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Zusammenfassung

Parametrische Fluoreszenz (PDC) ist ein nichtlinearer Quantene�ekt, der gröÿtenteils in
quantumoptischen Aufbauten, aufgrund der Möglichkeit Paarphotonemissionen auszulösen,
verwendet wird.

Innerhalb dieser Promotionarbeit wird festgestellt, dass die Spektraleigenschaften des
PDC-E�ekts eine im Rahmen der Quanteninterferometrie entscheidende Rolle spielen
können. Die Argumentation ist in zwei Abschritte unterteilt, in denen lineare und nicht-
lineare Interferenzsysteme unterschieden und analysiert werden.

Als Beispiel von linearer Quanteninterferenz wird die Hong-Ou-Mandel-Interferenz
untersucht. In dieser Dissertation wird bewiesen, dass das HOM-Minimum im Koinziden-
zpro�l sich einem "antibunching" Peak zukehrt, wenn eine Vier- statt Zweiphotoninter-
ferenz vorkommt und falls die Photonen Quantenkorrelationen aufweisen [1]. Auÿerdem
wird die Anwesenheit von schnellen manipulierbaren Schwankungen in der Koinziden-
zpro�l bewiesen, wenn Verschränkung zwischen den zwei Interferometerkanalen ausgelöst
wird [2].

Als Vorbild der nicht-linearen Interferometrie wird ein integrierter SU(1,1) Interfer-
ometer mathematisch gestaltet und seine Leistungen im Rahmen der Phasensensitivität
geprüft. Innerhalb dieser Analyse werden zwei PDC-Prozesse als optisch-parametrische
Verstärker, aus denen ein SU(1,1)-Interferometer besteht, genutzt. Es wird bewiesen, dass
die Phasensensitivität das Shot-noise-Limit übersteigen kann [3].
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Summary

The parametric down-conversion (PDC) is a nonlinear optical e�ect, largely used in quan-
tum optical frameworks because of the possibility to create photon pairs, in some cases
characterized by quantum correlations as well as frequency and polarization entanglement.

In this thesis, the role of the spectral features of the PDC in quantum interferometry
is demonstrated. The argumentations here exposed is split in two parts, distinguishing
linear and nonlinear interference phenomena.

An example of the �rst type is the two-photon Hong-Ou-Mandel (HOM) interference,
where photons leave the same output door of a beam splitter only if they are identical.
In this work it is demonstrated that in the four-photon scenario the coincidence pro�le
changes drastically, and in particular, the HOM dip turns to an antibunching peak if
photons undergo quantum correlations [1]. Furthermore, by inducing a spatial entangle-
ment between the channels of the interferometer, the presence of fast oscillations in the
coincidence probability is observed. The four photon scenario enables the manipulation
of these oscillations as well as the creation of four-photon Bell states [2].

As a paragon of nonlinear interferometry, we mathematically model a relistic inte-
grated SU(1,1) interferometer. In this framework, two PDC waveguides are utilised as
optical parametric ampli�ers constituting the interferometer. Despite the presence of
dispersion, the proposed interferometer can overcome the shot noise limit [3].
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Sommario

La conversione parametrica (PDC) è un fenomeno di ottica non lineare che ha trovato
un ampio impiego in diversi sistemi �sici, ed in particolare in ottica quantistica, per la
possibilità di generare coppie di fotoni correlati. La presenza di tali correlazioni assume
un'importanza strategica in diversi settori dell'ottica quantistica e consente di scrivere
l'Hamiltoniana del processo PDC attraverso una combinazione di modi spettrali.

Ciò che vogliamo dimostrare in questa tesi è che le caratteristiche spettrali della
sorgente di fotoni (nel caso particolare, della PDC) svolgono un ruolo fondamentale in
fenomeni di interferometria quantistica, e per tale �ne, la argomentazioni presentate ver-
ranno divise in due macroaree in cui verranno a�rontati diversi aspetti di interferometria
lineare e non lineare.

Il caso più elementare di interferometria quantistica lineare è quello che viene indi-
cato come interferenza Hong-Ou-Mandel (HOM). Questo processo asserisce che due fotoni
interagenti in un beam splitter (BS) vengono rilevati come uscenti dalla stessa porta se
giungono nel BS nello stesso tempo e se indistinguibili l'uno dall'altro. Nei casi esposti in
letteratura, questo e�etto non dipende dalle proprietà spettrali della sorgente �ntantoché
il principio di indistinguibilità dei fotoni non viene violato. Questa asserzione comunque
smette di essere valida se ad interagire sono quattro fotoni piuttosto che due. In questo
caso, possiamo notare che la probabilità di avere coincidenze presenta un picco anti-
bunching la cui intensità dipende dalle correlazioni quantistiche dei fotoni interagenti [1].
L'interferometria a quattro fotoni risulta essere di particolare interesse anche per la sua
�essibilità. Aggiungendo un convertitore di polarizzazione (PC) nel nostro interferometro,
siamo ad esempio in grado di realizzare una condizione di entanglement spaziale tra i due
bracci dell'interferometro, la quale si manifesta attraverso la presenza di picchi fortemente
oscillanti nelle funzioni di probabilità. In�ne, attraverso un controllo dei vari parametri
siamo in grado di realizzare sia stati di Bell quadratici, sia una manipolazione sistematica
delle oscillazioni nelle coincidenze [2].

Come esempio di interferenza non lineare, analizzeremo matematicamente il caso
dell'interferometro SU(1,1). La nostra analisi si so�ermerà sulle prestazioni di questo
strumento in una versione integrata, ed in particolare ne testeremo la sensitività di
fase. In particolare, il sistema speci�co da noi considerato è formato da due processi
PDC che svolgeranno il ruolo dei ampli�catori parametrici che solitamente costituiscono
l'interferometro. La caratterizzazione spettrale e�ettuata sullo strumento consente di
mettere in luce e�etti di dispersione che in�uenzano le prestazioni dell'interferometro.
Ciononostante, la precisione dello strumento riesce a superare il cosiddetto �shot-noise
limit�. Questi e�etti di dispersione possono comunque essere attenuati attraverso l'impiego
di �ltri focalizzati intorno la frequenza centrale di emissione [3].
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Chapter 1

Introduction

The discovery of the particulate nature of the light in the beginning of twentieth century
gave birth to a new branch in quantum physics, called quantum optics. It was immediately
clear that the description of the light in terms of discrete bricks of energy, called photons,
on one hand could solve many open questions, such as the ultraviolet catastrophe, and on
the other hand it largely expanded the frontiers of the research through the exploration of
new quantum interaction frameworks. From a conceptual point of view, the wave-particle
duality was centre of a lively debate within the scienti�c community, because both light
and matter were subject to a new interpretation of their own nature: what once was wave,
can behave as particle and vice versa.

The formulation of light as excitation of the electromagnetic �eld (particles) is however
a �rst step. In principle, a large amount of photons can still behave classically if their
statistics tend to be for instance strongly random, thermal or poissonian. Consequently,
a good test to distinguish the quantum from the classical essence in quantum optics is to
study the photon statistics. A certain amount of photons tends to show quantum features
if the mean value of the expected number of photons is higher than its variance, or in other
words, if the photon statistics is narrower than a poissonian distribution (subpoissonian
statistics). In that sense, it should not be surprising that a Fock state shows its quantum
features in a more evident way than a coherent state: the number of photons in a Fock
state is well determined.

However, along the last century, quantum mechanics o�ered further interesting per-
spectives and phenomena to explore. One of the most peculiar phenomenon is de�nitely
the entanglement, which is a quantum property largely exploited in quantum optics, also
because it can be applied in photonic frameworks. Entanglement is a unique quantum
e�ect, and there is no analogy in classical physics. An attempt to de�ne this property
is: given a quantum system characterized by two or more partitions (or subsystems),
this system is entangled if the information, that we can get from the measurement of
an observable, is stored in a global state which cannot be traced back to the states of
the partitions [4]. The �nal state is therefore written as the inseparable superposition
of subsystem states. In other words, the information is spread over the partitions of the
system, which are therefore strongly tied, or entangled. It is important to highlight that
the entanglement can hold even if the subsystems are spatially separated, following that
this e�ect can lead to non-local correlations.
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So far we discussed di�erent elements of the quantum reality, such as the wave-particle
dualism, the photon subpoissonian statistics as well as the entanglement. A pertinent
question can now be: is there a way to test a quantum optical system in order to bring such
features to light (even literally)? One branch of quantum optics o�ering this possibility is
given by quantum interferometry, which is the branch of quantum optics investigating the
interference processes. These occur in special devises, called interferometers, when two
waves (typically light beams or photons) interact in an optical element, returning a struc-
tured pattern as the output of a certain measurement. The structure of the interference
pattern as well as the information we can achieve in this type of experiment can strongly
depend on the nature of the interacting beams. A tailored example is the interference of
two beams entering the two doors of a beam splitter (BS). As long as the features of the
beams let us deal the radiation as a classical object, we have to expect that the beams
leave the BS either from both channels or just from one of them. On the contrary, the
employment of two single interacting photons instead of bright light would maximize the
probability of having both photons leaving one of the two door, and annul the probability
of having coincidences. This phenomenon, called Hong-Ou-Mandel (HOM) interference,
is just one of the possible experiments in quantum optics demonstrating the possibility to
test the "quantumness" of optical systems [5]. In this example, as well as in many oth-
ers [6�10], interferometry becomes a prominent test to investigate the borders between
what is classical and what is quantum.

It was mentioned that, depending on the light properties, we can deal with the light in
terms of classical beams as well as in term of photons, leading to very diverse outcomes.
The mathematical procedure to �rstly de�ne and then interpret the light as a quantum
object takes generally the name of quantization of the electromagnetic �eld. In this
framework, a single plane wave photon is interpreted as the excitation of one of the in�nite
modes of the electromagnetic �eld characterized by speci�c wave vector and polarization.
This formalism also enables to precisely describe light states with a higher degree of
complexity, closer to more realistic scenarios.

Indeed, we know that the radiation generated by photon sources typically used in labs
for interference experiments is not found in plane wave modes, but it is characterized by
speci�c spectral properties. It is well known, for instance, that nonlinear optical e�ects
such as parametric down-conversion (PDC), largely exploited in quantum optics as source
of squeezing light, create photons with a certain degree of quantum spectral correlations,
depending on both the geometrical and physical structure of the nonlinear material as
well as the spectral features of the laser [11]. The presence of these correlations can make
the PDC state not separable, but expressible in terms of a set of in�nite spectral modes.
It becomes clear, that such complexity of the photon source makes the description of
interference scenarios much more articulated and complicated.

In this context, this thesis attempts to partially answer the questions: can the spectral
"multimodeness" of the source a�ect the photon interference? If yes, How? And also:
which advantages can we take from it?

In order to answer these questions, we split the work in two parts, namely approaching
the topic within the frameworks of linear and nonlinear interferometry. In both cases the
PDC e�ect generated in periodic poled Potassium titanyl phosphate (ppKTP) waveguide
is used as spectrally multimode photon state.

10



After a preparatory chapter, in which we present the most interesting features of the
PDC state and the main concepts of interferometry and quantum metrology, in Chapter
3 we will face the HOM interference when four rather than two photons are generated in
a PDC waveguide. We will treat this system extensively, explaining how our theoretical
and experimental setup enables to split the photons in the two spatial channels of the
interferometer and make them identical. Once the interference occurs, we will �gure out
if the pattern pro�le in the four-photon design is more sensitive to the spectral features
of the photon source with respect to the typical two-photon HOM interference. In the
second part of this chapter, we will further take advantage of the spectrally multimode
four-photon design, but in a setup where the degree of spatial entanglement between
the two channel of the interferometer can be maximized. We will see that this di�erent
framework is more �exible and allows to modify and further manipulate the interference
pattern as well as the entanglement of the output state. Finally, in Chapter 3 we will
describe a realistic integrated SU(1,1) interferometer, namely a nonlinear interference
device, still taking into account the multimode structure of the PDC waveguides. Along
the chapter, we will present two di�erent designs comparing their performances. Once the
most e�cient design is delineated, we test the sensitivity of the interferometer when the
device is subject to a discrete range of �ltering and seeding strategies. From a detailed
investigation of the cases explored in this thesis, we can establish the optimal conditions
in which the interferometer can work. In the end of this thesis, it should be clear why the
presence of spectral features of photons is so important in interference frameworks.
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Chapter 2

Basics: photon source and
interferometry

2.1 The parametric down-conversion process

The investigation of frameworks based on nonclassical light is an essential element in
quantum optics and photonics. Sometimes the non-classicality of the employed light is
straightforwardly yielded via optical phenomena, stemming from the nonlinear response of
certain materials by intense electromagnetic �elds. In other words, by taking advantages
of the nonlinear features of such materials, it is possible to create light having strongly
nonclassical and even quantum behaviours, mathematically described in terms of photon
number states and Bell states. However, the nonlinear interaction depends on the intensity
of the electromagnetic �eld as well as on the susceptibility of the material. For instance,
a second order nonlinear e�ect is a phenomenon whose dielectric polarization density ~P is
proportional to the second order susceptibility χ(2) and quadratically proportional to the
electric �eld, meaning that the interaction of three beams is expected: a typical example
of this family is the so-called parametric down-conversion (PDC) [11], where a pump laser
hits a nonlinear material, which responds generating a photon pair, typically called signal
and idler photons.

The importance of the PDC e�ect in quantum optics is due to its extraordinary prop-
erties and is proved by the large amount of works in the literature where it is exploited in
di�erent scenarios, for instance in photon engineering [12], quantum cryptography [13,14],
quantum walk [15, 16] and photon interference [17]. Surely, one of the most interesting
features is the entanglement between signal and idler photons [18�20]. In some situations,
one may observe that signal and idler photons are connected by a frequency entanglement
by examining the Joint Spectral Amplitude (JSA) of the biphoton state. Moreover, for
some speci�c cases, PDC photons are also a�ected by polarization entanglement, which
gives rise to spatial correlations in bulk systems [21,22].

Another element of interest is the possibility of describing the PDC e�ect as a squeezed
source. It will be seen that both the degree of quantum correlations of the created photons
and the power of the pump determine a squeezing in the quadrature space [23].

In this chapter, we will obtain an explicit expression of the two-photon state, start-
ing from the de�nition of nonlinearity in quantum optics and the general Hamiltonian
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characterizing nonlinear phenomena; and step by step we will select terms identifying the
PDC process in order to achieve an explicit mathematical form for the PDC state. In the
second part we will focus our attention on the spectral properties of the PDC. We will see
that the control of such features allows us to manipulate and tailor the biphoton state in
accord to our purposes.

2.1.1 From energy to PDC state

A laser beam passing through a medium experiences an interaction which strongly depends
on both the intensity of the incident radiation and the atomic properties of the used
crystal. Assuming conventionally the crystal as an ensemble of electric dipoles, namely
harmonic oscillators, the �rst order of interaction leads to the well known refraction
process, which can be seen as the linear response of the medium to an electric stress.
Nevertheless, as increasing the pump intensity, the linear approximation does not hold
any more, and nonlinear response of the material occurs. In order to take into account
such e�ects in the mathematical model, the vector describing the polarization inside the
medium P (t) needs to be Taylor expanded at higher orders, namely:

Pi(t) = ε0

[∑
j

χ
(1)
ij Ej(t) +

∑
jk

χ
(2)
ijkEj(t)Ek(t) +

∑
jkl

χ
(3)
ijklEj(t)Ek(t)El(t) + . . .

]
, (2.1)

where ε0 is the vacuum permittivity, and χ(n) describes di�erent order of susceptibility,
and it can be seen as a coupling constant of the �eld interaction. Di�erent polarization
of the �elds are labelled by ijk. The relative displacement vector is therefore:

~Di(~r, t) = ε0 ~Ei(~r, t) + ~Pi(~r, t). (2.2)

Such �eld is necessary to de�ne the energy of the electromagnetic �eld along the crystal,
which is introduced by the Hamiltonian [24]:

H(t) =

∫
V

d3r
(
~B(t) · ~H(t) + ~E(t) · ~D(t)

)
≈
∫
V

d3r

[
~B · ~B + Ei

(
ε0Ei +

ε0
2

∑
ij

χ
(1)
ij Ej +

ε0
3

∑
ijk

χ
(2)
ijkEjEk

)]
.

(2.3)

where ~B and ~H are the magnetic �ux density and the magnetic �eld strength respectively.
Conventionally, it is useful to split the Hamiltonian in two parts, namely by distinguishing
the term due to the free propagation from the interaction:

H(t) = H0(t) +HI(t), (2.4)

where

H0 =

∫
V

d3r

(
~B · ~B + ε0 ~E · ~E +

ε0
2

∑
ij

χ
(1)
ij EiEj

)
(2.5)
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is the free propagation of �elds, i.e. the term containing both the unperturbed propagation
of both magnetic and electric �elds as well as the linear response of the waveguide, whereas

ĤI(t) =
ε0O

3

∑
ijk

χ
(2)
ijk

∫ L

0

dzÊi(z, t)Êj(z, t)Êk(z, t) (2.6)

is the term of interaction, characterized by the nonlinear susceptibility tensor and three
interacting beams. In this expression, O corresponds to the overlap of all �elds along the
orthogonal direction of propagation. Estimating the integration volume equal to the size of
the waveguide, it is reasonable that the overlap of the three �elds is connected to the cross-
section of the waveguide via O = 1/

√
APDC , where APDC is the cross-section. Since we are

interested in PDC process in waveguide, we can consider just a collinear con�guration,
namely imposing that all beams propagate along one direction, and therefore we can
focus on the integration along the length of the waveguide L. Furthermore, a proper
description of the interaction needs to take into account the energy conservation of the
process, namely ω1 = ω2 +ω3, where we label with ω1, ω2 and ω3 the frequency of Ei(z, t),
Ej(z, t) and Ek(z, t) respectively.

Since we will work in the interaction picture, we will merely focus on the interaction
Hamiltonian in Eq.(2.6); an explicit expression of the quantized electromagnetic �eld is
therefore required. In quantum electrodynamics and optics, the full expression of the
electric �eld is given by [25]:

Ê(~r, t) = i
∑
ki

√
~ωk

2ε0nkiV

(
âkεkie

i(~k~r−ωkt) − a†kε
∗
kie
−i(~k~r−ωkt)

)
. (2.7)

where k describes the wave vector, i indicates the polarization, ωk represents the allowed
frequencies according to the energy conservation, εki are unit vectors determining the
polarization direction of the �eld, nki is the refractive index inside the material and V is
the volume determined by the boundary conditions of the considered system.

As it may be noticed in Eq.(2.7), a fully quantum treatment of the electromagnetic �eld
leads to an "upgrade" of the electric �eld from a classical function to a quantum operator.
This allows, for instance, to explore a large spectrum of phenomena in both quantum
optics and quantum electrodynamics, not predictable by a classical description of these
�elds, such as spontaneous emission [26,27], Lamb shift [28,29], Casimir e�ect [30,31] etc.,
or, more pertinent for our scopes, to carefully describe nonlinear interaction in medium,
such as frequency conversion [32, 33], parametric down-conversion [33�35] and four wave
mixing [36].

The absence of limited boundaries in the environment of the PDC waveguide allows us
to operate in continuum. Mathematically it means that we can extend the quantization
volume to in�nity and transform the sums to integrals, so that the electric �eld becomes:

Êi(z, ω) = i

√
~ω0

4πε0An(ω0)

∫
dω
(
â(ω)ei(k(ω)z−ωt) − â†(ω)e−i(k(ω)z−ωt)) , (2.8)

where A labels the transverse quantization area of the material [37]. Since the bandwidth
of �elds is much smaller than the central frequency (∆ω � ω0), we can assume that
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the �eld envelope slowly varies during the propagation of �elds along the medium, such
that we can mathematically �x the dispersion term in the central frequency and take
the refrective index out of the integral. Then we transform the sum into integrals, the
commutation rules for the annihilation and creation operators transform accordingly:[

â(ω), â(ω′)†
]

= δ(ω − ω′) [â(ω), â(ω′)] = 0. (2.9)

In order to isolate the Hamiltonian of PDC from other e�ects, it is more convenient to
split the electric �eld in two parts, by separating the positive and negative frequencies as
following [25]:

Ê(z, t) = Ê(+)(z, t) + Ê(−)(z, t), (2.10)

hence, by substituting Eq.(2.10) in Eq.(2.6) we get:

ĤI(t) =
ε0
3

∑
ijk

χ(2)

∫ L

0

dz
(
Ê

(+)
i (z, t) + Ê

(−)
i (z, t)

)
×
(
Ê

(+)
j (z, t) + Ê

(−)
j (z, t)

)(
Ê

(+)
k (z, t) + Ê

(−)
k (z, t)

)
.

(2.11)

Some terms of this Hamiltonian, such as Ê(+)
i Ê

(+)
j Ê

(+)
k or Ê(−)

i Ê
(−)
j Ê

(−)
k can be excluded

because they do not ful�l the energy conservation, but other terms enable to describe
a remarkable number of non-linear processes in quantum optics. For instance, focusing
just on PDC, we can distinguish three types of PDC process, depending on the relation
between pump laser and output photons polarization: we indicate with "Type-0" the PDC
process characterized by pump, signal and idler having same polarization; with "Type-I"
the PDC process when both signal and idler photons have the same polarization and the
pump polarization is orthogonal; and �nally with "Type-II" the case when signal and idler
photons have orthogonal polarizations. Henceforth, since in this work the possibility to
distinguish signal from idler is fundamental, we will only focus on Type-II PDC process.
From Eq.(2.11) we can therefore select just the following term:

ĤPDC(t) =
ε0
3
χ(2)

∫ L

0

dzÊ(+)
p (z, t)Ê(−)

s (z, t)Ê
(−)
i (z, t)− h.c., (2.12)

where we renominate all beams with the well-known names present in literature: p, s and
i correspond to "pump", "signal" and "idler" respectively.

Having identi�ed the Hamiltonian of the PDC process, Eq.(2.12), we can �rstly de�ne
the unitary transformation (starting from Hamiltonian in Eq.(2.12)):

ÛPDC = T exp

[
− i
~

∫ ∞
∞

dtĤPDC(t)

]
, (2.13)

and �nally obtain the PDC state:

|ψ〉PDC = ÛPDC |0〉 = T exp

[
− i
~

∫ ∞
−∞

dtĤPDC(t)

]
|0〉. (2.14)

In this expression, we had to introduce the time ordering operator T due to the fact that
the Hamiltonian does not commute with itself at di�erent times [33,38]. Although e�ects
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due to the temporal ordering can play a crucial role in the PDC e�ect and can therefore
modify remarkably the results in the high gain regime (characterized namely by a high
pump power and hence more photons) [39], they are not particularly relevant for our
scopes, so that we can ignore them by eliminating the time ordering operator from the
expression written above:

|ψ〉PDC ' exp

[
− i
~

∫ ∞
−∞

dtĤPDC(t)

]
|0〉. (2.15)

Now we are able to explicitly write down the temporal integral in Eq.(2.15). Taking
advantage of the large number of photons, we can treat the pump beam classically, which
means that we do not need to quantize the �eld amplitude. Hence we can write:∫ ∞

−∞
dtĤPDC(t) = B

∫ ∞
−∞

dt

∫ L

0

dz

∫∫∫
dωpdωsdωi exp[−i(ωp − ωs − ωi)t] (2.16)

×

√
I

~ωp
exp[i(kp(ωp)− ks(ωs)− ki(ωi))z]â†(ωs)â

†(ωi)− h.c. (2.17)

where we collect all constants in B and introduce the pump intensity I. By performing
the integration over the direction of propagation z we have∫ ∞

−∞
dtĤPDC(t) = B

∫ ∞
−∞

dt

∫∫∫
dωpdωsdωiα(ωs, ωi) (2.18)

×L sinc

[
(kp(ωp)− ks(ωs)− ki(ωi))

L

2

]
exp[−i(ωp − ωs − ωi)t] (2.19)

× exp

[
i (kp(ωp)− ks(ωs)− ki(ωi))

L

2

]
â†(ωs)â

†(ωi)− h.c. (2.20)

where we de�ned the pump spectral function

α(ωs, ωi) =

√
I

~ωp
e−(ωp−ωs−ωi)2t20/2, (2.21)

where t0 is the pulse duration of the pump laser1. If the integration over time is performed,
the delta function 2πδ(ωp − ωs − ωi) appears and therefore the integration over ωp gives
�nally:

|ψPDC〉 = exp

{
2πB

∫
dωsdωiLα(ωs, ωi) sinc

[
∆kL

2

]
ei

∆kL
2 â†(ωs)â

†(ωi)− h.c
}
|0〉,

(2.22)
where ∆k = kp(ωp)− ks(ωs)− ki(ωi) is the so called phase matching function, and deter-
mines the momentum conservation of the process. In order to compact such expression,
we introduce the coupling constant Γ = 2πBL and the so called "joint spectral amplitude"
function (JSA):

F (ωs, ωi) = α(ωs, ωi) sinc

[
∆kL

2

]
ei

∆kL
2 , (2.23)

1Other pro�les of α(ωs, ωi) will be speci�ed along this work opportunately.
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so that from Eq.(2.22) we get �nally

|ψPDC〉 = exp

{
Γ

∫
dωsdωiF (ωs, ωi)â

†(ωs)â
†(ωi) + h.c

}
|0〉, (2.24)

which describes the state of a PDC process. Since the function α(ωs, ωi) in Eq.(2.21)
exhibits the frequency dependence only in the exponential part, we point out that the
prefactor

√
I/(~ωp) and consequently the dependence on the pump intensity, will be

included in the coupling constant Γ henceforth. Next sections we will show how to ma-
nipulate both the momentum and the spectrum of both signal and idler photons. It will be
clear soon, that such features play a fundamental role in di�erent interference processes.

2.1.2 Quasi-phase matching

The possibility to manipulate the output beam, namely the frequency range of both
signal-idler photons, is an important element in most of the typical setups working for
instance in telecom regime. Normally, such possibility is spontaneously provided by prop-
erly tailoring the frequency of the pump laser. Nevertheless, although the choice of ωp
sets the energy conservation �gured by the function α(ωs, ωi), the ful�lment of momentum
conservation of the process described by the phase matching function ∆k(ωs, ωi), is not
immediately reached. Indeed, it strongly depends on the optical features, and in partic-
ular the refractive index inside the waveguide which restricts the allowed frequencies for
both signal and idler photons. Typically, such problem can be overcome by periodic pol-
ing the waveguide; but this choice leads to an alteration of the non-linear coe�cient and
subsequently the momentum conservation of the process [40, 41]. This solution is called
quasi-phase matching. Experimentally, the modi�cation of the non-linear coe�cient can
be done for instance by inducing strong and modulated electric �eld along the crystal in
LiNbO3 [42, 43] (see Fig.2.1) or by ion exchange process in case of KTP [44].

Figure 2.1: Sketch of a periodic poled PDC section

Mathematically, it corresponds to substituting the constant nonlinear coe�cient in
the Hamiltonian (see Eq.(2.6)) with a spatially, periodically modulated coe�cient, which
approximately is

χ(2)(z) = χ
(2)
0 sin

(
2π

Λ
z

)
. (2.25)
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The temporal integration of the hamiltonian becomes:

∫ ∞
−∞

dtĤPDC(t) =
ε0
3

∫ ∞
−∞

dt

∫ L

0

dkχ(2)(z)Êp(z, t)Ês(z, t)Êi(z, t) (2.26)

= B

∫ ∞
−∞

dt

∫ L

0

dz

∫∫∫
dωpdωsdωi exp[−i(ωp − ωs − ωi)t] (2.27)

× 1

2i

(
exp

{
i

(
kp(ωp)− ks(ωs)− ki(ωi) +

2π

Λ

)
t

}
(2.28)

− exp

{
i

(
kp(ωp)− ks(ωs)− ki(ωi)−

2π

Λ

)
t

})
a†(ωs)a

†(ωi) + h.c. (2.29)

From the equation above it is clear that the phase matching function is split in two parts
shifted from the original position by ±2π

Λ
. However, one of them can drop to zero by

modifying the pump laser accordingly in order to obtain �nally:

|ψPDC〉 = exp

{
Γ

2i

∫
dωsdωiα(ωs, ωi) sinc

[
∆βL

2

]
ei

∆βL
2 â†(ωs)â

†(ωi) + h.c

}
|0〉, (2.30)

where we introduced ∆β = ∆k + 2π
Λ
. The presence of the periodic poling allows to close

the phase matching as needed and therefore to �x the emission frequency of the PDC
process, by paying half of emission intensity though. Since in all cases considered in this
work the quasi-phase matching technique is utilized, we will henceforward identify the
PDC state as Eq.(2.30), and the corresponding JSA is:

F (ωs, ωi) = α(ωs, ωi) sinc

[
∆βL

2

]
ei

∆βL
2 . (2.31)

In the reminder of this chapter, the pulse duration t0 within α(ωs, ωi) will be simply
indicated by t.

2.1.3 PDC as squeezing process

In this section we will show how to control the emission process and the degree of corre-
lation of signal and idler photons, introducing the temporal Schmidt modes and lending
di�erent spectral characterizations to the PDC state.

As we have seen in the previous sections, the JSA consists of two superimposing
elements, namely the pump pro�le α(ωs, ωi) and the phase matching function, that can
be modi�ed independently [45]. For instance, assuming α(ωs, ωi) as in Eq.(2.21), we can
control the pump bandwidth by varying the pump pulse duration t.

On the other hand, we can change the shape and the orientation of the phase matching
Sinc function by altering the length of the waveguide, the poling period and trivially using
certain materials having speci�c refractive indices rather than others.
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Figure 2.2: Plots of α(ωs, ωi) (a), phase matching function (b) and total JSI (c) of a PDC
process in a KTP crystal in the single mode regime (low degree of correlation between signal and
idler photons). Length of the crystal L = 8mm, poling period Λ = 126µm and pulse duration
t = 0.346ps. Schmidt number K=1.07.

Figure 2.3: Plots of α(ωs, ωi) (a), phase matching function (b) and total JSI (c) of a PDC
process in a KTP crystal in the multimode regime (high degree of correlation between signal and
idler photons). Length of the crystal L = 8mm, poling period Λ = 126µm and pulse duration
t = 5ps. Schmidt number K=7.75.

Therefore, �xing a waveguide having speci�c optical properties distinctly, the only way
we have to modify JSA is via varying the pump pulse duration. In Fig.(2.2) and Fig.(2.3)
we plot the joint spectral intensity (JSI) |F (ωs, ωi)|2 of two PDC processes distinguishable
by just di�erent values of t, when the source consists of a periodic poled KTP (ppKTP)
waveguide.

The pictures show how to manipulate the JSI, in particularly increasing the pulse
duration. It becomes clear that the reduction of the pump bandwidth causes a visible al-
teration of the JSI, which is upheld by a modi�cation of the photon correlations. Roughly
we can say that, as long as the JSI is close to be circular as in Fig.(2.2)c, a measurement
on idler photon does not provide any clear information about the frequency of signal pho-
ton, determining an uncertainty in the knowledge of signal photon. In contrast, the JSI
in Fig.(2.3) is quite narrow along the frequency antidiagonal, therefore the frequency of
signal photon is heralded by the measurement on idler.

In this speci�c situation in which the pump pro�le is described by Eq.(2.21), the shape
of the JSA is also connected with the degree of correlations of signal and idler photons.
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A way to concretely estimate such correlations is via performing the so-called Schmidt
decomposition of JSA in Eq.(2.31) [46,47]:

F (ωs, ωi) =
√
C
∑
k

√
λkuk(ωs)vk(ωi) (2.32)

where

C =

∫
dωsdωi|F (ωs, ωi)|2 (2.33)

is the normalization constant, λk are the normalized Schmidt eigenvalues, meaning that∑
k λk = 1, and uk(ωs) and vk(ωi) are the spectral modes, called also Schmidt modes, for

signal and idler photons respectively, which ful�l the orthonormality condition:∫ ∞
0

dωsuµ(ωs)u
∗
ν(ωs) =

∫ ∞
0

dωivµ(ωi)v
∗
ν(ωi) = δµν . (2.34)

From Eq.(2.32) it is worth to notice that when λ1 = 1 the JSA consists of a single spectral
mode and the state is separable. This means that there is no correlation between signal
and idler photons, nor entanglement. If the PDC state contains more than one spectral
modes, such state is not separable any more and the degree of correlation increases.
Therefore, in order to properly quantify such correlation between signal and idler photons,
we introduce the so called Schmidt number K = 1/(

∑
k λ

2
k): the higher is the value of K,

the more correlated are signal and idler photons, and the JSA tends to become symmetrical
along the diagonal axis ωi = ωp−ωs. A more common test to quantify the correlations in
quantum optics is the measurement of the second order cross correlation function g(2). In
this framework, the correlation between signal and idler photons is related to the Schmidt
number via:

g(2) = 1 +
1

K
. (2.35)

This expression clari�es that the second order correlation function reaches 2 for noncor-
related states and tends to 1 for strongly correlated states. Cases reported in Fig.(2.2)
and Fig.(2.3) are characterized by g(2) = 1.93 and g(2) = 1.13 respectively.

In the second part of this section we see how to mathematically elaborate the PDC
state in order to rewrite it as a multimode squeezing state. Expressing the photon sources
in terms of spectral modes is a strategy largely used in quantum optics, for instance in
photon state engineering [48], tomography [49,50] as well as in quantum information [51].

We start by de�ning both the so called Schmidt annihilation and creation operators
for both signal and idler photon:

A†k =

∫
dωsuk(ωs)a

†(ωs),

B†k =

∫
dωivk(ωi)a

†(ωi).

(2.36)

The action of these operators on the state describe the creation of a signal-idler photon pair
in the spectral mode k characterized by the spectra |uk(ωs)|2 and |vk(ωi)|2 respectively.
These operators ful�l the typical bosonic commutation rules:

[Ak, A
†
j] = δkj, [Ak, B

†
j ] = 0. (2.37)
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At this point, we just rewrite the Hamiltonian in terms of such operators de�ned above:

H = i~Γ
√
C
∑
k

√
λk(A

†
kB
†
k − AkBk). (2.38)

By substituting the Hamiltonian in Eq.(2.15) we get:

|ψPDC〉 = exp

{
Γ
√
C
∑
k

√
λk(A

†
kB
†
k − AkBk)

}
|0〉 =

⊗
k

Sk(ζk)|0〉, (2.39)

where

Sk(ζk) = exp
{
ζk(A

†
kB
†
k − AkBk)

}
(2.40)

are the two-mode (if signal and idler are distinguishable as in our case) squeezing operators
and ζk = Γ

√
λk are the squeezing parameters, clearly showing that the PDC state is a

product of squeezing states in the Schmidt basis. However, the squeezing characterization
depends on di�erent factors, such as the length of the waveguide, the pulse duration and
the intensity of the pump. It is thus important to stress that the squeezing parameter
itself clari�es that the amount of squeezing can be enhanced keeping the same number of
spectral modes but increasing the pump intensity.

The action of the Schmidt operators on the initial state (vacuum in this case) is �nally
given by solving the Heisenberg equations for both Ak and Bk, taking into account the
commutation rules given in Eq.(2.37):

dAk
dt

= Γ
√
λkB

†
k,

dB†k
dt

= Γ
√
λkAk.

(2.41)

These equations can be solved using the Bogolyubov transformations, so that we can
obtain the expression:

Akout = Akin cosh
[
G
√
λk

]
+B†kin sinh

[
G
√
λk

]
,

Bkout = Bkin cosh
[
G
√
λk

]
+ A†kin sinh

[
G
√
λk

]
,

(2.42)

where the parametric gain of the process G =
∫

Γdt was introduced. Such output opera-
tors can be used to calculate many interesting quantities in quantum optics. For example,
we can calculate the output number of signal (idler) photons of the PDC e�ect as [52]:

N = 〈0|A†koutAkout|0〉 =
∑
k

sinh2
[
G
√
λk

]
, (2.43)

highlighting the exponential growth of the number of photons for high pump intensities.
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Following the same procedure, the Heisenberg equation can be solved also in terms of
plane wave operators, yielding:

aout(ωs) = ain(ωs) +
∑
k

uk(ωs)

×
[
Aink

(
cosh

[
G
√
λk

]
− 1
)

+ (B†k)
in sinh

[
G
√
λk

]]
,

bout(ωi) = bin(ωi) +
∑
k

vk(ωi)

×
[
Bin
k

(
cosh

[
G
√
λk

]
− 1
)

+ (A†k)
in sinh

[
G
√
λk

]]
.

(2.44)

Both these set of operators will be of crucial importance along this work. The description
of the PDC as a squeezing state will be a fundamental brick for engineering our model of
the SU(1,1) interferometer and in particular it enables to bring out the analogies and the
di�erences between the single mode squeezing vacuum, largely used as optical parametric
ampli�ers in theoretical SU(1,1) interferometer investigation, and the realistic PDC state.

2.1.4 Low gain regime

In many uses of PDC processes as photon source, it is not necessary to employ a pump
with strong intensity, since a weaker one can already provide a suitable number of PDC
photons. In condition of weak pump intensity, the expression in Eq.(2.24) can be treated
in the so called "low gain regime", namely a condition characterized by Γ � 1, and
expanded in Taylor expansion:

|ψPDC〉 ≈ |0〉+ Γ

∫
dωsdωiF (ωs, ωi)â

†(ωs)â
†(ωi)|0〉. (2.45)

The �rst term describes the zero order, which in this case is represented by the quantum
vacuum, whereas the �rst order returns the PDC state in the low gain regime. For our
purposes, we can ignore the zero order and normalize the PDC state to the �rst order:

|ψPDC〉 ' Γ

∫
dωsdωiF (ωs, ωi)â

†(ωs)â
†(ωi)|0〉. (2.46)

By de�nition it is clear that, in the low gain regime, C Γ2 corresponds to the number
of output photons generated by the waveguide. Along this work we will extend this
expansion to the second order, so that we can generate two pairs of signal and idler
photons at the same time.

2.2 Quantum interferometry

The second part of this introductory chapter will provide an overview of quantum interfer-
ometry and metrology. The main topic will be the distinction between linear and nonlinear
interferometry in quantum optics [53]. A linear interferometer is a an interferometer char-
acterized by linear transformations, typically beam splitter transformations [54]. We will
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see that in this kind of device the number of photons is a constant of motion, meaning
that the photon number does not change during the propagation along the whole de-
vice. On the contrary, the nonlinear interferometer considered in this chapter, namely the
SU(1,1) interferometer, consists of two optical parametric ampli�ers (OPAs) [55]. In ideal
conditions, the interaction between the beams and the OPAs leads to an enhancement
(ampli�cation) or to a reduction (deampli�cation) of the output intensity depending on
some internal phase shifting, therefore the photon number is not a constant of motion.
Very commonly both the linear and nonlinear interferometry are investigated by utilis-
ing a matrix strategy, which namely enables to treat all elements of the interferometer
as matrices acting on the vector basis of the signal-idler annihilation/creation operators.
Although this is a straightforward strategy when the input light consists of plane wave
states, along this work we will see that it is not the most convenient to adopt when
spectrally multimode sources are involved.

In order to start a more detailed description of the interference processes, we will
�rstly focus our attention on the linear interferometry. In particular, after introducing
the concept of measurement in quantum optics, we will present the Hong-Ou-Mandel
interference [5], which is a fundamental linear interference phenomenon in quantum me-
chanics, that can be used for instance to test the distinguishability of two photons. For
this purpose, the PDC will be employed as a photon source of the interferometer. This
choice allows to immediately present a formalism in which the spectral features of the
source can be managed in order to control the interference pattern [56].

Afterwards, we will contextualise both the linear and nonlinear interferometry within
the framework of quantum metrology. For this scope, it will be necessary to introduce
fundamental concepts such as the phase sensitivity and the sensing limitations, and distin-
guish the two most common detection strategies utilized in quantum metrology, namely
direct and homodyne detection. Finally, we will present a typical example of linear in-
terferometer, called Mach Zehnder interferometer, testing the behaviour of the phase
sensitivity at di�erent input states. A similar analysis will be carried out in the context
of the nonlinear interference along the last part of this section, where in particular we will
test the performance of the SU(1,1) interferometer.

2.2.1 Quantum measurement

Before starting with the introduction of the HOM interference in more detail, it is fruitful
to immediately introduce what a quantum measurement is, in particular the so called
Positive Operator-Valued Measure (POVM) formalism [57], and the distinction between
projective and non-projective measurement in quantum mechanics.

Let us suppose to have a quantum system described by the quantum state |ψ〉 and
that we want to perform a measurement on it. One way to visualise such process consists
in a projection of the state on the vectors generating the Hilbert space. In mathematical
words, we �rstly express the state via decomposing it on the vector basis of the Hilbert
space, namely

|ψ〉 =
∑
k

bk|βk〉, (2.47)

where k = 1, 2, 3..., while |βk〉 and bk are respectively the basis vectors of the Hilbert
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space and the probability amplitude to get the k state respectively; afterwards we de�ne
a set of projecting operators as

Pk = |βk〉〈βk|, (2.48)

ful�lling the completeness condition
∑

k〈ψ|P
†
kPk|ψ〉 = 1. Therefore, the action of Pk

literally consists of a projection of the quantum state in one of the allowed states belonging
to the basis, and the probability to obtain the state k as outcome is given by p(k) =
〈ψ|P †kPk|ψ〉, determining therefore the quantum statistics of our system2.

Although this is a straightforward way to de�ne the measurement process on the state
mathematically, sometimes it might happen us to be interested not to the basis states,
but to a new set of outcome states, expressed as superposition of basis elements like in
Eq.(2.47). In this case, a projection measurement on the basis vectors is not e�cient,
because we want the measurement to distinguish and determine the states. Since all
states are characterized by an own linear combination of basis elements, a projection
measurement on the basis vectors is not really worthy, because the same basis vectors can
appear in linear combinations of di�erent outcome states.

In order to solve this uncertainty, it seems quite convenient to adapt the measure-
ment design on the required output states by extending the de�nition of quantum mea-
surement and introduce a speci�c set of measurement operators {Mk}, generally called
POVM operators. Like the projectors, they must both ful�l the completeness condition∑

k〈ψ|M
†
kMk|ψ〉 = 1 and be positive. The main idea of this strategy is therefore to fully

identify the required states rather than to select one of the possible basis vectors. Such
operators therefore enable to univocally identify the states we are investigating. On the
other hand, the drawback of this strategy is that the completeness condition forces to
de�ne POVM operators which are useless for inferring something about the state we are
measuring [57]. Along this text we will make use of POVM in order to calculate the
coincidence probability in the four-photon Hong-Ou-Mandel framework.

2.2.2 Two-photon Hong Ou Mandel interference

In 1987 Chung Ki Hong, Zhe Yu Ou and Leonard Mandel demonstrated that two indis-
tinguishable photons, entering a balanced beam splitter (BS) from two di�erent spatial
channels at the same time, experience an interference quite di�erent from what was ex-
pected in classical optics [5]. It was known from classical interference experiences that
two beams, interacting in a beam splitter and detected, originate a modulated interference
pattern in the output channels if the time delay between them is tuned. The discovery of
the HOM interference changed this paradigm drastically: Hong, Ou and Mandel demon-
strated that the use of two single photons rather than two classical beams would generate
completely di�erent outcomes, i.e. two photons entering the BS at the same time can be
only found in one of the two output channels and not split in both.

2In the speci�c case of projector operators, the quantum statistics can be simply expressed by p(k) =

〈ψ|Pk|ψ〉, since P †
kPk = Pk.
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Figure 2.4: Schematic model of a typical HOM set-up. A pump laser interacts with a nonlinear
medium (PDC source), creating a signal-idler photon pair. After the re�ection in two mirrors
(M1 and M2), they interfere on a beam splitter (BS) and are detected. The coincidence events
are �nally measured. The phase scanning is performed by spatially translating one of the two
mirrors.

In order to give an explanation of such phenomenon in more detail, we will consider
the scheme in Fig.2.4, where both signal and idler photons interfere in a beam splitter
before getting detected. By moving one of the two mirror is hence possible to detect
coincidence events at di�erent time delays between the two photons. As it was already
mentioned before, in this paragraph we make use of the PDC e�ect as photon source, and
the spectral features of both signal and idler photons are taken into account [58,59]. For
the sake of simplicity, we assume that we were already able to both separate signal and
idler photons in two di�erent channels and make them indistinguishable, so that we do
not need to introduce too many elements in the description of this set-up, and we can
only focus on the interference process itself3.

Working in the low gain regime using the JSA as in Section 2.1.4, the quantum state
entering the BS is the PDC state when the idler photon undergoes a time delay τ :

|ψi〉 =
1√
C

∫
dωsdωiF (ωs, ωi)e

iωsτ â†1(ωs)â
†
2(ωi)|0〉. (2.49)

In this expression, the indices µ = 1, 2 di�erentiate the upper from the lower channel of
the 50:50 BS. The BS is mathematically described by a linear transformation turning the
input creation operators to [54]:

a†1 →
1√
2

(
a†1 + ia†2

)
,

a†2 →
1√
2

(
a†2 + ia†1

)
.

(2.50)

3Further theoretical and experimental details will be given along the next chapter and in the Appendix.
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Hence, by letting this transformation act on the input state in Eq.(2.49) we have

|ψf〉 =
1

2
√
C

∫
dωsdωiF (ωs, ωi)e

iωsτ
(
â†1(ωs) + iâ†2(ωs)

)(
â†2(ωi) + iâ†1(ωi)

)
=

1

2
√
C

∫
dωsdωiF (ωs, ωi)e

iωsτ
(
iâ†1(ωs)â

†
1(ωi) + iâ†2(ωs)â

†
2(ωi)

+â†1(ωs)â
†
2(ωi)− â†2(ωs)â

†
1(ωi)

)
|0〉.

(2.51)

The �rst two terms represent the state with both signal and idler photon in the same
channel, whereas they are in di�erent channels according to the last two terms. It is
interesting to notice that, if ωs = ωi = ωp/2 (monochromatic plane waves), Eq.(2.51)
would return a �nal state where both photons are found either in the output channel
1 or in the output channel 2, as predicted by Hong, Ou and Mandel. Since we want to
investigate the connection between the physical features of the PDC and the coincidences,
we �rstly de�ne the POVM operators [57,59]:

Mb =

∫
dωbd

†
1(ωb)|0〉〈0|d1(ωb), (2.52)

Mc =

∫
dωcd

†
2(ωc)|0〉〈0|d2(ωc), (2.53)

and the coincidence event is therefore given by:

P11 = 〈ψf |Mb ⊗Mc|ψf〉 =

∫
dωbdωc|〈0|d1(ωb)d2(ωc)|ψf〉|2

=
1

4C

∫
dωbdωc|F (ωb, ωc)e

iωcτ − F (ωc, ωb)e
iωbτ |2.

(2.54)

This formula represents the probability that two detectors, described by the annihilation
operators d1(ωb) and d2(ωc), catch two photons in di�erent channels at frequencies ωb
and ωc respectively; however, the integration over ω takes all frequencies into account.
In order to plot this function for a large time delay range between the two photons,
we want to split our argumentation in three di�erent scenarios, depicted in Fig.(2.5) by
di�erent colours. The black curve characterizes the coincidence events when the input
state contains a quasi-circular JSA (see Fig.2.2c); in a second scenario we can think to
increase the pulse duration (red curve) in order to have a symmetrical JSA; �nally we
increase the length of the waveguide (blue curve). Since the group velocity of the signal
photon is higher with respect to idler, the dip of the coincidence curve is found at positive
time delay. This means that we need to extend the path of signal photon to compensate
the path delay and let both photon arrive at the same time.

The �rst remarkable information we achieved in Fig.2.5 concerns the visibility, de�ned
in the HOM experiments as 1 − P (τ = 0)/P (τ → ∞). It is evident that this parameter
varies in the black and red curves: indeed, the dip of the black curve does not reach
zero, in contrast to the minimum point of the red curve. The reason of such di�erence
is explainable by comparing the symmetry of JSA for both con�gurations: the JSA de-
picted in Fig.2.2c is not symmetrical along the diagonal ωi = ωp − ωs, meaning that the
spectra of signal and idler photons are di�erent from each other, violating the requisite
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Figure 2.5: Coincidence probabilities by varying the time delay between signal and idler pho-
tons. A KTP section was used as photon source. In black line, t = 0.346 ps and L = 8mm; in
red line t = 1ns and L = 8mm; and in blue line t = 1ns and L = 12mm.

of indistinguishability of the photons crossing the BS. Nevertheless, such problem can
be solved for instance by enhancing the pump pulse, or in other words by reducing the
spectral bandwidth of pump laser, thereby letting the JSA be diagonal and symmetrical
(red curve). Mathematically, it means that F (ωb, ωc) ' F (ωc, ωb), and the coincidence
probability is reduced to

P11 =
1

2C

∫
dωbdωc|F (ωb, ωc)|2[1− cos((ωb − ωc)τ)], (2.55)

clearly returning zero at τ = 0.
Lastly we can notice that, if longer waveguides were used, the dispersion inside the

waveguide would enhance the temporal bandwidth of both signal and idler photons, and
consequently, also the overlapping range between them, making the interaction curve
broader in time (blue curve).

We want to stress that as long as the condition P11 = 0 is ful�lled, the output state
corresponds to the NOON state with N=2, which is a maximal entangled state [60].
Unfortunately, NOON states with higher photon number are not realizable via HOM
interference.

In conclusion, we demonstrated that HOM interference is an extremely useful tool
in order to test the distinguishability of two photons, moreover we highlighted that a
manipulation of the photon source drastically modi�es the coincidence pro�le of HOM dip.
In the second part of this work we will show how a similar spectral engineering in�uences
the four photon interference, �nding also a direct connection between the coincidence
probability and the number of Schmidt modes, not present in the two photon interference
described so far.
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2.2.3 Phase sensing and limitations

In interference experiments, whatever the required measurement is (intensity, coinci-
dences, quadrature measurements), a certain phase object has to be scanned in order
to delineate the speci�c modulation pattern.

Mathematically, this means that the output quantities depend on a certain element
φ parametrically. In some cases the phase object can be simply designed as a constant
parameter, depending only on the channel where it is located, so that the beam undergoes
a phase modulation which does not depend on any optical quantities but is merely a
constant. This approximation is typically used in single mode interferometry, as we will
see along this chapter.

Sometimes the description of the interference process requires more accuracy, and it
is necessary to express the parametric dependence in terms of time/path delay between
the interacting objects. For example, the HOM pro�le in Fig.2.5 was accomplished by
scanning the time delay between signal and idler photons before reaching the BS and
�nally detecting the coincidences. The description of the phase shift in terms of time (or
space) delay between the optical beams allowed us to estimate the real order of magnitude
of the interaction range. In Fig.2.5 the time delay was expressed in unity of ps, which is
the same order of magnitude as that of the pulse duration. In some cases it may happen
that the interference fringes are very fast, meaning that the detected quantity changes
dramatically for short phase shifting. In this case, it is necessary to have an interferometer
capable to perform very accurate measurements, whatever the detection strategy is.

Besides the accuracy of the interferometer, another element we have to care about
in measurement contexts is the photon statistics. It is well known that photons having
poissonian or super-poissonian distributions tend to have a large standard deviation the
higher the mean number of photons is. This means that the measured outcome can
dramatically vary from the expectation value because of statistic �uctuations, leading
therefore to a false discrimination of the interference fringes. In that sense, it becomes
worthwhile to estimate how sensitive the interferometer has to be in order to properly
sketch the fringe pattern by phase scanning. To do that, it seems reasonable to de�ne
a parameter that quantitatively characterizes the sensitivity of the interferometer with
respect to the variation of the internal phase.

In order to de�ne such parameter, let us assume therefore to have a an observable O
parametrically dependent on a phase φ. If we suppose to slightly deviate O by varying
the phase parameter, the new value of the observable is expressed as [61]:

O(φ+ δφ) ≈ O(φ) +
∂O

∂φ
δφ, (2.56)

meaning that we performed a variation with respect to the original position amounting to
δO = O(φ+ δφ)−O(φ). At this point, it becomes opportune to make a proper discrimi-
nation of the origin of this variation. In other words, in a phase sensing experiment, one
has to make sure that the scanned perturbation of the observable is speci�cally due to the
variation of the phase and not to some statistical �uctuations. In order to determine this
variation distinctively, it is necessary that the perturbation due to the phase scanning has
to be greater or equal to the standard deviation of the observable, given by the square
root of the variance

√
∆2O =

√
〈O2〉 − 〈O〉2. Consequently, the minimal perturbation
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of the observable that we are able to sense must be the same order of magnitude of the
standard deviation δO '

√
∆2O. The variation of φ determining the smallest appreciable

perturbation of O beyond the statistical �uctuation is therefore called sensitivity, and it
is de�ned as

|∆φ| =
∣∣∣∣ 〈∆Ô〉∂〈Ô〉/∂φ

∣∣∣∣, (2.57)

where we expressed the observable as a quantum operator Ô. Optimizing the trend of ∆φ
is one of the main goal of quantum metrology: the smaller such parameter is, the more
precise one can pro�le the interference patterns.

Unfortunately, the progressive reduction of the phase sensitivity cannot lead to an
ideal condition, in which the observable Ô is determined with 100% accuracy, and in fact,
any improvement actually undergoes some practical limitations. For instance, in a typical
linear interferometer, measurements can be altered by photon counting (detection) errors
as well as vibrational movements in the phase scanner [62,63]. In 1981, Caves attributed
the movements of the mirrors in a Michelson interferometer to the radiation pressure
carried out by the laser [62]. The employment of a photon source with lower intensity
could partially balance and reduce the radiation pressure, but this intensity reduction
makes the observable estimation dramatically subject to photon counting errors.

We can express this argumentation in terms of photon statistics. It is well known that
a light beam having a very high intensity can be seen as a classical electromagnetic wave,
namely a continuous wave with a certain pro�le. However, a dramatic reduction of the
beam intensity lets the particle (quantum) nature of the light emerge, and the photon
statistics of such coherent beam can be described by a poissonian distribution of photons.
If we calculated and optimized the phase sensitivity of a linear interferometer seeded with
such coherent state by making use of Eq.(2.57), we would obtain

∆φSNL =
1√
Nin

, (2.58)

where SNL is the denomination for "shot noise limit" and Nin is the number of photons
inside the interferometer4.

The expression in Eq.(2.58) can be intuitively achieved: assuming a typical sinusoidal
modulation, the derivative of the output photon number in one channel is proportional to
the radiation intensity undergoing the phase modulator, and the variance ∆2N is equal
to the mean number of photons because of the poissonian distribution. Hence, in case of
coherent states the optimized phase sensitivity corresponds to the inverse of signal-to-noise
ratio (SNR),

∆φSNL =
1

SNR
=

√
N

N
, (2.59)

where SNR = I/(∆I), being I the intensity of the detected signal.
The SNL is a key element in quantum metrology. We can talk about sub-shot-noise

measurement, when the interferometer we are working with is able to scan the same

4In principle, there is no reason to distinguish the number of photons inside the interferometer and in
ouput, being these numbers identical in linear interferometry. However, we will use this nomenclature to
conform the notation.
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amount of photons Nin with a low sensitivity, namely when we are able to achieve a phase
sensitivity scaling faster than the SNL, ∆φ < ∆φSNL. Caves was the �rst who identi�ed
the possibility to escape the impasse between photon counting error and radiation-pressure
error by seeding one of the two doors of a Michelson interferometer with squeezing input
state [62]. More generally, in linear interferometry, we will see that the interferometer
can overcome the SNL by generating nonlocal correlations between the two arms of the
interferometer [64]. In nonlinear interferometry, two-mode squeezing states generated by
OPAs, for example Type-II PDC waveguides, can be spontaneously correlated. We will
see that the presence of internal correlations explains why the SU(1,1) interferometer is
able to beat the SNL even with vacuum state as input.

It was mentioned above that overcoming the SNL basically means reaching an expres-
sion of ∆φ which can decrease faster than Eq.(2.58). Once photons inside the interferom-
eter are correlated, another limit of quantum metrology can be reached,

∆φHL =
1

N
, (2.60)

called Heisenberg limit (HL), which stems from the use of nonclassical light [65]. It is
clear that an interferometer having such sensitivity is able to discriminate the measured
observable more precisely than a shot noise limited interferometer.

It is worthy to mention that both SNL and HL can be interpreted as results of the
Heisenberg uncertainty principle for the phase and photon number [65]

∆N∆φ ∼ 1. (2.61)

We saw that the variance of a coherent beam is equal to the photon number, therefore√
N∆φ ∼ 1 is exactly the de�nition of SNL. However, in a quantum mechanical descrip-

tion Eq.(2.61) is equivalent to the Heisenberg uncertainty principle for time and energy.
We said above that the variation of φ can be expressed in terms of time delay. The uncer-
tainty of the number of photons during the phase scanning corresponds to a �uctuation of
the energy, which in quantum mechanics can be of the order of magnitude of the energy
itself ∆E ' E. In terms of photon number, this leads to the Heisenberg limit in Eq.(2.60).

Before concluding this section, it is appropriate to mention that there are other meth-
ods to quantify the phase sensitivity. For instance, one common way is via estimating the
Fisher information, namely how much information the parameter φ carries to the mea-
surement outputs [66]. In a quantum scenario, the phase sensitivity is always bounded
by the so-called quantum Cramer-Rao Bound (QCRB), given by

∆φ ≥ 1√
FQ

, (2.62)

where FQ is the quantum Fisher information associated to the quantum state undergoing
the phase shift. It is possible to demonstrate that the QCRB corresponds to the SNL
when FQ = N , whereas it corresponds to the HL when FQ = N2 [67]. However, since
the Fisher information approach is not subject of this work, we will not go into further
details.
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2.2.4 Direct and homodyne detection in Quantum metrology

A crucial element of Quantum Optics is the photon detection. Depending on the system
we are dealing with, the choice of the proper detection technique can be of strategic
relevance. In quantum metrology, the most direct way to mathematically approach the
light detection is the photon counting technique: supposing to have a �nal state expressed
as a linear combination of Fock states, we can both determine the photon statistics by
projecting the output state on the Fock basis, and calculate the average number photons
by utilising the well-known expression 〈N̂〉 = 〈â†â〉. This way to quantify the outcome of
a measurement is called "direct detection", because it allows to immediately estimate the
photon number.

However, there are situations where this strategy is not particularly fruitful, whereas
others can be more e�ective. For example, let us suppose to quantify the degree of
squeezing of a state; in this case it would be more convenient to measure for instance the
variance of the quadrature of the �eld. Such type of measurements can be performed by
using the so called "homodyne detection" [68].

The scheme of the balanced version of this technique is modelled in Fig.2.6. In this
detection scheme, the signal beam interacts with a strong coherent beam called "local
oscillator" (LO) having the same frequency of the signal, in a 50/50 beam splitter.

Figure 2.6: Schematic model of the balanced homodyne detection. The signal beam interacts
in a balanced BS with a local oscillator. Finally, the output radiation is caught by two detectors
and the di�erence between the intensities so detected is measured.

Calling a and b the annihilation operators of the input channel of the BS and with c and
d the relative operators for the output channels, we can write the linear transformation
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of the BS:

c =
a+ ib√

2
(2.63)

d =
ia+ b√

2
(2.64)

where the coe�cient 1/
√

2 corresponds to the transmission and re�ection parameter of the
BS, being identical in a balanced homodyne detection. The detected number of photons
is therefore given by:

c†c =
1

2
(a†a+ b†b+ ia†b− ib†a), (2.65)

d†d =
1

2
(a†a+ b†b− ia†b+ ib†a). (2.66)

In order to test the phase of the squeezed beam, we now need to determine the di�erence
between the photocurrent (intensity) of both channels:

c†c− d†d = −i(a†b− b†a); (2.67)

and tracing out the LO we can de�ne the homodyne operator as:

Hd =
|βlo|

2
(ae−iθ + a†eiθ), (2.68)

where |βlo| and θ are respectively modulus and phase of the coherent parameter of the LO.
From Eq.(2.68) it is clear that this operator can be utilized to measure the quadrature
of squeezing states. The amplitude of the LO only causes a rescale and does not provide
any further fruitful information.

The homodyne detection is of strong interest in quantum optics. For instance it is
employed in quantum communication [69] and quantum cryptography [70], and is par-
ticularly used in quantum metrology along with the direct detection for special cases of
photon sensing [66, 71]. In the last part of this work, we will make use of both direct
and an adapted homodyne detections in order to quantify the phase sensitivity of the
multimode SU(1,1) interferometer in case of seeding.

2.2.5 Mach-Zehnder interferometer

The �rst interferometer we want to present in this work is a speci�c design of SU(2)
interferometer, usually called Mach-Zehnder due to its inventors. As shown in Fig.2.7, it
consists of two spatially separated beam splitters and a detection set-up. In this scheme,
two input beams enter the �rst beam splitter, which separates the radiation in two chan-
nels; a phase shifter located in one channel triggers a phase delay in the beam travelling
through the relative channel; both beams interact in the second BS, and in the end, they
are detected. Due to the phase delay, the intensity of the single channels is modulated,
returning fringes of interference, although the total output intensity keeps constant along
the whole interferometer5.

5If no loss e�ects are included.

32



Figure 2.7: Schematic model of a Mach-Zehnder interferometer. Two input beams interact on
the �rst beam splitter; after that one beam undergoes a phase delay, both beams interact on the
second beam splitter and �nally they are detected.

In order to both describe the Mach Zehnder set-up mathematically and �nally evaluate
the phase sensitivity for di�erent con�gurations, it is worth to use a matrix representation,
namely we de�ne a set of unitary transformations, where every transformation, expressed
as a matrix, refers to a speci�c element of the interferometer. This approach is quite
practical for describing the interferometer when the radiation entering the BS consists of
single plane wave modes, and it allows to obtain the output operators of the interferometer.

As �rst step, we both express the unitary transformations in terms of matrices and
de�ne the basis vectors. We proceed by calculating the overall transformation of the
Mach-Zehnder interferometer, acting on the initial state vector and returning the �nal
state. The two vectors that will be used as initial (i) and �nal (f) state are:

Vi(f) =


â†i(f)

âi(f)

b̂†i(f)

b̂i(f)

 (2.69)

where we distinguish the annihilation and creation operators for the two channels by
choosing two di�erent letters, a and b. In order to describe the BS transformation rig-
orously, we need to force the preservation of boson commutation relations at the output
of the beam splitter, which means that we have to make sure that the sum of intensi-
ties of transmitted and re�ected beams corresponds to the intensity of input beam [54],
T +R = 1, which for instance is true when R = cos2 θ and T = sin2 θ. The beam splitter
transformation is therefore determined by:

Mθ =


cos θ 0 i sin θ 0

0 cos θ 0 i sin θ
i sin θ 0 cos θ 0

0 i sin θ 0 cos θ

 , (2.70)

where, according to this notation, the parameter θ ∈ [0, π/2] determines the transparency
of the BS: when θ = 0, the BS is not working at all (full transmission); when θ =
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π/2 both beams are fully re�ected; �nally, for values in between we can have a partial
transmission/re�ection of the input light and in particular, for θ = π/4 the incoming light
is equally split in the two output channels of the BS (balanced con�guration).

The transformation determining the phase shift depends on how many channels con-
tain the phase modulator: supposing that in only one of the two channels the radiation
undergoes the phase shift, the phase matrix is:

Mφ =


eiφ 0 0 0
0 e−iφ 0 0
0 0 1 0
0 0 0 1

 , (2.71)

where φ is the phase shift generated in one channel of the MZI. Consequently, we are
now able to introduce the transformation for the whole Mach-Zehnder interferometer:
Mtot = Mθ ·Mφ ·M †

θ , where we suppose to work with perfectly identical balanced beam
splitters6. Finally, by letting the matrix Mtot acting on the input vector Eq.(2.69) we can
calculate explicitly the �nal annihilation and creation operators:

âf = eiφ/2
(
âi cos(φ/2)− b̂i sin(φ/2)

)
b̂f = eiφ/2

(
âi sin(φ/2) + b̂i cos(φ/2)

)
.

(2.72)

Such operators are therefore the results of the total transformation on the input state
and can be utilised for di�erent goals. In this framework, since we are interested in
the phase sensitivity estimation, we need to seek an operator Ô such that we can make
use of Eq.(2.57). This choice is typically determined by both the employed detection
strategy and the characteristics of the interferometer. For instance, we can notice that
in the MZI interferometer it is not worthy to utilise the total photon number operator
N̂ = N̂a + N̂b, where Nx is the number of photon in channel x, as observable to estimate
the phase sensitivity, since in a Mach-Zehnder interferometer such quantity is always
constant, i.e. it does not depend on the phase φ. Proper operators are provided by the
group theory as suggested in [53] and [67], in particular we can analyse the performance of
the MZI interferometer (namely estimate the phase sensitivity) by introducing the angular
momentum operators:

Ĵx =
1

2
(â†b̂+ b̂†â), Ĵy =

i

2
(b̂†â− â†b̂), Ĵz =

1

2
(â†â− b̂†b̂). (2.73)

These operators ful�l the angular momentum commutation relations [Ĵi, Ĵj] = iεijkĴk. It
is clear from Eq.(2.73) that Ĵz = N̂a − N̂b, which is the di�erence in intensities between
the two outputs. The phase sensitivity of Mach-Zehnder interferometer can be properly
estimated by choosing Jz as observable. This can be done by �rstly calculating both the
derivative of the mean value and the variance of Jz and insert them into Eq.(2.57). In
Tab.2.1 we show the phase sensitivity calculated for di�erent input states [8, 66,67]:

6The choice of M†
θ instead of Mθ as matrix of the �rst beam splitter is purely arbitrary.
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Input state 〈Ni〉 〈∆φ〉

|α〉|0〉 |α|2 1√
N
|sinφ|

|N〉|0〉 N 1√
N

|α〉|r〉 |α|2 + sinh2 r

√
cot2 φ(|α|2+ 1

2
sinh2 2r)+|α|2e−2r+sinh2 r

||α|2−sinh2 r|

|r1〉|r2〉 sinh2 r1 + sinh2 r2

√
A(r1,r2) cos2 φ+B(r1,r2) sin2 φ

|(sinh2 r1−sinh2 r2) sinφ|

1√
2

(
|N

2
〉|N

2
〉+ |N

2
+ 1〉|N

2
− 1〉

)
N

√
cos2 φ+sin2 φ[N2 (N2 +1)−1]∣∣∣sinφ+cosφ

√
N
2 (N2 +1)

∣∣∣
1√
2
(|N〉1|0〉2 + |0〉1|N〉2) N 1

N

Table 2.1: Overview of the Mach-Zehnder interferometer. Both the mean photon number and
the phase sensitivity are illustrated for di�erent input states.

where

A(r1, r2) = −2 sinh2 r1 sinh2 r2 + cosh2 r1 sinh2 r1 + cosh2 r2 sinh2 r2

B(r1, r2) =
1

2
sinh 2r1 sinh 2r2 + sinh2 r1 cosh2 r2 + sinh2 r2 cosh2 r1.

(2.74)

This table con�rms what we have already mentioned in Section 2.2.3. As it can be seen in
the �rst two cases, the phase sensitivity of the MZI is shot noise limited, namely it scales
as ∆φ ∼ 1/

√
N . The choice of seeding one channel was already criticized in [67], since it

does not allow to induce correlation between the internal channel of the interferometer.
One way to induce such correlations is via using speci�c non-classical states as input,

such as squeezed light [72, 73], as �rstly suggested by Caves. It is interesting to notice
that a scheme like Fig.2.4, where the phase modulation is located between the parametric
ampli�er and the �rst BS, already seems to operate beyond the SNL, even without the
presence of a second BS [74].

It was claimed that the use of quantum input states such as Fock states is not enough
for beating the SNL. However, one can use Fock states or combination of them to seed
both channels of the interferometer in order to increase the degree of correlations between
the two channels. Since both a well determined number of photons and the presence of
non-classical correlations are required, these states are very hard to prepare, but on the
other hand, they allow to beat the SNL and even reach the Heisenberg limit [65, 75].
Examples par excellence are the NOON states, which are highly correlated states with
maximized entanglement [76]. The use of these states allows to make high sensitive
measurements [8,77], moreover, they are a good compromise between the request of higher
brightness for reducing photon counting errors, and the possibility of working with a non-
�uctuating number of photons.
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2.2.6 SU(1,1) interferometer

In the last section, it was seen that the presence of quantum correlations between the
two channels of the MZI is mandatory in order to overcome the SNL. These correlations
can be achieved via generating entangled states or introducing squeezing states into the
MZI. Nevertheless, one can imagine to generate squeezing states inside the interferom-
eter before the phase object. For this purpose, a new apparatus which consists of two
squeezers substituting the beam splitters was ideated. This choice ensures the generation
of nonclassical correlations inside the interferometer, required for beating the SNL. This
special class of interferometers was developed in the last 40 years, and takes the name of
SU(1,1) interferometer [53,55].

Figure 2.8: Schematic model of a SU(1,1) interferometer. Two input beams interact in a �rst
nonlinear medium. The interaction between input light and the nonlinear medium generates a
couple of signal-idler photons: in (a) one photon undergoes a phase delay (oscillation of mirror
M1), in (b) all beams undergo the phase delay, in any case afterwards both photons interact on a
second nonlinear medium. Such interaction induces either an ampli�cation or a deampli�cation
e�ect of the input signal depending on the internal phase. Finally they are detected.

The system is depicted in Fig.2.8: starting from the the Mach-Zehnder interferometer
discussed above, two optical nonlinear media (NLM) or optical parametric ampli�ers
(OPA) take the place of both beam splitters, introducing the nonlinearity and in particular
the e�ect of squeezing. This changes drastically the main features of the interferometer;
for instance, the number of photons is not a conserved quantity any more, since the
nonlinear phenomena commonly used (four-wave mixing, parametric down-conversion)
a�ect the light intensity by generating (or annihilating) photons. The literature provides
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two con�gurations shown in Fig.2.8, depending on the number of beams undergoing the
phase delay.

Mathematically, we can investigate the performance of this interferometer taking ad-
vantage of the same procedure used in the previous chapter; we need to de�ne a new
matrix, which substitutes the beam splitter transformations and represents the squeez-
ing process [71]. For the sake of simplicity, we assume to have two identical squeezers
described by the squeezer operators Ŝ = er(âb̂−â

†b̂†), characterized by a real and positive7

squeezing parameter r. The signal and idler modes are again identi�ed by the letters a
and b.

In this framework, the squeezing operator for the signal and idler modes can be rewrit-
ten as the action of a matrix transformation as following:

Mr =


cosh r 0 0 sinh r

0 cosh r sinh r 0
0 sinh r cosh r 0

sinh r 0 0 cosh r

 . (2.75)

Such matrix determines the transformation of the annihilation and creation operators
of the two-mode input state in Eq.(2.69) under the action of a squeezing process whose
squeezing parameter is r. Recalling the phase matrix Eq.(2.71) and using the same pro-
cedure employed in the last section, we introduce the total matrix transformation of the
SU(1,1) interferometerMtot = Mr ·Mφ ·Mr. By letting such matrix act on the input state
in Eq.(2.69), we obtain the output creation and annihilation operators for both signal and
idler photons:

af = (cosh2 r eiφ + sinh2 r)ai + sinh r cosh r(eiφ + 1)b†i

bf = (sinh2 r e−iφ + cosh2 r)bi + sinh r cosh r(e−iφ + 1)a†i .
(2.76)

These operators look very di�erent with respect to what we calculated for the Mach-
Zehnder interferometer, and re�ect the nonlinear behaviour of the sources: indeed, anni-
hilation operators depend on the creation operators and viceversa, and this is symptomatic
of a nonlinear process.

Now we want to estimate the performance of the interferometer by calculating the
phase sensitivity of such interferometer. As �rst case, we suppose to seed the interferom-
eter with a coherent state |α〉. For this purpose, we merely need to utilise the expression
in Eq.(2.57), where, in this case, the observable Ô is the number of output photons. The
calculation of the phase sensitivity gives [78]:

∆2φ =
cosh 2r cosh 4r + sinh 2r(cosh 4r cos2 φ+ sin2 φ) + sinh 4r cosφ(cosh 2r + sinh 2r)

4|α|2 sinh2 2r sin2 φ
.

(2.77)
When e−2r � 1, namely for higher degree of squeezing, it can be shown that such formula
can be drastically reduced to

∆φ ' e−r√
|α|2

. (2.78)

7The choice of a real and positive squeezing parameter is experimentally supported.
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which is equal to the SNL damped by the exponential factor e−r. This equation clearly
shows that the SU(1,1) interferometer is able to overcome the SNL without requiring
any exotic quantum input state, furthermore, the higher the squeezing gain is, the better
performs the interferometer.

Anyway, we can exploit the fact that the SU(1,1) interferometer generates the inter-
fering photons directly inside the apparatus via the OPAs, so that it appears worthy to
make use of vacuum state (no seeding) as input in order to calculate the output quantities
and therefore the phase sensitivity [53, 79]. It is clear that the input number of photons
is zero, since both input channels contain no photons8. However, due to the squeezing
vacuum generated inside the interferometer, the internal number of photons corresponds
to Nin = 2 sinh2 r. By repeating the same procedure, the phase sensitivity can be �nally
calculated:

∆2φ =
2 coth2 2r

1− cosφ
− 1, (2.79)

and, maximizing it at φ = π, we achieve

∆2φ = coth2 2r − 1 =
1

sinh2 2r
=

1

Nin(Nin + 2)
' 1

N2
in

, (2.80)

which demonstrates that the SU(1,1) interferometer can beat the SNL and even reach the
HL without seeding.

Before concluding this section, it is worth noting that all results and considerations
reported heretofore only concern an idealistic version of the SU(1,1) interferometer. It
means for instance that any losses were ignored9, and secondly, we did not take into
account eventual spectral features of the nonlinear media, but supposed to deal with single
mode monochromatic squeezers. Such idealistic approximation does not hold in realistic
set-up (without the employment of �lters), where a full description of the temporal-
spectral properties of the nonlinear source becomes necessary. Indeed, in the third chapter
of this thesis we will see how the spectral properties of the nonlinear crystals in�uence the
interference process and how we can optimize a realistic SU(1,1) interferometer in order
to achieve the best performance.

2.2.7 Loss e�ects in the SU(1,1) interferometer

In order to investigate the in�uence of losses in the performance of the SU(1,1) interfer-
ometer, we have to distinguish two types: internal and external losses [79]. With the �rst
ones, we normally indicate losses due to dissipative e�ects which can reduce the photon
intensity inside the interferometer or distort the spectrum.

8We assume that the laser interacting with the OPAs and triggering the squeezing modes is a clas-
sical plane wave and therefore is not accounted as a quantum input state, coherently with the previous
description of the parametric down-conversion process.

9Next session we will see that such losses do not strongly in�uence the main result of this section
though, namely the fact that the SU(1,1) is able to overcome the SNL.
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Figure 2.9: Schematic model of a SU(1,1) interferometer in Fig.2.8 taking into account losses
e�ects. The internal losses are included via inserting beam splitters between the two nonlinear
media, whereas the external losses are represented by beam splitters in front of the two detectors.

These can be due for instance to absorption phenomena or imperfections along the
interferometer. Instead, external losses are typically due to non-perfectly e�cient detec-
tors, and though they do not belong strictly to the interferometer structure, they can in
principle perturb the �nal results [80].

Although the losses can stem from multiple and di�erent phenomena, for the sake
of simplicity both internal and external losses can be mathematically taken into account
in the previous model of the SU(1,1) interferometer by simply adding two beam splitter
matrices, whose re�ection coe�cient determines the amount of lost radiation. The internal
losses are therefore represented by beam splitters located between the two squeezing
transformations, whereas the beam splitters depicting external losses, whose re�ection
coe�cients determine the detector e�ciency, are located in front of the detectors (see
Fig.2.9). Normally such losses e�ects are independent from each other and are represented
by di�erent parameters; furthermore, in case of distinguishable interacting photons, it is
commonly assumed that both signal and idler photons undergo the same amount of losses.

As �rst case, we can assume to have highly e�cient detectors, meaning we can ignore
external losses. The calculation of the phase sensitivity performed by using the procedure
delineated above provides [81]:

∆2φη = ∆2φ+
1− η
η

[
2(Nin + 1)

(1− cosφ)Nin(Nin + 2)
+

1 + (1− η)(Nin + 1)

ηNin(Nin + 2)2 sin2 φ

]
, (2.81)

where η determines the amount of internal losses. In this case, it can be seen that addi-
tional terms appear on ∆2φ calculated with no losses, showing that the new sensitivity

39



pro�le is drastically modi�ed. In particular, due to the last term inside the brackets, a
divergent behaviour is expected where previously was the minimum of the phase sensitiv-
ity, namely at φ = π. Such additional terms split the supersensitivity region in two parts
by the presence of a central peak as shown in Fig.2.10, furthermore, by increasing the
internal losses, the width of this peak increases and the supersensitivity region tends to
reduce, demonstrating that the SU(1,1) interferometer is dramatically subject to internal
losses.

Now we assume to have no internal losses but defected detectors and we indicate with
ε their e�ciency. In this case, the calculation of the phase sensitivity gives:

∆φ2
ε =

1

ε
∆φ2, (2.82)

which means that the external losses e�ects lead just to a rescale of the phase sensitivity,
which anyway maintains the same functional form. In other words, the interferometer
works at the same degree of precision as in the ideal case and in that sense we can a�rm
that the SU(1,1) interferometer is essentially immune to external losses. Ultimately, we
can resume claiming that internal losses play a crucial rule in the SU(1,1) interferometer,
whereas it is immune to external losses because of non-perfect detector e�ciency [81].

Figure 2.10: Normalized phase sensitivity respect to SNL (black line) as φ varies, for η = 1
(dark blue line), η = 0.8 (blue line) and η = 0.6 (light blue line). The red line indicates the SNL.
Nin = 5. Insert: zoom on the supersensitivity region.

We conclude this chapter mentioning that the presence of a central peak in the phase
sensitivity pro�le is not a peculiarity of loss e�ects. Indeed, along this work we will
experience that in a more complex scenario, in which the spectral features of the photon

40



sources are counted, the light travelling the interferometer undergoes dispersion due to
its propagation in waveguides. The mismatching of the beams in the second OPA due to
the di�erent group velocities will generate both a reduction of visibility in the interference
pattern and the consequent presence of a central peak in the phase sensitivity pro�le.

However, we will see that the consequence of such dispersion can be attenuated by
modifying cunningly the interferometer and by making use of �lters, as we will show in
the last part of this work.
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Chapter 3

Four-photon Hong-Ou-Mandel
interference

The Hong-Ou-Mandel interference is one of the fundamental tools in quantum optics and
quantum information theory [5], for instance, because it is one of the "easiest" investi-
gable example of quantum interference e�ect, and also because it allows to directly test
the indistinguishability of photon pairs. The �exibility of this phenomenon in di�erent
experimental strategies explains why it is so exploited for instance in quantum Bell-state
measurement [82] or similarly for testifying the non-locality in entangled system [83], as
well as in quantum lithography [84,85].

Although these works demonstrate both the validity and the still promising potential
of the two photon quantum interference, recent developments [86�92] seem to suggest a
gradual approach to multiphoton interference platforms, namely where three or more pho-
tons are involved. The perspective of using multiphoton interference devices is particularly
fruitful for di�erent technological purposes, a typical example is quantum computing, via
boosting for instance both boson sampling [93,94] and machine learning [95�98].

Along the �rst section of this chapter, we will delineate another important aspect
characterizing the multiphoton interference, namely the classical-to-quantum transition
in a four-photon interference scheme. Such transition regime was already tested via using
four-photon HOM interference in di�erent scenarios, such as in [99] and in [100], where
the e�ect of the pump power on the visibility of the interference pattern was investigated.
On the contrary, we will carry out the classical-to-quantum transition in an elegant way
via a manipulation of the pump laser pro�le, which leads to a �uctuation of the number of
spectral modes, that consequently determines the presence of a bunching or antibunching
peak.

The multiphoton HOM interference can also be used as �rst bricks for more compli-
cated scenario. Proper modi�cations of the interference setup enables to test the indistin-
guishability of a many-particle systems [101,102] as well as to generate multidimensional
entangled state [103�106], such as Greenberger-Horne-Zeilinger (GHZ) states [107�109] or
NOON state [110]; such states are often used to break the classical limit in interferome-
try [8,111], as it was mention in the end of Section 2.2.5 as well as in quantum walks [112]
and quantum communications [113].

In the second part of this chapter, we will demonstrate how the presence of only one
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additional tool, namely a further polarization converter, o�ers new aspects and perspective
to analyse. In particular, we will be able to generate the spatial entanglement between
the two arms of the interferometer; this will lead to fast oscillations in the coincidence
probability. By manipulating some internal parameters, our interferometer will also yield
combinations of high entangled states belonging to the four-quibit Bell gem introduced
in [114,115]. Finally, via reaching the spectral indistinguishability of the four photons we
will be able to further manipulate the fast interference fringes, whose periodicity will be
smaller than the wavelength of the pump laser.

3.1 Temporal modes and antibunching peaks

3.1.1 Four-photon PDC state and set-up

When the two-photon interference was introduced in Sec.2.2.2 we emphasized the impor-
tance of the spectral properties of PDC state, connecting such features with the di�erent
pro�les of the coincidence probability. In particular, it was seen that the symmetry of
the JSA is a necessary condition to achieve the spectral indistinguishability of signal and
idler photons, leading to a highly e�cient HOM interference con�rmed by a vanishing
coincidence probability. Since we have already experienced the in�uence of the spectral
features of the PDC on the outcome of the two-photon interference pattern, one can now
wonder if the use of a higher number of interacting photons can provide a new spectrum
of possibilities in the manipulation of the interference process [116]. In this section we will
demonstrate how the employment of four photons changes the relation between spectral
features of the source and the coincidence probability with respect to the two-photon
interference.

The photon source we consider is the Type-II PDC process in a ppKTP waveguide.
Mathematically, the four-photon state can be achieved from Eq.(2.14) by using the second
order of the perturbation theory for Γ� 1. Experimentally, it can be done by enhancing
the pump power reasonably, so that a signi�cant number of photons is generated within
the perturbation assumption. In this case, by neglecting the time ordering e�ects1, the
four-photon PDC state takes the following form [118�120]:

|ψ4ph〉 =
1

2

(∫ t

0

H(t′)dt′
)2

| 0〉 =

=
ξ2

2

∫ +∞

−∞
dωsdωiF (ωs, ωi)a

†
H(ωs)a

†
V (ωi)×

∫ +∞

−∞
dω̃sdω̃iF (ω̃s, ω̃i)a

†
H(ω̃s)a

†
V (ω̃i)|0〉,

(3.1)

where ωs, ωi, ω̃s, ω̃i are the frequencies of the four generated photons, H and V indicate
the horizontal and vertical polarization respectively, and ξ = Γt, where t is the interaction
time of the process. From Eq.3.1, one of the consequence of the inhibited time order e�ect
is the possibility to deal with two temporal independent photon pairs.

The quantum state in Eq.(3.1) is the input state of the interferometer. As discussed
in Section 2.2.2, in a HOM interference experiments we have to make sure that photons

1We assume that the generation processes along the PDC section happens so sporadically that two
di�erent output photon pairs do not spend a relevant amount of time in the same place [117].

43



Figure 3.1: Schematic setup. The type-II PDC process generates two signal-idler pairs of
photons. After PBS, two horizontally-polarized photons are routed to the channel 1 (red line),
while two vertically-polarized photons, are routed to the channel 2 (green line). A half wave
plate (HWP) located in the upper channel converts the horizontally-polarized photons into the
vertically-polarized. An additional path increment l+∆l in the lower channel allows to compen-
sate the time delay between the signal and idler photons. Then four vertically-polarized photons
cross the balanced BS at the same time, the HOM interference occurs. The photons are detected
after the BS [1].

are split in the two arms of interferometer, so that they can reach the BS for two di�erent
doors. Moreover, a certain degree of photon indistinguishability must be reached. As it
was seen in Eq.(3.1), output photons generated by Type-II PDC process are characterized
by orthogonal polarizations. We can exploit this initial distinguishability to split photons
in the two spatial channels of the interferometer. The indistinguishability can be �nally
achieved by using a polarization converter or a half wave plate, rotating the polarization
of one photon opportunely.

In order to introduce the interferometer in more details, we sketch it in Fig.3.1 [1].
The picture shows the PDC source generating two photon pairs whose polarization is
distinguished by green and red colours. Such photons reach a polarization beam splitter
(PBS) splitting them in two spacial channels according to their own polarization. In order
to �nally observe four identical photons, a half wave plate (HWP) rotates the polarization
of the photons in the upper channel by 90◦, while both photons in the lower channel
undergo a delay due to an additional path increment δl. The manipulation of the path
delay allows to scan the interference pattern and eventually compensate the time delay
due to the group velocity mismatching. This ensures all photons to reach the balanced
BS at the same time. After the interference process, all photons are detected and the
coincidence probabilities is measured and hence, by varying slightly the path delay it is
possible to scan the coincidence probabilities.

Mathematically, the various components of the interferometer are described by unitary
matrix transformations acting on the input state in Eq.(3.1), whereas the total transfor-
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mation is given by the product of all matrices2 :

Utot = BS × FP3 ×HWP × FP2 × PBS × FP1, (3.2)

where BS, HWP and PBS are matrices corresponding to the relative optical elements,
whereas all FPx matrices represent the free propagation paths in between.

The initial state is given in the basis {a†1H , a
†
1V , a

†
2H , a

†
2V } where 1 and 2 di�erentiate

the two channels and the indices V and H the polarization. By applying the total trans-
formation in Eq.(3.2), we can calculate the output state, namely the quantum state of
the four photons leaving the interferometer and ready to get detected [59]:

|ψout〉 =
ξ2

2

∫
dωsdωidω̃sdω̃iF (ωs, ωi)F (ω̃s, ω̃i)×

U0(ωs)U
†
tot(ωs)


a†1H(ωs)

a†1V (ωs)

a†2H(ωs)

a†2V (ωs)

⊗ U0(ωi)U
†
tot(ωi)


a†1H(ωi)

a†1V (ωi)

a†2H(ωi)

a†2V (ωi)

⊗

U0(ω̃s)U
†
tot(ω̃s)


a†1H(ω̃s)

a†1V (ω̃s)

a†2H(ω̃s)

a†2V (ω̃s)

⊗ U0(ω̃i)U
†
tot(ω̃i)


a†1H(ω̃i)

a†1V (ω̃i)

a†2H(ω̃i)

a†2V (ω̃i)

 |0〉,
(3.3)

where the matrices U0(ω) determine both the initial channel and polarization of signal and
idler photons . We will make use of this expression for the calculation of the coincidence
probabilities. In order to have a more clear visual of such state, we can express it in terms
of the bidimensional Fock basis |m,n〉, where m and n represent the number of photons
in the upper and lower channel, respectively3:

|ψout〉 =

∫
dωsdωidω̃sdω̃i(C22(∆l, τ)|2, 2〉+

C31(∆l, τ)(|3, 1〉+ |1, 3〉) + C40(∆l, τ)(|4, 0〉+ |0, 4〉)).
(3.4)

where Cm,n(∆l, τ) expresses the probability amplitude to getm and n photons in the upper
and in the lower channel respectively. As expected, these coe�cients depend strictly on all
parameters concerning both the spectral properties of the PDC and the transformations
along the interferometer. However, in Eq.(3.4) we only keep the dependence with respect
to both the delay shift and the pulse duration explicitly. This expression shows clearly
which kind of outputs we should expect from this interference. In contrast with the
well-known two-photon interference, after the splitting we can distinguish three scenarios,
depending on the number of expected photons found in every channel, namely we can
have two photons per channel, three photons in the upper channel and one in the other
(and viceversa) or we can �nd all photons in the same channel.

2Since every optical element of this interferometer could work more or less optimally, the respective
matrix depends on a speci�c parameter, determining the e�ciency of the optical tool. However, in this
work we suppose that all elements are working with optimal e�ciency [59].

3The Fock state counts the number of photon per channels, hiding their polarization and shifting the
information about spectral distribution to the coe�cients Cm,n(∆l, τ).
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Since the output state is now well-known, we can use the POVMmeasurement strategy
to calculate the measuring coincidence probabilities at the detectors:

P22(∆l, τ, L) =

∫
dωbdωcdω̃bdω̃c|〈0|

1√
2!
√

2!
d1(ωb)d2(ωc)d1(ω̃b)d2(ω̃c)|ψ̃out〉|2 (3.5)

P31(∆l, τ, L) =

∫
dωbdωcdω̃bdω̃c|〈0|

1√
3!
d1(ωb)d1(ωc)d1(ω̃b)d2(ω̃c)|ψ̃out〉|2 (3.6)

P40(∆l, τ, L) =

∫
dωbdωcdω̃bdω̃c|〈0|

1√
4!
d1(ωb)d1(ωc)d1(ω̃b)d1(ω̃c)|ψ̃out〉|2, (3.7)

where we introduced the annihilation operators d1(ω) and d2(ω) for both upper and lower
channel respectively, the detected frequencies ωb, ωc, ω̃b, ω̃c, and the normalised output
state |ψ̃out〉 = |ψout〉/〈ψout|ψout〉. Expressions in Eq (3.5), Eq.(3.6) and Eq.(3.7) represent
hence the probability Pmn to detect m photons in the upper channel and n photons in
the lower channel. These formulas will be our start point for comparing our theoretical
simulation with the experimental results. As a start point, in the next section we will
employ these formulas in an arti�cial model, where the JSA is roughly represented as a
double-gaussian function. This will give us an analytical estimation of the coincindence
probability, partially anticipating the results of our rigorous formalism. Afterwards, we
will make explicit any connections between the spectral features of the PDC and HOM
curve.

3.1.2 Double Gaussian JSA: an analytical expression for P22

Although a precise and detailed description of the interference scheme would let us achieve
outcomes directly comparable with the experimental results, it can be more convenient
to �rstly address the problem with a pure analytical approach by reasonably reducing the
complexity of the system. This choice both provides a visual interpretation of all steps
and makes the role of all parameters more clear and evident.

A smart way to attempt an analytical calculation is via simplifying the phase match-
ing function drastically, thereby annulling the dependence on the refractive indices and
explicitly calculating P22. In particular, the approach we are going to utilize makes use
of a double gaussian expression for the JSA, holding the exponential trend of the pump
laser function but converting the sinc function to an exponential as following:

F (ωs, ωi) = e−a
2(ωs+ωi−ωp)2

e−b
2(ωs−ωi)2

, (3.8)

where a = t0/
√

2 contains the pulse duration t0, whereas b is connected with the length
of the waveguide L and other technical parameters of the PDC. It is immediately evi-
dent that such expression cannot describe a realistic PDC process, however this is a good
approximation, since Eq.(3.8) can take di�erent shapes, similarly to the real JSA of the
PDC. It is opportune to state that, in contrast to the real JSA, this model cannot repro-
duce the asymmetry along the ωs = ωp − ωi diagonal of the single mode regime of the
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PDC in ppKTP waveguide in Fig.2.3a, which was fundamental in the description of the
two-photon HOM interference in Section 2.2.2.

Nevertheless, the new JSA in Eq.(3.8) drastically simpli�es the analytical complexity
of the photon state. In addition, it also leads to a reduction of the amount of information
concerning the interferometer. As already elaborated in Section 2.2.2, we can merely
suppose to have generated two photon pairs having already identical polarization and
let them interfere in a balanced BS. According to these considerations, the expression
describing the output state of the BS transformation is:

|ψout〉 =
1

4

∫
dωsdωidω̄sdω̄iF (ωs, ωi)F (ω̄s, ω̄i)e

iωsτ+iω̄sτ
[
a†1(ωs)− a†2(ωs)

]
×
[
a†2(ωi)− a†1(ωi)

] [
a†1(ω̄s)− a†2(ω̄s)

] [
a†2(ω̄i)− a†1(ω̄i)

]
|0〉,

(3.9)

where τ is the time delay experienced by photons in one of the two arms of the interfer-
ometer before the BS due to a phase modulator. By inserting this state in Eq.(3.5) we
�nally obtain explicitly the probability to detect two photons in every channel4:

P22 =

∫
dωbdωcdω̄bdω̄c

∣∣∣∣F (ωb, ωc)F (ω̄b, ω̄c)e
i(ωb+ω̄b)τ + F (ω̄b, ωc)F (ωb, ω̄c)e

i(ωb+ω̄b)τ

−F (ωb, ωc)F (ω̄c, ω̄b)e
i(ωb+ω̄c)τ − F (ω̄b, ωc)F (ω̄c, ωb)e

i(ω̄b+ω̄c)τ

−F (ωb, ω̄c)F (ωc, ω̄b)e
i(ωb+ωc)τ − F (ω̄b, ω̄c)F (ωb, ωc)e

i(ω̄b+ωc)τ

−F (ωb, ω̄b)F (ωc, ω̄c)e
i(ωb+ωc)τ − F (ω̄b, ωb)F (ωc, ω̄c)e

i(ω̄b+ωc)τ

−F (ωb, ω̄b)F (ω̄c, ωc)e
i(ωb+ω̄c)τ − F (ω̄b, ωb)F (ω̄c, ωc)e

i(ω̄b+ω̄c)τ

+F (ωc, ωb)F (ω̄c, ω̄b)e
i(ωc+ω̄c)τ + F (ω̄c, ωb)F (ωc, ω̄b)e

i(ω̄c+ωc)τ

∣∣∣∣2.

(3.10)

This expression consists of 144 terms, but fortunately, taking advantage of the symmetry
of the JSA in Eq.(3.8) with respect to the frequency axes, namely F (ωs, ωi) = F (ωi, ωs),
it turns out that most of them are identical. Moreover, the simpli�ed mathematical
expression of the JSA allows us to solve the integrals of the JSA analytically, so that we
can �nally calculate and normalize the probability obtaining:

P22 =
3

8

(
e−

τ2

4b2 + 1

)
− (a2 + b2)e−

τ2

8b2

4(a+ b)2
− ab

2(a+ b)2

(
e
− τ2

4(a2+b2) + 2e
− (a2+3b2)τ2

16b2(a2+b2)

)
. (3.11)

Although the validity of this formula mainly holds in the multimode regime, it describes
the coincidence probability pro�le P22 very well, and already enables the knowledge of
some results, for instance the connection between the position of the point at zero time
delay and the spectral features of the PDC.

In Section 2.1.3 it was mentioned that the amount of correlations between signal and
idler photons determine the separability of the quantum state in the product of two
substates; in other words, a separable state denotes lack of correlation. In Eq.(3.8) this
can be easily achieved by imposing a = b. As a consequence, at τ = 0 this would

4The expression still needs to be normalized.
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reduce the P22 to 0.25. On the other hand, a state denoting high correlation, namely
a high number of spectral modes, is not separable. This behaviour is emulated by our
model via assuming a � b, namely reproducing a narrow JSA oriented along the signal-
idler antidiagonal in the frequency axes. In this condition, a straightforward calculation
provides P ≈ 1/2 = 0.5, which is higher than what is observed in the no-interaction region
(τ � 0), namely P = 3/8 = 0.375. This demonstrates the presence of an antibunching
peak in the coincidence probability. These considerations will be described formally along
the next sections within our rigorous model.

3.1.3 Spectral and temporal engineering

In Section 2.1.3 it was seen that by properly manipulating some parameters, in particular
the pulse duration of the pump laser and the length of the waveguide, we can control the
pro�le of the coincidence probability. Starting from this chapter, we want to implement
this framework, showing that an increasing number of interacting photons o�ers more
prospectives of interference manipulation: in the end of this section we will demonstrate
an unequivocal connection between the amount of correlation between signal and idler
photons and the relative HOM pro�le.

As a start point, let us de�ne three states A, B and C, shown in Fig.3.2, characterized
by a di�erent number of spectral modes. More experimental details concerning these
states are listed in Appendix A, in Table A.1.

State A is characterized by a quasi-circular JSI, and in accord with our analysis in
Section 2.1.3, the Schmidt number, i.e. the e�ective number of spectral modes, is close to
one. Such state is quasi-separable, meaning that there is almost no frequency entangle-
ment between signal and idler photons; furthermore, such photons are also typi�ed by a
low degree of spectral correlations, namely a frequency identi�cation of one of them does
not provide any information about the other. We stressed that the JSI is "quasi-circular"
and not purely "circular": it is an important detail about the JSI that will be used along
this chapter.

State B is experimentally achieved by state A via dramatically decreasing the pump
bandwidth by increasing of the pulse duration. The shape of the JSA changes drastically:
it is strongly pressed along the ωs−ωi anti-diagonal, and thus it presents a high degree of
spectral anti-correlations between signal and idler photons, which increases the Schmidt
number.

In order to enhance further the number of Schmidt modes and de�ne the state C, we
opt for another strategy. Indeed, rather than increasing further the pulse duration, we
keep the same spectral shape of state A, but provide the pump laser with an additional
quadratic phase, modifying thus only the pump function α(ωs, ωi) [45,121]. The JSA for
this state C is given by:

F̄ (ωs, ωi) = F (ωs, ωi)e
iD(ωs+ωi−ωp)2

, (3.12)

where D is a constant. It is clear that the presence of this quadratic phase does not a�ect
the JSI, which is spectrally identical to the state A. Nevertheless, by using this trick we
are able to drastically increase both the number of Schmidt modes and the symmetry of
the JSI in the frequency domain. In order to distinguish the state A from the state B
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Figure 3.2: Spectral-temporal properties of considered PDC states: state A is a nearly decor-
related, state B is a standard frequency anti-correlated, and state C has spectral phase anti-
correlations from a strongly chirped pump. The �rst column presents measured joint spectral
intensity (JSI) which contains no information about the spectral phase. The second column
depicts the absolute value and the phase of theoretical joint spectral amplitudes (JSAs). The
third column is the absolute value of theoretical joint temporal amplitudes (JTAs). The fourth
column shows the calculated (red solid line) and measured (blue dots) two-photon Hong-Ou-
Mandel intereference (HOMI), with error bars smaller than the dots. Experimental points on
P1,1 correspond to two-fold coincidences between detectors 1 and 3, with maximum count rates
of 1590426, 1583615, and 1675548 per 60s for states A, B, and C, respectively [1].

and highlight the higher degree of correlation of signal and idler photons in the temporal
domain, we plot the Fourier transformation of the JSA in the third column of Fig.3.2,
obtaining the joint temporal amplitude JTA:

F (ts, ti) =

∫
dωsdωiF (ωs, ωi)e

i(ωsts+ωiti). (3.13)

From this picture it seems clear that the joint temporal intensity JTI changes, becoming
intensely diagonal along the ts − ti axis. The modi�cation of the JTA causes a further
increase of the Schmidt number with respect to the state B, proving that this technique
enables the control of the correlation between signal and idler photon without altering
the spectral pro�le. The realization of the states A, B and C is quite worthy for our pur-
pose: it allows us to clearly individuate the causes of any modi�cation of the coincidence
probabilities, testing individually the symmetry of the JSA and the correlations.

Before presenting the results concerning the four-photons HOM interference, we show
the predicted and observed results about the two-photon HOM interference in the last
column of Fig. 3.2. As it was already discussed in Section 2.2.2, since we �xed the
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waveguide length, the in�uence of the spectral features of the PDC to the HOM curves
is restricted to the JSA symmetry along the signal-idler diagonal. Indeed, for state B the
HOM dip reaches zero at zero delay, as expected from the use of a strongly symmetrical
JSA, whereas the non-perfect circular shape of the JSA in state A and C leads to a non-
vanishing coincidence probability, due to the partial spectral distinguishability of signal
and idler photons. This certainly excludes the in�uence of the temporal correlations on
the coincidence probability in the two-photon scenario.

3.1.4 Schmidt number and antibunching pro�le

The states A, B and C de�ned above constitute the input set of states of our interfer-
ometer. In order to test the in�uence of the spectral/temporal properties of the photon
source to the HOM pro�le, we calculate the probabilities to measure a certain amount
of photon per channel via Eq.(3.5), Eq.(3.6) and Eq.(3.7). These probabilities, plotted
in Fig. 3.3, display a drastically di�erent scenario with respect to the well-known two
photon interference.

Figure 3.3: Theoretical coincidence probabilities to detect: (a) two photons per channel, (b)
three photons in one channel and one photon in the other channel, (c) four photons in one channel
for di�erent pump spectral bandwidth (state A, B and C are presented by black, red and dashed
green curves respectively) [1].

Let us consider �rstly Fig.3.3a, where the probability P22 is plotted. The picture shows
how such probability behaves by varying both the bandwidth and the temporal character-
ization of the pump pro�le. As it was mentioned in the previous section, the alteration of
the pump pro�le gives rise to a variation of the Schmidt number. For instance, the black
curve, obtained by state A, is characterized by a Schmidt number K=1.11, namely close
to unity, and shows a bunching dip in the coincidence probability. Instead, the increase of
correlations (higher Schmidt number), induced by either a reduction of the pump band-
width (state B and blue line in Fig.3.3a) or by the use of a phased pump (state C) , lets
this probability experience an antibunching behaviour. This univocally determines a link
between the probability P22 and the amount of temporal correlations, keeping any connec-
tion with the shape of the JSA pro�le out. This theoretical prediction �nds experimental
con�rmations in Fig.3.4, where the setup sketched in Fig.A.1 of Appendix A was utilized
to measure the photon counts for all three states.

In order to analytically demonstrate how this peak depends on the Schmidt number,
we calculated explicitly P22 for zero delay, similarly to Section 3.1.2, observing that most
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Figure 3.4: Theoretical and experimental P22 probabilities for states A, B, and C. Experimental
points correspond to maximum counting rates of 3761, 2127, and 2309 per 60s for states A, B,
and C, respectively [1].

of its 144 elements cancel each other out, so the �nal probability drastically reduces to:

P22 =

∫
dωbdωcdω̃bdω̃cF (ωc, ωd)F (ω̃c, ω̃d)F

∗(ωd, ωc)F
∗(ω̃d, ω̃c)

2 + 2
∫
dωbdωcdω̃bdω̃cF (ωc, ωd)F (ω̃c, ω̃d)F ∗(ωd, ω̃c)F ∗(ω̃d, ωc)

. (3.14)

One way to simplify this expression is via assuming to have a symmetrical JSA F (ωs, ωi) =
F (ωi, ωs). This approximation holds because the JSA is strongly diagonal along the
frequency axes ωs = ωp − ωi. By performing the Schmidt decomposition of the JSAs
in this formula, F (ωs, ωi) =

∑
n

√
Λnun(ωs)vn(ωi), where Λn are eigenvalues, un and vn

are eigenfunctions of the Schmidt decomposition with respect to signal and idler photons
respectively, we can immediately notice that the term in numerator tends to one, due
to the normalization of the Schmidt eigenfunctions. On the other hand, the term in
denominator can be expressed in terms of eigenvalues and eigenfunctions:∫

dωbdωcdω̃bdω̃cF (ωc, ωd)F (ω̃c, ω̃d)F
∗(ωd, ω̃c)F

∗(ω̃d, ωc) =∑
αβγδ

√
ΛαΛβΛγΛδ

∫
dωbdωcdω̃bdω̃cuα(ωc)uβ(ω̃c)u

∗
γ(ωd)u

∗
δ(ω̃d)vα(ωd)vβ(ω̃d)v

∗
δ (ωc)v

∗
γ(ω̃c),

(3.15)

and taking advantage of the symmetry of the JSA we can assume that signal and idler
photons have identical spectra and also v ≡ u, thereby using the orthonormality of the
eigenfunctions: ∑

αβγδ

√
ΛαΛβΛγΛδδαδδβγδγαδδβ =

∑
k

Λ2
k. (3.16)

The �nal probability can be �nally expressed in terms of Schmidt eigenvalues:

P22 =
1

2 + 2
∑

n Λ2
n

, (3.17)

or in terms of Schmidt number

P22 =
K

2 + 2K
. (3.18)
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This formula proves that, by varying the Schmidt number, the probability P22 reaches 1/4
in the decorrelated single mode regime and 1/2 in the multimode regime, as predicted by
our heuristic model in Section 3.1.2.

In order to exclude the dependence of P22 on the JSA shape beyond any doubts, a
further (blue) curve in Fig.3.3a is plotted, showing the HOM curve generated by a state
having pump bandwidth equal to 0.2 THz, even smaller than in state B. Comparing
this blue line with the green dashed one, a similar antibunching behaviour is observed,
although the JSI of the state described by the blue line would be more similar to state
B, than C (or A). This highlights that there is no direct relation between JSA symmetry
and antibunching peak.

Although our former argumentations seem to underestimate the link between the four-
photon HOM and the JSA symmetry, this actually gains a fundamental relevance in P3113.
As shown in Fig. 3.3b, we can �nd a very interesting analogy between this probability
and the ordinary P11 of the typical two-photon HOM interference. Indeed, as expected
in the latter case, as long as the JSA is asymmetrical along the frequency diagonal (state
A and C), P3113 does not reach zero due to the spectral distinguishability of signal and
idler photons, whereas in both state B and the further theoretical state in blue line, a
vanishing probability is observed.

Before concluding, we observe that P4004 < 0.75 in Fig. 3.3c, meaning that the so-
structured interferometer cannot detect pure NOON state and post selection strategies
would eventually be required.

3.1.5 Unbalanced beam splitter

Our argumentation above was prepared within a typical HOM framework, where a bal-
anced beam splitter is utilized. Historically, the choice of a balanced BS was reason-
ably supported by the possibility to annul the coincidence probability P11 in the typical
two-photon interference. However, although the choice of a balanced BS let us achieve
fundamental informations in the four-photon interference (amply discussed above), one
may also investigate a linear BS transformation which could annul P22 rather than P3113

when δl = 0. In order to get the corresponding values of the BS transmission and re-
�ection coe�cients which would annul P22, we can exploit a simplest scenario, namely
the interference of four plane waves in a BS when δl = 0. In this case, the output state
is [122]:

|ψafterBS〉 =
√

6TR(|41, 02〉+ |01, 42〉)
+
√

6TR(T −R)(|31, 12〉 − |11, 32〉) + [(T −R)2 − 2TR]|21, 22〉,
(3.19)

where T and R are respectively the transmission and re�ection coe�cients of the BS. From
this expression, it is clear why P3113 = 0 in case of balanced BS (T=R), moreover, by
annulling the coe�cient in front of |21, 22〉 and imposing at the same time that R+T = 1,
we �nd that T = (3 +

√
3)/6 and R=(3 −

√
3)/6 (or viceversa). Within the framework

of four-photon HOM interference via plane wave modes, this set of coe�cients allows to
achieve P22 = 0.

In our spectrally multimode scenario, we plot the probabilities in Fig.3.5 by setting
the BS parameters calculated above. As expected, the new pro�les look very di�erent
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from the balanced BS case investigated in the last section. For instance, we notice that
P22 can be drastically inhibited by reducing the amount of correlations, but we can not
annul it though, because of the asymmetry of the JSA. This demonstrated that P22 is still
strongly a�ected by the number of Schmidt modes, and in particular, stronger correlations
between signal and idler photons break the similarity with the behaviour expected in case
of plan wave modes. According to these results, even this speci�c set of T and R is
not su�cient to annul P22. This behaviour is experimentally con�rmed in Fig.3.6, where
results concerning the state A and C are compared with the theoretical ones.

Moreover, consequent changes are also observed in P3113 and P4004. It is interesting
to notice that the new choice of R and T modi�es drastically P3113, making its shape
strongly dependent on the number of modes. One the other hand, P4004 keeps the same
pro�le but reduces drastically the intensity with respect to the balanced case.

Figure 3.5: Unbalanced BS con�guration. Theoretical coincidence probabilities to detect: (a)
two photons per channel, (b) three photons in one channel and one photon in the other channel,
(c) four photons in one channel for di�erent pump spectral bandwidth (state A, B and C in
black, red (dark gray) and dashed green respectively) [1].

Figure 3.6: Theoretical and experimental P22 probabilities for states A, and C in the unbalanced
BS con�guration. Experimental points correspond to maximum counting rates of 5128 and 2094
per 60s for states A and C, respectively [1].

Finally the new pro�le of P22 in Fig.3.5a reminds the typical two-photon HOM dip
of the P11 interference when a balanced BS set, and the comparison between such two
probabilities is presented in Fig. 3.7. Here we can observe that the two pro�les are
extremely similar, though the dip of P22 is actually 7.5% broader with respect to P11.
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This makes P22 slightly less sensitive to the distinguishability of signal and idler spectra
with respect to P11.

Figure 3.7: The two-photon HOM dip with a balanced BS and the four-photons HOM dip with
an unbalanced BS in the single-mode regime: the pulse duration is 0.29 ps [1].

3.1.6 Conclusion

In this �rst section we designed the four-photon interference in a framework where the
temporal correlations of the photon sources are taken into account. The four photons were
generated by highly pumping the laser into a ppKTP waveguide, triggering the second
order PDC e�ect and generating two photon couples. The scheme of the interferometer
used along the chapter ensured the indistinguishability of photons in terms of polarization
and allowed to investigate the coincidence probabilities for di�erent time delays. The con-
nection between the coincidence probability P22 and number of spectral/temporal modes
was �rstly estimated by making use of a simpli�ed model, in which the JSA is sketched as
a double-Gaussian function, afterwards, we prepared three states characterized by both
speci�c JSA/JSI pro�les and number of spectral modes. Hence, the connection between
probability and Schmidt number was proven both theoretically and experimentally, show-
ing that P22 runs from 0.25 to 0.5 by increasing the number of spectral mode, and an
antibunching peak in the coincidence probability is observed. On the other hand, the role
of the symmetry of the JSA merely concerns P3113: the more symmetrical the JSA with
respect to the frequency diagonal, the closer P3113 is to zero.

The �exibility of our scheme enables further interesting tests. For instance, we can
try to make the pro�le of P22 similar to the two-photon coincidence probability P11 by
altering the transmission and re�ection parameters of the BS. A proper set of T and R
turns the probability P22 to a dip curve. Similarly to P11, the four photon probability P22
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cannot reach zero because the JSA lacks a symmetrical behaviour along the frequency
antidiagonal. Furthermore, the presence of correlations causes a reduction of the visibility.

3.2 Spatial entanglement and four-photon Bell states

3.2.1 Maximization of the spatial entanglement

In the �rst part of this chapter we focused on the in�uence of the temporal Schmidt modes
in the four photon interference, demonstrating theoretically how the Schmidt number
is related to the coincidence probability. Vice versa, we can say that an antibunching
behaviour of the coincidence probability is symptomatic of quantum correlations between
the interacting photons.

Figure 3.8: Schematic setup. Four photons are generated in the PDC section. For every
photon, a �rst half-wave plate, HWP1 creates a superposition of the vertical and the horizontal
polarizations. A polarization beam slitter routs vertically and and horizontally polarized photons
in two di�erent spatial channels (red and green). The second half-wave plate, HWP2, rotates
the polarization in the �rst channel, such that all photons own the same polarization. A path
length of the second channel compensates arising time delay between the signal and idler photons
L = l + ∆l. Finally, all photons interact in a beam splitter and are detected [2].

In this second part we want to investigate the consequence of the spatial entanglement
between the two arms of the interferometer on the coincidence probabilities in Eqs.(3.5-
3.7) [2]. The spatial entanglement can be triggered in the interferometer by performing a
polarization rotation. To contextualise better what we plan to do, we show in Fig.3.8 the
latest version of our interferometer, where a further HWP was added between the PDC
section and the PBS [56]. As it can be seen, as long as the HWP is switched o� (namely
the converting parameter is equal to zero), this interferometer is indistinguishable from
the one in Fig.3.1, and thus no additional information could be obtained. An identical
scenario would be achieved if the new HWP perfectly converted the polarization of all
signal and idler photons (the conversion parameter in this case would correspond to π/2),
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since a polarization switching would not in�uence the physics behind the interference
process.

In order to explore new e�ects beyond the previous model, the choice of a converting
parameter in some intermediate value between 0 and π/2 seems to be more tempting; this
leads to a partial conversion of the polarization of signal and idler photons. The quantum
state leaving the �rst HWP is therefore characterized by a superposition of vertical and
horizontal polarized photons. When such state enters the PBS, this triggers the spacial
entanglement by spatially separating not di�erent polarized photons, but vertical from
horizontal polarized parts of the same photon, for every signal and idler photon pair. In
other words, if in the previous scheme we are able to distinguish signal and idler photons
because of their polarization, in this scheme we have parts of the same photons in both
channels.

In order to seek the proper converting parameter and optimize the amount of spatial
entanglement in the interferometer, we start from the Hamiltonian in Eq.(3.1) and the
new unitary transformation:

U = BS · FP3 ·HWP2 · FP2 · PBS · FP1 ·HWP1 · FP0, (3.20)

which di�ers from Eq.(3.2) because of the additional HWP1 matrix describing the further
HWP. As in the previous chapter, the action of the matrix U on the PDC state in the low
gain regime yields the output state of the interferometer. Since the spatial entanglement
occurs within the interferometer and not in the output, it seems more reasonable to
�rstly consider the quantum state inside the interferometer, namely before the beam
splitter |ψbeforeBS〉. The unitary transformation necessary to achieve this state clearly
corresponds to Eq.(3.20) without the beam splitter matrix. Hence, the state inside the
interferometer is:

|ψbeforeBS〉 = |ψbeforeBS(22)〉+ |ψbeforeBS(4004)〉+ |ψbeforeBS(3113)〉, (3.21)

where

|ψbeforeBS(22)〉 =

∫
dωsdωidω̃sdω̃iF (ωs, ωi)F (ω̃s, ω̃i)e

i(ωs+ωi+ω̃s+ω̃i)(x+y+l)/c

×
[
− a†2(ωs)a

†
1(ωi)a

†
2(ω̃s)a

†
1(ω̃i) sin4 φ1e

i(ωs+ω̃s)
∆l
c

+a†2(ωs)a
†
1(ωi)a

†
1(ω̃s)a

†
2(ω̃i) sin2 φ1 cos2 φ1e

i(ωs+ω̃i)
∆l
c

+a†1(ωs)a
†
1(ωi)a

†
2(ω̃s)a

†
2(ω̃i) sin2 φ1 cos2 φ1e

i(ω̃s+ω̃i)
∆l
c

+a†2(ωs)a
†
2(ωi)a

†
1(ω̃s)a

†
1(ω̃i) sin2 φ1 cos2 φ1e

i(ωs+ωi)
∆l
c

+a†1(ωs)a
†
2(ωi)a

†
2(ω̃s)a

†
1(ω̃i) sin2 φ1 cos2 φ1e

i(ωi+ω̃s)
∆l
c

−a†1(ωs)a
†
2(ωi)a

†
1(ω̃s)a

†
2(ω̃i) cos4 φ1e

i(ωi+ω̃i)
∆l
c

]
|0〉,

(3.22)
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|ψbeforeBS(4004)〉 =

∫
dωsdωidω̃sdω̃iF (ωs, ωi)F (ω̃s, ω̃i)e

i(ωs+ωi+ω̃s+ω̃i)(x+y+l)/c

×sin2 2φ1

4

[
a†1(ωs)a

†
1(ωi)a

†
1(ω̃s)a

†
1(ω̃i)+

a†2(ωs)a
†
2(ωi)a

†
2(ω̃s)a

†
2(ω̃i)e

i(ωs+ωi+ω̃s+ω̃i)
∆l
c

]
|0〉,

(3.23)

|ψbeforeBS(3113)〉 = i

∫
dωsdωidω̃sdω̃iF (ωs, ωi)F (ω̃s, ω̃i)e

i(ωs+ωi+ω̃s+ω̃i)(x+y+l)/c

×
[
− a†2(ωs)a

†
1(ωi)a

†
1(ω̃s)a

†
1(ω̃i) sin3 φ1 cosφ1e

iωs
∆l
c

+a†1(ωs)a
†
2(ωi)a

†
2(ω̃s)a

†
2(ω̃i) sinφ1 cos3 φ1e

i(ω̃s+ω̃i+ωs)
∆l
c

−a†1(ωs)a
†
1(ωi)a

†
2(ω̃s)a

†
1(ω̃i) sin3 φ1 cosφ1e

iω̃s
∆l
c

+a†2(ωs)a
†
2(ωi)a

†
1(ω̃s)a

†
2(ω̃i) sinφ1 cos3 φ1e

i(ωs+ωi+ω̃s)
∆l
c

+a†1(ωs)a
†
2(ωi)a

†
1(ω̃s)a

†
1(ω̃i) sinφ1 cos3 φ1e

iωi
∆l
c

−a†2(ωs)a
†
1(ωi)a

†
2(ω̃s)a

†
2(ω̃i) sin3 φ1 cosφ1e

i(ω̃s+ω̃i+ωi)
∆l
c

+a†1(ωs)a
†
1(ωi)a

†
1(ω̃s)a

†
2(ω̃i) sinφ1 cos3 φ1e

iω̃i
∆l
c

−a†2(ωs)a
†
2(ωi)a

†
2(ω̃s)a

†
1(ω̃i) sin3 φ1 cosφ1e

i(ωs+ωi+ω̃i)
∆l
c

]
|0〉,

(3.24)

and where φ1 is the converting parameter. These expressions can be rewritten in a more
elegant and convenient way by introducing the set of Schmidt operators as in Eq.(2.36):

A†k =

∫
dωsuk(ωs)a

†(ωs)

B†k =

∫
dωivk(ωi)a

†(ωi).

(3.25)

and the set of path-depending Schmidt operators:

C†k =

∫
dωsuk(ωs)e

iωs
∆l
c a†(ωs),

D†k =

∫
dωivk(ωi)e

iωi
∆l
c a†(ωi).

(3.26)

It is clear that the path-depending operators in Eq. (3.26) converge to the set in Eq.(3.25)
when δl = 0. By employing these set of operators, the three components of the output
state before the BS are:

|ψbeforeBS(22)〉 =
∑
kk̃

√
λkλk̃

[
− C†k2

B†k1
C†
k̃2
B†
k̃1

sin4 φ1 + C†k2
B†k1

A†
k̃1
D†
k̃2

sin2 φ1 cos2 φ1

+A†k1
B†k1

C†
k̃2
D†
k̃2

sin2 φ1 cos2 φ1 + C†k2
D†k2

A†
k̃1
B†
k̃1

sin2 φ1 cos2 φ1

+A†k1
D†k2

C†
k̃2
B†
k̃1

sin2 φ1 cos2 φ1 − A†k1
D†k2

A†
k̃1
D†
k̃2

cos4 φ1

]
|0〉,

(3.27)
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|ψbeforeBS(4004)〉 =
∑
kk̃

√
λkλk̃ sin2 φ1 cos2 φ1

[
A†k1

B†k1
A†
k̃1
B†
k̃1

+ C†k2
D†k2

C†
k̃2
D†
k̃2

]
|0〉,

(3.28)

|ψbeforeBS(3113)〉 = i
∑
kk̃

√
λkλk̃

×
[
− C†k2

B†k1
A†
k̃1
B†
k̃1

sin3 φ1 cosφ1 + C†k1
B†k2

C†
k̃2
D†
k̃2

sinφ1 cos3 φ1

−A†k1
B†k1

C†
k̃2
B†
k̃1

sin3 φ1 cosφ1 + C†k2
D†k2

C†
k̃1
B†
k̃2

sinφ1 cos3 φ1

+A†k1
D†k2

A†
k̃1
B†
k̃1

sinφ1 cos3 φ1 − A†k2
D†k1

C†
k̃2
D†
k̃2

sin3 φ1 cosφ1

+A†k1
B†k1

A†
k̃1
D†
k̃2

sinφ1 cos3 φ1 − C†k2
D†k2

A†
k̃2
D†
k̃1

sin3 φ1 cosφ1

]
|0〉,

(3.29)

We notice that most of these terms vanish either when φ1 = 0 or φ1 = π/2, con�rming
that these two scenarios are useless for triggering the spatial entanglement. The value of
φ1 we are looking for, maximises the degree of entanglement, which can thus be estimated
by the Schmidt number. In case of spatial entanglement, in which we have a discrete
number of spatial channels, this is K = 1/Tr(ρ2

r), where ρr is the reduced density matrix
of the system. An explicit calculation of such matrix gives:

ρr =

[
cos2 φ1

4
(5− 2 cos 2φ1 + cos 4φ1) A(φ1,∆l)

A(φ1,∆l)
∗ sin2 φ1

4
(5 + 2 cos 2φ1 + cos 4φ1)

]
, (3.30)

where

A(φ1,∆l) =

∫
dωsdωidω̃sdω̃i | F (ωs, ωi) |2| F (ω̃s, ω̃i) |2

×
[

sin4 φ1 cos4 φ1(e−i(ω̃s+ω̃i)
∆l
c + e−i(ωs+ωi)

∆l
c )

− sin2 φ1 cos6 φ1e
−i(ω̃s+ωi) ∆l

c − sin6 φ1 cos2 φ1e
−i(ωs+ω̃i) ∆l

c

−i sin5 φ1 cos3 φ1e
−i(ωs+ωi−ω̃i) ∆l

c + i sin7 φ1 cosφ1e
−iω̃s∆l

c

+i sin3 φ1 cos5 φ1e
−i(ω̃s+ω̃i−ωi) ∆l

c − i sinφ1 cos7 φ1e
−iωs∆l

c

]
,

(3.31)

is a function that depends in principle on both the conversion parameter and path de-
lay. However, as observed in Fig.3.9, the dependence on the path delay does not seem to
condition the Schmidt number evidently. For the sake of clarity, this plot was realized as-
suming all frequency equal to ωp/2 and de�ning the optical phase ϕ = ∆l ωp/c. Although
this is a convenient approximation utilised just to plot the Schmidt number, it holds very
well as long as ∆l ' 2λp.
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Figure 3.9: The Schmidt number K vs the conversion angle φ1 and the optical phase ϕ =
∆L ωp/c [2].

Moreover we can �x ∆l = 0, and the Schmidt number can be analytically calculated,

K(φ1) =
128

94 + 33 cos 4φ1 + 2 cos 8φ1 − cos 12φ1

. (3.32)

This function is maximized at φ1 = π/4, namely when the HWP1 performs a half-
conversion and all contributions in Eq.(3.27), Eq(3.28) and Eq.(3.29) gain the same weight.
It should not look surprising that the maximal value reached by the Schmidt number is 2
for a bipartite system; a similar results was also observed in [56] for two photons. Anyway,
this will be our start point for the next section, where the coincidence probabilities will
be analysed.

3.2.2 Coincidence probabilities and structured oscillations

It was seen above that a further HWP can be exploited in order to maximise the spatial
entanglement of the interferometer, and the best value of the conversion parameter was
calculated. Now we can exploit the ansatz for estimating the coincidence probabilities,
making use therefore of the full unitary transformation in Eq.(3.20). By applying the
total matrix transformation of the interferometer on the initial PDC state, we gain the
output state of the interferometer. The probabilities are therefore calculated by making
use of Eq.(3.5), Eq.(3.6) and Eq.(3.7).
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Figure 3.10: The zoom of the P22, P3113 and P4004 probabilities around zero path delay. The
PDC section length is L = 8mm, the pulse duration is τ = 0.29ps, the pump wavelength is
λp = 766nm [2].

Figure 3.11: The probability to detect two photons in each channel for the conversion angle
φ1 = π/4 in the single spectral mode regime. The red curve is theoretical calculations, while the
black curve stands for the experimental data. The insert shows a zoom around zero time delay,
namely the black curve in Fig.3.10 [2].

The interference pattern of all three probabilities in a small range around ∆l ≈ 0 is
plotted in Fig.3.10, whereas both the whole trend and the fast oscillation around ∆l ≈ 0
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of P22 were estimated and plotted both theoretically and experimentally5 in Fig.3.11. The
setup used to perform the measurements is described in Appendix B, whereas the exper-
imental probability is calculated by the photon counts following the protocol described
in Section 3.2.3. In these pictures, the e�ect of the spacial entanglement is evident: all
probabilities are now characterized by oscillations with periodicity equal to λp and having
a quite complex structure, not present in the previous set-up without HWP1.

In order to understand better the structure of these oscillations in P22, let us consider
individually the contributions of Eq.(3.21), namely Eq.(3.27), Eq.(3.28) and Eq.(3.29),
to the output probability. By letting these terms cross the beam splitter separately and
calculating P22, it can be seen that the �rst one, Eq.(3.27), yields the main trend of the
curve without oscillation, whereas the fast fringes stem from Eq.(3.28) and Eq.(3.29).
Although this strategy allows to decompose the contribution of Eq.(3.27), Eq.(3.28) and
Eq.(3.29) to the coincidence probability, it does not clarify the structure of these oscillation
fully.

Indeed, it turns out that Eq.(3.27) and Eq.(3.28) further interfere in the beam splitter,
providing �nally the structured oscillation shown in Fig.3.11 and this is due to the bosonic
nature of light. To �gure it out, we make use of a speci�c strategy: in one case we
�rstly let the contributions in Eq.(3.27), Eq.(3.28) and Eq.(3.29) cross the beam splitter
individually, and then we sum them in pair (overlap); as a second case, we take directly
pairs of them and calculate the interference in the beam splitter.

Figure 3.12: Comparison between the overlapping and the interference of Eq(3.27), Eq(3.28)
and Eq(3.29) in the zero-delay region [2].

Results are plotted in Fig.3.12. This picture shows that an interference between
Eq.(3.27) and Eq.(3.29) occurs, generating the peculiar oscillation given by the black
curve in Fig.3.12c. This interference is caused by both the maximized spatial entangle-
ment and the quantum nature of light. In the end of this chapter we will show that
these oscillations can be manipulated by making the Schmidt mode of signal and idler
indistinguishable.

5Although the oscillation is de�ned quite well in the insert, the experimental limitations did not allow
us to reach the same precision in the larger range (see black curve in Fig.3.11). The main trend for
|∆l| � 0 is however well depicted.
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3.2.3 Normalization P22 probability

Along this chapter we had to deal with di�erent set of experimental data, utilised for
estimating coincidence probability P22. Such experimental data, consisting of photon
counts, had to be compared with the theoretical simulation. However, depending on
which quantities we want to analyse as well as on which physical setup was exploited, the
experimental data required a speci�c normalization strategy.

In case of Fig. 3.4 and Fig. 3.6, a simple way to compare the theoretical prediction
with the data points consist merely of scaling the experimental curve with respect to
the "in�nity delay" line. Let us consider Fig. 3.6 as an example: it was theoretically
known that the coincidence probability far from the interaction zone is 0.5 and this value
is expected also experimentally. Hence, by opportunely rescaling the experimental counts
with respect to 0.5 in the large delay zone, we were able to compare both width and
visibility in the fully interaction zone. This method was satisfyingly employed for both
Fig. 3.4 and Fig. 3.6.

However, due to the di�erent experimental setup utilized to measure the coincidence
probability P22 for δl � 0 and δl ' 0 in Fig. 3.11, a more complex normalization strategy
was adopted. In particular, we need to �nd a way to connect these two experimental set
of data and the theoretical simulation. Therefore, we start from Fig. B.1 in Appendix
B, where we observe that the detection apparatus consists of two balanced beam splitters
and a set of four detectors. We will indicate such detectors with A, B, C and D, coupling
A and B (and therefore also C and D) in the same spatial channel. For any event, we have
four photons crossing the PBS, which will be either distributed along the four channels,
or lost. We indicate with cXY the experimental number of coincidences between channel
X and channel Y , and similarly we will do with cXY Z and so on. These coincidences are
connected with di�erent quantities:

• total amount of generated photon;

• probability of one photon to not get lost due to losses e�ect;

• probability of one photon to leave one of the two channels of the PBS;

• probability of one photon to leave one of the two channels of the BS.

The third and the fourth quantities are known: the former were predicted theoretically
along the text, whereas the latter stems from combinatorial considerations. Hence, from
the experimental data we need to distinguish the amount of photons generated by the
four-photon events from the two-photon, and estimate the loss rate. The latter can be
simply modelled by assuming the loss e�ect described by additional beam splitters, whose
transmission parameter η determines the probability to not loose the photon.

In order to exclude any in�uence of two-photon events, we are now able to write down
and solve a couple of equations for cABC and cABCD in the far delay zone:

〈cABCD(δl � 0)〉 =
1

4
η4N4P

th
22 ; (3.33)

〈cABC(δl � 0)〉 = N4

[
η4

(
3

8
P th

13 +
1

8
P th

22

)
+ η3(1− η)

(
1

4
P th

13 +
1

4
P th

22

)]
, (3.34)
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where P th
αβ is the well-known theoretical probability to have α photons in one channel and

β photons in the other channel of the PBS. Such equations allow us to estimate N4 and
η, the experimental parameters indicating the total number of photons stemming from
four-photon events and the no-loss rate, respectively. It is clear that equations similar to
Eq. (3.33) for cABC must be ful�lled for other coincidences, such as cABD or cACD. Since
both N4 and η do not depend on the internal phase of the interferometer, we just need to
solve Eq. (3.33) in the zero delay zone:

〈cABCD(δl ' 0)〉 =
1

4
η4N4P

ex
22 ; (3.35)

getting the normalization of the fast fringes pattern. Repeating this strategy for all
detector combinations, we obtain Pmax

22 ' 0.915, around 10% less than the theoretical
prediction.

3.2.4 Four-dimensional Bell state

When the design of the interferometer in Fig.3.8 was introduced, we struggled seeking
the proper conversion parameter for the maximization of the spatial entanglement. In
fact, the possibility to manipulate di�erent parameters, such as the path length, the BS
and the HWP parameters, enables the investigation of a discrete variety of interesting
scenarios. In order to explore some of them analytically, we bene�t from the fact that
the period of oscillation of the internal phase in Eq.(3.26) is of the same magnitude of
λp, namely much bigger than the size of the PDC spectrum ∆λ. This means that the
Schmidt modes in Eq.(3.26) scarcely depend on the oscillating terms and the phase can
therefore be taken out of the integral:

C†k ≈ ei
ωp
2

∆l
c

∫
dωsuk(ωs)a

†(ωs) = ei
ωp
2

∆l
c A†k,

D†k ≈ ei
ωp
2

∆l
c

∫
dωivk(ωi)a

†(ωi) = ei
ωp
2

∆l
c B†k.

(3.36)

This makes the Schmidt modes C (B) and A (D) proportional. On the other hand, the
distinguishability between A and B holds, due to the di�erent group velocities between
signal and idler photons. If we do not �x any speci�c values for all ∆l, φ1 and θ, the
output state of the interferometer becomes:

|ψ〉 =

[∑
k

(
A†k2

(eπi∆l/λp cos θ sinφ1 − cosφ1 sin θ)

−iA†k1
(cos θ cosφ1 + eπi∆l/λp sin θ sinφ1)

)(
B†k1

(−ieπi∆l/λp cosφ1 sin θ + i cos θ sinφ1)

+B†k2
(eπi∆l/λp cos θ cosφ1 + sin θ sinφ1)

)√
λk

]2

|0〉.

(3.37)
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For the sake of simplicity it can be reduced by decreasing the number of spectral modes
to 1 just by tuning opportunely the pulse duration6:

|ψ〉 =

[(
A†2(eπi∆l/λp cos θ sinφ1 − cosφ1 sin θ)− iA†1(cos θ cosφ1 + eπi∆l/λp sin θ sinφ1)

)
(
B†1(−ieπi∆l/λp cosφ1 sin θ + i cos θ sinφ1) +B†2(eπi∆l/λp cos θ cosφ1 + sin θ sinφ1)

)]2

|0〉.

(3.38)

This state will be the start point of the analysis in this section. By proper manipulating
the parameters of the interferometer we can achieve di�erent interesting state. As �rst
case, we annul the path delay ∆l = 0, which reduces the equation above to:

|ψ∆l=0〉 =

[
(A†2 sin(φ1 − θ)− iA†1 cos(φ1 − θ))(iB†1 sin(φ1 − θ) +B†2 cos(φ1 − θ))

]2

|0〉.

(3.39)

Along the last section we �xed both φ1 = π/4 and θ = π/4, and it turned out that P22

grew to 1. Looking at Eq.(3.39), it becomes clear that the condition φ1 = θ leads to the
state

(
A†1B

†
2

)2|0〉, where both signal photons are found in the �rst output channel whereas
both idler photons are in the second output channel. However, more interesting is the
case achieved when φ1 − θ = π/4. By rewriting the state Eq.(3.39) in the space of the
Schmidt mode A and B we have:

|ψ∆l=0〉 =

[
i

2
(|g〉A|r〉B − |r〉A|g〉B) +

1

2
(|r〉A|r〉B + |g〉A|g〉B)

]2

=
1

2
(|Φ+〉 − i|Ψ−〉)2,

(3.40)

where r and g are the �rst and the second channel of the interferometer in Fig.3.8 respec-
tively7, whereas |Φ+〉 and |Ψ−〉 are the Bell states de�ned in our notation as following:

|Ψ+〉 =
1√
2

(|r〉A|g〉B + |g〉A|r〉B)

|Ψ−〉 =
1√
2

(|r〉A|g〉B − |g〉A|r〉B)

|Φ+〉 =
1√
2

(|r〉A|r〉B + |g〉A|g〉B)

|Φ−〉 =
1√
2

(|r〉A|r〉B − |g〉A|g〉B).

(3.41)

In other words, Eq.(3.40) shows that the manipulation of the internal parameter of the
interferometer enables the realization of four dimensional Bell states. If we turn back to

6This can be easily done in ppKTP waveguide. Normally we would need a frequency �lter to reduce
the number of spectral modes.

7The names r and g come from the choice of colours red and green in Fig.3.8. Putting 1 and 2 could
have looked confusing.
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Eq.(3.38) and �x another path delay, namely ∆l = λp, the output state becomes:

|ψ∆l=λp〉 =
[
−
(
A†2 sin(φ1 + θ) + iA†1 cos(φ1 + θ)

)(
iB†1 sin(φ1 + θ)−B†2 cos(φ1 + θ)

)]2|0〉,
(3.42)

and by introducing the Bell states of Eq.(3.41) as before the output state is reduced to:

|ψ∆l=λp〉 =
1

2
(|Φ+〉+ i|Ψ−〉)2, (3.43)

which stems from choosing φ1 + θ = π/4. It is interesting to notice that both the states
in Eq.(3.40) and Eq.(3.43) are achieved by �xing φ1 = π/4 and θ = 0. In the framework
of Section 3.2.2, these states are found within the interferometer (or simply by removing
the BS at all), namely choosing φ1 = π/4 and θ = 0.

The other way around, we both �x φ1 = π/4 and θ = 0 and test the output state at
two further values of path delay, namely ∆l = λp/2 and ∆l = 3λp/2, obtaining:

|ψ
∆l=

λp
2

〉 =
1

2
(|Φ−〉+ |Ψ−〉)2, (3.44)

|ψ
∆l=

3λp
2

〉 =
1

2
(|Φ−〉 − |Ψ−〉)2. (3.45)

An overlook of the last equations lets us state that, already in Section 3.2.2, we were able
to generate products of Bell states inside the interferometer such as |Φ+〉 and |Ψ−〉, or
|Φ−〉 and |Ψ−〉 alternately. This type of states can be expressed in terms of a four-qubit
Bell Gem introduced in [114] and [115]:

G±1 =
1√
2

(|Φ+〉|Φ+〉 ± |Φ−〉|Φ−〉),

G±2 =
1√
2

(|Ψ+〉|Ψ+〉 ± |Ψ−〉|Ψ−〉)

G±3 =
1√
2

(|Φ+〉|Φ−〉 ± |Φ−〉|Φ+〉),

G±4 =
1√
2

(|Φ+〉|Ψ+〉 ± |Ψ+〉|Φ+〉),

G±5 =
1√
2

(|Φ+〉|Ψ−〉 ± |Ψ−〉|Φ+〉),

G±6 =
1√
2

(|Φ−〉|Ψ+〉 ± |Ψ+〉|Φ−〉),

G±7 =
1√
2

(|Φ−〉|Ψ−〉 ± |Ψ−〉|Φ−〉),

G±8 =
1√
2

(|Ψ+〉|Ψ−〉 ± |Ψ−〉|Ψ+〉),

(3.46)

which is a high-dimensional Bell state basis. For instance, in terms of Bell Gem states
Eq.(3.40) becomes:

|ψ〉∆l=0 =
1

2

(
|Φ+〉|Φ+〉 − |Ψ−〉|Ψ−〉 − i(|Φ+〉|Ψ−〉+ |Ψ−〉|Φ+〉)

)
=

1

2
√

2
(G+

1 −G−1 +G−2 −G+
2 )− i√

2
G+

5 ,
(3.47)
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whereas Eq.(3.44) turns into:

|ψ〉∆l=λp =
1

2

(
|Φ−〉|Φ−〉+ |Ψ−〉|Ψ−〉+ |Φ−〉|Ψ−〉+ |Ψ−〉|Φ+〉

)
=

1

2
√

2
(G+

1 −G−1 −G−2 +G+
2 ) +

1√
2
G−7 .

(3.48)

We conclude this section by noting that the term in brackets in Eq.(3.47) is a combination
of states having an even number of photons in both channels of the interferometer, whereas
G+

5 actually coincides with the state |ψbeforeBS(3113)〉 in Eq.(3.29) when ∆l = 0, φ1 = π/4
and θ = 0. This state, is characterized by a high degree of entanglement, and in principle
it can be isolated by post-selection measurement.

3.2.5 Compensation of group velocities and faster oscillations

In Section 3.2.2 it was proven that the presence of spatial entanglement inside the in-
terferometer leads to coincidence probabilities characterized by fast oscillating pro�les,
whose period is proportional to λp. The structure of these oscillations strongly depends
on the degree of distinguishability of signal and idler photons. The oscillating patterns
in Fig.3.10 were achieved using a partially single mode source, whose signal and idler
output photons were spectrally distinguishable: the modulus, as well as the real and the
imaginary part of the Schmidt modes of signal photons were enough di�erent from idlers,
moreover the JSA was far to be symmetrical along the ωs − ωi axes. In this section
we want to observe how these patterns vary when signal and idler photons tend to get
identical by making their spectra indistinguishable.

As a �rst step, we can increase the degree of spectral correlation, for instance enhancing
the pump pulse duration and making the JSA strongly symmetrical along the frequencies
axis. This ensures the spectral indistinguishability of signal and idler photons being the
modulus of the Schmidt modes identical, namely |uk(ωs)|2 = |vk(ωi)|2. Although this
procedure enhances the degree of spectral indistinguishability of signal and idler photons,
we can still distinguish them because the real and the imaginary part are still partially
di�erent and this is due to the dispersion along the waveguide. Indeed, a time delay
due to the di�erent group velocities between ordinary and extraordinary polarizations is
experienced by all photons. Such delay modi�es the global phase of the JSA and is not
detectable in the output spectrum.

In order to balance this discrepancy, we imagine to put a further perfectly converting
HWP immediately after the PDC section, followed by a non-poled KTP crystal having
length Lpdc/2 (Fig.3.13). Since photons are supposed to be generated in the middle of the
PDC section, the time delay accumulated by walking through the source is fully compen-
sated when photons leave the jointed crystal, thereby making both real and imaginary
part of uk(ωs) and vk(ωi) identical.
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Figure 3.13: Schematic setup with compensator. A further HWP as well as a non-poled KTP
crystal are jointed in order to compensate the discrepancy in the signal-idler group velocities [2].

Mathematically this modi�cation can be carried out in two equivalent ways. For
instance, one can add a further HWP matrix in Eq.(3.20) and modify the matrix FP0

congruently, namely including the refractive index of KTP. Alternatively, one can add a
phase term in the JSA as follow:

F (ωs, ωi) = e−(ωs+ωi−ωp)τ2/2 sinc

[
∆βL

2

]
ei
L
2

(∆β+k̄), (3.49)

where k̄ = −ke(ωs)−ko(ωi) contain the refractive index for both signal and idler photons,
keeping into account the polarization conversion.

Figure 3.14: The zoom of the P22, P3113 and P4004 probabilities in the con�guration described
by the identical signal-idler Schmidt operators. Pulse duration τ = 10ps [2].
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Resuming, by enhancing the symmetry of the JSA and modifying the interferometer we
can make the Schmidt operators of signal and idler identical, and the output probabilities
can be calculated. If we �x φ1 = θ = π/4 (same conditions used in Section 3.2.2), the
output state of the interferometer becomes:

|ψ〉 = |ψ(22)〉+ |ψ(4004)〉+ |ψ(3113)〉, (3.50)

where

|ψ(22)〉 = −e
2πi∆l/λp

4

∑
kk̃

√
λkλk̃

×
[

sin2

(
π∆l

λp

)(
A†k1

2
A†
k̃2

2
+ A†

k̃1

2
A†k2

2)
+ 4 cos2

(
π∆l

λp

)
A†k1

A†
k̃1
A†k2

A†
k̃2

]
|0〉, (3.51)

|ψ(4004)〉 = −e
2πi∆l/λp

4

∑
kk̃

√
λkλk̃ sin2

(
π∆l

λp

)(
A†k2

2
A†
k̃2

2
+ A†k1

2
A†
k̃1

2
)
|0〉, (3.52)

|ψ(3113)〉 = −e
2πi∆l/λp

4

[∑
kk̃

√
λkλk̃ sin2

(
2π∆l

λp

)
×
(
A†k1

2
A†
k̃1
A†
k̃2

+ A†k1
A†k2

A†
k̃1

2
+ A†k2

2
A†
k̃2
A†
k̃1

+ A†
k̃2

2
A†k2

A†k1

)
|0〉. (3.53)

From these formulas and from Fig.3.14, the new period of oscillation can be immediately
estimated from the oscillating functions. In particular, one can see that for both P22 and
P4004 the period of oscillation still corresponds to λp like in section 3.2.2, however, more
interesting is the oscillation period of P3113, which is now half smaller, namely equal to
λp/2. Thus, it turns out that in this current scheme we can get interfering fringes whose
oscillation period is smaller than the pump wavelength. On the other hand, we can see
that every time ∆l = (2m+ 1)λp/2 is ful�lled, where m is an integer number, a balanced
superimposition of the original input state and the NOON state with n=4 is generated.

3.2.6 Conclusion

The presence of an additional HWP in front of the PBS leads to a wide range of new
interesting results. By properly manipulating the further conversion parameter, we could
trigger and maximize the spatial entanglement between the two arms of the interferome-
ter, with drastic consequences in the coincidence probabilities. The most evident change
is the presence of structured fast oscillations in all P22, P3113 and P4004, whose periodicity
corresponds to the pump length. Moreover, the structure of such oscillations, observed
also experimentally, presents irregular shapes and this is determined by additional inter-
ference processes on the BS between states inside the interferometer having even number
of photons. This phenomenon is related to the quantum nature of light.

More generally, we could take advantage of the possibility to manipulate di�erent
parameters, such as the PC conversion constant and the re�ectivity of the BS. This
strategy o�ered more perspectives of investigation and allowed us to achieve new results,
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such as the possibility to generate combinations of four dimensional Bell states, which
can be isolated via post-selection measurements and used as start point for more complex
entangled structures.

Finally, by adding another HWP followed by a piece of non-poled KTP waveguide
and using pump laser with a narrow bandwidth, we were able to create a set of spec-
trally identical photons (and having also the same polarization), and split them in the
two channels of the interferometer. The full indistinguishability as well as the presence of
spatial entanglement inside the interferometer drastically alter the shape of the interfer-
ence pattern, whose oscillation period is even twice faster than the pump wavelength λp.
This result is quite interesting, since it can enable future high-precision measurements.
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Chapter 4

The spectrally multimode integrated
SU(1,1) interferometer

Testing and optimizing di�erent interferometer designs in order to achieve high precision
measurements is one of the main goal of quantum metrology [55]. We already experienced
that modelling and engineering an interferometer with high performances fundamentally
means facing the problem of noise reduction in phase sensing tests. In particular, we have
seen that part of this noise is due to the use of radiation having classical correlations
within the interferometer. In quantum metrology as well as in quantum lithography, the
reduction of this noise is formally expressed by overcoming the shot-noise limit [67, 77,
85], or in other words by ensuring that the dependence of the phase sensitivity in the
interferometer decays faster than 1/

√
N in, where Nin is the number of photons inside the

interferometer. In a typical Mach-Zehnder design, this can be done by exploiting exotic
quantum photon states, such us squeezed light or NOON states [8]. On the other hand,
we mentioned that sometimes the employment of such quantum light allows to reach
(but not beat) a second limit of interferometry, called Heisenberg limit, which stems from
the employment of quantum electromagnetic �elds and is proportional to the inverse of
Nin [65].

In this context, the introduction of the SU(1,1) interferometer was a strategic point,
since the sensitivity of this device is strongly immune to external losses [80,81], moreover,
it is able to overcome the SNL even via the use of vacuum and coherent states as input
light [66, 71,123].

However, this primordial analysis must now be tested in realistic frameworks. Indeed,
it becomes more evident that the boost of the current technology points out the require-
ment of punctual and modern schemes, which must face the experimental support as well
as the progressively stronger request of optimization and miniaturization, especially (for
our purposes) in quantum metrology.

In our SU(1,1) investigation, a conceptual start point is hence the elaboration of new
theoretical models taking into account the spectral properties of the radiation generated
by the non-linear ampli�ers [124]. Such models permit further employments of the SU(1,1)
interferometers beyond the phase sensing, for instance in state engineering scenarios [125�
127].

The second point is the development of this device in an integrated platforms [128,129].
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The integration of systems previously explored in bulk is an interesting technique already
used for other scopes, such as boson sampling [130], quantum walk [131] and Hong-Ou-
Mandel interference [132, 133], and it seems to be promising also in non-linear quantum
interferometry. The installation of the interferometer into an integrated platform ensures
a smaller footprint and enables a progressive miniaturization of the device. Along this
chapter, we will see how to model an integrated SU(1,1) interferometer in a KTP platform
and how to take advantage from the spectral features of this device for maximizing the
phase sensing e�ciency.

4.1 The integrated interferometer and phase sensing

tests

The most logical way to start this analysis is via introducing a more detailed description of
the optical parametric ampli�ers, namely the squeezing process within the interferometer.
Since the SU(1,1) interferometer was �rstly designed, di�erent theoretical works in liter-
ature have approached this device by exploiting a relatively simple model, fully described
in Section 2.2.6, in which the optical parametric ampli�ers are typically devised as two
squeezers without any spectral characterization. Yet from an experimental point of view,
an empirical test over the results achieved by employing this model is quite challenging
and one may encounter a lot of di�culties: indeed, typical optical parametric ampli�ers
used in lab do not generate simple plane waves mode photons spontaneously but pho-
tons having complex spectral pro�les, i.e. characterized by a speci�c polarization and a
well de�ned set of independent spectral modes, sometimes (also along this work) called
Schmidt modes. Gradually it has become obvious that the inclusion of spatial [52,134,135]
and spectral modes [79,136,137] in the description of the SU(1,1) interferometer not only
improves the accuracy of the theoretical models drastically, but also pave the way to a
more detailed investigation of the performance of the tested interferometer itself.

Along this work, we saw that the presence of spectral modes plays a crucial rule in
linear interferometry when four photons interfere in HOM devices. The fundamental ques-
tion of this chapter is: do the spectral features of the photon sources have any in�uence
also in the performance of an integrated SU(1,1) interferometer?

4.1.1 JSA construction: �rst design

In order to answer the question above, let us start from the simplest scheme of integrated
SU(1,1) interferometer illustrated in Fig.4.1 which can be imagined; it will be used as
a model in the �rst part of this chapter. It basically consists of two identical spatially
separated Type-II PDC sources, in particular we will use two ppKTP waveguides, wherein
a phase modulator acting only on idler photon induces a modulation on the output ra-
diation. The dynamics of the process is therefore relatively simple and it does not di�er
so much from what we have seen in Section 2.2.6: an incoming pump laser generates the
signal-idler photon pair in the �rst waveguide; along the propagation path between the
two waveguides the idler photon experiences a phase shift; in the second waveguide both
photons interact with each other and �nally the signal photon is �nally detected. It is ex-
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pected that a variation of the phase undergone by the idler photon leads to a modulation
of the output light intensity because of the interference process.

In order to mathematically investigate this system, �rst of all we have to abandon
the strategy commonly used in literature and employed in Section 2.2.6. Indeed, this
relatively simple matrix approach is based on the assumption that temporal/spectral
features of photons are irrelevant along the interference process, thus they might simply
be ignored, thereby mathematically dealing with single mode Fock states and expressing
the photon sources in terms of single mode squeezers (or two-mode squeezers in case of
distinguished signal and idler photons).

Figure 4.1: A schematic model of the collinear integrated SU(1,1) interferometer. An incoming
pump laser interacts with a periodic poled PDC section, generating a signal-idler photon pairs.
In the propagation path, idler photon undergoes a phase modulation (PM). Afterwards, both the
generated photons and the pump beam interact in the second PDC section. Finally, the signal
photon is detected. Di�erent colours for signal and idler photons are used in order to distinguish
vertical and horizontal polarizations [3].

An attempt of inserting the spectral properties of squeezers in the matrix approach
would cause some di�culties. The �rst problem is an unde�ned expansion of the vector
basis. Indeed, the most reasonable vector basis as a replacement of Eq.(2.69) would be
the Schmidt basis, being this the most straightforward way to mathematically express the
PDC as a squeezing transformation of the SU(1,1) interferometer, as it was seen in Section
2.1.3. Unfortunately, the elegance of this choice is not compensated by a straightforward
ease of calculations, since the Schmidt basis consists in principle of in�nite elements (al-
though in a realistic case the e�ective number of modes could amount to the order of
magnitude of around hundreds or even thousands modes). The second mathematical dif-
�culty, which is even more critical, stems from the dispersion: photons propagating along
such structure experience di�erent group velocities inducing an alteration of the mode
structure: along the propagation, the spectral modes of both photons undergo modi�ca-
tions on their pro�les, and consequently the output modes of the second waveguide are
quite di�erent from those modes coming out from one waveguide. Another way to express
this concept is: the doubling of the length of the interferometer leads to a di�erent JSA
and therefore to another set of spectral modes in the output with respect to the single
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waveguide modes. A proper matrix strategy should therefore include a vector basis hav-
ing size tending to in�nity and, and it should take dispersion into account, for instance
via adding basis transformation matrices. De�nitely not the most straightforward way to
approach this system.

The strategy we want to utilise here is partially based on the procedure developed by
Klyshko in 1993, used to analyse the e�ect of parametric scattering in a multilayer medium
[138]. The main idea of this strategy consists of describing the phase matching function in
a medium characterized by variations of refractive indices along the propagation direction
(which will be z henceforth). According to this theory, one can hence express the JSA of
the SU(1,1) interferometer we are investigating as the JSA of a biphoton state:

F (ωs, ωi) = Cα(ωs, ωi)f(ωs, ωi) (4.1)

where C is the normalization parameter, whereas the phase matching function is expressed
as:

f(ωs, ωi) =
1

2L

∫ 2L+l

0

dz g(z) ei
∫ z
0 dξ∆k(ξ), (4.2)

where g(z) is the spatial pro�le of the second-order nonlinear susceptibility [139], l is the
distance between two PDC sections, ∆k(ξ) is the phase matching pro�le. The function
f(ωs, ωi) describes the evolution of the phase matching along the SU(1,1) interferometer
consisting of two periodic poled waveguides of length L, separated by a non-poled region of
length l. Such expression is generalized with respect to the version proposed by Klyshko,
and it takes into account the eventual modi�cations of the wave vectors along the whole
waveguide [42,140]. In this framework, the function g(z) is

g(z) =

{
squareΛ(z) 0 < z < L ∨ L+ l < z < 2L+ l

1 L < z < l + L
, (4.3)

where squareΛ(z) is the periodic square function that oscillates between -1 and +1 with
periodicity Λ, determines the grating along the interferometer. Since our SU(1,1) inter-
ferometer consists of two periodic poled sections which are spatially separated, in order
to calculate the proper JSA we Fourier expand the grate in Eq.(4.3) and split the phase
matching function of Eq.(4.2) in three parts:

f(ωs, ωi) =

∫ L

0

dz ei
2πz
Λ ei

∫ z
0 dξ∆k +

∫ L+l

L

dz ei
∫ z
0 dξ∆k +

∫ 2L+l

L+l

dz ei
2πz
Λ ei

∫ z
0 dξ∆k (4.4)

The �rst integral, concerning the �rst periodically poled section, is already well known:

1

2L

∫ L

0

dkg(z)ei
∫ z
0 dξ∆k =

1

2L

∫ L

0

dke
2π
Λ ei∆kz =

ei∆βL − 1

2∆βL
= sinc

[
∆βL

2

]
ei

∆βL
2 . (4.5)

Due to the absence of the poling period in the propagation region, the phase matching
condition within the second integration in Eq.(4.4) is not closed and this makes the
integrand a fast oscillating function, and for this reason we neglect this contribution. On
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the other hand, the third integral is calculated:∫ 2L+l

L+l

dz ei
2πz
Λ ei

∫ z
0 dξ∆k = ei

(∆k+∆k′)l
2 ei∆kL

∫ 2L+l

L+l

dz ei
2πz
Λ ei∆k(z−l−L)

= ei∆kLei
(∆k+∆k′)l

2 ei
2π(L+l)

Λ

∫ L

0

dq ei
2πq
Λ ei∆kq = ei∆βLei

(∆β+∆β′)l
2

ei∆βL − 1

2∆βL

= sinc

[
∆βL

2

]
ei∆βLei

(∆β+∆β′)l
2 ,

(4.6)

and it concerns the second periodically poled section. This term contains information
about the phase modulation in the term ∆β′ = ko(ωp)− ko(ωs)− k′e(ωi) + 2π/Λ, namely
the phase mismatch in the modulator region. The term k′e(ωi) represents the modi�cation
of the wave vector of idler photon following the phase variation. Experimentally, the
phase shift can be achieved via electrooptic modulation, namely by making use of an
external voltage which acts on the refractive index of extraordinary polarized photon.
Mathematically, this means that the di�erence between ∆β and ∆β′ is solely due to the
variation of the wave vector ke(ωi), therefore the phase matching in the modulator region
can be written as:

∆β′l

2
=

∆βl

2
+
ke(ωi)l − k′e(ωi)l

2
=

∆βl

2
+
δke(ωi)l

2
. (4.7)

This formula helps us to de�ne a proper adimensional phase variable φ = δke(ωp/2)l/2,
so that we can express Eq.(4.7) in terms of a mathematically manipulable parameter:

∆β′l

2
=

∆βl

2
+

δke(ωi)φ

δke(ωp/2)
. (4.8)

By summing Eq.(4.5) and Eq.(4.6) in Eq.(4.1), we �nally obtain the JSA of the whole
SU(1,1) interferometer:

F (ωs, ωi) =
C

2L
α(ωs, ωi)

∫ L

0

dz g(z) ei
∫ z
0 dξ∆k

= 2Cα(ωs, ωi) sinc

[
∆βL

2

]
cos

(
2∆βL+ ∆βl + ∆β′l

4

)
ei(∆βL+∆βl/4+∆β′l/4), (4.9)

where the interference pattern is determined by scanning the adimensional parameter φ.
It is interesting to notice that, �xing l = 0, Eq.(4.9) exactly provides the JSA of a

PDC e�ect generated by a waveguide having length 2L:

F (ωs, ωi) = Cα(ωs, ωi) sinc(∆βL)ei∆βL, (4.10)

which is characterized by a narrower JSA in comparison with the single crystal JSA1.
By enhancing the voltage we can induce the phase shift between signal and idler

photons, modulating the output radiation. In this framework, we can plot the evolution

1This argument holds because we assume that the last part of the grating of the �rst waveguide
perfectly matches the grate in the beginning of the second waveguide.
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of the JSI when the phase φ runs from 0 to 2π. This is done in Fig.4.2, where we observe
the pro�le of the JSI for di�erent phases.

It should not be surprising that in the degeneracy frequency ωp/2 the JSI reaches the
maximum value at φ = 0 and drops to zero at φ = π. At the degeneracy point, the phase
matching relation is perfectly ful�lled because of the poling period, and the JSA is merely
modulated as cos(φ/2).

Figure 4.2: The joint spectral intensity |F (ωs, ωi)|2 depending on the phase implemented by the
phase modulator: (a) φ = 0, (b) φ = π/2 and (c) φ = π. The following parameters are chosen: the
CW laser, the KTP (potassium titanyl phosphate) platform, the pump wavelength λp = 766nm,
the crystal length L = 8mm, the distance between the two poling sections l = 10mm, the period
of poling Λ = 126µm [3].

However, for frequencies far from the degeneracy this argument does not hold any
more, and although Eq.(4.9) shows the possibility to modulate JSA and consequently to
manipulate the spectral mode distribution, there is no way to drastically attenuate the
light intensity coming out of the interferometer in this design, as expected in a perfect
interference process. Thus, the extremely low visibility caused by the non-perfect inter-
ference expected in the photon counting makes the estimation of the phase sensitivity
unworthy. A very narrow �lter around the central frequency might solve the problem,
but this solution would attenuate the in�uence of the spectral features we are determined
to investigate. Along the next section this problem will be solved by using an alternative
and more e�cient strategy.

4.1.2 JSA construction: second design

The model introduced above, which is the straightforward realization of the theoretical
SU(1,1) interferometer design on a realistic platform, despite the intuitive structure and
simplicity, does not allow to perform an interference with high visibility, since only the
central frequency is subject to a total attenuation at φ = π. On the contrary, the phase
shift merely induces a modulation of the JSI at other frequencies. Physically, the dis-
persion caused by the di�erent group velocities between signal and idler photons during
the propagation along the device dramatically attenuates the interference, since their
temporal envelopes do not match.

The key point of this section is thus to compensate the group velocities between signal
and idler photons, thereby matching the envelopes in the second periodic poled section
and attenuating the visibility of all frequencies. An elegant way to achieve this result is
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via inserting a polarization converter in the centre of the interferometer, as shown in Fig.
4.3. An intuitive physical explanation is following: since the polarization determines the
group velocity experienced by each photon, we switch the polarizations of both photons
in the middle of the interferometer, so that the faster photon becomes the slowest and
vice versa, thereby matching the temporal envelopes of both photons in the middle of the
second periodic poled section. Finally, the additional phase undergone by idler photon
will determine the constructive or destructive interference.

Figure 4.3: A schematic model of the integrated SU(1,1) interferometer with the time delay
compensation. An incoming pump laser interacts with a periodic poled PDC section, where
signal-idler photons pairs are generated. The idler photon undergoes a phase modulation (PM).
Afterwards, a polarization converter (PC) located in the middle of the device switches polar-
izations of signal and idler photons. Finally, all beams interact in the second PDC section. In
the end, the signal photon is detected. Di�erent colours are used in order to distinguish vertical
(red) and horizontal (blue) polarizations [3].

In order to justify this strategy mathematically, we start by calculating the JSA of
the interferometer proceeding as before, hence obtaining:

F (ωs, ωi) =
C

2
α(ωs, ωi)

[
sinc

[
∆βL

2

]
ei∆βL/2 + sinc

[
∆βL

2

]
× exp

{
i

(
∆βL

2
+ ∆βL+

(∆β′ + ∆β)l

2

)}]
,

(4.11)

where ∆β = ko(ωp)− ke(ωs)− ko(ωi) + 2π/Λ is the phase matching after the polarization
switch. It is evident that this JSA is strongly di�erent with respect to Eq.(4.9), especially
because of the introduction of ∆β. This term will be determinant in the realization of
the interference processes with high visibility, and will play a fundamental role in the
evaluation and optimization of the phase sensitivity of the device.

In order to demonstrate that the presence of ∆β modi�es the JSA enabling an in-
terference scenario with high visibility, we can �rstly perform a Taylor expansion of the
phase matching ∆β around ωp/2 [141, 142]. Assuming to have high correlations between
signal and idler, so that ωi = ωp − ωs, we can express the phase matching in terms of
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signal photon:

∆β ≈ ko(ωp)− ko(ωp/2)− ke(ωp/2) +
2π

Λ︸ ︷︷ ︸
=0

−∂ke
∂ω

(ωp/2)(ωs − ωp/2)− ∂ko
∂ω

(ωp/2)(ωs − ωp/2),

(4.12)

and, by introducing both the detuning Ω = ωs−ωp/2 and the group velocity v = ∂ω/∂k,
it can be rewritten:

∆β ≈ − Ω

ve(ωp/2)
+

Ω

vo(ωp/2)
. (4.13)

Analogously, we use the same procedure for ∆β, achieving:

∆β ≈ − Ω

vo(ωp/2)
+

Ω

ve(ωp/2)
. (4.14)

By comparing Eq.4.13 with Eq.4.14 we �nally obtain

∆β ' −∆β. (4.15)

It is worthy to notice that the Tailor expansion makes sure that this relation holds not only
at ωp/2, but also in its contour. Quantum correlations between signal and idler photons
can be achieved, for instance, by employing a CW laser. This choice also prevents an
additional delay compensation between the generated photons and the pump laser, and
makes the stretching of the pump itself negligible. Substituting Eq.(4.15) in the expression
of the JSA we have

F (ωs, ωi, φ) ' C δ(ωp − ωs − ωi) sinc

(
∆βL

2

)
cos

(
δke(ωi)φ

2δke(ωp/2)

)
e
i
2

(∆βL+δke(ωp/2)l/2),

(4.16)

where δ(ωp−ωs−ωi) is the Dirac delta function describing the CW laser. In our calcula-
tions the CW regime is numerically simulated by setting a pump with a very large pulse
duration, thereby covering the whole interferometer.

The peculiarity of the JSA in Eq.(4.16) is that,as long as δke(ωi)
δke(ωp/2)

' 1 holds, it cor-
responds to the two-photon amplitude of a single PDC source entirely modulated by a
factor cos(φ/2) , namely in the contour of ωp/2. The timing compensation yielded by
the presence of the PC along with the high correlations due to the CW laser enable the
modulation of the whole JSA, which vanishes at φ = π entirely, in deep contrast to the
former model introduced in the previous section.

It is worthy to emphasize that the employment of the CW laser is actually a crucial
point of our argumentation. In principle, along this manuscript we experienced two dif-
ferent strategies for reaching a high correlation between signal and idler photons. Indeed,
beside the tuning of the pulse duration, in Section 3.1.3 we made use of a special pulsed
pump having a quadratic phase. In that scenario, we were able to increase the degree
of correlation between signal and idler photons without reducing the spectral bandwidth
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Figure 4.4: Normalized to one (a) the pump spectral bandwidth α(ωs, ωi), (b) the phase
matching function f(ωs, ωi) and (c) the joint spectral intensity |F (ωs, ωi)|2 in the single-mode
regime when φ ' π. The pulse duration is τ = 0.35ps, the length of the crystal is L = 8mm. By
increasing the pulse duration, α(ωs, ωi) gets narrower with respect to the ωs = ωp−ωi diagonal,
this leads to zero overlap between α(ωs, ωi) and f(ωs, ωi) and purely destructive interference [3].

of the pump laser. However, this choice is not preferable in this case; and on the con-
trary, the biphoton state of the interferometer itself suggests to increase the correlations
between signal and idler photons by drastically reducing the pump bandwidth, namely
via utilizing a CW laser.

We base the employment of the CW laser on the spectral analysis of the SU(1,1)
interferometer, starting from Fig. 4.4. The picture shows the pump spectrum, the phase
matching function and the JSI of the SU(1,1) interferometer modelled in Fig.4.3 at φ = π
when a pulsed pump spectrally described by Fig.4.4a crosses the two PDC sections. The
peculiar shape of the phase matching function in Fig.4.4b stems from the natural positive
orientation of the phase matching of KTP on the ωs−ωi diagram as well as the modi�cation
imprinted by the presence of the PC. The dip along the antidiagonal ωs = ωp−ωi appears
at φ = π, following the additional phase modulation experienced by idler photon. Due to
its large spectral bandwidth, the overlapping between the pulsed pump in Fig. 4.4a and
the lobes of the phase matching function in Fig. 4.4b determines the presence of residual
photon, whose non-vanishing JSI is depicted in Fig. 4.4c. The choice of a CW laser
becomes intuitively clear: it enables the pump pro�le to �t into the antidiagonal dip of
the phase matching function, thereby reducing the overlap dramatically and consequently
almost annulling the output number of photons. Next section we demonstrate that by
phase scanning the photon number with respect to the phase φ we will trace an interference
curve with maximized visibility, which is a necessary condition for having high sensitivity
[55].

4.1.3 The interference pattern

In the last section we delineated the pro�le of the JSA and consequently the expression
of the biphoton state, now we can use them as start point for visualizing the interference
pattern, namely the oscillating output intensity in the range φ ∈ [0 − 2π]. This can be
done by estimating the output number of photons in relation to the phase. In order to
calculate the photon number, we proceed as in Section 2.1.3. From the expression of the
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JSA in Eq.(4.11) we performed the Schmidt decomposition, so that we can decompose the
JSA in terms of eigenvalues λk(φ), and spectral modes uk(ωs, φ) and vk(ωi, φ) for signal
and idler respectively, which are dependent on the parameter φ:

F (ωs, ωi, φ) =
∑
k

√
λk(φ)uk(ωs, φ)vk(ωi, φ). (4.17)

By introducing the input Schmidt operators as in Section 2.1.3 and then solving the
coupled Heisenberg equations with the use of the Bogolyubov transformations, we obtain
the output Schmidt operators of the SU(1,1) interferometer:

Aoutk = Aink cosh γk(φ) + (B†k)
in sinh γk(φ),

Bout
k = Bin

k cosh γk(φ) + (A†k)
in sinh γk(φ).

(4.18)

where γk(φ) = 2G(φ)
√
λk(φ) and G(φ) =

∫
C(φ)Γdt is the experimental gain. An equiva-

lent set of Heisenberg equations can be solved for the annihilation and creation operators
in the plane wave modes:

aout(ωs) = ain(ωs)

+
∑
k

uk(ωs, φ)

[
Aink

(
cosh

[
G(φ)

√
λk(φ)

]
− 1
)

+ (B†k)
in sinh

[
G(φ)

√
λk(φ)

] ]
,

bout(ωi) = bin(ωi)

+
∑
k

vk(ωi, φ)

[
Bin
k

(
cosh

[
G(φ)

√
λk(φ)

]
− 1
)

+ (A†k)
in sinh

[
G(φ)

√
λk(φ)

] ]
.

(4.19)

The set of operators in Eq.(4.19) will be utilized soon, when the investigation of the
SU(1,1) interferometer will be extended to �ltering and seeding scenarios.

It is important to observe that the Schmidt modes calculated starting from the JSA in
Eq. (4.11) are drastically di�erent from the modes expected by the JSA in Eq.(4.9). In-
deed, the spectral modes in the current scheme are closely similar to the modes originated
by a single periodic poled waveguide. This is not surprising, being the JSA in Eq.(4.16)
equivalent to Eq.(2.31) and parametrically modulated by a factor scarcely dependent on
the frequency, as it was already mentioned above.

Once the Schmidt operators are de�ned, we can proceed calculating the output photon
number of the SU(1,1) interferometer:

〈Ns(φ)〉 =
∑
k

sinh2 γk(φ). (4.20)

This expression strictly depends on the spectral features of the PDC processes and it is
parametrically modulated by the phase φ, which determines the interference pattern. We
plot the expression above at di�erent φ in Fig.4.5.

The picture represents the photon number when a CW laser and a pump laser with
the same bandwidth as in Fig 4.4a are utilized. It is evident that the employment of
CW laser has a positive e�ect on the interference curve: the number of photons drops
close to zero at φ = π, leading to a maximization of the visibility. On the contrary, the
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red curve su�ers a clear lack of visibility stemming from residual photons, whose JSA at
φ = π is depicted in Fig.4.4c. The di�erent trends remarked in such curves have crucial
consequences in the phase sensing estimation, as it will be seen in the next section.

Figure 4.5: The comparison between the number of photons in the case of pulsed laser (the
pulse duration τ = 0.35ps, red line) and CW regime. In order to have a situation with the
resulting number of photons being nearly identical at φ = 0, di�erent pump intensities are used
for the two pumping regimes. The following parameters are chosen: L = 8mm, λp = 766nm,
l = 10mm, Λ = 126µm [3].

The trend in Fig.4.5 clearly demonstrates how the visibility of the interference pattern
can be drastically improved by making use of CW laser. On the contrary, the intensity
of the output light can be controlled by the parametric gain of the process. In this work,
the parametric gain is de�ned as γ = 2G(0)

√
λ1(0), namely the squeezing parameter of

the interferometer at φ = 0 calculated with respect to the �rst spectral mode. We can
numerically manipulate it by varying the coupling constant Γ, enabling to span a range
of mean photon number between 〈N(φ = 0)〉 ≈ 0.12 for γ ' 0.04 and 〈N(φ = 0)〉 ≈ 109

for γ ' 10.0.

4.1.4 Estimation of the phase sensitivity

Along this chapter we formulated the mathematical model to describe an integrated
SU(1,1) interferometer, showing that we can maximize the visibility of the interference
pattern via spectral engineering of the photon state. The high visibility of the interference
pattern eases an enhancement of the phase scanning accuracy beyond the SNL [55]. In
this section we want to investigate the performance of this device by estimating the phase
sensitivity with respect to the phase φ.
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As already exposed in the �rst part of this work, the start point in the calculation
of the phase sensitivity of the SU(1,1) interferometer is the formula given in Eq.(2.57),
where the signal photon number operator N̂s takes the place of the generic observable
Ô. However, di�erently from Section 2.2.6, the output operators of the interferometer
coincide with the output Schmidt operators of PDC processes given in Eq.(4.18).

The two necessary elements to estimate the phase sensitivity are therefore the variance
and the derivative of the average number of photons, which was already calculated in the
previous section. From Eq.4.20 we can immediately calculate the derivative:

d〈N〉
dφ

=
∑
k

sinh
[
2G(φ)

√
λk(φ)

]
×

(
dG(φ)

dφ

√
λk(φ) +

G(φ)

2
√
λk(φ)

dλk(φ)

dφ

)
,

(4.21)

whereas the variance is:

〈∆2N〉 =
∑
k

sinh2
[
G(φ)

√
λk(φ)

]
cosh2

[
G(φ)

√
λk(φ)

]
. (4.22)

Figure 4.6: Phase sensitivity in relation with the phase at di�erent gain. The SNL is plotted
in black [3].

The normalized phase sensitivity of the SU(1,1) interferometer is plotted for di�er-
ent gain in Fig.4.6. Our analysis shows that the sensitivity achieved by this device is
comparable with and even overcomes the SNL. In order to demonstrate this point, we
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compare the phase sensitivity achieved by using Eq.(2.57) with the SNL calculated for
this interferometer via Eq.(2.58), where the internal number of photons corresponds to

〈Nin〉 =
∑
k

sinh2 [G1
√
ηk] , (4.23)

where ηk are the Schmidt eigenvalues of the single periodically poled waveguide. In
this expression G1 =

∫
C1(Γ/2)dt, is the experimental gain of one PDC and it is taken

into account that the coupling constant of a single PDC section is twice smaller than
the coupling constant of the double-PDC-section of the SU(1,1) interferometer; in this
notation, C1 is the normalization constant corresponding to the JSA of a single PDC
section.

Figure 4.7: The minimum values of the normalized phase sensitivity presented in Fig.4.6 versus
gain γ. The higher the gain, the faster the phase sensitivity grows. The SNL is plotted in black [3].

This is one of the main results of this work. In fact, according to this analysis we
can state that it is possible to realize an integrated SU(1,1) interferometer whose phase
sensitivity overcomes the SNL. Furthermore, the trend of the curves in Fig.4.6, and in
particular the presence of the central peak at φ = π, highlights the deep di�erences
between the previous results presented in literature [66, 71, 78, 123] and the new results
derived by the realistic model we delineated in this chapter. In this framework, the
presence of this peak is due to fact that the relation ∆β ' −∆β does not hold for
higher order of the Taylor expansion, nor for high frequency detuning, namely |Ω| �
0. As a consequence, residual photons emerge, causing the non-perfect interference and
therefore also the non-vanishing photon number and variance in Eqs.(4.20) and (4.22)
respectively. On the contrary, the derivative of the number of photon in Eq.(4.21) is
exactly zero, making the phase sensitivity diverging at φ = π. In this context it becomes
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clear that, despite our e�orts, material dispersion still plays a crucial role in the modelling
of realistic SU(1,1) interferometer, hindering the possibility of having a perfect interference
and therefore higher sensitivity.

Explicit dependence on the gain

The graphs in Fig.4.6 evidently show that the interferometer can work beating the SNL,
but it also presents a gradual worsening of the phase sensitivity for higher gain, until the
curve entirely lies above the black line of the shot noise limit. A better perspective of this
behaviour is traced by Fig.4.7, where the minimum of the normalized phase sensitivity is
plotted at di�erent gains.

The behaviour of the phase sensitivity at increasing gain can be analytically clari-
�ed. For the sake of simplicity, let us �rst distinguish two regimes: the low gain regime
G(0)

√
λ1(0) � 1, from the high gain regime, in which G(0)

√
λ1(0) � 1. These two

conditions are reached by manipulating the coupling constant Γ opportunely.
In case of low gain, both the output number of photons in Eq.(4.20) and the internal

photon number in Eq.(4.23) can be Taylor expanded with respect to Γ, obtaining

〈N(φ)〉 ' G2(φ)
∑
k

λk(φ) = G2(φ), (4.24)

and
〈Nin〉 ' G2

1

∑
k

ηk = G2
1, (4.25)

respectively. Similarly, we can apply a Taylor expansion on the variance,

〈∆2N〉 ' G2(φ)
∑
k

λk(φ) = G2(φ). (4.26)

In all Eqs.(4.24) to (4.26) we took advantage of the normalization of the Schmidt eigenval-
ues. Also, it seems convenient to assume C1 ≈ C(0) and λk(0) ≈ ηk. These assumptions
are based on the fact that the JSA in Eq.(4.16) at φ = 0 in formally identical to the JSA
of one PDC waveguide. By both calculating the new derivative of the photon state from
Eq.(4.24) and assuming for the sake of simplicity G(φ) = G(0)|cos(φ/2)| (this expression
holds at 0 < φ < π in the low gain regime), we �nally obtain the expression of the
normalized phase sensitivity in the low gain regime:

〈∆φ〉
〈∆φSNL〉

≈

∣∣∣∣∣G(0)

4

(
∂G(φ)

∂φ

)−1
∣∣∣∣∣ ≈ 1

2 sin(φ/2)
. (4.27)

Such expression can be minimized in the proximity of φ = π, reaching the value 0.5 for
very low gain, as shown in Fig.4.7. Moreover, we notice that in the low gain regime there
is no dependence of the normalized phase sensitivity on the parametric gain γ.

In order to investigate the behaviour of the normalized phase sensitivity in the high
gain regime, we have to proceed in two di�erent ways. In fact, in this regime the contribu-
tion of the �rst Schmidt mode becomes dominant, following a redistribution of the mode
weights, namely the eigenvalues [52]. This allows us to momentarily reduce the amount
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of modes and focus our argumentation on the �rst Schmidt mode. This induces an un-
derestimation of both photon numbers in Eqs.(4.20) and (4.23), becoming respectively

〈Ns(φ)〉 ≈ sinh2
[
G(φ)

√
λ1(φ)

]
, (4.28)

and
〈Nin〉 ≈ sinh2 [G1

√
η1] , (4.29)

as well as of the variance in Eq.(4.13), whose expression is reduced to

〈∆2N〉 ≈ sinh2
[
G(φ)

√
λ1(φ)

]
cosh2

[
G(φ)

√
λ1(φ)

]
. (4.30)

By taking again advantage of the shape of the JSA in Eq.(4.16) at φ = 0, we can write
C1 ≈ C(0) and λk(0) ≈ ηk, and the parametric gain can be therefore expressed in terms
of both single- and double-PDC parameters as

γ = G(0)
√
λ1(0) ' 2G1

√
η1. (4.31)

Finally, the modulation of the JSA in Eq.(4.16) by cos(φ/2) allows us to writeG(φ)
√
λ1(φ) ≈

γ|cos(φ/2)|, and we can rewrite the normalized phase sensitivity as

∆φ

∆φSNL
≈ sinh[γ/2]

γ sin(φ/2)
. (4.32)

Although this expression can explain the exponential growth of the curve in Fig.4.7,
the strategy here adopted does not hold for any value of φ. Indeed, in the proximity
of φ = π a �attening of the distribution of the eigenvalues occurs, causing all modes
to contribute with the same weight. However, since the underestimation of the Schmidt
modes is not fruitful around φ = π, we can resort to another trick, namely overestimating
the weight of the modes. In particular, we assume to have only K modes having all
eigenvalue λ1(φ). In this framework, K = 1/(

∑
k Λ2

k) is the e�ective number of modes
(the Schmidt number) and

Λk =
sinh2

[
G(φ)

√
λk(φ)

]
∑

k sinh2
[
G(φ)

√
λk(φ)

] (4.33)

is the new set of Schmidt coe�cients taking into account the redistribution of the weights
in the high gain regime [136]. This strategy allows us to rewrite both the photon number
and the variance as

〈N(φ)〉 ≈ K sinh2
[
G(φ)

√
λ1(φ)

]
, (4.34)

and
〈∆2N〉 = K sinh2

[
G(φ)

√
λ1(φ)

]
cosh2

[
G(φ)

√
λ1(φ)

]
. (4.35)

We apply the same procedure to the SNL, obtain an expression for the internal number
of photons very similar to Eq.(4.34). We conclude observing that the new strategy leads
to the same expression achieved in Eq.(4.32). The optimization of this formula occurs
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in the proximity of φ = π, and the behaviour of the normalized phase sensitivity can be
�nally rewritten by

∆φ

∆φSNL
≈ sinh[γ/2]

γ
. (4.36)

The expression above fully resumes the trend of the normalized phase sensitivity plot-
ted in Fig.4.7: in the low gain, it tends to a constant value, i.e it does not dependent on
the gain. On the contrary, it grows exponentially for higher gain beyond the SNL.

4.1.5 Filtering the JSA

Along this work the choice of the PDC as part of the SU(1,1) interferometer was supported
because of the possibility to generate squeezing states in realistic experimental scenarios.
Although this was helpful for the accomplishment of an accurate analysis of the realistic
SU(1,1) interferometer, we faced that the presence of the spectra of both signal and idler
photon drastically complicates the analysis of the performance of the interferometer. Yet
it has become clear that a deep knowledge of the spectral features of the output radiation
o�ers more perspectives in the improvement of the phase sensitivity. In this section we
want to �gure out whether the manipulation of the photon spectra has any in�uence on
the phase sensitivity. In particular, we will test the performance of the interferometer
after the �ltering of a speci�c frequency range.

In principle, according to the results of last two sections, a sort of improvement has to
be expected. Indeed, it was claimed that the presence of the central peak in Fig.4.6 was in
good part due to the presence of residual photons for high detuning |Ω| � 0. By �ltering
out high-detuned frequencies we expect a reduction of the output intensity which is more
remarkable in the proximity of φ = π, where the interference pattern is more sensible to
the presence of red and blue (with respect to ωp/2) photons. In the end, the �lter should
cause a slight enhancement of the visibility and therefore an improvement of the phase
sensitivity.

In order to demonstrate the validity of our hypothesis, we estimate the phase sensitivity
of the SU(1,1) interferometer when only a speci�c portion of the spectrum is counted,
whereas the leftover radiation is �ltered out. Mathematically, this means to calculate
both the photon number and the variance in one speci�c range of frequency. In this
framework, the employment of the output Schmidt operators is not fruitful, since they
are already integrated with respect to the whole frequency range. On the contrary, we
make use of the plane wave basis introduced in Eq.(2.44) [52], and integrate the average
of the signal photon number in a speci�c range of frequency around ωp/2:

〈Ns(φ)〉 =

∫ ωp/2+δ

ωp/2−δ
dωs〈a†outs (ωs)a

out
s (ωs)〉

=
∑
k

sinh2 γk

∫ ωp/2+δ

ωp/2−δ
dωs|uk(ωs, φ)|2,

(4.37)

where δ determines the �lter bandwidth and γk = G(φ)
√
λk(φ). The variance is calculated
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Figure 4.8: The normalized JSI at φ = 0: (a) without �lter, (b) with the �lter (bandwidth
5.71·1012 rad/s) [3].

following the same procedure:

〈∆2Ns(φ)〉 = 〈Ns(φ)〉

+
∑
kk′

∣∣∣∣∣
∫ ωp/2+δ

ωp/2−δ
dωsu

∗
k(ωs, φ)uk′(ωs, φ) sinh γk sinh γk′

∣∣∣∣∣
2

,
(4.38)

where the �rst term corresponds to Eq.(4.37). The phase sensitivity can be evaluated via
Eq.(2.57), calculating �rstly the derivative of Eq.(4.37).

Before giving an estimation of the phase sensitivity in comparison with the SNL, it
is fundamental to recount also the internal number of photons following the �ltering. In
this circumstance, this number corresponds to the photons leaving a single PDC section
and subjected to a band-pass �lter before entering the phase modulator, namely

〈Nin〉 =
∑
k

sinh2 [G1
√
ηk]

∫ ωp/2+δ

ωp/2−δ
dωs|ūk(ωs)|2, (4.39)

where ūk(ωs) is the orthonormal set of signal Schmidt modes corresponding to a single
periodic poled waveguide.

The speci�c �lter we used in our model, applied on the signal photon, covers the
main body of the JSA around ωp/2 (see Fig.4.8a) and cuts the side-lobes of the sinc
function (Fig.4.8b). In this case, the selected �lter bandwidth is 2δ = 5.71 ·1012rad/s. As
mentioned in the beginning of this section and shown in Fig.4.8b, this choice allows us to
exclude the portion of radiation having large detuning. The phase sensitivity calculated
via Eq.(2.57) and normalized by the SNL calculated via Eq.(4.39) is plotted for di�erent
gains in Fig.4.9.
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Figure 4.9: The normalized phase sensitivity with and without a �lter for di�erent gains: (a)
γ = 1.3, (b) γ = 2.5 and (c) γ = 5.0. (d) The zoom of the supersensitivity region for γ = 2.5 .
The solid red line shows the case without a �lter, the dashed blue line presents the �lter case [3].

Figure 4.10: The minimum values of the normalized phase sensitivity versus gain γ with and
without the use of the �lter. The SNL is represented by a solid black line [3].
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From the comparison with the no-�lter case in Section 4.1.4, these graphs bring to
light the overlap of the no-�lter (red) curve and the �lter (dotted blue) curve as long
as the phase φ assumes values far from π. This behaviour is not surprising: as long as
φ 6= π, the JSA holds its shape in Fig.4.8a and both variance and photon number keep
their functional trend with respect to the phase.

On the contrary, in proximity of π the phase sensitivity experiences a new trend. In
particular, Fig.4.9d highlights the drastic reduction of the peak width, inducing both
a deepening of the minimum of the curve and a widening of the supersensitivity range,
hence a global improvement of the phase sensitivity. As mentioned in the beginning of this
section, this result stems from the reduction of the remarkable in�uence of high-detuned
frequencies in the photon counting, quite determinant at φ ' π. However, the central
peak at φ = π cannot vanish at all. Although the �lter drastically suppresses part of
the �uctuation of the JSA for high frequency detuning, some noise remains around ωp/2,
stemming also from second order e�ects.

Finally, the minima of the phase sensitivity curves is plotted for di�erent gain in
Fig.4.10. Here the comparison shows the improvement of the sensitivity in case of �ltering
by comparison with the no-�ler case. However, the exponential worsening at higher gain
persists, until the phase sensitivity lies entirely over the SNL line.

4.1.6 Conclusion

The complexity of the system we are testing along this chapter, mainly due to the spectral
features of the photon sources as well as our design in a integrated device, required a
detailed analysis of the JSA, mostly focussed on an accurate phase matching construction.

As �rst con�guration, we described the JSA of a integrated SU(1,1) merely consisting
of two periodic poled PDC sections, spatially separated by a non-poled section made of
the same material (KTP). Although this intuitive model allows to achieve a modulation
of the JSA, it is not particularly fruitful for phase sensing tests, because the interference
fringes stemming from the modulation of the photon number would have a very scarce
visibility.

In order to drastically increase the visibility of the intensity modulation, a structural
change of the SU(1,1) interferometer was performed, in particular, a polarization con-
verted was added along the waveguide in order to reduce the mismatch of signal and idler
photons caused by dispersion. The modi�cations on the phase matching function due to
the presence of the PC, along with the use of a CW laser, cause a drastic improvement
of the fringe visibility, illustrated by a photon number pro�le tending to zero at φ = π.
Consequently, the phase sensitivity calculation yielded promising results, in which the
phase sensitivity of the SU(1,1) interferometer beats the SNL and a wide supersensitivity
region is achieved.

Finally, we explored the e�ect of both di�erent gains and �lters. It was seen that the
normalized phase sensitivity increases for higher gain with a damped exponential trend.
On the other hand, �ltering the JSA seems to induce positive e�ects, corresponding to
both a broadening and a deepening of the supersensitivity region with respect to the
no-�lter case.
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4.2 Seeding the multimode SU(1,1) interferometer

4.2.1 Introduction to the seeding strategies

The transition from a single-mode to the multimode description of the SU(1,1) interfer-
ometer along this chapter was quite challenging and has highlighted the presence of many
problems and di�culties to take into account. Another element we still have to consider
in our multimode framework is the possibility of seeding the interferometer. We already
know that the use of seeds in interference scenarios is a common practice in quantum inter-
ferometry and quantum metrology. In this section we will see that the concept of seeding
the spectrally multimode interferometer is a non-trivial point that must be clari�ed.

The seeding of the SU(1,1) interferometer was introduced along this work in Section
2.2.6, where a coherent state was used as seed in the single mode description. It is clear
that the presence of a seed can modify the outcome of the phase sensing test. For instance,
in [71] the coherent state applied in one of the two channel of the interferometer makes
the supersensitivity region narrower in comparison with the no seeding case. However,
other tests like in [66] or [78] show that coherent states as seed certainly allows to break
the SNL, getting a even better phase sensitivity for higher gain. This argument holds
when di�erent seeding states are used in the input doors as well, for instance a mix of
coherent and squeezed states as suggested in [123].

It is clear that, once the deep di�erences with respect to the single mode investigation
are clari�ed, we should wonder how we can introduce the seed in the multimode framework
and which kind of bene�ts we can achieve from this choice. In fact, the number of seeding
combinations in a spectrally multimode framework is e�ectively countless. We can notice
that the orthonormality of the Schmidt modes as well as the spectra of both signal and
idler photons put forth several seeding scenarios, which could not be explored in the
single mode framework. In simple words, the multimode SU(1,1) interferometer makes
the seeding choice far to be a trivial issue.

By taking advantages of the complexity of our system, we will test two speci�c strate-
gies: "mode seeding" and "frequency seeding". The former consists of an input state in
the Schmidt basis, in particular we create a seed state in one of the spectral modes of the
interferometer. In future, one can imagine to extend this case by selecting combinations
of di�erent modes. The latest concerns the presence of an input plane wave mode at one
selected frequency. A more general case can be analysed in future work, where multicolour
seeds can be envisaged.

Lastly, the possibility of seeding the mutimode SU(1,1) interferometer opens the door
to the use of alternative detection strategies, which drastically amplify the possible sce-
narios to explore. In this section, we will mainly focus on two detection strategies. The
�rst one, which will be develop in the �rst part of the section and already extensively
utilized along this work, is the direct detection. The second one, which will be introduced
properly in the last part of this section, is the homodyne detection. In all cases we will
consider seeding inputs in the signal mode of the interferometer.
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4.2.2 Direct detection

The �rst strategy we are going to test was called "mode seeding" and consists in preparing
an input state in one of the spectral mode of the interferometer2. More precisely, we will
seed the �rst Schmidt mode with one photon and with a bright coherent state.

Seeding the �rst Schmidt mode with one photon

As �rst case, let us suppose to seed one channel of the interferometer with only one photon
in the �rst Schmidt mode. This can be mathematically expressed as:

|ψ〉in = |1〉A1|0〉An 6=1
|0〉Bn , (4.40)

where we explicitly indicated the presence of one photon in the �rst channel of the in-
terferometer prepared in the �rst Schmidt mode. All other input modes are not seeded.
Since we did not change the detection strategy, we can make use of the same procedure
used so far. We can therefore start calculating the number of photons:

〈N〉 =
∑
k

sinh2 γk + 1 + sinh2 γ1 (4.41)

where γk = 2G(φ)
√
λk(φ). In this formula we can immediately recognise the �rst term,

being the vacuum contribution already known in Eq.(4.20), whereas both second and last
term are direct consequences of the seeding choice: the second term merely corresponds
to the additional photon due to the seeding, and the last term identi�es the surplus of
photons due to te interaction of such photon with the sources. Naturally, further changes
are also observed in the photon variance:

〈∆2N〉 =
∑
k

sinh2 γk cosh2 γk + sinh2 γ1 cosh2 γ1, (4.42)

where the last term raises because of the seeding choice.
By performing the derivative of Eq.(4.41), we are now able to calculate the normal-

ized phase sensitivity, which is plotted in Fig.4.11. Although this picture seems to present
results comparable with Fig.4.6, a worsening in the phase sensitivity is immediately ob-
servable, and it becomes even more clear by looking at Fig.(4.12), where we plotted the
minimum of the phase sensitivity by �xing di�erent gains. In particular, it is evident a
divergent trend for small gain, in contrast with the no seeding case.

2It is crucial to notice that all output Schmidt mode pro�les depend on the phase. This dependence
becomes more evident for values around φ = π, namely when the light intensity dramatically drops and
spectral irregular behaviours emerge, and this should be taken into account in eventual future experi-
mental testing.
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Figure 4.11: Phase sensitivity in relation with the phase at di�erent gain when the �rst mode
is seeded with 1 photon. The SNL is plotted in black. Length of the PDC sections was LPDC =
8mm, pump laser wavelength λp = 766nm, pulse duration t = 100ps [3].

Figure 4.12: The phase sensitivity trend in Fig.4.11 at the point of minimum with respect to
the gain (red circles) compared to the no-seeding case (black squares). The SNL is plotted in
black. The insert shows the zoom of the phase sensitivity in the seeded case for small gains [3].

91



This behaviour mathematically stems from the combination of di�erent factors: by
calculating the shot noise limit,

∆φSNL =
1√

1 + sinh2[Gsc
√
η1] +

∑
k sinh2[Gsc

√
ηk]

, (4.43)

we can see that for lower gain the second and the third term inside the square root become
negligible, and the SNL tends to the unity. On the other hand, the phase sensitivity still
scales as 1/Γ, as we proved in Section 4.1.4. This explains why the normalized phase
sensitivity diverges for low gain. The divergence for higher gain is still motivated by the
fact that the normalized phase sensitivity function grows exponentially, and the presence
of one additional photon in the high gain regime does not lead to any dramatic changes.

Seeding the �rst Schmidt mode with a coherent state

The case analysed above demonstrates that working in the Schmidt basis is conceptually
similar to having an in�nite set of inputs for both doors of the interferometer. These
inputs can be treated independently, and one can use di�erent statistics for seeding them
individually. As a further example, our next step consists in using a coherent state rather
than a single photon seed. In order to investigate this case mathematically, we start again
de�ning the current input state:

|ψ〉in = |α〉A1|0〉An6=1
|0〉Bn , (4.44)

where α2 is a real parameter corresponding to the number of coherent photons, having
therefore a Poissonian distribution. We assume that the number of coherent photons are
equal to one million henceforth. We expect that such huge value drastically modify the
outcome. Indeed, the di�erence becomes signi�cant by looking at the photon number,

〈N〉 =
∑
k

sinh2 γk + |α|2 + α2 sinh2 γ1, (4.45)

where we can immediately see that last two terms are predominant with respect to the
�st one due to the presence of α2. In a low gain regime, the �rst term becomes negligible.
Instead, we need to strongly pump the PDC in order to make the second term negligible.
Similar considerations can be done by looking at the internal number of photons, contained
in the shot noise limit:

∆φSNL =
1√

α2 cosh2[G1
√
η1] +

∑
k sinh2[G1

√
ηk]

, (4.46)

where it is clear that the �rst term inside the square root is dominant in the low and
middle gain regime. Another remarkable di�erence with respect to the single photon
seeding is the variance:

〈∆2N〉 =
∑
k

sinh2 γk cosh2 γk + α2 cosh2 γ1 cosh 2γ1, (4.47)
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where the second term looks very di�erent from the relative one in Eq.(4.42). However,
as it is shown in Fig.4.13 this choice does not provide any meaningful outcome. Despite
the possibility of modifying the output by varying the gain parameter, all values of the
phase sensitivity lies above the SNL, making this seeding choice unworthy with this type
of detection.

Figure 4.13: The normalized phase sensitivity on the phase for di�erent gains. The �rst
Schmidt mode of the signal photon is seeded with an intense coherent state having |α|2 = 106

photons. The SNL is represented by a solid black line [3].

This behaviour is proved mathematically, by making use of the assumption α2 �∑
k sinh2 γk, namely imposing that the number of coherent photons is much higher than

the number of squeezing photons generated by the PDC. This approximation holds in
both low and middle gain regimes, which are the regimes we are interesting in, being
the phase sensitivity divergent for higher gains. We can therefore �rstly calculate the
derivative of N, which is: ∣∣∣∣∂〈N〉∂φ

∣∣∣∣ ≈ |α|2 cosh 2γ1
∂γ1

∂φ
, (4.48)

whereas the variance is reduced to:

〈∆2N〉 ≈ |α|2 cosh2 γ1 cosh 2γ1. (4.49)

In this regime, also the SNL can be approximated:

∆φSNL ≈
1√

α2 cosh2[C
√
η1]
, (4.50)
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and by collecting all these elements we can write down a reduced expression of the nor-
malized phase sensitivity:

∆2φ

∆2φSNL
≈ (1 + coth2 γ1) cosh2 [G1

√
η1]

∣∣∣∣∂γ1

∂φ

∣∣∣∣−2

. (4.51)

The similarity between the JSA in Eq.(4.16) at φ = 0 and the JSA of a single waveguide
o�ers us the possibility to assume λ1(0) ' η1 and G(0) ' 2G1; hence the gain γ can be
expressed as γ ' 2G1

√
η1. Moreover, the modulation of the gain can be simpli�ed as

γ1 ≈ γ|cos(φ/2)|, therefore in the range {0− π} we have

∆2φ

∆2φSNL
≈

4
(
1 + coth2[γ cos(φ/2)]

)
cosh2[γ/2]

γ2 sin2(φ/2)
. (4.52)

and a plot of this formula (or alternatively a calculation of the minimum point with
respect to the variable φ) shows that there is no value of γ letting the phase sensitivity
overcome the SNL.

A last chance to get an improvement of the supersensitivity region with this seeding
choice is given by a di�erent detection strategy, which will be the topic of next section.

4.2.3 Homodyne detection

The possibility of seeding encourages us to explore other suitable solutions for estimating
the phase sensitivity of the multimode SU(1,1) interferometer. One way is to take advan-
tage of coherent seeding states by adopting another detection strategy, for instance the
homodyne detection. The �rst consequence linked with this choice, is the modi�cation
of the de�nition of phase sensitivity, which is not related to the photon number anymore
but to the homodyne operator:

∆φ =

∣∣∣∣ |∆Hd|
∂〈Hd〉/∂φ

∣∣∣∣. (4.53)

Along this section we will experience that the form of such operator depends on the
seeding state of the interferometer. In Section 2.2.4, and more precisely in Eq.(2.68),
it was seen that the homodyne operator Hd is linearly proportional to the creation and
annihilation operators; this forces us to deal with coherent input states, i.e. eigenstates
of a and a†, since the mean values of Hd would return zero in case of seeded Fock states.

It is important to recall that the homodyne detection makes uses of an additional
beam, called local oscillator. In our multimode scenario, it is crucial to make sure that the
output light of the SU(1,1) interferometer and the local oscillator are spectrally matched.
In order to ensure this, both the LO and the signal leaving the interferometer undergo
the same �ltering.

The spectral characteristic of the �lters are modelled in accordance with the di�erent
types of seeding states. We will consider two cases: �rstly, we will use for the last time
the seed in the �rst Schmidt mode, while in the last example we will consider a passband
�lter around the central frequency of generated squeezed light. We stress that the SNL
calculation takes these modi�cations into account as well: the mean number of photons in
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the SNL corresponds to the number of signal photons generated by a single periodically
poled waveguide, averaged with respect to the input seeding state, and then �ltered to
match the spectral properties of the output squeezed light.

Seeding the �rst Schmidt mode with a coherent state

As �rst case, we consider a seed state like Eq.(4.44), where the �rst Schmidt mode contains
α2 = 106 Poissonian distributed photons, with again α ∈ R. The detection scheme is
sketched in Fig. 4.14.

Figure 4.14: Filter in the �rst Schmidt mode A1 and homodyne detection scheme. The LO
spectrum is characterized by the same frequency distribution.

In this model, the signal photon leaving the interferometer passes through a �lter,
where all but the �rst Schmidt mode is �ltered out. In this way, the spectrally single mode
signal photon is subject to the homodyne detection: the incoming radiation interacts in a
balanced BS with the local oscillator characterized by the same frequency range of signal;
then, both beams leaving the BS reach two detectors, and the intensity di�erence between
the detected radiation is estimated. Mathematically, by indicating with b, c, and d the
annihilation operators of the LO and the two output BS channels respectively, this is
resumed by

c†1c1 − d†1d1 = A†1b1 − b†1A1, (4.54)

where the index 1 stems from the �lter with respect to the �rst Schmidt mode. By tracing
out the LO and rewriting we get an expression for the homodyne operator

Ĥd = |βlo|
(
eiθaÂout1 + e−iθa

[
Âout1

]†)
, (4.55)

where we introduced |βlo| and θa, namely the amplitude and the phase of the local os-
cillator described by the coherent state ||βlo|eiθa〉A1 . As already mentioned, the spectral
bandwidth of the LO matches the bandwidth of the �rst Schmidt mode.
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By following the usual procedure, in order to estimate the phase sensitivity we need
to calculate the average value of Eq.(4.55):

〈Ĥd〉 = 2|βlo| cos θa cosh γ1, (4.56)

the variance of the homodyne operator:

〈∆2Hd〉 = |βlo|2 cosh 2γ1, (4.57)

and the expression of the SNL:

∆φSNL =
1√

1 + sinh2[C1
√
η1] + sinh2[C1

√
η1]
. (4.58)

The normalized phase sensitivity can be optimized for θa = 0, and its trend is very closely
described by Fig. 4.13. This means that this seeding does not show a supersensitivity
region. This last test concludes the experience of seeding the �rst Schmidt mode.

Seeding the central frequency ωp/2

The second seeding case we want to investigate via homodyne detection concerns an input
state characterized by a coherent state in the central frequency ωp/2. The adapted scheme
is sketched in Fig. 4.15.

Figure 4.15: Filter in the central frequency ωp/1 and homodyne detection scheme. The LO is
set in the same frequency of signal photon.

In this new scenario, the light leaving one of the two channels of the interferometer is
subjected to a frequency �lter, isolating the central frequency ωp/2. We make sure again
that the range of frequencies of the LO and the output signal match.
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Mathematically, the input state of the detection scheme is described by

|ψ〉in =

∫
dωsδ(ωs − ωp/2)|α〉ωs|0〉ωi , (4.59)

where the coherent state contains again one million photons. Following the typical pro-
cedure already used in Eq.(4.55), we �rstly need to calculate the di�erence between the
detected intensities:

c†c− d†d = −i(aout)†
(ωp

2

)
b+ ib†aout

(ωp
2

)
, (4.60)

where aout(ωp/2) and (aout)†(ωp/2) are the annihilation and creation operators expressed
in the plane wave mode at the �ltered central frequency, introduced in Eq.(2.44). Hence,
we can now trace the LO information out and de�ne the new homodyne operator:

Ĥd = |βlo|
(
eiθa âout

(ωp
2

)
+ e−iθa

[
âout

(ωp
2

)]†)
, (4.61)

so that we can calculate its average value,

〈Ĥd〉 = 2α|βlo| cos θa

(
1 +

∑
k

∣∣∣uk (ωp
2

)∣∣∣2 (cosh γk − 1)

)
, (4.62)

and the variance,

〈∆2Ĥd〉 = |βlo|2
(

1 + 2
∑
k

∣∣∣uk (ωp
2

)∣∣∣2 ∣∣∣vk (ωp
2

)∣∣∣2 sinh2 γk

)
. (4.63)

The shot noise limit is calculated by counting the internal number of photons subject to
the same �lter:

Nin = α2 +
∑
k

∣∣∣ūk (ωp
2

)∣∣∣2 sinh2[G1
√
ηk] + 2α2

∑
k

∣∣∣ūk (ωp
2

)∣∣∣2 (cosh[G1
√
ηk]− 1)

+α2

[∑
k

∣∣∣ūk (ωp
2

)∣∣∣2 (cosh[G1
√
ηk]− 1)

]2

.

(4.64)

By carrying the derivative of Eq.(4.62) we can estimate the normalized phase sensitivity of
the SU(1,1) interferometer, which is optimized for θa = 0, and �nally plotted in Fig.4.16.
The minimum values of the phase sensitivity for di�erent gains are presented in Fig.4.17.

Also this seeding strategy does not lead to any advantage with respect to the no-seed
case investigated in the beginning of this chapter. In particular, we do not observe any
supersensitivity for any values of the phase. The possible reason explaining the lack of
supersensitivity in all cases analysed above is that the seed in only one input channel of
the interferometer with a high number of photons creates an imbalance between signal and
idler photons, leading to a weakening of their correlations. This would cause a reduction
of the phase sensitivity.
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Figure 4.16: The normalized phase sensitivity in relation to the phase. The plane wave mode
with the frequency ωp/2 is seeded by the intense coherent light having |α|2 = 106 photons. The
SNL is represented by a solid black line [3].

Figure 4.17: The minimum values of the normalized phase sensitivity presented in Fig. 4.16
versus gain (red circles) compared to the no-seeding case (black squares). The SNL is plotted in
black [3].
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4.2.4 Conclusion

In linear interferometry seeding is a fundamental way to test the interferometer: an
example was the Mach-Zehnde interferometer in Section 2.2.5. In contrast, it was seen that
the use of nonlinear optical parametric ampli�ers ensures the presence of photons inside
the interferometer even without any seeds. However, also in nonlinear interferometry
one can imagine to elaborate a seeding strategy in order to test the performances of the
interferometer.

One of the most interesting advantages of including the spectral information of the
photon sources in the phase sensing investigation is the possibility of accessing to a large
selections of seeding strategies: examples are polarization seeding, frequency seeding,
spectral mode seeding, and so on.

In our investigation, we opted for two speci�c choices: selecting one input channel of
the interferometer, we seeded once the �rst Schmidt mode, and then the central frequency
of the PDC. The �rst Schmidt mode seeding was tested in di�erent schemes: with the
employment of the direct detection we seeded the interferometer with both one photon
and a bright coherent state. The latest case was tested also with the homodyne detection.
In all cases, a worsening of the phase sensitivity was observed with respect the no-seed
case. The seed in the central frequency, calculated only via homodyne detection, leaded to
similar results. The worsening of the normalized phase sensitivity is due to the reduction
of correlation between signal and idler photons, caused by the disparity in the number of
signal and idler photons.
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Chapter 5

Conclusion and Outlook

In this thesis we investigated the in�uence of the spectral features of the light in di�erent
interference scenarios. We considered both linear and nonlinear interference frameworks,
using parametric down conversion (PDC) e�ect as spectrally multimode photon source.

The material of the waveguide where the PDC e�ect occurs played a fundamental
role along this work, so the choice was largely pondered. In the end, we conveniently
opted for periodic poled Potassium titanyl phosphate (ppKTP) waveguide. This choice
gained di�erent advantages inherently our scopes. Firstly, KTP is a nonlinear material
presenting the phase matching function almost diagonally oriented in the spectral domain.
By opportunely tailoring the pump laser, this allows to have an almost circular joint
spectral intensity (JSI), meaning that we can reduce the number of spectral modes to
one without making use of particular �lters. By reducing the pump bandwidth, we were
able to increase both the symmetry of the JSI along the signal-idler antidiagonal and the
number of spectral modes.

The �rst part of this manuscript was focussed on a speci�c linear interference frame-
work, in particular we extended the design typically used in the two-photon Hong-Ou-
Mandel (HOM) interference by enhancing the number of photons up to four. Mathemat-
ically, this was done by Taylor expanding the PDC state up to the second order, where
two pairs of signal-idler photons are created.

We manipulated the amount of correlation between the two photons either by in-
creasing the pulse duration of the pump laser (shrinking of the spectral bandwidth), and
consequently by increasing the symmetry of the JSI, or by adding a quadratic phase
in the pump spectral function and therefore holding the asymmetry with respect the
antidiagonal in the frequency diagram: this choice allows to identify the origin of the
deformation of P22 univocally. Although we would spontaneously tend to associate the
probability of having two photons in both outputs of the interferometer P22 to the well
known coincidence P11 of the two photon interference, in case of balanced BS these two
probabilities do not show similar pro�les at all. Moreover, this di�erence is accentuated
by the further dependence of P22 on the number of temporal modes. Indeed, by increasing
the Schmidt number either via reducing the pump bandwidth or via the presence of the
quadratic phase in the pump pro�le, the probability presents a gradual enhancement of
the central point at zero time delay, triggering a transition from a bunching deep to an
antibunching peak. The experiments clearly showed this transition, in good agreement
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with our theoretical analysis. Instead, both visual and physical similarities with respect
to the two-photon HOM dip were observed in the probability of having an odd number
of photons in both channel, P3113. Moreover, also in this probability curve the dip lies at
or slightly over zero, depending on whether the spectra of signal and idler photons are
identical or not.

In order to make the coincidence probability P22 comparable to the typical two-photons
HOM dip P11, speci�c values of transmission and re�ection coe�cients were set in the
BS. The similarity between the two curves holds in the single mode regime, even showing
a soft improvement of the visibility in P22. However, stronger correlations between signal
and idler photons break this similarity: the two-photon dip reaches its minimum point at
zero, whereas the visibility of P22 decreases for higher correlations.

The four-photon HOM interference via state engineering prompted further investiga-
tions in the context of the spatial entanglement. This can be achieved by triggering a
superposition of the two orthogonal polarizations before the light entering the interfer-
ometer. Due to the entanglement between the two channels of the interferometer, the
coincidence probability changed dramatically, and in particular, fast oscillations came
out. By a further analysis we noticed that the complex structure of these oscillations is
connected with a hidden interference occurring between the terms inside the interferome-
ter characterized by an even number of photons in each channel. However, the possibility
to control the various elements guided us to exploit the potentiality of our interferometer.
For instance, we could build di�erent combinations of four dimensional Bell states by
properly manipulating both the conversion parameter of the polarization converter and
the transmission/re�ection coe�cient of the beam splitter.

Furthermore, we demonstrated that by making both the real and the imaginary part
of the spectra of both signal and idler photons identical, we were able to generate fringe
pattern whose period is reduced up to the half of the pump wavelength. It is also quite
interesting to notice that this new pattern enables to create a balanced overlap between
the initial state with two photons in both input channels and a NOON state with N=4.
This superposition is not localized at zero time delay, but it occurs periodically in the
coincidence probability.

In the second main part of this thesis, we adapt the theory of the Schmidt decom-
position in PDC waveguide to the formalism of quantum metrology. More speci�cally,
we elaborated an integrated nonlinear interferometer based on two realistic PDC plat-
forms employed as optical parametric ampli�ers (OPA). A preliminary analysis clearly
showed that a rough adaption of the theoretical scheme typically explored in literature
(OPA+phase modulator+OPA) does not allow to achieve an appropriate degree of visi-
bility in the interference pattern. This is due to the presence of dispersion inside the in-
terferometer, which needs to be attenuated in order to maximize the visibility. Therefore,
in the proposed design of the SU(1,1) interferometer, we were able to strongly attenu-
ated the dispersion, and therefore drastically enhanced the visibility. As a consequence of
that, the interferometer could work in a supersensitivity regime. Moreover, we were able
to improve the performance of the device by the employment of designed �lters.

Finally, although the spectral features of the interferometer enable the exploration
of a large spectra of seeding strategies, our current results clearly showed that we can
achieve the best performance of the interferometer with vacuum seed. However, the seeds
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we used were localized in only one arm of the interferometer. This inevitably leads to the
reduction of correlations between the two channels of the interferometer and consequently
a worsening of the phase sensitivity. Hence, we do not exclude that the performance of the
interferometer could be improved with di�erent seeding strategies, holding the correlation
between the two photons. This can be done by seeding both arms of the interferometer
opportunely.

In the end, we can state that in all cases explored in this thesis we were able to manip-
ulate the interference pattern and, more generally, the performance of the interferometer
by an accurate spectral investigation of the photon source. In particular, in our anal-
ysis it emerged that the simultaneous work of both controlling the photon correlations
via a punctual state engineering, along with a proper implementation of the design of
the interferometer, allows to implement more accurate theoretical models for describing
a large selection of interference scenarios. Therefore, the results contained in this thesis
demonstrated that the inclusion of a spectral analysis of the photon state, and hence of
the photon source, surely provides interesting perspectives and opens new frontiers in
quantum interferometry, integrated photonics and quantum metrology.
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Appendix A

Experimental set-up: Four photon
interference

In this Appendix we want to present the experiment scheme used to get the photon counts
in Fig.(3.4) and Fig.(3.6), namely for both balanced and unbalanced con�guration of BS.

SMF
COUPLER

PBS

SPECTRAL
SHAPING 765 nmPUMP

Ti:Sa

PPKTP WAVEGUIDE

SNSPDs

BPF

HWP1

1

2

3

4HWP2

INTERFEROMETER DETECTION

50:50

Figure A.1: Experimental setup. A femtosecond titanium:sapphire (Ti:Sa) oscillator with
repetition rate of 80 MHz is used to pump a PPKTP waveguide designed for type-II PDC. For
spectral shaping of the pump, we use a spatial light modulator (SLM) in a folded 4f setup to shape
the desired spectral amplitude and phase. An 8 nm wide bandpass �lter (BPF) centred at 1532
nm was used to block the pump and phasematching side-lobes. The orthogonally polarized PDC
photons were sent to the interferometer setup where we used a polarising beamsplitter (PBS), a
half waveplate (HWP), and an adjustable time delay stage ∆τ to control the interference. Then
the photons were sent to a single-mode �bre coupler with an adjustable coupling ratio where
interference happens. Each output port of the �bre coupler is then connected to a balanced �bre
splitter followed by superconducting nanowire single photon detectors (SNSPD).
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Such scheme is sketched in Fig.A.1 in details [1]. In order to investigate the impact
of time-frequency correlations of the state on the four-photon interference, an engineered,
programmable PDC source was employed. The source is a ppKTP waveguide having
length 8mm, engineered to the symmetric group velocity matching condition which al-
lows us to �exibly control the frequency correlation between signal and idler photons by
modulating the pump pulses only [45,121]. The source consists of a Ti:Sa oscillator emit-
ting ultrashort pulses, tuned in terms of amplitude and phase by a pulse shaper based
on a spatial light modulator in a 4f setup. Pulses generated by this con�guration are
characterized by bandwidths range from 0.3 to 40 ps.

Lastly, the choice of the pump power had to be functional to the theoretical model. For
instance, in order to partially inhibit the generation of higher order photon numbers and
eventual time ordering e�ects, a low pump energy, around 6.5 pJ, was used to generate an
amount of down-converted photon approximately equal 0.02 per pulse. Such con�guration
allows to make the second order PDC e�ect (four photon generation) about 50 times more
e�ective than the third order (six photons generation).

The experimental parameters used to de�ne states A, B and C are listed in Table.A.1.

State A State B State C

pump �eld amplitude setting
∆λpump (nm) 1.8 0.2 1.8
∆ωpump (THz) 3.479 0.386 3.44
D (ps2) 0 0 1.9
∆tpump (ps) 0.14 1.29 6.62

correlation function and Schmidt number
g

(2)(τ = 0) 1.897± 0.011 1.233± 0.010 1.108± 0.003
K = 1

g(2)−1
1.11 4.29 9.25

P1,1 interference
Vth. (%) 92.7 100.0 92.7
Vexp. (%) 90.7±0.5 92.7±0.7 90.2±0.8
∆Lth. (mm) 0.368 0.341 0.368
∆Lexp. (mm) 0.381±0.003 0.358±0.004 0.373±0.005

Table A.1: Overview of studied PDC states. ∆ denotes the standard deviation; V denotes the
visibility and ∆L denotes the standard deviation of P1,1 interference, calculated with a Gaussian
�t function to the theory and experiment.
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Appendix B

Experimental set-up: spatial
entanglement generation

Figure B.1: Experimental setup. A femtosecond titanium:sapphire (Ti:Sapph) oscillator with
repetition rate of 80 MHz is used to pump a PPKTP waveguide designed for type-II PDC. We
use a pulse shaper to set the desired spectral amplitude and phase of the pump pulses. An 8 nm
wide bandpass �lter (BPF) centered at 1532 nm was used to block the pump and phasematching
side-lobes. The signal and idler photon coarse time delay is set with a linear translation stage.
A 1.5mm long YVO4 crystal is used to compensate for the time delay between signal and idler
photons, when the translation stage is set to zero delay. We use a common-path setup to
interfere PDC photons where we scan the time delay using a soleil-babinet compensator (SBC).
This is followed by half-wave plates HWP1 and HWP2, which are set to 22.5◦, and a polarizing
beamsplitter (PBS). This interferometer is equivalent to the setup shown in Fig. 3.8. Photons are
then coupled to balanced single-mode �ber splitters followed by four superconducting nanowire
single photon detectors (SNSPD).
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In order to accurately scan the probability P22 in Fig. 3.11 two di�erent but equivalent ex-
perimental set-up were required. Due to the evident similarities between the two schemes
in Fig. 3.1 and Fig. 3.8, the �rst apparatus is already described in Appendix A, where
the �rst HWP is here switched on, and the conversion parameter is �xed to φ1 = π/4.
Such set-up allows to measure the coincidence probability also for large path delay, with
width about 20 mm, but it does not provide useful information when ∆l ≈ 0.

The presence of a further element (a second HWP ) as well as the higher precision
required to scan the fast fringes in the interference pattern, force us to use an additional
and more stable apparatus, illustrated and fully described in Fig. B.1; however, despite
the evident structural di�erences, it can be demonstrated that such new apparatus is
fully equivalent to Fig. 3.8. The presence of a soleil-babinet compensator ensures a
major stability and a better performance in phasing for small range around ∆ = 0. Such
experimental scheme was hence used to scan the fast fringes in the insert of Fig. 3.11,
and can be utilized to test also the interference pattern in Fig. 3.14.
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