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Zusammenfassung

In dieser Dissertation wird der Entwurf einer hybriden Kraft-/Positionsregelung für
einen hydraulischen Hexapod durchgeführt, der als Anregungseinheit in einem PKW-
Achsprüfstand dient. Während bei konventionellen Anlagen die iterativ lernende Regelung
(ILR) eingesetzt wird, um unter hohem Zeitaufwand die Stellsignale der Antriebe zu bilden,
besteht das Alleinstellungsmerkmal der vorliegenden Synthese in der Verwendung echtzeit-
fähiger Regelungsalgorithmen. Das ermöglicht auch Hardware-in-the-Loop-Anwendungen.
Der Stand von Technik und Forschung zeigt, dass Regelungsansätze für anspruchsvolle
Aufgaben die Bewegungsgleichungen von Manipulator und Kontaktpartner einbeziehen.
In dieser Arbeit werden daher die Bewegungsgleichungen des Hexapod und des Prüflings,
einer MacPherson-Radaufhängung, hergeleitet. Dabei geht die Modellierungstiefe der
Radaufhängung weit über den Stand von Technik und Forschung hinaus. Mithilfe der Mo-
delle wird eine aus der Literatur bekannte Regelung, die allgemeingültig weiterentwickelt
wird, sowie eine Regelung nach der exakten Ein-/Ausgangslinearisierung für den Hexapod
entworfen. Der zweitgenannte Ansatz erweist sich für den vorliegenden Anwendungsfall
als prädestiniert. Die hohe Leistungsfähigkeit beider Regelungen und deren Eignung für
Betriebsfestigkeitsversuche wird anhand von Computersimulationen nachgewiesen. Für
die Erprobung am Prüfstand fehlte vereinzelt Sensorik, vor allem aber ein hochwertiger
Parametersatz für den Prüfling seitens des Herstellers. Nicht zuletzt deshalb werden in
der Arbeit weitere Regelungsansätze beschrieben, die weniger Modellwissen erfordern.
Für einen dieser Ansätze enthält die Arbeit auch Messergebnisse vom Prüfstand. Es zeigt
sich, dass die mit diesem Regler erzielten Ergebnisse bisher dokumentierte echtzeitfähige
Regelungen deutlich übertreffen. Betriebsfestigkeitsprüfungen mit besonders hohen Dyna-
mikanforderungen werden durch eine ebenfalls beschriebene ILR ermöglicht.

Abstract

This thesis deals with the design of a hybrid force/position controller for a hydraulic
hexapod which serves as an excitation unit in a vehicle suspension test rig. While the
time-consuming iterative learning control (ILC) technique is used to calculate the input
signals for industrial systems, the unique characteristic of the present synthesis is its
real-time capability. This also enables hardware-in-the-loop applications. The state of
the art shows that control approaches for particularly demanding tasks incorporate the
equations of motion of both the manipulator and the environment. Thus, the equations
of motion of hexapod and test specimen, a MacPherson wheel suspension, are derived.
The modeling depth of the wheel suspension significantly exceeds the state of the art.
Using these models, a controller known from literature and a second one which is based
on exact input/output linearization are designed for the hexapod. The former is developed
further in a generally valid way. The latter proves to be predestined for the use case at
hand. Computer simulations verify the high performance of both control approaches and
their suitability for durability testing of vehicle suspension systems. Test rig experiments
require additional sensors and, above all, a high quality model of the test specimen to
be provided by the manufacturer. Also for this reason, further control approaches are
described which involve less knowledge about the test specimen. For one of these methods,
test rig measurements are provided. It turns out that the results achieved with this particular
controller clearly exceed the known state of the art. Durabilty tests with particularly high
dynamic requirements are facilitated by an ILC which is also included in the thesis.





Vorveröffentlichungen

[FKT15] Flottmeier, S.; Kohlstedt, A.; Trächtler, A.: Regelung eines hydrau-
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Trächtler, A.: Control of a hydraulic hexapod for a Hardware-in-the-Loop
axle test rig. at - Automatisierungstechnik 64 (2016), Nr. 5, S. 365–374

[KOT+17] Kohlstedt, A.; Olma, S.; Traphöner, P.; Jäker, K.-P.; Trächtler, A.:
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Hardware-in-the-Loop-Simulation einer Fahrzeugachse mit aktiver Wank-
stabilisierung mithilfe eines hydraulischen Hexapoden. VDI-Fachtagung
Mechatronik. 2019, S. 85–90
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ΣR,LM6z Regler nach [LM94] für das Streckenmodell ΣG11 mit den Positions-
größen z (siehe Abschnitt 5.1.4)

Allgemeines

Exakte Ein-/Ausgangslinearisierung

δ Totaler relativer Grad

δi Differenzordnung des Ausgangs i

n Systemordnung

Mathematische Operatoren

V ⊕W Direkte Summe der Vektorräume V und W

�−1 Inverse

�̃ Kreuzproduktmatrix, siehe Anhang A1.6

L {�} Laplace-Transformierte

�+ Pseudoinverse

�T Transposition

�̇ Erste zeitliche Ableitung

�̈ Zweite zeitliche Ableitung
...
� Dritte zeitliche Ableitung

�(n) n-te zeitliche Ableitung

Grübler-Kutzbach-Kriterium

f Anzahl der Freiheitsgrade des Mechanismus

fGi Anzahl der Freiheitsgrade des Gelenks i

nG Anzahl der Gelenke des Mechanismus

nI Anzahl der isolierten Freiheitsgrade des Mechanismus

nK Anzahl der Starrkörper des Mechanismus

nL Anzahl der kinematischen Schleifen des Mechanismus

nZ Anzahl der Zwangsbedingungen des Mechanismus

Sonstiges

�̂ Beobachtete bzw. geschätzte Größe

�r Sollgröße

Größen im Tool Center Point (TCP)

α, β, γ Kardanwinkel

ωx, ωy, ωz Winkelgeschwindigkeiten bezüglich des Inertialsystems
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τ Kontaktkräfte und -momente (3D: τ =
[
Fx Fy Fz Mx My Mz

]T
)

a Beschleunigungsvektor, a = v̇

Fx, Fy, Fz Längs- (x), Quer- (y) und Vertikalkraft (z)

Mx,My,Mz Moment um die Längs- (x), Quer- (y) bzw. Hochachse (z)

rx, ry, rz Kartesische Koordinaten bezüglich des Inertialsystems

v Geschwindigkeitsvektor (3D: v =
[
vx vy vz ωx ωy ωz

]T
)

vx, vy, vz Translatorische Geschwindigkeiten bezüglich des Inertialsystems

z Positionsvektor (3D: z =
[
rx ry rz α β γ

]T
)

Iterativ lernende Regelung (ILR)

Allgemeines

k Iterationsschritt der iterativ lernenden Regelung

Algorithmus

L1 Verstärkungsmatrix von uk−1

L2 Verstärkungsmatrix von ek−1

Qk Matrix der Lernfaktoren

Signale

ek Soll-/Ist-Abweichung des Zielgrößen-Zeitverlaufs, ek = yr − yk

uk Zeitverlauf der Eingangsgröße im k-ten Iterationsschritt (Drive-Signal)

yk Ist-Zeitverlauf der Zielgröße im k-ten Iterationsschritt
(Response-Signal)

yr Soll-Zeitverlauf der Zielgröße (Target-Signal)

Manipulator- bzw. Hexapodmodell

Allgemeines

∆p Differenzdrücke der Hydraulikzylinder

Fq Aktorkräfte

H Kinematikmatrix, H = ∂ v/∂ żT

q Aktorlängen bzw. Gelenkkoordinaten

uV Servoventilspannungen

Bewegungsgleichungen in z, v

Cv Zentrifugal- und Coriolismatrix

gv Vektor der verallgemeinerten Gewichtskräfte

Jg Geometrische Jacobimatrix



X Symbolverzeichnis

Mv Massenmatrix

Bewegungsgleichungen in z, ż

C Zentrifugal- und Coriolismatrix

g Vektor der verallgemeinerten Gewichtskräfte

Ja Analytische Jacobimatrix

M Massenmatrix

Regelung

Allgemeines

S Binäre, diagonale Selektionsmatrix
(Auswahl von Kraft- oder Positionsregelung)

u f Eingangsgröße der Kraftregelung

up Eingangsgröße der Positionsregelung

Umgebungs- bzw. Radaufhängungsmodell

Allgemeines

λa Aktive Kräfte

λr Reaktive Kräfte

Sλa Jacobimatrix Sλa = ∂ τ/∂ λT
a , vgl. (2-79)

Sλr Jacobimatrix Sλr = ∂ τ/∂ λT
r , vgl. (2-79)

Syd Jacobimatrix Syd = ∂ v/∂ yT
d , vgl. (2-80)

Syk Jacobimatrix Syk = ∂ v/∂ yT
k , vgl. (2-80)

yd Dynamische Koordinaten

yk Kinematische Koordinaten

Minimalkoordinaten (MacPherson-Radaufhängung)

κy Drehwinkel des vorderen Querlenkerlagers um die Querachse

κz Drehwinkel des vorderen Querlenkerlagers um die Hochachse

ψ Drehwinkel der Radnabe gegenüber dem Radträger

dF Dämpferweg

xA Verschiebung des vorderen Querlenkerlagers in Längsrichtung

xE Verschiebung des Federbeinstützlagers in Längsrichtung

xL Verschiebung des Lenkgestänges

yA Verschiebung des vorderen Querlenkerlagers in Querrichtung

yE Verschiebung des Federbeinstützlagers in Querrichtung

zA Verschiebung des vorderen Querlenkerlagers in Hochrichtung
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zE Verschiebung des Federbeinstützlagers in Hochrichtung

Bewegungsgleichungen

Mu Massenmatrix

nu Zentrifugal-, Coriolis- sowie eingeprägte Kräfte und Momente (außer
Kontaktkräfte und -momente τ)
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1 Einleitung

1.1 Hardware-in-the-Loop-Prüfstand für PKW-Achsen

Das Heinz Nixdorf Institut (HNI) der Universität Paderborn betreibt einen Achsprüfstand,
der für den mehrdimensionalen Test von ganzen Kraftfahrzeugachsen unter Echtzeitbe-
dingungen konzipiert wurde. Es handelt sich um ein DFG-Forschungsgroßgerät. Bild 1-1
zeigt die wesentlichen Bestandteile des Prüfstands.

Aufspannplatte mit
Schwingungsisolierung

Endeffektor

Kraftmessrad Achshaltesystem

Achse

Einzelzylinder

Bild 1-1: Achsprüfstand des Heinz Nixdorf Instituts (HNI)

Der Prüfling, die Kraftfahrzeugachse, ist fest mit dem Achshaltesystem verbunden. Das
Achshaltesystem wurde so konstruiert, dass es die gleichen Befestigungspunkte für die
Achse aufweist wie das reale Fahrzeug. Zur Aktuierung der linken Achsseite dient ein
hydraulischer Hexapod. Das vollständige Prüfstandskonzept sieht auch auf der rechten
Achsseite einen Hexapod vor, auf den im Rahmen des DFG-Großgeräteantrags aus Kosten-
gründen verzichtet wurde. Als Anregungseinheit kommt auf der rechten Seite stattdessen
ein hydraulischer Prüfzylinder zum Einsatz, der die Achse in einem Freiheitsgrad (FHG) be-
wegen kann. Um den hohen Dynamikanforderungen gerecht zu werden, wurden sämtliche
Komponenten des Prüfstands für die Achsprüfung optimiert bzw. ausgewählt, vgl. [FJT14;
FKT15].

Bei dem Hexapod handelt es sich um einen sog. parallelkinematischen Manipulator
(PKM) mit sechs FHG. Verglichen mit seriellkinematischen Manipulatoren (SKM) wie
dem klassischen Knickarmroboter besitzen PKM verhältnismäßig kleine Arbeitsräume
und die Regelung und Systemidentifikation gestaltet sich schwieriger. Von Vorteil ist die
geringere bewegte Masse sowie die höhere Steifigkeit und Positioniergenauigkeit. In der
Literatur herrscht Konsens, dass PKM für hochdynamische Anwendungen prädestiniert
sind. [Mer06; Neu06; Hol07]

Der Endeffektor, d. h. die bewegliche Arbeitsplattform des Hexapod, ist über ein Kraft-
messrad mit der Radnabe der linken Achsseite verbunden. Sechs hydraulische, hydrosta-
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tisch (und damit besonders reibungsarm) gelagerte Gleichlaufzylinder tragen den Endef-
fektor. Durch die simultane Aktuierung der sechs Hydraulikzylinder kann eine gewünschte
Bewegung des Endeffektors und damit der Radnabe in sechs FHG herbeigeführt werden.

Das zwischen dem Endeffektor des Hexapod und der linken Radnabe befindliche Kraft-
messrad dient der Messung der jeweils drei Kontaktkräfte und -momente zwischen diesen
beiden Körpern. Neben dem Kraftmessrad sind außerdem Sensoren für die Differenzdrücke
der Zylinderkammern sowie Positionsgeber zur Erfassung der Zylinderhübe verbaut. Zur
gezielten Führung des Ölvolumenstroms in die Zylinderkammern kommen zwei High
Response-Servoventile je Hydraulikzylinder zum Einsatz.

Für Hexapoden finden sich in der einschlägigen Literatur auch die Bezeichnungen Stewart-
Plattform oder Stewart-Gough-Plattform nach Stewart und Gough, die diesen Mechanis-
mus zuerst beschrieben haben [GW62; Ste65]. Außerdem wird die Bezeichnung 6-UPS-
Plattform verwendet, die aus der topologischen Struktur des Mechanismus folgt: jeder
Aktor ist über ein Kardangelenk (engl. universal joint) mit der Aufspannplatte verbunden,
worauf zwischen dem Zylinderrohr und der Kolbenstange ein Schubgelenk (engl. prismatic
joint) folgt1. Die Kopplung an die Endeffektor- bzw. Arbeitsplattform erfolgt über ein
Kugelgelenk (engl. spherical joint). Neben dieser Gelenkkonfiguration existiert eine wei-
tere Variante, bei der anstelle des Kardangelenks ein Kugelgelenk verwendet wird, die
sog. 6-SPS-Plattform. Abhängig von verschiedenen Faktoren wie z. B. der vorliegenden
Reibung sowie vorhandenen Anbauten können die Aktoren in diesem Fall einen ausge-
prägten Dreh-FHG um die durch die beiden Kugelgelenke beschriebene Achse besitzen.
Bei dem Hexapod des HNI handelt es sich um eine 6-UPS-Plattform.

Die Einsatzmöglichkeiten des Prüfstands sind vielfältig [TOK+17]. Primäres Ziel der fort-
laufenden Arbeiten am beschriebenen Achsprüfstand ist die Erschließung der Hardware-in-
the-Loop-Simulation (HiL-Simulation) für die Entwicklung von Fahrwerkregelsystemen
mit real aufgebauter Achse. HiL-Simulationen sind in der Automobilindustrie, insb. in der
Steuergeräteentwicklung, weit verbreitet. Im Rahmen einer HiL-Simulation werden Teile
eines realen Gesamtsystems mit numerischen Modellen der restlichen Systemkomponenten
gekoppelt [ISS99]. Bei der klassischen Variante, der Steuergeräteentwicklung, wird nur das
zu entwickelnde Steuergerät real aufgebaut. Für die Durchführung von HiL-Simulationen
sprechen zahlreiche Gründe. So kann die betrachtete Komponente bereits in sehr frühen
Phasen der Entwicklung getestet und die Zahl notwendiger Versuche am realen Gesamtsys-
tem reduziert werden. Daraus folgt eine Verringerung der notwendigen Entwicklungszeiten
und -kosten.

Eine erweiterte Fassung der HiL-Simulation stellen sog. HiL-Prüfstände dar. Derarti-
ge Prüfstände existieren z. B. für die Antriebsstrang- [SB02] und Lenkungsentwicklung
[OKG+07; HLSH15; MM15; DS16]. Die Kopplung zwischen dem real aufgebauten Teil-
system und den Umgebungsmodellen erfolgt in diesem Fall nicht mehr auf Signal-, sondern
auf mechanischer Ebene, vgl. [Bou08]. Eine solche Kombination von realem und virtuellem
Teilsystem auf mechanischer Ebene wird im Folgenden als mechatronische HiL-Simulation
bezeichnet.

Einen ähnlich komplexen HiL-Prüfstand, bei dem ebenfalls eine mehrdimensionale Anre-
gung eines Prüflings mit stark nichtlinearem physikalischen Verhalten erfolgt, scheint es

1In der Realität handelt es sich dabei häufig um ein Drehschubgelenk. Es liegt ein isolierter FHG vor,
der meist vernachlässigt wird, vgl. Abschnitt 4.2.
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bisher sonst nicht zu geben. Bild 1-2 zeigt das Konzept der geplanten mechatronischen
HiL-Simulation.

Echtzeitrechner
Umgebungs-

modelle

Aufbau

Rad/Reifen

Straße

Fahrer

Regelung

Zylinder-
regelung
Hexapod-
regelung
Zustands-

beobachtung
Fahrwerk-

regelsystem

Prüfstand
Test-

manöver Sollgrößen

Feedback

Stellgrößen

Messgrößen

Bild 1-2: Konzept der mechatronischen HiL-Simulation

Auf dem Echtzeitrechner werden die Umgebungsmodelle, d. h. Modelle des Fahrzeugs
(exklusive der im Prüfstand verbauten Achse), der Straße und des Fahrers berechnet. Aus
diesen simulierten Teilsystemen folgen Anregungen der beiden Radnaben, die durch die
Anregungseinheiten der Achse aufgeprägt werden müssen. Je nach Ausgestaltung der
mechatronischen HiL-Simulation kann es sich bei den aufzuprägenden Anregungsdaten
um Kräfte bzw. Momente und Verschiebungen bzw. Verdrehungen der Radnaben handeln.
Die Regelungsalgorithmen der Anregungseinheiten bilden aus diesen Sollwerten die
Stellgrößen der Antriebe. Die Reaktion des Prüflings fließt in Form der Messgrößen in die
Auswertung der Regelungs- und Beobachtungsalgorithmen für die Anregungseinheiten,
ggf. vorhandene Fahrwerkregelungsalgorithmen sowie die Umgebungsmodelle ein. Durch
die Kopplung der Umgebungsmodelle und der real aufgebauten Achse über die geregelte
Prüfstandsaktorik ergibt sich damit ein geschlossener Wirkungsablauf. Ein derartiges
Prüfsystem, das eine ideale Plattform für die Entwicklung von Fahrwerkregelsystemen
darstellt, existierte bislang nicht.

1.2 Problemstellung

Ausgangspunkt der Arbeiten ist die Dissertationsschrift von Sarah Knoop, geb. Flott-
meier [Kno17]. Darin wurden verschiedene flachheitsbasierte Regelungskonzepte für die
hochdynamische Positionierung des Hexapod ohne Umgebungskontakt entwickelt und
verglichen. Für deren Umsetzung wurde auch eine schnelle Druckregelung sowie ein
Zustandsbeobachter implementiert (siehe Abschnitt 2.3). Inzwischen wurde der Prüfstand
um das Achshaltesystem sowie einen Prüfling, eine Vorderachse nach dem MacPherson-
Prinzip, erweitert. Der Betrieb des Hexapod im Kontakt mit der Achse mithilfe einer
Positionsregelung allein ist nicht vorstellbar, da hierfür eine hochgenaue Planung der Be-
wegungstrajektorie erforderlich ist. Bei unzureichenden Kinematik- und Dynamikmodellen
des Hexapod und/oder der Radaufhängung kann es zu unzulässig hohen Kontaktkräften
und -momenten kommen, die je nach Ausmaß zur Beschädigung oder Zerstörung der in
Kontakt stehenden Mechanismen führen können [SK16]. Außerdem lassen sich mit dieser
Regelung nur die Position eines endeffektorfesten Punktes sowie die Orientierung des
Endeffektors gezielt einstellen. Die Vorgabe anderer Sollwerte bzw. Sollwert-Zeitverläufe,
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wie sie für Achsprüfungen typisch sind (z. B. die Kräfte und Momente auf die Radnabe),
ist nicht möglich.

Wie sich in Abschnitt 2.1 zeigen wird, kann das betrachtete System nicht mit den gleichen
Verfahren betrieben werden, die für konventionelle Achsprüfstände seit Jahrzehnten eta-
blierter Stand der Technik sind. Dort werden die Stellgrößen der Antriebe aus gegebenen
Sollsignalen mithilfe eines iterativen Lernverfahrens generiert. Der damit verbundene
Iterationsprozess ist zeitintensiv, sodass sich das Verfahren nicht für Echtzeitanwendungen
eignet.

Für die Realisierung mechatronischer HiL-Simulationen muss eine hinreichend schnelle
und genaue Regelung der Anregungseinheiten unter Echtzeitbedingungen erfolgen. Die
wesentlichen Anforderungen an die Prüfstandsaktorik für die Realisierung der mechatroni-
schen HiL-Simulation sind

• die Möglichkeit der gezielten Einstellung sowohl von Kräften als auch Positionen,

• der sichere Betrieb in Kontaktsituationen sowie

• die Ansteuerung unter Echtzeitbedingungen.

Weder die bestehende Prüfstandsregelung noch die etablierten Verfahren werden den
genannten Anforderungen gerecht. Für die Ansteuerung der Prüfstandsaktorik muss ein
neuartiger Ansatz entwickelt werden. Die Synthese echtzeitfähiger sowie hinreichend
schneller und genauer Regelungsalgorithmen für die Antriebseinheiten des Prüfstands im
Kontakt mit der Achse, die sich für die Durchführung mechatronischer HiL-Simulationen
eignen, ist notwendig.

1.3 Zielsetzung

Die Zielsetzung der vorliegenden Arbeit ist die Entwicklung einer Regelung für den Hexa-
pod im Achsprüfbetrieb sowie deren funktioneller Nachweis am Prüfstand. Hinsichtlich der
Regelgrößen erfolgt eine Orientierung an den Zielgrößen konventioneller Achsprüfstände.
Das primäre Ziel ist die Regelung der Radnabengrößen, d. h. deren Position und Orientie-
rung sowie der Kontaktkräfte und -momente zum Endeffektor. Je nach Prüfszenario soll
für jeden FHG einzeln zwischen Kraft- und Positionsregelung gewählt werden können
(das gleichzeitige Einregeln von Kraft und Position in einer Richtung ist bekannterma-
ßen physikalisch nicht möglich). Die bestehende Positionsregelung muss daher für den
Einsatz im Umgebungskontakt modifiziert werden. Außerdem muss eine Regelung der
Kontaktkräfte und -momente entwickelt und die richtungsabhängige Auswahl von Kraft-
oder Positionsregelung realisiert werden.

Bei konventionellen Achsprüfständen, die bspw. der Betriebsfestigkeitsprüfung dienen,
werden über die Radnabengrößen hinaus auch andere Zielgrößen beim Einlernen der
Aktorik vorgegeben. Die damit verbundenen Tests sind sehr anspruchsvoll und stellen
die Aktorik vor hohe Anforderungen. In dieser Arbeit wird auch untersucht, inwieweit
diese radnabenfernen Größen als Regelgrößen einer echtzeitfähigen Regelung in Betracht
kommen.

Die Synthese und Erprobung der entwickelten Regelungsalgorithmen erfolgt modellbasiert.
Zu diesem Zweck wird im Rahmen dieser Arbeit ein umfassendes MKS-Modell des
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Prüfstands in MATLAB/Simscape erstellt. Außerdem werden die Bewegungsgleichungen
für den Hexapod, die MacPherson-Radaufhängung sowie das resultierende Gesamtsystem
hergeleitet, da diese für die Regelungssynthese von großer Bedeutung sind.

Diese Arbeit thematisiert

• den Aufbau eines umfassenden Simulationsmodells für das betrachtete Testsystem,

• die Herleitung der Bewegungsgleichungen des Prüfsystems,

• die Synthese einer Regelung für den Hexapod im Kontakt mit der Achse sowie

• deren Implementierung und Erprobung für das Zielsystem.

Der Entwurf und die Synthese der mechatronischen HiL-Simulation ist hingegen nicht
Gegenstand dieser Arbeit. Zu diesem Thema sei auf die Veröffentlichungen [OKT+16b;
OKT+16a; OTK+16; TOK+17; OKT+18; TKO+19] verwiesen, die zum Teil im Rahmen
des DFG-Projekts „HiL-Umgebung zur mehrdimensionalen Achsprüfung und Fahrwerks-
auslegung“ entstanden sind.

1.4 Aufbau der Arbeit

Die vorliegende Arbeit ist folgendermaßen aufgebaut: an diese Einleitung schließt sich der
relevante Stand von Technik und Forschung an. Darin wird ausführlich das Thema der kon-
ventionellen Achsprüfung, insb. das dabei verwendete iterative Verfahren für die Ansteue-
rung der Aktorik, eingegangen. Im Gegensatz zu den konventionellen Achsprüfständen
weisen Industrieroboter häufig eine echtzeitfähige Regelung auch für Kontaktsituationen
auf. Aufgrund dessen werden im anschließenden Abschnitt 2.2 die Regelungsmethoden
für Manipulatoren in Kontaktsituationen aus dem Bereich der Robotik dargelegt. Dabei
werden auch Anwendungsbeispiele für PKM in Kontaktsituationen gezeigt.

Als Ausgangspunkt für die Modellierung des Prüfstands, das Aufstellen der Bewegungs-
gleichungen sowie die modellbasierte Regelungssynthese enthält Abschnitt 2.3 einen
Literaturüberblick zur Simulation von Achsprüfungen, zur Modellierung der MacPherson-
Radaufhängung sowie zur Modellierung von Elastomerlagern. Zum Abschluss des Ka-
pitels erfolgt eine Zusammenfassung, die Identifikation des Handlungsbedarf und die
Konkretisierung der zu diesem Zeitpunkt noch recht oberflächlichen Zielsetzung.

Kapitel 3 dient der Veranschaulichung der in Abschnitt 2.2 recherchierten Regelungsver-
fahren. Dort werden vor allem diejenigen Ansätze, die eine ideale Entkopplung der kraft-
und bewegungsgeregelten Richtungen erlauben, anhand zweier einfacher Beispiele im
Detail erläutert.

In Kapitel 4 wird die Modellierung des Prüfstands beschrieben. Es werden die Bewe-
gungsgleichungen des Hexapod, der MacPherson-Radaufhängung sowie des resultierenden
Gesamtsystems hergeleitet. Die Bewegungsgleichungen werden jeweils anhand eines
entsprechend aufgebauten MKS-Modells validiert.

Aufbauend darauf erfolgt in Kapitel 5 die modellbasierte Regelungssynthese für den
Hexapod. Das Kapitel enthält sowohl Simulationsergebnisse als auch Messungen vom
Prüfstand.

Die Arbeit schließt mit Zusammenfassung und Ausblick ab.
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2 Stand von Technik und Forschung

Diese Arbeit thematisiert den Regelungsentwurf für einen hydraulischen Hexapod zur
Durchführung von Achsprüfungen. Das Kapitel beginnt mit einer Abgrenzung der in der
Fahrwerkentwicklung typischerweise vorzufindenden Prüfsysteme. Danach wird neben
der Motivation und den notwendigen theoretischen Grundlagen auch auf den typischen
Ablauf einer Achsprüfung, die Definition des Prüfprogramms sowie die zugrunde gelegten
Zielgrößen und Gütemaße eingegangen. Insbesondere wird auch die iterative Bildung der
Steuersignale für die Aktoren beschrieben und begründet, weshalb sich dieses Vorgehen
in der Industrie etabliert hat. Da sowohl der iterative Prozess als auch die Achsprüfung
insgesamt sehr zeit- und kostenintensiv sind, werden verschiedene Ansätze verfolgt, diesen
Entwicklungsprozess zu optimieren. Der erste Unterabschnitt des vorliegenden Kapitels
schließt mit einer Zusammenstellung dieser Ideen und Maßnahmen ab.

Im Gegensatz zur Achsprüfung sind in der Robotik echtzeitfähige Regelungen allgegenwär-
tig. Insbesondere finden sich dort auch verschiedene Regelungsansätze für Manipulatoren
im Kontakt mit einer Umgebung, z. B. für Handhabungs-, Montage- und Bearbeitungsauf-
gaben. Daher folgt in Abschnitt 2.2 eine ausführliche Darstellung dieser Methoden. Der
Abschnitt geht sowohl auf die indirekten als auch die direkten Kraftregelungsverfahren
ein. Da hier ein PKM zum Einsatz kommen wird, enthält Abschnitt 2.2 auch zahlreiche
Literaturbeispiele für PKM in Kontaktaufgaben.

Der darauf folgende Abschnitt gibt einen Überblick über die in der Literatur zu findenden
Beispiele hinsichtlich der Modellierung und numerischen Simulation von Achserprobun-
gen. Insbesondere wird auf die Modellierung der Radaufhängung nach dem MacPherson-
Prinzip eingegangen. Der Abschnitt dient als Ausgangspunkt der Modellierung des Achs-
prüfstands (Kapitel 4).

Das Kapitel schließt mit einer Zusammenfassung, dem identifizierten Handlungsbedarf
und der Konkretisierung des Ziels der Arbeit ab.

2.1 Konventionelle Achsprüfung in Industrie und Forschung

Gute Grundlagenwerke auf diesem Themengebiet sind die Dissertation von de Cuyper
[Cuy06] sowie die Zeitschriftenbeiträge von Plummer [Plu07] und Berger et al. [BEH+02],
wobei letzterer einen praxisnahen Einblick in die Betriebsfestigkeitsprüfung in Deutschland
gewährt. Die Ausführungen in diesem gesamten Abschnitt entstammen, soweit nicht anders
angegebenen, diesen Quellen.

In der Fahrwerktechnik kommen verschiedene Prüfstandssysteme zum Einsatz. Im Falle
eines (Halb-) Achsprüfstands wird die zu prüfende Achse von einem starren Haltesystem
getragen. Die Aktorik ist direkt mit den Radnaben verbunden, auf die sie Kräfte und
Momente einprägt. Der Fehler, der dabei durch den im Gegensatz zur Realität unbeweg-
ten Fahrzeugaufbau entsteht, wird bei diesem Prüfkonzept in Kauf genommen. Abhilfe
schafft der sog. Ganzfahrzeugprüfstand, bei dem das vollständige Fahrzeug von vier An-
regungseinheiten getragen wird, wobei auch hier die Kopplung und damit die Kraft- und
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Drehmomenteinleitung direkt an den Radnaben erfolgt. Sowohl am (Halb-) Achsprüfstand
wie auch am Ganzfahrzeugprüfstand werden Anregungsfrequenzen von bis zu 50 Hz und
mehr nachgebildet. Diese Prüfstände dienen in der Regel der Betriebsfestigkeitsuntersu-
chung, d. h. der Überprüfung, ob der betrachtete Prüfling (im vorliegenden Fall eine Achse
bzw. das ganze Fahrwerk) betriebstypische Belastungen über seine gesamte Lebensdauer
erträgt und somit betriebsfest ist.

Neben (Halb-) Achsprüfständen gibt es spezielle Komponentenprüfsysteme, z. B. für den
Abgasstrang und Elastomerlager, Vierstempelanlagen für Komfortuntersuchungen sowie
die bis zu 250 Hz betriebenen MAST-Systeme (engl. multi-axial shaker table) für Kompo-
nententests im hör- und spürbaren Frequenzbereich über etwa 20 Hz (engl. NVH - Noise,
Vibration, Harshness). Für die Untersuchung der Kinematik und der Nachgiebigkeitseigen-
schaften eines Fahrwerk gibt es mit den Kinematics & Compliance (K&C)-Prüfständen
ebenfalls eigenständige Lösungen. Bild 2-1 zeigt ausgewählte Beispiele.

(a) Achsprüfstand [Ins18] (b) Ganzfahrzeugprüfstand [Aut18]

(c) Vierstempelanlage [Ser18] (d) Mehrachsiger Simulationstisch [IMA18]

Bild 2-1: Exemplarische Prüfsysteme der Fahrwerktechnik

Das am HNI entwickelte Testsystem zählt dem Aufbau nach zur Klasse der Achsprüfstände.
Mit ihm soll die HiL-Simulation mit real aufgebauter, mechanischer Komponente für die
Entwicklung von Fahrwerkregelsystemen erschlossen werden. Ebenso eignet es sich für
die Betriebsfestigkeitsprüfung. Unabhängig vom Einsatzzweck müssen die Stellsignale
der Antriebseinheiten so gebildet werden, dass das Prüfsystem ein gewünschtes Verhalten
zeigt. In den folgenden Unterabschnitten wird dargelegt, wie die Bildung der Stellsignale
an einem konventionellen Achsprüfstand für Betriebsfestigkeitsuntersuchungen erfolgt.
Nach einer kurzen Einführung über die Hintergründe und den Ablauf einer Achserpro-
bung schließt sich die Beschreibung des für den Prüfstandsbetrieb etablierten, iterativen
Verfahrens zur Bildung der Stellsignale an. Ebenso werden Weiterentwicklungen dieses
Ansatzes sowie andere Maßnahmen erläutert, mit deren Hilfe versucht wird, den zeit- und
kostenaufwändigen Prüfprozess zu optimieren.
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2.1.1 Hintergrund und Ablauf der Achserprobung

Der Begriff der Betriebsfestigkeit geht auf Ernst Gaßner zurück, der sich u. a. mit der
Bauteilfestigkeit im Flugzeugbau beschäftigte, vgl. [Gaß39]. Ziel der betriebsfesten Bau-
teilauslegung ist, „die betrachtete Konstruktion durch eine fallbezogene Kombination
von Werkstoff, Formgebung und Fertigung so zu optimieren, dass bei kleinstem Raum-,
Werkstoff- und Herstellungsaufwand ein Höchstmaß an Ausfallsicherheit gegen Schwing-
anriss oder Schwingbruch erreicht wird“ [Gaß76]2.

Die ersten experimentellen Untersuchungen zur Schwingfestigkeit wurden bereits im 19.
Jahrhundert von August Wöhler durchgeführt, siehe z. B. [Wöh58]. Er untersuchte die
Ursache des Bruchs von Eisenbahnachsen, deren Dimensionierung bislang auf statischen
Festigkeitsberechnungen beruhte [KJPZ12]. Im Rahmen seiner Untersuchungen stellte
er fest, dass die Lebensdauer eines Bauteils unter Schwingbelastung im Vergleich zur
Lebensdauer bei statischer Belastung vermindert ist. Veranschaulicht wird dieser Zu-
sammenhang durch die nach ihm benannte Wöhlerlinie, die die Anzahl der durch ein
Bauteil ertragbaren Schwingspiele in Abhängigkeit der Beanspruchungsamplitude für
einen sinusförmigen Belastungsverlauf darstellt. Die Betriebsfestigkeit wird dabei nicht
nur durch den Werkstoff, sondern auch durch den Fertigungsprozess, die Formgebung des
Bauteils und die vorliegende Belastung beeinflusst, vgl. [Son08]. Der Wöhlerlinie liegt ein
sinusförmiger Lastverlauf bei gleichbleibender Amplitude zugrunde, was für die meisten
realen Situationen nicht zutreffend ist. Üblicherweise treten stattdessen Belastungsfolgen
unterschiedlicher Amplituden auf. Die Bauteillebensdauer für derartige Belastungsfolgen
stellt die Lebensdauerlinie bzw. Gaßnerlinie dar. Entscheidend für die Darstellung ist
die maximale Belastungsamplitude. Bild 2-2 zeigt die Wöhler- und Lebensdauerlinie,
wobei die Belastungen (c) und (d) den Unterschied der beiden Linien veranschaulichen.

Bild 2-2: Wöhler- und Lebensdauerlinie [Hai06]

Aufgrund der teils kleineren Belastungsamplituden im Falle der Lebensdauerlinie liegt sie
erwartungsgemäß rechts der Wöhlerlinie. Sie gibt die Betriebsbeanspruchung der meisten
Bauteile besser wieder als die Wöhlerlinie [Hai06].

2Zitiert nach [Hai06, S. 7].
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Für einige Werkstoffe kann ein Abknicken der fallenden Linie in den Dauerfestigkeitsbe-
reich beobachtet werden, vgl. Belastung (b). Das andere Extrem, Belastung (a), entspricht
dem Zugversuch. Die hieraus für die Wöhler- und Lebensdauerlinie relevante Kenngröße
ist die Zugfestigkeit des Werkstoffs Rm.

Im hier interessierenden sog. Zeitfestigkeitsbereich verläuft die Wöhlerlinie bei dop-
peltlogarithmischer Darstellung nahezu linear. Sie kann dort durch die sog. Basquin-
Gleichung,

N = NA ·
(

S a

S A

)−k

, (2-1)

vgl. [Hai06, S. 25ff.], angenähert werden. Darin bezeichnet NA die Lebensdauer und S A die
dazu gehörige Belastungsamplitude einer Referenzbelastung für das betrachtete Bauteil.
k ist die Steigung der zugehörigen Wöhlerlinie. Sind diese Werte bekannt, so lässt sich
die Lebensdauer N des Bauteils bei einer anderen Belastung im Zeitfestigkeitsbereich
S a hochrechnen. Diese Beobachtung wird in der Betriebsfestigkeitsprüfung ausgenutzt
und macht diese zum Teil erst praktikabel. So wird die Lebensdauer eines Bauteils bei
betriebstypischer Belastung aus schneller durchführbaren Versuchen bei höherer Belastung
hochgerechnet.

Zu Beginn einer Betriebsfestigkeitsuntersuchung ist zunächst eine Lastannahme zu täti-
gen, d. h. eine Abschätzung der im typischen Betrieb eines Bauteils vorliegenden Bean-
spruchungen über seine gesamte Lebensdauer. Sie ist für diejenigen Stellen des Bauteils
durchzuführen, die für dessen Lebensdauer maßgeblich sind. Bei einer Fahrzeugachse
zählen zu diesen kritischen Stellen bspw. die Radnabe sowie die Lagerungspunkte der
Achse an der Karosserie. Die korrekte Lastannahme ist wichtig für die betriebsfeste Bau-
teilauslegung. Sie muss so durchgeführt werden, dass die ermittelten Beanspruchungen
repräsentativ für eine volle Nutzungsdauer des Bauteils sind. Die Lastannahme geschieht
u. a. auf Basis von Kundenbefragungen und vorhandenen Daten aus Betriebsfestigkeitsprü-
fungen ähnlicher Bauteile. Auch die Verwendung speziell ausgerüsteter Versuchsträger
ist üblich, vgl. [OHW06]. Die Durchführung der Lastannahme variiert von Hersteller zu
Hersteller und von Zielmarkt zu Zielmarkt [Cuy06]. Grundsätzlich problematisch ist, dass
die Lastannahme auf Betriebsmessungen beruht, die nur einen Bruchteil der eigentlichen
Bauteilnutzungsdauer umfassen. Die Ermittlung betriebstypischer Beanspruchungen trotz
dieser und anderer Einschränkungen ist bspw. in [KJPZ12] beschrieben.

Die Lastannahme resultiert in einer repräsentativen Beanspruchungs-Zeit-Funktion
(BZF), die die Grundlage für die Definition der durchzuführenden Betriebsfestigkeitsversu-
che darstellt. Zur Entwicklung des Testprogramms werden im nächsten Schritt die relevan-
ten Merkmale der BZF mithilfe von statistischen Zählverfahren ermittelt. Unter der Vielzahl
der unterschiedlichen Zählverfahren gilt das Rainflow-Zählverfahren als dasjenige, das
die für die Lebensdauer maßgebliche Bauteilschädigung am besten erfasst. Beispielsweise
wird es in [BEH+02] mit zwei anderen Verfahren, der Klassengrenzenüberschreitungs-
und der Bereichspaarzählung, verglichen und zur Verwendung empfohlen. Das Verfahren
wurde erstmals in japanischer Sprache veröffentlicht [ME68] und setzte sich infolge der
Übersetzung ins Englische [Dow72] international durch. [KJPZ12]

Bei der Rainflow-Zählung werden die in einer BZF enthaltenen Beanspruchungen in
verschiedene Beanspruchungsklassen unterteilt. Anhand dieser Klassifikation werden alle
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geschlossenen Hystereseschleifen als maßgebliche Ursache der Bauteilschädigung anhand
ihrer Start- und Zielklasse in die sog. Rainflow-Matrix eingetragen3. Neue Literatur zum
Thema der Rainflow-Zählung beschäftigt sich vor allem mit der Weiterentwicklung der
zugrunde liegenden Algorithmen zur Extraktion der geschlossenen Hystereseschleifen aus
der BZF [KJPZ12]. Bild 2-3 veranschaulicht die Durchführung der Rainflow-Zählung für
eine exemplarische BZF.

(a) Beanspruchungs-Zeit-Funktion (BZF)

(b) Spannungs-Dehnungs-Diagramm (c) Rainflow-Matrix

Bild 2-3: Rainflow-Zählverfahren [KJPZ12]

Bei Durchführung der Rainflow-Zählung erfolgt eine Datenreduktion. So gehen Frequenz-
und Phaseninformationen, die Abfolge der Schwingungen und die Schwingungsform selbst
verloren. Die Anwendung im Rahmen der Betriebsfestigkeitsanalyse ist daher nur zulässig,
wenn die Lebensdauer eines Bauteils von diesen Eigenschaften nur unwesentlich abhängt
[Hai06].

Die Rainflow-Matrix stellt das Ergebnis der Rainflow-Zählung dar. Sie gibt die Häufigkeits-
verteilung der verschiedenen Beanspruchungsamplituden in einer BZF, das sog. Lastkol-
lektiv, wieder. Aus der Kombination des Lastkollektivs und der Bauteil-Wöhler-Linie lässt
sich die Lebensdauerlinie berechnen. Hierfür kann die lineare Schadensakkumulations-Hy-
pothese nach Palmgren und Miner verwendet werden. Dabei wird ein waagerechter Verlauf
der Wöhlerlinie nach dem Abknickpunkt angenommen, wodurch Beanspruchungsamplitu-
den unterhalb dieser Grenze keine Schädigung des Bauteils nach sich ziehen. Praktisch
trifft diese Annahme nicht zu, da kleine Belastungsamplituden eine Bauteilschädigung
zur Folge haben können, bspw. dann, wenn sie auf größere folgen [BEH+02]. Aus diesem
Grund existieren diverse Modifikationen der Palmgren-Miner-Regel, bei denen ab dem
Abknickpunkt weiterhin ein fallender Verlauf der Wöhlerlinie angenommen wird. Die Stei-
gung nach dem Abknickpunkt ist von Modifikation zu Modifikation unterschiedlich. Bei

3Anstelle von Start- und Zielklasse werden die Belastungszyklen häufig auch über ihre Schwingbreite
und den Mittelwert der Belastung dargestellt.
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manchen Ansätzen findet zusätzlich eine Verschiebung des Abknickpunktes statt, z. B. bei
der Modifikation von Liu und Zenner [ZL92]. Die am häufigsten eingesetzten sind die
Modifikation nach Haibach sowie Palmgren-Miner-elementar [Son08]. Einen entscheiden-
den Einfluss auf die Lebensdauer hat die Kollektivform, d. h. die Häufigkeitsverteilung der
Belastungsamplituden. Im Falle eines Kollektivs mit vielen hohen und wenigen niedrigen
Belastungsamplituden ist die Bauteillebensdauer geringer als im Falle weniger hoher und
vieler niedriger Belastungsamplituden [BEH+02].

Ist die Referenz-Rainflow-Matrix aus der BZF ermittelt, so ist hieraus ein Testprogramm
für die Betriebsfestigkeitsuntersuchung des Bauteils zu generieren. Ziel dabei ist, dass
das Testprogramm die Referenz-Rainflow-Matrix möglichst gut wiedergibt. Im Falle einer
zu prüfenden Fahrzeugachse werden zu diesem Zweck Fahrversuche auf speziellen Ver-
suchsstrecken durchgeführt. Die Versuchsstrecken zeichnen sich dadurch aus, dass sie die
Fahrzeugachse einer deutlich höheren Beanspruchung aussetzen als normale Fahrbahnen.
Beispiele sind das sog. „Belgisch Pflaster“ oder Schlechtwegstrecken. Als Testprogramm
wird für jede Versuchsstrecke eine bestimmte Zahl an Fahrten definiert. [Cuy06]

Ein zunehmender Teil dieser Versuchsfahrten wird auf Prüfstände verlagert. Die Vorteile
von Laborversuchen bestehen vor allem in der hohen Reproduzierbarkeit der Tests bei frei
wählbaren, gleichbleibenden Rahmenbedingungen. Es entstehen keine Unterbrechungen
durch schlechte Wetterbedingungen oder das mechanische Versagen nicht testrelevan-
ter Bauteile des Fahrzeugs. Die Tests können kontinuierlich durchgeführt werden; die
Abhängigkeit vom Testfahrer entfällt ebenso wie dessen Gefährdung durch die durchzu-
führenden Versuche im Grenzbereich. Zudem können sowohl die Tests selbst als auch die
getesteten Komponenten einfacher geheimgehalten werden. Einzelne Systemkomponenten
können bereits in einer frühen Entwicklungsphase lange vor Fertigstellung des ersten
Gesamtsystemprototyps getestet werden.

Im sog. Betriebslastennachfahrversuch (BLNV) werden am Prüfstand die für die Le-
bensdauer maßgeblichen Beanspruchungsgrößen der Achse reproduziert, die zuvor im
Rahmen von Versuchsfahrten gemessen wurden. Die Nachbildung der gemessenen Bean-
spruchungen wird durch iteratives Einlernen der Steuersignale für die Antriebe erreicht.
Der zugrunde liegende Prozess wird als Drive-File-Generierung bezeichnet. Nach dem
Einlernen der Steuereingänge kann das eigentliche Testprogramm auf dem Prüfstand
durchgeführt werden. Ein frühes Beispiel für diese iterative Vorgehensweise beschreibt
[CNL76] für die Nachbildung gemessener Beschleunigungen an einer Vierstempelanlage.
Das Verfahren hat sich vor allem in der Automobilindustrie und für seismische Tests
durchgesetzt [DP01].

Der Ablauf einer Achserprobung auf dem Prüfstand lässt sich damit in die folgenden
wesentlichen Schritte unterteilen:

1. Ermittlung der für die Lebensdauer der Achse repräsentativen BZF,

2. Bestimmung der Referenz-Rainflow-Matrix,

3. Definition des Testprogramms,

4. Durchführung der Referenz-Messfahrten,

5. Drive-File-Generierung,

6. Durchführung der Achstests auf dem Prüfstand.
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Das iterative Verfahren zur Bildung der Steuersignale für die Antriebe des Prüfstands im
Rahmen der Drive-File-Generierung ist Gegenstand des folgenden Abschnitts.

2.1.2 Drive-File-Generierung

Die Drive-File-Generierung beruht auf der sog. iterativ lernenden Regelung (ILR), die
zuerst durch Arimoto, Kawamura und Miyazaki [AKM84] für die Verbesserung der Ar-
beitsgenauigkeit von Robotern beschrieben wurde. Sie ist prädestiniert für die Verbesserung
des Führungsverhaltens von Maschinen und Anlagen, die sich wiederholende Aufgaben
durchführen. Der Grundgedanke besteht darin, eine Vorsteuerung gezielt für die sich
wiederholende, vollständig bekannte Aufgabe zu optimieren. Sehr ähnlich zur ILR ist
auch Repetitive Control (RC). Wang, Gao und Doyle [WGD09] kommen nach einem
ausführlichen Vergleich zu dem Schluss, dass es sich hierbei prinzipiell um das gleiche
Verfahren handelt. Das Lehrbuch von Owens [Owe16] gibt eine umfangreiche Einführung
in das Themengebiet und ist Grundlage der folgenden Ausführungen.

Gegeben ist ein System, dessen Übertragungsverhalten durch die nichtlineare Funktion

y = G (u) (2-2)

beschrieben werde. Dabei ist u die Eingangs- und y die Ausgangsgröße des betrachteten
Systems. Ziel der ILR ist es, die Eingangsgröße u zu bilden, durch die das System einem
vorgegebenen Zeitverlauf für die Ausgangsgröße y ideal folgt. Bezeichnet

ek = yr − yk (2-3)

den Abbildungsfehler in Iterationsschritt k ∈ N mit dem Soll-Zeitverlauf der Ausgangsgrö-
ße yr, so lässt sich das verfolgte Ziel durch die Formel

lim
k→∞
‖yr − yk‖ = lim

k→∞
‖ek‖ = 0 mit y∞ = G

(
u∞

)
(2-4)

ausdrücken. In der Praxis wird der Iterationsprozess beendet, sobald ein bestimmtes
Gütemaß erfüllt ist, z. B. wenn der Zeitverlauf der Ausgangsgröße y den Sollzeitverlauf
yr hinreichend gut wiedergibt und damit die Abweichung kleiner als eine vorgegebene
Schranke ε ist, d. h.

‖ek∗‖ < ε . (2-5)

k∗ ist dabei diejenige Iteration, die zur Erfüllung des Gütemaßes führt.

Der Algorithmus zur Bildung der Stellgröße uk+1 lautet allgemein

uk+1 = f k+1
(
e0, e1, . . . , ek, ek+1,u0,u1, . . . ,uk

)
(2-6)

mit den Startwerten u0, y0. Der Term ek+1 ist zum Zeitpunkt der Auswertung von (2-6)
nicht bekannt, da er erst aus der Stellgröße uk+1 folgt. Anstelle dessen kann ein mittels (2-2)
aus den vorliegenden Messwerten prädizierter Wert in den Algorithmus (2-6) einfließen,
siehe z. B. [Owe16, S. 123f.].
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In [WGD09] wird der Algorithmus noch in einen Vorsteuer- und Korrekturterm aufgespal-
ten, d. h.

uk+1 = f u,k+1
(
u0,u1, . . . ,uk

)
︸                     ︷︷                     ︸

Vorsteuerterm

+ f yr ,k+1
(
e0, e1, . . . , ek, ek+1,u0,u1, . . . ,uk

)
︸                                               ︷︷                                               ︸

Korrekturterm

. (2-7)

Häufig wird der einfache Ansatz

uk+1 = uk + KILR · ek (2-8)

verwendet, d. h. der Systemeingang des nächsten Iterationsschritts uk+1 entspricht dem
Systemeingang des vorangegangenen Iterationsschritts uk, korrigiert um eine zur Abwei-
chung ek des vorangegangenen Iterationsschritts proportionale Größe. Die Entwicklung
effizienter Algorithmen mit streng monotoner Konvergenz, d. h.

‖ek+1‖ < ‖ek‖ ∀ k ≥ 0 , (2-9)

hinreichend kleinem Fehler ek nach wenigen Iterationen sowie Robustheit sind Gegenstand
der Forschung. [Owe16]

Hervorzuheben ist, dass bei diesem Verfahren keine Regelung im eigentlichen Sinne ein-
gelernt und der Begriff der iterativ lernenden Regelung irreführend ist. Nach DIN IEC
60050-351:2014-09 ist die Regelung ein „Vorgang, bei dem fortlaufend eine variable
Größe, die Regelgröße, erfasst, mit einer anderen variablen Größe, der Führungsgröße,
verglichen und im Sinne einer Angleichung an die Führungsgröße beeinflusst wird. [...]
Kennzeichen für das Regeln ist der geschlossene Wirkungsablauf, bei dem die Regelgröße
im Wirkungsweg des Regelkreises fortlaufend sich selbst beeinflusst“ [DIN1]. Es handelt
sich vielmehr um eine iterativ eingelernte Steuerung, da im laufenden Betrieb keine An-
passung der Regel- an die Führungsgröße erfolgt. Der Eingriff des Verfahrens, d. h. die
Angleichung der Regel- an die Führungsgröße, erfolgt von einem zum nächsten Iterations-
schritt. Eine Änderung des Streckenverhaltens nach (2-2) kann durch die Steuerung nicht
ausgeglichen werden. Bei einer Betriebsfestigkeitsprüfung stellen bspw. die zunehmende
Bauteilschädigung und -alterung im Ablauf der Versuche sowie die fortlaufende Weiterent-
wicklung des Bauteils mögliche Ursachen für verändertes Streckenverhalten dar. Ist das
gewählte Gütekriterium infolge dieser Änderungen nicht mehr erfüllt, muss die Iteration
erneut durchgeführt werden. Es gibt allerdings auch Versuche, bei denen bewusst keine
Nachiteration erfolgt und die zunehmende Abweichung von Soll- und Ist-Ausgangsgröße
in Kauf genommen wird. Die Bildung der Eingangsgröße u muss für jeden gewünschten
Ausgangsgrößenverlauf y separat durchgeführt werden. Bild 2-4 veranschaulicht den Un-
terschied zwischen dem iterativen Lernverfahren und einer Regelung. Die gestrichelten
Bestandteile laufen nicht in Echtzeit ab.

Neben der Robotik ist die Anwendung der ILR auch in der Automobilindustrie zur Bildung
der Stellsignale für Komfort- und Betriebsfestigkeitsprüfstände etabliert [DP01]. Der
Zeitverlauf der Eingangsgröße u wird dort als Drive-Signal, der Soll-Zeitverlauf der
Ausgangsgröße yr als Target-Signal sowie der am Prüfstand gemessene Ist-Zeitverlauf der
Ausgangsgröße y als Response-Signal bezeichnet. Da es sich bei den Target-Signalen um
weitestgehend beliebige Systemgrößen handeln kann, die nicht in direktem Zusammenhang
mit den Systemeingängen stehen müssen, werden sie zum Teil auch als remote parameters
bezeichnet.
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Bild 2-4: Vergleich von ILR und Regelung
(yr, y: Soll- und Istwert der Ausgangsgröße, u: Stellgröße)

In den ILR-Algorithmus für Komfort- und Betriebsfestigkeitsprüfungen kann auch Mo-
dellwissen in Form eines inversen Streckenmodells einbezogen werden. Weit verbreitet
ist hierbei, dass das Übertragungsverhalten (2-2) von den Stelleingängen der Antriebe zu
den festgelegten Systemausgängen durch eine lineare Übertragungsmatrix im Frequenzbe-
reich

Y ( jω) = G ( jω) · U ( jω) , (2-10)

die sog. Frequency Response Function (FRF), beschrieben wird. Prinzipiell handelt es
sich dabei um eine Linearisierung des Systemverhaltens in einem spezifischen, mittle-
ren Arbeitspunkt des Prüfsystems. Bei der Identifikation der Übertragungsmatrix muss
sichergestellt werden, dass alle für die spätere Prüfung relevanten Frequenzanteile mit
hinreichender Amplitude angeregt werden.

Die FRF bei der Frequenz ω wird durch den sog. H1-Estimator aus den gemessenen
Systemein- und -ausgängen anhand der Formel

G ( jω) = Pyu ( jω) · P−1
uu ( jω) (2-11)

aus dem Kreuzleistungsspektrum Pyu ( jω) und dem Autoleistungsspektrum Puu ( jω) bei
der Frequenz ω berechnet. Dem H1-Estimator liegt die Annahme zugrunde, dass das
vorhandene Systemrauschen und die Systemeingänge unkorreliert sind. Da die Eingangssi-
gnale in diesem Falle vom Nutzer vorgegeben werden und damit gänzlich bekannt sowie
frei von Rauschen sind, ist diese Annahme erfüllt. Außerdem müssen die Eingangssignale
unkorreliert sein, da sonst Puu ( jω) singulär ist und nicht invertiert werden kann. Neben
dem H1-Estimator gibt es weitere Ansätze, z. B. den H2-Estimator, der sich nach der
Formel

G ( jω) = Pyy ( jω) · P−1
uy ( jω) (2-12)

berechnet. Im Gegensatz zum H1-Estimator wird dabei angenommen, dass das Systemrau-
schen und die Systemausgänge unkorreliert sind. Bei unverrauschten Ein- und Ausgangs-
signalen sind die beiden Verfahren identisch. Wird der H1-Estimator trotz verrauschter
Eingangssignale verwendet, so liegt der ermittelte unter dem realen Amplitudenverlauf. Ist
das Ausgangssignal verrauscht und wird der H2-Estimator eingesetzt, so folgt hingegen
ein überhöhter Amplitudenverlauf. [Bra11]
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Zur Beurteilung der gebildeten FRF kann außerdem die sog. multiple Kohärenzfunktion
aus dem Verhältnis der Autospektren von Modell- und gemessener Ausgangsgröße

C ( jω) = P̂yy ( jω) · P−1
yy ( jω) , P̂yy ( jω) = G ( jω) · Puy ( jω) (2-13)

berechnet werden [Plu07]. Sie lässt eine Aussage darüber zu, inwiefern sich ein System-
ausgang durch die Systemeingänge und die ermittelte FRF erklären lässt. Ergebnis ist
ein frequenzabhängige Kennzahl im Intervall [0; 1], deren Auftragung über der Frequenz
eine anschauliche Aussage über die Güte der ermittelten FRF zulässt. Dabei stellt der
Wert 1 das optimale Ergebnis dar. Praktisch wird die Modellinvertierung auf diejenigen
Frequenzbereiche des identifizierten Modells beschränkt, bei der eine multiple Kohärenz
von mindestens 0,8 vorliegt [Cra93]4. Neben der multiplen Kohärenzfunktion kann eine
Modellvalidierung auch durch den Vergleich der realen Systemausgänge mit denjenigen
Systemausgängen erfolgen, die bei gegebenen Systemeingängen aus dem ermittelten Mo-
dell resultieren (sog. Vorwärtsvalidierung). Ein entsprechender Vergleich ist auch für das
inverse Modell möglich, indem aus den gemessenen Systemausgängen die Systemein-
gänge zurückberechnet und mit den tatsächlichen Systemeingängen verglichen werden
(sog. Rückwärtsvalidierung). Für diese Validierung müssen anwendungsnahe System-
eingänge zum Einsatz kommen, die sich von den für die Bildung der FRF verwendeten
Systemeingängen unterscheiden.

Eine verbreitete Technik zur Steigerung der Modellqualität ist das Averaging. Dabei werden
mehrere verschiedene Modelle G ( jω) für die Strecke gebildet und gemittelt. Zielsetzung
ist hier die Erzielung einer möglichst hohen multiplen Kohärenz.

Die Problematik des beschriebenen Vorgehens besteht in der Annahme eines linearen
Übertragungsverhaltens für ein nichtlineares System. Hinzu kommt, dass einzuhaltende
(Sicherheits-) Rahmenbedingungen bei der Modellidentifikation die Qualität des linearen
Streckenmodells zusätzlich begrenzen.

Der in der Literatur am häufigsten genannte ILR-Algorithmus zur Ermittlung der Drive-
Signale unter Einbeziehung des Modellwissens lautet

Uk+1 ( jω) = Uk ( jω) + G−1 · Qk · Ek ( jω) . (2-14)

Je nach Forschergruppe und/oder Hersteller findet sich dieses Verfahren vor allem unter
dem Namen Time Waveform Replication (TWR) oder auch Remote Parameter Control
(RPC). Im Folgenden wird wie in der Mehrzahl der Literaturquellen die Bezeichnung
TWR verwendet, unter der das Verfahren auch im Teststandard MIL-STD-810 [MIL1] des
US-Militärs beschrieben ist.

Da das Streckenmodell G ( jω) im Frequenzbereich vorliegt, ist auch der TWR-Algorithmus
im Frequenzbereich formuliert. Die Umrechnung der Signale vom bzw. in den Zeitbereich
erfolgt durch die diskrete Fourier-Transformation (DFT) bzw. die inverse DFT. Die Abbil-
dungsgüte der Iteration, d. h. die Abweichung zwischen Target- und Response-Signal, ist
bei Anwendung dieses Verfahrens (in Abwesenheit sporadischer Störungen) theoretisch
nur durch die Leistungsfähigkeit der Aktorik und das Messrauschen begrenzt.

Häufig wird im Rahmen der Iteration eine Tiefpassfilterung von Target- und Response-
Signal durchgeführt. Hierdurch wird die Abbildungsbandbreite der Iteration, im Falle

4Zitiert nach [Plu07, S. 149].
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der Achsprüfung üblicherweise auf einen Bereich bis 50 Hz, eingeschränkt. Es kommen
digitale Filter zum Einsatz, in [ME17] bspw. ein Butterworth-Filter 15. Ordnung.

Das inverse Streckenmodell G−1 wird mithilfe der Singulärwertzerlegung gebildet. Je
nachdem, ob mehr Ein- oder Ausgangsgrößen vorliegen, wird in diesem Zusammenhang
zwischen der linken und rechten Streckeninverse unterschieden [Owe16]. In der Regel
besitzen die hier betrachteten Prüfstandssysteme mehr Ausgangs- als Eingangsgrößen,
sodass die Übertragungsmatrix G ( jω) mehr Zeilen als Spalten aufweist. Der Fall, dass
mehr Ein- als Ausgangsgrößen vorliegen, ist zumindest auf dem Gebiet der Achsprüfung
so gut wie nicht relevant [Cuy06].

In (2-14) handelt es sich bei Qk um eine diagonale Gewichtungsmatrix; ihre Einträge liegen
im Intervall [0; 1]. Eine allgemein verwendbare Strategie für die Wahl der Gewichtungen
existiert nicht; in der Praxis wird die Iteration mit kleinen Werten im Bereich von 30 %
gestartet, um Überschwinger und Schäden zu vermeiden [TDPC11]. In der in (2-14)
dargestellten Form erfolgt eine Gewichtung der Target-Signale, da die Target-Abweichung
Ek ( jω) direkt mit Qk gewichtet und daraufhin mit dem inversen Streckenmodell G−1 in
die Drive-Signal-Korrektur umgerechnet wird. Anstelle dessen wird häufig auch eine
Gewichtung der Drive-Signal-Korrektur vorgenommen; die Gewichtungsmatrix Qk steht
dann nicht nach, sondern vor dem inversen Streckenmodell G−1. Es gibt auch Beispiele, in
denen beide Gewichtungen genutzt werden, siehe z. B. [TDPC11]. Abgesehen davon sind
auch zeit- und frequenzabhängige Gewichtungen möglich.

Als Startwerte der Iteration werden üblicherweise Nullvektoren verwendet, d. h.

u0 = y0 = 0 . (2-15)

Für die Konvergenzgeschwindigkeit ist die Qualität des inversen Streckenmodells G−1

und die Wahl der Gewichtungsfaktoren Qk maßgeblich. Bei der Wahl hoher Werte in Qk
konvergiert das Verfahren schneller, wenn ein hinreichend gutes inverses Streckenmo-
dell vorliegt. Ist dies nicht der Fall, so führt die Wahl hoher Werte Qk zur Instabilität
des Iterationsprozesses und zu unerwünschter Schädigung des Prüflings. Je höher die
Nichtlinearität des Systems, desto kleiner werden die Gewichtungsfaktoren in der Praxis
gewählt. So müssen zwar mehr Iterationen durchgeführt werden, die Konvergenz ist aber
wahrscheinlicher [Cuy06].

Selbst bei einem linearen Übertragungsverhalten des realen Systems kann das geschilderte
iterative Vorgehen für Zielgrößen mit hohen Frequenzanteilen erforderlich sein. Owens
[Owe16] begründet dies damit, dass die Berechnung des inversen Streckenmodells unrea-
listisch komplex sein kann oder, je nach Lage der Nullstellen des inversen Systems, nicht
realisierbar ist. Hinzu kommt, dass selbst bei einer Verstärkung von 1 im ersten Iterati-
onsschritt (Q0 = I) ein ideales Folgeverhalten durch verbliebene Modellungenauigkeiten
höchst unwahrscheinlich ist.

Insgesamt stellt die Drive-File-Generierung einen zweiphasigen Prozess aus System-
identifikation und Target-Simulation dar. Im Rahmen der Systemidentifikation wird die
Übertragungsmatrix G ( jω) bzw. ihre Inverse G−1 aus Prüfstandsmessungen gebildet. Als
Messsignal kommt hierbei z. B. unkorreliertes Rauschen auf allen Systemeingängen in
Betracht. Im Anschluss erfolgt die Target-Simulation, in der die Drive-Signale bzw. Stell-
signale der Antriebe für die betrachtete BZF mittels des Algorithmus (2-14) iterativ am
Prüfstand bestimmt werden.



18 2 Stand von Technik und Forschung

Als Target-Signale werden an Achsprüfständen bspw. im Fahrversuch gemessene Kräfte
und Momente am Radträger verwendet. Einen Sonderfall stellt das Moment um die Rad-
drehachse dar: wird nicht explizit ein Bremsmanöver nachgebildet, so wird die Verdrehung
zwischen dem Radträger und der Aktorik um diese Achse klein gehalten. Um eine ver-
besserte Abbildung der realen Beanspruchung im Fahrzeug zu erreichen, werden meist
weitere Größen als Target-Signale hinzugefügt. Verbreitet ist die Messung und Nachbil-
dung des Dämpferwegs sowie der Belastung von Lenkern (z. B. der Spurstange) und des
Stabilisators. Auch die Nachbildung der Belastung der Karosserielagerpunkte (Federdom
und/oder Lenkerlager) ist üblich. Die Target-Signale, auch als Kanäle bezeichnet, können
im Rahmen der Iteration zusätzlich relativ gewichtet werden.

Neben den Target-Signalen können auch sog. Slave-Drives vorgegeben werden. Hier-
bei handelt es sich um im Fahrversuch gemessene Einflussgrößen auf den Prüfling, die
im Rahmen der Target-Simulation durch einen entsprechenden Aktor unverändert repro-
duziert werden. Während der Systemidentifikation wird der betreffende Eingang nicht
aktuiert. Beispiele hierfür sind die Kräfte im Federdom oder der Lenkwinkel. Je nachdem,
inwieweit Wechselwirkungen mit den Target-Signalen bestehen, muss der Slave-Drive
auch als Target-Signal aufgenommen werden. So wird der Eingriff bei der Iteration be-
rücksichtigt und der TWR-Algorithmus versucht nicht, dessen Auswirkung durch andere
Systemeingänge zu erzielen. In [OBL02] wird dieses Vorgehen für die Nachbildung eines
aktiven Fahrwerkeingriffs gewählt. Speziell für die Einbindung aktiver Fahrwerksysteme
besteht außerdem die Möglichkeit, alle Eingangsgrößen des betreffenden Steuergeräts im
Fahrversuch aufzuzeichnen. Wird das Steuergerät in den Prüfstand integriert, kann es mit
diesen Messdaten beaufschlagt und (weiter-) entwickelt werden. Neben diesen beiden
Möglichkeiten nennen Brune und Pötter [BP08] auch den Lösungsansatz, den aktiven Fahr-
werkeingriff im Rahmen der Betriebsfestigkeitsversuche durch Vorgabe eines konstanten
Aktorsollwerts nicht zu berücksichtigen. Der in [BP08] betrachtete Verstelldämpfer zeigt
jedoch nennenswerten Einfluss des Aktors auf die Federdomkraft, sodass die konstante
Sollwertvorgabe als unzulässig erachtet wird. Brune und Pötter resümieren, dass sich durch
die Integration des Verstelldämpfers in den Prüfstand neue Herausforderungen ergeben,
z. B. die Ausrüstung des Prüfstands mit Bus-Schnittstellen und die sog. Restbussimulati-
on. Zudem kann sowohl die Systemidentifikation als auch die Target-Simulation infolge
der aktiven Eingriffe fehlschlagen. Der starke Einfluss aktiver Fahrwerkeingriffe auf die
Betriebsfestigkeitsbeurteilung wird auch in [TTU03; LA04] aufgezeigt.

Bei der Target-Simulation werden an (Halb-) Achsprüfständen üblicherweise die Sollwerte
für die Positions- oder Kraftregelungen der einzelnen Aktoren gebildet. Eine Anpassung
der Parameter der unterlagerten Regelungen findet im Rahmen der Drive-File-Generierung
nicht statt, da hierdurch auch das Streckenmodell G ( jω) geändert würde.

Bei den Positions- und Kraftregelungen der einzelnen Aktoren handelt es sich meist um
Einzelaktorregelungen, d. h. sie sind unabhängig voneinander entworfen und es findet
keine Kompensation der Verkopplungen zwischen den einzelnen Richtungen statt. Die
Regelungen besitzen laut [Cuy06] in der Regel eine 3 dB-Bandbreite von etwa 15 Hz im
Falle der Positions- und etwa 22 Hz im Falle der Kraftregelung. Die Kraftregelung ist
durch eine Kaskadenregelung mit innerer Positionsregelschleife realisiert. Sie wird für die
Iteration der Target-Signale der Positionsregelung vorgezogen, da so ein engerer Zusam-
menhang zwischen dem Drive- und dem Target-Signal besteht. Die Positionsregelung wird
für die FHG verwendet, wo systeminhärente Nichtlinearitäten den Kraftregelungsentwurf
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erheblich beeinträchtigen. Im Falle eines Achsprüfstands wird in vertikaler Richtung ein
Positionsregler verwendet, da diese Richtung u. a. durch den Zug- und Druckanschlag
des Stoßdämpfers stark nichtlineares Verhalten aufweist. Eingesetzt werden einfache PID-
Regler, die experimentell am Prüfstand durch den Bediener ausgelegt werden. Soweit
möglich werden sie von Prüfling zu Prüfling beibehalten, da sie durch die übergeordnete
ILR von untergeordneter Bedeutung sind. De Cuyper [Cuy06, S. 52] gibt als typisches
Anregungssignal im Rahmen der Systemidentifikation für kraftgeregelte Aktoren weißes
Rauschen oder steigende Amplituden für steigende Frequenzen an. Bei positionsgere-
gelten Aktoren wird typischerweise bis 5 Hz mit konstanter, dann fallender Amplitude
identifiziert.

Die Target-Simulation wird so lange durchgeführt, bis die Response-Signale y die Target-
Signale yr hinreichend gut wiedergeben. Zur Beurteilung der Abbildungsgüte können die
Zeitverläufe sowie die Frequenzspektren der Target- und Response-Signale verglichen
werden. Außerdem lassen sich Kennwerte für die Beurteilung berechnen. Bei Beschleuni-
gungsvorgaben, wie sie z. B. bei Komfortuntersuchungen an Vierstempelanlagen üblich
sind, wird für jedes Target der Quotient des quadratischen Mittelwerts (RMS) der Abwei-
chung ek und des RMS des Target-Verlaufs yr gebildet. Dieser Wert wird als relativer
RMS-Fehler bezeichnet. Er liegt in der Praxis üblicherweise im Bereich von 5-10 %
[Cuy06]. Alternativ kann auch die sog. RMS response als Quotient von RMS des gemes-
senen Signals vom Prüfstand yk und RMS des Target-Signals yr berechnet werden. Im
Bereich der Betriebsfestigkeitsprüfung werden hingegen Kraftvorgaben eingesetzt. Zur
Beurteilung der Iterationsgüte wird in diesem Fall die relative Schädigung herangezogen.
Aus der Rainflow-Matrix einer BZF und der Bauteil-Wöhler-Linie lässt sich ein Kennwert
für die Schädigung des Bauteils ermitteln. Dieser Wert wird sowohl für das Target- als
auch das Response-Signal berechnet. Die relative Schädigung ist der Quotient der beiden
Schädigungskennwerte. Im Idealfall beträgt sie 1; praktisch stellt ein Wert zwischen 0,5
und 2 ein erfolgreiches Iterationsergebnis dar [Cuy06], wobei in der Praxis auch deutlich
bessere Werte angestrebt und erreicht werden. Ein etwaiger Phasenverzug zwischen Target-
Signal und Response-Signal hat bei der Beurteilung keine Bedeutung. Üblich ist außerdem
die Gegenüberstellung der Target- und Response-Signale mithilfe etablierter Zählverfah-
ren der Betriebsfestigkeit. Beispielsweise kann ein Vergleich durch die Betrachtung der
jeweiligen Spannenpaar- und Klassendurchgangsdiagramme erfolgen. Für Details zur
Spannenpaarzählung (auch: Bereichspaarzählung) und Klassendurchgangszählung (auch:
Klassengrenzenüberschreitungszählung) siehe z. B. [DIN2; Hai06; KJPZ12].

Je mehr Iterationen bis zum Erzielen eines hinreichend guten Ergebnisses notwendig
sind, desto mehr wird hierbei auch der Prüfling bereits vor dem eigentlichen Betriebsfes-
tigkeitsversuch geschädigt. Hierdurch wird auch die anschließende Lebensdaueranalyse
verfälscht, da durch die Vorschädigung im eigentlichen Betriebsfestigkeitsversuch eine
kürzere Lebensdauer resultiert. Die Zahl der notwendigen Iterationen hängt vor allem
vom Ausmaß der Nichtlinearitäten des Prüflings und des Antriebssystems ab. Je höher die
Nichtlinearität, desto mehr Iterationen sind erforderlich.

Die vom Antriebssystem unabhängigen Nichtlinearitäten des Prüflings lassen sich im Falle
einer Achse zum einen auf den Stoßdämpfer mit seinen Endanschlägen zurückführen.
Die Endanschläge treten allerdings nur bei höheren vertikalen Auslenkungen aus der
Mittelstellung in Erscheinung und sind daher vor allem für den niedrigen Frequenzbereich
(0-10 Hz) von Bedeutung. Zum anderen existieren Nichtlinearitäten vor allem in der Längs-
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und Querrichtung durch die in der Achse verbauten Elastomerlager. Sie besitzen eine
Resonanzfrequenz von etwa 15 Hz. [Cuy06]

Daneben gibt es weitere Nichtlinearitäten, die vom jeweiligen Prüfstandssystem abhängen.
Bei konventionellen Achsprüfständen ist die Aktorik jeweils so angebracht, dass sie
hauptsächlich in einer Richtung wirkt, siehe Bild 2-5. Aus diesem Grund werden diese
Prüfstände auch als Orthogonalsysteme bezeichnet. Motivation dieser Anordnung ist,
dass die Verkopplung der einzelnen Richtungen untereinander möglichst gering gehalten
werden soll. Außerdem kann die Aktorik gezielt an die Anforderungen der jeweiligen
Belastungsrichtung angepasst werden.

Bild 2-5: Anregungseinheit (sechs FHG) eines Achsprüfstands der inova GmbH [ino17]5

Trotz dieser Anordnung der Aktorik bestehen kinematische Verkopplungen zwischen den
einzelnen Richtungen, d. h. der allein für die Anregung in vertikaler Richtung angebrachte
Aktor führt nicht zu einer reinen vertikalen Bewegung, sondern auch zu Auslenkungen in
der Längs- und Querrichtung. Bild 2-6 zeigt diese Problematik exemplarisch für das in
[Cuy06] verwendete Prüfsystem.

Da die Aktoren unabhängig voneinander geregelt werden und keine übergeordnete Kom-
pensation der Verkopplungen erfolgt, hat jedes Drive-Signal nicht allein auf das primär
damit assoziierte Target-Signal Einfluss, was die Drive-File-Generierung erschwert. Auch
dieser Effekt ist vor allem für große Amplituden und damit Frequenzbereiche bis etwa
10 Hz von Bedeutung. Hinzu kommen weitere Nichtlinearitäten, z. B. der Hydraulik.

5Im abgedruckten Bild wurde die Beschriftung gegenüber dem Original korrigiert.
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(a) Aktorik in Quer- und
Vertikalrichtung

(b) Bewegung des Radträgers infolge rein
vertikaler Aktuierung

Bild 2-6: Kinematische Verkopplung der Aktorik bei dem Prüfsystem aus [Cuy06]

Die Nichtlinearitäten sind also im Frequenzbereich bis 20 Hz am ausgeprägtesten. Das
ist auch der Frequenzbereich, in dem praktisch Konvergenzprobleme beobachtet werden.
Treten Konvergenzprobleme im darüberliegenden Frequenzbereich auf, ist dies meist auf
Modellierungsfehler infolge unzureichender Anregung im höheren Frequenzbereich bei
der Systemidentifikation zurückzuführen.

Neben den Nichtlinearitäten des Gesamtsystems aus Prüfling und Antrieb ist die Er-
fahrung des Durchführenden ein weiterer wesentlicher Faktor für den Zeitbedarf einer
Drive-File-Generierung. Pro Achse werden vom Prototypen bis zur Serienreife ca. zehn
volle Tests durchlaufen, wobei jeder Test einer Betriebsdauer von 200 000-300 000 km
entspricht. Jeder Test besteht aus etwa einer Woche Drive-File-Generierung und einer
Woche eigentlichem Achstest. Für die Entwicklung von Vorder- und Hinterachse eines
Fahrzeugs wird daher eine Prüfstandsnutzungszeit von insgesamt 40 Wochen angegeben.
Trotz dieses hohen Zeit- und damit auch Kostenaufwands wird das iterative Verfahren
bei hohen Güteanforderungen in der Industrie für Betriebs- und Komfortuntersuchungen
eingesetzt. Gründe hierfür sind die hohe Vergleichbarkeit der Versuche untereinander und
die erfahrungsgemäß verlässlichen Ergebnisse der Untersuchungen. [Cuy06]

Die Vorteile dieser Technik bestehen darin, dass keinerlei Einschränkungen bei der Modell-
invertierung vorliegen, z. B. im Falle nichtminimalphasiger Systeme oder hoher Totzeiten,
und dass das Verfahren relativ einfach anzuwenden und wenig theoretischer Hintergrund
(aber Erfahrung) seitens des Anwenders erforderlich ist [Cuy06]. Zudem können auch Tar-
get-Signale verwendet werden, die mit den Regelgrößen vorliegender Echtzeit-Regelungen
so gut wie keinen Zusammenhang besitzen [Plu07].

Zusammenfassend lässt sich sagen, dass Achsprüfstände in der Industrie aufgrund der
hohen Nichtlinearität von Prüfling und Prüfsystem, der Verkopplung der Bewegungs-
freiheitsgrade sowie der unzulänglichen Systemmodellierung mit dem beschriebenen
Iterationsverfahren und nicht mit einer Regelung betrieben werden. Auch die hohen Anfor-
derungen an die Güte und die Systembandbreite erschweren die Umsetzung einer solchen
Regelung. Hinzu kommt, dass in der Praxis viele verschiedene Target-Signale gleichzeitig
verfolgt werden.
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Der hohe Zeitbedarf der Achsprüfung hat einige wissenschaftliche Arbeiten motiviert,
bei denen versucht wird, die Konvergenzgeschwindigkeit des TWR-Algorithmus unter
Beibehaltung oder Verbesserung der Abbildungsgüte zu erhöhen. Der nächste Abschnitt
gibt eine Übersicht über die verschiedenen Ansätze. Darüber hinaus gibt es weitere Maß-
nahmen, mit denen versucht wird, auf anderem Wege den geschilderten, zeitaufwändigen
Gesamtprozess in der Komfort- und Betriebsfestigkeitsuntersuchung zu optimieren. Eine
Auswahl dieser Maßnahmen fasst Abschnitt 2.1.4 zusammen.

2.1.3 Maßnahmen zur Erhöhung der Konvergenzgeschwindigkeit

Ein möglicher Ansatz zur Beschleunigung des Iterationsprozesses besteht in der Verbesse-
rung des Streckenmodells G ( jω). Die Qualität des Streckenmodells ist in hohem Maße von
den für die Identifikation eingesetzten Anregungssignalen abhängig. Folglich gibt es Ar-
beiten, die sich mit der automatisierten Optimierung dieser Signale beschäftigen [KNW99]
oder allgemein deren Auswahl diskutieren [GPC10; CTVP14]. In der industriellen Pra-
xis ist die Verwendung von FRF-Matrizen für die Beschreibung des Systemverhaltens
etabliert. Einige Quellen untersuchen anstelle dieser Frequenzbereichsmodelle auch Zu-
standsraummodelle im Zeitbereich, siehe z. B. [Raa97; RW98; CV02]. Als Vorteile dieser
Methode wird genannt, dass kürzere Messungen für die Identifikation dieser Modelle
notwendig sind und dass eine Adaptierung des Modells im Ablauf der Iteration möglich
ist. Außerdem fallen die bekannten Probleme der Frequenzbereichsmethodik mit Offsets
und niedrigen Frequenzen weg. In [Raa97; RW98] werden MISO-ARX-Modelle für jeden
Übertragungspfad gebildet, in ein zeitdiskretes Zustandsraummodell überführt und in
dieser Form für die Drive-File-Generierung verwendet. Bei dem Beispielsystem in [Raa97]
sind mit dem Zustandsraummodell weniger Iterationen erforderlich, um gegebene Target-
Signale nachzubilden. Es handelt sich um einen Komponentenprüfstand für Halterungen
aus Stahl, mit denen Treibstofftanks am Fahrzeug befestigt werden. Die Konvergenzge-
schwindigkeit ist auch bei dem Beispiel in [CV02], einem Prüfstand für Fahrzeugsitze,
etwas besser als bei der etablierten FRF-Methodik. Kommerziell am erfolgreichsten ist
eine Erweiterung von Adaptive Inverse Control [WW08], bei der ein FIR-Filter für das
inverse Streckenmodell verwendet wird [Plu07]. Es existieren auch Arbeiten, in denen
die Modellstruktur untersucht wird. Beispielsweise werden in [MVE16] drei verschiedene
Zeitbereichsmodelle für das Ein-/Ausgangsverhalten genannt, wobei zwei davon die Ak-
torverkopplung berücksichtigen. Zwar ist die Identifikation dieser zwei Modelle mit einem
höheren Rechenaufwand verbunden, Prüfstandsergebnisse von einem Halbachsprüfstand
zeigen jedoch, dass hierdurch die Zahl der notwendigen Iterationen reduziert werden kann.
Eine weitere Möglichkeit zur Steigerung der Modellgüte besteht darin, das Streckenmodell
G ( jω) im laufenden Iterationsprozess zu adaptieren. Ein solcher Ansatz wird in [CTVP13]
aufgezeigt. Dort wird G ( jω) durch eine diagonale Übertragungsmatrix modifiziert, die aus
dem Vergleich von prädizierten und realen Systemantworten oder -eingängen hervorgeht.
Simulationen an einem MKS-Achsprüfstandsmodell zeigen die Funktionsfähigkeit des
Ansatzes. Im vorliegenden Beispiel wird eine stabile Iteration erreicht, wohingegen der
klassische Iterationsalgorithmus divergiert. In [CCLD99] wird hingegen ein gewichtetes
Modell aus dem vorab identifizierten und einem nach der ersten Iteration gebildeten Mo-
dell verwendet, bei dem versucht wird, die Kreuzkorrelation zwischen den Eingängen
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durch Phasenverschiebungen gering zu halten und so der Anforderung nach unkorrelierten
Eingängen gerecht zu werden.

Neben der Verbesserung des Streckenmodells G ( jω) ist auch die Modifikation des TWR-
Algorithmus selbst möglich. Beispielsweise wird der Algorithmus nach (2-14) in [SVS08]
für nichtlineare Streckenmodelle angepasst. In dieser Quelle wird ein spezielles nichtli-
neares Streckenmodell mit einem linearen und einem nichtlinearen Anteil definiert und
ein geeigneter Identifikationsansatz beschrieben. Hier wird anstelle der Invertierung des
Streckenmodells für die Ermittlung der Drive-Signale der nächsten Iteration ein Opti-
mierungsproblem formuliert, das mit dem Newton-Verfahren gelöst wird. Verglichen mit
dem linearen Ansatz nach (2-14) wird an einem Viertelfahrzeugprüfstand eine schnellere
Konvergenzgeschwindigkeit und eine höhere Abbildungsgüte erzielt. Der Ansatz wird in
[XZZ13] aufgegriffen, wobei die Modellinvertierung dort mithilfe eines Gauß-Newton-
Verfahrens mit Nebenbedingungen erfolgt. Das Vorgehen wird an einem 10-FHG-Modell
der Fahrzeugvertikaldynamik validiert. Eine weitere nichtlineare Adaptierung des TWR-
Algorithmus, die ebenfalls auf einer Aufteilung des Systemverhaltens in einen linearen und
einen nichtlinearen Anteil beruht, findet sich in [RH06; HR07]. Die Validität des Algorith-
mus wurde bislang nur an Simulationen gezeigt. In [ME17] wird der TWR-Algorithmus
so modifiziert, dass zwischen den Iterationen am Prüfstand die Drive-Signale an Simula-
tionsmodellen des Ein-/Ausgangsverhaltens iteriert werden und erst nach Erfüllen eines
Gütekriteriums auf dem Prüfstand eingesetzt werden. Tests an einem Halbachsprüfstand
zeigen kürzere Konvergenzzeiten gegenüber dem etablierten Vorgehen bei monoton abneh-
mender Abweichung zwischen Target- und Response-Signal.

Als weitere Möglichkeit zur Verringerung des Zeitbedarfs für die Target-Simulation wird
in einigen Quellen der TWR-Algorithmus um eine Regelung unter Echtzeitbedingungen
erweitert. Dieser Ansatz wurde vor allem an der KU Leuven verfolgt. Beispielsweise ent-
wickeln und vergleichen Vaes, Swevers und Sas [VSS05] drei verschiedene MISO-Regler
für die Nachbildung zweier gemessener Beschleunigungen eines Fahrzeugrades (Quer-
und Vertikalrichtung) mithilfe eines hydraulischen Shakersystems: der erste Regler besteht
aus auf Basis der Diagonalelemente des Systems unabhängig entworfenen SISO-Reglern.
Der zweite Regler ist ein H∞-Regler, der anhand des vollständigen MIMO-Modells des
Systems synthetisiert wurde. Bei dem dritten Regler wird die Verkopplung des Systems
durch einen Kompensationsterm aufgehoben und einzelne Regler für die entkoppelten
Richtungen entworfen. Während die beiden erstgenannten Regler eine unzureichende
Performance aufweisen, kann der Regler mit Kompensation der Systemverkopplungen die
Abweichung zwischen Target- und Response-Signal deutlich reduzieren. Vergleichbare
Versuche werden in [VSSS05] an einem vereinfachten Halbfahrzeugprüfstand durchge-
führt, wobei die Beschleunigung der linken und der rechten Seite der Aufbaumasse die
Zielgröße darstellt. Ein nach der µ-Synthese entworfener MIMO-Regler wird dort mit ei-
nem Regler verglichen, bei dem durch Lösung eines nichtkonvexen Optimierungsproblems
eine näherungsweise Entkopplung des Ein-/Ausgangsverhaltens erreicht wird. Für die ent-
koppelten Richtungen wird jeweils ein SISO-H∞-Regler entworfen. Bei dem betrachteten
Beispielsystem wird die Leistungsfähigkeit der beiden Regler als vergleichbar beurteilt,
wobei die Einfachheit des zweitgenannten Reglerentwurfs im Vergleich zum ersten betont
wird. Gegenüber der alleinigen Verwendung des TWR-Algorithmus kann die Anzahl der
Iterationen von 12 auf 3 reduziert werden. In [Cuy06] werden ebenfalls drei verschiedene
Ansätze zur Erweiterung des Algorithmus um eine Echtzeit-Regelung untersucht. Sie unter-
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scheiden sich zum einen dadurch, ob die Eingriffe der Offline-Iteration vor oder nach dem
Echtzeit-Regler aufgeschaltet werden und ob die Offline-Iteration auf Basis des invertierten
Modells des offenen oder des geschlossenen Regelkreises erfolgt. Auch hier wird an einem
Halbachsprüfstand mit zwei FHG eine Beschleunigung der Target-Simulation erreicht.
Weitere Veröffentlichungen der Forschergruppe auf diesem Themengebiet existieren, sie-
he z. B. [CVD+02; CVS03]. Ein weiterer MIMO-Regler wird in [KWU09; KWSU09;
KWU11] für einen Fahrzeugvibrationsprüfstand mit vier elektromechanischen Shakern als
Anregungseinheiten entwickelt. Gegenüber der klassischen Vierstempelanlage, bei der die
Reifen mit servohydraulischen Aktoren angeregt werden, sind diese Shaker direkt mit dem
Fahrzeugaufbau verbunden. Ziel ist die Nachbildung von im Fahrversuch gemessenen Be-
schleunigungen. Anlass für den Entwurf eines MIMO-Reglers ist hier die Instabilität und
hohe Verkopplung des Systems bei Verwendung von SISO-PID-Reglern. Für die Shaker
wird anhand eines Zustandsraummodells 22. Ordnung ein Entkopplungsregler nach Falb
und Wolovich [FW67] entworfen. Verbliebene Unzulänglichkeiten bei der Nachbildung
der Target-Signale werden durch einen TWR-Algorithmus korrigiert. Die Einbeziehung
einer Echtzeit-Regelung ermöglicht, dass zeitliche Änderungen des Prüflingsverhaltens
z. B. infolge Alterung nicht zwangsläufig eine erneute Iteration erfordern. Je nach Ausmaß
können auch andere Störeinflüsse durch den Regler unter Beibehalten der generierten
Drive-Files ausgeglichen werden.

Der nächste logische Schritt nach der Kombination einer Echtzeit-Regelung mit dem
iterativen Verfahren ist das Ersetzen des TWR-Algorithmus durch eine Regelung und
Vorsteuerung ohne Offline-Iteration. Ein solcher Ansatz wird in [MP97; MFC98] verfolgt.
Dort wird für einen einfachen, eindimensionalen Viertelfahrzeugprüfstand eine Vorsteue-
rung und Regelung in Zwei-Freiheitsgrade-Struktur nach dem H∞-Konzept entworfen und
anhand von Simulationen validiert. Beispiele für komplexere Anwendungen liegen nicht
vor.

Zu den recherchierten Echtzeit-Regelungen bleibt abschließend festzuhalten, dass es sich
durchweg um lineare Regler handelt, die alle auf Basis einer linearen Approximation des
Übertragungsverhaltens G ( jω), vgl. (2-10), entworfen wurden. Diese wird dem tatsäch-
lichen Übertragungsverhalten (2-2) eines realen Prüfstands, insb. eines Achsprüfstands,
nur sehr begrenzt gerecht. Die Verwendung nichtlinearer Streckenmodelle und nichtlinea-
rer Regelungsentwurfsmethoden dürfte die Leistungsfähigkeit der Echtzeit-Regelungen
erheblich erhöhen.

Plummer [Plu07] bewertet die Versuche der Echtzeit-Regelung unter expliziter Nennung
der Quellen [CVD+02; CVS03; VSS05] sinngemäß so, dass die Ansätze zwar einen sicht-
baren Erfolg aufweisen, der damit verbundene hohe Zeitaufwand für die komplizierte
Streckenmodellierung und die Wahl erforderlicher Gewichtungen den Einsatz der Verfah-
ren in der industriellen Praxis aber unwahrscheinlich machen. Folglich werde das etablierte
iterative Vorgehen der Echtzeit-Regelung vorgezogen, da die üblicherweise verwendeten
Target-Signale sehr stark vom dynamischen Verhalten des Prüflings beeinflusst werden, das
typischerweise nichtlinear und von höherer Ordnung ist. Dennoch gebe es genug Anlass,
die Echtzeit-Regelungen weiterzuverfolgen. So sei es nur mit ihnen möglich, zeitverän-
derliches Bauteilverhalten im Rahmen der Prüfung zu kompensieren. Außerdem würde es
die Arbeit des Anwenders vereinfachen. Durch den gänzlichen Wegfall des Iterationspro-
zesses würde sich der Nutzen entsprechender Prüfstände, z. B. durch die Möglichkeit zur
Durchführung von Model-in-the-Loop (MiL)-Simulationen, deutlich erhöhen. Hierfür sei
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eine Weiterentwicklung der eingesetzten Antriebe unabdingbar. Seiner Einschätzung nach
sind speziell für die Regelung von Beanspruchungen Regelungsverfahren erforderlich, bei
denen durch Einsatz von Systemwissen eine Vorsteuerung des Prüflingsverhaltens durch-
geführt wird. Er stellt allerdings in Frage, ob dies angesichts des in der Regel komplexen
und unsicheren Prüflingverhaltens möglich ist.

2.1.4 Weitere Maßnahmen zur Verbesserung des Prozesses

Abgesehen von den zuvor dargestellten Methoden zur Verbesserung bzw. Erweiterung des
TWR-Algorithmus bestehen weitere Möglichkeiten, den hohen Zeitbedarf der Betriebs-
festigkeitsversuche zu reduzieren und damit z. B. die Entwicklungszeit einer Achse zu
verringern. Dieser Abschnitt geht kurz auf einige dieser Ansätze ein.

Eine Möglichkeit besteht darin, auf einen Teil der erforderlichen Fahrversuche zuguns-
ten von synthetisch generierten Target-Signalen zu verzichten. Beispielsweise werden
in [BLOO05; BMK+09; Bur14] aus den im Fahrversuch mit einer Fahrzeugvariante ge-
messenen Radkräften und -momenten anhand von Modellen des Fahrzeugs die Stra-
ßenanregungen zurückberechnet. Aus den Straßenanregungen, die von der spezifischen
Fahrzeugvariante unabhängig sind, werden die Radkräfte und -momente für andere Fahr-
zeugvarianten berechnet. Mit den so ermittelten Target-Signalen können ohne neue Mess-
fahrten Prüfstandsversuche oder numerische Betriebsfestigkeitsuntersuchungen durchge-
führt werden. Der in [BLOO05; BMK+09] vorgestellte Ansatz stellt eine Abwandlung des
TWR-Algorithmus zur Drive-File-Generierung dar und wird von den Autoren als hybrid
road approach bezeichnet. Ein ähnlicher Ansatz wird in [TDPC11] verfolgt: dort werden
anstelle der Straßenanregungen die Verschiebungen des Radträgers aus gemessenen Rad-
kräften und -momenten an einem MKS-Modell mithilfe des TWR-Algorithmus bestimmt.
Auch der komplette Verzicht auf Target-Signale aus dem Fahrversuch wurde untersucht: in
[WOL09] werden die Betriebslasten gänzlich virtuell ermittelt. Als Vorteile werden die
hohe Reproduzierbarkeit und die gleichbleibende Qualität der ermittelten Betriebslasten
genannt. Insbesondere kann durch den Wegfall der Messfahrten die Betriebsfestigkeits-
prüfung einer Komponente vor Fertigstellung eines Gesamtsystemprototypen beginnen.
Es wird angegeben, dass sich die Versuchsdauer durch dieses Vorgehen um mindestens
30 % reduziert habe und die Prüfstandsversuche im typischen Entwicklungsprozess sechs
Wochen früher durchgeführt werden können.

Eine strukturelle Änderung des betrachteten Testsystems wird in [JA15] durch das Hin-
zufügen passiver Elemente, wie z. B. Federn, vorgenommen. Dadurch wird eine bessere
Steuerbarkeit und eine Reduktion der erforderlichen, zum Teil hohen Aktorkräfte zur Erzie-
lung gegebener Target-Signale erreicht. Die passiven Elemente werden dabei anhand von
Finite Elemente (FE)-Simulationen und der Lösung einer Mehrzieloptimierung mittels ge-
netischer Algorithmen parametrisiert. Als ein Nachteil der Methode wird das Auftreten von
Spannungskonzentrationen an den Verbindungsstellen der passiven Elemente genannt.

Auch die Überarbeitung des Aktorikkonzepts stellt eine Möglichkeit zur Verbesserung
des gesamten Prozesses dar. Beispielsweise fiel im Jahr 2004 bei der Volkswagen AG die
Entscheidung für den Aufbau eines hexapodbasierten Achsprüfstands [DSB09]. Bild 2-7
zeigt sowohl ein Bild eines MKS-Modells des Prüfstands sowie ein Foto des aufgebauten
Systems.
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(a) MKS-Modell [DSB09] (b) Foto des Prüfstands [Moo17]

Bild 2-7: Hexapod-Achsprüfstand der Volkswagen AG

Für den Prüfstand wurde ein umfangreiches MKS-Modell in ADAMS/Car implementiert,
anhand dessen die Konstruktion der eingesetzten Hexapoden optimiert wurde. Dabei wurde
durch die Simulation verschiedener Target-Signale von unterschiedlichen Hexapodkonfi-
gurationen diejenige ausgewählt, bei der die erforderlichen Aktorkräfte möglichst gering
waren. Das MKS-Modell ist außerdem zur Vorbereitung von Tests auf dem realen System
gedacht. Es enthält neben den MKS-Modellen der Radaufhängung und der Hexapoden
auch Modelle der iterativen Prüfstandsregelung und der Hydraulik [SD08; DSB09].

An diesem System wird eine Abbildung gegebener Target-Signale bis 80 Hz angestrebt.
Zu erzielten Ergebnissen am Prüfstand und dem Verbleib des Systems existieren keine
Veröffentlichungen.

Das genannte System weist einige Unterschiede zum Hexapod des HNI auf. Neben der
äußeren Gestalt sowie den physikalischen Eigenschaften unterscheidet sich auch die
topologische Struktur von der des HNI-Hexapod. So sind bei diesem System nicht nur am
unteren, sondern auch am oberen Ende der Zylinderstangen Kardangelenke verbaut.

2.2 Kraft- und Interaktionsregelung und Anwendung bei
Parallelkinematiken

Dieses Unterkapitel betrachtet die (Kraft-) Regelungsverfahren, die dem Fachgebiet der
Robotik entstammen. Der erste Abschnitt stellt eine Einführung dar und führt in die not-
wendigen Grundlagen zum Thema ein. Außerdem erfolgt ein kurzer Rückblick über die
vor dieser Dissertation durchgeführten Arbeiten am betrachteten System. Daran schließen
sich zwei Unterabschnitte zu den beiden Kraftregelungsansätzen an, zwischen denen in
der Robotik grundsätzlich unterschieden wird: der indirekten und der direkten Kraftre-
gelung. Diese Unterabschnitte enthalten einen Überblick über eine recht große Zahl von
Verfahren, wobei jeweils der Kerngedanke dargelegt wird. Da die Thematik der Kraftre-
gelung von Manipulatoren insb. in Folge der Veröffentlichungen von Whitney [Whi77],
Salisbury [Sal80], Mason [Mas81], Raibert und Craig [RC81] sowie Hogan [Hog85] hohe
Aufmerksamkeit genoss, gehen einige der genannten Verfahren auf Veröffentlichungen
zurück, die einige Zeit zurückliegen. Neuere Quellen finden sich in Abschnitt 2.2.4, in
dem Anwendungsbeispiele dieser Verfahren speziell für PKM zusammengestellt sind.
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2.2.1 Einführung

PKM werden - neben der bereits genannten Anwendung als MAST-Systeme sowie als
Aktorik in einem Achsprüfstand bei Volkswagen - vor allem als Werkzeugmaschinen
eingesetzt. Außerdem haben sie sich als Bewegungsplattform für Fahr- und Flugsimu-
latoren durchgesetzt. Bild 2-8 zeigt entsprechende Beispielsysteme. Vereinzelt ist auch
die (mindestens geplante) Verwendung von Hexapoden als Werkzeug- und Materialprüf-
maschinen dokumentiert, vgl. Abschnitt 2.2.4. Einen umfassenderen Überblick über die
Anwendungsgebiete von PKM liefern die Grundlagenwerke [Neu06; Mer06].

(a) ABB IRB 360 FlexPicker [ABB17] (b) Fahrsimulator der Daimler AG [Dai17]

Bild 2-8: Parallelkinematische Manipulatoren in der Anwendung (Beispiele)

Im Rahmen dieser Einführung erfolgt zunächst eine Abgrenzung von PKM und SKM. Je
ein Beispielsystem mit f = 3 FHG zeigt Bild 2-9. Darin bezeichnet q die sog. Antriebs-
oder Gelenkkoordinaten (engl. joint space coordinates), d. h. die Verschiebungen und
Verdrehungen der einzelnen Aktoren. Neben den Gelenkkoordinaten gibt es die sog. Auf-
gabenkoordinaten z (engl. operational bzw. task space coordinates). Je nach Anzahl der
FHG des Manipulators bezeichnen sie die Position und/oder Orientierung, im Folgenden
auch Pose, des Endeffektors bzw. dessen Tool Center Point (TCP) im Arbeitsraum. Die
eigentliche Aufgabe des Manipulators wird in der Regel in den Aufgabenkoordinaten z
definiert. In Bild 2-9 bezeichnen außerdem: I das Inertialsystem, 0 den Ursprung von I, E
das endeffektorfeste Koordinatensystem sowie T den TCP.

Bei dem SKM stellen die einzelnen Bewegungsachsen bzw. die Aktoren eine Abfolge dar.
Jede Achse ergänzt den gesamten Mechanismus um einen weiteren FHG. Die Gesamtzahl
der Verschiebungen und Verdrehungen der Gelenke, ausgedrückt durch q, führt zu einer
Bewegung des Endeffektors. Im Falle des SKM handelt es sich um eine offene kinematische
Kette, wobei sich die Gelenkkoordinaten als generalisierte Koordinaten bei Herleitung der
Bewegungsgleichungen verwenden lassen. Die Bewegungsgleichungen für SKM lauten
unter Vernachlässigung von Reibung allgemein

M (q) · q̈ + C (q, q̇) · q̇ + g (q) = Fq − JT
g (q) · τ . (2-16)

Für eine kurze Einführung in die Mehrkörperdynamik sei an dieser Stelle auf Anhang A1
hingewiesen. Zusätzlich skizziert Anhang A2 das Aufstellen von Bewegungsgleichungen
mithilfe des Prinzips von Jourdain, wobei auch auf die Bedeutung der Terme auf der
linken Seite von (2-16) eingegangen wird. Auf der rechten Seite der Gleichung stehen
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(a) Seriellkinematischer Manipulator (SKM)
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(b) Parallelkinematischer Manipulator (PKM)

Bild 2-9: Vergleich von serieller und paralleler Kinematik

die Aktorkräfte und/oder -momente Fq, die die eigentliche Eingangsgröße in das System
darstellen, sowie die Kontaktkräfte und/oder -momente zur Umgebung τ. Die Kontaktkräfte
und -momente liegen in Aufgabenkoordinaten vor und müssen mit der sog. geometrischen
Jacobimatrix Jg in die Gelenkkoordinaten überführt werden.

Im Gegensatz zum SKM greifen bei einem PKM, vgl. Bild 2-9b, alle Bewegungsachsen
direkt am Endeffektor an. Hier liegt eine geschlossene kinematische Kette vor. Die Be-
wegungsgleichungen bestimmter PKM mit sechs FHG, auf die sich die nachfolgenden
Ausführungen beziehen und zu denen auch der Hexapod zählt, lauten allgemein

Mv (z) · v̇ + Cv (z, v) · v + gv (z) = J−T
g (z) · Fq − τ , (2-17)

wobei hier die Antriebskräfte und -momente Fq mithilfe der geometrischen Jacobimatrix
Jg in Aufgabenkoordinaten umgerechnet werden müssen. Verglichen mit (2-16) wurde an
dieser Stelle bewusst zwischen den zeitlichen Ableitungen ż und z̈ und den Geschwindig-
keiten v und Beschleunigungen v̇ unterschieden. Die Identitäten v = ż und v̇ = z̈ sind für
die Winkelgeschwindigkeiten und -beschleunigungen allgemein nicht gegeben. Dies gilt
auch für den in dieser Dissertation betrachteten PKM mit sechs FHG. Je nach Wahl der
Beschreibungsweise für die Orientierung des Endeffektors (z. B. Kardan- oder Eulerwinkel,
Einheitsquaternionen), existiert eine Umrechnungsvorschrift für die betreffenden Größen.
Die spezifische Umsetzung im vorliegenden Fall wird im Detail in Kapitel 4 beschrie-
ben. Infolge der genannten Problematik ergibt sich für die Bewegungsgleichungen bei
Durchführung der Herleitung nach Abschnitt A2 von (2-17) abweichend die Darstellung

M (z) · z̈ + C (z, ż) · ż + g (z) = J−T
a (z) · Fq − HT (z) · τ (2-18)

mit der sog. analytischen Jacobimatrix Ja und der an dieser Stelle nicht näher spezifizierten
Umrechnungsmatrix HT für die Kontaktkräfte und -momente τ.

Über SKM und PKM hinaus gibt es hybride Kinematiken, bei denen beide Konzepte in
einem Mechanismus kombiniert werden. Häufig wird ein SKM mit großem Arbeitsraum
mit einem (kinematisch darauf folgenden) verhältnismäßig kleinen PKM kombiniert, der
den Endeffektor des gesamten Mechanismus trägt, siehe z. B. [MSH+17].
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Je nachdem, ob ein SKM oder ein PKM betrachtet wird, ist die Umrechnung zwischen
den Gelenk- und den Aufgabenkoordinaten in die eine oder andere Richtung (bis auf
wenige Ausnahmen bei einfachen Systemen) nicht eindeutig. Die Berechnung der Aufga-
benkoordinaten z aus den Gelenkkoordinaten q, die Lösung der sog. direkten Kinematik
(engl. direct bzw. forward kinematics), ist im Falle eines SKM mithilfe linearer Algebra
einfach möglich. Das gleiche gilt im Falle eines PKM für die indirekte Kinematik (engl.
indirect bzw. inverse kinematics), d. h. die Umrechnung der Aufgabenkoordinaten z in
die Gelenkkoordinaten q. Die jeweils umgekehrte Richtung ist nicht eindeutig lösbar. Bei
einem PKM gibt es damit für einen gegebenen Satz gemessener Gelenkkoordinaten q ohne
weitere Information mehrere mögliche Endeffektorposen bzw. Aufgabenkoordinaten z.
Diese Problematik wird in der Fachliteratur auch als direktes kinematisches Problem
(DKP) bezeichnet.

Für eine 6-UPS-Plattform6, wie bei dem Hexapod des HNI gibt es laut Merlet [Mer06]
im Allgemeinen maximal 40 reelle oder komplexe Lösungen für das DKP. Der Beweis
hierfür wurde im Jahr 1992 von Ronga und Vust erbracht [RV95]. Für eine allgemeine
Stewart-Plattform (d. h. die Koppelpunkte der Aktoren sind weitgehend beliebig auf dem
Endeffektor verteilt) konnte Dietmaier im Jahr 1998 ein Beispiel für einen Satz von Ge-
lenkkoordinaten q herleiten, bei dem 40 reelle Lösungen vorliegen [Die98]. Dabei handelt
es sich natürlich um einen konstruierten Sonderfall. Tatsächlich lässt sich zeigen, dass bei
bestimmten geometrischen Besonderheiten weniger als 40 Lösungen existieren. Hierunter
fallen bspw. spezielle Formen der Bodenkonstruktion sowie des Endeffektors und deren
relative Orientierung in der Konstruktionslage. Es gibt eine sehr hohe Zahl an Arbeiten,
die sich mit der Ermittlung des minimalen Gleichungssatzes zur Lösung des DKP und
der Anzahl an Lösungen für bestimmte Sonderformen der Stewart-Plattform und PKM
im Allgemeinen beschäftigen. Beim HNI-Hexapod liegen sämtliche Gelenkpunkte der
Bodenkonstruktion sowie sämtliche Gelenkpunkte der Endeffektorplattform auf Ebenen; in
diesem Fall liegen maximal 36 reelle Lösungen vor, siehe [HE01]. Ob weitere Besonderhei-
ten und damit noch weniger Lösungen vorliegen, wäre ein interessanter Anknüpfungspunkt
für weitere Untersuchungen.

Als Abhilfemaßnahmen für die Lösung der Problematik nennt Merlet [Mer06] die An-
bringung zusätzlicher Sensorik sowie die numerische Lösung des DKP mithilfe iterativer
Verfahren, z. B. dem Newton-Raphson-Verfahren oder der Intervallanalyse. Die nume-
rischen Lösungen haben einige Nachteile. Beispielsweise ist nicht sichergestellt, dass
numerisch unter der Vielzahl möglicher Lösungen die korrekte gefunden wird, auch dann
nicht, wenn der Startpunkt der Iteration sehr nah bei der korrekten Lösung liegt. Außerdem
sind die Ergebnisse verfahrensbedingt stark verrauscht. Für das Zielsystem wurde das DKP
durch Einsatz eines Zustandsbeobachters umgangen [Kno17]. Der Zustand des Hexapod
enthält u. a. die Aufgabenkoordinaten z. Auf Basis der gemessenen Gelenkkoordinaten
q sowie der bekannten Systemeingangsgröße u = Fq (eigentlich: der gemessenen Zy-
linderdifferenzdrücke ∆p) kann mithilfe des Streckenmodells nach (2-18) der aktuelle
Systemzustand und damit die Aufgabenkoordinaten z sowie deren zeitliche Ableitung ż
rekonstruiert werden. Aus ihnen lassen sich auch die Verschiebungsgeschwindigkeiten der
einzelnen Aktoren q̇ rekonstruieren. Zur Zustandsbeobachtung wurde sowohl ein hierar-
chischer Sliding Mode Beobachter nach Drakunov [DR11] als auch ein Kalman-Filter mit

6Gelenkabfolge jedes einzelnen Aktors: Kardangelenk (engl. universal joint), Schubgelenk (engl.
prismatic joint), Kugelgelenk (engl. spherical joint), vgl. auch S. 2.
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konstanter Beobachtermatrix implementiert. Die ersten Arbeiten zu diesem Thema gehen
auf die Masterarbeit von Simon Olma [OF13] zurück. Für Details zu diesem Thema sei an
dieser Stelle auch auf [FOT14] verwiesen.

Zur Positionsregelung des TCP eines PKM kommen sowohl Regelungen im Operational
Space (OS), d. h. in den Aufgabenkoordinaten z, als auch Regelungen im Joint Space (JS),
d. h. in den Gelenkkoordinaten q, in Frage. In beiden Fällen liegt die durchzuführende Be-
wegung in Form der Soll-Zeitverläufe der Aufgabenkoordinaten zr vor. Bei einer Regelung
im JS werden diese in Soll-Zeitverläufe für die Gelenkkoordinaten qr umgerechnet. Die
Regelung erfolgt dann in diesen Größen, wobei dies bei einem Hexapod die Längen der
einzelnen Zylinder sind. Durch diese Vorgehensweise entfällt die Notwendigkeit der Lö-
sung des DKP. Im Gegensatz dazu erfolgt bei einer Regelung im OS ein Soll-/Ist-Vergleich
direkt in den Aufgabenkoordinaten z. Um eine solche Regelung realisieren zu können,
müssen die Systemzustände zur Laufzeit über einen Beobachter rekonstruiert werden.
Wird auf die Implementierung eines Beobachters verzichtet, muss das DKP zur Laufzeit
numerisch gelöst werden, wobei die oben genannten Nachteile bestehen. Bild 2-10 zeigt
einen schematischen Vergleich der beiden Ansätze, wobei für die Regelung im OS die
beobachterbasierte Lösung dargestellt ist. ẑ stellt eine Rekonstruktion der typischerweise
nicht als Messgröße vorliegenden Aufgabenkoordinaten z dar.

Manipulator
Regelungs-
algorithmus

Inverse
Kinematik −

qFqeqqrzr

(a) Regelung in Gelenkkoordinaten (JS)

Manipulator
Regelungs-
algorithmus

Beobachter

−
qFqez

ẑ

zr

(b) Regelung in kartesischen Koordinaten (OS)

Bild 2-10: Vergleich der grundlegenden Positionsregelungsansätze für PKM

Zwar sind die Regelungen im JS durch das Umgehen des DKP einfacher umzusetzen,
Paccot, Andreff und Martinet [PAM09] sehen Regelungen im OS jedoch als geeigneter für
hochdynamische Anwendungen an. Sowohl für die Regelung im JS als auch die Regelung
im OS erfolgt ein Regelungsentwurf nach oder ähnlich zur exakten Ein-/Ausgangslineari-
sierung (siehe auch Anhang A3 für die theoretischen Grundlagen). Für die Regelung im
OS folgt durch Anwendung der exakten Ein-/Ausgangslinearisierung nach Abschnitt A3
mit der Ausgangsgröße y = z bei τ = 0, dass die Differenzordnung jedes Ausgangs δi = 2
beträgt. Der totale relative Grad entspricht der Systemordnung, d. h. δ = n. Das System
ist demnach für τ = 0, d. h. in Abwesenheit eines Umgebungskontakts, exakt zustandsli-
nearisierbar. Wird τ wie in der Literatur üblich als ideal mess- und kompensierbare Größe
betrachtet, so folgen die Aktorkräfte

Fq = JTĴa ( ẑ) ·
(
M̂ ( ẑ) · up + Ĉ

(
ẑ, ˙̂z

)
· ˙̂z + ĝ ( ẑ) + ĤHT ( ẑ) · τ

)
, (2-19)



2.2 Kraft- und Interaktionsregelung und Anwendung bei Parallelkinematiken 31

wobei �̂ einen geschätzten bzw. beobachteten Wert oder eine aus solchen Werten berechnete
Größe kennzeichnet. In den folgenden Ausführungen wird auf diese Kennzeichnung zur
besseren Lesbarkeit weitgehend verzichtet. Die Aktorkräfte (2-19) führen bei Einsetzen in
(2-18) und

• idealer Zustandsbeobachtung ( ẑ = z, ...) bzw. idealer Messung,

• idealem Regelstreckenmodell (M̂ ( ẑ) = M (z), ...),

• übereinstimmenden Anfangswerten,

• vernachlässigbarer Aktordynamik sowie

• Abwesenheit von Störgrößen

zu dem linearisierten Systemverhalten

up = z̈ . (2-20)

Das linearisierte System verhält sich also in jeder Richtung wie ein doppelter Integrator
und die einzelnen Richtungen sind ideal entkoppelt. Aufbauend auf der neuen, linearen
Eingangsgröße up kann ein einfacher, linearer Regelungs- und Vorsteuerungsentwurf
erfolgen. Als Ansatz eignet sich bspw.

up = z̈r︸︷︷︸
Vorsteuerung

+ KD ·
(
żr − ˙̂z

)
+ KP ·

(
zr − ẑ

)
︸                              ︷︷                              ︸

Regelung

(2-21)

mit geeigneten Regelungsverstärkungen KD, KP. Beispielsweise folgt bei Wahl von

KP = ω2
p · I , KD = 2 Dp ωp · I , ωp = 2 π · fGRK,p , Dp = 1 (2-22)

eine 6 dB-Bandbreite von fGRK,p für den geschlossenen Positionsregelkreis. Bemerkenswert
ist, dass der Einfluss von τ auf den Ausgang durch (2-19) ideal aufgehoben wurde. Solange
die Stellgrößenbeschränkungen eingehalten werden, verhält sich das positionsgeregelte
System folglich „unendlich steif“ gegenüber allen externen Belastungen, die durch die
Messgröße τ erfasst werden, siehe auch [SSVO10].

In der Dissertationsschrift von Sarah Knoop geb. Flottmeier [Kno17] wurden verschie-
dene flachheitsbasierte Positionsregelungen für den Hexapod ohne Umgebungskontakt
unter der Zielsetzung einer möglichst hohen Regelungsbandbreite entworfen. Der Be-
griff der Flachheit trifft für das frei bewegte System zu. Anhand von (2-19) ist dagegen
leicht ersichtlich, dass das System mit Umgebungskontakt, d. h. τ , 0, nicht flach ist.
In [Kno17] wurden sowohl Regelungen im OS als auch Regelungen im JS entworfen
und am Simulationsmodell verglichen. Darüber hinaus wurde anhand von Simulationen
untersucht, ob die jeweils zugrunde liegende Zustandslinearisierung, z. B. die nach (2-19),
besser auf Basis der Soll- oder der Istwerte des jeweiligen Systemzustands berechnet
werden sollte. Der jeweilige Ansatz wird als Feedforward-Linearisierung bzw. Feedback-
Linearisierung bezeichnet. Die erste Methode wird auch als Vorwärtsentkopplung, Kraft-
/Momentenvorsteuerung oder auch Nonlinear Feedforward Control, die zweite als Inverse
Dynamics Control bezeichnet. Beide Varianten werden unter dem Namen Computed Tor-
que Control zusammengefasst, vgl. [Hol07]. Ein derartiger Regelungsentwurf, der auch
die Aktorwechselwirkungen berücksichtigt, wird als Centralized Control bezeichnet. Er
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grenzt sich von der Einzelaktorregelung ohne Berücksichtigung der Verkopplungen, dem
sog. Decentralized Control, ab. [SSVO10]

Als unterlagerte Aktorregelung wurde in [Kno17] jeweils ein Regler für den Differenzdruck
∆p der einzelnen Hydraulikzylinder entworfen. Der geschlossene Differenzdruckregelkreis
verhält sich im Kleinsignalbereich in guter Näherung wie ein Übertragungsglied dritter
Ordnung mit einer 3 dB-Bandbreite von 213 Hz. Die Aktorregelung gibt die Stellsignale
der hydraulischen Antriebe, die Servoventilspannungen uV , aus und wurde ebenfalls nach
Abschnitt A3 entworfen. Um zu verhindern, dass nicht stellbare Bewegungstrajektorien als
Sollwerte aufgeschaltet werden, wurde in [Kno17] außerdem ein echtzeitfähiges Führungs-
größenfilter nach Hippe [Hip06] für das Zielsystem entworfen. Es filtert den gegebenen
Sollgrößenverlauf und stellt sicher, dass die Stellgrößenbeschränkungen stets eingehalten
werden. So wird das volle Potenzial des PKM ausgeschöpft und Windup-Effekte sowie das
nur für Mehrgrößensysteme vorliegende Direktionalitätsproblem werden vermieden. Bild
2-11 stellt die resultierende Regelungsstruktur dar. In [KOF+16] wurde die Struktur um
die Berücksichtigung der Kontaktkräfte und -momente zur Umgebung erweitert.

Hexapod

Zustands-
beobachter

Druck-
regelung

Positions-
regelung

Führungs-
größenfilter

q
∆p

uV

˙̂q

∆pr

˙̂z
ẑ

{z, ż, z̈}rzr

Bild 2-11: Struktur der Positionsregelung für den Hexapod ohne Umgebungskontakt,
vgl. [Kno17, S. 146]

Die Hypothese der Autoren von [PAM09], dass Regelungen im OS das volle dynamische
Potenzial von PKM besser ausschöpfen, konnte durch [Kno17] bestätigt werden. Außerdem
stellte sich dort die Feedback-Linearisierung als bessere Variante heraus. Mithilfe der
entworfenen Regelung können reproduzierbar Ergebnisse hoher Güte erzielt werden.
Für die Positionsregelung wurde eine Bandbreite von bis zu 60 Hz in einzelnen FHG
nachgewiesen.

Diese für den frei im Raum bewegten Hexapod entworfene Regelung ist ohne Modifikatio-
nen für den Achsprüfbetrieb, d. h. bei Umgebungskontakt, nur bedingt geeignet. Hierfür
müssen die Modelle der Kinematik und Dynamik sowohl der Aktorik (Hexapod) als auch
der Umgebung (Radaufhängung) im relevanten Frequenzbereich sehr genau sein. Sind
Hexapod und Radaufhängung nicht hinreichend gut im Modell abgebildet, kann es durch
unzulässig hohe Kontaktkräfte zur Beschädigung der Anregungseinheit oder der Radauf-
hängung kommen. Zur Lösung dieser Problematik muss eine geeignete Regelung für den
Hexapod im Umgebungskontakt entwickelt werden. Eine solche Interaktionsregelung hat
diverse Vorteile gegenüber einer Positionsregelung. Zum einen können Beschädigungen
von Hexapod und Prüfling vermieden werden. Zum anderen kann, je nach Regelungs-
verfahren, auch eine direkte Vorgabe der Kontaktkräfte und -momente erfolgen, z. B. für
die Nachbildung von im Fahrversuch gemessenen Kräften und Momenten. Darüber hin-
aus kommen in der Praxis zum Teil auch Regelungen zum Einsatz, die Positions- und
Kraftregelung zu einer sog. hybriden Kraft-/Positionsregelung kombinieren.
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Generell kommen durch den Kontakt zu einer Umgebung - neben den in den Differential-
gleichungen (2-16), (2-17) und (2-18) bereits aufgeführten Kontaktkräften und -momenten
τ - zu den Bewegungsdifferentialgleichungen des Manipulators weitere Gleichungen hin-
zu. Bei einer ideal starren Umgebung sind dies bspw. algebraische Gleichungen, die die
Zwangsbedingungen beschreiben. In diesem Fall resultiert ein differential-algebraisches
Gleichungssystem.

Die theoretischen Grundlagen zur Interaktionsregelung sind vor allem im Bereich der Rege-
lung von Handhabungs- und Werkzeugmaschinen zu finden. Bei diesen Anwendungsfällen
ist häufig eine Unterscheidung der jeweils vorliegenden Situation in

• Freie Bewegung,

• Transitions- bzw. Übergangsphase und

• Eingeschränkte Bewegung (Kontakt)

erforderlich. Mit Ausnahme des Rüstvorgangs, der in dieser Ausarbeitung nicht betrachtet
wird, liegt im hier vorliegenden Anwendungsfall stets die Kontaktsituation vor. Die Situati-
on freier Bewegung und die Übergangsphase werden daher in den folgenden Ausführungen
nicht berücksichtigt.

Außerdem werden die Verfahren für das Beispiel eines PKM betrachtet, dessen Bewe-
gungsgleichungen sich ausschließlich durch die kartesischen Koordinaten des Endeffektors
sowie die translatorischen Geschwindigkeiten und Beschleunigungen beschreiben lässt
(Beispielsystem: der 3-RCC-Mechanismus in [CPP06], vgl. auch Bild 2-25). Dadurch
können im Folgenden die Bewegungsgleichungen (2-17) verwendet werden, wobei zu-
sätzlich v = ż und v̇ = z̈ gilt. Dies vereinfacht die folgenden Ausführungen deutlich, da
sonst fortlaufend auf die Besonderheiten für die Orientierungs- und Drehmomentregelung
eingegangen werden muss. Hintergrund der Unterschiede zwischen der Positions- und
Orientierungsregelung wie auch der Kraft- und Drehmomentregelung ist das Fehlen eines
Verschiebungsvektors für die Rotationen analog zu dem für die Positionen. Ein Winkel-
koordinatensatz für die Verdrehung eines Körpers, aus dessen zeitlicher Differentiation
die Winkelgeschwindigkeit des Körpers resultiert (wie bei Translationen), existiert nicht.
Insbesondere sind die Kardanwinkel kein Vektor, und das Bilden der Differenz zwischen
den Kardanwinkeln der Soll- und Istorientierung des Endeffektors ist nur in Sonderfällen
geometrisch sinnvoll. Praktisch wird dieser Ansatz, wie auch in [Kno17], häufig dennoch
verfolgt. Bessere Ansätze sind

• die Verwendung derjenigen Kardanwinkel, die sich aus der Rotationsmatrix zwischen
der Soll- und Istorientierung des Endeffektors berechnen lassen,

• die Berechnung des Fehlers anhand der momentanen Drehachse und des zugehörigen
Drehwinkels dieser Rotation (engl. angle axis error) sowie

• die Verwendung von Einheitsquaternionen.

Sowohl beim angle axis error wie auch bei den Einheitsquaternionen wird die Rotation
nicht durch drei, sondern vier Größen beschrieben. Die einzige singularitätsfreie Lösung
stellt die Verwendung der Einheitsquaternionen dar. Für eine ausführliche Darstellung
sowie die Diskussion verschiedener Ansätze zur Orientierungs- und Drehmomentregelung
siehe insb. [SV99; Nat10]. Bei Verzicht auf die gesonderte Darstellung der Rotationen
kann das Grundprinzip sämtlicher Verfahren kürzer und verständlicher aufbereitet werden.
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Über die Problematik bei den Rotationen hinaus wird in [SBZS98] ausgeführt, dass die
Berechnung der Positions-, Geschwindigkeits- und Kraftfehler nicht eindeutig definiert ist.
Das Bilden der Differenzen der entsprechenden Soll- und Istwerte stellt hierfür lediglich
einen möglichen Ansatz dar. Bei kleinen Abweichungen, von denen im Falle eines (guten)
Regelungssystems ausgegangen werden kann, hat dieser Sachverhalt allerdings keine
nennenswerte Bedeutung in der Praxis.

Grundlage einiger der folgenden Verfahren ist die Linearisierung des Systemverhaltens
durch Vorgabe der Aktorkräfte nach der Berechnungsvorschrift

Fq = JT
g

(
Mv up + Cv v + gv + τ

)
, (2-23)

d. h. es gilt

up = v̇ (2-24)

im Falle eines idealen Streckenmodells, der Abwesenheit von Störgrößen, idealer Messung
bzw. Beobachtung der relevanten Größen sowie vernachlässigbarer Aktordynamik und
übereinstimmenden Anfangswerten.

Für die Durchführung von Kontaktkraftregelungsaufgaben ist es vorteilhaft, wenn die
Bewegungsgleichungen in Aufgabenkoordinaten vorliegen. Während bei einem SKM die
Bewegungsgleichungen (2-16) erst aufwändig unter erheblichem Berechnungsaufwand
transformiert werden müssen, liegen sie bei bestimmten PKM mit sechs FHG direkt in
dieser Form vor, was einen Vorteil dieser PKM gegenüber SKM darstellt.

Die Ausführungen in den folgenden beiden Unterabschnitten basieren vor allem auf den
Grundlagenwerken [SV99; SSVO10; SK16]. In der Fachliteratur werden üblicherweise
SKM behandelt. Demgegenüber wird in dieser Arbeit mit dem Hexapod ein PKM betrach-
tet. Aus diesem Grund wurden nachfolgend sämtliche Regelungsansätze unter Beibehaltung
des jeweiligen Grundgedankens in der für PKM mit Bewegungsgleichungen nach (2-17)
zutreffenden Form aufbereitet. Die aufgeführten Gleichungen sind daher nicht in exakt
dieser Form in den genannten Quellen wiederzufinden. Der Transfer und die Aufberei-
tung der Regelungsansätze für PKM mit Bewegungsgleichungen nach (2-17) stellt einen
wesentlichen wissenschaftlichen Beitrag dieser Arbeit dar.

Viele der dargelegten Regelungsansätze setzen die Kenntnis der im TCP vorliegenden
Kontaktkräfte und -momente τ voraus. Sie können, wie in dem hier betrachteten Anwen-
dungsbeispiel, durch einen Sensor im Kontaktpunkt gemessen werden. Außerdem besteht
die Möglichkeit, sie aus den Aktorkräften Fq zu berechnen. Voraussetzung hierfür ist ein
hinreichend genaues Modell des Manipulators. Die Aktorkräfte Fq können dabei entweder
direkt gemessen werden oder wiederum aus anderen Größen berechnet sein (z. B. aus den
Motorströmen im Falle eines Gleichstrommotors oder aus den Zylinderdifferenzdrücken
wie bei dem vorliegenden, hydraulischen System). Auch eine Schätzung der Kontaktkräfte
und -momente τ ist möglich, siehe z. B. [MFL14].

Nachfolgend werden zuerst die Verfahren der indirekten Kraftregelung, anschließend die
der direkten Kraftregelung für PKM aufbereitet.
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2.2.2 Indirekte Kraftregelungen

Die indirekten Kraftregelungsverfahren unterteilen sich in die Impedanzregelung, die Ad-
mittanzregelung sowie die Nachgiebigkeits- bzw. Steifigkeitsregelung. Bei der Impedanz-
regelung nach Hogan [Hog85] wird die Linearisierung (2-23) mit der Eingangsgröße

up = v̇r + K−1
m ·

(
Kd ·

(
vr − v

)
+ Kc ·

(
zr − z

) − τ) (2-25)

verwendet. Durch Einsetzen der Gleichungen in (2-17) resultiert unter der Annahme
eines idealen Modells sowie idealer Messung und der Abwesenheit von Störungen das
Systemverhalten

Km ·
(
v̇r − v̇

)
+ Kd ·

(
vr − v

)
+ Kc ·

(
zr − z

)
= τ . (2-26)

Es ist ersichtlich, dass durch den Impedanzregelungsansatz nach (2-23) und (2-25) ein
gewünschtes transientes Verhalten des Manipulators im Umgebungskontakt durch die
Matrizen Km, Kd und Kc eingestellt werden kann. Sie können als Trägheit, Dämpfung
und Steifigkeit interpretiert werden. Dabei müssen die Verstärkungen Km und Kc positiv
definit, Kd positiv semidefinit sei. Sie werden häufig als Diagonalmatrizen gewählt. Das
resultierende Gesamtsystem verhält sich dann wie ein entkoppeltes Masse-Feder-Dämpfer-
System in jeder Richtung. Im Falle der freien Bewegung wird der durch zr, vr und v̇r
gegebenen Solltrajektorie gefolgt.

Die Bezeichnung des Verfahrens ergibt sich aus der Analogie der mechanischen Größen
Kraft (Potenzialvariable) und Geschwindigkeit (Flussvariable) mit den elektrischen Größen
Spannung und Stromstärke und der Tatsache, dass hier gezielt das Übertragungsverhalten

τ (s)
vr (s) − v (s)

= Z (s) (2-27)

und damit die (mechanische) Impedanz des Systems vorgegeben wird. In (2-25) wurde die
Impedanz

Z (s) = Km · s + Kd + Kc ·
1
s

(2-28)

eingestellt.

In einigen Quellen wird der geschilderte Regelungsansatz als „aktive Impedanzregelung“
bezeichnet, da das Verhalten des Manipulators im Kontakt aus dem Regelgesetz resul-
tiert. Ergibt sich das Impedanzverhalten hingegen durch die nachgiebige Konstruktion
des Manipulators, z. B. elastische Gelenke, oder durch Anbringen passiver Elemente (Fe-
dern, Dämpfer, Massen) am Ende des Endeffektors (sog. Remote Center of Compliance,
vgl. auch [CSD78]), handelt es sich um eine sog. „passive Impedanz“. Auch durch passive
Impedanz können Manipulationsaufgaben ermöglicht werden. Gegenüber der „aktiven
Impedanzregelung“ besitzt dieses Vorgehen geringe Flexibilität. [SSVO10, S. 366]

Eine Impedanzregelung kann grundsätzlich auch ohne Messung der Kontaktkraft τ erreicht
werden. Durch Vernachlässigung der Kontaktkraft τ in (2-23) und (2-25) folgt abweichend
von (2-26) das Systemverhalten

Km ·
(
v̇r − v̇

)
+ Kd ·

(
vr − v

)
+ Kc ·

(
zr − z

)
= Km · M−1

v · τ . (2-29)
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Zwar kommt dieser Ansatz ohne die Kraftmessung aus, das Systemverhalten ist aber
gegenüber (2-26) durch die Matrix M−1

v auf der rechten Seite nichtlinear und nicht rich-
tungsentkoppelt. Bild 2-12 stellt das Strukturbild der Impedanzregelung mit und ohne
Messung der Kontaktkräfte τ dar.

Manipulator
und Umgebung

Fq nach (2-23)Impedanz-
regelung

τ

z, v
Fqup{z, v, v̇}r

Für z ein-/ausgangslinearisierte Strecke

Bild 2-12: Impedanzregelung

Sehr ähnlich zur Impedanzregelung ist die Admittanzregelung, die in manchen Quellen
auch als positionsbasierte Impedanzregelung bezeichnet wird. Bei der Impedanzregelung
führt die Abweichung zwischen der geforderten und der tatsächlichen Bewegungstrajek-
torie in Abhängigkeit der vorgegebenen Matrizen Km, Kd und Kc zu einer Kontaktkraft
zwischen Endeffektor und Umgebung, wobei das Systemverhalten (2-26) resultiert. Im
Gegensatz dazu wird bei der Admittanzregelung die Gleichung (2-26) durch Ersetzen der
Größen z durch za (inklusive der jeweiligen Ableitungen) dazu genutzt, um die Sollbewe-
gungstrajektorie bei Vorliegen einer Kontaktkraft zu modifizieren. Die modifizierte, durch
za, va, v̇a gegebene Bewegungstrajektorie wird dann als Sollvorgabe für einen unterlagerten
Positionsregler verwendet. Aufbauend auf der Linearisierung (2-23) kann dieser bspw. das
Regelungsgesetz

up = v̇a + Ka,v ·
(
va − v

)
+ Ka,p ·

(
za − z

)
(2-30)

verfolgen. Das Strukturbild der Admittanzregelung zeigt Bild 2-13.
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Für z ein-/ausgangslinearisierte Strecke

Bild 2-13: Admittanzregelung

Der bisherigen, idealen Betrachtung folgend besitzen Impedanz- und Admittanzregelung
das gleiche Übertragungsverhalten, wenn die Anfangswerte za (0) = z (0) und va (0) = v (0)
gewählt werden. In diesem Fall sind za und z und die zeitlichen Ableitungen identisch.
Die Admittanzregelung besitzt durch die unbeobachtbaren Reglerzustände za und va
jedoch eine höhere Ordnung als die Impedanzregelung. In der praktischen Anwendung ist
die Linearisierung nach (2-23) z. B. durch Mess- und Modellfehler und/oder Störgrößen
jedoch zwangsläufig unvollkommen, wodurch sich auch das Verhalten von Impedanz- und
Admittanzregelung unterscheidet.
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Nach Ott et al. [OMN10] zeigen impedanzgeregelte Manipulatoren gutes Verhalten bei
Kontakt mit einer steifen Umgebung, wohingegen das Verhalten bei freier Bewegung eher
schlecht ist. Demgegenüber arbeitet die Admittanzregelung in freier Bewegung sehr genau,
bei Kontakt mit einer steifen Umgebung können Instabilitäten aber nicht ausgeschlossen
werden. Die Autoren schlagen daher die Kombination der beiden Regelungsalgorithmen
durch fortlaufendes Umschalten zwischen den beiden Strategien vor, um die Vorteile beider
Verfahren nutzen zu können. Durch einen Parameter n ∈ [0,1] kann die Aktivitätsdauer
des jeweiligen Reglers in einer Schaltperiode eingestellt werden. Im Extremfall n = 1 ist
fortlaufend die Admittanz-, für n = 0 die Impedanzregelung aktiv. Simulationen an einem 1-
FHG-Beispielsystem mit konstanter Umgebungssteifigkeit zeigen, dass ein solcher Regler
selbst bei konstantem n zwischen diesen beiden Extremen Vorteile gegenüber der reinen
Admittanzregelung (robusteres Verhalten im steifen Umgebungskontakt) und der reinen
Impedanzregelung (kleinere stationäre Regelabweichung) hat. Weiteres Potenzial sehen
die Autoren in der Adaption des Parameters n an die vorliegende Umgebungssituation.

Einen Sonderfall der Impedanzregelung stellt die Nachgiebigkeits- bzw. Steifigkeitsrege-
lung nach Salisbury [Sal80] dar. Die Aktorkräfte werden dabei nach der Gleichung

Fq = JT
g ·

(
−Kv · v + Kp

(
zr − z

)
+ gv

)
(2-31)

gebildet, wobei Kp und Kv positiv definite, diagonale Reglerverstärkungen sind. Die
Berechnung der Aktorkräfte nach (2-31) wird in der Literatur auch als PD-Regelung mit
Kompensation der Gewichtskräfte bezeichnet. Für den stationären Zustand folgt

τstat = Kp
(
zr − zstat

)
, (2-32)

was sich durch Einsetzen von (2-31) in die Bewegungsgleichungen nach (2-17) ergibt.
Hieraus folgt, dass die Regelung bei Abwesenheit einer Umgebung, d. h. τstat = 0, stationär
genau arbeitet. Liegt hingegen ein Umgebungskontakt vor, d. h. τstat , 0, so weicht
der erreichte Positionswert z permanent vom Sollwert zr ab. Infolge des fortlaufenden
Reglereingriffs stellt sich eine Kontaktkraft τstat ein, die proportional zur Reglerverstärkung
Kp ist. Die Verstärkung Kp und der mit dem skizzierten Regelungsansatz betriebene
Manipulator kann daher als Steifigkeit interpretiert werden. Hinsichtlich der Wahl von Kp
lässt sich festhalten, dass bei relativ steifer Umgebung eher niedrige Werte, bei nachgiebiger
Umgebung höhere Werte angesetzt werden sollten. Im ersten Fall tendiert die Position zstat
gegen die Position der (nahezu starren) Umgebung, im zweiten Fall nähert sie sich der
vorgegebenen Sollposition zr an.

Die Steifigkeitsregelung ist zwar sehr einfach zu implementieren, besitzt jedoch den
Nachteil, dass sie sich nur für die Einregelung eines konstanten Sollzustands, nicht für das
Folgen von Sollzeitverläufen eignet. Außerdem findet keine gezielte Beeinflussung des
transienten Systemverhaltens statt.

Als weiterer Sonderfall der Impedanzregelung wird in vielen Quellen neben der Steifig-
keitsregelung auch die Dämpfungsregelung nach Whitney [Whi77] genannt.

Die aufgezählten Verfahren werden als indirekte Kraftregelungen bezeichnet, da die Kon-
taktkraft nur indirekt durch die Änderung der Reglerverstärkungen oder der Bewegungs-
sollwerte beeinflusst werden kann. Die direkte Vorgabe einer Sollkraft oder eines Sollkraft-
Zeitverlaufs ist nicht möglich. Stattdessen wird ein gewünschtes Bewegungsverhalten des
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Manipulators bei Umgebungskontakt erzielt. In Abhängigkeit der gewählten Reglerver-
stärkungen ergibt sich ein Kompromiss aus Positionsregelungsgenauigkeit und in Kauf
genommener Kontaktkraft. Diese Verfahren eignen sich für diejenigen Anwendungen, in
denen die Kontaktkräfte klein zu halten sind, eine genaue Einregelung gegebener Sollwerte
aber nicht erforderlich ist [WSB96].

2.2.3 Direkte Kraftregelungen

Im Gegensatz zu den indirekten Kraftregelungsverfahren ermöglichen die direkten Kraftre-
gelungsverfahren die Einregelung gegebener Sollkräfte oder Sollkraft-Zeitverläufe. Dies
wird über eine Rückkopplung der gemessenen Kontaktkraft zur Umgebung τ ermöglicht.
Die Leistungsfähigkeit der Verfahren ist stark abhängig von der jeweiligen Kontaktsituation,
d. h. der Geometrie und den mechanischen Eigenschaften der Umgebung. Die modellba-
sierte Synthese direkter Kraftregelungsalgorithmen setzt die analytische Beschreibung der
Kontaktkräfte und -momente τ und damit der Umgebung bzw. der Umgebungsimpedanz
voraus [SK16].

Nach [SV99] untergliedern sich die direkten Kraftregelungen in explizite und implizite
Verfahren. Bei einer expliziten Kraftregelung liegen, abgesehen von etwaigen Einzelak-
torregelungen und der Zustandslinearisierung, keine unterlagerten Regelschleifen vor. Im
Falle einer impliziten Kraftregelung existieren weitere Regelschleifen unterhalb der äuße-
ren Kraftregelung, üblicherweise Geschwindigkeits- oder Positionsregelungen. Einfache
Einstiegsbeispiele zu diesen Ansätzen finden sich bspw. in [SSVO10], Abschnitt 9.4. Sie
basieren auf dem mittels (2-23) linearisierten System, d. h. es gilt up = v̇. Zu beachten ist,
dass die Linearisierung (2-23) grundsätzlich nur eine Entkopplung der Positionsgrößen
z erreicht. Die Kontaktkräfte zur Umgebung τ, d. h. die für die eigentliche Kraftrege-
lungsaufgabe relevanten Systemgrößen, werden durch diesen Linearisierungsansatz nicht
entkoppelt. Als Anschauungsbeispiel sei hier das relativ einfache Umgebungsmodell

τ = Ku ·
(
z − zu

)
(2-33)

mit einer Steifigkeitsmatrix Ku sowie der Umgebungsposition zu genannt, wobei zu als
konstant angenommen wird. Ist die Steifigkeitsmatrix Ku nicht diagonal, so bewirkt die
Bewegung des Endeffektors in eine isolierte Richtung auch Kräfte in anderen Richtungen.
Für die elementaren Betrachtungen in diesem Abschnitt wird jedoch angenommen, dass
Ku Diagonalgestalt besitzt, sodass sowohl die Positions- als auch die Kraftgrößen durch
die Linearisierung (2-23) ideal entkoppelt werden. Diese Annahme stellt eine erhebliche
Vereinfachung der Realität (insb. hinsichtlich der hier betrachteten Anwendung) dar. An-
hand der Beispiele aus [SSVO10] können aber einige grundlegende Erkenntnisse zu den
direkten Kraftregelungen gewonnen werden, weshalb sie an dieser Stelle kurz dargestellt
werden.

Das Strukturbild einer expliziten Kraftregelung zeigt Bild 2-14. Das Streckenmodell
(2-17) sowie die Kompensation der Nichtlinearitäten (2-23) sind darin durch die (bei
idealem Modell, idealer Messung/Beobachtung und in Abwesenheit von Störgrößen)
äquivalente Darstellung durch zwei aufeinander folgende Integratoren ersetzt worden.

Anhand des Strukturbildes lässt sich leicht erkennen, dass aufgrund der zwei Integratoren
im Vorwärtszweig zur Stabilisierung des Regelkreises eine Rückführung der Geschwin-
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Bild 2-14: Explizite Kraftregelung

digkeit v erforderlich ist. Das reale Differenzieren der gemessenen Kräfte ist durch vor-
liegendes Messrauschen hingegen keine praktikable Lösung. Durch die Rückführung der
Geschwindigkeit liegt ein unterlagerter Geschwindigkeitsregelkreis vor, dessen Sollwert
vom überlagerten Kraftregler erzeugt wird.

Auf diese Weise folgt also unmittelbar (eine spezielle Form) der impliziten Kraftregelung
mit unterlagerter Geschwindigkeitsregelung. Bild 2-15 stellt das Strukturbild einer
solchen Regelung dar.
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Bild 2-15: Implizite Kraftregelung mit unterlagerter Geschwindigkeitsregelung

Da ein Integrator im Vorwärtszweig vorliegt, genügt hier für stationär genaues Führungs-
verhalten der Kraftregelung theoretisch ein einfacher P-Regler. Dies ist aber nur bei idealer
Linearisierung des Systems mittels (2-23) der Fall. Liegen bspw. Abweichungen zwischen
dem Streckenmodell (2-23) und der realen Strecke vor, so ist auch in diesem Fall für
stationäre Genauigkeit ein I-Anteil im Kraftregler erforderlich.

Die implizite Kraftregelung mit unterlagerter Positionsregelung zeigt Bild 2-16.
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Bild 2-16: Implizite Kraftregelung mit unterlagerter Positionsregelung

Bei diesem Ansatz ist für stationäre Genauigkeit des Führungsverhaltens ein I-Anteil im
Kraftregler erforderlich. Gegenüber einer Kraftregelung mit unterlagerter Geschwindig-
keitsregelung ist aufgrund des prinzipbedingt langsameren inneren Reglers eine geringere
Kraftregelungsbandbreite zu erwarten. Außerdem lässt sich zeigen, dass die Fehlerdynamik
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des Kraftreglers eine höhere Ordnung aufweist. Von Vorteil ist, dass dieser Ansatz auf
einer für Industrieroboter üblichen Positionsregelung basiert und an derartigen System
damit relativ einfach umzusetzen ist.

Damit sind die grundlegenden Beispiele aus [SSVO10] dargelegt. Die Auswahl eines
linearen Reglers aus P-, I- und/oder D-Bestandteilen für Regelungen mit geschlossener
Kraftregelschleife ist Gegenstand einiger häufig zitierter Publikationen. Hierzu zählen
bspw. die Arbeiten von Eppinger und Seering [ES87] sowie Volpe und Khosla [VK93].

Eppinger und Seering [ES87] diskutieren die Auswahl eines Reglers anhand einfacher,
rein eindimensionaler Beispielsysteme. Es handelt sich stets um lineare Ersatzsysteme
für den Kontakt eines Manipulators mit einer Umgebung, die über einen Kraftsensor
gekoppelt sind. Der Kraftsensor wird als Feder-Dämpfer-Element, ggf. mit zusätzlicher
Masse, abstrahiert. Nur in einem Beispiel liegt ein nichtlineares Element in Form einer
Diskontinuität vor, die den möglichen Kontaktverlust von Manipulator und Umgebung be-
schreibt. Dieser Fall besitzt für die in dieser Arbeit betrachtete Anwendung keine Relevanz.
Für alle linearen Beispiele folgern Eppinger und Seering anhand der Wurzelortskurve,
dass nur die Dynamik zwischen dem Angriffspunkt der Aktorkraft und dem Sensormodell
größere Bedeutung für die Stabilität besitzt, da in diesem Falle „mehr Pole als Nullstellen
hinzukommen“. Das gleiche gilt für begrenzte Aktordynamik. Dynamik außerhalb davon,
z. B. dynamisches Verhalten des Fundaments oder des Kontaktpartners, spielt für die Sta-
bilität eine untergeordnete Rolle, da stets die „gleiche Anzahl an Polen und Nullstellen
hinzukommen“. Die Kraftregelungsbandbreite sei im Wesentlichen begrenzt durch

• die Vibrationsmoden des Manipulators,

• ggf. vorhandene, signifikante Dynamik des Kontaktpartners, des Kraftsensors und
des Fundaments sowie

• die Bandbreite der Aktorik.

Eine Tiefpassfilterung des Kraftregelfehlers und einen I-Anteil im Regler sehen die Autoren
als nachteilig für die Stabilität an, da „destabilisierende Pole im geschlossenen Kraftre-
gelkreis hinzukommen“. Die Verwendung eines D-Anteils oder eine Lead-Filterung des
Kraftregelfehlers seien hingegen von großem Vorteil, da hierdurch „Nullstellen für niedrige
Frequenzen hinzukommen“, wodurch eine höhere Kraftregelungsbandbreite erzielt werden
kann.

Volpe und Khosla [VK93] nehmen vergleichbare Untersuchungen an einem linearen Mo-
dell vierter Ordnung für das Übertragungsverhalten von der Aktor- zur Kontaktkraft vor.
Dieses Modell wurde in vorangegangenen Arbeiten für einen Manipulator in einer spezifi-
schen Kontaktsituation experimentell validiert. Es entspricht einem der durch Eppinger und
Seering [ES87] betrachteten Systeme. Volpe und Khosla kommen zu gegensätzlichen Aus-
sagen zu Eppinger und Seering, zu deren Veröffentlichung sie direkten Bezug nehmen. So
werde durch einen I-Anteil ein wünschenswerter, dominanter reeller Pol hinzugefügt. Der
Regler sei außerdem besonders einfach und die stationäre Genauigkeit sichergestellt. Bei
einem D-Anteil läge eine Art Bandpassfilterung im Bereich der Systemresonanzfrequenz
vor, die Rauschen und Oszillationen bei der Resonanzfrequenz zusätzlich verstärkt. Zudem
sei die Berechnung der zeitlichen Ableitung des Kraftmesswerts in der Praxis problema-
tisch. Volpe und Khosla konnten außerdem zeigen, dass für dieses einfache Beispielsystem
auch bei einem P-Regler Instabilitäten resultieren können. Eppinger und Seering hatten
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bei diesem Modell hingegen stets stabiles Verhalten erwartet. Ihre Aussagen stützen Volpe
und Khosla durch Experimente an dem System, für welches das Modell vierter Ordnung
identifiziert wurde.

Es gibt zahlreiche weitere Veröffentlichungen auf dem Themengebiet der Realisierung
stabiler Regler und der Stabilitätsbetrachtung für Kraftregelungen im Allgemeinen. Hierzu
zählen u. a. die Arbeiten von An und Hollerbach [AH87a; AH87b; AH89], Wen und
Murphy [WM91], Qian und de Schutter [QS92a; QS92b; QS92c], Youcef-Toumi und Gutz
[YG89] sowie Ferretti et al. [FMR95].

Offenbar ist die Angabe allgemeingültiger Aussagen zur Wahl des Reglertyps selbst bei
vermeintlich einfachen eindimensionalen, linearen Modellen nicht einfach. Die getrof-
fenen Aussagen sind außerdem in hohem Maße vom der Analyse zugrunde liegenden
Modell bzw. dem jeweils betrachteten Anwendungsfall abhängig. Eine Übertragbarkeit
dieser an einfachen Modellen gewonnenen Erkenntnisse auf den HNI-Achsprüfstand ist
fragwürdig.

Die skizzierten direkten Kraftregelungen mit und ohne untergeordnete Regelschleifen
eignen sich nicht für Kontaktsituationen, in denen einzelne Richtungen keinen Umgebungs-
kontakt aufweisen. Eine Einflussnahme auf das Systemverhalten in solchen Richtungen
ist mit den genannten Verfahren nicht möglich. Es lässt sich zeigen, dass sich in un-
beschränkten Richtungen die Position zi = 0 (unterlagerte Positionsregelung) bzw. die
Geschwindigkeit vi = 0 (unterlagerte Geschwindigkeitsregelung) einstellt, vgl. [SSVO10].
Für die Regelung von Robotern in Kontaktaufgaben in der Praxis sind die dargelegten
Verfahren daher noch weiter zu modifizieren. Hier sind vor allem die parallele sowie
die hybride Kraft-/Positionsregelung zu nennen. Insbesondere bei der hybriden Kraft-/
Positionsregelung existieren zahlreiche unterschiedliche Erscheinungsformen, und auch
die Abgrenzung zur parallelen Kraft-/Positionsregelung ist in der Literatur nicht immer ein-
heitlich. Hier wird die mehrheitlich vorzufindende Definition dieser Verfahren verwendet,
wie sie auch in [SSVO10] vorliegt.

Die parallele Kraft-/Positionsregelung geht durch Hinzufügen einer Sollwertvorgabe für
die Position aus der impliziten Kraftregelung mit unterlagerter Positionsregelung hervor.
Auf diese Weise können gleichzeitig Sollwerte bzw. Sollwert-Zeitverläufe für die Kraft τr
und die Position zr (ggf. auch die zeitlichen Ableitungen vr und v̇r) vorgegeben werden.
Das Strukturbild zeigt Bild 2-17.

Das Verfahren wurde von Chiaverini und Sciavicco [CS93] vorgeschlagen. Natürlich
kann das Verfahren in einer Richtung nicht sowohl die Sollkraft als auch die Sollposition
einregeln. Der Kraftregler wird so ausgelegt, dass er die Positionsregelung dominiert,
z. B. durch einen I-Anteil. Bei Verwendung dieses Regelungsansatzes folgt die Regelung
in unbeschränkten Richtungen der Positionsvorgabe. Wird die Bewegung in einer Richtung
durch Umgebungskontakt eingeschränkt, wird die Kraftregelung aktiv und die Kraftvorgabe
eingeregelt. Bei Verwendung eines PI-Kraftreglers mit dem P-Anteil K−1

p Kτ,P und dem
I-Anteil K−1

p Kτ,I mit diagonalen Reglerverstärkungen folgt für das Systemverhalten

ëz + Kv · ėz + Kp · ez + Kτ,P · eτ + Kτ,I ·
∫

eτ d t = 0 . (2-34)
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Bild 2-17: Parallele Kraft-/Positionsregelung

Für positionsgeregelte Richtungen folgt damit eine Fehlerdifferentialgleichung zweiter Ord-
nung, die für jede Reglerverstärkung Kp,i,Kv,i > 0 stabil ist. In kraftgeregelten Richtungen
ist Stabilität bei dem Umgebungsmodell nach (2-33) unter der Bedingung

Kτ,I,i < Kv,i ·
(
K−1

u,i · Kp,i + Kτ,P,i

)
(2-35)

gegeben, die unter der Annahme einer Sollbeschleunigung v̇r,i und -geschwindigkeit vr,i
von 0 in [SV99] hergeleitet wurde. Die Bedingung folgt bspw. durch Anwendung des
Hurwitz-Kriteriums auf das System dritter Ordnung, dass sich aus (2-34) nach Ersetzung
von ez durch eτ mithilfe von (2-33) ergibt. Ist v̇r,i und/oder vr,i ungleich 0, z. B. bei Vorgabe
eines Soll-Zeitverlaufs für die Bewegungstrajektorie in dieser Richtung, stellt dies eine
Störgröße für den betreffenden Regler dar, die durch den I-Anteil ausgeglichen werden
muss [SV99].

Die in Bild 2-17 dargestellte Struktur sieht keine direkte Modifikation der unterlagerten
Sollwerte vr und v̇r durch den Kraftregler vor. Eine angepasste Regelungsstruktur, bei der
auch Sollwerte für diese Größen vorgegeben werden, wurde für die translatorischen Rich-
tungen in [BN95], für die rotatorischen Richtungen in [NSV98] veröffentlicht. In [SV99]
wird die Struktur als vollständig parallele Komposition bezeichnet. Bild 2-18 zeigt das
zugehörige Strukturbild, wobei der grau hinterlegte Anteil aus Bild 2-17 zusammengefasst
wurde.
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Bild 2-18: Parallele Kraft-/Positionsregelung in vollständig paralleler Komposition

Die Kraftregelung berechnet die Korrekturgrößen zτ, vτ und v̇τ anhand der Differentialglei-
chung [SV99]

KAτ · v̇τ + KVτ · vτ = eτ . (2-36)
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Darin sind KAτ und KVτ diagonale Reglerverstärkungsmatrizen. Durch (2-36) ergibt sich
automatisch ein I-Anteil für die Kraftregelung. Die berechneten Korrekturen zτ, vτ und v̇τ
werden elementweise zu der durch zr, vr und v̇r gegebenen Sollbewegung hinzuaddiert. Die
resultierenden Größen dienen als Eingang der unterlagerten Positionsregelung. In [CSV97]
wird auch eine modifizierte Fassung mit Adaption der Umgebungssteifigkeit angegeben.
Der dargelegte Ansatz eignet sich insb. dann, wenn kein genaues Umgebungsmodell
vorliegt [SK16].

Bei der parallelen Kraft-/Positionsregelung tritt die Umgebung nur indirekt bei der Wahl
der Kraftregelungsparameter in Erscheinung. Anders verhält es sich bei der hybriden Im-
pedanzregelung nach Anderson und Spong [AS88]. Es handelt sich um ein systematisches
Vorgehen, nach dem für jede Richtung in Abhängigkeit des vorliegenden Umgebungsver-
haltens entweder eine Positions- oder eine Kraftregelung für den Manipulator entworfen
wird. Die folgenden Ausführungen beruhen neben [AS88] auch auf den beiden Lehrwerken
[LDA04; SHV06].

Bild 2-19 zeigt die Kopplung des geregelten Manipulators mit seiner Umgebung, wobei
die beiden Kontaktpartner als Eintore abstrahiert wurden.

Manipulator Umgebung

+

−

τ

v −v

Bild 2-19: Kontakt zwischen Manipulator und Umgebung nach [SHV06]

Die Geschwindigkeit v stellt die Flussvariable, die Kraft τ die Potenzialvariable dar. Der
Zusammenhang zwischen der Fluss- und der Potenzialvariable kann durch eine Impedanz
Z (s) nach (2-27) beschrieben werden. Die Betrachtung des Werts |Z (0)| erlaubt eine
Klassifikation von Impedanzen. Eine Impedanz ist

• inertial, wenn |Z (0)| = 0,

• resistiv, wenn |Z (0)| = c und 0 < c < ∞,

• kapazitiv, wenn |Z (0)| = ∞.

Die Impedanz im Beispiel (2-28) ist kapazitiv.

Die in Abschnitt 2.2.2 beschriebene Impedanzregelung wurde unabhängig von der vorlie-
genden Umgebungsimpedanz Zu (s) entworfen. Dagegen wird bei der hybriden Impedanz-
regelung die jeweilige Umgebungsimpedanz Zu (s) strukturell beim Regelungsentwurf
berücksichtigt. Hierfür muss lediglich deren stationäres Verhalten

∣∣∣Zu (0)
∣∣∣ qualitativ be-

kannt sein. Eine genaue Kenntnis von Zu (s) ist nicht erforderlich. Im Gegensatz zur
Impedanzregelung nach Abschnitt 2.2.2 folgt in Abhängigkeit von

∣∣∣Zu (0)
∣∣∣ bei der hybriden

Impedanzregelung entweder eine Positions- oder eine Kraftregelung.

Für die Synthese der hybriden Impedanzregelung wird zunächst ein hinreichend gutes Mo-
dell der Umgebungsimpedanz Zu (s) ermittelt. In Abhängigkeit der Umgebungsimpedanz
Zu (s) erfolgt die Festlegung der Regelgröße und der Manipulatorimpedanz Zm (s) für jede
Richtung. Die Festlegung erfolgt so, dass das Übertragungsverhalten stationär genau ist.
Hierfür lässt sich allgemein das folgende Dualitätsprinzip formulieren:
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• Kapazitive Umgebung: Kraftregelung mit nicht-kapazitivem Manipulator,

• Inertiale Umgebung: Positionsregelung mit nicht-inertialem Manipulator,

• Resistive Umgebung: Kraftregelung mit inertialem Manipulator oder Positionsrege-
lung mit kapazitivem Manipulator.

Sinngemäß nach Anderson und Spong [AS88] übersetzt „besagt das Dualitätsprinzip, dass
weder zwei verschiedene Flussgrößen noch zwei verschiedene Potenzialgrößen an der
Schnittstelle eines Eintors simultan eingestellt werden können“.

Aufbauend auf der Linearisierung nach (2-23) folgt für positionsgeregelte Richtungen der
Regler aus

up,i = L−1
{
s
(
vr,i − Z−1

m,i (s) · τi

)}
, (2-37)

für kraftgeregelte Richtungen aus

up,i = L−1
{
sZ−1

m,i (s)
(
τr,i − τi

)}
, (2-38)

vgl. [LDA04, S. 494 ff.], wobei L−1 der inverse Laplace-Operator ist. Dabei ist Zm,i (s)
die Manipulatorimpedanz in der jeweils betrachteten Richtung. Die ideale Differentia-
tion in (2-37) und (2-38) tritt durch Vorgabe von v̇r,i und eine entsprechend gewählte
Manipulatorimpedanz Zm,i (s) bei der Umsetzung nicht in Erscheinung.

Verkopplungen zwischen den einzelnen Richtungen sind nach [AS88] nicht vorgesehen. Bei
gesammelter Notation von (2-37) und (2-38) in Vektorform hat die Manipulatorimpedanz
Zm (s) daher Diagonalgestalt.

Anderson und Spong [AS88] betonen, dass es für das Erzielen einer gewünschten System-
antwort auch bei diesem Entwurfsverfahren erforderlich ist, die Reglerverstärkungen je
nach vorliegender Umgebung unterschiedlich zu wählen. So brauche bspw. ein Roboter
für das Verpacken von Eiern weit mehr interne Nachgiebigkeit als für das Verpacken von
Aufschnitt. Die Reglerverstärkungen könnten z. B. durch eine adaptive Regelung oder
anhand von Kennfeldern angepasst werden.

Liu und Goldenberg [LG91] beschreiben ebenfalls eine hybride Impedanzregelung. Dabei
wird der Arbeitsraum in einen positionsgeregelten Subraum und einen kraftgeregelten Sub-
raum aufgeteilt. In den positionsgeregelten Richtungen wird wie bei der Impedanzregelung
das Systemverhalten nach (2-26), in den kraftgeregelten Richtungen das Systemverhal-
ten

Md · v̇ + Dd · v = eτ (2-39)

mit der gewünschten Trägheit Md und Dämpfung Dd angestrebt. Durch Kombination der
beiden Gleichungen resultiert eine Beschleunigungstrajektorie, die als Sollvorgabe für eine
unterlagerte PI-Beschleunigungsregelung verwendet wird. Die Regelung wird erfolgreich
an einem 2-FHG-Roboter mit Direktantrieben erprobt. Ähnliche Ansätze sind auch durch
Yao et al. [YCW94] sowie Adhikary und Mahanta [AM17] beschrieben worden, wobei die
Autoren Gleitzustandsregelungen einsetzen.

Bei der hybriden Kraft-/Positionsregelung, die auf Raibert und Craig [RC81] zurückgeht,
besteht das Ziel darin, die unbeschränkten FHG des Manipulators positionsgeregelt, die
beschränkten FHG kraftgeregelt zu betreiben.
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Bei Manipulatoraufgaben mit einfach zu beschreibenden Kontaktsituationen, z. B. bei einer
ebenen Kontaktfläche, ist die Partitionierung in positions- und kraftgeregelte FHG trivial.
Es werden zwei grundsätzlich unabhängige Regler für die Kraft und die Position entworfen
und mithilfe einer Selektionsmatrix S für die Regelung des Manipulators eingesetzt. Die
Selektionsmatrix S besitzt Diagonalgestalt; je nachdem, ob ein bestimmter FHG positions-
oder kraftgeregelt betrieben wird, hat der entsprechende Eintrag auf der Diagonale den
Wert 0 oder 1, siehe Bild 2-20.
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Bild 2-20: Konzept der hybriden Kraft-/Positionsregelung nach Raibert und Craig [RC81]

Die Definition der Manipulatoraufgabe muss mit den von der Umgebung gesetzten Be-
schränkungen konform sein. Dies schließt sowohl die Sollwerte der hybriden Kraft-/Po-
sitionsregelung als auch die Festlegung der Selektionsmatrix S ein. Mason [Mas81] hat
zu diesem Zweck zwei Begriffe eingeführt, die auf der folgenden Beobachtung beruhen:
Unabhängig von der spezifischen Aufgabe lässt sich festhalten, dass für jede mögliche
Bewegungsrichtung eines Manipulators entweder eine Positionsbeschränkung (Beispiel:
starre Wand) oder eine Kraftbeschränkung (Beispiel: freie Bewegung) vorliegt. Diese Be-
dingungen werden als natürliche Beschränkungen (engl. natural constraints) bezeichnet,
da sie durch die jeweilige Aufgabe vorgegeben sind. In jeder Richtung kann die jeweils
andere, unbeschränkte Variable (Kraft oder Position) durch den Manipulator beeinflusst
werden. Die Gesamtheit dieser gezielt einstellbaren Variablen sind die künstlichen Be-
schränkungen (engl. artificial constraints). Sie sind komplementär zu den natürlichen
Beschränkungen. Aus den natürlichen und künstlichen Beschränkungen resultiert ein kraft-
und ein bewegungsgeregelter Unterraum, die im Folgenden mit F und P benannt sind.
Zwischen den zum kraftgeregelten Unterraum F gehörenden Kräften τ und dem zum
bewegungsgeregelten Unterraum P gehörenden Geschwindigkeiten v gilt im Falle dieser
idealisierten Betrachtung die Bedingung der Reziprozität (engl. reciprocity condition)

vT · τ = 0 . (2-40)

Sie leitet sich aus dem Prinzip der virtuellen Arbeit her, nach dem die Summe der Zwangs-
kräfte eines Systems keine virtuelle Arbeit verrichtet. Zu Beginn der Forschung auf
dem Gebiet der hybriden Regelung wurde von vielen Forschern außerdem das Kon-
zept der sog. „Orthogonalität“ zugrunde gelegt, das sich letztlich als Trugschluss erwies,
vgl. [Duf90].

Im Falle einfacher Manipulatoraufgaben kann häufig ein orthogonales, ggf. zeitvariantes
Bezugssystem mit Positionsvektor z und Drehmatrix IE A bezüglich des Inertialsystems
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eingeführt werden, das im Englischen als compliance frame oder auch task frame be-
zeichnet wird. Die Manipulatoraufgabe kann dann in Form natürlicher und künstlicher
Beschränkungen entlang und um die orthogonalen Richtungen dieses Bezugssystems
formuliert werden (sog. task frame-Formalismus). Akademische Beispiele finden sich
bspw. in [SK16].

Es ist offensichtlich, dass die Selektionsmatrix S so zu wählen ist, dass die Regelung die
künstliche Beschränkung bewirkt. Folglich ist eine Kraft- bzw. Positionsregelung in denje-
nigen Richtungen zu verwenden, die eine natürliche Positions- bzw. Kraftbeschränkung
aufweisen.

Für reale Kontaktsituationen eignet sich diese Einteilung nur bedingt, da der Umge-
bungskontakt nicht ideal starr ist. Vielmehr können sowohl die Umgebung als auch der
Manipulator eine Impedanz aufweisen, Reibung im Kontakt vorliegen oder nichtlineare
kinematische Zwangsbedingungen existieren. Handlungsempfehlungen lassen sich auf
dieser Basis dennoch treffen. Bei einer nachgiebigen Umgebung ist es bspw. ratsam, in
eher steifen Richtungen die Position als natürliche Beschränkung zu betrachten, bei eher
weichen Richtungen die Kraft.

Der Veröffentlichung von Raibert und Craig [RC81] folgten zahlreiche Publikationen,
die diesen Grundgedanken analysierten und weiterentwickelten. Zhang und Paul [ZP85]
übertrugen den Ansatz vom OS in den JS, was für SKM zweckmäßiger ist. Stabilitäts-
probleme des Ansatzes wurden durch An und Hollerbach [AH87b] sowie Zhang [Zha89]
aufgedeckt. Fisher und Mujtaba [FM92] führten diese auf die inkorrekte Formulierung des
Regelungsgesetzes zurück und beschrieben einen korrigierten, stabilen Algorithmus. Die
Formulierung der hybriden Regelung im OS unter expliziter Einbeziehung des Manipula-
tormodells, das bei Raibert und Craig [RC81] keine Berücksichtigung findet, wurde durch
Khatib beschrieben [Kha87]. Khatib gibt als Berechnungsvorschrift für die Aktorkräfte

Fq = JT
g

(
Mv

(
(I − S) up − S Kv,F v

)
+ Cv v + gv + S u f

)
(2-41)

mit

up = v̇r + KD ·
(
vr − v

)
+ KP ·

(
zr − z

)
, u f = τr + KF ·

(
τr − τ

)
(2-42)

an, wobei der Term Mv S Kv,F v eine Dämpfung in den kraftgeregelten Richtungen her-
beiführen soll. Für Kv,F , 0 sind daher in den kraftgeregelten Richtungen sowohl eine
Kraft- als auch eine Geschwindigkeitsregelschleife aktiv. Im Falle einer konstanten, diago-
nalen Massenmatrix Mv handelt es sich um eine implizite Kraftregelung mit unterlagerter
Geschwindigkeitsregelung, vgl. auch [VK93].

Weitere grundlegende Veröffentlichungen zum Thema sind bspw. in [SK16] aufgeführt.
Ein umfassender Überblick, der auch aktuellere Quellen zum Thema enthält, wurde von
Ortenzi et al. [OSKM17] verfasst.

Das beschriebene Vorgehen mit Aufteilung der kraft- und bewegungsgeregelten Richtungen
mittels einer einzelnen, binären Selektionsmatrix S bezeichnet Natale [Nat10] als geome-
trische Formulierung der hybriden Kraft-/Positionsregelung. Dieses Vorgehen eignet sich
nur für einfache Kontaktsituationen, da nur in diesem Fall eine Partitionierung des Raums
in bewegungs- und kraftgeregelte Richtungen mittels einer binären Selektionsmatrix S
möglich ist.
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Der Abgrenzung von Natale [Nat10] folgend muss für komplexere Kontaktsituationen hin-
gegen die analytische Formulierung der hybriden Kraft-/Positionsregelung herangezogen
werden, vgl. z. B. [Yos87; MW88; KK88; VV87]. Für den Entwurf einer solchen Regelung
ist neben dem Modell des Manipulators auch ein detailliertes Modell des Kontaktpartners
erforderlich, dessen Erstellung je nach betrachtetem Anwendungsfall sehr anspruchsvoll
sein kann [SSVO10]. Mithilfe der beiden Modelle lässt sich eine ideale Entkopplung
der kraft- und bewegungsgeregelten Unterräume auch für komplexere Kontaktsituationen
erreichen. Als nachteilig an dieser Methode bewertet Natale [Nat10], dass bei einer solchen
Regelung die physikalische Bedeutung der Regelungsvariablen verloren gehen kann.

Um eine Idee der grundsätzlichen Vorgehensweise zur Entkopplung der kraft- und be-
wegungsgeregelten Unterräume durch die analytische Formulierung der hybriden Kraft-/
Positionsregelung zu erhalten, wird an dieser Stelle der Regelungsentwurf für einen rei-
bungsfreien, in einzelnen Richtungen ideal starren Umgebungskontakt erläutert. Bei der
Herleitung wird angenommen, dass die Kontaktgeometrie ideal bekannt ist. Es resultieren
zwei lageabhängige Matrizen Sλr und Syk zur Beschreibung der bewegungs- bzw. kraftge-
regelten Richtungen, die aus den im Allgemeinen nichtlinearen, durch den Kontaktpartner
gegebenen kinematischen Zwangsbedingungen folgen. Die ausführliche Herleitung findet
sich bspw. in [SSVO10; SK16].

Steht ein Manipulator in Kontakt mit einer ideal starren Umgebung, so unterliegt er
kinematischen Zwangsbedingungen, die sich durch eine Mannigfaltigkeit der Form

ϕ (z) = 0 (2-43)

ausdrücken lassen. In diesem Beispiel handelt es sich um holonome, skleronome Zwangs-
bedingungen, d. h. zeitinvariante Beschränkungen der Lagegrößen. Effektiv reduziert sich
die Anzahl der FHG des Manipulators mit jeder vorliegenden kinematischen Zwangsbe-
dingung um 1. Seine Bewegung ist auf die durch (2-43) und deren zeitliche Ableitung
beschriebene Bindungsmannigfaltigkeit beschränkt, vgl. [MW88]. Kontaktkräfte entste-
hen genau dann, wenn der Manipulator versucht, die Zwangsbedingungen nach (2-43)
zu verletzen. Im Allgemeinen wird zwischen unilateralen und bilateralen bzw. ein- und
zweiseitigen Zwangsbedingungen unterschieden, je nachdem, ob der Manipulator sich
vom Kontaktpartner entfernen kann oder die Bewegung sowohl zum Kontaktpartner hin
wie auch von ihm weg eingeschränkt ist. An dieser Stelle ist diese Unterteilung aber nicht
weiter von Bedeutung. Die zeitliche Ableitung von (2-43)

Jc · v = 0 , Jc (z) =
∂ϕ (z)
∂ zT (2-44)

führt auf die sog. Jacobimatrix der Zwangsbedingungen Jc.

Analog zu (2-43) können alle mit den kinematischen Zwangsbedingungen verträglichen,
d. h. zulässigen Positionen des Endeffektors durch eine Gleichung der Form

z = %
(
yk

)
(2-45)

mit den generalisierten Koordinaten yk ∈ Rnk beschrieben werden. Aus (2-43) und (2-45)
lassen sich die beiden Gleichungen

τ = Sλr · λr , Sλr (z) = JT
c (2-46)
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und

v = Syk · ẏk , Syk (z) =
∂ %

(
yk

)

∂ yT
k

(2-47)

mit den lageabhängigen Matrizen Sλr und Syk herleiten. Aufgrund des Prinzips der virtuel-
len Arbeit, vgl. auch die Bedingung der Reziprozität (2-40), besteht zwischen Sλr und Syk
die Beziehung

ST
yk · Sλr = 0 . (2-48)

Analog zu yk bei den Bewegungsgrößen stellt λr ∈ R6−nk generalisierte Kontaktkräfte dar;
in der Literatur finden sich auch die Begriffe Kraft- oder Lagrange-Multiplikator. Während
der kraftgeregelte Unterraum F , in dem τ liegt, eindeutig durch die gegebene Kontaktsi-
tuation bestimmt ist, sind die Zwangsbedingungen (2-43), Sλr sowie die generalisierten
Kontaktkräfte λr nicht eindeutig definiert. In der Konsequenz führt jede zulässige Wahl
von Sλr zu einer anderen physikalischen Interpretation der generalisierten Kontaktkräfte
λr. Die gleichen Aussagen lassen sich analog für den bewegungsgeregelten Unterraum P
sowie Syk, Gleichung (2-45) und die generalisierten Koordinaten yk tätigen. [SSVO10]

Mithilfe der Gleichungen nach (2-46) und (2-47) sowie der zeitlichen Ableitung von
(2-47)

v̇ = Syk · ÿk + Ṡyk · ẏk (2-49)

lässt sich die Bewegungsgleichung des Manipulators (2-17) in eine Bewegungsgleichung
reduzierter Ordnung

Mk · ÿk = ST
yk ·

(
J−T

g · Fq − n
)

(2-50)

und eine algebraische Gleichung für die generalisierten Kontaktkräfte

λr = Mr · ST
λr · M−1

v ·
(
J−T

g · Fq − n
)

(2-51)

mit den Hilfsgrößen

Mk = ST
yk Mv Syk , Mr =

(
ST
λr M−1

v Sλr

)−1
, n =

(
Cv Syk + Mv Ṡyk

)
ẏk + gv (2-52)

überführen. Hervorzuheben ist, dass die Bewegungsgleichung reduzierter Ordnung (2-50)
keine Abhängigkeit von den Kontaktkräften und -momenten τ mehr aufweist. Sie be-
schreibt die Bewegung des Endeffektors auf der Bindungsmannigfaltigkeit. Aufbauend auf
diesen beiden Gleichungen lässt sich herleiten, dass eine ideale Entkopplung der Positions-
und Kraftvariablen yk und λr bzw. der bewegungs- und kraftgeregelten Unterräume durch
Wahl der Aktorkräfte

Fq = JT
g ·

(
Mv · Syk · uk + Sλr · ur + n

)
(2-53)

erreicht werden kann. Durch Einsetzen von (2-53) in (2-50) und (2-51) folgt

uk = ÿk , ur = λr , (2-54)
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das System ist also exakt ein-/ausgangslinearisiert. Auf Basis der neuen Eingangsgrößen uk
und ur lassen sich nun Regelungsgesetze formulieren. Beispielsweise kann für die Kraft

ur = λr,r + KP, f ·
(
λr,r − λr

)
+ KI, f ·

∫ (
λr,r − λr

)
d t (2-55)

und die Geschwindigkeit

uk = ÿk,r + KP,v ·
(
ẏk,r − ẏk

)
+ KI,v ·

∫ (
ẏk,r − ẏk

)
d t (2-56)

gewählt werden. Auf diese Weise ergibt sich eine hybride Kraft-/Geschwindigkeitsre-
gelung. Anstelle der Geschwindigkeit kann auch die Position des Manipulators in unbe-
schränkten Richtungen geregelt werden. Durch Kombination des PD-Positionsregelungs-
ansatzes

uk = ÿk,r + KD,p ·
(
ẏk,r − ẏk

)
+ KP,p ·

(
yk,r − yk

)
(2-57)

mit dem Kraftregelungsansatz nach (2-55) folgt die hybride Kraft-/Positionsregelung.
Aufgrund der durch die Zwangsbedingungen vorliegenden Ordnungsreduktion der Zu-
standsgleichungen des Manipulators, vgl. (2-50), wird dieser Ansatz in [LDA04] als
(zustands-) reduzierte Kraft-/Positionsregelung bezeichnet. Das zugehörige Strukturbild
zeigt Bild 2-21.

S+λr

S+λr

Positions-
regelung

Kraft-
regelung

E/A-Linearisierung
nach (2-53)

Strecke

τr

{
yk, ẏk, ÿk

}
r

λr,r

uk

ur

Fq

yk, ẏk

τλr

yk, ẏk

Ein-/Ausgangslinearisierte Strecke

Bild 2-21: Hybride Kraft-/Positionsregelung bei ideal starrer Umgebung

Die Pseudoinverse S+
λr in Bild 2-21 ist nicht erforderlich, wenn die generalisierten Kontakt-

kräfte λr geschickt festgelegt werden. Entsprechen sie messbaren physikalischen Größen,
kann direkt die Vorgabe und die Messung dieser Größen anstelle von τ erfolgen. Bei Ver-
wendung der dargestellten Regelungsstruktur ist sicherzustellen, dass die Kraftsollwerte
τr im Unterraum F liegen. Anstelle der generalisierten Koordinaten yk und der zeitlichen
Ableitung ẏk können auch die Position und Geschwindigkeit des TCP z, v gemessen
und entsprechende Sollwerte vorgegeben werden. Voraussetzung ist, dass eine eindeutige
Umrechnungsvorschrift in die generalisierten Bewegungsgrößen existiert. Hinsichtlich
der zugehörigen Sollwerte gilt, dass die resultierende Bewegung im Unterraum P liegen
muss.

Dem Linearisierungsterm (2-53) und den Regelungsgesetzen (2-55) bis (2-57) kann ent-
nommen werden, dass ein hinreichend genaues Modell des Manipulators für die Imple-
mentierung einer solchen Regelung erforderlich ist (JT

g , Mv, Cv, gv) und darüber hinaus
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die Matrizen Sλr und Syk sowie die zeitliche Ableitung Ṡyk vorliegen müssen. Die Matrizen
Sλr und Syk können auch zur Laufzeit aus gemessenen Werten für die Kontaktkraft τ
und die Geschwindigkeit v geschätzt, d. h. an die aktuell vorliegende Situation adaptiert
werden, vgl. [SK16, S. 211]. Voraussetzung hierfür ist ein nominales Kontaktmodell. Es ist
offensichtlich, dass bei ungenauem Modell der Kontaktgeometrie, einem fehlerbehafteten
Modell des Manipulators, bei Vorliegen von Störgrößen oder Messfehlern die Entkopplung
der kraft- und positionsgeregelten Richtungen nicht ideal gelingt.

Der dargelegte Regelungsansatz setzt die Formulierung der Zwangsbedingungen im OS
voraus, die für PKM nach (2-17) naheliegend ist. Ein konzeptionell ähnlicher Regelungs-
entwurf, der ebenfalls eine Entkopplung der generalisierten Koordinaten yk und der gene-
ralisierten Kontaktkräfte λr erreicht, wurde durch Yoshikawa [Yos87; YST88] beschrieben.
Abweichend von (2-45) wird dort vorausgesetzt, dass die zulässigen Positionen des Endef-
fektors durch eine Gleichung der Form

yk = %z (z) (2-58)

beschrieben werden können. Mit (2-46) und

ẏk = S̄yk · v , S̄yk =
∂ %z (z)

∂ zT (2-59)

führt in diesem Fall die Wahl der Aktorkräfte

Fq = JT
g ·

Mv ·
[
S̄yk

ST
λr

]−1

·
([

uk
0

]
−

[ ˙̄Syk

ṠT
λr

]
· v

)
+ Cv · v + gv + Sλr · ur

 (2-60)

zu dem linearen, entkoppelten Systemverhalten nach (2-54). Yoshikawa bezeichnet diesen
Ansatz als dynamic hybrid control method. Die praktische Umsetzung ist mit Schwierig-
keiten verbunden, da die Oberflächengeometrie des Kontaktpartners (beschrieben durch
die Matrizen Sλr, S̄yk, Ṡλr und ˙̄Syk) in der Regel nicht genau bekannt ist. Yoshikawa und
Sudou [YS93] geben zur Lösung dieser Problematik ein Online-Schätzverfahren für Sλr,
S̄yk, Ṡλr und ˙̄Syk an und erproben es an einem 3-Achs-Roboter. Das Verfahren beruht auf der
Messung der Endeffektorposition und der Kontaktkräfte und ist für eine einzelne unbekann-
te Zwangsbedingungs-Mannigfaltigkeit geeignet. Momente werden nicht betrachtet, die
Erweiterung auf den sechsdimensionalen Fall wird im Ausblick für zukünftige Arbeiten
angekündigt. Die Herleitung eines entkoppelnden Reglers für im JS formulierte Zwangs-
bedingungen und zulässige Positionen nach (2-58) wurde durch McClamroch und Wang
[MW88] durchgeführt. Kankaanranta und Koivo [KK88] sowie Vujić und Vukobratović
[VV87] beschreiben ebenfalls konzeptionell ähnliche Ansätze.

Aghili [Agh05] beschreibt eine hybride Kraft-/Positionsregelung für starren Umgebungs-
kontakt, deren Herleitung auf der Matrix

P = I − J+
c Jc (2-61)

mit Jc nach (2-44) beruht. Die Matrix P, die auf die Arbeiten von West und Asada [WA85]
zurückgeht, ist idempotent7, d. h. es gilt

P2 = P . (2-62)
7Auch die bereits eingeführte binäre, diagonale Selektionsmatrix S ist idempotent.
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Sie wird auch als Projektionsmatrix bezeichnet. Ist P zusätzlich symmetrisch, so wird von
einer orthogonalen Projektionsmatrix gesprochen. Ein Vektor x mit homogenen physikali-
schen Einheiten kann mithilfe von P orthogonal zerlegt werden, d. h.

x = x‖ ⊕ x⊥ . (2-63)

Dabei ist

x‖ B P · x (2-64)

die Projektion des Vektors x auf den Nullraum von Jc,

x⊥ B (I − P) · x (2-65)

dessen Projektion auf das orthogonale Komplement dieses Nullraums. Da der Bildraum
von τ dem orthogonalen Komplement des Nullraums von Jc entspricht, ist

τ‖ ≡ P · τ = 0 , (2-66)

sodass sich durch Linksmultiplikation von (2-17) mit P

P · Mv · v̇ = P · τq︸︷︷︸
τq,‖

− P · h
︸︷︷︸

h‖

, τq = J−T
g · Fq , h = Cv · v + gv (2-67)

ergibt. Aghili bezeichnet diese Gleichung als projizierte inverse Dynamik. Jede mit den
Zwangsbedingungen vereinbare Geschwindigkeit liegt im Nullraum von Jc, d. h. der
Bildraum von v entspricht dem Nullraum von Jc. Es folgt, dass

v⊥ ≡ (I − P) · v = 0 (2-68)

und

v̇⊥ ≡ (I − P) · v̇ = Ṗ · v . (2-69)

Durch Linksmultiplikation von (2-69) mit Mv und Addition der Gleichung zu (2-67)
folgt

(
Mv + P · Mv −

(
P · Mv

)T
)

︸                             ︷︷                             ︸
Mc

·v̇ = τq,‖ − h‖ + Mv · Ṗ︸ ︷︷ ︸
Cc

·v . (2-70)

Aghili gibt zwei weitere Möglichkeiten für die Wahl der Matrizen Mc und Cc an, wobei
die drei Alternativen mit unterschiedlichem numerischen Aufwand verbunden sind. Es
lässt sich zeigen, dass die Matrix Mc stets invertierbar ist, sodass (2-70) nach v̇ aufge-
löst werden kann, weshalb Aghili diese Gleichung auch als direkte Dynamik bezeichnet.
Durch Linksmultiplikation des Manipulatormodells (2-17) mit I − P und Einsetzen der
Beschleunigungen v̇ aus (2-70) folgen die Reaktionskräfte

τ = −µ ·
(
τq,‖ − h‖ + Cc · v

)
+ (I − P) · τq︸       ︷︷       ︸

τq,⊥

− (I − P) · h
︸      ︷︷      ︸

h⊥

(2-71)
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mit

µ = (I − P) · Mv · M−1
c . (2-72)

Der Ansatz zur Positionsregelung folgt aus (2-67) unter Ersetzung von v̇ gemäß (2-49)
zu

τq,‖ = h‖ + P · Mv ·
(
Syk · uk + Ṡyk · ẏk

)
, (2-73)

der Kraftregelungsansatz aus (2-71) zu

τq,⊥ = h⊥ + µ ·
(
τq,‖ − h‖ + Cc · v

)
+ Sλr · ur . (2-74)

Durch Superposition der beiden Ansätze resultieren die Aktorkräfte für die hybride Kraft-/
Positionsregelung

Fq = JT
g τq , τq = h + µCc v + (I + µ) P Mv

(
Syk uk + Ṡyk ẏk

)
+ Sλr ur . (2-75)

Zur Wahrung der Konsistenz mit den bisherigen Ausführungen wurde hier abweichend
von [Agh05] die dort zu findende Größe uτ durch Sλr ur ersetzt, sodass die Kraftregelung
wieder direkt in der Größe λr vorliegt. Für die Kraft und Position können mit den neuen
Systemeingängen ur und uk Regelungsalgorithmen, bspw. (2-55) und (2-57), formuliert
werden.

Aghili nennt einige Vorteile dieser Vorgehensweise. Beispielsweise ist die gewichtete
euklidische Norm der Aktorkräfte minimal. Außerdem ist das Vorgehen auch bei passiven
(d. h. nicht aktuierten) Gelenken sowie bei redundanten oder flexiblen Manipulatoren
anwendbar. Ebenso funktioniert es im Falle redundanter Zwangsbedingungen und bei
singulären Manipulatorkonfigurationen. West und Asada [WA85] nennen außerdem, dass
mithilfe von Projektionsmatrizen auch mehrere Umgebungskontakte sowie Kontakte ab-
seits des TCP behandelt werden können. Andere Veröffentlichungen greifen diesen Ansatz
auf. Beispielsweise wird er in [AS16] für unilaterale sowie sog. Reibkegel-Zwangsbe-
dingungen, in [MR12] für unteraktuierte Systeme beschrieben. Ortenzi et al. [OSKM15]
greifen die Methode ebenfalls auf und erstellen aufbauend darauf ein Optimalsteuerungs-
problem, dessen Lösung die Aktorkräfte für das Folgen einer gegebenen Trajektorie (durch
Ausnutzung der Umgebungszwangsbedingungen) nochmals reduziert.

In [SK16] wird auch ein passivitätsbasierter Ansatz für die hybride Regelung vorgeschlagen.
Die Systemeingänge Fq werden in diesem Fall nach der Formel

Fq = JT
g ·

(
gv + Sλr ur + Mv Syk u̇p +

(
Cv Syk + Mv Ṡyk

)
up

+
(
S+

yk

)T
Kp

(
up − ẏk

) )
(2-76)

vorgegeben. Durch Einsetzen von (2-76) in das Manipulatormodell (2-17) folgt die nach
wie vor verkoppelte und nichtlineare Systemdynamik. Durch Linksmultiplikation der erhal-
tenen Gleichung mit ST

yk bzw. ST
λr ·M−1

v lässt sich analog zu (2-50) und (2-51) die reduzierte
Systemdynamik sowie ein Ausdruck für die generalisierten Kräfte bilden. Anhand dieser
Gleichungen können Stabilitätsbetrachtungen durchgeführt werden, siehe [SK16]. Eine
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asymptotisch stabile, hybride Kraft-/Positionsregelung lässt sich demnach durch die Wahl
von ur nach (2-55) und

up = ẏk,r + α ·
(
yk,r − yk

)
, u̇p = ÿk,r + α ·

(
ẏk,r − ẏk

)
(2-77)

erreichen. Hierfür muss die Matrix Kp symmetrisch und positiv definit sein. Bei α handelt
es sich um eine positive Reglerverstärkung.

Über die ideal starre Umgebung hinaus ist in [SSVO10] auch eine angepasste Herleitung
für einen ideal elastischen Umgebungskontakt enthalten. Die zugehörige Herleitung enthält
allerdings, abgesehen von der Annahme einer idealen Feder als Kontaktbeschreibung,
weitere stark vereinfachende Annahmen. Die Vorgehensweise zum Regelungsentwurf
ist ähnlich zur zuvor beschriebenen. Zu den aufgelisteten Messgrößen kommt dort die
Messung bzw. Schätzung der Größe λ̇r hinzu. Auch de Schutter und Bruyninckx [SB96]
betrachten den Fall einer rein elastischen Umgebung.

Die bisher dargelegten Regelungsansätze eignen sich nur für den Fall rein kinematischer
Zwangsbedingungen zur Umgebung. De Luca und Manes [LM91; LM94] haben einen
Regelungsentwurf für solche Kontaktsituationen entwickelt, in denen auch die Umge-
bung ein dynamisches Verhalten besitzt. Der zuvor dargelegte, in [SSVO10] ausführlich
beschriebene Regelungsentwurf geht daraus als Sonderfall hervor. Neben dem Manipula-
tormodell nach (2-17) und holonomen, skleronomen Zwangsbedingungen nach (2-43) sind
bei dynamischem Umgebungsverhalten auch die Bewegungsgleichungen der Umgebung

Mu
(
yd

) · ÿd + nu
(
yd, ẏd

)
= ST

yd
(
yd, yk

) · τ (2-78)

mit den Umgebungskoordinaten yd ∈ Rnd beim Regelungsentwurf zu berücksichtigen,
wobei de Luca und Manes bei ihrer Herleitung voraussetzen, dass nd ≤ 6 gilt. In [LM91]
wird hierbei von einer nicht-redundanten Umgebung gesprochen. Die zulässigen Endef-
fektorposen liegen infolgedessen auf einer nd-dimensionalen Mannigfaltigkeit. In diesem
Fall gibt es neben den Reaktionskräften auch solche Kräfte, über die ein Energieaustausch
zwischen dem Manipulator und der Umgebung stattfindet. Diese Größen werden in [LM94]
als aktive Kräfte bezeichnet und erhalten im Folgenden den Bezeichner λa ∈ Rnd . Die
Zusammenhänge (2-46), (2-47) erweitern sich dann zu

τ = Sλa
(
yd, yk

) · λa + Sλr
(
yd, yk

) · λr , (2-79)
v = Syd

(
yd, yk

) · ẏd + Syk
(
yd, yk

) · ẏk . (2-80)

Gegenüber (2-46), (2-47) gilt hier für die generalisierten Kontaktkräfte λr ∈ R6−nd−nk . Auch
hier bestehen Wahlfreiheiten bei der Festlegung von λa, λr, yd und yk sowie der Matrizen
Sλa, Sλr, Syd und Syk. Analog zu (2-48) gelten die Beziehungen

[
Syd Syk

]T · Sλr = 0 , ST
yk ·

[
Sλa Sλr

]
= 0 , (2-81)

vgl. [LM94]. Durch Einsetzen von (2-79) in die Bewegungsgleichungen des Manipulators
(2-17) und der Umgebung (2-78) folgt

Mv · v̇ + Cv · v + gv = J−T
g · Fq − Sλa · λa − Sλr · λr , (2-82)

Mu · ÿd + nu = ST
yd · Sλa · λa + ST

yd · Sλr︸   ︷︷   ︸
=0

·λr . (2-83)
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Ausgangspunkt zweier möglicher Regelungsentwürfe für den Manipulator ist die zeitliche
Ableitung von (2-80),

v̇ = Syd · ÿd + Ṡyd · ẏd + Syk · ÿk + Ṡyk · ẏk . (2-84)

Durch Auflösen der Gleichung (2-82) nach v̇,

v̇ = M−1
v ·

(
−Cv · v − gv + J−T

g · Fq − Sλa · λa − Sλr · λr

)
, (2-85)

sowie der Gleichung (2-83) nach ÿd und Einsetzen der erhaltenen Zusammenhänge in
(2-84) folgt nach einigen Umformungen die Systembeschreibung

Qa ·

λa
λr
ÿk

 + na = J−T
g · Fq (2-86)

mit

Qa =
[(

Mv · Syd · M−1
u · ST

yd + I
)
· Sλa Sλr Mv · Syk

]
, (2-87)

na = Mv ·
(
Ṡyk · ẏk + Ṡyd · ẏd − Syd · M−1

u · nu

)
+ Cv · v + gv . (2-88)

Wird hingegen (2-83) nach λa aufgelöst, in (2-85) eingesetzt und im Anschluss mit (2-84)
gleichgesetzt, so folgt die Systembeschreibung

Qd ·

ÿd
λr
ÿk

 + nd = J−T
g · Fq (2-89)

mit

Qd =

[
Mv · Syd + Sλa ·

(
ST

yd · Sλa

)−1 · Mu Sλr Mv · Syk

]
, (2-90)

nd = Mv ·
(
Ṡyk · ẏk + Ṡyd · ẏd

)
+ Cv · v + gv + Sλa ·

(
ST

yd · Sλa

)−1 · nu . (2-91)

Durch Wahl der Aktorkräfte

Fq = JT
g ·

Qa ·

ua
ur
uk

 + na

 (2-92)

folgt

ua = λa , ur = λr , uk = ÿk , (2-93)

bei Wahl von

Fq = JT
g ·

Qd ·

ud
ur
uk

 + nd

 (2-94)

folgt

ud = ÿd , ur = λr , uk = ÿk . (2-95)
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Werden die Aktorkräfte durch Auswertung von (2-92) oder (2-94) gebildet, so resultiert ein
linearisiertes Systemverhalten, auf dessen Grundlage ein einfacher, linearer Regelungsent-
wurf erfolgen kann, vgl. (2-55) und (2-57). Bei beiden Ansätzen sind stets die gewählten
reaktiven Kräfte λr und die kinematischen Koordinaten yk zu regeln. Je nach Anwendungs-
fall kann außerdem zwischen einer Kraftregelung der aktiven Kräfte λa, aufbauend auf
(2-92), und einer Bewegungsregelung der dynamischen Koordinaten yd, ausgehend von
(2-94), frei gewählt werden. Die Regelung wird durch die Transformationen zwischen
den physikalischen Größen, z. B. τ und z, und den generalisierten Größen λa, λr, yd und
yk vervollständigt. Es lässt sich zeigen, dass die Aktorkräfte (2-92) und (2-94) auch bei
strikter Durchführung des Regelungsentwurfs der exakten Ein-/Ausgangslinearisierung
(siehe Anhang A3) resultieren. Der Nachweis ist in Anhang A4 gegeben.

Ein weiterer Regelungsansatz für Umgebungskontakte mit nicht vernachlässigbaren, dyna-
mischen Eigenschaften wurde durch Featherstone [Fea03] beschrieben. Er nimmt für die
Dynamik der Umgebung bzw. des Kontaktpartners die allgemein gehaltene Gleichung

v̇u = M̄−1
u · τ + ˙̄vu (2-96)

an. Die Bewegungsgleichungen des Manipulators sind wieder durch (2-17) gegeben. Vor-
aussetzung der folgenden Herleitungen ist, dass es sich um einen Manipulator mit ins-
gesamt sechs FHG handelt, dessen Massenmatrix Mv symmetrisch und positiv definit
ist. Außerdem wird vorausgesetzt, dass zwischen den beiden Körpern ein reibungsfreier
Kontakt vorliegt und dass sich die Relativgeschwindigkeit der beiden in Kontakt stehenden
Körper durch eine Gleichung der Form

vrel = v − vu = S1 · ẏrel (2-97)

beschreiben lässt. ẏrel ist dabei eine spezielle Geschwindigkeitsgröße zur Beschreibung der
Relativbewegung. In Analogie zu den bisher dargelegten Ansätzen gilt auch hier (Prinzip
der virtuellen Arbeit)

ST
1 · τ = 0 . (2-98)

Featherstone schafft eine reziproke Basis für die bewegungs- und kraftgeregelten Unterräu-
me P und F , indem er die Bedingung

[
S1 S2

]T ·
[
T1 T2

]
= I (2-99)

erfüllt. Die reziproke Basis ist dann durch die Spalten der Matrizen S1, S2, T1 und T2
gegeben. Aufbauend auf den Matrizen S1 und T2 wählt er

S2 = M−1
v T2

(
TT

2 M−1
v T2

)−1
, T1 = Mv S1

(
ST

1 Mv S1

)−1
. (2-100)

Mithilfe der Transformationen für Bewegungs- (Index p) und Kraftgrößen (Index f ) in
diese spezielle Basis

Xp =
[
T1 T2

]T
, X f =

[
S1 S2

]T
, X−1

p = XT
f , X−1

f = XT
p (2-101)

zeigt er, dass die Wahl der Aktorkräfte

Fq = JT
g ·

(
Mv · S1 · up + Cv · v + gv + T2 · u f

)
(2-102)
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zu

up = v̇1 , u f = τ2 + ST
2 Mv S2 · v̇2 (2-103)

mit

v̇1 = TT
1 · v̇ , v̇2 = TT

2 · v̇ , τ2 = ST
2 · τ (2-104)

führt. Featherstone sieht in (2-102) eine geeignete Grundlage der Regelungssynthese für
Systeme, die in Kontakt zu einer Umgebung mit unbekannter Dynamik stehen. Während
up die Eingangsgröße für die Regelung der Endeffektorbeschleunigung v̇1 darstellt, kann
u f als Ausgangspunkt des Regelungsentwurfs für die Kontaktkraft τ2 dienen. Der Po-
sitionsregelungsentwurf kann aufbauend auf v̇1 bspw. nach (2-57) erfolgen. Da up sich
linear zu v̇1 verhält, genügt unter idealen Bedingungen theoretisch eine Vorsteuerung zur
Erzielung einer gewünschten Sollbewegung des Endeffektors. u f verhält sich hingegen
nicht linear zu der Kontaktkraft τ2, aber linear zur Summe aus dieser Größe und dem Term
ST

2 Mv S2 · v̇2, den Featherstone als die Kraft bezeichnet, die für das Aufrechterhalten des
Kontakts zur Umgebung erforderlich ist. Hier ist also unbedingt ein Regler erforderlich,
um gewünschte Kräfte τ2 herbeizuführen; eine Vorsteuerung allein genügt nicht. Bei einem
Regler nach (2-55) mit KP, f = 0, d. h.

u f = τ2,r + KI, f ·
∫

eτ2
d t , eτ2

= τ2,r − τ2 , (2-105)

folgt für das Verhalten des geschlossenen Kraftregelkreises

eτ2
+ KI, f ·

∫
eτ2

d t = ST
2 Mv S2 · v̇2 . (2-106)

Je kleiner die Massenmatrix ST
2 Mv S2 und/oder v̇2 im Vergleich zu τ2 ist, desto besser

ist das resultierende Verhalten. Bemerkenswert ist, dass die Berechnung der Aktorkräfte
(2-102) unabhängig vom Modell der Umgebung (2-96) ist. Mit bestimmten Regelgrößen
ist es folglich möglich, auch mit einem gegenüber [LM94] reduzierten Modellwissen
entkoppelnde Regelungen zu realisieren.

Aufbauend auf seinen Ausführungen in [Fea03] beschreibt Featherstone auch einen er-
weiterten Ansatz für Manipulatoren mit weniger als sechs FHG, d. h. solche Fälle, in
denen nicht nur aus der Umgebung, sondern auch aus dem Manipulator eingeschränkte
Bewegungsmöglichkeiten folgen, siehe [Fea04].

Theoretisch lässt sich auch für den Eingang u f lineares Verhalten der Form u f = τ2

herbeiführen. Hierzu muss der Term T2 · u f in (2-102) durch T2 ·
(
u f + ST

2 Mv S2 · v̇2

)

ersetzt werden. Für die Realisierung ist dann eine Messung der Beschleunigung v̇ bzw. v̇2
erforderlich. Diese Möglichkeit wird weder in [Fea03] noch in [Fea04] erwähnt.

Ausgehend von den identischen Grundgleichungen (2-17), (2-96), (2-97) und (2-98) er-
zielen Featherstone, Sonck und Khatib [FSK98] mithilfe einer Projektionsmatrix für
Bewegungsgrößen Pp und einer Projektionsmatrix für Kraftgrößen P f ebenfalls eine
Entkopplung. Die Projektionsmatrizen lauten

Pp
(
Gp

)
= S1 ·

(
S1

)+

G−1
p
, P f

(
G f

)
= T2 ·

(
T2

)+

G−1
f
. (2-107)
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Darin sind
(
S1

)+

G−1
p

und
(
T2

)+

G−1
f

die mit G−1
p bzw. G−1

f gewichteten Pseudoinversen der
Matrizen S1 und T2. Die Berechnungsformel für die gewichtete Pseudoinverse einer Matrix
X mit der Gewichtung G lautet allgemein

X+
G =

(
XT G X

)−1
XT G . (2-108)

Gp und G f sind lineare Abbildungen von P nach F bzw. von F nach P . Zur Sicherstellung
der Invarianz der Projektion muss Gp wie eine Trägheitsmatrix und G f wie eine inverse
Trägheitsmatrix transformieren [FSK98]. Für die Wahl der Aktorkräfte wird

Fq = JT
g

(
Mv

(
up + M̄−1 u f + ˙̄vu

)
+ Cv v + gv

)
, M̄−1 = M−1

v + M̄−1
u (2-109)

angegeben. Es lässt sich zeigen, dass mit diesem Ansatz

v̇rel = Pp
(
M̄−1) · up + M̄−1 ·

(
I − P f

(
M̄

)) · u f , (2-110)

τ = P f
(
M̄

) · u f + M̄ ·
(
I − Pp

(
M̄−1)) · up (2-111)

folgt, wobei

v̇rel = v̇ − v̇u − Ṡ1 · ẏrel = S1 · ÿrel (2-112)

die um die Restbeschleunigung bereinigte Relativbeschleunigung von Manipulator und
Umgebung ist. Werden up und u f nach

up = Pp
(
Gp

) · up,u , u f = P f
(
G f

) · u f ,u (2-113)

mit einem beliebig gewichteten Paar von Projektionsmatrizen aus neuen Eingangsgrößen
up,u und u f ,u berechnet, so vereinfachen sich die Gleichungen (2-110) und (2-111) zu

v̇rel = Pp
(
Gp

) · up,u , τ = P f
(
G f

) · u f ,u , (2-114)

sodass die relative Beschleunigung v̇rel nur vom Eingang up,u und die Kontaktkräfte τ nur
vom Eingang u f ,u abhängen. Ebenso lässt sich zeigen, dass bei Vorgabe von

up,u = S1 · uyrel
, u f ,u = T2 · uλ (2-115)

das entkoppelte Systemverhalten

ÿrel = uyrel
, λ = uλ (2-116)

resultiert8. Für uλ und uyrel
können wieder Regelungen analog zu (2-55) und (2-57) erfolgen.

Im Gegensatz zu [Fea03] ist für die Berechnung der Aktorkräfte nach (2-109) jedoch die
Kenntnis der Bewegungsgleichungen der Umgebung (M̄−1, ˙̄vu) erforderlich. Featherstone,
Sonck und Khatib nennen als Vorteil des Verfahrens, dass es sowohl die Modellierung
als auch die Regelung von dynamischen Kontaktsituationen mit mehreren Kontaktstellen
ermöglicht.

Als Fazit zu den direkten Kraftregelungen lässt sich festhalten, dass nur durch die hybride
Kraft-/Positionsregelung eine ideale Entkopplung der kraft- und bewegungsgeregelten

8Dieser Ansatz wird in [FSK98] nicht explizit genannt.
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FHG erreicht wird. Allerdings sind für ihre Umsetzung sehr genaue Modelle des Mani-
pulators und des Kontaktpartners erforderlich. Daher kann ihre praktische Umsetzung
abhängig von der betrachteten Anwendung mit einem hohen Modellierungs- und Be-
rechnungsaufwand verbunden sein. Sowohl die Synthese der Regelungsstrategie als auch
die Wahl der zugehörigen Sollwerte ist komplex [Cra05]. Bei realen Kontaktsituationen
ist diese Vorgehensweise nur bedingt verwendbar, da die kleinste Modellabweichung
von der Realität (z. B. gegenseitige Verdrehung der in Kontakt stehenden Körper) dazu
führt, dass die Entkopplung der kraft- und positionsgeregelten Richtungen nicht mehr
gewährleistet ist. Unter Umständen kann dadurch die Regelung instabil werden. Für den
Fall rein kinematischer Zwangsbedingungen zur Umgebung, vgl. (2-43), leiten Cheah,
Kawamura und Arimoto [CKA03] Bedingungen an das Ausmaß der Unsicherheit sowie
die Regelkreisverstärkungen her, unter denen die Regelung trotz Unsicherheiten in der
Kinematik stabil ist. Auch adaptive Regelungen sind dokumentiert, siehe z. B. [ALN93].
Viele der aufgeführten Ansätze zur hybriden Kraft-/Positionsregelung eignen sich darüber
hinaus nicht für Situationen mit mehreren Kontaktstellen zur Umgebung.

In der Praxis ist die hybride Kraft-/Positionsregelung daher wenig verbreitet [Cra05]. Hier
ist vor allem die parallele Kraft-/Positionsregelung zu finden. Dabei wird zwar keine ideale
Entkopplung der geregelten Größen erreicht und die erzielbare Dynamik ist prinzipbedingt
aufgrund der relativ langsamen, unterlagerten Positionsregelung geringer. Die Robustheit
der Regelung gegenüber Modellunsicherheiten und Störgrößen ist jedoch wesentlich
höher.

2.2.4 Anwendungsbeispiele

Dieser Abschnitt enthält eine Zusammenstellung von Anwendungsbeispielen für PKM
in Kontaktaufgaben. Die Gliederung folgt der des gesamten Unterkapitels 2.2 zu den
Kraftregelungsverfahren, d. h. es werden zuerst Beispiele indirekter, dann direkter Kraftre-
gelungsverfahren genannt. In beiden Fällen wurde der Fokus auf relativ aktuelle und für
die hier betrachtete Anwendung relevante Beispiele gelegt.

Ein Beispiel für eine Impedanzregelung, die genau wie in Abschnitt 2.2.2 beschrieben
durchgeführt wurde, ist die Arbeit von Sadjadian und Taghirad [ST06]. Die Impedanzrege-
lung wird dort für eine drei FHG aufweisende „hydraulische Schulter“ implementiert und
anhand von Simulationen validiert. Bild 2-22 zeigt den betrachteten PKM.

Eine Admittanzregelung für einen elektrohydraulischen Hexapod wurde an der Universität
Athen von Davliakos und Papadopoulos [DP07; DP09] entworfen. Zu diesem Zweck
wurden die Bewegungsgleichungen des Hexapod in den Antriebskoordinaten q, q̇, q̈ sowie
ein Modell der Hydraulik aufgestellt. Das Regelungskonzept sieht vor, dieses Modell
in invertierter Form unter Verwendung zahlreicher Messgrößen für die (dynamische)
Vorsteuerung des Systems zu verwenden. Ausgang der Vorsteuerung sind die Ventilströme
iV , Eingang die Solltrajektorie in den Antriebskoordinaten. Hinzu kommt ein einfacher
PD-Positionsregler im JS. Die Sollwertbildung für die Vorsteuerung und Regelung erfolgt
mithilfe eines Admittanzmodells analog zu (2-26), wobei sich in diesem Falle alle Größen
nicht auf den OS, sondern den JS beziehen. Auch hier wird von entkoppelten Richtungen
ausgegangen, d. h. die Matrizen des Umgebungsmodells in (2-26) sind Diagonalmatrizen.
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Bild 2-22: „Hydraulische Schulter“ aus [ST06]

Die Umgebungskraft für das Admittanzmodell kann laut [DP09] entweder gemessen oder
über das Modell

τu,q = Ku ·
(
qu − q

)
(2-117)

approximiert werden. Das Strukturbild der Regelung zeigt Bild 2-23.

Hexapod und
Umgebung

Positions-
regelung im JS

(Dynamische)
Vorsteuerung

Admittanz-
regelung

Inverse
Kinematik

iVqa, q̇a

q̈a


q
q̇
q̈


r


z
ż
z̈


r

q, q̇

τu,q

Bild 2-23: Admittanzregelung im JS nach [DP09]

Wie bei der Regelung im JS nach Bild 2-10a wird hierbei geschickt das direkte kinematische
Problem umgangen. Anhand von Simulationen mit dem Umgebungsmodell nach (2-117)
mit

Ku = 5 · 104 · I N m−1 , (2-118)

d. h. gleicher, entkoppelter Steifigkeit in allen Richtungen des JS, wird die Funktionalität
des Ansatzes (auch bei Messrauschen) gezeigt. Dabei wurden die Parameter des Admittanz-
modells so gewählt, dass die Stellgrößenbeschränkungen (iV <

∣∣∣iV,max

∣∣∣) stets eingehalten
werden. Beim Verfahren gegen eine starre Wand stellt sich im stationären Zustand eine
geringe Kontaktkraft ein, die Ist-Position weicht von der Soll-Position ab. Vergleiche
mit einem einfachen PD-Regler zeigen, dass der vorgestellte Ansatz auch bei größeren
Parameterabweichungen wesentlich besseres Verhalten aufweist.

Als Beispiel für eine Admittanzregelung mit OS-Admittanzmodell sei an dieser Stelle der
Regelungsentwurf von Caccavale, Siciliano und Villani [CSV03] für die hybride Kinematik
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„Tricept“ genannt, siehe Bild 2-24. Der Tricept besteht aus einer von drei Linearaktoren
getragenen Plattform, an der wiederum ein aktuiertes, sphärisches Gelenk montiert ist,
sodass das System insgesamt sechs FHG besitzt.

Bild 2-24: Tricept aus [CSV03]

Für die rotatorischen Richtungen wird sowohl die Positionsregelung als auch das Admit-
tanzmodell mithilfe von Einheitsquaternionen formuliert. Hier erfolgt die Validierung
des Verfahrens ebenfalls anhand einer Simulation, bei der die Referenztrajektorie des
Manipulators durch eine ebene Wand (Steifigkeit 5 kN m−1) blockiert wird.

Eine Steifigkeitsregelung ist in [BMZ02] dokumentiert. Gegenüber (2-31) wurde zusätzlich
die Sollgeschwindigkeit berücksichtigt. Die Regelung wird dort für das Simulationsmo-
dell eines rein translatorisch arbeitenden PKM für Montagezwecke implementiert und
erprobt. In [LLL93] wird ebenfalls eine Steifigkeitsregelung, in diesem Falle für einen
Hexapod zur spanenden Werkstückbearbeitung, angegeben. Eine Erprobung im Rahmen
von Simulationen oder Experimenten ist nicht dokumentiert.

Ein PKM, für den in [CS03; CPP06] eine parallele Kraft-/Positionsregelung beschrieben
wird, ist der 3-RCC-Mechanismus. Der Endeffektor wird durch drei Linearaktoren getra-
gen, die über Drehgelenke an die Basis und über Drehschubgelenke an den Endeffektor
gekoppelt sind. Die Linearaktoren selbst können als Drehschubgelenke abstrahiert wer-
den. Die Arbeiten wurden an der Università Politecnica delle Marche (Ancona, Italien)
durchgeführt. Bild 2-25 zeigt den PKM sowie die eingesetzte Regelungsstruktur.

Für das System wurde eine Co-Simulationsumgebung aus ADAMS-MKS-Modell und dem
Regelungsalgorithmus in MATLAB/Simulink aufgebaut. Anhand dieser wurden diverse
Tests zum Systemverhalten durchgeführt, bspw. im Falle von Parameter- und Messfeh-
lern. Es werden typische Kraftregelungsaufgaben betrachtet, etwa das Verfahren einer
Trajektorie entlang einer abgewinkelten Oberfläche bei simultanem Halten einer definierten
Kontaktkraft sowie das Einpassen von Stiften in dafür vorgesehene Bohrungen (engl. peg
in hole). Als Umgebungssteifigkeit wird 10 MN m−1 genannt. Für die Regelung werden
diagonale Reglerverstärkungen verwendet. Die jeweiligen Werte werden angegeben, deren
Zustandekommen aber nicht erläutert.
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(a) MKS-Modell (b) Regelungsstruktur

Bild 2-25: 3RCC-Parallelkinematik [CPP06]

[DDD10] stellt eine vergleichbare Arbeit für einen Hexapod dar. In der Veröffentlichung
wird nicht nur ein gleich aufgebauter Regler verwendet, auch einzelne Passagen der Arbeit
weisen hohe Ähnlichkeit zu denen in [CPP06] auf.

Die Regelungsstruktur wurde darüber hinaus auch an der LASMEA-CNRS-Université
Blaise Pascal (Aubière, Frankreich) durch Bellakehal et al. [BAMT11a; BAMT11b] auf-
gegriffen. Der Fokus der Arbeiten liegt auf der Erfassung der Endeffektorpose z mittels
eines Kamerasystems. Das Regelungskonzept mit kamerabasierter Positionsschätzung
wurde für diverse PKM-Beispielsysteme innerhalb von Computersimulationen getestet,
darunter auch ein elektromechanischer Hexapod für Lehrzwecke. Der Regler wird mit dem
Faustformelverfahren nach Ziegler und Nichols parametriert. Das simulierte Szenario sieht
immer gleich aus: anhand einer gegebenen Bewegungstrajektorie nähert sich der jeweilige
Endeffektor einer ebenen Oberfläche an. Nach Auftreffen auf die Oberfläche korrigiert der
Kraftregler die gegebene Solltrajektorie so, dass eine konstante Kontaktkraft erzielt wird.
Je PKM werden vier verschiedene Fälle simuliert, die sich durch die Qualität des Kamera-
systems und/oder des Kraftsensors unterscheiden. Zu erwähnen ist, dass die Solltrajektorie
zwar innerhalb der Umgebung, jedoch stets in einer parallel zu dessen Oberfläche liegen-
den Ebene geplant ist, was günstig für die Kraftregelung ist. Als Kontaktpartner in den
Simulationen wird eine ebene Fläche mit der Steifigkeit 104 N m−1 betrachtet. In allen be-
trachteten Fällen kann die Regelung innerhalb kurzer Zeit die gewünschte Kontaktkraft zur
Oberfläche und gleichzeitig die (durch den Kraftregler korrigierte) Solltrajektorie abfahren.
Die experimentelle Validierung des Verfahrens wird im Fazit in Aussicht gestellt.
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Am Institut für Fertigungs- und Werkzeugmaschinen der Gottfried Wilhelm Leibniz Uni-
versität Hannover wurde ein Hexapod aufgebaut, an dem im Rahmen der Dissertation
von Christian Holz [Hol07] ebenfalls eine hybride Kraft-/Positionsregelung implemen-
tiert wurde. Als Zielsetzung wird u. a. genannt, das System für die spanende Bearbeitung
einzusetzen. Die Messung der Kontaktkräfte und -momente erfolgt mithilfe eines entspre-
chenden Sensors an der Endeffektorplattform. Als Aktoren kommen Lineardirektantriebe
zum Einsatz, aufgrunddessen der Hexapod auch den Namen PaLiDa trägt (PKM mit
Lineardirektantrieben). Die Regelungsstruktur ist in Bild 2-26 dargestellt.
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Bild 2-26: Kraft-/Positionsregelung der PaLiDA [Hol07]

Als unterlagerte Regelung kommt eine Positionsregelung im JS zum Einsatz. Sie erhält
einerseits Positionssollwerte, die direkt mithilfe der inversen Kinematik aus der gegebe-
nen Sollpose des Endeffektors zr berechnet werden. Diese Sollwerte werden durch die
Kraftregelschleife modifiziert, wobei zur Regelung ein (für alle Richtungen unabhängiger)
PI-Regler eingesetzt wird. Laut [Hol07] erfolgt die Summation der Positionsvorgabe mit
der Kraftreglervorgabe nicht in OS-Koordinaten, da hierfür die Lösung des DKP erforder-
lich wäre. Die Funktionalität der Regelung wird anhand von Prüfstandsversuchen getestet.
Dabei wird die Kontaktaufnahme und das Halten einer Kraft zu einer unnachgiebigen
Oberfläche betrachtet. Bei ausschließlicher Kraftregelung in z-Richtung wird nach Kontakt-
aufnahme zur Umgebung die Sollkraft von 20 N nach ca. 3 s erreicht, Wechselwirkungen
mit anderen Richtungen bestehen nicht. Für Kraftregelung in x-Richtung stellen sich
sowohl in der x- als auch der y-Richtung Kräfte ein, wobei die Regelungsdynamik mit
der der z-Richtung vergleichbar ist. Aus dem in [Hol07] gegebenen Zeitverlauf geht nicht
hervor, ob die Kraft in x-Richtung stationär genau eingeregelt wird. Außerdem bleibt die
Frage offen, ob die Kraft in y-Richtung aus einer schräg gestellten Oberfläche resultiert
oder durch die gewählte Regelungsstruktur bedingt ist. Der Kraftregler nimmt hinsichtlich
der Kraft in y-Richtung keine Korrektureingriffe vor, da er ausschließlich in x-Richtung
aktiviert wurde. Die Vorgabe von Sollmomenten wird nicht betrachtet. Es wird betont,
dass der PI-Regler bewusst langsam ausgelegt wurde, um eine sanfte Kontaktaufnahme zu
gewährleisten.

Ein weiteres Beispiel einer Kraft-/Drehmomentregelung mit unterlagerter Bewegungsrege-
lung im JS sind die Arbeiten von Reisinger [Rei08; RWKS11] im Rahmen des Sonderfor-
schungsbereichs 562 (Parallelroboter für Handhabung und Montage) an der Technischen
Universität Braunschweig. Er nutzt einen PI-Regler für die Kraft, aus dessen Ausgang mit-
hilfe eines PT3-Trajektoriengenerators die Sollwerte der unterlagerten Bewegungsregelung
im JS gebildet werden. Durch Nutzung der unterlagerten Bewegungsregelung im JS kann
das direkte kinematische Problem umgangen werden. In den genannten Arbeiten werden
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alle drei Phasen der Kraftregelung (freie Bewegung, Transitions- bzw. Übergangsphase
und Kontakt, vgl. Abschnitt 2.2) betrachtet. Die Durchführung der Roboteraufgabe wird
dabei durch Einführung sog. Aktionsprimitive, d. h. atomare Teilaufgaben, vereinfacht,
zwischen denen im Betrieb situationsbedingt umgeschaltet wird. Es erfolgt eine ausführli-
che Behandlung der Transitionsphase, die mit dem Stoßprozess von Moreau modelliert
wird. Die experimentelle Validierung der Regelung erfolgt anhand von Blockplatzierungs-
und Konturfolgeversuchen, die mit einem PKM mit sechs FHG durchgeführt wird.

In [LPBC14; LPBC18] wird die Implementierung einer hybriden Kraft-/Positionsregelung
für einen Hexapod beschrieben. Die geplante Anwendung besteht in der Durchführung des
Nooru-Mohamed-Tests. Dabei handelt es sich um eine Bauteilprüfung, bei der die Materi-
alprobe einer Reihe kombinierter Zug-/Druck- und Scherbeanspruchungen ausgesetzt wird.
Bild 2-27 zeigt das Prüfsystem, wobei der passive Hexapod der Kraftmessung dient.

Bild 2-27: Prüfsystem für Bauteilprüfungen mittels Nooru-Mohamed-Test [LPBC18]

Da der Nooru-Mohamed-Test quasistatisch abläuft, reicht das statische Modell des PKM
für die Regelungssynthese aus. Auch die Jacobimatrix Jg kann als konstant angenom-
men werden. Für die Position wird ein PI-, für die Kraft ein I-Regler verwendet. Die
Regelungsstruktur zeigt Bild 2-28.
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Bild 2-28: Regelungsstruktur nach [LPBC18]

Die Regelung des Hexapod wird nur anhand von Simulationen (Co-Simulation von
ADAMS und MATLAB/Simulink) validiert, da am Testsystem weitere Änderungen vor der
Inbetriebnahme erforderlich waren. Die experimentelle Validierung erfolgt in [LPBC18]
an einem einfacheren PKM, der aus fünf in einer Ebene liegenden Stäben besteht.
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Ein ähnlich aufgebautes Prüfsystem wird in [WFC14] beschrieben. Es erfolgt eine Soll-
kraft- bzw. -momentvorgabe in allen sechs Richtungen. Für die Regelung wird ein JS-PID-
Kraftregler eingesetzt, der sich an die vorliegende Umgebungssteifigkeit adaptiert. Für die
Bildung der Aktorsollwerte Fq,r wird die Bewegungsgleichung (2-17) nach Fq aufgelöst.
Die Sollwerte Fq,r folgen durch Einsetzen der geschätzten Istwerte der Position z und ihrer
zeitlichen Ableitungen sowie der gewünschten Kontaktkraft τr in die erhaltene Gleichung.
Die Schätzung der Istposition z erfolgt mittels Newton-Raphson-Verfahren. Bild 2-29 zeigt
das zugehörige Strukturbild.
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Bild 2-29: Regelungsstruktur mit Kraftregelung im JS nach [WFC14]

Anhand einer Co-Simulation von ADAMS-MKS-Modell und MATLAB/Simulink wird
die Funktionalität des Ansatzes gezeigt. Es wird nicht untersucht, ob die JS-Regelung die
gewünschten OS-Belastungen auch bei größeren Abweichungen des Manipulatormodells
nach (2-17) vom realen System erzielt. In [GWF+16] werden experimentelle Ergebnisse
für das System gezeigt, die bei sehr langsam ablaufenden Prüfmanövern eine sehr gute
Übereinstimmung von Soll- und Istbelastung aufweisen.

Eine hybride Kraft-/Positionsregelung in der nach Fisher und Mujtaba [FM92] korrigierten
Fassung wurde von Madani und Moallem [MM11] für einen flexiblen PKM implementiert.
Sämtliche Glieder und Gelenke des planaren Manipulators sind, mit der Ausnahme des mit
der Umgebung in Kontakt stehenden Bauteils, starr ausgeführt. Das flexible Glied wird in
der Veröffentlichung als „Biegebalken“ abstrahiert.

Ein Anwendungsfall einer hybriden Kraft-/Positionsregelung in analytischer Formulierung
mit rein kinematischen Zwangsbedingungen ist in [SFS95] beschrieben. Dort wird der von
Yoshikawa [Yos87] beschriebene Regelungsansatz für einen PKM implementiert. Bei dem
PKM handelt es sich um das planare Äquivalent einer Stewart-Plattform, d. h. einen von
drei Linearaktoren getragenen Endeffektor, wobei sich jeder Aktor aus der Abfolge eines
Dreh-, eines Schub- und eines Drehgelenks zusammensetzt. Anhand von Simulationen
wird die Eignung des Verfahrens für das Stirnfräsen evaluiert.

Unter anderem auf den Arbeiten von Yoshikawa [Yos87] baut auch die Dissertation von
Linke [Lin03] auf. Dort werden die Anforderungen an einen Lastsimulator zur Quantifizie-
rung der mechanischen Eigenschaften chirurgischer Wirbelsäulenimplantante genannt: der
Lastsimulator muss alle sechs FHG bei hybrider Zieldefinition (Kraft/Position) aktuieren
können. Für eine realitätsnahe Prüfung wird der Frequenzbereich 1-7 Hz angegeben. In-
folgedessen wird in der Ausarbeitung die Modellierung und der Entwurf einer hybriden
Entkopplungsregelung für einen Hexapod mit hydraulischen Aktoren im Kontakt mit einer
elastischen Umgebung (diagonale Steifigkeitsmatrix bei spezieller Koordinatenkonven-
tion) beschrieben. Die Messung der Kontaktkräfte erfolgt dabei durch Kraftsensoren an
den Enden der Kolbenstangen der hydraulischen Gleichlaufzylinder, nicht durch einen
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6-FHG-Kraftaufnehmer wie beim HNI-Hexapod. Aufgrund diverser Unzulänglichkeiten
des Prüfsystems (geringe Leistungsfähigkeit und stark unterschiedliches Verhalten der
einzelnen Zylinder, Stick-Slip-Effekte) erfolgt die experimentelle Verifikation der Algorith-
men nur im quasistatischen Betrieb. Linke zieht das Fazit, dass „unter den in dieser Arbeit
betrachteten Randbedingungen [die hybride Entkopplung] eher von theoretischem Nutzen
ist, als von praktischem. Die realen Bedingungen unterscheiden sich so stark von den
üblichen vereinfachenden Annahmen, dass die Methode der dynamischen Entkopplung
nicht mehr zu dem Ziel einer zumindest weitgehend entkoppelten Regelstrecke führt“
[Lin03, S. 159].

Der Vollständigkeit halber sei an dieser Stelle erwähnt, dass auch Veröffentlichungen
existieren, bei denen die Regelungsgüte von Robotern in Kontaktaufgaben durch den
Einsatz von ILR verbessert wird. Ein Beispiel hierfür ist [VZL10], wo eine Kombination
von hybrider Kraft-/Geschwindigkeitsregelung und ILR für die Durchführung von Kontur-
folgeaufgaben mit einem seriellen Manipulator beschrieben wird. Aktuelle Beispiele sind
[PGMN16; BWL17].

2.3 Modellierung und Simulation von Achsprüfungen

Das Ziel dieser Arbeit ist der Entwurf von Regelungsalgorithmen für die parallelkinema-
tische Anregungseinheit des betrachteten Prüfstands, die sich für den Achsprüfbetrieb
eignen. Der Entwurf und die Erprobung der Regelung wird anhand eines Simulationsmo-
dells des Gesamtsystems aus Hexapod und Prüfling durchgeführt. Im Anschluss erfolgt
die Übertragung der Regelung auf den Prüfstand.

Wie sich im vorangegangenen Abschnitt gezeigt hat, ist sowohl das Manipulator- als
auch das Umgebungsmodell bei der Regelungssynthese von großer Bedeutung. Je nach
Regelungsansatz sind die Modelle auch Teil des Regelungsalgorithmus. Bei einem idea-
len Modell der Regelstrecke lässt sich eine ideale Entkopplung von bewegungs- und
kraftgeregelten Subräumen erreichen. Aufgrund dessen soll im Rahmen dieser Arbeit ein
möglichst detailliertes Modell des betrachteten Systems erstellt werden, um auch beim
Regelungsentwurf darauf zurückgreifen zu können.

An diesem Punkt stellt sich die Frage, welche Literatur es speziell zum Thema der Mo-
dellierung von Achsprüfständen sowie der Simulation von Achserprobungen gibt. Der
erste Unterabschnitt fasst daher einige ausgewählte Literaturbeispiele für die numerische
Simulation von Achsprüfungen, deren Zweck und die Ergebnisse der jeweiligen Studien
zusammen.

Für die Regelungssynthese von hohem Wert ist die Kenntnis der Zustandsgleichungen
des Systems. Im vorliegenden Fall sind dies vor allem die Bewegungsgleichungen des
mechanischen Grundsystems, die sich z. B. mithilfe des Prinzips von Jourdain (vgl. Anhang
A2) herleiten lassen.

Aufgrund des zeitweise sehr hohen Interesses an PKM liegen zahlreiche Arbeiten insb. auch
zum Thema der Modellierung von Hexapoden vor. Als Beispiel sei hier die vielzitierte
Arbeit von Dasgupta und Mruthyunjaya [DM98] genannt, in der ein 13 massebehaftete
Starrkörper umfassendes Modell (Endeffektor sowie je sechs untere und obere Aktorkom-
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ponenten) sowohl für den Fall der 6-UPS- als auch für die 6-SPS-Plattform9 beschrieben
sind. Über diese Arbeit hinaus existieren zahlreiche weitere Veröffentlichungen, in denen
die Modellierung von Hexapoden behandelt wird, z. B. [YSD10]. Die Herleitung der
Bewegungsgleichungen ist jedoch problemlos nach Abschnitt A2 möglich und erfolgte
in der vorliegenden Arbeit auch für ein Modell mit 13 massebehafteten Starrkörpern
auf ebendiesem Weg. Auf eine ausführliche Betrachtung von Literatur zum Thema der
Hexapodmodellierung wird daher an dieser Stelle verzichtet.

Die Herleitung der Bewegungsgleichungen der MacPherson-Radaufhängung ist je nach ge-
wünschter Modellierungstiefe hingegen sehr anspruchsvoll. In Abschnitt 2.3.2 schließt sich
ein umfassender Stand der Technik in der Modellierung der MacPherson-Radaufhängung
an.

Dieses Unterkapitel schließt mit einem kurzen Einblick in die Modellierung von Elasto-
merlagern ab, da deren Berücksichtigung bei der Modellierung der Radaufhängung die
Güte des Modells erheblich steigern kann.

2.3.1 Anwendungsbeispiele

Für die simulierte Erprobung von Achsen am Computer gibt es diverse Beispiele. Zwei
Veröffentlichungen wurden mit [SD08; DSB09] bereits in Abschnitt 2.1.4 genannt. Das
MKS-Modell in ADAMS/Car wurde in diesen Quellen vor allem für die Systemauslegung
verwendet. Dort wurde - im Gegensatz zu den nachfolgenden Beispielen - ebenfalls ein
Hexapod als Anregungseinheit eingesetzt.

In [LE00; KLSZ02] wird eine vollständig numerische Betriebsfestigkeitsanalyse durchge-
führt und die Stärken und Schwächen dieser Methode beurteilt. Zu diesem Zweck wird
eine digitalisierte Straße mit einem virtuellen Fahrzeugprototyp befahren. Das Fahrzeug-
modell wurde in ADAMS implementiert, wobei das physikalisch motivierte Reifenmodell
RMOD-K [Oer11] zum Einsatz kommt. Durch das MKS-Fahrzeugmodell werden während
der virtuellen Testfahrt Schnittkräfte berechnet, die zur Berechnung der Strukturspannun-
gen mithilfe der FE-Methode verwendet werden. Die Ergebnisse der FE-Berechnungen
dienen als Grundlage der anschließenden Betriebsfestigkeitsanalyse. Eine Simulation des
gesamten Prüfstands ist bei der gewählten Vorgehensweise nicht erforderlich.

Ein Beispiel für die MKS-Modellierung eines vollständigen konventionellen Testsystems
inklusive Aktorik und Prüfling sind die Arbeiten von Oppermann et al. bei der BMW AG
[OBL02]. Die Modellierung erfolgt ebenfalls in ADAMS. Im Rahmen von Simulationen
werden an diesem virtuellen Prüfstand wie an seinem realen Gegenstück Target-Signale
aus dem Fahrversuch mithilfe des TWR-Algorithmus nachgebildet. Auch die im Fahrver-
such gemessenen Eingriffe eines aktiven Stabilisators finden dabei durch die Verwendung
als Slave-Drives Berücksichtigung, vgl. Abschnitt 2.1.2. Als Einsatzzweck des Modells
wird die Verbesserung der zugrunde liegenden Teilmodelle angegeben. Außerdem kann
aufgrund der hohen Vergleichbarkeit von virtuellem und realem Prüfstandssystem eine
Entwicklung von Iterationsstrategien am virtuellen Prüfstand erfolgen. Die Nachbildung
der verwendeten Target-Signale gelingt im Modell; leider erfolgt aus diversen Gründen
kein Test der am virtuellen Prüfstand gebildeten Drive-Signale am realen System. In

9Siehe S. 2 für die Erläuterung von 6-UPS- und 6-SPS-Plattform.
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Folgearbeiten [OHO+05; OHW06] wird darüber hinaus auch die numerische Betriebsfes-
tigkeitsbeurteilung betrachtet, deren zunehmende Bedeutung (schon damals) betont wurde.
Arbeiten, die ebenfalls numerische Betriebsfestigkeitsuntersuchung an vollständigen MKS-
Prüfstandsmodellen sowie die virtuelle Drive-File-Generierung thematisieren, wurden auch
bei der DaimlerChrysler AG [NHDS04] durchgeführt. In [BLM+14; BHMM16] wird die
Lastdatengenerierung für Prüfstandsversuche anhand von MKS-Gesamtfahrzeugsimulatio-
nen unter Einbeziehung aktiver Fahrwerkregelsysteme thematisiert (Daimler AG). Auch
für Porsche sind derartige Aktivitäten dokumentiert [BM07], wobei die Co-Simulation
von Regelsystem und MKS-Fahrzeugmodell für die Lastdatengenerierung als geeignet
beurteilt wird, da die Simulationsergebnisse sehr gut mit Messungen aus dem Fahrversuch
übereinstimmen. Sowohl die Co-Simulation als auch die notwendigen Modelle werden
als sehr komplex angesehen. MKS-Simulationsmodelle inklusive Fahrwerkregelungsal-
gorithmen wurden auch bei Toyota erstellt und deren Nutzbarkeit für die numerische
Betriebsfestigkeitsbeurteilung analysiert [SNK+10].

Ein weiteres Beispiel für einen vollständig virtuellen Prüfstand beschreibt [WJB07]. Dort
wird die numerische Simulation einer kompletten Achsprüfung am Beispiel des 12-Kanal-
Achsprüfstands des Fraunhofer LBF beschrieben. Auch dieser Arbeit liegt ein MKS-Modell
zugrunde. Als Einsatzzwecke des Modells wird die Simulation von Achsprüfungen in
frühen Entwicklungsphasen sowie die Analyse und Optimierung bestehender und neuer
Prüfkonzepte angegeben. Außerdem ist mit einem solchen Modell die Möglichkeit einer
virtuellen Voriteration von Drive-Files gegeben, sodass weniger Iterationen am realen
System erforderlich sind und der Iterationsstart bereits vor Vorliegen eines physikalischen
Prototypen erfolgen kann. Auch die simulationsgestützte Ableitung vereinfachter Bauteil-
versuche mit vergleichbarer Schädigung ist möglich, vor allem vor dem Hintergrund einer
weit höheren Zahl an Systemgrößen in der Simulation im Vergleich zum Fahrversuch.

Die Veröffentlichungen von Weigel et al. [WWBD07; WWJ+11] geben einen Einblick in
die Achserprobung bei Mercedes-Benz Vans. Auch dort kommen Computersimulationen
zum Einsatz. Im vorliegenden Fall handelt es sich um ein MKS-Modell eines 13-Kanal-
Achsprüfstands (jeweils drei Kräfte und Momente am Radträger je Achsseite, Antriebsmo-
ment) in MATLAB/Simscape, das in Co-Simulation mit einem Modell der Hydraulik und
der Regelung (MATLAB/Simulink) eingesetzt wird. Neben der virtuellen Voriteration, die
durch den Wegfall physikalischer Iterationen sowie den frühen, virtuellen Iterationsstart
eine erhebliche Entwicklungszeitverkürzung mit sich bringt, werden weitere Vorteile,
u. a. die Erzeugung von Rauschsignalen für die Systemidentifikation, die Optimierung von
Regelkreisparametern sowie der Test von Iterationsstrategien genannt. Es wird betont, dass
nicht das Ziel verfolgt wird, Achserprobungen gänzlich durch Simulationen zu ersetzen.
Stattdessen soll der gesamte Prüfprozess durch die Unterstützung mit Simulationen ef-
fizienter gestaltet werden. In dieser Quelle sind auch einige Details zu den eingesetzten
Reglern angegeben, die die Aussagen im Stand der Technik zur Achsprüfung (Abschnitt
2.1) stützen: die vertikale Richtung wird mit einem PID-Positionsregler betrieben, wäh-
rend Längs- und Querkraft sowie das Sturz- und Spurmoment (Momente um die Längs-
und Vertikalachse) kraftgeregelt aktuiert werden. Bei den Kraftreglern handelt es sich
jeweils um eine Kaskadenregelung mit innerer Positionsregelschleife. Die Regelung des
Bremsmoments (Moment um die Querachse) erfolgt je nach Bremszustand drehmoment-
geregelt (bei betätigter Bremse) oder winkelgeregelt (bei ungebremster Fahrt). Außerdem
wird die Validierung des enthaltenen Achsmodells beschrieben. Hierzu werden die im
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Fahrversuch gemessenen Schnittkräfte und -momente zwischen Aktorik und Radträger
in das Achsmodell eingeleitet. Da sich die Achse am „Ende der Kraftflusskette“ befindet,
kann die Validierung ohne Betrachtung der restlichen Systemkomponenten (z. B. der Anre-
gungseinheiten) erfolgen. Die Autoren heben die hohe Bedeutung der Modellgüte für eine
erfolgreiche virtuelle Simulation von Achserprobungen hervor. Als Haupteinflussfaktoren
wurden hierbei durch den Vergleich von Simulationen und Validierungsmessungen die
Modellierung der Radaufhängung, insb. die Elastomerlager und Dämpfung, ermittelt.

You und Fricke [YF11] entwickeln einen Ansatz, den sie als Hybrid System Rapid Conver-
gence (HSRC) bezeichnen. Sie beschreiben zunächst zwei mechatronische HiL-Simula-
tionen. Das eine Beispiel ist ein Viertelfahrzeugprüfstand, bei dem das Rad in vertikaler
Richtung angeregt wird. Außerdem wird ein Fahrzeug-Stoßdämpferprüfstand beschrieben,
bei dem ausschließlich die Dämpfer aufgebaut sind. Sie sind über vier eindimensional
arbeitende Aktoren mit einem Simulationsmodell des Restfahrzeugs gekoppelt. HSRC
wird als Möglichkeit beschrieben, eine Kopplung von realen und virtuellen Teilsystemen
auch für komplexere Anwendungsfälle zu realisieren. Die Kopplung erfolgt nicht wie bei
der mechatronischen HiL-Simulation in Echtzeit, sondern durch sequentielles Durchfüh-
ren von Computersimulation und Prüfstandsmessung. Zentraler Bestandteil ist der TWR-
Algorithmus, mit dessen Hilfe iterativ eine zunehmende Übereinstimmung der virtuellen
und der physikalischen Systemantworten herbeigeführt wird. Als Beispiel dient u. a. ein
Achsprüfstand, der mit einem virtuellen MKS-Fahrzeugmodell (ADAMS/Car) gekoppelt
ist. You und Fricke nennen diverse Vorteile dieses Verfahrens. So ist im Gegensatz zur
mechatronischen HiL-Simulation bspw. keine schnelle Prüfstandsregelung für die Realisie-
rung erforderlich; stattdessen kann auf den bewährten TWR-Algorithmus zurückgegriffen
werden. Außerdem können auch sehr rechenaufwändige Modelle des virtuellen Restsys-
tems zum Einsatz kommen. Schwer zu modellierende Teilsysteme können wiederum
einfach als physikalisches Teilsystem in der Prüfung berücksichtigt werden. Nachteilig ist
der durch die Iteration bedingte, deutlich höhere Zeitaufwand. HSRC ist Teil des Angebots
von MTS Systems Corporation. Das Beispiel belegt den Bedarf nach HiL-Prüfständen in
der Fahrwerktechnik.

Zusammenfassend lässt sich sagen, dass ganze Achserprobungen aufgrund der damit ver-
bundenen Vorteile vor allem hinsichtlich der Effizienzsteigerung in der Achsentwicklung
zunehmend auch simuliert werden. Zu diesem Zweck werden umfangreiche MKS-Modelle
von ganzen Fahrzeugen und/oder der in einem typischen Achsprüfstand vorliegenden Kom-
ponenten verwendet. Es herrscht weitgehend Konsens, dass Fahr- und Prüfstandsversuche
nicht ganz wegfallen können, deren Anzahl durch Computersimulationen jedoch deutlich
reduziert werden kann. Zu dieser Einschätzung kommen auch Ersoy, Elbers und Schick
[EG17, S. 285] und Adamski [Ada14, S. 100]. Die Simulationen dienen dabei vor allem
für Voruntersuchungen und zur Optimierung der durchgeführten Tests. Je nach Anwen-
dungsfall sind hierfür hochdetaillierte Modelle aller beteiligter Komponenten erforderlich.
Der Zweck des Fahr- und Prüfstandsversuchs verschiebt sich infolgedessen zunehmend in
Richtung der Feinabstimmung von Radaufhängungseigenschaften.



2.3 Modellierung und Simulation von Achsprüfungen 69

2.3.2 Radaufhängung nach dem MacPherson-Prinzip

Das Fahrwerk stellt die Verbindung zwischen dem Aufbau eines Fahrzeugs bzw. dessen
Karosserie und den Rädern her. Wesentlicher Bestandteil sind Feder und (Stoß-) Dämp-
fer für jedes Rad, durch die Aufbaubewegungen infolge einer vertikalen Radbewegung
(z. B. durch eine unebene Fahrbahn) reduziert und damit Fahrsicherheit und -komfort
gewährleistet werden. Es existieren verschiedene Konstruktionen, über die die Aufhängung
des Rades am Aufbau erfolgen kann. Neben Starrachsen sowie Verbundlenker- bzw. Halb-
starrachsen kann die Radführung auch über Einzelradaufhängungen umgesetzt werden.
Ein guter Überblick findet sich bspw. in [EG17; SHB18; Ada14].

Ohne Vorliegen einer Radaufhängung besitzt jeder Radträger sechs FHG, d. h. er kann sich
frei im Raum bewegen. Im Falle einer ungelenkten Hinterachse müssen fünf dieser FHG
durch konstruktive Maßnahmen eingeschränkt werden, sodass nur noch die Einfederung
des Radträgers zugelassen wird. Eine Vorderradaufhängung erfordert hingegen mit der
Lenkbewegung einen weiteren FHG, sodass in diesem Fall nur vier der sechs FHG des Rad-
trägers eingeschränkt werden müssen. Der gesamte Mechanismus einer Radaufhängung
weist daher idealisiert einen bzw. zwei FHG auf. Bei Einbeziehung des Rades bzw. der
Radnabe kommt ein weiterer FHG hinzu: dieser besteht zwischen dem Radträger und der
Radnabe und spiegelt die Rollmöglichkeit des Rades wider.

Die Sperrung der FHG des Radträgers kann bspw. durch einfache Stablenker umgesetzt
werden. Dabei handelt es sich abstrahiert um einen einfachen Stab mit Kugelgelenken an
den Enden. Als Beispiel dient hier die Fünflenkerachse, bei der der Radträger über fünf
Stablenker mit dem Fahrzeugaufbau verbunden ist. Wird eines der beiden Kugelgelenke
durch ein Drehgelenk ersetzt, so liegt ein Quer- oder auch Dreieckslenker vor, der zwei
FHG einschränken kann. Bei der Doppelquerlenkerachse werden zwei Querlenker und
ein Stablenker kombiniert, sodass fünf der sechs FHG des Radträgers gegenüber dem
Aufbau eingeschränkt werden. Im Falle einer Trapezlenkerachse wird ein sog. Trapezlenker
eingesetzt, bei dem auch das zweite Kugelgelenk durch ein Drehgelenk ersetzt wird, sodass
der Trapezlenker allein vier FHG einschränkt. Der verbliebene einzuschränkende FHG
wird durch einen Stablenker gesperrt. Je nachdem, ob es sich im spezifischen Fall um eine
Vorder- oder Hinterachse handelt, ist einer der Stablenker nicht fest mit der Karosserie,
sondern mit dem Lenkgestänge verbunden. Über das Lenkgestänge wird die Lenkbewegung
des Fahrers auf beide Räder der Vorderachse eingeleitet. [Ada14]

Abweichend von dieser Idealbetrachtung werden zur Steigerung des Fahrkomforts und
der gezielten Beeinflussung der Fahrdynamik in der Praxis anstelle von idealen Gelenken
vielerorts Elastomerlager verbaut. Hinzu kommt, dass die einzelnen Teilkörper der Radauf-
hängung ebenfalls Nachgiebigkeiten besitzen. Hierdurch ergeben sich über die bisherige
Diskussion hinaus weitere FHG, die bei diesen grundlegenden Betrachtungen der Kine-
matik aber häufig ignoriert oder nur näherungsweise berücksichtigt werden, z. B. durch
Aufspaltung eines Starrkörpers in einige (wenige) Teilkörper, die elastisch verbunden sind.
Dieser Sachverhalt führt zum Begriff der Elastokinematik. Matschinsky versteht hierunter
„die sorgfältige Abstimmung der Federraten aller beteiligten elastischen Lager und der
räumlichen Anordnung der Achslenker sowie der Elastizitäten der Achslenker und der
betroffenen Fahrgestellpartien (Hilfsrahmen oder Fahrschemel, Karosserieträger usw.)
aufeinander mit dem Ziel, die durch die Elastizitäten entstehenden und unvermeidlichen
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Verformungen unter äußerer Belastung zu kompensieren oder sogar in wünschenswerte
Bewegungen umzuwandeln“ [Mat07, S. 287].

Über die genannten Möglichkeiten zur Einschränkung der FHG des Rades hinaus bestehen
weitere, sodass sich eine Vielzahl unterschiedlicher Radaufhängungskonzepte entwickelt
hat. Während sich die Kinematik bei einigen Aufhängungskonzepten analytisch lösen lässt,
ist dies bei anderen, z. B. der Mehrlenkerachse, nicht möglich. In diesem Fall muss die
Lösung der Bindungsgleichungen auf numerischem Wege erfolgen oder eine vollelastische
Modellierung vorgenommen werden. Durch eine vollelastische Modellierung lässt sich eine
höhere Modellgüte erreichen, das Lösen der steifen Differentialgleichungen ist aber mit
hohem Rechenaufwand verbunden. Bei der numerischen Lösung der Bindungsgleichungen
ist das Finden der zutreffenden Lösung der nichtlinearen Gleichungen problematisch
[Ril94].

Einen Aufschluss über den Anteil der verschiedenen Aufhängungskonzepte in den 2005
und 2010 produzierten Fahrzeugen gibt Bild 2-30.

(a) Vorderachse (b) Hinterachse

Bild 2-30: Anteil der Achstypen in den weltweit 2005 und 2010 produzierten Fahrzeugen
bis 3,5 t Gesamtmasse [EG17, S. 741]

Während bei den Hinterachsen viele verschiedene Konzepte konkurrieren, wurde bei etwa
drei Viertel aller Fahrzeuge eine Vorderachse nach dem MacPherson-Prinzip verbaut.
Die MacPherson-Radaufhängung wurde 1949 durch Earle Steele MacPherson patentiert
[FMC51]. Bild 2-31 zeigt ein Schema des Aufhängungskonzepts.

Bei dieser Aufhängungsvariante werden zwei FHG über das (MacPherson-) Federbein
eingeschränkt. Das Dämpferrohr ist fest mit dem Radträger verbunden. Auf ihm wird
auch die Aufbaufeder abgestützt. Die Verbindung zwischen der Dämpferstange und dem
Fahrzeugaufbau im sog. Federdom besteht in einem Elastomerlager, das häufig als Ku-
gelgelenk abstrahiert wird. Zwei weitere FHG werden durch einen Querlenker gesperrt.
Der Querlenker ist bei der realen Radaufhängung nicht über ein Drehgelenk, sondern
über zwei Elastomerlager mit dem Fahrzeugaufbau verbunden. Außerdem ist der Radträ-
ger über einen Stablenker, die sog. Spurstange, mit dem Lenkgestänge verbunden. Als
Abwandlung des MacPherson-Federbeins existiert auch die Variante des Dämpferbeins.
In diesem Fall wird die Aufbaufeder nicht auf dem Dämpferrohr, sondern z. B. auf dem
Querlenker abgestützt. Die wesentlichen Vorteile dieses Aufhängungskonzepts bestehen
in der kompakten und kostengünstigen Bauweise, der relativ geringen Masse und den
günstigen Radführungseigenschaften.
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Radnabe
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Bild 2-31: Schematische Darstellung der MacPherson-Einzelradaufhängung

Die MacPherson-Radaufhängung gehört zu denjenigen Konzepten, deren Kinematik sich
auch bei Annahme idealisierter Gelenke analytisch lösen lässt. Der gesamte Mechanismus
besitzt drei FHG, die die Hub-, Abroll- sowie Lenkbewegung des Rades ermöglichen.
Ein MKS-Modell einer solchen Radaufhängung ohne Berücksichtigung des Stabilisators
besitzt hingegen typischerweise 13 FHG. nI = 2 dieser 13 FHG sind isolierte FHG, da
sich sowohl die Dämpfer- als auch die Spurstange um ihre Längsachse drehen können,
ohne dadurch die Bewegung des Mechanismus (maßgeblich) zu beeinflussen. Abzüglich
der isolierten FHG besitzt die Einzelradaufhängung also f = 11 FHG, was sich auch
durch Anwendung von Formel (A2-1) berechnen lässt: der Mechanismus besitzt insgesamt
nK = 6 Starrkörper (Radnabe, Radträger inkl. Dämpferrohr, Dämpferstange, Querlenker,
Spurstange, Lenkgestänge), die über nG = 6 Gelenke verbunden sind. Dies sind

• das Drehgelenk zwischen Radnabe und Radträger,

• die drei Kugelgelenke zwischen dem Radträger und dem Querlenker bzw. der Spur-
stange sowie zwischen der Spurstange und dem Lenkgestänge,

• das Drehschubgelenk zwischen Dämpferrohr und -stange sowie

• das Schubgelenk, über das das Lenkgestänge mit dem Fahrzeugaufbau gekoppelt ist.

Sowohl der Querlenker als auch die Dämpferstange sind über Elastomerlager an den
Fahrzeugaufbau gekoppelt, die keine (ideale) Zwangsbedingung herbeiführen und die
Anzahl der FHG gegenüber idealen Gelenken erhöht. Somit ergeben sich insgesamt nZ = 23
Zwangsbedingungen und damit f = 11 FHG.

In der Literatur finden sich verschiedene Ansätze, um die Kinematik und Dynamik der
MacPherson-Einzelradaufhängung zu beschreiben. Sie unterscheiden sich je nach An-
wendungszweck erheblich in ihrer Komplexität und reichen von einfachen linearen und
eindimensionalen Modellen hin zu detaillierten dreidimensionalen Modellen.

Der klassische, eindimensionale Modellansatz für eine Einzelradaufhängung ist das Vier-
telfahrzeugmodell. Dabei handelt es sich um einen Zweimassenschwinger, wobei sich die
beiden Massen, Fahrzeugaufbau und Rad, ausschließlich vertikal bewegen können. Das
Modell besitzt demnach zwei FHG. Ein Literaturbeispiel für das klassische Viertelfahrzeug-
modell ist [MY11]. Dort wird die Güte eines solchen Modells mit linearer Parametrierung
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mit der eines nichtlinear parametrierten Modells durch den Vergleich mit Messungen an
einem Viertelfahrzeugprüfstand mit MacPherson-Einzelradaufhängung gegenübergestellt.
Das nichtlinear parametrierte Modell zeigt wesentlich bessere Übereinstimmungen mit den
Messwerten. Der Vorteil des eindimensionalen Modellansatzes besteht in dessen Einfach-
heit und der damit verbundenen minimalen Berechnungszeiten. Ein wesentlicher Nachteil
besteht in der Vernachlässigung der nichtlinearen Radaufhängungskinematik.

Die Kinematik lässt sich näherungsweise durch die Verwendung eines zweidimensionalen
Modells für die Radaufhängung berücksichtigen. In der Literatur existieren zahlreiche zwei-
dimensionale Modellierungen der MacPherson-Radaufhängung. Diese Modelle verfolgen
das Ziel, die Modellgüte für spezifische Anwendungsfälle zu erhöhen. Bei allen Modellen
dieser Art zeigt die Normale der Betrachtungsebene in Fahrzeuglängsrichtung, sodass von
vorne oder hinten auf die Radaufhängung geschaut wird. Bestimmendes Merkmal dieser
Modelle ist die Berücksichtigung der idealisiert kreisförmigen Bewegungsbahn des Ver-
bindungspunkts von Querlenker und Radträger. Dieser resultiert aus der vereinfachenden
Annahme, dass der Querlenker über ein Drehgelenk an den Fahrzeugaufbau gekoppelt
ist. Ein relativ frühes Beispiel für ein solches Modell ist in [SAK94] gegeben. Es enthält
zusätzlich ein Modell für das Elastomerlager im Federdom, wodurch es insgesamt drei
FHG besitzt. Außerdem berücksichtigt es weitere Nichtlinearitäten wie die Endanschläge
und das richtungsabhängige Verhalten des Stoßdämpfers. Dieses Modell wird mit seiner
Taylor-Approximation 1. Ordnung sowie einem sehr vereinfachten eindimensionalen Mo-
dell verglichen. Das eindimensionale Modell weist dort nur geringe Abweichungen zu
den anderen beiden Modellen auf und wird für die meisten Anwendungsfälle als hinrei-
chend befunden. Ein weiterer Vergleich von ein- und zweidimensionalem Modellansatz
findet sich in [SAS11]. Ein ebenfalls zweidimensionales Modell für die Radaufhängung
ist in [HJS99] dokumentiert. Es verwendet zwei generalisierte Koordinaten: die Hubbe-
wegung des Aufbaus sowie die Drehung des Querlenkers um seine Drehachse durch die
beiden Lagerungspunkte an der Karosserie. Das Modell wird sowohl in der genannten
Veröffentlichung als auch in den Folgearbeiten [SHH00; HSH02; SHHY04] für den Re-
gelungsentwurf für einen semiaktiven Dämpfer verwendet. Die Erprobung der Verfahren
erfolgt im Rahmen einer HiL-Simulation mit real aufgebautem, semiaktivem Dämpfer.
Ein sehr ähnliches Modell mit den gleichen FHG wird in [FBX08] aufgestellt. Während
im Modell in [HJS99] das Federbein auf dem Querlenker abgestützt wird, ist es in dieser
Quelle direkt mit dem Radträger verbunden. In den Folgearbeiten [FBX09; FBX10] wird
es ebenfalls im Rahmen der Regelungssynthese für einen semiaktiven Dämpfer eingesetzt.
Auch in den Quellen [DC16; DCC16] sind sowohl das Modell als auch der Einsatzzweck
vergleichbar. In [YC17] wird ein solches Modell und seine linearisierten Gleichungen
mit einem Viertelfahrzeugmodell sowie einem zweidimensionalen ADAMS-MKS-Modell
verglichen. Die Vergleiche erfolgen auch für entsprechend erweiterte Halbfahrzeugmodelle.
Abweichend von den bisher genannten Quellen werden in [HMG12] die vertikale Bewe-
gung des Radträgers und des Aufbaus als generalisierte Koordinaten verwendet. Vergleiche
mit einem zweidimensionalen ADAMS-MKS-Modell zeigen gute Übereinstimmungen.
Das entwickelte Modell wird in [HMG13] für die Analyse der Radaufhängungskinema-
tik und -dynamik verwendet. Ein derartiges Modell wird auch in [ING16] eingesetzt,
um das Potenzial des Markow-Entscheidungsprozesses für die aktive Fahrwerkregelung
aufzuzeigen.
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Im Gegensatz zu den ein- und zweidimensionalen Modellen finden sich nur wenige Ar-
beiten, in denen die MacPherson-Radaufhängung als räumlicher Mechanismus betrachtet
wird. Die kinematischen Zwangsbedingungen der räumlichen Radaufhängungskinematik
werden z. B. in [FBX10] und [MLV04; ML12] aufgestellt und mithilfe des iterativen
Newton-Raphson-Verfahrens numerisch gelöst. In [ML12] wird damit ein virtueller Fahr-
zeugkinematikprüfstand aufgebaut, in [FBX10] wird die Auswirkung aktiver Fahrwerk-
eingriffe auf die Radbewegung analysiert. Das Newton-Raphson-Verfahren besitzt einige
Nachteile, z. B. ist nicht sichergestellt, dass das Verfahren konvergiert und es ist unklar,
ob die unter vielen möglichen vom Verfahren gefundene Lösung die gesuchte ist. Aus
diesem Grund wird in [RKCB16] statt des iterativen Newton-Verfahrens die symbolische
Berechnung der Gröbner-Basis der kinematischen Zwangsbedingungen eingesetzt. Ein
weiteres Anwendungsbeispiel für ein Kinematikmodell der Radaufhängung ist [HSS08],
das zur Optimierung der Radaufhängungskonstruktion mithilfe genetischer Algorithmen
verwendet wird. Die Zielsetzung besteht dabei darin, ungewünschte Lenkwinkeländerun-
gen durch den abrollenden Reifen, z. B. beim Überfahren von Hindernissen, zu minimieren.
Explizite Gleichungen für die räumliche Radaufhängungskinematik in Abhängigkeit zwei-
er generalisierter Koordinaten wurden erstmalig durch Cronin [Cro81] beschrieben. Wie
bei den zweidimensionalen Modellen wird auch in dieser Quelle angenommen, dass der
Querlenker über ein Drehgelenk mit dem Fahrzeugaufbau verbunden ist. Als generalisierte
Koordinaten werden der Drehwinkel dieses Gelenks (zur Beschreibung der Einfederung
des Rades) sowie die Verschiebung des Lenkgestänges verwendet. In [JB98; CB03] werden
die Gleichungen aufgegriffen und versucht, die dynamischen Parameter des Mechanismus
zu identifizieren. Die gleichen generalisierten Koordinaten wie in [Cro81] werden auch
für das in [Unt13; SHB18] dokumentierte Modell der Radaufhängung verwendet. Das
wohl detaillierteste Modell wurde durch Rill [Ril94] entwickelt. Gegenüber den zuvor
genannten Quellen besitzt der Querlenker dort einen weiteren Dreh-FHG um die vertikale
Achse durch das (in Fahrtrichtung betrachtet) vordere Elastomerlager, über welches das
Verhalten des hinteren Elastomerlagers näherungsweise im Modell berücksichtigt wird. An
dieser Stelle werden zur Steigerung des Fahrkomforts üblicherweise relativ weiche Lager
verbaut [WR11]. Durch das Hinzufügen dieses dritten FHG kann die Elastokinematik der
Radaufhängung folglich besser abgebildet werden. Das Modell wird in der genannten
Quelle als Teil eines PKW-Fahrdynamikmodells verwendet.

2.3.3 Elastomerlager

Anstelle (nahezu) idealer Gelenke befindet sich in einer Radaufhängung (je nach Bauart)
eine bestimmte Anzahl an nachgiebigen Elastomerlagern. Im Falle der im Prüfstand
verbauten Achse liegen je Achsseite drei Elastomerlager vor. Dies sind zum einen die zwei
zylindrischen Elastomerlager, die den Querlenker mit dem Fahrzeugaufbau verbinden.
Nach [EG17] sind hierfür auch die Begriffe Hülsenlager, Lenkerlager und Silentbloc
gebräuchlich. Das dritte Elastomerlager befindet sich im Federdom. Je nachdem, ob ein
Feder- oder ein Dämpferbein vorliegt (Unterscheidung siehe Abschnitt 2.3.2), wird dieses
Lager laut [EG17] als Federbeinstützlager oder Dämpferlager bezeichnet (auch Kopflager,
Top-Mount). Bild 2-32 zeigt einige Beispiele für beide genannten Lagertypen. Abgesehen
davon kommen Elastomerbauteile in Form des Zug- und Druckanschlags zur Begrenzung
des Feder- bzw. Dämpferwegs zum Einsatz.
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(a) Lenkerlager (b) Federbeinstützlager (a-c)
bzw. Dämpferlager (d-f)

Bild 2-32: Exemplarische Ausführungen verschiedener Elastomerlager [EG17]

Die mechanischen Eigenschaften der Elastomerlager können durch gezielte Zusammenset-
zung des Materials, durch spezielle Fertigungsabläufe und durch konstruktive Maßnahmen
weitgehend beeinflusst werden. Wird bspw. ein Lenkerlager rotationssymmetrisch aufge-
baut, so hat es eine Haupt- sowie zwei sich gleich verhaltende Nebenrichtungen. Durch
Einvulkanisieren von Blechen oder Aussparungen im Elastomer (siehe hierzu auch Bild
2-32a), lassen sich gezielt unterschiedliche Radialraten einstellen. Im Vergleich zu einem
idealen Drehgelenk lassen Lenkerlager auch die „kardanische Verformung“ zu, d. h. klei-
nere Drehungen um andere Achsen, die nicht der Lager-Hauptachse entsprechen [Mat07,
S. 117].

Elastomerlager besitzen viele Vorteile gegenüber starr ausgeführten Gelenken. Sehr häufig
wird hier die erhebliche Verbesserung des NVH-Verhaltens des gesamten Fahrzeugs
genannt, die sich aus den guten schall- und schwingungsdämpfenden Eigenschaften des
Elastomerwerkstoffs ergibt. Elastomerlager besitzen Nachgiebigkeiten in allen Richtungen,
führen zu einer geringeren Bauteilbelastung durch den Abbau niederfrequenter Stoßkräfte
und können kurzzeitig überlastet werden. Außerdem sind sie wartungsfrei und sehr robust,
d. h. wenig anfällig in Bezug auf Wasser und Verunreinigungen. Zu guter Letzt sind
sie sehr kostengünstig. Nachteilig ist die Alterung des Elastomermaterials sowie die
Temperaturabhängigkeit der Lager. [EG17]

Die Auslegung der Elastomerlager geschieht meist vor dem Hintergrund einer gewünschten
Elastokinematik der Radaufhängung. Hierdurch können der Fahrkomfort, die Fahrsicher-
heit sowie das Fahrverhalten des Fahrzeugs verbessert werden. Als weiteres Ziel besteht
die Umsetzung einer gewünschten Geräuschisolation.

Liegen größere Federwege vor, so kann ein Elastomerlager um eine hydraulische Dämp-
fung ergänzt werden. Bei dem Querlenkerlager, das die Längsbewegung des Rades abfedert,
handelt es sich um ein solches sog. Hydrolager. Bild 2-33 veranschaulicht dessen Funkti-
onsweise.

Die hydraulisch gedämpfte Federrichtung des Lagers ist durch den blauen Pfeil angedeutet.
Oben und unten befindet sich jeweils eine mit Flüssigkeit gefüllte Kammer, die durch einen
Kanal miteinander verbunden sind. Erfolgt eine Anregung in der eingetragenen Richtung,
so fließt die Flüssigkeit von der einen in die andere Kammer. Die Flüssigkeit im Kanal
stellt eine schwingende Masse dar.



2.3 Modellierung und Simulation von Achsprüfungen 75

Bild 2-33: Hydraulisch gedämpftes Lenkerlager ohne Außenhülse [EG17, S. 229]10

Elastomerlager mit hydraulischer Dämpfung können auch aktuiert werden. An Lenkerla-
gern gibt es diese Anwendung bisher selten. An Motorlagern, wo solche Lager ebenfalls
eingesetzt werden, gibt es hingegen bereits derartige Aktorik [Mat07, S. 117].

Elastomerlager besitzen ein stark frequenzabhängiges Verhalten, sodass die Abbildung
über eine Parallelschaltung aus Feder und Dämpfer (sog. Kelvin-Voigt-Modell) nicht aus-
reicht. Zur Beschreibung des Bauteilverhaltens wird meist eine Kombination verschiedener
Materialmodelle eingesetzt. Die drei grundlegenden Modelle sind:

• Hooke-Element (Feder) zur Abbildung idealer Elastizität,

• Newton-Element (Dämpfer) zur Abbildung idealer Viskosität und

• St.Venant-Element (Reibelement) zur Abbildung idealer Plastizität.

Für die Abbildung des Elastomerverhaltens nennt Rill [Ril12] die parallele Anordnung
einer Feder und eines oder mehrerer Maxwell-Elemente (Reihenschaltung aus Feder und
Dämpfer). Amelunxen [Ame14] nennt als weiteres zur Kombination verwendetes Mate-
rialmodell das Jenkin-Element (auch Prandtl-Element), einer Reihenschaltung aus einer
Feder und einem Reibelement. Sowohl die Alterung als auch die Temperaturabhängigkeit
der Lager werden typischerweise nicht berücksichtigt.

Bild 2-34 zeigt den Vergleich eines einfachen Elastomerlagermodells, das in [MW14] als
Gehmann-Modell bezeichnet wird, mit einem Kelvin-Voigt-Modell.

Gegenüber dem Kelvin-Voigt-Modell sind die Steifigkeit und Dämpfung des Gehmann-
Modells frequenzabhängig. Die dynamische Steifigkeit und Dämpfung lauten

c∗ = c1 + c2 ·
(
dω
c2

)2

/

1 +

(
dω
c2

)2 , d∗ = d/
1 +

(
dω
c2

)2 . (2-119)

Aus den Gleichungen geht hervor, dass die dynamische Steifigkeit c∗ für hohe Frequenzen
gegen die Summe der beiden Federkonstanten und die dynamische Dämpfung d∗ gegen
Null strebt. Für kleine Frequenzen nähern sich die beiden Werte denen des Kelvin-Voigt-
Modells (c1, d) an. Mit steigender Frequenz unterscheidet sich das Verhalten des Gehmann-
Modells daher zunehmend von dem des Kelvin-Voigt-Modells.
10Im abgedruckten Bild wurde die Kennzeichnung der Kammer in der rechten Abbildung gegenüber

dem Original korrigiert.
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Bild 2-34: Vergleich von Kelvin-Voigt- und Gehmann-Modell, nach [MW14]

Ein solches Gehmann-Modell wird in der zuvor genannten Quelle [SAK94] zur Modellie-
rung des Federbeinstützlagers eingesetzt. In [Ril97; Ril12] wird lediglich ein Maxwell-
Element für die Modellierung des Stoßdämpfers (Dämpfer) inklusive des Dämpferlagers
(Feder) verwendet.

Bei weiterführenden Elastomerlagermodellen werden die drei Grundmodelle (Feder, Dämp-
fer, Reibelement) teils beliebig kombiniert und um weitere Kraftanteile erweitert. Ein
Beispiel hierfür ist das Modell nach Pfeffer [PH02], das in [SLK13] aufgegriffen wird.
Hier kommt neben einem linearen Teilsystem aus zwei Federn und zwei Dämpfern auch
ein nichtlinearer Kraftanteil (eine Logarithmusfunktion) zur Abbildung der Amplitudenab-
hängigkeit hinzu. Weitere Beispiele sind [SDR10; YB10; Ber98]. Einen Überblick über
ältere Literatur zum Thema enthält die Dissertation von Troulis [Tro02], der nach umfas-
sender Recherche das Modell nach Berg [Ber98] für sein MKS-Modell einer MacPherson-
Radaufhängung (für den komfortrelevanten Frequenzbereich 0-100 Hz) verwendet.

Die bisherigen Ausführungen haben die eindimensionale Modellierung von Elastomerla-
gern betrachtet. Um das sechsdimensionale Elastomerverhalten (je drei Verschiebungen
und Verdrehungen) gut zu beschreiben, werden üblicherweise FE-Modelle verwendet.
Aufgrund des damit verbundenen Rechenaufwands werden sie in MKS-Simulationen
stattdessen näherungsweise über sechsdimensionale Kontaktelemente abgebildet. In MKS-
Programmen werden diese Elemente als „Bushings“ bezeichnet. Die Richtungen werden
als entkoppelt betrachtet, wobei jede Richtung eine Steifigkeit und Dämpfung aufweist.
Häufig werden nichtlineare Kraft-Weg- bzw. Kraft-Geschwindigkeits-Kennlinien hinterlegt.
Hinzu kommen sechs Kraft- oder Wegoffsets zur Berücksichtigung von Vorspannungen.
Bei hochfrequenter Anregung besitzen diese vereinfachten Modelle nur eingeschränkte
Gültigkeit. [BH15; SHB18]

Bei kleinen Auslenkungen kann auch eine konstante Parametrierung anstelle von Kennlini-
en verwendet werden. Weisen die beiden Nebenrichtungen die gleichen Eigenschaften auf,
sind in diesem Fall 12 Parameter erforderlich. Sonst erhöht sich die Anzahl der Parameter
auf 18. Bei nichtlinearer Parametrierung sind 8 bzw. 12 Kennlinien und 4 bzw. 6 konstante
Offsets erforderlich. Abweichend hiervon gibt es Quellen, in denen die Dämpfungen als
konstant angenommen werden [Ada14]. Über die genannten Parameter hinaus muss für
jedes Elastomerlager die Einbauposition und -orientierung im Modell hinterlegt werden.
In Summe besitzt ein Elastomerlager also bis zu 24 durch Kennlinien oder Konstanten zu
parametrisierende Eigenschaften.
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Die Steifigkeiten und Dämpfungen beziehen sich immer auf die Relativverschiebung
bzw. -geschwindigkeit der beiden durch das Lager verbundenen Körper, ausgedrückt in
lokalen Lagerkoordinaten. Aus der Matrix der Relativverdrehung dieser beiden Körper
werden die XYZ-Kardanwinkel berechnet (vgl. Anhang A1.4), die als Eingang für die
Drehmomentberechnung des Kontaktmodells dienen. Die Berechnung der Relativgrößen
wird bspw. in [RS17, S. 36] beschrieben.

In zwei der in Abschnitt 2.3.1 genannten Quellen sind auch Angaben zu der Parametrisie-
rung der Elastomerlager enthalten. In [WJB07] wurden gemessene Kraft-Weg- bzw. Kraft-
Geschwindigkeits-Kennlinien verwendet. Ein Beispiel für die Verwendung konstanter
Dämpfungen und gemessener Kraft-Weg-Kennlinien ist mit [LE00] gegeben. Eine weitere
Quelle, in der die Modellierung der Elastomerlager explizit genannt wird, ist [KSH+15].
Darin wird ein dreidimensionales Elastokinematikmodell für die Doppelquerlenkerauf-
hängung inklusive vier Elastomerlagern beschrieben. Die Elastomerlager werden dabei
lediglich über je drei Linear- und Drehfedern modelliert. Auch dort kommen die XYZ-
Kardanwinkel als Eingangsgröße des Elastomermodells zum Einsatz.

Bei Troulis [Tro02] erfolgt die Übertragung des eindimensionalen, komplexeren Modells
nach Berg [Ber98] durch die einfache „Verkettung“ dreier solcher translatorischer Modelle
sowie eines Drehgelenks.

2.4 Zusammenfassung

Dieses Unterkapitel fasst die Ergebnisse der Literaturrecherche zusammen.

Hinsichtlich konventioneller Achsprüfstände lässt sich festhalten, dass diese hauptsächlich
dem Zweck der Betriebsfestigkeitsprüfung dienen. Um die Prüfzeiten gering zu halten,
erfolgt die Betriebsfestigkeitsprüfung nicht bei betriebstypischen, sondern deutlich an-
spruchsvolleren Lastsituation, z. B. Schlechtwegstrecken. Daraus ergeben sich besonders
hohe Anforderungen an die Dynamik der eingesetzten Aktorik. Die Zielgrößen der Prüf-
standsversuche, die sog. Target-Signale, sind bspw.

• die Kräfte und Momente auf die Radträger,

• die Belastung einzelner Lenker und der Federdomlager sowie

• die zurückgelegten Dämpferwege.

Sie werden mindestens bis zu einer Frequenz von 50 Hz nachgebildet. Die Stellsignale
der Antriebe, die sog. Drive-Signale, werden nicht mithilfe einer Regelung, sondern durch
den iterativen TWR-Algorithmus gebildet. Dabei handelt es sich um einen Sonderfall
der ILR. Nach Identifikation eines linearen Systemmodells in Form einer FRF erfolgt
die sog. Drive-File-Generierung. Unter Zuhilfenahme der FRF werden die Drive-Signale
durch wiederholte Prüfstandsversuche so lange systematisch angepasst, bis die Prüfstands-
messung eine hinreichend gute Übereinstimmung mit den Target-Signalen zeigt. Zur
Gütebeurteilung wird z. B. die relative Schädigung herangezogen. Das iterative Vorgehen
begründet sich mit dem nichtlinearen Verhalten sowohl des Prüflings als auch der eingesetz-
ten Aktorik. Die Durchführung der Prüfstandsversuche mit dem TWR-Algorithmus ist sehr
zeitaufwändig, es können jedoch sehr hohe Güten bei der Abbildung von Target-Signalen
auch ohne vertieftes Modellwissen erreicht werden. Verschiedenste Weiterentwicklungen
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des Verfahrens zielen auf die Verbesserung der Konvergenzgeschwindigkeit und damit eine
Reduktion des hohen Zeitaufwands der Prüfstandsversuche ab; die Implementierung einer
Regelung anstelle des TWR-Algorithmus ist nur für sehr einfache Beispiele dokumentiert.
Der Einsatz des Verfahrens für eine mechatronische HiL-Simulation scheidet aufgrund
des iterativen Vorgehens aus. Eine echtzeitfähige, schnelle Regelung würde die Entwick-
lungszeiten und -kosten in der Achsprüfung erheblich senken. Auch die Vorschädigung
des Prüflings durch den Iterationsvorgang würde dabei entfallen.

Die Verfahren zur Interaktionsregelung aus der Robotik unterteilen sich in die indirekten
und direkten Kraftregelungen. Mithilfe der indirekten Kraftregelungsverfahren wird er-
reicht, dass der Manipulator ein gewünschtes Bewegungsverhalten bei Umgebungskontakt
aufweist. Beispielsweise ist das Zeitverhalten des Positionsregelfehlers bei der Impedanz-
regelung mit einem Feder-Masse-Dämpfer-System vergleichbar, dessen Eingangsgröße
die Kontaktkraft zur Umgebung ist. Die indirekten Verfahren eignen sich nicht für das
gezielte Einstellen eines gegebenen Sollkraft-Zeitverlaufs und scheiden daher für die hier
betrachtete Anwendung aus. Ein gewünschter Kraft-Zeitverlauf lässt sich hingegen mit
einer direkten Kraftregelung realisieren. Hier sind vor allem die parallele Kraft-/Positi-
onsregelung sowie die hybride Kraft-/Positionsregelung zu nennen. Bei der parallelen
Kraft-/Positionsregelung handelt es sich um eine Kraftregelung mit unterlagerter Positi-
onsregelung. Sowohl Kraft- als auch Positionsregelung erhalten einen Sollwert, wobei
die Kraftregelung priorisiert wird. Es erfolgt keine Entkopplung der kraftgeregelten FHG;
bedingt durch die unterlagerte Positionsregelung sind außerdem relativ geringe Band-
breiten für die Kraftregelung zu erwarten. Ein genaues Modell der Umgebung ist nicht
erforderlich. Es tritt nur mittelbar bei der Auslegung der Kraftregelung in Erscheinung.
Das Konzept der hybriden Kraft-/Positionsregelung nach Raibert und Craig [RC81] sieht
vor, die unbeschränkten FHG eines Manipulators positionsgeregelt, die beschränkten kraft-
geregelt zu betreiben. Zu diesem Zweck werden zwei unabhängig voneinander entworfene
Regler für die Kraft und die Position mithilfe einer Selektionsmatrix kombiniert. Bei der
Selektionsmatrix handelt es sich um eine binäre Diagonalmatrix, mit der zwischen den
beiden Regelungen gewählt werden kann. Die Auswahl ist nicht etwa beliebig, sondern
ergibt sich aus den durch die Umgebung gesetzten Rahmenbedingungen. Die hybride
Kraft-/Positionsregelung mit binärer Selektionsmatrix unter Einbeziehung des Manipula-
tormodells wurde durch Khatib [Kha87] angegeben. Die ideale Entkopplung gelingt damit
allerdings nur für einfachste Kontaktsituationen, bei denen eine Aufteilung der kraft- und
positionsgeregelten Richtungen über eine binäre Selektionsmatrix möglich ist. Eine ideale
Entkopplung von kraft- und positionsgeregelten Richtungen gelingt theoretisch nur durch
Einbeziehung weiterer Informationen in die Regelungssynthese. Dies können bspw. die
Gleichungen der durch die Umgebung gesetzten kinematischen Zwangsbedingungen an
die Bewegung des Manipulators sein. Den Entwurf entkoppelnder Regler für diesen Fall
haben z. B. Yoshikawa [Yos87], McClamroch und Wang [MW88] sowie Aghili [Agh05]
beschrieben. Der Regelungsentwurf für Kontaktsituationen, in denen (wie im hier betrach-
teten Fall) auch die Umgebung ein dynamisches Verhalten besitzt, wurde von de Luca und
Manes [LM94] durchgeführt. Neben zwangsläufig entweder positions- oder kraftgeregelten
Richtungen ergibt sich in diesem Fall die Möglichkeit, die verbliebenen Richtungen entwe-
der mit einer Kraft- oder einer Positionsregelung zu betreiben. Auch hier gilt, dass eine
Entkopplung nur bei einem idealen Modell, idealer Messung bzw. Beobachtung relevanter
Größen sowie in Abwesenheit von Störgrößen ideal gelingt. Featherstone [Fea03; Fea04]
konnte zeigen, dass sich bei Wahl spezifischer Regelgrößen auch entkoppelnde Regelungen



2.4 Zusammenfassung 79

mit einem gegenüber [LM94] reduzierten Modellwissen erzielen lassen. Die dort genann-
ten Regelgrößen sind für die hier betrachtete Anwendung allerdings weniger brauchbar.
Featherstone, Sonck und Khatib [FSK98] beschreiben außerdem einen Regelungsansatz
für Kontaktsituationen mit mehreren Kontaktstellen.

Sowohl die indirekten als auch die direkten Kraftregelungsverfahren basieren auf vielen
vereinfachenden Annahmen, die bei praktischen Anwendungen nur teilweise erfüllt sind.
Im Gegensatz zur Positionsregelung muss für die Beurteilung einer Kraftregelung anhand
der üblichen Kriterien (z. B. Bandbreite, Stabilität) neben dem Manipulatormodell auch das
Umgebungsmodell einbezogen werden [SK16]. Es ist offensichtlich, dass das angenomme-
ne Umgebungsmodell generell eine sehr hohe Bedeutung für die Kraftregelungssynthese
besitzt. Zur Anwendung sowohl der indirekten als auch der direkten Kraftregelungsver-
fahren bei PKM existieren einige Literaturbeispiele. Viele der Beispiele beschränken sich
allerdings auf Simulationen. Liegt eine experimentelle Validierung vor, handelt es sich
entweder um sehr einfache Kontaktsituationen (z. B. ebene Kontaktflächen) und/oder die
erreichten Regelungsbandbreiten sind relativ gering. Es existieren keine Beispiele, bei
denen die leistungsfähigen Regelungsmethoden, z. B. nach de Luca und Manes [LM94],
angewendet werden.

Die Modellierung und Simulation von Achsprüfungen ist auch in der Industrie keine
Seltenheit und gewinnt zunehmend an Bedeutung. Die Zielsetzungen sind vielfältig. Hierzu
zählen

• die numerische Betriebsfestigkeitsanalyse,

• die Verbesserung von Komponentenmodellen durch Abgleich mit Prüfstandsmes-
sungen,

• die (Weiter-) Entwicklung von Systemidentifikation und Target-Simulation (insb. der
Iterationsstrategie),

• die Synthese neuer Prüfkonzepte sowie

• die virtuelle Drive-File-Generierung.

Allen in Abschnitt 2.3.1 genannten Beispielen ist gemein, dass das mechanische Grund-
system, z. B. die Anregungseinheiten und der Prüfling, durch ein topologieorientiertes
MKS-Modell in der Simulationsumgebung eingebunden sind. Die für die Simulation erfor-
derlichen Modelle werden als sehr komplex beurteilt. Ihre Güte, insb. die der Elastomer-
und Radaufhängungsmodelle, ist entscheidend für die erfolgreiche Simulation von Ach-
serprobungen. Die Herleitung von Bewegungsgleichungen für ein vollständiges System
aus Aktorik und Prüfling ist nicht dokumentiert. Für das Aufstellen der Bewegungsglei-
chungen für die MacPherson-Radaufhängung existieren zahlreiche Literaturbeispiele, von
denen sich die meisten allerdings auf einfache ein- oder zweidimensionale Modelle der
Radaufhängung beschränken. Der grundlegenden Arbeit zur räumlichen Kinematik der
Radaufhängung von Cronin [Cro81] folgend ist hier vor allem das Modell nach Rill [Ril94]
zu nennen. Dort besitzt der Mechanismus neben der Drehung des Querlenkers (Einfede-
rung) und der Verschiebung der Lenkstange (Lenkbewegung) einen elastischen FHG zur
näherungsweisen Berücksichtigung der Elastizität der Querlenkerlager. Die Radnabe be-
sitzt gegenüber dem Radträger einen weiteren FHG (Abrollbewegung). In der im Prüfstand
verbauten Radaufhängung sind (pro Achsseite) drei Elastomerlager verbaut. Das Verhal-
ten von Elastomerlagern ist stark frequenzabhängig; eine Modellierung mithilfe eines
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Kelvin-Voigt-Modells (Parallelschaltung aus Feder und Dämpfer) ist unzureichend. In der
Literatur sind deshalb verschiedene Ansätze dokumentiert, in denen z. B. Federn, Dämpfer
und Reibelemente auf unterschiedliche Weise kombiniert werden, um das Verhalten besser
abzubilden. Diese genaueren Modelle betrachten meist nur eine einzelne Richtung. Eine
gute Abbildung des räumlichen Verhaltens von Elastomerlagern mit drei translatorischen
und drei rotatorischen FHG ist bspw. mit der FE-Methode möglich. In MKS-Modellen wird
dagegen häufig auf Kennlinien für die Kraft-Weg- sowie die Kraft-Geschwindigkeits-Cha-
rakteristik zurückgegriffen, deren Gültigkeit in höheren Frequenzbereichen eingeschränkt
ist.

2.5 Handlungsbedarf und Konkretisierung der Zielsetzung

Der Stand von Technik und Forschung offenbart einigen Handlungsbedarf. Die mit dem
hier betrachteten Prüfsystem angestrebte mechatronische HiL-Simulation erfordert eine
hinreichend schnelle Regelung der Anregungseinheiten. Der Regelungsentwurf kann weder
von anderen HiL-Prüfständen noch von konventionellen Achsprüfständen übernommen
werden. Dies begründet sich damit, dass HiL-Prüfstände in der Fahrwerktechnik bisher
nur für sehr einfache Anwendungsfälle mit meist eindimensional arbeitender Aktorik
existieren, siehe z. B. [YF11]. Beispiele für HiL-Prüfstände mit mehrdimensional arbeiten-
der, geregelter Aktorik sind nicht dokumentiert. Konventionelle Achsprüfstände arbeiten
mit einer iterierten Vorsteuerung, die sich prinzipbedingt nicht für Echtzeitanwendungen
eignet. Eine Regelung, mit der Target-Signale bis zu mindestens 50 Hz hinreichend gut
nachgebildet werden können, existiert nicht. Folglich muss eine neuartige Regelung für
das betrachtete System entwickelt werden.

Der Entwurf eines leistungsfähigen Reglers setzt ein detailliertes Modell der Regelstrecke
voraus. Es dient der modellbasierten Synthese und Erprobung der Regelung und kann
darüber hinaus als Teil des Reglers von großem Nutzen sein. Besondere Bedeutung haben
im Falle eines mechanischen Systems die Bewegungsgleichungen der Regelstrecke. Im hier
betrachteten Fall schließt das mechanische System insb. den Hexapod, die MacPherson-
Radaufhängung sowie das Kraftmessrad ein. Für die MacPherson-Radaufhängung gibt es
bisher nur Modelle mit maximal drei FHG für den Radträger. Es muss untersucht werden,
ob dies für den Regelungsentwurf genügt. Zum Zweck des Regelungsentwurfs besteht
daher die Notwendigkeit, die Bewegungsgleichungen sämtlicher Teilsysteme herzuleiten
und so eine Grundlage für den modellbasierten Regelungsentwurf zu schaffen.

Das bereits in Abschnitt 1.3 genannte Ziel des Entwurfs einer Regelung für den Hexapod
im Achsprüfbetrieb lässt sich nun konkretisieren. Zu Beginn muss ein umfassendes Modell
der Regelstrecke erstellt und die Bewegungsgleichungen hergeleitet werden. Das Modell
der Radaufhängung soll die Elastomerlager, die eine große Bedeutung für die Modellgüte
haben, besser berücksichtigen als bisherige Modelle. Als Ausgangspunkt der Modellie-
rung eignet sich das Modell nach Rill [Ril94]. Insgesamt ist eine sehr hohe Modellgüte
anzustreben, da bei Verwendung des Modells im Regler (z. B. zur Herbeiführung einer
exakten Ein-/Ausgangslinearisierung) bessere Regelergebnisse zu erwarten sind. Die Her-
leitung der Bewegungsgleichungen sowohl für den Manipulator (Hexapod) als auch für die
MacPherson-Radaufhängung stellt aufgrund der hohen Komplexität dieser Mechanismen
eine große Herausforderung dar. Dies liegt an
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• dem nichtlinearen Zusammenhang der verschiedenen physikalischen Größen,

• den vorliegenden Wechselwirkungen zwischen diesen Größen,

• Systembestandteilen mit stark nichtlinearem Verhalten (z. B. Elastomerlager in der
Radaufhängung),

• der Vielzahl erforderlicher Modellparameter sowie

• der großen Anzahl an FHG.

Insbesondere die bisher dokumentierten Modelle bzw. Bewegungsgleichungen für die
MacPherson-Radaufhängung sind für die geplante Anwendung nicht hinreichend.

Die exakte Ein-/Ausgangslinearisierung ist für die Realisierung besonders leistungsfä-
higer Regelungen das Mittel der Wahl. Dies gilt selbstverständlich auch bei der Inter-
aktionsregelung von Manipulatoren. Die analytische Formulierung der hybriden Kraft-/
Positionsregelung führt die ideale Entkopplung der Regelgrößen herbei. Dieser Ansatz
wird in der vorliegenden Dissertationsschrift priorisiert verfolgt. Die Realisierung einer
Regelung nach de Luca und Manes [LM94] bietet sich dabei besonders an, da sie für die
Regelungsaufgabe mit diversen unterschiedlichen Target-Signalen als die ideale Lösung
erscheint. Theoretisch ist hiermit eine ideale Entkopplung von sechs Regelgrößen bei hoher
Regelungsbandbreite möglich. Durch den bei diesem Ansatz explizit berücksichtigten
dritten Subraum, in dem zwischen der Positions- und Kraftregelung gewählt werden kann,
bestehen Freiheiten bei der Festlegung der Regelgrößen. Beispielsweise sollte die freie
Wahl zwischen der vom Dämpfer zurückgelegten Verschiebungstrajektorie sowie der verti-
kalen Kraft möglich sein. Es ist zu prüfen, welche der in Abschnitt 2.1 genannten Target-
Signale konventioneller Achsprüfstände sich dabei als Regelgröße realisieren lassen. Auch
die spezifische Umsetzung dieses Regelungsansatzes für das betrachtete Prüfsystem ist zu
diesem Zeitpunkt noch nicht klar.

Nachteilig an der Regelung nach de Luca und Manes [LM94] ist, dass neben dem Manipu-
latormodell auch ein genaues Modell des Kontaktpartners erforderlich ist. Es sollen daher
auch andere Ansätze für das Zielsystem entworfen werden, die mit weniger Modellwissen
auskommen. Interessant ist vor allem die geometrische Formulierung der hybriden Kraft-/
Positionsregelung nach Khatib [Kha87]. Insbesondere bei Verwendung einer expliziten
Kraftregelung neben der Positionsregelung ist hier ebenfalls mit recht hohen Bandbreiten
zu rechnen. Diese Regelung ermöglicht ohne weitere Modifikation allerdings nur die Vorga-
be von Sollwerten für die Radträgergrößen, wobei keine ideale Entkopplung zwischen den
Größen vorliegt. Das gleiche Problem besteht bei der parallelen Kraft-/Positionsregelung
nach Chiaverini und Sciavicco [CS93]. Aufgrund ihrer Einfachheit in der Realisierung soll
sie auch für das Prüfsystem implementiert und mit den anderen beiden Reglern verglichen
werden. Aufgrund der unterlagerten Positionsregelung im Kraftregler ist allerdings mit
einer relativ geringen Bandbreite zu rechnen. Insbesondere bei diesem Regler besteht
die Frage, welches vereinfachte Ersatzmodell sich für die Auslegung der überlagerten
Kraftregelung eignet.

Die Regler werden vor allem anhand ihrer Bandbreite bewertet. Erreicht ein Regler eine
Bandbreite von mindestens 50 Hz für alle Regelgrößen, so wäre durch seine Verwendung
am Prüfstand theoretisch die Durchführung von Betriebsfestigkeitsuntersuchungen mög-
lich. Voraussetzung hierfür ist, dass eine Beschränkung auf sechs Regelgrößen (d. h. Target-
Signale) erfolgt. Genügt die Bandbreite nicht, kann ggf. ein angepasster TWR-Algorithmus
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entwickelt werden. Neben der gewünschten Dynamik des geschlossenen Regelkreises sind
auch die Stabilität und eine möglichst hohe Robustheit Anforderungen an die zu entwi-
ckelnde Regelung. Für ihre Anwendbarkeit am Prüfstand muss die Regelung außerdem
echtzeitfähig sein. Lunze [Lun16] nennt allgemein für Mehrgrößenregelungen darüber hin-
aus weitere Güteforderungen. Hierzu gehört bspw. eine schwache Verkopplung zwischen
den Regelgrößen sowie die Integrität des Regelkreises, d. h. stabiles Verhalten bei Ausfall
einzelner Sensoren oder Aktoren.

Die Arbeit schließt die Implementierung und Erprobung der Regelung auf dem Zielsystem
ein. Um den sicheren Betrieb des Prüfstands zu gewährleisten, ist gegenüber dem Simulati-
onsmodell eine umfangreiche Systemsteuerung und -überwachung erforderlich. Die zu
diesem Zweck im Rahmen dieser Arbeit umfassend weiterentwickelte Systemsteuerung
und -überwachung wird im Folgenden nicht explizit thematisiert.
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3 Vorbetrachtung an zweidimensionaler Kontaktsituation

Von den in Abschnitt 2.2.3 des Stands von Technik und Forschung genannten Regelungs-
verfahren gelingt ausschließlich den hybriden Kraft-/Positionsregelungen in analytischer
Formulierung eine ideale Entkopplung der bewegungs- und kraftgeregelten FHG einer
gegebenen Kontaktaufgabe. Nicht nur für die hier betrachtete Anwendung erscheinen sie
daher als das ideale Vorgehen für die Kontaktregelung.

Dieses Kapitel veranschaulicht sämtliche dieser Ansätze anhand einfacher, zweidimen-
sionaler Beispielsysteme. Im Zweidimensionalen gilt abweichend von den Angaben in
Abschnitt 2.2.3, dass λr ∈ R3−nd−nk . Hier wird angenommen, dass ein bilateraler Kontakt
zwischen Manipulator und Umgebung besteht, d. h. der Manipulator steht stets im Kontakt
zur Umgebung und kann sich nicht von dieser fortbewegen. Der Zweck dieses Kapitels
besteht in der Veranschaulichung der eher abstrakten Ausführungen in Abschnitt 2.2.3
anhand dieser einfachen Beispiele. Beispielsweise wird die Herleitung der Terme Sλr und
Syk für die Berechnung der Aktorkräfte (2-53) der hybriden Kraft-/Positionsregelung nach
[SK16] für das vorliegende Beispiel erläutert. Auf eine Darstellung der Regelergebnisse
für diese einfachen Beispielsysteme (z. B. in Form eines Vergleichs der Soll- und Ist-
Zeitverläufe der jeweiligen Regelgrößen) wird verzichtet, da sie für die weitere Arbeit
keine nennenswerte Relevanz besitzen.

Der erste Unterabschnitt dieses Kapitels betrachtet den Fall, in dem die Umgebung eine
kinematische Zwangsbedingung bewirkt. Im zweiten Unterabschnitt besitzt die Umgebung
zusätzlich eine nicht vernachlässigbare Dynamik. Zum Abschluss des Kapitels erfolgt
eine kurze Zusammenfassung. In beiden genannten Fällen wird ein zweidimensionales
Äquivalent des Hexapod als Manipulator betrachtet, siehe Bild 3-1.

y

z

0

Fq,1
Fq,2

Fq,3

Endeffektor

Fy

Fz Mx

α
T

Bild 3-1: Ersatzbild des Manipulators

Die Bewegungsgleichungen des Manipulators können in der Form (2-17) ausgedrückt
werden, d. h.

Mv (z) · v̇ + Cv (z, v) · v + gv (z) = J−T
g (z) · Fq − τ . (3-1)
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Hier werden die verallgemeinerten Positions-, Geschwindigkeits- und Kraftvektoren im
Punkt T , dem TCP,

z =


ry
rz
α

 , v = ż =


vy
vz
ωE,x

 , τ =


Fy
Fz
Mx

 (3-2)

verwendet. Die Eingangsgröße des Systems sind die Zylinderkräfte Fq. Auf die Angabe
der Terme für Mv, Cv, gv und J−T

g wird an dieser Stelle verzichtet. Bei Interesse ist die
Herleitung der Modellgleichungen in Anhang A5.2 gegeben.

3.1 Kinematische Zwangsbedingung

Bild 3-2 zeigt das physikalische Ersatzbild für die in diesem Abschnitt betrachtete Situation.
Der Kontaktpartner ist hier ein einfacher, masseloser Stab, der im Punkt A mit einer starren
Wand und im Punkt T mit dem Endeffektor des Manipulators (jeweils über ein Drehgelenk)
verbunden ist.

y

z

0

α
δ

β

dAT

A

Fr

Fy

Fz

T

Bild 3-2: Umgebung mit kinematischer Zwangsbedingung

Der masselose Stab kann nur die Kraft Fr in Stabrichtung aufnehmen. Darüber hinaus
enthält Bild 3-2 die Zerlegung dieser Kontaktkraft in die Komponenten Fy und Fz (Inertial-
system I), den Absolutdrehwinkel des Manipulators α und des Stabes β sowie die relative
Verdrehung von Manipulator und Umgebung δ = α − β. dAT ist die konstante Entfernung
der Punkte A und T bzw. die Länge des Stabes. Das System besitzt zwei kinematische FHG,
bspw. β und δ. Damit gilt nk = 2 und für die generalisierten Koordinaten und Kontaktkräfte
folgt yk ∈ R2 und λr ∈ R1.

Für den Vektor I rT A gilt gleichermaßen

I rT A = I r0A − I r0T (3-3)

und

I rT A = − IK A · K rAT (3-4)

mit

I r0T =

[
ry
rz

]
, I r0A =

[
rA,y
rA,z

]
, K rAT =

[−dAT
0

]
. (3-5)
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Die Bewegung des Manipulators bzw. dessen TCP wird durch den masselosen Stab auf die
Kreisbahn mit Radius dAT um den Lagerpunkt A eingeschränkt, d. h.

∣∣∣I r0A − I r0T

∣∣∣ =
∣∣∣IK A · K rAT

∣∣∣ . (3-6)

Die kinematische Zwangsbedingung lautet demnach

ϕ (z) =
(
rA,y − ry

)2
+

(
rA,z − rz

)2 − d2
AT = 0 . (3-7)

Die zeitliche Ableitung der kinematischen Zwangsbedingung führt zu

2 ·
[
rA,y − ry rA,z − rz 0

]
· v = 0 . (3-8)

Nach Division durch die Konstante 2 dAT folgt als Jacobimatrix der Zwangsbedingungen

Jc (z) =
1

dAT
·
[
rA,y − ry rA,z − rz 0

]
. (3-9)

Mithilfe der Zusammenhänge

sin β =
rA,z − rz

dAT
, cos β =

rA,y − ry

dAT
, (3-10)

die anhand von Bild 3-2 hergeleitet werden können, kann die Jacobimatrix der Zwangsbe-
dingungen auch in der Form

Jc (z) =
[
cos β sin β 0

]
(3-11)

aufgeschrieben werden. Hieraus folgt

Sλr (z) = JT
c (z) =


cos β
sin β

0

 . (3-12)

Die physikalische Bedeutung der auf diesem Wege festgelegten generalisierten Kontakt-
kraft λr wird mithilfe von Bild 3-2 und Gleichung (2-46) deutlich: es handelt sich um die
bereits in Bild 3-2 eingetragene resultierende Kontaktkraft Fr zwischen Manipulator und
Stab, die in Richtung des Stabes wirkt. Diese physikalische Bedeutung konnte durch die
Division von (3-8) durch 2 dAT herbeigeführt werden. Ohne diese Division besitzt λr die
Einheit N m−1.

Bei Verwendung des Absolutwinkels β und des Relativwinkels δ als generalisierte Koordi-
naten yk lautet der Geschwindigkeitsvektor des TCP

v =


dAT sin β 0
−dAT cos β 0

1 1


︸              ︷︷              ︸

Syk(yk)

·ẏk , yk =

[
β
δ

]
. (3-13)

Andere Möglichkeiten bestehen, z. B. können β und α als generalisierte Koordinaten yk
verwendet werden. Alle Einträge in der zugehörigen Matrix Syk sind mit Ausnahme einer 0
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unten links identisch zu denen in (3-13). In beiden Fällen ist die Bedingung der Reziprozität
(2-48) erfüllt. Außerdem gilt

Ṡyk
(
yk, ẏk

)
= dAT · β̇ ·


cos β 0
sin β 0

0 0

 . (3-14)

Aufbauend auf diesen Ergebnissen kann eine hybride Kraft-/Positionsregelung für yk und
λr durch Wahl der Aktorkräfte (2-53) nach [SK16] oder (2-75) nach Aghili [Agh05] sowie
der passivitätsbasierte Ansatz nach (2-76) implementiert werden. Für die dynamic hybrid
control method nach Yoshikawa [Yos87; YST88] werden die Aktorkräfte nach (2-60)
gebildet. Die hierfür erforderliche Matrix S̄yk und deren zeitliche Ableitung kann bspw. aus
dem Zusammenhang von β̇ und der Bahngeschwindigkeit vt,

β̇ = − 1
dAT
· vt , (3-15)

mit
[
vr
vt

]
= KI A ·

[
vy
vz

]
=

[
0

−vy sin β + vz cos β

]
(3-16)

und δ̇ = α̇ − β̇ zu

S̄yk =
1

dAT
·
[

sin β − cos β 0
− sin β cos β dAT

]
, ˙̄Syk =

β̇

dAT
·
[

cos β sin β 0
− cos β − sin β 0

]
(3-17)

bestimmt werden11, vgl. auch Bild 3-3.

y

z

0

β
A

vt

vy

vz

Bild 3-3: Zur Herleitung von β̇

Diese Lösung stimmt mit der Pseudoinverse überein, d. h. S̄yk = S+
yk.

Die Implementierung aller in Abschnitt 2.2.3 genannten hybriden Kraft-/Positionsregelun-
gen in analytischer Formulierung für das betrachtete Beispielsystem mit kinematischer
Zwangsbedingung ist damit dargelegt. Sie führen zu neuen Stelleingängen für die festgeleg-
ten generalisierten Koordinaten yk (β und δ oder α) sowie die generalisierte Kontaktkraft
λr, die der Kraft Fr in Bild 3-2 entspricht. Anhand eines entsprechenden Simulations-
modells konnten alle genannten Ansätze erprobt und die Richtigkeit der angegebenen
Gleichungen bestätigt werden. Im Simulationsmodell führen alle Ansätze zu vergleichbar
guten Regelergebnissen.

11Für yk =

[
β
α

]
sind abweichend hiervon die ersten zwei Einträge der zweiten Zeile beider Matrizen 0.
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3.2 Dynamische Umgebung

Das zweidimensionale Ersatzbild für den Kontakt zu einer Umgebung mit nicht ver-
nachlässigbarer Dynamik zeigt Bild 3-4. Im gewählten Beispiel ist der Kontaktpartner
ein massebehafteter Stab, der außerdem über ein Feder-Dämpfer-System (Steifigkeit c,
Dämpfung d, Länge der entspannten Feder dBC,nom) mit dem Inertialsystem verbunden
ist.

y

z

0

α
δ

β

c
d

B

C

A

Fr

Ft

Fy

Fz T

Bild 3-4: Umgebung mit nicht vernachlässigbarer Dynamik

In diesem Fall wird von dem Stab nicht nur die Kraft Fr in Stabrichtung aufgenommen.
Hinzu kommt die tangentiale Kraftkomponente Ft. Diese beiden Kräfte entsprechen den in
das stabfeste System transformierten Kräften Fy und Fz, d. h. es gilt

[
Fy
Fz

]
= IK A ·

[
Fr
Ft

]
, IK A =

[
cos β − sin β
sin β cos β

]
. (3-18)

Die Winkel α, β und δ haben die gleiche Bedeutung wie zuvor.

Die Bewegungsgleichungen der Umgebung lauten

Mu
(
yd

) · ÿd + nu
(
yd, ẏd

)
= ST

yd
(
yd

) · τ (3-19)

mit nd = 1 und yd = β ∈ R1 (Herleitung siehe Anhang A5.3). Sie kommen in diesem
Abschnitt zu den Bewegungsgleichungen des Manipulators (3-1) und den holonomen,
skleronomen Zwangsbedingungen (3-7) hinzu.

Der Endeffektor des Manipulators besitzt durch das Kugelgelenk in Punkt T mit dem Win-
kel δ einen kinematischen FHG gegenüber der Umgebung, d. h. nk = 1. Dieser Winkel wird
im Folgenden für die Beschreibung der Relativbewegung von Manipulator und Umgebung
verwendet, sodass yk = δ ∈ R1. Damit folgt für die generalisierten Kontaktkräfte λr ∈ R1

und λa ∈ R1, wobei hier in Erweiterung der Wahl aus Abschnitt 3.1 λr = Fr und λa = Ft
gewählt wird, vgl. auch Bild 3-4. Die Kräfte und Geschwindigkeiten im TCP lauten in
Abhängigkeit der festgelegten generalisierten Koordinaten und Kontaktkräfte

τ =


− sin β
cos β

0


︸   ︷︷   ︸

Sλa

·λa +


cos β
sin β

0


︸ ︷︷ ︸

Sλr

·λr , v =


dAT sin β
−dAT cos β

1


︸         ︷︷         ︸

Syd

·ẏd +


0
0
1


︸︷︷︸

Syk

·ẏk , (3-20)
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wobei die Matrizen Sλa, Sλr, Syd und Syk die Bedingungen (2-81) erfüllen. Andere Fest-
legungen der Größen λa, λr, yd und yk sind möglich; es muss jedoch stets die Erfüllung
der Bedingungen (2-81) sichergestellt sein. Die zeitlichen Ableitungen von Syd und Syk
lauten

Ṡyd
(
yd, ẏd

)
= dAT · β̇ ·


cos β
sin β

0

 , Ṡyk = 0 . (3-21)

Auf Basis dieser Ausführungen kann die hybride Kraft-/Positionsregelung nach de Luca
und Manes [LM94] implementiert werden. Für den Ansatz nach Featherstone [Fea03] mit
den Aktorkräften nach (2-102) sind die Matrizen S1 und T2 erforderlich. Aus der Tatsache,
dass der Manipulator und die Umgebung im Punkt T über ein Drehgelenk miteinander
verbunden sind, folgt, dass sich die verallgemeinerten Geschwindigkeitsvektoren von
Manipulator v und Umgebung vu nur in der Winkelgeschwindigkeit unterscheiden. Die
translatorischen Geschwindigkeiten in y- und z-Richtung stimmen dagegen überein. Die
relative Winkelgeschwindigkeit der in Kontakt stehenden Körper beträgt δ̇ = α̇ − β̇. Nach
(2-97) folgt daher

vrel = v − vu =


0
0
1


︸︷︷︸

S1

· δ̇

︸︷︷︸
ẏrel

. (3-22)

S1 entspricht hier also der Matrix Syk des Ansatzes nach de Luca und Manes. Die Matrix
T2 kann bspw. als

T2 =

[IK A
01×2

]
(3-23)

festgelegt werden. In diesem Fall gilt T2 =
[
Sλr Sλa

]
. Der andere Ansatz zur hybriden

Kraft-/Positionsregelung nach Featherstone [FSK98] mit den Aktorkräften (2-109) kann
mit den gleichen Matrizen S1 und T2 implementiert werden. Über diese Matrizen hinaus ist
noch das Umgebungsmodell nach (3-19) in die Form (2-96) zu überführen, da die Größen
M̄−1

u und ˙̄vu für die Berechnung der Aktorkräfte erforderlich sind. Für den verallgemeiner-
ten Geschwindigkeitsvektor vu und den verallgemeinerten Beschleunigungsvektor v̇u des
Punktes T gilt

vu = Syd · ẏd , v̇u = Syd · ÿd + Ṡyd · ẏd . (3-24)

Durch Auflösen der Bewegungsgleichungen der Umgebung (3-19) nach den generalisierten
Beschleunigungen ÿd und Einsetzen der erhaltenen Gleichung in v̇u nach (3-24) folgen für
M̄−1

u und ˙̄vu unmittelbar die Berechnungsformeln

M̄−1
u = Syd · M−1

u · ST
yd , ˙̄vu = Ṡyd · ẏd − Syd · M−1

u · nu . (3-25)

Mithilfe des Ansatzes nach de Luca und Manes [LM94] resultiert mit den hier getroffenen
Festlegungen eine lineare Eingangsgröße für die kinematische Koordinate yk = δ sowie
die reaktive Kraft λr = Fr. Für den dritten Systemeingang folgt bei Berechnung der
Aktorkräfte nach (2-92), dass λa = Ft. Bei Berechnung der Aktorkräfte nach (2-94) gilt
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hingegen yd = β. Aufbauend auf diesen Systemeingängen kann ein Regelungsentwurf für
δ und Fr sowie Ft oder β erfolgen. Die Ansätze nach Featherstone weisen unterschiedliche
Regelgrößen auf: nach [FSK98] sind dies δ und Fr sowie Ft, nach [Fea03] α, Fr und Ft.

Auch diese drei Ansätze wurden anhand eines entsprechenden Simulationsmodells getestet.
Während sich das Beispielsystem bei den Verfahren nach [LM94] und [FSK98] für die
jeweiligen Zielgrößen auch ideal vorsteuern lässt, ist dies bei dem Verfahren nach [Fea03]
prinzipbedingt nicht möglich. Durch den Term ST

2 Mv S2 · v̇2 in (2-103) ist ein Regler erfor-
derlich, um eine hinreichende Übereinstimmung von Soll- und Istwerten herbeizuführen.
Vorteilhaft bei diesem Ansatz ist, dass für die Implementierung nur die Matrizen S1 und
T2 erforderlich sind, nicht aber die Bewegungsgleichungen der Umgebung.

3.3 Zusammenfassung

In diesem Kapitel wurde die Implementierung sämtlicher in Abschnitt 2.2.3 des Stands
von Technik und Forschung erläuterten Verfahren zur hybriden Kraft-/Positionsregelung
an einfachen, zweidimensionalen Beispielsystemen veranschaulicht. Abschnitt 3.1 be-
trachtete ein Umgebungsmodell mit kinematischer Zwangsbedingung, Abschnitt 3.2 eine
Umgebung mit nicht vernachlässigbarer Dynamik. Auch die im Stand von Technik und
Forschung angesprochenen Wahlfreiheiten bei der Festlegung der für die Implementierung
erforderlichen Matrizen wurden exemplarisch gezeigt, wobei stets auf eine physikalische
Bedeutung aller Größen geachtet wurde.

Sämtliche Verfahren wurden an den jeweils betrachteten Beispielsystemen erprobt. Mithilfe
der neuen Systemeingänge gelingt bei einem idealen Modell der Regelstrecke im Regler,
idealer Messung, keinen Störgrößen sowie idealer Aktordynamik für alle Ansätze außer
dem Regelungs- und Vorsteuerungsentwurf nach [Fea03] auch der rein vorgesteuerte
Betrieb für die jeweiligen Regelgrößen.
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4 Modellierung des Prüfstands

Im Rahmen der durchgeführten Arbeiten zu dieser Dissertationsschrift wurde eine umfang-
reiche Simulationsumgebung für den Prüfstand erstellt, mit deren Hilfe die Prüfstands-
regelung entwickelt und erprobt wurde. Sie enthält auch ein MKS-Modell des gesamten
HiL-Achsprüfstands in MATLAB/Simscape, wobei die Auswahl von MATLAB/Simscape
sich vor allem in der besonders einfachen Möglichkeit zur Co-Simulation des Modells
mit den in MATLAB/Simulink vorliegenden Regelungsalgorithmen begründet. Abschnitt
4.1 gibt einen kurzen Einblick in den Aufbau sowie die Eigenschaften der entwickelten
Simulationsumgebung.

Die Modellbildung in MATLAB/Simscape erfolgt durch ungerichtete Verknüpfung von
physikalischen Elementen, z. B. Gelenken und Massen. Nachteilig ist, dass sich aus dieser
topologieorientierten Modellierung nicht die Systemgleichungen gewinnen lassen. Aus
diesem Grund schließt sich an den ersten Abschnitt die Herleitung der Bewegungsgleichun-
gen der relevanten, mechanischen Teilsysteme des betrachteten Prüfsystems an. Dies sind
der Hexapod (Abschnitt 4.2) und die MacPherson-Radaufhängung (Abschnitt 4.3). Im An-
schluss wird aus diesen beiden Komponenten das Gesamtsystem gebildet (Abschnitt 4.4).
Die rechte Seite des Prüfstands, d. h. die rechte Seite der Fahrzeugachse sowie der Störzy-
linder, ist zwar im Simulationsmodell enthalten, die zugehörigen Bewegungsgleichungen
werden im Rahmen dieser Arbeit aber nicht behandelt.

4.1 Simulationsmodell des betrachteten Prüfsystems

Dieser Abschnitt geht auf die Simulationsumgebung des betrachteten Prüfsystems ein, die
für die Entwicklung und Erprobung der Prüfstandsregelung verwendet wurde. Bild 4-1
zeigt ein Bildschirmfoto der mechanischen Teilkomponenten.

Bild 4-1: Bildschirmfoto des MKS-Modells

Das Modell besitzt einen modularen Aufbau. Die wesentlichen Teilsysteme sind:

• Fahrzeugachse,
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• Hexapod,

• Kraftmessrad,

• Anregungszylinder auf der rechten Achsseite,

• Aktorik und Sensorik,

• Regelung und Beobachtung,

• Ablaufsteuerung und Sollwertgenerierung.

Für viele dieser Komponenten enthält das Modell unterschiedliche Varianten und Unterva-
rianten. Durch ausgedehnte Nutzung von Variant Subsystems kann vor Simulationsbeginn
mithilfe von Auswahlvariablen einfach zwischen den verschiedenen Ausprägungsformen
gewählt werden. Auf diese Weise lässt sich die Auswirkung einer bestimmten Systemei-
genschaft, einer Komponente oder eines Regelungsalgorithmus auf das Systemverhalten
schnell untersuchen. Die verschiedenen Varianten können sich dabei u. a. in ihrer Komple-
xität unterscheiden. Beispielsweise kann für die Aktorik eine Wahl zwischen einem detail-
lierten Modell des Druckaufbaus in den Zylindern und der auch am Prüfstand eingesetzten
Druckregelung, einem vereinfachten Aktordynamikmodell dritter Ordnung sowie idealer
Aktorik gewählt werden. Auch bei der Sensorik kann aus verschiedenen Alternativen
gewählt werden. Die (virtuellen) Messgrößen im Modell können bspw. mit Messrauschen
versehen werden, das am Prüfstand gemessen wurde, oder die Messung kann als ideal
angenommen werden. Bei der Fahrzeugachse können zahlreiche Vereinfachungen vorge-
nommen werden, z. B. lassen sich die Querlenkerlager durch ein einfaches Drehgelenk
ersetzen. Hierdurch nimmt zwar die Realitätsnähe ab, im Rahmen der Herleitung der
Bewegungsgleichungen für den Prüfstand in den folgenden Unterkapiteln waren die damit
möglichen, vereinfachten Zwischenschritte aber sehr hilfreich.

Alle Teilsysteme sind zudem in Simulink-Bibliotheken abgelegt und werden aus diesen in
das Modell geladen. Das auf dem Echtzeitrechner des Prüfstands laufende Modell greift
auf die gleichen Bibliotheken zurück; wird ein spezifischer Block im Simulationsmodell ge-
ändert und die Änderung in die Bibliothek übertragen, so überträgt sie sich automatisch in
das Modell auf dem Echtzeitrechner. Hierfür waren weitreichende Anpassungen an beiden
Modellen erforderlich, bspw. der Abgleich verwendeter Signalbusse. Die Vorteile dieser
Vorgehensweise überwiegen den damit verbundenen Zeitaufwand jedoch deutlich. Natür-
lich sind nicht alle Teilsysteme im Simulationsmodell sowie auf dem Prüfstand identisch;
hier ist insb. die Ablaufsteuerung zu nennen, die jeweils durch einen in MATLAB/Stateflow
programmierten Zustandsautomaten realisiert ist. Die Ablaufsteuerung des Simulationsmo-
dells stellt eine stark reduzierte Form der Ablaufsteuerung auf dem Echtzeitrechner dar,
da viele Funktionen, z. B. die Systemüberwachung und der Einschaltprozess des realen
Systems, keine Relevanz für die Simulation besitzen.

Die mechanischen Komponenten des Prüfstands sind im Simulationsmodell durch die
Methode der Mehrkörpersysteme abgebildet. Es handelt sich daher um ein System aus
mehreren, idealen Starrkörpern, deren Masseneigenschaften im jeweiligen Schwerpunkt
zusammengefasst sind. Die Körper sind über ideale Gelenke verkoppelt. Hinzu kommen
masselose Kraftelemente und Zwangsbedingungen.

Diese Modellierungsmethodik besitzt nur einen begrenzten Gültigkeitsbereich. So nimmt
die Modellgüte mit steigender Frequenz ab, u. a. deshalb, weil die als starr angenommenen
Körper in der Realität nicht ideal starr sind. Häufig wird eine obere Grenze von 30 Hz für



4.2 Starrkörper-Dynamikmodell des Hexapod 93

die Modellgültigkeit angegeben, z. B. für Fahrzeugmodelle, wenn die Lagersteifigkeiten
und ersten Karosserieeigenformen in das Modell einbezogen werden [Ada14, S. 101].
Auch Rill [Ril94] gibt diesen Frequenzbereich an. Zusätzlich nennt er, dass sowohl der
Komfort als auch die aktive Sicherheit eines Fahrzeugs hauptsächlich durch Bewegungen
in diesem Frequenzbereich bestimmt werden.

Für die Methode der Mehrkörpersysteme spricht, dass die Berechnung der entwickelten
Modelle mit verhältnismäßig wenig Rechenaufwand verbunden ist. Bei Verwendung der
Modelle zur Regelung des Prüfstands ist dies von großem Vorteil, da in diesem Falle die
Echtzeitfähigkeit der Prüfstandssoftware gewährleistet sein muss, die wesentlich von der
Komplexität der in jedem Rechenschritt durchzuführenden Berechnungen abhängt. Zu
diesem Zweck ist auch das explizite Vorliegen der Modellgleichungen in Minimalkoordi-
naten unabdingbar, weshalb im Folgenden die Bewegungsgleichungen für die relevanten,
mechanischen Teilsysteme, d. h. den Hexapod, die MacPherson-Radaufhängung sowie
das gekoppelte Gesamtsystem, hergeleitet werden. Ziel der Modellierung ist die Bildung
echtzeitfähiger Modelle, die die interessierenden Systemeigenschaften hinreichend gut
abbilden. Als Referenz bei der Modellbildung dient ein detailliertes, auf die jeweils be-
trachtete Teilkomponente reduziertes MKS-Modell.

4.2 Starrkörper-Dynamikmodell des Hexapod

Bild 4-2 zeigt ein abstrahiertes Ersatzmodell des Hexapod.

qi

T (Tool Center Point, TCP)

0

Fqi

τ

Kardangelenk

Hydraulikzylinder

Kugelgelenk Endeffektor

x y

z

I

r0T

Bild 4-2: Ersatzmodell des Hexapod

Die Endeffektorplattform wird von sechs Linearaktoren getragen. Im vorliegenden Fall
handelt es sich um hydraulische Gleichlaufzylinder. Sie sind über Kardangelenke mit der
Aufspannplatte und über Kugelgelenke mit der Endeffektorplattform verbunden. Zwischen
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den Zylinderstangen und -rohren liegt jeweils ein Dreh- sowie ein Schub-FHG vor. In Bild
4-2 sind auch die für die Modellierung und Regelung des Hexapod relevanten Messgrößen
eingetragen.

Die Aktorkräfte Fqi lassen sich aus den Zylinderdifferenzdrücken ∆pi berechnen. Mit der
Kolbenfläche AZyl lauten sie in Vektorform

Fq =
[
Fq1 . . . Fq6

]T
= AZyl ·

[
∆p1 . . . ∆p6

]T
. (4-1)

Der Vektor

τ =
[
Fx Fy Fz Mx My Mz

]T
(4-2)

enthält die Kontaktkräfte und -momente zwischen dem Endeffektor und seiner Umgebung
im sog. TCP. Am Prüfstand erfolgt deren Messung mithilfe eines Kraftmessrades, bei der
die Messwerte 18 einzelner Dehnungsmessstreifen (DMS) in die Größe τ umgerechnet
werden. Neben den Zylinderkräften Fq und den Kontaktkräften und -momenten τ liegen
die einzelnen Zylinderlängen qi als Messgröße vor, die ebenfalls in einen Vektor gesammelt
werden,

q =
[
q1 . . . q6

]T
. (4-3)

Die Lage des sog. TCP wird durch den Vektor seiner kartesischen Koordinaten bezüglich
des festgelegten Inertialsystems

I r0T =
[
rx ry rz

]T
(4-4)

beschrieben. Dieser Vektor ist ebenfalls in Bild 4-2 eingetragen.

Bild 4-3 zeigt die topologische Struktur des Hexapod ohne Umgebungskontakt. Das Bild
enthält auch eine Aufschlüsselung der nK = 13 starren Körper, der nG = 18 Gelenke und
der nZ = 66 Zwangsbedingungen. Eine Erläuterung der verwendeten Symbole sowie eine
kurze Einführung weiterer für die folgenden Ausführungen relevanter Zusammenhänge
befindet sich in Anhang A1.

Mithilfe der MKS-Topologie und dem Grübler-Kutzbach-Kriterium nach (A2-1) lässt sich
die Anzahl der FHG des Endeffektors bestimmen. Nach (A2-3) besitzt der Hexapod (in
Abwesenheit eines Umgebungskontakts)

nL = nG − nK = 5 (4-5)

kinematische Schleifen, die bereits in Bild 4-3 eingetragen wurden. Es liegen nI = 6
isolierte FHG vor, denn jede Zylinderstange kann aufgrund des an ihrem oberen Ende
befindlichen Kugelgelenks frei um den Dreh-FHG des Drehschubgelenks rotieren. Keiner
dieser insgesamt sechs FHG trägt maßgeblich zur Bewegung des Endeffektors bei. Isolierte
FHG werden bei der Modellierung in der Regel vernachlässigt und in geeigneter Weise
eliminiert. Hier gelingt dies, indem in der Modellierung die Drehschub- durch einfache
Schubgelenke ersetzt werden. Es ergeben sich insgesamt

f = 6 · nK − nZ − nI = 6 (4-6)
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Aufspannplatte
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(a) Topologische Struktur
Kürzel Erläuterung

H1 Endeffektor
H2-H7 Zylinderstangen

H8-H13 Zylinderrohre
nK = 13

(b) Starrkörper

Kürzel Erläuterung Anzahl nZi
∑

i nZi
U Kardangelenk 6 4 24
C Drehschubgelenk 6 4 24
S Kugelgelenk 6 3 18

nG = 18 nZ = 66

(c) Gelenke

Bild 4-3: Topologie und Eigenschaften des Hexapodmodells

FHG für den Hexapod bzw. dessen Endeffektorplattform. Demnach müssen sechs Mini-
malkoordinaten festgelegt werden. Hier werden die kartesischen Koordinaten des TCP
sowie die XYZ-Kardanwinkel (siehe Anhang A1.4, auch für die Definition der Drehmatrix
IE A vom endeffektorfesten System E in das Inertialsystem I) gewählt, die die Lage und
Orientierung der Endeffektorplattform beschreiben, d. h.

z =
[

I r0T
T α β γ

]T
=

[
rx ry rz α β γ

]T
. (4-7)

Die Singularität der XYZ-Kardanwinkel für |β| = π/2 hat für das betrachtete System
keine praktische Relevanz, da eine derart große Verdrehung um die entsprechende Achse
aufgrund der Endanschläge der Hydraulikzylinder physikalisch nicht möglich ist.

Im Folgenden wird zunächst eine detaillierte Modellierung des Hexapod mit allen nK = 13
Starrkörpern vorgenommen. Daran schließt sich die Beschreibung eines einfachen, nur
einen Körper umfassenden Modells des Hexapod an. Dabei hat nur der Endeffektor eine
Masse und Trägheit. Im Folgenden werden die Kürzel

• ΣH13 für das 13 Starrkörper umfassende Modell sowie

• ΣH1 für das Modell, das nur den Endeffektor berücksichtigt,

verwendet. Außerdem werden zwei weitere Modellvarianten mit jeweils sieben Starr-
körpern angegeben. In diesen Modellen wurden entweder die Masseneigenschaften der
Zylinderrohre oder -stangen vernachlässigt. Bei allen vier Modellen ergeben sich identisch
aufgebaute Bewegungsgleichungen. Die Bewegungsgleichungen und wichtige Zusammen-
hänge am Hexapod werden in Abschnitt 4.2.3 erläutert. Im darauffolgenden Kapitel wird
die Parametrierung des Modells ΣH1 optimiert. Zum Abschluss erfolgt eine Validierung
und ein Vergleich der Modelle anhand des gegebenen MKS-Modells des Hexapod.
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Eine Erläuterung der nachfolgend verwendeten Notation ist in Anhang A1.2 zu finden.
Bei der Herleitung der Bewegungsgleichungen sowohl für den Hexapod als auch die
Radaufhängung (im anschließenden Unterkapitel) wird auf die Kurznotation

ex =
[
1 0 0

]T
, ey =

[
0 1 0

]T
, ez =

[
0 0 1

]T
(4-8)

für die Einheitsvektoren in den einzelnen Achsenrichtungen zurückgegriffen.

4.2.1 13-Starrkörper-Modell

Für das Verständnis der Herleitung des Modells ΣH13 ist Bild 4-4 hilfreich. Darin sind alle
für die Herleitung relevanten Vektoren am Beispiel eines Linearaktors eingetragen. Diese
Vektoren stellen (in körperfesten Koordinaten) gleichzeitig die geometrischen Parameter
des Modells dar.

E

I

Ai

Bi

Ri

Ki

Ei

T

S

0

rBiRi

r0Bi

r0T

rS T

rT Ei

rEiKi

Bild 4-4: Geometrische Zusammenhänge am Starrkörpermodell des Hexapod

Die in Bild 4-4 eingetragenen Punkte S und T kennzeichnen den Schwerpunkt des Endef-
fektors sowie den bereits eingeführten TCP. Ri und Ki sind die Schwerpunkte des Rohres
und der (Kolben-) Stange des betrachteten Aktors i. Die Punkte Bi und Ei kennzeichnen
das untere und obere Ende dieses Aktors i. Sie entsprechen den Drehpunkten des dort
befindlichen Kardan- bzw. Kugelgelenks. Der Ursprung des gewählten Inertialsystems
ist der Punkt 0. Im Folgenden sind alle im Inertialsystem ausgedrückten Größen mit dem
Index I versehen, Größen im endeffektorfesten Koordinatensystem besitzen den Index E
und solche im körperfesten System des Aktors i den Index Ai.
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Positionsgrößen

Die Rotationsmatrix des Endeffektors IE A ergibt sich direkt aus den Kardanwinkeln α, β
und γ anhand von Formel (A1-10).

Zur Herleitung der Rotationsmatrix IAi A des Aktors i ist es hilfreich, den Vektor vom
Kardan- zum Kugelgelenk in normierter Form IeBiEi zu bestimmen. Er berechnet sich
aus

IeBiEi =
I rBiEi

qi
(4-9)

mit der Aktor- bzw. Gelenklänge

qi =

√
I r

T
BiEi · I rBiEi (4-10)

und dem Vektor vom Kardan- zum Kugelgelenk

I rBiEi = I r0Ei − I r0Bi . (4-11)

Für den Vektor I r0Ei gilt

I r0Ei = I r0T + I rT Ei , I rT Ei = IE A · E rT Ei . (4-12)

I r0Bi und E rT Ei sind gegebene, zeitinvariante Modellparameter. Die z-Achse des aktorfesten
Koordinatensystems Ai wird nun so festgelegt, dass sie stets in Richtung des Vektors
IeBiEi zeigt. Ein Einheitsvektor in Richtung der z-Achse des körperfesten Systems ez wird
demnach mit der gesuchten Rotationsmatrix IAi A auf den Vektor IeBiEi abgebildet, d. h. es
gilt

IAi A · ez = IeBiEi . (4-13)

Die Rotationsmatrix IAi A lässt sich weiter zerlegen in
IAi A = IAi0 A · Axi

(
ϕxi

) · Ayi

(
ϕyi

)
. (4-14)

Darin ist IAi0 A eine konstante Rotationsmatrix, die die Nullstellung des Kardangelenks
bezüglich des Inertialkoordinatensystems beschreibt. Die Elementardrehmatrizen Axi

(
ϕxi

)

und Ayi

(
ϕyi

)
beschreiben die Drehung des Kardangelenks um diese Nullstellung als Abfol-

ge der Drehungen um die Winkel ϕxi und ϕyi. Die folgenden Herleitungen vereinfachen
sich etwas, wenn

IAi0 A = I (4-15)

gesetzt wird. Hierdurch verändert sich die physikalische Bedeutung und Ausprägung der
Winkel ϕxi und ϕyi, da die Kardandrehungen dann ausgehend vom Inertialsystem I erfolgen.
Hinsichtlich der Bewegungsgleichungen hat diese Vereinfachung aber keinerlei Einfluss,
solange keine Singularitäten auftreten. Im vorliegenden Fall treten diese nur auf, wenn die
Aktoren in der Ebene der Aufspannplatte liegen, was physikalisch nicht möglich ist. Durch
Einsetzen von (4-14) in (4-13) und Umstellen der Gleichung folgt

Ayi

(
ϕyi

)
· ez = AT

xi
(
ϕxi

) · IeBiEi . (4-16)

Aus den ersten beiden Zeilen dieses Gleichungssystems lassen sich nun die beiden Ver-
drehwinkel des Kardangelenks zu

ϕxi = − arctan I
rBiEi,y

IrBiEi,z
, ϕyi = arcsin IeBiEi,x (4-17)

bestimmen. Damit ist die Drehmatrix IAi A des Aktors i bekannt.
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Geschwindigkeitsgrößen

Der Winkelgeschwindigkeitsvektor der Endeffektorplattform lässt sich anschaulich mithilfe
des Ansatzes

IE
Iω =


ωx
ωy
ωz

 = ex · α̇ + Ax (α) · ey · β̇ + Ax (α) · Ay (β) · ez · γ̇ =
∂ IE

Iω

∂ żT · ż (4-18)

mit

∂ IE
Iω

∂ żT =
[
0 Hω

]
, Hω =


1 0 sin β
0 cosα − sinα · cos β
0 sinα cosα · cos β

 (4-19)

bestimmen. Der Ansatz für den Winkelgeschwindigkeitsvektor des Aktors i lautet

IAi
Iω = ex · ϕ̇xi + Ax

(
ϕxi

) · ey · ϕ̇yi =
∂ IAi

Iω

∂ żT · ż , (4-20)

∂ IAi
Iω

∂ żT = ex ·
∂ ϕ̇xi

∂ żT + eϕxi
· ∂ ϕ̇yi

∂ żT , eϕxi
=


0

cosϕxi
sinϕxi

 . (4-21)

Die noch unbekannten partiellen Ableitungen ∂ ϕ̇xi/∂ żT und ∂ ϕ̇yi/∂ żT resultieren aus den
zeitlichen Ableitungen von (4-17). Es gilt

ϕ̇xi = − 1

1 +

(
I
rBiEi,y

IrBiEi,z

)2 ·
d
d t

(
I
rBiEi,y

IrBiEi,z

)
=
∂ ϕ̇xi

∂ żT · ż ,

∂ ϕ̇xi

∂ żT =
∂ ϕ̇xi

∂ I ṙ
T
BiEi

· ∂ I ṙBiEi

∂ żT ,
∂ ϕ̇xi

∂ I ṙ
T
BiEi

=

[
0 − IrBiEi,z I

rBiEi,y

]

I
r2

BiEi,y + Ir
2
BiEi,z

(4-22)

und

ϕ̇yi =
eT

x√
1 − Ie

2
BiEi,x

· I ėBiEi =
∂ ϕ̇yi

∂ żT · ż . (4-23)

Mit

I ėBiEi =
d
d t

(
I rBiEi

qi

)
=
∂ I ėBiEi

∂ I ṙ
T
BiEi

I ṙBiEi ,
∂ I ėBiEi

∂ I ṙ
T
BiEi

=
1
qi

(
I − IeBiEi Ie

T
BiEi

)
(4-24)

folgt

∂ ϕ̇yi

∂ żT =
∂ ϕ̇yi

∂ I ṙ
T
BiEi

· ∂ I ṙBiEi

∂ żT ,
∂ ϕ̇yi

∂ I ṙ
T
BiEi

=
eT

x√
1 − Ie

2
BiEi,x

· ∂ I ėBiEi

∂ I ṙ
T
BiEi

, (4-25)

wobei die partielle Ableitung ∂ I ṙBiEi/∂ żT aus der zeitlichen Ableitung von (4-11)

I ṙBiEi = I ṙ0Ei = I ṙ0T + I ṙT Ei (4-26)
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mit

I ṙ0T =
[
ṙx ṙy ṙz

]T
=

[
vx vy vz

]T
, I ṙT Ei = IE

Iω × I rT Ei (4-27)

zu

∂ I ṙBiEi

∂ żT =
∂ I ṙ0T

∂ żT − I r̃T Ei ·
∂ IE

Iω

∂ żT ,
∂ I ṙ0T

∂ żT =
[
I 0

]
(4-28)

bestimmt werden kann.

Die Schwerpunktgeschwindigkeiten der einzelnen Körper lassen sich mithilfe der berech-
neten Rotationsmatrizen und Winkelgeschwindigkeiten sowie den gegebenen Parameter-
vektoren ermitteln. Die Geschwindigkeit des Endeffektorschwerpunkts beträgt

IvS = I ṙ0S = I ṙ0T − I ṙS T = I ṙ0T − IE
Iω × I rS T , I rS T = IE A · E rS T , (4-29)

die Schwerpunktgeschwindigkeit des Zylinderrohrs i ist

IvRi = I ṙ0Bi + I ṙ0Ri = I ṙBiRi = IAi
Iω × I rBiRi , I rBiRi = IAi A · AirBiRi (4-30)

und die Schwerpunktgeschwindigkeit der Zylinderstange i beträgt

IvKi = I ṙ0Ki = I ṙ0T + I ṙT Ei + I ṙEiKi ,

I ṙEiKi = IAi
Iω × I rEiKi , I rEiKi = IAi A · AirEiKi . (4-31)

Daraus folgen die für die Jacobimatrizen der Translation erforderlichen partiellen Ablei-
tungen (Der Operator �̃ steht für die Kreuzproduktmatrix, siehe Anhang A1.6)

∂ I ṙ0S

∂ żT =
∂ I ṙ0T

∂ żT + I r̃S T ·
∂ IE

Iω

∂ żT ,
∂ I ṙ0Ri

∂ żT = − I r̃BiRi ·
∂ IAi

Iω

∂ żT , (4-32)

∂ I ṙ0Ki

∂ żT =
∂ I ṙ0T

∂ żT − I r̃T Ei ·
∂ IE

Iω

∂ żT − I r̃EiKi ·
∂ IAi

Iω

∂ żT . (4-33)

Beschleunigungsgrößen

Für die Vervollständigung der Bewegungsgleichungen des Modells ΣH13 werden in die-
sem Abschnitt noch die sog. Restbeschleunigungen sämtlicher Körper hergeleitet. Bei-
spielsweise ergibt sich durch zeitliche Differentiation der Drehwinkelgeschwindigkeit des
Endeffektors nach (4-18)

IE
Iω̇ =

d
d t

(
IE

Iω
)

=
∂ IE

Iω

∂ żT · z̈ +
d
d t

(
∂ IE

Iω

∂ żT

)
· ż

︸            ︷︷            ︸
Restbeschleunigung

. (4-34)

Häufig wird auf die Herleitung dieser Größen aufgrund des damit verbundenen, hohen
Aufwands sowohl zu deren Herleitung als auch zur Auswertung während der Simulations-
laufzeit verzichtet. Aufgrund des in diesem Falle recht überschaubaren Aufwands werden
in diesem Abschnitt die zeitlichen Differentiale

d
d t

(
∂ Ii

Iω

∂ żT

)
,

d
d t

(
∂ I ṙ0i

∂ żT

)
(4-35)
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für sämtliche Körper dennoch angegeben.

Der für die Berechnung der Restwinkelbeschleunigung des Endeffektors erforderliche
Term lautet

d
d t

(
∂ IE

Iω

∂ żT

)
=

[
0 Ḣω

]
,

Ḣω =


1 0 β̇ cos β
0 −α̇ sinα −α̇ cosα cos β + β̇ sinα sin β
0 α̇ cosα −α̇ sinα cos β − β̇ cosα sin β

 , (4-36)

der des Aktors i beträgt

d
d t

(
∂ IAi

Iω

∂ żT

)
= ex ·

d
d t

(
∂ ϕ̇xi

∂ żT

)
+ ėϕxi

· ∂ ϕ̇yi

∂ żT + eϕxi
· d

d t

(
∂ ϕ̇yi

∂ żT

)
(4-37)

mit

ėϕxi
= ϕ̇xi ·


0

− sinϕxi
cosϕxi

 (4-38)

und
d
d t

(
∂ ϕ̇xi

∂ żT

)
=

d
d t

(
∂ ϕ̇xi

∂ I ṙ
T
BiEi

)
· ∂ I ṙBiEi

∂ żT +
∂ ϕ̇xi

∂ I ṙ
T
BiEi

· d
d t

(
∂ I ṙBiEi

∂ żT

)
, (4-39)

d
d t

(
∂ ϕ̇yi

∂ żT

)
=

d
d t

(
∂ ϕ̇yi

∂ I ṙ
T
BiEi

)
· ∂ I ṙBiEi

∂ żT +
∂ ϕ̇yi

∂ I ṙ
T
BiEi

· d
d t

(
∂ I ṙBiEi

∂ żT

)
. (4-40)

Die Unbekannten d
(
∂ ϕ̇xi/∂ I ṙ

T
BiEi

)
/d t, d

(
∂ ϕ̇yi/∂ I ṙ

T
BiEi

)
/d t und d

(
d
d t

(
∂ I ṙBiEi

∂ żT

))
/d t folgen

durch zeitliches Differenzieren von (4-22), (4-25) und (4-28) zu

d
d t

(
∂ ϕ̇xi

∂ I ṙ
T
BiEi

)
=
−2 ·

(
I
rBiEi,y · I

ṙBiEi,y + IrBiEi,z · I ṙBiEi,z

)

(
I
r2

BiEi,y + Ir
2
BiEi,z

)2 ·


0
− IrBiEi,z

I
rBiEi,y



T

+
1

I
r2

BiEi,y + Ir
2
BiEi,z

·
[
0 − I ṙBiEi,z I

ṙBiEi,y

]

=

[
2 ·

I
rBiEi,y · IrBiEi,z − I

r2
BiEi,y + Ir

2
BiEi,z

]

(
I
r2

BiEi,y + Ir
2
BiEi,z

)2 ·
[
0

I
ṙBiEi,y − I ṙBiEi,z

0 I ṙBiEi,z I
ṙBiEi,y

]
, (4-41)

d
d t

(
∂ ϕ̇yi

∂ I ṙ
T
BiEi

)
= eT

x ·
(
1 − Ie

2
BiEi,x

)− 3
2 · I ėBiEi,x · IeBiEi,x ·

∂ I ėBiEi

∂ I ṙ
T
BiEi

+
eT

x√
1 − Ie

2
BiEi,x

· d
d t

(
∂ I ėBiEi

∂ I ṙ
T
BiEi

)
(4-42)

mit
d
d t

(
∂ I ėBiEi

∂ I ṙ
T
BiEi

)
= −

(
I − IeBiEi · Ie

T
BiEi

)
· 1

q3
i

·
(

I r
T
BiEi · I ṙBiEi

)

−
(

I ėBiEi · Ie
T
BiEi + IeBiEi · I ė

T
BiEi

)
· 1

qi
(4-43)
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und

d
d t

(
∂ I ṙBiEi

∂ żT

)
= − I

˙̃rT Ei ·
∂ IE

Iω

∂ żT − I
˙̃rT Ei ·

d
d t

(
∂ IE

Iω

∂ żT

)
. (4-44)

Damit sind die Restwinkelbeschleunigungen aller 13 Starrkörper bekannt. Die Restbe-
schleunigungen der Schwerpunkte können aus (4-32) und (4-33) hergeleitet werden und
betragen

d
d t

(
∂ I ṙ0S

∂ żT

)
= I

˙̃rS T ·
∂ IE

Iω

∂ żT + I r̃S T ·
d
d t

(
∂ IE

Iω

∂ żT

)
, (4-45)

d
d t

(
∂ I ṙ0Ri

∂ żT

)
= − I

˙̃rBiRi ·
∂ IAi

Iω

∂ żT − I r̃BiRi ·
d
d t

(
∂ IAi

Iω

∂ żT

)
, (4-46)

d
d t

(
∂ I ṙ0Ki

∂ żT

)
= − I

˙̃rT Ei ·
∂ IE

Iω

∂ żT − I r̃T Ei ·
d
d t

(
∂ IE

Iω

∂ żT

)

− I
˙̃rEiKi ·

∂ IAi
Iω

∂ żT − I r̃EiKi ·
d
d t

(
∂ IAi

Iω

∂ żT

)
. (4-47)

Eingeprägte Kräfte und Momente

Mit den hergeleiteten Größen kann nun die linke Seite der Bewegungsgleichungen nach
(A2-23) mit den Jacobimatrizen

I JRE =
∂ IE

Iω

∂ żT , I JRRi =
∂ IAi

Iω

∂ żT , I JRKi = I JRRi , (4-48)

I JT E =
∂ I ṙ0S

∂ żT , I JTRi =
∂ I ṙ0Ri

∂ żT , I JT Ki =
∂ I ṙ0Ki

∂ żT , (4-49)

JE =

[
I JT E

I JRE

]
, JRi =

[
I JTRi

I JRRi

]
, JKi =

[
I JT Ki

I JRKi

]
(4-50)

aufgestellt werden, wobei sich die Massenmatrix nach (A2-14), der Vektor der verallgemei-
nerten Zentrifugal- und Corioliskräfte nach (A2-17) und der Vektor der verallgemeinerten
Gewichtskräfte nach (A2-22) berechnet. Abweichend von (A2-18) werden die Elemente
Ci (z, ż) nach der Formel

Ci (z, ż) = JT
i ·

Mi · J̇ i +


0

Iiω̃ · I(Ci)
i · ∂ Ii

Iω

∂ żT


 (4-51)

bestimmt, da sich die Berechnung auf diese Weise verhältnismäßig einfach gestaltet. In
diesem Falle ist die Schiefsymmetrie der Matrix Ṁ − 2 · C nicht sichergestellt.

Zur Vervollständigung der Bewegungsgleichungen müssen noch die Zylinderkräfte Fq
sowie die Kontaktkräfte und -momente τ auf der rechten Seite der Gleichung ergänzt
werden. Bild 4-5 zeigt alle relevanten Informationen für die nachfolgende Herleitung.

An der Endeffektorplattform greifen nur die Kontaktkräfte und -momente τ an. Zwischen
dem Kraftangriffspunkt T und dem Endeffektorschwerpunkt S besteht der Hebelarm
I rS T , sodass die Kontaktkräfte eine Momentenwirkung auf den Schwerpunkt besitzen
und entsprechend berücksichtigt werden müssen. Hinzu kommt, dass der Vektor der
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T

S

τ

rS T

(a) Endeffektor: Kontaktkräfte und -momente τ

Fqi

Fqi

Bi

Ri

Ki

Ei

rBiRi

rEiKi

eBiEi

(b) Zylinderrohre und -stangen: Aktorkräfte Fq

Bild 4-5: Herleitung der eingeprägten Kräfte und Momente

Kontaktkräfte und -momente τ so definiert wurde, dass positive Kräfte bzw. Momente in
Richtung der Achsen des Inertialsystems auf die Umgebung wirken. Auf den Endeffektor
wirken die zugehörigen Gegenkräfte und -momente, d. h. die Kräfte und Momente τ
fließen in den Bewegungsgleichungen des Hexapod mit negativem Vorzeichen ein. Die
eingeprägten Kräfte auf den Endeffektor lauten damit

I F
e
E = −


Fx
Fy
Fz

 , I Me(S )
E = −


Mx
My
Mz

 − I rS T ×

Fx
Fy
Fz

 . (4-52)

Die Aktorkräfte Fq wirken in Richtung des Einheitsvektors IeBiEi nach (4-9) auf die Zylin-
derstangen und in entgegengesetzter Richtung auf die Zylinderrohre. Am realen System
sind sowohl die Zylinderrohre als auch die Zylinderstangen nicht exakt rotationssym-
metrisch. Die zugehörigen Schwerpunkte liegen daher nicht auf der Verbindungslinie
zwischen Bi und Ei, sodass die Aktorkräfte Fq auch Momente auf diese beiden Körper
ausüben. Diese Momentenwirkung lässt sich durch das Kreuzprodukt eines Vektors, der
vom jeweiligen Schwerpunkt auf einen (beliebigen) Punkt auf der Kraftwirklinie zeigt,
mit der Kraftwirkrichtung IeBiEi ermitteln. Hier werden für die Berechnung der Momente
zweckmäßigerweise die Vektoren I rBiRi bzw. I rEiKi verwendet, die diese Voraussetzung
erfüllen. Die eingeprägten Kräfte und Momente der Rohre lauten somit

I F
e
Ri = − IeBiEi · Fqi , I Me(Ri)

Ri = I rBiRi × IeBiEi · Fqi , (4-53)

die der Stangen

I F
e
Ki = IeBiEi · Fqi , I Me(Ki)

Ki = − I rEiKi × IeBiEi · Fqi . (4-54)

Die Bewegungsgleichungen des Modells ΣH13 sind damit vollständig. Um auch die rechte
Seite der Gleichungen in kompakter Form aufschreiben zu können, lassen sich noch zwei
Matrizen einführen. Die Aktorkräfte Fq und die Kontaktkräfte und -momente τ treten dann
jeweils im Produkt mit einer Matrix in der Bewegungsgleichung auf. Die Eingriffsmatrix
der Kontaktkräfte und -momente lautet

HT (z) = JT
E ·

[
I 0

I r̃S T I

]
, (4-55)
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wobei das negative Vorzeichen, das aus der dem Inertialkoordinatensystem entgegenge-
setzten Wirkrichtung von τ folgt, später Berücksichtigung finden wird und nicht in (4-55)
enthalten ist. Für die Aktorkräfte ergibt sich die Eingriffsmatrix

J−T
a (z) =

6∑

i=1

JT
Ri·

[ − IeB1E1 . . . − IeB6E6

I rB1R1 × IeB1E1 . . . I rB6R6 × IeB6E6

]

+ JT
Ki ·

[
IeB1E1 . . . IeB6E6

− I rE1K1 × IeB1E1 . . . − I rE6K6 × IeB6E6

]
. (4-56)

In der Robotik wird die Matrix Ja auch als analytische Jacobimatrix bezeichnet, siehe
z. B. [SSVO10]. Sie ist von fundamentaler Bedeutung, da sie den Zusammenhang der
Antriebsgeschwindigkeiten q̇ und der ersten zeitlichen Ableitung der Aufgabenkoordinaten
ż herstellt. Verglichen mit der etablierten Literatur folgt auf diesem Berechnungsweg nicht
direkt die analytische Jacobimatrix, sondern ihre transponierte Inverse, weshalb diese
Rechenoperationen zur Wahrung der Konsistenz in (4-56) ergänzt wurden.

4.2.2 1-Starrkörper-Modell

Für dieses vergleichsweise einfache Modell werden sowohl die Rohre als auch die Stangen
der Hydraulikzylinder als masselos angenommen. Nur der Endeffektor wird als starrer,
massebehafteter Körper im Modell berücksichtigt. Die in Bild 4-3 gezeigte Topologie
vereinfacht sich hierdurch stark: als einziger Starrkörper verbleibt der (frei schwebende)
Endeffektor H1 mit sechs FHG. Alle anderen Starrkörper und die Gelenke entfallen.
Aufbauend auf den Ergebnissen aus den vorangegangenen Abschnitten ist das Modell ΣH1
schnell hergeleitet.

Die linke Seite der Gleichungen des Modells ΣH1 geht aus der des Modells ΣH13 her-
vor, indem nur die Anteile des Endeffektors bei Auswertung der Gleichungen (A2-14),
(A2-17) und (A2-22) für M, C und g berücksichtigt werden. In diesem einfachen Fall
kann die Berechnung der Matrixelemente Ci (z, ż) nach (A2-18) erfolgen, sodass auch die
Schiefsymmetrie von Ṁ − 2 · C sichergestellt ist.

Die Aktorkräfte werden bei diesem Modell so behandelt, als würden sie direkt am Endef-
fektor angreifen. Die eingeprägten Kräfte und Momente des Endeffektors lauten damit

I F
e
E = −


Fx
Fy
Fz

 +

6∑

i=1
IeBiEi · Fqi , (4-57)

I Me(S )
E = −


Mx
My
Mz

 − I rS T ×

Fx
Fy
Fz

 +

6∑

i=1
I rS Ei × IeBiEi · Fqi (4-58)

mit

I rS Ei = I rS T + I rT Ei . (4-59)

Die transponierte Inverse der analytischen Jacobimatrix lautet bei diesem Modellansatz

J−T
a (z) = JT

E ·
[

IeB1E1 IeB2E2 . . . IeB6E6

I rS E1 × IeB1E1 I rS E2 × IeB2E2 . . . I rS E6 × IeB6E6

]
. (4-60)



104 4 Modellierung des Prüfstands

Sie lässt sich in diesem Fall auch aus der Definition

J−1
a (z) =

∂ q
∂ zT (4-61)

bestimmen. Die Eingriffsmatrix HT der Kontaktkräfte und -momente τ ist identisch mit
der des Modells ΣH13, siehe (4-55).

Verglichen mit den Ausführungen in [Kno17] wurden die Bewegungsgleichungen um die
Berücksichtigung der Kontaktkräfte und -momente τ erweitert. Hinzu kommt, dass die
Bewegungsgleichungen nicht im Schwerpunkt des Endeffektors, sondern im für die Rege-
lungsaufgabe relevanten TCP formuliert wurden. Dies macht die Gleichungen komplexer,
z. B. ist die Massenmatrix M nun keine Blockdiagonalmatrix mehr. Durch die direkte
Formulierung im TCP entfällt aber im Folgenden die Notwendigkeit der fortwährenden
Umrechnung sämtlicher Größen zwischen diesen beiden Bezugspunkten. Die für die ei-
gentliche Regelungsaufgabe nicht relevanten Koordinaten des Schwerpunkts treten so nur
in Form des Modellparameters E rS T auf.

4.2.3 Resultierende Modellgleichungen

Sowohl für das Modell ΣH13 als auch das Modell ΣH1 lauten die Bewegungsgleichungen
der Endeffektorplattform

M (z) · z̈ + C (z, ż) · ż + g (z) = J−T
a (z) · Fq − HT (z) · τ . (4-62)

Für die Auswertung der Modellgleichungen ist die Kenntnis der insgesamt 12 Vektoren
E rT Ei und I r0Bi erforderlich, vgl. Bild 4-4. Bei Modell ΣH1 kommt die Schwerpunktlage
sowie die Masse und Trägheit des Endeffektors hinzu, im Falle des Modells ΣH13 zusätzlich
die Schwerpunktlage sowie die Masse und Trägheit sämtlicher Rohre und Stangen. Im
vorliegenden Fall wurde angenommen, dass sämtliche Rohre und sämtliche Stangen
jeweils den gleichen körperfesten Schwerpunktvektor sowie die gleichen Massen- und
Trägheitseigenschaften besitzen. Das Modell ΣH1 besitzt damit bis zu 46, das Modell ΣH13
bis zu 66 Parameter. Da die Punkte E rT Ei und I r0Bi bei dem betrachteten System jeweils
(nahezu) auf einer Kreisbahn liegen, reduziert sich die Parameterzahl bei der vorliegenden
Implementierung auf 29 bzw. 49 Parameter. Über diese Parameter hinaus müssen die 12
Anfangsbedingungen z0, ż0 vorgegeben werden.

Mit dem Zustandsvektor

x =
[
zT żT

]T
(4-63)

ergeben sich aus (4-62) die nichtlinearen Zustandsgleichungen

ẋ =

[
ż

−M−1 (z) · (C (z, ż) · ż + g (z))

]

︸                                    ︷︷                                    ︸
f (x)

+

[
0

M−1 (z) · J−T
a (z)

]

︸                 ︷︷                 ︸
Gu(x)

·Fq

+

[
0

−M−1 (z) · HT (z)

]

︸                   ︷︷                   ︸
Gd(x)

·τ . (4-64)
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Es handelt sich um ein eingangsaffines System, da das System linear in seinen Eingangs-
größen ist.

Sowohl der verallgemeinerte Geschwindigkeits- wie auch der verallgemeinerte Beschleu-
nigungsvektor

v =
[
vx vy vz ωx ωy ωz

]T
, a = v̇ (4-65)

treten in diesen Gleichungen nicht auf, können aber aus z, ż und z̈ berechnet werden. Die
Kinematikmatrix

H (z) =
∂ v
∂ żT =

[
I 0
0 Hω

]
(4-66)

mit Hω nach (4-19) stellt diesen Zusammenhang her. Die Umrechnungsformeln lauten

v = H (z) · ż , a = H (z) · z̈ + Ḣ (z, ż) · ż . (4-67)

Die Transformation der Kräfte und Momente zwischen den beiden Systemen erfolgt über
die Transponierte der Kinematikmatrix HT , vgl. auch (4-62).

In der Robotik hat neben der analytischen Jacobimatrix Ja = ∂ z/∂ qT (4-61) auch die
geometrische Jacobimatrix Jg große Bedeutung [SSVO10]. Sie hängt über

J−1
g (z) =

∂ q̇
∂ vT = J−1

a (z) · H−1 (z) , Jg (z) = H (z) · Ja (z) (4-68)

mit der Kinematikmatrix H und der analytischen Jacobimatrix Ja zusammen. Die geome-
trische Jacobimatrix stellt den Zusammenhang zwischen den Antriebsgeschwindigkeiten q̇
und den (Winkel-) Geschwindigkeiten des TCP sowie den Kräften in den Aktorkoordinaten
und den entsprechenden Kräften und Momenten im TCP her. Es gilt

q̇ = J−1
g (z) · v , τq = J−T

g (z) · Fq . (4-69)

Mithilfe dieser Zusammenhänge lässt sich auch eine Zustandstransformation durchführen.
Bei Verwendung des Zustandsvektors

xv =
[
zT vT

]T
(4-70)

lauten die nichtlinearen Zustandsgleichungen

ẋv =

[
H−1 (z) · v

−M−1
v (z) · (Cv (z, v) · v + gv (z)

)
]

︸                                      ︷︷                                      ︸
f v(x)

+

[
0

M−1
v (z) · J−T

g (z)

]

︸                 ︷︷                 ︸
Guv(x)

·Fq

+

[
0

−M−1
v (z)

]

︸       ︷︷       ︸
Gdv(x)

·τ (4-71)

mit

Mv (z) = H−T · M · H−1 , gv (z) = H−T · g , (4-72)

Cv (z, v) = H−T ·
(
C · H−1 + M · d

d t

(
H−1

))
. (4-73)
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Die Bewegungsgleichungen lauten

Mv (z) · v̇ + Cv (z, v) · v + gv (z) = J−T
g (z) · Fq − τ . (4-74)

Abgesehen von den bisherigen Ausführungen wurden auch Modelle für den Hexapod
aufgestellt, bei denen vier Eulerparameter bzw. Einheitsquaternionen anstelle der drei Kar-
danwinkel als Minimalkoordinaten verwendet werden. Zwischen den vier Eulerparametern
e0 . . . e3 besteht der algebraische Zusammenhang

e2
0 + eT · e = 1 , e =

[
e1 e2 e3

]T
. (4-75)

Die Drehmatrix des Endeffektors berechnet sich hieraus anhand der Gleichung

IE A =
(
2e2

0 − 1
)
· I + 2 ·

(
e · eT + e0 · ẽ

)
. (4-76)

Die Herleitung der Modelle konnte auf Basis der allgemeinen Ausführungen zum Aufstel-
len von Bewegungsgleichungen für die Rotation starrer Körper mittels Eulerparametern
von Sherif, Nachbagauer und Steiner [SNS15] durchgeführt werden. Die Bewegungsglei-
chungen werden im Rahmen dieser Arbeit allerdings nicht aufgegriffen und daher hier
nicht näher erläutert.

4.2.4 Parametrierung des 1-Starrkörper-Modells

Bei der Herleitung des Modells ΣH1 wurden alle Starrkörper mit Ausnahme der Endeffek-
torplattform vernachlässigt. Werden die Masse mE, die Trägheitsmatrix

E I(S )
E =


Ixx,E Ixy,E Ixz,E
Ixy,E Iyy,E Iyz,E
Ixz,E Iyz,E Izz,E

 (4-77)

sowie die Schwerpunktkoordinaten E rS T des Endeffektors bei dieser vereinfachten Mo-
dellierungsvariante unverändert vom Modell ΣH13 übernommen, so ist die Güte dieses
Modells deutlich schlechter als die des detaillierteren Modells ΣH13. Die Modellgüte kann
hier durch eine Anpassung dieser insgesamt 10 Parameter erheblich gesteigert werden.

Die Parameter werden anhand einer gegebenen Simulation des MKS-Referenzmodells op-
timiert. Hierzu wird die linke Seite der Bewegungsgleichung nach (4-62) so umformuliert,
dass sie linear in einem festzulegenden Parametervektor p ist [SK16], d. h. es gilt

Y (z, ż, z̈) · p = J−T
a (z) · Fq − HT (z) · τ , Y (z, ż, z̈) ∈ R6×10 . (4-78)

Für das betrachtete System muss der 10 × 1-Parametervektor

p =
[
mE mE · E rT

S T Ixx,E Ixy,E Ixz,E Iyy,E Iyz,E Izz,E

]T
(4-79)

gewählt werden. Wie aus (4-79) ersichtlich ist, wird auf diesem Weg nicht der Schwer-
punktvektor E rS T selbst identifiziert. Er tritt in der linken Seite der Bewegungsgleichungen
(4-62) ausschließlich im Produkt mit der Endeffektormasse mE auf. Damit das System
linear in den zu identifizierenden Parametern ist, muss also das Produkt dieser Größen im
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Vektor p stehen. Der Schwerpunktvektor E rS T kann hieraus nach erfolgter Identifikation
zurückberechnet werden. Für die rechte Seite von (4-62) wird die Abkürzung

ξ
(
z, Fq, τ

)
= J−T

a (z) · Fq − HT (z) · τ , ξ
(
z, Fq, τ

)
∈ R6 . (4-80)

eingeführt. ξ enthält nur geometrische Parameter, die aus Konstruktionsskizzen stam-
men. Sie werden daher als hinreichend genau angenommen und nicht identifiziert. Liegt
eine hinreichend hohe Zahl N verschiedener Mess- bzw. Simulationswerte für z, ż, z̈,
Fq und τ für ein möglichst über alle Frequenzen angeregtes System vor, so lässt sich
aus der Aneinanderreihung der linken und rechten Seiten der Gleichung (4-62) für alle
Messzeitpunkte

Y · p = ξ , Y ∈ R6·N×10 , ξ ∈ R6·N (4-81)

der Parametervektor p mithilfe der Pseudoinverse aus der Gleichung

p = Y
+ · ξ , Y

+
=

(
Y

T · Y
)−1
· YT

(4-82)

bestimmen. Diese Lösung minimiert die quadrierte Abweichung zwischen der linken
und der rechten Gleichungsseite über alle Messzeitpunkte. Y wird als Regressormatrix
bezeichnet.

Zur Bestimmung der Parameter p wurde mithilfe des positionsgeregelten MKS-Modells
des Hexapod ohne Umgebungskontakt eine Abfolge von Sprüngen in allen sechs FHG
simuliert. Aus den sich dabei ergebenden Zeitverläufen der Größen z, ż, z̈, Fq und τ ergibt
sich der (für diese Anregung) optimale Parametervektor p für das Modell ΣH1 nach (4-82).
Das mit diesem Parametervektor versehene Modell wird in den folgenden Ausführungen
mit Σ∗H1 bezeichnet. Das Modell ΣH1 ist demgegenüber weiterhin mit den Angaben aus den
Konstruktionsunterlagen parametriert.

Die Parameteroptimierung lässt sich auch rekursiv formulieren, sodass eine Implemen-
tierung auf dem Echtzeitrechner möglich ist, vgl. [IM11]. Die Implementierung und
Erprobung dieses Verfahrens für das Simulationsmodell des betrachteten Systems wurde
umfassend in der Masterarbeit von Nico Rüddenklau [RK16] untersucht.

Diese bzw. eine ähnlich aufgebaute Regressormatrix wird auch bei den Verfahren Adap-
tive Computed Torque Control sowie Adaptive Inertia-Related Control verwendet, um
die Parameterschätzung mit der Regelung der Endeffektorpose z zu kombinieren. Die
Anwendung dieser Verfahren sowie eines Sliding-Mode-Reglers für den Hexapod (ohne
Umgebungskontakt) wurde in der Masterarbeit von Udo Nolte [NKO18] untersucht. Da in
der Simulation keine nennenswerte Verbesserung der Positionsregelgüte selbst bei großen
Störungen und Parameterfehlern herbeigeführt werden konnte, wurden die Verfahren nicht
weiterverfolgt.

4.2.5 Modellvalidierung anhand des MKS-Hexapodmodells

Im Folgenden wird die Modellgüte für insgesamt fünf unterschiedliche Modellierungsvari-
anten für den Hexapod verglichen. Zu den Kürzeln ΣH13, ΣH1 und Σ∗H1 kommen hinzu:
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• ΣH7S: 7-Starrkörper-Modell (Endeffektor und Zylinderstangen massebehaftet) und

• ΣH7R: 7-Starrkörper-Modell (Endeffektor und Zylinderrohre massebehaftet).

Die 7-Starrkörper-Modelle gehen aus den Gleichungen des Modells ΣH13 nach Abschnitt
4.2.1 hervor, indem die Massen und Trägheiten der Zylinderrohre bzw. der Zylinderstangen
als Null angenommen werden. Sämtliche Modelle (außer die Masse, Trägheit und der
Schwerpunktvektor des Modells Σ∗H1) wurden anhand der gegebenen Herstellerunterlagen
parametriert. Als Referenz wird das detaillierte, 13 massebehaftete Starrkörper umfassende
MKS-Modell des Hexapod herangezogen, das das Kürzel ΣHR erhält.

Aufgrund der Abwesenheit konservativer Kraftelemente ist ein Vergleich der Modelle
nach (4-62) mit identischen Anfangsbedingungen und Eingangsgrößen Fq und τ und
eigenen Systemzuständen nicht geeignet, da sich mit der Simulationszeit durch die verblie-
benen Modellungenauigkeiten eine zunehmende Drift zwischen den Zuständen einstellt.
Stattdessen werden die von jedem Modell berechneten (Winkel-) Beschleunigungen vergli-
chen, die sich für einen gegebenen Systemzustand und -eingang ergeben. Hierzu wird die
Bewegungsgleichung (4-62) nach

z̈ = M−1 (z) ·
(
−C (z, ż) · ż − g (z) + J−T

a (z) · Fq − HT (z) · τ
)

(4-83)

umgestellt und mit den Eingangs- und Zustandsgrößen des Referenzmodells ΣHR aus-
gewertet, d. h. z = zΣHR

und ż = żΣHR
. Zur besseren Interpretierbarkeit wird die auf

diesem Weg berechnete Größe z̈ noch mithilfe von (4-67) in den verallgemeinerten Be-
schleunigungsvektor a umgerechnet. Die Abweichung ∆a der berechneten Werte a einer
Modellierungsvariante von denen des Referenzmodells aΣHR

liefert eine Aussage über die
jeweilige Modellgüte. Bild 4-6 veranschaulicht die Vorgehensweise.

MKS-
Referenzmodell

Analytisches
Modell

−

Fq

τ

aΣHR

a

żΣHR

zΣHR
∆a

Bild 4-6: Vorgehen zur Beurteilung der Modellgüte

Die Modellgüte wird hier für zwei verschiedene Manöver untersucht, die im positionsgere-
gelten Betrieb des Referenzmodells des Hexapod ohne Umgebungskontakt durchgeführt
wurden. Dies sind

• eine Abfolge von Sprunganregungen in allen sechs FHG, vgl. Bild 4-7, sowie

• eine Schlechtweganregung.

Für diese beiden Manöver wird die Beschleunigungsabweichung ∆a nach Bild 4-6 gebil-
det. Zu den sich ergebenden sechs Zeitverläufen wird jeweils der RMS gebildet und in
Bezug zu dem jeweiligen RMS der Referenz gesetzt. Das so gebildete Gütemaß ist Null,
wenn das betrachtete Modell ideal mit dem Referenzmodell übereinstimmt. Je größer die
Abweichung von der Referenz ist, desto höher wird der Wert. Bild 4-8 zeigt das Ergebnis
für beide Manöver.
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Bild 4-8: Modellgüte in Abhängigkeit der Modellierung bei Rechteckanregung (links) und
Schlechtweganregung (rechts)

Wie zu erwarten hat das Modell ΣH1 im relativen Vergleich stets die geringste, das Modell
ΣH13 stets die höchste Modellgüte. Die beiden 7-Starrkörper-Modelle liegen dazwischen,
wobei das Modell mit massebehafteten Zylinderrohren ΣH7R bessere Ergebnisse liefert
als das Modell mit massebehafteten Zylinderstangen ΣH7S, was sich auf die deutlich
höhere Masse der Zylinderrohre zurückführen lässt. Eine bemerkenswert hohe Modell-
güte, die zwischen den Modellen ΣH7R und ΣH13 liegt, weist das Modell Σ∗H1 auf. Bei der
Sprungabfolge ist ein gutes Ergebnis nicht verwunderlich, da die Parameter anhand einer
solchen Anregung optimiert wurden. Die hohe Modellgüte bestätigt sich aber auch bei der
praxisnahen Schlechtweganregung.

Natürlich ist auch eine Parameteroptimierung für die 7-Starrkörper-Modelle wie beim
Modell Σ∗H1 angebracht. Allerdings ist die Bildung der Regressormatrix Y in diesem Fall we-
sentlich anspruchsvoller als für das Modell ΣH1. Gleichzeitig ist der Berechnungsaufwand
der 7-Starrkörper-Modelle nur geringfügig kleiner als für das Modell ΣH13.

Aus den bisherigen Betrachtungen folgt das Fazit, dass die Optimierung der Parameter
(Modell Σ∗H1) eine erhebliche Verbesserung der Modellgüte gegenüber dem Ausgangs-
modell ΣH1 herbeigeführt hat. Wie zu erwarten weist das Modell ΣH13 die höchste Güte
auf. Der Rechenaufwand für die Modelle ΣH7R, ΣH7S und ΣH13 ist deutlich höher als für
das Modell Σ∗H1. Für die Regelung des Hexapod am Prüfstand wird daher das Modell Σ∗H1
eingesetzt. Der Mehrwert der Verwendung des Modells ΣH13 im Regler kann innerhalb
der Simulationsumgebung untersucht werden. Beispielsweise zeigt sich bei der Anregung
nach Bild 4-7, dass die Verwendung des Modells ΣH13 anstelle des Modells Σ∗H1 im Regler
von Vorteil ist. So ergeben sich bei Verwendung des Modells Σ∗H1 im Regler bei einem
weiterhin 13 massebehafteten Starrkörper umfassenden Streckenmodell insb. bei Anregung
der rotatorischen Richtungen deutliche Abweichungen zwischen den Soll- und Istwer-
ten in einigen translatorischen und rotatorischen Richtungen. Wird hingegen das Modell
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ΣH13 im Regler verwendet, so stimmen Soll- und Istwert im gesamten Zeitverlauf ideal
überein. Selbstverständlich stellt diese Anregung einen Extremfall dar, bei dem sich die
Modellabweichung besonders stark auswirkt.

4.3 Starrkörper-Dynamikmodell der MacPherson-Radaufhängung

In diesem Abschnitt wird ein Starrkörpermodell der MacPherson-Radaufhängung beschrie-
ben, das gemeinsam mit dem Modell des Hexapod nach Abschnitt 4.2 als Streckenmodell
für den Regelungsentwurf dienen wird. Das zu entwickelnde Modell soll die räumliche
Kinematik und Dynamik der Radaufhängung hinreichend gut wiedergeben und die rea-
len Kraftverhältnisse möglichst genau abbilden. Der Vorteil gegenüber dem ebenfalls
vorliegenden, verhältnismäßig einfach zu erstellenden MKS-Radaufhängungsmodell be-
steht darin, dass aus der Herleitung explizite Modellgleichungen folgen, die sich für den
modellbasierten Regelungs- und Vorsteuerungsentwurf verwenden lassen.

Vor dem Hintergrund einer potenziellen Anwendung am Prüfstand, die eine Echtzeitfähig-
keit der verwendeten Modelle erfordert, soll das Modell möglichst einfach zu berechnen
sein. Starrkörpermodelle sind, verglichen mit einer genaueren Modellierung durch z. B. FE-
Simulation oder flexible MKS, mit wenig Rechenaufwand verbunden. Daher wird im
Folgenden aufbauend auf den Ausführungen von Rill [Ril94] ein Starrkörpermodell der
MacPherson-Radaufhängung mit elf FHG beschrieben. Wie bereits in der Einführung die-
ses Kapitels erwähnt ist der Gültigkeitsbereich derartiger Modelle auf Frequenzen bis etwa
30 Hz eingeschränkt. Der Berechnungsaufwand ist allerdings bereits für das entwickelte
Modell recht hoch, sodass diese Einschränkung an dieser Stelle in Kauf genommen wird.
Bei Einbeziehung des Modells in den Regelungsalgorithmus muss die geringere Modell-
genauigkeit im höheren Frequenzbereich infolgedessen durch den Regler kompensiert
werden.

Das Ersatzmodell der MacPherson-Einzelradaufhängung ist in Bild 4-9 dargestellt.
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Bild 4-9: Ersatzmodell der MacPherson-Radaufhängung

Der im Bild grau dargestellte Stabilisator ließe sich als masseloses Kraftelement abstra-
hieren oder durch Berücksichtigung sämtlicher seiner Teilkörper ebenfalls in die nach-



4.3 Starrkörper-Dynamikmodell der MacPherson-Radaufhängung 111

folgenden Herleitungen aufnehmen. Da in dieser Arbeit allerdings stets die isolierte
Einzelradaufhängung ohne Kopplung zur Gegenseite betrachtet wird, wird der Stabilisator
im Folgenden vernachlässigt. Das Mehrkörpermodell besteht damit aus insgesamt sechs
Starrkörpern. Tabelle 4-1 gibt eine Auflistung der Starrkörper inklusive der zugehörigen
Indizes, die in der nachfolgenden Herleitung als Bezeichnung sowohl des jeweiligen
körperfesten Koordinatensystems als auch des zugehörigen Körperschwerpunkts dienen.

Index Erläuterung
1 Radnabe
2 Radträger (inkl. Dämpferrohr)
3 Querlenker
4 Dämpferstange
5 Spurstange
6 Lenkgestänge

Tabelle 4-1: Starrkörper und verwendete Indizes

Aus Gründen der Übersichtlichkeit sind die Körperschwerpunkte ebenso wie die körperfes-
ten Koordinatensysteme nicht in Bild 4-9 enthalten. Aus dem gleichen Grund ist auch der
Punkt H, der die Position des Drehgelenks zwischen Radträger und Radnabe repräsentiert,
nicht eingetragen. Bei dem einzigen in Bild 4-9 eingetragenen Koordinatensystem handelt
es sich um das fahrzeugfeste Koordinatensystem, das hier aufgrund der stationären Prüf-
standsanwendung auch als Inertialsystem betrachtet werden kann. Es wurde so festgelegt,
dass es mit dem Inertialsystem des Hexapod I übereinstimmt. Die weiteren in Bild 4-9
eingezeichneten Größen sind:

• der Dämpferweg dF ,

• die Verschiebung des Lenkgestänges xL,

• der Drehwinkel der Radnabe ψ,

• die Drehwinkel des vorderen Querlenkerlagers um die Quer- und Hochachse κy und
κz sowie

• die kartesischen Verschiebungen xA, yA und zA sowie xE, yE und zE der Punkte A
und E, die im Bild vereinfacht durch farbliche Markierung dieser Punkte angedeutet
sind.

Diese Größen stellen die FHG des entwickelten Modells dar. Davon beschreiben dF ,
xL und ψ größere Bewegungen, nämlich die Einfederung, die Lenkbewegung sowie die
Abrollbewegung des Rades. Demgegenüber sind die anderen Größen, die die elastischen
Verformungen der in A bzw. E befindlichen Elastomerlager quantifizieren, relativ klein.

Das resultierende Modell besitzt maximal diese elf FHG bzw. Minimalkoordinaten. Die
nachfolgende Herleitung wird für das Modell mit allen elf FHG durchgeführt. Nachträglich
ist es einfach möglich, daraus ein auf die Anwendung zugeschnittenes Modell mit weniger
FHG zu erzeugen. Dies lässt sich dadurch erreichen, dass die Gleichungen der nicht
verwendeten FHG aus den Bewegungsgleichungen entfernt werden. Naheliegenderweise
müssen jedoch stets die Minimalkoordinate dF sowie xL (außer bei blockierter Lenkung)
und ψ (außer bei gebremstem Rad) gewählt werden.
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Die Topologie des Mehrkörpersystems zeigt Bild 4-10. Dem Bild kann auch die Auflistung
der insgesamt nK = 6 starren Körper sowie die Erläuterung aller nG = 8 Gelenke und der
Zwangsbedingungen nZ = 23 . . . 31 entnommen werden.
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(a) Topologische Struktur

Kürzel Erläuterung
A1 Radnabe
A2 Radträger
A3 Querlenker
A4 Dämpferstange
A5 Spurstange
A6 Lenkgestänge

nK = 6

(b) Starrkörper

Kürzel Erläuterung Anzahl nZi
∑

i nZi
R Drehgelenk 1 5 5
S Kugelgelenk 3 3 9
C Drehschubgelenk 1 4 4
P Schubgelenk 1 5 5
A Gelenk zwischen Querlenker und Aufbau 1 0 . . . 5 0 . . . 5
E Gelenk zwischen Dämpferrohr und Aufbau 1 0 . . . 3 0 . . . 3

nG = 8 nZ = 23 . . . 31

(c) Gelenke

Bild 4-10: Topologie und Eigenschaften des Radaufhängungsmodells

Je nach Auswahl der Minimalkoordinaten weist auch die MacPherson-Radaufhängung,
wie der Hexapod, geschlossene kinematische Schleifen auf. Die Anzahl der kinematischen
Schleifen beträgt

nL = nG − nK = 2 , (4-84)

wenn die Gelenke A und E jeweils mindestens eine Zwangsbedingung aufweisen. Für
nZi = 0 bei einem dieser Gelenke reduziert sich nG auf 7 und die Anzahl der kinematischen
Schleifen auf nL = 1, für nZi = 0 bei beiden Gelenken gilt nG = 6 = nK und es liegt eine
offene Kinematik vor. Die Modellierung der Elastomerlager durch Hinzunahme zusätzli-
cher FHG und entsprechende Kraftmodelle steigert also nicht nur die Modellgüte, sondern
führt auch zur Vermeidung kinematischer Schleifen. Auf der anderen Seite sind die Elasto-
merlager sehr steif, was die numerische Lösung der resultierenden Differentialgleichungen
gegenüber der Modellierung mit idealen Gelenken erschwert.

Wie beim Hexapod liegen isolierte FHG vor. Dies sind die Rotationen der Dämpfer- und
Spurstange um die Verbindungsachse der sie umgebenden Gelenke. Zur Elimination dieser
nI = 2 isolierten FHG wird das Drehschubgelenk durch ein Schubgelenk und eines der
Kugelgelenke an der Spurstange durch ein Kardangelenk ersetzt. Damit ergeben sich für
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das Mehrkörpersystem je nach freigegebenen Minimalkoordinaten bei ungebremstem Rad
und freier Lenkung

f = 6 · nK − nZ − nI = 3 . . . 11 (4-85)

FHG. Als Vektor der Minimalkoordinaten wird für das 11-FHG-Modell der Vektor

yd =
[
dF xL ψ xA yA zA xE yE zE κy κz

]T
(4-86)

verwendet.

Es folgt die Herleitung der Bewegungsgleichungen für die MacPherson-Radaufhängung.
Gegenüber der hier verfolgten Strategie lässt sich das Modell auch deutlich einfacher mit
insgesamt 13 FHG und damit inklusive der zwei isolierten FHG aufstellen. Hierzu können
als Minimalkoordinaten neben dF , xL und ψ die jeweils drei Kardanwinkel für die Spur-
stange, den Radträger und den Querlenker sowie der Drehwinkel des Drehschubgelenks
zwischen Radträger und Dämpferstange verwendet werden. Das resultierende Modell
besitzt allerdings den Nachteil, dass die Vernachlässigung einzelner Minimalkoordinaten
zumindest bei den neun Kardanwinkeln nicht möglich ist. Auch ist die Messung dieser
Minimalkoordinaten im Vergleich erheblich schwieriger als derer nach (4-86).

Anstelle des Dämpferwegs dF kann auch der Drehwinkel des Querlenkers um die durch die
Punkte B und A beschriebene Achse, im Folgenden mit ϕ bezeichnet, verwendet werden.
Für den im weiteren Verlauf dieser Dissertationsschrift diskutierten Regelungsansatz ist
die Wahl des Dämpferwegs dF aber vorteilhaft, da es sich bei dF um ein typisches Target-
Signal bei Betriebsfestigkeitsversuchen handelt, vgl. auch Abschnitt 2.1. Der Drehwinkel
ϕ hat dabei hingegen üblicherweise keine Relevanz. Für das grundsätzliche Vorgehen zur
Herleitung der Bewegungsgleichungen mit der Minimalkoordinate ϕ anstelle dF siehe
z. B. [Ril94].

4.3.1 Herleitung der Bewegungsgleichungen

Die Herleitung der Bewegungsgleichungen für die MacPherson-Radaufhängung basiert
auf den Erläuterungen von Rill [Ril94]. Ähnliche, demgegenüber vereinfachte räumliche
Modelle finden sich z. B. auch in [RS10; SHB18].

In [Ril94] werden die Drehmatrizen und Winkelgeschwindigkeitsvektoren sowie die Jaco-
bimatrizen von Querlenker, Radträger und Radnabe hergeleitet. Die Gleichungen werden
in ein Gesamtfahrzeugmodell integriert. Hinsichtlich der Einzelradaufhängung handelt
es sich um ein Modell mit zwei massebehafteten Starrkörpern (Radträger und Radnabe),
wobei die Schwerpunkte von Radträger und Radnabe als identisch angenommen werden.
Querlenker, Dämpferstange, Spurstange und Lenkgestänge werden als masselos ange-
nommen bzw. ihre Massen- und Trägheitseigenschaften anteilig auf die anderen Massen
verrechnet. Unter der Zielsetzung eines vertretbaren Berechnungsaufwands wird auf die
Herleitung einiger rechenaufwändiger Terme verzichtet, z. B. der Restbeschleunigungen
und der „exakten“ Berechnung des Drehwinkelgeschwindigkeitsvektors des Radträgers12.
Die Minimalkoordinaten einer Einzelradaufhängung des Modells sind ϕ, κz, xL und ψ.

12Vergleiche Formel (4-136) in der nachfolgenden Herleitung.
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Im Vergleich dazu erfolgt hier die Herleitung der Gleichungen für alle sechs Starrkörper.
Dabei wird das Ziel verfolgt, das gegebene MKS-Modell der MacPherson-Einzelrad-
aufhängung möglichst exakt abzubilden. Aus diesem Grund werden hier insgesamt sieben
neue FHG im Modell berücksichtigt, um die Nachgiebigkeiten der Elastomerlager besser
berücksichtigen zu können. Darüber hinaus werden auch die Restbeschleunigungen aller
sechs Starrkörper angegeben. Anstelle der Querlenkerdrehung ϕ wird in diesem Modell
der Dämpferweg dF verwendet, da er für die spätere Regelungsaufgabe zielführender ist.

Positionsgrößen

Die Drehmatrix des Querlenkers bezüglich des fahrzeugfesten Bezugssystems I3 A be-
steht aus der Abfolge der Drehung um die fahrzeugfeste y-Achse mit dem Winkel κy, der
Drehung um die mitgedrehte z-Achse mit dem Winkel κz sowie der Drehung um die Achse
3eBA mit dem Winkel ϕ. Folglich berechnet sich I3 A zu

I3 A = I3a A · 3a3 A , I3a A = Ay

(
κy

)
· Az

(
κz

)
, 3a3 A = A

3eBA
(ϕ) (4-87)

mit den Definitionen gemäß Anhang A1.3. Gegenüber der Herleitung in [Ril94] ist ϕ bei
der hier vorgenommenen Modellierung keine Minimalkoordinate und muss aus den Mo-
dellparametern und den Minimalkoordinaten bestimmt werden. Hierfür ist eine alternative
Formulierung der Drehmatrix 3a3 A hilfreich. Geeignet ist bspw. die Zerlegung

3a3 A = 3a3b A · Az (ϕ) · 3c3 A (4-88)

mit

3a3b A =
[
e3b,y × 3eBA e3b,y 3eBA

]T
, e3b,y =

I rAC,0 × 3eBA∣∣∣
I rAC,0 × 3eBA

∣∣∣
, (4-89)

3c3 A = 3a3b AT . (4-90)

Der Abstand der Punkte C und E lässt sich zum einen aus

2rCE = 2rCD + dF · 2eDE , (4-91)

zum anderen aus

3brCE = 3brAE − Az (ϕ) · 3crAC (4-92)

mit

3brAE = 3a3b AT · I3a AT · I rAE , 3crAC = 3c3 A · 3rAC , (4-93)

I rAE = I r0E − I r0A , I r0E = I r0E,0 +


xE
yE
zE

 , I r0A = I r0A,0 +


xA
yA
zA

 (4-94)

berechnen. Durch Gleichsetzen der quadrierten Vektorlängen von (4-91) und (4-92)

2rT
CE · 2rCE = 3brT

CE · 3brCE (4-95)
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folgt nach einigen algebraischen Umformungen

−2 ·
(

3crAC,x · 3brAE,x + 3c
rAC,y · 3b

rAE,y

)
· cosϕ

+2 ·
(

3c
rAC,y · 3brAE,x − 3crAC,x · 3b

rAE,y

)
· sinϕ

= 2rT
CE · 2rCE − 3crT

AC · 3crAC − 3brT
AE · 3brAE + 2 · 3crAC,z · 3brAE,z . (4-96)

Hierbei handelt es sich um eine Gleichung der Form a · cos x + b · sin x = c, die sich nach
x bzw. in diesem Falle ϕ lösen lässt, siehe Anhang A6.

Auch die Drehmatrix des Radträgers I2 A wird für die Berechnung in zwei Teildrehungen
aufgespalten. Es gilt

I2 A = IZ A · Z2 A , IZ A = Ax
(
αZ

) · Ay
(
βZ

)
, Z2 A = A

2eCE
(δ) (4-97)

mit den Definitionen nach Anhang A1.3. Z ist ein für die Herleitung erforderliches Zwi-
schenkoordinatensystem. Die in (4-97) enthaltenen Winkel αZ, βZ und δ sind noch unbe-
kannt. Die Berechnung von αZ und βZ basiert auf der Gleichung

I rCE = I2 A · 2rCE = IZ A · Z2 A · 2rCE = Ax
(
αZ

) · Ay
(
βZ

) · Z rCE . (4-98)

Da Z2 A um die Achse CE dreht, gilt in diesem Sonderfall, dass

Z rCE = 2rCE . (4-99)

Damit folgt

AT
x
(
αZ

) · I rCE = Ay
(
βZ

) · 2rCE (4-100)

mit

I rCE = I rAE − I rAC , I rAC = I3 A · 3rAC . (4-101)

Bei der ersten und zweiten Zeile von (4-100) handelt es sich wieder um Gleichungen der
Form a · cos x + b · sin x = c, aus denen sich βZ (a = 2rCE,x, b = 2rCE,z, c = IrCE,x) und αZ
(a =

I
rCE,y, b = IrCE,z, c = 2rCE,y) berechnen lassen, vgl. Anhang A6.

Auch für den unbekannten Drehwinkel δ folgt aus

I r
T
GF · I rGF = d2

5 = konst. (4-102)

durch Einsetzen der Zusammenhänge

I rGF = I rCF − I rCG , I rCF = I2 A · 2rCF , I rCG = I rAG − I rAC , (4-103)

I rAG = I r0G − I r0A , I r0G = I r0G,0 + ey · xL (4-104)

und einige algebraische Umformungen eine Gleichung der Form a · cos x + b · sin x = c,
vgl. Anhang A6. Die Koeffizienten lauten in diesem Fall

a = I r
T
CG · IZ A ·

(
I − 2eCE · 2eT

CE

)
· 2rCF , (4-105)

b = I r
T
CG · IZ A · 2ẽCE · 2rCF , (4-106)

c =
1
2
·
(

2rT
CF · 2rCF + I r

T
CG · I rCG − d2

5

)
− I r

T
CG · IZ A · 2eCE · 2eT

CE · 2rCF . (4-107)
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Das Rad besitzt gegenüber dem Radträger einen Dreh-FHG, sodass sich die Drehmatrix
der Radnabe I1 A aufbauend auf der Drehmatrix des Radträgers durch die Gleichung

I1 A = I2 A · 21 A (4-108)

mit

21 A = 210 A · Ay (−ψ) (4-109)

formulieren lässt. 210 A ist eine konstante Verdrehung zwischen den Koordinatensystemen
2 und 1. Sie bewirkt, dass die Drehung mit ψ um die richtige Achse stattfindet. Das
Minuszeichen wurde eingefügt, um bei Vorwärtsfahrt einen zunehmenden Winkel ψ zu
erhalten.

Die Dämpferstange ist über ein Schubgelenk mit dem Radträger verbunden. Eine gegen-
seitige Verdrehung findet nicht statt, sodass die Drehmatrix der Dämpferstange I4 A mit
der des Radträgers übereinstimmt, d. h.

I4 A = I2 A . (4-110)

Der zwischen Lenkgestänge und Radträger befindlichen Spurstange verbleiben nach Elimi-
nation des isolierten FHG zwei Dreh-FHG. Aus diesem Grund kann die Drehmatrix der
Spurstange I5 A bspw. durch

I5 A = Ax
(
α5

) · Ay
(
β5

)
(4-111)

mit den Drehwinkeln α5 und β5 beschrieben werden. Zur Berechnung dieser Winkel eignet
sich der Ansatz

I rGF = I5 A · 5rGF (4-112)

mit I rGF nach (4-103). Durch Einsetzen von (4-111) und Umformen folgt unmittelbar

AT
x
(
α5

) · I rGF = Ay
(
β5

) · 5rGF . (4-113)

Die ersten beiden Zeilen entsprechen wieder Gleichungen der Form a · cos x + b · sin x = c
für α5 und β5, vgl. Anhang A6. Bei geschickter Wahl des Koordinatensystems 5 ergeben
sich hieraus besonders einfache Gleichungen für die gesuchten Winkel. Liegt bspw. die
z-Achse des Systems 5 auf der Verbindungsachse der Punkte G und F, so gilt 5rGF = d5 · ez
und für die Verdrehwinkel folgt

α5 = arctan− I
rGF,y

IrGF,z
, β5 = arcsin IrGF,x

5rGF,z
. (4-114)

Das Lenkgestänge besitzt gegenüber dem fahrzeugfesten System I bei der vorliegenden
Modellierung nur einen translatorischen FHG, sodass für die Drehmatrix des Lenkge-
stänges I6 A

I6 A = I (4-115)
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gilt. Mithilfe der ermittelten Drehmatrizen können auch die Ortsvektoren der Körper-
schwerpunkte bestimmt werden. Sie lauten

I r01 = I r02 + I r2H + I rH1 , I r02 = I r0A + I rAC + I rC2 , (4-116)

I r03 = I r0A + I rA3 , I r04 = I r0E + I rE4 , (4-117)

I r05 = I r0G + I rG5 , I r06 = I r0G + I6 A · 6rG6 (4-118)

mit

I rA3 = I3 A · 3rA3 , I rC2 = I2 A · 2rC2 , I rH1 = I1 A · 1rH1 , (4-119)

I rE4 = I4 A · 4rE4 , I rG5 = I5 A · 5rG5 , I r2H = I2 A · 2r2H . (4-120)

Der Ortsvektor des Punktes T , in dem die Kraft τ angreift, lässt sich analog zu

I r0T = I r01 + I r1T , I r1T = I1 A · 1r1T (4-121)

bestimmen.

Geschwindigkeitsgrößen

Der Winkelgeschwindigkeitsvektor des Querlenkers I3
Iω folgt aus der Drehmatrix I3 A

als

I3
Iω = ey · κ̇y + Ay

(
κy

)
· ez · κ̇z + IeBA · ϕ̇ =

∂ I3
Iω

∂ ẏT
d

ẏd ,

∂ I3
Iω

∂ ẏT
d

= ey ·
∂ κ̇y

∂ ẏT
d

+ eκy
· ∂ κ̇z

∂ ẏT
d

+ IeBA ·
∂ ϕ̇

∂ ẏT
d

, eκy
=


sin κy

0
cos κy

 (4-122)

mit

IeBA = I3 A · 3eBA ,
∂ κ̇y

∂ ẏT
d

=
[
01×9 1 0

]
,

∂ κ̇z

∂ ẏT
d

=
[
01×10 1

]
(4-123)

und der noch unbekannten Größe ∂ ϕ̇/∂ ẏT
d . Deren Herleitung basiert auf der Tatsache, dass

gleichermaßen

I ṙAE = I ṙAC + I ṙCE (4-124)

und

I ṙAE = I ṙ0E − I ṙ0A =
∂ I ṙAE

∂ ẏT
d

· ẏd ,
∂ I ṙAE

∂ ẏT
d

=
∂ I ṙ0E

∂ ẏT
d

− ∂ I ṙ0A

∂ ẏT
d

(4-125)
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mit

I ṙAC = I3
Iω × I rAC , (4-126)

I ṙCE = I2
Iω × I rCE + Ivrel,CE , Ivrel,CE = I2 A · 2 ṙCE = IeDE · ḋF , (4-127)

ḋF =
∂ ḋF

∂ ẏT
d

ẏd ,
∂ ḋF

∂ ẏT
d

=
[
1 01×10

]
, (4-128)

I ṙ0E =


ẋE
ẏE
żE

 =
∂ I ṙ0E

∂ ẏT
d

ẏd ,
∂ I ṙ0E

∂ ẏT
d

=
[
03×6 I 03×2

]
, (4-129)

I ṙ0A =


ẋ3
ẏ3
ż3

 =
∂ I ṙ0A

∂ ẏT
d

ẏd ,
∂ I ṙ0A

∂ ẏT
d

=
[
03×3 I 03×5

]
(4-130)

gilt. Durch Gleichsetzen von (4-124) und (4-125) folgt damit

∂ I ṙAE

∂ ẏT
d

ẏd = I3
Iω × I rAC + I2

Iω × I rCE + IeDE ·
∂ ḋF

∂ ẏT
d

ẏd . (4-131)

Wird zusätzlich I3
Iω durch (4-122) ersetzt, so resultiert

∂ I ṙAE

∂ ẏT
d

ẏd =

(
ey × I rAC ·

∂ κ̇y

∂ ẏT
d

+ eκy
× I rAC ·

∂ κ̇z

∂ ẏT
d

+ IeBA × I rAC ·
∂ ϕ̇

∂ ẏT
d

)
· ẏd

+ I2
Iω × I rCE + IeDE ·

∂ ḋF

∂ ẏT
d

ẏd . (4-132)

Die in dieser Gleichung ebenfalls enthaltene, unbekannte Größe I2
Iω entfällt durch Links-

multiplikation mit I r
T
CE, da I2

Iω × I rCE einen Vektor senkrecht zu I rCE ergibt und das
Skalarprodukt orthogonaler Vektoren Null ist. Nach dieser Operation verbleibt ∂ ϕ̇/∂ ẏT

d
als einzige unbekannte Größe, für die

∂ ϕ̇

∂ ẏT
d

= hT
ϕ · Hϕ , hT

ϕ =
I r

T
CE

I r
T
CE ·

(
IeBA × I rAC

) ,

Hϕ =
∂ I ṙAE

∂ ẏT
d

− ey × I rAC ·
∂ κ̇y

∂ ẏT
d

− eκy
× I rAC ·

∂ κ̇z

∂ ẏT
d

− IeDE ·
∂ ḋF

∂ ẏT
d

(4-133)

folgt. Entsprechend der Aufteilung der Drehmatrix I2 A gemäß (4-97) wird auch der
Winkelgeschwindigkeitsvektor des Radträgers I2 A in zwei Bestandteile aufgetrennt,
d. h.

I2
Iω = IZ

Iω + Z2
Iω =

∂ I2
Iω

∂ ẏT
d

ẏd ,
∂ I2

Iω

∂ ẏT
d

=
∂ IZ

Iω

∂ ẏT
d

+
∂ Z2

Iω

∂ ẏT
d

. (4-134)

Der Anteil IZ
Iω folgt aus IZ A als

IZ
Iω = ex · α̇Z + Ax

(
αZ

) · ey · β̇Z = ex α̇Z + eαZ
β̇Z =

∂ IZ
Iω

∂ ẏT
d

ẏd ,

∂ IZ
Iω

∂ ẏT
d

= ex ·
∂ α̇Z

∂ ẏT
d

+ eαZ
· ∂ β̇Z

∂ ẏT
d

, eαZ
=


0

cosαZ
sinαZ

 , (4-135)
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der Anteil Z2
Iω aus Z2 A (vgl. [SHB18, S. 36] für die allgemeingültige Formel) als

Z2
Iω = I2 A ·

[
2eCE · δ̇ +

(
I · sin δ + (1 − cos δ) · 2ẽCE

) · 2ėCE

]

=
∂ Z2

Iω

∂ ẏT
d

ẏd ,
∂ Z2

Iω

∂ ẏT
d

= IeCE ·
∂ δ̇

∂ ẏT
d

+
∂ Z2

Iω2

∂ ẏT
d

(4-136)

mit

∂ Z2
Iω2

∂ ẏT
d

= I2 A · (I · sin δ + (1 − cos δ) · 2ẽCE
) · ∂ 2ėCE

∂ ẏT
d

. (4-137)

Gegenüber [Ril94] wurde der Anteil ∂ Z2
Iω2/∂ ẏT

d nicht vernachlässigt. Die noch zu bestim-
menden Unbekannten sind ∂ 2ėCE/∂ ẏT

d , ∂ α̇Z/∂ ẏT
d , ∂ β̇Z/∂ ẏT

d und ∂ δ̇/∂ ẏT
d , deren Berech-

nungsformeln nachfolgend in dieser Reihenfolge hergeleitet werden.

Da der Radträger als Starrkörper betrachtet wird, gilt 2 ṙCD, 2ėDE = 0. Aus (4-91) folgt
daher

2 ṙCE = 2eDE · ḋF . (4-138)

Mit den skalaren Hilfsgrößen

h1 =
∣∣∣2rCE

∣∣∣2 = 2rT
CE · 2rCE , h2 = 2eT

DE · 2rCE , (4-139)
ḣ1 = 2 · 2 ṙT

CE · 2rCE = 2 · h2 · ḋF (4-140)

ergibt sich

2ėCE =
d
d t

(
2eCE

)
=

d
d t

(
2rCE · h−

1
2

1

)
=
∂ 2ėCE

∂ ẏT
d

· ẏd (4-141)

mit der gesuchten Größe

∂ 2ėCE

∂ ẏT
d

=

(
2eDE · h−

1
2

1 − 2rCE · h−
3
2

1 · h2

)
· ∂ ḋF

∂ ẏT
d

. (4-142)

Mit der nun bekannten Größe ∂ Z2
Iω2/∂ ẏT

d lassen sich auch ∂ α̇Z/∂ ẏT
d und ∂ β̇Z/∂ ẏT

d be-
stimmen. Durch Einsetzen einiger der Zusammenhänge für I2

Iω in (4-131) folgt

∂ I ṙAE

∂ ẏT
d

ẏd= I3
Iω × I rAC +

(
ex × I rCE ·

∂ α̇Z

∂ ẏT
d

+ eαZ
× I rCE ·

∂ β̇Z

∂ ẏT
d

)
· ẏd

+ Z2
Iω2 × I rCE + IeDE ·

∂ ḋF

∂ ẏT
d

ẏd . (4-143)

Dabei wurde auch berücksichtigt, dass die Vektoren IeCE und I rCE parallel sind, wodurch
der Summand IeCE × I rCE · δ̇ entfällt. Durch Linksmultiplikation von (4-143) mit hT

3 =(
IeDE ×

(
eαZ
× I rCE

))T
bzw. hT

4 =
(

IeDE ×
(
ex × I rCE

))T ergeben sich hieraus für α̇Z und β̇Z
die Zusammenhänge

∂ α̇Z

∂ ẏT
d

= hT
αZ
· H5 ,

∂ β̇Z

∂ ẏT
d

= hT
βZ
· H5 (4-144)
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mit

hT
αZ

=
hT

3

hT
3 ·

(
ex × I rCE

) , hT
βZ

=
hT

4

hT
4 ·

(
eαZ
× I rCE

) , (4-145)

H5 = I r̃AC ·
∂ I3

Iω

∂ ẏT
d

+
∂ I ṙAE

∂ ẏT
d

+ I r̃CE ·
∂ Z2

Iω2

∂ ẏT
d

. (4-146)

Die letzte verbliebene Unbekannte ist ∂ δ̇/∂ ẏT
d . Es gilt gleichermaßen

I ṙAF = I ṙAC + I ṙCF (4-147)

und

I ṙAF = I ṙAG + I ṙGF (4-148)

mit

I ṙCF = I2
Iω × I rCF , I ṙGF = I5

Iω × I rGF , (4-149)

I ṙAG = I ṙ0G − I ṙ0A =
∂ I ṙAG

∂ ẏT
d

ẏd ,
∂ I ṙAG

∂ ẏT
d

=
∂ I ṙ0G

∂ ẏT
d

− ∂ I ṙ0A

∂ ẏT
d

, (4-150)

I ṙ0G =
∂ I ṙ0G

∂ ẏT
d

ẏd ,
∂ I ṙ0G

∂ ẏT
d

=
[
03×1 ey 03×9

]
. (4-151)

Durch Gleichsetzen von (4-147) und (4-148), sukzessives Einsetzen bekannter Größen
und Umformen folgt

IeCE × I rCF ·
∂ δ̇

∂ ẏT
d

· ẏd =

I r̃AC
∂ I3

Iω

∂ ẏT
d

+ I r̃CF


∂ IZ

Iω

∂ ẏT
d

+
∂ Z2

Iω2

∂ ẏT
d

 +
∂ I ṙAG

∂ ẏT
d

 ẏd + I5
Iω × I rGF . (4-152)

Hieraus ergibt sich durch Linksmultiplikation mit I r
T
GF

∂ δ̇

∂ ẏT
d

= hT
δ · Hδ , hT

δ =
I r

T
GF

I r
T
GF ·

(
IeCE × I rCF

) ,

Hδ = I r̃AC ·
∂ I3

Iω

∂ ẏT
d

+ I r̃CF ·

∂ IZ

Iω

∂ ẏT
d

+
∂ Z2

Iω2

∂ ẏT
d

 +
∂ I ṙAG

∂ ẏT
d

. (4-153)

Aufbauend auf dem Winkelgeschwindigkeitsvektor des Radträgers ergibt sich der Winkel-
geschwindigkeitsvektor der Radnabe I1

Iω durch Vektoraddition nach

I1
Iω = I2

Iω + 21
Iω =

∂ I1
Iω

∂ ẏT
d

ẏd ,
∂ I1

Iω

∂ ẏT
d

=
∂ I2

Iω

∂ ẏT
d

+
∂ 21

Iω

∂ ẏT
d

. (4-154)

Der Winkelgeschwindigkeitsvektor 21
2ω folgt unmittelbar aus (4-109) zu

21
2ω = − 210 A · ey ·

∂ ψ̇

∂ ẏT
d

ẏd ,
∂ ψ̇

∂ ẏT
d

=
[
01×2 1 01×8

]
(4-155)
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und führt zu

21
Iω = I2 A · 21

2ω =
∂ 21

Iω

∂ ẏT
d

ẏd ,
∂ 21

Iω

∂ ẏT
d

= − I2 A · 210 A · ey ·
∂ ψ̇

∂ ẏT
d

. (4-156)

Für den Winkelgeschwindigkeitsvektor der Dämpferstange I4
Iω gilt aufgrund der Ab-

wesenheit eines rotatorischen FHG zwischen Dämpferstange und Radträger

I4
Iω = I2

Iω ,
∂ I4

Iω

∂ ẏT
d

=
∂ I2

Iω

∂ ẏT
d

. (4-157)

Der Winkelgeschwindigkeitsvektor der Spurstange I5
Iω lautet, vgl. auch (4-135),

I5
Iω = ex · α̇5 + eα5

· β̇5 =
∂ I5

Iω

∂ ẏT
d

ẏd ,

∂ I5
Iω

∂ ẏT
d

= ex ·
∂ α̇5

∂ ẏT
d

+ eα5
· ∂ β̇5

∂ ẏT
d

, eα5
=


0

cosα5
sinα5

 . (4-158)

Die Winkelgeschwindigkeiten α̇5 und β̇5 folgen durch zeitliche Ableitung von (4-114)

α̇5 =
1

1 +

(
− I

rGF,y

IrGF,z

)2 ·
d
d t

(
− I

rGF,y

IrGF,z

)
=
∂ α̇5

∂ ẏT
d

· ẏd , (4-159)

β̇5 =
1√

1 −
(

IrGF,x

5rGF,z

)2
· d

d t

(
IrGF,x

5rGF,z

)
=
∂ β̇5

∂ ẏT
d

· ẏd (4-160)

mit

∂ α̇5

∂ ẏT
d

=
∂ α̇5

∂ I ṙ
T
GF

· ∂ I ṙGF

∂ ẏT
d

,
∂ β̇5

∂ ẏT
d

=
∂ β̇5

∂ I ṙ
T
GF

· ∂ I ṙGF

∂ ẏT
d

,

∂ α̇5

∂ I ṙ
T
GF

=

[
0 − IrGF,z I

rGF,y

]

I
r 2

GF,y + Ir
2
GF,z

,
∂ β̇5

∂ I ṙ
T
GF

=
eT

x√
5rGF,z

2 − IrGF,x
2
. (4-161)

Die fehlende Größe ∂ I ṙGF

∂ ẏT
d

folgt aus

I ṙGF = − I ṙAG + I ṙAC + I ṙCF

= −∂ I ṙAG

∂ ẏT
d

ẏd + I3
Iω × I rAC + I2

Iω × I rCF =
∂ I ṙGF

∂ ẏT
d

ẏd (4-162)

und beträgt

∂ I ṙGF

∂ ẏT
d

= −∂ I ṙAG

∂ ẏT
d

− I r̃AC ·
∂ I3

Iω

∂ ẏT
d

− I r̃CF ·
∂ I2

Iω

∂ ẏT
d

. (4-163)

Das Lenkgestänge besitzt keinen Dreh-FHG bezüglich des Fahrzeugaufbaus. Der Winkel-
geschwindigkeitsvektor des Lenkgestänges I6

Iω beträgt daher

I6
Iω = 0 ,

∂ I6
Iω

∂ ẏT
d

= 0 . (4-164)
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Die zeitliche Ableitung von (4-116) bis (4-118) führt zu den Geschwindigkeitsvektoren
der Körperschwerpunkte

I ṙ01 = I ṙ02 + I ṙ2H + I ṙH1 = I ṙ02 + I2
Iω × I r2H + I1

Iω × I rH1 =
∂ I ṙ01

∂ ẏT
d

ẏd , (4-165)

I ṙ02 = I ṙ0A + I ṙAC + I ṙC2 = I ṙ0A + I ṙAC + I2
Iω × I rC2 =

∂ I ṙ02

∂ ẏT
d

ẏd , (4-166)

I ṙ03 = I ṙ0A + I ṙA3 = I ṙ0A + I3
Iω × I rA3 =

∂ I ṙ03

∂ ẏT
d

ẏd , (4-167)

I ṙ04 = I ṙ0E + I ṙE4 = I ṙ0E + I4
Iω × I rE4 =

∂ I ṙ04

∂ ẏT
d

ẏd , (4-168)

I ṙ05 = I ṙ0G + I ṙG5 = I ṙ0G + I5
Iω × I rG5 =

∂ I ṙ05

∂ ẏT
d

ẏd , (4-169)

I ṙ06 = I ṙ0G (4-170)

mit den partiellen Ableitungen

∂ I ṙ01

∂ ẏT
d

=
∂ I ṙ02

∂ ẏT
d

− I r̃2H ·
∂ I2

Iω

∂ ẏT
d

− I r̃H1 ·
∂ I1

Iω

∂ ẏT
d

, (4-171)

∂ I ṙ02

∂ ẏT
d

=
∂ I ṙ0A

∂ ẏT
d

− I r̃AC ·
∂ I3

Iω

∂ ẏT
d

− I r̃C2 ·
∂ I2

Iω

∂ ẏT
d

, (4-172)

∂ I ṙ03

∂ ẏT
d

=
∂ I ṙ0A

∂ ẏT
d

− I r̃A3 ·
∂ I3

Iω

∂ ẏT
d

, (4-173)

∂ I ṙ04

∂ ẏT
d

=
∂ I ṙ0E

∂ ẏT
d

− I r̃E4 ·
∂ I4

Iω

∂ ẏT
d

, (4-174)

∂ I ṙ05

∂ ẏT
d

=
∂ I ṙ0G

∂ ẏT
d

− I r̃G5 ·
∂ I5

Iω

∂ ẏT
d

, (4-175)

∂ I ṙ06

∂ ẏT
d

=
∂ I ṙ0G

∂ ẏT
d

. (4-176)

Analog dazu ergibt sich für den Geschwindigkeitsvektor des Punktes T

I ṙ0T = I ṙ01 + I ṙ1T , I ṙ1T = I1
Iω × I r1T , (4-177)

für die partielle Ableitung

∂ I ṙ0T

∂ ẏT
d

=
∂ I ṙ01

∂ ẏT
d

− I r̃1T ·
∂ I1

Iω

∂ ẏT
d

. (4-178)

Beschleunigungsgrößen

In diesem Abschnitt werden noch die Restbeschleunigungen aller beteiligter Körper,
d. h. die zeitlichen Differentiale

d
d t

(
∂ Ii

Iω

∂ ẏT
d

)
,

d
d t

(
∂ I ṙ0i

∂ ẏT
d

)
(4-179)
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gebildet. Rill [Ril94] vernachlässigt diese Terme, da sie gerade bei Radaufhängungen auf-
grund kleiner Relativgeschwindigkeiten und -beschleunigungen verhältnismäßig klein sind.
Hierfür spricht auch, dass die Modellierung ohnehin diverse Vereinfachungen gegenüber
der Realität aufweist (z. B. Starrkörperannahme, ideale Gelenke, masselose Kraftelemente,
vereinfachte Elastomerlagermodelle). Rill argumentiert weiter, es ergäbe „wenig Sinn,
auf der einen Seite Fehler auf Grund von idealisierten Modellvorstellungen in Kauf zu
nehmen und auf der anderen Seite Terme mit großem Rechenaufwand vermeintlich exakt
zu berechnen“ [Ril94, S. 34].

Die für die Berechnung der Restbeschleunigungen erforderlichen Terme werden nachfol-
gend dennoch angegeben. Dies ermöglicht auch einen Vergleich der Modellgüte mit und
ohne Berücksichtigung der Restbeschleunigungen im nachfolgenden Abschnitt 4.3.3.

Für den Querlenker folgt aus (4-122)

d
d t

(
∂ I3

Iω

∂ ẏT
d

)
= ėκy

∂ κ̇z

∂ ẏT
d

+ I ėBA
∂ ϕ̇

∂ ẏT
d

+ IeBA
d
d t

(
∂ ϕ̇

∂ ẏT
d

)
, ėκy

= κ̇y


cos κy

0
−sin κy

 . (4-180)

Die zeitliche Ableitung von (4-123) führt zu

I ėBA = I3
Iω × IeBA =

(
IeBA · ϕ̇ + ez · κ̇z

)
× IeBA = ez × IeBA · κ̇z , (4-181)

die Ableitung von (4-133) zu

d
d t

(
∂ ϕ̇

∂ ẏT
d

)
= ḣT

ϕ · Hϕ + hT
ϕ · Ḣϕ (4-182)

mit

ḣT
ϕ =

1

I r
T
CE ·

(
IeBA × I rAC

) ·
(

I ṙ
T
CE−

(
I ṙ

T
CE ·

(
IeBA × I rAC

)
+ I r

T
CE ·

(
I ėBA × I rAC + IeBA × I ṙAC

)) · hT
ϕ

)
, (4-183)

Ḣϕ = −ey × I ṙAC ·
∂ κ̇y

∂ ẏT
d

−
(
ėκy
× I rAC + eκy

× I ṙAC

)
· ∂ κ̇z

∂ ẏT
d

− I ėDE ·
∂ ḋF

∂ ẏT
d

, (4-184)

I ėDE = I2
Iω × IeDE . (4-185)

Aus der zeitlichen Differentiation von (4-134), (4-135) und (4-136) resultiert die Berech-
nung der Restwinkelbeschleunigung des Radträgers. Die Gleichungen lauten

d
d t

(
∂ I2

Iω

∂ ẏT
d

)
=

d
d t

(
∂ IZ

Iω

∂ ẏT
d

)
+

d
d t

(
∂ Z2

Iω

∂ ẏT
d

)
(4-186)

mit

d
d t

(
∂ IZ

Iω

∂ ẏT
d

)
= ex ·

d
d t

(
∂ α̇Z

∂ ẏT
d

)
+ ėαZ

· ∂ β̇Z

∂ ẏT
d

+ eαZ
· d

d t

(
∂ β̇Z

∂ ẏT
d

)
, (4-187)

d
d t

(
∂ Z2

Iω

∂ ẏT
d

)
= IeCE ·

d
d t

(
∂ δ̇

∂ ẏT
d

)
+ I ėCE ·

∂ δ̇

∂ ẏT
d

+
d
d t


∂ Z2

Iω2

∂ ẏT
d

 (4-188)
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und

ėαZ
= α̇Z ·


0

−sinαZ
cosαZ

 , I ėCE = I2
Iω × IeCE + I2 A · 2ėCE . (4-189)

In diesen Gleichungen sind mit d
(
∂ Z2

Iω2/∂ ẏT
d

)
/d t, d

(
∂ α̇Z/∂ ẏT

d

)
/d t, d

(
∂ β̇Z/∂ ẏT

d

)
/d t

und d
(
∂ δ̇/∂ ẏT

d

)
/d t erneut vier Unbekannte enthalten. d

(
∂ Z2

Iω2/∂ ẏT
d

)
/d t folgt durch

zeitliches Differenzieren von (4-137),

d
d t


∂ Z2

Iω2

∂ ẏT
d

 = I2 A
(
I δ̇ cos δ + (1 − cos δ) 2

˙̃eCE + 2ẽCE δ̇ sin δ
) ∂ 2ėCE

∂ ẏT
d

+ I2 A
(
I sin δ + (1 − cos δ) 2ẽCE

) d
d t

(
∂ 2ėCE

∂ ẏT
d

)
+ I2

Iω̃ ·
∂ Z2

Iω2

∂ ẏT
d

, (4-190)

wobei diese Gleichung mit d
(
∂ 2ėCE/∂ ẏT

d

)
/d t eine weitere Unbekannte enthält. Diese

lässt sich durch Differenzieren von (4-142) gewinnen. Zunächst folgt hieraus

d
d t

(
∂ 2ėCE

∂ ẏT
d

)
= −

(
1
2
· 2eDE · h−

3
2

1 · ḣ1 + 2 ṙCE · h−
3
2

1 · h2

+ 2rCE ·
(
−3

2
· h− 5

2
1 · ḣ1 · h2 + h−

3
2

1 · 2eT
DE · 2 ṙCE

) )
· ∂ ḋF

∂ ẏT
d

. (4-191)

Durch Einsetzen von 2 ṙCE nach (4-138) und ḣ1 nach (4-140) vereinfacht sich dieser Aus-
druck zu

d
d t

(
∂ 2ėCE

∂ ẏT
d

)
= −

(
2eDE · h−

3
2

1 · h2 · ḋF + 2eDE · h−
3
2

1 · h2 · ḋF

+ 2rCE ·
(
−3 · h− 5

2
1 · h2

2 · ḋF + h−
3
2

1 · 2eT
DE · 2eDE · ḋF

) )
· ∂ ḋF

∂ ẏT
d

= −h−
3
2

1 ·
[
2 · 2eDE · h2 + 2rCE ·

(
1 − 3 · h2

2

h1

)]
· ḋF ·

∂ ḋF

∂ ẏT
d

. (4-192)

Für d
(
∂ α̇Z/∂ ẏT

d

)
/d t und d

(
∂ β̇Z/∂ ẏT

d

)
/d t ergibt sich durch Differentiation von (4-144)

d
d t

(
∂ α̇Z

∂ ẏT
d

)
= ḣT

αZ
· H5 + hT

αZ
· Ḣ5 ,

d
d t

(
∂ β̇Z

∂ ẏT
d

)
= ḣT

βZ
· H5 + hT

βZ
· Ḣ5 (4-193)
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mit

ḣT
αZ

=
ḣT

3 −
(
ḣT

3 ·
(
ex × I rCE

)
+ hT

3 ·
(
ex × I ṙCE

)) · hT
αZ

hT
3 ·

(
ex × I rCE

) , (4-194)

ḣT
βZ

=
ḣT

4 −
(
ḣT

4 ·
(
eαZ
× I rCE

)
+ hT

4 ·
(
ėαZ
× I rCE + eαZ

× I ṙCE

))
· hT

βZ

hT
4 ·

(
eαZ
× I rCE

) , (4-195)

Ḣ5 = I
˙̃rAC ·

∂ I3
Iω

∂ ẏT
d

+ I r̃AC ·
d
d t

(
∂ I3

Iω

∂ ẏT
d

)

+ I
˙̃rCE ·

∂ Z2
Iω2

∂ ẏT
d

+ I r̃CE ·
d
d t


∂ Z2

Iω2

∂ ẏT
d

 , (4-196)

ḣT
3 =

(
I ėDE ×

(
eαZ
× I rCE

)
+ IeDE ×

(
ėαZ
× I rCE + eαZ

× I ṙCE

))T
, (4-197)

ḣT
4 =

(
I ėDE ×

(
ex × I rCE

)
+ IeDE ×

(
ex × I ṙCE

))T . (4-198)

Das Differenzieren von (4-153) führt zu

d
d t

(
∂ δ̇

∂ ẏT
d

)
= ḣT

δ · Hδ + hT
δ · Ḣδ (4-199)

mit

ḣT
δ =

1

I r
T
GF ·

(
IeCE × I rCF

) ·
(

I ṙ
T
GF−

(
I ṙ

T
GF ·

(
IeCE × I rCF

)
+ I r

T
GF ·

(
I ėCE × I rCF + IeCE × I ṙCF

)) · hT
δ

)
, (4-200)

Ḣδ = I
˙̃rAC ·

∂ I3
Iω

∂ ẏT
d

+ I r̃AC ·
d
d t

(
∂ I3

Iω

∂ ẏT
d

)
+ I

˙̃rCF ·

∂ IZ

Iω

∂ ẏT
d

+
∂ Z2

Iω2

∂ ẏT
d



+ I r̃CF ·


d
d t

(
∂ IZ

Iω

∂ ẏT
d

)
+

d
d t


∂ Z2

Iω2

∂ ẏT
d


 , (4-201)

womit durch Vorliegen von d
(
∂ δ̇/∂ ẏT

d

)
/d t sämtliche Terme für die Berechnung von

d
(
∂ I2

Iω/∂ ẏT
d

)
/d t nach (4-186) bekannt sind.

Für die Berechnung der Restwinkelbeschleunigung der Radnabe ist die Größe

d
d t

(
∂ I1

Iω

∂ ẏT
d

)
=

d
d t

(
∂ I2

Iω

∂ ẏT
d

)
+

d
d t

(
∂ 21

Iω

∂ ẏT
d

)
(4-202)

erforderlich. d
(
∂ I2

Iω/∂ ẏT
d

)
/d t ist bekannt. Der zweite Anteil geht aus (4-156) hervor. Es

gilt

d
d t

(
∂ 21

Iω

∂ ẏT
d

)
= − I2 Ȧ · 210 A · ey ·

∂ ψ̇

∂ ẏT
d

= I2
Iω̃ ·

∂ 21
Iω

∂ ẏT
d

, (4-203)

da

I2 Ȧ = I2
Iω̃ · I2 A . (4-204)
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Der Restwinkelbeschleunigungsterm der Dämpferstange entspricht der des Radträgers,
d. h.

d
d t

(
∂ I4

Iω

∂ ẏT
d

)
=

d
d t

(
∂ I2

Iω

∂ ẏT
d

)
, (4-205)

der der Spurstange, vgl. (4-158), beträgt

d
d t

(
∂ I5

Iω

∂ ẏT
d

)
= ex ·

d
d t

(
∂ α̇5

∂ ẏT
d

)
+ ėα5

· ∂ β̇5

∂ ẏT
d

+ eα5
· d

d t

(
∂ β̇5

∂ ẏT
d

)
(4-206)

mit

ėα5
= α̇5 ·


0

−sinα5
cosα5

 . (4-207)

Die unbekannten Größen d
(
∂ α̇5/∂ ẏT

d

)
/d t und d

(
∂ β̇5/∂ ẏT

d

)
/d t folgen aus (4-161). Es

resultieren

d
d t

(
∂ α̇5

∂ ẏT
d

)
=

d
d t


∂ α̇5

∂ I ṙ
T
GF

 ·
∂ I ṙGF

∂ ẏT
d

+
∂ α̇5

∂ I ṙ
T
GF

· d
d t

(
∂ I ṙGF

∂ ẏT
d

)
, (4-208)

d
d t

(
∂ β̇5

∂ ẏT
d

)
=

d
d t


∂ β̇5

∂ I ṙ
T
GF

 ·
∂ I ṙGF

∂ ẏT
d

+
∂ β̇5

∂ I ṙ
T
GF

· d
d t

(
∂ I ṙGF

∂ ẏT
d

)
(4-209)

mit

d
d t


∂ α̇5

∂ I ṙ
T
GF

 =
−2 ·

(
I
rGF,y · I

ṙGF,y + IrGF,z · I ṙGF,z

)

(
I
r 2

GF,y + Ir
2
GF,z

)2 ·


0
− IrGF,z

I
rGF,y



T

+
1

I
r 2

GF,y + Ir
2
GF,z

·
[
0 − I ṙGF,z I

ṙGF,y

]

=

[
2 ·

I
rGF,y · IrGF,z − I

r 2
GF,y + Ir

2
GF,z

]

(
I
r 2

GF,y + Ir
2
GF,z

)2 ·
[
0

I
ṙGF,y − I ṙGF,z

0 I ṙGF,z I
ṙGF,y

]
, (4-210)

d
d t


∂ β̇5

∂ I ṙ
T
GF

 =
IrGF,x · I ṙGF,x

(
5r 2

GF,z − Ir
2
GF,x

) 3
2

· eT
x (4-211)

und

d
d t

(
∂ I ṙGF

∂ ẏT
d

)
= − I

˙̃rAC ·
∂ I3

Iω

∂ ẏT
d

− I r̃AC ·
d
d t

(
∂ I3

Iω

∂ ẏT
d

)

− I
˙̃rCF ·

∂ I2
Iω

∂ ẏT
d

− I r̃CF ·
d
d t

(
∂ I2

Iω

∂ ẏT
d

)
. (4-212)
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Für die Restbeschleunigungen der Schwerpunkte sind noch die zeitlichen Differentiale
der partiellen Ableitungen nach (4-171) bis (4-176) erforderlich. Sie lauten

d
d t

(
∂ I ṙ01

∂ ẏT
d

)
=

d
d t

(
∂ I ṙ02

∂ ẏT
d

)
− I

˙̃r2H ·
∂ I2

Iω

∂ ẏT
d

− I r̃2H ·
d
d t

(
∂ I2

Iω

∂ ẏT
d

)

− I
˙̃rH1 ·

∂ I1
Iω

∂ ẏT
d

− I r̃H1 ·
d
d t

(
∂ I1

Iω

∂ ẏT
d

)
, (4-213)

d
d t

(
∂ I ṙ02

∂ ẏT
d

)
= − I

˙̃rAC ·
∂ I3

Iω

∂ ẏT
d

− I r̃AC ·
d
d t

(
∂ I3

Iω

∂ ẏT
d

)

− I
˙̃rC2 ·

∂ I2
Iω

∂ ẏT
d

− I r̃C2 ·
d
d t

(
∂ I2

Iω

∂ ẏT
d

)
, (4-214)

d
d t

(
∂ I ṙ03

∂ ẏT
d

)
= − I

˙̃rA3 ·
∂ I3

Iω

∂ ẏT
d

− I r̃A3 ·
d
d t

(
∂ I3

Iω

∂ ẏT
d

)
, (4-215)

d
d t

(
∂ I ṙ04

∂ ẏT
d

)
= − I

˙̃rE4 ·
∂ I4

Iω

∂ ẏT
d

− I r̃E4 ·
d
d t

(
∂ I4

Iω

∂ ẏT
d

)
, (4-216)

d
d t

(
∂ I ṙ05

∂ ẏT
d

)
= − I

˙̃rG5 ·
∂ I5

Iω

∂ ẏT
d

− I r̃G5 ·
d
d t

(
∂ I5

Iω

∂ ẏT
d

)
, (4-217)

d
d t

(
∂ I ṙ06

∂ ẏT
d

)
= 03×11 . (4-218)

Der entsprechende Term für die Berechnung des Beschleunigungsvektors von Punkt T
folgt aus (4-178) und beträgt

d
d t

(
∂ I ṙ0T

∂ ẏT
d

)
=

d
d t

(
∂ I ṙ01

∂ ẏT
d

)
− I

˙̃r1T ·
∂ I1

Iω

∂ ẏT
d

− I r̃1T ·
d
d t

(
∂ I1

Iω

∂ ẏT
d

)
. (4-219)

Der verallgemeinerte Beschleunigungsvektor des Punkts T kann damit nach der Formel

a =

[
I r̈0T
I1

Iω̇

]
=



∂ I ṙ0T
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∂ ẏT
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berechnet werden.

Eingeprägte Kräfte und Momente

Auf die Modellierung der Kraftelemente und die eingeprägten Kräfte und Momente
wird hier nicht im Detail eingegangen. Sowohl MKS- als auch analytisches Modell der
Radaufhängung enthalten

• einen Stoßdämpfer mit nichtlinearer Dämpfung (Kraft-Geschwindigkeits-Kennlinie)
sowie nichtlinearen Zug- und Druckpuffern (Kraft-Weg-Kennlinien),

• eine gegenüber dem Stoßdämpfer leicht verschobene und schräg gestellte Aufbaufe-
der mit linearer Charakteristik,

• insgesamt drei Elastomerlager (zwei Querlenkerlager sowie das Federbeinstützlager)
mit jeweils sechs Kraft-Weg-Kennlinien und sechs konstanten Dämpfungen,
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• eine konstante Lenksteifigkeit und -dämpfung.

Für die Berechnung der Elastomerlagerkräfte wird darüber hinaus die relative Verdrehung
der Elastomerlagerachsen gegenüber den zwei über das Lager verbundenen Körpern be-
rücksichtigt. Je Lager kann diese Angabe bspw. über drei Winkelangaben je verbundenem
Körper erfolgen.

4.3.2 Resultierende Modellgleichungen

Aufbauend auf den im vorangegangenen Abschnitt hergeleiteten Gleichungen können die
Jacobimatrizen der Körper

JTi =
∂ I ṙ0i

∂ ẏT
d

, JRi =
∂ Ii

Iω

∂ ẏT
d

, J i =

[
JTi
JRi

]
(4-221)

gebildet und damit auch die Massenmatrix Mu
(
yd

)
nach (A2-14), die Zentrifugal- und

Coriolismatrix Cu
(
yd, ẏd

)
nach (A2-17) und die verallgemeinerten Gewichtskräfte gu

(
yd

)

nach (A2-22) berechnet werden. Wie schon beim Hexapodmodell werden hier bei der
Berechnung von Cu

(
yd, ẏd

)
abweichend von (A2-18) die Elemente Cu,i

(
yd, ẏd

)
analog zu

(4-51) gebildet.

Die resultierenden Bewegungsgleichungen des 11-FHG-Radaufhängungsmodells lauten

Mu
(
yd

) · ÿd + nu
(
yd, ẏd

)
= ST

yd
(
yd

) · τ , (4-222)

wobei die Nomenklatur des Umgebungsmodells (2-78) aus dem Stand von Technik und
Forschung übernommen wurde. In dieser Gleichung ist Syd die Jacobimatrix des Punktes
T mit

Syd =

[
JTT
JRT

]
, JTT =

∂ I ṙ0T

∂ ẏT
d

, JRT =
∂ I1

Iω

∂ ẏT
d

. (4-223)

τ bezeichnet die im Punkt T angreifenden Kräfte und Momente, die die Eingangsgröße
des Systems darstellen. Nach dem Vorbild des Umgebungsmodells nach (2-78) werden
dabei die verallgemeinerten Zentrifugal- und Corioliskräfte, die verallgemeinerten Ge-
wichtskräfte sowie alle eingeprägten Kräfte und Momente mit Ausnahme der im Punkt T
angreifenden Kontaktkräfte und -momente τ in dem Term nu

(
yd, ẏd

)
zusammengefasst.

Die Zustandsgleichungen des Radaufhängungsmodells mit xd =
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ẏd

−M−1
u

(
yd

) · nu
(
yd, ẏd
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Über die bei den eingeprägten Kräften und Momenten genannten Parameter hinaus sind für
die Auswertung dieser Gleichungen die kartesischen Koordinaten von insgesamt 15 Punk-
ten im Raum, die konstante Drehmatrix 210 A, vgl. (4-109), die Anfangsbedingungen der
Zustandsgrößen yd und ẏd sowie die Massen und Trägheitstensoren der sechs Starrkörper
erforderlich.
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Die Parametrisierung dieses Modells ohne Vorliegen spezifischer Herstellerinformationen
gestaltet sich aufgrund der Vielzahl an Modellparametern schwierig. Für das Federbein
wurden vor Einbau der Achse in den Prüfstand eindimensionale Modelle erstellt und
mithilfe von Prüfstandsmessungen identifiziert. Die zugehörigen Arbeiten wurden durch
Frederik Ikemeyer im Rahmen seiner Studienarbeit [IK15] durchgeführt. Darüber hinaus
wurden die für die Kinematik relevanten Raumkoordinaten der 15 Punkte näherungsweise
gemessen und mit einer nichtlinearen Optimierung verbessert, vgl. auch [KOT+17]. Für
die Elastomerlager verwendet das Modell die Parameter einer ähnlichen Fahrzeugachse.
Infolgedessen verhält sich die Radaufhängung im Simulationsmodell nur näherungsweise
wie das reale Gegenstück. Dies lässt sich bspw. durch das Aufprägen eines am Prüfstand
gemessenen Last-Zeit-Verlaufs auf das Simulationsmodell zeigen.

Die Identifikation der Elastomerlager sowie die Feinabstimmung aller weiteren Modellpa-
rameter ist mit einem hohen Zeit- und Kostenaufwand verbunden und bietet viel Potenzial
für weitere Arbeiten. In diesem Zusammenhang ist eine zukünftige enge Zusammenarbeit
mit Automobilherstellern und -zulieferern von Vorteil.

Aus dem dokumentierten Modell mit elf FHG lassen sich leicht einfachere Modelle mit
weniger FHG erstellen. Hierfür müssen die zu den gesperrten FHG gehörenden Terme
aus (4-222) gestrichen werden. Je gesperrtem FHG entfällt eine Bewegungsdifferenti-
algleichung. Die FHG dF sowie xL (außer bei blockierter Lenkung) und ψ (außer bei
festgebremstem Rad) müssen jedoch stets beibehalten werden.

4.3.3 Modellvalidierung anhand des MKS-Radaufhängungsmodells

Die Modellvalidierung des hergeleiteten Radaufhängungsmodells muss nicht wie bei dem
Hexapod durch Abgleich der Systemzustände zwischen dem MKS-Referenzmodell und
dem damit zu vergleichenden Modell erfolgen (vgl. Bild 4-6). Bei Modellvergleichen
kann bekanntermaßen schon infolge kleinster Abweichungen prinzipbedingt eine Drift
entstehen. Hier ist dies nicht der Fall, denn die vorliegenden Kraftelemente bewirken, dass
keine nennenswerte Drift zwischen den beiden Modellen entsteht. Die Modelle lassen sich
durch Vorgabe identischer Eingangsgrößen τ vergleichen. Nur der FHG ψ wird zum Zweck
des Modellvergleichs sowohl im MKS-Referenzmodell, das nachfolgend das Kürzel ΣAR
erhält, als auch im damit verglichenen Modell nach den vorangegangenen Herleitungen
eliminiert.

Die Beurteilung der Modellgüte erfolgt wieder anhand zweier Manöver:

• einer Abfolge von Kraftsprüngen analog zu den Positionssprüngen in Bild 4-7,

• der Schlechtweganregung.

Für beide Manöver zeigt Bild 4-11 den Vergleich der bereits für Bild 4-8 verwendeten
Gütemaße, d. h. den RMS der Abweichung zwischen der Beschleunigung der Referenz ΣAR
und den betrachteten Modellierungsvarianten bezogen auf den RMS der Beschleunigung
von ΣAR. Das einfachste mit ΣAR verglichene Modell weist nur die FHG dF und xL auf.
Ausgehend von dieser Minimalauswahl an FHG wurden die Gütemaße aller möglichen
FHG-Kombinationen berechnet (Ausnahme: FHG ψ). Insgesamt ergeben sich so 256 mög-
liche FHG-Kombinationen und durchzuführende Simulationen. In Bild 4-11 ist für eine
bestimmte Anzahl an Modell-FHG immer die beste unter allen Alternativen eingetragen.
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Als beste wird diejenige Alternative angesehen, für die die Summe der sechs einzelnen
Gütewerte minimal ist. Das Referenzmodell ΣAR entspricht stets dem unvereinfachten,
alle Details umfassenden Modell der Einzelradaufhängung. Da hier nur die Einzelrad-
aufhängung in isolierter Form betrachtet wird, enthält das Modell keinen Stabilisator.
Grundsätzlich ließe sich auch untersuchen, ob einzelne Starrkörper bzw. deren Masse und
Trägheit vernachlässigt werden können. Vorstellbar ist dies bspw. für die Spur-, Lenk-
und Dämpferstange. An dieser Stelle wird der Einfluss dieser Parameter nicht untersucht;
bei allen Simulationen waren stets alle sechs Starrkörper massebehaftet. Darüber hinaus
kann es sinnvoll sein, die für die Berechnung der eingeprägten Kräfte und Momente er-
forderlichen Kraftelemente bei Wegfall bestimmter FHG zu modifizieren. Ein derartiger
Versuch wurde bspw. in der Studienarbeit von Udo Nolte [NK17] für das Modell mit den
FHG ϕ13, xL, κz und ψ unternommen und es konnte gezeigt werden, dass die Modifikation
der Kraftelemente eine Verbesserung der Modellqualität herbeiführen kann. Aufgrund
des damit verbundenen hohen Aufwands erfolgt hier keine Anpassung der Kraftelemente;
es werden stets die für das 11-FHG-Modell zutreffenden Kraftelemente in unveränderter
Form verwendet.
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Bild 4-11: Modellgüte in Abhängigkeit der Modell-FHG bei Rechteckanregung (links) und
Schlechtweganregung (rechts)

Aus Bild 4-11 geht hervor, dass die Modellgüte bei beiden betrachteten Anregungssi-
tuationen ab acht FHG relativ betrachtet sehr hoch ist, bei nur bis zu 4 FHG hingegen
relativ schlecht. Dazwischen ergibt sich ein gemischtes Bild. Dies begründet sich damit,
dass durch das Hinzufügen eines spezifischen FHG die Modellgüte in einer Richtung
zwar steigen kann, sie sich dabei gleichzeitig in einer anderen Richtung aber auch wieder
verringern kann. Eine eindeutige allgemeine Aussage wie bei dem Modell des Hexapod ist
hier nicht möglich.

Aufgrund der Vielzahl möglicher FHG-Kombinationen kann die Güte für alle erdenkli-
chen Modelle nur unter erheblichem Zeitaufwand verglichen werden. Für die folgenden
Vergleiche werden zwei spezifische Konfigurationen ausgewählt und untersucht. Dies
sind

• ΣA3: Radaufhängungsmodell mit den FHG ϕ, xL und κz nach [Ril94] und

• ΣA10: Radaufhängungsmodell mit allen FHG nach Abschnitt 4.3.1 außer ψ.

Bei beiden Modellen werden nachfolgend die Massen und Trägheiten aller sechs Starrkör-
per berücksichtigt. Das Modell ΣA3 unterscheidet sich daher von der Modellierung ΣA10

13Für die Beschreibung der Einfederung wurde anstelle des Dämpferwegs dF in [NK17] noch die
Querlenkerdrehung ϕ wie auch in [Ril94] verwendet.
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im Wesentlichen dadurch, dass die Elastomerlager nur in recht einfacher Form durch den
FHG κz Berücksichtigung finden.

Bild 4-12 zeigt die sich infolge der Kraftsprungabfolge ergebenden Positions- bzw. Dreh-
winkel-Zeitverläufe des Radträgers. Die Anregung erfolgt isoliert in einer einzelnen Rich-
tung über jeweils 0,2 s (vgl. Bild 4-7), wobei hier Kraft- bzw. Drehmomentvorgaben
anstelle Positions- bzw. Winkelvorgaben verwendet werden.

Das Referenzmodell ΣAR zeigt ein deutlich nichtlineares Verhalten. Bei Kraftanregung
einer isolierten Richtung bewegt sich der Radträger nicht nur in dieser Richtung, sondern
auch mehr oder weniger stark in den anderen Richtungen. Beispielsweise hat die Anregung
in den relativ elastischen Richtungen (z. B. rz-Richtung für t = 0,4 − 0,6 s und γ-Richtung
t = 1 − 1,2 s) eine verhältnismäßig große Bewegung des Radträgers in allen Richtungen
zur Folge.

Während der Zeitverlauf von ΣA10 keine sichtbaren Abweichungen zur Referenz ΣAR
aufweist, zeigen die Berechnungen des Modells ΣA3 hierzu deutliche Unterschiede. So
gehen hochfrequente Signalanteile verloren. Das Modell reagiert mit deutlich stärkerer
Dämpfung auf die Anregung. Außerdem wird der Radträger bei Anregung in einer spezifi-
schen Richtung teils geringer in dieser Richtung ausgelenkt, siehe z. B. die Richtungen ry
(t = 0,2−0,4 s), α (t = 0,6−0,8 s) und β (t = 0,8−1 s). Auch die Wechselwirkung zwischen
den Richtungen wird schlechter abgebildet, siehe z. B. die ry-Richtung bei Anregung in rx
(t = 0 − 0,2 s), β (t = 0,8 − 1 s) und γ (t = 1 − 1,2 s). Das Modell ΣA3 bildet die Referenz
zwar nicht so gut ab wie das Modell ΣA10, die Abweichungen zur Referenz sind absolut
betrachtet aber recht gering. Von Vorteil ist, dass das Modell durch die vereinfachte Model-
lierung der Elastomerlager weniger Zustandsgrößen besitzt und die Modellgleichungen
einfacher sind.

Bild 4-13 zeigt die entsprechenden Zeitverläufe für die Schlechtweganregung. Dargestellt
ist ein 1 s umfassender Ausschnitt aus dem eigentlichen Target-Signal. Der Radträger
bewegt sich infolge des Last-Zeit-Verlaufs dort besonders stark. Beispielsweise finden in
vertikaler Richtung rz mehrere Wechsel von etwa 1050 mm auf etwa 1170 mm statt.

Das Modell ΣA10 weist wiederum keine sichtbaren Abweichungen zur Referenz ΣAR auf.
ΣA3 bildet die Richtungen ry, rz, α und β gut ab. Deutlichere Abweichungen liegen in den
Richtungen rx und γ vor. Die Abweichungen zu dem zehn FHG umfassenden Modell ΣA10
sind bei dieser Anregungssituation weniger signifikant als bei der Sprungabfolge in Bild
4-12.

Die Vernachlässigung der Restbeschleunigungen hat bei Betrachtung der Positions- und
Drehwinkel-Zeitverläufe des Punktes T für beide Modelle ΣA3 und ΣA10 nur sehr geringe
Konsequenzen. Werden die beiden sich dabei ergebenden Zeitverläufe zusätzlich in die
Bilder 4-12 und 4-13 aufgenommen, so ist nur vereinzelt ein minimaler Unterschied zu den
jeweiligen Modellen mit berechneten Restbeschleunigungen erkennbar. Die Zeitverläufe
sind weitgehend deckungsgleich. Angesichts des hohen Herleitungsaufwands für diese
Terme und den nur geringen Unterschieden in den Positions- und Drehwinkel-Zeitverläufen
scheint die Vernachlässigung durchaus sinnvoll zu sein.

Zum Abschluss wird an dieser Stelle noch die Kohärenz nach (2-13) für die translatorischen
und rotatorischen Beschleunigungen über die gesamte Schlechtweganregung (nicht nur
den oben gezeigten Auschnitt) berechnet und zwischen den Modellen verglichen. Die
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Bild 4-12: Zeitverlauf der kartesischen Koordinaten (Punkt T) und der Kardanwinkel des
Radträgers bei sequentieller Kraftrechteckanregung
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Bild 4-13: Zeitverlauf der kartesischen Koordinaten (Punkt T) und der Kardanwinkel des
Radträgers bei der Schlechtweganregung
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Kohärenz wird stets in Bezug zur Referenz ΣAR angegeben. Ein ideales Modell liegt vor,
wenn die Kohärenz über das gesamte Frequenzband 1 beträgt. Je niedriger die Kohärenz
für eine Frequenz, desto schlechter gibt das betrachtete Modell die Referenz für diese
Frequenz wieder. Bild 4-14 zeigt das Ergebnis der Berechnungen. Es enthält auch die
Kohärenzen für die Modelle mit vernachlässigten Restbeschleunigungen (Kürzel Σ∗A3 und
Σ∗A10).
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Bild 4-14: Kohärenz von Referenz- und berechneter Beschleunigung des Radträgers bei
Schlechtweganregung (links: Translation, rechts: Rotation)

Das Modell ΣA10 besitzt nahezu in allen FHG über alle Frequenzen eine Kohärenz von
1. Nur bei sehr kleinen Frequenzen liegen Abweichungen vor. Die Ursache hierfür kön-
nen minimale, konstante Offsets der Beschleunigungen zur Referenz ΣAR sein. Auf eine
Fensterung der Messdaten vor Berechnung der Kohärenz, die diese Abweichung ebenfalls
reduzieren könnte, wurde bewusst verzichtet. ΣA3 besitzt eine hohe Modellgüte bis etwa
30 Hz. Darüber nimmt sie vor allem in den Richtungen rx, ry und β ab. Die Bedeutung der
Elastomerlager ist in diesen Richtungen am größten. Die vertikale Richtung, für die die
Elastomerlager verhältnismäßig unbedeutend sind, wird auch durch das Modell ΣA3 recht
gut abgebildet, wobei auch hier eine Reduktion der Modellgüte mit steigender Frequenz
zu beobachten ist. Anhand des Plots ist auch die Auswirkung der Restbeschleunigun-
gen offensichtlich. So liegt eine deutlich höhere Güte für Frequenzen bis etwa 10 Hz bei
Berechnung der Restbeschleunigungen vor. Darüber hinaus sind die Unterschiede zwi-
schen den Modellen mit und ohne Berechnung der Restbeschleunigungen deutlich weniger
ausgeprägt.

Zusammenfassend lässt sich festhalten, dass das entwickelte Modell der MacPherson-
Radaufhängung mit sechs Starrkörpern und insgesamt acht FHG zur Berücksichtigung
der Elastomerlager eine sehr hohe Modellgüte besitzt und das detaillierte MKS-Modell
nahezu ideal abbildet. Die Positions- und Drehwinkel-Zeitverläufe des Radträgers weisen
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für die betrachteten Beispielanregungen keine sichtbaren Abweichungen zur Referenz auf.
Bei Berücksichtigung der Restbeschleunigungen ist auch die Kohärenz der Beschleunigun-
gen in sämtlichen Richtungen für alle Frequenzen nahezu ideal 1. Durch die geschickte
Wahl der Minimalkoordinaten besteht die Möglichkeit, das Modell auf die betrachtete
Anwendung durch Auswahl der relevanten FHG zuzuschneiden. Das Modell besitzt einen
erheblichen Mehrwert gegenüber den bisher dokumentierten Modellen, vgl. Abschnitt
2.3.2. Im Vergleich weist es eine höhere Genauigkeit sowie eine wesentlich bessere
Frequenzabdeckung auf. Dies begründet sich damit, dass die Querlenkerlager sowie
das Federbeinstützlager durch die hinzugefügten FHG besser im Modell berücksichtigt
werden. Insbesondere die Beschleunigungen werden hierdurch deutlich besser abgebildet.
Aufgrund der engen Verknüpfung mit den Kräften ist zu erwarten, dass sich dies auch
beim Kraftregelungsentwurf bemerkbar macht. Insbesondere im niedrigen Frequenzbe-
reich ist die allein für dieses Modell durchgeführte Berechnung der Restbeschleunigungen
vorteilhaft; sie hat eine wesentlich höhere Modellqualität zur Folge. Nachteilig ist der
höhere Aufwand zur Parametrierung der hinzugekommenen Kraftelemente. Außerdem
weist das Modell einen höheren Rechenaufwand auf. Für moderne Rechnerhardware ist
aber auch die Berechnung des Modells mit elf FHG unter Echtzeitbedingungen problemlos
möglich.

Jedes Modell stellt eine mehr oder weniger starke Vereinfachung der Realität dar. Auch das
hier zugrunde gelegte MKS-Referenzmodell besitzt diverse Vereinfachungen, z. B. werden
sämtliche Körper als starr betrachtet und die Elastomerlager verhältnismäßig einfach
mit Kennlinien modelliert. Sobald ein hinreichender Parametersatz vorliegt, kann eine
Validierung mithilfe von Prüfstandsmessungen erfolgen. Bisher dokumentierte Vergleiche
zwischen MKS-Modellen und Fahrversuchen, wie sie auch in Abschnitt 2.3.1 genannt
wurden, lassen bei hoher Parametergüte jedoch eine sehr hohe Modellqualität erwarten.

Die Bewegungsgleichungen eines zweidimensionalen MacPherson-Radaufhängungsmo-
dells, das von diesem räumlichen Modell abgeleitet wurde, befindet sich in Anhang A5.4.
Das Modell weist fünf FHG auf, von denen vier FHG der Berücksichtigung der Lager-
elastizitäten von Federbeinstützlager und Querlenkerlager dienen. Es erweitert ebenfalls
den bisherigen Stand von Technik und Forschung für die zweidimensionale Modellierung
dieses Radaufhängungstyps, vgl. Abschnitt 2.3.2.

4.4 Kopplung der Teilmodelle zum Gesamtsystemmodell

In diesem Abschnitt werden die beiden Teilmodelle für den Hexapod und die Radaufhän-
gung zu einem Modell kombiniert. Es bestehen grundsätzlich zwei Möglichkeiten zur
Bildung des Gesamtmodells aus den Teilmodellen nach Abschnitt 4.2 und 4.3, die sich
aus der Betrachtung bzw. Modellierung des Kraftmessrades ergeben. Es ist naheliegend,
das Kraftmessrad als dynamische Bindung des Endeffektors und der Radnabe (z. B. mit
definierter Steifigkeit und Dämpfung) aufzufassen. Aufgrund ihrer sehr hohen Steifigkeit
kann sie alternativ als ideal starre Bindung der beiden Körper abstrahiert werden. Im
Folgenden werden beide Modellierungsvarianten angegeben. In Abschnitt 4.4.1 wird die
ideal starre Bindung betrachtet, in Abschnitt 4.4.2 die dynamische Bindung.

Die Modelle sind stets in Minimalkoordinaten angegeben, da diese Form für den darauf
folgenden Regelungsentwurf zweckmäßig ist. Grundsätzlich können beide Modellvari-
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anten auch durch differential-algebraische Gleichungssysteme bzw. Deskriptor-Systeme
beschrieben werden.

4.4.1 Ideal starre Bindung von Endeffektor und Radnabe

Die Topologie des resultierenden Gesamtsystems für den Fall der starren Bindung und den
mit 13 Starrkörpern modellierten Hexapod zeigt Bild 4-15.
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Bild 4-15: Topologische Struktur des Gesamtmodells aus Hexapod und Radaufhängung
bei Modellierung des Kraftmessrades als ideal starre Bindung

Sie entspricht der Topologie der Teilsysteme nach den Bildern 4-3 und 4-10, die über das
Gelenk T gekoppelt sind. Dieses Gelenk repräsentiert das Kraftmessrad und hat nZ = 6
Zwangsbedingungen zur Folge. Die Starrkörper entsprechen denen der Teilmodelltopo-
logien, wobei der Körper A1 neben der Radnabe auch den radnabenseitigen Teil des
Kraftmessrades sowie das notwendige Adapterstück zur Verbindung der beiden Teile
einschließt. Der Körper H1 besteht aus dem Endeffektor des Hexapod sowie dem hexa-
podseitigen Teil des Kraftmessrades. Die Bezeichnungen „Radnabe“ und „Endeffektor“
werden im Folgenden beibehalten. Insgesamt besitzt das Gesamtsystem bei starrer Bindung
nK = 13 + 6 = 19 Starrkörper sowie nG = 18 + 8 + 1 = 27 Gelenke. In diesem Fall liegen
nZ = 66 + (23 . . . 31) + 6 = 95 . . . 103 Zwangsbedingungen vor. Das Mehrkörpersystem
besitzt demnach, wie bereits in Bild 4-15 dargestellt, insgesamt nL = 8 kinematische
Schleifen und weist je nach FHG-Auswahl im Radaufhängungsmodell f = 3 . . . 11 FHG
auf. Die Körper H1 und A1 lassen sich theoretisch aufgrund der starren Verbindung zu
einem einzelnen Körper zusammenfassen. An den ermittelten Werten für nL und f ändert
sich dadurch nichts.
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Im Falle der starren Bindung muss die Bewegung des Endeffektors die Zwangsbedin-
gungen der Radaufhängung erfüllen. Es ist naheliegend, die Minimalkoordinaten des
Radaufhängungsmodells für das Gesamtmodell zu übernehmen, d. h.

yd =
[
dF xL ψ xA yA zA xE yE zE κy κz

]T
. (4-225)

Die Bewegungsgleichungen des Gesamtsystems lassen sich aus denen der Teilsysteme
nach (4-74) und (4-222) bilden. Der Punkt T der Radaufhängung wurde so festgelegt,
dass er (bei der starren Bindung) dem TCP des Hexapod entspricht. Aufgrund der starren
Bindung von Radnabe und Endeffektor gilt außerdem, dass IE A = I1 A. Zwischen den Mi-
nimalkoordinaten des Radaufhängungsmodells und dem Ortsvektor sowie der Orientierung
des Punktes T bestehen die Beziehungen

z =

[
I r0T

αXYZ

(
I1 A

)
]
, v = Syd ẏd , v̇ = Syd ÿd + Ṡyd ẏd (4-226)

mit

Ṡyd =



d
d t

(
∂ I ṙ0T

∂ ẏT
d

)

d
d t

(
∂ I1

Iω

∂ ẏT
d

)
 , (4-227)

vgl. Abschnitt 4.3. Wird v̇ in (4-74) eingesetzt und die resultierende Gleichung nach τ
aufgelöst, so folgt

τ = −Mv · Syd · ÿd − Mv · Ṡyd · ẏd − Cv · v − gv + J−T
g · Fq . (4-228)

Durch Einsetzen von τ in (4-222) resultiert die Bewegungsgleichung des Gesamtsystems
zu

MG
(
yd

) · ÿd + nG
(
yd, ẏd

)
= ST

yd
(
yd

) · J−T
g

(
yd

) · Fq (4-229)

mit

MG
(
yd

)
= Mu + ST

yd · Mv · Syd , (4-230)

nG
(
yd, ẏd

)
= nu + ST

yd ·
(
Mv · Ṡyd · ẏd + Cv · v + gv

)
. (4-231)

Anstelle der Eingangsgröße τ (vgl. Modell der Radaufhängung) besitzt das Modell des
Gesamtsystems die Eingangsgröße Fq. Für die Kontaktkräfte und -momente τ zwischen
den Körpern H1 und A1 lässt sich durch Auflösen von (4-229) nach ÿd,

ÿd = M−1
G ·

(
ST

yd · J−T
g · Fq − nG

)
, (4-232)

und Einsetzen der erhaltenen Gleichung in (4-228) der Ausdruck

τ = Eτ J−T
g Fq + Mv Syd M−1

G nG − Mv Ṡyd ẏd − Cv v − gv (4-233)

= Eτ

(
J−T

g Fq − Mv Ṡyd ẏd − Cv v − gv

)
+ Mv Syd M−1

G nu (4-234)

mit

Eτ = I − Mv Syd M−1
G ST

yd (4-235)
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bestimmen. Es lässt sich weiterhin zeigen, dass auch der Term nu in die Klammer aufge-
nommen werden kann. Die Bestimmungsgleichung für τ lautet damit

τ = Eτ

(
J−T

g Fq + Mv

(
Syd M−1

u nu − Ṡyd ẏd

)
− Cv v − gv

)
. (4-236)

Da Eτ J−T
g , 0 ist, gilt τ = τ

(
yd, ẏd, Fq

)
. Wie im Falle der starren Bindung zu erwarten

war, liegt bei Betrachtung von τ als Ausgangsgröße also ein Durchgriff vor, d. h. die
Kontaktkräfte und -momente τ hängen nicht nur vom Systemzustand, sondern auch direkt
von der Eingangsgröße des Systems Fq ab.

Das Gesamtmodell mit starrer Bindung von Endeffektor und Radnabe besitzt die Zustands-
gleichungen

ẋGs =

[
ẏd

−M−1
G

(
yd

) · nG
(
yd, ẏd

)
]

︸                         ︷︷                         ︸
fGs(xGs)

+

[
0

M−1
G

(
yd

) · ST
yd

(
yd

) · J−T
g

(
yd

)
]

︸                                 ︷︷                                 ︸
GGs(xGs)

·Fq (4-237)

mit dem Zustandsvektor xGs =
[
yT

d ẏT
d

]T
.

Gegenüber den einzelnen Modellen für den Hexapod und die MacPherson-Radaufhängung
kommen bei diesem Gesamtsystemmodell keine weiteren Parameter hinzu.

4.4.2 Dynamische Bindung von Endeffektor und Radnabe

Wird das Kraftmessrad als dynamische Bindung modelliert, so entfällt in Bild 4-15 das
Gelenk T . Endeffektor und Radnabe können sich relativ zueinander bewegen; die Kopplung
erfolgt in diesem Fall nur über die Bindungskräfte, d. h. die Kontaktkräfte und -momente
τ. Durch den Wegfall des Gelenks T mit nZ = 6 Zwangsbedingungen reduziert sich bei
dieser Modellierung die Zahl der kinematischen Schleifen um 1 (die Schleife L8 in Bild
4-15 entfällt) auf nL = 7 und die Anzahl der FHG erhöht sich um 6 auf f = 9 . . . 17.
Als Minimalkoordinaten des Modells mit 17 FHG kommt bspw. die Kombination der
Minimalkoordinaten beider Teilsysteme in Betracht, d. h.

yGd =
[
yT

d zT
]T
. (4-238)

Ein geeigneter Zustandsvektor ist

xGd =
[
yT

Gd ẏT
Gd

]T
. (4-239)

Bild 4-16 zeigt schematisch die dynamische Bindung von Endeffektor und Radträger.

Hier sind die Drehmatrizen IE A und I1 A von Endeffektor und Radnabe im Allgemeinen
nicht identisch. Darüber hinaus weichen der endeffektorfeste sowie der radnabenfeste Kon-
taktpunkt T voneinander ab. Zur Unterscheidung erhält der radnabenfeste Kontaktpunkt
im Folgenden den Bezeichner T1.

Die Drehmatrix vom radnaben- in das endeffektorfeste System berechnet sich nach

E1 A = EI A · I1 A (4-240)
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Bild 4-16: 6-FHG-Kontaktmodell

mit den Kardanwinkeln

αK = αXYZ

(
E1 A

)
(4-241)

der relativen Verdrehung der Systeme E und 1. Die relative Verschiebung der beiden in
Kontakt stehenden Punkte T und T1 bezüglich des Inertialsystems I beträgt

Iξ =
I
rTT1

=
I
r0T1
− I r0T , (4-242)

für die Relativgeschwindigkeit I ξ̇ und die Relativwinkelgeschwindigkeit Iω gilt

I ξ̇ =
I
ṙTT1

=
I
ṙ0T1
− I ṙ0T , Iω = E1

Iω = I1
Iω − IE

Iω . (4-243)

Aufbauend auf den genannten Größen wird ein verallgemeinerter Verschiebungs- und ein
verallgemeinerter Relativgeschwindigkeitsvektor im Inertialsystem definiert. Die Vektoren
lauten

zK
(
yGd

)
=

[
Iξ
αK

]
, vK

(
xGd

)
=

[
I ξ̇

Iω

]
= vT1

− v (4-244)

mit v nach (4-67) und dem Zustandsvektor xGd nach (4-239). Die entsprechenden Vektoren
im endeffektorfesten System sind

E zK =

[
Eξ
αK

]
=

[EI A 0
0 I

]
· zK , EvK =

[
E ξ̇

Eω

]
=

[EI A 0
0 EI A

]
· vK , (4-245)

worauf aufbauend an dieser Stelle angenommen wird, dass sich die Kontaktkräfte und
-momente Eτ näherungsweise durch Linearkombination dieser Größen nach

Eτ = E KC · E zK + E KD · EvK + Eτ0 (4-246)

mit konstanten Steifigkeits- und Dämpfungsmatrizen E KC ∈ R6×6 und E KD ∈ R6×6 so-
wie der Konstanten Eτ0 ∈ R6 beschreiben lassen. Hieraus folgen die Kontaktkräfte und
-momente im inertialfesten System zu

τ
(
xGd

)
=

[IE A 0
0 IE A

]
· Eτ = KC · zK + KD · vK + τ0 (4-247)
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mit den von der Pose des Hexapod z abhängigen Steifigkeits- und Dämpfungsmatrizen

KC (z) =

[IE A 0
0 IE A

]
· E KC ·

[EI A 0
0 I

]
, (4-248)

KD (z) =

[IE A 0
0 IE A

]
· E KD ·

[EI A 0
0 EI A

]
(4-249)

und

τ0 (z) =

[IE A 0
0 IE A

]
· Eτ0 . (4-250)

Die Zustandsgleichungen des Gesamtmodells mit dynamischer Bindung von Endeffektor
und Radnabe lauten

ẋGd =



ẏd
ż

M−1
u ·

(
ST

yd · τ − nu

)

−M−1 ·
(
C · ż + g + HT · τ

)


︸                                ︷︷                                ︸

fGd(xGd)

+



0
0
0

M−1 · J−T
a


︸        ︷︷        ︸

GGd(xGd)

·Fq . (4-251)

Die auf diese Weise durchgeführte Kopplung der beiden Teilmodelle von Hexapod und
Radaufhängung veranschaulicht Bild 4-17.

Modell des
Hexapod

Modell der
Radaufhängung

Kraftmessrad

z, ż

yd, ẏd

τ

τ

Fq

Bild 4-17: Gesamtsystemmodell mit dynamischer Bindung

Der Vorteil dieses Modellierungsansatzes gegenüber der starren Modellierung besteht
darin, dass die Eingangsgröße Fq keine direkte Auswirkung auf τ besitzt, d. h. es liegt
kein Durchgriff vor. τ ist nur vom aktuell vorliegenden Systemzustand des Gesamtmodells
abhängig. Nachteilig ist, dass durch diese Modellierung des Kraftmessrades mit E KC, E KD
und Eτ0 (bis zu) 78 weitere Modellparameter erforderlich sind. Zudem ist das Kraftmessrad
sehr steif und die Einträge von E KC sind dementsprechend groß. Dies hat betragsmäßig
große Eigenwerte zur Folge, die zu Problemen bei der numerischen Simulation führen. Sehr
geringe Rechenschrittweiten sind demzufolge erforderlich, sodass die Modellrechenzeiten
stark ansteigen.

4.4.3 Modellvalidierung anhand des MKS-Prüfstandsmodells

In diesem Abschnitt wird das Gesamtsystemmodell, ähnlich wie schon die Teilsystem-
modelle zum Hexapod und der MacPherson-Radaufhängung, anhand eines äquivalent
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aufgebauten MKS-Modells, im Folgenden mit ΣGR bezeichnet, validiert. In dieser Ausar-
beitung erfolgt die Validierung exemplarisch für das Modell mit starrer Bindung; für das
Modell mit dynamischer Bindung lassen sich ähnliche Aussagen bei Vergleich mit einem
entsprechend aufgebauten MKS-Referenzmodell wie für das Modell mit starrer Bindung
tätigen.

Abschnitt 4.3.3 folgend werden hier stellvertretend für zahlreiche Auswahlmöglichkeiten
die folgenden beiden Modelle miteinander verglichen:

• ΣG4: Gesamtsystemmodell mit den FHG ϕ, xL, κz und ψ nach [Ril94] und

• ΣG11: Gesamtsystemmodell mit allen elf FHG nach Abschnitt 4.4.1.

Bei beiden Modellen wird, ebenso wie in ΣGR, die Hexapodmodellierung mit 13 Starrkör-
pern (ΣH13) verwendet. Darüber hinaus erfolgt auch wieder der Vergleich für die entspre-
chenden Modelle mit vernachlässigten Restbeschleunigungen. Diese Modelle tragen im
Folgenden die Kürzel Σ∗G4 und Σ∗G11.

Hier besteht ein ähnliches Problem wie bei der Validierung des Hexapodmodells in Ab-
schnitt 4.2.5: durch den FHG ψ der Raddrehung ist eine zunehmende Drift der betrachteten
Modelle von ΣGR selbst bei kleinen Modellfehlern unvermeidbar. Sie besteht in der zu-
nehmenden Verdrehung der Radnabe und des Endeffektors gegenüber dem Radträger.
Der Modellvergleich durch Übernahme der Systemzustände der Referenz, wie er beim
Hexapod durchgeführt wurde, vgl. Bild 4-6, scheidet hier aus, da das Modell ΣG4 deutlich
weniger Zustände hat und der Vergleich so stark verfälscht wird. Stattdessen wird die
Drift der Modelle durch folgende Vorgehensweise klein gehalten: Während der Simulation
hält eine Winkelregelung mit Sollwertvorgabe βr = 0 die entsprechende Verdrehung des
Endeffektors auf einen Wert nahe 0. Das mit den Aktorkräften Fq des Referenzmodells
beaufschlagte Modell nach Abschnitt 4.4.1 enthält außerdem gegenüber ΣGR eine virtuelle,
am Inertialsystem abgestützte, sehr steife Feder (und eine Dämpfung), die die Verdrehung
des Endeffektors um den Winkel β = 0 sehr klein hält. Natürlich erfolgt hierdurch eine
Verfälschung des mit ΣGR verglichenen Modells. Der Vergleich mit Einbeziehung des
FHG ψ wird aber zumindest näherungsweise möglich. Dieses Vorgehen wurde auch in der
Studienarbeit von Udo Nolte [NK17] für den Modellvergleich verwendet und scheint eine
für die Validierung geeignete Herangehensweise zu sein, wenn der FHG ψ einbezogen
werden soll.

Da die beiden Teilmodelle bereits für sich genommen validiert wurden und die Vergleich-
barkeit der Modelle aufgrund der beschriebenen Problematik ohnehin recht begrenzt ist,
werden an dieser Stelle lediglich exemplarisch die Kontaktkräfte und -momente τ für die
Schlechtweganregung verglichen. Bild 4-18 zeigt einen Ausschnitt der entsprechenden
Zeitverläufe.

Den Zeitverläufen in Bild 4-18 lässt sich entnehmen, dass eine sehr gute Übereinstimmung
zwischen den vom Modell ΣG11 berechneten Kontaktkräften und -momenten τ mit der
Referenz ΣGR vorliegt. Die Kraft Fz wird auch von den anderen drei Modellen recht gut
wiedergegeben, wobei stellenweise auch größere Abweichungen vorliegen. Die anderen
Kräfte und Momente hingegen werden relativ schlecht abgebildet. Zu einem gewissen Teil
begründen sich diese Abweichungen auch durch die Maßnahmen zur Unterbindung der
Modelldrift. Sicher ist, dass das Modell ΣG11 trotz dieser Maßnahmen sehr gute Ergebnisse
liefert. Auch die Kohärenzen von τ, siehe Bild 4-19, stützen die getätigten Aussagen.
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Bild 4-18: Zeitverlauf der Kontaktkräfte und -momente τ bei Schlechtweganregung
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Bild 4-19: Kohärenz der Kontaktkräfte und -momente τ bei Schlechtweganregung

Hieraus geht ebenfalls die hohe Modellgüte von ΣG11 hervor. Die Güte aller anderen
Modelle ist, abgesehen von der Kraft Fz, demgegenüber deutlich verringert. Wie beim
Radaufhängungsmodell lässt sich auch hier die Beobachtung machen, dass die Berechnung
der Restbeschleunigungen die Modellgüte im Frequenzbereich bis etwa 10 Hz deutlich
erhöhen kann.

4.5 Zusammenfassung

Für die Synthese und Erprobung der zu entwickelnden Regelungen wurden diverse Modelle
aufgestellt. Die Simulationsumgebung enthält neben den Regelungs- und Beobachteralgo-
rithmen sowie der Ablaufsteuerung und Sollwertgenerierung im Wesentlichen die Modelle
der mechanischen Systemkomponenten. Dies sind: die Fahrzeugachse, der Hexapod so-
wie das Kraftmessrad, der einzelne Anregungszylinder auf der rechten Achsseite sowie
die Aktorik und Sensorik. Das Modell ist modular aufgebaut und erlaubt die komforta-
ble Auswahl zwischen Komponentenmodellen unterschiedlicher Modellierungstiefe. Für
alle mechanischen Teilsysteme kann zwischen einer topologie- sowie einer signalflußori-
entierten Modellierung gewählt werden. Für die signalflußorientierten Modelle wurden
die Bewegungsgleichungen des Hexapod, der MacPherson-Radaufhängung sowie des
resultierenden Gesamtsystems mithilfe des Prinzips von Jourdain inklusive sämtlicher
Restbeschleunigungsterme hergeleitet.

Die Bewegungsgleichungen des Hexapod verwenden sechs Minimalkoordinaten. Insge-
samt wurden fünf verschiedene Modelle angegeben, die sich hinsichtlich der Berücksichti-
gung von Massen und Trägheiten unterscheiden. Von diesen Modellen hat das Modell, das
alle 13 Starrkörper (Endeffektor, Zylinderrohre und -stangen) berücksichtigt, die höchste
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Modellgüte. Ebenfalls gute Ergebnisse im Vergleich mit dem 13 Starrkörper umfassenden
MKS-Modell des Hexapod zeigt das Modell, in dem nur ein Starrkörper (Endeffektor)
enthalten ist und dessen Parameter gegenüber den Konstruktionsdaten optimiert wurden.
Da dieses Modell wesentlich weniger rechenaufwändig ist, wird es für die Regelung des
Hexapod am Prüfstand eingesetzt.

Für die MacPherson-Radaufhängung wurde in dieser Arbeit ein Modell hergeleitet, das
die elastischen Eigenschaften der insgesamt drei Elastomerlager deutlich besser erfasst als
in der Literatur dokumentierte Modelle. Die Anzahl der FHG des Modells ist variierbar
und kann auf die jeweils betrachtete Anwendung zugeschnitten werden. Maximal besitzt
das Modell elf FHG und weist damit, abgesehen von zwei isolierten FHG, die gleiche
Anzahl an FHG wie das zum Vergleich herangezogene MKS-Modell auf. Davon dienen
(bis zu) acht FHG der Berücksichtigung von Lagerelastizitäten (bisher dokumentierte
Modelle: maximal ein FHG). Gegenüber der Literatur wurden außerdem mehr Starrkörper
berücksichtigt und diverse Vereinfachungen aufgehoben. So wurden bspw. auch die Rest-
beschleunigungen sämtlicher Starrkörper angegeben, deren Berechnung eine nennenswerte
Verbesserung der Modellgüte im niedrigen Frequenzbereich zur Folge hat. Sowohl das
MKS-Modell als auch die hergeleiteten Bewegungsgleichungen enthalten diverse, teils
nichtlineare Kraftelemente, darunter der Stoßdämpfer mit nichtlinearer Dämpfung sowie
Zug- und Druckpuffern, eine Aufbaufeder, Lenksteifigkeit und -dämpfung sowie drei
räumliche Elastomerlagermodelle. Modellvergleiche anhand von Simulationen zeigen,
dass die Modellgüte durch das Hinzufügen der sieben neuen FHG für die Abbildung der
Elastomerlager erheblich gesteigert werden konnte. Das Modell mit allen elf FHG bildet
das MKS-Referenzmodell ideal ab. Es stellt wohl das bestmögliche Modell dar, das sich
mit den Mitteln der Starrkörperdynamik für eine MacPherson-Radaufhängung erstellen
lässt. Ein besseres, aber auch wesentlich rechenaufwändigeres Modell könnte bspw. mit
der Methode der flexiblen MKS oder der FE-Methode erstellt werden. Aufgrund der sehr
hohen Zahl erforderlicher Modellparameter gestaltet sich der Abgleich des Modells mit
der im Prüfstand verbauten Radaufhängung schwierig. In Zukunft sollte (auch) aus diesem
Grund die Kooperation mit Automobilherstellern und -zulieferern in Erwägung gezogen
werden. Aus diesem räumlichen Modell der MacPherson-Radaufhängung wurde auch ein
zweidimensionales Modell mit Lagerelastizitäten hergeleitet, das den bisherigen Stand von
Technik und Forschung erweitert (siehe Anhang A5.4).

Für das Gesamtsystem aus Hexapod und MacPherson-Radaufhängung wurden zwei unter-
schiedliche Modellierungsalternativen beschrieben. Der Unterschied der beiden Varianten
besteht in der Kopplung der beiden Teilsysteme, die entweder ideal starr oder durch eine
dynamische Bindung erfolgt. Während bei der ideal starren Bindung keine weiteren Mo-
dellparameter über die Parameter von Hexapod und Radaufhängung hinaus erforderlich
sind, kommen bei der beschriebenen dynamischen Bindung (bis zu) 78 weitere Parameter
für die Steifigkeit und Dämpfung des Kraftmessrades sowie eine ggf. vorhandene Vor-
spannung hinzu. Simulationen zeigen auch hier sehr gute Übereinstimmungen mit dem
MKS-Referenzmodell, insb. bei Verwendung des Radaufhängungsmodells mit elf FHG
und berechneten Restbeschleunigungstermen.
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5 Synthese einer hybriden Kraft-/Positionsregelung für den

Hexapod

Dieses Kapitel thematisiert den Regelungsentwurf für den Hexapod im Achsprüfbetrieb.
Zum Einsatz kommen hybride Kraft-/Positionsregelungsverfahren, wie sie im Stand von
Technik und Forschung, vgl. Abschnitt 2.2.3, genannt wurden. Hier wird die von Natale
[Nat10] inspirierte Einteilung der Verfahren zur hybriden Kraft-/Positionsregelung aufge-
griffen, nach der zwischen analytischer und geometrischer Formulierung unterschieden
werden kann. Die analytische Formulierung verwendet detaillierte Modelle von Mani-
pulator und Umgebung und führt mit deren Hilfe lineare, entkoppelte Eingänge für die
Regelgrößen (Kraft/Position) herbei. Je nach betrachteter Umgebung müssen manche FHG
kraft-, andere positionsgeregelt werden. Nur unter bestimmten Bedingungen ist die Wahl
zwischen einer Positions- und einer Kraftregelung physikalisch sinnvoll. Bei der geometri-
schen Formulierung wird stets eine binäre, diagonale Selektionsmatrix S verwendet, mit
deren Hilfe der Nutzer für jede Richtung den Regelmodus (üblicherweise Kraft/Position in
einem bestimmten Kontaktpunkt) vorgeben kann. Die Wahl des Regelmodus muss konform
mit der vorliegenden Umgebung sein. Prinzipbedingt sind die Regelgrößen hierbei nur in
Sonderfällen entkoppelt.

Von den in Abschnitt 2.2.3 des Stands von Technik und Forschung genannten hybriden
Kraft-/Positionsregelungsverfahren in analytischer Formulierung kommen für die Rege-
lung des Prüfstands nur die Verfahren nach de Luca und Manes [LM94] sowie Featherstone
[Fea03; FSK98] in Betracht, da die hier betrachtete Umgebung, die MacPherson-Radauf-
hängung, nicht vernachlässigbares dynamisches Verhalten aufweist. Für die Implementie-
rung der Ansätze nach [LM94] und [FSK98] sind jeweils die Bewegungsgleichungen der
Umgebung bzw. der MacPherson-Radaufhängung erforderlich. Der Ansatz nach [Fea03]
benötigt etwas weniger Informationen, zeigt aber schon bei den Simulationen am zweidi-
mensionalen Modell (siehe Kapitel 3) prinzipbedingt schlechtere Ergebnisse. Gegen den
Ansatz [FSK98] spricht, dass die resultierenden Regelgrößen für Achsprüfungen wenig
geeignet sind. Außerdem ist fraglich, ob sich die Verfahren nach Featherstone auf den
Fall übertragen lassen, dass keine Relativbewegung zwischen dem Endeffektor und der
Umgebung vorliegt, wie es bei dem hier betrachteten Achsprüfstand der Fall ist. Die
Relativbewegung drückt sich bei der Herleitung der Regelungsansätze nach Featherstone
in der Gleichung (2-97), d. h. der Existenz der Matrix S1, aus. Aus den genannten Gründen
werden die Verfahren nach Featherstone hier nicht weiterverfolgt. Der Ansatz nach de
Luca und Manes [LM94] hat die beschriebenen Nachteile nicht und wird daher für den
Einsatz am HNI-Achsprüfstand ausgewählt. Die Implementierung des Ansatzes nach de
Luca und Manes wird inklusive zweier allgemeingültiger Erweiterungen in Abschnitt 5.1
ausführlich erläutert.

Der Ansatz nach de Luca und Manes ist auf Umgebungen beschränkt, die maximal sechs
dynamische Koordinaten yd aufweisen (nd ≤ 6). Für die hier betrachtete Umgebung
ist diese Bedingung bei Berücksichtigung der Elastomerlager nicht erfüllt. In Abschnitt
5.1 muss daher das Umgebungsmodell mit Elastomerlagern in geeigneter Weise trans-
formiert werden, um mit diesem auf nd ≤ 6 dynamische Koordinaten transformierten
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Umgebungsmodell die Gleichungen für die Aktorkräfte nach de Luca und Manes (2-92)
bzw. (2-94) auswerten zu können. Hierbei geht entweder ein Teil des Modellwissens über
die Umgebung verloren oder es resultieren andere, für die Achsprüfung wenig relevante
(Positions-) Regelgrößen. Diese Einschränkung wird in Abschnitt 5.2 durch Anwendung
der exakten Ein-/Ausgangslinearisierung aufgehoben. Es wird eine Berechnungsvorschrift
für die Aktorkräfte hergeleitet, die auch für Umgebungen mit mehr als sechs dynamischen
Koordinaten yd eine ideale Entkopplung von sechs Regelgrößen mit den vorliegenden
sechs Eingangsgrößen ermöglicht. Unterabschnitt 5.2.1 betrachtet den Fall der ideal starren,
Unterabschnitt 5.2.2 den Fall der dynamischen Bindung von Endeffektor und Umgebung.
Diese Fallunterscheidung wurde bereits bei der Formulierung des Gesamtmodells aus
Hexapod und MacPherson-Radaufhängung getätigt, vgl. Abschnitt 4.4.

Die Umsetzung der bis dahin behandelten Regelungsentwürfe bedingt sehr genaue Mo-
delle sowohl des Manipulators als auch der Umgebung sowie - im Falle der dynamischen
Bindung von Endeffektor und Umgebung - der Kraftmesseinrichtung. Während für den
eingesetzten Manipulator häufig ein hinreichend gutes Modell vorliegt, ist insb. die Erfor-
dernis eines genauen Umgebungsmodells nachteilig. Dies liegt einerseits daran, dass die
Umgebung ein sehr komplexes, nichtlineares Verhalten aufweisen kann und darüber hinaus
zahlreiche Parameter erforderlich sein können. Andererseits ist die Kraftregelung auf die
beim Entwurf angenommene Umgebung zugeschnitten. Weicht das Umgebungsmodell
von der Realität ab, so weisen die neuen Eingangsgrößen kein lineares Verhalten zu den
Regelgrößen auf. In der Konsequenz muss bei einem Wechsel des Kontaktpartners, im
vorliegenden Fall bspw. der Austausch des Prüflings, das Umgebungsmodell neu para-
metriert oder sogar neue Bewegungsgleichungen hergeleitet werden. Für die praktische
Anwendung ist es daher erstrebenswert, die Abhängigkeit des Reglers von einem genauen
Umgebungsmodell so weit wie möglich aufzuheben.

Die erste Möglichkeit besteht darin, stark vereinfachte, generalisierte Umgebungsmodelle
für den Regelungsentwurf einzusetzen. Derartige Modelle lassen sich auch mithilfe ver-
hältnismäßig einfacher, (teil-) automatisierter Prüfstandsmessungen experimentell für den
aktuell vorliegenden Kontaktpartner identifizieren. In Unterabschnitt 5.2.3 wird die exakte
Ein-/Ausgangslinearisierung für ein solches vereinfachtes Umgebungsmodell beschrieben.
Durch die Berechnungsvorschrift der Aktorkräfte Fq werden weiterhin Eingangsgrößen
gebildet, die sich linear zu den Regelgrößen verhalten. Die Gültigkeit des Reglers ist in
diesem Fall allerdings auf eine Umgebung um den bei der Identifikation vorliegenden
Systemzustand beschränkt. In Abschnitt 5.3 wird auf die Ein-/Ausgangslinearisierung für
Kraftgrößen verzichtet. Auf Basis der Linearisierung (2-19) mit dem neuen Systemein-
gang up, der sich linear zur Pose des Endeffektors z verhält, werden drei unterschiedliche
Ansätze diskutiert, die sich in der vom Regler ausgegebenen Größe unterscheiden. Der
erste baut auf dem nach (2-21) positionsgeregelten System auf und gibt Sollpositionen zr
aus, während der zweite Ansatz einen unterlagerten Geschwindigkeitsregler verwendet
und Sollgeschwindigkeiten żr berechnet. Der letzte Ansatz verzichtet auf unterlagerte
Regelschleifen und gibt direkt die Größe up aus.

Abschnitt 5.4 verfolgt einen anderen Grundgedanken. Für einen der in Abschnitt 5.1
hergeleiteten Regler wird dort eine Näherungslösung angegeben, deren Ziel darin besteht,
das erforderliche Modellwissen über die Umgebung durch vorliegende, aktuelle Messwerte
zu ersetzen.
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Nach Diskussion der verschiedenen Regelungsentwürfe wird in Abschnitt 5.5 deren Kombi-
nation mit einer ILR beschrieben. Dadurch können auch besonders hohe Bandbreiten- und
Güteanforderungen bei sich wiederholenden Signalen erfüllt werden, wie sie bspw. bei der
Betriebsfestigkeitsprüfung vorliegen. Die ILR ist nicht an einen der beschriebenen Regler
gebunden, sondern kann prinzipiell mit allen genannten Regelungsentwürfen kombiniert
werden. Die Verwendung im Rahmen einer HiL-Simulation ist hingegen nicht möglich.

Zum Abschluss des Kapitels erfolgt eine Zusammenfassung. Sie schließt eine Gegenüber-
stellung der erläuterten Regelungsansätze anhand eines eindimensionalen Ersatzsystems
für den Achsprüfstand ein.

5.1 Analytische Formulierung nach de Luca und Manes

Dieser Abschnitt beschreibt zwei allgemeingültige Erweiterungen des von de Luca und
Manes [LM94] beschriebenen Ansatzes zur hybriden Kraft-/Positionsregelung und dessen
Implementierung für den HNI-Achsprüfstand. Der im Stand von Technik und Forschung er-
läuterte Ansatz nutzt die Aktorkräfte nach (2-92) bzw. (2-94) um (neben den kinematischen
Koordinaten yk und den reaktiven Kräften λr) alle aktiven Kräfte λa oder alle dynamischen
Koordinaten yd zu regeln. Eine beliebige, richtungsabhängige Auswahl zwischen diesen
Größen ist nicht vorgesehen. Im folgenden Unterabschnitt wird aufbauend auf (2-92) und
(2-94) eine Berechnungsformel für die Aktorkräfte entwickelt, die diese Wahl mithilfe
einer Selektionsmatrix S ermöglicht.

Die Berechnungsvorschriften für die Aktorkräfte (2-92) und (2-94) sind so zu interpretie-
ren, dass die Ist-Aktorkräfte Fq ideal dieser Berechnung entsprechen müssen, um gegebene
Sollwerte einzuregelnder Kräfte und Positionen herbeizuführen. An realen Systemen
können die Ist-Aktorkräfte Fq jedoch nicht beliebig vorgegeben werden. Es liegen Stell-
größenbeschränkungen vor, die sich u. a. in einer begrenzten Bandbreite des Stellglieds
offenbaren. Liegt bspw. ein Regelkreis für die Aktorkräfte vor, so sind durch den überlager-
ten Regelalgorithmus Soll-Aktorkräfte Fq,r anstelle der Ist-Aktorkräfte Fq vorzugeben. Im
vorliegenden Fall kann der geschlossene Aktorregelkreis gut durch ein lineares Übertra-
gungsglied dritter Ordnung abstrahiert werden, vgl. Abschnitt 2.2.1. Folglich unterscheiden
sich die Ist-Aktorkräfte Fq von den Soll-Aktorkräften Fq,r mit der Frequenz zunehmend.
Wird diese Problematik ignoriert und die Soll-Aktorkräfte Fq,r dennoch nach (2-92) oder
(2-94) berechnet, so beeinträchtigt dies das Regelungsergebnis; im Extremfall kann insta-
biles Verhalten resultieren. Sämtlichen Regelungsansätzen, die im Stand von Technik und
Forschung genannt wurden, ist gemein, dass sie keine Berücksichtigung der Aktordynamik
vorsehen. Dies geht u. a. aus dem beim Regelungsentwurf zugrunde gelegten Manipulator-
modell nach (2-16) für SKM bzw. (2-17) für PKM hervor. Abschnitt 5.1.2 erweitert die
Regelung um die Berücksichtigung allgemeiner, linearer Stelldynamik, wie sie bei dem in
dieser Arbeit betrachteten System vorliegt.

Sowohl das Hinzufügen der Selektionsmatrix S als auch die Einbeziehung linearer Aktor-
dynamik in den Regelungsentwurf sind nicht auf das vorliegende System beschränkt,
sondern stellen eine allgemeingültige Erweiterung der Regelung nach de Luca und Manes
[LM94] dar.

An diese Weiterentwicklungen schließt sich die Implementierung der Regelung für das
Zielsystem an. Die Eignung des Ansatzes für den Anwendungsfall wird anhand des in
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Kapitel 4 entwickelten Streckenmodells beurteilt. Dabei wird zunächst ein idealisiertes
Streckenmodell betrachtet. Dieses zeichnet sich dadurch aus, dass das enthaltene Rad-
aufhängungsmodell keine Elastomerlager besitzt, d. h. die Radaufhängung weist nur die
FHG dF , xL und ψ auf. Im Anschluss wird zu dem Streckenmodell mit allen drei Elasto-
merlagern übergegangen. Die Regelstrecke weist dann elf FHG14 auf. Im Streckenmodell
wird außerdem das Modell des Hexapod mit 13 massebehafteten Starrkörpern verwendet
(Modell ΣH13) und die Bindung zwischen Endeffektor und Radnabe wird als ideal starr
abstrahiert. Für die beiden Streckenmodelle mit starrer Bindung werden nachfolgend die
Kürzel

• ΣG3: Gesamtmodell ohne Elastomerlager (FHG dF , xL und ψ) und

• ΣG11: Gesamtmodell mit Elastomerlagern (elf FHG)

verwendet.

Für die Anwendung bei Modellierung des Kraftmessrades als dynamische Bindung,
vgl. Abschnitt 4.4.2, ist der Regelungsentwurf nach de Luca und Manes wenig geeig-
net. Bei dieser Modellierungsalternative entfallen allein sechs FHG auf das Kontaktmodell,
während der Regelungsansatz auf Umgebungen mit nd ≤ 6 beschränkt ist. Der Rege-
lungsentwurf für den Fall der dynamischen Bindung kann jedoch mit der exakten Ein-/
Ausgangslinearisierung erfolgen und wird im anschließenden Unterkapitel 5.2 behandelt.

5.1.1 Erweiterung: Selektionsmatrix S zur Wahl zwischen λa und yd

Als Vorbild für die Wahlmöglichkeit zwischen einer Positions- und einer Kraftregelung
in den Richtungen, in denen beide Varianten möglich sind, dient das Grundkonzept der
hybriden Kraft-/Positionsregelung von Raibert und Craig nach Bild 2-20. In den anderen
Richtungen werden entweder die reaktiven Kräfte λr oder die kinematischen Koordinaten
yk geregelt. Eine Umschaltung in den jeweils anderen Regelmodus ist in diesen Richtun-
gen physikalisch nicht sinnvoll, da in den entsprechenden Richtungen entweder keine
Bewegung möglich ist oder keine Kraft zur Umgebung vorliegt.

Ausgangspunkt der folgenden Herleitung ist die Berechnungsformel für die Aktorkräfte
nach (2-94), d. h. der Fall der sich linear zu ÿd, λr und ÿk verhaltenden Eingangsgrößen. Das
Ziel besteht darin, die Eingangsgröße ud in (2-94) durch eine neue, hybride Eingangsgröße
uh zu ersetzen. Zu diesem Zweck wird auch eine binäre, diagonale Selektionsmatrix
S ∈ Nnd×nd eingeführt. Bei einer 0 an i-ter Stelle soll in der Richtung i die assoziierte
dynamische Koordinate yd,i, bei einer 1 die assoziierte aktive Kraft λa,i geregelt werden.

Die neue Eingangsgröße uh wird so festgelegt, dass die Beziehungen

ud,g = (I − S) · uh , ua,g = S · uh (5-1)

gelten. Bei ud,g und ua,g handelt es sich um die z. B. nach (2-55) und (2-57) gebildeten
Eingangsgrößen, die eine Vorsteuerung und Regelung der mithilfe von S ausgewählten
dynamischen Koordinaten yd und aktiven Kräfte λa bewirken. In Analogie zu uh wird

14Insgesamt weist eine MacPherson-Einzelradaufhängung 13 FHG auf. Die Dämpfer- und Spurstange
haben je einen isolierten FHG. Da die isolierten FHG keine nennenswerte Auswirkung auf die
Dynamik des Mechanismus besitzen, wird nachfolgend stets von elf FHG gesprochen.
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eine weitere Größe uh eingeführt, die alle nicht geregelten dynamischen Koordinaten und
aktiven Kräfte enthält. Sie wird so gewählt, dass

ud,u = S · uh , ua,u = (I − S) · uh (5-2)

gilt. uh und demnach auch ud,u und ua,u sind unbekannt.

Um die Eingangsgröße ud durch die neue, hybride Eingangsgröße uh ersetzen zu können,
muss (mindestens) ud,u aus uh bzw. ud,g und ua,g gebildet werden. Dies gelingt mithilfe
des Umgebungsmodells nach (2-78) bzw. (2-83). Aus (2-83) folgt nach Multiplikation mit
M−1

u , dass

ÿd = M−1
u · ST

yd · Sλa︸           ︷︷           ︸
K1

·λa − M−1
u · nu . (5-3)

Werden ÿd und λa in (5-3) durch ud und ua ersetzt, so folgt

ud = K1 · ua − M−1
u · nu . (5-4)

Für die teils unbekannten Größen ud und ua gelten die Zusammenhänge

ud = ud,g + ud,u , ud,g = (I − S) · ud , ud,u = S · ud , (5-5)
ua = ua,g + ua,u , ua,g = S · ua , ua,u = (I − S) · ua . (5-6)

Hiermit folgt aus (5-4) die Gleichung

ud,g + ud,u = K1 · ua,g + K1 · ua,u − M−1
u · nu , (5-7)

die sich nun mit den Ersetzungen nach (5-1) und (5-2) auch in der Form
(
K2 − K1

) · uh =
(
K2 − I

) · uh − M−1
u · nu , K2 =

(
K1 + I

) · S (5-8)

notieren lässt. Ist K2 − K1 regulär, so folgt

uh =
(
K2 − K1

)−1 ·
((

K2 − I
) · uh − M−1

u · nu

)
, (5-9)

woraus sich mithilfe der Zusammenhänge nach (5-2) sowohl ud,u als auch ua,u bestimmen
lassen. Aufbauend auf diesen Ausführungen kann die Ersetzung von ud in (2-94) durch uh
zu

ud = ud,g + ud,u = (I − S) · uh︸       ︷︷       ︸
Positionsgeregelte

Richtungen

+ S · uh︸︷︷︸
Kraftgeregelte

Richtungen

= Ah · uh − bh (5-10)

mit

Ah = I + S
((

K2 − K1
)−1 · (K2 − I

) − I
)

= I + S
(
K2 − K1

)−1 · (K1 − I
)
, (5-11)

bh = S
(
K2 − K1

)−1 M−1
u nu (5-12)

bestimmt werden. Für die Bildung der Aktorkräfte folgt

Fq = JT
g ·

Qh ·

uh
ur
uk

 + nh

 (5-13)
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mit

Qh = Qd · diag
(
Ah, I, I

)
=

[
Qd1 · Ah Sλr Mv · Syk

]
, (5-14)

nh = nd − Qd1 · bh

= Mv ·
(
Ṡyk ẏk + Ṡyd ẏd

)
+ Cv v + gv + Sλa

(
ST

yd Sλa

)−1
nu − Qd1 bh (5-15)

und

Qd1 = Mv · Syd + Sλa ·
(
ST

yd · Sλa

)−1 · Mu . (5-16)

Für die neuen Eingangsgrößen uh, ur und uk gilt

uh = yh , ur = λr , uk = ÿk (5-17)

mit

yh = (I − S) · ÿd + S · λa . (5-18)

Diese Herleitung stellt eine mögliche Lösung dar. Beispielsweise ist es theoretisch genauso
möglich, die Herleitung auf Basis von (2-92) anstelle von (2-94) durchzuführen.

Mithilfe der nach (5-13) gebildeten Aktorkräfte werden die reaktiven Kräften λr und die
kinematischen Koordinaten yk geregelt. In den verbliebenen Richtungen ist es nun möglich,
mithilfe der Selektionsmatrix S jeweils frei zwischen einer Regelung der zugehörigen
dynamischen Koordinate yd,i und der zugehörigen aktiven Kraft λa,i zu wählen. Aufbauend
auf den neuen Systemeingängen kann die Vorsteuerung und Regelung für Kraftgrößen
z. B. nach (2-55), für Positionsgrößen z. B. nach (2-57) erfolgen.

5.1.2 Erweiterung: Einbeziehung der Aktordynamik

Ist die Aktorik hinreichend schnell und damit vernachlässigbar, so verhalten sich die mit
den Aktorkräften (5-13) herbeigeführten, neuen Systemeingänge uh, ur und uk linear zu
den jeweiligen Regelgrößen. Sowohl Kraft- als auch Positionsregelung können in diesem
Fall anhand des in Bild 5-1 gezeigten, schematischen Strukturbildes entworfen werden. yr
und y sind Soll- und Istwert der Regelgröße, u der (nichtlineare) Stelleingang und v ist der
durch die exakte Ein-/Ausgangslinearisierung herbeigeführte, sich linear zur Regelgröße y
verhaltende Systemeingang, d. h. es gilt v = y(δ).

Regelung
E/A-Linearisierung

nach (5-13)
Strecke−

yr v u y

Ein-/Ausgangslinearisierte Strecke

Bild 5-1: Geschlossener Regelkreis bei vernachlässigbarer Aktordynamik (Schema)

Die auf die Regelstrecke zugeschnittene Ein-/Ausgangslinearisierung nach (5-13) führt
dazu, dass die Reihenschaltung dieser beiden nichtlinearen Übertragungsglieder das Über-
tragungsverhalten



5.1 Analytische Formulierung nach de Luca und Manes 151

• GS (s) = 1, wenn die Regelgröße eine Kraft ist (δ = 0), oder

• GS (s) = 1/s2, wenn die Regelgröße eine Position ist (δ = 2),

besitzt. Auf Grundlage der ein/-ausgangslinearisierten Strecke kann daher ein einfacher,
linearer Regelungsentwurf erfolgen.

Für die Kraftregelung liegt ein Durchgriff vor. Lohmann und Trächtler [LT91] argumentie-
ren, dass das Vorhandensein eines Durchgriffs stets aus der Vernachlässigung schneller
dominanter Zeitvorgänge (Zeitkonstante T ) folgt. Im vorliegenden Fall wurde die Aktor-
dynamik vernachlässigt. Wird ein lineares, zeitinvariantes System betrachtet, eine derartige
Vereinfachung vorgenommen und eine konstante Ausgangsrückführung

u = −K y (5-19)

am System mit Durchgriff

ẋ = A x + B u , y = C x + D u (5-20)

entworfen, kann auch das realitätsnähere System ohne Durchgriff unter bestimmten Be-
dingungen durch die so entworfene Ausgangsrückführung stabilisiert werden. Lohmann
und Trächtler [LT91] zeigen, dass dies dann der Fall ist, wenn T hinreichend klein ist und
neben der Dynamikmatrix des geschlossenen Regelkreises auch die Matrix −I − D K nur
Eigenwerte in der linken Halbebene aufweist.

Hier stellt sich analog dazu die Frage, unter welchen Bedingungen die für ideale Aktor-
dynamik entworfene Regelung auch für das entsprechende System mit Aktordynamik
funktional ist. Außerdem ist zu prüfen, welche Konsequenzen die Einbeziehung der Aktor-
dynamik in den Regelungsentwurf mittels exakter Ein-/Ausgangslinearisierung bei dem
vorliegenden System hat.

Im Folgenden wird beschrieben, wie die Regelungssynthese für das hier betrachtete, nicht-
lineare Regelstreckenmodell unter Einbeziehung der Aktordynamik durchzuführen ist und
unter welchen Bedingungen ein solcher Regler realisiert werden kann. Außerdem wird eine
andere Maßnahme beschrieben, die die Beibehaltung der Aktorkräfte nach (5-13), d. h. den
Regelungsentwurf anhand von Bild 5-1, auch für das System mit Aktordynamik ermöglicht.
Dabei folgen auch Bedingungen an die Zeitkonstante der Aktorik in Abhängigkeit der
Dynamik der äußeren Kraft- und Positionsregelkreise, unter denen die Regelung stabil
ist.

Im vorliegenden Fall liegt durch den geschlossenen Druck- bzw. Kraftregelkreis in guter
Näherung eine lineare Aktordynamik dritter Ordnung zwischen dem Soll-Stelleingang ur
sowie dem Ist-Stelleingang u vor, vgl. Abschnitt 2.2.1. Folglich muss zwischen dem Ist-
Stelleingang u und dem Soll-Stelleingang ur, der den eigentlichen Eingang der Regelstrecke
darstellt, unterschieden werden. Bild 5-2 zeigt ein Schema des geschlossenen Regelkreis
mit berücksichtigter Aktordynamik. Gegenüber Bild 5-1 ist vor dem Eingang der Strecke
die Aktorik mit endlicher Dynamik hinzugekommen.

Die begrenzte Aktordynamik kann genau zwei Auswirkungen haben:

1. Deckt sie den anwendungsrelevanten Frequenzbereich ohne nennenswerte Änderung
des Amplituden- oder Phasenverlaufs ab, so kann sie als ideal abstrahiert werden.
Dann gelingt die Linearisierung und der Reglerentwurf nach Bild 5-1 kann ohne
Modifikationen übernommen werden.
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Regelung
E/A-Linearisierung

nach (5-13)
Aktorik Strecke−

yr v ur u y

Bild 5-2: Geschlossener Regelkreis mit Aktordynamik (Schema)

2. Ist dies nicht der Fall, so misslingt die Linearisierung der Regelstrecke nach (5-13)
und der erhaltene Stelleingang v verhält sich nicht - wie beabsichtigt - linear zur
Regelgröße y. Je nach Ausmaß der Nichtlinearität kann ein instabiler Regelkreis
resultieren.

Die Problematik wurde auch von Knoop [Kno17] für den positionsgeregelten Hexapod
ohne Umgebungskontakt beschrieben. Es kann jedoch anhand einer Simulation gezeigt
werden, dass die Blöcke „Ein-/Ausgangslinearisierung“ und „Aktordynamik“ (vgl. Bild
5-2) unzulässigerweise vertauscht werden können, obwohl es sich bei der Linearisierung
nach (2-19) um ein nichtlineares Übertragungsglied handelt. Der geschlossene Positions-
regelkreis weist dann zwar Verkopplungen in den Regelgrößen auf, diese sind jedoch
gering. Aufbauend darauf wird ein linearer Regelungsentwurf (2-21) für die Regelstrecke
5. Ordnung (PT3-Aktordynamik und GS (s) = 1/s2) durchgeführt.

Im Folgenden werden zwei Vorgehensweisen erläutert, nach denen sich eine (lineare)
Aktordynamik beim Regelungsentwurf berücksichtigen lässt. Als Ausgangsgröße des
nichtlinearen Reglers resultieren dabei Soll-Aktorkräfte Fq,r.

Lässt sich der Zusammenhang zwischen Soll-Aktorkräften Fq,r und Ist-Aktorkräften Fq in
guter Näherung durch eine lineare Differentialgleichung ausdrücken, so gilt

nA∑

i=0

ai F(i)
q = b0 Fq,r . (5-21)

nA bezeichnet dabei die Ordnung der Aktordynamik, F(i)
q die i-te zeitliche Ableitung der Ist-

Aktorkräfte Fq. Die vorzugebenden Soll-Aktorkräfte folgen damit aus (5-13) und (5-21)
zu

Fq,r =
1
b0

nA∑

i=0

ai F(i)
q . (5-22)

Für den bisher betrachteten Fall idealer Aktordynamik gilt: a0 = b0 = 1, nA = 0. Die
Eingangsgrößen uh, ur und uk müssen vor der Herleitung von Fq,r durch yh, λr und ÿk rück-
substituiert werden, vgl. (5-17) und (5-18). Die höchste zeitliche Ableitung dieser Größen
wird nach Abschluss der Herleitung wieder durch neue lineare Eingänge ersetzt. Gleichung
(5-22) stellt die Erweiterung der Aktorkräfte nach (5-13) für solche Systeme dar, die eine
nach (5-21) hinreichend beschreibbare Aktordynamik aufweisen. Die Differenzordnung
jeder Regelgröße (generalisierte Kraft oder Position) steigt damit um die Ordnung der
Aktordynamik nA (ausgehend von 0 für Kräfte und 2 für Positionen). Die neuen linearen
Stelleingänge weisen folglich das Verhalten

uh = y(nA)
h , ur = λ

(nA)
r , uk = y(nA+2)

k (5-23)
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mit yh nach (5-18) auf. Der totale relative Grad erhöht sich durch die Aktordynamik ebenso
wie die Systemordnung um 6 · nA, sodass die Ordnung der internen Dynamik gegenüber
dem Fall idealer Aktorik unverändert bleibt.

Während (5-22) die ideale Lösung für Systeme mit Aktordynamik nach (5-21) darstellt,
kann unter Umständen auch

• der Ansatz einer Aktordynamik niedrigerer Ordnung (mit identischer Eckfrequenz)
beim Regelungsentwurf oder

• die Vernachlässigung der Aktordynamik, d. h. die Berechnung der Aktorkräfte nach
(5-13),

hinreichend für das System sein. Einflussfaktoren sind bspw. die Bandbreite der einge-
setzten Aktorik sowie die angestrebte Bandbreite der geschlossenen Regelkreise für die
generalisierten Kräfte und Positionen.

Die Implementierung der Regelung auf Basis von (5-22) bedingt die nA-malige zusätzli-
che, zeitliche Differentiation der Aktorkräfte (5-13) und damit zahlreicher nichtlinearer
Terme von Manipulator- und Umgebungsmodell. Außerdem ist für die Auswertung des
Regelalgorithmus die Messung bzw. Beobachtung weiterer zeitlicher Ableitungen der
generalisierten Kräfte und Positionen erforderlich. Nach dem bisher verwendeten Schema,
vgl. auch Formel (A3-10), ist die Messung oder anderweitige Bestimmung der zeitlichen
Ableitung der (generalisierten) Kontaktkräfte für die Ordnungen 0 bis nA − 1 und der
(generalisierten) Positionen für die Ordnungen 0 bis nA + 1 für die Implementierung der
Regelung erforderlich (Bei vernachlässigbarer Aktordynamik, d. h. nA = 0, müssen die
Kontaktkräfte abweichend hiervon mindestens bis Ordnung 0 vorliegen). Vorteilhaft ist,
dass auf diese Weise der Durchgriff für Kraftausgänge verschwindet. Je höher die Ordnung
nA der beim Regelungsentwurf zu berücksichtigenden Aktordynamik ist, desto besser
funktioniert auch die Kraftregelung bei Modellunsicherheiten und Störungen. Abweichun-
gen zwischen der Soll- und der Istkraft fallen bereits in ihren zeitlichen Ableitungen auf
und können daher wesentlich besser durch den Regler kompensiert werden. Allerdings
steigt mit der Ordnung der Aktordynamik nA auch die Komplexität des Reglers. Dabei
stellen nicht nur die zusätzlich zu messenden Größen ein Problem dar; auch die Herleitung
und Berechnung der hinzukommenden, zeitlichen Ableitungen von Manipulator- und
Umgebungsmodelltermen ist unter Umständen mit erheblichem Aufwand verbunden.

Liegt eine Aktordynamik dritter Ordnung vor, so müssen die einzuregelnden Kräfte und
die generalisierten Koordinaten sowie deren ersten zwei bzw. vier zeitlichen Ableitungen
für die Auswertung des Regelalgorithmus vorliegen. Dies macht das Vorgehen wenig
praktikabel. Möglicherweise genügt es jedoch, eine Aktordynamik erster Ordnung im
Regler zu berücksichtigen. Mit a0 = b0 = 1 und a1 = TA, wobei TA die Zeitkonstante des
Aktors ist, ergibt sich bspw. die Berechnungsvorschrift

Fq,r =

(
JT

g + TA
d
d t

(
JT

g

))
Qh


yh
λr
ÿk

 + nh

 + TA JT
g

Qh


uh
ur
uk

 + Q̇h


yh
λr
ÿk

 + ṅh

 (5-24)

für die Soll-Aktorkräfte, wobei für die neuen Stelleingänge

uh = S · λ̇a + (I − S) · ...yd , ur = λ̇r , uk =
...yk (5-25)

gilt. Durch Herleitung von Q̇h und ṅh lässt sich zeigen, dass bei Einbeziehung einer
Aktordynamik erster Ordnung zusätzlich die Terme
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• Ṁv,

• Ċv,

• ġv,

• d
(
JT

g

)
/d t,

• Ṁu,

• ṅu,

• Ṡλr,

• Ṡλa,

• S̈yk,

• S̈yd,

• d
((

ST
yd Sλa

)−1
)
/d t

sowie

d
d t

((
K2 − K1

)−1
)

= − d
d t

((
S − M−1

u ST
yd Sλa (I − S)

)−1
)

zu berechnen sind. Der Term d
(
JT

g

)
/d t kann anhand der Formel

d
d t

(
JT

g

)
= JT

g ·
d
d t

(
J−T

g

)
· JT

g (5-26)

berechnet werden, da JT
g selbst nicht analytisch vorliegt. Theoretische Ansätze zur Herlei-

tung von JT
g auch für PKM liegen vor, siehe z. B. [DBS97; KCY00], die Herleitung ist aber

mit hohem Zeit- und Berechnungsaufwand verbunden. Sowohl die direkte Berechnung
von JT

g als auch die Auswertung der Gleichungen zur Laufzeit auf dem Echtzeitrechner
stellen bei dem gegebenen System eine Herausforderung dar. Die Inverse J−T

g folgt im
Falle eines PKM hingegen automatisch bei Herleitung des Manipulatormodells und kann
in verhältnismäßig einfacher Form analytisch angegeben werden, vgl. auch Abschnitt 4.2.
In der Literatur wird daher empfohlen, JT

g durch numerische Invertierung von J−T
g zur

Laufzeit zu berechnen, siehe u. a. Dutré et al. [DBS97] und Merlet [Mer06, S. 162f.].
Anstelle von d

(
JT

g

)
/d t kann daher die einfachere Gleichung für d

(
J−T

g

)
/d t ermittelt und

anhand von (5-26) umgerechnet werden.

Die Korrektheit des beschriebenen Ansatzes zur Einbeziehung von Aktordynamik beim
Regelungsentwurf konnte anhand der in Kapitel 3 betrachteten Modelle bestätigt werden.
Ein anderer, in der Realisierung wesentlich einfacherer Lösungsansatz besteht darin, die
Linearisierung (5-13) beizubehalten. Die nach dieser Formel berechneten Aktorkräfte
werden nicht direkt an die Aktorregelung weitergegeben, sondern zunächst durch ein Lead-
Glied weiterverarbeitet, das die gleiche Ordnung nA wie die Aktordynamik besitzt. Das
Lead-Glied kompensiert und ersetzt die Polstellen der Aktorik durch schnellere. Effektiv
wird damit die langsame Aktorik (virtuell) durch hinreichend schnelle Aktorik ersetzt.
Die Übertragungsfunktion des Lead-Gliedes enthält die inverse Übertragungsfunktion des
geschlossenen Druckregelkreises und lautet bspw. für eine Aktordynamik dritter Ordnung
(Übertragungsfunktion GS t)

GL (s) = G−1
S t (s) · 1

a3,L s3 + a2,L s2 + a1,L s + 1︸                             ︷︷                             ︸
Neue, „virtuelle“ Aktordynamik GS t,v(s)

. (5-27)

Die Parameter a1,L, a2,L und a3,L müssen so gewählt werden, dass die Reihenschaltung von
GL und GS t, d. h. das Übertragungsglied GS t,v, hinreichend schnell für die Realisierung der
Regelung nach (5-13) ist. Bild 5-3 zeigt das Schema des geschlossenen Regelkreises bei
Verwendung dieses Lösungsansatzes.
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Regelung
E/A-Linearisierung

nach (5-13)
Lead-
Glied

Aktorik Strecke−
yr v ur u y

Ein-/Ausgangslinearisierte Strecke

Bild 5-3: Geschlossener Regelkreis mit Aktordynamik und Lead-Glied (Schema)

Die Reihenschaltung aus Ein-/Ausgangslinearisierung (5-13) und Lead-Glied (5-27) stellt
eine realisierbare, erweiterte Ein-/Ausgangslinearisierung für einen Manipulator mit be-
grenzter Aktordynamik dar. Je schneller das Übertragungsglied GS t,v gewählt wird, desto
breiter ist der Frequenzbereich, in dem sich Lead-Glied und Aktordynamik wie ein idea-
les Übertragungsglied verhalten. Bei sehr hoher Dynamik des Übertragungsglieds geht
Bild 5-3 in Bild 5-1 über und die anhand von Bild 5-1 ausgelegten Regler können ohne
Anpassungen übernommen werden. Es ist sicherzustellen, dass die durch das Lead-Glied
berechneten Stellgrößen weiterhin innerhalb der Stellgrößenbeschränkungen liegen.

Der erstgenannte Ansatz mit den Soll-Aktorkräften Fq,r nach (5-22) stellt die korrekte
Lösung für die Einbeziehung nicht vernachlässigbarer Aktordynamik bei der Regelungssyn-
these dar. Die praktische Umsetzung dieses Ansatzes ist allerdings mit einem beträchtlichen
Mehraufwand im Vergleich zur Situation idealer bzw. vernachlässigbarer Aktorik verbun-
den. Zum einen müssen weitere, umfassende Terme analytisch hergeleitet werden. Zum
anderen erfordert die Auswertung des Regelungsalgorithmus physikalische Größen, die
bisher am HNI-Achsprüfstand nicht vorliegen. Die Umsetzung am Prüfstand erfordert
folglich weitere Sensorik und/oder eine aufwändige Weiterentwicklung des bestehenden
Beobachters. In dieser Dissertationsschrift wird daher im Bedarfsfall auf die Lösung mittels
Nachschaltung eines Lead-Gliedes zurückgegriffen, bei der die genannten Gegebenheiten
auf eine vergleichsweise einfache Art elegant umgangen werden können. Der bei Erfül-
lung aller zuvor genannten Voraussetzungen prinzipiell zu bevorzugende, in dieser Arbeit
erläuterte Regelungsansatz sollte in Folgearbeiten aufgegriffen werden.

Eine weitere Abhilfemaßnahme, die in ihrer Konsequenz der zweiten Lösungsmöglichkeit
für nicht vernachlässigbare Aktordynamik entspricht, besteht in der Verbesserung des
geschlossenen Aktorregelkreises, z. B. durch Weiterentwicklung der bestehenden Druckre-
gelung und/oder Einbau leistungsfähigerer Komponenten in das Prüfsystem.

5.1.3 Regelung der idealisierten Radaufhängung ohne Elastomerlager

In diesem Abschnitt wird die Regelung des HNI-Achsprüfstands mithilfe des weiter-
entwickelten Ansatzes nach de Luca und Manes [LM94] beschrieben. Dabei wird das
Gesamtmodell ΣG3 zugrunde gelegt. Somit weist die Radaufhängung der Regelstrecke
nur diejenigen FHG auf, die nicht zur Beschreibung von Elastomerlagern dienen. Es gilt
nd = 3 und

yd =
[
dF xL ψ

]T
. (5-28)

Der Grund für die Verwendung eines auf diese FHG reduzierten Streckenmodells besteht
darin, dass die Leistungsfähigkeit des Reglers besser evaluiert werden kann, da das Rad-
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aufhängungsmodell im Regler in Übereinstimmung mit dem Regelstreckenmodell gewählt
werden kann. Bei dem unvereinfachten Streckenmodell ΣG11 mit elf FHG ist dies, wie sich
im nachfolgenden Abschnitt zeigen wird, nur nach erneuter Anpassung des Algorithmus
möglich. Darüber hinaus liegen bei der Regelstrecke ΣG3 auch reaktive Kontaktkräfte
und -momente in T vor (im Gegensatz zur Situation mit Lagerelastizitäten, siehe nächster
Abschnitt), sodass der Ansatz nach (5-13) gut erprobt werden kann. Im Anschluss können
die Vereinfachungen des Streckenmodells aufgehoben und auch für dieses Modell ein
funktionaler Regler angegeben werden.

Für beide Streckenmodelle ΣG3 und ΣG11 gilt, dass ausschließlich dynamische Koordinaten
yd, keine kinematischen Koordinaten yk vorliegen. Selbst der FHG ψ ist keine kinematische
Koordinate yk, da die Radnabe nicht masselos ist. Folglich ist nk = 0 und Syk existiert
nicht.

Die Systemordnung für dieses vereinfachte Modell beträgt n = 2 nd = 6. Der totale relative
Grad liegt zwischen 6 (wenn alle dynamischen Koordinaten yd geregelt werden) und 0
(wenn alle aktiven Kräfte λa geregelt werden). Die interne Dynamik weist dementsprechend
eine Ordnung zwischen 0 und 6 auf. Nur bei Regelung aller dynamischen Koordinaten yd
liegt eine exakte Zustandslinearisierung vor.

Die Matrizen Syd, Ṡyd ∈ R6×3 entsprechen der Jacobimatrix der MacPherson-Radaufhän-
gung und ihrer zeitlichen Ableitung nach (4-223), wobei nur die Einträge bzw. Spalten zu
den Minimalkoordinaten nach (5-28) verwendet werden. Die Kontaktkräfte und -momente
τ setzen sich nach (2-79) aus den aktiven Kräften λa ∈ R3 und den reaktiven Kräften
λr ∈ R3 zusammen. Bei der Festlegung von λa und λr bzw. Sλa ∈ R6×3 und Sλr ∈ R6×3

bestehen Wahlfreiheiten, vgl. Abschnitt 2.2.3. Die Bedingung der Reziprozität (2-81) muss
allerdings stets erfüllt sein. Ausgangspunkt der Festlegung von Sλa ∈ R6×3 und Sλr ∈ R6×3

ist daher die Jacobimatrix Syd.

Mithilfe des Ansatzes nach (5-13) kann in nd = 3 Richtungen zwischen einer Positions-
und einer Kraftregelung gewählt werden kann. Als Zielsetzung wird hier verfolgt, mithilfe
der Selektionsmatrix S = diag

[
s1 s2 s3

]
die in Tabelle 5-1 genannten Wahlmöglichkeiten

zu realisieren.

s1 s2 s3

Positionsgrößen dF xL ψ
Kraftgrößen Fz Mz My

Tabelle 5-1: Verknüpfung der Positions- und Kraftgrößen über die Selektionsmatrix S

Beispielsweise soll mit dem ersten Diagonalelement von S zwischen der Positionsrege-
lung des Dämpferwegs dF und der Vertikalkraft Fz gewählt werden können. Es folgt die
Beschreibung einer möglichen Realisierung dieses Ziels.

Die reaktiven Kräfte λr werden hier so festgelegt, dass sie eine physikalische Bedeutung
besitzen. Naheliegend ist, diejenigen Einträge aus τ zu wählen, die nicht bei der Auswahl
mittels S berücksichtigt wurden, d. h.

λr =
[
Fx Fy Mx

]T
. (5-29)
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Mit dieser Wahl folgt aus (2-79), dass

τ =



0 0 0
0 0 0

sλa31 sλa32 sλa33
0 0 0

sλa51 sλa52 sλa53
sλa61 sλa62 sλa63


︸                   ︷︷                   ︸

Sλa

·λa +



1 0 0
0 1 0

sλr31 sλr32 sλr33
0 0 1

sλr51 sλr52 sλr53
sλr61 sλr62 sλr63


︸                  ︷︷                  ︸

Sλr

·λr . (5-30)

Da Syk aufgrund des Fehlens kinematischer Koordinaten yk nicht existiert, bestehen nach
(2-81) keine Bedingungen an die Matrix Sλa. Hier wird

Sλa =



0 0 0
0 0 0
1 0 0
0 0 0
0 0 1
0 1 0



(5-31)

gewählt. Auf diese Weise enthält Fz nur die erste, Mz nur die zweite und My nur die dritte
Komponente aus λa, wobei die Abfolge mit der in Tabelle 5-1 übereinstimmt.

Für die Matrix Sλr muss nach (2-81)


syd11 syd21 syd31 syd41 syd51 syd61
syd12 syd22 syd32 syd42 syd52 syd62
syd13 syd23 syd33 syd43 syd53 syd63



︸                                              ︷︷                                              ︸
ST

yd

·



1 0 0
0 1 0

sλr31 sλr32 sλr33
0 0 1

sλr51 sλr52 sλr53
sλr61 sλr62 sλr63


︸                  ︷︷                  ︸

Sλr

= 0 (5-32)

erfüllt sein. Hiermit gleichbedeutend ist, dass

syd11 syd21 syd41
syd12 syd22 syd42
syd13 syd23 syd43

 +


syd31 syd51 syd61
syd32 syd52 syd62
syd33 syd53 syd63

 ·

sλr31 sλr32 sλr33
sλr51 sλr52 sλr53
sλr61 sλr62 sλr63

 = 0 (5-33)

und es folgt unter der Bedingung, dass die Matrix

syd31 syd51 syd61
syd32 syd52 syd62
syd33 syd53 syd63



regulär ist, dass


sλr31 sλr32 sλr33
sλr51 sλr52 sλr53
sλr61 sλr62 sλr63

 = −

syd31 syd51 syd61
syd32 syd52 syd62
syd33 syd53 syd63



−1

·

syd11 syd21 syd41
syd12 syd22 syd42
syd13 syd23 syd43

 . (5-34)
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Damit ist auch Sλr bekannt.

Der Soll-/Istwert-Vergleich der Kraftregelung erfolgt in den generalisierten Kraftgrößen
λa und λr, nicht in den Kontaktkräften und -momenten τ. Für die Umrechnung zwischen
den Istwerten τ und λa, λr gilt

τ =
[
Sλa Sλr

]
︸      ︷︷      ︸

Sλ

·
[
λa
λr

]
,

[
λa
λr

]
=



−sλr31 −sλr32 1 −sλr33 0 0
−sλr61 −sλr62 0 −sλr63 0 1
−sλr51 −sλr52 0 −sλr53 1 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0


︸                                       ︷︷                                       ︸

S−1
λ

·τ . (5-35)

Aufgrund der vorliegenden speziellen Struktur der Inversen S−1
λ eignet sie sich auch zur

Umrechnung gegebener Sollwerte für τr in die generalisierten Sollgrößen λa,r, λr,r. So sind
die Sollwerte für Fz, My, Mz jeweils ausschließlich in den damit assoziierten Einträgen
der aktiven Kräfte λa,r enthalten. Ist bspw. der erste Diagonaleintrag von S Null, so wird
der Dämpferweg dF und nicht die Vertikalkraft Fz geregelt. In diesem Fall findet sich
der (beliebig vorzugebende) Sollwert für Fz nur im ersten Eintrag von λa,r wieder, der im
Rahmen der Regelung mit dem festgelegten S keine weitere Bedeutung besitzt.

Anhand von (5-35) ist leicht zu erkennen, dass λa im Gegensatz zu λr keine physikalische
Bedeutung hat. Es handelt sich jeweils um eine zusammengesetzte Größe aus Fx, Fy, Mx
sowie Fz, My oder Mz.

Alle relevanten Größen und Umrechnungen für die Implementierung der Regelung sind da-
mit beschrieben. An dieser Stelle wird noch kurz eine Verallgemeinerung der Berechnung
von Sλr angegeben. Sie ist weniger anschaulich als das oben skizzierte Vorgehen, das verall-
gemeinerte Vorgehen kann aber auch dann eingesetzt werden, wenn ein Umgebungsmodell
mit vier, fünf oder sechs FHG im Regler verwendet wird.

Bei Sλa ∈ N6×nd handelt es sich um eine sog. dünnbesetzte Matrix. Die Einträge

(3; 1) , (6; 2) , (5; 3)

besitzen den Wert 1. Aus der Matrix lässt sich ablesen, welche Kraft bzw. welches Moment
aus dem Vektor τ (Zeilenindex) mit welchem Element des Vektors der dynamischen
Koordinaten yd (Spaltenindex) korrespondiert. Aus der alleinigen Angabe eines Vektors

ia =
[
3 6 5

]
, (5-36)

der die Zeilenindizes enthält, kann die Matrix Sλa ∈ N6×nd eindeutig konstruiert werden.
Der zu einem Zeilenindex gehörige Spaltenindex entspricht dabei der Stelle in ia, an der
der Zeilenindex steht.

Entsprechend ia sind in

ir =
[
1 2 4

]
(5-37)

die Indizes der Einträge von τ enthalten, die den reaktiven Kräften λr entsprechen. Der
Vektor ir geht aus ia hervor, denn ir umfasst diejenigen ganzen Zahlen aus dem Intervall
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[1; 6], die nicht in ia enthalten sind. Anhand von ir lässt sich (analog zu Sλa aus ia) eine
dünnbesetzte Matrix Mλr ∈ N6×(6−nd) konstruieren. Im vorliegenden Beispiel ergibt sich

Mλr =



1 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0



. (5-38)

Auf dieser Grundlage lässt sich herleiten, dass Sλr anhand der Formel

Sλr = −Sλa · (ST
yd · Sλa)−1 · ST

yd · Mλr + Mλr · I(6−nd)×(6−nd) (5-39)

berechnet werden kann. Bei einem Umgebungsmodell mit vier oder fünf FHG im Regler
enthält ia vier bzw. fünf Einträge, ir entsprechend weniger. Weist das Umgebungsmodell
sechs FHG auf, so hat ia sechs Einträge und ir ist leer. In diesem Fall entfällt Sλr, d. h. es
gibt nur dynamische Koordinaten yd und aktive Kräfte λa, keine reaktiven Kräfte λr.

Das Strukturbild der implementierten Regelungsstruktur zeigt Bild 5-4.

S−1
λ

S−1
λ

Positions-
regelung

Kraft-
regelung

E/A-Linearisierung
nach (5-13)

Strecke

τr

{
yd, ẏd, ÿd

}
r

{
λa, λr

}
r

ud,g

ua,g

ur

Fq

yd, ẏd

τλa, λr

yd, ẏd

Ein-/Ausgangslinearisierte Strecke

Bild 5-4: Implementierte hybride Kraft-/Positionsregelung nach [LM94]

Die neuen Stelleingänge ur, ua,g und ud,g können bspw. nach (2-55) und (2-57) gebildet
werden. Für die Realisierung dieser Regelung sind die Größen yd, ẏd und τ erforderlich.
Sie müssen gemessen oder beobachtet werden. Ein Beobachter für z, ż, wie er bisher zum
Einsatz kommt, ist prinzipiell nicht notwendig, da sich diese Größen aus den Zuständen yd
und ẏd berechnen lassen, vgl. Abschnitt 4.3.

Die gemäß diesen Erläuterungen implementierte Regelung wird nun in der Simulation am
Streckenmodell ΣG3 erprobt. Dabei werden vier verschiedene Ausprägungen der Selekti-
onsmatrix S untersucht:

• S31= diag
[
0 1 0

]
,

• S32= diag
[
1 1 0

]
,

• S33= diag
[
1 0 0

]
und

• S34= diag
[
0 0 0

]
.

Die Regelung des Moments My ist prinzipiell ebenfalls möglich. An dieser Stelle wird nur
der Fall des ungebremsten Rades betrachtet, d. h. der FHG ψ ist nicht gesperrt.
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Zum Vergleich wird die Schlechtweganregung herangezogen, die bereits in Kapitel 4
zur Modellvalidierung eingesetzt wurde. Die nachfolgenden Soll-/Ist-Vergleiche werden
anhand des immer gleichen zeitlichen Abschnitts aus dieser Sollvorgabe durchgeführt. Der
gewählte Abschnitt ist für die Regelung besonders anspruchsvoll. Für den Drehwinkel
ψ sowie die Verschiebung xL des Lenkgestänges enthält die Schlechtweganregung keine
Sollvorgaben. Diese Werte werden, soweit erforderlich, konstant auf Null gesetzt.

Im ersten Schritt wird die Aktordynamik vernachlässigt, d. h. es werden ideale Stellglie-
der angenommen. Folglich gilt Fq = Fq,r. In diesem Fall können die jeweils mittels S
gewählten Regelgrößen aus yd und λa sowie λr ideal vorgesteuert werden. Für S31, S32,
S33 und S34 können also selbst mit den Reglerverstärkungen KP, f , KI, f , KD,p, KP,p = 0 nur
durch die Vorgabe von ÿd,r, λa,r bzw. λr,r die Soll-Zeitverläufe herbeigeführt werden. Es
kommt nur zu einer sehr geringen Drift zwischen den Soll- und Ist-Positionen, die sich
auf Ungenauigkeiten bei der numerischen Integration zurückführen lässt. So kann der in
einem bestimmten Zeitraum entstehende Fehler um den Faktor k reduziert werden, wenn
die Rechenschrittweite um den Faktor k verkleinert wird.

Dieses Ergebnis ist insoweit erst einmal nicht überraschend, da die Strecke mit ihrem
idealen Modell vorgesteuert wird. Es beweist aber die Richtigkeit der hergeleiteten Be-
rechnungsformel für die Aktorkräfte mit Selektionsmatrix S nach (5-13). Ebenso ist damit
nachweislich die Festlegung von Sλr und Sλa bzw. λr und λa nach dem beschriebenen
Vorgehen korrekt.

Die Kraft- und Positionsregler werden anhand des Bildes 5-1 als Eingrößenregelkreise ent-
worfen. Hier werden Regelungen nach (2-55) und (2-57) verwendet. Da die Linearisierung
die gleiche Streckenübertragungsfunktion für Kräfte und Positionen in allen Richtun-
gen herbeiführt, werden die Kraft- und Positionsregelungsparameter für alle Richtungen
identisch gewählt, d. h.

KP, f = KP, f · I , KI, f = KI, f · I , KD,p = KD,p · I , KP,p = KP,p · I . (5-40)

Die Übertragungsfunktion der Kraftregelstrecke fällt nach der Ein-/Ausgangslinearisierung
besonders einfach aus, vgl. Abschnitt 5.1.2. Zur Regelung eignet sich bspw. ein P-Regler
(KI, f = 0). Der geschlossene Kraftregelkreis verhält sich in diesem Fall wie ein P-Glied. Der
Regelkreis ist nicht stationär genau, da die Verstärkung KP, f /

(
1 + KP, f

)
beträgt. Bei hohen

Verstärkungen geht der Fehler gegen Null. Er lässt sich zudem durch eine zusätzliche
Verstärkung des Mess- oder Sollwertes für die Kraft vor dem Soll-/Istwert-Vergleich
kompensieren. Mit einem P-Regler lassen sich theoretisch beliebig hohe Frequenzanteile
in der vorgegebenen Sollkraft ideal nachbilden. Praktisch ist dies bspw. aufgrund begrenzter
Aktordynamik nicht möglich. Statt des P-Reglers muss ein Regler verwendet werden, der
eine begrenzte Bandbreite für den geschlossenen Kraftregelkreis herbeiführt. Dies ist beim
I-Regler (KP, f = 0) der Fall. Für diesen verhält sich der geschlossene Kraftregelkreis
wie ein PT1-Übertragungsglied, dessen Eckkreisfrequenz gerade der Reglerverstärkung
KI, f entspricht. Eine 3 dB-Bandbreite von fGRK, f folgt demnach bei der Festlegung von
KI, f = 2 π · fGRK, f . Der Regler arbeitet außerdem stationär genau. Theoretisch lassen sich
bei Zutreffen des einfachen Streckenmodells GS (s) = 1 sowohl mit einem I- als auch
einem P-Regler beliebig hohe Verstärkungen KI, f bzw. KP, f ansetzen, ohne dass das System
instabil wird.
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Für den geschlossenen Positionsregelkreis resultiert bei Verwendung des Reglers nach
(2-57) das PT2-Übertragungsverhalten

FW (s) =
Yd (s)
Yd,r (s)

=
1

1
KP,p

s2 +
KD,p

KP,p
s + 1

. (5-41)

Aus dem Koeffizientenvergleich mit der Standardform eines PT2-Gliedes folgen die Zu-
sammenhänge

KD,p = 2 Dp ωp , KP,p = ω2
p (5-42)

zwischen den Reglerverstärkungen sowie Eckkreisfrequenz und Dämpfung des geschlosse-
nen Regelkreises. Bei Wahl vonωp = 2 π· fGRK,p und Dp = 1 resultiert eine 6 dB-Bandbreite
von fGRK,p für den Positionsregelkreis.

Den folgenden Simulationsergebnissen liegt dieser PD-Positionsregler sowie der I-Kraft-
regler mit

KI, f = 2 π · 50 , ωp = 2 π · 50 , Dp = 1 (5-43)

zugrunde. Dieser Regler erhält zur einfacheren Kennzeichnung der Bilder in diesem Kapitel
den Kürzel ΣR,LM3.

Bild 5-5 zeigt den sich ergebenden Zeitverlauf der Kontaktkräfte und -momente τ, die
damit assoziierten dynamischen Koordinaten yd (soweit zutreffend) sowie den zugehörigen
Sollwert-Zeitverlauf (Position oder Kraft) für die Selektionsmatrix S31. Der Regler enthält
dabei die Bewegungsgleichungen des 13-Starrkörper-Hexapodmodells ΣH13.

Die Soll- und Ist-Zeitverläufe stimmen ideal überein. Erwähnenswert ist, dass zu den
Zeitpunkten t = 3,8 s und t = 6,6 s der Druckpuffer des Federbeins einsetzt. Dies lässt
sich daran erkennen, dass die Kraft Fz stark anwächst und der Dämpferweg dF verhält-
nismäßig klein ist. Das Ereignis ist in allen folgenden Plots wiederzufinden, in denen
der Dämpferweg dF anstelle der Vertikalkraft Fz geregelt wird. Da der Druckpuffer auch
im Radaufhängungsmodell des Reglers enthalten ist, hat dies keinen Einfluss auf die
Regelgüte.

Einen Eindruck der Bedeutung des Manipulatormodells für die Regelung vermittelt Bild
5-6. Es zeigt die Soll- und Ist-Zeitverläufe für die gleichen Rahmenbedingungen wie in
Bild 5-5 mit dem Unterschied, dass das 1-Starrkörper-Modell des Hexapod Σ∗H1 im Regler
verwendet wird.

Aus dem Bild geht hervor, dass die Vereinfachung des Manipulatormodells trotz der ho-
hen Reglerverstärkungen die Regelgüte in den kraftgeregelten Richtungen, bspw. für das
Moment Mx zwischen t = 4,6 und 5 s, geringfügig beeinträchtigt. Dies lässt sich auf den
Durchgriff der Aktorkräfte Fq auf die Kontaktkräfte τ zurückführen (Differenzordnung
δi = 0), wodurch Abweichungen zwischen der Regelstrecke und dem Manipulator- und
Umgebungsmodell im Regler unmittelbare Auswirkung auf das Regelergebnis haben. Die
Regelung des Dämpferwegs dF weist hingegen keine reduzierte Regelgüte gegenüber Bild
5-5 auf. Hier beträgt die Differenzordnung δi = 2 und die Modellabweichung kann wesent-
lich besser durch den Regler abgefangen werden. Für die Erzielung einer Regelgüte, die mit
der Verwendung des Modells ΣH13 vergleichbar ist, müssen höhere Reglerverstärkungen
für den Kraftregler verwendet werden.
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Bild 5-5: Soll-/Ist-Vergleich für die Selektionsmatrix S31 = diag [0 1 0]
(Regler ΣR,LM3 mit Hexapodmodell ΣH13, Strecke ΣG3)
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Bild 5-6: Soll-/Ist-Vergleich für die Selektionsmatrix S31 = diag [0 1 0]
(Regler ΣR,LM3 mit Hexapodmodell Σ∗H1, Strecke ΣG3)
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Zu den Zeitverläufen für die Selektionsmatrizen S32, S33 und S34 lassen sich vergleichbare
Aussagen tätigen wie für die Zeitverläufe zu S31 (Bilder 5-5 und 5-6). Aus Platzgründen
befinden sich die entsprechenden Bilder für diese Selektionsmatrizen im Anhang, siehe
Bilder A7-1 bis A7-6.

Bild 5-7 stellt die relativen RMS-Fehler für die vier Selektionsmatrizen bei Verwendung
des Modells ΣH13 sowie des Modells Σ∗H1 für den Hexapod im Regler gegenüber. Dieser
Kennwert ist als Quotient aus dem RMS der Regelabweichung e und dem RMS des
Sollwerts τr bzw. yd,r definiert. Zu beachten ist, dass er hier für die Regelung von ψ und
xL gegen unendlich strebt, da der Sollwert jeweils konstant Null ist. In den in Bild 5-7
dargestellten Säulendiagrammen wurden diese Werte nicht eingetragen. Die hinreichende
Regelgüte dieser Größen geht auch aus den entsprechenden Zeitverläufen hervor. Die für
die Beurteilung von Belastungsgrößen üblicherweise herangezogene relative Schädigung
wird an dieser Stelle nicht betrachtet, da der Lehrstuhl noch nicht über eine geeignete
Schädigungsanalysesoftware verfügt.
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S31= diag [0 1 0] S32= diag [1 1 0] S33= diag [1 0 0] S34= diag [0 0 0]

Bild 5-7: Relativer RMS-Fehler mit den Modellen ΣH13 (links) bzw. Σ∗H1 (rechts) im Regler
(Regler ΣR,LM3, Strecke ΣG3)

Aus Bild 5-7 geht hervor, dass die in Abschnitt 2.1.2 genannte Grenze von 5-10 % für
den relativen RMS-Fehler bei Regelung mithilfe des Hexapodmodells ΣH13 problemlos
eingehalten werden kann. Sämtliche Werte liegen dort unter 1 %. Wird hingegen das
demgegenüber einfachere Hexapodmodell Σ∗H1 im Regler verwendet, so liegen die relativen
RMS-Fehler höher. Für die Selektionsmatrizen S31 und S32, die sich durch die Regelung des
Moments Mz anstelle der Lenkstangenverschiebung xL auszeichnen, wird die Obergrenze
des RMS-Fehlers leicht überschritten. Die Werte können durch weitere Erhöhung der
Kraftregelungsverstärkung verbessert werden. Die Verwendung des relativen RMS-Fehlers
für die Beurteilung von Belastungsgrößen ist allerdings nicht üblich. Eine verlässliche
Aussage über die Tauglichkeit der Regelungen für die Betriebsfestigkeitsuntersuchung ist
nur durch Ermittlung der relativen Schädigung möglich.

In den bisherigen Ausführungen wurde die Aktordynamik im Rahmen der Regelungs-
synthese vernachlässigt. Zum Abschluss dieses Abschnitts ist daher zu prüfen, ob die
entworfene Regelung auch dann funktional ist, wenn die Aktordynamik im Streckenmodell
enthalten ist. Anderenfalls muss der Regelungsentwurf die Aktordynamik einbeziehen,
wie es in Abschnitt 5.1.2 vorgeschlagen wurde.

Der geschlossene Aktorregelkreis verhält sich in guter Näherung wie ein Übertragungsglied
dritter Ordnung mit einer 3 dB-Bandbreite von 213 Hz, vgl. Abschnitt 2.2.1. Werden die
Parameter der überlagerten I-Kraft- und PD-Positionsregelungen (5-43) beibehalten, so
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zeigt das System instabiles Verhalten. Die Aktordynamik kann beim Regelungsentwurf
also nicht vernachlässigt werden.

An dieser Stelle stellt sich die interessante Frage, wie hoch die Aktordynamik für das
Gelingen des Regelungsentwurfs ohne weitere Modifikationen (vgl. Abschnitt 5.1.2) sein
muss. Zu ihrer Beantwortung wurde eine Reihe von Simulationen durchgeführt. Dabei
wurde jeweils für einen festen Parametersatz der äußeren Kraft- und Positionsregelun-
gen für die beiden praxisrelevanten Selektionsmatrizen S31 und S32 geprüft, ab welcher
Bandbreite eine gegebene Aktordynamik zu stabilem Verhalten führt. Untersucht wurden
hierbei PT1-, PT2- und PT3-Glieder, wobei die PT2- und PT3-Glieder aus zusammenge-
setzten PT1-Gliedern mit der gleichen Eckfrequenz bestehen. Die ermittelte, kritische
Aktoreckfrequenz fA,krit hat daher die Bedeutung einer 3 dB-, 6 dB- bzw. 9 dB-Bandbreite.
Zur Anregung wurde das bereits bekannte Schlechtwegprofil verwendet. Der Regler enthält
bei allen Simulationen stets das Hexapodmodell ΣH13.

Bild 5-8 zeigt das Simulationsergebnis. Die aufgetragenen Werte sind dabei als Stabili-
tätsgrenze zu interpretieren. In der Praxis ist folglich ein nochmal etwas höherer Wert für
die Aktordynamik erforderlich. Für PT1-, PT2- und PT3-Aktordynamik sind jeweils vier
Verläufe zu sehen, da bei der Kraftregelung sowohl der Fall eines P-Anteils von KP, f = 0
als auch KP, f = 0,75 für beide Selektionsmatrizen S31 und S32 untersucht wurde.
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Bild 5-8: Erforderliche Aktorbandbreite fA,krit in Abhängigkeit der Parametrierung der
äußeren Regelkreise (Regler ΣR,LM3 mit Hexapodmodell ΣH13, Strecke ΣG3)

Die Abszisse in Bild 5-8 kann für KP, f = 0 als 3 dB- bzw. 6 dB-Bandbreite der äuße-
ren Regelkreise verstanden werden. Offenbar besteht nur für höhere Frequenzen ein in
guter Näherung linearer Zusammenhang zwischen fA,krit und der Dynamik der äußeren
Regelkreise. Für kleinere Frequenzen ist der Zusammenhang nichtlinear. Der Verlauf
besitzt ein Minimum vor dem Übergang in den linearen Bereich. Über die Erweiterung des
Kraftreglers um einen P-Anteil kann fA,krit für kleinere Bandbreiten der äußeren Positions-
und Kraftregelungen gesenkt werden. Der lineare Bereich wird hierdurch größer; eine
Verlagerung der Geraden nach unten ist jedoch nicht zu beobachten. Die Selektionsmatrix
(S31 oder S32) scheint keinen nennenswerten Einfluss auf fA,krit zu haben. Diese Aussa-
gen gelten für PT1-, PT2- und PT3-Aktordynamik gleichermaßen. Für einen funktionalen
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Regler muss durch das Lead-Glied (vgl. Abschnitt 5.1.2) herbeigeführt werden, dass die
Reihenschaltung aus Lead-Glied und Aktordynamik eine Eckfrequenz oberhalb von fA,krit
besitzt.

Möglicherweise können diese unter erheblichem Berechnungsaufwand ermittelten Stabili-
tätsgrenzen zumindest teilweise mit vergleichsweise einfachen Berechnungen an linearen
Ersatzsystemen bestimmt werden. Unter der Annahme, dass die Ein-/Ausgangslineari-
sierung und die Aktordynamik vertauscht werden können, vgl. Bild 5-2, folgt für die
geschlossenen Kraft- und Positionsregelkreise

G f (s) =
KP, f s + KI, f(

G−1
S t + KP, f

)
s + KI, f

, Gp (s) =
KP,p

G−1
S t s2 + KD,p s + KP,p

. (5-44)

Auf Basis dieser Übertragungsfunktionen können bspw. durch Anwendung des Hurwitz-
Kriteriums Bedingungen an die Aktoreckfrequenz fA hergeleitet werden, unter denen
eine stabile Regelung resultiert. Für die PT1-Aktordynamik folgt aus dem geschlossenen
Positionsregelkreis, dass

fA,PT1

!
>

1
2 Dp

fGRK,p . (5-45)

Der geschlossene Kraftregelkreis ist für diese Aktordynamik unabhängig von fA (für alle
KI, f > 0, KP, f > −1) stabil. Bei PT2-Aktordynamik lassen sich die Bedingungen

fA,PT2

!
>

D2
p + 1
Dp

fGRK,p , fA,PT2

!
>

1

2
(
KP, f + 1

) fGRK, f (5-46)

herleiten. Für die PT3-Aktordynamik folgen aus dem geschlossenen Kraftregelkreis die
Bedingungen

fA,PT3

!
>

9
8 − K2

P, f + 7 KP, f

fGRK, f , KP, f
!
< 8 . (5-47)

Die Anwendung des Hurwitz-Kriteriums auf den geschlossenen Positionsregelkreis resul-
tiert hingegen in nichtlineare Bedingungen an fA,PT3

. Um die Konsistenz mit Bild 5-8 zu
wahren, wurde bei diesen Herleitungen vorausgesetzt, dass die PT2- und PT3-Aktormodelle
aus zusammengesetzten PT1-Gliedern mit der gleichen Eckfrequenz bestehen.

Werden die aus dieser Herleitung folgenden Bedingungen in Bild 5-8 eingetragen, so liegen
sie - auch im näherungsweise linearen Bereich - stets unter den in der Simulation ermittelten.
Diese relativ einfach ermittelten Stabilitätsgrenzen können daher nicht verlässlich für
das nichtlineare System herangezogen werden. Unter Umständen können sie jedoch als
notwendiges Stabilitätskriterium dienen.

In Bild 5-8 wurden die Fälle KP, f = 0 sowie KP, f = 0,75 betrachtet. Mithilfe von Simula-
tionen wurde darüber hinaus untersucht, inwiefern die Stabilitätsgrenze bzw. die kritische
Aktoreckfrequenz fA,krit durch Variation von KP, f beeinflusst werden kann. Bild 5-9 zeigt
das Ergebnis für die PT3-Aktordynamik.

Offenbar kann durch Erhöhung des Faktors KP, f der lineare Bereich vergrößert und die
minimal erforderliche Aktoreckfrequenz fA,krit gesenkt werden. Dies gilt bis zum Verstär-
kungsfaktor KP, f = 1,25. Für Verstärkungsfaktoren KP, f ≥ 1,5 ist die Simulation hingegen
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Bild 5-9: Erforderliche Aktorbandbreite fA,krit für PT3-Aktordynamik bei Variation der
Reglerverstärkung KP, f (Regler ΣR,LM3 mit Hexapodmodell ΣH13, Strecke ΣG3)

stets instabil. Dies kann auch an numerischen Instabilitäten liegen. Da im Modell aber der
gleiche Rechenzyklus von 8 kHz wie am Prüfstand mit einem besseren Lösungsverfahren
(klassisches Runge-Kutta-Verfahren gegenüber explizitem Euler-Verfahren) eingesetzt
wird, spielt diese Ursache letztendlich praktisch keine Rolle.

Wie mit den Simulationen zu den Bildern 5-8 und 5-9 durch Hinzunahme des P-Anteils im
Kraftregler gezeigt werden konnte, kann es sinnvoll sein, von der am linearen Ersatzmodell
als ideal befundenen Reglerparametrierung abzuweichen. Beispielsweise ist die Wahl
eines reinen I-Reglers für die Kraft bei idealer Aktordynamik plausibel und bewirkt eine
gewünschte 3 dB-Bandbreite für den geschlossenen Kraftregelkreis. Bei endlicher Aktor-
dynamik kann sich die Hinzunahme eines P- oder auch D-Anteils jedoch günstig auf die
Stabilität der Regelung auswirken. Mit einem P- und insb. durch einen D-Anteil kann der
Kraftregler erheblich besser auf Abweichungen zwischen dem Ist- und Sollwert einwirken,
sodass die Regelung eher in der Lage ist, dem Sollwert zu folgen. Bei Hinzunahme eines
D-Anteils muss allerdings die gemessene Kraft τ differenziert werden, was sich in der
Praxis aufgrund des vorliegenden Messrauschens als problematisch erweisen kann.

Bild 5-10 zeigt die resultierende Struktur der hybriden Kraft-/Positionsregelung mit Lead-
Glied.

Die in diesem Abschnitt beschriebene Regelung mit drei FHG im Radaufhängungsmodell
des Reglers ist nicht ausreichend, wenn in der Regelstrecke das Radaufhängungsmodell
ΣG11 mit allen elf FHG vorliegt, d. h. die Radaufhängung inklusive Elastomerlagern simu-
liert wird. Das Gesamtsystem ist dann auch bei vernachlässigter Aktordynamik nicht stabil.
Für das Regelstreckenmodell ohne Vereinfachungen muss der Regler folglich modifiziert
werden.
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Bild 5-10: Implementierte hybride Kraft-/Positionsregelung nach [LM94] inklusive Kom-
pensation der Aktordynamik mittels Lead-Glied

5.1.4 Regelung der Radaufhängung mit Elastomerlagern

In diesem Abschnitt weist das Streckenmodell keine Vereinfachungen auf. Es enthält den
aus 13 massebehafteten Starrkörpern bestehenden Hexapod sowie die MacPherson-Rad-
aufhängung mit Elastomerlagern und besitzt nd = 11 dynamische Koordinaten. Bei idealer
Aktorik beträgt die Systemordnung n = 22. Es gilt weiterhin, dass die Differenzordnung
eines Positionsausgangs 2, die eines Kraftausgangs 0 ist. Dementsprechend liegt je nach
gewählten Regelgrößen eine interne Dynamik der Ordnung 10 bis 22 vor.

Die auf der Arbeit von de Luca und Manes [LM94] aufbauende Regelung mit den Aktor-
kräften (5-13) bedingt, dass für die Anzahl der Minimalkoordinaten des Umgebungsmo-
dells nd ≤ 6 gilt. Bei Auswertung von (5-13) dürfen also noch maximal sechs dynamische
Koordinaten yd vorliegen. Grundsätzlich bestehen drei Möglichkeiten zur Regelung der
Radaufhängung mit Elastomerlagern mit elf FHG, wobei der wesentliche Unterschied
in den Regelgrößen bzw. dem dabei verwendeten Modellwissen über die Umgebung
besteht:

1. Das Radaufhängungsmodell im Regler wird auf eine Teilmenge von maximal sechs
wesentlichen Koordinaten aus yd reduziert. Die restlichen Minimalkoordinaten wer-
den als konstant angenommen.

2. Das Radaufhängungsmodell wird mit allen elf Minimalkoordinaten yd berechnet und
erst im Anschluss auf eine Teilmenge von maximal sechs wesentlichen Koordinaten
aus yd reduziert.

3. Das Radaufhängungsmodell wird mit allen elf Minimalkoordinaten yd berechnet
und erst anschließend in sechs andere Bewegungsgrößen transformiert.

Bei den ersten beiden Ansätzen bleiben die ursprünglichen Koordinaten erhalten, es geht
jedoch ein Teil des Modellwissens verloren. Beim dritten Ansatz wird das vollständige
Modellwissen über die Umgebung in der Regelung berücksichtigt, es resultieren aber
andere Regelgrößen für die Bewegung. Im Folgenden werden die drei Vorgehensweisen
untersucht und verglichen.
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Vorgehensweise 1: Modellreduktion auf eine Teilmenge der elf dynamischen
Koordinaten yd

Dieser Ansatz geht davon aus, dass die Zerlegung von yd mittels zweier Binärmatrizen Tr
und Tc nach

yd = Tr ydr + Tc ydc , Tr,Tc, ydc = konst. (5-48)

ein Radaufhängungsmodell herbeiführt, welches das elf FHG aufweisende Ursprungsmo-
dell hinreichend gut wiedergibt. Dann ließe sich anstelle von (2-78) auch das mittels (5-48)
transformierte Umgebungsmodell

Mur · ÿdr + nur = ST
ydr · τ (5-49)

mit

Mur = TT
r Mu Tr , nur = TT

r nu , ST
ydr = TT

r ST
yd (5-50)

zur Regelung verwenden. Voraussetzung hierfür ist, dass der reduzierte Vektor der dy-
namischen Koordinaten ydr maximal sechs Elemente umfasst. Die Terme Mu, nu und
ST

yd werden dabei mit yd nach (5-48) und ẏd = Tr ẏdr berechnet. Auf diese Weise wird
das Modell auf maximal sechs wesentliche Minimalkoordinaten des Umgebungsmodells
reduziert.

Wird ein Radaufhängungsmodell mit sechs FHG (nd = 6) im Regler verwendet, so entfallen
neben den kinematischen Koordinaten yk auch die reaktiven Kräfte λr. Es bestehen in
diesem Fall insgesamt

(
8
3

)
=

8!
3! · (8 − 3)!

= 56

Möglichkeiten zur Auswahl von drei zusätzlichen aus den insgesamt acht weiteren FHG
des Radaufhängungsmodells. Diese sind: xA, yA, zA, xE, yE, zE, κy und κz. Die 6 × 6-
Selektionsmatrix S verknüpft jeweils eine der Größen aus τ mit einer der sechs ausgewähl-
ten Minimalkoordinaten yd.

Bei Übernahme der Verknüpfung von dF und Fz, xL und Mz sowie ψ und My aus dem
vorangegangenen Abschnitt (vgl. Tabelle 5-1) verbleiben die Kräfte Fx und Fy sowie
das Moment Mx, denen jeweils einer der drei neuen FHG des Radaufhängungsmodells
im Regler zugewiesen werden muss. Prinzipiell kommen hierdurch 3! = 6 zusätzliche
Variationsmöglichkeiten für jede der oben genannten 56 FHG-Kombinationsmöglichkeiten
hinzu. Der positionsgeregelte Betrieb von einem der drei neuen FHG ist aber weder für
Betriebsfestigkeitsuntersuchungen (vgl. typische Target-Signale in Abschnitt 2.1) noch für
HiL-Versuche von Interesse. Daher werden stets Fx, Fy und Mx geregelt. In diesem Fall
lässt sich zeigen, dass nur die Auswahl der drei FHG, nicht aber deren Zuordnung zu Fx, Fy
und Mx eine Rolle spielt. Im Folgenden werden von den vielen möglichen Ausprägungen
von S nur die zwei für die Praxis relevanten Fälle betrachtet. Die Regelgrößen sind dabei die
relative Verdrehung von Radnabe und Radträger ψ, die Kräfte Fx, Fy und die Momente Mx,
Mz sowie entweder die Vertikalkraft Fz oder der Dämpferweg dF . Die bestmögliche FHG-
Auswahl für das Radaufhängungsmodell im Regler kann bspw. mithilfe von Simulationen
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ermittelt werden. Falls hierfür die Betrachtung eines einzelnen Anregungssignals genügt,
sind bei zwei Selektionsmatrizen insgesamt 56 · 2 = 112 Simulationen durchzuführen und
auszuwerten.

Die Auswertung der durchgeführten Simulationen zeigt, dass die in diesem Abschnitt
beschriebene Vorgehensweise für den HNI-Achsprüfstand nicht geeignet ist, da die Si-
mulationen sämtlicher 112 möglichen FHG-Kombinationen instabil verlaufen. Der hier
beschriebene Lösungsweg, der in der Reduktion des Umgebungsmodells im Regler auf
sechs wesentliche Minimalkoordinaten ydr und die Regelung der eigentlich elf FHG um-
fassenden Regelstrecke mit dem so entworfenen Regler besteht, scheidet damit für die
vorliegende MacPherson-Radaufhängung mit Elastomerlagern aus. Möglicherweise eig-
net sich dieser Ansatz zur Regelung des Systems, wenn zusätzlich die Parameter des
Radaufhängungsmodells (insb. die der Elastomerlagermodelle) auf die verringerte FHG-
Anzahl angepasst und optimiert werden. Diese Möglichkeit wird im Folgenden nicht weiter
untersucht, bietet aber Anknüpfungspunkte für weiterführende Untersuchungen.

Vorgehensweise 2: Berechnung des Modells mit elf FHG, anschließende
Modellreduktion auf eine Teilmenge der elf dynamischen Koordinaten yd

Stabile Simulationsergebnisse mit dem transformierten Umgebungsmodell (5-49) lassen
sich erzielen, wenn die Terme Mu, nu und ST

yd abweichend von dem vorher beschriebenen
Vorgehen mit vollständigen Vektoren yd und ẏd berechnet werden. Anstelle von nur 12
müssen daher 22 physikalische Größen gemessen werden. Auf diese Weise wird das
vollständige Radaufhängungsmodell mit allen elf FHG im Regler berücksichtigt; durch die
darauf folgende Transformation in das reduzierte Umgebungsmodell geht jedoch ein Teil
des Modellwissens verloren.

Bei Anwendung dieser Vorgehensweise und Beibehalten der Reglerparameter (5-43) liegen
für die dynamischen Koordinaten

ydr1 =
[
dF xL ψ yA yE κz

]T
(5-51)

sehr gute Regelergebnisse im Falle der Schlechtweganregung vor. Das zweitbeste, nur
minimal schlechtere Ergebnis resultiert bei den Minimalkoordinaten

ydr2 =
[
dF xL ψ xA yA yE

]T
(5-52)

im Radaufhängungsmodell des Reglers. Die Regler bei Auswahl anderer FHG sind entwe-
der deutlich schlechter oder weisen instabiles Verhalten auf. Im Folgenden wird für den
Regler mit den Positionsgrößen ydr1 nach (5-51) das Kürzel ΣR,LM6a, für den Regler mit
den Koordinaten ydr2 nach (5-52) das Kürzel ΣR,LM6b verwendet.

Für den Regler ΣR,LM6a wurden die Verknüpfungen nach Tabelle 5-2 festgelegt, sodass
zwischen den jeweils einer Spalte genannten Positions- und Kraftgröße mittels des zu-
gehörigen Diagonaleintrags in der Selektionsmatrix S = diag

[
s1 . . . s6

]
gewählt werden

kann.

Bei dieser Festlegung gilt

ia =
[
3 6 5 2 1 4

]
(5-53)
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s1 s2 s3 s4 s5 s6

Positionsgrößen dF xL ψ yA yE κz
Kraftgrößen Fz Mz My Fy Fx Mx

Tabelle 5-2: Verknüpfung der Positions- und Kraftgrößen über S (Regler ΣR,LM6a)

und

Sλa =



0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0



. (5-54)

Über die konstante Matrix Sλa erfolgt demnach lediglich eine Vertauschung der Kon-
taktkräfte und -momente τ, sodass die gewünschte Zuordnung zu den dynamischen
Koordinaten ydr vorliegt. Den Vergleich der Soll- und Ist-Zeitverläufe für die beiden
Selektionsmatrizen

• S6p= diag
[
0 1 0 1 1 1

]
und

• S6 f = diag
[
1 1 0 1 1 1

]

für den Regler ΣR,LM6a bei vernachlässigter Aktordynamik zeigen die Bilder 5-11 und 5-12.
In beiden Fällen ist das Hexapodmodell ΣH13 im Regler hinterlegt.

Die Zeitverläufe zeigen, dass mit diesem Vorgehen sehr gute Regelungsergebnisse er-
zielt werden. Die geringen Abweichungen zwischen den Verläufen der Soll- und Istwerte
sind auf die Transformation des Umgebungsmodells und den damit einhergehenden, teil-
weisen Verlust des Modellwissens zur Umgebung zurückzuführen. Bei Regelung des
Dämpferwegs dF (Selektionsmatrix S6p) treten Oszillationen in der Vertikalkraft Fz auf.
Die entsprechenden Zeitverläufe bei Verwendung des vereinfachten Hexapodmodells Σ∗H1
mit nur einem Starrkörper im Regler zeigen die Bilder A7-7 und A7-8 im Anhang. Da
bereits das Radaufhängungsmodell gegenüber der Regelstrecke Vereinfachungen aufweist,
fällt hier die Vereinfachung des Manipulatormodells im Regler weniger stark ins Gewicht.
Die Zeitverläufe sind ähnlich gut wie bei Verwendung des Modells ΣH13 im Regler. Die
relativen RMS-Fehler liegen hier sowohl für die Verwendung von ΣH13 als auch Σ∗H1 für
alle FHG unter 6 % und liegen damit im genannten Toleranzbereich, siehe Bild A7-9 im
Anhang. Die Verwendung des Manipulatormodells ΣH13 im Regler erzielt dabei eine besse-
re Signalabbildung. Gegenüber dem vorherigen Abschnitt sind die relativen RMS-Fehler
teilweise geringer, vgl. jeweils S31 und S32 aus Bild 5-7 mit S6p und S6 f . Dies lässt sich auf
die nachgiebig modellierten Gelenke zurückführen. Weil zur Beurteilung der Response-
Signale bei Betriebsfestigkeitsuntersuchungen typischerweise auf die relative Schädigung
zurückgegriffen wird, wird auf diese Darstellungsform für die nachfolgend diskutierten
Ansätze nicht eingegangen. Bei Interesse sind die entsprechenden Bilder im Anhang zu
finden. Die Zeitverläufe der Regelgrößen und das Säulendiagramm für den Regler ΣR,LM6b
nach (5-52) befinden sich ebenfalls im Anhang, siehe Bilder A7-11 bis A7-15.

Die beschriebene Vorgehensweise erhält die Möglichkeit zur Regelung der dynamischen
Koordinaten ydr. Dies ist bei der Betriebsfestigkeitsuntersuchung besonders für den Dämp-
ferweg dF sowie die Raddrehung ψ (bei ungebremstem Rad) interessant. Allerdings wird
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Bild 5-11: Soll-/Ist-Vergleich für die Selektionsmatrix S6p = diag [0 1 0 1 1 1]
(Regler ΣR,LM6a mit Hexapodmodell ΣH13, Strecke ΣG11)



5.1 Analytische Formulierung nach de Luca und Manes 173

460
480
500
520
540
560
580
600
620

d F
[m

m
]

−2

0

2

4

6
F

x
[k

N
]

Sollkraft Istkraft Sollposition Istposition

−2
−1,5
−1
−0,5

0
0,5

1
1,5

F
y

[k
N

]

2
4
6

8
10
12

F
z

[k
N

]

−0,8
−0,6
−0,4
−0,2

0
0,2
0,4
0,6

M
x

[k
N

m
]

−0,1

−0,05

0

0,05

0,1

M
y

[k
N

m
]

3,5 4 4,5 5 5,5 6 6,5 7 7,5

−0,5
−0,4
−0,3
−0,2
−0,1

0
0,1
0,2

t [s]

M
z

[k
N

m
]

−0,1

−0,05

0

0,05

0,1
ψ

[◦
]

Bild 5-12: Soll-/Ist-Vergleich für die Selektionsmatrix S6 f = diag [1 1 0 1 1 1]
(Regler ΣR,LM6a mit Hexapodmodell ΣH13, Strecke ΣG11)
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ein Teil des Modellwissens durch die durchgeführte Transformation aufgegeben, was
minimale Beeinträchtigungen der Regelgüte zur Folge hat.

Vorgehensweise 3: Berechnung des Modells mit elf FHG, anschließende
Modelltransformation in sechs andere Koordinaten

Die dritte Herangehensweise sieht ebenfalls vor, das Radaufhängungsmodell mit allen elf
FHG im Regler zu berechnen. Anschließend wird eine Modelltransformation durchgeführt,
bei der das vollständige Wissen über die Umgebung erhalten bleibt. Die im Folgenden
beschriebene Transformation ist wie die anderen beiden Ansätze mit dem Regelungsansatz
nach de Luca und Manes vereinbar. Durch Auflösen von (2-78) nach ÿd und Einsetzen in
(2-84) folgt

v̇ = Syd M−1
u ST

yd · τ −
(
Syd M−1

u nu − Ṡyd ẏd

)
, (5-55)

wobei der Term Syk ÿk + Ṡyk ẏk entfällt, da keine kinematische Koordinate yk vorliegt.
Diese Gleichung entspricht strukturell dem von Featherstone [FSK98; Fea03] zugrunde
gelegten Umgebungsmodell (2-96). Ist die inverse Massenmatrix Syd M−1

u ST
yd regulär, so

kann die Gleichung in die für den Regelungsentwurf nach [LM94] übliche Form des
Umgebungsmodells mit den neuen Umgebungskoordinaten z unter Zuhilfenahme von
(4-67) herbeigeführt werden, d. h.

Mu,z z̈ + nu,z = HT τ (5-56)

mit

Mu,z = HT
(
Syd M−1

u ST
yd

)−1
H , (5-57)

nu,z = Mu,z H−1
(
Syd M−1

u nu − Ṡyd ẏd + Ḣ ż
)
. (5-58)

Tabelle 5-3 listet die Zuordnung von Positions- und Kraftgrößen über die Selektionsmatrix
S auf.

s1 s2 s3 s4 s5 s6

Positionsgrößen rx ry rz α β γ
Kraftgrößen Fx Fy Fz Mx My Mz

Tabelle 5-3: Verknüpfung der Positions- und Kraftgrößen über S (Regler ΣR,LM6z)

Aufgrund der veränderten Abfolge der Einträge in Tabelle 5-3 werden nachfolgend die
Selektionsmatrizen

• S∗6p= diag
[
1 1 0 1 0 1

]
und

• S∗6 f = diag
[
1 1 1 1 0 1

]

verwendet, deren Bedeutung aber den bisherigen Matrizen S6p und S6 f entspricht: in
der vertikalen Richtung wird im ersten Fall die Positionsgröße (hier: kartesische Koor-
dinate rz), im zweiten Fall die Kraft Fz geregelt. In beiden Fällen erfolgt eine Regelung
des Kardanwinkels β. Außerdem werden die Kräfte und Momente Fx, Fy, Mx und Mz
geregelt.
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Mit den Angaben aus Tabelle 5-3 und (daraus folgend) Sλa = I kann die hybride Kraft-/
Positionsregelung aufbauend auf (5-13) mit den Ersetzungen

Syd → H , M−1
u → M−1

u,z , nu → nu,z

erfolgen. In dem vorliegenden Sonderfall (keine kinematischen Koordinaten yk, keine
reaktiven Kräfte λr) gilt

Fq = JT
a ·

(
Qh · uh + nh

)
(5-59)

mit

Qh =
(
M + Mu,z

)
·
(
I + S C−1

h

(
I − H−T Mu,z

))
, (5-60)

nh = C ż + g +
(
I −

(
M + Mu,z

)
S C−1

h H−T
)

nu,z (5-61)

und

Ch =
(
I + H−T Mu,z

)
S − I . (5-62)

Die so berechneten Aktorkräfte führen zu dem linearen Verhalten

uh = (I − S) z̈ + S τ . (5-63)

Der Regler auf Basis der Aktorkräfte (5-59) trägt nachfolgend das Kürzel ΣR,LM6z.

Die Herleitung dieser Gleichungen mittels exakter Ein-/Ausgangslinearisierung ist recht
anschaulich. Durch Ersetzen des in (5-56) enthaltenen τ durch das nach dieser Größe
umgestellte Manipulatormodell (2-18) folgt nach einigen Umformungen

z̈ =
(
M + Mu,z

)−1 (
J−T

a Fq − C ż − g − nu,z

)
. (5-64)

Wird anstelle dessen (5-56) nach z̈ umgestellt und in das Manipulatormodell (2-18) einge-
setzt, resultiert der Zusammenhang

τ = H−T Mu,z

(
M + Mu,z

)−1 (
J−T

a Fq − C ż − g + M M−1
u,z nu,z

)
. (5-65)

Durch Anwendung der in Abschnitt A3 beschriebenen Vorgehensweise lässt sich für den
Ausgang

y = (I − S) z + S τ (5-66)

mit den Zusammenhängen (5-64), (5-65) für z̈ und τ nach einigen Rechenschritten zeigen,
dass die auf diesem Weg hergeleiteten Aktorkräfte denen nach (5-59) entsprechen. Im
Vergleich zu der zuvor genannten Lösung resultieren bei diesem Vorgehen allerdings nicht
mehr der Dämpferweg dF und die Raddrehung ψ als mögliche Regelgrößen. Anstelle
dessen werden lineare Eingänge für die Beschleunigung v̇z sowie die zweite zeitliche
Ableitung des Kardanwinkels β erhalten, auf deren Basis die vertikale Position des Punktes
T von Endeffektor bzw. Radnabe und der Kardanwinkel β geregelt werden kann. Vorteilhaft
ist, dass gegenüber der zuvor beschriebenen Lösung kein Modellwissen verloren geht. Die
Bilder 5-13 und 5-14 zeigen die Simulationsergebnisse für den Regler ΣR,LM6z, wobei das
Manipulatormodells ΣH13 im Regler vorliegt.
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Bild 5-13: Soll-/Ist-Vergleich für die Selektionsmatrix S∗6p = diag [1 1 0 1 0 1]
(Regler ΣR,LM6z mit Hexapodmodell ΣH13, Strecke ΣG11)
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Bild 5-14: Soll-/Ist-Vergleich für die Selektionsmatrix S∗6 f = diag [1 1 1 1 0 1]
(Regler ΣR,LM6z mit Hexapodmodell ΣH13, Strecke ΣG11)
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Die Simulationsergebnisse belegen, dass die Istwert-Zeitverläufe ideal mit den Sollwert-
Zeitverläufen übereinstimmen. Die in den Bildern 5-11 und 5-12 für den Regelungsent-
wurf nach dem vorangegangenen Abschnitt (Regler ΣR,LM6a) stellenweise erkennbaren
Abweichungen zwischen den Sollwert- und Istwert-Zeitverläufen treten hier nicht auf.
Dies lässt sich darauf zurückführen, dass das gesamte Modellwissen über die Umgebung
in der Regelung berücksichtigt wird. Auch die auffälligen Oszillationen der Vertikalkraft
Fz, vgl. Bild 5-11, liegen nicht vor. Bei dem auf eine Masse abstrahierten Hexapodmodell
Σ∗H1 liegen durch die Modellvereinfachung minimale Abweichungen vor, siehe Bilder
A7-18 und A7-19. Die relativen RMS-Fehler, siehe Bild A7-20, liegen auf dem Niveau der
Regelung ΣR,LM6a.

Hinzunahme der Aktordynamik in das Streckenmodell

Wird die Aktordynamik in das Streckenmodell aufgenommen, so ergeben sich die in Bild
5-15 dargestellten Stabilitätsgrenzen für die hybriden Regler ΣR,LM6a und ΣR,LM6z. Beide
enthaltenen Darstellungen sind entsprechend Bild 5-8 aufgebaut. Auch diesen Bildern liegt
das Manipulatormodell ΣH13 in Regelung und Strecke zugrunde. Das entsprechende Bild
für den Regler ΣR,LM6b befindet sich im Anhang (Bild A7-16).

Verglichen mit Bild 5-8, der Darstellung für die idealisierte Radaufhängung ohne Elasto-
merlager, liegt die für eine stabile Regelung erforderliche Aktoreckfrequenz fA,krit für beide
Ansätze höher als für den Regler ΣR,LM3 im vorangegangenen Abschnitt. Für die Regelung
ΣR,LM6z in den TCP-Größen z und τ können vergleichbare Aussagen wie für die idealisierte
Radaufhängung getätigt werden. So liegt kein nennenswerter Einfluss der Selektionsmatrix
(S∗6p oder S∗6 f ) vor und das Hinzufügen eines P-Anteils in den Kraftregler kann die erforder-
liche Aktoreckfrequenz fA,krit jeweils merklich senken. Bei der hybriden Regelung von ydr1
und τ (Regler ΣR,LM6a) hat die Ausprägung der Selektionsmatrix hingegen eine Bedeutung.
Mit KP, f = 0 ist die erforderliche Aktoreckfrequenz fA,krit stets bis etwa zum Abszissenwert
50 · 2 π für die Regelung der Vertikalkraft Fz, darüber für die Regelung des Dämpferwegs
dF kleiner. Für KP, f = 0,75 ist die erforderliche Aktoreckfrequenz fA,krit hingegen immer
für die Regelung der Vertikalkraft Fz geringer. Unabhängig von der Selektionsmatrix
wirkt sich das Hinzufügen eines P-Anteils zur Kraftregelung vorteilhaft aus. Den Einfluss
der Kraftreglerverstärkung KP, f auf die Stabilitätsgrenze für PT3-Aktordynamik zeigen
die Bilder A7-10 und A7-21 im Anhang. Für den Regler ΣR,LM6z ist auch der Übergang
in einen linearen Bereich für hohe Frequenzen zu erkennen, wie er in Bild 5-8 vorliegt.
Die ermittelte Stabilitätsgrenze scheint im linearen Bereich mit der des Reglers ΣR,LM3
übereinzustimmen. Insgesamt lassen sich vergleichbare Beobachtungen wie zu den Bildern
5-9 sowie 5-15 tätigen. Beide Regler werden für Verstärkungsfaktoren KP, f ≥ 1,5 instabil.
Dies gilt auch für den Regler ΣR,LM6b (Bild A7-17).

Offensichtlich ist die vorliegende PT3-Aktordynamik mit 213 Hz Eckfrequenz für eine
stabile Regelung der Radaufhängung mit Elastomerlagern nicht ausreichend. Es kann also
nicht von vernachlässigbar schneller Aktorik ausgegangen werden, wie dies gemäß Stand
von Technik und Forschung (Abschnitt 2.2) üblicherweise getan wird. Zur Regelung des
Systems ist es zwingend erforderlich, auf einen der in Abschnitt 5.1.2 vorgeschlagenen
Entwürfe zurückzugreifen. Zum Beispiel ist bei Verwendung eines Lead-Glieds, vgl. Ab-
schnitt 5.1.2, eine resultierende Aktordynamik mit einer Eckfrequenz oberhalb von fA,krit
realisierbar, sodass die Regelung trotz der begrenzten Aktordynamik stabil arbeitet.
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Bild 5-15: Erforderliche Aktorbandbreite fA,krit in Abhängigkeit der Parametrierung der
äußeren Regelkreise (Strecke ΣG11)

Fazit

Die in diesem Abschnitt beschriebenen Regelungsentwürfe weisen jeweils einen Nachteil
auf. Entweder wird ein Teil des Wissens über die Umgebung verworfen (Regler ΣR,LM6a und
ΣR,LM6b) oder die (Positions-) Regelgrößen sind für die Betriebsfestigkeitsuntersuchung von
vermindertem Nutzen (Regler ΣR,LM6z). Im nachfolgenden Unterkapitel, Abschnitt 5.2.1,
wird aufgezeigt, wie die praxisnahen Regelgrößen (Dämpferweg dF und Radnabendrehung
ψ) bei gleichzeitiger Verwendung des gesamten Wissens über die Umgebung erhalten
werden können. Dies ist mit dem von de Luca und Manes [LM94] beschriebenen Entwurf
nicht möglich.



180 5 Synthese einer hybriden Kraft-/Positionsregelung für den Hexapod

5.2 Entwurf mit exakter Ein-/Ausgangslinearisierung

In diesem Abschnitt wird der Regelungsentwurf für die beiden in Abschnitt 4.4 angegebe-
nen Streckenmodellierungen nach der exakten Ein-/Ausgangslinearisierung durchgeführt,
vgl. Anhang A3.

Bei Anwendung am Modell mit ideal starrer Bindung zwischen Endeffektor und Radnabe
folgt eine Berechnungsvorschrift für die Aktorkräfte Fq, mit deren Hilfe lineare Eingänge
für sechs wählbare Größen aus den nd = 11 dynamischen Koordinaten yd und den sechs
Kontaktkräften und -momenten τ herbeigeführt werden. Somit kann auch für Regelgrößen
aus yd mit diesem Vorgehen das vollständige Modell der Radaufhängung im Regler
berücksichtigt werden. Der Ansatz ist daher auch für komplexe Umgebungsmodelle mit
mehr als sechs dynamischen Koordinaten yd (nd > 6) geeignet. Der von de Luca und
Manes [LM94] beschriebene Ansatz ist im Fall nd > 6 nur durch eine teilweise Aufgabe
von Modellwissen oder eine ggf. für die Regelung ungünstige Koordinatentransformation
anwendbar, vgl. Abschnitt 5.1.

Die Gleichungen für den Fall der dynamischen Bindung zwischen Endeffektor und Rad-
nabe sind in Abschnitt 5.2.2 gegeben. In beiden Fällen ist ein genaues Modell der Rad-
aufhängung erforderlich. Liegt ein solches Modell nicht vor, kann es in Einzelfällen
hinreichend sein, für die Regelungssynthese ein vergleichsweise einfaches Ersatzmodell
des Kraftaufbaus anzusetzen. Im letzten Unterabschnitt 5.2.3 wird daher die Ein-/Ausgangs-
linearisierung für ein solches vereinfachtes Modell angegeben. Der Vorteil eines derartigen
Modells besteht darin, dass es sich mithilfe von Prüfstandsmessungen vergleichsweise
einfach identifizieren lässt und damit zumindest in einer Umgebung um den gewählten
Identifikationszustand hinreichend gute Regelergebnisse erzielt werden.

5.2.1 Ideal starre Bindung von Endeffektor und Radnabe

Ziel dieses Abschnitts ist die Herleitung der Aktorkräfte Fq für die hybride Kraft-/Positi-
onsregelung des Gesamtmodells bei ideal starrer Bindung von Endeffektor und Radnabe.
Das vollständige Umgebungsmodell mit nd = 11 dynamischen Koordinaten yd soll dabei
in die Berechnungsvorschrift einfließen. Außerdem soll eine binäre Selektionsmatrix S die
Wahl zwischen

• der Positionsregelung einer sechs Größen umfassenden Untermenge aus den dyna-
mischen Koordinaten yd und

• der Kraftregelung der sechs Kontaktkräfte und -momente τ im TCP

erlauben. Die Verknüpfung von Positions- und Kraftgrößen, zwischen denen jeweils
paarweise gewählt werden kann, ist vorab festzulegen.

Die Berechnungsvorschrift für die Aktorkräfte Fq ergibt sich, wenn die exakte Ein-/
Ausgangslinearisierung nach Anhang A3 auf den Ausgangsvektor

y = (I − S) X yd + S τ (5-67)

angewandt wird. Darin ist X eine dünnbesetzte Matrix, über die die Verknüpfung von sechs
Größen aus yd mit τ erfolgt. Bei Verwendung der Positionsgrößen ydr1 nach (5-51) mit der
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in Tabelle 5-2 gegebenen Zuordnung dieser Größen zu den Kontaktkräften und -momenten
τ besitzen die Einträge

(1; 8) , (2; 5) , (3; 1) , (4; 11) , (5; 3) , (6; 2)

der Matrix X den Wert 1. Die Auswahl der Größen aus yd mittels X hat nur für diejenigen
Einträge eine Bedeutung, für die eine Positionsregelung in Betracht gezogen wird. Alle
anderen Einträge entfallen durch die Multiplikation mit I − S. Soll wie bisher stets ψ
anstelle von My geregelt werden und eine Wahl zwischen dF und Fz möglich sein, so ist
lediglich darauf zu achten, dass nach der Multiplikation von yd mit X der Dämpferweg dF
an dritter und der Drehwinkel ψ an fünfter Stelle des so erhaltenen Vektors steht.

Während der Systemeingang Fq erst in der zweiten zeitlichen Ableitung der dynamischen
Koordinaten yd enthalten ist (δi = 2), liegt für die Kontaktkräfte und -momente τ ein Durch-
griff vor (δi = 0), vgl. (4-232) und (4-236). Aufbauend auf diesen beiden Gleichungen
kann die Berechnungsvorschrift für die Aktorkräfte angegeben werden. Sie lautet

Fq = D̊−1 · (uh − c̊
)

(5-68)

mit

c̊ = (S − I) X M−1
G nG + S Eτ

(
Mv

(
Syd M−1

u nu − Ṡyd ẏd

)
− Cv v − gv

)
, (5-69)

D̊−1 = JT
g ·

(
(I − S) X M−1

G ST
yd + S Eτ

)−1
. (5-70)

Damit resultiert das lineare Verhalten

uh = (I − S) X ÿd + S τ (5-71)

von der neuen Eingangsgröße uh zu den Regelgrößen (5-67). uh kann zum Zweck der
Regelung und Vorsteuerung nach (2-55) und (2-57) gebildet werden. Der auf diese Weise
entwickelte Regler trägt im Folgenden das Kürzel ΣR,EALin.

Die Simulationsergebnisse für diesen Regler mit den Selektionsmatrizen S∗6p und S∗6 f
(vgl. Abschnitt 5.1.4) zeigen die Bilder 5-16 und 5-17. Im Regler wird das Hexapodmodell
ΣH13 verwendet.

Verglichen mit den entsprechenden Bildern 5-11 und 5-12 des Reglers ΣR,LM6a fällt auf,
dass die dort erkennbaren, minimalen Abweichungen der Soll- und Istwerte für die Kräfte
und Momente bei dem Regler ΣR,EALin nicht auftreten. Die Oszillationen der Vertikalkraft
Fz bei Regelung des Dämpferwegs dF liegen allerdings auch bei diesem Regler vor und
sind sogar noch etwas auffälliger. Durch die Vereinfachung des Hexapodmodells im Regler
(Bilder A7-24 und A7-25) ergibt sich auch für dieses Vorgehen eine minimal verringerte
Regelgüte. Abweichungen fallen am ehesten bei der Querkraft Fy auf.

Die Stabilitätsgrenzen bzw. die kritische Aktoreckfrequenz für PT1-, PT2- und PT3-Aktor-
dynamik zeigt Bild 5-18.

Die Kurvenverläufe der Selektionsmatrix S∗6 f weisen ähnliche Eigenschaften wie bei den
anderen Regelungsentwürfen für das Streckenmodell ΣG11 auf. Demgegenüber liegen die
Anforderungen bei Verwendung der Selektionsmatrix S∗6p deutlich höher. Dies ist insb. für
KP, f = 0,75 der Fall. Ab dem Abszissenwert 40 · 2 π kann hier eine deutliche Erhöhung
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Bild 5-16: Soll-/Ist-Vergleich für die Selektionsmatrix S∗6p = diag [1 1 0 1 0 1]
(Regler ΣR,EALin mit Hexapodmodell ΣH13, Strecke ΣG11)
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Bild 5-17: Soll-/Ist-Vergleich für die Selektionsmatrix S∗6 f = diag [1 1 1 1 0 1]
(Regler ΣR,EALin mit Hexapodmodell ΣH13, Strecke ΣG11)
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Bild 5-18: Erforderliche Aktorbandbreite fA,krit in Abhängigkeit der Parametrierung der
äußeren Regelkreise (Regler ΣR,EALin mit Hexapodmodell ΣH13, Strecke ΣG11)

der erforderlichen Aktoreckfrequenz fA,krit beobachtet werden. Der Effekt liegt auch für
den Regler ΣR,LM6a vor (Bild 5-15a), ist dort aber weniger stark ausgeprägt. Für den Regler
ΣR,LM6z in den Positionsgrößen z scheint er hingegen nicht zu existieren. Vermutlich lässt
sich dieser Effekt ebenso wie die Oszillationen der Vertikalkraft Fz bei dieser Selektions-
matrix durch Betrachtung der internen Dynamik erklären. In dieser Hinsicht scheint die
Regelung der vertikalen Koordinate rz des TCP anstelle des Dämpferwegs dF , wie sie bei
dem Regelungsentwurf ΣR,LM6z zwangsläufig folgt, von Vorteil zu sein.

Den Einfluss der Kraftreglerverstärkung KP, f auf die Stabilitätsgrenze stellt Bild A7-
23 dar. Bei Regelung der Vertikalkraft Fz (Selektionsmatrix S∗6 f ) kann die erforderliche
Aktoreckfrequenz fA,krit mit KP, f verringert werden. Für die Selektionsmatrix S∗6p dominiert
hingegen der oben beschriebene Effekt, sodass KP, f keinen wesentlichen Einfluss auf fA,krit
hat. Auch für diesen Regler resultiert instabiles Verhalten für KP, f ≥ 1,5.

Die in Abschnitt 5.1.2 beschriebenen Methoden lassen sich in unveränderter Form hier
ebenfalls anwenden, um einen bei nicht vernachlässigbarer Aktordynamik stabilen Regler
herbeizuführen.

Der Regelungsentwurf nach der exakten Ein-/Ausgangslinearisierung ist - ganz im Ge-
gensatz zu dem in Abschnitt 5.1 auf das System angewandten Verfahren - nicht auf die
Regelung der dynamischen Koordinaten yd und die Kontaktkräfte und -momente im TCP
τ beschränkt. Prinzipiell können auch andere Zielgrößen verfolgt werden. Einzige Be-
dingung an die zu regelnden Größen ist, dass für sie eine Ausgangsgleichung aufgestellt
werden kann. Diese Gleichung muss anstelle einer der bisher verwendeten Regelgrößen in
den Ausgangsvektor (5-67) aufgenommen werden, auf dessen Basis der Regelungsentwurf
mittels exakter Ein-/Ausgangslinearisierung vorzunehmen ist. Als weitere potenzielle
Regelgrößen kommen dabei bspw. die Belastung des Querlenkers, der Spurstange oder des
Federdoms in Betracht, vgl. Abschnitt 2.1. Das Verfahren ist damit allgemeiner als das
in Abschnitt 5.1 auf den Achsprüfstand angewandte Verfahren nach de Luca und Manes
[LM94] aus dem Stand von Technik und Forschung.
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Ist die interne Dynamik stabil, so können aufbauend auf den erhaltenen linearen Eingängen
sechs Größen geregelt werden, da mit den sechs Aktoren sechs Eingangsgrößen vorliegen.
Für mehr als sechs Regelgrößen liegt ein unteraktuiertes System vor. In der Branche
ist die Vorgabe von mehr als sechs Regelgrößen bzw. Targets (je Achsseite) allerdings
durchaus üblich. Hierfür wären weitere Aktoren im Prüfstand zu verbauen, z. B. zur
Aktuierung der Lenkstange oder des Lenkrades. Das gezielte Einstellen von mehr als sechs
Zielgrößen mit sechs Aktoren ist nur in Sonderfällen physikalisch möglich. Mithilfe eines
Optimierungsalgorithmus kann in diesen Fällen ein optimaler Kompromiss durch relative
Gewichtung der Targets herbeigeführt werden.

5.2.2 Dynamische Bindung von Endeffektor und Radnabe

Bisher wurde das im Prüfstand verbaute Kraftmessrad als eine ideal starre Bindung abstra-
hiert. Aufgrund der hohen Steifigkeit der Kraftmessdosen erscheint diese Modellierung
plausibel. In diesem Abschnitt wird dagegen die Situation betrachtet, in der zwischen dem
Endeffektor und der Umgebung eine nicht als ideal starr abstrahierbare Kraftmesseinrich-
tung verbaut ist, die sich nach Abschnitt 4.4.2 beschreiben lässt. Die Kontaktkräfte und
-momente τ nach (4-247) weisen in diesem Fall, verglichen mit der ideal starren Bindung
(4-236), keinen Durchgriff der Eingangsgröße Fq auf.

Die Anwendung des Regelungsentwurfs nach de Luca und Manes [LM94] ist bei dem
dynamischen Kontaktmodell ungeeignet, da alleine sechs FHG für die Beschreibung der re-
lativen Verschiebung und Verdrehung der Punkte T und T1 erforderlich sind, vgl. auch Bild
4-16. Ein auf dieses Kontaktmodell zugeschnittener Regelungsentwurf ist erforderlich. Mit-
hilfe der exakten Ein-/Ausgangslinearisierung können auch für diese Kontaktmodellierung
hybride Kraft-/Positionsregelungen angegeben werden.

Der im Folgenden beschriebene Regelungsentwurf baut auf der exakten Ein-/Ausgangs-
linearisierung nach (2-19) für die Ausgangsgröße y = z auf. Durch diesen prinzipiell
optionalen Zwischenschritt verkürzen sich die nachfolgenden Ausführungen etwas und
die Terme werden übersichtlicher. In (2-19) wird dabei τ nach (4-247) eingesetzt. Damit
gilt Fq = Fq

(
xGd

)
, wobei xGd der Zustandsvektor des Gesamtmodells mit dynamischer

Bindung nach (4-239) ist. Das Manipulatorverhalten lässt sich infolgedessen durch die
einfache Gleichung (2-20), up = z̈, beschreiben, wobei up die neue (Zwischen-) Eingangs-
größe des Systems ist. Zunächst wird die Ausgangsgröße

y = (I − S) · z + S · τ (5-72)

betrachtet, d. h. für jede Richtung kann mithilfe der Selektionsmatrix S ∈ N6×6 zwischen der
jeweiligen Kraft- und Positionsgröße im TCP gewählt werden. Jeder der insgesamt sechs
Ausgänge wird dem Schema aus Anhang A3 folgend so oft nach der Zeit t differenziert,
bis die Eingangsgröße up in der jeweils erhaltenen Gleichung enthalten ist. Im Falle eines
Kraftausgangs ist dies nach einer Ableitung der Fall, d. h. die Differenzordnung eines
Kraftausgangs beträgt δi = 1. Es gilt

τ̇ = K̇C · zK + KC · żK + K̇D · vK + KD · aK (5-73)
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mit den zeitlichen Ableitungen der Steifigkeits- und Dämpfungsmatrizen

K̇C =


IE Ȧ 0

0 IE Ȧ

 · E KC ·
[EI A 0

0 I

]
+

[IE A 0
0 IE A

]
· E KC ·

[EI Ȧ 0
0 0

]
, (5-74)

K̇D =


IE Ȧ 0

0 IE Ȧ

 · E KD ·
[EI A 0

0 EI A

]
+

[IE A 0
0 IE A

]
· E KD ·


EI Ȧ 0

0 EI Ȧ

 (5-75)

bezüglich des Inertialsystems und

aK = aT1
− a . (5-76)

Der neue Systemeingang up ist dabei in der Beschleunigung des TCP a enthalten. In
Anlehnung an (4-18) gilt hier

żK =

[
I ξ̇
α̇K

]
=

[
I ξ̇

H−1
K,ω · Eω

]
=

[
I ξ̇

H−1
K,ω · EI A · Iω

]
=

[
I 0
0 H−1

K,ω · EI A

]

︸             ︷︷             ︸
H−1

K

·vK (5-77)

mit

HK,ω =


1 0 sin βK
0 cosαK − sinαK · cos βK
0 sinαK cosαK · cos βK

 . (5-78)

Bei einem Positionsausgang ist δi = 2. Nach diesen ein bzw. zwei zeitlichen Ableitungen
von (5-72) folgt

ẙ = (I − S) · z̈ + S ·
(
K̇C · zK + KC · żK + K̇D · vK + KD · aK

)
. (5-79)

Durch Ersetzen von a nach (4-67) und z̈ durch die Eingangsgröße up wird damit aus (5-79)
bei Verwendung der Nomenklatur aus Anhang A3

ẙ = c̊ + D̊ · up (5-80)

mit

c̊
(
xGd

)
= S ·

(
K̇C · zK +

(
KC · H−1

K + K̇D

)
· vK + KD · aT1

− KD · Ḣ · ż
)
, (5-81)

D̊
(
xGd

)
= I − S · (I + KD · H

)
. (5-82)

Darin ist aT1
der verallgemeinerte Beschleunigungsvektor des Punktes T1, der ebenfalls

aus den aktuellen Systemzuständen zu berechnen ist. Es gilt aT1
= aT1

(
xGd

)
, da sich aT1

nach (4-220) mit

ÿd = M−1
u ·

(
ST

yd · τ − nu

)
(5-83)

und τ nach (4-247) berechnet, vgl. auch die dritte Zeile aus den Zustandsgleichungen des
Gesamtmodells mit dynamischer Bindung von Endeffektor und Radnabe (4-251). Wird
die Eingangsgröße up des linearisierten Manipulatormodells nach

up = D̊−1 ·
(
uh,dyn − c̊

)
(5-84)
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mit dem neuen Eingang uh,dyn gewählt, wobei D̊ invertierbar sein muss, so gilt

uh,dyn = ẙ . (5-85)

Aufbauend auf der erzielten Linearisierung kann die Regelung von Kräften und Positionen
gemäß der Selektionsmatrix S bspw. durch

uh,dyn,i = τ̇r,i + Kτ,i ·
(
τr − τ

)
(5-86)

in den kraftgeregelten Richtungen sowie

uh,dyn,i = z̈r,i + KD,i ·
(
żr,i − żi

)
+ KP,i ·

(
zr,i − zi

)
(5-87)

in den positionsgeregelten Richtungen erfolgen. Zu beachten ist, dass es sich wieder
lediglich um eine Ein-/Ausgangslinearisierung handelt. Mit der Systemordnung n sowie
n f = spur S kraftgeregelten und np = 6 − n f positionsgeregelten FHG folgt für den totalen
relativen Grad

δ = n f + 2 · np < n = dim xGd . (5-88)

Es liegt eine interne Dynamik hoher Ordnung vor, die für das Gelingen des beschriebenen
Regelungsansatzes stabil sein muss. Sollen Fx, Fy, rz, Mx, β und Mz geregelt werden
(Selektionsmatrix S∗6p), so gilt δ = 8. Wird die Vertikalkraft Fz anstelle der vertikalen
Position rz geregelt (Selektionsmatrix S∗6 f ), so ist der relative Grad δ = 7. Für ideale
Aktordynamik beträgt die Systemordnung n = 34, sodass die interne Dynamik die Ordnung
26 (Positionsregelung von rz) bzw. 27 (Kraftregelung von Fz) besitzt.

Nach der gleichen Methodik lässt sich auch eine hybride Kraft-/Geschwindigkeitsregelung
herleiten. Da die Differenzordnung im Falle eines Geschwindigkeitsausgangs wie bei
einem Kraftausgang δi = 1 beträgt, ist der totale relative Grad in diesem Fall δ = 6 und
die interne Dynamik besitzt unabhängig von der Selektionsmatrix S die Ordnung 28 bei
idealer Aktordynamik. Die Ordnung der internen Dynamik ist damit bei einer hybriden
Kraft-/Geschwindigkeitsregelung um np größer als bei einer Kraft-/Positionsregelung.

Bild 5-19 zeigt das Strukturbild der beschriebenen Regelung für die dynamische Bindung
von Endeffektor und Umgebung.

Die Richtigkeit des hergeleiteten Ansatzes konnte durch eine simulative Erprobung mit
Messgrößen für zT1

, vT1
und aT1

unter Verwendung fiktiver Kraftmessradparameter (voll
besetzte Matrizen KC, KD) bestätigt werden.

Der dargelegte Regelungsansatz ermöglicht die richtungsabhängige Regelung der Posi-
tion oder der Kraft im Punkt T , vgl. Bild 4-16. Es liegt eine ideale Entkopplung der
Regelgrößen vor. Für das Gelingen dieses Regelungsansatzes muss die Modellierung der
betrachteten Kontaktsituation nach Abschnitt 4.4.2 valide sein. Sämtliche Zustandsgrößen
des Gesamtsystems xGd müssen vorliegen. Sie können entweder beobachtet oder gemessen
werden. Verglichen mit der Situation eines als ideal starr abstrahierbaren Kraftmessrades
erfordert die Regelung nicht nur die Modelle von Manipulator und Umgebung, sondern
auch das Modell der Kraftmesseinrichtung (Parameter E KC, E KD sowie Eτ0). Vor der
Implementierung muss die interne Dynamik auf Stabilität untersucht werden.
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Hexapod

Radaufhängung

Kraftmessrad

E/A-Lin. nach
(2-19), (5-84)

Positions-
regelung

Kraft-
regelung z, ż

z, ż

yd, ẏd

τ

τ

τ

Fq

{τ, τ̇}r

{z, ż, z̈}r

Ein-/Ausgangslinearisierte Strecke

Bild 5-19: Implementierte hybride Kraft-/Positionsregelung für die dynamische Bindung

Prinzipiell kann im Falle der dynamischen Bindung zwischen Endeffektor und Umgebung
ebenfalls eine hybride Regelung der Koordinaten yd und der Kontaktkräfte und -momente
τ erfolgen. Hierfür muss die Ausgangsgröße

y = (I − S) · X · yd + S · τ (5-89)

mit der bereits aus (5-67) bekannten dünnbesetzten Matrix X angesetzt werden. Für die
Positionsgrößen ergibt sich in diesem Fall eine höhere Differenzordnung, da erst die dritte
zeitliche Ableitung von yd die Eingangsgröße Fq enthält (δi = 3),

...yd =
d
d t

(
M−1

u

)
·
(
ST

yd · τ − nu

)
+ M−1

u ·
(
ṠT

yd · τ + ST
yd · τ̇ − ṅu

)
(5-90)

mit τ̇ nach (5-73). Verglichen mit der hybriden Regelung der Radnabengrößen z, τ ist die
Ordnung der internen Dynamik in diesem Fall niedriger. Auch andere Regelgrößen sind
vorstellbar (z. B. Belastung des Querlenkers, der Spurstange oder Bewegungsgrößen der
Radnabe anstelle des Endeffektors), wenn eine entsprechende Ausgangsgleichung vorliegt
und die resultierende interne Dynamik stabil ist.

Im vorliegenden Fall erscheint die Annahme einer starren Bindung aufgrund der sehr
hohen Steifigkeit des Kraftmessrades als zulässig, sodass der hier beschriebene Rege-
lungsansatz nicht weiter verfolgt werden muss. Zeigt sich aber, dass die Modellierung des
Kraftmessrades als dynamische Bindung zutreffender ist, so ist der hier dokumentierte
Regelungsansatz einzusetzen.

5.2.3 Vereinfachte Umgebungsmodelle

Der Regelungsentwurf nach der exakten Ein-/Ausgangslinearisierung eignet sich auch,
wenn ein Modell der Form

τ = τ (z, ż) (5-91)

hinreichend genau für die Beschreibung der Umgebung ist, sich das Umgebungsverhalten
also näherungsweise durch die Manipulatorzustände z, ż beschreiben lässt. Zur Identifi-
kation des Modells eignen sich bspw. Rausch-, Rampen- und/oder Chirp-Anregungen. c̊
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und D̊ vereinfachen sich dann gegenüber (5-81), (5-82). Für den Eingang up des für die
Ausgangsgröße y = z linearisierten Systems folgt die Berechnungsvorschrift

up = D̊−1
(
uh,dyn − c̊

)
, c̊ = S

∂ τ

∂ zT ż , D̊ = I − S
(
I − ∂ τ

∂ żT

)
. (5-92)

Für dieses Kontaktmodell läge eine Systemordnung von n = 12 vor (bei vernachlässigbarer
Aktordynamik). Die Ordnung der internen Dynamik entspricht der Anzahl kraftgeregelter
FHG, falls deren Beurteilung anhand des vereinfachten Modells (5-91) zulässig ist.

Das Strukturbild der Regelung mit dem vereinfachten Umgebungsmodell zeigt Bild
5-20.

Hexapod UmgebungE/A-Lin.
(2-19), (5-92)

Positions-
regelung

Kraft-
regelung z, ż

z, ż

τ
τ

τ

Fq

{τ, τ̇}r

{z, ż, z̈}r

Ein-/Ausgangslinearisierte Strecke

Bild 5-20: Hybride Kraft-/Positionsregelung bei vereinfachtem Umgebungsmodell

Dieser Ansatz wurde in der Studienarbeit von Nikolai Fast [FK17] in der gegenüber (5-91)
nochmal etwas vereinfachten Form

τ = KC · z + KD · ż (5-93)

mit im Inertialsystem konstanten Matrizen KC, KD untersucht. Darüber hinaus wurde das
Konzept auch für die Kraftmodelle

• τ = KC · z (bei vernachlässigbarer Aktordynamik liegt in diesem Fall keine interne
Dynamik vor) sowie

• τ = KC · z + KD · ż + KM · z̈
implementiert und am Simulationsmodell erprobt. Außerdem wurden konventionelle
Vorsteuerungsansätze sowie dezentrale Kraftregler (d. h. die Reglermatrix besitzt Diago-
nalgestalt) untersucht. Die MacPherson-Radaufhängung weist allerdings ein hoch nichtli-
neares Verhalten auf. Die Annahme einfacher Zusammenhänge für die Kontaktkräfte und
-momente, wie sie diesem Abschnitt zugrunde liegen, scheint für die gegebene Anwendung
nicht hinreichend zu sein. Dies zeigt bspw. auch die Gegenüberstellung des Zeitverhal-
tens von Modellen der Form (5-91) mit dem des MKS-Modells der Radaufhängung. Die
Anwendung am HNI-Achsprüfstand scheidet daher aus. Für einfachere Kontaktsituatio-
nen, d. h. bei Vorliegen einer Umgebung mit weniger komplexem Verhalten, kann es sich
hingegen um die ideale Herangehensweise handeln.

5.3 Entwürfe ohne Entkopplung der (Kraft-) Regelgrößen

Die bisher dargelegten Regelungsansätze stellen die ideale Herangehensweise für die
Regelung des Hexapod im Kontakt mit einer nach (2-78) beschreibbaren Umgebung
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dar. Die Regelungen konnten auch für die hier betrachtete Umgebung, die MacPherson-
Radaufhängung erfolgreich angewendet werden, da deren Bewegungsgleichungen in
Abschnitt 4.3 inklusive genauer Modellierung der Lagerelastizitäten hergeleitet wurden.
Auch die vorliegende Aktordynamik konnte in den Regelungsentwurf einbezogen werden,
vgl. (5-22).

Die praktische Umsetzung dieser Regler stellt jedoch eine Herausforderung dar. Beispiels-
weise bedingen sie die zusätzliche Messung oder Schätzung weiterer zeitlicher Ableitungen
der (generalisierten) Kräfte und Positionen. Bei der vorliegenden PT3-Aktordynamik sind
für die Umsetzung der Regler die dynamischen Koordinaten yd bis zur vierten sowie die
Kontaktkräfte und -momente τ bis zur zweiten zeitlichen Ableitung erforderlich. Außerdem
sind die in Manipulator- und Umgebungsmodell auftretenden Ausdrücke drei zusätzli-
che Male hinsichtlich der Zeit zu differenzieren. Anstelle dessen kann der Berechnung
der Aktorkräfte für das System mit vernachlässigbarer Aktordynamik eine zusätzliche
Lead-Glied-Filterung nachgeschaltet werden, was die praktische Umsetzung wesentlich
einfacher gestaltet, vgl. Bild 5-3. In beiden Fällen ist ein genaues Umgebungsmodell zur
Laufzeit im Regler zu berechnen. Die Herleitung und die Identifikation eines solchen
Umgebungsmodells kann mit hohem Aufwand verbunden sein, vgl. Abschnitt 4.3. Die
Regelung ist auf die modellierte Umgebung zugeschnitten. Die Anwendbarkeit für ei-
ne andere Umgebung ist ohne Modifikationen des Regelalgorithmus nicht gegeben. Im
betrachteten Anwendungsfall ist bei Austausch des Prüflings

• ein anderer Parametersatz zu hinterlegen (wenn es sich um eine MacPherson-Rad-
aufhängung handelt) oder

• die Bewegungsgleichungen dieses neuen Prüflings müssen ebenfalls hergeleitet und
die Parameter identifiziert werden (bei einem anderen Radaufhängungstyp).

Hinzu kommt, dass selbst im Falle vernachlässigbarer Aktordynamik der vollständige
Zustandsvektor, d. h. yd und ẏd, für die Auswertung des Regelalgorithmus erforderlich
sind. Diese Größen müssen gemessen und/oder beobachtet werden.

Für die praktische Anwendung am Prüfstand sind möglichst einfache Regler vorzuziehen,
die mit wenig, im Idealfall sogar ohne Modellwissen über die Umgebung auskommen.
Gegenüber den in Abschnitt 5.1 und 5.2 ausführlich diskutierten Verfahren können derartige
Regler keine oder nur eine näherungsweise Entkopplung der (Kraft-) Regelgrößen erzielen.
Auch die Dynamik des geschlossenen Regelkreises wird im Vergleich zu den bisher
genannten Ansätzen, die (im Rahmen der Möglichkeiten der Aktorik) beliebig schnelles
Verhalten erlauben, geringer ausfallen.

Die bisher eingesetzten nichtlinearen Regelungsentwurfsmethoden führen lineare Ein-
gänge für die Regelgrößen herbei. Aufbauend auf diesen neuen Eingangsgrößen ist ein
einfacher Regelungsentwurf mit den Methoden der linearen Regelungstechnik möglich.
Demgegenüber werden in diesem Abschnitt Regelungen angegeben, die sich an den in der
praktischen Anwendung existierenden Regelungsansätzen orientieren. Wesentliches Unter-
scheidungsmerkmal der untersuchten Ansätze ist der Aufbau der Kraftregelung, insb. das
Vorliegen unterlagerter Regelkreise. Ausgangspunkt aller Ansätze ist die durch (2-19)
gegebene Linearisierung des Systems für die Pose z, die zu dem linearen Verhalten up = z̈
führt. Im folgenden Abschnitt 5.3.1 wird die implizite Kraftregelung mit unterlagerter
Positionsregelung näher betrachtet. Zu diesem Regler werden auch die bisher am Prüfstand
erzielten Ergebnisse gezeigt und diskutiert. Darüber hinaus besteht die Möglichkeit zur
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Kraftregelung auf Basis einer unterlagerten Geschwindigkeitsregelung. Dieser Ansatz
sowie eine Ausführungsform der expliziten Kraftregelung, die direkt auf der Linearisie-
rung für die Endeffektorpose z nach (2-19) aufbaut, wird anschließend erläutert (Abschnitt
5.3.2). Die explizite Kraftregelung weist mit Ausnahme des Differenzdruckreglers, den
alle Regler gleichermaßen verwenden, keine weiteren unterlagerten Regelschleifen auf.
Im Sinne einer hybriden Kraft-/Positionsregelung wird dann entweder die vom jeweiligen
Kraftregler gebildete Ausgangsgröße up oder (im Falle einer Positionsregelung der be-
trachteten Richtung) der jeweilige Ausgang des Positionsreglers nach (2-21) vorgegeben.
Vorbild ist das Strukturbild 2-20.

5.3.1 Implizite Kraftregelung mit unterlagerter Positionsregelung

Dieser Abschnitt thematisiert die Kraftregelung auf Basis der bestehenden Positionsrege-
lung nach (2-19) und (2-21). Bild 5-21 zeigt die Regelungsstruktur.

Kraft-
regelung

Positionsregelung
(2-21)

E/A-Lin.
(2-19)

Hexapod und
Radaufhängung−

τr zr up Fq,r τ

z, ż

Regelstrecke des Kraftreglers

Bild 5-21: Strukturbild der impliziten Kraftregelung mit unterlagerter Positionsregelung

Die Positionsregelung wurde um die Kraftregelung ergänzt. Nach dem Strukturbild ist
vorgesehen, dass sie Sollwerte für die Pose des Hexapod z bildet. Um das gewünschte
Verhalten des geschlossenen Positionsregelkreises möglichst unverändert beizubehalten,
muss neben der Sollpose zr auch deren zeitliche Ableitung żr bereitgestellt werden. Hier
wird diese Größe durch einen realen Differenzierer aus dem Ausgang des Kraftreglers
gebildet. Darüber hinaus besteht prinzipiell die Möglichkeit, die Vorsteuergröße des Positi-
onsregelkreises z̈r vorzugeben. Anstelle realer Differenzierung kann der Kraftregler auch
so entworfen werden, dass er direkt Sollwerte für alle Eingangsgrößen des Positionsreg-
lers bildet. Ein Beispiel ist die vollständig parallele Komposition der parallelen Kraft-/
Positionsregelung, vgl. (2-36).

Das skizzierte Regelungsschema scheint auf den ersten Blick sehr naheliegend und in-
tuitiv. So wird bei Abweichung zwischen Soll- und Istwert der Kontaktkraft durch den
Kraftregler eine Bewegung des Endeffektors in die zugehörige Richtung herbeigeführt,
wodurch sich die Kontaktkraft in der gewünschten Weise anpasst. Während jedoch die
Zuordnung der durchzuführenden Korrekturbewegung in den translatorischen Richtungen
(d. h. bei den Kontaktkräften) eindeutig ist, existiert ein solcher, einfacher Zusammenhang
bei rotatorischen Richtungen (d. h. bei den Kontaktmomenten) nicht. In der einfachsten
Realisierung einer Regelung für die Kontaktmomente kann angenommen werden, dass bei
Vorliegen einer Regelabweichung von Mx, My bzw. Mz eine Änderung des Kardanwinkels
um die jeweilige Achse α, β bzw. γ durchzuführen ist. Dieses Vorgehen ist jedoch nur im
Sonderfall verschwindend geringer Kardanwinkel korrekt und im besten Fall für kleine
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Kardanwinkel praktikabel. Die Thematik wurde bereits im Stand von Technik und For-
schung angesprochen und wird ausführlicher bspw. in [SV99; Nat10] diskutiert. An dieser
Stelle wird angenommen, dass dieses Vorgehen näherungsweise korrekt ist.

Neben der Kraftregelung besteht natürlich grundsätzlich auch die Möglichkeit der Reali-
sierung einer Kraftvorsteuerung. Sie kann Sollwerte für den unterlagerten Positionsregler
bereitstellen (zr, żr und z̈r), zu denen der jeweilige Ausgang des Kraftreglers hinzuaddiert
wird. Die Übergänge dieses Regelungsansatzes zur parallelen Kraft-/Positionsregelung
sind daher fließend.

Es existiert eine Vielzahl an Möglichkeiten zur Ausgestaltung einer solchen Kraftregelung
und -vorsteuerung. Die Motivation dieses Abschnitts besteht in der (im Vergleich zu den
bisher genannten Ansätzen) einfacheren Realisierung einer Regelung für den Hexapod.
Dabei wird in Kauf genommen, dass die Kopplung der Regelgrößen nicht ideal aufgehoben
wird.

Bei den Parametern der Regler nach den Abschnitten 5.1 und 5.2 liegt aufgrund der
herbeigeführten linearen Eingänge ein anschaulicher Zusammenhang mit dem Verhalten
des geschlossenen Regelkreises vor. Die Parameter können so gewählt werden, dass eine
gewünschte Bandbreite für den geschlossenen Kraft- bzw. Positionsregelkreis vorliegt,
vgl. bspw. (5-43). Die Festlegung der Reglerparameter ist ähnlich einfach wie bei der
Positionsregelung des Hexapod ohne Umgebungskontakt. Bei einer Kraftregelung mit
unterlagerter Positionsregelung ist dies nicht der Fall. Hier liegen keine linearen Eingän-
ge vor. Das System ist weiterhin verkoppelt. Um dennoch einen Anhaltspunkt bei der
Regelungssynthese zu haben, bietet es sich an, die lineare Näherung der Regelstrecke
in einem repräsentativen Betriebspunkt zu ermitteln. Sie kann analytisch aus dem nicht-
linearen Streckenmodell berechnet werden. Praktikabler für die praktische Anwendung
ist die numerische Berechnung der linearen Näherung auf Basis eines MKS-Modells des
Prüfsystems (z. B. mithilfe von MATLAB/Simulink und MATLAB/Simscape), da hierfür
vergleichsweise wenig Aufwand erforderlich ist. Außerdem entfällt das sonst erforderliche,
zeitaufwändige Aufstellen der Bewegungsgleichungen. Bei Austausch des Prüflings ist
daher nur das Einfügen des entsprechenden MKS-Modells in der Simulationsumgebung
und eine erneute Berechnung der linearen Näherung notwendig. Nachteilig ist, dass die
numerisch bestimmte lineare Näherung der Regelstrecke nur für einen einzigen Betriebs-
punkt gültig ist und im Grunde für jeden Betriebspunkt einzeln durchzuführen ist. Bei einer
Regelstrecke mit stark nichtlinearem Verhalten ist zu prüfen, inwiefern ein anhand der
linearen Näherung eines Betriebspunkts entworfener Regler auch für das nichtlineare Sys-
tem funktional ist. Das Systemverhalten in der Umgebung des gewählten Betriebspunkts
wird durch ein lineares Zustandsraummodell beschrieben, d. h.

˙̄xGs = ĀGs x̄Gs + B̄Gs ūGs , ȳGs = C̄Gs x̄Gs + D̄Gs ūGs (5-94)

mit dem Zustandsvektor

x̄Gs =
[
yT

d ẏT
d FT

q ḞT
q F̈T

q

]T ∈ R40 , (5-95)

dem Eingangsvektor ūGs = zr und dem Ausgangsvektor ȳGs = τ. Anhand des Zustands-
vektors lässt sich ablesen, dass die lineare Näherung für das Streckenmodell inklusive PT3-
Aktordynamik durchgeführt wurde.
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Aufbauend auf dieser linearen Näherung des Regelstreckenmodells kann der Regelungs-
entwurf z. B. mit den Methoden der linearen Regelungstechnik durchgeführt werden. Die
Anwendbarkeit des Reglers für das nichtlineare System ist im Nachgang durch Simulatio-
nen zu prüfen. Mithilfe des Zustandsraummodells können prinzipiell auch Zustandsregler
entworfen werden, die bspw. durch Polvorgabe entworfen werden können. Auf das li-
neare Modell kann auch wieder die exakte Ein-/Ausgangslinearisierung zur Entkopplung
des Führungsverhaltens angewendet werden, d. h. der Regelungsentwurf nach Falb und
Wolovich [FW67] erfolgen, vgl. auch Abschnitt 5.2.3. Im Allgemeinen kann jeder System-
eingang dann auf jede Regelgröße wirken, d. h. es handelt sich um zentrale Regelungen.
Zustandsregler setzen jedoch die Messung oder Beobachtung sämtlicher Systemzustände
x̄Gs voraus, die am Prüfstand größtenteils nicht vorliegen.

An dieser Stelle erfolgt eine Beschränkung auf solche Regler, die mit den aktuell verfüg-
baren Messgrößen am Prüfstand und ohne angepassten Beobachterentwurf auskommen.
Außerdem muss der Parametrierungsaufwand vertretbar bleiben, da die Regelung am Prüf-
stand in Betrieb genommen werden soll. In einem ersten Schritt werden daher dezentrale
Eingrößenregler für jede Regelgröße entworfen, d. h. der Kraftregler besitzt Diagonalge-
stalt. Damit ist die Annahme verbunden, dass die Verkopplungen der Regelgrößen die
Regelgüte nicht maßgeblich beeinträchtigen.

Die Regelstrecke des Kraftreglers besitzt den Eingang zr und den Ausgang τ, vgl. Bild
5-21. Bild 5-22 zeigt das Übertragungsverhalten für alle Kontaktkräfte und -momente τ
außer My. Anstelle My wird am Prüfstand stets der Drehwinkel geregelt, da durch den
Dreh-FHG zwischen Radnabe und Radträger kein nennenswertes Bremsmoment vorliegt.
Bei der Linearisierung wurde in allen FHG ein Positionsregler mit fGRK,p = 50 Hz und
Dp = 1 angesetzt, sodass die 6 dB-Bandbreite des geschlossenen Positionsreglers 50 Hz
beträgt, vgl. auch (2-22). Als Betriebspunkt wurde diejenige Position des Endeffektors
gewählt, bei der das Federbein in der Mitte seines Verfahrwegs positioniert ist und alle
Kräfte und Momente τ außer der Vertikalkraft Fz gleich Null sind. Diese Situation liegt
auch sämtlichen anderen, in den folgenden Abschnitten beschriebenen Linearisierungen
bzw. Identifikationsmessungen am Prüfstand zugrunde.

Jeder Übertragungspfad besitzt die Differenzordnung 3 und bis etwa 10 Hz annähernd
P-Verhalten. Darüber hinaus ist vor allem für Fx und Fz eine Absenkung der Amplitu-
de bei gleichzeitiger Anhebung der Phase zu beobachten, bis ein ausgeprägtes, lokales
Minimum in der Amplitude erreicht wird. Für Fx liegt dieses Minimum bei 37,5 Hz, für
Fz bei 19,25 Hz bei einer Amplitudenabsenkung von 11,7 dB bzw. 16,7 dB gegenüber
der stationären Verstärkung. Daraufhin steigt die Amplitude deutlich über die stationäre
Verstärkung hinaus an, bis ein Maximum erreicht ist. Danach fällt der Amplituden- und
Phasenverlauf kontinuierlich ab. Das Maximum liegt sowohl für Fx als auch für Fz bei der
Frequenz 130 Hz vor. Die Erhöhung der Amplitude gegenüber der stationären Verstärkung
beträgt 26,8 dB bzw. 39,6 dB. Für Fy und Mz liegen qualitativ ähnliche, aber weniger stark
ausgeprägte Verläufe vor. Bei dem Sturzmoment Mx ist diese Charakteristik hingegen nur
sehr schwach ausgeprägt.

Anhand des Bodediagramms (Bild 5-22) kann nun ein Regelungsentwurf vorgenommen
werden. Mit einem einfachen PI(D)-Regler sind hierbei aber in den Richtungen mit einem
ausgeprägten Maximum im Amplitudenverlauf keine sonderlich hohen Bandbreiten für die
geschlossenen Kraftregelkreise zu erwarten. Dies ist nur durch eine zusätzliche Formung
des Frequenzgangs möglich. Beispielsweise können sog. Notch- bzw. Kerbfilter eingesetzt
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Bild 5-22: Übertragungsverhalten der offenen Regelkreise für die implizite Kraftregelung
mit unterlagerter Positionsregelung ( fGRK,p = 50 Hz, Dp = 1)

werden, um die für den Regelungsentwurf ungünstige Amplitudenerhöhung gezielt zu
reduzieren. Es lässt sich allerdings nicht ausschließen, dass an einem Betriebspunkt ausge-
legte, zusätzliche Filter in anderen Betriebspunkten unerwünschte negative Auswirkungen
auf den Frequenzgang besitzen. Der Erfolg dieser Maßnahme ist vor dem Hintergrund
des fortlaufend wechselnden Betriebspunkts nicht zwangsläufig sichergestellt und wird an
dieser Stelle daher nicht weiter verfolgt.

Der Frequenzgang der Regelstrecke kann aber nicht nur über Kerbfilter günstig beeinflusst
werden. So hat auch die Parametrierung des unterlagerten Positionsreglers, der hier einen
Teil der Strecke des Kraftreglers darstellt, entscheidenden Einfluss auf den Amplituden-
und Phasenverlauf. Bild 5-23 zeigt einige ausgewählte Beispiele für den Einfluss des
Positionsreglers auf den Frequenzgang. Zusätzlich zum bereits in Bild 5-22 enthaltenen
Frequenzgang für fGRK,p = 50 Hz ist dort auch der Amplituden- und Phasenverlauf der
Regelstrecke für eine unterlagerte Positionsregelung mit einer 3 dB-Bandbreite von 10 Hz
zu sehen. Zwei weitere Kurven zeigen außerdem, wie sich diese Frequenzgänge verändern,
wenn der mithilfe realer Differentiation gebildete Sollwert żr nicht an den Positionsregler
weitergegeben wird (KD,r = 0). Der Positionsregler erhält in diesem Fall nur den Positions-
sollwert zr; die Sollgeschwindigkeit żr und die Sollbeschleunigung z̈r sind jeweils 0. Für
alle Verläufe gilt Dp = 1.

Aus Bild 5-23 kann entnommen werden, dass die grundlegende Gestalt des Frequenz-
gangs für alle untersuchten Parametrierungen der Positionsregelung gleich ist: ausgehend
von einem konstanten Verlauf hat die Amplitude ein ausgeprägtes Minimum, dann ein
Maximum und fällt danach kontinuierlich ab. Das Minimum liegt in allen Fällen bei
der etwa gleichen Frequenz, was auf eine spezifische Eigenschaft des nicht veränderten
Teils der Strecke, z. B. eine Eigenfrequenz des mechanischen Teilsystems, schließen lässt.
Gegenüber dem Fall fGRK,p = 50 Hz ist das Amplitudenmaximum bei den anderen Para-
metrierungen weniger stark ausgeprägt. Dies ist günstig für den Entwurf des überlagerten
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Bild 5-23: Übertragungspfad von rx,r nach Fx in Abhängigkeit der unterlagerten Positions-
regelung

PI-Kraftreglers. Die Erfordernis eines I-Anteils im Kraftregler für die Sicherstellung eines
stationär genau arbeitenden Reglers ergibt sich aus der Tatsache, dass die Regelstrecke
selbst kein I-Verhalten aufweist. Für fGRK,p = 10 Hz, KD,r = 0 liegt das Maximum des Am-
plitudenverlaufs unter der stationären Verstärkung. Hier ist der Phasenverlauf gegenüber
den anderen Fällen jedoch deutlich abgesenkt. Für die Parametrierung fGRK,p = 10 Hz ist
das Maximum gegenüber fGRK,p = 50 Hz, KD,r = 0 etwas geringer und der Phasenverlauf
fällt weniger schnell ab. Die Parametrierung fGRK,p = 10 Hz stellt aus allen dargestellten
Beispielen einen guten Kompromiss dar. Für die anderen Richtungen lassen sich vergleich-
bare Überlegungen anstellen. Für die Regelung der Vertikalkraft Fz ist bspw. ebenfalls
ein langsamer unterlagerter Positionsregler von Vorteil. Bei den anderen Richtungen kann
auch die Wahl eines schnelleren Positionsreglers vorteilhaft sein.

Aus diesen modellbasierten Vorbetrachtungen lässt sich folgern, dass der unterlagerte
Positionsregler (entgegen der Intuition) nicht zwingend möglichst schnell ausgelegt werden
muss, sondern dass es von Vorteil sein kann, diesen bewusst langsam zu wählen. In
der Folge können für den Kraftregler höhere Verstärkungen gewählt werden, sodass die
Eingriffe des Kraftreglers stärker als die Positions- und Geschwindigkeitsrückkopplungen
in up eingehen und ein besseres Kraftregelergebnis erzielt werden kann.

Die Parametrierung des Kraftreglers kann auf Basis der ermittelten Linearisierung erfolgen.
Bei einem linearen System würde ein so entworfener Regler in allen Betriebspunkten
gleich gute Ergebnisse liefern. Bei dem vorliegenden System handelt es sich hingegen um
ein ausgeprägt nichtlineares System mit stark vom Betriebspunkt abhängigem Verhalten.
Die Funktionalität des am linearen Modell entworfenen Reglers für das nichtlineare System
ist im Nachgang mithilfe von Simulationen zu überprüfen. Darüber hinaus stellt jedes
Modell ohnehin nur ein vereinfachtes Abbild des realen Systems dar und weist damit nur
eine begrenzte Genauigkeit auf. Notwendige Vereinfachungen beim Regelungsentwurf für
ein mechanisches System sind bspw. die Annahme starrer Körper oder kennlinienbasierte



196 5 Synthese einer hybriden Kraft-/Positionsregelung für den Hexapod

Elastomerlagermodelle. Aus den vorgenannten Gründen wird auf eine ausführlichere
Diskussion zur Wahl der Reglerparameter am Simulationsmodell verzichtet und direkt zu
den am Prüfstand mit diesem Regler erzielten Ergebnissen übergegangen.

Liegt in Zukunft ein hinreichend guter Parametersatz für den Prüfling vor und wurde
das Simulationsmodell anhand von Messungen am Prüfstand validiert, so kann das Stre-
ckenmodell stärker in den Regelungsentwurf einbezogen werden. Aufschlussreich dürfte
hierbei auch die Untersuchung der Verkopplung der einzelnen Regelgrößen sein, wie sie
bspw. in [Lun16, S. 199 ff.] beschrieben wird. Bei guter Übereinstimmung von Modell
und Realität kann auch eine Kompensation dieser Verkopplungen in Erwägung gezogen
werden, siehe z. B. Reihen- oder Serienentkopplung [Föl13, S. 225 ff.], [Lun16, S. 408 ff.].
Im Anhang ist mit Bild A7-26 auch der Frequenzgang der Nebenrichtungen zu sehen, die
einen Eindruck über das Ausmaß der Verkopplungen vermitteln. Noch vielversprechender
als diese linearen Kompensationsmethoden für die praktische Anwendung am Prüfstand
ist der Einsatz eines Reglers nach der exakten Ein-/Ausgangslinearisierung, wie er in den
Abschnitten 5.1 und 5.2 entwickelt wurde, da er die mit Abstand besten Regelergebnisse
erwarten lässt.

Am Prüfstand wurden sämtliche Kraftregler auf Basis der modellbasierten Voruntersu-
chungen experimentell ausgelegt. Selbst bei Verwendung von PI-Reglern bestehen viele
Variationsmöglichkeiten bei der Parametrierung, wenn die unterlagerte Positionsregelung
in die Untersuchungen einbezogen wird. Bei den Experimenten am Prüfstand wurde neben
dem I- und dem P-Anteil des Kraftreglers auch die Bandbreite der unterlagerten Posi-
tionsregelung über den Parameter fGRK,p variiert. Der Parameter Dp, der als Dämpfung
der Positionsregelung interpretiert werden kann, wurde hingegen stets auf dem Wert 1
belassen. Auf einen D-Anteil im Kraftregler wurde verzichtet. Dieser erfordert eine reale
Differentiation der stark verrauschten Messwerte des Kraftmessrades.

Die experimentelle Auslegung der Kraftregelung wurde für jede Richtung einzeln anhand
von Rechtecksignalen durchgeführt und anschließend an der praxisnahen Schlechtweg-
anregung erprobt. Die Reglerauslegung erfolgte in einem speziell dafür vorgesehenen
Betriebsmodus des Prüfstands. In diesem Modus werden fortlaufend die vorliegenden
Kontaktkräfte und -momente τ zum Prüfling überwacht, mit definierten Grenzen vergli-
chen und im Falle des Überschreitens einer Grenze das System in einen sicheren Zustand
überführt. Hintergedanke dieser Überwachung ist das rechtzeitige Abfangen kritischer
Systemzustände, wie sie bspw. bei einem schlecht parametrierten Kraftregler resultieren
können.

Am Prüfstand wurde der Regler mithilfe einer am Modell entwickelten, konservativen
Reglerparametrierung in Betrieb genommen und in den beschriebenen Auslegungsmodus
überführt. Dort konnten mithilfe der Rechtecksignale die Regler parametrisiert und relativ
schnell wesentlich bessere Regelergebnisse erzielt werden. Als problematisch erweist sich
dabei allerdings, dass die Systemantwort für diesen Regler ein stark amplitudenabhängi-
ges Verhalten aufweist. Wird ein Regler anhand der Sprungantwort mit einer definierten
Sprunghöhe ausgelegt, so kann für genau diese Anregungssituation ein sehr schneller
Regler gefunden werden. Der so ermittelte Regler kann für eine andere Sprunghöhe aber
ein ganz anderes, möglicherweise schlechteres Verhalten aufweisen und/oder zur Über-
schreitung der festgelegten Kraftgrenzen und damit zur Auslösung der oben genannten
Sicherheitsroutine führen. Eine Auslegung mit hoher Anregungsamplitude erscheint zweck-
mäßig. Ein Nachteil dieser Regelungsstruktur ist auch, dass die einzelnen Regelgrößen
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Verkopplungen zueinander aufweisen. So kann in der vergleichsweise steifen Querrich-
tung (Kraft Fy) zwar bei isolierter Anregung dieser Richtung ein sehr schneller Regler
gefunden werden. Der Regler ist aber sehr anfällig für Anregungen insb. in den weicheren
Richtungen (Kräfte Fx und Fz), bei denen zum Einstellen eines definierten Kraftniveaus
relativ hohe Wege zurückgelegt werden müssen. Diese Problematik lässt sich ggf. auch
durch konstruktive Anpassung der Kraftmesseinrichtung deutlich abschwächen: Durch
Reduktion der Steifigkeit des Messrades in denjenigen Richtungen, in denen die Umgebung
eine hohe Steifigkeit aufweist, kann eine breitbandige Kraftregelung wesentlich einfacher
realisiert werden.

Die Funktionalität der durch isolierte Anregung einer Richtung gewonnenen Reglerpa-
rametrierung für das nachzubildende Target-Signal muss im Anschluss experimentell
überprüft werden. Kommt es bei der Nachbildung des Target-Signals zu Instabilitäten oder
unzulässig hohen Kontaktkräften und können die Stellgrößenbeschränkungen (maximale
Differenzdrücke, Zylinderhübe und Ventilschieberwege und -beschleunigungen) als Ur-
sache ausgeschlossen werden, so müssen die Regler nachgebessert werden. In der Praxis
können bei isolierter Anregung einer einzelnen Richtung durchweg schnellere Regler
realisiert werden, als sie dann später im Falle simultaner Anregung aller Richtungen bei
einem gegebenen Target-Signal eingesetzt werden können.

Die am Modell gemachten Beobachtungen konnten durch die Experimente am Prüfstand
bestätigt werden. So ist es vorteilhaft, für die Regelung der Längs- und Vertikalkraft Fx
und Fz einen unterlagerten Positionsregler mit fGRK,p = 10 Hz anzusetzen. In den anderen
Richtungen können auch höhere Bandbreiten für den Positionsregler von Vorteil sein. Dies
gilt z. B. für den Regler der Querkraft Fy.

Bild 5-24 zeigt den am Prüfstand gemessenen Soll-/Istwertvergleich für die Schlecht-
weganregung bei Verwendung der experimentell parametrierten Regler. Die Amplitude
des Target-Signals wurde unverändert beibehalten. Allerdings ist es bei den ermittelten
Reglerparametern für die erfolgreiche Durchführung des Versuchs erforderlich, das Target-
Signal vor der Aufschaltung auf den Regler mit einem PT2-Filter mit 10 Hz Eckfrequenz zu
filtern. Die so erhaltene Sollwertvorgabe ist weniger anspruchsvoll als das unmodifizierte
Target-Signal.

Die gemessenen Zeitverläufe zeigen, dass die Regelung der weichen Längs- und Vertikal-
richtung (Kräfte Fx und Fz) sehr gut gelingt. Auch schnelle Änderungen des Kraftniveaus
werden von beiden Reglern gut nachgebildet. Insgesamt liegt ein gutes Führungsverhal-
ten vor. Die Regelung der Querkraft Fy ist offensichtlich anfällig gegenüber schnellen
Veränderungen in den anderen Richtungen. Vor allem im Zeitraum 3,8-4 s ist der be-
schriebene Effekt erkennbar, in dem große Veränderungen der Vertikalkraft Fz sowie des
Sturzmoments Mx vorliegen. Dies lässt sich ebenso wie die Abweichungen im übrigen Si-
gnalverlauf auf die Verkopplung der Regelgrößen zurückführen. Ein vergleichbarer Effekt
ist in abgeschwächter Form auch beim Sturzmomentregler (Moment Mx) zu beobachten.
In diesen beiden Richtungen liegt eine relativ hohe Steifigkeit vor. Da Verkopplungen
zwischen den Regelgrößen bestehen, tritt die aus den Kräften Fx und Fz resultierende
Bewegung der Radnabe für die Querkraft Fy und das Sturzmoment Mx als Störgröße in
Erscheinung, die den Effekt erklärt. Die Regler für Fy und Mx stellen ideale Kandidaten für
die Entwicklung von Regelungsmaßnahmen dar, die auf eine Reduktion der Verkopplungen
unter den Regelgrößen abzielen. Die Regelung des Drehwinkels β kann mit konstant mini-
maler Abweichung den Sollwert von 0 halten. Das Spurmoment Mz ist über den gesamten
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Bild 5-24: Soll-/Ist-Vergleich für die mit 10 Hz vorgefilterte Schlechtweganregung
(Prüfstandsmessung)
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Signalverlauf weitestgehend klein. Der Sollwert für das Spurmoment wurde gegenüber den
bisher gezeigten Simulationsergebnissen zu 0 gesetzt, da die enthaltenen Sollmomente sehr
große Bewegungen zur Folge haben. Dies deutet darauf hin, dass das vorliegende Target-
Signal für einen Prüfstand aufgezeichnet wurde, der die Nachbildung der Lenkbewegung
durch zusätzliche Aktorik erlaubt oder bei dem die Lenkstange fixiert wurde. Es ist außer-
dem zu beachten, dass das hier für die Beurteilung der Regelung herangezogene Target-
Signal aus einem Fahrversuch mit einer anderen Radaufhängung stammt. Die Verwendung
eines Target-Signals, das an exakt der im Prüfstand verbauten MacPherson-Radaufhän-
gung gemessenen wurde, würde eine Beeinträchtigung des Regelungsergebnisses durch
abweichende mechanische Eigenschaften der Prüflinge ausschließen.

Die Schlechtweganregung kann mit den experimentell festgelegten Reglerparametern
bei Vorfilterung des Signals mit einem PT2-Glied mit 10 Hz Eckfrequenz erfolgreich
vollständig durchlaufen werden. Wird die Eckfrequenz des Filters erhöht, so muss die
Amplitude des Signals jedoch reduziert werden. Anderenfalls resultiert instabiles Verhalten
bzw. die festgelegten Grenzen für die Kontaktkräfte und -momente werden überschritten,
was aber problemlos durch die Systemsteuerung und -überwachung abgefangen werden
kann. Die Bilder A7-27 und A7-28 im Anhang zeigen den gleichen zeitlichen Ausschnitt
aus der Schlechtweganregung wie Bild 5-24 für Vorfilter mit den Eckfrequenzen 20 Hz
und 40 Hz. Das Target-Signal wurde dort mit dem Faktor 0,75 bzw. 0,4 skaliert. Das mit
40 Hz vorgefilterte Signal enthält auch noch die nicht zu 0 gesetzte Sollwertvorgabe für
das Spurmoment Mz. Die Feststellungen zu Bild 5-24 werden durch diese beiden Bilder
bestätigt. Die vorgenommene Skalierung des Target-Signals bei höheren Filtereckfrequen-
zen führt die Leistungsanforderung an den Prüfstand offensichtlich auf ein vergleichbares
Niveau wie bei der Filterung mit 10 Hz zurück. Die Notwendigkeit der Skalierung be-
gründet sich daher mit hoher Wahrscheinlichkeit durch physikalische Gegebenheiten des
Prüfstands, z. B. die Stellgrößenbeschränkungen (maximale Differenzdrücke und Hübe der
Hydraulikzylinder, maximale Ventilschieberwege und -beschleunigungen). Beispielsweise
könnte das amplitudenabhängige Verhalten der eingesetzten Servoventile, vgl. Bild A8-1
im Anhang, eine Rolle spielen. Weitere mögliche Einflussfaktoren auf das Verhalten des
Prüfstands sind

• die Parameter der Kraft- sowie der unterlagerten Positions- und Druckregler,

• die Qualität und Bandbreite des eingesetzten Beobachters,

• das bei der exakten Ein-/Ausgangslinearisierung (für die Pose) des Hexapod ange-
setzte Modell sowie

• bisher nicht modellierte bekannte und unbekannte Effekte, z. B. bestimmte Reso-
nanzfrequenzen des realen technischen Systems.

Für nicht bei der Regelung selbst zu suchende Ursachen sprechen auch andere Messungen
am Prüfstand. So wurde bei der Erprobung einer ILR am Prüfstand (Details siehe Abschnitt
5.5) auch ein anderes, weniger hochfrequente Spektralanteile enthaltendes Target-Signal
eingelernt. Der damals eingesetzte Kraftregler war langsamer als der für die Aufzeichnung
der Schlechtweganregungen verwendete. Den Soll-/Ist-Vergleich der Kontaktkräfte und
-momente τ für das vollständige Signal zeigt Bild A7-34 im Anhang. Darin ist k die Anzahl
der durchgeführten Iterationen, sodass für k = 0 das Ergebnis ohne ILR vorliegt. Bei
Durchführung der Versuche wurden nur die wichtigsten Signale aufgezeichnet, da für
die Berechnungen der Korrektur der ILR eine Messung der Soll- und Istwerte mit dem



200 5 Synthese einer hybriden Kraft-/Positionsregelung für den Hexapod

Rechenzyklus des Prüfstands von 8 kHz erforderlich ist. Aus diesem Grund enthält Bild
A7-34 keine Messwerte für β. Das Bild zeigt, dass das Target-Signal schon ohne ILR
gut reproduziert werden kann. Die ILR erhöht hier hauptsächlich die Flankensteilheit
bei schnellen Kraftänderungen bzw. allgemein die Abbildungsgüte für höherfrequente
Signalanteile. Der Prüfstand verhielt sich ab Iteration k = 7 etwa zum Zeitpunkt t = 12 s
reproduzierbar instabil bzw. die festgelegten Überwachungsgrenzen für die Kontaktkräfte
und -momente wurden überschritten. Es ist daher davon auszugehen, dass die Stellgrößen-
beschränkungen und/oder andere, physikalische Gegebenheiten ursächlich für das instabile
Verhalten bei höheren Skalierungen sind.

Der Frequenzgang der geschlossenen Kraftregelkreise mit den bei der Schlechtwegan-
regung verwendeten Parametern zeigt Bild 5-25. Er wurde durch Aufschalten eines si-
multanen, unkorrelierten Rauschsignals auf alle fünf Kraftregelkreise bestimmt und stellt
eine Mittelung aus mehreren überlappenden Messungen dar. Das Rauschsignal wurde
vor Übergabe an den Regler durch ein PT2-Glied mit einer Eckfrequenz von 60 Hz gefil-
tert. Dem Frequenzgang kann also bis zur Frequenz von 60 Hz vertraut werden, da die
Frequenzanteile in den Anregungssignalen darüber hinaus klein sind und das Messrau-
schen das Berechnungsergebnis verfälscht. Tabelle 5-4 zeigt die maximal enthaltenen
Anregungsamplituden.

Kraft bzw. Moment Fx Fy Fz Mx Mz

Amplitude [N] bzw. [Nm] 750 1500 750 200 75

Tabelle 5-4: Maximale Anregungsamplituden bei der Frequenzgangmessung
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Bild 5-25: Frequenzgänge der geschlossenen Kraftregelkreise (Prüfstandsmessung)

Offensichtlich weisen die Frequenzgänge für Fx, Fy und Mx Überhöhungen auf. Das Am-
plitudenmaximum liegt für Fx bei etwa 19 Hz, für Fy und Mx bei etwa 35 Hz bei 7 dB
bzw. 6,7 dB. Die relativ hohe Eckfrequenz für die Regler von Fy und Mx spricht dafür, dass
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die in Bild 5-24 vorliegenden Abweichungen auf vorliegende Verkopplungen zurückzufüh-
ren sind. Ein näherungsweise konstanter Amplitudenverlauf bis zur Eckfrequenz von etwa
18 Hz liegt für die Vertikalkraft Fz vor. Für die Regelung des Spurmoments Mz beträgt
die Verstärkung schon für 1 Hz unter −3 dB. Dieser Regler wurde bei den Schlechtweg-
versuchen bewusst niedrig gewählt, da (deutlich) höhere Reglerverstärkungen offenbar
instabiles Verhalten des Prüfstands begünstigt haben. Vor der Weiterentwicklung des Reg-
lers sollte ein leistungsfähiger Aktor (z. B. direkt am Lenkgestänge oder an der Lenksäule)
in den Prüfstand eingebaut werden, mit dem die Lenkeingriffe des Fahrers durch eine
Positionsregelung nachgebildet werden. Bisher fehlt dieser Aktor im Prüfstand, sodass um
die vertikale Achse nahezu kein Gegenmoment vorliegt. Sobald der Aktor verbaut ist, sind
mindestens für die Regelung des Spurmoments Mz, wahrscheinlich sogar für alle Kraft-
bzw. Drehmomentregler deutlich bessere Regelergebnisse zu erwarten. Im vorliegenden
Zustand sollte wahrscheinlich besser der Kardanwinkel γ anstelle des Spurmoments Mz
geregelt werden.

Wird der Kraftregler allein anhand der Frequenzgänge in Bild 5-25 beurteilt, wäre der
vorliegende Regler noch nicht für die Durchführung von Betriebsfestigkeitsprüfungen
geeignet. Es ist einfach möglich, die Reglerparameter so zu wählen, dass deutlich höhere
Regelungsbandbreiten erzielt werden und die Überhöhungen im Amplitudenverlauf ge-
ringer ausfallen. Bisher war es mit derartig festgelegten Parametern aber nicht möglich,
die Schlechtweganregung stabil nachzubilden. Mit der Bild 5-25 zugrunde liegenden Pa-
rametrierung war dies hingegen möglich. Gerade vor dem Hintergrund des recht einfach
aufgebauten Kraftreglers sind die Regelungsergebnisse insb. für Fx, Fz und Mx gut. Hin-
sichtlich der Frequenzgangmessung ist überdies zu prüfen, ob der simultanen Anregung
aller kraftgeregelten Richtungen eine sequentielle, einaxiale Anregung vorzuziehen ist.

Das Führungsverhalten der Regelungen kann durch eine Vorsteuerung weiter verbessert
werden. Beispielsweise kann bei Positionsregelung in vertikaler Richtung die zuvor am
Prüfstand gemessene oder modellierte Kinematik der Radaufhängung vorgesteuert wer-
den. Diese Maßnahme wird in [KOT+17] diskutiert. Die Veröffentlichung enthält auch
die vermessene Kinematik der aktuell verbauten Radaufhängung und beschreibt einen
Optimierungsansatz für die geometrischen Modellparameter des Radaufhängungsmodells.
Darüber hinaus können auch dynamische Eigenschaften der Achse vorgesteuert werden,
bspw. durch eine gemittelte oder zustandsabhängige Steifigkeit und Dämpfung. Diese
ließen sich auch mit relativ einfachen Messungen am Prüfstand ermitteln. Außerdem dürfte
auch die Vorgabe eines Sollwerts für z̈ durch die Kraftregelung und/oder -vorsteuerung
erhebliche Verbesserungen der Regelgüte mit sich bringen. Auch das Einsetzen der Soll-
werte τr für die Kontaktkräfte und -momente anstelle der Messwerte τ in der exakten Ein-/
Ausgangslinearisierung der Pose z (2-19) in kraftgeregelten Richtungen kann eine solche
Vorsteuermaßnahme darstellen.

Trotz vermeintlich langsamer innerer Positionsregelung sind mit diesem Regelungsansatz
je nach betrachteter Richtung relativ hohe Kraftregelungsbandbreiten erzielbar, siehe auch
[KTO+17] für eine synthetische Rechteckanregung. Der Schwerpunkt liegt dort bei der
Regelung der Querkraft Fy. In dieser Veröffentlichung wird durch isolierte Anregung der
Kraft Fy gezeigt, dass für diese Kraft ein sehr gutes und breitbandiges Führungsverhalten
erreicht werden kann. Auch dies spricht dafür, dass die Abweichungen in Bild 5-24 allein
auf Verkopplungen zurückzuführen sind.
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Als Fazit lässt sich zu diesem Regelungsansatz festhalten, dass das nichtlineare und ver-
koppelte Verhalten des Prüflings den Regelungsentwurf sowohl im Modell als auch am
Prüfstand bei diesem Regler erheblich erschweren. Zwar sind mithilfe von Rechtecksigna-
len einzelne Richtungen für sich genommen gut und relativ schnell parametrierbar und im
Kleinsignalbereich auch Bandbreiten über 50 Hz vorstellbar. Das Regelverhalten ist jedoch
stark von der Anregungsamplitude abhängig. Außerdem geht ein besseres Regelergebnis
in einer Richtung meist mit einem schlechteren Regelergebnis in einer anderen Richtung
einher. Dies erweist sich besonders bei realitätsnahen Anregungssignalen als problematisch
und macht eine nachträgliche Reduktion der Reglerparameter erforderlich.

Im Gegensatz zu rein modellbasierten Untersuchungen sind die am Prüfstand erzielten und
erzielbaren Ergebnisse von zahlreichen Einflussfaktoren abhängig, die sich sogar im Ablauf
eines Versuchs ändern können. Zu diesen Einflussfaktoren zählen auch Umgebungsbedin-
gungen, wie z. B. die Temperatur und Viskosität des Hydrauliköls. Die Ursache instabilen
Verhaltens kann aufgrund der Vielzahl möglicher Einflussgrößen meist nur schwer ein-
gegrenzt werden. In dieser Thematik ist auch noch zu klären, ob das Modell bestimmte
Effekte vernachlässigt, die das Regelverhalten am Prüfstand maßgeblich beeinflussen und
die folglich beim Regelungsentwurf berücksichtigt werden müssen. Vorstellbar sind hier
insb. bisher nicht modellierte Eigenschaften der Mechanik und Hydraulik (z. B. zusätzliche
Eigenfrequenzen), der Sensorik und der Servoventile (insb. deren amplitudenabhängiges
Verhalten, vgl. Bild A8-1).

Da die Parametrierung des Kraftreglers am Prüfstand schon bei den vorliegenden, we-
nigen Parametern recht komplex ist, sollte in Zukunft die bisher manuell durchgeführte,
experimentelle Reglerauslegung durch einen automatisierten Einlernvorgang ersetzt wer-
den. Dieser kann die Reglerparameter mithilfe von Rechteck- oder Rauschanregungen für
unterschiedliche Anregungsniveaus auslegen. Denkbar ist auch, die Reglerparameter in
Abhängigkeit der Anregungsamplitude oder dem aktuell vorliegenden Systemzustand zu
variieren, z. B. durch einen Gain-Scheduling-Regler. Es kann außerdem versucht werden,
den Regler mithilfe eines am Prüfstand gemessenen Frequenzgang des offenen Regel-
kreises auszulegen. Er lässt sich relativ einfach durch Rauschanregung des Prüfstands
im positionsgeregelten Betrieb ermitteln. Zu prüfen ist, welche Anregungsamplitude für
das Rauschsignal zu wählen ist und ob ein einzelner Betriebspunkt genügt oder ob der
Frequenzgang in mehreren Betriebspunkten zu ermitteln ist.

Aufbauend darauf kann auch die Ergänzung des Reglers um Kerbfilter in Erwägung
gezogen werden. Außerdem besteht hohes Potenzial in einer zusätzlichen Vorsteuerung
und anderen Maßnahmen, um die Verkopplung der verschiedenen (Kraft-) Regelgrößen
zu reduzieren. Weiterhin sollte auch die vollständig parallele Komposition der parallelen
Kraft-/Positionsregelung untersucht werden, vgl. (2-36).

Eine Verbesserung des Kraftregelverhaltens ist auch durch die Weiterentwicklung der
unterlagerten Regler zu erwarten. Mögliche Maßnahmen schließen ein:

• Identifikation besserer Parameter für das 1-Starrkörper-Hexapodmodell im Regler,

• Online-Identifikation dieser Parameter,

• Verwendung des 13-Starrkörper-Hexapodmodells zur Regelung und

• Verbesserung des Differenzdruckreglers.
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Auch die Weiterentwicklung des Beobachters kann sich positiv auf die Kraftregelung
auswirken.

5.3.2 Weitere Ansätze

Bild 5-26 zeigt die Strukturbilder zweier weiterer Verfahren zur Kraftregelung, die auf der
Ein-/Ausgangslinearisierung der Bewegung des Hexapod (2-21) aufbauen. Dies sind

• die implizite Kraftregelung mit unterlagerter Geschwindigkeitsregelung sowie

• die explizite Kraftregelung.

Kraft-
regelung

Geschwindigkeits-
regelung

E/A-Lin.
(2-19)

Hexapod und
Radaufhängung−

τr żr up Fq,r τ

z, żż

Regelstrecke des Kraftreglers

(a) Implizite Kraftregelung mit unterlagerter Geschwindigkeitsregelung

Kraft-
regelung

E/A-Linearisierung
nach (2-19)

Hexapod und
Radaufhängung−

τr up Fq,r τ

z, ż

Regelstrecke des Kraftreglers

(b) Explizite Kraftregelung auf Basis der Linearisierung der Endeffektorpose

Bild 5-26: Strukturbilder weiterer Regelungsansätze ohne Entkopplung der Regelgrößen

Der Geschwindigkeitsregler in Bild 5-26a bildet seinen Ausgang up nach der Vorschrift

up = z̈r︸︷︷︸
Vorsteuerung

+ Kv ·
(
żr − ˙̂z

)
︸        ︷︷        ︸

P-Regler

. (5-96)

Analog zum I-Kraftregler in Abschnitt 5.1.3 kann über den Reglerparameter Kv die 3 dB-
Eckkreisfrequenz des geschlossenen Geschwindigkeitsregelkreises gewählt werden. Der
überlagerte Kraftregler bildet den Sollwert des Geschwindigkeitsreglers. Bei der expliziten
Kraftregelung bildet er hingegen direkt die Größe up.

Auch hier kann wieder die Linearisierung der Regelstrecke in einem Betriebspunkt als
Ausgangspunkt des Regelungsentwurfs dienen. Bild A7-29 im Anhang zeigt das Übertra-
gungsverhalten der Regelstrecke für beide Regelungsansätze. Einen Aufschluss über die
Verkopplungen zwischen den Regelgrößen liefern die Bilder A7-30 und A7-31. Für den
geschlossenen Geschwindigkeitsregelkreis wurde bei der Linearisierung eine Eckfrequenz
von 100 Hz angesetzt. Wie bereits im Stand von Technik und Forschung (Abschnitt 2.2.3)
ausgeführt wurde, arbeitet die implizite Kraftregelung mit unterlagerter Geschwindig-
keitsregelung auch ohne I-Anteil im Kraftregler stationär genau. Dies bestätigen auch
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die in Bild A7-29a dargestellten Frequenzgänge für das Simulationsmodell. Am Prüf-
stand verhält sich der Regler ohne I-Anteil hingegen nicht stationär genau. Hier besteht
ein Zusammenhang mit verbliebenen Modell- oder Parameterabweichungen des für die
Ein-/Ausgangslinearisierung (2-21) verwendeten Hexapodmodells. Eine mögliche Ursa-
che besteht auch in dem Verhalten des aktuell am Prüfstand eingesetzten Sliding-Mode-
Beobachters. Dieser schätzt nicht exakt die Geschwindigkeit 0 bei unbewegtem System.
Aus diesem Grund muss eine Verbesserung des Beobachters durch Überarbeitung des
Algorithmus und/oder Berücksichtigung weiterer Messgrößen (z. B. Hinzunahme eines
Beschleunigungsaufnehmers) angestrebt werden.

Für beide Ansätze konnten bisher weder im Modell noch am Prüfstand nennenswerte Vor-
teile gegenüber dem impliziten Kraftregler mit unterlagerter Positionsregelung (Abschnitt
5.3.1) festgestellt werden. Sie wurden allerdings zum Zeitpunkt dieser Arbeit aus Zeitgrün-
den insb. am Prüfstand noch nicht so umfassend erprobt wie der zuvor diskutierte Regler.
Die beiden Regelungsansätze sind aus theoretischer Sicht sehr interessant und sollten in
Zukunft weiter untersucht werden. So ist bei der impliziten Kraftregelung mit unterlagerter
Geschwindigkeitsregelung theoretisch kein I-Anteil im Kraftregler erforderlich. Das ist
günstig für den Phasenverlauf des offenen Regelkreises und lässt höhere Bandbreiten
für den Kraftregler erwarten. Außerdem ist ein Reglerparameter je Richtung weniger zu
wählen (im Vergleich zum Kraftregler mit unterlagerter Positionsregelung).

Von Nachteil an diesen Ansätzen ist die Problematik, die sich aus der experimentellen
Bestimmung des Frequenzgangs am Prüfstand ergibt. Die Regelstrecke des impliziten
Kraftreglers mit unterlagerter Positionsregelung kann durch Umschalten in den positions-
geregelten Betrieb und Durchführung einer Rauschmessung recht einfach durchgeführt
werden. Die Endeffektorbewegung wird durch das aufgeschaltete Rauschsignal beschrieben
und kann so leicht kontrolliert werden. Bei den beiden in diesem Abschnitt vorgeschlagenen
Reglern ist diese Identifikationsmessung hingegen nicht trivial, da ein Geschwindigkeits-
oder Beschleunigungsrauschen zum Einsatz kommen muss. Es ist sicherzustellen, dass
sich die Endeffektorbewegung dabei in einem sicheren, kontrollierten Rahmen hält.

Grundsätzlich besteht auch bei diesen Reglern die Möglichkeit zur Synthese von Vorsteue-
rungsmaßnahmen. Bei der impliziten Kraftregelung mit unterlagerter Geschwindigkeits-
regelung kann auch der Sollwert z̈r durch den Regler gebildet werden. Dieser Wert kann
bspw. mittels realer Differentiation aus dem Ausgang des Kraftreglers gebildet werden.
Demgegenüber ist jedoch ein Ansatz ähnlich zur vollständig parallelen Komposition der
parallelen Kraft-/Positionsregelung, vgl. (2-36), vorzuziehen, bei dem beide Sollwerte
ohne reale Differentiation gebildet werden können.

Auch bei den beiden in diesem Abschnitt genannten Regelungsansätzen sind die Kraftre-
gelgrößen nicht entkoppelt. Die Bilder A7-30 und A7-31 im Anhang zeigen die Wech-
selwirkungen der verschiedenen Streckeneingänge auf die Krafregelgrößen. Wie bei dem
impliziten Kraftregler mit unterlagerter Positionsregelung erfolgt außerdem eine Rege-
lung der Drehmomente im Kontaktpunkt durch Anpassung der Kardanwinkel α, β und
γ des Endeffektors. Es ist zu prüfen, in welchen Grenzen dieses Konzept bei größeren
Abweichungen aus der unverdrehten Lage (α = β = γ = 0°) heraus funktional ist.
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5.4 Entwurf ohne Umgebungsmodell

Die im vorherigen Abschnitt diskutierten Regelungsansätze sind zwar anschaulich, gehen
jedoch mit einer deutlich aufwändigeren Parametrierung einher als dies bei den in den
Abschnitten 5.1 und 5.2 diskutierten Ansätzen der Fall ist. Außerdem ist die Drehmo-
mentregelung auf Basis der Kardanwinkel nur für kleine Winkel korrekt und es liegt
eine Verkopplung der Kraftregelgrößen vor, die sich allerdings theoretisch (zumindest
näherungsweise) kompensieren ließe. Wünschenswert für die praktische Anwendung
am Prüfstand ist ein Regelungsansatz, der in der Parametrierung vergleichbar einfach
ausfällt wie die Regler mit Ein-/Ausgangslinearisierung (Abschnitte 5.1 und 5.2) und
ebenfalls eine Entkopplung der Regelgrößen aufweist, aber ohne das prüflingsspezifische
Umgebungsmodell funktional ist.

In diesem Abschnitt wird eine einfache Realisierung des Reglers mit den Aktorkräften
nach (5-59) angestrebt, der aufbauend auf der Veröffentlichung von de Luca und Manes
[LM94] als Ausgangspunkt des Regelungsentwurfs für die verallgemeinerte Position z des
TCP bzw. der Kontaktkräfte und -momente τ hergeleitet werden konnte. Für den Sonderfall
S = 0, d. h. Positionsregelung aller sechs Größen, folgt hieraus

Fq = JT
a

((
M + Mu,z

)
uh + C ż + g + nu,z

)
. (5-97)

Die darin enthaltene Größe nu,z ist nach (5-58) aus den aktuellen Systemzuständen yd und
ẏd zu berechnen. Liegen Messwerte für z̈ und τ vor, kann sie jedoch auch anhand der
Gleichung

nu,z = HT τ − Mu,z z̈ , (5-98)

die aus (5-56) hervorgeht, berechnet werden. Durch Ersetzen von nu,z in (5-97) durch diese
Gleichung folgt

Fq = JT
a

(
M uh + C ż + g + Mu,z uh + HT τ − Mu,z z̈

)
. (5-99)

Da die Aktorkräfte (5-97) den linearen Zusammenhang uh = z̈ herbeiführen, heben sich
die Terme Mu,z uh und Mu,z z̈ auf und (5-99) vereinfacht sich zu

Fq = JT
a

(
M uh + C ż + g + HT τ

)
. (5-100)

Diese Gleichung wurde bereits im Stand von Technik und Forschung für die Positionsrege-
lung des Hexapod bei Umgebungskontakt angegeben, siehe (2-19). Durch Verwendung des
Messwerts τ ist die Berechnung der Aktorkräfte Fq unabhängig vom Umgebungsmodell.
Die angegebene Berechnungsformel ist allerdings nicht kausal, da ein Messwert für τ
verwendet wird, der bei Auswertung des Algorithmus noch nicht zur Verfügung steht.
Einzusetzen sind hier eigentlich diejenigen Kontaktkräfte und -momente τ, die infolge
der Beschleunigung der Umgebung mit dem Ausgang uh des linearen Positionsreglers im
aktuellen Systemzustand yd, ẏd zustande kommen, vgl. auch (5-97). Grundsätzlich kann
aber auf den aktuell vorliegenden Messwert für τ zurückgegriffen werden. Dieses Vorgehen
hat sich auch am Prüfstand als Ausgangspunkt für die Regelung der Endeffektorpose z
(2-21) bewährt.

Für den anderen Sonderfall S = I, d. h. Kraftregelung aller sechs Größen, folgt

Fq = JT
a

(
M M−1

u,z

(
HT uh − nu,z

)
+ C ż + g + HT uh

)
. (5-101)



206 5 Synthese einer hybriden Kraft-/Positionsregelung für den Hexapod

Auch hier kann die Notwendigkeit für die Berechnung des Umgebungsmodells im Reg-
ler theoretisch umgangen werden. Durch Ersetzen von nu,z nach (5-98) folgt unter der
Berücksichtigung des sich einstellenden, linearen Verhaltens uh = τ, dass

Fq = JT
a

(
M z̈ + C ż + g + HT uh

)
. (5-102)

Auch diese Gleichung ist unabhängig vom Umgebungsmodell, aber nicht kausal, vgl. (5-100).
Für eine beliebige Auswahl kraft- und positionsgeregelter FHG, d. h. eine beliebige, binäre
Diagonalmatrix S, lässt sich zeigen, dass bei Ersetzung von nu,z gemäß (5-98) die Formel
zur Berechnung der Aktorkräfte (5-59) in der stark vereinfachten Form

Fq = JT
a

(
M

(
(I − S) up + S z̈

)
+ C ż + g + HT

(
S u f + (I − S) τ

))
(5-103)

angegeben werden kann.

Die hergeleitete Formel weist eine hohe Ähnlichkeit zu den durch Khatib [Kha87] angege-
benen Aktorkräften (2-41) für die hybride Kraft-/Positionsregelung auf. Abgesehen von
der Verwendung des PKM-Modells (2-18) in den Größen z, ż und z̈ anstelle des Modells
(2-17) in z, v und v̇ besteht der Unterschied der beiden Berechnungsvorschriften darin,
dass in (5-103) zusätzlich die Terme S z̈ und (I − S) τ enthalten sind. Das Fehlen dieser
Terme in (2-41) lässt sich damit begründen, dass Khatib bei seiner Herleitung von der
durch Mason [Mas81] beschriebenen Situation zweier Subräume ausgeht, d. h. es gibt
eindeutig trennbare

• kraftgeregelte Richtungen, in denen keine Bewegung stattfindet, d. h. S z̈ = 0, sowie

• bewegungsgeregelte Richtungen, in denen eine freie Bewegung möglich ist und
keine Kontaktkraft vorliegt, d. h. (I − S) τ = 0.

Bei einer Umgebung mit nicht vernachlässigbarer Dynamik, vgl. (2-78) bzw. (2-96), trifft
dies für den dritten Subraum, in dem sowohl der kraft- als auch der bewegungsgeregelte
Betrieb möglich ist, nicht zu. Hier findet auch in kraftgeregelten Richtungen eine Be-
wegung statt, d. h. die Beschleunigung ist ungleich Null, und in bewegungsgeregelten
Richtungen liegt eine Kontaktkraft vor. Der Ansatz von Khatib [Kha87] muss bei Vorliegen
einer dynamischen Umgebung erweitert werden. Der ideale Lösungsansatz für derartige
Kontaktsituationen ist durch (5-59) gegeben; (5-103) stellt eine Näherungslösung dar, die
theoretisch ohne Umgebungsmodell funktional ist.

Abgesehen von S z̈ und (I − S) τ enthält (2-41) zusätzlich den Term M S Kv,F ż, über den
die Dämpfung in den kraftgeregelten Richtungen bei Bedarf beeinflusst werden kann. Bei
Übernahme dieses Grundgedankens folgt als Berechnungsformel für die Aktorkräfte unter
Verwendung zusätzlicher Mess- oder Schätzwerte für z̈ anstelle des Umgebungsmodells

Fq = JT
a

(
M

(
(I − S) up + S

(
z̈ − Kv,F ż

))

+ C ż + g + HT
(
S u f + (I − S) τ

) )
. (5-104)

Soll ein Schätzwert für die Beschleunigung z̈ anstelle eines aktuellen Messwerts zur
Auswertung dieser Gleichung verwendet werden, so kann dieser bspw. durch Umstellen
des Manipulatormodells (2-18) nach dieser Größe und Einsetzen der beobachteten Größen
z und ż sowie der Messgrößen Fq und τ erhalten werden.



5.4 Entwurf ohne Umgebungsmodell 207

Durch Einsetzen von (5-104) in das Manipulatormodell (2-18) folgt unter den üblichen
Annahmen (ideale Messung, ideales Modell, ideale Aktorik, keine Störgrößen), dass

M z̈ + HT τ = M
(
(I − S) up + S

(
z̈ − Kv,F ż

))
+ HT

(
S u f + (I − S) τ

)
. (5-105)

Wird die Beschleunigung z̈ gemessen bzw. geschätzt und in den Regelalgorithmus einbe-
zogen, so folgt das gewünschte Verhalten

up,k = z̈k (5-106)

in positions- und

u f ,k = τk (5-107)

in kraftgeregelten Richtungen k, falls Kv,F = 0. Das Setzen von Kv,F , 0 ist (bei dieser
idealen Betrachtung) nachteilig. So gehen in diesem Fall zusätzlich die Geschwindigkeiten
S ż, d. h. die in den kraftgeregelten Richtungen vorliegenden Geschwindigkeiten, auf der
rechten Seite von sowohl (5-106) als auch (5-107) über einen lageabhängigen Faktor ein.
Sie heben das gewünschte lineare Verhalten der Eingangs- zu den Regelgrößen auf.

Wird auf die Berücksichtigung der Beschleunigung z̈ in den Aktorkräften (5-104) mangels
Mess- oder Schätzwert verzichtet, so lässt sich herleiten, dass für die Eingänge

up,k = z̈k +

6∑

i=1
i,k

si ·
(
aki z̈i + bki żi

)
(5-108)

und

u f ,k = τk +

6∑

i=1

si ·
(
cki z̈i + dki żi

)
(5-109)

gilt, wobei aki, bki, cki und dki von der Pose des Endeffektors abhängige Faktoren sind.
Damit sind die neuen Eingänge nicht wie beabsichtigt linear zu der jeweiligen Regelgröße,
vgl. (5-106) und (5-107), sondern einer Summe aus dieser Größe und den in den kraftgere-
gelten Richtungen vorliegenden Beschleunigungen und Geschwindigkeiten. Die Terme
bki und dki entfallen für Kv,F = 0. Der Verzicht auf die Messung und Aufschaltung der
Kontaktkräfte und -momente τ hat vergleichbare Folgen.

Zur Berechnung der Aktorkräfte nach (5-104) ist eine Messung oder Schätzung der Be-
schleunigungen des Endeffektors z̈ sowie der Kontaktkräfte und -momente τ erforderlich.
Dann können aufbauend auf den neuen Systemeingängen u f und up wieder die Regler
(2-55) und (2-57) angesetzt werden. Eine gute Wahl für die Regelung von Kraftgrößen
ist ein I-, für Positionsgrößen ein PD-Regler. Auch die Berücksichtigung der PT3-Aktor-
dynamik beim Regelungsentwurf durch das Lead-Glied (vgl. Abschnitt 5.1.2) ist möglich.
Bei idealer, unverzögerter Messung von z̈ und τ und Verwendung dieser Größen zur Be-
rechnung der Aktorkräfte ist die Regelung unabhängig von der vorliegenden Umgebung.

Dieser Ansatz wurde am Simulationsmodell für den Fall idealer Aktorik erprobt. Da
die Aktorkräfte (5-104) sowohl auf z̈ als auch τ einen Durchgriff besitzen, bestehen
algebraische Schleifen (vgl. oben genannte Akausalität). Aufgrunddessen kann das Modell
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ohne weitere Modifikationen nicht simuliert werden. Die algebraischen Schleifen müssen
durch geeignete Maßnahmen aufgehoben werden. Typischerweise werden hierfür die
betreffenden Signale um einen Zeitschritt (im vorliegenden Fall 0,125 ms) verzögert.
Stattdessen kann der Durchgriff auch mithilfe eines sehr schnellen Verzögerungsglieds
erster Ordnung aufgehoben werden.

Weder mit der einen noch der anderen Maßnahme funktioniert diese Regelung am Simula-
tionsmodell des Prüfstands bei Verwendung eines I-Kraftreglers und eines PD-Positions-
reglers. Die minimale Verzögerung der ansonsten idealen, d. h. unverrauschten Messwerte
für z̈ und τ hat bereits zur Folge, dass die Regelung nicht mehr stabil läuft. Nur bei sehr
starker Vereinfachung der Radaufhängung (keine Lagerelastizitäten, fixierte Lenkstange)
ist der Regler trotz Verzögerung funktional, wobei allerdings infolge der verzögerten
Messung von z̈ und τ Verkopplungen der Regelgrößen bestehen. Diese treten vor allem bei
sprunghafter Änderung der Sollwerte in Erscheinung. Die vermeintlichen Vorteile dieses
Regelungsansatzes, nämlich

• die einfache Reglerparametrierung über den anschaulichen Zusammenhang mit der
Bandbreite der geschlossenen Kraft- und Positionsregelkreise (vgl. Abschnitt 5.1)
sowie

• die Entkopplung der Regelgrößen

bei gleichzeitiger Unabhängigkeit vom Umgebungsmodell sind also am realen System nicht
zu erwarten. Dort sind die Messgrößen ebenfalls verzögert und obendrein verrauscht.

Einen möglichen Erklärungsansatz für die beschriebenen Effekte liefern die Fehlerdiffe-
rentialgleichungen, die sich bspw. für den rein positionsgeregelten Betrieb (5-100) und
den rein kraftgeregelten Betrieb (5-102) bei Annahme einer um die Zeit TM verzögerten
Messung der dort einfließenden Messgrößen für τ bzw. z̈ ergeben. Unter der Annahme
ansonsten idealer Rahmenbedingungen, d. h.

• idealer Messung bzw. Beobachtung von z und ż,

• einem idealen Streckenmodell im Regler,

• übereinstimmenden Anfangswerten,

• vernachlässigbar schneller Aktorik sowie

• der Abwesenheit von Störgrößen,

folgt mit den bekannten Regelungsansätzen (2-55) und (2-57) im ersten Fall

I
(
z̈r − z̈

)
+ KD,p

(
żr − ż

)
+ KP,p

(
zr − z

)
= M−1 · HT · (τ (t) − τ (

t − TM
))
, (5-110)

im zweiten Fall
(
I + KP, f

) (
τr − τ

)
+ KI, f

∫ (
τr − τ

)
d t = H−T · M · ( z̈ (t) − z̈

(
t − TM

))
(5-111)

bzw. nach erneuter zeitlicher Differentiation
(
I + KP, f

) (
τ̇r − τ̇

)
+ KI, f

(
τr − τ

)
= H−T · M · (...z (t) − ...z (

t − TM
))

+

(
d
d t

(
H−T

)
· M + H−T · Ṁ

)
· ( z̈ (t) − z̈

(
t − TM

))
. (5-112)
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Die Regelfehler klingen nicht auf den Wert 0 ab, sondern werden permanent durch den
jeweils auf der rechten Seite der Gleichung stehenden Term angeregt. Die Differential-
gleichung des Positionsregelfehlers ist von zweiter Ordnung und wird durch die Differenz
zwischen der tatsächlichen und der gemessenen Kontaktkraft τ (t)−τ (

t − TM
)

angeregt. Im
Gegensatz zum idealen Ansatz nach (5-59) auf Basis von Hexapod- und Umgebungsmodell
sind die einzelnen Richtungen in diesem Fall durch den Faktor M−1 · HT auf der rechten
Seite nicht entkoppelt. Die Fehlerdifferentialgleichung der Kraftregelung ist dagegen von
erster Ordnung und wird (unter anderem) permanent durch die Differenz zwischen dem
tatsächlichen und dem um die Zeit TM zurückliegenden Wert der Beschleunigung sowie
der zeitlichen Ableitung dieser Größe angeregt. Auch hier sind die Richtungen verkop-
pelt. Gerade bei sich zeitlich schnell ändernden Beschleunigungsdifferenzen kann dies
erhebliche Auswirkungen auf das Kraftregelungsverhalten haben.15

In weiterführenden Arbeiten ist zu untersuchen, ob die Aktorkräfte nach (5-104), bspw. durch
andere Kraft- und Positionsregelungsansätze auf Basis der Größen u f und up, dennoch
erfolgreich zur hybriden Kraft-/Positionsregelung des Hexapod eingesetzt werden können.
Insbesondere die Unabhängigkeit vom Umgebungsmodell macht diesen Regelungsansatz
für einen Achsprüfstand mit regelmäßig wechselndem Prüfling sehr interessant.

Der Grundgedanke lässt sich auch auf den in Abschnitt 5.2.2 beschriebenen Ansatz zur
hybriden Kraft-/Positionsregelung im Falle einer dynamischen Bindung von Endeffektor
und Radnabe übertragen. Für die Auswertung von (5-84) können anstelle beobachteter
bzw. gemessener Größen yd, ẏd Mess- oder beobachtete Werte für zT1

, vT1
und aT1

ver-
wendet werden. Während aT1

explizit in (5-84) erscheint, sind zT1
und vT1

neben z und
v in den Gleichungen für zK und vK enthalten. Sämtliche anderen Größen in c̊, D̊ sind
ausschließlich von den Zustandsgrößen des Manipulators, z und v, abhängig, für die bereits
ein funktionaler Beobachter vorliegt. Bei Erweiterung des bestehenden oder Entwicklung
eines zusätzlichen Beobachters für zT1

, vT1
und aT1

genügt bei hoher Beobachterverstär-
kung ggf. ein recht einfaches Modell der Umgebung mit sechs FHG für die Umsetzung der
Regelung.

5.5 Kombination mit ILR für hohe Bandbreitenanforderung

Je nach Art des durchgeführten Prüfstandsversuchs kann eine sehr hohe Abbildungsgüte
auch in hohen Frequenzbereichen gefordert sein. Denkbar ist dies vor allem bei Betriebsfes-
tigkeitsprüfungen, bei denen Target-Signale mit Spektralanteilen bis zu 80 Hz nachgebildet
werden sollen. Ist die Bandbreite der Regelung für ein gegebenes Target-Signal nicht
hinreichend hoch, so lässt sich die Abbildungsgüte bei allen Verfahren durch Ergänzung
der Regelung um eine ILR steigern, vgl. auch Abschnitt 2.1.3 des Stands von Technik und
Forschung. Diese Möglichkeit besteht jedoch nur dann, wenn die Sollwerte der Regelung
bereits vor dem Versuch feststehen. Der Einsatz zur Durchführung einer HiL-Simulation,
bei der die Sollwerte der Regelung erst zur Laufzeit durch ein Umgebungsmodell gebildet
werden, ist hingegen nicht möglich.

Die Implementierung der ILR für den HNI-Achsprüfstand wurde durch Nikolai Fast im
Rahmen seiner Masterarbeit [FK18] vorgenommen. Die implementierte ILR konnte in

15Vielen Dank an Herrn Prof. Dr.-Ing. Günter Roppenecker für diesen Denkanstoß.
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der Masterarbeit an zwei einfachen Beispielsystemen mit je zwei Ein- und Ausgangsgrö-
ßen, am MKS-Modell des Prüfstands sowie schließlich auch am Prüfstand erfolgreich
erprobt werden. Vorbild der Arbeit war die Dissertationsschrift von de Cuyper [Cuy06],
dessen Verfahren in angepasster Form auf dem HNI-Achsprüfstand umgesetzt wurden. Die
ILR wurde in [FK18] in Kombination mit der impliziten Kraftregelung mit unterlagerter
Positionsregelung verwendet. Sie wurde aber bewusst so implementiert, dass sie sich
mit einem beliebigen Regler kombinieren lässt. Im Folgenden werden die wesentlichen
Zusammenhänge zur umgesetzten ILR erläutert.

Bild 5-27 zeigt das Schema zur Ergänzung der (Echtzeit-) Regelung um eine ILR. Der
Operator z−1 verzögert darin das gesamte Eingangssignal um einen Iterationsschritt.

GR (s)

z−1

z−1

L1 (s)

L2 (s) · Q

− Strecke
yr ye uR

uILR,k

uILR,k−1

ek−1ILR

FW (s)

Bild 5-27: Kombination der Regelung mit einer iterativ lernenden Regelung (Schema)

Nach Durchführung eines Prüfstandsversuchs (bzw. einer Simulation) berechnet die ILR
ein Korrektursignal mit dem Ziel, durch Aufschaltung dieser Korrektur in der nächsten
Versuchsdurchführung die Abbildungsgüte des gegebenen Target-Signals zu steigern. Im
dargestellten Fall wird eine Stellgrößenkorrektur uILR,k aus der vorherigen Stellgrößenkor-
rektur uILR,k−1 (uILR,0 = 0) sowie der Regelabweichung ek−1 berechnet. Unter der Annahme
einer linearen Streckenübertragungsfunktion lässt sich zeigen, dass L1 und L2 idealerweise
zu

L1 (s) = 1 , L2 (s) = GR · F−1
W (5-113)

gewählt werden sollten. In der praktischen Anwendung können aber auch andere Aus-
prägungen sinnvoll sein. Für die Konvergenz der ILR müssen sowohl L1 und L2 stabil
sein. Sie dürfen aber nichtkausal sein, da die Berechnungen nicht zur Simulationslaufzeit
bzw. während des Prüfstandsversuchs erfolgen. Es können also z. B. auch ideale Diffe-
renzierer enthalten sein. Kann die Inverse des Frequenzgangs F−1

W für L2 ideal bestimmt
werden, so ist das Iterationsergebnis nur durch das Messrauschen, die Aktordynamik sowie
iterationsvariante Störgrößen beschränkt. Q ist der Lernfaktor. Je kleiner Q ist, desto lang-
samer konvergiert die Iteration. Gleichzeitig ist aber die Konvergenz wahrscheinlicher. Wie
in der Praxis werden sowohl uILR,k−1 als auch ek−1 vor der Berechnung der neuen Korrektur
uILR,k phasenfrei tiefpassgefiltert. Im vorliegenden Fall wird hierfür ein Butterworth-Filter
vierter Ordnung eingesetzt.

Eine andere Ausprägungsform der ILR sieht vor, dass die Korrekturgröße vor dem Regler
aufgeschaltet wird, die ebenfalls aus der Regelabweichung sowie der Korrektur des letzten
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Iterationsschritts k − 1 gebildet wird. Die Korrekturgröße entspricht dann nicht einer
Stellgrößen- sondern einer Führungsgrößenkorrektur. Während L1 unverändert bleibt,
muss in diesem Fall L2 der Inversen F−1

W entsprechen. Zumindest für einen linearen Regler
GR lässt sich jedoch zeigen, dass die beiden Verfahren äquivalent zueinander sind.

Die Übertragungsfunktion FW stellt lediglich eine Linearisierung des nichtlinearen Stre-
ckenverhaltens in einem Betriebspunkt dar. Die ILR wird dennoch, wie auch in der Praxis
üblich, in der beschriebenen Form für den Achsprüfstand eingesetzt. Für die Berechnungen
der ILR muss der inverse Frequenzgang F−1

W vorliegen. Dieser wird mithilfe einer Prüf-
standsmessung ermittelt. Der geschlossene Kraft- bzw. Positionsregelkreis wird mit einem
bandbegrenzten weißen Rauschen angeregt. Die Leistungsdichte des Rauschsignals muss
hinreichend hoch sein, um das System in hinreichendem Maße anzuregen. Gleichzeitig
muss sie klein genug gewählt werden, sodass weder die Stellgrößenbeschränkungen ver-
letzt noch das System in kritische Zustände gebracht wird. Aus dem Sollwert yr und dem
Istwert y dieser Messung werden mehrere überlappende und gefensterte Periodogramme
berechnet und gemittelt. Zur Fensterung werden Sinus-Fenster mit einer Überlappung
von 67 % eingesetzt, da sie von Antoni und Schoukens [AS09] als optimale Wahl für die
FRF-Bestimmung angegeben werden. Aus dem Ergebnis werden die Kreuz- und Autoleis-
tungsspektren der Signale berechnet. Dieses Vorgehen ist auch als Welch-Methode bekannt
und zielt darauf ab, das Berechnungsergebnis zu verbessern.

Mithilfe der Kreuz- und Autoleistungsspektren kann die Übertragungsfunktion FW des
geschlossenen Regelkreises mithilfe eines Estimators berechnet werden. Der H1-Estimator
bietet sich an, da das Eingangs- im Gegensatz zum Ausgangssignal als rauschfrei angenom-
men werden kann. Die ermittelte FRF muss anschließend zum Erhalt von F−1

W invertiert
werden. Die Berechnung der Inversen ist nicht trivial, bspw. kann die ermittelte FRF singu-
lär sein. Es gibt verschiedene Ansätze zur Lösung dieses Problems, die meist auf Basis
einer Singulärwertzerlegung die zu invertierende Größe regularisieren, siehe z. B. [Cuy06;
Han07]. Müller und Endisch [ME16] schlagen anstelle der Invertierung der FRF vor, die
Ein- und Ausgangssignale des H1-Estimators zu vertauschen und auf diese Weise direkt
den inversen Frequenzgang zu ermitteln. Es lässt sich leicht zeigen, dass der H1-Estimator
mit vertauschten Ein- und Ausgängen gerade der Inverse des mittels H2-Estimator ermittel-
ten Frequenzgangs entspricht. Es wird folglich angenommen, dass die Systemausgänge,
nicht die Systemeingänge rauschbehaftet sind. Bei vernachlässigbarem Rauschen auf den
Ausgängen und angesichts der Tatsache, dass auch die Inverse einer singulären, mittels
H1-Estimator berechneten FRF nur eine Näherungslösung darstellt, macht dieses Vorgehen
praktikabel. Es wurde auch für den HNI-Achsprüfstand gewählt.

Am Prüfstand erfolgt die Messung der Ausgangsgröße über einen Analog-Digital-Wandler,
der das zugehörige Frequenzspektrum verzerrt. Die Eingangsgröße wird daher ebenfalls
über einen Digital-Analog-Wandler ausgegeben und wieder vom Analog-Digital-Wandler
eingelesen, um diesen Effekt zu antizipieren.

Die in Bild 5-27 gezeigte ILR wurde in [FK18] mit einem impliziten Kraftregler mit
unterlagerter Positionsregelung kombiniert. Sie berechnet Stellgrößenkorrekturen für den
unterlagerten Positionsregler, die daher Positions- bzw. Drehwinkelkorrekturen darstel-
len. Aus diesem Grund entspricht GR dem Kraftregler, und die Strecke besteht aus der
Radaufhängung sowie dem Hexapod inklusive Positionsregelung.
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Die Berücksichtigung von Stellgrößenbeschränkungen ist bei einer ILR grundsätzlich
möglich. Voraussetzung dabei ist, dass die Begrenzungen einen direkten Zusammenhang
mit der durch die ILR gebildeten Korrekturgröße besitzen. In diesem Fall kann die ILR als
Optimierungsproblem formuliert werden und die Stellgrößenbeschränkungen einbeziehen,
siehe z. B. [MTT09]. Bei konventionellen Anlagen ist dies möglich, da die Sollwerte für
die orthogonal angeordneten Antriebe iterativ eingelernt werden. Allerdings erweist es
sich auch bei diesen Anlagen als problematisch, dass im Falle verletzter Stellgrößenbe-
schränkungen gegebene Target-Signale ggf. nicht mit hinreichender Güte nachgebildet
werden können. Eine nachträgliche Anpassung des Target-Signals (z. B. zeit oder frequenz-
abhängige Skalierung jedes Signals) oder die Verwendung eines anderen Target-Signals ist
erforderlich.

Bei dem hexapodbasierten System des HNI bestehen die Begrenzungen in dem maxima-
len Differenzdruck der sechs Hydraulikzylinder von rund 280 bar sowie im maximalen
Hub dieser Zylinder. Hinzu kommen die maximalen Wege und Beschleunigungen der
Ventilschieber. Das Einlernen der Zylinderdifferenzdrücke oder -hübe durch die ILR ist
ebenso wenig sinnvoll wie das Einlernen der Ventilschieberwege, da ein stark nichtlinearer
Zusammenhang mit den typischen Target-Signalen besteht, z. B. den Kontaktkräften und
-momenten τ im TCP. Demgegenüber ist es zielführender, die Sollwerte einer Regelung ein-
zulernen, die die vorliegenden Nichtlinearitäten teilweise oder ganz aufhebt. In diesem Fall
stellt jedoch die Berücksichtigung der Stellgrößenbeschränkungen bei der ILR am Zielsys-
tem eine Herausforderung dar. Diese Problematik bietet interessante Anknüpfungspunkte
für zukünftige wissenschaftliche Arbeiten. Bevor diese Frage abschließend geklärt ist, kann
mithilfe der entwickelten Simulationsumgebung vor dem Prüfstandsversuch abgeschätzt
werden, ob ein gegebenes Target-Signal zur Verletzung der Stellgrößenbeschränkungen
führen kann und ggf. Abhilfemaßnahmen getroffen werden müssen. Zudem müssen die
Stellgrößenbegrenzungen während der Versuche kontinuierlich im Auge behalten werden.
Prinzipiell besteht für konventionelle Anlagen wie auch den HNI-Achsprüfstand jedoch das
gleiche Grundproblem: ist ein Target-Signal zu anspruchsvoll für die Anregungseinheiten,
so kann es nicht ideal nachgebildet werden. In der Folge muss es entweder in den kritischen
Zeitabschnitten modifiziert werden, sodass die Stellgrößenbeschränkungen eingehalten
werden, oder das Target-Signal muss durch ein anderes ersetzt werden.

Bild 5-28 zeigt das Aktivitätsdiagramm zur Nachbildung eines gegebenen Target-Signals
mittels ILR.

Messung
aufzeichnen

Neue Korrektur
berechnen

Korrektur
übertragen

Messung
beendet

Güte
unzureichend

Güte hinreichend oder
max. Iterationszahl erreicht

Bild 5-28: UML-Aktivitätsdiagramm für den Prüfstandsbetrieb mit ILR
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Mithilfe der beschriebenen ILR können auch am HNI-Achsprüfstand Target-Signale mit
besonders hohen Spektralanteilen nachgebildet werden, sodass das System für die Durch-
führung von Betriebsfestigkeitsprüfungen geeignet ist. Wie an konventionellen Anlagen
können mit dem beschriebenen Verfahren prinzipiell beliebige Target-Signale nachgebildet
werden, solange die Stellgrößenbegrenzungen des Systems eingehalten werden. Vorteil
des vorliegenden Prüfstands ist, dass eine leistungsfähigere Regelung eingesetzt wird. Das
mit dieser Regelung erzielte Ergebnis kann als Ausgangspunkt der ILR dienen. Aufgrund
dessen ist davon auszugehen, dass die Iteration am HNI-Achsprüfstand deutlich schneller
zu hinreichend guten Ergebnissen führt als an konventionellen Achsprüfständen. Außerdem
ermöglicht die Kombination von Regelung und ILR (im Gegensatz zu einer reinen ILR)
prinzipiell, iterationsvariante Störgrößen auszugleichen.

Die gute Funktionalität der implementierten ILR konnte bereits im Rahmen der Masterar-
beit [FK18] anhand von Prüfstandsmessungen gezeigt werden. Sie wurde in Kombinati-
on mit dem impliziten Kraftregler mit unterlagerter Positionsregelung erprobt. Die ILR
kann gestartet werden, sobald die erforderliche FRF mittels H2-Estimator experimentell
ermittelt ist. Durch Betrachtung der multiplen Kohärenz sowie Durchführung der Rück-
wärtsvalidierung (Vergleich der tatsächlichen Systemeingänge mit den aus FRF und den
Systemausgängen berechneten) kann die Qualität der gebildeten FRF geprüft werden. Die
praktische Umsetzung der ILR am Prüfstand zeigt Bild 5-29.

Echtzeitrechner

Schnittstelle
Model

Access Port
Recorder

Messwerte
Iteration k

Drive-File
Iteration k + 1

MATLAB
Skript

Bild 5-29: Realisierung der iterativ lernenden Regelung am Achsprüfstand

Die ILR kann nach einer Versuchsdurchführung für ein gegebenes Target-Signal am Prüf-
stand beginnen, vgl. auch Bild 5-28. Dabei werden die Eingangs- und Ausgangsgrößen
der Regelstrecke aufgezeichnet. Bei der beschriebenen Implementierung mit unterlagerter
Positionsregelung sind die Sollwerte zr der Systemeingang und die erzielten Kontaktkräfte
und -momente τ der Systemausgang. Am dSPACE-System erfolgt die Aufzeichnung dieser
Signale mittels eines sog. Recorders. Die aufgezeichneten Signale können in MATLAB
eingelesen und weiterverarbeitet werden. Mithilfe der Messwerte für die Response-Si-
gnale aus dem Prüfstandsversuch ohne ILR (Iteration k = 0) und der FRF wird dort eine
Sollwertkorrektur für den unterlagerten Positionsregelkreis gebildet. Die berechnete, über
Lernfaktoren gewichtete Sollwertkorrektur wird bei der nächsten Prüfstandsmessung zu
der Ausgabe des Kraftreglers hinzuaddiert, vgl. Bild 5-27. Hierzu muss der in Bild 5-29
sog. Drive-File in einen hierfür reservierten Speicherbereich auf dem Echtzeitrechner
übertragen werden. Initial sind sämtliche Werte dieses Speicherbereichs und damit des
Korrektursignals Null. Die Übertragung der in MATLAB berechneten Sollwertkorrektur
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auf den dSPACE-Echtzeitrechner erfolgt mittels des sog. Model Access Ports, einer von
dSPACE bereitgestellten Schnittstelle zum laufenden Echtzeitrechner. Der Model Access
Port erlaubt bspw. das Ändern einer Vielzahl an Variablen auf dem Echtzeitrechner, ohne
dass hierfür ein erneutes Kompilieren und Hochladen eines modifizierten Codes erfor-
derlich ist. Die Schnittstelle kann z. B. in Python- und Matlab-Code eingebunden und
verwendet werden. Durch geschickte Implementierung des Datenaustauschs, z. B. durch
Konvertierung der Korrektur in einen Integer-Datentyp vor dem Transfer und die Rückkon-
vertierung zur Prüfstandslaufzeit, kann dieser selbst bei längeren Signalen in sehr kurzer
Zeit erfolgen. Auch die Berechnung des neuen Korrektursignals aus der aktuellen Prüf-
standsmessung ist schnell durchgeführt. Für ein 30 s langes Signal beträgt die erforderliche
Zeitspanne für Berechnung und Transfer der Korrektur im nächsten Iterationsschritt mit
der vorliegenden Hardware etwa 15 s. Nach Übertragung des Korrektursignals kann die
nächste Prüfstandsmessung erfolgen. Auch bei diesem Versuch werden die Ein- und Aus-
gangsgrößen aufgezeichnet und der beschriebene Prozess erneut durchlaufen. Die ILR wird
durchgeführt, bis ein definiertes Abbruchkriterium erreicht ist, z. B. die Abbildungsgüte
hinreichend hoch ist, vgl. Bild 5-28.

Bild 5-30 zeigt den Verlauf einer ILR am Beispiel einer sequentiellen Rechteckanregung
aller kraftgeregelten Größen. Dargestellt ist der Sollwert-Zeitverlauf sowie der Istwert-
Zeitverlauf im rein geregelten Betrieb (k = 0) und für die ersten und letzten zwei durch-
geführten Iterationen. Für die Versuche wurde bewusst ein recht langsamer Kraftregler
sowie ein geringer Lernfaktor von Q = 0,2 · I gewählt, um die Auswirkung der ILR
hervorzuheben. Bild 5-30 kann eine zunehmende Nachbildungsqualität mit steigender
Iterationszahl k entnommen werden. Dies trifft besonders für die Abbildung der sprunghaf-
ten Sollwertänderung zu. Zu erkennen ist jedoch auch, dass die bessere Abbildungsgüte
für eine Regelgröße auch zu einer Verschlechterung einer anderen führen kann. Dies ist
besonders für die sprunghafte Änderung der Längskraft Fx zu beobachten, die deutliche
Auswirkungen auf das Spurmoment Mz besitzt. Eine Verbesserung des Spurmomentver-
laufs kann eventuell durch Fortführung der Iteration herbeigeführt werden. Beispielsweise
kann die Auswirkung der Querkraft Fy auf das Sturzmoment Mx, die bei der im Zeitraum
0,4-0,6 s stattfindenden Anregung auffällt, bis zum zehnten Iterationsschritt weitestgehend
aufgehoben werden.

Bild 5-31 zeigt den Verlauf des RMS-Werts der Abweichung ek von Response- und
Target-Signal in Abhängigkeit der Anzahl an Iterationen in normierter Form. Aus dieser
Darstellung kann entnommen werden, dass die Abweichung bei dieser Anregung in
allen Richtungen gegenüber der Ausgangssituation abnimmt. Während der RMS der
Abweichung ek für Fx, Fz und Mx monoton fällt, ist dies für Fy und Mz nicht der Fall. Die
Verkopplungen führen hier dazu, dass eine erzielte Verbesserung in den Richtungen Fx,
Fz und Mx zu einer Verschlechterung des Ergebnisses für Fy und Mz führen kann. Durch
weitere Iterationen kann auch diese Abweichung weiter gesenkt werden.

Die Bilder A7-32 und A7-33 im Anhang zeigen den Verlauf der ILR für diese Sollwert-
Zeitverläufe bei den höheren Lernfaktoren Q = 0,5 · I und Q = 0,8 · I. Wie zu erwarten
gleichen sich die Ist-Zeitverläufe dort schneller den Soll-Zeitverläufen an. Auch die zwi-
schen den Zielgrößen bestehenden Wechselwirkungen werden schneller kompensiert. Das
entsprechende Vergleichsergebnis für ein Target-Signal aus einem Fahrversuch zeigt Bild
A7-34 im Anhang, das bereits im Abschnitt 5.3.1 erwähnt wurde. Die Abbildungsgüte
für dieses Signal ist bereits im rein geregelten Betrieb (k = 0) trotz recht langsam aus-
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Bild 5-30: Soll-/Ist-Vergleich für die Rechteckanregung in Abhängigkeit der Anzahl an
Iterationsschritten k, Lernfaktor Q = 0,2 · I (Prüfstandsmessung)
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Bild 5-31: Verlauf der Abweichung ek für die Rechteckanregung in Abhängigkeit der Anzahl
an Iterationsschritten k, Lernfaktor Q = 0,2 · I (Prüfstandsmessung)

gelegter Kraftregler gut. Mit zunehmender Anzahl an Iterationen kann über die ILR die
Abbildungsgüte auch für hochfrequente Signalanteile erhöht werden. Für das Einlernen
wurde am Prüfstand der Lernfaktor Q = 0,6 · I verwendet. Den Verlauf des RMS-Werts
der Abweichung ek mit der Iterationszahl k für diese drei weiteren Anregungen zeigt Bild
A7-35 im Anhang. Hieraus kann für das Beispiel der Rechteckanregung die schnellere
Verringerung des RMS-Werts der Abweichung ek mit höherem Lernfaktor Q entnommen
werden. Die ILR kann mit minimalen Anpassungen auch mit anderen Reglern kombiniert
werden.

5.6 Zusammenfassung

Die in diesem Kapitel dargelegten Regelungsansätze lassen sich gut anhand des eindimen-
sionalen Modells für den Achsprüfstand in Bild 5-32 zusammenfassen.

mEEndeffektor

Kraftmessrad
(starre Bindung)

muRadnabe

cu (z) du (ż)Federbein

Achshaltesystem

Fq

(a) Physikalisches Ersatzbild

Fq

mE

mu

τ

τ

Fcd

z

zu

(b) Freischnitt

Bild 5-32: Einfaches eindimensionales Modell des Prüfstands
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Die Formelzeichen wurden in weitgehender Übereinstimmung mit der bisherigen Notation
gewählt. Hier handelt sich durchweg um skalare Größen. Es sind

• z und zu die Positionen von Endeffektor und Radnabe,

• Fq die von einem Aktor auf den Endeffektor ausgeübte Kraft (Eingangsgröße des
Systems bei idealer Aktordynamik),

• τ die Kontaktkraft zwischen Endeffektor und Radnabe,

• mE und mu die Masse des Endeffektors und der Radnabe,

• cu und du die lage- bzw. geschwindigkeitsabhängige Steifigkeit und Dämpfung des
Federbeins sowie

• Fcd dessen auf Radnabe und Achshaltesystem ausgeübte Kraft.

Die Bindung von Endeffektor und Radnabe wurde als starr abstrahiert, d. h. es gilt

zu = z + ∆z (∆z = konst.) , żu = ż , z̈u = z̈ . (5-114)

Das Zustandsraummodell lautet bei idealer Aktorik
[
ż
z̈

]
=

[
ż

− 1
mE+mu

· (cu z + du ż
)
]

+

[
0
1

mE+mu

]
· Fq . (5-115)

Die Ausgangsgleichung für die Kontaktkraft τ ist

y f = τ =
mE

mE + mu
· (cu z + du ż

)
+

mu

mE + mu
· Fq , (5-116)

für die Endeffektorposition z

yp = z . (5-117)

Für y f = τ liegt ein Durchgriff vor, da Fq direkt in τ enthalten ist (Differenzordnung δ = 0),
für yp = z hingegen nicht (δ = 2).

Bei Anwendung der exakten Ein-/Ausgangslinearisierung (siehe Anhang A3) folgt für die
Regelung der Kontaktkraft τ der neue lineare Eingang u f = τ für die Vorgabe des Eingangs
Fq nach

Fq =
mE + mu

mu
· u f −

mE

mu
· (cu z + du ż

)
, (5-118)

für die Regelung der Endeffektorposition z resultiert der lineare Eingang up = z̈ für

Fq =
(
mE + mu

) · up + cu z + du ż . (5-119)

Aufbauend auf dem Eingang u f bzw. up kann eine Kraft- bzw. Positionsregelung erfolgen,
z. B. nach (2-55) bzw. (2-57). Dies entspricht dem Regelungsentwurf, der in diesem
Kapitel mithilfe mit der analytischen Formulierung nach de Luca und Manes (Abschnitt
5.1) und der exakten Ein-/Ausgangslinearisierung (Abschnitt 5.2) für den Achsprüfstand
beschrieben wurde.

Der hybride Kraft-/Positionsregelungsentwurf nach de Luca und Manes [LM94] wurde hier
um die Wahlmöglichkeit zwischen den dynamischen Koordinaten yd und die aktiven Kräfte
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λa gemäß einer festgelegten Verknüpfung dieser Größen erweitert. Diese Wahl erfolgt über
eine binäre Selektionsmatrix S. Der Regelungsansatz sowie diese Erweiterung konnten
erfolgreich am Simulationsmodell des HNI-Achsprüfstands erprobt werden. Dabei wurde
zuerst eine idealisierte Radaufhängung ohne Lagerelastizitäten betrachtet und danach auf
das vollständige Radaufhängungsmodell übergegangen. Der Regelungsentwurf nach de
Luca und Manes [LM94] ist auf Umgebungen mit maximal sechs FHG beschränkt. Das
Radaufhängungsmodell mit Lagerelastizitäten weist hingegen elf FHG auf. In Abschnitt
5.1.4 wurden drei verschiedene Vorgehensweisen beschrieben, nach denen ein Regelungs-
entwurf mit den Gleichungen nach de Luca und Manes in einer solchen Situation dennoch
möglich sein kann. Einer der Ansätze erwies sich bei der vorliegenden, spezifischen Kon-
taktsituation als ungeeignet. Die anderen beiden Ansätze waren anwendbar. Bei dem einen
Ansatz resultieren für die Achsprüfung besser geeignete Regelgrößen, es muss aber ein
Teil des Wissens über die Umgebung aufgegeben werden. Der andere Ansatz verwendet
das vollständige Umgebungsmodell. Nachteilig ist hier, dass weniger brauchbare Regel-
größen resultieren. Bei Verwendung der exakten Ein-/Ausgangslinearisierung entfallen
die jeweiligen Nachteile. Das im Regler enthaltene Umgebungsmodell wird vollständig
berücksichtigt. Während bei dem Ansatz nach de Luca und Manes nur bestimmte Target-
Signale bzw. Regelgrößen möglich sind, erlaubt die exakte Ein-/Ausgangslinearisierung
prinzipiell alle im Stand von Technik und Forschung genannten Target-Signale als Regel-
größen. Es handelt sich damit um den idealen Regelungsansatz für den Achsprüfstand.
Allgemein stellt die exakte Ein-/Ausgangslinearisierung einen hervorragenden Ausgangs-
punkt für die Synthese einer hybriden Kraft-/Positionsregelung dar, da sie dem Entwickler
(im Vergleich zu den aus dem Stand von Technik und Forschung bekannten Verfahren)
besonders viele Entwurfsfreiheiten lässt. Die Entwurfsmethode kann auch auf den Fall
einer dynamischen Bindung zwischen Endeffektor und Umgebung übertragen (Abschnitt
5.2.2) und für den Regelungsentwurf anhand vereinfachter, experimentell bestimmter
Umgebungsmodelle (Abschnitt 5.2.3) eingesetzt werden. Die beschriebenen Regler sind
außerdem prädestiniert für die Durchführung numerischer Betriebsfestigkeitskeitsuntersu-
chungen unter Einbeziehung des Prüfsystems, wie sie z. B. von Oppermann et al. [OBL02]
beschrieben wurden, vgl. Abschnitt 2.3.1. Dort wird der TWR-Algorithmus zur Nachbil-
dung gegebener Target-Signale verwendet, was diese simulativen Untersuchungen genauso
wie die Prüfstandsversuche zeitaufwändig macht. Mit den beschriebenen Reglern genügt
dagegen die Durchführung einer einzelnen Simulation, da durch ihre Anwendung die
Target-Signale direkt mit hinreichend hoher Güte nachgebildet werden können.

Eine wesentliche Herausforderung bei der praktischen Anwendung dieser Methoden be-
steht in begrenzter Aktordynamik. Die Anwendbarkeit der für ideale Aktorik hergeleiteten
Regelungen ist bei begrenzter Aktordynamik nicht zwangsläufig gegeben. Bei dem vorlie-
genden System zeigen Simulationen, dass die Regelungen nach Berücksichtigung der PT3-
Aktordynamik im Modell nicht mehr funktional sind. Die Vernachlässigung der Aktor-
dynamik beim Regelungsentwurf ist nur bei sehr hoher Stelldynamik zulässig. Ist die
Aktorik wie im vorliegenden Fall nicht vernachlässigbar schnell, so ist ein angepasster
Regelungsentwurf erforderlich. Liegt bspw. bei dem eindimensionalen Ersatzmodell (Bild
5-32) eine PT1-Aktordynamik der Form

Fq

Fq,r
=

1
1
ωA

s + 1
(5-120)



5.6 Zusammenfassung 219

vor, so lautet das um die Aktorik erweiterte Zustandsraummodell


ż
z̈

Ḟq

 =



ż
1

mE+mu
·
(
Fq − cu z − du ż

)

−ωA Fq

 +


0
0
ωA

 · Fq,r . (5-121)

Die Ausgangsgleichungen (5-116) und (5-117) bleiben bestehen, wobei in beiden Fällen
kein Durchgriff vorliegt. Nach der exakten Ein-/Ausgangslinearisierung folgt für die
Kraftregelung die Eingangsgröße

Fq,r =
1

mu ωA
·
( (

mE + mu
)

u f + mE

(
cu du

mE + mu
− ċu

)
z

+mE

(
d2

u

mE + mu
− cu − ḋu

)
ż +

(
mu ωA −

mE du

mE + mu

)
Fq

)
, (5-122)

für die Positionsregelung

Fq,r =
1
ωA
·
( (

mE + mu
)

up −
(

cu du

mE + mu
− ċu

)
z

−
(

d2
u

mE + mu
− cu − ḋu

)
ż +

(
ωA +

du

mE + mu

)
Fq

)
. (5-123)

Für den jeweiligen linearen Eingang gilt in diesem Fall abweichend, dass u f = τ̇ bzw. up =
...z. Die Differenzordnung hat sich um die Ordnung der Aktordynamik erhöht. Der Rege-
lungsentwurf mittels exakter Ein-/Ausgangslinearisierung ist ebenso für Aktordynamiken
höherer Ordnung möglich (Prüfstand: PT3). Es ist jedoch zunehmend mehr Modellwissen
über den Manipulator und die Umgebung erforderlich, was sich im vorliegenden Beispiel
durch das Auftreten von ċu und ḋu in (5-122) und (5-123) ausdrückt. Die Herleitung ist
für das eindimensionale Modell noch vertretbar, insb. für das ohnehin bereits sehr kompli-
zierte Modell der MacPherson-Radaufhängung (Abschnitt 4.3) aber mit hohem Aufwand
in der Herleitung als auch mit steigendem Rechenaufwand während der Simulations-
bzw. Prüfstandslaufzeit verbunden. Außerdem besitzt der resultierende, lineare Regelkreis
eine erhöhte Ordnung. Es müssen sämtliche Zustandsgrößen des um die Aktordynamik
erweiterten Systemmodells vorliegen, entweder durch Messung oder Zustandsbeobachtung.
Auch die eigentliche Regelgröße muss bis zu ihrer um 1 verminderten Differenzordnung
vorliegen. Die Realisierung einer solchen Regelung ist prinzipiell möglich, jedoch mit sehr
hohem Aufwand verbunden. Einen weiteren Lösungsansatz zum Umgang mit der sich
aus der begrenzten Aktordynamik ergebenden Problematik stellt das in Abschnitt 5.1.2
vorgeschlagene Lead-Glied dar. Die für ideale Aktorik berechneten Aktorkräfte (5-118)
bzw. (5-119) werden dabei vor der Aufschaltung durch das Lead-Glied weiterverarbeitet.
Hierdurch resultiert virtuell eine hinreichend hohe Aktordynamik. Beide Ansätze stellen
eine Erweiterung des Stands von Technik und Forschung dar, da dort stets von idealer
Aktorik ausgegangen wird. Die Erweiterungen sind anwendbar, wenn die Aktordynamik
sich in guter Näherung durch eine lineare Differentialgleichung (5-21) beschreiben lässt.
In Zukunft ist zu prüfen, inwieweit diese Annahme für das vorliegende System zulässig ist.
Unter Umständen muss das Modell der Aktorik und (in der Folge) auch der Regelungsent-
wurf weiterentwickelt werden. Mögliche Erweiterungen des Aktorikmodells schließen das
amplitudenabhängige Verhalten der Servoventile sowie die maximalen Zylinderkräfte und
-hübe ein.
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Die genannten Regler erzielen besonders gute Ergebnisse, wenn die im Regler hinterlegten
Modelle von Manipulator und Umgebung von hoher Güte sind. Das Manipulatormodell
ist bis auf die oben genannten Vereinfachungen in der Modellierung der Aktorik für die
angestrebte Anwendung sicherlich hinreichend gut bekannt. Das Modell der Umgebung
bzw. der MacPherson-Radaufhängung verhält sich sehr ähnlich zu der im Prüfstand verbau-
ten Radaufhängung, die Unterschiede zur Realität sind aktuell aber noch nicht hinreichend
gering. Hinzu kommt, dass für deren Anwendung über die bisherige Ausstattung des
Prüfstands hinaus eine Erweiterung der Sensorik notwendig ist. Für den Nachweis der Leis-
tungsfähigkeit dieser Regelungen wurde daher auf Computersimulationen zurückgegriffen.
Nach Identifikation und Validierung des Umgebungsmodells und weiteren Voruntersu-
chungen, z. B. zu Stabilität und Robustheit der Regelung, sind bei zukünftiger Anwendung
am Prüfstand Ergebnisse zu erwarten, die das Potenzial besitzen, die kosten- und zeitauf-
wändige Achsprüfung in Zukunft wesentlich effizienter zu gestalten. Die Bandbreite der
Regelung kann theoretisch beliebig hoch gewählt werden und ist nur durch die Leistungs-
fähigkeit der Aktorik sowie die Güte und den Gültigkeitsbereich des Regelstreckenmodells
begrenzt. Die Regelung erlaubt eine gezielte Einstellung von sechs Zielgrößen, da sechs
Aktoren vorliegen. In der Achsprüftechnik werden zwar häufig mehr Target-Signale (für
eine Achsseite) gleichzeitig verfolgt; die Target-Signale sind aber redundant und das Ergeb-
nis stellt prinzipbedingt einen gewichteten Kompromiss dar. Eine unabhängige Einstellung
von mehr als sechs Zielgrößen mit nur sechs Aktoren ist physikalisch nicht möglich. Bei
dem vorliegenden eindimensionalen Modell können bspw. auch nicht die Bewegung des
Endeffektors z und die Kontaktkraft zur Umgebung τ simultan eingestellt werden.

Der skizzierte Regelungsentwurf ist mit den Bewegungsgleichungen nach (4-222) auf alle
Radaufhängungen nach dem MacPherson-Prinzip übertragbar. Damit wäre die Erprobung
von rund drei Viertel aller Vorderachsen in aktuellen PKW abgedeckt, vgl. Bild 2-30.
Der Verwendung des Regelungsansatzes auch für andere Radaufhängungen steht prinzi-
piell nichts im Wege. Hierfür müssen lediglich die Bewegungsgleichungen der jeweils
betrachteten Radaufhängung hergeleitet werden und ein hinreichend guter Parametersatz
vorliegen.

Die hohe Abhängigkeit der beschriebenen Regler von einem Modell der Umgebung hat wei-
tere Regelungsentwürfe motiviert. Die Regelungsentwürfe ohne Entkopplung der (Kraft-)
Regelgrößen (Abschnitt 5.3) basieren auf der Linearisierung für die Pose z des Hexapod.
Bei dem eindimensionalen Modell folgen sie direkt durch Umstellen der Bewegungsglei-
chung des Endeffektors nach Fq. Es folgt die Eingangsgröße

Fq = mE · up + τ . (5-124)

Der Direktvergleich mit (5-119) zeigt, dass das Umgebungsmodell dabei zugunsten eines
Messwerts für τ entfallen ist. Aufgrund der Differenzordnung von 2 ist eine Positions-
regelung auf dieser Basis möglich und wird auch seit Einbau der Achse am Prüfstand
erfolgreich eingesetzt. In dieser Ausarbeitung wurden aufbauend auf dem Eingang up drei
Kraftregler vorgestellt:

• die implizite Kraftregelung mit unterlagerter Positionsregelung,

• die implizite Kraftregelung mit unterlagerter Geschwindigkeitsregelung sowie

• die explizite Kraftregelung (keine unterlagerten Regelschleifen).
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Bei diesen Ansätzen liegt kein linearer Eingang für die Kontaktkräfte und -momente τ
vor, und die Größen sind weiterhin verkoppelt. Für den Regler mit unterlagerter Positi-
onsregelung wurden auch Prüfstandsergebnisse diskutiert. Die bisher mit experimentell
ausgelegten Reglerparametern erzielten Ergebnisse sind gut, erfüllen aber noch nicht
die hohen Anforderungen an die Betriebsfestigkeitsuntersuchung. Problematisch ist die
weiterhin bestehende Verkopplung der Regelgrößen, die sich besonders in denjenigen
Richtungen bemerkbar macht, in denen eine hohe Steifigkeit vorliegt (Querkraft Fy und
Sturzmoment Mx). Die praktische Arbeit am Prüfstand wird auch dadurch erschwert, dass
sich die Ursache instabilen Verhaltens bzw. des Eingreifens der Sicherheitsroutine infolge
unzulässig hoher Kontaktkräfte und -momente aufgrund der vielen möglichen Einfluss-
größen nur schwer eingrenzen lässt. Wahrscheinlich ist jedoch, dass Instabilitäten mit den
vorliegenden Stellgrößenbeschränkungen zusammenhängen, insb. der amplitudenabhängi-
gen Ventildynamik sowie den maximal möglichen Zylinderdifferenzdrücken. Die beiden
anderen aufgezählten Ansätze wurden bisher nicht in vergleichbarem Umfang untersucht.
Bisher konnten weder in der Simulation noch am Prüfstand nennenswerte Vorteile dieser
Verfahren festgestellt werden. Theoretisch besitzen sie jedoch einige Vorzüge gegenüber
der impliziten Kraftregelung mit unterlagerter Positionsregelung, bspw. die stationäre
Genauigkeit der Kraftregelung ohne I-Anteil bei unterlagerter Geschwindigkeitsregelung.
Allen drei Ansätzen ist gemein, dass die Drehmomentregelung nur für kleine Kardanwinkel
α, β und γ näherungsweise korrekt ist. Mit allen drei Reglern können prinzipbedingt nur
die TCP-Größen τ bzw. z geregelt werden. Andere Target-Signale, z. B. die Regelung der
Belastung einzelner Lenker, ist hiermit ohne weitere Anpassungen nicht möglich.

Auch die Regelung ohne Umgebungsmodell (Abschnitt 5.4) ist aus der Motivation ent-
standen, eine hybride Kraft-/Positionsregelung ohne umfangreiches Modellwissen über
die Umgebung zu ermöglichen. Prinzipiell kann für die Positionsregelung der Eingang
(5-124) verwendet werden, bei dem das Umgebungsmodell durch eine Messung der Kon-
taktkraft τ ersetzt wurde. Analog zu (5-124) kann die Kraftregelung aufbauend auf dem
Systemeingang

Fq = mE · z̈ + u f (5-125)

erfolgen. Das Umgebungsmodell entfällt zugunsten des Messwerts für die Beschleunigung
z̈. Bei idealer Messung von τ bzw. z̈ wird die Reaktion der Umgebung ideal kompensiert,
sodass die gleichen Regler wie bei den Entwürfen nach der exakten Ein-/Ausgangslinea-
risierung verwendet werden können. Die neuen Eingangsgrößen u f und up können nach
(2-55) bzw. (2-57) gebildet werden. Während die Positionsregelung (Differenzordnung 2,
falls in diesem Fall noch von einer Differenzordnung gesprochen werden kann) nach diesem
Prinzip auch am Prüfstand erfolgreich eingesetzt wird, zeigen erste Untersuchungen am
Simulationsmodell, dass die Kraftregelung (Differenzordnung 0) schon bei minimalen Ver-
zögerungen der Messwerte für z̈ in dieser einfachen Form nicht beibehalten werden kann.
Ursache ist der Durchgriff für Kraftregelgrößen. Dieser Ansatz ist theoretisch dennoch
sehr interessant, da er ohne Umgebungsmodell auskommt und die Reglerparametrierung
über den direkten Zusammenhang mit der Bandbreite der Kraft- bzw. Positionsregelkrei-
se anschaulich ist. Außerdem ist die Drehmomentregelung für beliebige Kardanwinkel
korrekt. Vor einem Einsatz am Prüfstand sind weitere Untersuchungen erforderlich.

In Abschnitt 5.5 wurde die Kombination der Prüfstandsregelung mit einer ILR beschrieben,
die im Rahmen der Masterarbeit von Nikolai Fast [FK18] implementiert und für die
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implizite Kraftregelung mit unterlagerter Positionsregelung erfolgreich am Prüfstand
erprobt wurde. Sie kann dazu eingesetzt werden, die Abbildungsgüte am Prüfstand insb. für
hochfrequente Signalanteile über das mit der Regelung erzielbare Niveau hinaus zu steigern.
Die ILR ist mit allen beschriebenen Regelungen kombinierbar.
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6 Zusammenfassung, wissenschaftlicher Beitrag und Ausblick

In diesem Kapitel wird der Inhalt dieser Arbeit zusammengefasst und deren wissen-
schaftlicher Beitrag aufgezeigt. Zum Abschluss erfolgt ein Ausblick auf weiterführende
Arbeiten.

6.1 Zusammenfassung

In dieser Dissertationsschrift wurde der Entwurf einer hybriden Kraft-/Positionsregelung
für einen hydraulischen Hexapod beschrieben, der als Anregungseinheit in einem Achs-
prüfstand dient. Der Endeffektor, d. h. die Arbeitsplattform des Hexapod ist über ein
starres Kraftmessrad mit der Radnabe einer MacPherson-/Radaufhängung verbunden,
die den Kontaktpartner darstellt. Aufgabe der Regelung ist das gezielte Nachbilden von
Belastungs- und/oder Positions-Zeitverläufen der Radaufhängung, die in der Branche als
Target-Signale bezeichnet werden. Häufig handelt es sich dabei um besonders anspruchs-
volle Anregungssituationen (z. B. Schlechtwegstrecken), die im Fahrversuch aufgezeichnet
wurden. Derartige Prüfstandsversuche stellen einen Teil des Betriebsfestigkeitsnachweises
für Fahrzeugachsen dar. Mit dem in dieser Arbeit betrachteten System sollen darüber
hinaus in Zukunft auch Hardware-in-the-Loop-Versuche (HiL-Versuche) durchgeführt
werden. Vorstellbar ist z. B. die Unterstützung der Fahrwerkregelungsentwicklung durch
einen Prüfstand mit real vorhandenem Fahrwerk.

Stand von Technik und Forschung

Zu Beginn der Arbeit wurde ein umfassender Stand von Technik und Forschung auf diesem
Themengebiet recherchiert. Er zeigt, dass die in der Industrie eingesetzten Achsprüfstände
mit einer iterativ lernenden Regelung (ILR) betrieben werden. Auf diese Weise gelingt
es, auch hochfrequente Anteile in den Target-Signalen von bis zu 50 Hz, an manchen
Systemen sogar bis zu 80 Hz, in hinreichender Güte nachzubilden. Erste Verfahren zur
Einbeziehung aktiver Fahrwerkskomponenten in die Betriebsfestigkeitsversuche liegen
vor. Das hohe Potenzial einer echten HiL-Simulation unter Einbeziehung des Fahrwerks
bleibt der Branche bislang verwehrt, da keine hinreichend schnelle Prüfstandsregelung
vorliegt.

In der Robotik sind echtzeitfähige Regelungen hingegen alltäglich, da die Anforderungen
an die Dynamik geringer sind. Es existieren zahlreiche Verfahren zur Regelung von Robo-
tern in Kontaktsituationen mit unterschiedlichen Zielsetzungen. Für die hier betrachtete
Anwendung, die eine Nachbildung von Sollwert-Zeitverläufen erfordert, kommen direkte
Kraftregelungen in Betracht. Sie unterteilen sich in die impliziten und expliziten Kraftre-
gelungen. Im Gegensatz zu den expliziten weisen die impliziten Verfahren unterlagerte
Regelschleifen für Position oder Geschwindigkeit auf. Als besonders vielversprechend
für die Anwendung am Achsprüfstand hat sich die hybride Kraft-/Positionsregelung her-
ausgestellt, wie sie von de Luca und Manes [LM94] beschrieben wurde. Mittels genauer
Modelle von Manipulator (Hexapod) und Umgebung (Radaufhängung) wird dabei eine
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Ein-/Ausgangslinearisierung des nichtlinearen Systems herbeigeführt, auf deren Basis
ein linearer, anschaulicher Regelungsentwurf möglich ist. Die erzielbare Bandbreite ist
dabei theoretisch nur durch die Stelldynamik sowie die Güte und den Gültigkeitsbereich
des Regelstreckenmodells begrenzt. Wie sich im Rahmen der durchgeführten Recherche
herausgestellt hat, sind Beispiele für die praktische Anwendung dieses Ansatzes nicht
dokumentiert. In der Industrie kommen andere Verfahren zum Einsatz, die einfacher
umzusetzen sind.

Die recherchierten Verfahren zur hybriden Kraft-/Positionsregelung aus dem Stand von
Technik und Forschung wurden in dieser Dissertationsschrift anhand zweier einfacher,
zweidimensionaler Beispielsysteme in einem eigenständigen Abschnitt der Arbeit (siehe
Kapitel 3) anschaulich aufbereitet.

Die Realisierung einer solchen, besonders leistungsfähigen Regelung für den Achsprüf-
stand setzt insb. ein Modell der MacPherson-Radaufhängung voraus. Der Stand von
Technik und Forschung zeigt, dass in der Industrie MKS-Radaufhängungsmodelle für
unterschiedlichste Anwendungen zum Einsatz kommen. Je nach betriebenem Aufwand
können sie das reale Gegenstück sehr gut wiedergeben. Die eingesetzten MKS-Soft-
waretools, mit deren Hilfe bei vertretbarem Aufwand sehr detaillierte Modelle auch für
komplexe Mechanismen erstellt werden können, eignen sich u. a. auch zur Erprobung
von Regelungen. Sie stellen jedoch nicht die Bewegungsgleichungen der modellierten
Systeme bereit, d. h. die mathematischen Gleichungen, die deren physikalisches Verhalten
beschreiben. Für den Entwurf einer leistungsfähigen Regelung nach der exakten Ein-/
Ausgangslinearisierung ist das explizite Vorliegen dieser Bewegungsgleichungen jedoch
unabdingbar. Rill [Ril94] hat diese für eine MacPherson-Radaufhängung beschrieben, bei
der der Radträger gegenüber der Karosserie drei Freiheitsgrade (FHG) aufweist: die Dre-
hung des Querlenkers (Einfederung), die Verschiebung der Lenkstange (Lenkbewegung)
sowie einen elastischen FHG zur näherungsweisen Berücksichtigung der Lagerelastizitä-
ten. Eine MacPherson-Radaufhängung weist je Achsseite drei Elastomerlager auf, deren
mathematische Beschreibung nach wie vor Gegenstand der Forschung ist.

Modellierung des Prüfstands

In Kapitel 4 wurden die Bewegungsgleichungen für das Gesamtsystem aus Hexapod,
Einzelradaufhängung und Kraftmessrad hergeleitet. Als Referenz diente dabei eine ei-
gens entwickelte Simulationsumgebung für den Prüfstand, das z. B. ein MKS-Modell
des Prüfstands einschließt. Das enthaltene MKS-Modell der MacPherson-Radaufhängung
entspricht dem derzeitigen Stand der Technik. Es enthält kennlinienbasierte Elastomerlager-
modelle. Im Hauptteil dieser Ausarbeitung wurden insgesamt fünf verschiedene Modelle
für den Hexapod beschrieben und deren Modellgüte anhand von Simulationen gegenüber-
gestellt. Die beschriebenen Modelle unterscheiden sich in der Anzahl der berücksichtigten
massebehafteten Starrkörper oder in der Parametrierung. Das detaillierteste Modell weist
13 massebehaftete Starrkörper auf: den Endeffektor sowie jeweils sechs Zylinderrohre
und -stangen. Dieses Modell zeigte im Vergleich zu einem MKS-Referenzmodell die
höchste Modellgüte. Es wurde außerdem beschrieben, wie mithilfe einer Parameteropti-
mierung auch mit einem stark vereinfachten Modell, das die Massen und Trägheiten der
Zylinderrohre und -stangen vernachlässigt, sehr hohe Güten erzielt werden können.
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Im Anschluss wurden die Bewegungsgleichungen der MacPherson-Radaufhängung herge-
leitet. Als Ausgangspunkt der Herleitung diente das von Rill [Ril94] beschriebene Modell.
Es wurde in dieser Arbeit um sieben weitere FHG erweitert, um die Lagerelastizitäten
möglichst gut im Modell abbilden zu können. Außerdem wurden alle sechs Starrkörper
der Radaufhängung in den Gleichungen berücksichtigt und die Restbeschleunigungen
hergeleitet, die üblicherweise aufgrund des damit verbundenen, hohen Aufwands in der
Herleitung vernachlässigt werden. Das Modell erlaubt die Variation der Anzahl an FHG
zur Abbildung der Lagerelastizitäten. Anhand von Simulationen konnte gezeigt werden,
dass sich eine besonders hohe Modellgüte ab sechs FHG für die Lagerelastizitäten einstellt.
Die hergeleiteten Bewegungsgleichungen stellen einen erheblichen Mehrwert gegenüber
den bisher vorliegenden Modellen dar und können aktuelle MKS-Modelle dieses Radauf-
hängungstyps ideal wiedergeben. Auch eine zweidimensionale Fassung dieses Modells
wurde entwickelt.

Beide Teilmodelle (Hexapod und Radaufhängung) wurden daraufhin zu einem Prüfstands-
modell vereint. Es wurden zwei unterschiedliche Modellvarianten beschrieben. Während
bei der einen Variante der Endeffektor des Hexapod sowie die Radnabe der Radaufhängung
ideal starr gekoppelt sind, erfolgt die Kopplung bei der anderen über ein Feder-Dämpfer-
System (sog. dynamische Bindung). Die hohe Güte der hergeleiteten Bewegungsgleichun-
gen konnte durch Vergleich mit dem als Referenz verwendeten MKS-Modell aufgezeigt
werden.

Synthese einer hybriden Kraft-/Positionsregelung für den Hexapod

Mithilfe des entwickelten MKS-Modells sowie der hergeleiteten Bewegungsgleichungen
für den Prüfstand wurde in Kapitel 5 die Regelungssynthese für den Hexapod durchge-
führt. Zunächst wurde der Regelungsentwurf nach de Luca und Manes für das Zielsystem
beschrieben. Er wurde für das idealisierte Modell der Radaufhängung, das keine Lager-
elastizitäten aufweist, und schließlich auch für das unvereinfachte Radaufhängungsmodell
durchgeführt und die Funktionalität am Simulationsmodell bestätigt. Bei der Radaufhän-
gung mit Elastomerlagern wurden drei verschiedene Ansätze beschrieben, die sich in den
möglichen Regelgrößen unterscheiden und dadurch, ob prinzipbedingt auf einen Teil des
Wissens über die Umgebung für die Realisierung verzichtet werden muss. Das aus der
Literatur bekannte Verfahren wurde dabei um die Wahl zwischen der Kraft- und Positions-
regelung in denjenigen Richtungen erweitert, wo physikalisch solch eine Wahlmöglichkeit
besteht. Außerdem wurde es um die Berücksichtigung begrenzter Aktordynamik erweitert,
wobei in der Ausarbeitung sowohl die exakte Lösung als auch eine einfacher zu realisieren-
de Näherungslösung erläutert wird. Die Verfahren aus der Literatur sind stets nur für ideale
Aktorik beschrieben. Beide Erweiterungen stellen allgemeingültige Weiterentwicklungen
des Regelungsentwurfs nach de Luca und Manes dar.

Als weiterer Regelungsansatz wurde das Verfahren der exakten Ein-/Ausgangslinearisie-
rung angewandt. Dieses Vorgehen ist für die Anwendung am Achsprüfstand prädestiniert,
da es sechs prinzipiell beliebige Target-Signale als Regelgrößen zulässt. Alle im Stand von
Technik und Forschung genannten, üblichen Target-Signale bei der Betriebsfestigkeitsprü-
fung sind damit realisierbar. Außerdem kann damit das vollständige Umgebungsmodell in
der Regelung berücksichtigt werden. Demgegenüber ist die Wahl der Regelgrößen bei dem
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Ansatz nach de Luca und Manes, der einen Sonderfall der exakten Ein-/Ausgangslinea-
risierung darstellt, auf bestimmte Positions- und/oder Kraftgrößen eingeschränkt. Hinzu
kommt, dass die exakte Ein-/Ausgangslinearisierung auch für die dynamische Bindung
von Endeffektor und Radnabe anwendbar und nicht auf den Fall der starren Bindung be-
schränkt ist. Für beide Ansätze ist ein einfacher linearer Regelungsentwurf möglich, wobei
die Wahl eines I-Kraftreglers und eines PD-Positionsreglers eine besonders anschauliche
Reglerparametrierung ermöglicht. Mit diesen Ansätzen ist eine prinzipiell beliebig schnelle
Regelung von Positions- und Kraftgrößen möglich. In der Praxis ergeben sich allerdings
zwangsläufig Begrenzungen, z. B. durch die Leistungsfähigkeit der verbauten Aktorik. Das
aktuell vorliegende Modell der MacPherson-Radaufhängung gibt mangels eines passenden
Parametersatzes das im Prüfstand verbaute Exemplar noch nicht hinreichend genau wieder.
Außerdem ist zur Erprobung weitere Sensorik erforderlich. Die hohe Leistungsfähigkeit
der Regelungen wurde anhand von Computersimulationen nachgewiesen. Die entwickelten
Regler sind sehr vielversprechende Kandidaten für den Betrieb des Prüfstands und sind
auch für die Durchführung numerischer Betriebsfestigkeitsuntersuchungen prädestiniert.
In beiden Situationen kann durch die Regler die bisher verwendete, zeitaufwändige ILR er-
setzt werden. Für die Nachbildung eines gegebenen Target-Signals ist mit den Reglern nur
noch ein einzelner Prüfstandsversuch bzw. die Durchführung einer einzelnen Simulation
erforderlich.

Nachteilig an den beschriebenen Reglern ist, dass deren erfolgreiche Umsetzung genaue
Modelle von Manipulator und Umgebung voraussetzt. Zudem ist der Regler auf die hinter-
legte Umgebung, hier die MacPherson-Radaufhängung, zugeschnitten und nicht für andere
Kontaktpartner verwendbar. Beispielsweise ist bei Austausch des Prüflings ein anderer
Parametersatz oder sogar andere Bewegungsgleichungen erforderlich, nämlich dann, wenn
ein anderer Radaufhängungstyp untersucht werden soll. Aufgrund dessen wurden in dieser
Arbeit auch andere Regelungsansätze beschrieben, bei denen das Ziel verfolgt wurde, mit
weniger oder ohne Modellwissen über die vorliegende Umgebung eine leistungsfähige
hybride Kraft-/Positionsregelung für den Hexapod zu realisieren. Für eine diagonal (d. h. in
Form unabhängiger Eingrößenregelkreise) entworfene PI-Kraftregelung mit unterlagerter
Positionsregelung wurden Prüfstandsmessungen für eine Schlechtwegstrecke durchge-
führt. Die Messergebnisse zeigen, dass bereits mit diesem sehr einfachen Ansatz gute
Ergebnisse am Prüfstand erzielt werden. Die Regelergebnisse in den steifen Richtungen
weisen noch eine Beeinträchtigung durch hohe Sollwertänderungen in relativ weichen
Richtungen auf. Der experimentell am Prüfstand ausgelegte Regler erfüllt noch nicht die
hohen Anforderungen an die Betriebsfestigkeitsprüfung. Gegenüber den aus dem Stand
von Technik und Forschung bekannten, bisher dokumentierten Anwendungsbeispielen für
kraftgeregelte Parallelkinematiken (PKM) sind jedoch beachtliche Verbesserungen der
Regelung erkennbar. Alleinstellungsmerkmal der vorliegenden Regelung ist eine unterla-
gerte Positionsregelung in den Aufgabenkoordinaten, die durch einen Zustandsbeobachter
ermöglicht wird. Als Schwierigkeit bei der Reglerparametrierung am Prüfstand erwies
sich zum einen die (noch) unkompensierte Verkopplung der Kraftregelgrößen sowie die
Tatsache, dass sich die Ursache instabilen Systemverhaltens bzw. des Eingreifens der
vorliegenden Sicherheitsroutine für unzulässig hohe Kontaktkräfte und -momente aufgrund
der Vielzahl möglicher Einflussgrößen nur schwer identifizieren lässt. Wahrscheinlich
ist, dass ein Zusammenhang der Instabilitäten mit den Stellgrößenbeschränkungen be-
steht, insb. der begrenzten, amplitudenabhängigen Ventildynamik sowie dem maximalen
Zylinderdruck.
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Über den vorgenannten Regler hinaus wurden zwei weitere Regelungsansätze beschrieben,
die ebenfalls auf der bereits vom positionsgeregelten Hexapod ohne Umgebungskontakt
(siehe Dissertationsschrift von Sarah Knoop [Kno17]) bekannten Linearisierung der Pose
des Endeffektors basieren. Sie weisen entweder keine oder eine unterlagerte Regelschleife
für die Geschwindigkeit auf. Bislang konnten allerdings keine nennenswerten Vorteile
dieser Verfahren gegenüber dem Ansatz mit unterlagerter Positionsregelung festgestellt
werden.

Ein gänzlich anderer Ansatz wurde aus dem Regelungsentwurf nach de Luca und Manes
durch Ersetzen des Umgebungsmodells durch eine Messung der Kontaktkräfte und -momente
(Positionsregelung) bzw. der Beschleunigung des Endeffektors (Kraftregelung) entwickelt.
Theoretisch wird auch in diesem Fall die Umgebungsdynamik ideal kompensiert und
die einfachen Regler (I-Kraftregler und PD-Positionsregler) können weiterhin eingesetzt
werden. Während die Positionsregelung am Prüfstand seit Einbau der Achse nach diesem
Schema arbeitet, zeigte die Kraftregelung am Simulationsmodell schon bei minimaler
Verzögerung des Messwerts für die Beschleunigung instabiles Verhalten, falls der I-Regler
beibehalten wird. Weiterführende Untersuchungen zu diesem theoretisch sehr interessanten
Ansatz sind erforderlich.

Schließlich wurde auch die Kombination der Regelung mit einer ILR beschrieben. Hier-
durch konnte der Stand der Technik für das betrachtete System abgebildet und Betriebsfes-
tigkeitsuntersuchungen für Target-Signale mit hochfrequenten Anteilen sind (im Rahmen
der Möglichkeiten der Aktorik) möglich. Die verschiedenen Regelungsentwürfe wurden
abschließend anhand eines eindimensionalen Ersatzmodells der Kontaktsituation gegen-
übergestellt.

6.2 Wissenschaftlicher Beitrag

Der wissenschaftliche Beitrag dieser Dissertationsschrift besteht einerseits in der umfassen-
den Recherche und Aufbereitung des Stand von Technik und Forschung für die betrachtete
Anwendung. Hinsichtlich der Betriebsfestigkeitsprüfung in der Fahrwerktechnik schließt
dies die Beschreibung

• des Hintergrunds und der praktischen Durchführung der Prüfstandsversuche,

• der spezifischen Umsetzung der ILR (sog. TWR-Algorithmus),

• der Weiterentwicklungen des TWR-Algorithmus sowie

• allgemeiner Verbesserungen am gesamten Erprobungsprozess

ein.

Die Verfahren zur Kraft- bzw. Interaktionsregelung von Manipulatoren werden ausführlich
aufbereitet. Insbesondere wurden sämtliche erläuterten Verfahren bereits auf bestimmte
PKM mit sechs FHG übertragen und sind in dieser Form im Stand von Technik und For-
schung angegeben. In der Literatur finden sich diese üblicherweise für serielle Kinematiken
(SKM) wie z. B. den Knickarmroboter. Auch ein umfassender Stand in der Modellierung
der MacPherson-Radaufhängung sowie von Elastomerlagern ist enthalten.

Während MKS-Modelle für Achsprüfstände auch in der Industrie eingesetzt werden,
besteht ein Alleinstellungsmerkmal dieser Arbeit in der Herleitung der Bewegungsglei-
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chungen für einen solchen Prüfstand. Es existieren schlicht keine anderen dokumentierten
Beispiele, in denen die Bewegungsgleichungen für dieses komplexe mechanische Sys-
tem angegeben sind. Insbesondere das aufbauend auf den Ausführungen von Rill [Ril94]
hergeleitete, erweiterte Modell für die MacPherson-Radaufhängung stellt eine erhebli-
che Weiterentwicklung der bislang vorliegenden Modelle für diese Radaufhängung dar,
da es eine deutlich verbesserte Abbildung der Lagerelastizitäten gegenüber den bisher
bekannten Modellen erlaubt. Gleiches gilt für das ebenfalls in dieser Arbeit angegebene
zweidimensionale Modell der MacPherson-Radaufhängung.

Bisher liegen auch keine dokumentierten Beispiele für die systematische, modellbasierte
Synthese einer echtzeitfähigen Regelung für einen Achsprüfstand vor. In dieser Arbeit wird
der Regelungsentwurf nach de Luca und Manes [LM94] aufgegriffen und allgemeingültig
um die Wahlmöglichkeit zwischen vorab festzulegenden Kraft- und Positionsregelgrößen
mithilfe einer binären, diagonalen Selektionsmatrix erweitert. Außerdem wird gezeigt, dass
es sich bei diesem Verfahren um einen Sonderfall der bekannten exakten Ein-/Ausgangsli-
nearisierung handelt. Die exakte Ein-/Ausgangslinearisierung ist für die Anwendung am
Achsprüfstand prädestiniert, da sie sämtliche in der Branche üblichen Target-Signale als
Regelgrößen zulässt. Bei Vorliegen eines hinreichend guten Umgebungsmodells ist hier-
mit die Durchführung von Betriebsfestigkeitsversuchen sowohl am Prüfstand als auch in
Computersimulationen möglich. Die Erfordernis des zeitaufwändigen TWR-Algorithmus
entfällt. Mit diesen leistungsfähigen Regelungsverfahren genügt die Durchführung eines
einzelnen Prüfstandsversuchs bzw. einer einzelnen Computersimulation zur Nachbildung
eines gegebenen Target-Signals. In der Arbeit werden Realisierungsprobleme, die sich aus
begrenzter Aktordynamik ergeben, aufgedeckt und für den Fall linearer Aktordynamik
sowohl die exakte als auch eine Näherungslösung angegeben. Die Funktionalität und
besondere Eignung dieses Regelungsentwurfs wurde anhand von Computersimulationen
nachgewiesen.

Die am Prüfstand erzielten Messungen für die implizite Kraftregelung mit unterlagerter
Positionsregelung erfüllen zwar noch nicht die Anforderungen an die Betriebsfestigkeits-
untersuchung, übertreffen jedoch bereits in der vorliegenden Form die recherchierten, an
anderen kraftgeregelten PKM erzielten Ergebnisse (vgl. Abschnitt 2.2.4). Dies ist insb. auf-
grund der vorliegenden, nichtlinearen Kontaktsituation erwähnenswert. Gegenüber den
aus dem Stand von Technik und Forschung bekannten Anwendungsbeispielen wird eine
unterlagerte Positionsregelung in Aufgabenkoordinaten verwendet, bei der die Lösung des
direkten kinematischen Problems durch einen Zustandsbeobachter erfolgt. Auch die spezi-
fische Umsetzung der ILR für das Zielsystem ist in dieser Form bisher nicht dokumentiert
worden.

6.3 Ausblick

Neben der ausstehenden Umsetzung der HiL-Entwurfsumgebung für Fahrwerkregelsyste-
me am Prüfstand bietet auch die Weiterentwicklung der beschriebenen Prüfstandsregelung
zahlreiche Anknüpfungspunkte für weiterführende wissenschaftliche Arbeiten.

Eine erhebliche Erleichterung des Regelungsentwurfs würde ein noch genaueres Modell
des Prüfstands ermöglichen. Im Besonderen sollte in der entwickelten Simulationsum-
gebung ein möglichst genaues Modell des Prüflings hinterlegt werden. So könnten in
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Zukunft nicht nur qualitative Erfahrungen zum Regelungsentwurf mithilfe des Modells
gewonnen werden (vgl. die Parametrierung der Positionsregelung, Abschnitt 5.3, insb. Bild
5-23). Im Idealfall könnten stattdessen sogar die dort synthetisierten Regler unverändert am
Prüfstand übernommen werden. Zukünftige Arbeiten sollten sich daher vor allem mit der
Identifikation eines Parametersatzes für das entwickelte Modell der MacPherson-Einzelrad-
aufhängung beschäftigen. Aufgrund der Vielzahl erforderlicher Parameter und Kennlinien
(vgl. Abschnitt 4.3.2) ist die Identifikation jedoch sehr anspruchsvoll und zeitaufwändig.
Um den erheblichen Zeitaufwand zu reduzieren, sollte eine enge Zusammenarbeit mit
den Automobilherstellern und -zulieferern angestrebt werden, um zumindest einen Teil
dieser Parameter aus Datenblättern oder anderen Identifikationsmessungen übernehmen zu
können. Wie die Recherche zum Stand von Technik und Forschung gezeigt hat, existieren
durchaus hochwertige Modelle in der Industrie, die sich auch ideal für den Regelungsent-
wurf eignen würden. Sobald ein zum Prüfling passender Parametersatz vorliegt, können
Untersuchungen zur Modellierungstiefe durchgeführt werden. Hier stellt sich die Frage,
ob dem in Kapitel 4 beschriebenen MKS-Modell und den Bewegungsgleichungen eine
hinreichend gute Abbildung der Realität gelingt. Als problematisch könnte sich dabei die
Starrkörpermodellierung sowie die mit Kennlinien noch recht einfach gehaltene Modellie-
rung der Elastomerlager erweisen. Der aktuelle Stand der Technik und Forschung zeigt
(vgl. Abschnitt 2.3.3), dass insb. bei der räumlichen Modellierung von Elastomerlagern
noch Forschungsbedarf besteht. Die Überprüfung kann durch die Gegenüberstellung von
realem und simuliertem Systemverhalten erfolgen. Falls die Modelle nicht hinreichend ge-
nau sind, könnten ggf. verbesserte Elastomerlagermodelle oder ein flexibles MKS-Modell
die entscheidende Aufwertung herbeiführen. Genügt das Modell, so kann bei Bedarf
außerdem untersucht werden, inwieweit sich dieses Modell ohne nennenswerte Reduk-
tion der Modellgüte vereinfachen lässt. Ein hochwertiges Umgebungsmodell verspricht
bessere Regelergebnisse. Für ein einfacheres Modell spricht der geringere Aufwand für
die Herleitung der Bewegungsgleichungen, die Identifikation der Parameter sowie die
geringere Rechenzeit. Einen Anknüpfungspunkt liefern die Ausführungen in Abschnitt
4.3.3. Auch die Verwendung eines einfach gehaltenen Modells in Kombination mit einem
Störgrößenbeobachter kann sich für die Regelung des Systems als geeignet erweisen.

Neben dem Prüflingsmodell sind andere Weiterentwicklungen des Simulationsmodells
möglich. Beispielsweise besitzen die Servoventile amplitudenabhängiges Verhalten, das
durch die aktuell verwendete Modellierung, ein einfaches PT2-Glied, nur unzureichend
wiedergegeben wird. Allgemein sollte ein genaueres Modell des hydraulischen Teilsystems
angestrebt werden. Für die Hydraulikzylinder sollte außerdem ein Stribeck-Reibmodell
implementiert und mithilfe von Prüfstandsmessungen identifiziert werden. Auch die End-
lagendämpfung und die Endanschläge der Zylinder sind bisher nicht im Modell enthalten.
Die Modellierung und Identifikation des Messrades ist ein weiterer möglicher Ansatzpunkt.
Bisher unberücksichtigt ist auch der vertikale Freiheitsgrad der Aufspannplatte, die zum
Zweck der Schwingungsisolierung auf Luftfedern gelagert ist.

Für die Durchführung von Betriebsfestigkeitsversuchen in der Simulation und am Prüfstand
sind außerdem Target-Signale erforderlich, die zu der im Prüfstand verbauten Radauf-
hängung gehören. Auch hier wäre eine enge Kooperation mit einem Industriepartner
wünschenswert. Idealerweise kann dieser auch die für diese Target-Signale an einem
konventionellen Achsprüfstand erzielten Response-Signale bereitstellen, um so einen
Direktvergleich mit einem solchen System durchführen zu können.
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Zu den Regelungsansätzen mit exakter Ein-/Ausgangslinearisierung sollte (neben Identifi-
kation und Validierung des Radaufhängungsmodells) weiter untersucht werden, wie mit
der begrenzten Aktordynamik umzugehen ist. Zwar ist in der Arbeit die exakte Lösung für
die vorliegende PT3-Aktordynamik angegeben, die Realisierung am Prüfstand ist jedoch
aufgrund der Vielzahl erforderlicher Mess- bzw. Schätzgrößen sehr aufwändig. Es sollte
untersucht werden, ob die Berücksichtigung einer PT1-Aktordynamik im Regler für die
Strecke mit PT3-Aktordynamik ausreicht. Die Lösung ist zwar dann nicht exakt, stellt
aber möglicherweise einen brauchbaren Kompromiss aus Realisierbarkeit und Regelgüte
dar. Unter Umständen ist auch die vorgeschlagene Näherungslösung über die zusätzliche
Filterung mit einem Lead-Glied praktikabel. Es kann sich auch als erforderlich herausstel-
len, ein genaues Zustandsraummodell des hydraulischen Teilsystems anstelle des linearen
Ersatzmodells für die Aktorik in den Entwurf der exakten Ein-/Ausgangslinearisierung
einzubeziehen.

Anstelle dieses Ansatzes sind für die Prüfstandsanwendung allerdings solche vorzuziehen,
die kein oder ein stark vereinfachtes Umgebungsmodell erfordern. Möglicherweise ge-
nügt anstelle des komplizierten Prüflingsmodells (Abschnitt 4.3) auch ein relativ einfach
durch Experimente zu identifizierendes Modell für den Entwurf einer Prüfstandsregelung,
bspw. der Frequenzgang, der auch bei der ILR verwendet wird oder Modelle, wie sie in
Abschnitt 5.2.3 genannt wurden. Auch nichtlineare Modelle wie z. B. nichtlineare ARX
oder Hammerstein-Wiener-Modelle, die sich mithilfe von MATLAB leicht aus Messungen
identifizieren lassen, kommen in Frage.

Die implizite Kraftregelung mit unterlagerter Positionsregelung bietet sehr viel Spiel-
raum für Weiterentwicklungen. Am Prüfstand wurden bisher dezentrale, d. h. als Eingrö-
ßenregelung entworfene PI-Kraftregler eingesetzt. Eine Kompensation der vorhandenen
Verkopplungen der Regelgrößen wurde nicht erprobt. Für den Regelungsansatz erschei-
nen Vorsteuermaßnahmen und die Entwicklung eines systematischen, experimentellen
Einlernprozesses für die (ggf. betriebspunktabhängigen) Reglerparameter besonders viel-
versprechend. Ein solcher Einlernprozess wäre für die betrachtete Anwendung besonders
interessant, da ein häufiger Wechsel des Prüflings bei industrieller Anwendung üblich
ist. Im Gegensatz zum Stand der Technik würde dabei die Regelung eingelernt und nicht
die (für ein Target-Signal spezifischen) Stellsignale der Antriebe. Auch Methoden des
maschinellen Lernens, z. B. die Bayes’sche Optimierung oder gradientenbasierte Verfahren,
stellen hierfür einen vielversprechenden Ansatz dar.

Als Ausgangspunkt des Regelungs- und Vorsteuerungsentwurfs sollte der Frequenzgang
des offenen Kraftregelkreises in einem oder mehreren Betriebspunkten am Prüfstand
gemessen werden. Hiermit könnte bspw. auch ein Multi-Modell- oder ein H∞-Entwurf wie
in [Cuy06] für das System durchgeführt und erprobt werden. Die implizite Kraftregelung
mit unterlagerter Geschwindigkeitsregelung und die explizite Kraftregelung auf Basis der
Linearisierung der Endeffektorpose (Abschnitt 5.3.2) müssen aufgrund ihrer theoretischen
Vorteile gegenüber der positionsbasierten Kraftregelung näher betrachtet werden. Für alle
drei Verfahren kann es erforderlich werden, die Drehmomentregelung zu überdenken. Diese
ist in der aktuellen Formulierung nur für kleine Kardanwinkel α, β und γ näherungsweise
korrekt.

Insbesondere der in Abschnitt 5.4 beschriebene Regelungsansatz ist für die Prüfstands-
anwendung interessant. Er stellt eine Näherungslösung der exakten Ein-/Ausgangslinea-
risierung dar, bei dem das Umgebungsmodell durch Mess- bzw. Schätzgrößen für die
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Endeffektorbeschleunigung und die Kontaktkräfte und -momente ersetzt wird. Für diesen
Regler muss untersucht werden, unter welchen Bedingungen ein stabiles Gesamtsystem
resultiert. Außerdem ist zu prüfen, inwieweit die Regelungsgüte unter fehlerbehafteten
Mess- bzw. Schätzgrößen leidet.

Auch die ILR bietet Potenzial für zukünftige Forschungsaktivitäten, falls dieser Ansatz
weiter untersucht werden soll. Motivation dürfte wie im Stand von Technik und Forschung
(Abschnitt 2.1.3) die Beschleunigung der Konvergenz des Iterationsprozesses sein.

Möglicherweise stellt sich im Rahmen weiterführender Arbeiten heraus, dass je nach
Regelgröße ein anderer Kraftregelungsansatz das beste Regelergebnis liefert, bspw. in
Abhängigkeit der vorliegenden Steifigkeit. Grundsätzlich ist diese richtungsabhängige
Kombination verschiedener Regler für den Prüfstandsbetrieb vorstellbar und wird bereits
von der auch im Rahmen dieser Arbeit entwickelten Systemsoftware ermöglicht. Es kann
außerdem sinnvoll sein, die Steifigkeit der Kraftmesseinrichtung oder der Verbindung zwi-
schen dieser und dem Kontaktpartner in den Richtungen mit hoher Steifigkeit konstruktiv
herabzusetzen. Auf diese Weise kann die Verkopplung der Regelgrößen reduziert werden,
wodurch sich der Entwurf der Kraftregelung einfacher gestaltet.

Eine Verbesserung aller Regelungsansätze ist außerdem bei Verwendung eines genaueren
Hexapodmodells im Regler zu erwarten. Am Prüfstand wird bisher ein 1-Starrkörper-
Modell zur Regelung eingesetzt. Durch die Verwendung des 13-Starrkörper-Modells oder
die Identifikation besserer Parameter für das aktuell eingesetzte 1-Starrkörper-Modell soll-
te sich die Regelgüte weiter verbessern. Gegen die Nutzung des 13-Starrkörper-Modells
spricht die aktuell nur geringe verfügbare zusätzliche Rechenkapazität des Echtzeitrechners.
Daneben hat auch die Weiterentwicklung des Druckreglers Potenzial für die Verbesse-
rung der überlagerten Kraft- und Positionsregelungen. Mögliche Ansätze sind z. B. die
Verwendung des Backstepping-Verfahrens oder die Vorgabe des bisher ungenutzten Vor-
steuereingangs ∆ ṗr.

Nicht zuletzt hat auch der Beobachter Einfluss auf das Regelergebnis und kann weiter-
entwickelt werden. In den bestehenden Beobachter sollten die Messgrößen einer im TCP
angebrachten 6-FHG-IMU (d. h. drei translatorische Beschleunigungen und drei Dreh-
raten) aufgenommen werden, um die Genauigkeit der Beobachtung weiter zu steigern.
Die bestehende Störgrößenschätzung muss überprüft und für eine Störgrößenkompensati-
on verwendet werden. Insbesondere für die Erprobung des Regelungsentwurfs nach der
exakten Ein-/Ausgangslinearisierung am Prüfstand sollte der Beobachterentwurf unter
Einbeziehung des entwickelten Radaufhängungsmodells erfolgen.

Auch die Wechselwirkungen zwischen der linken und der rechten Seite der Achse müssen
untersucht werden. Bei Verwendung der exakten Ein-/Ausgangslinearisierung können
bei der aktuellen Aktorik theoretisch 7, bei zwei Hexapoden 12 physikalische Größen
entkoppelt geregelt werden. Für andere Regler ist das Ausmaß der Wechselwirkungen zu
untersuchen und ggf. Modifikation des Regelkonzepts vorzunehmen.

Das Prüfsystem und die Regelungen bieten darüber hinaus Spielraum für umfangreiche
theoretische Betrachtungen, die bisher nicht durchgeführt wurden. Hierzu zählt bspw. auch
eine Singularitätsanalyse sowie die weiterführende Untersuchung des DKP für speziell
diesen Hexapod. Auch die Stabilität und Robustheit der Regelungen gegenüber Modell-
unsicherheiten und Störgrößen muss untersucht werden. Zudem sollte analysiert werden,
welche Betriebspunkte durch den Hexapod im Kontakt mit der betrachteten Umgebung
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bei welcher Belastung erreicht werden können, um vorab beurteilen zu können, ob ein
gegebenes Target-Signal mit dem gegebenen Prüfstand nachgebildet werden kann. Hier
bietet sich die formale Betrachtung der (Ausgangs-) Steuerbarkeit bzw. der Erreichbarkeit
an.

Dieses Thema ist eng verknüpft mit den Stellgrößenbeschränkungen, die bisher beim
modellbasierten Regelungsentwurf nicht berücksichtigt wurden. Analog zum positionsge-
regelten Hexapod ohne Umgebungskontakt [Kno17] ist ein Führungsgrößenfilter erforder-
lich, das die Sollwerte der Regelung so anpasst, dass die Stellgrößenbeschränkungen stets
eingehalten werden. Liegt ein hochwertiges Umgebungsmodell vor, so kann die Einhaltung
der Stellgrößenbeschränkungen komfortabel mit dem entwickelten Simulationsmodell
überprüft werden. Beispielsweise könnte der mittels exakter Ein-/Ausgangslinearisierung
entworfene Regler zur Nachbildung eines gegebenen Target-Signals verwendet und die
sich im Modell ergebenden Stellgrößenverläufe analysiert werden. Vor Synthese des Füh-
rungsgrößenfilters sind noch grundlegende Fragen zu klären. Beispielsweise ist zu prüfen,
in welcher Form das Target-Signal bei Verletzen der Stellgrößenbeschränkungen modifi-
ziert werden soll. Das Herunterskalieren aller Signale um den gleichen Faktor ist nur ein
möglicher Ansatz. Die Anpassungen sollten die Verlässlichkeit des Betriebsfestigkeits-
versuchs möglichst nicht beeinträchtigen. Auch Änderungen der Prüfstandsausstattung
(z. B. Einbau von vier anstelle zwei Ventilen je Zylinder) oder konstruktive Änderungen
am Hexapod (z. B. Optimierung der Endeffektormasse, größere Kolbenflächen) sollten in
Betracht gezogen werden.

Am Prüfstand sollte weiterhin eine Bremsanlage eingebaut werden, um auch das Bremsmo-
ment My mithilfe der Aktorik einregeln zu können. Außerdem sollte auch eine Lenkaktorik
verbaut werden. Zudem muss die Sensorik dieses Entwicklungssystems erweitert werden.
Neben dem bereits genannten 6-FHG-IMU sind hier insb. Sensoren für die typischen
Target-Signale der Achsprüfung zu erwähnen. Auch der Umstieg auf ein leistungsfähigeres
Echtzeitsystem bietet sich an.

Zum Zweck der Entwicklung und Erprobung neuer Regelungskonzepte wäre außerdem
ein einfacherer Prüfstand sehr hilfreich, bei dem alle Bewegungen in einer Ebene ablaufen.
Eine Anregung stellt das in Kapitel 3 präsentierte Beispielsystem dar.
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[Föl13] Föllinger, O.: Regelungstechnik: Einführung in die Methoden und ihre
Anwendung. 11., völlig neu bearb. Aufl. Berlin: VDE-Verlag, 2013
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[ML12] Mántaras, D. A.; Luque, P.: Virtual test rig to improve the design and
optimisation process of the vehicle steering and suspension systems. Vehicle
System Dynamics 50 (2012), Nr. 10, S. 1563–1584

[MLS94] Murray, R. M.; Li, Z.; Sastry, S. S.: A mathematical introduction to robotic
manipulation. Boca Raton: CRC Press, 1994



244 Literaturverzeichnis
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ler, T.: Virtueller Betriebslastennachfahrversuch am BMW-
Gesamtfahrzeugprüfstand. VDI-Berichte (2005), Nr. 1900, S. 247–
270

[OHW06] Oppermann, H.; Hackmair, C.; Wirth, C.: Numerische Simulationsmetho-
den zur Lebensdauerbeurteilung in der virtuellen Fahrzeugentwicklung.
VDI-Berichte (2006), Nr. 1967, S. 749–775

[OKG+07] Oncu, S.; Karaman, S.; Guvenc, L.; Ersolmaz, S. S.; Ozturk, E. S.; Cetin,
E.; Sinal, M.: Robust Yaw Stability Controller Design for a Light Commer-
cial Vehicle Using a Hardware in the Loop Steering Test Rig. 2007 IEEE
Intelligent Vehicles Symposium. Istanbul, Türkei, 2007, S. 852–859



246 Literaturverzeichnis

[OKT+16a] Olma, S.; Kohlstedt, A.; Traphöner, P.; Jäker, K.-P.; Trächtler, A.:
Indirect Force Control in Hardware-in-the-Loop Simulations for a Vehicle
Axle Test Rig. 14th International Conference on Control, Automation
Robotics & Vision (ICARCV). Phuket, Thailand, 2016

[OKT+16b] Olma, S.; Kohlstedt, A.; Traphöner, P.; Jäker, K.-P.; Trächtler, A.: Sub-
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Literaturverzeichnis der studentischen Arbeiten

Am Lehrstuhl für Regelungstechnik und Mechatronik der Universität Paderborn wurden im
Kontext des Achsprüfstands zahlreiche studentische Arbeiten angefertigt. In der vorliegen-
den Dissertationsschrift wurden die nachfolgend aufgelisteten Arbeiten referenziert. Dabei
sind die in [NK17], [FK17] und [FK18] erzielten Ergebnisse zum Teil in die vorliegende
Dissertation eingeflossen. Insbesondere fasst Abschnitt 5.5 die wesentlichen Ergebnisse
aus [FK18] zusammen, wobei die Bilder 5-27, 5-28, 5-31, A7-33, A7-34 und A7-35 in
ähnlicher Form auch dort abgedruckt sind. Darüber hinaus sind die Bilder 5-30 und A7-32
aus Messergebnissen entstanden, die im Rahmen der genannten Masterarbeit gemeinsam
durch den Studierenden und den Betreuer am Achsprüfstand aufgezeichnet wurden. Die
Definition der Zielsetzung, die Bearbeitung sowie die Auswertung, Interpretation und
Visualisierung von Ergebnissen dieser drei Arbeiten erfolgten unter wissenschaftlicher
Anleitung des Autors dieser Dissertation. Die anderen studentischen Arbeiten wurden
lediglich der Vollständigkeit halber in der Ausarbeitung referenziert. Inhalte anderer stu-
dentischer Arbeiten sind nicht in die vorliegende Dissertation eingeflossen.

[FK17] Fast, N.; Kohlstedt, A. (Betreuer): Systematische Auslegung der Kraft-
regelung für die parallelkinematische Anregungseinheit eines Hardware-
in-the-Loop-Achsprüfstands. Unveröffentlichte Studienarbeit. Fakultät für
Maschinenbau, Universität Paderborn, 2017

[FK18] Fast, N.; Kohlstedt, A. (Betreuer): Entwicklung einer iterativ lernenden
Regelung für einen Fahrzeugachsprüfstand mit parallelkinematischer Anre-
gungseinheit. Unveröffentlichte Masterarbeit. Fakultät für Maschinenbau,
Universität Paderborn, 2018

[IK15] Ikemeyer, F.; Kohlstedt, A. (Betreuer): Identifikation der Feder- und Dämp-
ferkennlinien eines MacPherson-Federbeins. Unveröffentlichte Studienar-
beit. Fakultät für Maschinenbau, Universität Paderborn, 2015

[NK17] Nolte, U.; Kohlstedt, A. (Betreuer): Entwicklung eines mathematischen
Modells für einen HiL-Achsprüfstand mit parallelkinematischer Anregungs-
einheit und MacPherson-Radaufhängung. Unveröffentlichte Studienarbeit.
Fakultät für Maschinenbau, Universität Paderborn, 2017

[NKO18] Nolte, U.; Kohlstedt, A. (Betreuer); Olma, S. (Betreuer): Entwicklung ad-
aptiver und robuster Regelungen für die parallelkinematische Anregungsein-
heit eines Hardware-in-the-Loop-Achsprüfstands. Unveröffentlichte Mas-
terarbeit. Fakultät für Maschinenbau, Universität Paderborn, 2018

[OF13] Olma, S.; Flottmeier, S. (Betreuerin): Zustands- und Parameterschätzung
bei Parallelkinematiken. Unveröffentlichte Masterarbeit. Fakultät für Ma-
schinenbau, Universität Paderborn, 2013
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A1 Grundlagen zu Mehrkörpersystemen

A1.1 Darstellung von MKS-Topologien

Bild A1-1 erläutert die für die Darstellung der Topologie von Mehrkörpersystemen ver-
wandten Symbole. Die Symbole orientieren sich an [SHB18]. Im Gegensatz zur genannten
Quelle wird hier jedes Gelenk durch ein einzelnes Symbol und nicht durch einwertige
Gelenke mit virtuellen masselosen Zwischenkörpern dargestellt.

Starrer Körper

Starrer Körper mit isoliertem Freiheitsgrad

Gelenk

L Kinematische Schleife

Bild A1-1: Symbole für die Darstellung von MKS-Topologien

A1.2 Notation

Die verwendete Notation wird hier kurz anhand von Beispielen erklärt. Sie orientiert sich an
der Notation, wie sie bspw. von Herrn Prof. Sextro in der Vorlesung „Mehrkörperdynamik“
an der Universität Paderborn verwendet wird [Sex11]. Hier wird exemplarisch ein starrer
Körper mit zwei Bezugssystemen, einem Inertialsystem I sowie einem körperfesten System
K betrachtet, wobei der Punkt 0 der Ursprung des Inertialsystems I ist, vgl. Bild A1-2.

r0X

r0Y

rXY
X

Y

I0

K

Bild A1-2: Starrer Körper im Raum mit Bezugssystemen und -punkten
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K rXY bezeichnet den Vektor von Punkt X zu Punkt Y , ausgedrückt im Bezugssystem K.
Der Einheitsvektor in dieser Richtung trägt den Bezeichner KeXY . Er berechnet sich nach
der Formel

KeXY =
K rXY∣∣∣K rXY

∣∣∣
. (A1-1)

Die Transformation des Vektors K rXY in das Bezugssystem I erfolgt über die Drehmatrix
IK A nach

I rXY = IK A · K rXY . (A1-2)

Der Geschwindigkeitsvektor des Punktes Y berechnet sich aus dem Geschwindigkeitsvek-
tor des Punktes X anhand der Gleichung

Iv0Y = I ṙ0Y = I ṙ0X + I ṙXY . (A1-3)

Liegen die Punkte X und Y auf einem starren Körper, so gilt für deren Relativgeschwindig-
keit

I ṙXY =
d
d t

(
I rXY

)
=

d
d t

(
IK A · K rXY

)
=

IK Ȧ · K rXY︸︷︷︸
IK AT ·I rXY

+ IK A · K ṙXY︸︷︷︸
=0, da starrer Körper

(A1-4)

=
IK Ȧ · IK AT

︸       ︷︷       ︸
=

IK
Iω̃, vgl. Anhang A1.6

· I rXY = IK
Iω × I rXY (A1-5)

mit der im Bezugssystem I ausgedrückten Relativwinkelgeschwindigkeit IK
Iω der Systeme

I und K (in diesem Beispiel handelt es sich dabei um die Absolutwinkelgeschwindigkeit
des körperfesten Systems K).

A1.3 Elementardrehmatrizen

Die Drehmatrix um eine beliebige Achse e (|e| = 1) mit dem Winkel ϕ lautet

Ae (ϕ) = e · eT · (1 − cosϕ) + I · cosϕ + ẽ · sinϕ , (A1-6)

vgl. [Woe16, S. 57]. ẽ ist dabei die Kreuzproduktmatrix, siehe Anhang A1.6.

Aus (A1-6) folgen die Elementardrehmatrizen, d. h. die Drehmatrizen für eine alleinige
Rotation um die x-, y- oder z-Achse mit dem Winkel ϕ

Ax (ϕ) =


1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 , (A1-7)

Ay (ϕ) =


cosϕ 0 sinϕ

0 1 0
− sinϕ 0 cosϕ

 , (A1-8)

Az (ϕ) =


cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 . (A1-9)
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A1.4 XYZ-Kardanwinkel

Mithilfe der Kardanwinkel kann eine allgemeine Drehung durch die Abfolge dreier Ele-
mentardrehungen ausgedrückt werden. Bei Wahl der Drehreihenfolge x-y-z bezüglich der
mitgedrehten Achsen liegen die sog. XYZ-Kardanwinkel vor. [Woe16]

Die Kardanwinkel lassen sich bspw. dazu einsetzen, die Drehung des körperfesten Systems
K eines Starrkörpers bezüglich eines Inertialkoordinatensystems I zu beschreiben. Für die
Transformation der Koordinaten eines beliebigen Vektors vom körperfesten System K in
das Inertialsystem I dient die Rotationsmatrix

IK A = Ax (α) · Ay (β) · Az (γ) =


cβcγ −cβsγ sβ

cαsγ + cγsαsβ cαcγ − sαsβsγ −cβsα
sαsγ − cαcγsβ cγsα + cαsβsγ cαcβ

 (A1-10)

mit den Elementardrehungen nach Anhang A1.3 und den Abkürzungen sx = sin x, cx =

cos x. Die Winkel α, β und γ sind die Drehwinkel um die mitgedrehten Achsen x-y-z.

Die Berechnung der Kardanwinkel α, β, γ aus einer gegebenen Rotationsmatrix IK A folgt
aus ([Woe16], Formeln 3.167-3.169)

cos β =

√
1 − IKA2

13 , sin β = IKA13 ,

cosα =

IKA33

cos β
, sinα = −

IKA23

cos β
, (A1-11)

cos γ =
IKA11

cos β
, sin γ = −

IKA12

cos β
zu

α = −arctan
IKA23
IKA33

, β = arctan
IKA13√

1 − IKA2
13

, γ = −arctan
IKA12
IKA11

. (A1-12)

Aus (A1-11) ist auch die Singularität der XYZ-Kardanwinkel für |β| = π/2 offensichtlich.
Im Hauptteil dieser Ausarbeitung wird für die Berechnung der XYZ-Kardanwinkel die
Kurzschreibweise αXYZ

(
IK A

)
verwendet. Die Funktion gibt die Kardanwinkel in der

Reihenfolge α, β, γ zurück.

A1.5 Eigenschaften von Drehmatrizen

Drehmatrizen sind orthogonal, d. h. es gilt

A · AT = AT · A = I . (A1-13)

Daraus folgt, dass die Inverse einer Drehmatrix ihrer Transponierten entspricht,

A−1 = AT . (A1-14)

Außerdem gilt

det A = 1 . (A1-15)
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A1.6 Kreuzproduktmatrix

Für den exemplarischen Vektor w =
[
wx wy wz

]T
lautet die Kreuzproduktmatrix

w̃ =


0 −wz wy
wz 0 −wx
−wy wx 0

 . (A1-16)

Die Kreuzproduktmatrix ist schiefsymmetrisch, d. h. w̃T = −w̃.

Für jeden beliebigen Vektor v =
[
vx vy vz

]T
gilt

w × v = w̃ · v . (A1-17)
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A2 Aufstellen von Bewegungsgleichungen mithilfe des Prinzips

von Jourdain

Für das Aufstellen von Bewegungsgleichungen für Mehrkörpersysteme gibt es verschie-
dene Formalismen, zu denen bspw. die Lagrangeschen Gleichungen zweiter Art sowie
das Prinzip von Jourdain zählen. Das Prinzip von Jourdain (auch: Prinzip der virtuellen
Leistung) besagt, dass die virtuelle Leistung aller Reaktionskräfte eines Mechanismus
verschwindet [Woe16]. Im Gegensatz zum Prinzip von d’Alembert (auch: Prinzip der vir-
tuellen Arbeit) eignet es sich auch zur Herleitung der Bewegungsgleichungen für Systeme
mit nicht-holonomen Zwangsbedingungen, d. h. solchen Zwangsbedingungen, die auch
von der Geschwindigkeit abhängen. Beide Prinzipien besagen, dass „die Reaktionskräfte
keine Komponenten im Tangentialraum der Bindungsmannigfaltigkeit besitzen“ [Woe16,
S. 147].

Um die Bewegungsgleichungen eines Mechanismus aufzustellen, ist ein Vektor y ∈ R f der
Minimal- bzw. generalisierten Koordinaten des betrachteten Systems aus nK Einzelkörpern
festzulegen. Dabei ist f die Zahl der FHG des gesamten Mechanismus, die sich mithilfe
des Grübler-Kutzbach-Kriteriums

f = 6 · nK − nZ − nI (A2-1)

berechnen lässt [Ada14]. nI ist dabei die Anzahl der isolierten FHG, nZ die Anzahl der
Zwangsbedingungen, die sich mithilfe der Gleichung

nZ = 6 · nG −
nG∑

i=1

fGi (A2-2)

aus der Anzahl der Gelenke nG und der Anzahl der Gelenk-FHG fGi bestimmen lässt. Die
Anzahl der kinematischen Schleifen berechnet sich aus [SHB18]

nL = nG − nK . (A2-3)

Für nL = 0 liegt eine offene, für nL > 0 eine geschlossene kinematische Struktur vor,
vgl. Bild A2-1 und Anhang A1.1 für die Erläuterung der verwendeten Symbole.

(a) Offene Kinematik (b) Geschlossene Kinematik

Bild A2-1: Vergleich von offener und geschlossener Kinematik

Gegenüber offenen kinematischen Strukturen ist das Aufstellen der Bewegungsgleichun-
gen in Minimalkoordinaten für geschlossene kinematische Strukturen komplizierter, unter
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Umständen gar nicht möglich. In diesem Fall muss der Mechanismus durch ein differential-
algebraisches Gleichungssystem aus Bewegungsgleichungen und Schließ- bzw. Zwangsbe-
dingungen beschrieben werden. Dies muss z. B. zur Simulation des Mechanismus mithilfe
iterativer Verfahren unter höherem Rechenaufwand numerisch gelöst werden. [Ada14]

Die Bewegungsgleichungen können aus dem Prinzip von Jourdain hergeleitet werden und
lauten für ein Mehrkörpersystem aus nK Körpern

nK∑

i=1
I JT

Ti
(

I ṗi − I F
e
i
)

+ JT
Ri

(
L̇(Ci)

i − Me(Ci)
i

)
= 0 . (A2-4)

Darin bezeichnen I JTi ∈ R3× f und JRi ∈ R3× f die Jacobimatrizen der Translation bzw. der
Rotation, I ṗi ∈ R3 und L̇(Ci)

i ∈ R3 die zeitliche Änderung des Impulses bzw. des Dreh-

impulses sowie I F
e
i ∈ R3 und Me(Ci)

i ∈ R3 die eingeprägten Kräfte und Momente jedes
Körpers i. Alle im ersten Summanden befindlichen translatorischen Größen sind stets
bezüglich des Inertialsystems anzugeben (Index I). Die im zweiten Summanden befind-
lichen rotatorischen Größen hingegen können bspw. auch bezüglich eines körperfesten
Systems eingesetzt werden. Aus diesem Grund wurde bei allen rotatorischen Größen auch
im Folgenden auf Indizes verzichtet. Durch Einsetzen der bekannten Zusammenhänge für
die zeitliche Änderung des Impulses und des Drehimpulses

I ṗi = mi I r̈Ci , L̇(Ci)
i = I(Ci)

i
IKω̇i + IKω̃i I(Ci)

i
IKωi (A2-5)

in (A2-4) ergibt sich
nK∑

i=1
I JT

Ti
(
mi I r̈Ci − I F

e
i
)

+ JT
Ri

((
I(Ci)

i
IKω̇i + IKω̃i I(Ci)

i
IKωi

)
− Me(Ci)

i

)
= 0 (A2-6)

mit der Masse mi, dem Schwerpunktvektor I rCi, dem Trägheitstensor

I(Ci)
i =


Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (A2-7)

sowie dem Winkelgeschwindigkeitsvektor IKωi. Der Tilde-Operator bedeutet hier, dass es
sich um die Kreuzproduktmatrix des Vektors handelt (Definition siehe Anhang A1.6).

An dieser Stelle wird angenommen, dass der Schwerpunktvektor nicht explizit von der
Zeit abhängt. Dann gilt für den Zusammenhang des Vektors der translatorischen Geschwin-
digkeiten I ṙCi mit der zeitlichen Ableitung des Vektors der Minimalkoordinaten

I ṙCi = I JTi · ẏ (A2-8)

und folglich

I r̈Ci = I JTi · ÿ +
d
d t

(
I JTi

) · ẏ . (A2-9)

Für die Winkelgeschwindigkeit und -beschleunigung gilt analog unter Annahme einer
nicht explizit zeitabhängigen Orientierung des Körpers i

IKωi = JRi · ẏ (A2-10)
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und

IKω̇i = JRi · ÿ +
d
d t

(
JRi

) · ẏ . (A2-11)

Das Einsetzen dieser Zusammenhänge in (A2-6) führt zu

nK∑

i=1
I JT

Ti

(
mi

(
I JTi · ÿ +

d
d t

(
I JTi

) · ẏ
)
− I F

e
i

)

+ JT
Ri

(
I(Ci)

i

(
JRi · ÿ +

d
d t

(
JRi

) · ẏ
)

+ IKω̃i I(Ci)
i

IKωi − Me(Ci)
i

)
= 0 . (A2-12)

Diese Gleichung kann durch Einführung der Jacobimatrix

J i =

[
I JTi
JRi

]
, (A2-13)

und der symmetrischen f × f Massenmatrix

M (y) =

nK∑

i=1

JT
i · Mi · J i (A2-14)

mit

Mi =


mi · I 0

0 I(Ci)
i

 (A2-15)

in die Form

M (y) · ÿ + C (y, ẏ) · ẏ =

nK∑

i=1
I JT

Ti · I F
e
i + JT

Ri · Me(Ci)
i (A2-16)

überführt werden. Dabei ist C (y, ẏ) · ẏ der Vektor der verallgemeinerten Zentrifugal- und
Corioliskräfte. Für die Wahl der Matrix

C (y, ẏ) =

nK∑

i=1

Ci (y, ẏ) (A2-17)

bestehen durch ihre Abhängigkeit von ẏ und die Multiplikation mit ẏ in (A2-16) Freiheiten.
Werden die Elemente der Matrizen Ci (y, ẏ) der einzelnen Körper als

ci,mn =

f∑

k=1

ci,mnk · ẏk (A2-18)

mit den sog. Christoffelsymbolen der ersten Art

ci,mnk =
1
2

(
∂Mi,mn

∂ yk
+
∂Mi,mk

∂ yn
− ∂Mi,nk

∂ ym

)
, (A2-19)

gewählt, so ist die Matrix

Ṁ (y, ẏ) − 2 · C (y, ẏ) (A2-20)
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schiefsymmetrisch und für jeden beliebigen Vektor w ∈ R f gilt [SSVO10]

wT ·
(
Ṁ (y, ẏ) − 2 · C (y, ẏ)

)
· w = 0 . (A2-21)

Die Eigenschaft (A2-20) wird als Passivität bezeichnet und ist bspw. für den Stabilitäts-
nachweis von Roboterregelungen sehr hilfreich [MLS94, S.172]. Zusätzlich zu den bisher
genannten Größen kann ein Vektor der verallgemeinerten Gewichtskräfte

g (y) = −
nK∑

i=1
I JT

Ti ·


0
0

−mi · g

 = −
nK∑

i=1

JT
i ·



0
0

−mi · g
0
0
0



(A2-22)

eingeführt werden, mit dem

M (y) · ÿ + C (y, ẏ) · ẏ + g (y) =

nK∑

i=1
I JT

Ti · I F
e\g
i + JT

Ri · Me\g(Ci)
i (A2-23)

folgt. Das negative Vorzeichen vor den Summanden in (A2-22) folgt aus der Tatsache, dass
der Term g (y) in (A2-23) verglichen mit (A2-16) auf der anderen Seite der Gleichung
hinzugefügt wurde.
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A3 Regelungsentwurf mit exakter Ein-/Ausgangslinearisierung

Dieser Abschnitt beschreibt die Grundzüge des Regelungsentwurfsverfahrens der exakten
Ein-/Ausgangslinearisierung (kurz: exakte Linearisierung) für eingangsaffine, nichtlineare
Systeme. Der Regelungsentwurf erfolgt hierbei nicht auf Grundlage einer linearen Nähe-
rung der Regelstrecke. Stattdessen wird (aufbauend auf dem nichtlinearen Streckenmodell)
eine ebenfalls nichtlineare Berechnungsvorschrift für den Systemeingang hergeleitet, die
wiederum neue Eingangsgrößen besitzt. Diese neuen Eingangsgrößen weisen lineares,
entkoppeltes Verhalten zu den Ausgangsgrößen des nichtlinearen Systems auf. Auf Basis
dieser neuen Systemeingänge kann daher ein einfacher, linearer Regelungsentwurf für das
nichtlineare System erfolgen. Das Entwurfsverfahren stellt eine Verallgemeinerung des für
lineare Systeme bekannten Entkopplungsreglers nach Falb und Wolovich [FW67] dar. Die
folgenden, grundlegenden Ausführungen basieren auf den Grundlagenwerken von Isidori
[Isi95] und Adamy [Ada18].

Betrachtet wird ein nichtlineares, eingangsaffines MIMO-System der Form

ẋ = a (x) + B (x) · u , y = c (x) . (A3-1)

Darin sind x die Zustände, u die Eingänge und y die Ausgänge des Systems. Es liegen
n = dim x Zustandsgrößen und jeweils m Ein- und Ausgangsgrößen vor, d. h. m = dim u =

dim y.

Zum Zweck der Herleitung ist die Einführung der sog. Lie-Derivierten

L f h =
∂ h (x)
∂ xT f (x) = gradT h (x) · f (x) (A3-2)

von Nutzen. In den genannten Lehrbüchern wird sie stets nur für eine Vektorfunktion
f (x) verwendet. Es lässt sich aber aus (A3-2) erkennen, dass sie ohne Weiteres ebenso
für Matrixfunktionen f (x) anwendbar ist. Im Folgenden können hierdurch sämtliche
Zusammenhänge besonders kompakt aufgeschrieben werden.

Sämtliche Systemausgänge y werden so oft zeitlich differenziert, bis in jeder abgeleiteten
Ausgangsgröße yi mindestens eine Eingangsgröße aus u auftritt. Im Folgenden wird ange-
nommen, dass mindestens drei Differentiationen erforderlich sind, sodass die allgemeine
Formel erkennbar wird. Durch zeitliche Differentiation eines Ausgangs yi folgt

yi = ci (x) (A3-3)

ẏi =
∂ ci (x)

∂ xT · ẋ =
∂ ci (x)

∂ xT · (a (x) + B (x) · u) = La ci (x) + LB ci (x)︸   ︷︷   ︸
=0T

·u (A3-4)

ÿi =
∂ La ci (x)

∂ xT · ẋ = . . . = L2
a ci (x) + LB La ci (x)︸        ︷︷        ︸

=0T

·u (A3-5)

...

y(δi)
i =

∂ Lδi−1
a ci (x)

∂ xT · ẋ = Lδi
a ci (x) + LB Lδi−1

a ci (x)︸           ︷︷           ︸
,0T

·u (A3-6)



266 A3 Regelungsentwurf mit exakter Ein-/Ausgangslinearisierung

Dabei ist y(δi)
i die δi-te Ableitung des Ausgangs yi. δi ist dessen Differenzordnung bzw. rela-

tiver Grad. Er entspricht der niedrigsten Ableitung der Ausgangsgröße yi, auf die irgendein
Eingang direkt wirkt. Insgesamt ergibt sich



y(δ1)
1
...

y(δm)
m


︸ ︷︷ ︸

=



Lδ1
a c1 (x)
...

Lδm
a cm (x)


︸        ︷︷        ︸

+



LB Lδ1−1
a c1 (x)
...

LB Lδm−1
a cm (x)


︸               ︷︷               ︸

·u (A3-7)

ẙ = c̊ (x) + D̊ (x) ·u .

Die Berechnungsvorschrift für den Eingang des nichtlinearen Systems u folgt durch
Umstellen dieser Gleichung nach u und Ersetzen der Größe ẙ durch die neue Eingangsgröße
v zu

u = D̊−1 (x) · (v − c̊ (x)) . (A3-8)

Voraussetzung hierfür ist, dass D̊ (x) regulär und damit invertierbar ist. Ist D̊ (x) für alle x
regulär, so ist der relative Grad wohldefiniert. Anderenfalls ist die exakte Linearisierung
des gegebenen Systems nicht für alle Zustände möglich. Für die neue Eingangsgröße v
gilt

v = ẙ , (A3-9)

d. h. die neue Eingangsgröße vi verhält sich linear zu der Ausgangsgröße yi des nichtli-
nearen Systems. Außerdem wirkt jede Eingangsgröße vi nur auf die Ausgangsgröße yi;
das Ein-/Ausgangsverhalten ist entkoppelt. Für ein reales System ist dies natürlich durch
Mess- und Beobachtungsfehler, Modellvereinfachungen und -fehler sowie Störgrößen
nur näherungsweise gegeben. Aufbauend auf v kann nun ein linearer Regelungsentwurf
für das eigentlich nichtlineare System erfolgen. Dabei legt δi die Ordnung der linearen
Differentialgleichung des Regelkreises bezüglich des Ausgangs yi fest. Je niedriger δi ist,
desto direkter wirkt die Eingangsgröße u auf die Ausgangsgröße y [Ada14, S. 324]. Ein
möglicher Regelungsansatz ist

vi = y(δi)
i,r + ki,δi−1

(
y(δi−1)

i,r − y(δi−1)
i

)
+ . . . + ki,1

(
ẏi,r − ẏi

)
+ ki,0

(
yi,r − yi

)
, (A3-10)

wobei über die Reglerparameter ki,δi−1 bis ki,0 (innerhalb der Möglichkeiten der Aktorik)
eine beliebige Dynamik vorgegeben werden kann.

Die relativen Grade δi können gesammelt als vektorieller relativer Grad

δ =
[
δ1 δ2 . . . δm

]
(A3-11)

angegeben werden. Entspricht der sog. totale relative Grad

δ =

m∑

i=1

δi ≤ n (A3-12)

des nichtlinearen Systems (A3-1) der Systemordnung n, so ist das System exakt zustands-
linearisierbar.
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Für δ < n liegt hingegen sowohl eine (beobachtbare und lineare) externe Dynamik der
Ordnung δ sowie eine (nicht beobachtbare und im Allgemeinen nichtlineare) interne
Dynamik der Ordnung n − δ vor. Stimmt das Streckenmodell im Regler, das für die
Berechnung der Linearisierung (A3-8) verwendet wird, ideal mit der tatsächlichen Strecke
überein, so ist die externe Dynamik von der internen Dynamik unabhängig. Die Zustände
der externen Dynamik stellen die Eingangsgrößen der internen Dynamik dar vgl. [Ada18,
S. 323]. Die interne Dynamik besitzt (bei idealem Streckenmodell im Regler) zwar keinerlei
Bedeutung für das Ein-/Ausgangsverhalten des geschlossenen Regelkreises, muss aber
zur Stabilitätsbeurteilung des geregelten Systems ebenfalls auf Stabilität geprüft werden.
Hinsichtlich der Untersuchung der Stabilität der internen Dynamik bzw. deren Ruhelagen
siehe z. B. [Isi95; Ada18].

Die Güte des zur Regelung verwendeten Streckenmodells ist bei diesem Entwurfsverfahren
von großer Bedeutung. Bildet das Streckenmodell im Regler die reale Strecke nicht ideal
ab, so hat die interne Dynamik Auswirkungen auf das Ein-/Ausgangsverhalten des ge-
schlossenen Regelkreises. Bei linearen Systemen „können nun hinzukommende schwach
gedämpfte oder langsame Eigenbewegungen das eigentlich geplante Übertragungsver-
halten empfindlich stören. Im nichtlinearen Fall ... [kommt] erschwerend hinzu, dass bei
Abweichungen des Modells von der realen Regelstrecke das Regelkreisverhalten nicht
mehr linear ist.“ [Ada18, S. 344].
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A4 Herleitung der Gleichungen nach de Luca und Manes mittels

exakter Ein-/Ausgangslinearisierung

In diesem Teil des Anhang wird gezeigt, dass die von de Luca und Manes [LM94] angege-
benen Gleichungen für die Berechnung des Systemeingangs Fq nach (2-92) bzw. (2-94)
mit denjenigen übereinstimmen, die bei Durchführung der exakten Linearisierung nach
Anhang A3 erhalten werden.

Durch Linksmultiplikation von (2-89) mit ST
yd bzw. ST

yk folgen die insgesamt nd + nk
Gleichungen

(
ST

yd Mv Syd + Mu

)
· ÿd + ST

yd Mv Syk · ÿk

+ ST
yd Mv Ṡyk · ẏk + ST

yd Mv Ṡyd · ẏd + ST
yd

(
Cv v + gv

)
+ nu = ST

yd J−T
g · Fq (A4-1)

und

ST
yk Mv Syd · ÿd + ST

yk Mv Syk · ÿk

+ ST
yk Mv Ṡyk · ẏk + ST

yk Mv Ṡyd · ẏd + ST
yk

(
Cv v + gv

)
= ST

yk J−T
g · Fq . (A4-2)

Sie stellen die Bewegungsgleichungen reduzierter Ordnung des Gesamtsystems dar, die
sich auch in der Form

M ·
[
ÿd

ÿk

]
=

[
ST

yd

ST
yk

]
·
(
J−T

g Fq − nd

)
(A4-3)

mit

M =

[
ST

yd Mv Syd + Mu ST
yd Mv Syk

ST
yk Mv Syd ST

yk Mv Syk

]
=


MA MB

MC MD

 (A4-4)

notieren lassen. Der Sonderfall einer Kontaktsituation ohne kinematische Koordinaten yk
liegt bei dem in dieser Arbeit betrachteten System vor, vgl. (4-229).

Die 6 − nd − nk algebraischen Gleichungen für die generalisierten reaktiven Kontaktkräf-
te λr resultieren aus der Linksmultiplikation von (2-89) mit ST

λr M−1
v . In der erhaltenen

Gleichung muss ÿd gemäß der ersten Zeile von (A4-3) unter Verwendung der inversen
Massenmatrix

M
−1

=


M
−1
E −M

−1
E MB M

−1
D

−M
−1
D MC M

−1
E M

−1
D + M

−1
D MC M

−1
E MB M

−1
D

 , (A4-5)

ME = MA − MB M
−1
D MC , (A4-6)

siehe z. B. [PP12, S. 46] für die verwendete Berechnungsformel, ersetzt werden. Es folgt

λr = Mr ST
λr M−1

v

(
I − Sλa

(
ST

yd Sλa

)−1
Mu X

) (
J−T

g Fq − nd

)
, (A4-7)

Mr =
(
ST
λr M−1

v Sλr

)−1
, X = M

−1
E

(
ST

yd − MB M
−1
D ST

yk

)
. (A4-8)
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Die Sonderfälle von (A4-3) und (A4-7) für den Fall einer rein kinematischen Zwangsbe-
dingung zur Umgebung sind durch (2-50) und (2-51) gegeben.

Für die generalisierten aktiven Kontaktkräfte λa ergeben sich die nd algebraischen Be-
stimmungsgleichungen durch Umstellen des Umgebungsmodells (2-83). Auch hierbei ist
wieder ÿd gemäß der ersten Zeile von (A4-3) zu ersetzen. Es resultiert

λa =
(
ST

yd Sλa

)−1 (
Mu X

(
J−T

g Fq − nd

)
+ nu

)
. (A4-9)

Für die Bestimmung der Linearisierung (2-94), die auf eine Regelung der dynamischen
Koordinaten yd abzielt, muss die Ausgangsgröße

y =
[
yT

d λT
r yT

k

]T
(A4-10)

angesetzt werden. Während die dynamischen und kinematischen Koordinaten yd, yk jeweils
zwei Mal zeitlich differenziert werden müssen, bis die Eingangsgröße Fq in der erhaltenen
Gleichung enthalten ist, vgl. auch (A4-3), ist Fq bereits ohne zeitliche Differentiation in λr
enthalten. Es liegt ein Durchgriff für diese Ausgangsgröße vor. Insgesamt ergibt sich


ÿd
λr
ÿk


︸︷︷︸

= − Y nd

︸  ︷︷  ︸ + Y J−T
g

︸︷︷︸

· Fq (A4-11)

ẙ = c̊ + D̊ ·u
mit der Hilfsgröße

Y =



X
Mr ST

λr M−1
v

(
I − Sλa

(
ST

yd Sλa

)−1
Mu X

)

M
−1
D

(
ST

yk − MC X
)


. (A4-12)

Durch Auflösen von (A4-11) nach Fq und Ersetzen von ẙ durch die neue Eingangsgröße

v =
[
uT

d uT
r uT

k

]T
(A4-13)

folgt

Fq = JT
g

(
Y−1 v + nd

)
, (A4-14)

falls Y regulär ist. (2-94) stimmt hiermit überein, wenn

Y−1 = Qd (A4-15)

gilt. Die Invertierung von Y für diese Überprüfung kann vermieden werden, indem anstelle
dessen die äquivalente Bedingung

Y Qd︸︷︷︸ = I︸︷︷︸ (A4-16)

Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

 =


I 0 0
0 I 0
0 0 I

 (A4-17)
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geprüft wird. Die aus der Matrixmultiplikation Y Qd folgende 3 × 3-Blockmatrix Z kann
blockweise geprüft werden, wobei die Elemente die in (A4-17) genannten Bedingungen
erfüllen müssen: die Diagonalelemente müssen I, die Nichtdiagonalelemente 0 betragen.

Wesentliche Grundlage der nachfolgenden Herleitungen sind die Beziehungen nach (2-81).
Da jedes Element aus Z Produkte von X mit den einzelnen Elementen aus Qd enthält, ist
es zweckmäßig, vorab diese Produkte einzeln zu betrachten. Die Elemente der Matrix

Qd =
[
Qd1 Qd2 Qd3

]
(A4-18)

lauten

Qd1 = Mv Syd + Sλa

(
ST

yd Sλa

)−1
Mu , Qd2 = Sλr , Qd3 = Mv Syk , (A4-19)

siehe (2-90). Bei Linksmultiplikation dieser Elemente mit X gilt

X Qd1 = M
−1
E

(
ST

yd − MB M
−1
D ST

yk

) (
Mv Syd + Sλa

(
ST

yd Sλa

)−1
Mu

)

= M
−1
E

(
ST

yd Mv Syd + Mu − MB M
−1
D ST

yk Mv Syd

)

= M
−1
E

(
MA − MB M

−1
D MC

)
= M

−1
E ME = I , (A4-20)

X Qd2 = M
−1
E

(
ST

yd − MB M
−1
D ST

yk

)
Sλr = 0 , (A4-21)

X Qd3 = M
−1
E

(
ST

yd − MB M
−1
D ST

yk

)
Mv Syk

= M
−1
E

(
MB − MB M

−1
D MD

)
= 0 . (A4-22)

Für die Elemente der Blockmatrix Z folgt damit

Z11 = X Qd1 = I , Z12 = X Qd2 = 0 , Z13 = X Qd3 = 0 , (A4-23)

Z21 = Mr ST
λr M−1

v

(
I − Sλa

(
ST

yd Sλa

)−1
Mu X

)
Qd1

= Mr ST
λr M−1

v

(
Qd1 − Sλa

(
ST

yd Sλa

)−1
Mu

)
= Mr ST

λr Syd = 0 , (A4-24)

Z22 = Mr ST
λr M−1

v

(
I − Sλa

(
ST

yd Sλa

)−1
Mu X

)
Qd2

= Mr ST
λr M−1

v Qd2 = Mr ST
λr M−1

v Sλr = Mr M−1
r = I , (A4-25)

Z23 = Mr ST
λr M−1

v

(
I − Sλa

(
ST

yd Sλa

)−1
Mu X

)
Qd3

= Mr ST
λr M−1

v Qd3 = Mr ST
λr M−1

v Mv Syk = 0 , (A4-26)

Z31 = M
−1
D

(
ST

yk − MC X
)

Qd1

= M
−1
D

(
ST

yk

(
Mv Syd + Sλa

(
ST

yd Sλa

)−1
Mu

)
− MC

)

= M
−1
D

(
MC − MC

)
= 0 , (A4-27)
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Z32 = M
−1
D

(
ST

yk − MC X
)

Qd2 = M
−1
D ST

yk Qd2 = M
−1
D ST

yk Sλr = 0 , (A4-28)

Z33 = M
−1
D

(
ST

yk − MC X
)

Qd3 = M
−1
D ST

yk Qd3 = M
−1
D ST

yk Mv Syk

= M
−1
D MD = I . (A4-29)

Folglich gilt Z = I.

Die Linearisierung (2-92), auf deren Basis eine Regelung der generalisierten aktiven
Kräfte λa entworfen werden kann, folgt bei Verwendung des Ausgangsvektors

y =
[
λT

a λT
r yT

k

]T
. (A4-30)

Die Ausgangsgröße λa enthält einen Durchgriff, sodass keine zeitliche Differentiation für
die Regelungssynthese erforderlich ist. Für λr und yk gelten die gleichen Aussagen wie
zuvor. In diesem Fall ergibt sich


λa
λr
ÿk


︸︷︷︸

= − Y nd +
(
ST

yd Sλa

)−1


nu
0
0


︸                           ︷︷                           ︸ + Y J−T

g

︸︷︷︸

· Fq (A4-31)

ẙ = c̊ + D̊ ·u
mit

Y =



(
ST

yd Sλa

)−1
Mu X

Mr ST
λr M−1

v

(
I − Sλa

(
ST

yd Sλa

)−1
Mu X

)

M
−1
D

(
ST

yk − MC X
)


. (A4-32)

Wird (A4-31) unter Einführung der neuen Eingangsgröße

v =
[
uT

a uT
r uT

k

]T
(A4-33)

nach Fq aufgelöst, so folgt

Fq = JT
g

Y
−1

v + nd − Y
−1 (

ST
yd Sλa

)−1


nu
0
0



 (A4-34)

unter der Bedingung, dass die Inverse von Y existiert. Die in Stand von Technik und
Forschung gegebene Gleichung für die Aktorkräfte (2-92) entspricht (A4-34), falls die
beiden Bedingungen

Y
−1

= Qa , nd − Y
−1 (

ST
yd Sλa

)−1


nu
0
0

 = na (A4-35)

erfüllt sind. Auch hier wird die Invertierung von Y durch Überprüfung von

Y Qa︸︷︷︸ = I︸︷︷︸ (A4-36)


Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

 =


I 0 0
0 I 0
0 0 I

 (A4-37)
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umgangen und die Matrix Z blockweise auf Übereinstimmung mit der Einheitsmatrix I
überprüft. Zwei der drei Elemente der Matrix

Qa =
[
Qa1 Qa2 Qa3

]
=

[(
Mv Syd M−1

u ST
yd + I

)
Sλa Qd2 Qd3

]
(A4-38)

stimmen mit denen von Qd überein, vgl. (2-87) und (2-90), sodass an dieser Stelle vor
Berechnung der Elemente von Z die Berechnung des Produkts

X Qa1 = M
−1
E

(
ST

yd − MB M
−1
D ST

yk

) (
Mv Syd M−1

u ST
yd + I

)
Sλa

= M
−1
E

((
MA − MB M

−1
D MC

)
M−1

u ST
yd − MB M

−1
D ST

yk

)
Sλa

= M
−1
E ME M−1

u ST
yd Sλa = M−1

u ST
yd Sλa (A4-39)

genügt. Da auch der zweite und dritte Eintrag der Matrix Y mit denjenigen von Y überein-
stimmt, gilt

Z22 = Z22 = I , Z23 = Z23 = 0 , Z32 = Z32 = 0 , Z33 = Z33 = I . (A4-40)

Für die verbliebenen Elemente der Blockmatrix Z ergibt sich

Z11 =
(
ST

yd Sλa

)−1
Mu X Qa1 =

(
ST

yd Sλa

)−1
Mu M−1

u ST
yd Sλa = I , (A4-41)

Z12 =
(
ST

yd Sλa

)−1
Mu X Qa2 = 0 , Z13 =

(
ST

yd Sλa

)−1
Mu X Qa3 = 0 , (A4-42)

Z21 = Mr ST
λr M−1

v

(
I − Sλa

(
ST

yd Sλa

)−1
Mu X

)
Qa1

= Mr ST
λr M−1

v

(
Qa1 − Sλa

(
ST

yd Sλa

)−1
Mu M−1

u ST
yd Sλa

)

= Mr ST
λr M−1

v

((
Mv Syd M−1

u ST
yd + I

)
Sλa − Sλa

)
= 0 , (A4-43)

Z31 = M
−1
D

(
ST

yk − MC X
)

Qa1

= M
−1
D

(
ST

yk

(
Mv Syd M−1

u ST
yd + I

)
Sλa − MC M−1

u ST
yd Sλa

)

= M
−1
D

(
MC − MC

)
M−1

u ST
yd Sλa = 0 . (A4-44)

Damit ist gezeigt, dass Qa die Inverse von Y ist, und die erste Bedingung ist erfüllt. Mit
diesem Ergebnis kann die Erfüllung der zweiten Bedingung nach (A4-35) nun in der
einfacheren Form

nd − Qa

(
ST

yd Sλa

)−1


nu
0
0

 − na = 0 (A4-45)

überprüft werden. Durch Einsetzen von nd nach (2-91) und na nach (2-88) folgt

Sλa

(
ST

yd Sλa

)−1
nu − Qa1

(
ST

yd Sλa

)−1
nu + Mv Syd M−1

u nu = 0 . (A4-46)
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Nach Einsetzen von Qa1 nach (A4-38) folgt 0 = 0, sodass auch diese Bedingung erfüllt
ist.

Folglich resultieren bei Anwendung des in Abschnitt A3 erläuterten Verfahrens der exakten
Ein-/Ausgangslinearisierung auf die vorliegende Systembeschreibung ebenfalls die von
de Luca und Manes [LM94] angegebenen Berechnungsformeln für die Aktorkräfte Fq.
Hierfür ist das Aufstellen der Bewegungsgleichungen reduzierter Ordnung nach (A4-3)
sowie der Ausgangsgleichungen (A4-11) bzw. (A4-31) aus den Bewegungsgleichungen
von Manipulator (2-17) und Umgebung (2-78) unter Einbeziehung der Zusammenhänge
(2-79) und (2-80) erforderlich. Sowohl (2-79), (2-80) als auch die Zusammenhänge der
Matrizen Syd, Syk, Sλr und Sλa gemäß (2-81) sind wesentliche Grundlage der Herleitung
des Reglers.

Die Herleitung auf dem von de Luca und Manes [LM94] dokumentierten Weg führt
wesentlicher schneller zu den Gleichungen für die Aktorkräfte Fq. Dies liegt insb. daran,
dass die Invertierung von Y bzw. Y entfällt. Festzuhalten ist auch, dass für die Regelung
der aktiven Kräfte λa mit dem linearen Eingang ua, d. h. die Aktorkräfte nach (2-92), eine
interne Dynamik der Ordnung 2 nd vorliegt, deren Stabilität in [LM94] nicht untersucht
wurde. Im zweidimensionalen Beispielsystem aus Abschnitt 3.2 liegt dementsprechend bei
Regelung von λa = Ft eine interne Dynamik zweiter Ordnung vor, die in der Drehbewegung
des Stabes um den Punkt A besteht. Für den linearen Eingang ud bzw. die Regelung der
dynamischen Koordinaten yd liegt hingegen eine exakte Zustandslinearisierung vor.
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A5 Zweidimensionale Modelle

Dieser Teil des Anhangs enthält die Herleitung für die in Kapitel 3 verwendeten Model-
le sowie ein zweidimensionales Modell für die MacPherson-Einzelradaufhängung. Der
erste Abschnitt gibt Formeln für die Relativgeschwindigkeit zweier Punkte auf einem
starren Körper sowie das Moment bezüglich eines Punktes, das sich aus einer an einem
anderen Punkt angreifenden Kraft ergibt, an. Diese Formeln werden in den drei sich
anschließenden Abschnitten aufgegriffen. In den Abschnitten A5.2 bis A5.4 werden die
Bewegungsgleichungen

• des in Kapitel 3 verwendeten Manipulators,

• der in Abschnitt 3.2 vorliegenden Umgebung mit Dynamik sowie

• eines zweidimensionalen Ersatzmodells der MacPherson-Radaufhängung

hergeleitet.

A5.1 Relativgeschwindigkeit und Moment in der Ebene

Für die Relativgeschwindigkeit zweier körperfester Punkte X und Y gilt im Raum, vgl. (A1-5)
und Bild A1-2,

IvXY = IK
Iω × I rXY . (A5-1)

Liegen sämtliche Vektoren bspw. in der y-z-Ebene, so folgt mit

IK
Iω =


ω
0
0

 , I rXY =


0

I
rXY,y

IrXY,z

 (A5-2)

hieraus, dass

IvXY =


ω
0
0

 ×


0

I
rXY,y

IrXY,z

 =


0

− IrXY,z ω

I
rXY,y ω

 =


0

− IrXY,z

I
rXY,y

 · ω . (A5-3)

Werden nur die relevanten y- und z-Einträge der Vektoren betrachtet, so folgt für die
Relativgeschwindigkeit zweier körperfester Punkte in der Ebene

IvXY =

[− IrXY,z

I
rXY,y

]
· ω . (A5-4)

Für das Moment bezüglich des Punktes X, das eine im Punkt Y angreifende Kraft ausübt,
gilt allgemein

I M(X) = I rXY × I F . (A5-5)
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Liegen auch die Kräfte I F in der y-z-Ebene, d. h.

I F =


0
Fy
Fz

 , (A5-6)

so folgt

I M(X) =


0

I
rXY,y

IrXY,z

 ×


0
Fy
Fz

 =


I
rXY,y Fz − IrXY,z Fy

0
0

 =
[
0 − IrXY,z I

rXY,y

]
· I F . (A5-7)

Werden wieder nur die y- und z-Einträge betrachtet, so folgt für die Berechnung des
(skalaren) Moments die Gleichung

M(X) =
[
− IrXY,z I

rXY,y

]
·
[
Fy
Fz

]
. (A5-8)

A5.2 Manipulator

In den Ausführungen zu Kapitel 3 wird das zweidimensionale Äquivalent eines Hexapod
als Manipulator zugrunde gelegt. Bild A5-1 zeigt den freigeschnittenen Endeffektor dieses
Manipulators.

y

z

0

Fq,1
Fq,2

Fq,3

mE g

B1 B2 B3

E1
E2 E3

S
Fy

Fz Mx

α
T

Bild A5-1: Freischnitt des Manipulators

Bei der Herleitung werden u. a. die Größen z, v und τ nach (3-2) sowie die Aktorkräfte
Fq,1, Fq,2 und Fq,3 verwendet. Die Punkte B1, B2, B3 bzw. E1, E2, E3 kennzeichnen die
Verbindungspunkte der Linearaktoren mit der Aufspannplatte bzw. dem Endeffektor. S
kennzeichnet den Schwerpunkt des Endeffektors, der die Masse mE und das Trägheits-
moment IS

xx besitzt. Die Bewegungsgleichungen des Manipulators werden mithilfe des
Prinzips von Jourdain hergeleitet. Dabei wird als Minimalkoordinate der verallgemeinerte
Positionsvektor z verwendet.

Die Drehmatrix vom inertial- in das endeffektorfeste System lautet

IE A =

[
cosα − sinα
sinα cosα

]
. (A5-9)
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Aufbauend auf I r0T nach (3-5) beträgt der Ortsvektor des Schwerpunkts

I r0S = I r0T − I rS T , I rS T = IE A · E rS T =

[
E
rS T,y cosα − ErS T,z sinα

E
rS T,y sinα + ErS T,z cosα

]
, (A5-10)

aus dem sich die Jacobimatrix der Translation zu

JT =
∂ I r0S

∂ zT =
[
I −∂ I rS T

∂ α

]
,

∂ I rS T

∂ α
=

[−
E
rS T,y sinα − ErS T,z cosα

E
rS T,y cosα − ErS T,z sinα

]
(A5-11)

bestimmen lässt. Da die Winkelgeschwindigkeit des EndeffektorsωE,x gerade der zeitlichen
Ableitung des Drehwinkels α entspricht, lautet die Jacobimatrix der Rotation

JR =
∂ωE,x

∂ vT =
[
0 0 1

]
. (A5-12)

Mit der Jacobimatrix

J =

[
JT
JR

]
(A5-13)

folgt die Massenmatrix Mv nach (A2-14) zu

Mv (z) = JT
[
mE I 0

0 IS
xx

]
J =


mE I −mE

∂ I rS T
∂ α

−mE

(
∂ I rS T
∂ α

)T
IS

xx + mE

(
∂ I rS T
∂ α

)T ∂ I rS T
∂ α

 . (A5-14)

Für die Matrix Cv, die der Berechnung der verallgemeinerten Zentrifugal- und Coriolis-
kräfte dient, vgl. (A2-17), ergibt sich nach einigen Berechnungsschritten

Cv (z, v) = mE ·
[
0 I rS T
0 0

]
· α̇ . (A5-15)

Der Vektor der verallgemeinerten Gewichtskräfte gv berechnet sich nach (A2-22) zu

gv (z) = −JT
T ·

[
0

−mE · g
]

= mE · g ·


0
1

−∂ IrS T,z

∂ α

 . (A5-16)

Mithilfe von Bild A5-1 können die eingeprägten Kräfte I F
e\g und Momente Me\g(S )

bestimmt werden (jeweils exklusive der Anteile aus der Gewichtskraft mE · g, die bereits
in gv enthalten sind). Es gilt

I F
e\g = −

[
Fy
Fz

]
+

3∑

i=1
IeBiEi · Fq,i , (A5-17)

Me\g(S ) = −
[
− IrS T,z I

rS T,y

] [
Fy
Fz

]
− Mx +

3∑

i=1

[
− IrS Ei,z I

rS Ei,y

]
IeBiEi Fq,i , (A5-18)

vgl. auch (A5-8). Aufbauend auf diesen Angaben folgen die Bewegungsgleichungen des
Manipulators mit τ nach (3-2) und Fq =

[
Fq,1 Fq,2 Fq,3

]T
nach einigen Umformungen

zu

Mv (z) · v̇ + Cv (z, v) · v + gv (z) = J−T
g (z) · Fq − τ (A5-19)
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mit

J−T
g (z) = JT

[
IeB1E1 . . . IeB3E3[

− IrS E1,z I
rS E1,y

]
IeB1E1

[
− IrS E3,z I

rS E3,y

]
IeB3E3

]
. (A5-20)

Für IeBiEi und IrS Ei,z gilt

IeBiEi =
I rBiEi∣∣∣I rBiEi

∣∣∣
, I rS Ei = I rS T + I rT Ei (A5-21)

mit

I rBiEi = I r0T + I rT Ei − I r0Bi , I rT Ei = IE A · E rT Ei . (A5-22)

Die Parameter des Manipulatormodells sind die jeweils drei Vektoren I r0Bi und E rT Ei, der
Schwerpunktvektor I rS T sowie die Masse mE und das Trägheitsmoment IS

xx des Endeffek-
tors.

A5.3 Umgebung „Stab mit nicht vernachlässigbarer Dynamik“

Den Freischnitt der Umgebung mit nicht vernachlässigbarer Dynamik aus Bild 3-4 zeigt
Bild A5-2.

y

z

0

β

h
FFD

FFD

dAB

dBC

FCy

FCz

dAT
dAS

Fy

FzMx

mS g FAy

FAz

Bild A5-2: Freischnitt der dynamischen Umgebung

Die in diesem Bild eingetragenen Größen sind: die Gewichtskraft Fg = mS g, die Summe
aus Feder- und Dämpferkraft

FFD = c
(
dBC − dBC,nom

)
+ d ḋBC , (A5-23)

der zugehörige, zeitvariante Hebelarm h bezüglich des Punktes A und die Wirkrichtung

IeBC der Kraft FFD, die Kontaktkräfte und -momente zum Manipulator τ =
[
Fy Fz Mx

]T
,

die Reaktionskräfte FAy, FAz, FCy und FCz, die Längen dAB, dAS , dAT und dBC sowie der
Drehwinkel β, der als generalisierte Koordinate verwendet wird. Davon sind dAB, dAS , dAT
sowie mS , c, d und dBC,nom konstante Modellparameter. Hinzu kommt das Trägheitsmoment
IS

xx bezüglich des Schwerpunkts S .
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Die Bewegungsgleichungen können nach dem Prinzip von Jourdain hergeleitet werden.
Es ist aber geschickter, stattdessen den Drallsatz bezüglich des Punktes A aufzustellen. Er
lautet

IA
xx · β̈ = Fg dAS cos β + Fy dAT sin β − Fz dAT cos β + Mx − h FFD (A5-24)

mit IA
xx = IS

xx + mS d2
AS . Der Abgleich mit (2-78) führt zu

IA
xx

︸︷︷︸

· β̈

︸︷︷︸

+h FFD − Fg dAS cos β

︸                     ︷︷                     ︸ =
[
dAT sin β −dAT cos β 1

]

︸                              ︷︷                              ︸·


Fy
Fz
Mx


︸︷︷︸

. (A5-25)

Mu · ÿd + nu
(
yd, ẏd

)
= ST

yd
(
yd

) · τ (A5-26)

Für die Auswertung dieser Bewegungsgleichung müssen die (noch) unbekannte, zeitvari-
ante Länge dBC sowie deren zeitliche Ableitung ḋBC und der Hebelarm h bestimmt werden.
Mit

I rBC = I rAC − I rAB (A5-27)

folgt

dBC =
∣∣∣I rBC

∣∣∣ =

√
I r

T
BC · I rBC =

√
I r

T
AC · I rAC − 2 · I r

T
AC · I rAB + I r

T
AB · I rAB

=

√
d2

AC − 2 · I r
T
AC · I rAB + d2

AB (A5-28)

und

ḋBC = − I r
T
AC · I ṙAB

dBC
. (A5-29)

Dabei ist der Vektor I rAC ein konstanter Modellparameter. Für den Vektor I rAB und dessen
zeitliche Ableitung gilt

I rAB = IK A · K rAB =

[
cos β − sin β
sin β cos β

]
·
[−dAB

0

]
= −dAB ·

[
cos β
sin β

]
, (A5-30)

I ṙAB = dAB · β̇ ·
[

sin β
− cos β

]
. (A5-31)

Das Moment M(A)
FD der Kraft FFD bezüglich des Punktes A beträgt

M(A)
FD = −h FFD =

[
− IrAB,z I

rAB,y

]
· I FFD , I FFD = IeBC · FFD , (A5-32)

vgl. auch (A5-8). Hieraus folgt mit I rAB nach (A5-30), I rBC nach (A5-27) und

IeBC =
I rBC

dBC
(A5-33)

der Zusammenhang16

M(A)
FD = −

[
IrAB,z − I

rAB,y

]
· I rAC

dBC︸                       ︷︷                       ︸
Hebelarm h in Bild A5-2

·FFD . (A5-34)

16Es gilt
[
− IrAB,z I

rAB,y

]
· I rAB = 0.
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Alternativ lässt sich der Hebelarm h auch mithilfe einer Lotgeraden oder nach der Glei-
chung

h =
∂ dBC

∂ β
(A5-35)

berechnen.

A5.4 Radaufhängung

In diesem Abschnitt werden die Bewegungsgleichungen für ein zweidimensionales Modell
der MacPherson-Radaufhängung hergeleitet. Die Herleitung basiert auf den Ausführungen
in Abschnitt 4.3. Bild A5-3 zeigt das Ersatzmodell.

dF

y

z

0AC

E

D

Federdom

Federbein
Radträger

Querlenker

T

τ

Bild A5-3: Zweidimensionales Ersatzmodell der MacPherson-Radaufhängung

Der zweidimensionale Mechanismus besteht aus drei Starrkörpern: dem Radträger (in-
klusive Dämpferrohr), dem Querlenker und der Dämpferstange. Die Körper besitzen die
Schwerpunkte 1, 2 bzw. 3 (nicht im Bild enthalten). Die Kopplung von Radträger und
Querlenker im Punkt C besteht in einem Drehgelenk. Das Federbein entspricht einem
Schubgelenk. Das Modell erlaubt, in den Punkten A und E entweder ideale Drehgelenke
oder dynamische Bindungen (Feder-Dämpfer-Elemente) anzusetzen. Je nach Auswahl
ergeben sich damit f = 1 . . . 5 FHG. Als Minimalkoordinaten werden der Dämpferweg dF
sowie die Verschiebungen der Punkte A und E in der y- und z-Richtung des fahrzeugfesten
Systems I verwendet, d. h.

yA =
[
dF yA zA yE zE

]
. (A5-36)

Die körperfesten Systeme tragen im folgenden die Bezeichner 1 (Radträger), 2 (Querlenker)
und 3 (Dämpferstange).



A5.4 Radaufhängung 281

Positionsgrößen

Die Drehmatrizen des Radträgers I1 A, des Querlenkers I2 A sowie der Dämpferstange I3 A
lauten

I1 A =

[
cosα −sinα
sinα cosα

]
, I2 A =

[
cosϕ −sinϕ
sinϕ cosϕ

]
, I3 A = I1 A . (A5-37)

Da Radträger und Dämpferstange über ein Schubgelenk miteinander verbunden sind, das
die gegenseitige Verdrehung der Körper verhindert, stimmen diese beiden Drehmatrizen
überein. Die unbekannten Drehwinkel ϕ und α müssen aus den Minimalkoordinaten yA
und den Modellparametern berechnet werden.

Für die Berechnung von ϕ werden die (quadrierten) Beträge der Vektoren I rCE und 1rCE
gleichgesetzt, d. h.

1rT
CE · 1rCE = I r

T
CE · I rCE . (A5-38)

Für diese Vektoren gilt

1rCE = 1rCD + dF · 1eDE (A5-39)

und

I rCE = I rAE − I rAC (A5-40)

mit

I rAC = I2 A · 2rAC , I rAE = I r0E − I r0A , (A5-41)

I r0A = I r0A,0 +

[
yA
zA

]
, I r0E = I r0E,0 +

[
yE
zE

]
. (A5-42)

Durch Einsetzen dieser Zusammenhänge in (A5-38) resultiert

−2 ·
(

I
rAE,y · 2rAC,y + I rAE,z · 2rAC,z

)
· cosϕ

+2 ·
(

I
rAE,y · 2rAC,z − I rAE,z · 2rAC,y

)
· sinϕ

= 1rT
CE · 1rCE − I r

T
AE · I rAE − 2rT

AC · 2rAC . (A5-43)

Außerdem folgt aus der zweiten Zeile von

I rCE = I1 A · 1rCE , (A5-44)

dass

IrCE,z = 1rCE,y · sinα + 1rCE,z · cosα . (A5-45)

Die Gleichungen (A5-43) und (A5-45) weisen die Form a·cos x+b·sin x = c auf und lassen
die Bestimmung der unbekannten Drehwinkel ϕ und α von Querlenker und Radträger zu,
vgl. Anhang A6. Damit sind die Drehmatrizen I1 A, I2 A und I3 A bekannt.
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Mithilfe der Drehmatrizen können die Ortsvektoren der Körperschwerpunkte zu

I r01 = I r0A + I rAC + I rC1 , I r02 = I r0A + I rA2 , (A5-46)

I r03 = I r0E + I rE3 (A5-47)

mit

I rC1 = I1 A · 1rC1 , I rA2 = I2 A · 2rA2 , I rE3 = I3 A · 1rE3 (A5-48)

angegeben werden. Für den Punkt T ergibt sich

I r0T = I r01 + I r1T , I r1T = I1 A · 1r1T . (A5-49)

Geschwindigkeitsgrößen

Die Winkelgeschwindigkeitsvektoren von Querlenker, Radträger und Dämpferstange lau-
ten

I1
Iω = α̇ =

∂ α̇

∂ ẏT
A

· ẏA ,
I2

Iω = ϕ̇ =
∂ ϕ̇

∂ ẏT
A

· ẏA ,
I3
Iω = I1

Iω (A5-50)

mit den Unbekannten ∂ ϕ̇/∂ ẏT
A und ∂ α̇/∂ ẏT

A, die im Folgenden aus yA, ẏA und den Modell-
parametern bestimmt werden. Es gilt

I ṙAE = I ṙAC + I ṙCE , (A5-51)

I ṙAE = I ṙ0E − I ṙ0A =
∂ I ṙAE

∂ ẏT
A

· ẏA ,
∂ I ṙAE

∂ ẏT
A

=
∂ I ṙ0E

∂ ẏT
A

− ∂ I ṙ0A

∂ ẏT
A

(A5-52)

mit

I ṙ0A =
∂ I ṙ0A

∂ ẏT
A

· ẏA ,
∂ I ṙ0A

∂ ẏT
A

=
[
0 1 1 0 0

]
, (A5-53)

I ṙ0E =
∂ I ṙ0E

∂ ẏT
A

· ẏA ,
∂ I ṙ0E

∂ ẏT
A

=
[
0 0 0 1 1

]
, (A5-54)

I ṙAC =

[− I rAC,z

I
rAC,y

]
· ϕ̇ , I ṙCE =

[− I rCE,z

I
rCE,y

]
· α̇ + I v̇rel,CE , (A5-55)

und

I v̇rel,CE = I1 A · 1 ṙCE = I1 A · 1eDE · ḋF = IeDE · ḋF , (A5-56)

ḋF =
∂ ḋF

∂ ẏT
A

· ẏA ,
∂ ḋF

∂ ẏT
A

=
[
1 0 0 0 0

]
. (A5-57)

Durch Gleichsetzen von (A5-51) und (A5-52) und Einsetzen der genannten Zusammen-
hänge resultiert

∂ I ṙAE

∂ ẏT
A

· ẏA =

[− I rAC,z

I
rAC,y

]
· ϕ̇ +

[− I rCE,z

I
rCE,y

]
· α̇ + IeDE · ḋF , (A5-58)
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woraus durch Linksmultiplikation mit I r
T
CE bzw. I r

T
AC und Umformen die gesuchten Größen

zu

∂ ϕ̇

∂ ẏT
A

=
I r

T
CE ·

(
∂ I ṙAE

∂ ẏT
A
− IeDE · ∂ ḋF

∂ ẏT
A

)

I r
T
CE ·

[− I rAC,z

I
rAC,y

] ,
∂ α̇

∂ ẏT
A

=
I r

T
AC ·

(
∂ I ṙAE

∂ ẏT
A
− IeDE · ∂ ḋF

∂ ẏT
A

)

I r
T
AC ·

[− I rCE,z

I
rCE,y

] (A5-59)

folgen.

Die Geschwindigkeiten der Körperschwerpunkte lauten

I ṙ01 = I ṙ0A + I ṙAC + I ṙC1 =
∂ I ṙ01

∂ ẏT
A

· ẏA , (A5-60)

I ṙ02 = I ṙ0A + I ṙA2 =
∂ I ṙ02

∂ ẏT
A

· ẏA , I ṙ03 = I ṙ0E + I ṙE3 =
∂ I ṙ03

∂ ẏT
A

· ẏA . (A5-61)

Mit (A5-53), (A5-54), (A5-55) und

I ṙC1 =

[− I rC1,z

I
rC1,y

]
· α̇ , I ṙA2 =

[− I rA2,z

I
rA2,y

]
· ϕ̇ , I ṙE3 =

[− I rE3,z

I
rE3,y

]
· α̇ (A5-62)

können die partiellen Ableitungen

∂ I ṙ01

∂ ẏT
A

=
∂ I ṙ0E

∂ ẏT
A

+

[− I rAC,z

I
rAC,y

]
· ∂ ϕ̇
∂ ẏT

A

+

[− I rC1,z

I
rC1,y

]
· ∂ α̇
∂ ẏT

A

, (A5-63)

∂ I ṙ02

∂ ẏT
A

=
∂ I ṙ0A

∂ ẏT
A

+

[− I rA2,z

I
rA2,y

]
· ∂ ϕ̇
∂ ẏT

A

, (A5-64)

∂ I ṙ03

∂ ẏT
A

=
∂ I ṙ0E

∂ ẏT
A

+

[− I rE3,z

I
rE3,y

]
· ∂ α̇
∂ ẏT

A

(A5-65)

bestimmt werden. Der Geschwindigkeitsvektor des Punktes T beträgt

I ṙ0T = I ṙ01 + I ṙ1T =
∂ I ṙ0T

∂ ẏT
A

· ẏA , I ṙ1T =

[− I r1T,z

I
r1T,y

]
· α̇ , (A5-66)

∂ I ṙ0T

∂ ẏT
A

=
∂ I ṙ01

∂ ẏT
A

+

[− I r1T,z

I
r1T,y

]
· ∂ α̇
∂ ẏT

A

. (A5-67)

Beschleunigungsgrößen

Für die Winkelbeschleunigungsvektoren der Körper

I1
Iω̇ =

∂ α̇

∂ ẏT
A

· ÿA +
d
d t

(
∂ α̇

∂ ẏT
A

)
· ẏA , (A5-68)

I2
Iω̇ =

∂ ϕ̇

∂ ẏT
A

· ÿA +
d
d t

(
∂ ϕ̇

∂ ẏT
A

)
· ẏA ,

I3
Iω̇ = I1

Iω̇ (A5-69)
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und die Beschleunigungsvektoren der Schwerpunkte

I r̈01 =
∂ I ṙ01

∂ ẏT
A

· ÿA +
d
d t

(
∂ I ṙ01

∂ ẏT
A

)
· ẏA , (A5-70)

I r̈02 =
∂ I ṙ02

∂ ẏT
A

· ÿA +
d
d t

(
∂ I ṙ02

∂ ẏT
A

)
· ẏA , (A5-71)

I r̈03 =
∂ I ṙ03

∂ ẏT
A

· ÿA +
d
d t

(
∂ I ṙ03

∂ ẏT
A

)
· ẏA (A5-72)

aus (A5-50), (A5-60) und (A5-61) sind die zeitlichen Ableitungen von ∂ ϕ̇/∂ ẏT
A, ∂ α̇/∂ ẏT

A,
∂ I ṙ01/∂ ẏT

A, ∂ I ṙ02/∂ ẏT
A und ∂ I ṙ03/∂ ẏT

A zu bestimmen. d
(
∂ ϕ̇/∂ ẏT

A

)
/d t und d

(
∂ α̇/∂ ẏT

A

)
/d t

folgen durch Anwendung der Quotientenregel aus (A5-59) zu

d
d t

(
∂ ϕ̇

∂ ẏT
A

)
=

(
I ṙ

T
CE

(
∂ I ṙAE

∂ ẏT
A
− IeDE

∂ ḋF

∂ ẏT
A

)
− I r

T
CE I ėDE

∂ ḋF

∂ ẏT
A

) (
I r

T
CE

[− I rAC,z

I
rAC,y

])

(
I r

T
CE

[− I rAC,z

I
rAC,y

])2

−
I r

T
CE

(
∂ I ṙAE

∂ ẏT
A
− IeDE

∂ ḋF

∂ ẏT
A

) (
I ṙ

T
CE

[− I rAC,z

I
rAC,y

]
+ I r

T
CE

[− I ṙAC,z

I
ṙAC,y

])

(
I r

T
CE

[− I rAC,z

I
rAC,y

])2 (A5-73)

und

d
d t

(
∂ α̇

∂ ẏT
A

)
=

(
I ṙ

T
AC

(
∂ I ṙAE

∂ ẏT
A
− IeDE

∂ ḋF

∂ ẏT
A

)
− I r

T
AC I ėDE

∂ ḋF

∂ ẏT
A

) (
I r

T
AC

[− I rCE,z

I
rCE,y

])

(
I r

T
AC

[− I rCE,z

I
rCE,y

])2

−
I r

T
AC

(
∂ I ṙAE

∂ ẏT
A
− IeDE

∂ ḋF

∂ ẏT
A

) (
I ṙ

T
AC

[− I rCE,z

I
rCE,y

]
+ I r

T
AC

[− I ṙCE,z

I
ṙCE,y

])

(
I r

T
AC

[− I rCE,z

I
rCE,y

])2 (A5-74)

mit

I ėDE =

[− IeDE,z

I
eDE,y

]
· α̇ . (A5-75)

Die anderen drei zeitlichen Ableitungen folgen aus (A5-63), (A5-64) und (A5-65) zu

d
d t

(
∂ I ṙ01

∂ ẏT
A

)
=

[− I rAC,z

I
rAC,y

]
· d

d t

(
∂ ϕ̇

∂ ẏT
A

)
+

[− I rC1,z

I
rC1,y

]
· d

d t

(
∂ α̇

∂ ẏT
A

)

+

[− I ṙAC,z

I
ṙAC,y

]
· ∂ ϕ̇
∂ ẏT

A

+

[− I ṙC1,z

I
ṙC1,y

]
· ∂ α̇
∂ ẏT

A

, (A5-76)

d
d t

(
∂ I ṙ02

∂ ẏT
A

)
=

[− I rA2,z

I
rA2,y

]
· d

d t

(
∂ ϕ̇

∂ ẏT
A

)
+

[− I ṙA2,z

I
ṙA2,y

]
· ∂ ϕ̇
∂ ẏT

A

, (A5-77)

d
d t

(
∂ I ṙ03

∂ ẏT
A

)
=

[− I rE3,z

I
rE3,y

]
· d

d t

(
∂ α̇

∂ ẏT
A

)
+

[− I ṙE3,z

I
ṙE3,y

]
· ∂ α̇
∂ ẏT

A

. (A5-78)
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Die entsprechende partielle Ableitung für den Beschleunigungsvektor des Punktes T
lautet

d
d t

(
∂ I ṙ0T

∂ ẏT
A

)
=

d
d t

(
∂ I ṙ01

∂ ẏT
A

)
+

[− I r1T,z

I
r1T,y

]
· d

d t

(
∂ α̇

∂ ẏT
A

)
+

[− I ṙ1T,z

I
ṙ1T,y

]
· ∂ α̇
∂ ẏT

A

. (A5-79)

Eingeprägte Kräfte und Momente

Dieses Modell sowie das zur Validierung der Gleichungen herangezogene MKS-Gegenstück
enthalten

• einen Stoßdämpfer mit nichtlinearer Dämpfung (Kraft-Geschwindigkeits-Kennlinie)
sowie nichtlinearen Zug- und Druckpuffern (Kraft-Weg-Kennlinien),

• eine Aufbaufeder mit linearer Charakteristik und

• zwei Elastomerlager (ein Querlenkerlager sowie das Federbeinstützlager) mit jeweils
drei Kraft-Weg-Kennlinien und drei konstanten Dämpfungen.

Für beide Elastomerlager ist die relative Verdrehung der Lagerachsen zu den beiden
über das Elastomerlager verbundenen Körpern erforderlich. Auf die Modellierung der
Kraftelemente wird an dieser Stelle nicht im Detail eingegangen.

Resultierende Modellgleichungen

Mithilfe dieser Herleitungen lassen sich die Modellgleichungen in der gleichen Form wie
die des räumlichen Modells der MacPherson-Radaufhängung angeben, vgl. (4-222). Zu
den Parametern des Modells zählen neben sämtlichen Parametern, die für die Modellierung
der Kraftelemente erforderlich sind, die Konstruktionslagen der Punkte A, C, D, E, T , 1,
2 und 3. Dieses Modell wurde ähnlich wie das räumliche Modell mithilfe eines gleich
aufgebauten MKS-Modells validiert.
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A6 Lösung der Gleichung a · cos x + b · sin x = c

Die Lösung der Gleichung

a · cos x + b · sin x = c (A6-1)

lautet

x (a, b, c) =



−arctan a
b + arcsin −c√

a2
+b2

für b < 0

−arctan a
b + arcsin c√

a2
+b2

sonst
(A6-2)

vgl. [Ril12, S. 147].
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A7 Zusätzliche Abbildungen zu Kapitel 5

A7.1 Analytische Formulierung nach de Luca und Manes

A7.1.1 Regelung der Radaufhängung ohne Elastomerlager

Die Rahmenbedingungen der folgenden, zusätzlichen Abbildungen zu Abschnitt 5.1 ent-
sprechen den in diesem Abschnitt genannten. Das Streckenmodell besteht demnach aus

• einem Hexapod mit 13 massebehafteten Starrkörpern (ΣH13) und

• der MacPherson-Radaufhängung mit den drei FHG dF , xL, ψ.

Es ist weiterhin der stets gleiche Ausschnitt aus der Schlechtweganregung zu sehen. Die
Selektionsmatrizen lauten:

• S31= diag
[
0 1 0

]
,

• S32= diag
[
1 1 0

]
,

• S33= diag
[
1 0 0

]
und

• S34= diag
[
0 0 0

]
.

Für die Selektionsmatrizen S32, S33 und S34 ist im folgenden der Soll-/Ist-Vergleich

• für das 13-Starrkörper-Hexapodmodell ΣH13 im Regler sowie

• das 1-Starrkörper-Hexapodmodell Σ∗H1 im Regler

zu finden. Die entsprechenden Bilder für S31 sind bereits in Abschnitt 5.1.3 enthalten.
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Bild A7-1: Soll-/Ist-Vergleich für die Selektionsmatrix S32 = diag [1 1 0]
(Regler ΣR,LM3 mit Hexapodmodell ΣH13, Strecke ΣG3)
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Bild A7-2: Soll-/Ist-Vergleich für die Selektionsmatrix S32 = diag [1 1 0]
(Regler ΣR,LM3 mit Hexapodmodell Σ∗H1, Strecke ΣG3)



292 A7 Zusätzliche Abbildungen zu Kapitel 5

460
480
500
520
540
560
580
600
620

d F
[m

m
]

−2

0

2

4

6
F

x
[k

N
]

Sollkraft Istkraft Sollposition Istposition

−2
−1,5
−1
−0,5

0
0,5

1
1,5

F
y

[k
N

]

2
4
6

8
10
12

F
z

[k
N

]

−0,8
−0,6
−0,4
−0,2

0
0,2
0,4
0,6

M
x

[k
N

m
]

−0,1

−0,05

0

0,05

0,1

M
y

[k
N

m
]

3,5 4 4,5 5 5,5 6 6,5 7 7,5

−0,6

−0,4

−0,2
0

0,2

0,4

t [s]

M
z

[k
N

m
]

−0,1

−0,05

0

0,05

0,1
ψ

[◦
]

−0,1

−0,05

0

0,05

0,1

x L
[m

m
]

Bild A7-3: Soll-/Ist-Vergleich für die Selektionsmatrix S33 = diag [1 0 0]
(Regler ΣR,LM3 mit Hexapodmodell ΣH13, Strecke ΣG3)
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Bild A7-4: Soll-/Ist-Vergleich für die Selektionsmatrix S33 = diag [1 0 0]
(Regler ΣR,LM3 mit Hexapodmodell Σ∗H1, Strecke ΣG3)
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Bild A7-5: Soll-/Ist-Vergleich für die Selektionsmatrix S34 = diag [0 0 0]
(Regler ΣR,LM3 mit Hexapodmodell ΣH13, Strecke ΣG3)
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Bild A7-6: Soll-/Ist-Vergleich für die Selektionsmatrix S34 = diag [0 0 0]
(Regler ΣR,LM3 mit Hexapodmodell Σ∗H1, Strecke ΣG3)
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A7.1.2 Regelung der Radaufhängung mit Elastomerlagern

Dieser Abschnitt enthält die zusätzlichen Abbildungen zu Abschnitt 5.1.4 des Hauptteils
dieser Dissertationsschrift. Die betrachteten Selektionsmatrizen lauten

• S6p= diag
[
0 1 0 1 1 1

]
und

• S6 f = diag
[
1 1 0 1 1 1

]

für die Regler ΣR,LM6a und ΣR,LM6b bzw.

• S∗6p= diag
[
1 1 0 1 0 1

]
und

• S∗6 f = diag
[
1 1 1 1 0 1

]

für den Regler ΣR,LM6z. Nachfolgend sind für die Regelungen ΣR,LM6a, ΣR,LM6b und ΣR,LM6z
diese Abbildungen zu finden, sofern sie nicht bereits im Hauptteil enthalten sind:

1. die Soll-/Ist-Vergleiche für jeweils beide Selektionsmatrizen bei Verwendung der
Hexapodmodelle ΣH13 und Σ∗H1 im Regler,

2. das Säulendiagramm mit der Gegenüberstellung der relativen RMS-Fehler,

3. der Plot für die kritische Aktoreckfrequenz fA,krit für PT1-, PT2- und PT3-Aktor-
dynamik sowie

4. der Verlauf von fA,krit bei Variation der Reglerverstärkung KP, f für PT3-Aktor-
dynamik.

Für den Regler ΣR,LM6b mit den Positionsgrößen ydr2 nach (5-52) wurden die Wahlmöglich-
keiten mittels Selektionsmatrix S = diag

[
s1 . . . s6

]
gemäß Tabelle A7-1 vorgegeben.

s1 s2 s3 s4 s5 s6

Positionsgrößen dF xL ψ xA yA yE
Kraftgrößen Fz Mz My Fx Fy Mx

Tabelle A7-1: Verknüpfung der Positions- und Kraftgrößen über S (Regler ΣR,LM6b)

Damit gilt

ia =
[
3 6 5 1 2 4

]
(A7-1)

und

Sλa =



0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0



. (A7-2)
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Bild A7-7: Soll-/Ist-Vergleich für die Selektionsmatrix S6p = diag [0 1 0 1 1 1]
(Regler ΣR,LM6a mit Hexapodmodell Σ∗H1, Strecke ΣG11)



298 A7 Zusätzliche Abbildungen zu Kapitel 5

460
480
500
520
540
560
580
600
620

d F
[m

m
]

−2

0

2

4

6
F

x
[k

N
]

Sollkraft Istkraft Sollposition Istposition

−2
−1,5
−1
−0,5

0
0,5

1
1,5

F
y

[k
N

]

2
4
6
8

10
12

F
z

[k
N

]

−0,8
−0,6
−0,4
−0,2

0
0,2
0,4
0,6

M
x

[k
N

m
]

−0,1

−0,05

0

0,05

0,1

M
y

[k
N

m
]

3,5 4 4,5 5 5,5 6 6,5 7 7,5

−0,5
−0,4
−0,3
−0,2
−0,1

0
0,1
0,2

t [s]

M
z

[k
N

m
]

−0,1

−0,05

0

0,05

0,1
ψ

[◦
]

Bild A7-8: Soll-/Ist-Vergleich für die Selektionsmatrix S6 f = diag [1 1 0 1 1 1]
(Regler ΣR,LM6a mit Hexapodmodell Σ∗H1, Strecke ΣG11)
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Bild A7-9: Rel. RMS-Fehler mit den Modellen ΣH13 (links) bzw. Σ∗H1 (rechts) im Regler
(Regler ΣR,LM6a, Strecke ΣG11)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

Reglerverstärkung KI, f (Kraft) bzw. ωp (Position)

K
ri

t.
A

kt
or

ec
kf

re
qu

en
z

f A
,k

ri
t
[H

z]

KP, f = 0 KP, f = 0,25 KP, f = 0,5
KP, f = 0,75 KP, f = 1 KP, f = 1,25

·2 π

S6p S6 f

Bild A7-10: Erforderliche Aktorbandbreite fA,krit für PT3-Aktordynamik bei Variation der
Reglerverstärkung KP, f
(Regler ΣR,LM6a mit Hexapodmodell ΣH13, Strecke ΣG11)



300 A7 Zusätzliche Abbildungen zu Kapitel 5

−2

0

2

4

6
F

x
[k

N
]

Sollkraft Istkraft Sollposition Istposition

−2
−1,5
−1
−0,5

0
0,5

1
1,5

F
y

[k
N

]

0
5

10
15
20
25
30

F
z

[k
N

]

−0,8
−0,6
−0,4
−0,2

0
0,2
0,4
0,6

M
x

[k
N

m
]

−0,1

−0,05

0

0,05

0,1

M
y

[k
N

m
]

3,5 4 4,5 5 5,5 6 6,5 7 7,5

−0,5
−0,4
−0,3
−0,2
−0,1

0
0,1
0,2
0,3

t [s]

M
z

[k
N

m
]

460
480
500
520
540
560
580

d F
[m

m
]

−0,1

−0,05

0

0,05

0,1
ψ

[◦
]

Bild A7-11: Soll-/Ist-Vergleich für die Selektionsmatrix S6p = diag [0 1 0 1 1 1]
(Regler ΣR,LM6b mit Hexapodmodell ΣH13, Strecke ΣG11)
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Bild A7-12: Soll-/Ist-Vergleich für die Selektionsmatrix S6p = diag [0 1 0 1 1 1]
(Regler ΣR,LM6b mit Hexapodmodell Σ∗H1, Strecke ΣG11)
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Bild A7-13: Soll-/Ist-Vergleich für die Selektionsmatrix S6 f = diag [1 1 0 1 1 1]
(Regler ΣR,LM6b mit Hexapodmodell ΣH13, Strecke ΣG11)
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Bild A7-14: Soll-/Ist-Vergleich für die Selektionsmatrix S6 f = diag [1 1 0 1 1 1]
(Regler ΣR,LM6b mit Hexapodmodell Σ∗H1, Strecke ΣG11)
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Bild A7-15: Rel. RMS-Fehler mit den Modellen ΣH13 (links) bzw. Σ∗H1 (rechts) im Regler
(Regler ΣR,LM6b, Strecke ΣG11)
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Bild A7-16: Erforderliche Aktorbandbreite fA,krit in Abhängigkeit der Parametrierung der
äußeren Regelkreise (Regler ΣR,LM6b mit Hexapodmodell ΣH13, Strecke ΣG11)
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Bild A7-17: Erforderliche Aktorbandbreite fA,krit für PT3-Aktordynamik bei Variation der
Reglerverstärkung KP, f
(Regler ΣR,LM6b mit Hexapodmodell ΣH13, Strecke ΣG11)
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Bild A7-18: Soll-/Ist-Vergleich für die Selektionsmatrix S∗6p = diag [1 1 0 1 0 1]
(Regler ΣR,LM6z mit Hexapodmodell Σ∗H1, Strecke ΣG11)
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Bild A7-19: Soll-/Ist-Vergleich für die Selektionsmatrix S∗6 f = diag [1 1 1 1 0 1]
(Regler ΣR,LM6z mit Hexapodmodell Σ∗H1, Strecke ΣG11)
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Bild A7-20: Rel. RMS-Fehler mit den Modellen ΣH13 (links) bzw. Σ∗H1 (rechts) im Regler
(Regler ΣR,LM6z, Strecke ΣG11)
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Bild A7-21: Erforderliche Aktorbandbreite fA,krit für PT3-Aktordynamik bei Variation der
Reglerverstärkung KP, f
(Regler ΣR,LM6z mit Hexapodmodell ΣH13, Strecke ΣG11)
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A7.2 Entwurf mit exakter Ein-/Ausgangslinearisierung

A7.2.1 Ideal starre Bindung von Endeffektor und Radnabe

Dieser Abschnitt enthält die zusätzlichen Abbildungen zum Regelungsentwurf für die starre
Bindung aus Endeffektor und Umgebung mittels exakter Ein-/Ausgangslinearisierung.
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S∗6p= diag [1 1 0 1 0 1] S∗6 f= diag [1 1 1 1 0 1]

Bild A7-22: Rel. RMS-Fehler mit den Modellen ΣH13 (links) bzw. Σ∗H1 (rechts) im Regler
(Regler ΣR,EALin, Strecke ΣG11)
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Bild A7-23: Erforderliche Aktorbandbreite fA,krit für PT3-Aktordynamik bei Variation der
Reglerverstärkung KP, f
(Regler ΣR,EALin mit Hexapodmodell ΣH13, Strecke ΣG11)
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Bild A7-24: Soll-/Ist-Vergleich für die Selektionsmatrix S∗6p = diag [1 1 0 1 0 1]
(Regler ΣR,EALin mit Hexapodmodell Σ∗H1, Strecke ΣG11)
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Bild A7-25: Soll-/Ist-Vergleich für die Selektionsmatrix S∗6 f = diag [1 1 1 1 0 1]
(Regler ΣR,EALin mit Hexapodmodell Σ∗H1, Strecke ΣG11)
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A7.3 Entwürfe ohne Entkopplung der (Kraft-) Regelgrößen

A7.3.1 Implizite Kraftregelung mit unterlagerter Positionsregelung
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Bild A7-26: Verkopplungen bei impliziter Kraftregelung mit unterlagerter Positionsrege-
lung
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Bild A7-27: Soll-/Ist-Vergleich für die mit 20 Hz vorgefilterte und um den Faktor 0,75
skalierte Schlechtweganregung (Prüfstandsmessung)
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Bild A7-28: Soll-/Ist-Vergleich für die mit 40 Hz vorgefilterte und um den Faktor 0,4
skalierte Schlechtweganregung (Prüfstandsmessung)
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A7.3.2 Weitere Ansätze
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(a) Implizite Kraftregelung mit unterlagerter Geschwindigkeitsregelung
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(b) Explizite Kraftregelung auf Basis der Linearisierung der Endeffektorpose

Bild A7-29: Übertragungsverhalten der offenen Regelkreise der weiteren Regelungsansätze
ohne Entkopplung, vgl. Abschnitt 5.3.2
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Bild A7-30: Verkopplungen bei impliziter Kraftregelung mit unterlagerter Geschwindig-
keitsregelung
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Bild A7-31: Verkopplungen bei expliziter Kraftregelung auf Basis der Linearisierung der
Endeffektorpose
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Bild A7-32: Soll-/Ist-Vergleich für die Rechteckanregung in Abhängigkeit der Anzahl an
Iterationsschritten k, Lernfaktor Q = 0,5 · I (Prüfstandsmessung)
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Bild A7-33: Soll-/Ist-Vergleich für die Rechteckanregung in Abhängigkeit der Anzahl an
Iterationsschritten k, Lernfaktor Q = 0,8 · I (Prüfstandsmessung)
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Bild A7-34: Soll-/Ist-Vergleich für ein Target-Signal aus einem Fahrversuch in Abhängig-
keit der Anzahl an Iterationsschritten k, Lernfaktor Q = 0,6 · I
(Prüfstandsmessung)
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(a) Rechteckanregung nach Bild A7-32, Lernfaktor Q = 0,5 · I
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(b) Rechteckanregung nach Bild A7-33, Lernfaktor Q = 0,8 · I
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(c) Target-Signal nach Bild A7-34, Lernfaktor Q = 0,6 · I

Bild A7-35: Verlauf der Abweichung ek in Abhängigkeit der Anzahl an Iterationsschritten
k (Prüfstandsmessungen)
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A8 Übertragungsverhalten der Servoventile

Bild A8-1: Übertragungsverhalten der am Hexapod eingesetzten Servoventile für 5 %,
40 % und 90 % Eingangssignal (Betriebsdruck 210 bar, Ölviskosität 32 mm2/s,
Öltemperatur 40 ◦C) [Moo19]
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