we can now derive an EM algorithm for the
vMFcACGMM. In line with the generic formulation of the E-step in Equation 4.2 the class
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affiliation posterior γk,t,f can be obtained as follows:

ln γk,t,f = ln πk,f + ln vMF(et,f ;µk, κk) + ln cACG(ỹt,f ;Bk,f ) + const. (4.5)

The M-step consists of the parameter updates, e.g., by maximizing the auxiliary function
with respect to the parameters independently. Since the spatial and the spectral observation
are conditionally independent given the latent class affiliation, the spatial and the spectral
parameters can be estimated one-by-one. Following Equation 2.4, Equation 2.5, and Equa-
tion 4.4 in [171] or adapted to an integration model Equation 8 – Equation 9 in [106] the
parameters of the vMF distribution can be updated as follows:2

µk = rk

/

‖rk‖ with rk =
∑

t,f

γk,t,fet,f , (4.6)

κk =
r̄kE − r̄3k
1− r̄2k

with r̄k = ‖rk‖
/
∑

t,f

γk,t,f , (4.7)

where E is the embedding dimension. Just as in Equation 3.41 and Equation 3.42 the mixture
weight and the cACG parameter matrix are updated as follows:

πk,f =
Nk,f

T
with Nk,f =

∑

t

γk,t,f , (4.8)

Bk,f =
D

Nk,f

∑

t

γk,t,f
ỹH

t,f ỹt,f

ỹH

t,fB
−1
k,f ỹt,f

. (4.9)

4.3.2 Additional constraints

All parameters of the integration model can be estimated on the test mixture. In its generic
form, all parameters are unconstrained, e.g., when using a Gaussian complex angular central
Gaussian mixture model (GcACGMM), a full covariance matrix for the spectral observation
model is possible. However, in practice it turns out that additional constrains such as
enforcing a scaled identity instead of a full covariance matrix as in [51] is mandatory – a
full covariance model does not converge (compare the evaluation of different constraints in
Section 5.4.1).

In [106] the tight integration model is introduced with an exponential weighting of the
spectral observation model and the spatial observation model. However, as argued later in
[51, Section V.C], an alternative, which is more convenient and better justified, is to use a
fixed concentration parameter for the vMF distribution in a vMFcACGMM or a fixed scale
parameter for the Gaussian distribution in a GcACGMM.

2 The update for the concentration parameter κk is already an approximation. An implicit equation needs
to be solved for an exact solution [171, Equation 2.5]. In practice, the approximate solution is sufficiently
precise.
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4.4 Unsupervised training using multi-channel features

An alternative way to make use of spatial information is to employ it for the training of
a single-channel system. That way, one mitigates the need of supervision data in contrast
to supervised separation networks, e.g., for DC [43], [47], DAN [46], [172], and PIT [44],
[45] with their originally proposed training schemes. To be precise, in most cases, artificial
mixtures are used to produce parallel clean and noisy data, whereas one thrives to use more
realistic data to avoid a mismatch between training and test. To name an example, Zhou
et al. argue that the difference in the acoustic conditions between training and test may be
severe enough that gains due to a neural network may be more than compensated [173]:
depending on the circumstances, a spatial clustering approach might perform better than a
neural network on the test data. Therefore, it is worthwhile to explore how multi-channel
data can be used to accommodate for the lack of supervision data. Although in a commercial
setup one might train on simulated data and then just fine-tune on real data, we here describe
entirely unsupervised approaches.

In [173] the authors propose a teacher-student training scheme, in which a TV-cGMM as in
[174] is used to generate either binary masks or soft masks as training targets for the student
DNN. The student DNN is then later employed as a mask estimator for neural mask-based
beamforming [173]. In [167] we present an unsupervised DC system, in which a cACGMM
serves as a spatial clustering model and acts as a teacher for a student DC neural network.
It turned out that the student system can indeed outperform the teacher when the student
system is used to again initialize a cACGMM. In parallel Tzinis et al. trained a student DC
system with a k-means clustering algorithm as the teacher [175]: k-means is used to cluster
inter-channel phase differences and corresponding posterior masks then act as supervision for
DC. In [176] the authors also analyze a teacher-student approach to unsupervised DC and
focus on a particular observation weighting scheme to improve training results. Comparing
[175], [176], and [167], the former two systems show that even a very weak teacher is able
to train a reasonable DC system. In contrast, the latter system is better tuned towards
performance relying on a state of the art spatial clustering model and reporting competitive
WERs. In [177] we presented a different take on unsupervised mask estimation: the likelihood
under the assumption that the data follows a cACGMM is used as a maximization criterion
to train a neural network which just provides the initialization to a single EM-step of the
cACGMM parameter estimation process. That way, the network is encouraged to provide
a mask as initialization which is close to an optimal initialization, thus leading to a higher
likelihood.

Table 4.3 compares the aforementioned unsupervised approaches to mask estimation and
source separation. An evaluation of unsupervised DC as in [167] is evaluated in Section 5.8.
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Table 4.3: Overview of different approaches to unsupervised training of neural network-based speech
enhancement and source separation. The training scheme indicates if spatial clustering is used as a
teacher or woven into a likelihood term or evidence lower bound (ELBO).

Application Training scheme

Single-speaker Multi-speaker Teacher-student Likelihood/ ELBO

Zhou et al. [173] ✓ ✓

Drude et al. [177] ✓ ✓

Drude et al. [167] ✓ ✓

Tzinis et al. [175] ✓ ✓

Seetharaman et al. [176] ✓ ✓

Bando et al. [178] ✓ ✓



5 Evaluation

The evaluation chapter first introduces performance metrics in Section 5.1 and the databases
considered in this work in Section 5.2. Section 5.3 – Section 5.6 explain and justify the choice
of the system components and baseline systems and the parameters therein. Section 5.7
analyzes proposed integration variants in detail and Section 5.8 briefly addresses unsupervised
training of neural network-based source separation. Section 5.9 and Section 5.10 provide
an overview of all proposed methods and put these into perspective by comparing with the
baseline approaches on two distinct databases. Key aspects are carved out by examining
slices of the corresponding datasets.

5.1 Performance metrics

The overall goal in mind here is to minimize WER obtained when comparing the speech
recognition results with a ground truth transcription. The WER is obtained by first accumu-
lating insertion, deletion, and substitution errors in each utterance and then finally dividing
the result by the total number of words in the dataset.

Due to the fact that we here aim for modular approaches with a meaningful intermediate
signal, we are also able to evaluate the quality of the source separation result. To do so, I
selected three closely related signal to distortion ratio (SDR) measures and two speech quality
measures. SI-SDR, which is here only used in the single-channel instantaneous mixing scenario
calculates the ratio of target signal power and estimation error power with compensation
for scale mismatch [179, Equations 2 – 5]. It does not account for small filtering effects
which would be necessary when evaluating one channel against another. BSS-Eval SDR is a
projection-based definition of SDR [180, Equation 13] and does not impose restrictions on the
enhancement system itself, e.g., it does not enforce linearity of the enhancement. Furthermore,
it allows short filter effects and therefore is applicable for convolutive mixtures. Another
SDR metric which requires linear enhancement but, due to that, does not require additional
estimation techniques is invasive SDR as defined in, e.g., [181, Equation 7]. See [181] for
an extended discussion of the advantages and disadvantages of different SDR measures.
All SDR values are reported on a (principally unlimited) decibel scale. The perceptual
evaluation of speech quality (PESQ) metric is a speech quality metric developed to assess
telephone transmission quality [182]. It is, therefore, only remotely suitable to assess source
separation quality but is included here due to its widespread use. To be precise, we here
report narrowband PESQ results due to using 8 kHz sampling rate. The values are reported in
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terms of mean opinion score (with MOS-LQO mapping) in the range [1, 5].1 As an alternative
perceptual quality metric we here employ short-time objective intelligibility (STOI) [183]
with values in the range [0, 1].

5.2 Database design

The conclusions drawn from an evaluation often depend largely on the database used for the
evaluation although one preferably intends to investigate and understand properties of models
and algorithms and not databases. The single-channel neural network-based source separation
systems introduced in Section 3.1.2 were all developed on a rather artificial mixture corpus
(WSJ0-2mix) which was introduced alongside the DC publication [43]. Although performance
metrics on this particular database have always been increasing and most very recent models
are still being evaluated on this database (see, e.g., [179, Table 1]), very little attention has
been paid to evaluation in more realistic noisy and reverberant environments. Only fairly
recently WHAM!, an artificial mixture database with real noise recordings was released [184].
However, they still do not address reverberation nor do they adequately account for the
mismatch between reverberation-free (dry) target speech recordings and the fairly reverberant
background noise. Much in contrast to the fairly large databases used to train and evaluate
neural network-based source separation systems, probabilistic spatial mixture models are far
too often evaluated on just a fraction of the amount of data, e.g., 8 mixtures per reverberation
time in [73]. Besides this critical reflection, it is fair to mention that real recordings with
parallel oracle speech images are almost impossible to acquire.

We here first describe the details of the WSJ0-2mix database [43]. Using this database
is necessary to prove that our baseline models indeed yield comparable results. Then, we
introduce the WSJ-BSS database which contains artificially reverberated Wall Street Journal
(WSJ) utterances with white background noise and allows acoustic model training. Finally,
we describe the WSJ-MC database which contains real mixture recordings. Although the
database is rather small, it can serve as an initial proof that the proposed methods indeed
generalize to realistic applications.

All evaluation results will be presented for a sampling rate of 8 kHz, a STFT window size of
512 (64ms), a shift of 128 (16ms), a DFT size of 512 (64ms) and a Hann window to control
spectral leakage.2

5.2.1 WSJ0-2mix

The WSJ0-2mix database was released alongside the DC publication [43]. It contains six
datasets three of which contain two and three of which contain three speakers. The train
and development source signals are taken from the WSJ dataset train si284 downsampled

1 We here rely on a particular C implementation. In practice only values approximately in the range
[1.1, 4.6] appear. See http://www.pesq.org/ for additional details and a more recent successor metric.

2 Albeit all confusion this name refers to Julius van Hann, an Austrian meteorologist. It refers neither to
Hanning nor Hamming. See https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.
hann.html for an implementation.
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Table 5.1: Specifics of the WSJ0-2mix database.

(a) Co-occurrence of speakers.

Dataset Train Dev Test

Train 101 101 0

Dev 101 101 0

Test 0 0 18

(b) Number of mixtures in relation to unique utterances.

Dataset Mixtures Utterances

Train 20 000 8 769

Dev 5 000 3 557

Test 3 000 1 770

Table 5.2: Input metrics of the WSJ0-2mix database.

Dataset
SDR / dB

PESQ STOI
SI BSS-Eval Invasive

Dev 0.00 0.15 0.00 1.66 0.72

Test 0.00 0.15 0.00 1.68 0.74

to 8 kHz and the test signals are taken from the WSJ dataset test eval92 5k [185], [186].3

To generate mixtures one can select a min configuration, in which the shortest utterance
determines the total length of the signal and a max configuration, in which the shorter
utterances are zero-padded to match the longest utterance in the given mixture. All evalua-
tions in this work related to the WSJ0-2mix database were done on the min configuration.
Correspondingly, only the shorter utterance can be used for ASR. All two or three source
signals are then simply added up with a mixing ratio of −2.5 dB up to 2.5 dB to result
in the mixture signal. Since, at that time, it was important to prove that a system does
work on unseen speakers (open condition) just as well as on speakers seen during training
(closed condition) the authors of that database decided that the development set contains
only speakers seen during training while the test set contains only unseen speakers (see
Table 5.1a).

Furthermore, the database contains significantly less unique utterances (of which many are
truncated as mentioned previously) than mixtures and is therefore not ideal for acoustic
model training. Table 5.1b lists the total number of mixtures and the number of unique
utterances per dataset.

Table 5.2 summarizes the input metrics for this database. They serve as a reference
to, e.g., calculate gains and help understand what the lower limits of each metric are.

5.2.2 WSJ-BSS

The WSJ-BSS database consists of 30 000, 500, and 1 500 six-channel mixtures. Each mixture
is obtained by reverberating each of the two source signals with an artificially generated

3 The dataset names are taken from the corresponding Kaldi recipes.
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Table 5.3: Specifics of the WSJ-BSS database.

(a) Co-occurrence of speakers.

Dataset Train Dev Test

Train 283 0 0

Dev 0 8 0

Test 0 0 10

(b) Number of mixtures in relation to unique utterances.

Dataset Mixtures Utterances

Train 30 000 30 000

Dev 500 491

Test 1 500 333

room impulse response and adding white Gaussian noise with a SNR of 20 dB – 30 dB. The
source signals are obtained from the three non-overlapping WSJ datasets si284, dev93,
and eval92 for training, development and test [185], [186]. The source utterances were
selected in such a way that as many unique utterances as possible are covered while avoiding
punctuation pronunciation (e.g., spoken question mark) to facilitate sequence-to-sequence
acoustic model training. Table 5.3a shows how many speakers are in each dataset and whether
they appear again in different datasets. Table 5.3b lists how many unique utterances are
available for ASR. A variant of this database with simplified simulation conditions, padding
to the maximum utterance length, and some removed edge-cases is published as SMS-WSJ
with all RIRs, code, and an ASR baseline [181].4 A detailed comparison can be found in
Appendix A.8.

The total length of the mixture is chosen in such a way that the first source utterance
always determines the length of the mixture. The second source utterance is truncated or
padded accordingly. The motivation is again to provide sanitized conditions for acoustic
model training. Later, only the estimate of the first source utterance is transcribed by the
speech recognition system.5 The room impulse responses were generated using the image
method [187].6 The reverberation time was uniformly sampled in the range [200ms, 500ms].
To cover a rather large variety of simulation geometries, the room length, width, and height are
uniformly sampled from [7.6m, 8.4m], [5.6m, 6.4m], and [2.6m, 3.4m], respectively. Similarly,
the source positions are first sampled from a circle with a uniformly sampled radius in the
range [1m, 2m] centered at the array center and then moved by a random offset again sampled
from the range [−0.4m, 0.4m] in each coordinate axis. No minimum angular distance was
enforced, i.e., two speakers could theoretically stand behind each other [125, Figure 2]. The
sampling rate for the database is set to 8 kHz to somewhat reduce computational load and
match the WSJ0-2mix conditions. The sensor array itself is simulated as a circular array with
radius 10 cm with a random rotation. The geometry of the setup is summarized in Figure 5.1.
Table 5.4 lists the input metrics, i.e., the metrics which can be measured when a system simply
outputs the reference channel of the observation as a prediction.

4 https://github.com/fgnt/sms wsj
5 This is an unnecessary asymmetry, which is avoided in the SMS-WSJ database.
6 We here relied on Emanuel Habets’ implementation (https://github.com/ehabets/RIR-Generator) with
a thin Python wrapper (https://github.com/boeddeker/rir-generator).



Evaluation 62

∼
U(

56
0
cm
,6
40

cm
)

∼ U(760 cm, 840 cm)

∼ U(0◦, 360◦)

∼ U(0◦, 360◦)
∼ U(0◦, 360◦)

20 cm

∼ U(100 cm, 200 cm)

∼ U(100 cm, 200 cm)

−180◦ ≤ ϕ ≤ 180◦

1
2

3

4
5

6

∼ U(360 cm, 440 cm) ∼
U(

26
0
cm
,3
40

cm
)

Figure 5.1: Geometry of the WSJ-BSS database. The black dots represent the microphones, the
colored dots indicate source positions. Each aspect of the geometry is uniformly sampled from the
given range. No minimum angular distance is enforced. The axial center of the sources and the
sensor array is independently sampled, i.e., both are not coaxial (not shown in this visualization).

Table 5.4: Input metrics of the WSJ-BSS database.

Dataset
SDR / dB

PESQ STOI
BSS-Eval Invasive

Dev −0.37 −0.03 1.62 0.55

Test −0.38 −0.04 1.48 0.65



Evaluation 63

490 cm

650 cm

Seat 1 Seat 2

Seat 4 Seat 3

75 cm 150 cm 75 cm 75 cm

75 cm

Array 1 Array 2

1
2

3

4

5
6

7

8

9
10

11

12

13
14

15

16

Figure 5.2: Geometry of the WSJ-MC database. Only Array 1 is used for evaluation.

Table 5.5: Input metrics of the WSJ-MC database.

Dataset BSS-Eval SDR / dB PESQ STOI

Dev −2.29 1.58 0.56

Test −2.33 1.64 0.58

5.2.3 WSJ-MC

The WSJ-MC database contains 178 real mixtures from the olap dev 5k dataset and 142 real
mixtures from the olap ev1 5k dataset of the multi-channel WSJ audio visual corpus [188]
which we here resample to 8 kHz. Four British English speakers take turns in reading two
sentences from the WSJ simultaneously. In other words, exactly two speakers appear in a
single mixture recording. The mixtures are recorded with two 8-channel microphone arrays
of which we here only use the first one. The database does not contain an additional train
dataset. Thus, all models have to be trained on an artificial database before they can be
evaluated on the WSJ-MC database. The database does not contain clean speech recordings,
however, the fairly clean headset signal shall serve as a reference signal here. Table 5.5 lists
the approximated input metrics when using the headset instead of a clean source signal as a
reference. Figure 5.2 illustrates the geometry.

5.3 Acoustic model training

When source separation approaches are optimized with an ASR task in mind, it is important to
evaluate with a rather competitive acoustic model (AM). This is necessary to demonstrate that
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Table 5.6: Oracle WERs for the WRN on the WSJ-BSS database.

Test WER / %

Image Noisy image

Train
Image 10.33 10.33

Noisy image 10.30 10.30

the gains created by modifications to the front-end (the source separation and enhancement)
do not get compensated by the back-end (the ASR system). To provide an example, a simple
enhancement method might still result in a WER reduction for a GMM-HMM system. A
mediocre front-end might lead to a small or no improvement if the back-end is quite strong
by itself. We here opted for a rather sophisticated hybrid acoustic model: a wide residual
network (WRN) estimates state posterior probabilities and a HMM represents temporal
context. This decision is made since although sequence-to-sequence AMs are in principal
easier to handle, their performance on limited audio data still lacks behind (compare [189]
for a comparison of hybrid and all-neural ASR).

To train the AM, we first train a GMM-HMM system on clean speech following the Kaldi
recipe for bootstrapping purposes by using increasingly complex GMM-HMMs.7 The final
model (tri4b) is then used to extract state alignments on the early-arriving speech images of
the training and development data. The idea of this is, that the early-arriving speech images
are rather similar to clean (and dry) speech while still having the same initial delay due to
the simulated time of flight as the speech images of the simulated mixtures. Using these
forced alignments on early-arriving speech, a WRN can now be trained on the speech images
(containing the full reverberation tail). The WRN used here is a simplification of the wide
bi-directional residual network (WBRN) [190] originally developed for the CHiME 4 challenge.
The simplified WRN is described in more detail in [137]. The AM here only consists of
convolutions with skip connections and a linear layer to produce state posterior logits before
entering the softmax nonlinearity. No dropout is used. The Mel filter bank feature extraction
and the pooling operations are adjusted to match the reduced sampling rate. The reduced
sampling rate and the removal of the bidirectional long short-term memory (BLSTM) layers
allow training with a batch size of 4 on a GTX 1070 GPU with convergence in about 24 h.
Table 5.6 shows oracle WERs of the WRN on the WSJ-BSS database.

Although a neural network can potentially be warm-started from a previous model, we here
avoid this to not overcomplicate the entire pipeline: each AM, also the ones with matched
training, i.e., training on the results of a source separation model, are trained from scratch.
We do not study the effect of warm-starting here.

In general, we expect that matched training improves the recognition performance, since
artifacts produced by the front-end are seen during the training of the back-end. It is worth
to keep in mind that, especially in a speech enhancement setup, the matched back-end
is exposed to less variability when the front-end already works well on the training data.
While this might lead to worse performance in unseen conditions (The hypothesis of the

7 Compare the initial part of https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/run.sh.
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influence of reduced training variability is to some degree supported by [191, Table 3].), we
expect this effect to be rather small on a separation task. Matched training is evaluated in
Section 5.9.2.

5.4 Deep-learning methods

This section explains how the different neural networks for blind source separation are trained
and how particular parameter choices can be justified. First, we identify a few properties of
the models on the WSJ0-2mix database. Then, we investigate whether they hold true on the
WSJ-BSS database.

Training neural networks involves a substantial number of hyperparameters. For example [192]
demonstrate an expensive Bayesian hyperparameter search for source separation neural
networks on the WSJ0-2mix database. In general, to limit the search space, it is useful to
start close to already established parameter choices on related tasks [193]. Therefore, we first
present a parameter overview table for each separation neural network and then describe the
models in detail.

5.4.1 Deep clustering

Table 5.7 contains a parameter overview of a selection of publications involving different
recipes for training a deep clustering encoder. The table already includes the parameter
choice we finally use for further evaluations. The choices are further detailed in the next
paragraphs.

All DC models are pretrained with a batch size of 8 of random mixture segments with 32000
samples (4 s) each to avoid extensive zero-padding. After the pretraining has converged,
training is resumed with a batch size of 8 on entire utterances. Ten buckets based on sequence
lengths have been used to group utterances, somewhat homogenize each batch, and reduce
zero-padding. The motivation here is that the network is trained in conditions as close as
possible to the test stage.

The loss is minimized using the Adam optimization procedure [194] and a step size of
α = 1 · 10−3. To somehow update gradients more conservatively, the regularizing parameter
ǫ = 1 · 10−4 instead of ǫ = 1 · 10−8 is used [194]. All gradients are limited to a maximum
length of one. If the length is above one, the gradient is rescaled to length one instead
of clipping the offending values. Validation is started after every epoch. For pretraining,
optimization is stopped once the validation loss has not decreased for 10 validation runs.
Then, the previous best parameters according to the validation loss on the development set
are used for evaluation. For fine-tuning a learning-rate decay strategy with automatic back-off
is used: if the validation loss does not decrease for 10 epochs the learning rate is halved
and the parameters are reset to the previous best parameters according to the validation
loss. Once the learning rate is below 4 · 10−4, the training is stopped and the previous best
parameters are used for evaluation.
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Table 5.7: Comparison of training details for deep clustering. 4 · 300 BLSTM units stands for four
layers of 300 forward and 300 backward units. Empty cells indicate that the information is not
available. Two numbers with an arrow indicate that the parameter is changed after the initial
training has converged. The entry marked with an asterisk (*) is taken from [48].

[43] [47] [48] [106] [51] This work

Batch size 4 8

DFT size 256 256 256 512 512 512

DFT window sqrt. Hann sine sqrt. Hann Blackman Hann Hann

Train samples 6400 → 25600 25600 entire entire 32000 → entire

Features log mag. log mag. log mag. log mag. log mag. log mag.

Input norm global sequence sequence

BLSTM units 2× 600 4× 300 4× 600 4× 300 2× 600 4× 300

Dropout 0.5 0.3 0.5 0.5 0

Rec. dropout 0 0.2 0 0 0 0

Normalization sequence sequence sequence

Stream merge concat. concat. concat.

Embedding dim. 40 20 40

Output nonlin. tanh tanh

Loss mask −40 dB th. −40 dB th.* −40 dB th. 98% quantile none

Optimizer M-SGD RMS-Prop Adam Adam Adam

Learning rate schedule schedule fixed back-off

Gradient clip 200 1 1

Weight decay no no no

Weight noise yes no no no

The DC encoder uses log magnitude spectrogram features and consists of 4 BLSTM lay-
ers [195], [196] with 300 units in each direction. The forward and backward stream is merged
by concatenating the hidden states [196].8 All trained models contain a sequence normaliza-
tion [128, Section 3.1.3] just before each BLSTM layer such that, e.g., each frequency bin is
normalized to zero mean and unit variance. In contrast, [47] uses a global mean-variance
normalization as a preprocessing step. The main argument for such a normalization here is
that the system generalizes better to unknown microphone scaling and is somewhat invariant
to equalization effects. This has been done in view of the WSJ-MC database, but not doing
so has not been evaluated further. Each long short-term memory (LSTM) cell uses a forget
bias of one to discourage forgetting at the beginning of training. A final linear layer is used to
map each time-frequency bin to an embedding vector with E = 40 dimensions. Neither the
input nor the output of the linear layer is normalized. However, a tanh nonlinearity is used
after the linear layer. Finally, the embedding vectors are normalized to unit length. The way
to regularize the neural network is through the use of early stopping.

8 Schuster et al. do not discuss concatenation. However, they mention that they split the number of
neurons in half. From that follows that they most likely concatenated the outputs.
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If not otherwise noted, the networks for the WSJ0-2mix database use the DC loss [43,
Equation 1] with K ′ = K = 2 classes while the DC networks for the WSJ-BSS database use
an additional noise class: K ′ = K + 1 = 2 + 1. The loss is not masked, although, according
to, e.g., [47] masking leads to a slight performance improvement. The reason to not mask
the loss is that the additional noise class should sufficiently handle the issue the loss masking
was originally intended for.

In contrast to [47], we did not use recurrent dropout [197], [198]. Although this showed
improvements in [199] for a phoneme recognition task with BLSTMs, recurrent dropout is
avoided to simplify the training recipe.

In derogation from [47], we here use a DFT size of 512 and an accordingly higher shift. This
reduces the number of LSTM steps by a factor of two, thus speeding up training significantly
while yielding a similar separation performance. Furthermore, we base this parameter choice
on the W-disjoint orthogonality analysis in [23, Figure 9.8], in which a DFT size of 512
resulted in a maximum of the W-disjoint orthogonality for three, four, and five speakers
given a sampling rate of 8 kHz. A more detailed analysis for 16 kHz with different window
functions can be found in [22, Figure 4].

To limit the search space and to somewhat ease reproducibility, all further DC models now
share a common architecture, common features, and a common training recipe.

To ensure that the gains of an integration model do not simply stem from a soft clustering of
the embedding vectors, it is worth it to first investigate how different latent models influence
the performance of a DC system. It is worth keeping in mind that simply switching to a soft
clustering model influences the performance of a masking-based extraction more than it would
impact a beamforming-based extraction. However, since our final goal is to optimize overall
performance, we compare masking results on the WSJ0-2mix database and beamforming
results on the WSJ-BSS database.

Table 5.8 compares k-means with other latent models and varying parameterizations. A
GMM with an unconstrained (full) covariance per class mostly did not converge for this
(E=40)-dimensional latent space. Constraining the covariance matrix to a diagonal matrix at
least resulted in stable processing but with rather poor separation results. Constraining the
covariance matrix further to impose spherical equiprobability surfaces (scaled identity matrix)
improves the performance more. Enforcing a fixed scale parameter which itself is optimized
by selecting the best invasive SDR validation result for all classes even allows for surpassing
the SDR gains of the k-means baseline slightly. A similar observation can be made for a
von-Mises-Fisher mixture model (vMFMM) in which the concentration parameter κ seems
to have an anti-proportional influence compared to σ2 for a GMM. It is worth mentioning
that this slightly contradicts our previous findings in [106] and [51]: we previously argued
that simply using a soft model instead of k-means does not change separation performance.
Here, however, we tuned the parameters of the soft clustering model more carefully, which,
to some degree, explains the more nuanced results. In conclusion, the k-means algorithm
on embedding vectors is already a fairly competitive baseline and can be used for a later
comparison with integration models.

Next, we analyze the influence of the mixture weight. Table 5.9 shows that the type of
mixture weight as discussed in Section 3.2.1.3 is of minor importance for the embedding
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Table 5.8: Comparison of masking results of a k-means clustering, different variants of a GMM,
and different variants of a vMFMM on the WSJ0-2mix database. The tuning parameter κ or σ2 is
selected to maximize invasive SDR on the development set.

Initialization Latent model
Weight

type
Parameter

SDR / dB

SI-SDR BSS-Eval Invasive

Dev Test Dev Test Dev Test

k-means 1/K ′ 8.83 8.87 9.41 9.43 12.28 12.35

i.i.d. GMM (diagonal) 1/K ′ free 3.69 3.63 4.49 4.40 6.81 6.73

i.i.d. GMM (spherical) 1/K ′ free 8.44 8.27 9.02 8.83 12.31 12.40

i.i.d. GMM (spherical) 1/K ′ σ2 = 1/8 9.20 9.22 9.76 9.75 12.37 12.44

i.i.d. vMFMM 1/K ′ free 8.45 8.32 9.03 8.88 12.31 12.39

i.i.d. vMFMM 1/K ′ κ = 8 9.15 9.17 9.73 9.72 12.48 12.52

Table 5.9: Comparison of the influence of the mixture weight type on the WSJ0-2mix database. The
free parameter is selected based on best development set invasive SDR.

Initialization Latent model
Weight

type
Parameter

SDR / dB

SI-SDR BSS-Eval Invasive

Dev Test Dev Test Dev Test

k-means 1/K ′ 8.83 8.87 9.41 9.43 12.28 12.35

i.i.d. GMM (spherical) 1/K ′ σ2 = 1/8 9.20 9.22 9.76 9.75 12.37 12.44

i.i.d. GMM (spherical) πk σ2 = 1/8 9.23 9.23 9.80 9.79 12.53 12.57

clustering model. While this comparison seems to be too detailed for the moment, it is worth
pointing out that the performance of models discussed later significantly depends on the
choice of the mixture weight.

Table 5.10 compares a GMM and a vMFMM with different initializations. First of all, we
observe that the GMM and the vMFMM perform almost equally and both are slightly ahead
of the k-means-only result. We can further deduce from Table 5.10 that the embedding
mixture models do not profit from an additional k-means initialization, they bootstrap
themselves sufficiently well.

Table 5.11 again compares the k-means clustering, the GMM, and the vMFMM but this
time on the WSJ-BSS database with beamforming. To be precise, we here use a GEV
decomposition as an RTF estimator, a rank-one matrix construction, a Souden-MVDR
beamformer, and a BAN postfilter. The underlying DC encoder is now trained with an
additional noise class, i.e., K ′ = K + 1 = 2 + 1. Again, we see slight differences between the
soft clustering models with the vMFMM once more performing slightly better in terms of
invasive SDR. Interestingly, the k-means clustering now performs best. This should suffice
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Table 5.10: Comparison of different embedding clustering models and how important proper
initialization is on the WSJ0-2mix database. The tuning parameter κ or σ2 is selected to maximize
invasive SDR on the development set.

Initialization Latent model
Weight

type
Parameter

SDR / dB

SI-SDR BSS-Eval Invasive

Dev Test Dev Test Dev Test

k-means 1/K ′ 8.83 8.87 9.41 9.43 12.28 12.35

i.i.d. GMM (spherical) 1/K ′ σ2 = 1/8 9.20 9.22 9.76 9.75 12.37 12.44

i.i.d. vMFMM 1/K ′ κ = 8 9.15 9.17 9.73 9.72 12.48 12.52

k-means GMM (spherical) 1/K ′ σ2 = 1/8 9.21 9.22 9.76 9.75 12.37 12.44

k-means vMFMM 1/K ′ κ = 8 9.16 9.17 9.73 9.72 12.48 12.52

Table 5.11: Comparison of latent models for DC on the WSJ-BSS database. Each rows represents
beamforming results with a GEV decomposition as an RTF estimator, a rank-one matrix construction,
a Souden-MVDR beamformer and a BAN postfilter. The latent model parameter is selected based
on maximum invasive SDR on the development set.

Initialization Latent model Weight type Parameter

SDR / dB

BSS-Eval Invasive

Dev Test Dev Test

k-means 1/K ′ 9.93 10.28 14.31 14.65

i.i.d. GMM (spherical) 1/K ′ σ2 = 1/100 9.74 10.16 14.11 14.52

i.i.d. GMM (spherical) πk σ2 = 1/100 9.52 10.06 13.88 14.41

i.i.d. vMFMM 1/K ′ κ = 100 9.69 10.22 14.03 14.58

i.i.d. vMFMM πk κ = 100 9.74 10.19 14.07 14.55

to argue that using k-means for the DC model is a solid baseline for later comparison.
Moreover, it becomes apparent that the variance σ2 is much higher and the concentration κ
is much lower than on the WSJ0-2mix database which results in a behavior fairly similar to
k-means.
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Findings

To finalize this section, we can draw the following conclusions:

• In a DC system applying k-means is already rather competitive.

• The mixture weight has a marginal influence on the embedding clustering models.

• The choice of the concrete soft clustering model for a spectral-only model is of
minor importance.

5.4.2 Deep attractor network

Similar to the previous section, we start the analysis of the deep attractor network with a
short literature review. Table 5.12 summarizes the parameter choices in selected publications
and mentions the parameters used here in the last column. The parameters used here are
selected to match the DC parameters as closely as possible. Although this may have led to
a slight degradation of the DAN baseline, it facilitates comparison between DC and DAN.

The original motivation for the DAN architecture was to be able to train with a loss function
closer to the downstream task (e.g., masking). As detailed in Section 3.1.2.2 the DAN
encoder first produces embedding vectors. During training, a supervision mask is then used
to calculate weighted means per class (attractors). These attractors can then be used to
calculate an inner product with the original embeddings (called DAN decoder in the following)
to create a time-frequency mask per class. Table 5.13 compares two different loss functions
with the corresponding nonlinearity. The MSE loss as used in the original work is intended
to improve masking performance. A possible hypothesis at this point is that CE loss with a
softmax nonlinearity may lead to a better initialization of later models. However, at least in
our analysis, the CE loss with a softmax nonlinearity (Row 4) already outperforms the MSE
loss with a sigmoid nonlinearity (Row 2), when using the DAN decoder also during test time,
i.e., when applying Equation 3.4 during inference.

Figure 5.3 shows how the DAN performance depends on the choice of the fixed parameter
in terms of invasive SDR. First of all, we notice that a clear optimum is hard to be found.
Only when using masking, fixed variance parameters around σ2 = 1 lead to an improvement
over the k-means result. This can be explained by the smoothing effect of higher variance
values. However, when using a beamformer, hard masks are not an issue for performance
and k-means avoids any parameter selection at all. Thus, a DAN encoder with k-means,
which is arguably easier to handle, and beamforming is already a rather strong baseline.10

Table 5.14 compares different latent model configurations and different initializations. Similar
to the observations with a DC encoder, we observe that an additional k-means initialization
is not helpful. The very different selection of the optimal covariance parameter takes place
due to the ambiguous maxima as illustrated in Figure 5.3.

10 The k-means implementation at hand already uses a k-means++ initialization with random restarts.
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Table 5.12: Comparison of training details for DANs. 4 · 300 BLSTM units stands for four layers of
300 forward and 300 backward units. Empty cells indicate that the information was not available.

[46] [200] [166] [51] This work

Batch size 4 8

DFT size 256 512 512 512 512

DFT window sqrt. Hann Blackman Hann Hann

Train samples 6400 → 25600 entire entire entire 32000 → entire

Features log mag. log mag. log mag. log mag. log mag.

Input norm sequence sequence sequence sequence

BLSTM units 4× 600 2× 600 2× 600 4× 300

Dropout 0.5 0.5 0

Rec. dropout 0 0 0

Normalization sequence sequence sequence sequence

Stream merge concat.9 add concat. concat. concat.

Embedding dim. 20 20 20 40

Output nonlin. tanh tanh

Loss mask 90% amp. th. 98% quantile none

Optimizer RMS-Prop Adam Adam Adam Adam

Learning rate schedule none fixed back-off

Gradient clip 5 1 1

Weight decay no no no no

Weight noise no no no no

Table 5.13: Comparison of DAN with different loss functions and different DAN decoder output
nonlinearities. Further, the second column indicates whether a DAN decoder was used during
inference, i.e., applying Equation 3.4 during inference.

Output

nonlinearity

DAN decoder

at test time

(Equation 3.4)

Loss

SDR / dB

SI-SDR BSS-Eval Invasive

Dev Test Dev Test Dev Test

sigmoid ✗ MSE 8.96 8.80 9.55 9.37 12.52 12.39

sigmoid ✓ MSE 9.41 9.28 9.91 9.77 11.29 11.18

softmax ✗ CE 8.71 8.84 9.39 9.45 12.48 12.66

softmax ✓ CE 9.58 9.71 10.16 10.27 12.79 12.96
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Figure 5.3: Dependency of DAN performance on fixed covariance parameter observed on the
WSJ-BSS database. The horizontal axis shows an inverse variance to be better comparable with
concentration parameter plots. Dashed lines indicate results on the development set.

Table 5.14: Comparison of different clustering models on DAN embeddings on the WSJ-BSS database.
The tuning parameter σ2 = 1/λ was chosen to maximize development set invasive SDR. Figure 5.3
provides insights into why the parameter σ2 differs that much between rows.

Initialization Latent model
Weight

type
Parameter Extractor

SDR / dB

BSS-Eval Invasive

Dev Test Dev Test

k-means 1/K ′ Masking 7.03 6.88 11.52 11.20

i.i.d. GMM (spherical) 1/K ′ σ2 = 1 Masking 7.54 7.30 11.80 11.42

i.i.d. GMM (spherical) πk σ2 = 1/200 Masking 6.36 6.32 10.93 10.67

k-means 1/K ′ Beamforming 10.24 10.28 14.61 14.58

i.i.d. GMM (spherical) 1/K ′ σ2 = 1 Beamforming 10.38 10.37 14.69 14.61

i.i.d. GMM (spherical) πk σ2 = 1/500 Beamforming 9.75 9.74 14.04 13.91
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Table 5.15: Comparison of training details for PIT. 4 · 300 BLSTM units stands for four layers of
300 forward and 300 backward units. Empty cells indicate that the information was not available.

[45] This work

Batch size 8 8

DFT size 256 512

DFT window Hann

Train samples entire 32000 → entire

Features mag. log mag.

Input norm sequence

BLSTM units 4× 300

Dropout 0.5 0

Rec. dropout 0 0

Normalization sequence

Stream merge concat.

Optimizer Adam

Learning rate decay back-off

Gradient clip 1

Weight decay no

Weight noise no

Findings

To finalize this section, we can draw the following conclusions:

• Using k-means to cluster the DAN is a robust baseline and avoids the need for
additional parameter tuning.

• A CE loss works well and is less dependent on a DAN decoder during inference.

5.4.3 Permutation invariant training

To begin with, Table 5.15 shows a brief parameter comparison with the original utterance-
wise PIT publication [45]. Again, we chose parameters to be consistent with our DC
implementation.

One big advantage of PIT over, e.g., DC is its ability to be trained with a reconstruction loss.
It had already been shown in previous studies on masking such as [121, Table 4] that a recon-
struction loss significantly outperforms a mask approximation loss.

However, it is worth noting that those comparisons focus on direct reconstruction using
masking, whereas we here intend to either use the resulting mask to initialize a spatial mixture
model or intend to steer a beamforming vector. Both operations are much more indirect and
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Table 5.16: PIT results with masking on the WSJ0-2mix database with K ′ = K = 2 classes.

Output

nonlinearity
Loss

SDR / dB

SI-SDR BSS-Eval Invasive

Dev Test Dev Test Dev Test

sigmoid NPSMSE 9.04 9.01 9.62 9.58 11.79 11.76

softmax CE 9.59 9.50 10.16 10.07 12.69 12.63

Table 5.17: PIT results on the WSJ-BSS database. The beamforming rows contain a GEV as an
RTF estimator, a rank-one matrix construction, a Souden-MVDR beamformer and a BAN postfilter.

Classes
Output

nonlinearity
Loss

Extraction

method

SDR / dB

BSS-Eval Invasive

Dev Test Dev Test

K ′ = K sigmoid NPSMSE Masking 6.60 6.48 9.51 9.33

K ′ = K + 1 sigmoid NPSMSE Masking 6.74 6.59 9.66 9.45

K ′ = K + 1 softmax CE Masking 6.37 6.67 9.91 10.03

K ′ = K sigmoid NPSMSE Beamforming 9.28 9.43 13.26 13.37

K ′ = K + 1 sigmoid NPSMSE Beamforming 9.15 9.28 13.19 13.25

K ′ = K + 1 softmax CE Beamforming 9.71 9.95 14.03 14.25

are conceptually motivated by posterior distributions as masks instead of estimated ratio
masks.

Consequently, we here train PIT models with a mask approximation loss as well as a reconstruc-
tion loss to then evaluate how this influences end results in different setups.

Table 5.16 shows results on the WSJ0-2mix database using masking. The particular signal
level loss is a mean squared error with a nonnegative phase-sensitive mask (NPSMSE) on
the magnitude spectrograms [45, Equation 10]. Counterintuitively, the CE loss yields better
masking results on the WSJ0-2mix dataset. However, it is fair to point out that the original
authors did not evaluate a CE loss and it also may depend severely on the particular neural
network.

Table 5.17 shows results on the WSJ-BSS database. While the BSS-Eval SDR results on
the development set and the test set seem to contradict, the invasive SDR gains are more
consistent. The first row is closest to the configuration presented in the original work [45,
Table 3 Row 1]. However, at least in terms of invasive SDR a softmax output nonlinearity
with CE loss yields better results. This is favorable since it is expected that all integration
models profit from masks resembling posterior distributions more than from masks optimized
for a signal reconstruction loss. Also in the context of beamforming, the CE results with an
additional noise class work best.
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Table 5.18: Comparison of our implementation of DC, DAN, and PIT on the WSJ0-2mix database
with reference implementations in the literature. The results with an asterisk were originally
reported as gains and are here translated to absolute metrics using the input metrics as in Table 5.2.

Model Source

SDR / dB

SI-SDR BSS-Eval Invasive

Dev Test Dev Test Dev Test

DC [43, Table 1 Row 4] 5.9 6.0

DC [47, Table 7 Row 1] 10.3

DC [47, Table 7 Row 3] 10.8

DC [48, Table 1 Row 1] 9.6 9.5

DC here 8.83 8.87 9.41 9.43 12.28 12.35

DAN [46, Table 1 Row 6] 10.5

DAN [201, Table 1 Row 4] 10.3

DAN [179, Table 1 Row 2] 10.4 10.95*

DAN here, sigmoid and speech loss 9.41 9.28 9.91 9.77 11.29 11.18

DAN here, softmax and mask loss 9.58 9.71 10.16 10.27 12.79 12.96

PIT [45, Table 3 Row 1] 9.65* 9.65*

PIT [179, Table 1 Row 3] 10.15*

PIT here, sigmoid and speech loss 9.04 9.01 9.62 9.58 11.79 11.76

PIT here, softmax and mask loss 9.59 9.50 10.16 10.07 12.69 12.63

Findings

To finalize this section, the following conclusions can be drawn:

• PIT is conceptually easier since there is no additional clustering stage involved.

• A CE loss yields mixed results for masking. No clear conclusion can be drawn.

• A CE loss works well with beamforming and, as a consequence, is likely to yield
a good initialization for an integration model.

5.4.4 Comparison with reference publications on WSJ0-2mix

Table 5.18 shows an overview of separation results on the WSJ0-2mix database. The trained
models here are slightly worse than the reference systems. The main reasons are that all
systems here use the same potentially suboptimal hyperparameters to facilitate comparison.
Moreover, we here avoided particular tricks geared towards the WSJ0-2mix database such as
loss masking. Additionally, a subsequent mask refinement network (Row 2) and end-to-end
training (Row 3) were avoided in the baselines in this work as well.
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Figure 5.4: Performance of different spatial models on a limited number of examples (here 10) and
different sound decay times.

5.5 Probabilistic spatial mixture models

To be able to draw reliable conclusions from experiments with integration models it is
important to ensure that the baseline models, which also form the integration components, are
well optimized independently. Consequently, this chapter first compares different observation
models. Based on that, the cACGMM is selected for further experiments. Parameters, such
as the number of classes, different initializations, and permutation alignment solvers are
subsequently compared. For simplicity, all beamforming experiments within this chapter use
Souden’s MVDR variant without a rank-one approximation (compare Section 3.3.2.3). The
distortion matrix used in the beamforming algorithm consists of noise-plus-interference spatial
correlations as in Equation 3.52. Experiments comparing different beamforming variants
with a fixed clustering algorithm can be found in Section 5.6.

5.5.1 Type of the spatial observation model

First of all, we compare different spatial observation models for spatial clustering-based BSS.
Similarly to the experiments in [111], we compare a cWMM, a cBMM, and a cACGMM
for different reverberation conditions. In this comparison, all models use a time-dependent
mixture weight and an additional noise class. Figure 5.4a shows invasive SDR results for
spatial clustering models for each of the three observation models initialized with the oracle
ideal ratio mask (IRM). Each data point summarizes ten mixtures with a given sound decay
time. To simplify the experiment, ten examples from the WSJ-BSS database were selected
and mixed with RIRs with varying reverberation.

Under these oracle conditions, the cACGMM clearly performs best on all depicted reverbera-
tion times. The cWMM, which is a special case of the cBMM and, thus, has less class-specific
parameters, results in better scores than the cBMM. These results seem to contradict the
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findings reported by Ito et al. in [96] and [111]. However, the cited references have to be
read with care: [96] only reports single-speaker results for which the cWMM baseline uses a
diffuse noise assumption (concentration parameter is zero) and the cBMM again uses a diffuse
noise assumption (Bingham parameter matrix is the zero matrix). [111] reports performance
differences between the cBMM and the cWMM in Figure 2. However, they obtained these
results with D = 2 microphones for which, in theory, the complex Bingham distribution and
the complex Watson distribution coincide:

CB(ỹ;B)
B Hermitian

= CB(ỹ;UΛUH)

U unitary
= CB(Uỹ;Λ)

D=2
= CB(Uỹ; diag((λ1, λ2)

T))

Appendix A.1.2
= CB(Uỹ; diag((λ1 − λ2, 0)

T))

U unitary
= CB(ỹ; (λ1 − λ2)u1u

H

1 )

= CW(ỹ;u1, (λ1 − λ2)), (5.1)

where u1 is the first column of U.

Nevertheless, the findings in terms of the superiority of the cACGMM here agree with [111].
In [106, Section 4] we reported that the implementation of the TV-cGMM is slightly more
robust than the implementation of the cACGMM. Without further proof, these differences
were traced back to small constants for stability improvements (informally called epsilons).
After carefully selecting robust algorithms for the intermediate linear algebra operations
without these constants, the TV-cGMM implementation and the cACGMM implementation
are now both numerically stable and their results coincide. These findings are in line with
the identity proof in the appendix of [111].

Figure 5.4b shows invasive SDR results with an i.i.d.-initialized clustering model. First of
all, it becomes evident that the cBMM relies much more on an initialization closer to ideal
masks. However, the results also indicate that gains over the cBMM diminish for higher
reverberation times. Moreover, by comparing Figure 5.4a and Figure 5.4b, it is expected
that the performance of a cascade system, i.e., using a neural network to initialize the
mixture model, is likely to fall in between the i.i.d. initialization and the IRM initialization
results.

Table 5.19 compares the aforementioned spatial clustering models on the WSJ-BSS database.
The key findings are that all models dramatically profit from inline permutation alignment
(PA) and again, as already anticipated because of Figure 5.4, the cACGMM performs best.
Inline permutation alignment refers to applying a permutation alignment solver after each
E-step so that disagreement between the model parameters across frequencies is avoided
early on. This nuance is only prevalent when there is at least some coupling between
different frequency bins (here due to the time-dependent mixture weights), otherwise one
final permutation alignment step coincides with inline permutation alignment. The oracle
IRM initialization results can be seen as an upper limit. Interestingly, the cWMM results
and the cACGMM results only lack about 1 dB behind the oracle initialization in terms of
invasive SDR suggesting that, on the given database, the cACGMM system already serves as
a very strong baseline.
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Table 5.19: Comparison of different spatial models with and without inline permutation alignment
on the WSJ-BSS test set. The results are reported with an i.i.d. initialization and with an oracle
IRM initialization.

Latent

model

Inline

PA

BSS-Eval SDR / dB Invasive SDR / dB

i.i.d. init. Oracle IRM init. i.i.d. init. Oracle IRM init.

cWMM ✗ 9.25 11.24 11.23 13.25

cWMM ✓ 10.40 11.26 12.33 13.27

cBMM ✗ 5.39 10.32 7.30 13.09

cBMM ✓ 7.25 10.41 9.68 13.19

cACGMM ✗ 11.23 12.92 14.18 16.21

cACGMM ✓ 12.17 12.92 15.28 16.21

Findings

To finalize this section, we can draw the following conclusions:

• The cACGMM is the most robust clustering model in all conditions.

• The cBMM is most dependent on a proper initialization.

• All latent models profit greatly from an inline PA.

In summary, the cACGMM yields on average the best performance and, consequently,
will be analyzed in more detail and serve as a baseline for all experiments in the
following.

5.5.2 Parameter choice for the cACGMM

The credibility of an evaluation largely depends on the choice of the baseline system and how
much care was taken to tune it. Thus, we spend this section on establishing a sophisticated
baseline by identifying how to best set up a cACGMM.

First of all, Table 5.20 shows source separation results with and without an additional noise
class. While the gain from an additional noise class is limited for a neural network-based
approach (compare, e.g., PIT results in Table 5.17), an additional noise class is crucial for
spatial clustering models. The main reason is that the spatial clustering model needs to
assign each time-frequency bin to effectively one class. Even the low-power observations
with spurious phase information need to be assigned to one class. If these are assigned to a
speaker class, the summary statistics of that class are less reliable and, consequently, the
overall performance drops. Thus, all future spatial clustering models analyzed here make use
of an additional class to capture all non-speaker time-frequency bins.
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Table 5.20: Comparison of a cACGMM with different numbers of classes. K ′ = K + 1 classes
indicates that there is an additional noise class for a two-speaker scenario. The cACGMM was
initialized by sampling each entry in the affiliation mask i.i.d. from a uniform Dirichlet distribution.

Classes

SDR / dB
PESQ STOI

BSS-Eval Invasive

Dev Test Dev Test Dev Test Dev Test

K ′ = K 3.96 4.36 5.51 5.92 1.83 1.71 0.57 0.68

K ′ = K + 1 11.20 11.25 14.12 14.19 2.23 2.05 0.67 0.82

Table 5.21 lists source separation results for different initializations with and without inline
permutation alignment and different final permutation alignments. Here, oracle refers to
oracle permutation alignment, while the tick mark refers to a permutation alignment solver
variant introduced by Tran Vu [81, Section 5.6]. The flag initialization divides the length of
the signal into segments of T/K ′ length. Each segment is active for one of the classes. One
segment, which is likely to become the noise class, is split so that half of it is placed at the
start and half of it is placed at the end of the mixture. All inactive areas are set to a tiny
float value. The reasoning behind this is to use human-specified prior knowledge to initialize
the mixture models. By initializing this way, an initial frequency permutation problem is
somewhat reduced. This can be observed by inspecting Row 1 in Table 5.21: even without any
permutation alignment a reasonable source separation performance is possible. In contrast,
an i.i.d. initialization as in Row 5 heavily relies on permutation alignment. Although flag
initialization can lead to very high invasive SDR (e.g., 14.85 dB) without inline permutation
alignments, all future experiments will use an i.i.d. initialization. This decision results from
the observation that, at least when a time-dependent mixture weight is chosen, the flag
initialization should not be able to converge. However, since the inactive parts are chosen to
be non-zero, the model recovers from this very tiny numerical value in the order of 1 · 10−10

and we would like to avoid this numeric oddity in the following.

Table 5.22 compares how different mixture weight types influence the separation result. Here,
1/K ′ is a constant mixture weight, all others are varying for the given index, e.g., πk is an only-
speaker-dependent mixture weight. First of all, we observe that a time-dependent mixture
weight πk,t with inline permutation alignment leads to best separation results, for example, in
terms of BSS-Eval SDR. A time-dependent mixture weight leads to better spectral continuity.
If inline permutation alignment is applied, disagreement between the mixture weight and
the estimated parameters is resolved early on (Row 6). Reversely, a SDR drop of more than
1 dB occurs, when inline permutation alignment is not used (Row 5). A similar effect, albeit
somewhat smaller, can be observed when comparing Row 2 with Row 3. Interestingly, a
constant mixture weight 1/K ′ performs better than a frequency- and speaker-dependent
mixture weight, at least on this particular database.

The convergence of the cACGMM mostly depends on the initialization. Figure 5.5 illustrates
the convergence behavior for two different initialization variants and showcases the effect of
an additional inline permutation alignment. Table A.5 in the appendix lists more detailed
evaluation results for the convergence behavior. Based on the SDRs for different numbers
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Table 5.21: Comparison initializations and permutation alignment methods for a cACGMM.

Initialization
Inline

PA

Final

PA

SDR / dB
PESQ STOI

BSS-Eval Invasive

Dev Test Dev Test Dev Test Dev Test

flag ✗ ✗ 10.14 10.21 12.97 13.23 2.10 1.95 0.64 0.78

flag ✗ ✓ 11.46 11.71 14.49 14.85 2.19 2.05 0.66 0.81

flag ✗ oracle 12.40 12.33 15.78 15.66 2.26 2.08 0.68 0.83

flag ✓ ✓ 11.42 11.76 14.37 14.89 2.18 2.04 0.66 0.81

i.i.d. ✗ ✗ 0.24 0.12 1.79 1.62 1.57 1.44 0.51 0.61

i.i.d. ✗ ✓ 11.20 11.25 14.12 14.19 2.23 2.05 0.67 0.82

i.i.d. ✗ oracle 11.16 11.30 14.28 14.39 2.23 2.05 0.68 0.82

i.i.d. ✓ ✓ 12.38 12.22 15.53 15.35 2.26 2.08 0.68 0.82

oracle IRM ✗ ✗ 13.23 12.92 16.55 16.20 2.30 2.10 0.69 0.83

oracle IRM ✗ ✓ 13.24 12.92 16.56 16.21 2.30 2.10 0.69 0.83

oracle IRM ✗ oracle 13.04 12.82 16.50 16.21 2.29 2.09 0.69 0.83

oracle IRM ✓ ✓ 13.25 12.92 16.56 16.21 2.30 2.10 0.69 0.83

Table 5.22: Comparison of a cACGMM with different mixture weight types. The cACGMM with
K ′ = K + 1 classes was initialized by sampling each entry in the affiliation mask i.i.d. from a
uniform distribution with subsequent normalization to sum up to one.

Weight type
Inline

PA

SDR / dB
PESQ STOI

BSS-Eval Invasive

Dev Test Dev Test Dev Test Dev Test

1/K ′ ✗ 11.20 11.30 14.14 14.25 2.22 2.05 0.67 0.82

πk ✗ 11.27 11.29 14.20 14.25 2.23 2.05 0.68 0.82

πk ✓ 11.60 11.51 14.42 14.35 2.24 2.06 0.68 0.82

πk,f ✗ 10.77 10.88 13.45 13.61 2.21 2.04 0.67 0.81

πk,t ✗ 11.20 11.25 14.12 14.19 2.23 2.05 0.67 0.82

πk,t ✓ 12.38 12.22 15.53 15.35 2.26 2.08 0.68 0.82
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Figure 5.5: Convergence behavior of the cACGMM for different initialization variants and depending
on usage of an inline permutation aligner. The iteration axis is logarithmically scaled.

of iterations, we may conclude that the system is already rather saturated at 100 steps.
Consequentially, to limit computational costs, all further experiments will be limited to 100
iterations.

Findings

The findings in this section can be summarized as follows:

• Inline permutation alignment, albeit a simple change, is an important tuning
method which has not been published anywhere yet.

• Approximately 100 EM-iterations are sufficient for the analyzed spatial clustering
algorithms to approximately converge in terms of invasive SDR.

• A time- and speaker-dependent mixture weight results in the best performance.

5.6 Source extraction

This section evaluates different beamforming variants to extract each source from the mixture
signal. Since this section covers a wide range of beamformers, different RTF or covariance
matrix approximations and other variants, we aim at highlighting key findings concerning
source separation and eliminating variants early on. For completeness’ sake, a comparison of
masking and beamforming can be found later in Table 5.29.

First of all, it is important to note that all beamformers were evaluated with a pretrained
acoustic model on single-speaker noisy recordings (i.e., trained on noisy images). Therefore,
one expects that a normalization such as BAN helps to match the training conditions.
Figure 5.6 shows WERs over different SDR variants. All covariance matrices were obtained
with the mask normalization as in Equation 3.50.
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Figure 5.6: Scatter plot of dependency of WER on different performance metrics for a variety of
different beamformers. The masks to obtain covariance matrices are either oracle masks or posterior
masks obtained with a cACGMM. Therefore, the main purpose of these figures is to demonstrate
the correlation of WER with different SDR variants.

In general, both metrics provide a good indication of the quality of the front-end for speech
recognition. However, for high SDR values, invasive SDR seems to predict WER slightly
more accurately. Further, the figures do not show any evidence whether BAN should or
should not be used in general. Therefore, all future results select BAN or no BAN based on
the development set WERs instead of simply reporting, e.g., only BAN results. Although we
now observed that SDR is a good predictor for WER when using a beamformer, it is not
said that the correlation holds just as well for other systems. Finally, an evaluation with
pretrained AMs as well as with matched AMs is inevitable and, consequently, is presented in
Table 5.31 and Table 5.32.

Next, it is worth analyzing which distortion matrix definition to choose. All beamforming
variants besides the principal component analysis (PCA) beamformer require some kind of
distortion matrix. In a multi-source scenario, this can either be the noise matrix or the
noise-plus-interference matrix as in Equation 3.52. Figure 5.7 shows SDR values as well as
WERs for different beamformers in their standard configuration, i.e., RTF estimates (used
as intermediate vectors dk,f ) are obtained using a PCA when applicable. All masks used to
obtain the covariance matrices stem from a cACGMM clustering. The PCA beamformer
results (two upmost bars) do not change (up to randomness in the cACGMM initialization),
since the PCA beamformer does not depend on a distortion matrix. It turns out that
results are substantially better when using a noise-plus-interference matrix instead of a
noise-only matrix. Based on these results, all further investigation will be conducted with a
noise-plus-interference matrix as a distortion matrix.

Finally, we can analyze different beamformers with different ways to either extract the
RTF estimate or to approximate the target covariance matrix. The results are presented
in Table 5.23 and contrast either using oracle IRMs or posterior masks provided by a
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Figure 5.7: Comparison of beamformers using the noise matrix and using the noise-plus-interference
matrix as distortion matrix. The MVDR and LCMV beamformer use a PCA to extract the RTF
estimate. BAN is enabled or disabled, the distortion weight of the WMWF is selected, as well as
the leakage parameter of the LCMV is selected based on minimal WER on the development data.
Masks are obtained with an i.i.d.-initialized cACGMM.

cACGMM. The preprocessing column defines how the RTF estimate is obtained from the
speech covariance matrix Φxx,k,f for MVDR and LCMV beamforming. Moreover, it defines if
and how the speech covariance matrixΦxx,k,f was processed before using it in the beamforming
algorithm:

• PCA: The RTF is obtained with a PCA decomposition as in [140, Equation 26].

• GEV: The RTF is obtained with a GEV decomposition and appropriate rescaling using
the noise covariance matrix as in [140, Equation 27].

• PCA → Rank 1: The target covariance matrix Φxx,k,f is enforced to have rank one as
in [140, Equation 25] combined with the PCA decomposition in [140, Equation 26].

• GEV → Rank 1: The target covariance matrix Φxx,k,f is enforced to have rank one as
in [140, Equation 25] combined with the GEV decomposition in [140, Equation 27].

In all cases, applying GEV first and then creating a rank-one matrix by calculating the outer
product of the RTF with itself is the best preprocessing in terms of SDR as well as WER.
Whether BAN is to be used is again selected based on development set WER (to be precise,
selected on IRM WER results). It turns out that a BAN postfilter is beneficial in most cases.
The distortion weight µ for the WMWF, as well as the leakage parameter ǫ, is chosen such
that WER is minimized on the development set. Overall, the Souden-MVDR, the GEV
as well as the WMWF each with a GEV → Rank 1 matrix approximation yield the best
performance. In the following, the Souden-MVDR is preferred since it does not need further
tuning of yet another hyperparameter such as the distortion weight. Although the LCMV was
specifically derived for the multi-speaker case, it turned out to be slightly less effective than the
previously mentioned approaches although it is in this form already heavily tuned: it contains
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Table 5.23: Comparison of different beamformers. Each metric is stated with beamforming based on
an IRM oracle and with posterior masks from a cACGMM latent model. The usage of BAN, the
optimal weight µ or the optimal leakage parameter ǫ is decided based on IRM WERs results on the
development set. Metrics shown are on the test set.

Preprocessing

RTF/Φxx,k,f

Beamformer

estimation
BAN

Parameter

µ or ǫ

BSS-Eval SDR / dB WER / %

Oracle cACGMM Oracle cACGMM

PCA ✗ 1.16 1.43 66.91 64.59

PCA MVDR ✓ 9.26 8.87 22.48 22.23

GEV MVDR ✓ 10.03 9.99 17.63 20.53

Souden-MVDR ✗ 12.26 12.21 20.54 20.56

PCA → Rank 1 Souden-MVDR ✗ 10.67 10.71 21.98 21.73

GEV → Rank 1 Souden-MVDR ✓ 11.72 11.08 16.46 19.31

GEV ✓ 10.03 9.97 17.63 20.70

PCA → Rank 1 GEV ✓ 10.17 10.19 21.67 21.97

GEV → Rank 1 GEV ✓ 11.83 11.00 16.53 19.63

WMWF ✗ 0.20 12.28 12.25 20.55 20.45

PCA → Rank 1 WMWF ✗ 0.80 11.69 11.26 19.97 21.07

GEV → Rank 1 WMWF ✓ 0.60 11.72 11.11 16.49 19.22

PCA LCMV ✓ 0.01 10.05 9.79 24.56 24.27

GEV LCMV ✓ 0.00 10.06 9.95 17.60 20.65
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the interference-plus-noise matrix as distortion matrix, the leakage parameter ǫ is carefully
selected 11 and a scaled GEV is used to extract the RTF per speaker.

Each metric is stated with an IRM oracle and with a cACGMM latent model (alternating
columns). It can be observed that improvements based on the choice of the beamformer
on IRMs translate to improvements with imperfect cACGMM posteriors. The three top-
performing beamformers are similarly susceptible to mask quality. One can observe that this
dependency is similar for all beamforming variants involving GEV decomposition in some
way.

Although the GEV and the GEV with an RTF extraction also using the GEV should
theoretically coincide up to the absolute phase, we observe a rather dramatic gain using
the latter. This indicates that it is well worth investigating further how the absolute phase
should be determined. Initial results on phase normalization for GEV beamforming vectors
can be found in [149, Section V].

Findings

The findings in this section can be summarized as follows:

• Selecting the right beamforming algorithm is data-dependent and should, there-
fore, be formalized by selecting an algorithm on a separate development set.

• All beamforming variants profit from using a noise-plus-interference covariance
matrix instead of a noise-only covariance matrix. Although this might be an
obvious finding, it is rarely clearly stated.

• Souden’s MVDR variant with GEV → Rank 1 preprocessing leads to competitive
WERs while avoiding yet another tuning parameter.

5.7 Integration of neural networks and probabilistic

graphical models

In this section, we evaluate different integration variants to better understand how to choose
model parameters, and how they interact with other system components, such as permutation
alignment. In Section 5.7.1 we analyze weak integration approaches, in which a DNN
provides the initialization for subsequent spatial clustering. In Section 5.7.2 we focus on tight
integration approaches, namely approaches in which spatial and spectral information both
influence the EM-algorithm throughout the iterations. Finally, in Section 5.7.3 we address
the valid critique that multi-channel features for, e.g., a DC network are also an integration
of both feature types.

11 Tuning the leakage parameter is an idea which I became aware of due to a discussion with Sharon
Gannot during his visit in Paderborn. Although changing the leakage parameter was detrimental or led
to marginal improvements in this case, others report more robust beamforming with ǫ > 0.
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Table 5.24: Different weak integration results depending on the usage of inline permutation alignment
and final permutation alignment. Each row consists of a cACGMM as a spatial clustering model
which is either initialized randomly or with a spectral model.

Encoder Initialization
Inline

PA

Final

PA

SDR / dB

BSS-Eval Invasive

Dev Test Dev Test

i.i.d. ✗ ✓ 9.95 10.11 13.11 13.39

i.i.d. ✓ ✓ 11.13 11.08 14.72 14.66

DC k-means ✗ ✗ 11.95 11.76 15.78 15.56

DC k-means ✗ ✓ 12.01 11.79 15.86 15.62

DC k-means ✓ ✓ 12.01 11.78 15.87 15.61

DAN k-means ✗ ✗ 11.53 11.45 15.27 15.18

DAN k-means ✗ ✓ 11.63 11.41 15.51 15.24

DAN k-means ✓ ✓ 11.59 11.34 15.41 15.09

PIT ✗ ✗ 11.96 11.72 15.75 15.51

PIT ✗ ✓ 12.02 11.74 15.83 15.54

PIT ✓ ✓ 12.02 11.75 15.83 15.54

5.7.1 Weak integration: A cascade approach

Table 5.24 shows separation results with a cACGMM as a spatial clustering model. For each
experiment, the speakers are extracted with a Souden-MVDR beamformer with a GEV →
Rank 1 preprocessing and subsequent BAN filter in accordance with the findings reported in
Table 5.23. The first two rows contain the baseline cACGMM with an i.i.d. initialization. In
any case, the spatial model uses a time- and speaker-dependent mixture weight. Particularly
Row 2 serves as a very competitive baseline with an additional inline permutation alignment.
All other rows present results with a DNN providing an initialization for subsequent spatial
clustering. In the case of DC and DANs, the embedding vectors are clustered using k-means
and the resulting posterior mask then serves as the initialization for the cACGMM. All DNNs
are trained with K ′ = K + 1 classes, i.e., including an additional noise class, to match the
cACGMM.

First of all, we observe that the initialization with any of the listed DNNs improves the
performance compared to Row 2. Interestingly, the inline permutation alignment, while it
improved the performance of the i.i.d. initialized cACGMM, did not improve the performance
of weak integration systems. In some cases, e.g., comparing Row 7 with Row 8, the inline
permutation alignment was even detrimental. However, the final permutation alignment
consistently improved the results in comparison to the systems without permutation alignment.
Consequently, we may conclude that the initialization with a DNN almost completely avoids
the permutation problem. All further comparisons with weak integration approaches will,
therefore, contain a final permutation alignment but omit a permutation alignment step
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in each EM-iteration. The best results with a weak integration system are obtained either
with a DC encoder and subsequent k-means clustering on the embedding vectors, or with a
PIT network directly providing the initialization. While, at first glance, this might seem to
contradict the findings in Table 5.18, where the DC system provided the lowest BSS-Eval
SDR results, the DC embeddings are not directly used for reconstruction here. Much more
indirectly, they only serve as initialization to the spatial clustering system and possible
artifacts, which are detrimental when using the masks directly for source extraction, are
covered up by, e.g., the mask-based beamforming.

Findings

To finalize this section, we can draw the following conclusions:

• Proper initialization of a spatial mixture model with a DNN, here called weak
integration, renders an additional inline permutation alignment obsolete.

• Best results are obtained with a DC encoder or an initialization based on a
PIT system. The advantage of the weak integration using a DC encoder is
that the number of speakers at inference time is independent of the number of
speakers during training. However, the weak integration with a PIT network is
conceptually easier to implement.

5.7.2 Strong integration

In this section, we evaluate different strong integration variants consisting of integrated
clustering models which are comprised of a spatial and a spectral observation model on
the WSJ-BSS database. To do so, we first compare different latent models and different
embedding networks, then the emphasis is put on the choice of a fixed concentration or scale
parameter.

The reported results in Table 5.25 are obtained with embedding networks trained to form
K ′ = K + 1 = 3 distinct clusters during training on K = 2 speaker mixtures. Once
posterior masks are obtained from the integrated clustering model, the individual speakers
are extracted using Souden’s MVDR formulation (compare Section 3.3.2.3) with a GEV →
Rank 1 preprocessing of the target speaker covariance matrix (compare Section 5.6). The
optimal trade-off parameter σ2 = 1/λ in the case of a GcACGMM and κ in the case of a
vMFcACGMM is selected based on development set invasive SDR. Each group in Table 5.25
reports results of a unique combination of an encoder network and a latent model. We first
observe that a preclustering of the embedding vectors with k-means improves the performance
significantly. Consequently, although all information is available to the integrated clustering
model, careful preclustering is still inevitable. Furthermore, although all models iterated
100 EM-steps, better initialization leads to faster convergence and, thus, a smaller number
of iterations is necessary on average. Just as we observed for weak integration models in
Table 5.24 the inline permutation alignment is now obsolete given a k-means preclustering.
However, it is worth noting that a final permutation alignment is still performed and separate
experiments without a final permutation alignment are not shown.
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Table 5.25: Different strong integration results depending on usage of inline permutation alignment
and whether the integration model is initialized randomly or from a k-means result of the predecessor
model. The tuning parameter κ or σ2 is selected to maximize invasive SDR on the development set.

Encoder Initialization Latent model Parameter
Inline

PA

SDR / dB

BSS-Eval Invasive

Dev Test Dev Test

DC i.i.d. GcACGMM σ2 = 1/20 ✗ 10.85 10.93 15.19 15.32

DC k-means GcACGMM σ2 = 1/8 ✗ 11.74 11.52 16.28 15.98

DC k-means GcACGMM σ2 = 1/8 ✓ 11.74 11.52 16.28 15.98

DC i.i.d. vMFcACGMM κ = 20 ✗ 10.80 10.76 15.19 15.06

DC k-means vMFcACGMM κ = 5 ✗ 11.80 11.58 16.30 16.00

DC k-means vMFcACGMM κ = 5 ✓ 11.82 11.59 16.34 16.02

DAN i.i.d. GcACGMM σ2 = 1 ✗ 10.63 10.68 14.99 14.97

DAN k-means GcACGMM σ2 = 5/2 ✗ 11.46 11.39 15.87 15.70

DAN k-means GcACGMM σ2 = 5/2 ✓ 11.45 11.39 15.87 15.71

Figure 5.8 shows how the particular choice of the trade-off parameter σ2 = 1/λ or κ influences
the separation result under the same evaluation conditions as before. It becomes evident that
i.i.d. initialized models heavily depend on the particular choice of the trade-off parameter
with no clear explanation for the particular shape of the curves. In contrast, the variability
of the results over the trade-off parameter given k-means preclustering is much smaller and
almost disappears at the current scaling. Nevertheless, at least for the DC-based system, a
small peak around κ = 5 is visible which is similarly located for the development set as well
as for the test set. We may, therefore, conclude that the particular choice is rather stable
and obtaining the trade-off parameter on the development set is a reasonable strategy. Not
shown in this figure is the observation that the maximum slightly moves towards lower values
for the trade-off parameter with more poorly trained embedding models: more emphasis is
put on the spatial model when the spectral model is less reliable.

Figure 5.9 shows a closer look of the dependency of the separation performance and the
trade-off parameter for a DC-based system with k-means preclustering and inline permutation
alignment (in orange). The results are contrasted with the corresponding weak integration
model (in blue). We observe that the maximum invasive SDR nicely coincides with the
minimum WER both on the development as well as on the test set. In contrast, the BSS-Eval
SDR does not show similar behavior and seems to be a less predictive indicator for WER.
Arguably, the WER reduction with a tight integration approach over the weak integration
approach is limited given the added complexity of the model and the need to properly select
the trade-off parameter. However, if an optimal separation performance is required the tight
integration approach is a valid choice.
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Figure 5.8: Dependency of the strong integration models on a fixed concentration parameter or
fixed covariance parameter. The horizontal axis shows precision λ = 1/σ2 instead of variance to
allow better comparison with the concentration κ. Dashed lines indicate development set results.

Findings

To finalize this section, we can draw the following conclusions:

• Selecting an optimal trade-off parameter is an added complexity.

• Preclustering of the embedding vectors leads to significant improvements.

• An additional inline permutation alignment is obsolete given proper preclustering.

• The differences between the different spectral observation models are minor.

5.7.3 Comparison of integration models with single-/
multi-channel encoder

Similarly to the evaluation in [51, Table V] we here analyze how a multi-channel encoder, in
this case, a multi-channel DC (listed as Spatial-DC ) network, improves the separation with
and without integration approaches. All results listed in Table 5.26 are again reported on the
WSJ-BSS database with the same conditions as in the previous two sections. In all previous
experiments, we extracted embedding vectors from the spectrogram of a single reference
channel. To get a better understanding of how additional channels improve the embedding
vectors, we analyze different channel stack modes:

• Reference: The DC embedding network operates on a single fixed reference channel or
the Spatial-DC network operates on two fixed reference channels.

• D channels: The embedding network extracts embedding vectors independently on
each channel. Before further processing, the embedding vectors are stacked so that the
k-means algorithm operates on D · E dimensional data.
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Figure 5.9: Dependency of a strong integration model on a fixed concentration parameter in
comparison to a weak integration model. The horizontal axis shows precision λ = 1/σ2 instead of
variance to allow better comparison with the concentration κ. Dashed lines indicate development
set results. All results are obtained on the WSJ-BSS database.
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Table 5.26: Comparison of different channel stack modes for DC on the WSJ-BSS test set. The
embedding vectors are stacked before entering the latent model (here k-means either directly or as
a preclustering step). Latent model parameters are selected based on best invasive SDR result on
the development set. Results reported are on the test set.

Encoder Latent model Channel mode Parameter
SDR / dB

BSS-Eval Invasive

DC reference 10.28 14.65

DC D channels 10.45 14.85

DC cACGMM reference 11.78 15.61

DC cACGMM D channels 11.79 15.62

DC vMFcACGMM reference κ = 5 11.59 16.02

DC vMFcACGMM D channels κ = 5 11.61 16.04

Spatial-DC reference 11.00 15.45

Spatial-DC D − 1 pairs 11.19 15.65

Spatial-DC cACGMM reference 11.80 15.64

Spatial-DC cACGMM D − 1 pairs 11.80 15.64

Spatial-DC vMFcACGMM reference κ = 5 11.62 16.08

Spatial-DC vMFcACGMM D − 1 pairs κ = 5 11.64 16.11

• D − 1 pairs: The Spatial-DC embedding network extracts embedding vectors indepen-
dently on D − 1 pairs before these embeddings get stacked. Just as in [49] we obtain
D − 1 pairs by selecting a single reference channel and then calculate inter-channel
features of each other channel against this channel.

First of all, the results are in agreement with [49] in the sense that the Spatial-DC model
outperforms a single-channel DC model. Moreover, the single-channel DC model also leads
to better results when independently applied to each microphone channel. This can be
explained with the cross-channel variability even in a rather compact microphone array
although the single-channel DC network does not have access to directional information:
variability across channels is somewhat averaged out by clustering the stacked embedding
vectors. The key finding, however, is that all integration variants profit at least to some
degree from a multi-channel embedding network. Nevertheless, once any form of integration is
used, stacking embedding vectors almost does not change the results at all: the cross-channel
variability is small enough for the additional information to be useless in comparison to
the information available to the spatial observation model. The best results in terms of
invasive SDR are obtained with a multi-channel encoder operating on all D − 1 pairs and a
vMFcACGMM tight integration model.
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Table 5.27: Results with and without supervision on the WSJ-BSS database.

Encoder Unsupervised Latent model Channel mode

SDR / dB
WER / %

BSS-Eval Invasive

Dev Test Dev Test Dev Test

✓ cACGMM D channels 11.10 11.10 14.67 14.68 25.55 19.51

DC ✗ reference 9.93 10.28 14.32 14.65 26.80 19.79

DC ✗ D channels 10.17 10.45 14.62 14.85 25.62 19.02

DC ✗ cACGMM reference 12.01 11.79 15.86 15.62 21.59 17.21

DC ✗ cACGMM D channels 12.03 11.79 15.88 15.62 21.97 17.19

DC ✓ reference 10.17 10.42 13.88 14.12 28.81 21.46

DC ✓ D channels 10.31 10.57 14.08 14.30 27.67 20.52

DC ✓ cACGMM reference 11.99 11.74 15.78 15.54 21.81 17.45

DC ✓ cACGMM D channels 11.98 11.74 15.77 15.53 21.83 17.38

Findings

To finalize this section, the following conclusions can be drawn:

• Multi-channel DC indeed outperforms single-channel DC.

• Weak integration, as well as the tight integration approach, still profit from a
multi-channel encoder although the spatial information is available directly to the
spatial observation head of the integration model. Although the independence
assumption between spatial and spectral features clearly does not hold here the
results indicate that a possible over-confidence does not hurt overall performance.

5.8 Unsupervised training of deep clustering

This section presents evaluation results comparing supervised and unsupervised training of
a DC network. To do so, we first evaluate with the WSJ-BSS database to provide results
comparable to the previous sections. Then, we analyze generalizability by reporting results on
WSJ-MC, a database with real recordings introduced in Section 5.2.3.

Table 5.27 lists results on the WSJ-BSS database. All results are reported with beamforming
as in the previous sections. In Row 1 results of a cACGMM with i.i.d. initialization serve
as a baseline relying solely on spatial features and, notably, not requiring a training phase.
Row 2 – Row 5 contain supervised DC results with and without a subsequent cACGMM. As
seen before, the weak integration outperforms the supervised DC and profits much less from
stacking the embedding vectors of the D channels. Row 6 – Row 9 contain unsupervised DC
results. The architecture of the unsupervised DC model is identical to the supervised DC
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model. However, the model parameters are trained using supervision from a cACGMM as a
teacher instead of ideal binary masks.

The resulting unsupervised DC model operating on only one channel in Row 6 lacks behind the
unsupervised teacher in Row 1. However, when initializing the cACGMM with the k-means
clustering results, obtained on the embedding vectors of the unsupervised DC system, this
weak integration outperforms the teacher in Row 1. Although this might appear astonishing
at first, given that the weak integration uses the same data as the teacher alone, the effect
can be explained as follows: During training of the DC system, the teacher cACGMM often
produces only moderate separation results but due to the fact that the separation performance
is good enough on average, the training process smoothes out these variations. This is further
confirmed by the fact that the unsupervised DC training requires many more steps, possibly
due to conflicting gradients resulting from the posterior masks produced by the cACGMM
teacher. Another plausible explanation is that the student does not have access to the spatial
information and, thus, cannot reliably reproduce the errors the teacher is doing. For example,
when the separation quality of the teacher is poor due to speakers being very close to each
the student would not know about this and and still produce meaningful separation results.
Comparing all supervised systems with all unsupervised systems, it becomes apparent that
the supervised systems still outperform the unsupervised system, albeit only by a small
margin. However, in a more practical application, one might pretrain a DC system with
supervision on a limited training set and then fine-tune on real recordings closer to the test
conditions.

The findings reported here agree with our previously reported results in [167]. In tendency,
they demonstrate that the results are reproducible with freshly trained embedding networks
and acoustic models. Besides the results reported here, [167] lists masking results. We did
not analyze unsupervised DC in combination with a tight integration approach because that
would require us to obtain a tuned trade-off parameter, which is hard to do when no metrics
can be obtained in an unsupervised setting.

Table 5.28 lists the results of the aforementioned experiments on the WSJ-MC database.
However, since the WSJ-MC database does not provide a separate training set, the embedding
network (supervised and unsupervised) was trained on the WSJ-BSS database. First of all,
we realize fairly high WERs which can be explained by the fact that the database contains
British English speech whereas the acoustic model was trained on WSJ-BSS containing
only American English. Nevertheless, the WER may still serve as an objective performance
measure, even if they may only provide an idea of the relative ordering of the proposed
systems. The BSS-Eval metrics were obtained by comparing the separation results with
headset microphone signals, which is, of course, an approximation to the true source signal:
It may still contain a severe portion of cross talk. Invasive SDR are not reported here
since they require access to the images (speech and noise separately how they appear at the
microphones) which are only available in a simulation environment.

Interestingly, this time the best BSS-Eval SDR results are obtained with a weak integration
including an unsupervised DC system. Still, this result does not translate to WERs, for
which the gap between both approaches is much closer. Anyhow, given that these results are
reported on completely different data, we may conclude that the weak integration approaches
generalize well to unseen data. When, in comparison, we inspect Row 2 and Row 6, we realize
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Table 5.28: Results with and without supervision on the WSJ-MC database. Due to the nature of
the database invasive SDR metrics are not available.

Encoder Unsupervised Latent model Channel mode

SDR / dB
WER / %

BSS-Eval

Dev Test Dev Test

✓ cACGMM D channels 4.25 4.92 29.28 47.25

DC ✗ reference 3.87 3.72 45.93 61.86

DC ✗ D channels 4.50 4.24 38.64 58.77

DC ✗ cACGMM reference 4.78 4.63 26.07 46.48

DC ✗ cACGMM D channels 4.83 4.87 26.69 44.32

DC ✓ reference 4.03 4.29 42.44 55.47

DC ✓ D channels 4.19 4.65 39.12 50.21

DC ✓ cACGMM reference 5.45 5.67 27.11 44.79

DC ✓ cACGMM D channels 5.54 5.67 26.35 44.83

that the unsupervised DC system without any integration performs significantly better than
its supervised counterpart.

Findings

To finalize this section, we can draw the following conclusions:

• An unsupervised DC system can outperform its teacher when used in a weak
integration.

• The integration approaches, in particular when comprising an unsupervised DC
model generalize better to unseen data.

• Unsupervised DC alone generalizes better to unseen data when compared to its
supervised counterpart.

5.9 Overview of all methods on WSJ-BSS

To summarize the findings of the previous evaluation sections and put all variants into
perspective, this section compares weak integration, tight integration, and nonintegration
variants. To gain further insights, we analyze splits of the dataset or operate on fewer
channels and provide speech recognition results with matched training of the acoustic
model.

Table 5.29 lists masking results on the WSJ-BSS database. Although the beamforming
results are likely to be better, masking is closer to applications for which DC, DANs, and
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Table 5.29: Summary of masking results for the WSJ-BSS test set. The acoustic model was trained
on noisy source images, i.e., it did not see overlap or system artifacts during training. The tuning
parameter κ or σ2 is selected to minimize WER on the development set.

Encoder Loss Latent model Parameter
Output

nonlinearity

SDR / dB
WER / %

BSS-Eval Invasive

cACGMM 9.22 13.37 24.92

DC 7.06 11.18 45.14

DC cACGMM 9.91 14.22 22.22

DC vMFcACGMM κ = 1/8 9.93 14.28 22.05

DAN CE −4.73 1.53 73.72

DAN CE softmax −0.98 3.23 64.62

DAN CE cACGMM 7.73 11.87 31.19

DAN CE GcACGMM σ2 = 8 6.87 11.32 36.11

DAN MSE 6.88 11.20 56.29

DAN MSE sigmoid 7.35 9.99 43.76

DAN MSE cACGMM 9.36 13.62 24.14

DAN MSE GcACGMM σ2 = 8 8.94 13.42 26.75

PIT CE 6.67 10.03 40.59

PIT CE cACGMM 9.88 14.21 22.59

PIT NPSMSE 6.59 9.45 52.75

PIT NPSMSE cACGMM 9.76 14.14 22.70

PIT were originally designed and for which the DAN with a reconstruction loss (MSE)
and the PIT system with a reconstruction loss (NPSMSE) were trained in particular. We
show DAN results, in which the network was either trained with a mask loss (CE) or with
a reconstruction loss (MSE) because, at least for the experiments we performed on the
WSJ0-2mix database, the CE system performed better, although the DAN was originally
proposed with a reconstruction loss [46, Equation 1].

One key observation is that the cACGMM, which is an unsupervised system and which is not
aware of which masks yield particularly good reconstruction, leads to better results than DC,
DANs, and PIT on this particular database. One reason surely is that the spatial cues are a
very important knowledge source. Additionally, the database consists of a fixed geometry
without any head movement, which is helpful for the spatial clustering model but which the
single-channel neural networks cannot capitalize on.

Given the simplicity, weak integration already provides significant gains. For example the
weak integration, in which DC extracts embeddings and k-means an initialization for a
subsequent cACGMM, reduces the WER from 24.92% and 45.14% down to 22.22% from
the cACGMM alone or the DC system alone, respectively. Comparing the different weak
integration variants the DC-based variant performs best albeit the PIT-based weak integration
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is close behind and potentially slightly simpler to implement.

Overall, the best performance in terms of BSS-Eval SDR, invasive SDR and WER was
achieved with the tight integration approach consisting of a DC embedding network, k-means
preclustering, and a vMFcACGMM integration model. Oddly, the tight integration variants
based on DANs are less effective than their weak integration counterparts. This indicates
that either, the DC training is significantly better on the given database (further supported
by the 7.06 dB BSS-Eval SDR), or that the DC embeddings are more easily clustered due to
the DC loss itself.

As a small remark, it is worth highlighting that we here also report results for which the
DAN is evaluated with the corresponding output nonlinearity after k-means clustering of the
embeddings and calculating the inner product of each embedding vector with each attractor.
In previously reported results, we did not add this additional nonlinearity during inference,
although it was part of the training process. In both cases (Row 6 and Row 10) the additional
nonlinearity improved results significantly and, therefore, can be seen as a better-justified
baseline now.

Table 5.30 lists beamforming results for the same systems as in Table 5.29. Most importantly,
for an acoustic model that was not trained in matched conditions, i.e., not trained on the
separation results of a given separation system, all WERs are lower with beamforming. In
part, this can be attributed to the fact that beamforming averages out artifacts such as hard
switches in masks, which otherwise result in musical tones and can confuse acoustic models.
This goes so far that negative BSS-Eval SDR values for the DAN are compensated and now
provide values up to 6.44 dB.

Again, we realize that the tight integration based on DC and a vMFcACGMM performs best,
directly followed by a weak integration based on a PIT-based initialization.

5.9.1 Analysis of splits of the WSJ-BSS database

Figure 5.10a and Figure 5.10b show bar charts of invasive SDR results for different sepa-
ration models grouped by absolute angular distance between the speakers for masking and
beamforming, respectively. Both variants are shown to decouple the effect of an increasing
angular distance on the clustering model from the gains due to beamforming. Please note
that the examples are split into groups of uneven size.

The important point to note here is that the integration approaches degenerate more gracefully
when fewer channels are available than, e.g., the cACGMM alone. Since the cACGMM
depends solely on spatial information, its results are worst when the speakers are located
very close to each other. This effect is even more pronounced when using beamforming to
extract individual speakers. Overall, the best results across all groups are obtained with
the tight integration approach, even when speakers are closer than 15◦ apart from each
other. All in all the tight integration approach nicely trades off between spectral and spatial
information.

Why the single-channel DC results with masking show slight improvements with an increasing
angular distance is not explainable within the scope of this thesis. Although it is possible
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Table 5.30: Summary of beamforming results for the WSJ-BSS database. The acoustic model was
trained on noisy source images, i.e., it did not see overlap or system artifacts during training. The
tuning parameter κ or σ2 is selected to minimize WER on the development set.

Encoder Loss Latent model Parameter
Output

nonlinearity

SDR / dB
WER / %

BSS-Eval Invasive

cACGMM 11.08 14.66 19.53

DC 10.28 14.65 19.76

DC cACGMM 11.79 15.62 17.21

DC vMFcACGMM κ = 5 11.59 16.02 16.72

DAN CE 3.75 6.87 56.01

DAN CE softmax 6.44 9.19 47.81

DAN CE cACGMM 9.71 13.19 24.60

DAN CE GcACGMM σ2 = 8 8.86 12.36 28.67

DAN MSE 10.29 14.58 20.74

DAN MSE sigmoid 10.58 14.64 19.60

DAN MSE cACGMM 11.40 15.23 17.85

DAN MSE GcACGMM σ2 = 8 11.45 15.49 17.67

PIT CE 9.95 14.25 20.04

PIT CE cACGMM 11.74 15.54 17.41

PIT NPSMSE 9.28 13.25 24.78

PIT NPSMSE cACGMM 11.61 15.43 17.61
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Figure 5.10: Split of separation results based on absolute angular distance. All bars represent slices
of the WSJ-BSS test set. Please note that the last group contains about half of the test examples.

that more easily distinguishable RIRs also improve single-channel separability, we will not
develop this point further.

Figure 5.11 shows masking results organized in the form of a swarm plot, i.e., a categorical
scatter plot with horizontal jitter added in such a way that points do not overlap12. The
WSJ-BSS data is again split into groups of absolute angular distance to get an insight into
how system performance degrades when speakers are located close to each other. Although it
in principal shows similar results as Figure 5.10a, it puts more emphasis on the outliers and
the actual distribution of invasive SDR values. Please note again that the examples are split
into groups of uneven size.

We, first of all, emphasize that the highest variability in separation performance occurs with
the two baseline systems cACGMM and DC. Both the cACGMM as well as the DC system
expose a very high variance with some results even in the negative SDR region. The number
of outliers decreases when the speakers are further apart from each other. Most notably,
both integration variants do not only show improved mean invasive SDR, they also result in
much fewer outliers with a fairly compact distribution for high absolute angular distances.
Arguably, although the tight integration approach performs slightly better, the differences to
the cascade approach are hardly visible in this visualization.

Figure 5.12a shows average results on the WSJ-BSS database with a split based on the gender
composition of a mixture. In accordance with findings on the WSJ0-2mix database analyzed,
for example, in [169] the neural network-based approaches degrade quite a bit when separating
speakers of the same gender, in particular two female speakers. However, please note that

12 The idea of a swarm plot originates from the corresponding R package: http://www.cbs.dtu.dk/∼eklund/
beeswarm/
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Figure 5.11: Swarm plot of separation results with masking based on absolute angular distance. All
groups represent slices of the WSJ-BSS test set. Please note that the last group contains about half
of the test examples.

the WSJ-BSS database consists of considerably fewer female speakers. Thus, it is not clear
whether female speakers are harder to separate in general or the network simply needs more
speech from female speakers for training. Likewise, since the examples are artificially mixed,
effects such as the Lombard effect, which occurs in real mixtures, might lead to better
separability in a real setup. As expected, the best separation results are obtained on the
mixed speaker data, i.e. examples in which a male and a female speaker are mixed. Overall,
the tight integration approach performs best in all gender splits.

Figure 5.12b shows a split of the WSJ-BSS test set based on the reverberation time in each
example. As expected, the highest invasive SDR values are obtained for low reverberation
times. This is reasonable since the W-disjoint orthogonality is highest in an anechoic
environment. Further, the temporal smearing effect of long RIRs invalidates the assumption
that a RIR fits into a STFT analysis window further. The separation performance of
the cACGMM decreases the most with an increasing reverberation time. The integration
variants compensate for the effect to some degree due to the additional spectral information.
Particularly, the weak integration results highlight that the cACGMM is, in principle,
able to separate well if it is initialized close enough to the optimal solution. Even in
the highest simulated reverberation conditions, the tight integration approach performs
best.
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Figure 5.12: Split of separation results based on gender decomposition and sound decay time (T60)
range. All bars represent slices of the WSJ-BSS test set.

Findings

• The tight integration approach performs best in all gender splits, reverberation
time splits, and absolute angular distance splits.

• The weak integration approach already provides solid results.

• Both variants make use of both data sources.

• The DC system is most susceptible with respect to the gender composition
while the cACGMM performance depends most on absolute angular distance and
reverberation time.

5.9.2 Analysis with matched training of the acoustic model

This section addresses the often-discussed issue of matched training of the acoustic model.
The core idea is that the front-end may produce artifacts or separation results a separately
trained AM is not aware of. To understand additional gains due to matched training we
report WERs for different acoustic models in this section:

• Image: The acoustic model is trained on noisy images. It has never seen overlap or
artifacts produced by a separation module or speech enhancement module before.

• Matched: The acoustic model is trained on the separation results of a given algorithm
on the entire train dataset of the WSJ-BSS database. Therefore, it is aware of all
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Table 5.31: Comparison of different latent models with a retrained AM on the test set of the
WSJ-BSS database. The Image column corresponds to an acoustic model that was trained on oracle
images with background noise. The Matched acoustic model was trained on the separation results
of the training dataset. The parameter κ is set to 5 for the vMFcACGMM.

Encoder Latent model Extraction method
SDR / dB WER / %

BSS-Eval Invasive Image Matched

cACGMM GEV→Rank 1→Souden-MVDR 11.06 14.64 19.52 13.68

DC GEV→Rank 1→Souden-MVDR 10.28 14.65 19.80 15.58

DC cACGMM GEV→Rank 1→Souden-MVDR 11.79 15.62 17.21 13.03

DC vMFcACGMM GEV→Rank 1→Souden-MVDR 11.59 16.02 16.72 12.60

Oracle images 10.33

scaling issues, artifacts, and residual interfering speech the corresponding separation
model it is later evaluated on is likely to produce.

Performing matched training of the acoustic model is quite costly since it requires the separa-
tion of the entire training dataset and an acoustic model training from scratch. Therefore, to
experiment with front-end algorithms, all other results outside of this section do not contain
matched acoustic model WERs.

Table 5.31 lists separation results for different separtion methods, varying latent models, and
a fixed extraction method. All results can be compared with the oracle images provided
directly to the acoustic model as denoted in the last row. The table allows the following
observations: Matched training in general greatly improves performance. That goes so far
that the difference between matched and nonmatched (Image) training is larger than the
differences between the different separation approaches presented. Further, the biggest WER
drop is observed for the cACGMM alone. The WER for a tight integration system with
matched training is as low as 12.6%, which is only 2.27% points less effective than speech
recognition on the oracle speech images.

Table 5.32 showcases matched training results for different source extraction methods. Given
that the single-channel DC system was designed with masking in mind, the performance
gains using any kind of beamforming is large. A particularly big performance gain, when
performing matched training, can be observed when a GEV beamformer is applied to extract
the sources. One may conjecture that this is due to the inconsistent scaling for different
frequency bins which the acoustic model was not aware of. Using an additional BAN filter
greatly improves the acoustic model trained on noisy images while the gain with matched
training is much smaller. In accordance with the beamforming evaluation in Section 5.6 the
Souden-MVDR with preprocessing of the covariance matrix of the target speaker performs
best here.

It is worth pointing out that results with pretraining of the acoustic model on noisy
speech images and then just fine-tuning a few epochs on the source separation results
are not reported here. Such warm-start strategies are definitely worth investigating as they
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Table 5.32: Comparison of different extraction methods with a retrained AM on the test set of the
WSJ-BSS database. The Image column corresponds to an acoustic model that was trained on oracle
images with background noise. The Matched acoustic model was trained on the separation results
of the training dataset. The parameter κ is set to 5 for the vMFcACGMM.

Encoder Latent model Extraction method
SDR / dB WER / %

BSS-Eval Invasive Image Matched

DC vMFcACGMM Masking 9.64 14.39 25.97 18.33

DC vMFcACGMM GEV 8.04 13.47 30.68 13.83

DC vMFcACGMM GEV → BAN 10.10 16.20 17.57 13.31

DC vMFcACGMM GEV→Rank 1→Souden-MVDR 11.59 16.02 16.72 12.60

Oracle images 10.33

promise faster model design iterations as most of the AM training time can most likely be
saved.

Findings

The findings in this section can be summarized as follows:

• Although costly, matched training of the acoustic model is crucial for optimal
performance to adjust to specifics of a source separation front-end.

• Beamforming is the source extraction method of choice for static geometries.
More recent beamforming algorithms developed primarily for speech enhancement
apply well to source separation.

5.10 Overview of all methods on WSJ-MC

In contrast to Section 5.9 we here evaluate a selection of separation models on the WSJ-MC
database which was briefly introduced in Section 5.2.3. There are two important reasons why
we report results on a separate database. First of all, we intend to demonstrate or at least
examine the generalizability of the proposed algorithms. Additionally, but potentially even
more important, it is necessary to check if trends that appeared on one database still hold on
an independent second database. Although all previous model selections and choices were
based on the development set, testing again on an independent database renders an analysis
more trustworthy.

Most importantly, due to the fact that the database contains realistic recordings of simultane-
ously spoken utterances, clean speech or speech images are not available. Consequently, the
BSS-Eval results are to be read with care, given that they were calculated against a headset
microphone as a reference signal. All DNNs in Table 5.33 and Table 5.34 were not retrained.
They have been trained once on the WSJ-BSS database and we here purely evaluate, how
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Table 5.33: Summary of masking results for the WSJ-MC database. The spectral models as well
as the acoustic model are trained on the WSJ-BSS database, i.e., in mismatched conditions. The
tuning parameter κ or σ2 is selected to minimize WER on the development set.

Encoder Loss Latent model Parameter
Output

nonlinearity

SDR / dB

BSS-Eval
WER

cACGMM 2.96 60.13

DC 1.87 78.64

DC cACGMM 2.81 64.70

DC vMFcACGMM κ = 1 3.08 63.94

DAN MSE 2.14 82.42

DAN MSE sigmoid 1.91 74.96

DAN MSE cACGMM 3.75 57.63

DAN MSE GcACGMM σ2 = 8 3.84 55.42

PIT NPSMSE 2.49 79.24

PIT NPSMSE cACGMM 3.87 58.31

they perform in mismatched conditions. The same holds true for the acoustic model, which
was trained on the WSJ-BSS speech images with American English whereas the recordings
at hand are British English.

First and foremost we observe that the WERs, in general, are much higher than on WSJ-BSS.
This is particularly the case for the single-channel systems purely based on DNNs with
WERs up to 82.42% for masking. This increase is also visible in the beamforming results in
Table 5.34 indicating that the mismatch did not just cause minor artifacts which could have
been smoothed out by the beamforming operation.

However, the purely unsupervised and model-based cACGMM performs the best of all
nonintegration variants. Therefore, we may deduce that the main gains in integration systems
are to be expected from spatial observations.

The overall best WER is obtained with a tight integration approach consisting of a DAN, a
k-means preclustering and a GcACGMM integration model with a subsequent beamforming
step. This system improved upon the cACGMM by 4.11% points WER, but – given the high
baseline WER – this is not an astonishing step forward. This differs from the results on the
WSJ-BSS database in Section 5.9 in the sense that there the best performing system was a
tight integration approach with a DC embedding network.

Overall, we may conclude that the integration methods not just allow for a combination of
spatial and spectral cues but, to some degree, also help generalize better to unseen recordings.
This finding is consistent with the hypothesis of better generalizability mentioned in the
introduction of [165] on integration for speech enhancement.
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Table 5.34: Summary of beamforming results for the WSJ-MC database. The spectral models as
well as the acoustic model are trained on the WSJ-BSS database, i.e., in mismatched conditions.
The tuning parameter κ or σ2 is selected to minimize WER on the development set.

Encoder Loss Latent model Parameter
Output

nonlinearity

SDR / dB

BSS-Eval
WER

cACGMM 5.09 46.06

DC 3.72 61.99

DC cACGMM 4.63 44.96

DC vMFcACGMM κ = 5/2 5.12 42.71

DAN MSE 4.77 56.74

DAN MSE sigmoid 4.58 55.25

DAN MSE cACGMM 5.64 42.84

DAN MSE GcACGMM σ2 = 8 5.70 41.95

PIT NPSMSE 3.85 67.58

PIT NPSMSE cACGMM 5.64 43.86

5.11 Reproducibility and statistical significance

This section lists some remarks on reproducibility and statistical significance. The main
goal is to emphasize sources of variability when experimenting with neural and probabilistic
system components. The applicability of statistical significance is briefly discussed and a
limited number of experiments are performed to showcase variability in different stages of
the experiment.

First of all, it is worth to identify the main important sources of variability. Table 5.35
shows the simplified processing flow for the multi-channel separation and recognition systems
described in this work. Below, it provides a high-level overview of the sources of variability,
each of which we are going to discuss in the following briefly.

In each part of the processing pipeline implementation details, implicit assumptions, and
hyperparameters that may not have been communicated are the cause of a great deal of
variability when applying the same method to the same data. Although researchers thrive for
reproducible results in the sense that, by reading a paper one is able to reproduce results up to
equal performance metrics it is often practical to resort to reproducibility in the sense of exper-
iments that lead to similar conclusions [202, Section 2]. To facilitate reproducibility publishers
start to ask for executable code alongside the main publication [203].

While the variability due to implementation details is hard to quantify, another important
aspect is the training dataset. In principle, the unspoken assumption is that the training
set is sufficiently large to resemble the totality of situations on which the system is to be
applied13. This is of course in almost all cases impossible and the training set has to be seen

13 One may thrive for an infinite training set but even that is not sufficient when the training examples are
statistically dependent and do not represent the totality of possible test mixtures sufficiently well.
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Table 5.35: Main sources of randomness in evaluating integration approaches to blind source
separation. Tick symbols (✓) indicate where a given type of randomness applies. Items in
parenthesis can be a source of variability but are not employed here.

Embedding
network

Mixture
model

Beamforming/
masking

ASR

Implementation/
hyperparameters

✓ ✓ ✓ ✓

Selection of
training data

✓ ✗ ✗ ✓

Augmentation
and dropout

(✓) ✗ ✗ (✓)

Weight
initialization

✓ ✗ ✗ ✓

Train data order ✓ ✗ ✗ ✓

Selection of
dev data

✓ ✓ ✓ ✓

Initialization
at test time

✗ ✓ ✗ ✗

as one sample from the distribution of the totality of examples. Consequently, researchers
often agree on a fixed database consisting of a fixed training, development, and test split
well knowing that results may or may not hold on a different database. In the scope of
this thesis the WSJ0-2mix database can at this point in time be seen as such a community
standard albeit its shortcomings discussed in Section 5.2.1. Besides containing simulated
multi-channel data the presented WSJ-BSS database addresses these shortcomings with
a larger training set size and substantially more unique speakers in the training set (see
Section 5.2.2 for details). In the following, we treat the training set as given. An analysis
of the transferability of the trained systems to mismatched real recordings can be found in
Section 5.10.

During the training of, e.g., a neural network two important sources of randomness are (1)
the random weight initialization and (2) the random order in which examples are presented
to the system. Dodge et al. explicitly differentiate between these two factors of variability
and report high variability of the test results while the variability due to the random seed for
weight initialization and the random seed for the data order is similar [204]. While Dodge
et al. are able to draw these conclusions by repeating the same experiment more than a
thousand times, we here have to constrain ourselves to a limited number of repetitions and do
not differentiate between randomness in weight initialization and data order. The approach
to demonstrate the influence of a random seed for weight initialization and data order is here
demonstrated by repeating the training (pretraining and fine-tuning) 10 times. Figure 5.13
visualizes different training results as a parallel coordinates plot when repeating the training
of the DC system on the WSJ-BSS database as used in the previous parts of the evaluation
chapter. First of all, the figure allows us to draw the conclusion that the mean loss values
and mean MIR-Eval SDR values indeed differ quite a bit between repeated runs. However,
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Figure 5.13: Parallel coordinates plot of multiple metrics of pretraining and fine-tuning a DC
embedding network. Each column represents a different metric or training stage (with possibly
different scaling). The connecting lines help understand how consistent the rank (in the sense of
ordering) is over different metrics or training stages. The MIR-Eval SDR values are obtained using
mask multiplication instead of beamforming.

we also realize that the variability is much smaller on the test set (1500 examples) than
on the development set (500 examples). Further, we may deduce that albeit all variability
fine-tuning of the DC system by training on entire utterances is helpful. At first sight, we
also realize that models that were better after pretraining tend to be better after fine-tuning.
However, this observation will be put into perspective when discussing the corresponding
table with rank correlations in the following.

It is worth pointing out that a sophisticated learning rate scheduling combined with patience-
based early stopping can increase the variability further. Analyzing the number of training
steps (one step corresponds to presenting one mini-batch to the network) reveals that the
total number of steps in pretraining as well as in fine-tuning can differ by more than a factor
of 2 as indicated in Table 5.36.

To illustrate the variability of the test results for different methods, we here rely on confidence
intervals of mean values to characterize the quality of the mean estimate. The 95% confidence
intervals here are based on bootstrapping with 10000 bootstraps for each estimate. In [205,
Section 9.1] Chernick argues that rather small sample sizes even below 10 samples (here 10
independently trained DC systems) can be used to calculate bootstrap estimates. However,
as a rule of thumb, he recommends that confidence intervals should be trusted when the
sample size is at least 30. Since the repetition of neural network training is prohibitively
expensive in this context, we need to make the best of our 10 samples and emphasize that
the confidence intervals themselves may be unreliable.

Figure 5.14 shows aggregated invasive SDR values for 10 trained DC models. The bars
represent mean values over the 10 runs while the black lines at the tip of each bar represent
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Table 5.36: Comparison of training duration in steps for repeated training of the same DC system
for pretraining and fine-tuning.

Pretraining Fine-tuning

980 001 135 001

680 000 277 501

780 000 198 750

790 000 180 000

610 000 168 801

780 001 146 301

1 380 001 153 750

760 000 172 501

540 000 150 001

1 150 001 135 001

the confidence intervals obtained with bootstrapping14. First of all, one can observe that all
confidence intervals are quite small. However, given that only 10 repeated trainings were
performed the confidence interval obtained trough bootstrapping tend to underestimate the
uncertainty when compared to infinitely many repeated experiments [207, Page 25]. Please
note that the horizontal bar is scaled such that the confidence intervals are best visible.
Consequently, the disagreement between models trained with a different seed and data order
is almost negligible. The confidence intervals become smaller when using an integration model.
This can be explained by the fact that outliers within one run are already less likely because
one model component can compensate failures of the other to some degree. This hypothesis
is further supported when inspecting, e.g., Figure 5.11. Interestingly, the cACGMM (first
row) shows some variability between runs, too. This cannot be explained with a varying
model initialization seed or a varying training data order since this experiment does not
contain any trained system component. This variability only stems from the random seed
when initializing the mixture model before the EM algorithm starts.

Figure 5.15 shows the dependency of a strong integration model on the tuning parameter
κ similar to Figure 5.9. Here, Figure 5.15 shows the confidence intervals obtained with 10
trained DC models as shaded areas. It becomes apparent that the gain from the strong
integration approach which uses the vMFcACGMM is much larger than the width of each of
the confidence intervals. We can, therefore, conclude that it is highly unlikely, that the gains
are only caused by randomness.

To further quantify the reliability of the evaluation results the following paragraphs make use
of statistical hypothesis tests. We here limit the number of tests to three and highlight that only
the three confidence tests were performed to avoid cherry-picking p-values.

14 We here rely on the Seaborn implementation [206] of the percentile bootstrap approach by using
seaborn.algorithms.bootstrap() and seaborn.utils.ci().
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Figure 5.14: Confidence intervals of mean invasive SDR values as black lines for 10 trained DC
models. All results are obtained on the WSJ-BSS test set. The horizontal axis is stretched as much
as possible to improve the visibility of confidence intervals.
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Figure 5.15: Confidence intervals of mean invasive SDR values as shaded areas for 10 trained DC
models. Dashed lines indicate development set results. All results are obtained on the WSJ-BSS
database and use beamforming. The confidence intervals for the test set are only slightly wider
than the line width and therefore barely visible.
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Hypothesis: weak integration better than the DC approach For hypothesis testing,
we follow the significance testing (p-value approach) as outlined in [208, Page 344] because
the p-value approach avoids setting a fixed significance level α in advance. In this approach
the p-value in a sense measures the credibility of H0: It is the probability of the measurements
being at least as extreme as observed given that H0 is true [209]. In other words, a low
p-value provides evidence against H0 [209]. However, one should be well aware of the possible
ways to misinterpret p-values as extensively discussed in [209].

To conduct a hypothesis test we first define the null hypothesis H0 and the alternative
hypothesis H1:

• H0: There is no difference between both approaches or the weak integration is worse.

• H1: Weak integration performs better than the DC approach.

The possible outcomes of this test procedure are:

• Reject H0.

• Fail to reject H0.

However, it is worth noting that the test is posed such that a negative test outcome does not
necessarily imply that H0 is true.

Next, we define a valid test statistic: Since the variance of the invasive SDR values (actually
mean values for one run with one model over one dataset) is unknown, we need to reside to
tests in which the variance is estimated. With an estimated variance, the test statistic is
Student-t-distributed and given as follows [208, Page 340]:

t =
x̄− µ0

s/
√
I
, (5.2)

where x̄ is the mean estimate of test outcomes xi (xi being one mean SDR value on the
entire dataset under consideration), µ0 is the assumed mean under the H0 hypothesis and s
is the estimate of the standard deviation of test outcomes xi. Since each group of samples is
derived from the same set of I = 10 trained DC models the assumption that both groups are
independent does not hold. Therefore, we need to perform a paired test such that here xi is
a difference of a weak integration result and a DC result.

Next, we compute the test statistic t and the corresponding p-value:

t = 60.08, p = 2.47e−13. (5.3)

Finally, we can interpret the result. The p-value is extremely small, which means that the
probability that a value of t ≥ 60.08 appeared under the H0 hypothesis is extremely low.
Therefore, we can treat this as evidence to reject H0 and conclude (since it is the only
alternative in a one-sided test) that the weak integration approach is better than the DC
approach alone with a very high significance level.
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Hypothesis: weak integration better than cACGMM In a similar vein, we can now
compare the weak integration approach with the unsupervised cACGMM baseline. The two
hypotheses are formulated as follows:

• H0: There is no difference between both approaches or the weak integration is worse.

• H1: Weak integration performs better than the cACGMM.

In contrast to the last hypothesis test, the 10 repetitions of the weak integration approach
(with 10 independently trained DC models) can be considered independent from the 10
repetitions of the cACGMM and therefore a paired test is not necessary. However, just
as before, the conducted Student-t test is one-sided. The resulting test statistic t and the
corresponding p-value are given as follows:

t = 86.72, p = 2.34e−25. (5.4)

We observe an extremely low p-value indicating that the observed data is almost irreconcilable
with H0. This is again good evidence against H0. Since H1 is complementary to H0 in this
case, one may conclude that the weak integration performs better with a high significance
level.

Hypothesis: strong integration better than the weak integration Finally, we com-
pare the strong integration approach with the weak integration approach in a paired one-sided
Student-t test with the following hypotheses:

• H0: There is no difference between both approaches or the strong integration is worse.

• H1: Strong integration performs better than weak integration.

The test statistic t and the p-value compute to:

t = 267.9, p = 3.57e−19. (5.5)

We again observe a very low p-value which indicates that the observed invasive SDR values
are very unlikely produced under the null hypothesis. Since H1 is again chosen to be comple-
mentary, we can use is as evidence that H1 is the better hypothesis.

Findings

The findings in this section can be summarized as follows:

• Given the ten repeated training results the confidence intervals for mean estimates
are small in comparison to the differences between different methods.

• Complementarily, using statistical hypothesis tests, the differences between mean
estimates of different experiments have been proven to be statistically significant.



6 Conclusion

In conclusion of this thesis the three main contributions cascade integration, unsupervised
training, and tight integration are highlighted in the following. Subsequently, remaining
challenges and possible indications for future research decisions are discussed quite briefly to
round up this contribution.

Main contributions

Cascade integration: The first main contribution is clearly the cascade integration approach,
which has been introduced and theoretically justified in Section 4.2, carefully evaluated in
Section 5.7.1, and put into perspective in Section 5.9 and Section 5.10. Identifying and
acknowledging that the main limitation of probabilistic spatial clustering approaches stems
from their initialization and not necessarily their modeling capacity led to the conclusion
that neural network-based initialization can yield a significant performance boost. The
self-dependent nature of the parameter estimation procedure of spatial clustering naturally
led to optimization ending in local optima. A neural network, even when trained on data
mediocrely fitting to the test conditions, can provide the necessary hint tipping the estimation
process towards an optimum closer to the global one. This is particularly in terms of better
initialization per frequency bin but also due to the resulting improved consistency across
frequency bins alleviating the permutation problem to a certain degree.

Unsupervised training: While source separation neural networks almost always require
artificially generated mixtures for training, we here demonstrated a principled way for
unsupervised training, i.e., to train a source separation model when only multi-channel
mixtures are observable. The key concept introduced in Section 4.4 and evaluated in
Section 5.8 is to apply a spatial clustering model first, which serves as an unsupervised
teacher and is, on average, inclined to provide a good separation result. It turned out
that this teacher-student training scheme can lead to situations, in which the student in the
aforementioned cascade integration is able to outperform the teacher both in terms of objective
separation performance metrics and speech recognition metrics.

Tight integration: The third contribution, arguably the core contribution of this thesis,
is the tight integration approach, in which a neural network extracts embedding vectors
from an observed mixture which then gets jointly modeled with spatial features in a single
probabilistic graphical model. The concept is detailed in Section 4.3, evaluated in Section 5.7.2
and compared with other approaches on two different databases in Section 5.9 and Section 5.10.
By estimating all spatial and spectral model parameters jointly at test time, a mismatch
between both cues is minimized, a possible permutation problem confusing speakers across
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frequency bins is alleviated, and overall better generalizability across database boundaries is
achieved.

Future work

It is worth pointing out that the current development of speech separation neural networks
points towards time-domain separation approaches. While this might sound like separation
takes place in time-domain it much rather encapsulates the concept that the neural network
extracts high-level features itself and then performs separation in a more abstract but
potentially more suitable domain. A task that remains is to better understand how these
systems scale to more adverse conditions such as background noise and reverberation and,
more in the spirit of this thesis, how spatial features can effectively be used to boost separation
performance further.

Continuous meeting recognition implies the idea of dropping many artificial assumptions made
in meeting recognition challenges and literature such as externally provided time-annotations,
speaker identities, or diarization results. Although the general idea to transcribe meetings
automatically has been prevalent for quite some time, just recently researchers are beginning
to focus more on actually processing a continuous meeting including speaker counting, tracing,
separation and recognition in all its facets.

As a final, more general remark: Within this work DNNs have been used to perform a
subordinate task, such as extracting embedding vectors, which are eventually clustered with
a statistic model. Just in the same spirit, it is important to point out that neural networks
particularly excel, when hand-crafted rules hardly capture the whole picture but, when
required, probabilistic graphical models allow to encode human knowledge or even human-
defined policy. In times in which one asks for interpretable artificial intelligence, probabilistic
models making business decisions on top of neural network-based subordinate processes, such
as computer vision or speech recognition can be an answer.



A Appendix

A.1 Properties of the complex Bingham distribution

A.1.1 Eigenvalue shift in the normalization term

Using the analytic expression of the complex Bingham normalization term (Equation 3.18), it
can be shown that an eigenvalue shift can be factored out of the expression:

cB(B+ δID) = 2πD
∑

d

eλd+δ
∏

d′ 6=d

(

(λd + δ)− (λd′ + δ)

)−1

= e δ · 2πD
∑

d

eλd

∏

d′ 6=d

(λd − λd′)
−1

= e δcB(B). (A.1)

A.1.2 Eigenvalue shift in the distribution

The complex Bingham distribution is invariant to an eigenvalue shift. To be able to reference
this invariance, it is demonstrated in the following:1

CB(ỹ;B+ δID) = c−1
B (B+ δID) · e ỹH(B+δID)ỹ

Appendix A.1.1
= e−δc−1

B (B) · e ỹHBỹ · e δỹHIDỹ

ỹHỹ=1
= c−1

B (B) · e ỹHBỹ

= CB(ỹ;B). (A.2)

A.2 Non-negativity of the Kullback-Leibler divergence

The Kullback-Leibler divergence is always larger or equal to zero. This is a direct consequence
of the Jensen’s inequality [210, Equation 5 or Equation 5’]:

E
{
ϕ(x̆)

}
≥ ϕ

(
E{x̆}

)
for a convex function ϕ. (A.3)

1 According to [97] this can be easily checked ; characteristically this expression appears six times in [97].
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When we apply this in the following for the PDFs p = p(Z) and q = q(Z), we apply it to the
convex function ϕ(x) = − ln x since ln x is concave:

KL (q‖p) = −
∫

Z

q ln
p

q
dZ = −E

{

ln
p

q

}

= E

{

− ln
p

q

}

Jensen’s

≥ − lnE

{
p

q

}

= − ln

∫

Z

q · p
q
dZ = − ln

∫

Z

pdZ = 0. (A.4)

Alternatively, we can make use of ln x < x−1 and obtain the result for the PDFs p = p(Z) and
q = q(Z) without resorting to Jensen’s inequality [17, Equation 3.4]:

KL (q‖p) = −
∫

Z

q ln
p

q
dZ ≥ −

∫

Z

q

(
p

q
− 1

)

dZ = −
∫

Z

pdZ +

∫

Z

qdZ = 0. (A.5)

A.3 Mixture weights without Lagrange’s method

When maximizing the log-likelihood of a mixture model with respect to the mixture weights,
one usually introduces the sum-1 constraint into the optimization function with a Lagrange
multiplier. Alternatively, this can be done by replacing πk with αk

/∑

k′ αk′ and performing
an unconstrained optimization:2

J =
∑

n

ln

(
∑

k

αk
∑

k′ αk′
p(yn;µk,Σk)

)

=
∑

n

ln

(
1

∑

k′ αk′

∑

k

αkp(yn;µk,Σk)

)

=
∑

n

ln
∑

k

αkp(yn;µk,Σk)−N ln
∑

k′

αk′ . (A.6)

We can now differentiate with respect to αk:

∂J
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1

N
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n

γk,n. (A.7)

2 This idea originates from a discussion with Christoph Boeddeker during classes.
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A.4 Remarks on complex derivatives

Complex-valued functions g : C 7→ C are complex differentiable at a given point if and only if
the limit of the difference quotient exists, i.e., converges to a single value independent of the
path of h [211, Section 1.2.2]:

dg

dz
= lim

h→0

g(z + h)− g(z)

h
. (A.8)

It can be shown that the limit exists, when the Cauchy-Riemann differential equations
hold [211, Equation 1.3], where gr and gi are the real and imaginary part of g and zr and zi
are the real and imaginary part of z:

∂gr
∂zr

=
∂gi
∂zi

,
∂gi
∂zr

= −∂gr
∂zi

. (A.9)

If a function is complex differentiable everywhere, such a function is called analytic or
holomorph. However, many functions do not fulfill these properties, e.g., g(z) = Re{z},
g(z) = Im{z}, or g(z) = z∗. Most relevant for this work, when the goal is to optimize
parameters of a system involving complex numbers, the following problem occurs: The cost
function is real-valued, after all it has to be a single value which we optimize for, while one or
more intermediate variables or parameters are complex-valued. But, any real-valued function
f : C 7→ R only fulfills the Cauchy-Riemann differential equations in Equation A.9 when it is
a constant, i.e. f(z) ≡ const.

Consequently, we need to rely on an alternative definition of differentiability. One natural
definition is to only require the differentiability of the real and imaginary part of the complex-
valued function with respect to the real and imaginary part of the input independently.
This property is called real differentiability and holds for the aforementioned examples [211,
Definition 2].

To motivate partial derivatives for real differentiable functions we may start with relating the
real and imaginary part of the input variable z with z and z∗ [212, Page 65]:

zr =
z + z∗

2
, zi =

z − z∗

2j
. (A.10)

Based on this, we can state the corresponding partial derivatives:

∂zr
∂z

=
1

2
,

∂zr
∂z∗

=
1

2
,

∂zi
∂z

=
1

2j
,

∂zi
∂z∗

= − 1

2j
. (A.11)

From the chain rule for real-valued intermediate variables, the two partial derivatives with
respect to z and z∗ directly follow [212, Page 65]:

∂g

∂z
=

∂g

∂zr

∂zr
∂z

+
∂g

∂zi

∂zi
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1

2

(
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,
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∂zr

∂zr
∂z∗

+
∂g

∂zi

∂zi
∂z∗

=
1

2

(
∂g

∂zr
+ j

∂g

∂zi

)

. (A.12)
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This set of rules and the notion that we can calculate partial derivatives of functions with re-
spect to z and z∗ independently is calledWirtinger calculus [213], [214].3

Alternatively, we may motivate complex derivatives by replacing the complex numbers with
their vector representation z =

(
zr zi

)T
. Given that in this sense f : C 7→ R is treated as a

function which maps from R
2 to R, we can decompose the derivative:

∂f

∂z
=

∂f

∂ ( zr
zi )

=

(
∂f

∂zr

∂f

∂zi

)

=
∂f

∂zr
+ j

∂f

∂zi
. (A.13)

The last step makes use of the composition of complex numbers again. Apparently, this
definition is in contrast to Equation A.12. Further, it has the charming effect that the
derivative using this definition for real-valued functions with complex argument coincides
with the derivative of the same function with real-valued argument:

∂|z|2
∂z

Equation A.13
= 2z coincides with

∂|x|2
∂x

= 2x. (A.14)

Further, most of the matrix derivatives derived for real-valued matrices, e.g., as listed in
the Matrix Cookbook [217] can be used right away by replacing transpose symbols with
conjugate transpose symbols.

We here arbitrarily choose the definition as popularized in engineering by [214] and do not
thrive to resolve apparent conflicts between Equation A.12 and Equation A.13. It is worth
pointing out that in the context of this thesis the additional factor 1/2 does not change the
optimization results, i.e., it cancels out when setting derivatives to zero. However, when
performing complex-valued backpropagation as, e.g., in our own prior work [136], [177], [218],
[219], the additional factor 1/2 indeed impacts the weight updates and may lead to different
results.

A.5 GEV/MaxSNR beamformer

The GEV/MaxSNR beamformer maximizes the generalized Rayleigh coefficient given the
speech image covariance matrix and noise covariance matrix:

J =
wHΦxxw

wHΦnnw
. (A.15)

Maximizing the generalized Rayleigh coefficient can either be formulated as a constrained
optimization problem or a regular optimization problem. While the former is a bit shorter,
the latter has the advantage that we do not have to introduce a seemingly arbitrary con-
straint.

3 The same definition, i.e., including 1
2
is also used by, besides others, Adali, Haykin, and Schreier [211],

[215], [216].
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A.5.1 Solution with constraint optimization

One way is to constrain the denominator to a fixed scalar, e.g., wHΦnnw = 1. Any other
choice, such as wHw = 1, is just as valid. It will lead to the same maximum for J , but the
actual filter coefficients are (in almost all cases) different. Adding this additional constraint
with a Lagrange multiplier results in the Lagrangian function:

J ′ = wHΦxxw + λ(1−wHΦnnw). (A.16)

Differentiating this with respect to w in the sense of Section A.4 and setting the result to
zero leads to the following generalized eigenvalue problem:

∂J ′

∂w
= Φxxw −Φnnw

!
= 0 ⇔ Φxxw = λΦnnw. (A.17)

According to this result, any eigenvalue leads to an extremum. However, to argue why the
maximum eigenvalue leads to the maximum Rayleigh coefficient, we can multiply the previous
statement with wH from the left:

wHΦxxw = λwHΦnnw. (A.18)

We realize that the left hand side term coincides with J . Given that the quadratic form on
the right hand side is fixed due to our constraint, J is maximized by choosing the maximum
value for λ, i.e., the maximum eigenvalue.

A.5.2 Solution without constraint optimization

Alternatively, we calculate the derivative with respect to w in the sense of Section A.4 without
any constraint and set it equal to zero. This can be done by applying the quotient rule for
real-valued scalars:

∂J

∂w
=

Φxxw ·wHΦnnw −wHΦxxw ·Φnnw

(wHΦnnw)2
!
= 0

⇔ Φxxw

wHΦnnw
=

wHΦxxw

wHΦnnw
︸ ︷︷ ︸

λ

· Φnnw

wHΦnnw

∣
∣
∣
∣
∣
·
(
wHΦnnw

)

w
H
Φnnw>0

⇔ Φxxw = λΦnnw. (A.19)

Finally, we identify that λ is again exactly the ratio we intended to maximize. The solution to
Equation A.19 which maximizes the original cost function is then the eigenvector corresponding
to the biggest eigenvalue.
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A.6 MVDR beamformer

The MVDR formalism asks for a beamforming vector which minimizes the expected output
variance while respecting a distortionless constraint as in

w = argmin
w

∑

t

|wHxt|2 s.t. wHd = 1. (A.20)

The linear constraint can be incorporated in the cost function by using a Lagrange multiplier
resulting in a modified optimization criterion given by

J ′ =
∑

t

|wHxt|2 + λ(1−wHd) (A.21)

= wH
∑

t

xtx
H

t w + λ(1−wHd) (A.22)

= wHΦxxw + λ(1−wHd). (A.23)

The complex derivative following Section A.4 leads to the following solution:

∂J

∂w
= Φxxw − λd = 0 ⇔ Φxxw = λd ⇔ w = λΦ−1

xxd. (A.24)

Finally, we can plug the result of Equation A.24 into the linear constraint and obtain

λdHΦ−1
xxd = 1 ⇔ λ =

1

dHΦ−1
xxd

, (A.25)

which when again inserted in Equation A.24 results in the well-known MVDR solution as in
Equation 3.56.

A.7 Permutation formalism

When discussing permutations Π, it can become quite confusing if the permutation at hand cor-
rects the ordering or if it is what led to the wrong ordering in the first place.

Let us formalize it using an example. A system S receives correctly sorted items, e.g.,
a = (a0, a1, a2) = (A,B,C). It applies a random system permutation:

Π = (2, 0, 1).

The resulting order is

S {(A,B,C)} = Π ◦(A,B,C)
= (aΠ(0), aΠ(1), aΠ(2))

= (C,A,B).
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Table A.1: Comparison of most important features of the WSJ-BSS database used in this work and
the successor SMS-WSJ [181].

WSJ-BSS SMS-WSJ

• Approximately each unique
utterance equally often

• Each unique utterance exactly
equally often

• 30000, 500, 1500 mixtures • 33561, 982, 1332 mixtures

• Exclude verbalized punctuation • Exclude verbalized punctuation

• Reverberation time (T60):
200ms to 500ms

• Reverberation time (T60):
200ms to 500ms

• Time of flight compensation jointly
over all channels

• Time of flight compensation jointly
over all channels

• 20 dB to 30 dB additive
white Gaussian noise

• 20 dB to 30 dB additive
white Gaussian noise

• Only split in speech and noise component • Additionally, early-late split

• Fixed 2 speaker • Randomization approach can be generalized
to more speakers

• First speaker’s utterance determines length • Maximum utterance length determines to-
tal length: ASR on both possible

To correct the random permutation, we may use the inverse permutation4:

Π−1 = argsortΠ

= (1, 2, 0).

We obtain the initial ordering, by applying the inverse permutation:

Π−1 ◦Π ◦(A,B,C) = Π−1 ◦(C,A,B)

= (aΠ−1(Π(0)), aΠ−1(Π(1)), aΠ−1(Π(2)))

= (A,B,C).

A.8 Comparison of WSJ-BSS and SMS-WSJ

Table A.1 shows a comparison of the WSJ-BSS database used in this work and the successor
SMS-WSJ [181].

A.9 More detailed evaluation results

Table A.2 displays different training parameters for a fixed network topology and a fixed
number of epochs. After 1000 epochs training with a mini-batch size of 64 and mixtures

4 argsort: https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html
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Table A.2: Comparison for different DFT sizes while limiting the training to 1000 epochs. All models
contain four layers of 300 BLSTM cells. The networks which are trained on the entire mixture are
initialized with the parameters obtained from the networks trained on 6400 sample segments. No
dropout is used.

DFT

size

Embedding

dimensions

Train

samples

SDR / dB

SI-SDR BSS-Eval Invasive

Dev Test Dev Test Dev Test

256 20 6400 6.04 6.02 6.66 6.64 9.64 9.69

256 40 6400 5.83 5.82 6.46 6.44 9.47 9.52

512 20 6400 8.17 8.16 8.78 8.75 11.70 11.72

512 40 6400 8.48 8.46 9.08 9.03 11.99 12.01

256 20 entire 6.98 7.03 7.55 7.59 10.47 10.57

256 40 entire 7.07 7.17 7.64 7.73 10.56 10.70

512 20 entire 9.33 9.39 9.89 9.94 12.74 12.82

512 40 entire 9.54 9.50 10.10 10.05 12.95 12.96

randomly cut to segments of 6400 samples (first four rows) better results are obtained for a
DFT size of 512. It can be observed that the embedding dimension has an influence on the
SDR gains with E = 40 dimensions performing slightly better for a DFT size of 512 samples.
This is more pronounced for fine-tuned models (last 4 rows) on the entire utterance. As a
consequence, all following recipes use a DFT size of 512 samples and E = 40 embedding
dimensions.

Figure A.3 and Figure A.4 compare different SDR results for DC and DANs, respectively.
Both tables present results for a varying number of units per layer, a varying number of
layers, different dropout probabilities and whether the systems were trained only on truncated
segments, e.g., 6400 samples or the entire mixture. First of all it becomes apparent, that
the best configuration is not necessarily equal for both approaches: a DC system appears
to be best without dropout while the DAN appears to be slightly better when applying
dropout with a dropout probability of 0.2. However, both approaches tend to perform
slightly better when using more layers but less LSTM cells per layer. This findings coincide
with the observations reported in [47, Table 4]. Further, training on the entire mixture
(after pretraining on segments) improved performance in all variants. It is worth keeping in
mind that this is on the WSJ0-2mix database which consists of highly overlapped speech.
Without reporting further evidence, it is important to note that the effect of training on
the entire mixture is more pronounced when training and evaluating on mixtures with less
overlap.

Table A.5 lists separation results for a cACGMM with different initializations. In a sense, it
can be seen as an extension to Figure 5.5 in which only invasive SDR is displayed over EM-
iteration. It can be observed that independent of the initialization method the biggest gains
are achieved in the first 100 iterations. Further, the i.i.d. initialization leads to somewhat
meaningful results already after 10 iterations. The flag iteration is most promising when no
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Table A.3: Comparison of different DC architectures and dropout on the WSJ0-2mix database.

Recurrent units Dropout
Train

samples

SDR / dB

SI-SDR BSS-Eval Invasive

Dev Test Dev Test Dev Test

2× 600 0.0 6400 7.95 8.16 8.57 8.75 11.48 11.72

2× 600 0.2 6400 7.75 7.91 8.37 8.50 11.33 11.49

2× 600 0.0 entire 8.92 9.05 9.49 9.61 12.36 12.50

2× 600 0.2 entire 8.99 9.08 9.56 9.64 12.43 12.54

4× 300 0.0 6400 7.96 7.91 8.58 8.52 11.49 11.49

4× 300 0.2 6400 7.05 7.00 7.70 7.64 10.69 10.69

4× 300 0.0 entire 9.45 9.45 10.01 10.00 12.86 12.89

4× 300 0.2 entire 8.84 8.86 9.42 9.42 12.32 12.35

Table A.4: Comparison of different DAN architectures and dropout on the WSJ0-2mix database.

Recurrent units Dropout
Train

samples

SDR / dB

SI-SDR BSS-Eval Invasive

Dev Test Dev Test Dev Test

2× 600 0.0 6400 9.20 9.11 9.72 9.62 11.05 11.01

2× 600 0.2 6400 9.26 9.22 9.78 9.73 11.23 11.20

2× 600 0.0 entire 10.19 10.07 10.66 10.52 11.73 11.62

2× 600 0.2 entire 10.31 10.16 10.78 10.63 12.07 11.94

4× 300 0.0 6400 9.38 9.22 9.91 9.74 11.36 11.23

4× 300 0.2 6400 8.96 8.82 9.52 9.37 11.23 11.11

4× 300 0.0 entire 10.25 10.09 10.72 10.56 12.00 11.85

4× 300 0.2 entire 10.13 10.06 10.61 10.53 12.10 12.02
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Table A.5: Comparison of a cACGMM with different number of iterations. The cACGMM was
initialized either by sampling each entry in the affiliation mask i.i.d. from a uniform Dirichlet
distribution or with the flag initialization tuned towards this particular dataset and consists of
K ′ = K + 1 classes.

Initialization
Inline

PA
Iterations

SDR / dB
PESQ STOI

BSS-Eval Invasive

Dev Test Dev Test Dev Test Dev Test

flag ✗ 10 5.96 5.76 8.10 7.82 1.84 1.69 0.58 0.71

flag ✗ 100 11.46 11.71 14.49 14.85 2.19 2.05 0.66 0.81

flag ✗ 500 11.52 11.79 14.59 14.91 2.20 2.05 0.66 0.81

flag ✓ 10 5.96 5.76 8.10 7.82 1.84 1.69 0.58 0.71

flag ✓ 100 11.42 11.76 14.37 14.89 2.18 2.04 0.66 0.81

flag ✓ 500 11.54 11.92 14.53 15.04 2.19 2.05 0.66 0.81

i.i.d. ✗ 10 9.73 9.91 12.67 12.82 2.16 2.00 0.66 0.80

i.i.d. ✗ 100 11.20 11.25 14.12 14.19 2.23 2.05 0.67 0.82

i.i.d. ✗ 500 11.18 11.28 14.10 14.23 2.22 2.05 0.67 0.82

i.i.d. ✓ 10 9.92 10.16 12.91 13.21 2.15 2.00 0.66 0.80

i.i.d. ✓ 100 12.38 12.22 15.53 15.35 2.26 2.08 0.68 0.82

i.i.d. ✓ 500 12.29 12.29 15.42 15.42 2.25 2.08 0.68 0.82

inline permutation alignment is used (Row 3) when comparing to i.i.d. initialization (Row 9).
However, flag results are much worse when limiting to 10 iterations only. Overall, an i.i.d.
initialization which is easier to implement and assumes less about the structure of the mixture
leads to best results when an inline permutation alignment is applied. Consequently, when
not otherwise denoted, all presented recipes use this setup.



Glossary

Spectrum A real-valued one-dimensional representation of the amplitude or power of a signal
over frequency bins.

Spectrogram A real-valued two-dimensional representation of the amplitude or power of a
signal over time frames and frequency bins.

Stationary process A stochastic process is called stationary if all its statistical properties
do not change over time.

Wide-sense stationary process A stochastic process of which at least the mean and variance
do not change over time. It is a relaxation of a strictly stationary process.

Complex symmetry A complex random variable z̆ is considered to be circularly symmetric
when pz̆(z) = pz̆(e

jφz).

Underdetermined, determined, overdetermined While in general these terms are used to
discuss the solvability of a system of equations, it is often applied to speech mixtures as
follows: Underdetermined refers to scenarios with more sources than sensors, determined
refers to scenarios in which the number of sources and sensors match, and overdetermined
refers to scenarios in which more sensors than sources are available.

Database A collection of examples, e.g., audio files with transcriptions. Ideally, it consists
of predefined dataset splits.

Dataset A dataset is a split of a database into a train set used to determine, e.g., network
weights, a development set used for early stopping or architecture decisions, and a test
set to report final results. Although the origin of this terminology is unknown, we here
refer to [11, Page 33].
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