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Abstract

Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g, and
7 a unitary representation of G. The main goal of this doctoral thesis is to prove that
the wave front set of 7 coincides with the asymptotic cone of the orbital support of =,
i.e. WF(7) = AC(Ugesupp(r) Oc), where O, cig” is the coadjoint orbit associated to the

irreducible unitary representation o ¢ G by Kirillov. We use two different approaches:
by induction over the dimension of g as customary for nilpotent Lie groups and via in-
tegrated characters following the work by Harris, He and Olafsson for real reductive,
algebraic Lie groups.

Lastly, we apply our result to restrictions of unitary representations to nilpotent sub-
groups to obtain asymptotic information about their support.

Zusammenfassung

Sei G eine nilpotente, zusammenhingende, einfach zusammenhéngende Lie-Gruppe mit
Lie-Algebra g und 7 eine unitdre Darstellung von G. Das Hauptziel dieser Doktorarbeit
ist es, zu beweisen, dass die Wellenfrontmenge von 7 gleich dem asymptotischen Kegel
des orbitalen Trégers von 7 ist, d.h. WF(7) = AC(Ugesupp(r) Oc), wobei O, c ig* der
von Kirillov zur irreduziblen unitéren Darstellung o € G assoziierte koadjungierte Orbit
ist. Wir prasentieren zwei Herangehensweisen: erstens per Induktion iiber die Dimension
von g wie iiblich fiir nilpotente Lie-Gruppen und zweitens iiber integrierte Charaktere,
wie sie von Harris, He und Olafsson fiir reell reduktive, algebraische Lie-Gruppen ver-
wendet wurden.

Abschliefsend wenden wir unser Resultat auf die Einschrénkung von unitiren Darstellun-
gen auf nilpotente Untergruppen an, um asymptotische Informationen iiber ihren Triger
zu erhalten.
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1 Introduction

Let G be a Lie group, 7 a unitary representation of G, and G the unitary dual of G, that
is the set of all equivalence classes of irreducible unitary representations. If G is type I,
m decomposes uniquely into a direct integral over G:

w;[éaeBm”((’)duﬂ(J), my(o) e Nu{oo},

where m, (o) is the multiplicity of o and pu, is a Borel measure on G.

In the field of representation theory it is a major goal is to determine this decomposition
of a unitary representation into irreducibles explicitly. That is why we are interested in
the support

supp(7) = supp(ir) © G.

Kirillov’s idea was that G should be described by the space of coadjoint orbits g*/G
and he proved that they are in fact isomorphic for nilpotent, connected, simply con-
nected Lie groups (see Theorem [3.2]). The irreducible unitary representation associated
to a coadjoint orbit can be constructed explicitly as an induced representation from a
one-dimensional representation. Also Kirillov’s character formula connects the Fourier
transforms of coadjoint orbits to the infinitesimal characters of the irreducible represen-
tations. Furthermore, one can show that each coadjoint orbit O € g*/G is a symplectic
manifold and geometric quantization yields a Hilbert space with a corresponding oper-
ator. We give an overview over the structure theory of nilpotent Lie groups and Lie
algebras in Section The important definitions and concepts are illustrated in the
examples of the Heisenberg group and the group K3 in Sections and respectively.

Turning to a different concept for a moment: Studying partial differential equations Hor-
mander and Sato introduced the notion of wave front sets in order to obtain information
about the regularity of the solutions. For a distribution v on a smooth manifold X the
wave front set WF(u) is a closed subset of the cotangent bundle T* X which measures
its smoothness (see Section [2.1]).

As outlined in Section the wave front set of a unitary representation (mw,H) of a Lie
group GG with Lie algebra g is defined as the closure of the unions of the wave front sets
at the identity of the matrix coefficients of 7:

WE(r) = | WF. (r(g)v, wy) c TG = ig".

v, WeH

This notion was first introduced in [How8]1].

Connecting these two concepts and using Kirillov’s character formula [How81l Proposi-
tion 2.2] shows for the asymptotic support of a single irreducible unitary representation
o of the nilpotent Lie group G that

WE(0) = AC(O,), (1.1)



where the asymptotic cone AC(S) for a subset S of a finite-dimensional vector space V'
is the closed cone defined by

AC(S)={veV | Yopen cone C>3v : Cn S unbounded} u{0}.

In order to formulate results analogous to (1.1} for non-irreducible representations we
introduce the notion of the orbital support

O-supp(m):= |J O,.

oEesupp T

Thus, the resulting statements can be helpful in finding the decomposition of a unitary
representation.

In fact, Kashiwara-Vergne [KV79] and Howe [How81| proved for compact, connected Lie
groups

WEF(m) = AC (O —supp(m)),

using that one can also associate a coadjoint orbit to each irreducible unitary represen-
tation for compact Lie groups.

More recently, [HHO16| gave the same result for real reductive, algebraic Lie groups
under the assumption that 7 is weakly contained in the regular representation. In this
case a finite union of coadjoint orbits can by associated to each irreducible tempered
representation due to Duflo and Rossmann (see [Duf70], [Ros78| and [Ros80]).

For a more detailed presentation of the known results see Section

Our main goal is to prove this statement for nilpotent Lie groups:

Theorem. Let G be a nilpotent, connected, simply connected Lie group and m o unitary
representation of G. Then

WF(7) = AC(O - supp(m)).

Our proof in Section f]uses explicit microlocal estimates of individual matrix coefficients.
These microlocal estimates are obtained via induction over the dimension of G which is
a common method for nilpotent Lie groups based on the extensive knowledge of the
restriction of irreducible unitary representations to subgroups of co-dimension 1 and the
corresponding orbits outlined in Section |3| (see Theorem and Procedure[3.19). In
the inductive step we make a case distinction based on the dimension of the center of
the Lie algebra.

In Section [5| we give a second proof based on the approach of [HHO16, Theorem 1.2
for real reductive, algebraic Lie groups using the wave front set of integrated characters
as an intermediate step. Since the tools given for real reductive groups do not work for
nilpotent groups we had to find another description of the wave front set of a unitary
representation which we prove in Proposition for general Lie groups.



Unfortunately, in order to use integrated characters in the proof of the inclusion
WF(7) ¢ AC(O - supp(m)) we have to make assumptions on the unitary representa-
tion. We discuss these difficulties in the setting of nilpotent Lie groups at the end of
Section (see Remarks [5.9] and [p.11)). It was these difficulties that led to the
approach of working with individual matrix coefficients instead of characters which was
carried out in Section [l

Subsequently, we try to finalize this proof for a general unitary representation in Sec-
tion[.2] by using our knowledge of the integral kernels of the integrated representations
as studied in Section [3| (see Proposition . We have to make assumptions regarding
the structure of the Campbell-Baker-Hausdorff formula in order to be able to compute
and estimate the required integrals. However, we show that these are fulfilled in our
examples of the Heisenberg group and Kj.

Lastly, recall that our result can provide asymptotic information about the decomposi-
tion of unitary representations into irreducibles since it is a statement about its (orbital)
support. We apply it in Section [6] to restriction problems which are a fundamental prob-
lem in representation theory. Consider a Lie group G and a closed subgroup H c G
and let h, g be the respective Lie algebras. Let ¢ : ig* — ih* be the natural projec-
tion and 7w be a unitary representation of G. On the level of the wave front sets we
know by [How81l, Proposition 1.5] that ¢(WF(7)) ¢ WF(x|g). Hence, we can expect
representation theoretical results like

q(AC(O -suppm)) c AC(O -supp (7|n)),

if one has statements like our main theorem for both G and H. Assuming we know the
support of 7 (e.g. when it is irreducible) this tells us in which directions there have to
be infinitely many points in the orbital support of 7|z, that is which irreducible unitary
representations of H have to occur in the decomposition of 7|y.



2 Wave Front Sets

The aim of this section is to introduce the notion of wave front sets and to recall central
results that will be used in the subsequent sections.

We first introduce the notion of the wave front set of a distribution on a manifold. After
that we turn to the wave front set of a unitary representation of a Lie group.

2.1 Wave Front Sets of Distributions on Manifolds

Let W be a real, finite-dimensional vector space and fix a Lebesgue measure dx on W.
We define the Fourier transform of a Schwartz function ¢ € S(W) to be F(p) e S(EW™)
with

F@Q = [ e@e? N, geiw,
and for a tempered distribution u € 8'(W) as F(u) € S'(iW*) with
F)(@) =u(F@). ¥eSEW),
since F() € S(I(IW*)*) = S(W).

The inversion formula for F : S(W) - S(iW™*) gives us

F1 L S(IWF) > S(W), - (a: — [’W* w(f)ff%(g’x) df)

for a suitable measure d¢ on i{W*.

Furthermore we define the Fourier transform of a distribution v € £'(W') with compact
support to be

F0)(€) =v[e™E ], geiw.

Definition 2.1. Let W be a real, finite-dimensional vector space and u € D'(X) a
distribution on an open subset X ¢ W. Then we say (z9,&) € X xiW* ~ {0} ciT*X
is not in the wave front set WF(u) c iT* X if there exist open neighborhoods U of xg
and V of & and a smooth compactly supported function ¢ € C°(U) with ¢(xg) # 0 such
that for all IV e N one of the following equivalent conditions hold:

(i) F(ou)(7€) = O(T_N) for 7 —» oo, uniformly in £ € V,
i.e. the Fourier transform is rapidly decaying in V.

(ii) 3Cn,g>0: [F(pu)(t€)| < Cno ™ Vr>»0£eV
(i) 3Cng>0: |F(u)(7E)| < Cnopr)™ V70,V

where (y) = /1 +y2.




Note that (x,0) € i7" X is never in the wave front set (contrary to Definition[2.11| for
unitary representations) because in order to analyze the singularities of a function or
distribution it only makes sense to look in the directions & # 0.

This connection of the wave front set to the singularities of distributions is specified with
the following

Definition 2.2 (Singular support, see [Hor03, Definition 2.2.3]). For ue D'(X), X c W
open, the singular support, denoted singsupp(u), is the set of points in X having no open
neighborhood to which the restriction of u is a C'*° function.

Then we have with the projection pr, : X xiW* 2iT*X - X, (x,§) » x
prz(WF(u)) = singsupp(u)
(see [Hor03|, Definition 8.1.2]).

Lemma 2.3. The wave front set WF(u) c i7" X is a closed cone in the sense that
V7>0: (20,&) € WF(u) = (z0,7&) € WF(u).

Let us now consider two explicit examples:

Example 2.4. Let §y € D'(R™) be the delta distribution (in 0), i.e. do(¢p) = ¢(0),
$ e C®(R"). Let ¢ € C=°(R™) with ¢(0) = ¢ #0. Then

F(¢60) (7€) = So(ge 8 = 4(0) = c ¢ O(|r| ™) VN eN.
This implies {(0,£) e R” x iR™ | £ #0} c WF(dp).
If now x # 0 then there exits ¢ € C2°(R™) with ¢(x) # 0 but ¢(0) = 0. Hence analogously
F(pdo)(1€) =0€ O(J7|™N) for all N eN = (z,¢) ¢ WF(8). Summarizing we have

WF(do) = {(0,§) e R" xiR"™ | £ # 0}, singsupp(do) = pr,(WF(do)) = {0}.

T2

singsupp(do)

T1

Figure 1: Wave front set of the delta distribution as in Example



Example 2.5. Consider the Heaviside-function

1 29>0

x1,T2) = , T1,T e R?
g(w1,22) {0 <0 (z1,72)

and denote by u, the corresponding distribution.
Let 2 € R?, € € iR? with x5 # 0 and ¢ € C°(R?) with ¢(z) # 0 and supp(¢) c Bc(x) for
some € < 2. Then ¢uy = ¢ or 0 and therefore guy € C°(R?) = (z,£) ¢ WF(ug).

If now zo =0 and & #0

Fou)(r0) = [ om)gw)e™ ™ dy

Y I\ orrtye
Y1 2Ty, dur d
fo [oo d(y1,42) (—277751) e Y1 dya

@rre)™ [T [ T [@0) 6y 2)] e 0 dyy .

The last equality follows by integration by parts. Since (9,,)V¢ € C.(R?) this now
implies

| (dug) (7€) < Cnlr[™ = (2,€) ¢ WF (ug).
At last, if 22 = 0,£; = 0, and thus & # 0, let ¢ € C°(R?) with [i #(y1,0)dyr # 0.
Integrating by parts twice we obtain

Fou)(r0) = [ owuy()e ) dy
= —@rre) ! [ oy, 0)e 00 gy,
+(2m76r)” [: By d(y1,0)e 27 W 0+0E2) gy
+(2m7) 2 [0 - [ : (02,6, y2)] € 2 dyy iy
= &)™ [ o0 dyr + ) [ 0,,6(,0) dyy

+(27m7éy) 72 /0 [Oo [8§2¢(y1, y2)] e 27 WE) dyy dys.

Since the first summand has order 1 in 7 and the other at least order 2, F(¢uy) cannot
be rapidly decaying in 7. Collectively,

WF(uy) = {(x,£) e R*x iR? | 29 = 0,& =0}, singsupp(u,) = R x {0}

(see Figure [2).



T2

singsupp (ug)

1

Figure 2: Wave front set of the Heaviside-distribution as in Example

In order to expand the notion of wave front sets to distributions on manifolds it is helpful
to have the following generalizing proposition.

Proposition 2.6 (see [Dui96, Proposition 1.3.2]). (z0,&0) ¢ WF(u) if and only if for
every function ¥ € C°(R"™ x RP) with d v (xo,a0) = & for o € R", ag € RP, there exist
open neighborhoods U of xo and A of ag such that for every ¢ € C°(U) and N €N

u (e_w("a)¢) =O( ™) for T — oo, uniformly in a € A.
Now, if ¢ : X - Y is a diffeomorphism between two open sets and w is a distribution on
Y, then
¥ WE(u) = WF(*u), (2.2)
where the pullback on the cotangent bundle is defined by

0 (1,6) = (v (W), (DY W))TE) . (y,€) €iT™Y.

Thus the notion of the wave front set of a distribution on a smooth manifold is indepen-
dent of the choice of local coordinates and is therefore well-defined.

Another characterization of wave front sets is given by [Fol89, Chapter 3, Section 2] in
terms of the wave packet transform of a distribution:
Let ¢ € S(R™) be a Schwartz function, u € S'(R™) a tempered distribution and define

qbt(:v) = t"/4¢(t1/2), t>0, and P;u(ﬁ,:v) = (eQWig"_”ig'xgbt(o - CL’)) , &, v eR™
Then
Plu(&,z) = ™ F (ug'(e = 7)) () = €™ (F(u) « F (¢ (s~ ))) (9),

where * denotes the convolution.



One can compute

F (9o =) (&) = e AF () (-1,
Combined we have
Plu(€,x) = e F(u) (e 27D F(g) (-2 (6 - 0)). (2.3)
Definition 2.7. We define the wave front set of u with respect to ¢, denoted WFy(u),
by
(z0,&0) ¢ WF4(u) < 3 conic neighborhood V' of (z9,&p) such that V a, N >1:

|P£u(t£,x)| <Cont™ Vtxl,a7t<l¢|<a,(z,6) e V.

It will turn out that WFy(u) = WF (u) for suitable functions ¢. We have the following
lemma which is also true for the standard wave front set.

Lemma 2.8 (see [Fol89, Lemma 3.21|). If u € S'(R™) and w=0 on an open set U c R”,
then (x0,&0) ¢ WE4(u) for all xg € U and all § € R™ ~ {0}.

This means that WF,(u) depends only on the local properties of u.

Remark 2.9. Definition 15 equivalent to

(z0,&0) € WFy(u) <=V conic neighborhood V' of (£, x9) 3a, N >1:

Ity = 00,07t < || < a, (€, x) €V |P£mu(tmfm,x)| > Cont,N.

Thus, in order to show that (§o,x0) € WFg(u) it suffices to find for all € >0 an integer
N e N, a constant C' > 0 and sequences (tm)men € Ry with t, — oo and (&m)men C
B1(0) n B-(&y) such that

|PL u(timém, )| > Ct"

Theorem 2.10 (see [Fol89, Theorem 3.22]). If ¢ € S(R™) is even and nonzero, then

WF4(u) = WF(u) VueS'(R").



2.2 Wave Front Sets of Unitary Representations

In this section G is a n-dimensional Lie group with Lie algebra g and (7, H) a unitary
representation of G.

Denote by B(H) the space of bounded linear operators on the Hilbert space H and by
J1(H) the subspace of trace class operators with trace class norm ||T];.

Definition 2.11. The wave front set of a unitary representation m is defined as the
closure of the union of the wave front sets at the identity of the matrix coefficients of

WE(r):= | WF.((m(g)v,w)y)u{0} ciT)G = ig".

vweH

Here we use the convention that zero is always in the wave front set (contrary to Def-
inition because it makes the statements of the results for unitary representations
cleaner.

Howe used in [How81] the equivalent definition

WF(W) = U WF@(TI'W(T)) U {0}7 (2'4)
TeJi(H)

where Tr(T) := Tr(w(-)T), T € J1(H), is a continuous bounded function on G regarded
as a distribution on G by integration. The equivalence of these definitions was shown in
[HHO16, Proposition 2.4].

Let us collect some well known basic properties of WF ().

Lemma 2.12 (see [How&1l, Proposition 1.1 and Equations (1.7) and (1.8)]).
The wave front set WF(7) c ig* is a closed, Ad*(G)-invariant cone.

Proof. We begin with proving that

WE(m):= |J WF(Tr.(T)) ciT*G =G xig"
TeJi(H)

is bi-invariant: For g € G using (2.2)) we have

Ly(WF(Trr(T))) = WF(Ly Trr(T)) = WF(Ter (T (g) ")),
Ry(WF(Trr(T))) = WF(Ly Trr(T)) = WE(Trr (7(g)T)).

The claim now follows from the definition of WF(7) since Tn(g)™", w(g)T € Ji(H) if

T e Jl(H)
With Lemma this also finishes the proof since every bi-invariant set in T*G 2 G x g*
is of the form G x N with an Ad*(G)-invariant set N c g*. O

The next result is rather technical and uses Howe’s definition (2.4) but offers various
equivalent descriptions of the wave front set.



Lemma 2.13 (see [HHO16, Lemma 2.5] and [HowS81, Theorem 1.4]).
The following assertions are all equivalent:

(i) & ¢ WF(mr)

(i1) For every T € Ji(H) there is an open set e € U ¢ G on which the logarithm is a
well-defined diffeomorphism onto its image and an open set & € V cig* such that
for every ¢ € C°(U) the absolute value of the integral

16,6 T)(7) = [ Ten(T)(9)e™ =) 6(g) dg

1s rapidly decaying in T for T >0 uniformly in £V,

(15i) There is an open set e € U c G on which the logarithm is a well-defined dif-
feomorphism onto its image and an open set & € V c ig* such that for every
¢ € C2(U) there exists a family of constants Cn(¢) > 0 independent of both £ € V
and T € Ji1(H), such that

11(6,6,T)(7) < Cn ()T

form>0,6eV, TeJi(H).

(iv) There is an open set e € U ¢ G on which the logarithm is a well-defined diffeomor-
phism onto its image and an open set & € V c ig* such that for every ¢ € C°(U)
the quantity

[7((9)e™ 15 )
1s rapidly decaying in T for T >0 uniformly in E€ V.

A first simple result which gives us an idea why wave front sets might be interesting for
the decomposition of unitary representations is the following equality.

Proposition 2.14. Let (m,H1), (w2, Ha) be two unitary representations of G, then
WEF(m @ m2) = WF (1) u WF(m2).

Proof. The matrix coefficients of 71 @ ma have the form Trr, gr, (1) = Trr, (11) + Trr, (T2)
with suitable T; € J1(#;). Now, the inclusions WF(7;) ¢ WF(7; @ m2) follow by setting
one T; = 0 and letting the other vary over all trace class operators. The other inclusion
follows from the fact that WF(u + v) ¢ WF(u) u WF(v) for two distributions u,v € D’
since the sum of two rapidly decaying integrals inherits this property. O

Example 2.15. Consider the action 7 of R? on L*(R) via (7(t1,t2) f)(x) = f(x —t1) as
a toy model for the right regular representation on a homogeneous space L*(G/H) (here
G=R?, H=R).

10



Since the action is independent of ¢35 so is each matrix coefficient. If & # 0 the insertion

N
of the partial differential operator (_287352) and integration by parts (compare the first
part of Example shows that

WFo((m(e) f1, f2)) c {£ €iR? | & =0} VY f1, f2€ L*(R),
and this implies
WEF(7) c {¢ eiR® | & =0}.

Let us show that we have not only an inclusion but in fact equality: We choose the
indicator functions f1 = Xx[0,1] and fa2 = x[1,2] and compute

0, if ty <0 or t1 > 2,
(m(t1,t2) f1, f2) = { t1, if0<t) <1,
1-t;, 1<t <2

Consequently, for £ = (£1,0) we have
1 2
F(r() 1 D) = [ 0e S an + [T -n)e ™ any
1 O, B 2 Oy B
- ¢ —1) 2rTt1€1 dt [ 1-¢ (—1) 2wTt1€1 dt
/0 ! (—27TT§1 ¢ Lt 1 ( 1) -2nTé] € !
= (—271'7'51)71 (62”751 - 6747”&1) + (277751)72 (—262”751 ye i 1) ,
by integration by parts. Hence, (£1,0) € WFo({m(e) f1, f2)) and therefore

WF(7) = {¢ €iR* | & =0}.

Now, we are interested in another description of the wave front set of 7 allowing for
distributional limits of the functions Tr;(7"), at least for certain 7" € J1(#). For this we
will first show a general result for distributions and their convergence in a Sobolev space.

Lemma 2.16. Let (ty,),,y € D'(R™) with supp(t,) ¢ K for a compact K ¢ R" and

tm — 0 € D'(R™) as distributions. Then there exists s € R such that t,, i 0 n the
Sobolev space H*(R™).

Proof. By [DK10, Lemma 5.4] there exist k£ € N, C'> 0 such that
tm (@) < Cldlcr VmeN,¢eCE(K).

Since supp(t,,) ¢ K for all m € N the inequality holds for all ¢ € C2°(R™).
Using [Hor03, Lemma 7.6.3] we can show that there exists a constant C’ > 0 such that
[ @l < C' @] grer for all N3 7> & e O (R™).

11



Since C°(R™) is dense in H"**(R™) for all r € R this shows that for every m € N the
distribution ¢, can be extended to a continuous functional on H Tk (R"™) and we have
[tm | ek e < C'C =2 C and by duality of the Sobolev spaces |ty |-+ < C for all
meN, ie.

[l @RI dg <G> e

Here £,,(€) is the Fourier transform of t,, which is a smooth function in &.
Let R > 0. Since t,, converges to 0 we choose mp € N such that Hfm Hmm < R for
all m >mpg.

Then we have for m > mg:
f|£m(£)|2<f>_2(r+k+l)df

F 27\ =2(r+k+1) h 27\ =2(r+k+1)
fBR(O) [tm (7€) d£+f|£‘>R lEm (€)2(€) dé
Vol(Br(O) R+ (B)> [ () (€)0 dg

§1>R

[t -

IA

< MR™+C*R)™2
Thus, by letting R — oo we obtain t,, - 0 for m — co in H~+F+1(R™). O
For the alternative description of WF(7) we want to look at:
Definition 2.17.
P(m) ={Tr(n(e)T)|T € B(H) non-negative and of finite rank } c C(G),

Pm). = {aeD'(G)| I am)men € P(7) : am — o in D'(G)}.

Proposition 2.18. Let a € D'(G). If there exists a neighborhood e € U ¢ G such that
U c Uy for a local coordinate system k : G 2 Uy - V, ¢ R™ of the smooth manifold G,
k(e) =0, and (m)men € P(1) with a0kt - aorx™ in a Sobolev space H*(V,) with
s> 4, then

WF.(a) c WF(7).

Proof. Let ay, = Tr(n(g)Am), Am € B(H) non-negative and of finite rank. Since the
delta distribution dg in 0 is an element of H *(Vj) for s > 5 we have

n’l =e
So(o k1) < do(amo k) = Tr(r(x 2 (0)) Am) ™ O Te(A,) 2L [ Al

where |.|; denotes the trace norm on J; (). This shows that (|| Ay [1)men € R is bounded
by a constant C’ > 0.
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Now let £ ¢ WF(w). By Lemma [2.13] (iii) there exists a neighborhood € c ig* of £ such
that for all N € N und J € J;(H) there exists a constant Cny(¢) > 0 independent of J
such that

| Te( (o)) [we 2D < Cn ()| Tt VneQ, peCZ(G).

In particular, |a,, [pe 271°8]| < C"Cn () |t|™ independent of m € N. Therefore the limit

distribution « also satisfies the inequality. This shows, again by Lemma [2.13] (iii), that
€ ¢ WF (o). O

With this we can find a lower bound for WF(r):

Proposition 2.19.

U ’ WF. (o) c WF(7)

acP(m)

Proof. Let a ¢ m@) ie. there exist ay, = Tr(n(g)Am) € P(r), Ay € B(H) non-
negative and of finite rank, such that a,, - a in D’. Since we are only interested in
the wave front set in e € GG it suffices to look at a small neighborhood U of e such that
U c Uy for a local coordinate system k : G o Ug; - V,, ¢ R™ of the manifold G and the
image V; is (contained in) a relatively compact set K ¢ R". Now we replace a,, and «
by am - xu and « - xy, respectively, where yy € C2° is a smooth cut-off function with
0<xu <1, xu(e) =1and supp xy ¢ U. This does not change the wave front set of «
and the convergence in D'(G).

Choose a basis {X;}i<i<n of g. Each element X; € g induces differential operators Lyx;,
Rx, of order 1 on G. As the left and right regular representations of G are unitary we also
have L;Q = L_x, and R;Q = R_x, as differential operators of order 1 on G. If we define
P:=-%", X? e4(g) and the associated differential operators Lp, Rp of order 2 on G,
we see that these are non-negative operators on L?(G). With that one can show that
1+Lp=1Ly,p and 1+ Rp = Ry, p are invertible and that their inverse is continuous by
the bounded inverse theorem. We also obtain by ellipticity of the associated differential
operators on V,, ¢ R" that E(1+P) = (k"1)*Ly,pr* and R(Hp) = (k") "Ry, pk* are
bounded operators on H"(V,) — H"2(V,,) for all r e R.

As a0 k7! > ao k™! as distributions on Vi, Lemma [2.16] gives us the existence of s € R
such that the convergence is also given in the Sobolev space H*(V,;). Now choose N € N
such that s+ 4N > 3 and define

dm = Ry py Ly (amow™),  a=Rilip) Lifipy(aor™) e HN (V).

Note that |&,, — &| gs+an — 0 by continuity of f’(_ljer) and RZﬁP) and

am ok = R py Lty py Te(w(9) Am) = Tr(m(g)m(1+ P) ™™ Ay w(1+ P)™) € P(n),
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since Ay, == m(1+P) N A,, 7(1+P)~ is non-negative, as a product ABA is non-negative
if B >0 and A is self-adjoint, and of finite rank since the set of finite rank operators is
an ideal. By Proposition we have WF (& o k) c WF(7). Then by definition of wave
front sets on manifolds and since the action of differential operators does not increase
the wave front set, we obtain WF.(«) ¢ WF (&) ¢ WF(x). Since the wave front set is
closed the claim follows. O

2.3 Historic Overview of known Results for Wave Front Sets of Lie Groups

In this section we would like to illustrate the significance of the wave front sets of unitary
representations.

In order to state the results consider the following setting: For a unitary representation
7 of a Lie group G which is type I we denote by supp(r) c G the irreducible unitary
representations that are weakly contained in , i.e. occur in the direct integral decom-
position of 7.

Assume that there is a way to associate to any o € supp(w) a coadjoint orbit O, c ig*.
Then we define the orbital support of 7w to be

O-suppr:= |J O, cig”.
oesupp(m)

Since WF(7) is Ad*(G)-invariant one can ask for its connection to its orbital support.
The right notion to do so is given in the following

Definition 2.20. If V is a finite-dimensional vector space and S c V, then we define the
asymptotic cone of S to be

AC(S):={veV | Vopen cone C>v : CnS unbounded} u {0}.

One of the first works that provided statements like the ones we are interested in was
“K-types and singular spectrum” by Kashiwara and Vergne in 1979 (see [KV79]). One of
their results states that for compact Lie groups the singular spectrum provides asymptotic
information about the decomposition of the representation into irreducibles. On the level
of wave front sets their statement can be phrased with our notation as follows:

Theorem 2.21 (compare [KV79|). Let G be a compact, connected Lie group and m a
unitary representation. Then

WEF(7) =AC(O —suppm).

Here Oy = Ad*(G)\y, 0 € G, is the orbit of the associated highest weight A, € t* ¢ g*.

Notice that in their paper the results are reduced to statements in a Weyl chamber in t*.
Since that is only possible for compact groups we work with the notation we introduced
above.

14



A few years later, Howe gave a definition for the wave front set of unitary representations
for arbitrary Lie groups. He gave his own proof for Theorem in [How81), Proposi-
tion 2.3], but he also looked at nilpotent Lie groups and a single irreducible unitary
representation.

Theorem 2.22 (see [How81, Proposition 2.2]). Let G be a nilpotent, connected, simply
connected Lie group and o € G irreducible. Then

WE(0) = AC(O,).

Here O, c ig” is given by the isomorphism between the unitary dual G and the space of

coadjoint orbits ig* |G (see Theorem[3.9).

In the proof he uses that if the representation admits a global character then its wave
front set equals the wave front set of the representation:

Theorem 2.23. Let G be a nilpotent, connected, simply connected Lie group. For o € G
the trace linear functional 0,(¢) = Tr(o(¢)) is a distribution on G, called the character
of o, and we have

WF.(6,) = WF(0).

Remark 2.24. By [How81, Theorem 1.8] the previous statement is actually true for
general Lie groups G if 0 € G is so-called strong trace class, which implies that the trace
linear functional defines a global character.

Then from 1994 to 1998 Kobayashi studied in [Kob94], [Kob98a] and [Kob98b| the re-
striction of representations of real reductive Lie groups to subgroups for which he used
the wave front set on the level of maximal compact subgroups (see also [Kob05]). In par-
ticular, Kobayashi further developed the idea to study the singularities of summed-up
characters as an intermediate step in [Kob98bl, Section 2|.

Almost two decades later, this idea of studying the summed-up or integrated characters
was then advanced in [HHO16| where Harris, He and Olafsson use integrated characters
when studying wave front sets for real reductive, algebraic Lie groups for which they
proved the asymptotic result mentioned above:

Theorem 2.25 (see [HHO16, Theorem 21.2|). Let G be a real reductive, algebraic Lie
group and 7 be weakly contained in the regqular representation of G, i.e. sSuppm € Giemp-
Then

WEF(7) =AC(O —suppm).

Here O, cig” is the finite union of coadjoint orbits Duflo and Rossmann associated to
the irreducible representations which are weakly contained in L*(G) (see [Duf70], [Ros78]
and [Ros80]).
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Their proof uses, as highlighted above, the wave front set of integrated characters as an
intermediate step (see [HHO16, Lemma 6.3 and the proof of Proposition 7.1]).

In [Harl8| Harris then also studies representations of a real reductive Lie group that
are a direct integral of singular, irreducible representation. They are the complement of
the irreducible, tempered representations studied in [HHO16]. He shows that their wave
front set is contained in the singular set. Thus, combining these two papers asymptotic
results for arbitrary unitary representations of a real reductive group are obtained.

Since the association of orbital parameters to irreducible representations by Duflo and
Rossmann only works on Gtemp, Harris and Oshima introduce in [HO17| a geometric
character formula for the set of singular, irreducible representations. With this one
can generalize the results from [HHOI6] that are applications of Rossmann’s classical
character formula to harmonic analysis questions and branching problems.

We conclude that it would be worthwhile to have this kind of statement relating the wave
front set to the asymptotic orbital support for as many types of Lie groups as possible.
Potential applications are then restrictions and inductions of unitary representations
between different groups.

Our main goal is to prove this statement for nilpotent Lie groups:

Theorem. Let G be a nilpotent, connected, simply connected Lie group and © a unitary
representation of G. Then

WF(7r) = AC (O -suppm).

We will give the proof in Section [] using the structure theory of a nilpotent Lie group
and its coadjoint orbits, presented in Section [3] In Section 5] we will provide alternative
proofs for our main theorem. In particular, in Section we try to follow the work of
[HHO16| and their approach by integrated characters since traces are a well-understood
tool for nilpotent Lie groups as Theorem already suggests.

Lastly, we look at an application of our result to restrictions of unitary representations
in Section [6l

Concerning the induction of unitary representations note that by [HW17| the wave front
set of induced representations is explicitly known in quite large generality. For example
one has:

Theorem 2.26 (see [HW17, Theorem 2.1]). Suppose X = G/H is a homogeneous space
for a Lie group G equipped with a nonzero invariant density. Then

WF(L*(X)) = WF(Ind% 1) = Ad*(G) - i(g/h)*.

This gives a geometric interpretation and generalizes our elementary Example [2.15]
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3 Nilpotent Lie Groups and Lie Algebras

We begin with the definition of nilpotent Lie algebras.

Definition 3.1. Let g be a Lie algebra. The descending central series of g is defined
inductively by

g =g, g"=[g,6™], NeN.

We say that g is a nilpotent Lie algebra if there is an integer N such that g(N) ={0}. If
this N is minimal we also call it the degree of nilpotence of g.
A Lie group G is called nilpotent if its Lie algebra is nilpotent.

The aim of this section is now to provide the structure theory of nilpotent Lie groups
and Lie algebras and illustrate it in the examples of the Heisenberg group H,, and the
group K3. It is mostly based on the book by Corwin and Greenleaf [CG90].

3.1 General Theory

Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g of
dimension n and g* its vector space dual. By G we denote the unitary dual of G, i.e.
the set of unitary irreducible representations of G modulo unitary equivalence, which is
equipped with the Fell topology.

In this section we would like to take a look at the nice structures a nilpotent Lie group
and its Lie algebra provides. The three main results are the following Theorems
and All necessary definitions will be provided in the detailed discussions afterwards.

Theorem 3.2 (see [CGI0, Theorems 2.2.1 - 2.2.4]). Let ig*/G denote the space of coad-
joint orbits. There exists a homeomorphism

G - ig"/G,
o = O,
o < O =Ad*(G)l

For the continuity of the map ig* |G — G see [Kir62, Theorem 8.2 and for the continuity
of the map G - ig* |G see [Bro73].

This bijection then allows us to shift concepts from the side of irreducible unitary rep-
resentations to the side of coadjoint orbits or vice versa. An important notion are the
global characters.

Definition 3.3. For a unitary representation = on G and Schwartz function ¢ € S(G)
the integrated representation is defined as

7(0)= [ o(o)m(g)dy.
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Theorem 3.4 (see [CG90, Theorems 4.2.1 and 4.2.4]). For o € G the integrated repre-
sentation o(¢), ¢ € S(G), is of trace class. The trace 0,(¢) = Tro(¢) is a tempered
distribution on G.

Furthermore, the character formula (see also [Kir62, Theorem 7.4]) states that there
exists o unique invariant measure ¥, on the corresponding orbit O, such that

05 () = fo FH()(1) vy (1), (3.5)

where F*(¢)(1) = fg > X p(exp X) dX denotes the Fourier transform of ¢ € S(G).

The third statement tells us more about the structure of the coadjoint orbits which
ultimately gives us more information about the unitary dual and the global characters.

Theorem 3.5 (see [CG90, Theorem 3.1.14|). Fiz a (strong Malcev) basis {X1,..., X}
of g. Then there exits a finite set D of orbit types. Denote by Uy c ig”* the union of all
orbits of type d € D. Moreover, all orbits in Uy have the same dimension.

For each d € D there also exists a cross-section g c ig* of the orbits in Uy, i.e. each
orbit O c Uy intersects X4 in a unique point. Then

Y= | | By zigh/G
deD

s a cross-section of all G-orbits.
Furthermore, for each d € D there erists a decomposition

ig" = Vsa) ® V)

as a direct sum of vector spaces and a birational, non-singular, surjective map
Ya:2q x Vsg) = Ua

such that for each l € Xy its orbit is given by O; =y (l,VS(d)).

Now we take a closer look at the ingredients and underlying concepts of these main
statements starting on the level of nilpotent Lie algebras. These details will not only
be presented as background material but their knowledge will be crucial for our own
results. Firstly, they enable us to prove the last two Lemmas and of this
section providing an estimate for the characters depending on [ € ¥; but we will also use
them at various points throughout the next section.

Lemma 3.6 (see [CG90| Kirillov’s Lemma 1.1.12]). Let g be a non-abelian nilpotent Lie
algebra whose center 3(g) = RZ is one-dimensional. Then g can be written as

g=RZoRY e RX @ =RX & go,

a vector space direct sum with a suitable subspace vw. Furthermore, [X,Y] = Z and
go = RY @ RZ @ 1o is the centralizer of Y and an ideal.
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Proof. We have dimg > 3. We choose Z € g such that 3(g) =R- Z.

Then g := g/3(g) is nilpotent and dimg > 2. We choose 0 # Y € 3(g) and Y € g such that
Y =Y3(g). By definition of Y we have [W,Y] € RZ for all W € g. Thus, we define a
linear map

a:g->R, [WY]=a(W)Z.

Since Y ¢ 3(g) we know a # 0 and can choose X € g with a(X) =1,1e. [X,Y]=7Z.

Let go := ker(a). Then Z,Y € g are linear independent. Let to c go be a subspace such
that go = RZ @ RY & .

Now we check that that gg is a subalgebra: For Wi, W5 € gg we have

[[Wl, WQ],Y] = —[WQ, [Wl,Y]] + [Wl, [WQ,Y]] = —[WQ,O] + [Wl,()] = 0,

which implies [W1,Wa] € go. Since [CGI90, Lemma 1.1.8] states that subalgebras of
codimension 1 are ideals the proof is finished. O

Theorem 3.7 (see [CG90, Theorem 1.1.13]). Let g1 c g2 € ... C gx € g be subalgebras
with dimg; = m;. Then
(i) g has a basis {X1,..., Xy} such that
a) for each m, b, =spang {X1,..., X;n} is a subalgebra of g,
b) for 1<j<k, bm; =9;.
(it) If the g; are ideals of g, then one can pick the X; so that a) is replaced by
¢) for each m, b, = spang {X1,..., X} is an ideal of g.

With this one can define a suitable basis for the Lie algebra which will be helpful on the

level of the Lie group but also in order to find the parametrization of coadjoint orbits in
Theorem [3.5¢

Definition 3.8. We call a basis satisfying a) and b) of Theorem [3.7|a weak Malcev basis
for g through g1,...,gr; and one satisfying b) and ¢) a strong Malcev basis for g through
g1,.-.,0k In the case k =0 we simply refer to a weak/strong Malcev basis for g.

From now on, let G be a nilpotent, connected, simply connected Lie group with Lie
algebra g which is by definition nilpotent. Firstly, we examine how G and g are connected.

Theorem 3.9 (see [CG90, Theorem 1.2.1|). The exponential map exp : g - G is an
analytic diffeomorphism.

Lemma 3.10. The Campbell-Baker-Hausdorff formula
X +Y :=log(expXexpY)eg

is defined for all elements X,Y € g and can be written as a finite sum of elements of g,
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more precisely

No(—1)ym+l XP1yai... XPmYydm
Xx*xY = Z L
m=0

m g0 plailpmlam!

1 1 1
=X+Y + §[X,Y] + E[X’ [X,Y]]- E[Y, [ X, Y]] + (commutators in > 4 terms),

where N is the degree of nilpotence of g.

Definition 3.11. We say that a map between two vector spaces is polynomial if it is
described by polynomials in the coordinates for some (hence any) pair of bases.

We call a map f a polynomial diffeomorphism if f~! exists and both f and f~! are
polynomial. Carrying this notion over to G via its identification with g we call a map
¢ : G - G a polynomial diffeomorphism if logog o exp : g — g has this property.

We define a polynomial coordinate map for G as a map ¢ : R" - G, n = dim G, for which
log o¢ is a polynomial diffeomorphism.

For a (weak or strong) Malcev basis {X1,...,X,} one can show that the exponential
coordinates

g =exp(s1X1)-exp(s,Xy,) = exp(s1 X1 * %8, X,) €G

and the so-called Malcev coordinates g = exp(Y. «;X;) are related by a polynomial dif-
feomorphism, i.e. the «; are polynomial in the s; and vice versa (see [CG90, Proposi-
tions 1.2.7 and 1.2.8]).

Since we want to integrate over the group but also use the structure of the Lie algebra
we have the following:

Theorem 3.12 (see [CG90, Theorem 1.2.10]).

(i) The exponential map takes the Lebesgue measure on g to a left- and right-invariant
(Haar) measure on G. In particular, nilpotent Lle groups are unimodular so that
the right-invariance implies left-invariance and vice versa.

(ii) Let ¢ : R™ — G be any polynomial coordinate map. Then ¢ takes the Lebesgue
measure on R™ to a Haar measure on G. In particular, this is true if the Lebesgue
measure is transferred to G via weak or strong Malcev coordinates.

We will also need to know how we can find a measure if we have given one on a subgroup
and a quotient.

Lemma 3.13 (see [CG90, Lemma 1.2.13]). Let H be a closed subgroup of the locally
compact group G. Suppose that H\G has a right-invariant measure dg and that we have
fized a right Haar dh measure on H. Then a right Haar measure on G is given by

fooda= [ ([ otaan) i voecz©.
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Now let us turn to the coadjoint orbits O; = Ad*(G)l c ig* for [ € ig* and examine their
structure. We start off with their dimension:

Lemma 3.14 (see [CG90, Lemma 1.3.2|). For | € ig* we define the bilinear form
Bi(X,Y)=l([X,Y]) on g. Then the radical

uy={Xeg|B(X,)Y)=0VYeg}={Xeg|ad (X))l =0} (3.6)

has even codimension in g. Hence coadjoint orbilts are of even dimension.

They are actually symplectic manifolds with the non-degenerate skew symmetric 2-form
w(l') € A2(Ty Oy) such that w(l")(-(ad* X)I',—(ad* Y)I') = I'([X,Y]), ' € O;. Note that
w is Ad*(G) invariant.

Now, we are interested in how we can define an irreducible unitary representation of G
given an element [ € ig* (with Theorem in mind).

Definition 3.15. A polarizing subalgebra for | € ig* is a subalgebra m c g that is a
maximal isotropic subspace for the bilinear form B;: g x g — iR.
They are also called mazimal subordinate subalgebras for [.

Theorem 3.16 (see [CGI0, Proposition 1.3.4]). Let g be a nilpotent Lie algebra and let
leig®. Then there exists a polarizing subalgebra for .

Now, for [ € ig* choose a polarizing m and let M = expm. Then y;(expY) = e>™(¥) i5 a
one-dimensional representation of M since [([m,m]) = 0. Hence, we can define

o1 :=nd§(x1)-

More precisely,

H; =1 f:G - C measurable | f(mg) = x;(m)f(g) Ym e M and f I1f(9)]dg < oo
M\G

and

(oi(x)f)(g) = fgx) YzeG, feH,.

With this construction one can prove the bijection Gz ig* /G which is our first main
result Theorem [3.2] As [CG90, Theorems 2.2.1 and 2.2.2| show, oy is irreducible and is
independent of the choice of m. [CG90, Theorems 2.2.3 and 2.2.4| continue to show that
two representations o; and oy are unitary equivalent if and only if I € O; and that every
o € G is of the form o = oy for an [ € ig*.

Below we want to provide the essential ingredients for these proof which will also be
important for the proof of our main result in the next section.

The proof is by induction on the dimension of G. The inductive step is based an the
following statement.
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Proposition 3.17 (see [CGI90, Proposition 1.3.4]). Let go be a subalgebra of codimension
1 in a nilpotent Lie algebra g, let | € ig*, and let |y = l|g0, Let v; be the radical defined in

Equation . Then there are two mutually exclusive possibilities:
e Case I characterized by any of the following equivalent properties:
(i) v ¢ go;
(i1) @ 2y,
(i) v, of codimension 1 in .

In this case, if m is a polarizing subalgebra for I, then mg = mngg s a polarizing
subalgebra for ly; mg is of codimension 1 in m and m =1t +mg.

o Case II characterized by any of the following equivalent properties:
(i) v < go;
(it)  c ;s
(111) v of codimension 1 in v,.
In this case, any polarizing subalgebra for ly is also polarizing for [.

Even though this is a rather technical result its significance becomes clearer in the next
statements since we also know how the irreducible representations and the orbits of G
and G are connected in these two cases.

Theorem 3.18 (see [CGI0, Theorem 2.5.1]). Let the notation be as above. Let p:ig* —
igy be the canonical projection and Gy = exp(go).

(i) In Case I, where v; ¢ go, we have

ol 2 O'Z‘GO and p:O; - Oy, :=Ad"(Go)lp is a bijection

(see Figure[3).

(i1) In Case II, where t; c go, we have

= Indgo(al0)7 p(Ol) = l_ﬂlﬁ(Ad* eXth)Olo and Ol = pil(p(ol)%

where X is any element such that g =RX & gp.

The common induction procedure in setting of nilpotent Lie groups is the following
Procedure 3.19 (Induction procedure on dim G).

The base case consists of dim G = 1,2 which means that the group is abelian and therefore
the orbits are zero-dimensional and all irreducible representations are one-dimensional
(characters).
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190 o

Figure 3: Orbits of Gg and G in Case II

In the inductive step one distinguishes the two cases

(1)

There exists Z € 3(g) with [(Z) = 0. i.e. either dim(3(g)) > 1 and [ € ig* arbitrary
or dim(3(g)) =1 and [ is trivial on the center.

We define go = g/(R-Z) and Gy = G/ exp(R - Z) which unfortunately do not have
to be a subalgebra and a subgroup, respectively. But every element of O; c ig*
is trivial on R - Z so that it can be regarded as a subset of ig; which coincides
with Oy, = Ad*(Go)lp. Since [ is trivial on Z every polarizing subalgebra m c g
contains R-Z and m/(R- Z) is a polarizing subalgebra for ly. With the projection
P : G — Gp we also know oy, o P = 0;. Thus, we are in a similar situation as in
Case II of Theorem B.18]

The center is 3(g) = R- Z, i.e. one-dimensional, and I(Z) # 0.

By Kirillov’s Lemma [3.6] there exist X,Y € g and an ideal go c g such that we have
g=RX®goand [X,Y] =Z. Thus X ¢ t; and for tX + Xy € v;, Xy € go, we have
0=1I([tX + X0,Y]) =1(tZ) = tI(Z) which implies ¢t = 0, i.e. t; c go and we are in
Case II of Proposition [3.17) and Theorem [3.18]

This induction procedure is slightly modified in the proof of Theorem but still relies
on the statements of the previous Theorem [3.18]

Consequently, we now turn to the study of the coadjoint orbits as Theorem tells us
that this suffices in order to obtain information about the irreducible unitary represen-
tations of G.
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For the definition of orbit types, the construction of the cross-sections ¥; and the
parametrization of all orbits as stated in Theorem we follow [CG90, Chapter 3.1]:
Let {X1,...,X,} be a strong Malcev basis of g and {eq,...,e,} its dual basis in g*. We
define for j = 1,...,n the subspaces V; := ispang(€j41,...,e,) cig”. By the definition of
the strong Malcev basis the V; are Ad*(G)-invariant subspaces. Hence, G acts on each
ig*/V; and the canonical projection p; :ig* — ig*/V; is equivariant. Let

d;(1) :==dim(p;(O0;)) =dim(G -p;(1)), leg", 1<j<n.

Then d(l) := (di(l),...,d,(l)) is a non decreasing finite sequence of integers and the
jumps, if any, are of size 1. For any d € N” define

Ug:={leig” | dj(l)=dj, 1<j<n}, D:={deN"|Uy;+a}.

The set D is finite, each Uy is Ad*(G)-invariant by definition and for all [ € Uy the orbits
in ig*/V;, 1 < j <n, have the same dimension. For d € D define

S(d) = {1 <j7<n | dj =1+dj_1}, T(d) = {1 <j<n | dj: j—l}
(declaring dp = 0). Then {1,...,n} = S(d) uT(d) and we define further
Vs(a) = ispang{e; : j € S(d)} = R, Vr(ay = ispang{e;: j e T(d)} = R,

With these definitions one can now prove the following theorem which is the detailed
version of our third main result Theorem [3.5t

Theorem 3.20 (see [CGI0, Theorem 3.1.14|). There exists an ordering of the finitely
many elements of D, i.e. D ={dM >d® > ..}, such that the following hold.

(i) For each d € D the set Wy := UgsqUg is G-invariant and Zariski-open in ig*. In
particular each Uy is the difference of two Zariski-open sets in ig*.

(ii) The first element dV) in the set is given by
dj(.l) = mazimal dimension of G-orbits in ig* [V

for 1<j<n and Uy is Zariski-open in ig™.

(i) Each G-orbit in Uy meets Vp(qy in evactly one point. The cross-section
Ya:=UsnVp(g)
1s the difference of two Zariski-open sets. The disjoint union

Y= || 2
deD

s a cross-section for all G-orbits in ig*.
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(iv) For each d € D there exists a birational, non-singular, surjective map
Ya:2aq x Vsay > Ua

such that for each | € ¥4 its orbit is Op = g (l, Vs(d))'
(v) Let S(d) = {jr < ... < jr}. If pa(l,0) = L P{(l,v)e;j, then for fired | € Sy the

function de s polynomial in v and only depends on the v; with j; < j.
Moreover, we have

a) chf(l,v) =v; for 1 <i<k,

b) de(l,v) =li+R(li,...,lj-1,v1,...,v) if j € T(d) and i is the largest integer
such that j; < j. R is rational. In particular, PA(1,v) =1;.

Furthermore, Oy is the graph of the polynomial map pr(qy o Ya(l,) where pr(q)
denotes the projection of ig™ onto Vp(q) along Vg(q)-

Remark 3.21. Since O 2 Vg(q) is even dimensional (see Lemma we know that
the number of elements in S(d) is even.

Definition 3.22 (Basis realization of 0;). Let oy € G, l eig*, m a polarizing subalgebra
for [ and {Xy,..., Xn,..., X} a weak Malcev basis through m, m = dimm.
Set k = %dim@l =n—m and the map

B:R* > Gt e exp(ti Xome1)exp(trXn).

Then B(Rk) is a cross-section for M\G, M = expm, and the map carries the Lebesgue
measure on R¥ to a G-invariant measure on M\G (see [CG90, Theorem 1.2.12]).

The map (m,t) = m - [(t) is a homeomorphism M x R* ~ G that allows us to define a
natural isometry onto the Hilbert space H; of o;:

T L* (R) = Hy, (JF)(mB(1)) = xa(m) f(t) VmeM,teR",

where y;(expY) = e2™(Y) 'Y em, is the character from which oy is induced. Hence, we
obtain a equivalent representation on Lz(Rk ) which we call a basis realization of oy.

Remark 3.23. For de D c N” the basis realization from above gives us
H; = I2 (Rdn/z) VieYy,

since dp, = dim Oy for all | € X4.

Definition 3.24. If S(d) = {i1,...,i2;} denote by Pfy(l) the Pfaffian form of the skew-
symmetric matrix (l(l:Xij,Xim])lsj7m§2k)7 i.e. Pfg(1)? = det (l([Xij,Xim]).
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One can show that it is an Ad*(G)-invariant polynomial on ig* which vanishes nowhere
on Uy (see [CGI0), Corollary 4.3.8] and preceding remarks).

At last we will study the trace of the integrated irreducible representations. We elab-
orate on our second main result Theorem and give an estimate for the character’s
dependence on [ € 3.

Recall that the integrated representation o(¢) for ¢ € S(G) is of trace class. Here we use
the following

Definition 3.25 (Schwartz functions). We define S(G) to be the functions on G that
correspond to S(R™) under a polynomial coordinate map ¢ : R™ — G (see Definition|3.11)).
Note that this does not depend on the particular choice of ¢ (see [CGI0, Lemma A.2.1]).

Now we study the resulting tempered distribution (see Theorem [3.4)

00(6) = Te(0(8)) = [ F*(6)(v) dia(v)

by using the parametrization of the coadjoint orbits. If o = oy, [ € ig”, by the identification

G 2ig* /G we may also write 6;,9;,O; and so on.

Proposition 3.26 (see [CG90, Proposition 4.2.2]). If we take the standard basis re-
alizations of oy in L? (Rk) relative to the weak Malcev basis {X1,..., X} through the
polarization m, the kernel Ky of the trace class operator o(¢), ¢ € S(G), has the form

Ky(s,t) = fM Xl(m)(b(ﬁ(s)_lmﬁ(t)) dm  (absolutely convergent),

where xi(expY) = &™) for Y e m and B:RF - Gt » exp(t1 Xpi1)---exp(txXy) and
p=dimm=n-k.

As each orbit O, is a 2k-dimensional symplectic manifold, k£ € N, with the non-degenerate
skew symmetric 2-form w, (1) € A2(TO,); such that

we (1) (=(ad* X)I,~(ad* Y1) = I([X,Y]), leO,,

it carries a canonical measure p, = wy A ... Aw, (k factors). With this we can specify the
measure 9, from the character formula in Theorem

1

05(9) = BT

[, F@OWdn 1) ¥ oeS(@).

Another way to obtain the measure 9, is by defining m/] to be the Lebesgue mea-
sure on Vg(q), normalized such that the cube determined by {ie;,,...,iey, } has mea-
sure 1. Then v = (Ya(l,-)), (m}) is an Ad*(G)-invariant measure on the orbit
O = {wd(l,v) | ve Vs(d)} by [CG90, Proposition 3.1.10| (where Theorem (v) a)
is used to show its invariance). Our goal is now to describe the measure 9; in terms of
the measure m/. We start by choosing a basis for g through t;:
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Lemma 3.27 (see [CG90, Lemma 4.3.6]). Let {X1,..., Xy} be the strong Malcev basis of
g as above and S(d) = {i1,...,io}. If {¥1,...Y,} is a weak Malcev Basis for the radical
v of le Xy, then {Y1,....Y;, Xi, ..., X, } is a weak Malcev basis for g through v;.

The choice of this basis is convenient since it contains the same Lie algebra elements
{X1,..., X, } c g independent of [ € 3, even though the radical t; highly depends on .

Lemma 3.28. Letl€X,;. Then
0 = [PLa(D[™ (a(l,)), (m)).

Proof. For the proof we put together different excerpts from [CG90l Sections 4.2, 4.3].
We start, off with another way to obtain an Ad*(G)-invariant measure on O; which turns
out to be ¥;: Let mq be the Eucledian measure on R%* such that the unit cube has
mass 1. With the weak Malcev basis {Y1,...,Y,, X;,,..., X, } for g through v; from the
previous Lemma we use the basis {Yij i= Xi, + v }icjcor to identify g/v; with R2k,
The bilinear form B;(X,Y) = I([X,Y]) is well-defined on g/t; by definition of t;. Denote
by B; the corresponding bilinear form on R?* and define for a Euclidean measure m on
R?* the Fourier transform

Fao@) = [ @B dm(a), g e SR).

Then there exists a so-called self-dual measure such that |z ¢ r2(m) = [9[z2(m)-
By [CG90, Lemma 4.3.2] we know m = |Pf;({)|m;. Furthermore, the surjective map
fr:R% > O; with fi(z) = Ad*(expx1 X exp zo, Xox )~ transforms m to oJ;, that is

Ui = (fr)« (m) = [PLa(D)|(f1)«(m1)

(see [CGI0, Theorems 4.2.5 and 4.3.3]).
In addition to that the diffeomorphism pg(4)© fi maps m; to a scalar multiple of m] after
identifying Vg(q) = R?¢ via the basis {ier; }1<j<or- In order to determine the scalar we
differentiate

- (Ad" exp(~tX;,))l -1

li
t—0 t

(d(ps(ay © fi)o(Xr,), X))

ig*.9
= <(ad*(_er))l7er>ig*,g = l([XTj7XTm])7

where 7,7y, € S(d). This shows that (pg(ay © fi)«(m1) = | Pf4(1)|>m} by definition of
the Pfaffian and therefore
(fi)«(ma) = [PEa(D)| 0,

since the orbit O; projects diffeomorphically onto Vg4 under pg(qy (see [CGI0, Propo-
sition 4.3.7]). O

With this description of the measure ; we obtain a useful upper bound for the trace
which shows its dependence on the element [ € ig*.
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Lemma 3.29. There exists a continuous map v4:S(G) = R, d € D, such that
VieXq ¢eS(G) + [0i(d)] <va(9)-[Pra(D)[.

Proof. We choose an inner product on g™ such that the decomposition ig* = Vg(4)®Vr(q)
is orthogonal. With the projection pp(qy we have due to Theorem (v) a)

[$a(l,0)1? = |0+ pr@y (al, o) P 2 [0 ¥ v e Viay.
Since ¢ € S(G) we have F*(¢) € S(ig*) and therefore
[+ IP)IF (D)oo =2 g(F(9)) <0 ¥ geN.

Now fix ¢ € N with 2¢ > dim(Vg(q)) = 2k. Then /Vs(d)(l +[v]|*)"7dm/ (v) =: I, < 0o which
will depend on d. We choose v4(¢) := ag(F(¢)) - I, and compute with the above

AN

@l < [ 1F @D - fvw) 7 (@) (v + preay(Yall, )| [PEa)] dmi (v)

< aF @) [ Qo a )P PO dnt ()
< aF @) [ el ami @) PO =2u(0) [PLOI

The claim then follows since the Fourier transform F™ is continuous and oy (F*(¢)) - 0
it F*(¢) > 0 in S(ig*). O

3.2 Heisenberg group

Let G = H,, the Heisenberg group and g = b,, the (2n+1)-dimensional Heisenberg algebra
with basis {X1,...,X,,,Y1,...,Y,, Z} whose pairwise brackets are equal to zero except
for [X;,Y;]=Z,1<j <n (see examples throughout [CGI0]). One realization as a matrix
algebra is given by

0O =z ... o =z
n . Y1
27+ (2 X +y;Y;) = : i ey,
g=1 - Yn
0 0
1 =z Tn, z+%m-y
n 0 1 Y1
(z,y,2) = exp(zZ + Y (2;X; +y;Y;)) = : € H,.
g=1 1 Yn
0 1
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A strong Malcev basis for b, is given by {Z,Y1,...Y,, X1,...X,} and let
{Z7,Y),...Y, " X{,... X} be the corresponding dual basis of ib,.

For l=~Z*+ Z?:I(ﬁij* + an]*) =t lo,B,~ €199" One can compute

Ad*(z,y, )l =7 Z" + Y ((B; = v2;) Y] + (aj +795) X]) = Loy, By,
j=1

Thus, we have the following coadjoint orbits:

i) O,:=Ad" (oo ={la g | .3 eR"} 2R* for v 20,

i) Oup:=Ad"(G)lapo = {E(BJYJ* + an;)} =RY for o, B € R™.
j=1

Z*
79
|
hd ot L] L o(y.‘.'i
[ ]
b b4
Ty

Figure 4: Coadjoint orbits of H; in ih} = R,

Now we determine the orbit types and cross-sections from Theorem [3.20}
Following the definitions preceding this theorem we have with the choice of the Malcev
basis ih; /Vi 2 R-Z* and

ih;/‘/jgspan{Z*7Yf(—7"'7}/j}i1} fOI'QSan'Fl,
b [Vism Espan{Z*, V", ... Y, X1, X 1} for2<m<n+1.
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Thus, projecting onto these quotient we obtain the following orbit types dM 4.
)Vy#0: dim(p1(0,)) =0, dim(p;(Oy))=j for2<j<n+1,
dim(pp+m(Oy)) =n+m for 2<m<n+1
= dM=(0,1,2,...,2n) with jump indices  S(dM) ={2,3,...,2n+1},
i) Va,feR": dim(p;j(Onp))=0 Vj=1,...,2n
= d®=0eN>! with jump indices S(d?) = @.

The cross-sections are then defined as ¥q = Uy n Vp(q), T(d) ={1,...,2n+ 1} \ S(d):

) U = Oy ={leiby, | I(Z) 0} = X0 =(R~{0}) 27,
v#0

ii) Ud(2) = U Oa,,B = {l [S Zf);: | l(Z) = 0} = Ed(z) = Span{Yf, . ,X;}
a,B

With these we can find the parametrizations ¢q : 3g x Vg(q) > Uy of the orbits:

) (Y25 u)=vZ"+ )] u;Y; +upei X7, weVs =span{X{,..., Y } = R,
j=1

i) 1o =1Idy, since Vg, = {0}.
Finally, we can also find the Pfaffian for these two cases:

1) Pfl(")/Z* + Z(,B]va +Osz;)) = ’)/n (’)/ +#0 on Ud(1)), 11) Pf2 =1 (01’1 Ud(z)).
j=1

Now, let us turn to the irreducible unitary representations of H, and find their basis
realization:

i) Forl=~Z* € O, we can choose m = spang{Z,Y1,...,Y,} as a polarizing subalgebra
and compute

Hy = L2RY), 0y (29,2 f(8) = & TEHV550 f(4 1) for f e L(RY).

ii) For [ = 371 (B;Y; + a;X}) € Oqp we have [([hn,bn]) = 0 and hence v, = b, = m.
Thus

Hap2C, 048(2,y,7)=Xap(2,y,2) = 2ri(Byra)
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3.3 The Group K3

Let G = K3 with Lie algebra 3 which is given by the basis {Z,Y, X, W} whose pairwise
brackets are equal to zero except for [W, X ] =Y and [W, Y] = Z (see examples throughout
[CGI0] and [Kir04, Chapter 3 §3|). One realization as a matrix algebra is given by

0 w O z
2Z +yY+zxX +wW = 00 w y €ty

0 0 0 =« ’

0 0 0 O
I w %2 Z+%+WT2$

(z,y,:v,w) ‘ZeXP(ZZ+yY+:L‘X+wW)= 0 1 w y+uéx EKS

00 1 .
00 0 1

A strong Malcev basis for €3 is given by {Z,Y, X, W} and let {Z*,Y*, X*, W*} be the
corresponding dual basis of i£3.
For 1 =62" +vY™* + BX* + aW™ € it3 one can compute

2
Ad*(z,y, 2, W)l =0Z" + (y—wd)Y™ + (ﬂ—wfy+ chS)X* + (a+x7+ (y - %)5) w*.

Thus, we have the following coadjoint orbits

2
26
for 0 0,5 € R (see Figure [5)),
i) O,=Ad*(G)(7Y*) =AY +R-X*+R-W* =z R? for ~ # 0,

i) Onp=Ad"(G)(BX*+aW*)={X*+aW*} =2 R" for o, B € R.

i) (95”3=Ad*(G)(5Z*+BX*)=5Z*+{tY*+(5+ )XWteR}HR-Wyr

Now we determine the orbit types and cross-sections from Theorem [3.20;
Following the definitions preceding this theorem we have with the choice of the Malcev
basis

ibp/Vi = span{Z”}, ib;, [Va = span{Z",Y "}, b, [V3 = span{Z",Y", X"}, ib, [V) = ib,,.

Thus, projecting onto these quotient we obtain the following orbit types d® 4@ g®.

DVox0,0eR:  (dim(p;(Dsp))), = (0,1,1,2) = dY  with  S(dW) = {2,4},
i) Vy=0:  (dim(p;(0y)))1e;eq = (0,0,1,2) =d® with  S(d?) = {3,4},
iii) V., B e R s (dim(p;(Oa,5))),;eq = (0,0,0,0) = d®  with S(d®)=g2.
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\

Figure 5: Projection of the coadjoint orbits of type d onto span(Z*,Y*, X*) = R>.

The cross-sections are then defined as ¥4 = Uy n Vg, T(d) ={1,...,2n+ 1} \ S(d):

) U= Ospg={leit; | 1(Z)=+0} = Y, =R~N{0})-Z"+R- X",

60,8
i) Uy =UJOy={leib, | I(Z)=0,l(Y)#0} = o =R~{0}) Y7,
v+0

i) Uy =|JOas={leit; | 1(Z2)=0,1(Y)=0} = Syu5=R-X*+R-W*
aMB

With these we can find the parametrizations ¢q : 3gq x Vg(q) = Ug of the orbits:

2
D) (627 + BX ) = 62" +w Y + (B + Z—é)X* +usW*,

u e Vgigay = RY* + RW* = R? (see Figure [f),
i) (7Y u) =Y X+ usW, we Vg = RX" + RW" =R,
iii) ¢3 = Idgd(3) since VS(d(3)) = {0}

Finally, we can also find the Pfaffian for these three cases:

) PEOZ" +4Y " + BX  +aW™) =6 (#0on Uyy)),
i) Plo(AY* + X" +aW™) =y (20 on Uya)),
111) Pfg =1 (on Ud(g)).
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Os,8 = v4,((0,8), Vs(a,))

Figure 6: Orbit parametrization (type d;) projected onto span(Z*,Y*, X*) = R?.

Now, let us turn to the irreducible unitary representations of K3 and find their basis
realization:

i) Forl=0Z*+ X" we have t;y = R-Z+R- X and may choose m=R-Z+R- Y +R- X
as a polarizing subalgebra since it is an abelian ideal of the correct dimension.
One can compute with Hs g =~ L*(R)

065(27 Y., w)f(t) _ 627ri6x627ri5(z+ty+%t21+%twm+%wy+%wa)f(t I w) for f € LZ(R)

ii) For [ =~Y"* we have t; = R-Z+R-Y and may choose the same polarizing subalgebra
m=R-Z+R-Y +R-X as above.
One can compute with H. = L?(R)

oy (z,y,z,w) f(t) = e%”(y”“%wx)f(t +w) for feL?(R).

iii) For I = X" + aW* we have [([£3,€3]) = 0 and hence t; = ¢35 = m. Thus

2mi(Br+ow)

HCV,IB:C7 U&,ﬁ('Z?me)w):Xl(z7yax)w):e
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4 Wave Front Sets of Nilpotent Lie Groups

Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g of
dimension n and g* its vector space dual. By G we denote the unitary dual. It is
isomorphic to the space of coadjoint orbits ig*/G (for details see Section .

Let (w,H) be a unitary representation of G. Then we can write

® ®
WE/@ o®m(™9) 4. (o), 'HE]G HE™™D) d (o), (4.7)

where m(m,0) keeps track of the multiplicity of ¢ in 7. We recall that for such a
representation the orbital support of « is given by

O-suwppr=|J O, cig®, supp(r)=supp(r),
oesupp()

where O, c ig”* is the orbit of the coadjoint action corresponding to o € G under the
isomorphism G 2 ig*/G (see Theorem .

Our main goal in this section is to prove the following

Theorem 4.1. Let G be a nilpotent, connected, simply connected Lie group and 7 a
unitary representation of G. Then

WEF(7) = AC(O —suppm).

We start by using the structure of nilpotent Lie groups and the unitary representations.
As discussed in Section [3| (see Theorem [3.20) after fixing a strong Malcev basis of g we
have

G =2igh/G 2 2= ]2y cigh,
deD
where Y is a cross-section of all G-orbits and X4 is a cross-section of all orbits of a certain
type d € D, which, in particular, all have the same dimension. Moreover, the set D is
finite.
Thus, we can push p, forward to a positive measure on X and obtain

@
T [E U;Bm(w’m)d,uﬁ(l)
®
_ @'[2 Ul@ (W,oz)duﬂ_(l) — @Wd-
deD d deD

With this decomposition we have

WEF(7) = | WF(7q), AC(O -suppm) = | J AC(O -suppmy)
deD deD
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by Proposition and the fact that AC (U}, Si) = UL AC(S;).
Therefore, it suffices to show that

AC(O -suppmg) = WF(my) VdeD. (4.8)

From now on we fix d € D and may assume that all the irreducible representations in the
support of 7 are of the form o; for an [ € ¥; c Uy, where Uy c ig” is the set of all [ € ig*
such that its orbit O; = Ad*(G)l is of type d (see Theorem (iii) and the preceding
definitions).

4.1 Proof of the Inclusion AC(O - supp(m)) c WF ()

For the first inclusion AC(O —suppm) ¢ WF(7) we use Lemma in particular the
equivalence of (i) and (iii) which states in our setting here:

& ¢ WE(7) < JeeUcG,EeVeighVoeCX(U)ICN(P)>0:
[F((m(@)u,0))(tn)] < On(D)ulolt™  for t>>0, neV, uveH,  (49)
where the constants Cn(¢) may be chosen independent of both 7€ V and u,v € H.

We start by finding matrix coefficients whose Fourier transform is bounded from below.

Proposition 4.2. Let 0 < § < 1 such that |sin(27x)| < (%)%hm(g)Jrl for all |x| < 0. Fiz an
arbitrary inner product on g. Then there exists a chart k. : G - g with D.(x ' olog) = Idg
such that for ¢ € Uq c ig* we can find vectors uc € He®, ve € He with [uc| = [vc| =1 that
depend measurably on ¢ such that for all n € Uy with |n — (| < 40 we have the following

estimate for all non-negative ¢ € CZ°(By4(0)):

)Qdimg

Re(_/Q(UC(R_I(X))uC,vc)qb(X)e_%”(X)dX) > (% -/gqb(X)dXZO.

Proof. We prove this statement by induction on n = dimg. If n = 1,2, the group is

abelian. In this case the irreducible unitary representations are one-dimensional, i.e.
oc(g) = ?m¢(logg) H¢ = C. We choose k =log and u¢ = v¢ = 1 and compute

Re(/(ag(n_l(X))uc,vg)cb(X)e_Qm](X) dX) :Re(fe2”(<-”><x>¢(X)dX)
g g
- nge(eQ’f(C—")(X))qﬁ(X)dX - fgcos(Qm(n—g)(X))¢(X)dX

2%[9¢(X)dX2 (%)Zdimg«/ggb(X)dX,

since [i((n - O)(X)| < [n-¢| - |X] <461 =6 on supp¢ and
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2dim(g)+1

cos(2mz) = /T - sin(27a)? > J - (%) s

% Vigl<o  (4.10)

Now we assume n = dimg > 3. We will distinguish between the two cases following the

ideas as described in Procedure

Case I: dim3(g) > 1. There exists Z € 3(g) with ((Z) =0 and ||Z| =1. We can choose
an orthogonal complement W < g such that g=W @ RZ.

Then g = g/(R- Z) is isomorphic to W and has a well-defined Lie algebra structure given
by [v+RZ,w+RZ] = [v,w]g + RZ since Z € 3(g). The induction hypotheses gives us
G = k71 (g) with a chart k: G - g. For G we choose the logarithm as a chart.

On g we use the inner product induced from the one we fixed on g. Using the cor-
responding inner products on ig* and ig* we also obtain an orthogonal decomposition
ig* =iW* @ Rnz 2ig” ® Rny with |nz]| = 1.

Note that ig" is Ad*(G)-invariant (again due to Z € 3(g)). We can identify ¢ with an
element ¢ €ig”. Let n =7 +rnz €ig* =ig" ® Rnz. By assumption |r| = |(n - () z| < 44.

The induction hypothesis also gives us normalized vectors ug € H%" , Ug € ’HZ. By Proce-
dure (i) HE = H¢ and oz o P = o, with the projection P: G — G which is given by

P = k7" olog here. Thus, we obtain corresponding vectors u¢ = ug € ’HE", v = vg € He
and compute

R:= Re(fg(ac(exp(X))uovc)(b(X)e27”7(X)dX)
Re(fg/ﬂ;(ac(exp(7+tZ))uC,U§)¢(7+tZ)e_Qﬂn(X+tZ) det)
- Re [ fR (Ug(exp(Y)exp(tZ))uC,vc)gb(ertZ)e_%(ﬁ(Y)”"Z(tz))det)
g
:Re('[/R(az(ﬁfl(Y))uz,vz)(ﬁ(y+tZ)ef2”(ﬁ(Y)+mZ(tZ))det)
g
_ [R cos(~2rt) Re( fg (o2(5™ () iz, v)6 (X + £2)e 2T dY)

_ sin(=2rrt) Tm ( /ﬁ (o571 (X) g, v d(X + 1) 27F) dY) dt.

Since |rt| < 48]t| < & for X +tZ e supp(¢) ¢ By/4(0) we have cos(-2mrt) > 1 as in (4.10)
and |sin(-27rt)| < (%)lem(g)+1 by assumption. The induction hypothesis grants that

the real part is non-negative and we can estimate
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R> [R % Re ([g(ac(/ﬁ_l (Y))uz, vgs yo(X + tZ)e_%ﬁ(Y) dY)

— |sin(-27rt)| ‘/(ag(/ﬁ_l(Y))uc, v V(X + tZ)e_%ﬁ(y) df’ dt
g

> [R %Re( fg (o:(r™ 1 (X))ug, vz, )9(X +12)e 277X dY)

1

2dim(g)+1 o B
- (5) [Hqu loel¢(X +¢2) dX dt.
]

Now we can apply the induction hypothesis to the inner integral to finish the proof in
this case: since |ug] = |vz] =1 we obtain

Rz(%(%)Mmg_(%)Qdim(g)ﬂ).fngqb(sz)det

S e () oo

Case II: 3(g) =R- Z is one-dimensional. Kirillov’s Lemma[3.6] gives us X,Y € g and
an ideal gg c g with g = RX @ gp and [X,Y] = Z. We may choose X such that the
decomposition is orthogonal. Since dim(3(go)) >1 as Z,Y € 3(go) we are in Case I in the
induction hypothesis for Gg and therefore can use the chart log : Gg - go. We define a
chart for G via

klig=go®RX - G, Xo+tX ~ exp(Xp)exp(tX).

If {(Z) =0 we can proceed analogously to Case I since for w=Yy+sX e W and t € R we
have

N w+tZ) =k (Yo +tZ +5X) = exp(Yo + tZ) exp(sX) = exp(Yp) exp(tZ) exp(sX)
= exp(Yp) exp(sX)exp(tZ) = k(Yo + sX) exp(tZ) = k™ (w) exp(tZ).

Thus, we now assume ((Z) # 0. Then X ¢ t; and we are in Case 11 of Proposition[3.17and
Theorem with G = exp(go) ¢ G a normal subgroup and p:ig* — ig the canonical
projection. Let ¢ = (o + 2(x,n = no + rnx € ker(p)* @ ker(p). Then by assumption
[z == |(C—m)x| <46

By Theorem we know o = Indgo(ago) with He = L?(A, Hc,), where A = exp(R- X).
Thus, if we regard v and v as elements of L?(A, H¢,) and @, 0 : G - He, the corresponding
left-Gp-equivariant functions we have
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(c(g0a)us v} = [ ([oc(90a)u)(8). v(D))ree, db  and
[o¢(90a)@] (b) = @(bgoa) = @(bgob™"ba) = o, (bgob™)ii(ba)
since b~ gob € G as go is an ideal. This gives us [o¢(goa)u](b) = o¢, (bgob™")u(ba).

Furthermore, the induction hypothesis gives us measurable, normalized vectors u¢, € ’HZ;,
v¢, € Heo- In order to find the suitable vectors u¢, ve € H¢ we begin with a cut-off function

xe€CP(A) with0<x<1, x=1on exp([—%, i] -X) and | x| 2 =1. Define

u¢ = xeTIXNB @u e CR(AHE), vei=0e ®vg, € HL™.

With these we can compute

R:=Re (/Q-(UC(R_I(X))UC, v<)¢(X)e_27”7(X) dX)

:Re(fgofR(fA<%(bexp(Xo)b-l)W(betX),vg(b»db)-

B(Xo + tX )e 2 Xo)rmx (1) g x, dt)
:Re( fg O i ( (e (bexp(X0)b™ gy, g ) (betX )26 (s 1) db) -

P(Xo + tX )e 20 Xo)rmx (1) g x, dt)
= Re(fgo A(ago(exp(Xo))UCO,vco)x(etX)GQWZCX(tX)qS(XO +1X)e 2 o(Xo)trt) g x) dt)
= '[Rcos(27r(z—r)t)x(etX)Re(/go(ago(exp(Xo))uCO,vco)gi)(Xg+tX)eQW”O(XO)dXO)

~ sin(2r(z — 1))y (X)) Im ( fg {05 (exD(Xo0) s Gy} X + £ ) 27X dXo) dt.

Analogously to Case T we have |(z —r)t| < 40]t] < § for X +tX € supp(¢) c B1/4(0)

and therefore cos(2mw(z —r)t) > % as in (4.10) and |[sin(27(z - r)t)| < (%)2dim(g)+1 by
assumption.

Again, the induction hypothesis grants that the real part is non-negative and we can
estimate

1 —&Tr
Rz [ e me( ], o (exp(Xo) gy v, o (X + 1X)e O 4,
0

—|sin(27r(z—r)t)|x(etx)‘ f (¢, (exp(X0) )y, Ve YP(Xo + X )e 2™ (X0) g X0l dt,
go
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and by unitarity of o¢,:

1 — 4T
R> [Ré)((etX)Re([g (o¢, (exp(X0))uc,, vey )P (Xo +tX)e 2 no(Xo)dXO)
0

5 X(e) [ o gy (o + £) dXp .

Now we can apply the induction hypothesis to the inner integral to finish the estimation:

since [ug, | = [vg, | = 1 we obtain
1/1 2dim(go) 1 2dim(g)+1
R> (— (—) - (—) )f f (e X)b(Xo +£X) dXo di
2\2 2 R Jgo

SOV e iaxea= (2T [opoax,

where we used that x o exp =1 on supp ¢(Xo + ) for all X € go.

However, v¢ is only a distributional vector. But we can approximate it by smooth vectors:
there exists a sequence (¢y), ¢ C°(A) converging to the delta distribution J. in D'(A)
with [pn[z1 =1 for all n € N. We define v := ¢, ® v¢, and study the functions

Mg op (X) = (o (K71 (X))ug, vf) € C*(g). (4.11)

We can show that on a compact set they have a uniformly convergent subsequence by the
Arzela-Ascoli theorem (see [Rud76, Theorem 7.25|) - for details see the next Lemmald.3]
Since Mg o = Mug g = (Uc(li_l(X))UC,’Uc> € C*(g) point-wise we have on supp ¢:

2dim g+1
1) 8

INeN: ”muc,vé\/ — Mo, HL°°(supp¢) < (5

We can now choose vév € H¢ to finish the proof:
Ry ::Re( fg (o (57 (X) Y, v ) (X )27 () dX)
e [ (oc(” (0)ug,ve)o(X)e ) ax)
—Re(/g((ac(n_l(X))uC,vc)—(UC(K_I(X))UQ,véV))qb(X)e_Q’m(X) dX)
zRe( fg (o (K71 () uc, v ) (X )e 20 dX)

- ‘[g((ac(ff—l(X))uC,vC) - (Uc(/{_l(X))UQUéV)) ¢(X)e—27”7(X) dX‘ ’
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and by induction hypothesis and the choice of fuév :

3/1 2dimg
Ry 25 (5) L¢(X) X - Hmug,vé‘] _mug,v<||L°°(supp¢)/g¢(X) X

z(%)wmg : fggb(X)dX.

This is the desired estimate. O

A technical lemma used in the previous proof:

Lemma 4.3. Let K c g be a compact set. Then there exists a uniformly convergent
subsequence of the matriz coefficients Mg o (X) = (oc(h 1 (X))uc, ve) €C¥(K), neN,

defined in the previous proof (see ).

Proof. The matrix coefficients are uniformly bounded:

- Tz O, €W
muc,op (W)] = Mw@(bexp(wo)b Dugy, v ) (be" )2z ex ECED o (1) db
< Jug e Xl [ lon(®)ldb = Il ¥ W =Wo+Wx egneN,

Furthermore, their derivatives are bounded on K:

d - n
Ox Mg ,op (W) = %LZO(UC(,{ LW +X))uc, vl')

= 2] (oclexp(Wo) exp(Wx) exp(tX)ug, of)
= <UC(6XP(WO) eXp(WX))dO'(:(X)uO UZL>

Here do¢ (X )uc(b) = ((Tbx)(X)eQ”ZCXUOgb) + X(b)27r262m<x<1°gb)) ® u¢, where Ty is the
tangent mapping of x at b e A. With computations as above

0110 (W] < | Taxe®™ X108 4 x2m2e?TX08| < [T o [ X | + 22| [ x| oo -

For the other directions Xy € go we compute

d n
Dxy M (W) = E|tzo<a<(exp(w0 +1Xo) exp(Wx))uc, of)

T dt
~ d
- E‘tzo

= [ (o (bexp(Wo)b™ydarg, (Ad” (8) Ko gy, v, (be™ e x (50 (1) a,

|, (e (exp (W) exp(tX0) exp(Wx) uc, of)

fA<a<0(bexp(Wo>exp(th)b*)ugo,%)x(beWX)e2“<x<l°g<beWX>>son(b) db

where Xg = [, e=*2"o X ds (see [DKOT, Theorem 1.5.3]).
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For W e K we can find constants C7,C9 > 0 such that

oladWol _

L%,
faawg) < 1!

~ 1 1
1Kol < [ lem o)X ds < |Xo] [~ e 14"l ds < | X0
| 40" (0) o] < [ Ad ) [1:5o] < CoC1[1Xol.

Let {X;} be a orthonormal basis for gg. Then t~here exists a constant C3 > 0 such that
|docy (Xi)ue, | < Cs for all i. Now write Ad*(b)Xo = ¥ o X; and we have

”do-Co (Ad*(b)XU)uCo ” < Z ’ai|”dUCo(Xi)uC0 ”
<Cjy dim(gg)H Ad*(b)XoH < C1CyC5dimgg HX(] ||

With C = C1C5C5 we can estimate as above

O3 (W)] < Xl = leal [ I, (Ad” (6) Xoug llion (B)]
< O dim(go) | Xol [ -

This implies that the My pp aTe uniformly equicontinuous on K: Let € > 0 and choose

5 < e(dim(g) M) with M = max {|Tx| |X] + 2712] [x]..., C dim gol |} < o0 on the
compact set K. Then for |[W -Y| < ¢ we have for some 0 <6< 1

|mug,v?(W) — m“vag(YN < ||Vmuc7vg(W + G(Y - W))H ||W - Y” < 6dim(g)M <E.

The Arzela-Ascoli theorem (see [Rud76l, Theorem 7.25]) states that the uniform bound-
edness and the uniform equicontinuity imply the existence of a uniformly convergent
subsequence. O

Now we can turn to the desired statement:

Theorem 4.4. Let G be a nilpotent, connected, simply connected Lie group with Lie
algebra g and (7, Hy) a unitary representation of G. Then

AC(O -supp7) c WE(m).

Proof. Let £ € AC(O —suppm). We may assume without loss of generality that ||€] = 1.
Defining the cones C. := {neig® | 3t>0: | —tn|<e}, then for all € > 0 there exists a
sequence (tyMm)m € Ce N O —supp(7) with t,, » oo and 1, € B(&), |nm| = 1.

We now use Theorem For all m e N let I, € ¥4 be the corresponding element in
the cross-section of all orbits of type d, i.e. Oy, = Ot,y, . Then there exists vy, € Vg(q)
with t1.1m = Vq(lm, vm). For [ € ¥4 near [, we define ; := ¥4(1,v,,) € O; which depends
continuously on [ (see Figure [7)).

Now let 0 < § < 1 as in Proposition , ie. |sin(27x)| < (%)Mlm(g)Jrl for all |z| < 4.
Then there exists a neighborhood N,,, ¢ ¥4 of I,,, such that 1g( Ny, vpm) € Bs(tmnm) and
pir(Nim) > 0 since I, € O —supp(mr) (see also Figure [7)).
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BJ (tmnm)

wd(Nma Um)

Figure 7: The choice of /,,, and N,,.

Applying the above Proposition to (;, | € N,,, we obtain measurable, normalized
vectors u¢,,v¢, € He,. Since o7 = o¢, and H; = H¢, we have corresponding measurable,
normalized vectors u;,v; € H;. With these we define

u = (e (N)) > [ v (D dp (1) <o

since the u; are measurable in [ and |Ju(™ ||§_[7r = (pr(Np)) ™ fEd XN, (D |ug|? dpx (1) = 1.

We define v("™) € H,. analogously.
Then we have for non-negative ¢ € C2°(B1(0)), ¢ = ¢ o log and the chart x: G - g from
Proposition .2 with the definition of Np,:

IF({(m o k™t olog)ul™ v™)Yp) (tn))|
- UG me(“”(N ) Hou (k7 (log g) Yur, viyp(g)e2tmtn(089) gg dun(l)‘

> |Re ([ [ (ue (o)) o (o g p(g)e 20959 dg (1))

= (ki (N )™ me Re([Q(Uz(ﬂ_l(X))ul,vl)qS(X)e‘?”m”m(X) dX) duﬁ(l)|
rop. 2dim 2dim
TR [ (5) Wl die®= ()l ™1

We can use this to show that £ €e WF(mor tolog): If we assume that £ ¢ WF(mor Lolog)
we can employ the equivalence of Lemma [2.13] (i) and (iii) (see also ([£.9)). It states that
there exist 1,9 > 0 such that for all ¢ € C2°(exp(Be,(0))) and all N e N:

[F((mow o log)u,v)p)(tn)| < On (@) ul[ollt™ ¥ u,v € Ha, 0 € Bey (€), t> to.
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Since the constant Cny(¢) can be chosen independent of n € B, (§) and u,v € H, we
found a sequence that violates this inequality for N = 1.

Now, we use [H6r03, Theorem 8.2.4] with f = k! olog, which is a homeomorphism with
Df(e) =1d, to see that

WF,({(mo ™" olog)u,v)) € WF((m()u,v)) ¥ u,veMHn,

and therefore

EeWF(rortolog)= |J WF.({(morolog)u,v)y) c WF(r).

u,veH

This finishes the proof. O

4.2 Proof of the Inclusion WF(7) c AC(O - supp(r))

Now let us turn to the other inclusion WF(7) ¢ AC(O - suppw). For its proof we will
again estimate the Fourier transform of the matrix coefficients directly using the following

Proposition 4.5. Let n,N € N. There exists a constant C, ny > 0 such that for all
nilpotent, connected, simply connected Lie groups G with Lie algebra g and dimg = n
there exists an inner product on g and ig* and a chart r: G — g with D.(k ' olog) = Idg
such that the following estimate holds for arbitrary Haar measure dX on g, all ¢ € C°(g),
l,meig” and all u,v € H;:

‘fg(az(ﬁfl(X))u,v>m¢(X)€_2’”7(X) dX| < Cpn[ulze [0l 1 llw gy 4. OD) ™,

where @ wn.1(g) = Zjajen 1Dl L1 (g,ax)-

Proof. We prove this statement by induction on dimg. If n =dimg =1 or 2, the group is
abelian. In this case the irreducible unitary representations are one-dimensional, o;(g) =
e?m(1089) and have a zero-dimensional orbit O; = {I}. We choose = log and compute

| [(orexp Xu v)ea(x)e 20 dx| = | [[a(g)e D Oupax
g g
= d(n =) Jul - fo.

Fixing an inner product on g we obtain a corresponding one on ig*. Now let {X;}T; be
an orthogonal basis for g and pick j € {1,n} such that (I - n)(X;)| is maximal.
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With this choice we have for N ¢ N
6n=01 = |@r (= (X)) ™ [0y et Dax
< 2m) M- (X)) fg 0% $(X)|dX

_ N -
< @m) MV L=l N gl ).

N
Thus we can choose C, y = (2—\/:1) forn=1,2.

Now we assume n = dimg > 3. We will distinguish between the two cases following the
ideas as described in Procedure [3.19

Case I: dim3(g) > 1. There exists Z € 3(g) with [(Z) = 0 and a subspace W < g such
that g = W @ RZ. Then g = g/(R- Z) is isomorphic to W and has a well-defined Lie
algebra structure [v+RZ, w+RZ] = [v, w]y+RZ since Z € 3(g). The induction hypotheses
gives us G = k! (g) with a chart x: G —»g. For G we choose the logarithm as a chart.

Given an inner product on g we choose one on g such that the decomposition above
is orthogonal. Furthermore, without loss of generality we may assume |Z| = 1. Using
the corresponding inner product on ig* we also obtain an orthogonal decomposition
ig* =iW* @ Rny 2ig* @ Ry with |nz] = 1.

Note that ig* is Ad*(G)-invariant (again due to Z € 3(g)). We can identify [ and its
orbit (’)lG c ig* with an element [ € ig* and its orbit Ofé cig”, respectively.

Let n=7m+rnz €ig* =ig* @ Rnyz. Then by the choice of the inner product

d(n.Of)’ = d(@,0F)" +1°.
This implies that we are either in the case

1

A) 1> —=d(1.0F) or b) d(5,07) > —=d(n,0F). (4.12)

S

2

Turning to the integral we want to estimate:
7= [(ortexp (X)), od(x)e 1 ax
9
= o1(exp(X +t2))u,v)qy, ¢(X +t2)e 1 W2 X gt
T JRr l
9

= [fR(Gl(exp(Y) exp(tZ))u,v)Hl¢(Y+tZ)e_%(ﬁ(Y)””Z(tZ))dydt‘
g

= or(exp(X))u, v)y d(X +tZ e 2 (M(X)+rnz(t2)) I gt
[ [ (or(exp (@) 6(X +12)
g

since every Haar measure dX on g and the Lebesgue measure dt on R yields a Haar
measure dX on g such that the first equality above holds. The last equality is due to
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I(Z) =0 which implies o;(gexp(tZ)) = 0y(g) for all g€ G, t € R.
We start with case a) of (4.12)) and define

0(t) = [{o(exp(X))u, ) 6(X +£2)e >0 dX € O (R),
g
Then by integration by parts as in the abelian case with [ =0 and u = v =1 we obtain

7 =| [ 3w at] < Crvldlhwsa ey ()™
@) N ]
<" €2 19l gy (. O ).

The claim now follows in this case with C), y := Cy, N\/§N and the following estimation:
lolwwamwy = Do 105 ¢l Lt war)
k=1
N — — — —
< Z fR [‘(Jl(exp(X))u,v)Hl(?qu(X +tZ)e_27”7(X)| dX dt
k=1 9

N
SMMZAAW%“MWMﬁS\MMMWWy
k=1

Now let’s turn to case b) of (4.12). Note that by Procedure (i) we know H; = H;
and o070 P 2 0; with the projection P: G — G which is given by P = k™! olog here.
Thus, we have

J = ‘ fg /R (Ul(fiI(Y))u,v)q{l¢(7+tZ)e2”(”(X)+T”Z(tz))det‘.
Now define
3(X) = fR O(X +12)e 2 gt € O™ ().
Then
J= ‘ fa (03(r () ), 0) g, (K )e 2TV GX
& Gt il 10161 (7, OF)) ™
a) Cn_1,N\/§NHU|| [0l 6w~ (dn, OF ).
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The claim now follows in this case with C), == Cy,—1, N \/§N and the following estimation:

18lwrig = D 10%0] L1 g.av
la|<N

-3 [] [ 50X + e2)e | %
a Y8
<3 [ 050X v i2)] dtaX < [olnag)

Case II: 3(g) =R-Z is one-dimensional. Kirillov’s Lemma gives us X,Y € g
and an ideal gy c g with g = RX @ gp and [X,Y] = Z. Given an inner product on go
we choose one on g such that the decomposition is orthogonal. Since dim(3(go)) > 1 as
Z,Y € 3(g0) we are in Case I in the induction hypotheses for Gy and therefore can use
the chart log: Gy - go. We define a chart for G via

klig=go®RX - G, Xo+tX — exp(Xp)exp(tX).

If I(Z) = 0 we can proceed analogously to Case I since for w=Yy+sX e W and ¢t € R we
have

N w+tZ) =k (Yo +tZ +5X) = exp(Yo + tZ) exp(sX) = exp(Yp) exp(tZ) exp(sX)
= exp(Yp) exp(sX)exp(tZ) = k(Yo + sX) exp(tZ) = k1 (w) exp(tZ).

Thus, we now assume [(Z) # 0. Then X ¢ v; and we are in Case II of Proposition
and Theorem

prigh —igs, lo:=p(l),n0:=p(n), OF° = Ad*(Go)lo,

p(OF) = | J(Ad*exptX)Or°,  OF =p~(p(Of)).
teR

where Gy = exp(go) ¢ G is a normal subgroup. Since ker(p) c ig* is a one-dimensional
subspace and ker(p)* = ig; as vector spaces we have a corresponding inner product on
igy which gives us for all a € A = exp(RX):

d(10, O35 (ay1,) = 010, A (@) OL°) > (o, p(OF)) = d(n, OF ). (4.13)
In addition to that we have n =ny + nx with nx € ker(p).

Turning to the integral we want to estimate:
J ‘ Lot (), ) (X210 ax
g

= ‘ fg fRWl(eXP(Xo)exp(tX )Yt v, (X + X )e 20X +x (XD g x|
0
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By Theorem we also know o Indg0 (01,)- Note that H; = L2(A,Hy,). If we regard
u and v as elements of LQ(A,’HlO) and 4,0 : G — H,, the corresponding functions in the
'standard model’ we have again

(o1(goa)u,v)y, = L([Uz(goa)U](b),v(b))Hlo db and
[01(g0a)@](b) = @(bgoa) = @(bgob™'ba) = a1, (bgob™")ii(ba)

since b~ gob € G as go is an ideal. This gives us [o(goa)u](b) = oy, (bgob ! )u(ba).
We deduce that

S Ji ([ {on(bexp (X yuve!™). o (@), )

H(Xo + tX)e—QW(no(Xo)”nx(tX))dXO dt’

J:

<[/ ’ fg {1y (bexp(X0)b™ Yu(be ™), 0(B)y H(Xo + £X)e TN axg

]e—%”lx(tx ) ‘ dbdt.

The conjugation Cy : Go = Go, go — b tgob is a group automorphism and we know that
Xio © Cb = Xad* by, for the character x;, such that oy, = Ind]\%O (x15), M = exp(m) for a
polarizing subalgebra m c gg. Now, Ad(b)m is a polarizing subalgebra for Ad*(b)ly and
Cy'M = exp(Ad(b)m). Thus, [CG90, Lemma 2.1.3] gives us

OAd* (b)lp = Indg§1M(Xlo o Cy) =Ind§? (x1,) © Cy = 01 © C.

With this unitary equivalence of representations and the induction hypothesis in G for
Ad*(b~1)ly instead of Iy we conclude

J< [ [,

fg (o1, (bexp(Xo)b™ )u(be'™), v(b) oy, ¢(Xo + X )e >0 dX,,
0

\6-2”’"’7)((“ ) | dbdt

(IH) _

< [ [ Comrnllé(e + ) lCbe™ Y, 1005 by (10, OG5 1y, ) b
(@.13) -

2 00wt 00 [ ([ ety u0) b 108, 0 60 + 130

< Cn_LN(d(mOz))‘NfRIITexp(tX)UHHl [Vl [ ¢Co +EX) [y (go) dt,

where Ty (1 x) is the translation by exp(tX) € A which is an isometry on H; = L2(A,Hy,).
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This gives us

T < Cotldn, O)) Ml ol [ 1900 +3) vy

Cotrld(m, O Ml ol [, 3 [ 10%,0(X0 + 1X)|dXo di

|a|<N <80

Cr-1,8 (1, O0) ™ Nl [0l 01w (g,

which finishes the proof. O

IN

Corollary 4.6. The statement of the previous Pmposition also holds for u,v e Hl@ml
with multiplicity m; e Nu {oo}.

Proof. For u € H;Bml we have u = (u1,us2,...) with (finitely or infinitely many) 0 + u; € H;
1/2
and ¥; |uil)2, < oo, |ull = (Z; Jus]?)"". Thus

| [g (o1 (k™ (X)), 0)pg, (X )e 27X 41X | =

ng(UZ(H_l (X)), vz')Hl(ﬁ(X)e_%”(X) dX’

Z /g(gl(’(l(X))Uu i), 6(X )e 20 dX‘

Prop. -
< Cnn Bl gy {d(n, O™ 3 sl - v

1/2 1/2
< Comlolaotdn o)™ (T hul?) (Tt
- Crur |l gy (o, O Nl - ol

where the interchanging of the order of integration and summation in the second equality
is possible since |(o; (k™ (X))us, v;)(X)e 2™ < g | - |vi] - |o(X)| € LY(N x g). O

This inequality whose constant is in particular independent of [ € ig* now helps us to
estimate the matrix coefficients of the big unitary representation 7 using its direct integral
decomposition into the irreducibles ;.

Theorem 4.7. Let G be a nilpotent, connected, simply connected Lie group with Lie
algebra g and (w,Hy) a unitary representation of G. Then

WF () c AC(O - suppm).

Proof. Let n ¢ AC(O - suppw). Then there exists ¢ > 0 and ¢y > 0 such that
d(tn, O —suppm) > et for all ¢t > tp. In particular, d(tn, O;) > et for all | € supp .

&}

Again, we use H, = fEd H, m(mo1) dp (1) for the Hilbert space of the unitary representa-

tion 7. If uw = (u;),v = (v;) € H, u, v € Hl@m(w’ol), in this direct integral decomposition
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the matrix coefficient is

(w(a)u.v) = [ (er(g)un.on) dux D).

Let ¢ € C°(G) with p(e) # 0 and k : G — g be the corresponding chart from Proposi-
tion[t.5 and Corollary [£.6] For t > ¢y and ¢ := @ o exp € C°(g) we conclude

|./'T(<(7T o /@—1 o 1Og)u,v)<,0)(t77)|
= _[G(W(H_l(logg))u, U)gp(g)e_%m?(logg) dg

= fGfzd(az('f‘l(logg))w,v;)so(g)e—%tnﬂogg) d/ﬁﬂ-(l)dg’
= /Ed (/Gwl(’f_l(logg))ul,Ul)ﬂﬁ(logg)e_zﬂt"(logg) dg) duﬂ(l)‘
< | et GOy o) 21 dx s 1)
COT'S[m Cn,N“UHHz ”vHHz ”QS”WNJ(Q)(d(t?],OZ))_NdMﬂ(l)
Xa

< Cololwrae ™0 [l - for] dian D)
d

< Conldlwnage N lula, - o], t™ cO (™).

This implies n ¢ WF ({7 (s o log(-))u,v)).
Now, [H&r03, Theorem 8.2.4] with the map f = k! olog, which is a homeomorphism with
Df(e) =1d, implies n ¢ WF.((7(-)u,v)). O

Theorems and prove our main result Theorem [£.1]
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5 Alternative Proofs

In this section we present two alternative approaches to prove the two necessary inclusions
AC(O -suppn) c WF(7r) and WF(7) c AC(O —supp ). The first approach follows the
strategy of [HHO16| using integrated characters. The second approach studies matrix
coefficients via the formula for the kernels of integrated representations.

5.1 Integrated Characters

Here we try to follow the work of Harris, He and Olafsson for real reductive, algebraic
groups (see [HHO16, Chapter 6 and 7]) and use the integrated characters JeOsdpin (o).
The inclusion AC(O —supp(7)) ¢ WF(x) can be proven with the wave front set of the
integrated characters as an intermediate step even though in our setting there are more
restrictions on the integrated characters as for the real reductive, algebraic groups. For
the inclusion WF(7) ¢ AC(O —supp(7)) this approach gives us, however, only a weaker
statement (see Proposition to be compared with Theorem and the Remarks ,

£.10] and 1),

Recall from (4.8), that we can assume without loss of generality that supp(w) c X4 for
one deD.

5.1.1 The Inclusion AC(O -supp(w)) c WF ()

Since we want to use our knowledge of irreducible unitary representations of nilpotent
Lie groups from Section (3| we take a closer look at the decomposition of the unitary
representation 7 = [Ge @) dpu (o) (see ) and in particular the corresponding

measure pr on G.

Remark 5.1. Note that the positive measure u, is only well defined up to an equivalence
relation. Here two measures u and i’ are equivalent if and only if they are absolutely
continuous with respect to each other. More precisely, Radon-Nikodym gives us a positive
measurable function f such that du = fdu' and the unitary equivalence of the resulting
integrated representations is given by the multiplication operator by \/f. We will refer to
f as the density function.

This means that without loss of generality we can put certain conditions on the measure
ur. We will find that the right choice for this subsection is the following:

Definition 5.2.

Mg = {p positive, finite measure on X4 s.t. Pf;' e L*(p)},
Ma(m) = {pe Ma | 3 f € Lioe(n) 0 Lige(x) : = f - pic}

where the Pfaffian Pf; is an Ad*(G)-invariant polynomial on ig* (see Definition [3.24)).
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Remark 5.3. There exists p, € My such that w2 fzez Ul@m(ﬂ’al)duﬂ(l). From now on
we will only consider such a measure.

Now let us introduce a distribution by integrating the characters 6; = Tr(o;) examined
in Section Its wave front set will provide an intermediate step in proving the first
inclusion, i.e. AC(O -supp(w)) ¢ WF, (/Ed 01du(l)) ¢ WE(rr).

Lemma 5.4. For every positive measure p on Xq and every function f on X4 such that
f-Pf;l e LY (u) the integral

I, e @yan(ry

defines a tempered distibution on G.
In particular, fEd O,du(l) is a tempered distribution for any pe My.

Proof. By Lemma [3.29

[, aram] )

IA

L o)) an()

fzd Ya(@) PLa(D)|™ £ (1) dpu(l)
Ya(p) - C < 0.

IA

Hence the integral defines a distribution on G which is tempered since v4(¢) - 0if ¢ - 0
in S(G). O

Proposition 5.5. For every p € My(m) the distribution de 0,du(l) from Lemma is

an element of P(TI‘)D )

Proof. Let ¢ € C°(G). Firstly, we choose a sequence (xk, )ken = (Xk)ken Of compact
characteristic functions that exhaust ¥4 = Ugey K such that Pf; is bounded away from
zero by a constant ¢ on Ky, for all k € N. Since 6;(¢) is integrable by the previous lemma
we can write

ooy du = i [ i) dua(t).

Now, let (7;)ien be an orthonormal basis of L?(R%/?) with d,, = dim O, for all [ € Xy,
which is well-defined due to Remark and the definition of d € N". Since each o;(¢)

is trace class we have

N
S, 0 = i [ ) f St oo da) ano
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Thus, we consider for N € N the projections Py(A) := SN, (A, n:)mi, A € L2(R%/2) = 4,
for each [ € ¥4, and the functions

N
Un il g) = xu(D)e(g) Y {o1(g)mimi), leXy, ged,
i

N
Fur®) = x0) [ 3 (@)oo dg = xu(0) Tr(or() P

We want to apply the dominated convergence theorem with regard to the limit in IV and
therefore estimate again with Lemma [3.29

[fnk(DF < [Pxl2, - lo(e) 17 - xe(1)?
=Tr(o1(p) o1(0)) - xx (1) = Tr(or(0* * ©)) - x (1) = O1(¢™ * ) - xx (1)
<va(e* * ) - IPE(D ™ xi(D) = vox () - xx (1),

since | Pyop = 1 and |Pfa(1)[™! < ¢! on supp xx = Ki. By assumption p = f - jir with

fe Llloc(uﬁ) and we conclude that fn x is integrable with respect to u. Now we can

interchange the limit in N and the integral over ¥, and obtain for all p € C2°(G):

N
L] = g i [ [ S ae@emmds) au.

—o00 N—o0

In order to find a sequence in P(w) converging to the given distribution we first define
the vectors

wt= [omexa@du® = [ mexiOFO dus() ¥ ¥ ieN,

loc
A € H, which are non-negative operators of rank IV < oco. Consequently, the distributions

an, = Tr(m(p) Py, ;) are elements of P(7) and we obtain

as f € L? (ur) and consider for N € N the projections Py () = Zﬁl()\,nf’“)nf’“,

N
ava(e) = [, [ @) Rlorlgymm) du(d) dy

N
fzd (/GX"‘(Z)SO(Q) ;M(g)m,m) dg) du(l),

since for fixed IV, k € N the absolute value of the function Wy is integrable on G x X4
with respect to dgdu:

i L 1en (o)l du(t)dg < Niglwp(K5)dg(suppep) < o.

This proves the claim. O
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As a result of this and Proposition we have:

WF(fE 0 du(l)) CWF(r) ¥ pe My(r). (5.14)

Now we can prove the first inclusion:

Proposition 5.6. Let G be a nilpotent, connected, simply connected Lie group with Lie
algebra g and (7, H:) be a unitary representation of G. Then

AC(O -supp7) c WFE(m).

Proof. Let £ € AC(O - supp7). Fix an inner product (-,-) on ig*. Without loss of
generality, we may assume || = 1. Define the cones

Co:={neig" | 3t>0: |-ty <e}, Cor={neC.||n|>R} fore, R>0.

B(§)

Figure 8: The cones C. and C;,r

Let € > 0. We recall from the discussions around Equation that we may assume
O - supp(w) c Uy. Thus, by the cross-section property of ¥; we know that for any
[ € O —supp(m) the corresponding orbit meets ¥, in exactly one point. Defining the set
of all points of the orbital support in the cross-section X3 whose orbits intersect the cone
C. outside of the ball of radius R as

Acr={leO-supp(m)nEq | OnC: g+ 3} c Xy,

we have A; pys ¢ A g for all 6 > 0 and by assumption

Acr =] (Acrek N Ac Rine1) U ( N As,k) +@ V R>0.
k=0 k=R

We set D, = A N Ag 1 and Le = N30 p Ak
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In case that for all ¢ > 0 we have L. # @&, there exists Iy € O —supp« such that (910 nCe

is unbounded. Thus, £ € AC(O,;,) = WF(6,,) and it suffices to show 6, € P(7r) due to
Proposition 2.19

Consider a family of positive functions ¢5 € C°(Xy) such that fEd osdpy = 1 for all
0 > 0 whereas the support of ¢s conves to the point [y € X4 as d tends to zero. Since
5

¢s € L (=) L2 (pr), Proposition 5.5 gives us Js, 0195(1) dpx (1) € P(TI’)D for all § > 0.
Recall that for ¢ € C°(G) with (3.5) and Lemma

oe) = [ Fr()din =P [, F*(e)(Vall.v)) dmi(v).

S(d)

Hence, 0;(¢) is continuous in [ and we deduce that
() =lim [ 0,(2)0s(D) dun() ¥ 9 CE(G)
e d

. —'D’
o =%1i%fzd 6165 (1) dpir (1) € P(7)

Now consider the case where L., = @ for some £p > 0 and hence for all 0 < e <¢eg. Then
the disjoint union |72 , D x is non-empty for all R > 0. Since D, ¢ O —suppm for all £
and any 0 < € < g, there exists a sequence ky, - oo such that pr (D, ) >0 for all m e N.
Now choose for every m € N an element [,,, € D, 1, and a corresponding t,,n,, € Oy, NC:
with 7, € B:(£) n B1(0) and t,, - oo.

m

To show that £ € WF, (de 01dp(l)) for a suitable € Mg(m), we now want to use
Folland’s characterization of a wave front set in terms of the wave packet transform of
the distribution (see Theorem analogously to the beginning of [HHO16l Proof of
Proposition 6.1].

Fix an even Schwartz function F(¢) € S(ig*) such that F(¢)(z) > 0 for all x and
F(p)(x) =1if |x] < 1. Then F(y) is the Fourier transform of an even Schwartz function
¢ €S(g). By Remark and in order to show that

(0,€) eWFw(fEd 9, du(l)) Thm':'m‘WF(fEd 9, d,u(l)),

we must find for £ > 0 a constant C' > 0, an integer N € N, and a sequence (£,,,7m )menN C 19"
with 7, € Bc(§) n B1(0) and ¢, - oo such that

ctN

m

IN

otmim (0) 4~ n/4f(f 0, du(l))[ m{tmam=e.0) £, (¢ 1/2(tm77m—0))”

= (L 00 [F) 2 b =)
)L ( o, 7@ (%) dvmo) du(l)‘- (515)
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Our first goal is to obtain polynomial estimates for the inner integral. We start by
defining for I/, € ¥4 near l,, the sets

By ={CeOp nC. | |C—tmnm| <1} cig”.

Figure 9: Definition of the sets By, 1

Again, by Lemma/|3.28| we know that 9; = | Pf4(1)|™! (IdVS(d) +pr(a)(Ya(l, )))* (m}) where
my is the Eucledian measure on the vector space Vg(qy © g%, that the Pfaffian Pfy(1) is a
polynomial in [ and that the parametrization pp(q) o ¥a(l,v) is a polynomial in v € V(g
as Theorem states.

Consider the tangent spaces to the points 7 € S" ' nC.. Given &’ > 0, after possibly
shrinking C., i.e. € >0, the tangent spaces 7,0, only vary by an angle less than &’. If we
choose ¢’ small enough, we can approximate By, ;,, € Oy,.n,. by its tangent space. With
all of the above, the choice of ¢, - oo (in particular, ¢,,¢ > 2 for sufficiently large m) and
since the coadjoint action is linear, we can approximate the orbital measure and deduce
that for sufficiently large m and some k € N:

Y (Brnn) = (v +01a) (albm: ) ) () (B, 2tk

With this definition and the choice of F(¢) we can estimate

J:

Since /Bm,z F(p) (tmjt%_g) dvi(€) is a continuous function of [ € ¥4 we can find for each

Fo () a2 [, 1,20k

m,lm
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index m neighborhoods N,,, c ¥4 of [,, such that

[ 7 (M) An(Q) 2 5tk VieNy. (5.16)

Now, we can find a suitable measure p € My(7) such that the estimate (5.15)) holds:
First of all, we may also assume p;(Ny,) >0 and

Nmﬁ(UDk)ZQ = NpnN.x@ VYk+m.
ktkm

After possibly shrinking the sets IV,, c X4 there exist constants C,,, > 0 such that
1
—Cp, < inf |Pfy(1)| < sup |Pfg())] < Cp,
2 le Ny, le Ny,

since the Pfaffian Pf; is continuous.
Let xm = xn,, be the characteristic functions of the sets N, c ¥;. Now we choose

f = zomt;fﬂﬂ'(Nm)_l *Xm and W= f e

Notice that f e L{ (ur) L% (pr) and

loc
[Ed L™ (D) = 2 oty (N) ™ [Nm | PEa(1) " dr (D)

< Zcmt;qzﬂﬂ(Nm)_lﬂw(Nm) : 20;11 = QZt;,? <00,
m m

since ty, > ky, > m. This shows p € Mg(r).
Finally, we obtain by definition of B, ; and N,, and the choice of ;1 the desired estimation:

s ( Jo, 7o) (%) dﬂz(o) du(l)‘

i [ Fo(2=) ano) auo)

-t f (B / f(so>(%)|f>fdu>rldw(o) ()

Nm

m,l

E10) 1
—t_"/4_k-f Pt (D) du(l
2 S [ PE) au()

1 1
=§t;n”/4-’f-20mp,,r(zvm)-1f]v IPE(D dpn(D) > 8,742

The claim now follows with (5.14]). O
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5.1.2 The Inclusion WF(7w) c AC(O - supp(~))

Now we turn to the second inclusion WF(7w) ¢ AC(O —suppw). Here we would like to
use the wave front set of the integrated characters again as an intermediate step due to
the following

Lemma 5.7. For every positive measure p on Xq and every function f on X4 such that

[Pyt e LY(u) (that is as in Lemma , we have
WF, (fz 91f(l)du(l)) ¢ AC(O = supp ).
d

Proof. This follows by [H6r03l Lemma 8.4.17] from the fact that fEd 01f(1)dp(l) is the
Fourier transform of the tempered distribution fEd 91 f (1) du(l) which is supported in

O_Suppﬂ-:UcresuppWOU- [

Following the proof of [HHO16, Proposition 7.1] we obtain a weaker statement in our
setting:

Proposition 5.8. If there exists € >0 such that |Pf (1)| > & for all l € supp pur c Xy then
WEF(7) c AC(O —suppm).

Proof. Recall again with 1’ that H, = /2 ’H?m(w’gl) dpr (1) for the Hilbert space of

the unitary representation w. By Remark we know that for all [ € X3 we have

H; = L*(R™/?), d,, = dim O; by definition of d € N™. If u = (w),v = (v;) € M in this
direct integral decomposition the matrix coefficient is

(w(a)u.v) = [ (or(g)u.vn) da=(D).
Thus for 5 € ig*, ¢ € C(G)
F(ru)d) )] = | [ (w(gyu v)o(g)e 05 agl
| [ L ety ot 05 dun(1)
= fzd (fG<0z(g)Uz,vz)¢(9)6’2””(l°gg) dg) dﬂw(l)‘
| [ (o009 1) dyn (1)
- o6y - o dpn (1)

1/2 1/2
< tontoe 0 gl dur ) - ([ ol din) . 6.17)

IN
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Here the third equality holds as |(o;(g)ug, v)d(g)e> 18D | < |p(g)| - |w] |vy]| with com-
pactly supported ¢ € C*°(G) and u,v € L?(Zg, p1x) so that we may interchange the order
of integration.

Following the calculation in [How81, p. 128] we obtain

lo(e)lEs = Tr(o(w) o(0)) =Tr(a(¢" *¢)) = fGTr(o(h))(sO* * @) (h) dh
[ 1) [ ¢ (9)e(s ) dgan
[.#" @ [ Tem)Ly(e)(h)dn) dg

Lo @ TroLp)dy  Voeb, peC(@),

where the order of integration can be interchanged since both ¢ and ¢* have compact
support. Applying this equality here we have

lon(ge 1) [ = [ G (g7) e 2 0EO) g, [ L, (g(0)e 2 1075)] dg,

and integrating both sides over ¥4 with respect to |u|? dux (1) yields

I o060 g -l (1)
= /;d La(g—l)e—Zﬂtn(log(g_l)) -0, [Lg(¢(.)e—2ntn(log(-)))] |2 dg dpas (1)

- Loty s ([ gyl dan (1) [Zg(oe)e D) | .

The interchanging of the order of integration is possible since we have the estimate

= - =2 o -1 =27 o,
‘(75(9 1)6 2mtn(log(97") . g, [Lg(¢e 2mtn (1 g))] HulH2|
<6 (97" 7 (Lo (pe2mm0) ) | PE(D)| o]
Here ¢ has compact support and
G = O > Rog, g Ly(ge 2™108)) 1 oy ( Ly (ge72m0008)) )

is continuous (the second map by Lemma so that it is integrable over the compact
set supp(¢)~L.

In the integral over ¥y we have ||u|? € L' (i) by definition and |u;|?|Pfy|™* < %Hule
almost surely with respect to u, since we assumed |Pf;| > ¢ on supp ur. This gives us
Jwl* Ptg' € L (pir).
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Now let £ ¢ AC(O —suppn). With Lemma we know £ ¢ WF, (/Ed Ol w | dpx (1))
and by the same argument £ ¢ SS, (/Ed 0y ]|uy||* duﬂ(l)), the singular spectrum which is a

similar concept to the wave front set (see [HHO16, Definitions 2.2 and 2.3]). Furthermore,
u= [y exp”Ofu |? dpir (1) is a tempered distribution on g with & ¢ SSo(u).

When we take the analytic map ¢ :gxg—g,(Y,X)~ X »Y, [HHO16, Proposition 7.2]
gives us of the existence of open sets logU; c logU c logU containing 0 such that the
closure of logU; is contained in the interior of logU together with an open set ) c ig”
containing £ such that for every IV € N there exists a constant C' = Cy p,,r > 0 with

\ i ( [ Ou(expY exp X) (exp” ) (X)e 2 dX) Jur|2 dp ()| < GV
d g

whenever ne Q.Y elogU and t > 0. Going back the group we obtain

<CN¢ N,

fzd ( fG 0,(gh)p(h)e2mtn(ioeh) dh) ||| dpes (1)

and the assertion of Lemma [5.4] yields

(a0t

<N N,

whenever g € U, n € and t > 0. Now, if we integrate over g in a precompact set in G
with respect to a smooth density multiplied by a bounded function, then this will simply
multiply the bound by a constant, which we may absorb in C. Thus we obtain

<ON¢ N

| [t ([ gyl dyan (1) [y (06 2700)] dg
G Y4

for n € 2 and ¢t > 0. Tracing back our calculations this gives us
IF((m(-)u, v)e) (tn)] < NN

for n € Q and t > 0. By replacing N by 2N (and Con by Cy) we see & ¢ WF(7) which
proves the claim. O

Remark 5.9. The assumption on the support supp jir in the previous Proposition [5.8 is
in fact a restriction: it can already be seen in the example of the Heisenberg group Hi
where X1 = (R~ {0})-Z* and Pf1(1) =1, l e R~ {0}.

Remark 5.10. Comparing Proposition [5.8 with Theorem we only get a weaker
statement with the above proof. Analyzing this proof in order to determine where one
essentially looses something, we see that the crucial estimation is in where we
basically estimate one matriz coefficient |(o()*o(p)u,w)| = ||o(@)w| by its trace
Tr(o(p)*o(p)), thus summing up all matriz coefficients (of an orthogonal basis).
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Remark 5.11. The above proof does work for real reductive, algebraic groups in [HHO16]
since there the integrated characters [ 0, f(o)du(o) define a tempered distribution for all
feLY(p) (see [HHO16, Lemma 6.2] which relies on a result of Harish-Chandra for the
so-called invariant integral) whereas here in the nilpotent case we need f-Pf;' e L'(p)

(see Lemma and Lemma[5.7).

5.2 Integral Kernels of Integrated Representations

In order to show the second inclusion WF(7) ¢ AC(O-supp ) for general 7, i.e. unitary
representations that contain irreducible representation arbitrary close to the zeros of
the Pfaffian, we take another look at the Fourier transform of the matrix coefficient
with regard to the integral kernels of the trace class operators Jl(¢eR’7(1°g)) as given by

Proposition [3.26}
FlaOu0)o)(Bn) = [ (w(g)u,0)s(g)e >0 dg
fz (Uz (@f)(g)e_%R”(log)) UMl) dpx (1)

d
f f f 27 (1(Y)~Rnlog(B(s) ™" exp(Y)B(1))) .
Ed R2k Jm

¢(B(s) ™  exp(Y)B(1))wi(s)u(t) dY d(s,t) dpux (1),

where { X1, ..., X,,} is a weak Malcev basis through the polarizing subalgebra m for [ € ig*
with p=dimm=n-k, k = %dim O, and B:RF > G, t — exp(t1Xp1)---exp(tpXn).

Let b := span{X,+1,...,Xn} be a compliment of m in g. Assuming there exists a coordi-
nate change
(X, P(5,1)) = log(B(s) ' exp(Y)A(1)) € g = m @,
dX = dY, with Y = Q(X,s,t) and polynomials P : R?* - and Q : R? x R?* - m, we
have
F({m()u,v)p)(Rn) =
[ [ [ Qe PO g exp(X, P(s, ) ur(s)n(e) dX d(s,) dps (1),

EdRZk m

If in addition to that the first part of the exponent is linear in X, i.e.
1Q(s,s,)) = D aj(s,t,) X = f(s,t,1) em”,
j=1

and we choose a cut-off function ¢ such that ¢(exp(X,2)) = ¢x(X)¢,(Z), X em, Z € b,
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we obtain

F((w()u,0)6) (Rn) =
[ [ [ bR O g exp(X, P(s, ))ur(s)or () dX d(s, ) dpn (1)

Y4 R2k m
= [ [ o (s = i, 8.0);,) 00 (PCs,0)e B POy () (7 d(s,1) dpan (1),

Y4 R2k
where 1 = (X n; X7) + 1, € im” @ ib™.

Lemma 5.12. We make the following assumptions:

(i) There exist 6, >0 such that |P(s,t)| <0 implies |s —t| <e.
(11) Yn¢ AC(O—-supprm) 3Ije{l,....p},Ro,c1,c2>0,beN VR>Ry:

1
|Rn; — qj(s,t,1)|>c1Ry —ca V |s—t]| <e, | € supp(pr).

Then
WF(7) c AC(O —supp).

Proof. Let n ¢ AC(O —suppw) and ¢ be a cut-off function ¢ with ¢ = ¢x - ¢, as before
and supp ¢, ¢ Bs(0). Then we have with the computations above:

Fr=|F((7(-)u,v)¢)(Rn)|

- Lf [ b ((Ruy = 4j(5,,0)),,) 60 (P(s, )28 Py (s (7 d (5, ) dpen (1)

d R2k
< [ [ onlRn =g (st 017 o (P(s,0)u(s)] - ()] d(s,) dpn ()
Ed R2k
<ov [ [ 1= a0 (o)l (s + @)l d(s. @) dpn (D)
g B:(0) Rk

by assumption (i). With assumption (ii) we can further estimate:

1 _
FrsOxaRt—of™ [ [ )]s+ a)ld(s.a) dur()
d &
1 _
“OnlerRi—eof ™ [ f L ()] Tavn(s)] dCs,0) dpa (1)

<CylerRb-af™ [ f ot o) da (1),
d 5
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where T, is the translation by a € B.(0) which is an isometry on L?. This gives us

1 _
FrsOxaRt—ef ™ [ [ ful | Tovl 2 dadyen(0)
d 5
1 _
- CnlesRE ™ [ o Izl 2 dadyn (1)
d 5
1 -N 1 -N
<CnelerRY - ¢ fz ]l g2 [vil 2 dpn (1) = Crneler RY = co| ™ (|uill 2, [vill £2)
d
1 _ _N
<COnelerRY = oo Nl vl €O (B7T).
This finishes the proof. O

Remark 5.13. In particular, if we have n ¢ AC(O —suppn) and want to check assump-
tion (i1) of the previous Lemma it suffices to find j € {1,...,p} such that

nj+0 A sign(n;)-q;(s,t,1) < Const. Vst eRF, 1 esupp px.

Even though the assumptions in the previous lemma seem to be quite explicit it is actually
all we needed in the following examples in order to show the desired inclusion without
any assumptions regarding the unitary representation .

Example 5.14. For the Heisenberg group H, (see Section we know in the case
of the maximal dimensional orbits of type d®) ie. 2n-dimensional affine planes, that
Pf(l) =1(Z)"™ and ¥ =R*- Z*. Now define for € > 0 the set

N:={leS[U(Z)> e} 2R~ By(0)

and the characteristic function xy = yn. Let m be a unitary representation of H, and
define

T o= /Rxal-xd,uﬂ(l), Ty i= Axal-(l—x)duﬂ(l) = T =+ (5.18)

Then Proposition gives us directly WF(m) ¢ AC(O - suppm) and for the second
part we can use Lemma and Remark [5.13} Since

AC(O)) =span(Xy,..., X, Y',...Y") VieX

we only have to regard ne R- Z*.
With the weak Malcev basis {Z,Y1,...Y,, X1,...X,,} through m = span(Z,Y1,...Y,)
and b = span{Xj,... X, } we compute
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B(s)_lexp(zZ+ ZyzYl)B(t) = exp((z— %(t+ s)-y)Z + ZleZ + Z(tj - sj)Xj)
= P(s,t) = Yt - 5)X;, Q(z,y,t,s):(z+%(t+3)-y)Z+Zini

1
= q(s,t,1) =1, qj(s,t,l):i(tj+3j)l for 2<j<n.

It is clear that ¢ is bounded on supp(l - x) = Byz(0). Thus, we have n ¢ WF(72) by
Lemma and Remark This proves WF(m2) ¢ AC(O —supp m2). Combined:

WF(7) c WF(m) U WF(m3) ¢ AC(O —suppm1) UAC(O —suppms) = AC(O —supp ).

The only other case consists of O-dimensional orbits. But then Pf =1 and the assumption
of Proposition is fulfilled for any unitary representation .

Example 5.15. We consider the group K3. From Section [3.3] we know that we have the
three orbit types D = {d = (0,1,1,2),d® = (0,0,1,2),d® = (0,0,0,0)}.

dM: In the case of maximal dimension we know that £ = R*- Z* + R-X* 5 (§,8) =
and Pfy(l) =1(Z) = 6. Now, for € >0 define the set

N:={leX||l(Z)|>e} 2 (RN B(0)) xR

and the characteristic function x = xn. Let m be a unitary representation of Ks
(supported in ). Defining 71 and 79 as in (5.18)) we again have 7w = 71 + 7o and
WEF () ¢ AC(O - suppm) by Proposition .8

We know O; =dZ* +{tY*" + (B + %)X* +sW™ | s,t € R} and its asymptotic cone is
AC(O)) =sign(H)R, - X*+R-W* VI=(50)¢€>.

In particular, this gives us R-W* ¢ AC(O —supp7) and we only have to check the
remaining three directions. To do this we further decompose 7 := 73 + 7, with
regard to the sign of §:

wpo= [ [ons (1-x)dus6.8). myo= [ [ osse (1= x)dna(3.8).
We start with 73: As 0 <0 < ¢ for all (6,5) € O —supp m2 we know
R, - X*"+R-W*cAC(O-suppmy) cR- Y +R- X" +R-W".

In addition to that, we only have three different possibilities:

1) AC(O -suppm3) =R X*+R-W* « 3CeRV (4,8) esupppy; : f>C
(see Figure [10a))
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2) AC(O-suppmy) =R-X"+R-W* < {B | (0,8) € supp,u,rg} is not bounded
from below but {—(5,8 | (6,8) esuppuw;} c R is bounded from above (see
Figure

3) AC(O-suppms) =R-Y*"+R- X*+R-W* < {—6ﬁ | (0,5) esupp,uﬁ;} is
not bounded from above.

(a) Case 1) (b) Case 2)

Figure 10: Relation between possible support of 73 and the asymptotic orbital support
projected onto the X*, Z*— plane

With the weak Malcev basis {Z,Y, X, W} through m = span(Z,Y, X ) and h =R-W,

we compute
B(s) " exp(2Z + y¥ + 2 X)B(t) = exp ((= - %(t F8)y+ 1—12(t2 b 52+ 4st)z) 2+
(y- %(t +9)D)Y +2X + (- )W)
e Qeyits) = (5 %(t Fs)y+ %(ﬁ e dst)) 7 + (y - %(t +8)2)Y + 2X
= q(s,t,1) =6, qa(s,t,1) = %(t+5)6, q3(s,t,1) = (%(t2+ts+s2)6+ﬁ).

Now we check the assumption (ii) of Lemma in the three cases from above in
reverse order since it is a condition for all points that are not in the asymptotic
cone:

3) It is clear that ¢; is bounded on supp(1l —x). Thus we have +Z* ¢ WF(73)
(for all cases) by Lemma and Remark

2) If £Y* ¢ AC(O -suppmy) the set {-03|(9, 3) € supp pr } ¢ R is bounded from
above.
Assuming that for all ¢ > 0 there exists an sufficiently large R and s € R,
a € [—&,¢e] such that |g2(s,s+a,6,8)+ R| < %R (otherwise we would be already
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done with j = 2), then |s + Ja| > & and we estimate for j = 3:

= 26
|(RY* _q(878+a757/8))3| = ‘Q3(87S+a757/6)|
= ‘é((s+a)2+ (s+a)s+s2)5+ﬁ‘ = ‘é(3s(s+a) +a2)5+,8‘

2 2
|1 3(s+1a) —la2 0+p zé 3<s+1a) —la2 -5
6 2 2 6 2 2
§(3R* 1 4 3R 1 ,
ZE(W‘?)_W'Z§_E“_W'

If now || is bounded, we immediately see the desired estimation as § and a are
bounded as well. If that is not the case we write further for |5] > 1 (w.l.o.g.):

3RZ 4% 3Rz &3
as(s,5+0,6,8)] > |3 (— )

_ _ > T _
8018 12|4] “8C; 12 7
with the bound for —§3, which proves assumption (ii) in this case.
1) If -X* ¢ AC(O -supp ;) then there exists a constant C' € R such that 5> C.
Since t? +ts+ s2 >0 for all s,t € R we have

—qs3(s,t,1) = - (é(t2 +ts+s2)0+ 6) <=-2C,

and Lemma and Remark give us —X* ¢ WF(73).

Now turning to 75, we have —e < § <0 and therefore
RO-X"+R-W*"cAC(O-suppmy) cR- Y +R- X" +R-W™.

This means we only have the three following possibilities:

') AC(O-suppmy) =R_-X"+R-W* < 3CeRV (4,8) esupppy; : f<C
(see Figure [11al).

2) AC(O-suppm;y) =R- X"+R-W* < {B | (6,8) € suppuﬂg} is not bounded
from above but {—(56 | (6,8) esupp,uﬂg} c R is bounded from above (see
Figure [11b)).

3) AC(O-suppmy) =R-Y*"+R-X*"+R-W* « {—5ﬁ | (0,5) esupp,u@} is

not bounded from above.

Thus the computations are analogously to the ones for 75. The only difference is:
If X* ¢ AC(O -suppm;,) we have

1 1
qs(s,t,1) = 6(752 +ts+52)0+f< §(t2 +ts5+5%)e +2C.
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d®:

d®:

X*

(a) Case 1) (b) Case 27)

Figure 11: Relation between possible support of m; and the asymptotic orbital support
projected onto the X*,Z"— plane

Again, Lemma and Remark give us X* ¢ WF(75) in this case as well.

Here, we know S5 =R*-Y* 57, O, =9Y* +R- X* + R-W*, x,(2,y,,0) = 2™
and Pfy(7) = ~. In addition to that we can use the same m as for d!), thus have
the same P and () as in the case above and can compute

1
QQ(S,t,’)’) =7 Q3(S,t,’}/) = §(S+t)7) q1 =0=C_I4-

We have +Z* ¢ AC(O - suppm) for all = supported in ¥y and ¢; is obviously
bounded, thus we know +Z* ¢ WF ().

Since +X*,+W* € AC(O,) for all v, we know £X*, +W”* ¢ AC(O - supp).

For the direction Y* we use the same approach as above for Z* in the Heisenberg
group example (see ) and use Proposition if v is bounded away from 0,

and Lemma if |y <e.

Again as in the Heisenberg group example, the trivial case consists of 0-dimensional
orbits where Pf = 1 and the assumption of Proposition [5.§|is fulfilled for any unitary
representation .
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6 Applications to Restrictions of Representations

A fundamental problem in representation theory is the branching problem, i.e. restricting
a unitary representation of a Lie group to a closed subgroup. More precisely, it is known
(see for example [Kob05, Theorem 3.1.2]) that for H c G real connected Lie groups of
type I the restriction 7|y of a unitary representation m of G decomposes uniquely into a
direct integral:

7T|H=/ﬁ7®m”(7)du,r(7'), my(7) e Nu{oo},

where m(7) is the multiplicity of 7 and p, is a Borel measure on H, the unitary dual
of H. Then the branching problem consists of determining the measure p, and the
multiplicities m, (7). It is very hard to find explicit branching laws for general G, = and
H. Let us first take a look which results are already known:

If G and H are both nilpotent and 7 is unitary irreducible Kirillov shows that the support
of the measure p, is the projection of the corresponding orbit O, c ig* onto ih* (see
|Kir76l §15.5 Theorem 1]).

Ten years later Corwin, Greenleaf and Grelaud were able to compute the measure and
the multiplicities in [CGG8T| and gave a geometric description of the multiplicities in
[CGS8Y|: Let ¢ :ig* — ih* be the natural projection and 7 be irreducible. Then by [CGS88|,
Theorem 1.1 b)]

~ @mﬁ(l)d. I
Tl = fq(OS)/Ad*(H) K ).

where Of cig” is the coadjoint orbit associated to m € @, 7, € H the irreducible unitary
representation associated to [ € ih*, and [f] the measure class on the quotient space (a
push forward of the invariant measure p on O%).

Furthermore, they show in [CG88, Theorem 1.3] that the multiplicity of each 7; € H,
l €ib”, in the direct integral above is given by

mx(l) = number of Ad*(H)-orbits in O ng™! (OlH) cig”.
In particular,

Tesupp (mly) < Ofcq(@f). (6.19)

At the same time Lipsman obtained the same results in [Lip89] but used different meth-
ods in his proofs which he then used to generalize the results for completely solvable
groups in [Lip90]. Shortly after that, Fujiwara gave the branching law for exponential
solvable Lie groups in [Fuj91].

However, already for compact G and H it becomes rather complicated. For example,
Heckmann works in [Hec82] with so called asymptotic multiplicity functions and there-
fore obtains only asymptotic analogues to the results mentioned above. Another example
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is [Hec82, Theorem 7.5] where more assumptions are necessary only to have the one in-
clusion supp(ur) € ¢(Or). For other types of Lie groups progress was made by putting
further conditions on the representation: For example, Kobayashi started studying real
reductive groups in the case that the restriction is discretely decomposable (and has fi-
nite multiplicities) in [Kob94],[Kob98a] and [Kob98b|, and explicit branching laws were
obtained (see e.g. [Oshl5] and references therein). But the case where the restriction
contains both continuous and discrete spectrum has not been treated systematically, a
general strategy was introduced by Frahm and Weiske this year in [FW20)].

Other examples are highest weight modules (see e.g. [Kob08]) and principle series rep-
resentations (see e.g. [Vog81], [HT93]).

However, very little seems to be know when the two groups are not of the same type. To
obtain at least asymptotic information about the support of the restriction we can look
at the wave front sets and their connection to the asymptotic orbital support of a unitary
representation as already discussed in Section We use the two following results by
Howe regarding the wave front sets of restrictions:

Theorem 6.1 (see [How81l, Proposition 1.5]). Let G be a Lie group with Lie algebra g,
m o unitary representation of G and H c G a Lie subgroup with Lie algebra by. With the
natural projection q:ig* — ih* we have

q(WF(7)) c WF(7|g).

Theorem 6.2 (see [How81, Proposition 1.6]). If we have WF(mw) nker(q) = {0} in
addition to the setting of the previous theorem, then

q(WF(m)) = WF (x| ).

Combining Theorem with Howe’s result about the wave front set for compact Lie
groups (see [How81l Proposition 2.3], compare Theorem [2.21)) we obtain

Theorem 6.3 (see [How81), Proposition 1.5 and Proposition 2.3|). Let G be a Lie group,
K c G a compact Lie subgroup and m a unitary representation of G. Then

q(WF(7)) ¢ AC(O -supp (|k)) -

We recall that the asymptotic cone of S cig* is defined as
AC(S)={neig” | Yopen cone C3n : Cn S unbounded} u {0}

(see Definition [2.20) and the orbital support of 7 as O = supp 7 = Usesupp(r) O < 18"

Then these kinds of statements tell us in which directions there have to be infinitely
many points in the orbital support of the restriction 7|g, i.e. which irreducible unitary
representations of K have to occur in the decomposition of 7|x.
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Now, let G be a Lie group with Lie algebra g, m a unitary representation of G and
N c G a nilpotent, connected, simply connected Lie subgroup with Lie algebra n with
the natural projection ¢ : ig* — in*. Then our main result Theorem combined with
Howe’s Theorem [6.1] gives us

q(WF(m)) ¢ AC (O -supp (7|n)) -

With Theorem we also have

WF(r) nker(q) = {0} = q(WF(r))=AC(O -supp (7r|N)) .

If G itself is also nilpotent, connected, simply connected, Theorem applied to the left
hand side as well gives us

q(AC(O -suppm)) c AC ((9 — supp (W‘N>> )

This can be viewed as half of an asymptotic version of (6.19]).

In order to generalize this statement to other types of Lie groups G we have to assume
that there is a way to associate to any o € supp(w) c G a coadjoint orbit O, c ig*.
This is for example the case if G is a real reductive, algebraic Lie group and 7 is weakly
contained in the regular representation of GG: Duflo and Rossmann associated to each
0 € Giemp a finite union O, c ig* of coadjoint orbits (see [Duf70], [Ros78] and [Ros80]).
Then with [HHO16, Theorem 1.2] and the above we have the following

Theorem 6.4. Let G be a real reductive, algebraic Lie group and m be weakly contained
in the regular representation of G. If N c G is a nilpotent, connected, simply connected
Lie subgroup, then

q(AC(O -suppm)) c AC ((9 — supp (W‘N>) .

This again tells us which irreducible unitary representations of N have to occur in the
decomposition of w|y. While this statement can now be entirely stated in representation
theoretic terms its proof is based on the notion of wave front sets and microlocal analysis.
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7 Outlook

To finish this thesis we want to give a short outlook. As mentioned before it would be
worthwhile to know that the wave front set equals the asymptotic orbital support of a
unitary representation for as many Lie groups as possible, i.e.

WF(7r)=AC( U 00). (7.20)

o esupp()

Then one could obtain asymptotic information about the decomposition of unitary rep-
resentations, for example restrictions or induced representations between different type
of Lie groups.

Admittedly, there has to exist an orbit method for the Lie group, i.e. a relation between
a set of coadjoint orbits and the unitary dual, in order to have a well-defined right hand

side of statement (7.20)).

Let us take a closer look at the classes of Lie groups for which the statement is proven
and what the methods of proof is.

Firstly, for compact, connected Lie groups one uses the coadjoint orbits of the highest
weights. In this setting Howe reduces the statement to a maximal torus, i.e. the abelian
case, where it can be computed explicitly (see [How81l Propositions 2.1 and 2.3]). How-
ever, this only works for compact Lie groups.

Secondly, for real reductive Lie groups Duflo and Rossmann associated a finite union of
coadjoint orbits to each irreducible, tempered representation and provided a character
formula. Using this relation Harris, He and Olafsson obtained the statement in [HH016,
Theorem 1.2]. In their proof they use integrated characters whose wave front set provides
an intermediate step in the desired equality . That these integrated characters are
well-defined in general in this setting is based on a result by Harish-Chandra.

Lastly, we studied nilpotent, connected, simply connected Lie groups in this thesis. Their
comprehensive orbit method was the first of its kind and is due to Kirillov who also pro-
vided a character formula. For this reason we started following the approach by [HHO16]
but found that the integrated characters need more assumptions. This means that the
proof does not work in all generality (see Proposition and Remarks and
. The solution was to turn to the methods of proof used in the context of nilpotent
Lie groups: by induction over the dimension of the Lie algebra we could prove microlocal
estimates for the Fourier transform of matrix coefficients directly (see Propositions
and [4.5)).

In conclusion it looks like one has to employ the methods of proof that are conventional
in the given setting instead of a general line of argumentation in order to give an elegant
proof of the desired statement.

Another case in which an orbit methods exists are solvable Lie groups. Thus, a next
step could be to prove the statement in this case. As Kirillov summarizes in [Kir(04,
Chapter 4 §1] the orbit method for exponential Lie groups is very similar to the one
for nilpotent Lie groups, only the construction of the irreducible, unitary representations
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and the character formula have to be modified slightly. The proofs are due to Pukanszky,
[Puk67] (see also [BCD*67| and [Bus73]|).

Solvable, but non-exponential Lie groups do not have to be of type I. But if they are the
orbit method still works after appropriate amendments: one hast to restrict to a subset
of coadjoint orbits, the so-called rigged coadjoint orbits, and use holomorphic induction
in the construction of the irreducible unitary representations. These results are due to
Auslander and Kostant, [AKTI].

In both cases the proofs are again by induction over the dimension. This suggests that
our approach can be used (and modified) to obtain the statement in these settings.
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