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Abstract

Miniaturization is at the heart of technical progress in the semiconductor industry. As electronic compo-
nents approach the atomic limit, quantum physical effects increasingly come to the fore, which may lead
to fundamentally different electronic and thermal properties. Gold deposited on stepped silicon surfaces
self-assembles into one or two-atom-wide atomic wires, whose structural, electronic, and thermal prop-
erties are investigated here using the examples of the Si(553)-Au and Si(557)-Au surfaces.

One of the practical problems of miniaturization is the contamination by impurity atoms. As a first
and important step to understand the influence of such imperfections, the influence of oxygen on the
electronic transport properties at room temperature is investigated in the framework of ab initio density-
functional theory in the present work. Thereby, different oxygen adsorption sites are identified for the
two structurally similar surfaces. In the case of Si(557)-Au, the associated band structures exhibit drastic
modifications upon oxygen adsorption, such as an increased effective mass or a band gap opening. Both
mechanisms explain the experimentally observed rapid decline in conductivity. A similar modification of
the conduction channels is absent in Si(553)-Au, which displays a much smaller decrease in conductivity.
Based on these band structures, it is further demonstrated that the upper and lower energy limit of the
electron-hole excitation spectrum is directly related to the plasmon dispersion in the case of quasi-one-
dimensional systems. More specifically, it is shown that the measured plasmon dispersion and the lower
limit of the electron-hole excitation spectrum obtained from density-functional theory allow inferring a
general trend of the unoccupied bands. However, small band gaps are not resolved.

A substantial part of this dissertation then addresses fundamental problems of these atomicwires such
as one-dimensional spin order and phase transitions. It is demonstrated that a diamagnetic step-edge
configuration is responsible for the experimentally observed symmetry breaking of Si(553)-Au at low tem-
perature. In this configuration, every third step edge atom undergoes an sp3 → sp2 + pz rehybridiza-
tion, resulting in an empty dangling bond. Compared to the generally accepted spin-chain model, the
rehybridizedmodel is energeticallymore stable and better accounts for the experimental observations. In
contrast, Si(557)-Au favors a spin-polarized surface configuration due to an enhanced spin-spin exchange
interaction.

Based on the rehybridized model, the phase transition of Si(553)-Au is examined utilizing ab initio
molecular dynamics simulations. It is identified as an order-disorder transition, where fluctuations of
the step-edge atoms destroy the ×3 order of the surface. A soft Au-chain phonon mode drives the phase
transition by transient modifications of the electron chemical potential, which leads to a self-doping of
the step-edge dangling bonds. With rising temperatures, also the ×2 order of the Au chains is lost. The
order-disorder phase transition well explains previous low-energy electron diffraction, scanning tunnel-
ing microscopy, and electronic transport measurements. It is further corroborated by the comparison of
surface phonon modes obtained from Raman measurements with calculated vibrational modes within
the frozen-phonon approximation. The mechanism of phonon-induced self-doping presented here can
be considered to be relevant beyond the scope of self-assembled atomic wires.
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Zusammenfassung

Die Miniaturisierung steht im Mittelpunkt des technischen Fortschritts in der Halbleiterindustrie. Mit
der Annäherung elektronischer Bauteile an atomare Größen treten zunehmend quantenphysikalische Ef-
fekte indenVordergrund, die zugrundlegendanderenelektronischenund thermischenEigenschaften füh-
ren können. Auf gestufte Siliziumoberflächen abgeschiedenes Gold assembliert sich zu ein oder zwei Ato-
me breite Drähte, deren strukturelle, elektronische und thermische Eigenschaften hier am Beispiel von
Si(553)-Au und Si(557)-Au untersucht werden.

Zu den praktischen Problemen der Miniaturisierung gehört die Kontamination durch Fremdatome.
Als erster und wichtiger Schritt, um den Einfluss solcher Imperfektionen zu verstehen, wird daher in der
vorliegenden Arbeit zunächst der Einfluss von Sauerstoff auf die elektronischen Transporteigenschaften
bei Raumtemperatur imRahmenderDichtefunktionaltheorie untersucht. Dabeiwerdenunterschiedliche
Sauerstoff-Adsorptionsstellen für die beiden strukturell ähnlichen Oberflächen identifiziert. Im Fall von
Si(557)-Au weisen die zugehörigen Bandstrukturen drastische Veränderungen durch die Sauerstoffad-
sorption auf, wie z.B. eine erhöhte effektiveMasse und die Öffnung einer Bandlücke. BeideMechanismen
liefern einen Beitrag zu dem experimentell beobachteten starken Abfall der Leitfähigkeit. Ähnliche Mo-
difikationen der Leitungskanäle fehlen bei Si(553)-Au, welches eine wesentlich geringere Reduktion der
Leitfähigkeit aufweist. Basierend auf diesen Bandstrukturen wird außerdem gezeigt, dass im Fall von
quasi-eindimensionalen Systemen die obere und untere Grenze des Elektron-Loch-Anregungsspektrums
direkt mit der Plasmonendispersion zusammenhängt. Insbesondere wird gezeigt, dass die gemesse-
ne Plasmonendispersion und die innerhalb der Dichtefunktionaltheorie berechnete untere Grenze des
Elektron-Loch-Anregungsspektrums Rückschlüsse auf die unbesetzten Bänder erlauben. Allerdings wer-
den kleine Bandlücken nur begrenzt wiedergegeben.

Ein wesentlicher Teil dieser Arbeit beschäftigt sich anschließend mit fundamentalen Problemen die-
ser atomaren Drähte wie eindimensionale Spinordnung und Phasenübergänge. Im Fall von Si(553)-Au
wird gezeigt, dass eine diamagnetische Stufenkante für die experimentell beobachtete Symmetriebre-
chung bei tiefen Temperaturen verantwortlich ist. Dabei findet an jedem dritten Stufenkantenatom eine
sp3 → sp2 + pz Rehybridisierung statt, die zu einer leeren ungesättigten Bindung führt. Verglichen mit
dem allgemein akzeptierten Spin-Chain-Modell ist das rehybridisierte Modell energetisch stabiler und
erklärt die experimentellen Beobachtungen besser. Im Gegensatz dazu bevorzugt Si(557)-Au eine spinpo-
larisierte Oberflächenkonfiguration aufgrund einer stärkeren Spin-Spin-Austauschwechselwirkung.

Basierend auf dem rehybridisierten Modell wird der Phasenübergang von Si(553)-Au mit Hilfe von ab
initioMolekulardynamik-Simulationenuntersucht. Dieserwird als einOrdnungs-Unordnungs-Übergang
identifiziert, bei dem Stufenkantenfluktuationen die ×3 Ordnung der Oberfläche zerstören. Eine weiche
Phononenmode der Au-Kette treibt den Phasenübergang durch temporäre Änderungen des chemischen
Elektronenpotentials an, was zu einer Selbstdotierung der ungesättigten Stufenkantenbindungen führt.
Mit steigenderTemperaturgehtauchdie×2OrdnungderAu-Kettenverloren. DerOrdnungs-Unordnungs-
Phasenübergang liefert eine Erklärung für frühere Rastertunnelmikroskopie-, elektronische Transport-
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und niederenergetische Elektronenbeugungsexperimente. Er wird außerdem durch den Vergleich von
Oberflächenphononenmoden aus Raman-Messungen mit berechneten Schwingungsmoden innerhalb
der Frozen-Phonon-Approximation bestätigt. Der hier vorgestellte Mechanismus der phononeninduzier-
ten Selbstdotierung kann weit über den Bereich der selbstassemblierten atomaren Drähte hinaus als
relevant angesehen werden.
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I am awaiting the day when people remember the fact that dis-

covery does not work by deciding what you want and then dis-

covering it.

N. David Mermin

1
Introduction

In his 1884 novella Flatland1, Edwin A. Abbot describes a two-dimensional (2D) world that is populated
by polygons. On a journey of the protagonist A Square to the one-dimensional (1D) Lineland, he comes

to realize that the points inhabiting this landneither perceive nor arewilling to acknowledge the existence
of a 2Dworld. Ironically, the protagonist himself does not believe in the existence of a three-dimensional
(3D) world, but eventually changes his mind after a controversial discussion with a sphere and a visit to
Sphereland. Likewise, the sphere is indignant about A Square’s idea of a possible world whose dimension
exceeds that of a 3Dworld. One after another, the characters in this novelmust realize that there are other
worlds of higher dimensions of which they have not been aware.

Interestingly, mankind seems to have traveled a very similar path: Since the discovery of the theory of
relativity in 19102, the knowledge of a four-dimensional spacetime has settled in our minds. While it has
helped us raise our eyes to the things above and improved our understanding of the universe, it also—
figuratively speaking—diverted our attention from the things below at our feet: Only later was it discov-
ered that low-dimensional systems possess properties that are exclusive to these dimensions.

In solid-statephysics—longbefore the crystalline structureofmanymaterialswasprovedbyX-ray scat-
tering3—the focus has been primarily on bulk materials. It was not until later in the 1960s that surfaces
also grew in relevancedue to improvedultra-highvacuumtechnology, the availability of single-crystalline
samples, and the discoveries made in the field of electron-solid interactions4. However, it took another
50 years and a Nobel Prize awarded to Geim and Novoselov before the importance of 2D systems was rec-
ognized by a broader scientific community. Althoughmost of the theorywas developed earlier5, it was the
discovery of graphene with its exotic properties that significantly pushed the advance of 2D physics6.

The scientific community engaged in 1D physics finds itself in a similar state of tension: In the 1950s,
Tomonaga and Luttinger laid the foundation for the theoretical description of 1D objects7,8. These possess
a variety of exotic properties, such as spin-charge separation. Consequently, charge and spin waves are
distinctive excitations of a Luttinger liquid material. However, due to the inherent instability of 1D sys-
tems, findingmaterials that actually behave as Luttinger liquids is challenging9. To this day, scientists are
working on the realization of 1D systems where at least some of these exotic properties can be observed.
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1 Introduction

One family of structureswith a 1D topology are gold nanowires grownon silicon surfaces. These atomic
wires self-assemble on Si(111) and its vicinal surfaces, forming regions of equidistant, parallel Au chains10.
These systems have been extensively investigated for characteristics that can be attributed to 1D physics.
Although initially it seemed thatoneof these systemsexhibited spin-charge separation11, further investiga-
tionshave shown that the systembehavesneither like aLuttinger liquidnor like a classical Peierls system12.
However, it was suggested that several properties of two respective vicinal surfaces—namely Si(553)-Au
and Si(557)-Au—could be explained by an antiferromagnetic spin chain ordering13. The formation of spin
chains in the absence of magnetic materials is a largely unexplored field. Among their possible applica-
tions are the realization of high-density storage devices14 or spin-shift registers15. A detailed investigation
of these spin chains is part of this dissertation.

Furthermore, the Si(553)-Au surface exhibits a complex phase transition. This is reflected very differ-
ently in the structural, electronic, and transport properties, e.g., in themeasured transition temperature16.
Therefore, an important aspect of this dissertation is the study of this phase transition.

Another critical aspect is the ongoing miniaturization in semiconductor manufacturing. The year
2020 marked the milestone at which 5 nmmanufacturing entered volume production17. In contrast, the
self-assembled gold wires on the vicinal Si(111) surfaces consist of one to two gold atoms in width, cor-
responding to an effective width of the transport channel as low as 0.6 nm18. A better understanding of
self-assembled nanowires could, therefore, play a significant role in future miniaturization.

N. D. Mermin’s quote at the beginning of this introduction is a good reminder that science often holds
treasures that one did not expect to find. One digs in hope for a particular discovery and stumbles upon
quite another. This dissertation was no different: In search of an explanation for the complex phase tran-
sition of Si(553)-Au in the context of spin chains, my supervisor Prof. Dr. W. G. Schmidt and I not only
stumbled upon a new structural model that eliminates the need for spin chains; we also found a novel
mechanism for the self-doping of dangling bond nanostructures. This mechanism is facilitated by tran-
sient changes of the electronic chemical potential by coupling to a low-frequency phononmode.

This dissertation is structured as follows: Chapter 2 lays the theoretical foundations of 1D systems. This
includes abrief summaryof Fermi liquid theory and its failure in onedimensionaswell as a concise outline
of Luttinger liquid theory. Later, the Peierls instability and Mermin-Wagner theorem are described. Sub-
sequently, the Nosé-Hoover thermostat is discussed, which is a fundamental building block of the ab ini-
tiomolecular dynamics simulations presented in this dissertation. Chapter 3 introduces self-assembled
metallic wireswith a focus on goldwires on silicon surfaces. A summary of the results of Si(553)-Au—and
in a shorter form of Si(557)-Au—published to this day are collected and discussed.

Starting with chapter 4, the results of this dissertation are presented. This chapter deals in particular
with the influence of oxygen on the electronic properties of Si(553)-Au and Si(557)-Au. Besides determin-
ing the oxygen adsorption sites, the different influence of O2 on both surfaces is analyzed. Furthermore,
a theory for predicting unoccupied bands based on experimental plasmon dispersions and calculated oc-
cupied bands is tested. The spin-chainmodel for Si(553)-Au and Si(557)-Au is examined inmore detail in
chapter 5. Thereby, a newstructuralmodel for Si(553)-Au is introduced and comparedwith the spin-chain
model based on available experimental data. Chapter 6 focuses on the phase transition of the Si(553)-Au
surface. Finally, ab initiomolecular dynamics simulations are used to investigate the phase transition, and
the obtained results are validated against experimental data.

2



This proving of such and such I found to be almost like cheating.

You start somewhere, and then you go into a dark tunnel, and

then you come out at another place. You find that you have

proved what you wanted to prove, but in the tunnel, you don’t

see anything.

Werner Heisenberg

2
Theory

This chapter discusses the theoretical background that largely supplements the findings in this dis-
sertation. Sections 2.1–2.3 cover the specifics of 1D systems, why they are fundamentally different

from higher-dimensionala materials, and the particular challenges such as the Peierls instability and the
Mermin-Wagner theorem. Section 2.4 then discusses the Nosé-Hoover thermostat used in chapter 6 for
the ab initiomolecular dynamics simulations at finite temperatures.

2.1 A Brief Introduction to Luttinger Liquid Theory

The physics underlying one-dimensional metals is best explained by starting with the model describing
their 3D counterparts: the Fermi liquid theory established by L. D. Landau19–22. After a brief summary of
this theory, its limited applicability to 1D systems is outlined along with a concise overview of Luttinger
liquid theory. A phenomenological approach is followed here inmost cases. This facilitates a brief, under-
standable overview without going into too much technical detail. Most of the derivations in this section
are based on Refs. [23, 24], and the reader is referred to these materials for a more extensive analysis.

2.1.1 Fermi Liquid Theory

A system consisting of N identical, noninteracting electrons in a large volume V is fully described by the
momentum distribution function of the ground state n0(k). At T = 0K, the distribution function is unity
for all momenta |k| =: k < kF, i.e., all states up to the Fermi wavevector kF are filled. As illustrated in
Fig. 2.1(a), all other states are unoccupied at 0 K, and the distribution function has a discontinuity of size 1.
This discontinuity then defines the Fermi surface. The Fermi wavevector kF is given by25

4π
3
k3F =

N
g
(2π)3

V
⇐⇒ kF =

(
6π2N
gV

)1/3

, (2.1)

aEverything with a dimension greater than one is considered high-dimensional here.
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2 Theory

kF k

n(k)

1

kF k

n(k)

1

EF ω=ε0
k1 ω=ε0

k2 ω

A(k,ω)

EF ωω=εk2ω=εk1

A(k,ω)

(a)

(c) (d)

(b)

Figure 2.1: The distribution function of (a) free noninteracting electrons and (b) interacting electrons at T = 0 K. (c) The spectral
function A(k,ω) consists of delta functions in the case of free electrons, showing well-defined excitations for ω = εk. (d) The
excitations are broadened for interacting electrons and get sharper close to the Fermi energy EF (see text).

where g is the spin degeneracy. With the reduced Planck’s constant set to unity ℏ = 1, the total energy of
the ground state is

E[n0] =
∑
k

(
k2

2m
− EF

)
n0(k) with EF :=

k2F
2m

. (2.2)

Here,m is the mass of an electron, and EF is the Fermi energy up to which the states are occupied.
Within the Fermi liquid theory, an excitation is defined by adding a single particle to the system. As N

andV are large, the excitation ismeasured by δn0(k) = ñ(k)−n0(k). The kinetic energy of a free electron
withmomentum k then yields

ε0k =
δE[n0]
δn0(k)

=
k2 − k2F
2m

. (2.3)

Since the Fermi sea is filled up to the Fermi energy EF at zero temperature, the Pauli principle ensures that
electrons are added at energies ε0k > EF with δn0 > 0 (and holes at ε0k < EF with δn0 < 0). The
excitations are eigenstates of the Hamiltonian and thus have an infinite lifetime. More specifically, the
retarded Green’s function of a free electron is given by26

Gret(k,ω) = lim
η→0+

1
ε0k − ω + iη

. (2.4)

The excitations are characterized by the spectral function

A(k,ω) = − 1
π
ImGret(k,ω), (2.5)

which gives the probability of finding a state with frequency ω and momentum k23. For free particles,
the spectral function is a delta distribution with A(k,ω) = δ(ω − ε0k), see Fig. 2.1(c). According to the
Heisenberg uncertainty, the sharp energy corresponds to an infinite lifetime of the excitations. This is
consistent with the fact that these excitations are eigenstates of the Hamiltonian.
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2.1 A Brief Introduction to Luttinger Liquid Theory

In the case of interacting particles, treating the Coulomb interaction is difficult because it has the same
order of magnitude as the kinetic energy. Thismakes it unsuitable for perturbation theory. One of the key
aspects of the Fermi liquid theory is thatmostmacroscopic properties rely on excitations close to the Fermi
energy24. L. D. Landau proposed an ansatz where the interaction is adiabatically switched on, i.e., slowly,
on an infinite timescale. In this way, the excited states near the Fermi energy cannot make a transition
to other states21. The bare particles gradually change to quasiparticles that dress themselves with density
fluctuations23. These quasiparticles are in a one-to-one correspondence with the bare particles and stay
fermionic with the same quantum numbers. Close to the Fermi energy, the phase space is strongly lim-
ited: Only a few states exist withwhich the quasiparticles can scatter, andmost particles are frozen in the
Fermi sea24. Therefore, these considerations remain valid for low temperatures. Compared to the Fermi
temperature, which is∼ 10.000K for metals, the temperatures can almost always be considered “low”23.

Same as with noninteracting particles, the system is specified by themomentum distribution function
n(k), which retains its discontinuity at EF. However, its discontinuity is renormalized by the particle in-
teraction26, as illustrated in Fig. 2.1(b). The difference to the distribution function of the bare electrons is
measured by δn(k) = n(k)− n0(k). A second-order expansion of the energy change δE then yields

δE[n] =
∑
k

ε0k δn(k) +
1
2

∑
k,k′

f (k,k′) δn(k) δn(k′), (2.6)

and therefore

εk =
δE[n]
δn(k)

= ε0k +
1
2

∑
k′

f (k,k′) δn(k′), (2.7)

where f (k,k′) is the second-order functional derivative of E[n] and the quasiparticle interaction. Because
the Fermi liquid is isotropic, the samemust hold for the quasiparticle interaction so that

∇k εk =
k

m
+

1
2
∇k

∑
k′

f (k,k′) δn(k′) ∝ k. (2.8)

For k = kF, the constant of proportionality can be identified with an inverse effective mass 1/m∗. While
many of the bare particle’s static properties are retained, the dynamical properties of the quasiparticles,
such as the effectivemass, are renormalized. More formally, theGreen’s functionof an interacting electron
can be written as

G(k,ω) =
1

ε0k − ω − Σ(k,ω)
, (2.9)

where Σ(k,ω) is the complex self-energy containing all the many-body effects24. Following Eq. 2.5, the
spectral function of the quasiparticles yields

A(k,ω) = − 1
π

Im Σ(k,ω)
[ε0k − ω − Re Σ(k,ω)]2 + [Im Σ(k,ω)]2

. (2.10)

The excitations of the quasiparticles are no sharp delta peaks but rather Lorentz distributions, which are
shifted by the real part and broadened by the imaginary part of the self-energy. Consequently, the quasi-
particles have a finite lifetime related to [Im Σ(k,ω)]−1. Since Im Σ decreases as ∝ (EF − ω)2, the exci-
tations become sharper close to the Fermi energy and are well-defined only there26, see Fig. 2.1(d). The
quasiparticles are not the exact eigenstates of the Hamiltonian but rather a superposition of many exact
stationary states. These accumulate in narrow energy ranges and form the individual quasiparticles23.
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q

q

(a)

q = 2kF

(b)

q1

q2

(c)

q~0 k

εk(d)

2kF q

E(k,q)(e)

2kF q

E(k,q)(f)

Figure 2.2: (a) In high-dimensional space, the nesting condition for a momentum |q| ≤ 2kF is satisfied only for a limited set of
points. The gray circle indicates the Fermi surface of radius kF. (b) Perfect nesting is accomplished in 1D for q = 2kF due to the
distinctive shape of the Fermi surface given by two (gray) points. (c, e) Low-energetic (shaded area) e-h excitations are possible
for all |q| ≤ 2kF in high-dimensional space. (d, f) In 1D, low-energetic e-h excitations are limited to wavevectors q ∼ 0 and
q ∼ 2kF.

2.1.2 Breakdown of Fermi Liquid Theory in 1D

TheFermi surface in 1D is fundamentallydifferent fromtheFermi surfaces inhigherdimensions: In 3Dand
2D, the ideal Fermi surface is given by a sphere and a circle. Both topologies are connected spaces. In con-
trast, the 1D Fermi surface consists of two disjoint points separated by 2kF, as illustrated in Fig. 2.2(a)–(b).
For a small perturbation

Hpert(t) =
∫

dx v(x, t) ρ̂(x), (2.11)

with a weak potential v(x, t) and electron density operator ρ̂(x), the linear response function of the elec-
tron density in reciprocal space within the Lindhard approximation27 is given by23

χ(q,ω) = lim
η→0+

1
V

∑
k

fF(εk)− fF(εk+q)

ω + εk − εk+q + iη
. (2.12)

Here, fF(εk) = (exp(εk β) + 1)−1 is the Fermi-Dirac distribution function, β = 1
kBT is the inverse temper-

ature, and kB is the Boltzmann constant.

In the static case (ω = 0), the sum in Eq. 2.12 is well-defined for most q. An exception exists for a
wavevector q that connects a set of points on the Fermi surface (called nesting) with ε(k) → 0+ and
ε(k+ q) → 0− or vice versa. In this case, a singularity is introduceddue to the discontinuity of the Fermi-
Dirac distribution at T = 0K. More generally, if a wavevector q satisfies the relation εk+q = −εk for a
finite domainD of k vectors, the real part of the summands in Eq. 2.12 transforms according to

Re
fF(εk)− fF(εk+q)

εk − εk+q + iη
k∈D−−−−−→ −tanh (βεk/2)

2εk
. (2.13)

As the temperature approaches 0 K, these linear response terms become singular at the Fermi surface.

It is impossible to satisfy the nesting condition except for a few single points for higher dimensions, see
Fig. 2.2(a). These singularities are thus smoothed out by the summation (or integration for V → ∞) over
a large number of wavevectors. However, they become significant in∇q χ(q) and are responsible for the
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2.1 A Brief Introduction to Luttinger Liquid Theory

Friedel oscillation and the Kohn anomaly23. In 1D, however, Fermi nesting for q = 2kF is rather the rule
than an exception. This can be seen by linearizing the single-particle energies near kF:

εk ≃ kF
m∗ (k− kF), k ∼ kF

εk ≃ kF
m∗ (−k− kF), k ∼ −kF

}
⇒ εk+2kF = −εk (2.14)

As a result, the real part of the linear response function (for V → ∞) diverges in temperature as

Re χ(2kF,ω = 0) = −
∫

dε N(ε)
tanh(βε/2)

2ε
∝ − log(ξβ), (2.15)

where N(ε) is the density of states per unit volume and ξ is some ultraviolet cutoff of similar size as the
energy range over which the nesting condition holds23. This singularity is regularized by the temperature.
A similar regularization is obtained by a finite frequency23 ω > 0. The singularity leads to a breakdown of
Fermi liquid theory in 1D: The coupling of quasiparticles to collective excitations is small in 2D or 3D but
large in 1D for excitations close to the Fermi energy—regardless of the size of the perturbation28.

In fact, the situation is even more complicated: Instabilities of a similar form occur upon the creation
or destruction of particle pairs and electron-hole (e-h) pairs. The former is related to the Bardeen-Cooper-
Schrieffer superconducting instability23. These singularities push the system to—mostly competing—
phases, of which a Luttinger liquid and a Peierls condensate (see section 2.2) are two examples29.

The Luttinger liquid theory relies on the narrow window of allowed low-energetic e-h excitations in
1D: In higher dimensions, low-energetic excitations are possible for a continuum of wavevectors with
|q| < 2kF. In contrast, the Fermi surface in 1D consists only of two points. Therefore, the same excita-
tions are only possible for q ∼ 0 and q ∼ 2kF, as illustrated in Fig. 2.2(c)–(f). For excitations with q ∼ 0
and a quadratic dispersion (cf. Eq. 2.3), the e-h excitation energy is given by

Eeh(k, q) = ε0k+q − ε0k =
kq
m

+
q2

2m
. (2.16)

The average excitation energy Eeh(q) = ⟨Eeh(k, q)⟩ and energy dispersion δEeh(q) = max(Eeh(k, q)) −
min(Eeh(k, q)) in the interval k ∈ [kF − q, kF] are23

Eeh(q) =
kFq
m

and δEeh(q) =
q2

m
. (2.17)

These two relations show that an e-h excitation has a well-defined momentum q and energy Eeh in 1D
near kF: The energy uncertainty δEeh(q) decreases faster than the energy Eeh(q) when approaching the
Fermi surface. This situation is similar to the quasiparticles in the Fermi liquid, i.e., e-h excitations are
well-defined “particles” that replace the dressed electrons of Fermi liquid theory.

Because an e-h excitation consists of two spin-½ particles, it can be treated as a boson. S. Tomonaga
showed that this is strictly valid only in 1D due to the almost linear, narrow energy-momentum disper-
sion relation close to the Fermi surface7 (see Fig. 2.2(f)). This forces the electron and hole to travel with
the same group velocity30. Based on this idea, he proposed a new model for 1D metals by utilizing the
principle of bosonization. Luttinger then reformulated this model in terms of Bloch waves and removed
several unnecessary constraints made by Tomonaga8. He showed that these systems can be described by
two types ofmassless noninteracting bosons. These consist of a large collection of e-h excitations and can
be identified with charge and spin waves. These travel with different group velocities, which give rise to
the spin-charge separation only present in 1Dmetals.
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2a₀

ρ(x) = ρ0cos(2kFx + φ)(d)

a₀

ρ(x) = const.(c)

kF

EF

-kF-π/a₀ π/a₀ k

εk(b)

kF-kF-π/a₀ π/a₀ k

εk(a)

Figure 2.3: The dispersion of a half-filled band (a) before and (b) after the Peierls distortion. The black solid curve and the dark
shading indicate the band and its filling up to the Fermi energy EF. Gray dashed lines illustrate the unfolded part of the band
extending beyond the new BZ boundary, denoted by gray dotted lines. The approximately constant charge density ρ(x) of the
equidistant 1D chain in (c) is periodically modulated by the Peierls distortion, leading to a CDW.

2.2 Peierls Instability

In 1955, R. E. Peierls showed that a 1D chain of metallic atoms is subject to a metal-insulator transition
(MIT)9. He argued that metallic atoms having a single valence electron lead to a half-filled band with
kF = π

2a0 , where a0 is the distance between two atoms. A small distortion of wavevector 2kF = π
a0 , e.g.,

by a phonon, then leads to a period-doubling lattice distortion. This period doubling corresponds to a
bisection of the Brillouin zone (BZ), which leads to a backfolding of the half-filled band, as illustrated in
Fig. 2.3(a)–(b). The intersection of the bandwith its backfolded counterpart at the newBZboundary leads
to a band gap that reduces the energy of the system. The periodic lattice distortion is accompanied by a
charge-density wave (CDW), i.e., a periodic modulation of the charge density shown in Fig. 2.3(c)–(d).

ThePeierls instability isnot restricted toasinglevalenceelectronperatomoraperioddoubling. Instead,
it can be extended to arbitrary electron fillings. For fillings of 1/nwith n ∈ N, the associated CDWs and
n-periodic lattice distortions are commensurate with the underlying lattice31.

More precisely, the Peierls instability is tightly connected to the Lindhard susceptibility in Eq. 2.12. The
corresponding chargemodulation in reciprocal space is then given by δρ(k,ω) = χ(k,ω)v(k,ω). Because
of the instabilityof χ(k,ω)atk = 2kF, the chargemodulationalsopeaksatk = 2kF. It canbeapproximated
in real space (neglecting any time dependency) by δρ(x) ≃ cos(2kF x). A periodic lattice distortion of the
same wavevector k = 2kF stabilizes this CDW. Although it has been theorized that a CDW could exist
in the absence of a periodic lattice distortion32, J. Friedel provided several physical arguments why this is
rather unlikely33. So far, both have only been observed as a pair31.

The Peierls instability precludes the existence of a freestanding 1D atomic wire. However, bulk crys-
talline materials with extraordinary quasi-1D anisotropy34,35, self-assembled atomic wires36 and, more
recently, 2D topological insulatorswith spin-momentum-locked 1Dedge states37–40 are considered as can-
didates for the observation of 1D electron physics41. Interestingly, it is the coupling to higher dimensions
that stabilize the Peierls-induced CDW at finite temperatures. Otherwise, the Peierls condensate would
be stable only at T = 0K36.

A Peierls transition and Luttinger liquid behavior are mutually exclusive and depend on the coupling
to higher dimensions. In the case of a Peierls-induced MIT, the band gap opening precludes any low-
energetic collective excitations, which is the basis of Luttinger liquid theory. In contrast, the density of
states (DOS) at the Fermi level in a Luttinger liquid is diluted due to the strong interaction and collective
excitations. Therefore, the single-particle picture and thus the Peierls argument is not valid anymore36.
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2.3 The Mermin-Wagner Theorem

2.3 The Mermin-Wagner Theorem

In 1996, P.C.Hohenberg showed that conventional superfluidor superconductingordering isprohibited in
1Dand2Dsystems42. Inspiredby conversationswithHohenberg, N.D.Mermin andH.Wagner proved that
the same argument extends to magnetic ordering43. In the original paper, the Mermin-Wagner theorem
states that “at any nonzero temperature, a one- or two-dimensional isotropic spin-SHeisenbergmodel with finite-
range exchange interaction can be neither ferromagnetic nor antiferromagnetic.”43 The proof given here closely
follows the line of argument in Ref. [44].

The Bogoliubov Inequality

Both the Mermin-Wagner theorem43 and the theorem by Hohenberg42 are based on the Bogoliubov
inequality45, which is a rather general inequality concerning twoarbitrary operators Â and Ĉ in the context
of a physical system described by the Hamiltonian Ĥ. It is based on the Schwarz inequality and yields

1
2

β ⟨{Â, Â†}⟩⟨[[Ĉ, Ĥ], Ĉ†]⟩ ≥ |⟨[Ĉ, Â]⟩|2, (2.18)

where ⟨· · · ⟩, [· · · ] and {· · · } denote the expectation value, the commutator and the anticommutator.
Let |n⟩ and En be the eigenstates and eigenenergies of Ĥwith

En = ⟨n|Ĥ|n⟩; ⟨· · · ⟩ =
∑
n

Wn⟨n| · · · |n⟩ with Wn =
e−βEn

Tr(e−βĤ)
. (2.19)

The Bogoliubov inequality is then derived by the definition of a new scalar product

(Â, B̂) =
En ̸=Em∑
n,m

⟨n|Â†|m⟩⟨m|B̂|n⟩Wm −Wn

En − Em
. (2.20)

This scalar product is positive semidefinite because it satisfies the following conditions:

i Linearity in the second argument: Let α1, α2 ∈ C, then

(Â, α1B̂1 + α2B̂2) = α1(Â, B̂1) + α2(Â, B̂2). (2.21)

ii Conjugate symmetry: Because (⟨n|B̂†|m⟩⟨m|Â|n⟩)∗ = ⟨n|Â†|m⟩⟨m|B̂|n⟩ is a complex number and
(Wm −Wn)/(En − Em) is a real number, (Â, B̂) is also a complex number with

(Â, B̂) = (B̂, Â)∗. (2.22)

iii Positive semidefiniteness: As (Wm−Wn)/(En−Em) ≥ 0 and ⟨n|Â†|m⟩⟨m|Â|n⟩ = |⟨m|Â|n⟩|2, it holds
that

(Â, Â) ≥ 0. (2.23)

As a consequence, from Â = 0 it follows that (Â, Â) = 0, but the opposite is not true. For instance,
(Ĥ, Ĥ) = 0 for Ĥ ̸= 0. The same holds for any other operator Ô that commutes with Ĥ.

For the specific choice B̂ = [Ĉ†, Ĥ], the scalar product (Â, B̂) yields

(Â, B̂) =
En ̸=Em∑
n,m

⟨n|Â†|m⟩⟨m|[Ĉ†, Ĥ]|n⟩Wm −Wn

En − Em

=
∑
n,m

⟨n|Â†|m⟩⟨m|Ĉ†|n⟩(Wm −Wn).

(2.24)
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We can include the diagonal terms En = Em in the second line due to the removable discontinuity in the
denominator and (Wm −Wn) = 0 form = n. Using the completeness relation and the definition ofWn

in Eq. 2.19, it follows
(Â, B̂) =

∑
m

Wm⟨m|Ĉ†Â†|m⟩ −
∑
n

Wn⟨n|Â†Ĉ†|n⟩

= ⟨[C†,A†]⟩.
(2.25)

Substituting Â = B̂ = [Ĉ†, Ĥ], the scalar product yields

(B̂, B̂) = ⟨[Ĉ†, [Ĥ, Ĉ]]⟩ ≥ 0. (2.26)

As the last step, we estimate the scalar product (Â, Â)with the help of the following relation:

0 <
Wm −Wn

En − Em

=
1

En − Em
e−βEm + e−βEn

Tr(e−βĤ)

e−βEm − e−βEn

e−βEm + e−βEn

=
Wm +Wn

En − Em
tanh

(
β
2
(En − Em)

)
≤ β

2
(Wm +Wn)

(2.27)

In the last line, we used that tanh(x)/x ≤ 1 for ∀x ∈ R. Now, we can estimate (Â, Â) by

(Â, Â) ≤ β
2

En ̸=Em∑
n,m

⟨n|Â†|m⟩⟨m|Â|n⟩(Wm +Wn)

≤ β
2

∑
n,m

⟨n|Â†|m⟩⟨m|Â|n⟩(Wm +Wn)

≤ β
2

∑
n

Wn(⟨n|Â†Â|n⟩+ ⟨n|Â Â†|n⟩)

≤ β
2
⟨{Â, Â†}⟩.

(2.28)

Substituting the Eqs. 2.24 and 2.26 as well as the inequality 2.28 into the Schwarz equation

(Â, Â)(B̂, B̂) ≥ |(Â, B̂)|2 (2.29)

results in the Bogoliubov inequality in the expression 2.18.

The Mermin-Wagner Theorem

The Hamiltonian of the Heisenberg model coupled to a weak magnetic field B0 pointing in the z-
direction is given by

Ĥ = −
∑
i, j

Jij Ŝi · Ŝj − gJ
μB
ℏ
B0︸ ︷︷ ︸

:=b

∑
i

Ŝ z
i e

−iK·Ri , (2.30)

where Ŝi is the spin operator located at the lattice siteRi, Ŝ z
i is its z-component, Jij denotes the coupling

constant between different sites, gJ is the Landé g-factor, and μB is the Bohrmagneton. The factor e−iK·Ri

helps to differentiate between ferro- and antiferromagnetism. We chooseK = 0 for ferromagnetism; for
antiferromagnetism, we chooseK in such a way that e−iK·Ri = 1 whenRi connects sites of the same

10



2.3 The Mermin-Wagner Theorem

sublattice and e−iK·Ri = −1whenRi connects sites of the other sublattice43.
Themagnetization with respect to themagnetic field B0 at temperature T can be calculated by

M(T, B0) = −
(
∂⟨Ĥ⟩
∂B0

)
T
= gJ

μB
ℏ

∑
i

e−iK·Ri ⟨Ŝ z
i ⟩T,B0 . (2.31)

In the limit of a negligible magnetic field B0 → 0, the spontaneousmagnetization is obtained:

Ms(T) = lim
B0→0

M(T, B0) (2.32)

In general, the spin operators can be transferred to k-space by

Ŝ α(k) =
∑
i

Ŝ α
i e−ik·Ri , α ∈ {x, y, z}. (2.33)

We introduce the ladder operators Ŝ±i = Ŝ x
i ± iŜ y

i and obtain the following commutation relations:

[Ŝ α
i , Ŝ

β
j ] = iℏ δij εαβγ Ŝ

γ
i

[Ŝ α
i , Ŝ

±
j ] = ℏ δij(∓δαx Ŝ z

i − iδαy Ŝ z
i ± δαz Ŝ±i )

 ⇒ [Ŝ+(k1), Ŝ−(k2)] = 2ℏ Ŝ z(k1 + k2)

[Ŝ z(k1), Ŝ±(k2)] = ±ℏ Ŝ±(k1 + k2)
(2.34)

Here, δij is the Kronecker delta, εαβγ is the Levi-Civita symbol, and α, β, γ ∈ {x, y, z}.
The Bogoliubov inequality now gives an upper bound for themagnetization by choosing

Â = Ŝ−(−k+K) ⇐⇒ Â† = Ŝ+(k−K), (2.35)

Ĉ = Ŝ+(k) ⇐⇒ Ĉ† = Ŝ−(−k). (2.36)

With these relations, we can now evaluate the three expressions in the inequality. The first term is

⟨[Ĉ, Â]⟩ = ⟨[Ŝ+(k), Ŝ−(−k+K]⟩

= 2ℏ⟨Ŝ z(K)⟩

= 2ℏ
∑
i

e−iK·Ri ⟨Ŝ z
i ⟩

=
2ℏ2

gJμB
M(T, B0).

(2.37)

In the last line, Eq. 2.31 was utilized. The second term is obtained by summation over the whole k-space:∑
k

⟨{A,A†}⟩ =
∑
k

⟨{Ŝ−(−k+K), Ŝ+(k−K)}⟩

=
∑
k

∑
i, j

ei(k−K)·(Ri−Rj) ⟨Ŝ−i Ŝ
+
j + Ŝ+j Ŝ

−
i ⟩

= 2N
∑
i

⟨(Ŝ x
i )

2 + (Ŝ y
i )

2⟩

≤ 2N
∑
i

⟨Ŝ2
i ⟩

= 2ℏ2N2S(S+ 1)

(2.38)

For the third term ⟨[[Ĉ, Ĥ], Ĉ†]⟩, we first evaluate the commutator of the Hamiltonianwith the spin opera-
tor in real space:

[Ŝ+m , Ĥ] = −
∑
i, j

Jij
∑

α∈{x,y,z}

[Ŝ+m , Ŝ
α
i Ŝ

α
j ]− b

∑
i

[Ŝ+m , Ŝ
z
i ] e

−iK·Ri (2.39)
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Using the Jacobi identity [Â, B̂ Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ, as well as Jii = 0, Jij = Jji, and the commutator
relations in Eq. 2.34, we obtain

[Ŝ+m , Ĥ] = −2ℏ
∑
i

Jim(Ŝ+i Ŝ
z
m − Ŝ z

i Ŝ
+
m) + ℏ b Ŝ+m e−iK·Rm . (2.40)

With this, the double commutator evaluates to[
[Ŝ+m , Ĥ], Ŝ

−
p
]
= 2ℏ2

∑
i

Jip δmp(Ŝ+i Ŝ
−
p +2 Ŝ z

i Ŝ
z
p)−2ℏ2 Jmp(Ŝ+m Ŝ−p +2 Ŝ z

mŜ
z
p)+2ℏ2 b δmp Ŝ z

p e
−iK·Rp . (2.41)

The third term of the Bogoliubov inequality then yields〈[
[Ĉ, Ĥ], Ĉ†]〉 = ∑

m, p

e−ik·(Rm−Rp)
〈[
[Ŝ+m , Ĥ], Ŝ

−
p
]〉

= 2ℏ2
∑
m, p

Jmp
(
1− e−ik·(Rm−Rp)

)
⟨Ŝ+m Ŝ−p + 2 Ŝ z

mŜ
z
p⟩+ 2ℏ2 b

∑
p

⟨Ŝ z
p⟩ e−iK·Rp

︸ ︷︷ ︸
=B0 M(T,B0)

. (2.42)

Evaluating Eq. 2.42 with ˆ̃C = Ŝ+(−k) instead of Ĉ = Ŝ+(k) leads to the same result but with k replaced
by−k. In both cases, the expectation value must be positive according to Eq. 2.26, and an upper bound
for the expectation value can be given:〈[

[Ĉ, Ĥ], Ĉ†]〉 ≤ 4ℏ2
∑
m, p

Jmp
(
1− cos(k · (Rm −Rp))

)
⟨Ŝm · Ŝp + Ŝ z

mŜ
z
p⟩+ 4ℏ2 B0 M(T, B0)

≤ 4ℏ2
∑
m, p

| Jmp| |1− cos(k · (Rm −Rp))|
(
|⟨Ŝm · Ŝp⟩|+ |⟨Ŝ z

mŜ
z
p⟩|

)
+ 4ℏ2 |B0 M(T, B0)|

≤ 4ℏ2
∑
m, p

| Jmp| |1− cos(k · (Rm −Rp))| (ℏ2S(S+ 1) + ℏ2S2) + 4ℏ2 |B0 M(T, B0)|

≤ 8ℏ4 S(S+ 1)
∑
m, p

| Jmp| |1− cos(k · (Rm −Rp))|+ 4ℏ2 |B0 M(T, B0)|

≤ 8ℏ4 S(S+ 1)
∑
m, p

| Jmp|
1
2
k2|Rm −Rp|2 + 4ℏ2 |B0 M(T, B0)|

Finally, we obtain the following inequality:〈[
[Ĉ, Ĥ], Ĉ†]〉 ≤ 4ℏ4 S(S+ 1)NQ k2 + 4ℏ2 |B0 M(T, B0)| (2.43)

WehavedefinedQ := 1
N
∑

i, j |Ri−Rj|2 | Jij|, which is ameasure for the exchange range Jij. For sufficiently
fast decreasing exchange interactions, Q is finite, and the inequality 2.43 is well-defined. This is a weak
criterium that allows theMermin-Wagner theorem to hold even beyond next neighbor interactions.

We now rearrange the Bogoliubov inequality in Eq. 2.18, sum over all k-points, and insert the expres-
sions 2.37, 2.38, and 2.43:

1
2

β
∑
k

⟨{Â, Â†}⟩ ≥
∑
k

|⟨[Ĉ, Â]⟩|2

⟨[[Ĉ, Ĥ], Ĉ†]⟩
(2.44)

⇐⇒ β S(S+ 1) ≥
(
M(T, B0)
N gJ μB

)2∑
k

1
ℏ2 S(S+ 1)NQ k2 + |B0 M(T, B0)|

(2.45)

In the 1D case, we can make additional simplifications. First, the sum is replaced by an integral bounded
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2.3 The Mermin-Wagner Theorem

by the Brillouin zone kBZ. In the thermodynamic limit, let furthermore v = V1D/N andm(T, B0) =
M(T,B0)

N

be the average spacing andmicroscopic magnetization of the spins:

S(S+ 1) ≥ vm2(T, B0)
π β (gJ μB)

2

∫ kBZ

0

dk
ℏ2 S(S+ 1)Qk2 + |B0 m(T, B0)|

(2.46)

This integral can be easily evaluated and yields

S(S+ 1) ≥ vm2(T, B0)
2π β (gJ μB)

2

arctan
(
kBZ

√
ℏ2 S(S+1)Q
|B0 m(T,B0)|

)
√
ℏ2 S(S+ 1)Q|B0 m(T, B0)|

. (2.47)

The spontaneousmagnetization is given in the limit of B0 → 0. In this case, the arctangent approaches π
2 ,

and the spontaneousmagnetization yields:

ms(T) = lim
B0→0

|m(T, B0)| ≤ const. · lim
B0→0

B1/30

T 2/3 → 0 for T ̸= 0 (2.48)

This inequality implies that there cannotbeany ferro-orantiferromagneticordering foran interactingone-
dimensional system at finite temperatures, which is known as the Mermin-Wagner theorem. Wemake a
fewmore remarks below that are essential for the theorem:

1. The proof is also valid for a 2D system. In this case, the integral in the inequality 2.46 has a slightly
different form and solution. The asymptotic behavior of the spontaneousmagnetization, however,
is similar.

2. The theoremholds only at finite temperatures. At zero temperature, it cannotmake anypredictions.

3. The inequalities 2.47 and 2.48 are independent of the factor exp(−iK ·Ri), whichwas introduced
to also account for antiferromagnetism. Consequently, the theorem also forbids an antiferromag-
netic long-range ordering.

4. The continuous symmetry of the system is mandatory for the Mermin-Wagner theorem. For in-
stance, it can be shown that the Isingmodel exhibiting a discrete symmetry has a phase transition
at T = 0K46.

5. The theorem holds only for isotropic systems. The introduction of even very small anisotropies
leads to a breakdown of the theorem. This is the reasonwhymaterials with amagnetic long-range
ordering on the surface, as discussed in chapter 5, are not precluded.

6. TheMermin-Wagner theorem can be readily extended to other models, e.g., the Hubbardmodel47.

7. Amore intuitiveapproach to theMermin-Wagner theoremispossible viaa simpleenergyargument:
For a ferromagnetic spin chain consisting of N spins, a twist by 2π can be divided into N twists by
ϕi =

2π
N . Thus, for large N, the energy requirement of a single twist within the harmonic approxi-

mation is Ei ∝ ϕ2
i = 4π2

N2 , and the total energy change scales as N4π2

N2 ∝ 1
N . Therefore, the energy

requirement for long-wavelength excitations, i.e., k → 0, goes to 0 in 1D.
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2 Theory

2.4 Nosé-Hoover Thermostat

In its basic formulation, density-functional theory (DFT)48–50 allows the calculation of ground-state
properties at absolute zero. In many cases, one is interested in the static or dynamic properties, e.g., at
a specific energy level or a specific temperature. Ab initiomolecular dynamics builds uponDFT and allows
one to perform simulations for systems involving the dynamics of the ions.

Integrating the Hamiltonian equations of motion leads to a microcanonical ensemble, where the dy-
namics of the system is constrained to an isoenergetic hyperplane. However, the properties at a particular
temperature are described by the canonical ensemble, which allows for the exchange of energy with the
environment. By introducing a virtual thermostat coupled to the system, we can account for energy dissi-
pation that is needed tomaintain a specific temperature.

How can a virtual thermostat be realized? For ideal gases, the average kinetic energy ⟨Ekin⟩ is related to
the temperature T by51

⟨Ekin⟩ =
〈∑

i

1
2
mi ṙ

2
i

〉
=

3
2
N kBT, (2.49)

wheremi and ṙi are the mass and velocity of particle i, and N is the number of unconstrained particles in
a system. Thus, the simplest and also earliest attempt of a thermostat involves scaling the particle veloc-
ities after each time step52. While this approach leads to a constant temperature, it does not reproduce
a canonical phase-space distribution. The main problem is that in a canonical ensemble—although the
average kinetic energy is constant—fluctuations around themean are allowed. The standard deviation of
the kinetic energy within the canonical ensemble yields51

ΔE =
√

N kBT 2cV. (2.50)

Here, cV is the specific heat capacity. More precisely, the temperature is awell-defined quantity only in the
thermodynamic limit N → ∞, and the relative standard deviation of the kinetic energy ΔE/E ∝ N−1/2

approaches zero. For a system with a small number of particles, the kinetic energy is subject to strong
fluctuations, whichmakes the treatment of molecular dynamics at constant temperature cumbersome.

H. C. Anderson53 proposed a more sophisticated approach where at a certain frequency the velocity
of random particles is stochastically changed to match the Boltzmann distribution. While this approach
generates a canonical phase-space distribution, it results in a discontinuous phase-space trajectory.

S. Nosé proposed a different approach: Instead of an external or stochastic change of the particle veloc-
ities, he extended the system by an additional degree of freedomwith variable s, which acts as an external
systemcoupled to theN-particle system54,55. It takes the role of a heat bath that stabilizes the temperature
but allows for fluctuations in the kinetic energy. In addition, he introduced a virtual time t that is scaled
by the variable s, so that dt′ = dt/s. Consequently, the virtual positions and velocities are ri = r′i and
ṙi = ṙ′i/s, where the primed variables t′, r′i and ṙ

′
i denote the real variables. The latter relation can be in-

terpreted as an exchange of heat between the physical and the external system54. With this, he postulated
the Lagrangian

L =
N∑
i

1
2
mi s2 ṙ2i − Φ(r1, . . . , rN) +

Q
2
ṡ2 − g

β
ln s, (2.51)

whereΦ(r1, . . . , rN) = Φ(r) is thepotential of theN-particle system, and g is a constantof proportionality

14



2.4 Nosé-Hoover Thermostat

whose exact value will be determined at a later point. The potential g/β ln s is chosen such that a canon-
ical phase-space distribution is obtained, and the kinetic energy term Q/2 ṡ2 is introduced to construct
a dynamic equation for s. The parameter Q has the dimension [energy·time2] and can be regarded as a
frequency for the energy fluctuations. The associated virtual momentapi and ps are:

pi = ∇ṙ L = mi s2 ṙi ⇐⇒ ṙi =
pi

mi s2
(2.52)

ps =
∂L
∂ ṡ

= Q ṡ ⇐⇒ ṡ =
ps
Q

(2.53)

A Legendre transformation connects the Hamiltonian of the extended system to the Lagrangian, so that

H =

N∑
i

pi · ṙi + ps ṡ− L

=
N∑
i

p2
i

2mi s2
+ Φ(r)︸ ︷︷ ︸

=:H0(p/s, r)

+
p2s
2Q

+
g
β
ln s.

(2.54)

Based on the Hamiltonian, we obtain the following equations of motion:

ṙi = ∇pi H =
pi

mi s2
, ṗi = −∇ri H = −∇ri Φ(r) (2.55)

ṡ =
∂H
∂ps

=
ps
Q
, ṗs = −∂H

∂s
=

N∑
i

p2
i

mi s3
− g

β s
(2.56)

While the extended system in Eq. 2.54 generates a microcanonical ensemble, we will show that the
partition function of the reduced system, i.e., the subspace of variables r′i andp

′
i, is canonical. Neglecting

prefactors, the partition function adhering to energy conservation yields

Z =

∫
dps

∫
ds

∫
dp

∫
dr δ

[
H0(p/s, r) +

p2s
2Q

+
g
β
ln s− E

]
. (2.57)

We have used here the shorthand notation dp = dp1 · · · dpN and dṙ = dṙ1 · · · dṙN. According to Eq. 2.52,
the relationbetween thevirtual and the realmomentumispi = sp′

i, and thusdp = s3N dp′. Furthermore,
δ is the Dirac delta distribution, for which the relation f ′(s0) · δ[ f(s)] = δ(s − s0) holds. s0 denotes the
single root of f(s). Eq. 2.57 can then be rewritten into

Z =
β
g

∫
dp′

∫
dr′

∫
dps

∫
ds s3N+1 δ

[
s− e−

β
g

(
H0(p′, r′)+

p2s
2Q−E

)]
=

β
g
e β 3N+1

g E
∫

dps e
−β 3N+1

g
p2s
2Q

∫
dp′

∫
dr′ e−β 3N+1

g H0(p′, r′)

=

√
2πβQ

(3N+ 1)
e βE

∫
dp′

∫
dr′ e−β H0(p′, r′)︸ ︷︷ ︸
∝ Zc

.

(2.58)

In the last line, we have set g = 3N + 1. By this choice, the partition function of the reduced system
is equivalent to the partition function of the canonical ensemble Zc except for a constant prefactor. As a
consequence, the expectation values of a quantityO averaged by the canonical ensemble and by the Nosé
ensemble are identical. The latter is connected to the time average by the ergodic hypothesis, so that

lim
t0→∞

1
t0

∫ t0

0
dt O(p′, r′) = ⟨O(p′, r′)⟩c = ⟨O(p/s, r)⟩Nosé. (2.59)
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2 Theory

While the approach of Nosé is well suited to calculate averages of static quantities, the implicit varying
time steps dt in the Eqs. 2.55 – 2.56 lead to errors in the case of dynamic quantities. The size of the error
depends on the chosen Q and the typical time scale with which the quantity changes54. Eqs. 2.55 – 2.56
can be rewritten in terms of real variables (with dt′ = dt/s, r′i = ri,p′

i = pi/s, s′ = s, and p′s = ps/s):

ṙ′i = s
dri
dt

= s
pi

mi s2
=

p′
i

mi
ṗ′
i = s

d

dt

(pi

s

)
= −∇riΦ(r)− ṡ

pi

s
= −∇r′i

Φ(r′)− s′p′s
Q

p′
i (2.60)

ṡ′ = s
ds
dt

=
s′ 2 p′s
Q

ṗ′s = s
d

dt

(ps
s

)
=

N∑
i

p′ 2
i

mi s′
− g

β s′
− s′ p′ 2s

Q
(2.61)

While these equations recover equidistant time steps, they have no Hamiltonian form, as is evident from
the additional force terms for themomenta that lead to the nonvanishing derivatives∇p′

i
· ṗ′

i and∂ṗ
′
s/∂p′s.

W. G. Hoover56 further simplified these equations by introducing the thermodynamic friction coeffi-
cient ζ′ = ln s′, so that

ζ̇′ =
ṡ′

s′
=

s′ p′s
Q

=
ps
Q

and p′ζ = ζ̇′ Q = ps. (2.62)

Eqs. 2.60–2.61 then become independent of s′ by rewriting them in terms of ṙ′i and r̈
′
i as well as ζ̇′ and ζ̈′:

r̈′i =
ṗ′
i

mi
= −

∇r′i
Φ(r′)

mi
− s′p′s

Q
p′
i

mi
= −

∇r′i
Φ(r′)

mi
− ζ̇′ṙ′i (2.63)

ζ̈′=
1
Q
[ṡ′ p′s + s′ ṗ′s] =

1
Q

[ s′ 2 p′ 2s
Q

+
N∑
i

p′ 2
i
mi

− g
β
− s′ 2 p′ 2s

Q

]
=

1
Q

[ N∑
i

mi ṙ
′ 2
i − g

β

]
. (2.64)

These equations are known as the Nosé-Hoover equations. They can be used to calculate the dynamics of
the ions, e.g., within the Born-Oppenheimer approximation57.

As before, wewill show that the equations ofmotion generate a canonical ensemble. Because the phase
space is a symplectic geometry, we must integrate over the variables leading to Hamiltonian equations
of motion. Liouville’s theorem58 is satisfied only for these variables, which states that the phase-space
density is constant along the trajectory that follows the equations of motion51. Here, ζ′, p′ζ, ri and pi lead
to Hamiltonian equations of motion. We use dr = dr′ and dp = e3N ζ′ dp′, so that

Z =

∫
dp′

∫
dr′

∫
dp′ζ

∫
dζ′ e3N ζ′ δ

[
H0(p

′, r′) +
p′ 2ζ

2Q
+

g
β

ζ′ − E
]

=
β
g
e β 3N

g E
∫

dp′ζ e
−β 3N

g

p′ 2ζ
2Q

∫
dp′

∫
dr′ e−β 3N

g H0(p′, r′)

=

√
2πβQ
3N

e βE
∫

dp′
∫

dr′ e−β H0(p′, r′)︸ ︷︷ ︸
∝ Zc

(2.65)

If we set g = 3N—aswas done in the last line—we obtain a partition function that is canonical.
Pleasenote thatwehaveused ζ′ only for the constructionof theHamiltonian. The relevant parameter is

ζ̇′, whose dynamics is governed by Eq. 2.64 and depends on twice the difference of the instantaneous and
average kinetic energy at temperature T. Furthermore, only energy conservation was assumed to derive
the partition function in Eqs. 2.57 and 2.65. For a second constraint, an additional degree of freedomneeds
to be introduced by coupling a second external system to the first in the sameway as the first was coupled
to theN-particle system inEq. 2.54. In thisway,wecan create a chainofNosé-Hoover equations to account
for the conservation of momentum and angular momentum or other constraints59.
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The atoms may be compared to the letters of the alphabet, which

can be put together into innumerable ways to form words. So

the atoms are combined in equal variety to form what are called

molecules [and crystals].

William Henry Bragg

3
Self-Assembled Au Atomic Wires on Vicinal

Si(111) Surfaces

Although one-dimensional systems can be sufficiently described in theory, it soon became evident
that the observation of 1D phenomena predicted by Luttinger liquid theory7,8 presents its own chal-

lenges. This is mainly due to the inherent Peierls instability9 that destabilizes ideal 1D systems, such as
free-standing atomic wires. For this reason, a substrate is required on which the 1D system can be de-
posited. On the one hand, a suitable substratemust prevent a Peierls-induced clustering of the delicate 1D
structure. This requires close structural coupling of the substrate with the 1D system. On the other hand,
electronic separationof both systems is crucial topreserve the 1Dcharacter. Thekey idea is touse substrate
materialswith large-enough band gaps, such as insulators orwide-band gap semiconductors. Ideally, the
metallic states of the 1D material then lie within the band gap and are electronically decoupled from the
substrate. In reality, however, the situation is more complicated: Surface reconstructions of insulators or
semiconductors tend to introduce surface states near the Fermi energy, sometimes even rendering the sur-
facemetallic. Therefore, finding compatible 1D systems and substrates is challenging and complicates the
observation of pure 1D effects in nature.

3.1 Silicon Surfaces

Withabandgapof 1.1 eV60, silicon is bynomeans considered awide-bandgap semiconductor. However, it
exhibits other beneficial properties: First, Si is abundantly available on Earth: 15% of the entire Earth and
27% of the Earth’s crust consist of Si by weight61. Second, Si is the most researched and best-understood
semiconductor. The vast majority of the integrated circuits used in present-day technology are based on
silicon. In terms of application, a silicon-based 1D systemwould therefore be beneficial.

Si(111) is, together with Si(001), the technological most relevant Si surface. As previously mentioned,
surface states are likely to narrow the bulk band gap, and this is especially true for Si(111) and Si(001). The
Si(001) surface is stabilized by the formation of Si dimers62. Buckling of these dimers with alternating
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registry reduces the surface energy and preserves the non-metallicity of the surface63. Consequently, all
dangling bonds (DBs) on Si(001) are either completely filled or empty. Despite the non-metallic character,
the surface states narrow the band gap considerably64. Although electrical conductance measurements
reveal a metallic temperature dependence, its magnitude is below the universal conductance quantum65.
However, details depend on the substrate doping and on the amount of adsorbed hydrogen64.

Several surface reconstructions exist for the clean Si(111) surface. The (7 × 7) and (
√
3 ×

√
3) recon-

struction are the most prominent66. Both surface reconstructions are conductive, with the former having
a noticeably lower resistance67. Electronic decoupling seems difficult to realize for both Si(111) and Si(001)
unless substantial surface reconstructions accompany the formation of 1D structures. Indeed, the realiza-
tion of 1D systems on Si surfaces exhibiting Luttinger liquid behavior has proven to be challenging68,69.

However, Si surfaces have another advantage concerning the fabrication of 1D structures: Manymetals
self-assemble into atomic wires on these surfaces under controlled ambient conditions. Self-assembly
significantly facilitates the fabrication of 1D structures. Other techniques, such as atom deposition by
scanning tunneling microscopy (STM) tips, are not feasible for larger systems. Si(111), in particular, tends
to break its three-fold symmetry and forms anisotropic structures formanymetals70: For instance, In71–75

and Au76–80 self-assembles into large arrays of parallel-aligned atomic wires. The same holds for Ag81–83,
Pb84,85, andCa86 onvicinal Si(111) surfaces. But alsoonSi(001), atomicwires of rare earthmetals form87–89.

One significant difference between Si(111) and Si(001) is the number of DBs per Si surface atom. For
Si(001), every surface atom has two broken bonds, while for Si(111), only a single broken bond exists per
surface atom. Generally, a high density of unsaturated bonds renders a surface more reactive and facili-
tates the adsorption of molecules and other adsorbents90. The sticking factor of H2O, e.g., is close to one
for Si(001), while water molecules aremore likely to be repelled by the Si(111) surface90. Another example
is the formation of a μm-thick oxide layer uponO2 exposure: Si(001) exhibits a lower activation barrier for
molecular O2 adsorption91—although surface reconstructions also play a dominant role92.

A similar trend can be observed concerning self-assembled atomic wires: On Si(001), rare earth wires
are incorporated into the surface and covered by a layer of Si atoms89. On Si(111), on the other hand, the
self-assembledatomicwires are integrated into the top surface layer10,80. In principle, buried atomicwires
should be less prone to oxidation or the influence of other adsorbents such aswater or hydrogen. However,
an embedding in the substrate bears the risk of a tighter coupling to the substrate. In addition, experimen-
talmeasurements are becomingmore complicated: Many experimentalmethods, suchas STM, are surface
sensitive. These are no longer applicable or only allow indirect conclusions. Having this inmind, the prop-
erties of surface atomic wires are easier examined and should be less coupled to the substrate.

Nevertheless, even with surface atomic wires, the electronic coupling to the substrate is not negligible
inmost cases. Moreover, the interaction of adjacent wires may have an additional negative impact on the
one-dimensionality. As a result, the dimensionality of such wire systems is a fractional between one and
two. These systems are called quasi-one-dimensional, indicating their dependence on the substrate.

AlthoughLuttinger liquids have not yet been observed on silicon substrates, the loose coupling ofmany
quasi-1D wires is still accompanied by a plethora of interesting properties. Only one shall be mentioned
here: Indium wires on Si(111) exhibit a second-order metal-insulator phase transition, which can be trig-
gered by very short laser pulses. The resulting phase transition is considered the fastest switch seen in
nature so far74.
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3.2 Au on Si(111)

3.2 Au on Si(111)

In general, silicon and gold are immiscible, i.e., there are no known Si-Au compounds that form stable
crystalline bulk phases93,94. However, a variety of Au surface reconstructions exist on Si(111). Depending
on the amount of evaporated Au and the ambient conditions, different phases form on the surface.

Bishop and Rivière were the first to discover the Si(111)-(5 × 2)-Au reconstruction in 196976. At sub-
strate temperatures above 400 °C, the (7 × 7) low-energy electron diffraction (LEED) spots of the clean
Si(111) surface transform into sharp (5× 1) spots and diffuse second-order streaks uponAu deposition77,78.
Alternatively, the sample can be flash-annealed after room-temperature growth. The (5× 2) reconstruc-
tion is characterized by islands of self-aligned parallel Au atoms, forming atomic wires. Between these
wires, the Si surface atoms arrange in honeycomb ribbons, i.e., in flat graphene-like layers of sp2-bonded
Si atoms79,80. Although generally unstable, the Au atoms, which act as donors, stabilize the honeycomb
ribbon, also called the honeycomb chain (HCC).

It was generally proposed that anymonovalent, divalent, or trivalent adsorbent stabilizes such anHCC
on Si(111) by electron donation95,96. Indeed, similar structures have been observed, e.g., for Li, Na, Rb, or
Ag97,98. The HCC matches the substrate lattice in the direction parallel to the chains. At the same time,
a lattice mismatch perpendicular to the chains limits the width of the HCC. As a consequence, the HCCs
form equidistant rows separated by the Au chains, resulting in a (5× 2) surface lattice.

The atomic chains form islands with different orientations. These originate in the three-fold symme-
try of the unreconstructed Si(111) surface99,100. Step edges on the imperfect Si(111) surface serve as natural
guides for the wire formation101. The introduction of artificial steps thus achieves a more uniform align-
ment. These can be created systematically by cutting the Si(111) surface at an acute angle. The resulting
terraces guide thewire formation along the step edges102. As a result, a uniformarea of parallelwires form.

3.2.1 Au on Vicinal Si(111) Surfaces

A slightlymiscut surface also has other advantages: It introduces terraces that serve as nucleation sites for
single atomic chains. For not too broad terraces, the interwire distance is then governed by their width.
As previously mentioned, interwire interactions of closely spaced chains may strongly influence the sys-
tem. An increased spacing of thewires could thus reduce the interwire interaction. Si(111) surfacesmiscut
towards [112̄] or [̄1̄12] result in Si(hhk) surfaces with uniform step edges and evenly spaced terraces10. The
Au wires adsorb preferentially in the middle of the vicinal Si(111) terraces. Their width bter and height hter
determine the interwire distance

dter =
√

b2ter + h2ter . (3.1)

TheMiller indices (hhk) define bter and hter by103

bter(h, k) =
2h+ k

3

√
3
8
a0 and hter(h, k) =

|h− k|
2
√
3

a0, (3.2)

where a0 = 5.431 Å is the lattice constant of the underlying Si surface in the [̄110] direction104.

Fig. 3.1 illustrates the family of Si(hhk) surfaces. Most of these vicinal Si(111) surfaces are unstable in
the absence ofmetallic donors, such as Au11. Instead of regularly stepped surfaces, (7× 7) reconstructions
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Figure 3.1: Sidecut of the silicon crystal in the [11̄0] direction. The solid horizontal line indicates the Si(111) surface. If tilted
towards [112̄] or [1̄1̄2], Si(hhk) surfaces arise. The indices mark the orientation of these surfaces. The dashed red lines illustrate
the cutting planes of the (335), (557), (553), and (775) surfaces, while the solid red lines represent the surface structures of the
perfect, unreconstructed surfaces (adapted from Ref. [10]).
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Figure 3.2: Step edges of vicinal Si(111) surfaces for positive (left edges) and negative (right edges) cutting angles. Big and small
dark gray circles indicate Si atoms of different depth along [11̄0], while light gray ellipses illustrate DBs of the step-edge atoms.
(a) The unreconstructed step edge has two (one) DBs per step-edge atom for surfaces with positive (negative) orientation. (b) The
HCC reconstruction (red) stabilizes the step edge, resulting in a single DB per step-edge atom for both orientations. For negative
cutting angles, a stacking fault occurs between the HCC and the remaining Si surface atoms. The upper dashed boxes show the
Si surface atoms along the [111] direction. (c) The adsorbed Au atoms (yellow circles) replace Si surface atoms next to the HCC.
Depending on the orientation, a single-strand or double-strand Au chain forms. A surface dislocation within the Au chain (yellow
transparent circles) repairs the stacking fault for adjacent Si atoms for negative cutting angles.

appearondifferently sized terraces105. In the caseofAuwires, thedepositionofAuandsubsequentheating
to temperatures above 400 °C stabilizes the vicinal Si(111) surfaces. As a result, regular-sized terraces form.
However, only Si(hhk) surfaces with oddMiller indices were found to be stable10.

The lack of symmetry along the [112̄] direction results in twodifferent types of step edges: For a negative
(h > k) and positive (h < k) surface orientation, the step-edge atoms of the unreconstructed surface have
one and two DBs, respectively, as illustrated in Fig. 3.2(a). Themirror-symmetric HCC reconstruction sta-
bilizes the step edge by reducing the number of DBs on the surface. Furthermore, both types of step edges
then share the same geometry with a single DB per step-edge atom (see Fig. 3.2(b)). However, this results
in a stacking fault at the interface of the HCC and the remaining Si surface atoms in the case of negative
cutting angles106. The stacking fault necessitates the formation of a double-strand Au chain: First, the Au
atoms substitute the Si atoms at the interface. Second, a surface dislocation within the double-strand Au
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3.2 Au on Si(111)

Figure 3.3: Atomic structures of Si(335)-Au107 and Si(775)-Au108 in top and side view. Big and small gray circles as well as red
circles indicate Si bulk and Si HCC atoms, respectively. Additional green and blue circles represent Si rest atoms (having one
unsaturated DB) and Si adatoms, while yellow circles mark the positions of the Au atoms.

chain repairs the stacking fault previously felt by the substituted Si atoms and the adjacent HCC atoms.
The spherical s-orbitals of the Au atoms are less sensitive to specific bonding geometries then the more
rigid sp-hybridized Si atoms. In contrast, the bonding geometry of the HCC and Si surface atoms match
for surfaces with positive orientation. Consequently, only a single-strand Au chain is needed on these
surfaces. In this sense, the Au chain stabilizes the HCC by electron donation—similar to Si(111)-Au—and
corrects the stacking fault for surfaces of negative orientation.

Si(335)-Au10 and Si(553)-Au110 are the smallest vicinal Si(111) surfaces whose terraces can fit an HCC to-
gether with a single- and double-strand Au chain, respectively. Two other prominent Si(hhk)-Au surfaces
are Si(557)-Au11 and Si(775)-Au10. These have two additional rows of Si surface atoms per terrace with un-
saturatedDBs—called rest atoms. On both surfaces, additional Si adatoms saturate three out of fourDBs of
these rest atoms108. The atomic structures of Si(335)-Au and Si(775)-Au are depicted in Fig. 3.3. A detailed
summary of the terrace width, the cutting angle, and the amount of Au required for the self-assembly of
Au nanowires on (vicinal) Si(111) surfaces is given in Tab. 3.1.

The following sections give a detailed, chronological overview of Si(553)-Au and a shorter overview of
Si(557)-Au. In thisway, outdated results are also summarized andput into perspective. This is all themore
importantas someresultsare seemingly contradictingeachother,while the reasons for this aremeanwhile
understood to a large extent. Several overview papers29,36,41 have already been published, on which the
following sections are partially based.

Orientation Terrace width (Å) Au coverage (ML) Off-axis angle
Si(111)-(5× 2) 16.7 0.7080 0°

Si(335) 12.6 0.27 14.4° to [1̄1̄2]
Si(557) 19.2 0.18 9.5° to [1̄1̄2]
Si(553) 14.8 0.48111 12.3° to [112̄]
Si(775) 21.3 0.32105 8.5° to [112̄]
Si(995) 26.3 0.13 13.8° to [112̄]

Si(13 13 7) 37.8 0.30 14.4° to [112̄]

Table 3.1: The terrace width, Au coverage, and off-axis angle for several vicinal Si(111)-Au surfaces. The Au coverages are in units
of Si(111) monolayer (ML). Unless otherwise indicated, all data were taken from Ref. [10].
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Figure 3.4: STM images of Si(553)-Au at (a) 300K and (b) 45K taken at −0.2 V and −0.5 V biases, respectively. The inset depicts
the unreconstructed Si(553) surface. (c) LEED patterns of Si(553)-Au at 300K, 180K, and 70K measured with an electron beam
energy of 88 eV. Reprinted figures with permission from Ref. [112]. Copyright (2005) by the American Physical Society.

3.3 Au on Si(553)

Of all the Si(hhk)-Au surfaces, Si(553)-Au has been the most researched. This is for two reasons: First, it
has the lowest defect concentration and is thus themost undisturbed quasi-1D systemwith Auwires10,109.
Second, the experimental results concerning the phase transition of Si(553)-Au seem to be in parts contra-
dictory16. It has, therefore, the least understood dynamic behavior, which spurred further investigations.

3.3.1 Atomic Structure

The Si(553)-Au surface has an inclination angle of 12.3° towards [112̄]. Its terraces are 4 1
3 Si(111) surface

unit cells wide—the narrowest of all Au-decorated vicinal Si(111) surfaces with negative orientation. For
that reason, the Au chain separation is even smaller than for Si(111)-(5× 2)-Au. The atomic wires formed
by 0.48monolayer (ML) of Au (with respect to the Si surface atom density of the Si(111) surface) are dis-
tributed very homogeneously over the surface when heated to 650 °C. Subsequent flash-annealing for
several seconds at 850 °C reduces the defect concentration even further10. The defect concentration of
well-prepared surfaces is estimated to be in the order of 1%109.

First Structural Models

The surface has been thoroughly investigated by STM10,103,110–121. Parallel aligned rows of bright protru-
sions alternate with dark trenches, in which subtle structures are visible. These two different features are
associatedwith the Si step edges and the Au atomic wires, respectively10. The bright protrusions are occa-
sionally interrupted by defects, which appear as dark spots at both negative and positive tunneling biases.
For the latter, these are larger122,123. Fig. 3.4 depicts filled-state STM images of Si(553)-Au by topographs.
Please note that in most literature the STM images are illustrated by 2D colormaps.

At room temperature, the step edge has a simple ×1 periodicity (with respect to the unreconstructed
(5× 1) unit cell of Si(553))110. In contrast, the faint structure associated with the Au chain exhibits a weak
×2 periodicity10 (cf. Fig. 3.4(a)). Upon cooling, the ×2 modulation gains intensity112. More importantly,
there is a period tripling at the step edge, as shown in Fig. 3.4(b). However, the onset of this tripling de-
pends sensitively on the defect density: Defects tend to pin the ×3 superstructure locally and shift the
transition temperature to higher regimes113. Based on LEED, a transition temperature of 160 K was pro-
posed for the period tripling124.
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3.3 Au on Si(553)

Figure 3.5: Historical development of the structural model of Si(553)-Au in top and side view. The color code is similar to Fig. 3.3.
(a) The earliest surface structure10 exhibits a single Au strand, a deformed HCC, and Si adatom dimers, which account for the ×3
periodicity seen in LEED. (b) A regular HCC without Si adatom dimers is energetically more stable106 , but higher periodic structural
features are missing. (c) The discovery of a higher Au coverage led to a new model126 with a double-strand Au chain and no Si rest
atoms. The Au atoms form dimers, which account for ×2 periodic features. (d) In the latest model, every third step-edge atom
(orange circles) is spin-polarized and slightly lowered in position. This reflects the ×3 periodicity observed in experiments13,120.

Initially, Snijder et al. reported an additional ×2 periodicity at the step edge for intermediate temper-
atures in STM113. However, electron injection through the STM tip was identified to induce the structural
change118,119. Surprisingly, the coprime×3 and×2 periodicities of the step edge and Au chain seem uncor-
related. In LEED, only aweak×2 and an even fainter×3 pattern in conjunctionwith the×1 pattern of the
substrate are visible112,120,125 (cf. Fig. 3.4(c)). An additional ×6 superstructure is missing.a Au chains of
adjacent terraces have no fixed arrangement with respect to each other, as is visible by the×2 streaks.

Based on early STM measurements at room temperature10,110,112,113, a Au coverage of 0.24ML was pro-
posed, implyinga singleAu strandper terrace for Si(553)-Au. With this knowledge, structuralmodelswere
developed using density-functional theory (DFT). A first proposal10 comprised a single-row Au chain in
themiddle of the terrace and a partially deformedHCC at the step edge. An additional Si dimer is attached
to the step edge, which accounts for the ×3 periodicity seen in experiments. The structural model is il-
lustrated in Fig. 3.5(a). Nevertheless, the model lacks ×2 structural features. Riikonen et al. conducted
a detailed analysis of several structures106. They found that Si dimers at the step edge have only a minor
impact on the total energy. Furthermore, a much simpler structure with a regular HCC at the step edge is
energetically more stable but misses both×2 and×3 periodic features (see Fig. 3.5(b)).

Double-Strand Au Chain

Based onX-ray diffraction (XRD) experiments, Ghose et al.127 proposed a higher Au coverage of 0.48ML.
One way to accommodate the increased number of Au atoms is a double-strand Au chain. Furthermore,
they suggested that an additional Si adatom row could explain the×2 periodicity seen in STM. Typically,
Si adatoms appear as bright spots in STM on other Si surfaces128. On Si(553)-Au, however, these char-
acteristic bright spots are missing. Additionally, the Au chain of the proposed model resides at the step
edge—in contrast to previous models. Later, total-energy calculations found that the atomic structure
is energetically unstable114,129. However, subsequent STM measurements calibrated with respect to the
better understood Si(557)-Au system confirmed a Au coverage of 0.48ML111.

aPolei et al.118,119 demonstrated that high-tunneling currents in STM are capable of inducing a×6 superstructure.
Later itwas shown that a×6periodicity is also visible in high-resolution STM images—independent of the electrical
current121. For more details, see section. 3.3.2.
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Krawiec incorporated these findings into a new model126, shown in Fig. 3.5(c). This model exhibits a
double-strand Au chain, where the Au atoms arrange in a ladder structure. This is energetically more fa-
vorable than a zigzag chain, where the Au atoms would merely substitute Si surface atoms. In contrast,
the formation of the ladder structure involves a surface dislocation that intrinsically resolves the stacking
fault caused by the HCC reconstruction (cf. Fig. 3.2 and the accompanying text). The Au atoms within
a strand form dimers, which explains the ×2 periodicity seen in the experiments. However, this model
cannot reproduce the×3 periodicity seen at the step edge at low temperature (LT).

Spin Chain Model

An explanation for the ×3 periodicity was given only a little later13: According to DFT calculations,
every third Si step-edge atom of the HCC is spin-polarized. In addition, these atoms have a slightly lower
position of about 0.3 Å, as illustrated in Fig. 3.5(d). This leads to a ×3 periodic structure at the step edge,
which explains the patterns seen in LEED and STMat LT. Hafke et al.120 further noted that the spot-profile
analysis LEED (SPA-LEED) data indicates a centered geometry with respect to the spin-polarized step-
edge atoms. The associated primitive surface unit cell exhibits an inherent higher symmetry, and step-
edge atoms of adjacent terraces have a fixed relation.

Although the spin-chain (SC) structure provides adecentmatchwith empty state STM images at higher
tunneling biases, not all features are reproduced for lower biases. A detailed comparison of experimental
with calculated STM images of the SC structure, togetherwith a newmodel proposal, is discussed in detail
in chapter 5.

Low-Coverage Wire Phase

The deposition of 0.2ML Au on Si(553) results in the formation of low-coverage wires—in contrast to
the high-coverage wires with 0.48ML Au130. This phase is characterized by two alternating terraces with
different surface reconstructions and widths of 4 1

3 a0 and 5 1
3 a0, where a0 denotes the width of a Si(111)

surface unit cell. The smaller one is identical to the high-coverage terrace exhibiting a Au chain and an
HCC at the step edge. However, every other terrace is a pure Si surface with elements of the Si(111)-(7× 7)
structure. As the terrace width is limited, only parts of the (7× 7) reconstruction form on these terraces.
The total width of both terraces is 9 2

3 a0 = 32.7 Å, which is slightly larger than two Si(553)-Au terraces.
Therefore, the low-coverage phase ideally forms on a Si(11 11 7) surface with an inclination angle of 11°.
Step bunching accounts for the orientationmismatch of approximately 1.2° to the Si(553) surface130.

The alternating terraces appear in LEED as ×2 reflexes in the direction perpendicular to the steps. In
the chain direction, additional ×5 spots occur compared to the high-coverage phase. According to the
structure model shown in Fig. 3.6, this ×5 periodicity is due to the dimer-adatom-stacking-fault structure
known from the Si(111)-(7× 7) surface66. The Si terrace exerts significant strain on the Au terrace. Con-
sequently, the HCC step edge adopts the ×5 periodicity of the dimer-adatom-stacking-fault, as seen in
STM for empty states. Moreover, the 1D band structure, the metallic carrier density, and its velocity are
modified as well130.

The low-coverage phase is mentioned here for the sake of completeness. In this dissertation, only the
high-coverage phase is investigated. Therefore, the high-coverage phase of Si(553)-Au will be simply re-
ferred to as Si(553)-Au in the following.
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3.3 Au on Si(553)

Figure 3.6: Structural model of the low-coverage wires of Si(553)-Au in top and side view. The color code is similar to Fig. 3.3.
Light and dark blue circles indicate the dimer-adatom-stacking-fault structure known from the Si(111)-(7× 7) surface.

3.3.2 Electronic Structure
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Figure 3.7: (a) Schematic illustration of the metallic 1D bands of
Si(553)-Au. The shaded area indicates the section of the ARPES
spectra that is shown below at (b) 300K and (c) 70K. The dotted
line represents the Fermi energy and the bands with primed la-
bels are the Umklapp bands (see text on p. 26). Reprinted figure
with permission from Ref. [112]. Copyright (2005) by the Ameri-
can Physical Society.

The band structure of Si(553)-Au was investi-
gated by means of angle-resolved photoemission
spectroscopy (ARPES)10,112: Similar to other vicinal
Si(111)-Au surfaces, Si(553)-Au exhibits a doublet
of bands, labeled S1 and S2. These have fractional
fillings of 0.51 e and 0.56 e. Additionally, a third
band (S3) with a lower band filling of 0.27 e is ob-
served, as shown in Fig. 3.7. These bands originate
in thehybridizedstatesofgoldandadjacent silicon
atoms. Their minima are located at the Brillouin
zone (BZ) boundary of the (5 × 1) unit cell. Fur-
thermore, they showa largedispersion in thedirec-
tion parallel to the Au chain but little to no disper-
sion in the orthogonal direction. This agrees with
themeasured Fermi surface, which appears as two
parallel lines in the experiment10. However, small
modulations of these lines suggest non-negligible
interwire coupling, which is indicative of quasi-1D
systems.

Adetailed tight-binding analysis10 of theARPES
data gives a quantitative measure of the ratio be-
tween intrawire and interwire coupling t∥/t⊥. For
the S1 and S2 doublet of bands, the ratios are 46
and 38, whereas the S3 band has a smaller ratio of
about 12. As expected, the hopping ratio of Si(553)-Au is lower compared to other Au-decorated vicinal
Si(111) surfaces with greater terrace widths. For instance, the hopping ratio of Si(775)-Au is t∥/t⊥ > 100.
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Plasmon dispersions obtained by electron energy loss spectroscopy (EELS) confirm the 1D character of
the metallic bands18,131. While loss features are observed in the direction parallel to the Au wires, they are
missing perpendicular to the wires. The loss features shift to higher energies with increasing scattering
angle. Nevertheless, theplasmondispersion curvehas a slight 2Dcharacter. This is attributed to thewidth
of the conduction channel and, to a lesser extent, to interchain coupling. Consequently, even for an iso-
lated double-strand Au chain, there is a 2D crossover attributable to the lateral expansion of the Au wire
according to Ref. [18].

Rashba Spin-Orbit Coupling

Si(553)-Au and Si(557)-Au are very similar systems in the sense that they both share the parabolic S1/2
bands. For the latter, DFT calculations showed that the origin of the doublet resides in a spin splitting due
to spin-orbit coupling132. Therefore, a similar situation was assumed for Si(553)-Au and a little bit later
also shown theoretically by DFT calculations133. The S1 and S2 bands are thus not two distinct bands, but
rather the splitting of a single band.

Experimental evidence, however, isdifficult toobtain: The small splittingof thebands requireshighmo-
mentumresolution inARPES. Additional filtering according to the emitted electrons’ spin orientations sig-
nificantly reduces the electron count rate. Barke et al. thus utilized a different approach134: They analyzed
the avoided band crossings of the S1, S2, and S3 bands with their Umklapp135 bands. The latter are back-
folded bands with respect to the BZ boundary of the (5× 2) unit cell and are faintly visible in ARPES10,112

(cf. Fig. 3.7; Fig. 2 of Ref. [134] shows a close-up with higher resolution). They originate in the doubled
periodicity of the Au chain, and their visibility is directly related to the Au atoms’ degree of dimerization.

In total, there are four possibilities for avoided band crossings: a Rashba-type spin splitting136, a split-
ting of unpolarized bands, and a ferro- or antiferromagnetic exchange splitting25. While the latter three
result in vertical band shifts of the two respective bands, only the Rashba-induced spin splitting leads to a
horizontal shift. Indeed, a horizontal shift of the bandswas observed by Barke et al. for Si(553)-Au. There-
fore, a Rashba-type spin splitting is in good agreementwith the avoided band crossings seen in ARPES and
indirectly confirms the previous prediction based on DFT calculations.

Adirectproofwasprovided shortly afterwardby spin-resolvedARPES125: A strong spinpolarizationwas
observed near the Fermi energy EF for the band doublet, in full agreement with a Rashba spin-orbit cou-
pling. In contrast, significant spin polarization could not bemeasured for the S3 band. Non-collinear DFT
calculations, including spin-orbit coupling, confirmed the measurements137. The spins of the S1/2 band
have a large in-plane component and a smaller out-of-plane component. Surprisingly, DFT also indicates
a Rashba spin-splitting for the S3 band with a perpendicular orientation to the S1/2 band. The magnitude
of this splitting, however, was too small to bemeasured in the spin-resolved ARPES experiment.

Band Gap

Earlier publications on Si(553)-Au reported band gaps at LT. For instance, Ahn et al. found band gaps of
30meV, 40meV, and 23meV for the S1, S2, and S3 bands in ARPES at 70 K112 (cf. Fig. 3.7(c)). Furthermore,
an area-averaged scanning tunneling spectroscopy (STS) study confirmed a band gap at 40 K, although
with a larger gap of 150meV113. It was argued in both publications that the band gaps are due to Peierls
distortions that lead to CDWs of×2 and×3 periodicity—as seen, e.g., in STM112,113.
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However, the band gaps are difficult to reconcilewith other experimental results: For example, Aulbach
et al.117 reported a finite DOS atEF in STS, directly contradicting the previous STS study113. The states at the
Fermi energy were shown to originate in the Au atoms and preclude a CDW formation as an explanation
for the×2 periodic lattice distortion. More importantly, an asymmetricb band gap of the S1 and S2 bands
is in stark contrast to the observed Rashba splitting.

Several other studies have also shown that the surface remainsmetallic even at LT. This is discussed in
more detail in the next subsection. Based on the current state of knowledge, band gaps at LT are therefore
unlikely. However, it should be noted that a Au excess of only 0.024ML on Si(553)-Au was reported to
cause the opening of a pseudo band gap138. The observed band gap could thus be related to a slightly
differing Au coverage.

Electronic Transport and Metallicity

Okino et al. performed the first transport measurements of Si(553)-Au using a linear microscopic four-
point probe (4PP)16. They investigated the dimensionality of the electrical conductivity bymeasuring the
resistance R with respect to the probe spacing s: It is utilized that R ∝ s for 1D, R ∝ const for 2D, and
R ∝ 1/s for 3D conductivity. The measured resistance R is independent of the probe spacing, indicating a
2D flow of the electrical current. Despite the quasi-1D character of the Au bands, the electrical current is
thus not restricted along the Au chain. According toOkino et al., this is to a small extent due to an isotropic
space charge layer (SCL) beneath the surface but, more importantly, due to interchain coupling.

In addition, rotational square micro-4PP experiments allow for directional-dependent transport mea-
surements of anisotropic systems139. In this way, the parallel σ∥ and orthogonal σ⊥ conductivity were
measured simultaneously. The anisotropy σ∥/σ⊥ = 2.7 of the surface is much smaller than the band
structure and the tight-binding hopping ratio suggest. Estimates based on the Boltzmann distribution
and the surface-state band dispersion allow for further comparisonwith the experiment. The experimen-
tal σ⊥ is close to the estimated conductivity, while the experimental σ∥ is an order of magnitude smaller.
The discrepancy is believed to be caused by intrinsic point defects and impurity atoms. These divide the
atomic wires into small metallic segments and hinder the conductivity along the wires122,123,139.

In another experimentof the same researchgroup139, extrinsicdefectswere introducedbyO2 gas exposi-
tion to a similar system exhibiting self-assembling atomic wires—the In/Si(111)-(4× 1) surface. There, σ∥

decayed rapidly, whereas σ⊥ remained unchanged with increasing oxygen dose. The authors concluded
that the electrical current flows to adjacent chains to circumvent the surface defects. Furthermore, they
suggested that a similar behavior can be expected from Si(553)-Au.c It is further hypothesized that the S3
band contributes to a greater extent to the conductivity because the S3 band has a stronger interband cou-
pling. Additionally, it was found that the surface is metallic for temperatures above 160 K and insulating
below 160 K16.

Edler et al., on the other hand, came to a different conclusion with their rotational square 4PP setup124:
For temperatures above 100 K, they foundananisotropy factor similar to the previousmeasurement. How-
ever, the anisotropy factor increases significantly upon cooling and is comparable in size with previous

bThe problem is not only related to the differing band gaps but also to the distinctive temperature behavior of
the S1 and S2 band gaps. For more details concerning the temperature dependence, see section 3.3.3.

cIn section 4.1, the influence of oxygen on the transport properties of Si(553)-Au is discussed in detail.
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tight-binding calculations10. This is due to the different thermal development of R⊥ and R∥, which in-
crease by two to three and one order of magnitude, respectively. The resistances stabilize at 50 K.

Two factors were identified to drive the increase of the anisotropy: First, the isotropic contribution of
the SCL declines faster than the surface state contribution upon cooling. Second, interband hopping re-
lated to σ⊥ is significant only for higher temperatures124. As a result, the electrical conductivity perpen-
dicular to the chains σ⊥ can be entirely associatedwith the contribution σSCL of the SCL at LT. Subtracting
σSCL from σ∥ gives the exclusive conductivity of the surface states σs, whichpeaks at about80 K. Forhigher
temperatures, σs quickly decreases, which is expected due to the enhanced electron-phonon scattering of
1D systems140. However, also for temperatures as low as 50 K, the conductivity remains finite and the sys-
temmetallic.

Both EELS18,131,141,142 and infrared spectroscopy143 confirm the observed metallicity at LT. In EELS, the
spectrum exhibits a Drude tail originating in the continuum of low-energy excitations, which is a charac-
teristic of metals144. Similarly, a robust plasmonic signal is obtained in infrared spectroscopy for temper-
atures as low as 20 K. In analogy to the previous discussion regarding a band gap opening, the insulating
behavior in the transportmeasurements of Okino et al.16,139 could be related to a slightly different amount
of Au on the surface138.

Spin-Polarized Step Edge

While the ×3 modulation at the step edge had been explained by a Peierls-induced CDW112,113, Erwin
and Himpsel proposed a different scenario for the periodic lattice distortion13: Every third Si step-edge
atom is spin-polarized with a spin moment of one Bohr magneton—in addition to the Rashba spin split-
ting observed for the Au states. In contrast, the other two step-edge atoms are diamagnetic, i.e., they host
a pair of electrons. Compared to these atoms, the position of the spin-polarized atoms is lowered by 0.3 Å.

According to DFT calculations, the total energy is reduced by 20meV per spin compared to a non-spin-
polarized structure. An antiferromagnetic order is established along the step edge, which is favored over a
ferromagnetic order by 2.4meV per spin. A nearest-neighbor Heisenberg Hamiltonian calibrated by DFT
total energies yields an antiferromagnetic coupling of J∥ = 15meValong the steps and aweaker ferromag-
netic coupling of J⊥ = −0.3meV across the steps13.

The spin-chain (SC) model well reproduces many experimental observations: The modulation of the
step-edge geometry explains the×3 reflexes observed in LEED. Similarly, the periodic×3 pattern seen in
STM images is attributed to the structural and electronic modifications at the step edge (cf. Fig. 3.4).

The non-polarized surface exhibits a metallic band that is not observed in ARPES. This band has its
origins in the identical step-edge atoms. In the SC model, it is replaced by two less dispersive bands as-
sociated with the diamagnetic and spin-polarized step-edge atoms, respectively. While the former band
entirely shifts below the Fermi energy, the latter spin-splits into two states below and above the Fermi
energy with an exchange splitting of 0.5 eV. Although the occupied spin-split band is also not observed
in ARPES, its absence is justified by thermal fluctuations. These are hypothesized to commence between
30 K to 70 K109,145 due to the relatively low energy gain per spin-polarized atom.

Nevertheless, direct experimental proof of spin-polarized surface states, e.g., by spin-resolved STM
or STS, is still missing. There is, however, some indirect evidence: A nondispersive state 0.62 eV above
EF and two states 0.45 eV and 0.79 eV below EF were observed in a two-photon photoemission (2PPE)
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experiment146. These match only with the calculated step-edge bands of the SCmodel. Furthermore, the
occupied bandwas located by STS at 40 K above every third step-edge atom—although at a slightly lower
energy of 0.5 eV145. This state wasmissing above the other surface atoms.

It was shown in STM that the ×3 periodicity at the step edge vanishes for low tunneling voltages, in
contradiction to a CDW scenario117. Simulated constant-current STM images based on the SC model re-
produced this behavior at the step edge: a×1 periodicity at low and a×3 periodicity at higher biases117.

In SPA-LEED, the ×3 reflexes appear as elongated spots, indicating a long-range order of the spin-
polarized step-edge atoms across the terraces120. The associated unit cell is described by a centered ge-
ometry. A reduction of theMadelung energy147 by the Coulomb interaction is assumed to cause the spins’
long-range order. Indeed, classical electrostatic and DFT calculations support this scenario: A centered
geometry lowers the energy by 2meV per spin. In this geometry, the spins are arranged in a triangular
lattice, locking them in a frustrated spin state due to the antiferromagnetic coupling along the step edge.
It is thus postulated that the spins form a 2D quantum spin liquid120. In contrast, adjacent Au chains are
uncorrelated, as is apparent by the×2 streaks.

As the periodicities of the spin chain and Au chain are coprime, an interaction between both would be
evident by additional×6 periodic features. In SPA-LEED120 and STM10,110,112,113 experiments, patternswith
sixfoldperiodicity aremissing. However, Aulbach et al. demonstrated that faint×6modulationsarevisible
in STM between +0.1 V to +0.4 V121. In this range, the step edge exhibits ×6 periodic patterns with alter-
natingbrighter anddarker spin-polarized andnon-polarized step-edge atoms. The interaction is unidirec-
tional, i.e., the Au chain modulates the step edge, but not vice versa. Missing×6 features in SPA-LEED120

suggest that the interaction is of electronic nature. In general, dimer formation is accompanied by charge
accumulation between the participating atoms. This is also seen in STM113 for the Au dimers. The step-
edgemodulations are thus explained by the Coulomb interaction of the step edgewith these Au dimers121.
While the diamagnetic step-edge atoms react to the dimers on the same terrace, the spin-polarized step-
edge atoms are sensitive to the dimers on the adjacent downhill terrace (cf. Fig. 5.3). Local STS spectra
taken above two neighboring spin sites confirm that the DOS is indeed shifted by about 20meV121.

3.3.3 Phase Transition

In this subsection, some new and some already mentioned properties of Si(553)-Au are revisited in light
of their temperature dependence.

Peierls-Induced Charge-Density-Waves

In an early study, Ahn et al.112 observed a phase transition in both STM and LEED occurring somewhere
between 70 K and 300K: Upon heating, the ×3 step-edge periodicity is replaced by the ×1 periodicity of
the underlying lattice. The same applies in part to the×2 periodicity of the Au chain: While the×2 pattern
in STM has mostly disappeared at 300K, the ×2 reflexes in LEED are still visible (cf. Fig. 3.4). Therefore,
the authors assumed that two independent phase transitions occur concerning the ×3 and ×2 periodic
lattice distortions. They specified a transition temperature of 250 K for the period tripling based on ARPES
and LEEDmeasurements. In addition to the structural changes, band gap openings of 30meV and 23meV
at 70 K for the S1 and S3 bandswere reported, as shown inFig. 3.7(c). In contrast, the S2 bandhas a reported
temperature-independent band gap of 40meV112.
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3 Self-Assembled Au Atomic Wires on Vicinal Si(111) Surfaces

Similarly, a continuous band gap opening was observed in area-averaged STS113. However, a consid-
erably lower transition temperature of 110 K is reported. In addition, a band gap of 150meV at 40 K is
specified, which is in stark contrast to the band gap estimates in ARPES. Both publications identify the
band gaps as Peierls-induced CDWs, causing the×2 and×3 lattice distortions112,113.

Transport measurements performed bymicroscopic 4PP supports the observation of a band gap open-
ing16: Upon cooling, the conductivity remainsmetallic and steadily increases up to 160 K. Further cooling
leads to a drastic drop in conductivity, which was hypothesized to be a metal-insulator transition (MIT)
occurring at 160 K.

These three observed phase transitions seem to have contradicting transition temperatures: two band
gap openings at 250 K in ARPES, an MIT at 160 K in a 4PP experiment, and a band gap opening at 110 K in
STS. Ref. [16] gives an explanation on how to reconcile the different transition temperatures: STM mea-
surements113 show that defect sites on Si(553)-Au act as nucleation sites for the ×3 periodic elements at
the step edge, rendering regions around the defects insulating. With decreasing temperature, these re-
gions spread along the atomic chains. In area-averaged STS, a band gap opens when the whole surface
becomes insulating. Electronic transport on Si(553)-Au, on the other hand, relies on interchain coupling
due to defects: Growing insulating regions interrupt the metallic conduction channels, which leads to a
breakdown of the surface conductivity. This happens even though the surface is not insulating as awhole.
As a result, the MIT in transport measurements is observed at higher temperatures compared to STS. In
ARPES, however, the band gap opening was defined by an energy shift of a leading edge in the spectrum.
Consequently, the opening is observed as soon as the first defect-induced isolating regions develop.

Anotherexplanation isgivenbydifferingdefect concentrations. It is reported thatdefect concentrations
are difficult to control, even when sample preparation follows a fixed procedure148.

Order-Disorder Phase Transition

The three previously discussed publications16,112,113 explain the phase transition by a Peierls-induced
CDW leading to anMIT. However, this is difficult to reconcile with several other observations: (i) the frac-
tional bandfillingsdonotmatch thenesting condition for aPeierls transition36,117; (ii) anasymmetric band
gapopening is inconsistentwith aRashba-splitS1/2 band134; (iii) theperiodicity at the step edge in STMde-
pends critically on the tunneling voltage117,121; (iv) a finite DOS at the Fermi energy EF was observed in the
most recent STS spectra117; (v) plasmon dispersions obtained by EELS18,141 and infrared spectroscopy143 in-
dicate ametallic surface over a broad temperature range; (vi) the surface remainsmetallic at LT according
to the latest 4PPmeasurements124, and (vii) all relevant atomic models lack a band gap in DFT at EF13,126.

In contrast, the spin chainmodel13 explains the phase transition by an order-disorder transition. Filling
the DB of every third step-edge atom with a single, unpaired electron lowers the total energy by about
20meV per spin. However, the relatively low energy gain makes the surface susceptible to local thermal
fluctuations between spin-polarized and diamagnetic states. These fluctuations wash out the long-range
order at the step edge. As a consequence, only an averaged×1 periodic structure is observed.

Spatially resolved STSmeasurements145 at different temperatures support an order-disorder transition
scenario: A nondispersive band at +0.5 eV, identifiedwith the spin-split band in the SCmodel, is detected
above every third step-edge atomat 40 K. Above the other step-edge atoms, this state ismissing. At 300 K,
however, this characteristic peak is visible above every step-edge atom but with a smaller amplitude.

30



3.3 Au on Si(553)

Furthermore, ab initiomolecular dynamics (AIMD) and kineticMonteCarlo simulations show themelt-
ing of the ×3 ground state at about 30 K due to thermal fluctuations109. More importantly, it was shown
that defects locally pin the spins and stabilize the ground state, which leads to higher transition tempera-
tures, as is seen in experiments113.

Pinning of the ×3 superstructure by defects is also observed in SPA-LEED124. Upon heating, the full
width at half maximum (FWHM) of the ×3 reflex in the direction along the steps suddenly increases at
100 K. At the same time, the peak intensity decreases superexponentially. The ×3 reflex finally vanishes
at 160 K. This temperature depends sensitively on the defect concentration, while the onset of the phase
transition is mostly unaffected by surface defects. In comparison, the×2 reflex intensity mainly displays
anexponential decrease related to theDebye-Waller effect149. TheFWHMremainsmainlyunaffectedwith
a single exception: At 65 K, it exhibits a faint discontinuity, which is assumed to be related to a change of
the dimerization strength along the Auwires124.

At the same temperature, a sudden increase in the surface conductivity is found: Upon heating, the
low but finite surface conductivity rapidly increases until it peaks at about 80 K. For higher temperatures,
the conductivity decreases again—in agreement with metallic transport and the postulated enhanced
electron-phonon scattering for 1D systems140. Instead of an MIT, these measurements suggest a metal-
to-metal transition with a critical temperature of 100 K. The metal-to-metal transition is proposed to
originate in thermal excitations between delocalized Au and more localized Si states. This transition is
elaborated inmore detail in chapter 6.

SPA-LEED measurements performed by Hafke et al.150,151 agree qualitatively with the other SPA-LEED
data124. However, they note that the long-range order of the ×3 reflex collapses faster across than along
the steps. This unusual behavior implies a thermally induced crossover from 2D to 1D and is attributed to
the creation of soliton-antisoliton pairs at the step edge. These destroy first the interwire and afterward
the intrawire correlation. AHamiltonian based on the Pottsmodel152, which is a generalization of the Ising
model, is used to study the dynamics of interacting wires. It well reproduces the measured data150.

Phase Transition Driven by Electron Doping

Another metastable phase of Si(553)-Au is accessible via electron doping by an STM tip118,119. In this
phase, the step edge periodicity changes from threefold to twofold. After awhile, the excited state is desta-
bilized by excess carrier flow to the bulk and transitions back to the ×3 ground state. The lifetime of this
excited state is characterized by a specific time constant and is unaffected by the tunneling current. The
transition rate to the×2 state, on the contrary, accelerateswith increasing tunneling current anddecreases
with rising temperature. Indeed, a ×2 superstructure at the step edge is ubiquitous for all accessible tun-
neling currents at temperatures as low as 13 K. For intermediate currents and high temperatures, a ×6
periodic step-edge structure is observed, which can be explained by a time-averaged linear combination
of the low- and high-current phase and is unrelated to an interaction with the Au chain.
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3.4 Au on Si(557)

Among all vicinal Si(111)-Au surface, Si(557)-Auwas discovered first11. It has been extensively investigated
and spurred the examination of other Si(hhk)-Au surfaces10. Many of its properties can be transferred to
the other vicinal surfaces. For instance, it shares many characteristics with Si(553)-Au, of which some are
outlined in the following. However, there are also considerable differences, which are mostly related to
the different surface orientations and differing structural motifs. One example is the influence of oxygen
on the electronic transport properties of both surfaces, which is explored inmore detail in section 4.1.

3.4.1 Atomic Structure

As listed in Tab. 3.1 on p. 21, the terracewidth of Si(557)-Au is 19.2 Å. Compared to Si(111)-Au, this allows for
a slightly larger separation between the Auwires. Approximately 0.18ML of Au is deposited on the Si(557)
surface at 650 °C with subsequent flash-annealing at 850 °C. As a result, well-ordered Si(557) terraces
decorated with parallel-aligned Auwires form10.

STM12,153–155 was used to investigate the surface structure. Two different atomic wires with different
characteristics are identified at the edges of each terrace155: One atomic wire is seen best in empty-state
STM images and exhibits a twofold periodicity153 in the direction along the step edge. The other atomic
wire shows pronounced features in filled-state images and is less corrugated. In addition, irregular bright
protrusions decorate the surface155.

Because Au atoms scatter X-raysmore strongly than Si atoms, XRD is used to distinguish between both
types of atoms156. The XRD pattern reveals a very simple structure with a single Au atom per (6× 1) unit
cell. This is consistent with a Au coverage of 0.18ML determined in other experiments10,11. Additionally,
theAu atoms substitute Si atoms in the top layer of the surface and are situated in themiddle of the terrace.
These two points suggest that both atomicwires seen in STMconsist of Si and not Au atoms. Furthermore,
the Si-Au bond lengths are indistinguishable from the Si-Si bond lengths. Consequently, the Au atoms are
incorporated into the Si surface with little strain.

In addition, XRD indicates that a Si adatom ispresent in every secondunit cell. EachSi adatomsaturates
threeSi surfaceatomswithDBs. Theadatoms formarowthat is identifiedwith the corrugatedatomicwire
with×2 periodicity seen in STM.

The other atomicwire is associatedwith the Si step edge. An analysis of theDebye-Waller factor149 near
the step edge hints towards a trigonal (120°) bonding geometry of sp2 character. This is consistentwith an
HCC reconstruction at the step edge, similar to Si(553)-Au.

DFT calculations157 by Sanchez-Portal et al. confirmed the structural motifs derived from XRD. Al-
though the exact position of the adatoms was not ultimately determined, there is already a good agree-
ment between the calculated band structure and the ARPES data. A little later, Crain et al.10 published a
structural model with an additional adatom row. This structural model well reflects the ×2 periodicity
observed in STM.

The faint corrugation at the step edge was mainly explained by the interaction with the ×2 periodic
adatom row10. However, Erwin et al.13 gave another explanation: In analogy to Si(553)-Au, every second
step-edge atom is spin-polarized. This is accompanied by a slightly reduced height of ≈ 0.5 Å of these
step-edge atoms. The structure of the spin-polarizedmodel is illustrated in Fig. 3.8.
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Figure 3.8: Side and top view of the spin chain structure of Si(557)-Au. Large and small grey circles indicate saturated Si bulk and
surface atoms. Honeycomb chain atoms are colored red, while green, blue, and orange circles represent unsaturated Si rest atoms,
Si adatoms, and spin-polarized Si step-edge atoms, respectively. The Au chain is shown by yellow circles.

3.4.2 Electronic Structure

InARPESmeasurementsperformedbetween 12 K to300K, nosignificant change in theelectronic structure
was observed11. In the direction along the step edge, a half-filled dispersing band was measured that was
attributed to the 6s states of the Au atoms. The lack of dispersion perpendicular to the Au wires was seen
as a validation for the system’s one-dimensionality. Close to the Fermi vector kF, the dispersing band has
a peak at about −100meV. Near the Fermi energy, the intensity of the band drops, and no explicit Fermi
cutoff is visible. However, itsmetallic character can be deduced from its dispersion and occupation11. Con-
sequently, no CDW formation and, thus, no Peierls instability was observed. Luttinger liquid theory158

requires the absence of Peierls instabilities at finite temperatures as well as a momentum-resolved spec-
tral function that follows a power-law behavior of the form (E − EF)α−1. While a reliable α could not be
extracted from the data, a band splitting of the dispersing band was observed that seemed to merge at EF
and was identified with holon and spinon excitations. Therefore, the authors concluded that “our system
is a realization of a Luttinger liquid, one of whose properties is vanishing spectral intensity at EF.”11

It was later shown in ARPESmeasurementswith improved energy andmomentum resolution12,153 that
the band splittingwith the alleged single crossing at EF is, in fact, two separate crossings in close distance.
This finding is inconsistent with the interpretation of a Luttinger liquid and spin-charge separation. De-
spite the absence of Luttinger liquid behavior, the system displays a high degree of correlation. For in-
stance, the plasmonsmeasured in EELS indicate a strong 1D confinement18,159. Although the plasmon dis-
persion is similar to that of a free-electron gas, a strong influence of electron correlation on the signal is
visible. Section 4.2 elaborates on the plasmonic properties of Si(557)-Au inmore detail.

The Fermi surface of Si(557)-Au is slightly corrugated, indicating a quasi-1D rather than a genuine 1D
system10. The 2D coupling was estimated by tight-binding calculations fitted to the ARPES data10. The
ratio of the parallel and perpendicular coupling constants t∥/t⊥ yields a value of≥ 60. Although not truly
1D, the high ratio is indicative of the mostly 1D character of the atomic wires.

The finding of two instead of one closely spaced half-filled bands (labeled S1 and S2) also resolves the
apparent contradiction with an even number of electrons per unit cell. However, the filling of these two
bands is not exactly 0.5 e. Instead, fillings between 0.42 – 0.5 e for S2 and between 0.49 – 0.54 e for S1 have
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been reported10,12,110,153, resulting in a unit cell with a fractional number of electrons. Different explana-
tions have been given for this: One explanation is that the actual unit cell is larger than the experimentally
observed36. Another explanation is given in terms of electron doping by additional Si adatoms10. In com-
bination with the high defect density of about 10%10,12, this could also account for the differences in the
reported band fillings. However, it should be noted that the band fillings obtained by DFT calculations
exhibit similar fractional fillings157, suggesting that these are intrinsic.

Similar to Si(553)-Au, the S1 and S2 bands are Rashba-split. They originate in the same band associated
with the single-strand Au chain. In fact, the Rashba splitting was first predicted by DFT calculations for
the Si(557)-Au surface132. Later, a thorough analysis of the avoided crossings of the parabolic bands in
ARPES134 confirmed that the splitting is of the Rashba type.

The Si adatom row and the step edge were investigated at room temperature using STS154. While the
adatom row seems to be insulating, a finite local DOS is observed at the step-edge atoms, rendering the
latter metallic.

In analogy to Si(553)-Au, DFT calculations indicate that the step edge of Si(557)-Au is also spin-
polarized13. Here, however, every second step-edge atom hosts an unpaired electron—in contrast to
every third in the case of Si(553)-Au. Furthermore, the Si rest atoms are fully polarized as well. In the di-
rection along the step edge, both types of atoms exhibit an antiferromagnetic interaction. The same holds
for the spins of adjacent rows. An energy gain of 45meV per spin is reported in relation to the unpolarized
surface13.

3.4.3 Phase Transition

In contrast to earlier reports11,110, Ahn et al. observed a phase transition at about 270 K153. The phase tran-
sition becomes apparent by a symmetry breaking involving a period doubling of the step edge at LT. The
period doubling is attributed to an up-down buckling of the step-edge atoms accompanied by anMIT. In
the case of the S1 band, a gap opening and a shift of the leading edge by 40meV is observed in ARPES153.
SupplementarySTSmeasurements showthat thebandgap is symmetrical and80meV in size154. Similarly,
also the S2 band exhibits a band gap. However, the band gap is reported to be stable even at room temper-
ature153. EELS measurements support this claim159. However, one should note that this is in contrast to
the proposed Rashba-split S1/2 band—similar to Si(553)-Au.

The phase transition was explained by fluctuating step-edge atoms132,160. The mechanism is similar
to the phase transition described in chapter 6 for Si(553)-Au. While the step-edge-fluctuation model can
explain the buckling at the step edge, the ARPES and STSmeasurements are not reproduced as well. How-
ever, with the advent of the spin-chain (SC) model, the phase transition is explained more consistently:
For instance, the opening of a small band gap is also found in the SCmodel.

On the other hand, transport measurements show that the temperature dependence of Si(557)-Au is
entirely different from that of Si(553)-Au16. Si(557)-Au exhibits an activation-type T dependence that is
incompatible with anMIT: With increasing temperature, the conductivity increases steadily.
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Science is what we understand well enough to explain to a computer.

Art is everything else we do.

Donald Knuth

4
Electronic Properties of Clean and Oxidized

Si(hhk)-Au Surfaces

True one-dimensional (1D) systems differ from their higher-dimensional counterparts by having a
particularly pronounced electron correlation. This correlation leads to unique properties not seen

elsewhere. They are characterized by the Luttinger liquid theory7,8 (see section 2.1). Although the col-
lapse of Fermi liquid behavior in the Si(hhk)-Au family could not be observed, several members of this
family exhibit complex electrical and kinetic behavior. Despite this, the question remains to what extent
a dimensional crossover between Fermi and Luttinger liquid exists.

The presence of defects further complicates this question. In 1Dmaterials, defects have a severe impact
on the system. Already a single point defect breaks the periodicity of a 1D crystal in its only available direc-
tion. In the case of self-assembled atomic Au wires on Si(hhk) surfaces, it is presumed that point defects
reduce the conductivity along the wires16,139,161. At the same time, they significantly increase the hopping
probabilities perpendicular to thewires and, as a result, reduce the anisotropy of the system. On the other
hand, point defects can also stabilize the local structure by shifting the critical temperature Tc of a phase
transition. In the case of Si(553)-Au, the ×3 periodicity at the step edge is visible at higher temperatures
in the vicinity of defects113,122,162. Likewise, point defects in the form of oxygen adsorbates increase the
inter- and intrawire coupling of the In/Si(111) surface. In this way, oxygen stabilizes the insulating (8× 2)
LT phase and shifts Tc to higher temperatures. However, other adsorbates have the opposite effect and
reduce Tc163–166.

Kang et al. investigated the atomic and electronic properties of various point defects that occur on
Si(553)-AuandSi(557)-AuusingSTMandSTS115. They foundfivedifferent typesofpointdefects connected
to dissociatedwater adsorption, displaced Si adatoms, andmissing Au atoms. In STS, water-adsorbed de-
fects near the honeycomb chain (HCC) induce a band gap of around 0.5 eV. However, the most reactive
part of the Si(557)-Au surface is the Si adatom—even more reactive than the HCC. At this site, water ad-
sorption is not accompanied by a band gap opening. These results led to the conclusion that the HCC is
relevant for electronic transport. A previous study had come to the same conclusion161.
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Besides water and hydrogen, oxygen is a primary contributor to contamination by residual gas in vac-
uum chambers. It is also one of the basic components of our atmosphere. Consequently, oxidation is the
firstmodification thatwill occurwhen samples come into contactwith the environment167. Siliconwafers,
e.g., are known to form a μm-thick SiO2 layer. Therefore, it is of interest to know how Au-decorated Si
surfaces—and especially the self-assembled atomic wires—behave upon oxygen adsorption.

In section 4.1, the electrical conductivity of the clean Si(553)-Au and Si(557)-Au surfaces is investigated
in comparison to the same oxidized surfaces. Subsequently, section 4.2 shows that plasmon spectroscopy
is a valuable tool to make robust predictions about the electronic excitation spectrum when aided by
ab initio calculations. This newmethod is tested on clean and oxygen-adsorbed Si(hhk)-Au surfaces.

4.1 Influence of Oxygen Adsorption on the Conductivity of Si(553)-Au and

Si(557)-Au

Here, in cooperation with F. Edler (Leibniz Universität Hannover), the influence of oxygen adsorbates on
the Si(553)-Au and Si(557)-Au surfaces is investigated using electrical transportmeasurements, LEEDand
DFT168. In general, direct current (DC) conductance measurements are very sensitive to the electronic
states near the Fermi energy. As the applied electrical fields are weak, the probed energy range is typi-
callywithin a few kBT. Furthermore, DC conductance is strongly dependent on the charge carriermobility,
which is easily impaired by defects167. It is, therefore, very susceptible to the disorder of a system.

The results were published in Ref. [168], and the following subsections closely follow the structure of
this paper.

4.1.1 Structural Changes Induced by Oxygen Adsorption

Si(553)-Au and Si(557)-Au are very similar, while the few differences originate mostly in their opposing
surface orientation. For instance, Si(553)-Au has a double-strand Au chain while Si(557)-Au has a single-
strand Au chain with an additional Si adatom row. At 300 K, the stepped terraces of the clean surfaces
give rise to the ×1 diffraction spots in the [112̄] direction in LEED. Additional intensity streaks indicate a
×2 periodicity in the same direction, as shown in Fig. 4.1(a) and (d). Although the ×2 streaks—and the
whole LEEDpattern—of both surfaces look very similar, they originate fromdifferent structural elements
exclusive to the respective surface. In the case of Si(553)-Au, the ×2 periodicity stems from the dimeriza-
tion of the double-stranded Au chain. For Si(557)-Au, the Si adatoms are responsible for the ×2 pattern.
Additional×3 spots associated with the step edge appear at LT for Si(553)-Au. At 300 K, however, the×3
superstructure has vanished113. Therefore only the atomic structures with simple×2 periodicity are used
in the following.

Although both surfaces have a similar structure and LEED pattern, the mechanisms regarding oxygen
adsorption are strikingly different. Fig. 4.1(b) and (e) illustrate the LEED pattern after a dosage of 20 L of
molecular oxygen. These are shown side-by-side with the pattern of the clean surfaces in Fig. 4.1(a) and
(d) for better comparison. The×1 spots resulting from the equidistant terraces and the underlying Si(111)
surface remain almost unchanged. Of greater interest are the changes of the×2 features: The×2 reflexes
of the Si(553)-Au surface fade only marginally, while the ×2 streaks of the Si(557)-Au surface disappear
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Figure 4.1: SPA-LEED patterns of Si(553)-Au and Si(557)-Au (a, d) without as well as (b, e) with an oxygen exposure of 20 L. Line
scans are indicated by the horizontal bars and graphs at the bottom. In the inset of (e), the decrease of the ×2 intensity and the
increasing background (back) with respect to oxygen exposure is shown. In (c) and (f), the respective high-temperature structures
are depicted in top and side view. Large and small grey circles indicate saturated Si bulk and surface atoms. Honeycomb chain
atoms are colored red while green and blue circles represent unsaturated Si rest atoms and Si adatoms. Yellow circles indicate
the Au chain. The image is adapted and taken from Ref. [168].

completely. The inset of Fig. 4.1(e) shows the nominalized peak intensity of the×2 streakswith respect to
the oxygen dose. While the peak intensity decreases exponentially with increasing dose, the background
noise shows a linear behavior. The latter indicates the occupation of random adsorption sites. Already
at 5 L, the ×2 reflex is indistinguishable from the background noise. Likewise, the background noise fol-
lows the same linear behavior at higher doses. Other adsorption sitesmust, therefore, also be relevant for
oxygen adsorption. Assuming that every second Si adatom is occupied on average when the ×2 pattern
disappears, a sticking factor of 10%–20% is derived.

4.1.2 Transport Properties of the Clean and Oxygen-Adsorbed Surfaces

Four-point probe (4PP) transport measurements were performed using a square configuration, as shown
in Fig. 4.2(a). With this probe arrangement, the parallel and perpendicular components of the con-
ductance can be measured simultaneously. Current-voltage (I-V) curves were taken by changing the
current between two pairs of probes from −1 µA to 1 µA. At the same time, the voltages between the
other pairs of probes are measured. The slopes of the I-V curves correspond to the resistances of the
respective crystallographic orientation, which are depicted for Si(553)-Au in Fig. 4.2(b). These are dif-
ferent in parallel and orthogonal direction and originate in the anisotropy of the surface conductivity.
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Figure 4.2: (a) 4PP setup used for transport measurements in square geometry. (b) I-V curves measured along (blue) and across
(red) the wire direction. Their slopes determine the resistances R and R⊥. (c) The resistance with respect to the rotation
angle obtained by the rotational square method. The dashed line represents the fit of the experimental data and enables the
determination of the conductivity along (σ ) and perpendicular (σ⊥) to the wires. The image is adapted and taken from Ref. [168].

With the knowledge of the resistances in both directions, the conductivity then equates to R (⊥) =

(2π√σ σ⊥)
−1 ln(1 + σ (⊥)/σ⊥( ))

169,170. The orientation of the atomic wires can be independently de-
termined by rotating the probe configuration and measuring the resistance with respect to the rotation
angle. Fig. 4.2(c) shows the angle-dependent resistance for Si(553)-Au.

At 300 K, the Si(553)-Au surface exhibits conductivities of σ = 239 µSv and σ⊥ = 186 µSv, resulting
in an anisotropy ratio of σ /σ⊥ ≈ 1.3. This ratio is only half the ratio previously measured at 200 K16,139.
Si(557)-Au exhibits comparable conductivities of σ = 220 µSv and σ⊥ = 160 µSv, leading to a similar
ratio of σ /σ⊥ ≈ 1.4. However, these anisotropy ratios are subject to small fluctuations: Depending on
the defect concentration, they range from 1.3 to 1.7 for different samples. These values are, nevertheless,
relatively small considering the quasi-1D surface bands seen in ARPES10. A much larger anisotropy would
bevisible if solely thesebands contributed to the conductivity. The conductivity inperpendiculardirection
must therefore be due to parasitic bulk channels such as a space charge layer (SCL).

In a simplifiedmodel, surface defects should reduce σ and increase σ⊥ due to increased scattering. In
contrast, oxygen adsorption on Si(553)-Au and Si(557)-Au affects the conductivity perpendicular to the
wires only to a minor extent. Fig. 4.3 shows the conductivity along and across the wires in relation to the
oxygen dose. Upon O2 exposure, σ⊥ remains almost unaffected for both surfaces. Indeed, σ⊥ is constant
within the scattering of the data for Si(553)-Au. In the case of Si(557)-Au, the perpendicular conductivity
exhibits an initial, small drop of 3% at an oxygen dose of 2.5 L. At higher doses, the conductivity recov-
ers and adopts its initial value. This effect is most likely related to a change in band bending caused by
the adsorbed oxygen, which affects the conductivity of the SCL σSCL. It is assumed that the band bend-
ing is most significant when every second reactive adsorption site is occupied on average. At higher O2

doses, competing adsorbate-adsorbate interactions dominate, and the adsorbate-induced band bending
becomes less relevant. Consequently, oxygen atoms occupymost of the reactive adsorption sites at higher
doses, explainingwhy the×2 LEED pattern of Si(557)-Au vanishes at 5 L. A similar approach based on the
SCLmodel was successfully applied to In/Si(111)171.

In contrast, σ is much more affected by oxygen adsorption. While σ of Si(553)-Au is only reduced
by 5% at a dose of 30 L, σ of Si(557)-Au is reduced by 20%. Since σ⊥ remains almost unaffected, the
anisotropy of the conductivity disappears entirely for the latter. For Si(553)-Au, however, the anisotropy
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does not change significantly. This is in so far remarkable as both surfaces share most of the structural
building blocks.

In general, the conductivity can be separated into an isotropic and an anisotropic component. The for-
mer is predominantly bulk-like, whereas the anisotropic part can mainly be associated with the surface.
In another study172, the same division was applied to In/Si(111), where the oxygen-related conductivity
was well described by σ (D) = σSCL + σ (0) exp

(
− D

D0

)
. In this study, σSCL is believed to largely de-

termine the isotropic bulk-like component, which is mostly independent of the O2 dose D. σ (0), then
denotes the conductivity along the wires of the pristine surface. This ansatz includes changes in both the
band structure and the lattice periodicity. A more sophisticated approach would also consider adsorbate-
adsorbate hopping transport. In this case, σ⊥ is relatively insensitive to oxygen adsorption, so that the
hopping transport across the wires is negligible.

Applying this simplemodel to the changes of σ leads to a good agreementwith the experimental data.
Fig. 4.3 compares the fitted curves (dashed lines) of this ansatz, together with the measured data. Espe-
cially for Si(553)-Au, themodel is in close agreement over the entire dose rangewith a fitting parameter of
D0 ≈ 200 L. For Si(557)-Au, the model can only describe the high-dose regime (≥ 10 L). At lower doses,
there are considerable deviations between the fit and the data. Fig. 4.3(b) shows σ553 alongside σ557, em-
phasizing themore substantial decrease of σ557 for low andmediumdoses, but a similar decrease for high
doses. The latter could be due to the occupation of common structural motifs, which only become rele-
vantwhen oxygen occupiedmost reactive sites. However, the different behavior in the low-dosage regime
remains. These differences are due to the interaction of the additional Si adatoms of Si(557)-Au with the
adsorbed oxygen, as shown in the next subsection.

4.1.3 Adsorption Sites of Molecular Oxygen

To gain a proper understanding of the mechanisms involved in the oxygen adsorption process, DFT
calculations were carried out utilizing the Vienna ab initio simulation package (VASP)173. The projector-
augmented wave (PAW)method174 was used tomodel the core electrons and the electron-ion interaction
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(a)

(b)

(c)

Figure 4.4: PES for the adsorption of a single O2 molecule on pristine (a) Si(557)-Au and (c) Si(553)-Au. In (b), the PES of a second
oxygen molecule is displayed with initial oxygen adsorption at the Si adatom, indicated by bright red circles. Each PES is expanded
to a 2×2 grid for better illustration. Gray lines indicate the mesh of the adsorption points, while gray and white circles on this
grid indicate whether the O2 molecule dissociated. The surface structure is superimposed for better orientation.

within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) func-
tional175. An energy cutoff of 410 eV was utilized for the plane wave expansion of the wavefunction. The
Brillouin zones (BZs) were sampled by a Γ-centered, equidistant k-point mesh of 2×9×1 and 2×11×1
for Si(557)-Au and Si(553)-Au, respectively. The surfaces were modeled by periodic images of primitive
surface cells of size (6 × 2) and (5 × 2) (w.r.t. Si(111)). These consisted of a hydrogen-passivated slab
of six bulk-like Si bilayers. The lowest two bilayers were fixed during relaxation, modeling the bulk. An
additional surface layer contained the Au surface as well as the rest of the surface reconstruction.

A potential energy surface (PES) was calculated to determine the energetically most stable adsorption
sites of oxygen. For this purpose, an O2 molecule was placed on the surfaces at each point of an equidis-
tantmesh. The total energywas then calculated for the relaxed structure. While the surface and one of the
oxygen atoms were free to relax, the lateral position of the other oxygen atom was fixed at the grid point.
The adsorption energies of 90 and 72 different sites were determined for Si(557)-Au and Si(553)-Au, re-
spectively. For each grid point, theO2molecule had three different starting configurations, which differed
in the alignment of themolecule’s axis with the three Euclidean axes. The lowest total energy of the three
configurations then entered the PES.

Fig. 4.4(a) and (c) show the PES of a single O2 molecule on pristine Si(557)-Au and Si(553)-Au. Com-
mon to both surfaces is that O adsorption near the Au chain is energetically unfavorable. This is especially
true for the wider Au chain of the Si(553)-Au surface. In contrast, oxygen prefers to adsorb at the HCC
and—in the case of the Si(557)-Au surface—in the vicinity of the Si adatom and rest atom. Note that the
O2 molecule dissociates at most grid sites, except for the energetically less stable. This is consistent with
previous results: Mamiyev et al. also observed dissociative oxygen adsorption on Si(553)-Auusing EELS176.
Furthermore, O2 molecules dissociated upon adsorption on Si(111)-(7× 7) in an independent ab initio cal-
culation177.
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4.1 Influence of Oxygen Adsorption on the Conductivity of Si(553)-Au and Si(557)-Au

(a) O2 on Si(557)-Au
Adsorption sites Energy (eV)
Adins-Otherins 0.000
Ad2ins 0.007
eHCCins-mHCCins 0.185
mHCC2ins 0.238
eHCCbrid-eHCCins 0.246
Adins-Restins 0.366
eHCCins-mHCC∗ins 0.468

(b) O2 on Si(553)-Au
Adsorption sites Energy (eV)
iHCCins-mHCCins 0.000
eHCCbrid-eHCCins 0.146
eHCC2ins 1.013

(c) (O2)2 on Si(557)-Au
Adsorption sites Energy (eV)
Ad3ins-Otherins 0.000
Ad3ins-Restins 0.396
Ad3ins-Rest

∗
ins 0.432

Ad2ins-eHCCins-mHCCins 0.513
Ad2ins-mHCC2ins 0.525
Ad2ins-eHCCbrid-eHCCins 0.572
Ad3ins-Adtop 0.862
Ad2ins-Other

2
ins 1.037

Table 4.1: The energies and adsorption sites of the stable configurations for (b) a single O2 molecule on Si(553)-Au as well as
(a) a single and (c) two O2 molecules on Si(557)-Au. The labeling is based on the binding partner of the O atoms, i.e., ad- (Ad),
rest (Rest), inner HCC (iHCC), middle HCC (mHCC), edge HCC (eHCC), or other Si surface (Other) atoms. The bonding geometry, i.e.,
insertion into existing bonds (ins), bridge sites (brid), and top sites (top) are indicated in the subscript. A superscript specifies the
frequency (neglected for 1). For better comparison, the energies are shifted with respect to the most stable configuration.

The fourteen most stable adsorption sites on each surface served then as the starting point for a full
relaxation, in which all spatial restrictions of the oxygen atomswere lifted. As the O is free tomove, these
fourteen starting configurations condensed in seven and three adsorption sites with (meta-)stable local
minima for Si(557)-Au and Si(553)-Au, respectively. Tab. 4.1(a)–(b) lists these adsorption configurations
together with their respective total energies. The oxygen molecule dissociates for all stable adsorption
sites. With one exception, the individual O atoms solely occupy sites of existing bonds or bridge sites.
Fig. 4.5 and Fig. 4.6 illustrate the corresponding adsorption geometries.

For Si(557)-Au, the two most stable adsorption sites are located next to the Si adatom, as shown in
Fig. 4.5(a) and (b). Their adsorption energy is about 8.7 eV. They are almost energetically equivalent
and significantly more stable than the sites at the HCC by ≈ 180meV to 250meV. Oxygen occupation
at adatom sites explains the disappearance of the ×2 diffraction streaks seen in LEED: For Si(557)-Au,
the doubled periodicity can be solely attributed to the Si adatoms. Random occupation of these two

Figure 4.5: The atomic structure of the six most stable adsorption sites for a single O2 molecule on Si(557)-Au. Bright red circles
illustrate the oxygen atoms. Regarding the labels, see the caption of Tab. 4.1.
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4 Electronic Properties of Clean and Oxidized Si(hhk)-Au Surfaces

Figure 4.6: The atomic structure of the most stable adsorption sites for a single O2 molecule on Si(553)-Au. In all three configu-
rations, the oxygen preferably adsorbs on the HCC. Bright red circles illustrate the oxygen atoms. Regarding the labels, see the
caption of Tab. 4.1.

adsorption sites exhibiting different SiO complexes thus destroys the long-range order of the ×2 struc-
ture. Consequently, the ×2 LEED streaks fade with increasing oxygen dose until the signal disappears in
the background noise.

In contrast, Si(553)-Au lacks both Si rest and adatoms. Here, theAu andhoneycomb chain covermost of
the surface, and the×2periodicity is solely due to thedimerizedAu chain. The stable sites are all located at
theHCC. Fig. 4.6 illustrates the atomic structure of the adsorption sites. Apart from increased background
noise, the adsorbed oxygen affects the LEED×2 streaks only marginally.

In the following, the focus lies mainly on the oxidation of the more complex Si(557)-Au surface. In a
similar study177, multiple O2 molecules per surface unit cell were involved in the adsorption process on
the Si(111)-(7× 7) surface. Here, successive adsorption processes are taken into account as well.

The Ad2ins site for the first oxygen pair proved to be a robust basis for a subsequent PES. This PES for
a second O2 molecule is shown in Fig. 4.4(c). Like the first O2 molecule, the second molecule dissociates
during the adsorption process onmost parts of the surface. Tab. 4.1(c) lists the stable adsorption configu-
rations that were obtained by a full relaxation. Fig. 4.7 illustrates several of thesemodels. Themost stable
adsorption site depicted in Fig. 4.7(a) comprises three oxygen atoms directly bound to the Si adatom. The
respective adsorption energy of the secondO2 molecule is in the same range as the firstmolecule at 8.5 eV.
This configuration is favored by about 500meV compared to a configuration where the second pair ad-
sorbs at a different site, such as the HCC (see Fig. 4.7(d)).

Figure 4.7: The atomic structure of the most stable adsorption sites for two O2 molecules on Si(557)-Au. The starting point was
the Ad2ins configuration, where the first dissociated oxygen molecule was adsorbed at the adatom. Bright red circles illustrate the
oxygen atoms. Regarding the labels, see the caption of Tab. 4.1.
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Figure 4.8: Band structures of clean and oxidized Si(557)-Au and Si(553)-Au. The unfolded band structures (according to Ref. [178])
of the clean (a) Si(557)-Au and (b) Si(553)-Au surface, obtained by the folded band structure (c, d) of the ×2 surface unit cells,
are shown. The point size in (a, b) indicates the ×1 character of the individual state. Band structures of the oxidized surfaces are
depicted for the (e) Ad2ins and the (g) Ad2ins-eHCCbrid-eHCCins model for Si(557)-Au and the (f) iHCCins-mHCCins model for Si(553)-Au.
The BZs of the ×1 (light gray) and ×2 (dark gray) supercell are shown in (h). The color code of the surface bands corresponds
to their projection onto the atomic orbitals of the adatom (blue), HCC step-edge atoms (red), and rest atom (green). A black color
admixture indicates hybridized states with oxygen contribution. The image is adapted and taken from Ref. [168].

4.1.4 Band-Structure Changes Induced by Oxygen Adsorption

Band structures of the (meta-)stable models listed in Tab. 4.1 provide a better understanding of the dis-
tinct electronic transport behavior of Si(557)-Au and Si(553)-Au upon oxygen adsorption. Fig. 4.8(a)–(b)
illustrates the unfolded band structures of the clean surfaces. For Si(557)-Au, two bands associated with
the Au chain (white and parabolic) and the Si rest atoms (green) are crossing the Fermi energy EF. The
latter is unoccupied inmost parts, which corresponds to a rest atomwith an almost empty dangling bond.
Additional red-colored and blue-colored bands stem from the HCC step-edge atoms and the Si adatoms.
While the former is fully occupied, the latter gives rise to a dispersive unoccupied surface band.
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4 Electronic Properties of Clean and Oxidized Si(hhk)-Au Surfaces

Similarly, theparabolicbandcrossingEF for Si(553)-Au isdue to theAuchain,while theotherbandwith
a Fermi crossing near the Γ-point is due to the SCL (both white). An additional anticrossing of a second
dispersive Au band with the reddish step-edge band (approx. one third between Γ and Y′) divides both
bands into an occupied and unoccupied part.

Band structures of selected oxygen adsorption sites are depicted in Fig. 4.8(e)–(g). In these images, a
darker coloration of the bands illustrates a high admixture of oxygen. The band structure of the Ad2ins
oxidation site (cf. Fig. 4.5(b)) on Si(557)-Au is shown in Fig. 4.8(e). Compared to the band structure of the
pristine surface, the Si adatomband (blue) exhibits a strong hybridizationwith oxygen orbitals, indicated
by a darkening of the band. Furthermore, the high electronegativity of oxygendepletes the residual charge
of the nearby rest atom’s dangling bond. Consequentely, themetallic band associatedwith the rest atoms
is energetically slightly raised. Additionally, the effective mass increases by 13% at the intersection point
with the Fermi energy. In a simplifiedmodel, the conductivity should decrease in a similar range. The red
surface band associated with the step edge, however, remains mostly unaffected.

As previously discussed, the redistributed charge induced by the oxygen results in additional surface
dipoles. Thework function tightlydependson thesedipoles andalso impacts σ⊥ to somedegree. Nonethe-
less, DFT predicts a reduction of the charge carriers combinedwith an increased effectivemass, leading to
a reduced conductivity. However, it shouldbenoted that theperiodic boundary conditions combinedwith
a relatively small unit cell imply an adsorption scenario in the high-coverage regime. At lower coverages,
the scattering at oxygen defects becomesmore significant, which further reduces the conductivity.

The band structure in Fig. 4.8(e) is very prototypical for a single adsorption process near the adatom.
For surfaces with a second pair of O2 adsorbed to them, the band structure dramatically changes based
on the adsorption site. For instance, the band structure of the most stable adsorption configuration
(Ad3ins-Otherins, not shown) looks very similar to the band structure of the previously discussed Ad2ins.
In contrast, the band structure of the Ad2ins-eHCCbrid-eHCCins adsorption configuration (cf. Fig. 4.7(f))
exhibits the most significant changes. As shown in Fig. 4.8(g), the surface bands of this configuration
feature a band gap of about 100meV at the Fermi energy. Consequently, surface transport should cease
entirely. The conductivity is thenmainly determined by the bulk, and the anisotropy should disappear.

Compared to Ad3ins-Otherins, this configuration is less stable under idealized conditions. However, the
energy difference is small compared to the adsorption energy. In a kinetically driven adsorption process,
oxygen will nevertheless occupy this site with a finite probability. Furthermore, surface defects can cat-
alyze the occupation of these sites. One example is residual water adsorption. STM data show that the
adsorption occursmainly on the HCC115. Similar to oxygen, thewatermolecules dissociate. TheO andOH
components on the HCC then open a band gap of approximately 0.5 eV115.

For Si(553)-Au, the situation is quite different. Here, the Au bands are the main contributor to the sur-
face conductivity. However, the Au atoms are relatively inert to oxidation, and the O atoms prefer to ad-
sorb at the HCC. A comparison of the band structures of the pristine and the oxidized surface depicted in
Fig. 4.8(d) and (f) shows that theoccupiedpart of the step-edgeband is shifted tohigher energies by about
0.1 eV. At the same time, the gap of the anticrossing decreases. Nevertheless, the influence on the disper-
sive Au bands is limited—and so is the influence on the conductivity. Similarly, the Au bands of Si(557)-
Au change only slightly upon O2 adsorption. The most extensive changes are for the ad- and rest atom
bands, of which the latter contributes significantly to electronic transport. The oxidation of Si(557)-Au is,
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Figure 4.9: The resistivity of the Si(557)-Au surface in the chain direction with respect to the oxygen dose. In the upper part, the
experimental data is shown as circles. The solid line indicates the fitted model. The individual components, of which the fitting
function is composed, are shown in the lower section. The image is adapted and taken from Ref. [168].

therefore, more significant than for Si(553)-Au, in agreement with the experimental observation.
The here described adsorption scenarios are only part of several mechanisms that impact the overall

conductivity. Other contributions, such as potential-well scattering, are expected to have a significant
contribution as well. Nevertheless, DFT calculations show that both surfaces have different reactive ad-
sorption sites. These affect the electrical conductivity very differently and provide an insight into why
otherwise similar surfaces behave so dissimilar upon oxidation.

4.1.5 Analysis of the Transport Data

Based on the adsorption site analysis on Si(557)-Au byDFT calculations, F. Edler conducted a quantitative
analysis of the transport data. The method applied here is only sketched out briefly. For more details, the
reader is referred to the original paper in Ref. [168].

Two conduction channels affected by the adsorption of one and twoO2 molecules have been identified.
Within the model described here, Θ0, Θ1, and Θ2 represent the fractions of the free, single, and double
occupiedadsorptionsitesonSi(557)-Au. Naturally, doubleoccupationcanonlyoccur ifΘ1 isnonzero. Only
first-order adsorption kinetics is assumed within the Langmuir adsorption model, i.e., only adsorption
and no desorption is considered. Furthermore, it is assumed that each occupation state affects the total
resistivity individually. The overall resistivity is thendescribedby ρ = Θ0ρ0+Θ1ρ1+Θ2ρ2. In Fig. 4.9, the
observed behavior of the resistivity as a function of O2 dosage is comparedwith themodel presented here.
The individual components are also shown in the lower section. This model fits the experimental data
very well for all probed doses. In the low-dosage regime, the increase in resistance can be approximated
by Θ1ρ1 = 1 − exp(−C0D), where C0 is a constant modeling the sticking coefficient. The value D0 ≡
1/C0 = 4.1 L−1 agrees well with the decay constant independently obtained by LEED experiments for the
×2 diffraction pattern. For a higher oxygendose, the adsorption of a subsequentO2molecule becomes the
dominant driver for an increase in resistance.

Although only elementary total-energy calculations—in contrast to transport calculations—have been
performedhere, the adsorptionmechanisms and their influence on the conductivity could be explained in
agreement with the experiment.
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4.2 Probing Quasi-1D Electronic Excitation Spectra by DFT-Aided Plasmon

Spectroscopy

DFT excels in total-energy calculations or in determining the atomic structure for a vast amount of mate-
rials. In the previous section, conclusions were drawn about the electrical conductivity of Si(553)-Au and
Si(557)-Au using DFT band structures. Such band structure analyses work well if the character of whole
bands changes or if the changes occur mostly in the occupied part. However, it is a fundamental problem
of (semi-)local DFT tomodel the correct energies of unoccupied bands179.

In this section, a new method is applied to make more robust predictions about the electronic excita-
tion spectrum of quasi-1D systems. In principle, parts of the unoccupied bands can be derived from the
experimental plasmon loss spectrum. For this purpose, the lower limit of the electron-hole (e-h) excita-
tion continuum gained from the ab initio band structure is additionally required. This method was devel-
oped by Lichtenstein et al. (Leibniz Universität Hannover) and tested in collaboration on three different
systems: Si(335)-Au, Si(557)-Au, and Si(775)-Au. In the context of this dissertation, the band structures of
Si(557)-AuandSi(775)-Auwereprovided, and themethodwas collaboratively tested anddiscussed. In the
following, only these two systems are discussed in detail. Later on, the same approach is taken to probe
the oxidized Si(557)-Au surface, based on the adsorption sites and band structures that were discussed
in the previous section. The results were published in Refs. [167, 180], and the following subsections are
based on these papers.

4.2.1 Plasmon spectroscopy

Excited collective states of a material, such as plasmons, can be measured using experimental methods
such as electron energy loss spectroscopy (EELS) . The small penetration depth of low-energy electrons
makes EELS particularly sensitive to surfaces. It is thus well suited for the investigation of atomic wire
systems.

In contrast to 4PP, which probes the electronic bands near the Fermi energy, plasmon spectroscopy
is sensitive to the unoccupied states between 100meV and 1 eV167. Furthermore, disorder affects plasmon
lossdispersionsonly at longwavelengths, and the spectra are also insensitive toSCLcontributions167. Plas-
mon spectroscopy can thus be considered a viable supplement to DC conductance measurements, and a
comparison between bothmethods is drawn at the end of this section.

The plasmon dispersion relation of a 1D system can be derived from a confined 2D nearly free electron
gas (NFEG)181,182. There is a fixed relationship between the 1D plasmon dispersion relation and the contin-
uum of e-h excitations. In the case of a confined NFEG, the upper and lower boundary of this continuum
ω+ and ω− are given by

ω±(k ) = ℏ
k2 ± 2k kF

2m∗ . (4.1)

Here, k is the wave vector in the direction of the 1D system, and m∗ denotes the effective mass of the
majority charge carrier. The plasmonic dispersion relation is independent of the exact form of ω±(k) and
is given by182

ωp(k ) =

√
ω2
+(k )e A(k ) − ω2

−(k )

e A(k ) − 1
(4.2)

46



4.2 Probing Quasi-1D Electronic Excitation Spectra by DFT-Aided Plasmon Spectroscopy

20 eV, RT
Si(335)-Au

700

600

500

400

300

200

100

0

En
er
gy

(m
eV
)

0 0.05 0.1 0.15
k|| (Å-1)

ω+
ω−

(b)

0.10 Å-1

0.08 Å-1

0.06 Å-1

0.04 Å-1

0.02 Å-1

0.00 Å-1

0.10 Å-1

0.08 Å-1

0.06 Å-1

0.04 Å-1

0.03 Å-1

0.02 Å-1

0.01 Å-1

0.00 Å-1

1000 750 500 250 00 250 500 750 1000
Loss energy (meV)

Lo
g.
in
te
ns
ity

(a
rb
.u
ni
ts
)

Si(335)-Au( ) Si(335)-Au( ||)
(a)

Figure 4.10: (a) Sample EEL spectra of Si(335)-Au measured across (left) and along (right) the wires. The green dashed line
indicates a dispersive loss only seen in the parallel direction. (b) The plasmonic loss data taken from (a) with respect to the
wavevector k compared with the e-h continuum (green area) derived under the assumption of a confined NFEG. The thick solid
line indicates the fit of the plasmonic dispersion according to Eq. 4.2. The image is adapted and taken from Ref. [180].

for a 1D system, where

A(k ) =
ℏ22πk

m∗gsV(k ) [1− G(k )]
.

In this equation, gs denotes the spin degeneracy, V(k) the confining potential in reciprocal space, andG(k)
is a local field correction factor, which describesmodifications ofV(k) due to exchange-correlation effects.
It is emphasized that Eq. 4.1 is restricted to a confined NFEG, while Eq. 4.2 is also valid beyond the scope
of an NFEG. The confining potential V(k) can, e.g., be modeled by a simple square well or a harmonic
potential. In practice, the exact potential of the Auwires has amore complex form, and coupling between
adjacent wires also needs to be considered. An approximate description for this coupling exists in the
small-k limit181,183,184. Nevertheless, this model is robust against the exact form of the confining potential,
and significant changes in the plasmon dispersion appear only at very small k.

A thoroughanalysisofEq.4.2 shows that theplasmondispersion isalways locatedabove thecontinuum
of the e-h excitations and merges into ω+ for short wavelengths181. In 1D, it has a very simple form and
exhibits a linear dispersion to the lowest order in k.

Fig. 4.10(a) shows an exemplary EEL spectrum for Si(335)-Au in the direction parallel (k ) and orthogo-
nal (k⊥) to the wires. Dispersive loss peaks are only visible along the wires. Additionally, the exponential
drop of the signal near k = 0 is known as the Drude tail144. It is a characteristic property of metallic sys-
tems. Fig. 4.10(b) illustrates the measured plasmonic dispersion for the same system. The data is fitted
according to Eq. 4.2 within the NFEG model. Despite the satisfactory agreement between the fit and the
experimental data, this model cannot be correct. As the plasmon dispersion transects the e-h continuum,
a strongdampeningof theplasmonby the e-h excitation continuumwouldoccur. Theplasmondispersion
is even below the lower limit of the e-h continuum for larger k , leading to imaginary solutions. Similar
results are obtained when the NFEG model is applied to Si(557)-Au and Si(775)-Au, as shown in Fig. 4.11.
For Si(557)-Au, the results slightly improve. However, the plasmon dispersion curve still crosses the e-h
continuum. In contrast, the discrepancies for Si(775)-Au worsen, as most of the plasmon dispersion is
below the lower limit of the e-h continuum.
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Figure 4.11: Plasmon dispersions of (a) Si(557)-Au and (b) Si(775)-Au with respect to the wavevector k compared to the e-h
continuum (colored area) derived under the assumption of a confined NFEG. The thick solid lines indicate the fit of the plasmonic
dispersion according to Eq. 4.2. The image is adapted and taken from Ref. [180].

Overall, a confined NFEG describes Au atomic wires only insufficiently. In these systems, the Au bands
are themain contributor to the plasmonic signal. As described in the previous section, these, however, are
strongly hybridized with Si surface states. The same applies to Si(775)-Au108. Therefore, no free-electron
behavior should be expected.

In the following, a different approach is followed. Instead of modeling the upper and lower limits of
the e-h continuumwithin a confinedNFEG, the lower limitω− can also be determined from theDFT band
structure. This is achieved by fitting a parabolic function to the relevant part of the band structure. Typi-
cally, this is the highest occupied or lowest unoccupied band in the case of dominant electrons or holes. In
this way, the course of ω− can be predicted for all k . The upper limit ω+ can then be computed with the
knowledge of ω− and ωp. The latter is taken by the averaged values of the measured plasmon dispersion
curve at each k . Solving Eq. 4.2 for ω+ then yields predictions for the unoccupied bands. This approach
is tested for the clean Si(557)-Au and Si(775)-Au as well as for the oxidized Si(557)-Au surfaces.

4.2.2 Electronic Excitation Spectrum of Clean and Oxidized Si(557)-Au

Clean Si(557)-Au

Si(557)-Au is very similar to Si(335)-Au, as both surfaces exhibit only a single strand of Au atomsper ter-
race. The associated EEL spectrum displayed in Fig. 4.12(a) therefore closely resembles that of Si(335)-Au.
The presence of a single Au strandmakes the treatment of both surfaces relatively easy because it implies
only a single dispersive Au band. This band is primarily responsible for themeasured plasmon dispersion
depicted in Fig. 4.12(b). Interaction with other Si surface bands, however, introduce small electronic gaps
into the band structure. This is particularly true for the unoccupied bands. The DFT band structure of
Si(557)-Au limited to the surface bands is shown in Fig. 4.12(b). A Gaussian distributionwith an FWHMof
3.3 Åmodels the confining potential. This corresponds to a single Auwire and is equivalent to a harmonic
potential of width 1.4 Å or a square-well potential of width 6.6 Å.

The small electronic gaps in the surface bands of Si(557)-Au complicate the extraction of ω−. For
this reason, two approaches were conducted, assuming dominant electrons or dominant holes within a
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Figure 4.12: (a) EEL spectra of Si(557)-Au without (left) and with (right) 7.5 L of O2 in the direction along the wires. (b) Section
of the surface bands together with the overlayed derived dispersion of ω+ (circles and triangles). The green (blue) dashed line
indicates a parabolic fit of ω− to the underlying occupied (unoccupied) bands assuming dominant electron (hole) excitation. Green
circles (blue triangles) show ω+ , as calculated by Eq. 4.2 using ω− and the measured plasmon dispersion (cf. Fig. 4.11(a)). The
image is adapted and taken from Refs. [167, 180].

quasi-free particle picture. In the first scenario, ω− is taken from the uppermost occupied band (see the
green dashed line in Fig. 4.12(b)). The curvature obtained from a parabolic fit of this band corresponds to
an effective mass ofm∗ = 0.23me. In the second scenario, ω− is taken from the lowest unoccupied band
(see the blue dashed line in Fig. 4.12(b)). The negative curvature of this band is equivalent to an effective
mass of m∗ = 0.5 me. The resulting values of ω+ for both scenarios are plotted in Fig. 4.12(b) as green
circles and blue triangles. Only for lower excitation energies, there exist some small deviations. Overall,
the deviations are insignificant and depend only to a small extent on the choice of ω−.

The calculated values of ω+ in Fig. 4.12(b) are in good agreement with the unoccupied band starting
at 0.45 eV. In contrast, the bands with low dispersion and the small band gaps are poorly modeled. The
upper limit of the e-h excitation continuum seems to be insensitive to these gaps. Several mechanisms
are possible that could limit the visibility of these gaps in the plasmonic dispersion curve: (i) The average
length of the Au wires limits the lifetime of the plasmons, which in turn leads to lifetime broadening. For
this system, a lifetime broadening of ΔE ≥ 20meV is estimated and thus will not dominate. (ii) e-h pairs
with excitation energieswithin the range of the electronic gap canbe further excited. In this case, the band
gaps would be effectively integrated over. (iii) There is a chance that plasmonic excitations are limited to
delocalized electrons, only. Since the band gaps result from hybridization between Au andmore localized
Si states, these are not “seen” by the plasmons.

In summary, the plasmonic dispersion and the upper limit of the e-h continuum are most sensitive to
the parts of the single-particle band structure with a high free-electron character. Other parts, e.g., non-
dispersive bands or band gaps, are not resolved.
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Figure 4.13: Plasmon dispersion of the pristine (green) and oxygen-adsorbed (blue, red, black) Si(557)-Au surface for various O2
doses. The green dashed line indicates the fit according to Eq. 4.2. The image is adapted and taken from Ref. [167].

Oxidized Si(557)-Au

The influence of oxygen atoms on the conductivity of Si(557)-Au was already discussed in detail in sec-
tion 4.1. However, DC conductivity measurements are sensitive only to the changes in unoccupied bands
near EF. In order to investigate the influence of oxygen atoms on the energetically higher bands, an EEL
spectrumwas recorded for the oxidized surface at variousO2 doses. The corresponding spectrum is shown
on the right-hand side of Fig. 4.12(a) for a dose of 7.5 L.

Contrary to expectations, oxygen adsorption does not lead to a decrease in the plasmon loss energy.
Instead, a partial increase in energy is observed. The most significant change compared to the pristine
surface is a new loss peak at ≈ 110meV. This loss peak is a fingerprint of Si-O vibrations and provides
further evidence for the dissociative behavior of adsorbed O2 on Si(557)-Au. In contrast, the plasmonic
loss due to the Au band is almost unaffected. This is particularly remarkable because the adsorbed oxygen
introduces a high degree of disorder to the surface.

Fig. 4.13 compares the plasmon dispersions of the surface exposed to 4.5 L, 7.5 L, and 10.5 L of O2 with
the clean surface. At low k , the energies of the plasmonic loss of the oxidized surfaces are well above
the energies of the clean surface. Simultaneously, the slopes are reduced, leading to finite plasmon loss
energies in the limit of k → 0. Only severe changes in theband structure canexplain suchdrastic changes
in the plasmon dispersion. In addition, adsorbed oxygen atoms act as scatterers of the plasmonic waves.
Above a specific defect density, total reflections and standing waves arise. Consequently, finite plasmon
loss energies emerge in the long-wavelength limit. In contrast, a fit of the plasmon dispersion of the clean
surface according to Eq. 4.2 exhibits an almost linear behavior and zero offset, as illustrated in Fig. 4.13.

Again, the upper limit of the e-h excitation continuum ω+ can be determined by the lower limit ω−

and the experimental plasmon dispersion. In the last section, adsorption models for O2 on Si(557)-Au
were discussed, and band structures for these models have been calculated. Here, the band structures of
two particularmodels are taken for the extraction of ω− and the analysis of ω+: Ad2ins and Ad

2
ins-eHCCins-

mHCCins. The corresponding atomic models can be found in Fig. 4.5 and Fig. 4.7. A comparison between
the band structures of the oxidized and clean surface is depicted in Fig. 4.14(a). As the adatom row be-
comes oxidized, the bands associatedwith the ad- and rest atomundergo themost significant changes. In
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Figure 4.14: (a) Surface bands of the Ad2ins (left, blue) and the Ad2ins-eHCCins-mHCCins (right, red) oxidation model of Si(557)-Au.
The black dotted line below EF is the parabolic band taken for ω− , while the green dashed line is the resulting ω+. Gray and
black dashed lines indicate the surface bands and ω+ of the clean surface for comparison. (b) Upper limit of the e-h excitation
continuum of the clean and oxidized surfaces. The image is adapted and taken from Ref. [167].

contrast, changes to the bands with Au character are less significant. For a more detailed analysis of the
band structure changes due to O2 adsorption, the reader is referred to section 4.1.4.

Same as before, the excitations from the highest occupied band to the Fermi energy define the lower
limit of the e-h excitation continuum. A parabolic fit to this band gives well-defined values for ω− for all
k . For instance, the parabola fitted to Ad2ins yields an effective mass ofm∗ = 0.23me. In both cases, ω+,
indicated by green dashed lines in Fig. 4.14(a), follows the measured plasmon dispersion ωp very closely.
Only near the Fermi energy, the influence of ω− is more decisive, and the deviations become larger. As for
the rest, the results are very similar to those of the clean surface: While small electronic gaps are integrated
over, ω+ is otherwise in good agreement with the calculated unoccupied bands. In addition, the upper
limit of the e-h excitation exhibits a linear dispersion over large parts, similar to the clean surface.

Fig. 4.14(b) gives a better overview of the calculated ω+. Compared to the pristine surface, the most
significant difference of the Ad2insmodel is the decrease of the average slope by about 15%, as illustrated by
the gray dashed and blue lines. As a consequence, ω+ is lower over the whole k -space. In contrast, the
simultaneous oxidation of the Si adatom as well as the HCC leads to an increase of ω+ compared to the
clean surface. However, at k = 0.1 Å−1, the upper excitation limit of Ad2ins-eHCCins-mHCCins and of the
pristine surface intersect. For k ≤ 0.1 Å−1, the energy of the plasmon dispersion is elevated. Furthermore,
an up and down shift of the oxidized band structure is observed in Fig. 4.14(a), depending on the degree
of oxidation. Nevertheless, the calculated upper edge of the e-h excitation spectrum ismainly determined
by the highly dispersive Au bands.

Overall, the calculated ω+ coincides closely with the measured ωp and corresponds well with the cal-
culated band structure. Especially the nonmonotonic shift is well reproduced by the DFT band structures.
However, it should be noted that the modeling occurred within perfect periodic unit cells, same as in the
previous section. Effects of empty or mixed adsorption sites are therefore not considered. Nevertheless,
the plasmon spectra show, just like the DC conductivity measurements, that the oxygen interferes with
the metallic properties but does not destroy them. EELS, in combination with DFT band structure calcu-
lations, can therefore be considered as a valuable addition to DC conductivity measurements.
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Figure 4.15: Band structure of Si(775)-Au in the direction parallel to the wires for several set dimerizations d. Band gaps are
indicated in red.

4.2.3 Electronic Excitation Spectrum of Clean Si(755)-Au

The atomic geometry and band structure of Si(775)-Au have already been discussed in detail inmymaster
thesis185. In the following, only novel findings for this system are reported. In addition, previously pub-
lished properties are only mentioned here if they are relevant for the plasmon loss analysis. For further
information on this system, the reader is referred to the associated paper and thesis in Refs. [108, 185].

Band structure calculations show that Si(775)-Au has two dispersive metallic bands—labeled S1/2 and
S3108. These bands are also visible inARPES,where the S1/2 band is Rashba-split10. According toDFT calcu-
lations, unpaired electrons reside in the DBs of the Si rest atoms. The magnetic ordering has a stabilizing
energy of 0.1 eV per spin site108. However the system ismagnetically disordered at room temperature, and
thus only the spin-averaged band structure is considered here.

Similar to the situation at Si(557)-Au, the Au bands hybridize with the Si surface atoms of the HCC and
the rest atoms. As a result, electronic gaps open in the occupied part of the S1/2 and S3 bands. Similarly,
electronic gaps are also present in the unoccupied part of these bands due to hybridization. In fact, there
is a strict correlation between the dimerization

d =
|a1 − a0|

a0
(4.3)

of the Au chain and the electronic gaps above EF. Here, a0 denotes the surface lattice constant and a1 the
distance between the Au atoms forming the dimer. Compared to PBE (dPBE = 0.108), the dimerization is
almost twice as largewithin the local-density approximation (LDA)with dLDA = 0.187. In LDA, the larger
dimerization is accompanied by an increase in existing and the creation of additional electronic gaps.

To elaborate on this, band structure calculationswithinPBEwere carriedout for several different dimer-
ization values. For this, the dimer distance of the Au atoms was manually set and fixed during relaxation.
The associated band structures are depicted in Fig. 4.15. In the absence of Au dimers (d = 0.0), only a
small band gap approximately 0.4 eV above the Fermi energy exists. With increasing dimerization, this
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gap steadily grows until a second gap opening at ≈ 0.25 eV occurs for d = 0.131. This trend continues
until eventually a band gap opens up at the Fermi energy for d = 0.209. These band gaps, among others,
cause the breakdown of the NFEGmodel and lead to the inconsistencies already discussed in the context
of Fig. 4.11 on page 48.

Similar to Si(335)-Au, the EEL spectra of Si(775)-Au exhibit a Drude tail, confirming the metallicity of
the system180. However, only one characteristic shoulder associated with a single loss signal is visible in
the spectra. This is in contrast to the two dispersive bands seen in both ARPES10 and DFT108. However,
due to the limited energetic resolution of ARPES, it is not clearwhether both bands reach the Fermi energy.
Regarding Fig. 4.15, it should be noted that theDFTband structures are also subject to changewith respect
to the chosen exchange-correlation functional or chosen dimerization. Consequently, two separate loss
signals associated with each bandwould have been expected. Fig. 4.16 illustrates the surface bands calcu-
lated with the PBE and HSE06 functional. The latter is a hybrid functional developed by Heyd, Scuseria
and Ernzerhof (HSE), where the exact exchange from Hartree-Fock theory replaces 25% of the local elec-
tron exchange186. Hybrid functionals can improve the DFT results of the unoccupied bands considerably
if the fraction of exact exchange is carefully chosen.

Furthermore, Fig. 4.16 highlights the S1/2 and S3 Aubands in theDFTband structure based on the shape
of themetallic bands, as seen in ARPES10. Within the above considerations, only the S1/2 band cutting the
Fermi energy at kF = 0.365 Å−1 can be responsible for the observed plasmon loss. At this point, the Au
bandhas thehighest dispersion and shouldbe themost visible. The other bands crossing the Fermi energy
exhibit a lower dispersion and are thus not observable in the EELS experiment conducted here.

A parabolic fit of the S1/2 band yields an effective mass ofm∗ = 0.08me, which was used for the lower
limit of the e-h excitation continuum ω−. Additionally, the confining potential is modeled by a Gaussian
distribution with a FWHM of 6.6 Å. The low effective mass leads to a large A(k) so that the measured
plasmon dispersion almost entirely determines ω+. Fig. 4.16 compares ω+, depicted as blue circles, to
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Figure 4.16: Surface bands (gray lines) of Si(775)-Au calculated with the (a) PBE and (b) HSE06 functional. The dispersive Au
bands are highlighted in yellow and derived from the DFT band structure and the ARPES data. Blue circles mark the dispersion of
the upper limit of the e-h continuum ω+ derived from the S1/2 band. The step-edge band is shown in red. The image is adapted
and taken from Ref. [180].
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the PBE and HSE06 band structure. For both functionals, ω+ crosses two band gaps and levels off near
0.5 eV. In the hybrid band structure, a band at the same energy appears to confine the upper limit of the
e-h continuum, and ω+ seemingly adapts to the course of this band. In comparison, ω+ terminates in the
middle of a band gap in the case of PBE. However, ω+ needs to cover smaller distances by crossing the
narrower band gaps for PBE.

In summary, ω+, as well as the Au bands, fit better to the HSE06 band structure. The behavior is quali-
tatively similar to the Si(557)-Au surface described above180.
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[...] but I shall certainly admit a system as empirical or scientific

only if it is capable of being tested by experience. These consid-

erations suggest that not verifiability but the falsifiability of a

system is to be taken as a criterion of demarcation.

Karl Raimund Popper

5
Low-Temperature Structure of Si(553)-Au

Although the Krawiecmodel is consistent withmost experimental results at room temperature, it can-
not reproduce many experimental observations specific to low temperatures (LTs). In the last two

decades, several other atomisticmodels havebeenproposed. Adetailed overviewof thehistorical develop-
ment for Si(553)-Au is given in section 3.3.1. The latest structuralmodel, called the spin-chain (SC)model,
is consistent with many experimental observations at LT13. Unlike previous models, it can explain both
the ×2 and the ×3 periodicity observed in ARPES10, STM113, and XRD127,187. Its central components are
a double strand gold chain and an HCC126. In the latter, every third step-edge atom exhibits a magnetic
moment. Along the chain, the magnetic order is antiferromagnetic. However, due to the 2D arrangement
in a triangular lattice, the system is in a frustrated state120.

The SC model is of particular interest for two reasons: First, Si atoms rather than metallic atoms host
the unpaired electrons—a rather uncommon structural theme. Second, it explains the origin of the ×3
periodicity at the step edge for the first time, which is due to the lowered position of the spin-polarized
step-edge atoms.

However, the SC model raises several questions: Normally, unpaired electrons are avoided on Si sur-
faces by the specific surface reconstructions. One prominent example is the Si(100) surface. Here, the
unsaturated surface atoms are arranged in away that avoids unpaired spins. This is achieved by a buckled
arrangement of Si dimers63. If the SC structure correctly describes the ground state at LT, the presence
of Si surface atoms hosting unpaired electrons would be at least a novelty. Moreover, it should be noted
that surface spins have not beenmeasured to date—even in spin-polarized STM. In ARPES, experimental
evidence is also missing: The occupied part of the surface band originating from the spin-polarized DBs
was not detected10,13.

Therefore, a reliable atomic structure in agreementwith the experiments at LT is paramount for further
investigations. This is especially true for the observed phase transition, which involves structural113 as
well as electronic modifications124. In this chapter, a new atomic model without the need for half-filled
DBs is derived. This structural model also explains the ×3 periodicity and agrees well with the available
experimental data. The results were published in Ref. [188].
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5.1 Structure Determination

5.1.1 Methodology

The computational details mostly match the parameters described in section 4.1.3. However, a larger
(5 × 6) unit cell is utilized to fit both ×2 and ×3 periodic structural motifs. The sampling of the Bril-
louin zone (BZ) is adapted accordingly to a Monkhorst-Pack189 mesh of 2×5×1. Furthermore, the PBEsol
functional with an energy cutoff of 450 eV is used. In comparison to PBE, it is designed to improve the
lattice parameters of bulk solids and their surfaces190. However, this is at the expense of the accuracy of
atomization energies191. Collinear spin orientation accounts for potential spin-polarized structuralmotifs.

5.1.2 The Rehybridized Model

From vicinal Au-covered surfaces, it is known that an HCC stabilizes the step edge10,80. This is unlikely to
change for Si(553)-Au. The other structural motif is a double-stranded Au chain, which is experimentally
confirmed by XRD187.

Startingwith the SCmodel, theHCC’s unpaired electrons can be remedied in twoways: by pairing or by
removal from the DBs. Pairing the electrons of the singly occupied DBs leads to a newly filled and empty
DB. Hence, a×6periodicitywould arise,which is not observed in the experiment. As an alternative, evenly
redistributing the chargeamong the step-edgeatoms leads toDBsfilledby5/6electrons (per spin channel).
However, this structure corresponds to the already proposed Krawiec (K) model126 and lacks the required
×3 periodicity. It would neither help to transfer electrons from the Au chain—which serves as an electron
reservoir192—and fill all DBs. A structural motif with×3 periodicity would still be missing.

Alternatively, the unpaired electrons could move from the DBs back to the Au chain. In this case, two
out of three DB were entirely filled, while every third one was empty. Silicon preferentially binds in an
sp3-hybridized geometry. The same is true for the step-edge atoms. Nonetheless, empty orbitals in an
sp3-hybridized geometry are energetically unfavorable. Similar to the HCC, Si may also bind in a trigonal-

Figure 5.1: The (a) Krawiec (K), (b) spin-chain (SC), and (c) rehybridized (R) model of Si(553)-Au. The main difference between
all structures is the position and the accompanying electronic configuration of every third step-edge atom. Big and small gray
circles as well as red circles indicate Si bulk and Si HCC atoms, respectively. Additional orange and light blue circles represent Si
step-edge atoms with half-filled or empty DB, while yellow circles mark the positions of the Au atoms.
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Figure 5.2: Calculated surface energy (solid line) and surface magnetization (dashed line) per (1× 6) surface unit cell with respect
to the reaction coordinate given by the height of every third step-edge atom for PBEsol. The respective position for the Krawiec (K),
spin-chain (SC), and rehybridized (R) model is indicated.

planar geometry. This corresponds to an sp2 hybridization with an additional pz orbital. However, this
would require a lower position of the corresponding step-edge atomuntil it lies in one planewith its bind-
ing partners. The associated structural model is called the rehybridized (R) model and leads to a diamag-
netic electronic structure. The atomic geometries of the K, SC, and Rmodels are illustrated in Fig. 5.1.

The stability of the R model is probed by means of DFT total-energy calculations. Starting from the
K structure, the vertical position of every third step-edge atom is lowered until the R structure is reached.
Fig. 5.2 depicts the energy profile and surfacemagnetization along this reaction path. Lowering the height
of every third step-edge atom reduces the surface energywhile simultaneously increases the surfacemag-
netization. The latter reaches itsmaximumvalue for the SC configurationwhen the position is about 0.3 Å
below the neighboring step-edge atoms. At this position, the system is in a local energetic minimum. As
the increase of the magnetization already suggests, a charge transfer takes place among the step-edge
atoms. In the Kmodel, all step-edge atoms carry the same charge. However, the lowered step-edge atoms
are half-filled, and the other step-edge atoms are completely filled for the SCmodel.

Indeed, the R structure lowers the surface energy by another 110meV per (1× 6) surface unit cell com-
pared to the SCmodel. With respect to the latter, a 5meV high energy barrier must be overcome to reach
the global minimum of the PES. It is characterized by a step edge where every third atom is lowered by
about 0.8 Å compared to its neighbors. These atoms rehybridize from an sp3 to an sp2+ pz bonding config-
uration. Asa result, the rehybridizedstep-edgeatomsslightlydistort theHCC. Asurface charge transfer ac-
companies these structural changes. Approximately 1.6 electrons per surface cell move from the step edge
to the Au chain. This is roughly the amount of unpaired electrons found in the SCmodel’s DBs. Fig. 5.3(a)
visualizes the charge redistribution by plotting the difference of the SC and R models’ electron densities.
The charge transfer from the step edge to the Au dimers is clearly seen. Due to the additional charge, the
dimerization of the Au chain increases from 5% to 14% (cf. Eq. 4.3). A similar observation was made by
Conor et al., who observed an increase in dimerization by electron doping192.
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Figure 5.3: (a) Electronic charge density difference between the SC and R model. Red and blue bubbles indicate the relative
charge accumulation and depletion at the R surface. (b) Schematic model for the parity breaking of the step edge due to Coulomb
interaction between the Au dimers and the Si step-edge atoms (see also Fig. 5.5 for a comparison with the experiment).

5.2 Influence of the Exchange-Correlation Functional on the Stability

Some structural and electronic changes involved in the SC→R transition have a negative effect on the sur-
face energy. For instance, the spin-spin exchange energy of about 15meV120 and the strain introduced to
theHCCboth favor the SC surface. However, the energygainof both the emptyingof theDBand the charge
transfer outweighs these factors and stabilize the newly found atomic structure.

Nevertheless, the energy difference between the two structures depends sensitively on the exchange-
correlation (XC) functional. Tab. 5.1 lists the surface energies for several XC functionals with respect to
the K structure. While PBEsol calculations predict the lowest surface energy for the diamagnetic surface,
PBE is incapable of finding a stable R geometry. The respective PBE surface energy of the Rmodel obtained
by the frozen PBEsol geometry surpasses the SC model’s surface energy. The opposite is true for the LDA
functional: Here, DFT calculations fail to identify spin-polarized states, while a diamagnetic step edge
minimizes the surface energy.

Strongly localized electrons with weak interaction—as found in the DBs of the step-edge atoms—
sensitively depend on the methods applied. DFT often fails to stabilize such delicate features due to its

Surface energy (meV)
Model LDA PBE PBEsol HSE
SC N/A† -36‡ -26 -419∗

R -114 +191∗ -137 -457∗

Table 5.1: Surface energies (per (1 × 6) surface unit cell) of the SC and R model with respect to the K model using different XC
functionals. ∗The energies refer to calculations based on the frozen PBEsol structure. †LDA fails to converge to a spin-polarized
electronic structure. ‡Earlier calculations resulted in slightly lower energies of −41meV13 and −44meV120.
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5.3 Comparison with the Experiment

Lattice parameter (Å)
Element Experiment LDA PBE PBEsol
Si 5.431† (0.00%) 5.402 (–0.53%) 5.468 (+0.68%) 5.436 (0.09%)
Au 4.078† (0.00%) 4.063 (–0.38%) 4.173 (+2.32%) 4.099 (0.52%)

Table 5.2: Experimental lattice parameters of Si and Au bulk compared to the DFT lattice parameters calculated within LDA, PBE,
and PBEsol. In the parentheses, the relative deviation from the experimental value is given. † The experimental values were
measured at room temperature and taken from Ref. [195].

spurious, intrinsic self-interaction193. Regarding strong localization, hybrid functionals improve upon
semi-local calculations inmany cases. Here, theHSE functional is utilized to verify themost stable surface
configuration. A portion of 11% exact Hartree-Fock exchangewas found towell describe Si DBs194 andwas
used in earlier calculations for Si(553)-Au146. With HSE, both the R and SC surface are 0.4 eV more stable
than the K surface. In fact, all functionals agree that the Kmodel is energetically less favorable at 0 K, but
to a smaller degree. But more importantly, the diamagnetic surface structure stabilizes the ground state,
in agreement with PBEsol.

A detailed analysis of the Si and Au bulk lattice parameters shows why PBE fails to identify the R struc-
ture. Tab. 5.2 gives an overview of the experimental and calculated Si and Au bulk lattice parameters. In
general, LDA is known to underestimate lattice parameters, while PBE overestimates them190. PBEsol im-
proves upon both functionals in terms of bond length accuracy with a slight tendency for overestimation.
Typically, small deviations are unproblematic in most cases as long as the relative error is of similar size
for the elements of a compound. However, the deviation for the Au bulk lattice parameter is significant
within PBE compared to the experimental value. While the relative error for Si is in the per mille range,
the Au lattice parameter deviates by a little more than 2.3%. These differences generate additional strain
on the Au chains of Si(553)-Au. The electron affinity of the Au dimers delicately depends on the degree of
dimerization, which in turn is affected by the strain. Conor et al. explain in detail the correlation between
additional charge and the degree of dimerization192. Since the SC→R transition involves a charge transfer
from the step edge to the Au chain, the energy balance is put in favor of the SC surface for PBE. A similar be-
havior is known from the In/Si(111) system, where the LT phase can only be modeled satisfactorily within
LDA196.

Therefore, total-energy calculations support a rehybridized, diamagnetic over a spin-polarized surface
structure at LT. Deviations within the PBE functional are explained by an inadequate description of Au by
this functional.

5.3 Comparison with the Experiment

Theprevious section showed that great care has to be taken regarding the computational parameters. This
is all themore important since there is no guarantee that structural optimization algorithms used in com-
bination with DFT find the correct ground state. In this section, the R model is validated against some of
the available experimental data. More specifically, the calculated band structure is first put into compar-
ison with a measured ARPES spectrum. Moreover, simulated STM images at various tunneling biases are
compared with the measured STM images. The same methods are applied to the SC model, and further
conclusions are drawn regarding the validity of the R and SCmodels.
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5.3.1 Calculated Band Structures and ARPES

The different charge distribution between the R and SCmodels is also noticeable in the band structure, as
illustrated in Fig. 5.4. The most characteristic bands of the SC surface are the spin-polarized bands 0.1 eV
below and 0.2 eV above the valence band maximum. They result from the antiferromagnetic ordering of
every third step-edge atom. Each of these bands is associatedwith one of the twohalf-occupied step-edge
atoms within a (1× 6) surface cell. The affiliations are inverted when switching the spin channel. Upon
rehybridization, the occupied one of the two bands is also emptied due to the associated charge transfer.
Therefore, only a single unoccupied band is visible for the R structure. This empty band extends through
the entire BZ and shifts minimally to higher energies. Additionally, the highly dispersive Au bands are
more strongly populated and are now entirley below the empty Si step-edge band throughout the BZ.

For comparison, the ARPES spectrum from Ref. [10] is placed behind the band structure in Fig. 5.4(b)
and (d). The low-lying Au bands of the R structure agree slightly better with the dispersive bands seen in
ARPES. However, the differences are too small to conclude the correct structural model. The same holds
for the nondispersive unoccupied band 0.62 eV above EF that is observed in 2PPE146. Considering the gen-
eral band-gap underestimation of DFT, this band can be associated with the unoccupied step-edge band
seen for both the R and the SC model. In contrast, an additional occupied step-edge band, about 0.1 eV
below the valence band maximum, is only seen for the SC model. This band, which is a signature of spin
polarization, has not been detected experimentally. The absence of this band is a strong indication that a
rehybridized, diamagnetic step edge characterizes the ground state at LT.

-0.5

EF

0.5

1.0

En
er
gy
(e
V)

M Γ BZ×6

a)

-0.5

EF

0.5

1.0

En
er
gy
(e
V)

Γ YBZ×2BZ×3BZ×6

b)

-0.5

EF

0.5

1.0

En
er
gy
(e
V)

Γ YBZ×2BZ×3BZ×6

d)

-0.5

EF

0.5

1.0

En
er
gy
(e
V)

M Γ BZ×6

c)

BZ×3
BZ×6

BZ×2

M

Γ

R model

SC model

R model

SC model

Figure 5.4: Calculated band structure (within a (1× 6) unit cell, PBEsol) of Si(553)-Au for the (a) R and (c) SC model. The unfolded
band structures (according to Ref. [178]) within a primitive (1 × 1) surface unit cell are shown in (b) and (d), respectively. The
point size in the latter two indicates the ×1 character of the individual state. These are compared with the ARPES data from
Ref. [10] shown in the background. The colors indicate the localization at Si step-edge (red) and Au atoms (yellow). The inset in
(d) depicts the BZ of the ×2, ×3, and ×6 surface unit cell. The image is adapted and taken from Ref. [188].
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5.3 Comparison with the Experiment

"Joint" "Bone" Brighter spots Darker spots

+0.7 V+0.4 V+0.3 V+0.2 V

Figure 5.5: Comparison of experimental and simulated (PBEsol) empty-state STM images at different tunneling biases. The
simulated STM images of the R and the SC model are shown above and below the measured data in Ref. [121]. Colored arrows
mark distinctive features seen in the experiment. The image is adapted and taken from Ref. [188].

5.3.2 Simulated and Experimental STM

The comparison between simulated and experimental STM images is a useful approach to verify the ac-
curacy of atomic structures. STM cannot directly resolve surface atoms but instead probes the electronic
states of these. In many cases, however, these are very pronounced and help to distinguish between sur-
face geometries. Here, the Tersoff-Hamannmodel is used to simulate STM images197.

Fig. 5.5 depicts experimental LT STM data and the corresponding simulated STM images of the R and
SCmodels. Parallel aligned rows of bright protrusions alternatewith dark trenches in these images. These
two types of rows correspond to the Si step edge and the Au chain, respectively. For the latter, the associ-
ated dark trenches exhibit a×2 periodicity irrespective of the applied voltage. In addition, the step edge’s
bright protrusions feature a ×3 periodicity at the highest probed voltage of +0.7 V. The situation is dif-
ferent for biases closer to the Fermi energy, where STM data reveal a ×6 periodic structure at the step
edge. This structure resembles “bones” connected to brighter “joints” (see labels in Fig. 5.5). Aulbach et
al. explain these features by a parity breaking of the step edge caused by the accumulated charge of the
Au dimers121. As the charge interacts with its surrounding, filling the localized DBs of nearby step-edge
atoms is penalized, as schematically illustrated in Fig. 5.3(b). As a consequence, the respective states are
pushed to higher energies, resulting in an electronic structure of×6 periodicity. This effect is supposed to
intensify with increasing dimerization. Consequently, it should bemore prominent in the simulated STM
images of the R structure compared to the SC structure.

Both surface structures adequately model the ×2 periodic features for all biases. The same applies to
the ×3 periodicity of the step edge at a tunneling bias of +0.7 V. However, as predicted, the ×6 periodic
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5 Low-Temperature Structure of Si(553)-Au

features are missing in the STM images of the SC model due to the low dimerization of its Au chains. In
contrast, the R model reproduces the bone and joint structure in good agreement with the experiment.
For intermediate tunneling biases, the simulated STM image of the R surface corresponds roughly to a su-
perposition of the high- and low-voltage structures: While the bones and joints are still visible, the bright
protrusions of the Si step-edge atomswith emptyDBbecomevisible. However, these alternatewithbright
and dark intensity. This is, in fact, what experimental STM images of intermediate bias show. Again, the
R model reproduces most of the experimental results, while the SC model fails to map these distinctive
experimental observations.

In summary, the present study shows that the LT ground state of the ideal Si(553)-Au surface is indeed
diamagnetic: Instead of a spin-polarized step edge, all DBs of the step-edge atoms either host spin-paired
electrons or are empty188. This was shown by total-energy calculations, which—with one exception, but
due to artificial stress—prefer the R model energetically. Also, comparing the calculated band structures
with the ARPES data demonstrates that the R model slightly improves the experimental reproducibility.
The excellent agreement between the simulated and experimental STM images is even more evident for
the Rmodel. All evidence together univocally suggests that the Rmodel best describes the LT structure of
Si(553)-Au.

However, the existence of unpaired electrons should not be ruled out completely. Aulbach et al. demon-
strate103 that point defects in the form of adsorbates can dope the Si(775)-Au surface in such a way that
unpaired electrons are likely to format the step edge. The shallowPESof Si(553)-Aumakes it also apromis-
ing candidate for creating surface spins by nanostructure engineering188.

5.4 Transferability of the Rehybridized Model to Si(557)-Au

TheSi(553)-Au surface is not theonly Si(hhk)-Au surface forwhichapotential spin-polarized surface struc-
ture was predicted. Similarly, every second step-edge atom of the Si(557)-Au surface supposedly host un-
paired electrons13. Regarding the instability of unpaired electrons in silicon atoms, the question arises
whether a diamagnetic, rehybridized structurewould better describe the ground state for this surface, too.

Indeed, DFT calculations within PBEsol can stabilize a surface structure with a rehybridized step edge.
Compared to Crain et al.’s nonmagnetic surface structure with fractional-filled DBs10, the total energy im-
proves by43meVper rehybridized Si step-edge atom. This is slightly lower than the energy gain of 68meV
in the case of the Si(553)-Au surface and is related to the smaller distance of the rehybridized atoms accom-
panied by a larger distortion and strain on the HCC.

However, the smaller spacing of the rehybridized or spin-polarized step-edge atoms also gives rise to a
larger spin-spin exchange energy of 56meV compared to 13meV for Si(553)-Au. The energy penalty of the
distorted HCC in combination with the larger magnetic exchange tilts the energy scale towards the spin-
polarized model. For Si(557)-Au, a surface structure exhibiting an antiferromagnetic ordering cannot be
ruled out.

Therefore, rehybridized step-edgeatomsdonot always replace spin-polarizedatomsbut should always
be considered as a possibility. The subtle interplay of the various energy termsmust be reassessed for each
surface. This is especially true with regard to the other vicinal Si(hhk) surfaces exhibitingmetallic atomic
wires other than Au, which have partially not been studied in such depth.
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It is nice to know that the computer understands the problem.

But I would like to understand it too.

Eugene Wigner

6
Phase Transition of Si(553)-Au

In the previous two chapters, it was demonstrated that the Krawiec (K)model and the newly developed
rehybridized (R) model well explain the high-temperature and low-temperature phase of Si(553)-Au,

respectively. However, the mechanism that drives the phase transition remains unclear. The measured
onsets of the phase transition make this particularly evident: Temperatures in the range of 65 K to 250 K
were reported, depending on the measurement method and samples112,124. Furthermore, the measured
transition temperature depends sensitively on the defect concentration formanymeasuringmethods16,113.
Uponheating, thephase transition is characterized inparticular by thedisappearanceof the×3periodicity
at the step edge and a sudden jump in conductivity113,124. Further heating of the surface also causes a
suppression of the×2 periodicity124. A detailed overview is given in chapter 3.3.3.

In section 6.1, a transition scenario is proposed and analyzed in terms of total-energy calculations. As a
next step, ab initiomolecular dynamics (AIMD) simulations are performed in section 6.2 to better under-
stand the phase transition. In the last section, the derived transition model is compared with available
experimental data. The results are published in Ref. [198].

6.1 A Transition Scenario Analyzed by Total-Energy Calculations

According to Ref. [124], the onset of the phase transition is revealed by a sharp increase in surface conduc-
tivity at 65 K. The authors suggest that this rapid change originates in a charge transfer from the Au chain
to the step edge. Since the rehybridized (R)model describes the LT surface geometry, this is equivalent to a
transition from the R to the spin-chain (SC)model. While the step-edge atoms of the formermodel have a
danglingbond (DB) electron configurationof (2,2,0), the spin-polarized surface configuration is (2,2,1). As
described in the previous chapter, the charge transfer is associatedwith an sp3 → sp2+pz rehybridization,
which transforms the respective step-edge atom from a trigonal-planar to a trigonal-pyramidal geometry.

The charge transfer mentioned above does not require a global R→ SC transition. Instead, local transi-
tions aremore likely, i.e., single step-edge atomswith empty DBs are dopedwith unpaired electrons from
the Au chain. Here, (2,2,01) denotes the charge configuration of the locally doped R surface.
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Figure 6.1: Calculated PES for the (2,2,0) to (2,2,01) transition for an Au dimerization of 12.8% (black) as calculated by AIMD
simulations at 100K. The PES for a reduced dimerization of 10% (blue) and a 0.4 electron-doped (1× 6) supercell (red) is shown
for comparison (see text in chapter 6.2.2). Additionally, the vibrational free-energy correction at 100K at the local minimum of
(2,2,01) is marked. The image is adapted and taken from Ref. [198].

6.1.1 Potential Energy Surface

In order to investigate the probability of the (2,2,0) → (2,2,01) transition, the total energy along the re-
action path is determined within a (1× 6) supercell. All calculation parameters are identical to those on
page 56. Due to the six step-edge atoms of the supercell, the (2,2,01) configuration translates here to a
concrete electron occupation of (2,2,0,2,2,1). Locally doped step-edge atoms thus are separated by 15.8 Å.
Comparative calculations with bigger supercells show that larger distances have only an insignificant in-
fluence on the total energy.

At temperatures such as 100 K, no significant changes of the Au dimer strength occur, as would be ap-
parent, e.g., by changing intensities of the ×2 reflexes in LEED. In contrast, only small changes related
to the Debye-Waller effect are observed124. Therefore, the Au chain dimerization (cf. Eq. 4.3) seems to be
fixed at its average value of 12.8%at 100 K, as determined byAIMDcalculations (see next section). The cor-
responding PES exhibits a global and a localminimum for the (2,2,0) and (2,2,01) charge configuration, as
shown in Fig. 6.1. The energy difference between both states amounts to 55meV, while the energy barrier
separating the two states is 58meV. However, the available thermal energy at 65 K is only 6meV. Thus, an
isolated (2,2,0)→ (2,2,01) transition cannot explain the onset of the phase transition at this temperature.

6.1.2 Vibrational Free-Energy Correction

At finite temperature, entropy effects may alter the energy difference and barrier in favor of the local
(2,2,01) state. The free energy F(V, T) accounts for the vibrational and electronic entropy, and its mini-
mumdetermines the ground state at every temperature73. Within the adiabatic approximation, F is given
by199

F(V, T) = Fel(V, T) + Fvib(V, T), (6.1)

where Fel = Etot−TSel. Here, the internal energy Etot is approximated by the zero-temperature DFT value.
The electronic entropy contribution is given by

Sel = kB
∫

dE nF [ f ln f+ (1− f ) ln(1− f )] . (6.2)
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Figure 6.2: Vibrational free-energy correction of (2,2,01) subtracted by the correction of (2,2,0) for several temperatures. The
negative energies indicate that (2,2,01) gets more stable with rising temperature.

In this context, nF and f denote the electronic density of states (DOS) and the Fermi distribution function,
respectively. The vibrational contribution to the free energy Fvib simplifies within the harmonic approxi-
mation to

Fvib =
Ω
8π3

∫
d3k

∑
i

[
1
2
ℏωi(k) + kBT ln

(
1− exp

(
−ℏωi(k)

kBT

))]
. (6.3)

Here, Ω is the supercell volume, and ωi(k) are the phonon frequencies. These can be calculated within
the frozen-phonon approximation by neglecting the volume and temperature dependence of the phonon
frequencies and by assuming Fel(V, T) ∝ Etot(T = 0). Due to the relatively large supercell, the phonon
modes are calculated only at the Γ-point, i.e., only fork = 0, which is assumed to represent the whole BZ
well. Eq. 6.3 then further simplifies to

Fvib =
∑
i

[
1
2
ℏωi(0) + kBT ln

(
1− exp

(
−ℏωi(0)

kBT

))]
. (6.4)

In general, the vibrational contribution Fvib dominates the free-energy corrections. Phonons are well-
defined only if restoring forces counteract small atomic displacements, i.e., the system is in a global or
local minimum. Thus, the vibrational contribution is explicitly calculated only for the exact (2,2,0) and
(2,2,01) configurations.

Fig. 6.2 illustrates the vibrational free-energy corrections of (2,2,01) versus (2,2,0) for different temper-
atures. Indeed, entropy effects further reduce the energy difference between (2,2,0) and (2,2,01) with in-
creasing temperature. A black dot and arrow in Fig. 6.1 indicate the lowered energy difference. However,
the difference is still far too large to explain the observed onset of the phase transition in a temperature
range between 50 K and 100 K.

6.1.3 Band Modifications

A sudden increase in surface conductivity at 65 K caused by a self-doped step edge should be reflected in
the band structure by shifting bands. Fig. 6.3 depicts several band structures calculated along the reaction
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Reaction S1/2 S3 Total
coordinate q (m∗

↑/me)
−1 (m∗

↓/me)
−1 (m∗

↑/me)
−1 (m∗

↓/me)
−1 (m∗/me)

−1

0.0 -0.63 -0.63 -0.78 -0.78 -2.80
0.1 -0.63 -0.63 -0.80 -0.80 -2.85
0.2 -0.67 -0.67 -0.86 -0.86 -3.05
0.3 -0.77 -0.77 -1.05 -1.05 -3.59
0.4 -1.07 -1.07 -1.54 -1.54 -4.64
0.5 -0.35 -0.36 -2.18 -2.17 -5.09
0.55 n.a. 0.05 -8.29 -0.98 -8.22
0.6 0.88 0.19 -5.65 -0.68 -5.26
0.7 8.40 0.22 2.66 -0.64 10.03
0.8 3.39 0.22 2.59 -0.63 5.60
0.9 0.87 0.22 1.85 -0.47 2.46
1.0 1.45 0.19 1.60 -0.77 2.47

Table 6.1: The inverse effective masses of the S1/2 and S3 bands along the reaction path from (2,2,0) (q = 0.0) to (2,2,01) (q = 1.0).
The masses were extracted from the band structure shown in Fig. 6.3 and normalized to the free electron mass me.

path from the (2,2,0) ground state (q = 0.0) to the (2,2,01) excited state (q = 1.0). The band structure is
shown separately for both spin channels. Note again that the system is spin-polarized.

As discussed in section 5.1.2, the perfectly rehybridized surface has an unoccupied band about 0.3 eV
above the Fermi energy. This band has a ×3 periodicity and is assigned to the empty DBs of the two re-
hybridized step-edge atoms in the (1× 6) unit cell. As one rehybridized step-edge atommoves out of the
planar sp2 configuration, the band splits into two separate bands. The band associated with the transi-
tioning step-edge atom thereby shifts to lower energies. Halfway along the reaction path, a spin splitting
occurs: Starting at q = 0.55, the Si state is pushed below the Fermi energy in one of the two spin channels.
In the other spin channel, the bandmoves back to higher energies and approaches the other Si state.

The shifting Si state also affects the Au bands, as seen in Fig. 6.3. Strong hybridizations of the Si and
Au states lead to anticrossings. As a consequence, an increased DOS of the S1/2 and S3 bands at the Fermi
energy is observed. At q = 0.5 an increase of 90%was calculated. The same applies to the (2,2,01) excited
state, where the DOS is still 40% higher compared to the (2,2,0) ground state. The normalized DOS along
the reaction path is illustrated in Fig. 6.4.

On the other hand, the hybridization also affects the Au bands’ effective curvature at the Fermi energy
and, therefore, the effective masses of the majority charge carriers. The inverse effective mass is given by

1
m∗ =

1
SF

∫
FS

1
ℏ2

∂2E(k)
∂k2

dSk, (6.5)

where SF is the Fermi surface (FS) area. Because of the quasi-1D character of the Au bands, the FS is also
nearly 1D. Tab. 6.1 lists the inverse effective mass for each band and spin channel along the reaction path.
Themajority charge carriers change from holes to electrons along the reaction path. For configurations in
between, the absolute total inverse mass increases significantly.

According to ballistic transport, the conductivity is proportional to both the inverse effective mass and
the DOS at the Fermi energy. Thus, the changes of both quantities suggest that self-doping of the step
edge by the Au reservoir can indeed explain the observed increase in conductivity.
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Figure 6.3: Surface bands in the direction parallel to the Au wires calculated along the reaction path from (2,2,0) (q = 0.0) to
(2,2,01) (q = 1.0). The band structure is unfolded into the (1 × 1) BZ following the procedure described in Ref. [178]. The point
size indicates the ×1 character of each state, while the colors denote the localization at Si step-edge (red) and Au (yellow) atoms.
The image is adapted and taken from Ref. [198].
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Figure 6.4: Relative change of the density of states nF of the conductive S1/2 and S3 bands at the Fermi energy along the reaction
path compared to the (2,2,0) ground state.

6.2 Ab Initio Molecular Dynamics Simulation

In theprevious section, total-energy calculations showed that the thermal energy at 65 Kwouldnot suffice
to drive an isolated sp2 + pz → sp3 transition efficiently. On the other hand, the bandmodifications asso-
ciatedwith this transition can explain the increase in conductivity seen in 4PP transportmeasurements124.
Here, AIMD simulations are employed to investigate the phase transition inmore detail. AIMD is a power-
ful computationalmethod, implicitly accounting for numerous coordinatedmovements of various atoms.

6.2.1 Methodology

TheAIMDcalculationswere performedwithin a (1×6) surface unit cell. A reduced k-pointmesh of 2×3×1
was used to sample the BZ, and the PBEsol functional was used to account for the XC effects. Temper-
atures of 50 K, 100 K, 150 K, 200 K, 300 K, and 400K were simulated, where the system is coupled to a
Nosé-Hoover thermostat56. The R model was used as the initial configuration, although other models
were tested as well.

The time step was chosen according to the highest and lowest vibrational mode: On the one hand, the
time stepmust be small enough tomodel the fastest atomicmovements correctly. On the other hand, the
total simulation time should be amultiple of the lowestmode’s period time. According to frozen-phonon
calculations, the highest and lowest phonon mode within the R, SC, and K model have a period time of
63 fs and 5.9 ps. Therefore, a time step of 10 fs and a simulation time of at least 65 ps were chosen.

The first 3000 time steps were discarded (not counting to the total simulation time) to ensure thermal
equilibrium. Additionally, the velocity distribution was compared with theMaxwell-Boltzmann distribu-
tion at the respective temperature (see appendix A.1).

6.2.2 Structural Analysis of the Step Edge and Au Chain

At first, the time-resolved charge occupation of the step-edge atoms was investigated in detail. For this
purpose, the vertical positions of these atoms were evaluated and compared with the known R, SC, and K
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Figure 6.5: (a) Projection of the step-edge atoms’ vertical positions on the corresponding charge occupation of the associated DBs,
as calculated by AIMD. The colors indicate an empty (blue), singly occupied (orange), and doubly occupied (gray) DB. The atomic
structures on the left illustrate the configuration at t = 0, respectively. (b) Distribution of the step-edge atoms’ vertical positions.
Equilibrium positions of Si atoms with empty (0), singly (1), and doubly (2) occupied DBs are indicated.

structures. With the aid of the projected magnetization density, the charge occupation of the step-edge
atoms was derived for each time step. It is discriminated between empty (0), singly (1), and doubly (2)
occupied DBs. Amore detailed description of the procedure is given in appendix A.2.

In Fig. 6.5(a), the time evolution of the step-edge atoms’ charge occupation is illustrated. The AIMD
calculations performedhere are very robustwith respect to the initial structure: At 50 K, the systembriefly
relaxes to the R structure—independent of the initial atomic configuration. Only on two occasions, the
step edge assumes short-lived (2,2,01) configurations. This is in agreementwith the results of the previous
chapter, i.e., the Rmodel with a charge configuration of (2,2,0) corresponds to the LT phase of Si(553)-Au.

At 100 K, the fluctuations appear more frequent and persist for longer times. Occasionally, also the
step-edge atoms with doubly occupied DBs change their charge state. Despite the strong vertical vibra-
tions of the step-edge atoms, the (2,2,0) configuration is still themost dominant structuralmotif at 100 K.
However, the vertical vibrations amplify at higher temperatures, rendering the (2,2,0) configuration in-
creasingly unlikely. At 300 K, the step-edge atoms are indistinguishable due to the increasing disorder.

This behavior is also reflected in the distribution of the vertical positions, shown in Fig. 6.5(b). At 50 K,
the distribution is bimodal, i.e., it exhibits two cluster points associated with the positions of step-edge
atoms with filled and empty DBs. At 100 K, a third cluster point appears in between that corresponds
to step-edge atoms with singly occupied DB. In the beginning, this cluster point is very weak but grows
in magnitude with increasing temperature. It is related to the onset of the volatile (2,2,01) transition, as
shown in Fig. 6.1. Furthermore, all three cluster points broaden with rising temperature, reflecting the
increasing vertical vibrations of the step-edge atoms. A closer analysis of the cluster points and the total
distribution function is given in appendix A.2.
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Figure 6.6: (a) PES for the (2,2,0) (blue) and (2,2,01) (red) configuration at 0 K with respect to the Au dimerization including
zero-point energy corrections. (b) Energy difference of the (2,2,0) versus the (2,2,01) configuration considering the vibrational free-
energy corrections at several temperatures. (c) Thermal distribution of the Au dimerization with respect to the AIMD temperature.
The gray dashed line in (a)–(c) indicates the dimerization at which the surface obtains its global minimum at 0K. (d) Transition
probability to the (2,2,01) excited state derived from the energy difference and dimerization distribution shown in (b) and (c). Parts
of the image are adapted and taken from Ref. [198].

The AIMD simulations performed here clearly point towards a second-order phase transition that is of
the order-disorder type. Its critical temperature lies between 50 K and 100 K. A description of the phase
transition by solitons and antisolitons, i.e., nondissipative structural alterations moving back and forth
the step edge, as proposed in [150], oversimplifies the actual surface dynamics.

Why is a phase transition observed in AIMD calculations at such low temperatures, while total-energy
calculations indicate amuchhigher transition temperature? In order to answer this question, theAu chain
is examined more thoroughly. In contrast to the SC model, the Au chain of the R model is considerably
dimerized. This is due to the charge transfer from the step edge to the Au chain, causing a stronger binding
of the Au dimers (cf. Refs. [142, 188] and section 5.1.2). In turn, a weakly dimerized Au chain has a lower
electronegativity and thus favors the Au→ Si charge transfer required for the (2,2,0)→ (2,2,01) transition.
The relation betweendimerization and charge is demonstrated in Fig. 6.1: Lowering the dimerization from
12.8% (the average dimerization at 100 K) to 10% lowers the energy barrier in the same way as a heavily
doped surface with 0.4 electrons per (1× 6) surface unit cell.

The influenceof thedimerizationon the total energyof the (2,2,0) and (2,2,01) configuration is shown in
Fig. 6.6(a). The (2,2,01) configuration becomesmore favorable for smaller dimerizations, while it becomes
less favorable for larger ones. The impact of the vibrational free-energy corrections on the energy differ-
ence is shown in Fig. 6.6(b) for different temperatures. It is assumed here that the free-energy correction
is not heavily influenced by the constrained change in dimerization.
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6.2 Ab Initio Molecular Dynamics Simulation

In the AIMD simulations, a small reduction of the average dimerization with increasing temperature
is observed, as shown in Fig. 6.6(c). This is mainly caused by the asymmetric shape of the potential (see
Fig. 6.6(a)) and by the charge fluctuations between the step edge and Au chain. Although the average
dimerization at 400 K is still above 12%, the dimerization distribution at 50 K already shows that dimer-
izations below 10% are occasionally reached. The dimerization distribution broadens as the temperature
rises. As a consequence, the probability for even smaller dimerizations increases, and the energy barrier
separating both charge configurations is reduced for brief periods of time. For more details regarding the
time-resolved atomic displacements of the Au atoms, see Fig. A.4 and the accompanying text.

Under the assumption of thermodynamic equilibrium between (2,2,0) and (2,2,01) surface domains,
the surface can be treated as a two-state system. The Boltzmann distribution then gives the transition
probability to the excited state

p(2,2,01)(T) =
∫

P(d)
exp

(
−Edif(d)

kBT

)
1+ exp

(
−Edif(d)

kBT

) dd, (6.6)

which isdepicted inFig. 6.6(d). It dependsnonlinearlyon theenergydifferenceEdif(d)between theground
and excited state (see also Fig. 6.6(b)), which in turn depends on the dimerization d. As a result, the tran-
sition probability must be averaged by the normalized dimerization distribution P(d), which is shown in
Fig. 6.6(c). The increase for temperatures above 50 K is consistentwith the AIMD results and explainswhy
the phase transition occurs at such low temperatures. As suggested by Edler et al., self-doping of the step
edge can indeed explain the observed onset of the phase transition at 65 K. This self-doping is supported
by dynamic modifications of the chemical potential of the Au chain, especially at LTs.

6.2.3 Transient Magnetic States

As the occurrence of the short-lived (2,2,01) state increases, both the charge and the number of unpaired
electrons at the step edge increase, aswell. Fig. 6.7(a) gives an overviewof the average number of total and
unpaired electrons per step-edge atom. As expected, the number of (unpaired) electrons increases with
rising temperature, where the transitions also becomemore frequent.

In the past, an antiferromagnetic surface configuration was proposed for the Si(553)-Au surface13,120.
Here, adjacent spins could exhibit a magnetic order as well. This order would be short-lived as thermal
fluctuations tend to destroy the spin states soon after. The time-averaged total magnitude of the magne-
tizationMav(T) = 1

N
∑N

i |M(ti, T)| obtained by AIMD is a useful parameter for investigating spin correla-
tion. In Fig. 6.7(b),Mav(T) is compared to thenumber of step-edge atomswith a singly occupiedDB. Three
scenarios assuming collinear spins are investigated here for these step-edge atoms: a random orientation
of the spins, a ferromagnetic, and an antiferromagnetic spin configuration. For a single spin per (1 × 6)
surface unit cell, these three configurations do not differ. Formore spins, the ferromagnetic and antiferro-
magnetic configuration give an upper and lower limit on the total magnetization, while an uncorrelated
configuration lies in between.

Mav(T)matches very well with an antiferromagnetic spin alignment. Although the spin states are very
short-lived, they still adapt to the spins in their nearer surrounding. However, this state must be distin-
guished from the SC model, in which the magnetic order is long-lived—at least at low temperatures—
and has a fixed ×3 periodicity. It should further be noted that the supercell used here is relatively small.
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6 Phase Transition of Si(553)-Au
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Figure 6.7: (a) Calculated average number of (unpaired) electrons per DB. (b) Total average magnetization as calculated by DFT
(blue) compared to an uncorrelated (green), ferromagnetic (red), and antiferromagnetic (orange) scenario of the unpaired electrons
that occur in the AIMD simulation (see text).

The finite size is also the reason for the finitemagnetization in the case of an antiferromagnetic order. Nev-
ertheless, these results are noteworthy, especially in the light of possible spin-stabilizing defects like Si
vacancies, as discussed in Ref. [103] in the case of the Si(775)-Au surface.

6.3 Comparison with Experimental Results

The second-order phase transition appears in the experiment in different ways. Here, the results from
the last section are compared with the results of two experiments: temperature-dependent Raman spec-
troscopy and SPA-LEEDmeasurements.

6.3.1 Raman Spectroscopy

Raman spectroscopy is a common experimental method to study the vibrational modes of solids. It can
thus be considered the experimental counterpart of phonon calculations. By subtracting a bulk reference
spectrum, theRamanspectrum is restricted to surfacemodes,making it a versatile tool for surface analysis.

In theRamanspectrameasuredatdifferent temperaturesby J. Plaickner fromtheLeibniz-Institut fürAna-
lytische Wissenschaften -ISAS-, two modes of the Raman spectra shown in Fig. 6.8(a) exhibit a particularly
high temperature dependence: The first is a high-frequencymode at 415 cm−1, which is only visible above
100 K and grows in intensity with rising temperature. The second is a low-frequency mode at 41 cm−1,
which is redshifted for high temperatures. Both modes show gradual rather than abrupt changes. This is
in good agreement with an order-disorder phase transition predicted by the AIMD simulations.

The frozen-phonon calculations discussed in section 6.1.2 help in identifying these two phononmodes.
In the calculated phonon spectrumof the (2,2,0) ground state, the 41 cm−1 phononmode is localized at the
Au chain, as illustrated in Fig. 6.8(d). The atomicmovement associatedwith this mode periodically alters
the dimerization of the Au chain. Due to its low frequency, thismode becomes activated already at LT and
thus supports the (2,2,0)→ (2,2,01) transition by transient changes of the Au chain’s electron affinity.

The softening of this phonon mode is analyzed by a projection of its eigenvector on the AIMD atomic
velocities and subsequent Fourier transformation. A main peak analysis of the resulting frequency spec-
trum reveals a redshift of this phononmode with rising temperature, in good agreement with the Raman

72



6.3 Comparison with Experimental Results
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Figure 6.8: (a) Section of temperature-dependent Raman spectra highlighting two Raman modes at 415 cm−1 and 41 cm−1 located
at the step edge and Au chain as illustrated in (c) and (d), respectively. The blue arrows indicate the atomic movement associ-
ated with the mode. (b) The measured redshift of the 41 cm−1 mode compared to the calculated redshift and relative change in
dimerization. Parts of the image are adapted and taken from Ref. [198].

measurement, as depicted in Fig. 6.8(b). Similar to the frequency, the dimerization of the Au chain also de-
creases. Indeed, the softening of the phononmode is tightly related to the reduction of the dimer strength,
which in turn originates in the charge transfer to the step edge that drives the phase transition.

Fig. 6.8(c) depicts the high-frequencymode at 415 cm−1, which is identified as a transversal shearmode
along the HCC for both the (2,2,1) (SC model) and (2,2,2) (K model) surface configuration. In contrast,
this mode is missing for the (2,2,0) ground state due to the strong disruption of the HCC by the sp2 + pz-
hybridized step-edge atoms. As the (2,2,0) configuration gets washed out by the step-edge fluctuations,
this phononmode can form. This explains why this mode is missing in the Raman spectra below 100K.

6.3.2 SPA-LEED

The changes in the SPA-LEED pattern caused by the order-disorder phase transition were extensively dis-
cussed in chapter 3.3.3. Here, the temperature-dependent intensities of the×3 and×2 reflexesmeasured
by two different groups (cf. Refs. [124, 151]) are examinedmore closely. The intensity changes in the exper-
iment can be compared to the intensity changes obtained by the AIMD simulations.

The scattering intensity is proportional to the squared structure factor, i.e., I ∝ |Fhkl|2. The Miller in-
dices hkl specify the associated reciprocal lattice vectorGhkl of the respective reflex. For a supercell with
N atoms, the structure factor is given by25

Fhkl =
N∑
i

fi(Ghkl) ⟨exp (iGhkl · ri(t))⟩ , (6.7)

where ⟨. . .⟩ indicates an averaging over time. The time-resolved positions ri(t) of the atoms are directly
derived from AIMD and implicitly incorporate changes related to the Debye-Waller effect149. In addition,
fi denotes the atomic form factor of the i-th atom. The latter was calculated according to Ref. [200] for
each element by

fi(q) =
4∑
j=1

aj exp
(
−bj

( q

4π

)2
)
+ c, (6.8)
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Figure 6.9: Experimental intensities of the ×3 (gray) and ×2 (gold) SPA-LEED patterns of Si(553)-Au grown on a low-doped124

(circles) and a high-doped151 (diamonds) Si substrate compared to the calculated intensities from AIMD (lines, see text). The
intensities are normalized to the value at 50K. The image is adapted and taken from Ref. [198].

assuming an atomic form factor independent of the bonding geometry. The fitting coefficients aj, bj, and
c for these functions are tabulated in Ref. [200].

Both experimental results show significant deviations from each other, as illustrated in Fig. 6.9. The
differences are most likely due to the different substrate doping: While a lowly n-doped substrate
(> 1000Ω cm) was used in Ref. [124], a highly n-doped substrate (≈ 0.01 Ω cm) was utilized in Ref. [151].

In the case of the×3 reflex, both the measured and the simulated intensities start to fade below 100 K.
The calculated quenching caused by the order-disorder transition excellently reproduces the data of the
low-doped surface. In contrast, the high-doped surface exhibits a much faster drop in intensity. This
scenario is supported by our DFT calculations: A low-doped substrate has a higher resemblance to the
undoped Si substrate of the supercell. In contrast, it was previously shown that a high-doped surface ex-
hibits a significantly lower transitionbarrier (see red line in Fig. 6.1). Therefore, the transition temperature
is lowered, as is observed here.

Similarly, the ×2 reflexes of the low-doped surface lose intensity with increasing temperature—but
more slowly than the ×3 reflexes. This attenuation is less pronounced for the simulated intensity of the
×2 reflexes. However, this is to be expected since the limited size of the supercell affects theAuatomsmore
strongly. The Au atoms forming the chain are directly bonded and strongly correlated. While the AIMD
calculations find a broadening of the dimerization distribution, they cannot correctly account for disorder
arising from dimerization phase shifts198, as discussed in appendix A.2 and shown in Fig. A.4.

Surprisingly, the intensity of the×2 reflexes of the highly doped surface initially increases up to 100 K,
where it exhibits a small discontinuity. Only at higher temperatures, the intensity decreases rapidly and
falls below its original level starting at 150 K. The reason for this behavior is unknown.

The order-disorder phase transition observed for the Si(553)-Au surface is associatedwith local charge
transfers from the Au chain to the step edge accompanied by a rehybridization of the respective step-edge
atoms. Thermally excited vibrations of the Au atoms periodically alter the electron affinity of the Au chain
and thus facilitate the electron doping. This novel mechanism can also be expected to be relevant be-
yond the family of Au-stabilized Si surfaces198. At higher temperatures, the order of the Au chain is also
quenched.
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Before I came here I was confused about this subject. Having

listened to this lecture I am still confused. But on a higher level.

Enrico Fermi

7
Conclusion and Outlook

The present dissertation has addressed the electronic, structural, and thermodynamic properties of
Si(553)-Au and, to some extent, Si(557)-Au. The family of Si(hhk)-Au surfaces exhibits several intrigu-

ing structural and electronic properties: For instance, the surface structure, the electronic bands, and the
electronic transport of the Si(553)-Au surface are subject to thermal alterations. These seem to occur inde-
pendently, as they exhibit individual transition temperatures and characteristics. Furthermore, intrinsic
surface magnetism was proposed for the Si(553)-Au and Si(557)-Au surface. These properties have been
investigated here to a large extent.

After a brief introduction in chapter 1, a theoretical description of 1D systems is presented in chapter 2.
Furthermore, the Nosé-Hoover thermostat is explained, which is one of the essential building blocks for
AIMD simulations. Chapter 3 then summarizes all results of Si(553)-Au and Si(557)-Au published so far.

Atomic structuremodelsof Si(553)-AuandSi(557)-Au, ingoodagreementwith theexperiments at room
temperature, were known at an early stage. Oxidation is the first modification to occur when the surfaces
are introduced to the environment. Based on these structural models, the influence of molecular oxygen
on the surface conductivity at room temperature was investigated in chapter 4. First, a potential energy
surface (PES) was calculated for one and two O2 molecules adsorbed on these surfaces. Based on these
PESs, the most favored adsorption sites were determined. On both surfaces, dissociative adsorption of
molecular oxygen occurs. However, the adsorption sites differ: While O mainly binds to the honeycomb
chain (HCC) on Si(553)-Au, positions near the Si adatoms are preferred for Si(557)-Au. The different ad-
sorption sites can explain why the ×2 reflexes in LEED for Si(557)-Au decrease strongly with increasing
oxygen dose, whereas hardly any changes in the diffraction pattern are detected for Si(553)-Au.

Afterward, the influence on the band structure was investigated. Similar to the LEED diffraction pat-
terns, the band modifications of both surfaces differ significantly. For Si(557)-Au, the inverse effective
mass of the conduction band associated with the conductivity along the Au chain decreases. Another ad-
sorption site even interrupts a conduction channel. Although this adsorption site is not themost stable, it
is still thermally occupied to some extent. This agrees with the measured decrease of conductivity along
the chains with rising oxygen dose. For Si(553)-Au, this effect is much smaller and is in accordance with
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7 Conclusion and Outlook

the calculated band structure. Perpendicular to the chain direction, almost no influence on the surface
conductivity is detected for both surfaces.

According to plasmon theory, the lower and upper limit of the electron-hole continuum and the plas-
mon loss spectrum have a fixed relationship for quasi-1D systems. Therefore, the band structure of the
clean surface was utilized to determine the lower limit of the electron-hole continuum in section 4.2. By
measuring the plasmon loss spectrum by Edler et al., the upper limit was derived, and information about
the electronic excitation spectrumwasdeduced. Thisnewmethodwas tested for thefirst timeon the clean
Si(557)-Au and Si(775)-Au and on the oxidized Si(557)-Au surface. It was found that the upper limit of the
electron-hole continuum is in good agreement with the calculated empty bands. However, smaller band
gaps are integrated over and, therefore, cannot be resolved.

At around 100 K, a phase transition occurs at the Si(553)-Au surface. Concerning the atomic structure,
this is manifested by an additional×3 periodicity, as seen in STM and LEED. In the past, LT models with
×3 periodic features were proposed. One of these models is characterized by a step edge at which every
third Si atom is spin-polarized. This spin-chain model, however, has only limited compatibility with the
experiment. Therefore, a new structural model for Si(553)-Auwas developed and introduced in chapter 5.
Thismodel is characterized by a rehybridized step edge, resulting in diamagnetic sp2+ pz-bonded instead
of spin-polarized step-edge atoms. This diamagnetic atomic structureminimizes the total energy in LDA,
PBEsol, and HSE calculations. In the case of the PBEmethod, however, the rehybridized model cannot be
stabilized. This was attributed to a poor description of the Au lattice parameter by the PBE functional.

In addition, the consistency of the calculated band structure with ARPES measurements is improved.
The biggest difference compared to the spin-polarized model is the absence of one of the occupied bands,
which could not be observed in the experiment. Also, the simulated STM images of the rehybridized struc-
ture bettermatchwith the experimental STM images. Although bothmodels reproduce the pattern above
a tunneling voltage of +0.7 V equallywell, only the rehybridizedmodel displays the×6 periodic pattern at
lower voltages. These can be attributed to a parity breaking caused by the interaction of themore strongly
dimerized Au chain with the step edge. Overall, the rehybridized model is confirmed both by DFT total-
energy calculations and by comparison with experimental data.

In chapter 6, the mechanism driving the phase transition on the Si(553)-Au surface was investigated.
Thereby, a transition scenario involving a charge transfer from the Au chain to the step edge accompanied
by a local sp2 + pz → sp3 rehybridization was examined. In this process, the empty DB of the correspond-
ing step-edge atom is filledwith anunpaired electron. On the onehand, band structure changes caused by
this transition canwell explain the rapid increase in conductivity at 65 K, as observed in a 4PP experiment.
On theotherhand, total-energy calculations showthat the thermal energyat65 Kcannot sufficientlydrive
this transition. The inclusion of vibrational free-energy corrections lowers the energy barrier to some ex-
tent. Nevertheless, the energy barrier remains impassable at 65 K.

Therefore, AIMD simulations were used in the following to investigate the phase transition in more
detail. Projections of the step-edge atoms’ vertical positions on their charge configurations show indeed
that charge fluctuations already occur for temperatures below 100 K. A low-frequency Au mode plays a
vital role in this process: Thismode is sufficiently occupied even at low temperatures and causes a periodic
change in the Au dimerization. As a consequence, the electron affinity of the Au chain is lowered for short
periods of time, in which the charge transfer to the step edge is facilitated. This explains the observed

76



self-doping of the DBs even at low temperatures and identifies the phase transition as an order-disorder
type. The unpaired electrons of the short-lived states seem to prefer an antiferromagnetic arrangement.

The AIMD simulations also reproduce the attenuation of the ×3 reflexes in SPA-LEED spectra with in-
creasing temperature. The agreement with the ×2 Au reflexes is not as good. However, this can be at-
tributed to the high correlation of the Au atoms and the limited size of the supercell in chain direction.
In addition, two modes with strong temperature dependence are visible in the Raman spectra of Si(553)-
Au. The first mode shows a slight redshift with increasing temperature and can be identified with the Au
dimerization mode. A similar redshift is also visible in AIMD, caused by a decreased dimer strength due
to the charge transfer. The second mode is localized at the step edge and appears at temperatures above
100 K. Frozen-phonon calculations show that the rehybridized step-edge atoms of the low-temperature
phase strongly disturb the step edge. As a consequence, this mode exists only at higher temperatures.

The order-disorder phase transition is thus explained by a self-doping of the step edge by the Au chain.
A low-frequency vibrational Au mode facilitates the phase transition. It is in good agreement with the
experimental findings and can reproduce the 4PP, Raman spectroscopy, and LEEDmeasurements.

A still openquestion regarding the Si(553)-Au surface is thenature of its defects. Although the influence
of oxygen and hydrogen has already been investigated in this dissertation and other papers142,192, less is
knownabout the intrinsic defects. In a study involving STM,Kang et al. suggested that the intrinsic defects
arepartiallydissociatedwatermolecules115. A verificationof thismodelbyDFTcalculations is still awaited.
As the defects are known to shift the quenching of the ×3 structure in their immediate vicinity to higher
temperatures113, further investigations are essential. Although it can be assumed that charge-doping by
the adsorbates plays an important role, the exact mechanism remains unknown.

Also, the influence of other foreign adsorbates on the Si(553)-Au surface would be interesting with re-
spect to nanoengineering and the stabilization of spin states, as already proposed in Ref. [103]. Up to now,
the influence of In201, C70202, and several organic molecules203–205 were investigated. However, research
focusing on stabilizing the spin states at the step edges is missing on a larger scale.

Finally, the temperature-dependent SPA-LEED measurement of Hafke in Refs. [150, 151] shows an in-
crease of the ×2 reflex intensity with increasing temperature within a small temperature range. In his
dissertation, Hafke also describes a simultaneous decrease of the corresponding FWHM, which is highly
unusual. In addition, both the intensity and the FWHM of the ×2 reflexes show a small discontinuity.
These results can be observed both when cooling and heating the surface and are reported to be repro-
ducible. A closer investigation of this unusual behavior would therefore be desirable.

With regard to the systems investigated here, it becomes apparent that the challenges of miniaturiza-
tion, i.e., shrinking electronic components towards the atomic limit, are not solely of technological char-
acter. Instead, details of the atomic structure and the resulting quantummechanical 1D and 2Dproperties
become prominent. In particular, these systems are highly sensitive to impurities such as oxygen, which
significantly impact their electronic transport properties. In addition, wires in the atomic limit are in a
complex interplay with their substrate: In the case of Si(557)-Au, this is manifested by the creation of sil-
icon spin chains. For Si(553)-Au surfaces, short-lived surface states due to transient doping arise. As a
result, phase transitions emerge, which fundamentally change the thermal properties of such wires, as
well. These physical effects will therefore come increasingly into focus with advancingminiaturization.
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A
Molecular Dynamics Simulations

A.1 Velocity Distribution

In ab initiomolecular dynamics simulations, theNosé-Hoover thermostat regulates the simulated temper-
ature by coupling the system to a virtual heat bath. This heat bath conforms to aMaxwell-Boltzmann dis-
tribution. In general, the Maxwell-Boltzmann distribution well describes the velocity distribution of par-
ticles in the high-temperature range. Therefore, great care has to be takenwhen simulating temperatures
as low as 50 K. In Fig. A.1, the velocity distributions obtained by the AIMD simulations are compared to
theMaxwell-Boltzmann distribution. For all temperatures, the calculated velocities conform very closely
to the theoretical distributions, which are plotted for the respective set temperature. In addition, a good
agreement between the calculated and the theoretical distribution also indicates a converged systemwith
respect to the initial unphysical velocity distribution.
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Figure A.1: The AIMD simulation’s velocity distribution of the Si (blue patches) and Au (gold patches) atoms for several tempera-
tures. The Maxwell-Boltzmann distribution of the respective temperature is given by blue and golden solid lines.
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A.2 Structural Details

The distributions of the step-edge atoms’ vertical positions exhibit three cluster points, as illustrated in
Fig. A.2. These cluster points correspond to the different bonding geometries associated with an empty
(0), singly (1), and doubly (2) occupied dangling bond. However, the distribution is bimodal at 50 K, as
the spin-polarized state is accessible only at higher temperatures. As demonstrated in Fig. A.2, the total
distribution is well described by three Gaussian distribution functions centered at the equilibrium posi-
tions of the step-edge atoms associated with the three charge states.

Fig. A.3 shows the corresponding time-resolved vertical position aswell as the projectedmagnetization
of each of the six step-edge atoms in a (1× 6) surface unit cell. The latter is obtained by the projection of
themagnetization density onto the atomic orbitals of the respective step-edge atom. A step-edge atom is
considered to host an unpaired electron if itsmagnetic projection is at least half the value known from the
SC model. Otherwise, it is assumed to host two or zero additional electrons, depending on whether the
vertical position is above or below the equilibrium position of the singly occupied state. Fig. 6.5 displays
the associated projection onto the charge states with respect to time and temperature.

In Fig. A.4, thedeviations of theAu chain to aperfect equidistant chain is illustrated. For all sixAuatoms
of each of the two Au strands, the relative displacement with respect to the underlying Si bulk lattice pa-
rameter is shown in chain direction. The total relative displacement of an Au dimer pair corresponds to
their dimerization, according to Eq. 4.3. With rising temperature, the amplitude of the Au oscillations in-
crease. At two points—one time at 300 K and one time at 400 K, see Fig. A.4—there is a phase shift of 180°
at the Au chain. This phase shift is characterized by a move of the dimer arrangement by one bulk lattice
site a0 along the Au chain. Due to the strong correlation of the Au atoms paired with a relatively small
supercell along the chain direction, such phase shifts are considered to be suppressed in the simulation.
In reality, these phase shifts are expected to occur more frequently and also at lower temperatures.
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Figure A.2: Distribution of the step-edge atoms’ vertical positions (gray bars) calculated by AIMD for several temperatures. The
equilibrium positions of step-edge atoms with empty (0), singly (1), and doubly (2) occupied DBs are indicated. The distribution is
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Figure A.3: Position along the sp3 → sp2 + pz reaction coordinate (associated with the charge filling (0), (1) and (2), blue) and
magnetization (orange) of each of the six step-edge atoms for several temperatures from 50K to 400K.
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Figure A.4: Relative displacement of the six Au atoms per left (blue) and right (red) Au strand in the (1× 6) surface unit cell with
respect to the underlying Si bulk lattice constant a0 for several temperatures. A displacement of 0% corresponds to an equidistant
Au chain with no dimerization. Green arrows indicate oscillations that lead to a phase shift of 180° within the Au chain.
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