'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

Faculty of Computer Science, Electrical Engineering
and Mathematics

Dissertation

Empirical Analysis of Eye
Movements during Code Reading:

Evaluation and Development

of Methods

by

TERESA BUSJAHN

April 2021

Abstract. Code reading is a fundamental part of program comprehension. While
studying eye movements has provided valuable insights into natural-language text com-
prehension for decades, its application in program comprehension is fairly recent and
brings about many methodological challenges. This work evaluates and adapts exist-
ing methodological approaches, resulting in a customized event detection and a novel
correction for spatial error.

The suitability of the proposed methodology is demonstrated with two exemplary
research questions. First, it is analyzed whether natural-language text and source
code are read differently. The second question concerns differences in how novices and
experts read programs. To obtain a comprehensive picture of code reading, a wide
range of established as well as specifically devised measures is used for analysis, e.g.
sequence alignment is adapted into an instrument for examining reading approaches.
In some regards novices already read source code differently than natural-language text,
for experts the differences are even more pronounced. Participants look at a greater
proportion of natural-language text than of source code. Novices partly exhibit a
different code reading behavior than experts, e.g. the latter attend to the main-method
much sooner.

Eye movements provide manifold information to deepen the understanding of code
reading. The developed methodology can be applied to many questions in software
engineering and programming education.

Zusammenfassung. Das Lesen von Quelltext ist ein essentieller Teil des Programm-
verstehens. Wéhrend die Analyse von Blickbewegungen seit Jahrzehnten wertvolle Ein-
blicke in das Verstehen von natiirlichsprachlichem Text liefert, ist sie beim Programm-
verstehen relativ neu und es ergeben sich eine Reihe methodischer Probleme. Diese
Arbeit evaluiert und adaptiert methodische Ansétze, so werden u.a. eine spezifische
Ereignisdetektion und ein neues Korrekturverfahren fiir raumliche Fehler entwickelt.
Die Eignung der beschriebenen Methodik wird mit zwei exemplarischen Forschungsfra-
gen demonstriert. Zunéchst wird analysiert, ob natiirlichsprachlicher Text und Quell-
text unterschiedlich gelesen werden. Die zweite Frage betrifft die Unterschiede zwi-
schen Anfinger:innen und Expert:innen. Fir ein umfassendes Bild wird ein breites
Spektrum etablierter als auch speziell entwickelter Analysemafle eingesetzt, z.B. Se-
quenzalignment zur Beschreibung von Leseansétzen.

Bereits Anfianger:innen lesen Quelltext teilweise anders als natiirlichsprachlichen Text,
bei Expert:innen sind die Unterschiede noch ausgepriagter. Bei natiirlichsprachlichem
Text werden mehr Bereiche betrachtet als bei Programmen. Anfinger:innen lesen
Quelltext zum Teil anders als Expert:innen, so befassen sich letztere viel frither mit
der main-Methode.

Blickbewegungen liefern reichhaltige Informationen iiber das Quelltextlesen. Die ent-
wickelte Methodik lasst sich auf viele Fragen im Bereich der Softwaretechnik und der
Programmierausbildung anwenden.

To my family

A huge thank you to my advisor Carsten Schulte for letting me pursue my research interests
and all those great conversations. I'm also grateful to my reviewers and committee members
Bonita Sharif, Erik Barendsen, Sascha Tamm, Johannes Magenheim, and Harald Selke. Sascha
Tamm additionally provided valuable guidance throughout the work on this thesis.

Thanks also to everyone else who contributed to this work, of which I'd like to mention in par-
ticular (in alphabetical order): Adrian VoSkiihler, Andrew Begel, Bonita Sharif, Hana Vrzakova,
Michael Hansen, Paul Orlov, Roman Bednarik, and Sebastian Lohmeier. I'd also like to thank
the participants of my study and of the first EMIP workshops for their input. Furthermore, I
greatly enjoyed the exchange with colleagues at Freie Universitéit Berlin, University of Applied
Sciences Berlin, and University of Eastern Finland.

I could not have accomplished this work without the constant support of my husband Riidiger,
my family, especially my dad, and Inga Semmler. Finally, I'd like to mention that my son is
awesome.

vii

viii

Contents _

1__Introductionl 1
L1 Motivation| e 1
[1.1.1 The importance of code reading and understandingf. 1

[1.1.2 Code reading in computer science education|. 3

(LL1.3 The nature of source codel Lo 6

[1.2 Research questions| o 7
3 Structure of thisworkl 8

2 Background| 9
2.1 Why using gaze| 9
2.2 The human eye and its movements| 11
2.3 Recording eye movements| L. 14
2.4 Eye movements in programming| 15

3 EMCR study description| 21
... 21
[3.2 Study designl 21
[3.2.1 NTreading| 23

[3.2.2 SCreadingl 24

3.2.2.1 Novice programmers|., 26

3.2.2.2 Expert programmers|. oo 27

[3.3 Participants| 29
[3.3.1 Novice programmers|« . o it e e 29

[3.3.2 Expert programmers| 30

4 Detecting oculomotor events| 35
4.1 Introductionl. 35
4.2 Choosing a suitable approach| oo o 00000 35
[4.2.1 Choosing an algorithm|. 36

[4.2.2 Adapting the algorithm| 0oL 38

4221 Durationl oo 38

[4.2.2.2 Dispersion| 39

[4.2.3 Setting parameters| 41

42371 Durationl o 41

4.2.3.2 Dispersion| 42

4.5 Bvent detection on the EMCR datal 42
[4.3.1 Comparing algorithm variants|. 43

ix

[4.3.2 Comparing parameter variants| 44

[4.3.3 Post-Processing|. 45

4.4 Conclusionl e e e e 47
[Eye tracking error] 51
b.l Introductionl. e e 51
5.2 Dataquality]. 52
[.2.1 Accuracy, precision, valid samples] 0000, 52
[0.2.2 FError sources e e e e e 53
[5.2.2.1 Factors concerning the recording system and environment|. . . . 53

[9.2.2.2 Factors concerning the participant| o4

0.2.3 Conclusionl 55

5.3 Existing approaches for addressing error|o 55
[(5.3.1 Error debilitation and data removall 56
[5.3.1.1 Stimulus preparation| 51§

h.3.1.2 Recalibrationl. o o 56

b.3.1.3 Removing problematicdatal. 58

b.3.2 FError correctionl 58
b.3.2.1 Source-centric methods o000 59

(322 Data-centricmethodso 60

0.3.2.2.1 Manual correctionl 60

0.3.2.2.2 Automatic correction| L. 61

[5.3.2.2.2.1 General-purpose approaches|. 61

[5.3.2.2.2.2 Task-specific approaches for (code) reading| . . . 65

B33 Conclusionl o 70

[5.4 Evaluation approaches for error correction| 71
b4l Realdatal 71
[p.4.1.1 Comparison with manual correction| 71

b.4.1.2 Reference locations| 72

h4.1.3 Visualizationsl o 72

b.4.1.4 Comparison with another correction method| 73

5.4.1.5 Further measured 73

b.4.2 Artificial datal. Lo 73
B.43 Conclusionl e 73

D5 Conclusionl L e e 74
6 _Error correctionl 75
6.1 Introductionl. e 75
[6.2 Correction approaches| 75
6.2.1 Nussli 2011 o . o 0 e 75
6.2.2 Lohmeier 2015 L 76
[6.2.3 Novel approach| 76
6.2.3.1 Frror functionl L L 76

6.2.3.2 Finding parameters| oL 77

6.2.3.3 Adapting AOIs|. 78

6.2.3.4 Variants for evaluationl 78

6.3 Evaluation using reference locations| 000 82
BT SEMUll - -« o v e e e 82

6.3 1.1 Textl. e 83

6.3.1.2 Gridl. 84

[6.3.3 Analysis procedure and results| o000 84
[6.3.3.1 Reference Iocations 85

6.3.32 Frrorsl. 87

6.3.3.3 Correctionl e 91

[6.3.4 Chosen approaches| 92
6.3.5 Conclusion] e 94

6.4 Evaluation using manually corrected data|. 94
641 Datal. 94
[6.4.2 Analysis procedure and results] o000 94
[6.4.3 Plausibility checkl 0o o 97
6.44 Conclusion| e 97

6.5 Evaluation using artificial data| 0oL 97
BET Datal . -« o o v o vt 98
[6.5.2 Analysis procedure and results| 00000 98

6.6 Conclusionl e e 99
|7 Analysis procedure) 101
CIOVEIVIEW] .« . o o o o e e e 101
[(.2 Areas of interestl e e e 101
7.3 Preparation of data for statistical analysis| 103
[7.3.1 Comprehension questions| 103
[((.3.2 Ivent detection|. L Lo 103
[(.3.3 FError correction| 103
[7.3.4 AOIsequences| 104

I8 Analysis measures| 107
8.1 Introductionl. e e 107
8.2 Model behaviors] 107
[8.3 Single-event-based measures| oL 111
8.3.1 Fixation duration|. L Lo 111
8.3.2 Number of fixations| L Lo 111
[8.3.3 Saccadic amplitudel.o oo 112
[8.3.4 AOIl coverage| 112
8.3.5 First visit tomain| Lo 113

8.4 Event-sequence-based measures| 114
[8.4.1 Reading direction|. 114
[8.4.2 Model occurrence and model similarity|. 115
[8.4.2.1 Sequence alignment| oL, 116

[8.4.2.2 Types ot pairwise alignments| 117

[8.4.2.3 Adaption for EMCR datal 118

8.5 Trial-based measuresl 122
85.1 Trial duration|. L 122
[8.5.2 Correctness of comprehension question|. 122

[8.6 Summary of analyses measures|o 122

Xi

|9 Analysis results| 125

9.1 Introductionl. L e e 125
9.2 Single-event-based measures| L Lo 125
9.2.1 Fixation duration|. L L 125

0.2.2 Number of fixationsl 130

[9.2.3 Saccadic amplitude]. 131

9.2.4 AOI coveragel 132

9.2.5 First visit tomain| 141

9.3 Event-sequence-based measures|o oo 143
[9.3.1 Reading direction|. L 143

[9.3.2 Model occurrence and model similarity|. 146

0.4 Trial-based measures] 155
9.4.1 Trial duration|.o 155

[9.4.2 Correctness of comprehension question|. 157

9.5 Threats to validity] 158
(10 Conclusion| 161
10.1 Synopsis| e e e e 161
[10.1.1 Natural-language text reading|. 161

(10.1.2 Research question 1| 161

(10.1.3 Research question 2| oo 162

[10.2 Reflection on methods and analysis measures| 164
[10.3 Discussion and future workl 166
IBibliography| 169
|[List of figures| 181
[List of tables/ 185
G Fabl {ations 189
|A Appendix]| 191
[A. 1 Questionnaires| e e 191
ALl Novices o e 191

[A.1.2 Experts) o 193

[A.2 Natural-language stimulil o oo 195
A2 1T NTI . . e 195

B22 NT2 . oo oo o 196

A2.3 NT3l . . e 196

IA.3 Source code stimulil 197
[A3.1 Novices o e 197

[A311 LI SCI|. e 197

[A3.1.2 L1 _SC2. e 198

[A.3.1.3 L1 _SC3|. e 199

[A3.1.4 L3 SCI|. e 200

[A.3.1.5 L5 _SC3|. e 201

[A.3.2 Experts| e 202
.................................. 202

A322 SC2 . . . e 203

xii

A3.2.3 SC3l

|A.4 Expert interviews|

xiii

Xiv

Introduction _

1.1 Motivation

1.1.1 The importance of code reading and understanding

Program comprehension plays an integral role in software engineering as well as in programming
education. It takes up a considerable part of the time and mental resources of programmers.
Understanding source code includes the perception of its text, extracting information about
the execution and algorithmic idea, and the construction of a mental representation using prior
knowledge. Reading and understanding a source code are highly intertwined. When reading,
the eyes do not merely move over the text to identify written characters, but due to the lim-
ited capacity of the working memory, information processing and filtering already occur during
reading, so only information deemed relevant will be processed further. Furthermore, decisions
are taken about where to focus next. Thus, reading is the first step in program comprehension
[Bente, 2004, 309], |Busjahn et al., 2011, 1], |Busjahn & Schulte, 2013, 3,4,9], |Crosby et al.,
2002, 58], [Deimel & Navedal 1990, 1,5,7], [Dubochet| 2009, 177] , [Guéhéneuc, 2006, 1], [Pen-
nington, 1987, 296], [Schulte, 2007, 307-313], [Schulte, 2008al 150-152], [Schulte et al., 2010,
69,70], |[Sharif & Shaffer} |2015, 807], [Spinellis, 2003a, xxii,1].}

Reading can be defined as “the ability to extract visual information from the page and
comprehend the meaning of the text” [Rayner et al., 2012, 19]. Even though the work of
Rayner et al. [2012] on the psychology of reading is mainly concerned with “normal” silent
reading of natural-language text, this description also applies to source code. Code reading and
comprehension cannot be separated and many program comprehension models draw on empirical
studies on programmers carrying out reading tasks [Busjahn & Schulte, 2013, 6]. The terms code
reading and understanding are even occasionally used interchangeably, sometimes an additional
distinction is made to tracing, i.e. following the execution as opposed to understanding the
algorithmic purpose of the code. This work focuses on the process of reading, not its product, the
resulting mental representation. While comprehension is an internal cognitive process, reading
has a physical component that can be observed and measured, e.g. with eye tracking [Busjahn
& Schultel 2013, 6], [Raymond, 1991, 8]. The term code reading instead of program reading is
used to encompass source code in all stages, single syntax constructs, code snippets, or complete
programs of any size.

'For an overview of models that aim to conceptualize program comprehension, see [Mayrhauser & Vans (1994,
Schulte et al.| [2010], and |Storey| [2006].

1.1 MOTIVATION

Code reading is a very frequent activity during programming, which occurs in various con-
texts and at many stages in the software life cycle. Rooksby et al. [2006, 210] even call it “an
unavoidable feature of programming work”. Nevertheless, programming education and software
engineering largely focus on writing and code reading is hardly brought up in literature and re-
search. As a consequence, little is known about how programmers actually read. Furthermore,
the skill of reading is often taken for granted in programming. Deeper knowledge about how
programmers read source code can serve to improve teaching as well as support professional
programmers [Aschwanden & Crosby}, 2006, 6], [Busjahn & Schulte, 2013, 3,4,9,10], [Busjahn
et al., 2014c| 3,8,9], [Busjahn et al., 2015a, 263,264], [Crosby & Stelovskyl, [1990} 24], [Deimel Jr.|
1985, 5], [Deimel & Naveda, 1990, 1,5,6], [Kolling & Rosenberg, 2001}, 34], [Mannilal 2007, 140],
[Nelson et al., [2017), 42,43], [Rooksby et all 2006, 210], [Schultel 2007, 307], [Sharif & Shaffer,
2015|, [Spinellis, 2003a;, xxi,1], [Xie et al., |2019, 12].

Programming tasks in which code reading is vital include writing code, debugging, modifying,
and extending programs, testing, and code reviews. Especially for maintenance, reading can be
considered a key activity, since despite the existence of design documents, it is necessary to
understand existing code in order to find a suitable location for a modification, be it to correct
errors, extend, or adapt the program. Code is read while under construction, but also after
delivery. Programmers read by themselves as well as collaboratively, they read their own code,
as well as that from others, and they read with varying goals, e.g. complete understanding
or finding a bug. For example, one’s own code is read during actively writing and refining a
program, while debugging, understanding compiler messages, and to refresh details after taking
a break. Programmers externalize their thoughts into source code and later connect different
ideas through reading. Thus in programming, writing and reading are strongly interwoven.
Code from others is read for maintenance and review, but also for professional development or
when looking for a design for a particular problem. During pair programming one programmer
often reads code while the other writes it. Additionally, code by colleagues or fellow students is
read in order to help overcoming programming difficulties. Reading code from others, e.g. in
program libraries or repositories, is also an opportunity to deepen the understanding of the craft
and improve skills [Busjahn & Schulte, [2013], [Crosby et al., [2002} 58], [Deimel Jr., 1985, 5-8],
[Deimel & Navedal, 1990, 5], [Fan, 2010} 2,7,11], [Mayrhauser & Vans, 1994, 44,45], [Raymond,
1991}, 3], [Rooksby et al., |2006|, 198,199,202,208], [Schulte, 2007, 307,317], [Schulte, [2008al, 150],
[Spinellis, [2003a;, xxii,1-10,17], [Spinellis, [2003b, 85-88], [Uwano et al., 2007, 2290].

Just as natural-language documents, source code can serve as memory artifact. By means of
code, knowledge can be stored for later use and transferred between programmers |[Dubochet,
2009, 176]. Rooksby et al. [2006] present an ethnomethodological study on reading during
software development. By observing and interviewing professional programmers during their
normal everyday work at a software company, they detected a multitude of situations in which
reading occurred. Besides the already mentioned activities like writing code, debugging, and
testing, they also found that code is read when programmers are searching the internet, reading
emailed information, reading from textbooks, writing documentation, and sharing information
on whiteboards.

Reading source code is also essential when learning a programming language, regardless of
whether it is the first or an additional one. Programming requires a lot of predefined knowledge
that can be acquired by reading, e.g. when new elements of a language, library or API are
introduced, but also good programming style and standard solutions to programming problems.
Learners read examples presented by the teacher and in textbooks, as well as code from fel-
low students. Reading programs has an educational value both for students and professional
programmers, since good example code allows to learn syntax as well as good coding style [Bus-
jahn & Schulte, [2013], [Campbell & Bolker, 2002, 23], [Crosby et al.l 2002, 58], |[Deimel Jr.,

2

CHAPTER 1. INTRODUCTION

1985, [Deimel & Navedal {1990, 5,6,27], [Kimura, (1979], [Ko6lling & Rosenberg), 2001} 34], [Lister
et al.l 2004, 137], |Spinellis, 2003a, 2-6]. There are also a variety of learning and diagnostic
tasks, which require code reading [Busjahn & Schulte, 2013, 9,10], [Deimel Jr., [1985], [Deimel &
Navedal, 1990, 29-47], [Lister et al., [2004], [Mannilaj, [2007] (see Code reading in computer
science education for further discussion of this topic).

Programming requires a set of diverse skills, of which the ability to read and understand
a program is a crucial one [Busjahn & Schultel [2013] 3,7,9], |[Deimel Jr., (1985, 5], |[Deimel &
Naveda, 1990, 1,21,22], [Kimura, [1979|, [Spinellis, 2003a), xxii], or as an IT-security consulting
service puts it: “Reading source code is like the x-ray goggles of hacking. The more you are
able to see, the more bugs may appear under the hood” |[Recurity Labs, 2020]. [Spinellis [2003a,
3] encourages programmers to study existing code as a way to advance programming skills and
points out that thanks to open-source software there is ample reading material [Spinellis| [2003b,
86]. A competent code reader probably possesses several different reading strategies, depending
on the purpose [Deimel Jr., 1985, 6-8|, [Deimel & Naveda, 1990, 11-14], [Schulte et al.l 2010} 83].
Skilled code reading is especially relevant for maintenance and poor reading skills can result in
serious financial consequences. If the effort to sufficiently understand a piece of existing code
is too high, the respective software component sometimes ends up being discarded or rewritten
[Deimel Jr., (1985, 5], [Dubochet| 2009, 177], |[Fan, 2010, 7,11]. Reading competence also allows
to better find and evaluate code that can be reused or adapted to bypass some coding altogether.
Reading code can also provide examples of practices to avoid [Spinellis, 2003a, 3,9]. Partly it
is also important to know what part of a program not to read [Raymond, 1991, 4]. Reading is
a very effective way to find problems in code and the vast majority of errors can be ousted by
inspection, better than by testing. However, code is mainly read in order to add functionality,
modify existing features, adapt it to new environments and requirements, or for refactoring, not
to fix errors |Spinellis, [2003a, xxii,7], [TechWell Contributor, 2001].

In the foreword to [Spinellis] book “Code Reading: The Open Source Perspective”, Dave
Thomas aptly further illustrates the importance of code reading:

“[T]he way to learn to write great code is by reading code. Lots of code. High-
quality code, low-quality code. Code in assembler, code in Haskell. Code written
by strangers ten thousand miles away, and code written by ourselves last week.
Because unless we do that, we’re continually reinventing what has already been
done, repeating both the successes and mistakes of the past.

I wonder how many great novelists have never read someone else’s work, how
many great painters never studied another’s brush strokes, how many skilled surgeons
never learned by looking over a colleague’s shoulder, how many 767 captains didn’t
first spend time in the copilot’s seat watching how it’s really done.

The irony is that there’s never been a better time to read code. Thanks to the
huge contributions of the open-source community, we now have gigabytes of source
code floating around the 'net just waiting to be read. Choose any language, and
you’ll be able to find source code. Select a problem domain, and there’ll be source
code. Pick a level, from microcode up to high-level business functions, and you’ll be
able to look at a wide body of source code.” |Spinellis, 2003a, xxi]

1.1.2 Code reading in computer science education

There are well founded claims to explicitly teach code reading. While students form some
reading strategies on their own, reading skills benefit from explicit development efforts. They
do not automatically improve together with advancing writing skills, as understanding existing
code partly requires different activities than writing. A competent reader has several reading

3

1.1 MOTIVATION

strategies and can switch to one deemed suitable for the current task. Without a set of several
strategies, a programmer can only resort to the few available ones, of which none might be
a fitting choice. Besides, comprehension problems might at least partly result from reading
problems. Teaching code reading can presumably attenuate some of such issues, especially when
they are systematic. Reading programs, like writing programs, should be practiced throughout
the curriculum, since its mastery takes time and effort [Busjahn & Schulte, [2013], [Busjahn
et al., 2015al 263,264], |Deimel Jr., 1985, 5-7], [Deimel & Naveda, 1990, 1,5,6,21,22], [Lister
et al., 2004} 139], [Lister et al., |2009, 165], [Mannila), 2007], [Peal, 1986, 34], [Spinellis, [2003al, 1],
[Xie et al., 2018|, [Xie et al., [2019].

Skills that gained particular interest in computer science education are tracing code, ex-
plaining its purpose in plain words, and code writing. They are regarded as distinct skills, but
feature certain dependencies [Xie et al., 2019, 205-208]. The development of these skills in novice
programmers was specifically studied by the Leeds Working Group [Lister et al., 2004] and the
BRACEIet project [Clear et al. 2011]. |Lister et al. [2004] call attention to the finding that
the problem of unsuccessful students is not necessarily that they are weak at problem-solving,
but rather missing precursor skills that relate more to code reading than writing. Some of the
core findings of the BRACEIet project were the relationships between performance on tracing,
explaining, and writing code. The ability to trace code already correlates with the ability to
write it, but the skills for code tracing and explaining combined are an even greater predictor for
writing performance. Students who are weak at tracing code often also cannot explain or write
it very well, on the other hand students who are reasonably good at code writing, usually posses
the ability to trace and explain code. A hierarchy of programming related tasks is assumed with
knowledge of basic programming constructs at the bottom, explaining code, solving Parson’s
problems, and tracing of iterative code as intermediate levels, and the ability to write non-trivial
correct code at the top. However, it is not regarded as a strict hierarchy, in which the ability
to trace precedes the ability to explain, and tracing and explaining precede the ability to write
code. Rather, for most students a minimal level of tracing and explaining skills is needed for
code writing, but by themselves are not enough to enable it |[Clear et al., [2011} 3], [Lister et al.,
2009|, [Lopez et al., 2008], [Venables et al., 2009]. Xie et al. [2019] propose and evaluate a theory
in which the four skills tracing, writing syntax, comprehending templates (reusable abstractions
of programming knowledge), and writing code with templates are learned incrementally. The
approach advocates teaching reading semantics before writing syntax, since it is the foundation
to all other skills. It further differentiates between writing correct syntax and writing meaningful
code with templates.

Busjahn & Schulte| [2013] conducted interviews with programming instructors on the role of
code reading and comprehension. The analysis shed light on different aspects of code reading in
programming education. One striking point was that educators regarded reading as important,
but seldom taught or used it directly. However, there are at least some studies and teaching
approaches that focus on code reading. Based upon a survey on literature, existing programming
courses and textbooks, Merrienboer & Krammer| [1987] illustrate three instructional strategies
for the design of introductory programming courses in high school and evaluate them. In the
Reading approach students start by understanding non-trivial, well-designed programs. The
tasks gradually become more complex, changing from using and analyzing, through modifying
and extending, to designing and writing programs. In contrast, the Fxpert and the Spiral ap-
proaches put an emphasis on writing code. The first immediately covers complex, yet motivating
problems with top-down design, while the latter is about starting with simple coding problems
and basic language constructs, then gradually becomes more complex in small incremental steps.
Merrienboer & Krammer| [1987] identify six tactics for teaching programming, i.e. specific plans
of action that are assumed to be beneficial, and assess how well they can be implemented in

4

CHAPTER 1. INTRODUCTION

each approach. Giving all tactics equal weight during the evaluation, the Reading approach
was found to be superior to the Expert and Spiral approaches and allows to better control the
processing load of students.

Selby| [2011] also surveyed approaches to teaching introductory programming and extracts
four common approaches. In code analysis students focus on reading and understanding existing
source code, before they write their own. The building blocks approach corresponds to learning
vocabulary, nouns and verbs, before constructing sentences. Simple units emphasizes mastering
solutions to small problems before applying the learned logic to more complex problems. Finally,
full systems resembles learning a foreign language by immersion. Learners work on non-trivial
problems, and concepts and language constructs are only introduced when they are needed
for the current step. Selby concludes that in order to teach programming effectively all of
these approaches should be used in combination as programming competency requires mastering
different skills and each approach allows the development of one or more of skills in a particular
manner.

As for concrete courses, [Kimura) describes a reading-first introductory programming course
as early as 1979 [Kimural |1979]. The first half of the semester was spent exclusively on reading
exercises, no algorithm design or presentation of the programming language was given. Students
were expected to learn the language by carefully studying sample programs. Only the second
half of the term was focused on writing own programs. The exam results seem to confirm
that reading can precede writing and that reading skills can be acquired by working through
example programs. Deimel Jr. [1985, 10,11] also outlines an introductory programming course
that emphasizes the study of existing programs before writing. Eventually programs are modified
and enhanced, and finally students mostly write their own programs. He compares it to learning
a natural language, where writing skills follow upon reading skills. (Campbell & Bolker| [2002]
teach introductory programming by immersion, similar to learning a foreign language. Students
start by reading, modifying, and writing about an existing program. They deal with interfaces,
architecture, and design questions early on, syntax is learned when needed. The instructors
reason that modifying well-written code is easier than writing it, and that their approach allows
to introduce real-world design issues early on. Under the rationale that students should first
read and study software artifacts, before developing them themselves, [Hilburn et al. [2011]
present the inspection of software artifacts as active learning technique in software engineering
education throughout the curriculum. Case studies are used to allow for real-world professional
practices. [Nelson et al| [2017] present a theory of program tracing knowledge together with
a comprehension-first pedagogy, which teaches and assesses tracing skills without writing or
editing source code. They introduce PLTutor, a tutorial system that allows to step through
the control flow paths of example programs. Their evaluation study showed that participants
working with PLTutor performed comparably or better than those using a sophisticated writing-
oriented tutorial.

These approaches illustrate that code reading has its place in programming education and a
number of advantages of a reading-centered approach to programming can be drawn. It allows
the use of any programming language, pseudocode, or even structured English, and the code can
be presented either on paper or in a development environment. Without having to master tools
or environments, programming logic can be addressed early on. Furthermore, code reading
facilitates the development of skills involved in debugging and helps to form the foundation
for writing programs. However, some learners do not like to learn programming on paper,
and not having immediate feedback as when programming on a computer makes this approach
impractical for independent learning. Although not suitable in every situation, there are hints
that a reading-oriented approach is especially appropriate for weaker students, as perpetual
editing, compiling, and executing can be discouraging [Selby, 2011}, 2,3]. Kimura [1979] states

5

1.1 MOTIVATION

the further benefits that students learn a given programming style before developing their own
and recognize the importance of writing readable and understandable code. However, he also
observed that students were partly frustrated with the reading-first approach, because they
perceived learning from examples as inefficient. By reading code, students can learn about
programming style, develop an intuition about what programs should look like, and therefore
avoid some writing errors. Students can also work on programs that are yet too complex for
them to write on their own and language features can be introduced in real-world contexts,
which can raise students’ motivation to learn |Campbell & Bolker, 2002, 23,24], |[Deimel Jr.|
1985|, 10,11], [Hilburn et al.,[2011], [Kolling & Rosenberg, 2001} 34]. Having received instruction
on code reading should make students better code maintainers, as well as good learners even on
the job, due to their greater ability to understand program examples [Deimel & Naveday, (1990,
6.

Deimel Jr. [1985] and Deimel & Naveda| [1990] give ample suggestions on how to include
code reading into programming education, even if the instruction is not reading-centered at all.
Besides facilitating the learning of reading strategies, reading tasks broaden the spectrum of
exercise and exam questions also with regard to code writing skills. Some advantages of reading
tasks are that they are often easy to grade, quite objective, and a quite consistent measure of
student performance. Both reports include instructions on how to construct good reading tasks,
provide a framework for reading tasks based on Bloom’s taxonomy of learning objectives, and
present an extensive list of task and question types for assessing code comprehension, including
sample exercises.

1.1.3 The nature of source code

“[P]rograms have a dual nature - they can be erecuted for effect, and they can be
read as communicative entities.” [Soloway & Ehrlich) 1984, 595]

“However, a program has two audiences:

- The computer: The instructions in a program turn the computer into a mechanism
that dictates how a problem can be solved.

- The human reader: The programmer needs to have an explanation as to why the
program solves the given problem.” [Soloway, 1986, 850,851]

“Source code is, among other things, a text to be read.” [Raymond, |1991, 3]

“In maintenance, the main role of source code is not as a compilable entity, but as a
human-readable statement of the intent and mechanism of the program.” [Raymond,
1991}, 3]

“Software source code is the definitive medium for communicating a program’s oper-
ation and for storing knowledge in an executable form. You can compile source code
into an executable program, you can read it to understand what a program does and
how it works, and you can modify it to change the program’s function.” [Spinellis,
2003al, 1]

“The original role of programming languages is that of a communication medium
between a human and a computer. Today, the life span of software has increased,
and programming teams have grown in size. As programmers need to communicate
about software, computer code has also become an important human communication
medium.” [Dubochet, 2009, 174]

CHAPTER 1. INTRODUCTION

These quotes illustrate that source code is a very special type of text, as it is directed both at
humans and computers, and it has the additional dimension of being executable. Text written
in a programming language is markedly different from text in a natural language [Busjahn et al.,
2015a;, 255]. Source code actually contains words from natural languages, e.g. keywords and
some identifiers. However, they occur in a very different setting [Blascheck & Sharif, 2019, 1].
While natural-language text is usually written in the order it is supposed to be read, in source
code the order of statements is often not the same in which they are executed. Additionally, the
order can change, e.g. when run with different parameters [Deimel & Navedal (1990, 11], [Uwano
et al., 2007, 2291]. Like natural-language text, source code can be divided into different types of
elements on different levels of abstractions, e.g. keywords and identifiers, but also constructs like
loops or functions. Source code is complex, highly abstract, and hardly contains redundancy, it
also features a formally defined structure and layout. The level of complexity between different
code areas varies substantially, e.g. between a simple assignment and a comparison with many
elements or nested structures. The number of keywords, operators, and separators is limited,
they are mostly comprised of only a few characters, and their semantic information is quite fixed,
for identifiers and literals on the other hand there are almost indefinite options (see Binkley et al.
[2012] for a detailed discussion on the impact of identifier names) [Busjahn et al., [2014al, 338],
[Busjahn et al., [2015a, 255], [Crosby & Stelovskyl 1990, 24,25,34].

The special characteristic of source code that it can be read and executed is reflected in the
Block Model, an educational model of program comprehension. The model applies the work of
Kintsch| [1998] on text comprehension, but also findings about program comprehension, learning
programming, and difficulties of novices, as well as philosophical and psychological research
on the characteristics of technical artifacts. It aims at providing vocabulary for learning and
teaching processes in programming, to facilitate planning and analyzing lessons, as well as for
research studies. As technical artifact, source code has a dual nature and comprises the aspects
of structure and function. Structure is concerned with the empirically observable and objectively
measurable properties of the program, thus its text surface and the resulting execution. Function
refers to the goal or purpose of a program. Consequently, the Block Model distinguishes three
dimensions of understanding a program text. The text surface is the external representation of
the program from which information is extracted. It is the actual code a person reads. Program
execution is the aspect which sets source code apart from other types of texts. Functions
/ goals of the program refer to the code’s intention, the algorithmic idea. Execution has a
crucial role for understanding source code and bridging execution and function is often quite
a challenge. The three dimensions are structured as a matrix with several hierarchical levels
of comprehension from single words (Atoms), to small units (Blocks), to inferences about the
Relations between Blocks, to integrating the complete program (Macrolevel) [Schulte, 2007],
[Schultel, 2008a], [Schulte, [2008b}, 115,116], [Schulte et al., 2010} 69,70].

Consequently, source code is a very special type of text and reading it warrants closer inspection.

1.2 Research questions

Motivated by the importance of code reading for program comprehension, this work aims to
deepen the knowledge about how programmers read code. At this, it concentrates on the
measurable part of code reading - the visual behavior, since many cognitive processes are reflected
in the eye movements. Two research questions (RQ) are devised to broaden insights on code
reading and demonstrate the suitability of studying visual behavior during code reading.

As argued in The nature of source code, source code is a special type of text and it is
questionable that it is read just as natural-language text. While code reading shares some aspects
with other forms of reading, several specifics emanate from the text itself [Busjahn & Schulte,

7

1.3 STRUCTURE OF THIS WORK

2013} 7,9], [Rooksby et al., 2006, 206], [Uwano et al., 2006, 134], [Uwano et al., 2007, 2291]. In
their book on the “Psychology of Reading” [Rayner et al.| directly acknowledge that activities like
reading code to find an error probably involves strategies and processes different from normal
silent reading to understand a natural-language text [Rayner et al., 2012, 19]. Deimel & Naveda
[1990} 11] doubt that reading code top-to-bottom is an adequate strategy, even if it might seem
an obvious one at least to a novice programmer and claim that “[pJrograms are not read like
novels” [Deimel & Naveda, 1990 11]. Section Eye movements in programming outlines a
number of empirical studies that substantiate this notion. Drawing from previous work and the
pilot study by [Busjahn et al.|[2011], two research questions are formulated.

Research questions:
1. Is reading behavior different between natural-language text and source code?
If so, is the difference already present in novices?
2. Do novices exhibit a different code reading behavior than experts?

Stratifying participants into novices and experts allows to ascertain whether differences in read-
ing behavior arise from the source code or are an effect of expertise. It also provides didactically
useful data on whether experience is reflected in the visual behavior.

Many methodological challenges persist for eye movement studies. In order to address the re-
search questions a number of technical and statistical approaches have been evaluated, adjusted,
and developed. The resulting methodological framework is the main focus of this work. The
contributions are advancing the research methodology in the domain of program comprehension
and a deeper knowledge of processes involved in it. The suitability of the presented approach is
demonstrated with the two research questions.

1.3 Structure of this work

The next chapter [2] Background discusses eye tracking and related work on eye movements
in programming. Chapter 3| EMCR study description introduces the design of the study on
eye movements in code reading (EMCR) including stimuli, data collection, and participants.
Subsequently, chapter [d Detecting oculomotor events describes how fixations and saccades were
derived from raw gaze data. Chapters [5] Eye tracking error and [6] Error correction discuss
errors in eye tracking data and how they are addressed before analysis. Chapter [7] details the
Analysis procedure, chapter [§]the Analysis measures. Finally, the results are presented in chapter
O] Analysis results, followed by chapter [I0] Conclusion.

Background _

2.1 Why using gaze

A number of different methods have been applied to study program comprehension, e.g. think-
aloud and its variants, interviews, questionnaires, cloze tests, and surveys [Bednarik & Tukiainen,
2006, 125,126], [Fan, 2010, 7,46-48,53], |Obaidellah et al. [2018| 1,2], [Sharafi et al., |2020, 3135],
[Sharif & Shaffer, 2015, 807]. These techniques are only of limited suitability for the intended
study on code reading. Some only record the outcome of the comprehension process after
it was carried out. However, participants might forget parts of the process or some aspects
might seem irrelevant after task completion and are thus not mentioned, e.g. an assumption
about the code that was eventually dismissed during reading. Think-aloud is a valuable method
to study comprehension, but it is hard to accomplish for the participants and affects their
behavior. Verbalizing thoughts concurrently while carrying out a task imposes an additional
cognitive load and the participant cannot fully concentrate on the task. When asked to think-
aloud concurrently, participants often mainly give manipulative statements like “I click ...”, but
hardly refer to cognitive operations. Participants often have to be reminded to verbalize their
thoughts, since it is a rather unnatural task and even expert programmers find it difficult to
explain exactly how they read a program. Again, many aspects go unmentioned, since the
person is either unaware of them or deems them unimportant. Furthermore, think-aloud like
other self-reports is very subjective and descriptions of the same processes are highly variable
[Busjahn et al., [2014c, 4], |Gog et al., 2009, 326], [Kerkau, 2011, 334-337], [Sharafi et al., 2020,
3135].

An instrument is needed that captures the undisturbed reading process. In order to study
normal silent reading, participants have to carry out normal silent reading, not another task
like naming isolated words or reading out loud, as these may significantly distort the process
one wishes to study. The components of reading might not change radically from task to
task, but that cannot be taken for granted [Rayner et al. 2012, 19,20]. Eye tracking is an
established technique to study natural-language text reading and other information processing
tasks like image perception and it is generally accepted that gaze and attention are strongly
linked, especially in reading [Bente, 2004, 298,306-310], |[Daw, 2012, 2,3], [Duchowski, 2017,
3,4,11-13,45], |Gog et al., 2009, 327-330], [Holmqvist et al.l 2011, 378,379], [Liversedge et al.,
2011, v], [Majaranta & Bulling, 2014} 39,40], [Sharafi et al., 2020, 3130,3133], [Rayner} 1998,
374,375,404], [Rayner et al., 2005, 97], [Rayner et al., 2012, 19,20]. |Crosby & Stelovsky]| [1990,
28,29] affirm that gaze also indicates attention when reading source code. Sharafi et al. [2020,
3168] point out that eye tracking fits in well with software engineering research, since so many

9

2.1 WHY USING GAZE

of its activities involve visually-oriented artifacts. It provides information about what part of
a code was of interest at exactly what point in time, thus achieving a fine granularity of data
capture |[Busjahn et al., [2014c, 4], [Schall & Romano Bergstrom, 2014, 3].

Aschwanden & Crosby]| [2006, 5] found no correlation between lines of code that study par-
ticipants consider important for understanding and lines they looked at most and conclude that
asking people about such aspects is not a reliable way to determine beacons or other important
lines in code, since the accounts did not match the actual visual behavior. Eye tracking proved
to be more objective. [Uwano et al.| [2007, 2290,2291] point out that evaluation attempts for code
review methods using a number of different techniques have not been very successful, because
the performance of the individual reviewer has a greater impact than the review method itself.
Therefore, they suggest using gaze data to study the differences between good and bad review-
ers more objectively and applying eye tracking identified a particular pattern called scan. The
reviewer first reads the entire code briefly from top to bottom, before concentrating on details.
Reviewers who took enough time for the scan performed better at finding defects, probably be-
cause the overall program structure was taken in and suspicious code was already spotted during
the scan, while without it, problematic areas were missed. Sharif et al.|[2012] replicated this
experiment with a larger sample and came to similar results. |Albert & Tedesco| [2010] evaluated
the reliability of self-reported awareness measures with eye tracking by asking participants if
they noticed certain elements on a website. While self-reported awareness measures were found
to be reliable in general, there was an error rate of 15% in their first experiment and 17% in
the second, i.e. participants falsely reported noticing an element, or missed that they actually
looked at it. These findings further strengthen the value of using eye tracking data.

An alternative to eye tracking which still allows to measure visual attention on a computer
display is the restricted focus viewer (RFV). It blurs the screen except for a small area, which can
be seen clearly, so that the general structure of the stimulus is visible, but cannot be perceived
in detail. In order to look at another part of the screen unrestricted, the mouse has to be
moved there. The RFV reflects to a certain degree human vision. A small region in focus can
be perceived clearly, the surrounding area only roughly. The RFV is a cheap and non-intrusive
technique, and participants can move freely while sitting in front of the screen. It works even
for participants wearing glasses or eye make-up, and there is no data deterioration, e.g. due to
blinks or lost signal, which can be issues when using eye tracking [Bednarik & Tukiainen) 2004a],
|[Bednarik & Tukiainen| 2004b], [Bednarik & Tukiainen, [2007], [Blackwell et al., 2000|, [Jansen
et al., 2003]. Blackwell et al. [2000] and |Jansen et al.| [2003] found that results obtained from an
eye tracker and the RFV are in line with each other. Nonetheless, participants using the RFV
took significantly longer to respond, probably due to the much slower arm and hand movements
compared to the eye and because of the blurring it takes longer to move from one part of the
stimulus to another. The RFV technique was applied in a programming context by |Romero et al.
[2002a], Romero et al.| [2002b], and [Romero et al.| [2003] to study attention switching between
multiple representations in a debugging environment. However, several issues were pointed out
by Bednarik & Tukiainen| [2004a], Bednarik & Tukiainen| [2004b|, and Bednarik & Tukiainen
[2007] for using the RFV in such complex problem-solving tasks. They also studied attention
switching between representations in debugging, but employed an eye tracker additionally to the
RFV. In some regards, their results agreed with the previous findings. Debugging performance
as well as the distribution of time spent on different areas are not influenced by the RFV,
but it affected the visual behavior, especially of experienced programmers. The number of
attention switches differed significantly between the blurred and unrestricted view. Furthermore,
in the blurred condition the RFV recorded significantly less switches than the eye tracker.
Participants recurrently looked at the blurred part of the screen without making the effort of
moving the mouse there in order to see that partly clearly. Consequently, the RFV fails to

10

CHAPTER 2. BACKGROUND

record such switches. Eye tracking data proved to be more objective, supporting the suitability
of eye tracking for measuring visual attention. In addition, Bednarik & Tukiainen| [2004a] and
Bednarik & Tukiainen| [2007] reported that experienced programmers tended to find the blurring
bothersome, even though it did not hamper their debugging performance. Ultimately, the RF'V
did not prevail and has not been employed for visual attention tracking in programming after
2007 [Obaidellah et al., 2018} 25,26,33]. With regard to the two research questions, a fine level of
detail is needed, so the focus window would have to be even smaller than employed by Bednarik
& Tukiainen, and thereby very irritating for participants, resulting in a very unnatural task.
Thus, while the RFV can be a valid technique in some contexts, for the intended analysis, eye
tracking is a more suitable choice.

As a consequence, eye tracking is chosen as central instrument for empirical data collection,
since vital information about cognitive processes can be inferred from a participant’s gaze, which
cannot be obtained from other methods. Besides, gaze data can complement and corroborate
the results from other methods, resulting in a more thorough understanding of code compre-
hension. Eye tracking offers objective fine-grained data and affords less cognitive interference,
participants are free to look at any part of the text as long as they wish and the technique
has great ecological validity, since participants are engaged in undisturbed reading while the
gaze is recorded |Bednarik & Tukiainen, [2006, 131], [Busjahn et al., 2014c, 3,4,9], |Gog et al.,
2009], [Sharafi et al., 2020, 3128,3134,3135,3167,3168], [Sharif & Shaffer, [2015 813,814]. Eye
tracking studies on reading natural-language text as well as the findings from existing studies
on code reading indicate that eye tracking is a promising methodological approach for studying
cognitive processes during program comprehension (see Eye movements in programming).
Eye tracking also has its drawbacks, which will be addressed in detail in the chapters p| Eye
tracking error and [6| Error correction.

The following sections give an overview on gaze data and how it can be recorded.

2.2 The human eye and its movements

The eye is the sensory organ for visual perception. Unlike the ear, the eye is an active organ of
perception and can be directed at a stimulus. Figure provides a schematic representation of
its anatomy. The eye ball has a spherical shape and is covered by three layers:

e Outer layer: The sclera keeps the eye in its shape and covers the majority of the eye ball.
In the front, it passes into the transparent cornea, which allows light to enter the eye and
is situated in front of the iris and pupil. Every blink spreads tear fluid over the cornea as
protection against damage and infections.

e Middle layer: The iris regulates the amount of light that reaches the retina via the size
of the pupil. The ciliary body has control over the shape of the lens and produces the
aqueous fluid, which gives stability to the eye. The choroid contains blood vessels that
supply oxygen and nutrients to the adjacent layers.

e Inner layer: The retina lines the rear inner surface of the eye ball and contains two types
of photoreceptor cells that convert light into neuronal signals. Rods are very sensitive to
even small amounts of light, but do not provide color vision. Cones on the other hand
process color information and have a high spatial frequency. There are about 120 million
rod and 6 million cone cells. Their density varies between different regions of the retina. If
they were distributed evenly, the distance between cones would be too great to distinguish
color information spatially in regular daylight. The highly pigmented area near the center
of the retina, called macula lutea, contains the fovea centralis, a small pit which is densely
packed with cones. This is the area of highest visual acuity in daylight. The rest of the
retina is used for periphery vision, with lower acuity, but high sensitivity to light. No

11

2.2 THE HUMAN EYE AND ITS MOVEMENTS

photoreceptor cells are present at the optic disc where the optic nerve exits the eye ball

resulting in a blind spot.
These ocular layers enclose the lens, the anterior and posterior chamber, which are are filled
with aqueous fluid, as well as the vitreous body, a clear gel that fills the eye and helps to
maintain its shape. Electromagnetic light waves enter the eye via the pupil. Then an inverted
image is projected through the lens onto the retina, where the photoreceptors transform the light
into electric impulses, which are sent to the brain via the optic nerve [Bentel 2004 298,303,304],
[Daw}, [2012}, 1-4], [Duchowski, 2017, 18-23], [Eysel, [2019] 723-743], [Holmqvist et al., [2011} 21,22],
[Majaranta & Bulling) 2014} 40,41], [Rayner et all, [2012, 8-10], [Willoughby et al., 2010, 2-7].

Sclera

Choroid

Ciliary muscle

Posterior chamber Optic nerve

Vitreous body

Figure 2.1: Anatomy of the human eye, based on 12019, 723]

Eye movements are complex processes and can only partly be controlled voluntarily. Mainly,
the eyes make fast movements to bring an object in foveal vision, then stay fairly still for a short
moment to take visual information in. Subsequently, they move to the next point. The brain
integrates this piecemeal visual information into continuous images. The rapid movements,
which bring a target into focus for detailed inspection, are called saccades. They occur in
coordination so that the object is equally projected onto the fovea of both eyes. The duration
of a saccade depends on the distance the eyes move, but typically lasts between 30 and 80
ms. Saccadic amplitude can reach more than 90° of visual angle, peak saccadic velocity up to
1000° /s, making saccades the fastest movement that humans are capable of. During saccades,
visual intake is essentially suppressed as only blurry information would be perceived due to the
fast movement 2004} 303-305], [Daw, 3,4], [Duchowski, 2017} 4,15,17,39-43], [Eysel,
2019, 762-765], [Holmgqvist et all [2011], 21-23,312-315,321,322,326-329], [Majaranta & Bulling
2014}, 40,41], [Rayner], [1998| 373,378], [Rayner et al), 2005] 80-82].

Fizations are the events between two saccades when the eyes remain relatively stationary.
Humans fixate about 10.000 times per hour. Very different values are suggested for minimal
fixation duration. Holmqvist et al.[[2011], 151,152,156,381] state that fixations can last as little
as 30 or 40 ms, but sometimes minimal fixation duration is also set up to 250 ms. As for
total fixation duration, very long fixations can take several seconds. Fixation duration is highly
variable and influenced among other factors by the task at hand. For example, during silent
reading mean fixation duration is 225 ms, while perceiving a scene they last on average 330
ms. In actuality, the eyes do not stay completely still during a fixation. Several intra-fixational
movements of variable extent occur which occasionally make it difficult to identify fixations
in raw gaze data, e.g. small tremors, drifts, or microsaccades. While fixation and saccades

d

12

CHAPTER 2. BACKGROUND

are associated with attention, drifts and microsaccades are mostly physiologically determined
[Bente, 2004, 304,305], |[Blignaut & Beelders, 2009, 1-4], [Duchowski, 2017, 15,44,45], [Eysel,
2019, 763-765], [Holmqvist et al., 2011}, 21-23,150,151,377-383], [Karsh & Breitenbach) 1983| 53],
[Rayner} 1998, 373,374], [Rayner et al., 2005, 80-82]. The term fization does not only refer to the
period of relative physical stillness of the eye, but is partly also used for other related concepts,
like the cognitive event of processing the fixated target. These concepts of fixation overlap to a
great extent, but are not completely identical [Holmqvist et al.,|2011, 150,151,377-380], [Nystrom
& Holmgqvist, [2010, 197]. In this work, fixation denominates the oculomotor event that has been
detected in raw gaze data during which the eye is relatively still, as is also common with others
[Holmqvist et al., 2011} 150,151].

Other types of eye movements include pursuit, i.e. following a moving object with the
eyes, vergence, when the eyes move into opposite directions, and vestibular eye movements to
compensate for head or body movements [Bente, 2004, 305], [Duchowski, [2017}, 39,43,44], [Eysel,
2019, 762-765], [Holmqvist et all 2011} 23,24], [Majaranta & Bulling, [2014, 40,41], [Rayner,
1998, 373]. However, the focus of this work is on fixations and saccades.

Eye movements in silent reading are of special interest for the research questions.! In many
European languages text is predominantly read line after line from top to bottom and from left
to right along a line (see figure and figure 2.3)). At the end of a line a long leftwards saccade,
called return sweep, brings the gaze to the beginning of the following line. Occasionally, the
eyes move backwards in the text, such saccades are called regressions and are often associated
with comprehension difficulties. Typically about 10 to 15% of the saccades during reading
are regressive. Fixation duration, saccadic amplitude, and regression rate are influenced by the
structure of the text, its formatting, as well as difficulty, e.g. when a text becomes more difficult,
fixation duration and regression rate tend to increase, while saccadic amplitude decreases. Eye
movements vary substantially between different readers, as well as for the same person within
a single passage of text [Eysel, 2019, 763,765], [Holmqvist et al., |2011}, 213,214], [Rayner} 1998,
375,376,387,392,393], [Rayner et al., [2005 80-82], [Yamaya et al., 2017, 100].

1%Brem ipm déle -9.2‘.3@- —e@sE Stur-<adipecine alitr,
.@3‘?. rhen pa eirmod '”""d'j‘:“'ﬂ" Atdttated ‘é
(Bore e algyam G

Figure 2.2: Prototypical forward directed reading pattern, including regressions and two return
sweeps to the next line

Visual acuity is highest in the fovea, which spans about 1.5 - 2° of visual angle. In the
parafoveal region, acuity is much lower and decreases even further in the periphery. Perceiving
all visual information simultaneously with the same high acuity is too much to process, thus
having central vision for detailed analysis and peripheral vision for noticing objects is more
efficient. With regard to reading, the functional visual field is termed perceptual span. This
span is asymmetrical and depends on reading direction. When reading alphabetic text left-to-
right, it stretches about 3° of visual angle from the point of fixation to the right and hardly 1°
to the left. The writing system also affects the overall size of the perceptual span, so do text
difficulty and reading skill, e.g. the span is smaller for difficult text. Furthermore the visual field

LOther forms of reading, e.g. Braille text are out of scope of this work.

13

2.3 RECORDING EYE MOVEMENTS

is larger horizontally than vertically [Daw, 2012, 2-4], [Duchowski, 2017, 15,29-33|, [Holmqvist
et all, 2011} 21,380,381], [Rayner] 1098, 374,378-381], [Rayner ot al, 2005, 85-87)].

Biirgersprechstunde fallt doch nicht aus (WILMERSDORF)
Die Burgersprechstunde des Blrgeramtes Wilmersdorf muss entgegen

unserer gestrigen Meldung nachste Woche doch nicht ausfallen.
T ! ! : ' T ! .

1+ : I

leatluns —P _I—\—‘
3 : :

s f ’\:| Forward directed saccades 7

Time (sec)

300 200 “0 [Ei4]] a0 a00 1000

X-Coordinate on screen (px)

Figure 2.3: Eye movements during reading

2.3 Recording eye movements

In order to answer the research questions it is necessary to identify the point of regard (POR)
on a computer screen, i.e. the screen location where the gaze is focused. For this purpose a
video-based recording device with infrared pupil-corneal reflection tracking is used (see 3| EMCR
Study description), which is currently the most prevalent method for capturing eye movements.
With this type of eye tracking an infrared light source is directed at the eye, resulting in four
reflections from different parts of the eye, the Purkinje reflections. Infrared light is used as it
is invisible to the human eye and neither interferes with viewing nor influences pupil dilation.
The first Purkinje reflection occurs from the cornea and is the brightest of the four. The POR is
determined from the relative position of this corneal reflection to the center of the pupil. While
it is possible to calculate the gaze location only from the pupil, having these two reference points
is more robust and allows to track the gaze despite small movements of the head. Both, corneal
reflection and pupil center, can be detected in video images of the eye (figure . When the
eye moves, the relative position between them changes systematically and the gaze location
can be calculated based on their relative distance. Therefore these eye trackers usually require
some kind of calibration to establish the correspondence of corneal reflection - pupil relation to
different gaze locations. Several factors, e.g. poor light conditions, may affect the recording and
are discussed in detail in [5| Eye tracking error. Different types of infrared pupil-corneal reflection
based eye trackers exist. Head-mounted devices are worn by the participant and mostly allow to
capture a person’s eye movements together with their environment. For the later presented study
on code reading a more unobtrusive remote device is used, which is attached to the computer

14

CHAPTER 2. BACKGROUND

display. There are a number of other techniques that measure eye movements, which are not
suitable for the intended line of research. For example, electromagnetic coil systems do not
provide the required POR measurements. Besides, this type of device is rather intrusive and
uncomfortable to wear, since small coils have to be positioned onto the eyes. Electrooculography
measures electric potential differences on the skin around the eyes. Again, measuring the POR
is problematic and not accurate enough for studying reading [Bente, [2004, 310-317], [Duchowski,
49-56,59,85-87,121], [Holmqvist et all [2011, 9,10,21,24-29], [Majaranta & Bulling} 2014,
40-47], |Schall & Romano Bergstrom)| 2014], [Sharafi et al., 2020, 3130-3134]. A more detailed
description of eye tracking systems can be found in [Duchowski| [2017, 49-198] and
Romano Bergstrom| [2014]. [Wade & Tatler| [2005, 1-32] provide an outline on the historical
development of eye movement recording devices.

(a) Top left (b) Straight ahead (¢) Bottom right

Figure 2.4: Video image captured by an eye tracker showing a participant looking at different
parts of a computer screen. Corneal reflection and center of the pupil are marked with cross
hairs. The images were provided by S. Tamm and are used with permission.

2.4 Eye movements in programming

Using eye movements to study programming was suggested as early as 1986 by (1986
132]. The first actual study employing eye tracking in a programming context was published

1989 by |Crosby & Stelovsky, investigating the interaction between presentation medium and
programming expertise. A binary search algorithm was presented in Pascal and as slides from an
animated graphic that demonstrated the algorithm. Several distinct viewing strategies emerged
for both representations. Participants with low and high programming expertise partly used
similar viewing strategies, thus these are not associated with a specific level of experience.
Similarly, when analyzing the amount of time spent on comments versus code, code-oriented
and comment-oriented participants were found in both expertise groups. Nevertheless, the low
experience group spent on average significantly more time on comments than the high experience
group. (Crosby & Stelovsky! [1990] add that experienced programmers focused more on complex
code areas. Based on their findings they reason that when reading code, fixations can serve as
indicator for attention. Furthermore, reading source code resulted in much more fixations as
well as regressions than what is typically found for natural-language text, so it is concluded that
algorithms induce different reading strategies.

Two related literature reviews were published in 2015 and 2018 and are briefly discussed here.
Sharafi et al. [2015b] report on the usage of eye tracking and RFVs in software engineering, cov-
ering 36 publications from 1990 to the end of 2014. They note that eye tracking has increasingly
been utilized in software engineering research from 2006 on. Five topic clusters emerged from
their survey: most papers were published on code comprehension (12 papers), followed by model
comprehension (10 papers), and debugging (9 papers). Collaborative interaction, e.g. during
pair programming, was represented with three and traceability with two papers. The review
also provides a comprehensive overview of the devices, stimulus materials, study participants,
metrics, tools, and visualizations that were employed in the reported studies, as well as relevant
findings and limitations. The metrics used were later refined in Sharafi et al| [2015a]. Sharafil

I 15 |

2.4 EYE MOVEMENTS IN PROGRAMMING

et al. [2015b] conclude that eye tracking is a beneficial tool for empirical studies in software
engineering.

Obaidellah et al.| [2018]’s review on eye tracking in programming includes 63 publications
from 1990 to June 2017. This survey continues and validates the work by |Sharafi et al. [2015b]
with emphasis on programming and programming-related contexts. It compiles the published
topics and study designs, summarizing stimuli, participants, devices (including RFV), metrics,
and variables, as well as limitations. The survey yielded five topic areas compatible with the
categories by |Sharafi et al.| [2015b]. Again program/code comprehension obtained the highest
amount of publications (26 papers), followed by debugging with 19 papers. Program comprehen-
sion has continuously been studied from the beginning on and still retains an increasing interest.
Likewise, eye tracking studies in debugging have grown since 2012. Non-code comprehension,
which includes stimuli other than source code, e.g. UML diagrams, or focuses on other software
engineering tasks, had ten papers, collaborative programming five, traceability three. The vast
majority of the studies used source code or programming language stimuli, not diagrams or other
materials.

Sharafi et al.| [2020] complement these works with “A practical guide on conducting eye
tracking studies in software engineering”. They discuss why, when, and how eye tracking is ap-
propriate, and compile use cases, metrics, visualizations, and statistical analyses for eye tracking
data. As typical topics for eye tracking studies in software engineering, they identify program
comprehension, diagram comprehension, code review, traceability, education, combining eye
tracking with other psycho-physiological measures, and source code summarization. They clas-
sify research questions into the categories 1) evaluation of usefulness of systems, artifacts, or
tools, 2) evaluation of the participants’ effectiveness and efficiency when performing a specific
task while using some systems, artifacts, or tools, 3) finding areas of interest in a stimulus by
studying the distribution and the intensity of participants’ visual attention, and 4) detecting
navigation strategies used by participants by studying their scanpaths when performing software
engineering tasks. Sharafi et al. [2020] emphasize that eye tracking contributes valuable insights,
that cannot be obtained with other methods. Eye tracking has the potential to improve both
the quality of artifacts in software engineering and the quality of the developers’ interactions
with these artifacts. However, it is cautioned that it also produces a lot of data that has to be
carefully collected, stored, and analyzed to allow valid conclusions.

In the following, a number of publications will be discussed that are of particular interest
with regard to the research questions or were not included in the reviews. |[Fan| [2010] stud-
ied how beacons, comments, and task type influence program comprehension during software
maintenance. Using gaze data it was found that the presence of comments and the type of
task affect code scanning patterns as well as the ability of programmers to chunk code blocks.
The presence of comments resulted in a more top-to-bottom, left-to-right reading order, while
without comments participants’ gaze moved around in the code to a greater extent. What is
identified as beacon by a programmer is somewhat variable and depends among other factors
on the type of task. Overall, gaze data was found to be helpful for documenting and analyzing
program comprehension processes.

Nissli| [2011] focuses on remote collaborative problem solving, but as one aspect studied
code reading from single and pair programmers. When reading individually, participants first
looked at the major structural elements, presumably to grasp the general code structure. Then
they performed a semantic code analysis by focusing their gaze on the computational parts of
the code. Gaze patterns were found to be different when building a mental model then when
updating it. Furthermore, how much the gaze is dispersed indicates to some degree processing
depth. Episodes of low dispersion are associated with deep processing on complex specific parts,
high dispersion with more general overview processing.

16

CHAPTER 2. BACKGROUND

Hansen [2015] studied the cognitive complexity of source code. Programmers, ranging from
novice to expert, were asked to predict the output of short Python programs, of which several
different variations existed regarding spacing, naming, and function. For some of the participants
gaze data was collected and helped to identify important code areas, characterize programmers’
strategies, and investigate the source of participant errors. No significant correlation was found
between eye tracking metrics and programming expertise or task performance, presumably be-
cause the task was rather unique. Fixation duration however did indicate the importance of
code areas. Lines that were relevant to the task often drew the most attention. Keywords were
the least frequently fixated tokens, while more complex statements also obtained more atten-
tion. Based on the errors, timings, and keystrokes recorded from programmers, two program
comprehension models were developed. The first one, Mr. Bits, is built on the ACT-R cognitive
architecture and predicts the eye movements and keystrokes of a programmer solving the ex-
periment task correctly. The second, Nibbles, models the incorrect participants’ interpretation
errors.

Orlov| [2016] studied the role of extrafoveal information processing during code comprehension
and provides a gaze-contingent software for such studies. Even though study participants were
able to solve the tasks when extrafoveal vision was restricted, the restriction affected both novice
and expert programmers, though the effect was much stronger for experts. Without extrafoveal
information, their behavior became similar to that of novices, as they made more mistakes and
needed more time to solve the tasks than when unrestricted.

Binkley et al|[2012] investigated the impact of identifier style on source code comprehen-
sion for the two popular styles camel case and underscore using a combination of several data
collection methods including eye tracking. The results of the different experiments are not fully
congruent, but allow several general conclusions, e.g. expert programmers seem to be hardly
affected by style. Regarding the central research questions of this work, it is of interest that
several aspects from natural-language reading were different when reading identifiers and the au-
thors conclude that reading natural-language text and source code are fundamentally different.
As an example, when reading a natural-language text underscores provide better readability, for
source code however it is camel casing. They advise caution about making assumptions on code
reading based on natural-language comprehension studies and suggest that a lot of foundational
research on code reading and comprehension is still needed.

Busjahn et al.|[2011] and Busjahn et al.| [2014a] illustrate that eye tracking as well as asso-
ciated measures and analyses from natural-language text reading can successfully be applied to
code reading, however the actual findings are only transferable to a limited extent. |Busjahn et al.
[2011] conducted a study on the differences between reading natural-language text and source
code. Even though there was considerable variability between participants as well as between
texts, the mean fixation time found for source code was considerably longer than for natural-
language text. Furthermore, when reading source code, participants made significantly more
backwards movements in the text than for natural-language text, indicating that source code
brings about different reading patterns than natural-language text. Busjahn et al. [2014a] ana-
lyze the attention distribution on source code elements in Java. When reading natural-language
text, the time a reader looks at a word is influenced by a number of factors, like word length,
word frequency, and grammatical category. The study results show that for source code the
type of lexical element also influences visual attention, however only for one type. Separators
got substantially less attention than identifiers, operators, keywords and literals. In natural-
language text reading, less frequent words tend to induce longer fixation durations and dwell
times. However, at least for keywords element frequency proved not to be a relevant factor in
the variability of first fixation duration and first dwell time. Applying measures and analyses
from natural-language text reading to source code is a valuable direction of study, however not

17

2.4 EYE MOVEMENTS IN PROGRAMMING

without careful review. Peterson et al. [2019] draw on this study to examine factors that influ-
ence dwell time during source code reading, using large open source Java projects as stimuli and
taking the analysis from token-level to lines. Participants were novice and expert programmers
who were asked to summarize methods. For analysis, they distinguish nine semantic types of
lines: Method Call, If, Variable, Method Signature, For, Import, Class Attribute, and Class.
As in the earlier study, the dwell time distribution exhibits a right-skew and was therefore log-
transformed, resulting in a similar distribution to Busjahn et al.| [2014a]. While elements with
more characters take longer to read, no such trend was found between length of the lines and
total dwell times. Also, no correlation was found between line frequency and duration of the
first fixation, corroborating this finding from Busjahn et al.| [2014a] for keywords. [Peterson et al.
[2019] further analyze the distribution of visual attention over the line types with regard to first
and last fixation, differences in distributions between small and large methods, and expertise.
The line types Method Call, If, and Variable received the most visual attention in terms of dwell
time. The first fixation in a method most frequently lands on a line of the types Method Signa-
ture, Method Call, or Variable. While participants on average spent more time in large methods,
the average time per line is significantly higher in shorter methods. No significant differences
were found between the dwell time distributions of novices and experts over the different line
types. All in all, this work further adds to the findings about attention distribution on source
code, bringing out specifics on line-level and emphasizing that reading source code is different
from reading natural-language text.

Furthermore a workshop series emerged in 2013 which focuses on eye movements in pro-
gramming and resulted in a number of publications, among others the workshop reports and
proceedings [Bednarik et al., [2014], |[Busjahn et al., 2015b|, [Bednarik et al., 2016], |Tamm
et all 2017), [Bednarik & Schultel 2018|, [Begel & Siegmund, [2019], [Siegmund et al., [2019].
A publication that ensued from the first of these workshops explicitly introduces eye tracking
as an instrument for computer science education research, discusses data analysis methods and
challenges, together with tools to address them [Busjahn et al. 2014c]. They found that eye
tracking in computing education is feasible, yields rich data for analysis, and brings about novel
teaching ideas. To demonstrate possible outcomes of employing eye tracking, a tiered coding
scheme for gaze data is presented that captures objective visual behavior as well as the coder’s
inferences about the programmer’s comprehension. Additionally they offer a broad selection of
topics and questions from computing education that can be addressed with eye tracking, like
better understanding the learner and comprehension challenges, as well as advancing instruction
materials and tools. |Busjahn et al.|[2014b| further discuss options to combine quantitative and
qualitative methods to develop coding schemes for gaze data in program comprehension studies,
suggesting that automatically generated and assigned codes can be coupled with qualitatively
derived ones in order to capture aspects of program comprehension.

Busjahn et al. [2015a] compared the eye movements of novice and expert programmers read-
ing natural-language text and Java programs. They describe and validate several metrics cap-
turing linearity in reading, i.e. how closely readers follow the top-to-bottom, left-to-right order
in which words are written in Latin script languages. While there are differences in how novices
read natural-language text and source code on a local level, the general reading approach is com-
parably linear on both. They exhibit clear linear trends on source code, even though they read
it less linearly than natural language text. The non-linear portion might be caused by novices
searching around for comprehension cues. Novices also skip more words in source code reading
than on natural-language text. FExperts exhibit significantly different reading behaviors than
novices. They read code less linearly and skip more parts of the code. It was also found that
the order in which experts read code is closer to the order in which the code is executed than
how it is written down, suggesting they trace at least parts of the code. These findings suggest

18

CHAPTER 2. BACKGROUND

that non-linear reading skills increase with expertise. This work sparked a number of replication
studies. |[Peachock et al.| [2017] conducted a replication, using C++ instead of Java. Both novice
and non-novice participants read natural-language text more linearly than source code, corrob-
orating that source code motivates different reading patterns than natural-language text. No
major differences were found between novice and non-novice programmers. The authors surmise
that this is due to the fact that the non-novices were still students, not experts as in the earlier
study and therefore might have rather similar reading skills as the novices. Spinelli et al. [2018]
studied visual attention patterns for dynamic code presentation techniques. To evaluate several
types of code animation, they examined the participants’ reading approach, operationalized us-
ing most of the measures presented by Busjahn et al.[[2015a]. The observed reading approaches
were in line with logical explanations for animations (i.e. increased top-to-bottom line reading
when viewing a linear animation of line typing). They also found that viewing animations of a
single textual representation of source code may affect the attentional processes of novice pro-
grammers during subsequent tasks and identified a possible effect on participants’ attentional
processes and element coverage when presenting live-written code. [Blascheck & Sharif [2019]
also draw on the study by Busjahn et al. [2015a] to compare natural-language and code reading.
Their participants were novices and non-novices and C+4 was used as programming language
instead of Java. Additionally to using the quantitative linearity metrics, gaze data was analyzed
qualitatively with radial transition graph visualizations, a donut chart, which depicts areas of
interest (AOI) as segments and transitions between AOIs as arcs, whose thickness indicates the
transition count. Natural-language text had a higher AOI coverage than source code, where
novices tended look at more AOIs than non-novices. Overall, participants focused more on ar-
eas containing core functionality and skipped constructs not necessarily needed to answer the
task correctly, e.g. brackets. Natural-language text was mostly read linearly, especially at the
beginning. After having read the text completely, participants partly re-read or skimmed the
text in a less linear order. On source code stimuli, both novices and non-novices had much more
backward-directed transitions than on natural-language text. However, patterns representing
linear as well as execution order were found. Several participants also carried out a linear first
reading of the code. This study is overall in line with the previous findings and the additional
analysis method provides deeper information on how the programmers distribute their visual
attention.

Eye tracking can be used to address a multitude of topics in software engineering, benefit-
ing practitioners and advancing computing education |Aschwanden & Crosby, 2006, 6], [Bus-
jahn & Schultel 2013, 3,4,9,10], |Busjahn et al., 2014c, 3,8,9], [Busjahn et al. [2015a, 263,264],
[Deimel Jr.| [1985] 5], [Deimel & Naveday, 1990, 1,5,6], [Rooksby et al.,|2006], 210], [Schulte, 2007,
307], [Sharif & Shaffer, |2015|, [Spinellis, 2003a, xxi,1]. [Sharif & Shaffer| [2015] describe two
main uses for eye tracking in software development: assessing artifacts, tools, and techniques as
well as using gaze to improve tools and tasks such as providing developer recommendations and
software traceability links based on what the developer looks at. Information gathered by eye
trackers can thus support common software development tasks and reduce developers’ effort,
making the work more developer-centric. Gaze data can further help to devise programming
languages, that better satisfy programmers’ needs, and development environments, that increase
programmer’s efficiency and code quality |[Aschwanden & Crosbyl, 2006, 6]. Busjahn et al.|[2014c,
8,9] list a number of subjects from a computer science education perspective, e.g. studying the
effects of different representations and programming paradigms, the behaviors and strategies of
learners, identifying their challenges, evaluating visualization tools and integrated development
environments (IDE), and developing new tools to assess learners. Knowledge about experts’
strategies can be used to develop respective teaching materials. After they have been taught
reading techniques, eye tracking can be used to assess how well students are using them, thus

19

2.4 EYE MOVEMENTS IN PROGRAMMING

allowing a very fitting evaluation of such interventions. Integrated into an IDE, eye tracking
can provide feedback and targeted assistance to the student, the instructor, or a professional
programmer, raise awareness of their code reading behavior, and facilitate meta-cognition, e.g.
informing the programmer that the initial scan of the program was not sufficient or that some-
one trying to find a bug is concentrating on completely unrelated code. Eye tracking is also a
valuable instrument for other areas of computing education, e.g. understanding graphical data
models |Busjahn et al) 2014c, 3], [Busjahn et al 2015a, 263|, |Sharif & Shaffer, [2015, 813].

These studies and groundwork demonstrate that the topics of code reading behavior and how
it is different from natural-language reading is a valuable line of research, yet they substantiate
the necessity of further research and many methodological challenges remain. The gathered
experiences with data collection, cleaning, and analysis serve as basis for designing, conducting,
and analyzing the further empirical work.

20

EMCR study description _

3.1 Synopsis

Two eye tracking experiments were devised and conducted in order to collect eye movement
data from novice and expert programmers. The designs of both experiments include first read-
ing natural-language text, then source code. Due to their representativeness and wide use,
English was chosen as natural-language and Java as programming language, partly subjoined
with pseudocode. The same English texts were used for both experiments. Furthermore, two
programs were presented to both novices and experts to allow for comparisons according to level
of expertise. The novices were recruited from an introductory Java course for non-computer sci-
ence students. The design of the novice study stipulates multiple recordings of eye movements
during code reading at different stages of the learning process. For the expert study, professional
programmers with diverse work backgrounds were recorded in per participant sessions, which
also encompassed an interview about code reading.

3.2 Study design

Participants were asked to read and understand a number of stimulus texts while their gaze
is recorded. After each text, they had to answer a comprehension question. The stimulus
texts were designed to allow as much generalization as possible. The materials consist of three
natural-language texts (NT), which were shown to both novice and expert programmers, as well
as six different source codes (SC), of which two were read by both novices and experts. The NT
reading was included in order to collect basal information about the participants’ customary
reading behavior and to obtain a baseline for comparison with code reading. It is to be assumed
that SC at least partly elicits a different reading behavior than N'T, thus it is of interest to which
extent measures and findings from NT reading can be transferred to code reading.

Three task types were chosen to reflect several central tasks in program comprehension.
The same task types were employed for NT as for SC stimuli in order to have comparable
designs. For the summary task, participants were asked to write a summary of the text. On
SC stimuli, the instruction for expert programmers included the additional prompt to describe
the algorithmic idea and its implementation. This was not part of the instructions for novices,
since it cannot be ensured that they understand the terms. The second task type is a multiple-
choice question on the content of the text. The third type is an outcome question. On NT,
participants were asked about a detail of the text, on SC they had to provide the value of a

21

3.2 STUDY DESIGN

certain variable after the program was executed. Tracing the value of a variable is a typical task
during programming, especially when debugging. Being able to emulate program execution is a
distinct skill, which can be regarded as fundamental for more complex programming activities
like writing and maintaining code. It also represents a long-standing and often used task in
programming education [Deimel Jr., (1985, 13], [Lister et al., 2004], |Lister et al., [2009], [Lopez
et al., [2008|, [Nelson et al., [2017], [Perkins & Martin, 1986, [Soloway, 1986, 857,858], [Venables
et al., 2009], |Xie et al., 2018, [Xie et al., [2019]. Participants were informed about which kind
of task they will be given before the stimulus was shown. They were also made aware of the
option to choose “I don’t know”, in case they are not able to provide an answer. To create
a balanced design and avoid effects from the order in which texts are shown, the presentation
order was randomized, and so was the combination of stimulus texts and tasks, whereat the
task types were assigned evenly. Figures and show exemplary texts and tasks for NT
and SC respectively, the appendix contains all stimuli and tasks Natural-language stimuli,
Source code stimuli), figure specifies how order and task type were arranged over the
recordings.

The stimulus materials were presented in English, but participants could choose between
answering the tasks in English or German. To make the text well readable, suggestions for
screen text were followed [Kerkaul 2011, 332]. The font size varied between 13 and 16 pt,
spacing between 1.5 and 2. The different sizes are due to the different lengths of the texts.
To facilitate the later mapping of fixations to words, always the largest reasonable option was
chosen, which allowed to fit the text onto the screen without scrolling. Longer codes were
therefore mostly presented in font size 13 or 14 pt and 1.5 spacing, short codes in font size 16
pt and with a spacing of 2.

The procedure of the recordings was always the same. The first slide informed participants
about the topic of the experiment and what stimuli to expect (see figure for an example).
Then the instruction for the first stimulus was shown (figure [3.2), followed by the stimulus text.
When the participant was done reading the stimulus, the comprehension task was presented.
In order to move from one slide to the next, participants had to actively press a button, when
they were ready to proceed. The transition between slides was not automated, thus they could
remain on any slide as long as they chose. There was no possibility to go back to a previous slide,
so after getting to the slide containing the comprehension task, the question had to be answered
without looking at the text. If participants were allowed to switch between stimulus text and
comprehension task, some might not have tried to really understand the text, but rather used
the task slide to look for clues and go back and forth between text and answer. Especially for
multiple-choice questions, it can be tempting to have a look at the given options and then just
scan the text for the right answer. However, the intention is to record reading behavior during
comprehension. Alternating between text and answer slide would interrupt the process, and the
captured data represented verification of given answers instead of comprehension.

The stimulus texts were presented on a computer screen. Gaze data was recorded with a
RED-m eye tracker from SensoMotoric Instruments, which is aimed at use in scientific research.
It utilizes the corneal reflex and is supposed to work robustly for a wide range of recording
situations and participants, including those with visual aids. According to the manufacturer,
this eye tracker has a spatial resolution of 0.1° (root mean square), an accuracy of 0.5°, and
two sampling rates: 60 and 120 Hz. Furthermore, it compensates head movements to a certain
degree [SensoMotoric Instruments, 2014], [SensoMotoric Instruments, 2016a], see also Mele &
Federici [2012]. The RED-m is a small remote device, which is fastened to the frame underneath
the computer display, so participants are not attached to any equipment or restricted in any
way. Since some head movements are allowed, participants were not restrained with a head- or
chin-rest, as that would make the situation very artificial. However, they were asked to lean

22

CHAPTER 3. EMCR STUDY DESCRIPTION

This experiment is about program comprehension. There will be three source codes together
with different comprehension questions. Please don’t guess the answers. The codes do not

contain bugs.

Figure 3.1: Sample of the first slide shown before every SC recording

Please read and comprehend the following source code. When you are done, press the left
mouse button. Then you will be asked to give a SUMMARY of the code.

Figure 3.2: Sample instruction

against the backrest of the chair and find a comfortable sitting position before the recording to
reduce movements without causing strain for the participants. Overall, this setup makes the gaze
recording rather unobtrusive. Gaze data was recorded with the OpenGazeAndMouseAnalyzer!
(OGAMA), an open source software for recording and analyzing eye and mouse movements,
which allows to integrate a number of different eye trackers [VoBkiihler et al., 2008]. At the
beginning of each recording, a calibration was carried out, followed by a validation. If necessary,
this procedure was repeated until the calibration was satisfactory. During the recordings, the
eye tracker was frequently recalibrated to maintain good data quality. With a few exceptions
the gaze was recorded with a sampling rate of 120 Hz.

Participants knew that their gaze is being recorded and were made aware that the recording
is not an exam and that they cannot do anything wrong. Furthermore, the researcher conducting
the recording did not look over the participants’ shoulders, but gave them space to work on the
tasks without being under constant observation to reduce the effect of participants adapting
their behavior because they feel watched [Sharafi et al., 2015b, 100], [Sharafi et al., 2020, 3155].

The design of a study strongly influences the results, e.g. a different set of stimuli may
induce other findings. Such concerns are addressed in detail in chapter Threats to validity.
The EMCR study was designed very carefully, taking common pitfalls of eye tracking studies,
like the eye tracker’s limited accuracy, into account.

3.2.1 NT reading

In order to obtain the participants’ customary reading behavior and allow comparisons between
NT and SC reading, the EMCR study includes NT stimuli. English was chosen as natural-
language, since it is the most spoken language worldwide and third with regard to native speakers
[Ethnologue, 2020], [WorldAtlas, [2019]. Furthermore it is often used in reading research involving
eye movement data, e.g. Rayner|[1998], Rayner et al. [2005]. It can also be regarded as exemplary
for a number of other languages that are read from top to bottom and left to right. Three short
English texts were taken from an English language test?. They contain a mixture of frequent as
well as rare words and the lengths of the words vary substantially. The short length of the texts
allows to display them on the screen without scrolling. The types of comprehension questions for

Thttp://www.ogama.net, last accessed 12/05/2020

2NT1: https://www.ielts.org/pdf/115015_academic_reading sample_task - matching features_ 2 .pdf,
NT2: https://www.ielts.org/pdf/academic reading sample task diagram label completion.pdf,
NT3: https://www.ielts.org/pdf/115016__academic_reading_sample_task - matching headings__ 2 .pdf,
last accessed on 06/08/2015

23

http://www.ogama.net
https://www.ielts.org/pdf/115015_academic_reading_sample_task_-_matching_features__2_.pdf
https://www.ielts.org/pdf/academic%20reading%20sample%20task%20diagram%20label%20completion.pdf
https://www.ielts.org/pdf/115016_academic_reading_sample_task_-_matching_headings__2_.pdf

3.2 STUDY DESIGN

the NT stimuli are the same as for the SCs. Participants were either asked to write a summary
of the text, answer a multiple-choice question about its content, or provide a specific detail
from the text. The comprehension tasks on NT serve as motivation for the participants to read
the texts thoroughly, and allow familiarization with the experimental procedure and task types,
since the NT recording was always carried out first. The three NT stimuli are referred to as
NT1, NT2, and NT3. Figure provides NT'1 together with its possible tasks. All NT stimuli
can be found in the appendix Natural-language stimuli).

The invention of rockets is linked inextricably with the invention of 'black powder'. Most
historians of technology credit the Chinese with its discovery. They base their belief on
studies of Chinese writings or on the notebooks of early Europeans who settled in or made
long visits to China to study its history and civilisation. It is probable that, some time in
the tenth century, black powder was first compounded from its basic ingredients of saltpetre,

charcoal and sulphur.

Comprehension questions

Multiple-choice:
Which statement describes the content of the text?
e Black powder was probably discovered some time in the tenth century by the Chinese.
It is essential for the invention of rockets.
« Historians believe that black powder was discovered by the Europeans after visits to
China.
e Based on Chinese and European accounts, rockets were essential for the invention of
black powder.

e I'm not sure.

Outcome:

Where was black powder supposedly discovered?

Summary:

Please give a summary of the text.

Figure 3.3: NT1 with comprehension tasks

3.2.2 SC reading

Java was chosen as programming language for the SC stimuli, since it is widely used both in
industry and in programming education [Guol 2014], [Mason et al., 2012], [Mason & Cooper,
2014, [Murphy et al.l |2017]. In the TIOBE Programming Community Index®, which provides
a monthly information on the popularity of programming languages, Java was on place one
at the time when the experiment was designed and remained among the top two ever since.
Besides, from time to time it is by far the most popular programming language (figure [3.4]).
Java is object-oriented, but also contains many elements common in imperative and procedural
programming, making it at least partially representative for a number of other languages. Java

3https://www.tiobe.com/, last accessed 01/15/2020

24

https://www.tiobe.com/

CHAPTER 3. EMCR STUDY DESCRIPTION

is also often used in other eye tracking studies |[Obaidellah et al., 2018|, 15], [Sharafi et al. 2015b),
90,92], thus facilitating comparisons with other work.

TIOBE Programming Community Index

Source: www.tiobe.com

Ratings (%6)

5
- o e
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Java ==C Python C++ == C# == Visual Basic .NET JavaScript == PHP == Swift sQL

Figure 3.4: TIOBE Index, source: https://www.tiobe.com, status of 01/15/2020

The complexity and make of previous stimulus material in eye tracking studies on program
comprehension were taken into account when composing the EMCR stimuli, e.g. |[Aschwanden &
\Crosby| [2006], Bednarik & Tukiainen [2006], Hansen [2015], Uwano et al. [2006]. Furthermore,
the stimuli cover fundamental concepts like loops and conditions. To allow to directly compare
the code reading behavior of novices and experts, two programs were shown to both groups of
expertise. These programs have to be easy enough, so novices can understand them after a few
lessons, yet not too simple for the experts. All stimulus programs achieve something sensible
in themselves and compile without errors. Participants were informed about the latter prior to
stimulus presentation. In order to generate valid stimuli, they were mostly devised from teaching
material and stimuli from other studies on program comprehension to allow for comparisons.
Additionally, the programs largely use rather descriptive and meaningful names for variables
and methods. To facilitate the mapping of gaze to single code elements for the analysis, a
space character was added to the source code, wherever the syntactical rules allowed it, for
example String [] instead of String[]. Furthermore, the stimulus programs do not contain
syntax highlighting, because the participants were accustomed to different color schemes. The
novices were at least acquainted with BlueJ*, an IDE especially for Java, and the online coding
environment provided by Udacity (see Novice programmers). The expert programmers
most likely use more professional IDEs and varying color schemes. If someone is used to a
certain type of syntax highlighting, it will somewhat guide their visual attention. If there was
highlighting, even a widely used one, like the default from Eclipse®, it would be familiar to some,
but not all participants. To create the same conditions for all participants and keep formatting
consistent between the two groups, the stimulus programs were formatted plainly without color.
Using C#.Net as programming language, Beelders & Plessis [2016a] and Beelders & Plessis|
studied whether presenting code with and without syntax highlighting to IT students
influences the reading behavior. Their participants indicated that they subjectively prefer the
version with syntax highlighting, but no significant effect was found for any of the analyzed
measures (number of fixations, fixation durations, and number of regressions). Thus, the absence
of syntax highlighting should not have a measurable impact on code reading behavior.

4https:/ /www.bluej.org/, last accessed 12/05/2020
Shttps://www.eclipse.org/ide/, last accessed 12/05/2020

25

https://www.tiobe.com
https://www.bluej.org/
https://www.eclipse.org/ide/

3.2 STUDY DESIGN

3.2.2.1 Novice programmers

In order to recruit novice participants, a free weekly Java introduction was offered in form of
an open continuous course at Freie Universitat Berlin. It was directed at all interested persons
not enrolled in a computer science program or related subject. The course was advertised via
bulletin boards at the university and a fellow lecturer called the attention of his students to it.
Students could gain credit points for their participation, but no grade was given. Participants
filled in a questionnaire, which collected basic demographic data and further vital information
on aspects like English proficiency, programming experience, and visual aids. Furthermore, they
gave written consent to participate in the study. The questionnaire can be found in the appendix
Questionnaires - Novices).

Participants individually worked through an online course provided by Udacity®. However, a
tutor was present to answer questions and help when students got stuck. Furthermore, students
were encouraged to seek help from their classmates. An existing set of materials was chosen
in order to expose all students to the same instruction. Furthermore, this ensures that the
instructor, who conducted the course, does not impose any assumptions about reading behavior
on the participants and therefore influences their behavior. The course covered six lessons, which
were supposed to be worked through over a period of about three months. Due to the open nature
of the course only few participants completed the course within this time frame. Participants
occasionally took breaks between course sessions because of exams or work obligations.

The first recording consisted of the three English texts. After participants finished the
first lesson of the Java course, their gaze was recorded while they read three SC stimuli and
answered the respective comprehension questions. This exercise was repeated after each lesson,
but only two other recordings are of interest. After lessons 3 and 5, programs were shown
that are also part of the expert study. The recording setup was the same for all lessons, with
outcome, summary, and multiple-choice questions. In total, there are five stimulus SCs for
novices, three programs in lesson 1 (L1 SC1 - L1 SC3), one in lesson 3 (L3 SC1) and another
in lesson 5 (L5_SC3). The identifier of the stimulus refers to the lesson and program number
within that lesson. The stimulus programs were adjusted to the content of the respective lesson
and included the main concepts that were introduced. The first three stimulus programs were
written to reflect the concepts presented in lesson 1, one simple Java code for printing the
result of an addition, and two pseudocodes with loops, which had been introduced without the
respective Java syntax. Program L3_ SCI includes a class Rectangle and methods to calculate
its width, height, and area. It originates from the eyeCode study on Python programming
[Hansen, [2015, 39,40,101-105,206-208] and was transferred to Java. The program L5_SC3 is
based on a classroom example provided by a German high school computer science teacher
and was slightly revised, e.g. the German variable names were switched to English and it was
shortened to fit a screen page. It defines a Vehicle that can change its speed. This program
only contains programming constructs the novices are familiar with, yet it is rather difficult
to grasp fully, since the accelerate-method allows not just to increase the speed, but also to
decrease it via negative values. This difficulty was included to make the stimulus text simple
enough to be understood by novices, but still sufficiently challenging for advanced programmers,
as this program is also to be shown to the expert participants.

To keep the procedure consistent between recordings, the eye tracking sessions after lessons 3
and 5 each also contained three SCs, even though only one is of interest for analysis. This allows
to randomize the order in which the stimuli are presented instead of only showing the target pro-
gram right away. Besides, the programs and accompanying tasks also served as comprehension
evaluation within the Java course and a single SC would have been meager for that purpose.

Shttps:/ /www.udacity.com/course/cs046, last accessed 12/05/2020

26

https://www.udacity.com/course/cs046

CHAPTER 3. EMCR STUDY DESCRIPTION

Figure shows an exemplary stimulus program together with its comprehension questions.
Table lists all source codes with their lines of code. The complete set of SC stimuli for
novices can be found in the appendix (A.3.1| Source code stimuli - Nowvices), an overview of the

recordings is provided in figure [3.6

public class PrinterClass {
public static void main (String [] args) {
System.out.print ("answer=") ;
System.out.println (40 + 2) ;

}
}

Comprehension questions

Multiple-choice:
What is the output?
e Answer=42
e answer=

42

e answer

42

e I'm not sure.

Outcome:
What is the program’s output?
Summary:

Please give a summary of the program.

Figure 3.5: Program L1_SC1 with comprehension tasks

The recording situation was designed to be very ecologically valid. Almost all recordings
were carried out in the same computer class room in which the course took place, not a special
eye tracking lab, at the same place and under the use of the same display. In this class room,
it was not possible to completely shut out daylight, so the light conditions were not ideal, but
recording there allowed to integrate the gaze recording smoothly into the course and made the
situation more natural for the participants, since they were familiar with the environment. Only
for one novice, the N'Ts and lesson 1 were recorded in another lab room, which likewise did not
allow to fully control ambient light. Overall, the setup was aimed at creating an unobtrusive
and natural situation.

3.2.2.2 Expert programmers

A number of professional programmers were recruited via personal contacts. All participants
programmed professionally at the time of the recording, i.e. they were paid to program. As
an incentive, they were given a goody bag with sweets. First, participants filled in a similar

27

3.2 STUDY DESIGN

questionnaire as the novices, which assessed demographic information, English level, program-
ming experience, and visual characteristics. They also gave written consent to participate in the

study (see Questionnaires - Experts).

Thereafter, the experts read the same three English texts as the novices while their gaze
was recorded to gain baseline data about their reading behavior and familiarize them with
the recording procedure. For experts three programs are of interest. SC1 is identical to the
Rectangle-program L3_SC1. SC2 is also adapted from the eyeCode study [Hansen, 2015| 31-
33,83-87,197,198] and presents the class Quantities, which finds the common elements of two
lists. SC3 is the same as the Vehicle-program L5 _SC3. Again, the three types of comprehension
questions outcome, multiple-choice, and summary were used. For the summary task, experts
were additionally prompted to tell what the algorithmic idea is and how it is implemented.
Since novices are probably not familiar with those terms, they were only asked to summarize
the program. The SC stimuli are provided in the appendix Source code stimuli - Experts),
an overview of the recordings is shown in figure 3.6, Table provides the lines of code for
each stimulus program. The study was conducted in Germany and Finland and attracted
programmers with various backgrounds and different nationalities. Experts were mostly recorded
at their workplace using their own display and keyboard, so they were also very familiar with the
environment and the recording took place in a naturalistic situation. Just as with the novices,
the researcher left the participant to the task during the recording and did not hover about.

After the eye tracking part of the study, a short guided interview was conducted in order
to collect additional information about the experts’ code reading behavior. First, participants
were asked about their approach to read and understand the programs. Then, it was of interest
whether they adapted their approach according to the task at hand. Finally, they were asked,
if they think the approach(es) they described would be suitable for novice programmers as
well. However, the questions were slightly adapted during the interviews to fit the participant’s
reactions. The interviews were recorded and transcribed (see Ezpert interviews). Two
interviews were not used due to insufficient sound quality. The obtained responses mainly serve
as background for informing measures to capture visual behavior during code reading.

Interview guideline:

e What is your approach to read and understand source code?
e You had to solve different kinds of tasks. Did that change your approach?
e Do you think this approach would be suitable for a novice programmer as well?

Stimulus text Lines of code Programming language Description

L1 SC1 6 Java Novices after lesson 1

L1 SC2 6 Pseudocode Novices after lesson 1

L1 SC3 4 Pseudocode Novices after lesson 1

L3 SC1 18 Java Novices after lesson 3

L5 SC3 22 Java Novices after lesson 5

SC1 18 Java Experts, identical to L3__SC1
SC2 22 Java Experts only

SC3 22 Java, Experts, identical to L5 _SC3

Table 3.1: Stimulus source codes

28

CHAPTER 3. EMCR STUDY DESCRIPTION

NT stimuli SC stimuli
Lesson 1 Lesson 3 Lesson 5
L1_SC1,L1_SC2,L1_SC3 L3_SC1 L5_SC3
Participant 1: Participant 1: Participant 1:
b4 L1 SC1 — multiple-choice L3_SC1 — multiple-choice L5 _SC2 - outcome
(%) L1_SC2 — summary L3_SC3 - outcome L5_SC3 — summary
S N L1_SC3 - outcome L3_SC2 — summary o | L5_SC1 - multiple-choice
o Ll
2 NT1, NT2, NT3 Participant 2: Participant 2: Participant 2:
L1_SC3 - summary L3_SC3 — summary L5_SC1 — summary
Participant 1: L1_SC2 - outcome L3_SC1 - outcome L5_SC2 — outcome
NT1 — summary L1_SC1 — multiple-choice L3_SC2 — multiple-choice L5_SC3 — multiple-choice
NT2 — multiple-choice
NT3 — outcome I\ / \ e) \ . /
Participant 2:
NT2 — outcome / \
NT3 — summary 1 2
NT1 — multiple-choice SC1, €2, S¢3
7)) Participant 1:
2\ / SC3 - outcome
[} SC2 - summary
g— SC1 - multiple-choice
w .
Participant 2:
SC1 - summary
SC2 - outcome
SC3 — multiple-choice

Figure 3.6: Recordings overview: First, both novice and expert participants read three natural-
language texts. The novices’ gaze on source code was recorded repeatedly, the recordings after
lesson 1, 3, and 5 are included in the analysis. Trials that are grayed out are not part of the
study. Experts read all texts in a single per participant session.

3.3 Participants

In total, 26 programmers participated in the EMCR study and include novices and professional
programmers. Having professionals as experts is a plus factor. Other studies partly use advanced
students as expert programmers [Sharafi et al., 2015b, 101], [Sharafi et al. [2020, 3145,3146].
However, comparing early novices to real experts should yield more compelling results. All
participants filled in a questionnaire and gave written consent to participate in the study. They
were also informed that they can withdraw from the study at any time without consequences.

3.3.1 Novice programmers

The majority of the participants were students, but also two university employees, as well as
the relative of a student were drawn to the Java course. Initially, 18 novices started the course,
but partly did not attend beyond the first session. Only the ten participants for whom NT and
SC data is available are considered for analysis (tables and figure . Their age ranged
from 20 to 29 years, with a median of 22 years [21..27].7 Six participants identified as female,
four as male. All but one were native German speakers, all indicated to have at least medium
English proficiency. Three participants self-reported to have no programming expertise at all,
seven had low programming expertise. Eight participants started programming less than one
year before taking part in the study. One participant began to learn programming two years
prior to the course, but hardly ever actually programmed during that time and never used Java

"Median values are given together with 25th and 75th percentile.

29

3.3 PARTICIPANTS

before. Another participant attended a programming course seven years before the study, but
also hardly ever programmed and had no previous knowledge of Java. With regard to Java,
seven participants had no prior knowledge, the remaining three only low expertise. All had less
than one year of Java experience. Before attending the Java course, nine participants either
programmed not at all or less than one hour per month. Only one participant indicated to
program more than one hour per month, but less than one hour per week, both in Java and
another language. Seven participants reported to know other programming languages. Except
for one medium entry for MATLAB, the expertise in the given languages was rated as low. Two
participants disclosed to have myopia, but only one had glasses. All female participants wore
eye makeup.

3.3.2 Expert programmers

All expert participants were professional programmers at the time of the recording and have a
manifold work background. Several participants worked in an academic field, but the majority
in different software companies. They were recruited via personal contacts. In total, 16 expert
programmers took part in the study (tables and figures . Participants’ ages
ranged from 25 to 49 years, with a median of 30 years [28..37]. Three experts identified as
female, 13 as male. Ten participants were native German speakers, two Finnish, and one Chinese,
Nepalese, Polish, and Russian respectively. All reported medium to high English proficiency.
Nine participants rated their overall programming expertise as high, seven as medium. On
average, they started programming 12 years [6..20] prior to the study. Seven experts indicated to
have high Java expertise, eight medium, and one low. The participant with low Java knowledge
states to have a high overall programming expertise, programs for more than 11 years and more
than one hour per day. Additionally, he programmed with Java for about 2.5 years, so he was
accepted as expert for the study. On average, participants started using Java 6 years [4..10]
before the study. All expert participants program more than one hour per day, either with Java
or another language. Most participants spend more time on writing new code than on working
on existing one. Furthermore, the majority worked on large projects with more than 50 classes
before. All experts have at least basic knowledge of another programming language. How long
the participants already have been professional programmers ranges from a few months to 18
years, with a median of 4 years [2..11]. All had normal or corrected to normal vision. Two of
the female participants wore eye makeup during the recording.

30

CHAPTER 3. EMCR STUDY DESCRIPTION

1D Age Gender Mother English Vision Visual aids Eye makeup
tongue proficiency problems
BR05 28 male German high no no no
DO21 22 female French medium light myopia no yes
EU10 22 female = German high no no yes
GO29 22 male German high no no no
1013 20 female German medium no no yes
ME23 29 female German medium myopia glasses yes
RE11 21 male German medium no no no
SA27 24 male German high no no no
SE02 28 female German high no no yes
SE28 21 female German medium no no yes
Table 3.2: Novice participants - general information
1D Age Gender Mother English Vision Visual aids Eye makeup
tongue proficiency problems
AE22 27 male Finnish high no no no
BE18 28 male German high no no no
BE26 30 female German medium no no no
BE29 27 male German high no no no
C0O20 34 male German high no no no
HI27 39 male German high no no no
IE30 41 male German high myopia glasses no
KK24 25 female Nepalese medium no no yes
LK23 29 female Russian high myopia contact lenses yes
MRO5 26 male German medium no [sic| glasses no
PA24 28 male Finnish high no no no
RE27 43 male German high myopia glasses no
RR04 49 male German medium no no no
SI28 32 male Chinese medium myopia glasses no
TU15 36 male Polish high no [sic] contact lenses no
UL29 31 male German medium no [sic| glasses no

Table 3.3: Expert participants - general information

31

3.3 PARTICIPANTS

oousLIodxe Surmmrersord uo uoryewnioyul - sjuedrorred 901A0N '€ O[qR],

- - 0 ouou - 0 ouou S
GVITLVIN ‘WNIPaW () :MO[[juow/Imoy > 0 suouU JUOW /Moy > 2 Mol g0dS
— yjuowr/moy 1> 0 ouoU YjUOW /Moy > 0 ouou JZVS
TINLH ‘UoyiLd :mO[oom/Imoy [> 0 ouou YoM /oy 1> 0 Mol ITHY
dHd “"TINLH ‘++D Mo[[juout/mor 1> 0 MO[yjuour/moy 1> 0 MO0[- ¢ZTHIN
++)D MO[Yjuowr/Imoy > 0 Mmo[Tjuowr/mor| 1> 0 Mol €101
jduogese ‘qHJ :MO[juowr /oy 1> 0 MO[Yyuowr/moy 1> 0 MO 620D
UO}AJ MO[- 0 auou — 0 mol OTNH
SSO/TINIH ‘++D m0] - 0 ouou yjuow/moy 1> 4 mo[1g0d
- yjuouwr/moy 1> 0 ouoOU YjuUOW /MOy > 0 auou GOMg

BAR[RAR[AR eAR[URY) Ioyj0 Suruwersord Surmrurersord
segendue| Y1) SurmweIsord sIedx osiIedxy surmersorg SIROX os1pradxy al

32

CHAPTER 3. EMCR STUDY DESCRIPTION

doupLadxe Surmweisord UO UOI)RULIOJUL -

syuedmorred jrodxy G ¢ 9[qe],

20 ++D ‘D Mo 05< £1 Lep/moy 1< S wnrpaut 0€ soom/moy 1> 9 wnipsw - 6gIN
#0O USY ‘dHd

4 “++D ‘D rwmipew 08< 08 Aep/moy 1< 4 43y 08 oom/moy 1> 0¢ ysrg - GINT
ydrogeaep

4 wnrpeut (D ‘9 1mof 05< 0S Aep/moy 1< 9 wnipaw 0S Aep /moy 1> 9 wnipaw 8TIS
++D

8T YSIY D) wnrpaw 06< 0¢ Aep/moy 1< 8 LE o€ sjpom /moy 1> qz wnipew - oYy
yduogeaer ‘++9 ‘D

g1 ‘wnipaw (v gy mo[05< 08 Aep /moy 1< €1 ysyq 08 yjuour/moy 1> 8T ysSq LzHY
osedq®) ‘uoyLg
‘dHd ‘D ySty ‘orseq
rensip ‘o8enSuey
Aquivssy DI
‘o ‘#D wnipauwt
‘odengdue| A[quiesse

0T ~ 98X ‘g ‘++D :mo[0S-0T 06 Aep/moy 1< 0T LEI 06 sjpom /moy 1> 02 ysq yevd
dHd

1 “ydrgeasef rwmrpow 0g-0T 0L Aep /moy 1> 4 wnpaw 0L Aep /moy 1< g wnpew - GOYIN
WO/++D us #D

S TWNIPAWT [BTROS 1MOT 0S-0T 06 Lep/moy 1< S wnpew 06 Lep/moy 1< 0T ySq €T

G0 dHd ‘LAN" :40] 0S-0T lig Aep/moy 1< g1 wnrpeuw 09 sjpom /oy 1> S wWnIpow Hg3
D Y81y ‘duogeaepr

a1 ‘++D wmrpow 06< 06 Aep/moy 1< 0g LE 06 Lep/moy 1< 0€ ysq 0€dI
++0
‘0 Sy ‘adrogeaep

€1 ‘wnrpewt fuoyfd :mo[0S-0T 06 oom/moy 1> 0¢ wnrpau 0T Aep/moy 1< 02 ysrq LZIH
++0 ‘D

9 ‘wnrpewr ‘uoyfd :mo[05< 0S Lep/moy 1< 4 ysry 0S Aep /moy 1> ! sy 0z0D
++0 ‘D ‘useq

T TWINTPOUT ([[9YSRH :MO[0g< 0S Aep/moy 1< [wnrpaw 0S Joom /moy 1> 9 wnrpaw 6cHdgd
TOS ‘#D runpaw

m IVdO ‘++D mo] 05< 0¢ Aep/moy 1< L wnpaw 0S yjuow/moy 1> 01 wnipaw - 9z g
#0 YSy
108 ‘dHd ‘“duogeser

6 SWNIPAW ‘#£] 1MO] 0g-0T - yyuow /moy 1> S mop 0L Aep/moy 1< 11 ysiq QTHAd
rduogeae
‘ory ‘D ySIY ‘[eose

i4 999(qQ umrpaw 0S-0T Vi yyuow/moy 1> S g3y 0L Lep /moy 1< €1 ysrq ggav

Towrwreigoxd 100(oad eAR[URYY eAR(
[euoissojoxd eae 1s9831q eaer ‘1Soad eAR eaer 1ayo -18oxd ueyy oyjo -i18oxd 1801d
SIeOX sodengue| 1710 S9SS®[D ‘ON oL, % eaef ‘1801 sIedx osIpradxy oLy, % 1801 sIeox osiprodxny ar

33

3.3 PARTICIPANTS

Overall programming expertise Java expertise
Novices Novices

Level of expertise

Figure 3.7: Self-rated programming expertise - novices
Overall programming expertise Java expertise

Experts Experts

Level of expertise

44% 44%

Figure 3.8: Self-rated programming expertise - experts

Programming other than Java Programming in Java
Experts Experts

Frequency

<1 hour/month
<1 hour/week m
<1 hour/day
>1 hour/day

Figure 3.9: Time spent programming - experts

34

Detecting oculomotor events _

4.1 Introduction

Even though some analyses can be carried out using raw eye tracking data, e.g. heat maps and
scanpath length, the majority of intended analyses necessitate the detection of events in the raw
data stream. FEvents of most interest here and for many other studies are fixations and saccades.
Roughly speaking, fixations are events in which the eye is relatively still, while saccades are
the movements which occur between fixations [Blignaut & Beelders, 2009, 1], [Holmqvist et al.,
2011}, 21-23,147,148,150,377], [Karsh & Breitenbach, [1983] 53], [Salvucci & Goldberg) 2000, 71],
[Rayner, (1998, 373].

Event detection allows to reduce data complexity, while preserving the information needed
for numerous analyses, e.g. by collating microsaccades and other small eye movements into a
single event, when they are irrelevant for the study at hand [Salvucci & Goldberg, 2000, 71]. The
event detection method has to be chosen carefully, since an inadequate approach may result in
erroneous events and can have considerable effects on later analyses [Blignaut) 2009], [Blignaut
& Beelders|, 2009], [Holmqvist et al., 2011, 149,150,158-160], [Karsh & Breitenbach) 1983, 57-63],
[Shic et al., [2008].

4.2 Choosing a suitable approach

During a fixation, the eyes do not stay completely still, but perform several types of small
movements, e.g. tremors and microsaccades. The extent of these movements is highly variable
[Blignaut & Beelders, 2009, 1-4,10-12], [Holmqvist et al., 2011, 21-23], [Nissli, 2011, 31-38],
[Rayner, 1998, 373,374]. Noise and the imprecision of the recording device also add movement
to the data, even when the gaze is predominantly stable [Holmqvist et al.,|[2011}, 161-164]. Hence,
classifying raw data samples into periods in which the gaze is predominantly steady (fixations)
and periods in which it is moving (saccades) is a complex task. |Olsen & Matos| [2012, 317] and
Inhoff & Radach! [1998| 31-34] give examples of ambiguous raw recordings, which make it very
difficult to decide on the type of event. The most suitable approach for event detection depends
on a number of factors, mainly the eye tracker, its sampling rate and precision, the cognitive
task that is studied, as well as the participant |[Blignaut & Beelders, 2009} 1-5,10,11], [Holmqvist
et al., 2011, 149,154-158,161-164,167,168,181,182], [Karsh & Breitenbach, (1983} 53].

The choice of event detection method can have quite an impact on the accuracy of identified
events and in consequence on the analysis results obtained with them. Karsh & Breitenbach

35

4.2 CHOOSING A SUITABLE APPROACH

[1983) 57-63] provide an early example on how changing the parameters for fixation detection
results in different number of fixations, fixation durations, and scanpaths. Using several al-
gorithms as well as parameter settings, Shic et al.| [2008] show that mean fixation duration is
mainly a linear function of parameters and that the settings influence the significance of results.
Blignaut| [2009] confirms these findings for several dispersion metrics and further illustrates that
number, position, size, and duration of fixations are in many aspects functions of the chosen
thresholds. Similarly, Komogortsev et al. [2010] and Holmqvist et al.| [2011} 149,150,158-160]
demonstrate the influence of parameters on event detection and how the dependent measures
are affected. The various resulting event distributions alter the average and variance of the
data and thus the results of all variance-based significance tests, potentially leading to different
interpretations of the same set of raw data. Salvucci as cited in Karn| [2000, 88] abates that
the chosen approach for event detection often only has an effect on part of the data, but does
not change the result in general. Nevertheless incorrect events are a threat to validity, so the
method and parameters for event detection have to be chosen carefully.

Events can be detected manually [Blignaut, 2009, 882], [Holmqvist et al., 2011} 150], however
only algorithmic solutions are considered due to their objectiveness and the huge amount of
EMCR data.

4.2.1 Choosing an algorithm

Salvucci & Goldberg [2000] provide a basic taxonomy of fixation identification algorithms, which
can serve as basis for systematically comparing and evaluating such algorithms. It classifies
algorithms according to their use of spatial and temporal information found in gaze data. There
are three spatial criteria: Velocity-based algorithms use the velocity of sample points, since
fixations have low, saccades high velocities. Dispersion-based algorithms assume that during a
fixation sample points cluster together and employ the spread distance of samples. Area-based
algorithms only identify fixations within specified targets. Additionally, there are two temporal
criteria: Duration sensitive algorithms utilize the duration information of raw samples, locally
adaptive algorithms allow to take neighboring samples into account, when classifying a point.

Fixations can be identified by dispersion-based algorithms, in which raw data samples must
stay within a defined area for at least a certain amount of time, or by velocity-based algorithms,
that find sample points with a velocity below a given threshold. During a saccade, the eyes move
fast, hence they are usually detected by velocity-based algorithms, which classify sample points
above a certain velocity or acceleration threshold as belonging to a saccade. Dispersion-based
algorithms are mostly used for data that was recorded at low sampling rates. Velocity-based
algorithms on the other hand usually require higher sampling rates in order to get proper velocity
and acceleration values. Overall, both dispersion-based and velocity-based algorithms work well
and their performance is comparable. Slower eye trackers (ca. <200Hz) cannot reliably detect
small saccades and are better suited for fixation identification. These devices and the associated
event detection procedures are sometimes called “fixation pickers”. Eye trackers with higher
sampling rates and velocity-based detection algorithms are thus tagged “saccade pickers”, since
they can robustly detect most saccades [Holmqvist et al.l 2011} 151-154,167,168,171,174], [Karn),
2000} 87], [Salvucci & Goldberg, 2000, 77,78].

The EMCR data was predominantly recorded with 120Hz, but a few participants with 60Hz,
so event detection will start by identifying fixations using a dispersion-based algorithm. Fixa-
tions are also the main type of event later used in the analyses. Dispersion-based algorithms are
well-established for event detection. There are several variants, of which the widely-used identi-
fication by dispersion threshold algorithm (I-DT) [Salvucci & Goldberg}, 2000] will be adopted,
which is based on an approach presented by [Widdel [1984, 24,25]. The I-DT provides robust
results even for somewhat noisy data, despite being a fairly simple algorithm. The two required

36

CHAPTER 4. DETECTING OCULOMOTOR EVENTS

parameters are the maximum dispersion of samples belonging to a fixation and minimum fix-
ation duration. Dispersion can be specified in different ways, e.g. as distance between a set
of points and their center or between the sample points that are the farthest apart (see
Dispersion).

During a fixation, samples have a low velocity and cluster closely together. In order to find
fixations, the I-DT uses a moving window that spans over the required minimum duration and
checks whether the dispersion of the included samples is below the threshold. If the dispersion
of these samples exceeds the threshold, the window does not include a fixation (figure),
and it starts again at the next sample to check the subsequent series of points (figure) If
dispersion is below the threshold, a fixation is identified and the window is expanded sample by
sample until the dispersion surpasses the maximum (figure and) Finally, the center
of the x- and y-coordinates in the window provides the fixation location, the first timestamp in
the window the fixation onset, and the time span from first to last sample in the window the
duration. The window moves along the samples until the end of the input stream is reached.
See figure for an example.

time|0 |8 |16 |25 |33 |41 (50 |58 |67 |75
X 507 |445 | 459 |459 | 454 | 445 | 443443 |443 | 342
y 430 456 | 460 |456 458 460 461|461 |462 464

(a) The window is initialized with the first contiguous sample points with a minimum duration of 50 ms.
The dispersion of these points amounts to 1.7° (71 px), which is above the threshold, so these samples
are not part of a fixation.

time |0 |8 |16 |25 |33 |41 |50 (58 |67 |75
X 507445 |459 |459 454 |445 (443 (443|443 |342
y 430456 |460 456 1458 460|461 (461|462 464

(b) The window moves to the next series of samples with a duration of at least 50 ms. The dispersion of
these points amounts to 0.4° (17 px), which is below the threshold, hence a fixation is found.

time 0 |8 |16 |25 33 |41 |50 |58 |67 |75

X 507| 445|459 |459 | 454 445 (443 |443 |443| 342

y 4301456 [460 |456 458|460 [461 |461 |462) 464

(¢) The window is expanded, to check, whether the subsequent sample is also part of the current fixation.
The dispersion still amounts to 0.4° (17 px), which is below the threshold, so the additional point is
included in the fixation.

time |0

8

16 |25 133

41

50

58

67

75

X

507

445

459 459 454

445

443

443

443

342

y

430

456

460 456 458

460

461

461

462

464

(d) The window is expanded again, however the dispersion amounts to 2.9° (117 px), which is above the
threshold. Therefore the last sample does not belong to the fixation that was just identified.

Figure 4.1: I-DT example using the distance between points that are farthest apart as dispersion
metric and a maximum dispersion of 1° of visual angle. At a distance of 65 ¢m and for an
exemplary screen with a height of 29.8 cm and a vertical resolution of 1050 px, 1° corresponds
to 41 px. 50 ms is employed as minimum duration. The detected fixation starts at 8 ms, has a
duration of 59 ms, and is located at (449,459).

37

4.2 CHOOSING A SUITABLE APPROACH

The main disadvantage of the I-DT is the high interdependence of the two parameters,
which requires a careful threshold selection. Furthermore, the I-DT, like all dispersion-based
algorithms, is not suited for analyzing high-speed gaze data. In some cases the onset of a new
fixation is detected while the gaze is still moving and a small distance away from its target.
Thereby, most of the allowed dispersion is depleted by points that belong to the end of a
saccade. When more samples from the actual fixation are added to the window, even very small
intra-fixational movements will cause the dispersion to exceed the threshold and the fixation to
end. If the duration of the remaining samples of this fixation is long enough, they will form a
new fixation event, which will potentially include the first samples of the subsequent saccade.
However, for lower sampling rates, this is not as problematic, since the samples are further apart
[Holmqvist et al., 2011} 153,154,167,168].

Details about the algorithm can be found in Blignaut & Beelders [2009], [Holmqvist et al.
[2011], 153,155,158,159], Nystrom & Holmqvist [2010, 190], and [Salvucci & Goldberg [2000]. A
pseudocode is provided by [Salvucci & Goldberg [2000, 74].

4.2.2 Adapting the algorithm

There are several ways of implementing the I-DT and the version presented by [Salvucci &
Goldberg [2000] is adapted to fit the EMCR data as best as possible. The presented variations
are compared in section using the EMCR data and diverse parameter settings.

4.2.2.1 Duration

I-DT implementations tend to set the minimal duration in number of samples instead of us-
ing an actual duration in milliseconds or the like, e.g. https://github.com/gian/eventdetect,
https://github.com /schw4b/emov /tree/master /R.!. There are several issues with this method.
When working with number of samples, the intended duration threshold can often only be ap-
proximated and it depends on the sampling rate and the specific device and recording how well
the duration requirement can be met. In theory, a 120Hz tracker provides samples circa every
8 ms. In order to set a minimum duration of e.g. 100 ms, the window has to be initialized
with either 12 or 13 samples, which results in an actual threshold of 96 ms or 104 ms - provided
samples are truly recorded every 8 ms. This little time difference is pretty much negligible.
However, in reality the time span between samples is quite variable. In the 120Hz EMCR data,
samples were mostly recorded every 8 or 9 ms, but overall the time span between samples varies
between 2 and 5123 ms. In fact, only 64% of the samples are 8 ms apart, another 33% of the
samples have a gap of 9 ms. Besides that, 125 other time spans can be found between samples.
While those represent only a comparatively small portion of the raw data, they still amount to
almost 31,000 samples. Hence, using 12 or 13 samples as threshold, instead of 100 ms, results
in diverse minimum window sizes and it is possible that samples will be classified as fixations,
even though their duration is shorter than the intended minimum. Likewise, fixations might be
overlooked. When samples are slightly further apart or the signal is momentarily lost and sam-
ples within a fixation are missing, the number of samples that form a fixation can be less than
the minimal required number even though their duration exceeds the intended threshold. Thus,
the fixation is not detected, even though it is clearly present in the sample stream. Additionally,
when samples are missing, several fixations might be merged into one, if the eye returns to the
same area, where it was prior to losing the signal, because the time span between samples is not
taken into account (see figure) Misclassified samples are not only a local problem, but also
influence how successive points are interpreted. Setting the minimal duration as number of sam-
ples, instead of as time span, affects the number of fixations as well as fixation durations, since

'Last accessed 12/05/2020

38

https://github.com/gian/eventdetect
https://github.com/schw4b/emov/tree/master/R

CHAPTER 4. DETECTING OCULOMOTOR EVENTS

some identified fixations are shorter than the intended threshold or have an incorrect duration,
and some fixations might be missed altogether.

The I-DT implementation for the EMCR data uses a duration threshold in milliseconds
rather than in samples and avoids most of these problems. The impact of this change can be
seen in [4.3] Event detection on the EMCR data. Nevertheless, even with this duration setting,
fixations might be merged into a single event, if there are gaps in the samples during which the
gaze moves away and back to the previous area. To prevent this, a time constraint is introduced,
which specifies the maximum time span allowed to be missing between two contiguous samples
within in a fixation (see figure . There are several options, how to set such a parameter. It
has to be short enough to ensure that the gaze cannot move away, fixate something, and return
during the missing time frame. Hence, the missing time has to be less or equal to the minimum
fixation duration. It would be possible to allow a slightly longer time span to account for the
two saccades that bring the eye away and back, but a cautious choice is preferred. Similarly,
Hornof & Halverson| [2002, 596] allow a gap of <100 ms within a fixation, which is their minimum
fixation duration.

sample(l |2 (3 (4 5 |6 (7 8 9 |10 11 |12 |13 |14 |15 |16 17 |18

time [0 8 [16 |25 |33 |41 |50 58 67 |575 583|592 |600 608|617 |625 633|642

X 507|445 459|459 454 445|443 443 443 440 440 |438 |438 | 435|434 |432 430|342

¥ 430|456 | 460 |456 458 460 461 461462 461|463 464|463 464|464 465 466 J464

(a) The classic I-DT detects a single fixation with a duration of 625 ms.

sample(1 |2 (3 |4 5 |6 |7 8 |9 |10 |11 |12 |13 |14 |15 |16 |17 |18

time |0 |8 |16 |25 33 |41 |50 |58 67 |575|583|592 (600|608 617|625 633|642

X 507|445 |459 459 454 | 445 443 |443 443440 440 | 438 |438 (435|434 | 432|430 (342

y 430|456 | 460 456 458 | 460 | 461|461 462|461 |463 464|463 | 464 | 464 | 265 | 466 464

(b) The adapted I-DT, which uses a duration threshold in milliseconds and a time constraint on how far
samples can be apart within a fixation, identifies two fixations, the first with a duration of 59 ms, the
second with a duration of 58 ms.

Figure 4.2: I-DT example with missing samples. The maximum dispersion is set to 1° of visual
angle, minimum duration to 50 ms. The stream contains a gap of 508 ms between samples 9 and
10. It is unknown, where the gaze went during the missing time frame. The gap leaves enough
time for the eyes to move away, fixate another area and move back. Furthermore, collating all
samples within the dispersion threshold into a single event results in an unusually long fixation,
hence treating the samples as two separate events is a more prudent choice.

4.2.2.2 Dispersion

There are a number of different options to specify dispersion. |Salvucci & Goldberg [2000),
74] suggest summing the maximum horizontal and vertical distances between points in the
window. Other variants include the distance between sample points and their center (i.e. the
radius), distance between the points that are the farthest apart, and distance between any two
successive points [Blignaut} 2009, 886,887], [Blignaut & Beelders, 2009, 8], [Holmqvist et al.,
155,362,363], [Salvucci & Goldberg, 2000, 74], [Shic et al., 2008, 111]. Blignaut & Beelders|
2009] tested several dispersion metrics for the I-DT and found radius and maximum distance
between sample points to be the most accurate and least dependent on parameter settings. Since
the perceptual span during reading is asymmetric [Holmqvist et all 2011, 380,381], [Rayner|

39

4.2 CHOOSING A SUITABLE APPROACH

1998, 380], the maximum distance between sample points is a better fit for the EMCR data than
the radius and therefore implemented as dispersion metric. It ensures that each sample point
which belongs to a fixation is within the specified distance to every other point in the fixation. As
with other dispersion metrics, the actual area covered by samples belonging to a fixation varies.
Shic et al.| [2008] and Blignaut| [2009] demonstrate that dispersion-based algorithms behave in a
comparable manner and can to a certain extent be converted to each other. So it is still possible
to relate the events that were identified with this dispersion setting to those detected with other
metrics. Unfortunately, it makes event detection more computationally expensive. However this
is of no concern for the EMCR study.

Another aspect to consider is that the performance of the I-DT algorithm greatly depends
on the quality of the data, especially its spatial precision and the amount of noise. A detailed
description about noise in gaze data can be found in[5.2] Data quality. The classic I-DT terminates
a fixation as soon as dispersion exceeds the threshold, so noise can cause the end of a fixation
event and potentially the onset of a new one. One option to account for noise and insufficient
precision is to increase the dispersion threshold. An alternative is to allow a certain amount of
samples to be outside the maximum spread area [Holmqvist et all 2011, 155,161-164,181,182],
[Nystrom & Holmqvist, 2010, 199]. The EMCR data is about reading and contains rather small
saccades. Rayner| [1998] 373,376] report a mean saccade length of 2° of visual angle for silent
reading and that such saccades vary from 1 to over 15 letter spaces. Inhoff & Radach [1998, 32]
also mention that very brief saccades with just one character space are common in reading. This
strongly limits the margin for increasing the dispersion threshold without risking to collate small
saccades into fixations. Instead, it will be allowed that 5% of the samples within a fixation can
lie outside the maximum spread area (see figure [4.3). The longer the fixation, the greater the
number of samples that can deviate. In order to prevent saccade samples from being included
into fixations, the first and last sample belonging to a fixation have to be within the defined
dispersion, only samples in between can lie outside. Additionally, if two or more neighboring
samples are outliers, their combined duration is not allowed to exceed the minimum fixation
duration. The deviating points are not included, when determining the center of the fixation.

=3 .
Q .
<
-_\m‘*"_"‘-—-‘,
[=]
Q A \
o ™
b
£
B o
g &
Q
x [=]
s |
o
0 50 100 150 200 250 300 350
Time (ms)

Figure 4.3: I-DT example with one sample outside the maximum allowed spread area. The raw
data samples for the x-coordinate are plotted in black, fixations are overlaid in red. At 200 ms,
the eye tracker reported a sample with the coordinate (197,452), at 208 ms (0,0), and at 217 ms
(196,451). The sample with the location (0,0) exceeds the dispersion threshold and the classic
implementation of the I-DT would cut the on-going fixation short. The adapted I-DT leaves the
fixation intact.

40

CHAPTER 4. DETECTING OCULOMOTOR EVENTS

4.2.3 Setting parameters

In order to compare the data for NT and SC reading, the same settings shall be used for
both. The appropriate parameters depend on several factors, like the task that is studied,
spatial resolution of the eye tracker, as well as its sampling rate |[Blignaut & Beelders, [2009,
5,6], [Holmqvist et al., 2011, 148,154-157], [Karsh & Breitenbach) (1983} 55,59,63], [Salvucci &
Goldberg, 2000, 74]. The impact of various parameter options in connection with the different
adaptions of the I-DT algorithm can be seen in section Event detection on the EMCR data.

Since the cognitive task has to be considered, other studies with eye movements in pro-
gramming were investigated. However, the event detection approach and parameters are rarely
stated. In several of the studies that actually describe their approach data was recorded at
300Hz or more and a velocity-based method was used, e.g. Beelders & Plessis [2016al 3], Fritz
et al.| [2014] 404], Hansen| [2015, 59,60], Lin et al. [2016} 178]. Niissli [2011, 44-50] developed a
velocity-based detection algorithm for 50Hz data, which estimates the optimal threshold. Thus,
these cannot serve as reference on parameter settings. Studies with gaze in programming that
had a lower sampling rate and use a dispersion-based algorithm mostly state the dispersion
threshold in pixels instead of degrees, e.g. |Binkley et al.|[2012] 224], Fan| [2010, 62,68], Uwano
et al. 2006}, 136]. This makes it difficult to relate the parameters to the EMCR setting, since
it depends on the display size and resolution, as well as on the distance between participant
and display how many pixels correspond to a degree of visual angle. Since the EMCR data
contains NT and SC reading, additionally to parameter settings used in eye movement studies
with programming, recommendations for reading were taken into account when choosing the
duration and dispersion thresholds.

4.2.3.1 Duration

The suggestions for minimum fixation duration range from about 30 to 250 ms [Blignaut, 2009,
881,884], [Holmqvist et al., 2011, 148-156]. The decision for a certain threshold is often based on
the kind of task that is carried out. For instance, fixations tend to be shorter during reading than
in picture viewing, so usually a shorter minimum duration is chosen for reading data [Holmqvist
et all [2011, 148,154]. Noted reading research e.g. by Inhoff & Radach| [1998, 34] uses 50 ms
as minimum duration. Likewise Rayner| [1998, 376] and Rayner et al| [2005, 80] emphasize
that fixations as short as 50 ms do occur in reading. Furthermore, when the text is obscured
after fixating it 50 to 60 ms, reading can continue fairly normal |[Rayner et al., 2005, 90]. In
studies involving programming, the shorter minimum durations used are 40 ms [Sharif et al.,
2012, 382], 50 ms [Uwano et al., [2006, 136] and 60 ms [Sharif et al., [2013] 2]. Yet, some studies
discard fixations with a duration of less than 100 ms, e.g. Bednarik & Tukiainen| [2006, 127],
Fan| [2010, 62], |[Ntssli| [2011}, 46]. Also many other studies unrelated to programming remove
fixations shorter than 100 ms, because they can be the result of noise and it is not certain
that visual intake is actually open during such “express” fixations. However, they are still real
oculomotor events. [Holmqvist et al.| [2011} 156] give an example of a fixation even shorter than
50 ms. Hence, these events exist and should be measured properly and not classified as saccades
[Holmqvist et all 2011, 156,157], [Inhoft & Radach| 1998, 34], [Velichkovsky et al., (1997, 514],
[Velichkovsky et al., 2000, 80]. Furthermore, the adaption to allow some outliers reduces the
chance of spuriously short fixations from noise (figure [4.3). Besides, in code reading such short
fixations are most likely used when navigating between different code areas and therefore form
a pertinent part of the behavior that is studied. Therefore, in concurrence with well-established
reading research, 50 ms is a suitable choice for the EMCR data. In order to better comply with
the sampling rates of 60Hz and 120Hz used in the EMCR study, the duration threshold is set
to 48 ms, a multiple of 8 and 16 ms.

41

4.3 EVENT DETECTION ON THE EMCR DATA

4.2.3.2 Dispersion

During a fixation the gaze is considered to be stable. However, the eyes do not actually stay
completely still, but perform several kinds of small movements. The dispersion threshold defines
how much the eye can move, so that the samples are still recognized as fixation. Even though
the extent of intra-fixational movements varies among participants, a common threshold can be
set, if chosen carefully [Blignaut & Beelders| 2009, 10,11]. Dispersion settings range from 0.5°
to 2° of visual angle. For choosing an optimal parameter, spatial resolution, noise, and the task
are important factors [Blignaut & Beelders|, 2009, 5,6], [Holmqvist et al., 2011, 151-155], [Karsh
& Breitenbach, (1983, 55,59,63], [Salvucci & Goldberg, 2000, 74], [Widdel, 1984} 21,22].

In order to lessen the effect of noise, Holmqvist et al.| [2011, 163] propose to increase the
dispersion threshold. However, the adapted I-DT implementation already takes some noise into
account, so this is of minor relevance. Besides, as pointed out in Choosing an algorithm, if
the dispersion threshold is set too high, the I-D'T might detect the onset of a fixation while the
eye is still moving. During silent reading, the average saccade length is 2°, but much shorter
saccades are also quite common [Inhoff & Radach, 1998, 32], |[Rayner} |1998, 373,376]. Hence,
the dispersion setting for the EMCR data has to be well below this amplitude. [Blignaut &
Beelders [2009] studied thresholds for several I-DT dispersion metrics. For the distance between
points farthest apart, which is used for the EMCR data, the range in which the I-DT worked
best was found to be 0.9 - 2.2°, with an optimum at 1.3°. Drawing from these prerequisites,
the thresholds of 1° and 1.3° were identified as good candidates for the dispersion setting in the
EMCR data, since they are within the optimal range, but small enough to not include small
saccades into fixations. The EMCR data was recorded with an SMI RED-m eye tracker, which
has a spatial resolution of 0.1° (root mean square) and an accuracy of 0.5°. Hence these options
do not conflict with the capabilities of the recording device.

Using the adapted I-DT algorithm and a duration threshold of 48 ms, fixations were com-
puted for both potential thresholds. The obtained fixation durations are not normally dis-
tributed, so a Mann-Whitney U test was applied for comparison and showed a significant differ-
ence between the two sets of fixations (p<0.001). The threshold of 1° resulted in more fixations
and a lower median fixation duration than 1.3° (see tables[t.2land [4.3)). The x- and y-coordinates
of the raw data were plotted with both sets of fixations overlaid. After visual inspection, 1° of
visual angle was chosen as dispersion threshold, as it yields better fitting results and reduced
the chance of premature fixation onset with the last samples of a saccade. A certain variation in
the optimum is to be expected, since Blignaut & Beelders [2009] evaluated the dispersion metric
in a study with a completely different stimulus type (chess playing), other participants, and an
eye tracker by another manufacturer.

4.3 Event detection on the EMCR data

In order to demonstrate how the chosen approach to event detection behaves in relation to other
I-DT variants and parameter settings, various combinations are compared. The dispersion
metric used in all variants is distance between the points that are farthest apart. [Komogortsev
et al. [2010] and Olsen & Matos|[2012] use especially constructed fixation and saccade invocation
tasks to analyze the effect of different algorithms and settings, which allows them to expect to
a certain degree what fixations should be identified and to assess the approaches accordingly.
While this is a very good procedure when evaluating such methods in general, here it is not a
viable procedure, since the parameters are dependent on task type and the use of I-DT variations
is tested specifically for the EMCR data. Consequently, the actual EMCR study data is used for
comparing algorithm versions and parameters. In order to have a large data set for testing, the

42

CHAPTER 4. DETECTING OCULOMOTOR EVENTS

recordings from novices who eventually quit the study were included, as well as the additional
source codes, which participants read, but which are not part of the EMCR stimulus material.
The raw data includes 1,653,148 samples from 33 participants (17 novices, 16 experts) and all
stimuli texts (212 trials in total).
The I-DT variants included are:
e ms: I-DT with the duration threshold set in milliseconds
e smp: I-DT with the duration threshold set in number of samples
e ms maxmiss: I-DT with the duration threshold set in milliseconds combined with the
time constraint, that during a fixation the interval missing between samples cannot exceed
the minimum fixation duration
e ms_out: I-DT with the duration threshold set in milliseconds and 5% of the samples
belonging to a fixation are allowed to lie outside the maximum dispersion
e ms out maxmiss: I-DT with the duration threshold set in milliseconds combined with
the time constraint and 5% of the samples belonging to a fixation allowed outside the
maximum dispersion

The tested dispersion thresholds are 0.033, 0.5, 1, 1.3, 1.5, and 2°. Most of these are commonly
used and suggested threshold values. The minimum of 0.033° is employed by [Komogortsev et al.
[2010] when testing different parameter settings on dispersion-based algorithms and represents
the smallest amplitude usually assumed for intra-fixational saccades. 1° and 1.3° were identified
as the best candidates for the EMCR data. The settings of 32, 48, 96, 144, 192, and 240 ms are
employed for minimum fixation duration. All duration thresholds were chosen to be multiples of
16, since samples should be recorded approximately every 8 ms with the 120Hz device and every
16 ms with the 60Hz one. The shortest duration used in other studies was 40 ms and 32 ms
is the closest multiple of 16. Besides, fixation durations of 30 to 40 ms are possible [Holmqvist
et al., 2011, 381]. 48 ms is the parameter selected for event detection, it is as close to 50 ms as
possible. 96, 144, 192, and 240 ms correspond to 100, 150, 200, and 250 ms, the settings often
suggested in literature.

The I-DT only detects fixations and does not classify the remaining samples. Usually, the
samples between fixations are taken as saccades [Karn) 2000, 87], [Nystrom & Holmqvist), 2010,
190]. This approach is also adopted here. Saccade duration is calculated as time span between
the end of the preceding fixation and the begin of the subsequent one. Even though saccades
often do not take the shortest path between two points, but can undergo several shapes and
curvatures |Holmqvist et all [2011, 23], saccadic amplitude is calculated as Euclidean distance
between the locations of two fixations, an often adopted practice, e.g. [Holmqvist et al., 2011,
311,319], |Nystrom & Holmqvist, 2010, 200]. The dataset for demonstrating the differences
between the I-DT variants and parameter combinations includes samples in which the eye tracker
reported a gaze location of (0,0), i.e invalid samples. While events from such samples will not
be used in the analysis, they were not removed from the following comparison in order to show
the exact behavior of the approach with the actual data. Excluding certain events would not
affect all combinations in the same way and thus bias the outcome of the comparison.

4.3.1 Comparing algorithm variants

The number of identified fixations, as well as the minimum, median, and maximum fixation
durations for all I-DT variants are summarized in tables [£.2land 4.3l A Kruskal-Wallis test was
used to compare the fixation durations yielded by all variants for the chosen threshold of 1°
and 48 ms, which showed a significant difference between them (p<0.001). Therefore pairwise
comparisons were carried out with Mann-Whitney U tests. The resulting p-values were corrected
for multiple testing (table [4.1]).

43

4.3 EVENT DETECTION ON THE EMCR DATA

smp ms maxmiss ms out ms_ out maxmiss

ms 0.069 0.984 <0.001 <0.001
smp - 0.069 <0.001 <0.001
ms _maxmiss - - <0.001 <0.001
ms_ out - - - 0.876

Table 4.1: Differences between the fixation durations generated by the I-DT variants for the
chosen thresholds of 1° and 48 ms.

When comparing the classic I-DT with minimum duration in milliseconds (ms) and in number
of samples (smp), it becomes obvious that for all parameter combinations more fixations are
found by the ms-version, even though the algorithms are identical, except for how the minimum
duration is specified. Thus, the smp-variant actually misses some fixations. Furthermore, it
indeed found fixations that are shorter than the intended threshold. Despite these issues, there
is no significant difference between ms and smp, though the resulting p-value is only 0.069,
which suggests that the two ways of specifying minimum duration may have a subtle effect.
Nevertheless, the smp-variant is not considered further, since the anticipated problems with a
threshold set in number of samples did actually occur. Introducing a maximum time span that
can be missing between fixation samples (variants ms__mazmiss and ms__out__mazmiss) seriously
decreases the maximum fixation duration for half of the parameter combinations. No differences
were found between ms and ms_mazmiss (p=0.984), smp and ms_maxmiss (p=0.069), and
ms_out and ms__out_mazmiss (p=0.876). Consequently, the time constraint does not change
the outcome in general, but removes some of the implausibly long fixations. This is the optimal
result. The two I-DT adaptions which allow some samples outside the dispersion threshold
(ms_out and ms_out_maxmiss) are significantly different from the other variants (<0.001).
They generally result in fewer fixations and longer median fixation durations.

4.3.2 Comparing parameter variants

In order to show how the I-DTs behave for different parameter combinations, tables and
list the results for all variants and parameters. However only the approach ms_out mazmiss,
which is used for the EMCR study, is examined in detail.

Changing the thresholds affects the number of identified fixations, as well as minimum,
median, and maximum fixation duration. Combining a small dispersion threshold with a long
minimum duration, often prevents the I-DT from finding any fixations and thus results a very
small overall number of fixations. Focusing on dispersion values of > 0.5°, which can reasonably
be used as thresholds, shows that as dispersion increases, the number of identified fixations
converges for all duration thresholds, while the median fixation durations retain their uniformly
increasing slope (see figure .

Inspecting the results for the threshold setting of 1° and 48 ms shows that the identified
events are within the expected range. According to Holmqvist et al.| [2011, 381], fixations
usually last around 200 to 300 ms, but may have a range from about 30 ms to several seconds.
Furthermore, average fixation durations vary across different tasks and stimuli, e.g. |[Rayner
[1998, 373,376] gives a mean fixation duration of 225 ms for silent reading and points out that
there is huge variability between readers both for fixation duration and saccade length. The
median fixation duration for the EMCR data is 167 ms [92..267], the maximum is about 4.5 s,
which is much more realistic than the maximum durations of over 12 sec found by other variants
and parameter combinations. Nevertheless, it is very reassuring that the adapted I-DT together
with the chosen thresholds only generated physiologically reasonable fixations, which is not the

44

CHAPTER 4. DETECTING OCULOMOTOR EVENTS

Number of fixations

90000-
Minimum duration (ms)

60000-

30000-

Number of fixations

O,
0.0 05 1.0 15 2.0
Maximum dispersion (deg)
(a) Number of detected fixations
Median fixation duration
400-

300-

200-

100-

Median fixation duration (ms)

0.0 05 1.0 15 2.0
Maximum dispersion (deg)

(b) Median durations of detected fixations

Figure 4.4: Fixations detected by the I-DT variant ms_out_mazmiss for different parameter
combinations

case for many of the other combinations. As expected, the distribution of fixation durations has
a positive skew (figure [4.5)).

With the rationale that fixations last much longer than saccades and therefore a substantial
part of the samples should be attributed to fixations, Niissli| [2011], 39,40] uses the total fixational
coverage as part of a fixation identification quality score. Similarly, Blignaut| [2009] employs
the percentage of samples included in fixations as one indicator for finding optimal dispersion
thresholds. Using the chosen approach, 91% of the samples are part of a fixation, thus a very huge
portion of the raw data is collated into fixations. The remaining samples constitute saccades,
noise and other events that are not classified. As additional check that the chosen approach
works properly, saccades were calculated and inspected. The median saccade velocity is 116°/s
[57..200], which is well in accordance with literature. Nevertheless, some of the samples that are
classified as saccades might actually be noise.

4.3.3 Post-Processing

Irrespective of the adopted approach, there are several steps of processing the detected events
before analysis. If consecutive fixations are located very near to each other, they might actually
be part of one longer fixation that was split due to large intra-fixational movements or noise.

45

4.3 EVENT DETECTION ON THE EMCR DATA

Fixation duration

6000-
4000-
2000-

0,

0 1000 2000 3000 4000

<
3 6000
s)

4000

2000-

0- J 7]
200 400 600

Fixation duration (ms)

Figure 4.5: Distribution of fixation durations in ms. Fixations were identified by the I-DT
variant ms__out__maxmiss using the parameters of 1° and 48 ms.

Such close fixations can be merged after event detection [Komogortsev et al., 2009, 2636,2637]. In
order to make sure that only those fixations are combined for which the disruption is absolutely
evident, a very guarded merging is applied. Fixations are only collated when their spatial
distance is less than 0.1° (ca. 5 px) and less than 48 ms pass between them. The onset of the
collated fixation is the first sample of the two original fixations, the center point is calculated
from all included sample points. This additional processing reduces the number of fixations for
the chosen parameters from 65841 to 65639, hence only 0.3% of the fixations in the EMCR data
were merged into others. The fixation durations before and after merging were compared with
a Mann-Whitney U test, but no difference was found (p=0.369). Thus, the merging does not
change the distribution of fixation durations, but joints fixations that were obviously cut short.

When an event spans over the transition from one stimulus to the next, the first raw data
samples of this event are recorded during the earlier trial and are therefore missing in the
subsequent one. Hence the first event in the later trial appears shorter than it actually is,
potentially distorting data analysis. Such incomplete events can be excluded from analysis
[Holmqvist et al, 2011} 154,384,385]. Consequently, the first event of each trial of the EMCR
data is discarded. The slide presented before the stimulus text is the instruction and participants
have to press the left mouse button in order to get to the text stimulus. After that, they shift
their attention back to the screen and look about for the text to be read. So in any case, the
first event is rather irrelevant for text comprehension. Analogous, the last event of a trial is not
included into the analysis, as it might be split as well.

Furthermore, it is possible to filter out some noise by discarding samples with a physiolog-
ically impossible velocity [Holmqvist et al., [2011, 152,181]. Similarly to |[Nystrom & Holmqvist
[2010, 193], saccades are removed, when their velocity exceeds 1000°/s. Finally, fixations with
the location (0,0) are discarded together with the saccades leading to and coming from them.
Such samples are not removed before event detection, since that would leave gaps in the raw
data and the missing time would mostly be attributed to saccades, distorting their distribution.

46

CHAPTER 4. DETECTING OCULOMOTOR EVENTS

4.4 Conclusion

Choosing a suitable event detection approach is crucial for obtaining valid event locations and
durations. Many methods exist for event detection and their suitability strongly depends on the
data that is to be processed. There are still challenges and event detection is an active research
topic, e.g. [Friedman et al|[2018], Korda et al|[2018], Zemblys et al,| [2018|. Nevertheless, the
adapted I-DT is a solid choice for the EMCR data. It is widely used and provides accurate and
robust results for fixation events, which are the main focus of the EMCR study. Modifications like
using the maximum distance between sample points as dispersion metric, setting the dispersion
threshold in milliseconds, restricting the time allowed to be missing between samples within a
fixation, and allowing a certain amount of samples outside the dispersion threshold attenuate
several of the I-DT’s drawbacks. For detecting fixations in the EMCR data the maximum
dispersion is set to 1° of visual angle and 48 ms is employed as minimum fixation duration.

47

4.4 CONCLUSION

max_ disp min_ dur ms smp ms_maxmiss ms_out ms_out_maxmiss
0.033 32 | 33354 32614 33349 33176 33192
0.033 48 13521 13095 13539 13374 13409
0.033 96 2468 2264 2504 2886 2927
0.033 144 972 905 975 1049 1052
0.033 192 691 631 690 747 746
0.033 240 492 446 490 538 536
0.5 32 | 112570 111806 112433 108987 108908
0.5 48 | 93540 92767 93496 90362 90361
0.5 96 | 55492 54710 55498 56689 56700
0.5 144 | 34753 34129 34744 35958 35949
0.5 192 | 22415 20454 22406 24272 24263
0.5 240 12935 11500 12928 14622 14615

1 32 76718 76228 76640 73146 73162

1 48 | 69036 68575 68991 65817 65841

1 96 | 52879 52316 52877 52396 52402

1 144 | 41442 40958 41425 41315 41298

1 192 | 32092 30425 32074 33042 33024

1 240 | 23186 21548 23167 24442 24422

1.3 32 | 65345 64934 65301 61992 62062
1.3 48 | 59718 59338 59675 56641 56678
1.3 96 | 48156 47677 48147 47247 47259
1.3 144 | 39738 39323 39716 39204 39188
1.3 192 | 32369 31046 32349 32841 32824
1.3 240 | 24984 23662 24963 25899 25878
1.5 32 | 59943 59558 59930 56655 96770
1.5 48 | 55103 54741 55068 52121 52190
1.5 96 | 45147 44709 45139 44122 44138
1.5 144 | 37984 37631 37963 37229 37213
1.5 192 | 31748 30595 31728 31947 31925
1.5 240 | 25338 24205 25321 25989 25972

2 32 | 50080 49723 50106 46987 47168

2 48 | 46488 46155 46465 43605 43715

2 96 | 38995 38609 39010 37748 37787

2 144 | 33602 33311 33590 32600 32590

2 192 | 29207 28378 29188 28905 28885

2 240 | 24613 23798 24593 24804 24779

Table 4.2: Number of fixations identified by the different I-DT adaptions:

ms: duration threshold in milliseconds

smp: duration threshold in number of samples

ms_maxmiss: duration threshold in milliseconds with time constraint for the interval between
fixation samples

ms_out: duration threshold in milliseconds, 5% of the samples belonging to a fixation are al-
lowed outside the maximum dispersion

ms__out_maxmiss: duration threshold in milliseconds with time constraint and 5% of the sam-
ples belonging to a fixation allowed outside maximum dispersion

The maximum dispersion is given in degree of visual angle, minimum fixation duration in mil-
liseconds. The chosen thresholds of 1° of visual angle and 48 ms are highlighted.

48

CHAPTER 4. DETECTING OCULOMOTOR EVENTS

“POIUSIYSIY oIe SW {F PUR J[SUR [BNSIA JO (T JO SP[OYSOIY} USSOYD Y[, "SPUOISSI[[IW UL 9IR SoN[eA
I9J0 B ‘O[3Ue [BNSIA JO 99I80P Ul USALS ST UOISIOASIp wnwixew oy], :suotydepe ,(-T JUSIOPIP oY) AQ PojeIouss SUOIJRIND UOIIRXI] €% O[qRL,

8€0cT 10V Ive | 8€0CT 10V Ive | ¢¢6IT 00% Ive | ¢¢6IT 60¥ 6V¢ | ¢e6IT 007 e | Ove 4
8¢€0CT 6S¢€ ¢61 | 8€OCT 99¢ ¢61 | CC6IT T1G€ c61 CC6IT 649€ 96T | CC6IT 16€ 61 | C6T 4
8€0CT €€ 6VT | 8€0CT €€€ 6V | ¢¢6IT LI€ 671 ¢eoIT LIE 6Vl | ¢e61T LIE 6VL | VI 4
7889 ¢66 66 8€0CT ¢6C 66 7889 €8¢ 66 GCOIT €8¢ 66 CCOIT €8T 66 96 4
889 (1414 6V 8¢0CT 09T 67 7889 vee 67 GCOIT 7€T 6% CC6IT V€T 67 87 4
7889 €€C ce €961T €€¢ 4% 7889 L1C ce ¢eoIT LIG 1€ Ce61T LI (49 ce 4
8€0CT 69€ Ivc | 8€0CT 6S9€ Ive | 61T 16€ Ive | CC6IT L9€ 6V¢ | ¢e6IT T19€ e | Ove ¢'1
8¢0CT LI€ ¢61 | 8€OCT LIE€ ¢61 | CC6IT 60€ c61 CGCO6IT LTE L6T | CC6IT 60€ 61 | C6T ¢T
8€0CT V8¢ 6VT | 8€0CT V8¢ 6V | CC6IT GLC 671 Ce6IT 9.T 6Vl | ¢e61T GLC 6VL | VI a1
GT0S 0¢c 86 8€0¢T 04¢ 86 169¥ ave 86 GC6IT ¢ve 66 CCOIT &Ve 86 96 g1
groS L1C 6% 8¢0CT LIC 67 981V 102 67 GC6IT 10¢ ¥ ¢e6IT 10T 67 87 T
q10¢ 00¢ ce €961T 00T (43 0€6¢ V81 48 CC6IT ¥8I €€ CC6TT ¥8I 43 48 a1
8€0CT Ve Ivc | 8€0CT ¢ve Ivec | ¢C6IT VEE Ive | ¢¢6IT 0S¢ 6V¢ | CC6IT VEE we | Ove €1
8¢0cT 00¢ ¢61 | 8€OCT 00€ G611 | CC6IT ¢6C c61 GC6IT 00€ L6T | CC6IT €68 61 | C61 €1
8€0CT L9¢T 8¥T | 8€0CT L9¢T 8T | ¢C6IT 69¢C V1 CC6IT 649C 8V1 | CC6IT 69T 8VT | ¥l €1
1697 €€e 86 8€0cT €€T 86 1697 9¢¢ 86 GC6IT €€C 86 CCOIT 9¢T 86 96 €1
13ia% 00¢ 6% 8¢0cT 00T 67 9ev¥y 161 67 GC6IT C61 6% Ce6IT 161 67 87 €1
LVV¥ €81 €€ €96TT €81 €€ 96y L91 33 GC6IT GLT €€ CC6IT L9T €€ (43 €1
8€0CT LI€ 0ve | 8€0cT LI€ 0ve | ce6lT LI€ Ive | ¢C6IT 9 6V¢ | ¢e6IT LIE we | 0ve T
8¢0CT GLT 61 | 8€OCT GLT ¢61 | CC6IT GLT c61 GCOIT €8¢ L6T | CC6IT GLT 61 | C61 1
8€0CT ¢V 6V1 | 8€0CT ¢CVe 6VT | ¢C6IT ¥EC 6V1 CC6IT CVe 61 | CC6IT VET 6VT | ¥¥I !
1697 80¢ 66 8€0cT 80T 66 1667 00¢ 86 GC61T 10¢ 86 C¢C6IT 002 86 96 !
1% 29T 67 8€0CT 91 67 981V 64T 67 GCO6IT 64T v CCOIT 691 67 87 !
s0cy 08T 43 €96TT 09T (43 Y91y 44! 48 CC6IT eVl 48 Ce61T avl 43 48 !
8€0CT ¢6¢C Ivc | 8€0CT ¢6C v | 61T 78T Ive | ¢¢6IT 00€ 8V¢ | CC6IT V8T we | Ove g0
8¢0CT ¢V ¢61 | 8€OCT ¢V ¢61 | CC6IT ¢Ve c61 GC6IT 04¢ 661 | CC6IT ¢CVe 61 | C61 g0
8€0CT 002 9¥1T | 8€0CT 00T 9T | ¢Z6IT 002 tig! CC6IT 002 61 | ¢c61T 00T 9T | VI g0
1697 0ST L6 8¢0gT 06T L6 1667 0G1 L6 GC6IT 0ST g6 C¢C6IT 06T L6 96 g0
eorv 00T i 8¢0¢T 00T 8¥ 9817 001 8 GC6IT 001 i ¢C6IT 00T 8¥ 87 g0
S0cy €8 (43 €96TT €8 (43 €99¢ €8 (43 GTO6IT €8 6¢ CCO6IT €8 (43 (43 g0
8€0CT LI€ Ivc | 8€0CT LI€ v | ¢C6I1 ¢l Ive | ¢C6IT Gce 09¢ | ce6IT 91€ we | 0ve €€0°0
8¢0CT GLT ¢61 | 8€OCT GLT ¢61 | CC6IT GLT c61 GCO6IT ¥8¢ 661 | CC6IT GLC 61 | C61 €€0°0
8€0CT VE€C 0GT | 8€0CT ¥€¢C 08T | 61T 1¥C 0ST CC6IT 09¢ 06T | ¢g6IT ¢¥e 08T | W1 €€0°0
1697 qcl 66 8¢0eT 4cl 66 169¥ gcl 66 GC6IT €€1 66 ¢C6IT G2l 66 96 €€0°0
€9VY 69 67 8€0CT 69 67 981V 6S 67 ¢e61T 69 67 Ce61T 69 6V 1314 €€0°0
s0cy % 43 €961T 1V (43 €99¢ % 48 CC6IT ¢V 0€ (41N % 43 48 €€0°0
xew uepowl Ul | Xeuw uelpowl Ul | Xeuw uelpowl UIW | Xeuw uelpewr UlW | Xew uelpewl ur | np utw dsipT xew
SSIIXeW JNo SwW mo sut SSTuIXeuwr su duis sw

49

20

4.4 CONCLUSION

Eye tracking error _

5.1 Introduction

Eye movement data often exhibits a disparity between the true gaze position and the recorded
one. This issue is widely acknowledged, e.g. by [Feit et al|[2017], Holmqvist et al| [2011,
224,225], Holmqvist et al.| [2012, 45-47], Hyrskykari [2006], Martinez-Gomez & Aizawa| 2014,
95], Nevalainen & Sajaniemi| [2004, 156], Niehorster et al.| [2018], |[Nissli| [2011}, 50-67], Nystrom
et al.[2012, 272,273], Spakov et al. [2018].

Whether spatial error is problematic depends on the purpose of the data. For stimuli with
big AOIs or sufficient margin space, like a large button in gaze interaction, a certain offset does
not pose a problem. In reading research however, AOIs are usually small and close together
[Carl, 2013| 1], [Holmqvist et al., 2012, 45], [Nystrom et al. 2012, 272], [Zhang & Hornof}, 2011,
834]. Hence, errors can result in assigning the gaze to the wrong part of the stimulus, thereby
distorting a great many measures used for analysis, heatmaps, and scanpaths (see figure
for an example). Accordingly, many reading studies only employ isolated words or sentences
[Martinez-Gémez & Aizawal 2014, 95]. Using dwell time, as well as number and duration of
fixations as example, Holmqvist et al.| [2012, 45-47] demonstrate that already a rather small
offset can lead to false conclusions. Therefore, in order to obtain reliable results, the error needs
to be addressed before analysis [Holmqvist et al., |2012, 45], [Lohmeier}, 2015, 33], |[Ntssli, 2011},
50,51,64,67], [Spakov et al., 2018, 2], |Zhang & Hornof, 2011, 834]. This is not an easy task,
since error can vary over space and time [Feit et al., [2017, 1120-1122], [Holmqvist et al. 2011,
42|, [Holmqvist et al.l 2012, 47], [Hornof & Halverson) 2002, 600-602], |[Lohmeier, 2015, 35],
[Nystrom et al.l (2012 276, 281,282,285|, [Zhang & Hornof, 2011, 840,841], [Zhang & Hornof,
2014, 95,96]. However, even when it is obvious where the data belongs, modifications always
include the risk of producing false results, may it be deliberate or not [Holmqvist et al., [2011,
225]. Also, despite being a common problem in eye tracking data, studies often either do not
address error in their data or at least do not report error handling. Partly, the impact of errors
might be underestimated. In any case, when it is unclear whether error occurred and was treated
sufficiently, data and results are of limited value [Hornof & Halversonl 2002, 593], [Wyatt} [2010,
1985], [Zhang & Hornof], 2011, 841,842].

o1

5.2 DATA QUALITY

“It is much easier to simply report the eye tracker accuracy given by the manufac-
turer and, from then on, to ignore any possible error in the eye-tracking data or, if
error happens to be noticed on some trials, to just discard those trials. However, we
believe that a bold, daring, and honest look at eye movement data and a commit-
ment to attacking error is critical for the advancement of eye-tracking research and
application.” |Zhang & Hornof, 2011, 842]

Eye tracking error and how it can be addressed is discussed in more detail in the next sections.

public class PrinterClass {

(a) Uncorrected (b) Corrected

Figure 5.1: Scanpaths

5.2 Data quality

5.2.1 Accuracy, precision, valid samples

Any domain needs good data quality to allow for valid research results. For eye movement data,
key aspects of quality are the eye tracker’s accuracy and precision, as well as the amount of valid
samples [Holmqvist et al., 2011, 29,33], [Holmqvist et al., [2012, 45-48], [Nystrom et al.| 2012,
272,273,283]).

“When the eye tracker reports a valid sample, data quality can be defined as the dis-
tance 6; (in visual degrees) between the actual z; and the measured Z; gaze position,
known as the spatial accuracy, or just accuracy, as well as the difference between the
time of the actual movement of the eye t; and the time reported by the eye tracker
t;, known as latency or temporal accuracy. If both accuracy and precision differences
are zero, the data quality for this single sample is optimal.” [Holmqvist et al., 2012,
48]

The accuracy of an eye tracker is defined as the (average) distance between the true gaze
position and the measured one. Accuracy is usually best right after calibration, but decreases
during the recording. Good accuracy is crucial for analyses using AOIs [Holmqvist et al.,|2011,
33,41,42], [Holmqvist et al., 2012, 45], [Hornof & Halverson| 2002} 593], [John et al., 2012, 297],
[Nystrom et al., 2012, 272,276,285,286].

Precision is the degree in which measurements under the same conditions reliably reproduce
a result [Holmqvist et al., 2011, 33,34], [Holmqvist et al. [2012, 46], [John et al. [2012, 297],
[Nystrom et al., [2012, 273]. Spatial precision denotes the variance in accuracy, temporal preci-
sion the variance in latency. Latencies chiefly occur between the actual eye movement and the

92

CHAPTER 5. EYE TRACKING ERROR

moment it is recorded, as well as between stimulus presentation and recording software. Tem-
poral precision is especially critical for studies including gaze-contingency or synchronization to
external equipment [Holmqvist et al., |2011], 33,43-47], [Holmgqvist et al., 2012, 48].

For the study presented in this work only spatial error poses a major threat to validity and
will be addressed in detail. Accuracy and precision are influenced by several types of noise:
system-inherent, oculomotor, and environmental noise, as well as optic artifacts
33,34,117,118]. In this context, two types of error are differentiated (see figure
5.2). A systematic error or bias is a quite constant deviation between measured and true gaze
location, indicating low accuracy. If the recorded gaze is spread around the true gaze point,
it is called wariable error, suggesting low precision. A systematic bias is easier to detect and
correct than randomly distributed deviations with a mean around zero. Both types of error
can occur simultaneously [Chapanis| (1951, 1181,1182,1187-1190], [Hornof & Halverson| 2002,
592,593], [Lohmeier, [2015, 34,35].

Figure 5.2: Error types: systematic (left) and variable (right), based on |Chapanis| ﬂ1951|, 1181]

Invalid samples occur when the eye cannot be reliably recorded. This usually happens when
essential components of the eye are obscured, e.g. by glasses or blinks, or if something else is
mistakenly detected as eye feature [Holmqvist et al., 2011, 117,118], [Holmqvist et al., 2012,
47,48], [Nystrom et al., 2012, 272,273].

5.2.2 Error sources

Errors in eye tracking data originate from a variety of sources in the recording system’s hard-
and software, the recording environment, as well as the participants. They also occur together.
Some issues, like mascara are already problematic during calibration, others only arise during
recording, e.g. head movements [Carl, 2013, 3], [Holmqvist et al. 2011}, 37,117,118], [Holmqvist|
et all 2012, 47], [Hyrskykari, 2006, 661], [Nystrom et al., 2012, 273,281-285], |Zhang & Hornof,
2014} 95]. Below, a number of relevant factors are outlined, which affect at least one, but often
several aspects of data quality.

5.2.2.1 Factors concerning the recording system and environment

Depending on hardware properties like camera resolution, the recording device has a limit to
how exact it can measure the gaze. Furthermore, choosing appropriate algorithms and parame-
ters, e.g. velocity- or dispersion-based fixation detection, strongly influences the computed gaze
locations. Also, experimental conditions are rarely optimal, hence the device’s actual perfor-
mance often falls below its potential [Carl, 2013, 3], [Holmqvist et al., 2011}, 37,41], [John et al.
2012, 297], |[Niehorster et all 2018], [Nystrom et al., 2012, 272].

93

5.2 DATA QUALITY

Factors affecting data quality include, but are not limited to:

Type of system: Tower-mounted eye trackers usually provide better accuracy than head-
mounted systems and remote devices [Holmqvist et al., 2011, 42].

Camera resolution: In order to achieve good precision, the camera has to capture the pupil
with as many pixels as possible, thus needs a high resolution [Holmqvist et al., 2011, 37,38],
[Holmqvist et al., 2012, 47].

Sampling frequency: The sampling frequency determines to what extent fast movements can
be captured. It needs to be high in order to record short events. With low sampling fre-
quencies outliers can have quite a negative impact [Holmqvist et al., 2011}, 29-32], [Holmqvist
et al., 2012, 47,50].

Calibration method: Participant-controlled calibration seems preferable over operator- and
system-controlled calibration, partly because the participant is better able to decide when
the eye is stable and focused on the target than the operator or the software [Nystrom et al.,
2012, 274-276,281-284].

Recording monocularly or binocularly: Using both eyes can increase accuracy and preci-
sion, especially for dispersion-based fixation detection. On the other hand, averaging the
samples from both eyes is problematic for determining saccade measures or when one eye is
lost [Holmqvist et al., 2011}, 59,60], |[Holmqvist et al., 2012, 47].

Light conditions: If other light sources than the illumination from the recording system are
present, like the sun or indoor lights, additional reflections might appear on the eye or the
contrast in the eye image is reduced. Also, changing luminance either in the environment or
from the stimulus itself can result in recording false movements [Drewes et al., 2012, 209,210],
[Holmqvist et al., 2011, 40,125,126], [Holmqvist et al., [2012} 47].

Movements: Movements near the eye tracker can reduce the stability of the signal, e.g. clicking
a mouse on the same table as the eye tracker [Holmqvist et al., 2011, 35,40], [Holmqvist
et al., 2012, 47]. Furthermore, for head-mounted eye trackers the device can slip on the head,
thereby changing the relation between eye and camera [John et al., 2012, 297].

Viewing distance: In order to achieve high precision, the camera needs to capture a good
image of the pupil. Hence, precision decreases with greater distance between camera and eye
[Holmqvist et al., 2011, 37,38,59,], [John et al., [2012, 297].

Stimulus position: Data quality is usually best for targets in the center of the screen. Reasons
for the decreasing quality towards the edges can be eyelashes, which obscure the eye image,
and the reduced pupil size due to the larger viewing angle [Feit et al.|2017, 1122], [Holmqvist
et al., 2011} 42], [Holmqvist et al. 2012 47], [Hornof & Halverson, 2002, 600-602], |[Nystrom
et al., 2012, 281,282,285], [Zhang & Hornof, [2011} 841], [Zhang & Hornof, 2014} 95,96].

Expertise of the operator: More experience with eye trackers and especially the type and
model in use is beneficial for data quality, since the operator knows how to optimize the
setup and to instruct participants [Holmqvist et al., 2012, 47,51], [Nystrom et al., 2012,
276,284,285].

5.2.2.2 Factors concerning the participant

The quality of the eye image and how well it is possible to detect features from it strongly
determines the quality of eye tracking data. On the part of the participant, there are a great
many characteristics that interfere with the eye image |[Nystrom et al., 2012, 285]. Furthermore,
even with a highly exact recording, the size of the fovea sets a limit to recording accuracy.
It covers about 1.5 - 2° of the visual field, which at a standard recording distance of 70 cm
corresponds to an area with a diameter of roughly two cm. Hence, it is enough to fixate a
location close to the object of interest in order to see it, which will result in an offset between

o4

CHAPTER 5. EYE TRACKING ERROR

the recorded gaze location and the AOI [Holmqvist et al,|2011, 42], [Holmqvist et al., 2012, 48].

Factors affecting data quality include, but are not limited to:

Eye physiology: A number of characteristics in the individual’s eye physiology are unfavorable
for recording high quality data. Long or downward-pointing eyelashes, as well as droopy
eyelids can cover the pupil. Eye color is also relevant. Data from bluish eyes tends to be less
precise than from brown or other colored eyes. Furthermore, data quality depends on how
well the actual eye corresponds to the model in the recording software [Holmqvist et al., 2011,
41-43,57,118,120-122], [Holmqvist et al., 2012, 47], [Nystrom et al., [2012} 276,281,282,285].

Visual aids: Glasses pose multiple challenges for recording, e.g. by causing additional re-
flections in the eye image or due to the rim obscuring parts of the eye. Contact lenses
are also problematic. They can shift during the recording or have air bubbles underneath,
which leads to several smaller reflections [Holmqvist et al. 2011, 29,34,43,57,118,122-125],
[Holmqvist et al., 2012, 47], [Nystrom et al., [2012, 274,276,281,282,285].

Eye makeup: Mascara and other makeup can make it difficult to detect eye features by ob-
scuring the image. Furthermore, the dark area can be mistaken for the pupil [Holmqvist
et al., 2011, 29,119-121], [Holmqvist et al., [2012} 47].

Pupil size: The center of a big pupil is easier to detect, hence both accuracy and precision are
better for larger pupils. When pupil diameter changes during the recording, the center of the
pupil shifts relative to the eye and the eye tracker may mistakenly report an eye movement,
even though the gaze remains steady. Pupil dilation or constriction are mostly induced
by changes in stimulus and ambient brightness, but even under constant light conditions,
cognitive or emotional processes, as well as the viewing angle can have an impact [Drewes
et al., 2012, 209,210], [Gagl et al., 2011} 1171,1172,1174], [Holmqvist et al., 2011} 43,391-394],
[Holmqvist et al., 2012, 47], [Nystrom et al., [2012, 281,285], [Wyatt, 2010, 1982,1985-1987].

Movements: Some setups allow the participant to move their head and body. Even a small
movement of two cm to or from the screen can increase the error considerably [Carl, 2013,
1,3], [Cerrolaza et al., 2012, 205,208], [Holmqvist et al., 2011, 39,43,51,52], [Holmqvist et al.,
2012, 47], [Niehorster et al., 2018], [Nystrom et al., [2012, 273,285,286].

Behavior: Participants exhibit a wide range of behaviors, that are problematic for data quality.
For example, some open their eyes and tense during calibration. During the recording they
relax, change their position, or close their eyes slightly [Holmqvist et al., 2011}, 42], [Holmqvist
et al., 2012, 47].

5.2.3 Conclusion

Eye tracking data should be as accurate and precise as possible and consist of valid samples.
However, often there is a disparity between the reported gaze position and the actual one, which
can arise from a number of different sources. Several factors already prevent a good calibration,
the prerequisite for high quality data. Others cause a deterioration during the recording. Some
error sources can be lessened to a certain degree e.g. by optimizing the recording system and
environment. Others, like the participant’s physiological characteristics are difficult to tackle.

5.3 Existing approaches for addressing error

Error in eye tracking data is difficult to avoid. How it can be dealt with depends on the degree
of exactness required for the intended analysis. Preventing problematic data in the first place is
only possible in some cases, so the data usually has to be either discarded or corrected. Figure
[6.3] outlines the relevant approaches to address error in gaze data, which are discussed below
with regard to the EMCR study.

95

5.3 EXISTING APPROACHES FOR ADDRESSING ERROR

Offsets between true and recorded gaze location are not just problematic for the validity
of research results, but also for gaze-based interaction, e.g. by making it difficult to select a
button with gaze [Holmqvist et al. 2012, 46]. There are several techniques to tackle inaccuracy
in gaze interaction, e.g. |Ashmore et al. [2005], Bates & Istance [2002], MacKenzie & Zhang
[2008], |Miniotas et al. [2004], Skovsgaard et al. [2010], Vidal et al. [2013], and |Zhang et al.
[2008]. However, these do not apply here and are therefore not considered further.

5.3.1 Error debilitation and data removal

Strategies to deal with error without correcting it include preparing the stimulus material to
allow for a certain degree of error, frequent recalibrations, and discarding problematic data.
Sometimes noise can also be treated by adding more data, e.g. to compensate for low sampling
frequency. However, this is not the case for low accuracy, since the additional data will most
likely be just as distorted [Holmqvist et al., [2011, 31,32], [Holmqvist et al., [2012, 46]. Therefore
this option has little prospect of success.

A careful experimental setup contributes to good data quality, but can only prevent error
from certain sources. For example, even when illumination is kept constant and a chin- or
forehead-rest is used, errors occur due to other reasons [Drewes et al., 2012, 209], [Lohmeier,
2015, 36], |Martinez-Gomez et al.l 2012, 259,260], [Nussli, 2011, 67]. Likewise, recruiting only
participants with optimal eye physiologies and without visual aids [Holmqvist et al., 2011} 141]
is not sufficient and would exclude otherwise ideal participants.

5.3.1.1 Stimulus preparation

When constructing stimulus materials, AOIs can be made sufficiently large or surrounded with
a generous margin, so the gaze is still registered on the correct AOI despite a certain offset.
While this is an adequate approach, it is often not feasible, e.g. because the AOIs are too close
together to add extra margins [Feit et al., 2017, 1120], [Holmqvist et al., [2011, 224,225]. Text in
general and source code specifically have very small AOIs, which are also located very near to
each other. Some source code elements, like operators and separators, even consist of only one
or two characters. Increasing font size and adding blank space between lines or words to improve
error tolerance is only possible to a certain degree, since it only allows very short texts, which
poses a threat to validity of the stimulus material. Furthermore, such an unnatural formatting
will most likely influence the participant’s reading behavior [Hyrskykari, 2006, 662], [Spakov
et al., 2018| 8,9], [Yamaya et al., 2017, 100,101]. The empty spaces can cause more and larger
eye movements, less text can be perceived with a fixation, and participants will be irritated by
the unusual design.

The stimuli in the EMCR study include extra margins, where they are unlikely to affect the
visual behavior. Yet, this preparation is not sufficient to circumvent error.

5.3.1.2 Recalibration

Data quality is usually best right after calibration and can deteriorate over time. Hence, recali-
brating during the experiment can help retaining good data quality [Holmqvist et al., 2011, 42],
[Hornof & Halverson, 2002, 593,597], |[John et all 2012, 297], |[Nystrom et al., 2012, 285,286].
Often the operator decides, when to recalibrate, but there are also approaches to automate the
process |[Hornof & Halverson| 2002].

Assessing the current data quality can be done with required fixation locations (RFL). They
indicate the location a person supposedly directed their gaze to at a specific moment. Ezplicit
RFLs are targets that the participant was directly asked to fixate, e.g. during calibration valida-
tion. Implicit RFLs are objects, which are most likely looked at, even though the participant was

o6

(210g) eAreypeiyeq 73 [1e) “@IUSIN —

(c10g) Sugsooy 23 JweWdM, “Uof — T g

CHAPTER 5. EYE TRACKING ERROR

‘sIsATeur 103 eyep YOHINH oyl surredoid 10j popoou st dojs e

ons se ‘)saIequl [e1ads Jo aIe (eale POPRYS) UOIIDDLI0D I0LIS dIjemoIne I10j seyproldde oy T, "ejep SUnRdRI) 949 UI I01I0 SUISSAIPPY :€'G 9IS

(8T02) 'T& 10 roxedg —
(L102) ‘Te 70 eleurexy —
(9107) JLreys 23 LWRJ —

(¢T0z) Mo — %
) 11eD (opo9) 10}

(e10¢

ogads-ysey,
(2102) ‘T 30 ZoWOXr)-Zoul}Ie]\ —
(2102) ueyop —

(9007) TreANSIA —

(¥10¢) Joutoy] 23 Sueyy, —
(710g) erourpyezio) 23 soyedg —

(2102) Te 1 Juel] ‘

(1102) Jorttoy 7y ez — |__12°WD |
(TT02) TSSUN —

(200g) UOSIDATR 29 JOUIOH —

SUIPI0DaI

1093y

SuIp1oool

surm (g

ANSNV TUTUSRIUOTN 29 UOSSRIN ‘SomaI(]
(010Z) 17eAM

(2102) "Te 90 ®eze[o1I))

I9)oUIRIP

[rdng

U99.I0S 01
QIURISI(T

I‘ OLITUDD-R)R(] T

TUOT)I9II0D

JOLIH

L OLIYUAD-0IINOG T

ejep drpewerqoid

Sy [eAOTIOT
®IRp pUR
UOTYRICI[BINY w HONENNIAED
uorjeredoaid !

SIS

o7

5.3 EXISTING APPROACHES FOR ADDRESSING ERROR

not instructed to. For example, while clicking a button, the button is usually directly fixated.
The disparity between recorded fixation location and RFL can be used to monitor quality and
prompt a new calibration, when it falls below a certain threshold [Hornof & Halverson [2002,
593,594], |[Zhang & Hornof, [2011}, 835], [Zhang & Hornof, 2014, 95]. The advantage of implicit
RFLs is that quality control is integrated smoothly into the recording and does not prolong the
experiment duration. However, many study designs, e.g. in reading, do not contain targets that
can serve as implicit RFLs [Mishra et al., 2012, 72|, [Yamaya et al., 2015, 651], [Zhang & Hornof,
2011, 835]. Hence in the EMCR study RFLs for quality validation had to be called explicitly.

A vital point for recalibration is the timing. Interrupting the recording to calibrate according
to current quality is not always possible, since it disturbs the task at hand and consequently
the behavior that is studied. However, when calibrating only between stimuli, offsets can still
increase within a trial [Hornof & Halverson, [2002, 597], |[John et al., [2012, 297], [Mishra et al.,
2012, 72|, [Zhang & Hornof, 2011, 834,835]. This is the case in the EMCR study, which only
allows calibration between texts. Even if it was registered that data quality becomes too low
during a trial, the recording could not be interrupted. Considering that head movements were
allowed, quite some error could accumulate before recalibration is possible. Sometimes, trials
with low data quality can be repeated after recalibration [Hornof & Halverson, 2002, 595],
[John et al., |2012, 297]. This procedure might substantially increase the experiment duration,
though. Since, participants cannot redo their comprehension process, this approach could not
be employed in the EMCR study. If a stimulus text was presented again, participants would
show a different behavior, since they had already read and processed at least part of the text.

In the EMCR study, data quality was frequently validated and the system was usually
recalibrated several times during the experiment. However, in order to avoid an unreasonably
long experiment duration, it was not possible to recalibrate after every single text. Hence,
frequent recalibration was employed, but did not prevent error sufficiently.

5.3.1.3 Removing problematic data

The problem of noisy data can also be addressed by discarding problematic trials. However,
removing lots of data can unbalance the study design and threaten the validity of results. Es-
pecially when participants are able to move their head, almost all trials will contain error.
Removing them leaves hardly anything for analysis [Carl, 2013, 1], [Holmqvist et al., 2011,
140,141,224,225], [Holmqvist et al., 2012, 45], [Hornof & Halverson) 2002, 593], [John et al.,
2012, 297], while repeating these trials can have unwanted learning effects and prolongs the
experiment [Hornof & Halverson, 2002, 595], |[John et al., 2012, 297].

5.3.2 Error correction

Optimizing the recording system and environment, as well as the stimuli, can only debilitate
error to a certain degree, since e.g. some physiological characteristics remain a challenge. Con-
sequently, often there is no other option than to correct the data. However, while correction
is necessary before applying AOI-dependent measures and helps the validity of results, there
remains a chance of producing false results.

“[IJt is important to remember that such shifts of data or AOIs should be made
only if it is obvious from scanpath visualizations how the repair should be made.
For some stimuli, like text or newspaper reading, the scanpaths are so systematic in
their alignment to the stimulus that any offset is immediately visible, and its size
and direction easily calculable. For general scene images with a varying content, it is
often much more difficult to correctly estimate the needed offset repair”. [Holmqvist
et al 2011, 225]

o8

CHAPTER 5. EYE TRACKING ERROR

Hyrskykari| [2006, 670] also points out that reading is one of the tasks that allow quite well
to determine the true fixation location. As can be seen in figure there are a number of
approaches to correct error and correction is widely applied. Generally, an automatic correction
method is preferable, since it is objective and reproducible. [Zhang & Hornof| [2014, 95] categorize
error correction methods into source-centric and data-centric. Source-centric approaches only
compensate errors from a particular origin, e.g. pupil dilation. Data-centric methods on the
other hand correct errors based on given data, regardless of what caused them. These two types
of error correction will be explained in the following sections. Correction methods that require
modifications of the recording hardware |[Drewes et al., 2012, 211] are out of scope of this work
and will not be considered further.

5.3.2.1 Source-centric methods

Source-centric methods correct specific errors, e.g. those caused by changes in the eye-to-screen-
distance or in pupil diameter [Zhang & Hornofl 2014} 95].

Source: Eye-to-screen distance

The data quality of many eye tracking systems deteriorates, when the participant moves away
from the position he or she was calibrated in. (Cerrolaza et al. [2012] demonstrate the negative
effects of changing the distance between eyes and screen and present two compensation meth-
ods, which each reduces the error by more than half. In the first approach, the participant is
calibrated several times at different distances to the screen and the gaze estimation algorithm is
adapted to incorporate the varying distances. This considerably reduced the error, but did not
eliminate it completely. Also, the additional calibration steps prolong the experiment. Alter-
natively, the error can be approximated for a particular setup, since it mostly depends on the
specific eye tracking device and not on the individual participant. Thus, a pilot group of par-
ticipants is recorded and the obtained coefficients are averaged for later use in gaze estimation.
This approach leads to comparable results as the additional calibration, with the advantage of
not lengthening the experiment duration.

Source: Pupil diameter

Pupil size is influenced by a number of factors like luminance and mental workload. When
the center of the pupil is used to calculate the gaze location, changes in pupil diameter can be
mistaken for eye movements, reaching amplitudes of over 1° of visual angle [Drewes et al., 2012,
209,210], [Holmqvist et al., |2011, 43,391-394], [Holmqvist et al. |2012, 47], [Nystrom et al., 2012,
285], [Wyatt, 2010}, 1982,1985-1987]. |Wyatt [2010] and Drewes et al. [2012] suggest to compensate
for error from changes in pupil diameter by collecting additional data with the pupil in a dilated
and a constricted state. Wyatt| [2010] uses a trial with light and dark condition to establish
a function that relates the distance between pupil center and corneal reflex to the pupil size,
assuming that for a given diameter the pupil center is always at the same position. Drewes
et al. [2012] use the current diameter to weight a bright and a dark calibration. For example,
if a pupil diameter is in the middle between the dilated and constricted reference state, both
calibrations are factored in evenly. This approach allows corrections both during and after the
recording. Both compensation methods reduce, but do not remove error caused by changes in
pupil diameter. Their performance depends on the specific participant and the amount of error.
Furthermore, since both require to measure the pupil in two reference states, the experiment
duration becomes longer. Drewes et al.|[2012] 211] also point out, that over- and under-correction
occur between the two extremes. Since pupil diameter often does not reach the same amplitudes
during recording as during calibration, a third calibration step with a medium bright condition
is suggested. However, this would prolong the calibration phase even further.

99

5.3 EXISTING APPROACHES FOR ADDRESSING ERROR

Source-centric methods can reduce error in gaze data considerably, but do not remove it suffi-
ciently. Offsets between actual and reported gaze location are caused by a combination of errors
from different sources and for many there are no compensations methods yet. Even addressing
only some major sources, requires several additional countermeasures. Including more steps into
the experiment prolongs its duration and makes the recording situation less ecologically valid.
This is especially problematic for the EMCR study with novice programmers, since they are
recorded repeatedly. Moreover, many such correction techniques have to be set up prior to the
recording and cannot be applied to data that was already collected [Palmer & Sharif, 2016, 66].
A more holistic approach is needed, that finds the most likely gaze location.

5.3.2.2 Data-centric methods

In data-centric approaches the error is retrieved based on the data and then removed [Zhang &
Hornof, 2014} 95].

5.3.2.2.1 Manual correction
Gaze data is often corrected manually, which can be done during or after the recording.

During recording
Study participant can be provided with information about the currently recorded gaze location
and give feedback about its correctness. An example is iDict, an aid for reading foreign language
text. When the reader looks at a word for a short while, iDict automatically shows a translation.
If the recording is not accurate and iDict therefore translates the wrong word, readers can use
the arrow keys to correct the gaze location themselves [Hyrskykari, 2006, 659,662,665,667,668].
This is not possible in the EMCR study, as there is no interaction with the system during
reading and the programmer does not receive any feedback about the current quality of the
recording. Doing so would create a completely invalid situation, disturb the comprehension
process, and distract the attention away from the task at hand.

Post recording

When correcting data after the recording, the data is usually moved to the supposedly correct
part of the stimulus. However, it is also possible to place the AOIs over the corresponding data
rather than the respective part of the stimulus [Holmqvist et al., 2011}, 225]. Tt is widely acknowl-
edged that manual data correction is very time-consuming and subjective, and not necessarily
reproducible [Carl, [2013], 8], [Cohen, 2012, 679,683], |Hyrskykari, [2006, 668], [John et al., 2012,
297], |Mishra et al., 2012, 71], [Yamaya et al. 2016, 37], [Yamaya et al., [2017, 100]. In order to
reduce subjectiveness, data can be corrected by more than just one person, e.g. |Busjahn et al.
[2015a, 260] (see also Comparison with manual correction). Unfortunately, this makes
the correction process even more work-intensive.

There are also tools to help with manual data correction, e.g. EyeDoctor! and FixFix
[Topi¢ et al., 2016]. The later especially supports the correction of reading data by providing
suggestions for the correct location based on an alignment between gaze segments and the lines of
the text. When using the guidance tool, the time needed for correction decreased by 9.7%, while
the accuracy slightly increased from 86.4% to 91.2% [Yamaya et all [2017, 104,105]. However,
in order to avoid any bias, an automatic correction method is generally preferable. Moreover,
correction is usually carried out on fixations and not on raw data. If the fixations are recalculated
using another algorithm or different parameters, the correction has to be done again. Also, the
EMCR study contains over 30,000 fixations, making manual correction utterly impossible.

Thttp://blogs.umass.edu/eyelab/software/, last accessed 12/05/2020

60

http://blogs.umass.edu/eyelab/software/

CHAPTER 5. EYE TRACKING ERROR

5.3.2.2.2 Automatic correction
Automatic corrections have the advantage of being objective and reproducible. Below a number
of approaches are outlined and assessed for their suitability for the EMCR study.

5.3.2.2.2.1 General-purpose approaches
Hornof & Halverson [2002]

Approach: [Hornof & Halverson| [2002] use RFLs (see Recalibration) to find and cor-
rect systematic error after the recording. The distances and directions from recorded fixations
locations to corresponding RFLs provide so-called error signatures across the screen. For each
fixation, the four nearest surrounding error signatures are weighted and used for correction.
While this method is demonstrated with implicit RFLs, it can be carried out with explicit RFLs
as well, as long as they are adequately distributed over the screen.

Evaluation: A scanpath visualization is used to demonstrate that the corrected fixations were
on more plausible positions than the uncorrected ones. Additionally, using the RFLs as reference,
the average deviation between fixations and their targets was 41 px before correction. After
correction, an average standard deviation of the error signature of 12.6 remained.

Limitations: Implicit RFLs cannot be integrated into the EMCR study. Using the points from
calibration and validation as explicit RFLs neither provides enough reference points across the
screen and nor does it capture error that builds up during the recording, even if calibration or
validation was run before every stimulus. Besides, these additional procedures would prolong
the experiment even further and decrease the ease of the recording situation. Similar to frequent
recalibration, using RFLs for correction is not sufficient.

Niissli [2011], 52-67]

Approach: Under the premise that gaze mostly lands on AOIs, |[Nissli [2011] suggests two
correction methods for systematic error. A fitness function determines the fixation likelihood
for each point on the screen. The simplest option is to assign ‘1’ to points inside (or near) an
AOI and ‘0’ to points outside. More elaborate fitness functions can take the distance to an
AOI into account. The brute force technique computes the average fitness for every possible
offset in a certain range to find one that maximizes the average fitness over all fixations. This
method is computationally intensive, but finds the optimal offset. The analytical technique on
the other hand is a probabilistic optimization, which only approximates the best offset, but
allows real-time correction. The stimulus is broken down into simple geometric objects, which
can be modeled as probability density functions. The offset, that maximizes the probability of
having the measured fixations given the stimulus, is determined through a maximum likelihood
estimation. For the computation, it is required that the specific offset per trial remains constant
over location and time. Niissli acknowledges that this is usually not the case and suggests to
apply the correction to time- or location-based subsets of the data, e.g. first and second half of
the recording.

Evaluation: The brute force technique is evaluated by examining the portion of fixations that
land on AOIs. Overall, correction let only to a small improvement of less than 10%, but was
much better for some of the trials. However, it is very likely that before correction many fixations
were on the wrong AOI, but moved to the correct one. Since there is no ground truth, it is not
possible to gauge this improvement. When applying the correction to random gaze, no clear
fitness peak appears and the offset variance does not decrease as much as it does for actual data,
indicating that the fitness value is not an artifact of the stimulus. Additionally, the distribution
of all offsets from all participants was inspected. The tested eye tracker generally recorded the
data above the actual location and had a larger vertical than horizontal error. To asses the

61

5.3 EXISTING APPROACHES FOR ADDRESSING ERROR

analytical method, it was compared to the brute force technique. They had very similar results.

Limitations: In general, this approach is very promising for correcting the EMCR data and
even has been used in a study with Java code as stimulus. It will therefore be considered further
in [6] Error correction. However, both correction techniques compute only a single offset for the
complete trial. Applying the correction on time- or location-based subsets of data as suggested
is possible, but not entirely unproblematic. When used discretely on each group, fixations in
neighboring sections might be shifted unreasonably in relation to each other, especially when
only few data points are available for optimization. Hence a more sophisticated technique than
simply splitting fixations into subsets is needed.

Zhang & Hornof [2011]

Approach: [Zhang & Hornof| [2011] propose to correct systematic error by using the nearest
object as reference location. When the disparities between fixations and their nearest objects
are visualized with a scatter plot, usually a cluster emerges, which approximates the error. The
center of this cluster indicates the error’s extent and direction and can be roughly estimated by
looking at the plot. In order to have a more accurate and efficient way of finding the error, the
annealed mean shift algorithm is adapted to eye tracking data for calculating the global mode
of the disparities automatically. Finally, fixations are corrected according to the obtained error
vector.

Evaluation: Uncorrected and corrected data were visualized as scanpath on the stimulus and
the corrected fixations were found to be more plausible. Moreover, a number of correct fixation-
to-object mappings were identified by using RFLs, which served as ground truth. Before cor-
rection, vertical error reached amplitudes of —1° to —2° of visual angle, while horizontal error
was rather small. Both types of error were reduced to almost 0° after the correction. The
uncorrected data was already quite accurate and 97% of the fixations were correctly mapped to
the nearest AOI. After correction the percentage rose to 99.4%. However, the extent of error
varied a lot between trials and for some the correction performed considerably better.

Limitations: In order to allow for clustering, several requirements need to be met. For example,
targets have to be scattered across the display. If they are arranged regularly, the data might
be systematically assigned to wrong AOIs. Unfortunately, text is aligned in a grid-like manner
[Lohmeier, 2015, 35], [Mishra et al., [2012, 72]. Furthermore, the method cannot be applied
reliably, when several targets can be perceived with a single fixation. However, this is the
case in the EMCR study. Especially source code contains many elements with just one or two
characters, hence several AOIs can be taken in simultaneously. Moreover, targets should not be
too close to each other. Yet, neighboring text elements have only a small blank space between
them. The approach also assumes a constant error for the whole trial. To account for error that
changes across the screen or over time, it is possible to use region- or time-based visualizations
to identify points where the error changes and divide fixations into sub-groups accordingly. Each
group is then corrected individually. However, these plots have to be inspected manually, so
the correction becomes time-consuming and slightly more subjective. This could partially be
addressed by using pre-defined points, e.g. always splitting the trial in half, but that will only
work if there are no sudden changes by head movements or other events. Also, some groups
might contain too few fixations to reliably form a cluster. Another problem with using sub-
groups is, that the correction is used discretely on each group, while the error might change
continuously.

62

CHAPTER 5. EYE TRACKING ERROR

Frank et al. [2012, 360-363]

Approach: Similar to the approach by Hornof & Halverson| [2002], RFLs are employed in order
to measure the quality of the calibration as well as to correct the data. A verification stimulus
is included at the beginning, midpoint, and end of the experiment. For the correction, parallel
robust regression is used to determine the best translation, and expansion or contraction to
match the gaze data to the calibration points.

Evaluation: The corrected data was inspected manually. Trials were only used for analysis, if
they contained at least two reference points with sufficient data, for which the corrected gaze
locations overlapped with the stimulus at least partly.

Limitations: The participant has to look exactly at the verification stimulus, otherwise the
correction might change the data for the worse. As discussed before for [Hornof & Halverson:
[2002], this approach is not applicable to the EMCR data. A verification stimulus would have to
include lots of RFLs to cover the screen well and it has to be shown before or after every text,
which unreasonably prolongs the experiment, makes the recording situation less ecologically
valid, and does not help against error building up during the recording.

John et al.| [2012]

Approach: This correction method is primarily intended for correcting systematic error in
recordings from head-mounted eye trackers, but it can be used on data from remote devices just
as well. It is based on the observation that when a target is looked at several times, the true
fixation locations are clustered around that target, but due to distortions the data becomes less
clustered. The entropy measure from information theory is used to determine how clustered a
group of fixations is. A correction function minimizes the entropy-based error function using
recorded fixation locations. The simplex downhill algorithm is used to optimize the parameters
of the correction function, though other minimization algorithms are possible as well.

Evaluation: The approach was tested on real and artificial data. When looking at a target,
participants pressed a button, so the recorded fixation location can be compared to the target
position. The correction consistently increased the quality of the data. However, the extent
of the improvement is not stated. Furthermore, the correction was evaluated on a large set of
artificial data and compared to the results of correction by linear regression. When applied to
undistorted data, the entropy-based method hardly modified the fixation positions, while the
linear trend estimation changed the data for the worse. For the distorted data, the entropy-
based approach also outperformed the linear regression in all tested variants and removed most
of the error.

Limitations: In order to calculate the entropy, targets have to be looked at several times. Even
though only a very small number of fixations per target is needed, this requirement is generally
not met for (source code) reading. All in all, this approach performs well on stimuli with few
AOIs, which are well distributed over the screen. It is not adequate, when many AOIs are not
looked at or only looked at once |[Lohmeier, 2015, 35].

63

5.3 EXISTING APPROACHES FOR ADDRESSING ERROR

Spakov & Gizatdinoval [2014]

Approach: Spakov & Gizatdinoval [2014] propose a method for correcting error in gaze pointing
using implicit RFLs. While this correction was developed with real-time application in mind,
the general technique can also be used for correcting data after the recording. When the gaze
GRrrp activates a target, the distance between gaze location and the target’s center, which serves
as RFL, is stored into a database. Eventually, the database contains multiple entries per RFL.
For correction, a weighted mean of the stored distances is added to the gaze location. The closer
the uncorrected gaze point is to Grrr, the higher the weight of the associated distance. Since
this method only applies to very small objects, a probabilistic approach is introduced for targets
of any size. It is assumed that any point inside a rectangular target is equally likely to be looked
at. A “shaded” target with the same size as the actual one is placed relatively to the uncorrected
gaze point in the same way as the real target is located to Grrr. Given that the intersection
rectangle between both targets is not empty, the probability of the gaze point falling into the
intersection is calculated. Whether the gaze point is actually mapped to the target, depends on
the target’s size and the probabilities of neighboring targets.

Evaluation: Using the targets as reference locations, the proposed method is compared to a
naive gaze-to-object mapping, the mean target hit rate of 42% improved by 15.7%. Performance
was best when the accuracy of the recording was low.

Limitations: Just as with the other approaches including implicit RFLs, this technique cannot
by applied to the EMCR, data, since such locations are not integrable.

Zhang & Hornof [2014]

Approach: [Zhang & Hornof [2014] present a correction method that addresses error, which
changes across the screen, provided that the error patterns can be modeled by quadratic equa-
tions. RFLs serve as true fixation locations and robust linear regression on the error vectors
between recorded gaze and RFL is used to find the parameters of the quadratic recalibration
equation. If there are not enough RFLs to cover the screen sufficiently, probable fixation lo-
cations (PFL) are added for parameter fitting. Like RFLs, PFLs are targets which have to be
looked at in order to successfully complete the trial. However, it is not known, when they are
fixated. As already employed by Zhang & Hornof| [2011], the nearest targets are used as PFLs.
Since the RFL error vectors are more reliable than the PFL ones, they have a higher weight in
the calculation.

Evaluation: Using RFLs as reference, the average error decreased from 0.74° to 0.45° visual
angle, the medians of the error approached zero and the error range became smaller. Further-
more, visualizing uncorrected and corrected data as scanpaths showed that the correction moved
the gaze to more plausible locations.

Limitations: As discussed before, neither RFLs nor PFLs can be included in the EMCR study,
i.a. since there is no single text element, which is definitively fixated. Simply using the nearest
element as reference location will very likely result in systematically shifting fixations to the
wrong target.

64

CHAPTER 5. EYE TRACKING ERROR

5.3.2.2.2.2 Task-specific approaches for (code) reading

Several automatic error correction methods were directly developed for correcting data from
reading experiments.?

Hyrskykari| [2006]

Approach: This correction method was developed with the reading aid iDict (see
Manual correction) in mind. It allows to automatically correct systematic and variable vertical
error. As long as the reading seems to continue along a line, the sticky lines technique assigns
even heavily ascending or descending gaze to the currently active line. The magnetic lines
routine detects the sweep from the end of a line to a new one. The new line serves as RFL,
so the correction does not only affect the current line, but also the surrounding ones. If these
two automatic techniques are not sufficient, it is possible to make manual corrections during the
recording, which also provide RFLs for further automatic correction.

Evaluation: The magnetic and sticky line techniques were assessed using texts of varying line
spacing. For evaluation, no additional manual corrections were carried out during recording. The
correct lines were established manually afterwards. For all conditions, the portion of fixations
that were assigned to the correct line were higher after correction than before, but the extent of
the improvement depended on the spacing. In the best condition with 1.5 spacing, the percentage
of correctly assigned fixations increased from 56% to 86%. The performance can be considerably
increased by allowing manual correction during the recording.

Limitations: While this correction is intended for real-time application, the sticky and magnetic
lines techniques can be applied after the recording just as well, potentially even combined with
manual post-recording corrections. However, the approach is based on a linear reading approach,
which does not apply to source code reading, which includes other behaviors such as skimming
[Lohmeier, 2015, 35]. While the approach allows for a certain amount of regressions, it does not
perform well, when the reading is not fluent and the gaze switches lines often, going back and
forth, which is common in code reading. In case the gaze is mapped incorrectly, it can remain
wrong for quite a number of fixations, making this approach unsuitable for code reading.

Cohen| [2012]

Approach: Cohen’s correction approach uses linear regression to assign fixations to a line in
the text. Each text line has an associated regression line. Based on the assumption that the
error is largely constant over the screen, all regression lines have the same slope, vertical offset,
and standard deviation. At first, the regression lines run through the start of the text lines.
If fixations are recorded above or below the text lines, the vertical offset is used to shift the
start of the regression lines accordingly. After calculating the set of parameters that maximizes
the likelihood of the fixations, they are mapped to the line of text with the highest-likelihood
regression line.

Evaluation: For assessment, the automatic corrections were compared to manual ones. Overall,
the human and the software agreed on 99.78% of the total number of fixations.

Limitations: This approach corrects only vertical error and is based on the assumption that
the offset remains relatively constant over time and across the screen, which is not the case for
the EMCR data. Moreover, the many short lines in source code might make it difficult to fit
the regression lines.

2The technique by [Mazzei et al. [2014], will not be considered here, since it applies to reading and note taking on
paper, and is based on a dual-camera setup with a head-mounted eye tracker.

65

5.3 EXISTING APPROACHES FOR ADDRESSING ERROR

Martinez-Gomez et al. [2012]

Approach: This correction method uses feature-based image registration, which matches two
images by spatial transformation of the source to the target image. It transforms the image
representation of gaze data to align to the image representation of the stimulus text without
assuming a specific reading behavior. In order to limit the number of parameters needed for
transformation, only vertical error is considered. Ideally, every gaze sample can be mapped to a
word. Pixels in the gaze image get a low score, if a gaze sample occurs on them. Likewise, pixels
in the text image have a low value, if there is a word at their location. The sum of the absolute
differences of pixels between the two images is used as measure of alignment. In order to find
parameters that minimize the alignment, Monte Carlo sampling, multi-resolution optimization,
and multi-blur optimization are employed. While this technique was intended for reading in a
broad sense, it can probably be applied to other domains as well, as long as the stimulus includes
enough distinct features for transformation.

Evaluation: The approach was tested using linear reading and skimming. The corrected linear
reading data is mapped to words and compared to the sequence of words in the text using the
Levenshtein distance. For skimming, the F-score is calculated, the weighted average between
precision and recall of shown and mapped words. A naive error correction without mapping
serves as baseline for comparison. Multi-blur optimization performed best and significantly
better than the baseline. The results were generally better for linear reading than for skimming.
The reading data was also corrected manually. The best automatic correction has an accuracy
of ca. T0% relative to the manual version. Skimming data was not compared to a manual
correction.

Limitations: This approach addresses only vertical error. Horizontal correction could be added,
but will make the optimization very complex. While the general idea is very intriguing, since it
is applicable for varying reading behaviors, it only considers error that is largely constant across
the screen. Additionally, it does not perform well enough on word level, which is a necessity for
the EMCR data.

Mishra et al.| [2012]

Approach: Similar to Hyrskykari [2006], this approach is based on the assumption that reading
is mostly carried out linearly from left to right and line after line. The underlying heuristics were
derived by inspecting a large number of recordings from translation, post-editing, and reading
experiments. Correction can be applied during or after the recording, but only addresses vertical
error. First, fixations are moved to the closest line. Then, transient fixations are discarded.
These are short fixations that occur between two other fixations, which are close to each other,
but far away from the short fixation (figure [5.4a). Given a good calibration and enough line
spacing, the first fixations on a line are assumed to be correct. If they are mapped to the same
line, it can be reasonably assumed that successive fixations further to the right belong to that
line as well, even when they are recorded somewhat above or below the current line (figure
, since it is unlikely that the gaze jumps somewhere else, while in the middle of a line.
The amount of fixations m which indicate the correct line is determined by manually inspecting
sample recordings. If the first m fixations are located on different lines, the most probable one
is found by a ranking based on the fixation frequency distribution among the lines and fixation
durations.

Evaluation: A qualitative analysis was done by visually inspecting replays of uncorrected and
corrected recordings. After correction, the data was found to be more plausible and less noisy.
Furthermore, the automatic corrections were compared to manual ones. While the automatic
approach changed almost all data, only fixations with huge offsets were corrected manually.

66

CHAPTER 5. EYE TRACKING ERROR

Fixations F1"' F
-0 Sr-d0bs

U f a 1 LI
. . Fixations Foe=Fn
dolore magna aliquygm,€rat, sed diam voluptua. At vero ynre magna aliquyam erat, sed diam voluptua. At vero

eos et accusam et jySto duo dolores et ea rebum. eos et accusam et justo duo dolores et ea rebum.
(a) Removing a transient fixation from the (b) Moving fixations F,+1...F;, to the same line as
scanpath. the first m fixations.

Figure 5.4: Correction steps concerning transient fixations and moving fixations to the same
line as their predecessors

Therefore, it was tested, which portion of the manual corrections were also carried out by the
automatic approach. Depending on the chosen number of first fixations m, the agreement be-
tween automatic and manual correction ranged between 55% and 81%. However, this evaluation
method is somewhat problematic, since only extreme cases are captured and there is no infor-
mation on how the correction performed on the majority of fixations.

Limitations: The premise that reading is mainly carried out line after line, from left to right,
makes this method unsuitable for code reading. Additionally, the success of the correction de-
pends on the first m fixations being fairly exact. If they are amiss, so will be all following
fixations for that line. In order to ensure that the correct line was detected, additional infor-
mation is needed, e.g. in form of RFLs, which are not available for the EMCR data. Finally,
transient fixations cannot necessarily be removed in code comprehension studies, since it is very
difficult to decide, whether these fixations are noise or serve a purpose.

Carl [2013]

Approach: This correction approach is task-specific for translation, where a foreign-language
text is presented in one window and its translation is typed into a second one. It is included here,
since it addresses reading as part of translating. Background knowledge about translating allows
to build correction heuristics, e.g. the gaze jumps between words currently being translated
and their translation and consecutive fixations are very likely to fall on neighboring words.
Fixations are computed from raw data and assigned to the nearest character (naive mapping),
which often lies in the line above or below the one actually looked at. This first mapping is
extended into a lattice of possibly looked-at symbols. Additional fixations are calculated using
left-only, right-only, and left-right average samples to utilize the supposedly more precise data
from the dominant eye. However, as eye dominance is unknown, all options are tested and
the characters closest to these fixations are added as candidates to the lattice. Furthermore,
the characters in the line above the uppermost, and below the lowest mapping are included to
account for systematic error. A dynamic programming algorithm calculates the optimal path
through these possible mappings, using the distance between consecutive fixations, and the
window the fixations occur in. If fixations appear in the same window, it is assumed that the
translator reads some text and the gaze progresses forward. If the window changes, the gaze
probably moves near the translation of a text that was previously read. Additionally, the best
mapping option is expected to remain stable for some time.

Evaluation: Manual corrections by three people were compared to each other, to a naive,
and to the presented re-mapping approach. All versions agree for over 97% of the fixations on
the window the translator was looking at. The two windows are rather large AOIs, though.
The biggest consensus was reached between the humans. Comparing manual corrections with

67

5.3 EXISTING APPROACHES FOR ADDRESSING ERROR

the naive mapping produced a slightly better result than with the re-mapping. However, the
differences are minimal. With regard to the average character distance between the corrected
versions (see Comparison with manual correction), the manual versions are quite close to
each other (distances between 8.6 and 12.6), the naive and the re-mapping approach much less
so (distances between 34.8 and 37.7, and 32.8 and 35.9). The extent of the distances depends
on which window the fixation occurred in. Especially for fixations that are mapped to the
same window, the performance of the re-mapping is better than of the naive method. Larger
distances are mostly the result of mapping a fixation to different windows, e.g. last line of the
upper window and first line of the lower one. Moreover, the corrected versions are inspected
to see how well they comply with a cognitive model of translation. After re-mapping, the data
agrees better with the expected behavior.

Limitations: This approach also addresses reading, but in a very different context. The pre-
sented heuristics strongly depend on the two-window setup and on writing new text during the
recording, none of which is part of the EMCR study.

Lohmeier| [2015), 35-44]

Approach: This error correction method was especially developed for program comprehension.
It seizes the irregular layout of source code with indentions and lines of varying lengths. For
every fixation several offsets and linear factors are tested to find a set, which results in a minimal
average distance between fixation locations and targets. The respective targets are determined
by using an asymmetric rectangular fixation assignment window around the measured gaze
position, which corresponds to the size of perceptual and word identification spans in reading.
During Lohmeier’s experiment, participants worked with a specific IDE. Finding the intended
target is attuned to this stimulus and includes identifying the user interface control at the
corrected fixation position, and inside the control the closest word.

Evaluation: The error gradients from the parameter test, as well as the corrected data were
plotted and inspected visually for plausibility. Furthermore, corrected and uncorrected data
was compared with descriptive statistics. The automatic correction reduced the average error
by about a third.

Limitations: This approach for gaze data in program comprehension contains several very
promising elements for correcting the EMCR data and will be further evaluated in [6] Error
correction. Horizontal error was corrected manually, but can be included in the computation
without further ado. However, the stimulus source code was shown in a specific IDE, whose
elements help to identify fixation targets. A different approach has to be found for this step, since
the EMCR stimuli are natural-language texts and source codes on an otherwise blank screen.
Furthermore, the error has to remain largely constant across the screen and over time. Similar
to the approach by [Nissli [2011, 52-67], this technique can be applied to subsets of data, e.g.
from different screen regions, even though such a step needs a more elaborate implementation
than merely dividing fixations into subgroups.

Palmer & Sharif [2016), 65-68]

Approach: This approach was also developed for gaze data from program comprehension,
but is potentially also applicable to reading or even other stimuli that meet the underlying
prerequisites. First, clusters of temporally dense fixations are formed using a lookback queue.
Then, all clusters receive a score depending on how many of their fixations fall into an AOI.
Clusters whose score falls below a threshold are corrected using a hill-climbing algorithm. In
case no fixation from the cluster is inside an AOI, the cluster is moved towards the closest
AOL. During hill-climbing, scores are determined for the cluster’s current position and its four

68

CHAPTER 5. EYE TRACKING ERROR

neighbors. If any of the neighbors score higher than the current position, the cluster is moved
in that direction. At the beginning, the cluster moves half its width and height, but every cycle,
the distance decreases by half until it reaches one pixel. The hill-climbing repeats until the
current position has the highest score.

Evaluation: The automatic correction results were compared to manual ones from two annota-
tors working together. Using code lines as AOIs, both automatic and manual corrections agreed
on 89.78% of the fixations, on element level the agreement was 59.47%.

Limitations: This is a very promising approach, because it was developed for code reading and
uses a variable offset for correction. However, as a start, it was aimed at correcting data from
novices and assumes a somewhat linear reading behavior. Also, so far it only performs well on
line-level, not for single code elements. Further adaption is needed in order to also account for
non-linear reading during program comprehension.

Yamaya et al.| [2017]

Approach: Yamaya et al.|[2017] developed a method for correcting vertical error in reading
data. Fixations are broken down into sequential reading segments, mainly based on return
sweeps. When a text is read linearly from top to bottom without re-reading or skipping, the
number of segments is the same as the number of lines. Since the actual reading behavior
somewhat differs from this model, reading segments and lines do not match perfectly. Hence,
transitions between consecutive segments are classified into different types, which were derived
empirically from observing gaze patterns. These types include progressing, i.e. left-to-right
movements to read the next AOI, and short re-reading on the same line, i.e. reading again from
the beginning or halfway along the same line. A classifier based on machine learning labels
the transitions using features like segment length and saccade angle. Then, segments are either
divided or concatenated, depending on the type of transition between them. Finally, dynamic
programming is used to find the best alignment between segments and lines. The method builds
on previous work by [Yamaya et al. [2015] and Yamaya et al.| [2016].

Evaluation: The classification was evaluated by comparing transition labels assigned by a
human to those of the machine approach. The automatic classification reached an accuracy
of 84%. The fixation data was also corrected manually by several annotators, who agreed on
84.4% of the fixation-to-word mappings. Three techniques were compared to the manual set:
a naive mapping that assigns fixations to the nearest word, the dynamic programming-based
segment-to-line mapping, and segment-to-line mapping with transition classification. The naive
approach reached an average accuracy of 69%, segment-to-line mapping 72.3%, and segment-to-
line mapping with classification 87%.

Limitations: The method assumes a linear reading behavior. Even though non-linear reading
is to some extent taken into account, e.g. by tolerating regressions within a line, it does not
perform well when larger parts of the text are re-read or the text is not read completely, which
is both very common in source code reading. Moreover, only vertical error is addressed.

Spakov et al. [2018]

Approach: Two methods are introduced based on a linear reading model, i.e. lines are read from
left to right and rarely skipped, after reaching the end of a line, the gaze moves to the beginning
of the next line, most words are looked at, and ca. 10-15% of the saccades are regressive. This
is similar to the premises in by |[Hyrskykari [2006], Mishra et al.| [2012] and [Yamaya et al. [2017].
Immediate Mapping is carried out during the recording, using the screen locations of lines and
words, and the mappings of previous fixations. It has two components. In relative mapping
the shift relative to the previously mapped fixation serves as indicator for the correct line. A

69

5.3 EXISTING APPROACHES FOR ADDRESSING ERROR

weighted average of the distances between mapped fixations and their respective lines serves
as additional verification. If no relative mapping can be established, absolute mapping starts
by calculating the vertical distance from the fixation to each line. If only one line is within
the specified distance, the fixation is assigned to it. When both the line above and below the
fixation are candidates, it is checked, whether one already has fixations mapped to it, while the
other has none. If so, the line without fixations is favored, otherwise the closest line is chosen.
Subsequently, fixations are mapped to words within the line, usually to the closest one. However,
motivated by the asymmetric reading span, certain fixations that occur at the end of a word
are assigned to the next word. Deferred Mapping corrects the data after the recording. It forms
sequences of fixations that are close enough to each other to be made when reading the same
line. These sequences of progressive reading are mapped to lines. In order to assign fixations to
a word within the line, the horizontal coordinates are scaled according to the horizontal extents
of the words in the line. Then the fixation is mapped to a word, using the “effective” word
width. If the actual word width exceeds a certain threshold or the word already has assigned
fixations, this is a fraction of the actual word width. Otherwise, effective and actual width are
identical. Finally, transition fixations, which occur during corrective saccades after moving the
gaze to the start of a new line, are removed.

Evaluation: The lines detected by both methods are compared to those obtained manually by
two human judges individually. For trials with complete agreement between manual mappings,
the median agreement between immediate and manual mapping is 92.9%, for deferred and
manual mapping it is 96.2%. In more ambiguous trials with 95% or less agreement between
judges, 88.4% of the immediate and 94.4% of the deferred mappings agree with at least one
of the manual versions. Thus, deferred mapping performed better that immediate mapping.
17% of the trials were not used for evaluation, e.g. because of large data loss or because the
participant was not reading linearly. Fixation-to-word mappings were not assessed, as automatic
scaling is assumed to be more accurate than human judgment.

Limitations: Both mapping methods are only applicable when the text is read linearly and
without interruptions. Since this prerequisite is not met in code reading, none of them can be
used for the EMCR data.

5.3.3 Conclusion

There are various ways to address error in gaze data. In some studies it is possible to prevent
error sufficiently or remove problematic data. However, often it is unavoidable to correct the
error and various approaches already exist. Yet, most of them cannot be applied to the EMCR
data, since they are based upon some kind of required or probable fixation location, which
cannot be integrated into the EMCR study. Techniques that were developed especially for data
from reading studies mostly assume a rather linear reading behavior and are therefore unsuitable
for code reading. However, two approaches were identified that can presumably be adapted for
correcting the EMCR data: |[Nussli| [2011, 52-67] and |Lohmeier| [2015, 35-44]. These will be
explored further in [6] Error correction.

70

CHAPTER 5. EYE TRACKING ERROR

5.4 Evaluation approaches for error correction

Evaluating the performance of error correction methods is not entirely straightforward, since it is
difficult to obtain a ground truth for comparison 60]. Also, the performance often
varies strongly between trials and depends on the extent of error, e.g. Niissli [2011, 61], Spakov &/
\Gizatdinova, [2014] 293,294], Zhang & Hornof [2011} 839]. Below, a systematic summarization of
the identified evaluation approaches is given. Occasionally, several techniques are used together

in order to corroborate their findings, e.g. 2013, 8-11], |John et al.|[2012, 298-300],
2012, 73,77,78], Zhang & Hornof [2011], 838-840].

5.4.1 Real data

The majority of assessment procedures use real gaze data. Partly, correction is carried out
on realistic tasks, i.e. the same kind that the correction method is intended for, e.g. [Cohenl
2012} 681,682], [Hyrskykari [2006, 668], [Niissli| [2011}, 60], [Palmer & Sharif [2016] 67], [Spakov
et al. [2018, 14,15], but points or grids were also used |Cerrolaza et al., 2012, 207], |[Spakov &
Gizatdinoval 2014 293]. In order to test the robustness of their method, |Spakov & Gizatdinova
[2014}, 293] even created highly noisy data on purpose by prompting participants to change their
posture on the chair and to walk a few meters and sit back down to continue the recording
without recalibration.

5.4.1.1 Comparison with manual correction

Data can be corrected manually and compared to automatically corrected data. The size of
the AOIs used for evaluation varies between characters [Carl, 2013, 9,10], words [Martinez-
Gomez et al., [2012] 259,260], [Yamaya et al.| 2017, 104], lines [Hyrskykari, 2006, 668], [Spakov
et al,[2018] 14-16] or even larger areas of the screen [Carl,[2013] 8-10]. Since manual correction is
usually quite time-consuming, often there are only small sets of data for comparison [Hyrskykari,
668]. While some only used a single person to correct the data , , 682], others
had two or more correctors working independently. These different versions are tested against
each other to ensure a high quality of the correction before using them as ground truth
2013, 8,9], [Spakov et all 2018, 14-16], [Yamaya et al) 2017, 104]. A similar option is to
have several people correct the data together [Palmer & Sharif, [2016], 67]. Enrolling more than
one corrector and ascertain that the corrections largely agree, before accepting the manually
edited data as correct, is a more reliable, improved version of the manual approach and reduces
subjectiveness. Mishra et al. [2012, 78] performed manual correction only on fixations with large
offsets, then tested which part of this correction is also carried out by the automatic approach.
This procedure is problematic, since the automatic correction method modifies most of the
fixations and it is unknown how valid those shifts are. Hence the whole data set has to be
examined.

Instead of comparing the exact coordinates of the corrected fixations to quantify the cor-
rection performance, often the percentage of fixations that were assigned to the same target
is used [Carl, 2013, 8,9], [Cohen| 2012| 683], [Hyrskykari, 2006, 668], [Martinez-Gomez et al.,
2012, 259,260], [Mishra et al., 2012, 78], [Palmer & Sharif, 2016, 67], [Spakov et al., 2018, 15,16],
[Yamaya et all [2017, 104]. This measure is sometimes called hit percentage or accuracy. Other
measures, that are introduced concern the distance between manually and automatically cor-
rected fixations. The average character distance used by , 9,10] reflects the textual
offset between two versions of the data, irrespective of the physical distance. A mis-mapping
within a line has a smaller distance than a mapping to different lines, even if the physical dis-
tance is the same. Building on this measure, [Yamaya et al. [2015, 656,657] define the average

71

5.4 EVALUATION APPROACHES FOR ERROR CORRECTION

word distance, i.e. the average normalized distance between the offset positions of two corrected
data sets.

5.4.1.2 Reference locations

There are several ways to employ reference locations for evaluating a correction approach. Some
stimuli have implicit RFLs or PFLs, e.g. targets in a visual search task [Hornof & Halverson,
2002, 597-603], [Zhang & Hornof, [2011} 839-840], [Zhang & Hornof, 2014, 97,98]. Other experi-
ments use explicit RFLs, e.g. participants are asked to press a button, when they fixate certain
points [Cerrolaza et al., 2012, 207,208], [John et al., 2012, 298,299], [Spakov & Gizatdinoval,
2014, 293,294]. The disparity between fixation and reference location, and the percentage of
correct target assignments can be used to assess the correction’s performance.

Martinez-Gomez et al.| [2012, 259,260] tested their method with careful reading and skim-
ming. They asked participants to mimic an ideal reading behavior by looking at each word, one
after the other without skipping words or making regressions. Understanding the text was not
necessary. Thereby the sequence of read words largely corresponds to the sequence of words in
the text and a measure based on the Levenshtein distance is used to determine their similarity.
However, it is not feasible to read this linearly all the time, so a perfect match between the two
sequences is rather impossible. For skimming, only some words were kept visible and partic-
ipants looked once at each word in whichever order they wanted. The evaluation metric was
the F-score, the weighted average between precision and recall of the words that were looked
at and the words identified as correct by the correction method. Drewes et al.| [2012, 209-211]
and [Wyatt| [2010, 1983] asked participants to look steadily at a central target on the screen and
changed the brightness to demonstrate that changes in pupil size are mistakenly recorded as eye
movements, even though the gaze remained on the target.

5.4.1.3 Visualizations

Another option is visual inspection of scanpaths and other visualizations in order to determine
whether the corrected data is plausible or to assess and illustrate aspects of the correction.
Often uncorrected and corrected data or corrected data from different correction techniques are
presented together [Cohen| 2012, 681,682], [Hornof & Halverson, 2002, 601-603], [John et al.,
2012} 298,299], [Mishra et al., 2012, 73,77,78], |[Palmer & Sharif, 2016 67,68], [Yamaya et al.,
2017, 104,105], [Zhang & Hornof, 2011, 838,839], [Zhang & Hornof, 2014, 97,98]. |Carl [2013,
10,11] reviews corrected scanpaths to determine, whether they fit with a cognitive model of the
translation process. This is very close to an expert inspecting a scanpath for plausibility, except
that an explicitly formulated behavior serves as guidance.

Furthermore, the error and its horizontal and vertical components can be plotted before and
after correction [Lohmeier} 2015, 41,42], [Nussli, 2011, 63-65], [Zhang & Hornof, 2014} 97,98].
Lohmeier| [2015, 39-41] also visualized the error gradients from brute force parameter testing, as
well as the y-offset and linear factor, to ensure that optimal results were found. Moreover, |Niissli
[2011, 61-66] plotted fitness values in the offset space. The fitness peak indicates an optimal
offset. If no systematic error is found, the peak is centered at zero. Additionally, histograms of
the fitness difference between uncorrected and corrected fixations and of the differences between
the brute force and the analytical method, as well as the development of the offset variance
with the number of tested fixations are depicted. Martinez-Gomez et al.| [2012, 259] present the
respective solution spaces for the tested optimization techniques.

72

CHAPTER 5. EYE TRACKING ERROR

5.4.1.4 Comparison with another correction method

Several methods are evaluated by comparing their results to those of another approach. Often a
simpler, “naive” method serves as baseline, e.g. assigning fixations to the nearest element [Carl,
2013, 8-10], [Martinez-Gomez et al., 2012, 259,260], [Spakov & Gizatdinova, 2014, 293,294],
[Yamaya et al., 2017, 104]. Apart from that, several correction methods are introduced and
compared to each other [Cerrolaza et al., 2012, 207,208], [Nissli, [2011, 65,66], or several versions
of the same method are tested [Martinez-Gomez et al. 2012, 259,260], [Mishra et al., 2012, 78],
[Yamaya et al., [2017, 104]. The general problem with comparing one method to another is that
the reference method might also not work correctly. Thus, if both methods come to different
results, it is difficult to determined which approach is correct [Chapanis| |1951, 1179-1181].

5.4.1.5 Further measures

Since no ground truth is available for comparison, Nissli [2011, 61-64] uses the distribution
of fitness improvement over all participants to check that after correction more fixations are
assigned to AOIs. However, this gives no information about the amount of fixations on the
correct AOI, so the improvement cannot be fully quantified. Other evaluation techniques include
employing an eye simulator |Cerrolaza et al., 2012, 206,207] or a scleral search coil simultaneously
with the eye tracker [Drewes et al., 2012, 209-211], and using descriptive statistics at different
stages of correction |Lohmeier} 2015, 40,43].

5.4.2 Artificial data

In order to have an actual ground truth and know the correct fixation locations, |John et al.|[2012,
299,300] work with artificial data. In doing so, huge amounts of test data can be generated,
which is hardly feasible with real participants. A “true” data set is created, in which ten percent
of the fixations are replaced by white noise to simulate artifacts. This data is distorted with
increasing complexity. Then the proposed correction method is performed on the distorted as
well as on the original data to verify that correction does not alter correct fixation locations. To
test, how well the correction results agree with the true data, the mean distance between the
corrected and the undistorted data is calculated.

Nissli| [2011} 61,63,64] compares the results from automatic correction on real and random
gaze. All fixation locations are replaced by random points that are distributed all over the
screen. To ensure that the results are not an artifact of the stimulus, the stimulus and the
fitness function are identical for both data sets. For the real data, the offset variance decreases
as more fixations are added to the computation and the offset becomes more distinct. However,
when processing the random positions, no clear fitness peak appears and offset variance decreases
much less.

5.4.3 Conclusion

A number of different methods were developed to asses the performance of error correction
approaches. The need for some kind of ground truth to base the evaluation on makes the
assessment a difficult task. When manually corrected data is used to evaluate the performance
of a correction approach, it is never completely certain, that the manually determined fixation
location is correct, even if several people agree on it. Also, manual corrections are very time-
consuming. Inspecting the corrected data to determine how plausible it is, is also subjective.
Using reference locations for evaluation is often not possible or at least not with a realistic
stimulus. While using artificial data avoids these problems, it is difficult to judge how realistic
the applied distortions are and whether the data can really be seen as a stand-in for the real

73

5.5 CONCLUSION

data that has be corrected. Therefore, for evaluating the error correction of the EMCR study a
combination of several methods will be used, including reference locations, manually corrected
data, and artificial data.

5.5 Conclusion

In order to analyze the EMCR data, it is necessary to establish which AOIs are looked at. Due to
a number of reasons, there is often an offset between the recorded gaze and the actually fixated
location. Reviewing a variety of options to address such errors yielded two useful correction
approaches for further inspection, as well as relevant means for evaluation.

74

Error correction _

6.1 Introduction

In [B| Eye tracking error two correction methods were identified that can serve as basis for
developing an automatic correction approach for the EMCR data. Results from different variants
of this novel correction are compared to reference locations in form of mouse clicks on the fixated
screen location. The methods that perform best for NT and SC respectively are evaluated further
using data from the EMCR study, which was corrected manually, as well as artificial data to
ensure that neither accurate data is distorted nor meaning created from random data.

6.2 Correction approaches

The approaches by [Niissli [2011, 52-67] and |Lohmeier| [2015| 35-44] were determined as the most
suitable ones for further investigation (see Automatic correction). The core idea of
Niissli’s approach is to maximize the amount of fixations on AOIs, while Lohmeier minimizes
the disparities between fixations and their targets. These two approaches are briefly outlined
again below, providing some additional details that are relevant for the development of a suitable
correction method for the EMCR study data.

6.2.1 Niissli 2011

Niissli’s approach is based on the assumption that participants mostly look at AOIs, not on
blank space and computes an offset, which maximizes the number of fixations on AOIs. While
participants might sometimes look at empty or irrelevant areas, or even away from the screen,
e.g. when pondering something, they predominantly focus on AOIs as long as the task requires
information that has to be obtained visually from the stimulus and not by merely thinking about
it. This assumption should hold especially for stimuli like NT and SC, which are only partially
covered with elements, and in the case of SC additionally have a very distinct AOI structure.

Several strong indicators support the underlying premise. When testing potential offsets
on data from actual studies and plotting the resulting percentages of fixations on AOIs into
a two-dimensional landscape, a distinct peak appears, which indicates the optimal offset. For
randomly distributed fixations, no such peak forms. Also, as soon as enough fixations are taken
into account, the offset variance decreases much more for data from solving an actual task than
for random points. Hence there is a higher confidence in the offset computed for real data than
for random fixations.

75

6.2 CORRECTION APPROACHES

Two implementations of the correction approach are proposed. In the brute force technique
the so-called fitness function assigns a fixation likelihood to each screen location. A straightfor-
ward option is to assign ‘1’ to points inside AOIs and ‘0’ to those outside. It is also possible
to devise fitness functions that compute a score between ‘0’ and ‘1’, depending on the distance
to an AOL In order to find the offset which maximizes the average fitness over all fixations,
fitness values are computed for all offsets in a given range. This brute force procedure finds an
optimal offset, but is computationally expensive, especially for large numbers of possible offsets.
Therefore, Niissli also introduces an analytical technique, which approximates the optimum and
requires less computations.

The whole approach further relies on the assumption that there is a specific error for a trial
or subject and that this error is constant over space and time. Niissli acknowledges that error
may change in both dimensions, but as a start, takes these premises for granted and mentions
the option to run the correction on subsets of data. This alternative will be explored more
thoroughly in section Novel approach. For further details and an evaluation of Nissli’s

approach see General-purpose approaches.

6.2.2 Lohmeier 2015

Lohmeier developed a correction method for an experiment on SC using an IDE. It employs
a fixation assignment window, whose size is based on the perceptual and word identification
spans in reading. Fixation targets are identified using features of the stimulus IDE, e.g. distinct
control elements like buttons, as well as the specific shape of SC with lines of variable length and
varying start and end points. Different sets of parameters are tested on the fixation positions to
find the one that results in the smallest average disparity between fixations and their targets.
These parameters consist of an offset and a linear factor for scaling the fixation coordinates
along the axes. Further details and an evaluation of this approach can be found in
Task-specific approaches for (code) reading.

6.2.3 Novel approach
Drawing from the approaches by Niissli and Lohmeier, an enhanced correction method is devised
for the EMCR data. Several variants of this correction are evaluated for their suitability.

6.2.3.1 Error function

To get the corrected fixation location f...-, Niissli applies a constant offset o to the uncorrected
fixation coordinates funcorr (equation |6.1)).

fcorr = funcorr +o0 (6.1)

Lohmeier has a more refined correction function. Additionally to the offset, it includes a linear
factor a that can somewhat compensate for error varying over the screen location (equation [6.2)):

fcorr =ax funcorr + 0 (62)

This approach allows more fine-grained adjustments to changing errors. An example can be seen
in figure [6.1] The concept of combining a factor for scaling and an offset for translation is also
used by Martinez-Gomez et al.| [2012, 258]. Furthermore, equation includes equation
since the linear factor a can be set to ‘1. Hence, this more powerful option is used. Nonetheless,
in the evaluation results for a = 1 will be presented as well for comparison.

76

CHAPTER 6. ERROR CORRECTION

The nyg.ntiogp-‘ rockets is linked inextricably vﬂth the invention of ‘black powder’. Most historians (;{chhnology credit the Chinese
ay‘.h its discovery. They base their belief on studies of Chl:bese wrltggs (%on tr%nolebooks of early Euro;se%ls who settled m.Q-_:a__e
d];.’-de long visits to Chin%}n study its history and civi\iséation. It is probable that, some time in the tenth century, blfﬂgowder was first

compoundedé;am its basic ingrs,f\ents of saltpetre, chaa:oal and sulphur.
—e

o uncorrected fixations o corrected fixations

Figure 6.1: Scaling and translation: Applying a linear factor and an offset to the uncorrected
fixations allows to correct the rather small error in the middle of the screen as well as the errors
at the left and right side of the text, which not only have a larger extent, but also opposite
directions. Correcting the data with only an offset cannot compensate this changing error.

6.2.3.2 Finding parameters

Both presented approaches have the underlying assumption that gaze is mostly directed at AOIs.
In order to optimize the parameters for correction, Niissli maximizes the amount of fixations on
AOIs, while Lohmeier minimizes the disparities between fixations and AOIs. The EMCR study
does not include an IDE; so Lohmeier’s approach of identifying fixation targets has to be adapted
to stimuli which contain only text. Niissli’s approach on the other hand works with text stimuli
without further ado. So the number of fixations on AOIs will be maximized. The brute force
variant finds an optimum, but is computationally expensive, while the analytical technique only
approximates the optimum, but is much faster. For analyzing the EMCR data, exact results
are more important than the time needed for computation. Furthermore, brute force values
would have to be computed for at least part of the data in order to set the parameters for the
analytical method, so the brute force technique is chosen.

The EMCR text stimuli are rather dense and often include just a few pixels of empty space
between AOIs. There is hardly any potential for computing a gradual score depending on the
distance to an AOI, as fixations that fall within the text area have a high chance of getting a
score of ‘1’ anyway, because they will most likely land on an AOI, even if it is the wrong one.
Considering distances to AOIs is mostly relevant for locations near the text margins, where more
empty space surrounds the AOI, e.g. above the first line and in SC for lines that are longer
than their preceding and subsequent lines. Instead of implementing a distance-based fitness
function, which would be applied to all points, AOIs at locations that are less dense will be
adapted to accommodate fixations with a somewhat greater error (see Adapting AOIs).
Hence, the straightforward fitness function (equation is adopted. It also allows to interpret
the resulting overall fitness value as percentage of fixations on AOIs.

1 if there is an AOI at location (x,y)

6.3
0 else (63)

fitness(x,y) = {
Niissli| [2011} 54] tested offsets between -100 and +100 px. Lohmeier [2015, 40,41] used offsets
in a range of -100 to +100 px and -140 to +140 px, and linear factors of [1, 1.01, 1.02, ..., 1.3]
and [1, 1.01, 1.02, ..., 1.6]. Despite the computational effort, automatic correction with linear
factor and offset will be tested for the EMCR data both in horizontal and vertical dimension in
order to find the best possible parameters.
Chosen ranges:
e Linear factor a:
0.9 to 1.1 with a step size of 0.01
e Offset o:
-100 to +100 px with an increment of 1 px

7

6.2 CORRECTION APPROACHES

These parameter ranges with a very small step size allow to explore the effect of scaling towards
the middle and the edges as well as very fine-grained testing. The stimuli contain elements very
close to the screen margins and these parameter settings can already result in a huge distance
to the original fixation location, e.g. at coordinate 1000 a linear factor of 0.9 or 1.1 already
causes a difference of 100 px even without an additional offset. Hence, these ranges should cover
all occurring errors, even if they are much larger than the maximum of 80 px found by [Nissli
[2011, 54]. Errors that lie outside this already generous area should be handled with care and
not treated automatically without inspection. If several parameters result in an equally optimal
fitness score, the one that leaves the data closest to its original position is adopted, so the data
is modified as little as possible.

6.2.3.3 Adapting AOIs

Locations at which AOIs (see Areas of interest) are not very dense will most likely have some
fixations that land only close to an AOI. For example, fixations from reading the first line tend
to be slightly above that line. Due to the size of the fovea the text is still located in the area
of sharpest vision and since there are no other AOIs above, there is no need to force the gaze
exactly onto the line in order to read it. The same occurs on very long lines that are surrounded
by shorter ones and lines that only contain a single closing bracket. Such AOIs do not have
to be looked at exactly, it is enough to look at their vicinity. Usually AOI borders comprise
their respective item rather tightly, especially for words in a text. In order to take the increased
fixation likelihood at less packed locations into account, the AOIs there are expanded, while the
other AQOIs retain their regular size.

Extra margins are added to AOIs above the first and underneath the last line, and before
the first and after the last element of every line. Within the text, extra margins are added
where possible, e.g. in long lines surrounded by lots of empty space. The maximum amount
added corresponds to circa 0.5° visual angle to ensure that the area covered by the expanded
box is still well within foveal vision when targeting the respective AOIL. The distance between
AOI borders is kept comparable in size to the regular AOIs. Figures[6.2} [6.3] and [6.4] illustrate
the differences between original and expanded AOIs. Inside the text the available empty space
is evenly attributed among AOIs (figure . Due to the specific distribution of words and code
elements in the EMCR stimuli, the expansion mostly affects the height of AOIs. This already
helps to map more fixations to the correct AOI, since error tends to be greater vertically than
horizontally |Hyrskykari, [2006, 667], [Niissli, 2011, 64], [Spakov et al., [2018, 4-6]. Furthermore,
SC stimuli offer more options for expansion, so their AOI structure is changed to a greater extent
than those of NT stimuli.

6.2.3.4 Variants for evaluation

Both Niissli and Lohmeier correct the whole trial at once. The EMCR study contains AOIs in
the center and at the edges of the screen, so error will most likely vary locally. Therefore, it is
tested whether correction can be improved by applying it individually to different screen regions.
For this purpose, all fixations of a trial as well as local subsets are corrected. The variants single
and linear technically both use the advanced error function [6.2] and apply it to the fixations of
the whole trial. However, for single, the linear factor a is set to ‘1’, so it also corresponds to
error function

78

CHAPTER 6. ERROR CORRECTION

T o o o v §

basic |ngredients|

(b) Expanded

Figure 6.2: Exemplary NT AOIs

s o Vet
BB rocuced) | bl Vet
fepspeed | curentspeed| g o, g8
e =~
e N | I =+ 1| W 11 ,
b -]

fhis-type (]
[EERSREsd - [|
FESSTenERee - 0

B

E-

' B2
e e -l-llg_lul-
]| cureneed | RSRSSA i |ﬂ
g - i e [
| — e 1 —}IID
H feturn| Fhis.currentSpeed” lh;cumenrpeedll I.
s e e]
S | . L1

(a) Original (b) Expanded

Figure 6.3: Exemplary SC AOIs

79

6.2 CORRECTION APPROACHES

this.currentSpeed H _ H | L currentSpeed| ﬂ
H I t%'currenlSpeeq his.currentSpeed
this.currentSpeed H this.currentSpeed ﬂ - H :

(a) Original (b) Expanded

Figure 6.4: Detailed illustration of dividing available space: With the original AOIs (a) method
accelerate has a lot of empty space between the lines this.currentSpeed = this.topSpeed
and this.currentSpeed = this.currentSpeed + kmh. In the expanded AOIs (b) half of the
available space is added as margin underneath the upper line, half is added above the lower line.

Since error is usually rather small in the center and increases towards the edges, the screen
will be split evenly into three sections: one in the middle and two at the edges. Two orientations
of the split are tested: horizontal and vertical. Both are tested on all stimuli, but it is assumed
that the most suitable orientation of the split depends on how the AOIs are spread. NT is located
in the vertical middle of the screen, but stretches from left to right. Hence, it is expected that
horizontal splitting works best for this type of text, as error is potentially larger at the sides,
while the middle needs less correction (figure|6.) SC has only few long lines, but reaches close
to the top and bottom of the screen and will probably benefit from vertical splits (figure)

ssssssss

(a) NT with horizontal splits (b) SC with vertical splits

Figure 6.5: Splitting the screen into three subsections

If fixations are corrected independently for different screen regions, it might happen that
fixations from neighboring regions are moved unreasonably far away from each other or heavily
shifted into each other. This can especially occur when only few fixations are available for pa-
rameter optimization. To prevent this, a limitation is introduced (variants containing limited).
First, optimal parameters are determined for the whole trial and serve as baseline. Then param-
eters are found for the three screen sections with the search space reduced to positions within
circa £ 0.5° visual angle from that baseline. For variants including the linear factor, both the
parameters from single and linear are tested as baseline (limited__single and limited__linear).

In addition, another approach will be tested, which weights the parameters from different
regions (variants containing weighted). First, parameters are optimized for all horizontal and
vertical sections individually and then weighted for every fixation according to the proximity
between fixation location and screen region. However, NT often contains no fixations in the
upper and lower sections, and SC mostly only fills the vertical dimension. So another variation
is included (approaches containing weighted_ texttype). For NT, parameters are computed for
the whole trial and the three horizontally split sections, for SC, parameters are computed for

80

CHAPTER 6. ERROR CORRECTION

the whole trial and the three vertical sections. These four parameter sets are weighted. The
weighting is also combined with the limitation.

In total, there are 22 variants of the correction approach to test, each with the original rather
terse AOIs as well as with expanded AOIs. No time-based subsets of fixations are corrected.
Gradual deterioration does not pose a serious threat, since most EMCR trials are rather short
(median duration of ca. 1 min). In case error is building up in the few longer trials, the expanded
AOQOIs already mitigate the impact of such changing offsets. Hence, generally splitting the trial
into shorter segments at predefined points is hardly beneficial. Sudden changes in data quality
that necessitate different parameters for correction than the gaze points until then are also an
exception in the EMCR study. Consequently, error changing over time is not very relevant for the
EMCR data. In contrast, error definitively varies over the screen, so correcting fixations based
on screen region is much more promising. Combining region- and time-based splits will partly
not leave enough fixations in a subset for reliable parameter optimization, so only region-based
variants are pursued.

Variants with complete trial:

single An offset is computed for all fixations, i.e. feorr = funcorr + 0.
linear A linear factor and an offset are computed for all fixations, i.e. feorr = @ * funcorr + 0.

Variants with subsets:

single_ horizontal The screen is split into three horizontal sections, offsets are computed for
each section separately.

single_ horizontal_limited Same as single horizontal, but only locations within bounds are
tested.

single__vertical The screen is split into three vertical sections, offsets are computed for each
section separately.

single_ vertical_limited Same as single_ vertical, but only locations within bounds are tested.

single weighted The screen is split into three horizontal and three vertical sections. Offsets
are calculated for each section separately and weighted according to the proximity of the
uncorrected fixation location to each section.

single_ weighted_ limited Same as single weighted, but only locations within bounds are
tested.

single weighted_ texttype For NT the screen is split into three horizontal and one vertical
section, for SC the screen is split into one horizontal and three vertical sections. Offsets
are calculated for each section separately and weighted according to the proximity of the
uncorrected fixation location to each section.

single_ weighted_ texttype_ limited Same as single weighted_ texttype, but only locations
within bounds are tested.

linear__horizontal The screen is split into three horizontal sections, a linear factor and an
offset are computed for each section separately.

linear__horizontal limited__single Same as linear horizontal, but only locations within
bounds of single are tested.

linear__horizontal limited_ linear Same as linear horizontal, but only locations within
bounds of linear are tested.

linear_ vertical The screen is split into three vertical sections, a linear factor and an offset are
computed for each section separately.

linear__vertical_ limited__single Same as linear_ vertical, but only locations within bounds
of single are tested.

81

6.3 EVALUATION USING REFERENCE LOCATIONS

linear__vertical_ limited_ linear Same as linear_vertical, but only locations within bounds
of linear are tested.

linear_ weighted The screen is split into three horizontal and three vertical sections. A linear
factor and an offset are computed for each section separately and weighted according to
the proximity of the uncorrected fixation location to each section.

linear_ weighted_ limited_ single Same as linear_weighted, but only locations within bounds
of single are tested.

linear_ weighted_ limited_ linear Same as linear_weighted, but only locations within bounds
of linear are tested.

linear_ weighted_ texttype For NT the screen is split into three horizontal and one vertical
section, for SC the screen is split into one horizontal and three vertical sections. A linear
factor and an offset are computed for each section separately and weighted according to
the proximity of the uncorrected fixation location to each section.

linear_ weighted_ texttype_ limited_ single Same as linear weighted_ texttype, but only
locations within bounds of single are tested.

linear_ weighted_ texttype_ limited_ linear Same as linear weighted_ texttype, but only
locations within bounds of linear are tested.

6.3 Evaluation using reference locations

Evaluating a correction method for eye tracking data poses a challenge. Using a more exact
device like a scleral coil to obtain a ground truth is often not a feasible option. Therefore previous
correction procedures were assessed with a variety of methods, e.g comparing the corrected data
to data from manual correction or using different kinds of reference locations (see Evaluation
approaches for error correction).

RFLs provide very probable targets for certain fixations and are a good method to gauge
errors and assess the performance of a correction method. Implicit RFLs arise when the target of
a fixation can be deduced with high certainty, e.g. because the participant looks at a button and
clicks it. For explicit RFLs, participants are specifically instructed to fixate a certain element.
There are no implicit RFLs in the EMCR stimuli and explicit ones cannot be included, since
they interfere with the comprehension process. However, the concept of RFLs can be adapted
for evaluation.

An experiment was conducted especially for testing the different variants of the devised
correction approach, in which participants were asked to look at a number of stimuli and use
the mouse cursor to click at the location they are fixating. Then, fixation coordinates were
compared to those provided by the clicks. These clicked locations are not part of the correction
itself, they are used exclusively for evaluation purposes. To distinguish this solely evaluational
usage of expected fixation locations from correctional RFLs, the coordinates of the clicks are
called reference locations (RL). They provide a good approximation of the ground truth to
choose the most suitable correction approaches, which will be evaluated further with data from
the actual study and artificial data.

6.3.1 Stimuli

Two types of stimuli were used for evaluation. The texts are actual stimuli from the EMCR
study. The grid stimuli present visual search tasks and were generated specifically for evaluation
purposes. In total there are 12 stimuli, two with text and ten with grids.

82

CHAPTER 6. ERROR CORRECTION

6.3.1.1 Text

Two representative texts were chosen from the EMCR stimuli, one NT and one SC. The NTs
used in the EMCR study are very similar in shape, position on the screen and number of lines.
Since they are quite comparable, the first one was selected to simplify matters (figure) In
order to choose a good sample SC, the two programs were considered that were shown to both
novices and experts. The longer of these programs was taken (novice L5_SC3 / expert SC3,
see figure), since it stretches closer to the edges and is therefore expected to bring on more
complicated errors. Thereby it can be seen which errors will most likely occur in the study and
made sure that the correction works even in difficult cases.

Participants in the evaluation study were instructed to read the text and to stop again and
again to move the mouse onto a text element, fixate the cursor and simultaneously click. Two
very different reading behaviors were tested to ensure that the correction does not depend on
a certain viewing strategy. First the participants simulated linear reading by looking at the
text from left to right, line after line. Then, participants “read” the text in random order, e.g.
jumping back and forth between different parts of the text, and looking from right to left.

The invention of rockets is linked inextricably with the invention of 'black powder'. Most historians of technology credit the Chinese
with its discovery. They base their belief on studies of Chinese writings or on the notebooks of early Europeans who settled in or
made long visits to China to study its history and civilisation. It is probable that, some time in the tenth century, black powder was first

compounded from its basic ingredients of saltpetre, charcoal and sulphur.

(a) NT

public class Vehicle {
String producer , type ;
int topSpeed , currentSpeed ;

public Vehicle (String p, String t , inttp) {
this.producer=p ;
this.type = t;
this.topSpeed =tp ;
this.currentSpeed =0 ;

public int accelerate (int kmh) {
if ((this.currentSpeed + kmh) > this.topSpeed) {
this.currentSpeed = this.topSpeed ;
Yelse {
this.currentSpeed = this.currentSpeed + kmh ;
}

return this.currentSpeed ;

public static void main (String args []) {
Vehicle v = new Vehicle ("Audi" , "A6" , 200) ;

v.accelerate (10) ;

(b) SC

Figure 6.6: Text stimuli

83

6.3 EVALUATION USING REFERENCE LOCATIONS

6.3.1.2 Grid

Additionally to the text stimuli, a second type of stimulus with a visual search task was employed,
called grid. Participants had to find and click the ten letters from “a” to “j” in alphabetical
order. NT and SC grids were constructed, whose structures are comparable to those of the texts
(figure . In order to have the same shape as the corresponding text, targets were generated
at the same coordinates as the first and last line of the text, as well as the leftmost and rightmost
elements. The remaining target locations were drawn randomly from the respective text-AQOlIs.
64% of the NT-AOIs and 37% of the SC-AOIs were used in the grids. Hence, all grid-AOIs are
located on the same screen positions as the text-AOIs and should cause comparable location-
related errors. In order to obtain enough click data, five stimuli slides were generated per text
type. These ten grids serve as additional test for the correction mechanism.

The underlying assumption of the correction approach is that gaze is mostly directed at
AOIs, not blank space, hence it should also be applicable to other visual tasks than reading.
Since the screen locations of the grid targets are the same as for the texts, it can be evaluated,
if the tested approaches are able to correct errors that change due to the screen locations of the
AOIs. Furthermore, grid-AOIs are much less dense, so identifying the fixated element is more
straightforward as in text stimuli. Moreover, participants reading and clicking the text stimuli
reported finding it quite challenging to keep looking at the word they are trying to click. When
inspecting the gaze replay on text stimuli, instances were found, in which gaze and cursor were
directed at a word, but right before clicking, the eyes moved on (see Reference locations).
Practiced readers are accustomed to keep moving forward during reading and participants had
to suppress these usual forward eye movements in order to click the text element. The search
tasks in the grid stimuli require a different visual behavior than reading and have less elements,
so it is easier for participants to stay on a target while clicking, thus providing very reliable
reference locations.

6.3.2 Recording situation and participants

To ensure that the error is not specific to a certain device, two different eye trackers were tested,
the SMI RED-m 120Hz tracker that is also used in the EMCR study and the SMI RED250mobile
250Hz tracker. The experiment was set up and recorded with SMI Experiment Center version
3.7.42, iViewX version 4.2.1.0. The recording situation was as close as possible to the one in
the actual study. The main sources of error in the study are free head movements and changing
light conditions. Thus these conditions were kept for the evaluation experiment.

Three participants were recruited, but one had to be excluded due to low data quality. Of
the two remaining participants, one had normal vision, the other wore glasses. One person was
blue-eyed, the other brown-eyed. Even though these are very few participants, they differed in
several key eye features. Furthermore, this experiment is only the first part of the evaluation.
The correction will be tested further with a large part of the EMCR data as well as artificially
created scanpaths.

6.3.3 Analysis procedure and results

The trials recorded in the evaluation experiment last between 18 and 108 sec, with a median
duration of 36 sec [26..48]. On average, trials with text as stimulus were longer (median=66
sec [46..72]) than those with grid stimuli (median=32 sec [23..41]). The longer duration is
most likely caused by the much greater number of AOIs in the text stimuli. For analysis, it is
first necessary to identify which fixations and RLs belong together. Based on these pairs, the
occurring errors are measured and the performance of the different correction variants is assessed.

84

CHAPTER 6. ERROR CORRECTION

(b) SC

Figure 6.7: Exemplary grid stimuli

Errors are calculated as Fuclidean distance between the two screen coordinates. Following
Niissli’s terminology, fitness is used to denote the percentage of fixations that land on an AOI,
regardless of whether it is the correct one or not. The percentage of fixations that are on the
same AOI as the mouse click is referred to as match. Several categories of data will be analyzed
in detail:

e Stimulus type: text, grid

o Text type: nt, sc

e Device: 120Hz, 250Hz

6.3.3.1 Reference locations

The intuitive way to establish which fixation belongs to a certain reference location would be
to simply use the fixation that occurs at the same time as the click. However, there are several
difficulties with this approach. Firstly, for some of the clicks no simultaneous fixation was
recorded. This can be due to the participant actually not fixating while clicking or because
of a recording malfunction, e.g. momentary signal loss. However, these few clicks can just be
omitted. Much more problematic are cases in which a fixation was recorded simultaneously
with the mouse click, but at a location unreasonably far away from it. Replays of the raw data
revealed a number of instances, where the gaze hovered over the mouse cursor, but jerked away
right before the actual click occurred. This is in line with participants stating that they partly

85

6.3 EVALUATION USING REFERENCE LOCATIONS

found it challenging to focus on the cursor while clicking. A probable explanation is that after
fixating the mouse cursor the eyes already move on, even though the clicking action was not
yet executed. Hornof & Halverson| [2002, 602] also mention the possibility of such situations.
Especially in reading the eyes are accustomed to continually moving forward, so the constant
stopping is an unusual task. Therefore, in addition to the fixation that occurs together with
the click, the one right before it is also inspected. Clicks are only accepted for evaluation, if
they have a preceding fixation within three seconds (pre) as well as a simultaneous (sim) one.
The time interval for pre-fixations was restricted, since it is very unlikely than fixations that
occurred earlier than that can still belong to the click. Of these two fixations the one with the
shortest spatial distance to the click location is taken as belonging to the RL and thus used
for evaluation (eval). The reasoning behind this approach is that if the person actually looks
at the mouse pointer while clicking, the simultaneous fixation is closer to the click location
than the preceding fixation. In case both preceding and simultaneous fixation cluster around
the cursor, because the participant looked at the cursor for some time, these two fixations are
largely interchangeable. Since both fixations are very close in time and space, comparable errors
can be expected. If however the eyes already moved on, the simultaneous fixation will be farther
away and the preceding one is used for evaluation instead.

In total, 696 clicks were recorded, 296 on text stimuli and 400 on grids. 656 (94%) of these
have both a valid preceding and simultaneous fixation and can thus be used for evaluation (292
for texts and 364 for grids). Simultaneous fixations are predominantly closer to the click location

than the preceding ones. So overall participants were able to keep their gaze close to the cursor
while clicking (see table [6.1)).

total wvalid_ pre valid__sim valid__eval ‘ eval_pre eval sim

all 696 659 (95%) 691 (99%) 656 (94%) | 177 (27%) 479 (73%)
text 296 294 (99%) 294 (99%) 292 (99%) | 72 (25%) 220 (75%)
grid 400 365 (91%) 397 (99%) 364 (91%) | 105 (29%) 259 (71%)
nt 309 294 (95%) 307 (99%) 292 (94%) | 75 (26%) 217 (74%)
s 387 365 (94%) 384 (99%) 364 (94%) | 102 (28%) 262 (72%)
text_nt 109 109 (100%) 108 (99%) 108 (99%) | 19 (18%) 89 (82%)

text_sc 187 185 (99%) 186 (99%) 184 (98%) | 53 (20%) 131 (71%)
grid_ nt 200 185 (92%) 199 (100%) 184 (92%) | 56 (30%) 128 (70%)
grid_sc 200 180 (90%) 198 (99%) 180 (90%) | 49 (27%) 131 (73%)
120 343 324 (94%) 338 (99%) 321 (94%) | 64 (20%) 257 (80%)
250 353 335 (95%) 353 (100%) 335 (95%) | 113 (34%) 222 (66%)
text_nt 120 58 58 (100%) 57 (98%) 57 (98%) | 9 (16%) 48 (84%)

text sc 120 85 85 (100%) 84 (99%) 84 (99%) | 23 (27%) 61 (73%)

Table 6.1: Number and percentages of reference locations and associated fixations for categories
of most interest: Pre-fixations occur right before the click, sim-fixations simultaneously. For
locations with both a valid pre- and sim-fixation, the one closest to the click location is used as
eval-fixation. The last two columns show the share of pre- and sim-fixations in eval-fixations.

Also, the summary of distances between RLs and fixations (table [6.2), as well as figure
show that preceding fixations are generally much farther away from the click than simultaneous
fixations (median distance pre-fixations=29 px [17..55], median distance sim-fixations=17 px
[11..25]). Even though simultaneous fixations are generally located close to the clicks, some
of their distances are extreme outliers (greater than the 3 IQR) and the maximum offset is
unreasonably high (170 px). In the eval-condition, where pre- and sim-fixations are combined,

86

CHAPTER 6. ERROR CORRECTION

there are no extreme outliers anymore and the maximum distance is reduced to 55 px. Hence,
while the simultaneous fixations are a better choice than the preceding ones, their combination
results in the most plausible RLs. All RLs with a valid eval-fixation were excepted. No manual
selection of RLs was employed to avoid bias. Besides, due to the over 600 RLs even a few cases
of RL and fixation not being a perfect pairing are of almost no consequence.

Fixation type Minimum 1st Quartile Median Mean 3rd Quartile Maximum

pre 1 17 29 52 95 608
sim 1 11 17 19 25 170
eval 1 9 15 16 22 95

Table 6.2: Summary of distances between reference and fixation location (in pixels) for the
fixation types pre, sim, and eval

Distances between RL and fixation

600- °

§4oo-

9 §
[]

g :

2 200

[a)

0_—L_A=_r_

sim eval
Fixation type

Figure 6.8: Distances between reference and fixation locations for the fixation types pre, sim
and eval

6.3.3.2 Errors

The distances between click and fixation locations provide the errors for evaluation. Figure
shows the distribution of error values, table[6.3]summarizes the errors found in the most relevant
categories. The median overall error is 15 px [9..22], which corresponds to ca. 0.4° of visual
angle at a typical viewing distance of 65 cm. This in line with what is to be expected for the two
eye trackers that were used. The accuracy of the 120Hz device is listed as 0.5° |[SensoMotoric
[nstruments, 2016a] and for the 250Hz device it is 0.4° |[SensoMotoric Instruments|, |2016b]. The
maximum error is 55 px, so the chosen parameter ranges are more than sufficiently large to
correct these errors.

The error values are not normally distributed, thus Mann-Whitney tests were applied to
compare data from the categories stimulus type, text type and device. The p-values were
adjusted to multiple testing, however this did not change the outcome. Fixations on text stimuli
exhibit significantly smaller errors than those on grid stimuli (p<0.001). This might be caused
by the plenty of empty space around the grid AOIs. The letters in the search task constitute only
small AOIs and there are hardly any other targets close-by. Thus they can be perceived very
well by merely looking near them without centering the gaze exactly onto them. Neither the

87

6.3 EVALUATION USING REFERENCE LOCATIONS

differences between N'T and SC stimuli, nor between the two eye trackers are significant. Hence
the data from both devices is comparable. However, there is a significant difference between the
errors found in the NT- and SC-text stimuli, while there is no such difference between the NT-
and SC-grids. This finding indicates that the optimal correction method might differ for these
two text types. In addition, no difference was found between errors from linear and random
reading in the text stimuli (table [6.4]).

Category Min. 1st Qu. Median Mean 3rd Qu. Max.
all 1 9 15 16 22 55
text 1 8 13 14 20 52
grid 1 10 17 18 23 55
nt 2 9 14 17 23 55
sc 1 8 15 16 22 52
text_ nt 2 10 14 16 20 42
text sc 1 6 11 14 18 52
grid_nt 2 9 15 18 24 55
grid_sc 1 12 17 17 23 41
120 1 8 14 16 22 52
250 1 9 16 17 23 55
text_nt_ 120 2 10 15 17 25 42
text_sc_ 120 1 6 10 13 18 52

Table 6.3: Errors for categories of most interest (in pixels)

Comparison p

text - grid <0.001
nt - sc 0.232
text nt - text_sc 0.028
grid_nt - grid_ sc 0.414
120 - 250 0.202
linear - random 0.254
horizontal - vertical <0.001

abs(horizontal) - abs(vertical) <0.001

Table 6.4: Differences between errors in categories of most interest

Next, horizontal and vertical errors are compared (see figures and . Neither the
directional nor the absolute horizontal and vertical error values are normally distributed, so a
Wilcoxon matched-pairs test was applied. Both directional and absolute horizontal and vertical
errors are significantly different from each other, with horizontal error being smaller than vertical
(see table[6.4)and figure[6.11]). This is consistent with the findings by [Feit et al.|[2017, 1121,1122],
Hyrskykari [2006, 667], and [Ntussli [2011, 64], who also state that error tends to be greater
vertically than horizontally. However, since both horizontal and vertical error will be corrected
automatically with an ample parameter range, at least for correction and evaluation it is hardly
of any consequence which error is greater. It is however relevant that the error does indeed change
over the screen. Figure shows how much both horizontal and vertical errors vary depending
on screen-coordinate. This demonstrates quite clearly that neither an offset-only approach nor
the combination of linear factor and offset are sufficient to address these non-linear errors.

88

CHAPTER 6. ERROR CORRECTION

Errors
60-

40-

Count

20-

Error (px)

Figure 6.9: Overall absolute errors based on RLs

Horizontal error Absolute horizontal error
_ 120-
75-] B
90-
5 50 S 60-
[e} [e}
O O
0]] ‘ l 0-]] l
-60 -30 0 30 60 0 20 40 60
Error (px) Error (px)
Vertical error Absolute vertical error
80- —]]
90-
60-
3 40- 3
@) O
20 30-
0]]] l (O] i —= l
-60 -30 0 30 60 0 20 40 60
Error (px) Error (px)

Figure 6.10: Distribution of horizontal and vertical errors

Additionally to the error values, it is of interest what percentage of the fixations was recorded
on the same AOI as the click (figure and table . Without correction, only 53% of the
fixations were on the correct line, 40% on the correct element. Since grid stimuli include a
greater error than the texts, it is not surprising that the percentage of correct matches is lower
for grids (37% on lines and 18% on elements) than for texts (72% on lines and 69% on elements).
The reason for the fewer correct matches in grid-stimuli is most likely the small AOI sizes. The
texts contain a number of longer words and thus bigger AOIs than the one-letter grid-targets.
Thus, for grids even a small error will result in the fixation being recorded on the wrong or no
element, while for the texts there is a good chance that the fixation still hits the correct AOI.
Furthermore, there are more correct matches for NT (60% on lines and 43% on elements) than
for SC (46% on lines and 38% on elements). Again, this is probably due to AOI size. The SC
text has shorter lines than NT text and in addition, it includes many short elements with only

one or two letters, e.g. separators and operators. Moreover, the NT-grids partly also have longer
line-AOIs than the SC-grids.

89

6.3 EVALUATION USING REFERENCE LOCATIONS

Horizontal and vertical error

Absolute horizontal and vertical error

[] °
30-
40- ¢
g g :
S S
(0 [20-
_30.
(]
: |
8 0-
-60- o . g 3
horizontal vertical horizontal vertical
Orientation Orientation
(a) Directional errors (b) Absolute errors
Figure 6.11: Horizontal and vertical errors
Horizontal error — screen location Vertical error — screen location
50- . 40-
g z K
I = o
s 3 ¢ 3:35 3
S S .] s
N o = B g
S > % S % ey o °
T -40- o o o 5 o
250 500 750 1000 1250 250 500 750
x—coordinate y—coordinate
(a) Horizontal (b) Vertical

Figure 6.12: Error relating to screen location

Figure [6.13] shows that expanding the AOIs as described in [6.2.3.3] Adapting AOIs alone
increased the percentage of correct matches immensely, on line-level it rises from 53% to 90%, on
element-level from 40% to 87%. Expanding the AOIs had the biggest impact on grid-data (37%
to 93% on lines and 18% to 91% on elements), but also considerably increased the correctness
for text-data (72% to 86% on lines and 69% to 81% on elements). The impact on text-data
is of most interest, since it is the most representative for the stimuli used in the actual study,
while the grid was included for evaluation purposes only. Comparing text-NT and text-SC, the
expansion is good for both, but the SC profits most, with the percentage of correct matches
increasing from 64% to 82% on lines and from 60% to 76% on elements. For text-NT there is
also an improvement, but smaller than for the other stimuli: 86% to 93% on lines and 84% to
91% on elements. This supports the notion that the small AOIs largely contribute to the low

matches for grid and text-SC stimuli with original AOIs (see table [6.5]).

90

3
o
8

CHAPTER 6. ERROR CORRECTION

Matches between uncorrected fixation locations and RLs
M lines - original AOIs M lines - expanded AOIs [l element - original AOIs element — expanded AOls

e

text grld text nt Iext sc grld nt grld sc 5 text_| nt 120 text_: sc 120
Categories

-~
By

% Matches

N
a

0-

Figure 6.13: Percentage of uncorrected fixations on the same AOI as the click, when using
original and expanded AOIs

6.3.3.3 Correction

The fixation data from the evaluation experiment was corrected using all variants described in
section Variants for evaluation. In order to determine the fitness of each screen location,
a matrix of the same size as the stimulus screen was created, which contains ‘1’ for every pixel
which belongs to an AOI and ‘0’ otherwise. Since there are two types of AOIs, correction was
performed twice, once with original and once with expanded AOIs. The AOI type is also relevant
when testing whether a fixation is on the same AOI as the corresponding click, so both types
are employed for evaluation as well. Altogether three different AOI combinations were used for
obtaining the fitness values during correction and performance evaluation:

e Original AOIs for correction and evaluation

o Original AOIs for correction, but expanded AOIs for evaluation (expeval)

» Expanded AOIs for correction and evaluation (ezp)

Due to the huge computational effort of testing all correction variants with both AOI types, the
calculations were distributed over a computing cluster.!

After correction, the new fixation positions were mapped to AOIs and compared to the
AOQOIs that were clicked. This serves as main measure for evaluation. Furthermore, the distances
between corrected fixation locations and their respective RL are analyzed. However, the fixation
location provides only the center of the fixation, so additionally to using just a single pixel on the
screen, the area around this point is inspected. The fovea covers an area of about 1.5 - 2° visual
angle, in which the fixated target is perceived with very high visual acuity |[Holmqvist et al.,
2011}, 21], [Rayner} (1998, 374], [Rayner et al., 2005, 85]. Hence not only the element at the exact
fixation position is seen, but also the surrounding ones within the foveal area. Additionally,
the fixation coordinates specify only the center of the raw data points that were merged into
a fixation. In order to gauge whether the recorded fixation location is so close to the correct
target that this item is definitively perceived, an area of roughly 0.5° around the center of the
fixation is examined. The smaller angle of 0.5° instead of 2° is chosen to have an area in which
it is safe to assume that the gaze was hovering during the fixation. It also corresponds to about
half of the average dispersion in x- and y-direction found in the fixations used for evaluation,
so the raw data definitively spreads within this area. Table gives detailed results for the
most interesting subsets of variants and also lists the percentage of cases, in which the correct

!The author gratefully acknowledges the funding of this project by computing time provided by the Paderborn
Center for Parallel Computing and the Department of Mathematics and Computer Science at Freie Universitat
Berlin.

91

6.3 EVALUATION USING REFERENCE LOCATIONS

element is within this scope (see figure [6.14). This measure is especially interesting for stimuli
with many small AOIs, for which even very small errors can lead to the fixation being assigned
to the wrong AOI. When analyzing the EMCR data, the same approach will be used to assess
which elements were looked at.

|- x k

Loredf ipsum Lorem-{psum

Figure 6.14: Hlustration of match (left) and scope (right).

Finally, fitness values before and after correction are provided, i.e. the percentage of fixations
on an AOI. In some cases, the number of correct matches drops, even though the fitness value
increases, e.g. for text stimuli the percentage of correct matches on elements decreases from 69%
for uncorrected data to 57% when using the linear approach, even though the fitness increases
from 71% to 85%. Hence fitness alone is not sufficient to evaluate the performance. Therefore
a combination of several measures is used.

The approaches that perform best overall and separately per stimulus type (text and grid),
text type (NT and SC), and finally for the categories text_nt, text_sc, grid_nt, grid_ sc,
text_ nt_ 120, and text_sc_ 120 were scrutinized in detail to find the optimal methods. Since
no difference was found in the errors from linear and random text reading, and from the two
eye tracking devices, their individual correction results are not discussed further.

The variants single and linear, which correct the complete trial at once, result in only slightly
improved data. For the single approach the percentage of correct matches rises from 53% to
67% on line-level and from 40% to 55% for elements. When applying the linear approach, 75%
of the corrected fixations are on the correct line and 58% on the correct element. However, only
expanding the AOIs without any correction already results in 90% correct matches on lines and
87% on elements. Hence, even though both approaches increase the amount of fixations on the
correct AOI, their impact is rather small. Combining correction and expanded AOIs (expeval)
provides much better results. For the single approach 91% of the corrected fixations are on the
correct line, 85% on the correct element. For the linear variant, 92% of the fixations match on
lines, 81% on elements. However, the good results are mostly due to the grid-stimuli. On text,
even with expanded AOIs, single reaches only 85% matches on lines and 72% on elements, linear
87% on lines and 63% on elements.

Approaches that split the data across the screen are a better choice. To find the most
suitable option, only approaches with a limited range were taken into final consideration. Even
though the results of the limited and unlimited version of an approach are often identical, there
is a significant difference between their performance on line-level (p=0.036) with limited being
more correct. Furthermore, using a limited approach ensures that only valid parameters are
computed. While the limitation did not make a huge difference for the evaluation data, it is
very likely that when correction is applied to a larger data set, much more cases will occur in
which fixations from one screen section would be moved unreasonably in relation to the other
sections, especially, if only few data points are available for optimization.

6.3.4 Chosen approaches

NT

For N'T the approach single_horizontal limited performed best and will be called correction_ nt.
It uses a linear factor of ‘1’ so there is no scaling. First an offset is calculated for the whole trial.
Then the stimulus is split into three horizontal sections (figure) and an offset is determined

92

CHAPTER 6. ERROR CORRECTION

for fixations in each section individually. The parameter range for this second step is reduced
to the bounds provided by the overall offset. Using the original terse AOIs during correction
yields slightly better results than expanded AOIs, so the latter are not detailed. However, for
evaluation the AOT at the corrected fixation location is obtained by expanded AOIs (expeval).
Scaling with a linear factor had no additional value for NT, even though the stimulus elements
stretch to the left and right screen margins. This is probably because they are located in the
vertical middle of the screen and horizontal error was found to be significantly less than vertical
error, so NT elements are not as much affected by error. Besides, the actual NT-texts contain
a good number of longer elements, so the gaze often lands on the correct AOI despite a small
offset.

The results for the category text_nt are of most interest. Inspecting correct matches on
line-level shows that for uncorrected data 86% of the fixations are on the correct line. When
expanding the AOIs for evaluation, the percentage of correct matches rises to 93%. However,
after correction the portion of fixations on the correct line increases further to 99%. Taking
the area around the fixation into account, 97% of the uncorrected and 100% of the corrected
fixations have the correct line within the area of highest visual acuity. On word-level 84% of the
uncorrected fixations are on the correct element, with expanded AOIs 91%. After correction the
matches rise to 95%. For 97% of uncorrected and 99% of corrected fixations, the correct word
is within scope. Before correction the median error for this category is 14 px [10..20]. After
correction it slightly drops to 12 px [8..18].

Correction_ nt performs very well not only for text_nt, but also in all other NT-related
categories. When taking only the subset of text nt that was recorded with the 120Hz eye
tracker which was also used in the EMCR study, 98% of the corrected fixations are on the
correct line, 95% on the correct word. Looking at the area around the fixation, 100% of the
fixations have both the correct line and word within scope. For all nt-stimuli, which consist of
text_ nt and grid_nt, 98% of the corrected fixations are on the correct line, 96% on the correct
element. Similarly, in grid_ nt, 97% of the corrected fixations are on the correct line and element
(table . Consequently, correction results in highly accurate NT data.

SC

For SC the approach linear vertical limited_ linear with expanded AOIs during correction as
well as evaluation (exp) performed best and will be called correction__sc. First a linear factor and
an offset are calculated for the whole trial. Then a linear factor and an offset are computed for
the fixations in each of the three vertical sections (fig[6.5b) using the reduced range determined
by the overall parameters.

For this method, the results for the category text sc are of most interest. 64% of the
uncorrected fixations are on the correct line, 82% when expanded AOIs are used for comparison.
After correction, the number of line-matches rises to 89%. The portion of fixations that have
the correct line in scope increases from 88% to 92% due to correction. For elements, 60% of
the uncorrected fixations match on the correct target, 76% when using expanded AOIs. After
correction 78% of the fixations fall on the correct element. The percentage of fixations that
have the correct element within scope also increases from 87% to 90%. The median error in the
category text_sc actually increases due to correction, from 11 px [6..18] to 12 px [7..18], even
though the data gets more correct. The increased distance is caused by variable errors and the
linear factor. In order to get more fixations onto the correct AOI, some fixations are shifted
slightly away from the click location, but only within the margins of the correct AOI.

Inspecting the results for text_sc with the 120Hz eye tracker shows an increased match
rate of 89% on lines and 79% on elements, 90% have the correct line in scope, 85% the correct
element. For the SC-stimuli, consisting of text_sc and grid_sc, after correction 93% of the
fixations are on the correct line, 87% on the correct element. Finally, for grid_sc the fixations

93

6.4 EVALUATION USING MANUALLY CORRECTED DATA

match on 97% of the lines and 96% of the elements (table [6.5]).

6.3.5 Conclusion

All variations of the error correction method outlined in Variants for evaluation were evaluated
using reference locations. Two approaches were identified as suitable for the EMCR, data, one for NT
and one for SC. A combination of several representative types of stimuli, texts and tasks were employed
to ensure that the correction is applicable to the EMCR data.

Overall evaluation results show that due to correction and using the adapted AOIs, the percentage
of fixations on the correct line increases from 53% to 95% and on the correct element from 40% to 91%.
This constitutes an immense improvement. When considering only text-stimuli, the portion of correct
matches rises from 72% to 92% on lines and from 69% to 85% on elements. Differentiating between text
types, for NT-texts correctness on line-level reaches 99%, on word-level 95%. For SC-text, correctness
rises to 89% on lines and 78% on elements. Taking the scope around fixations into account, the resulting
matches are even higher, 100% on lines and 99% on elements for NT-texts, and 92% on lines and 90%
on elements for SC-texts. Correction is a bit less successful for SC than for NT, but still considerably
improves the correctness of the fixation locations. In the analyses of the EMCR data, correctness is
mostly relevant on line-level, so these results are entirely sufficient.

Analyzing RL data by many more participants might have yielded another possible variant of the
correction method. However, the chosen methods correction_nt and correction_ sc are definitively ap-
propriate for their respective task and will be assessed further using data from the EMCR study and
artificial data.

6.4 Evaluation using manually corrected data

A large subset of the data collected in the EMCR study was corrected manually and can be compared
to the results of the chosen automatic correction methods. In order to make manual correction as
objective as possible, it was carried out by a group of researchers. Each trial was handled by two people
collaboratively, whereat one person was the same for all trials [Busjahn et all [2015a, 260].

6.4.1 Data

The manually corrected dataset contains fixations from 18 programmers (12 novices and 6 experts). It
consists of 118 trials, 15 NT and 103 SC (82 from novices, 21 from experts) and incorporates 27 stimuli
(3 NT, 24 SC). The stimuli cover all NTs and SCs from the EMCR study. In addition to the stimuli that
will be used for analysis, this evaluation dataset contains several extra SCs, e.g. the ones recorded to
document the students’ progress over the Java course (see Novice programmers) and are included
here to have an even broader data basis for evaluation. The trials last between 6 and 271 sec and have
an average duration of almost a minute (median=50 sec [24..86]).

The data contains 24,019 fixations, of which 23,932 are valid, i.e. within screen dimensions. During
manual correction, 68% of the valid fixations were changed. However, the modifications are not equally
distributed among text types. Only 29% of NT fixations were edited, but 74% for SC. In contrast,
automatic correction, using correction_ nt for NT and correction_ sc for SC, affected almost all fixations.
For the two expertise groups the portion of changed fixations is comparable, 75% of the novice and 71%
of the expert data was changed during manual correction and almost all during automatic correction.
After manual correction 15% of the fixations do not land on an element and therefore do not provide
an AOI for comparison. These fixations have only a minor value for evaluation and to a certain degree
dilute the results. Hence, only fixations are considered for evaluation which are valid and have an AOI
at the manually corrected location (valid aoi). This still leaves 20,340 fixations for comparison, 2,982
for NT and 17,358 for SC (12,753 from novices, 4,605 from experts), see table

6.4.2 Analysis procedure and results

Manually corrected fixations serve as basis for comparison during evaluation. The term match denotes
the percentage of fixations on the same AOI as the manually corrected ones, scope indicates how many

94

CHAPTER 6. ERROR CORRECTION

median line element
distance | match scope fitness | match scope fitness

all uncorr 15 53 84 50 40 81 36
all_uncorr__expeval 15 90 84 70 87 81 79
all_single 14 67 90 62 55 87 49
all__single_ expeval 14 91 90 76 85 87 83
all_linear 13 75 92 68 58 84 55
all_linear_expeval 13 92 92 79 81 84 85
text_ uncorr 13 72 91 75 69 91 71
text__ uncorr__expeval 13 86 91 84 81 91 88
text_ single 16 71 93 80 60 88 78
text_single expeval 16 85 93 86 72 88 90
text_ linear 17 80 94 86 57 80 85
text_ linear expeval 17 87 94 89 63 80 93
grid__uncorr 17 37 79 32 18 73 9

grid__uncorr__expeval 17 93 79 60 91 73 73
grid_ single 12 65 88 50 52 85 28
grid__single__expeval 12 96 88 69 95 85 78
grid_ linear 10 70 90 54 58 87 33
grid_ linear__expeval 10 96 90 72 96 87 79
nt_uncorr 14 60 88 63 43 84 38
nt__uncorr__expeval 14 91 88 81 90 84 81
nt_ correction_ nt 11 98 96 89 96 94 88
sc__uncorr 15 46 81 39 38 79 33
sc__uncorr__expeval 15 88 81 61 84 79 78
sc__correction_ sc 14 93 86 68 87 83 92
text_ nt_ uncorr 14 86 97 87 84 97 83
text_ nt_ uncorr__expeval 14 93 97 92 91 97 92
text_ nt_ single_expeval 16 94 94 92 89 93 94
text_ nt_ linear_expeval 19 95 100 94 69 80 98
text_ nt_ correction_ nt 12 99 100 95 95 99 99
text_sc_uncorr 11 64 88 66 60 87 63
text__sc_ uncorr__expeval 11 82 88 79 76 87 85
text_sc_single expeval 15 80 92 81 62 86 87
text_sc_ linear_expeval 16 83 91 85 60 80 89
text_ sc_ correction_ sc 12 89 92 89 78 90 99
grid_ nt__uncorr 15 45 83 48 18 76 10
grid_ nt_ uncorr__expeval 15 91 83 75 90 76 74
grid_ nt_ correction_ nt 10 97 94 86 97 91 81
grid__sc_ uncorr 17 28 74 16 17 70 9

grid__sc_ uncorr__expeval 17 95 74 45 92 70 72
grid_ sc_ correction_ sc 17 97 79 50 96 76 87
text_ nt_120_uncorr 15 79 95 87 79 95 82
text_ nt_ 120__uncorr_expeval 15 89 95 92 89 95 92
text_ nt_ 120 correction_ nt 12 98 100 95 95 100 98
text_sc_120__uncorr 10 62 87 65 57 85 63
text__sc_ 120__uncorr_expeval 10 83 87 80 75 85 86
text_sc_ 120 correction_ sc 11 89 90 87 79 85 99

Table 6.5: Detailed correction results for the most relevant categories and subsets: median
distance (in pixels), percentages of fixations on the correct AOI (match), within scope of the
correct AOI, and fitness in %, each on line- and element-level. Results for the two chosen variants
are highlighted.

95

6.4 EVALUATION USING MANUALLY CORRECTED DATA

Fixations All NT SC Novices Experts
total number 24019 3394 20625 14833 5792
valid 23932 3394 20538 14826 5712
valid_ aoi 20340 2982 17358 12753 4605
manually modified 16192 998 15194 11119 4075

automatically modified 23816 3394 20422 14714 5708

Table 6.6: Subset of EMCR fixations that was corrected both manually and automatically:
Valid fixations are within screen dimensions, valid_ aoi fixations are within screen dimensions
and have an element at the manually corrected fixation location

percent of the fixations have this AOI within ca. 0.5° visual angle (see figure . In the previous
evaluation step expanded AOIs proved to be more useful than the terse original ones, so only results for
expanded AOIs are included (table . To facilitate reading, the following identifiers are used for the
different fixation sets:

e uncorrected fixations: fixations uncorr

o manually corrected fixations: fixations_man

o automatically corrected fixations: fixations_ auto
The distances between fixations uncorr and fixations_man, as well as between fixations_ auto and fix-
ations__man are not called errors, since manually corrected fixations only provide a rough estimation
of the correct locations. Again, Euclidean distances between the fixations’ screen locations are used
as distance metric. The median distance between fixations uncorr and fixations_man is 10 px [0..27],
between fixations_uncorr and fixations_auto 22 px [12..43]. Thus, automatic correction moves the fix-
ations significantly farther away from the original position than manual correction does (p<0.001). For
comparison, the median distance between the corrected datasets fixations_man and fixations_ auto is
18 px [9..32]. Overall, automatic correction brought more fixations to the same line as fixations_man
(70% uncorrected to 84% automatically corrected), but slightly less fixations match on the element (68%
uncorrected to 65% automatically corrected). However, the portion of fixations that have the same AOI
within scope increases both on lines (75% to 88%) and on elements (73% to 75%), see table

For NT, fixations_uncorr and fixations_ man agree quite well. Since most NT fixations in fixa-
tions__uncorr and fixations__man are identical, their median distance is 0 px [0..5], between fixations__auto
and fixations__man it is 13 px [6..21]. Also, both on line- and element-level, the percentage of matches
is higher for uncorrected data (95% on both AOI-levels) than for the automatically corrected data (93%
for lines and 77% for elements). The same is found for the scope, where rates are slightly higher for
uncorrected data (97% on both AOI-levels), than for automatically corrected data (96% on lines, 89% on
elements).

The uncorrected SC fixations are also closer to the manually corrected ones (median=15 px [0..35])
than the automatically corrected ones (median=19 px [10..37]). When differentiating novices and experts,
there is a significant difference between the distances between fixations_uncorr and fixations_ man for
both groups (p<0.001), with experts having a much higher median distance (20 px [0..138]) than novices
(10 px [0..25]). Also, the matches between fixations uncorr and fixations man on both AOI-levels are
much lower for experts than for novices (e.g. 71% line-matches for novices and only 51% for experts).
This suggests that the expert data contains greater errors than the novice data. This difference between
the two types of expertise is probably caused by the very different recording environments and stimuli
characteristics. For the most part, expert programmers were recorded at their workplaces with partly
very unfavorable conditions for eye tracking, while the novices were in a computer lab. Furthermore,
some of the expert stimulus programs were rather difficult in order to force the programmers to actually
use their expertise, which results in longer trial durations. Expert trials have a median duration of 96
sec [57..151], much more than the 38 sec [20..69] found for novice trials. In addition, many of the novice
programs are short, and unlike some of the expert stimuli hardly stretch to the edges of the screen. Thus,
the expert stimuli provide more potential for error.

After correction, the percentage of matches on lines for all SCs together increases from 66% to 82%,
for elements it remains identical (63%). The percentage of fixations with the AOI in scope rises from 71%

96

CHAPTER 6. ERROR CORRECTION

All NT SC Novices Experts
Uncorr COrr | uncorr Corr ‘ Uncorr Ccorr ‘ UNCorr COrr | uncorr Corr

median__distance 10 18 0 13 15 19 10 16 20 28
match_ line 70 84 95 93 66 82 71 88 51 65
scope__line 75 88 97 96 71 87 77 91 52 75
fitness_ line 89 98 98 99 87 97 90 99 78 94
match__element 68 65 95 77 63 63 70 70 45 42
scope__element 73 75 97 89 69 73 76 79 47 55
fitness element 87 96 98 97 85 96 89 97 75 91

Table 6.7: Comparison of uncorrected and automatically corrected data with manually corrected:
Median (in pixels) and percentages of fixations on the same AOI (match), fixations within scope
of the same AOI (scope), and fitness, each on line- and element-level

to 87% on lines and from 69% to 73% on elements. Similarly, for both novices and experts correction
increases the percentage of matches on lines and hardly changes it for elements. Despite the careful
method, manual correction remains somewhat subjective and does not provide a real ground truth for
comparison, hence an additional plausibility check was carried out on the corrected data.

6.4.3 Plausibility check

Two researchers, who are familiar with gaze data during programming, but were not involved in the
manual correction, were asked to judge which corrected version seems more plausible - the manual or the
automatic one. For each trial, the uncorrected scanpath was presented together with both corrections.
The two corrected versions were shown in random order and without any indication how they were
corrected. For 53% of the trials the automatic correction was marked more or equally plausible as the
manual one. This circa half-and-half rating is the optimal result. If manual correction was deemed less
plausible even more often, the results of manual correction had to be questioned. As conclusion, for
about half of the trials, the result of the correction algorithm is more or equally plausible as the manual
correction, in the other half the manual corrections were more plausible, so ultimately they are on par
with each other.

6.4.4 Conclusion

Correction_nt and correction_sc were applied to a large subset of data from the EMCR study. For this
data, there is no possibility to determine the correct location with absolute certainty, so the automatically
corrected fixations are compared to manually corrected ones. However, while it can be assessed, how well
these versions agree with each other, none can be said to be the correct one. The results show that overall,
due to automatic correction much more fixations land on the same line as the manually corrected ones.
However, to a certain degree, the effect varies among the subgroups of data. On element level, the two
corrections differ a bit more, however for the intended analyses correctness is more crucial on line-level. In
the end, automatically corrected fixations proved to be as plausible as very carefully manually corrected
ones.

6.5 Evaluation using artificial data

As further evaluation step, correction_nt and correction_sc were applied to artificial data to verify the
underlying concept and to confirm that the automatic correction neither distorts accurate fixations nor
creates meaning from random data.

97

6.5 EVALUATION USING ARTIFICIAL DATA

6.5.1 Data

In order to broaden the evaluation, other stimuli were adopted for the evaluation with artificial data than
for the RLs. These stimuli should be as representative as possible. Since the NTs are highly comparable
to each other, it is not of great importance which one of them is used. NT1 was already employed during
the first evaluation step. From the two remaining texts, NT3 was chosen as exemplary NT stimulus,
simply because it contains more words than NT2. The Rectangle-program (novice L3_SC1 / expert
SC1) was selected as SC stimulus, since it is one of the two SCs which were presented to both novices
and experts and the other of these two programs was already used for evaluation.

For every stimulus, three ideal sets of fixations were generated using the minimum, average, and
maximum number of fixations found for that text in the EMCR data. Initially, all fixations were created
on an AOI, which was chosen randomly with repetitions allowed. In order to make the data more realistic,
the fixation location is not in the middle of an element, but each pixel inside an AOI has the same chance
of being selected, including those at the border of an AOI. A certain degree of noise was added by
scattering 10% of the created data over empty space (figure[6.15p). Such artificial fixation data could be
further distorted in different ways in order to asses how well the correction method handles the resulting
errors, as e.g. done by [John et al.[2012, 299,300]. However, it is very difficult to judge, how realistic
and representative the applied distortions are. The two previous evaluation steps are much more relevant
for this information. Hence, no further alterations were put into effect. Nevertheless, in addition to the
ideal fixations, random datasets were generated by randomly distributing fixations over the screen, again
using the minimum, average, and maximum number of fixations (figure) This approach allows to
keep the stimulus and fitness table constant while testing the effect of different fixation distributions and
is similar to 61-64], who replaced actual fixation locations by random screen positions.

In total, 12 artificial datasets with 3,662 fixations were build and corrected (table .

(a) Ideal scanpath (b) Random scanpath

Figure 6.15: Exemplary artificial fixation data on SC

6.5.2 Analysis procedure and results

The NT and SC datasets were corrected with correction_ nt and correction_ sc respectively, including ex-
panded AOIs and splitting the screen according to text type. The corrected versions were then compared
to the original fixations, which provide an exact ground truth for comparison. As before, the Euclidean
distance serves as metric for the distance. Correction results are not assessed by visualizations, e.g. plot-
ted fitness values for the tested parameter range like done by 61-64], since the added linear
factor makes such visualizations unfeasible.

Analysis yielded the expected results (table . The six ideal, yet realistic scanpaths were not
changed at all during correction, even though some of the generated fixations were on empty space and
the rest was placed randomly within AOIs. Since original and corrected fixations are identical, their
distance is zero in all cases and they completely match on lines and elements. The random datasets
on the other hand were all modified. The original and the corrected versions still match on 86% of the
lines and elements, but on average, fixations were moved 71 px away from their original position. Using

98

CHAPTER 6. ERROR CORRECTION

expanded AOIs as basis, the overall fitness both on lines and elements was 15% in the original random
data. Correction only increased fitness to 21%, so the vast majority of fixations is still located on blank
space outside of AOIs. These results corroborate that the developed approach is suitable for correcting
fixation data that is mostly directed at AOIs.

Fixation set Number of fixations Median distance Match-line Match-element
nt ideal min 92 0 100 100
nt ideal mean 251 0 100 100
nt ideal max 648 0 100 100
sc_ideal min 85 0 100 100
sc_ideal mean 238 0 100 100
sc_ideal max 517 0 100 100
nt random min 92 67 95 95
nt random mean 251 51 87 87
nt random max 648 81 90 90
sc¢_random min 85 157 68 68
sc_random_mean 238 65 0 80
sc_random max 517 59 85 85

Table 6.8: Summary of error correction on artificial fixations: median distance between original
and corrected data (in pixels), matches between original and corrected data (in %)

6.6 Conclusion

Starting from two existing methods, a novel error correction was developed specifically for the EMCR
data. It maximizes the amount of fixations on AOIs by applying a linear error function to the fixation
location. As an advancement to previous approaches, fixations are corrected individually on different
screen regions. In order to establish these regions, the distribution of AOIs on the stimulus is taken into
account. A corrected version of the complete fixation set serves as baseline to keep the separate corrections
consistent. Furthermore, AOIs at less dense areas of the stimulus are expanded to accommodate fixations
with greater error. The suitability of this approach was tested using several complementary evaluation
methods. The correction proved to be appropriate for the intended use and considerably improved data
quality. Even though the correction was developed with a specific dataset in mind, it can be very well
applied to other gaze data, as long as the prerequisite is met that gaze is mainly directed at AOIs, since
the correction procedure can easily be adapted by splitting the screen to match the AOI distribution on
a wide range of stimuli besides texts.

99

6.6 CONCLUSION

100

Analysis procedure _

7.1 Overview

The purpose of the analysis is to demonstrate the use of gaze data to study code reading and to answer
the two research questions. First, it will be analyzed whether there are differences between reading NT
and SC and, if so, whether these differences can already be found in early novice programmers. Second,
it is studied whether there are differences in how novice and expert programmers read SC.

As preparation for analysis, the stimulus texts were partitioned into areas of interest and the answers
to the comprehension questions were graded. After recording the gaze with OGAMA, the raw data was
exported. Only samples tracked on NT and SC stimulus texts were processed further, gaze from reading
the instructions and answering the comprehension questions is not analyzed. Fixations were detected
based on the adapted version of the I-DT algorithm. Subsequently the purpose-built correction procedure
was performed on the fixation locations to address spatial errors. Saccades were then calculated as
Euclidean distance between the corrected fixations. Finally, the data was analyzed using a comprehensive
set of established as well as novel measures. Throughout the complete process, the data was inspected
at various stages using both static and dynamic visualizations. Unless indicated otherwise, all steps for
preparing the data and the subsequent analysis were carried out in R |[R Core Team), 2019].

7.2 Areas of interest

Some analyses involving gaze data can be carried out without taking the position of stimulus elements
into account, e.g. studying fixation duration. Oftentimes however, it is crucial to know where certain
components of the stimulus are located. The stimulus is therefore divided into AOIs, which contain the
relevant parts or features [Holmqvist et al., [2011} 187,189,217]. While some stimuli, like most pictures,
are fully covered by content, the EMCR stimuli consist of text surrounded by white space. The text is
sectioned into AOIs using several levels of abstraction:

Elements constitute the lowest level and consist of single words in NT and code elements in SC.

Lines comprise all elements within a line of text.

Blocks combine lines into logical units. They again can be defined with different degrees of granularity,
e.g. all lines belonging to a method can be subsumed into a single block or the method can be split
into the two blocks ‘method-header’ and ‘method-body’, depending on the focus of the question at
hand.

Figure shows exemplary AOIs on a SC stimulus. Occasionally AOIs on different levels can coincide. If

a line only contains one element, like a single closing bracket in SC, element- and line-level can be regarded

as identical (see last line in figure and figure for an example). Likewise, a single element or line

can in some contexts constitute a block-AOI by itself. Budde et al. [2017] use the concept of block-AOIs
specifically for SC stimuli and developed a tool called Block Sequence Viewer for visualizing gaze data

101

7.2 AREAS OF INTEREST

static -MK String -MEU _ public static void main (String args []) {
|WhlclqEﬂ@Vehicle ([Audi'||"A6"] @,ﬂ [Vehicle v = new Vehicle ("Audi", "A6", 200) ;| Vehicle v = new Vehicle ("Audi" , "AG" , 200 } ;
|Viaceelerats (|10 |v.accelerate (10) ;| v.accelerate (10);
\)
(a) Element (b) Line (c) Block

Figure 7.1: AOIs on different levels of abstraction, from ‘element’ to ‘block’

according to the block it was recorded on, in order to facilitate the analysis of different phases in code
reading.

Alternatively to the approach described here, AOIs could be established by overlaying the stimuli with
a grid and using the cells as AOIs, regardless of their content [Holmqvist et al., [2011] 212]. However with
regard to the research questions, AOIs which correspond to self-contained meaningful parts of the text
are more suitable. White space, i.e. areas without text, does not serve as AOI per se, but is taken into
account. The vast majority of participants’ gaze is directed at AOIs, though occasionally they do look
on blank areas, e.g. during thinking processes [Holmqvist et al. 2011} 206,208]. For analysis measures
where gaze on white space is relevant, it will be explained how the respective fixations are treated, and
when analyzing which AOIs are covered by fixations, the proportion of fixations on empty spots is also
provided for comparison.

The coordinates of elements and lines in the stimulus texts were obtained using eyeCode, a Python
library for analyzing gaze data! and then processed with R. EyeCode finds AOIs by scanning the screen-
shot of a text stimulus for dark pixels and provides the position of each AOI together with its width and
height. All resulting AOIs were visualized and inspected manually to ensure all lines and elements were
encompassed correctly. Occasionally, separate elements were merged into a single AOI or one element
was split into multiple AOIs, probably due to somewhat blurred areas in the screenshot. Such cases were
resolved unambiguously. The obtained AOI boxes were slightly enlarged by adding up to five pixels as
margin where possible. For the programs L3 SC1/SC1 and L5 SC3/SC3 block-level AOIs were con-
structed enclosing the main-methods using the coordinates of the lines and elements in main (figure)
A second version of all AOIs was created by expanding them to include more of the surrounding white
space in less dense areas (see section Adapting AOIs and figs. and [6.4). Only expanded
AOQIs are used during analysis, the original more terse versions are only needed for error correction. The
AOIs are determined algorithmically, and thus very exact and objective.

After fixations were identified and their locations corrected, they were mapped to AOIs. Since all
EMCR AOIs are static and have very clear-cut borders, it can be clearly decided whether the center
of a fixation is located within the boundary of an AOI or not. However, the fovea allows to perceive a
larger area around the fixation center. Besides, the raw gaze samples which were pooled into a fixation
do spread around the fixation center, so the gaze actually hovered in the surrounding region. Thus, when
identifying which AOIs were looked at, not only the AOT at the exact fixation location is counted as being
seen, but all AOIs within 0.5° of visual angle.

AOI sizes vary depending on their content. Very small AOIs, e.g. operators in SC, can be problematic
with regard to the eye tracker’s accuracy and precision, as well as the size of the area perceived by the
fovea [Holmqvist et all, [2011], 223,224]. However, margins are incorporated wherever possible and when
analyzing AOI coverage, this issue is taken into account by also noting the AOIs in the fixation’s vicinity.
On line- and block-level, small AOIs do not pose a problem. Even though some lines are rather short,
e.g. those containing only a closing bracket, they are surrounded by plenty of margin space.

Using AOIs, additional events can be identified and used for analysis. The three basic and often used
AOI events are AOT hits, dwells, and transitions. A hit occurs when a fixation (or raw sample) lands on
an AOI. The entire stay on an AOI from entry to the corresponding exit is called dwell and can consist
of more than one fixation. Finally, moving from one AOI to another is called transition. Transitions can
include more than one saccade, if the interjacent fixations do not hit an AOI. Leaving and re-entering
the same AOI without looking at another AOI in between is usually not considered a transition, neither
are movements within AOIs. Several other events can be derived from these basic events, e.g. the total
skip, which occurs when a participant does not look at a certain AOI at all during the trial
187,189-192]. The analysis of the EMCR data is mainly concerned with hits.

Thttps://github.com/synesthesiam /eyecode, last accessed 12/05,/2020

102

https://github.com/synesthesiam/eyecode

CHAPTER 7. ANALYSIS PROCEDURE

7.3 Preparation of data for statistical analysis

7.3.1 Comprehension questions

The answers to multiple choice questions were recorded with OGAMA, text answers were entered into a

webpage and stored in a text file. In case of technical difficulties, answers were written down on paper.

For three trials, no answer was recorded because of a software failure even though gaze data is available

for the respective trial.

The correctness of the answers were graded by the author. Correct answers were scored with ‘1’
point, partially correct answers with ‘0.5’, wrong answers with ‘0’ points. For the multiple choice and
outcome questions grading is rather straightforward. The score for the summary question is less objective.
Novices were instructed to give a summary of the SC. For experts it was additionally specified that they
are supposed to describe the algorithmic idea as well as its implementation, a task that cannot be expected
of very early novices. Consequently, the summaries were graded according to the participant’s level of
expertise.

Exemplary summaries for program L5_SC3/SC3, which were scored with a full point:

Novice: “The program requires information on producer, type and maximum speed of a car. After an
increase of 10 kmh in speed the program gives the actual speed. If the maximum speed is already
reached the program gives the maximum speed and does not allow any further increase in speed.”

Expert: “you can create car with manufactorer, type and topspeed. increasing the current speed is
possible, until top speed is reached. if its bigger than top speed, it does not increase
create a car with presets,
increas speed, but check for top speed [sic]”

7.3.2 Event detection

First, the raw data from all recordings were exported from OGAMA. Detection of oculomotor events
was performed on all trials on NT and SC stimuli. After evaluating different options for event detection,
a customized version of the widely used I-DT algorithm was used to identify fixations. This adapted
I-DT algorithm was implemented in R especially for the EMCR data, but can be used on any raw gaze
data with samples containing a timestamp together with x- and y-coordinates. After the fixation data
was corrected for spatial errors, saccades were computed as Euclidean distance between fixations. Since
different types of stimulus materials are associated with specific fixation durations and characteristics
of the recording like sampling rate co-determine the options for event detection, different parameter
combinations were assessed for the EMCR data, and a parameter set suitable for reading was adopted.
All details can be found in [] Detecting oculomotor events.

7.3.3 Error correction

Due to a number of factors, eye tracking data is subject to spatial errors (see [5| Eye tracking error). A
variety of approaches for error correction were evaluated and two identified that served as basis for an
correction suitable for the EMCR data. The methods were thoroughly tested with reference locations
collected in a specifically designed evaluation study, with a substantial part of the EMCR data that was
very carefully corrected manually, as well as with artificial fixation data (see chapter |§| Error correction).

Correction was performed on all 157 trials from 10 novice and 16 expert programmers. The resulting
fixation locations were visualized using static plots as well as dynamic visualizations, created using R
and the eyeCode library. The corrected trials were thoroughly inspected by two researchers familiar with
gaze data from programmers. Only trials which were deemed usable by both reviewers were accepted
for analyses which include the location of the gaze data, which resulted in 131 trials (table [7.1)). The
gaze data from the other 26 trials is only used to analyze fixation duration and number of fixations.
Furthermore, these trials are included when studying trial duration and correctness of the comprehension
task, as these measures do not depend on the quality of the gaze data.

A few trials had to undergo additional correction steps. For the NT data it was found best to not
use a linear factor for correction. However, 14 of the expert trials exhibited spatial errors, for which the
NT correction method was not sufficient. These trials were first scaled by computing linear factors and
offsets for the whole trial, so that the majority of the fixations lie within the text area. The resulting

103

7.3 PREPARATION OF DATA FOR STATISTICAL ANALYSIS

Novices Experts

NT 27 45
NT accepted after correction 25 24
SC 47 38
SC accepted after correction 47 35

Table 7.1: Number of trials in the EMCR dataset

fixation data was corrected like the other N'T trials by first calculating an offset for the whole trial and
then for the three sections. For six of the novice SC trials, the range of parameters for the linear factor
on the y-axis had to be restricted to 1.0 to 1.1, in order to avoid unreasonable compression. For one trial
the same restriction was applied to the x-axis and for another one to the x- and y-axis. Ten of the expert
SC trials also had to be re-scaled before the actual correction could be applied. In six of these trials the
restricted range of 1.0 to 1.1 was used for linear factors on the x- and y-axis, in three other trials on the
y-axis, and in one trial on the x-axis. All parameters were determined algorithmically.

7.3.4 AOI sequences

In order to analyze sequences in the EMCR data, gaze is converted into AOI sequences (also called AOI
strings), in which fixations that landed on AQOIs are represented by the identifier of their associated AOI.
For transforming the data into this AOI-based representation, firstly each AOI is given a unique label,
usually a letter |Cristino et al., 2010, 693,694], [Day, 2010, 400], [Hansen, [2015, 65], [Holmqvist et al.,
2011} 192,193,268-270], [Mathot et al.l 2012} 3], [West et al., [2006} 150,151]. However, some of the EMCR
stimuli contain over 100 elements, so the alphabet does not provide enough symbols. In order to work
with a larger number of AOIs, double strings can be used, i.e. each AOI is represented by two letters,
e.g. “aA” [Cristino et al., [2010, 693,694] or by a letter combined with a number, e.g. “A1” [Holmqvist
et al) 2011, 193]. However, sequences like “aA-aB-aC” and “A1-A2-A3” are difficult to interpret and
process automatically, thus EMCR AOIs are encoded by integers representing their ordinal number in
the text. Through this, processing AOI sequences is quite straightforward and more intuitive, e.g. it is
immediately apparent that a transition from line 2 to line 12 equals to a jump of 10 lines, whereas when
represented as movement from line B to line L the extent of the transition is less apparent.

In AOT sequences, each item represents a fixation (or dwell) that landed on the AOT of the respective
number. Thus, they convey sequential as well as spatial information and coarsely represent the scanpath.
Full or expanded sequences contain each fixation that hit an AOI, including those which successively
landed on the same AOI. The analysis measure reading direction uses such full sequences, both on line-
and element-level. The measures model occurrence and model similarity focus on the more overall gaze
pattern, so only line-AOIs are employed and consecutive fixations on the same line will be collapsed. These
compressed sequences emphasize the order in which the AOIs were visited |[Dayl 2010, 400], [Hansenl 2015]
65], [Holmqvist et al.| 2011, 193,268-270,27], [West et al., [2006, 151]. See figure for an example of a
full and a compressed AOI sequence on line-level.

When creating AOI sequences, visits to white space have to be dealt with, e.g. the gaze in figure
moves from line 1 to empty space and back to line 1. This could be encoded as sequence 1-0-1, but
since the employed sequence-based measures are only concerned with how the gaze moves among AOIs,
fixations outside AOIs are not included in the AOI sequence. As long as the gaze moves without landing
on white space, the movements in a full AOI sequence are equal to saccades. Movements from one AOI
to another are transitions, but since full AOI sequences also include movements within AOIs, they cannot
be considered a form of representation for transitions.

104

CHAPTER 7. ANALYSIS PROCEDURE

=

M

System.out.println (40 +@) ;

Figure 7.2: Exemplary AOI sequences on line-level

Full AOI sequence: lines 1-1-2-2-3-1
Compressed AOI sequence: lines 1-2-3-1

105

7.3 PREPARATION OF DATA FOR STATISTICAL ANALYSIS

106

Analysis measures _

8.1 Introduction

The two central questions of the EMCR study concern differences in reading behavior on natural language
text versus source code on one hand, and between novice and expert programmers on code on the
other hand. In the following, measures are presented for studying these different reading behaviors
and addressing the research questions. Furthermore, the two model reading behaviors Text Order and
Execution Order are specified, which serve as framework for several analyses.

The analysis measures are divided into three categories. The analysis of gaze data proceeds from
single events to sequences of events. Measures that are computed from single events include fixation
duration, number of fixations, saccadic amplitude, proportion of AOIs covered by fixations, and first visit
to the main-method. Reading direction, model occurrence, and model similarity are based on sequences
of growing length. Additionally, trial-related measures are employed, which are not calculated from eye
movements. Trial duration and correctness of the comprehension question belonging to a trial are studied.
Several of these measures are often used when working with gaze data and are not specific to a certain
type of stimulus or task, e.g. fixation duration. However, some are only applicable to reading data or
even exclusively to SC, e.g. first visit to main. Several measures were specifically devised for the EMCR
data. The measures are intentionally manifold and draw on different aspects of the data, like position,
duration, movement, and quantity, in order to obtain a comprehensive picture of visual code reading
behavior.

Most, but not all measures will be used in answering both RQs, since some are not directly comparable
across stimuli or cannot be applied to NT reading. In order to verify that the programming novices and
experts are comparable NT readers and differences in how they read SC are not the result of a differing
reading approach in general, the NT reading behavior of participants from both groups of expertise are
compared as well. Analyses based on gaze data will be carried out on fixations and saccades respectively,
not on raw data. The few measures that could potentially be calculated from raw gaze depend on the
data point being at the correct location, which renders raw data unusable, as it is not corrected for spatial
errors. Besides, using fixation and saccade data largely excludes artifacts, since they were filtered out
during event detection.

8.2 Model behaviors

Two model reading behaviors serve as basis for studying the general reading approach and are presented in
detail: Text Order and Ezecution Order. These models can be operationalized into prototypical sequences
and compared to the actual gaze, which allows to describe and classify the observed visual behavior in
terms of the model characteristics. Both models have been discussed at least partially in the first two
Workshops on Eye Movements in Programming (EMIP) [Bednarik et al., [2014], [Busjahn et al., [2015b]

107

8.2 MODEL BEHAVIORS

and the potential of this line of research was demonstrated in the pilot study by Busjahn et al.|[2015a],
who showed that reading Java code includes a lot of non-linear reading.

Text Order

In English, the natural language used in the EMCR study, as well as in many other European languages,
it can be observed that text is generally read line by line, top-to-bottom and left-to-right, with about 10
to 15% of the saccades being directed backwards [Eysel, 2019} 763,765], [Holmqvist et al., 2011} 213,214],
[Rayner} (1998, 375], [Rayner et al.l 2005, 80], [Spakov et al. 2018, 2].

Text Order denotes the prototypical behavior of reading a text linearly from top to bottom. [Simon
[2015] proposed the term StoryReading for reading “code just as one might read a story in a natural
language, starting at the beginning and reading through to the end” [Simon) 2015, 31]. This term was
adopted by Busjahn et al|[2015a]. However, in order to emphasize that the model refers to the sequence
prescribed by the text, not the somewhat noisy practice of an actual reader, which includes a certain
amount of backward movement across lines and re-reading, here the term Text Order is more suitable.
On source code such a linear reading can for example be observed during an initial scan [Sharif et al.
2012, [Uwano et al., |2006], [Uwano et al., 2007]. An example for Text Order is given in figure

Execution Order

Execution Order is a model specific to SC and denotes reading a program in the order it is executed. It
emerged from observing gaze data, as well as the interviews conducted with the expert programmers in
the EMCR study. At the EMIP workshops, participants studied several gaze recordings of programmers
reading Java codes and compiled their observations into a coding scheme [Bednarik et al. 2014} 36-41],
[Busjahn et al., [2014bl 114-118], [Busjahn et al., [2014c, 5,6]. Several codes from this scheme relate and
contribute to the Execution Order model:

e JumpControl: “Subject jumps to the next line according to execution order.” [Bednarik et al.,
2014, 36]

e FlowCycle: “The same program flow sequence is followed several times, the intent might be to
gain a first understanding of the flow, strengthening and reinforcing it with repeated examinations
of the same code.” [Bednarik et al. [2014] 39]

¢ InterproceduralControlFlow: “The subject follows call-chains in real or simulated sequence of
control flow. Intention is to understand the execution or to get the outcome of a code section.
Focus is on execution between blocks.” |Bednarik et al., [2014} 40]

e IntraproceduralControlFlow: “The subject scans lines of code in real or simulated program
execution order. Intention is to understand the execution or to get the outcome of a code section.
Focus is on execution on block level.” [Bednarik et al.| 2014} 40]

The concept of Execution Order has also been addressed in other contexts, e.g. |[Pennington| [1987, 298-
304] defines a number of abstractions of program text, and refers to information about the order in
which code is executed as control flow. The other abstractions of program text function, data flow, and
conditionalized action can also serve as basis for further model behaviors specific to code reading and
are in part reflected in the EMIP coding scheme as well. [Uwano et al. [2006, 134] and [Uwano et al.
[2007, 2291] state that during code reviews, reviewers tend to read the code according to control flow to
simulate it. Furthermore, [Xie et al|[2018|] suggest teaching novices a tracing strategy which encompasses
identifying the line in which the program starts executing and then following the program line-by-line
using external memory tables to record method calls, variables, and so forth.

Additionally, in the EMCR study, the programming experts were interviewed after the gaze recording and
asked whether they had a certain approach to read and understand the source codes. Despite their diverse
backgrounds, the professional programmers describe a generally similar approach, which includes going to
the main-method early on and to a certain degree follow the execution from there. These statements are
the crucial factor for defining the overall model of Execution Order. Since almost all expert participants
outline a comparable approach, the interview data serves as fundament for the Execution Order model
and the measure first visit to main, but is not analyzed in greater detail. The experts’ accounts of
paying attention to a program’s execution also align well with the finding of [Pennington| [1987, 333]
that 57% of the statements in program summaries given by professional programmers were labeled as
procedural, i.e. they referred to the program’s control flow. The full interviews are in the appendix
(A.4] Expert interviews), the following interview extracts present participants’ statements regarding the

108

CHAPTER 8. ANALYSIS MEASURES

question, whether they approached the source codes in a certain way.

AE22: “Ah, there is no methodology that I always follow. I just went, go by what I feel
I need, uhm, to grasp more and maybe, maybe that, that there is a clear starting point,
T’ll start from there, for example eyeing the code and then going to main and starting from
there.”

[Interviewer: “You said going from main and starting from there. What means ‘from there’?”]

“Well, for example, if I see a clear path from main, where the program starts from the main
and then there is some code call made from there, then I go and see what these calls are
about.”

BE18: [Translated from German] “Well, I tried to, quasi, follow the program flow. First,
the main-method stated below as starting point, and then I tried to roughly follow the flow
and then I tried to understand the details, how values are now changing.”

BE26: [Translated from German| “Uhm, first get a general idea, what is actually called and
in what order it is called. Like, uhm, first the public static void main here and then check,
uhm, what they do.”

BE29: [Translated from German] “With the first source codes, I tried to, uhm, look at the
whole class, at least the complete source code and uhm, roughly look, how it is composed.
Uhm, then I realized that this does not help me, so I went down to the main-method, had a
look ‘Ok, it calls the class, so look at the class, ah ok, the calling class is also used’ That
worked better.”

CO020: [Translated from German] “Uhm, first the main-method, then usually the constructor
to see how parameters are passed and then the method calls. [...] T usually always looked at
the main-method and after that at function call, I followed the functions.”

HI27: [Translated from German| “I always tried to find the main-function and to check,
which functions exist and what the general structure looks like. When which function is
called by another function, what are the input and output parameters of the main function
and then, what are the called sub-functions doing. Thus, a top-down approach.”

IE30: [Translated from German] “So I usually try to follow the, the, the flow. So I mean,
I start, I know that I myself, usually start at the top, well, have a first look, because first
this is text and then I say ‘Ok, aha, ok, name, class, etc’ and then I usually look at the
main-method, ‘What is it actually doing?’. And then I'll work from there, so that’s the way
it is structurally. Just having a look, what does it do, what does it call, what does that call
and so on and try to use that to follow the flow.”

KK24: “Not the particular approach, but I first follow the main-method and what it’s trying
to do. And then I looked in the method that it calls. [...]”

[Interviewer: “And then, how did you proceed from [the main|?]”

“There you can find the actual method that it’s calling. And then I followed the method
and then the output.”

LK23: “I always would go, I always will quickly first go through the classes, over the
functions and then I would immediately go to the main and to see actually what are the
inputs. Actually mostly to understand what are the arrays are for and stuff. So, and then
when I've seen what is in main required, then I come back to the functions and or classes
and then see what there are for, and then, I mean, try to think.”

MRO5: [Translated from German] “Uhm, my feeling is, I start with the class name, which, if
it has a descriptive name, gives a first hint, what to expect. Uhm, the first starting point here
would always be the main-method, to see what will happen in general, and then successively
look into the methods from there.”

109

8.2 MODEL BEHAVIORS

PA24: “Yeah, I usually start from the main program and then see what that does. Like
see what gets put in to what and then after that I follow the path of the, like executing the
program in my head, kind of. Seeing what you actually need to read and then lazily only
reading those parts. Of course in these you will always read everything, but in most normal
cases, you wouldn’t need to read all the classes to understand the program, you just need
the ones that are actually executed so.”

SI28: “I guess, I started from the exit point. For example from the main method, then
backwards, looking for the, what the, how the program is executed. Yes, something like
that.”

TU15: [Translated from German| “Yes, I looked roughly around at first. I looked roughly,
but then I always looked for this main-method first, where it is. And so I looked a bit, what
parts of the source code, I think, I looked, which parts of the source code are relevant at
all, to simply say: ‘ok, I do not have to read those’. But for the tasks all were relevant.
However, I started with the main-method and looked a bit where the parts end up, and I
also tried to work with the example, so to compute a bit mentally, instead of just looking at
the algorithm.”

UL29: [Translated from German] “Yes, in the sense that at first I only looked at the main-
method and thus did not read from top to bottom, but rather looked first, what will be
called first and then went through the program step by step.”

Two participants even explicitly address not reading from top to bottom:

IE30: “Just reading the text from top to bottom is not very helpful, since it does not
represent the logical sequence.”

UL29: “[...] at first I only looked at the main-method and thus did not read from top to
bottom [...]”

When asked, whether their approach would also be helpful for novice programmers, a number of experts
explicitly recommend it. They see several advantages, especially that it allows to focus on the most
relevant parts of the code and provides a course of action to work through the program.

The following statements illustrate the experts’ notions how going through a program from the main-
method is beneficial.

CO20: [Translated from German] “The advantage is that you quickly filter out unnecessary
information.”

Hi27: [Translated from German] “Because this is the best way to get an overview of the
overall system and to only deal with the details later. And then maybe unnecessary stuff,
so do not focus on unnecessary or unimportant stuff from the very first on.”

LK23: “I, yeah, I think actually it’s a kind of the best in a way, but I think that maybe
somebody new, he will spend more time first to go through functions and then only after
some time to come to main. But actually, I believe this is not. Actually I really think that
the coming from main is more important and makes more sense, because the main give you
real data so you actually knows what arrays supposed to be, physically. Then it’s easier to
read code. Cause you are more expecting, how you, what you are doing with that array or
whatever, or that e.g. indexes.”

PA24: “Yes. I think. It might be like time-consuming to get like the certain mentality, like
what to memorize and what not to memorize when doing this. But I think, in my case I
really like procedural code, because it’s how the computer really runs the code, even though
you try to have higher level like objects and stuff like that, but still the execution in almost
everything is kind of procedural so, it, in. I think it’s an easy approach for programming to
get procedural stuff and then like extend that to the abstract level of like objects and stuff
like that. Like, it’s still kind of procedural. I think, it’s easy for the brain to do stuff in
sequences.”

110

CHAPTER 8. ANALYSIS MEASURES

TU15: [Translated from German| “And sometimes, depending on the task, it may be that
many parts are superfluous and therefore reading this complete source code is not quite
suitable, I would say, but maybe novices do that. I tried to see which parts are actually
relevant, though. [...] For me it is certainly easier, because I can just follow a concrete
example and have a look what happens and then see what is actually relevant for reading.
This is especially true for larger source code examples, you just cannot read everything.”

Thus, as a model reading behavior specific to code reading, it will be tested how much participants
actually follow the order in which the code is executed. Figure [8.1] provides an example for Execution
Order.

1 n=3

2 while n > 1

3 print n

4 n=mn-—1

Text Order: 1-2-3—4
Execution Order: 1-2—-3—4—2—-3—4-2

Figure 8.1: Model behaviors for program L1__SC3 (on line-level)

8.3 Single-event-based measures

8.3.1 Fixation duration

Fixations here refer to the episodes detected in raw gaze data, in which the gaze remains relatively still.
Fixation duration is one of the most frequently used measures in eye tracking studies, even though it is
a very individual feature and varies substantially even for the same person within a stimulus. However,
when repeating a task, comparable average fixation durations can be found. Fixation duration is affected
by a number of factors, e.g. text difficulty and formatting, so when a text becomes more difficult, fixation
duration tends to increase. In general, longer fixations imply deeper processing and more effort. Shorter
fixation durations can be found with increased experience with a task. However, expertise can also result
in longer fixations. Due to a larger perceptual span, experts can extract more information per fixation and
thus make use of longer, but fewer fixations [Holmqvist et al., 2011, 377-383], [Rayner| (1998} 376,392,393],
[Rayner et al., 2005| 80-82].

The minimum fixation duration for the EMCR data is set to 48 ms, so fixations cannot be shorter
than this. In the analysis, the distribution of fixation durations as well as the average fixation duration
are studied. First, the three NTs are compared in order to establish whether they are largely comparable
regarding the fixation durations they induce. To obtain a comprehensive picture of the participants
customary reading behavior, fixation durations are also compared between novices and experts when
reading NT. To answer RQ1, differences between fixation durations on N'T versus SC stimuli are analyzed.
With regard to RQ2, fixation durations from novices and experts are studied on the two stimulus programs
that were read by both groups, as well as between the two programs. All available fixation durations
were used for analysis, including those of the 26 trials which contain too much spatial error for mapping
fixations to AQOIs, since fixation location is not of interest for this measure.

8.3.2 Number of fixations

Like fixation duration, number of fixations is a widely used measure in studies using eye movements.
The number of fixations on a stimulus depends on factors like its size, the difficulty of the task that is
carried out, and the participant’s expertise in the task. Experts usually need fewer fixations to complete
a task than beginners, presumably due to having a larger visual span and skipping irrelevant parts of
the stimulus, e.g. fewer fixations are reported for skilled readers than for novice readers. Furthermore, a

111

8.3 SINGLE-EVENT-BASED MEASURES

smaller number of fixations is associated with more efficient searching, while difficulty with a task usually
results in a large number of fixations. Nevertheless, examples can be found, where experts fixate more
often. Greater experience probably results in efficient information intake, so experts occasionally make
more but shorter fixations than novices [Holmqvist et al., 2011} 412-414].

The number of fixations cannot be compared directly between stimuli, since they vary in difficulty
and content, e.g. a text with more elements may induce a longer reading time and more fixations
simply because of its length [Holmqvist et al.l 2011, 225-227,412]. Thus, number of fixations will only
be analyzed between participants on the same stimulus, not between stimuli. Comparisons are made
between novices and experts on the three NT stimuli to obtain information about their general reading
behavior. Furthermore, for RQ2, number of fixations will be analyzed for novices and experts on the two
programs read by both groups. Again, fixations from all trials are used for analysis, including the 26
trials with spatial errors that cannot be used for the AOI-related analyses. Since the number of saccades
is about the same as the number of fixations (see also Holmqvist et al.| [2011, 403]), number of saccades
is not studied.

8.3.3 Saccadic amplitude

Saccadic amplitude is computed as Euclidean distance between two fixations (see FEvent detection
on the EMCR data). Like fixation duration, saccadic amplitudes vary considerably between people on
the same task, as well as over the course of a trial. For example, saccades during reading English text
have an average amplitude of 2 to 3° of visual angle, but typically also contain much longer and shorter
saccades, e.g. return sweeps bring the gaze from the end of one line to the beginning of the next and can
be followed by a small corrective saccade, in case of undershooting. Saccadic amplitude is influenced by
factors like stimulus size and task difficulty, e.g. on difficult text, saccades become shorter and are more
often directed backwards [Holmqvist et all [2011, 312-314], [Rayner} (1998, 373,375,376], [Rayner et al.,
2005, 80,81].

In addition to the distribution of saccadic amplitudes and average saccadic amplitude, scanpath
length is analyzed, i.e. the sum of all saccadic amplitudes [Holmqvist et alJ 2011, 319]. Since saccadic
amplitude is highly affected by stimulus size and location of stimulus elements, comparisons will only
be carried out per stimulus, not between them. Due to different screen sizes and resolutions, the NT
stimuli were partly formatted somewhat differently and are therefore not analyzed with regard to saccadic
amplitude. On SC stimuli, formatting is identical, so the number of lines and elements per line remains
the same for all screens and resolutions and saccadic amplitude is measured in degrees of visual angle
not in pixels. Thus, saccadic amplitude is only analyzed for RQ2 to compare the reading behavior of
novices and experts on SC stimuli. As saccadic amplitude is predicated on gaze positions, only trials
with corrected data are used.

8.3.4 AOI coverage

AOI coverage denotes the proportion of AOIs that were looked at during a trial (see also |[Holmqvist et al.
[2011}, 421]). The measure element coverage has already been used by |Busjahn et al.|[2015a] and |Peachock
et al.| [2017] to analyze SC reading, line coverage by Blascheck & Sharif [2019]. An AOI is considered as
covered, if at least one fixation lands on it. However, the size of the fovea allows to see a certain area
around the center of a fixation clearly and during event detection samples with some dispersion were
merged into a single fixation. Thus not only the AOI at the reported fixation location is counted as being
hit by a fixation, but all AOIs within 0.5° of visual angle of the fixation center. The fovea usually has
an even greater span, but in order to employ an extent for which it can be assumed with great certainty
that an AOI is still within foveal vision, a cautious option is chosen. This approach also depletes issues
that might arise from the partly very small AOIs.

AOI coverage provides information on the spread of gaze on the stimulus and can be interpreted as an
operationalization of reading depth, which has the purpose “to quantify how much of the text has been
read” |[Holmqvist et al., [2011, 390]. Other options for reading depth include the amount of centimeters
that were read and number of fixations per word [Holmqvist et al. [2011, 390,391]. As a dispersion
measure, AOI coverage is also related to the coverage, and volume under an attention map, which among
a number of possible definitions, can be computed as percentage of fixated cells for a stimulus that was
overlaid with a grid [Holmqvist et al 2011}, 367,368]. The implementation for the EMCR data however

112

CHAPTER 8. ANALYSIS MEASURES

does not employ equally sized AOIs, nor is the complete stimulus image divided into AOIs. Furthermore,
AOI coverage is to a certain extent a counterpart to skipping proportion and skipping rate, which specify
the percentage of participants that did not fixate a certain AOI [Holmqvist et al., 2011}, 420].

When reading English text, most words are fixated, however skipping does occur, e.g. short words
like “a” and “the” are likely to be skipped. Only about 25% of the words consisting of just two or three
letters are fixated, while words with at least eight letters are almost always looked at. Furthermore, a
common word has a higher chance of being skipped than an infrequent one, and words that are predictable
from context are more likely to be skipped than unpredictable ones [Holmqvist et al.| 2011} 420], |[Just
& Carpenter], [1980, 330], [Rayner} 1998, 375], [Rayner et al., [2005, 84]. However, [Busjahn et al.| [2014a]
demonstrated that such findings from NT reading cannot be taken for granted for SC reading without
verification.

AOI coverage will be analyzed both on line- and element-level. Since AOI coverage is highly depended
on fixation location, only trials with corrected data are used for this analysis. Additionally to the
percentage of fixated AOIs, the proportion of fixations on white space is provided. For NT, AOI coverage
will be compared between stimuli as well as between the two groups of programming expertise. In order
to answer RQ1, AOI coverage is analyzed for NT and lesson 1 stimuli for novices, and NT and SC for
experts. With regard to RQ2, AOI coverage will be tested between novice and expert programmers on
the two programs read by both groups. To allow a profound interpretation of results, it is also elicited,
which lines and elements are skipped.

8.3.5 First visit to main

In the interviews conducted in the EMCR study, the programming experts expressed quite unequivocally
that they look for the main-method early on when reading a program (see Model behaviors). |Spinellis
[2003a, 20] suggest to start from main or a comparable entry point when reading code for the first
time. Furthermore, Xie et al. [2018] found that novice programmers benefit from an explicit code tracing
strategy, which includes finding the line in which the program starts executing as vital step. Therefore, in
order to contrast novice and expert code reading behavior, their first visit to main is studied. There are the
related measures entry time in AOI [Holmqvist et al.| 2011}, 437,438] and first pass dwell time [Holmqvist
et al., 2011, 389,390], which are applicable to all sorts of AOIs. However, since the main-method is a
SC-specific feature, the first visit to it can only be studied for RQ2.

For this purpose, it is analyzed how much time passes until a fixation lands on the main-method for
the first time and what ordinal number the first fixation on main has.! Considering that novices might
read SC slower than experts, it is also inspected, how the elapsed time till main relates to the whole trial
duration. Fixations are accepted as being on main, if they hit any of the elements in the main-method or
fall into the main-block (see figure) Thus, fixations are accepted as long as they occur within the
dimensions of main, even if they land on empty space within the block, e.g. between two lines, since the
content of the main can still be perceived. The time till main is computed as duration from the beginning
of the trial to onset time of the first fixation on main.

Additionally to when the participants arrive in main, their first dwell there is studied, both with
regard to time and number of fixations. The time of the first dwell is computed as sum of fixation
durations, so saccade durations do not contribute to the dwell time [Holmqvist et al. {2011, 387,389,390].
If the gaze leaves the main-block and only lingers on white space before returning to main, the dwell is
considered as continued, but the fixations outside of main are not incorporated into the dwell time or the
number of fixations in the dwell. However, such a disrupted dwell occurred only once.

'In one trial from an expert, the first two fixations happened to land on main. The first fixation after stimulus
onset can hardly have deliberately been directed to main (see |[Holmqvist et al|[2011} 384]) and is therefore not
counted as the begin of the first dwell. Close inspection of this trial showed that the second fixation was very
short (84 ms) and located near the first one, so the participant was most likely still in the process of getting to
the stimulus. After a brief visit to the top of the stimulus program, the person returned to main already with
the 6th fixation. So, in this case it was decided not to use the short second fixation after stimulus onset as first
visit to main, but the later ones starting with the 6th fixation.

113

8.4 EVENT-SEQUENCE-BASED MEASURES

8.4 Event-sequence-based measures

8.4.1 Reading direction

Based on the order of AOIs in the text, reading direction describes the proportion of gaze that moves
into a certain direction. The direction is determined from pairs of AOIs in the full AOI sequence. Gaze
which proceeds to an AOI that is located further back in the text than the previous one moves forward,
movements to an earlier AOI are directed backward. When gaze stays on an AOI, it is stationary. As
described in section [8:2] Model behaviors, English text is mostly read from top to bottom, and from left
to right. In order to denote this predominant direction of NT reading, the category linear is included as
well. It comprises gaze that follows the conventional NT reading order and either remains on an AOI or
moves forward to a later one. Table specifies the directions contained in the AOI sequence from the
example in figure[7.2]

Directions:
forward: AOI, > AOI,,_4

stationary: AOI, == AOI,_;
backward: AOI, < AOI,_1
linear: AOI, > AOI,,_

Start AOI End AOI Direction

line 1 line 1 stationary / linear
line 1 line 2 forward / linear
line 2 line 2 stationary / linear
line 2 line 3 forward / linear
line 3 line 1 backward

Table 8.1: Gaze directions for the AOI sequence 1-1-2-2-3-1 from figure 40% of the gaze
moves forward, 40% remains stationary, 20% moves backward, and 80% follows the linear reading
direction.

A similar approach to capture the direction of gaze was described by [Busjahn et al.| [2015a] and put
to use by [Peachock et al|[2017] and |Spinelli et al.| [2018]. Several types of saccades were differentiated,
mostly on basis of their horizontal and vertical direction. In order to study the prevailing reading direction
in the EMCR data, a more general approach is chosen, which is based on the sequence of visited AOIs
rather than on saccades. If the gaze moves among AOIs without in-between fixations on white space,
the movements correspond to saccades. This is the case most of the time, but occasionally fixations do
land on blank space and are not part of the AOI sequence. [9.3.1] Reading direction provides information
on the extent of movements with intermediate fixations outside an AOI to allow for an estimate of how
much the AOI sequences are build up of saccades. Furthermore, forward movements are not distinguished
according to whether the gaze went to the next AOI or a later one, and analyzing direction on line- and
element-level replaces the previous differentiation into vertical and horizontal movements.

While reading direction specifies the percentage of gaze that moves into certain predefined directions,
other directional measures often give the direction in degrees, e.g. saccadic direction [Holmqvist et al.,
2011, 301-303]. As approach to quantify directions over the whole trial, reading direction is to some
extent connected to scanpath direction |[Holmqvist et al., 2011, 310,311]. Additionally, the proportion
of backward gaze largely corresponds to regression rate [Holmqvist et al., |2011, 426]. However, reading
direction is a more abstract measure than e.g. saccadic direction, since the direction categories were
derived from the order of AOIs in the stimulus. The orientation of gaze with regard to the AOIs is of
central interest, not the angular direction of physical eye movements.

During analysis, only the proportion of linear reading is used for statistical testing, since the main
focus lies on the impact of the customary NT reading behavior, but the proportions of the other directions
are reported to complete the picture of reading behavior. Reading direction will be analyzed on line- as
well as on element-level. Since some elements form rather small AOIs, reading direction on element-level
is slightly more susceptible to noise than other measures. Only trials with corrected data are used for

114

CHAPTER 8. ANALYSIS MEASURES

analysis, since reading direction is strongly dependent on fixation location. For NT, reading direction will
be compared between stimuli, and between novices and experts. With regard to RQ1, reading direction is
analyzed for NT and SC from lesson 1 for novices, and NT and SC for experts. To answer RQ2, reading
direction will be studied on the two programs read by both groups of expertise and between the two SC
stimuli.

8.4.2 Model occurrence and model similarity

The whole scanpath is analyzed to assess how much the overall reading behavior resembles the two models
Text Order and Execution Order. Based on these models, ideal AOI sequences are constructed for each
stimulus and compared to the gaze recorded from participants. This approach allows to characterize the
visual behavior with regard to the model, e.g. a gaze sequence with a high similarity to the Text Order
model can be regarded as a rather linear reading approach. Since the general reading behavior is of
interest, collapsed AOI sequences on line-level are used throughout for model occurrence and similarity.

Usually, scanpath comparison is applied to determine how similar actual scanpaths are [Holmqvist
et al., [2011, 273,274,346], however model and actual scanpaths can be compared just as well. From
instruments for scanpath comparison that are suitable for the intended analysis, two are of most interest:
string edit distance and alignments. The string edit distance (also called Levenshtein distance [Leven-
shtein, |1966]) of two strings is the smallest number of insertions, deletions, and substitutions needed to
convert one string into the other. The more similar the strings are, the smaller their distance. However,
even though several modifications of the string edit distance exit, it is not very flexible and when used for
gaze data very susceptible to noise [Anderson et al.l 2015], |[Cristino et al. [2010], [Dolezalova & Popelkay,
2016, 2,3], [Hansen| 2015 65,66,79-81,115], [Holmqvist et al., 2011} 348-353], [Kruskal, 1983, 215-219],
[West et al.l 2006, 150,151]. For example, Hansen| [2015| 65,66,79-81,115] used the string edit distance
to compare the scanpaths of programmers looking at the same SC. It turned out to not be an adequate
analysis tool, as even for simple stimulus programs the scanpaths differed too much between participants
to yield meaningful results regarding their distance. It is assumed that this is due to the rather open
nature of the experiment’s task and the absence of a time constraint. Since both conditions are also
present in the EMCR study, the string edit distance is not an optimal choice.

Sequence alignment is a related technique to assess the similarity of sequences and also has been
adopted for analyzing eye tracking data before. [West et al| [2006] introduce eyePatterns, a tool for
comparing gaze sequences using the string edit distance as well as global sequence alignment, and outline
how alignments can effectively be applied for detecting similarities and patterns in scanpaths, and for
clustering them. |Cristino et al.|[2010] present ScanMatch, an analysis approach using global alignments.
In order to compare ScanMatch to the string edit distance, artificial sequences were created and gradually
distorted. ScanMatch classified the sequences considerably better than the string edit distance, even
for higher levels of noise, whereas the performance of the string edit distance already deteriorated when
slight noise was added. Two further experiments were conducted with actual gaze sequences to prove that
global alignments are a stable and reliable method for scanpath comparison. Additionally, ScanMatch
demonstrates the flexibility of alignments, since besides sequence, it allows to take characteristics of
the AOIs as well as fixation duration into account when calculating similarity. |Anderson et al.| [2015]
compared several scanpath comparison methods based on the established prediction that the scanpaths
of one person seeing the same image twice are more similar than the scanpaths of different people viewing
the same image. Even though both string edit distance and ScanMatch found this effect, ScanMatch had
a considerably higher effect size and overall performed very well for all studied conditions. Day| [2010]
studied the validity of a global alignment algorithm for characterizing decision strategies based on gaze.
As expected, search behaviors based on the same strategy received higher similarity scores than those
from different strategies. Furthermore, a classification system based on similarity scores predicted the
underlying strategy significantly better than chance. |Dolezalova & Popelka| [2016] developed ScanGraph,
a tool for scanpath analysis that also employs the string edit distance as well as global alignments. They
propose a refined way for detecting similarities based on the obtained string edit distance or alignment
score, e.g. by accounting for varying scanpath lengths and including only the similar sequences when
visualizing the detected clusters. Finally, in a feasibility study with programmers reading Java, |Busjahn
et al.|[2015a] established that global alignment can be applied to study the similarity of gaze to model
sequences and the methodology and findings of this study contributed to the development of the measures
used to analyze sequential aspects of the EMCR data. The alignment procedure from [Busjahn et al.

115

8.4 EVENT-SEQUENCE-BASED MEASURES

[2015a] was also employed by [Peachock et al.| [2017].

Consequently, alignments will be used for assessing the similarity of the EMCR data to the model
behaviors. Some issues described for the string edit distance can potentially also arise in alignments, e.g.
fixations that are located close to each other but on different AOIs can cause disproportionately small
similarity values |[Anderson et all|2015, 1378], [Holmqvist et al., 2011} 351-353]. However, only AOIs on
line-level and collapsed sequences are considered for analyzing the overall reading approach, thus such
small-scale differences are of hardly any consequence.

8.4.2.1 Sequence alignment

Alignments are used to determine the similarity of sequences and to what extent a given sequence is part
of another one. They are often applied in bioinformatics to compare biological sequences like DNA in
order to identify common genes and ancestry. In order to align sequences so that they match at as many
positions as possible, gaps (blank characters) can be introduced in either sequence, e.g. when one sequence
is missing an item, which is present in the other sequence at the corresponding position. Alignments are
graphically represented by stacking the sequences on top of each other to make the correspondence
between their items visually evident [Bockenhauer & Bongartzl [2003] 78-80], [Cristino et al.| [2010, 693],
[Haque et al., 2009, 96], [Holmqvist et al.| [2011} 274,275], [Kruskal, (1983, 202,203,207,208,211,226-230],
[Pazos & Chagoyenl, [2015] 10,11], [Zimmermann| 2003, 47,49]. Figure provides an example.

213~
|1
21321

Figure 8.2: Example of an alignment: Matching items are indicated by ‘|’, gaps by ‘.

Depending on the number of sequences involved, the approaches are classified as pairwise (or binary) and
multiple sequence alignment [Haque et al. [2009, 97], [Pazos & Chagoyenl [2015, 10,20], |Zimmermann)
2003, 48,54]. With regard to gaze sequences, multiple sequence alignment can be used to cluster sequences
and determine sequences that belong to certain groups, e.g. novices and experts. However, since here
gaze sequences are only compared to the model, not to each other, multiple sequence alignment is not
in the scope of this work and only pairwise alignments are employed for analyzing the EMCR data.
Due to the huge number of possible combinations, sequence alignment is computationally intensive and
complexity increases exponentially with the size of the sequences. There are both optimal and heuristic
algorithms for this type of problem. Optimal algorithms find the best alignment, while heuristic algorithms
only provide a sub-optimal alignment, but are faster. Heuristic algorithms were largely developed for
biological sequences, which can be very long and have an enormous amount of possible combinations
[Haque et al.l 2009, 96-98], [Pazos & Chagoyen) 2015, 15-20], |Zimmermann| 2003, 67-70]. Since there
are only few comparatively short sequences that have to be aligned for analyzing the EMCR data, only
optimal methods will be considered. Alignments can be adjusted manually [Pazos & Chagoyenl 2015,
23], however as with the other steps of data processing, an automatic approach is preferred to ensure
objectivity.

When aligning two sequences, at first a score is defined for pairs of items, then the sum of all partial
scores is maximized in order to get the final alignment score. The relationship between pairs of items in
an alignment can be classified into four types:

e Match: pairing of two identical non-blank items

o Mismatch (also called substitution): pairing of two different non-blank items

o Insertion: pairing of a gap in the first sequence and a non-blank item in the second

e Deletion: pairing of a non-blank item in the first sequence and gap in the second
Examples for the four types can be seen in table [8:2}

Instead of differentiating between insertions and deletions, columns that contain a gap in either sequence
can be subsumed into a single type called indel. However, depending on the focus of the analysis, these
cases can be treated differently and are therefore differentiated. Pairings of matching items contribute
positively to the score, while mismatches and pairings of a non-blank item with a gap usually contribute
negatively [Bockenhauer & Bongartz, 2003, 79,80], [Cristino et al., {2010, 694], [Haque et al.| 2009, 97],

116

CHAPTER 8. ANALYSIS MEASURES

Match Mismatch Insertion Deletion

1 1 - 1
1 2 1 -

Table 8.2: Types of pairings

[Holmqvist et al) 2011} 274,275], 1083], 207-209,211], [Pazos & Chagoyen), [2015} 11], [Zimmer-

mann), 2003, 50-54].

8.4.2.2 Types of pairwise alignments

Pairwise sequence alignment algorithms can be further classified into global, local, and glocal (see table
. A global alignment determines the degree of overall similarity between two sequences, while a local
alignment is useful when the similarity is restricted to particular regions. A glocal alignment is mostly
equivalent to a global one, but is especially designed for cases, in which the lengths of the two sequences
differ substantially. It fits the shorter sequence into the longer one. If the two sequences are very similar,
all three approaches yield highly comparable results [Béckenhauer & Bongartz, 2003, 81,87,89], [Haque
et al., 2009, 97], [Holmqvist et al., [2011} 274-276], [Pazos & Chagoyen, [2015} 12,13], [Zimmermann, [2003}
56).

Global alignment

The Needleman-Wunsch algorithm |[Needleman & Wunschl [1970] can be used to find an optimal global
alignment for two sequences in their entirety and calculate their overall similarity. It employs the paradigm
of dynamic programming, so the optimal alignment of prefixes is used to create the best overall alignment.
The algorithm consists of a forward and backward iteration procedure. First, a matrix with all scoring
possibilities is computed. For each cell, it is evaluated which pairing results in the highest score at this
point — aligning the two current items or aligning one of the items with a gap. Then the optimal decisions
made at each step are traced back through the matrix in order to build the alignment [Béckenhauer &
Bongartz, 2003, 81-87], [Cristino et al 2010, 694], 2010, 398,399], [Haque et al., [2009, 97,98],
[Holmqvist et al., 2011, 275-277], [Kruskal, |1983, 220-225], [Pazos & Chagoyen, [2015, 12], [West et al.l
2006}, 151], [Zimmermann| [2003| 56,59].

Local alignment

For optimal local alignments, the Smith-Waterman algorithm [Smith & Waterman, [1981] finds highly
similar sub-sequences within two given sequences. It is useful when sequences have a low overall similarity,
but contain similar parts. The procedure is comparable to the Needleman-Wunsch algorithm and uses
dynamic programming. A matrix is used to align the prefixes of both sequences and a trace back procedure
is employed to construct the alignment. The main difference to global alignment is that in the scoring
matrix, negative scores of aligned prefixes are set to zero. Thus, all sub-sequences have the same chance
of achieving a high score without being afflicted by their prefixes [Bockenhauer & Bongartz, 2003, 87-89),
[Haque et al) 2009, 97,98], [Pazos & Chagoyenl, 2015, 12], [West et al.l 2006, 153], [Zimmermann) 2003,
62).

Glocal alignment

A glocal (also called global-local) approach finds the sub-sequence of the longer sequence which is
most similar to the shorter sequence. The optimal glocal alignment algorithm is closely related to the
Needleman-Wunsch algorithm. It applies dynamic programming and uses a similar forward and backward
iteration. However, at the beginning and/or at the end of the longer sequence, gaps can be inserted with-
out a penalty, so that the shorter sequence can start or end at any position of the longer one. There are
several variants of glocal alignment, depending on whether gaps are only penalty-free at the beginning,
only at the end, or both [Bockenhauer & Bongartz, 2003 89-91], [Zimmermann) 2003], 60,61].

117

8.4 EVENT-SEQUENCE-BASED MEASURES

Type Alignment Score
- -1 2-3-——4——

global || ’ | -5
2132124312423
2 3

local || 2
2 3
ffffffff 1234 -

glocal | ’ 2
2132124312-423

Table 8.3: Types of pairwise alignments. The exemplary sequences are 1-2-3-4 and 2-1-3-2-1-2-
4-3-1-2-4-2-3. Scoring: match = 1, mismatch, insertion, and deletion = -1

8.4.2.3 Adaption for EMCR data

In order to assess how well the models Text Order and Execution Order are reflected in the gaze sequences,
two types of measures are employed. Model occurrence expresses how much the complete model is present
at some point in the gaze. By means of glocal alignment, the model sequence is aligned to the gaze. To
obtain the most similar overlap of model and gaze, gaps that occur prior to the begin of the model or
after its end are not counted. Local alignments are not suitable for this measure, as they find the most
similar sub-sequence of model and gaze, but it is of interest how much the whole model exists within the
gaze, not just if a part of it is a good fit (see table . Finding highly similar sections is also a task
worth studying, but out of scope of this work.

Global alignments are used to measure model similarity, the overall similarity of model and gaze. This
type of alignment is very strict and reading a text more than once results in a very low similarity score,
even if each round of reading strongly follows the model. Therefore two variants of global alignments
are implemented. Naive global alignment is based on the somewhat naive assumption that the stimulus
is read only once and tests how similar the gaze is to the model as it is. In dynamic global alignment,
the model can be repeated to account for re-reading. First, the gaze is aligned with only one instance
of the model. In the next step, two model instances are concatenated and aligned with the gaze, then
tree instances and so forth. The maximum number of model repetitions to try depends on the ratio of
model and gaze length. It is calculated by first dividing the length of the gaze sequence by the length of
the model. If the division has a remainder other than zero, one repetition is added, in case of the gaze
sequence being shorter than the model. Finally the number of repetitions is doubled to ensure that all
potential instances of re-reading are captured (equations and . The alignment that resulted in
the highest score is used and stored together with the number of model repetitions needed to produce
it. The naive and dynamic approaches were presented in similar form by Busjahn et al.| [2015al 258,259].
Table [B.4] illustrates the three approaches that will be used for analysis.

quotient sequences = length(gaze) <+ length(model) (8.1)

(quotient_sequences + 1) x 2 if (length(gaze) mod length(model)) > 0 (8.2)
quotient__sequences * 2 else '

max_ repetitions = {
A central aspect of sequence alignment is to chose a suitable scoring scheme, i.e. parameters for
matches, mismatches, insertions, and deletions. The scoring strongly influences the resulting alignment
[Day, [2010, 402]. Using ‘0’ for matches and ‘1’ otherwise effectively counts insertions, deletions, and
substitutions and thus calculates the string edit distance [Bockenhauer & Bongartz), [2003), 81], [Holmqvist

118

CHAPTER. 8. ANALYSIS MEASURES

Type Measure Alignment Score

glocal Model occurrence ’

\V)

naive global Model similarity || | | -5

-123412-3412314
dynamic global Model similarity ’ | | ’ || ‘
4

21-321243-12-—

1234
|| 2
2 3

Table 8.4: Types of alignments used for analysis. The exemplary sequences are 1-2-3-4 and 2-1-
3-2-1-2-4-3-1-2-4-2-3. In the dynamic global alignment repeating the model four times resulted
in the highest similarity between model and gaze, the maximum number of model repetitions
that was tested is eight. Scoring: match = 1, mismatch, insertion, and deletion = -1

et al., [2011, 276]. When comparing biological sequences, the score values for aligned pairs of items
are usually obtained from scoring (or substitution) matrices, which are constructed empirically from
observations on substitution frequencies [Bockenhauer & Bongartz, (2003, 92-95], [Haque et al., 2009,
97], [Pazos & Chagoyen, 2015, 11], [Zimmermann, 2003, 52-54]. Day| [2010, 400-402] uses Monte-Carlo
simulations to test different sets of parameters for a scoring that results in an optimal accuracy when
predicting the strategy associated with the gaze. However, the EMCR data does not contain any valid
associations that allow such a simulation. Even using the gaze during NT reading for finding a scoring
that results in high similarity scores for Text Order is not reliable as it presumes that the NTs are
read according to Text Order, which cannot be taken for granted. Consequently the scoring scheme for
the EMCR data has to be derived theoretically. Based on the consideration that the model sequence
represents the ideal, while the gaze is a sequence with mutations, Busjahn et al.|[2015a), 258] implemented
a higher penalty for gaps in the model than in the gaze sequence. Their scoring is ‘3’ for a match, -3’ for
a mismatch, ‘-2’ for a gap in the model and ‘-1’ for a gap in the gaze. When analyzing the EMCR data,
a more concise and symmetric scoring will be used. With regard to the model it amounts to the same,
whether a line from the model was skipped, another line was read instead, or a line is read in addition
to the model. For the measures model occurrence and model similarity all such cases are the opposite
of a match and therefore scored equally. If the line read by a participant matches the line in the model,
the pairing is scored with ‘1. Mismatches, insertions, and deletions get the symmetric opposite score of
-1’. Usually, the gap penalty provides the threshold for which two items should not not be aligned but,
instead, a gap created. If a mismatch results in a lower score than creating a gap, the gap will be favored
|Cristino et al., 2010, 694]. However, here gaps and mismatches are equally negative.

Alignments allow a number of additional adjustments to the scoring, e.g. |Cristino et al| [2010]
demonstrate that a substitution matrix can be used to encode how close AOIs are in space or whether
they have a semantic relationship, so looking at line 2 instead of line 1 could get a better score than
looking at line 8. Furthermore, gap penalties can be differentiated depending on whether the gap is the
first or a subsequent one in a block of gaps (affine gap scoring). This is mostly relevant for long contiguous
blocks of gaps. For analyzing the EMCR data a different modification is introduced to hone the scoring
scheme. Some lines in the Java programs are of minor importance, e.g. lines that only contain a closing
bracket. If such a line occurs in the model, but is not looked at by the participant, that is less critical
than skipping a line containing an actual computation, since the single bracket can be perceived in the
periphery without being directly fixated. Besides, participants were instructed that all programs compile

119

8.4 EVENT-SEQUENCE-BASED MEASURES

without error, so they could expect them to be there. Such skippable AOIs get a reduced gap penalty
of -0.5". It applies when a skippable line in the model is paired with a gap in the gaze and when a
participant reads a skippable line even though the model does not include it. In the EMCR analysis only
lines which contain nothing but a bracket are declared as skippable, though for other analyses different
AOIs can very well be viewed as such. The final scoring scheme is presented in table

Pairing Score
Match 1
Mismatch -1
. —0.5 if AOI is skippable
Insertion
-1 else
—0.5 if AOI is ski 1
Deletion 0.5 if AOL is skippable
-1 else

Table 8.5: Scoring scheme used for EMCR data

Alignment scores also depend on the length of the two sequences. Aligning two long identical sequences
will result in a higher score than aligning two short identical sequences, even though they are just as
similar [Cristino et al., 2010, 695], [Dolezalova & Popelkal {2016, 7]. Table gives an example of a
short global alignment between two quite similar sequences that receives the same similarity score as the
alignment of two longer, but more dissimilar sequences. In the longer alignment, the greater number of
matches compensates for the additional gaps. The lengths of Text and Execution Order sequences differ
within and between stimuli and the lengths of the gaze sequences also are highly variable. Thus, in order
to make the alignment scores comparable for analysis, they have to be normalized.?

Alignment Score Model length Normalized score
— 12 3 4 —

. 2 4 0.5
212343
- 12-345—-—-26

I | 2 6 0.3
2126345326

Table 8.6: Example for normalization in a global alignment, scoring: match = 1, mismatch,
insertion, and deletion = -1

Day| [2010, 399] uses the number of matches in the alignment divided by the length of the alignment as
similarity score (equation . This approach corresponds to the percentage of exactly matching residues
in biological sequences [Pazos & Chagoyen, [2015 11,12].

number of matches

normalized score p,y, =

8.3
length(alignment) (83)

Cristino et al.| [2010} 695] propose to normalize the alignment score by the product of the highest possible
score from the substitution matrix and the length of the longest sequence (equation :

) score
normalized_ score cyistino ot al. =

8.4
max(substitution matrix) % length(longest sequence) (84)

2Thanks to Jitka Dolezalova and Stanislav Popelka for the useful discussion about normalization.

120

CHAPTER 8. ANALYSIS MEASURES

Dolezalova & Popelka) [2016, 7] divide the obtained alignment score by the length of the longer sequence,
since it represents the greatest similarity possible for two sequences ({8.5)).

score

(8.5)

normalized_SCore potesalova_Popelka = length(longest sequence)
For biological sequences a number of further forms of normalization exist [Haque et al.l [2009, 97], [Pazos
& Chagoyen|, |2015| 11,12], [Zimmermann) 2003, 55,56], but are not applicable to the EMCR data.
The presented approaches were devised for comparing two sequences of which none takes prevalence
over the other. They do not fully capture the concept of defining similarity with regard to a model. A
normalization that is based on the length of the alignment or the length of the gaze (which is usually the
longer sequence) veils the relation between alignment score and the given model. Thus, the determining
factor for making alignment scores comparable between different models, stimuli, and participants when
analyzing the EMCR data is actually the length of the model (see equation. Using this normalization,
the best possible match between two sequences will result in a normalized alignment score of ‘1’. Table
B-6] provides examples for normalized scores.
) score

normalized score = Tongth(model) (8.6)
In order to allow for a thorough interpretation of the alignment results, it is relevant to determine how
linear the Execution Order of each stimulus is. For this purpose, Text and Execution Order sequences
of every text are aligned using the naive global alignment approach and the same scoring scheme as for
the gaze sequences (table , including the reduced penalty for lines containing only a closing bracket
(table . The order in which the lines are executed was obtained from Jeliot [Moreno et al., 2004].3
For the three novice programs in lesson 1, as well as for L5_SC3/SC3 (Vehicle-program), both model
sequences are rather similar to each other. The Execution Order of these programs can be regarded as
predominantly linear.

L1_SCi1 L1_SC2 ©L1_SC3 L3_SC1/SCl1 SC2 L5_SC3/SC3

Length Text Order 6 6 4 18 22 22
Length Execution Order 3 9 8 31 52 17
Score 1 0 0 -9 -35 4
Score normalized 0.2 0 0 -0.5 -1.6 0.2

Table 8.7: Naive global alignment scores between Text and Execution Order sequences per SC
stimulus

In the analysis, it is first evaluated how much the Text Order model fits to the gaze when reading NT,
both with regard to the three different stimuli and level of programming expertise of the participants.
For RQ1, the average scores from aligning the gaze to Text Order sequences are compared for NT and
SC stimuli. Additionally, for SC stimuli the scores for Text and Execution Order are compared. For
the second RQ, Text and Execution Order scores are compared between novices and experts, as well as
between the two stimuli read by both groups of expertise. Since model occurrence and model similarity
focus on the overall reading behavior only collapsed gaze sequences are used for this analysis.

3Thanks to Andrés Moreno for tweaking the Jeliot output to provide the respective lines.

121

8.5 TRIAL-BASED MEASURES

8.5 Trial-based measures

In addition to measures based on gaze data, two measures are analyzed that refer to the trial. A trial
starts the moment the stimulus text is presented and ends when the participant clicks to proceed to the
comprehension question.

8.5.1 Trial duration

Trial duration denotes the time span from the beginning of a trial till its end. Raw timestamps are used
to establish a trial’s start and end point. Participants presumably started reading the texts right from
the moment they were presented, so trial duration largely overlaps with the time participants needed to
read and understand the text sufficiently to decide to proceed to answering the comprehension question.

All available trial durations are used for analysis, including the 26 trials in which the gaze was not
mapped to AOIs due to insufficient data quality, since trial duration is not influenced by spatial errors
in the recording. In order to test whether the NT stimuli are comparable with regard to the time needed
to read them, the trial durations for all three NTs are compared to each other. Furthermore, in order to
establish that the participants of the novice and expert programmer groups do not differ in their ability
to read NT, the trial durations of both groups are tested for differences. Comparing trial durations
between NT and SC does not yield meaningful results regarding the first research question. However, for
the second question, trial durations of the two SCs that were read by both novices and experts can be
compared between the two groups, since programming experts are expected to understand the SCs faster
than novices. Finally, trial durations are compared between the two SCs. They are similar in length, so
longer trial durations for one program would suggest a higher difficulty.

8.5.2 Correctness of comprehension question

Following each text stimulus, participants were asked a comprehension question. Correct answers were
scored with ‘1’, partially correct answers with ‘0.5’, and incorrect answers with ‘0’ points (see [7.3.1
Comprehension questions). In order to establish that there is neither a difference between the NTs,
nor between novices and experts with regard to reading N'T, correctness scores are compared between
the NT stimuli and per NT between the two expertise groups. Again, comparing NT and SC does not
provide meaningful outcomes, but for the second research question comprehension scores from novices
and experts on the two SCs read by both groups are tested for differences. Additionally, the scores by
all participants between the two programs are studied to check whether one program was more difficult
to comprehend than the other. Since the comprehension score is not dependent on the gaze recording,
all available scores are used for analysis, including those trials of which the corresponding gaze data has
low quality or is missing because of a software failure.

8.6 Summary of analyses measures

In order to demonstrate the potential of using gaze data to study code reading, a number of measures
were selected or newly devised to contrast NT and SC reading as well as novice and expert SC reading
behavior. While there are more events, measures, and levels of abstraction that could be used to analyze
the EMCR data and code reading in general, the analysis focuses on the most promising ones. Table
provides an overview of the presented analysis measures.

122

CHAPTER 8. ANALYSIS MEASURES

Measure Basis AOI level RQ
Fixation duration - 1,2
Number of fixations - 2
Saccadic amplitude single event - 2
AOI coverage line, element 1,2
First visit to main block 2
Reading direction event seqUence line, element 1,2
Model occurrence and model similarity 4 line 1,2
Trial duration trial - 2
Correctness of comprehension question - 2

Table 8.8: Overview of analysis measures

123

8.6 SUMMARY OF ANALYSES MEASURES

124

Analysis results _

9.1 Introduction

The results are presented per analysis measure. In total, gaze data from 157 trials of 10 novice and 16
expert programmers was analyzed. In order to test for normality, Kolmogorov-Smirnov tests to compare
the data with a normal distribution were combined with a histogram plot. In case of an inconclusive
outcome, a Shapiro-Wilk test was applied additionally. The value of 0.05 serves as level of significance.
When necessary, results were corrected for multiple testing using the Benjamini-Hochberg procedure.

For research question 1, data from reading NT is compared to data from reading SC. Since for novices
the focus is on early SC reading, only the three programs from the first lesson are used for comparison
with the three N'Ts. For experts, the NTs are contrasted to all three SCs. For one novice and three experts
the data quality on all NT stimuli was too low for analyses employing fixation location. Consequently,
for such measures these four participants had to be excluded as no NT data is available for comparison.
For research question 2, all available trials on the two programs read by both novices and experts are
included.

9.2 Single-event-based measures

9.2.1 Fixation duration

First, fixation durations on the three NT stimuli were analyzed. Overall, there are 17,649 NT fixations
from 72 trials and 26 participants (10 novices, 16 experts). Fixation duration is skewed to the right, but
median fixation durations per trial are normally distributed. The observed durations range from 49 to
3,229 ms, with a median of 183 ms [100..267]. A two-way ANOVA revealed no difference between the
median fixation durations of the three texts (p=0.807), but between the novice and expert participants
(p=0.001). Novices have a higher mean median fixation duration on NT (219 ms, SD=41) than experts
(175 ms, SD=47)", see tables[9.1]and as well as figures and . The differences between novices
and experts persist over the three texts (figure[9.2b).

Kolmogorov-Smirnov tests between the three NT stimuli show that the distribution of fixation dura-
tions is comparable across stimuli (table [9.2]and figure[9.1p). In order to compare the fixation durations
on NT between novices and experts, all NT fixations per participant were accumulated. A Kolmogorov-
Smirnov test between fixation duration distributions showed a significant difference between the two
groups of expertise (p<0.001), see figures —d. All p-values were corrected for multiple testing.

"Mean values are given together with standard deviation (SD).

125

9.2 SINGLE-EVENT-BASED MEASURES

NT1 NT2 NT3
Number of trials - novices 10 9 8
Number of trials - experts 15 15 15
Number of fixations - novices 2,109 2,159 1,742
Number of fixations - experts 3,357 4,269 4,013

Mean median fixation duration - stimulus 196 ms (SD=53) 197 ms (SD=53) 189 ms (SD=48)
Mean median fixation duration - novices 223 ms (SD=53) 220 ms (SD=35) 222 ms (SD=34)
Mean median fixation duration - experts 179 ms (SD=47) 183 ms (SD=57) 172 ms (SD=46)

Table 9.1: Fixation durations on NT stimuli

Comparison NT1-NT2 NT1-NT3 NT2-NT3
p-value 0.156 0.563 0.414

Table 9.2: Results of the Kolmogorov-Smirnov tests between the distributions of fixation dura-
tion on NT stimuli, p-values have been corrected for multiple testing

Median fixation duration Distribution of fixation durations
©w
E 250- ‘
c
i)
©
s >NT3-
3 200- E
S 8
= NT2-
& 150-
C
8
b NT1-
()
= 100-
NT1 NT2 NT3 4 5 6 7 8
Stimulus Fixation duration (log)
(a) Median fixation durations per text (b) Distribution of fixation durations per text

Figure 9.1: Fixation durations on NT stimuli

126

CHAPTER 9. ANALYSIS RESULTS

Median fixation duration Median fixation duration
NT1 NT2 NT3
@ 250- —_
1S %)
5 = 250- ‘
=] S
© =
S 200- g |
e 3 200-
i) c
T i)
£ 150- 3
b X 150-
C S
K] c
e}
= 100- g 100-
Novice Expert Novice Expert Novice Expert Novice Expert
Level of expertise Level of expertise
(a) Median fixation durations over all NTs (b) Median fixation durations per NT
Distribution of fixation durations Distribution of fixation durations
0.8-
0.6-
0.6- 0.4- //¥ 3
=
0.2-
0.0-
0.8-
>o04- Level of expertise 206"
Z’ Novice g 0.4- 5
o) R N
[a] Expert Qo2
0.0-
0.2- 0.8-
0.6-
04- =
w
0.2-
0.0-
Ll I I I l 00- l I l I I
4 5 6 7 8 4 5 6 7 8
Fixation duration (log) Fixation duration (log)
(c) Distribution of fixation durations over NT (d) Distribution of fixation durations per NT

Figure 9.2: Fixation durations on N'T stimuli per group of expertise

RQ1:

For comparing fixation durations between NT and SC, all fixations by a participant on the respective
stimulus type were analyzed jointly. When examining novices, SC fixations were used from lesson 1,
for experts from all stimuli. For novices, 6,010 NT fixations from 27 trials were compared to 2,374
SC fixations from 28 trials. The distribution of fixation durations is right-skewed, but median fixation
durations follow a normal distribution. Dependent samples t-tests indicate no difference between the
median fixation duration on both types of stimulus. A Kolmogorov-Smirnov test on the fixation duration
distributions showed a significant difference between NT and SC fixations. For experts, 11,639 NT
fixations from 45 trials were compared to 10,970 SC fixations from 38 trials. No differences were found
between either the median fixation durations or the distributions of fixation duration (see table

figures [9.3 and [9.4)).

RQ2:

For program L3_SC1/SC1, 2,825 fixations from novices were compared to 3,080 fixations from experts.
For program L5__SC3/SC3, 3,271 novice fixations were tested against 4,073 expert fixations. The fixation
duration distributions of the two groups were compared with Kolmogorov-Smirnov tests, which showed
a significant difference for both programs (table and figure) Median fixation duration exhibits
a normal distribution, so independent samples t-tests were used to compare novices and experts, and
the two stimuli. The average median fixation duration of novices is higher than that of experts, however
the difference is only significant for the second program (table and figure) The two stimuli are
comparable in both regards, see table [9.5]

127

9.2 SINGLE-EVENT-BASED MEASURES

Novices Experts
Number of trials - NT 27 45
Number of trials - SC 28 38
Number of fixations - NT 6,010 11,639
Number of fixations - SC 2,374 10,970
p-value NT vs. SC <0.001 0.620

(distribution of fixation durations)
Mean median fixation duration - NT 219 ms (SD=41) 175 ms (SD=47)
Mean median fixation duration - SC = 225 ms (SD=33) 171 ms (SD=41)
p-value NT vs. SC 0.625 0.625

(median fixation duration)

Table 9.3: Fixation durations on NT and SC, p-values have been corrected for multiple testing

Median fixation duration Distribution of fixation durations
Novice Expert 0.6
Lovn) ¥ Z
g 250- ' 0.4 8
£ =
s 0.2 ®
§ 200 ? 00 Stimulus type
_g % : . NT
5 0 0.6 []se
£ 150- 0.4 %"
= ©
© 0.2 -
e)
% 100- 0.0
NT SC NT SC 4 5 6 7 8
Stimulus type Fixation duration (log)
(a) Median fixation durations (b) Distribution of fixation durations

Figure 9.3: Fixation durations on NT and SC per group of expertise

L3_SC1/SC1 L5_SC3/SC3

Number of trials - novices 10 9
Number of trials - experts 13 13
Number of fixations - novices 2,825 3,271
Number of fixations - experts 3,080 4,073
p-value novices vs. experts <0.001 <0.001

(distribution of fixation durations)

Mean median fixation duration - stimulus 195 ms (SD=45) 187 ms (SD=45)
Mean median fixation duration - novices 213 ms (SD=45) 219 ms (SD=21)
Mean median fixation duration - experts 181 ms (SD=41) 166 ms (SD=44)
p-value novices vs. experts 0.140 0.002

(median fixation duration)

Table 9.4: Fixation durations on the two programs viewed by both novices and experts, p-values
have been corrected for multiple testing

128

CHAPTER 9. ANALYSIS RESULTS

Distribution of fixation durations
DO21- _’//_
EU10- _’/\
< G029- A Stimulus type
1013~ NT

ts

(=%
‘C /’\
£ ME23- ///\\ Esc
3
o RE11- _//\
SA2T1 _ﬂk—
SE02- //A\‘—
SE28-
4 5 6 7 8
Fixation duration (log)
(a) Novices
AE22- /’_/Q
BE18-
BE26-
BE29-
C020-
g Hiar f‘;[k ol
g IE30- _//\ Stimulus type
& KK24- I ——— NT
£ LK23- sc
G MRO5-
2 pa24-
RE27- —— ==
e
RRO04- S
SI28-
TU15-
UL29-
4 5 6 7 8

Fixation duration (log)

(b) Experts

Figure 9.4: Distribution of fixation durations on NT and SC stimuli

Comparison p-value

Distribution of fixation durations 0.427
Median fixation duration 0.578

Table 9.5: Results of the t-tests between the two programs viewed by both novices and experts

Median fixation duration Distribution of fixation durations
L3 _SC1/SC1 L5 SC3/SC3 =
0.6- 0
mn o 'n
= 0.4- Q
250- ~
5 - 3
§ | > = Level of expertise
-g 200- | g 0.0~ . Novice
S Y O os- E I:l Expert
=) :
] |
150 | 0.4 2
= w
c -~
8 ‘ 0.2- %
S 100- T a
S v . v . 0.0-
Novice Expert Novice Expert 4 5 5 7 8
Level of expertise Fixation duration (log)
(a) Median fixation durations per SC (b) Distribution of fixation durations per SC

Figure 9.5: Fixation durations on the two programs viewed by both novices and experts

129

9.2 SINGLE-EVENT-BASED MEASURES

Interpretation

Fixation durations vary substantially between readers and stimuli. Nevertheless the durations of 49 to
3,229 ms for reading the three English texts are well in accordance with results reported in literature
and the distribution of fixation durations exhibits the characteristic right-skew. However, the average
fixation duration of 183 ms [100..267] is lower than the 200-250 ms typically observed for reading English,
see Holmqvist et al,| [2011] 381,382], Rayner| [1998, 373-376,392,393], and Rayner et al| [2005, 80-82]
for reference values. Since none of the participants were English native speakers, the level of language
proficiency probably has an additional impact on the fixation durations. Furthermore, fixation durations
are highly dependent on the event detection approach, so the comparability to other studies is limited.
Nevertheless, the three NT stimuli induced comparable distributions of fixation duration as well as average
fixation durations. When comparing the fixation durations of novices and experts, the distribution of
fixation duration on N'T differs significantly and novices tend to have a higher average fixation duration.
Fixation durations are highly idiosyncratic, so this was to be expected and has to be considered when
interpreting the results for SC reading.

The distribution of fixation durations of novices is significantly different on NT than on SC, while the
average durations are comparable on both types of stimuli. For experts, both distribution of and average
fixation duration are comparable between stimuli. Thus for them the stimulus type did not strongly
influence fixation durations.

The fixation duration distributions on the two SCs read by novices and experts were significantly
different between the groups of expertise. The average fixation durations were comparable for the first
stimulus, but on the second novices had a significantly higher average duration. Since these participants
already had higher fixations durations on NT, this could be the result of the general reading behavior of
these specific individuals and not an effect of expertise. However, the difference is huge and no difference
was found for the first program, so it is very probable that the more difficult SC brought about a difference
in fixation duration of novices and experts.

Overall, due to their idiosyncrasy, fixation durations are not a very indicative measure to study source
code reading.

9.2.2 Number of fixations

For NT stimuli, 17,649 fixations were recorded in 72 trials from 26 participants, 10 novices and 16 experts.
The number of fixations on these texts follow a normal distribution. Independent samples t-tests per text
show no difference between novice and expert programmers see table and figure [9.6h.

NT1 NT2 NT3
Number of trials - novices 10 9 8
Number of trials - experts 15 15 15
Number of fixations - novices 2,109 2,159 1,742
Number of fixations - experts 3,357 4,269 4,013

Mean number of fixations - stimulus 219 (SD=159) 268 (SD=132) 250 (SD=130)
Mean number of fixations - novices 211 (SD=178) 240 (SD=110) 218 (SD=90)
Mean number of fixations - experts 224 (SD=151) 285 (SD=145) 268 (SD=147)
p-value novices vs. experts 0.853 0.404 0.328

Table 9.6: Number of fixations on NT stimuli

RQ2:

On the two programs read by both groups of expertise, 13,249 fixations were registered in 45 trials from
24 participants. Since the number of fixations per stimulus is normally distributed, independent samples
t-tests were used for analysis. On both programs, the number of fixations is comparable between novices
and experts, see table [9.7] and figure [0.6p.

130

CHAPTER 9. ANALYSIS RESULTS

L3_SC1/SC1 L5_SC3/SC3

Number of trials - novices 10 9
Number of trials - experts 13 13
Number of fixations - novices 2,825 3,271
Number of fixations - experts 3,080 4,073

Mean number of fixations - stimulus 257 (SD=119) 334 (SD=140)
Mean number of fixations - novices 282 (SD=109) 363 (SD=102)
Mean number of fixations - experts 237 (SD=126) 313 (SD=162)
p-value novices vs. experts 0.364 0.384

Table 9.7: Number of fixations on the two programs viewed by both novices and experts

Number of fixations Number of fixations
NT1 NT2 NT3 L3_SC1/SC1 L5 SC3/SC3
T o 600-
o o
» 600- » 4
c c
8 ¥ B
2 £ 400-
& 400- o | =
o e o
@ : 5
€ E
5 200- S 200-
z | | z |
Novice Exbert Novice Exbert Novice Exbert Novice Exbert Novice Exbert
Level of expertise Level of expertise
(a) NT stimuli (b) SC stimuli viewed by novices and experts
Figure 9.6: Number of fixations
Interpretation

The number of fixations is strongly influenced by the stimulus and therefore only analyzed between
participants on the same text. No differences were found between novices and experts, neither on the
three NT stimuli nor on the two programs read by both groups. Thus with regard to the number of
fixations needed to read these texts, novices and experts show a similar reading behavior.

9.2.3 Saccadic amplitude

Since saccadic amplitude depends on stimulus size and location of stimulus elements, analyses can only
be carried out for RQ2, in which participants can be compared per stimulus.

RQ2:

For the two programs viewed by both novices and experts, 12,911 saccades were recorded from 10 novices
and 14 experts. The distribution of saccadic amplitudes has a right-skew, median saccadic amplitude per
trial and scanpath length follow a normal distribution. On the first program, saccadic amplitude ranges
from 0.07 to 19.54° of visual angle, and has a median of 1.32° [0.76..2.56]. Total scanpath length lies
between 203.1 and 1,219.3°, with a mean of 546.8° (SD=287.72). For L5_SC3/SC3, saccadic amplitude
has a range of 0.05 to 23.76°, and a median of 1.29° [0.76..2.49]. Scanpath length spans from 230.4
to 1,625.5°, with a mean of 723.0° (SD=347.01). Using Kolmogorov-Smirnov tests, the distribution
of saccadic amplitude was found to differ significantly between novices and experts on both programs.
Independent samples t-tests did not show any differences between either median saccadic amplitude or
scanpath length of novices and experts on any of the programs (table figures and .

131

9.2 SINGLE-EVENT-BASED MEASURES

L3_SC1/SC1 L5_SC3/SC3
Number of trials - novices 10 9
Number of trials - experts 12 13
Number of saccades - novices 2,815 3,262
Number of saccades - experts 2,774 4,060
p-value novices vs. experts <0.001 <0.001

(distribution of saccadic amplitude)
Mean median amplitude - stimulus
Mean median amplitude - novices
Mean median amplitude - experts
p-value novices vs. experts
(median amplitude)

Mean scanpath length - stimulus
Mean scanpath length - novices
Mean scanpath length - experts

1.35° (SD=0.26)
1.26° (SD=0.14)
1.41° (SD=0.25)
0.200

546.84° (SD=287.72)
587.44° (SD=262.21)
513.00° (SD=314.71)

1.35° (SD=0.22)
1.31° (SD=0.16)
1.38° (SD=0.33)
0.662

722.96° (SD=347.01)
703.85° (SD=222.15)
736.19° (SD=421.15)

0.662 0.818

p-value novices vs. experts
(scanpath length)

Table 9.8: Saccadic amplitudes and scanpath lengths on the two programs viewed by both
novices and experts, p-values have been corrected for multiple testing

Interpretation

Like fixation duration and number of fixations, saccadic amplitude is a highly variable measure. The dis-
tribution of saccadic amplitudes during code reading shows the characteristic skew to the right [Holmqvist
et al 2011, 313], and differs significantly between novices and experts. The average extent of saccades
and the scanpath lengths however are comparable. So while the novices and experts differ in how the
saccadic amplitudes are distributed, average amplitude and scanpath length are not very distinctive with
regard to programming expertise.

9.2.4 AOI coverage

Overall, data from 131 trials from 26 participants is available, 72 from novices and 59 from experts. On
NT stimuli all lines were looked at and 98% of the elements. All hits on line-level were direct hits. On
element-level 85% of the covered AOIs were hit directly by a fixation, the remaining AOIs were located
close enough to a fixation to be perceived with the fovea. For SC, 86% of the lines were covered (94% of
them directly) and 85% of the elements (67% directly). Only 3% of the total 28,704 fixations landed on

empty space (see table .

NT SC
Overall 4% 3%
Novices 4% 2%
Experts 5% 4%

Table 9.9: Percentage of fixations on white space

132

CHAPTER 9. ANALYSIS RESULTS

Median saccadic amplitude Distribution of saccadic amplitudes
L3 SC1/SC1 L5 _SC3/SC3 0.6 —
4 (%]
2 3
3 18- 0.2- »
o}
%_ > Q Level of expertise
‘% 0.0- .
g 1 5_ (é) 06' . Novice
o ' 8 G I:‘ Expert
g 0.4- '%
g 12- it
] 0.2- =
E 2
3 | , | , 0.0- —= ; ;
s Novice Expert Novice Expert -2 0 2
Level of expertise Saccadic amplitude (log)
(a) Median saccadic amplitudes per program (b) Distribution of saccadic amplitude per program

Figure 9.7: Saccadic amplitudes on the two programs viewed by both novices and experts

Scanpath length

L3_SC1/SC1 L5_SC3/SC3
1600- T
L]
=)
3
= 1200- .
iS)
c
o
< 800-
®©
o
@
400-
g 400

Novice Ex;')ert Novice Ex;')ert
Level of expertise

Figure 9.8: Scanpath lengths on the two programs viewed by both novices and experts

For analyzing AOI coverage on NT, 49 trials were used from 9 novices and 13 experts. In all three texts,
all lines have been looked at by all participants, so no comparisons are carried out on line-level. AQOI
coverage on element-level is skewed to the left, over all NTs, it ranges from 82 to 100%, with a median of
99% [97..98]. A Kruskal-Wallis test showed a significant difference between the texts (p=0.001), so the
texts are compared to each other with Mann-Whitney tests. Element coverage on NT2 is significantly
different from NT1 and NT3, even though the difference of 1% can be regarded as negligible. NT1 and
NT3 have comparable element coverage. No differences were found between the two groups of expertise

(see tables and [0.11] as well as figure[9.9).

133

9.2 SINGLE-EVENT-BASED MEASURES

NT1 NT2 NT3
Number of trials - novices 9 8 8
Number of trials - experts 10 6 8

Median element coverage - stimulus 99% [97..99] 100% [100..100] 99% [99..100]
Median element coverage - novices ~ 99% [97..99] 100% [100..100] 100% [99..100]
Median element coverage - experts ~ 97% [97..99] 100% [100..100] 99% [96..99]
p-value novices vs. experts 0.522 0.522 0.333

Table 9.10: Element coverage on N'T stimuli, p-values have been corrected for multiple testing

Comparison NTI1-NT2 NTI1-NT3 NT2-NT3
p-value <0.001 0.278 0.018

Table 9.11: Results of the Mann-Whitney tests to compare element coverage between N'T stimuli,
p-values have been corrected for multiple testing

Element coverage
NT1 NT2 NT3

=

°

=
o
o

Coverage (%)
(] ©
<Q a

o]
[&)]

e

Novice Exp')ert Novice Exf)ert Novice Exp')ert
Level of expertise

Figure 9.9: Element coverage per NT and expertise

RQ1:

In order to compare AOI coverage on NT and SC, 102 trials from 9 novices and 13 experts are used. AOI
coverage on both AOI-levels has a leftward skew. Novices looked at all lines in NT stimuli, but on average
only at 88% [88..90] of the lines in SC, the difference is significant. Similarly, they covered significantly
more NT elements (median=99% [99..100]) than SC elements (median=86% [82..90]). The experts also
looked at all NT lines, but on average only at 82% [82..87] of the SC lines. Furthermore, they covered
more elements on NT (median=99% [97..100]) than on SC (median=86% [82..92]). The differences are
significant for both AOI levels (see table and figure [9.10).

134

CHAPTER 9. ANALYSIS RESULTS

Novices Experts
Number of trials - NT 25 24
Number of trials - SC 25 28
Median line coverage - NT 100% [100..100] 100% [100..100]
Median line coverage - SC 88% [88..90] 82% [82..87]
p-value NT vs. SC (line coverage) 0.010 0.004
Median element coverage - NT 99% [99..100] 99% [97..100]
Median element coverage - SC 86% [82..90] 86% [82..92]
p-value NT vs. SC (element coverage) 0.010 0.004

Table 9.12: AOI coverage on NT and SC stimuli, p-values have been corrected for multiple
testing

Line coverage Element coverage
Novice Expert Novice Expert
100- ° 100" e
[|
= | ~ 90- ° !
S 9 S
© L] o
g g 80
@ o
3 ' 3
O 80- O 70-
H 60- o
NT SC NT SC NT SC NT SC
Stimulus type Stimulus type

(a) Line coverage per stimulus type and level of (b) Element coverage per stimulus type and
expertise level of expertise

Figure 9.10: AOI coverage on NT and SC stimuli

RQ2:
When comparing AOI coverage of novices and experts on SC, 44 trials were analyzed from 10 novices
and 14 experts. Both line and element coverage on SC are normally distributed, so independent samples
t-tests were used for comparison. On the first program, novices covered significantly more lines than
experts (novice mean=90%, SD=4, expert mean=84%, SD=6), but element coverage is comparable. For
the second program, no differences were found. The two programs do not differ with regard to line
coverage (p=0.861), but the second program has a significantly higher element coverage (mean = 88%,
SD=7) than the first (mean = 81%, SD=9), p=0.035, see table and figure As before, p-values
are corrected for multiple testing.

Additionally, it is analyzed which AOIs are not covered by gaze. While all NT lines were looked at,
this was merely the case for 86% of the SC lines. Of the 173 SC lines that were skipped, 166 (96%)
contained only a single closing bracket (table . Elements were skipped in both NT and SC stimuli

(see tables and [9.16)).

135

9.2 SINGLE-EVENT-BASED MEASURES

L3_SC1/SC1 L5_SC3/SC3

Number of trials - novices 10 9

Number of trials - experts 12 13

Mean line coverage - stimulus 87% (SD=6) 86% (SD=6)
Mean line coverage - novices 90% (SD=4) 88% (SD=7)
Mean line coverage - experts 84% (SD=6) 85% (SD=6)
p-value novices vs. experts (line coverage) 0.035 0.476

Mean element coverage - stimulus 81% (SD=9) 88% (SD=7)
Mean element coverage - novices 82% (SD=T) 90% (SD=5)
Mean element coverage - experts 81% (SD=11) 87% (SD=9)
p-value novices vs. experts (element coverage) 0.945 0.611

Table 9.13: AOI coverage on the two programs viewed by both novices and experts, p-values
have been corrected for multiple testing

Line coverage Element coverage
L3 _SC1/SC1 L5_SC3/SC3 L3 _SC1/SC1 L5 SC3/SC3
100- . I
* [90_ |
S g
S 2,80
o g
g - C] ¢
3 so- 8 70-
e "t 60.
Novice Exf)ert Novice Exy:')ert Novice Exf)ert Novice Exy:')ert
Expertise Expertise
(a) Line coverage per stimulus (b) Element coverage per stimulus

Figure 9.11: AOI coverage on the two programs viewed by both novices and experts

136

CHAPTER 9. ANALYSIS RESULTS

Number of Number of

Percentage of

Stimulus Line Content . .
skips occurrences skips
L1_SC1 5 } 7 9 78%
L1 SC1 6 } 9 9 100%
L3 SC1 6 this.x2 = x2 ; 1 10 10%
L3 _SC1 8 } 4 10 40%
L3_SC1 17 } 5 10 50%
L3_SC1 18 } 8 10 80%
L5 SC3 9 } 3 9 33%
L5 SC3 15 } 2 9 22%
L5 SC3 17 } 5 9 56%
L5 SC3 21 } 5 9 56%
L5_SC3 22 } 8 9 89%
SC1 1 public class Rectangle { 2 12 17%
SC1 7 this.y2 = y2 ; 2 12 17%
SC1 8 } 9 12 75%
SC1 17 } 9 12 75%
SC1 18 } 12 12 100%
SC3 8 this.currentSpeed = 0 ; 1 13 8%
SC3 9 } 9 13 69%
SC3 15 } 3 13 23%
SC3 17 } 10 13 7%
SC3 21 } 7 13 54%
SC3 22 } 13 13 100%
SCh 1 import java.util.ArrayList ; 1 10 10%
SC5h 11 } 2 10 20%
SCH 12 } 5 10 50%
SCH 13 } 3 10 30%
SCH 15 } 8 10 80%
SCH 21 } 10 10 100%
SCH 22 } 10 10 100%

Table 9.14: Lines which were skipped during SC reading, ordered according to stimulus

137

9.2 SINGLE-EVENT-BASED MEASURES

Element Stimulus Number of Number of Percentage of

skips occurrences skips
with NT1 6 38 16%
of NT1, NT2 14 109 13%
do NT3 2 16 12%
a NT2, NT3 7 62 1%
in NT1 2 19 11%
the NT1, NT2, NT3 16 142 1%
it NT1, NT3 3 35 9%
are NT2 1 14 7%
at NT2 1 14 7%
dung NT2 1 14 ™%
local NT2 1 14 7%
obvious NT2 1 14 7%
to NT2, NT3 P 30 7%
years NT2 1 14 ™%
act NT3 1 16 6%
and NT1, NT3 4 70 6%
economy NT3 1 16 6%
for NT3 1 16 6%
is NT3 1 16 6%
charcoal NT1 1 19 5%
chinese NT1 1 19 5%
first NT1 1 19 5%
historians NT1 1 19 5%
made NT1 1 19 5%
most NT1 1 19 5%
on NT1 1 19 5%
or NT1 2 38 5%

Table 9.15: Elements which were skipped during NT reading, ordered according to skipping
proportion

138

CHAPTER 9. ANALYSIS RESULTS

Element

Stimulus

Number of Number of

Percentage of

skips occurrences skips
} L1_SC1, L3_SC1, L5 SC3, 217 362 60%
SC1, SC3, SC5
{ L1_SC1, L3_SC1, L5 SC3, 94 226 42%
SC1, SC3, SC5
; L1_SC1, L3 _SC1, L5 _SC3, 216 571 38%
SC1, SC3, SC5h
y2 L3_SC1, SC1 24 66 36%
) L1_SC1, L3_SC1, L5 _SC3, 171 485 35%
SC1, SC3, SC5
> SC5 6 20 30%
list2 SC5 3 10 30%
public L1_SC1, L3_SC1, L5_SC3, 57 201 28%
SC1, SC3, SC5
10 L3_SC1, L5_SC3, SC1 24 97 25%
if L5_SC3, SC3, SC5 8 32 25%
import SC5 5 20 25%
for L1_SC2, SC5h 7 29 24%
this.y2 L3_SC1, SC1 5 22 23%
type SC3 3 13 23%
x2 L3_SC1, SC1 13 56 23%
2 L1_SC1 2 9 22%
200 L5 _SC3 2 9 22%
(L1 _SC1, L3_SC1, L5_SC3, 76 367 21%
SC1, SC3, SC5
0 L3_SC1, L5_SC3, SC1, SC3 9 44 20%
1 L1 _SC3 2 10 20%
tp L5_SC3, SC3 7 35 20%
y SCh 2 10 20%
args L1_SC1, L3_SC1, SC3 6 32 19%
* L3_SC1, SC1 4 22 18%
+ L5_SC3, SC3 4 22 18%
= L3_SC1, SC1, SC3, SCh 25 140 18%
class SC1, SC5 4 22 18%
int L3_SC1, L5_SC3, SC1, SC3, 26 146 18%
SC5h
kmh L5_SC3, SC3 4 22 18%
this.x2 L3_SC1, sC1 4 22 18%
, L3_SC1, L5_SC3, SC1, SC3, 53 313 17%
SCh
] L1_SC1, L3_SC1, SC1, SC3, 14 84 17%
SCh
< SC5 5 30 17%
5 SC1 4 24 17%
[SC1, SC3, SC5h 9 55 16%
i SC5 3 20 15%
List SCh 3 20 15%
this.yl L3_SC1, SC1 3 22 14%
x1 L3_SC1, SC1 3 22 14%
y1 L3_SC1, SC1 9 66 14%
Rectangle SC1 3 24 12%
2.0 L1 SC2 1 9 11%
even L1 SC2 1 9 11%
producer L5 SC3 1 9 11%

139

9.2 SINGLE-EVENT-BASED MEASURES

Table 9.16 continued from previous page

Element Stimulus Number of Number of Percentage of

skips occurrences skips
1 L1_SC3 1 10 10%
9.1 SCh 1 10 10%
double SCh 2 20 10%
java.util.Arraylist SC5H 1 10 10%
listl SC5 1 10 10%
this.height L3_SC1 1 10 10%
- L1_SC3, SC1 2 22 9%
else L5 SC3, SC3 2 22 9%
System.out.println L3_SC1, SC1 2 22 9%
p SC3 2 26 8%
rect?2 SC1 1 12 8%
return SC1 1 12 8%
this.currentSpeed SC3 1 13 8%
this.x1 SC1 1 12 8%
Vehicle SC3 1 13 8%

Table 9.16: Elements which were skipped during SC reading, ordered according to skipping
proportion

Interpretation
For NT reading it was found that significantly more elements were covered on NT2 than on the other
two texts, but since the difference in average coverage only amounts to 1%, this finding is rather inconse-
quential. Novices and experts have comparable element coverage on all three texts. When reading NT,
all lines were looked at, while 14% of the lines in SC were skipped. Since many participants answered
the comprehension question correctly despite skipping at least one line, it is possible to fully understand
a program without fixating all lines. The lines which were skipped contained almost exclusively just a
single closing bracket. Such lines form somewhat smaller AOIs, so they might be perceived well enough
in the peripheral view to be deemed unnecessary to be looked at directly or participants just expect them
to be there, since the instruction slide informed them that all programs compile without errors. In lesson
1, SC2 and SC3 are pseudocodes and do not contain closing brackets. No lines were skipped in these
programs. Program L1_SC1 however ended with two lines each consisting of only a closing bracket. The
first one was skipped by seven of nine novices, the second one by all nine. In the two advanced novice
programs, with one exception, novices skipped only lines with a closing bracket. Thrice, experts skipped
the first line of a program and in three other cases, they did not look at the last of the four structurally
similar assignments in the constructor. Other than that, they only left out lines with closing brackets.
In all programs which included closing brackets, the last line was ignored most. Experts did not even
once look at a final bracket in any program. These findings affirm the concept of treating lines with only
a single bracket as skippable AOIs when studying how the gaze aligns with the Execution Order model.
Both novices and experts skip more elements on SC than on NT. Words that are repeatedly skipped in
NT are as expected mostly frequent and short words like “of”; “a”; and “the”. In SC, many of the elements
that were not looked at consist of only one character. The elements that were skipped the most are the
separators “}”, “{”, and ¢;”. This is in line with the findings by Busjahn et al. [2014a] that separators
receive substantially less visual attention than the other types of lexical elements and |[Blascheck & Sharif
[2019) 4] that closing brackets are hardly focused on. The keyword that was skipped most often is public,
closely followed by if. One reason for the lower element coverage in SC is probably the huge amount
of short elements. Median element length in NT stimuli is 4 [3..8] characters, in lesson 1 it is 2 [1..5]
characters, and for expert SC merely 1 [1..5] character. Median length of skipped words in NT is 3 [2..3]
characters, in lesson 1 and expert SC 1 [1..1] character. Several short elements can be perceived with a
single fixation, so less elements have to be fixated. Furthermore, the employed programming language
prescribes a certain structure for the program, so many elements can be presumed to be present and
probably do not have to be perceived foveally. This accounts e.g. for the many skipped public-elements.

140

CHAPTER 9. ANALYSIS RESULTS

By and large, novice and expert programmers do not differ much in what proportion of SC they cover
with gaze.

AOI coverage is a measure that is strongly influenced by the type of text. Programming expertise
however is not a crucial factor for how much of a SC is covered.

9.2.5 First visit to main

RQ2:

For program L3 SC1/SC1 10 trials were analyzed from novices and 12 from experts, for program
L5 _SC3/SC3 9 trials from novices and 13 from experts. Neither time until the gaze landed in the
main-method for the first time nor the number of the first fixation on main are normally distributed,
so Mann-Whitney tests are used. When reading the first program, novices on average visited the main-
method after 25 sec [20..34] and with the 96th [74..104] fixation, experts already after 6 sec [4..11] and
with the 24th [6..42] fixation. In both cases the difference between novices and experts is significant.
Similarly, on the second program, novice gaze arrived in main on average after 47 sec [32..51] and with
the 159th [129..166] fixation, experts after 4 sec [2..9] and with the 19th [11..47] fixation. Again, the
differences are significant (see table and figure . For program L3_SC1/SC1, novices spent on
average the first 35% [32..46] of the total trial duration somewhere else, before looking at main, for pro-
gram L5 SC3/SC3 even 52% [46..59]. Experts however, spent only the first 14% [6..26] and 7% [4..12]
of the total time elsewhere, before attending to main.

L3_SC1/SC1 L5_SC3/SC3

Number of trials - novices 10 9

Number of trials - experts 12 13

Median time till main - stimulus 11 sec [5..24] 17 sec [3..46]
Median time till main - novices 25 sec [20..34] 47 sec [32..51]
Median time till main - experts 6 sec [4..11] 4 sec [2..9]
p-value novices vs. experts (time) 0.007 0.003
Median number of 1st fixation on main - stimulus 44 [10..88] 52 [15..156]
Median number of 1st fixation on main - novices 96 [74..104] 159 [129..166]
Median number of 1st fixation on main - experts 24 [6..42] 19 [11..47]
p-value novices vs. experts (number of 1st fixation) 0.004 0.005

Table 9.17: First visit to main for the two programs viewed by both novices and experts

Neither time nor number of fixations of the first dwell on main show a normal distribution. For the first
program, novices have a median dwell time of 1 sec [0..9], experts of 4 sec [2..5]. On the second program,
the median dwell times are 4 sec [1..5] for novices and almost identical 4 sec [3..7] for experts. The
first dwell on program L3_SC1/SC1 on average included 6 [2..42] fixations for novices and 16 [8..21] for
experts. For program L5__SC3/SC3, the first dwell consisted on average of 15 [5..23] fixations for novices
and 19 [14..31] for experts. Independent samples t-tests showed no significant differences between novices
and experts regarding the duration of the first dwell on main or the number of fixations in it (see table

and figure .

Interpretation

As claimed during the interviews, experts look at the main-method soon after they started reading the
program. Novices on the other hand took on average at least four times as much time to reach the main.
The main-method in Java is usually located at the bottom of the class. Experts visiting it so early after
stimulus onset suggests that they adapted their reading strategy to this type of text. This ties in with
experts only looking on average at 36% [27..64] of the lines above main before arriving there, novices at
82% [82..90]. After the gaze lands on the main however, novices and experts do not differ in the duration
of their first dwell there. The measures time and number of fixations until the main-method is visited
prove to be very meaningful for marking differences in the code reading behavior of novices and experts.

141

9.2 SINGLE-EVENT-BASED MEASURES

Time till main First fixation on main
L3 SC1/SC1 L5 SC3/SC3 L3 SC1/SC1 L5 SC3/SC3

D [e]
o o
[[
w
o
o

Time (sec)
N
o
N
o
<
L]

L N}
Fixation index number
=
o
o
L]

20- . "
- . : ;. - °) ; ;
Novice Expert Novice Expert Novice Expert Novice Expert
Level of expertise Level of expertise
(a) Time until the first fixation hits main in sec (b) Index number of first fixation on main

Figure 9.12: First visit to the main-method for the two programs viewed by both novices and
experts

L3_SC1/SC1 L5_SC3/SC3

Number of trials - novices 10 9

Number of trials - experts 12 13
Median dwell time - stimulus 3 sec [0..5] 4 [2..6]
Median dwell time - novices 1 sec [0..9] 4 sec [1..5]
Median dwell time - experts 4 sec [2..5] 4 sec [3..7]
p-value novices vs. experts (time) 0.539 0.556
Median number of fixations on main - stimulus 10 [3..24] 18 [10..27]
Median number of fixations on main - novices 6 [2..42] 15 [5..23]
Median number of fixations on main - experts 16 [8..21] 19 [14..31]
p-value novices vs. experts (fixations) 0.667 0.367

Table 9.18: First dwell on the main-method for the two programs viewed by both novices and
experts

Dwell time on main Number of fixations in dwell
L3 SC1/ScCl L5 _SC3/SC3 L3 SC1/SC1 L5 SC3/SC3
15-
%]
c
5 2 40- ‘
IS
;8/ 10- X
g ©
F s 3820
1S
=}
- 2 |
0- | 0- |
Novice Expert Novice Expert Novice Expert Novice Expert
Level of expertise Level of expertise
(a) Dwell time on main in sec (b) Number of fixations on main

Figure 9.13: First dwell on the main-method for the two programs viewed by both novices and
experts

142

CHAPTER 9. ANALYSIS RESULTS

9.3 Event-sequence-based measures

9.3.1 Reading direction

In total, the full AOI sequences contain 27,569 items on line-level and 27,426 on element-level. For both
AOI-levels only 3% of the items in the AOI sequences have a stopover on white space, thus the vast
majority of the movements from one item to the next in the AOI sequences are actual saccades. Looking
at the cases with intermediate fixations, the median amount of fixations in-between AOIs is 1 [1..1]. Less
than 1% of the movements were interrupted by more than one fixation.

There are 49 NT trials from 9 novices and 13 experts. Overall, 8% of the movements between lines
were directed forward, 6% backward, and 86% remained on the same line. On element-level, 56% were
directed forward, 20% backward, 24% were stationary. The proportion of linear movements is normally
distributed on both line- and element-level. A two-way ANOVA showed no differences between stimuli
(p=0.354), nor between levels of expertise (p=0.076) for line-AOIs. On element-level, the stimuli are also
comparable (p=0.093), but novices read the texts significantly more linearly than experts (p=0.012). See
table [0.19 and figure [9.14] for details.

NT1 NT2 NT3
Number of trials - novices 9 8 8
Number of trials - experts 10 6 8
Mean linear proportion (line-level) - stimulus 95% (SD=4) 93% (SD=4) 94% (SD=4)
Mean linear proportion (line-level) - novices 97% (SD=4) 94% (SD=3) 94% (SD=4)
Mean linear proportion (line- level) - experts 93% (SD=3) 92% (SD=4) 94% (SD=3)
Mean linear proportion (element-level) - stimulus 83% (SD=7) 79% (SD=7) 82% (SD=T7)
Mean linear proportion (element-level) - novices — 82% (SD=5) 83% (SD=4) 87% (SD=5)
Mean linear proportion (element-level) - experts 74% (SD=6) 82% (SD=9) 80% (SD=6)

Table 9.19: Proportion of linear reading on NT stimuli

Reading direction

forward stationary backward linear

100- *$ *é *Q 'F%- e W=

a1 ~
o (]
[an3]—-aul|

N
ol

Leb e shES *é e Ii/el of expertise
Novice

100- *g B % E5 Exper
| "$ e . Ny
e o &7

NT1 NT2 NT3 NT1 NT2 NT3 NT1 NT2 NT3 NT1 NT2 NT3
Stimuli

Proportion (%)
~
a

N o1
(é)] o
[9AB]-1UBWA|D

o

Figure 9.14: Proportion of reading directions on NT stimuli per group of expertise

143

9.3 EVENT-SEQUENCE-BASED MEASURES

RQ1:

Data from 102 trials, 9 novices and 13 experts, was analyzed for RQ1. The proportion of linear reading
on lines as well as on elements is normally distributed, so dependent samples t-tests were used to compare
NT and SC. On both AOI levels, novices and experts exhibit a significantly higher proportion of linear
reading on NT than on SC (see table and figure .

Novices Experts

Number of trials - NT 25 24

Number of trials - SC 25 28

Mean linear proportion (line-level) - NT 95% (SD=3) 93% (SD=4)
Mean linear proportion (line-level) - SC 84% (SD=3) 79% (SD=3)
p-value NT vs. SC <0.001 <0.001
Mean linear proportion (element-level) - NT 84% (SD=5) 79% (SD=T)
Mean linear proportion (element-level) - SC 65% (SD=4) 73% (SD=3)
p-value NT vs. SC (linear proportion element-level) <0.001 <0.001

Table 9.20: Proportion of linear reading on NT and SC stimuli, p-values have been corrected
for multiple testing

Reading direction

Novice Expert
100-
==] e
° °
5] = == . = =
= 5
50- ° %
3
s 25 . @
g - — . 52 F- |
c == = = e Stimulus type
g =N
‘g 100- & o
: - <
e 75 2 o]
o —l [})
== = 3
o e = 2
® O =] D
25- = - =N 5
0-
forward stationary backward linear forward stationary backward linear
Direction

Figure 9.15: Proportion of reading directions on N'T and SC stimuli per group of expertise

RQ2:

For analyzing the reading directions on SC, 44 trials from 10 novices and 14 experts were used. The
proportion of linear reading exhibits a normal distribution, both on line- and element-level. On the first
SC, independent samples t-tests show that the proportion of linear reading of novices and experts is
comparable on lines and elements. However, before correcting for multiple testing, the higher proportion
of linear reading on line-level found in novices was significantly so (p-value was 0.045). On the second
program, novices read significantly more linearly than experts, both with regard to lines and elements
(see table and figure . The proportion of linear line reading is higher for the first program, but
the difference only borders significance (p=0.051, before correcting for multiple testing p=0.029). On
element-level, both programs are comparable (p=0.153).

144

CHAPTER 9. ANALYSIS RESULTS

L3_SC1/SC1 L5_SC3/SC3

Number of trials - novices 10 9

Number of trials - experts 12 13

Mean linear proportion (line-level) - stimulus 86% (SD=b) 80% (SD=4)
Mean linear proportion (line-level) - novices 86% (SD=4) 83% (SD=3)
Mean linear proportion (line-level) - experts 82% (SD=4) 79% (SD=5)
p-value novices vs. experts (linear proportion line-level) 0.063 0.028

Mean linear proportion (element-level) - stimulus 70% (SD=7) 69% (SD=4)
Mean linear proportion (element-level) - novices 69% (SD=4) 72% (SD=4)
Mean linear proportion (element-level) - experts 65% (SD=b) 67% (SD=b5)
p-value novices vs. experts (linear proportion element-level) 0.093 0.040

Table 9.21: Proportion of linear reading on the two programs viewed by both novices and
experts, p-values have been corrected for multiple testing

Reading direction
L3_SC1/SC1 L5_SC3/SC3

i
i+
i
i+

o
o

S5
% *é +$ *é +$ Level of expertise
g - Novice
5_75 E Expert
7 128
: s e
e o o)
* - %
— —]
SN - = :
forward statiénary backward linear forward statiénary backward linear
Direction

Figure 9.16: Proportion of reading directions on the two programs viewed by both novices and
experts

Interpretation

When reading N'T, as expected, the gaze mostly stays on a line and occasionally moves forward to the next
one. On element-level, the gaze moves forward with about half of the movements, about a quarter remains
on the same word. 20% of the movements on element-level were directed backwards. The regression rate
when reading English usually ranges around 10 to 15% [Rayner} [1998] 375], [Rayner et al. [2005, 80].
Considering that none of the participants were native English speakers and the texts were probably read
very thoroughly in order to answer the comprehension questions, the slightly higher rate found in the
experiment can be deemed normal. Besides, the movements in AOI sequences are not completely equal
to saccades, so the rates are only roughly comparable. No difference in proportion of linear reading
was found between the English texts. On line-level novices and experts were also comparable, but on
element-level the novices showed a significantly higher proportion of linear NT reading than experts.

The NT stimuli were read considerably more linearly than the SCs, both by novices and experts
and on both AOI levels. This aligns well with the results by [Crosby & Stelovsky| [1990] and Busjahn|

145 |

9.3 EVENT-SEQUENCE-BASED MEASURES

et al.|[2011] that SC induces considerably more backward movements than NT. While the English texts
are inherently linear, the SCs include constructs like loops and calls to previously defined methods, thus
the order in which the text is presented does not always correspond to its execution. If a participant
wants to trace the control flow, an integral information about the program, non-linear movements are
needed to facilitate understanding. Furthermore, the SC was probably at least partly more difficult to
comprehend than the NT, so the regressive movements can also be caused by difficulties in understanding
the programs. Some participants might also exhibit a certain amount of thrashing, i.e. the gaze partly
moves around seemingly at random [Bednarik et al| 2014} 36,37], [Simon) [2014, 28]. Such thrashing
possibly occurs when someone arbitrarily looks around for any clue as to what the program does and can
also result in more backward movements, even if the general reading approach is rather linear.

When reading SC, novices consistently read more linearly than experts, but only the differences for
the second program are significant. The novice programmers already had a tendency to read the NT
stimuli on element-level more linearly than experts, so besides the lesser programming proficiency their
general reading approach might to a certain degree contribute to this finding.

Moving linearly from one AOI to another was found to be very characteristic of NT reading, but
not of code reading. Thus reading direction is an adequate measure to capture the difference of reading
these types of stimuli. As for programming expertise, the proportion of linear reading on SC is higher
for novices than for experts, but the difference between the two levels of expertise is not as pronounced
as between the stimuli types.

9.3.2 Model occurrence and model similarity

The lengths of full AOI sequences range from 25 to 640 items, with a median length of 193 [108..295]
items. Collapsed sequences on the other hand have lengths of 4 to 285 items, with a median length of 44
[24..64] items.

For NT, gaze sequences from 49 trials, recorded from 9 novices and 13 experts, are compared to
Text Order sequences. Naive glocal scores are not normally distributed. A Kruskal-Wallis test showed
no difference between the naive glocal scores of the three stimuli (p=0.061), a Mann-Whitney test no
difference between the scores of novices and experts (p=0.476). Both naive and dynamic global scores
on NT follow a normal distribution. Two-way ANOVAs showed that naive and dynamic global scores
are comparable between stimuli (naive p=0.222, dynamic p=0.181) and naive global scores also between
novices and experts (p=0.250). Dynamic global scores differ significantly between novices and experts
(p=0.040). Independent samples t-tests show that on NT1 novices have a significantly higher dynamic
global Text Order score than experts (p=0.028), but no difference was found for NT2 (p=0.429) and NT3
(p=0.461). The p-values for comparing dynamic global scores between the two levels of expertise are
corrected for multiple testing. The number of model repetitions to achieve the best dynamic alignment of
gaze and model is not normally distributed and ranges from 1 to 22, with a median of 6 [2..10] repetitions,

see table [0.22] and figure [0.17}

RQ1:

For comparing average Text Order scores on NT and SC stimuli, data from 49 trials, 9 novices and 13
experts was used. Median scores are not normally distributed, so Wilcoxon matched-pairs tests were
used to compare scores between NT and SC stimuli. For novices no significant differences were found
between the Text Order scores on the two types of stimuli. For experts however, both naive glocal and
dynamic global Text Order scores are significantly higher for NT than for SC (see table and figure
. Figure illustrates that while for novices it is rather arbitrary whether the Text Order model
sequence has a higher score in NT or SC, for experts the scores are in general much higher for NT than
for SC.

146

CHAPTER 9. ANALYSIS RESULTS

NT1 NT2 NT3

Number of trials - novices 9 8 8

Number of trials - experts 10 6 8

Median score (naive) - stimulus — 0.7[0.5..1] 1[0.6..1] 0.6 [0.4..0.6]
Median score (naive) - novices g 1[0.5..1] 1[0.9..1] 0.6 [0.4..0.6]
Median score (naive) - experts %0 0.6 [0.4..1] 0.8 [0.6..1] 0.6 [0.5..0.8]
Mean score (naive) - stimulus -3.8 (SD=4.5) -6.2 (SD=5.7) -3.6 (SD=3)
Mean score (naive) - novices -2.3 (SD=4) -5.1 (SD=5.3) -4.1 (SD=3.1)
Mean score (naive) - experts -5.2 (SD=4.7) -7.6 (SD=6.4) -3 (SD=3.1)

Mean score (dynamic) - stimulus 0.3 (SD=4.5) 0.3 (SD=5.7) 0.1 (SD=3)

Py

Mean score (dynamic) - novices %3 0.5 (SD=4) 0.3 (SD=5.3) 0.1 (SD=3.1)
Mean score (dynamic) - experts b (.1 (SD=4.7) 0.2 (SD=6.4) 0.2 (SD=3.1)
Median number of repetitions - stimulus 5 [2..10] 8 [4..12] 6 [4..9]
Median number of repetitions - novices 2 [2..9] 7 [3..9] 7 [5..10]
Median number of repetitions - experts 6 [4..11] 10 [7..14] 6 [1..8]

Table 9.22: Occurrence of and similarity to Text Order sequences on NT stimuli

Model occurrence

Text Order
NT1 NT2 NT3
9 N |
IS
8 0.75-
7
© 0.50- . '
=
I
=
~0.25- ‘
o
3
» 0.00-
Novice Ex;')ert Novice Exbert Novice Ex;')ert
Expertise
(a) Naive glocal scores
Model similarity Model similarity
Text Order Text Order
NT1 NT2 NT3 NT1 NT2 NT3
= 9 | S .
= Sos
< 9
o | P 1
| Q
q>) £ 04 ° I
© 10 g —
£ = ;
= =00 *
3 -15- . T [
a 3
(%)) T
Novice Exbert Novice Efoert Novice Exbert Novice Exf)ert Novice Exbert Novice Exbert
Expertise Expertise
(b) Naive global scores (¢) Dynamic global scores

Figure 9.17: Text Order scores per NT stimulus

147

9.3 EVENT-SEQUENCE-BASED MEASURES

Novices Experts
Number of trials - NT 25 24
Number of trials - SC 25 28
Median score (naive) - NT — 0.90.6..1] 0.7 [0.5..0.8]
Median score (naive) - SC g 0.8]0.7..1] -0.2 [-0.2..-0.1]
p-value NT vs. SC B (0.944 0.003
Median score (naive) - NT -4.2 [-6.8..-0.5] -5.9 [-7.7..-2.2]
Median score (naive) - SC -3 [4.1..-1.8] -4.2 [-5.3..-3.6]
p-value NT vs. SC 0.859 0.542
Median score (dynamic) - NT —= 0.20.2..0.4] 0.2 [0..0.2]
Median score (dynamic) - SC < 0.2 [0.1..0.3] -0.5 [-0.6..-0.4]
p-value NT vs. SC & 0.106 0.002
Median number of repetitions - NT 6 [2.5..9] 6 [5..11]
Median number of repetitions - SC 5 [4..7] 5 [4..6]

Table 9.23: Occurrence of and similarity to Text Order sequences on NT and SC stimuli

For comparing Text and Execution Order scores on SC, 63 trials from 10 novice and 16 expert program-
mers were analyzed. Since no comparison to NT is needed, 10 additional trials were included, which
belong to participants without NT recordings of sufficient data quality. None of the scores exhibit a
normal distribution, so Wilcoxon matched-pairs tests are used to test for differences. For novices, only
the naive global scores for Text Order are significantly lower than Execution Order scores. Glocal and
dynamic global scores are comparable between the two models. For experts, naive glocal scores for the
Text Order model are significantly higher than for the Execution Order model and naive global scores
for the Text Order model are significantly lower than for the Execution Order model. The difference
between dynamic global scores is not significant, but only just (see table and figure .

Novices Experts
Number of trials - SC 28 35
Median score (naive) - Text Order — 0.7[0.5..1] -0.2 [-0.2..0]
Median score (naive) - Execution Order g 0.61[04..1] -0.2 [-0.3..-0.1]
p-value Text vs. FExecution Order &0 0.631 0.031
Median score (naive) - Text Order -3 [-5.8..-1.7] -3.9 [-5.4..-2.1]
Median score (naive) - Execution Order -2.2 [-3.8..-1] -1.8 [-4.5..-1.2]
p-value Text vs. Execution Order 0.036 0.029
Median score (dynamic) - Text Order = 0.2 [0.1..0.3] -0.5]-0.6..-0.4]
Median score (dynamic) - Execution Order < 0.3[0.1..0.3] -0.6 [-0.7..-0.5]
p-value Text vs. Execution Order o0 (.297 0.055
Median number of repetitions - Text Order 6 [2..9] 6 [5..11]
Median number of repetitions - Execution Order 5 [4..7] 5 [4..6]

Table 9.24: Occurrence of and similarity to Text and Execution Order sequences on SC stimuli

148

CHAPTER 9. ANALYSIS RESULTS

Model occurrence

Text Order
Novice Expert
T
8
—IU,O.B
[
=
Zoa
g
3
» 0.0-
c °
3
ks $
q) I l) l
= NT sc NT sC
Stimulus type
(a) Naive glocal scores
Model similarity Model similarity
Text Order Text Order
Novice Expert ~ Novice Expert
= ©
2 :
3 = P o
5 —
2 S
£ | S
o ~10- CHe
S ®
Q o
n
c ~15° ? -0.4- Q
o c
b o 8
g ! !) ! © ; ! ; !
= NT sC NT sc 2 NT sc NT sc
Stimulus type Stimulus type
(b) Naive global scores (c) Dynamic global scores
Figure 9.18: Text Order scores on N'T and SC stimuli
RQ2:

44 trials from 10 novices and 14 experts were analyzed. Neither the different scores nor the number of
model repetitions are normally distributed, so Mann-Whitney tests were used to compare the results
between novices and experts. With regard to glocal alignments, no significant differences were found
between the two groups of expertise on any of the two programs. For global scores, solely the dynamic
Execution Order score on program L3_SC1/SC1 was significantly higher for experts than for novices.
All other differences were non-significant (see tables and as well as figure [0.21]).

In order to compare the results between the two SC stimuli, Wilcoxon matched-pairs tests were used.
The two stimuli differ significantly for almost all scores. For Text Order, all three types of scores are
higher for L3__SC1/SC1 than for L5_SC3/SC3. For the Execution Order model, naive glocal scores are
significantly lower for L3__SC1/SC1 than for L5_SC3/SC3, naive global scores are significantly higher.
No difference was found between dynamic global scores (table .

149

9.3 EVENT-SEQUENCE-BASED MEASURES

Model occurrence Model occurrence
Text Order Text Order partici
articipant
Novice Expert —~— AE22
1.0- Participant —— BE18
—~ —— BRO5 ~—~ —— BE26
T T 0.8-
e \< —oon § \ ~ BE2
= —— EU10 o) —— CO20
EO.S- — G029 30_4_ 2 —~— Hi27
% 0.7- —— 1013 % —— KK24
& RE11 S — K23
g 06 SA27 g 0.0- \\ PA24
("7; SEO02 (‘i’) \ RE27
0.5 SE28 3 RRO4
NT sc NT sC sizs
Stimulus type Stimulus type TU15
(a) Naive glocal scores - novices (b) Naive glocal scores - experts
Model similarity Model similarity
Text Order Text Order .
Participant
Novice Expert —— AE22
Participant —~— BE18
g 0.6- —— BRO5 E —— BE26
o —— DO21 o 0.3 —~— BE29
o —— EU10 o \ —~— €020
[5) o
= 0.4- —— G029 = 0.0- —— Hi27
§ —— 1013 % \\ —— KK24
% > RE11 _é\ —— LK23
o 02 SA27 o -0.3- \& PA24
5 SE02 5 A\ RE27
(% SE28 (‘f; ~0.6- A\ RRO4
NT sc NT sc 5128
Stimulus type Stimulus type TU15
(¢) Dynamic global scores - novices (d) Dynamic global scores - experts

Figure 9.19: Direction of the difference in Text Order scores between NT and SC stimuli

Interpretation:

The three NT stimuli are comparable with regard to how much the Text Order sequence is present within
the gaze and how similar the gaze is to the model sequence. Novices and experts are comparable in how
much they read NT at least once in Text Order and mostly in how much their gaze resembles the model.
In a number of NT trials, glocal scores of value ‘1’ were obtained, meaning that the text was at least once
read entirely according to Text Order. Glocal and dynamic global scores were predominately positive
and higher than naive global scores. The higher dynamic global than naive global scores indicate that
the texts were for the most part read more than once. The average number of times the Text Order
model was repeated to achieve the highest dynamic global similarity was 6 [2..10] times. This finding
aligns well with the participants knowing that they will be quizzed about the text and the fact that the
texts were very short, so re-reading them in order to fully understand them and remember their gist for
the upcoming comprehension question is easily done and does not take much time.

Novices follow the Text Order on lesson 1 SC as much as on NT. Glocal and dynamic global scores
are almost exclusively positive, indicating that the novice participants read both text types in a rather
linear way. This can be interpreted as transferring the customary predominantly linear reading strategy
from NT to SC. However, the programs in the first lesson were rather linear, so they also might not elicit
a radically different reading strategy than NT. For experts on the other hand, the Text Order model
is significantly more present when reading NT than when reading SC and likewise the dynamic global
similarity for Text Order is much higher for NT than for SC. Thus, experts read NT much more linearly
than SC. For novices it is rather arbitrary whether the Text Order model receives higher scores on NT or
on SC, while for experts the Text Order model is clearly a better fit for NT reading than for SC reading.

150

CHAPTER 9. ANALYSIS RESULTS

Model occurrence
Text and Execution Order

Novice Expert
1.0-
T
o
o
? 0.5
4]
=
<
A=
o 0.0-
5]
[5)
n
Text Execution Text Execution
Model
(a) Naive glocal scores
Model similarity Model similarity
Text and Execution Order Text and Execution Order
Novice Expert Novice Expert
0' ~ 05.
=]
[o)
g .. @ : —
S ? 0.0-
| Q
Q _10- T T =
= ° © -0.5-
£ S
o —15- % Ro)
o) o
§ 5 -1.0-
—20- 3 & +
Text Execution Text Execution Text Execution Text Execution
Model Model
(b) Naive global scores (¢) Dynamic global scores

Figure 9.20: Text and Execution Order scores on SC stimuli

L3_SC1/SC1 L5_SC3/SC3

Number of trials - novices 10 9

Number of trials - experts 12 13

Median naive glocal score - stimulus -0.1 [-0.2..0.1] -0.2 [-0.2..-0.1]
Median naive glocal score - novices % ,Gg -0.1 [-0.2..0.1] -0.2 [-0.2..-0.1]
Median naive glocal score - experts & -0.1[-0.2..0.1] -0.2 [-0.2..-0.2]
p-value novices vs. experts 0.893 0.260

Median naive glocal score - stimulus g -0.3 [-0.4..-0.3] -0.2 [-0.2..-0.1]
Median naive glocal score - novices g g -04 [-04..-0.3] -0.1 [-0.2..-0.1]
Median naive glocal score - experts é S -0.3[-04.-0.3] -0.2 [-0.2..-0.1]
p-value novices vs. experts = 0.544 0.386

Table 9.25: Occurrence of Text and Execution Order sequences on the two programs viewed by
both novices and experts

151

9.3 EVENT-SEQUENCE-BASED MEASURES

L3_SC1/SC1 L5_SC3/SC3

Median global score - stimulus -2.8 [4.5..-1.5] -4.2 [-5.6..-2.9]
Median global score - novices £ -3 [45.-1.7] -4.4 [-6..-3.2]
Median global score - experts T -2.5[4.1.-1.6] -3.9 [-5..-2.6]
p-value novices vs. experts y 0.843 0.794

Median global score - stimulus g -0.5 [-0.6..-0.3] -0.6 [-0.7..-0.5]
Median global score - novices < -0.6 [-0.6..-0.4] -0.6 [-0.7..-0.5]
Median global score - experts & é -0.4 [-0.5..-0.4] -0.6 [-0.7..-0.5]
p-value novices vs. experts < 0.158 0.368

Median number of repetitions - stimulus Z 3 [3..5] 4 [3..5]
Median number of repetitions - novices 3 [3..4] 4 [4..5]
Median number of repetitions - experts 3 [3..5] 5 [3..5]
Median global score - stimulus -1.5 [-2.4..-0.8] -5.5 [-7.4..-4]
Median global score - novices £ -1.6[-24.-09] -6.2[7.9.-4.4]
Median global score - experts o = -14[-18.-09] -5.1]-6.8..-3.2]
p-value novices vs. experts "qé 0.644 0.664

Median global score - stimulus O: -0.6 [-0.7..-0.5] -0.6 [-0.7..-0.5]
Median global score - novices 2 -0.8 [-0.9..-0.7] -0.6 [-0.7..-0.6]
Median global score - experts § é -0.6 [-0.6..-0.5] -0.6 [-0.7..-0.5]
p-value novices vs. experts é 2 0.002 0.582

Median number of repetitions - stimulus Z 2 [1.3] 5 [4..7]
Median number of repetitions - novices 2 [1..2] 5 [4..6]
Median number of repetitions - experts 2 [2..3] 5 [4..7]

Table 9.26: Similarity to Text and Execution Order sequences on the two programs viewed by
both novices and experts

Text Order Execution Order

Naive glocal 0.045 0.001
Naive global 0.022 <0.001
Dynamic global 0.008 0.736

Table 9.27: Comparison of scores between the SC stimuli L3_SC1/SC1 and L5_SC3/SC3

152

CHAPTER 9. ANALYSIS RESULTS

Model occurrence
Text and Execution Order

L3_SC1/SC1 L5_SC3/SC3
0.4-
g
8 o2
P Level of expertise
02) 0.0- - Novice
g i i E Expert
& 02 - Q
o
(8]
-0.4
Text Execuuon Text Executlon
Model
(a) Naive glocal scores
Model similarity Model similarity
Text and Execution Order Text and Execution Order
L3_SC1/sC1 L5_SC3/SC3 L3_SC1/SC1 L5_SC3/SC3
0.
= == g
g 8
2 ;. ° 0.5~
|°’ Level of expertise ‘l, ﬁ Level of expertise
02') ° - Novice % - Novice
g 10 e E Expert g‘ o E Expert
o T -10- o
9 o
(8]
a 3
-15-] n °
Text Execution Text Execution Text Execution Text Execution
Model Model
(b) Naive global scores (¢) Dynamic global scores

Figure 9.21: Text and Execution Order scores for the two programs viewed by both novices and
experts

Novices partly read the SCs at least once completely in Text Order (highest glocal score of ‘1’), experts on
the other hand never went over a SC even close to linearly (highest glocal score of ‘0.2’). Considering that
the SCs for novices consisted of 4 and 6 lines, those for experts of 18 and 22 lines, this is not surprising,
since it is perfectly feasible to read a few lines without going back or skipping, but for about 20 lines
that would require a lot of concentration and control over one’s eye movements, even when reading a
rather simple text. Similarly, 401] states that the global similarity scores obtained in an eye
tracking experiment on decision making strategies were lower than expected and surmises that this is
partly because participants were not able to execute a search sequence without occasional diversion, e.g.
by making regressions during reading.

When comparing the Text and Execution Order scores on SC stimuli, for novices the naive glocal
and dynamic global scores for both models are comparable, while the naive global scores for Text Order
were significantly lower than for Execution Order. For experts, naive glocal scores are significantly higher
for Text Order, while naive global scores are significantly higher for Execution Order. No difference was
found for dynamic global similarity. With regard to naive glocal alignments, no difference between Text
and Execution Order scores means that the gaze sequences contain episodes that follow Text Order as
well as episodes that comparably follow Execution Order. Reading a program at least once in Text Order
can reasonably be expected of both novices and experts. It can be interpreted as applying the linear NT
reading approach to SC, but it can also very well be a scan, i.e. an initial complete reading through the
program before focusing on its details [Sharif et al) 2012], [Uwano et al) [2006], [Uwano et al. [2007].
Since alignment algorithms start to align sequences from their ends and the naive glocal approach stops
at the first optimal solution, it is not possible to look for Text Order episodes at the beginning of a
sequence without further adapting the alignment procedure, so at this point it cannot be verified whether
a Text Order episode occurs at the beginning of a gaze sequence.

Experts having no significant difference between Text and Execution Order scores might at first

153

9.3 EVENT-SEQUENCE-BASED MEASURES

suggest that both models comparably fit to the gaze. However, while for novices the lengths of the
two model sequences per text were very similar, in the expert SCs, Execution Order sequences are
partly considerably longer than Text Order sequences. Regardless of normalization for model length,
long sequences have a lesser chance of being followed closely than short ones, since there is much more
potential for deviation as it is difficult to adhere one’s gaze to a certain pattern for longer periods of time.
Besides, jumping to the next line according to Text Order is easy, while locating the next line according
to Execution Order might require some orientating. So even though someone wanted to move the gaze
directly to the line that is executed next, it can be necessary to look around first in order to find it, and
thus the model sequence is interrupted. In the short programs from lesson 1, this is hardly relevant, but
for the longer expert codes, it might very well dilute the order in which participants look at the lines.
The potential advantage that a longer model sequence might contain more matching items and produce
less gaps is mostly leveled out by normalization, but the disadvantage of being more difficult to follow
remains. Thus, if the length of one model sequence is considerably longer than the other or one sequence
necessitates much more jumping, the comparison of the resulting alignment scores is not as direct as if
both sequences are of similar length and character. This issue arises with glocal and global alignments
alike. In such cases the score of the model behavior represented by the long sequence should be regarded
differently than the score of the short model sequence. However, there is no straightforward relation
of how much deviation from the model can be accounted for solely by model length, so the results for
these stimuli need to be interpreted more carefully. SC2 is inspected as an example. It has the greatest
difference between the lengths of the Text Order sequence (22 lines) and Execution Order sequence (52
lines) and the two model sequences are the least similar. Here, both models are comparably present.
Average naive glocal scores are -0.1 [-0.2..0] for Text Order and -0.1 [-0.2..0.1] for Execution Order. The
scores for Execution Order are slightly better than for Text Order, but the difference is not significant.
The finding that the Execution Order model is present as much as the Text Order sequence despite being
30 lines longer can be interpreted in favor of the Execution Order model. The notion that Execution
Order is actually an overall better fit for the gaze than Text Order is corroborated by the global similarity
scores. Naive global scores for Execution Order are even significantly higher than for Text Order (average
Text Order score: -4.8 [-6.0..-4.2], average Execution Order score: -1.2 [-1.6..-1.1]), dynamic global scores
for both models are comparable (average Text Order score: -0.6 [-0.7..-0.4], average Execution Order
score: -0.6 [-0.8..-0.5]). When repeating these comparisons with the not normalized scores, the results of
the comparisons remain the same despite the huge length difference, i.e. glocal and dynamic global scores
are comparable between models, and the naive global score is significantly higher for Execution Order.
An additional factor is that the recording environment for experts was less optimal than for novices.
Thus, the data quality is potentially lower for experts, resulting in longer and less homogeneous collapsed
AOI sequences, which makes the results for experts less robust.

In summary, it can be reliably concluded that at the beginning of the programming course, the novices
read the presented N'Ts and SCs rather linearly. For experts however, Text Order better describes the NT
reading behavior than the SC reading approach. Whether Execution Order better accounts for their SC
reading behavior cannot be unequivocally be determined, but the comparable Text Order and Execution
Order scores despite the much greater lengths of Execution Order sequences suggests that experts actually
focus more on Execution than on Text Order. Another general finding is, that naive global scores are
generally lower than glocal and dynamic scores, implying that the SC stimuli were mostly read several
times.

When comparing novices and experts on the two stimuli viewed by both groups, mostly no differences
were found between the scores of novices and experts. However, the dynamic global Execution Order score
on program L3_SC1/SC1 showed that experts read the program much more in Execution Order than
novices. Otherwise, model occurrence and similarity was comparable between groups. Consequently, by
the time novices reached lesson 3, novices’ and experts’ gaze mostly fits comparably to the two models.
However, at least the comparable global scores for Text Order might result from different behaviors.
For experts low agreement with Text Order is probably due to them not reading programs in a top-to-
bottom manner, but to heading for certain code areas rather purposefully. Novices on the other hand
might thrash around more in search of comprehension clues and therefore have lower similarity to the
Text Order model, even if the general reading approach is rather linear. As before, naive global scores
are much lower than glocal and dynamic global scores. Furthermore, scores mostly differ significantly
between the two SC stimuli. For the two programs that were studied, how much a model sequence fits
to the gaze seems to be more influenced by characteristics of the stimulus than by level of expertise.

154

CHAPTER 9. ANALYSIS RESULTS

9.4 Trial-based measures

9.4.1 Trial duration

In total, the EMCR trials on NT and SC amount to a duration of 2 hours and 40 minutes, whereat SC
data accounts for the larger part (see table[9.28]).

Trials Total duration (min)
All 160
NT 74
SC 87
SC - novices 40
SC - experts 47

Table 9.28: Sum of trial durations for different sets of trials

For NT, 72 trial durations were analyzed, 27 for novices and 45 for experts. The durations show a log-
normal distribution, so parametric tests can be employed. Log-transformed values were used for testing.
The mean duration over all NTs is 61 sec (SD=32). A two-way ANOVA showed no difference between
the trial durations of the three texts (p=0.121), nor between novices and experts (p=0.399). Table
and figure [0.22) detail the trial durations per text.

NT1 NT2 NT3
Number of trials - novices 10 9 8
Number of trials - experts 15 15 15

Mean duration - stimulus 54 sec (SD=33) 68 sec (SD=30) 62 sec (SD=31)
Mean duration - novices 53 sec (SD=36) 65 sec (SD=31) 58 sec (SD=26)
Mean duration - experts 54 sec (SD=32) 70 sec (SD=30) 65 sec (SD=35)

Table 9.29: Trial durations for NT stimuli

Trial duration
NT1 NT2 NT3

=

N

o
[

Trial duration (sec)
o]
o

i

Novice Exf)ert Novice Exf)ert Novice Ex;')ert
Level of expertise

Figure 9.22: NT trial durations per group of expertise

155

9.4 TRIAL-BASED MEASURES

RQ2:

For the two SCs shown to both groups of expertise, 45 trial durations were recorded, 19 for novices and
26 for experts. Again, the durations follow a log-normal distribution, so parametric tests were employed
with log-transformed durations. On the first SC the mean duration for novices is 77 sec (SD=27), for
experts 64 sec (SD=36), on the second SC the mean duration for novices is 100 sec (SD=24), for experts
75 sec (SD=41). Thus, on average, novices needed more time to read the two programs. However, using
independent samples t-tests, only the difference for the second SC proved to be significant, see table 0.30]
and figure Furthermore, even though the average duration for L5_SC3/SC3 (85 sec, SD=36) was
longer than for L3_SC1/SC1 (70 sec, SD=33), the difference is not significant (p=0.136).

L3_SC1/SC1 L5_SC3/SC3

Number of trials - novices 10 9

Number of trials - experts 13 13

Mean duration - stimulus 70 sec (SD=33) 85 sec (SD=36)
Mean duration - novices 77 sec (SD=27) 100 sec (SD=24)
Mean duration - experts 64 sec (SD=36) 75 sec (SD=41)
p-value novices vs. experts 0.202 0.034

Table 9.30: Trial durations for the two programs viewed by both novices and experts

Trial duration
L3 _SC1/SC1 L5_SC3/SC3

e

150-

100-

Trial duration (sec)

al
(@)
'

Novice Exf)ert Novice Exbert
Level of expertise

Figure 9.23: Trial durations of the two programs viewed by both novices and experts

Interpretation

Trial durations on NT are highly comparable between texts as well as between the two expertise groups.
Consequently, regarding the time needed to read the N'Ts, the participating novice and expert program-
mers are similar readers. On the two SCs that were presented to both groups, the average trial duration
of novices was longer on both programs, but only the difference for the second and more complicated
program L5_SC3/SC3 is significant.

156

CHAPTER 9. ANALYSIS RESULTS

9.4.2 Correctness of comprehension question

Overall, 76 NT correctness scores were obtained, 29 for novices and 47 for experts. The obtained scores
are not normally distributed, so non-parametric tests were used for all comparisons. The vast majority of
participants answered the NT comprehension questions completely correctly (79%), resulting in an overall
median correctness score of 1 [1..1]. Likewise, the median score for each NT is 1, with an interquartile
range of [1..1] for NT1 and NT2, and [0.5..1] for NT3. Using a Kruskal-Wallis test, no significant difference
was found between the correctness scores on the three NTs (p=0.605). Furthermore a Mann-Whitney
test showed no difference in NT comprehension between programming novices and experts (p=0.646),

see table [0.31]

NT1 NT2 NT3

Number of scores - novices 10 10 9
Number of scores - experts 16 15 16
Median score - stimulus 1[1..1] 1[1..1] 1[0.5..1]
Median score - novices 1[1.1] 170.6..1] 1 [1..1]
Median score - experts 1[1..1] 1[1..1] 11[0.4..1]

Table 9.31: Scores for NT comprehension questions

RQ2:

For the two SCs that were read by both groups of expertise, 44 comprehension scores were recorded, 18
for novices and 26 for experts. Because of a software failure, one novice score for L3_SC1 is missing
even though there is gaze data for that trial. The scores are not normally distributed, so non-parametric
tests were used. The answers to the comprehension question for L3_SC1/SC1 are completely correct 15
out of 22 times (68%) with a median correctness score of 1 [0.5..1.0]. For L5_SC3/SC3 11 of 22 answers
were correct (50%), with a median correctness score of 0.75 [0.5..1.0]. Using Mann-Whitney tests, no
significant difference was found between the comprehension scores of novices and experts on either of the
two programs (table [0.32). Even though the median score for L5_SC3/SC3 (0.75 [0.5..1]) is lower than
for L3_SC1/SC1 (1 [0.5..1]), the difference between both programs is not significant (p=0.438).

L3_SC1/SC1 L5_SC3/SC3

Number of scores - novices 9 9

Number of scores - experts 13 13

Median score - stimulus 1[0.5..1] 0.75 [0.5..1]
Median score - novices 1[0.5..1] 0.5 [0.5..1]
Median score - experts 1[0.5..1] 1[0.5..1]
p-value novices vs. experts 0.968 0.119

Table 9.32: Scores for SC comprehension questions on the two programs viewed by both novices
and experts

Interpretation

Almost all participants answered the NT comprehension questions correctly and no difference could be
found in comprehension scores between the three stimuli nor between programming novices and experts.
Consequently, none of the NTs was too difficult to understand for the participants, and novices and
experts do not differ in their ability to comprehend the presented NTs.

No difference was found between comprehension scores of novices and experts on SC. So while novices
partly needed more time to understand the programs, their performance on the comprehension questions
was comparable to that of the experts. The median scores of 1 [0.5..1] and 0.5 [0.5..1] for novices,
suggest that the difficulty of the programs was adequate for the state of knowledge of the novices at

157

9.5 THREATS TO VALIDITY

the respective point in their programming course, even though they struggled slightly more with the
later program. Experts understood both programs well (median correctness score of 1 [0.5..1] for both
stimuli). The reason, why the novices partly performed similarly well with regard to time needed to
read the programs and comprehension correctness, is most likely that they just finished the lesson in the
course that covered the relevant concepts. Hence they had just practiced programming with comparable
programs and apparently grasped them well. Besides, when scoring the summary task the participant’s
level of expertise was taken into account. The longer average trial duration and lower comprehension score
for L5_SC3/SC3 indicate that this program is more difficult than L3__SC1/SC1, however the differences
are not statistically verifiable.

9.5 Threats to validity

Careful steps were taken to ensure the validity of data and results. Nevertheless, threats may arise from
the study design, the recording environment, analysis procedures, as well as the participants.

Internal validity

Gaze data was recorded with an SMI RED-m eye tracker, a reliable eye tracking device with high precision
and accuracy, which is aimed at use in scientific research and supposed to work robustly for a wide range
of participants and recording situations |[Mele & Federici, [2012], [SensoMotoric Instruments, [2016a].
When designing the stimuli, it was taken into account that eye tracking devices are not completely exact
and the eye tracker was frequently recalibrated. Nevertheless, there is a limit to the data quality that
can be achieved. The data was recorded in natural daylight, so the light conditions were not optimal.
Additionally, to keep the situation as ecologically valid as possible participants were not restrained. The
RED-m compensates for head movements up to a certain degree, but they are still a source for errors.
While almost all novice data was recorded in the same computer lab, most experts conducted the study
at their workplace. On the one hand, this increased the validity of the recording situation. On the other
hand, the varying environments were partly less ideal for eye tracking, so the quality of the expert data
might be lower than for novices. Findings from the evaluation of the error correction method suggest that
the experts’ recordings indeed contained a greater error than those of the novices. A further issue is that
the SC stimuli presented to novices in lesson 3 and 5, and to experts were longer and more complicated
than the NTs and the SCs in lesson 1. The trials on these stimuli took more time and the text spread
closer to the margins of the screen, so their quality may be potentially lower than for NT and lesson 1.
The applied error correction addressed this issue and the recordings used when gaze location was crucial
were selected carefully. Therefore, the data included in the analyses based on location should all be of
sufficient quality for the drawn results, but it cannot be ruled out that data from some trials is of lower
quality than others.

The recording situation was designed to be very ecologically valid. The RED-m eye tracker is a small
non-intrusive device fastened to the frame underneath the display. Participants were not attached to
any equipment or restricted in any way, so the recording was not very noticeable. Especially the novices
claimed to hardly be aware of the eye tracker due to the repeated recordings. In addition, the data was not
collected in a special lab. The novices were recorded almost exclusively in the same computer room they
attended the programming course in, so they were very familiar with it. Besides, it is a regular classroom
and not an artificial setup. Experts were mostly recorded at their workplace using their own display and
keyboard, so they were also very familiar with the environment. Nevertheless, participants were aware
that their gaze is being recorded. This and knowing that they are required to answer a comprehension
question might have afflicted some persons, even though it was emphasized that the recording is not
any kind of exam and that they cannot do anything wrong. Furthermore, the researcher conducting the
recording did not look over the participants’ shoulders while their gaze was recorded, but gave them
space to work on the tasks without being under constant observation to reduce the effect of participants
adapting their behavior because they feel watched [Sharafi et al. [2015b] 100], [Sharafi et al.,|2020, 3155].
Overall, the setup was very unobtrusive, nevertheless, some participants might have shown a different
reading behavior than they would in a completely natural situation. Furthermore, all processing steps
were automated as much as possible to ensure exact and objective results, e.g. AOI coordinates were
calculated directly from the stimulus image.

158

CHAPTER 9. ANALYSIS RESULTS

External validity

Eye movements are heavily guided by the stimulus and task at hand. The languages used in the EMCR
study were chosen for their representativeness and the employed tasks represent common activities during
programming, both when learning a programming language as well as during professional software devel-
opment. However, the tasks were not distinguished during analysis. The English texts were taken from a
reading test and the programs were adapted from another study or actual teaching material in order to
generate valid stimuli. Also, they include essential concepts like loops and conditions. Nevertheless, the
specific texts and associated comprehension tasks might include unfavorable aspects that limit the gen-
eralizability of some findings. For example, program L5_SC3/SC3 contains a method called accelerate
which also allows to decrease the speed of a vehicle by accepting negative acceleration values. This pitfall
was incorporated into an otherwise simple program so it is not too easy for the experts, yet only contains
basic constructs so that novices can understand it. However, such a “trick question” is very artificial
and possibly resulted in confusing some participants. Two novice programs were written in pseudocode,
which also could be a factor in some of the analyses. All texts are rather short (maximum of 22 lines) to
fit the screen without scrolling. While such short programs are typical for programming education, they
are somewhat artificial for experts. Since this is a common constraint in eye tracking studies on software
engineering [Obaidellah et al.,[2018] 33], [Sharafi et al., 2015b, 100], [Sharafi et al., 2020} 3144], the design
in any case allows to integrate the findings with many other results obtained from small programs.

Furthermore the formatting can influence the results. At least the expert programmers who par-
ticipated in the study are used to a certain color scheme for syntax highlighting, which differs among
participants. In order to establish the same condition for all participants, the stimulus programs were
presented in plain format without any color. Using C#.Net as programming language, Beelders & Plessis
[2016a) and Beelders & Plessis [2016b] found that displaying code with and without syntax highlighting
to IT students had no significant effect on the number of fixations, fixation durations, and number of
regressions. Thus, it is presumed that the absence of syntax highlighting is a negligible issue. To facilitate
the mapping of gaze to the stimulus, white spaces were added where possible, but only when it did not
disturb the structure of the text. Nevertheless, it might still have irritated someone. The order in which
the texts were presented was randomized to avoid effects from always showing a text at a certain point
in the experiment. Yet, despite the careful design, using another set of stimuli will yield at least partially
different findings.

The EMCR study includes 26 participants, which is slightly more than the typical number of partici-
pants in such eye tracking studies, and even features professional programmers instead of students, a plus
compared to some other studies |[Obaidellah et al., 2018} 17-19], [Sharafi et al.|2015b} 90,92,101], [Sharafi
et al.), 2020, 3145,3146]. Despite the adequate participants, it cannot be ruled out that some findings are
specific to the studied individuals and not representative. Some eye physiologies are more suitable for
being recorded by an eye tracker than others, so data quality varies among participants. Besides, even
though all participants were proficient in English, none were native speakers, which has to be considered
for the findings on NT reading.

Construct validity

Like most research using eye movement data, the EMCR study largely draws on the widely accepted
assumption that gaze and attention are strongly linked. Furthermore, eye tracking is intensely based
on software [Hornof & Halverson| [2002, 593,594]. The gaze location is calculated rather than measured
with a device like a ruler. On one hand, a computer is more objective than a human, on the other hand,
software is written by humans and not without fail. Optic artifacts, i.e. impossible eye movements found
in the data [Holmqvist et al., 2011} 33,34], are a strong reminder of that.

Furthermore, the detection of oculomotor events can be problematic. The definitions of many events
are somewhat ambiguous, and there is no complete consensus about what exactly constitutes a fixation
or a saccade. For instance, some attribute glissades to fixations others to saccades or consider them noise.
Even for humans, it is partly difficult to decide whether certain samples belong to a fixation or another
type of event. Furthermore, the events used in eye tracking research are usually calculated entities and
depend on the used detection algorithm and parameters. So the same raw data will yield somewhat
different events when processed with another detection approach. The employed I-DT was carefully
chosen and adapted to the EMCR, data, nevertheless not all samples might be classified correctly. Also,
the results obtained with the here computed events are probably not entirely comparable to others from
a different detection approach. However, the EMCR analysis results are based on fixations and saccades

159

9.5 THREATS TO VALIDITY

that were calculated with exactly the same algorithm and parameters, so these events were attained
consistently and objectively. Another point to consider is that the sample location is relevant when
identifying fixations, but the procedure to correct spatial errors is only applied after fixation detection.
Thus, determining fixations is susceptible to errors. The subsequent correction rectifies this obstacle to
a great extent, but cannot oust it completely. Besides, the error correction itself is a modification to the
data, albeit a well-founded one.

The indicated threats to validity are mostly typical for eye tracking studies and were addressed carefully
as well as taken into account during analysis. Despite the challenges associated with eye tracking, gaze
data provides very rich and detailed information about code reading and comprehension that is not
accessible by other instruments like think-aloud or interviews and the EMCR data represents a good
basis for the conducted analyses.

160

10

Conclusion _

10.1 Synopsis

The EMCR study was conducted with the objective to advance the research methodology in the domain
of program comprehension and to deepen the knowledge thereof. A methodological framework was
presented that allows to analyze eye movements during program comprehension and two exemplary
research questions were answered regarding code reading, an observable component of comprehension.

10.1.1 Natural-language text reading

In addition to code reading, data on the participants’ NT reading behavior was collected in order to assess
whether findings on NT are largely transferable to SC reading and to have a baseline for interpreting the
SC results.

Overall, the EMCR participants show a regular NT reading behavior on the English texts, even
though they were not native speakers. Their fixation durations when reading NT reside within a normal
range and they predominantly read linearly top-to-bottom and left-to-right. The three stimulus texts
were understood correctly by the majority of participants and are mostly interchangeable as they induce
comparable results for almost all tested measures. Solely the element coverage is slightly higher on NT2
than on the other two texts (median=100% instead of 99%). Even the times needed for comprehension
are comparable. Thus, it is of hardly any consequence that for some participants not all NT stimuli are
available for analysis. The participants of the novice and expert programmer groups exhibit for the most
part comparable NT reading behaviors. Fixation duration proved to be highly variable and idiosyncratic,
so the identified differences for this measure are attributable to individual traits. The few differences
found between the participating novices and experts when reading NT were taken into account when
interpreting the results of the respective measure with regard to the research questions.

10.1.2 Research question 1

Is reading behavior different between natural-language text and source code?
If so, is the difference already present in novices?

Fixation duration is a highly individual measure and can vary substantially over a trial. Reading source
code instead of natural-language text did not radically change the participants’ fixation durations. For
novices the distribution of fixation durations on SC differs significantly from that on NT, while the average
fixation duration does not. For experts however, both the distribution and average fixation duration are
comparable on NT and SC. All participants were at least advanced, but not native English speakers, so
the foreign language is a factor when comparing fixation durations on NT and SC. With regard to AOI
coverage however, the NT and SC reading behaviors are very different. Both novices and experts looked at
significantly more lines and elements of the English texts than the SCs. Likewise, both groups of expertise

161

10.1 SYNOPSIS

have a much higher proportion of linear reading on line- and element-level for the NT stimuli than for
SC. Thus, locally both novices and experts read SC much less linearly than NT. Nevertheless, when
analyzing the overall reading approach, novices read NT and SC comparably according to Text Order.
Experts on the other hand follow Text Order on NT much more than on SC. Text Order and Execution
Order mostly fit equally to the novices’ gaze when reading SC. For experts no definite conclusion can be
drawn about which model better characterizes their gaze during code reading when comparing Text and
Execution Order scores on SC. However, there are plausible indications that overall Execution Order is
at least partly a better fit.

SC is read differently than NT in several aspects. Differences in the reading behavior were already
found for early novices, for expert programmers they are even more pronounced. Consequently, the two
types of text do indeed induce different reading behaviors, it has to be thoroughly examined to which
extent measures and findings from NT reading apply to code reading as well. Table [I0.1] summarizes the
most prominent results.

Measure Novices Experts
- Distribution of fixation duration NT #SC NT =SC
=
% 2 Median fixation duration NT =SC NT =SC
. 7]
%;o 2 Aol coverage (line-level) NT > SC NT > SC
E AOI coverage (element-level) NT > SC NT > SC
Proportion of linear reading (line-level) NT > SC NT > SC

Proportion of linear reading (element-level) NT > SC NT > SC
Model occurrence - Text Order NT =SC NT > SC
Dynamic model similarity - Text Order NT =SC NT > SC

event-sequence-
based

Table 10.1: Summary of the most notable results for research question 1. AOI coverage and
proportion of linear reading differ between NT and SC irrespective of programming expertise.
The Text Order model fits equally well to the novices’ reading approach on NT and SC, while
for experts it matches the NT reading more than the SC reading. Comparisons that showed
statistically significant differences between N'T and SC reading are highlighted.

10.1.3 Research question 2

Do novices exhibit a different code reading behavior than experts?

The distribution of fixation durations differs between novices and experts on both tested programs. For
the first SC (L3__SC1/SC1) average fixation duration and number of fixations were comparable for both
groups, while on the second program (L5_SC3/SC3) novices had significantly higher average fixation
durations, but similar number of fixations. Median and distribution of fixation duration are comparable
between the two SCs. Novices and experts were also found to have different distributions of saccadic
amplitude on both programs, while average saccadic amplitude as well as scanpath length are comparable.
Similarly, AOI coverage was mostly comparable between novices and experts. Solely on L3 SC1/SC1
novices looked at more lines than experts. In contrast, the time and number of fixations until the
participants visit the main-method for the first time are much higher for novices than for experts. The
differences occur strongly in both programs. Experts visit the main very early when reading the programs,
while novices spend a lot of time on the code above it. Given that the main-method was located at the
end of the programs and experts usually looked at much less than half of the lines above main before
their first visit there, this finding strongly suggests that experts purposefully went for this method. Once
they reached the main, the dwell does not differ between the two groups of expertise.

162

CHAPTER 10. CONCLUSION

On program L3_SC1/SC1 novices and experts exhibit a comparable proportion of linear reading,
though novices tend to read lines in a more linear manner than experts. The later program L5 SC3/SC3
was read significantly more linearly by novices than by experts - both on line and element level. Novices
already read N'T more linearly on element-level than experts, so the difference on the finer level might be
partly the result of the individual reading behavior of the studied persons and not only of programming
expertise. With regard to occurrence of and similarity to the two models Text Order and Execution
Order, hardly any differences were found between the two groups of expertise. Only on L3_SC1/SC1,
experts followed the dynamic global Execution Order significantly more than novices. On average novices
needed more time to read and understand the programs than experts, but the difference is only significant
for the second more complicated SC. With regard to comprehension, both novices and experts reached
similar scores given their expertise.

Novices and experts were found to be similar for a number of measures. They mostly differ with
regard to the order in which they read SC. Most notably, experts proceed to look at the main-method
very early after starting to read a program, while novices lack this purposeful behavior. Furthermore, the
novices partly display a more linear reading behavior than the experts. A summary of important results

is provided in table

Measure L3_SC1/SC1 L5_SC3/SC3
Distribution of fixation duration novices # experts novices # experts
Median fixation duration novices = experts novices > experts
he
% Distribution of saccadic amplitude novices # experts mnovices # experts
-
Y Median saccadic amplitude novices = experts novices = experts
<]
© Time till first visit to main novices > experts novices > experts
<5}
oD) . .
& Number of fixations till first visit to main novices > experts novices > experts
n
Dwell time of first visit to main novices = experts novices = experts
Number of fixations in first visit to main novices = experts novices = experts
~ Proportion of linear reading (line-level) novices = experts novices > experts
%
X Proportion of linear reading (element-level) novices = experts novices > experts
1
D
& Model occurrence - Text Order novices = experts novices = experts
5}
=
g Dynamic model similarity - Text Order novices = experts novices = experts
n
1
‘qs':; Model occurrence - Execution Order novices = experts novices = experts
>
[¢]

Dynamic model similarity - Execution Order novices < experts novices = experts

Table 10.2: Summary of the most notable results for research question 2. The distributions of
fixation durations and saccadic amplitudes differ between novices and experts on both programs.
The time and number of fixations until the main-method is visited for the first time are the
most prominent differences between the two groups of expertise. Moreover, novices tend to
read the programs more linearly than experts. Comparisons that showed statistically significant
differences between novices and experts are highlighted.

163

10.2 REFLECTION ON METHODS AND ANALYSIS MEASURES

10.2 Reflection on methods and analysis measures

Preparing gaze data for analysis is a crucial part of the EMCR study. The central steps are determining
fixations and saccades from raw gaze data, as well as the correction of spatial errors. Both procedures
were developed specifically for the EMCR data, but can be applied to a multitude of other gaze data not
just from programming- or reading-related stimuli.

Fixations were detected with an adapted identification by dispersion threshold algorithm suitable
for the two sampling rates present in the EMCR data. The specific implementation sets the dispersion
threshold in milliseconds instead of number of samples, uses the maximum distance between samples as
dispersion measure, allows a certain amount of samples outside the specified dispersion threshold, and
introduces a maximum amount of time that can be missing between samples within a fixation. These
adaptions help to overcome several of the I-DT’s usual drawbacks and make it more robust even for noisy
data. Furthermore, it is based on a very palpable principle and has a wide applicability, as it allows
to process raw gaze data that was recorded with various sampling rates using the same approach since
raw data with a high sampling rate can be down-sampled. Velocity-based event detection on the other
hand has a narrower scope, since it is problematic for data from slower eye trackers. In addition, the
I-DT can be adjusted to the data at hand by its two parameters. On the downside, the I-DT might
misclassify samples under certain conditions, e.g. low precision of the data. The instantiated adaptions
reduce this issue, but do not remove it completely. Besides, some of the modifications make the algorithm
computationally intensive and unusable for on-the-fly event detection, which is irrelevant for the EMCR
study, but might be a factor for others. Evaluating the adapted I-DT as well as the chosen parameter
settings showed that they are a good choice for the EMCR data.

Drawing from other methods for correcting spatial errors, a novel approach was developed that takes
the distribution of AOIs on the stimulus into account. Besides adopting the common steps for preparing
stimuli to lessen the impact of errors, like adding extra margins where possible, AOIs in less dense parts
of the stimuli were adapted to allow for greater disparities. Evaluating correction methods itself poses
a challenge, so several options were applied. Comparing the fixations to reference locations, manually
corrected data, and artificial data all provides valuable information about the suitability of a correction
method, as well as data quality, but only their combination allows to draw a more comprehensive picture.
The evaluation showed that the correction procedures considerably improved data quality. However, the
performance varies depending on the data that is to be processed. The large amount of parameters,
that are tested to find an optimal solution to the correction, results in a very long computing time. To
increase the applicability of the correction procedures, a heuristic is needed to reduce the parameter
search space to a more reasonable size. Moreover, automatically corrected data should still be inspected
for plausibility by at least one person, better yet two as practiced for the EMCR data.

Further methodological aspects include complementing gaze data with trial duration and correctness
of the comprehension task. In addition, taking interview data from the expert programmers into account
facilitated defining the Execution Order model. Combining different types of data yielded rich informa-
tion and has a lot of potential for further development. Furthermore, as many steps as possible were
automated, e.g. determining AOIs algorithmically, establishing a high degree of objectivity and allowing
to process larger amounts of data.

Fixation duration, number of fixations, saccadic amplitude, and the associated measures like scanpath
length were found to be highly idiosyncratic and not very distinctive for either research question, which
is in itself a relevant finding. Fixation duration and saccadic amplitude can vary substantially over the
course of a trial and aggregated values partly conceal differences found in their distribution. Yet, fixations
and saccades are very basic events and provide the foundation for other more complex measures, and
they yield vital information about the quality of the collected data. Besides, they are very universal in
eye movement research, so applying them allows to relate the data to a multitude of other studies and
findings. Especially duration and number of fixations as well as their variations are very often used in
eye tracking studies about programming |Obaidellah et al., [2018|, 27-30], |Sharafi et al.| [2015a]. Moreover,
for other questions concerning program comprehension studying these elementary measures might very
well result in more consequential findings. Thus, such measures should also be examined and reported in
future studies when possible.

AOI coverage differed significantly between NT and SC stimuli, so it is a very distinguishing measure
for the text type. For level of expertise on the other hand, it did not allow to differentiate between novice

164

CHAPTER 10. CONCLUSION

and expert code reading behavior. However, only the proportion of AOIs was studied, not which AOIs
were looked at. Thus it can very well be that experts and novices do focus on a similar amount of AOlIs,
but not on the same ones, e.g. different kinds of lexical elements or other sections of the program might
be of interest to each group as illustrated by [Crosby & Stelovsky|[1990]. Since AOIs are not text-specific
and can be created on varying levels of abstraction, AOI coverage can be applied for many questions and
stimuli, e.g. understanding UML diagrams.

The first visit to the main-method can only be studied for programming languages which include this
concept. For Java, a language widely used in programming education as well as in industry, the time and
number of fixations until the main was looked at for the first time, strongly distinguishes novices from
experts. The first dwell on main however was comparable for both levels of expertise. Consequently, the
point in time in which the main is accessed is a key difference between novices and experts. Since the
contrast was so compelling for Java, the first visit to main or a comparable method is definitive worth
studying for other languages to ascertain that the effect is representative.

The proportion of linear reading proved to be influenced by text type. Both novices and experts read
the English texts more linearly than the Java programs. This can be explained by the non-linear nature
of the programs as well as by their difficulty, which might have elicited a higher portion of regressions.
On SC novices have the tendency to read more linearly than experts. Consequently, this measure yields
valuable insights with regard to stimulus type as well as expertise, and it is applicable to other research
questions as it captures sequential information on different levels of abstraction. Furthermore it can easily
be adapted for other stimuli, like programs in the languages Snap! or Scratch.

Aligning gaze with different models is a useful way of analyzing gaze data and testing how much
a certain model accounts for the observed behavior. This is not limited to reading. Glocal alignments
allow to detect episodes in the gaze that resemble a model sequence and open the possibility to divide the
gaze into consecutive phases. With naive glocal alignments the gaze can be examined for the presence
of different models, which might occur at some point, e.g. an episode of following the Execution Order.
The approach used here can be adapted to look for parts of the model, e.g. only the execution of the
main-method or the initial scan of the complete program. Additionally, with dynamic glocal alignments,
episodes of repeatedly following a model order can be identified, even when the model is not a good fit for
the overall strategy. Global alignments determine the general similarity between gaze and model. When
the gaze contains more than one episode of looking at a stimulus in a certain way, naive global alignments
are not a very suitable instrument to evaluate similarity between gaze and model. In order to assess the
overall similarity of gaze to a model, dynamic global alignments are more appropriate, especially since
the procedure starts with the unrepeated model. Thus, if the text (or any stimulus for that matter) is
only looked at once according to model, the dynamic alignment will not repeat the model and align the
gaze with just a single model instance. In addition to the types of alignment used in the EMCR analysis,
local alignments can be employed to find sub-sequences that are highly similar between model and gaze
or between participants. Such patterns can also be seen as episodes in the overall reading approach and
serve as basis for developing further models to characterize code reading.

Alignment scores are highly affected by model length. Thus in order to fully tap the potential of this
analysis instrument when comparing model behaviors, it might be worth considering to construct the
stimuli in a way that the lengths of the model sequences are very similar while the sequences themselves
are as different as possible. For SC this could be achieved by using loops, method calls, and conditions
to cause the execution to jump to different locations in the program other than the next line, and
simultaneously include code that will not necessarily be executed, e.g. an else-branch, to balance the
length of Text and Execution Order. Finally, alignments can be used on artificial as well as on actual
gaze data and for all purposes of a similarity measure suggested by [Mathdt et al.| [2012, 1,2]: finding
differences in the gaze from pre-defined groups, e.g. novices and experts; finding clusters and patterns
within gaze data; diagnosing to which group a given gaze sequence is most similar; and analyzing within-
versus between-participant similarity, i.e. is the SC reading behavior from one person when re-reading a
program (or even when reading different programs) more similar than between participants.

Trial duration equals the time needed to read the text and can be used without eye tracking. The same
applies to the correctness of the comprehension question. Consequently, these measures have a broad
field of application irrespective of eye movements and programming and allow to relate the findings to
many other studies. They yield additional information about the participants’ comprehension and still
provide data even when the gaze recording fails or has insufficient quality.

165

10.3 DISCUSSION AND FUTURE WORK

10.3 Discussion and future work

Studying eye movements during code reading proved to be worthwhile the effort. The developed method-
ological framework reinforced the findings that source code elicits a different reading behavior than
natural-language text and that proficient code reading requires its own specific approach.

It is usually taken for granted that novice programmers are trained readers. Consequently, program-
ming instruction often puts only limited effort into further developing code reading skills, without realizing
that the previously acquired reading behavior might partly be more of a hindrance than helpful. Skilled
reading comprises more than just decoding written words. Various mental operations take place during
reading to process and filter the visual information, and to determine where to direct the eyes next, thus
reading and understanding are highly intertwined. The ability to understand given code is recurrently
described as a distinct skill, partly even as precursor to other programming-related skills |Lister et al.
2004), |[Lopez et al.,[2008], [Venables et al., [2009], [Xie et al., [2018], [Xie et al.l|2019]. It comprises under-
standing the syntax and tracing the execution, but also inferring the algorithmic idea or general purpose
of the code. Simply transferring the chiefly top-to-bottom reading approach from natural-language text
to source code seems not to be adequate. Novices lack the purposeful visual behavior found in experienced
programmers, so expertise is in part reflected in the order in which programmers move their eyes over
the code and presumably, there are different reading strategies associated with development, debugging,
or mere comprehension.

In addition to the reading order, natural-language and program text differ in how much of the words
or elements are necessary for comprehension. Both types of text can be fully understood even though
some elements are skipped during reading. Typical examples are the articles “a” and “the” in English
and closing brackets in Java. However, in Java a much larger portion of the text was omitted during
reading or just perceived parafoveally. Programming languages prescribe a certain structure for the text,
so many elements can be presumed to be present and therefore do not have to be foveated. This finding
illustrates that natural-language text and source code are fundamentally different types of text.

Code reading is a perpetual programming activity, performed when learning to program, writing
new code, during debugging, maintenance, and reviewing and plays an important role in program com-
prehension. The results of the EMCR study corroborate claims of its relevance by |[Busjahn & Schulte
[2013], Deimel Jr.| [1985], Kimura| [1979], [Lister et al.| [2004], [Pea| [1986], Raymond| [1991], [Rooksby et al.
[2006], [Schulte| [2007], [Spinellis| [2003b], and Xie et al.|[2019], and they emphasize that code reading
warrants more attention, both in research on software engineering and computer science education, and
in programming instruction. It can reliably be concluded that reading source code is effectively different
from reading natural-language text and that eye movements allow useful insights into different aspects of
program comprehension. The robust methodology opens up the possibility to study comprehension with
gaze data on a very detailed level and with more ecologically valid stimuli.

Central aspects of future work are refining the current methodology and broadening it to also include
more data-driven components. Besides, the more general challenges of detecting oculomotor events and
addressing errors in gaze data will continually be developed further with special consideration of program
comprehension.

A large dataset about Eye Movements in Programming has recently been published, which is to a
substantial extent based on the EMCR study presented here, allowing to apply the demonstrated measures
to a rich body of data [Bednarik et all 2020]. The EMIP dataset was collected in an international
effort, it already contains samples of over 200 participants reading source code and is still growing. The
participants’ level of programming expertise ranges from none to high and the stimuli consist of two
programs, which are identical to the ones used for the second research question in the EMCR study.
In addition to Java, the EMIP study contains the same stimulus programs in Python and Scala. Most
EMIP participants read the programs in Java, but more samples in other languages are being added. The
stimuli can also be translated to further programming languages without difficulty. Thus this dataset can
eventually also be used to compare findings across programming languages and paradigms. Additionally
to working with different programming languages, to determine the degree to which these results can be
generalized, natural languages from further language families can also be included in order to ascertain
how other reading approaches differ from code reading and how they affect it.

The EMCR analysis includes the measure AOI coverage to describe how much the gaze spread across
the stimulus. In addition to this, it is highly worthwhile to inspect where the participants looked. With

166

CHAPTER 10. CONCLUSION

regard to the stimuli it is of interest how much visual attention various code areas receive. As to level
of expertise, it can be compared whether novices and experts focus on the same parts of a program.
Such analyses can be carried out with AOIs on different levels of detail, e.g. assess which methods, lines,
constructs, or even elements are looked at most by each group.

Moreover, the sequential structure of gaze during program comprehension can be analyzed in much
greater detail. The proportion of linear reading operates on pairs of AOIs in the AOI sequence that were
looked at consecutively, model occurrence and similarity on compressed AOI sequences of the complete
trial. The intermediate step is to study sequences in between. On the one hand, only parts of the gaze
sequence can be inspected, e.g. the first part in order to look for an initial scan of the program. On the
other hand, instead of using an overall model sequence, it can be assessed how much participants exhibit
smaller model behaviors, e.g. following a certain loop or other control structures. Again, different levels
of detail are possible for AOIs, e.g. using block-AOIs to test transitions between methods. Further refine-
ments for sequence-based analyses include exploring different scoring systems for alignments, e.g. using a
matrix to assign specific scores to each pair of items. A major next step is to identify gaze patterns during
program comprehension in a data-driven approach. The model behaviors Text Order and Execution Or-
der were defined based on findings from literature and interviews with professional programmers. They
were not derived from the EMCR gaze data. However, alignments and other computational techniques
allow to search for common sub-sequences within the gaze, which ultimately yield visual strategies during
program comprehension. Moreover, alignment scores can be used to establish whether the gaze of experts
can be grouped into a cluster, in which the gaze sequences are more similar to each other than to the
ones from novices. If such a group of expert data can be formed, it can be tested how similar a given
gaze sequence is to the expert cluster.

The presented methodology is also suitable to study other programming-related tasks like debugging,
other model behaviors, e.g. following the data-flow within a program, or differentiate between overall
comprehension and particular processes like tracing. It also allows to advance the inclusion of readability
aspects in programming, not just regarding the surface, e.g. finding an especially suitable formatting,
but also conceptually when designing programming languages. Finally, in order to move forward from
observable behavior to cognitive concepts, gaze data is to be complemented with qualitative data, e.g.
from interviews with programmers of varying level of expertise as well as from retrospective think-aloud
cued with eye movements.

Apart from the research perspective, findings from studying eye movements during program compre-
hension also have implications for programming education as well as for practicing programmers. The
EMCR study demonstrated that reading source code calls for a less linear reading behavior than reading
natural-languages like English. Advising programming novices early on that their customary reading
behavior is not the most adequate approach for source code could save them some effort and frustration.
Further work is needed in order to identify expert code reading strategies more comprehensively, and to
develop as well as evaluate corresponding teaching approaches. Nevertheless, a lightweight intervention
at least for teaching Java can be to instruct learners to purposefully head for the main-method very early
on when trying to understand a program. Providing IDEs by default with the option to directly jump
to the main or another predefined reference point can facilitate working with large programs, especially
during maintenance and code review. Consequently, using eye movements to study how visual atten-
tion is allocated during different programming-related activities, like understanding a given program or
debugging, leads to insights about the cognitive aspects involved in programming which can be used to
improve programming instruction, but also to support software engineers in their work. There is still
much to be learned about program comprehension and gaze proved to be a valuable vehicle for that.

167

10.3 DISCUSSION AND FUTURE WORK

168

Bibliography _

Albert, W. & Tedesco, D. (2010). Reliability of self-reported awareness measures based on eye tracking.
Journal of Usability Studies, 5(2), 50-64.

Anderson, N. C., Anderson, F., Kingstone, A., & Bischof, W. F. (2015). A comparison of scanpath
comparison methods. Behavior Research Methods, 47(4), 1377-1392.

Aschwanden, C. & Crosby, M. (2006). Code scanning patterns in program comprehension. In Proceedings
of the 39th Hawaii International Conference on System Science.

Ashmore, M., Duchowski, A. T., & Shoemaker, G. (2005). Efficient eye pointing with a fisheye lens. In
Proceedings of Graphics Interface 2005 (pp. 203-210).

Bates, R. & Istance, H. (2002). Zooming interfaces! Enhancing the performance of eye controlled pointing
devices. In Proceedings of the Fifth International ACM Conference on Assistive Technologies, Assets
02 (pp. 119-126). New York, NY, USA: ACM.

Bednarik, R., Busjahn, T., Gibaldi, A., Ahadi, A., Bielikova, M., Crosby, M., Essig, K., Fagerholm,
F., Jbara, A., Lister, R., Orlov, P., Paterson, J., Sharif, B., Sirkid, T., Stelovsky, J., Tvarozek, J.,
Vrzakova, H., & Linde, I. v. d. (2020). EMIP: The eye movements in programming dataset. Science
of Computer Programming, 198, 102520.

Bednarik, R., Busjahn, T., & Schulte, C., Eds. (2014). Eye Movements in Programming Education:
Analyzing the Expert’s Gaze. Number 18 in Reports and Studies in Forestry and Natural Sciences.
Joensuu, Finland: University of Eastern Finland.

Bednarik, R., Busjahn, T., Schulte, C., & Tamm, S., Eds. (2016). Eye Movements in Programming:
Models to Data. Number 23 in Reports and Studies in Forestry and Natural Sciences. Joensuu, Finland:
University of Eastern Finland.

Bednarik, R. & Schulte, C., Eds. (2018). EMIP ’18: Proceedings of the Workshop on Fye Movements in
Programming, New York, NY, USA. ACM.

Bednarik, R. & Tukiainen, M. (2004a). Visual attention and representation switching in Java program de-
bugging: A study using eye movement tracking. In Proceedings of the 16th Workshop of the Psychology
of Programming Interest Group (pp. 159-169). Carlow, Ireland.

Bednarik, R. & Tukiainen, M. (2004b). Visual attention tracking during program debugging. In Proceed-
ings of the Third Nordic Conference on Human-Computer Interaction, NordiCHI 04 (pp. 331-334).
New York, NY, USA: ACM.

Bednarik, R. & Tukiainen, M. (2006). An eye-tracking methodology for characterizing program compre-
hension processes. In Proceedings of the 2006 Symposium on Eye Tracking Research & Applications,
ETRA ’06 (pp. 125-132). New York, NY, USA: ACM.

Bednarik, R. & Tukiainen, M. (2007). Validating the Restricted Focus Viewer: A study using eye-
movement tracking. Behavior Research Methods, 39(2), 274-282.

169

10.3 DISCUSSION AND FUTURE WORK

Beelders, T. & Plessis, J.-P. d. (2016a). The influence of syntax highlighting on scanning and reading
behaviour for source code. In Proceedings of the Annual Conference of the South African Institute of
Computer Scientists and Information Technologists, SAICSIT ’16 (pp. 1-10). New York, NY, USA:
ACM.

Beelders, T. R. & Plessis, J.-P. L. d. (2016b). Syntax highlighting as an influencing factor when reading
and comprehending source code. Journal of Eye Movement Research, 9(1), 1-11.

Begel, A. & Siegmund, J., Eds. (2019). EMIP ’19; Proceedings of the 6th International Workshop on Eye
Movements in Programming, Montreal, Quebec, Canada. IEEE Press.

Bente, G. (2004). Erfassung und Analyse des Blickverhaltens. In R. Mangold, P. Vorderer, & G. Bente
(Eds.), Lehrbuch der Medienpsychologie (pp. 297-324). Gottingen, Bern, Toronto, Seattle: Hogrefe-
Verlag.

Binkley, D., Davis, M., Lawrie, D., Maletic, J. I., Morrell, C., & Sharif, B. (2012). The impact of identifier
style on effort and comprehension. Empirical Software Engineering, 18(2), 219-276.

Blackwell, A. F., Jansen, A. R., & Marriott, K. (2000). Restricted Focus Viewer: A tool for tracking
visual attention. In M. Anderson, P. Cheng, & V. Haarslev (Eds.), Theory and Application of Diagrams,
volume 1889 of Lecture Notes in Computer Science (pp. 162-177).: Springer Berlin Heidelberg.

Blascheck, T. & Sharif, B. (2019). Visually analyzing eye movements on natural language texts and source
code snippets. In Proceedings of the 11th ACM Symposium on Eye Tracking Research € Applications,
ETRA ’19 (pp. 1-9). New York, NY, USA: ACM.

Blignaut, P. (2009). Fixation identification: The optimum threshold for a dispersion algorithm. Attention,
Perception, & Psychophysics, 71(4), 881-895.

Blignaut, P. & Beelders, T. (2009). The effect of fixational eye movements on fixation identification with
a dispersion-based fixation detection algorithm. Journal of Eye Movement Research, 2(5).

Bockenhauer, H.-J. & Bongartz, D. (2003). Algorithmische Grundlagen der Bioinformatik: Modelle,
Methoden und Komplexitdt. Leitfaden der Informatik. Stuttgart, Leipzig, Wiesbaden: Teubner.

Budde, L., Heinemann, B., & Schulte, C. (2017). A theory based tool set for analysing reading processes in
the context of learning programming. In Proceedings of the 12th Workshop on Primary and Secondary
Computing Education, WiPSCE ’17 (pp. 83-86). New York, NY, USA: ACM.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., Sharif, B., & Tamm,
S. (2015a). Eye movements in code reading: Relaxing the linear order. In Proceedings of the 2015
IEEF 23rd International Conference on Program Comprehension, ICPC ’15 (pp. 255-265). USA: IEEE
Computer Society.

Busjahn, T., Bednarik, R., & Schulte, C. (2014a). What influences dwell time during source code reading?
Analysis of element type and frequency as factors. In Proceedings of the Symposium on Eye Tracking
Research and Applications, ETRA ’14 (pp. 335-338). New York, NY, USA: ACM.

Busjahn, T. & Schulte, C. (2013). The use of code reading in teaching programming. In Proceedings
of the 13th Koli Calling International Conference on Computing Education Research, Koli Calling ’13
(pp- 3-11). New York, NY, USA: ACM.

Busjahn, T., Schulte, C., & Busjahn, A. (2011). Analysis of code reading to gain more insight in pro-
gram comprehension. In Proceedings of the 11th Koli Calling International Conference on Computing
Education Research, Koli Calling 11 (pp. 1-9). New York, NY, USA: ACM.

Busjahn, T., Schulte, C., & Kropp, E. (2014b). Developing coding schemes for program comprehension

using eye movements. In Proceedings 25th Annual Workshop of the Psychology of Programming Interest
Group (pp. 111-122). Brighton, UK.

170

CHAPTER 10. CONCLUSION

Busjahn, T., Schulte, C., Sharif, B., Simon, Begel, A., Hansen, M., Bednarik, R., Orlov, P., Thantola, P.,
Shchekotova, G., & Antropova, M. (2014c). Eye tracking in computing education. In Proceedings of
the Tenth Annual Conference on International Computing Education Research, ICER 14 (pp. 3-10).
New York, NY, USA: ACM.

Busjahn, T., Schulte, C., Tamm, S., & Bednarik, R., Eds. (2015b). Eye Movements in Programming
Education II: Analyzing the Novice’s Gaze. Number TR-~B-15-01 in Technical Reports Serie B. Berlin,
Germany: Freie Universitdat Berlin, Department of Mathematics and Computer Science.

Campbell, W. & Bolker, E. (2002). Teaching programming by immersion, reading and writing. 32nd
Annual Frontiers in Education, 1, 23-28.

Carl, M. (2013). Dynamic programming for re-mapping noisy fixations in translation tasks. Journal of
Eye Movement Research, 6(2), 1-11.

Cerrolaza, J. J., Villanueva, A., Villanueva, M., & Cabeza, R. (2012). Error characterization and com-
pensation in eye tracking systems. In Proceedings of the Symposium on Eye Tracking Research and
Applications, ETRA ’12 (pp. 205-208). New York, NY, USA: ACM.

Chapanis, A. (1951). Theory and methods for analyzing errors in man-machine systems. Annals of the
New York Academy of Sciences, 51(7), 1179-1203.

Clear, T., Whalley, J. L., Robbins, P., Philpott, A., Eckerdal, A., & Laakso, M.-J. (2011). Report on the
final BRACElet workshop: Auckland University of Technology, September 2010. Journal of Applied
Computing and Information Technology, 15(1).

Cohen, A. L. (2012). Software for the automatic correction of recorded eye fixation locations in reading
experiments. Behavior Research Methods, 45(3), 679-683.

Cristino, F., Mathot, S., Theeuwes, J., & Gilchrist, I. D. (2010). ScanMatch: A novel method for
comparing fixation sequences. Behavior Research Methods, 42(3), 692—700.

Crosby, M. & Stelovsky, J. (1989). The influence of user experience and presentation medium on strategies
of viewing algorithms. In Proceedings of the Twenty-Second Annual Hawaii International Conference
on System Sciences, 1989. Vol. II: Software Track, volume 2 (pp. 438-446). Los Alamitos, CA, USA:
IEEE Computer Society.

Crosby, M. E. (1986). Natural versus computer languages: A reading comparison. PhD thesis, University
of Hawai’i.

Crosby, M. E., Scholtz, J., & Wiedenbeck, S. (2002). The roles beacons play in comprehension for novice
and expert programmers. In J. Kuljis, B. L., & R. Scoble (Eds.), Proceedings of the 14th Workshop of
the Psychology of Programming Interest Group (pp. 58-73).

Crosby, M. E. & Stelovsky, J. (1990). How do we read algorithms? A case study. Computer, 23(1), 24-35.

Daw, N. (2012). How Vision Works: The Physiological Mechanisms Behind What We See. New York:
Oxford University Press.

Day, R.-F. (2010). Examining the validity of the Needleman-Wunsch algorithm in identifying decision
strategy with eye-movement data. Decision Support Systems, 49(4), 396-403.

Deimel, L. E. & Naveda, J. F. (1990). Reading Computer Programs: Instructor’s Guide and Exercises.
Technical report, Carnegie-Mellon University.

Deimel Jr., L. E. (1985). The uses of program reading. SIGCSE Bull., 17(2), 5-14.

Dolezalova, J. & Popelka, S. (2016). ScanGraph: A novel scanpath comparison method using visualisation
of graph cliques. Journal of Eye Movement Research, 9(4).

171

10.3 DISCUSSION AND FUTURE WORK

Drewes, J., Masson, G. S., & Montagnini, A. (2012). Shifts in reported gaze position due to changes
in pupil size: ground truth and compensation. In Proceedings of the Symposium on Eye Tracking
Research and Applications, ETRA ’12 (pp. 209-212). New York, NY, USA: ACM.

Dubochet, G. (2009). Computer code as a medium for human communication: Are programming lan-
guages improving? In Proceedings of the 21st Working Conference on the Psychology of Programmers
Interest Group (pp. 174-187). Limerick, Ireland.

Duchowski, A. T. (2017). Eye Tracking Methodology: Theory and Practice. Springer, 3 edition.

Ethnologue (2020). What is the most spoken language? |https://www.ethnologue.com/guides/most-
spoken-languages. [last accessed 12/05/2020].

Eysel, U. (2019). Sehen. In R. Brandes, F. Lang, & R. F. Schmidt (Eds.), Physiologie des Menschen:
mit Pathophysiologie, Springer-Lehrbuch (pp. 721-769). Berlin, Heidelberg: Springer, 32. edition.

Fan, Q. (2010). The Effects of Beacons, Comments, and Tasks on Program Comprehension Process in
Software Maintenance. PhD thesis, University of Maryland at Baltimore County, Catonsville, MD,
USA.

Feit, A. M., Williams, S., Toledo, A., Paradiso, A., Kulkarni, H., Kane, S., & Morris, M. R. (2017).
Toward everyday gaze input: Accuracy and precision of eye tracking and implications for design.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17 (pp.
1118-1130). New York, NY, USA: ACM.

Frank, M. C., Vul, E.; & Saxe, R. (2012). Measuring the development of social attention using free-
viewing. Infancy, 17(4), 355-375.

Friedman, L., Rigas, 1., Abdulin, E., & Komogortsev, O. V. (2018). A novel evaluation of two related
and two independent algorithms for eye movement classification during reading. Behavior Research
Methods, 50(4), 1374-1397.

Fritz, T., Begel, A., Miller, S. C., Yigit-Elliott, S., & Ziiger, M. (2014). Using psycho-physiological
measures to assess task difficulty in software development. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014 (pp. 402-413). New York, NY, USA: ACM.

Gagl, B., Hawelka, S., & Hutzler, F. (2011). Systematic influence of gaze position on pupil size measure-
ment: analysis and correction. Behavior Research Methods, 43(4), 1171-1181.

Gog, T. v., Kester, L., Nievelstein, F., Giesbers, B., & Paas, F. (2009). Uncovering cognitive processes:
Different techniques that can contribute to cognitive load research and instruction. Computers in
Human Behavior, 25(2), 325-331.

Guo, P. (2014). Python is now the most popular introductory teaching language at top -
U.S. universities. https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-
introductory-teaching-language-at-top-u-s-universities /fulltextl [last accessed 12/05/2020].

Guéhéneuc, Y.-G. (2006). TAUPE: Towards understanding program comprehension. In Proceedings of
the 2006 Conference of the Center for Advanced Studies on Collaborative Research, CASCON ’06 (pp.
1-13). USA: IBM Corp.

Hansen, M. (2015). Quantifying code complezity and comprehension. PhD thesis, Indiana University,
Bloomington, IN.

Haque, W., Aravind, A., & Reddy, B. (2009). Pairwise sequence alignment algorithms: A survey. In
Proceedings of the 2009 Conference on Information Science, Technology and Applications, ISTA 09
(pp. 96-103). New York, NY, USA: ACM.

Hilburn, T. B., Towhidnejad, M., & Salamah, S. (2011). Read before you write. In Proceedings of the
2011 24th IEEE-CS Conference on Software Engineering Education and Training, CSEET ’11 (pp.
371-380). USA: IEEE Computer Society.

172

https://www.ethnologue.com/guides/most-spoken-languages
https://www.ethnologue.com/guides/most-spoken-languages
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext

CHAPTER 10. CONCLUSION

Holmgvist, K., Nystrém, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Weijer, J. v. d. (2011). Eye
tracking: A comprehensive guide to methods and measures. OUP Oxford.

Holmqvist, K., Nystrom, M., & Mulvey, F. (2012). Eye tracker data quality: What it is and how to
measure it. In Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 12
(pp. 45-52). New York, NY, USA: ACM.

Hornof, A. J. & Halverson, T. (2002). Cleaning up systematic error in eye-tracking data by using required
fixation locations. Behavior Research Methods, Instruments, & Computers, 34(4), 592—604.

Hyrskykari, A. (2006). Utilizing eye movements: Overcoming inaccuracy while tracking the focus of
attention during reading. Computers in Human Behavior, 22(4), 657-671.

Inhoff, A. W. & Radach, R. (1998). Definition and computation of oculomotor measures in the study
of cognitive processes. In G. Underwood (Ed.), Eye Guidance in Reading and Scene Perception (pp.
29-53). Amsterdam: Elsevier Science Ltd.

Jansen, A. R., Blackwell, A. F., & Marriott, K. (2003). A tool for tracking visual attention: The Restricted
Focus Viewer. Behavior Research Methods, Instruments, €& Computers, 35(1), 57—69.

John, S., Weitnauer, E., & Koesling, H. (2012). Entropy-based correction of eye tracking data for static
scenes. In Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA ’12 (pp.
297-300). New York, NY, USA: ACM.

Just, M. A. & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension.
Psychological Review, 87(4), 329-354.

Karn, K. S. (2000). “Saccade pickers” vs. “fixation pickers”: The effect of eye tracking instrumentation
on research. In Proceedings of the 2000 Symposium on Eye Tracking Research € Applications, ETRA
’00 (pp. 87-88). New York, NY, USA: ACM.

Karsh, R. & Breitenbach, F. W. (1983). Looking at looking: The amorphous fixation measure. In
Eye movements and psychological functions: International views (pp. 53-64). Hillsdale (NJ), London:
Lawrence Erlbaum Associates.

Kerkau, F. (2011). Usability-Testing zur Qualitdtssicherung von Online-Lernangeboten. In P. Klimsa &
L. J. Issing (Eds.), Online-Lernen: Handbuch fir Wissenschaft und Prazis (pp. 329-337). Minchen:
Oldenbourg Verlag, 2. edition.

Kimura, T. (1979). Reading before composition. SIGCSE Bull., 11(1), 162-166.
Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cambridge University Press.

Kolling, M. & Rosenberg, J. (2001). Guidelines for teaching object orientation with Java. SIGCSE Bull.,
33(3), 33-36.

Komogortsev, O. V., Gobert, D. V., Jayarathna, S., Koh, D. H., & Gowda, S. M. (2010). Standardization
of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Transactions on Biomedical
Engineering, 57(11), 2635-2645.

Komogortsev, O. V., Jayarathna, S., Koh, D. H., & Gowda, S. M. (2009). Qualitative and Quantitative
Scoring and Evaluation of the Eye Movement Classification Algorithms. Technical Report TXSTATE-
CS-TR-2009-16, Department of Computer Science, San Marcos, TX.

Korda, A. 1., Asvestas, P. A., Matsopoulos, G. K., Ventouras, E. M., & Smyrnis, N. (2018). Automatic
identification of eye movements using the largest lyapunov exponent. Biomedical Signal Processing and
Control, 41, 10-20.

Kruskal, J. B. (1983). An overview of sequence comparison: Time warps, string edits, and macromolecules.
SIAM Review, 25(2), 201-237.

173

10.3 DISCUSSION AND FUTURE WORK

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10 (pp. 707-710).

Lin, Y., Wu, C., Hou, T., Lin, Y., Yang, F., & Chang, C. (2016). Tracking students’ cognitive processes
during program debugging — An eye-movement approach. IEEE Transactions on Education, 59(3),
175-186.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Mostrom,
J. E., Sanders, K., Seppélé, O., Simon, B., & Thomas, L. (2004). A multi-national study of reading
and tracing skills in novice programmers. SIGCSE Bull., 36(4), 119-150.

Lister, R., Fidge, C., & Teague, D. (2009). Further evidence of a relationship between explaining, tracing
and writing skills in introductory programming. SIGCSE Bull., 41(3), 161-165.

Liversedge, S. P., Gilchrist, I. D., & Everling, S., Eds. (2011). The Ozford Handbook of Eye Movements.
Oxford: Oxford University Press.

Lohmeier, S. (2015). Experimental evaluation and modelling of the comprehension of indirect anaphors
in a programming language. http://www.monochromata.de/master_thesis/mal.3.pdf. [last accessed
12/05/2020].

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading, tracing and
writing skills in introductory programming. In Proceeding of the Fourth International Workshop on
Computing Education Research, ICER 08 (pp. 101-112). New York, NY, USA: ACM.

MacKenzie, I. S. & Zhang, X. (2008). Eye typing using word and letter prediction and a fixation algorithm.
In Proceedings of the 2008 Symposium on Eye Tracking Research & Applications, ETRA ’08 (pp. 55—
58). New York, NY, USA: ACM.

Majaranta, P. & Bulling, A. (2014). Eye tracking and eye-based human—computer interaction. In S. H.
Fairclough & K. Gilleade (Eds.), Advances in Physiological Computing, Human—Computer Interaction
Series (pp. 39-65). London: Springer.

Mannila, L. (2007). Novices’ progress in introductory programming courses. Informatics in Education,
6(1), 139-152.

Martinez-Goémez, P. & Aizawa, A. (2014). Recognition of understanding level and language skill using
measurements of reading behavior. In Proceedings of the 19th International Conference on Intelligent
User Interfaces, IUI ’14 (pp. 95-104). New York, NY, USA: ACM.

Martinez-Gomez, P., Chen, C., Hara, T., Kano, Y., & Aizawa, A. (2012). Image registration for text-gaze
alignment. In Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces,
TUI ’12 (pp. 257-260). New York, NY, USA: ACM.

Mason, R. & Cooper, G. (2014). Introductory programming courses in Australia and New Zealand in 2013
- trends and reasons. In Proceedings of the Sizteenth Australasian Computing Education Conference,
ACE ’14 (pp. 139-147). Auckland, New Zealand: Australian Computer Society, Inc.

Mason, R., Cooper, G., & de Raadt, M. (2012). Trends in introductory programming courses in Australian
universities - Languages, environments and pedagogy. In Proceedings of the Fourteenth Australasian
Computing Education Conference, ACE ’12 (pp. 33-42). Melbourne, Australia: Australian Computer
Society, Inc.

Mathot, S., Cristino, F., Gilchrist, I. D., & Theeuwes, J. (2012). A simple way to estimate similarity
between pairs of eye movement sequences. Journal of Eye Movement Research, 5(1), 1-15.

Mayrhauser, A. v. & Vans, A. M. (1994). Program Unterstanding: A Survey. Number CS-94-120.
Colorado State University.

174

http://www.monochromata.de/master_thesis/ma1.3.pdf

CHAPTER 10. CONCLUSION

Mazzei, A., Eivazi, S., Marko, Y., Kaplan, F., & Dillenbourg, P. (2014). 3D model-based gaze estimation
in natural reading: a systematic error correction procedure based on annotated texts. In Proceedings
of the Symposium on Eye Tracking Research and Applications, ETRA 14 (pp. 87-90). New York, NY,
USA: ACM.

Mele, M. L. & Federici, S. (2012). Gaze and eye-tracking solutions for psychological research. Cognitive
Processing, 13(1), 261-265.

Merrienboer, J. J. G. & Krammer, H. P. M. (1987). Instructional strategies and tactics for the design of
introductory computer programming courses in high school. Instructional Science, 16(3), 251-285.

Miniotas, D., Spakov, O., & MacKenzie, I. S. (2004). Eye gaze interaction with expanding targets. In
CHI 04 Eztended Abstracts on Human Factors in Computing Systems, CHI EA ’04 (pp. 1255-1258).
New York, NY, USA: ACM.

Mishra, A., Carl, M., & Bhattacharya, P. (2012). A heuristic-based approach for systematic error cor-
rection of gaze data for reading. In Proceedings of the First Workshop on Eye-tracking and Natural
Language Processing (pp. 71-80).

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with Jeliot 3. In
Proceedings of the Working Conference on Advanced Visual Interfaces, AVI 04 (pp. 373-376). New
York, NY, USA: ACM.

Murphy, E., Crick, T., & Davenport, J. H. (2017). An analysis of introductory programming courses at
UK Universities. The Art, Science, and Engineering of Programming, 1(2).

Needleman, S. B. & Wunsch, C. D. (1970). A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443-453.

Nelson, G. L., Xie, B., & Ko, A. J. (2017). Comprehension First: Evaluating a novel pedagogy and tutor-
ing system for program tracing in CS1. In Proceedings of the 2017 ACM Conference on International
Computing Education Research, ICER 17 (pp. 2-11). New York, NY, USA: ACM.

Nevalainen, S. & Sajaniemi, J. (2004). Comparison of three eye tracking devices in psychology of program-
ming research. In Proceedings of 16th Annual Workshop of the Psychology of Programming Interest
Group (PPIG’04) (pp. 151-158).

Niehorster, D. C., Cornelissen, T. H. W., Holmqvist, K., Hooge, I. T. C., & Hessels, R. S. (2018). What to
expect from your remote eye-tracker when participants are unrestrained. Behavior Research Methods,
50(1), 213-227.

Nissli, M.-A. (2011). Dual Eye-Tracking Methods for the Study of Remote Collaborative Problem Solving.
PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne.

Nystrom, M., Andersson, R., Holmqvist, K., & Weijer, J. v. d. (2012). The influence of calibration
method and eye physiology on eyetracking data quality. Behavior Research Methods, 45(1), 272-288.

Nystrom, M. & Holmqgvist, K. (2010). An adaptive algorithm for fixation, saccade, and glissade detection
in eyetracking data. Behavior Research Methods, 42(1), 188-204.

Obaidellah, U., Haek, M. A.; & Cheng, P. C.-H. (2018). A survey on the usage of eye-tracking in computer
programming. ACM Comput. Surv., 51(1), 1-58.

Olsen, A. & Matos, R. (2012). Identifying parameter values for an I-VT fixation filter suitable for handling
data sampled with various sampling frequencies. In Proceedings of the Symposium on Eye Tracking
Research and Applications, ETRA ’12 (pp. 317-320). New York, NY, USA: ACM.

Orlov, P. A. (2016). Extrafoveal Vision During Source Code Comprehension: a Gaze-contingent Tool, a
Latency Fvaluation Method, and Experiments. PhD thesis, University of Eastern Finland, Joensuu,
Finland.

175

10.3 DISCUSSION AND FUTURE WORK

Palmer, C. & Sharif, B. (2016). Towards automating fixation correction for source code. In Proceedings
of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, ETRA 16 (pp.
65—-68). New York, NY, USA: ACM.

Pazos, F. & Chagoyen, M. (2015). Sequences. In Practical Protein Bioinformatics (pp. 1-41). Springer
International Publishing.

Pea, R. D. (1986). Language-independent conceptual “bugs” in novice programming. Journal of Educa-
tional Computing Research, 2(1), 25-36.

Peachock, P., Tovino, N., & Sharif, B. (2017). Investigating eye movements in natural language and C++
source code - A replication experiment. In D. D. Schmorrow & C. M. Fidopiastis (Eds.), Augmented
Cognition. Neurocognition and Machine Learning, volume 10284 of Lecture Notes in Computer Science
(pp. 206-218).: Springer International Publishing.

Pennington, N. (1987). Stimulus structures and mental representations in expert comprehension of
computer programs. Cognitive Psychology, 19(3), 295-341.

Perkins, D. N. & Martin, F. (1986). Fragile knowledge and neglected strategies in novice program-
mers. In Papers presented at the First Workshop on Empirical Studies of Programmers (pp. 213-229).
Washington, D.C., United States: Ablex Publishing Corp.

Peterson, C. S., Abid, N. J., Bryant, C. A., Maletic, J. I., & Sharif, B. (2019). Factors influencing dwell
time during source code reading: A large-scale replication experiment. In Proceedings of the 11th ACM
Symposium on Eye Tracking Research & Applications, ETRA 19 (pp. 1-4). New York, NY, USA:
ACM.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

Raymond, D. R. (1991). Reading source code. In Proceedings of the 1991 Conference of the Centre for
Advanced Studies on Collaborative Research, CASCON 91 (pp. 3-16).: IBM Press.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psycho-
logical Bulletin, 124(3), 372-422.

Rayner, K., Juhasz, B. J., & Pollatsek, A. (2005). Eye movements during reading. In M. J. Snowling &
C. Hulme (Eds.), The Science of Reading: A Handbook (pp. 79-97). John Wiley & Sons, Ltd.

Rayner, K., Pollatsek, A., Ashby, J., & Clifton Jr., C. (2012). Psychology of Reading. New York, London:
Psychology Press, 2. edition.

Recurity Labs (2020). Recurity Labs Website. https://www.recurity-labs.com/trainings/code. [last
accessed 12/05,/2020].

Romero, P., Boulay, B. d., Lutz, R., & Cox, R. (2003). The effects of graphical and textual visualisations
in multi-representational debugging environments. In IEEE Symposium on Human Centric Computing
Languages and Environments, 2003 (pp. 236-238).

Romero, P., Cox, R., Boulay, B. d., & Lutz, R. (2002a). Visual attention and representation switching
during Java program debugging: A study using the Restricted Focus Viewer. In M. Hegarty, B. Meyer,
& N. H. Narayanan (Eds.), Diagrammatic Representation and Inference, Lecture Notes in Computer
Science (pp. 221-235). Berlin, Heidelberg: Springer.

Romero, P., Lutz, R., Cox, R., & Boulay, B. d. (2002b). Co-ordination of multiple external representations
during Java program debugging. In Proceedings IEEE 2002 Symposia on Human Centric Computing
Languages and Environments (pp. 207-214).

Rooksby, J., Martin, D., & Rouncefield, M. (2006). Reading as part of computer programming. An
ethnomethodological enquiry. In Proceedings of the 18th Workshop of the Psychology of Programming
Interest Group (pp. 198-212). University of Sussex.

176

https://www.recurity-labs.com/trainings/code

CHAPTER 10. CONCLUSION

Salvucci, D. D. & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. In
Proceedings of the 2000 Symposium on Eye Tracking Research € Applications, ETRA 00 (pp. 71-78).
New York, NY, USA: ACM.

Schall, A. & Romano Bergstrom, J. (2014). Introduction to eye tracking. In J. Romano Bergstrom &
A. J. Schall (Eds.), Fye Tracking in User Experience Design (pp. 3-26). Boston: Morgan Kaufmann.

Schulte, C. (2007). Lesen im Informatikunterricht. In S. Schubert (Ed.), Didaktik der Informatik in
Theorie und Prazis: 12. GI-Fachtagung Informatik und Schule - INFOS 2007, Siegen (pp. 307-318).
Bonn: Kollen Verlag.

Schulte, C. (2008a). Block Model - an educational model of program comprehension as a tool for a
scholarly approach to teaching. In Proceedings of the Fourth International Workshop on Computing
Education Research, ICER 08 (pp. 149-160). New York, NY, USA: ACM.

Schulte, C. (2008b). Duality reconstruction — Teaching digital artifacts from a socio-technical perspective.
In R. T. Mittermeir & M. M. Systo (Eds.), Informatics Education - Supporting Computational Thinking,
Lecture Notes in Computer Science (pp. 110-121). Berlin, Heidelberg: Springer.

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., & Paterson, J. H. (2010). An introduction to
program comprehension for computer science educators. In Proceedings of the 2010 ITiCSE Working
Group Reports, ITICSE-WGR ’10 (pp. 65-86). New York, NY, USA: ACM.

Selby, C. (2011). Four approaches to teaching programming. In Learning, Media and Technology: a
doctoral research conference. London.

SensoMotoric Instruments (2014). iView X7 SDK: v3.6.
SensoMotoric Instruments (2016a). RED-m Spec sheet.
SensoMotoric Instruments (2016b). RED250mobile Spec sheet.

Sharafi, Z., Shaffer, T., Sharif, B., & Guéhéneuc, Y.-G. (2015a). Eye-tracking metrics in software engi-
neering. In 2015 Asia-Pacific Software Engineering Conference (APSEC) (pp. 96-103).

Sharafi, Z., Sharif, B., Guéhéneuc, Y.-G., Begel, A., Bednarik, R., & Crosby, M. (2020). A practical
guide on conducting eye tracking studies in software engineering. Empirical Software Engineering,
25(5), 3128-3174.

Sharafi, Z., Soh, Z., & Guéhéneuc, Y.-G. (2015b). A systematic literature review on the usage of eye-
tracking in software engineering. Information and Software Technology, 67, 79-107.

Sharif, B., Falcone, M., & Maletic, J. I. (2012). An eye-tracking study on the role of scan time in finding
source code defects. In Proceedings of the Symposium on Eye Tracking Research and Applications,
ETRA ’12 (pp. 381-384). New York, NY, USA: ACM.

Sharif, B., Jetty, G., Aponte, J., & Parra, E. (2013). An empirical study assessing the effect of SeelT 3D
on comprehension. 2013 First IEEE Working Conference on Software Visualization (VISSOFT), (pp.
1-10).

Sharif, B. & Shaffer, T. (2015). The use of eye tracking in software development. In D. D. Schmorrow
& C. M. Fidopiastis (Eds.), Foundations of Augmented Cognition, volume 9183 of Lecture Notes in
Computer Science (pp. 807-816). Springer International Publishing.

Shic, F., Scassellati, B., & Chawarska, K. (2008). The incomplete fixation measure. In Proceedings of
the 2008 Symposium on Eye Tracking Research & Applications, ETRA 08 (pp. 111-114). New York,
NY, USA: ACM.

Siegmund, J., Begel, A., & Peitek, N. (2019). Summary of the Sixth Edition of the International Workshop
on Eye Movements in Programming. SIGSOFT Softw. Eng. Notes, 44(3), 54-55.

177

10.3 DISCUSSION AND FUTURE WORK

Simon (2014). Eye movements in programming education: analysing the expert’s gaze. In R. Bednarik,
T. Busjahn, & C. Schulte (Eds.), Eye Movements in Programming Education: Analyzing the Expert’s
Gaze (pp. 27-29). Joensuu, Finland: University of Eastern Finland.

Simon (2015). Eye movements in programming education 2: Analysing the novice’s gaze. In T. Busjahn,
C. Schulte, S. Tamm, & R. Bednarik (Eds.), Eye Movements in Programming Education II: Analyz-
ing the Novice’s Gaze, volume TR-B-15-01 of Freie Universitit Berlin, Fachbereich Mathematik und
Informatik. Berlin, Germany: Freie Universitdt Berlin.

Skovsgaard, H., Mateo, J. C., Flach, J. M., & Hansen, J. P. (2010). Small-target selection with gaze
alone. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, ETRA 10
(pp. 145-148). New York, NY, USA: ACM.

Smith, T. F. & Waterman, M. S. (1981). Comparison of biosequences. Advances in Applied Mathematics,
2(4), 482-489.

Soloway, E. (1986). Learning to program = learning to construct mechanisms and explanations. Commun.
ACM, 29(9), 850-858.

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE Transactions on
Software Engineering, 10(5), 595-609.

Spakov, O. & Gizatdinova, Y. (2014). Real-time hidden gaze point correction. In Proceedings of the
Symposium on Eye Tracking Research and Applications, ETRA 14 (pp. 291-294). New York, NY,
USA: ACM.

Spakov, O., Istance, H., Hyrskykari, A., Siirtola, H., & Réihé, K.-J. (2018). Improving the performance
of eye trackers with limited spatial accuracy and low sampling rates for reading analysis by heuristic
fixation-to-word mapping. Behavior Research Methods, 51, 1-27.

Spinelli, L., Pandey, M., & Oney, S. (2018). Attention patterns for code animations: Using eye trackers
to evaluate dynamic code presentation techniques. In Conference Companion of the 2nd International
Conference on Art, Science, and Engineering of Programming, Programming’18 Companion (pp. 99—
104). New York, NY, USA: ACM.

Spinellis, D. (2003a). Code Reading: The Open Source Perspective. FEffective Software Development
Series. Boston, San Francisco: Addison-Wesley.

Spinellis, D. (2003b). Reading, writing, and code. Queue, 1(7), 84-89.

Storey, M.-A. (2006). Theories, tools and research methods in program comprehension: past, present
and future. Software Quality Journal, 14(3), 187—208.

Tamm, S., Bednarik, R., Busjahn, T., Schulte, C., Vrzakova, H., & Budde, L., Eds. (2017). Eye Move-
ments in Programming: Spring Academy 2017. Number TR-B-17-02 in Technical Reports Serie B.
Berlin, Germany: Freie Universitdt Berlin, Department of Mathematics and Computer Science.

TechWell Contributor (2001). What’s S0 great about inspections?!?
https://www.stickyminds.com/article/whats-so-great-about-inspections. [last accessed 12/05/2020].

Topi¢, G., Yamaya, A., Aizawa, A., & Martinez-Goémez, P. (2016). FixFix: Fixing the fixations. In
Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, ETRA
'16 (pp. 319-320). New York, NY, USA: ACM.

Uwano, H., Nakamura, M., Monden, A., & Matsumoto, K.-i. (2006). Analyzing individual performance
of source code review using reviewers’ eye movement. In Proceedings of the 2006 Symposium on Eye
Tracking Research & Applications, ETRA ’06 (pp. 133-140). New York, NY, USA: ACM.

Uwano, H., Nakamura, M., Monden, A., & Matsumoto, K.-i. (2007). Exploiting eye movements for evalu-
ating reviewer’s performance in software review. IFICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E90-A(10), 2290-2300.

178

https://www.stickyminds.com/article/whats-so-great-about-inspections

CHAPTER 10. CONCLUSION

Velichkovsky, B., Sprenger, A., & Unema, P. (1997). Towards gaze-mediated interaction: Collecting
solutions of the “Midas touch problem”. In S. Howard, J. Hammond, & G. Lindgaard (Eds.), Human-
Computer Interaction INTERACT’97: IFIP TC13 International Conference on Human-Computer
Interaction, 14th—18th July 1997, Sydney, Australia, IFIP — The International Federation for Infor-
mation Processing (pp. 509-516). Boston, MA: Springer US.

Velichkovsky, B. M., Dornhoefer, S. M., Pannasch, S., & Unema, P. J. (2000). Visual fixations and
level of attentional processing. In Proceedings of the 2000 Symposium on Eye Tracking Research €
Applications, ETRA 00 (pp. 79-85). New York, NY, USA: ACM.

Venables, A., Tan, G., & Lister, R. (2009). A closer look at tracing, explaining and code writing skills in
the novice programmer. In Proceedings of the Fifth International Workshop on Computing Education
Research Workshop, ICER, ’09 (pp. 117-128). New York, NY, USA: ACM.

Vidal, M., Pfeuffer, K., Bulling, A., & Gellersen, H. (2013). Pursuits: Eye-based interaction with moving
targets. In CHI ’13 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’13 (pp.
3147-3150). New York, NY, USA: ACM.

VoBkiihler, A., Nordmeier, V., Kuchinke, L., & Jacobs, A. M. (2008). OGAMA (Open Gaze and Mouse
Analyzer): Open-source software designed to analyze eye and mouse movements in slideshow study
designs. Behavior Research Methods, 40(4), 1150-1162.

Wade, N. J. & Tatler, B. W. (2005). The Moving Tablet of the Eye: The origins of modern eye movemnent
research. Oxford University Press.

West, J. M., Haake, A. R., Rozanski, E. P.,; & Karn, K. S. (2006). eyePatterns: Software for identifying
patterns and similarities across fixation sequences. In Proceedings of the 2006 Symposium on Eye
Tracking Research € Applications, ETRA ’06 (pp. 149-154). New York, NY, USA: ACM.

Widdel, H. (1984). Operational problems in analysing eye movements. In A. G. Gale & F. Johnson (Eds.),
Advances in Psychology, volume 22 of Theoretical and Applied Aspects of Eye Movement Research (pp.
21-29). North-Holland.

Willoughby, C. E., Ponzin, D., Ferrari, S., Lobo, A., Landau, K., & Omidi, Y. (2010). Anatomy and
physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function — a
review. Clinical & Experimental Ophthalmology, 38(s1), 2-11.

WorldAtlas (2019). What is the most spoken language in the world?
https://www.worldatlas.com /articles/most-popular-languages-in-the-world.html. [last accessed
12/05,/2020).

Wyatt, H. J. (2010). The human pupil and the use of video-based eyetrackers. Vision Research, 50(19),
1982-1988.

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., Tan, A. H., Hwa, L., Li, M.,
& Ko, A. J. (2019). A theory of instruction for introductory programming skills. Computer Science
Education, 29(2-3), 205-253.

Xie, B., Nelson, G. L., & Ko, A. J. (2018). An explicit strategy to scaffold novice program tracing. In
Proceedings of the 49th ACM Technical Symposium on Computer Science Education, SIGCSE 18 (pp.
344-349). New York, NY, USA: ACM.

Yamaya, A., Topié¢, G., & Aizawa, A. (2016). Fixation-to-Word mapping with classification of saccades.
In Companion Publication of the 21st International Conference on Intelligent User Interfaces, IUI '16
Companion (pp. 36-40). New York, NY, USA: ACM.

Yamaya, A., Topié¢, G., & Aizawa, A. (2017). Vertical error correction using classification of transitions
between sequential reading segments. Journal of Information Processing, 25, 100-106.

179

https://www.worldatlas.com/articles/most-popular-languages-in-the-world.html

10.3 DISCUSSION AND FUTURE WORK

Yamaya, A., Topi¢, G., Martinez-Gémez, P., & Aizawa, A. (2015). Dynamic-programming—based method
for fixation-to-word mapping. In R. Neves-Silva, L. C. Jain, & R. J. Howlett (Eds.), Intelligent Deci-
sion Technologies, volume 39 of Smart Innovation, Systems and Technologies (pp. 649-659). Springer
International Publishing.

Zemblys, R., Niehorster, D. C., Komogortsev, O., & Holmqvist, K. (2018). Using machine learning to
detect events in eye-tracking data. Behavior Research Methods, 50(1), 160-181.

Zhang, X., Ren, X., & Zha, H. (2008). Improving eye cursor’s stability for eye pointing tasks. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 08 (pp. 525—
534). New York, NY, USA: ACM.

Zhang, Y. & Hornof, A. J. (2011). Mode-of-disparities error correction of eye-tracking data. Behavior
Research Methods, 43(3), 834-842.

Zhang, Y. & Hornof, A. J. (2014). Easy post-hoc spatial recalibration of eye tracking data. In Proceedings
of the Symposium on Eye Tracking Research and Applications, ETRA 14 (pp. 95-98). New York, NY,
USA: ACM.

Zimmermann, K.-H. (2003). Pairwise sequence alignment. In An Introduction to Protein Informatics,

volume 749 of The Kluwer International Series in Engineering and Computer Science (pp. 47-74).
Springer US.

180

List of figures _

[2.1 Anatomy of the human eye, based on [Eysel [2019, 723]| 12
[2-2 Prototypical forward directed reading pattern, including regressions and two return sweeps |
| tothe next linel 13
2.3 Eye movements during reading| Lo e 14
2.4 Video image captured by an eye tracker showing a participant looking at difterent parts of |
| a computer screen. Corneal reflection and center of the pupil are marked with cross hairs. |
| The images were provided by 5. Tamm and are used with permission.| 15
3.1 Sample of the first slide shown before every SC recording] 23
3.2 Sample instruction| oL 23
[3.3 NT1 with comprehension tasks| 24
[3.4 TIOBE Index, source: |https://www.tiobe.com| status of 01/15/2020] 25
[35 Program LT SCI with comprehension tasks| « v v v v v v vt e e e e e 27
3.6 Recordings overview: First, both novice and expert participants read three natural-language |
| texts. The novices’ gaze on source code was recorded repeatedly, the recordings after lesson |
| 1, 3, and o are included in the analysis. ‘Irials that are grayed out are not part of the |
| study. Experts read all texts in a single per participant session.| 29
13.7 Self-rated programming expertise - novices|.o 34
3.8 Self-rated programming expertise - experts| oL L. 34
3.9 Time spent programming - experts|o e 34
4.1 I-DT example using the distance between points that are farthest apart as dispersion |
| metric and a maximum dispersion of 1° of visual angle. At a distance of 65 cm and for |
| an exemplary screen with a height ot 29.8 cm and a vertical resolution of 1050 px, 1° |
corresponds to 41 px. 50 ms is employed as minimum duration. The detected fixation |
starts at 8 ms, has a duration of 59 ms, and is located at (449,459). | 37
E2T-DT example with missing samples. The maximum dispersion is set to 1° of visual angle, |
| minimum duration to 50 ms. The stream contains a gap of 508 ms between samples |
| 9 and 10. It is unknown, where the gaze went during the missing time frame. The |
| gap leaves enough time for the eyes to move away, fixate another area and move back. |
| Furthermore, collating all samples within the dispersion threshold into a single event results |
| in an unusually long fixation, hence treating the samples as two separate events is a more |
| prudent choice.| L e 39
4.3 I-DT" example with one sample outside the maximum allowed spread area. The raw data |

samples for the x-coordinate are plotted in black, fixations are overlaid in red. At 200 ms,

the eye tracker reported a sample with the coordinate (197,452), at 208 ms (0,0), and at

217 ms (196,451). The sample with the location (0,0) exceeds the dispersion threshold and

the classic implementation of the I-D'T' would cut the on-going fixation short. The adapted
[[-DT leaves the fixation intact. 1. e 40
4.4 Fixations detected by the I-D'I' variant ms out maxmaiss for different parameter combi- |
CCmallond. - - - o o e 45

https://www.tiobe.com

10.3 DISCUSSION AND FUTURE WORK

4.5 Distribution of fixation durations in ms. Fixations were identified by the I-DT" variant |

ms__out _marmiss using the parameters of 1° and 48 ms.|. L. 46
5.1 Scanpaths| L 52
.2 Error types: systematic (left) and variable (right), based on|Chapanis[J1951] 1181] 53

[5.3 Addressing error in eye tracking data. The approaches for automatic error correction

(shaded area) are of special interest, as such a step is needed for preparing the EMCR

data for analysis. |o 57
.4 Correction steps concerning transient fixations and moving fixations to the same line as |
their predecessors | L e 67

6.1 Scaling and translation: Applying a linear factor and an offset to the uncorrected fixations |

allows to correct the rather small error in the middle of the screen as well as the errors at |

the lett and right side ot the text, which not only have a larger extent, but also opposite |

directions. Correcting the data with only an offset cannot compensate this changing error] 77

6.2 Exemplary NT AOIs| 79
6.3 kExemplary SCAOIs| 79
6.4 Detailed illustration of dividing available space: With the original AOIs (a) method

accelerate has a lot of empty space between the lines this.currentSpeed = this.topSpeed

and this.currentSpeed = this.currentSpeed + kmh. In the expanded AOIs (b) half

of the available space is added as margin underneath the upper line, halt is added above

the lower linel o o e 80
6.5 Splitting the screen into three subsections| 80
6.6 Text stimulill o 83
6.7 Exemplary grid stimulil. Lo 85
6.8 Distances between reference and fixation locations for the fixation types pre, sim and eval| 87
6.9 Overall absolute errors based on RLsl 89
16.10 Distribution of horizontal and vertical errors|., 89
6.11 Horizontal and vertical errorsl oL 90
16.12 Error relating to screen location|.o oL Lo 90
16.13 Percentage of uncorrected fixations on the same AOI as the click, when using original and |

expanded AOIs| o L e 91
6.14 Illustration of match (left) and scope (right).| 92
6.15 Exemplary artificial fixation dataon SCf00 98
[7.1 AOIs on different levels of abstraction, from ‘element’ to ‘block’}. 102
7.2 Exemplary AOI sequences on line-level| 0 0. 105
8.1 Model behaviors for program L1_SC3 (on line-level)] 111
8.2 Example of an alignment: Matching items are indicated by ‘|, gaps by ‘. | 116
9.1 Fixation durations on N'I' stimulil oo o 126
9.2 Fixation durations on N'T' stimuli per group of expertise| 127
9.3 Fixation durations on N'T' and SC per group of expertise|. 128
9.4 Distribution of fixation durations on NT and 5C stimulil 129
9.5 Fixation durations on the two programs viewed by both novices and experts|. 129
9.6 Number of fixations e 131
9.7 Saccadic amplitudes on the two programs viewed by both novices and experts|. 133
9.8 Scanpath lengths on the two programs viewed by both novices and experts| 133
9.9 Element coverage per N'I" and expertise] L. 134
9.10 AOI coverage on N'T"and SC stimulif 135
9.11 AOI coverage on the two programs viewed by both novices and experts| 136

19.12 First visit to the main-method for the two programs viewed by both novices and experts| . 142
19.13 First dwell on the main-method for the two programs viewed by both novices and experts| 142
19.14 Proportion of reading directions on N'I' stimuli per group of expertise] 143
19.15 Proportion of reading directions on N'I' and SC stimuli per group ot expertise| 144
19.16 Proportion of reading directions on the two programs viewed by both novices and experts| 145

182

CHAPTER 10. CONCLUSION

9.17 Text Order scores per NI stimulus| 147
9.18 Text Order scores on N'I" and SC stimulil oo 000 L. 149
19.19 Direction of the difference in Text Order scores between NI and SC stimulil 150
19.20 Text and Execution Order scores on SC stimulil 151
19.21 Text and Execution Order scores for the two programs viewed by both novices and experts| 153
19.22 N'T trial durations per group of expertise] 155
19.23 Trial durations of the two programs viewed by both novices and experts| 156

183

10.3 DISCUSSION AND FUTURE WORK

184

List of tables TR

8.1 Stimulus source codes| L Lo e e e e 28
3.2 Novice participants - general information| 31
3.3 xpert participants - general information|o 31
3.4 Novice participants - information on programming experience| 32
3.5 Expert participants - information on programming experience| 33

4.1 Difterences between the fixation durations generated by the I-D'l' variants for the chosen |
[thresholds of 1° and 48 ms.| 44

4.2 Number of fixations identified by the different I-D'T" adaptions: ms: duration threshold |
| in milliseconds smp: duration threshold in number of samples ms mazmiss: duration |
threshold in milliseconds with time constraint for the interval between fixation samples
ms_out: duration threshold in milliseconds, 5% of the samples belonging to a fixation
are allowed outside the maximum dispersion ms out maxmiss: duration threshold in
milliseconds with time constraint and 5% of the samples belonging to a fixation allowed
| outside maximum dispersion The maximum dispersion is given in degree of visual angle, |
| minimum fixation duration in milliseconds. The chosen thresholds of 1° of visual angle |
| and 48 ms are highlighted.|. 48

4.3 Fixation durations generated by the different I-D'I" adaptions: The maximum dispersion is |
| given in degree of visual angle, all other values are in milliseconds. The chosen thresholds |
| of 1° of visual angle and 48 ms are highlighted.| 49

6.1 Number and percentages of reference locations and associated fixations for categories of |
most interest: Pre-fixations occur right before the click, sim-fixations simultaneously. For |

|

|

locations with both a valid pre- and sim-fixation, the one closest to the click location is
used as eval-fixation. The last two columns show the share of pre- and sim-fixations in

eval-fixations. oL e 86

[6.2 Summary of distances between reference and fixation location (in pixels) for the fixation |

| types pre, sim, and evallo 87
6.3 Errors for categories of most interest (in pixels)| Lo L 88
6.4 Differences between errors in categories of most interest| 88

6.5 Detailed correction results for the most relevant categories and subsets: median distance
(in pixels), percentages of fixations on the correct AOI (match), within scope of the correct
AOI, and fitness in %, each on line- and element-level. Results for the two chosen variants
| are highlighted] o0 o 95
6.6 Subset of EMCR fixations that was corrected both manually and automatically: Valid |
fixations are within screen dimensions, valid aoi fixations are within screen dimensions |
and have an element at the manually corrected fixation location| 96
6.7 Comparison of uncorrected and automatically corrected data with manually corrected:
Median (in pixels) and percentages of fixations on the same AOI (match), fixations within

scope of the same AOI (scope), and fitness, each on line- and element-level|. 97
6.8 Summary of error correction on artificial fixations: median distance between original and |
| corrected data (in pixels), matches between original and corrected data (in %)| 99

185

10.3 DISCUSSION AND FUTURE WORK

[r.1 Number of trials in the EMCR datasetl 104
[8.1 Gaze directions for the AOI sequence 1-1-2-2-3-1 from figure [7.2 40% of the gaze moves
forward, 40% remains stationary, 20% moves backward, and 80% follows the linear reading
direction] e 114
8.2 Types of pairings| 117
8.3 Types of pairwise alignments. The exemplary sequences are 1-2-3-4 and 2-1-3-2-1-2-4-3-1- |
2-4-2-3. Scoring: match = 1, mismatch, insertion, and deletion =-1| 118
8.4 Types of alignments used tor analysis. The exemplary sequences are 1-2-3-4 and 2-1-3-2-1- |
2-4-3-1-2-4-2-3. In the dynamic global alignment repeating the model four times resulted in |
the highest similarity between model and gaze, the maximum number of model repetitions |
that was tested is eight. Scoring: match = 1, mismatch, insertion, and deletion = -1| . . . 119
8.5 Scoring scheme used for EMCR data] 0. 120
8.6 Example for normalization in a global alignment, scoring: match = 1, mismatch, insertion, |
and deletion = -1l 120
8.7 Naive global alignment scores between Text and Execution Order sequences per SC stimulus|121
8.8 Overview of analysis measures|.o 123
9.1 Fixation durations on NT stimulil 126
9.2 Results of the Kolmogorov-Smirnov tests between the distributions of fixation duration on |
N'T' stimuli, p-values have been corrected for multiple testing| 126
9.3 Fixation durations on N'T' and SC, p-values have been corrected for multiple testing] 128
9.4 Fixation durations on the two programs viewed by both novices and experts, p-values have |
been corrected for multiple testing] oo oo 128
9.5 Results of the t-tests between the two programs viewed by both novices and experts| . . . 129
9.6 Number of fixations on NI stimulifo oo 130
9.7 Number of fixations on the two programs viewed by both novices and experts| 131
9.8 Saccadic amplitudes and scanpath lengths on the two programs viewed by both novices |
and experts, p-values have been corrected for multiple testing| 132
9.9 Percentage of fixations on white spacel oo 132
19.10 Element coverage on N'I' stimuli, p-values have been corrected tor multiple testing| 134
9.11 Results of the Mann-Whitney tests to compare element coverage between NT stimuli, |
p-values have been corrected for multiple testingl 0oL, 134
19.12° AOI coverage on N'I" and SC stimuli, p-values have been corrected for multiple testing] . . 135
19.13 AOI coverage on the two programs viewed by both novices and experts, p-values have been |
corrected for multiple testing] Lo 136
19.14 Lines which were skipped during SC reading, ordered according to stimulus| 137
19.15 Elements which were skipped during N'I' reading, ordered according to skipping proportion|138
19.16 Elements which were skipped during SC reading, ordered according to skipping proportion| 140
19.17 First visit to main for the two programs viewed by both novices and experts|. 141
19.18 First dwell on the main-method for the two programs viewed by both novices and experts| 142
19.19 Proportion of linear reading on NT stimuli|. o 0000 143
19.20 Proportion of linear reading on N'T' and SC stimuli, p-values have been corrected for |
multiple testing] L 144
19.21 Proportion of linear reading on the two programs viewed by both novices and experts, |
p-values have been corrected for multiple testingl 0L 145
19.22 Occurrence of and similarity to Text Order sequences on N'I' stimulif 147
19.23 Occurrence ot and similarity to Text Order sequences on NT and SC stimuli|. 148
19.24 Occurrence of and similarity to Text and Execution Order sequences on SC stimuli| 148
19.25 Occurrence of Text and Execution Order sequences on the two programs viewed by both |
novices and e€Xperts|. Lo L e e e e e e 151
19.26 Similarity to Text and Execution Order sequences on the two programs viewed by both |
novices and exXperts|. L L e e e e e e e 152
[9.27 Comparison of scores between the SC stimuli L3__SC1/SCI and L5_SC3/SC3|. 152
[0.28 Sum of trial durations for different sefs of trialdl 155
9.29 Irial durations for N'I' stimulilo 155

CHAPTER 10. CONCLUSION

19.30 Trial durations for the two programs viewed by both novices and experts| 156
19.31 Scores for N'I' comprehension questions| Lo oo 157
19.32 Scores for SC comprehension questions on the two programs viewed by both novices and |

... 157

110.1 Summary of the most notable results for research question 1. AOI coverage and proportion |

‘ of linear reading differ between N'I' and SC irrespective of programming expertise. The

ext Order model fits equally well to the novices’ reading approach on an , while
| for experts it matches the N'I' reading more than the SC reading. Comparisons that showed |
| statistically significant differences between N'T' and SC reading are highlighted.| 162

110.2 Summary of the most notable results for research question 2. The distributions of fixation |

‘ durations and saccadic amplitudes differ between novices and experts on both programs.

e time and number of fixations until the main-method is visited for the first time are the
| most prominent differences between the two groups of expertise. Moreover, novices tend |

| to read the programs more linearly than experts. Comparisons that showed statistically |
| significant differences between novices and experts are highlighted.| 163

187

10.3 DISCUSSION AND FUTURE WORK

188

AOI
EMIP
EMCR
IDE
I-DT
NT
OGAMA
PFL
POR
RFL
RFV
RL

RQ

SC

SD

List of abbreviations

Area of interest

Eye movements in programming
Eye movements in code reading
Integrated development environment
Identification by dispersion threshold algorithm
Natural-language text
OpenGazeAndMouseAnalyzer
Probable fixation location

Point of regard

Required fixation location
Restricted focus viewer

Reference location

Research question

Source code

Standard deviation

189

10.3 DISCUSSION AND FUTURE WORK

190

Appendix _

A.1 Questionnaires
A.1.1 Novices

Questionnaire “Program comprehension”

Subject code:

It consists of the first letter of your mother’s first name, the second letter of your place of birth and the
first two numbers of your birthday (e.g. your mother’s name: Anna, your place of birth: Berlin, your

birthday: 26.03.1988 then the code is Ae26)

Age:

Gender: [J male [female

Mother tongue:

Your English level: [low [0 medium [J high

Your overall programming expertise: [J none [J low [J medium [J high
Your expertise in Java: O none O low O medium [J high

How long have you been programming: years

How often do you use any programming language other than Java:
O less than 1 hour / month
O less than 1 hour / week
O less than 1 hour / day
O more than 1 hour / day

How many years experience do you have programming Java:

How often do you program in Java:
O less than 1 hour / month
O less than 1 hour / week
O less than 1 hour / day
O more than 1 hour / day

191

years

A.1 QUESTIONNAIRES

Which programming languages do you know:

Language: Level of expertise:

O low [0 medium [high
0 low 0 medium [high
O low O medium [J high
O low O medium [J high
O low O medium [high

Do you have vision problems (myopia, astigmatism, ...)?
U no
O yes (if yes, please note which type of problems)

Are you currently wearing glasses or contact lenses?
O no
[yes, glasses
O yes, contact lenses

Are you currently wearing mascara or other eye-makeup?
O no
(] yes

Your signature below means that you voluntarily agree to participate in this research study.

Date, signature

192

CHAPTER A. APPENDIX

A.1.2 Experts

Questionnaire “Program comprehension”

Subject code:

It consists of the first letter of your mother’s first name, the second letter of your place of birth and the
first two numbers of your birthday (e.g. your mother’s name: Anna, your place of birth: Berlin, your
birthday: 26.03.1988 then the code is Ae26)

Age:

Gender: [male [female

Mother tongue:

Your English level: [J low [0 medium O high

Your overall programming expertise: [J none [J low [J medium [J high
Your expertise in Java: O none O low O medium [J high

How long have you been programming: years

How often do you use any programming language other than Java:
O less than 1 hour / month
O less than 1 hour / week
O less than 1 hour / day
O more than 1 hour / day

How much of that time is spend in development (new code) and in maintenance (existing code)?
development: % maintenance: %

How many years experience do you have programming Java: years

How often do you program in Java:
O less than 1 hour / month
O less than 1 hour / week
O less than 1 hour / day
O more than 1 hour / day

How much of that time is spend in development (new code) and in maintenance (existing code)?
development: % maintenance: %

How large was your biggest Java project:
[0 1 class
[0 5-10 classes
[J 10-50 classes
[J More than 50 classes

Which programming languages do you know:

Language: Level of expertise:

O low O medium [J high
O low O medium [high
O low O medium [high
O low [J medium [J high
U low O medium [high

How many years have you been a professional programmer: years

Do you have vision problems (myopia, astigmatism, ...)?
J no
O yes (if yes, please note which type of problems)

193

A.1 QUESTIONNAIRES

Are you currently wearing glasses or contact lenses?
O no
[yes, glasses
[yes, contact lenses

Are you currently wearing mascara or other eye-makeup?
O no
O yes

Your signature below means that you voluntarily agree to participate in this research study.

Date, signature

194

CHAPTER A. APPENDIX

A.2 Natural-language stimuli

Instructions

Multiple-choice:
Please read and comprehend the following text. When you are done, press the left mouse button.
Then you will be given a MULTIPLE-CHOICE question about the content.

Outcome:
Please read and comprehend the following text. When you are done, press the left mouse button.
Then you will be asked about the text’s OUTCOME.

Summary:
Please read and comprehend the following text. When you are done, press the left mouse button.
Then you will be asked to give a SUMMARY.

A.21 NT1

The invention of rockets is linked inextricably with the invention of 'black powder'. Most historians
of technology credit the Chinese with its discovery. They base their belief on studies of Chinese
writings or on the notebooks of early Europeans who settled in or made long visits to China to study
its history and civilisation. It is probable that, some time in the tenth century, black powder was
first compounded from its basic ingredients of saltpetre, charcoal and sulphur.

Comprehension questions:

Multiple-choice:
Which statement describes the content of the text?
« Black powder was probably discovered some time in the tenth century by the Chinese. It is essential
for the invention of rockets.
o Historians believe that black powder was discovered by the Europeans after visits to China.
e Based on Chinese and European accounts, rockets were essential for the invention of black powder.
e I'm not sure.

Outcome:
Where was black powder supposedly discovered?
(If you don’t know the answer, type ‘?.)

Summary:
Please give a summary of the text.

195

A.2 NATURAL-LANGUAGE STIMULI

A.2.2 NT2

Introducing dung beetles into a pasture is a simple process: approximately 1,500 beetles are released,
a handful at a time, into fresh cow pats in the cow pasture. The beetles immediately disappear
beneath the pats digging and tunnelling and, if they successfully adapt to their new environment,
soon become a permanent, self-sustaining part of the local ecology. In time they multiply and within
three or four years the benefits to the pasture are obvious.

Comprehension questions:

Multiple-choice:
Which statement describes the content of the text?
e Dung beetles dig themselves into pastures and have permanently to be maintained.
e Dung beetles live on cow pats and have permanently to be maintained.
e Dung beetles dig themselves into pastures and become a self-sustaining part of the ecosystem.
e I’'m not sure.

Outcome:
Can pastures benefit from dung beetles?
(If you don’t know the answer, type ‘?’.)

Summary:
Please give a summary of the text.

A.2.3 NT3

The role of governments in environmental management is difficult but inescapable. Sometimes, the
state tries to manage the resources it owns, and does so badly. Often, however, governments act
in an even more harmful way. They actually subsidise the exploitation and consumption of natural
resources. A whole range of policies, from farm-price support to protection for coal-mining, do
environmental damage and (often) make no economic sense. Scrapping them offers a two-fold bonus:
a cleaner environment and a more efficient economy.

Comprehension questions:

Multiple-choice:
Which statement describes the content of the text?
e Economy sometimes mismanages resources with provisions that are meant to support the environ-
ment.
o Governments sometimes mismanage resources with provisions that are meant to support the econ-
omy.
o Governments sometimes mismanage resources with provisions that are meant to support the envi-
ronment.
e I'm not sure.

Outcome:
Discarding certain financial supports would be beneficial for economy and ?
(If you don’t know the answer, type ‘?.)

Summary:
Please give a summary of the text.

196

CHAPTER A. APPENDIX

A.3 Source code stimuli

A.3.1 Novices
A.3.1.1 L1 _SCi1

Instructions

Multiple-choice:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be given a MULTIPLE-CHOICE question about the code.

Outcome:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked about the OUTPUT of the code.

Summary:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked to give a SUMMARY of the code.

Stimulus text

public class PrinterClass {
public static void main (String [] args) {
System.out.print ("answer=") ;
System.out.println (40 + 2) ;

}
}

Comprehension questions:

Multiple-choice:
What is the output?
e answer=42
e answer=

42

e answer

42
¢ I'm not sure.

Outcome:
What is the program’s output?
(If you don’t know the answer, type ‘?’.)

Summary:
Please give a summary of the program.

197

A.3 SOURCE CODE STIMULI

A.3.1.2 L1_SC2

Instructions

Multiple-choice:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be given a MULTIPLE-CHOICE question about the code.

Outcome:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked about the OUTPUT of the code.

Summary:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked to give a SUMMARY of the code.

Stimulus text

cake prices are 1.0 and 2.0
for each item
if cake price is even
print "even"
else
print "uneven'

Comprehension questions:

Multiple-choice:
What is the output?
e even
e uneven
e even, uneven
e uneven, even
e I’'m not sure.

Outcome:
What is the program’s output?
(If you don’t know the answer, type ‘?.)

Summary:
Please give a summary of the program.

198

CHAPTER A. APPENDIX

A.3.1.3 L1_SC3

Instructions

Multiple-choice:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be given a MULTIPLE-CHOICE question about the code.

Outcome:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked about the OUTPUT of the code.

Summary:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked to give a SUMMARY of the code.

Stimulus text

n=3

while n > 1
print n
n=n-1

Comprehension questions:

Multiple-choice:
What is the output?
e 3
e 3,2
. 3,21
e I’'m not sure.

Outcome:
What is the program’s output?
(If you don’t know the answer, type ‘7.)

Summary:
Please give a summary of the program.

199

A.3 SOURCE CODE STIMULI

A.3.1.4 L3_SC1

Instructions

Multiple-choice:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be given a MULTIPLE-CHOICE question about the code.

Outcome:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked about the RETURN-VALUE of ‘rect2.area ()’ after the program was executed.

Summary:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked to give a SUMMARY of the code.

Stimulus text

public class Rectangle {
private int x1 , y1 , x2 ,y2;

public Rectangle (int x1 , int y1 , int x2 , int y2) {

this.x1 = x1 ;
this.yl =yl ;
this.x2 = x2 ;
this.y2 = y2 ;

}

public int width () { return this.x2 - this.x1 ; }
public int height () { return this.y2 - this.yl ; }
public double area () { return this.width () * this.height () ; }

public static void main (String [] args) {
Rectangle rectl = new Rectangle (0,0, 10, 10) ;
System.out.println (rectl.area ()) ;
Rectangle rect2 = new Rectangle (5,5, 10, 10) ;
System.out.println (rect2.area ()) ;

}
}

Comprehension questions:

Multiple-choice:

The program
o computes the area of rectangles by multiplying their width (x1-x2) and height (y1l-y2).
o computes the area of rectangles by multiplying their width (x2-x1) and height (y2-y1).
o computes the area of rectangles by multiplying their width (x1-y1) and height (x2-y2).
e I'm not sure.

Outcome:
What is the return-value of ‘rect2.area ()’?
(If you don’t know the answer, type ‘?’.)

Summary:
Please give a summary of the program.

200

CHAPTER A. APPENDIX

A.3.1.5 L5_SC3

Instructions

Multiple-choice:

Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be given a MULTIPLE-CHOICE question about the code.

Outcome:

Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked about the VALUE of ‘currentSpeed’ after the program was executed.

Summary:

Please read and comprehend the following source code. When you are done, press the left mouse button.

Then you will be asked to give a SUMMARY of the code.

Stimulus text

public class Vehicle {

}

String producer , type ;
int topSpeed , currentSpeed ;

public Vehicle (String p , String t , int tp) {
this.producer = p ;
this.type =t ;
this.topSpeed = tp ;
this.currentSpeed = 0 ;

}

public int accelerate (int kmh) {
if ((this.currentSpeed + kmh) > this.topSpeed) {
this.currentSpeed = this.topSpeed ;
}else {

this.currentSpeed = this.currentSpeed + kmh ;

}

return this.currentSpeed ;

}

public static void main (String [] args) {
Vehicle v = new Vehicle ("Audi', "A6", 200) ;
v.accelerate (10) ;

}

Comprehension questions:

Multiple-choice:
The program

e ... defines a vehicle by a producer, that has a type and can reduce its speed.
e ... defines a vehicle by a producer, that has a type and can accelerate its speed.
e ... defines a vehicle by a producer, that has a type and can accelerate and reduce the speed.

e I’'m not sure.

Outcome:

What value has ‘currentSpeed’ after the program was executed?

(If you don’t know the answer, type ‘7.)

Summary:
Please give a summary of the program.

201

A.3 SOURCE CODE STIMULI

A.3.2 Experts
A.3.2.1 SC1

Instructions

Multiple-choice:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be given a MULTIPLE-CHOICE question about the code.

Outcome:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked about the RETURN-VALUE of ‘rect2.area ()’ after the program was executed.

Summary:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked to give a SUMMARY of the code.

Stimulus text

public class Rectangle {
private int x1 , y1 ,x2,y2;

public Rectangle (int x1 , int y1 , int x2 , int y2) {

this.x1 = x1 ;
this.yl =yl ;
this.x2 = x2 ;
this.y2 = y2 ;

}

public int width () { return this.x2 - this.x1 ; }
public int height () { return this.y2 - this.yl ; }
public double area () { return this.width () * this.height () ; }

public static void main (String [] args) {
Rectangle rectl = new Rectangle (0,0, 10, 10) ;
System.out.println (rectl.area ()) ;
Rectangle rect2 = new Rectangle (5,5, 10, 10) ;
System.out.println (rect2.area ()) ;

}
}

Comprehension questions:

Multiple-choice:

The program
o computes the area of rectangles by multiplying their width (x1-x2) and height (y1-y2).
o computes the area of rectangles by multiplying their width (x2-x1) and height (y2-y1).
o computes the area of rectangles by multiplying their width (x1-y1) and height (x2-y2).
e I'm not sure.

Outcome:
What is the return-value of ‘rect2.area ()’?
(If you don’t know the answer, type ‘?’.)

Summary:

Please give a summary of the program. Tell shortly:
e What is the algorithmic idea?
e How is this idea implemented?

202

CHAPTER A. APPENDIX

A.3.2.2 SC2

Instructions

Multiple-choice:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be given a MULTIPLE-CHOICE question about the code.

Outcome:

Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked about the VALUES OF THE VARIABLE ‘xy_common’ after the program was
executed. You don’t need to memorize values.

Summary:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked to give a SUMMARY of the code.

Stimulus text

import java.util. ArrayList ;
import java.util.List ;

public class Quantities {

public static List < Double > common (double [] listl , double [] list2) {
List < Double > winners = new ArrayList < Double > () ;
for (inti=0;1i < listl.length ;i ++) {
for (int j = 0;j < list2.length ; j ++) {

if (listl [i]==1lst2[j]){
winners.add (listl [i]) ;
break ;

}
}
}

return winners ;

}

public static void main (String [] args) {
double [|x={23,87,9.1,-56};
double []y={-3,0,87,9.1};
List < Double > xy_common = common (X,y) ;
System.out.print (xy__common) ;

}

Comprehension questions:

Multiple-choice:
Which statement describes the content of the source code? The program

e ... finds the elements, that are only present in one of the input arrays.
e ... finds the elements, that are in either one of the two input arrays.
e ... finds the elements, that the two input arrays share.

e« I'm not sure.

Outcome:

What does ‘xy__common’ look like after the program was executed with
x={23,87,91,-56}andy={-3,0,87,9.1}7

(If you don’t know the answer, type ‘7.)

203

A.3 SOURCE CODE STIMULI

Summary:

Please give a summary of the program. Tell shortly:
e What is the algorithmic idea?
e How is this idea implemented?

A.3.2.3 SC3

Instructions

Multiple-choice:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be given a MULTTPLE-CHOICE question about the code.

Outcome:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked about the VALUE of ‘currentSpeed’ after the program was executed.

Summary:
Please read and comprehend the following source code. When you are done, press the left mouse button.
Then you will be asked to give a SUMMARY of the code.

Stimulus text

public class Vehicle {
String producer , type ;
int topSpeed , currentSpeed ;

public Vehicle (String p , String t , int tp) {
this.producer = p ;
this.type = t ;
this.topSpeed = tp ;
this.currentSpeed = 0 ;

}

public int accelerate (int kmh) {
if ((this.currentSpeed + kmh) > this.topSpeed) {
this.currentSpeed = this.topSpeed ;

1 else {

this.currentSpeed = this.currentSpeed + kmbh ;

}

return this.currentSpeed ;

}

public static void main (String [] args) {
Vehicle v = new Vehicle ("Audi', "A6", 200) ;
v.accelerate (10) ;
}
}

Comprehension questions:

Multiple-choice:
The program

e ... defines a vehicle by a producer, that has a type and can reduce its speed.
e ... defines a vehicle by a producer, that has a type and can accelerate its speed.
e ... defines a vehicle by a producer, that has a type and can accelerate and reduce the speed.

¢ I'm not sure.

204

CHAPTER A. APPENDIX

Outcome:
What value has ‘currentSpeed’ after the program was executed?
(If you don’t know the answer, type ‘7’.)

Summary:

Please give a summary of the program. Tell shortly:
o What is the algorithmic idea?
e How is this idea implemented?

205

A .4 EXPERT INTERVIEWS

A.4 Expert interviews

I - Interviewer
P - Participant
AE22

I: Did you have a certain approach to read and understand these source codes?

P: Ah, there is no methodology that I always follow. I just went, go by what I feel I need, uhm, to grasp
more and maybe, maybe that, that there is a clear starting point, I'll start from there, for example eyeing
the code and then going to main and starting from there.

I: You said going from main and starting from there. What means ‘from there’?

P: Well, for example, if I see a clear path from main, where the program starts from the main and then
there is some code call made from there, then I go and see what these calls are about. But, if it’s that
simple as it was with the rectangle stuff, then it’s just that, but if it’s more complicated then I have to
jump all around the code, because not everything has been saved to my mind, so to speak, at the first
try.

I: You had different tasks, like to find a value or write a summary. Did you change your approach
somehow according to those tasks?

P: Nnn, not approach, but I would have remembered, I would, should have tried to remember different
things, if I had remembered what type of task it was, which I didn’t. I just went and tried to comprehend
the code and look at important parts.

I: So you didn’t really take into account what question will be asked afterwards?

P: Not that much.

I: Ok, and as you said earlier, it’s finding the main and going from there. Do you think this approach
would be suitable for a novice programmer or somebody who learns programming?

P: I don’t think that can be generalized as an answer, yes or no, I mean. I think, if you're, if you have
like no idea of what you’re doing, then you really can’t begin to model a mental model of the program
by just eyeing at it. And, you have to be asked a Direct question and the only way to solve that question
is to start from somewhere and end at somewhere, so, it, starting from a certain starting point might be
a good, or the only way. Maybe. Yeah.

I: Ok.

P: So, I contradicted myself in the beginning. But yeah, that might be.

BE18

I: Du hast Dir eben Quelltext angeguckt und verstanden.

P: Ja.

I: Hast Du dabei irgendeine bestimmte Strategie angewendet?

P: Ahm ...bestimmte Strategie . ..

I: Ein bestimmtes Vorgehen ...

P: Also ich hab versucht, quasi, den Fluss des Programms nachzuvollziehen. Erstens mal unten die main-
Methode als Einstiegspunkt, und dann hab ich versucht erst mal so grob den Fluss nachzuvollziehen und
dann hab ich versucht, die Details zu verstehen, wie jetzt Werte sich verdndern.

I: Okay und war das erfolgreich?

P: Ahm ...Ja meist, meistens schon, denk ich, doch.

I: Und koénntest Du Dir vorstellen, dass dieses Vorgehen auch fiir einen Programmieranfidnger geeignet
ware?

P: Mh, ja, ich denk schon, also ich weifl nicht genau. Ja doch. Also, ich kenn’ es zumindest aus dem
Studium auch so, dass man die ganzen, die einzelnen Schritte oder mehrere Schritte aufschreibt, welche,
welchen Wert bekommt, bekommen die Variablen, was fiir einen Namen die haben und ich kann mir
schon vorstellen, dass das so fiir Anfdnger gut ist, es so zu machen.

I: Und Du hattest ja verschiedene Aufgabentypen. Mal solltest Du eine Zusammenfassung von dem
Programm schreiben oder teilweise auch einfach nur einen Wert angeben. Hatte das irgendwie einen
Einfluss darauf gehabt, wie Du vorgegangen bist?

P: Ahm, ja. Also wenn nach einem Wert gefragt wurde, dhm, hab ich’s glaub ich eher so ein bisschen
umgedreht gemacht, indem ich zuerst zur Ausgabe geguckt hab und dann eher riickwarts geguckt hab, wie

206

CHAPTER A. APPENDIX

der da rechnet. Also zumindest bei den Aufgaben hab ich das glaub ich so gemacht. Bei den Aufgaben
wo ich das Programm verstehen sollte, hab ich’s eher so gemacht, dass ich halt erst den Programmfluss
versucht hab zu verstehen und dann die Details.

BE26

I: Du hast Dir jetzt gerade eine ganze Reihe Quelltexte angeguckt . ..

P: Hm.

I: Hattest Du bestimmte Strategien beim Verstehen?

P: Ahm, na erst mal Uberblick verschaffen ...

I: Okay.

P: ...was wirklich aufgerufen wird und in welcher Reihenfolge aufgerufen wird. Also, dhm, erst die,
meinetwegen, die public static void main hier und dann gucken was, &hm, die tun.

I: Okay, kannst Du Dir vorstellen, dass diese Strategie auch fiir einen Anfinger geeignet wére?

P: Weif ich nicht. Ahm, weifl nicht. Nee, weifl ich nicht. Kann ich nicht sagen.

I: Okay und Du hattest ja verschiedene Aufgabentypen, also mal Multiple-Choice, mal solltest Du eine
Zusammenfassung geben ...

P: Mhm.

I: ... hat das irgendwie einen Einfluss gehabt, wie Du durch den Quelltext gegangen bist?

P: Nein.

I: Nee?

P: Nein.

I: Okay.

P: Aufler halt wenn vorher angesagt wurde, achte auf den Wert von XY, dann hat man sich da drauf
konzentriert.

BE29

I: Also Du hast gerade angefangen, dass Du bei den ersten Quelltexten was anderes gemacht hast von
der Strategie her.

P: Genau, an den ersten Quelltexten habe ich erst versucht, so irgendwie, &h, mir die ganze Klasse
anzugucken, zumindest also den kompletten Quelltext und &hm mir im Groben erst mal anzugucken, wie
ist es aufgebaut, dhm, hab dann irgendwann festgestellt, dass es mir nicht weiterhilft ...

I: Okay.

P: ...sondern dann bin ich doch nach unten zur main-Methode, hab geguckt, “Okay, die ruft die Klasse
auf, guckst Du Dir mal Klasse an, ah ok, die rufende Klasse wird ja auch noch benutzt” und dann hatte
es da besser funktioniert. Also bei der ersten Aufgabe hatte ich es wirklich so versucht und dann ging
auch und deswegen dachte ich, und die zweite war glaube ich auch die rekursive, das war die mit der
Sortierung, das weif} ich noch ...

I: Mhm.

P: ...4hm, da bin ich dann gleich in die main-Methode, weil ich dachte “Oh Gott, nicht dass Du da
wieder so lange davor sitzt, guck mal lieber, dass Du Dich Schritt fiir Schritt da durchhangelst”.

I: Wiirdest Du vermuten, dass Du das normalerweise auch machst, also in deiner téglichen Arbeit auch
erst so nach einer main suchen, oder gehst Du da ...

P: Na 'ne main gibt’s dort nicht, die haben wir jetzt so nicht ...

I: Okay.

P: ...nee, da gucke ich mir eigentlich immer die Modelle an, also so viel Algorithmik betreiben wir auch
halt nicht, also da geht’s eher doch um die saubere Modellierungen und so.

CO020

I: Okay, Du hast eben mehrere Quelltexte gelesen und verstanden. Hattest Du irgendein bestimmtes
Vorgehen nach dem Du jedes Mal vorgegangen bist? Also das Du jedes Mal hattest?

P: Also zuerst die main-Methode, dann den Constructor meistens, um die Ubergabe der Eingabeparam-
eter anzusehen und dann die Methodenaufrufe.

I: Okay, und Du hattest ja auch verschiedene Aufgabentypen, mal solltest Du nur einen Wert ausgeben,

mal solltest Du eine algorithmische Idee finden. Hat es einen Unterschied gemacht, wie Du vorgegangen
bist?

207

A .4 EXPERT INTERVIEWS

P: Nein, ich habe meistens immer auf die main-Methode geguckt und danach eben nach Funktionsaufruf,
bin ich den Funktionen gefolgt.

I: Okay, und kannst Du Dir vorstellen, dass das fiir einen Programmieranfinger auch geeignet ist, dieses
Vorgehen?

P: Der Vorteil ist, dass man iiberfliissige Informationen rausfiltert, schnell. Finde ich.

I: Also ja oder nein?

P: Ja.

HI27

I: Du hast ja grade mehrere Quelltexte gelesen und verstanden. Hattest Du dabei ein bestimmtes Vorge-
hen?

P: Das ist doof, weil ich schon mal gesehen habe, wie andere Leute Quelltexte lesen und mir die
entsprechenden Daten angeguckt habe, deswegen bin ich da ein bisschen subjektiv, aber ich habe schon
versucht immer zuerst die Hauptfunktion also main-Funktion zu finden und zu gucken, welche Funktionen
es gibt und wie die Hauptstruktur ist. Wann welche Funktion von welcher anderen Funktion aufgerufen
wird, was die Eingabe- und Ausgabeparameter der Hauptfunktion sind und dann, was die aufgerufenen
Unterfunktionen so machen. Also einen top-down Ansatz.

I: Okay. Und Du hattest ja verschiedene Aufgabentypen. Mal solltest Du eine Zusammenfassung
schreiben, mal nur einen Wert angeben. Hat das irgendeinen Einfluss drauf gehabt, hast Du dein Vorgehen
angepasst?

P: Nein, die waren eigentlich sehr dhnlich, weil das war ja immer. Oder ich hab mich schon, also wenn
zum Beispiel die Aufgabe war, erinnere Dich an den Wert einer Variablen, dann habe ich eigentlich zuerst
geguckt, wo diese Variable auftaucht und was in diese Variable reingeschrieben wird und dann habe ich
geguckt wo ist da die Funktion, die das macht, was in die Variable reingeschrieben wird und so was. Und
ich habe zuerst, ich hab schon gesucht, zielgerichtet nach dem geguckt, was am Ende rausgegeben wird
oder was gefragt wird.

I: Okay, kannst Du Dich daran erinnern, als Du die Multiple-Choice Questions hattest. Bist Du da
irgendwie anders vorgegangen als jetzt?

P: Ich glaube nicht. Nein.

I: Okay. Und konntest Du Dir vorstellen, dass das Vorgehen das Du am Anfang meintest, erst mal die
main suchen und von da aus weiter gehen, auch fiir einen Anfinger, also einen Programmieranfinger,
geeignet wére?

P: Ja.

I: Weil?

P: Weil man sich so am besten einen Uberblick iiber das Gesamtsystem verschaffen kann und sich mit
den Details erst spater beschiftigen kann. Und dann vielleicht auch unnétige Sachen, also sich nicht von
Anfang an auf unnétige oder unwichtige Sachen fokussiert.

IE30

I: Okay, Du solltest ja jetzt eben Quelltexte lesen und verstehen.

P: Mhm.

I: Hattest Du dabei irgendeine bestimmte Strategie, die Du verfolgst hast?

P: Also ich versuche in der Regel so den, den, den, Ablauf nachzuverfolgen. Also ich meine, ich fang, ich
weif}, dass ich selber, in der Regel erst mal anfange oben, na, so erst mal gucken, weil erst mal ist das
Text und dann sag ich “Okay, aha, okay, Name, Klasse, usw.” und dann guck ich aber in der Regel eher
bei der main-Methode nach, “Was macht denn die eigentlich?”. Und arbeite mich dann halt von da vor,
also das ist so strukturell eher so. Mal gucken, also was macht die, was ruft die auf, was ruft dann das
auf und so weiter und sofort und versuche da anhand dessen den, den Ablauf nachzuverfolgen.

I: Alles klar. Und kénntest Du Dir vorstellen, dass dieses Vorgehen auch fir einen Anfinger geeignet
ware?

P: Ahm, also ich meine, ich denke, es ist generell schon 'ne gute Idee das zu machen, also es ist halt so,
herauszufinden, wo der Einstiegspunkt in das Ganze ist und dann was zu machen, aber dazu muss man
natiirlich, also wenn man als Anfinger weifl wo das ist, konnte ich mir schon vorstellen, dass das was
bringt. Wenn man den Text einfach erst mal so von oben nach unten durchliest, das bringt in der Regel
nicht so viel, weil es ja nicht den logischen Ablauf widerspiegelt.

I: Okay.

208

CHAPTER A. APPENDIX

P: Also meine Meinung dazu.

I: Und dann hattest Du ja verschiedene Aufgabentypen. Mal solltest Du eine Zusammenfassung schreiben
oder ...

P: Ja.

I: ... mal auch einen Wert ausgeben.

P: Mhm.

I: Hat es irgendwie einen Unterschied fiir Dich gemacht, wie Du vorgegangen bist?

P: Ahm, nee, also der Grobablauf ist dasselbe, man muss halt rausfinden was macht das Programm
eigentlich.

I: Mhm.

P: Aber, dhm, also zum Beispiel bei dem Wert war ich mir am Schluss gar nicht mehr so sicher, “Moment
mal, war das jetzt grofler oder kleiner?”. Also das wér so'n Ding wo ich dann am Schluss nochmal hétte
nach, eigentlich nochmal zuriick hatte gehen miissen und nochmal nachgucken miissen.

I: Okay.

P: Also ich hatte gesehen, es ist sortiert, aber ob es aufsteigend oder absteigend ist, das hétte ich jetzt
am Schluss gar nicht mehr so genau gewusst.

I: Okay.

P: Also weil es ja auch, ja, so’n, so’n, so’ne relativ kompakte Sache ist. Also was man in der Regel, &hm.
Also jetzt wiirde ich sagen, ist eigentlich das normale Vorgehen, man schreibt 'nen Unit-Test der sagt:
“So, ich will wissen, hinterher soll es so aussehen” und dann gucken wir ob der Code das macht. Und
wenn nicht, guckt man nochmal genauer hin warum er es nicht macht und dann dreht man vielleicht das
Kleiner um oder setzt ein Grofler oder umgekehrt, je nachdem was man braucht. Aber ja. Also das ist
noch was anderes als wenn’s darum geht, “Wie ist allgemein der Algorithmus?”. Wenn man da sieht “Ah
ja, okay, hier haben wir Rekursion, hier haben wir 'ne Schleife, hier machen wir dieses, hier machen wir
jenes”. Es ist schon noch irgendwie ein kleiner Unterschied, aber nicht zum allgemeinen Ablauf, sondern
im Detail.

KK24

I: Did you have a certain approach to read and understand these little programs?

P: Not the particular approach, but I first follow the main-method and what it’s trying to do. And then
I looked in the method that it calls and after that I did. What about it? I, I really don’t understand.

I: Ok, well, you said you're looking for the main?

P: Yes, main-method.

I: And then, how did you proceed from there?

P: There you can find the actual method that it’s calling.

I: Ah, okay.

P: And then I followed the method and then the output.

I: You had different types of questions, like what value is that or please write a summary. Did you change
your approach according to the task?

P: No, not really. I followed the same approach.

I: Ok, and would you think that this approach is also okay for a novice?

P: For novice?

I: For someone who just learns programming.

P: Might be. I don’t know, because everyone has their own approach, how they follow that. I don’t really
know.

I: So, you think every person has their own approach?

P: Yes.

I: There is not the general one that you could apply to everyone?

P: I don’t think there is a general approach that can be followed by everyone.

LK23
I: You just read and understood sample source codes. Did you have some kind of approach to go through
those?
P: Yes. I always would go, I always will quickly first go through the classes, over the functions and
then I would immediately go to the main and to see actually what are the inputs. Actually mostly to
understand what are the arrays are for and stuff. So, and then when I’ve seen what is in main required,

209

A .4 EXPERT INTERVIEWS

then I come back to the functions and or classes and then see what they are for, and then, I mean, try
to think.

I: Ok. And you had different tasks, like find the value or write a summary about the algorithm. Did that
change your approach?

P: Maybe just that, when it is value, so I would be more careful to see and calculate in mind. What
the output should be and when it’s summary, I don’t really care, cause summary that didn’t really say,
I mean doesn’t require to say how much, the results should be, I mean, output should be.

I: And do you think that approach would also be ok for a novice or someone who learns programming?
P: 1, yeah, I think actually it’s a kind of the best in a way, but I think that maybe somebody new, he
will spend more time first to go through functions and then only after some time to come to main. But
actually, I believe this is not. Actually I really think that the coming from main is more important and
makes more sense, because the main give you real data so you actually knows what arrays supposed to
be, physically. Then it’s easier to read code. Cause you are more expecting, how you, what you are doing
with that array or whatever, or that e.g. indexes.

MRO05

I: Du hast ja gerade mehrere Quelltexte gelesen und verstanden. Hast Du dabei irgendeine bestimmte
Vorgehensweise gehabt, irgendeine Strategie, nach der Du vorgegangen bist?

P: Ahm,von meinem Gefiihl her, ich starte beim Klassennamen . ..

I: Okay.

P: ...die, wenn sie sprechend benannt ist, schon mal einen ersten Hinweis gibt, was mich erwartet.

I: Okay.

P: Ahm, der erste Ansprungspunkt wire hier immer die immer die main-Methode . ..

I: Mhm.

P: ...um zu schauen was wiirde {iberhaupt passieren um von da aus dann sukzessive in die Methoden
reinschauen.

I: Okay. Ahm, denkst Du, dass das gleiche Vorgehen auch fiir einen Anfinger geeignet wire?

P: Ja.

I: Ja? Kann man so abarbeiten?

P: Ich denke schon. Das ist so ein bisschen der Flussreihenfolge folgen.

I: Mhm. Fluss, meinst Du jetzt Kontrollfluss oder Datenfluss?

P: Ahm, ja so vom Kontrollfluss her, vom Status der main-Method her, wie sind die ersten angesprochenen
Methoden zu verstehen, was dort passiert und wenn es dort wieder Unterbrechungen gibt, vielleicht die
zwei Moglichkeiten, entweder ich versuche erst mal eins zu verstehen oder ich gehe gleich tiefer in die
anderen rein.

I: Okay und dhm Du hattest ja verschiedene Aufgabenstellungen. Mal solltest Du nur die Ausgabe finden
bzw. solltest die algorithmische Idee vom Ganzen beschreiben, hatte das irgendeinen Einfluss darauf
gehabt wie Du vorgegangen bist?

P: Ahm, ich denk mal, wenn ich 'ne Zusammenfassung geben sollte, hab ich mir mehr Miihe gegeben, die
einzelnen Zwischenschritte zu merken ...

I: Ah, okay.

P: ... wihrenddessen das beim Ergebnis, das jetzt nicht ganz so wichtig war. Wenn die Frage kommt,
wie war das implementiert, sind vielleicht doch ein paar detailliertere Informationen wichtig gewesen.

PA24

I: Did you have some kind of approach how to read and understand the source codes?

P: Yeah, I usually start from the main program and then see what that does. Like see what gets put
in to what and then after that I follow the path of the, like executing the program in my head, kind
of. Seeing what you actually need to read and then lazily only reading those parts. Of course in these
you will always read everything, but in most normal cases, you wouldn’t need to read all the classes to
understand the program, you just need the ones that are actually executed so. And I have troubles with
recursion, because it calls itself and I'm really bad at guessing the, like, ending parameters and at last
one I was really confused, because it just seem, it just copies the values inside the one array and does
nothing sensible, but that might have been just a misunderstanding on my part. But yeah.

I: Ok, but you had different kinds of tasks, sometimes you just had to say the value and sometimes you
were asked to write a summary. Did that change your approach?

210

CHAPTER A. APPENDIX

P: Uhm, not really, unless the code was really self-explanatory and then I could, I didn’t have to even
go so far that I would need to analyze the program. For example the rectangle one, I just like saw, ok,
this will describe a rectangle and than I just scanned it for traps like, so that there is nothing wrong
hidden in the code, so it’s clean, and then I just came to the conclusion that, ok this is probably just
a rectangle. Nothing more than that. And then I, uh, yeah, I checked the values that were put in the
main, so if there was anything, uh, that would be related to the values, so I would know the values of
the rectangles. Like, just in case. So, just checking the main for how the program works and then doing
the summary. Because the, the class itself, kind of already looked that it describes a rectangle. Uhm, it
was like self-explanatory.

I: Ok. You said first that your approach is to first look at the main and then follow the execution
order. Do you think this approach would also be suitable for a novice, like someone who just learns
programming?

P: Yes. I think. It might be like time-consuming to get like the certain mentality, like what to memorize
and what not to memorize when doing this. But I think, in my case I really like procedural code, because
it’s how the computer really runs the code, even though you try to have higher level like objects and stuff
like that, but still the execution in almost everything is kind of procedural so, it, in. I think it’s an easy
approach for programming to get procedural stuff and then like extend that to the abstract level of like
objects and stuff like that. Like, it’s still kind of procedural. I think, it’s easy for the brain to do stuff in
sequences.

SI28

I: You just read and understood some source codes. What was your approach to read and understand
those?

P: T guess, I started from the exit point. For example from the main method, then backwards, looking
for the, what the, how the program is executed. Yes, something like that.

I: And you had different task types, like find the value or write a summary. Did you change your approach
according to that?

P: T don’t think so. I just follow mine, my mind. Maybe that’s my habit to read some strange source
code. I follow my own logic.

I: Ok. And do you think a novice programmer, somebody who just learns programming could also use
this approach?

P: Yeah, I think so. It’s kind of somehow a fixed matter how to understand a program, Java program or
whatever, some.

TU15

I: Okay, Du hast ja grade mehrere Quelltexte gelesen und verstanden. Hattest Du dabei ein bestimmtes
Vorgehen?

P: Ja, ich habe zuerst so grob geschaut. Ich habe zu erst grob geschaut, aber dann habe ich immer zuerst
diese main-Methode gesucht, wo sie {iberhaupt ist. Und so ein bisschen geguckt welche Teile vom Source
Code, denke ich, hab geguckt, welche Teile vom Source Code iiberhaupt relevant sind, um einfach zu
sagen: okay, die muss ich nicht lesen. Aber bei den Aufgaben waren alle relevant. Aber ich habe mit der
main-Methode angefangen und so ein bisschen geguckt, wo die Teile landen und ich habe auch versucht
mit dem Beispiel mit zu arbeiten, so ein bisschen im Kopf zu rechnen, statt nur auf das Algorithmus zu
gucken.

I: Und es gab ja verschiedene Aufgabentypen. Mal solltest Du einen Wert ausrechnen oder einen Summary
schreiben. Hat das einen Unterschied fiir Dich gemacht? Also hast Du dein Vorgehen angepasst?

P: Beim Ergebnis habe ich dann wirklich nur drauf geschaut, was erreiche ich jetzt. Ich habe nicht
wirklich darauf geachtet welche Algorithmen dahinter stecken, sondern einfach so grob erkannt, kenne
ich das Pattern oder nicht, aber einfach nur schnell nach dem Ergebnis gesucht. Und bei Summary habe
ich einfach nicht erwartet, konnte ich nicht erwarten, welche Art von Frage kommt und da habe ich bei
einer sogar geguckt: Okay wie heiflen die Variablen jetzt hier, weil vielleicht wird auch gefragt, war das
CamelCase. Ich wusste einfach nicht was da in Frage kommen kann. Das hat mich dazu gezwungen
griindlicher zu lesen, aber ich weifl nicht, ob ich dann immer. Ich glaube mit dem Beispiel war ich sofort
schneller drin, um zu wissen, was passiert.

I: Du meintest ganz am Anfang, Du hast erst nach der main-Methode geguckt und bist dann so ein
bisschen im Prinzip die Ausfihrung lang oder hast das Beispiel ausprobiert. Kannst Du Dir vorstellen,

211

A .4 EXPERT INTERVIEWS

dass das fiir einen Anfénger auch geeignet ist, so ein Vorgehen.

P: Kann ich nicht beurteilen. Das ist schwer. Ich kann mir vorstellen, dass es schwer ist sich eine mentale
Karte von Source Code zu bauen im Kopf. Und manchmal, je nach Aufgabe, kann das sein, dass viele
Teile uberfliissig sind und daher ist dann diesen kompletten Source Code lesen eher nicht geeignet, wiirde
ich sagen, aber vielleicht machen es Anfinger. Aber ich habe versucht zu gucken, welche Teile sind
iiberhaupt relevant.

I: Die Uberlegung ist eher, sollten wir versuchen den Anfingern die gleiche Strategie beizubringen, die Du
als Experte hast. Deswegen frage ich. Ob Du meinst, dass dein Vorgehen vielleicht auch schon geeignet
ware, dass man es einem Anfinger beibringt.

P: Vielleicht. Ich habe es gewiss einfacher fiir mich, weil ich einfach einem konkreten Beispiel folgen kann
und so ein bisschen gucken was passiert und dann erkenne was ist relevant iiberhaupt zum Lesen. Das ist
vor allem bei grofleren Source Code Beispielen, kann man einfach nicht alles lesen. Nicht mal anfangen,
also lieber nicht.

UL29

I: Du hast ja jetzt Quelltexte gelesen und verstanden. Hast Du dabei eine Strategie angewendet?

P: Ja, pff, in dem Sinne, dass ich mir zuerst nur die main-Methode angeguckt habe und dadurch nicht
so von oben nach unten gelesen habe, sondern eher mir erst mal geguckt, was wird als erstes aufgerufen
und dann Schritt fiir Schritt das Programm durchgegangen bin.

I: Okay. Und koénntest Du Dir vorstellen, dass diese Strategie auch fiir einen Anfinger geeignet ist?

P: Ahm, sicherlich, ja, definitiv. Also man muss ja irgendwie nicht gleich das ganze Modell verstehen,
und wenn man dort verstanden hat, und dann guckt man was es eigentlich macht ...

I: Mhm.

P: ...sondern man guckt erst mal, “Ah, was macht’s denn” und danach kann man sich ja nochmal
angucken wie es implementiert wurde und ob das gut oder schlecht ist.

I: Okay. Du hattest ja verschiedene Aufgabentypen, mal solltest Du ne Zusammenfassung schreiben, oder
mal solltest Du einen konkreten Wert angeben. Hat es fiir Dich einen Unterschied gemacht wie Du dann
vorgegangen bist?

P: Mhh, nee.

I: Gar nicht?

P: No.

212

	Introduction
	Motivation
	The importance of code reading and understanding
	Code reading in computer science education
	The nature of source code

	Research questions
	Structure of this work

	Background
	Why using gaze
	The human eye and its movements
	Recording eye movements
	Eye movements in programming

	EMCR study description
	Synopsis
	Study design
	NT reading
	SC reading
	Novice programmers
	Expert programmers

	Participants
	Novice programmers
	Expert programmers

	Detecting oculomotor events
	Introduction
	Choosing a suitable approach
	Choosing an algorithm
	Adapting the algorithm
	Duration
	Dispersion

	Setting parameters
	Duration
	Dispersion

	Event detection on the EMCR data
	Comparing algorithm variants
	Comparing parameter variants
	Post-Processing

	Conclusion

	Eye tracking error
	Introduction
	Data quality
	Accuracy, precision, valid samples
	Error sources
	Factors concerning the recording system and environment
	Factors concerning the participant

	Conclusion

	Existing approaches for addressing error
	Error debilitation and data removal
	Stimulus preparation
	Recalibration
	Removing problematic data

	Error correction
	Source-centric methods
	Data-centric methods
	Manual correction
	Automatic correction
	General-purpose approaches
	Task-specific approaches for (code) reading

	Conclusion

	Evaluation approaches for error correction
	Real data
	Comparison with manual correction
	Reference locations
	Visualizations
	Comparison with another correction method
	Further measures

	Artificial data
	Conclusion

	Conclusion

	Error correction
	Introduction
	Correction approaches
	Nüssli 2011
	Lohmeier 2015
	Novel approach
	Error function
	Finding parameters
	Adapting AOIs
	Variants for evaluation

	Evaluation using reference locations
	Stimuli
	Text
	Grid

	Recording situation and participants
	Analysis procedure and results
	Reference locations
	Errors
	Correction

	Chosen approaches
	Conclusion

	Evaluation using manually corrected data
	Data
	Analysis procedure and results
	Plausibility check
	Conclusion

	Evaluation using artificial data
	Data
	Analysis procedure and results

	Conclusion

	Analysis procedure
	Overview
	Areas of interest
	Preparation of data for statistical analysis
	Comprehension questions
	Event detection
	Error correction
	AOI sequences

	Analysis measures
	Introduction
	Model behaviors
	Single-event-based measures
	Fixation duration
	Number of fixations
	Saccadic amplitude
	AOI coverage
	First visit to main

	Event-sequence-based measures
	Reading direction
	Model occurrence and model similarity
	Sequence alignment
	Types of pairwise alignments
	Adaption for EMCR data

	Trial-based measures
	Trial duration
	Correctness of comprehension question

	Summary of analyses measures

	Analysis results
	Introduction
	Single-event-based measures
	Fixation duration
	Number of fixations
	Saccadic amplitude
	AOI coverage
	First visit to main

	Event-sequence-based measures
	Reading direction
	Model occurrence and model similarity

	Trial-based measures
	Trial duration
	Correctness of comprehension question

	Threats to validity

	Conclusion
	Synopsis
	Natural-language text reading
	Research question 1
	Research question 2

	Reflection on methods and analysis measures
	Discussion and future work

	Bibliography
	List of figures
	List of tables
	List of abbreviations
	Appendix
	Questionnaires
	Novices
	Experts

	Natural-language stimuli
	NT1
	NT2
	NT3

	Source code stimuli
	Novices
	L1_SC1
	L1_SC2
	L1_SC3
	L3_SC1
	L5_SC3

	Experts
	SC1
	SC2
	SC3

	Expert interviews

