Algorithms for
Distributed Data Structures and
Self-Stabilizing Overlay Networks

Dissertation

In partial fulfillment of the requirements for the academic degree
Doctor rerum naturalium (Dr. rer. nat.)

Faculty of Computer Science,

Electrical Engineering and Mathematics
Department of Computer Science

Research Group Theory of Distributed Systems

Michael Feldmann

PADERBORN
'L(UNIVERSITY

Advisor:
Prof. Dr. Christian Scheideler

Reviewers:
Prof. Dr. Christian Scheideler
Prof. Dr. Friedhelm Meyer auf der Heide

Members of the Doctoral Panel:
Prof. Dr. Christian Scheideler (Chairperson)
Prof. Dr. Friedhelm Meyer auf der Heide
Jun. Prof. Dr. Sevag Gharibian
Dr. Matthias Fischer
Dr. Peter Pfahler

Contact:
Michael Feldmann (michael.feldmann@upb.de)

Paderborn University
Paderborn University
Paderborn University
Paderborn University
Paderborn University

mailto:michael.feldmann@upb.de

Abstract

This thesis considers the realization of distributed data structures and the construction
of distributed protocols for self-stabilizing overlay networks.

In the first part of this thesis, we provide distributed protocols for queues, stacks and
priority queues that serve the insertion and deletion of elements within a logarithmic
amount of rounds. Our protocols respect semantic constraints such as sequential
consistency or serializability and the individual semantic constraints given by the
type (queue, stack, priority queue) of the data structure. We furthermore provide a
protocol that handles joining and leaving nodes. As an important side product, we
present a novel protocol solving the distributed k-selection problem in a logarithmic
amount of rounds, that is, to find the k-smallest elements among a polynomial
number of elements spread among n nodes.

The second part of this thesis is devoted to the construction of protocols for
self-stabilizing overlay networks, i.e., distributed protocols that transform an overlay
network from any initial (potentially illegitimate) state into a legitimate state in
finite time. We present protocols for self-stabilizing generalized De Bruijn graphs,
self-stabilizing quadtrees and self-stabilizing supervised skip rings. Each of those
protocols comes with unique properties that makes it interesting for certain distributed
applications. Generalized De Bruijn networks provide routing within a constant
amount of hops, thus serving the interest in networks that require a low latency
for requests. The protocol for the quadtree guarantees monotonic searchability as
well as a geometric variant of monotonic searchability, making it interesting for
wireless networks or applications needed in the area of computational geometry. The
supervised skip ring can be used to construct a self-stabilizing publish-subscribe
system.

iii

Zusammenfassung

Diese Dissertation befasst sich mit der Realisierung von verteilten Datenstrukturen
und der Konstruktion von selbststabilisierenden Overlaynetzen.

Im ersten Teil dieser Dissertation présentieren wir verteilte Protokolle fiir Queues,
Stacks und Priority Queues, welche Elemente innerhalb einer logarithmischen Anzahl
an Runden einfiigen bzw. entfernen kénnen. Zusatzlich respektieren unsere Protokolle
neben Semantiken wie sequentielle Konsistenz oder Serialisierbarkeit auch Semantiken
welche vom Typ (Queue, Stack, Priority Queue) der Datenstruktur abhingen. Wir
stellen ebenfalls ein Protokoll vor, welches das Einfiigen und Entfernen neuer Knoten
realisiert. Ein wichtiges Nebenprodukt stellt ein neues Protokoll dar, welches die
verteilte k-Selektion innerhalb einer logarithmischen Anzahl an Runden 16st, d.h. es
findet das k-kleinste Element unter einer polynomiellen Anzahl von Elementen, die
auf n Knoten verteilt sind.

Der zweite Teil dieser Dissertation befasst sich mit der Konstuktion von Protokollen
fiir selbststabilisierende Overlaynetze, d.h. verteilte Protokolle, welche ein Overlaynetz
in endlicher Zeit von einem beliebigen initialen Zustand (der potentiell nicht legitim
sein muss) in einen legitimen Zustand transformiert. Wir présentieren Protokolle fiir
selbststabilisierende generalisierte De Bruijn Graphen, selbststabilisierende Quadtrees
und selbststabilisierende {iberwachte Skip-Ringe. Jedes dieser Protokolle ist aufgrund
seiner Eigenschaften interessant fiir spezifische verteilte Anwendungen. Generalisierte
De Bruijn Netzwerke erlauben Routing mit einer konstanten Anzahl an Hops und
sind daher interessant fiir Anwendungen bei welchen eine geringe Latenz erforder-
lich ist. Das Protokoll fiir Quadtrees erfiillt die monotone Suchbarkeit sowie dessen
geometrische Variante und ist daher interessant fiir Dratlosnetzwerke oder Anwendun-
gen aus dem Bereich der Computational Geometry. Der iiberwachte Skipring kann
zur Konstruktion eines selbststabilisierenden Publish-Subscribe Systems verwendet
werden.

Preface

First and foremost I would like to thank my advisor Christian Scheideler, who gave
me the opportunity to work in his research group, which is not something I took
for granted. Throughout my journey, he was always available to discuss research
problems and give his advice.

I would like to thank Friedhelm Meyer auf der Heide, who served as the second
reviewer, as well as Sevag Gharibian, Matthias Fischer and Peter Pfahler for serving
on the doctoral panel.

I am very grateful to the CRC 901 “On-The-Fly Computing” for funding my
research.

Many thanks also go to all of my co-authors who I enjoyed working with on
several research papers. I would like to thank all past and current members of the
research group “Theory of Distributed Systems”. It has been an honor to have you
as colleagues. Special thanks go to Marion Hucke, Uli Ahlers, Thomas Thissen and
Ulf-Peter Schroder, who keep the group running.

Last but not least, I would like to thank my parents and my brother for always
supporting me in what I am doing. Thank you!

Michael Feldmann
January 2021

vii

Contents

1. Introduction

I. Distributed Data Structures

2. Preliminaries
2.1, Modelo
2.2. Aggregation Treeo
2.3. Distributed Hash Tables
2.4. General Notions from Probability Theory

3. Distributed Queues and Stacks
3.1. Basic Notation and Semantics
3.2. Related Work
3.3. Distributed Queue
3.3.1. Enqueue and Dequeue
3.3.2. Analysis
3.4. Distributed Stack
341. PushandPop.
3.4.2. Analysis
3.5. Node Dynamics
3.5.1. Join e
3.5.2. Leave e
3.5.3. Analysis

4. Distributed Priority Queues and k-Selection
4.1. Basic Notation and Semantics
4.2. Related Work
4.3. Constant Priorities,
4.3.1. Imsert and DeleteMin.
4.3.2. Anmalysis
4.4. Distributed k-Selection oL
4.4.1. Phase 1: Sampling L.
4.4.2. Phase 2: Reducing Candidates to /n
4.4.3. Phase 3: Exact Computation
4.5. Arbitrary Priorities
4.5.1. Imsert and DeleteMin.
4.5.2. Analysis

5. Conclusion and Outlook of Part |

viii

10
12
15
16

17
18
21
23
23
26
30
30
32
34
34
37
39

41
42
43
44
44
46
48
49
51
56
56
57
58

61

Contents

Il. Self-Stabilizing Overlay Networks 65
6. Preliminaries 67
6.1. Model e 68
6.2. Self-Stabilization and Primitives for Overlay Networks 69
6.3. Related Work 71
6.4. Self-Stabilizing Sorted Lists 73
6.5. Self-Stabilizing Sorted Rings 75

7. Self-Stabilizing Generalized De Bruijn Graphs 79
7.1. Generalized De Bruijn Graphs. 80
7.2. Related Work 81
7.3. Network Topology and Routing 82
7.3.1. Network Topology 82

7.3.2. Routing 84

7.4. Protocol BuildGDB 86
7.4.1. Protocol Description 86

74.2. Analysiso 91

8. Self-Stabilizing Quadtrees 101
8.1. Monotonic Searchability 0L 102
8.2. Related Work L 103
8.3. Quadtrees 104
8.4. Self-Stabilizing Quadtrees L. 107
8.4.1. Protocol BuildQT 108

84.2. Analysis 109

85. Routing 111
8.5.1. Protocol SearchQT 111

85.2. Analysis 111

8.6. Self-Stabilizing Octrees L. 114

9. Self-Stabilizing Publish-Subscribe Systems 117
9.1. Supervised Skip Rings oL 118
9.2. Related Work o o 121
9.3. Self-Stabilizing Supervised Skip Rings 122
9.3.1. Supervisor Protocol 122

9.3.2. Subscriber Protocol 0oL 124

9.3.3. Analysis 126

9.4. Self-Stabilizing Publish-Subscribe Systems 129
9.4.1. Protocol Description 130

9.4.2. Analysis 135

10. Conclusion and Outlook of Part Il 139
Bibliography 141
List of Algorithms and Figures 157

ix

CHAPTER 1 -

Introduction

Ever since the invention of the internet, distributed computing has become more
and more relevant to our society and continues to do so. Important applications are,
for example, social media networks, streaming platforms, online games and many
more. A distributed system is the union of multiple computers (or processes) that
communicate via message-passing in order to solve a problem or to achieve a common
goal. As the size of distributed systems increases, allowing even multiple millions
of processes to participate, algorithms need to scale efficiently w.r.t. the number of
participants in order to remain practically relevant. Another important feature of a
distributed system is its robustness, i.e., its ability to cope with (external) faults like
message loss or adversarial attacks.

The theory of distributed computing provides the groundwork for many of the above
mentioned applications. Research areas range from classical distributed problems
such as routing, coloring, maximum independent set and maximal matching to more
recent ones like blockchains and hybrid networks. From a theoretical perspective, a
distributed system is usually abstracted via an overlay network, i.e., a graph indicating
the connections between the participants of the system. Using this abstraction yields
a precise way to describe distributed protocols. One key property of overlay networks
is that they are dynamic by nature, meaning that not only the participants of the
system can change over the course of time, but also distributed protocols on overlay
networks are capable of modifying the connections between the participants.

In this thesis, we present solutions to problems of two different (but close) research
areas within the theory of distributed computing, both of them relying on the
capabilities of overlay networks.

In the first part we investigate distributed data structures. We consider fundamental
data structures (queues, stacks and priority queues) and present algorithms for
implementing these data structures in a distributed setting. The elements of the
data structures are distributed equally among the nodes of the overlay network
such that no single node has direct access to all elements. There are a multitude of
problems that one needs to solve in order to come up with not only efficient but also
semantically correct solutions. Areas of applications for distributed data structures
include, among others, scheduling, distributed counting or distributed sorting.

In the second part of this thesis, we then study self-stabilizing overlay networks.
These are overlay networks that are able to recover their topology only by allowing
communication between the nodes and without external intervention. Such systems
are particularly useful for increasing the robustness against failures (like message loss
or a blackout of nodes) or adversarial attacks. We investigate self-stabilizing protocols
for specific topologies (generalized De Bruijn graphs, quadtrees and supervised skip
rings), each having its own unique application area.

Chapter 1. Introduction

Thesis Overview

This thesis is split into two separate parts: The first part is dedicated to the study of
distributed data structures, while the second part deals with self-stabilizing overlay
networks. The first part starts with a chapter that introduces the model and some
well-known techniques (see Chapter 2).

Distributed Queues and Stacks. In Chapter 3 we propose distributed protocols for
queues and stacks that perform well even when having to deal with a large amount of
requests; i.e., we can avoid bottlenecks in high-throughput scenarios when using these
protocols. More specifically, our protocols can serve requests on the data structure in
O(logn) rounds w.h.p.!, independent of the rate at which new requests are injected
into the system. Our protocols work in asynchronous settings and not only provide
strong semantics like sequential consistency, but also satisfy semantic constraints
specifically tailored to the FIFO/LIFO properties of queues and stacks. To do so, we
use an aggregation tree to aggregate batches of requests, ensuring that our protocols
scale even for a high rate of incoming requests. For the stack we are also able to
show that by using a technique called local combining, we can reduce the worst-case
bound on the message size. Finally, we also introduce protocols for dealing with node
dynamics, i.e., handling joining and leaving nodes. Here we show that a joining node
is allowed to start generating requests on the data structure after O(logn) rounds
w.h.p. A node that wants to leave the system can do so after only O(1) rounds in
case no conflicts with other leaving nodes have to be resolved.
Chapter 3 is based on the following publication:

M. Feldmann, C. Scheideler and A. Setzer. “Skueue: A Scalable
and Sequentially Consistent Distributed Queue”. In: Proceed-
ings of the 2018 IEEFE International Parallel and Distributed
Processing Symposium (IPDPS), 2018, cf. [FSS18a].

The protocol for the distributed stack (Section 3.4) is based on the full version of the
paper above:

M. Feldmann, C. Scheideler and A. Setzer. “Skueue: A Scal-
able and Sequentially Consistent Distributed Queue”, CoRR,
abs/1802.07504, 2018, cf. [FSS18b].

Distributed Priority Queues and k-Selection. In Chapter 4 we investigate another
fundamental data structure in the distributed setting, namely distributed priority
queues. Here we present two different protocols: The first realizes a distributed
priority queue for a constant amount of priorities, while the second works for an
arbitrary amount. Similar to our distributed implementations for queues and stacks,
these protocols work in asynchronous settings and satisfy semantic constraints
specifically tailored to mimic the behavior of priority queues in the sequential setting.
Both protocols use the same aggregation tree as the protocols for queues and stacks

! An event holds with high probability (w.h.p.), if it holds with probability at least 1 — 1/n° where
the constant ¢ can be made arbitrarily large.

from the previous chapter. For part of the protocol for arbitrarily many priorities we

provide a novel distributed protocol for the k-selection problem that runs in O(logn)

rounds w.h.p., which is of independent interest. Our protocols serve requests on

the data structure in O(logn) rounds w.h.p. and also work together well with the

protocol from the previous chapter that handles joining and leaving nodes.
Chapter 4 is based on the following publication:

M. Feldmann and C. Scheideler. “Skeap & Seap: Scalable Dis-
tributed Priority Queues for Constant and Arbitrary Priorities”.

In: Proceedings of the 31st ACM on Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2019, cf. [FS19].

We conclude the first part of the thesis in Chapter 5.
The first chapter of the second part (Chapter 6) presents our model alongside with
related work and the well-known protocols for self-stabilizing sorted lists and rings.

Self-Stabilizing Generalized De Bruijn Graphs. In Chapter 7 we present a novel
protocol BuildGDB, which is able to build a generalized De Bruijn graph out of
every initially weakly connected graph in a self-stabilizing manner. The resulting
structure has a diameter of d for some constant d > 2, while the outdegree of
nodes is only O(/n). This tradeoff between degree and diameter is asymptotically
optimal. Our protocol works in a bottom-up manner, by first arranging the nodes
in a sorted list, then expanding the neighborhood in the list so that we arrive at
a sorted /n-connected list. Finally, we use the ¢n-connected list to generate De
Bruijn connections that are used for the routing protocol.

We also present a routing protocol for this network that is able to route any
message from any source node s to any target node t in exactly d hops w.h.p. Finally,
we show that once new nodes join the system, the amount of work for old nodes is
within ©(¥n), which is asymptotically optimal. More precisely, each old node only
has to build or redirect O(/n) edges w.h.p. once the number of nodes in the system
increases by a factor of 2¢.

Chapter 7 is based on the following publication:

M. Feldmann and C. Scheideler. “A Self-stabilizing General
De Bruijn Graph”. In: Proceedings of the 19th International

Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), 2017, cf. [FS17].

Self-Stabilizing Quad Trees. In Chapter 8 we investigate monotonic searchability in
a geometric setting; i.e., nodes are now spread on a 2-dimensional plane. We present
a novel self-stabilizing protocol BuildQT that arranges all nodes in a quadtree, which
is a data structure that is frequently used in the area of computational geometry.
The protocol can easily be generalized to higher dimensional settings, realizing the
first self-stabilizing protocol for octrees. We also give a routing protocol SearchQT
by which messages are routed among the nodes in a quadtree-like fashion. This
means that if the Euclidean distance between any two nodes is at least 1/n, then any
message routed between any two nodes in the quadtree arrives at its destination after

Chapter 1. Introduction

O(logn) hops. Interestingly, SearchQT is defined such that monotonic searchability
is satisfied; i.e., once a search request generated by a node u successfully reaches its
target node v, any search request for v initiated by u thereafter reaches v as well.
We show that in our geometric setting SearchQT satisfies an even stronger notion of
monotonic searchability, which preserves monotonicity not only for existing target
nodes but also for any target coordinate in the 2-dimensional plane. We call this
property geographic monotonic searchability.
Chapter 8 is based on the following publication:

M. Feldmann, C. Kolb, and C. Scheideler. “Self-stabilizing
Overlays for High-Dimensional Monotonic Searchability”. In:
Proceedings of the 20th International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), 2018,
cf. [FKS18].

Self-Stabilizing Publish-Subscribe Systems. In Chapter 9 we present two major
results. First we describe a novel protocol for a supervised skip ring. In a skip ring
the nodes form a sorted ring with additional shortcuts, such that the diameter of the
network is only [logn], while the degree of each node is O(logn) in the worst case
and constant on average. The protocol relies on the help of a gateway (the supervisor)
that is commonly known among all nodes. We show that the communication work of
the supervisor is low in our protocol.

For the second result we extend the self-stabilizing supervised skip ring to a (topic-
based) self-stabilizing publish-subscribe system. Here we are primarily concerned
with the self-stabilizing delivery of all publications to all subscribers of a specific topic.
We store publications at each node in a Patricia trie and provide a self-stabilizing
protocol that guarantees that all Patricia tries converge to the unique Patricia trie
that stores all publications. This means that each node that subscribes to some topic
t will eventually receive all publications for ¢, even if the node has subscribed to the
topic after some publications have already been delivered.

Chapter 9 is based on the following publication:

M. Feldmann, C. Kolb, C. Scheideler, and T. Strothmann. “Self-
Stabilizing Supervised Publish-Subscribe Systems”. In: Proceed-
ings of the 2018 IFEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018, cf. [Fel+18].

We conclude the second part in Chapter 10.

List of Own Publications

Below 1 state a list of all publications that I co-authored during my time at Paderborn
University. Some of these publications do not directly serve as a basis for this disser-
tation, particularly the work on discrete clock synchronization [FKS20], congestion
control [FGS19] and hybrid network algorithms [FHS20]. Those publications are
however by no means thematically disjoint with the topics of this dissertation. I also

co-authored a survey on algorithms for self-stabilizing overlay networks [FSS20]. The
publications are listed in chronological order.

2017:

M. Feldmann and C. Scheideler. “A Self-stabilizing General
De Bruijn Graph”. In: Proceedings of the 19th International

Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), 2017, cf. [FS17].

2018:

M. Feldmann, C. Kolb, C. Scheideler, and T. Strothmann. “Self-
Stabilizing Supervised Publish-Subscribe Systems”. In: Proceed-
ings of the 2018 IFEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018, cf. [Fel+18].

M. Feldmann, C. Scheideler and A. Setzer. “Skueue: A Scalable
and Sequentially Consistent Distributed Queue”. In: Proceed-
ings of the 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018, cf. [FSS18a].

M. Feldmann, C. Kolb, and C. Scheideler. “Self-stabilizing
Overlays for High-Dimensional Monotonic Searchability”. In:
Proceedings of the 20th International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), 2018,
cf. [FKS18].

20109:

M. Feldmann and C. Scheideler. “Skeap & Seap: Scalable Dis-
tributed Priority Queues for Constant and Arbitrary Priorities”.
In: Proceedings of the 31st ACM on Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2019, cf. [FS19].

M. Feldmann, T. Gotte and C. Scheideler. “A Loosely Self-
stabilizing Protocol for Randomized Congestion Control with
Logarithmic Memory”. In: Proceedings of the 21st International

Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), 2019, cf. [FGS19].

2020:

M. Feldmann, A. Khazraei and C. Scheideler. “Time- and Space-
Optimal Discrete Clock Synchronization in the Beeping Model”.
In: Proceedings of the 32nd ACM on Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2020, cf. [FKS20].

Chapter 1. Introduction

M. Feldmann, C. Scheideler, S. Schmid. “Survey on Algorithms
for Self-Stabilizing Overlay Networks”. In: ACM Computing
Surveys, 2020, cf. [FSS20].

M. Feldmann, K. Hinnenthal and C. Scheideler. “Fast Hybrid
Network Algorithms for Shortest Paths in Sparse graphs”. In:

Proceedings of the 24th International Conference on Principles
of Distributed Systems (OPODIS), 2020, cf. [FHS20].

Part |I.

Distributed Data Structures

CHAPTER 2 -

Preliminaries

Like in sequential environments, efficient distributed data structures are important
in order to realize efficient distributed applications. The most prominent type of
distributed data structure is the distributed hash table (DHT). Many distributed
data stores employ some form of DHT for lookups. Important applications include
file sharing (e.g., BitTorrent), distributed file systems (e.g., PAST), publish-subscribe
systems (e.g., SCRIBE), and distributed databases (e.g., Apache Cassandra). Other
distributed forms of well-known data structures, such as queues, stacks, and priority
queues, have been given much less attention, however, although they have a number
of interesting applications as well:

o A distributed queue is used to come up with a unique ordering of messages,
transactions, or jobs, and it can be used to realize fair work stealing [BL99]
since tasks available in the system may be fetched in FIFO order. Other appli-
cations are distributed mutual exclusion, distributed counting, or distributed
implementations of synchronization primitives. Server-based approaches of
realizing a queue in a distributed system already exist, like Apache ActiveMQ),
IBM MQ, or JMS queues. However, none of these implementations provide a
queue that allows massively parallel accesses while keeping the amount of work
for each participant balanced.

o A distributed stack is used in LIFO-based scheduling, which is useful in applica-
tions where scheduled tasks do not depend on each other. The major advantage
of a stack in the distributed setting is that by local combining (an insertion
request ins can be matched to a deletion request del if both are generated by the
same node) one can potentially speed up the scheduling process in comparison
to a distributed queue.

e Distributed priority queues are useful in the area of scheduling, in case the
inserted tasks have been assigned priorities and in case workers preferably want
to get assigned to the most prioritized tasks first. Another application for a
distributed priority queue is distributed sorting.

The major problem of coming up with a fully distributed version of these data
structures is that their semantics are inherently sequential. In this thesis, we
present distributed protocols for queues, stacks and priority queues for a constant
amount of priorities. Our protocols ensure sequential consistency, fairly distribute
the communication and storage load among all members of the distributed system,
and efficiently process even massive amounts of requests. By slightly weakening the
semantic constraints, we present a protocol for a distributed priority queue that
works for an arbitrary amount of priorities and ensures serializability. We also offer

Chapter 2. Preliminaries

protocols that allow to let new processes join or old processes leave the system safely
without violating any semantic constraints or losing important data along the way.
All our protocols work in the asynchronous message passing model and can also
handle massive amounts of join and leave requests efficiently. We are not aware of
any distributed data structure with comparable performance.

In general, the problem we solve in the first part of this thesis is how to provide
distributed protocols that let multiple processes insert elements into and delete
elements from the system. By doing so, the system behaves like a sequential data
structure from the perspective of each individual process.

Outline of This Chapter. In this chapter, we introduce our model alongside some
techniques that will be used by the distributed protocols for queues, stacks (Chapter 3)
and priority queues (Chapter 4). We first present our model in Section 2.1. Afterwards,
we define the aggregation tree as a subgraph of the Linearized De Bruijn Graph
(LDB), which represents the network topology formed by the processes (Section 2.2).
The LDB is also used to embed distributed hash tables (DHT'), which we describe in
Section 2.3. We finish this chapter by stating the well-known Chernoff bounds in
Section 2.4, which will prove to be useful throughout the entire thesis.

2.1. Model

Network Model. We study distributed data structures consisting of multiple
processes that are interconnected by an overlay network.

Definition 2.1. The overlay network is given by an undirected graph G = (V, E) of
n nodes with the following properties:

(a) Each node u € V represents a single process and is identified by a unique
O(logn)-bit identifier id(u) € N.

(b) If there is an edge {u,v} € E, then u can send messages to v and vice versa.

There is no global (shared) memory, so nodes perform computation exclusively on
the basis of their local storage. We allow O(poly(n)) many entries of O(logn) bits
for each node’s local storage, so overall, each node’s storage consists of O(poly(n))
bits. Define the neighbors of node u by N(u) = {v € V' | {u,v} € E}.

Communication Model. In order to provide a clean presentation and analysis of
our algorithms, we consider a variant of the asynchronous message passing model.
Nodes can be activated at arbitrary points in time. Upon activation of node u, u
performs the following steps:

(i) Receive all messages that were sent to u after its previous activation.
(ii) Perform local computation.

(iii) Send a message to each neighbor v € N(u).

10

2.1. Model

We view node activations as atomic steps, meaning that we do not allow activations
of multiple nodes to overlap. Processing activation a; and then going to activation
a;11 is considered a step. The order in which nodes are activated is chosen by an
adversary. However, we assume that the activation of nodes is fair, meaning that at
any point in time each node is activated after a finite amount of steps.

Definition 2.2 (Round, Computation). Let A = (a1,...,an) be the sequence of
activations for which the system is active. A subsequence R = (a;,...,a;) of A where
each node is activated in R at least once is denoted a round. A computation C' is a
partition of A into disjoint rounds Ry, ..., Rp. We denote the lifetime of C' by T'.

We will analyze the runtime of our algorithms by the number of rounds needed in
a given computation. We assume that the system is active for a polynomial number
of rounds, i.e., T' € O(poly(n)). During the execution of our algorithms we assume
that no faults occur; i.e., nodes do not crash or act maliciously and messages are
neither lost nor corrupted.

An important criterion to measure the load of the system is its congestion:

Definition 2.3 (Congestion). The congestion of the system (under all fair activa-
tions) is the mazimum number of messages that need to be processed by a single node
during one activation.

Data Structure Requests. Nodes may generate insertion and/or deletion requests
on the data structure at any point in time.

An insertion request issued by some node u generates an O(logn)-bit element e
from a universe £ that has to be delivered to some node v € V responsible for e.

A deletion request issued by some node u demands to be matched to an element
e that is currently stored in the data structure by some node v € V; i.e., u has to
receive e from v. The element e is identified by the semantics of the data structures,
which differ for queues, stacks and priority queues (see Section 3.1 for queue- and
stack-semantics and Section 4.1 for priority queue-semantics). If the data structure
contains no elements, then the deletion request has to be matched to the empty
element, denoted by 1. Once a deletion request is matched to some element e, both
the request and e are removed from the data structure. If a deletion request got
matched to L, then just the request is removed from the data structure.

Definition 2.4 (Injection Rate). The injection rate of a node u is denoted by
Au) € N and represents the maximum number of insertion and/or deletion requests
that u s able to generate in each round. Denote the maximum injection rate by

A = maxyey {A(u)}.

The time at which a node generates requests and the amount of generated requests
is determined by an adversary, which respects the injection rate of the node. We
assume that A(u) € O(poly(n)) for each node u € V and thus A € O(poly(n)). Denote
by m the number of elements stored by the data structure. As the system is active
for at most O(poly(n)) rounds and A € O(poly(n)), we have that m € O(poly(n)) at
any point in time.

11

Chapter 2. Preliminaries

2.2. Aggregation Tree

In this section we introduce the topology that is formed by the participating nodes
of the data structure. It is based on the classical d-dimensional De Bruijn graph [De
46], which we introduce in the following:

Definition 2.5 (De Bruijn Graph). Let d € N. The (d-dimensional) De Bruijn graph
consists of nodes (x1,...,x4) € {0,1} and edges (x1,...,24) = (j,x1,...,2q-1) for
all j € {0,1}.

One can route a message via bit shifting from any source s € {0,1}% to any target
t € {0, 1}d by following exactly d edges. For example, for d = 3 we may route
from s = (s1,82,53) € {0,1}® to t = (t1,t2,t3) € {0,1}3 via the path ((s1, s2, s3),
(t3, S1, 82), (tg, t3, 81), (tl, tQ, tg)).

For our network topology we adapt a dynamic version of the De Bruijn graph,
called the Linearized De Bruijn Graph (LDB), which is based on the distance-halving
network from [NWO7]:

Definition 2.6 (Linearized De Bruijn Graph). Let V' be a set of n nodes with unique
identifiers in N and let h : N — [0, 1) be a publicly known pseudorandom hash function.
The Linearized De Bruijn Graph (LDB) is the graph G= (‘N/, E) with the following
properties:

(a) For each node u € V, there are 3 virtual nodes I(u), m(u),r(u) € V that are
emulated by u. Denote l(u) the left virtual node of u, m(u) the middle virtual
node of u and r(u) the right virtual node of u. No other nodes are contained
nV.

(b) Each middle virtual node m(u) € V has a label label(m(u)) = h(id(u)). Define
the labels for l(u) and r(u) by label(l(u)) = W and label(r(u)) = w,
respectively. We may indistinctively use l(u), m(u) or r(u) to denote a virtual
node or its corresponding label, when clear from the context.

(c) Let (v1,...,v3n) be the total order of all virtual nodes according to their labels.
FE consists of linear edges Ej;, and virtual edges F;-, where

Elm = {{vi,viH} | 1 E€ {1, Lo, 3n — 1}} U {Ugn,vl}

and
Eyir = {{1(u), m(u)}, {m(u),r(u)} | weV}.

Intuitively, the linear edges arrange all virtual nodes in a sorted ring ordered by
their node labels, whereas the virtual edges can be seen as local edges between the
virtual nodes of a single process u. The virtual edges are used to emulate the edges
of the classical De Bruijn graph from Definition 2.5.

We say that a virtual node u € V is right to a node v € V if the label of u is
greater than the label of v, meaning that v > v. Similarly, u is left to v if u < v.
We can break ties between virtual node labels by comparing the unique identifiers
of their corresponding nodes in V, as no two virtual nodes emulated by the same

12

2.2. Aggregation Tree

node u € V can have the same label. If u,v,w € V are consecutive in the linear
ordering with u < v < w (i.e., there exist linear edges {u, v}, {v,w} in é), we say
that w is v’s successor (denoted by succ(v)) and that u is v’s predecessor (denoted
by pred(v)). As a special case we define pred(vpm) = Vmaz and succ(Vimaz) = Vmin,
where v,,;, = v1 is the node with minimal label value and v,,4; = v3, is the node
with maximal label value. This guarantees that each virtual node has a well-defined
predecessor and a well-defined successor on the sorted ring. Moreover, each node u
maintains two variables pred(u) and succ(u) for storing its predecessor and successor.
We assume that u knows whether pred(u) and succ(u) is a left, middle or right
virtual node. Otherwise, u could easily determine this within at most two rounds by
directly asking pred(u) if it is a left, middle or right virtual node, for example.

By adopting the result from [RSS11, Theorem 1], one can show that the LDB can
emulate the routing in the classical De Bruijn graph with d = [logn]:

Lemma 2.7. For any p € [0,1), routing a message from a source node s € V to
the node t = argminvef/’vgp{p —v} €V can be done in the LDB in O(logn) rounds
w.h.p.

Intuitively, this means that we can route a message from any source node s to
the node t that is closest from below to p in O(logn) rounds, w.h.p. In the analysis
of [RSS11, Theorem 1], it is shown that the message can only fall behind by at most
O(logn) hops compared to its position in the d-dimensional De Bruijn graph, w.h.p.
As an implication of the fact that the maximum distance between two consecutive
middle virtual nodes is ©(logn/n) w.h.p. (see [NW07, Lemma 4.1]), it holds that
a node in the LDB is responsible for the emulation of up to O(logn) nodes in the
d-dimensional De Bruijn graph, w.h.p. This holds due to the following argumentation:
Map the label label(u) of a virtual node u to the binary string (z1,...,x4) such that

G|
label(u) = Z:c, b
i=1

If the distance between two consecutive middle virtual nodes is in ©(logn/n), then
their binary strings differ only in the last ©(loglogn) bits, meaning that there exist
at most O(2'°81°8") = O(logn) binary strings of nodes in the classical De Bruijn
graph between the two middle virtual nodes.

The following lemma summarizes the discussion above:

Lemma 2.8. Any routing schedule with dilation’ D and congestion C in the d-
dimensional De Bruijn graph can be emulated by the LDB with n > 2 nodes with
dilation O(D +logn) and congestion O(C) w.h.p.”

We are now ready to define the aggregation tree as a subgraph of G.

Definition 2.9 (Aggregation Tree). Let V be a set of n nodes and let G = (‘Z, E)
be the corresponding LDB according to Definition 2.6. The aggregation tree T' (G) =
(V, Er) with root node vy, is a subgraph of G with the following properties:

The dilation of a routing schedule denotes the maximum number of hops that a packet has to
travel.

*We use 6() to hide polylogarithmic factors, i.e., (5(f(n)) = O(f(n) - polylog(n)).

13

Chapter 2. Preliminaries

(a) For each virtual node u € V, define the parent p(u) of u as follows:
e Ifu is a middle virtual node, then p(u) = l(u).

e Ifu is a left virtual node, then p(u) = pred(u), except for the case when
U = Upin, where we set p(u) =L.

e Ifu is a right virtual node, then p(u) = m(u).

(b) For each virtual node u € V, define the child nodes C(u) of u as follows:

e Ifu is a middle virtual node, then either C(u) = {r(u), succ(u)} (if succ(u)
is a left virtual node) or C(u) = {r(u)} (otherwise).

e Ifu is a left virtual node, then either C(u) = {m(u), succ(u)} (if succ(u)
is a left virtual node) or C(u) = {m(u)} (otherwise).

e Ifu is a right virtual node, then C(u) = (.
The set Ep C E is then defined by
Er = {(pw),u) | we V,pu) L} U{(u,c) | ueV,ce Cu)}.

Observe that a virtual node can have at most 2 child nodes. Also, note that
each virtual node u is able to locally detect its parent and its child nodes in the
aggregation tree depending on whether w is a left, middle or right virtual node. As
for each directed edge (u,v) € Ep, there exists a directed edge (v,u) € Erp, we simply
view T(G) as an undirected graph.

An example of an LDB network with 4 nodes u,v,w,x € V and its corresponding
aggregation tree is given in Figure 2.1.

From Lemma 2.7, we directly obtain the upper bound for the height of the
aggregation tree:

Corollary 2.10. The aggregation tree T(G) of G has the height O(logn) w.h.p.

Denote the root node vy, of T(G) as the anchor. The aggregation tree can be
used to aggregate certain values to the anchor. We call this process an aggregation
phase. Values are combined with other values at each node.

Example 2.11 (Aggregation Phase). To determine the number of nodes 3n that
participate in T(é), each node u € V initially holds the value 1. We start at the leaf
nodes of T(é), which send their value to their parent nodes upon activation. Once
an inner node v € V has received all values ki,..., ke € N from its ¢ child nodes,
upon activation it combines these by adding them to its own value, i.e., by computing
14354 ki. Afterwards, v sends the result to its parent node p(v). Once the anchor

has combined the values of its child nodes with its own value it knows 3n.

We make heavy use of aggregation phases in our protocols. Due to Corollary 2.10
it is easy to see that an aggregation phase finishes after O(logn) rounds w.h.p.

In order to ease the presentation of the algorithms that handle data structure
requests, we just assume that the aggregation tree is a binary tree formed by all
nodes in V that has the properties of Lemma 2.7, Lemma 2.8 and Corollary 2.10;
i.e., we just neglect the fact that there is an underlying LDB network. However, in
Section 3.5 we make use of the fact that the virtual nodes of the LDB network form
a sorted ring, so we will reconsider the underlying LDB network specifically in this
section.

14

2.3. Distributed Hash Tables

I(x)=0.05

m(w)=0.8
I(v)=0.15

r(u)=0.75 I(u)=0.25

r(v)=0.65 m(v)=0.3

r(x)=0.55 I(w)=0.4

m(u)=0.5

(a)

Figure 2.1.: (a) A linearized De Bruijn graph for nodes u, v, w,x € V with m(u) = 0.5,
m(v) = 0.3, m(w) = 0.8 and m(z) = 0.1. Black edges represent linear
edges and blue edges represent virtual edges. (b) The corresponding
aggregation tree of the LDB network.

2.3. Distributed Hash Tables

In order to store the elements of the data structure in a distributed fashion, we use a
distributed hash table (DHT) that makes use of consistent hashing: Elements e € £
that should be stored in the DHT will be assigned a unique key from some universe iC,
denoted by k(e) € K. The domain of K may vary depending on the actual algorithm.

This key is then hashed to a real-valued position in [0,1) via a publicly known
pseudorandom hash function h : K — [0,1). A virtual node u is responsible for
storing all elements whose positions are within the interval [u, succ(u)). Thus, if we
want to insert (resp. delete) an element e € £, we only have to search for the virtual
node u € V with u < h(k(e)) < succ(u) and tell u to store e. The search for u can
be performed in O(logn) rounds w.h.p. according to Lemma 2.7.

Note that in the special case u = V44, We define the the union of the two intervals
[u,1) and [0, v,) as the interval w is responsible for. So in case the label of h(k(e))
is strictly smaller than v,,;,, we just deliver e to v, first and then delegate it to
Umaz Within one additional round as {Vmin, Vmaz} € E.

We will use the following DHT requests in our algorithms:

o Put(e, k(e)) Inserts the element e € £ with the key k € K into the DHT.

o Get(k, v): Removes the element with the key k& € I from the DHT and delivers
it to the initiator v € V of the request.

With the arguments from above, we can easily derive the following lemma on the
runtime of DHT requests:

15

Chapter 2. Preliminaries

Lemma 2.12. A Put or a Get request on the DHT can be processed by the underlying
LDB in O(logn) rounds w.h.p.

It is well-known that consistent hashing is fair, meaning that each node stores
the same number of elements for the DHT on expectation. From the fact that the
expected distance between two consecutive virtual nodes is 1/3n, we can conclude
the following:

Corollary 2.13. Let V be a set of n nodes and let G= (f/,E) be the corresponding
LDB according to Definition 2.6. Embedding a DHT with m elements into G implies
that each virtual node v € V stores m/3n elements on expectation. Consequently,
each node uw € V' stores m/n elements on expectation.

Therefore, the DHT embedded into the LDB also possesses the fairness property.

Finally, we note that the nodes are able to maintain multiple distributed hash
tables at once, when using different hash functions for each DHT and assuming a
unique identifier for each hash table that is assigned to each element stored by a node
alongside its key. Looking at each DHT individually, the statements of Lemma 2.12
and Corollary 2.13 obviously still hold.

2.4. General Notions from Probability Theory

We assume that the reader of this thesis is familiar with the concepts of random vari-
ables and their expected values. For a random variable X, we denote by E[X] the ex-
pected value of X. We make use of the following well-known Chernoff bounds [Che52],
which we use to bound the probability for an algorithm to fail. Throughout this
thesis we use the notation exp(z) instead of e*.

Theorem 2.14 (Chernoff Bounds). Let X1,..., X, be a set of independent binary
random variables. Let X = > 1 X; and p = E[X]. Then it holds that:

(a) Forany0<¢§<1:

PriX > (1+6)u] <exp (—(?j,u) .

(b) For any0 <6 <1:

Pr[X < (1-6)pu] <exp <_(;2M) :

16

CHAPTER

Distributed Queues and Stacks

In this chapter we study the first two of the three mentioned fundamental distributed
data structures: distributed queues and stacks. As already discussed in the previous
chapter, there are some interesting applications where such distributed queues and
stacks may be useful.

The first challenge one has to overcome when constructing distributed protocols
for these data structures is to define precise semantic constraints that basically make
the system look like a queue or a stack from the perspective of a single node. Another
task is to cope with the large amount of requests potentially generated by the nodes
over the data structure’s lifetime. We want to use the full power of our system and
spread the work to process all of these requests uniformly among all nodes such that
there is no bottleneck. This also means that the elements stored in the distributed
data structure should be divided onto the local storage of all nodes such that no
node has to store significantly more elements than other nodes.

Another issue that specifically relates to the distributed setting is that distributed
systems are dynamic by nature, meaning that the set of participants may vary over
the lifetime of the system. This is why we also have to come up with distributed
protocols dedicated to safely include joining nodes into the system or exclude nodes
from the system that want to leave. When including new nodes into the system, we
have to make sure to provide them their share of the data and also to have them
work on future requests on the data structure. Excluding a node from the system
has to be performed in such a manner that the node leaving the system delegates
the elements it holds for the data structure to other (non-leaving) nodes.

Underlying Publications. This chapter is based on the following publication:

M. Feldmann, C. Scheideler and A. Setzer. “Skueue: A Scalable
and Sequentially Consistent Distributed Queue”. In: Proceed-
ings of the 2018 IEEFE International Parallel and Distributed
Processing Symposium (IPDPS), 2018, cf. [FSS18a].

The protocol for the distributed stack (Section 3.4) is based on the full version of
the paper above:
M. Feldmann, C. Scheideler and A. Setzer. “Skueue: A Scal-
able and Sequentially Consistent Distributed Queue”, CoRR,
abs/1802.07504, 2018, cf. [FSS18b].

Outline of This Chapter. First we introduce some basic notation and define semantic
constraints specifically tailored to distributed queues and stacks (Section 3.1). We
then give an overview of related work in Section 3.2 and present and analyze our

17

Chapter 3. Distributed Queues and Stacks

protocol for the distributed queue in Section 3.3. We proceed with our protocol
for the distributed stack (Section 3.4). Finally, in Section 3.5, we investigate node
dynamics; i.e., we present protocols that are able to include new nodes into the
system, or exclude nodes from the system — both without violating any semantic
constraints of the data structure.

3.1. Basic Notation and Semantics

Before we describe the actual protocols for distributed queues and stacks, we have
to define the semantics of the insertion and deletion requests that can be invoked
on the data structure by the nodes. Among other things, we make sure that the
distributed queue guarantees the distributed variant of the FIFO property (First In —
First Out) and that the distributed stack guarantees the distributed variant of the
LIFO property (Last In — First Out).

Recall that the system consists of n nodes and £ is the universe of all elements
that may be inserted into the data structure. A protocol for the distributed queue
has to specify the following two requests that can be generated by a node u € V:

o Enqueue(e): Adds the element e € £ to the distributed queue.

o Dequeue(): Removes an element e € £ from the distributed queue such that
the FIFO property is guaranteed and delivers e to u. If the queue contains no
elements, 1 is returned to u.

Similarly, we have the following two requests that can be invoked on the distributed
stack by a node u € V:

o Push(e): Adds the element e € £ to the distributed stack.

o Pop(): Removes an element e € £ from the distributed stack such that the
LIFO property is guaranteed and delivers e to u. If the stack contains no
elements, 1 is returned to u.

While in standard sequential data structures it is very easy to guarantee certain
properties like FIFO or LIFO, it is much harder to guarantee FIFO or LIFO in
a distributed system. This is due to messages potentially being delayed or nodes
not having access to a local or global clock, which are standard assumptions in the
asynchronous message passing model.

For example, consider two nodes u,v € V and assume that v and v generate
Enqueue requests for elements e, and e, at times t,, and t,, respectively, such that
t, < ty holds. Once another node, say w, wants to take an element out of the queue
via a Dequeue request, w cannot decide if according to the FIFO rule e, or e, has
to be delivered to w as it does not know the times ¢, or ¢, by default. Even worse,
neither u nor v can decide this for w as well, since there is no global clock that the
nodes have access to. More precisely, even if both v and v may have access to a
local clock and thus know the times ¢, and %, at which they generated their requests,
they are not able to decide if t,, < t, holds, as the local clocks are not assumed to be
perfectly in sync.

18

3.1. Basic Notation and Semantics

As a consequence, we want to establish a global serialization of the requests ensuring
some well-defined semantics that mimic the FIFO/LIFO rules in the sequential
setting. This has to be done without creating bottlenecks in the system, even when
the maximum injection rate A is high. In order to properly define how such a global
serialization looks, we introduce some notation first. For a node u € V', let op(u, 1)
denote the i-th request (either an insertion or a deletion request) generated by u
and denote by Ar(u) € O(T - A(u)) the number of requests generated by u over the
lifetime T' € O(poly(n)) of the data structure. Further, let

Ar(u)
S = U op(u,i) |lueV
i=1

be the set of all requests issued by all nodes over the lifetime of the data structure.
We are now ready to provide formal definitions for some standard consistency models
considered in the area of parallel and distributed computing, namely serializability,
local consistency and sequential consistency:

Definition 3.1. Let DS be a distributed data structure formed by a set V of nodes.

(a) DS is serializable if and only if there exists an ordering < on the set S so that
the distributed execution of all requests in S on the data structure is equivalent
to the serial execution w.r.t. <.

(b) DS is locally consistent if and only if there exists an ordering < on the set S
so that for alluw € V and i € N it holds that op(u,i) < op(u,i + 1).

(¢) DS is sequentially consistent if and only if it is serializable and locally consistent
w.r.t. the same ordering <.

A distributed data structure that is serializable provides a global ordering < on
its requests, which will be helpful to satisfy FIFO and LIFO constraints required by
queues and stacks, respectively. Sequential consistency is even stricter in a sense that
it satisfies local consistency in addition to serializability. Local consistency intuitively
means that for each single node u, the requests issued by u have to come up in the
global ordering < in the order they were generated by w.

In order for our distributed data structure to resemble a queue or a stack, we
need to introduce additional constraints. Let ins(u) be an insertion request (either
Enqueue or Push, depending on whether we are dealing with a queue or a stack)
generated by node u € V. Similarly, let del(u) be a deletion request (either Dequeue
or Pop) generated by node u € V.

Definition 3.2. A pair (ins(u), del(v)) is matched if del(v) returns the element to v
that has been inserted into the data structure by u via ins(u). Define M to be the set
of all matched requests generated over the data structure’s lifetime.

Note that not every request r has to be matched (think of an insertion request on
an empty queue) and thus r is not necessarily part of some pair contained in M —
we denote this by r & M.

For the distributed queue, we introduce the following queue semantics:

19

Chapter 3. Distributed Queues and Stacks

Definition 3.3 (Queue Semantics). Let u,v,w,z € V and let M be a matching as
defined above. A protocol for the distributed queue with requests Enqueue and Dequeue
is queue consistent if and only if there is an ordering < on the set S such that M
satisfies the following properties:

(a) V(ins(u), del(v)) € M : ins(u) < del(v),
(b) Vins(u), del(v) ¢ M : del(v) < ins(u),
(c) V(ins(u), del(v)), (ins(w), del(z)) € M with del(v) < del(x) :

ins(u) < ins(w).

Intuitively, the three properties have the following meaning. The first property
means that an element has to be inserted into the queue before it can be deleted
from the queue. The second property means that a Dequeue request returning 1
does so because the queue is empty at the time where the request is processed. The
third property makes sure that the distributed queue behaves in a FIFO manner
similar to a sequential queue.

By tweaking Definition 3.3(c) to make sure the data structure behaves in a LIFO
manner, we derive the following stack semantics from Definition 3.3:

Definition 3.4 (Stack Semantics). Let u,v,w,x € V and let M be a matching as
defined above. A protocol for the distributed stack with requests Push and Pop is stack
consistent if and only if there is an ordering < on the set S such that M satisfies
the following properties:

(a) V(ins(u), del(v)) € M : ins(u) < del(v),
(b) Vins(u), del(v) & M : del(v) < ins(u),
(c) V(ins(u), del(v)), (ins(w), del(x)) € M with del(v) < del(x) :

ins(w) < ins(w).

Note that if the system consists only of a single node (n = 1), then the insertion and
deletion requests on the distributed data structures have exactly the same semantics
as in their corresponding sequential versions.

Our goal is to provide distributed protocols for queues and stacks that satisfy
sequential consistency and queue/stack consistency, while still being scalable, meaning
that each insertion and deletion request is processed in O(logn) rounds w.h.p. We
also want the overall load on the network (i.e., the number of messages that have to
be sent and received) to be spread equally among all nodes, meaning that there is no
bottleneck that has to deal with more messages than other nodes.

20

3.2. Related Work

3.2. Related Work

Distributed Hash Tables. The most prominent type of data structure for dis-
tributed applications is the distributed hash table, for which the seminal work
has been done by Karger et al. [Kar+97], who also introduced consistent hashing.
Since then, distributed hash tables have been used by a wide range of practical
applications, such as Chord [Sto+01], Pastry [RD01], Tapestry [Zha+04] or Cas-
sandra [LMO09]. Important aspects in studying distributed hash tables are, among
others, routing [Bal+03; Gum+-03], load balancing [Fel+14], heterogeneity [SS05] or
security-related topics [SM02; DS07] concerning different attacks on a distributed
hash table.

As distributed hash tables do not support range queries (that is, searching for
all keys that are contained in some specific interval), distributed trees have been
proposed [KW94; SSW02; SSW03; AGT10] that organize the elements of the hash
table in a search tree split among all nodes.

Concurrent Queues and Stacks. There is a wealth of literature on concurrent data
structures. In concurrent data structures, multiple processes/threads maintain and
send requests to a data structure that is stored in shared memory. All of these
concurrent data structures are not fully decentralized like ours, as elements of the
data structure are stored in shared memory. The shared memory can be directly
modified by all threads. A nice survey on many concurrent data structures (shared
counters, queues, stacks, pools, linked lists, hash tables, search trees and priority
queues) is written by Moir and Shavit [MS04].

As concurrent data structures share some similarities to distributed data structures,
we want to give a brief overview of some related literature. Generally, one distinguishes
between blocking and nonblocking implementations.

Blocking data structures have the property that a delayed thread may cause the
delay of other threads as well. This usually occurs when using locks, which make
sure that a certain part of the shared memory can only be accessed by one single
thread (the one that ’holds’ the lock) at any point in time. These implementations
are specifically vulnerable to memory contention, which means that multiple threads
are competing for the same location in memory with only one thread being allowed to
access the location at any point in time. Consider, for example, [MS96] for blocking
concurrent queues and [MS98; SZ00] for blocking concurrent stacks.

Nonblocking implementations are usually more expensive and complex as they are
not allowed to use locks. Some common techniques here involve more sophisticated
hardware operations like compare-and-swap and load-linked/store-conditional. Also,
nonblocking data structures do not scale well when imposing strict progress conditions,
which is why people came up with weaker progress conditions such as wait-freedom
(meaning that every single operation will be completed in a finite number of steps
independent from any other thread that is currently performing a requests) or lock-
freedom (meaning that at least one of the threads currently performing an operation
on the data structure completes the operation within a finite amount of time).
Consider, for example, [HW90] for lock-free concurrent queues and [HSY10; GCO7]
for lock-free concurrent stacks. Shavit and Taubenfeld formulated some (relaxed)

21

Chapter 3. Distributed Queues and Stacks

semantics for wait-free concurrent queues and stacks in [ST16a].

In our distributed data structures, we use some techniques similar to the ones used
in concurrent data structures: Hendler et al. [Hen+10] present a scalable synchronous
concurrent queue, where they used a parallel flat-combining algorithm to combine
requests (similar to the aggregation technique used by our data structure). A single
‘combiner’ thread gets to know requests of other threads and then executes these
requests on the queue. However, they do not provide any guarantees on the semantics,
meaning that it does not impose an order on the servicing of requests and is thus
violating semantics like serializability and queue consistency.

Our distributed implementation for the stack makes use of local combining of Push-
and Pop-requests at nodes, which is based on the elimination technique introduced
by Shavit and Touitou [ST97].

Standard Consistency Models. Consistency models have been introduced in the
scope of shared memory systems and define how the output of a system is allowed
to look when getting some input. In our scenario, the input is represented by
the insertion and deletion requests generated by the nodes, whereas the output is
represented by the elements that are returned to the nodes answering their deletion
requests.

There exists a large variety of consistency models, so we only briefly discuss the
ones that are most relevant to this thesis. Sequential consistency (Definition 3.1(c))
was originally defined by Lamport [Lam79]. Informally speaking, it makes the
whole system look like a uniprocessor system to any outsider using it. Therefore,
sequential consistency is considered to be one of the strongest consistency models
in multiprocessor systems. This, however, is not always advantageous, as it is
generally quite costly to implement sequential consistency for a system. Note that
Linearizability [HW90] is close, but slightly stronger than sequential consistency as
it preserves real-time ordering of requests [AW94]. It is noted in [SNO04] that even
though linearizability is stronger, sequential consistency is the strongest consistency
model used in practice.

Serializability [BSW79] (Definition 3.1(a)), although being weaker than sequential
consistency, is an important criterion to check the correctness of a system, as it
allows for a non-overlapping ordering of the requests. On the other hand, local
consistency [BB98| (Definition 3.1(b)) refers to the weakest consistency model for
shared memory as noted in [SN04]. Other consistency models that go beyond the
scope of this thesis can be found in works such as [Mos93; AG96].

Distributed Queuing. Plenty of work has also been done on distributed queuing
such as the arrow protocol [DH98; HTWO01] and its follow-up works (e.g., [THO6;
SB15; KW19]), but the problem considered in this research area is quite different
from ours. Distributed queuing is all about the participants of the system forming a
queue: Every node introduces itself to its predecessor and (depending on its position)
knows its successor in the queue. It is not about inserting elements into a distributed
data structure that is maintained by multiple nodes generating requests to the data
structure. However, there are some important applications for distributed queuing
protocols, such as coordinating the mutual exclusive access to some shared object.

22

3.3. Distributed Queue

3.3. Distributed Queue

Our first protocol considers the distributed queue, more specifically, the handling
of Enqueue and Dequeue requests, which we will call queue requests in the following.
The main challenge to guarantee sequential consistency (Definition 3.1(c)) lies in
the fact that messages may outrun each other, since we assume an asynchronous
environment with non-FIFO message delivery. In a synchronous environment this
would be of no concern.

Another problem we have to solve is that the rate at which nodes issue queue
requests may be very high. As long as we process each single request one by one,
scalability cannot be guaranteed. Recall that the nodes form an aggregation tree
into which a distributed hash table (DHT) is embedded.

3.3.1. Enqueue and Dequeue

The protocol proceeds in 4 phases. First, we aggregate batches of queue requests
to the anchor of the aggregation tree. The anchor then assigns a unique key to
each queue request and spreads all keys for the queue requests over the aggregation
tree such that sequential consistency is fulfilled and each node receives the keys
corresponding to its own generated queue request. Using those keys, nodes in the
aggregation tree then generate Put and Get requests for the DHT. The following lines
provide a more detailed description of this approach.

Whenever a node initiates a queue request, it stores the request in a local queue
that acts as a buffer. We are going to represent a snapshot of the sequence of buffered
queue requests by a batch:

Definition 3.5 (Batch). A batch B is a sequence (opy,...,op;) € N for which
it holds that for all odd i, 1 <1 < k, op; represents op; many successive Enqueue
requests. For all even i, 2 < 1 < k, op; represents op; many successive Dequeue
requests.

Two batches By = (op1,...,0px) and By = (op),...,op,) can be combined by
computing B = (opf,...,opl) with op] = op; + op}; and m = max{k,l} (set op; =0
if i > k and op; = 0 if ¢ > [). If a batch B is the combination of batches By, ..., By,
then we denote By, ..., By as sub-batches of B.

Algorithm 1 describes the phases of our protocol.

Phase 1: Aggregating Batches. At the beginning of the first phase each node
u generates a snapshot of the contents of its local queue and represents it as a
batch u.B. For example, a snapshot consisting of requests Enqueue(e;), Enqueue(es),
Dequeue(), Enqueue(es) and Dequeue() (in that specific order) is represented by the
batch (2,1,1,1). The batch u.B respects the local order in which queue requests are
generated by u, which is important for guaranteeing sequential consistency.

We aggregate batches of all nodes up to the anchor via an aggregation phase
(similar to Example 2.11). For this, each node u waits until it has received all batches
from its child nodes v € C'(u) and then combines those batches together with its own
batch u.B upon activation. The resulting batch, denote it by w.B™, is then sent to
the parent p(u) of u in the aggregation tree. In addition, u memorizes the sub-batches

23

Chapter 3. Distributed Queues and Stacks

Algorithm 1 Handling Enqueue & Dequeue Requests in the Distributed Queue
Phase 1 (Executed at each node u)

L: Create batch u.B
2: Wait until v has received v.B from all v € C(u)
3: Combine batches v.B, v € C(u), with v.B to a batch u.B™
4: Send u.B™ to p(u)
Phase 2 (Local computation at the anchor)
5: Let vg.B™ = (op1,. . .,o0px) be the combined batch from Phase 1
6: fori=1,...,k do
T: if 7 is odd then
8: (@i, yi] < [vo.last + 1, vg.last + op;]
9: vg.last < vy.last + op;
10: else
11: [xi, yi] < [vo.first, min{vg.first + op; — 1,vg.last}]
12: vo.first < min{vg.first + op;, vo.last + 1}
Phase 3 (Executed at each node u)
13: Wait until w has received intervals I = ([x1,v1], ..., [Tk, yx]) from p(u)
14: Decompose I into intervals I,, and intervals I, for each v € C'(u)
15: for all v € C(u) do
16: Send I, to v
Phase 4 (Executed at each node u)
17: Let I, = ([z1,v1]s - - [Tk, Yk))
18: fori=1,...,k do
19: if z; <y; then
20: if ¢ is odd then
21: Generate requests Put(e, z;), ..., Put(e’, y;)
22: else
23: Generate requests Get(x;, u), ..., Get(y;, u)

it received from its child nodes (these sub-batches will be of use in Phase 3). At the
end of the first phase, the anchor vy of the aggregation tree owns a batch vg.BT that
is the combination of all sub-batches u.B of all nodes v € V.

Phase 2: Assigning Keys. We only perform a local computation at the anchor
vo in this phase. vy maintains two variables vg.first € N and vg.last € Ny, such
that the invariant vg.first < vg.last + 1 holds at any time. Upon initialization of
the queue, vy.first is set to 1 and vg.last is set to 0. The interval [vg.first, vg.last] of
integers represents the keys that are currently occupied by elements of the queue,
which implies that the current number of elements contained in the queue is equal to
vg.last — vg.first + 1.

Now we describe how the anchor computes intervals of keys from the combined
batch vo.BT = (opy, ..., 0p;) of the previous phase. On the basis of its variables
vo.first and vg.last, vg computes intervals [z1,y1], ..., [Tk, yx] by processing integers

24

3.3. Distributed Queue

op; in vg.BT in ascending order of their indices i.

If 7 is odd, then vy sets the interval [x;, y;] to [vg.last + 1, vg.last 4 op;] and increases
vg.last by op; afterwards. This indicates that op; new elements are inserted into the
queue. Similarly, if ¢ is even, then vy sets the interval [z;, y;] to [vo.first, min{vg.first +
op; — 1,vp.last}] and updates vy.first to min{vg.first + op;,vo.last + 1} afterwards.
This indicates that op; elements are removed from the queue. Note that in case the
queue is either empty or does not hold sufficiently many elements in order to serve all
op; Dequeue requests: either x; = y; + 1 (if the queue is empty) or y; + 1 — z; < op;
holds for the computed interval [z;, y;].

By doing so, we implicitly assigned an interval to each sequence op; of queue
requests, and thus we can assign either a key or L (in case some Dequeue requests
are invoked on an empty queue) to each single queue request of such a sequence. We
use this assignment in the next phase.

Phase 3: Decomposing Key Intervals. Once vy has computed all required intervals
of keys [x1,y1],...,[xk, yk] for a batch, we start broadcasting these intervals over
the aggregation tree in the following recursive manner: When a node u in the tree
receives a collection [x1,y1],..., [k, yk] of intervals, it decomposes these intervals
with respect to each sub-batch By, ..., B; of u.B™ (recall that v has memorized the
composition of u.BT in Phase 1). Consider a sub-batch B; = (opy, ..., 0pnm) of u.BT.
We describe how w is able to assign a (sub-)interval of keys to each op;. Assume
i is odd for op; (corresponding to op; many Enqueue requests). Then u assigns
the (sub-)interval [z;, x; + op; — 1] to op;. Afterwards, v updates [z;,y;] by setting
[, yi] = [zi + opi, yi]. Therefore, every Enqueue request is assigned a unique key.

Now assume i is even for op; (corresponding to op; many Dequeue requests). Then
u assigns the (sub-)interval [z;, min{z; + op; — 1,y;}] to op;. Afterwards, u sets
[, yi] = [min{x; + op;,y; + 1}, y;]. This implies that Dequeue requests are either
assigned a unique key or immediately return L in case the interval is not large enough
to assign a key to all Dequeue requests.

Once each sub-batch of v.BT has been assigned to a collection of (sub-)intervals,
we send out these intervals to the corresponding child nodes in C'(v). Applying this
procedure in a recursive manner down the aggregation tree yields an assignment of a
key to all Enqueue and Dequeue requests.

Figure 3.1 illustrates an example for the first 3 phases.

Phase 4: Updating the DHT. Now that a node u knows the key k € Ny for each of
its queue requests, it starts generating Put and Get requests. For a request Enqueue(e)
with key k € N, u issues a Put(e, k) request to insert e into the DHT, meaning that e
is then stored at the node v responsible for the key k (see Section 2.3). This finishes
the Enqueue(e) request of u.

For a Dequeue request with key k, u issues a Get(k, u) request. Since in the
asynchronous message passing model it may happen that a Get(k, u) request arrives
at the node v responsible for the key k in the DHT before the corresponding Put(e, k)
request, each Get request waits at v until the corresponding Put request has arrived.
This is guaranteed to happen, as we do not consider message loss. Once a node has
sent out all its DHT requests, it switches back to the first phase in order to process
the next batch of queue requests.

25

Chapter 3. Distributed Queues and Stacks

(1,1) (4,6,1) [1,1],01,1]

(1,2) (0,1,1) (3,4) (0,1,1) [2,2],[2,3] [5,4N5,4],[5,5]
(2) 0,2) (0) (2) (0,2) (0) (3,41 [54][4,4 [54]
(a) After Line 1 (b) Before Phase 2 (c) After Phase 3

Figure 3.1.: Example for the computations done in the aggregation tree for the first
3 phases. The variables u.first and u.last of the anchor u are initially set
to 1 and 0, respectively. The vectors in (a) represent the batches u.B of
the snapshots for all nodes u. The vectors in (b) represent the combined
batches u.B™ for all nodes u. The intervals in (c) represent the actual
keys corresponding to the batches in (a) that nodes got assigned to their
queue requests.

3.3.2. Analysis

In this section we analyze the distributed queue implemented by Algorithm 1 for its
semantics, the runtime for queue requests, its congestion and the maximum size of a
single message generated by the algorithm. We start with the semantics.

Lemma 3.6. The distributed queue satisfies sequential consistency.

Proof. We define a total order < on all queue requests and show that < satisfies
the properties required in Definition 3.1. In order to define <, we want to assign a
unique virtual value to each queue request op, indicated by ¢(op) € N. Informally,
¢(op) indicates the number of requests that the anchor has ever processed in Phase 2
of Algorithm 1 up to (and including) op. More formally, for a node u that generates
a queue request op, let u.B = (op1,...,0py) be the batch representing the snapshot
of u’s local queue right before the creation of op. We initialize the virtual value for
op as follows:

S(op) opr + 1 if (k is odd and op=Enqueue) or (k is even and op=Dequeue)
(o) =
P 1 otherwise.

In the first case we say that op belongs to B at index k. In the second, op belongs to
B at index k + 1.

Assume for simplicity that all batches that are created in the first phase of
Algorithm 1 are of the same length k. Recall that in an aggregation tree, inner
nodes have at most 2 child nodes due to the way we defined the linearized De Bruijn
network (Definition 2.6).

Whenever a node u combines the batches v1.B, ve.B of its child nodes vy, vy € C(u)
with its own batch w.B (Line 3), it first specifies an order <p on the batches:

26

3.3. Distributed Queue

ie., it sets u.B <p v1.B <p v9.B. According to this order, u first combines
w.B = (0pui,.-.,0puk) With vi.B = (0py,.1,...,0py k) and then combines the
resulting batch with v9.B in order to get the batch u.BT. For a request op that
belongs to v1.B at index i, we then update ¢(op) < ¢(op) + opy,; after combining
u.B and vy.B. Similarly, for a request op that belongs to vy.B at index ¢, we update
od(op) < ¢(op) + opu,i + opy,,; after combining ve.B with the already combined
batches u.B and vy.B. Proceed in this way for every combination of batches up to
the anchor.

We let the anchor maintain a (virtual) counter ¢ € Ny, which initially is set to
0. Every time the anchor processes a batch BT = (opy,...,opx) in Phase 2, we
update the value for each request op that belongs to BT at index i to ¢(op) «+
o(op) +c+ Z;;ll opj. Once we have done this for each queue request represented by
the batch BT, we update ¢ in preparation for the next incoming batch: i.e., we set
cc+F op.

Intuitively, imagine that the anchor processes every single queue request individually.
The anchor would first consider all op; Enqueue requests, then all ops Dequeue requests,
and so on. The order in which u then obtains the intervals I,,, I, and I, in Phase 3
is the same as in the first phase; i.e., u first obtains intervals I,,, then intervals I,
and, at last, intervals I,,,.

Notice that this approach leads to each queue request getting assigned to a unique
virtual value in N. Therefore, we define op; < op, if and only if ¢(op;) < ¢(ops)
for two queue requests op;,op,. By definition of our protocol, < resembles the
exact order in which the anchor vy processes each single queue request in vg.B*.
Consequently, as the key for each request is determined at the anchor in Phase 2 and
the order in which the intervals are decomposed in Phase 3 is the same as the order
in which batches are combined in Phase 1, the distributed execution of all requests
on the queue is the same as the serial execution of all requests according to <. This
implies that the distributed queue satisfies serializability (Definition 3.1(a)).

We now show that our protocol also satisfies local consistency (Definition 3.1(b)):
Let op(u,i) be the i-th queue request and op(u, 7+ 1) be the (i + 1)-th queue request
generated by node u.

If both op(u, i) and op(u,i+1) belong to the same index i in u. B, then ¢(op(u,i)) <
o(op(u,i+ 1)) before the aggregation of batches up to the anchor starts. Once u.B
is combined with another batch, the virtual values of op(u,i) and op(u,i+ 1) always
increase by the same amount (they never belong to different indices in the combined
batch), so ¢(op(u,i)) < ¢(op(u,i+ 1)) also holds at the beginning of Phase 2.

In case op(u,i) and op(u,i + 1) belong to different indices in u.B, say k1 and ko
respectively, then it holds that ks = k1 + 1. Upon aggregating the batch u.B up to
the anchor in the aggregation tree, ¢(op(u,i)) and ¢(op(u,i+ 1)) are incremented by
different values, such that it still holds that ¢(op(u,)) < opg, and ¢(op(u,i+ 1)) <
opy, for the combined batch. However, once the anchor has received the combined
batch Bt we update ¢(op(u,i)) < ¢(op(u,i)) + ¢+ 251:—11 opj with

k1—1 k1—1
p(op(u,i)) +c+ > opj < opr, +c+ Y op;
j=1 j=1

27

Chapter 3. Distributed Queues and Stacks

and, consequently, update ¢(op(u,i+ 1)) < ¢(op(u,i+1)) +c+ 252:_11 op; with
kz—l kl
¢lop(u,i+ 1)) +c+ Y opj = dlop(u,i+1))+c+) op;
j=1 j=1
ki—1
= ¢(op(u,i+1)) +c+ opg, + Z opj
j=1

> ¢(op(u,i+1)) + ¢(op(u, 7).

As per definition ¢(op) > 1 holds for any queue request op, so it follows that
p(op(u, i+ 1)) > ¢(op(u,i)).

By the definition of <, we immediately obtain op(u,i) < op(u,i + 1) in both
scenarios, so local consistency is satisfied.

Serializability and local consistency imply that the distributed queue satisfies
sequential consistency by Definition 3.1(c). O

Lemma 3.7. The distributed queue satisfies queue consistency.

Proof. We show that the total order < as defined in the proof of Lemma 3.6 satisfies
all conditions of Definition 3.3. Let enq(u) be an Enqueue request and deq(u) be
a Dequeue request generated by node u. Let M be the set of all matched pairs of
Enqueue and Dequeue requests as defined in Definition 3.2. Observe that two queue
requests enq(u),deq(v) are in M if and only if the anchor assigned the same key to
them in Phase 2 of our protocol. Also, assume for convenience that the anchor vg
processes each queue request individually in Phase 2 in the order given by < (it is
easy to see that this is equivalent to processing each op; € N of the batch vg.B™).

To show the first property (Definition 3.3(a)), assume that (enq(u), deq(v)) € M
holds. By the above observation, it follows for the keys of these requests that
k(enq(u)) = k(deq(v)). In order for the key of deq(v) to be equal to the key of enq(u),
it has to hold that k(deq(v)) = vg.first < vg.last at the time the anchor vy assigns
a key to deq(v). Therefore the key k(deq(v)) has already been assigned to enq(u)
beforehand, so it follows that enq(u) < deq(v) and Definition 3.3(a) is satisfied.

For the second property let enq(u), deq(v) ¢ M be two arbitrary unmatched queue
requests. As deq(v) € M it follows that deq(v) returns L to the generator of the
request. By definition of our protocol, this implies that vg.first = vg.last at the time
deq(v) is processed at the anchor. Therefore, it has to hold for all Enqueue requests
enq(w) < deq(v) (if there are any) that k(enq(w)) has already been assigned to a
Dequeue request different from deq(v) and therefore enq(w) € M. Since enq(u) & M,
it has to hold that deq(v) < enqg(u), so Definition 3.3(b) is satisfied as well.

To show Definition 3.3(c) let (enq(u),deq(v)), (enq(w), deq(z)) € M with deq(v)
< deq(x) and assume to the contrary that enq(u) > enq(w). By definition of our
protocol this implies that k(enq(u)) > k(enq(w)). However, since (enq(u), deq(v)),
(enq(w),deq(x)) € M with deq(v) < deq(z) it follows that

k(enq(u)) = k(deq(v)) < k(deq(z)) = k(enq(w)),

which implies enq(u) < enq(w), which is a contradiction. O

28

3.3. Distributed Queue

Next, we consider the runtime of queue requests.
Lemma 3.8. Each queue request is finished after at most O(logn) rounds w.h.p.

Proof. Consider an arbitrary queue request op generated by some node u € V. By
Corollary 2.10 we need O(logn) rounds w.h.p. to transfer op to the anchor (Phase 1)
as part of a batch. Assigning a key to op in Phase 2 only takes one single round, as
it is only a local computation at the anchor. Delivering the key of op to u in Phase 3
takes O(logn) rounds w.h.p., again due to Corollary 2.10. Issuing the corresponding
DHT request for op takes O(logn) rounds w.h.p., due to Lemma 2.12. Summing
everything up, we need O(logn) number of rounds w.h.p. O

We measure the congestion (Definition 2.3) of the distributed queue in the next
lemma. Recall that A € O(poly(n)) is the maximum injection rate (Definition 2.4).

Lemma 3.9. The distributed queue has congestion O(A).

Proof. At the beginning of Phase 1, each node u has at most A(u)-O(logn) = O(A(u))
queue requests buffered, since the previous execution of Algorithm 1 lasted for O(logn)
rounds (Lemma 3.8) and u generates at most A(u) requests per round. For each of
those requests, u generates a single DHT request (either Put or Get), resulting in u
having to process (5(/\(u)) requests in one activation. Since each DHT request needs
O(logn) rounds w.h.p. (Lemma 2.12) to finish and the aggregation tree only generates
congestion up to a polylogarithmic factor (Lemma 2.8), the lemma follows. O

Finally, we analyze the message size in our distributed queue.

Lemma 3.10. Messages generated in the distributed queue consist of O(A log? n)
bits.

Proof. In one round each node u may generate up to A new queue requests. In
the worst case, these requests alternate between Enqueue and Dequeue requests.
Thus, the corresponding batch consists of O(A) bits. Due to Lemma 3.8, each node
may repeat the above procedure for O(logn) rounds until the previous execution of
Algorithm 1 has been finished. Thus, when combining all batches of all nodes in the
next execution of Algorithm 1, the resulting batch vy.B™ at the anchor vy consists
of O(Alog?n) bits (the batch contains O(A logn) entries op;, each entry is a number
in O(n), so it can be encoded via O(logn) bits). O

The following theorem summarizes the results obtained in this section. Note that
Theorem 3.11(e) is a direct implication of Corollary 2.13.

Theorem 3.11. Algorithm 1 implements a distributed queue with the following
properties:

(a) The distributed queue satisfies sequential consistency and queue consistency.
(b
(c
(d
(e

) Each queue request is finished after at most O(logn) rounds w.h.p.

) The distributed queue has congestion O(A).

) Messages generated in the distributed queue consist of O(Alog?n) bits.

) If the distributed queue contains m elements, each node stores m/n elements
on expectation.

29

Chapter 3. Distributed Queues and Stacks

3.4. Distributed Stack

In this section we show how to adapt the protocol for the distributed queue from
Section 3.3 in order to work as a distributed stack with the same properties as
in Theorem 3.11 (with stack consistency instead of queue consistency). Our new
protocol considers Push and Pop requests, to be called stack requests, instead of the
queue requests Enqueue and Dequeue.

3.4.1. Push and Pop

Algorithm 2 states the pseudocode for the distributed stack protocol.

Algorithm 2 Handling Push & Pop Requests in the Distributed Stack
Phase 1 (Executed at each node u)

1: Perform local combining for stack requests at each node u
2: Create batch u.B > u.B = (op1, op2)
3: Wait until v has received v.B from all v € C(u)
4: Combine batches v.B, v € C(u), with u.B to a batch u.B*
5: Send u.B™ to p(u)

Phase 2 (Local computation at the anchor vy)
6: Let vg.BT = (op1, 0p2) be the combined batch from Phase 1
7: [x1,y1] < [max{1,vg.last — op; + 1}, vg.last] > Interval for Pop requests
8: t1 < vg.ticket > Ticket for Pop requests
9: vo.last + max{0,vg.last — op; }
10: [x2,y2] < [vo.last + 1,vg.last + ops] > Interval for Push requests
11: [ta, th] < [vo.ticket + 1, vg.ticket + ops) > Tickets for Push requests
12: vg.last < vy.last + ops
13: vg.ticket < vg.ticket + opa > Update ticket variable

Phase 3 (Executed at each node u)
14: Wait until u has received I = {[z1,y1],t1, [z2, y2], [t2, 5]} from p(u)

15: Decompose I into intervals I,, and intervals I, for each v € C'(u)
16: for all v € C(u) do
17: Send I, to v

Phase 4 (Executed at each node u)
18: Let I, = {[z1,y1], t1, [z2, y2], [t2, 5] }

19: if 1 < Y1 then
20: Generate requests Put(e, (z1,t1)), ..., Put(e/, (y1,t1))
21: if 29 < Y2 then
22: Generate requests Get((zo,t2),u),. .., Get((ya,th), u)

23: Wait until all of the DHT requests generated above have been finished

In comparison to the distributed queue, we change the way in which the anchor
computes the key intervals for Pop requests (see Phase 2 in Algorithm 2) when

30

3.4. Distributed Stack

processing the combined batch vg.BT = (opy, ..., opx). Recall that in the distributed
queue the anchor vy computes the interval [vg.first, min{vg.first + op; — 1,vg.last}]
in case there are op; consecutive Dequeue requests. For op; consecutive Pop requests,
we want the anchor to return the interval [max{1,vg.last — op; + 1}, vg.last] instead
and update vg.last to max{0,vg.last — op;} afterwards. Therefore, we do not need
the variable vg.first anymore. Nodes decomposing their key intervals in Phase 3 now
have to take out the maximum key in the interval first.

Unfortunately, this modification does not suffice on its own in order for the stack
to work correctly, because the assigned keys for inserted elements are not unique
anymore: For a sequence (Push(x), Pop(), Push(y)) of requests, both Push requests
will be assigned to the same key by the anchor, leading to potential conflicts in
the underlying DHT. We therefore have to make sure that the key under which
elements are inserted into the DHT is unique. We introduce an additional variable
vg.ticket € N at the anchor, which is increased by ¢ every time vg.last is increased
by ¢, but is never decreased: i.e., vg.ticket is monotonically increasing. Intuitively,
vg.ticket represents the number of Push requests processed at the anchor over the
entire lifetime of the distributed stack, whereas vg.last represents the current size of
the stack. A request is now assigned a pair (k,t) € N x N instead of just a single
key. For such a pair (k,t) that is assigned to a Push(z) request, we store (k,t) and x
at the node that is responsible for position h(k) € [0,1) in the DHT. A Pop request
that is assigned to the pair (k,t) searches the DHT for the node u that is responsible
for position h(k) € [0,1). After arrival at u, we remove the element with ticket ¢’ <t
from u and return it to the initiator of the Pop request. As we will see later, this
element is uniquely defined.

To enhance the performance and reduce the message size of the distributed stack
protocol, we let nodes locally combine generated stack requests in order to answer
them immediately. If a node u generates k Push requests push(u,1),..., push(u, k)
followed by k Pop requests pop(u,1),...,pop(u, k), then u can process all of these
requests immediately by assigning the (k — ¢ 4+ 1)-st Push request to the i-th Pop
request for all 7 € {1,...,k}. This is particularly advantageous in scenarios where the
rate at which nodes generate requests is very high. Furthermore, it follows that all
batches that are sent upwards the aggregation tree have the form B = (op1, op2) with
op1 € Ny representing Pop operations and ops € Ny representing Push operations.

Since we consider the asynchronous message passing model, all that is left is to
prevent the following scenario from happening: Consider a sequence (a,b,c,d) of
stack requests that is processed by the anchor in Phase 2 with a = Push(z), b = Pop(),
¢ = Push(y) and d = Pop(). Note that multiple executions of Phase 2 are necessary
to process this sequence, as a single batch may only consist of op; Pop requests,
followed by op2 Push requests. Then the anchor assigns the pair (k,t) to a, (k,t) to
b, (k,t 4+ 1) to c and (k,t+ 1) to d. Due to asynchronous behavior in our system,
the DHT requests representing a,b,c and d may arrive in the order (a,d,c,b) at
the node responsible for position h(k). Thus, d returns the element z, as the ticket
value t for a is smaller than the ticket value ¢t + 1 for d. This leads to request b
not finding an element with ticket value smaller or equal than its own, violating
sequential consistency.

In order to fix this, we force all nodes u to wait in Phase 4 before switching to

31

Chapter 3. Distributed Queues and Stacks

Phase 1 again, until all DHT requests that u has generated in Phase 4 have been
finished. This can easily be implemented by having the nodes participate in a separate
aggregation phase of acknowledgments, where a leaf node sends an acknowledgment
to its parent once all its DHT requests have been finished! and an inner node u sends
an acknowledgement to its parent once all its DHT requests have been finished and it
has received acknowledgments from all of its child nodes. As soon as the anchor has
finished its DHT requests and received acknowledgments from all of its child nodes,
we know that all DHT requests have finished. The anchor then just announces the
start of the next execution of Algorithm 2 for all nodes via the aggregation tree.

Reconsidering the above example, it follows that the order of arrival of the DHT
requests will be either (a, b,c,d) or (a,c,b,d), because only b and ¢ can be together
in one single batch, implying that a and d are guaranteed to be in different batches
when combining requests as described above.

3.4.2. Analysis

We analyze our protocol for the distributed stack in the same manner as for the
distributed queue. In this section we focus on the correctness of the semantics and
the message size, as the proofs for the runtime of stack requests and the upper bound
on the congestion follow directly from Lemmas 3.8 and 3.9, respectively.

Lemma 3.12. The distributed stack satisfies sequential consistency.

Proof. Similarly to the proof of Lemma 3.6 we specify an algorithm that assigns each
stack request op a unique virtual value ¢(op) € N and then define < accordingly.
For the first step, we consider the stack requests that are not part of the local
combining, i.e., requests that are aggregated to the anchor in Phase 1. For each
of those requests op, define ¢(op) analogously to the way we defined ¢(op) for the
queue requests in the proof of Lemma 3.6. For each node w, consider the sequence of
stack requests (op(u,1),...,0p(u, k)) generated by u, where op(u, i) is the i-th stack
request generated by u. We can divide the requests in such a sequence into requests
that are not combined locally (and thus already got assigned to some virtual value by
the first step) and pairs of requests (op(u,),0p(u,i + 1)) that got combined locally.

Now we do the following: For a node u € V' consider the pair (op(u,),op(u,i+1))
of locally combined requests op(u,i) and op(u,? + 1), which did not receive a virtual
value yet and for which ¢ is minimized. Let op(u,i — 1) be u’s stack request that
is generated immediately before op(u,i). For ¢ > 2 such a request exists and we
then set ¢(op(u,i)) + ¢(op(u,i — 1)) + 1 and ¢(op(u,i+ 1)) + ¢(op(u,i — 1)) + 2.
Afterwards, we increase the virtual values of all requests op(v, j) by 2 for all nodes
v for which ¢(op(v,j)) > ¢(op(u,i)) holds. We repeat this process iteratively until
there is no stack request left without a virtual value and define op; < opy if and only
if ¢(op1) < ¢(opy).

By definition of the above algorithm, each stack request receives a unique virtual
value this way. Applying the same argumentation as in the proof of Lemma 3.6,
we know that the distributed execution of all requests that did not get combined

We have to extend the Put(e, k(e)) request to Put(e, k(e), u) to make sure an acknowledgment is
sent back to u after e has been received by the node responsible for the position h(k(e)).

32

3.4. Distributed Stack

locally is the same as the serial execution of these requests according to <. Observe
that the pairs of locally combined requests do not influence the outcome of other
stack requests and therefore serializability is satisfied. Also, it is easy to see that <
respects the local order of stack requests at each node and thus local consistency is
satisfied. This finishes the proof. O

Lemma 3.13. The distributed stack satisfies stack consistency.

Proof. We show Definition 3.4 for the total order < defined in the proof of Lemma 3.12.
The proof works analogously to the proof of Lemma 3.7 for requests that are matched
by getting assigned the same keys in Phase 2. Therefore, we need to make sure that
Definitions 3.4(a) and 3.4(c) are satisfied for requests (push(u), pop(v)) € M that are
matched due to local combining. Observe that by the definition of < it follows that

¢(push(u)) < ¢(pop(v)) = ¢(push(u)) + 1.

Using this observation, Definition 3.4(a) follows trivially. Definition 3.4(c) follows
as well when considering the fact that the virtual values ¢(op) are unique after the
algorithm described in the proof of Lemma 3.12 has finished. O

Lemma 3.14. Each stack request is finished after at most O(logn) rounds w.h.p.

Proof. The proof follows from Lemma 3.8 and the fact that the number of rounds
the nodes have to wait for their generated DHT-requests to finish is O(logn) w.h.p.
(Lemma 2.12). O

From Lemma 3.9 we directly obtain the bound on the congestion of the distributed
stack.

Corollary 3.15. The distributed stack has congestion O(A).

In comparison to the distributed queue protocol, we obtain a reduction in the size
of a message from O(Alog?n) bits to O(logn) bits:

Lemma 3.16. Messages generated in the distributed stack consist of O(logn) bits.

Proof. Due to the local combining technique we can reduce the size of a batch
in the stack to two numbers op1,op2 € Ng. As A € O(poly(n)) it follows that
op1,0p2 € O(poly(n)) as well. Therefore op; and ops can be encoded by O(logn)
bits. O

The following theorem summarizes our results for the distributed stack. Again,
note that Theorem 3.17(e) is a direct implication of Corollary 2.13, since we spread
elements pushed on the stack equally among all nodes.

Theorem 3.17. Algorithm 2 implements a distributed stack with the following
properties:

(a) The distributed stack satisfies sequential consistency and stack consistency.

(b) Each stack request is finished after at most O(logn) rounds w.h.p.

33

Chapter 3. Distributed Queues and Stacks

(c) The distributed stack has congestion O(A).
(d) Messages generated in the distributed stack consist of O(logn) bits.

(e) If the distributed stack contains m elements, each node stores m/n elements
on expectation.

3.5. Node Dynamics

In the previous sections we assumed that the set of nodes is always static. Now
we also want to support dynamic node sets, so in this section we extend the set of
requests on a distributed data structure by Join and Leave requests.

o Join(): The node v issuing this request wants to join the system.

o Leave(): The node v issuing this request wants to leave the system.

When a node joins or leaves the system, this entails several changes to the system
in order to get into the state assumed in the previous sections. The DHT has to
be updated, which includes movement of data to joining or from leaving nodes, the
LDB has to be updated and meanwhile the aggregation tree changes. To prevent
chaos caused by the latter, we handle Join and Leave requests lazily. This means
that a node v joining or leaving the network will be assigned a node u responsible
for v. u then acts as a representative for v, meaning that u takes over v’s DHT data,
emulates v in the case of v being a leaving node, or relays v’s insertion or deletion
requests in the case of v being a joining node. Only after a sufficiently large number
of nodes has requested to join or leave the system (which is counted at the anchor),
the system enters a special state in which no further batches are sent out. During
this state, joining nodes are fully integrated into the system (meaning they no longer
need a node responsible for them) and nodes that left can end being emulated. In
the following, we will specify the details of this. Keep in mind that a node that
requested to join the system and that is not yet fully integrated into the system is
called a joining node and a node that requested to leave the system and that has not
yet left is called a leaving node.

Note that if a node v wants to join or leave the network, we have to integrate
or disconnect the three virtual nodes [(v), m(v),r(v) € V into or from the system.
Therefore, we generate a Join or Leave request for each of these three nodes separately.
In the following we describe how each of these requests is handled. To provide a
cleaner presentation, we consider these protocols to be executed by the distributed
queue.

3.5.1. Join

Algorithm 3 summarizes the protocol for handling joining nodes, dividing it into a
setup phase and an update phase.

Setup Phase. Assume a node v wants to join the system and further assume v > vy
for now, with vy being the anchor (we will consider the other case separately below).

34

3.5. Node Dynamics

Algorithm 3 Handling Join Requests

Setup Phase (for a joining node v)

1: Delegate v to the node u with u < v < suce(u) or suce(u) < u <wv
2: Introduce u to v and move DHT data from u to v

Trigger the Start of the Update Phase
3: Aggregate #Join requests to the anchor (extend Phase 1 of Algorithm 1)
4: Start update phase once #Join requests > n

Update Phase (performed by node u, responsible for joining nodes vy, ..., vg)
5. Pow(u) < p(u)
6: Cold(u) — C’(u)
7: Integrate vy, ..., vy into the LDB > Potentially changes p(u) and/or C(u)
8: Wait for all acknowledgments from nodes in Cyq(u)
9: Send an acknowledgments to pyq(u)

10: Wait for confirmation from p(u) that the update phase has ended
11: Send confirmation that the update phase has ended to all C(u)

Then it sends a Join() request to a node w, where w is an arbitrary node in the
system. If v wants to join the system via Join() at node w, we route v from w
to the node w such that either u < v < succ(u) or succ(u) < u < v (in case the
edge (u, succ(u)) closes the cycle) holds. We define u to be responsible for v’s Join
request. More precisely, u has the following tasks. First, once it has received v’s
reference, it introduces itself to v. Second, it hands over to v all DHT data whose
positions are in v’s interval. From then on, v will forward any Put or Get requests
for data with positions in this interval to v. Third, u considers v to be a child in
its aggregation tree, meaning that v is able to send queue requests via u. Fourth, u
notifies the anchor that there is an additional node that has joined the system. For
this, we extend the notion of a batch B from Definition 3.5, such that it stores an
additional number B.j € Ny representing the number of Join requests that the node
u is responsible for.

Node u proceeds in the same manner as for queue requests. It first buffers the
Join request in its local storage and once a new batch u.B is created, u forwards
u.B up in the aggregation tree. Any intermediate node v, when combining batches
Bi, ... By, calculates the sum of the B;.j values for the combined batch v.B*. By
doing so, the anchor learns a lower bound on the total number of joining nodes (note
that additional nodes may have requested to join but knowledge of this has not yet
reached the anchor).

Note that a node u may become responsible for several joining nodes vy, ...vg. In
this case, all of the above still holds with one exception: Assume w is responsible
for nodes vy, ..., v, and becomes responsible for an additional node v’ such that a
node v; is the closest predecessor of v/. Then u does not transfer the DHT data from
itself to v’ but issues v; to transfer the DHT data to v’ and sends a reference of v’ to
v;. Using this reference, v; can forward any Put or Get requests that fall within the
remit of v'.

35

Chapter 3. Distributed Queues and Stacks

Update Phase. If the anchor vg observes that the number of joining nodes exceeds
the number of successfully integrated nodes when processing a batch, it sends the
computed intervals down the aggregation tree as usual (c.f. Phase 3 of Algorithm 1),
but attaches a flag to the message indicating that the update phase should be entered
(thus informing all nodes of this). In this phase, every node will not send out a
new batch until it has been informed that the update phase is over. Instead, nodes
responsible for other nodes will fully integrate these nodes into the system. This
works in the following way: When a node u # vg in the aggregation tree receives the
intervals from its parent node in Phase 3, it proceeds as described in Section 3.3; i.e.,
it decomposes the intervals, forwards intervals to its children and possibly generates
Put and Get requests in Phase 4 of Algorithm 1. Additionally, u stores its parent p(u)
in the aggregation tree in the variable p,q(u) all children C(u) in the variable Cyq(u).
This is required because in the update phase the aggregation tree may change, but
the acknowledgments that the joining nodes have been integrated successfully need
to be aggregated via the old aggregation tree. That means that as soon as u has
integrated all nodes it is responsible for (if any) and received acknowledgments from
all nodes in Cyg(u) (if any), it sends an acknowledgment to pyq(u) and forgets
Coig(u) and pyg(u). The anchor vy behaves similarly to any other node wu; i.e., it
also stores its old children, processes Put and Get requests and also starts integrating
nodes it is responsible for. However, when it has finished doing so and has received
all acknowledgments from the nodes in Cy4(vp), it propagates a message down in the
new aggregation tree indicating that the update phase is over (recall that we consider
the case of a joining node that has to become the new anchor below). This is safe
because it can be shown by induction that when vy has received acknowledgments
from all its children, every node in the tree has finished integrating at least all joining
nodes that were joining when the anchor entered the update phase. Once a node
has received an indication that the update phase is over, it starts aggregating and
sending out batches again via Algorithm 1.

Integrating a Joining Node. We now describe how integrating a joining node works
(Line 7 of Algorithm 3).

Consider a node u that is responsible for vy,...,v;. W.l.o.g., we assume u <
v] < ... < v < succ(u). Node u introduces v; to v;+1 and vice versa for all
i€ {l,...,k—1} and introduces succ(u) to vy and vice versa. Finally, v drops its
connections to ve, ..., v and succ(u) and sets succ(u) to v1. Consider Figure 3.2 for
an illustration of these introduction rules.

Note that the nodes v; already stored their corresponding DHT data from the
point when u became responsible for them. Due to changes in the LDB, it may
happen that Put or Get requests do not need to be routed to the same target as
before. However, if a Put(e, k) request is at a node v that is not responsible for
storing the element e, v must have a neighbor that is closer to the node responsible
for storing e. This is because whenever v removes an edge to a neighbor during the
update phase, it has learned to know a closer one in the same direction before. Thus,
v can simply forward the Put request into the correct direction. Similarly, if a Get(k)
request is at a node v that does not store the desired element e with key k, v waits
until it either stores e or it has learned to know a node that is closer to the target
than itself. Since eventually our procedure forms the correct LDB topology again,

36

3.5. Node Dynamics

u v=succ(u)

Vi \Z] V3 vy=succ(u) v, V3

(a) Before the update phase (b) Upon integrating vy, va, v3 (c) After integrating vy, va, v3

Figure 3.2.: Introduction rules upon processing Join requests of v1,vs and v3 at node
u. Dashed edges are generated by messages that u sends out to vy, ve, v3
and v = succ(u).

one of the above cases will eventually occur, so the Get requests will be answered.

Updating the Anchor. We now consider the special case, where at least one new
node v’s label is smaller than the label of the current anchor vg. Then the node
responsible for v is the node u with maximum label, i.e., u = pred(vp). In general, u
behaves as described before. However, when vy has received all acknowledgments
from its children and integrated the nodes it is responsible for, it does not send out
the message indicating that the update phase is over (note that vy can determine that
a node v < vg has joined because its neighborhood to the left has changed). Instead,
vo first searches for the leftmost node v and then transfers its interval [vg.first, vg.last]
to v. From that point on, v will be the new anchor and send the message indicating
that the update phase is over down in the new aggregation tree.

3.5.2. Leave

Algorithm 4 summarizes the protocol for handling leaving nodes, again dividing it
into a setup phase and an update phase.

Setup Phase. The general strategy for handling Leave requests is the following. For
each leaving node v, the node emulating the left neighbor u of v in the LDB creates
a virtual node v’ that acts as a replacement for v: i.e., v will store v’s DHT data,
be responsible for the nodes v was responsible for and have the same connections
as v had. As soon as this replacement has been created, the corresponding edges
have been established, the edges to v have been removed, and all messages on their
way to v have been delivered and successfully forwarded from v (we explain how to
check this below), v is safe to leave the system and does so. The challenge is to deal
with neighboring leaving nodes: If v has a neighbor that is also leaving, then this
neighbor does not want to establish a new edge, which might result in a deadlock
situation. Thus, we have to prioritize leaves. Whenever two neighboring nodes u
and v determine that they both want to leave, the one with the higher identifier
postpones its attempt to leave until the other one has exited the system. Since in
any case there is a unique leftmost leaving node, there will always be a node that can
leave the system, which inductively yields that all nodes eventually leave. To enable
this, each node that calls Leave first asks all its left neighbors if it is allowed to do so.
Only if all of them acknowledge does it start the actual procedure to leave. Note

37

Chapter 3. Distributed Queues and Stacks

Algorithm 4 Handling Leave Requests

Setup Phase (for a leaving node v)
Let u be the left neighbor of v in the LDB
u creates a virtual node v’ to emulate v
Transfer data from v to v’ via u
Wait until v has received all messages sent to it
Disconnect v from the LDB
v may now exit the system

Trigger the Start of the Update Phase
Aggregate #Leave requests to the anchor (extend Phase 1 of Algorithm 1)
Start update phase once #Leave requests > n/2

Update Phase (performed by node u, responsible for emulating nodes vy, . . ., vg)
9: poa(u) < p(u)
10: Cold(u) — C(u)
11: Exclude vy, ..., v from the LDB > Potentially changes p(u) and/or C(u)
12: Wait for all acknowledgments from nodes in Cyq(u)
13: Send an acknowledgments to p,q(u)
14: Wait for confirmation from p(u) that the update phase has ended
15: Send confirmation that the update phase has ended to all C(u)

that a node u that acknowledged a right neighbor v that it may leave and becomes
leaving afterwards has to wait with actually executing Leave until v has left (i.e., v
was successfully replaced by a virtual node v’ that is now emulated by u).

One may ask how a leaving node v can determine that it has received and suc-
cessfully forwarded all messages sent to it to v’. To do so, we additionally assume
that for each message sent through an edge in the system, an acknowledgment is
sent back to the sending node (except for acknowledgments, for obvious reasons).
Each node then stores, for each edge, the number of acknowledgments it is still
waiting for. Next, v asks all its neighbors to inform v once they have received all
acknowledgments for messages sent to v. Once v has received all responses, it knows
that it does not receive any more messages. After forwarding the received messages
to v/ and receiving all acknowledgments for those, it knows it is safe to leave.

A left node u that created a replacement v’ for its right neighbor v is called the
node responsible for v'. Note that v/ may receive an additional Leave request from
a node w. In this case, the node emulating u would spawn an additional node w’
and everything is carried out as though v’ were a normal node. However, we say
that u is also responsible for w’. This way we make sure that only non-leaving nodes
are responsible for leaving nodes. Similar to the handling of Join requests, a node u
responsible for at least one leaving node sends an additional number B.l € Ny in the
batch u.B it sends out in Phase 1 of Algorithm 1, representing the number of Leave
requests that u has become responsible for since the last execution of Algorithm 1.

Update Phase. The update phase is analogous to the update phase of Algorithm 3.
As soon as the number of leaving nodes becomes larger than n/2, the anchor

38

3.5. Node Dynamics

initiates the update phase during which each node u responsible for a set of virtual
nodes w1, ..., v; deletes these nodes and updates the LDB accordingly. Once all
acknowledgments for this have been propagated up in the aggregation tree, vg
broadcasts to all nodes in the aggregation tree that the update phase has ended.
Note that both joins and leaves may be handled in the same update phase.

On a side note, one may ask what happens if a joining node v joins at some node
w that is currently in the process of leaving. While w has not yet exited the system
and still has edges to some non-leaving nodes, w can forward v such that v stays
in the system. However, once w has exited the system and is not alive anymore, v
cannot join the system through w. Still, v can detect if w is not active anymore and
then try joining the system from another node.

Updating the Anchor. When vy wants to leave, we proceed similarly as for the join
case: pred(vg) will become the node responsible for vy and perform the duties of the
anchor. At the very end of the update phase, the anchor’s information is transferred
to the node v that then has the minimum identifier, making v the new anchor.

3.5.3. Analysis

We analyze the runtime of Join and Leave requests, splitting them up into the setup
phase and the update phase. Note that a joining node is already allowed to generate
queue requests after the corresponding setup phase has finished. Similarly, a leaving
node has exited the system after its corresponding setup phase has finished; i.e., the
update phase only gets rid of the virtual nodes emulating nodes that already left the
system.

Theorem 3.18. The setup phase for a joining node v is finished after O(logn)
rounds w.h.p.; i.e., v’s Join request finishes after O(logn) rounds w.h.p.

Proof. Delegating v to the node u that is responsible for it takes O(logn) rounds
w.h.p. due to Lemma 2.7. Introducing u to v can be done in 2 rounds (when assuming
that v acknowledges the introduction to w). O

Theorem 3.19. Assume that v is the only node in the system issuing a Leave request.
Then the setup phase for v is finished after O(1) rounds; i.e., v’s Leave request finishes
after O(1) rounds.

Proof. First note that acknowledgments for each message only increase the runtime
by an additional round. Creating a virtual node v’ to emulate v can therefore be
done in 2 rounds, as well as the transfer of data from v to v'. Waiting until v
has received all messages sent to it only takes a constant amount of rounds, as all
acknowledgments sent to v in a round r arrive at v no later than at the beginning of
round 7 + 1. Disconnecting v from the LDB can also be done within O(1) rounds,
because each (virtual) node in the LDB has only a constant degree and the virtual
nodes form a line. O

Note that in the case where multiple (potentially connected) nodes want to leave
the system, the worst-case time for such a node to be allowed to exit the system
increases to O(L), where L is the maximum size of a connected component consisting
only of leaving nodes.

39

Chapter 3. Distributed Queues and Stacks

Theorem 3.20. The update phase finishes after O(logn) rounds w.h.p.

Proof. By Corollary 2.10, we need O(logn) rounds w.h.p. to propagate the start of
the update phase to all nodes in the aggregation tree. It is easy to see that a node u
responsible for multiple joining or leaving nodes v can include/exclude them into the
LDB within a constant amount of rounds at the start of the update phase. Sending
out acknowledgments and broadcasting the end of the update phase can be done
in O(logn) rounds w.h.p., again due to Corollary 2.10. Finally, the time it takes
the (old) anchor to determine the new anchor is also O(logn) rounds w.h.p., as once
the LDB has been updated, there it contains at most 2n (real) nodes and thus 6n
virtual nodes, so searching for the virtual node with minimum position can be done
in O(logn) rounds w.h.p. due to Lemma 2.7. O

Having the update phase run for only O(logn) rounds w.h.p. implies that it does
not impact the worst-case time for insertion and deletion requests on the distributed
data structure, as these also take only O(logn) rounds w.h.p. to finish.

40

Distributed Priority Queues and k-Selection

We continue our study of distributed data structures by looking at the distributed
priority queue. As opposed to a standard queue, elements that are inserted into a
priority queue come with a priority. The way elements are taken out of the priority
queue does not depend on the order they have been inserted into it, but on the
priority; i.e., we always take out the most prioritized element. This bears some
additional challenges for the distributed setting, as we need a way to quickly find
out at which node the most prioritized element is stored. Another factor to take into
consideration will be the number of available priorities, i.e., the cardinality of the
universe of available priorities.

If there is only a constant amount of priorities available, then we are able to
provide a distributed protocol for a priority queue by extending the protocol for the
distributed queue from the previous chapter. Simply running one distributed queue
for each priority will suffice. The protocol then comes with the same properties as
the protocol for the distributed queue.

If the amount of priorities is arbitrary, then we have to come up with more
sophisticated techniques. To find out the set of elements that have to be removed
from the priority queue when processing k deletion requests at once, we use a novel
protocol that solves the distributed k-selection problem. The protocol runs in O(logn)
rounds w.h.p. and is of independent interest. Using this protocol, we are able to
construct a distributed priority queue for an arbitrary amount of priorities that
processes requests in O(logn) rounds w.h.p. and provides serializability.

Note that the protocol for supporting Join and Leave requests from Section 3.5 can
trivially be applied to both of our distributed priority queues, hence we only focus
on insertion and deletion requests in this chapter.

Underlying Publication. This chapter is based on the following publication:

M. Feldmann and C. Scheideler. “Skeap & Seap: Scalable Dis-
tributed Priority Queues for Constant and Arbitrary Priorities”.
In: Proceedings of the 31st ACM on Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2019, cf. [FS19].

Outline of This Chapter. First we introduce some basic notation and define the
semantics that we want our distributed priority queue to fulfill (Section 4.1). We then
give an overview of related work in Section 3.2 and follow by presenting and analyzing
our protocol for priority queues with a constant amount of priorities (Section 4.3). We
proceed with the presentation of the protocol that solves the distributed k-selection
problem (Section 4.4) and then use this protocol to obtain a distributed priority
queue that works for an arbitrary amount of priorities (Section 4.5).

41

Chapter 4. Distributed Priority Queues and k-Selection

4.1. Basic Notation and Semantics

Similarly to Section 3.1, we start by introducing some basic notation and defining
the semantics for a distributed priority queue.

As in the previous chapter, the system consists of n nodes and £ is the universe of
all elements that may be inserted into the priority queue. In addition, each element
e € £ is assigned a unique priority from a universe P. Denote e’s priority by P(e).
We allow different elements to be assigned to the same priority. Priorities in P can
be totally ordered via <. Using a tiebreaker to break ties between elements having
the same priority, we get a total order on all elements in .

A protocol for the distributed priority queue has to specify the following two
requests that can be generated by a node u € V:

o Insert(e): Adds the element e € £ to the distributed priority queue.

o DeleteMin(): Removes the element e € £ with minimum priority from the
distributed priority queue and delivers it to u. If the priority queue contains
no elements, L is returned to u.

As in the previous chapter, we want to define the semantic constraints that we will
be dealing with in our implementation for the distributed priority queues. For a node
u €V, let op(u,?) denote the i-th request (either an Insert request or a DeleteMin
request) generated by u and let Ap(u) € O(T - A(u)) be the number of requests
generated by u over the lifetime T € O(poly(n)) of the data structure. Let

Ar(u)
S = U op(u,i) |lueV
i=1

be the set of all requests issued by all nodes over the lifetime of the data structure. We
use Definition 3.1 to define serializability, local consistency and sequential consistency.

Let ins(u) be an Insert request generated by node u € V' and let P(ins(u)) be equal
to the priority of the element inserted via the ins(u) request. Similarly, let del(u)
be a DeleteMin request generated by node u € V. We denote a pair (ins(u), del(v))
to be matched, if del(v) returns the element to node v that was inserted into the
data structure by node u via ins(u). Define M to be the set of all matched requests
generated over the data structure’s lifetime. Note that not every request r has to be
matched and, thus, not every r is necessarily part of some pair contained in M — we
denote this by r & M.

For the distributed priority queue, we introduce the following queue semantics,
similar to Definitions 3.3 and 3.4.

Definition 4.1 (Priority Queue Semantics). Let u,v,w,x € V and let M be a
matching as defined above. A protocol for the distributed priority queue with requests
Insert and DeleteMin is priority queue consistent if and only if there is an ordering
< on the set S such that M satisfies the following properties:

(a) V(ins(u), del(v)) € M : ins(u) < del(v),

42

4.2. Related Work

(b) Vins(u), del(v) € M : del(v) < ins(u).
(c) Y(ins(u),del(v)) € M there is no ins(w) ¢ M such that

ins(w) < del(v) A P(ins(w)) < P(ins(u)).

Intuitively, the three properties have the following meaning. The first property
means that an element has to be inserted into the priority queue before it can be
deleted. The second property means that a DeleteMin request returning 1 does so
because the priority queue is empty at the time where the request is processed. The
third property makes sure that the distributed priority queue removes elements in
a manner similar to a sequential priority queue: i.e., out of all elements that are
contained in the queue, we remove the element with minimum priority. Note that
Definition 4.1(c) can be modified such that the priority queue takes out the element
with maximum priority instead, hence supporting DeleteMax requests instead of
DeleteMin requests.

4.2. Related Work

As we already have presented the most important related work for distributed data
structures in Section 3.2, we only mention additional related work specifically relevant
to priority queues in this section as well as related work on distributed k-selection.

Priority Queues. Many priority queue algorithms can be found in the area of parallel
computing. They mostly revolve around organizing the elements in a certain topology,
for example in heaps [Aya90; Hun+96], B*-trees [Joh94], or skip lists [ST05].

In [SZ99], the authors focus on a fixed range of priorities and come up with a
technique that is based on combining trees [Got+98; GVW89], which are similar to
the aggregation tree in our work. However, there still is a bottleneck, as the node
that is responsible for a combined set of operations has to process them all by itself
on the shared memory. The authors of [SL00] propose a concurrent priority queue for
an arbitrary amount of priorities, where elements are sorted in a skip list. Their data
structure satisfies linearizability but the realization of DeleteMin generates memory
contention, as multiple nodes may compete for the same smallest element with only
one node being allowed to actually delete it from the priority queue.

Maintaining the elements in one of the above topologies can be costly for the nodes
in our distributed system, as this would mean that additional data have to be stored
for each element stored by a process. For example, when embedding a skip list into
our system, a node storing an element e of this skip list also has to store references to
the nodes that store the neighbors of e. This comes at the cost of storage overhead
and the problem that the skip list has to be updated every time a batch of priority
queue requests has been processed, which is generally more costly than just storing
the elements in a DHT.

A scalable distributed priority queue called SHELL has been presented by Scheideler
and Schmid in [SS09]. SHELL’s topology resembles the De Bruijn graph and is
shown to be very resilient against Sybil attacks. However, SHELL is concerned with

43

Chapter 4. Distributed Priority Queues and k-Selection

the participants of the system forming a heap and not a distributed data structure
that maintains elements (cf. the paragraph on distributed queuing in Section 3.2).

Distributed k-Selection. k-selection is a classical problem that has been studied
for various settings, see for example [KP91; Man+93; KNR96; RS97]. The problem
has also been studied in the distributed setting for various types of data structures
like cliques [RSS86], rings, meshes or binary trees [Fre83|.

Kuhn et al. [KLWO07] showed a lower bound of ©Q(Dlogpn) on the runtime for
any generic distributed selection algorithm, where D is the diameter of the network
topology. By ’generic’ they mean that the only purpose to access an element is for
comparison. However, they assume the network topology to be static, which does
not hold for our protocol, since we are allowed to create additional temporary edges
by forwarding node identifiers via messages. This comes with the advantage that the
runtime of our algorithm is only logarithmic in the number of nodes n.

Haeupler et al. [HMS18] came up with an algorithm that solves the distributed
k-selection problem in O(logn) rounds w.h.p. in the uniform gossip model using
O(log n)-bit messages. This matches our result for distributed k-selection in both time
and message complexity. The idea of their algorithm is to compute an approximation
for the k-th smallest element through sampling and then use this algorithm several
times to come up with an exact solution. While our algorithm for distributed k-
selection shares some ideas regarding the sampling technique, we are able to find
the k-th smallest element among m = poly(n) elements distributed over n nodes,
whereas the algorithm from [HMS18] works only on n elements to the best of our
knowledge.

4.3. Constant Priorities

The first protocol for a distributed priority queue works for a constant amount of
priorities. Formally, this means that we assume that P = {1,...,c} for a constant
c € N. The actual protocol is an extension of our protocol for distributed queues
(Section 3.3) and is able to achieve the same runtimes for its requests as well as
satisfying sequential consistency and priority queue consistency. Throughout the rest
of this chapter, a priority queue request, or simply request, is either an Insert or a
DeleteMin request.

4.3.1. Insert and DeleteMin

The idea of the protocol is to maintain a distributed queue for each priority p € P.
As the number of priorities is only a constant, the overall overhead is a constant as
well. A DeleteMin request is then processed on the non-empty queue with minimal
priority. In order to support individual queues for the priorities, we extend the notion
of a batch from Definition 3.5.

Definition 4.2 (Priority Queue Batch). A priority queue batch is a sequence
(ins1, dely, ..., insa_1, delyy), where each ins; is a sequence (ins1,...,ins; p|) €

Nlopl representing the number of Insert requests for elements with priority p € P and
each del; € Ny represents the length of the i-th DeleteMin sequence.

44

4.3. Constant Priorities

We will simply refer to a priority queue batch as a batch in the following. Two
batches By = (insi, dela, ..., insog—_1, delyy) and By = (ins), dely, ..., insh,_q, dely;,)
can be combined by computing

B = (insy + ins}, dely + delyy, . .., insop_1 + insh,_q, deloy, + delby,)

where insy + ins| = (insi1 + insjy, ..., ins;|p| + ins; p|)-

Algorithm 5 describes the phases of our protocol. The protocol consists of 4 phases
that work similarly to the phases in the distributed queue (Algorithm 1), so in the
following we only describe the points at which we have to make changes.

In the first phase, the nodes have to take the priorities of the elements that should
be inserted into account when creating the snapshot of its local buffer and representing
it as a batch. For example, a snapshot consisting of requests Insert(eq), Insert(es),
DeleteMin(), Insert(ez) and DeleteMin() (in that specific order) with P(e;) = 1,
P(e2) =1 and P(e3) = 2 is represented by the batch ((2,0),1,(0,1),1). By doing so,
the batch u.B respects the local order in which requests are generated by u, which is
important for guaranteeing sequential consistency.

In the second phase, we extend the set of variables that are maintained at the anchor
vo: Instead of two variables vg.first € N, vg.last € Ny, vg now maintains variables
vo.first, € N, vg.last, € Ng for each priority p € P. Upon initialization of the
queue, each vy.first, is set to 1 and wvo.last, is set to 0. The pair (vo.first,, vo.lasty)
is representing the keys that are currently occupied by elements with priority p.
Consequently, when the anchor processes a sequence ins; = (ins;1, ..., ins;p|) of
Insert requests, it processes each (sub-)sequence ins; , using the pair (vo. first,, vo.lasty)
in the same manner as shown before on the distributed queue. When processing
a sequence del; of DeleteMin requests, the anchor first looks for the minimum
priority p € P for which the corresponding queue is non-empty, i.e., for which
vo.first,, < vg.last) holds. It then removes up to del; elements from this queue in
the same manner as in Phase 2 of Algorithm 1. If the queue contains less than del;
elements, say d < del;, all d elements are removed from the queue and the anchor
proceeds removing the remaining del; — d elements from the next non-empty queue
with minimum priority until del; elements have overall been removed, or all of the
queues are empty.

In the third phase, the intervals I that have to be decomposed are now of the form
I'=(Ii,...,Iy) with I; = ([zi1,¥i1], - - - [p|» ¥, 1p|]), which basically represents
the keys the anchor assigned to all Insert requests for all priorities and all DeleteMin
requests. The universe K of keys now contains pairs (k,p), with k € Nand p € P
instead of just single numbers, so we can avoid the case where the anchor hands out
the same key for two requests of different priorities.

Finally, in Phase 4 of Algorithm 5 the nodes generate the DHT requests in the
same manner as in Phase 4 of Algorithm 1, with the exception that they now have
to consider each of the priorities individually. Once a node has sent out all its DHT
requests, it switches back to the first phase in order to process the next batch of
queue requests.

45

Chapter 4. Distributed Priority Queues and k-Selection

Algorithm 5 Insert & DeleteMin Requests in the Distributed Priority Queue
Phase 1 (Executed at each node u)

1: Create batch u.B
2: Wait until v has received v.B from all v € C(u)
3: Combine batches v.B, v € C(u), with v.B to a batch u.B™
4: Send u.B™ to p(u)
Phase 2 (Local computation at the anchor)
5: Let vg.BT = (insy, dela, . .., inssy,_1, delgy) be the combined batch
6: fori=1,...,2k do
T: if 7 is odd then
8: Let ins; = (ins; 1, ..., insi7|p‘)
9: forpe {1,...,|P|} do
10: [T4.p, Yip) [vo.last, + 1, vo.last, + ins;)
11: vo.lastp < vo.lastp + Z'TLSLP
12: else
13: d <+ del; > Remaining number of elements to remove
14: while d >0 A dp € P : vg.first, < vg.last, do
15: Let p € P be the minimum priority such that vg.first, < vo.last,
16: [Tips Yip] < [vo-first,, min{vg.first, + d — 1,vg.lasty}]
17: vo.first, < min{vg.first, + d,vo.last, + 1}
18: d<+d— (ym, — Tijp+ 1)
Phase 3 (Executed at each node)
19: Wait until u has received intervals I from p(u)
20: Decompose I into intervals I, and intervals I, for each v € C(u)
21: for all v € C(u) do
22: Send I, to v

Phase 4 (Executed at each node u)
23 Let I, = (I,..., Io) with I; = ([zi1,vi1], - - -, [%,1p)s Yo])
24: fori=1,...,k do

25: if 7 is odd then

26: forp=1,...,|P| do

27: if Tip < Yip then

28: Generate requests Put(e, (z;p,p)), - .., Put(€e/, (yip, p))
29: else

30: forp=1,...,|P| do

31: if z;, < y;p then

32: Generate requests Get((x; p,p),u), ..., Get((Yip,p), u)

4.3.2. Analysis

We analyze our protocol for the same properties as we did for the distributed queue
and the distributed stack in the previous chapter. The proofs for the runtime of

46

4.3. Constant Priorities

requests and the upper bound on the congestion follow directly from Lemmas 3.8
and 3.9, respectively.

Lemma 4.3. The distributed priority queue with |P| € O(1) satisfies sequential
consistency.

Proof. For a batch B = (insy, dela, ..., insyy_1, delay) with ins; = (ins;1,.. ., ins; p|)
replace ins; by setting ins; = Zﬁ'l ins; ;. Then apply the same algorithm as described
in the proof of Lemma 3.12 in order to assign a unique virtual value ¢(op) to each
priority queue request op.

The rest of the proof is analogous to the proof of Lemma 3.12, except for one minor
point: For two Insert requests ins(u, 7), ins(u, 7+ 1) generated by the same node u with
ins(u,?) < ins(u,i + 1), it does not necessarily hold that both requests are processed
in the order induced by < at the anchor in Phase 2 of our protocol, in case they have
different priorities. One could assume that this would violate serializability. However,
this only holds for Insert requests that are represented by the same value ins; of the
batch u.B, so there is no DeleteMin request del with ins(u,i) < del < ins(u,i + 1).
The distributed execution of all priority queue requests is therefore still equivalent to
the serial execution w.r.t. <. O

Lemma 4.4. The distributed priority queue with |P| € O(1) satisfies priority queue
consistency.

Proof. The properties defined in Definitions 4.1(a) and 4.1(b) follow from the proof
of Lemma 3.7. For the third property, note that the anchor always removes elements
first from the queue with minimum priority that is non-empty. Therefore, there
cannot exist an Insert request ins(w) that has been processed by the anchor before
some DeleteMin request del(v) that got matched to an Insert request ins(u) with
P(ins(w)) < P(ins(u)). Hence Definition 4.1(c) is satisfied as well. O

Lemma 4.5. Messages generated in the distributed priority queue with |P| € O(1)
consist of O(Alog?n) bits.

Proof. The proof follows directly from Lemma 3.10 when keeping the fact in mind
that the number of priorities |P| is only constant and thus the number of bits by
which a batch can be stored only multiplies by a constant factor, in comparison to
batches in the distributed queue. O

The following theorem summarizes the results obtained in this section. Again,
note that Theorem 4.6(e) is a direct implication of Corollary 2.13.

Theorem 4.6. Algorithm 5 implements a distributed priority queue for a constant
amount of priorities with the following properties:

(a) The distributed priority queue satisfies sequential consistency and priority queue
consistency.

(b) Each priority queue request is finished after at most O(logn) rounds w.h.p.

(¢) The distributed priority queue has congestion O(A).

47

Chapter 4. Distributed Priority Queues and k-Selection

(d) Messages generated in the distributed priority queue consist of O(Alog®n) bits.

(e) If the distributed priority queue contains m elements, each node stores m/n
elements on expectation.

4.4. Distributed k-Selection

In this section we present a novel protocol that solves the distributed k-selection
problem in O(logn) rounds. We will use this protocol in Section 4.5 in order to
construct a priority queue with arbitrarily many priorities. The protocol that we
propose in this section might be of independent interest. Throughout this section we
are given an aggregation tree of n nodes with m € N elements distributed uniformly
among all nodes; i.e., each node u stores m/n elements on expectation. Denote by
u.F the set of elements stored at node u. Recall that the storage capacity of each
node is polynomial in n, so m € O(poly(n)): i.e., m < n? for a constant ¢ € N.
Consider the ordering e; < ... < e, of all elements stored in the priority queue
according to their priorities P(e;). We denote the rank of an element e; in this
ordering by rank(e;) =i. As we will use distributed k-selection for a priority queue
with arbitrarily many priorities, we assume that the set of priorities is larger than
some constant now, i.e., P = {1,...,n?}. Also, we may assume for convenience
that each element has a unique priority, otherwise one could just use a tiebreaker to
determine the rank of two elements with the same priority.

Definition 4.7. Given a value k € N, the distributed k-selection problem s the
problem of determining the k-th smallest element out of a set of m = O(poly(n))
elements, i.e., the element e € £ with rank(e) = k.

For scalability reasons we allow nodes to send messages of at most O(logn) bits
only.

Each node u maintains a set u.C' C u.E that represents the remaining candidates
for the k-th smallest element at u. Denote the set of all candidates by C' = ¢y u.C
and the number of remaining candidates by N = |C/|. Initially each node u sets u.C
to u.F, which leads to N = m. We assume that the anchor initially knows the values
n and m (and thus also knows an appropriate value for ¢) as these can easily be
computed via a single aggregation phase. The anchor vg keeps track of values N and
k throughout all phases of our protocol via variables vy.IN and vg.k. Note that once
we are able to reduce N, we also have to update the value for k, because removing a
single candidate with a rank less than k implies that we only have to search for the
(k — 1)-th smallest element for the remaining candidates.

We dedicate this section to the proof of the following theorem:

Theorem 4.8. There exists a protocol that solves the distributed k-selection problem
in O(logn) rounds and congestion O(1) w.h.p., using O(logn)-bit messages.

The protocol (Algorithm 6) works in three phases. In the first phase we perform
a series of log(q) + 1 aggregation phases in order to reduce the number of possible
candidates from n? to O(n%? - logn) elements. The second phase further reduces
this number to O(y/n) candidates via aggregating /n sample elements in parallel.

48

4.4. Distributed k-Selection

In the last phase we directly compute the k-th smallest element out of the remaining
O(y/n) candidates.

Algorithm 6 Protocol for Distributed k-Selection
Input: n, m =n4, k
Output: e € £ with rank(ey) =k

Initialization
vo.N +—m
Uo.k‘ — k

N =

Phase 1 (Repeat log(q) + 1 times)
Propagate n, vg.k to all nodes
Compute u.Ppin, 4. Pra: € P at each node u € V
Compute Py = mingey {u.Ppin} and Ppae = maxyey {u.Phpog}
Remove candidates with priorities not in [Ppin, Phas]
Update vg.k, vg.IN

Phase 2 (Repeat until vg.N < y/n)

8: Propagate n, vg.N to all nodes

: For each e € C: Include e into C’ with probability \/n/N
10: Sort candidates e1,...,e, € C’ based on their priority
11: Fix ¢ € ©(y/logn - ¥n)
12: Determine e;, e, € C' with [= | ”W/ — (] and r = [k”ﬁl + (]
13: Remove candidates with priorities not in [P(e;), P(ey)]
14: Update vg.k, vo.N

Phase 3
15: Sort remaining candidates based on their priority
16: return e

4.4.1. Phase 1: Sampling

The first phase involves log(q) + 1 iterations. At the start of each iteration, the anchor
propagates the values of k and n to all nodes via an aggregation phase. Then each
node u computes the priorities of the |k/n|-th and the [k/n]-th smallest candidates
of u.C'. Let these priorities be denoted by u.P;, and u.Pp.;- The nodes then
aggregate these priorities up to the anchor, such that in the end the anchor receives
priorities Py, = mingey{u.Ppin} and Ppas = maxyey {u.Ppgg - The anchor then
instructs all nodes w in the aggregation tree to remove all candidates from w.C' with
a priority less than P, or larger than P,,,;. Afterwards, the nodes aggregate the
number of candidates removed this way up to the anchor. Let k,; denote the
number of removed candidates with a priority less than P,,;, and let k., be the
number of removed candidates with a priority larger than P,,.,. The anchor updates
vo.IN and vg.k by setting vg.N < v9.N — (kmin + Kkmaz) and vo.k < vo.k — Kumin.

49

Chapter 4. Distributed Priority Queues and k-Selection

We obtain the following two lemmas which basically show that once the first phase
has finished we are left with O(n3/2 -logn) candidates, one of them being the k-th
smallest element.

Lemma 4.9. Let e, € C be the element with rank k. Then Py < Per) < Pras-

Proof. We first show Pp,;, < P(eg). Assume to the contrary that P, > P(eg).
Then each node u € V' has chosen u.P,,;;, with w.Py; > P(ex). Thus, the |k/n]|-th
element of any node u has a priority strictly larger than P(ey). It follows that u has
stored at most |k/n| — 1 elements with priorities at most P(ex). This implies that
the number of elements with rank less that or equal to k is at most

(lk/n]—1)-n < (k/n—1)-n
= k—n
< k-1,

which is a contradiction.

Now assume to the contrary that P.; < P(ex). Then each node u € V has
chosen w. P,y With w.Ppe, < P(eg). Thus, the [k/n]-th element of any node u has
a priority strictly less than P(eg). It follows that u has stored at most |u.C| — [k/n]
elements with priorities greater than or equal to P(eg). This implies that the number
of elements with rank greater than or equal to k is at most

> (ju.Cl = [k/n]) (Z IU-C|> —n-[k/n]

ueV ueV
= N-—n-[k/n]
< N-n-k/n
= N —k,
which is a contradiction. O

Lemma 4.10. After log(q) + 1 iterations of Phase 1, N € O(n®? -logn) w.h.p.

Proof. First we want to compute how many candidates are left in variables u.C
after a single iteration of Phase 1. Let X; be the event that the candidate ¢; with
rank(c;) = i is stored at node u for a fixed v € V. Then Pr[X; = 1] = 1/n. Let
X =% | X;. Then E[X] = k/n. X denotes the number of candidates stored at u
with rank within [1, k]. We show that the rank of the |k/n]-th smallest candidate
in u.C' deviates from k by only O(yv/nklogn) w.h.p. When using Chernoff bounds
(Theorem 2.14(b)) we get that

Pr [X <(1- 5)]{/} < exp <—522k> <n ¢
n n

for e = y/(clogn) - 2n/k and a constant c. So with high probability, each node u has
at least (1 —¢) - £ candidates with rank within [1, k] stored in u.C. It follows that

the rank of the |k/n]-th smallest candidate chosen by u is at least (1 —¢) - k£ w.h.p.

50

4.4. Distributed k-Selection

By the union bound we know that w.h.p. the rank of the candidate with priority
Prin is at least (1 —¢) - k, so it deviates from k by at most

k-e=k-y/(clogn)- 2n/k = O(y/nklogn).

We want to remark that we are only allowed to apply the Chernoff bounds (Theo-
rem 2.14(b)) in case k > clogn-2n. In case that k < clogn-2n, the rank of the candi-
date with priority P,,;, deviates from k by at most k—1 < clogn-2n € O(n3/2 logn).

Using Theorem 2.14(a), we can analogously show that the rank of the candidate
with priority Pp,q, deviates from k& by no more than O(y/nklogn) w.h.p.

So the number of candidates left after the first iteration of Phase 1 is at most
O(v/nklogn) w.h.p. As we perform Phase 1 on the remaining candidates recursively
for log(q) + 1 iterations, we get the following function 7" for the number of remaining
candidates after ¢ > 1 iterations of Phase 1:

T'(k) = (ﬁ 2%) k- (ﬁ 2\j/logn) :

J=1

Thus, for i =log(q) + 1 iterations we obtain

log(q)+1 . [losla)+1
Tlos @+ (k) = H n | k2. %/logn

j=1 j=1
log(q)+1 o —j 1 log(q)+1 o5—j
. 2=3 L ‘ 277
= nZFl - k24 - (log n)zﬂ:l
1—L 1 1—L
= n 2-k%-(logn) 2
k<n? _1 _1
< n'"2.yn-(logn) 2
< n¥2. log n,

so at the beginning of the second phase (’)(n3/ 2 .logn) candidates are left w.h.p. [

4.4.2. Phase 2: Reducing Candidates to \/n

In the next phase we are going to further reduce the size N of C to O(y/n). The idea is
to let the second phase run in a constant amount of iterations, each of them reducing
the size of the remaining candidates by factor © (410%), where ¢ € O(y/logn - /n).
We will then show that only 5 iterations of the second phase are needed to reduce N
to some value in O(y/n), w.h.p.

One iteration of the second phase is divided into 3 sub-phases 2a, 2b and 2¢. In
Phase 2a, we sample a set of O(y/n) candidates, which will then be sorted by their
ranks in Phase 2b. We then use this sorting in Phase 2¢c where we choose two of
these sampled candidates whose priorities form an interval that contains the k-th
smallest element w.h.p. At the end of Phase 2¢ we remove all remaining candidates
whose priorities are not contained in that interval.

51

Chapter 4. Distributed Priority Queues and k-Selection

Phase 2a: Choosing Representatives

We first sample a set C' = {e1,...,e,} C C of n’ candidates uniformly at random.
To do this, the anchor propagates n and N to all nodes via the aggregation tree.
Then each node u decides for each of its candidates e € u.C' to be contained in the
set C" with probability \/n/N. We aggregate the number n’ of chosen candidates to
the anchor afterwards. Following this approach, we can show that n’ € ©(y/n) w.h.p.
due to Chernoff bounds.

Lemma 4.11. After sampling has been done in Phase 2a, n' € ©(y/n) w.h.p.

Proof. We show that n’ does not significantly deviate from its expected value with
the help of Chernoff bounds. For this, we show that n’ is upper bounded by a
constant factor of y/n (the proof that n’ is lower bounded by a constant fraction of
v/n works analogously). For each candidate e € C' let X, be the event that e has been
sampled to be in C’. We have that Pr[X. = 1] = Y% For the sum X = >eco Xe
of these events we have that E[X] =3 ¢ % = \/n, so the size n’ of the set C’ is
equal to \/n on expectation. Now choose 6 = 7&11?" for a constant c. For n high
enough it holds that 6 < 1. By Theorem 2.14(a) it follows that

_(\/W>2.\/ﬁ

Pr[X > (14 0)E[X]] < exp %3

= exp(—clogn)

< n ¢

Therefore, w.h.p., n’ is upper bounded by 2+/n. O

Phase 2b: Distributed Sorting

Our next goal is to compute the order of each candidate in C’ when sorting them by
their priorities (see Algorithm 7): For this we let the anchor assign a unique position
pos(e;) € {1,...,n'} to each candidate e¢; € C’" via decomposition of the interval
[1,n'] over the aggregation tree (similar to Phase 3 of Algorithm 5).

Every node routes each of its chosen e; € C’ to the node v; responsible for position
pos(c;) in the DHT (similar to Phase 4 of Algorithm 5). Then each node v; generates
n/ copies of e; and distributes them to n’ other nodes in the following way: Let
b(vi) = (vin,...,viq) be the first d = logn’ bits of v;’s unique bit string according
to the classical De Bruijn graph (recall that the aggregation tree is able to emulate
routing in the classical de Bruijn graph due to Lemma 2.7). Node v; stores a pair
([n'/2,n'/2], €;) for itself and sends a pair ([1,n'/2 —1],e;) to the node with bit string
(0,v3,1,...,viq—1) and another pair ([n'/2 + 1,7],€;) to the node with bit string
(L,vi1,...,vi4-1). Repeating this process recursively until a node receives a pair
([a,b], e;) with a = b guarantees that n’ nodes now hold a copy of e;. Observe that
this approach induces a (unique) tree T'(v;) with root v; and a height of at most
logn’ = ©(log /n) = ©(logn) when nodes remember the sender on receipt of a copy
of e;. Furthermore, there is no node serving as a bottleneck, which means that the
number of trees that a node participates in is only constant on expectation:

52

4.4. Distributed k-Selection

Algorithm 7 Distributed Sorting

Input: e1,...,e, € C’
Output: Order for each ey, ..., e, based on priorities

Algorithm (executed for each e;)
Assign a unique position pos(e;) € {1,...,n'} to ¢;
Route ¢; to the node v; € V' responsible for pos(e;)
Distribute n' copies €1, ..., €, of €; over v 1,..., v € T(v;)
Route copy e; ;j to w; ; € V responsible for h(i,j) > e;; and e;j; meet at w; ;
if P(ei,j) > P(ej,i) then
Send (1,0) to v; 5, send (0,1) to v,
else
Send (0,1) to v; 5, send (1,0) to vj;
Aggregate & combine vectors to the root node v; € T'(v;)
to obtain the order of e;

Lemma 4.12. Let T'(v1),...,T(vy) be the unique trees as defined above and let
X ={T(vi) | we T(vi)}|. Then for all w € V it holds that E[X,)] = ©(1).

Proof. Having N remaining candidates eq, ..., ey, there exist N unique trees T'(v1),
..., T'(vn) out of which we select n' uniformly at random, i.e.,

Pr[Tree T'(v;) is selected] = n'/N = ©(y/n/N).
As each tree has height at most logn/, the number of nodes in each tree is equal to

logn’ logn/+1

.1 —2log ,
> Ql:ﬁzz.?‘)g" —1=2n —1.
i=0 B

Observe that since the root nodes of each tree are selected uniformly and independently
at random and the tree height is only logn/, all nodes in the trees are determined
uniformly and independently at random. Thus, the probability that a node w is part
of some tree T' is equal to 22=L = ©(1/y/n). We can therefore compute the expected

n

number of trees that w is part of: i.e., for X, = [{T'(vi) | w € T(v;)}| we get

E[X,] = N-© (}f) 0 (%) — 1),

O]

Denote the element e; ; as the j-th copy of e;, meaning that e; ; is the candidate e;
that is passed as part of the pair ([7, j], e;) previously. Let v; ; be the node in T'(v;) that
received e; ;. Then v; ; uses the pseudorandom hash function h : {1,...,n/}? — [0,1)
with h(i,j) = h(j,7) for any i,j € {1,...,n'} to route ¢; ; to the node w; ; in the
DHT maintaining the key h(i, j). Node v; ; also sends a reference to itself along with
e;.j. Once we have done this for all copies on all n’ aggregation trees, a node w; ; has
now received the following data: The copy e; ; along with the node v; ; and the copy

53

Chapter 4. Distributed Priority Queues and k-Selection

e;,i along with the node v;;. Thus, w; ; can compare the priorities P(e; ;) and P(e; ;)
of e; j and e;;. Based on the result of the comparison, w; ; sends a vector (1,0) to
v;,; and a vector (0,1) to v;; (in case P(e; ;) > P(ejq)) or a vector (0,1) to v; ; and
a vector (1,0) to v;; (in case P(e; ;) < P(eji)). When v; ; receives a vector (1,0)
this means that there is one node in C’ that has a smaller priority than e;. Next, we
aggregate and combine all these vectors to the root of each tree T'(v;), using standard
vector addition for combining. This results in v; knowing the order of candidate e;
in C”: If the combined vector at v; is a vector (L, R) € N2, then the order of e; is
equal to L + 1.

Phase 2c: Reducing Candidates

In the next step, the anchor computes two candidates e; and e, such that we can
guarantee w.h.p. that the element of rank k lies between the ranks of those candidates.
For this, we consider the candidate e;, € C’ for which the rank is closest to k on
expectation, i.e., the candidate e, with order k - "W/ Due to the way we computed the
order of candidates in Phase 2b, there exists only one such element e, € C'. Now
we move ¢ candidates to the left/right of ej in the ordering of candidates in C’. Let
e; € C' be the candidate whose order is equal to [= |k - ”W/ — (| and e, € C’ be the
candidate whose order is equal to r = [k - "Nl + (]. In case [< 1 we just consider e,
and in case r > n/ we just consider ¢;. For now, we just assume [> 1 and r < n/.
We delegate e; and e, up to the anchor in the aggregation tree.

Once the anchor knows ¢; and e,, it sends them to all nodes in the aggregation tree.
Now we compute the exact ranks of e; and e, in C via another aggregation phase. Each
node u computes a vector (I, 7,) € N2, where [, represents the number of candidates
in u.C' with a smaller priority than e; and r, represents the number of candidates
in u.C' with a smaller priority than e,.. This results in the aggregation of a vector
(L, R) € N? when using standard vector addition at each node in the aggregation
tree. Once (L, R) has arrived at the anchor, it knows that rank(e;) = L + 1 and
rank(e,) = R+ 1. To finish the iteration, the anchor updates vg.k to vo.k — rank(e;)
and tells all nodes u in another aggregation phase to remove all candidates e € u.C
with rank(e) < rank(e;) or rank(e) > rank(e,) and to aggregate the overall number
k' of those candidates up to the anchor, such that it can update vg.N. Then the
anchor starts the next iteration (in case vo.IN > /vg.n) or switches to the last phase
of the protocol (in case vg.N < /vp.1).

We now show that this approach further reduces the number of candidates. First
we want to compute the necessary number of shifts § such that rank(e;) < k for ¢
and rank(e,) > k for e, holds w.h.p., as this impacts the number of candidates that
are left for the next iteration of the second phase. For this we need the following
technical lemma:

Lemma 4.13. If ¢ € O(y/logn - ¥/n), then w.h.p. rank(e;) < k and rank(e,) > k.

Proof. We just show rank(e;) < k, as the proof for rank(e,) > k works analogously.
Let ex € C be the element with rank(ex) = k. Let X; = 1, if the candidate e; € C
with rank(e;) = i has been chosen to be in €’ in Phase 2a. Let X = 3% | X; be the
number of elements with rank less than or equal to k that are chosen to be in C’.

54

4.4. Distributed k-Selection

Then E[X]| = k- % < y/n. The probability that too few candidates with rank smaller
than k have been chosen to be in C’ should be negligible, i.e., Pr[X < E[X]|—-(] <n~ ¢
for some constant ¢, where § denotes the number of steps that we have to go to the
left from the candidate with order k - % In order to apply Chernoff bounds, we
first compute & > 0 such that Pr[X < (1 —¢)E[X]] = Pr[X < E[X] — ¢]. Solving the
equation (1 — ¢)E[X] = E[X] — (for € yields ¢ = (/E[X]. Using Chernoff bounds
(Theorem 2.14(b)) on Pr[X < (1 — ¢)E[X]] results in

Pr[X < (1 —)E[X]] < exp(—£’E[X]/2) < n~¢

for 2¢2E[X] = clogn, ¢ constant. Solving this equation for ¢ leads to ¢ = gllao[ng]L
By solving the equation ﬁ = ;E‘%‘ for ¢ we get

C:\/;ClognE[X]Sm:@(m%)

This means that choosing ¢ € O(y/logn - ¥/n) suffices to guarantee that rank(e;) <
rank(ex) holds w.h..p. O

Using Lemma 4.13 we are now ready to show that only 5 iterations of Phase 2
suffice until the remaining number of candidates is within O(y/n).

Lemma 4.14. After 5 iterations of the second phase, N € O(y/n) w.h.p.

Proof. Recall that by Lemma 4.10, we have N = O(n3/2 -logn) after the first phase.
Consider the candidates e; and e, as determined by the anchor. Due to Lemma 4.13
it holds that rank(e;) < k < rank(e,) and there are ¢ € O(y/logn - \/n) candidates
lying between e; and e, that are contained in C’; i.e., we consider the ordered sequence
€1, €141, €r_1, 6 of candidates in C’. We compute the number 3 of candidates
that lie between two consecutive candidates e;, e;11 € C’ such that the probability
that all 8 candidates have not been chosen in Phase 2a becomes negligible, yielding
an upper bound for the number of candidates lying between e; and e;11. Recall that
the probability that a candidate is chosen to be in C” is /n/N.

Pr[3 candidates between e; and e;41 are not chosen] = (1 —+/n/N)"
Vn
< _vT.
< exp (N P
= n—C

for g =c- % -lInn=N-0 <k’%) and a constant c. Overall, it follows that N is
reduced by factor © (Cl\j‘%n) in each iteration of the second phase w.h.p. After five

iterations of the second phase N is reduced to

Clogn>5 Lemma 410 379 (logn)B
N (T = n logn T
= log®(n) - vlogn - ¥/n
- o).

55

Chapter 4. Distributed Priority Queues and k-Selection

Note that in case | < 1 (analogously r > n’), the set {e1,...,e,} C C’ contains at
most ¢ € O(y/logn - ¥/n) candidates, so Lemma 4.14 still holds.

4.4.3. Phase 3: Exact Computation

The third and last phase computes the exact k-th smallest element out of the
remaining candidates. This phase is basically just a single iteration of the second
phase, with the exception that each remaining candidate is now chosen to be in C’ in
Phase 2a, leading to each candidate being compared with each remaining candidate.
This immediately gives us the exact rank of each remaining candidate, as it is now
equal to the determined order, so we are able to send the candidate that is the k-th
smallest element to the anchor.
We are now ready to show Theorem 4.8:

Proof of Theorem 4.8. It is easy to see that in all three phases we perform a constant
amount of aggregation phases for a constant amount of iterations. Note that in
the second and third phase the time for a DHT-insert is O(logn) w.h.p. due to
Lemma 2.12. Also note that we perform the actions that have to be done in each of the
generated n' = O(y/n) trees in parallel, resulting in a logarithmic number of rounds
until the order of each chosen candidate is determined. As a single aggregation phase
takes O(logn) rounds w.h.p., we end up with an overall running time of O(logn)
w.h.p. for Algorithm 6.

For the congestion bound, note that the only time we generate more than a
constant amount of congestion at nodes is in the second phase when routing the
chosen candidates e; € C’ to the node v; responsible for pos(e;) in O(logn) rounds
w.h.p. Thus, as each node chooses % : % = ? = O(1) of its candidates to be in
C' on expectation, one can easily verify via Chernoff bounds and Lemma 2.8 that
this generates a congestion of (5(1) w.h.p. With the same argumentation in mind,
observe that the congestion generated for nodes that are part of at least one tree
T'(v;) is constant w.h.p., because each node participates in only two such trees on
expectation (Lemma 4.12). Participation of node u in one of these trees means that
u has to perform only one single comparison of priorities, leaving the congestion
constant.

Finally, one can easily see that the message size is O(logn) bits, because messages
in our protocol contain only a constant amount of elements, where each element can
be encoded by O(logn) bits due to its priority being within {1,...,n%}. O

4.5. Arbitrary Priorities

We are now ready to demonstrate how to use the protocol for distributed k-selection
from the previous section in order to implement a distributed priority queue for arbi-
trarily many priorities, i.e., for P = {1,...,n%}, ¢ € N constant. In order to provide
a scalable solution, we give up on the local consistency semantic (Definition 3.1(b)),
which makes our protocol serializable instead of sequentially consistent.

56

4.5. Arbitrary Priorities

4.5.1. Insert and DeleteMin

The general idea for processing requests is roughly the same as for the protocol with
constant priorities. We first aggregate batches in the aggregation tree to the anchor,
but instead of a batch representing both Insert and DeleteMin requests, we only
aggregate the overall number of Insert requests or the overall number of DeleteMin
requests. Consequently, we distinguish between separate Insert Phases and DeleteMin
Phases. Algorithm 8 summarizes our protocol.

Algorithm 8 Distributed Priority Queue for an Arbitrary Amount of Priorities

Insert Phase
Aggregate the number I € N of insertions to the anchor
vo.m — vog.m + 1
Broadcast the start of insertions over the tree
Store elements at random nodes

DeleteMin Phase
Aggregate the number D € N of deletions to the anchor
Determine the element with rank D using Algorithm 6
Assign a unique key k € {1,..., D} to the D most prioritized elements
Store these elements at the node maintaining the position h(k)
Assign a unique sub-interval [a,b] C [1, k] to each node
that has to execute b — a + 1 DeleteMin requests
10: Fetch the elements stored at positions {a,...,b}

Insert Phase. At the beginning of the Insert phase each node u generates a snapshot
of the number of Insert operations stored in its local buffer and stores it in a variable
u.I. Then the nodes aggregate all u.I’s to the anchor, using simple addition to
combine two numbers u.] and «’.I. When the anchor vy receives the aggregated
value vo.IT =Y,y u.] at the end of the first phase, it updates vy.m and announces
over the aggregation tree that nodes are now allowed to process Put requests on the
DHT. For each element e that some node u wants to store in the DHT it assigns
a key k(e) € N generated uniformly at random and sends e to the node v that is
responsible for k(e) in the DHT. Once v has received e, it sends a confirmation
message back to u. Upon receiving all confirmations for all its elements u switches
to the DeleteMin phase.

DeleteMin Phase. Aggregation of DeleteMin requests works analogously to the Insert
phase. At the end of the aggregation, the anchor vy receives a value D representing
the number of DeleteMin requests to be processed. Now we use Algorithm 6 to find
the element e with rank(e) = D. In order to assign a unique key k € {1,...,D} to
the D most prioritized elements, we proceed analogously as in Phase 3 of Algorithm 5
by decomposing the interval [1, D] into sub-intervals. Each node u assigns such a key
to all its stored elements that have a rank less than D. This can be determined by
sending the priority of the k-th smallest element along with each sub-interval. The
decomposition approach from Phase 3 of Algorithm 5 is also used to assign a unique
sub-interval [a,b] C [1, D] to each node that wants to execute b — a + 1 DeleteMin

o7

Chapter 4. Distributed Priority Queues and k-Selection

requests. For the last step of our algorithm consider a node u that wants to issue
d DeleteMin requests on the priority queue and consequently got assigned to the
sub-interval [a, b] such that d = b — a + 1. Then u generates a Get(h(k), u) request
for each key k € {a,...,b} to fetch the element that previously got stored in the
DHT at that specific position. This way, each DeleteMin request got a value returned
so nodes can then proceed with the Insert phase afterwards.

4.5.2. Analysis

The following analysis of the distributed priority protocol for arbitrarily many
priorities follows the same structure as the previous ones.

Lemma 4.15. The distributed priority queue with |P| € O(poly(n)) satisfies serial-
1zability.

Proof. To show serializability, we define the total order < for all priority queue
requests, whose serial execution is equivalent to the distributed execution of requests
in Algorithm 8. Recall that S is the set of all requests to be issued on the priority
queue. In order to define < we assign a unique virtual value to each request op via
the function ¢ : S — N. We divide S into pairs (S, Sg), where S? contains all Insert
requests processed in the i-th Insert phase and S% contains all DeleteMin requests
processed in the i-th DeleteMin phase. Obviously, UZT:1 S} U SiD = S where T denotes
the overall number of Insert and DeleteMin phases during the lifetime of the priority
queue.

For a subset S% containing k Insert requests we fix a randomly chosen permutation

of the requests (i.e., St = (insy,...,insx)) and set ¢(ins;) =i-j for all 1 < j < k. For
the corresponding set Sfj = {dely,...,del;} containing ! DeleteMin requests note that
each request gets assigned a unique key out of {1,...,1} by the anchor in case the

priority queue contains at least [elements. Assume that the request del; got assigned
the key j by the anchor. Then we set ¢(del;) = j+i- k. In case the priority queue
contains less than [elements, say only I’ elements, we order the requests in S%, such
that the first I’ requests got assigned a key by the anchor, while the other requests
did not get assigned a key (and thus return L). Afterwards, we set ¢(del;) =j+i-k
for all j < accordingly.

The total order < is then defined by the total order of all requests induced by ¢,
i.e., op; < op; if and only if ¢(op; < ¢(op;). This is in accordance with our protocol
because we handle Insert and DeleteMin requests in separate phases, which means
that we wait until all Insert requests have been processed before we start processing
all DeleteMin requests. Hence, our protocol satisfies serializability.]

Lemma 4.16. The distributed priority queue with |P| € O(poly(n)) satisfies priority
queue consistency.

Proof. We prove each property of Definition 4.1 separately using the total order <
as defined in the proof of Lemma 4.15.

(a) Let (ins(u),del(v)) € M. Then the Insert phase where ins(u) got inserted in
the priority queue occurred before the DeleteMin phase where del(v)) has been
processed, so it follows ins(u) < del(v).

58

4.5. Arbitrary Priorities

(b) Let del(u),ins(v) € M and assume to the contrary that ins(v) < del(u). Again,
by definition of <, the Insert phase where ins(v) got inserted in the priority queue
occurred before the DeleteMin phase where del(u)) has been processed. Since
ins(v) is not matched, the element e inserted via this request is still contained
in the priority queue at the time where del(u)) is processed. Therefore del(u))
has to get matched to ins(v), which is a contradiction.

(c) Let (ins(u),del(v)) € M and assume that there exists ins(w) ¢ M such that
ins(w) < del(v) and P(ins(w)) < P(ins(u)). Since ins(w) < del(v) holds, the
elements inserted via ins(u) and ins(w) are still contained in the priority queue
once del(v) is processed in the subsequent DeleteMin phase. Thus, the element
inserted via ins(w) should have been taken out of the priority queue first since
P(ins(w)) < P(ins(u)) holds. This implies that ins(w) gets matched (either
to del(v) or some other DeleteMin request), which is a contradiction to our
assumption that ins(w) ¢ M.

This concludes the proof of the lemma. O

The next lemma serves as a proof for the number of rounds needed to process
priority queue requests successfully:

Lemma 4.17. The Insert phase and the DeleteMin phase finish after O(logn) rounds
w.h.p.

Proof. The runtime of the Insert phase follows from Corollary 2.10 and Lemma 2.12.
We argue that each step in the DeleteMin phase listed in Algorithm 8 takes at most
O(logn) rounds w.h.p. Aggregating the number D of deletions to the anchor can
be done in a single aggregation phase. Determining the element with rank D takes
O(logn) rounds w.h.p. due to Theorem 4.8. Assigning keys to the elements that have
to be removed is done via a broadcast down the aggregation tree, so it takes O(logn)
rounds w.h.p. (Corollary 2.10). Delivering these elements to the node responsible for
the corresponding key takes O(logn) rounds w.h.p. (Lemma 2.7). Decomposing the
interval [a, b] into sub-intervals and assigning these sub-intervals to all nodes again is
done via a broadcast down the aggregation tree, so it takes O(logn) rounds w.h.p.
Finally, fetching the elements stored at the corresponding positions in the DHT is
equivalent to issuing Get requests on the DHT, so it takes O(logn) rounds w.h.p.
(Lemma 2.12). O

Lemma 4.18. The distributed priority queue with |P| € O(poly(n)) has congestion
O(A).

Proof. At the beginning an Insert phase, each node u has at most A(u) - O(logn) =
O(A(u)) Insert requests buffered, since the previous phase lasted for O(logn) rounds
(Lemma 4.17) and u could have generated at most A(u) requests per round. For
each of those requests, u delegates the element to a randomly chosen node, resulting
in u having to process @(A(u)) requests at once. Since each of these delegations
needs O(logn) rounds w.h.p. (Corollary 2.10) to finish and the aggregation tree only
generates congestion up to a polylogarithmic factor (Lemma 2.8), the lemma follows
for the Insert phase.

59

Chapter 4. Distributed Priority Queues and k-Selection

For the DeleteMin phase, the steps of Algorithm 8 where we use the aggregation
tree have no impact on the upper bound for the congestion. For selecting the element
with rank D, the congestion is (’5(1) due to Theorem 4.8. In the last step at which
nodes fetch data from the DHT we can use the same argumentation as for the Insert
phase, so the lemma follows.]

Lemma 4.19. Messages generated in the distributed priority queue with |P| €
O(poly(n)) consist of O(logn) bits.

Proof. First note that the number of priority queue requests can only be polynomial
in n. Due to Lemma 4.17 each node may generate up to A € O(poly(n)) new requests
for logn rounds until the next phase is started. Thus, aggregating the number of
priority queue requests to the anchor yields a message size of O(logn). Note that
in order to decompose and assign (sub-)intervals to all nodes we only need to store
a single interval in each message (similar to Phase 3 of Algorithm 5). Keeping this
argumentation in mind and the fact that our protocol for distributed k-selection uses
only O(logn)-bit messages (Theorem 4.8), one can easily see that Algorithm 8 uses
only O(logn)-bit messages. O

The following theorem summarizes the results obtained in this section.

Theorem 4.20. Algorithm 8 implements a distributed priority queue for an arbitrary
amount of priorities with the following properties:

(a) The distributed priority queue satisfies serializability and priority queue consis-
tency.

FEach priority queue request is finished after at most O(logn) rounds w.h.p.

)

(¢) The distributed priority queue has congestion O(A).
) Messages generated in the distributed priority queue consist of O(logn) bits.
)

If the distributed priority queue contains m elements, each node stores m/n
elements on expectation.

60

CHAPTER 5 -

Conclusion and Outlook of Part |

To conclude the first part of this thesis, we sum up our results on distributed data
structures and give some more details regarding further properties and potential
future work in this area.

Conclusion

Table 5.1 summarizes the most important properties of all the distributed data
structures presented in the first part of this thesis. Note that all of these data
structures also support fairness due to the underlying distributed hash table, so all
nodes store the same amount of elements on expectation. Furthermore, all of our
protocols support Join requests in O(logn) rounds and Leave requests in O(1) rounds
due to Theorems 3.18 and 3.19.

Data Structure Semantics | Requests | Congestion | Message Size
Queue SC+QC | O(logn) O(A) O(Alog®n)
Stack SC+StC | O(logn) O(A) O(logn)
P-Queue, |P| € O(1) SC+PQC | O(logn) O(A) O(Alog?n)
P-Queue, |P| € O(poly(n)) | S+PQC | O(logn) O(A) O(logn)

Table 5.1.: Table for all distributed data structures and their properties (semantical
guarantees, runtime for requests, congestion and maximum message size
in bits) obtained via Theorems 3.11, 3.17, 4.6 and 4.20. In the semantics
column, SC stands for sequential consistency, QC for queue consistency,
StC for stack consistency, PQC for priority queue consistency and S for
serializability. All bounds on the runtime hold with high probability.

In scenarios where the rate A in which requests on the data structure are generated
is very high, the distributed stack and the priority queue for arbitrarily many priorities
perform very well, since the size of messages does not depend on A but only on n.
The reason why the size of messages in the distributed queue protocol is higher than
just O(logn) is that the queue satisfies local consistency in addition to serializability,
so when aggregating batches to the anchor, we have to respect the local order in
which requests are generated by the nodes. One way to reduce the size of messages to
O(logn) in the distributed queue would therefore be to give up on local consistency
and only require serializability. Our protocol can easily be modified to work this
way, as one only has to set up separate Enqueue and Dequeue phases in the same
manner as we did for the distributed priority queue with arbitrarily many priorities.
The same strategy could be applied to the priority queue with a constant amount of

61

Chapter 5. Conclusion and Outlook of Part I

priorities, by which we obtain the same properties as for the priority queue for an
arbitrary amount of priorities. While we believe that both, Algorithms 5 and 8 are
viable in practice with the above modifications, we recommend running Algorithm 5
when there is only a constant amount of priorities as the protocol for distributed
k-selection induces a higher constant factor behind the O(logn) runtime bound.
However, as soon as we need a priority queue with more than a constant amount of
priorities, we recommend running Algorithm 8.

Aside from the above argumentation, improving any of the protocols from Table 5.1
probably requires different techniques than we used in this thesis, potentially requiring
a different network topology of the processes. This then comes with the problem of
having to adjust the protocols for Join and Leave as they rely on the LDB network
structure and abuse the fact that the (virtual) nodes only form a simple ring, which
makes updating the topology fairly easy compared to other graphs where the degree
of nodes is larger than 2.

Outlook

Heterogeneous Distributed Data Structures. So far, we assumed homogeneity,
i.e., we assumed that all processes have the same capabilities, for example, regarding
their storage and their bandwidth. An interesting direction for future research could
be to assume heterogeneity. Here, one could assume that processes now have different
capabilities in terms of storage space and/or bandwidth.

Processes with a higher storage capability are able to store more elements of the
data structure. As a consequence, one could aim to let a process u, whose storage
capability is p% of the total storage, receive p% of the elements of the data structure
(this would replace the fairness definition used in this thesis). As a starting point,
one could have a look at already existing versions for heterogeneous distributed hash
tables like [KKS13].

The bandwidth of a processes is an indicator on how many messages the process
can send and receive within a specific amount of time. One could try to have processes
with a higher bandwidth take more responsibility in the distributed protocol, for
example by choosing a different network topology. Combined with a suitable protocol,
this could result in a potential speedup in the worst-case runtime for data structure
requests.

Further Distributed Data Structures. While queues, stacks and priority queues
are fundamental data structures, there are many other data structures that could
require effective distributed implementations. The most relevant example right now is
probably the distributed ledger that is often used in blockchain protocols. Blockchain
protocols are able to provide a total order on transactions issued by all the nodes,
mostly via the use of expensive distributed consensus protocols. We believe that
using the distributed queue could potentially be helpful to establish such a global
transaction in a more cost-efficient manner.

Further data structures for which there exist concurrent algorithms already could
also ask for distributed implementations. Consider, for example, search trees [AS16]
or pools [AHS94].

62

Fault-Tolerant Distributed Data Structures. Another potentially interesting di-
rection for future research is to investigate if one can make our distributed protocols
fault tolerant. Here one could investigate if there are possibilities to cope with
byzantine nodes that could maliciously work against other honest nodes, for example
by flooding the system with a large amount of corrupted requests or by sending wrong
batches to disrupt the protocols. A possible approach to tackle the latter problem
could be to form a committee of nodes that try to reach consensus on the correct
batch that arrives at the anchor. One has to make sure that the number of honest
nodes outnumber the byzantine nodes in the committee the data structure. Similar
strategies (called sharding) are also used to perform tasks such as improving the
performance and scalability of distributed ledgers, see for example Elastico [Luu+16]
or OmniLedger [Kok+18].

Making our data structures self-stabilizing could also be another possibility in order
to automatically repair the system without having to rely on external intervention.
In the second part of this thesis we present self-stabilizing protocols that are able to
automatically repair the network topology that is formed by the processes. Similar
techniques have to be applied to our distributed data structures (in fact, the linearized
De Bruijn network has already been made self-stabilizing [RSS11]) — not only to
repair the topology (i.e., the LDB network) but also to make sure that elements of
the data structure are stored by the correct node and that one can detect whether
insertion and deletion requests are processed correctly on the correct data set all
the time. A similar problem has already been investigated in [KS18] where the
authors presented a self-stabilizing protocol for the embedding of a Patricia trie
into a distributed system. This makes us confident that one is able to construct
self-stabilizing protocols for our distributed data structures in a similar manner.

63

Part Il.

Self-Stabilizing Overlay Networks

65

CHAPTER

Preliminaries

In the second part of this thesis we study self-stabilizing overlay networks. An overlay
network is a virtual network that is built on top of the physical network. A single
edge in an overlay network may correspond to a path in the underlying physical
network. Overlay networks are used in distributed systems, especially in peer-to-peer
networks of client-server applications. As the underlying physical network may not
be coordinated (i.e., the edges do not resemble a certain class of graph topologies),
overlay networks improve the coordination among the nodes. Depending on the
application, different topologies have to be considered. For example, to provide short
routing paths, a network with a low diameter would be preferable, such as a clique.
In case the location of the nodes plays a role, such as in wireless networks, we could
use Delaunay graphs, unit disk graphs or quadtrees. Finally, overlay networks can
also be used to support distributed applications such as publish-subscribe systems.

In this part of the thesis, we are specifically concerned with making the overlay
networks self-stabilizing, meaning that we require the network to repair itself once it
does not form the desired topology anymore due to the results of faults or adversarial
attacks. These kinds of errors are common in distributed systems. The repair
process should be done only by the participants of the network and without external
intervention. More specifically, when the system starts in any arbitrary initial state,
we want the system to arrive in a legitimate state within a finite amount of time.
Also, once the system has reached a legitimate state, it should stay in legitimate
states thereafter in case the set of nodes remains static and no faults (for example,
blackout of nodes or message loss) occur.

In this thesis we present novel distributed algorithms for repairing overlay networks
and build them into specific topologies that serve one of the above mentioned
applications. Specifically, we show how one can manipulate the edges of the overlay
network in order to build generalized De Bruijn graphs, quadtrees and supervised
publish-subscribe systems in a self-stabilizing manner. Such algorithms fall in the
category of topological self-stabilization. Our protocols rely on some well-known
primitives for the manipulation of overlay edges, as well as on self-stabilizing protocols
for sorted lists and rings, which we are going to introduce in this chapter.

Outline of This Chapter. We first state the model in Section 6.1. Then we
give a precise definition for self-stabilization and also introduce the four universal
primitives (Introduce, Forward, Merge and Fusion) for manipulating overlay networks
(Section 6.2). Afterwards, we give an overview of related work on self-stabilization and,
more specifically, topological self-stabilization (Section 6.3). We finish this chapter
by presenting the well-known protocol for self-stabilizing sorted lists (Section 6.4)
and its extension to self-stabilizing sorted rings (Section 6.5). These protocols serve
as a base for the protocols in the next chapters.

67

Chapter 6. Preliminaries

6.1.

Model

We first define the overlay network similar to Definition 2.1 from the first part of
this thesis.

Definition 6.1. The overlay network is a directed graph G = (V, E) for a fized set
of n nodes with the following properties:

(a)

(b)

Each node uw € V represents a single process and is identified by a unique
identifier, or short ID, denoted by id(u) € N.

FEach node uw € V. maintains local protocol-based variables and has a channel
u.Ch, which is a system-based variable that contains incoming messages. A
channel may store any finite number of messages. Messages are never duplicated
nor do they get lost in the channel.

If a node u has the reference of some other node v stored in one of its local
variables, u can send a message m to v by putting m into v.Ch. There is a
directed edge (u,v) € E whenever u stores a reference of v in one of its local
variables or there exists a message in u.Ch carrying the reference of v. In the
former case, we call that edge explicit (drawn solid in figures) and in the latter
case we call that edge implicit (drawn dashed).

Nodes may execute actions, which we define in the following:

Definition 6.2. A node may execute the following types of actions:

(a) The first type is of the form

(label)({parameters)) : (command),

where label is the name of that action, parameters defines the set of parameters
and command defines the statements that are executed when calling that action.

(b) The second type for an action is of the form

(label) : {guard) — (command),

where label and command are defined the same as above and guard is a predicate
over local variables. Such an action may be executed only if its guard is true.

Actions of the first type may be initiated locally or remotely; i.e., every message
that is sent to a node has the form (label)((parameters))!. When a node u executes
the action represented by the message m, it removes m from u.Ch. An action whose
guard is simply true is called Timeout and is executed periodically by each node.

Definition 6.3. The system state is an assignment of values to every node’s variables
and messages to each channel.

'Having a node u send a message of the form (label)((parameters)) to some node v is denoted by
v < (label) ((parameters)) in the pseudocode for the node wu.

68

6.2. Self-Stabilization and Primitives for Overlay Networks

If an action can be executed by some node u (meaning that either there is a
message in u.Ch that requests to call that action, or its guard is true), we call that
action enabled for wu.

Definition 6.4. A computation is an infinite sequence (s, s1,...) of system states,
where the state s;1 is reached from its previous state s; by executing an action that
is enabled in s;. A state s' is reachable from some state s if we end up in state s
via a sequence of action executions when starting in state s. We call the first state sg
of a given computation the initial state.

We assume fair message receipt, meaning that every message that is contained in
some channel is eventually processed and thus its corresponding action is executed
eventually. Furthermore, we assume weakly fair action execution, so if an action is
enabled in all but finitely many states of a computation, then this action is executed
infinitely often. Consider the Timeout action as an example for this; i.e., Timeout is
executed periodically by each node. We place no bounds on message propagation
delay or relative node execution speed, which means that we allow fully asynchronous
computations and non-FIFO message delivery.

Our protocols do not manipulate node identifiers and thus operate on them only in
compare-store-send mode: i.e., the nodes are only allowed to compare node identifiers,
store them in their local memory or send them in a message. We assume that there
are no corrupted node identifiers (i.e., IDs of unavailable nodes) in the initial state of
the system. Identifying corrupted IDs requires failure detectors, which is not within
the scope of this thesis. Since our self-stabilizing protocols just deal with IDs in a
compare-store-send manner, this implies that node IDs have to be non-corrupted for
all computations, as has been shown in [NNS13, Theorem 2]. Nevertheless, the node
channels may initially contain an arbitrary finite number of messages containing false
information. We call these messages corrupted, and we will argue that eventually
the system reaches a state without corrupted messages when starting at some initial
state.

6.2. Self-Stabilization and Primitives for Overlay Networks
We are now ready to precisely define the notion of self-stabilization.

Definition 6.5 (Self-Stabilization). A protocol is self-stabilizing w.r.t. a set of
legitimate states if it satisfies the following two properties:

(a) Convergence: Starting from an arbitrary system state, the protocol is guaranteed
to reach a legitimate state.

(b) Closure: Starting from a legitimate state, the protocol remains in legitimate
states thereafter.

In order for our distributed algorithms to work, we require the directed graph G
containing all explicit and implicit edges to stay at least weakly connected at every
point in time. A directed graph G = (V, E) is weakly connected if the undirected
version of G is connected; i.e., for two nodes u,v € V there is a path from u to

69

Chapter 6. Preliminaries

v in the undirected version of G. Once G consists of multiple weakly connected
components, they cannot be connected to each other anymore as it has been shown
in [NNS13, Theorem 1] for compare-store-send protocols. The self-stabilizing protocol
will work on each connected component individually instead.

Defining the set of legitimate states is crucial in order to prove for a protocol that
it is self-stabilizing. As we are dealing with topological self-stabilization in this thesis
for most of the time, the legitimate state is usually defined by the graph induced by
the explicit edges, which means that our goal is to transform any initially weakly
connected graph to a graph where the explicit edges form some desired topology. We
give precise definitions for the set of legitimate states for all of our protocols in the
corresponding chapters.

In order to manipulate the edges of the network, we rely on four simple primitives,
which we present in the following.

Definition 6.6. The following primitives are allowed to manipulate the edges of the
graph G = (V, E):
(a) Introduce: If a node u has references to nodes v and w, then u may introduce

w to v by sending a message containing the reference of w to v. For the special
case that u = w, we say that u introduces itself to v.

(b) Forward: If a node u has references to nodes v and w with v # w, then u
may forward w to v by sending a message containing the reference of w to v.
Afterwards, u removes the reference to w from its local storage. We may also
say that u forwards its edge to w to the node v.

(¢) Merge: If a node u has references to nodes v and w such that v = w, then u
may merge these references by keeping only one in its local storage and deleting
the other.

(d) Invert: If a node u has a reference to some node v, then u may reverse the
connection to v by sending a message containing its own reference to v and
deleting the reference to v from its local storage afterwards.

Consider Figure 6.1 for an illustration of the primitives. Intuitively, the roles of
these primitives is that Introduce is used to increase the number of edges, Forward is
used to separate two nodes from each other, Merge is used to reduce the number of
edges and Invert is used to make a node unreachable.

It is easy to see that these four primitives preserve the weak connectivity of the
graph at any point in time. Also, as shown in [KSS17], these primitives together are
known to be universal:

Theorem 6.7 (Universality, [KSS17]). The primitives Introduce, Forward, Merge
and Invert are universal: They can turn any weakly connected graph G = (V, E) into
any other weakly connected graph G' = (V, E').

Note that in order to construct any strongly connected graph, the primitives
Introduce, Forward and Merge already suffice. Finally, it has also been shown in [KSS17]
that the four primitives are needed in order to provide universality.

Theorem 6.8 (Necessity, [KSS17]). Introduce, Forward, Merge and Invert are neces-
sary for universality.

70

6.3. Related Work

o

) Introduce) Forward
@ — O—0Q O—0 = OO
(c) Merge (d) Invert

Figure 6.1.: Illustration of the four primitives. Straight lines indicate explicit edges,
dashed lines indicate implicit edges.

6.3. Related Work

We cover related work from the area of self-stabilization and, more specifically, from
the area of topological self-stabilization. Further related work that is more relevant
to the protocols in the following chapters will be covered in separate sections.

Self-Stabilization. The concept of self-stabilizing algorithms for distributed sys-
tems goes back to the year 1974, when E. W. Dijkstra introduced the idea of self-
stabilization in a token-based ring [Dij74]. This seminal work marked the beginning
of a whole new research area. Researchers started to create self-stabilizing protocols
for various settings, including (but not limited to) classical problems in distributed
computing such as maximal matching [HH92; Man+09; Coh+16], coloring [GK93;
SS93; LC10; LL14] or clock synchronization [DW04; BDHO08; KL.19; FKS20]. There-
fore it is not surprising that Dijkstra’s seminal work on self-stabilization has been
referred to as “his most brilliant work” by Leslie Lamport in his ACM PODC keynote
address [Lam85]. For a survey on self-stabilizing algorithms consider the book by
Dolev [Dol00].

Topological Self-Stabilization. The first topologies that were investigated have
been self-stabilizing sorted lists [ORS07; Gal+14] and rings [SR05; CF05]. One
fundamental technique that lays the foundation for many other works in this area
(including the ones presented in this thesis) is linearization. The idea is that a
node always keeps the nodes that are closest to it (w.r.t. to some total order of the
nodes) from its local point of view and forwards all other edges away, such that in a
legitimate state each node only knows its closest left and right neighbor. Using this
technique, one is able to sort the nodes in a self-stabilizing manner and thus arrange
all nodes in a sorted list (see the next section for more details).

Self-stabilizing protocols that rely on sorted lists or rings are, for example, chord
graphs [KKS14; Ben+13] and small-world networks [KKS12].

Much work has also been done on trees [AK93; Hér+-06; Clé+08; DK08; AWO07],
but the scenario here is that the network graph is static and a self-stabilizing solution

71

Chapter 6. Preliminaries

computes a set out of these static edges that together form a (spanning-) tree. A
topologically self-stabilizing solution is presented by Goétte et al. [GSS18]. They show
how to compute a minimum spanning tree when given an overlay network as an
initially weakly connected graph G = (V, E) and a tree metric d : V2 — R* that
assigns a weight to each edge that can possibly exist in the overlay network. The
idea here is similar to the linearization technique, as each node forwards an edge
that can be replaced by a more light-weight edge. This makes the protocol locally
checkable, meaning that each node is able to check if its own state is illegal from its
local point of view. Note that nodes cannot locally decide if the entire system is in
a legitimate state. However, local checkability comes with the advantage that we
do not need to invest global communication to check if the system is in a legitimate
state — the system is in a legitimate state once all nodes are in a legitimate state
from their local point of view.

There exist self-stabilizing protocols for skip lists and skip graphs [NNS13; CNS12].
Unfortunately, skip graphs cannot be checked locally for correctness, as nodes are not
able to deduce whether the skip graph is in a correct state based only on their local
neighborhood. Nevertheless, Jacob et al. [Jac+14] came up with a self-stabilizing
protocol for a SKIP™ graph that extends the skip graph by additional edges that
allow for local checkability. The protocol also relies on a sorted list that is built at
each of the O(logn) levels of the skip graph.

A self-stabilizing clique has been proposed in [KKS15]. The idea of the protocol is
to first collect the references of all nodes at the node with maximum identifier and
then broadcast this information via a sorted list.

Having access to a clique can also be useful when constructing self-stabilizing
protocols for any desired topology, as has been demonstrated by Berns et al. [BGP13]
in their Transitive Closure Framework. Here the idea is to construct a clique once
at least one node found out that it is not in a legitimate state. Once the clique has
been constructed, each node is able to compute its correct set of neighbors locally
and thus remove all other edges via the Forward primitive. Since such a protocol
lets the degree of nodes become quite large temporarily, the AVATAR-framework has
been proposed [Ber15], which is also able to create different families of graphs while
bounding the amount by which the degree of nodes increases to a polylogarithmic
factor on expectation only.

Another important aspect in topological self-stabilization includes investigating
the leave problematic, where one asks for self-stabilizing protocols that are able to
safely exclude nodes that want to leave the system. It is important to note that nodes
cannot simply leave the system on their own, as such an action may disconnect the
graph. Therefore, one may ask if there exist self-stabilizing protocols that are able
to exclude leaving nodes from the system. Here it has been shown that in general it
is impossible for local control protocols to solve this problem reliably [For+14], so
one has to make use of oracles. However, if nodes that want to leave are just allowed
to be put into a sleeping state while still remaining in the system, one can construct
a self-stabilizing protocol that guaranteed that all leaving nodes are in the sleeping
state once the system reaches a legitimate state [KSS17].

For more insights on the techniques used in topological self-stabilization, we
recommend our survey on algorithms for self-stabilizing overlay networks [FSS20].

72

6.4. Self-Stabilizing Sorted Lists

6.4. Self-Stabilizing Sorted Lists

In this section we describe the well-known protocol for the self-stabilizing sorted list,
called BuildList.

Given an initially weakly connected directed graph G' = (V| F) and a total order
< on the nodes, the goal of BuildList is to transform G into a line graph G’ = (V, E’)
such that the explicit edges in E’ form a sorted list.

In this section we define u < v if and only if id(u) < id(v). We want to emphasize
that < may be defined differently in the following chapters, but this does not impact
the BuildList protocol as it works on any predefined total order. The following
definition introduces some additional terminology:

Definition 6.9. A node u € V is left to v € V, if u < v, otherwise u is right to v.
The closest left neighbor of some node uw € V' is the node v such that

v<uAVw#v,w<u:w=<uv.
Similarly, the closest right neighbor of some node uw € V' is the node v such that
u<vAYw#v,u<w:v<w.

Before we describe BuildList, we state the variables that have to be maintained by
each node u € V:

Definition 6.10. For the BuildList protocol, each node u € V maintains the following
variables:

(a) u.left € V.U{L}: Stores u’s current left neighbor in the sorted list.
(b) w.right € V.U {L}: Stores u’s current right neighbor in the sorted list.

On the basis of the above variables, we define the legitimate state that has to be
reached by BuildList:

Definition 6.11 (Legitimate State for BuildList). The system is in a legitimate state
for BuildList if the following properties hold for each node u € V :

(a) u.left stores the closest left neighbor of u or L if there exists no node that is
left to u.

(b) w.right stores the closest right neighbor of u or L if there exists no node that is
right to u.

Figure 6.2 illustrates a possible legitimate state for the sorted list.

The idea of BuildList is that each node w keeps its closest left and right neighbors
on the basis of its local information. All other node references to nodes v should
be forwarded by u to either wu.left or u.right, depending on whether u < v or v < u
holds. Since u knows the reference of v, it also knows id(v), so it is able to compare
id(v) to its own ID.

BuildList (Algorithm 9) consists of the actions Timeout and Linearize(v). Timeout is
executed periodically at each node and Linearize(v) can be called locally or remotely.

73

Chapter 6. Preliminaries

- -

R

Figure 6.2.: Possible legitimate state for BuildList. Note that a legitimate state only
requires the explicit edges (straight edges) to form a sorted list.

Algorithm 9 The BuildList Protocol (executed by each node u € V)

1: Timeout: true —

2 if u < u.left then
3 Linearize(u.left)
4 u.left + 1

5: if u.right < u then
6

7

8

9

Linearize(u.right)
w.right <1
u.left <— Linearize(u)
u.right < Linearize(u)

10: Linearize(v):
11: if v < u.left then

12: u.left < Linearize(v)
13: if u.left < v < u then
14: v < Linearize(u.left)
15: u.left < v

16: if u < v < u.right then
17: v < Linearize(u.right)
18: w.right < v

19: if u.right < v then

20: u.right < Linearize(v)

In Timeout a node u first performs a consistency check for its variables w.left
and wu.right. In case u < wu.left holds, u forwards w.left by locally calling the action
Linearize(u.left) and then setting u.left <—_L. Analogously, u performs the consistency
check with its variable u.right. After the consistency checks, u introduces itself to its
left and right neighbor by calling the action Linearize(u) on them.

Upon executing Linearize(v) at u for some node v < u, u proceeds based on one of
the following two cases:

(i) If v < w.left, then u just forwards v to w.left.

(ii) If u.left < v < u, then u has found a new closest left neighbor: Consequently,
u forwards u.left to v and stores v in w.left afterwards.

In case u < v, u proceeds analogously using its variable u.right in this case. Consider
Figure 6.3 for an illustration of the Timeout and Linearize action.
From [ORS07] we derive the following theorem:

74

6.5. Self-Stabilizing Sorted Rings

-———— ————-—

() u.left ()u.right () » u.left u.right

(a) Timeout executed at wu.

-————— - ———— -—--
- - - ~

@ O u.left @\ * é CD‘ﬁ@

——_————

3 OO = & 00

) Linearize(v) executed at u for the cases v < w.left and u.left < v < w.

Figure 6.3.: Illustration of the actions Timeout and Linearize (for u’s left neighbor).

Theorem 6.12. BuildList is self-stabilizing with regard to the legitimate state from
Definition 6.11.

Proof (Sketch). In order to show convergence, consider a pair of nodes (u,v) with
u < v that is adjacent in legitimate states. As the graph G is weakly connected,
there exists an undirected path P from u and v. Let Py, (u,v) = argmin,, cp id(w)
be the node with minimum identifier among all nodes on the path from v to v.
Similarly, let Ppqq(u,v) = argmax,,cp id(w) be the node with maximum identifier
among all nodes on the path from u to v. Define the potential function ®(u,v) =
Praz(u,v) — Ppin(u,v). One can show via case distinction that ® monotonically
decreases over time until it holds that ® = id(v) — id(u). This corresponds to (u,v)
being directly connected, which implies convergence.

For closure, we argue that an explicit edge (u,v) is only forwarded, if u gets to
know a closer neighboring node than v. However, this is not possible as the nodes
already form a sorted list, so closure holds. O

6.5. Self-Stabilizing Sorted Rings

We extend BuildList to a (also well-known) protocol for a sorted ring, called BuildRing.
To do so, each node v maintains an additional variable u.ring € VU{_L}. In BuildRing
we distinguish between list edges (represented by wu.left and u.right) and ring edges
(represented by wu.ring).

Definition 6.13 (Legitimate State for BuildRing). The system is in a legitimate
state for BuildRing if the following properties hold for each node u € V:

(a) The explicit list edges represented by u.left and w.right are in a legitimate state
according to Definition 6.11.

(b) Let vy, € V' be the node that is minimal w.r.t. < and let Ve, € V' be the
node that is mazximal w.r.t. <. If u = Vs, then w.ring = Umae. Stmilarly, if
U = Umagz, then w.ring = Vmim- If Umin # U # Umag, then u.ring =1,

75

Chapter 6. Preliminaries

—————-—

Figure 6.4.: Illustration of the additional actions of BuildRing. Red edges denote ring
edges, black edges denote list edges.

List edges are handled by the BuildList protocol as usual. We introduce an extension
to the Timeout action of BuildList and a new action IntroduceRing, the latter being
responsible for forwarding ring edges. Intuitively, we let nodes u that do not have
a left (or right) neighbor create new implicit ring edges to themselves in Timeout.
These ring edges are then forwarded along the sorted line via IntroduceRing until
they reach the node that is furthest away from u. We describe these extensions in
more detail now for each node u € V' (see also Figure 6.4 for an illustration):

(i) If in Timeout, u does not have a ring edge and does not have a left (or right) list
neighbor, then u creates a ring edge to itself and forwards that edge to u.left
(or w.right) by calling the action IntroduceRing(u) on w.right (or on wu.left).

(i) If u.left #L (or u.right #<) and u.ring #L with u < w.ring (or u.ring < u)
in Timeout, then u forwards w.ring to u.left (or u.right) by calling the action
IntroduceRing(u.ring) on u.left (or on w.right).

(iii) If v has a ring edge that cannot be forwarded via the action (ii), then u
introduces itself to u.ring in Timeout by calling IntroduceRing(u) on wu.ring,
generating the implicit edge (u.ring, u).

(iv) If u has an explicit ring edge (u,v) and receives an implicit ring edge to some
node w via IntroduceRing(w), then u keeps the node stored in w.ring that
is further away from u according to <. The other edge, say (u,v), is then
forwarded to the BuildList protocol; i.e., it is transformed into a list edge. u
also introduces v to w via the Linearize action of the BuildList protocol.

76

6.5. Self-Stabilizing Sorted Rings

Algorithm 10 The BuildRing Protocol (executed by each node u € V)

1: Timeout: true —

2 if u.ring =1 then

3 if w.left =1 Au.right #1 then
4: u.right < IntroduceRing(u)

5: if w.left #1 Au.right =1 then
6: u.left < IntroduceRing(u)

7 else

8 if u.left A1 Au < u.ring then

9 u.left <— IntroduceRing(u.ring)

10: u.Ting <L

11: if w.right #1 Au.ring < u then

12: u.right < IntroduceRing(u.ring)

13: u.ring <1

14: if (u.left =L Au < u.ring) V (u.right =L Au.ring < u) then
15: u.ring < IntroduceRing(u)

16: Call Timeout from Algorithm 9

17: IntroduceRing(v):
18: if u.ring =1 then

19: if (v<uAwuright=1)V (u<vAu.left =1) then

20: U.TING <— v

21: if v < u A u.right #1 then

22: u.right < IntroduceRing(v)

23: if u < v Auleft #1 then

24: u.left < IntroduceRing(v)

25: else

26: if v < u Awu.ring < u then

27: Let w € {v,u.ring} be the node that is further away from u
28: Let w" € {v,u.ring} be the other node

29: U.TING — W

30: u < Linearize(w’) > Action Linearize from Algorithm 9
31: w <« Linearize(w’)

32: else if (v < u < w.ring) V (u.ring < v < v) then

33: u < Linearize(v)

34: u < Linearize(u.ring)

35: u.Ting <1

From [KKS14] we derive the following theorem:

Theorem 6.14. BuildRing is self-stabilizing with regard to the legitimate state from
Definition 6.13.

Proof (Sketch). Via case distinction, one can show that for each ring edge that

connects two connected components, BuildRing eventually generates a corresponding
list edge. Therefore, it follows that the subgraph of G induced by the list edges

7

Chapter 6. Preliminaries

eventually becomes weakly connected. Applying Theorem 6.12 implies that the
sorted list converges. Now, once the nodes have already formed a sorted list, one can
show that eventually all ring edges vanish, except the ring edges between the nodes
Umin, Umaz With minimum and maximum identifier (such that Definition 6.13(b) is
satisfied). For this, notice that according to our rules, ring edges are always forwarded
in the sorted list via the action IntroduceRing until they reach vy, (Or Vmges). Upon
receiving an implicit ring edge e t0 U4z, the node vy, transforms e into an explicit
ring edge by storing v,,4; i Vpin.ring. In its Timeout action, v,,;, then introduces
itself to vpqy via the rule (iii), such that an explicit ring edge (Vmaz, Vmin) is created
by vmaz. Therefore, BuildRing converges.

The closure property follows from the closure of BuildList (Theorem 6.12) and
the fact that BuildRing does not create any additional explicit ring edges but only
implicit edges (Vimins Vmaz)s (Vmazs Umin), which are immediately merged with their
corresponding explicit edges. O

Whenever we want to make use of a self-stabilizing sorted ring, we use the BuildRing
protocol. However, in order to provide a clean presentation of our algorithms, we
omit the variable u.ring and instead just assume that each node u has stored its left
and right ring neighbors in the variables u.left and w.right, respectively. This means
that in legitimate states, the node v, stores the node v, in its variable v, left
and, analogously, Ve, stores vy, in its variable v,,q..Tight.

78

CHAPTER 7 -

Self-Stabilizing Generalized De Bruijn Graphs

In this first technical chapter of the second part, we investigate self-stabilizing overlay
networks that are able to route messages with as few hops as possible. Such networks
are useful for tasks such as in real-time applications like search engines, multiplayer
games or social media networks, as the performance of these kinds of systems benefits
from a low latency/delay. For example, experiments in [Bru09] show that users issue
fewer search requests when the latency on Google web servers is increased by only
100 ms. For many systems there are hard deadlines on the delay that is acceptable:
Multiplayer games often require server-side delays of at most 10 ms.

To keep the delay low, we require an overlay network to form a topology with a
low diameter in legitimate states such that requests can be delivered quickly to the
correct entity. We are interested in self-stabilizing systems that are able to route
requests to their target as fast as possible even under a large number of participants.
For example, routing in a simple line structure takes ©(n) hops, whereas routing in
a De Bruijn graph can be done in O(logn) hops. Both of these structures have only
a constant node degree. If the degree of the nodes is much higher (i.e., in a clique),
routing can be done way more effectively. We can send requests to their destination
in only one hop, since every node is connected to every other node in the system.
The drawback here is that nodes have to maintain a large number of outgoing edges,
which may be very costly w.r.t. storage space.

Our goal is to develop a self-stabilizing protocol for a network in which the node
degree is lower than the node degree in the clique, but still enables to route requests
to their destination in a constant number of hops w.h.p. Given a constant d > 2,
our network has a diameter of d (w.h.p.) in every legitimate state. As a network
topology, we use the generalization of the standard d-dimensional De Bruijn graph,
called a generalized De Bruijn graph.

The self-stabilizing protocol consists of a combination of sub-protocols. We rely
on a sorted list onto which we build additional connections, resulting in a sorted
n-connected list. We use this topology to establish De Bruijn edges for log(#/n)
levels, such that each node has an outdegree of ©(/n) in the resulting structure. By
doing so, we achieve an asymptotically optimal balance between the degree of nodes
and the diameter of the network.

Underlying Publication. This chapter is based on the following publication:

M. Feldmann and C. Scheideler. “A Self-stabilizing General
De Bruijn Graph”. In: Proceedings of the 19th International

Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS), 2017, cf. [FS17].

79

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

Outline of This Chapter. We first extend the classical definition for the De Bruijn
graph to the generalized version (Section 7.1). Then we provide some additional
related work in Section 7.2. We introduce the generalized De Bruijn network, the
goal of stabilization, along with a constant-hop routing algorithm for that network
in Section 7.3. Finally, in Section 7.4 we present and analyze our self-stabilizing
protocol for the generalized De Bruijn network.

7.1. Generalized De Bruijn Graphs

Recall from Definition 2.5 that the standard (d-dimensional) De Bruijn graph consists
of nodes with labels (z1,...,zq) € {0,1}% and edges (21,...,24) = (j, 71, .., 2T4_1)
for all j € {0,1}. In order to get from any source node s = (s1,...,s4) € {0,1}% to
any target node t = (t1,...,t4) € {0,1}¢, one can shift the bits of ¢ one by one to
the left of s, resulting in the routing path

((81, . .,Sd), (td,sl, .. .,Sdfl), (tdfl,td,sl, .. .,Sdfg), ey (tl, e ,td)).

The d-dimensional De Bruijn graph therefore has a diameter of d. We call one single
bit shift a De Bruijn hop.

If we assume d to be a constant, then the number of hops needed to route a message
from any source node s to any target node t is constant. However, for a fixed value
of d, the standard De Bruijn graph has a fixed number of nodes, that is, n = 2¢.
Since we want to allow an arbitrary number of nodes in the system, the standard De
Bruijn graph does not fit this purpose. Therefore, we extend the standard De Bruijn
graph to the generalized De Bruijn graph by allowing nodes to use more digits for
their labels than just from the set {0, 1}.

Definition 7.1. Let q,d € N. The generalized (g-ary, d-dimensional) De Bruijn
graph consists of nodes with labels (x1,...,x4) € {0,...,q — 1}* and edges

(ZL’l,...,l'd) — (j,:vl,...,xd_l)
forall j €{0,...,q—1}.

Consider Figure 7.1 for an illustration of a standard De Bruijn graph and a
generalized De Bruijn graph.

The diameter of the generalized De Bruijn graph is d, so we are still able to route
search requests in d hops by performing exactly d bit shifts. Now we can fix d to
some constant and obtain constant-hop routing paths for any message, while being
able to allow an arbitrary number of nodes in the system by allowing the parameter
q to be dynamic. In fact, it holds that n = ¢ and thus each node has a degree of
q = n. Thus, the degree of the generalized De Bruijn graph is minimal with regard
to its diameter.

Fact 7.2. Every graph with n nodes and diameter d must have a degree of at least

[V/n].

80

7.2. Related Work

(a) Standard De Bruijn graph. (b) Generalized De Bruijn graph.

Figure 7.1.: llustration of a standard De Bruijn graph (n = 8,d = 3) and a general-
ized De Bruijn graph (n =9,¢ = 3,d = 2).

Proof. Assume to the contrary for a graph with n nodes and diameter d that no
node has a degree higher than |¢/n] — 1. Fix a node u and construct the BFS
tree starting at u until level d. The number of leaf nodes in this tree is equal to
(| ¢/n] —1)? < (| ¥n])? < n, which implies that there exists a node that cannot be
reached from w within exactly d hops, which is a contradiction.]

7.2. Related Work

In addition to Section 6.3 we give an overview on further related work specifically
relevant to generalized De Bruijn graphs and overlay networks with a constant
diameter.

Generalized De Bruijn Graphs. The standard De Bruijn graph is due to Nicolas
G. De Bruijn [De 46] and its generalized version has been presented by Imase and
Ito [II81] and by Reddy, Pradhan and Kuhl [RPKS80]. Since then, several follow-up
works have been published regarding graph-theoretical properties of the generalized
De Bruijn graph [LZ91; Mau92; SSO94; GW94; KF12; OL13].

There already exists a self-stabilizing protocol by Richa et al. [RSS11] for the
standard De Bruijn graph. The authors let each real node emulate 3 virtual nodes.
By arranging those virtual nodes in a sorted list, one is able to emulate a De Bruijn
hop by going from a real node to one of its virtual nodes and then searching in the
sorted list for the next real node. Routing between any pair of nodes is then realized
in O(logn) hops w.h.p. by performing O(logn) De Bruijn hops. Unfortunately, this
approach cannot be trivially extended for generalized De Bruijn graphs as it would
require each real node to emulate O(/n) virtual nodes. While we could potentially
emulate a De Bruijn hop in the generalized De Bruijn graph by locally forwarding
the packet from a real node to a virtual node, the number of hops that are needed in
order to find the next real node in the sorted list grows up to O(/n).

81

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

Constant-Diameter Overlay Networks. Peer-to-peer overlays that are able to route
requests to the target in one hop [GLRO03; RLS02], two hops [GLRO04] or a constant
amount of hops [Gup+03] have already been proposed. Another protocol that
provides fast but sometimes suboptimal routing as well as a handling of path outages,
is the Resilient Overlay Network (RON) [And+02]. However, neither of the above
protocols are truly self-stabilizing. There exists a self-stabilizing clique [KKS14] that
provides routing within only one hop, but the node degree is n for each node in
legitimate states, which may limit the scalability of the system when n gets large.

7.3. Network Topology and Routing

In this section we present the topology that we want nodes to form when being in a
legitimate state. Afterwards, we present a routing algorithm for routing any message
from any source node s to any target node ¢ within a constant amounts of hops in
this topology.

7.3.1. Network Topology

Given a set V of n nodes, we first hash the identifier id(u) of each node u € V
to the [0, 1)-interval uniformly at random, using the pseudorandom hash function
h:N —[0,1). Define < to be the total order on all nodes in V" on the [0, 1)-interval:
i.e., for two nodes u,v € V it holds that v < v if and only if h(id(u)) < h(id(v)). If
clear from the context, we just use u or h(u) instead of h(id(u)). Recall Definition 6.9
for notation on left, right, closest left and closest right neighbors. We introduce some
additional notation here:

Definition 7.3. Let u,v,w € V.. We say that u is closer to v than w if and only
if lu—wv|] < |v—w|. A node u is closest to some point p € [0,1) if and only if
|lu —p| < |v—p| for all nodes v # wu.

The network we introduce in the following definition has a diameter of d w.h.p.,
which makes routing possible in a constant number of hops:

Definition 7.4 (Network Topology). Let V be a set of n nodes, d > 2, > 4 be
fized constants, ¢ = In and < be a total order on all nodes in V. The general De
Bruijn network (GDB) is a directed graph G = (V, EL, UEgU Epp) with the following
properties:

(a) (u,v) € EL & u is the closest left neighbor of v.
(b) (u,v) € Eg & veE [u—%-%,qH_%.%}

(c) Vie{1,...,log(q)} Vj € {0,...,2" =1} : (u,v) € Epp & v is closest to the

point “;])

Call edges in Ey, list edges, edges in FE¢q g-neighborhood edges and edges in Epp De
Bruijn edges.

82

7.3. Network Topology and Routing

For an edge (u,v) € Epp where v is closest to the point “;;j, denote the edge
(u,v) as a De Bruijn edge on level i, i € {1,...,log(q)}. In case i = 1, such an edge

resembles a standard De Bruijn edge from Definition 2.5; for ¢ = loggq, the edge
resembles a generalized De Bruijn edge from Definition 7.1. Note that we include De
Bruijn edges on levels 2,...,logg — 1 to facilitate the self-stabilization process. If we
forward a message via a De Bruijn edge on level 7 we denote this as a De Bruijn hop.
For i > 1, we denote this as a general De Bruijn hop and for ¢ = 1, we denote this as
a standard De Bruijn hop. By writing u — p for a node w € V' and a point p € [0, 1),
we mean that u has an edge to the node v € V' that is closest to p; i.e., u stores the
reference of v in its local memory. We define the labels of the nodes such that they
correspond to the node labels of the standard De Bruijn graph (see Definition 2.5).

Definition 7.5. Let u € V with h(id(u)) € [0,1). Define the label of u by label(u) =
(1,...,2m) € {0,1}™ such that

hid(u) = 3" 2 2%
k=1

We are now ready to show that the edges Epp in the GDB emulate the edges of

the standard De Bruijn graph and the generalized De Bruijn graph correctly. Here
we assume for simplicity that for a De Bruijn hop via u — “;-] there exists a node v

with h(id(v)) = “;j . As it will turn out, having no node with a hash value of exactly

X3

“;Zj is no problem when constructing a d-hop routing algorithm for the GDB.

Lemma 7.6. Let u € V and fiz values i € {1,...,log(q)}, j € {0,.. ,20—1}. A De
Bruijn hop via u — “;ZJ is equivalent to appending i bits yi_1,vi—2,--.,%0 € {0, 1} to
the left of label(u). For the appended bit string (yi—1,vi—2,-..,%0) € {0,1}" it holds

that

Y1 27 by 0 27y 20 =5

Proof. W.l.o.g. assume that there exists a node v with h(id(v)) = u;;] We have

ut+j U J
21 i 9
Y e
= T T
m .
1 J
I T Tm]
= ol+i + 92+ +.F om+i +§'

Bits of label(u) shifted ¢ positions to the right

We know that j € {0,...,2" — 1}, so we can write j as a binary string (y;_1,...,%0) €
(0,1} with

i—1
F= k2 =y 2 oy 2y 20
k=0

83

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

Plugging the representation for j into the equation above we get

vti % 1
= wt o gm
S0k 2" &
- Dau? S
k=1
i—1 m 1
o
- S St
k=0 k=1
_ Yi-1 | Yi-2 Yo z1 T2 Tm
- 2 + 4 +...+§ —"_ F+W+"‘+2l+m'
i bits defined by j appended to the left — Bits of label(u) shifted ¢ positions to the right
Therefore, we have label(v) = (yi—1,Yi—2,--->Y0, X1, - - -, Tm), Which corresponds to

appending ¢ bits y;_1,¥i—2, ..., yo to the left of label(u). This proves the lemma. [

Since j € {0,...,2" — 1}, we are able to append any arbitrary bit string of length
i to the label of any node u via a De Bruijn hop. So for i = log(q), we are able to
append log(q) = log(¥/n) = élog(n) arbitrary bits at once per general De Bruijn
hop.

7.3.2. Routing

Now we present a routing algorithm DBSearch that routes a message from any source
node s € V to any target node t € V' within d hops in the GDB. In order to provide
a clean presentation of the routing algorithm, we assume that the label of each node
consists of at least logn bits.

DBSearch (Algorithm 11) proceeds in two phases. In the first phase, we perform
d —1 general De Bruijn hops to append the most significant [d%dl logn| bits of label(t)
to the left of label(s). In the second phase, we greedily search for ¢ via g-neighborhood
edges.

At the source node s, DBSearch is initialized with the identifier id(¢) of the target
node t and a variable ¢ = d — 1 that counts the remaining number of De Bruijn
hops to be executed in the first phase. DBSearch determines for each node u on the
routing path to ¢ the next node v on that path and forwards the message to v. Once
the message has arrived at ¢, the algorithm outputs Success if there does not exist
any node with identifier id(t).

Phase 1: General De Bruijn Hops. The first phase consists of d — 1 general De
Bruijn hops. At the beginning of the first phase, we compute the label label(t) of ¢.
Consider the most significant m = (% logn] bits t1,...,t, of label(t). For the i-th
general De Bruijn hop we consider the bits ¢(;_1).10g g+1; ---tilogq and compute

i-logq

i= > 2k

k=(i—1)-log g+1

Observe that j € {0,...,q — 1}. We then perform a general De Bruijn hop via the

edge u — %.

84

7.3. Network Topology and Routing

Algorithm 11 The routing algorithm DBSearch, executed by node u € V

1. DBSearch(id(t), i)

2 if id(u) = id(t) then

3 output Success

4: if ¢ > 0 then

5: Let label(t) = (t1,...,tm) € {0,1}™
6 Compute j = Zzlzo(gﬂl).log gr1th 2k

7 W <= argmin, ey, (u0)cEpy v — %\

8 w <DBSearch(id(t), i — 1)

9 else

10: w <= argmin, ey, (y)k, [V — h(1d(1))]
11: if |w — h(id(t))| < |u— h(id(t))| then
12: w <—DBSearch(id(t), 0)

13: else

14: output Failure

Phase 2: Greedy Search. In the second phase, we greedily search for the target
node t by delegating the message via edges in F;. We do this until ¢ has been found,
or until the message arrives at a node v € V,id(v) # id(t) from which it cannot be
forwarded to a node that is closer to h(id(t)) than v. In both cases, the algorithm
terminates, resulting in a successful delivery of the message in the first case or a
failed delivery in the second case since no node with ID id(t) exists in the system.
This phase is equivalent to fixing the remaining bits of label(t), which can be done
via a single hop until the request arrives at the target node.

We rely on [NWO07, Lemma 4.1] for parts of the analysis. The lemma gives upper
and lower bounds for the the distance between to consecutive nodes in the sorted list
and is stated in the following;:

Lemma 7.7 ([INWOT7]). After inserting n random points on the [0, 1)-interval the
length of the longest segment is w.h.p © (%) With high probability there is no

segment which is shorter than © (n—12>

Lemma 7.7 implies that a single De Bruijn hop imposes an additive error of at

most © (k’%) w.h.p., i.e., the node w that is closest to the point p = %j is at most

C) (bin) units away from p.
The following theorem yields the desired bound on the number of hops for DBSearch:

Theorem 7.8. The number of hops required to send a message from a source node
s €V to a target node t € V via DBSearch is d w.h.p.

Proof. Let label(t) = (t1,...,tm) € {0,1}™ be the label of t. In the first phase of
DBSearch, we perform d — 1 general De Bruijn hops. Lemma 7.6 implies that we
arrive at some node v with the label (vy,...,v), and

’Ui—t,;ViG{1,...,[d;110g(n)—‘}.

85

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

Assume m = k for convenience. At this point, i = 0, so DBSearch switches to

Phase 2. The remaining bits that need to be fixed are the bits t’—d—l log(n)]+17 " * s tm,

keeping an additive error of at most (d — 1)%%8™ w. h.p. in mind for some constant
¢ > 0 (Lemma 7.7). We show that these bits can be fixed in one single hop via the
g-neighborhood, because in the worst case it holds that

Ui;étiViG{{d_llog(n)—‘+1,...,m},

so the maximum distance between h(id(v)) and h(id(t)) on the [0, 1)-interval is equal
to

A

clogn k 1 clogn L
d—1 — d—1) —
@y L +(23)

i=1
————
<1 for k—o0

clogn 1

< (d-1 —
<)=+ =
_ - 1>clogn Vn
n n
1
- 1)0 ogn ¢
n n
¢ q
< 2 n
for ¢ > 4 and n high enough. Therefore, it holds that (v,t) € Eg, so we are able
directly go from v to ¢ via one single hop. O

Notice that Theorem 7.8 still holds when ¢ is not exactly accurate but only a
value in ©({/n) that is at least as large as n. This is important because the
self-stabilizing protocol presented in the next section uses an approximation of g with
the above properties.

7.4. Protocol BuildGDB

In this section we describe our self-stabilizing protocol for the generalized De Bruijn
graph, called BuildGDB. We construct the protocol from sub-protocols for each type
of edges mentioned in Definition 7.4.

7.4.1. Protocol Description

We first give an overview of the variables of each node. Throughout the rest of this
chapter, we assume that all nodes are aware of the constants d > 2 and ¢ > 8 (for
technical reasons that will become clear in the analysis, we choose (> 8 as opposed
to ¢ > 4 from Definition 7.4).

Definition 7.9. For the BuildGDB protocol, each node u € V- maintains the following
variables:

86

7.4. Protocol BuildGDB

(a) Variables u.left,u.right € V.U {L} storing u’s left and right list neighbor.
(b) Variables u.q;, u.q, € {2% | ke No} storing estimates of (:T\/ﬁ'

(¢) A setu.Qq CV storing all nodes in the interval [u — 2u.q] and a set u.Q, C'V
storing all nodes in the interval [u,u + 2u.q].

(d) Variables u.db(i,j) € VU{L}, foralli € {1,...,[log(/n)]}, 7 € {0,...,2'—1}
representing u’s De Bruijn edges. u.db(i, j) stores the node that is closest to
the point “;J. Denote the union of u’s De Bruijn edges by the set u.db =

Ui j w-db(i, j).

Observe that u.db(1,0) and u.db(1, 1) represent u’s standard De Bruijn edges. If
BuildGDB has to call an action on a node stored in variable u, it executes this call
only if u # 1. BuildGDB consists of three sub-protocols: one for list edges, one for
g-neighborhood edges, and one for De Bruijn edges. Each of these sub-protocols
comes with a dedicated Timeout action as well as other protocol-specific actions. We
describe each sub-protocol individually in the following subsections.

List Edges

The base of our self-stabilizing protocol consists of a sorted list for all nodes u € V.
For this we define the total order < as already mentioned in Section 7.3. For two
nodes u,v € V it holds that u < v if and only if h(id(u)) < h(id(v)). We use the
BuildList protocol from Section 6.4, using the variables u.left and u.right.
Unfortunately, we cannot simply apply Theorem 6.12 to guarantee convergence
for the sorted list in BuildGDB because we only require G = (V, E, U Eg U Eppg) to
be weakly connected. Therefore, we downgrade (non-list) edges represented by sets
u.Qp, u.Qr and u.db. Downgrading some node v € u.Q; U u.Q, U u.db at node u is
done in a round-robin fashion in the Timeout action of each sub-protocol other than
BuildList, by locally calling Linearize(v). This creates an implicit list edge (u,v).

Q-Neighborhood

Next, we describe how nodes are able to establish and maintain connections to
their closest ©(/n) neighbors (called g-neighborhood for ¢ = {/n) along with an
approximation for the value ©(/n). Algorithm 12 states the pseudocode for the
g-neighborhood protocol.

Every node u € V aims to keep edges to all nodes in the interval [u — %%, u+
%{i/ﬂ. Since u is not able to determine the exact value of ¢/n locally, it stores an

approximation of % in its variables u.q;, u.q, for its left and right side, respectively,
and aims to establish connections in u.Q, u.Q), to all nodes that are contained in the
interval [u—2u.q;, u+2u.q,|. As it will turn out, this results in |u.Qp|+|u.Q.| € O(/n)
w.h.p. in legitimate states. Next, we describe how BuildGDB updates u.Q) and how

d
% is approximated.

Maintaining u.Q; and u.Q).. We just describe the algorithm for maintaining the sets
u.QQ; and u.Q), for the set u.Q), as the algorithm for u.Q; works analogously. Assume

87

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

Algorithm 12 The g-neighborhood sub-protocol of BuildGDB, executed by node u

1: Timeout — true

2 Remove and downgrade nodes v € u.Q; Uu.Q, if v & [u — 2u.q;, u + 2u.q;]
3 if u.left & u.Q; N u.left € [u — 2u.q;, u] then

4: w.Qp +— u.QUu.left

5: if w.right & u.Q, A\ u.right € [u,u + 2u.q] then

6 u.Qr +— u.Qr U u.right

7 Pick v; € u.Q; Uu.Q, in a round-robin fashion

8 Linearize(v;)

9 if v; # wu.left A v; # u.right then

10: v; < Introduce(v;_1,u)
11: else
12: v; < Introduce(u, u)

13: EstimateSqrtN()

14: Introduce(v, s)

15: if v € [u — 2u.q;, u] then

16: u.Q +— u.Q;Uv

17: else if v € [u,u + 2u.g,] then
18: u.Qr +— u.Qr Uv

19: else

20: Linearize(v)

21: if s #1 then

22: if s < u then

23: s < Introduce(u.right L)
24: else

25: s < Introduce(u.left, 1)

that u.Q, = {v1,..., vt} with v; < ;41 fori=1,...,k — 1. To keep u.Q), updated,
the node u does the following: In each call of Timeout u first picks v; € u.Q), in a
round-robin fashion! and then introduces v, to its closest list neighbor @ € u.Q,
in the direction of u by calling the action Introduce(?, u) on v;. The node ¥ is
determined as follows: If v; = u.right, then © = u. Otherwise, ¥ = v;_1.

When some node u executes the action Introduce(v, s) for v € [u,u + 2u.¢,|, u
includes v into u.Q),, otherwise v is forwarded via the BuildList protocol by locally
calling Linearize(v) on u. Afterwards, u responds to the sender s of the Introduce(v,
s) message by sending an Introduce(u.right, L) message to s. By doing so we enable
s to expand its set s.(Q), in case it does not yet contain all nodes within the interval
[s, s + 2s.q;]. Note that the second parameter of the Introduce action is set to L for
this response, in order to avoid an infinite loop of message calls between two nodes.

!Picking a node v from some set S stored at node u in round-robin fashion can easily be realized in
a self-stabilizing manner, by ordering the nodes in S arbitrarily and then picking the i-th node
in that order. Here, i is an integer-variable that is updated by ¢ < i+ 1 mod |S| whenever a
node has been picked. This guarantees that when picking a node |S| times, each node in S has
been picked once.

88

7.4. Protocol BuildGDB

Figure 7.2 illustrates these introduction rules for the g-neighborhood edges of a node
U.

Figure 7.2.: Illustration of the introduction rules for the g-neighborhood sub-protocol.
In the upper image u introduces itself to its list neighbor v; and also
introduces vy to vy (which is vy’s closest list neighbor lying in the direction
of u) as well as vy to v3 and v to v4. Sending those introduction messages
generates the corresponding (dashed) implicit edges shown in the upper
image. Once u has received the responses from vy, ..., v4, the implicit
edges shown in the bottom image are created.

Maintaining u.q; and u.q,. Algorithm 13 states the pseudocode for the action

EstimateSqrtN that is periodically executed by each node u at the end of its Timeout

action. The algorithm and the description that follows show how to update the

variable u.q,. Tge procedure for updating w.q; works analogously. Recall that we
_ ¢¥n

aim for u.q, = >/ =.

Algorithm 13 The action EstimateSqrtN, called locally by a node v € V

EstimateSqrtN()
: Let I (x) = [u + 2%]
Let Ny(z) = {v e uw.Q, | v e L (x)}].

1:
2
i d d-1
£ Let fu(z)= (1) L) - (5k5) -
5.
6

Compute = € Ny s.t. fr(z) is closest to 0 and z < N,(x)/¢ — log N, ().
u.qp < 1/2%

Let I(z) = [u+ 2%] be an interval of size 1/2* and let N, (x) be the set of all nodes
that are contained in I,(x). We seek to compute a value = for which the function

o= () - ()

is closest to 0. Here f,(x) sets the interval I,.(z) into relation to N,(z). As it will
turn out in the analysis, it holds w.h.p. that f,.(z) is closest to 0 if 1/27 is equal to

89

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

ﬁi—n‘/ﬁ, as in this case |I.(z)| = ﬁi—n‘/ﬁ and N, (z) € (C;/f’ C;—n\/ﬁ) Setting u.q, to 1/2%
therefore eventually yields the desired estimate.

For technical reasons, we also have to make sure that u.q. > Clo%. For the
computed value x we thus also require that © < N,(z)/¢ — log N,(x) holds. The
following lemma from [RSS11, Lemma 1] implies that in case z < N, (z)/{—log N,(x),

we get that the corresponding interval I,(x) and thus also u.g, have the size >2%=.

Lemma 7.10 ([RSS11)). Let I(j) C (0,1) be any interval of size (1/2)7 starting at
a node u and let N(j) be the number of nodes in I(j). For any constant ¢ > 1 there
is a constant € € (0,1) (that can be arbitrarily small depending on ¢) so that w.h.p.
the following holds: if |I(j)] < (1 —¢)(clogn/n) then j > N(j)/c —log N(j) and if
I1(7)] > (14 ¢€)(clogn)/n then j < N(j)/c—log N(j).

d
Finally, we want to note that once u.q, € © (%) is stable, the node u can compute

u.q € O(¥/n) with u.q > &n: u just has to count the number of nodes N,.(2u.g,) in

[u, 2u.q,] (to which it eventually will be connected via the g-neighborhood protocol).
%, @) w.h.p., so in
order to get to know u.q € O(¥/n) with u.q > &n, u just computes 8- N, (2u.q,). Such
an approximation is needed in order to establish the De Bruijn edges for each level
ie{l,...,[log(#n)]} (recall Definition 7.4) and to perform the routing algorithm

from the previous section.

As it will turn out in the analysis, we have that N, (2u.¢,) € (

De Bruijn Edges

In this section we describe how the nodes are able to generate their correct De
Bruijn edges in a self-stabilizing manner. We assume that each node u stores an
approximation of ©(/n) in the variable u.q = 2%k € Ny. Note that such a variable
is not necessary technically because u is able to compute ©(¥n) locally at any time
as explained in the previous section. Recall that each node u maintains a variable
w.db(i,j) (i = {1,...,log(u.q)}, 7 = {0,...,2¢ — 1}) that has to store the node v
closest to the point ";Zj . In case u.q changes (i.e., it is either doubled or divided by
some power of two) u.db is updated accordingly. For the case that u.q is reduced, u
downgrades all node references that are not part of u.db anymore to the BuildList
protocol.

To establish De Bruijn edges for each level ¢ we use a probing approach similar to
the one presented in [RSS11]. In each call of Timeout, we pick i € {1,...,log(u.q)}
and j € {0,...,2" — 1} in a round-robin fashion. Node u first downgrades its node
reference u.db(i, j) to the BuildList protocol and then generates a message M (i, j)
(called probe) with target point ¢t = uTJZJ € [0,1) that aims to find the node v closest
to t. We store ¢ and j in M (i, j) since these are important for routing M (i, j) to its
target location effectively. Once M (i, j) has arrived at the node v that is closest to
t, M(i,7) is sent back to u storing the reference of v. We also keep the reference
of u stored in M (4, 7) in order to be able to immediately return M (i, j) to u from
v. At the time u receives M(i,7) from v an implicit edge (u,v) is generated, so
u can then store v into u.db(7,j). Depending on the values i and j, we use the
following approach to route M (i, j) to the target point t. At u we forward M (i, 7)

90

7.4. Protocol BuildGDB

to the node v = u.db(i — 1,k), with k = j mod 2°~!. In case i = 0, we forward
M(i,j) to v = u.left (if j = 0) or to v = u.right (if j = 1) instead. Next, at v we
execute a standard De Bruijn hop: If j > 2¢~! we forward M (i, 7) from v to v.db(1, 1),
otherwise we forward M (i, j) from v to v.db(1,0). Now we greedily forward M (i, j)
via the ¢g-neighborhood until some node w is reached that is closest to “;j based on
its local view. At w we store w’s reference in M (i,7) and send M (i, j) back to u,

such that u is able to set u.db(i,j) = w.

Note that if the system has not reached a legitimate state yet, the first two steps
may not be executable, since the respective variables are set to L. In case the first
step cannot be executed, we do not forward the probe at all. Once the sorted list
is in a legitimate state, the first step can be executed for the probes M (1,0) and
M(1,1). The set of De Bruijn edges is then built from the bottom levels up to the
top levels, as one can easily show via induction. In case the second step cannot be
executed we just proceed with the third step. Once the g-neighborhood has stabilized,
M (i, 7) will eventually arrive at the correct target node. If node u updates u.db(i, j),
it forwards the old value for u.db(i, j) to the BuildList protocol. Algorithm 14 states
the pseudocode for the protocol.

Having nodes store lower-level De Bruijn edges is not only useful in our probing
approach, but also reduces the effort for a node v when wu.q is reduced. This will
certainly be the case in a dynamic environment as there are nodes leaving the system.
As soon as u.q is updated to u.q/2" for some k € N, u just downgrades and removes its
De Bruijn edges on the k highest levels, which it can do locally. Without lower-level
De Bruijn edges u would have to probe for a new set of De Bruijn edges from the
ground up. Similarly, in the case that u.q doubles, u is able to use its old De Bruijn
edges on the highest level to effectively probe for the De Bruijn edges on the next
higher level.

7.4.2. Analysis

In this section we first show that the BuildGDB protocol is self-stabilizing, mean-
ing that BuildGDB satisfies the convergence and closure properties (Definition 6.5)
w.r.t. legitimate state indicated by the general De Bruijn network (Definition 7.4).
Afterwards, we show some additional interesting properties of our network.

Given any weakly connected graph G = (V, E, U Eg U Epp), we first argue that
all corrupted messages initially stored in node channels are processed, so the system
arrives at a state where no corrupted messages exist:

Lemma 7.11. Given any weakly connected graph G = (V,EL UEQU Epp) and a set
of corrupted messages M that is spread arbitrarily over all node channels. Fventually,
G is free of corrupted messages, while staying weakly connected.

Proof. Any message m € M is processed by BuildGDB according to the (sub-)protocol
descriptions from Section 7.4. By definition of BuildGDB, GG does not get disconnected
when processing m since we never just remove node references but instead either
forward them to other nodes or downgrade them to the BuildList protocol. Also note
that a corrupted message m € M may trigger the generation of a chain of further
corrupted messages. However, this chain is finite as the implicit edge generated by m

91

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

Algorithm 14 The De Bruijn sub-protocol — executed by node u

1: Timeout — true

2 Remove and downgrade De Bruijn edges on levels [> log(u.q)

3 Pick i € {1,...,log(u.q)} and j € {0,...,2° — 1} in a round-robin fashion
4: Linearize(u.db(i, j))

5: if ¢ > 1 then
6
7
8
9

u.db(i — 1,7 mod 2¢~1) +—Probe(u, “;Zj, i, J, true)

else if j = 0 then >i=1,7=0
u.left «<Probe(u, %, 4, j, true)

: else >pi=1,7=1
10: u.right <Probe(u, “;Zj, i, j, true)
11: Probe(s, t, i, j, flag)
12: if flag = true then
13 if (u.db(1,0) =L A j<27") V (udb(1,1) =L A j >2""")then
14: Probe(s, t, i, j, false)
15: if j < 2°~! then
16: u.db(1,0) +Probe(s, t, i, j, 0)
17: else
18: u.db(1,1) +Probe(s, t, i, j, 0)
19: else
20: (U argminwéu.QlUu.QrU{u} |w — |
21: if v = v then
22: s < ProbeDone(u, i, j)
23: else
24: v <Probe(s, t, i, 7, 0)

25: ProbeDone(v, i, j)

26: if v # u.db(i,j) A u.db(i,j) #L then
27: Linearize(u.db(i, 7))

28: u.db(i,j) < v

is only forwarded for a finite amount of time until it is merged with or transformed
into an explicit edge.

Messages m that are not of the form of any of the actions described in the protocol
are immediately detected to be corrupted by the receiving node u. Node w then just
forwards all node identifiers contained in m via the BuildList protocol and drops m
afterwards. By doing so, m vanishes from the system.

The system therefore eventually arrives at a state where no more corrupted messages
are contained in the node channels. O

For the rest of the analysis we assume that there are no corrupted messages in the
system anymore. We show the convergence property in multiple phases: First we
show that our system converges to a sorted list from any weakly connected graph.
Once the sorted list is in a legitimate state, our protocol is able to establish the

92

7.4. Protocol BuildGDB

g-neighborhood edges. After the ¢g-neighborhood edges are established, BuildGDB
eventually generates the correct De Bruijn edges.

Lemma 7.12. Given any weakly connected graph G = (V,Er, U Eg U Epp). Even-
tually, the explicit edges in Ey, form a sorted list.

Proof. First note that we only downgrade edges from Eg and Epp to Ey, via Linearize,
but never upgrade edges from Ep, to either Eg or Epp; i.e., BuildList does not call any
of the actions from the ¢g-neighborhood sub-protocol or the De Bruijn sub-protocol.
Now observe that for any edge (u,v) € Eg, u is eventually downgraded to BuildList,
namely at the time where it is chosen in u’s Timeout action in Algorithm 12. Similarly,
observe that for any edge (u,v) € Epp, u is eventually downgraded to BuildList,
namely at the time where it is chosen in u’s Timeout action in Algorithm 14. We
can therefore conclude that eventually the subgraph G’ = (V, Ep) of G is weakly
connected. By Theorem 6.12 the explicit edges in E}, eventually form a sorted list.
This finishes the proof.]

We now show that for a fixed value u.q., u.Q, eventually contains all nodes in
[u, 2u.q,]. This implies that eventually the explicit edges in Eg form a g-connected
list.

Lemma 7.13. Given any weakly connected graph G = (V, Er, U Eg U Eppg), where
the explicit edges in Ej, form a sorted list. For a node uw € V with fized u.q,, the set
u.Q, eventually contains all nodes in [u, 2u.q,).

Proof. Assume that for a node u € V there exists a node v € V' with v € [u, 2u.q,]
but v € u.Q).. W.l.o.g. assume that v is minimal: i.e., out of all nodes w that are
contained in [u, 2u.g,] but not in ©.Q, v minimizes |u — w|. As v is minimal and the
sorted list already has converged, it holds that v = w.right for a node w € u.Q, U{u}.
Assume that w # w, as in this case u already knows v and thus includes it into u.Q),
in the Timeout action of Algorithm 12. Eventually w is picked by u in u’s Timeout
action and thus u introduces w’s left list neighbor w’ to w via the Introduce(w’, u)
action of Algorithm 12. Upon processing the action Introduce(w’, u), w sends back its
right list neighbor v to u by calling the action Introduce(v, L) on u. This generates
an implicit edge from u to v, which is then transformed into an explicit edge because
u then includes v into u.Q), upon processing the action Introduce(v, L).]

One can easily show an analogous statement for the set u.Q);.

Now we show that eventually u.q, becomes stable. The proof for u.q; works
analogously. In order to show that eventually u.q, becomes stable, we need the
following technical lemma.

Lemma 7.14. Let (= 8c for some constant ¢ > 1 and = > (logn and y € [0,1).
Let I =[y,y + %] be an interval over [0,1) of size =. Then the number of nodes with

a label in T is within (%x, 2:5) € O(z) w.h.p.

Proof. W.l.o.g. assume that z = (logn. For all u € V' let X,, be a binary random

variable with
X, = {1, ifuel

0, otherwise.

93

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

Then it holds that Pr[X, = 1] = ¥ and for X := 3 . X, it holds that u = E[X] =
n- T = x. E[X] represents the expected number of nodes with a label in 1. Now fix
9 = 1. By following the Chernoff bound from Theorem 2.14(a) we get that

—12.z
PriX > (146 u < exp(>

3
—(Clogn
= exp (3 >
< exp(—clogn)
< n7¢

Analogously, by following the Chernoff bound from Theorem 2.14(b) we get for

§ =1 that
()

PUX < (1-0) g < oxp|—2
. (—Qlogn)
= X —_—
PATs
= exp(—clogn)
< n”°
This proofs the lemma. O

We are now ready to show that u.q, eventually yields the desired value of ©({/n)
and is not updated afterwards anymore: i.e., it becomes stable.

Lemma 7.15. Consider a sorted list over the interval [0,1) and a node u € V.

Eventually u.q, € (g{, 5{) O(¥n) w.h.p. and u.q does not get updated anymore

as long as no nodes join or leave the system.

Proof. Recall the function f,(x), the interval I,(z) and the set N,(x) from Algo-
rithm 13. Lemma 7.14 implies that N,(z) > N,(x + 1) if |I.(z)] = 57 € (log”)
We show that f,(z) is monotonically decreasing when considering Values for x such

that 5 > 105". For this we show that f.(z) > fr(x +1). We get
fr(
1 d—1 4 d 1 d—1
(Y el ()
@) (&) e (e

SRORT
@) (Zl)d 2x+1_(<x1+1)>d_1
)

NGRSO
| () s

o) - (
@) -

- (J\M;Jrl))zl_<1vrlx)dl <4
)

x) > fr(x+1)

2

=

Y

* (we) B (2‘>

94

7.4. Protocol BuildGDB

Now note that f(z) =0 1f C‘f because of

") ()

4 d— 1\/‘ 4d—1
C) n Cd_l %d—l

<
RSO

Since each node u keeps all its neighbors that are within the interval [u, u 4 2u.q,] =
[u, u+ 2%1] it follows that u is able to compute at least the functions f,(x), fr(x —1)
and fr(z + 1) at any point in time. This way u can decide whether to increase,
decrease or keep the current value of z and thus whether or not the value w.q, has to
be updated. Therefore, u.q, eventually will contain a value 2% for which it holds that

d, d
Vn 2% < *2/—5, which proves the lemma. Note that the above computations do not

8n

hold in cases where u.q, = 2% < k’%. However, since we make sure in our algorithm
that we always compute x such that z < N,.(x)/c — log N,.(x) holds, it follows by
Lemma 7.10 that u.g, = 5 > log" at any point in time. O]

Finally, we show that once the sorted list and the g-connected list have converged,
all correct De Bruijn edges are eventually generated.

Lemma 7.16. Given any weakly connected graph G = (V, E;, U Eg U Epp), where
the explicit edges in Ey, form a sorted list and the explicit edges in Eg form a ©(/n)-
connected list. Eventually the De Bruijn edges Epp are set up correctly according to

Definition 7.9(d).

Proof. Assume a node u € V generates a probe M (i, j) in the Timeout action of
Algorithm 14. Then M (i,) is first forwarded to the node u.db(i — 1,k),k = j
mod 271, or via a list edge and then forwarded via one standard De Bruijn hop. In
case the first and/or the second step is not possible (other standard De Bruijn edges
may not have been set up yet), the algorithm proceeds with a greedy search for the
node v that is closest to the point uﬂ . Since the explicit edges in Eg already form
a O(/n)-connected list, the greedy search is successful, so the correct node v is sent
back to u, which leads to u correctly updating u.db(1, j).

As u eventually has generated a probe M(i,j) for every pair (i,j) such that
i€{l,...,[log(/n)]} and j € {0,...,2° — 1}, all De Bruijn edges outgoing at u are
eventually established. O

By all of the above lemmas we conclude the following lemma:

Lemma 7.17 (Convergence). BuildGDB transforms any weakly connected graph
G = (V,ELUEgU Epg) into a GDB.

We are now ready to show the closure property:

95

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

Lemma 7.18 (Closure). If the explicit edges in G = (V, Er, U EQ U Epp) already
form a GDB, then they are preserved at any point in time if no nodes join or leave
the system.

Proof. For the list edges Ep, closure follows from Theorem 6.12 because the BuildList
protocol modified edges only if a node u gets to know a node v with either u.left <
v < uor u < v < u.right, which is not possible, because w.left and u.right already
store u’s closest list neighbors.

For the edges in Eg we know that none of these edges are removed or forwarded
by any node u since u’s variables u.q;, u.q, € ©(/n) do not change as long as no
nodes join or leave the system (Lemma 7.15).

Aside from the initial checks in the Timeout action of Algorithm 14, every node u
modifies its variables u.db(i, j) only via the action ProbeDone of Algorithm 14 under
the condition that the probe result is different from the node currently stored in
u.db(i, 7). Since the system is already in a legitimate state, all probes M (i, j) return
the node that is closest to the target position of M (i, j), so the result of a probe
does not change: u.db(i,j) already stores the node that is closest to the point “;j .
Also, no variable u.db(i, j) is updated in the first command of the Timeout action of
Algorithm 14, as u’s approximation of ©(/n) does not change. This concludes the
proof. O

Lemmas 7.17 and 7.18 together imply our main result of this section:

Theorem 7.19. BuildGDB is self-stabilizing.

Additional Properties

In this section we show some further properties for our system that hold in legitimate
states.

The following theorem shows that the probing approach for De Bruijn edges is
efficient in legitimate states regarding the number of hops a single probe M (i, 7) has
to perform:

Theorem 7.20. Let the GDB G be in a legitimate state. A probe M(i,j) generated
at node u only needs 3 hops w.h.p. to be routed u to the node v that is closest to the

point “;j)

Proof. We show the lemma for i > 1 and j < 2°=!. The proofs for the other cases work
analogously. Node u € V forwards the probe M (i, j) to the node vq = u.db(i — 1, j),
i.e., to the node vy that is closest to the point ;‘ijl . At v1 we then perform a standard
De Bruijn hop by forwarding M (i, j) to the node vy = v1.db(1,0). If nodes are

distributed perfectly on the [0, 1)-interval it would hold v = v9 with

h(vi) +j ;ijl +0 w4

2 2 2

h(vg) =

However, by Lemma 7.7, h(v1) may deviate from the value ;’;ijl by at most © (105 ”)

w.h.p. Assume w.l.o.g. that h(v)) = %5 4 1987 When forwarding M (i, j) from v

- 21 n

96

7.4. Protocol BuildGDB

to v9 we may again deviate by at most 107% . Consequently, w.l.o.g., h(v2) is equal to
h(vi) + 3 n logn ;Lijl + 10% +J N logn u+j N 3logn
20 no 20 n 2 2n

vy maintains a g-neighborhood; i.e., it stores all nodes within the interval [vy —
V2.q1, U2 + V2.qr]. Since it holds that vs.q € ©({/n) and 31;%” € O({/n), the node v
closest to the point “;ZJ is contained in v’s g-neighborhood, so it is reached via one

hop performed in the third step of the probing. O

Next we show that the outdegree of the GDB matches the degree of the generalized
¢/n-ary, d-dimensional De Bruijn graph (Definition 7.1) asymptotically:

Theorem 7.21. Each node in the GDB has outdegree ©(/n) w.h.p.

Proof. We count the number of edges for a node u € V' according to Definition 7.4.
u has edges to all nodes in the interval [u — 2u.q;, u + 2u.¢,|, which are ©({/n) nodes
w.h.p. according to Lemmas 7.14 and 7.15. This covers all outgoing edges of u in

Eru Eq.
Next, count the number of De Bruijn edges outgoing at u for each level i =
1,...,logq: On level i, there are exactly 2! De Bruijn edges, leading from ¢ generalized

De Bruijn edges on level log(q) to the 2 standard De Bruijn edges on level 1. Therefore,
u has

log(a) log(a)

o2t = | Y 2 -1

i=1 i=0

1— 210g(q)+1 .
= ﬁ _

(2¢—1)—1
= 2q—2
De Bruijn edges.
Summing everything up results in u having ©(¥n) outgoing edges. O

Finally, we want to investigate the performance of BuildGDB in the case where
new nodes join the system. For this we assume that a node v may join the system by
introducing itself to an arbitrary (old) node u. We distinguish between the sets Vj,eq
and V4, where V., consists of all nodes that joined the system and V,;4 consists
of all nodes that are already part of the system. The nodes in V4 already form a
legitimate GDB at the time when nodes in V¢, join. Define the work W (u) for a
node u € V4 as the number of explicit edges that it needs to build or redirect when
new nodes join the system.

We first introduce the following two technical lemmas:

Lemma 7.22. The expected distance between two neighbors u,v € V on the [0,1)-
interval via a pseudorandom hash function h : N — [0,1) is equal to %

97

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

Proof. Let Xq,..., X, be the hashes of n nodes when using h. W.l.o.g. assume that
there exists ¢ € {1,...,n} with X; = 0. The cumulative distribution function (CDF)
Fx, () is defined by

Fx,(r) = Pr[X; <]

for an arbitrary j € {1,...,n}. It holds that the CDF of Xyin = min{{X1,..., Xn}\
{Xi}} is equal to the probability that not all X;’s are greater than X i.e., it is given
by

Fx, . () =1~ (1 —Pr[Xppm < z])" '

Since
0, <0
PriX;<z]=qz, 0<z<1
1, =z>1
it follows
0, z <0
Fy(@)={1-(1-2)", 0<a<1
1, z>1

We need to compute the expected distance between X; = 0 and X i, since these
hashes belong to neighboring nodes. It holds that

E[| Xmin — Xi[] = E[Xmin] — /0 - Fe (1) dt
= /011—(1—(1—t)"_1) dt
- /1(1 g = [—1(1 —t)”r _ 1

0 n 0 n
To see that E[X]| = [;°1 — Fx(t) dt for a non-negative random variable X consider,
for example, the book of Ghahramani [Gha05]. O

Lemma 7.23. Consider n nodes that have been hashed via a pseudorandom hash
function h : N — [0,1). Let p € [0,1) be an arbitrary point. The expected distance
between p and the node that is located closest to p is no larger than ﬁ

Proof. Let the point p lie between two consecutive nodes v1 and vs. From Lemma, 7.22
we know that the expected distance between v; and vy is % The distance between
p and the node that is closest to p is maximized when p lies exactly in the middle
between v; and vy: ie., p = % This distance is equal to ﬁ]

Theorem 7.24. Let the GDB G be in a legitimate state. When n increases by factor
29 e, Vol = n and |Viyew| = 2% -n —n, then for a node u € Vyyq it holds w.h.p.
that W (u) € ©(/n), which is asymptotically optimal.

Proof. Having n being increased by factor 2¢ results in #n getting increased by
factor 2. Each node u € V4 therefore increases its approximation of &/n by factor 2,
meaning that u also increases the size of its interval I = [u — u.q;, u + u.¢,| by factor
2. Due to Lemma 7.14 this results in v having to build ©(/n) new edges for its

98

7.4. Protocol BuildGDB

g-neighborhood. Also, since u.q increases by factor 2, u builds a new level of De Bruijn
edges: i.e., u generates variables u.db(log(u.q) +1, j) for all j € {0,...,2log(u.q)—1},
which are 2log(u.q) —1 =0 (é log n) = O(logn) many.

Now compute the number of De Bruijn edges that need to be redirected by
u. Consider an arbitrary De Bruijn edge “;j with ¢ € {1,...,log(u.q)} and j €
{0,...2" — 1}. The associated node to this edge is u.db(i, 7). W.l.o.g. let u.db(i,j) >

ugf In order for the edge (u,u.db(i,j)) to be redirected from u.db(i,j) to a new

node v € Vyew, v has to join within the interval [“;J - (u.db(z’,j) — “;J) ,u.db(i,j)].
From Lemma 7.23 we know that the expected size of this interval is no larger than
2. % = % Denote by the set I all of the intervals mentioned above and assume the
size of an interval ¢ € I is of the form % for random variable X; € {%, log n} with
E[X;] = 1. Remember that we have to consider ©(/n) of those intervals (one for each
of u’s De Bruijn edges), so |I| = ©(¢/n). Let X =3 ,c; X;. Then E[X] = O({/n).

W.lo.g. let E[X] = ¢n. Choose ¢ = 7”)’5(\21;’? for some constant ¢. For n high enough,

it holds that 6 < 1. Following Theorem 2.14(a), we get

o (\/3c.logn)2 . \d/ﬁ

Pr[X > (146)-E[X]] < exp d%?)

= exp(—clogn)

< n “

Thus, w.h.p., it holds that X is upper bounded by O(n) and therefore, the sum of
the sizes of the intervals in I is upper bounded by O (?)

We show that now u has to redirect up to O(¥n) edges w.h.p. For each joining
node v define Y, as

B {1, if v € V¢ joins into one of the intvervals in I
=

0, otherwise.

Assume w.l.o.g. that Pr[Y, =1] = ?. Then Y =37 oy, Y, and thus,
d
EY] =@ n-n)- Y0 = (20 1)- ¢
n

Next, choose § = —¥3¢198" _ Byllowing Theorem 2.14(a), we get
2d_1. d(%

2
() v
3

Pr[Y > (14 0) - E[Y]]

IN

exp

= exp(—clogn)

—C

IN

n

99

Chapter 7. Self-Stabilizing Generalized De Bruijn Graphs

Therefore, the number of nodes v € V¢, that join within intervals in I, and thus
have to be redirected by u, is upper bounded by (1+0)E[Y] < 2E[Y] = O(/n) w.h.p.
for n high enough.

Putting everything together, we get that W (u) € O(¥n) w.h.p.

At last, we argue why the work of O({/n) is asymptotically optimal. If n increases
by factor 2%, the systems contains 2% - n nodes. Since the degree is still d, Fact 7.2
implies that there has to be a node of degree 2n, which leads to at least one old
node u € Vg having to double its degree of /n. Therefore, v has to create at least
&n new edges and thus spend Q(/n) amount of work. O

100

CHAPTER

Self-Stabilizing Quadtrees

Most protocols in topological self-stabilization (including the one from the previous
chapter) only show that the system eventually converges to a legitimate state, without
considering the monotonicity of the actual recovery process. Monotonicity means
that the functionality of the system regarding a specific property never gets worse as
time progresses; i.e., for two points in time ¢, with ¢ < ¢/, the functionality of the
system w.r.t. a specific property is better in ¢’ than in ¢.

In this chapter we are interested in searching, as this is one of the most important
operations in a distributed system. We study systems that satisfy monotonic search-
ability: If a search request for node v starting at node u succeeds at time ¢, then
every search request for v initiated by u at time ¢’ > ¢ succeeds as well.

Previous work on monotonic searchability [SSS15; SSS16] proposes self-stabilizing
protocols for one-dimensional topologies (for instance, a sorted list). Still, up to this
point it is not known how to come up with an efficient self-stabilizing protocol for
high-dimensional settings that satisfies monotonic searchability. High-dimensional
settings are relevant in areas such as wireless ad-hoc networks or social networks
where processes are defined by multiple parameters.

This paper introduces a novel protocol BuildQT for a self-stabilizing quadtree
along with a routing protocol SearchQT that satisfies monotonic searchability and
terminates after O(logn) hops on any input. To the best of our knowledge, this is
the first protocol that combines self-stabilization and monotonic searchability for the
two-dimensional case. In addition, one can easily extend our protocols in order to
work for multiple dimensions, leading to a self-stabilizing octree. We furthermore
expand the notion of monotonic searchability to an even stronger and more realistic
property, which we call geographic monotonic searchability, and show that SearchQT
satisfies this property as well. Our protocols stand out due to their simplicity and
elegance and do not require restrictive assumptions on messages, as it has been done
for the universal approach [SSS16].

Underlying Publication. This chapter is based on the following publication:

M. Feldmann, C. Kolb, and C. Scheideler. “Self-stabilizing
Overlays for High-Dimensional Monotonic Searchability”. In:
Proceedings of the 20th International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), 2018,
cf. [FKS18].

Outline of This Chapter. We first formally define the concept of monotonic searcha-
bility and its geographical extension in Section 8.1. Then we provide some additional
related work in Section 8.2 and describe the quadtree topology that we want the

101

Chapter 8. Self-Stabilizing Quadtrees

nodes to form in legitimate states (Section 8.3). Afterwards, we present the protocol
BuildQT (Section 8.4) along with the routing protocol SearchQT (Section 8.5). We
show that BuildQT is self-stabilizing and, when combined with SearchQT, satisfies
geographic monotonic searchability. Finally, we show how to extend BuildQT in
order to work for arbitrarily high dimensions, leading to self-stabilizing octrees
(Section 8.6).

8.1. Monotonic Searchability

Before we can define monotonic searchability and its geographical extension, we
need to introduce some notation and assumptions. Until Section 8.6 we consider a
two-dimensional square P of unit side length. Each node u € V is represented by
its unique position in P given by coordinates (uz,u,) € [0,1]%. Like the identifier
of a node, coordinates are assumed to be read-only; i.e., there are no coordinates
of non-existing nodes in the initial state of the system. Having node coordinates
be read-only also makes sense in our setting, as these are usually delivered by
an external component that is not in control of our protocol, such as GPS, for
instance. Define ||uv||2 as the Euclidean distance between two nodes u,v € V, i.e.,

[[uvllo = /(e = v2)2 + (uy — v,)2.
Nodes are able to issue search requests at any point in time:

Definition 8.1. A search request is a message Search(u,(x,y)), where u is the
sender of the message and (z,y) € [0,1]? are the coordinates u wants to search for.

A search request is delegated along edges in G according to a given routing protocol,
until the request terminates: i.e., either the node with coordinates (x,y) is reached or
the request cannot be forwarded anymore. Note that (x,y) do not necessarily need
to be coordinates of an existing node. In such a case, the routing protocol may just
stop at some node v that would have been on the routing path to node w if node u
with coordinates (z,y) had existed. Upon termination at node v, the reference of v is
returned to the sender u (in the pseudocode we indicate this via a return statement).

We consider the following definition of monotonic searchability:

Definition 8.2 (Monotonic Searchability). A self-stabilizing protocol satisfies mono-
tonic searchability according to some routing protocol R, if it holds for any pair of
nodes u,v € V' that once a search request Search(u, (vg, vy)) returns v at time t, any
search request Search(u, (vs,vy)) initiated at time t' >t also returns v.

Realizing monotonic searchability in self-stabilizing systems is a non-trivial problem,
because once a Search(u, (vg,vy)) request returns v to u, it cannot trivially be
guaranteed that v is found again by u at later stages, due to the modification of
edges by the self-stabilizing protocol.

Definition 8.2 differs in a minor detail compared to the definition stated in [SSS15;
SSS16]. The initial search request issued by u terminates at time ¢, but Scheideler
et al. define the time step t to be the one at which the initial search request was
generated by u. They use a probing approach to check for a node u whether w is still
waiting for the result of a previously issued search request and to cache all search

102

8.2. Related Work

requests searching for the same target. The same approach can be applied to our
protocol as well to overcome this, but for simplicity we use the slightly modified
definition stated above.

In two-dimensional scenarios it is more realistic to search for geographic positions
rather than for concrete node addresses. To handle this, we introduce the following
definition of geographic monotonic searchability.

Definition 8.3 (Geographic Monotonic Searchability). Let (z,y) € [0,1]% be an
arbitrary position in P. Let v € V' be the node that is returned by Search(u, (x,y))
if the system is in a legitimate state. A self-stabilizing protocol satisfies geographic
monotonic searchability according to some routing protocol R, if in case the system
is in an arbitrary state and Search(u, (x,y)) returns v at time t, then any request
Search(u, (z,y)) initiated at time t' >t also returns v.

A protocol satisfying geographic monotonic searchability also satisfies monotonic
searchability.

We aim to solve the following problem: Given a weakly connected graph G = (V, E)
of n nodes with coordinates in P, construct a self-stabilizing protocol along with
a routing protocol such that geographic monotonic searchability is satisfied. The
self-stabilizing protocol should transform G into a network in which any search
request terminates after O(logn) hops, given that the Euclidean distance between
any two nodes is at least 1/n.

8.2. Related Work

This section presents an overview of related work, specifically for quad- and octrees
and the concept of monotonic searchability.

Quad- and Octrees. Quadtrees have first been introduced by Finkel and Bent-
ley [FBT74]. Since then, quadtrees and octrees are widely used in computational
geometry (for surveys consider [Alu04; Sam89], for example). There are peer-to-peer
approaches relying on quadtrees [Gao+04; THS07] as well. Still, the problem of
designing a self-stabilizing protocol that arranges peers in a quadtree has not been
tackled so far.

Monotonic Searchability. Research on monotonic searchability was initiated by
Scheideler, Setzer and Strothmann in [SSS15], where the authors present a self-
stabilizing protocol for the sorted list that satisfies monotonic searchability. They
also showed that providing monotonic searchability is impossible in general when the
system contains corrupted messages. However, this property is restricted to cases
where the desired topology to which the graph should converge is clearly defined,
forcing the underlying protocol to eventually remove an explicit edge if it is not
part of the desired topology. This is not the case for our topology, because once a
specific explicit edge (which we define as quad edge later on) is generated by our
protocol it is never deleted, so the legitimate state s that we reach is dependent on
the specific computation done before reaching s. We therefore do not need to enforce
any restrictions on messages, as routing is done via quad edges only.

103

Chapter 8. Self-Stabilizing Quadtrees

Building on their research, the same authors present a universal approach for
maintaining monotonic searchability along with a generic routing protocol that can
be applied to a wide range of topologies [SSS16]. However, adapting their protocol
to specific topologies comes at the cost of convergence times and additional message
overhead. This is due to the fact that whenever an explicit edge is delegated from
node u to v, v has to wait for an acknowledgment from v until it is allowed to
remove the explicit edge from its local storage. Furthermore, a search request that is
forwarded via the generic routing protocol might travel (n) hops when searching
for non-existing nodes, whereas our routing protocol only needs O(logn) hops on
any input to terminate (if the nodes are spread uniformly in the plane), while still
satisfying monotonic searchability. In addition to this, our protocol BuildQT is
simpler and also more lightweight regarding the message overhead. This is mostly
due to the simplicity of the quadtree topology.

A self-stabilizing protocol for the skip graph satisfying monotonic searchability has
been presented by Luo et al. [LSS19]. The idea is similar to ours. That is, once an
explicit edge has been established it is never deleted in any further computation. In
legitimate states, the skip graph is then a subgraph of the final topology, keeping
routing paths the same and thus satisfying monotonic searchability. The authors also
show how to dismantle additional edges without violating monotonic searchability
such that the network converges to a perfect skip graph.

Close but different from our notion of monotonic searchability is the notion of
monotonic stabilization [YT10]. A self-stabilizing protocol is monotonically stabilizing,
if every change done by its nodes is making the system approach a legitimate state
and if every node changes its output only once. The authors show that nodes have
to exchange additional information in order to satisfy monotonic stabilization.

Interestingly, topological self-stabilization (and monotonic searchability) in two-
or high-dimensional settings has barely been investigated until now. There exists a
single self-stabilizing protocol that transforms any weakly connected graph into a two-
dimensional topology — the Delaunay Graph [Jac+12]. Unfortunately, it seems non-
trivial to extend this such that monotonic searchability is satisfied, without resorting
to expensive mechanisms like broadcasting or the universal protocol from [SSS16].

8.3. Quadtrees

In this section we introduce the quadtree as our desired topology and define legitimate
states of our system. We first need some notation: Denote by P’ C P that P’ is a
subarea of P and denote the area covered by two subareas Py, P, C by Py U Ps. If the
coordinates (ug,uy) of a node u € V' lie in a (sub-)area P’ C P, we say that u € P’.
If a subarea P’ C P does not contain a node, we say that P’ is empty.

Intuitively, our approach works as follows. Given a set V' of n nodes with coordinates
in P, we first cut the area P into two equally sized subareas, by a vertical cut. The
resulting subareas P, P, C P are then again cut into two equally sized subareas,
this time by a horizontal cut. We apply this cutting recursively for each subarea,
always alternating between vertical and horizontal cuts. The recursive halving of
a subarea is stopped once this subarea contains at most one node. Once cutting is
done, we define a total order on all nodes in P similar to following the nodes in P in

104

8.3. Quadtrees

a space-filling curve. The total order is then used to connect the nodes into a sorted
list via the BuildList protocol (recall Section 6.4). On the basis of this sorted list and
the generated subareas, we establish additional edges, which we use for the routing
protocol.

More formally, let us first consider the recursive algorithm QuadDivision (see
Algorithm 15 for the pseudocode) with parameters V C V, P C P and f € {0,1}.

Algorithm 15 Quad Division Algorithm

1: QuadDivision(V, P, f)

2 if f =1 then

3 Perform vertical cut on P, resulting in P = P, U P;
4 else

5: Perform horizontal cut on P, resulting in P = P} U Py
6 S0

7 if [{u €V |ue P} <1 then

8 S+ SuU {Pl}

9: else

10: S < S U QuadDivision({u € VN P}, P, =f)

11: if [{u €V |u€ P} <1 then

12: S <+ SuU {Pg}

13: else

14: S < S U QuadDivision({u € V N P}, Py, =f)

15: return S

Initially we call QuadDivision(V', P, 1) and thus perform a vertical cut on P, dividing
it into equally sized subareas P; and P,. Then we call QuadDivision recursively on P;
and P, as long as they contain more than one node. For simplicity, we assume that
nodes do not lie on the boundaries of subareas, as this would make the presentation of
our algorithm unnecessarily complex. The problem can easily be resolved in practice
via a tiebreaker. QuadDivision(V, P, 1) returns the set S of subareas such that

e P’ contains at most one node and
o the union of all P’ € S equals P, i.e., Upcg P = P.

Example 8.4. Figure 8.1 shows an example for a sequence of cuts with 4 nodes
v1,...,v4. Note that upon termination, QuadDivision returns 5 subareas (one subarea
for each node v; and the empty subarea on the bottom left).

In the following, we want to view the output of QuadDivision as a binary tree T'.
The root node corresponds to the entire square P. An inner node of T, corresponding
to a (sub-)area P’, has two child nodes. Cutting P’ into two subareas P, and P;,
the left child represents the subarea that lies west of the other (when performing a
vertical cut on P’) or north of the other (when performing a horizontal cut on P’).
Similarly, the right child represents the subarea that lies east of the other (when
performing a vertical cut on P’) or south of the other (when performing a horizontal
cut on P’). The binary tree is the unique minimal such tree having no leaf node
t € T correspond to a subarea of P that contains more than one node u € V. Note

105

Chapter 8. Self-Stabilizing Quadtrees

[] [] []
Vq R V1 o V1 o
[) V3 [) V3 [] V3
\'/] \'b) V2
[] [] []
Vg Vg Vg
(a) (b) (c)
Figure 8.1.: Illustration of QuadDivision performed on nodes vy, ..., v4. (a) illustrates

the first vertical cut on P. (b) illustrates the horizontal cuts done
to subareas P; and P». (c) illustrates the final vertical cut before
termination.

that this makes nodes u € V' correspond to leaf nodes in 7', but a leaf node t € T
does not necessarily correspond to a node in V', as the subarea represented by ¢ may
be empty. For the rest of this chapter, we refer to the tree T' defined above as area
tree. Figure 8.2a shows the area tree T’ from Example 8.4.

Using the area tree notation, we obtain a total order on V:

Definition 8.5 (Two-Dimensional Ordering). Let T' be the area tree returned by
QuadDivision(V, P,1). The total order < is given by the depth-first search (DFS)
traversal of T, searching left childs first.

Note that the ordering < resembles a space-filling curve similar to the Morton-
Curve [Mor66]. Other curves like the Hilbert-Curve also work in principle. However,
using them makes the presentation of our ideas way more difficult.

We use the same notation for neighbors in < as defined in Definition 6.9.

As nodes in the area tree T' correspond to subareas of P and vice versa, we use
them interchangeably for the rest of the chapter. We say that a node t € T' represents
a subarea A, if A is the subarea corresponding to t. The next definition introduces
important notations to define the legitimate state of the system:

Definition 8.6. Let T be the area tree returned by QuadDivision(V, P,1). For a
node u € V', denote the leaf node representing the subarea that contains u by A(u).
Consider the unique path p(u) of tree nodes A(u) = ti,...,t; from A(u) to the root of
T. For each t; € p(u) on that path, let s; be t;’s sibling in T. Define Q(u) = Ule ;.

It is easy to see that if t € Q(u), then the subarea represented by ¢ does not contain
u, while the subarea represented by the parent node of ¢ contains u. Also, we have

that (Uaequ) A) U A(w) = P.

Example 8.7. Consider again Figure 8.2a: The set Q(v1) consists of the subareas
ts,te and t7, as the combination of these with the subarea ty containing vy yield the
square P.

106

8.4. Self-Stabilizing Quadtrees

\1

V3

\'5)

\Z

(a) (b)

Figure 8.2.: (a) Corresponding area tree to Example 8.4. The subareas marked
in black are the subareas represented by the corresponding tree node.
Performing a depth-first search on the area tree, when always going
to the left child first, yields the total order v; < vy < v3 < v4. (b) A
possible legitimate state for the system from Figure 8.1. List edges are
indicated in blue, quad edges in red.

Using the total order <, we define the legitimate state of our system, i.e., the
topology that should be reached by our self-stabilizing protocol BuildQT:

Definition 8.8 (Legitimate State). The system is in a legitimate state, if the graph
induced by the explicit edges satisfies the following conditions:

(a) Each node u is connected to its closest left and right neighbor w.r.t. <.

(b) For each non-empty subarea A € Q(u), u is connected to exactly one node
vE A.

Consider Figure 8.2b showing a possible legitimate state for the nodes from
Figure 8.1.

Note that we do not clearly define nodes for u to connect to Definition 8.8(b) more
specifically, as we just want to make sure that w is able to reach the subarea directly
via an outgoing edge in case the subarea contains nodes. As it will turn out, this
helps us to achieve geometric monotonic searchability. We want to emphasize that
edges in T" are not part of the legitimate state, as we use the area tree to illustrate
our approach and only let nodes compute necessary parts of the area tree locally.

8.4. Self-Stabilizing Quadtrees

In this section we describe the self-stabilizing protocol BuildQT and later show that
BuildQT is indeed self-stabilizing according to Definition 8.8.

107

Chapter 8. Self-Stabilizing Quadtrees

8.4.1. Protocol BuildQT

We first define the protocol-based variables for each node.

Definition 8.9. For the BuildQT protocol, each node uw € V' maintains the following
variables:

(a) Variables u.left,u.right € VU {L} storing u’s left and right neighbor, respec-
tively.

(b) A setu.QQ CV storing a single node v € V' for each non-empty subarea A € Q(u)
such that v € A.

We refer to the edges represented by variables w.left and u.right as list edges and
to edges (u,v) with v € u.Q as quad edges. Observe that an edge (u,v) can be both
a list and a quad edge at the same time. The reason for this is that we allow the
delegation of search messages only via quad edges (as we will see in Section 8.5), so
if u wants to delegate a search message to the subarea containing one of its list edges,
it has to make sure that there is a node in u.@ for this area.

Before we can describe how we establish the correct list and quad edges, we shortly
describe how a node u that knows some node v is able to locally determine whether
u < v or v < wu holds: u just calls QuadDivision({u, v}, P, 1) locally and obtains an
area tree with subareas containing v and v as leaf nodes. Performing a DFS on that
tree as described earlier yields either u < v or v < u.

It is important to note that using the same approach, u is also able to compute the
set Q(u) for the current system state: u just calls QuadDivision({u, u.left, u.right}, P,
1). It is easy to see that the corresponding area tree contains all nodes representing
subareas in Q(u), so u just has to check each node in the area tree for the properties
from Definition 8.6. Obviously, as long as wu.left and w.right are still subject to
changes, Q(u) also changes. But we will show later that by the way we define
our protocol, @(u) monotonically increases w.r.t. the C relation, s.t. none of the
proposed properties are violated.

For list edges, we use the BuildList protocol (Section 6.4) using the variables
u.left, u.right and the total order <.

We now describe how we build the correct quad edges at each node. Note that u
can easily check whether there exists a subarea A € Q(u) for which u does not yet
have a quad edge, by assigning each v € u.Q to the subarea in Q(u) that contains v.

The protocol consists of actions Timeout and QLinearize (see Algorithm 16). Before
executing any statement of any of these actions, a node u always checks its set u.Q
for consistency, ensuring that no two nodes vy, vy € u.Q) are contained in the same
subarea A € Q(u). In case u finds out that vy,..., v, € u.Q are contained in the
same subarea A € Q(u) (which may happen in an initial state), u only keeps one
of these nodes (arbitrarily chosen) and forwards all other nodes v; to BuildList by
calling Linearize(v;).

In Timeout, u chooses a node v from its set «.(Q) in round-robin fashion and forwards
v to BuildList. This has to be done to ensure that the sorted list converges even if the
initial weakly connected graph consists of quad edges only. Afterwards, u introduces
itself to its left and right neighbors w.left and u.right by calling QLinearize on them.

108

8.4. Self-Stabilizing Quadtrees

As part of the same QLinearize request, u asks these nodes if they know a node v € A,
where A € Q(u) is a subarea, for which u does not have a quad edge yet. If this
is the case, then u will receive a QLinearize call containing the desired node v as
the answer. The subarea A is chosen in round-robin fashion as well, such that each
subarea, for which u does not have a quad edge yet, is chosen by u eventually in
Timeout. The reason for choosing nodes and subareas in round-robin fashion is that
we do not want to overload the network with too many stabilization messages that
are generated periodically.

Processing a QLinearize(v, A) request at node u works as follows. We forward v
to BuildList and then check if v is contained in a subarea A’ € Q(u) for which there
does not exist a node v’ € u.QQ with v’ € A’. If this is the case, then u does not have
a quad edge to the subarea A’ yet, so u includes v into u.(Q, which corresponds to u
generating a new quad edge (u,v). Finally, u generates an answer to v as already
described above in case u knows a node (including itself) that is contained in A.

Algorithm 16 Protocol BuildQT, executed by node u € V

1: Timeout — true

2 Consistency check for u.Q)

3: Choose v € u.QQ in round-robin fashion and call Linearize(v)

4: Determine A(u) and Q(u) via QuadDivision({u, u.left, u.right}, P, 1)

5 Choose A € Q(u) in round-robin fashion s.t. Vv € u.Q : v ¢ A

6 u.left < QLinearize(u, A) > A =1 if no such A exists
7 u.right < QLinearize(u, A)

8: QLinearize(v, A)
9: Consistency check for u.Q)
10: Linearize(v)

11 Determine A(u) and Q(u) via QuadDivision({u, u.left, u.right}, P, 1)
12: if 34" € Q(u) Vo' € u.QQ : v' ¢ A’ then

13: u.Q +— u.Q U {v}

14: if A#1 A €uQU{u}:v € Athen
15: v + QLinearize(v’, 1)

8.4.2. Analysis

We show that BuildQT is self-stabilizing according to Definition 8.8.

Recall that our system is initially given by an arbitrary weakly connected graph
G = (V, E). As the graph may consist of both list and quad edges, we denote the set
of list edges by Er, and the set of quad edges by Eg, so G = (V, E U Eg). Since each
node u eventually executes its Timeout action, we assume that no inconsistencies
appear, like u < u.left, u.right < u or u having multiple quad edges into the same
subarea. We first argue that we get rid of corrupted messages that may exist in an
initial state of the system:

Lemma 8.10. Given any weakly connected graph G = (V,E, U Eg) and a set of
corrupted messages M spread arbitrarily over all node channels. Eventually, G is

109

Chapter 8. Self-Stabilizing Quadtrees

free of corrupted messages, while staying weakly connected.

Proof. By definition of BuildQT we do not delete any node but only forward its
node references to BuildList keeping G weakly connected at any point in time. Also
notice that a corrupted message m € M cannot be delegated infinitely by the way we
defined the Linearize and QLinearize actions. Because we assume fair message receipt,
we know that eventually all messages in M will be processed and thus vanish. [

To show the convergence property, we prove convergence and closure for the sorted
list and then show that once the sorted list stabilized, all desired quad edges will
eventually be established.

Lemma 8.11. For a weakly connected graph G = (V, E, U Eq), BuildQT eventually
transforms G such that the explicit edges in Er, form a sorted list w.r.t. < (Conver-
gence). If the explicit edges in Er already form a sorted list w.r.t. <, then they are
preserved at any point in time if no nodes join or leave the system (Closure).

Proof. In Timeout (Algorithm 16) a node u chooses one of its quad edges (u,v) € Eg
and forwards it to BuildList, creating an implicit list edge (u,v) € Er. Since we
execute Timeout periodically at each node v € V and choose quad edges in round-
robin fashion, it is guaranteed that eventually each quad edge is forwarded to BuildList.
This implies that the graph G’ = (V, Ep) eventually becomes weakly connected. We
can thus apply Theorem 6.12 to show that the sorted list converges.

Closure for the list edges Fp, follows directly from Theorem 6.12. O

Lemma 8.12 (Convergence). Once the edges in Ey, induce a sorted list w.r.t. <,
eventually a legitimate state according to Definition 8.8 is reached.

Proof. Definition 8.8(a) is already satisfied due to Lemma 8.11, so it remains to show
Definition 8.8(b). Recall that u is able to compute A(u) and the set of subareas
Q(u) by locally executing QuadDivision({u, u.left, u.right}, P, 1). As the sorted list
has already converged, Q(u) does not change anymore. Let S C Q(u) be the set
of subareas that contain at least one node. We show that u.Q) eventually contains
one node for each of those subareas: i.e., VA € S dv € u.QQ : v € A and v is unique.
For this we consider an arbitrary subarea A € S and assume w.l.o.g. that u < v
for all v € A. Note that since nodes u choose subareas A € Q(u) in round-robin
fashion, it is guaranteed that u chooses A periodically and asks its list neighbor
u.right for a node in A as long as u does not have any quad edge to a node in A.
Fix the node v € A such that v is the outmost left node of A in the ordering <: i.e.,
Vo' € A,v" # v v < v'. We show that eventually u will receive an implicit edge
(u,v) € Eg as part of a QLinearize call and will thus add v to u.Q), transforming the
implicit edge into an explicit one. Fix k € Ny and assume that there are k£ nodes
lying between u and v: i.e., u < vy < ... < v < v. Observe that any node v; with
u < v; < v also needs to have a quad edge to the subarea A, since we defined v to
be the outmost left node in A. By definition of our protocol, each node v; in this
chain sends out a QLinearize request to v;.right, demanding for a node lying within
the subarea A. Thus, v receives such a request from vg. As v € A, v answers v by
sending a QLinearize request containing its own reference back to vy, such that vy

110

8.5. Routing

establishes an explicit quad edge (vg,v) € Eg. Once vy has established this edge,
it answers any incoming QLinearize request coming from v;_; and demanding for a
node in A by sending a QLinearize request containing v back to viy_1. Note that as
long as vg_1 does not yet know v, v receives such QLinearize requests periodically
from vi_1. The chain continues iteratively until v has received v from vy, which
concludes the proof. O

Now we show the closure property for BuildQT.

Lemma 8.13 (Closure). If the explicit edges in G = (V, E, U EQ) already form a
quadtree, then they are preserved at any point in time if no nodes join or leave the
system.

Proof. Closure for the list edges Ep follows from Lemma 8.11. By the definition
of Algorithm 16 it follows that once a quad edge is established, we do not remove
it anymore. It is also easy to see that any reference to a node v that is part of
a QLinearize call is just forwarded to BuildList by u and is not included into u.Q.
This holds because for the subarea A € Q(u) that contains v there already must
exist a node v’ € u.QQ with v' € A, since otherwise this would violate condition
Definition 8.8(b). O

Combining Lemma 8.12 and Lemma 8.13 yields the main result of this section:

Theorem 8.14. BuildQT is self-stabilizing.

8.5. Routing

In this section we state the routing protocol SearchQT (see Algorithm 17 for its
pseudocode) and later show that SearchQT in combination with BuildQT satisfies
geographic monotonic searchability.

8.5.1. Protocol SearchQT

Before a node u processes a search message, it first performs the same consistency
checks on its set u.Q) as has been described in Section 8.4. This makes sure that our
routing protocol is well-defined. Now assume a node u wants to process a SearchQT (v,
(z,y)) message. Consider the subarea A(u) and the set Q(u) of subareas as defined
in Definition 8.6. u determines the subarea A(z,y) € Q(v) U{A(v)} that contains
the position (z,y). If A(x,y) = A(u), then the algorithm terminates and returns
u itself to v as the result. Otherwise, u delegates the SearchQT (v, (z,y)) message
to the node w € u.QQ with w € A(z,y). If no edge to a node in A(z,y) exists in
u.Q), then the algorithm terminates and returns u itself to v as the result. Consider
Figure 8.3 for some examples.

8.5.2. Analysis

In this section we show that BuildQT along with the routing protocol SearchQT
satisfies geographic monotonic searchability and thus also monotonic searchability.

111

Chapter 8. Self-Stabilizing Quadtrees

X
6
X,
Vi Vs t3
X
4
Vy
V2

Figure 8.3.: Illustration of the delegation of different SearchQT messages for tar-
get coordinates t1, to and t3 starting at vy. SearchQT(vi,t;) and
SearchQT (v1,t2) return the nodes that share the same subarea with
the target point (traversing paths (v1,ve,vs,v4) for ¢; and (vq,ve,vs)
for t2). The search for t3 yields the path (vi,ve,vs) until SearchQT
terminates, as v does not have a quad edge to the subarea containing
t3.

First we need the following technical lemma stating that for each node u € V' the set
Q@ (u) monotonically increases over time:

Lemma 8.15. Consider an arbitrary system state at time t and a node uw € V. Let
Q(u) be the output of QuadDivision({u,u.left,u.right}, P, 1) executed at time t and
let Q(u)" be the output of QuadDivision({u, u.left, u.right}, P, 1) executed at any point
in time t' > t. Then Q(u) C Q(u)’.

Proof. By the definition of our protocols, it holds that if u locally calls QuadDivi-
sion({u, u.left, u.right}, P, 1) in order to compute the set Q(u), then any inconsis-
tencies regarding w.left and u.right are already resolved. The lemma then follows
from the fact that BuildList does not replace list variables wu.left and u.right with
nodes that are further away from u than the current entries. More formally, consider
w.l.o.g. the variable w.right such that u < w.right. By the definition of Linearize, u
does not replace u.right by a node v for which w.right < v holds. This implies that
any subsequent QuadDivision({u, u.left,u.right}, P, 1) call only transfers subareas to
Q(u) that are obtained by cutting A(u). Therefore, for any subarea A € Q(u) we
have that A € Q(u)'. O

We are now ready to show the main result of this section:

Theorem 8.16. BuildQT along with SearchQR satisfies geographic monotonic search-
ability.

112

8.5. Routing

Algorithm 17 The SearchQT Protocol, executed by node u € V'

1: SearchQT (v, (x,y))

2: Consistency check for u.Q)

3 Determine A(u) and Q(u) via QuadDivision({u, u.left, u.right}, P, 1)
4 if (z,y) € A(u) then

5: return u
6
7
8
9

else
Let A(z,y) € Q(u) with (z,y) € A(z,y)
if Jw € u.Q :w € A(z,y) then
: w < SearchQT (v, (z,y))
10: else
11: return u

Proof. Assume a SearchQT (u, (x,y)) request S terminates and returns v € V to
the initiator u at time ¢, such that v is the node that would have been returned if
the system already was in a legitimate state. Now assume that w initiates another
SearchQT (u, (z,y)) request S” at time ¢’ > ¢t. We show that S’ returns v as well.
Let (u,v1,...,vk,v) be the path that has been traversed by S. We claim that
S’ traverses the exact same path as S. Let Q(u) be the output of QuadDivi-
sion({u, u.left, u.right}, P, 1) executed when processing S at u and let Q(u)" be
the output of QuadDivision({u,u.left,u.right}, P, 1) executed when processing S’
at u. Let A(v) € Q(u) be the subarea that contains v and A(vy) € Q(u) be the
subarea that contains v;. Since S has been delegated by u to vy, it follows from
the definition of the SearchQuad protocol that v € A(v;). Lemma 8.15 implies that
Q(u) € Q'(u) and thus A(vy) € Q'(u). It therefore follows from the definition of
SearchQT that u delegates S’ to v1 as well. By arguing the same way for any node
v; on the remaining path (v1,...,vg,v), we can conclude that S’ arrives at v and
terminates. This finishes the proof.]

As already indicated in Section 8.1, we obtain the following corollary:
Corollary 8.17. Build@QT along with Search@QR satisfies monotonic searchability.

Finally, we show an upper bound on the number of hops for any search message, if
we assume that the Euclidean distance ||uv||2 between any pair (u,v) € V' is at least
%. We start with the following lemma:

Lemma 8.18. Let (z,y) € [0,1]? and suppose a SearchQT(u, (z,y)) request reached
node v after k € No hops, k even. Then the maximum FEuclidean distance from vy
to the position (x,y) is at most 1/2=1D/2,

Proof. Let k € Ny be the number of hops until SearchQT (u, (x,y)) terminates.
Assume that k is even. Let (uz,u,) be the coordinates of u. Initially the Euclidean
distance between (u,u,) and (z,y) is maximized if both coordinates lie on the
corners of P such that the straight line between (u,,u,) and (x,y) is the diagonal
going through P.

Note that after two hops we reduce the area in which the target is located by a

factor i. Using the Pythagorean theorem to compute the length of the diagonal of

113

Chapter 8. Self-Stabilizing Quadtrees

the quad, we compute the maximum distance between the node v and (z,y), to be

equal to /(1/V2R)2 + (1/V2F)2 = 1/V/2F T = 1/20-1)/2, -

We are now ready to prove the following theorem:

Theorem 8.19. If the Fuclidean distance ||uv||2 between any pair (u,v) € V is at
least 1/n, then any search message is delegated at most O(logn) times.

Proof. Assume that a SearchQT (u, (z,y)) message is at node vy, after k hops. It is
easy to see that after each delegation, the remaining area in which we have to search
for (z,y) is halved. We know by Lemma 8.18 that the maximum Euclidean distance
from vy to (z,y) within k hops is at most 1/25~1/2 when k is even. Set k = 4logn.
Then the maximum Kuclidean distance is at most

= s -o(3) <o ().

9(4logn—1)/2 ~ 92logn—1/2 92-logn n2 n

which implies that the remaining area in which we have to search does not contain a
node other than vy, so the routing protocol terminates. As k € O(logn), the theorem
follows. O

8.6. Self-Stabilizing Octrees

In this section we discuss how to extend our protocols to high-dimensional settings
in order to support self-stabilizing octrees with geographic monotonic searchability.
Fix a dimension d > 2: i.e., we are given a d-dimensional hypercube P of unit side
length. Then each node v has coordinates (u1,...,uq) € [0, 1]%.

We generalize the QuadDivision procedure as follows: Instead of alternating between
two different cuts (vertical and horizontal cuts), we alternate between d different cuts
now. Thus, for all i € {1,...,d} we define an i-cut on the (sub-)cube P whose side
length in dimension ¢ is equal to I as follows. We assign all points p € P whose i-th
coordinate is smaller than %I to the subcube P;, and the rest of the points to the
subcube P5. For an example consider Figure 8.4 for a sequence of different cuts on a
3-dimensional hypercube. By this, the QuadDivision algorithm remains well-defined.

Next, consider the area tree 1" that represents the output of the new QuadDivision
algorithm. 7" again is an area tree. However, the levels of the area tree now alternate
between d different cuts instead of only 2. Thus, we obtain the total ordering <
in the same manner as before, namely by performing a DFS on T, always going
to the left child first. This already implies that BuildList is also well-defined in the
d-dimensional setting.

Last but not least, it is easy to see that one can generalize the definition for
A(u) and Q(u) (Definition 8.6) to dimension d, since the area tree T still is well-
defined. This implies that we have a well-defined legitimate state according to the
generalization of Definition 8.8 and thus the BuildQT protocol along with the routing
protocol SearchQT is well-defined such that all claims made in the analysis can also
be generalized to d-dimensional settings.

The following corollary summarizes the above discussion:

114

8.6. Self-Stabilizing Octrees

(a) (b) (c) (d)

Figure 8.4.: Illustration of the 3-dimensional equivalent of QuadDivision. The se-
quence shows a 1-cut ((a) — (b)), followed by a 2-cut ((b) — (c¢)) and
a 3-cut ((¢) — (d)). The dashed lines indicate how the next cut in the
sequence is applied to the (sub-)cube.

Corollary 8.20. There exists a self-stabilizing protocol for a (d-dimensional) octree
along with a routing algorithm R that satisfies geometrical monotonic searchability.

It is also easy to see that the generalized version of SearchQT forwards a message
at most O(logn) times until termination in case the Euclidean distance (in the
d-dimensional space, i.e., for points x = (z1,...,24) € [0,1]% and y = (y1,...,5q) €
[0,1)¢ we define ||zy|lq = /2L, (zi — y;)2) between any two nodes u,v € V is at
least 1/n. Finally, we want to emphasize that the variables for each node v € V' do
not change in our protocol, when applied to the higher-dimensional case.

115

CHAPTER

Self-Stabilizing Publish-Subscribe Systems

The publish-subscribe paradigm ([Eug+03; Fab+01]) is a very popular paradigm for
the targeted dissemination of information. It allows clients to subscribe to certain
topics or contents so that they will only receive information that matches their
interests. In the traditional client-server approach the dissemination of information
is handled by a server (sometimes also called broker), which has the benefit that the
publishers are decoupled from the subscribers. The publisher does not have to know
the relevant subscribers and the publisher and subscribers do not have to be online at
the same time. However, in this case the availability of the publish-subscribe system
critically depends on the availability of the server, and the server has to be powerful
enough to handle the dissemination of the publish requests.

An alternative approach is to use a peer-to-peer system. However, if no commonly
known gateway is available, the system cannot recover from overlay network partitions.
In practice, peer-to-peer systems usually have a commonly known gateway since
otherwise new peers may not be able to join the system through a peer that is
currently in the system (and can therefore process the join request). In our supervised
overlay network approach we assume that there is a commonly known gateway, called
supervisor. The supervisor handles subscribe and unsubscribe requests but is not
involved in the dissemination of publish requests, which are treated by the subscribers
in a peer-to-peer manner. We are interested in realizing a topic-based supervised
publish-subscribe system, which means that peers can subscribe to certain topics
(that are usually relatively broad and predefined by the supervisor).

Topic-based publish-subscribe systems have many important applications. Apart
from providing a targeted news service, they can be used for tasks such as to realize
a group communication service [FLS01], which is considered an important building
block for many other applications ranging from chat groups and collaborative working
groups to online market places (where clients publish service requests), distributed
file systems and transaction systems. To ensure the reliable dissemination of publish
requests in a topic-based publish-subscribe system, we present a self-stabilizing
supervised publish-subscribe system. This ensures that for any initial state (including
overlay network partitions) eventually a legitimate state will be reached in which all
subscribers of a topic know about all publish requests that have been issued for that
topic. The overlay network that is formed by the subscribers in a legitimate state
is a supervised skip ring, i.e., a ring with additional shortcuts. The skip ring has
a diameter of O(logn). We also show that the overhead for the supervisor in our
system is very low. In fact, the message overhead of the supervisor is just a constant
for subscribe and unsubscribe operations, and the supervisor has a low maintenance
overhead in a legitimate state.

Underlying Publication. This chapter is based on the following publication:

117

Chapter 9. Self-Stabilizing Publish-Subscribe Systems

M. Feldmann, C. Kolb, C. Scheideler, and T. Strothmann. “Self-
Stabilizing Supervised Publish-Subscribe Systems”. In: Proceed-
ings of the 2018 IEEFE International Parallel and Distributed
Processing Symposium (IPDPS), 2018, cf. [Fel+18].

Outline of This Chapter. We first introduce the skip ring topology along with
the notion of the supervisor in Section 9.1. In Section 9.2 we give an overview
on some related work in addition to the related work in Section 6.3. We formally
describe our protocol BuildSR for a self-stabilizing supervised skip ring in Section 9.3.
Finally, we show how to use BuildSR in order to construct a self-stabilizing supervised
publish-subscribe system (Section 9.4).

9.1. Supervised Skip Rings

In this section we formally introduce the skip ring topology and the supervisor. We
start with the skip ring topology.
We first define labels that we will assign to nodes in the skip ring:

Definition 9.1. Let z € Ny be some number with unique binary representation
(xgq...mo) € {0,1}* (where x4 = 1), ie., v = Z?:o 2'z;. Define the mapping
l:No— {0,1}* such that

l(.ﬁ) = (l‘d_l ce xo.l‘d).
The label x € Ny is then defined by l(x). Denote by |l(x)| the number of bits of I(x).

Intuitively, | takes the leading bit x4 of the binary string (z4...x0) representing
the input value x and moves x4 to the unit position, resulting in the binary string
(4—1-..xoxq). Note that the leading bit x4_1 of I(z) is allowed to be 0 and that [is
invertible. We map labels to values in [0,1) as follows:

Definition 9.2. Let v € Ny and let y = (y1...yq) = l(z). Define the real-valued
representation of [(x) by the mapping r : {0,1}* — [0,1) with

d

y

r(y) =2 5
=1

By the mapping r we obtain a total ordering < of all labels; i.e., for two labels
I(x),l(y) € {0,1}* it holds that I(z) < I(y) if and only if r(I(x)) < r(I(y)). We use <
in the following to define the skip ring:

Definition 9.3 (Skip Ring). A skip ring SR(n) is a graph G = (V, Er U Eg) with
n nodes. G is defined as follows:

(a) Each node w € V has a unique label denoted by label(u) € {0,1}* with
I~ (label(u)) < n.

(b) (u,v) € Er < (u,v) are consecutive in the ordering induced by < when viewing
the [0, 1)-interval as a ring. Denote the edges in ER as ring edges. For a node
u € V denote v as u’s left ring neighbor if (u,v) € Er and either v < u or
label(u) = 0. Otherwise, if (u,v) € ERr then v is u’s right ring neighbor.

118

9.1. Supervised Skip Rings

(0,0,0)

(15, 1111, 15/16) (8, 0001, 1/16)

(7,111, 7/8 (4,001, 1/8)

(9, 0011, 3/16)

(2, 01,1/4)

(13, 1011, 11/16) (10, 0101, 5/16)

(6,101, 5/8) (5,011, 3/8)

(12, 1001, 9/16) (11, 0111, 7/16)

(1,1,1/2)

Figure 9.1.: A skip ring consisting of 16 nodes. The triples are of the form
(x,l(z),r((x))), where z € {0,...,15}, I(x) is the corresponding la-
bel and r(I(x)) is the real valued version of the label. Black edges are
ring edges (k = 4), green edges are shortcuts for £k = 3, red edges for
level k = 2 and the blue edge is the shortcut for & = 1.

(¢) (u,v) € Eg < (u,v) is part of the sorted ring w.r.t. node labels over all nodes
in K;, i€ {1,...,[logn] — 1}, where K; = {w € V| |label(w)| < i}. Denote
(u,v) € Eg as a shortcut on level 4, if i = max{|label(u)|, |label(v)|}.

The intuition behind Er and Fg is that we want all nodes with labels of length at
most k to form a (bidirected) sorted ring for all k € {1,..., [logn|}. For k = [logn]
these edges are stored in Eg, for k < [logn]| they are stored in Eg. Due to the way
we defined the mapping it holds that for all z € {2¢,... 291 —1} the values r(I(z))
are uniformly spread in between old values r(I(y)) with y € {0,...,2¢ — 1}. It is
easy to see that the skip ring SR(n) has the diameter [logn]. Figure 9.1 illustrates
SR(16).

The following lemma follows from the definition of SR(n):

Lemma 9.4 (Node Degree in SR(n)). In a skip ring SR(n) the node degree is
O(logn) in the worst case and constant on average.

Proof. For convenience, we define k = |label(u)| for a node u € V. Node u has 2
shortcuts to nodes with a label of length k" for each ¥’ > k. Having n nodes in the
system, we know that &’ is upper bounded by log(n), which sums up the degree of u
to be 2- (logn —k+1) = O(logn).

Next, we want to compute the average degree in SR(n). We count the overall
number of edges in SR(n). Let f(k) denote the number of nodes with a label of

119

Chapter 9. Self-Stabilizing Publish-Subscribe Systems

length k. We have

2 k=1
f(k)_{z’f—l k> 1.

Recall that the maximum length of a label is equal to log(n) for SR(n). Combining
this fact with the above formula for the node degree, we get the following result for
the number of edges in |[Er U Eg|:

log(n)
|[ErU Es| = Zf 2(log(n) — k + 1))

log(n)
= 4log(n) + Z2k L(2(log(n) — k 4+ 1))

log(n)
= 2log(n) + Z 28 (log(n) — k + 1)

log(n) log(n log(n)
= 2log(n) + Z 2klog Z 2k k + Z ok
k=1
10g()
= 2log(n)+ (2n — 2) - log(n Z 26k + (2n — 2)
k=1
= 2log(n)+ (2n — 2) - log(n) — (2nlog(n) — 2n + 2) + (2n — 2)

= 4n—4

Dividing this value by n yields an upper bound of 4 = ©(1) for the average node
degree. O

As we will see, our protocols work in such a way that the node degree of a joining
node u monotonically increases over the time u is part of the system; i.e., the longer
a node is a participant of the system, the more shortcuts it has. This makes sense
from a practical point of view, since older and thus more reliable nodes hold more
connectivity responsibility in the form of more shortcuts. A node u that joins the
system will be assigned a label such that its initial connections consist of two ring
edges only. As further nodes join the system, u will receive new ring edges and
transform its old ring edges into shortcuts, thus increasing its degree.

In order to construct a self-stabilizing protocol for a skip ring, we partially rely on
the help of a gateway that is commonly known among all nodes. We represent such
a gateway as a unique node, called the supervisor. The supervisor s is known to each
node by default: i.e., we assume that each node u € V has a hard-coded edge (u, s)
in any state of the system. We are now ready to define the topology that should be
formed by nodes in legitimate states:

Definition 9.5 (Supervised Skip Ring). A supervised skip ring is a graph G =
(VU{s}, ErUEsU Egyp) with n = |V| nodes and a supervisor node s. G has the
following properties:

120

9.2. Related Work

(a) The subgraph G' = (V,Er U Eg) is a skip ring SR(n), where n = |V|.
(b) Egsyp consists of edges (u,s) and (s,u) for each node u € V.

Note that while the edges from nodes to the supervisor are hard-coded and thus
existent in every state of the system, the edges from the supervisor to the nodes are
not hard-coded. This means that the supervisor only knows a subset of the nodes in
V in an illegitimate state. Obviously, the bounds on the worst-case and average-case
degree from Lemma 9.4 still hold for nodes in V' in a supervised overlay network,
since each node only has one additional outgoing edge. Having the supervisor store
information about all nodes in the skip ring is acceptable for our setting, since storing
information of multiple millions of nodes takes only a few Megabytes of storage for
the supervisor. In addition, we are going to prove that the supervisor only receives
one message in legitimate states after all nodes have called their Timeout action
exactly once.

0.2. Related Work

We give an overview on related work specifically relevant to supervised overlay net-
works, self-stabilizing publish-subscribe systems and group communication services.

Supervised Overlay Networks. Supervised overlay network for specific topologies
have been proposed in [PRU03; RS04a; RS04b]. In [PRU03] the nodes are arranged
in a random-looking graph that guarantees connectivity, low diameter and low degree
with high probability. A supervised tree called SPON is presented in [RS04b]. Such a
tree is used to efficiently broadcast or multicast messages to a dynamically changing
group of nodes. In [RS04a] a distributed hash table (DHT) based on a supervised
De Bruijn graph is presented. The DHT distributes objects uniformly among all
nodes and is designed to be useful in grid computing. A general framework for
constructing a supervised peer-to-peer system has been introduced by Kothapalli
and Scheideler [KS05]. Here the supervisor only has to store a constant amount
of information about the system at any time and only has to send out a constant
number of messages to integrate or remove a node. While all of the above mentioned
systems have their advantages, none of them is self-stabilizing.

Self-Stabilizing Publish-Subscribe Systems. In the literature there are publish-
subscribe systems that are self-stabilizing. For example, in [Mith+05] the authors
present different content-based routing algorithms in a self-stabilizing (acyclic) broker
overlay network that clients can publish messages to. Their main idea is a leasing
mechanism for routing tables such that it is guaranteed that once a client subscribes to
a topic there is a point in time such that every publication issued thereafter is delivered
to the newly subscribed client (i.e., there are no guarantees for older publications).
While the authors focus on the routing tables and take the overlay network as a given
ingredient, our work focuses on constructing a self-stabilizing supervised overlay
network and then using it to obtain a self-stabilizing publish-subscribe system.

A self-stabilizing publish-subscribe system for wireless ad-hoc networks is proposed
in [ST18], which builds upon the work of [ST16b; STM15]. Similarly to our work,
the authors arrange nodes in a cycle with shortcuts and present a routing algorithm

121

Chapter 9. Self-Stabilizing Publish-Subscribe Systems

that makes use of these shortcuts to deliver new publications for topics to subscribers
only after O(n) steps. Subscribe and unsubscribe requests are processed by updating
the routing table at nodes. Both systems described above differ from our approach,
as they solely focus on the routing scheme and updates of the routing tables, while
we focus on updating the topology upon subscribe/unsubscribe requests. Our system
is also able to deliver publications in O(logn) steps if we use flooding, since we use
a network with logarithmic diameter. Furthermore, we are also able to deliver all
publications of a domain to a new subscriber after only a constant number of rounds.

Group Communication Services. There is a close relationship between group com-
munication services (e.g., [FLS01; Ami+05]) and publish-subscribe systems. Nodes
are ordered in groups in both paradigms and group-messages are only distributed
among all members of some group. Self-stabilizing group communication services
are proposed in [DSWO06] for ad-hoc networks and in [DS04] for directed networks.
However, there are some key differences: In group communication services, partic-
ipants have to agree on group membership views. This results in a high memory
overhead for each member of a group, as nodes in a group technically form a clique.
On the other hand, subscribers of topics in publish-subscribe systems are in general
not interested in any other members of the topic. For our approach, this results in a
logarithmic worst-case and a constant average case degree for subscribers.

9.3. Self-Stabilizing Supervised Skip Rings

In this section we describe and analyze our self-stabilizing protocol for a supervised
skip ring, called BuildSR. BuildSR consists of a protocol that is executed by the
supervisor s (the supervisor protocol) and a protocol that is executed by each node
u € V (the subscriber protocol).

9.3.1. Supervisor Protocol

The first part of the BuildSR protocol is executed by the supervisor. The supervisor
maintains a database that is defined as follows:

Definition 9.6 (Supervisor Database). The supervisor s maintains a database
s.DB C {0,1}* x V' containing labels corresponding to nodes.

The task for the supervisor is to periodically inform each node in the skip ring
of its correct label and its ring neighbors. We call this information of a node the
configuration.

Definition 9.7 (Node Configuration). Let G = (V U {s}, Er U Eg U Egyp) be a
supervised skip ring and let w € V. The configuration C(u) for u is given by the
database entries

(label(v),v), (label(u),u), (label(w),w) € s.DB,

where v € V' is u’s left neighbor and w € V' is u’s right neighbor in the ring formed
by edges ER.

122

9.3. Self-Stabilizing Supervised Skip Rings

The supervisor protocol (Algorithm 18) consists of a Timeout action that is
periodically executed by the supervisor s, an action GetConfiguration with parameter
u € V that lets s send C(u) to u according to s.DB and an action Subscribe with
parameter u € V that introduces u to s.

Algorithm 18 The supervisor protocol, executed by the supervisor s

1: Timeout — true

2: Check integrity of s.DB

3: Pick (label,u) € s.DB in a round-robin fashion
4: GetConfiguration(u)

. GetConfiguration(u)

Check integrity of s.DB

if 3(label(v),v) € s.DB : v = u then
Let C'(u) be u’s configuration according to s.DB
v <— SetData(C'(u))

10: else

11: u < SetData(_L)

12: Subscribe(u)

13: Check integrity of s.DB

14: if V(label(v),v) € s.DB : v # v then
15: s.DB < s.DBU (I(u),u)

16: GetConfiguration(u)

In Timeout, the supervisor s chooses a pair (label(u),u) € s.DB in a round-robin
fashion and then locally calls GetConfiguration for u. Picking a pair in round-robin
fashion guarantees that after the supervisor has been activated |s.DB| times, each
pair that is contained in the database has been picked exactly once.

In GetConfiguration, s first checks if its database contains a tuple that contains
the node u. If this is the case, s can locally compute C(u) using s.DB and send a
message to u containing C'(u). This results in u executing the action SetData, which
will be explained in the subscriber protocol. If s cannot find « in its database, it
replies to u by calling SetData with the parameter L on wu.

If a node u introduces itself to s by calling Subscribe(u) on s, then, in case there is
no entry in s.DB that contains u, s generates a new label I(u) for u and adds the
entry (I(u),u) to s.DB. In any case, s replies to u by sending w its configuration
C(u) via GetConfiguration(u).

In addition to the above actions, the supervisor has to check the integrity of its
database: i.e., s has to check that each node u has a correct label associated to it
according to Definition 9.3. Also, s has to check that each node u is only present
in exactly one tuple (label(u),w) in s.DB and that all labels are unique. If there
are inconsistencies as described above detected by s, then s can easily recompute
its database locally such that it is consistent afterwards without removing node
references. We therefore assume that the s.DB is always in a consistent state from
this point on.

123

Chapter 9. Self-Stabilizing Publish-Subscribe Systems

9.3.2. Subscriber Protocol

In this section we discuss the part of the BuildSR protocol that is executed by each
node u € V. First, we present the variables needed for a node. Note that we
intentionally omit the reference to the supervisor s here, since links to s are assumed
to be hard-coded.

Definition 9.8. For the BuildSR protocol, each node uw € V' maintains the following
variables:

(a) w.label € {0,1}* U{L}: u’s unique label or L if u has not received a label yet.
(b) w.left,u.right € ({0,1}* x V)U{L}: u’s left and right ring neighbor.
(c) w.shortcuts C {0,1}* x V': u’s shortcut connections.

Using the variables w.left and u.right, all nodes u € V' aim to form a sorted ring in a
self-stabilizing manner. This can be done via the BuildRing protocol from Section 6.4,
where the ordering < is defined via the real-valued representation of the node labels
(see Definition 9.2). Note that in order for BuildRing to work here, each node w that
introduces itself to some node v via the Linearize action only does so if u.label # 1.
Node u then has to send its node reference and its current label u.label to v, as
otherwise v could not locally compare its own label v.label to u.label. Also, upon
executing Linearize for the parameters u and wu.label, v first checks if u is already
stored in either v.left or v.right. If that is the case, say v.left = (label,, u), then v
replaces label,, by u.label first in order to keep its knowledge of u’s label up to date.

Unfortunately, it cannot be guaranteed in initial states that each node w already
has a correct label assigned to u.label. Therefore, we describe a mechanism in the first
part of the subscriber protocol that eventually lets each node receive its correct label
from the supervisor. This automatically implies that the supervisor has references
to all nodes stored in its database by this time. The second part of the subscriber
protocol then deals with establishing the necessary shortcuts for each node u. The
pseudocode for the subscriber protocol is given in Algorithm 19.

Receiving Correct Labels. For now, we focus on the ring edges only. Our first goal
is to guarantee that every node u eventually stores its correct label in u.label.

Recall that we have periodic communication from the supervisor to the nodes: i.e.,
the supervisor periodically sends out the configurations to all nodes u € V stored
in its database. This action alone does not suffice to make sure that every node
eventually stores its correct label, since in initial states the supervisor’s database
may be empty and node labels may store arbitrary values. Thus, we also need
periodic communication from nodes to the supervisor. The challenge here is to not
overload the supervisor with requests in legitimate states of the system. Each node
u periodically executes the following actions:

(i) If u.label =1, then u asks the supervisor to integrate u into the database and
send u its correct configuration by calling Subscribe(u).

(ii) When u receives its configuration C(u) from the supervisor, it does the following:
If C(u) =L, then u got notified by the supervisor that u is not contained in

124

9.3. Self-Stabilizing Supervised Skip Rings

Algorithm 19 The BuildSR protocol, executed by nodes u € V'

1: Timeout — true

2 if u.label =1 then

3 s < Subscribe(u)

4 else if u’s label is minimal among all of u’s neighbors then

5: s < GetConfiguration(u)

6 if 3(label,,v), (labely,, w) € u.shortcuts on level k = |u.label| then
7 v < IntroduceShortcut(labely,, w)

8 w < IntroduceShortcut(label,, v)

9: SetData(C'(u))

10: if C(u) =1 then

11: u.label <L

12: else

13: Let C(u) = ((label(v),v), (label(u),w), (label(w),w))
14: u.label < label(u)

15: if w.left #L Au.left # (label(v),v) then

16: s < GetConfiguration(u.left)

17: if w.right #L Au.right # (label(w),w) then
18: s < GetConfiguration(u.right)

19: u.left < (label(v),v)

20: w.right < (label(w),w)

21: IntroduceShortcut(label,, v)
22: if 3(labely,, w) € u.shortcuts : 1" =1 then

23: if w # v then

24: w.shortcuts <— u.shortcuts \ {(labely,, w)}
25: Linearize((label,,, w))

26: w.shortcuts <— u.shortcuts U {(label,,v)}

27: else

28: Linearize((label,, v))

the database. Consequently, u resets its label to L. Otherwise v updates its
label and checks if the left and right ring neighbors indicated by C'(u) match
its variables u.left and wu.right. If, for example, u.left does not match the
left ring neighbor in C'(u), u requests the supervisor to send u.left its correct
configuration and replaces u.left by the left ring neighbor indicated by C(u).

(iii) u periodically requests its configuration from the supervisor if it determines,
only on the basis of its local information, that its label is minimal.

As it will turn out in the analysis, these actions together with the extension for
the BuildRing protocol described above suffice to guarantee that eventually each node
u receives its correct label and gets stored in the supervisor’s database.

Establishing Shortcut Connections. In this section we describe how the nodes
establish and maintain shortcut edges. Recall that shortcuts are on levels k =

125

Chapter 9. Self-Stabilizing Publish-Subscribe Systems

{1,...,[logn]} (Definition 9.3), where k = [logn] represents the ring edges that
are already established. A node u with a label of length k = |u.label| has exactly 2
shortcuts on each level in k, ..., [logn] in a legitimate state.

We first describe how a node is able to compute all its shortcut labels locally, based
only on the information of its left and right ring neighbors. The following approach
only computes the respective labels in [0, 1) that a node should have shortcuts to,
but not the nodes that are associated with these labels. The idea is the following.
In general, a node u € V has shortcuts only to other nodes that lie on the same
semicircle as wu, i.e., either the semicircle of nodes within the interval [0,1/2] or the
semicircle of nodes within the interval [1/2, 1] (where the 1 is represented by the node
with the label 0). Consider a subscriber u with r(u.label) € [0,1) and its two ring
neighbors v, w such that u.left = (label,,v) and w.right = (labely,, w). If u recognizes
that |u.label| < |label,|, then u knows that it has to have a shortcut with the label [
and 7(l) = 2 - r(label,) — r(u.label), because node v was previously inserted between
the nodes with labels [and w.label. After this, u can apply this method recursively:
i.e., it checks for the computed label [if |u.label| < |I| until it reaches a label of less
or equal length. This same procedure is applied analogously for w.right.

The following example illustrates our approach:

Example 9.9. Recall the skip ring from Figure 9.1. Suppose we want to compute
all shortcut labels for the node with (real-valued) label i, only on the basis of the
labels of its direct ring neighbors, which are 1% and 1%. We know that the label 13—6
has the length 4, which is greater than the length of label i, which is 2. Thus, we
get a shortcut si for i with the label 2 - % — i = %. The label % has the length
3, which s still greater than 2. Hence, we compute a shortcut sy with the label
2. % — % = 0. Finally, we know that the length of label 0 is 1, which is smaller than
2, which terminates the algorithm. The computation of shortcut labels to % and %

works analogously.

We are now ready to describe the self-stabilizing protocol that establishes and
maintains shortcuts for all nodes. Consider a node u with the label length |u.label| = k.
On Timeout, u checks if u.shortcuts contains nodes (label,,v), (labely,, w) on level k.
If that is the case, then u introduces v to w by sending a message to w containing
the reference of v as well as v’s label label,. Also, u introduces w to v in the same
manner. Note that for |u.label| = [logn], u has to consider its two ring neighbors
instead of u.shortcuts. On receipt of such an introduction message consisting of the
pair (labely,,w), v checks if it has a shortcut (label,,w’) with label,, = label,,. If
that is the case, then v replaces the existing node reference w’ by w and, if w’ # w,
forwards the reference of w’ to the sorted ring via the BuildRing protocol. This way
it is guaranteed that shortcuts are established in a bottom-up fashion.

9.3.3. Analysis

In this section we show that BuildSR is self-stabilizing according to Definition 9.3.
First of all, note that eventually all corrupted messages that may exist in an initial

state are received and processed. Furthermore, a corrupted message cannot trigger

an infinite chain of corrupted messages:, i.e., eventually the false information is either

126

9.3. Self-Stabilizing Supervised Skip Rings

corrected or received but not spread further anymore. We assume this fact for the
rest of the proof.

We start by proving that eventually the supervisor has all nodes contained in its
database. For this, call a node u € V recorded if there exists (label(u), u) € s.database.

Lemma 9.10 (Supervisor Convergence). Eventually all nodes w € V' are recorded.

Proof. Note that the supervisor s does not remove nodes from its (non-corrupted)
database, as it is able to locally restore the database from an initially corrupted state
without dropping any node references.

Let w € V be some node that is not yet recorded. For now, assume that u.label =1.
Then u requests its configuration from s by calling Subscribe on s in its Timeout
action and becomes recorded afterwards.

It remains to consider the general case where we are given a connected component
C C V of nodes, where each node has a label not equal to L. Since we run the
BuildRing protocol, the nodes in C eventually form a sorted ring according to their
labels. It follows that C' eventually contains at least one node that is recorded, i.e.,
the node with minimal label. As long as the supervisor is able to introduce new
recorded nodes to nodes already recorded in C, C’s size grows. But since the number
of nodes is finite, C' will eventually become static. We show that for such a static
connected component C', eventually all nodes in C' will become recorded. Consider
the potential function

®(C) = [{u € C | u is non-recorded}|.

We show that eventually, ®(C) = 0. Since the supervisor does not drop connections
to nodes, ®(C) is never increasing. Let ®(C) = ¢ for an arbitrary integer ¢ > 0.
Then all nodes in C eventually form a sorted ring due to BuildRing. This implies
that there exists a ring edge (u,v) from a node u that is already recorded to a
subscriber v that is not yet recorded. W.l.o.g. let w.right = v. Since v is not recorded,
u’s configuration according to s.database has to contain a different right neighbor
than v. Let w € C,w # v be this neighbor: i.e., as the supervisor sends u its
correct configuration, it tells u that w should be its right ring neighbor. But then
it has to hold label(u) < label(v) < label(w). This implies that upon receiving its
configuration from the supervisor, u requests the configuration for v at the supervisor,
leading to v changing its label to L and thus getting recorded afterwards due to the
above argumentation. Hence, ®(C') is reduced by one and is therefore monotonically
decreasing. O

Having the supervisor’s database converged, we know that the ring of all nodes
eventually converges:

Lemma 9.11 (Ring Convergence). Once each node uw € V' has been recorded, the
ring induced by edges Er eventually converges.

Proof. The supervisor periodically sends the correct configuration to each node u € V/
in a round-robin fashion. This implies that after n calls of the supervisor’s Timeout
action, each node has stored its correct label. Note that this does not necessarily
include the correct ring neighbors right away: A node u € V may have received

127

Chapter 9. Self-Stabilizing Publish-Subscribe Systems

its configuration C'(u) = (predy, label,, succ,) from the supervisor, but the node
v stored via pred, or succ,, respectively, may not. This results in u modifying
u.left = pred, via BuildRing, because v does not have received its correct label yet.
Since now all labels are correct, by the time each node u has received its configuration
from the supervisor again, u does not change its list neighbors anymore. O

Finally, we need to prove the convergence of the shortcuts for all subscribers:

Lemma 9.12 (Shortcut Convergence). Once each node uw € V' has been recorded and
the sorted ring has converged, all edges in Eg will eventually be established.

Proof. We perform an induction over the levels i = [logn],..., 1 of shortcuts and
show that all shortcuts on each level are eventually established. The induction base
(i = [logn]) trivially holds, as shortcuts on level [logn] are ring edges in Er. For
the induction hypothesis, assume that all shortcuts on level i have already been
established, i.e., all nodes in K; = {v € V | |label(v)| < i} already form a sorted
ring (recall Definition 9.3). In the induction step we show that all shortcuts on level
i — 1 are eventually established. It is easy to see that K; 1 C K; holds. Denote
the sorted ring over nodes in K; as R;. Observe that each node u € K; \ K;_1 has
two neighbors v, w in R; with v,w € K;_;. Thus, by definition of our protocol, u
eventually introduces v to w and vice versa via the action IntroduceShortcut in its
Timeout action. This implies that the shortcuts (v, w) and (w,v) are established.
The above argumentation implies that the ring R;_; is established eventually, which
concludes the induction. O

Having shown the convergence of the supervisor (Lemma 9.10), the sorted ring
for all nodes (Lemma 9.11) and the convergence of the shortcuts for all nodes
(Lemma 9.12), we obtain the following lemma:

Lemma 9.13 (Convergence). Given any initially weakly connected graph G =
(VU{s}, ErUEsU Egyp), BuildSR transforms G into a supervised skip ring.

It remains to show the closure property for BuildSR.

Lemma 9.14 (Closure). If the explicit edges in G = (V U{s}, Er U Eg U Egyp)
already form a supervised skip ring, then they are preserved at any point in time if
no nodes join or leave the system.

Proof. We need to show closure for the supervisor’s database as well as for the skip
ring. As already argued, the supervisor does not drop node references stored in its
database, so closure for the supervisor follows trivially.

Messages that are generated by the BuildRing protocol do not modify the edge
set ER, since closure of BuildRing (Theorem 6.14) holds. Observe that introduction
messages for shortcuts do not modify the variables w.left and u.right for a node
u € V. Implicit edges generated by configurations sent out by the supervisor s are
just merged with the existing explicit edges at the receiving node u, since u already
stores the correct configuration.

Note that shortcuts are only modified via the action IntroduceShortcut. Intro-
duceShortcut is only called to introduce a node v to some shortcut w, which already

128

9.4. Self-Stabilizing Publish-Subscribe Systems

exists, since no node generates an introduction message for two nodes that are not
allowed to be connected by a shortcut.]

By combining Lemmas 9.13 and 9.14, we get the main result of this section:
Theorem 9.15. BuildSR is self-stabilizing.

One can easily conclude the following theorem bounding the number of messages
the supervisor receives in legitimate states once each node has executed its Timeout
action exactly once. This means that the load on the supervisor is low in legitimate
states.

Theorem 9.16. Consider a supervised skip ring G = (V U{s}, ErUEs U Egyp) in
a legitimate state. If each node w € V executes its Timeout action exactly once, the
supervisor receives one GetConfiguration message.

Proof. Only the node u with a minimal label sends a GetConfiguration message to
the supervisor, see Algorithm 19.]

9.4. Self-Stabilizing Publish-Subscribe Systems

In this section we show how to use the BuildSR protocol as a (topic-based) self-
stabilizing publish-subscribe system. Let 7 C N be a set of integers, where each
t € T represents a topic.

A node u is allowed to issue the following requests to the supervisor:

o Subscribe(u, t): u subscribes to the topic .
» Unsubscribe(u, t): u unsubscribes from the topic ¢.

A node u that is subscribed to the topic t is called a subscriber for t.
Additionally v may publish a new message via the following request:

o Publish(m, t): Delivers the message m € {0,1}* to all subscribers for ¢.

Note that we do not need the supervisor to be involved in the execution of Publish
requests.

To construct a publish-subscribe system out of our self-stabilizing supervised overlay
network, we basically run a BuildSR protocol for each available topic t € T at the
supervisor. Thus, the supervisor has to extend its database to be in {0,1}* x T x V:
i.e, each node u has a separate label for each topic it is subscribed to. Each node u
also runs a separate BuildSR protocol for each topic it is subscribed to. Once a node
wants to subscribe to some topic t € T, it starts running a new BuildSR protocol for
topic t. Upon unsubscribing, the node removes the corresponding BuildSR protocol
and ignores all incoming messages that correspond to the topic ¢ once it gets the
permission from the supervisor to do so. The above extensions can be implemented
easily by having each message generated in the BuildSR protocol for the topic ¢t now
contain ¢ as a parameter.

129

Chapter 9. Self-Stabilizing Publish-Subscribe Systems

9.4.1. Protocol Description

In this section, we describe the protocols for the requests Subscribe, Unsubscribe and
Publish. Note that we present two separate protocols for Publish. One is simple,
fast and follow a basic flooding approach. The other one is self-stabilizing: i.e., it
guarantees that eventually all subscribers store all publications for the topics they
subscribed to.

Subscribe

Upon receiving a Subscribe(u, t) request, the supervisor basically behaves the same
as in the Subscribe action of Algorithm 19: i.e., it locally updates its database by
adding a new entry (I;(u),t,u). Here l;(u) denotes the label of u in the skip ring of
all subscribers for the topic t. Once the supervisor s has updated its database, s
sends u its configuration in the skip ring for the topic ¢.

The way the supervisor assigns labels to subscribes of some topic has the advantage
that it spreads multiple sequential Subscribe requests through the skip ring, meaning
that a pre-existing subscriber is involved (i.e., it has to change its configuration)
only for two consecutive Subscribe requests. Afterwards, its configuration remains
untouched until the number of subscribers has doubled. This is due to the definition
of the label function [(recall Definition 9.1).

Example 9.17. Consider the skip ring SR(16) from Figure 9.1 and assume that
there are 16 new nodes that want to subscribe. Then these new nodes are inserted in
between consecutive pairs of (old) subscribers on the ring, as they receive (real-valued)

labels 1/32, 3/32, 5/32,...,31/32.

Unsubscribe

Let V; be the set of nodes that are subscribed to the topic t € 7 and denote by Cy(u)
the configuration of node uw with respect to the skip ring formed by all subscribers for
the topic t. When processing an Unsubscribe(u, t) request, the supervisor executes
the actions specified by Algorithm 20:

Algorithm 20 Unsubscribe(u, ¢) handled by the supervisor s

1. Get the entry (I;(v),t,v) with l;(v) = I;(|]V;| — 1) from s.database and replace
l¢(v) by l;(u) in s.database.

2: Remove (I;(u),t,u) from s.database.

3: Send v’s old ring neighbors, v’s new ring neighbors and v their updated configu-
ration Cy(v).

4: Send Ci(u) =1L to u.

Note that the supervisor’s database is already in a legitimate state after the
Unsubscribe request has been processed. Therefore, the supervisor does not rely on
additional information from other subscribers to maintain its database. Furthermore,
note that the supervisor only has to send out a constant amount of configurations
per Unsubscribe request: two configurations for v’s old ring neighbors, two for v’s

130

9.4. Self-Stabilizing Publish-Subscribe Systems

new ring neighbors, one for v itself and one for u. The shortcut connections are
then updated automatically by BuildSR. Once u has received its configuration it
removes the corresponding BuildSR protocol and ignores all incoming messages that
correspond to the topic t. As u is now excluded from the skip ring, it is easy to see
that u eventually does not receive any more messages regarding the topic ¢t anymore.

Publish

For simplicity we only consider the skip ring for a fixed topic t € T for the description
of the following protocol. Spreading publications among all subscribers is done
through flooding. We also present a separate protocol which is self-stabilizing in a
sense that the protocol ensures that eventually all subscribers store all publications.
The self-stabilizing protocol for publications is able to correct eventual mistakes that
occurred in the flooding approach. For storing publications at each subscriber, we
use an extended version of a Patricia trie [Mor68] to effectively determine missing
publications at subscribers.

Definition 9.18 (Trie). A trie is a search tree with node set T over the alphabet
¥ = {0,1}. Every edge is associated with a label ¢ € . Additionally, every key
x € XF that has been inserted into the trie can be reached from the root of the trie by
following the unique path of length k whose concatenated edge labels result in x.

Definition 9.19 (Patricia trie). A Patricia trie i¢s a compressed trie in which all
chains (i.e., mazimal sequences of nodes with only one child) are merged into a single
edge whose label is equal to the concatenation of the labels of the merged trie edges.

Each subscriber u € V' maintains a Patricia trie, denoted by u.T. Each leaf node
in a Patricia trie stores a publication p € {0, 1}*. Each inner node ¢t € T' of a Patricia
trie has exactly 2 child nodes denoted by ¢ (t), c2(t) € T. Furthermore, we assign a
label to each node. The label t.label € ¥F of a leaf node t € T is just equal to the
publication p stored by t. The label t.label € ¥ of an inner node ¢ € T is defined as
the longest common prefix of the labels of ¢’s child nodes (with L being the empty
word).

In addition to node labels, we assign a hash value to each node in the Patricia
trie: We use a publicly known pseudorandom collision-resistant hash function h :
{0,1}* — {0,1}* and define the hash value t.hash of a leaf node t as h(t.label). If ¢ is
an inner node, then t.hash is defined as the hash of the concatenation of the hashes
of t’s child nodes: i.e., t.hash = h(h(c1(t)) o h(ce(t))). This construction is similar
to a Merkle-Hash Tree (MHT) [Mer87]. It is easy to see that if a subscriber u € V/
stores a set of publications P, u can locally compute the corresponding Patricia trie
for P without having to communicate with other subscribers. Consider Figure 9.2
for a trie and its corresponding Patricia trie.

Flooding. We make use of the skip ring’s shortcuts to spread new publications over
the ring. Whenever a subscriber u € V' generates a new publication p, u inserts p
into u.T" and broadcasts p over the skip ring, by sending a Flood(p) message to all of
its neighbors v with (u,v) € Fr U Eg. Upon receiving such a Flood(p) message, a
subscriber v € V' checks if it has already stored p in v.T. If not, then v inserts p into

131

Chapter 9. Self-Stabilizing Publish-Subscribe Systems

0 h(h(h(Py) = h(P,))-h(P3))
OQ . Oii h(h(Py) - h(P,) U/GD\
olele
; N 00 10 \
y) 1\ h(P.) h(Ps)

h(P.) / AN

P, =000 || P,=010 P; =101 P,=000| | P,=010 P; =101

(a) Trie (b) Patricia trie

Figure 9.2.: A trie (a) and its corresponding Patricia trie (b) storing publications
Py, Py, P3. Red node labels in (b) denote the hash values for the nodes.

v.T and continues to broadcast p by forwarding the Flood message to its neighbors.
In case p is already stored in v.T', v just drops the message. Algorithm 21 states the
pseudocode for the flooding approach.

Algorithm 21 Flooding performed at node u € V

1: Flood(p)

2 if p is not stored in u.T then
3: Insert p into u.T
4

5

for all v € {u.left, u.right} U u.shortcuts
v < Flood(p)

By applying this flooding approach, it only takes [logn]| hops for a publication

to reach any subscriber in the skip ring (recall that the skip ring has the diameter
[logn]).
Self-Stabilizing Publications. We now describe a self-stabilizing protocol that
ensures that all subscribers eventually store all publications in their Patricia tries.
To ease presentation we assume that the system is in a state where each subscriber
u € V stores a subset P, C P of publications in u.T" from a set P of publications
such that (J,cy Pu = P. Our protocol guarantees that eventually each subscriber u
stores all publications in P in u.T. The protocol consists of a Timeout action that is
periodically executed and 3 actions Receive, CheckTrie and CheckAndReceive.

In Timeout u periodically sends a request CheckTrie(u, r.label, r.hash) to one of its
ring neighbors (chosen alternately) containing u itself as well as the label r.label and
the hash value r.hash of the root node r of u.T.

Upon receiving a request CheckTrie(v, l,, hy), a subscriber u € V' does the following:
It searches for the node ¢, € u.T with the label t,.label = t,.label and checks if
ty-hash = t,.hash. The following three cases may occur:

(i) ty.hash = t,.hash: Then u knows that the set of publications stored in the
subtree of u.T" with root node t, are the same as the set of publications stored

132

9.4. Self-Stabilizing Publish-Subscribe Systems

h(h(h(Pl)oh%T(Pa)oh(m)) h(h(h(P1)°h(P2))h(Ps))
(h

h(h(P,)°h(P,)) O 10_h(h(Ps)°h(P,)) h(h(P1)°h(P,))
QQ/ 100
0 1 00 10
00 10
hPd/ AP b/ \hiPd))/ \he, \h(Ps)
P,=000||P,=010(| P;=100|(| P,=101 P,=000|| P, =010 P; =100
(a) u.T (b) v.T

Figure 9.3.: Example Patricia tries u.T" and v.T' for two subscribers u,v € V.

(i)

(iii)

in the subtree of v.T" with root node t,. Consequently, u does not send any
response to v in this case.

ty-hash # t,.hash: Then the contents of the subtrees with roots t,,t, differ
in at least one publication. In order to detect the exact location, where both

Patricia tries differ, u responds to v by sending requests CheckTrie(u, ¢1(t,,).label,
c1(ty).hash) and CheckTrie(u, ca(ty).label, ca(ty,).hash) to v.

There is no node t, € u.T such that t,.label = t,.label. Then v.T contains
publications that do not exist in u.T". Node u computes the label prefix of those
missing publications as follows. First, u searches for the node ¢/, € u.T with the
label prefix t,.label and |t),.label| minimal: i.e., t] .label = t,.labelob;o. . .oby with
bi,...,br € {0,1} and |t},.label| = |t,.label|+k minimal. If such a node t], exists,
then u.T" may contain at least all publications with the label prefix ¢/,.label.
Furthermore, v knows that all publications with the label prefix ¢,.labelo (1 —b;)
are missing in u.T. Therefore, u requests v to continue checking the subtree
with root node of label ¢ .label and to deliver all publications with the label
prefix p = t,.label o (1 — by) to u. It does so by sending a CheckAndReceive(u,
t!,.label, t! .hash, p) request to v. Let P denote the set of these publications
that v has to deliver to u. Upon executing the CheckAndReceive request, v
internally calls CheckTrie(u, t,,.label, t.,.hash) and, in addition, delivers P by
sending a Publish(P) request to u. In case a node ¢/, as described above cannot
be found in u.T', u just requests v to deliver all publications with the prefix
ty.label to u, since that entire subtree is missing in u.7T.

With this approach, the only publications that are send out are those that are
missing at the receiver. Algorithm 22 states the pseudocode for our protocol.

Example 9.20. Consider two subscribers u,v € V with Patricia tries as shown in
Figure 9.3. Note that Py is missing in v.T'. We describe how v will eventually receive
Py from u when using Algorithm 22.

First assume that u sends out a CheckTrie(u, r.label, r,.hash) message to v in its
Timeout action, with r being the root node of u.T'. Node v then compares r.,.hash with
the hash r,.hash of its root node v, € v.T. Since ry.hash # ry.hash, v sends requests

133

Chapter 9. Self-Stabilizing Publish-Subscribe Systems

Algorithm 22 Self-Stabilizing publication protocol executed by subscriber u € V

1: Timeout — true

2: Choose v from {u.left,u.right} in a round-robin manner
3: Let r, be the root node of T},

4: v <— CheckTrie(u, 7y.label, r,.hash)

5: CheckTrie(v, Ly, hy)

6: Let r, € u.T be the node with r,.label = [,

7: if r, #1 then

8: if r,.hash # h, A1, is an inner node of u.T" then

9: v < CheckTrie(u, ci(ry).label, c1(ry).hash)

10: v = CheckTrie(u, ca(ry).label, ca(ry).hash)

11: else

12: Let ¢ € w.T with c.label = (I, 0bj o...0bg) minimal for which [, is a prefix
13: if ¢ #1 then

14: v <— CheckAndReceive(u, c.label, c.hash, (I, o (1 —b1)))
15: else

16: v < CheckAndReceive(u, L, 1, 1,)

17: CheckAndReceive(v, 1y, hy, p)

18: if [, #£1 Ah, #1 then

19: CheckTrie(v, 1y, hy)

20: Let P be the set of all publications with the prefix p from u.T
21: v < Publish(P)

22: Publish(P)
23: Insert all p € P that are missing in .7 into v.T

CheckTrie(v, 0, h(h(Py) o h(P2))) and CheckTrie(v, 100, h(P3))) to u, which forces u
to compare the hashes the nodes with labels 0 and 100 to the hashes h(h(Py) o h(Ps))
and h(Ps), respectively. Both comparisons result in the hashes being equal, which
ends the chain of messages at subscriber u.

Now assume that v sends out a request CheckTrie(v, r.label, r,,.hash) to u in its
Timeout action. Then u compares ry.hash with r,.hash and spots a difference. Thus,
u sends requests CheckTrie(u, 0, h(h(P1) o h(P2))) and CheckTrie(u, 10, h(h(Ps) o
h(Py)))) to v. For the node with the label O this results in both hashes being equal.
However, upon processing the request CheckTrie(u, 10, h(h(Ps3) o h(Py)))), v cannot
find a node with the label 10 in v.T', which is why v sends a request CheckAndReceive (v,
100, h(Ps)), p=101) to u. Note that the node with the label 100 is the node with a
label of minimum length for which 10 is a prefix. Thus, p= (100 (1—0)) = 101. The
CheckAndPublish request forces u to compare the hashes of its node with the label 100
to the hash h(Ps), which results in both hashes being equal. Furthermore, u sends all
publications with labels of prefix p = 101 to v, which is only the publication Py. In
this cases v recetves Py from wu, resulting in both Patricia tries being equal.

Example 9.20 shows that it makes a difference at which subscriber the initial

134

9.4. Self-Stabilizing Publish-Subscribe Systems

CheckTrie request is started. If the initial CheckTrie request is generated by u the
resulting chain of messages does not spot any differences in the Patricia tries. Once
v starts such a chain of messages the difference in the Patricia tries is spotted. Note
that our protocol guarantees that eventually both nodes v and v initiate a CheckTrie
request.

9.4.2. Analysis

We show that Algorithm 22 correctly delivers all missing publications to all subscribers
in a self-stabilizing manner.

Lemma 9.21 (Publication Convergence). Consider a supervised skip ring G =
(VU{s},ErU Es U Egyp) and assume that each subscriber uw € V' stores a subset
P, C P of publications in u.T from a set P of publications such that \J,cy Py = P.
Using Algorithm 22, the system eventually reaches a state where all subscribers u
store all publications p € P in u.T.

Proof. First note that in our protocol, no publish messages are deleted from the
Patricia tries: i.e., once a subscriber u € V has a publication p € P stored in its
Patricia trie w.T', it will never remove p from u.T. We define the potential of a pair
(u,v) of subscribers by

P(u,v) = |Pu,v\Pv‘v

where P, , is a shorthand expression for P,,UP,. Note that ¢(u,v) = ¢(v,u) does not
hold in general since, intuitively speaking, ¢(u,v) returns the number of publications
stored in w.T that are missing in v.7. The potential over all subscribers is then
defined as

o= > ¢u,v).

(u,v)EER

It is easy to see that & > 0 at any point in time and & = 0 & P, = P for all
subscribers u € V. The theorem follows if we can show that ® is monotonically
decreasing and eventually ® = 0.

We first show that ® is monotonically decreasing. By definition, ® increases
only, if there is (u,v) € Er for which ¢(u,v) increases. This implies that there is
a subscriber w € V', u # w # v that has sent u a set of publications P, C P via a
Publish request that are not yet contained in v.7". Then ¢(u,v) < |(Pyp U Py) \ Pyl
with [(Py, U Py) \ Py| = ¢(u,v) + |Py|: ie., ¢(u,v) increases by |P,|. But this also
implies that ¢(w,u) decreases by |P,|, because ¢(w,u) < |Pyy \ (Py U Py)| with
| Py \ (P U Py)| = ¢(w,u) — |Pyl, leaving ® at the same value as before. Thus,
never increases and is monotonically decreasing.

To complete the proof, we still need to show that eventually ® = 0. We do this by
showing that as long as there exists ¢(u,v) > 0 for some edge (u,v) € ER, there is a
computation after which ® has decreased.

Let ¢(u,v) > 0 for two subscribers u,v € V that are connected via a ring edge
(u,v) € Ep. Let p € w.T be the node with the minimal label length |p.label|, for
which it holds that all publications stored in the leaves of the subtree with root p are
missing in T,,. Note that p.label is a prefix for all those publications. Obviously, such

135

Chapter 9. Self-Stabilizing Publish-Subscribe Systems

a node always exists when there is one or more publication missing in v.7". Assume to
the contrary that we are in state s with ¢(u,v) > 0 and for all possible computations
¢(u,v) does not decrease. We state a computation that is performed eventually in
which u delivers all publications with the prefix p.label to v, resulting in a decrease
of ¢(u,v).

W.l.o.g. consider the node t € u.T with the label length |¢.label| minimal, for which
t.label is a prefix of p.label and for which there does not exist a node in v.T" with the
label t.label. Such a node exists, because in case there is no inner node in w.T" with
these properties, we can choose t = p. Note that we consider p.label to be a prefix
of itself. Consider the path (r, = t1,...tx = t) from the root node r, of u.T to t.
It holds that for all nodes t; with ¢ # k on this path, there exists a node ¢, € v.T
with the same label as t;, i.e., t;.label = t;.label. Otherwise our choice for ¢ would
be wrong, since then |t.label| is not minimal. As h is collision-resistant, we have for
i€ {l,...,k— 1} that t;.hash # t,.hash. We prove the following claim:

Claim 9.22. Fventually, u sends a CheckTrie(u, t.label, t.hash) request to v.

Proof. Consider the path (r, = t1,...,tx = t) from the root node r, of u.T to
t. Assume that k is odd. By definition of our protocol, u will eventually send a
CheckTrie(u, ry.label, r,.hash) request to v. As the root hashes are not equal, v
sends a CheckTrie(v, to.label, ta.hash) request back to u. Since we assumed that
ti.hash # t..hash for all i € {1,...,k — 1}, this chain continues with u sending
CheckTrie(u, t;.label, t;.hash) requests to v, j odd, until u sends a CheckTrie(u,
ti.label, ty.hash) request to v, which proves the claim. The case where k is even
works analogously when starting at subscriber v. O

Applying Claim 9.22, we now assume that v has received a CheckTrie(u, t.label,
t.hash) request from u. By our initial assumptions for ¢ it holds that there is no node
with the label ¢.label contained in v.T". Thus, v searches for a node ¢ € v.T with the
label c.label = (t.label o by o ... 0 by) of minimum length and responds to u with a
CheckAndReceive(v, c.label, c.hash, p') request. Here, p’ = t.label o (1 — by) if ¢ exists,
otherwise p’ = t.label.

Claim 9.23. p' = p.label.

Proof. For p' = t.label, we know that there does not exist a node with a label that
has t.label as a prefix. Hence, all publications with the prefix t.label are missing
at v.7, implying t.label = p.label, because we chose p.label to be of minimal length.
For p' = t.label o (1 — by), we know because of the existence of ¢ € v.T and the
non-existence of a node with the label t.label in v.T that there is no node with
the label t.label o (1 — by) stored in v.T. Thus, all publications with the prefix
t.label o (1 — by) are missing in v.7T'. Since we chose p.label to be of minimal length
we get t.label o (1 — by) = p.label. O

u responds to the CheckAndReceive(v, c.label, c.hash, p') request by sending all
publications in P, to v that have the prefix p’. Since p’ = p.label due to Claim 9.23,
¢(u,v) decreases and, since u’s communication with v did not lead to an increase of
¢(v,u) in this computation, ® decreases, so the lemma follows. O

136

9.4. Self-Stabilizing Publish-Subscribe Systems

It remains to show the convergence property.

Lemma 9.24 (Publication Closure). Consider a supervised skip ring G = (V U
{s}, ErR U Es U Egyp) and assume that all subscribers store the exact same Patricia
trie containing all publications from a set P. Then no Patricia trie is modified by a
subscriber as long as no subscriber generates a new publish request and no further
subscriber joins the system.

Proof. Once the system is in a legitimate state, the only type of request generated
via Algorithm 22 is the periodic CheckTrie request. Assume a subscriber u has sent a
request CheckTrie(u, r.label, r,.hash) to v, where r, is the root node of w.T. Then
v compares r.hash with the hash value r,.hash of the root node r, € v.T. Since all
subscribers store the exact same Patricia trie, both hashes are equal, resulting in
no further message being sent out by v as an answer to the CheckTrie request from
U. (]

Combing Lemmas 9.21 and 9.24 yields the main result of this section:

Theorem 9.25. Using Algorithm 22, all publications are delivered to all subscribers
in a self-stabilizing manner.

137

CHAPTER 1

Conclusion and Outlook of Part Il

In this chapter we conclude the second part of the thesis by summarizing our
results and giving an outlook on further open problems in the area of topological
self-stabilization.

Conclusion

In this thesis we presented self-stabilizing protocols for specific topologies: generalized
De Bruijn graphs, quadtrees (octrees) and supervised skip rings. All of these networks
are used for different purposes due to their properties. Generalized De Bruijn Graphs
are useful when one wants to quickly search for participants: i.e., search requests
are processed in a constant amount of hops in legitimate states. Quad- and octrees
provide reliability for search requests as the routing protocol SearchQT along with
the protocol BuildQT satisfy (geographic) monotonic searchability. Last but not
least, we showed how to construct a self-stabilizing publish-subscribe system using
the self-stabilizing supervised skip ring.

While all three topologies serve rather different purposes, they follow a bottom-up
approach as a common ground. All of our protocols rely on a total order < by which
the nodes are arranged in a sorted list using BuildList. Using the list edges, further
edges are established on top. We believe that such a bottom-up approach can be
used in order to come up with further interesting self-stabilizing protocols for other
topologies.

Outlook

Most of the self-stabilizing protocols are analyzed regarding their correctness, which
means that eventually a legitimate state is reached when applying the protocol. Only
few approaches in the literature are also analyzing the runtime (i.e., the worst-case
time needed to reach a legitimate state) as all of our protocols rely on BuildList, for
which a runtime of ©(n) has been shown in [ORS07]. Although one has to provide a
careful analysis, we suspect that ©(n) is also the convergence time for all three of
our protocols, as the time to build the remaining edges should not exceed O(n).
Another interesting open problem is the congestion generated by our protocols,
meaning the maximum number of messages in a node’s channel at any time. While
it is easy to see that due to the round-robin approach followed in Timeout by all of
our protocols, each node only generates a constant amount of new outgoing messages
in Timeout, it is not yet clear how many incoming messages arrive at any node
at a certain time. Ways to limit the congestion of nodes in distributed systems

139

Chapter 10. Conclusion and Outlook of Part 11

are investigated by congestion control protocols. A protocol specifically tailored to
topologically self-stabilizing systems is presented in [FGS19].

Handling joining and leaving nodes is generally not fully understood yet. While
new nodes joining the system (at random existing nodes) just introduce implicit
edges to the graph that are then handled by the self-stabilizing protocol, allowing
nodes to safely leave the system is much more complex. As already mentioned in
the related work, it has been shown that solving this problem reliably is impossible
without the use of oracles [For+14]. An interesting research question would be to ask
for protocols satisfying monotonic searchability in systems with leaving nodes. Here
it has been shown by Scheideler et al. [SSS15] that the problem can be solved for
the sorted list. It has yet to be investigated whether the problem can also be solved
for other topologies that satisfy monotonic searchability. As our protocol BuildQT
for the self-stabilizing quadtree relies on the sorted list and provides a quite simple
mechanism to generate additional edges on top of the list, we believe that trying to
extend BuildQT in order to also provide monotonic searchability under leaving nodes
may be a good next step to further investigate this problem.

For self-stabilizing publish-subscribe systems, one may try to distribute the data
stored by the supervisor to obtain a more decentralized solution. Here it may be
helpful to introduce a network of multiple servers where each server stores a part
of the original database of the supervisor, i.e., each server is responsible only for
a subset of subscribers. All servers could then be arranged in a (self-stabilizing)
spanning tree, for example using the protocol from Gotte et al. [GSS18]. It still
remains unclear whether handling Subscribe and Unsubscribe requests can be handled
by the servers in a self-stabilizing manner when using the proposed structure.

Further interesting open problems such as transient behavior, locality or churn
tolerance are highlighted in our survey on algorithms for self-stabilizing overlay
networks [FSS20].

140

Bibliography

[AGY6]

[AGT10]

[AHS94]

[AK93]

[Alu04]

[Ami+05]

[And+02]

[AS16]

[AW07]

[AW94]

S. V. Adve and K. Gharachorloo. “Shared Memory Consistency Models:
A Tutorial”. In: IEEE Computer 29.12 (1996), pp. 66-76. DOI: 10.1109/
2.546611.

S. Alaei, M. Ghodsi, and M. Toossi. “Skiptree: A new scalable distributed
data structure on multidimensional data supporting range-queries”. In:
Computer Communications 33.1 (2010), pp. 73-82. pOI: 10.1016/j.
comcom.2009.08.001.

J. Aspnes, M. Herlihy, and N. Shavit. “Counting Networks”. In: Journal
of the ACM 41.5 (1994), pp. 1020-1048. po1: 10.1145/185675.185815.

S. Aggarwal and S. Kutten. “Time Optimal Self-Stabilizing Spanning
Tree Algorithms”. In: Proceedings of the 15th Conference on Foundations
of Software Technology and Theoretical Computer Science, Bombay,
India. Vol. 761. Lecture Notes in Computer Science. Springer, 1993,
pp. 400-410. DOT: 10.1007/3-540-57529-4_72.

S. Aluru. “Quadtrees and Octrees”. In: Handbook of Data Structures
and Applications. Chapman and Hall/CRC, 2004.

Y. Amir, C. Nita-Rotaru, J. R. Stanton, and G. Tsudik. “Secure Spread:
An Integrated Architecture for Secure Group Communication”. In: IEEFE
Transactions on Dependable and Secure Computing 2.3 (2005), pp. 248
261. Do1: 10.1109/TDSC.2005.39.

D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. T. Morris.
“Resilient overlay networks”. In: Computer Communication Review 32.1
(2002), p. 66. DOI: 10.1145/510726.510740.

Y. Akhremtsev and P. Sanders. “Fast Parallel Operations on Search
Trees”. In: Proceedings of the 23rd IEEE International Conference on
High Performance Computing, HiPC 2016, Hyderabad, India. IEEE
Computer Society, 2016, pp. 291-300. DOI: 10.1109/HiPC.2016.042.

J. Aspnes and Y. Wu. “O(logn)-Time Overlay Network Construction
from Graphs with Out-Degree 1”. In: Proceedings of the 11th Inter-
national Conference on Principles of Distributed Systems (OPODIS),
Guadeloupe, French West Indies. Ed. by E. Tovar, P. Tsigas, and H.
Fouchal. Vol. 4878. Lecture Notes in Computer Science. Springer, 2007,
pp. 286-300. DOI: 10.1007/978-3-540-77096-1_21.

H. Attiya and J. L. Welch. “Sequential Consistency versus Linearizabil-
ity”. In: ACM Transactions on Computer Systems 12.2 (1994), pp. 91—
122. por: 10.1145/176575.176576.

141

https://doi.org/10.1109/2.546611
https://doi.org/10.1109/2.546611
https://doi.org/10.1016/j.comcom.2009.08.001
https://doi.org/10.1016/j.comcom.2009.08.001
https://doi.org/10.1145/185675.185815
https://doi.org/10.1007/3-540-57529-4_72
https://doi.org/10.1109/TDSC.2005.39
https://doi.org/10.1145/510726.510740
https://doi.org/10.1109/HiPC.2016.042
https://doi.org/10.1007/978-3-540-77096-1_21
https://doi.org/10.1145/176575.176576

Bibliography

[Aya90]

[Bal+03]

[BBYS]

[BDHOS]

[Ben+13]

[Berl15]

[BGP13]

[BL99)

[Bru09]

[BSW79]

[CF05]

142

R. Ayani. “LR-algorithm: concurrent operations on priority queues”. In:
Proceedings of the Second IEEE Symposium on Parallel and Distributed
Processing (SPDP), Dallas, Texas, USA. IEEE Computer Society, 1990,
pp. 22-25. DOI: 10.1109/SPDP. 1990.143500.

H. Balakrishnan, M. F. Kaashoek, D. R. Karger, R. T. Morris, and
I. Stoica. “Looking up data in P2P systems”. In: Communications of
the ACM 46.2 (2003), pp. 43-48. DOI: 10.1145/606272.606299.

J. Bataller and J. M. Bernabéu-Aubédn. “Adaptable Distributed Shared
Memory: A Formal Definition”. In: Proceedings of the Jth Interna-
tional Euro-Par Conference, Southampton, UK. Vol. 1470. Lecture Notes
in Computer Science. Springer, 1998, pp. 887-891. DOI: 10 . 1007/
BFb0057944.

M. Ben-Or, D. Dolev, and E. N. Hoch. “Fast self-stabilizing byzantine
tolerant digital clock synchronization”. In: Proceedings of the 27th Annual
ACM Symposium on Principles of Distributed Computing (PODC),
Toronto, Canada. ACM, 2008, pp. 385-394. DOI: 10.1145/1400751 .
1400802.

M. Benter, M. Divband, S. Kniesburges, A. Koutsopoulos, and K. Graffi.
“Ca-Re-Chord: A Churn Resistant Self-Stabilizing Chord Overlay Net-
work”. In: 2013 Conference on Networked Systems (NetSys), Stuttgart,
Germany. IEEE Computer Society, 2013, pp. 27-34. DOI: 10.1109/
NetSys.2013.11.

A. Berns. “Avatar: A Time- and Space-Efficient Self-stabilizing Overlay
Network”. In: Proceedings of the 17th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS), Edmonton,
AB, Canada. Vol. 9212. Lecture Notes in Computer Science. Springer,
2015, pp. 233-247. DOI: 10.1007/978-3-319-21741-3_16.

A. Berns, S. Ghosh, and S. V. Pemmaraju. “Building self-stabilizing
overlay networks with the transitive closure framework”. In: Theoretical
Computer Science 512 (2013), pp. 2-14. DOI: 10.1016/j.tcs.2013.02.
021.

R. D. Blumofe and C. E. Leiserson. “Scheduling Multithreaded Compu-
tations by Work Stealing”. In: Journal of the ACM 46.5 (1999), pp. 720—
748. DOI: 10.1145/324133.324234.

J. Brutlag. Speed Matters for Google Web Search. Tech. rep. Google, Inc,
2009.

P. A. Bernstein, D. W. Shipman, and W. S. Wong. “Formal Aspects of
Serializability in Database Concurrency Control”. In: IEEE Transactions
on Software Engineering 5.3 (1979), pp. 203-216. por: 10.1109/TSE.
1979.234182.

C. Cramer and T. Fuhrmann. Self-stabilizing ring networks on connected
graphs. German. Tech. rep. 5. Universitit Karlsruhe, Karlsruhe, 2005.
DOI: 10.5445/IR/1000003169.

https://doi.org/10.1109/SPDP.1990.143500
https://doi.org/10.1145/606272.606299
https://doi.org/10.1007/BFb0057944
https://doi.org/10.1007/BFb0057944
https://doi.org/10.1145/1400751.1400802
https://doi.org/10.1145/1400751.1400802
https://doi.org/10.1109/NetSys.2013.11
https://doi.org/10.1109/NetSys.2013.11
https://doi.org/10.1007/978-3-319-21741-3_16
https://doi.org/10.1016/j.tcs.2013.02.021
https://doi.org/10.1016/j.tcs.2013.02.021
https://doi.org/10.1145/324133.324234
https://doi.org/10.1109/TSE.1979.234182
https://doi.org/10.1109/TSE.1979.234182
https://doi.org/10.5445/IR/1000003169

Bibliography

[Cheb2]

[C1é+08]

[CNS12]

[Coh+16]

[De 46]

[DHYS)]

[Dij74]

[DKOS]

[Dol00]
[DS04]

[DS07]

[DSWO06]

H. Chernoff. “A measure of asymptotic efficiency for tests of a hypothesis
based on the sums of observations”. In: Annals of Mathematical Statistics
23 (1952), pp. 409-507.

J. Clément, T. Hérault, S. Messika, and O. Peres. “On the Complexity
of a Self-Stabilizing Spanning Tree Algorithm for Large Scale Systems”.
In: 14th IEEFE Pacific Rim International Symposium on Dependable
Computing (PRDC), Taipei, Taiwan. IEEE Computer Society, 2008,
pp. 48-55. DOI: 10.1109/PRDC.2008. 36.

T. Clouser, M. Nesterenko, and C. Scheideler. “Tiara: A self-stabilizing
deterministic skip list and skip graph”. In: Theoretical Computer Science
428 (2012), pp. 18-35. DOI: 10.1016/j.tcs.2011.12.079.

J. Cohen, J. Lefevre, K. Madmra, L. Pilard, and D. Sohier. “A Self-
Stabilizing Algorithm for Maximal Matching in Anonymous Networks”.
In: Parallel Processing Letters 26.4 (2016), 1650016:1-1650016:17. DOI:
10.1142/5012962641650016X.

N. G. De Bruijn. “A Combinatorial Problem”. In: Koninklijke Ned-
erlandsche Akademie Van Wetenschappen 49.6 (June 1946), pp. 758—
764.

M. J. Demmer and M. Herlihy. “The Arrow Distributed Directory
Protocol”. In: Proceedings of the 12th International Symposium on
Distributed Computing (DISC), Andros, Greece. Vol. 1499. Lecture Notes
in Computer Science. Springer, 1998, pp. 119-133. por: 10 . 1007/
BFb0056478.

E. W. Dijkstra. “Self-stabilizing Systems in Spite of Distributed Control”.
In: Communications of the ACM 17.11 (1974), pp. 643-644. poO1: 10.
1145/361179.361202.

S. Dolev and R. I. Kat. “HyperTree for self-stabilizing peer-to-peer
systems”. In: Distributed Computing 20.5 (2008), pp. 375-388. DOL:
10.1007/s00446-007-0038-9.

S. Dolev. Self-Stabilization. MIT Press, 2000. 1SBN: 0-262-04178-2.

S. Dolev and E. Schiller. “Self-stabilizing group communication in di-
rected networks”. In: Acta Informatica 40.9 (2004), pp. 609-636. DOI:
10.1007/s00236-004-0143-1.

S. Dahan and M. Sato. “Survey of Six Myths and Oversights about
Distributed Hash Tables’ Security”. In: 27th International Conference
on Distributed Computing Systems Workshops (ICDCS Workshops),
Toronto, Ontario, Canada. IEEE Computer Society, 2007, p. 26. DOTI:
10.1109/ICDCSW.2007.77.

S. Dolev, E. Schiller, and J. L. Welch. “Random Walk for Self-Stabilizing
Group Communication in Ad Hoc Networks”. In: IEEFE Transactions
on Mobile Computing 5.7 (2006), pp. 893-905. DOI: 10.1109/TMC.2006.
104.

143

https://doi.org/10.1109/PRDC.2008.36
https://doi.org/10.1016/j.tcs.2011.12.079
https://doi.org/10.1142/S012962641650016X
https://doi.org/10.1007/BFb0056478
https://doi.org/10.1007/BFb0056478
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/361179.361202
https://doi.org/10.1007/s00446-007-0038-9
https://doi.org/10.1007/s00236-004-0143-1
https://doi.org/10.1109/ICDCSW.2007.77
https://doi.org/10.1109/TMC.2006.104
https://doi.org/10.1109/TMC.2006.104

Bibliography

[DW04]

[Eug+03]

[Fab+01]

[FB74]

[Fel+14]

[Fel+18]

[FGS19]

[FHS20]

[FKS18]

144

S. Dolev and J. L. Welch. “Self-stabilizing clock synchronization in the
presence of Byzantine faults”. In: Journal of the ACM 51.5 (2004),
pp- 780-799. DOI: 10.1145/1017460.1017463.

P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. “The
many faces of publish/subscribe”. In: ACM Computing Surveys 35.2
(2003), pp. 114-131. DOI: 10.1145/857076.857078.

F. Fabret, H.-A. Jacobsen, F. Llirbat, J. L. M. Pereira, K. A. Ross,
and D. E. Shasha. “Filtering Algorithms and Implementation for Very
Fast Publish/Subscribe”. In: Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, Santa Barbara, CA,
USA. ACM, 2001, pp. 115-126. pOI: 10.1145/375663.375677.

R. A. Finkel and J. L. Bentley. “Quad Trees: A Data Structure for
Retrieval on Composite Keys”. In: Acta Informatica 4 (1974), pp. 1-9.
DOI: 10.1007/BF00288933.

P. Felber, P. Kropf, E. Schiller, and S. Serbu. “Survey on Load Balancing
in Peer-to-Peer Distributed Hash Tables”. In: IEEE Communications
Surveys & Tutorials 16.1 (2014), pp. 473-492. DOI: 10.1109/SURV.2013.
060313.00157.

M. Feldmann, C. Kolb, C. Scheideler, and T. Strothmann. “Self-
Stabilizing Supervised Publish-Subscribe Systems”. In: Proceedings
of the 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Vancouver, BC, Canada. IEEE Computer Society,
2018, pp. 1050-1059. DOI: 10.1109/IPDPS.2018.00114.

M. Feldmann, T. Gotte, and C. Scheideler. “A Loosely Self-stabilizing
Protocol for Randomized Congestion Control with Logarithmic Memory”.
In: Proceedings of the 21st International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), Pisa, Italy. Vol. 11914.
Lecture Notes in Computer Science. Springer, 2019, pp. 149-164. por:
10.1007/978-3-030-34992-9_13.

M. Feldmann, K. Hinnenthal, and C. Scheideler. “Fast Hybrid Network
Algorithms for Shortest Paths in Sparse Graphs”. In: Proceedings of
the 24th International Conference on Principles of Distributed Systems
(OPODIS), Virtual Event. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2020, to appear.

M. Feldmann, C. Kolb, and C. Scheideler. “Self-stabilizing Overlays
for High-Dimensional Monotonic Searchability”. In: Proceedings of the
20th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS), Tokyo, Japan. Vol. 11201. Lecture Notes in
Computer Science. Springer, 2018, pp. 16-31. poI: 10.1007/978-3~-
030-03232-6_2.

https://doi.org/10.1145/1017460.1017463
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/375663.375677
https://doi.org/10.1007/BF00288933
https://doi.org/10.1109/SURV.2013.060313.00157
https://doi.org/10.1109/SURV.2013.060313.00157
https://doi.org/10.1109/IPDPS.2018.00114
https://doi.org/10.1007/978-3-030-34992-9_13
https://doi.org/10.1007/978-3-030-03232-6_2
https://doi.org/10.1007/978-3-030-03232-6_2

Bibliography

[FKS20]

[FLS01]

[For+14]

[Fre83]

[FS17]

[FS19)]

[FSS18al

[FSS18b)

[FSS20]

M. Feldmann, A. Khazraei, and C. Scheideler. “Time- and Space-Optimal
Discrete Clock Synchronization in the Beeping Model”. In: Proceedings
of the 32nd Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Virtual Event, USA. ACM, 2020, pp. 223-233.
DOI: 10.1145/3350755.3400246.

A. Fekete, N. A. Lynch, and A. A. Shvartsman. “Specifying and using
a partitionable group communication service”. In: ACM Transactions
on Computer Systems 19.2 (2001), pp. 171-216. po1: 10.1145/377769.
377776.

D. Foreback, A. Koutsopoulos, M. Nesterenko, C. Scheideler, and
T. Strothmann. “On Stabilizing Departures in Overlay Networks”.
In: Proceedings of the 16th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), Paderborn, Germany.
Vol. 8756. Lecture Notes in Computer Science. Springer, 2014, pp. 48-62.
DOI: 10.1007/978-3-319-11764-5_4.

G. N. Frederickson. “Tradeoffs for Selection in Distributed Networks
(Preliminary Version)”. In: Proceedings of the Second Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC), Montreal, Quebec, Canada. ACM, 1983, pp. 154-160. DOI:
10.1145/800221.806718.

M. Feldmann and C. Scheideler. “A Self-stabilizing General De Bruijn
Graph”. In: Proceedings of the 19th International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems (SSS), Boston, MA,
USA. Vol. 10616. Lecture Notes in Computer Science. Springer, 2017,
pp. 250-264. DOIL: 10.1007/978-3-319-69084-1_17.

M. Feldmann and C. Scheideler. “Skeap & Seap: Scalable Distributed
Priority Queues for Constant and Arbitrary Priorities”. In: Proceedings
of the 31st Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Phoeniz, AZ, USA. ACM, 2019, pp. 287-296.
DOI: 10.1145/3323165.3323193.

M. Feldmann, C. Scheideler, and A. Setzer. “Skueue: A Scalable and
Sequentially Consistent Distributed Queue”. In: Proceedings of the
2018 IEEE International Parallel and Distributed Processing Sympo-
stum (IPDPS), Vancouver, BC, Canada. IEEE Computer Society, 2018,
pp. 1040-1049. poI: 10.1109/IPDPS.2018.00113.

M. Feldmann, C. Scheideler, and A. Setzer. “Skueue: A Scalable and
Sequentially Consistent Distributed Queue”. In: CoRR abs/1802.07504
(2018). arXiv: 1802.07504.

M. Feldmann, C. Scheideler, and S. Schmid. “Survey on Algorithms for
Self-stabilizing Overlay Networks”. In: ACM Computing Surveys 53.4
(2020), 74:1-74:24. pOI: 10.1145/3397190.

145

https://doi.org/10.1145/3350755.3400246
https://doi.org/10.1145/377769.377776
https://doi.org/10.1145/377769.377776
https://doi.org/10.1007/978-3-319-11764-5_4
https://doi.org/10.1145/800221.806718
https://doi.org/10.1007/978-3-319-69084-1_17
https://doi.org/10.1145/3323165.3323193
https://doi.org/10.1109/IPDPS.2018.00113
https://arxiv.org/abs/1802.07504
https://doi.org/10.1145/3397190

Bibliography

[Gal+14]

[Gao+04]

[GCOT]

[GhaO5]

[GK93]

[GLRO3]

[GLRO4]

[Got+98]

[GSS18]

[Gum+-03]

146

D. Gall, R. Jacob, A. W. Richa, C. Scheideler, S. Schmid, and H.
T&ubig. “A Note on the Parallel Runtime of Self-Stabilizing Graph
Linearization”. In: Theory of Computing Systems 55.1 (2014), pp. 110—
135. DOI: 10.1007/500224-013-9504-x.

J. Gao, L. J. Guibas, J. Hershberger, and L. Zhang. “Fractionally cas-
caded information in a sensor network”. In: Proceedings of the 3rd
International Symposium on Information Processing in Sensor Net-
works (IPSN), Berkeley, California, USA. ACM, 2004, pp. 311-319. DOIL:
10.1145/984622.984668.

L. Groves and R. Colvin. “Derivation of a Scalable Lock-Free Stack
Algorithm”. In: Electronic Notes in Theoretical Computer Science 187
(2007), pp. 55-74. DOI: 10.1016/j .entcs.2006.08.044.

S. Ghahramani. Fundamentals of Probability with Stochastic Processes.
CRC Press, Taylor & Francis Group, Jan. 2005, pp. 249-250.

S. Ghosh and M. H. Karaata. “A Self-Stabilizing Algorithm for Coloring
Planar Graphs”. In: Distributed Computing 7.1 (1993), pp. 55-59. DOI:
10.1007/BF02278856.

A. Gupta, B. Liskov, and R. Rodrigues. “One Hop Lookups for Peer-
to-Peer Overlays”. In: Proceedings of the 9th Workshop on Hot Topics
in Operating Systems (HotOS), Lihue (Kauai), Hawaii, USA. Ed. by
M. B. Jones. USENIX, 2003, pp. 7-12.

A. Gupta, B. Liskov, and R. Rodrigues. “Efficient Routing for Peer-
to-Peer Overlays”. In: Proceedings of the 1st Symposium on Networked
Systems Design and Implementation (NSDI)), San Francisco, California,
USA. Ed. by R. T. Morris and S. Savage. USENIX, 2004, pp. 113-126.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph,
and M. Snir. “The NYU Ultracomputer - Designing a MIMD, Shared-
Memory Parallel Machine”. In: 25 Years of the International Symposia
on Computer Architecture (Selected Papers). ACM, 1998, pp. 239-254.
DOI: 10.1145/285930.285983.

T. Gotte, C. Scheideler, and A. Setzer. “On Underlay-Aware Self-
Stabilizing Overlay Networks”. In: Proceedings of the 20th International
Sympositum on Stabilization, Safety, and Security of Distributed Systems
(SSS), Tokyo, Japan. Vol. 11201. Lecture Notes in Computer Science.
Springer, 2018, pp. 50-64. DOI: 10.1007/978-3-030-03232-6_4.

P. K. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica. “The impact of DHT routing geometry on resilience and
proximity”. In: Proceedings of the 2003 ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM), Karlsruhe, Germany. ACM, 2003, pp. 381-394. DOI: 10.
1145/863955.863998.

https://doi.org/10.1007/s00224-013-9504-x
https://doi.org/10.1145/984622.984668
https://doi.org/10.1016/j.entcs.2006.08.044
https://doi.org/10.1007/BF02278856
https://doi.org/10.1145/285930.285983
https://doi.org/10.1007/978-3-030-03232-6_4
https://doi.org/10.1145/863955.863998
https://doi.org/10.1145/863955.863998

Bibliography

[Gup+03]

[GVWS9]

[GW94]

[Hen+10]

[Hér+06]

[HHO2]

[HMS18]

[HSY10]

[HTWOL1]

[Hun+96]

I. Gupta, K. P. Birman, P. Linga, A. J. Demers, and R. van Renesse.
“Kelips: Building an Efficient and Stable P2P DHT through Increased
Memory and Background Overhead”. In: Peer-to-Peer Systems II, Second
International Workshop (IPTPS), Berkeley, CA, USA. Vol. 2735. Lecture
Notes in Computer Science. Springer, 2003, pp. 160-169. DOI: 10.1007/
978-3-540-45172-3_165.

J. R. Goodman, M. K. Vernon, and P. J. Woest. “Efficient Synchro-
nization Primitives for Large-scale Cache-coherent Multiprocessors”. In:
SIGARCH Computer Architecture News 17.2 (1989), pp. 64-75. ISSN:
0163-5964.

Z. Grodzki and A. Wronski. “Generalized de Bruijn graphs”. In: Journal
of Information Processing and Cybernetics 30.1 (1994), pp. 5-17.

D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. “Scalable Flat-Combining
Based Synchronous Queues”. In: Proceedings of the 24th International
Symposium on Distributed Computing (DISC), Cambridge, MA, USA.
Vol. 6343. Lecture Notes in Computer Science. Springer, 2010, pp. 79-93.
DOI: 10.1007/978-3-642-15763-9_8.

T. Hérault, P. Lemarinier, O. Peres, L. Pilard, and J. Beauquier. “Brief
Announcement: Self-stabilizing Spanning Tree Algorithm for Large Scale
Systems”. In: Proceedings of the 8th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS), Dallas,
TX, USA. Vol. 4280. Lecture Notes in Computer Science. Springer, 2006,
pp. 574-575. DOIL: 10.1007/978-3-540-49823-0_44.

S.-C. Hsu and S.-T. Huang. “A Self-Stabilizing Algorithm for Maximal
Matching”. In: Information Processing Letters 43.2 (1992), pp. 77-81.
DOI: 10.1016/0020-0190(92)90015-N.

B. Haeupler, J. Mohapatra, and H.-H. Su. “Optimal Gossip Algorithms
for Exact and Approximate Quantile Computations”. In: Proceedings
of the 2018 ACM Symposium on Principles of Distributed Computing
(PODC), Egham, United Kingdom. ACM, 2018, pp. 179-188. pOI: 10.
1145/3212734.3212770.

D. Hendler, N. Shavit, and L. Yerushalmi. “A scalable lock-free stack
algorithm”. In: Journal of Parallel and Distributed Computing 70.1
(2010), pp. 1-12. DOL: 10.1016/j . jpdc.2009.08.011.

M. Herlihy, S. Tirthapura, and R. Wattenhofer. “Competitive concurrent
distributed queuing”. In: Proceedings of the 20th Annual ACM Sympo-
stum on Principles of Distributed Computing (PODC), Newport, Rhode
Island, USA. ACM, 2001, pp. 127-133. DOI: 10.1145/383962.384001.

G. C. Hunt, M. M. Michael, S. Parthasarathy, and M. L. Scott. “An
Efficient Algorithm for Concurrent Priority Queue Heaps”. In: Informa-
tion Processing Letters 60.3 (1996), pp. 151-157. DO1: 10.1016/30020-
0190(96)00148-2.

147

https://doi.org/10.1007/978-3-540-45172-3_15
https://doi.org/10.1007/978-3-540-45172-3_15
https://doi.org/10.1007/978-3-642-15763-9_8
https://doi.org/10.1007/978-3-540-49823-0_44
https://doi.org/10.1016/0020-0190(92)90015-N
https://doi.org/10.1145/3212734.3212770
https://doi.org/10.1145/3212734.3212770
https://doi.org/10.1016/j.jpdc.2009.08.011
https://doi.org/10.1145/383962.384001
https://doi.org/10.1016/S0020-0190(96)00148-2
https://doi.org/10.1016/S0020-0190(96)00148-2

Bibliography

[HW90]

[1181]

[Jac+12]

[Jac+14]

[Joh94]

[Kar+97]

[KF12]

[KKS12]

[KKS13]

[KKS14]

[KKS15]

148

M. Herlihy and J. M. Wing. “Linearizability: A Correctness Condition for
Concurrent Objects”. In: ACM Transactions on Programming Languages
and Systems 12.3 (1990), pp. 463-492. DOI: 10.1145/78969.78972.

M. Imase and M. Itoh. “Design to Minimize Diameter on Building-Block
Network”. In: IEEFE Transactions on Computers 30.6 (1981), pp. 439—
442. po1: 10.1109/TC.1981.1675809.

R. Jacob, S. Ritscher, C. Scheideler, and S. Schmid. “Towards higher-
dimensional topological self-stabilization: A distributed algorithm for
Delaunay graphs”. In: Theoretical Computer Science 457 (2012), pp. 137—
148. por1: 10.1016/j.tcs.2012.07.029

R. Jacob, A. W. Richa, C. Scheideler, S. Schmid, and H. Taubig. “SKIPT:
A Self-Stabilizing Skip Graph”. In: Journal of the ACM 61.6 (2014),
36:1-36:26. DOI: 10.1145/2629695.

T. Johnson. “A Highly Concurrent Priority Queue”. In: Journal of
Parallel and Distributed Computing 22.2 (1994), pp. 367-373. DOI: 10.
1006/jpdc.1994.1097.

D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine,
and D. Lewin. “Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web”.
In: Proceedings of the 29th Annual ACM Symposium on the Theory of
Computing (STOC), El Paso, Texas, USA. ACM, 1997, pp. 654-663.
DOI: 10.1145/258533.258660.

J. Kuo and H.-L. Fu. “On the Diameter of the Generalized Undirected
De Bruijn Graphs”. In: Ars Combinatoria 106 (2012), pp. 395-408.

S. Kniesburges, A. Koutsopoulos, and C. Scheideler. “A Self-Stabilization
Process for Small-World Networks”. In: 26th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), Shanghai, China. IEEE
Computer Society, 2012, pp. 1261-1271. por: 10.1109/IPDPS.2012.115.

S. Kniesburges, A. Koutsopoulos, and C. Scheideler. “CONE-DHT: A
Distributed Self-Stabilizing Algorithm for a Heterogeneous Storage Sys-
tem”. In: Proceedings of the 27th International Symposium on Distributed
Computing (DISC), Jerusalem, Israel. Vol. 8205. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 537-549. DOI: 10.1007/978-3-642-
41527-2_37.

S. Kniesburges, A. Koutsopoulos, and C. Scheideler. “Re-Chord: A Self-
stabilizing Chord Overlay Network”. In: Theory of Computing Systems
55.3 (2014), pp. 591-612. DOI: 10.1007/s00224-012-9431-2.

S. Kniesburges, A. Koutsopoulos, and C. Scheideler. “A deterministic
worst-case message complexity optimal solution for resource discovery”.
In: Theoretical Computer Science 584 (2015), pp. 67-79. DOI: 10.1016/
j.-tcs.2014.11.027.

https://doi.org/10.1145/78969.78972
https://doi.org/10.1109/TC.1981.1675809
https://doi.org/10.1016/j.tcs.2012.07.029
https://doi.org/10.1145/2629695
https://doi.org/10.1006/jpdc.1994.1097
https://doi.org/10.1006/jpdc.1994.1097
https://doi.org/10.1145/258533.258660
https://doi.org/10.1109/IPDPS.2012.115
https://doi.org/10.1007/978-3-642-41527-2_37
https://doi.org/10.1007/978-3-642-41527-2_37
https://doi.org/10.1007/s00224-012-9431-2
https://doi.org/10.1016/j.tcs.2014.11.027
https://doi.org/10.1016/j.tcs.2014.11.027

Bibliography

[KL19]

[KLWO7]

[KNRG]

[Kok+18]

[KP91]

[KS05)

[KS18]

[KSS17]

[KW19)

[KW94]

[Lam79]

P. Khanchandani and C. Lenzen. “Self-Stabilizing Byzantine Clock
Synchronization with Optimal Precision”. In: Theory of Computing
Systems 63.2 (2019), pp. 261-305. DOI: 10.1007/s00224-017-9840-3.

F. Kuhn, T. Locher, and R. Wattenhofer. “Tight bounds for distributed
selection”. In: Proceedings of the 19th Annual ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA), San Diego, California,
USA. ACM, 2007, pp. 145-153. DOI: 10.1145/1248377.1248401.

D. Krizanc, L. Narayanan, and R. Raman. “Fast Deterministic Selection
on Mesh-Connected Processor Arrays”. In: Algorithmica 15.4 (1996),
pp. 319-331. DOI: 10.1007/BF01961542.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford. “OmniLedger: A Secure, Scale-Out, Decentralized Ledger via
Sharding”. In: Proceedings of the 2018 IEEE Symposium on Security
and Privacy (SP), San Francisco, California, USA. IEEE Computer
Society, 2018, pp. 583-598. DOI: 10.1109/SP.2018.000-5.

D. Kravets and J. K. Park. “Selection and Sorting in Totally Monotone
Arrays”. In: Mathematical Systems Theory 24.3 (1991), pp. 201-220.
DOI: 10.1007/BF02090398.

K. Kothapalli and C. Scheideler. “Supervised Peer-to-Peer Systems”. In:
Proceedings of the 8th International Symposium on Parallel Architectures,
Algorithms, and Networks (ISPAN), Las Vegas, Nevada, USA. IEEE
Computer Society, 2005, pp. 188-193. DOI: 10.1109/ISPAN.2005.81.

T. Knollmann and C. Scheideler. “A Self-stabilizing Hashed Patricia
Trie”. In: Proceedings of the 20th International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), Tokyo, Japan.
Vol. 11201. Lecture Notes in Computer Science. Springer, 2018, pp. 1-15.
DOI: 10.1007/978-3-030-03232-6_1.

A. Koutsopoulos, C. Scheideler, and T. Strothmann. “Towards a universal
approach for the finite departure problem in overlay networks”. In:
Information and Computation 255 (2017), pp. 408-424. DOI: 10.1016/
j.1c.2016.12.006.

P. Khanchandani and R. Wattenhofer. “The Arvy Distributed Directory
Protocol”. In: Proceedings of the 31st Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), Phoeniz, AZ, USA.
ACM, 2019, pp. 225-235. DOI: 10.1145/3323165.3323181.

B. Kréll and P. Widmayer. “Distributing a Search Tree Among a Growing
Number of Processors”. In: Proceedings of the 1994 ACM International
Conference on Management of Data (SIGMOD), Minneapolis, Min-
nesota, USA. ACM Press, 1994, pp. 265-276. DOI: 10.1145/191839.
191891.

L. Lamport. “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs”. In: IEEE Transactions on Computers
28.9 (1979), pp. 690-691. DOI: 10.1109/TC.1979.1675439.

149

https://doi.org/10.1007/s00224-017-9840-3
https://doi.org/10.1145/1248377.1248401
https://doi.org/10.1007/BF01961542
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1007/BF02090398
https://doi.org/10.1109/ISPAN.2005.81
https://doi.org/10.1007/978-3-030-03232-6_1
https://doi.org/10.1016/j.ic.2016.12.006
https://doi.org/10.1016/j.ic.2016.12.006
https://doi.org/10.1145/3323165.3323181
https://doi.org/10.1145/191839.191891
https://doi.org/10.1145/191839.191891
https://doi.org/10.1109/TC.1979.1675439

Bibliography

[Lam85]

[LC10]

[LL14]

[LMO9]

[LSS19]

[Luu+16]

[LZ91]

[Man+-09]

[Man+93]

[Mau92]

[Mer87]

150

L. Lamport. “Solved Problems, Unsolved Problems and Non-Problems
in Concurrency”. In: ACM SIGOPS: Operating Systems Review 19.4
(1985), pp. 34-44. DOT: 10.1145/858336.858339.

J.-C. Lin and M.-Y. Chiu. “A Fault-Containing Self-Stabilizing Algo-
rithm for 6-Coloring Planar Graphs”. In: Journal of Information Science
and Engineering 26.1 (2010), pp. 163-181.

C.-L. Lee and T.-J. Liu. “A Self-Stabilizing Distance-2 Edge Coloring
Algorithm”. In: The Computer Journal 57.11 (2014), pp. 1639-1648.
DOI: 10.1093/comjnl/bxt072.

A. Lakshman and P. Malik. “Cassandra: structured storage system on a
P2P network”. In: Proceedings of the 28th Annual ACM Symposium on
Principles of Distributed Computing (PODC), Calgary, Alberta, Canada.
ACM, 2009, p. 5. DOI: 10.1145/1582716.1582722.

L. Luo, C. Scheideler, and T. Strothmann. “MULTISKIPGRAPH: A Self-
Stabilizing Overlay Network that Maintains Monotonic Searchability”.
In: Proceedings of the 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Rio de Janeiro, Brazil. IEEE, 2019,
pp. 845-854. poI: 10.1109/IPDPS.2019.00093.

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Sax-
ena. “A Secure Sharding Protocol For Open Blockchains”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Viemna, Austria. ACM, 2016, pp. 17-30. DOI:
10.1145/2976749.2978389.

X. Li and F. Zhang. “On the numbers of spanning trees and Eulerian
tours in generalized de Bruijn graphs”. In: Discrete Mathematics 94.3
(1991), pp. 189-197. DOI: 10.1016/0012-365X(91)90024-V.

F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. “A new self-stabilizing
maximal matching algorithm”. In: Theoretical Computer Science 410.14
(2009), pp. 1336-1345. DOI: 10.1016/j.tcs.2008.12.022.

Y. Mansour, J. K. Park, B. Schieber, and S. Sen. “Improved selection
in totally monotone arrays”. In: International Journal of Computa-
tional Geometry & Applications 3.2 (1993), pp. 115-132. DO1: 10.1142/
S50218195993000087.

U. M. Maurer. “Asymptotically-Tight Bounds on the Number of Cycles in
Generalized de Bruijn-Good Graphs”. In: Discrete Applied Mathematics
37/38 (1992), pp. 421-436. DOT: 10.1016/0166-218X (92)90149-5.

R. C. Merkle. “A Digital Signature Based on a Conventional Encryption
Function”. In: Advances in Cryptology - CRYPTO 87, A Conference
on the Theory and Applications of Cryptographic Techniques, Santa
Barbara, California, USA. Ed. by C. Pomerance. Vol. 293. Lecture Notes
in Computer Science. Springer, 1987, pp. 369-378. poI: 10.1007/3~-
540-48184-2_32.

https://doi.org/10.1145/858336.858339
https://doi.org/10.1093/comjnl/bxt072
https://doi.org/10.1145/1582716.1582722
https://doi.org/10.1109/IPDPS.2019.00093
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1016/0012-365X(91)90024-V
https://doi.org/10.1016/j.tcs.2008.12.022
https://doi.org/10.1142/S0218195993000087
https://doi.org/10.1142/S0218195993000087
https://doi.org/10.1016/0166-218X(92)90149-5
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32

Bibliography

[Mor66]

[Mor68]

[Mos93|

[MS04]

[MS96]

[MS98]

[Miih+05]

[NNS13]

[INWO07]

[OL13]

[ORS07]

[PRUO3]

G. Morton. A Computer Oriented Geodetic Data Base and a New Tech-
nique in File Sequencing. International Business Machines Company,
1966.

D. R. Morrison. “PATRICIA - Practical Algorithm To Retrieve Infor-
mation Coded in Alphanumeric”. In: Journal of the ACM 15.4 (1968),
pp- 514-534. DOI: 10.1145/321479.321481.

D. Mosberger. “Memory Consistency Models”. In: Operating Systems
Review 27.1 (1993), pp. 18-26. DOI: 10.1145/160551.160553.

M. Moir and N. Shavit. “Concurrent Data Structures”. In: Handbook of
Data Structures and Applications. Chapman and Hall/CRC, 2004. Do1:
10.1201/9781420035179.

M. M. Michael and M. L. Scott. “Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms”. In: Proceedings
of the 15th Annual ACM Symposium on Principles of Distributed Com-
puting (PODC), Philadelphia, Pennsylvania, USA. ACM, 1996, pp. 267—
275. DOI: 10.1145/248052.248106.

M. M. Michael and M. L. Scott. “Nonblocking Algorithms and
Preemption-Safe Locking on Multiprogrammed Shared Memory Mul-
tiprocessors”. In: Journal of Parallel and Distributed Computing 51.1
(1998), pp. 1-26. DOI: 10.1006/jpdc.1998.1446.

G. Miihl, M. A. Jaeger, K. Herrmann, T. Weis, A. Ulbrich, and L. Fiege.
“Self-stabilizing Publish /Subscribe Systems: Algorithms and Evaluation”.
In: Proceedings of the 11th European Conference on Parallel Processing
(EUROPAR), Lisbon, Portugal. Vol. 3648. Lecture Notes in Computer
Science. Springer, 2005, pp. 664-674. DOI: 10.1007/11549468_73.

R. M. Nor, M. Nesterenko, and C. Scheideler. “Corona: A stabilizing de-
terministic message-passing skip list”. In: Theoretical Computer Science
512 (2013), pp. 119-129. po1: 10.1016/j.tcs.2012.08.029.

M. Naor and U. Wieder. “Novel architectures for P2P applications: The
continuous-discrete approach”. In: ACM Transactions on Algorithms 3.3
(2007), p. 34. DOI: 10.1145/1273340.1273350.

J. Ou and J. Li. “On m-restricted edge connectivity of undirected
generalized De Bruijn graphs”. In: International Journal of Computer
Mathematics 90.11 (2013), pp. 2259-2264. DOI: 10.1080/00207160 .
2013.778984.

M. Onus, A. W. Richa, and C. Scheideler. “Linearization: Locally Self-
Stabilizing Sorting in Graphs”. In: Proceedings of the 9th Workshop
on Algorithm Engineering and Experiments (ALENEX), New Orleans,
Louisiana, USA. STAM, 2007. poI: 10.1137/1.9781611972870. 10.

G. Pandurangan, P. Raghavan, and E. Upfal. “Building low-diameter
peer-to-peer networks”. In: IEEFE Journal of Selected Areas in Commu-
nications 21.6 (2003), pp. 995-1002. DOI: 10.1109/JSAC.2003.814666.

151

https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/160551.160553
https://doi.org/10.1201/9781420035179
https://doi.org/10.1145/248052.248106
https://doi.org/10.1006/jpdc.1998.1446
https://doi.org/10.1007/11549468_73
https://doi.org/10.1016/j.tcs.2012.08.029
https://doi.org/10.1145/1273340.1273350
https://doi.org/10.1080/00207160.2013.778984
https://doi.org/10.1080/00207160.2013.778984
https://doi.org/10.1137/1.9781611972870.10
https://doi.org/10.1109/JSAC.2003.814666

Bibliography

[RDO1]

[RLS02]

[RPKSO]

[RS04a]

[RS04b)]

[RS97]

[RSS11]

[RSS86]

[Sam89]

[SB15]

152

A. 1. T. Rowstron and P. Druschel. “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems”.
In: IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), Heidelberg, Germany. Vol. 2218. Lecture Notes in
Computer Science. Springer, 2001, pp. 329-350. DOI: 10.1007/3-540-
45518-3_18.

R. Rodrigues, B. Liskov, and L. Shrira. “The design of a robust peer-
to-peer system”. In: Proceedings of the 10th ACM SIGOPS FEuropean
Workshop, Saint-Emilion, France. ACM, 2002, pp. 117-124. por: 10.
1145/1133373.1133396.

S. M. Reddy, D. K. Pradhan, and J. G. Kuhl. Directed graphs with
minimum diameter and mazximum connectivity. Tech. rep. School of
Engineering, Oakland University, 1980.

C. Riley and C. Scheideler. “A Distributed Hash Table for Computational
Grids”. In: Proceedings of the 2004 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), Santa Fe, New Mexico, USA.
IEEE Computer Society, 2004. DOI: 10.1109/IPDPS.2004.1302971.

C. Riley and C. Scheideler. “Guaranteed broadcasting using SPON:
supervised P2P overlay network”. In: International Zurich Seminar on
Communications, 2004. 2004, pp. 172-175.

S. Rajasekaran and S. Sahni. “Sorting, Selection, and Routing on the
Array with Reconfigurable Optical Buses”. In: IEEE Transactions on
Parallel and Distributed Systems 8.11 (1997), pp. 1123-1132. por: 10.
1109/71.642947.

A. W. Richa, C. Scheideler, and P. Stevens. “Self-Stabilizing De Bruijn
Networks”. In: Proceedings of the 13th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS), Grenoble,
France. Vol. 6976. Lecture Notes in Computer Science. Springer, 2011,
pp- 416—-430. poI: 10.1007/978-3-642-24550-3_31.

D. Rotem, N. Santoro, and J. B. Sidney. “Shout echo selection in
distributed files”. In: Networks 16.1 (1986), pp. 77-86. DOIL: 10.1002/
net.3230160108.

H. Samet. “Hierarchical Spatial Data Structures”. In: Proceedings of the
1st Symposium on Design and Implementation of Large Spatial Databases
(SSD), Santa Barbara, California, USA. Vol. 409. Lecture Notes in
Computer Science. Springer, 1989, pp. 193-212. DOI: 10.1007/3-540-
52208-5_28.

G. Sharma and C. Busch. “Distributed Queuing in Dynamic Networks”.
In: Parallel Processing Letters 25.2 (2015), 1550005:1-1550005:17. DOTI:
10.1142/5012962641550005X.

https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1145/1133373.1133396
https://doi.org/10.1145/1133373.1133396
https://doi.org/10.1109/IPDPS.2004.1302971
https://doi.org/10.1109/71.642947
https://doi.org/10.1109/71.642947
https://doi.org/10.1007/978-3-642-24550-3_31
https://doi.org/10.1002/net.3230160108
https://doi.org/10.1002/net.3230160108
https://doi.org/10.1007/3-540-52208-5_28
https://doi.org/10.1007/3-540-52208-5_28
https://doi.org/10.1142/S012962641550005X

Bibliography

[SLOO]

[SMO2]

[SN04]

[SRO5]

[SS05]

[SS09]

[9S93]

[SS094]

[SSS15]

[SSS16]

N. Shavit and I. Lotan. “Skiplist-Based Concurrent Priority Queues”.
In: Proceedings of the 2000 IEEE International Parallel € Distributed
Processing Symposium (IPDPS), Cancun, Mezico. IEEE Computer
Society, 2000, pp. 263-268. DOL: 10.1109/IPDPS. 2000 .845994.

E. Sit and R. T. Morris. “Security Considerations for Peer-to-Peer
Distributed Hash Tables”. In: Peer-to-Peer Systems, First International
Workshop (IPTPS), Cambridge, MA, USA. Vol. 2429. Lecture Notes in
Computer Science. Springer, 2002, pp. 261-269. DOI: 10.1007/3-540-
45748-8_25.

R. C. Steinke and G. J. Nutt. “A unified theory of shared memory
consistency”. In: Journal of the ACM 51.5 (2004), pp. 800-849. DOI:
10.1145/1017460.1017464.

A. Shaker and D. S. Reeves. “Self-Stabilizing Structured Ring Topology
P2P Systems”. In: Proceedings of the 5th IEEE International Conference
on Peer-to-Peer Computing (P2P), Konstanz, Germany. IEEE Computer
Society, 2005, pp. 39—46. DOI: 10.1109/P2P.2005.34.

C. Schindelhauer and G. Schomaker. “Weighted Distributed Hash Ta-
bles”. In: Proceedings of the 17th Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), Las Vegas, Nevada, USA. ACM,
2005, pp. 218-227. DOL: 10.1145/1073970.1074008.

C. Scheideler and S. Schmid. “A Distributed and Oblivious Heap”. In:
Automata, Languages and Programming, 36th Internatilonal Colloquium
(ICALP), Rhodes, Greece. Vol. 5556. Lecture Notes in Computer Science.
Springer, 2009, pp. 571-582. DOI: 10.1007/978-3-642-02930-1_47.

S. Sur and P. K. Srimani. “A self-stabilizing algorithm for coloring
bipartite graphs”. In: Information Sciences 69.3 (1993), pp. 219-227.
DOI: 10.1016/0020-0255(93)90121-2.

Y. Shibata, M. Shirahata, and S. Osawa. “Counting Closed Walks in
Generalized de Bruijn Graphs”. In: Information Processing Letters 49.3
(1994), pp. 135-138. DOI: 10.1016/0020-0190 (94)90090-6.

C. Scheideler, A. Setzer, and T. Strothmann. “Towards Establishing
Monotonic Searchability in Self-Stabilizing Data Structures”. In: Proceed-
ings of the 19th International Conference on Principles of Distributed
Systems (OPODIS), Rennes, France. Vol. 46. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2015, 24:1-24:17. bo1: 10.4230/LIPIcs.
0PODIS.2015.24.

C. Scheideler, A. Setzer, and T. Strothmann. “Towards a Universal Ap-
proach for Monotonic Searchability in Self-stabilizing Overlay Networks”.
In: Proceedings of the 30th International Symposium on Distributed Com-
puting (DISC), Paris, France. Vol. 9888. Lecture Notes in Computer
Science. Springer, 2016, pp. 71-84. DOI: 10.1007/978-3-662-53426~
7_6.

153

https://doi.org/10.1109/IPDPS.2000.845994
https://doi.org/10.1007/3-540-45748-8_25
https://doi.org/10.1007/3-540-45748-8_25
https://doi.org/10.1145/1017460.1017464
https://doi.org/10.1109/P2P.2005.34
https://doi.org/10.1145/1073970.1074008
https://doi.org/10.1007/978-3-642-02930-1_47
https://doi.org/10.1016/0020-0255(93)90121-2
https://doi.org/10.1016/0020-0190(94)90090-6
https://doi.org/10.4230/LIPIcs.OPODIS.2015.24
https://doi.org/10.4230/LIPIcs.OPODIS.2015.24
https://doi.org/10.1007/978-3-662-53426-7_6
https://doi.org/10.1007/978-3-662-53426-7_6

Bibliography

[SSW02]

[SSW03]

[STO5]

[ST16a]

[ST16b)]

[ST18]

[ST97]

[STM15]

[Sto+01]

[SZ00]

154

K. Schlude, E. Soisalon-Soininen, and P. Widmayer. “Distributed Highly
Available Search Trees”. In: Proceedings of the 9th International Col-
loguium on Structural Information and Communication Complezity
(SIROCCO), Andros, Greece. Vol. 13. Proceedings in Informatics. Car-
leton Scientific, 2002, pp. 259-274.

K. Schlude, E. Soisalon-Soininen, and P. Widmayer. “Distributed Search
Trees: Fault Tolerance in an Asynchronous Environment”. In: Theory
of Computing Systems 36.6 (2003), pp. 611-629. pOI: 10.1007/s00224~
003-1121-7.

H. Sundell and P. Tsigas. “Fast and lock-free concurrent priority queues
for multi-thread systems”. In: Journal of Parallel and Distributed Com-
puting 65.5 (2005), pp. 609-627. DOI: 10.1016/j.jpdc.2004.12.005.

N. Shavit and G. Taubenfeld. “The computability of relaxed data struc-
tures: queues and stacks as examples”. In: Distributed Computing 29.5
(2016), pp. 395-407. DOI: 10.1007/s00446-016-0272-0.

G. Siegemund and V. Turau. “PSVR - Self-stabilizing Publish /Subscribe
Communication for Ad-Hoc Networks (Short Paper)”. In: Proceedings of
the 18th International Symposium on Stabilization, Safety, and Security
of Distributed Systems (SSS), Lyon, France. Vol. 10083. Lecture Notes
in Computer Science. 2016, pp. 346-351. DOI: 10.1007/978-3-319-
49259-9_27.

G. Siegemund and V. Turau. “A Self-Stabilizing Publish/Subscribe
Middleware for IoT Applications”. In: ACM Transactions on Cyber-
Physical Systems 2.2 (2018), 12:1-12:26. DOI: 10.1145/3185509.

N. Shavit and D. Touitou. “Elimination Trees and the Construction
of Pools and Stacks”. In: Theory of Computing Systems 30.6 (1997),
pp. 645—670. DOI: 10.1007/s002240000072.

G. Siegemund, V. Turau, and K. Maamra. “A self-stabilizing pub-
lish/subscribe middleware for wireless sensor networks”. In: 2015 In-
ternational Conference and Workshops on Networked Systems, (Net-
Sys), Cottbus, Germany. IEEE Computer Society, 2015, pp. 1-8. DOT:
10.1109/NetSys.2015.7089067.

I. Stoica, R. T. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. “Chord: A scalable peer-to-peer lookup service for internet appli-
cations”. In: Proceedings of the 2001 ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM), San Diego, CA, USA. ACM, 2001, pp. 149-160. DOI:
10.1145/383059.383071.

N. Shavit and A. Zemach. “Combining Funnels: A Dynamic Approach to
Software Combining”. In: Journal of Parallel and Distributed Computing
60.11 (2000), pp. 1355-1387. DOI: 10.1006/jpdc.2000.1621.

https://doi.org/10.1007/s00224-003-1121-7
https://doi.org/10.1007/s00224-003-1121-7
https://doi.org/10.1016/j.jpdc.2004.12.005
https://doi.org/10.1007/s00446-016-0272-0
https://doi.org/10.1007/978-3-319-49259-9_27
https://doi.org/10.1007/978-3-319-49259-9_27
https://doi.org/10.1145/3185509
https://doi.org/10.1007/s002240000072
https://doi.org/10.1109/NetSys.2015.7089067
https://doi.org/10.1145/383059.383071
https://doi.org/10.1006/jpdc.2000.1621

Bibliography

[SZ99]

[THOG]

[THSO07]

[YT10]

[Zha-+04]

N. Shavit and A. Zemach. “Scalable Concurrent Priority Queue Al-
gorithms”. In: Proceedings of the 18th Annual ACM Symposium on
Principles of Distributed Computing (PODC), Atlanta, Georgia, USA.
ACM, 1999, pp. 113-122. por: 10.1145/301308.301339

S. Tirthapura and M. Herlihy. “Self-Stabilizing Distributed Queuing”.
In: IEEE Transactions on Parallel and Distributed Systems 17.7 (2006),
pp. 646-655. DOI: 10.1109/TPDS . 2006 . 94.

E. Tanin, A. Harwood, and H. Samet. “Using a distributed quadtree
index in peer-to-peer networks”. In: The VLDB Journal 16.2 (2007),
pp. 165-178. DOI: 10.1007/s00778-005-0001-y.

Y. Yamauchi and S. Tixeuil. “Monotonic Stabilization”. In: Proceedings
of the 14th International Conference on Principles of Distributed Systems
(OPODIS), Tozeur, Tunisia. Vol. 6490. Lecture Notes in Computer
Science. Springer, 2010, pp. 475—490. DOI: 10.1007/978-3-642-17653~
1_34.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz. “Tapestry: a resilient global-scale overlay for service
deployment”. In: IEEE Journal on Selected Areas in Communications
22.1 (2004), pp. 41-53. DOI: 10.1109/JSAC.2003.818784.

155

https://doi.org/10.1145/301308.301339
https://doi.org/10.1109/TPDS.2006.94
https://doi.org/10.1007/s00778-005-0001-y
https://doi.org/10.1007/978-3-642-17653-1_34
https://doi.org/10.1007/978-3-642-17653-1_34
https://doi.org/10.1109/JSAC.2003.818784

List of Algorithms and Figures

List of Algorithms

1. Handling Enqueue & Dequeue Requests in the Distributed Queue . . 24
2. Handling Push & Pop Requests in the Distributed Stack 30
3. Handling Join Requests, 35
4. Handling Leave Requests 38
5. Insert & DeleteMin Requests in the Distributed Priority Queue . .. 46
6. Protocol for Distributed k-Selection 49
7. Distributed Sortingo 53
8. Distributed Priority Queue for an Arbitrary Amount of Priorities . . 57
9. The BuildList Protocol L. 74
10. The BuildRing Protocolo oo 7
11. The Routing Algorithm DBSearch 85
12. The g-neighborhood sub-protocol of BuildGDB 88
13. The Action EstimateSqrtN 89
14. The De Bruijn Sub-Protocol 92
15. Quad Division Algorithm 105
16. Protocol BuildQT 109
17. The SearchQT Protocol 113
18. The Supervisor Protocol 123
19. The BuildSR Protocol 125
20. Unsubscribe(u, t) handled by the supervisor s 130
21. Flooding performed at nodeuw eV 132
22. The Self-Stabilizing Publication Protocol 134

List of Figures

2.1. An LDB and it corresponding Aggregation Tree 15
3.1. Example for Phases 1-3 for Handling Enqueue/Dequeue Requests . . 26
3.2. Processing Join Requests L. 37
6.1. Tllustration of Primitives for Overlay Networks 71
6.2. Possible Legitimate State for BuildList 74
6.3. Illustration of the Actions Timeout and Linearize 75
6.4. Tllustration of the additional Actions of BuildRing 76

157

List of Figures

158

7.1.
7.2.

8.1.
8.2.
8.3.
8.4.

9.1.
9.2.
9.3.

Standard and generalized De Bruijn Graph Examples 81
Introduction Rules for the ¢g-Neighborhood Sub-Protocol 89
IMlustration of QuadDivision 106
Area Tree and Legitimate State for the Quadtree 107
Examples for SearchQT Messages 112
Illustration for the 3-Dimensional Equivalent of QuadDivision. 115
Example for a Skip Ring L. 119
Example for a Trie and its corresponding Patricia trie 132
Patricia Tries for two Subscribers L. 133

	Abstract
	Zusammenfassung
	Preface
	Contents
	Introduction
	Distributed Data Structures
	Preliminaries
	Model
	Aggregation Tree
	Distributed Hash Tables
	General Notions from Probability Theory

	Distributed Queues and Stacks
	Basic Notation and Semantics
	Related Work
	Distributed Queue
	Enqueue and Dequeue
	Analysis

	Distributed Stack
	Push and Pop
	Analysis

	Node Dynamics
	Join
	Leave
	Analysis

	Distributed Priority Queues and k-Selection
	Basic Notation and Semantics
	Related Work
	Constant Priorities
	Insert and DeleteMin
	Analysis

	Distributed k-Selection
	Phase 1: Sampling
	Phase 2: Reducing Candidates to sqrt(n)
	Phase 3: Exact Computation

	Arbitrary Priorities
	Insert and DeleteMin
	Analysis

	Conclusion and Outlook of Part I

	Self-Stabilizing Overlay Networks
	Preliminaries
	Model
	Self-Stabilization and Primitives for Overlay Networks
	Related Work
	Self-Stabilizing Sorted Lists
	Self-Stabilizing Sorted Rings

	Self-Stabilizing Generalized De Bruijn Graphs
	Generalized De Bruijn Graphs
	Related Work
	Network Topology and Routing
	Network Topology
	Routing

	Protocol BuildGDB
	Protocol Description
	Analysis

	Self-Stabilizing Quadtrees
	Monotonic Searchability
	Related Work
	Quadtrees
	Self-Stabilizing Quadtrees
	Protocol BuildQT
	Analysis

	Routing
	Protocol SearchQT
	Analysis

	Self-Stabilizing Octrees

	Self-Stabilizing Publish-Subscribe Systems
	Supervised Skip Rings
	Related Work
	Self-Stabilizing Supervised Skip Rings
	Supervisor Protocol
	Subscriber Protocol
	Analysis

	Self-Stabilizing Publish-Subscribe Systems
	Protocol Description
	Analysis

	Conclusion and Outlook of Part II

	Bibliography
	List of Algorithms and Figures

