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Abstract

Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g, and
π a unitary representation of G. The main goal of this doctoral thesis is to prove that
the wave front set of π coincides with the asymptotic cone of the orbital support of π,
i.e. WF(π) = AC(⋃σ∈supp(π)Oσ), where Oσ ⊂ ig

∗ is the coadjoint orbit associated to the

irreducible unitary representation σ ∈ Ĝ by Kirillov. We use two di�erent approaches:
by induction over the dimension of g as customary for nilpotent Lie groups and via in-
tegrated characters following the work by Harris, He and Ólafsson for real reductive,
algebraic Lie groups.
Lastly, we apply our result to restrictions of unitary representations to nilpotent sub-
groups to obtain asymptotic information about their support.

Zusammenfassung

Sei G eine nilpotente, zusammenhängende, einfach zusammenhängende Lie-Gruppe mit
Lie-Algebra g und π eine unitäre Darstellung von G. Das Hauptziel dieser Doktorarbeit
ist es, zu beweisen, dass die Wellenfrontmenge von π gleich dem asymptotischen Kegel
des orbitalen Trägers von π ist, d.h. WF(π) = AC(⋃σ∈supp(π)Oσ), wobei Oσ ⊂ ig∗ der

von Kirillov zur irreduziblen unitären Darstellung σ ∈ Ĝ assoziierte koadjungierte Orbit
ist. Wir präsentieren zwei Herangehensweisen: erstens per Induktion über die Dimension
von g wie üblich für nilpotente Lie-Gruppen und zweitens über integrierte Charaktere,
wie sie von Harris, He und Ólafsson für reell reduktive, algebraische Lie-Gruppen ver-
wendet wurden.
Abschlieÿend wenden wir unser Resultat auf die Einschränkung von unitären Darstellun-
gen auf nilpotente Untergruppen an, um asymptotische Informationen über ihren Träger
zu erhalten.
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1 Introduction

Let G be a Lie group, π a unitary representation of G, and Ĝ the unitary dual of G, that
is the set of all equivalence classes of irreducible unitary representations. If G is type I,
π decomposes uniquely into a direct integral over Ĝ:

π ≅ ∫
Ĝ
σ⊕mπ(σ) dµπ(σ), mπ(σ) ∈ N ∪ {∞},

where mπ(σ) is the multiplicity of σ and µπ is a Borel measure on Ĝ.
In the �eld of representation theory it is a major goal is to determine this decomposition
of a unitary representation into irreducibles explicitly. That is why we are interested in
the support

supp(π) ∶= supp(µπ) ⊂ Ĝ.

Kirillov's idea was that Ĝ should be described by the space of coadjoint orbits g∗/G
and he proved that they are in fact isomorphic for nilpotent, connected, simply con-
nected Lie groups (see Theorem 3.2). The irreducible unitary representation associated
to a coadjoint orbit can be constructed explicitly as an induced representation from a
one-dimensional representation. Also Kirillov's character formula connects the Fourier
transforms of coadjoint orbits to the in�nitesimal characters of the irreducible represen-
tations. Furthermore, one can show that each coadjoint orbit O ∈ g∗/G is a symplectic
manifold and geometric quantization yields a Hilbert space with a corresponding oper-
ator. We give an overview over the structure theory of nilpotent Lie groups and Lie
algebras in Section 3. The important de�nitions and concepts are illustrated in the
examples of the Heisenberg group and the group K3 in Sections 3.2 and 3.3, respectively.

Turning to a di�erent concept for a moment: Studying partial di�erential equations Hör-
mander and Sato introduced the notion of wave front sets in order to obtain information
about the regularity of the solutions. For a distribution u on a smooth manifold X the
wave front set WF(u) is a closed subset of the cotangent bundle T ∗X which measures
its smoothness (see Section 2.1).
As outlined in Section 2.2 the wave front set of a unitary representation (π,H) of a Lie
group G with Lie algebra g is de�ned as the closure of the unions of the wave front sets
at the identity of the matrix coe�cients of π:

WF(π) = ⋃
v,w∈H

WFe (⟨π(g)v,w⟩H) ⊂ iT
∗
e G ≅ ig∗.

This notion was �rst introduced in [How81].

Connecting these two concepts and using Kirillov's character formula [How81, Proposi-
tion 2.2] shows for the asymptotic support of a single irreducible unitary representation
σ of the nilpotent Lie group G that

WF(σ) = AC (Oσ) , (1.1)
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where the asymptotic cone AC(S) for a subset S of a �nite-dimensional vector space V
is the closed cone de�ned by

AC(S) = {v ∈ V ∣ ∀open cone C ∋ v ∶ C ∩ S unbounded} ∪ {0}.

In order to formulate results analogous to (1.1) for non-irreducible representations we
introduce the notion of the orbital support

O − supp(π) ∶= ⋃
σ ∈ suppπ

Oσ.

Thus, the resulting statements can be helpful in �nding the decomposition of a unitary
representation.
In fact, Kashiwara-Vergne [KV79] and Howe [How81] proved for compact, connected Lie
groups

WF(π) = AC (O − supp(π)) ,

using that one can also associate a coadjoint orbit to each irreducible unitary represen-
tation for compact Lie groups.

More recently, [HHÓ16] gave the same result for real reductive, algebraic Lie groups
under the assumption that π is weakly contained in the regular representation. In this
case a �nite union of coadjoint orbits can by associated to each irreducible tempered
representation due to Du�o and Rossmann (see [Duf70], [Ros78] and [Ros80]).
For a more detailed presentation of the known results see Section 2.3.

Our main goal is to prove this statement for nilpotent Lie groups:

Theorem. Let G be a nilpotent, connected, simply connected Lie group and π a unitary
representation of G. Then

WF(π) = AC(O − supp(π)).

Our proof in Section 4 uses explicit microlocal estimates of individual matrix coe�cients.
These microlocal estimates are obtained via induction over the dimension of G which is
a common method for nilpotent Lie groups based on the extensive knowledge of the
restriction of irreducible unitary representations to subgroups of co-dimension 1 and the
corresponding orbits outlined in Section 3 (see Theorem 3.18 and Procedure 3.19). In
the inductive step we make a case distinction based on the dimension of the center of
the Lie algebra.

In Section 5 we give a second proof based on the approach of [HHÓ16, Theorem 1.2]
for real reductive, algebraic Lie groups using the wave front set of integrated characters
as an intermediate step. Since the tools given for real reductive groups do not work for
nilpotent groups we had to �nd another description of the wave front set of a unitary
representation which we prove in Proposition 2.19 for general Lie groups.
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Unfortunately, in order to use integrated characters in the proof of the inclusion
WF(π) ⊂ AC(O − supp(π)) we have to make assumptions on the unitary representa-
tion. We discuss these di�culties in the setting of nilpotent Lie groups at the end of
Section 5.1.2 (see Remarks 5.9, 5.10 and 5.11). It was these di�culties that led to the
approach of working with individual matrix coe�cients instead of characters which was
carried out in Section 4.
Subsequently, we try to �nalize this proof for a general unitary representation in Sec-
tion 5.2 by using our knowledge of the integral kernels of the integrated representations
as studied in Section 3 (see Proposition 3.26). We have to make assumptions regarding
the structure of the Campbell-Baker-Hausdor� formula in order to be able to compute
and estimate the required integrals. However, we show that these are ful�lled in our
examples of the Heisenberg group and K3.

Lastly, recall that our result can provide asymptotic information about the decomposi-
tion of unitary representations into irreducibles since it is a statement about its (orbital)
support. We apply it in Section 6 to restriction problems which are a fundamental prob-
lem in representation theory. Consider a Lie group G and a closed subgroup H ⊂ G
and let h, g be the respective Lie algebras. Let q ∶ ig∗ → ih∗ be the natural projec-
tion and π be a unitary representation of G. On the level of the wave front sets we
know by [How81, Proposition 1.5] that q(WF(π)) ⊂ WF(π∣H). Hence, we can expect
representation theoretical results like

q(AC(O − suppπ)) ⊂ AC (O − supp (π∣H)) ,

if one has statements like our main theorem for both G and H. Assuming we know the
support of π (e.g. when it is irreducible) this tells us in which directions there have to
be in�nitely many points in the orbital support of π∣H , that is which irreducible unitary
representations of H have to occur in the decomposition of π∣H .
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2 Wave Front Sets

The aim of this section is to introduce the notion of wave front sets and to recall central
results that will be used in the subsequent sections.
We �rst introduce the notion of the wave front set of a distribution on a manifold. After
that we turn to the wave front set of a unitary representation of a Lie group.

2.1 Wave Front Sets of Distributions on Manifolds

Let W be a real, �nite-dimensional vector space and �x a Lebesgue measure dx on W .
We de�ne the Fourier transform of a Schwartz function ϕ ∈ S(W ) to be F(ϕ) ∈ S(iW ∗)

with

F(ϕ)(ζ) ∶= ∫
W
ϕ(x)e−2π⟨ξ,x⟩ dx, ξ ∈ iW ∗,

and for a tempered distribution u ∈ S ′(W ) as F(u) ∈ S ′(iW ∗) with

F(u)(ψ) ∶= u(F(ψ)), ψ ∈ S(iW ∗
),

since F(ψ) ∈ S(i(iW ∗)∗) = S(W ).
The inversion formula for F ∶ S(W ) → S(iW ∗) gives us

F
−1
∶ S(iW ∗

) → S(W ), ψ ↦ (x↦ ∫
iW ∗

ψ(ξ)e2π⟨ξ,x⟩ dξ)

for a suitable measure dξ on iW ∗.

Furthermore we de�ne the Fourier transform of a distribution v ∈ E ′(W ) with compact
support to be

F(v)(ξ) ∶= v [e−2π⟨ξ,●⟩
] , ξ ∈ iW ∗.

De�nition 2.1. Let W be a real, �nite-dimensional vector space and u ∈ D′(X) a
distribution on an open subset X ⊂ W . Then we say (x0, ξ0) ∈ X × iW ∗ ∖ {0} ⊂ iT ∗X
is not in the wave front set WF(u) ⊂ iT ∗X if there exist open neighborhoods U of x0

and V of ξ0 and a smooth compactly supported function φ ∈ C∞
c (U) with φ(x0) ≠ 0 such

that for all N ∈ N one of the following equivalent conditions hold:

(i) F(φu)(τξ) = O(τ−N) for τ →∞, uniformly in ξ ∈ V ,
i.e. the Fourier transform is rapidly decaying in V .

(ii) ∃CN,φ > 0 ∶ ∣F(φu)(τξ)∣ ≤ CN,φ∣τ ∣
−N ∀ τ ≫ 0, ξ ∈ V

(iii) ∃CN,φ > 0 ∶ ∣F(φu)(τξ)∣ ≤ CN,φ⟨τ⟩
−N ∀ τ ≫ 0, ξ ∈ V

where ⟨y⟩ =
√

1 + y2.
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Note that (x,0) ∈ iT ∗X is never in the wave front set (contrary to De�nition 2.11 for
unitary representations) because in order to analyze the singularities of a function or
distribution it only makes sense to look in the directions ξ ≠ 0.

This connection of the wave front set to the singularities of distributions is speci�ed with
the following

De�nition 2.2 (Singular support, see [Hör03, De�nition 2.2.3]). For u ∈ D′(X), X ⊂W
open, the singular support, denoted singsupp(u), is the set of points in X having no open
neighborhood to which the restriction of u is a C∞ function.

Then we have with the projection prx ∶X × iW ∗ ≅ iT ∗X →X, (x, ξ) ↦ x

prx(WF(u)) = singsupp(u)

(see [Hör03, De�nition 8.1.2]).

Lemma 2.3. The wave front set WF(u) ⊂ iT ∗X is a closed cone in the sense that

∀ τ > 0 ∶ (x0, ξ0) ∈ WF(u) ⇒ (x0, τξ0) ∈ WF(u).

Let us now consider two explicit examples:

Example 2.4. Let δ0 ∈ D′(Rn) be the delta distribution (in 0), i.e. δ0(φ) = φ(0),
φ ∈ C∞

c (Rn). Let φ ∈ C∞
c (Rn) with φ(0) = c ≠ 0. Then

F(φδ0)(τξ) = δ0(φe
−2πτ⟨x,ξ⟩) = φ(0) = c ∉ O(∣τ ∣−N) ∀N ∈ N.

This implies {(0, ξ) ∈ Rn × iRn ∣ ξ ≠ 0} ⊂ WF(δ0).
If now x ≠ 0 then there exits ϕ ∈ C∞

c (Rn) with ϕ(x) ≠ 0 but ϕ(0) = 0. Hence analogously
F(ϕδ0)(τξ) = 0 ∈ O(∣τ ∣−N) for all N ∈ N ⇒ (x, ξ) ∉ WF(δ0). Summarizing we have

WF(δ0) = {(0, ξ) ∈ Rn × iRn ∣ ξ ≠ 0} , singsupp(δ0) = prx(WF(δ0)) = {0}.

Figure 1: Wave front set of the delta distribution as in Example 2.4
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Example 2.5. Consider the Heaviside-function

g(x1, x2) =

⎧⎪⎪
⎨
⎪⎪⎩

1 x2 > 0

0 x2 ≤ 0
, (x1, x2) ∈ R2

and denote by ug the corresponding distribution.
Let x ∈ R2, ξ ∈ iR2 with x2 ≠ 0 and φ ∈ C∞

c (R2) with φ(x) ≠ 0 and supp(φ) ⊂ Bε(x) for
some ε < x2

2 . Then φug = φ or 0 and therefore φug ∈ C∞
c (R2) ⇒ (x, ξ) ∉ WF(ug).

If now x2 = 0 and ξ1 ≠ 0

F(φug)(τξ) = ∫
R2
φ(y)g(y)e−2πτ⟨y,ξ⟩ dy

= ∫

∞

0
∫

∞

−∞
φ(y1, y2) (

∂y1
−2πτξ1

)

N

e−2πτ⟨y,ξ⟩ dy1 dy2

= (2πτξ1)
−N
∫

∞

0
∫

∞

−∞
[(∂y1)

Nφ(y1, y2)] e
−2πτ⟨y,ξ⟩ dy1 dy2.

The last equality follows by integration by parts. Since (∂y1)
Nφ ∈ Cc(R2) this now

implies
∣F(φug)(τξ)∣ ≤ CN ∣τ ∣−N ⇒ (x, ξ) ∉ WF(ug).

At last, if x2 = 0, ξ1 = 0, and thus ξ2 ≠ 0, let φ ∈ C∞
c (R2) with ∫R φ(y1,0)dy1 ≠ 0.

Integrating by parts twice we obtain

F(φug)(τξ) = ∫
R2
φ(y)ug(y)e

−2πτ⟨y,ξ⟩ dy

= −(2πτξ2)
−1
∫

∞

−∞
φ(y1,0)e

−2πτ(y1⋅0+0⋅ξ2) dy1

+(2πτξ2)
−2
∫

∞

−∞
∂y2φ(y1,0)e

−2πτ(y1⋅0+0⋅ξ2) dy1

+(2πτξ2)
−2
∫

∞

0
∫

∞

−∞
[∂2
y2φ(y1, y2)] e

−2πτ⟨y,ξ⟩ dy1 dy2

= −(2πτξ2)
−1
∫

∞

−∞
φ(y1,0)dy1 + (2πτξ2)

−2
∫

∞

−∞
∂y2φ(y1,0)dy1

+(2πτξ2)
−2
∫

∞

0
∫

∞

−∞
[∂2
y2φ(y1, y2)] e

−2πτ⟨y,ξ⟩ dy1 dy2.

Since the �rst summand has order 1 in τ and the other at least order 2, F(φug) cannot
be rapidly decaying in τ . Collectively,

WF(ug) = {(x, ξ) ∈ R2
× iR2

∣ x2 = 0, ξ1 = 0}, singsupp(ug) = R × {0}

(see Figure 2).
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Figure 2: Wave front set of the Heaviside-distribution as in Example 2.5

In order to expand the notion of wave front sets to distributions on manifolds it is helpful
to have the following generalizing proposition.

Proposition 2.6 (see [Dui96, Proposition 1.3.2]). (x0, ξ0) ∉ WF(u) if and only if for
every function ψ ∈ C∞(Rn × Rp) with dxψ(x0, a0) = ξ0 for x0 ∈ Rn, a0 ∈ Rp, there exist
open neighborhoods U of x0 and A of a0 such that for every φ ∈ C∞

c (U) and N ∈ N

u (e−τψ(●,a)φ) = O(τ−N) for τ →∞, uniformly in a ∈ A.

Now, if ψ ∶X → Y is a di�eomorphism between two open sets and u is a distribution on
Y , then

ψ∗ WF(u) = WF(ψ∗u), (2.2)

where the pullback on the cotangent bundle is de�ned by

ψ∗(y, ξ) = (ψ−1
(y), (Dψ(ψ−1

(y)))T ξ) , (y, ξ) ∈ iT ∗Y.

Thus the notion of the wave front set of a distribution on a smooth manifold is indepen-
dent of the choice of local coordinates and is therefore well-de�ned.

Another characterization of wave front sets is given by [Fol89, Chapter 3, Section 2] in
terms of the wave packet transform of a distribution:
Let φ ∈ S(Rn) be a Schwartz function, u ∈ S ′(Rn) a tempered distribution and de�ne

φt(x) ∶= tn/4φ(t1/2), t > 0, and P tφu(ξ, x) ∶= u (e2πiξ⋅●−πiξ⋅xφt(● − x)) , ξ, x ∈ Rn.

Then

P tφu(ξ, x) = e
πiξx
F (uφt(● − x)) (ξ) = eπiξx (F(u) ⋆ F (φt(● − x))) (ξ),

where ⋆ denotes the convolution.
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One can compute

F (φt(● − x)) (ξ) = e−2πixξt−n/4F(φ)(−t−1/2ξ).

Combined we have

P tφu(ξ, x) = e
πiξxt−n/4F(u) (e−2πix(ξ−●)

F(φ)(−t−1/2
(ξ − ●)) . (2.3)

De�nition 2.7. We de�ne the wave front set of u with respect to φ, denoted WFφ(u),
by

(x0, ξ0) ∉ WFφ(u) ∶⇔ ∃ conic neighborhood V of (x0, ξ0) such that ∀ a,N ≥ 1 ∶

∣P tφu(tξ, x)∣ ≤ Ca,N t
−N

∀t ≥ 1, a−1
≤ ∣ξ∣ ≤ a, (x, ξ) ∈ V.

It will turn out that WFφ(u) = WF(u) for suitable functions φ. We have the following
lemma which is also true for the standard wave front set.

Lemma 2.8 (see [Fol89, Lemma 3.21]). If u ∈ S ′(Rn) and u = 0 on an open set U ⊂ Rn,
then (x0, ξ0) ∉ WFφ(u) for all x0 ∈ U and all ξ0 ∈ Rn ∖ {0}.

This means that WFφ(u) depends only on the local properties of u.

Remark 2.9. De�nition 2.7 is equivalent to

(x0, ξ0) ∈ WFφ(u) ⇔ ∀ conic neighborhood V of (ξ0, x0) ∃ a,N ≥ 1 ∶

∃tm →∞, a−1
≤ ∣ξm∣ ≤ a, (ξm, x) ∈ V ∶ ∣P tmφ u(tmξm, x)∣ > Ca,N t

−N
m .

Thus, in order to show that (ξ0, x0) ∈ WFφ(u) it su�ces to �nd for all ε > 0 an integer
N ∈ N, a constant C > 0 and sequences (tm)m∈N ⊂ R+ with tm → ∞ and (ξm)m∈N ⊂

B1(0) ∩Bε(ξ0) such that

∣P tmφ u(tmξm, x0)∣ > Ct
−N
m .

Theorem 2.10 (see [Fol89, Theorem 3.22]). If φ ∈ S(Rn) is even and nonzero, then

WFφ(u) = WF(u) ∀ u ∈ S ′(Rn).

8



2.2 Wave Front Sets of Unitary Representations

In this section G is a n-dimensional Lie group with Lie algebra g and (π,H) a unitary
representation of G.
Denote by B(H) the space of bounded linear operators on the Hilbert space H and by
J1(H) the subspace of trace class operators with trace class norm ∥T ∥1.

De�nition 2.11. The wave front set of a unitary representation π is de�ned as the
closure of the union of the wave front sets at the identity of the matrix coe�cients of π:

WF(π) ∶= ⋃
v,w∈H

WFe(⟨π(g)v,w⟩H) ∪ {0} ⊂ iT ∗e G ≅ ig∗.

Here we use the convention that zero is always in the wave front set (contrary to Def-
inition 2.1) because it makes the statements of the results for unitary representations
cleaner.
Howe used in [How81] the equivalent de�nition

WF(π) = ⋃
T ∈J1(H)

WFe(Trπ(T )) ∪ {0}, (2.4)

where Trπ(T ) ∶= Tr(π(⋅)T ), T ∈ J1(H), is a continuous bounded function on G regarded
as a distribution on G by integration. The equivalence of these de�nitions was shown in
[HHÓ16, Proposition 2.4].

Let us collect some well known basic properties of WF(π).

Lemma 2.12 (see [How81, Proposition 1.1 and Equations (1.7) and (1.8)]).
The wave front set WF(π) ⊂ ig∗ is a closed, Ad∗(G)-invariant cone.

Proof. We begin with proving that

W̃F(π) ∶= ⋃
T ∈J1(H)

WF(Trπ(T )) ⊂ iT ∗G ≅ G × ig∗

is bi-invariant: For g ∈ G using (2.2) we have

Lg(WF(Trπ(T ))) = WF(Lg Trπ(T )) = WF(Trπ(Tπ(g)
−1

)),

Rg(WF(Trπ(T ))) = WF(Lg Trπ(T )) = WF(Trπ(π(g)T )).

The claim now follows from the de�nition of W̃F(π) since Tπ(g)−1, π(g)T ∈ J1(H) if
T ∈ J1(H).
With Lemma 2.3 this also �nishes the proof since every bi-invariant set in T ∗G ≅ G × g∗

is of the form G ×N with an Ad∗(G)-invariant set N ⊂ g∗.

The next result is rather technical and uses Howe's de�nition (2.4) but o�ers various
equivalent descriptions of the wave front set.
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Lemma 2.13 (see [HHÓ16, Lemma 2.5] and [How81, Theorem 1.4]).
The following assertions are all equivalent:

(i) ξ0 ∉ WF(π)

(ii) For every T ∈ J1(H) there is an open set e ∈ U ⊂ G on which the logarithm is a
well-de�ned di�eomorphism onto its image and an open set ξ0 ∈ V ⊂ ig∗ such that
for every φ ∈ C∞

c (U) the absolute value of the integral

I(φ, ξ, T )(τ) ∶= ∫
G

Trπ(T )(g)eτξ(log g)φ(g)dg

is rapidly decaying in τ for τ > 0 uniformly in ξ ∈ V .

(iii) There is an open set e ∈ U ⊂ G on which the logarithm is a well-de�ned dif-
feomorphism onto its image and an open set ξ0 ∈ V ⊂ ig∗ such that for every
φ ∈ C∞

c (U) there exists a family of constants CN(φ) > 0 independent of both ξ ∈ V
and T ∈ J1(H), such that

∣I(φ, ξ, T )(τ)∣ ≤ CN(φ)∥T ∥1τ
−N

for τ ≫ 0, ξ ∈ V , T ∈ J1(H).

(iv) There is an open set e ∈ U ⊂ G on which the logarithm is a well-de�ned di�eomor-
phism onto its image and an open set ξ0 ∈ V ⊂ ig∗ such that for every φ ∈ C∞

c (U)

the quantity

∥π(φ(g)eτξ(log g)
)∥op

is rapidly decaying in τ for τ > 0 uniformly in ξ ∈ V .

A �rst simple result which gives us an idea why wave front sets might be interesting for
the decomposition of unitary representations is the following equality.

Proposition 2.14. Let (π1,H1), (π2,H2) be two unitary representations of G, then

WF(π1 ⊕ π2) = WF(π1) ∪WF(π2).

Proof. The matrix coe�cients of π1⊕π2 have the form Trπ1⊕π2(T ) = Trπ1(T1)+Trπ2(T2)

with suitable Ti ∈ J1(Hi). Now, the inclusions WF(πi) ⊂ WF(π1 ⊕ π2) follow by setting
one Tj = 0 and letting the other vary over all trace class operators. The other inclusion
follows from the fact that WF(u + v) ⊂ WF(u) ∪ WF(v) for two distributions u, v ∈ D′

since the sum of two rapidly decaying integrals inherits this property.

Example 2.15. Consider the action π of R2 on L2(R) via (π(t1, t2)f)(x) = f(x− t1) as
a toy model for the right regular representation on a homogeneous space L2(G/H) (here
G = R2, H = R).

10



Since the action is independent of t2 so is each matrix coe�cient. If ξ2 ≠ 0 the insertion

of the partial di�erential operator (
∂t2

−2πτξ2
)
N
and integration by parts (compare the �rst

part of Example 2.5) shows that

WF0(⟨π(●)f1, f2⟩) ⊂ {ξ ∈ iR2
∣ ξ2 = 0} ∀ f1, f2 ∈ L

2
(R),

and this implies

WF(π) ⊂ {ξ ∈ iR2
∣ ξ2 = 0} .

Let us show that we have not only an inclusion but in fact equality: We choose the
indicator functions f1 = χ[0,1] and f2 = χ[1,2] and compute

⟨π(t1, t2)f1, f2⟩ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, if t1 < 0 or t1 ≥ 2,

t1, if 0 ≤ t1 < 1,

1 − t1, if 1 ≤ t1 < 2.

Consequently, for ξ = (ξ1,0) we have

F(⟨π(●)f1, f2⟩)(τξ) = ∫
1

0
t1e

−2πτt1ξ1 dt1 + ∫
2

1
(1 − t1)e

−2πτt1ξ1 dt1

= ∫

1

0
t1 (

∂t1
−2πτξ1

) e−2πτt1ξ1 dt1 + ∫
2

1
(1 − t1) (

∂t1
−2πτξ1

) e−2πτt1ξ1 dt1

= (−2πτξ1)
−1 (e2πτξ1 − e−4πτξ1) + (2πτξ1)

−2 (−2e2πτξ1 + e−4πτξ1 + 1) ,

by integration by parts. Hence, (ξ1,0) ∈ WF0(⟨π(●)f1, f2⟩) and therefore

WF(π) = {ξ ∈ iR2
∣ ξ2 = 0} .

Now, we are interested in another description of the wave front set of π allowing for
distributional limits of the functions Trπ(T ), at least for certain T ∈ J1(H). For this we
will �rst show a general result for distributions and their convergence in a Sobolev space.

Lemma 2.16. Let (tm)m∈N ⊂ D′(Rn) with supp(tm) ⊂ K for a compact K ⊂ Rn and

tm → 0 ∈ D′(Rn) as distributions. Then there exists s ∈ R such that tm
Hs

→ 0 in the
Sobolev space Hs(Rn).

Proof. By [DK10, Lemma 5.4] there exist k ∈ N, C > 0 such that

∣tm(φ)∣ ≤ C∥φ∥Ck ∀m ∈ N, φ ∈ C∞
c (K).

Since supp(tm) ⊂K for all m ∈ N the inequality holds for all φ ∈ C∞
c (Rn).

Using [Hör03, Lemma 7.6.3] we can show that there exists a constant C ′ > 0 such that
∥φ∥Ck ≤ C

′∥φ∥Hr+k for all N ∋ r > n
2 , φ ∈ C

∞
c (Rn).

11



Since C∞
c (Rn) is dense in Hr+k(Rn) for all r ∈ R this shows that for every m ∈ N the

distribution tm can be extended to a continuous functional on Hr+k(Rn) and we have
∥tm∥Hr+k→C ≤ C ′C =∶ C̃ and by duality of the Sobolev spaces ∥tm∥H−(r+k) ≤ C̃ for all
m ∈ N, i.e.

∫ ∣t̂m(ξ)∣2⟨ξ⟩−2(r+k) dξ < C̃2
∀m ∈ N.

Here t̂m(ξ) is the Fourier transform of tm which is a smooth function in ξ.
Let R > 0. Since tm converges to 0 we choose mR ∈ N such that ∥t̂m∥

∞,BR(0)
< R−n for

all m ≥mR.
Then we have for m ≥mR:

∥tm∥
2
H−(r+k+1) = ∫ ∣t̂m(ξ)∣2⟨ξ⟩−2(r+k+1) dξ

= ∫
BR(0)

∣t̂m(ξ)∣2⟨ξ⟩−2(r+k+1) dξ + ∫
∣ξ∣>R

∣t̂m(ξ)∣2⟨ξ⟩−2(r+k+1) dξ

≤ Vol(BR(0))R
−2n

+ ⟨R⟩
−2
∫
∣ξ∣>R

∣t̂m(ξ)∣2⟨ξ⟩−2(r+k) dξ

≤ MR−n
+ C̃2

⟨R⟩
−2.

Thus, by letting R →∞ we obtain tm → 0 for m→∞ in H−(r+k+1)(Rn).

For the alternative description of WF(π) we want to look at:

De�nition 2.17.

P (π) ∶= {Tr(π(●)T ) ∣ T ∈ B(H) non-negative and of �nite rank } ⊂ C(G),

P (π)
D′

= {α ∈ D
′
(G) ∣ ∃(αm)m∈N ⊂ P (π) ∶ αm → α in D′(G)}.

Proposition 2.18. Let α ∈ D′(G). If there exists a neighborhood e ∈ U ⊂ G such that
U ⊂ Uκ for a local coordinate system κ ∶ G ⊃ Uκ → Vκ ⊂ Rn of the smooth manifold G,
κ(e) = 0, and (αm)m∈N ⊂ P (π) with αm ○ κ−1 → α ○ κ−1 in a Sobolev space Hs(Vκ) with
s > n

2 , then

WFe(α) ⊂ WF(π).

Proof. Let αm = Tr(π(g)Am), Am ∈ B(H) non-negative and of �nite rank. Since the
delta distribution δ0 in 0 is an element of H−s(Vκ) for s > n

2 we have

δ0(α ○ κ
−1

) ← δ0(αm ○ κ−1
) = Tr(π(κ−1

(0))Am)
κ−1(0)=e

= Tr(Am)
Am pos.

= ∥Am∥1

where ∥.∥1 denotes the trace norm on J1(H). This shows that (∥Am∥1)m∈N ⊂ R is bounded
by a constant C ′ > 0.

12



Now let ξ ∉ WF(π). By Lemma 2.13 (iii) there exists a neighborhood Ω ⊂ ig∗ of ξ such
that for all N ∈ N und J ∈ J1(H) there exists a constant CN(ϕ) > 0 independent of J
such that

∣Tr(π(●)J)[ϕe−2πtη(log)
]∣ ≤ CN(ϕ)∥J∥1∣t∣

−N
∀η ∈ Ω, ϕ ∈ C∞

c (G).

In particular, ∣αm[ϕe−2πtη log]∣ ≤ C ′CN(ϕ)∣t∣−N independent ofm ∈ N. Therefore the limit
distribution α also satis�es the inequality. This shows, again by Lemma 2.13 (iii), that
ξ ∉ WFe(α).

With this we can �nd a lower bound for WF(π):

Proposition 2.19.

⋃

α∈P (π)
D′

WFe(α) ⊂ WF(π)

Proof. Let α ∈ P (π)
D′

, i.e. there exist αm = Tr(π(g)Am) ∈ P (π), Am ∈ B(H) non-
negative and of �nite rank, such that αm → α in D′. Since we are only interested in
the wave front set in e ∈ G it su�ces to look at a small neighborhood U of e such that
U ⊂ Uκ for a local coordinate system κ ∶ G ⊃ Uκ → Vκ ⊂ Rn of the manifold G and the
image Vκ is (contained in) a relatively compact set K ⊂ Rn. Now we replace αm and α
by αm ⋅ χU and α ⋅ χU , respectively, where χU ∈ C∞

c is a smooth cut-o� function with
0 ≤ χU ≤ 1, χU(e) = 1 and suppχU ⊂ U . This does not change the wave front set of α
and the convergence in D′(G).

Choose a basis {Xi}1≤i≤n of g. Each element Xi ∈ g induces di�erential operators LXi ,
RXi of order 1 on G. As the left and right regular representations of G are unitary we also
have L∗Xi = L−Xi and R

∗
Xi

= R−Xi as di�erential operators of order 1 on G. If we de�ne
P ∶= −∑

n
i=1X

2
i ∈ U(g) and the associated di�erential operators LP , RP of order 2 on G,

we see that these are non-negative operators on L2(G). With that one can show that
1 + LP = L1+P and 1 +RP = R1+P are invertible and that their inverse is continuous by
the bounded inverse theorem. We also obtain by ellipticity of the associated di�erential
operators on Vκ ⊂ Rn that L̃(1+P ) ∶= (κ−1)∗L1+Pκ

∗ and R̃(1+P ) ∶= (κ−1)∗R1+Pκ
∗ are

bounded operators on Hr(Vκ) →Hr−2(Vκ) for all r ∈ R.

As αm ○κ−1 → α ○κ−1 as distributions on Vκ, Lemma 2.16 gives us the existence of s ∈ R
such that the convergence is also given in the Sobolev space Hs(Vκ). Now choose N ∈ N
such that s + 4N > n

2 and de�ne

α̃m ∶= R̃−N
(1+P )L̃

−N
(1+P )(αm ○ κ−1

), α̃ ∶= R̃−N
(1+P )L̃

−N
(1+P )(α ○ κ

−1
) ∈Hs+4N

(Vκ).

Note that ∥α̃m − α̃∥Hs+4N → 0 by continuity of L̃−N
(1+P )

and R̃−N
(1+P )

and

α̃m ○ κ = R−N
(1+P )L

−N
(1+P ) Tr(π(g)Am) = Tr(π(g)π(1 + P )

−NAm π(1 + P )
−N

) ∈ P (π),
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since Ãm ∶= π(1+P )−NAm π(1+P )−N is non-negative, as a product ABA is non-negative
if B ≥ 0 and A is self-adjoint, and of �nite rank since the set of �nite rank operators is
an ideal. By Proposition 2.18 we have WFe(α̃ ○κ) ⊂ WF(π). Then by de�nition of wave
front sets on manifolds and since the action of di�erential operators does not increase
the wave front set, we obtain WFe(α) ⊂ WFe(α̃) ⊂ WF(π). Since the wave front set is
closed the claim follows.

2.3 Historic Overview of known Results for Wave Front Sets of Lie Groups

In this section we would like to illustrate the signi�cance of the wave front sets of unitary
representations.
In order to state the results consider the following setting: For a unitary representation
π of a Lie group G which is type I we denote by supp(π) ⊂ Ĝ the irreducible unitary
representations that are weakly contained in π, i.e. occur in the direct integral decom-
position of π.
Assume that there is a way to associate to any σ ∈ supp(π) a coadjoint orbit Oσ ⊂ ig∗.
Then we de�ne the orbital support of π to be

O − suppπ ∶= ⋃
σ∈supp(π)

Oσ ⊂ ig∗.

Since WF(π) is Ad∗(G)-invariant one can ask for its connection to its orbital support.
The right notion to do so is given in the following

De�nition 2.20. If V is a �nite-dimensional vector space and S ⊂ V , then we de�ne the
asymptotic cone of S to be

AC(S) ∶= {v ∈ V ∣ ∀open cone C ∋ v ∶ C ∩ S unbounded} ∪ {0}.

One of the �rst works that provided statements like the ones we are interested in was
�K-types and singular spectrum� by Kashiwara and Vergne in 1979 (see [KV79]). One of
their results states that for compact Lie groups the singular spectrum provides asymptotic
information about the decomposition of the representation into irreducibles. On the level
of wave front sets their statement can be phrased with our notation as follows:

Theorem 2.21 (compare [KV79]). Let G be a compact, connected Lie group and π a
unitary representation. Then

WF(π) = AC (O − suppπ) .

Here Oσ = Ad∗(G)λσ, σ ∈ Ĝ, is the orbit of the associated highest weight λσ ∈ t∗ ⊂ g∗.

Notice that in their paper the results are reduced to statements in a Weyl chamber in t∗.
Since that is only possible for compact groups we work with the notation we introduced
above.

14



A few years later, Howe gave a de�nition for the wave front set of unitary representations
for arbitrary Lie groups. He gave his own proof for Theorem2.21 in [How81, Proposi-
tion 2.3], but he also looked at nilpotent Lie groups and a single irreducible unitary
representation.

Theorem 2.22 (see [How81, Proposition 2.2]). Let G be a nilpotent, connected, simply
connected Lie group and σ ∈ Ĝ irreducible. Then

WF(σ) = AC(Oσ).

Here Oσ ⊂ ig∗ is given by the isomorphism between the unitary dual Ĝ and the space of
coadjoint orbits ig∗/G (see Theorem 3.2).

In the proof he uses that if the representation admits a global character then its wave
front set equals the wave front set of the representation:

Theorem 2.23. Let G be a nilpotent, connected, simply connected Lie group. For σ ∈ Ĝ
the trace linear functional θσ(φ) = Tr(σ(φ)) is a distribution on G, called the character
of σ, and we have

WFe(θσ) = WF(σ).

Remark 2.24. By [How81, Theorem 1.8] the previous statement is actually true for
general Lie groups G if σ ∈ Ĝ is so-called strong trace class, which implies that the trace
linear functional de�nes a global character.

Then from 1994 to 1998 Kobayashi studied in [Kob94], [Kob98a] and [Kob98b] the re-
striction of representations of real reductive Lie groups to subgroups for which he used
the wave front set on the level of maximal compact subgroups (see also [Kob05]). In par-
ticular, Kobayashi further developed the idea to study the singularities of summed-up
characters as an intermediate step in [Kob98b, Section 2].

Almost two decades later, this idea of studying the summed-up or integrated characters
was then advanced in [HHÓ16] where Harris, He and Ólafsson use integrated characters
when studying wave front sets for real reductive, algebraic Lie groups for which they
proved the asymptotic result mentioned above:

Theorem 2.25 (see [HHÓ16, Theorem 21.2]). Let G be a real reductive, algebraic Lie
group and π be weakly contained in the regular representation of G, i.e. suppπ ⊂ Ĝtemp.
Then

WF(π) = AC (O − suppπ) .

Here Oσ ⊂ ig∗ is the �nite union of coadjoint orbits Du�o and Rossmann associated to
the irreducible representations which are weakly contained in L2(G) (see [Duf70], [Ros78]
and [Ros80]).
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Their proof uses, as highlighted above, the wave front set of integrated characters as an
intermediate step (see [HHÓ16, Lemma 6.3 and the proof of Proposition 7.1]).

In [Har18] Harris then also studies representations of a real reductive Lie group that
are a direct integral of singular, irreducible representation. They are the complement of
the irreducible, tempered representations studied in [HHÓ16]. He shows that their wave
front set is contained in the singular set. Thus, combining these two papers asymptotic
results for arbitrary unitary representations of a real reductive group are obtained.

Since the association of orbital parameters to irreducible representations by Du�o and
Rossmann only works on Ĝtemp, Harris and Oshima introduce in [HO17] a geometric
character formula for the set of singular, irreducible representations. With this one
can generalize the results from [HHÓ16] that are applications of Rossmann's classical
character formula to harmonic analysis questions and branching problems.

We conclude that it would be worthwhile to have this kind of statement relating the wave
front set to the asymptotic orbital support for as many types of Lie groups as possible.
Potential applications are then restrictions and inductions of unitary representations
between di�erent groups.

Our main goal is to prove this statement for nilpotent Lie groups:

Theorem. Let G be a nilpotent, connected, simply connected Lie group and π a unitary
representation of G. Then

WF(π) = AC (O − suppπ) .

We will give the proof in Section 4 using the structure theory of a nilpotent Lie group
and its coadjoint orbits, presented in Section 3. In Section 5 we will provide alternative
proofs for our main theorem. In particular, in Section 5.1 we try to follow the work of
[HHÓ16] and their approach by integrated characters since traces are a well-understood
tool for nilpotent Lie groups as Theorem 2.23 already suggests.
Lastly, we look at an application of our result to restrictions of unitary representations
in Section 6.

Concerning the induction of unitary representations note that by [HW17] the wave front
set of induced representations is explicitly known in quite large generality. For example
one has:

Theorem 2.26 (see [HW17, Theorem 2.1]). Suppose X = G/H is a homogeneous space
for a Lie group G equipped with a nonzero invariant density. Then

WF(L2
(X)) = WF(IndGH 1) = Ad∗(G) ⋅ i(g/h)∗.

This gives a geometric interpretation and generalizes our elementary Example 2.15.
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3 Nilpotent Lie Groups and Lie Algebras

We begin with the de�nition of nilpotent Lie algebras.

De�nition 3.1. Let g be a Lie algebra. The descending central series of g is de�ned
inductively by

g(1) ∶= g, g(N+1)
∶= [g,g(N)

], N ∈ N.

We say that g is a nilpotent Lie algebra if there is an integer N such that g(N) = {0}. If
this N is minimal we also call it the degree of nilpotence of g.
A Lie group G is called nilpotent if its Lie algebra is nilpotent.

The aim of this section is now to provide the structure theory of nilpotent Lie groups
and Lie algebras and illustrate it in the examples of the Heisenberg group Hn and the
group K3. It is mostly based on the book by Corwin and Greenleaf [CG90].

3.1 General Theory

Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g of
dimension n and g∗ its vector space dual. By Ĝ we denote the unitary dual of G, i.e.
the set of unitary irreducible representations of G modulo unitary equivalence, which is
equipped with the Fell topology.
In this section we would like to take a look at the nice structures a nilpotent Lie group
and its Lie algebra provides. The three main results are the following Theorems 3.2, 3.4
and 3.5. All necessary de�nitions will be provided in the detailed discussions afterwards.

Theorem 3.2 (see [CG90, Theorems 2.2.1 - 2.2.4]). Let ig∗/G denote the space of coad-
joint orbits. There exists a homeomorphism

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Ĝ → ig∗/G,

σ ↦ Oσ,

σl ↤ Ol = Ad∗(G)l.

For the continuity of the map ig∗/G→ Ĝ see [Kir62, Theorem 8.2] and for the continuity
of the map Ĝ→ ig∗/G see [Bro73].

This bijection then allows us to shift concepts from the side of irreducible unitary rep-
resentations to the side of coadjoint orbits or vice versa. An important notion are the
global characters.

De�nition 3.3. For a unitary representation π on G and Schwartz function φ ∈ S(G)

the integrated representation is de�ned as

π(φ) ∶= ∫
G
φ(g)π(g)dg.
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Theorem 3.4 (see [CG90, Theorems 4.2.1 and 4.2.4]). For σ ∈ Ĝ the integrated repre-
sentation σ(φ), φ ∈ S(G), is of trace class. The trace θσ(φ) ∶= Trσ(φ) is a tempered
distribution on G.
Furthermore, the character formula (see also [Kir62, Theorem 7.4]) states that there
exists a unique invariant measure ϑσ on the corresponding orbit Oσ such that

θσ(φ) = ∫
Oσ

F
+
(φ)(l)dϑσ(l), (3.5)

where F+(φ)(l) = ∫g e
2πl(X)φ(expX)dX denotes the Fourier transform of φ ∈ S(G).

The third statement tells us more about the structure of the coadjoint orbits which
ultimately gives us more information about the unitary dual and the global characters.

Theorem 3.5 (see [CG90, Theorem 3.1.14]). Fix a (strong Malcev) basis {X1, . . . ,Xn}

of g. Then there exits a �nite set D of orbit types. Denote by Ud ⊂ ig∗ the union of all
orbits of type d ∈D. Moreover, all orbits in Ud have the same dimension.
For each d ∈ D there also exists a cross-section Σd ⊂ ig

∗ of the orbits in Ud, i.e. each
orbit O ⊂ Ud intersects Σd in a unique point. Then

Σ ∶= ⊔
d∈D

Σd ≅ ig
∗
/G

is a cross-section of all G-orbits.
Furthermore, for each d ∈D there exists a decomposition

ig∗ = VS(d) ⊕ VT (d)

as a direct sum of vector spaces and a birational, non-singular, surjective map

ψd∶Σd × VS(d) → Ud

such that for each l ∈ Σd its orbit is given by Ol = ψd (l, VS(d)).

Now we take a closer look at the ingredients and underlying concepts of these main
statements starting on the level of nilpotent Lie algebras. These details will not only
be presented as background material but their knowledge will be crucial for our own
results. Firstly, they enable us to prove the last two Lemmas 3.28 and 3.29 of this
section providing an estimate for the characters depending on l ∈ Σd but we will also use
them at various points throughout the next section.

Lemma 3.6 (see [CG90, Kirillov's Lemma 1.1.12]). Let g be a non-abelian nilpotent Lie
algebra whose center z(g) = RZ is one-dimensional. Then g can be written as

g = RZ ⊕RY ⊕RX ⊕w = RX ⊕ g0,

a vector space direct sum with a suitable subspace w. Furthermore, [X,Y ] = Z and
g0 = RY ⊕RZ ⊕w is the centralizer of Y and an ideal.
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Proof. We have dimg ≥ 3. We choose Z ∈ g such that z(g) = R ⋅Z.
Then g ∶= g/z(g) is nilpotent and dimg ≥ 2. We choose 0 ≠ Y ∈ z(g) and Y ∈ g such that
Y = Y z(g). By de�nition of Y we have [W,Y ] ∈ RZ for all W ∈ g. Thus, we de�ne a
linear map

α ∶ g→ R, [W,Y ] = α(W )Z.

Since Y ∉ z(g) we know α ≠ 0 and can choose X ∈ g with α(X) = 1, i.e. [X,Y ] = Z.
Let g0 ∶= ker(α). Then Z,Y ∈ g0 are linear independent. Let w ⊂ g0 be a subspace such
that g0 = RZ ⊕RY ⊕w.
Now we check that that g0 is a subalgebra: For W1,W2 ∈ g0 we have

[[W1,W2], Y ] = −[W2, [W1, Y ]] + [W1, [W2, Y ]] = −[W2,0] + [W1,0] = 0,

which implies [W1,W2] ∈ g0. Since [CG90, Lemma 1.1.8] states that subalgebras of
codimension 1 are ideals the proof is �nished.

Theorem 3.7 (see [CG90, Theorem 1.1.13]). Let g1 ⊂ g2 ⊂ . . . ⊂ gk ⊂ g be subalgebras
with dimgj =mj. Then

(i) g has a basis {X1, . . . ,Xn} such that

a) for each m, hm = spanR {X1, . . . ,Xm} is a subalgebra of g,

b) for 1 ≤ j ≤ k, hmj = gj.

(ii) If the gj are ideals of g, then one can pick the Xj so that a) is replaced by

c) for each m, hm = spanR {X1, . . . ,Xm} is an ideal of g.

With this one can de�ne a suitable basis for the Lie algebra which will be helpful on the
level of the Lie group but also in order to �nd the parametrization of coadjoint orbits in
Theorem 3.5:

De�nition 3.8. We call a basis satisfying a) and b) of Theorem 3.7 a weak Malcev basis
for g through g1, . . . ,gk; and one satisfying b) and c) a strong Malcev basis for g through
g1, . . . ,gk. In the case k = 0 we simply refer to a weak/strong Malcev basis for g.

From now on, let G be a nilpotent, connected, simply connected Lie group with Lie
algebra g which is by de�nition nilpotent. Firstly, we examine howG and g are connected.

Theorem 3.9 (see [CG90, Theorem 1.2.1]). The exponential map exp ∶ g → G is an
analytic di�eomorphism.

Lemma 3.10. The Campbell-Baker-Hausdor� formula

X ∗ Y ∶= log(expX expY ) ∈ g

is de�ned for all elements X,Y ∈ g and can be written as a �nite sum of elements of g,
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more precisely

X ∗ Y =
N

∑
m=0

(−1)m+1

m
∑

pi+qi>0

Xp1Y q1⋯XpmY qm

p1!q1!⋯pm!qm!

=X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] −

1

12
[Y, [X,Y ]] + (commutators in ≥ 4 terms),

where N is the degree of nilpotence of g.

De�nition 3.11. We say that a map between two vector spaces is polynomial if it is
described by polynomials in the coordinates for some (hence any) pair of bases.
We call a map f a polynomial di�eomorphism if f−1 exists and both f and f−1 are
polynomial. Carrying this notion over to G via its identi�cation with g we call a map
φ ∶ G→ G a polynomial di�eomorphism if log ○φ ○ exp ∶ g→ g has this property.
We de�ne a polynomial coordinate map for G as a map φ ∶ Rn → G, n = dimG, for which
log ○φ is a polynomial di�eomorphism.

For a (weak or strong) Malcev basis {X1, . . . ,Xn} one can show that the exponential
coordinates

g = exp(s1X1)⋯ exp(snXn) = exp(s1X1 ∗⋯ ∗ snXn) ∈ G

and the so-called Malcev coordinates g = exp(∑αjXj) are related by a polynomial dif-
feomorphism, i.e. the αj are polynomial in the si and vice versa (see [CG90, Proposi-
tions 1.2.7 and 1.2.8]).

Since we want to integrate over the group but also use the structure of the Lie algebra
we have the following:

Theorem 3.12 (see [CG90, Theorem 1.2.10]).

(i) The exponential map takes the Lebesgue measure on g to a left- and right-invariant
(Haar) measure on G. In particular, nilpotent LIe groups are unimodular so that
the right-invariance implies left-invariance and vice versa.

(ii) Let φ ∶ Rn → G be any polynomial coordinate map. Then φ takes the Lebesgue
measure on Rn to a Haar measure on G. In particular, this is true if the Lebesgue
measure is transferred to G via weak or strong Malcev coordinates.

We will also need to know how we can �nd a measure if we have given one on a subgroup
and a quotient.

Lemma 3.13 (see [CG90, Lemma 1.2.13]). Let H be a closed subgroup of the locally
compact group G. Suppose that H/G has a right-invariant measure dġ and that we have
�xed a right Haar dh measure on H. Then a right Haar measure on G is given by

∫
G
φdg = ∫

H/G
(∫

H
φ(hg)dh) dġ ∀ φ ∈ C∞

c (G).
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Now let us turn to the coadjoint orbits Ol = Ad∗(G)l ⊂ ig∗ for l ∈ ig∗ and examine their
structure. We start o� with their dimension:

Lemma 3.14 (see [CG90, Lemma 1.3.2]). For l ∈ ig∗ we de�ne the bilinear form
Bl(X,Y ) = l([X,Y ]) on g. Then the radical

rl ∶= {X ∈ g ∣ Bl(X,Y ) = 0 ∀ Y ∈ g} = {X ∈ g ∣ ad∗(X)l = 0} (3.6)

has even codimension in g. Hence coadjoint orbits are of even dimension.
They are actually symplectic manifolds with the non-degenerate skew symmetric 2-form
ω(l′) ∈ Λ2(Tl′Ol) such that ω(l′)(−(ad∗X)l′,−(ad∗ Y )l′) = l′([X,Y ]), l′ ∈ Ol. Note that
ω is Ad∗(G) invariant.

Now, we are interested in how we can de�ne an irreducible unitary representation of G
given an element l ∈ ig∗ (with Theorem 3.2 in mind).

De�nition 3.15. A polarizing subalgebra for l ∈ ig∗ is a subalgebra m ⊂ g that is a
maximal isotropic subspace for the bilinear form Bl ∶ g × g→ iR.
They are also called maximal subordinate subalgebras for l.

Theorem 3.16 (see [CG90, Proposition 1.3.4]). Let g be a nilpotent Lie algebra and let
l ∈ ig∗. Then there exists a polarizing subalgebra for l.

Now, for l ∈ ig∗ choose a polarizing m and let M = expm. Then χl(expY ) = e2πl(Y ) is a
one-dimensional representation of M since l([m,m]) = 0. Hence, we can de�ne

σl ∶= IndGM(χl).

More precisely,

Hl =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f ∶ G→ C measurable ∣ f(mg) = χl(m)f(g) ∀m ∈M and ∫

M/G

∥f(g)∥2dġ < ∞

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

and
(σl(x)f)(g) = f(gx) ∀ x ∈ G,f ∈ Hl.

With this construction one can prove the bijection Ĝ ≅ ig∗/G which is our �rst main
result Theorem 3.2. As [CG90, Theorems 2.2.1 and 2.2.2] show, σl is irreducible and is
independent of the choice of m. [CG90, Theorems 2.2.3 and 2.2.4] continue to show that
two representations σl and σl′ are unitary equivalent if and only if l′ ∈ Ol and that every
σ ∈ Ĝ is of the form σ ≅ σl for an l ∈ ig∗.

Below we want to provide the essential ingredients for these proof which will also be
important for the proof of our main result in the next section.
The proof is by induction on the dimension of G. The inductive step is based an the
following statement.

21



Proposition 3.17 (see [CG90, Proposition 1.3.4]). Let g0 be a subalgebra of codimension
1 in a nilpotent Lie algebra g, let l ∈ ig∗, and let l0 = l∣g0 . Let rl be the radical de�ned in

Equation (3.6). Then there are two mutually exclusive possibilities:

� Case I characterized by any of the following equivalent properties:

(i) rl ⊈ g0;

(ii) rl ⊃ rl0;

(iii) rl0 of codimension 1 in rl.

In this case, if m is a polarizing subalgebra for l, then m0 = m ∩ g0 is a polarizing
subalgebra for l0; m0 is of codimension 1 in m and m = rl +m0.

� Case II characterized by any of the following equivalent properties:

(i) rl ⊂ g0;

(ii) rl ⊂ rl0;

(iii) rl of codimension 1 in rl0.

In this case, any polarizing subalgebra for l0 is also polarizing for l.

Even though this is a rather technical result its signi�cance becomes clearer in the next
statements since we also know how the irreducible representations and the orbits of G
and G0 are connected in these two cases.

Theorem 3.18 (see [CG90, Theorem 2.5.1]). Let the notation be as above. Let p ∶ ig∗ →
ig∗0 be the canonical projection and G0 = exp(g0).

(i) In Case I, where rl ⊈ g0, we have

σl0 ≅ σl∣G0
and p ∶ Ol → Ol0 ∶= Ad∗(G0)l0 is a bijection

(see Figure 3).

(ii) In Case II, where rl ⊂ g0, we have

σl ≅ IndGG0
(σl0), p(Ol) = ⊔

t∈R
(Ad∗ exp tX)Ol0 and Ol = p

−1
(p(Ol)),

where X is any element such that g = RX ⊕ g0.

The common induction procedure in setting of nilpotent Lie groups is the following

Procedure 3.19 (Induction procedure on dimG).

The base case consists of dimG = 1,2 which means that the group is abelian and therefore
the orbits are zero-dimensional and all irreducible representations are one-dimensional
(characters).

22



Figure 3: Orbits of G0 and G in Case II

In the inductive step one distinguishes the two cases

(i) There exists Z ∈ z(g) with l(Z) = 0. i.e. either dim(z(g)) > 1 and l ∈ ig∗ arbitrary
or dim(z(g)) = 1 and l is trivial on the center.
We de�ne g0 = g/(R ⋅ Z) and G0 = G/ exp(R ⋅ Z) which unfortunately do not have
to be a subalgebra and a subgroup, respectively. But every element of Ol ⊂ ig∗

is trivial on R ⋅ Z so that it can be regarded as a subset of ig∗0 which coincides
with Ol0 = Ad∗(G0)l0. Since l is trivial on Z every polarizing subalgebra m ⊂ g
contains R ⋅Z and m/(R ⋅Z) is a polarizing subalgebra for l0. With the projection
P ∶ G → G0 we also know σl0 ○ P ≅ σl. Thus, we are in a similar situation as in
Case II of Theorem 3.18.

(ii) The center is z(g) = R ⋅Z, i.e. one-dimensional, and l(Z) ≠ 0.
By Kirillov's Lemma 3.6 there exist X,Y ∈ g and an ideal g0 ⊂ g such that we have
g = RX ⊕ g0 and [X,Y ] = Z. Thus X ∉ rl and for tX +X0 ∈ rl, X0 ∈ g0, we have
0 = l([tX +X0, Y ]) = l(tZ) = tl(Z) which implies t = 0, i.e. rl ⊂ g0 and we are in
Case II of Proposition 3.17 and Theorem 3.18.

This induction procedure is slightly modi�ed in the proof of Theorem 3.2 but still relies
on the statements of the previous Theorem 3.18.

Consequently, we now turn to the study of the coadjoint orbits as Theorem 3.2 tells us
that this su�ces in order to obtain information about the irreducible unitary represen-
tations of G.
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For the de�nition of orbit types, the construction of the cross-sections Σd and the
parametrization of all orbits as stated in Theorem 3.5 we follow [CG90, Chapter 3.1]:
Let {X1, . . . ,Xn} be a strong Malcev basis of g and {e1, . . . , en} its dual basis in g∗. We
de�ne for j = 1, . . . , n the subspaces Vj ∶= i spanR(ej+1, . . . , en) ⊂ ig

∗. By the de�nition of
the strong Malcev basis the Vj are Ad∗(G)-invariant subspaces. Hence, G acts on each
ig∗/Vj and the canonical projection pj ∶ ig∗ → ig∗/Vj is equivariant. Let

dj(l) ∶= dim(pj(Ol)) = dim(G ⋅ pj(l)), l ∈ g∗, 1 ≤ j ≤ n.

Then d(l) ∶= (d1(l), . . . , dn(l)) is a non decreasing �nite sequence of integers and the
jumps, if any, are of size 1. For any d ∈ Nn de�ne

Ud ∶= {l ∈ ig∗ ∣ dj(l) = dj , 1 ≤ j ≤ n} , D ∶= {d ∈ Nn ∣ Ud ≠ ∅} .

The set D is �nite, each Ud is Ad∗(G)-invariant by de�nition and for all l ∈ Ud the orbits
in ig∗/Vj , 1 ≤ j ≤ n, have the same dimension. For d ∈D de�ne

S(d) ∶= {1 ≤ j ≤ n ∣ dj = 1 + dj−1} , T (d) ∶= {1 ≤ j ≤ n ∣ dj = dj−1}

(declaring d0 = 0). Then {1, . . . , n} = S(d) ⊔ T (d) and we de�ne further

VS(d) ∶= i spanR{ej ∶ j ∈ S(d)} ≅ Rk, VT (d) ∶= i spanR{ej ∶ j ∈ T (d)} ≅ Rn−k.

With these de�nitions one can now prove the following theorem which is the detailed
version of our third main result Theorem 3.5:

Theorem 3.20 (see [CG90, Theorem 3.1.14]). There exists an ordering of the �nitely
many elements of D, i.e. D = {d(1) > d(2) > . . .}, such that the following hold.

(i) For each d ∈ D the set Wd ∶= ⋃d′≥dUd′ is G-invariant and Zariski-open in ig∗. In
particular each Ud is the di�erence of two Zariski-open sets in ig∗.

(ii) The �rst element d(1) in the set is given by

d
(1)
j = maximal dimension of G-orbits in ig∗/Vj

for 1 ≤ j ≤ n and Ud(1) is Zariski-open in ig∗.

(iii) Each G-orbit in Ud meets VT (d) in exactly one point. The cross-section

Σd ∶= Ud ∩ VT (d)

is the di�erence of two Zariski-open sets. The disjoint union

Σ ∶= ⊔
d∈D

Σd

is a cross-section for all G-orbits in ig∗.
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(iv) For each d ∈D there exists a birational, non-singular, surjective map

ψd∶Σd × VS(d) → Ud

such that for each l ∈ Σd its orbit is Ol = ψd (l, VS(d)).

(v) Let S(d) = {j1 < . . . < jk}. If ψd(l, v) = ∑P dj (l, v)ej, then for �xed l ∈ Σd the

function P dj is polynomial in v and only depends on the vi with ji ≤ j.
Moreover, we have

a) P dji(l, v) = vi for 1 ≤ i ≤ k,

b) P dj (l, v) = lj +R(l1, . . . , lj−1, v1, . . . , vi) if j ∈ T (d) and i is the largest integer

such that ji < j. R is rational. In particular, P d1 (l, v) = l1.

Furthermore, Ol is the graph of the polynomial map pT (d) ○ ψd(l, ⋅) where pT (d)

denotes the projection of ig∗ onto VT (d) along VS(d).

Remark 3.21. Since Ol ≅ VS(d) is even dimensional (see Lemma 3.14) we know that
the number of elements in S(d) is even.

De�nition 3.22 (Basis realization of σl). Let σl ∈ Ĝ, l ∈ ig∗, m a polarizing subalgebra
for l and {X1, . . . ,Xm, . . . ,Xn} a weak Malcev basis through m, m = dimm.
Set k = 1

2 dimOl = n −m and the map

β ∶ Rk → G, t↦ exp(t1Xm+1)⋯ exp(tkXn).

Then β(Rk) is a cross-section for M/G, M = expm, and the map carries the Lebesgue
measure on Rk to a G-invariant measure on M/G (see [CG90, Theorem 1.2.12]).
The map (m, t) ↦ m ⋅ β(t) is a homeomorphism M × Rk ≃ G that allows us to de�ne a
natural isometry onto the Hilbert space Hl of σl:

J ∶ L2 (Rk) → Hl, (Jf)(mβ(t)) = χl(m)f(t) ∀m ∈M, t ∈ Rk,

where χl(expY ) = e2πl(Y ), Y ∈ m, is the character from which σl is induced. Hence, we
obtain a equivalent representation on L2(Rk) which we call a basis realization of σl.

Remark 3.23. For d ∈D ⊂ Nn the basis realization from above gives us

Hl ≅ L
2
(Rdn/2) ∀ l ∈ Σd,

since dn = dimOl for all l ∈ Σd.

De�nition 3.24. If S(d) = {i1, . . . , i2k} denote by Pfd(l) the Pfa�an form of the skew-
symmetric matrix (l([Xij ,Xim])1≤j,m≤2k), i.e. Pfd(l)

2 = det (l([Xij ,Xim]).
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One can show that it is an Ad∗(G)-invariant polynomial on ig∗ which vanishes nowhere
on Ud (see [CG90, Corollary 4.3.8] and preceding remarks).

At last we will study the trace of the integrated irreducible representations. We elab-
orate on our second main result Theorem 3.4 and give an estimate for the character's
dependence on l ∈ Σd.

Recall that the integrated representation σ(φ) for φ ∈ S(G) is of trace class. Here we use
the following

De�nition 3.25 (Schwartz functions). We de�ne S(G) to be the functions on G that
correspond to S(Rn) under a polynomial coordinate map φ ∶ Rn → G (see De�nition 3.11).
Note that this does not depend on the particular choice of φ (see [CG90, Lemma A.2.1]).

Now we study the resulting tempered distribution (see Theorem 3.4)

θσ(φ) = Tr(σ(φ)) = ∫
Oσ

F
+
(φ)(y)dϑσ(y)

by using the parametrization of the coadjoint orbits. If σ = σl, l ∈ ig∗, by the identi�cation
Ĝ ≅ ig∗/G we may also write θl, ϑl,Ol and so on.

Proposition 3.26 (see [CG90, Proposition 4.2.2]). If we take the standard basis re-
alizations of σl in L2 (Rk) relative to the weak Malcev basis {X1, . . . ,Xn} through the
polarization m, the kernel Kφ of the trace class operator σ(φ), φ ∈ S(G), has the form

Kφ(s, t) = ∫
M
χl(m)φ (β(s)−1mβ(t)) dm (absolutely convergent),

where χl(expY ) = e2πl(Y ) for Y ∈ m and β∶Rk → G, t ↦ exp(t1Xp+1)⋯ exp(tkXn) and
p = dimm = n − k.

As each orbit Oσ is a 2k-dimensional symplectic manifold, k ∈ N, with the non-degenerate
skew symmetric 2-form ωσ(l) ∈ Λ2(TOσ)l such that

ωσ(l)(−(ad∗X)l,−(ad∗ Y )l) = l([X,Y ]), l ∈ Oσ,

it carries a canonical measure µσ = ωσ ∧ . . .∧ωσ (k factors). With this we can specify the
measure ϑσ from the character formula in Theorem 3.4:

θσ(φ) =
1

2kk!
∫
Oσ

F
+
(φ)(l)dµσ(l) ∀ φ ∈ S(G).

Another way to obtain the measure ϑσ is by de�ning m′
1 to be the Lebesgue mea-

sure on VS(d), normalized such that the cube determined by {iei1 , . . . , iei2k} has mea-
sure 1. Then νl = (ψd(l, ⋅))∗ (m

′
1) is an Ad∗(G)-invariant measure on the orbit

Ol = {ψd(l, v) ∣ v ∈ VS(d)} by [CG90, Proposition 3.1.10] (where Theorem 3.20 (v) a)
is used to show its invariance). Our goal is now to describe the measure ϑl in terms of
the measure m′

1. We start by choosing a basis for g through rl:
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Lemma 3.27 (see [CG90, Lemma 4.3.6]). Let {X1, . . . ,Xn} be the strong Malcev basis of
g as above and S(d) = {i1, . . . , i2k}. If {Y1, . . . Yr} is a weak Malcev Basis for the radical
rl of l ∈ Σd, then {Y1, . . . , Yr,Xi1 , . . . ,Xi2k} is a weak Malcev basis for g through rl.

The choice of this basis is convenient since it contains the same Lie algebra elements
{X1, . . . ,Xi2k} ⊂ g independent of l ∈ Σd, even though the radical rl highly depends on l.

Lemma 3.28. Let l ∈ Σd. Then

ϑl = ∣Pfd(l)∣
−1

(ψd(l, ⋅))∗ (m
′
1).

Proof. For the proof we put together di�erent excerpts from [CG90, Sections 4.2, 4.3].
We start o� with another way to obtain an Ad∗(G)-invariant measure on Ol which turns
out to be ϑl: Let m1 be the Eucledian measure on R2k such that the unit cube has
mass 1. With the weak Malcev basis {Y1, . . . , Yr,Xi1 , . . . ,Xi2k} for g through rl from the
previous Lemma 3.27 we use the basis {Xij ∶= Xij + rl}1≤j≤2k to identify g/rl with R2k.
The bilinear form Bl(X,Y ) ∶= l([X,Y ]) is well-de�ned on g/rl by de�nition of rl. Denote
by B̃l the corresponding bilinear form on R2k and de�ne for a Euclidean measure m on
R2k the Fourier transform

FB̃l
φ(v) = ∫

R2k
φ(v)e2πB̃l(v,v

′) dm(v′), φ ∈ S(R2k
).

Then there exists a so-called self-dual measure such that ∥FB̃l
φ∥L2(m) = ∥φ∥L2(m).

By [CG90, Lemma 4.3.2] we know m = ∣Pfd(l)∣m1. Furthermore, the surjective map
fl∶R2k → Ol with fl(x) = Ad∗(expx1X1⋯ expx2kX2k)

−1l transforms m to ϑl, that is

ϑl = (fl)∗(m) = ∣Pfd(l)∣(fl)∗(m1)

(see [CG90, Theorems 4.2.5 and 4.3.3]).
In addition to that the di�eomorphism pS(d) ○fl maps m1 to a scalar multiple of m′

1 after
identifying VS(d) ≅ R2d via the basis {ierj}1≤j≤2k. In order to determine the scalar we
di�erentiate

⟨d(pS(d) ○ fl)0(Xrj),Xrm⟩ = lim
t→0

⟨
(Ad∗ exp(−tXrj))l − l

t
,Xrm⟩

ig∗,g

= ⟨(ad∗(−Xrj))l,Xrm⟩ig∗,g = l([Xrj ,Xrm]),

where rj , rm ∈ S(d). This shows that (pS(d) ○ fl)∗(m1) = ∣Pfd(l)∣
−2m′

1 by de�nition of
the Pfa�an and therefore

(fl)∗(m1) = ∣Pfd(l)∣
−2νl,

since the orbit Ol projects di�eomorphically onto VS(d) under pS(d) (see [CG90, Propo-
sition 4.3.7]).

With this description of the measure ϑl we obtain a useful upper bound for the trace
which shows its dependence on the element l ∈ ig∗.
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Lemma 3.29. There exists a continuous map γd∶ S(G) → R, d ∈D, such that

∀ l ∈ Σd, φ ∈ S(G) ∶ ∣θl(φ)∣ ≤ γd(φ) ⋅ ∣Pfd(l)∣
−1.

Proof. We choose an inner product on ig∗ such that the decomposition ig∗ = VS(d)⊕VT (d)

is orthogonal. With the projection pT (d) we have due to Theorem 3.20 (v) a)

∥ψd(l, v)∥
2
= ∥v + pT (d)(ψd(l, v))∥

2
≥ ∥v∥2

∀ v ∈ VS(d).

Since φ ∈ S(G) we have F+(φ) ∈ S(ig∗) and therefore

∥(1 + ∥ ⋅ ∥
2
)
q
F
+
(φ)∥∞ =∶ αq(F

+
(φ)) < ∞ ∀ q ∈ N.

Now �x q ∈ N with 2q > dim(VS(d)) = 2k. Then ∫VS(d)(1+ ∥v∥2)−q dm′
1(v) =∶ Iq < ∞ which

will depend on d. We choose γd(φ) ∶= αq(F+(φ)) ⋅ Iq and compute with the above

∣θl(φ)∣ ≤ ∫
Ol

∣F
+
(φ)(l̃)∣dϑl(l̃) = ∫

VS(d)
∣F

+
(φ)(v + pT (d)(ψd(l, v)))∣ ⋅ ∣Pfd(l)∣

−1 dm′
1(v)

≤ αq(F
+
(φ))∫

VS(d)
(1 + ∥v + pT (d)(ψd(l, v))∥

2
)
−q
⋅ ∣Pfd(l)∣

−1 dm′
1(v)

≤ α(F+(φ)) ⋅ ∫
VS(d)

(1 + ∥v∥2
)
−q dm′

1(v) ⋅ ∣Pfd(l)∣
−1

= γd(φ) ⋅ ∣Pfd(l)∣
−1.

The claim then follows since the Fourier transform F+ is continuous and αq(F+(φ)) → 0
if F+(φ) → 0 in S(ig∗).

3.2 Heisenberg group

Let G =Hn the Heisenberg group and g = hn the (2n+1)-dimensional Heisenberg algebra
with basis {X1, . . . ,Xn, Y1, . . . , Yn, Z} whose pairwise brackets are equal to zero except
for [Xj , Yj] = Z, 1 ≤ j ≤ n (see examples throughout [CG90]). One realization as a matrix
algebra is given by

zZ +
n

∑
j=1

(xjXj + yjYj) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 x . . . xn z
. y1

. ⋮

. yn
0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ hn,

(z, y, x) ∶= exp(zZ +
n

∑
j=1

(xjXj + yjYj)) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 x . . . xn z + 1
2x ⋅ y

0 1 y1

⋱ ⋮

1 yn
0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈Hn.
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A strong Malcev basis for hn is given by {Z,Y1, . . . Yn,X1, . . .Xn} and let
{Z∗, Y ∗

1 , . . . Y
∗
n ,X

∗
1 , . . .X

∗
n} be the corresponding dual basis of ih∗n.

For l = γZ∗ +∑
n
j=1(βjY

∗
j + αjX

∗
j ) =∶ lα,β,γ ∈ ig

∗ one can compute

Ad∗(z, y, x)l = γZ∗
+

n

∑
j=1

((βj − γxj)Y
∗
j + (αj + γyj)X

∗
j ) = lα+γy,β−γx,γ .

Thus, we have the following coadjoint orbits:

i) Oγ ∶= Ad∗(G)l0,0,γ = {lα′,β′,γ ∣ α′, β′ ∈ Rn} ≅ R2n for γ ≠ 0,

ii) Oα,β ∶= Ad∗(G)lα,β,0 =

⎧⎪⎪
⎨
⎪⎪⎩

n

∑
j=1

(βjY
∗
j + αjX

∗
j )

⎫⎪⎪
⎬
⎪⎪⎭

≅ R0 for α,β ∈ Rn.

Figure 4: Coadjoint orbits of H1 in ih∗1 ≅ R3.

Now we determine the orbit types and cross-sections from Theorem 3.20:
Following the de�nitions preceding this theorem we have with the choice of the Malcev
basis ih∗n/V1 ≅ R ⋅Z∗ and

ih∗n/Vj ≅ span{Z∗, Y ∗
1 , . . . , Y

∗
j−1} for 2 ≤ j ≤ n + 1,

ih∗n/Vn+m ≅ span{Z∗, Y ∗
1 , . . . , Y

∗
n ,X

∗
1 , . . . ,X

∗
m−1} for 2 ≤m ≤ n + 1.
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Thus, projecting onto these quotient we obtain the following orbit types d(1), d(2):

i) ∀ γ ≠ 0 ∶ dim(p1(Oγ)) = 0, dim(pj(Oγ)) = j for 2 ≤ j ≤ n + 1,

dim(pn+m(Oγ)) = n +m for 2 ≤m ≤ n + 1

⇒ d(1) = (0,1,2, . . . ,2n) with jump indices S(d(1)) = {2,3, . . . ,2n + 1},

ii) ∀ α,β ∈ Rn ∶ dim(pj(Oα,β)) = 0 ∀ j = 1, . . . ,2n

⇒ d(2) = 0 ∈ N2n+1 with jump indices S(d(2)) = ∅.

The cross-sections are then de�ned as Σd = Ud ∩ VT (d), T (d) = {1, . . . ,2n + 1} ∖ S(d):

i) Ud(1) = ⋃
γ≠0

Oγ = {l ∈ ih∗n ∣ l(Z) ≠ 0} ⇒ Σd(1) = (R ∖ {0}) ⋅Z∗,

ii) Ud(2) = ⋃
α,β

Oα,β = {l ∈ ih∗n ∣ l(Z) = 0} ⇒ Σd(2) = span{Y ∗
1 , . . . ,X

∗
n}.

With these we can �nd the parametrizations ψd ∶ Σd × VS(d) → Ud of the orbits:

i) ψ1(γZ
∗, u) = γZ∗

+
n

∑
j=1

ujY
∗
j + un+jX

∗
j , u ∈ VS1 = span{X∗

1 , . . . , Y
∗
n } ≅ R2n,

ii) ψ2 = IdΣ2 since VS2 = {0}.

Finally, we can also �nd the Pfa�an for these two cases:

i) Pf1(γZ
∗
+

n

∑
j=1

(βjY
∗
j + αjX

∗
j )) = γ

n
(γ ≠ 0 on Ud(1)), ii) Pf2 ≡ 1 (on Ud(2)).

Now, let us turn to the irreducible unitary representations of Hn and �nd their basis
realization:

i) For l = γZ∗ ∈ Oγ we can choose m = spanR{Z,Y1, . . . , Yn} as a polarizing subalgebra
and compute

Hγ ≅ L
2
(Rn), σγ(z, y, x)f(t) = e

2πiγ(z+t⋅y+ 1
2
x⋅y)f(t + x) for f ∈ L2

(Rn).

ii) For l = ∑nj=1(βjY
∗
j + αjX

∗
j ) ∈ Oα,β we have l([hn,hn]) = 0 and hence rl = hn = m.

Thus

Hα,β ≅ C, σα,β(z, y, x) = χα,β(z, y, x) = e
2πi(β⋅y+α⋅x).
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3.3 The Group K3

Let G =K3 with Lie algebra k3 which is given by the basis {Z,Y,X,W} whose pairwise
brackets are equal to zero except for [W,X] = Y and [W,Y ] = Z (see examples throughout
[CG90] and [Kir04, Chapter 3 �3]). One realization as a matrix algebra is given by

zZ + yY +xX +wW =

⎛
⎜
⎜
⎜
⎝

0 w 0 z
0 0 w y
0 0 0 x
0 0 0 0

⎞
⎟
⎟
⎟
⎠

∈ k3,

(z, y, x,w) ∶= exp(zZ + yY + xX +wW ) =

⎛
⎜
⎜
⎜
⎜
⎝

1 w w2

2 z + wy
2 + w2x

6
0 1 w y + wx

6
0 0 1 x
0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎠

∈K3.

A strong Malcev basis for k3 is given by {Z,Y,X,W} and let {Z∗, Y ∗,X∗,W ∗} be the
corresponding dual basis of ik∗3 .

For l = δZ∗ + γY ∗ + βX∗ + αW ∗ ∈ ik3 one can compute

Ad∗(z, y, x,w)l = δZ∗
+ (γ −wδ)Y ∗

+ (β −wγ +
w2δ

2
)X∗

+ (α + xγ + (y −
wx

2
)δ)W ∗.

Thus, we have the following coadjoint orbits

i) Oδ,β = Ad∗(G)(δZ∗
+ βX∗

) = δZ∗
+ {tY ∗

+ (β +
t2

2δ
)X∗

∣ t ∈ R} +R ⋅W ∗

for δ ≠ 0, β ∈ R (see Figure 5),

ii) Oγ = Ad∗(G)(γY ∗
) = γY ∗

+R ⋅X∗
+R ⋅W ∗

≅ R2 for γ ≠ 0,

iii) Oα,β = Ad∗(G)(βX∗
+ αW ∗

) = {βX∗
+ αW ∗

} ≅ R0 for α,β ∈ R.

Now we determine the orbit types and cross-sections from Theorem 3.20:
Following the de�nitions preceding this theorem we have with the choice of the Malcev
basis

ih∗n/V1 ≅ span{Z∗
}, ih∗n/V2 ≅ span{Z∗, Y ∗

}, ih∗n/V3 ≅ span{Z∗, Y ∗,X∗
}, ih∗n/V4 = ih

∗
n.

Thus, projecting onto these quotient we obtain the following orbit types d(1), d(2), d(3):

i) ∀ δ ≠ 0, β ∈ R ∶ (dim(pj(Oδ,β)))1≤j≤4
= (0,1,1,2) = d(1) with S(d(1)) = {2,4},

ii) ∀ γ ≠ 0 ∶ (dim(pj(Oγ)))1≤j≤4 = (0,0,1,2) = d(2) with S(d(2)) = {3,4},

iii) ∀ α,β ∈ Rn ∶ (dim(pj(Oα,β)))1≤j≤4
= (0,0,0,0) = d(3) with S(d(3)) = ∅.
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Figure 5: Projection of the coadjoint orbits of type d1 onto span(Z∗, Y ∗,X∗
) ≅ R3.

The cross-sections are then de�ned as Σd = Ud ∩ VT (d), T (d) = {1, . . . ,2n + 1} ∖ S(d):

i) Ud(1) = ⋃
δ≠0,β

Oδ,β = {l ∈ ik∗3 ∣ l(Z) ≠ 0} ⇒ Σd(1) = (R ∖ {0}) ⋅Z∗
+R ⋅X∗,

ii) Ud(2) = ⋃
γ≠0

Oγ = {l ∈ ih∗n ∣ l(Z) = 0, l(Y ) ≠ 0} ⇒ Σd(2) = (R ∖ {0}) ⋅ Y ∗,

iii) Ud(3) = ⋃
α,β

Oα,β = {l ∈ ik∗3 ∣ l(Z) = 0, l(Y ) = 0} ⇒ Σd(3) = R ⋅X∗
+R ⋅W ∗.

With these we can �nd the parametrizations ψd ∶ Σd × VS(d) → Ud of the orbits:

i) ψ1(δZ
∗
+ βX∗, u) = δZ∗

+ u1Y
∗
+ (β +

u2
1

2δ
)X∗

+ u2W
∗,

u ∈ VS(d(1)) = RY ∗
+RW ∗

≅ R2 (see Figure 6),

ii) ψ2(γY
∗, u) = γY ∗

+ u1X
∗
+ u2W

∗, u ∈ VS(d(2)) = RX∗
+RW ∗

≅ R2,

iii) ψ3 = IdΣ
d(3)

since VS(d(3)) = {0}.

Finally, we can also �nd the Pfa�an for these three cases:

i) Pf1(δZ
∗
+ γY ∗

+ βX∗
+ αW ∗

) = δ (≠ 0 on Ud(1)),

ii) Pf2(γY
∗
+ βX∗

+ αW ∗
) = γ (≠ 0 on Ud(2)),

iii) Pf3 ≡ 1 (on Ud(3)).
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Figure 6: Orbit parametrization (type d1) projected onto span(Z∗, Y ∗,X∗
) ≅ R3.

Now, let us turn to the irreducible unitary representations of K3 and �nd their basis
realization:

i) For l = δZ∗ +βX∗ we have rl = R ⋅Z +R ⋅X and may choose m = R ⋅Z +R ⋅Y +R ⋅X
as a polarizing subalgebra since it is an abelian ideal of the correct dimension.
One can compute with Hδ,β ≅ L2(R)

σδ,β(z, y, x,w)f(t) = e2πiβxe2πiδ(z+ty+ 1
2
t2x+ 1

2
twx+ 1

2
wy+ 1

6
w2x)f(t +w) for f ∈ L2

(R).

ii) For l = γY ∗ we have rl = R ⋅Z+R ⋅Y and may choose the same polarizing subalgebra
m = R ⋅Z +R ⋅ Y +R ⋅X as above.
One can compute with Hγ ≅ L2(R)

σγ(z, y, x,w)f(t) = e2πiγ(y+tx+ 1
2
wx)f(t +w) for f ∈ L2

(R).

iii) For l = βX∗ + αW ∗ we have l([k3, k3]) = 0 and hence rl = k3 = m. Thus

Hα,β = C, σα,β(z, y, x,w) = χl(z, y, x,w) = e2πi(βx+αw).
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4 Wave Front Sets of Nilpotent Lie Groups

Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g of
dimension n and g∗ its vector space dual. By Ĝ we denote the unitary dual. It is
isomorphic to the space of coadjoint orbits ig∗/G (for details see Section 3).

Let (π,H) be a unitary representation of G. Then we can write

π ≅ ∫

⊕

Ĝ
σ⊕m(π,σ) dµπ(σ), H ≅ ∫

⊕

Ĝ
H
⊕m(π,σ)
σ dµπ(σ), (4.7)

where m(π,σ) keeps track of the multiplicity of σ in π. We recall that for such a
representation the orbital support of π is given by

O − suppπ = ⋃
σ∈supp(π)

Oσ ⊂ ig∗, supp(π) = supp(µπ),

where Oσ ⊂ ig∗ is the orbit of the coadjoint action corresponding to σ ∈ Ĝ under the
isomorphism Ĝ ≅ ig∗/G (see Theorem 3.2).

Our main goal in this section is to prove the following

Theorem 4.1. Let G be a nilpotent, connected, simply connected Lie group and π a
unitary representation of G. Then

WF(π) = AC(O − suppπ).

We start by using the structure of nilpotent Lie groups and the unitary representations.
As discussed in Section 3 (see Theorem 3.20) after �xing a strong Malcev basis of g we
have

Ĝ ≅ ig∗/G ≅ Σ = ⊔
d∈D

Σd ⊂ ig∗,

where Σ is a cross-section of all G-orbits and Σd is a cross-section of all orbits of a certain
type d ∈ D, which, in particular, all have the same dimension. Moreover, the set D is
�nite.
Thus, we can push µπ forward to a positive measure on Σ and obtain

π ≅ ∫

⊕

Σ
σ
⊕m(π,σl)
l dµπ(l)

= ⊕
d∈D

∫

⊕

Σd
σ
⊕m(π,σl)
l dµπ(l) =∶ ⊕

d∈D

πd.

With this decomposition we have

WF(π) = ⋃
d∈D

WF(πd), AC(O − suppπ) = ⋃
d∈D

AC(O − suppπd)
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by Proposition 2.14 and the fact that AC (⋃
n
i=1 Si) = ⋃

n
i=1 AC(Si).

Therefore, it su�ces to show that

AC(O − suppπd) = WF(πd) ∀ d ∈D. (4.8)

From now on we �x d ∈D and may assume that all the irreducible representations in the
support of π are of the form σl for an l ∈ Σd ⊂ Ud, where Ud ⊂ ig∗ is the set of all l ∈ ig∗

such that its orbit Ol = Ad∗(G)l is of type d (see Theorem 3.20 (iii) and the preceding
de�nitions).

4.1 Proof of the Inclusion AC(O − supp(π)) ⊂WF(π)

For the �rst inclusion AC(O − suppπ) ⊂ WF(π) we use Lemma 2.13, in particular the
equivalence of (i) and (iii) which states in our setting here:

ξ ∉ WF(π) ⇔ ∃ e ∈ U ⊂ G, ξ ∈ V ⊂ ig∗ ∀ φ ∈ C∞
c (U) ∃ CN(φ) > 0 ∶

∣F(⟨π(●)u, v⟩φ)(tη)∣ ≤ CN(φ)∥u∥∥v∥t−N for t≫ 0, η ∈ V, u, v ∈ H, (4.9)

where the constants CN(φ) may be chosen independent of both η ∈ V and u, v ∈ H.

We start by �nding matrix coe�cients whose Fourier transform is bounded from below.

Proposition 4.2. Let 0 < δ < 1 such that ∣ sin(2πx)∣ ≤ (1
2
)

2 dim(g)+1
for all ∣x∣ < δ. Fix an

arbitrary inner product on g. Then there exists a chart κ ∶ G→ g with De(κ
−1○ log) = IdG

such that for ζ ∈ Ud ⊂ ig∗ we can �nd vectors uζ ∈ H∞
ζ , vζ ∈ Hζ with ∥uζ∥ = ∥vζ∥ = 1 that

depend measurably on ζ such that for all η ∈ Ud with ∣η − ζ ∣ < 4δ we have the following
estimate for all non-negative φ ∈ C∞

c (B1/4(0)):

Re(∫
g
⟨σζ(κ

−1
(X))uζ , vζ⟩φ(X)e−2πη(X) dX) ≥ (

1

2
)

2 dim g

⋅ ∫
g
φ(X)dX ≥ 0.

Proof. We prove this statement by induction on n = dimg. If n = 1,2, the group is
abelian. In this case the irreducible unitary representations are one-dimensional, i.e.
σζ(g) = e

2πζ(log g), Hζ = C. We choose κ = log and uζ = vζ = 1 and compute

Re(∫
g
⟨σζ(κ

−1
(X))uζ , vζ⟩φ(X)e−2πη(X) dX) = Re(∫

g
e2π(ζ−η)(X)φ(X)dX)

= ∫
g

Re (e2π(ζ−η)(X)
)φ(X)dX = ∫

g
cos(2πi(η − ζ)(X))φ(X)dX

≥
1

2
∫
g
φ(X)dX ≥ (

1

2
)

2 dim g

⋅ ∫
g
φ(X)dX,

since ∣i((η − ζ)(X)∣ ≤ ∥η − ζ∥ ⋅ ∥X∥ ≤ 4δ ⋅ 1
4 = δ on suppφ and
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cos(2πx) =
√

1 − sin(2πx)2 ≥

¿
Á
ÁÀ

1 − (
1

2
)

2 dim(g)+1

>
1

2
∀ ∣x∣ < δ. (4.10)

Now we assume n = dimg ≥ 3. We will distinguish between the two cases following the
ideas as described in Procedure 3.19.

Case I: dim z(g) > 1. There exists Z ∈ z(g) with ζ(Z) = 0 and ∥Z∥ = 1. We can choose
an orthogonal complement W < g such that g =W ⊕RZ.
Then g = g/(R ⋅Z) is isomorphic to W and has a well-de�ned Lie algebra structure given
by [v + RZ,w + RZ] = [v,w]g + RZ since Z ∈ z(g). The induction hypotheses gives us
G = κ−1 (g) with a chart κ ∶ G→ g. For G we choose the logarithm as a chart.

On g we use the inner product induced from the one we �xed on g. Using the cor-
responding inner products on ig∗ and ig∗ we also obtain an orthogonal decomposition
ig∗ = iW ∗ ⊕RηZ ≅ ig∗ ⊕RηZ with ∥ηZ∥ = 1.

Note that ig∗ is Ad∗(G)-invariant (again due to Z ∈ z(g)). We can identify ζ with an
element ζ ∈ ig∗. Let η = η + rηZ ∈ ig∗ = ig∗ ⊕RηZ . By assumption ∣r∣ = ∣(η − ζ)Z ∣ ≤ 4δ.

The induction hypothesis also gives us normalized vectors uζ ∈ H
∞

ζ
, vζ ∈ Hζ . By Proce-

dure 3.19 (i) Hζ ≅ Hζ and σζ ○ P ≅ σζ with the projection P ∶ G → G which is given by

P = κ−1 ○ log here. Thus, we obtain corresponding vectors uζ = uζ ∈ H
∞
ζ , vζ = vζ ∈ Hζ

and compute

R ∶= Re(∫
g
⟨σζ(exp(X))uζ , vζ⟩φ(X)e−2πη(X) dX)

= Re(∫
g
∫
R
⟨σζ(exp(X + tZ))uζ , vζ⟩φ(X + tZ)e−2πη(X+tZ) dX dt)

= Re(∫
g
∫
R
⟨σζ(exp(X) exp(tZ))uζ , vζ⟩φ(X + tZ)e−2π(η(X)+rηZ(tZ)) dX dt)

= Re(∫
g
∫
R
⟨σζ(κ

−1
(X))uζ , vζ⟩φ(X + tZ)e−2π(η(X)+rηZ(tZ)) dX dt)

= ∫
R

cos(−2πrt)Re(∫
g
⟨σζ(κ

−1
(X))uζ , vζ⟩φ(X + tZ)e−2πη(X) dX)

− sin(−2πrt) Im(∫
g
⟨σζ(κ

−1
(X))uζ , vζ⟩φ(X + tZ)e−2πη(X) dX) dt.

Since ∣rt∣ ≤ 4δ∣t∣ ≤ δ for X + tZ ∈ supp(φ) ⊂ B1/4(0) we have cos(−2πrt) > 1
2 as in (4.10)

and ∣ sin(−2πrt)∣ ≤ (1
2
)

2 dim(g)+1
by assumption. The induction hypothesis grants that

the real part is non-negative and we can estimate
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R ≥ ∫
R

1

2
Re(∫

g
⟨σζ(κ

−1
(X))uζ , vζ , ⟩φ(X + tZ)e−2πη(X) dX)

− ∣ sin(−2πrt)∣ ∣∫
g
⟨σζ(κ

−1
(X))uζ , vζ , ⟩φ(X + tZ)e−2πη(X) dX∣ dt

≥ ∫
R

1

2
Re(∫

g
⟨σζ(κ

−1
(X))uζ , vζ , ⟩φ(X + tZ)e−2πη(X) dX)

− (
1

2
)

2 dim(g)+1

∫
g
∥uζ∥∥vζ∥φ(X + tZ)dX dt.

Now we can apply the induction hypothesis to the inner integral to �nish the proof in
this case: since ∥uζ∥ = ∥vζ∥ = 1 we obtain

R ≥ (
1

2
(

1

2
)

2 dim g

− (
1

2
)

2 dim(g)+1

) ⋅ ∫
R
∫
g
φ(X + tZ)dX dt

=
3

4
(

1

2
)

2 dim g−1

⋅ ∫
g
φ(X)dX ≥ (

1

2
)

2 dim g

⋅ ∫
g
φ(X)dX.

Case II: z(g) = R ⋅Z is one-dimensional. Kirillov's Lemma 3.6 gives us X,Y ∈ g and
an ideal g0 ⊂ g with g = RX ⊕ g0 and [X,Y ] = Z. We may choose X such that the
decomposition is orthogonal. Since dim(z(g0)) > 1 as Z,Y ∈ z(g0) we are in Case I in the
induction hypothesis for G0 and therefore can use the chart log ∶ G0 → g0. We de�ne a
chart for G via

κ−1
∶ g = g0 ⊕RX → G, X0 + tX ↦ exp(X0) exp(tX).

If ζ(Z) = 0 we can proceed analogously to Case I since for w = Y0 + sX ∈W and t ∈ R we
have

κ−1
(w + tZ) = κ−1

(Y0 + tZ + sX) = exp(Y0 + tZ) exp(sX) = exp(Y0) exp(tZ) exp(sX)

= exp(Y0) exp(sX) exp(tZ) = κ−1
(Y0 + sX) exp(tZ) = κ−1

(w) exp(tZ).

Thus, we now assume ζ(Z) ≠ 0. Then X ∉ rl and we are in Case II of Proposition 3.17 and
Theorem 3.18 with G0 = exp(g0) ⊂ G a normal subgroup and p ∶ ig∗ → ig∗0 the canonical
projection. Let ζ = ζ0 + zζX , η = η0 + rηX ∈ ker(p)⊥ ⊕ ker(p). Then by assumption
∣z − r∣ = ∣(ζ − η)X ∣ ≤ 4δ.

By Theorem 3.18, we know σζ ≅ IndGG0
(σζ0) with Hζ ≅ L

2(A,Hζ0), where A = exp(R ⋅X).
Thus, if we regard u and v as elements of L2(A,Hζ0) and ũ, ṽ ∶ G→Hζ0 the corresponding
left-G0-equivariant functions we have
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⟨σζ(g0a)u, v⟩Hζ = ∫
A
⟨[σζ(g0a)u](b), v(b)⟩Hζ0 db and

[σζ(g0a)ũ](b) = ũ(bg0a) = ũ(bg0b
−1ba) = σζ0(bg0b

−1
)ũ(ba)

since b−1g0b ∈ G0 as g0 is an ideal. This gives us [σζ(g0a)u](b) = σζ0(bg0b
−1)u(ba).

Furthermore, the induction hypothesis gives us measurable, normalized vectors uζ0 ∈ H
∞
ζ0
,

vζ0 ∈ Hζ0 . In order to �nd the suitable vectors uζ , vζ ∈ Hζ we begin with a cut-o� function
χ ∈ C∞

c (A) with 0 ≤ χ ≤ 1, χ = 1 on exp([−1
4 ,

1
4
] ⋅X) and ∥χ∥L2 = 1. De�ne

uζ ∶= χe
2πzζX○log

⊗ uζ0 ∈ C
∞
c (A,H∞

ζ0), vζ ∶= δe ⊗ vζ0 ∈ H
−∞
ζ .

With these we can compute

R ∶= Re(∫
g
⟨σζ(κ

−1
(X))uζ , vζ⟩φ(X)e−2πη(X) dX)

= Re(∫
g0
∫
R
(∫

A
⟨σζ0(b exp(X0)b

−1
)uζ(be

tX
), vζ(b)⟩db) ⋅

φ(X0 + tX)e−2π(η0(X0)+rηX(tX)) dX0 dt)

= Re(∫
g0
∫
R
(∫

A
⟨σζ0(b exp(X0)b

−1
)uζ0 , vζ0⟩χ(be

tX
)e2πzζX(log(betX))δe(b)db) ⋅

φ(X0 + tX)e−2π(η0(X0)+rηX(tX)) dX0 dt)

= Re(∫
g0
∫
R
⟨σζ0(exp(X0))uζ0 , vζ0⟩χ(e

tX
)e2πzζX(tX)φ(X0 + tX)e−2π(η0(X0)+rt) dX0 dt)

= ∫
R

cos(2π(z − r)t)χ(etX)Re(∫
g0
⟨σζ0(exp(X0))uζ0 , vζ0⟩φ(X0 + tX)e−2πη0(X0) dX0)

− sin(2π(z − r)t)χ(etX) Im(∫
g0
⟨σζ0(exp(X0))uζ0 , vζ0⟩φ(X0 + tX)e−2πη0(X0) dX0) dt.

Analogously to Case I we have ∣(z − r)t∣ ≤ 4δ∣t∣ ≤ δ for X0 + tX ∈ supp(φ) ⊂ B1/4(0)

and therefore cos(2π(z − r)t) > 1
2 as in (4.10) and ∣ sin(2π(z − r)t)∣ ≤ (1

2
)

2 dim(g)+1
by

assumption.

Again, the induction hypothesis grants that the real part is non-negative and we can
estimate

R ≥ ∫
R

1

2
χ(etX)Re(∫

g0
⟨σζ0(exp(X0))uζ0 , vζ0⟩φ(X0 + tX)e−2πη0(X0) dX0)

− ∣ sin(2π(z − r)t)∣χ(etX) ∣∫
g0
⟨σζ0(exp(X0))uζ0 , vζ0⟩φ(X0 + tX)e−2πη0(X0) dX0∣ dt,
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and by unitarity of σζ0 :

R ≥ ∫
R

1

2
χ(etX)Re(∫

g0
⟨σζ0(exp(X0))uζ0 , vζ0⟩φ(X0 + tX)e−2πη0(X0) dX0)

− (
1

2
)

2 dim(g)+1

χ(etX)∫
g0

∥uζ0∥∥vζ0∥φ(X0 + tX)dX0 dt.

Now we can apply the induction hypothesis to the inner integral to �nish the estimation:
since ∥uζ0∥ = ∥vζ0∥ = 1 we obtain

R ≥ (
1

2
(

1

2
)

2 dim(g0)

− (
1

2
)

2 dim(g)+1

)∫
R
∫
g0
χ(etX)φ(X0 + tX)dX0 dt

=
3

2
(

1

2
)

2 dim g

∫
R
∫
g0
φ(X0 + tX)dX0 dt =

3

2
(

1

2
)

2 dim g

∫
g
φ(X)dX,

where we used that χ ○ exp = 1 on suppφ(X0 + ●) for all X0 ∈ g0.

However, vζ is only a distributional vector. But we can approximate it by smooth vectors:
there exists a sequence (ϕn)n ⊂ C

∞
c (A) converging to the delta distribution δe in D′(A)

with ∥ϕn∥L1 = 1 for all n ∈ N. We de�ne vnζ ∶= ϕn ⊗ vζ0 and study the functions

muζ ,v
n
ζ
(X) ∶= ⟨σζ(κ

−1
(X))uζ , v

n
ζ ⟩ ∈ C∞

(g). (4.11)

We can show that on a compact set they have a uniformly convergent subsequence by the
Arzela-Ascoli theorem (see [Rud76, Theorem 7.25]) - for details see the next Lemma4.3.
Since muζ ,v

n
ζ
→muζ ,vζ ∶= ⟨σζ(κ

−1(X))uζ , vζ⟩ ∈ C
∞(g) point-wise we have on suppφ:

∃ N ∈ N ∶ ∥muζ ,v
N
ζ
−muζ ,vζ∥L∞(suppφ) ≤ (

1

2
)

2 dim g+1

.

We can now choose vNζ ∈ Hζ to �nish the proof:

RN ∶=Re(∫
g
⟨σζ(κ

−1
(X))uζ , v

N
ζ ⟩φ(X)e−2πη(X) dX)

=Re(∫
g
⟨σζ(κ

−1
(X))uζ , vζ⟩φ(X)e−2πη(X) dX)

−Re(∫
g
(⟨σζ(κ

−1
(X))uζ , vζ⟩ − ⟨σζ(κ

−1
(X))uζ , v

N
ζ ⟩)φ(X)e−2πη(X) dX)

≥Re(∫
g
⟨σζ(κ

−1
(X))uζ , vζ⟩φ(X)e−2πη(X) dX)

− ∣∫
g
(⟨σζ(κ

−1
(X))uζ , vζ⟩ − ⟨σζ(κ

−1
(X))uζ , v

N
ζ ⟩)φ(X)e−2πη(X) dX∣ ,
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and by induction hypothesis and the choice of vNζ :

RN ≥
3

2
(

1

2
)

2 dim g

⋅ ∫
g
φ(X)dX − ∥muζ ,v

N
ζ
−muζ ,vζ∥L∞(suppφ)∫

g
φ(X)dX

≥(
1

2
)

2 dim g

⋅ ∫
g
φ(X)dX.

This is the desired estimate.

A technical lemma used in the previous proof:

Lemma 4.3. Let K ⊂ g be a compact set. Then there exists a uniformly convergent
subsequence of the matrix coe�cients muζ ,v

n
ζ
(X) ∶= ⟨σζ(κ

−1(X))uζ , v
n
ζ ⟩ ∈ C∞(K), n ∈ N,

de�ned in the previous proof (see (4.11)).

Proof. The matrix coe�cients are uniformly bounded:

∣muζ ,v
n
ζ
(W )∣ = ∣∫

A
⟨σζ0(b exp(W0)b

−1
)uζ0 , vζ0⟩χ(be

WX )e2πzζX(log(beWX ))ϕn(b)db ∣

≤ ∥uζ0∥∥vζ0∥∥χ∥∞∫
A
∣ϕn(b)∣db = ∥χ∥∞ ∀W =W0 +WX ∈ g, n ∈ N.

Furthermore, their derivatives are bounded on K:

∂Xmuζ ,v
n
ζ
(W ) =

d

dt
∣
t=0

⟨σζ(κ
−1

(W + tX))uζ , v
n
ζ ⟩

=
d

dt
∣
t=0

⟨σζ(exp(W0) exp(WX) exp(tX))uζ , v
n
ζ ⟩

= ⟨σζ(exp(W0) exp(WX))dσζ(X)uζ , v
n
ζ ⟩.

Here dσζ(X)uζ(b) = ((Tbχ)(X)e2πzζX(log b) + χ(b)2πze2πzζX(log b))⊗uζ0 where Tbχ is the
tangent mapping of χ at b ∈ A. With computations as above

∣∂Xmuζ ,v
n
ζ
(W )∣ ≤ ∥T●χe

2πzζX○log
+ χ2πze2πzζX○log∥

L∞
≤ ∥Tχ∥∞ ∥X∥ + 2π∣z∣ ∥χ∥∞ .

For the other directions X0 ∈ g0 we compute

∂X0muζ ,v
n
ζ
(W ) =

d

dt
∣
t=0

⟨σζ(exp(W0 + tX0) exp(WX))uζ , v
n
ζ ⟩

=
d

dt
∣
t=0

⟨σζ(exp(W0) exp(tX̃0) exp(WX))uζ , v
n
ζ ⟩

=
d

dt
∣
t=0
∫
A
⟨σζ0(b exp(W0) exp(tX̃0)b

−1
)uζ0 , vζ0⟩χ(be

WX )e2πzζX(log(beWX ))ϕn(b)db

= ∫
A
⟨σζ0(b exp(W0)b

−1
)dσζ0(Ad∗(b)X̃0)uζ0 , vζ0⟩χ(be

WX )e2πzζX(log(beWX ))ϕn(b)db,

where X̃0 = ∫
1

0 e
−sadW0X0 ds (see [DK01, Theorem 1.5.3]).
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For W ∈K we can �nd constants C1,C2 > 0 such that

∥X̃0∥ ≤ ∫

1

0
∥e−sadW0∥∥X0∥ds ≤ ∥X0∥∫

1

0
es∥−adW0∥ ds ≤ ∥X0∥

e∥adW0∥ − 1

∥adW0∥
≤ C1∥X0∥,

∥Ad∗(b)X̃0∥ ≤ ∥Ad∗(b)∥∥X̃0∥ ≤ C2C1∥X0∥.

Let {Xi} be a orthonormal basis for g0. Then there exists a constant C3 > 0 such that
∥dσζ0(Xi)uζ0∥ ≤ C3 for all i. Now write Ad∗(b)X̃0 = ∑αiXi and we have

∥dσζ0(Ad∗(b)X̃0)uζ0∥ ≤ ∑∣αi∣∥dσζ0(Xi)uζ0∥

≤ C3 dim(g0)∥Ad∗(b)X̃0∥ ≤ C1C2C3 dimg0∥X0∥.

With C ∶= C1C2C3 we can estimate as above

∣∂X0muζ ,v
n
ζ
(W )∣ ≤ ∥χ∥L∞∥vζ0∥∫

A
∥dσζ0(Ad∗(b)X̃0)uζ0∥∣ϕn(b)∣db

≤ C dim(g0)∥X0∥∥χ∥∞.

This implies that the muζ ,v
n
ζ
are uniformly equicontinuous on K: Let ε > 0 and choose

δ < ε(dim(g)M)−1 with M = max{∥Tχ∥∞ ∥X∥ + 2π∣z∣ ∥χ∥∞ ,C dimg0∥χ∥∞} < ∞ on the
compact set K. Then for ∥W − Y ∥ < δ we have for some 0 ≤ θ ≤ 1

∣muζ ,v
n
ζ
(W ) −muζ ,v

n
ζ
(Y )∣ ≤ ∥∇muζ ,v

n
ζ
(W + θ(Y −W ))∥∥W − Y ∥ ≤ δ dim(g)M < ε.

The Arzela-Ascoli theorem (see [Rud76, Theorem 7.25]) states that the uniform bound-
edness and the uniform equicontinuity imply the existence of a uniformly convergent
subsequence.

Now we can turn to the desired statement:

Theorem 4.4. Let G be a nilpotent, connected, simply connected Lie group with Lie
algebra g and (π,Hπ) a unitary representation of G. Then

AC(O − suppπ) ⊂ WF(π).

Proof. Let ξ ∈ AC(O − suppπ). We may assume without loss of generality that ∥ξ∥ = 1.
De�ning the cones Cε ∶= {η ∈ ig∗ ∣ ∃ t > 0 ∶ ∣ξ − tη∣ < ε}, then for all ε > 0 there exists a
sequence (tmηm)m ⊂ Cε ∩O − supp(π) with tm →∞ and ηm ∈ Bε(ξ), ∥ηm∥ = 1.
We now use Theorem 3.20: For all m ∈ N let lm ∈ Σd be the corresponding element in
the cross-section of all orbits of type d, i.e. Olm = Otmηm . Then there exists vm ∈ VS(d)
with tmηm = ψd(lm, vm). For l ∈ Σd near lm we de�ne ζl ∶= ψd(l, vm) ∈ Ol which depends
continuously on l (see Figure 7).

Now let 0 < δ < 1 as in Proposition 4.2, i.e. ∣ sin(2πx)∣ ≤ (1
2
)

2 dim(g)+1
for all ∣x∣ < δ.

Then there exists a neighborhood Nm ⊂ Σd of lm such that ψd(Nm, vm) ⊂ Bδ(tmηm) and
µπ(Nm) > 0 since lm ∈ O − supp(π) (see also Figure 7).
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Figure 7: The choice of lm and Nm.

Applying the above Proposition 4.2 to ζl, l ∈ Nm, we obtain measurable, normalized
vectors uζl , vζl ∈ Hζl . Since σl ≅ σζl and Hl ≅ Hζl we have corresponding measurable,
normalized vectors ul, vl ∈ Hl. With these we de�ne

u(m)
∶= (µπ(Nm))

− 1
2 ∫

Σd
χNm(l)ul dµπ(l) ∈ Hπ,

since the ul are measurable in l and ∥u(m)∥2
Hπ

= (µπ(Nm))−1
∫Σd

χNm(l)∥ul∥
2 dµπ(l) = 1.

We de�ne v(m) ∈ Hπ analogously.
Then we have for non-negative φ ∈ C∞

c (B1(0)), ϕ = φ ○ log and the chart κ ∶ G → g from
Proposition 4.2 with the de�nition of Nm:

∣F(⟨(π ○ κ−1
○ log)u(m), v(m)

⟩ϕ)(tη)∣

= ∣∫
G
∫
Nm

(µπ(Nm))
−1

⟨σl(κ
−1

(log g))ul, vl⟩ϕ(g)e
−2πtmηm(log g) dg dµπ(l)∣

≥ ∣Re(∫
G
∫
Nm

(µπ(Nm))
−1

⟨σl(κ
−1

(log g))ul, vl⟩ϕ(g)e
−2πtmηm(log g) dg dµπ(l))∣

= (µπ(Nm))
−1

∣∫
Nm

Re(∫
g
⟨σl(κ

−1
(X))ul, vl⟩φ(X)e−2πtmηm(X) dX) dµπ(l)∣

Prop. 4.2
≥ (µπ(Nm))

−1
∫
Nm

(
1

2
)

2 dim g

∥φ∥L1 dµπ(l) = (
1

2
)

2 dim g

∥φ∥L1∥u(m)
∥∥v(m)

∥.

We can use this to show that ξ ∈ WF(π○κ−1○log): If we assume that ξ ∉ WF(π○κ−1○log)
we can employ the equivalence of Lemma 2.13 (i) and (iii) (see also (4.9)). It states that
there exist ε1, ε2 > 0 such that for all ϕ ∈ C∞

c (exp(Bε2(0))) and all N ∈ N:

∣F(⟨(π ○ κ−1
○ log)u, v⟩ϕ)(tη)∣ ≤ CN(ϕ)∥u∥∥v∥t−N ∀ u, v ∈ Hπ, η ∈ Bε1(ξ), t > t0.
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Since the constant CN(ϕ) can be chosen independent of η ∈ Bε1(ξ) and u, v ∈ H, we
found a sequence that violates this inequality for N = 1.

Now, we use [Hör03, Theorem 8.2.4] with f = κ−1 ○ log, which is a homeomorphism with
Df(e) = Id, to see that

WFe(⟨(π ○ κ
−1
○ log)u, v⟩) ⊂ WFe(⟨π(⋅)u, v⟩) ∀ u, v ∈ Hπ,

and therefore

ξ ∈ WF(π ○ κ−1
○ log) = ⋃

u,v∈H

WFe(⟨(π ○ κ−1 ○ log)u, v⟩H) ⊂ WF(π).

This �nishes the proof.

4.2 Proof of the Inclusion WF(π) ⊂AC(O − supp(π))

Now let us turn to the other inclusion WF(π) ⊂ AC(O − suppπ). For its proof we will
again estimate the Fourier transform of the matrix coe�cients directly using the following

Proposition 4.5. Let n,N ∈ N. There exists a constant Cn,N > 0 such that for all
nilpotent, connected, simply connected Lie groups G with Lie algebra g and dimg = n
there exists an inner product on g and ig∗ and a chart κ ∶ G→ g with De(κ

−1 ○ log) = IdG
such that the following estimate holds for arbitrary Haar measure dX on g, all φ ∈ C∞

c (g),
l, η ∈ ig∗ and all u, v ∈ Hl:

∣∫
g
⟨σl(κ

−1
(X))u, v⟩Hlφ(X)e−2πη(X) dX∣ ≤ Cn,N∥u∥Hl∥v∥Hl∥φ∥WN,1(g)⟨d(η,Ol)⟩

−N ,

where ∥φ∥WN,1(g) ∶= ∑∣α∣≤N ∥Dαφ∥L1(g,dX).

Proof. We prove this statement by induction on dimg. If n = dimg = 1 or 2, the group is
abelian. In this case the irreducible unitary representations are one-dimensional, σl(g) =
e2πl(log g), and have a zero-dimensional orbit Ol = {l}. We choose κ = log and compute

∣∫
g
⟨σl(expX)u, v⟩Cφ(X)e−2πη(X) dX∣ = ∣∫

g
φ(g)e2π(l−η)(X)uv dX∣

= ∣φ̂(η − l)∣ ⋅ ∣u∣ ⋅ ∣v∣.

Fixing an inner product on g we obtain a corresponding one on ig∗. Now let {Xi}
n
i=1 be

an orthogonal basis for g and pick j ∈ {1, n} such that ∣(l − η)(Xj)∣ is maximal.
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With this choice we have for N ∈ N

∣φ̂(η − l)∣ = ∣(2π(l − η)(Xj))
−N
∫
g
φ(X)∂NXje

2π(l−η)(X)dX∣

≤ (2π)−N ∣(l − η)(Xj))∣
−N
∫
g
∣∂NXjφ(X)∣dX

≤ (2π)−N
√
n
N
∥l − η∥−N∥φ∥WN,1(g).

Thus we can choose Cn,N = (
√
n

2π )
N

for n = 1,2.

Now we assume n = dimg ≥ 3. We will distinguish between the two cases following the
ideas as described in Procedure 3.19:

Case I: dim z(g) > 1. There exists Z ∈ z(g) with l(Z) = 0 and a subspace W < g such
that g = W ⊕ RZ. Then g = g/(R ⋅ Z) is isomorphic to W and has a well-de�ned Lie
algebra structure [v+RZ,w+RZ] = [v,w]g+RZ since Z ∈ z(g). The induction hypotheses
gives us G = κ−1 (g) with a chart κ ∶ G→ g. For G we choose the logarithm as a chart.

Given an inner product on g we choose one on g such that the decomposition above
is orthogonal. Furthermore, without loss of generality we may assume ∥Z∥ = 1. Using
the corresponding inner product on ig∗ we also obtain an orthogonal decomposition
ig∗ = iW ∗ ⊕RηZ ≅ ig∗ ⊕RηZ with ∥ηZ∥ = 1.

Note that ig∗ is Ad∗(G)-invariant (again due to Z ∈ z(g)). We can identify l and its

orbit OGl ⊂ ig∗ with an element l ∈ ig∗ and its orbit OG
l
⊂ ig∗, respectively.

Let η = η + rηZ ∈ ig∗ = ig∗ ⊕RηZ . Then by the choice of the inner product

d(η,OGl )
2
= d(η,OG

l
)

2
+ r2.

This implies that we are either in the case

a) r ≥
1

√
2
d(η,OGl ) or b) d(η,OG

l
) ≥

1
√

2
d(η,OGl ). (4.12)

Turning to the integral we want to estimate:

J ∶= ∣∫
g
⟨σl(exp(X))u, v⟩Hlφ(X)e−2πη(X) dX∣

= ∣∫
g
∫
R
⟨σl(exp(X + tZ))u, v⟩Hlφ(X + tZ)e−2πη(w+tZ)dX dt∣

= ∣∫
g
∫
R
⟨σl(exp(X) exp(tZ))u, v⟩Hlφ(X + tZ)e−2π(η(X)+rηZ(tZ))dX dt∣

= ∣∫
g
∫
R
⟨σl(exp(X))u, v⟩Hlφ(X + tZ)e−2π(η(X)+rηZ(tZ))dX dt∣

since every Haar measure dX on g and the Lebesgue measure dt on R yields a Haar
measure dX on g such that the �rst equality above holds. The last equality is due to
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l(Z) = 0 which implies σl(g exp(tZ)) = σl(g) for all g ∈ G, t ∈ R.

We start with case a) of (4.12) and de�ne

φ̃(t) ∶= ∫
g
⟨σl(exp(X))u, v⟩Hlφ(X + tZ)e−2πη(X) dX ∈ C∞

c (R).

Then by integration by parts as in the abelian case with l = 0 and u = v = 1 we obtain

J = ∣∫
R
φ̃(t)e−2πrt dt∣ ≤ C1,N∥φ̃∥WN,1(R)⟨r⟩

−N

(4.12)a)
≤ C1,N

√
2
N
∥φ̃∥WN,1(R)⟨d(η,O

G
l )⟩

−N .

The claim now follows in this case with Cn,N ∶= C1,N

√
2
N

and the following estimation:

∥φ̃∥WN,1(R) =
N

∑
k=1

∥∂kt φ̃∥L1(R,dt)

≤
N

∑
k=1
∫
R
∫
g
∣⟨σl(exp(X))u, v⟩Hl∂

k
t φ(X + tZ)e−2πη(X)

∣ dX dt

≤ ∥u∥∥v∥
N

∑
k=1
∫
R
∫
g
∣∂kt φ(X + tZ)∣ dX dt ≤ ∥u∥∥v∥∥φ∥WN,1(g).

Now let's turn to case b) of (4.12). Note that by Procedure 3.19 (i) we know Hl ≅ Hl
and σl ○ P ≅ σl with the projection P ∶ G→ G which is given by P = κ−1 ○ log here.
Thus, we have

J = ∣∫
g
∫
R
⟨σl(κ

−1
(X))u, v⟩H

l
φ(X + tZ)e−2π(η(X)+rηZ(tZ))dX dt∣ .

Now de�ne

φ̌(X) ∶= ∫
R
φ(X + tZ)e−2πirt dt ∈ C∞

c (g).

Then

J = ∣∫
g
⟨σl(κ

−1
(X))u, v⟩Hl φ̌(X)e−2πη(X)dX∣

(IH)
≤ Cn−1,N∥u∥∥v∥∥φ̌∥WN,1(g)⟨d(η,O

G
l
)⟩
−N

(4.12)a)
≤ Cn−1,N

√
2
N
∥u∥∥v∥∥φ̌∥WN,1(g)⟨d(η,O

G
l )⟩

−N .
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The claim now follows in this case with Cn,N ∶= Cn−1,N

√
2
N
and the following estimation:

∥φ̌∥WN,1(g) = ∑
∣α∣<N

∥∂αφ̌∥L1(g,dv)

= ∑
α
∫
g
∣∫

R
∂α
X
φ(X + tZ)e−2πirt dt∣ dX

≤ ∑
α
∫
g
∫
R
∣∂α
X
φ(X + tZ)∣ dt dX ≤ ∥φ∥WN,1(g).

Case II: z(g) = R ⋅Z is one-dimensional. Kirillov's Lemma 3.6 gives us X,Y ∈ g
and an ideal g0 ⊂ g with g = RX ⊕ g0 and [X,Y ] = Z. Given an inner product on g0

we choose one on g such that the decomposition is orthogonal. Since dim(z(g0)) > 1 as
Z,Y ∈ z(g0) we are in Case I in the induction hypotheses for G0 and therefore can use
the chart log ∶ G0 → g0. We de�ne a chart for G via

κ−1
∶ g = g0 ⊕RX → G, X0 + tX ↦ exp(X0) exp(tX).

If l(Z) = 0 we can proceed analogously to Case I since for w = Y0 + sX ∈W and t ∈ R we
have

κ−1
(w + tZ) = κ−1

(Y0 + tZ + sX) = exp(Y0 + tZ) exp(sX) = exp(Y0) exp(tZ) exp(sX)

= exp(Y0) exp(sX) exp(tZ) = κ−1
(Y0 + sX) exp(tZ) = κ−1

(w) exp(tZ).

Thus, we now assume l(Z) ≠ 0. Then X ∉ rl and we are in Case II of Proposition 3.17
and Theorem 3.18:

p ∶ ig∗ → ig∗0 , l0 ∶= p(l), η0 ∶= p(η), O
G0

l0
∶= Ad∗(G0)l0,

p(OGl ) = ⊔
t∈R

(Ad∗ exp tX)O
G0

l0
, O

G
l = p−1

(p(OGl )).

where G0 = exp(g0) ⊂ G is a normal subgroup. Since ker(p) ⊂ ig∗ is a one-dimensional
subspace and ker(p)⊥ ≅ ig∗0 as vector spaces we have a corresponding inner product on
ig∗0 which gives us for all a ∈ A = exp(RX):

d(η0,O
G0

Ad∗(a)l0
) = d(η0,Ad∗(a)OG0

l0
) ≥ d(η0, p(O

G
l )) = d(η,OGl ). (4.13)

In addition to that we have η = η0 + ηX with ηX ∈ ker(p).

Turning to the integral we want to estimate:

J ∶= ∣∫
g
⟨σl(κ

−1
(X))u, v⟩Hlφ(X)e−2πη(X) dX∣

= ∣∫
g0
∫
R
⟨σl(exp(X0) exp(tX))u, v⟩Hlφ(X0 + tX)e−2π(η0(X0)+rηX(tX))dX0 dt∣ .
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By Theorem 3.18, we also know σl ≅ IndGG0
(σl0). Note that Hl ≅ L

2(A,Hl0). If we regard
u and v as elements of L2(A,Hl0) and ũ, ṽ ∶ G→Hl0 the corresponding functions in the
'standard model' we have again

⟨σl(g0a)u, v⟩Hl = ∫
A
⟨[σl(g0a)u](b), v(b)⟩Hl0 db and

[σl(g0a)ũ](b) = ũ(bg0a) = ũ(bg0b
−1ba) = σl0(bg0b

−1
)ũ(ba)

since b−1g0b ∈ G0 as g0 is an ideal. This gives us [σl(g0a)u](b) = σl0(bg0b
−1)u(ba).

We deduce that

J = ∣∫
g0
∫
R
(∫

A
⟨σl0(b exp(X0)b

−1
)u(betX), v(b)⟩Hl0db) ⋅

φ(X0 + tX)e−2π(η0(X0)+rηX(tX))dX0 dt∣

≤ ∫
R
∫
A
∣∫

g0
⟨σl0(b exp(X0)b

−1
)u(betX), v(b)⟩Hl0φ(X0 + tX)e−2πη0(X0)dX0∣ ⋅

∣e−2πrηX(tX)
∣dbdt.

The conjugation Cb ∶ G0 → G0, g0 ↦ b−1g0b is a group automorphism and we know that
χl0 ○ Cb = χAd∗(b)l0 for the character χl0 such that σl0 = IndG0

M (χl0), M = exp(m) for a
polarizing subalgebra m ⊂ g0. Now, Ad(b)m is a polarizing subalgebra for Ad∗(b)l0 and
C−1
b M = exp(Ad(b)m). Thus, [CG90, Lemma 2.1.3] gives us

σAd∗(b)l0 = IndG0

C−1
b
M

(χl0 ○Cb) ≅ IndG0
M (χl0) ○Cb = σl0 ○Cb.

With this unitary equivalence of representations and the induction hypothesis in G0 for
Ad∗(b−1)l0 instead of l0 we conclude

J ≤ ∫
R
∫
A
∣∫

g0
⟨σl0(b exp(X0)b

−1
)u(betX), v(b)⟩Hl0φ(X0 + tX)e−2πη0(X0)dX0∣ ⋅

∣e−2πrηX(tX)
∣dbdt

(IH)
≤ ∫

R
∫
A
Cn−1,N∥φ(● + tX)∥WN,1(g0)∥u(be

tX
)∥Hl0

∥v(b)∥Hl0 ⟨d(η0,O
G0

Ad∗(b−1)l0
)⟩
−N dbdt

(4.13)
≤ Cn−1,N ⟨d(η,Ol)⟩

−N
∫
R
(∫

A
∥Texp(tX)u(b)∥Hl0 ∥v(b)∥Hl0 db) ∥φ(● + tX)∥WN,1(g0) dt

≤ Cn−1,N ⟨d(η,Ol)⟩
−N
∫
R
∥Texp(tX)u∥Hl∥v∥Hl∥φ(● + tX)∥WN,1(g0) dt,

where Texp(tX) is the translation by exp(tX) ∈ A which is an isometry onHl ≅ L2(A,Hl0).
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This gives us

J ≤ Cn−1,N ⟨d(η,Ol)⟩
−N

∥u∥Hl∥v∥Hl ∫R
∥φ(● + tX)∥WN,1(g0) dt

= Cn−1,N ⟨d(η,Ol)⟩
−N

∥u∥Hl∥v∥Hl ∫R
∑

∣α∣≤N
∫
g0

∣∂NX0
φ(X0 + tX)∣dX0 dt

≤ Cn−1,N ⟨d(η,Ol)⟩
−N

∥u∥Hl∥v∥Hl∥φ∥WN,1(g),

which �nishes the proof.

Corollary 4.6. The statement of the previous Proposition 4.5 also holds for u, v ∈ H⊕ml
l

with multiplicity ml ∈ N ∪ {∞}.

Proof. For u ∈ H⊕ml
l we have u = (u1, u2, . . .) with (�nitely or in�nitely many) 0 ≠ ui ∈ Hl

and ∑i ∥ui∥
2
Hl

< ∞, ∥u∥ = (∑i ∥ui∥
2)

1/2
. Thus

∣ ∫
g
⟨σl(κ

−1
(X))u, v⟩Hlφ(X)e−2πη(X) dX ∣ = ∣∫

g
∑
i

⟨σl(κ
−1

(X))ui, vi⟩Hlφ(X)e−2πη(X) dX∣

= ∣∑
i
∫
g
⟨σl(κ

−1
(X))ui, vi⟩Hlφ(X)e−2πη(X) dX∣

Prop. 4.5
≤ Cn,N∥φ∥WN,1(g)⟨d(η,Ol)⟩

−N
∑
i

∥ui∥ ⋅ ∥vi∥

≤ Cn,N∥φ∥WN,1(g)⟨d(η,Ol)⟩
−N

(∑
i

∥ui∥
2
)

1/2

⋅ (∑
i

∥vi∥
2
)

1/2

= Cn,N∥φ∥WN,1(g)⟨d(η,Ol)⟩
−N

∥u∥ ⋅ ∥v∥,

where the interchanging of the order of integration and summation in the second equality
is possible since ∣⟨σl(κ

−1(X))ui, vi⟩φ(X)e−2πη(X)∣ ≤ ∥ui∥ ⋅ ∥vi∥ ⋅ ∣φ(X)∣ ∈ L1(N × g).

This inequality whose constant is in particular independent of l ∈ ig∗ now helps us to
estimate the matrix coe�cients of the big unitary representation π using its direct integral
decomposition into the irreducibles σl.

Theorem 4.7. Let G be a nilpotent, connected, simply connected Lie group with Lie
algebra g and (π,Hπ) a unitary representation of G. Then

WF(π) ⊂ AC(O − suppπ).

Proof. Let η ∉ AC(O − suppπ). Then there exists ε > 0 and t0 > 0 such that
d(tη,O − suppπ) ≥ εt for all t ≥ t0. In particular, d(tη,Ol) ≥ εt for all l ∈ suppπ.

Again, we use Hπ = ∫Σd
H
⊕m(π,σl)
l dµπ(l) for the Hilbert space of the unitary representa-

tion π. If u = (ul), v = (vl) ∈ H, ul, vl ∈ H
⊕m(π,σl)
l , in this direct integral decomposition
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the matrix coe�cient is

⟨π(g)u, v⟩ = ∫
Σd

⟨σl(g)ul, vl⟩dµπ(l).

Let ϕ ∈ C∞
c (G) with ϕ(e) ≠ 0 and κ ∶ G → g be the corresponding chart from Proposi-

tion 4.5 and Corollary 4.6. For t ≥ t0 and φ ∶= ϕ ○ exp ∈ C∞
c (g) we conclude

∣F(⟨(π ○ κ−1
○ log)u, v⟩ϕ)(tη)∣

= ∣∫
G
⟨π(κ−1

(log g))u, v⟩ϕ(g)e−2πtη(log g) dg∣

= ∣∫
G
∫

Σd
⟨σl(κ

−1
(log g))ul, vl⟩ϕ(g)e

−2πtη(log g) dµπ(l)dg∣

= ∣∫
Σd

(∫
G
⟨σl(κ

−1
(log g))ul, vl⟩φ(log g)e−2πtη(log g) dg) dµπ(l)∣

≤ ∫
Σd

∣∫
g
⟨σl(κ

−1
(X))ul, vl⟩φ(X)e−2πtη(X) dX∣ dµπ(l)

Cor. 4.6
≤ ∫

Σd
Cn,N∥u∥Hl∥v∥Hl∥φ∥WN,1(g)⟨d(tη,Ol)⟩

−N dµπ(l)

≤ Cn,N∥φ∥WN,1(g)ε
−N t−N ∫

Σd
∥ul∥ ⋅ ∥vl∥dµπ(l)

≤ Cn,N∥φ∥WN,1(g)ε
−N

∥u∥Hπ ⋅ ∥v∥Hπ t
−N

∈ O (t−N) .

This implies η ∉ WFe(⟨π(κ
−1 ○ log(⋅))u, v⟩).

Now, [Hör03, Theorem 8.2.4] with the map f = κ−1○ log, which is a homeomorphism with
Df(e) = Id, implies η ∉ WFe(⟨π(⋅)u, v⟩).

Theorems 4.4 and 4.7 prove our main result Theorem 4.1.
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5 Alternative Proofs

In this section we present two alternative approaches to prove the two necessary inclusions
AC(O − suppπ) ⊂ WF(π) and WF(π) ⊂ AC(O − suppπ). The �rst approach follows the
strategy of [HHÓ16] using integrated characters. The second approach studies matrix
coe�cients via the formula for the kernels of integrated representations.

5.1 Integrated Characters

Here we try to follow the work of Harris, He and Ólafsson for real reductive, algebraic
groups (see [HHÓ16, Chapter 6 and 7]) and use the integrated characters ∫Ĝ θσdµπ(σ).
The inclusion AC(O − supp(π)) ⊂ WF(π) can be proven with the wave front set of the
integrated characters as an intermediate step even though in our setting there are more
restrictions on the integrated characters as for the real reductive, algebraic groups. For
the inclusion WF(π) ⊂ AC(O − supp(π)) this approach gives us, however, only a weaker
statement (see Proposition 5.8, to be compared with Theorem 4.7 and the Remarks 5.9,
5.10 and 5.11).

Recall from (4.8), that we can assume without loss of generality that supp(π) ⊂ Σd for
one d ∈D.

5.1.1 The Inclusion AC(O − supp(π)) ⊂WF(π)

Since we want to use our knowledge of irreducible unitary representations of nilpotent
Lie groups from Section 3, we take a closer look at the decomposition of the unitary
representation π = ∫

⊕

Ĝ
σ⊕m(π,σ) dµπ(σ) (see (4.7)) and in particular the corresponding

measure µπ on Ĝ.

Remark 5.1. Note that the positive measure µπ is only well de�ned up to an equivalence
relation. Here two measures µ and µ′ are equivalent if and only if they are absolutely
continuous with respect to each other. More precisely, Radon-Nikodym gives us a positive
measurable function f such that dµ = fdµ′ and the unitary equivalence of the resulting
integrated representations is given by the multiplication operator by

√
f . We will refer to

f as the density function.

This means that without loss of generality we can put certain conditions on the measure
µπ. We will �nd that the right choice for this subsection is the following:

De�nition 5.2.

Md ∶= {µ positive, �nite measure on Σd s.t. Pf−1
d ∈ L1

(µ)},

Md(π) ∶= {µ ∈ Md ∣ ∃ f ∈ L1
loc(µπ) ∩L

2
loc(µπ) ∶ µ = f ⋅ µπ} ,

where the Pfa�an Pfd is an Ad∗(G)-invariant polynomial on ig∗ (see De�nition 3.24).
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Remark 5.3. There exists µπ ∈ Md such that π ≅ ∫
⊕

Σd
σ
⊕m(π,σl)
l dµπ(l). From now on

we will only consider such a measure.

Now let us introduce a distribution by integrating the characters θl = Tr(σl) examined
in Section 3. Its wave front set will provide an intermediate step in proving the �rst
inclusion, i.e. AC(O − supp(π)) ⊂ WFe (∫Σd

θl dµ(l)) ⊂ WF(π).

Lemma 5.4. For every positive measure µ on Σd and every function f on Σd such that
f ⋅Pf−1

d ∈ L1(µ) the integral

∫
Σd
θlf(l)dµ(l)

de�nes a tempered distibution on G.
In particular, ∫Σd

θl dµ(l) is a tempered distribution for any µ ∈ Md.

Proof. By Lemma 3.29

∣ [∫
Σd
θlf(l)dµ(l)] (ϕ)∣ ≤ ∫

Σd
∣θl(ϕ)f(l)∣dµ(l)

≤ ∫
Σd
γd(ϕ)∣Pfd(l)∣

−1f(l)dµ(l)

= γd(ϕ) ⋅C < ∞.

Hence the integral de�nes a distribution on G which is tempered since γd(ϕ) → 0 if ϕ→ 0
in S(G).

Proposition 5.5. For every µ ∈ Md(π) the distribution ∫Σd
θl dµ(l) from Lemma 5.4 is

an element of P (π)
D′

.

Proof. Let ϕ ∈ C∞
c (G). Firstly, we choose a sequence (χKk)k∈N = (χk)k∈N of compact

characteristic functions that exhaust Σd = ⋃k∈NKk such that Pfd is bounded away from
zero by a constant ck on Kk for all k ∈ N. Since θl(ϕ) is integrable by the previous lemma
we can write

∫
Σd
θl(ϕ)dµ(l) = lim

k→∞
∫

Σd
χk(l)θl(ϕ)dµ(l).

Now, let (ηi)i∈N be an orthonormal basis of L2(Rdn/2) with dn = dimOl for all l ∈ Σd,
which is well-de�ned due to Remark 3.23 and the de�nition of d ∈ Nn. Since each σl(ϕ)
is trace class we have

∫
Σd
θl(ϕ)dµ(l) = lim

k→∞
∫

Σd
lim
N→∞

χk(l)(∫
G

N

∑
i=1

ϕ(g)⟨σl(g)ηi, ηi⟩dg) dµ(l).
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Thus, we consider for N ∈ N the projections PN(λ) ∶= ∑Ni=1⟨λ, ηi⟩ηi, λ ∈ L2(Rdn/2) ≅ Hl
for each l ∈ Σd, and the functions

ΨN,k(l, g) ∶= χk(l)ϕ(g)
N

∑
i=1

⟨σl(g)ηi, ηi⟩, l ∈ Σd, g ∈ G,

fN,k(l) ∶= χk(l)∫
G

N

∑
i=1

ϕ(g)⟨σl(g)ηi, ηi⟩dg = χk(l)Tr(σl(ϕ)PN).

We want to apply the dominated convergence theorem with regard to the limit in N and
therefore estimate again with Lemma 3.29

∣fN,k(l)∣
2
≤ ∥PN∥

2
op ⋅ ∥σl(ϕ)∥

2
Tr ⋅ χk(l)

2

= Tr(σl(ϕ)
∗σl(ϕ)) ⋅ χk(l) = Tr(σl(ϕ

∗
⋆ ϕ)) ⋅ χk(l) = θl(ϕ

∗
⋆ ϕ) ⋅ χk(l)

≤ γd(ϕ
∗
⋆ ϕ) ⋅ ∣Pfd(l)∣

−1
⋅ χk(l) = γ

′
d,k(ϕ) ⋅ χk(l),

since ∥PN∥op = 1 and ∣Pfd(l)∣
−1 ≤ c−1

k on suppχk = Kk. By assumption µ = f ⋅ µπ with
f ∈ L1

loc(µπ) and we conclude that fN,K is integrable with respect to µ. Now we can
interchange the limit in N and the integral over Σd and obtain for all ϕ ∈ C∞

c (G):

[∫
Σd
θl dµ(l)] (ϕ) = lim

k→∞
lim
N→∞

∫
Σd

(∫
G

N

∑
i=1

χk(l)ϕ(g)⟨σl(g)ηi, ηi⟩dg) dµ(l).

In order to �nd a sequence in P (π) converging to the given distribution we �rst de�ne
the vectors

ηk,µi ∶= ∫
Σd
ηi ⋅ χk(l)dµ(l) = ∫

Σd
ηi ⋅ χk(l)f(l)dµπ(l) ∈ Hπ ∀ i ∈ N,

as f ∈ L2
loc(µπ) and consider for N ∈ N the projections PµN,k(λ) ∶= ∑

N
i=1⟨λ, η

k,µ
i ⟩ηk,µi ,

λ ∈ Hπ, which are non-negative operators of rank N < ∞. Consequently, the distributions
αN,k ∶= Tr(π(ϕ)PµN,k) are elements of P (π) and we obtain

αN,k(ϕ) = ∫
G
∫

Σd
χk(l)

2ϕ(g)
N

∑
i=1

⟨σl(g)ηi, ηi⟩dµ(l)dg

= ∫
Σd

(∫
G
χk(l)ϕ(g)

N

∑
i=1

⟨σl(g)ηi, ηi⟩dg) dµ(l),

since for �xed N,k ∈ N the absolute value of the function ΨN,k is integrable on G × Σd

with respect to dg dµ:

∫
G
∫

Σd
∣ΨN(l, g)∣dµ(l)dg ≤ N∥ϕ∥∞µ(Kk)dg(suppϕ) < ∞.

This proves the claim.
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As a result of this and Proposition 2.19 we have:

WFe (∫
Σd
θl dµ(l)) ⊂ WF(π) ∀ µ ∈ Md(π). (5.14)

Now we can prove the �rst inclusion:

Proposition 5.6. Let G be a nilpotent, connected, simply connected Lie group with Lie
algebra g and (π,Hπ) be a unitary representation of G. Then

AC(O − suppπ) ⊂ WF(π).

Proof. Let ξ ∈ AC(O − suppπ). Fix an inner product ⟨⋅, ⋅⟩ on ig∗. Without loss of
generality, we may assume ∣ξ∣ = 1. De�ne the cones

Cε ∶= {η ∈ ig∗ ∣ ∃ t > 0 ∶ ∣ξ − tη∣ < ε} , Cε,R ∶= {η ∈ Cε ∣ ∣η∣ > R} for ε,R > 0.

Figure 8: The cones Cε and Cε,R

Let ε > 0. We recall from the discussions around Equation (4.8) that we may assume
O − supp(π) ⊂ Ud. Thus, by the cross-section property of Σd we know that for any
l ∈ O − supp(π) the corresponding orbit meets Σd in exactly one point. De�ning the set
of all points of the orbital support in the cross-section Σd whose orbits intersect the cone
Cε outside of the ball of radius R as

Aε,R ∶= {l ∈ O − supp(π) ∩Σd ∣ Ol ∩Cε,R ≠ ∅} ⊂ Σd,

we have Aε,R+δ ⊂ Aε,R for all δ > 0 and by assumption

Aε,R =
∞

⊔
k=0

(Aε,R+k ∖Aε,R+k+1) ⊔ (
∞

⋂
k=R

Aε,k) ≠ ∅ ∀ R > 0.

We set Dε,k ∶= Aε,k ∖Aε,k+1 and Lε = ⋂∞k=RAε,k.
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In case that for all ε > 0 we have Lε ≠ ∅, there exists l0 ∈ O − suppπ such that Ol0 ∩ Cε

is unbounded. Thus, ξ ∈ AC(Ol0) = WF(θl0) and it su�ces to show θl0 ∈ P (π)
D′

due to
Proposition 2.19:

Consider a family of positive functions φδ ∈ C∞
c (Σd) such that ∫Σd

φδ dµπ = 1 for all
δ > 0 whereas the support of φδ converges to the point l0 ∈ Σd as δ tends to zero. Since

φδ ∈ L
1
loc(µπ)∩L

2
loc(µπ), Proposition 5.5 gives us ∫Σd

θlφδ(l)dµπ(l) ∈ P (π)
D′

for all δ > 0.
Recall that for ϕ ∈ C∞

c (G) with (3.5) and Lemma 3.28

θl(ϕ) = ∫
Ol

F
+
(ϕ)dϑl = ∣Pfd(l)∣

−1
∫
VS(d)

F
+
(ϕ)(Ψd(l, v))dm

′
1(v).

Hence, θl(ϕ) is continuous in l and we deduce that

θl0(ϕ) = lim
δ→0

∫
Σd
θl(ϕ)φδ(l)dµπ(l) ∀ ϕ ∈ C∞

c (G)

⇒ θl0 = lim
δ→0

∫
Σd
θlφδ(l)dµπ(l) ∈ P (π)

D′

.

Now consider the case where Lε0 = ∅ for some ε0 > 0 and hence for all 0 < ε ≤ ε0. Then
the disjoint union ⊔∞k=RDε,k is non-empty for all R > 0. Since Dε,k ⊂ O − suppπ for all k
and any 0 < ε ≤ ε0, there exists a sequence km →∞ such that µπ(Dε,km) > 0 for all m ∈ N.
Now choose for every m ∈ N an element lm ∈Dε,km and a corresponding tmηm ∈ Olm ∩ Cε

with ηm ∈ Bε(ξ) ∩B1(0) and tm →∞.

To show that ξ ∈ WFe (∫Σd
θl dµ(l)) for a suitable µ ∈ Md(π), we now want to use

Folland's characterization of a wave front set in terms of the wave packet transform of
the distribution (see Theorem 2.10) analogously to the beginning of [HHÓ16, Proof of
Proposition 6.1].
Fix an even Schwartz function F(ϕ) ∈ S(ig∗) such that F(ϕ)(x) ≥ 0 for all x and
F(ϕ)(x) = 1 if ∣x∣ ≤ 1. Then F(ϕ) is the Fourier transform of an even Schwartz function
ϕ ∈ S(g). By Remark 2.9 and (2.3) in order to show that

(0, ξ) ∈ WFϕ (∫
Σd
θl dµ(l))

Thm. 2.10
= WF(∫

Σd
θl dµ(l)) ,

we must �nd for ε > 0 a constant C > 0, an integerN ∈ N, and a sequence (tmηm)m∈N ⊂ ig∗

with ηm ∈ Bε(ξ) ∩B1(0) and tm →∞ such that

Ct−Nm ≤ ∣eπtmηm(0)t−n/4m F (∫
Σd
θl dµ(l)) [e−2π⟨tmηm−●,0⟩F(ϕ)(t−1/2

m (tmηm − ●))]∣

= t−n/4m ∣(∫
Σd
ϑl dµ(l)) [F(ϕ)(t−1/2

m (tmηm − ●))]∣

= t−n/4m ∣∫
Σd

(∫
Ol

F(ϕ)(
tmηm − ζ

√
tm

) dϑl(ζ)) dµ(l)∣ . (5.15)
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Our �rst goal is to obtain polynomial estimates for the inner integral. We start by
de�ning for l′m ∈ Σd near lm the sets

Bm,l′m ∶= {ζ ∈ Ol′m ∩ Cε ∣ ∣ζ − tmηm∣ < 1} ⊂ ig∗.

Figure 9: De�nition of the sets Bm,l′m

Again, by Lemma 3.28 we know that ϑl = ∣Pfd(l)∣
−1 (IdVS(d) +pT (d)(ψd(l, ⋅)))

∗
(m′

1) where

m′
1 is the Eucledian measure on the vector space VS(d) ⊂ g∗, that the Pfa�an Pfd(l) is a

polynomial in l and that the parametrization pT (d) ○ψd(l, v) is a polynomial in v ∈ VS(d)
as Theorem 3.20 states.
Consider the tangent spaces to the points η ∈ Sn−1 ∩ Cε. Given ε′ > 0, after possibly
shrinking Cε, i.e. ε > 0, the tangent spaces TηOη only vary by an angle less than ε′. If we
choose ε′ small enough, we can approximate Bm,lm ⊂ Otmηm by its tangent space. With
all of the above, the choice of tm →∞ (in particular, tmε ≥ 2 for su�ciently large m) and
since the coadjoint action is linear, we can approximate the orbital measure and deduce
that for su�ciently large m and some k ∈ N:

νlm(Bm,lm) ∶= (IdVS(d) +pT (d)(ψd(lm, ⋅)))
∗
(m′

1)(Bm,lm) ≥ t−km .

With this de�nition and the choice of F(ϕ) we can estimate

∫
Bm,lm

F(ϕ)(
tmηm − ζ

√
tm

) dνlm(ζ) ≥ ∫
Bm,lm

1dνlm(ζ) ≥ t−km .

Since ∫Bm,l F(ϕ) ( tmηm−ζ√
tm

) dνl(ζ) is a continuous function of l ∈ Σd we can �nd for each
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index m neighborhoods Nm ⊂ Σd of lm such that

∫
Bm,l
F(ϕ)(

tmηm − ζ
√
tm

) dνl(ζ) ≥
1

2
t−km ∀ l ∈ Nm. (5.16)

Now, we can �nd a suitable measure µ ∈ Md(π) such that the estimate (5.15) holds:
First of all, we may also assume µπ(Nm) > 0 and

Nm ∩ ( ⋃
k≠km

Dk) = ∅ ⇒ Nm ∩Nk ≠ ∅ ∀ k ≠m.

After possibly shrinking the sets Nm ⊂ Σd there exist constants Cm > 0 such that

1

2
Cm ≤ inf

l ∈Nm
∣Pfd(l)∣ ≤ sup

l ∈Nm

∣Pfd(l)∣ ≤ Cm,

since the Pfa�an Pfd is continuous.
Let χm ∶= χNm be the characteristic functions of the sets Nm ⊂ Σd. Now we choose

f ∶= ∑
m

Cmt
−2
m µπ(Nm)

−1
⋅ χm and µ ∶= f ⋅ µπ.

Notice that f ∈ L1
loc(µπ) ∩L

2
loc(µπ) and

∫
Σd

∣Pfd(l)∣
−1 dµ(l) = ∑

m

Cmt
−2
m µπ(Nm)

−1
∫
Nm

∣Pfd(l)∣
−1 dµπ(l)

≤ ∑
m

Cmt
−2
m µπ(Nm)

−1µπ(Nm) ⋅ 2C−1
m = 2∑

m

t−2
m < ∞,

since tm ≥ km ≥m. This shows µ ∈ Md(π).
Finally, we obtain by de�nition of Bm,l andNm and the choice of µ the desired estimation:

t−n/4m ∣∫
Σd

(∫
Ol

F(ϕ)(
tmηm − ζ

√
tm

) dϑl(ζ)) dµ(l)∣

≥ t−n/4m ∣∫
Nm

(∫
Bm,l
F(ϕ)(

tmηm − ζ
√
tm

) dϑl(ζ)) dµ(l)∣

= t−n/4m

RRRRRRRRRRRRRR

∫

Nm

⎛
⎜
⎝
∫

Bm,l

F(ϕ)(
tmηm − ζ

√
tm

) ∣Pfd(l)∣
−1 dνl(ζ)

⎞
⎟
⎠
dµ(l)

RRRRRRRRRRRRRR
(5.16)
≥

1

2
t−n/4−km ⋅ ∫

Nm
∣Pfd(l)∣

−1 dµ(l)

=
1

2
t−n/4−k−2
m Cmµπ(Nm)

−1
∫
Nm

∣Pfd(l)∣
−1 dµπ(l) ≥

1

2
t−n/4−k−2
m .

The claim now follows with (5.14).
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5.1.2 The Inclusion WF(π) ⊂AC(O − supp(π))

Now we turn to the second inclusion WF(π) ⊂ AC(O − suppπ). Here we would like to
use the wave front set of the integrated characters again as an intermediate step due to
the following

Lemma 5.7. For every positive measure µ on Σd and every function f on Σd such that
f ⋅Pf−1

d ∈ L1(µ) (that is as in Lemma 5.4), we have

WFe (∫
Σd
θlf(l)dµ(l)) ⊂ AC(O − suppπ).

Proof. This follows by [Hör03, Lemma 8.4.17] from the fact that ∫Σd
θlf(l)dµ(l) is the

Fourier transform of the tempered distribution ∫Σd
ϑlf(l)dµ(l) which is supported in

O − suppπ = ⋃σ ∈ suppπOσ.

Following the proof of [HHÓ16, Proposition 7.1] we obtain a weaker statement in our
setting:

Proposition 5.8. If there exists ε > 0 such that ∣Pfd(l)∣ > ε for all l ∈ suppµπ ⊂ Σd then

WF(π) ⊂ AC(O − suppπ).

Proof. Recall again with (4.8) that Hπ = ∫Σd
H
⊕m(π,σl)
l dµπ(l) for the Hilbert space of

the unitary representation π. By Remark 3.23 we know that for all l ∈ Σd we have
Hl ≅ L

2(Rdn/2), dn = dimOl by de�nition of d ∈ Nn. If u = (ul), v = (vl) ∈ Hπ in this
direct integral decomposition the matrix coe�cient is

⟨π(g)u, v⟩ = ∫
Σd

⟨σl(g)ul, vl⟩dµπ(l).

Thus for η ∈ ig∗, φ ∈ C∞
c (G)

∣F(⟨π(⋅)u,v⟩φ)(tη)∣ = ∣∫
G
⟨π(g)u, v⟩φ(g)e−2πtη(log g) dg∣

= ∣∫
G
∫

Σd
⟨σl(g)ul, vl⟩φ(g)e

−2πtη(log g) dµπ(l)dg∣

= ∣∫
Σd

(∫
G
⟨σl(g)ul, vl⟩φ(g)e

−2πtη(log g) dg) dµπ(l)∣

= ∣∫
Σd

⟨σl(φe
−2πtη(log)

)ul, vl⟩dµπ(l)∣

≤ ∫
Σd

∥σl(φe
−2πtη(log)

)ul∥ ⋅ ∥vl∥dµπ(l)

≤ (∫
Σd

∥σl(φe
−2πtη(log)

)∥
2
HS ⋅ ∥ul∥

2 dµπ(l))
1/2

⋅ (∫
Σd

∥vl∥
2 dµπ(l))

1/2

. (5.17)

57



Here the third equality holds as ∣⟨σl(g)ul, vl⟩φ(g)e
2πtη(log g)∣ ≤ ∣φ(g)∣ ⋅ ∥ul∥∥vl∥ with com-

pactly supported φ ∈ C∞
c (G) and u, v ∈ L2(Σd, µπ) so that we may interchange the order

of integration.
Following the calculation in [How81, p. 128] we obtain

∥σ(ϕ)∥2
HS = Tr(σ(ϕ)∗σ(ϕ)) = Tr(σ(ϕ∗ ⋆ ϕ)) = ∫

G
Tr(σ(h))(ϕ∗ ⋆ ϕ)(h)dh

= ∫
G

Tr(σ(h))∫
G
ϕ∗(g)ϕ(g−1h)dg dh

= ∫
G
ϕ∗(g) (∫

G
Tr(σ(h))Lg(ϕ)(h)dh) dg

= ∫
G
ϕ∗(g)Tr(σ(Lgϕ))dg ∀ σ ∈ Ĝ, ϕ ∈ C∞

c (G),

where the order of integration can be interchanged since both ϕ and ϕ∗ have compact
support. Applying this equality here we have

∥σl(φe
−2πtη(log)

)∥
2
HS = ∫

G
φ (g−1) e−2πtη(log(g))

⋅ θl [Lg(φ(●)e
−2πtη(log(●))

)] dg,

and integrating both sides over Σd with respect to ∣ul∣
2 dµπ(l) yields

∫
Σd

∥σl(φe
−2πtη(log)

)∥
2
HS ⋅ ∥ul∥

2 dµπ(l)

= ∫
Σd
∫
G
φ (g−1) e−2πtη(log(g−1))

⋅ θl [Lg(φ(●)e
−2πtη(log(●))

)] ∥ul∥
2 dg dµπ(l)

= ∫
G
φ(g−1

)e−2πtη(log(g−1))
(∫

Σd
θl∥ul∥

2 dµπ(l)) [Lg(φ(●)e
−2πtη(log(●))

)] dg.

The interchanging of the order of integration is possible since we have the estimate

∣φ (g−1) e−2πtη(log(g−1))
⋅ θl [Lg(φe

−2πtη(log)
)] ∥ul∥

2
∣

≤ ∣φ (g−1)∣γd (Lg(φe
−2πtη(log)

)) ∣Pfd(l)∣
−1

∥ul∥
2.

Here φ has compact support and

G→ C∞
c → R>0, g ↦ Lg(φe

−2πtη(log)
) ↦ γd (Lg(φe

−2πtη(log)
))

is continuous (the second map by Lemma 3.29) so that it is integrable over the compact
set supp(φ)−1.
In the integral over Σd we have ∥ul∥

2 ∈ L1(µπ) by de�nition and ∥ul∥
2∣Pfd ∣

−1 ≤ 1
ε∥ul∥

2

almost surely with respect to µπ since we assumed ∣Pfd ∣ > ε on suppµπ. This gives us
∥ul∥

2 Pf−1
d ∈ L1(µπ).
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Now let ξ ∉ AC(O − suppπ). With Lemma 5.7 we know ξ ∉ WFe (∫Σd
θl∥ul∥

2 dµπ(l))

and by the same argument ξ ∉ SSe (∫Σd
θl∥ul∥

2 dµπ(l)), the singular spectrum which is a

similar concept to the wave front set (see [HHÓ16, De�nitions 2.2 and 2.3]). Furthermore,
u = ∫Σd

exp∗ θl∥ul∥
2 dµπ(l) is a tempered distribution on g with ξ ∉ SS0(u).

When we take the analytic map ψ ∶ g× g→ g, (Y,X) ↦X ∗ Y , [HHÓ16, Proposition 7.2]
gives us of the existence of open sets logU1 ⊂ logU ⊂ log Ũ containing 0 such that the
closure of logU1 is contained in the interior of logU together with an open set Ω ⊂ ig∗

containing ξ such that for every N ∈ N there exists a constant C = CN,U1,U > 0 with

∣∫
Σd

(∫
g
θl(expY expX)(exp∗ φ)(X)e−2πtη(X) dX) ∥ul∥

2 dµπ(l)∣ ≤ C
N t−N ,

whenever η ∈ Ω,Y ∈ log Ũ and t > 0. Going back the group we obtain

∣∫
Σd

(∫
G
θl(gh)φ(h)e

−2πtη(logh) dh) ∥ul∥
2 dµπ(l)∣ ≤ C

N t−N ,

and the assertion of Lemma 5.4 yields

∣(∫
Σd
θl∥ul∥

2 dµπ(l)) [Lg(φe
−2πtη(log)

)]∣ ≤ CN t−N ,

whenever g ∈ Ũ , η ∈ Ω and t > 0. Now, if we integrate over g in a precompact set in G
with respect to a smooth density multiplied by a bounded function, then this will simply
multiply the bound by a constant, which we may absorb in C. Thus we obtain

∣∫
G
φ(g−1

)e−2πtη(log(g−1))
(∫

Σd
θl∥ul∥

2 dµπ(l)) [Lg(φe
−2πtη(log)

)] dg∣ ≤ CN t−N

for η ∈ Ω and t > 0. Tracing back our calculations this gives us

∣F(⟨π(⋅)u, v⟩φ)(tη)∣ ≤ CN/2t−N/2

for η ∈ Ω and t > 0. By replacing N by 2N (and C2N by CN ) we see ξ ∉ WF(π) which
proves the claim.

Remark 5.9. The assumption on the support suppµπ in the previous Proposition 5.8 is
in fact a restriction: it can already be seen in the example of the Heisenberg group H1

where Σ1 = (R ∖ {0}) ⋅Z∗ and Pf1(l) = l, l ∈ R ∖ {0}.

Remark 5.10. Comparing Proposition 5.8 with Theorem 4.7 we only get a weaker
statement with the above proof. Analyzing this proof in order to determine where one
essentially looses something, we see that the crucial estimation is in (5.17) where we
basically estimate one matrix coe�cient ∣⟨σ(ϕ)∗σ(ϕ)ul, ul⟩∣ = ∥σ(ϕ)ul∥ by its trace
Tr(σ(ϕ)∗σ(ϕ)), thus summing up all matrix coe�cients (of an orthogonal basis).
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Remark 5.11. The above proof does work for real reductive, algebraic groups in [HHÓ16]
since there the integrated characters ∫ θσf(σ)dµ(σ) de�ne a tempered distribution for all
f ∈ L1(µ) (see [HHÓ16, Lemma 6.2] which relies on a result of Harish-Chandra for the
so-called invariant integral) whereas here in the nilpotent case we need f ⋅ Pf−1

d ∈ L1(µ)
(see Lemma 5.4 and Lemma 5.7).

5.2 Integral Kernels of Integrated Representations

In order to show the second inclusion WF(π) ⊂ AC(O−suppπ) for general π, i.e. unitary
representations that contain irreducible representation arbitrary close to the zeros of
the Pfa�an, we take another look at the Fourier transform of the matrix coe�cient
with regard to the integral kernels of the trace class operators σl(φeRη(log)) as given by
Proposition 3.26:

F(⟨π(⋅)u, v⟩φ)(Rη) = ∫
G
⟨π(g)u, v⟩φ(g)e−2πRη(log g) dg

= ∫
Σd

⟨σl (φ(g)e
−2πRη(log)

)ul, vl⟩ dµπ(l)

= ∫
Σd
∫
R2k
∫
m
e2π(l(Y )−Rη log(β(s)−1 exp(Y )β(t)))

⋅

φ(β(s)−1 exp(Y )β(t))ul(s)vl(t)dY d(s, t)dµπ(l),

where {X1, . . . ,Xn} is a weak Malcev basis through the polarizing subalgebra m for l ∈ ig∗

with p = dimm = n − k, k = 1
2 dimOl and β∶Rk → G, t↦ exp(t1Xp+1)⋯ exp(tkXn).

Let h ∶= span{Xp+1, . . . ,Xn} be a compliment of m in g. Assuming there exists a coordi-
nate change

(X,P (s, t)) ∶= log(β(s)−1 exp(Y )β(t)) ∈ g = m⊕ h,

dX = dY , with Y = Q(X,s, t) and polynomials P ∶ R2k → h and Q ∶ Rp × R2k → m, we
have

F(⟨π(⋅)u, v⟩φ)(Rη) =

∫

Σd

∫

R2k

∫
m

e2π(l(Q(X,s,t))−Rη(X,P (s,t)))φ(exp(X,P (s, t)))ul(s)vl(t)dX d(s, t)dµπ(l).

If in addition to that the �rst part of the exponent is linear in X, i.e.

l(Q(●, s, t)) =
n

∑
j=1

qj(s, t, l)X
∗
j =∶ f(s, t, l) ∈ m

∗,

and we choose a cut-o� function φ such that φ(exp(X,Z)) = φX(X)φr(Z), X ∈ m, Z ∈ h,
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we obtain

F(⟨π(⋅)u, v⟩φ)(Rη) =

∫

Σd

∫

R2k

∫
m

e2π(f(s,t,l)(X)−Rη(X,P (s,t)))φ(exp(X,P (s, t)))ul(s)vl(t)dX d(s, t)dµπ(l)

=∫

Σd

∫

R2k

φ̂X ((Rηj − qj(s, t, l))j≤p)φr(P (s, t))e−2πRηr(P (s,t))ul(s)vl(t)d(s, t)dµπ(l),

where η = (∑
p
j=1 ηjX

∗
j ) + ηr ∈ im

∗ ⊕ ih∗.

Lemma 5.12. We make the following assumptions:

(i) There exist δ, ε > 0 such that ∥P (s, t)∥ < δ implies ∥s − t∥ < ε.

(ii) ∀η ∉ AC(O − suppπ) ∃ j ∈ {1, . . . , p},R0, c1, c2 > 0, b ∈ N ∀R > R0 ∶

∣Rηj − qj(s, t, l)∣ ≥ c1R
1
b − c2 ∀ ∥s − t∥ < ε, l ∈ supp(µπ).

Then

WF(π) ⊂ AC(O − suppπ).

Proof. Let η ∉ AC(O − suppπ) and φ be a cut-o� function φ with φ = φX ⋅ φr as before
and suppφr ⊂ Bδ(0). Then we have with the computations above:

FR ∶= ∣F(⟨π(⋅)u, v⟩φ)(Rη)∣

=

RRRRRRRRRRRRRR

∫

Σd

∫

R2k

φ̂X ((Rηj − qj(s, t, l))j≤p)φr(P (s, t))e−2πRηr(P (s,t))ul(s)vl(t)d(s, t)dµπ(l)

RRRRRRRRRRRRRR

≤ ∫

Σd

∫

R2k

CN ∣Rηj − qj(s, t, l)∣
−N φr(P (s, t))∣ul(s)∣ ⋅ ∣vl(t)∣d(s, t)dµπ(l)

≤ CN ∫
Σd

∫

Bε(0)

∫

Rk
∣Rηj − qj(s, t, l)∣

−N
∣ul(s)∣ ⋅ ∣vl(s + a)∣d(s, a)dµπ(l)

by assumption (i). With assumption (ii) we can further estimate:

FR ≤ CN ∣c1R
1
b − c2∣

−N
∫

Σd
∫
Bε(0)

∫
Rk

∣ul(s)∣ ⋅ ∣vl(s + a)∣d(s, a)dµπ(l)

= CN ∣c1R
1
b − c2∣

−N
∫

Σd
∫
Bε(0)

∫
Rk

∣ul(s)∣ ⋅ ∣Tavl(s)∣d(s, a)dµπ(l)

≤ CN ∣c1R
1
b − c2∣

−N
∫

Σd
∫
Bε(0)

⟨ul, Tavl⟩dadµπ(l),
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where Ta is the translation by a ∈ Bε(0) which is an isometry on L2. This gives us

FR ≤ CN ∣c1R
1
b − c2∣

−N
∫

Σd
∫
Bε(0)

∥ul∥L2∥Tavl∥L2 dadµπ(l)

= CN ∣c1R
1
b − c2∣

−N
∫

Σd
∫
Bε(0)

∥ul∥L2∥vl∥L2 dadµπ(l)

≤ CN,ε∣c1R
1
b − c2∣

−N
∫

Σd
∥ul∥L2∥vl∥L2 dµπ(l) = CN,ε∣c1R

1
b − c2∣

−N
⟨∥ul∥L2 , ∥vl∥L2⟩Hπ

≤ CN,ε∣c1R
1
b − c2∣

−N
∥u∥Hπ∥v∥Hπ ∈ O (R−N

b ) .

This �nishes the proof.

Remark 5.13. In particular, if we have η ∉ AC(O − suppπ) and want to check assump-
tion (ii) of the previous Lemma it su�ces to �nd j ∈ {1, . . . , p} such that

ηj ≠ 0 ∧ sign(ηj) ⋅ qj(s, t, l) < Const. ∀ s, t ∈ Rk, l ∈ suppµπ.

Even though the assumptions in the previous lemma seem to be quite explicit it is actually
all we needed in the following examples in order to show the desired inclusion without
any assumptions regarding the unitary representation π.

Example 5.14. For the Heisenberg group Hn (see Section 3.2) we know in the case
of the maximal dimensional orbits of type d(1), i.e. 2n-dimensional a�ne planes, that
Pf(l) = l(Z)n and Σ = R× ⋅Z∗. Now de�ne for ε > 0 the set

N ∶= {l ∈ Σ ∣ l(Z) > n
√
ε} ≅ R ∖B n√ε(0)

and the characteristic function χ = χN . Let π be a unitary representation of Hn and
de�ne

π1 ∶= ∫
R×
σl ⋅ χdµπ(l), π2 ∶= ∫

R×
σl ⋅ (1 − χ)dµπ(l) ⇒ π = π1 + π2. (5.18)

Then Proposition 5.8 gives us directly WF(π1) ⊂ AC(O − suppπ1) and for the second
part we can use Lemma 5.12 and Remark 5.13: Since

AC(Ol) = span(X∗
1 , . . . ,X

∗
n , Y

∗
1 , . . . Y

∗
n ) ∀ l ∈ Σ

we only have to regard η ∈ R ⋅Z∗.
With the weak Malcev basis {Z,Y1, . . . Yn,X1, . . .Xn} through m = span(Z,Y1, . . . Yn)
and h = span{X1, . . .Xn} we compute
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β(s)−1 exp(zZ +∑ yiYi)β(t) = exp((z −
1

2
(t + s) ⋅ y)Z +∑ yiYi +∑(tj − sj)Xj)

⇒ P (s, t) = ∑(tj − sj)Xj , Q(z, y, t, s) = (z +
1

2
(t + s) ⋅ y)Z +∑ yiYi

⇒ q1(s, t, l) = l, qj(s, t, l) =
1

2
(tj + sj)l for 2 ≤ j ≤ n.

It is clear that q1 is bounded on supp(1 − χ) = B n√ε(0). Thus, we have η ∉ WF(π2) by
Lemma 5.12 and Remark 5.13. This proves WF(π2) ⊂ AC(O − suppπ2). Combined:

WF(π) ⊂ WF(π1) ∪WF(π2) ⊂ AC(O − suppπ1) ∪AC(O − suppπ2) = AC(O − suppπ).

The only other case consists of 0-dimensional orbits. But then Pf = 1 and the assumption
of Proposition 5.8 is ful�lled for any unitary representation π.

Example 5.15. We consider the group K3. From Section 3.3 we know that we have the
three orbit types D = {d(1) = (0,1,1,2), d(2) = (0,0,1,2), d(3) = (0,0,0,0)}.

d(1): In the case of maximal dimension we know that Σ1 = R× ⋅ Z∗ + R ⋅X∗ ∋ (δ, β) = l
and Pf1(l) = l(Z) = δ. Now, for ε > 0 de�ne the set

N ∶= {l ∈ Σ ∣ ∣l(Z)∣ > ε} ≅ (R ∖Bε(0)) ×R

and the characteristic function χ = χN . Let π be a unitary representation of K3

(supported in Σ1). De�ning π1 and π2 as in (5.18) we again have π = π1 + π2 and
WF(π1) ⊂ AC(O − suppπ1) by Proposition 5.8.

We know Ol = δZ∗ + {tY ∗ + (β + t2

2δ )X
∗ + sW ∗ ∣ s, t ∈ R} and its asymptotic cone is

AC(Ol) = sign(δ)R+ ⋅X
∗
+R ⋅W ∗

∀ l = (δ, β) ∈ Σ1.

In particular, this gives us R ⋅W ∗ ⊂ AC(O − suppπ) and we only have to check the
remaining three directions. To do this we further decompose π2 ∶= π

+
2 + π

−
2 with

regard to the sign of δ:

π+2 ∶= ∫R+
∫
R
σδ,β ⋅ (1 − χ)dµπ(δ, β), π−2 ∶= ∫R−

∫
R
σδ,β ⋅ (1 − χ)dµπ(δ, β).

We start with π+2 : As 0 < δ < ε for all (δ, β) ∈ O − suppπ2 we know

R+ ⋅X
∗
+R ⋅W ∗

⊂ AC(O − suppπ+2 ) ⊂ R ⋅ Y ∗
+R ⋅X∗

+R ⋅W ∗.

In addition to that, we only have three di�erent possibilities:

1) AC(O − suppπ+2 ) = R+ ⋅X
∗ +R ⋅W ∗ ⇔ ∃ C ∈ R ∀ (δ, β) ∈ suppµπ+2 ∶ β > C

(see Figure 10a)
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2) AC(O − suppπ+2 ) = R ⋅X∗ +R ⋅W ∗ ⇔ {β ∣ (δ, β) ∈ suppµπ+2 } is not bounded

from below but {−δβ ∣ (δ, β) ∈ suppµπ+2 } ⊂ R is bounded from above (see
Figure 10b)

3) AC(O − suppπ+2 ) = R ⋅ Y ∗ + R ⋅X∗ + R ⋅W ∗ ⇔ {−δβ ∣ (δ, β) ∈ suppµπ+2 } is
not bounded from above.

(a) Case 1) (b) Case 2)

Figure 10: Relation between possible support of π+2 and the asymptotic orbital support
projected onto the X∗, Z∗

− plane

With the weak Malcev basis {Z,Y,X,W} through m = span(Z,Y,X) and h = R ⋅W ,
we compute

β(s)−1 exp(zZ + yY + xX)β(t) = exp ((z −
1

2
(t + s)y +

1

12
(t2 + s2

+ 4st)x)Z+

(y −
1

2
(t + s)x)Y + xX + (t − s)W )

⇒ Q(z, y, t, s) = (z −
1

2
(t + s)y +

1

12
(t2 + s2

+ 4st)x)Z + (y −
1

2
(t + s)x)Y + xX

⇒ q1(s, t, l) = δ, q2(s, t, l) =
1

2
(t + s)δ, q3(s, t, l) = (

1

6
(t2 + ts + s2

)δ + β) .

Now we check the assumption (ii) of Lemma 5.12 in the three cases from above in
reverse order since it is a condition for all points that are not in the asymptotic
cone:

3) It is clear that q1 is bounded on supp(1 − χ). Thus we have ±Z∗ ∉ WF(π+2 )
(for all cases) by Lemma 5.12 and Remark 5.13.

2) If ±Y ∗ ∉ AC(O − suppπ+2 ) the set {−δβ∣(δ, β) ∈ suppµπ} ⊂ R is bounded from
above.
Assuming that for all c > 0 there exists an su�ciently large R and s ∈ R,
a ∈ [−ε, ε] such that ∣q2(s, s+a, δ, β)±R∣ ≤ 1

2R (otherwise we would be already
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done with j = 2), then ∣s + 1
2a∣ ≥

R
2δ and we estimate for j = 3:

∣ (RY ∗
− q(s, s + a, δ, β))3 ∣ = ∣q3(s, s + a, δ, β)∣

= ∣
1

6
((s + a)2

+ (s + a)s + s2) δ + β∣ = ∣
1

6
(3s(s + a) + a2

)δ + β∣

= ∣
1

6
(3(s +

1

2
a)

2

−
1

2
a2

) δ + β∣ ≥
δ

6
(3(s +

1

2
a)

2

−
1

2
a2

) − ∣β∣

≥
δ

6
(

3R2

4δ2
−

1

2
a2

) − ∣β∣ ≥
3R2

8δ
−

1

12
a2δ − ∣β∣.

If now ∣β∣ is bounded, we immediately see the desired estimation as δ and a are
bounded as well. If that is not the case we write further for ∣β∣ > 1 (w.l.o.g.):

∣q3(s, s + a, δ, β)∣ ≥ ∣β∣ (
3R2

8δ∣β∣
−
a2δ

12∣β∣
− 1) ≥

3R2

8C1
−
ε3

12
− 1,

with the bound for −δβ, which proves assumption (ii) in this case.

1) If −X∗ ∉ AC(O− suppπ+2 ) then there exists a constant C ∈ R such that β > C.
Since t2 + ts + s2 ≥ 0 for all s, t ∈ R we have

−q3(s, t, l) = −(
1

6
(t2 + ts + s2

)δ + β) < −2C,

and Lemma 5.12 and Remark 5.13 give us −X∗ ∉ WF(π+2 ).

Now turning to π−2 we have −ε < δ < 0 and therefore

R− ⋅X
∗
+R ⋅W ∗

⊂ AC(O − suppπ−2 ) ⊂ R ⋅ Y ∗
+R ⋅X∗

+R ⋅W ∗.

This means we only have the three following possibilities:

1') AC(O − suppπ−2 ) = R− ⋅X
∗ +R ⋅W ∗ ⇔ ∃ C ∈ R ∀ (δ, β) ∈ suppµπ−2 ∶ β < C

(see Figure 11a).

2') AC(O − suppπ−2 ) = R ⋅X∗ +R ⋅W ∗ ⇔ {β ∣ (δ, β) ∈ suppµπ−2 } is not bounded

from above but {−δβ ∣ (δ, β) ∈ suppµπ−2 } ⊂ R is bounded from above (see
Figure 11b).

3') AC(O − suppπ−2 ) = R ⋅ Y ∗ + R ⋅X∗ + R ⋅W ∗ ⇔ {−δβ ∣ (δ, β) ∈ suppµπ−2 } is
not bounded from above.

Thus the computations are analogously to the ones for π+2 . The only di�erence is:
If X∗ ∉ AC(O − suppπ−2 ) we have

q3(s, t, l) =
1

6
(t2 + ts + s2

)δ + β <
1

3
(t2 + ts + s2

)ε + 2C.
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(a) Case 1') (b) Case 2')

Figure 11: Relation between possible support of π−2 and the asymptotic orbital support
projected onto the X∗,Z∗

− plane

Again, Lemma 5.12 and Remark 5.13 give us X∗ ∉ WF(π−2 ) in this case as well.

d(2): Here, we know Σ2 = R× ⋅ Y ∗ ∋ γ, Oγ = γY ∗ +R ⋅X∗ +R ⋅W ∗, χγ(z, y, x,0) = e2πiγy

and Pf2(γ) = γ. In addition to that we can use the same m as for d(1), thus have
the same P and Q as in the case above and can compute

q2(s, t, γ) = γ, q3(s, t, γ) =
1

2
(s + t)γ, q1 = 0 = q4.

We have ±Z∗ ∉ AC(O − suppπ) for all π supported in Σ2 and q1 is obviously
bounded, thus we know ±Z∗ ∉ WF(π).
Since ±X∗,±W ∗ ∈ AC(Oγ) for all γ, we know ±X∗,±W ∗ ∈ AC(O − suppπ).
For the direction Y ∗ we use the same approach as above for Z∗ in the Heisenberg
group example (see (5.18)) and use Proposition 5.8 if γ is bounded away from 0,
and Lemma 5.12 if ∣γ∣ < ε.

d(3): Again as in the Heisenberg group example, the trivial case consists of 0-dimensional
orbits where Pf = 1 and the assumption of Proposition 5.8 is ful�lled for any unitary
representation π.
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6 Applications to Restrictions of Representations

A fundamental problem in representation theory is the branching problem, i.e. restricting
a unitary representation of a Lie group to a closed subgroup. More precisely, it is known
(see for example [Kob05, Theorem 3.1.2]) that for H ⊂ G real connected Lie groups of
type I the restriction π∣H of a unitary representation π of G decomposes uniquely into a
direct integral:

π∣H = ∫
Ĥ
τ⊕mπ(τ) dµπ(τ), mπ(τ) ∈ N ∪ {∞},

where mπ(τ) is the multiplicity of τ and µπ is a Borel measure on Ĥ, the unitary dual
of H. Then the branching problem consists of determining the measure µπ and the
multiplicities mπ(τ). It is very hard to �nd explicit branching laws for general G, π and
H. Let us �rst take a look which results are already known:
If G and H are both nilpotent and π is unitary irreducible Kirillov shows that the support
of the measure µπ is the projection of the corresponding orbit Oπ ⊂ ig∗ onto ih∗ (see
[Kir76, �15.5 Theorem 1]).
Ten years later Corwin, Greenleaf and Grelaud were able to compute the measure and
the multiplicities in [CGG87] and gave a geometric description of the multiplicities in
[CG88]: Let q ∶ ig∗ → ih∗ be the natural projection and π be irreducible. Then by [CG88,
Theorem 1.1 b)]

π∣H ≅ ∫
q(OGπ )/Ad∗(H)

τ
⊕mπ(l)
l dµ̇(l),

where OGπ ⊂ ig∗ is the coadjoint orbit associated to π ∈ Ĝ, τl ∈ Ĥ the irreducible unitary
representation associated to l ∈ ih∗, and [µ̇] the measure class on the quotient space (a
push forward of the invariant measure µ on OGπ ).
Furthermore, they show in [CG88, Theorem 1.3] that the multiplicity of each τl ∈ Ĥ,
l ∈ ih∗, in the direct integral above is given by

mπ(l) = number of Ad∗(H)-orbits in OGπ ∩ q
−1 (O

H
l ) ⊂ ig∗.

In particular,

τ ∈ supp (π∣H) ⇔ O
H
τ ⊂ q (OGπ ) . (6.19)

At the same time Lipsman obtained the same results in [Lip89] but used di�erent meth-
ods in his proofs which he then used to generalize the results for completely solvable
groups in [Lip90]. Shortly after that, Fujiwara gave the branching law for exponential
solvable Lie groups in [Fuj91].
However, already for compact G and H it becomes rather complicated. For example,
Heckmann works in [Hec82] with so called asymptotic multiplicity functions and there-
fore obtains only asymptotic analogues to the results mentioned above. Another example
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is [Hec82, Theorem 7.5] where more assumptions are necessary only to have the one in-
clusion supp(µπ) ⊂ q(Oπ). For other types of Lie groups progress was made by putting
further conditions on the representation: For example, Kobayashi started studying real
reductive groups in the case that the restriction is discretely decomposable (and has �-
nite multiplicities) in [Kob94],[Kob98a] and [Kob98b], and explicit branching laws were
obtained (see e.g. [Osh15] and references therein). But the case where the restriction
contains both continuous and discrete spectrum has not been treated systematically, a
general strategy was introduced by Frahm and Weiske this year in [FW20].
Other examples are highest weight modules (see e.g. [Kob08]) and principle series rep-
resentations (see e.g. [Vog81], [HT93]).

However, very little seems to be know when the two groups are not of the same type. To
obtain at least asymptotic information about the support of the restriction we can look
at the wave front sets and their connection to the asymptotic orbital support of a unitary
representation as already discussed in Section 2.3. We use the two following results by
Howe regarding the wave front sets of restrictions:

Theorem 6.1 (see [How81, Proposition 1.5]). Let G be a Lie group with Lie algebra g,
π a unitary representation of G and H ⊂ G a Lie subgroup with Lie algebra h. With the
natural projection q ∶ ig∗ → ih∗ we have

q(WF(π)) ⊂ WF(π∣H).

Theorem 6.2 (see [How81, Proposition 1.6]). If we have WF(π) ∩ ker(q) = {0} in
addition to the setting of the previous theorem, then

q(WF(π)) = WF(π∣H).

Combining Theorem 6.1 with Howe's result about the wave front set for compact Lie
groups (see [How81, Proposition 2.3], compare Theorem 2.21) we obtain

Theorem 6.3 (see [How81, Proposition 1.5 and Proposition 2.3]). Let G be a Lie group,
K ⊂ G a compact Lie subgroup and π a unitary representation of G. Then

q(WF(π)) ⊂ AC (O − supp (π∣K)) .

We recall that the asymptotic cone of S ⊂ ig∗ is de�ned as

AC(S) = {η ∈ ig∗ ∣ ∀open cone C ∋ η ∶ C ∩ S unbounded} ∪ {0}

(see De�nition 2.20) and the orbital support of π as O − suppπ = ⋃σ∈supp(π)Oσ ⊂ ig∗.

Then these kinds of statements tell us in which directions there have to be in�nitely
many points in the orbital support of the restriction π∣K , i.e. which irreducible unitary
representations of K have to occur in the decomposition of π∣K .
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Now, let G be a Lie group with Lie algebra g, π a unitary representation of G and
N ⊂ G a nilpotent, connected, simply connected Lie subgroup with Lie algebra n with
the natural projection q ∶ ig∗ → in∗. Then our main result Theorem 4.1 combined with
Howe's Theorem 6.1 gives us

q(WF(π)) ⊂ AC (O − supp (π∣N)) .

With Theorem 6.2 we also have

WF(π) ∩ ker(q) = {0} ⇒ q(WF(π)) = AC (O − supp (π∣
N
)) .

If G itself is also nilpotent, connected, simply connected, Theorem 4.1 applied to the left
hand side as well gives us

q(AC(O − suppπ)) ⊂ AC (O − supp (π∣
N
)) .

This can be viewed as half of an asymptotic version of (6.19).

In order to generalize this statement to other types of Lie groups G we have to assume
that there is a way to associate to any σ ∈ supp(π) ⊂ Ĝ a coadjoint orbit Oσ ⊂ ig∗.
This is for example the case if G is a real reductive, algebraic Lie group and π is weakly
contained in the regular representation of G: Du�o and Rossmann associated to each
σ ∈ Ĝtemp a �nite union Oσ ⊂ ig∗ of coadjoint orbits (see [Duf70], [Ros78] and [Ros80]).
Then with [HHÓ16, Theorem 1.2] and the above we have the following

Theorem 6.4. Let G be a real reductive, algebraic Lie group and π be weakly contained
in the regular representation of G. If N ⊂ G is a nilpotent, connected, simply connected
Lie subgroup, then

q(AC(O − suppπ)) ⊂ AC (O − supp (π∣
N
)) .

This again tells us which irreducible unitary representations of N have to occur in the
decomposition of π∣N . While this statement can now be entirely stated in representation
theoretic terms its proof is based on the notion of wave front sets and microlocal analysis.
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7 Outlook

To �nish this thesis we want to give a short outlook. As mentioned before it would be
worthwhile to know that the wave front set equals the asymptotic orbital support of a
unitary representation for as many Lie groups as possible, i.e.

WF(π) = AC
⎛

⎝
⋃

σ ∈ supp(π)

Oσ
⎞

⎠
. (7.20)

Then one could obtain asymptotic information about the decomposition of unitary rep-
resentations, for example restrictions or induced representations between di�erent type
of Lie groups.
Admittedly, there has to exist an orbit method for the Lie group, i.e. a relation between
a set of coadjoint orbits and the unitary dual, in order to have a well-de�ned right hand
side of statement (7.20).

Let us take a closer look at the classes of Lie groups for which the statement is proven
and what the methods of proof is.
Firstly, for compact, connected Lie groups one uses the coadjoint orbits of the highest
weights. In this setting Howe reduces the statement to a maximal torus, i.e. the abelian
case, where it can be computed explicitly (see [How81, Propositions 2.1 and 2.3]). How-
ever, this only works for compact Lie groups.
Secondly, for real reductive Lie groups Du�o and Rossmann associated a �nite union of
coadjoint orbits to each irreducible, tempered representation and provided a character
formula. Using this relation Harris, He and Ólafsson obtained the statement in [HHÓ16,
Theorem 1.2]. In their proof they use integrated characters whose wave front set provides
an intermediate step in the desired equality (7.20). That these integrated characters are
well-de�ned in general in this setting is based on a result by Harish-Chandra.
Lastly, we studied nilpotent, connected, simply connected Lie groups in this thesis. Their
comprehensive orbit method was the �rst of its kind and is due to Kirillov who also pro-
vided a character formula. For this reason we started following the approach by [HHÓ16]
but found that the integrated characters need more assumptions. This means that the
proof does not work in all generality (see Proposition 5.8 and Remarks 5.9, 5.10 and
5.11). The solution was to turn to the methods of proof used in the context of nilpotent
Lie groups: by induction over the dimension of the Lie algebra we could prove microlocal
estimates for the Fourier transform of matrix coe�cients directly (see Propositions 4.2
and 4.5).
In conclusion it looks like one has to employ the methods of proof that are conventional
in the given setting instead of a general line of argumentation in order to give an elegant
proof of the desired statement.

Another case in which an orbit methods exists are solvable Lie groups. Thus, a next
step could be to prove the statement in this case. As Kirillov summarizes in [Kir04,
Chapter 4 �1] the orbit method for exponential Lie groups is very similar to the one
for nilpotent Lie groups, only the construction of the irreducible, unitary representations
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and the character formula have to be modi�ed slightly. The proofs are due to Pukánszky,
[Puk67] (see also [BCD+67] and [Bus73]).
Solvable, but non-exponential Lie groups do not have to be of type I. But if they are the
orbit method still works after appropriate amendments: one hast to restrict to a subset
of coadjoint orbits, the so-called rigged coadjoint orbits, and use holomorphic induction
in the construction of the irreducible unitary representations. These results are due to
Auslander and Kostant, [AK71].
In both cases the proofs are again by induction over the dimension. This suggests that
our approach can be used (and modi�ed) to obtain the statement (7.20) in these settings.
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