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Abstract for the dissertation:

Design and Performance Analysis of Improper Gaussian Signaling Schemes for
Interference-limited Systems

by Mohammad Soleymani

In this thesis, we design various improper Gaussian signaling (IGS) schemes to improve the
performance of different interference-limited systems and analyze the performance of IGS as
an interference-management technique. In an improper signal, the real and imaginary parts of
the signal are correlated and/or have unequal powers. The performance of modern wireless
communication systems is mainly restricted by interference from other users, which implies the
importance of interference-management techniques. We propose some IGS schemes to improve
spectral and energy efficiency of different single-antenna and multiple-antenna interference-
limited systems with realistic assumptions regarding hardware and channel knowledge.

We first consider the K-user multiple-input, multiple-output (MIMO) interference channel
(IC) with imperfect hardware. To fully characterize the performance of IGS, we consider var-
ious optimization problems such as the rate region, sum-rate maximization, energy-efficiency
(EE) region and global EE maximization problems. To solve these non-convex problems, we
first formulate a general optimization problem that encompasses all performance metrics under
study and then, employ a majorization-minimization framework to obtain solutions for each
problem. This optimization framework converges to a stationary point of every optimization
problem in MIMO interference-limited systems with treating interference as noise (TIN) in
which either the objective function and/or constraints are linear functions of rates. Our numer-
ical results show that IGS can outperform the K-user MIMO IC with hardware impairment,
where its benefits increase with K and the imbalance level and decrease with the number of
antennas. We also consider theK-user single-input, single-output (SISO) IC with imperfect de-
vices and derive the corresponding achievable rate region by proposing two iterative algorithms
with different computational complexity.

We also investigate the robustness of IGS against imperfect channel state information (CSI)
on the transmitter side in a 2-user and Z SISO IC. Following a worst-case robustness approach,
we study the rate-region boundary of the ICs for the worst channels and show the superiority
of IGS. Additionally, we study the performance of IGS over a 2-user Rayleigh SISO IC. We
assume that the receivers have perfect CSI, while the transmitters have access to only statistical
CSI. We derive the ergodic rate region for the 2-user fading IC and show that, in the moderate
and strong interference regimes, IGS outperforms the proper Gaussian signaling scheme.

In addition to the rate analysis, we consider EE of IGS and propose energy-efficient IGS
designs for the K-user SISO IC and underlay cognitive radio (UCR). We show that IGS can
be beneficial from EE point of view. In UCR, we derive closed-form necessary and sufficient
conditions for the optimality of IGS.

To summarize, we propose some spectral or energy efficient IGS schemes and show that
IGS can improve the spectral and EE of different interference-limited systems with realistic
assumptions regarding channel knowledge and hardware. Moreover, we show that the benefits
of IGS increases with the number of users and decreases with the number of (either spatial or
frequency) resources. We also show that the EE benefits of IGS are less than its rate benefits.



Zusammenfassung der Dissertation

Design und Leistungsanalyse von Improper Gaussian Signaling-Schemata für Systeme mit begrenzter
Interferenz

des Herrn Mohammad Soleymani

In dieser Arbeit wurde verschiedene Improper Gaussian Signaling (IGS)-Schemata entworfen, um die
Leistung verschiedener störungsbegrenzter Systeme zu verbessern, und die Leistung von IGS als Inter-
ferenzmanagementtechnik wird untersucht. Als improper bezeichnet man komplexwertige Signale deren
Real- und Imaginärteil korreliert sind und/oder unterschiedliche Leistung haben. Ziel dieser Dissertation
war es, die Spektral- und Energieeffizienzsteigerungen durch verschiedene IGS Schemata. Diese reichen
von unterschiedlichen interferenzbegrenzten Einzelantennen- bis Mehrantennensysteme unter Berück-
sichtigung realer Annahmen bezüglich Hardware- und Kanalkenntnisse.

Zunächst wurde derK-Nutzer Mehrantenneninterferenzkanal (multiple input, multiple-output (MIMO)
interference channel (IC)) mit imperfekter Hardware betrachtet. Zur Charakterisierung der Performanz
des IGS werden verschiedene Optimierungen betrachtet, wie z.B. die Datenratenregion, Summen-Raten
Maximierung, Energieeffizienz (EE-)Region und globale EE-Max-imierung. Um diese nicht-konvexen
Probleme zu lösen, wird zunächst ein allgemeines Optimierungsproblem formuliert, das alle Metriken
umfasst um anschließend das Majorisierungs-/Minimierungsverfahren anzuwenden, wodurch Lösungen
für jedes der Einzelprobleme gefunden werden kann. Numerische Auswertungen haben gezeigt, dass
IGS die Performanz des K-Nutzer-MIMO-IC unter Berücksichtigung von Hardwareeinfluss verbessern
kann. Dabei hat sich herausgestellt, dass der Nutzen mit K und dem Ungleichgewicht zwischen Stärke
des Real- und Imaginärteils zunimmt, aber mit der Anzahl der Antennen sinkt. Weiterhin wurde auch der
K-Nutzer Single-Input, Single-Output (SISO) IC mit imperfekter Hardware betrachtet. Indem zwei iter-
ative Algorithmen unterschiedlicher Rechenkomplexität entwickelt wurden, konnten die entsprechenden
Ratenregionen hergeleitet werden.

Darüber hinaus wurde in dieser Arbeit die Robustheit von IGS gegenüber imperfekten Kanalzus-
tandsinformationen (channel state information (CSI)) auf Seiten des Empfängers in einem 2-Nutzer- und
Z SISO-IC untersucht. Basierend auf einem Worst-Case-Robustheit Ansatz haben wir die Überlegenheit
des IGS, durch Untersuchung der Grenze der Ratenregion des IC für den schlechtesten Kanal, gezeigt.
Zusätzlich wurde die Performanz von IGS gegenüber einem 2-Nutzer Rayleigh SISO IC untersucht.
Dafür wurde angenommen, dass die Empfänger perfekte CSI haben, während die Sender nur Zugang zu
statistischen CSI haben. Die ergodische Ratenregion für die 2-Nutzer Fading IC wurde hergeleitet und
es konnte gezeigt werden, dass im moderat bis starken Interferenzbereich, IGS dem Proper-Gaussian-
Signaling-Schema überlegen ist.

Zusätzlich zur Analyse der Datenrate, wurde die EE von IGS betrachtet und es konnte ein energieef-
fizientes IGS Design für K-Nutzer-SISO-IC und Underlay Cognitive Radio (UCR) bestimmt werden.
Dabei hat sich herausgestellt, dass IGS aus EE Sicht vorteilhaft ist. Für UCR wurden außerdem notwendige
und hinreichende Bedingungen für die Optimalität von IGS hergeleitet.

Zusammenfassend wurden in dieser Arbeit verschiedene spektrale oder energieeffiziente IGS-Schemata
vorgeschlagen. Es wurde gezeigt, dass IGS beide Aspekte verschiedener interferenzbegrenzter Systeme
mit realistischen Annahmen bezüglich Kanalwissen und Hardware, verbessert. Außerdem wurde demon-
striert, dass die Vorteile von IGS mit der Anzahl der Nutzer steigt, aber mit der Anzahl der (räumlichen
oder Frequenz-) Ressourcen sinkt. Darüber hinaus wurde gezeigt, dass die EE-Vorteile des IGS geringer
sind als seine Ratenvorteile.
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1 Motivation, Background, and
Contributions

1.1 Motivation
The increasing number of devices with wireless connectivity, on the one hand, and the lim-
ited availability of radio resources, on the other hand, motivate the design of techniques to
exploit the spectrum more efficiently. Additionally, energy expenses and global warming make
energy-efficient techniques more and more important in modern wireless communication sys-
tems. Hence, it is expected that energy-efficient and spectral-efficient designs, which are the
main concern of this thesis, will continue to play essential roles in wireless communication
systems [15].

One of the main targets for 5G is to reach a data rate more than 1000 times of the data rate
of current cellular systems [5]. Reaching the goal is not possible without increasing the spec-
tral efficiency and overcoming many challenges such as interference, hardware non-idealities,
implementation costs and so on. A consequence of increasing the spectral efficiency is to toler-
ate more interference from other users as modern wireless communications systems are mostly
interference-limited. Handling interference is always among the primary issues in modern wire-
less communication systems, and interference management techniques play a key role in the
current and next generations of wireless communications [5].

Global warming has been among the urgent environmental issues in the last decades. It is
estimated that information and communication technology systems are responsible for 5% of
the global CO2 emission, and it is predicted that this percentage will increase [15, 33, 128].
Maximizing energy efficiency (EE) is also beneficial from economical point of view. Energy
is usually very expensive, and in order to make the implementation costs affordable, we should
use energy resources as efficient as possible. Thus, energy-efficient designs are essential for
upcoming wireless communication systems.

In order to quantify the EE, a metric has to be defined. In general, the more data trans-
mitted by a scheme per energy unit, the more energy efficient the scheme is. Following this
concept, the EE of a user is defined as the ratio of its achievable rate to its total power con-
sumption [15, 126]. There are different approach to extend this metric to determine the EE of
a system, consisting of several users. An approach can be, for instance, to consider the global
EE for a system, which is defined as the ratio of the achievable rate of the system to the total
power consumption of the system [126]. Note that such metrics is not the only way to propose
energy-aware schemes. It is also possible to design energy-aware schemes by minimizing the
power consumption for a fixed performance level. This performance metric can be, in general,
the achievable rate, outage probability and/or system throughput [15]. By this approach, the
minimum required performance level for a system is firstly determined. Then, the parameters
are set in such a way that the power to meet this requirement is minimized. These two main
approaches for proposing energy-aware schemes might seem similar, but they lead to different
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resource allocations. Obviously, to account for EE metrics in the system design can result in
more energy-efficient schemes [15].

To improve the spectral and/or energy efficiency entails many challenge. One of the main
challenges in spectral and energy efficiency is hardware non-idealities. Devices are never com-
pletely ideal in practice, which can significantly degrade the system performance especially
when the hardware non-idealities are not considered in the system design. The impact of hard-
ware imperfections has become even more vital in modern wireless communication systems.
In particular, in millimeter wave (mmW) and wideband communications, which are the main
trends for 5G and beyond, the communication systems may severely suffer from hardware im-
perfections [45]. Additionally, in modern wireless communications, we sometimes have to
employ low-cost devices in order to make the implementation expenses affordable. Obviously,
low-cost devices can be imperfect. In general, hardware impairment (HWI) may happen due
to imperfections in hardwares such as quantization noise, phase noise, amplifier nonlinearities,
and I/Q imbalance [8–11, 22, 34, 59, 64, 83, 93, 111, 112, 120, 123, 131–135].

Another critical challenge in the design of wireless communication systems is to acquire
perfect channel state information (CSI), which may require lots of signaling overhead depending
on the scenario. In practical scenarios, the CSI is always imperfect, and the system performance
would be highly affected if this imperfectness is not considered in the design. In general, it can
be reasonable to assume that a receiver knows the CSI perfectly since acquiring CSI at the
receiver side is relatively easy with training sequences or applying blind/semi-blind estimation
methods [89, 97, 115]. The channel information is typically quantized and then sent to the
transmitters through a noisy feedback link, which results in noisy CSI at transmitter side (CSIT).
Even this noisy CSIT can be useful and improve the system performance. However, neglecting
these CSI imperfections in the system design can result in a huge performance degradation,
which motivates us to study robust designs against imperfect CSI. A way to propose robust
designs is to follow the concept of the worst-case robustness in which we consider the worst-
case channels and derive the parameters such that the worst-case performance is improved. In
other words, we design the system for the worst-case scenario and ensure that the performance
cannot be worse than it.

In addition to robust design, it is also common to consider only the statistics of the CSI at
the transmitter side and design the system based on the probability distribution of the channel
[3,4,36,37]. In this case, a goal can be to maximize the long-term achievable rate, which is also
called the ergodic rate and is defined as the mathematical expectation of the instantaneous rate.
Another possible performance metric for this case can be the outage probability for a given
target rate. In general, by this approach, the need for instantaneous CSIT is relaxed, which
reduces signaling overheads. For instance, if the channels vary fast, the available CSIT might
be outdated, and the signaling overhead for the CSI has to be increased in order to send the
latest update of the channels. It might not be possible to allocate lots of signaling overhead
for CSI in every implementations, which can enforce us to consider only statistical CSI in the
system design.

In this thesis, we propose some spectral and energy-efficient schemes with practical assump-
tions regarding hardware and channel knowledge. We focus on interference-limited systems
and try to manage interference by improper Gaussian signaling, which is briefly described in
Section 1.2. To this end, we need some optimization tools such as convex optimization, ma-
jorization minimization, fractional programming and so on. Thus, in this work, we first provide
the basic analytical tools and then, propose our schemes for different scenarios.
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1.2 Role of improper signaling in communications

A zero-mean complex Gaussian signal is called improper if its real and imaginary parts are
correlated and/or have unequal powers [2,94]. In a zero-mean proper Gaussian signals, the real
and imaginary parts are independent and identically distributed (iid). The concept of proper
and improper signals can be extended to non-Gaussian and/or discrete signals. We will describe
improper signals with more details in Chapter 2.

Improper signals and improper signaling have existed so long in communication systems.
For instance, some of discrete constellations are improper such as binary phase shift keying
(BPSK), pulse amplitude modulation (PAM) and 8-quadratic amplitude modulation (QAM).
These discrete constellations actually fall into improper signaling. Additionally, in some sce-
narios, the signal and/or the noise might be improper signals. For example, when there exists
an imbalance between the in-phase and quadrature (I/Q) signal paths, the signal becomes im-
proper. I/Q imbalance yields to capacity loss, which degrades the system performance, and has
to be compensated either at the transmitter and/or receiver. Indeed, when the noise is proper
at the receiver side of a point-to-point communication, improper signal is rather undesired than
being useful. However, when signal at the receiver side is proper, making the noise improper
can improve the system performance. It has been an inspiration to employ improper signaling
to improve the performance of interference-limited systems. The main idea of this applica-
tion is that if we make the signal of a user improper, it has less undesired interference effects
on other users with the cost of losing some capacity for the user. Improper signaling can be
beneficial only if the former pays off, and the gain we can get by reducing the undesired in-
terference effects becomes more than the capacity we lose by making the signals improper. In
the last decade, this idea has been applied to different scenarios, and it has been shown that im-
proper Gaussian signaling (IGS) can improve the performance of various interference-limited
systems [4,17,36,54,59,67–71,86,121,129]. We will discuss this application with more details
in the next subsection.

1.2.1 IGS as an interference-management technique

It is known that proper Gaussian signaling (PGS) achieves the capacity of traditional wireless
communication channels such as point-to-point communications [24]. However, it is very com-
plicated to find the capacity achieving signaling for every interference-limited systems. An
important example of interference-limited systems is the interference channel (IC), which is a
fundamental communication scenario where multiple users share the same frequency and time
resources for the transmission of the desired messages. Interference channels have been vastly
studied over the last decades [32, 38, 42, 84], but their capacity is still unknown in the general
case [32, 42, 84]. In some particular cases such as the very strong and very weak interference
regimes, the capacity-achieving schemes are known [42]. For example, in the very strong inter-
ference regime, the capacity of the 2-user IC is achieved by successive interference cancellation
(SIC), in which the interfering signals are firstly decoded and then canceled from the received
signal [42]. In other words, in the strong interference regime, the interference has to be decoded
in order to achieve capacity. Obviously, SIC is not a linear operation and has a high computa-
tional cost, specially in a multiuser setting. On the other hand, when the interference level is
very low, which is also referred to as the very weak interference regime, treating interference as
noise (TIN) is the capacity achieving strategy [42, 84]. TIN is a simple and practical decoding
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strategy, which turns out to be optimal from generalized degree of freedom (GDoF) point of
view in low interference regimes [38].

In summary and at a coarse level, if the interference is strong, the optimal interference man-
agement approach is to decode it along with the desired signal, whereas if the interference
is weak, then the interference management approach is to treat interference as noise. If the
strength of the interference is comparable to the strength of the desired signal, the degrees-of-
freedom (DoF) optimal interference management approach is to apply interference alignment
(IA) [16, 57, 79]. IA designs transmit precoders that reduce the dimension of the interference
subspace, in such a way that the interference can be zero-forced at each receiver thus getting an
interference-free subspace for the transmission of the desired signals. IA techniques actually op-
timize DoF, which operates in the asymptotic regime, i.e., when the signal-to-noise ratio (SNR)
is very high. Furthermore, the feasibility of IA for channels with constant coefficients depends
on the number of antennas and hence packing the interference into a low-dimensional subspace
is not always possible. Hence, in some practical scenarios, we have to tolerate and manage in-
terference to improve the system performance. As a result, in modern wireless communication
systems non-orthogonal multiple access (NOMA) schemes play an essential role [28, 29].

Another approach to handle interference is to employ IGS. The main idea of employing IGS
is to manage interference by making the interference improper, but there is actually a trade
off in the employment of improper signals. On the one hand, the ability to reject interference
increases if the interference has more structure. On the other hand, we lose some achievable
rates since the entropy of a signal decreases when the signal is structured. Hence, we should
design parameters such that, in the end, the overall performance is improved. An example of
this idea can be found in [70], where the authors considered an underlay cognitive radio (UCR)
system. They maximized the rate of the secondary user (SU) by employing IGS while satisfying
the rate requirement of the primary user (PU). In the paper, it was shown that the rate of the
SU decreases with the degree of impropriety; however, the SU can transmit with more power
without violating the rate requirement of the PU. They showed that the power increment can
compensate the rate loss and derived a necessary and sufficient condition on the ratio between
the gain of the interference and direct channel coefficients for IGS to outperform PGS.

Employing IGS has also another advantage, which is to provide more optimization param-
eters. In a zero-mean proper Gaussian signal, the real and imaginary parts are i.i.d. However,
in improper Gaussian signals, this constraint is relaxed, and the real and imaginary parts can
be correlated and/or have unequal powers. In other words, the powers of the real and imag-
inary parts can be considered as two different optimization variables. This feature has been
used for the first time in [17], where the authors showed that by considering different powers
for real and imaginary parts, we can increase the DoF of the 3-user single-input single-output
(SISO) IC. Later, this idea has been employed in other scenarios when interference is treated as
noise. For instance in [130], the authors first derived the achievable rate by PGS for the K-user
multiple-input, single-output (MISO) IC and then optimize over complementary variances to
improve over the PGS rate. By this approach, it is ensured that the proposed IGS scheme does
not perform worse than the existing PGS scheme. Note that PGS schemes can never outperform
the optimal IGS scheme since IGS includes PGS as a special case.

IGS has been applied to many interference-limited systems, and it is shown that IGS can
improve the performance of different interference-limited systems from two main performance
metrics. First, IGS with interference alignment can increase the DoF of different ICs [17,73,99,
121]. Second, IGS can provide some gain from achievable rate and/or power/energy-efficiency
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perspectives when interference is treated as noise [4, 36, 54, 67–71, 85, 86, 113, 129]. In the
following, we describe these benefits with more details.

The paper in [17] showed that IGS can increase the DoF of the 3-user SISO IC with constant
channel coefficients. In [73], this result was extended to the 4-user SISO IC and, in [121],
the authors showed that IGS can also increase the DoF of the 2-user multiple-input, multiple-
output (MIMO) X interference channel1. The paper in [99] proposed an IA strategy with IGS
for 3-cell SISO interference broadcast channels and showed the benefits of employing IGS as
an IA technique. In these papers, it is shown that IGS with IA can improve the DoF of different
interference-limited systems. However, as indicated, IGS can also be beneficial from rate and/or
power/energy-efficiency point of view when interference is treated as noise as described below.

The benefits of IGS with TIN was considered in different interference-limited systems such
as different ICs, relay channels and broadcast channels. For instance, the paper in [54] showed
that IGS can improve the performance of the SISO 2-user interference channel, while in [129]
IGS was used to optimize the rate of the K-user MIMO interference channel. Moreover, the
authors in [129] derived the rate region of the 2-user SISO IC with TIN by solving a semidefinite
programming (SDP) problem, showing that IGS can enlarge the rate region and improve the
performance of the system. The paper in [86] showed that IGS can reduce the symbol error rate
of the K-user IC. The superiority of IGS over PGS schemes for the Z-IC2 was also established
in several works [67, 69, 71]. Additionally, the authors in [36] showed that IGS can improve
the performance of full-duplex relaying systems with fading channels. Similarly, the authors
in [4] considered an overlay CR system, in which the SU can employ IGS, and showed the
rate benefits by IGS for the SU. They showed that the outage probability of the SU for a fixed
achievable rate decreases by employing IGS. In [85], the authors showed that IGS can increase
the minimum achievable rate of the users in the MIMO broadcast channel. The paper [113]
investigated the performance improvements by IGS in non-orthogonal multiple access systems.

To summarize, IGS may improve the system performance in interference-limited systems
and/or in the presence of improper noise, and PGS is definitely optimal in interference-free
systems with proper noise. Up to now, it has been shown that IGS can improve the performance
of several interference-limited systems, such as IC [17,54,67,69,71,73,86,121,129], underlay
and overlay cognitive radio (CR) systems [3, 4, 70], relay channels [37, 53, 59], and broadcast
channels (BC) with (widely) linear transceivers [46, 48], to mention a few.

1.3 Related Work

In this section, we provide a brief review on the related works in the literature, which consider
more realistic assumptions regarding hardware and channel knowledge. We focus more on
the papers related to IGS since it is the main concern of this thesis. We first present some
papers on hardware imperfections and then, consider some related works with realistic channel
assumptions. Finally, we present a brief review on EE.

1The 2-user X-IC is a generalization of the 2-user IC where there is an independent message from each transmitter
to each receiver [55].

2Z-IC is a special case of the 2-user IC, in which only one of the users interferes with the other user.
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1.3.1 Hardware imperfections
Hardware imperfections are among the main issues in modern wireless communications. De-
pending on the application, we sometimes have to employ low-cost devices/antennas to make
the implementation expenses affordable [8, 135]. Hence, we have to tolerate some hardware
imperfections in practice and deal with these imperfections in the design level. The impact of
hardware imperfections has been studied in various scenarios in [8–11, 22, 34, 59, 64, 83, 111,
112, 120, 123, 131–135]. For instance, [9, 59, 64, 111] considered different interference-limited
scenarios with single-antenna transceivers subject to additive hardware distortions (AHWD).
When there is AHWD, the distortion power is a linear function of the signal power at the cor-
responding antenna [9, 59, 64, 111]. In [9], the authors investigated the effect of AHWD on the
performance of a dual-hop relay with both amplify-and-forward and decode-and-forward pro-
tocols and derived closed-form expressions for outage probabilities, as well as an upper bound
for the ergodic capacity. The outage probability for a device-to-device mmW communication
system with complex proper AHWD was derived in [111]. However, AHWD may be, in gen-
eral, improper due to I/Q imbalance [12,59–64]. The authors in [59] considered a relay channel
with improper AHWD and maximized the achievable rate of the system by optimizing over
complementary variances. In [64], the authors considered a full-duplex multihop relay channel
with improper AHWD.

Hardware imperfections are even more critical in multiple antenna systems especially in mas-
sive MIMO communications. Due to a huge number of antennas in massive MIMO systems,
employing low-complexity devices has received lots of attentions in order to keep the imple-
mentation costs affordable [8, 135]. Obviously, low-complexity devices may generate signifi-
cant HWI, which makes HWI-aware schemes important in upcoming multiple antenna systems.

The performance of various multiple antenna systems with hardware nonidealities has been
investigated in many papers (see, e.g., [8,10,11,22,34,120,123,131–135]). For instance, the pa-
pers in [11, 134, 135] studied secure communications for massive MIMO systems with AHWD
in different scenarios. The paper in [8] investigated the impact of AHWD on the performance
of a cellular communication in which the base station employs a massive number of anten-
nas. The papers in [120, 131, 133] studied the performance of massive MIMO systems with
AHWD in fading channels in different scenarios. In [34], the authors investigated the system
performance of a two-way massive MIMO relay channel with AHWD. In [22], the authors con-
sidered beamforming designs for a dual-hop MIMO amplify-and-forward relay channel in the
presence of AHWD and analyzed the outage probabilities for the system. In [10], the authors
studied the capacity limit and multiplexing gain of MIMO point-to-point systems with AHWD
at both transmitter and receiver sides.

In addition to AHWD, there might be other sources of hardware imperfections and impair-
ments like I/Q imbalance3. When I/Q imbalance occurs, the received signal can be modeled
through a widely linear transformation of the transmitted signal and the aggregated noise. A
widely linear transformation is a linear combination of the signal and its conjugate. Hence,
the received signal can be improper even if the transmitted signal and aggregated noise are
proper [63]. It has been shown that IGS can improve the system performance in the presence of
improper additive noise [12,59–64,101]. For example, it is shown in [60] that IGS is the optimal

3In this dissertation, AHWD noise refers to the model in [8–11, 101, 120, 131, 135] in which the power of the
AHWD noise is a linear function of the power of the received signal. On the other hand, I/Q imbalance refers
to the model in [12,63], where the received signal is a function of the widely linear transform of the transmitted
signal and noise, and the variance of the noise is fixed and independent of signal powers.
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signaling for a point-to-point single-input, multiple-output (SIMO) system with asymmetric or
improper AHWD.

1.3.2 Channel state information

Acquiring perfect and instantaneous CSI at both receiver and transmitter sides is very challeng-
ing in practice. It becomes even more complicate to acquire global and perfect CSI at every
transmitter in multiuser systems, where assuming global and perfect CSI at every transmitter
is very restrictive. Therefore, a great deal of work has aimed at relaxing this assumption and
exploiting either imperfect or statistical CSIT. For instance, the paper in [3] considers an UCR
network in which the SU has only statistical CSIT and optimizes its transmit power and degree
of impropriety to maintain a given PU outage probability. A more challenging UCR scenario
where the PU is assumed to work using full-duplex mode is considered in [36] for Rayleigh
fading channels. In [4], the authors considered both global CSI and partial CSI scenarios in an
overlay CR system. Specifically, with partial CSIT the primary user has access only to the av-
erage CSI. In this setting, the authors showed that IGS reduces the outage probability of the PU
link. Nevertheless, references [3,4,36] only consider block fading models and the probability of
outage as the figure of merit to optimize. In [37], the authors studied a full-duplex relay system
over Nakagami-m fading channels. They derived the outage probability for a given target rate
as well as the ergodic rate of the system and showed the benefits of IGS.

In these papers, it was assumed that the existing CSI, either instantaneous or statistical, is
perfect. However, in practical scenarios, the CSI is always imperfect. Furthermore, acquiring
the CSI at the transmitter side is more difficult than at the receiver side. Thus, it is critical to
investigate whether IGS is still beneficial when the available CSI is imperfect. To design the
PGS scheme, only the channel gains are required. However, IGS typically requires the phases
of the channels in addition to the gains in order to design the optimal complementary variances.
Since IGS needs more detailed CSI than PGS, it might be reasonable to expect that IGS is more
affected by imperfect CSI and its benefit will decrease when the CSI quality decreases as well.

On the other hand, the use of IGS in combination with IA obtains DoF improvements in cer-
tain scenarios such as 3-user IC [17] or 2-user MIMO X-IC [121]. In other scenarios, such as the
2-user IC with partial or full transmitter cooperation, the use of IGS does not offer DoF advan-
tages, although IA still offers improvements in terms of generalized degrees of freedom (GD-
oFs), which are a refinement of the DoF metric. However, these asymptotic (in the high SNR
regime) DoF or GDoF benefits are typically lost under finite precision CSIT, a phenomenon
known as DoF collapse. For instance, under limited CSIT, the DoF collapse for the 2-user
MISO BC even when perfect channel knowledge for one user is available [26, 110]. It is also
shown in [27] that, under finite precision CSIT, the sum GDoF of the 2-user X channel and
2-user BC collapse and hence, the benefits of IA are entirely lost under finite precision CSIT.

In this work, we do not study possible DoF or GDoF benefits of IGS, but rather the advantages
that IGS can provide in terms of rate and/or EE with TIN. The optimal IGS parameters typically
depend on the gains and phases of the channels, so the following question arises: Is IGS still
beneficial in the presence of imperfect CSI? We will address this question for the 2-user SISO
IC and Z-IC in this work.
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1.3.3 Energy efficiency

Energy is very precious from both economical and environmental perspectives and has to be
employed very efficiently. As indicated, the EE of a user is defined as the ratio of its achiev-
able rate to its total power consumption [15, 126]. For a system, there can be different utility
functions for the EE metric [15]. For instance, an extension of the definition of EE to include a
system is the global EE, which is defined as the ratio of the total achievable rate (sum rates of
the users) to the total power consumption of the system (the summation of the total power con-
sumption of each user). This metric is the system-wide EE measure and does not consider the
EE of each individual user [15]. There is also another approach to measure the EE for a system
by considering the EE of each individual users. In general, we can propose more fair schemes
if we consider the individual EE of each user in the objective and/or constraint functions. Ac-
cording to [15], the three most frequently used objective functions for EE in the literature are:
weighted sum EE, weighted product, and weighted minimum EE. Throughout this dissertation,
we mostly consider the EE region, which can be obtained by solving the weighted minimum
EE [126]. The reason is that EE region shows all possible operational points for specific chan-
nels. Additionally, we can enhance the fairness EE by maximizing the minimum EE of a system.
It is often that the EE problems are solved by considering a constraint on the quality of service
(QoS) for users to ensure meeting the minimum requirements of the system [15, 126]. This
QoS constraint can be on, for example, minimum achievable rate [127], maximum tolerable
delay [96], interference temperature [116, 117] and so on.

There are many works that study the energy-efficiency of PGS in various networks (please
refer to [15, 126] and the references therein), but the question of how these results translate to
the IGS schemes remains unanswered. In this dissertation, we provide an answer and show that
IGS can be beneficial in different interference-limited systems in terms of EE.

1.4 Contribution

In this work, we study the performance of IGS as an interference-management technique in var-
ious single-antenna and multiple-antenna interference-limited systems with realistic assump-
tions. We first present some HWI models such as I/Q imbalance and AHWD for SISO and
MIMO systems. We then consider some interference-limited systems with TIN. Throughout
this work, we consider two main performance metrics: achievable rate and EE. Note that achiev-
able rate is a metric for spectral efficiency. We show that IGS can outperform PGS from both
achievable rate and energy-efficiency perspectives in various interference-limited systems such
as the K-user SISO and MIMO ICs, 2-user SISO IC, SISO Z-IC, and underlay cognitive radio
under realistic assumptions regarding CSIT and hardwares. In the following, we present our
main contributions for multiple-antenna and single-antenna systems in separate subsections.

1.4.1 Multiple-antenna systems

The performance of IGS in the 2-user and/or K-user SISO ICs has been vastly studied, e.g.,
in [17, 54, 86, 129]. However, it still requires further investigations how IGS performs in the
K-user MIMO IC. In SISO systems, it is shown that the benefits of IGS become negligible
when the number of resources, e.g., time or frequency channel uses, increases. For instance,
in [52], the authors proved that PGS is optimal in the 2-user IC if coded time-sharing is allowed
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in which the average power consumption is constrained instead of the instantaneous power.
Hence, it seems that increasing the number of temporal or frequency dimensions provides a
more flexible power allocation for PGS, which might lead to minor improvements by IGS. In
MIMO systems, the number of resources increases by allowing more antennas at transceivers.
Thus, the following questions arise: how does IGS perform in the K-user MIMO ICs? Is IGS
still beneficial when the number of spatial dimensions (antennas) increases? In this thesis, we
answer these questions and analyze the performance of IGS by considering different rate and
energy-efficiency metrics and solving various optimization problems.

We consider two main performance metrics: the achievable rate and the EE. We show that
IGS can be beneficial in MIMO systems in terms of achievable rate and EE. Interestingly, IGS
provides more relative gain in terms of achievable rate than in terms of energy efficiency. More-
over, although there are some benefits for IGS in terms of global EE for the K-user MIMO IC,
as we will show, these benefits may not be significant. In other words, our numerical results
suggest that IGS does not provide a significant gain in terms of global EE for theK-user MIMO
IC.

In order to analyze the performance of IGS, we consider different optimization problems
such as achievable rate region, maximum sum-rate, energy efficiency region and global energy
efficiency. To solve these non-convex problems, we first formulate a general optimization prob-
lem that encompasses all performance metrics under study and then, employ a majorization-
minimization framework to obtain solutions for each problem. The main idea of this framework
is based on the structure of the achievable rate or energy-efficiency functions in interference-
limited systems when interference is treated as noise. Specifically, the achievable rate with
TIN is a difference of two concave/convex functions. We exploit this feature and employ a
majorization-minimization (MM) approach to derive a stationary point4 of every optimization
problem in interference-limited systems with TIN in which the objective function and/or the
constraints are linear functions of the rates. Note that MM is an iterative algorithm and consists
of two steps in every iteration: i) majorization, and ii) minimization [108]. In the majorization
step, the objective function is approximated by a surrogate function. Then, the approximated
problem is solved in the minimization step. In other words, MM solves a non-convex optimiza-
tion problem by solving a sequence of surrogate optimization problems, which can be solved
easier than the original problem [108].

We provide some numerical examples for the framework in the K-user MIMO IC with HWI
including I/Q imbalance and with AHWD. In the presence of HWI, the received signal is a func-
tion of the widely linear transform of the transmitted signal and the aggregated noise. Note that
the widely linear transform of a signal is the linear combination of the signal and its conjugate.
Thus, the aggregated noise can be improper, which motivates us to consider IGS. We also inves-
tigate the performance of IGS as an interference-management technique in the K-user MIMO
IC with HWI. We observe that the benefits of IGS decreases with the number of antennas either
at the transmitter or receiver sides for a fixed number of users. This is due to the fact that inter-
ference can be managed easier by PGS when there are more resources, and consequently, IGS
provides less gain as an interference-management technique. We also observe that, for a fixed
number of antennas, the benefits of IGS is increasing in K. The reason is that the interference
level increases withK, and the more interference, the better performance for IGS. Additionally,
our results show that the benefits of IGS increases with the HWI level. The more improper, the

4In a constrained optimization problem, a stationary point of satisfies the corresponding Karush-Kuhn-Tucker
(KKT) conditions [75].
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noise is, the more benefits can be achieved by IGS.
We also consider the achievable rate region of a K-user MIMO IC with AHWD at the trans-

mitters and provide some numerical solutions for this scenario. We assume that the transmitters
are imperfect and produce AHWD with Gaussian distribution [8–11, 120, 131, 135]. Our pro-
posed scheme outperforms the scheme, which disregards AHWD. Moreover, the benefits of
employing our scheme increase with K and the level of AHWD. Our results show that AHWD
may significantly degrade the performance of the K-user MIMO IC, especially at high SNR
regimes.

The main contributions of this work for MIMO interference-limited systems can be summa-
rized as follows:

• We propose HWI-aware IGS schemes for the K-user MIMO IC. We study two general
performance metrics, i.e., the achievable rate and EE and solve four different optimization
problems. We derive a stationary point of the rate region, sum-rate maximization, EE
region and global EE maximization problems.

• To solve these optimization problems, we cast them as a typical optimization problem in
which the objective function and/or the constraints are linear functions of the achievable
rates. We then apply a unified framework to obtain a stationary point of these optimization
problems by majorization-minimization algorithms.

• Our results show that IGS can improve the performance of the K-user MIMO IC with
HWI in terms of achievable rate and EE. We show that IGS provides more benefits in
terms of achievable rate than in terms of energy efficiency.

• Our numerical simulations suggest that the benefit of IGS schemes increases with K and
with the level of impairment for a fixed number of antennas. However, IGS provides
minor gains with respect to PGS when the number of antennas grows for a fixed number
of users.

1.4.2 Single-antenna systems

In addition to MIMO systems, we study the performance of IGS in various single-antenna sys-
tems. The number of optimization parameters is less in single-antenna systems than in multiple-
antenna systems, which can allow us to propose simplified algorithms for SISO systems. In this
work, we consider different SISO systems from both achievable rate and EE perspectives with
realistic assumptions. As indicated, the EE of IGS schemes has not been well studied in differ-
ent scenarios, and this question has to be answered: How energy-efficient can IGS schemes be?
We provide an answer by proposing energy-efficient IGS schemes for the UCR and K-user IC.

It is also critical to investigate the performance of IGS with realistic assumptions regard-
ing CSIT and devices. In some scenarios, transmitters have access only to statistical CSIT.
Moreover, when it is possible to provide instantaneous CSIT, the instantaneous CSIT can be
imperfect, which might affect the performance of IGS more than PGS. The reason is that, to
design the PGS scheme, only the channel gains are required. However, IGS typically requires
the phases of the channels in addition to the gains in order to design the optimal complementary
variances. Hence, the following question arises: Does IGS outperform PGS in the presence of
imperfect and/or statistical CSIT? We will also address this question in this work. As indicated,
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devices are not always perfect in practice, and we have to consider such imperfections in the
design. Thus, we also propose AHWD-aware IGS schemes for the K-user IC.

We, moreover, study an orthogonal frequency division multiplexing (OFDM) UCR system in
this thesis. IGS outperforms PGS in many scenarios in single-carrier interference-limited sys-
tems. It can be interesting to investigate whether a similar behavior happens when we increase
the number of frequency resources by employing OFDM. As we will show, the benefits of IGS
disappears when the number of subbands grows. In the following, we will describe our main
contributions with more details.

OFDM underlay cognitive radio

In Chapter 5, we consider an OFDM UCR system with improper signaling. Because improper
signaling has been so successful at increasing the achievable rates in many interference-limited
scenarios, one might expect the same in an OFDM UCR system. However, the parallel channels
in OFDM allow the SU to allocate its power more flexibly compared to the single carrier case.
Moreover, in relatively low load traffic, when the constraint is on the total rate of the PU, the
PU can neglect some subcarriers without violating the rate constraint. This allows the SU to
transmit proper signals with maximum power on those subbands. This is why our results show
that the benefit of improper signaling is fairly small and decreases further with increasing num-
ber of subbands. Our study therefore reveals that the use of improper signaling in interference
channels needs to be justified for each individual case.

K-user SISO IC with asymmetric AHWD

In Chapter 6, we consider the K-user SISO IC with asymmetric AHWD and derive the achiev-
able rate region of the system. We assume that the transceivers of both users produce asymmet-
ric AHWD noise, and model the hardware distortion as an additive improper Gaussian noise,
similar to [59–61,64]. We devise two iterative algorithms to derive suboptimal solutions for the
achievable rate region. To this end, we rewrite the rate region as a pseudo-signal-to-interference-
plus-noise-ratio (PSINR) region and employ sequential optimization approaches to solve the
resulting problems.

In our first proposed algorithm, we employ MM as well as fractional programming (FP)
and the well-known generalized Dinkelbach algorithm (GDA). In our algorithm, to solve each
surrogate problem, we apply the GDA, which is a powerful tool to solve multiple ratio maximin
problems [25, 126]. In Dinkelbach-based algorithms, an iterative optimization is performed, in
which the fractional functions are replaced by surrogate functions at each iteration. The GDA
permits solving fractional programming efficiently and results in the global optimal solution
of the original optimization problem if the optimization problem at each iteration is perfectly
solved, i.e., its global optimum is obtained [25, 30, 98, 126].

In our second proposed algorithm, we employ a separate optimization of powers and com-
plementary variances. We first optimize the powers transmitted by the users by employing the
well-known bisection method, which transforms the original problem into a sequence of fea-
sibility problems, and derive a closed-form solution for the feasibility problem in the 2-user
IC. In order to obtain the complementary variances, we employ difference of convex program-
ming (DCP), which is a special case of sequential convex programming (SCP) and falls into
MM [75, 108]. In DCP, the objective function and/or constraints are difference of two con-
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vex/concave functions. DCP solves a non-convex problem by solving a sequence of convex
optimization problems and converges to a stationary point.

The main contributions of this work for the K-user SISO IC with asymmetric AHWD are as
in the following:

• We first propose an iterative algorithm based on a sequential optimization method, in
which we solve a sequence of fractional optimization problems [6, 108]. We derive the
global optimal solution of each surrogate problem by FP and the generalized Dinkelbach
algorithm. Our first proposed algorithm obtains a stationary point of the PSINR region.

• We also propose a simplified algorithm that is computationally less expensive than our
proposed algorithm with FP. This simplified algorithm is based on a separate optimization
of powers and complementary variances of users. We employ a bisection method to
obtain the powers and derive a closed-form solution for powers in each iteration. Then,
we employ DCP to find the complementary variances.

• Our results show that IGS improves the achievable rate of theK-user IC in the presence of
asymmetric AHWD, and that there is a significant performance improvement by IGS for
highly asymmetric AHWD noise. Moreover, both of our proposed algorithms outperform
existing PGS and other existing IGS algorithms.

Energy-efficient IGS schemes

IGS is usually claimed to be energy-efficient either by showing that it increases the achievable
rates for given transmit power or by showing that it reduces the transmit power to achieve target
data rates. However, there is a trade-off between data rate and transmit power in IGS schemes,
which cannot be fully characterized when one of them is kept fixed. In order to shed light
onto this trade-off, we consider the EE metric and propose energy-efficient IGS schemes for the
K-user SISO IC and UCR in Chapter 7.

For the K-user SISO IC, we derive the EE region of IGS by casting the corresponding op-
timization problem as maximizing the weighted minimum EE (WMEE) [126]. To solve this
optimization problem, we employ a sequential optimization method, in which we first maxi-
mize the WMEE over the powers considering PGS, i.e., when the complementary variances are
zero. We then maximize the WMEE over the complementary variances for the given powers.
This suboptimal approach guarantees that the proposed IGS scheme is not worse than the PGS
scheme. Our results show that IGS can substantially enlarge the EE region of the K-user IC.

In the UCR, we derive a necessary and sufficient condition in closed form for IGS to be more
energy efficient than PGS. We leverage this result to numerically obtain the optimal transmis-
sion parameters by the well-known bisection method. Our results show that IGS can improve
the EE of the SU in UCR when interference is treated as noise.

Robust IGS for 2-user IC and Z-IC

In this work, we also investigate the robustness of IGS against imperfect CSIT in the 2-user IC
and Z-IC. To this end, we employ a worst-case robustness approach to derive optimal robust
IGS designs [7, 82, 88, 95, 114, 116]. Thereby, we assume that the true channels are within a
known bounded region around the available CSI estimate with a certain probability, which we
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call the uncertainty region. Robustness is then achieved by performing an optimization for the
worst-case channels within the uncertainty region.

We consider a scenario in which the transmitters have access to a noisy estimate of the chan-
nel coefficients, and we propose closed-form robust designs of the transmission parameters that
achieve the robust rate region of the 2-user IC and Z-IC with TIN. To this end, we first ex-
tend the results in [70] to derive a worst-case robust design for the 2-user IC. In [70], an UCR
scenario was considered, in which the PU, unaware of the SU, employs PGS and transmits
with maximum power. In UCR, there are two types of users, PUs and SUs. PUs are licensed
users and have priorities to use the resources; on the other hand, SUs can transmit only if they
do not disturb the communications of the PUs. However, in the 2-user IC, a higher degree of
cooperation between users may be allowed to achieve a better performance. Thus, we derive
the Pareto-optimal boundary of the robust rate region for the 2-user IC when at most one user
employs IGS, which makes the scheme robust against imperfect CSI and represents a gener-
alization of the scenario studied in [70]. We then extend the design in [71] to a robust design
for the Z-IC. The main challenge of the robust design for the Z-IC is to consider the phase
uncertainty, which makes the optimization problems more difficult than in the setting of [71].

The main contributions of this work for the robust design in the 2-user SISO IC and Z-IC are
the following:

• We first consider a 2-user IC scenario and derive a robust scheme in closed-form by
allowing only one of the users to employ IGS. An important advantage of this suboptimal
scheme is that it is independent of the channel phase information at the transmitters. We
derive a sufficient and necessary condition for the proposed IGS scheme to outperform
PGS in this scenario.

• Although the results for the 2-user IC can be applied to the Z-IC, we propose another
robust design for the Z-IC that allows both users to employ IGS simultaneously. We also
derive closed-form conditions for this IGS scheme to outperform PGS. These conditions,
which depend on the accuracy of the CSI at the transmitter side, provide a robust version
of the design in [71].

• Our results show that even in the presence of imperfect CSI, robust IGS can substantially
outperform robust PGS designs. This is in contrast to non-robust IGS designs, which
may be strongly affected by uncertain CSI. Our results show that improper signaling is
even more robust to imperfect CSI than its proper counterpart when the transmission
parameters are optimized in a robust way.

Ergodic rate analysis for 2-user IC

We also study the achievable ergodic rates of IGS schemes over the 2-user fading IC when
interference is treated as noise. For the case where at most one user employs IGS (denoted
as PGS/IGS scheme), we derive closed-form expressions for the ergodic rates for both users.
These rates can be attained using fixed-rate codebooks and no optimization is involved. For
the more general IGS/IGS scheme where both users can employ improper signaling no closed-
form expressions for the rates exist and hence we compute numerically the optimal transmission
parameters and the boundary of the rate region. In our model, the users have perfect and instan-
taneous CSI at the receiver side (CSIR) but they only have access to statistical CSIT. In other
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words, the transmitters know the parameters defining the Rayleigh fading distributions of the
direct and interfering links. Note that the perfect instantaneous CSIR can be achieved using, for
example, training sequences. Under these assumptions, we derive the achievable ergodic rates
when the users transmit proper and improper Gaussian codewords.

The main contributions of this paper for the ergodic rates of IGS schemes over the 2-user
fading IC are as follows:

• We derive closed-form expressions for the achievable ergodic rate of the PGS and IGS
users. We also characterize the achievable ergodic rate region of the mixed PGS/IGS
scheme by allowing power control.

• Our proposed scheme incurs no additional overhead at the transmitter side when both
users transmit at maximum power. Moreover, in order to operate at a specific Pareto-
optimal point, the transmitters (or a central entity implementing the power control mod-
ule) should be informed about the average gain of the direct and interference links, which
are scalar values and can be easily sent to the transmitters. Hence, the PGS/IGS scheme
is simple to implement in practice.

• Through numerical examples, we show that our proposed PGS/IGS scheme substantially
outperforms the PGS scheme in moderate and strong interference regimes. Moreover,
we analyze the maximum sum-rate point for the symmetric 2-user IC when both users
transmit at maximum power. Under this condition, the sum-rate point is attained either
with PGS or with PGS/MIGS (maximally IGS); that is, one user transmits proper signals
while the other user employs maximally improper signaling. Then, the maximum sum-
rate point does not require any optimization and/or power control.

• We also compare our results with the more general scheme where both users can employ
IGS and their transmission parameters are numerically optimized. Our numerical results
show that the union of the PGS and PGS/MIGS schemes with time sharing attains almost
the whole Pareto-optimal points in the rate region and little is gained by allowing both
users to employ IGS.

Summary of contributions for SISO systems

We consider various SISO interference-limited systems with realistic assumptions regarding the
CSIT and hardware non-ideality and show superiority of IGS in different scenarios as described.
Our main findings about for single antenna systems can be summarized as:

• The benefits of IGS increases with the number of users in the K-user SISO IC, similar to
the K-user MIMO IC. This is due to the fact that the more users, the more interference,
and consequently the more benefits by IGS as an interference-management technique.

• We show that IGS can outperform PGS from both achievable rate and EE perspectives,
while the rate benefits of IGS are higher than its EE benefits. This is also in line with our
findings in MIMO systems.

• IGS is not beneficial in OFDM UCR systems. Indeed, the IGS benefits may vanish by
increasing the number of resources since we can have a more flexible power allocation
when more resources are available. We also observe a similar behavior in MIMO systems,
where the benefits of IGS decreases with the number of antennas.
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• IGS can outperform PGS in the 2-user SISO IC with imperfect CSIT or with statisti-
cal CSIT. Hence, IGS can be beneficial with realistic CSIT assumptions even though it
requires more detailed CSIT than PGS.

1.4.3 Outline
This thesis is organized as follows. Chapter 2 provides some preliminaries on improper sig-
naling. Chapter 3 describes some multiple-antenna interference-limited systems and states the
corresponding achievable rates when interference is treated as noise. In this chapter, we show
that the rates with TIN can be written as a difference of two concave/convex functions. In
Chapter 4, we present an optimization framework for MIMO interference-limited systems with
TIN and imperfect hardware. In Chapters 5-8, we consider SISO interference-limited systems
since it allows us to propose computationally less expensive designs. In Chapter 5, investigates
the performance of IGS in OFDM UCR. In Chapter 6, we derive the rate region of the K-user
SISO IC with asymmetric AHWD. We propose energy-efficient IGS schemes in Chapter 7 for
the K-user SISO IC and UCR. Finally, Chapter 8 studies the performance of IGS in the 2-user
IC and Z-IC with realistic assumptions regarding CSIT.
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2 Preliminaries on Improper Signaling

Throughout this work, we deal with complex-valued signals and try to optimize the achievable
rate and/or energy-efficiency functions, which are real-valued, continuous and differentiable.
We apply improper signaling to improve the performance of various interference-limited sys-
tems. In this chapter, we present the concept of impropriety and discuss the analytical tools
for modeling improper signals. We consider complex-valued variables and show how to write
the expressions in real-valued domain, which might simplify analysis in some scenarios. More-
over, we present the complex-valued analysis for modeling improper signals. Finally, we briefly
discuss the applications of improper signaling in communications.

2.1 Concept of impropriety

In this subsection, we discuss the main concept of propriety and impropriety of a signal. To this
end, we first consider scalar complex Gaussian random variables and then, extend the definitions
of impropriety to a vector form as well as non-Gaussian signals.

2.1.1 Scalar Gaussian random variables

Consider a scalar zero-mean complex Gaussian random variable x. The random variable x
can be uniquely specified by its variance, px = E{|x|2}, and complementary variance, qx =
E{x2} [2, 94]. In the following definitions, we describe the main features of x, which are used
throughout this thesis.
Definition 2.1 ( [2, 94]) The circularity coefficient of x is defined as the ratio of the absolute
value of the complementary variance of x to its power, i.e., κ = |q|

p
, which takes values between

0 and 1.
Definition 2.2 ( [2,94]) The complex Gaussian random variable x is called proper if κx = 0, or
equivalently qx = 0; otherwise, x is called improper. Moreover, x is called maximally improper
if κx = 1.
Remark 2.1 The complementary variance of x can be written as qx = pxκxe

jφx , where φx is
the phase of qx = E{x2}.
Remark 2.2 The absolute value of the complementary variance is less than or equal to the
power, i.e., |qx| ≤ px.

The concept of improper signaling can be understood easier by considering the real and
imaginary parts of a signal. When the random variable x is improper, its real and imaginary
parts are not independent and identically distributed (i.i.d). In other words, in a zero-mean
improper signal, the real and imaginary parts of the signal do not have the same statistics, and/or
they are correlated. It is in contrast with proper signals in which the real and imaginary parts
are i.i.d. In Fig. 2.1, we show the probability-density contours of a complex Gaussian random
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(a) qx = 0 (proper). (b) qx/px = 0.5 (improper).

(c) qx/px = 0.8ej3π/2 (improper). (d) qx/px = 0.99ejπ/4 (near to maximally im-
proper).

Figure 2.1: Probability-density contours of complex Gaussian random variable x with different comple-
mentary variance qx.

variable with different complementary variance qx. As can be observed, the probability-density
contours are circular for a proper Gaussian random variable. That is why, proper Gaussian
random variables are also called circular or circularly symmetric. The concept of circularly
symmetric is provided in the following definition.

Definition 2.3 ( [2]) A complex random variable is called circularly symmetric if its probability
distribution is rotationally invariant. In other words, if x and x̂ = xejφ have the same proba-
bility distribution for any arbitrary real value φ, the random variable x is circularly symmetric.

We also observe that the probability-density contours are ellipses for an improper Gaussian
random variable and become lines for the maximally improper case. This is the reason that
improper Gaussian signals are also called noncircular or circularly asymmetric. It should be
emphasized that, in general, there is a difference between the concept of “propriety/impropriety”
(which is a second-order concept) and “circular/noncircular” (which is defined in terms of prob-
ability distribution). These terms are the same only for Gaussian signals, and these cannot be
generalized to non-Gaussian proper/improper signals.
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2.1.2 Vector Gaussian random variables

The definition of improper scalar variables can be easily extended to vectors. A zero-mean
complex Gaussian random vector x ∈ CN×1 with covariance matrix P = E{xxH} is called
proper if Q = E{xxT} = 0; otherwise, it is improper [2, 94]. As indicated before, a Gaussian
random variable can be uniquely specified by its first (mean) and second order (covariance and
complementary covariance matrices) statistics. In other words, we only need the covariance and
complementary covariance matrices of a zero-mean complex Gaussian signal to fully define it.

There are two main approaches to model improper signals: augmented covariance matrix and
real-decomposition method. In the following, we provide the definition of these approaches.
Note that we consider vector variables in these definitions; however, they also include scalar
variables as a special case.
Definition 2.4 ( [2, 94]) The augmented covariance matrix of a random vector x is defined as

C = E


[

x
x∗

] [
x
x∗

]H =
[

P Q
Q∗ P∗

]
. (2.1)

Lemma 2.1 P and Q are a valid covariance and complementary covariance pair if and only

if C =
[

P Q
Q∗ P∗

]
is Hermitian positive semidefinite.

Remark 2.3 The augmented covariance matrix cannot be any arbitrary Hermitian positive
semidefinite matrix and has to fulfill the structure in (2.1).
Remark 2.4 The augmented covariance matrix of scalar variable x is

C = E


[
x
x∗

] [
x
x∗

]H =
[

p κpejφ

κpe−jφ p

]
, (2.2)

where p, κ, and φ are, respectively, the power, circularity coefficient, and the phase of the
complementary variance of x.

We can also employ the real-decomposition method to represent the covariance matrix of
improper and improper random vectors. By the real-decomposition method, the real-domain
covariance matrix of x is define as P = E{x xT}, where the notation x = [ R{x}T I{x}T ]T
refers to the real-decomposition of vector x. Throughout this dissertation, we represent the real-
decomposition of a typical vector t by t.
Lemma 2.2 In the real-decomposition model, an improper random vector can have any ar-
bitrary symmetric and positive semi-definite covariance matrix. However, a proper Gaussian
signal has a covariance matrix with the specific structure [94]

P = E


[
R{x}
I{x}

] [
R{x}
I{x}

]T =
[

A B
B A

]
, (2.3)

where A ∈ RN×N is symmetric and positive semi-definite, and B ∈ RN×N is skew-symmetric.

Definition 2.5 Matrix B is skew-symmetric if and only if B = −BT . It implies that diagonal
elements of B are zero.

In the next section, we state the rate expressions by each analytical approach and discuss their
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(a) BPSK (maximally improper constellation).
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(b) 4-QAM (proper constellation).

Figure 2.2: Constellation of a maximally improper and proper discrete signaling contaminated by a
proper complex Gaussian additive noise.

advantages and drawbacks.

2.1.3 Discrete constellations

The concept of propriety/impropriety can be employed in discrete constellation as well [1, 2,
94]. For instance, in Fig. 2.2, we depict two proper and maximally improper constellations,
which are contaminated by a proper complex Gaussian additive noise. The binary phase shift
keying (BPSK) signaling is a maximally improper discrete signaling (Fig. 2.2a). Moreover,
4-quadrature amplitude modulation (QAM) with equal transmission probability of each symbol
is a proper signaling (Fig. 2.2b) [1, 2]. For more details and discussions on improper discrete
signals, please refer to [65].

2.2 Analytical tools for improper signaling

In this subsection, we discuss the common analytical tools for modeling improper signaling. In
general, to deal with improper signals, there are two approaches: augmented covariance ma-
trix [2] and real-decomposition method [49]. In the augmented-covariance-matrix approach,
complex-domain signals are considered, and the optimized variables are covariance and com-
plementary covariance matrices. However, in the real-decomposition method, every variable is
written in the real domain, and the optimization variable is the covariance matrix of the real
decomposition of the signals. The main differences of these two approaches are in the structure
of the optimization variables as well as corresponding optimization problems. That is, a com-
plementary covariance matrix has to follow a specific structure for improper signals, while the
real covariance matrices are required to be only positive semi-definite. Each approach has some
advantages and drawbacks. We should be careful about choosing the right analytical tool for
our problem. In general, the augmented-covariance-matrix approach can provide insights into
the behavior of the signals. However, depending on the scenario, the optimization over the real
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domain might be simpler. In this section, we discuss the analytical approaches in details.

2.2.1 Real-decomposition method

There are powerful analytical tools for analyzing complex-valued signals. However, in some
cases, it might be easier to rewrite everything in real-valued domain and deal with only real-
valued signals. By real-decomposition method, we are able to convert a complex-domain prob-
lem to a real-domain one. That is, we consider the real and imaginary parts of signals separately
as independent real values, which leads to a doubling of the dimension. For example, consider
the following complex-valued equation

y = hx+ n = (R{h}+ jI{h}) (R{x}+ jI{x}) + R{n}+ jI{n}
= (R{h}R{x} − I{h}I{x}+ R{n}) + j (I{h}R{x}+ R{h}I{x}+ I{n})
= R{y}+ jI{y}, (2.4)

where y, x, h, and n are arbitrary complex-value scalar. Additionally, R{x} and I{x} take
the real and imaginary parts of x, respectively. The expression in (2.4) can be written in a
vector/matrix form as[

R{y}
I{y}

]
=
[
R{h} −I{h}
I{h} R{h}

] [
R{x}
I{x}

]
+
[
R{n}
I{n}

]
. (2.5)

As can be observed, the dimension of the signals is increased by a factor of 2, and each variable
is written in a real-valued domain.

The real-decomposition method can be simply applied to vector cases as well. For instance,
consider the following equation describing a point-to-point communication system

y = Hx + n, (2.6)

where y ∈ CNR×1, x ∈ CNT×1, n ∈ CNR×1, and H ∈ CNR×NT are, respectively, the received
signal, transmitted signal, noise vector, and the channel matrix. The real-decomposition model
for the link is

y =
[
R{H} −I{H}
I{H} R{H}

]
x + n, (2.7)

where the notation y, x, and n are, respectively, the real-decomposition of vectors y, x, and
n. We can also easily derive the achievable rate of this link for Gaussian additive noise by
the real-decomposition method. Assume n is a random vector with Gaussian distribution as
n ∼ CN (0,Pn). The achievable rate of the system is [24]

R = 1
2 log2 det

(
Pn + H P HT

)
− 1

2 log2 det (Pn) , (2.8)

where Pn is the covariance matrix of n, P is the covariance matrix of x, and H is

H =
[
R{H} −I{H}
I{H} R{H}

]
. (2.9)

Remark 2.5 ( [24]) The achievable rate of a link is defined as the difference between the entropy
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2 PRELIMINARIES ON IMPROPER SIGNALING

of the received signal and the entropy of the noise at the receiver.

The real-decomposition method may simplify complex-domain optimization problems espe-
cially when the real and imaginary parts of the optimization variables do not necessarily have
the same statistics, which is referred to as improper signaling [2, 94]. As can be observed
through (2.8), the rate is a concave function in P and a difference of two concave functions in
Pn.

To sum up, by the real-decomposition method, the dimension of the signals is doubled, which
can increase the computational expenses especially when the analysis in the complex domain
are not complicated. However, in some cases, the analysis might be intractable if we em-
ploy complex-domain representations. We will elaborate more on how the real-decomposition
method can simplify optimization of improper signaling in the next subsection.

2.2.2 Augmented-covariance-matrix analysis

In this subsection, we provide simple examples to state the rate expressions by the augmented-
covariance-matrix approach. To this end, we consider a point-to-point communication with
possibly improper Gaussian noise and signal, similar to the model in Section 2.2.1, as

y = Hx + n, (2.10)

where the parameters are define as in (2.6). In this case, the achievable rate by the augmented-
covariance-matrix method is [2, 129]

R = 1
2 log2

∣∣∣Cn + HCHH
∣∣∣

|Cn|
(2.11)

where C, Cn, and H are, respectively, the covariance of transmitted signal, covariance of noise,
and the channel matrix. The rate can be simplified as [2, 129]

RIGS = log2

∣∣∣Pn + HPHH
∣∣∣

|Pn|︸ ︷︷ ︸
RPGS

+ 1
2 log2

∣∣∣∣I− (Pn + HPHH
)−1 (

Qn + HQHT
) (

Pn + HPHH
)−T (

Qn + HQHT
)H ∣∣∣∣

|I−P−1
n QnP−Tn QH

n |︸ ︷︷ ︸
R̃

,

(2.12)

where P, Pn, Q, and Qn are, respectively, the covariance of transmitted signal, covariance of
noise, complementary covariance of transmitted signal and complementary covariance of noise.
As can be observed through (2.12), the rate of IGS can be written as the rate of PGS, RPGS, plus
an additional term R̃. When the noise is proper (Qn = 0), the additional term is always non-
positive (R̃ ≤ 0), and is maximized at Q = 0. In other words, when the noise is proper, the
signal has to be proper to maximize the achievable rate. This representation allows us to inter-
pret easier the behavior of improper signals. However, the optimization over the parameters is
very complicated in this case. The reason is that, the rate function in (2.12) has a very com-
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2.2 Analytical tools for improper signaling

plicated form and is neither jointly convex nor jointly concave in P and Q, which makes the
optimization of the rate sophisticated. This is in contrast with the real-decomposition method,
where the rate is concave in P and a difference of two concave functions in Pn (please see
(2.8)). This feature of the real-decomposition method enables us to apply the well-know opti-
mization methods such as majorization minimization to obtain numerical solutions for various
problems in multiple-antenna systems. Hence, the real-decomposition method suits more for
optimizations in multiple-antenna systems.

In single-antenna systems, we deal with scalars, and the representation of the rate expression
is simplified. Let us consider a simple example of a point-to-point single-antenna system. In
this case, the achievable rate in (2.12) can be simplified as [71]

R = 1
2 log2

(
(p+ pn)2 − |q + qn|2

p2
n − |qn|2

)
, (2.13)

where p, pn, q, and qn are, respectively, the power of signal, power of noise, complemen-
tary variance of signal and complementary variance of noise. To make it more illustrative, we
simplify the scenario and assume that the desired signal is proper, i.e., q = 0. In this case,
considering |qn| = pnκn, we simplify the rate as

R = 1
2 log2

(
(ps + pn)2 − (pnκn)2

p2
n(1− κ2

n)

)
, (2.14)

where κn is the circularity coefficient of the noise. Now it is easy to verify that R is mono-
tonically increasing in κn. In other words, by this method, we could simply show that the rate
can be increased by making the noise improper for a fixed noise power. However, it might not
be completely straightforward to prove this statement by the real-decomposition method. The
reason is that, the real-decomposition method convert the SISO system with complex variables
to a 2×2 MIMO system with real variables and optimize over 2 by 2 covariance matrices, as in-
dicated in Section 2.2.1 and Equation (2.8). Note that we consider a very simple scenario here,
and it would be even much more complicated to derive necessary and/or sufficient conditions
for optimality of improper/proper signaling by the real-decomposition method in more realistic
scenarios.

In the following, we provide a simple example to describe the main idea of employing the
augmented-covariance-matrix method for deriving conditions on the optimality of IGS. Assume
that we want to optimize a performance metric over a scalar optimization variable, which can be
improper. A sufficient condition for optimality of IGS can be derived by taking a derivative of
the desired performance metric with respect to the circularity coefficient, κ, of the optimization
variable. Then, we derive conditions such that the performance metric is increasing in κ around
κ = 0 or equivalently, the derivative is positive at κ = 0. These conditions imply that there
exists at least a κ, which improves the system performance over PGS. In other words, under
these conditions, IGS definitely outperforms PGS, which provides a sufficient condition for the
optimality of IGS. Moreover, if we are able to show that the system performance is always
monotone in κ, these conditions would be the necessary condition as well. A practical example
of this approach is provided in Section 7.2. Unfortunately, these analysis are not straightforward
for multiple-antenna systems as discussed before.
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2 PRELIMINARIES ON IMPROPER SIGNALING

2.2.3 Discussions on the analysis tool

There are two main approaches to analyze improper signals, and each analytical tool has its own
advantages and drawbacks. We should choose the most adequate formulation for the problems
based on our goal and the format of the problem. In this thesis, we employ both the augmented-
covariance-matrix and the real-decomposition methods depending on the considered scenario.
In single-antenna systems, we mostly consider the augmented-covariance-matrix method since
it allows us to discuss on the optimality of improper/proper signaling in some specific scenar-
ios. As an example, in Section 7.2, we derive the necessary and sufficient conditions for the
optimality of IGS from an EE point of view in UCR by this approach. However, we employ the
real-decomposition method in multiple-antenna systems in Chapter 4. The reason is that, we
are able to simplify the considered optimization problems by this method and derive numerical
solutions for the studied problems in the multiple-antenna systems.

2.3 Widely linear transformation

The widely linear transformation of complex-domain vector x is defined as a linear combination
of x and its conjugate, x∗, as

y = A1x + A2x∗, (2.15)

where A1 and A2 are coefficients, and y is the widely linear transformation of x. We can
express the widely linear transformation in a real domain as

y =
[
R{A1 + A2} −I{A1 −A2}
I{A1 + A2} R{A1 −A2}

]
x. (2.16)

Assume E{xxH} = P and E{xxT} = 0. Then, we have

E{yyT} = A1PAT
2 + A2P∗AT

1 . (2.17)

In other words, the complementary covariance of y is in general non-zero. This is an important
feature of the widely linear transformation, which makes the output signal improper even if the
input signal is proper.

One of the applications of the widely linear transformation in wireless communications is
to model I/Q imbalance at transceivers [63]. I/Q imbalance happens due to imperfections at
devices. Another application of this transformation is to optimize the parameters of improper
signals [46, 68, 69]. It might also simplify the implementation of improper signaling since we
can apply this transformation to the existing proper signaling schemes and convert them to
improper signaling.

2.4 Wirtinger calculus

In wireless communications, we usually optimize a real-valued utility/cost function over complex-
valued optimization parameters. Hence, we have to be able to take the derivative of real-valued
functions with respect to the complex-domain parameters. Unfortunately, real-valued functions
are not analytic as will be discussed. A general framework for differentiating non-analytical
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functions is Wirtinger calculus [1]. In this section, we provide some basic definitions for deriva-
tive of complex-valued functions with complex domain and state the Wirtinger calculus.

Consider a complex-valued function f(z) = u(z) + jv(z) with complex domain A, where
u(z), v(z) ∈ R, and z = x + jy ∈ A with x, y ∈ R. In the following, we provide the
definition of complex differentiability for the typical function f as well as the definition of
complex analytical functions.

Definition 2.6 ( [1, 2]) The function f is complex differentiable at z0 ∈ A if the limit

lim
z→z0

f(z)− f(z0)
z − z0

(2.18)

uniquely exists and is independent of how z approaches to z0.

Definition 2.7 ( [1, 2]) The function f is called analytical or holomorphic if f is complex
differentiable on its entire domain.

Not that there is a difference between the definition of real analytic and complex analytic
functions. A necessary condition for f to be complex analytic is that the Cauchy-Reimann
equations have to be satisfied on the entire domain A, where the Cauchy-Reimann equations
are [1, 2]

∂u(x, y)
∂x

= ∂v(x, y)
∂y

and
∂u(x, y)
∂y

= −∂v(x, y)
∂x

. (2.19)

When f is a real-valued function, v(x, y) = 0. It implies that the Cauchy-Reimann equations
cannot be satisfied on the entire domain A, and consequently, f cannot be complex analytic and
complex differentiable even if f is analytic in x or y. A way to take the differential df of a
non-analytical complex-valued function f is to employ the Wirtinger calculus, which is defined
as

df = ∂f(z)
∂z

dz + ∂f(z)
∂z∗

dz∗. (2.20)

In the Wirtinger calculus, z and z∗ are treated as two independent variables as

∂z∗

∂z
= ∂z

∂z∗
= 0. (2.21)

Additionally, the partial-derivative operators ∂
∂z

and ∂
∂z

, which are referred to as the Wirtinger
derivatives [119], are defined as

∂

∂z
= 1

2

(
∂

∂x
− j ∂

∂y

)
and

∂

∂z∗
= 1

2

(
∂

∂x
+ j

∂

∂y

)
. (2.22)

When f is a real-domain function, the differential df in (2.20) is simplified to [14]

df = 2R
{
∂f(z)
∂z

dz
}

= 2R
{
∂f(z)
∂z∗

dz∗
}
. (2.23)

To illustrate the concept of complex analytic and the Wirtinger calculus, we provide two simple
examples. Consider f(z) = z2. Then f(z) is complex analytical and ∂f(z)

∂z
= 2z. Now consider

f(z) = |z|2. In this case, although f(z) is analytic in either z or z∗, f(z) is not complex
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2 PRELIMINARIES ON IMPROPER SIGNALING

analytic. The differential df is

df = z∗dz + zdz∗ = 2R {z∗dz} = 2R {zdz∗} . (2.24)

In this section, we consider only scalar variables; however, the concept of the Wirtinger cal-
culus can be easily extended to the vector and matrix forms. There are many applications for the
Wirtinger calculus in wireless communications specially when we want to optimize a perfor-
mance metric over complex-domain parameters. An example of applying the Wirtinger calculus
can be found in Section 6.6, where we find suitable surrogate functions when we optimize over
complementary variances.

2.5 Applications of improper signaling in
communications

In this section, we discuss some applications of improper signaling in communication with
more emphasis on its wireless communications applications. As indicated in Section 2.1, the
concept of improper signaling can be applied to discrete constellations. For instance, 8-QAM,
pulse-amplitude modulation (PAM) and BPSK are among discrete improper signaling. Thus,
improper signals have been used vastly in communications. Furthermore, there might be im-
proper noise or distortions in many practical scenarios in communication systems. For example,
the transceivers might suffer from I/Q imbalance, which leads to improper noise as well as im-
proper signal [63]. In the presence of I/Q imbalance, the improper signal at the receiver side is
undesired and has to compensated since it leads to rate loss. This impropriety can be compen-
sated by employing improper signaling.

In addition to aforementioned applications, improper signaling has received lots of atten-
tions as an interference-management technique in the last decade. It has been shown that the
performance of different interference-limited systems is enhanced by transmitting improper
signals [4, 17, 36, 54, 59, 67–71, 86, 121, 129]. In other words, by intentionally making the
signals improper, we are able to reduce the harmful effects of interference on non-intended re-
ceivers. Throughout this work, we focus on this application of improper signaling in wireless
communications. In the following, we briefly explain the main idea of employing IGS as an
interference-management technique.

Proper signaling is the optimal signaling in the presence of proper noise for a point-to-point
link [24]. However, the system performance can be improved by improper signaling in the
presence of interference. To understand the basic idea of employing IGS as an interference-
management technique, we provide two illustrative examples of a single-antenna point-to-point
communication. We first consider a proper signal with an improper noise. The achievable rate
of this system is given by (2.14), which is rewritten here as

R = 1
2 log2

(
(p+ pn)2 − (pnκn)2

p2
n(1− κ2

n)

)
, (2.25)

where the parameters are defined as in (2.14). As discussed, the rate is increasing in κn (see
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Figure 2.3: Achievable rate versus the circularity coefficient for ps = pn = 1.

Fig. 2.3a). To elaborate more on the behavior in Fig. 2.3a, we rewrite the rate as

R = 1
2 log2

(
1 + p

pn(1− κn)

)
+ 1

2 log2

(
1 + p

pn(1 + κn)

)
. (2.26)

When the noise is maximally improper, i.e., κn = 1, there is a noise-free dimension on which
infinite date can be transmitted. Of course, maximally improper noise is never practical, but
this example shows the main trend of making the noise (or generally interference plus noise)
improper.

Now we consider an improper signal with proper noise. In this case, the achievable rate is

R = 1
2 log2

(
(p+ pn)2 − (pκ)2

p2
n

)
, (2.27)

where κ is the circularity coefficient of the signal. It is easy to verify that the rate is decreasing
in κ as depicted in Fig. 2.3b. This behavior can be explained as follows. Let rewrite the rate in
(2.27) as

R = 1
2 log2

(
1 + p(1 + κ)

pn

)
+ 1

2 log2

(
1 + p(1− κ)

pn

)
. (2.28)

As can be observed, the rate consist of two parts. The reason is that the real and imaginary
parts of improper signals can be correlated. The circularity coefficient κ, somehow, measures
the correlation between the real and imaginary parts of a signal. When κ = 0, there is no
correlation between the real and imaginary parts, and they are i.i.d. In this case, the rate is
actually

R = 1
2 log2

(
1 + p

pn

)
+ 1

2 log2

(
1 + p

pn

)
. (2.29)

It means that the transmission power is equally divided in both dimensions. When κ = 1, the
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full transmission power is allocated to only one dimension as

R = 1
2 log2

(
1 + 2p

pn

)
. (2.30)

Indeed, we loss one dimension when we employ maximally improper signaling, which results
in reducing the the achievable data rate and diversity. Hence, improper Gaussian signals have
less differential entropy than proper ones. This feature can typically be exploited to make
interference less harmful to non-intended receivers with the cost of losing some data rates.

These two examples are inspiring for the applications of IGS as an interference-management
technique. In some practical scenarios, interference from other users is treated as noise. As
shown in Fig. 2.3, the more improper the noise is, the better rate performance can be achieved.
This motivates us to employ IGS to reduce the undesired consequences of interference on other
users. It is clear that the undesired consequences of interference can be reduced when the in-
terference has spatial or statistical structure that can be optimized for the benefit of the whole
network. However, the rate of a user is decreasing in its degree of impropriety. Hence, trans-
mitting IGS signals always involves a trade-off: it reduces its own rate (because the differential
entropy of a Gaussian random variable decreases when its circularity coefficient increases), but
it allows to increase the rate of other users. When properly optimized, the reduction in rate can
sometimes be compensated by an increase in transmitted power (which in turn increases the
transmitted rate) with an overall benefit for the system.

In summary, IGS gives us an extra degree of freedom to optimize the systems performance,
which enables us to handle interference with more flexibility. The real and imaginary parts of
a proper Gaussian signal are i.i.d random variables. However, this constraint is relaxed when
improper Gaussian signals are transmitted since the real and imaginary parts of IGS can have
unequal power and/or be correlated. Thus, we can consider for instance the power allocated to
the real and imaginary parts as two different optimization parameters (subject to a total power
constraint). This basic idea has been exploited in [17] for the first time to increase the DoF of the
3-user SISO IC. Later, this idea was applied to different interference-limited wireless commu-
nication scenarios in which the interference was treated as noise to improve the achievable rate
and/or power/energy performances. For instance, the authors in [129] derived the achievable
rate of IGS for the K-user MIMO IC with TIN. In [129, eq (10)], it is shown that the achievable
rate of IGS can be written as the summation of the rate of PGS and an additional term, which
is a function of the complementary variances. This equation shows that we may be able to in-
crease the rate by optimizing over the complementary variances. A suboptimal way to propose
IGS schemes is that we can first optimize over powers (or covariance matrices) of users, which
results in a proper design. Then we can optimize over complementary variances (or comple-
mentary covariance matrices) to improve the system performance. We employ this technique to
propose suboptimal algorithms for single-antenna systems in Section 6.3 and Section 7.1.

Throughout this thesis, we do not consider any possible DoF improvement by IGS and fo-
cus on the rate and/or energy efficiency improvements of IGS. DoF considerations are always
asymptotic and hence not always of practical relevance. Note that IGS includes PGS as a special
case and thus, PGS can never outperform the optimal IGS scheme.
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2.6 Summary
In this chapter, we provided some preliminaries on improper signals as well as improper signal-
ing. We stated the most common analytical tools to model improper signals and discussed about
their advantages and drawbacks. Moreover, we briefly described the main applications of im-
proper signaling in wireless communications and shortly explained the main idea of employing
IGS as an interference-management technique.
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3 Interference-limited systems

In this chapter, we present some well-known interference-limited systems. The performance
of interference-limited systems is mainly restricted by the interference from other users. There
are many different types of interference-limited systems such as various interference channels,
relay channels, cognitive radio systems, multiple access channels, broadcast channels, etc. In
this work, we focus on different interference channels and underlay cognitive radio systems. We
consider treating interference as noise (TIN) as decoding strategy and state the achievable rates
in different interference-limited systems. As will be observed in this chapter, the achievable
rate in interference-limited systems with TIN is a difference of two concave/convex functions
when the real-decomposition method is employed. This feature of the rate can be exploited for
solving some rate-dependent optimization problems as will be discussed in Chapter 4.

3.1 Hardware imperfection models

In this section, we present the most common hardware imperfection models in the literature. We
first discuss the I/Q imbalance model in Section 3.1.1. Then, we describe the AHWD model in
Section 3.1.2.

3.1.1 I/Q imbalance

In this section, we present hardware impairment model for a point-to-point multiple antenna
system with NT transmitter antennas and NR receiver antennas (see Fig. 3.1). To this end, we
employ the hardware imperfection model in [63]. The I/Q imbalance at the transmitter side is
modeled as a widely linear transform of the transmit signal x ∈ CNT×1 as

x̃ = V1x + V2x∗, (3.1)

where the matrices V1 ∈ CNT×NT and V2 ∈ CNT×NT capture the amplitude and rotational
errors and can be derived as [63]

V1 = INT + AT e
jθT

2 , (3.2)

V2 = INT −V∗1 = INT −AT e
−jθT

2 . (3.3)

Moreover, the matrices AT and θT are diagonal and, respectively, reflect the amplitude and
phase errors of each branch at the transmitter side [63]. There are different methods to estimate
the parameters of I/Q imbalance [18, 23, 39, 109]. It is worth mentioning that there is no I/Q
imbalance if AT = I and θT = 0 or equivalently, V1 = I and V2 = 0.
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Figure 3.1: The transceiver model of a point-to-point communications link with HWI.

We also assume that the transmitter is not perfect and may generate an additive proper
Gaussian noise in addition to the I/Q imbalance with probability distribution dT ∈ CNT×1 ∼
CN (0,CT ) [63]. Hence, the transmitted signal is

xtx = x̃ + dT . (3.4)

The transmitted signal is delivered to the receiver over a MIMO channel with additive white
Gaussian noise. Thus, the received signal over a multipath channel is

yrx = Hxtx + dR, (3.5)

where H ∈ CNR×NT is the matrix of the channel coefficients. Moreover, the matrix dR ∈
CNR×1 is the aggregate effect of the additive white Gaussian noise of the channel and the addi-
tive distortion of the received devices. The receiver can cause an I/Q imbalance similar to the
transmitter. Thus, the received signal after I/Q imbalance is

y = Γ1yrx + Γ2y∗rx, (3.6)

where the matrices Γ1 ∈ CNR×NR and Γ2 ∈ CNR×NR are, respectively, given by

Γ1 = INR + ARe
jθR

2 (3.7)

Γ2 = INR − Γ∗1 = INR −ARe
−jθR

2 . (3.8)

Similar to AT and θT , the matrices AR and θR are diagonal and, respectively, reflect the
amplitude and phase errors of each branch at the receiver side [63]. In following lemmas, we
present the aggregate effect of the impairments at the transmitter and receiver sides.
Lemma 3.1 The transceiver of MIMO system with HWI can be modeled as

y = H̄1x + H̄2x∗ + z, (3.9)

where

H̄1 = Γ1HV1 + Γ2H∗V∗2 ∈ CNR×NT , (3.10)

H̄2 = Γ1HV1 + Γ2H∗V∗2 ∈ CNR×NT , (3.11)

z = Γ1(HdT + dR) + Γ2(HdT + dR)∗ ∈ CNR×1. (3.12)
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H +
n ∼ CN (0, σ2I)η ∼ CN (0, σ2

t diag(P))

+
x ∼ CN (0,P)

Figure 3.2: Point-to-point MIMO system with AHWD at transmitters.

Proof. Please refer to [63, Lemma 1].

Lemma 3.2 The real decomposition of the HWI model in Lemma 3.1 is

y = H̃x + z, (3.13)

where y =
[
R{y}T I{y}T

]T
, x =

[
R{x}T I{x}T

]T
, and z =

[
R{z}T I{z}T

]T
are, respectively, the real decomposition of y, x, and z in (3.9). Moreover, H̃ is

H̃ =
[
R{H̄1 + H̄2} −I{H̄1 − H̄2}
I{H̄1 + H̄2} R{H̄1 − H̄2}

]
. (3.14)

The statics of the vector z ∈ R2NR×1 is E{z} = 0, and

E{z zT} = Cz = ΓCdΓT , (3.15)

where H CTHT + CR, and

Γ ,

[
R{Γ1 + Γ2} −I{Γ1 − Γ2}
I{Γ1 + Γ2} R{Γ1 + Γ2}

]
. (3.16)

Additionally, H, CT , and CR are, respectively, the real decomposition of H, CT , and CR. For
example, if CT = σ2INT , then CT = 1

2σ
2I2NT .

Proof. We can easily construct the real decomposition model in (3.13) from the complex model
in (3.9). Now we want to derive the statistics of z in (3.13). To this end, we first write the real
decomposition of z in (3.12) as[

R{z}
I{z}

]
=
[
R{Γ1 + Γ2} −I{Γ1 − Γ2}
I{Γ1 + Γ2} R{Γ1 + Γ2}

] [
R{HdT + dR}
I{HdT + dR}

]
, (3.17)

which can be represented as z = Γ (H dT + dR), where dT and dR are, respectively, the real
decomposition of dT and dR. The average of z is simply 0 since dR and dT are a zero-mean
random vectors. Furthermore, the covariance matrix of z can be derived as (3.15).

3.1.2 Additive hardware distortion

In this subsection, we present a model for AHWD noise based on the model in papers [8–10,
101, 111, 120, 131, 135] for a point-to-point communication system (see Fig. 3.2). That is, we
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3 INTERFERENCE-LIMITED SYSTEMS

assume that the received signal is

y = H(x + η) + n, (3.18)

where x ∈ CNt×1, η ∈ CNt×1, H ∈ CNt×Nr , and n ∈ CNr×1 are, respectively, the transmit sym-
bol, the additive hardware distortion noise, the channel matrix between, and the additive noise
at receiver k. We represent the covariance matrix of the transmitted signal by P = E{xxH}.
We consider E{nnH} = σ2INr , where σ2 is the variance of each noise component. We employ
the proposed framework in [8,10,120,131,135] to model the AHWD. Thus, the probability dis-
tribution of η is CN (0, σ2

t diag(P)), where σ2
t is the proportionality coefficient [8]. It is worth

emphasizing that the covariance matrix of the AHWD noise is diagonal, which means that there
is no correlation between noise components. Moreover, the variance of each noise component
is a linear function of the signal transmission power at the corresponding antenna. Thus, the
higher transmission power at an antenna, the higher AHWD at the corresponding antenna.

Note that the aggregated noise in the presence of proper AHWD is proper. It is in contrast
with I/Q imbalance, which makes a proper noise improper noise as indicated in Section 3.1.1.
Since the noise is proper, we consider proper signals as well. However, it can be easily extended
to improper signals by considering the real-decomposition method in Section 2.2.1.

Asymmetric additive hardware distortion for SISO systems

In this part, we present a hardware imperfection model for single antenna systems. We employ
the distortion model in [59–61, 64] and model the aggregated effect of hardware distortion on
the transceiver of a communication link with an improper Gaussian additive noise as

y =
√
Ph(x+ η) + n, (3.19)

where y, x, P , h, η, and n are the received signal, transmitted symbol, transmission power,
channel coefficient, aggregated hardware distortion noise and additive complex proper Gaus-
sian noise, respectively. The aggregated hardware distortion noise is modeled as an improper
complex Gaussian random variable with probability distribution η ∼ CN (0, σ2

η, σ̃
2
η), where

σ2
η = σ2

ηTX
+ σ2

ηRX
and σ̃2

η = σ̃2
ηTX

+ σ̃2
ηRX

are the variance and complementary variance of η,
respectively, both of which are composed of contributions at the transmitter side (denoted TX)
and the receiver side (denoted RX). Note that we are able to simplify the system and consider
the aggregated noise since the noises are scalar. This is in contrast with MIMO systems in
which the noises at transmitters and receivers are vectors with different lengths. Please refer
to [64, Lemma 1] for more details about this model.

Note that this model is an extension of the AHWD model, where the hardware distortion is
modeled as additive proper Gaussian noise. However, as indicated in Section 3.1.1, the aggre-
gated hardware distortion is, in general, improper due to I/Q imbalance. Note that the variances
and complementary variances of AHWD noise are not only a function of device parameters, but
also a linear function of the transmission power and channel gain, meaning that higher trans-
mission power results in higher AHWD noise [60, 64]. Moreover, even if the channel noise is
proper, the aggregated distortion is improper due to the asymmetric AHWD.
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H11 +
n1 ∼ CN (0,N)x1 ∼ CN (0,P1)

H22 +
n2 ∼ CN (0,N)x2 ∼ CN (0,P2)
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+
nK ∼ CN (0,N)xK ∼ CN (0,PK)
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H
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Figure 3.3: The real-decomposition channel model for the K-user MIMO IC with perfect devices.

3.2 MIMO interference-limited systems

In this section, we consider some well-known interference-limited MIMO systems and state the
corresponding achievable rates when interference is treated as noise. To this end, we employ
the real-decomposition method, which simplifies the representation of the rate expressions. We
first consider the K-user IC with different hardware imperfection models. Then, we state the
rates for underlay cognitive radio and relay channels, which can be seen as special cases of the
K-user IC. As will be shown, the rates of MIMO interference-limited systems can be written
as a difference of two concave functions in the covariance matrices of users when treating
interference as noise. We exploit this feature to propose different IGS schemes for MIMO
interference-limited systems in Chapter 4. Throughout this section, we assume that, without
loss of generality, the transceivers have the same number of antennas and generate noise with
the same statistics to simplify the representation of equations. Obviously, it is straightforward
to extend the model to the most general case with asymmetric devices.

3.2.1 K-user interference channel

In this subsection, we consider the K-user MIMO IC with ideal and non-ideal devices. In the
K-user IC, there are K transceivers in which transmitter k transmits its message to receiver k.
All transceivers in the K-user IC employ the same resources, which results in interference at
receiver sides as depicted in Fig. 3.3. In the following, we present the signal model for the
K-user MIMO IC and state the achievable rates with different hardware assumptions. We first
consider ideal devices and then study different sources of hardware imperfections.

Ideal devices

We consider aK-user MIMO IC with ideal transceivers, as shown in Fig. 3.3. In order to model
impropriety, we employ the real-decomposition method in Section 2.2.1. Note it is straightfor-
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3 INTERFERENCE-LIMITED SYSTEMS

ward and very similar to write the equations in a complex domain. The real decomposition of
the received signal at the receiver of user k is

y
k

=
K∑
i=1

Hkixi + nk = Hkkxk︸ ︷︷ ︸
desired signal

+
K∑

i=1,i 6=k
Hkixi︸ ︷︷ ︸

interference

+ nk︸︷︷︸
noise

, (3.20)

where xi, nk, and Hki are, respectively, the real decompositions of the transmitted signal of user
i, the noise at receiver k, and the channel matrix for the link between transmitter i and receiver
k, Hki. Please refer to Section 2.2.1 for more details.

When interference is treated as noise, the rate of user k ∈ {1, 2, ..., K} can be derived by
[24, 94]

Rk = 1
2 log2 det

(
N +

K∑
i=1

Hki Pi HT
ki

)
︸ ︷︷ ︸

, rk,1

− 1
2 log2 det

N +
K∑

i=1,i 6=k
Hki Pi HT

ki


︸ ︷︷ ︸

, rk,2

, (3.21)

where Pi is the covariance matrix of user i, using the real-decomposition method. Furthermore,
N is the covariance matrix of nk for all k. As can be observed through (4.36), the rate of a
typical user k is a difference of two concave functions, i.e., Rk = rk,1− rk,2, where rk,1 and rk,2
are concave.

Devices with HWI and I/Q imbalance

Now, we consider a K-user MIMO IC with HWI including I/Q imbalance at transceivers, as
shown in Fig. 3.4. In the presence of I/Q imbalance, the effective noise can be improper even
if the noise is proper. Since the signals can be improper due to I/Q imbalance, we employ the
real-decomposition method, which simplifies the analysis. To this end, we employ the HWI
model in Lemma 3.2. Thus, the real decomposition of the received signal at the receiver of user
k is

y
k

=
K∑
i=1

H̃kixi + zk = H̃kkxk︸ ︷︷ ︸
desired signal

+
K∑

i=1,i 6=k
H̃kixi︸ ︷︷ ︸

interference

+ zk︸︷︷︸
noise

, (3.22)

where xi is the real decomposition of the transmitted signal of user i, and

H̃ki =
[
R{H̄1,ki + H̄2,ki} −I{H̄1,ki − H̄2,ki}
I{H̄1,ki + H̄2,ki} R{H̄1,ki − H̄2,ki}

]
, (3.23)

where H̄1,ki and H̄2,ki can be derived, respectively, by replacing H with Hki in (3.10) and
(3.11). Note that Hki is the channel matrix for the link between transmitter i and receiver k.
Moreover, zk is the real decomposition of the noise vector zk, which is given by

zk = Γ1(
K∑
i=1

HkidT,i + dR,k) + Γ2(
K∑
i=1

HkidT,i + dR,k)∗. (3.24)

According to Lemma 3.2, the covariance matrix of zk is
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Figure 3.4: The real-decomposition channel model for the K-user MIMO IC.

Cz,k = Γ
(

K∑
i=1

HkiCTHT
ki + CR

)
ΓT , (3.25)

where Hki is the real decomposition of Hki, and Γ is given by (3.16). The rate of user k ∈
{1, 2, ..., K} with TIN is [24, 94]

Rk = 1
2 log2 det

(
Cz,k +

K∑
i=1

H̃kiPiH̃T
ki

)
︸ ︷︷ ︸

, rk,1

− 1
2 log2 det

Cz,k +
K∑

i=1,i 6=k
H̃kiPiH̃T

ki


︸ ︷︷ ︸

, rk,2

. (3.26)

Similar to the case with perfect devices, the rate of a typical user k is a difference of two concave
functions, i.e., Rk = rk,1 − rk,2, where rk,1 and rk,2 are concave.

Devices with AHWD

Now, we consider a K-user MIMO IC with AHWD shown in Fig. 3.5. To model the AHWD,
we employ the model in Section 3.1.2. Similar to Section 3.1.2, it is not necessary to employ
the real-decomposition method since the noise is proper. However, in order to model IGS, we
employ the real-decomposition method. The received signal of user k is

y
k

=
K∑
i=1

Hki(xi + η
i
) + nk = Hkkxk︸ ︷︷ ︸

desired signal

+
K∑

i=1,i 6=k
Hkixi︸ ︷︷ ︸

interference

+
K∑
i=1

Hkiηi + nk︸ ︷︷ ︸
aggregated noise

, (3.27)

where xi ∈ R2NT×1, η
i
∈ R2NT×1, Hki ∈ R2NT×2NR , and nk ∈ R2NR×1 are, respectively, the

real decomposition of the transmit symbol of user i, the additive hardware distortion noise, the
channel matrix between transmitter i and receiver k, and the additive noise at receiver k.
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H11 +
n1 ∼ CN (0, σ2I)η1 ∼ CN (0, σ2

t diag(P1))
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t diag(P2))
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Figure 3.5: Channel model for the SISO K-user IC with ideal devices.

When interference is treated as noise, the achievable rate of user k is [24, 94]

Rk = 1
2 log2 det

(
Φk,1

(
{Pi}

K
i=1

))
︸ ︷︷ ︸

, rk,1

− 1
2 log2 det

(
Φk,2

(
{Pi}

K
i=1

))
︸ ︷︷ ︸

, rk,2

, (3.28)

where

Φk,1

(
{Pi}

K
i=1

)
=

K∑
i=1

HkiPiHT
ki + 1

2σ
2
t

K∑
i=1

Hkidiag(Pi)HT
ki + 1

2σ
2INr , (3.29)

Φk,2

(
{Pi}

K
i=1

)
= Φk,1

(
{Pi}

K
i=1

)
−HkkPkHT

kk. (3.30)

Note that the rate of typical user k is a difference of two concave functions in {Pi}Ki=1, i.e., rk,1
and rk,2 are concave in {Pi}Ki=1.

For the sake of completeness, we also write the rate in complex domain signals when PGS is
employed. That is,

Rk = log2 det
(
Φk,1

(
{Pi}Ki=1

))
︸ ︷︷ ︸

, rk,1

− log2 det
(
Φk,2

(
{Pi}Ki=1

))
︸ ︷︷ ︸

, rk,2

, (3.31)

where

Φk,1
(
{Pi}Ki=1

)
=

K∑
i=1

HkiPiHH
ki + σ2

t

K∑
i=1

Hkidiag(Pi)HH
ki + σ2INR , (3.32)

Φk,2
(
{Pi}Ki=1

)
= Φk,1

(
{Pi}Ki=1

)
−HkkPkHH

kk, (3.33)
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3.2 MIMO interference-limited systems

Figure 3.6: The channel model for the UCR system in subband i

where Pi is the complex-domain covariance matrix of user i. Note that if the users employ
PGS, (3.28) would be simplified to (3.31).

3.2.2 Cognitive radio

Employing cognitive radio (CR) systems is a way to improve spectral efficiency [40,44]. In CR
systems, there are two types of users, primary users (PUs) and secondary users (SUs). PUs are
the licensed users, and SUs can transmit only if they do not disturb the PUs’ communications.
There are three types of CR systems: interweave, underlay and overlay. In interweave CR
(ICR), the SUs can transmit only if the PUs do not employ the resources. In other words, the
SU should listen to channel and detect the signal of the PUs. Hence, ICR is interference free. In
underlay and overlay CR, which are interference limited, the SU can simultaneously transmit
with PUs, but the SU should meet a quality of service (QoS) constraint for the PUs. Precisely,
the rate of the PU has to be greater than a given threshold. The main difference of the underlay
and overlay CR systems is in the cooperation between the SU and the PU. In underlay CR
(UCR) systems, the PU is unaware of the SU. However, in overlay CR (OCR), the SU allocates
parts of its transmission power to transmit the PU signals.

CR systems can be considered as a special case of the 2-user (or generally K-user) IC, and
the rate expressions are very similar. On contrary, the main difference is in the priority of the
users and the considered objective functions. For instance, in the K-user IC, we may want to
maximize the minimum rate of users or the sum rate of the system while there is no difference
between the users, and all users have the same priority. However, as indicated, the PU has a
higher priority in CR, and we want to optimize a performance metric for the SU while a QoS
metric for the PU is met. Another difference between the K-user IC and UCR is that the sec-
ondary system in UCR can be completely independent of the primary communication as long
as the QoS constraint for the PUs is met. For instance, the secondary communication can be a
multiple-access channel or a device-to-device communication, while the primary communica-
tion is a point-to-point system.

Similar to the K-user IC, there might be different CR systems such as single-antenna or
multiple-antenna systems. In this subsection, we provide a simple example of an UCR system,
in which both the primary and secondary systems are point-to-point-communication links as
shown in Fig. 3.6. We assume that the PU and SU employ OFDM with N subbands. We
further assume that the PU and SU employ NT transmit and NR receive antennas. We represent
the transmit covariance of the PU at the ith subband with PPU,i and the transmit covariance of
the SU at the ith subband with PSU,i. The achievable rates of the PU and SU in subband i with
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s r
Hsr +

nr ∼ CN (0, σ2I)
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nd ∼ CN (0, σ2I)

Figure 3.7: Single-hop MIMO relay channel with full-duplex relay node.

TIN are

Rp,i = 1
2 log2 |

1
2σ

2I + HiPPU,iHT
i + GiPSU,iGT

i |︸ ︷︷ ︸
, rp,1

− 1
2 log2 |

1
2σ

2I + GiPSU,iGT
i |︸ ︷︷ ︸

, rp,2

,

Rs,i = 1
2 log2 |

1
2σ

2I + FiPSU,iFH
i + DiPPU,iDT

i |︸ ︷︷ ︸
, rs,1

− 1
2 log2 |

1
2σ

2I + DiPPU,iDT
i |︸ ︷︷ ︸

, rs,2

, (3.34)

respectively, where σ2, Hi, Gi, Fi, and Di are the variance of the additive noise, and the
real decomposition of the PU-PU, SU-PU, SU-SU and PU-SU channels, respectively (see Fig.
3.6). The total achievable rate of the OFDM systems is the summation of the rates of the
subbands, i.e., Rp = ∑N

i=1Rp,i and Rs = ∑N
i=1Rs,i. As can be observed, the rate of the PU

is a difference of two concave/convex functions is PSU,i. Furthermore, the rate of the SU is
a concave function in PSU,i when the devices are ideal. Indeed, the rate of the direct link is
concave in the corresponding covariance matrix when the devices are ideal, and the rate of
the interference link can be written as a difference of two concave/convex functions in the
covariance matrix of the interfering users. Note that the rates in (3.34) are written base on
the real-domain analysis; however, it is straightforward to apply the complex-decomposition
method to derive the rates.

3.2.3 Relay channels
In a relay channel, there is no direct link between the source and destination (or the direct link
is very weak), and the transmit signal of the source has to be relayed to the destination (see Fig.
3.7). Similar to CR, the relay channels can be considered as a special case of the K-user IC.
The relay can be either single-hop or multi-hop. There are two main types of relay channels,
amplify-and-forward (AF) relays and decode-and-forward (DF) relays. In AF relays, the relay
node amplifies the received signal, which means that it amplifies both the received signal and
the noise component. In DF relays, the relay node firstly decodes the signal and then, transmits
the decode signal. In this section, we provide a simple example of a single-hop one-way DF
relay with a full-duplex-relay node as depicted in Fig. 3.7.

Full-duplex nodes can simultaneously transmit and receive at the same channel. One of
the main challenges of employing full-duplex nodes is self interference (SI), which is very
complicated to be completely canceled. The received signal of the relay node in the presence
of residual SI (RSI) is

y
r

= Hsrxs︸ ︷︷ ︸
desired signal

+ Hrrxr︸ ︷︷ ︸
RSI

+ nr︸︷︷︸
noise

, (3.35)
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where xs, xr, nr, Hsr, and Hrr are, respectively, the real representation of the transmit signal of
the source node, the transmit signal of the relay node, the noise at the receiver of the relay node,
the source-relay, and rely-relay channels. Additional, the received signal at the destination is

y
d

= Hrdxr︸ ︷︷ ︸
desired signal

+ nd︸︷︷︸
noise

, (3.36)

where nd, and Hrd are, respectively, the real representation of the noise at the destination and
the relay-destination channel.

Treating RSI as noise, we can state the achievable rate of source-relay and relay-destination
links as

Rsr = 1
2 log2

∣∣∣∣12σ2I + HsrPsHH
sr + HrrPrHH

rr

∣∣∣∣︸ ︷︷ ︸
, rsr,1

− 1
2 log2

∣∣∣∣12σ2I + HrrPrHH
rr

∣∣∣∣︸ ︷︷ ︸
, rsr,2

,

Rrd = 1
2 log2

∣∣∣∣12σ2I + HrdPrHH
rd

∣∣∣∣− 1
2 log2

∣∣∣∣12σ2I
∣∣∣∣ , (3.37)

respectively, where σ2, Ps, and Pr are, respectively, the variance of the additive noise, the co-
variance matrices of the transmitted signal of the source and relay nodes. As can be obeserved,
the rate of the source-relay link can be written as a difference of two concave functions in Pr.
The total rate of this relay channel is R = min{Rsr, Rrd}.

3.3 SISO interference-limited systems

In this section, we consider single-antenna interference-limited systems. Although the achiev-
able rate of the K-user SISO IC can be also derive with the real-decomposition method in
Section 3.2, we employ a complex representation for the K-user SISO IC because it can al-
low us to derive computationally less expensive algorithms. Since there are less optimization
parameters in SISO systems, we might be able to derive closed-form solutions for different
optimization problems. The complex-domain representations help us to simplify the equations
for SISO systems and get some interpretations about the performance of IGS schemes. In the
following, we state the rates for the K-user SISO IC, and Z-IC.

3.3.1 K-user SISO interference channel

In this subsection, we consider the K-user SISO IC with ideal and non-ideal devices. We state
the achievable rates by employing complex representations of the signals. We represent the
power and complementary variance of user k by pk and qk, respectively. We define the feasible
set of the design parameters as

Ω = {pk, qk : 0 ≤ pk ≤ Pk, |qk| ≤ pk, k = 1, 2, · · · , K}, (3.38)

where Pk is the power budget of user k. Since qk is the complementary variance of user k, its
absolute value has to be not greater than the transmission power of user k, i.e., |qk| ≤ pk as
indicated in Remark 2.2.

41



3 INTERFERENCE-LIMITED SYSTEMS
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Figure 3.8: Channel model for the K-user SISO IC with ideal devices.

Ideal devices

Here, we assume that the devices are ideal. Hence, the received signal of user k is

yk =
K∑
i=1

hkixi + nk = hkkxk︸ ︷︷ ︸
desired signal

+
K∑

i=1,i 6=k
hkixi︸ ︷︷ ︸

interference

+ nk︸︷︷︸
noise

, (3.39)

where xi, hki, and nk for i ∈ {1, · · · , K} are the transmit signal of user i, channel coefficient
of the link between transmitter i and receiver k, and independent zero-mean proper complex
Gaussian noise with variance σ2, respectively.

We assume that each user is allowed to employ IGS. Thus, the achievable rate of user k
is [129]

Rk = 1
2 log2


(
σ2 +∑K

i=1 pi|hki|2
)2
−
∣∣∣∑K

i=1 qih
2
ki

∣∣∣2(
σ2 +∑K

i=1,i 6=k |hki|2pi
)2
−
∣∣∣∑K

i=1,i 6=k qih
2
ki

∣∣∣2
 , (3.40)

where pi, and qi are, respectively, the transmission power, and complementary variance of the
transmitted signal of user i. We can represent the rate of user k in vector form as

Rk(p,q) = 1
2 log2

(
(σ2 + aTk p)2 − |fHk q|2

(σ2 + bTkp)2 − |gHk q|2

)
, (3.41)

where

ak =
[
|hk1|2 |hk1|2 · · · |hkK |2

]T
, bk = ak −

[
0 0 · · · |hkk|2 · · · 0

]T
, (3.42)

fk =
[
h2
k1 h2

k2 · · · h2
kK

]H
, gk = fk −

[
0 0 · · · h2

kk · · · 0
]H
, (3.43)

q = [ q1 q2 · · · qK ]H , p = [ p1 p2 · · · pK ]T . (3.44)
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h11 +
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Figure 3.9: Equivalent channel model for the SISO K-user IC with AHWD.

Devices with asymmetric AHWD

Now, we consider a SISO K-user IC with asymmetric AHWD at the transceivers of users. The
received signals at receiver k is

yk =
K∑
i

√
pihki(xi + ηki) + nk = √pkhkkxk︸ ︷︷ ︸

desired signal

+
K∑

i=1,i 6=k

√
pihixi︸ ︷︷ ︸

interference

+
K∑
i

√
pihkiηi + nk︸ ︷︷ ︸

aggregated noise

, (3.45)

respectively, where xk, hki, nk, and ηi for k, i ∈ {1, 2, · · · , K} are the transmit signal of user
k, channel between transmitter i and receiver k, independent zero-mean proper complex Gaus-
sian noise with variance σ2, and the aggregated hardware distortion noise of the link between
transmitter i and receiver k, respectively.

Since the transmitted signals xk for k ∈ {1, 2, · · · , K} are improper complex Gaussian, the
achievable rate of user k is [59, 71, 129]

Rk = 1
2 log2


(
σ2 +∑K

i=1 pi|hki|2(1 + σ2
ηi

)
)2
−
∣∣∣∑K

i=1(qi + piσ̃
2
ηi

)h2
ki

∣∣∣2(
σ2 +∑K

i=1 pi|hki|2(1 + σ2
ηi

)− pk|hkk|2
)2
−
∣∣∣∑K

i=1(qi + piσ̃2
ηi

)h2
ki − qkh2

kk

∣∣∣2
 ,

(3.46)
where pk, qk, σ2

ηi
, and σ̃2

ηi
for k, i ∈ {1, 2, · · · , K} are, respectively, the transmission power of

user k, the complementary variance of the transmitted signal of user k, the aggregated variance
and the complementary variance of the AHWD noise for user i. The rate of user k can be written
using vector notation as

Rk = 1
2 log2

(
(σ2 + aTk p)2 − |fHk q + f̃Hk p|2

(σ2 + bTkp)2 − |gHk q + f̃Hk p|2

)
, (3.47)
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Figure 3.10: Channel model for the SISO K-user IC with ideal devices.

where fk, gk, p, and q are defined in (3.43) and (3.44), and ak, bk, and f̃k are given by

ak =
[
|h1k|2(1 + σ2

η1) |h2k|2(1 + σ2
η2) · · · |hKk|2(1 + σ2

ηK
)
]T
, (3.48)

bk = ak −
[

0 0 · · · |hkk|2 · · · 0
]T
, f̃k =

[
h2

1kσ̃
2
η1 h2

2kσ̃
2
η2 · · · h2

Kkσ̃
2
ηK

]H
.

(3.49)

3.3.2 Z interference channels
Z interference channel (Z-IC) is a special case of the 2-user IC in which only one user interferes
with the other user as depicted in Fig. 3.10. Assuming ideal deices, the rates of users are

R1 = 1
2 log2

(
(σ2 + |h11|2p1 + |h12|2p2)2 − |h2

11q1 + h2
12q2|2

(σ2 + |h12|2p2)2 − |h2
12q2|2

)
, (3.50)

R2 = 1
2 log2

(
(σ2 + |h22|2p2)2 − |h2

22q2|2

σ4

)
, (3.51)

where the parameters are defined as in (3.40). As can be observed, the rate expressions in the
Z-IC are less complicated than those for the K-user IC, which allows us to derive simplified
algorithms for the Z-IC, as will be shown in Section 8.1.4.

3.4 Summary
In this chapter, we presented some interference-limited systems with different hardware as-
sumptions. We stated the achievable rates of the users with TIN. As indicated, the rates have a
specific structures. Precisely, each rate is either a concave function (for direct links with ideal
channels) or can be written as a difference of two concave/convex functions (for interference
links and/or for direct links with AHWD). This feature actually comes from the definition of
the capacity of a channel, which is the difference of the entropy of the received signal and the
received noise [24]. The capacity achieving signaling of a point-to-point link with additive
Gaussian noise is Gaussian. Moreover, the entropy of Gaussian signals involves logarithmic
functions, which are concave. Hence, the achievable rate of PGS and/or IGS scheme with TIN
can be written as a difference of two concave/convex functions. This feature can be exploited
in optimizing different system parameters as will be discussed in the next chapter.
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4 Optimization framework for MIMO
interference-limited systems with
TIN

In this chapter, we evaluate the performance of IGS in the K-user MIMO IC with imperfect
devices by considering various utility functions. To this end, we solve different optimization
problems such as the achievable rate region, sum-rate maximization, EE region and global EE
maximization. In order to solve these non-convex problems, we employ an optimization frame-
work based on majorization minimization, which can be applied to any interference-limited
multiple-antenna systems with TIN. This optimization framework is an iterative suboptimal al-
gorithm, which obtains a stationary point of every optimization problem in which the objective
and/or the constraint functions are linear functions of the achievable rates. We first state the
preliminaries on optimizations in Section 4.1. We then present the optimization framework in
Section 4.2 and apply this framework to the aforementioned optimization problems in Section
4.3. We finally presents some numerical results in Section 4.8. Our numerical results show
that IGS can be beneficial from both spectral and energy efficiency points of view in the K-
user MIMO IC with imperfect devices. The results and the optimization framework, which is
presented in this chapter, have been published in [106, 107].

4.1 Preliminaries on optimization algorithms

In this section, we provide some preliminaries on optimization algorithms. We first introduce
convex optimization problems. We then consider non-convex optimization problems and pro-
vide some well-known optimization techniques to derive numerical solutions for some non-
convex optimization problems with continuous and differentiable objective and constrain func-
tions.

4.1.1 Convex optimization problems

Consider the following optimization problem

min
{Pk}Kk=1∈P

f0
(
{Pk}Kk=1

)
(4.1a)

s.t. fi
(
{Pk}Kk=1

)
≤ 0, i = 1, 2, ..., I, (4.1b)

gj
(
{Pk}Kk=1

)
= 0, j = 1, 2, ..., J, (4.1c)

where {Pk}Kk=1 and P are, respectively, the optimization variables and the feasibility set of the
variables, which is a convex set. If f0(·) and fi(·) for i = 1, 2, ..., I are convex, and gj(·) for
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f (·)
x(0) x(1)

f̃ (1) (·)

x(2)

f̃ (2) (·)

Figure 4.1: Majorization-minimization method.

j = 1, 2, ..., J are affine, the optimization problem (4.1) is known as convex and can be solved
in polynomial time [13]. There are powerful numerical tools to solve convex optimization
problems. Among them is CVX, which is a tool box in MATLAB [41]. Throughout this thesis,
we employ CVX in order to numerically solve convex optimization problems.

4.1.2 Majorization minimization

Unfortunately, most of optimization problems from practical scenarios are non-convex. In this
subsection, we consider non-convex optimization problems and present an iterative approach to
solve such problems numerically. In general, there is no optimization tool to derive the global
optimal solution of every non-convex optimization problems in polynomial time. However,
there are some powerful tools to obtain suboptimal solutions for such problems. Among them
is majorization minimization1 (MM), which includes many iterative optimization techniques
such as expectation maximization (EM), sequential convex programming (SCP) and difference
of convex programming (DCP) [108].

The main concept of MM is depicted in Fig. 4.1. The MM algorithm starts with a feasible ar-
bitrary initial point, e.g., x0 in Fig. 4.1, and consists of two steps at each iteration: majorization
and minimization. In the majorization step, the algorithm majorize the non-convex optimiza-
tion objective (and/or constraints) function f(·) by a suitable surrogate function f̃ (l)(·) in the
lth iteration. In other words, the function f(·) is approximated (majorized) by the upper-bound
function f̃ (l)(·). Then, the corresponding surrogate problem is solved in the minimization step,
which gives the new point x(l). This procedure continues till a convergence metric is met. In
the following, we describe the MM algorithm mathematically.

1It is also called minorization maximization for maximization problems [43].

46
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Consider the optimization problem

min
{Pk}Kk=1∈P

f0
(
{Pk}Kk=1

)
(4.2a)

s.t. fi
(
{Pk}Kk=1

)
≤ 0, i = 1, 2, ..., I. (4.2b)

If f0(·) and fi(·) for i = 1, 2, ..., I are neither convex nor pseudo-convex, it is not straightfor-
ward to derive the global optimal solution of (4.2) in polynomial time [6,13,108,122]. However,
we can obtain a suboptimal solution for (4.2) by MM. In the following lemma, we present con-
vergence conditions of iterative algorithms such as MM.

Lemma 4.1 ( [6]) Let us define f̃
(l)
i (·) for l ∈ N as surrogate functions of fi(·) for i =

0, 1, 2, ..., I such that the following conditions are fulfilled:

• f̃
(l−1)
i

(
{P(l−1)

k }Kk=1

)
= fi

(
{P(l−1)

k }Kk=1

)
for i = 0, 1, 2, · · · , I .

•
∂f̃

(l)
i

(
{P(l−1)

k
}Kk=1

)
∂Pk

=
∂fi

(
{P(l−1)

k
}Kk=1

)
∂Pk

for i = 0, 1, 2, · · · , I and k = 1, 2, · · · , K.

• f̃
(l)
i (·) ≥ fi(·) for i = 0, 1, 2, · · · , I for all feasible {Pk}Kk=1,

where {P(l−1)
k }Kk=1 is the initial point at the lth iteration of the MM algorithm, which is obtained

by solving

max
{Pk}Kk=1∈P

f̃
(l−1)
0

(
{Pk}Kk=1

)
s.t. f̃

(l−1)
i

(
{Pk}Kk=1

)
≥ 0, i = 1, 2, ..., I. (4.3)

Then, the sequence of {P(l)
k }Kk=1 converges to a stationary point of (4.2).

Remark 4.1 The surrogate optimization problem (4.3) is not necessarily convex; however, we
can obtain the global optimal solution of (4.3) much easier than (4.2).
Remark 4.2 The MM algorithm depends on the initial point since this algorithm generally
converges to a stationary point of the original problem.

The challenging part in MM algorithms is to find suitable surrogate functions, which de-
pends on the structure of the objective and constraint functions. In general, there are different
approaches to obtain a surrogate function (see, e.g., [108]), and the main difference of MM
algorithms is in the approach for finding the corresponding surrogate functions. Throughout
this thesis, we mainly optimize the achievable rate and/or energy-efficiency of users. Hence, we
focus only on MM algorithms, which might be required for such optimizations.

The rate functions are continuous and differentiable in the powers/covariance matrices of
users. Depending on the considered scenario, a rate function can be concave, convex or a
difference of two concave/convex functions in the powers/covariance matrices of users, as will
be discussed in Chapter 3. Thus, we are able to derive suitable surrogate functions for achievable
rates by the concave-convex (and/or convex-concave) procedure (CCP). The idea of CCP comes
from Fig. 4.2. Suppose that we have a convex function fcvx, an affine function faff, and a
concave function fccv, which have the same value and the same derivative at point x(?). Then
for all feasible x, the following inequality holds

fccv (x) ≤ faff (x) ≤ fcvx (x) . (4.4)
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fcvx (·)
fccv (·)
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Figure 4.2: Majorization-minimization method.

It means that we can derive an upper (lower) bound for a concave (convex) function by approx-
imating it with an affine (linear) function. A way to approximate a function by a linear function
is to employ the first-order Taylor expansion, which is the main idea for the CCP as presented
in the following lemma.

Lemma 4.2 (Concave-convex procedure [75]) An upper (lower) bound for a concave (convex)
function g(·) can be derived by

g
(
{Pk}Kk=1

)
≤ g

(
{P(?)

k }Kk=1

)
+

K∑
k=1

∂g
(
{P(?)

k }Kk=1

)
∂Pk

H (Pk −P(?)
k

)
, (4.5)

where {Pk}Kk=1 are the variables and {P(?)
k }Kk=1 is an arbitrary feasible point.

In this thesis, we mostly employ SCP and DCP among all MM algorithms. In SCP, the sur-
rogate functions are chosen such that the surrogate optimization problem is convex. In other
words, SCP obtains a stationary point of a non-convex optimization problem by solving a se-
quence of convex problems. A special case of SCP is DCP in which the objective and/or con-
straints are a difference of two convex/concave functions. In this case, we can apply CCP to
approximate the concave parts of functions by affine functions, which makes the surrogate opti-
mization problem convex. Examples of DCP and SCP are provided in Chapters 4, 6, 7, 5, where
we applied these techniques to different practical scenarios in IGS. For more details about CCP,
the readers can refer to [75].

4.1.3 Semi-definite relaxation (SDR) for quadratic optimization
problems

In this subsection, we consider non-convex quadratic optimization problems and present a sub-
optimal approach to derive numerical solutions for such problems. Let us consider the following
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non-convex complex-domain optimization problem

min
x

xHA0x (4.6a)

s.t. xHAix Di bi, i = 1, 2, ..., I, (4.6b)

where x is the optimization vector, Ai and bi for i = 0, 1, · · · , I are constant and given. Ad-
ditionally, D is chosen to simplify the notations and can be either “≤”, “=”, or “≥”. The
optimization problem (4.6) is in general non-convex due to the constraints with “≥”. A way
to derive a suboptimal solution for (4.6) is to employ semi-definite programming (SDP) and
semi-definite relaxation (SDR), which follows a simple idea as describe in the following.

Consider the quadratic term xHAx, which is scalar. We can simply verify that

xHAx = Tr
(
xHAx

)
= Tr

(
AxxH

)
. (4.7)

Let us define X = xxH , which is a rank-one Hermitian matrix. Now we rewrite (4.6) as

min
X

Tr (A0X) (4.8a)

s.t. Tr (A0X) Di bi, i = 1, 2, ..., I, (4.8b)
X < 0, rank(X) = 1. (4.8c)

The optimization problem (4.8), which is equivalent to (4.6), is still non-convex and difficult to
solve. The main idea of SDR is to relax the rank-one constraint and solve the following linear
optimization problem

min
X

Tr (A0X) (4.9a)

s.t. Tr (A0X) Di bi, i = 1, 2, ..., I, (4.9b)
X < 0. (4.9c)

The optimization problem (4.9) is convex, and its global optimal solution X(?) can be easily
obtained. If X(?) is rank one, it is also the global optimal solution of (4.6). Otherwise, it is
not a valid solution for (4.6). Unfortunately, it is not ensured that X(?) is rank one for every
quadratic optimization problem, which means that the solution of (4.9) cannot be taken for
(4.6). However, we may be able to use X(?) to generate a good suboptimal solution for (4.6).
There are few approaches to obtain solutions for (4.6) from X(?). Among them is Gaussian
randomization [78]. That is, we generate many random vectors x from a zero-mean proper
complex Gaussian distribution with covariance matrix X(?) and choose the best solution, x(?),
among them.

The optimization problem in (4.6) is a homogeneous quadratic problem. SDR can be also
applied to inhomogeneous quadratic problems such as

min
x

xHA0x + 2R
{
bH0 x

}
(4.10a)

s.t. xHAix + 2R
{
bHi x

}
Di ci, i = 1, 2, ..., I, (4.10b)

where Aix, bi, and ci for i = 1, 2, ..., I are given and constant. In order to apply SDR to (4.10),
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we introduce a new scalar real-valued variable t and rewrite (4.10) as

min
x,t

[
xH t

] [ A0 b0
bH0 0

] [
x
t

]
(4.11a)

s.t.
[

xH t
] [ Ai bi

bHi 0

] [
x
t

]
Di ci, i = 1, 2, ..., I, (4.11b)

t2 = 1. (4.11c)

Now we define new parameters x′ =
[

xH t
]H

and

A′i =
[

Ai bi
bHi 0

]
, (4.12)

for i = 0, 1, 2, ..., I. Substituting these parameters in (4.11), we have

min
x

x′HA′0x′ (4.13a)

s.t. x′HA′ix′ Di bi, i = 1, 2, ..., I, (4.13b)

which is similar to (4.6) and thus, can be solved similarly.

Comparison to MM

Note that SDR is in general a suboptimal algorithm similar to MM-based algorithms. If we
compare these algorithms, we can say that MM-based algorithms are generally more powerful
since they can be applied to a wide-range of optimization problem. Moreover, MM algorithms
converge to a stationary point of the problem; however, SDR algorithms do not fulfill any
optimality constraint due to the Gaussian randomization. In [78], it is suggested that in some
applications, we can use MM-based algorithms and SDR algorithms as a complementary of
each other rather than competitors. That is, MM algorithms depend on an initial point, which
can be obtained by SDR algorithms. The readers are referred to [78] for more details and
applications of SDR in signal processing.

4.1.4 Dinkelbach-based algorithms for fractional problems

In this section, we consider fractional-programming (FP) and present a powerful solver for
fractional optimization problems. An example of fractional functions in wireless communica-
tions is an energy-efficiency (EE) function, which is defined as the ratio of the achievable rate
to the total power consumption as will be discussed with more details in Section 4.5, Section
4.6, Chapter 6, and Chapter 7. Fractional optimization problems can be divided into two main
categories: single-ratio optimizations and max-min optimizations. In single-ratio FP, a single
fractional function is optimized over a compact set. However, in max-min FP, the minimum of
multiple fractional functions is maximized, which is more challenging. Note that the optimiza-
tion parameters can be scalars, vectors and even matrices in this subsection.
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Single-ratio fractional programming

Consider the following optimization problem

max
x∈X

u(x)
v(x) , (4.14)

where x is the optimization variable, and X is the feasiblity set, which is a compact set. The op-
timization problem (4.14) is called single-ratio fractional programming. We assume u(x) ≥ 0
and v(x) > 0 are continuous real-valued functions, which is the case in the considered opti-
mization problems in this thesis. A way to solve (4.14) is to employ Dinkelbach algorithm,
which falls into parametric algorithms [25,30,126]. Parametric algorithms are iterative, similar
to MM algorithms, and we solve an optimization problem by solving a sequence of surrogate
problems, which can be solved easier than the original problem [58, 126]. However, surrogate
functions for parametric algorithms are generally chosen in a different way comparing to MM
algorithms.

Dinkelbach’s algorithm is a powerful tool that can achieve the global optimal solution of
(4.14). This algorithm was originally proposed for the case that u(x) is concave, and v(x) is
convex. However, the algorithm can still converge to the optimal solution of (4.14) even if u(x)
and −v(x) are not concave as will be discussed in the following. The Dinkelbach algorithm is
an iterative algorithm, which employs the following function in each iteration

V (µ) = max
x∈X

u(x)− µv(x), (4.15)

This function satisfies the conditions presented in the following lemma, which are essential for
the convergence of the Dinkelbach algorithm.

Lemma 4.3 ( [30, 58, 126]) Consider the fractional function u(x)
v(x) , where u(x) and v(x) are

continuous in x, v(x) is strictly positive in x, and x is a vector with dimension n that belongs
to a compact set X . Let us define

V (µ) = max
x∈X

u(x)− µv(x), (4.16)

µ(?) = max
x

u(x)
v(x) , (4.17)

where V (µ), µ(?), and µ are real and scalar, and have the following properties.

1. V (µ) is continuous and strictly decreasing in µ.

2. The optimization problems (4.26) and (4.27) always have optimal solutions.

3. µ(?) is finite and V (µ(?)) = 0.

4. V (µ) has a unique root, and V (µ) = 0 implies µ = µ(?).

The Dinkelbach algorithm employs the results in Lemma 4.3 to obtain the global optimal
solution of (4.14). According to Lemma 4.3, there is a connection between V (µ) and the opti-
mization problem in (4.14). Particularly, V (µ) is strictly decreasing in µ and has a unique root
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µ(?), which is the global optimal solution of (4.14), i.e., µ(?) = u(x(?))
v(x(?)) , where x(?) is

x(?) = arg max
x∈X

u(x)
v(x) . (4.18)

Dinkelbach proposed an algorithm in [30] to obtain the unique root of V (µ). Note that there
might be other algorithms such as the bisection method to derive the unique root of V (µ), and
the Dinkelbach algorithm is not the only way to obtain µ(?).

The Dinkelbach algorithm is an iterative algorithm, which employs the surrogate function
V (µ) in (4.14) and tries to find its unique root µ(?). The algorithm starts with an initial point,
e.g., µ(0) = u(x(0))

v(x(0)) , where x(0) is an arbitrary feasible point. Then the algorithm updates µ to
obtain µ(?). Since V (µ) is continuous and strictly decreasing in µ, µ is chosen monotonically
increasing at each iteration (µ(l) > µ(l−1)) until V (µ) approaches 0. At the lth iteration, µ(l) is

µ(l) = u(x(l))
v(x(l)) > 0, (4.19)

where x(l) is

x(l) = arg max
x

(
u(x)− µ(l−1)v(x)

)
. (4.20)

The Dinkelbach algorithm updates µ(l) and x(l) based on (4.19) and (4.20), respectively, until
a convergence metric is met, e.g., V (µ(l)) < ε, where ε > 0. We summarize the Dinkelbach
algorithm in the following lemma.

Lemma 4.4 Consider the following fractional optimization problem

max
{x}∈X

v (x)
u (x) , (4.21)

where X is a compact set. The global optimal solution of (4.21) can be derived, iteratively, by
the Dinkelbach algorithm, i.e., by solving

max
{x}∈X

v (x)− µ(l)u (x) , (4.22)

where µ(l) is constant and given by

µ(l) =
v
(
x(l)

)
u (x(l)) , (4.23)

where x(l) is the solution of (4.22) at the (l−1)th iteration. Note that the Dinkelbach algorithm
converges to the global optimal solution of (4.14) with a super-linear rate.

Proof. Please refer to [25, 101, 126].

Remark 4.3 The Dinkelbach algorithm converges to the global optimal solution of (4.14) only
if the global optimal solution of (4.22) is obtained.
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According to Remark 4.3, the optimization problem (4.22) should be perfectly solved in
order to ensure the convergence of the algorithm to the global optimal solution. When v (x)
and −u (x) are concave for v ≥ 0 and u > 0, the optimization problem (4.22) is convex,
and its global optimal solution can be achieved easily. When (4.22) is non-convex, it might be
challenging to obtain its global optimal solution as discussed in Section 4.1. However, it is still
possible to apply the Dinkelbach algorithm to such problems, and only the optimization part
might be challenging.

Remark 4.4 The Dinkelbach algorithm still converges even if the global optimal solution of
(4.22) is not attained. However, it is not ensured that the algorithm converges to the global
optimal solution. Indeed, the Dinkelbach algorithm converges to a suboptimal solution if a
suboptimal solution of (4.22) is obtained.

We can still apply Dinkelbach algorithm to obtain suboptimal solutions for the cases that
(4.22) is non-convex and very difficult to be perfectly solved, as indicated in Remark 4.4. That
is, we can combine the Dinkelbach algorithm with MM algorithms. In such case, we first apply
the MM algorithm to v

u
to obtain a suitable surrogate function ṽ

ũ
, which can be easily solved by

the Dinkelbach algorithm. An example of this approach is provided in Section 4.6, where we
maximize the global EE of theK-user MIMO IC, which is a non-concave single-ratio fractional
function.

Max-min fractional programming

Consider the following fractional optimization problem

max
{x}∈X

min
1≤k≤K

{
vk (x)
uk (x)

}
, (4.24)

where X is a compact set. It is called max-min FP or multiple-ratio FP. A way to solve (4.24)
is to extend the Dinkelbach algorithm, which is called the generalized Dinkelbach algorithm
(GDA). The GDA is a modified version of the Dinkelbach algorithm to solve maximin multiple-
ratio problems [25]. Similar to the Dinkelbach algorithm, the GDA is an iterative approach in
which the fractional functions are approximated by surrogate functions at each iteration. The
only difference between the Dinkelbach algorithm and the GDA is that the GDA employs the
following surrogate function

V (µ) = max
x

min
k

(uk(x)− µvk(x)) , (4.25)

which is also similar to (4.14) and follows the same properties as discussed in the following
lemma.

Lemma 4.5 ( [25, 126]) Consider the fractional functions uk(x)
vk(x) , where uk(x) and vk(x) are

continuous in x, vk(x) is strictly positive in x, and x is a vector with dimension n that belongs
to a compact set X . Let us define

V (µ) = max
x

min
k

(uk(x)− µvk(x)) , (4.26)

µ(?) = max
x

min
k

(
uk(x)
vk(x)

)
, (4.27)
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where V (µ), µ(?), and µ are real and scalar, and have the following properties.

1. V (µ) is continuous and strictly decreasing in µ.

2. The optimization problems (4.26) and (4.27) always have optimal solutions.

3. µ(?) is finite and V (µ(?)) = 0.

4. V (µ) has a unique root, and V (µ) = 0 implies µ = µ(?).

The GDA follows the same concept and approach as the Dinkelbach algorithm and converges
to the global optimal solution of (4.24) if the optimization problem in (4.25) is perfectly solved,
similar to the Dinkelbach algorithm. It is worth noting that the GDA converges linearly to the
optimal solution [25], but the Dinkelbach algorithm converges super linearly to the optimal
solution [126]. Since the GDA performs very similar to the Dinkelbach algorithm, we present
only a summary of the GDA in the following lemma and refer the readers to the Dinkelbach for
more details and discussions.
Lemma 4.6 Consider the following fractional optimization problem

max
{x}∈X

min
1≤k≤K

{
vk (x)
uk (x)

}
, (4.28)

where X is a compact set. The global optimal solution of (4.28) can be derived, iteratively, by
the GDA, i.e., by solving

max
t,{x}∈X

t (4.29a)

s.t. v (x)− µ(l)u (x) ≥ t,k = 1, 2, ..., K, (4.29b)

where µ(l) is constant and given by

µ(l) = min
1≤k≤K

v
(
x(l)

)
u (x(l))

 , (4.30)

where x(l) is the solution of (4.29) at the (l − 1)th iteration.

Proof. Please refer to [25, 101, 126].

The discussions about the Dinkelbach algorithm can be extended to the GDA. For instance,
in order to apply the GDA, it is not required that uk(x) and vk(x) fulfill any other condition
(except those in the lemma), which makes this algorithm a powerful tool to solve different types
of fractional problems. If uk(x) and vk(x) are concave and convex functions, respectively, the
optimization problem at each iteration is convex and can easily be solved. However, in the
general case, it might be difficult to efficiently solve the optimization problem at each iteration.
Furthermore, the GDA can be combine with MM algorithms to obtain suboptimal solutions as
mentioned in the previous subsection. We will discuss this approach and apply it to solve non-
convex optimization problems in Section 4.5, Chapter 6, and Chapter 7 for different network
scenarios as well as different objective functions.
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4.2 Optimization framework for MIMO systems
In this section, we present a framework based on MM to solve different optimization problems
in which either the objective function and/or constraints are linear functions of the rates. In this
approach, we employ the real-decomposition method because, by this method, the rates can be
written as a difference of two concave functions, which enables us to employ MM and solve the
corresponding optimization problem iteratively. The proposed framework can be applied to both
IGS and PGS schemes. Since we employ the real-decomposition method, the only difference of
IGS and PGS schemes is the feasibility set of the covariance matrices. As indicated in Lemma
2.2, an improper Gaussian random variable can have an arbitrary symmetric and positive semi-
definite covariance matrix. Thus, the feasibility set of the covariance matrices of users {Pk}Kk=1
for IGS is

PIGS =
{
{Pk}Kk=1 : Tr(Pk) ≤ Pk, Pk < 0, k = 1, 2, · · · , K

}
, (4.31)

where Pk is the power budget of user K. It is in contrast to a proper Gaussian signal, which has
a covariance matrix with the specific structure in Lemma 2.2. In this case, the feasibility set is

PPGS =
{
{Pk}Kk=1 : Tr(Pk) ≤ Pk, Pk = Pxk , Pk < 0, k = 1, 2, · · · , K

}
, (4.32)

where Pxk has the structure in (2.3). In order to include both IGS and PGS schemes in the
derivations to follow, we denote the feasibility set of the covariance matrices as P hereafter.

We can apply this framework to different sources of hardware imperfections such as I/Q im-
balance and/or AHWD. As shown in Section 3.2.1, the rate of user k with theses imperfections
can be written as a difference of two concave function as

Rk = rk,1
(
{Pi}Ki=1

)
− rk,2

(
{Pi}Ki=1

)
. (4.33)

This allows us to apply CCP to obtain a suitable surrogate function. That is, we approximate
the convex part of the rate expressions, −rk,2, as a linear function by the first-order Taylor
expansion. By MM and CCP, we are able to obtain a stationary point of different optimization
problems in which either the objective or constraint functions are linear functions of the rates
of the users. In the following lemmas, we present the surrogate functions for the rates.
Lemma 4.7 ([106]) Using CCP, we can obtain an affine upper bound for log det(Q) as

log det(Q) ≤ log det
(
Q(l)

)
+ Trace((Q(l))−1(Q−Q(l))), (4.34)

where Q(l) is any feasible fixed point.

Proof. A concave function can be majorized by an affine function if these two functions have
the same value and the same derivative in a point [108]. The logarithmic function is concave.
Furthermore, the left-hand and the right-hand sides of (4.34) hold these condition at Q = Q(l).
Thus, the upper-bound in (4.34) holds for all feasible Q. Note that the derivative of log det(Q)
with respect to Q is Q−1.

Lemma 4.8 A concave approximation of the rates in (4.33) can be obtained by CCP as

Rk ≥ R̃
(l)
k = rk,1 − rk,2

(
{P(l)

i }Ki=1

)
− Tr

 K∑
i=1

∂rk,2
(
{P(l)

i }Ki=1

)T
∂Pi

(Pi −P(l)
i )

 (4.35)
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where rk,1 and rk,2 are, respectively, the concave and convex parts of Rk in (3.26). Moreover,
∂rk,2

(
{P(l)

i }
K
i=1

)
∂Pi

is the derivative of rk,2 with respect to Pi at the previous iteration. Note that

rk,2
(
{P(l)

i }Ki=1

)
is constant and is given by rk,2 at the previous step. Additionally, Rk and R̃(l)

k

fulfill the conditions in Lemma 4.1.

Remark 4.5 This optimization framework can be applied to both real-domain and complex-
domain problems. Note that if we want to model IGS (or generally improper signals), we should
employ the real-decomposition method to be able to use this optimization framework. However,
if we deal with only proper signals, we can use complex representations, which is much easier
than the real representation for proper signals. Note that we should use Hermitian in (4.35)
instead of transpose when we employ complex-domain signals.

In the following lemmas, we state the derivative of rk,2
(
{Pi}Ki=1

)
with respect to Pi with

different hardware nonideality assumptions. We first state the derivative of rk,2 for the HWI
model including I/Q imbalance, presented in Section 3.2.1, in which the rate expression is
stated in (3.26). For the ease of readers, we restate the rate as

Rk = 1
2 log2 det

(
Cz,k +

K∑
i=1

H̃kiPiH̃T
ki

)
︸ ︷︷ ︸

, rk,1

− 1
2 log2 det

Cz,k +
K∑

i=1,i 6=k
H̃kiPiH̃T

ki


︸ ︷︷ ︸

, rk,2

. (4.36)

Lemma 4.9 Let us consider the HWI model including I/Q imbalance in Section 3.2.1. The
derivative of rk,2 (·) in (4.36) with respect to Pi for i 6= k is

∂rk,2
(
{P(l)

i }Ki=1,i 6=k

)
∂Pi

= 1
2 ln 2H̃T

ki

Cz,k +
K∑

i=1,i 6=k
H̃kiP(l)

i H̃T
ki

−1

H̃ki, (4.37)

where H̃T
ki and Cz,k are, respectively, defined in (3.23) and (3.25). Moreover, Pi is the co-

variance matrix of user i, using the real-decomposition method. Note that rk,2 (·) in (3.26) is

independent of Pk, and consequently,
∂rk,2

(
{P(l)

i }
K
i=1,i 6=k

)
∂Pk

= 0.

Now we consider consider the AHWD model in Section 3.2.1 in which the rate of user k is
stated in (3.28). For simplifying the reading, we restate (3.28) as

Rk = 1
2 log2 det

(
Φk,1

(
{Pi}

K
i=1

))
︸ ︷︷ ︸

, rk,1

− 1
2 log2 det

(
Φk,2

(
{Pi}

K
i=1

))
︸ ︷︷ ︸

, rk,2

. (4.38)

The derivative of rk,2 (·) with respect to Pi for this model is presented in the following lemma.

Lemma 4.10 Let us consider the AHWD model in Section 3.2.1. The derivative of rk,2 (·) in
(3.28) with respect to Pi is

∂rk,2 (·)
∂Pi

=


σ2
t

2 ln 2diag
(
HT
kkΦ

−1
k,2

(
{Pi}

K
i=1

)
Hkk

)
for i = k,

σ2
t

2 ln 2diag
(
HT
kiΦ

−1
k,2

(
{Pi}

K
i=1

)
Hki

)
+ 1

2 ln 2HT
kiΦ

−1
k,2

(
{Pi}

K
i=1

)
Hki for i 6= k.

(4.39)
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where Φk,2

(
{Pi}

K
i=1

)
is defined in (3.30).

4.3 Achievable rate region

The achievable rate region is defined as the set of all rates that can be achieved by feasible
covariance matrices of the users as

R =
⋃

{Pk}Kk=1∈P
(R1, R2, · · · , RK). (4.40)

In order to derive the achievable rate region, we can employ the following definition of the
Pareto boundary for the achievable rate region.
Definition 4.1 ( [66]) The rate vector (r1, r2, · · · , rK) is called Pareto-optimal if the rate vector
(r′1, r

′
2, · · · , r′K) with (r′1, r′2, · · · , r′K) ≥ (r1, r2, · · · , rK) and (r′1, r′2, · · · , r′K) 6= (r1, r2, · · · , rK)

is not achievable, where the the inequality is taken component-wise.

There are different approaches to derive the achievable rate region. A way to derive the
achievable rate region is the rate-profile technique, which yields [129]

max
R,{Pk}Kk=1∈P

R s.t. Rk ≥ αkR, k = 1, 2, · · · , K, (4.41)

where αk ≥ 0 for k = 1, 2, · · · , K are given constants, and
∑K
k=1 αk = 1. The boundary of

the achievable rate region can be derived by solving (4.41) for different values of αks. The
optimization problem (4.41) is not convex; however, we can derive its stationary point by the
framework proposed in Section 4.2. That is, we solve (4.41) iteratively, and in each iteration,
we employ the surrogate function in Lemma 4.8 for the rates. Since the corresponding surrogate
optimization problem is convex, we can efficiently derive the global optimal solution of each
surrogate optimization problem and consequently, obtain a stationary point of (4.41).
Remark 4.6 The concept of the achievable rate region can be applied to different interference-
limited systems such as various interference channels and relay channels.

4.4 Maximizing weighted sum-rate

The weighted-sum-rate maximization of a MIMO interference-limited system withK users can
be written as

max
{Pk}Kk=1∈P

K∑
k=1

αkRk (4.42a)

s.t. Rk ≥ Rth,k, k = 1, 2, ..., K, (4.42b)

where (4.42b) is the quality of service (QoS) constraint, and Rth,k is a given threshold for the
rate of user k. Moreover, {αk ≥ 0}Kk=1 are the corresponding weights for the rates. Note that
Rth,ks have to be set in a way that (4.42) is feasible. Similar to (4.41), we can solve (4.42) by the
framework in Section 4.2 and obtain its stationary point. Note that each surrogate optimization
problem is convex, which can be solved efficiently.
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4.5 Energy-efficiency region

In this section, we consider the EE region for a MIMO interference-limited system withK users.
The EE of user k is defined as the ratio of its achievable rate to its total power consumption [126]

Ek = Rk

ηkTr(Pk) + Pc,k
, (bits/Joule) (4.43)

where η−1
k , and Pc,k are, respectively, the power transmission efficiency of user k, and the

constant power consumption of the kth transceiver. The EE function is a linear function of the
rates, which allows us to apply the framework in Section 4.2 to optimize the EE. Note that the
EE function has a fractional structure, which makes its optimization more difficult than the rate
analysis, as will be discussed in the following.

The EE region of a MIMO interference-limited system with K users can be derived by solv-
ing [126]

max
E,{Pk}Kk=1∈P

E (4.44a)

s.t. Ek = Rk

ηkTr(Pk) + Pc,k
≥ αkE, k = 1, 2, · · · , K, (4.44b)

Rk ≥ Rth,k, k = 1, 2, ..., K, (4.44c)

where αk ≥ 0 for k = 1, 2, · · · , K and
∑K
k=1 αk = 1. Moreover, the constraint (4.44c) is the

QoS constraint, similar to (4.42b), and Rth,k has to be chosen in a way that the feasibility set
of parameters is not empty. Similar to (4.41), the boundary of the EE region can be derived
by solving (4.44) for all possible αks. Since Ek is a linear function of Rk, we can apply the
framework in Section 4.2 to derive a stationary point of (4.44). The surrogate optimization
problem at the lth iteration is

max
E,{Pk}Kk=1∈P

E (4.45a)

s.t. Ẽ
(l)
k = R̃

(l)
k

ηkTr(Pk) + Pc,k
≥ αkE, k = 1, 2, · · · , K, (4.45b)

R̃
(l)
k ≥ Rth,k, k = 1, 2, ..., K, (4.45c)

where R̃(l)
k is given by (4.35). Note that we can rewrite (4.45) as a maximin fractional opti-

mization problem by removing E as

max
{Pk}Kk=1∈P

min
1≤k≤K

Ẽ
(l)
k

αk

 s.t. R̃
(l)
k ≥ Rth,k, k = 1, 2, ..., K. (4.46)

The optimization problem (4.45) (or equivalently (4.46)) is not convex; however, its global
optimal solution can be derived by employing the GDA, which is given in Section 4.1.4.
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4.6 Global energy-efficiency

Applying the GDA in Lemma 4.6 to (4.45), we have

max
E,{Pk}Kk=1∈P

E (4.47a)

s.t. R̃
(l)
k − µ(m) (ηkTr(Pk) + Pc,k) ≥ αkE, k = 1, 2, · · · , K, (4.47b)

R̃
(l)
k ≥ Rth,k, k = 1, 2, ..., K, (4.47c)

where

µ(m) = min
1≤k≤K

Ek
(
{P(l,m−1)

i }Ki=1

)
αk

 , (4.48)

where {P(l,m−1)
i }Ki=1 is the solution of (4.47) at the (m − 1)th iteration. Note that the GDA

converges to the global optimal solution of (4.45) linearly, and the whole algorithm converges
to a stationary point of (4.44).

4.6 Global energy-efficiency

The global energy-efficiency (GEE) of a system with K users is defined as the ratio of its total
achievable rate to its total power consumption as [126]

G =
∑K
k=1Rk∑K

k=1 (ηkTr(Pk) + Pc,k)
. (4.49)

Hence, the GEE maximization problem is [126]

max
{Pk}Kk=1∈P

G =
∑K
k=1Rk∑K

k=1 (ηkTr(Pk) + Pc,k)
(4.50a)

s.t. Rk ≥ Rth,k, k = 1, 2, ..., K, (4.50b)

where (4.50b) is the QoS constraint similar to (4.44c) and (4.42b). Since the GEE is a linear
function of the rates, we can apply the framework in Section 4.2 to obtain a stationary point of
(4.50). Thus, the surrogate optimization problem at the lth iteration is

max
{Pk}Kk=1∈P

G̃ =
∑K
k=1 R̃k∑K

k=1 (ηkTr(Pk) + Pc,k)
s.t. R̃k ≥ Rth,k, k = 1, 2, ..., K,

(4.51)

Similar to (4.45), the optimization problem is not convex; however, its global optimal solution
can be derived by the Dinkelbach algorithm. That is, we obtain P(l,m)

i by solving

max
{Pk}Kk=1∈P

K∑
k=1

R̃k − µ(m)
K∑
k=1

(ηkTr(Pk) + Pc,k) (4.52a)

s.t. R̃k ≥ Rth,k, k = 1, 2, ..., K, (4.52b)
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where µ(m) = G̃
(
{P(l,m−1)

i }Ki=1

)
, in which {P(l,m−1)

i }Ki=1 is the solution of (4.52) at the (m−
1)th iteration. The global optimal solution of (4.51) can be achieved by iteratively solving
(4.52) and updating µ(m) until a convergence metric is met. Moreover, as indicated, the whole
algorithm converges to a stationary point of (4.50).

4.7 Rate maximization of the secondary user in UCR
The optimization framework in Section 4.2 can be also applied other MIMO interference-
limited systems with TIN. In this section, we present a simple example of a MIMO OFDM
UCR with ideal devices, which is described in Section 3.2.2. Here, we assume that the SU
may employ IGS while the PU, which is unaware of the SU, transmits with a fixed transmis-
sion strategy {PPU,i}Ni=1. Our goal is to find a transmission strategy, {PSU,i}Ni=1, for the SU that
maximizes its rate, Rs, under the constraint that the rate of the PU, Rp, is ensured to be above
a threshold, R. It is assumed that the transmission power of the PU is given, and the power
budget of the SU is PSU,max. The optimization problem can be formulated as

max
{PSU,i}Ni=1∈PSU

Rs =
N∑
i=1

Rs,i s.t. Rp =
N∑
i=1

Rp,i > R, (4.53)

whereRp,i andRs,i are given by (3.34). Additionally, PSU,i is the feasibility set of the covariance
matrices for the SU, which is given by

PSU =
{

PSU,i :
N∑
i=1

Tr(PSU,i) 6 PSU,max,PSU,i � 0, i = 1, 2, ..., N
}
. (4.54)

The optimization problem in (4.53) is not convex since the rate of the PU is a convex function of
{PSU,i}Ni=1 rather than concave. However, we can derive its stationary point by the framework
in Section 4.2. That is, we approximate the rate of the PU by the lower bound given in Lemma
4.8 and solve (4.53) iteratively. Note that we can apply the framework in Section 4.2 to other
optimization problems in UCR systems such as energy-efficiency maximization.

4.8 Numerical examples for the K-user MIMO IC with
HWI at transceivers

In this section, we provide some numerical examples for the K-user MIMO IC with HWI at
transceivers based on the HWI model in Section 3.1.1. We employ Monte Carlo simulations
and average the results over 100 channel realizations. In each channel realization, the elements
of the channels are taken from a zero-mean complex proper Gaussian distribution with unit
variance, i.e., CN (0, 1). For all simulation, the maximum number of the iterations of the MM
algorithm is 40. We also consider CT = σ2

T INT and CR = σ2
RINR [63], or equivalently CT =

1
2σ

2
T I2NT and CR = 1

2σ
2
RI2NR . In all simulations, we assume σ2

T = 0.2 and σ2
R = 1. We

assume that the I/Q imbalance by each antenna is symmetric. In other words, the matrices
AT = aT INT , θT = φT INT , AR = aRINR , and θR = φRINR are scaled identity matrices.
We consider φT = φR = 5 degrees in all simulations. We also define the signal-to-noise ratio
(SNR) as the ratio of the power budget to σ2, i.e., SNR= P

σ2 .
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Figure 4.3: Fairness rate versus SNR for SISO and MISO.

We compare our proposed algorithms for PGS and IGS schemes with the PGS algorithm for
ideal devices. The considered schemes in this section are as follows:

• IGS: The proposed IGS scheme.

• PGS: The proposed PGS scheme.

• I-PGS: The PGS scheme for K-user IC without considering the I/Q imbalance in the
design.

Note that MM algorithms depend on the initial point. In PGS and I-PGS algorithms, we start
with a uniform power allocation Pk = P

2NT I2NT for k = 1, · · · , K in optimization problems
(4.41) and (4.42) and Pk = 0.3P

2NT I2NT for k = 1, · · · , K in optimization problems (4.44) and
(4.50). However, the IGS algorithm takes the solution of the PGS algorithm as an initial point.

4.8.1 Achievable rate region

In this subsection, we consider a specific point of the rate region, which maximizes the mini-
mum rate of users. The minimum rate of the K-user MIMO IC is maximized for αk = 1

K
. This

point is also referred as the maximin fairness point. Hereafter, we call the minimum rate as the
fairness rate. We show the fairness rate of the 2-user SISO and MISO IC for aT = 0.6 and dif-
ferent number of antennas at the transmitter side in Fig. 4.3. As can be observed, there is a huge
performance improvement by IGS in the 2-user SISO IC, especially at high SNR. However,
the benefits of employing IGS become negligible by increasing the number of antennas. This
is due to the fact that, by increasing the number of resources for a fixed number of users, the
interference can be easier managed, and hence, IGS as an interference-management tool does
not provide significant gain. This is in line with the results in [103], in which it was shown that
IGS cannot provide considerable benefits in OFDM UCR systems due to existence of parallel
channels. Moreover, in [52], it was shown that the benefits of IGS disappears with time sharing
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Figure 4.4: Fairness rate versus SNR for 2× 2 MIMO.
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Figure 4.5: Fairness rate versus the I/Q imbalance level for 2× 2 MIMO.

when the average power consumption is constrained, instead of the instantaneous power, which
allows a more flexible power allocation. To sum up, the benefits of IGS decrease or even vanish
by increasing the number of resources either by increasing the number of antennas or number
of time slots, by time sharing, and/or the number of parallel channels by OFDM. It is worth
mentioning that, even with high number of antennas, IGS and PGS, which are aware of the
HWI, outperform PGS, which is designed for ideal devices.

In Fig. 4.4, we consider the effect of the power budget on the fairness rate of theK-user 2×2
MIMO IC for aT = 0.6. As can be observed, there are minor benefit for IGS when K = 2.
However, by increasing the number of users, the performance improvement of IGS increases.
The reason is that, by increasing the number of users, the interference level increases, which
results in more performance improvements by IGS as an interference-management technique.
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4.8 Numerical examples for the K-user MIMO IC with HWI at transceivers
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Figure 4.6: Fairness rate versus the number of users for 2× 2 MIMO.
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Figure 4.7: Achievable sum-rate and relative performance of IGS versus the number of users for 2 × 2
MIMO.

Moreover, IGS performs much better in high SNR for K = 6, similar to the SISO 2-user IC as
depicted in Fig. 4.3a.

Figure 4.5 shows the fairness rate versus the level of the I/Q imbalance, i.e., 1 − aT for
SNR= 10dB and NT = NR = 2. Note that aT = 1 means that there is no I/Q imbalance. As
can be observed, the IGS design is less affected by the HWI level for different K. In K = 2,
the IGS and PGS schemes perform very similarly in low HWI level. However, the performance
of the PGS scheme drastically decreases with the HWI level, while the fairness rate of the IGS
scheme decreases slightly. In K = 4 and K = 6, the same behavior is observed, but the relative
performance of the IGS scheme over the PGS scheme is increasing in K. Moreover, for a given
K, the benefits of IGS is increasing in the level of the I/Q imbalance, as expected.
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Figure 4.8: Fairness EE of the 6-user 2× 2 MIMO IC versus Pc.

Figure 4.6 considers the effect of the number of users on the fairness rate as well as the
performance of IGS. As can be observed, the fairness rates are related to K−1. Additionally,
the relative performance improvement by IGS is increasing in K, where there is more than
80% improvements over PGS for K = 10. The reason is that, the more users yields the more
interference, which results in more improvements by IGS as indicated before.

4.8.2 Achievable sum-rate

In Fig. 4.7, we show the effect of the number of users on the achievable sum-rate of the K-user
2× 2 MIMO IC. In this figure, we set the threshold in (4.42) to Rth,k = 0. We can observe that
the sum-rate and also the relative performance of IGS over PGS are increasing in K. Since we
maximize the sum-rate without considering a QoS constraint, the rate of some users with weak
direct link might be even 0, which causes less interference. As a result, the relative performance
improvement of IGS is less than the improvements for the fairness rate in Fig. 4.6.

4.8.3 Energy efficiency region

In this subsection, we consider the EE region in (4.44). In general, IGS provides less EE ben-
efits than rate benefits. For example, in [104], it was shown that there are more constraints for
optimality of IGS in an UCR system from EE point of view than from the achievable rate per-
spective. In other words, it might happen that IGS provides more rate benefits for the secondary
user; however, PGS is the energy-efficient optimal scheme for the SU.

In Fig. 4.8, we show the symmetric or fairness EE of the 6-user 2 × 2 MIMO IC versus Pc
for aT = 0.6. As can be observed, the fairness EE decreases with Pc. Moreover, our proposed
IGS scheme outperforms the PGS scheme as well as I-PGS. Figure 4.9 shows the relative per-
formance improvement by our IGS scheme with respect to the PGS and I-PGS schemes for the
results in Fig. 4.8. As can be observed in these figures, the fairness EE decreases with Pc;
however, the benefits of employing IGS is increasing in Pc. The reason is that when Pc is very
large, the EE region optimization problem is simplified to the achievable rate region problem,
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Figure 4.9: Relative performance of IGS with respect to PGS and I-PGS versus Pc for the 6-user 2 × 2
MIMO IC.
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Figure 4.10: Global EE of the 6-user 2× 2 MIMO IC versus Pc.

and as indicated, IGS can provide more gain in achievable rate optimizations.

4.8.4 Global Energy efficiency

Figure 4.10 shows the global EE of the 6-user 2 × 2 MIMO IC versus Pc for aT = 0.6. In this
figure, we consider Rth,k = 0 in (4.50). As can be observed, IGS provides minor benefits for the
global EE. Since the QoS constraint is not considered, it might happen that some users do not
transmit, which causes less interference. Moreover, the lower interference level, the less need
for interference-management techniques. Thus, we can expect that the benefits of employing
IGS become less in global EE with respect to EE.

65
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Figure 4.11: The achievable rate region of the 2-user IC 2 × 2 MIMO with SNR= 10 dB and different
σ2
t .

4.9 Numerical examples for the K-user MIMO IC with
AHWD at transmitters

In this section, we provide some numerical results for the achievable rate region of the K-user
MIMO IC with AHWD at transmitters. As observed in Section 4.8, the benefits of employing
IGS decrease with the number of antennas at transceivers. Hence, in this section, we do not
consider IGS. Here, we assume σ2 = 1 and equal power budget for all users, i.e., P1 = P2 =
· · · = PK = P . We define the SNR as SNR= P

σ2 . The maximum number of iterations of the
DCP algorithm is 30.

There are generally two types of performance metrics for rate-region analysis in the literature
[102]. One is to consider a specific channel realization and derive the whole rate region for the
given channel realization, which is presented in Section 4.9.1. In such figures, we can observe
the whole possible operational points for a specific channel realization. Even though these
figures vary for different channel realizations, they show us the main trends for the considered
system performance. To cope with this dependency on channel realizations, there is also another
type of performance evaluation, which employs Monte Carlo simulations for a specific point
of the rate region. In this approach, the results are averaged over a large number of channel
realizations for the specific point of the region as described in Section 4.9.2.

4.9.1 Rate region

In this subsection, we depict the achievable rate region for a typical channel realization. As
indicated, we have to consider a channel realization in order to depict the whole rate region.
To this end, we choose a random channel realization. In Fig. 4.11, we show the achievable
rate region for a 2-user 2 × 2 MIMO IC with SNR= 10 dB, σ2

t = 0, 0.1, 0.2 and the following
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Figure 4.12: The average fairness rate versus SNR for the 2-user 4× 4 MIMO IC with different σ2
t .

channel realization

H11 =
[
−0.0582− 1.0619i 0.6289 + 0.4246i
−0.6971− 0.4074i −1.4091− 0.5512i

]
,

H12 =
[

0.0168 + 0.1373i 0.5545 + 0.3165i
0.6714 + 0.4017i 0.6933 + 0.3237i

]
,

H21 =
[

0.4203 + 0.7962i 1.1189− 0.6048i
−0.7680 + 0.1541i −1.3321− 0.0836i

]
,

H22 =
[

0.5857 + 0.2984i 0.5236− 1.1194i
−0.1130 + 0.3857i −0.1024− 0.0475i

]
.

As can be observed, the achievable rate region significantly shrinks when the AHWD level σ2
t

increases. Note that we just choose a typical channel to show the impact of the AHWD level on
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Figure 4.13: The average fairness rate versus SNR for the 3-user 3× 3 MIMO IC with different σ2
t .

the rate region. Obviously, the rate region highly depends on the considered channel realization;
however, a similar behavior will be observed in other channel realizations.

4.9.2 Fairness (symmetric) rate

The results in this subsection have been obtained by averaging 100 independent channel real-
izations. Every element of each channel matrix is drawn from a complex zero-mean Gaussian
distribution with unit variance. We consider the fairness rate, which is obtained for αk = 1

K

for k = 1, · · · , K. In this case, each user receives the same achievable rate, and we indeed
maximize the minimum achievable rate of the system. That is why this point of the rate region
is referred to as the “fairness point”. We compare our proposed HWD-aware algorithm (labeled
“HWD-A”) with the scheme that does not consider AHWD (labeled “HWD-U”).

In Fig. 4.12, we show the effect of σ2
t on the average achievable fairness rate of the 2-user

4 × 4 MIMO IC. In order to make the figure clearer, plots (a) and (b) use a different scale
for different values of σ2

t , and we consider only the 2-user MIMO IC. We consider the 3-user
IC with a different number of antennas later in Fig. 4.13. As can be observed in Fig. 4.12,
the achievable fairness rate drastically decreases when the devices are not ideal especially at
high SNR, where the average fairness rate by our scheme is 15.08 bps/Hz for ideal devices
and 6 bps/Hz for σ2

t = 0.2 in this example, which means more than 70 % performance loss
by AHWD. The reason is that the AHWD level increases with the transmission power, which
causes a severe performance degradation in high SNR.

Figure 4.13 shows the average fairness rate of the 3-user 3 × 3 MIMO IC with σ2
t = 0, 0.2.

As can be observed, the average fairness rate significantly decreases with AHWD similar to the
2-user 4× 4 MIMO IC, shown in Fig. 4.12a. Additionally, our AHWD-aware scheme provides
more benefits in the 3-user IC. In other words, we observe that when the number of users or
antennas increase, to account for AHWD is more important.

In Fig. 4.14, we depict the relative performance improvement by our scheme for the 2-user
and 3-user 3 × 3 MIMO ICs with different σ2

t . In this figure, both the 2-user and 3-user ICs
employ the same number of antennas. As can be observed, the benefits of our scheme increase
with power budget and σ2

t . The reason is that the AHWD at each antenna is a linear function
of the transmission power at the corresponding antenna. Thus, AHWD level increases with the
transmission power, and the higher AHWD is, the higher performance improvement is achieved
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Figure 4.14: The relative performance improvement of our algorithm versus SNR for the 2-user and
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Figure 4.15: The average fairness rate versus σ2
t for the 2-user and 3-user 6× 6 MIMO IC with SNR=

10 dB.

by our scheme. Furthermore, as indicated in Fig. 4.13, whenK increases it is more important to
account for AHWD. This is due to the fact that when there are more transmitters with a similar
AHWD, the receiver experiences more AHWD.

In Fig. 4.15, we show the impact of the AHWD level on the average fairness rate of the
2-user and 3-user 6× 6 MIMO ICs with SNR= 10 dB. As can be observed, AHWD can signif-
icantly degrade the system performance. Moreover, we observe again that considering AHWD
in design is more important when the number of users increases.

In Fig. 4.16, we show the effect of K on the average fairness rate of the K-user 3 × 5
MIMO IC with σ2

t = 0.5, and SNR= 0 dB. As can be observed, the fairness rate is decreasing
in K. However, the benefits of our AHWD-aware scheme increase with K, which shows the
importance of our scheme in practical scenarios. As indicated, the AHWD at each receiver
increases with K for a fixed σ2

t > 0. Hence, our AHWD-aware scheme can provide more
benefits when K grows due to the increase in AHWD level.
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Figure 4.16: The average fairness rate and relative performance of our proposed scheme versus K for
the K-user 5× 3 MIMO IC with σ2

t = 0.5, and SNR= 0 dB.

4.10 Summary
In this chapter, we presented a suboptimal algorithm for multiple-antenna interference-limited
systems with TIN. The optimization framework obtains a stationary point of any optimization
problem in which either the objective function or constraints are linear functions of achievable
rates. This framework can be applied to different sources of non-idealities at devices such as I/Q
imbalance and/or AHWD. In the presence of I/Q imbalance, the received signal is a function of
the widely linear transform of the transmitted signal and the aggregated noise, which implies
that the effective noise can be improper at the receiver side. We considered achievable rate re-
gion, weighted-sum-rate maximization, energy-efficiency region and global energy-efficiency
maximization problems as well as the rate maximization of the SU in a MIMO OFDM UCR as
some examples of the optimization problems, which can be solved by the optimization frame-
work.

In the numerical sections, we first considered aK-user MIMO IC with HWI including I/Q im-
balance. Our numerical results showed that the benefits of IGS as an interference-management
technique increase with the number of users and decrease with the number of antennas. This is
due to the fact that the higher interference level results in the more need for interference man-
agement and consequently, the more improvements by IGS. We also observed that the benefit
of employing IGS increases with imbalance level. Additionally, we observed that IGS provides
more benefits from achievable rate point of view than from EE perspective.

In this chapter, we also provided some numerical examples for the K-user MIMO IC with
AHWD at transmitters. In the numerical results, we observed that the performance of the system
is highly affected by AHWD at transmitters. Our proposed AHWD-aware scheme outperforms
the scheme that does not consider non-idealities at transmitters. Furthermore, the benefit of
employing our AHWD-aware scheme increases with the number of users.
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5 Improper Signaling for SISO OFDM
Underlay Cognitive Radio Systems

In this chapter, we investigate the performance of improper signaling in a SISO OFDM UCR
system. To this end, we consider two different QoS constraints for the PU. Because improper
signaling has been so successful at increasing the achievable rates in many interference-limited
scenarios, one might expect the same in a UCR OFDM system. However, the parallel channels
in OFDM allow the SU to allocate its power more flexibly compared to the single carrier case.
For example, in relatively low load traffic, the PU can neglect some subcarriers without violating
the rate constraint. This allows the SU to transmit proper signals with maximum power on those
subbands. This is why our results show that the benefit of improper signaling is fairly small and
decreases further with increasing number of subbands. Our study therefore reveals that the use
of improper signaling in interference channels needs to be justified for each individual case.
Note that the algorithm in Section 4.7 can be also applied to single-antenna systems. However,
in this chapter, we employ the augmented covariance matrices to elaborate more on the behavior
of improper signaling. This study is presented in [103].

5.1 System Model

In this chapter, we consider a UCR system, in which both primary and secondary users employ
OFDM with N subbands. In order to model improper signals, we employ complex representa-
tions and consider the augmented covariance matrix of the signals throughout this chapter. We
assume that the PU transmits proper Gaussian signals, while the SU is allowed to employ IGS.
Thus, according to Remark 2.4, the augmented covariance matrices of the signal transmitted by
the PU and SU in subband i are CPU,i = pPU,iI and

CSU,i =
[

pSU,i κipSU,ie
−jφi

κipSU,ie
jφi pSU,i

]
, (5.1)

respectively, where pPU,i, pSU,i, κi, and φi denote the transmission power of the PU, transmission
power of the SU, circularity coefficient of the SU, and the phase of the complementary variance
of the SU in subband i, respectively. Hence, the rates of the PU and SU in subband i are [129]

Rp,i = 1
2 log2 |I + (σ2I + GiCSU,iGH

i )−1HiCPU,iHH
i |,

Rs,i = 1
2 log2 |I + (σ2I + DiCPU,iDH

i )−1FiCSU,iFH
i |, (5.2)

respectively, where σ2, Hi, Gi, Fi, and Di are the variance of the additive noise, PU-PU, SU-
PU, SU-SU and PU-SU channels, respectively. In Fig. 5.1, we show the channel coefficients of

71



5 IMPROPER SIGNALING FOR SISO OFDM UNDERLAY COGNITIVE RADIO SYSTEMS

Figure 5.1: The channel model for the UCR system in subband i

the UCR system for subband i. Note that the channel matrices are diagonal and can be written
as a product of the channel coefficient and the identity matrix (e.g., Hi = hiI). Moreover,
since only the SU transmits improper signals, the rate is independent of φi =. Thus, we choose
φi = 0 without loss of generality.

5.2 Problem Statement

In this chapter, we aim at finding a transmission strategy, {CSU,i}Ni=1, for the SU that maximizes
its rate, Rs, under the constraint that the rate of the PU, Rp, is ensured to be above a threshold,
R. We assume that the transmission power of the PU is given, and the power budget of the SU
is PSU,max. The optimization problem can be formulated as

max
{CSU,i}Ni=1

Rs =
N∑
i=1

Rs,i (5.3a)

s.t.
N∑
i=1

Rp,i > R, (5.3b)

N∑
i=1

Tr(CSU,i) 6 2PSU,max, (5.3c)

CSU,i � 0, for i = 1, 2, ..., N, (5.3d)
[CSU,i]11 = [CSU,i]22, for i = 1, 2, ..., N, (5.3e)

where [CSU,i]kk is the kth element in the kth row of CSU,i. We consider two different scenarios,
in which the rate constraints are different. In the first scenario, the total rate is greater than
a threshold, and thus, (5.3b) is equivalent to

∑N
i=1Rp,i > R. In the second, the rate in each

subband is greater than a threshold, and thus, (5.3b) is replaced by the N constraints Rp,i >
Ri, for i = 1, 2, ..., N .

5.3 Proposed Transmission Strategies

In this section, we solve the optimization problem in (5.3), which is not convex since the rate of
the PU is a convex function of {CSU,i}Ni=1 rather than concave. We first consider the constraint
on the total rate in Section 5.3.1, and then in Section 5.3.2, we solve (5.3) when there is a
constraint on the rate of each subband, which is a more restricted assumption.
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5.3 Proposed Transmission Strategies

5.3.1 Constraint on the total rate

In this subsection, we solve (5.3) when there is a constraint on the total rate. To this end, we
employ sequential convex programming (SCP), which falls into MM [108]. In this approach, the
optimization problem is approximated by a convex optimization problem, and solved iteratively.
At each iteration, the non-concave constraint is approximated by a concave function. It is known
that this approach converges to to a stationary point of (5.3) [81,108]. Note that the initial point
should be in the feasible set of the original problem. Since the channel and PU’s power matrices
are scaled identity matrices, we will show that (5.3e) is automatically satisfied in each iteration
if the initial point satisfies (5.3e). Thus, we can safely drop (5.3e) and consider only (5.3a)-
(5.3d) in each iteration.

In order to solve (5.3), at each iteration we approximate the rate of the PU by an affine
function, which is the closest concave function. We employ the first-order term in the Taylor
series expansion of the rate of the PU with respect to CSU,i at point C(l−1)

SU,i , which is given by
the previous iteration. That is

Rp,i(CSU,i) ' Rp,i(C(l−1)
SU,i ) + Tr

[
∇CSU,iRp,i(C(l−1)

SU,i )
(
CSU,i −C(l−1)

SU,i

)]
, (5.4)

where∇CSU,iRp,i(C(l−1)
SU,i ) is the derivative of the PU rate with respect to CSU,i, which is

∇CSU,iRp,i = −GH
i (σ2I + GiCSU,iGH

i )−1HiCPU,iHH
i

×
(
I + (σ2I + GiCSU,iGH

i )−1HiCPU,iHH
i

)−1
(σ2I + GiCSU,iGH

i )−1Gi. (5.5)

By this approximation, the optimization problem at each iteration turns into:

max
{CSU,i}Ni=1

Rs =
N∑
i=1

Rs,i s.t.
N∑
i=1

Tr
(
A(l−1)
i CSU,i

)
6 B(l−1), (5.6a)

N∑
i=1

Tr(CSU,i) 6 2PSU,max, (5.6b)

CSU,i � 0, for i = 1, 2, ..., N. (5.6c)

In (5.6), the coefficients A(l−1)
i and B(l−1) can be obtained as

A(l−1)
i =−∇CSU,iRp,i(C(l−1)

SU,i ), (5.7a)

B(l−1) =
N∑
i=1

Rp,i(C(l−1)
SU,i )−R−

N∑
i=1

Tr
(
∇CSU,iRp,i(C(l−1)

SU,i )C(l−1)
SU,i

)
. (5.7b)

The solution of (5.6) can be derived by using the dual function and KKT approach. The La-
grangian for the optimization problem (5.6) can be written as

L({Ui}Ni=1, λ, µ) = µ(
N∑
i=1

Tr(CSU,i)−2Qmax)−
N∑
i=1

1
2 log2 |I+(σ2I+DiCPU,iDH

i )−1FiCSU,iFH
i |

−
N∑
i=1

Tr(UiCSU,i) + λ(
N∑
i=1

Tr(A(l−1)
i CSU,i)−B(l−1)), (5.8)
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Algorithm I Proposed solution for constraint on the total rate

Initialize C(0)
SU,i in the feasible set of the problem (5.3)

Compute A(0)
i and B(0) using (5.7)

Set l = 1
While ||C(l)

SU,i −C(l−1)
SU,i ||2 ≥ ε for at least one subband do

C(l)
SU,i =

[
(λA(l−1)

i + µI)−1 − σ2 + |di|2pi
|fi|2

I
]+

where Tr(A(l−1)
i CSU,i) = B(l−1) and

∑N
i=1 Tr(CSU,i) = 2PSU,max

Update A(l)
i and B(l) using (5.7)

Set l = l + 1
End (While)

where λ, µ, and {Ui}Ni=1 are the Lagrangian multipliers of the constraints (5.6b), (5.6c), and
(5.6d), respectively [13]. Equating the derivative of the Lagrangian to zero we obtain

∂L
∂CSU,i

= 0⇒ −FH
i

[
I + (σ2I + DiCPU,iDH

i )−1FiCSU,iFH
i

]−1
Fi(σ2I + DiCPU,iDH

i )−1

−Ui + λAl−1
i + µI = 0. (5.9)

Since the coefficient matrices are scaled identity matrices, we can simplify (5.9) as

− |fi|2

σ2 + |di|2pi

[
I + |fi|2

σ2 + |di|2pi
CSU,i

]−1

−Ui + λA(l−1)
i + µI = 0. (5.10)

Note that if a constraint is not active, its corresponding Lagrangian multiplier is zero. Thus,
if the solution of (5.10), CSU,i, is positive semidefinite for Ui = 0, (5.6d) is not active, and
consequently, its corresponding Lagrangian multiplier, Ui, is zero. Otherwise, Ui should be
determine in a way that the eigenvalues of CSU,i are non-negative. The eigenvectors of CSU,i

affect only constraint (5.6b), which implies that the eigenvectors of CSU,i are equal to the eigen-
vectors of A(l−1)

i (see [72, Lemma 2]). Hence, the optimal solution can be obtained by solving
(5.10) for Ui = 0 and replacing the negative eigenvalues of CSU,i, if there are any, by zero.
Finally, the closed-form solution for CSU,i is

CSU,i =
[
(λA(l−1)

i + µI)−1 − σ2 + |di|2pPU,i

|fi|2
I
]+

, (5.11)

where Q = [X]+ denotes an operator that replaces negative eigenvalues of X with zeros. The
Lagrangian multipliers µ and λ can be derived by solving

∑N
i=1 Tr(CSU,i) = 2PSU,max and∑N

i=1 Tr
(
A(l−1)
i CSU,i

)
= B(l−1). Through (5.11), it can be easily observed that CSU,i follows

the feasibility structure (5.3e) if A(l−1)
i , and consequently the initial point, satisfies (5.3e). This

solution is iterated until convergence. We summarize the solution in Algorithm I.
When the power constraint is the only active constraint, the optimal solution is PGS, which

can be obtained by the well-known water-filling approach. Thus, IGS may be beneficial only if
the rate constraint is active. This is due to the fact that the rate of the SU is a decreasing function
of the circularity coefficients; hence, a proper signal maximizes the rate when there is only a
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5.3 Proposed Transmission Strategies

power budget constraint. However, when the transmitted power is restricted by interference, the
allowed transmission power can be increased by using improper signaling, which may result in
a higher achievable rate [70]. But even in this case, the optimal solution may still turn out to be
proper, depending on the channel coefficients.

5.3.2 Constraint on the rate of each subband

We now solve problem (5.3) assuming a constraint on the rate of the PU in each subband. We
employ the analytical results in [70] to implement an algorithm for this optimization problem.
In [70], a similar optimization problem for a single-carrier scenario is considered. Here, we
extend the results to the OFDM scenario. In this subsection, in order to simplify the notations,
we represent the power of the SU by qi, i.e., pSU,i = qi.
Lemma 5.1 The signal transmitted on subband i is improper if and only if the following two
conditions are met:

1. The corresponding channel coefficients satisfy |gi|
2(σ2+pPU,i|di|2)
|fi|2σ2 > 1− pPU,i|hi|2

σ2(22Ri−1)
.

2. The power allocated to subband i is greater than a given threshold qthr
i,0, which we derive

further below.

Proof. According to Theorem 1 in [70], improper signaling in subband i is only beneficial if
|gi|2(σ2+pPU,i|di|2)

|fi|2σ2 is greater than a threshold that does not depend on the channel coefficients.
When improper signaling is rate-maximizing on a subband, this is due to the fact the maximum
allowed power on that subband can be increased by using improper signaling. If the power
allocated to this subband is greater than a threshold, which depends on the channel coefficients,
the optimal transmission is improper. According to [70][Eq. (11)], the maximum allowed
power qmax

i is a function of the circularity coefficient, hence we can write qmax
i (ki). If the power

allocated to the subband is greater than qthr
i,0 = qmax

i (0), improper signaling is optimal.

According to Lemma 5.1, improper signaling may be beneficial on a subband depending on
the channel coefficients. However, the power allocated to a subband plays an important role as
well. Since the SU can allocate power to different subbands, proper transmissions may be the
optimal solution even in subbands where improper signaling is potentially beneficial.

We propose an iterative algorithm to solve this problem. In general, if subband i is potentially
beneficial for improper signaling, the rate of the SU in this subband can be written as [70]

Rs,i =

 log2

(
1 + |fi|2qi

σ2+|di|2pPU,i

)
if 0 6 qi 6 qthr

i,0,
1
2 log2 (Ci +Diqi) if qthr

i,0 6 qi 6 qthr
i,1,

(5.12)

where Ci and Di are constant coefficients, which can be obtained from [70]:

Ci =1 + |fi|4

|gi|4 (pPU,i|di|2 + σ2)

(
p2

PU,i|hi|4

22Ri − 1
− σ4

)
, (5.13a)

Di = 2|fi|2
pPU,i|di|2 + σ2 + 2|fi|4

|gi|2 (pPU,i|di|2 + σ2)2

(
pPU,i|hi|2

22Ri − 1
− σ2

)
. (5.13b)
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5 IMPROPER SIGNALING FOR SISO OFDM UNDERLAY COGNITIVE RADIO SYSTEMS

Algorithm II Proposed solution for the rate constraint
on each subband
Obtain Ci and Di, for i = 1, ..., N, by (5.13),
For i = 1, . . . , N

If Di > 0
Improper is beneficial in this subband, and thus
Rs,i = 1

2 log2(Ci +Diqi),

qi = qthr
i,l = 1

|gi|2

(
pPU,i|hi|2

2Ri−1
− σ2

)
, and

qthr
i,u = 1

2|gi|2

(
pPU,i|hi|2

2
2Ri−Rmax

p,i −1
− σ2

)
Else

Proper is beneficial in this subband, and thus
Rs,i = log2(1 + |fi|2

σ2+|di|2pPU,i
qi), qi = qthr

i,l = 0, and

qthr
i,u = 1

|gi|2

(
pPU,i|hi|2

2Ri−1
− σ2

)
End (If)

End (For)
While qi = qthr

i,l for at least one improper subband do

qi =


[

1
µ −

Ci
Di

]qthr
i,u

qthr
i,l

if subband is improper[
1
µ −

σ2+|di|2pPU,i
|fi|2

]qthr
i,u

0
if subband is proper

for i = 1, . . . , N, where µ is such that
∑N
i=1 qi = PSU,max

For i = 1, . . . , N
If subband is improper and qi = qthr

i,l

Make subband proper, and thus
Rs,i = log2(1 + |fi|2

σ2+|di|2pPU,i
qi)

qthr
i,l = 0, and qthr

i,u = 1
|gi|2

(
pPU,i|hi|2

2Ri−1
− σ2

)
End (If)

End (For)
End (While)

Note that the first condition in Lemma 1 is equal to Di > 0. Finally, the thresholds in (5.12) are

qthr
i,0 = 1
|gi|2

(
pPU,i|hi|2

2Ri − 1
− σ2

)
, (5.14a)

qthr
i,1 = 1

2|gi|2

(
pPU,i|hi|2

22Ri−Rmax
p,i − 1

− σ2
)
, (5.14b)

where Rmax
p,i = Rp,i(qi = 0) refers to the maximum achievable rate of the PU on subband i. The

thresholds in (5.14a) and (5.14b) are the maximum allowed power of the SU in proper, ki = 0,
and maximally improper, ki = 1, cases, respectively.

In our proposed iterative algorithm, it is assumed in the first iteration that an improper signal
is transmitted on a subband if an improper signal is potentially beneficial on that subband, i.e.,
the first condition in Lemma 5.1 is fulfilled. As a result, the allocated power is constrained to
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5.4 Numerical Results

2 4 6 8 100

10

20

30

40

Number of Subbands

R
el

at
iv

e
pe

rf
.i

m
p.

(%
)

Figure 5.2: Improvement by employing improper signaling versus the number of subbands for α=70%.
The results are for the constraint on total rate.

be in the interval [qthr
i,0, q

thr
i,1]. The rate of the SU is computed based on (5.12). The solution of

this optimization problem is the well-known water-filling approach [24]. If, after solving the
optimization in (5.3), the power allocated to an improper subband is equal to qthr

i,0, proper sig-
naling is the optimal solution for this subband. Thus, we update the set of proper and improper
subbands and solve again the problem in (5.3). This procedure is iterated until all the powers
allocated to all improper subbands are greater than qthr

i,0. The proposed algorithm is summarized
in Algorithm II. Note that qthr

i,l and qthr
i,u are lower and upper bounds of the power allocated to

each subband in Algorithm II, respectively. Moreover, [X]ba = max (min(X, b), a).

5.4 Numerical Results

In this section, we provide some numerical results. We consider Rayleigh fading channels, in
which the real and imaginary parts of the channel coefficients are independent Gaussian random
variables N (0, 1). For the sake of simplicity, it is assumed that the PU transmits with a fixed
power P on each subband. The transmitted power of the PU on each subband, P , and variance
of the additive Gaussian noise, σ2 are equal to 1. The results are obtained by averaging over
100 independent channel realizations.

In Fig. 5.2, the improvement in rate obtained by employing improper signaling is shown for
α = 70%, where α = R

Rp(q=0) is the loading factor. In order to consider the effect of identical
parallel channels, we assumed that PSU,max = PN . In other words, the power budget of the
SU is increased at the same rate as the transmission power of the PU. The rate improvement
by employing improper signaling decreases rapidly with increasing number of subbands, from
30% for N = 1 to less than 1% for N = 10. This is due to the fact that the SU can allocate
power more flexibly when there are more subbands.

Let us now consider the problem where there is a rate constraint on each subband. Figure
5.3 shows the improvement obtained by employing improper signaling versus the number of
subbands for α = 70% and PSU,max = PN . As before, the improvements rapidly decrease with
an increasing number of subbands.

In Fig. 5.4, the improvements of improper signaling over proper signaling are shown as a
function of α. The improvement is a decreasing function of α. When N = 10, which is a

77



5 IMPROPER SIGNALING FOR SISO OFDM UNDERLAY COGNITIVE RADIO SYSTEMS

5 10 15 20 250

10

20

30

Number of Subbands

R
el

at
iv

e
pe

rf
.i

m
p.

(%
)

Figure 5.3: Improvement by employing improper signaling versus the number of subbands for α = 70%.
The results are for the rate constraint on each subband.
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Figure 5.4: Improvement by employing improper signals versus α for PSU,max = 20 and N = 10. The
results are for the rate constraint on each subband.

relatively low number, the improvement is less than 10% for α> 65%. Moreover, as shown in
Fig. 5.3, this gain decreases with increasing number of subbands.

We notice that improper signaling is more beneficial in the scenario where the rate threshold
is on each subband. The reason is that, for example, when α = 80% it is possible for the PU to
neglect one subband out of five without violating the rate constraint. Thus, the SU can transmit
proper signals with maximum power on that subband. As we observe in Fig. 5.3, even though
improper signaling is more effective in the second scenario, the benefits also rapidly decrease
with increasing number of subbands N .

5.5 Summary
Improper signaling has received quite a bit of attention lately as a means to improve achievable
rates in interference channels. In this chapter, we investigated whether IGS is also beneficial
in an OFDM UCR system. While there are indeed some benefits, these are minor and mainly
apply to scenarios with small number of OFDM subbands. Such a rather negative result may
be surprising, but it shows that improper signaling is not a magic tool that works in every case.
Rather, its use needs to be justified on a case-by-case basis.
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6 Achievable rate region of the
K-user IC with asymmetric AHWD

In this chapter, we consider the achievable rate region of the K-user SISO IC with asymmetric
AHWD. Since there are fewer optimization parameters in single antenna systems compared to
multiple antenna systems, we are able to propose simpler and/or computationally less expensive
algorithms for these systems. We first propose an iterative algorithm based on a sequential opti-
mization method in which we solve a sequence of fractional optimization problems [6,108]. We
derive the global optimal solution of each surrogate problem by fractional programming (FP)
and the generalized Dinkelbach algorithm (GDA). In order to derive the achievable rate region,
we rewrite the corresponding optimization problem as pseudo-signal-to-interference-plus-noise
(PSINR) region, which is equivalent to the rate region problem. Our first proposed algorithm
obtains a stationary point of the PSINR region. We then propose a simplified algorithm that is
computationally less expensive than our proposed algorithm with FP. This simplified algorithm
is based on a separate optimization of powers and complementary variances of users. We em-
ploy a bisection method to obtain the powers of the 2-user IC and derive a closed-form solution
for powers in each iteration. Then, we employ difference of convex programming (DCP) to find
the complementary variances. DCP falls into majorization minimization (MM) algorithms and
can be applied to optimization problems in which either the objective and/or constraints are a
difference of two concave/convex functions. Our results show that IGS enlarges the achievable
rate of the two-user IC in the presence of asymmetric AHWD, and that there is a significant
performance improvement by IGS for highly asymmetric HWD noise. Moreover, both of our
proposed algorithms outperform existing PGS and other existing IGS algorithms. Results of
this chapter have been published in [101].

6.1 Problem Statement

In this chapter, we aim at obtaining the boundary of the achievable rate region for the K-user
SISO IC with asymmetric AHWD, which is described in Section 3.3.1. To this end, we employ
the following definition of the Pareto boundary for the achievable rate region in Definition 4.1.
As indicated in Section 4.3, the rate region is the union of all these achievable rate tuples, i.e.,

R =
⋃

{p,q}∈Ω
(R1, R2, · · · , RK), (6.1)

where Ω is the feasibility set of parameters, which is given by (3.38). Moreover, the boundary
of the rate region can be derived by the rate profile technique as in the following optimization
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6 ACHIEVABLE RATE REGION OF THE K-USER IC WITH ASYMMETRIC AHWD

problem [129]

max
R,{p,q}∈Ω

R s.t. Rk ≥ λkR, k = 1, 2, · · · , K. (6.2)

The paper in [64] proposed an algorithm based on DCP to maximize the achievable rate of
a multihop relay system with asymmetric AHWD, in which all nodes transmit with maximum
power, by optimizing over the complementary variances. Such algorithms cannot be applied
for a joint optimization of powers and complementary variances since, in this case, the rates are
not a difference of two jointly concave/convex functions in p and q. Hence, we solve (6.2) by
MM and FP. In MM, the objective function and constraints of an optimization problem are not
required to follow a very specific structure such as being a difference of two convex/concave
functions, which makes it more powerful than DCP.

To solve (6.2), we rewrite it such that it is more suitable to be solved with MM and FP. To
this end, we employ the PSINR profile technique in [74, 92] to write an optimization problem
that results in the solution of (6.2). We define the PSINR profile as

max
E,{p,q}∈Ω

E s.t. Ek(p,q) ≥ 1 + αkE, k = 1, 2, · · · , K, (6.3)

where αk ≥ 0 for all k are constants,
∑K
k=1 αk = 1, and

Ek(p,q) , (σ2 + aTk p)2 − |fHk q + f̃Hk p|2

(σ2 + bTkp)2 − |gHk q + f̃Hk p|2
= uk(p,q)
vk(p,q) . (6.4)

We can derive the boundary of the PSINR region by varying αks. Note that Ek(p,q) ≥ 1 for
all k since the rates are non-negative. Moreover, the numerator and denominator of Ek(p,q)
are strictly positive because the rates are bounded and non-negative. In the following lemma,
we show that this technique results in the boundary of the rate region in (6.2).

Lemma 6.1 ([74, 92]) Every point in the boundary of the rate region corresponds to a point in
the boundary of the PSINR region, and vice versa.

Proof. Assume there exists a vector (R1, R2, · · · , RK) on the boundary of the achievable rate
region that is not on the boundary of the PSINR region. In other words, the vector (E1 =
2R1 , E2 = 2R2 , · · · , EK = 2RK ), which is a feasible PSINR pair, is not on the boundary of
the PSINR region, and hence there exist (E ′1, E ′2, · · · , E ′K) 6= (E1, E2, · · · , EK) such that the
vector (E ′1, E ′2, · · · , E ′K) ≥ (E1, E2, · · · , EK) is feasible. Since the logarithm functions are
monotonically increasing, the rate vector

(0.5 log2(E ′1), 0.5 log2(E ′2), · · · , 0.5 log2(E ′K)) ≥ (R1, R2, · · · , RK)

and (0.5 log2(E ′1), 0.5 log2(E ′2), · · · , 0.5 log2(E ′K)) 6= (R1, R2, · · · , RK) is achievable, which
implies that (R1, R2, · · · , RK) is not on the boundary of the rate region. Similarly, it can be
shown that every point in the boundary of the PSINR region associates with a point in the
boundary of the rate region. The inequalities ≥ are taken element-wise.

Note that we can rewrite (6.3) as the following maximin optimization problem by removing
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6.2 Boundary of the rate region by Fractional Programming

the variable E

max
{p,q}∈Ω

min
k

{
Ek(p,q)− 1

αk

}
. (6.5)

6.2 Boundary of the rate region by Fractional
Programming

In this section, we solve the PSINR profile problem in (6.3) by MM, which results in solving
a sequence of fractional optimization problems. We solve each fractional optimization prob-
lem by FP and the generalized Dinkelbach algorithm [30, 98, 126]. Our proposed algorithm
converges to a stationary point of (6.3). We can apply the generalized Dinkelbach algorithm
to derive the boundary of the PSINR region since the optimization problem can be written as
a maximin weighted problem as indicated in (6.5). However, since uk(p,q) and vk(p,q) are
not, respectively, concave and convex in optimization variables, the corresponding optimiza-
tion problem in each iteration of the generalized Dinkelbach algorithm is not convex. Indeed,
uk(p,q) and vk(p,q) are a difference of two convex/concave functions:

uk(p,q) = −|fHk q + f̃Hk p|2︸ ︷︷ ︸
concave part

+ (σ2 + aTk p)2︸ ︷︷ ︸
convex part

, (6.6)

vk(p,q) = −|gHk q + f̃Hk p|2︸ ︷︷ ︸
concave part

+ (σ2 + bTkp)2︸ ︷︷ ︸
convex part

. (6.7)

Hence, to solve (6.5), we employ a sequential optimization approach by approximatingEk(p,q)
with a lower bound Ẽk(p,q, µ) in each iteration [6, 108]. Then, we obtain the global optimal
solution of each surrogate optimization problem by the generalized Dinkelbach algorithm. To
this end, in each iteration, we first approximate uk(p,q) by a lower bound concave function
ũk(p,q) and vk(p,q) by an upper bound convex function ṽk(p,q) as in the following lemma.

Lemma 6.2 A concave lower bound for uk(p,q) in the mth iteration is

ũ
(m)
k (p,q) =− |fHk q + f̃Hk p|2 + (σ2 + aTk p(m))2 + 2(σ2 + aTk p(m))aTk (p− p(m)), (6.8)

Moreover, a convex upper bound for vk(p,q) in the mth iteration is

ṽ
(m)
k (p,q) =(σ2 + bTkp)2 − |gHk q(m) + f̃Hk p(m)|2 − 2R

[
f̃Hk (gHk q(m) + f̃Hk p(m))∗

]
(p− p(m))

− 2R
[
(gHk q(m) + f̃Hk p(m))∗gHk (q − q(m))

]
, (6.9)

where p(m) and q(m) are the power and complementary variances at the mth iteration, which
are the solution of the previous iteration. Furthermore, R [x] takes the real part of x.

Proof. Please refer to Section 6.6.

Now, we are able to write the surrogate optimization problem in mth iteration as

max
E′,{p,q}∈Ω

E s.t. Ẽ
(m)
k (p,q) ≥ 1 + αkE

′, k = 1, 2, · · · , K, (6.10)
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6 ACHIEVABLE RATE REGION OF THE K-USER IC WITH ASYMMETRIC AHWD

Algorithm I Proposed sequential optimization algorithm.
Initialization
Set ε, M , p(0) = 0, q(0) = 0, m = 1, convergence=0
While convergence=0 and m ≤M do

Construct Ẽ(m)
k (p,q) = ũ

(m)
k (p,q)/ṽ(m)

k (p,q) for k = 1, 2, · · · ,K, using Lemma 6.2
Obtain p(m+1) and q(m+1) by solving (6.10), i.e., run algorithm II
If ‖p(m) − p(m+1)‖/‖p(m)‖ < ε

and ‖q(m) − q(m+1)‖/‖q(m)‖ < ε

convergence=1
p(?) = p(m+1) and q(?) = q(m+1)

End (If)
m = m+ 1

End (While)
Return p(?) and q(?).

where Ẽ(m)
k (p,q) = ũ

(m)
k

(p,q)
ṽ

(m)
k

(p,q)
and Ek(p,q) fulfill the following conditions:

1. Ẽ(m)
k (p,q) ≤ Ek(p,q) for all feasible p,q and k = 1, 2, · · · , K.

2. Ẽ(m)
k (p(m),q(m)) = Ek(p(m),q(m)) for k = 1, 2, · · · , K.

3. ∂Ẽ
(m)
k

(p(m),q(m))
∂p = ∂Ek(p(m),q(m))

∂p and ∂Ẽ
(m)
k

(p(m),q(m))
∂q = ∂Ek(p(m),q(m))

∂q for k = 1, 2, · · · , K.

These properties guarantee that the algorithm converges to a stationary point of (6.3) [6, Sec-
tion II.B]. To solve (6.10) and obtain p(m+1) and q(m+1), we employ the GDA, which gives
the global optimal solution of (6.10), as in the following. We summarize this procedure in
Algorithm I.

Now we solve (6.10) and obtain its global optimal solution by FP, which is also an iterative
algorithm as explained in Section 4.1.4. To this end, we introduce the following functions,

which are the corresponding surrogate functions of Ẽ
(m)
k
−1

αk
for k = 1, 2 · · · , K:

Êk(p,q, µ(l)) , u
(m)
k (p,q)− (µ(l)αk + 1)v(m)

k (p,q), (6.11)

where µ(l) ∈ R is fixed and given by

µ(l) = min
k

(
Ẽk(p(l−1),q(l−1))− 1

αk

)
. (6.12)

It is worth mentioning that the GDA requires an initial point µ(0), which can be obtained by
substituting p(m) and q(m) in (6.12). By substituting (6.11) in (6.10), the optimization problem
at each iteration of the GDA is

max
E′,{p,q}∈Ω

E ′ s.t. Êk(p,q, µ(l)) ≥ E ′, k = 1, 2, · · · , K. (6.13)

We solve (6.13) for the given µ(l), which results in p(l) and q(l). Then, we update µ(l) by (6.12)
and repeat the procedure until a convergence metric is met. As indicated in Section 4.1.4, the
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6.3 Simplified algorithm

Algorithm II Generalized Dinkelbach algorithm.
Initialization
Set ε, L, l = 0, µ(l) = min∀k

(
Ẽk(p(m),q(m))−1

αk

)
Compute Êk(p,q, µ(l)) for all k by (6.11)
While min

∀k
{Êk(p,q, µ(l))} ≥ ε and l ≤ L do

l = l + 1
Obtain p(l) and q(l) by solving (6.13)
If min
∀k
{Ẽk(p,q, µ(l))} < ε

p(?) = p(l) and q(?) = q(l)

Else
Update µ(l) by (6.12)

End (If)
End (While)
Return p(?) and q(?).

convergence rate of the GDA is linear. The optimization problem (6.13) is convex, and its global
optimal solution can be efficiently obtained [13]. We summarize this procedure in Algorithm
II.

To sum up, the proposed algorithm works as follows. We solve the PSINR profile in (6.3)
by solving a sequence of fractional optimization problems. Indeed, we employ a sequential
optimization approach and approximate the PSINR term of each user by a lower bound. In
order to derive the global optimal solution of each fractional optimization problem, we perform
another iterative algorithm, i.e., the GDA. It is worth mentioning that this algorithm does not
converge to the Pareto-optimal solution; however, it obtains a stationary point of (6.3).

6.3 Simplified algorithm

In this section, we propose a simplified version of the algorithm from Section 6.2, which exhibits
a lower computational complexity. In the simplified algorithm, we first optimize the transmis-
sion power p for PGS, i.e., for q = 0. This problem is addressed in Section 6.3.1. Then, in
Section 6.3.2, we optimize the complementary variances for the resulting transmit power p such
that the rates of all users are simultaneously increased.

6.3.1 Power optimization

In this subsection, we optimize the transmission power vector p for PGS, i.e., when q = 0. In
this case, deriving the boundary of the PSINR region can be cast as the optimization problem

max
E,p

E (6.14a)

s.t.
(σ2 + aTi p)2 − |f̃Hi p|2

(σ2 + bTi p)2 − |f̃Hi p|2
≥ 1 + αkE, k = 1, 2, · · · , K, (6.14b)

0 ≤ pk ≤ Pk, k = 1, 2, · · · , K, (6.14c)
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for αk ≥ 0 and
∑
k αk = 1. Unfortunately, the optimization problem in (6.14) is not convex

due to (6.14b). In the following lemma, we derive a lower bound for (6.14b), which allows us
to simplify (6.14) and derive a low-complexity algorithm.
Lemma 6.3 A lower bound for the left-hand side of (6.14b) is

(σ2 + aTi p)2 − |f̃Hi p|2

(σ2 + bTi p)2 − |f̃Hi p|2
≥ (σ2 + aTi p)2

(σ2 + bTi p)2 , (6.15)

where the equality in (6.15) holds if and only if the AHWD noise is proper, i.e., f̃i = 0.

Proof. It is easy to verify that 0 ≤ |f̃Hi p|2 < (σ2 + bTi p)2 < (σ2 + aTi p)2. Let us define

f(t) = β1 − t
β2 − t

, (6.16)

where 0 ≤ t < β2 < β1. The lower bound in (6.15) is then satisfied if f(t) is increasing in t.
This function is strictly increasing in t ∈ [0, β2) since

∂f(t)
∂t

= β1 − β2

(β2 − t)2 > 0, (6.17)

Thus, we have
β1 − t
β2 − t

≥ β1

β2
, (6.18)

with equality if and only if t = 0.

For each point characterized by {αk}Kk=1, we solve (6.14) for the lower bound in (6.15) as the
optimization problem

max
E,p

E (6.19a)

s.t.
σ2 + aTk p
σ2 + bTkp

≥
√

1 + αkE, k = 1, 2, · · · , K, (6.19b)

0 ≤ pk ≤ Pk, k = 1, 2, · · · , K. (6.19c)

It is worth mentioning that the lower bound in Lemma 6.3 is employed to simplify (6.14) and
obtain the powers, and the actual rates are derived by substituting the obtained powers in (3.47).
Note that the region achieved by solving (6.14) includes the region achieved by solving (6.19).
If the AHWD noise is proper, (6.19) is equivalent to (6.14)1. The global optimum solution of
(6.19) can be derived by employing a bisection method and solving a sequence of feasibility
problems [6]. That is, we fix E as E ′ and consider the feasibility problem

find p ∈ R2, (6.20a)

s.t. (aTk −
√

1 + αkE ′bTk )p ≥ (
√

1 + αkE ′ − 1)σ2, k = 1, 2, · · · , K, (6.20b)

0 ≤ pk ≤ Pk, k = 1, 2, · · · , K. (6.20c)

1This is in line with [51], where it was shown that proper Gaussian noise is the worst case in a K-user MIMO IC
with ideal devices.
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6.3 Simplified algorithm

If (6.20) is feasible for a given E ′, the optimal solution of (6.19) is greater than or equal to
E ′, i.e., E(?) ≥ E ′. Otherwise, E(?) < E ′. In order to find E(?), we employ the well-known
bisection method over E ′ solving (6.20) at each iteration, which yields, upon convergence, the
global optimal solution of (6.19) [13]. Constraints (6.20b) and (6.20c) are linear in p, which
permits deriving a closed-form expression for a feasible point in the 2-user IC, as presented in
the following theorem. It should be noted that this algorithm does not attain the global optimal
solution of (6.14). There might be optimization approaches to obtain its global optimal solu-
tion such as the monotonic optimization framework [77, 90, 125], although the computational
complexity of these approaches is high.

Theorem 6.1 The optimization problem in (6.20) is feasible for a given E ′ in the 2-user IC if
and only if 0 ≤ p′k ≤ Pk, for k = 1, 2, where[

p′1
p′2

]
= A−1

[
(
√

1 + α1E ′ − 1)σ2

(
√

1 + α2E ′ − 1)σ2

]
. (6.33)

A =
[

aT1 −
√

1 + α1E ′bT1
aT2 −

√
1 + α2E ′bT2

]

=
 |h11|2

(
1− σ2

η11(
√

1 + α1E ′ − 1)
)
−|h21|2(1 + σ2

η21)(
√

1 + α1E ′ − 1)
−|h12|2(1 + σ2

η12)(
√

1 + α2E ′ − 1) |h22|2
(
1− σ2

η22(
√

1 + α2E ′ − 1)
)  .

(6.34)

Proof. Please refer to Section 6.7.

We note that this algorithm leads to the optimal PGS only when AHWD noise is proper.
Note that PGS is suboptimal, in point-to-point communications, in the presence of asymmetric
AHWD [60,61]. Thus, the users may improve the performance by employing IGS in asymmet-
ric AHWD. It is worth noting that, in this paper, we aim at proposing PGS and IGS schemes
for the two-user IC with asymmetric AHWD, but we do not derive sufficient and necessary
conditions for the optimality of IGS or PGS in the two-user IC with asymmetric AHWD, which
remains an open problem.

6.3.2 Complementary variance design

In this subsection, we optimize the complementary variances q for a given p(?), which has
been obtained by solving (6.19). We obtain q such that the rates of both users exceed the rates
achieved by PGS, which are the rates achievable with q = 0 and the power vector p(?) obtained
by solving (6.19). In other words, we want to solve the optimization problem

max
t,q

t (6.35a)

s.t.
(σ2 + aTk p(?))2 − |fHk q + f̃Hk p(?)|2

(σ2 + bTkp(?))2 − |gHk q + f̃Hk p(?)|2
≥ Ep,k + αkt, k = 1, 2, · · · , K, (6.35b)

|qk| ≤ p
(?)
k , k = 1, 2, · · · , K. (6.35c)
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6 ACHIEVABLE RATE REGION OF THE K-USER IC WITH ASYMMETRIC AHWD

where p(?)
k is the kth element of p(?). Moreover, Ep,k is fixed and given by

Ep,k = (σ2 + aTk p(?))2 − |f̃Hk p(?)|2

(σ2 + bTkp(?))2 − |f̃Hk p(?)|2
. (6.36)

Unfortunately, (6.35) is not convex due to (6.35b). Hence, in order to efficiently solve (6.35),
we first rewrite (6.35b) as

(σ2 + aTk p(?))2 − |fHk q + f̃Hk p(?)|2 − αktk
(σ2 + bTkp(?))2 − |gHk q + f̃Hk p(?)|2

≥ Ep,k, (6.37)

where tk = t
[
(σ2 + bTkp(?))2 − |gHk q + f̃Hk p(?)|2

]
. We then relax the relation between {tk}Kk=1

and q and treat {tk}Kk=1 as new optimization variables. In other words, we approximate (6.35)
as

max
{tk}Kk=1,q

min
k
{tk} (6.38a)

s.t.
(σ2 + aTk p(?))2 − |fHk q + f̃Hk p(?)|2 − αktk

(σ2 + bTkp(?))2 − |gHk q + f̃Hk p(?)|2
≥ Ep,k, k = 1, 2, · · · , K, (6.38b)

|qk| ≤ p
(?)
k , k = 1, 2, · · · , K. (6.38c)

If mink{tk} > 0, the rates of both users are simultaneously increased by employing IGS.
Otherwise, we set q = 0 and employ PGS. Note that the constraint (6.38b) can be rewritten as

Ep,k|gHk q + f̃Hk p(?)|2 − |fHk q + f̃Hk p(?)|2 + (σ2 + aTk p(?))2 − Ep,k(σ2 + bTkp(?))2 ≥ αktk,
(6.39)

which is a difference of two convex functions. Thus, (6.38) is not a convex optimization prob-
lem, but it can be efficiently solved by difference of convex programming and a convex-concave
procedure similar to (6.13) [31,75,76,108,124]. Hence, we employ DCP and solve (6.38) itera-
tively. At each iteration, we approximate the left-hand side of (6.39) by a concave function. To
this end, we employ the first-order Taylor expansion and approximate the convex part of (6.39)
around the point q(l) by an affine function as

|gHk q + f̃Hk p(?)|2 ' |gHk q(l) + f̃Hk p(?)|2 + 2R
(
(gHk q(l) + f̃Hk p(?))∗gHk (q − q(l))

)
, (6.40)

where q(l) contains the complementary variances of the users in the lth iteration. It is worth
mentioning that |gHi q + f̃Hi p(?)|2 is always greater than or equal to the right-hand side of (6.40),
and consequently, no trust region is required in DCP [31, 76, 124]. Finally, in the lth each
iteration, (6.39) can be approximated by

− |fHk q + f̃Hk p(?)|2 + Ep,k|gHk q(l) + f̃Hk p(?)|2 + 2Ep,kR
(
(gHk q(l) + f̃Hk p(?))HgHk (q − q(l))

)
+ (σ2 + aTk p(?))2 − Ep,k(σ2 + bTkp(?))2 ≥ αktk. (6.41)
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6.4 Numerical Results

Finally, the convex optimization problem in the lth iteration is

max
{tk}Kk=1,q

min
k
{tk} s.t. (6.41), (6.38c). (6.42)

This problem can be easily solved by standard numerical tools [13]. Moreover, the proposed
DCP algorithm converges to a stationary point of (6.38) [31, 75, 76, 108, 124]. It is worth men-
tioning that a stationary point of (6.38) is not necessarily a stationary point of (6.35).

The proposed simplified algorithm can be summarized as follows. The joint optimization
problem for p and q is decoupled into two separate optimization problems. We derive the
transmission powers by employing the well-known bisection method, which results, in each
iteration, in a feasibility problem that has a closed-form solution. Then, we employ the DCP
algorithm to derive the complementary variances for the given transmission powers.

6.4 Numerical Results
In this section, we present some numerical results to illustrate our findings. In the numerical
results, we consider only the 2-user IC. For all examples, we set σ2 = 1, P1 = P2 = P , ε =
10−4, and L = M = 20, where ε, L, andM are, respectively, the threshold for convergence, and
the maximum number of iterations for Algorithms I and II. Moreover, the maximum number of
iterations for the algorithm in Section 6.3.2 is 40. We also define the signal-to-noise ratio (SNR)
as the ratio of the power budget to σ2, i.e., SNR= P

σ2 . We compare our proposed algorithms
with PGS and the joint variance and complementary variance optimization algorithm in [129]
for IGS, which is designed for ideal devices. To the best of our knowledge, there exists no
PGS algorithm for asymmetric AHWD in the literature. Because of that, we optimize the PGS
scheme by using the first step of our simplified algorithm (see Section 6.3.1). In the figures, we
use the following labels:

• S-IGS: our proposed simplified design in Section 6.3,

• FP-IGS: our proposed design with FP in Section 6.2,

• PGS: the proposed PGS design in Section 6.3.1,

• I-IGS: the joint variance and complementary variance IGS design in [129] for ideal
devices,

• S-TS: our proposed design in Section 6.3 with time sharing,

• F-TS: our proposed design in Section 6.2 with time sharing,

• P-TS: the proposed PGS design in Section 6.3.1 with time sharing.

Note that when time sharing (TS) is employed, it is allowed to average data rates and trans-
mission powers over several transmission strategies [47]. Due to practical restrictions, it is not
always possible to average power over different time slots, and the total power consumption
is mostly restricted in each time slot. When power constraint is considered for each opera-
tional point, TS results in the convex hull operation. Throughout this dissertation, we derive
the achievable rate region with TS by taking the convex hull operation over the corresponding
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Figure 6.1: Average fairness rate for ideal devices versus the SNR.

achievable rate regions [129]. The achievable rate region with TS might be enlarged if an aver-
age power constraint over different operational point is considered [52]. However, this analysis
is outside of the scope of this work.

6.4.1 Ideal devices

In this subsection, we compare the performance of our proposed algorithms with the joint vari-
ance and covariance IGS algorithm in [129] when there is no hardware distortion. In Fig. 6.1,
we show the average fairness rate, i.e., the minimum rate allocated to the users, which is the
fairness point of the rate region boundary and obtained by α1 = α2 = 0.5. We average the
results over 100 channel realizations, where each channel realization is taken from a complex
proper Gaussian distribution with variance 1, i.e., CN (0, 1, 0). As can be observed, our pro-
posed algorithm based on FP outperforms the proposed algorithm in [129], especially at high
SNR. Our simplified algorithm performs similarly to the proposed algorithm in [129] for low
SNR. However, the algorithm in [129] performs better than the simplified algorithm in the mod-
erate SNR regime. The reason is that the benefit of employing IGS increases with SNR. Thus,
the performance differences of the IGS algorithms are clearer at higher SNR.

In Fig. 6.2, we also provide rate region examples for ideal devices and the channel realization

H1 =
[

1.4070ei0.2721 0.9288ei1.8320

0.9288ei1.8320 1.7367ei1.1136

]
, (6.43)

where [H1]ij = hij for i, j ∈ {1, 2}. As indicated before, the rate region figures highly depend
on the channel realization. The advantage of these figures is that they provide a big picture
of the system performance for different parameters. Although there are differences in the sys-
tem performance for each channel realization, the main trends in the system operation remain
unchanged. To cope with the changes for each channel realization, we also provide Monte
Carlo-based simulations in which we have to consider a specific point of the rate region. In
channel realization in (6.43), the direct links are stronger than the interference links. We can
expect more benefits for IGS schemes when the interference links are stronger than the direct
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Figure 6.2: Achievable rate region for ideal devices and channel realization H1 in (6.43).

links. As can be observed through Fig. 6.2, IGS can enlarge the achievable rate region for
this channel realization and P = 10. Since the benefits of IGS are minor for low SNR, IGS
does not provide any gain for P = 1. This is also in line with the averaged results in Fig. 6.1,
where IGS has minor benefits at low SNR, while it improves the performance of the system
significantly at moderate SNR. For this channel realization, our proposed algorithms and the
algorithm in [129] perform very closely to each other. In Fig. 6.2b, we also consider the effect
of TS on the achievable rate region. As can be observed, IGS with TS outperforms PGS with
TS for this example. Since the IGS designs perform similarly, for this example, we provide only
the TS for our proposed IGS design in Section 6.2.

The joint variance and covariance IGS algorithm in [129] is an iterative algorithm, based on a
bisection method over the minimum weighted rates of users, and is proposed for ideal devices.
The algorithm employs semidefinite relaxation (SDR) programming in order to solve the corre-
sponding feasibility problem at each iteration of the bisection method. Since the solution of the
SDR in [129] is not ensured to be rank-one, it does not necessarily obtain a valid solution, and a
Gaussian randomization procedure is employed to obtain a rank-one solution. The solution ob-
tained by the randomization procedure is not ensured to fulfill any optimality condition, which
is in contrast with our proposed algorithm, which converges to a stationary point of (6.3). That
may be the reason why our algorithm provides a better average fairness rate than SDR for high
SNR in this scenario. It is also worth mentioning that our proposed algorithms are more general
since they consider asymmetric AHWD, while the algorithm in [129] can only be applied for
ideal devices.

6.4.2 Non-ideal devices

In this subsection, we consider the effect of AHWD on the performance of the two-user IC.
Throughout this subsection, we consider the same statistics for AHWD in all devices. In Fig.
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Figure 6.3: Achievable rate region for |σ̃2
η| = σ2

η , P = 1, and channel realization H1 in (6.43).
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Figure 6.4: Achievable rate region for σ̃2
η = 0, P = 1, and channel realization H2 in (6.44).

6.3, we show the rate region for H1 and P = 1 under maximally improper AHWD2 noise. As
shown in Fig. 6.2a, IGS brings negligible gains when the transceivers are ideal, but, as observed
in Fig. 6.3, IGS can significantly enlarge the rate region if there is asymmetric AHWD. Note that
even in point-to-point communications, PGS is in general suboptimal for asymmetric AHWD,
as it is shown in Fig. 6.3 for either R1 = 0 or R2 = 0.

In Fig. 6.4, we show the achievable rate region for σ̃2
η = 0, P = 1 (SNR= 0 dB), and channel

realization

H2 =
[

0.3764ei1.4381 0.4029ei0.9486

1.8542ei2.8153 0.6277ei2.3697

]
. (6.44)

We take σ̃2
η = 0, i.e., symmetric (proper) AHWD. We can observe that IGS enlarges the rate

2Maximally improper AHWD happens when the in-phase and quadrature-phase noises are completely correlated
[64].
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Figure 6.5: Average fairness rate versus the variance of the AHWD noise for P = 20.

region even for proper AHWD with high noise variance, i.e., σ2
η = 0.5 and σ2

η = 1. Note that
the PGS design is Pareto-optimal in the presence of symmetric AHWD. As can be observed,
our IGS design in Section 6.2 with TS outperforms the Pareto-optimal PGS with TS for these
examples.

In the following, we provide some averaged results for different parameters to illustrate dif-
ferent aspects of employing IGS. Similar to Fig. 6.1, we average the results over 100 channel
realizations, where each channel realization is taken from a complex proper Gaussian distribu-
tion with variance 1, i.e., CN (0, 1, 0).

In Fig. 6.5, we consider the effect of the variance of the AHWD noise on the average fair-
ness rate of users (α1 = α2 = 0.5) for P = 20. In this figure, we consider proper (σ̃2

η = 0)
and maximally improper (σ̃2

η = σ2
η) AHWD noise. We observe that our proposed algorithm

with FP outperforms the other algorithms for maximally improper AHWD noise. Moreover,
in Fig. 6.5a, our proposed IGS algorithms perform better than PGS for proper AHWD noise
with different variances, which is Pareto-optimal PGS in this case. Furthermore, our simplified
algorithm outperforms the IGS algorithm in [129] in the presence of AHWD. However, the per-
formance improvement by our algorithms is minor for proper AHWD with high noise variance,
where our algorithms only provide 5% improvement over PGS when σ2

η = 1 for this example.
Figure 6.6 shows the effect of the circularity coefficient of the AHWD noise on the fairness

rate for P = 20. As can be observed, the benefits of employing IGS increase with the circu-
larity coefficient of the AHWD noise, and there is a considerable performance improvement
by IGS in maximally improper AHWD noise. We emphasize that PGS is suboptimal, even in
interference-free communications, under asymmetric AHWD. Our proposed IGS design with
FP outperforms the other algorithms, especially in highly asymmetric AHWD noise. When the
variance of the AHWD noise is small, the gain of employing IGS is larger. The other interesting
result in this figure is that our simplified algorithm performs very similarly to our proposed al-
gorithm based on FP for proper AHWD. Since the simplified algorithm has less computational
cost, it can be employed for proper AHWD noise when the variance of the AHWD noise is
high, i.e., σ2

η ≥ 0.5. However, our proposed algorithm based on FP outperforms the other algo-
rithm in low-power AHWD noise and/or highly asymmetric AHWD noise. Note that, since the
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Figure 6.6: Average fairness rates versus the circularity coefficient of AHWD noise for P = 20.

IGS algorithm in [129] is proposed for ideal devices and does not consider AHWD, it performs
worse than the proposed PGS, which considers symmetric AHWD, from the average fairness
rate point of view, even when the AHWD noise is maximally improper.

In Fig. 6.7, we consider the effect of the power budget on the fairness rate of users. There is
an almost constant performance gap between our proposed algorithms and the other algorithms.
Similar to the other figures, our proposed IGS with FP outperforms our simplified algorithm.

6.5 Summary

In this chapter, we considered a K-user SISO IC with asymmetric AHWD at the transceivers
based on the model in Section 3.3.1. Treating interference as noise, we addressed the problem
of obtaining the achievable rate region for IGS and proposed two suboptimal algorithms. The
first algorithm, which is based on MM and the GDA, obtains a stationary point of the PSINR
region. In this algorithm, we jointly optimize the powers and complementary variances. We
also proposed a simplified algorithm that has lower computational complexity. This simplified
algorithm is based on the separate optimization of the powers and complementary variances.
Through numerical examples, we showed that the proposed approaches enlarge the achievable
rate region and outperform PGS and existing IGS algorithms, especially as the AHWD becomes
more asymmetric.

6.6 Proof of Lemma 6.2

In order to approximate uk(p,q) and vk(p,q), we employ convex-concave (or concave-convex)
procedure (CCP), in which the convex (concave) part is approximated as an affine function by
the first-order approximation of the Taylor expansion. Note that we take the first-order term and
employ an affine approximation since an affine function is the nearest concave approximation
to a convex function. The first-order approximation of a real function u(x) around the point x0
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Figure 6.7: Average fairness rate versus SNR for σ̃2
η = 0.9σ2

η .

is obtained through its Taylor expansion as [14, 94]

Γ (x) ≈ Γ (x0) + 2R
[
(∂Γ (x)
∂x

∣∣∣∣
x=x0

)T (x− x0)
]
, (6.45)

where x is a complex vector. In order to apply the CCP to uk(p,q), we have to differentiate the
convex part in (6.6) with respect to p, which is straightforward since it is a real function on a
real domain and consequently, analytic in p. The derivative of (σ2 + aTk p)2 with respect to p is

∂(σ2 + aTk p)2

∂p
= 2ak(σ2 + aTk p), (6.46)

and the resulting first-order approximation around the power vector in the mth iteration, p(m),
is given by

(σ2 + aTk p)2 ' (σ2 + aTk p(m))2 + 2(σ2 + aTk p(m))aTk (p− p(m)). (6.47)
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Figure 6.8: The constraints of (6.20) in the power plane.

In order to convexify vk(p,q), we have to differentiate the concave part in (6.7) with respect
to p and q. The derivative of |gHk q + f̃Hk p|2 with respect to p is also straightforward since it is
analytic in p:

∂|gHk q + f̃Hk p|2

∂p
= 2R

[
f̃k(gHk q + f̃Hk p)

]
. (6.48)

The term |gHk q + f̃Hk p|2, on the other hand, is not analytic in q since it is a real-valued function
while q is a complex vector [14, 94]. Thus, we have to employ Wirtinger calculus to obtain
the derivative of |gHk q + f̃Hk p|2 with respect to q. By Wirtinger calculus, we treat q and q∗ as
two independent complex variables [14, 94]. Please refer to Section 2.4 for more details about
Wirtinger calculus and complex analytic functions. Thus, we take the derivative of |gHk q+f̃Hk p|2
with respect to q while treating q∗ as a constant, which results in

∂|gHk q + f̃Hk p|2

∂q
= g∗k(gHk q + f̃Hk p)∗. (6.49)

Now by (6.45), we can approximate |gHk q + f̃Hk p|2 as an affine function as

|gHk q + f̃Hk p|2 ' |gHk q(m) + f̃Hk p(m)|2 + 2R
(
f̃Hk (gHk q(m) + f̃Hk p(m))∗

)
(p− p(m))

+ 2R
(
(gHk q(m) + f̃Hk p(m))∗gHk (q − q(m))

)
. (6.50)

By substituting (6.50) in (6.7), we can obtain ṽk(p,q).

94



6.7 Proof of Theorem 6.1

6.7 Proof of Theorem 6.1
A given E ′ is feasible if and only if there exists at least a pair (p1, p2) that satisfies all the
constraints in (6.20). Let us first consider the two linear constraints in (6.20b), which can be
written as

|h11|2
(
1−σ2

η11(
√

1+α1E ′−1)
)
p1−|h21|2(1+σ2

η21)(
√

1+α1E ′− 1)p2≥(
√

1+α1E ′−1)σ2,

(6.51)

−|h12|2(1+σ2
η12)(

√
1+α2E ′−1)p1 + |h22|2

(
1−σ2

η22(
√

1+α2E ′−1)
)
p2≥(

√
1+α2E ′−1)σ2.

(6.52)

We can construct A in (6.34) by the coefficients of p1 and p2 in (6.51) and (6.52). It is worth
mentioning that the non-diagonal elements of A in (6.34) are non-positive since

√
1 + α1E ′ ≥ 1

and
√

1 + α2E ′ ≥ 1. Thus, if the diagonal elements of A are not positive, there is no positive
power pair that satisfies (6.51) and (6.52) simultaneously. Hence, in the following, we assume
without loss of generality that A has strictly positive diagonal elements and strictly negative
non-diagonal elements.

We can rewrite (6.51) and (6.52) as

[A]11p1 ≥ −[A]12p2 + y1, (6.53)
[A]22p2 ≥ −[A]21p1 + y2, (6.54)

where y =
[

(
√

1 + α1E ′ − 1)σ2 (
√

1 + α2E ′ − 1)σ2
]T

. Moreover, [A]ij , and yi for i, j ∈
{1, 2} are the ijth element of A, and the ith element of y, respectively. If we decouple the
inequalities, we end up with

det(A)p1 ≥ [A]22y1 − [A]12y2, (6.55)
det(A)p2 ≥ −[A]21y1 + [A]11y2. (6.56)

The right-hand sides (RHS) in (6.55) and (6.56) are positive for a feasible E ′ as mentioned
before. Note that if det(A) < 0, there are no positive power pairs that satisfy (6.55) and (6.56)
for the given structure of A in (6.34). Thus, we consider det(A) > 0, which yields

p1 ≥ p′1 = [A]22y1 − [A]12y2

det(A) , (6.57)

p2 ≥ p′2 = −[A]21y1 + [A]11y2

det(A) , (6.58)

or equivalently p = [ p1 p2 ]T ≥ A−1y, where p′1 and p′2 are the intersecting point given
in (6.33). Hence, the intersecting point provides the minimum positive power pairs that satisfy
(6.51) and (6.52). If p′1 and p′2 satisfy the power constraint,E ′ is feasible (Fig. 6.8.a). Otherwise,
E ′ is infeasible (Fig. 6.8.b).
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7 Energy-efficient IGS schemes for
SISO systems

In this chapter, we consider the optimization of EE of IGS schemes in the K-user SISO IC
and SISO UCR and study the potential benefits of IGS from this point of view. As indicated
before, there are fewer optimization parameters in single-antenna systems compared to multiple
antenna systems, which may allow us to propose computationally less expensive algorithms for
single-antenna systems. We first consider the EE region of the K-user SISO IC and propose a
suboptimal numerical solution for the corresponding optimization problem. We then consider
EE maximization for the secondary user (SU) in an UCR system. To this end, we optimize the
power and complementary variance of the SU to maximize its EE while a quality-of-service
constraint for the primary user has to be met. In this case, the EE optimization problem is
simplified with respect to the K-user SISO IC, which enables us to derive the necessary and
sufficient conditions for the optimality of IGS from EE perspective. Our results show that IGS
can improve the EE of the K-user SISO IC and SISO UCR systems. The work, presented in
this chapter, has been published in [100] and [104].

7.1 K-user SISO interference channels
In this section, we propose a suboptimal IGS algorithm for obtaining the EE region of the
K-user IC by employing a sequential optimization method, in which we first optimize the pow-
ers considering PGS, i.e., when the complementary variances are zero. We then optimize the
complementary variances for the given powers. This suboptimal approach guarantees that the
proposed IGS scheme is not worse than the PGS scheme. Our results show that IGS can sub-
stantially enlarge the EE region of the K-user IC.

7.1.1 Problem statement
We aim at deriving the EE region of the K-user IC, which can be cast as maximizing the
weighted minimum EE (WMEE) as [126]

max
{p,q}∈Ω

min
k

{
Uk
αk

= Rk(p,q)
αk (ζpk + Pc)

}
, (7.1)

where (αk)−1 is the corresponding weight for user k, and
∑K
k=1 αk = 1. Moreover, Ω is the

feasibility set of parameters, which is given by (3.38). Solving (7.1) is not straightforward since
it is not a convex optimization problem. In order to solve (7.1), we employ a sequential opti-
mization approach, in which we first obtain the powers that maximize the WMEE problem for
q = 0. To this end, we employ the PGS scheme in [126]. Then, we derive the complementary
variances by optimizing (7.1) for the given power vector.
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7.1.2 Optimization of the transmit powers

In this subsection, we obtain the powers, p, that maximize the WMEE cost function when users
employ PGS, i.e., q = 0. In this case, (7.1) can be simplified to

max
p

min
k

{
Up
k (p)
αk

= Rp
k(p)

αk (ζpk + Pc)

}
, s.t. 0 ≤ pk ≤ Pk, k = 1, 2, · · · , K, (7.2)

where Up
k (p) and Rp

k(p) = log2(1 + γk(p)) are, respectively, the EE and rate of user k when
all users employ PGS. Moreover, γk(p) is the received signal-to-interference-plus-noise ratio
(SINR) at the receiver of user k, which is given by

γk(p) = pk|hkk|2

σ2 + ∑
j 6=k
|hkj|2pj

. (7.3)

The optimization problem (7.2) is not convex, but a suboptimal solution was proposed in [126],
which is based on MM and GDA and obtains a stationary point of (7.2). For the sake of com-
pleteness, we describe the solution in the following.

To obtain a stationary point of (7.2), we first approximate the rates by a lower bound as [126]

Rp
k(p) = log2(1 + γk(p)) ≥ R̃

(l)
k (p) = a(l) log2(γk(p)) + b(l), (7.4)

where

a(l) = γk(p(l−1))
1 + γk(p(l−1)) , (7.5a)

b(l) = log2

(
1 + γk(p(l−1))

)
−
γk(p(l−1)) log2

(
γk(p(l−1))

)
1 + γk(p(l−1)) . (7.5b)

Note that (7.4) holds with equality at γk(p) = γk(p(l−1)). Moreover, the derivatives of the left-
hand side and right-hand side of (7.4) are equal at γk(p(l−1)). Hence, we can derive a stationary
point of (7.2) by solving the following optimization problem iteratively

max
p

min
k

 Ũ
(l)
k (p)
αk

= a(l) log2(γk(p)) + b(l)

αk (ζpk + Pc)

 , s.t. 0 ≤ pk ≤ Pk, k = 1, 2, · · · , K.

(7.6)

The optimization problem (7.6) is not convex; however, we can derive its global optimal solution
by the GDA, which is described in Section 4.1.4, Lemma 4.6. Applying the GDA to (7.6) results
in the following optimization problem at the mth iteration of the GDA

max
p

min
k

a(l) log2(γk(p)) + b(l) − µ(l)αk (ζpk + Pc) (7.7a)

s.t. 0 ≤ pk ≤ Pk k = 1, 2, · · · , K, (7.7b)

where µ(m) = Ũ
(l)
k (p(m−1)) is fixed at each iteration, and p(m−1) is the solution of the (m− 1)th
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iteration. The optimization problem (7.7) can be rewritten as

max
p,e

e (7.8a)

s.t. a(l)
k log2(pk|hkk|2)− a(l)

k log2

σ2 +
∑
j 6=k
|hkj|2pj

+ b
(l)
k − µ(l)αk (ζpk + Pc) ≥ e, ∀k,

(7.8b)

0 ≤ pk ≤ Pk, ∀k. (7.8c)

Now we substitute pk by tk = log2(pk) and rewrite (7.8) as [126]

max
t,e

e (7.9a)

s.t. a(l)
k tk + log2(|hkk|2)− a(l)

k log2

σ2+
∑
j 6=k
|hkj|22tj

+ b
(l)
k − µ(l)αk

(
ζ2tk+Pc

)
≥ e, ∀k,

(7.9b)

0 ≤ tk ≤ log2(Pk), ∀k, (7.9c)

where t = [t1, t2, ..., tk]. The problem (7.9) is convex in {tk}Kk=1 and can be solved efficiently.

7.1.3 Optimizing complementary variances

In this subsection, we maximize the WMEE function over q for the given p(?) obtained in Sec-
tion 7.1.2. The corresponding optimization problem is again nonconvex and difficult to solve.
Thus, we employ an iterative algorithm to find a suboptimal solution. This is accomplished by
approximating the original optimization problem and solving each approximated problem by a
sequence of convex feasibility problems.

For a given power vector p(?), (7.1) is equivalent to

max
q,e

e (7.10a)

s.t. Rk(p(?),q)≥ αk
(
ζp

(?)
k + Pc

)
e, ∀k, (7.10b)

|qk| ≤ p
(?)
k , ∀k. (7.10c)

We can rewrite (7.10) as

max
q,e

e (7.11a)

s.t. −
(
(σ2 + bTkp(?))2 − |gHk q|2

)
22αk

(
ζp

(?)
k

+Pc
)
e + (σ2 + aTk p(?))2− |fHk q|2 ≥ 0, ∀k,

(7.11b)

|qk| ≤ p
(?)
k , ∀k. (7.11c)

The optimization problem in (7.11) is not convex since (7.11b) is not a concave function in q
and e. Similar to the previous section, we first find a lower bound for (7.11b), such that it is a
concave function in q for a fixed e. That is, we approximate the nonconvex part of (7.11b) by
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an affine function of q, using the first-order Taylor expansion at q(m), i.e., [94]

|gHk q|2 ≥ |gHk q(m)|2 + 2R
(
(gHk q(m))HgHk (q − q(m))

)
, (7.12)

where q(m) is the solution obtained at the previous iteration, and R(x) takes the real part of x.
Note that the equality holds only at q = q(m). Furthermore, the derivatives of the left-hand
side and right-hand side of (7.12) are equal at q(m). Under these conditions, the approximated
problem converges to a point satisfying the KKT conditions of (7.11) [6]. By plugging (7.12)
into (7.11), the approximated optimization problem at the mth iteration becomes

max
q,e

e (7.13a)

s.t. Ẽ(m)(q, e) > 0, ∀k, (7.13b)

|qk| ≤ p
(?)
k , ∀k, (7.13c)

where

Ẽ(m)(q, e) = 21+2αk
(
ζp

(?)
k

+Pc
)
e
R
(
(gHk q(m))HgHk (q − q(m))

)
+ 22αk

(
ζp

(?)
k

+Pc
)
e
|gHk q(m)|2

+ (σ2 + aTk p(?))2 − |fHk q|2 − 22αk
(
ζp

(?)
k

+Pc
)
e(σ2 + bTkp(?))2. (7.14)

The optimization problem (7.13) is not convex, but we can obtain its optimal solution, e(m), by
a bisection method, which results in a sequence of feasibility problems [13]. That is, we fix
e = e0 and solve

find q (7.15a)

s.t. Ẽ(m)(q, e0) > 0, ∀k, (7.15b)

|qk| ≤ p
(?)
k , ∀k. (7.15c)

If (7.15) is feasible, e(m) > e0. Otherwise, e(m) < e0. As indicated formerly, the complete
algorithm converges to a point satisfying the KKT conditions of (7.11).

7.1.4 Numerical results

In this subsection, we provide some numerical examples to illustrate the EE improvement
achieved by IGS for the K-user SISO IC. We set σ2 = 10−4 W, ζ = 3, and Pk = 5 mW
for k = 1, ..., K [80]. We average the results over 100 channel realizations. Every channel real-
ization is drawn from a proper complex Gaussian distribution with zero mean and unit variance,
i.e., CN (0, 1, 0).

In Figs. 7.1 and 7.2, we show the fairness point of the EE region boundary, which is given
by αk = 1/K, versus Pc for the 2-user and 3-user IC, respectively. Notice that at this point the
users achieve the same EE, and therefore it is typically denoted as symmetric EE. These figures
show that IGS provides higher average symmetric EE than PGS. As expected, the EE decreases
with Pc. In these figures, we also compare our proposed IGS scheme with an IGS scheme based
on exhaustive search with 5×105 and 107 randomizations (labeled by IGS-E) for the 2-user and
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Figure 7.1: Fairness EE of the 2-user IC versus Pc.
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Figure 7.2: Fairness EE of the 3-user IC versus Pc.

3-user IC, respectively. This provides a hint on how close the proposed IGS suboptimal design
is to the optimal solution. As can be observed, the proposed IGS scheme performs very close to
IGS-E in this scenario. In particular, for the example in Fig. 7.1, our IGS scheme performs only
1.5% and 7.5% worse than the IGS-E at Pc = 1 mW and Pc = 8 mW, respectively. Similarly,
for the example in Fig. 7.2, the IGS-E is 0.3% and 11.2% better than our scheme when Pc = 1
mW and Pc = 8 mW, respectively. Note that the IGS-E can be considered a lower bound for
the optimal IGS solution.

In Fig. 7.3, we show the improvement in the average fairness EE by IGS versus Pc for the 2-
user and 3-user ICs. As can be observed, the improvement by IGS increases with Pc. The reason
is that the optimal powers for PGS increase with Pc, and the EE maximization is simplified to
rate maximization when Pc is very high [15]. Since higher powers result in more improvement
by optimizing over complementary variances [129], the improvement is also increasing with
Pc. We can also observe in Fig. 7.3 that the improvement by IGS is more significant for the
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Figure 7.3: Relative improvement by employing IGS for the fairness EE versus Pc.
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Figure 7.4: Fairness EE of the K-user IC versus K.

3-user IC. This is due to the fact that the higher the number of users is, the more interference
they cause. As a result, the benefits of IGS are potentially higher in the 3-user IC.

In Fig. 7.4, we show the fairness EE versus the number of users,K, for Pc = 4 mW. As can be
seen, the fairness EE decreases with K. In Fig. 7.5, we show the sum of the fariness EE versus
the number of users, K, for Pc = 4 mW. As expected, the sum of the fairness EE decreases
with K, which implies that the overall EE decreases when more users employ the same amount
of resources. In these figures, we can observe that IGS significantly outperforms PGS for every
K, where there is 19% and 56% improvement for K = 2 and K = 4, respectively.

Figure 7.6 shows the EE region of the 2-user IC for Pc = 5 mW and channel realization

H =
[

1.3997e−i0.3803 1.5401ei1.0127

1.2250ei2.4311 0.9361ei0.8844

]
. (7.16)

For this channel realization, the interference link of each receiver is stronger than its corre-
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Figure 7.5: Sum of fairness EE of the K-user IC versus K.
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Figure 7.6: Energy efficiency region of of the 2-user IC for channel realization H in (7.16).

sponding direct link, which yields a strong interference regime. As can be observed, IGS can
significantly enlarge the EE region for this example. It is worth mentioning that IGS does not
provide any gain in noise-limited regimes, for which the interference is negligible. In other
words, not surprisingly the benefits of IGS increase with the interference level.

7.2 Underlay Cognitive Radio

In this section, we consider the EE of IGS in single antenna UCR with ideal devices and perfect
CSI. For this system, we derive a necessary and sufficient condition in closed form for IGS to
be more energy efficient than PGS. We leverage this result to numerically obtain the optimal
transmission parameters by the well-known bisection method. Our results show that IGS can
improve the EE of the SU in UCR when interference is treated as noise.
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Figure 7.7: UCR channel model as a SISO two-user IC.

7.2.1 System model

We consider UCR system as depicted in Fig. 7.7, in which the PU, unaware of the SU, employs
PGS with fixed transmit power P , while the SU can employ IGS. In particular we assume that
the SU transmits a zero-mean complex Gaussian random variable with variance q = E{|x|2},
and circularity coefficient κ = |E{x2}|

E{|x|2} , where κ ∈ [0, 1] [2, 94]. Thus, the rates of the PU and
SU are, respectively, [71, 129]

Rp = 1
2 log2

(
(P |h|2 + σ2 + q|g|2)2 − (qκ|g|2)2

(σ2 + q|g|2)2 − (qκ|g|2)2

)
, (7.17)

Rs = 1
2 log2

(
(σ2 + q|f |2 + P |d|2)2 − (qκ|f |2)2

(σ2 + P |d|2)2

)
, (7.18)

where h, d, g, f , and σ2 are the PU-PU, PU-SU, SU-PU, SU-SU channel coefficients, and noise
variance, respectively.

7.2.2 Energy-Efficient IGS Design

We aim at maximizing the EE of the SU under the constraint that the rate of the PU is above a
threshold. That is [80]

max
0≤q≤Q,0≤κ≤1

Us = Rs

ζq + qc
(7.19a)

s.t. Rp ≥ R = αRmax
p , (7.19b)

where Rmax
p = log2(1 + P |h|2

σ2 ), R, and Q are the maximum rate of the PU, the rate constraint
for the PU and the power budget of the SU, respectively, and α ∈ [0, 1] is the loading factor.

To solve (7.19), we employ the analytical results in [70], which provide the conditions for
the optimality of IGS in terms of achievable rate. It is evident that IGS may improve the EE
of the SU only if IGS is able to increase the rate of the SU. For convenience, we restate these
conditions in the following lemma.

Lemma 7.1 IGS improves the rate of the SU if and only if:

1. η = |g|2(σ2+P |d|2)
|f |2σ2 + P |h|2

σ2(22R−1)
> 1, and

2. Q > q0 = 1
|g|2

(
P |h|2

2R−1
− σ2

)
.
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Proof. Refer to [70, Theorem 1] or [103, Lemma 1].

As mentioned before, the conditions in Lemma 1 are necessary, but not sufficient, for the
optimality of IGS in the terms of EE. Thus, in the following we assume that these conditions are
satisfied when we derive the additional conditions that are required for IGS to be also optimal in
terms of EE. We also relax the power constraint when we study the behavior of the EE function
of the SU. However, we finally consider all conditions for deriving the optimal parameters.

In order to simplify (7.19), we can rewrite (7.19b) in a more convenient way, i.e., by writing
κ as a function of q, as [70]

κ2(q) =

 0 if q < q0
22R(q|g|2+σ2)2−(q|g|2+P |h|2+σ2)2

(1−22R)q2|g|4
if q0 ≤ q ≤ q1,

(7.20)

where

q1 = 1
2|g|2

(
P |h|2

22R−Rmax
p − 1

− σ2
)
, (7.21)

whereRmax
p is defined as in (7.19). Note that the constraint (7.19b) is active only if q0 ≤ q ≤ q1.

If q < q0, (7.19b) is not active and the optimal circularity coefficient is κ∗ = 0. Plugging (7.20)
into (7.18), the SU rate as a function of the transmit power is [70, 103]

Rs(q)=
{

log2

(
1 + |f |2q

σ2+|d|2P

)
if 0 6q6 q0,

1
2 log2 (a+ bq) if q0 6q6 q1,

(7.22)

where

a =1 + |f |4

|g|4 (P |d|2 + σ2)2

(
P 2|h|4

22R − 1
− σ4

)
, (7.23a)

b= 2|f |2
P |d|2+σ2 + 2|f |4

|g|2 (P |d|2+σ2)2

(
P |h|2

22R−1
−σ2

)
. (7.23b)

Note that η > 1 is equivalent to b > 0, which implies that Rs(q) is increasing in q when IGS is
data-rate optimal. The following lemmas characterize the SU EE function.
Lemma 7.2 The EE function of the SU is differentiable in [0, q1] except at q0, where we have
limq→q−0

∂U(q)
∂q

> limq→q+
0

∂U(q)
∂q

. Moreover, the derivative of U(q) with respect to q at q 6= q0 is

∂U(q)
∂q

=


b′

1+b′q (q+q′c)−ln(1+b′q)
(ζ ln 2)(q+q′c)2 if 0 6q< q0,

b
a+bq (q+q′c)−ln(a+bq)

(ζ2 ln 2)(q+q′c)2 if q0 <q6 q1,
(7.24)

where b′ = |f |2
σ2+|d|2P and q′c = qc/ζ .

Proof. Please refer to Section 7.4.

Lemma 7.3 The EE function of the SU is maximized at a unique power q∗, where we have
U(q) < U(q∗) for q 6= q∗.
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Proof. Please refer to Section 7.5.

The following theorem presents the optimality conditions of IGS.

Theorem 7.1 IGS improves the EE of the SU if and only if η > 1, Q > q0 and

b(q0 + q′c) > (2 ln 2)Rs(q0)(22Rs(q0)). (7.25)

Proof. Since U(q) is strictly increasing before the optimal point and strictly decreasing after the
optimal point according to Lemma 3, it is sufficient to consider the behavior of U(q) as q → q+

0
to verify optimality of IGS. U(q) is strictly increasing as q → q+

0 if and only if (7.25) holds.
Moreover, the power budget has to be sufficiently large, i.e., Q > q0.

Note that if b < 0, which is equivalent to η < 1, (7.25) does not hold. Thus, as indicated
before, the optimality conditions for EE are stricter than those for data rate in Lemma 1.

We now obtain the optimal transmission parameters of the SU, which are the solution of
(7.19). According to Theorem 1, IGS is optimal if and only if Q > q0, and (7.25) holds. In
this case, the optimal solution is q∗ = min(Q, q′, q1), where q′ is the solution of ∂U(q)

∂q
= 0 for

q > q0, or equivalently

δ(q) = b(q + q′c)− (a+ bq) ln(a+ bq) = 0. (7.26)

Since there is no closed form solution for (7.26), we solve it numerically. As shown in the proof
of Lemma 3, δ(q) is decreasing and crosses zero at only one point. As a result, if δ(q1) ≥ 0,
the optimal power is q∗ = min(Q, q1). Otherwise, the optimal power can be found using
bisection in the interval [q0, q1]. Finally, the optimal circularity coefficient is obtained by (7.20)
as κ∗ = κ(q∗).

If the conditions in Theorem 1 are not satisfied, PGS is optimal. In this case, the optimal
solution is κ∗ = 0 and q∗ = min(Q, q′′, q0), where q′′ is the solution of ∂U(q)

∂q
= 0 for q < q0, or

equivalently
δ̃(q) = b′(q + q′c)− (1 + b′q) ln(1 + b′q) = 0. (7.27)

Since δ̃(q) exhibits the same properties as δ(q), we can again make use of a bisection method
to find q′′.

7.2.3 Numerical results

In this subsection we provide some numerical examples to illustrate our findings in the SISO
UCR systems. We consider σ2 = 1, P = 20, Q = 10, and the power efficiency ζ = 2.86 as
in [21, 56]. In order to illustrate the impact of the interference, we fix |h|2 = |d|2 = |f |2 = 1
and vary |g|2.

In Fig. 7.8, we show the EE of the SU for qc = 20, and two values of α, namely, α = 0.5
and α = 0.7. As can be observed, IGS (indicated as “I” in the legend) can significantly improve
the EE of the SU when the gain of the cross link exceeds a certain value. Interestingly, the EE
is almost flat for IGS and α = 0.5, showing a large improvement over PGS. This is due to the
fact that, for α ≤ 0.5, the SU can transmit a maximally improper signal with an arbitrary large
transmit power, hence this scenario is no longer being interference-limited.
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Figure 7.8: EE function for different values of α.
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Figure 7.9: Percentage of improvement of EE by employing IGS as a function of |g|.

In Fig. 7.9, we show the relative improvement of EE function by employing IGS for different
α. As can be observed, the improvement is more substantial for lower values of α. However,
IGS is beneficial at a lower interference level when the loading factor, α, increases.

In Fig. 7.10, we consider the effect of constant power consumption for α = 0.7. As can
be observed, higher constant power results in a larger improvement by employing IGS. Indeed,
as qc grows, the EE function becomes dominated by the achievable rate. Since the optimality
conditions for the achievable rate are less stringent than those for EE, the behavior observed in
Fig. 7.10 follows.

Finally, Fig. 7.11 shows the relative improvement of EE function by employing IGS as a
function of α for Q = 20, qc = 20, and different |g|. As can be observed, there is a more
substantial improvement at higher |g| for every value of α. Moreover, the improvement is
maximized at a fixed value α, which decreases with |g|.
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Figure 7.10: Percentage of improvement of EE by employing IGS as a function of |g|.
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Figure 7.11: Percentage of improvement of EE by employing IGS as a function of α.

7.3 Summary

In this chapter, we proposed energy-efficient IGS schemes for the SISO K-user IC and SISO
UCR. We first considered the SISOK-user IC. By maximizing the WMEE, we proposed an IGS
design to operate at different points of the EE region. In order to find a suboptimal solution to
the WMEE problem, we performed a separate optimization of the powers and complementary
variances. For the former, we considered proper signaling and resorted to GDA and SCP to find
a solution to the original non-convex problem satisfying the KKT conditions. The resulting so-
lution was then improved by optimizing over the complementary variances. Again, this resulted
in a non-convex problem, and a suboptimal solution was found by using bisection and SCP. Our
numerical results showed that IGS is more energy efficient than its proper counterpart.

We also addressed the optimization of the EE function of the SU in UCR networks. We
derived necessary and sufficient optimality conditions for IGS in closed form, and proposed
a bisection method to find the optimal transmission parameters of PGS and IGS. Our results
showed that IGS also pays off in terms of EE, although stricter conditions than those for rate
optimization have to be fulfilled.
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7.4 Proof of Lemma 9.2

7.4 Proof of Lemma 9.2
U(q) is continuous in q since Rs(q) is continuous in q [70, 103]. It is also evident that U(q) is
differentiable for q 6= q0, and its derivative is (7.24). In order to prove the lemma, we have to
show that

b′

1+b′q0 (q0 + q′c)− ln(1 + b′q0)
(ln 2)(q0 + q′c)2 >

b
a+bq0 (q0 + q′c)− ln(a+ bq0)

(2 ln 2)(q0 + q′c)2 . (7.28)

We know that log2(a + bq0) = 2 log2(1 + b′q0), or equivalently a + bq0 = (1 + b′q0)2, since
Rs(q) is continuous. Taking this into account, we can simplify (7.28) as

2b′(1 + b′q0) > b, (7.29)

where b′ = |f |2
σ2+|d|2P , and b is defined in (7.23). It is easy to verify that (7.29) holds by replacing

the corresponding parameters into it, which concludes the proof.

7.5 Proof of Lemma 9.3
In order to prove the lemma, it is sufficient to show that the EE function of the SU is strictly
increasing before the optimal point and strictly decreasing after the optimal point. Let us first
consider the case q0 < q ≤ q1. In this case, U(q) is strictly increasing if and only if its derivative
is non-negative, which yields

δ(q) = b(q + q′c)− (a+ bq) ln(a+ bq) > 0. (7.30)

The function δ(q) decreases with q if and only if

b < b ln(a+ bq) + b, (7.31)

which always holds since a+ bq > 1. Therefore, if limq→q+
0

∂U(q)
∂q

< 0, U(q) is always decreas-
ing in q0 < q ≤ q1. Otherwise, there is a unique q′ such that U(q) is increasing in q0 < q ≤ q′

and decreasing in q > q′. However, it might happen that q′ > q1, in which case U(q) is strictly
increasing in q0 < q ≤ q1.

Let us now consider the case q < q0. U(q) is increasing if and only if

δ̃(q) = b′(q + q′c)− (1 + b′q) ln(1 + b′q) > 0. (7.32)

First, it is easy to verify that the above condition holds for q = 0. In order to find out how δ̃(q)
behaves as q increases, we analyze its derivative with respect to q. Thus, we obtain that δ̃(q) is
decreasing in q if and only if

b′ < b′ ln(1 + b′q) + b′, (7.33)

which is always true since 1 + b′q > 1. This means that there exists q′′ such that U(q) is
increasing in q < q′′ and decreasing in q > q′′. Again, it might happen that q′′ > q0, in which
case U(q) is strictly increasing in the interval 0 ≤ q < q0.

Since by Lemma 2, limq→q−0
∂U(q)
∂q

> limq→q+
0

∂U(q)
∂q

, this behavior is maintained when regard-
ing the whole interval 0 ≤ q ≤ q1, which concludes the proof.
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8 New IGS schemes for the 2-user
SISO Interference Channels

In previous chapters, we assume that transmitters have access to perfect and global instanta-
neous channel state information at the transmitter side (CSIT). In this chapter, we study the
performance of IGS in the 2-user SISO IC and the Z-IC with realistic assumptions regarding
CSIT. In Section 8.1, we assume that transmitters have access to imperfect instantaneous CSIT
and derive the achievable worst-case rate region of the 2-user IC and the Z-IC. In the 2-user
SISO IC and Z-IC, we are able to simplify the optimization problems and derive suboptimal
closed-form solutions for the rate region as will be shown in this chapter. Moreover, in Section
8.2, we study the achievable ergodic rates of IGS schemes over the 2-user fading IC with TIN.
We derive closed-form expressions for the ergodic rates for both users for the case where at
most one user employs IGS (denoted as PGS/IGS scheme). In this chapter, we show that IGS
can be also beneficial with realistic assumptions regarding CSIT. The results of this chapter
have been presented in [102, 105].

8.1 Robust IGS with imperfect CSIT

In this section, we propose robust IGS designs for the 2-user IC and Z-IC. Assuming imperfect
CSIT, we tackle the worst-case rate region problem and derive closed-form suboptimal solutions
to operate at different points of the rate region. We derive sufficient conditions for the optimality
of IGS. Our numerical results show that IGS can enlarge the worst-case achievable rate region
of the 2-user and Z-IC with imperfect CSIT.

8.1.1 Channel uncertainty model

Throughout this section, we assume perfect channel state information (CSI) at the receivers
but imperfect CSI at the transmitters. It is reasonable to assume that a receiver knows the CSI
perfectly since acquiring CSI at the receiver side is relatively easy with training sequences or
applying blind/semi-blind estimation methods [89, 97, 115]. On the other hand, the channel
information is typically quantized and then sent to the transmitters through a noisy feedback
link. Therefore we have imperfect CSIT [89, 95, 97, 115, 118]. In this chapter, we assume that
the true channel, hij for i, j ∈ {1, 2}, lies in a vicinity of the channel estimate at the transmitter
side, ĥij , i.e., ĥij = hij + eij , where eij accounts for all sources of error between the estimate
and the true channel. We assume that the true channel hij belongs to an uncertainty set Eij ,
which includes ĥij . We do not restrict our model to any specific error source and consider an
arbitrary model for the uncertainty set, as illustrated in Fig. 8.1.
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Figure 8.1: Arbitrary channel uncertainty region.

8.1.2 Problem statement

In this chapter, we aim at deriving the boundary of the robust rate region for a given channel
uncertainty set. In the 2-user SISO IC with TIN and IGS, the achievable rate of user i ∈ {1, 2}
is [71, 129]

Ri = 1
2 log2


(
σ2 +∑2

j=1 pj|hij|2
)2
−
∣∣∣∑2

j=1 pjκj|hij|2ej(2]hij+φj)
∣∣∣2

(pı̄|hīı|2 + σ2)2 − (pı̄κı̄|hīı|2)2

 , (8.1)

where pj , κj , and φj for j = 1, 2, are, respectively, the transmission power, circularity coeffi-
cient and phase of the complementary covariance of the signal transmitted by user j. Moreover,
|hji| and ]hji for i, j ∈ {1, 2} are the magnitude and phase of the channel from the ith trans-
mitter to the jth receiver, respectively. Note that the rate expressions in (8.1) are the maximum
rates that can be supported by the channels.

In order to derive the robust rate region, we employ the definition of the Pareto boundary
for the rate region, which is defined in Section 4.3 and Definition 4.1. Employing the concept
of worst-case robustness [35, 88, 114], we define the boundary of the robust rate region as
the Pareto-optimal points that are achievable for all possible channels inside the uncertainty
region [82]. Therefore, the robust rate region is the union of all these achievable rate tuples, i.e.,

R =
⋃
%∈Ω

( min
hij∈Eij

R1, min
hij∈Eij

R2), (8.2)

where % ={pi, κi, φi, i = 1, 2}, and Ω={pi, κi, φi : 0 ≤ pi ≤ Pi, 0 ≤ κi ≤ 1, 0 ≤ φi ≤ 2π, i =
1, 2} are the design parameters, and the feasible set of the design parameters, respectively, with
Pi being the power budget of user i. Hereafter, we represent the worst-case rate of user i by
Rw
i , min

hij∈Eij
Ri for i ∈ {1, 2}.

In order to derive the boundary of the robust rate region, we do not need to optimize over all
the six design variables, i.e., the powers, circularity coefficients, and the phases of the comple-
mentary variances. According to (8.1), the achievable rates are functions of the phase difference
between the phases of the complementary variances, i.e., ∆φ = φ1 − φ2. The reason is that, as
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can be observed through (8.1), Ri depends on the phase parameters only through the term

t ,
∣∣∣piκi|hii|2ej(2]hii+φi) + pı̄κı̄|hīı|2ej(2]hiı̄+φı̄)

∣∣∣2 ,
=
∣∣∣piκi|hii|2 + pı̄κı̄|hīı|2ej(2(]hiı̄−]hii)+φı̄−φi)

∣∣∣2 (8.4)

where i, ı̄ ∈ {1, 2} and ı̄ 6= i. Furthermore, it is shown in [87, Theorem 2] that, in every point
on the Pareto-optimal boundary of the rate region for this problem, at least one user transmits
with maximum power. As a result, we can further simplify the problem by taking the power
of one user equal to its maximum power, and solve two optimization problems with only four
optimization parameters, namely the two circularity coefficients, ∆φ, and the power of one of
the users.

Let us denote the user that transmits with maximum power by i. The boundary of the robust
rate region, when user i transmits with maximum power, can be derived by solving

max
∆φ, 0≤pı̄≤Pı̄, 0≤κ1,κ2≤1

Rw
ı̄ s.t. Rw

i ≥ αRw
i,max, (8.5)

for i, ı̄ ∈ {1, 2} and i 6= ı̄, and a fixed α ∈ [0, 1], whereRw
i,max is the maximum worst-case rate of

user i, which is obtained with pı̄ = 0 and PGS [24]. That is, we maximize the worst-case rate of
user ı̄ for every feasible worst-case rate of user i. It is worth mentioning that deriving the optimal
solution of (8.5) in polynomial time is not possible in general since (8.5) is not convex and has
an infinite number of non-convex constraints. These infinite number of constraints could be
reduced to a single one if an expression for the worst-case channels within the uncertainty sets
were identified. However, this is also not possible for arbitrary uncertainty regions. To the best
of our knowledge, even with perfect CSIT, there are only numerical approaches that provide a
suboptimal solution, e.g., [129], for the rate region of the 2-user IC.

8.1.3 Robust design for the 2-user IC

In this section, we propose a robust design for the 2-user IC by simplifying the original problem
(8.5). In particular, by allowing only one user to employ IGS, i.e., by setting either κ1 or κ2
to zero, we can easily find the worst-case channels for arbitrary uncertainty sets. In turn, an
optimization problem that approximates (8.5) is obtained, which, although still non-convex, its
global optimal solution admits a closed form.

If at most one of the users employs IGS, the achievable rates are independent of the phases
of the channel coefficients since Ri depends on the phase parameters only through the term t in
(8.4). Thus, if κi = 0 or κı̄ = 0, t is independent of the phases of the channel coefficients and as
a result, these phases are not required at the transmitter side in order to optimize the rate. Since
our proposed robust algorithm is independent of the phases of the channels, it requires only
the worst-case channel gains and consequently can be applied to any uncertainty model. In the
following, we first derive the worst-case channel gains and then derive the optimal parameters
in closed-form.

It is easy to see that the rate of each user is a strictly increasing function of the gain of the
corresponding direct link, i.e., ∂R1

∂|h11|2 > 0 and ∂R2
∂|h22|2 > 0. Moreover, the rates of users are

decreasing functions of the interference channel gain, i.e., ∂R1
∂|h12|2 ≤ 0 and ∂R2

∂|h21|2 ≤ 0. Thus,
the worst-case channel gains are |h̃11|2 = min

x∈E11
|x|2, |h̃22|2 = min

x∈E22
|x|2, |h̃21|2 = max

x∈E21
|x|2, and
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|h̃12|2 = max
x∈E12

|x|2.

To derive the boundary of the robust rate region, we have to optimize only two parameters,
i.e., the power of the user that may not transmit with maximum power, and the circularity
coefficient of the user that may employ IGS. Thus, every point of the robust rate region that is
achievable by this scheme can be derived by one of the following strategies:

1. Strategy 1: The PGS user transmits with maximum power,

2. Strategy 2: The IGS user transmits with maximum power.

Let us denote the rate region achieved by the kth strategy asRk. The robust rate region achieved
by the proposed scheme is the union of the achievable rate regions of the above strategies, i.e.,
R = ⋃2

k=1Rk. It is worth mentioning that Rk is also a union of two different strategies since
there is no difference between users and either of them can be the IGS user. In the following
subsections, we derive the Pareto-optimal achievable rate region of each strategy.

Achievable rate region for strategy 1

In strategy 1 the PGS user transmits with maximum power. Without loss of generality, let us
assume that the IGS user is user ı̄. Then, the optimization problem is

max
0≤pı̄≤Pı̄, 0≤κı̄≤1

Rw
ı̄ (pı̄, κı̄) (8.6a)

s.t. Rw
i (pı̄, κı̄) ≥ αRw

i,max, (8.6b)

for i, ı̄ ∈ {1, 2} and i 6= ı̄, and a fixed α ∈ [0, 1], whereRw
i,max = log2(1+ Pi|h̃ii|2

σ2 ). Note that the
worst-case rates are derived by replacing the worst-case channel gains in (8.1). The achievable
robust rate region can be derived by varying α ∈ [0, 1]. In [70], a similar scenario in the context
of cognitive radio was studied, and (8.6) was solved. Thus, we can apply the results in [70] to
obtain the Pareto-optimal parameters for strategy 1 as presented in the following theorem.
Theorem 8.1 Let us define γi(α) = 2αRwi,max−1. The Pareto-optimal parameters for transmis-
sion strategy 1 are given by

κı̄ =


0 if |h̃iı̄|2(σ2+Pi|h̃ı̄i|2)

|h̃ı̄ı̄|2σ2 ≤ 1− γi(1)
γi(2α) ,

κ(?) if |h̃iı̄|2(σ2+Pi|h̃ı̄i|2)
|h̃ı̄ı̄|2σ2 > 1− γi(1)

γi(2α) and Pı̄(1) ≤ Pı̄,

1 otherwise,

(8.7)

pı̄ = Pı̄(κı̄), (8.8)

where

κ(?) =

√√√√1− σ2

pı̄|h̃īı|2

[(
γi(2)
γi(2α) − 1

)
σ2

pı̄|h̃īı|2
− 2(1− γi(1)

γi(2α))
]
, (8.9)

Pı̄(κ) =

√√√√(1− γi(1)

γi(2α))2 + (1− κ2)
(
γi(2)
γi(2α) − 1

)
− (1− γi(1)

γi(2α))
 σ2

|h̃īı|2(1− κ2)
,

(8.10)

Proof. Please refer to Eq. (11) and Theorem 1 in [70] for more details.
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Achievable rate region for strategy 2

In strategy 2 the IGS user transmits with maximum power. Without loss of generality, let us
assume that the IGS user is user ı̄. Then, the optimization problem is

max
0≤pi≤Pi, 0≤κı̄≤1

Rw
i (pi, κı̄) (8.11a)

s.t. Rw
ı̄ (pi, κı̄) ≥ αRw

ı̄,max, (8.11b)

for i, ı̄ ∈ {1, 2} and i 6= ı̄, and a fixed α ∈ [0, 1], where Rw
ı̄,max = log2(1 + Pı̄|h̃ı̄ı̄|2

σ2 ). Similar to
(8.6), the robust achievable rate region can be derived by varying α ∈ [0, 1]. The optimization
problem (8.11) resulting from strategy 2 has not been considered before in the literature. We
present the Pareto-optimal parameters for this strategy in the subsequent theorem.

Theorem 8.2 The Pareto-optimal signaling scheme for strategy 2 is IGS if and only if one of
the following conditions is met. Additionally, the Pareto-optimal parameters for each condition
are provided.

1. Pi ≤ Pi(1),⇒ pi = Pi and κı̄ = 1,

2. Pi > Pi(1), (ζ1β2 − ζ2β1) < 0 and τ < 0,⇒ pi = Pi(1) and κı̄ = 1,

3. Pi > Pi(1), (ζ1β2 − ζ2β1) < 0, τ > 0, and P(0) > x
(?)
1 ,⇒ pi = max(x(?)

1 ,Pi(1)) and
κı̄ = K(pi),

4. Pi > Pi(1), (ζ1β2 − ζ2β1) > 0, τ < 0, Pi(1) < x
(?)
2 , and Rw

i (P(1)) > Rw
i (P(0)),

⇒ pi = Pi(1) and κı̄ = 1,

where i and ı̄ are the users that employ PGS and IGS in the transmission strategy 2, respectively,
γı̄(·) is defined as in Theorem 8.1, and

x
(?)
1 =

−ζ1τ −
√

(ζ1τ)2 − β1τ(ζ1β2 − ζ2β1)
ζ1β2 − ζ2β1

, (8.12)

x
(?)
2 =

−ζ1τ +
√

(ζ1τ)2 − β1τ(ζ1β2 − ζ2β1)
ζ1β2 − ζ2β1

, (8.13)

Pi(κ) = 1
|h̃ı̄i|2

1 +
√

1 + γı̄(2α)(1− κ2)
γı̄(2α)

Pı̄|h̃ı̄̄ı|2 − σ2

 , (8.14)

K(pi) =

√√√√1− (σ2 + pi|h̃ı̄i|2)2

P 2
ı̄ |h̃ı̄̄ı|4

γı̄(2α) + 2σ
2 + pi|h̃ı̄i|2

Pı̄|h̃ı̄̄ı|2
, (8.15)

Rw
i (pi) = 1

2log2

(
1 + ζ1p

2
i + β1pi

ζ2p2
i + β2pi + τ

)
. (8.16)
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Moreover, β1, ζ1, β2, ζ2 and τ are

β1 = 2|h̃ii|2(σ2 + Pı̄|h̃īı|2), ζ1 = |h̃ii|4,

β2 = 2(σ2γı̄(2α)− Pı̄|h̃ı̄̄ı|2) |h̃īı|
4|h̃ı̄i|2

|h̃ı̄̄ı|4
, ζ2 = |h̃īı|

4|h̃ı̄i|4

|h̃ı̄̄ı|4
γı̄(2α),

τ = σ4+2σ2Pı̄|h̃īı|2 − 2σ2Pı̄
|h̃ı̄i|2

|h̃ı̄̄ı|2
+ σ4γı̄(2α) |h̃īı|

4

|h̃ı̄̄ı|4
. (8.17)

Proof. Please refer to Section 8.4.

Note that if none of the conditions in Theorem 8.2 is fulfilled, PGS is Pareto-optimal for both
users in strategy 2. Moreover, the parameters of the users can be easily derived through (8.6)
by taking κı̄ = 0.

The implication of Theorem 8.2 can be understood with the following example. If, e.g., user
2 employs IGS, it causes less interference to user 1. Thus, user 1 can decrease its transmission
power in order to meet the rate constraint of user 2 in (8.11b). According to Theorem 8.2, this
power reduction of user 1, alongside with employing IGS by user 2, may even result in a rate
increase for user 1. In other words, IGS allows the users to decrease the transmission power
and simultaneously increase the achievable rate, hence, improving as well the power efficiency.
This is due to the fact that IGS can mitigate the negative effect of the interference, which may
lead to an overall improvement of the system performance.

8.1.4 Robust design for the Z-IC

In this section, we consider the Z-IC and derive a closed-form robust design. The results
in Section 8.1.3 can be applied to the Z-IC by taking h21 = 0. However, for this simpli-
fied scenario it is possible to obtain a better closed-form robust design for the Z-IC if we
allow both users to employ IGS. When both users employ IGS, the phases of the channels
are relevant for the optimal strategy. Thus, even though problem (8.5) is simpler for the Z-
IC, it is still in general difficult to obtain the worst-case channels when both magnitude and
phase are considered. Therefore, the constraint set of problem (8.5) cannot be reduced to
a finite number of constraints and hence it is still difficult to solve in its current form. To
overcome this, we approximate the original problem by considering a surrogate uncertainty
region in which magnitude and phase are decoupled, so that their worst realizations can eas-
ily be found. It is also worth mentioning that this approach gives us a lower bound for the
worst-case rates of problem (8.5). Note that the surrogate uncertainty region must contain the
original region as illustrated in Fig. 8.2 in order for the constraints of (8.5) to be fulfilled
after solving the approximated problem. Thus, we consider the enlarged uncertainty region
Ẽij ={x ∈ C : |x| = |ĥij|+ e|hij |,]x = ]ĥij + e]hij , |e|hij || ≤ δij, |e]hij | ≤ θij}, where δij and
θij are the largest uncertainties in magnitude and phase, respectively.

The enlarged uncertainty region permits decoupling the errors in phase and magnitude and
hence allows us to find the worst-case phases and the worst-case channel gains independently.
It is worth mentioning that, since the errors in phase and magnitude are not necessarily indepen-
dent, a channel realization with both the worst-case channel phase and worst-case channel gains
might not be in the original set. Hence, this approach provides a lower bound for the worst-case
rates of (8.5). Note that the enlarged uncertainty region includes the original region as a subset,
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8.1 Robust IGS with imperfect CSIT

Figure 8.2: Enlarged channel uncertainty region for the uncertainty region in Fig 8.1.

and the bounds of the errors in phase and magnitude are the same for both uncertainty regions.
Thus, this approach can be applied to any arbitrary uncertainty model.

In the Z-IC, since user 1 does not interfere with user 2, the optimal design parameters for
user 1 are those maximizing its rate. Thus, every point in the Pareto boundary of the robust rate
region can be achieved when user 1 transmits with maximum power, i.e., p1 = P1. Hence, in
the rest of this section, we consider p1 = P1. The rate of user 2 in the Z-IC can be derived by
taking h21 = 0 in (8.1) as

R2 = 1
2 log2

(
(p2|h22|2 + σ2)2 − (κ2p2|h22|2)2

σ4

)
. (8.18)

Moreover, the robust rate region of the Z-IC for the enlarged uncertainty region can be derived
by replacing Eij with Ẽij in (8.2) as

R̃ =
⋃
%∈Ω

( min
hij∈Ẽij

R1, min
hij∈Ẽij

R2), (8.19)

where R̃ ⊂ R. In the following, we first derive the worst-case channel coefficients in the
enlarged uncertainty region, which are the solution of the minimization part in (8.19). Then, we
will derive the transmission parameters that attain the boundary of the robust rate region for the
enlarged uncertainty region, which is the solution of the optimization problem

max
∆φ,0≤p2≤P2,0≤κ1,κ2≤1

Rw
2 , s.t. Rw

1 ≥ αRw
1,max, (8.20)

for a fixed α ∈ [0, 1]. The robust rate region can be derived by varying α ∈ [0, 1].
The worst-case gains are the same as those derived in Section 8.1.3, i.e., the minimum channel

gain in the uncertainty region Ẽij for the direct links, and the maximum channel gain in Ẽij for
the interference links. We rewrite them here as |h̃11|2 = min

x∈E11
|x|2, |h̃22|2 = min

x∈E22
|x|2, and

|h̃12|2 = max
x∈E12

|x|2.

In the following, we derive the worst-case phase error along with the Pareto-optimal phases
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Figure 8.3: Function cos(∆φ′ + ∆ch) for two examples with θ = 0.5, ∆φ′ = π (red) and ∆φ′ = 5
(black).

φ1 and φ2 for the given worst-case channel gains. Through (8.1), it can be observed that R1
depends on these quantities only through the term

A ,
∣∣∣p1κ1|h̃11|2ej(2]h11−2]h12+φ1−φ2) + p2κ2|h̃12|2

∣∣∣2 , (8.21)

while the rate of user 2 is independent of them (see (8.18)). Replacing the true values by the
estimated values, we have 2]h11 − 2]h12 = 2]ĥ11 − 2]ĥ12 ± 2e]h11 ± 2e]h12 . Let us define
∆ch , 2e]h11 + 2e]h12 ∈ [−θ, θ] as the aggregate uncertainty in phase, where θ = 2θ11 + 2θ12
is the magnitude of the maximum aggregate phase error. Note that θ = π means that there is no
reliable information about the phase of the channels. Finally, the term A can be written as

A = p2
2κ

2
2|h̃12|4 + 2p1κ1p2κ2|h̃12|2|h̃11|2 cos(∆ch +∆φ′) + p2

1κ
2
1|h̃11|4, (8.22)

where∆φ′ = (φ1 +2]ĥ11)−(φ2 +2]ĥ12). In the following lemma, we state the Pareto-optimal
phase parameters.

Lemma 8.1 In the Z-IC, each point of the boundary of the rate region defined in (8.19) can be
achieved by φ1 = 0 and φ2 = 2]ĥ11− 2]ĥ12 + π. Furthermore, the corresponding worst-case
channel phases yield ∆(?)

ch = θ.

Proof. Since∆ch and∆φ′ only affectR1, their values describing the boundary of the rate region
defined in (8.19) can be obtained as the solution of the maximin problem

(∆(?)
φ′
, ∆

(?)
ch ) = arg max

∆
φ
′

min
∆ch

(R1) (∗)= arg min
∆
φ
′

max
∆ch

(A) = arg min
∆
φ
′

max
∆ch

(cos(∆φ′ +∆ch)).

(8.23)

The equality (∗) in (8.23) holds since R1 is a function of the phases only through A. Moreover,
R1 decreases with A. In order to solve this problem, we consider ∆φ′ in a period, i.e., 0 ≤
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∆φ′ < 2π, as depicted in Fig 8.3. Thus, the solution of the maximization problem in (8.23) is

∆
(?)
ch =

{
max(−∆φ′ ,−θ) for 0 ≤ ∆φ′ < π,

min(2π −∆φ′ , θ) for π ≤ ∆φ′ < 2π. (8.24)

This is because cos(φ) is decreasing in the interval [0, π], increasing in the interval [π, 2π] and
maximized at φ = 0, or φ = 2π. Moreover, since cos(φ) is decreasing (increasing) in the
interval [0, π] ([π, 2π]), it can be easily seen through Fig. 8.3 that ∆(?)

φ′
should be such that

∆φ′ + ∆ch is as close as possible to π, which results in ∆φ′ = π. In other words, the solution
of the minimax problem is ∆(?)

φ′
= π and ∆(?)

ch = θ. Through (8.18) and (8.1), we can see
that the rate of user 2 is independent of the phase parameters, and the rate of user 1 is only a
function of the phase difference. Thus, we can, without loss of generality, choose φ1 = 0 and
φ2 = 2]ĥ11 − 2]ĥ12 + π.

We now derive the optimal transmit powers and circularity coefficients for the worst-case
channels, so that the boundary of the rate region (8.19) is attained. Since user 1 does not
interfere with user 2, the optimal design parameters for user 1 maximize its rate. Thus, its
circularity coefficient can be obtained as

κ
(?)
1 = arg max

κ1
(Rw

1 ) = arg min
κ1

(
A(?)

)
, (8.25)

where A(?) is obtained by taking the worst-case channels in (8.22). Since A∗ is convex in κ1,
the solution of (8.25) can be derived as

∂A(?)

∂κ1
= −2P1p2κ2|h̃12|2|h̃11|2 cos θ + 2P 2

1 κ1|h̃11|4 = 0. (8.26)

Taking the feasible set of κ1 into account, we obtain

κ
(?)
1 = min

1,
[
p2|h̃12|2

P1|h̃11|2
κ2 cos θ

]+ . (8.27)

From this equation we can readily observe that, if the total uncertainty in phase is equal to or
greater than π

2 (i.e., θ ≥ π
2 ), user 1 should transmit proper Gaussian signals. In such a case,

the resulting problem becomes equivalent to the proposed robust algorithm for strategy 1 in
Section 8.1.3, in which only one of the users employs IGS. Thus, in the following, we assume
that θ < π/2 and derive a condition for the optimality of IGS for user 2 in terms of θ, as well as
its transmission parameters.

Plugging into (8.1) the optimal transmission parameters of user 1 yields the worst-case rates

Rw
1 (p2, κ2) =


1
2 log2

(
1 + 2P1|h̃11|2(σ2+p2|h̃12|2(1+κ2 cos θ))

p2
2|h̃12|4(1−κ2

2)+2σ2p2|h̃12|2+σ4

)
if κ

(?)
1 = 1,

1
2 log2

(
(P1|h̃11|2+p2|h̃12|2+σ2)2

−p2
2|h̃12|4κ2

2 sin2 θ

p2
2|h̃12|4(1−κ2

2)+2σ2p2|h̃12|2+σ4

)
if κ

(?)
1 < 1,

(8.28a)

Rw
2 (p2, κ2) =1

2 log2

(
p2

2|h̃22|4σ−4(1− κ2
2) + 2p2|h̃22|2σ−2 + 1

)
. (8.28b)
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The Pareto-optimal boundary for the enlarged uncertainty region can then be obtained by rewrit-
ing (8.20) as

maximize
0≤p2≤P2,0≤κ2≤1

Rw
2 (p2, κ2), (8.28a)

s.t. Rw
1 (p2, κ2) ≥ αRw

1,max, (8.28b)

where α ∈ [0, 1] is fixed and Rw
1,max is the maximum worst-case achievable rate for user 1,

which is obtained with p2 = 0 and PGS [24]. By varying α between 0 and 1, the solution of
(8.28) provides every point of the robust rate region boundary in (8.19) [71]. Unfortunately, the
optimization problem (8.28) is not convex due to constraint (8.28b). Furthermore, the results
in [71] for perfect CSIT cannot be applied due to the phase error θ. In the following lemma, we
rewrite constraint (8.28b) in a more convenient form to simplify the optimization problem.
Lemma 8.2 The constraint (8.28b) is simplified to p2 ≤ q(κ2, θ), where q(κ2, θ) is

q(κ2, θ) =



P1|h̃11|2−σ2(γ1(2α)+1)+
√

(P1|h̃11|2−σ2γ1(2α))2−η(σ4(γ1(2α)+1)−2P1|h̃11|2σ2−P 2
1 |h̃11|4)

|h̃12|2η
if κ1 < 1,

P1|h̃11|2(1+κ2 cos θ)−σ2γ1(2α)+
√
P 2

1 |h̃11|4(1+κ2 cos θ)2−2P1|h̃11|2γ1(2α)σ2κ2(cos θ+κ2)+γ2
1(2α)κ2

2σ
4

|h̃12|2γ(2α)(1−κ2
2)

if κ1 = 1,
(8.29)

where η = ((γ(2α) + 1)(1− κ2
2)− 1 + κ2

2 sin2 θ) and γ1(x) , 2xRw1,max − 1.

Proof. Constraint (8.28b) can be simplified to a quadratic function of p2 by plugging (8.28b)
into (8.28b) as

p2
2|h̃12|4η − 2P1|h̃11|2σ2 − P 2

1 |h̃11|4 + σ4(γ1(2α) + 1)
−2p2|h̃12|2

[
P1|h̃11|2 − σ2γ1(2α)

]
≤ 0 if κ1 < 1,

p2
2|h̃12|4(1− κ2

2)γ1(2α) + γ1(2α)σ4 − 2P1σ
2|h̃11|2

+2p2|h̃12|2
[
σ2γ1(2α)− P1|h̃11|2(1 + κ2 cos θ)

]
≤ 0 if κ1 = 1.

(8.30)

We consider (8.30) as two quadratic polynomials in p2 and take the positive root in (8.30), which
results in (8.29).

According to Lemma 8.2, we can combine the power constraint and (8.28b) into 0 ≤ p2(θ) ≤
min{P2, q(κ2, θ)}. Similar to [71], we must set p2(θ) = min{P2, q(κ2, θ)} in order to achieve
the global optimum of (8.28). As a result, the rate of user 2 is only a function of κ2 as

Rw
2 (κ2, θ) = 1

2 log2

(
p2

2(κ2, θ)|h̃22|4(1− κ2
2)

σ4 + 2p2(κ2, θ)|h̃22|2

σ2 + 1
)
. (8.31)

Finally, the optimization problem in (8.28) is simplified to

maximize
0≤κ2≤1

Rw
2 (κ2, θ). (8.32)

Notice that the difference between this problem and the one solved in [71] is in the error term
θ, which makes its solution not straightforward as the results in [71] are not applicable. Taking
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θ = 0 makes (8.32) equivalent to the problem considered in [71].
Theorem 8.3 The optimal transmission strategy for user 2 is IGS if P2 > q(0, θ) and

|h̃12|2

|h̃22|2
>
σ2γ1(2α)− P1|h̃11|2 − (P1|h̃11|2

γ1(α) − σ
2) cos2 θ

σ2 (γ1(2α) + cos2 θ) . (8.33)

In this case, the optimal circularity coefficient of user 2 is

κ =
{

1 if q(1, θ) ≤ P2,
κmax otherwise, (8.34)

where κmax is the minimum value of κ2 that results in P2 ≤ q(κmax, θ) and γ1(x) , 2xRw1,max−1.

Proof. Please refer to Section 8.5.

Remark 8.1 According to Theorem 8.3, even if there is no reliable phase information, i.e.,
when θ is large, the optimal transmission strategy for user 2 may be IGS if the interference level
is sufficiently high, i.e., if (8.33) holds.

Notice that the condition presented in Theorem 8.3 is sufficient, but may not be necessary.
As shown in Section 8.5, condition (8.33) is obtained by showing that Rw

2 (κ2, θ) is increasing
at κ2 = 0 if and only if this condition holds. However, IGS might provide a minor gain when
(8.33) does not hold. As shown in [71], there is only a small performance advantage of IGS in
perfect CSI when Rw

2 (κ2, θ) is not increasing around zero, which vanishes as κ1 approaches 0.
Therefore, the solution presented in Theorem 8.3 provides an almost-optimal characterization
of the Pareto boundary for the enlarged uncertainty region.

8.1.5 Numerical Results

In this subsection we illustrate our findings with some numerical examples. Throughout this
section, for the sake of illustration, we consider a proper complex Gaussian distribution for the
aggregate CSI error similar to the models in [19, 88, 118]. Nevertheless, our proposed design
can be applied to any uncertainty set, as mentioned before. We consider the uncertainty region
as the region where the true channel lies with probability ψ. Thus, the uncertainty region for
the SISO channel is a circle centered at ĥij , as illustrated in Fig. 8.4. The radius of this circle is

δij =
√
−σ2

ij ln(1− ψ), (8.35)

where σ2
ij is the variance of the channel estimation error. Hence, the uncertainty set for channel

hij is Eij = {x ∈ C : x = ĥij + eij, |eij|2 ≤ δ2
ij}. Moreover, the enlarged uncertainty region

is Ẽij = {x ∈ C : |x| = |ĥij| + e|hij |,]x = ]ĥij + e]hij , |e|hij || ≤ δij, |e]hij | ≤ θij}, where
θij = arcsin δij

|ĥij |
as depicted in Fig. 8.4.

In this section, we consider σ2 = 1 and P = P1 = P2, unless it is explicitly mentioned.
We also assume the same variance of the estimation error for all links, i.e., σ2

eij
= σ2

e for
i, j ∈ {1, 2} unless it is explicitly mentioned. That yields the same size of the uncertainty
region for all channels, i.e., δij = δ for i, j ∈ {1, 2}, where δ is given by (8.35). Furthermore,
we compare our proposed robust designs with the existing non-robust designs [71] and [129]
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Figure 8.4: Channel uncertainty and enlarged channel uncertainty regions when the CSI errors are mod-
eled as proper Gaussian.

for the Z-IC and 2-user IC, respectively. We choose the joint covariance and complementary
covariance algorithm in [129] as a non-robust design for 2-user IC. Moreover, the robust PGS
is the PGS design for the worst-case channels gains.

In the following subsections we provide two different types of numerical examples. In the
first type, we provide results averaged over a large number of channel realizations for a specific
point of the rate region. For example, we derive the average sum-rate for a specific point of the
rate region averaged over 200 channel realizations in Figs. 8.5, 8.8 and 8.9. For this type of
numerical examples, we employ the Monte Carlo method and generate the channels randomly.
In each channel realization, each channel estimate is drawn from a proper complex Gaussian
distribution with zero mean and unit variance. In the second type, we derive the whole rate
region for a specific channel realization. It is worth mentioning that both types of numerical
examples are common for rate region analysis (please refer to [69, 71, 129]).

Numerical results for the 2-user IC

In this subsection, we present the results for the 2-user IC. The proposed and existing techniques
are denoted as follows.

• R-IGS: Our proposed robust IGS in Section 8.1.3.

• R-PGS: Robust PGS.

• N-IGS: Non-robust IGS, which is derived by our proposed scheme for the 2-user IC
without considering errors in CSI.

• 2-IGS: The joint variance and covariance IGS algorithm in [129].

• TS-I: Robust IGS with time sharing.

• TS-P: Robust PGS with time sharing.

In order to evaluate the effect of phase error on the transmitter side, we assume perfect CSI
for the channel gains in Fig. 8.5. This figure shows the average sum-rate for signal-to-noise-
ratio (SNR), i.e., P

σ2 , equal to 10 dB versus the accuracy of the phase information. We consider
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Figure 8.5: Average sum-rate of the 2-user IC for SNR= 10dB versus the phase error.
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Figure 8.6: Robust rate region of the 2-user IC for δij = 0.5 for i, j ∈ {1, 2} and i 6= j.

a specific point in the rate region, which is given by the fairness point in the algorithm in [129].
In order to provide a fair comparison, we first derive the rates by the algorithm in [129] and then
fix the rate of user 1 in our design to the worst-case rate of user 1 achieved by the algorithm
in [129]. We average the results over 200 channel realizations, and consider the worst-case
performance of the average sum-rate for a bounded error in the available phase information.
The considered error is the aggregated error in phase information for both interference and
direct links, i.e., θi = θii + θji for i, j ∈ {1, 2}, where θ1 = θ2 = θ is the horizontal axis of
Fig. 8.5. The worst-case phase is the phase that minimizes the achievable rate of users. As can
be observed, our proposed algorithm is suboptimal when perfect CSI is available, compared to
the non-robust algorithm proposed in [129]. However, it outperforms this algorithm when the
aggregated phase error increases. For this example, our robust algorithm performs better than
the algorithm in [129] when θ ≥ 42◦. Our robust proposed algorithm for the 2-user IC and
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Figure 8.7: Robust rate region for the 2-user IC and channel realization Ĥ2.

robust PGS are both independent of phase information, hence their performance is independent
of phase information. However, the performance of the non-robust algorithm highly depends
on the accuracy of the phase information. Thus, our proposed algorithm outperforms existing
methods when the error in the phase of the channels is high.

In Fig. 8.6, we show the achievable robust rate region of the 2-user IC for SNRs of 10 dB
and 0 dB, and estimated channel

Ĥ1 =
[

1.4833e−i2.5864 0.9367e−i3.0001

0.6375e−i1.3064 0.4118ei2.1234

]
, (8.36)

where [Ĥ]ij = ĥij . In this figure, we consider a scenario with perfect CSI for the direct links
but imperfect CSI for the interference links. This may represent a scenario where less resources
are devoted to acquiring the CSI of the interfering links, which is relevant because interfering
signals are treated as noise at the receivers. In this figure, it can be observed that IGS can
enlarge the robust rate region in both high and low SNR regimes. Moreover, the performance
improvement of IGS in the high SNR regime is higher than in the low SNR regime for the same
channels. For this channel realization, IGS with TS1 performs the same as PGS with TS at
10 dB SNR, indicated by TS in Fig. 8.6a. However, at 0 dB SNR, IGS with TS outperforms
PGS with TS in Fig. 8.6b.

In Fig. 8.7, we show the achievable rate region of the 2-user IC for perfect CSI, and channel

Ĥ2 =
[

0.3764ei1.4381 1.8542ei2.8153

0.4029ei0.9486 0.6277ei2.3697

]
. (8.37)

1As indicated in Section 7.2.3, the achievable rate region with TS is derived by taking the convex-hull operation
over the corresponding achievable rate region of each design [71, 129]. Note that TS yields the convex hull
when the power constraint is satisfied in each operating point. The rate region may be enlarged by constraining
the average transmit power over the different operation points instead. It is shown in [50, 52] for perfect CSI
that IGS with TS does not provide any gain over PGS with TS in the Z-IC and 2-user IC. Repeating this analysis
for the imperfect CSI case is by no means straightforward and falls outside the scope of this work.
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Figure 8.8: Average sum-rate of the 2-user IC when only the CSI of the interference links is imperfect.

We consider SNR of 10 dB for Fig. 8.7a, and SNR1 = 0 dB, SNR2 = 10 dB for Fig. 8.7b,
where SNRi = Pi

σ2 . As can be observed, IGS significantly enlarges the achievable rate region
for Ĥ2.

In Figs. 8.8 and 8.9, we consider the average sum-rate of the 2-user IC for SNRs of 0 dB and
10 dB. In these figures, we consider the same point of the rate region described in Fig. 8.5 and
average the results over 200 channel realizations. We set Pr = 95% (which implies a maximum
outage probability of 5%) and vary the variance of the estimation error, σ2

e . Moreover, the radius
of the uncertainty region is then obtained as (8.35).

In Fig. 8.8, we consider imperfect CSI only for the interference links, where δ11 = δ22 = 0
and δ21 = δ12. As can be observed in Fig. 8.8, the IGS algorithms are always better than PGS.
Since our proposed algorithm for the 2-user IC is suboptimal for perfect CSI, the non-robust
algorithm in [129] performs better than our robust design. Specifically, it achieves 18% higher
sum-rate for SNR= 10 dB and 8% for SNR= 0 dB. However, as the error in the interference
link increases, our proposed algorithm performs better than the non-robust algorithm, where
there is a 61% and 25% improvement in achievable sum-rate for σ2

e = 0.2 when SNR= 10 dB
and SNR= 0 dB, respectively.

In Fig. 8.9, we consider errors in all links with the same size of the uncertainty region, i.e.,
δij = δ for i, j ∈ {1, 2}. We observe that the IGS algorithms always perform better than PGS.
As also observed in Fig. 8.8, our algorithm performs better than the non-robust algorithm as the
error in all links increases. For this example, there is a 200% and 137% improvement in average
sum-rate when σ2

e = 0.2 for SNR= 10 dB and SNR= 0 dB, respectively.

These figures show that our proposed algorithm is robust against imperfect CSI and provides
a considerable gain in sum-rate compared to a non-robust approach in high estimation errors.
This is a rather surprising result, which means that IGS is even more robust to imperfect CSI
than its proper counterpart when the transmission parameters are optimized in a robust way.
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Figure 8.9: Average sum-rate of the 2-user IC when the CSI of the direct and interference link is imper-
fect.

Numerical results for the Z-IC

In this subsection, we evaluate the robust design for the Z-IC. In the figures of this subsection,
we use the following acronyms:

• R-IGS: Our proposed robust IGS in Section 8.1.4.

• R-PGS: Robust PGS.

• N-IGS: The non-robust IGS optimal solution in [71].

• R-IGS-2IC: Our proposed robust IGS in Section 8.1.3.

We first consider the enlarged uncertainty region to illustrate the effect of the aggregated phase
uncertainty θ in the achievable worst-case rate region. Figure 8.10 shows the impact of the
aggregated phase uncertainty on the rate region of the Z-IC. In this figure, the channel gains
are equal to 1 for all links. In order to consider the effect of the phase uncertainty, we ignore
at this point the estimation error in the channel gains. In other words, the channel gains are
perfectly known in this example. There is a significant improvement over PGS when only user
2 employs IGS (which corresponds to the case θ ≥ π/2), whereas the performance gain slightly
increases when user 1 also employs IGS (which corresponds to the case θ < π/2). Notice that
the proposed strategy for θ ≥ π/2 is the same as the one derived for the 2-user IC, where only
one user employs IGS. This result corroborates again that allowing only one user to use IGS is
an effective way of improving the performance with imperfect CSI.

In Figs. 8.11 and 8.12, we average the results over 103 channel realizations. In order to
provide a fair comparison, we depict the rate of user 2 for a fixed rate of user 1. In other words,
we reduce the power of user 2 in the non-robust PGS and IGS approaches to achieve the same
worst-case rate for user 1 as with the robust schemes. The rate of user 1 is fixed to α% of its
maximum worst-case achievable rate for each channel realization.

In Fig. 8.11, we show the rate of user 2 versus the variance of the estimation error for
SNR=10dB, α = 40% and α = 60%. Figure 8.11 shows a gap between PGS and IGS as the
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Figure 8.10: Achievable rate region boundaries of the Z-IC for different phase uncertainties and
SNR=10dB.
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Figure 8.11: Average rate of user 2 versus the variance of channel estimation error for SNR=10dB in the
Z-IC.

channel estimation error increases. In Fig. 8.12, we represent the rate of user 2 versus SNR
for α = 60%, σ2

e = 0.01, and σ2
e = 0.03. As can be observed, the robust IGS significantly

outperforms the non-robust IGS as well as robust PGS. These figures show that the non-robust
IGS does not provide any gain compared to the robust PGS in the Z-IC and may even perform
worse than the robust PGS when the CSI is not accurate. However, if we design the parameters
in a robust way, we can achieve a considerable gain even in presence of highly noisy CSI.

In these figures, we also compare our robust Z-IC design with our robust design for the 2-
user IC, in which only one user (user 2) employs IGS. As can be observed, our robust Z-IC
design performs better than our robust 2-user IC design for low channel estimation error; on the
other hand, these algorithms perform similarly when the channel estimation error is high. This
suggests that high-quality CSI permits both users to employ IGS in order to make the signal and
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Figure 8.12: Average rate of user 2 versus SNR for α = 60% in the Z-IC.

interference as close to orthogonal as possible. If the channel phase is not reliable (θ ≥ π/2),
the robust design employs κ1 = 0, which corresponds to the same robust design as for the 2-
user IC. In this case, IGS still provides a significant performance increase (see Fig. 8.10), while
keeping a CSI requirement similar to that of PGS.

8.2 IGS with Statistical CSIT: Ergodic rate analysis

In this section, we study the achievable ergodic rates of IGS schemes over the 2-user fading
IC with TIN. We assume that the users have perfect and instantaneous CSI at the receiver side
(CSIR) but they only have access to statistical CSIT. In other words, the transmitters know the
parameters defining the Rayleigh fading distributions of the direct and interfering links. Note
that the perfect instantaneous CSIR can be achieved using, for example, training sequences [97,
102] as indicated in Section 8.1. Under these assumptions, we derive closed-form expressions
for the ergodic rates for both users for the case where at most one user employs IGS (denoted as
PGS/IGS scheme). These rates can be attained using fixed-rate codebooks and no optimization
is involved. The results of this section have been presented in [105].

8.2.1 System model

We consider a 2-user SISO IC, in which the users may employ IGS as described in Section
3.3.1 and Chapter 8. We assume that the users have access to only statistical CSIT and consider
Rayleigh fading channels modeled as

hii ∼ CN (0,
√

snri, 0), (8.38)

hı̄i ∼ CN (0,
√

inri, 0), (8.39)
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where snri and inri for i, ı̄ ∈ {1, 2} and i 6= ı̄ are, respectively, the average gain of the direct and
interference links of receiver i. Additionally, the channel gains are Gamma distributed, that is,

|hii|2 ∼ Γ (1, 1/snri), (8.40)
|hı̄i|2 ∼ Γ (1, 1/inri). (8.41)

We assume that the transmitters know neither the fading states on which they transmit, nor the
fading states of the interfering signal. On the other hand, we assume that the receivers have
perfect knowledge of the channels. As indicated in Chapter 8, the instantaneous rate of user i
in the 2-user IC is [102]

Ri = 1
2 log2


(
σ2 +∑2

j=1 pj|hij|2
)2
−
∣∣∣∑2

j=1 pjκj|hij|2ej(2]hij+φj)
∣∣∣2

(pı̄|hīı|2 + σ2)2 − (pı̄κı̄|hīı|2)2

 , (8.42)

where pj , κj , and φj for j = 1, 2, are, respectively, the transmission power, circularity coeffi-
cient and phase of the complementary covariance of the signal transmitted by user j. Moreover,
]hji for i, j ∈ {1, 2} is the phase of the channel from the ith transmitter to the jth receiver.
Hereafter, in this chapter, we consider σ2 = 1 without loss of generality.

In this chapter, we consider the scenario, where at most one user may employ IGS. As indi-
cated in Chapter 8, the instantaneous rates of users are independent of channels phases when at
most one user may employ IGS. For notational simplicity in this section, we consider user 1 as
the PGS user without loss of generality. Obviously, there is no difference between the users and
either user can be the PGS user. The instantaneous rate of the PGS user is

RPGS
1 = 1

2 log2

(
1 + X1

1 + (1 + κ)Y1

)
+ 1

2 log2

(
1 + X1

1 + (1− κ)Y1

)
, (8.43)

where Xi = pi|hii|2 ∼ Γ (1, 1/(pisnri)) and Yi = pı̄|hı̄i|2 ∼ Γ (1, 1/(pı̄inri)) are independent
Gamma distributed random variables and κ is the circularity coefficient of the IGS user. The
instantaneous rate of the IGS user is

RIGS
2 = 1

2 log2

(
1 + (1 + κ)X2

1 + Y2

)
+ 1

2 log2

(
1 + (1− κ)X2

1 + Y2

)
. (8.44)

A special case of this scheme is MIGS, that is, κ = 1. In this case, the rate of the PGS user
simplifies to

RPGS
1 = 1

2 log2 (1 +X1)︸ ︷︷ ︸
interference free

+ 1
2 log2

(
1 + X1

1 + 2Y1

)
︸ ︷︷ ︸

with interference

. (8.45)

Since the MIGS user transmits only on one dimension, there is an interference-free dimension
for the PGS user. We can exploit this interference-free dimension even without CSIT due to the
fact that the receivers know the channels perfectly. Additionally, the rate of the MIGS user is

RMIGS
2 = 1

2log2

(
1 + 2X2

1 + Y2

)
. (8.46)

As we observe in (8.46), the PGS user causes less interference to the MIGS user because both
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the PGS user and the noise divide their power between the two dimensions. The downside is that
the MIGS user loses some rate because only one signal dimension is exploited for transmission.
However, the MIGS user can compensate for this rate loss by increasing its transmission power
if the power budget has not been fully used and the overall effect can be beneficial in terms
of sum-rate. As indicated, the PGS user has an interference-free dimension, which ensures a
minimum instantaneous achievable rate of

RPGS
1 >

1
2 log2 (1 +X1) . (8.47)

8.2.2 Problem Statement

In this paper, we derive the achievable ergodic rates for the PGS/IGS scheme under fast fad-
ing channels (i.e., when the codewords span a large number of fading states). The achievable
ergodic rate is defined as the expected achievable rate R = E {R}. In order to derive the
achievable ergodic rate region, we employ the Pareto boundary, which is defined in Definition
4.1.

The whole achievable ergodic rate region can be obtained by varying the powers and com-
plementary variances of the transmit symbols. In [20, 87] it is proven that the Pareto-optimal
rates for the 2-user IC when interference is treated as noise are obtained when at least one user
transmits at maximum power. This result, which was originally proved for the case where the
transmitters have perfect CSIT, is also valid for our ergodic fast fading channel model.

8.2.3 PGS/IGS Scheme

In this section, our goal is to derive the achievable pair of ergodic rates
(
R

PGS
1 , R

IGS
2

)
obtained

by taking the mathematical expectation of RPGS
1 in (8.43) and RIGS

2 in (8.44). We first present
Lemma 8.3 in order to derive the ergodic rate of the users. Then we present the achievable
ergodic rates in Theorem 8.4.

Lemma 8.3 Let us define the random variable Z = βX
1+αY , where α ≥ 0 and β ≥ 0 are given

constants and X ∼ Γ (1, 1
snr) and Y ∼ Γ (1, 1

inr) are independent Gamma distributed random
variables. The cumulative density function (CDF) of Z is

FZ(z) = 1− e−
z
βsnr

1 + αinr
βsnrz

. (8.48)

The expectation of Z is

E{Z} =
{
βsnr if α = 0,(
βsnr
αinr

)
e

1
βsnrE1

(
1

βsnr

)
if α > 0. (8.49)
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Additionally, the expectation of R = log(1 + Z) is

f(βsnr, αinr) , R =


e

1
βsnrE1

(
1

βsnr

)
if α = 0,

βsnr
(
e

1
βsnrE1( 1

βsnr )−e
1
αinrE1( 1

αinr )
)

βsnr−αinr , if βsnr 6= αinr > 0
e

1
βsnrE2

(
1

βsnr

)
, if βsnr = αinr > 0

(8.50)

where the En (x) function is defined by the integral (for n ≥ 1 and x > 0)

En (x) =
∫ ∞

1

e−xt

tn
dt. (8.51)

Proof of Lemma 8.3. Please refer to Section 8.6.

Note that when β = 0, the variable Z defined in Lemma 8.3 is Z = 0. To include this case,
we define f(0, αinr) , 0. Moreover, notice that En (x) can be written in terms of the upper
incomplete gamma function as En (x) = xn−1Γ (1− n, x), where

Γ (s, x) =
∫ ∞
x

ts−1e−t. (8.52)

It is worth mentioning that E1(x) = Γ (0, x) is the exponential integral. These functions can
be computed using standard software packages.
Theorem 8.4 The ergodic rates of the PGS and the IGS users are, respectively,

R̄PGS
1 = f(p1snr1, (1 + κ)p2inr1) + f(p1snr1, (1− κ)p2inr1), (8.53)

R̄IGS
2 = f((1 + κ)p2snr2, p1inr2) + f((1− κ)p2snr2, p1inr2), (8.54)

where f(x, y) is given by (8.50).

Proof of Theorem 8.4. The ergodic rate of users are given by taking expectations of (8.43) and
(8.44). Hence, by applying the results of Lemma 8.3 and substituting the corresponding α and
β, we can prove the theorem.

Remark 8.2 The ergodic rate of the PGS user is strictly increasing in κ, while the ergodic rate
of the IGS user is strictly decreasing in κ. This is due to the fact that the instantaneous rate of
the PGS (IGS) user is strictly increasing (decreasing) in κ.

We can derive the achievable ergodic rate region by varying the transmission power of the
two users. As indicated in Section 8.2.2, every point on the boundary of the achievable ergodic
rate region is obtained when at least one user transmits with maximum power [20, 87]. Thus,
the whole Pareto optimal region for the PGS/IGS scheme can be derived as

SIGS =
⋃

0 ≤ κ2 ≤ 1
0 ≤ p2 ≤ P2

(
R

PGS
1 (P1, p2, κ2), RIGS

2 (P1, p2, κ2)
) ⋃

0 ≤ κ2 ≤ 1
0 ≤ p1 ≤ P1

(
R

PGS
1 (p1, P2, κ2), RIGS

2 (p1, P2, κ2)
)

⋃
0 ≤ κ1 ≤ 1
0 ≤ p2 ≤ P2

(
R

IGS
1 (P1, p2, κ1), RPGS

2 (P1, p2, κ1)
) ⋃

0 ≤ κ1 ≤ 1
0 ≤ p1 ≤ P1

(
R

IGS
1 (p1, P2, κ1), RPGS

2 (p1, P2, κ1)
)
.

(8.55)
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Figure 8.13: PGS and IGS rate regions for a symmetric 2-user IC with snr= 10 dB.

Note that the achievable ergodic rate region in (8.55) is the union of the achievable ergodic
rate region of two transmission strategies:

1. User 1 employs PGS, while user 2 may employ IGS,

2. User 2 employs PGS, while user 1 may employ IGS.

8.2.4 Numerical Examples

We consider a 2-user fading IC where the channel coefficients of the direct links are drawn
from hii ∼ CN (0,

√
snr, 0) and the channel coefficients of the interfering links are drawn from

hīı ∼ CN (0,
√

inr, 0). The four channel coefficients are independent random variables. In this
way, the performance of the proposed schemes can be analyzed in terms of the average snr and
inr, which are the same at both receivers. Moreover, we assume P1 = P2 = 1 and σ2 = 1.
Indeed, we reflect the effect of the transmission power as well as the noise power by the gain
of the direct and interference links, that is, snr and inr. Since the fading direct and interference
channels are symmetric, the two users send information at the same rate.

When at most one user employs IGS, the instantaneous rates are independent of the phases
of the channels. Additionally, it allows us to find closed-form expressions of the ergodic rates.
However, the question remains: How far is the PGS/IGS scheme from the Pareto-optimal design
of a scheme that would allow both users to use IGS on the 2-user IC?

To answer the question, we compare the performance of our scheme with an exhaustive
search over all design parameters (κ1, κ2, p1, p2) when both users may employ IGS. Unfortu-
nately, to the best of our knowledge, there is no closed-form solution for the ergodic rates when
both users employ IGS. Thus, we estimate the ergodic rate of the 2-user IC when both users
employ IGS by Monte Carlo simulations. That is, we generate a large number (105) of channels
and compute the instantaneous rate achieved by the transmission parameters for each channel
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Figure 8.14: Sum ergodic rate of the schemes as a function of inr.

realization. Finally, we estimate the ergodic rate by averaging the instantaneous rates. Once the
ergodic rate pairs have been estimated for many different transmission parameters, the Pareto
boundary for the IGS/IGS scheme can readily be estimated.

The considered schemes are denoted as follows.

• PGS: The PGS scheme with κ1 = κ2 = 0.

• MIGS: The PGS/MIGS scheme with κ = 1.

• E-IGS: The exhaustive search for IGS when both users may employ IGS.

• O-P/IGS: The PGS/IGS scheme with the optimal κ.

• MIGS-Ui: The PGS/MIGS scheme when the MIGS user is user i.

• MIGS-TS: The PGS/MIGS scheme with time sharing over the points with maximum
power for both users.

In Figure 8.13, we depict the achievable ergodic rate region of our proposed schemes for
snr = 10 dB. As can be observed, the union of the ergodic rate regions achievable by the PGS
and MIGS schemes is very close to the optimal achievable ergodic rate region. If we employ
time sharing over the points with maximum power for both users in the union of the PGS and
PGS/MIGS schemes (indicated by circles in Figure 8.13), we attain almost the entire Pareto-
optimal region of the 2-user IC when both users are allowed to employ IGS.

In Figure 8.14, we show the sum-ergodic rate as a function of the inrwhen both users transmit
at maximum power. Note that, in this case, the sum-ergodic rate can be achieved by red points
for the PGS scheme and by either black or blue points for the PGS/MIGS scheme in Figure
8.13. As can be observed in Figure 8.14, the PGS/MIGS scheme significantly outperforms the
PGS scheme when the interference level is high. Interestingly, the sum-rate can be achieved by
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either κ = 0 or κ = 1 and no optimization over κ is required for maximizing the sum-rate. Note
that, for symmetric channels, both users can achieve the same ergodic rate in the PGS/MIGS
scheme by letting each user be the MIGS user 50% of the time. Hence, the MIGS scheme
with switching between proper and maximally improper users can substantially improve the
performance of the 2-user IC. This scheme requires as little cooperation as possible between
users and further it requires no optimization or power control at the transmitter side.

8.3 Summary

In this chapter, we investigated the performance of IGS in the 2-user SISO IC and Z-IC with
realistic assumptions regarding CSIT. To this end, we first studied the robustness of IGS against
imperfect CSIT in the single-antenna 2-user IC and Z-IC. We proposed robust designs for the
2-user IC and Z-IC, which have closed-form solutions for the transmission parameters. We
derived closed-form conditions when IGS outperforms PGS for the 2-user IC and Z-IC in the
presence of imperfect CSI. We showed through analytical studies that even if there is no reliable
phase information, a robust IGS design can outperform a robust PGS design. In this case, one
user may employ IGS, while the other employs PGS. We evaluated our analytical studies by
simulations and showed that IGS permits a significant performance increase for the 2-user IC
and Z-IC. Our numerical results showed that IGS is even more robust to imperfect CSI than
PGS provided that the transmission parameters are properly designed, and thus IGS still pays
off in the context of imperfect CSI.

In this chapter, we, furthermore, studied the ergodic rate of a PGS/IGS scheme in a 2-user
Rayleigh IC treating interference as noise. Under the assumption that the users have perfect
CSIR but they have access only to statistical CSIT, we derived closed-form expressions for the
ergodic rates and characterized the boundary of the achievable ergodic rate region. We also
proposed a practical IGS scheme which does not require any optimization and power control
at the transmitter side. In this scheme, both users transmit with maximum power. One user
employs MIGS while the other user employs PGS. By numerical examples, we showed that
IGS can substantially increase the sum-rate and enlarge the ergodic rate region of the 2-user
Rayleigh SISO-IC under strong interference.

8.4 Proof of Theorem 8.2

Here, we assume that user 2 employs IGS and transmits with maximum power without loss of
generality. In this strategy, the worst-case rates of users are given by

Rw
1 (p1, κ2) = 1

2 log2

(
1 + p2

1|h̃11|4 + 2p1|h̃11|2(P2|h̃12|2 + σ2)
σ4 + 2σ2P2|h̃12|2 + (1− κ2

2)P 2
2 |h̃12|4

)
, (8.56a)

Rw
2 (p1, κ2) = 1

2 log2

(
P 2

2 |h̃22|4(1− κ2
2)

(σ2 + p1|h̃21|2)2
+ 2P2|h̃22|2

σ2 + p1|h̃21|2
+ 1

)
. (8.56b)

If Rw
2 (P1, 1) > αRw

2,max, maximally improper for user 2 and maximum power transmission
for user 1, i.e., p1 = P1 and κ2 = 1, is the solution of (8.6) since it maximizes the rate of
user 1. Thus, in the following, we consider the case Rw

2 (P1, 1) < αRw
2,max. The constraint
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Rw
2 (p1, κ2) = αRw

2,max is equivalent to

1−κ2
2 = (σ2 + p1|h̃12|2)2

P 2
2 |h̃22|4

γ2(2α)− 2σ
2+p1|h̃12|2

P2|h̃22|2
. (8.57)

It can be easily verified that (8.57) results in (8.15). Moreover, if we consider (8.57) as a
quadratic function in p1 and take its positive root, we obtain (8.14). Additionally, plugging
(8.57) into (8.56a) yields (8.16). Through (8.14), it is clear that p1 is decreasing in κ2. Thus,
IGS can improve the performance of the system if and only if (8.16) is decreasing in p1. This
means that the argument of the logarithm function in (8.16) must be decreasing in p1. Note that
(8.16) holds if and only if Rw

2 (p1, κ2) = αRw
2,max, which results in p1 ∈ [P(1),P(0)]. As a

result, if P1 < P(1), (8.16) does not hold, and maximally IGS is optimal for user 2 as indicated
before. This case is mentioned as condition 1 of Theorem 8.2.

In the following, we derive the other conditions. Let us define R̄1(p1) as

R̄1(p1) , ζ1p
2
1 + β1p1

ζ2p2
1 + β2p1 + τ

, (8.58)

where ζ1, β1, ζ2, β2, and τ are defined as in Theorem 1. The derivative of R̄1(p1) with respect
to p1 is

∂R̄1(p1)
∂p1

= (2ζ1p1 + β1)(ζ2p
2
1 + β2p1 + τ)− (ζ1p

2
1 + β1p1)(2ζ2p1 + β2)

(ζ2p2
1 + β2p1 + τ)2 , (8.59a)

= (ζ1β2 − ζ2β1)p2
1 + 2ζ1τp1 + β1τ

(ζ2p2
1 + β2p1 + τ)2 . (8.59b)

Note that ζ1, ζ2 and β1 are always positive. Additionally, the denominator of ∂R̄1(p1)
∂p1

is positive.
Thus, the behavior of R̄1(p1) with respect to p1 depends only on the sign of the numerator of
∂R̄1(p1)
∂p1

, which we denote as r̄1(p1). The sign of r̄1(p1) is related to ζ1β2 − ζ2β1 and τ as these
terms can be either positive or negative. If ζ1β2 − ζ2β1 and τ have the same sign, R̄1(p1) is
monotone in p1. Otherwise, there is a positive extreme point, which is equal to the positive root
of r̄1(p1) and given by x(?)

1 in (8.12) if (ζ1β2 − ζ2β1) < 0, and x(?)
2 in (8.13) otherwise. Thus,

R̄1(p1) is strictly decreasing in p1 if ζ1β2 − ζ2β1 < 0 and τ < 0. Hence, the rate of user 1
is maximized if user 1 transmits with p1 = P(1), and user 2 employs maximally IGS, which
results in condition 2 of Theorem 8.2. If ζ1β2−ζ2β1 > 0 and τ > 0, R̄1(p1) is strictly increasing
in p1, and PGS is the optimal solution for both users.

Now we consider the case that R̄1(p1) is not necessarily monotone in p1 ∈ [P(1),P(0)], i.e.,
when (ζ1β2 − ζ2β1)τ < 0. Figure 8.15 shows the behavior of r̄1(p1) when (ζ1β2 − ζ2β1)τ < 0.
Note that the extreme point can be outside of [P(1),P(0)]. In other words, there is at most one
extreme point in p1 ∈ [P(1),P(0)]. Since r̄1(p1) is a quadratic function of p1, r̄1(p1) is either
convex or concave. Let us first consider the concave case, i.e., ζ1β2 − ζ2β1 < 0 and τ > 0.
In this case, if P(0) < x

(?)
1 , R̄1(p1) is strictly increasing in p1 ∈ [P(1),P(0)], and thus, p1 =

P(0) and PGS is optimal for both users. Therefore, we consider P(0) > x
(?)
1 , which implies

∂Rw1 (p1)
∂p1

|p1=P(0) < 0. In this case, R̄1(p1) is maximized at p1 = x
(?)
1 if x(?)

1 ∈ [P(1),P(0)], and
at p1 = P(1) otherwise, which results in condition 3 of Theorem 8.2.
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Figure 8.15: Function r̄1(p1) versus p1.

Now we consider the case that r̄1(p1) is convex, i.e., ζ1β2 − ζ2β1 > 0 and τ < 0. In
this case, R̄1(p1) is strictly increasing in p1 ∈ [P(1),P(0)] if P(1) > x

(?)
2 , where x(?)

2 is
given by (8.12), which results in PGS being optimal. Moreover, R̄1(p1) is strictly decreasing in
p1 ∈ [P(1),P(0)] if P(0) < x

(?)
2 , and thus, p1 = P(1) and maximally IGS is optimal for user 2

in this case. If x(?)
2 ∈ [P(1),P(0)], R1(p1) is strictly increasing in p1 ∈ [x(?)

2 ,P(0)] and strictly
decreasing in p1 ∈ [P(1), x(?)

2 ], as illustrated in Fig. 8.15b. Thus, IGS is beneficial in this case
only if Rw

1 (P(1)) > Rw
1 (P(0)), and maximally IGS is then the optimal strategy, which results

in condition 4 of Theorem 8.2.

8.5 Proof of Theorem 8.3

We first derive the condition that results in ∂Rw2 (κ2,θ)
∂κ2

2

∣∣∣
κ2=0

> 0. Then, we prove that if
∂Rw2 (κ2,θ)

∂κ2
2

∣∣∣
κ2=0

> 0 holds, we have ∂Rw2 (κ2,θ)
∂κ2

2
> 0 for κ2 > 0. The term ∂Rw2 (κ2,θ)

∂κ2
2

> 0 is
equivalent to

2∂q(κ2, θ)
∂κ2

2

[
|h̃22|2q(κ2, θ)σ−2(1− κ2

2) + 1
]
> q2(κ2, θ)|h̃22|2σ−2. (8.60)

Now we first consider (8.30) for κ1 < 1, and then prove that if ∂Rw2 (κ2,θ)
∂κ2

2
|κ2=0 > 0, the rate

of user 2 remains strictly increasing in κ2 when q(κ2, θ) is derived based on the expression in
(8.30) for κ1 = 1. We can obtain ∂q(κ2,θ)

∂κ2
2

by taking the derivative of (8.30) with respect to κ2
2

for κ1 < 1. That is

2∂q(κ2, θ)
∂κ2

2
= q2(κ2, θ)|h̃12|2(γ1(2α) + cos2 θ)
q(κ2, θ)|h̃12|2 [(γ1(2α) + 1)(1− κ2

2)− 1 + κ2
2 sin2 θ] + σ2γ1(2α)− P1|h̃11|2

.

(8.61)
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By replacing (8.61) in (8.60), we have

|h̃12|2(γ1(2α) + cos2 θ)
[
|h̃22|2q(κ2, θ)σ−2(1− κ2

2) + 1
]

q(κ2, θ)|h̃12|2 [(γ1(2α) + 1)(1− κ2
2)− 1 + κ2

2 sin2 θ] + σ2γ1(2α)− P1|h̃11|2
> |h̃22|2σ−2.

(8.62)
Equation (8.62) is simplified to

|h̃21|2

|h̃22|2
>
σ2γ1(2α)− P1|h̃11|2 − q(κ2, θ)|h̃21|2 cos2 θ

σ2(γ(2α) + cos2 θ) . (8.63)

From (8.29), it can be seen that q(κ2, θ)|h̃21|2 is independent of |h̃21|2
|h̃22|2

, and q2(κ2 = 0, θ)|h̃21|2 =
P1
γ1(α) − σ2 which results in (8.33). Moreover, q(κ2, θ) is a strictly increasing function of κ2,
which implies that the inequality holds when κ2 > 0. Now we prove that if (8.63) holds,
∂Rw2 (κ2,θ)

∂κ2
2

> 0 for the case κ1 = 1. In this case, we have

2∂q(κ2, θ)
∂κ2

2
=

q(κ2, θ)|h̃21|2γ1(2α)− q(κ2,θ)P1|h̃11|2 cos θ
κ2

q(κ2, θ)|h̃21|2γ1(2α)(1− κ2
2) + σ2γ1(2α)− P1|h̃11|2(1 + κ2 cos θ)

. (8.64)

Thus, ∂Rw2 (κ2,θ)
∂κ2

2

∣∣∣
κ2=0

> 0 is equivalent to

[q(κ2, θ)|h̃21|2γ1(2α)− P1|h̃11|2 cos θ
κ2

]
[
|h̃22|2q(κ2, θ)(1− κ2

2) + σ2
]

q(κ2, θ)|h̃21|2γ1(2α)(1− κ2
2) + σ2γ1(2α)− P1|h̃11|2(1 + κ2 cos θ)

> q(κ2, θ)|h̃22|2. (8.65)

The expression in (8.65) is simplified to

q(κ2, θ)
[
(|h̃21|2−|h̃22|2)γ1(2α)σ2+P1|h̃11|2|h̃22|2

(
1+2κ2 cos θ− cos θ

κ2

)]
−σ2P1|h̃11|2

cos θ
κ2

> 0.

(8.66)
It is easy to see that the left-hand side of (8.66) is strictly increasing in κ2 as we are considering
0 ≤ θ ≤ π

2 . Therefore, if (8.66) holds for κ2 = κ, it will hold as well for κ2 > κ. We now
show that such a κ exists. We have proved that, if (8.63) holds, we have ∂Rw2 (κ2,θ)

∂κ2
2

> 0 as

long as q(κ2, θ) is derived from the first equation in (8.30). This implies that ∂Rw2 (κ2,θ)
∂κ2

2
> 0 for

κ2 = κ = P1|h̃11|2
q(κ2,θ)|h̃21|2 cos θ , where κ is the smallest value of κ2 such that κ1 = 1 (see (8.27)).

Hence, (8.62) and (8.63) are equivalent for κ2 = κ, which results in (8.66) holding as well for
κ2 = κ. As a result, the rate of user 2 is strictly increasing in κ2 if ∂Rw2 (κ2,θ)

∂κ2
2

> 0 holds for
κ2 = 0. Thus, we choose the maximum possible κ2 when improper signaling is optimal, which
results in (8.34).
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8.6 Proof of Lemma 8.3
By definition, the CDF of Z is

FZ(z) = Pr(Z ≤ z) = 1− Pr(βX ≥ z(1 + αY ))

=
∫ ∞

0

e−y/inr

inr

∫ ∞
z(1+αy)

β

e−x/snr

snr
dxdy = 1− e−

z
βsnr

1 + αinr
βsnrz

. (8.67)

Furthermore, since Z is a positive random variable, its expectation can be obtained as

E{Z} =
∫ ∞

0
(1− FZ(z)) dz =

{
βsnr if α = 0,(
βsnr
αinr

)
e

1
βsnrE1

(
1
βsnr

)
if α > 0. (8.68)

It can be easily verified that R̄ = e
1
βsnrE1

(
1
βsnr

)
when α = 0. Hence, in the following, we

consider α > 0. In this case, the CDF of R = log (1 + Z) is

FR(r) = 1− e
1
βsnr e−

er

βsnr

 1
1− αinr

βsnr + αinr
βsnre

r

 , r ≥ 0. (8.69)

Since R is a positive random variable, its expectation may be found from its CDF as

E {R} =
∫ ∞

0
(1− FR(r)) dr. (8.70)

Making the change of variables er = 1 + z in (8.70), R is given by the integral

E {R} =
∫ ∞

0

e−
z
βsnr

1 +
(
αinr
βsnr + 1

)
z +

(
αinr
βsnr

)
z2
dz. (8.71)

If βsnr 6= αinr, the integrand in (8.71) has two simple poles at z = −1 and z = −βsnr/αinr.
Decomposing the integrand into simple fractions we arrive, after some change of variables, at

R =
(

βsnr
βsnr− αinr

)[
e

1
βsnrE1

(
1

βsnr

)
− e

1
αinrE1

( 1
αinr

)]
. (8.72)

On the other hand, if βsnr = αinr, the integrand in (8.71) has a double pole at z = −1. Then,
(8.71) becomes

R =
∫ ∞

0

e−
z
βsnr

1 + z2dz = e
1
βsnr

∫ ∞
1
βsnr

e−t

t2
dt = e

1
βsnrE2

(
1

βsnr

)
, (8.73)

thus proving Lemma 8.3.
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9 Conclusion

9.1 Summary of contributions

In this dissertation, we proposed some IGS schemes for various interference-limited systems
with practical assumptions regarding CSIT and hardware. We aimed at improving the spectral
and energy efficiency of some interference-limited systems by improper signaling. We consid-
ered both single-antenna and multiple-antenna systems when interference is treated as noise.
Our proposed schemes in multiple-antenna systems could be also applied to single-antenna
systems. However, in single-antenna systems, we were able to propose computationally less
expensive algorithms. In the following subsections, we summarize our contributions.

9.1.1 Multiple-antenna systems

We studied the performance of IGS in interference-limited multiple-antenna systems with im-
perfect hardware by considering two main performance metrics, i.e., achievable rate and EE.
To this end, we considered achievable rate region, weighted-sum-rate maximization, energy-
efficiency region and global energy-efficiency maximization problems as well as the rate max-
imization of the SU in a MIMO OFDM UCR. In order to solve these non-convex optimization
problems, we employed a suboptimal optimization framework for interference-limited multiple-
antenna systems, which was based on MM. This optimization framework obtains a stationary
point of every optimization problem in which either the objective function and/or the constraints
are linear functions of the achievable rates. Our numerical results showed that IGS can outper-
form PGS from both achievable rate and EE points of view.

Our contribution for the multiple-antenna systems can be summarized as follows:

• We observed that the benefits of IGS as an interference-management technique increase
with the number of users. This is due to the fact that the interference level increases with
the number of users, and the higher the interference level is, the more need for managing
the interference, and consequently, the more improvements by IGS.

• We also observed that the benefits of employing IGS decrease with the number of anten-
nas. The reason is that, interference can be managed easier when there are more resources.
This is in line with the results in Chapter 5, in which it was shown that IGS cannot pro-
vide considerable benefits in OFDM UCR systems due to existence of parallel channels.
Moreover, in [52], it was shown that the benefits of IGS disappear with time sharing when
the average power consumption is constrained, instead of the instantaneous power, which
allows a more flexible power allocation. To sum up, the benefits of IGS decrease or even
vanish by increasing the number of resources either by increasing the number of anten-
nas or number of time slots, by time sharing, and/or the number of parallel channels by
OFDM.
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• Our results showed that IGS can improve the performance of the MIMO K-user IC with
HWI from both achievable rate and EE point of view. Moreover, we observed that IGS
provides more benefits from achievable rate point of view than from EE perspective.

• In the presence of I/Q imbalance, we also observed that the benefit of employing IGS
increases with the imbalance level for a fixed number of antennas. The reason is that, the
more improper the noise is, the more benefits by IGS.

9.1.2 Single-antenna systems

In this work, we considered different SISO interference-limited systems such as K-user IC,
2-user IC, Z-IC and UCR. We made different practical assumptions regarding channels and
hardware as summarized in the following parts.

IGS for SISO OFDM underlay-cognitive-radio systems

IGS has been shown to be successful to improve the performance of different interference-
limited systems. Hence, it might appear that IGS is always able to outperform PGS; however,
it is not necessarily the case in all scenarios as indicated before. In chapter 5, we investigated
whether improper signaling is also beneficial in an UCR OFDM system. While there are indeed
some benefits, these are minor and mainly apply to scenarios with small number of OFDM
subbands. Such a rather negative result may be surprising, but it shows that improper signaling
is not a magic tool that works in every case. Indeed, by increasing the number resources,
interference can be managed easier by PGS, and the benefits of employing IGS decrease or
even may vanish.

K-user SISO IC with asymmetric AHWD

We addressed the problem of obtaining the achievable rate region by IGS in the K-user SISO
IC with asymmetric AHWD and proposed two suboptimal algorithms. To this end, we rewrote
the corresponding optimization problem as the pseudo-signal-to-interference-plus-noise-rate
(PSINR) region problem. We then tackled the corresponding optimization problem by MM. Our
first algorithm, which was based on MM and the GDA, obtained a stationary point of the PSINR
region. In this algorithm, we jointly optimized the powers and complementary variances. Fur-
thermore, we proposed a simplified algorithm that has lower computational complexity. This
simplified algorithm was based on the separate optimization of the powers and complemen-
tary variances. Through numerical examples, we showed that the proposed approaches enlarge
the achievable rate region and outperform PGS and existing IGS algorithms, especially as the
AHWD becomes more asymmetric.

Energy-efficient IGS for K-user IC

We also proposed energy-efficient IGS schemes for the K-user IC and UCR. We first aimed
at enlarging the EE region of the K-user IC. By maximizing the weighted minimum energy
efficiency (WMEE) of users, the proposed design permitted operating at different points of the
EE region. In order to find a suboptimal solution to the WMEE maximization problem, we per-
formed a separate optimization of the powers and complementary variances. For the former, we
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considered PGS and resorted to MM and the GDA to find a solution to the original non-convex
problem satisfying the KKT conditions. The resulting solution was then improved by optimiz-
ing over the complementary variances. Again, this has resulted in a non-convex problem, and a
suboptimal solution was found by using bisection and MM. Our numerical results, presented in
Section 7.1.4, show that IGS is more energy efficient than its proper counterpart.

We also considered the EE of IGS in UCR. We addressed the maximization of the EE function
for the SU in UCR networks and derived necessary and sufficient optimality conditions for IGS
in closed form. Additionally, we proposed a bisection method to find the optimal transmission
parameters of PGS and IGS. Our results showed that IGS also pays off in terms of EE, although
stricter conditions than those for rate optimization have to be fulfilled.

IGS with realistic CSIT assumptions

The aforementioned results were obtained assuming perfect, instantaneous and global channel
state information (CSI) at transceivers. This assumption might not be realistic in every prac-
tical scenarios. In general, it is reasonable to assume that a receiver knows the CSI perfectly
since acquiring CSI at the receiver side is relatively easy with training sequences or applying
blind/semi-blind estimation methods [89, 97, 115]. However, the channel information is typi-
cally quantized and then sent to the transmitters through a noisy feedback link, which results
in noisy CSI at transmitter side (CSIT). Therefore, we considered imperfect CSIT in Chapter 8
and investigated the robustness of IGS against imperfect CSIT in the single-antenna 2-user IC
and Z-IC. We studied 2-user SISO IC and Z-IC since we were able to propose robust designs for
IGS with closed-form solutions. We also derived closed-form conditions when IGS outperforms
PGS for the 2-user IC and Z-IC in the presence of imperfect CSI. We showed through analytical
studies that even if there is no reliable phase information, a robust IGS design can outperform
a robust PGS design. In this case, one user may employ IGS, while the other employs PGS.
We evaluated our analytical studies by simulations and showed that IGS permits a significant
performance increase for the 2-user IC and Z-IC. Our numerical results show that IGS is even
more robust to imperfect CSI than PGS provided that the transmission parameters are properly
designed, and thus IGS still pays off in the context of imperfect CSI.

The instantaneous CSIT might not be always available. Hence, it is interesting to investigate
the performance of IGS in fading channels, where the transmitters have access to only statistical
CSIT. We addressed this problem in Section 8.2 and studied the ergodic rate of a PGS/IGS
scheme in a 2-user Rayleigh IC with TIN. Under the assumption that the users have perfect
CSIR but they have access only to statistical CSIT, we derived closed-form expressions for the
ergodic rates and characterized the boundary of the achievable ergodic rate region. We also
proposed a practical IGS scheme which does not require any optimization and power control
at the transmitter side. In this scheme, both users transmit with maximum power. One user
employs MIGS while the other user employs PGS. By numerical examples, we showed that
IGS can substantially increase the sum-rate and enlarge the ergodic rate region of the 2-user
Rayleigh SISO-IC under strong interference.

Summary of findings in SISO systems

To sum up, the results in the single antenna systems are generally in line with the results in the
multiple antenna systems. We summarize our findings on IGS in single-antenna interference-
limited systems as:
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• The benefits of IGS increases with the number of users in the K-user SISO IC, similar to
the K-user MIMO IC.

• IGS can improve the performance of single-antenna interference-limited systems from
both achievable rate and EE point of view. However, we observed that IGS provides
more benefits from achievable rate point of view than from EE perspective, similar to the
MIMO systems.

• IGS my provide only minor improvements in OFDM UCR systems. The reason is that
PGS can simpler manage interference when there are more resources, which is in line
with the results in MIMO systems.

• IGS can outperform PGS in the 2-user SISO IC with imperfect CSIT if IGS is designed
in a robust way.

• IGS can provide a better performance from the achievable ergodic rate point of view in
the 2-user SISO IC with fading channels.

9.2 Future Studies

In this work, we considered various SISO and MIMO antenna systems with different realistic
assumptions, which can open a path for further studies on improper signaling and interference-
limited systems. In this section, we provide an insight for future works in the following subsec-
tions.

9.2.1 Statistical and/or imperfect CSIT

In this work, we considered realistic assumptions regarding CSIT in 2-user SISO IC. For in-
stance, we considered the performance of IGS in the 2-user SISO IC without instantaneous
CSIT. Additionally, we studied the performance of IGS in the 2-user IC and Z-IC with imper-
fect CSIT. In our IGS schemes for the 2-user IC with imperfect CSIT or perfect statistical CSIT,
only one user may employ IGS, which allows us to find closed-form solutions for the design
parameters. It has to be investigated whether these schemes can provide a considerable gain in
a multiple-user and/or multiple-antenna system.

As indicated, PGS requires only channel gains to design parameters. However, IGS needs
both channel gains and phases to optimize powers and complementary variances. Hence, it
might be expected that the benefits of IGS vanish by imperfect CSIT or lack of instanta-
neous CSIT. It has been shown that IGS can improve the performance of multi-user (more
than two users) and/or multiple-antenna systems in the presence of perfect instantaneous CSIT
[17, 69, 100, 121]. However, perfect and instantaneous CSIT might not be available in practical
scenarios. Thus, the following question arises, which has to be answered in future works. Does
IGS provide some gains, in multi-user (large scale scenarios) and/or multiple antenna systems
when CSIT is noisy or instantaneous CSIT is not available?
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9.2.2 Global optimal
In this work, we mainly proposed suboptimal algorithms. Precisely, except the algorithm in
Chapter 7.2, we obtained only suboptimal solutions for the optimization problems. For example,
we presented a framework to obtain a stationary point of various optimization problems for the
K-user MIMO IC with hardware imperfections. It is interesting to find out how close are theses
solutions to the corresponding global optimal solutions. Moreover, in some scenarios, it is
possible to derive necessary and sufficient conditions for the optimality of IGS. For example,
these conditions are derived in Chapter 7.2 for the energy efficiency optimality of IGS in UCR. It
is also interesting to obtain such conditions for the other considered problems. For example, it is
known that IGS is optimal in the presence of improper noise in a point-to-point communication.
It is reasonable to employ IGS in the K-user SISO IC with asymmetric AHWD, but it is not
proved that IGS is optimal for this scenario. These problems can be addressed in future studies.

9.2.3 Distributed algorithms
All optimizations in this work are solved with centralized algorithms, which might not be appli-
cable in some practical scenarios. By increasing the number of user, it might be very challenging
to cooperate with all users. Hence, distributed algorithms can be studied in further studies. Ad-
ditionally, acquiring global CSI is very complicated when the number of users grows. Thus,
suboptimal algorithms, in which the users require only partial CSI, are also interesting and have
to be addressed in further studies.

9.2.4 Discrete constellation
In this work, we considered only Gaussian signaling. Assuming Gaussian signaling simplifies
the corresponding optimization problems and gives an insight on the system performance. In
practice, discrete rather than Gaussian signaling is employed (see, e.g., [62,86,91]), which will
lead to performance degradation with respect to IGS. The significance of studying improper
Gaussian signals is that it shows us whether improper signaling may in principle achieve per-
formance improvements over proper signaling. However, the following questions arise, which
have to be addressed for implementation of improper signals: What is the optimal discrete
improper constellation? How is the performance of improper signaling with discrete constella-
tion? Does discrete improper signal outperform its proper counterpart?
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