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Unterstützung wäre diese Arbeit niemals entstanden.

Außerdem gilt mein Dank Rafael Dahmen und Gabor Lukacs, die mich sehr freundlich
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Abstract

In the first part of this thesis, we recall the concept of differentiability of vector-valued
functions on topological groups along one-parameter subgroups and introduce a notion
of Ck,l-functions on products of topological groups. We study the properties of Ck- and
Ck,l-functions and of the locally convex spaces Ck(G,E) and Ck,l(G ×H,E). Further,
we prove an exponential law of the form Ck,l(G×H,E) ∼= Ck(G,C l(H,E)), which holds
under suitable hypotheses on G and H.

In the second part of the thesis, we show that in cases where G is a locally exponential
Lie group or a certain direct limit Lie group the above calculus of Ck-functions coincides
with the differential calculus on G as a locally convex manifold.

In the third part, we discuss Lebesgue spaces Lp([a, b], E) of Lusin-measurable vector-
valued functions and the corresponding vector spaces ACLp([a, b], E) of absolutely con-
tinuous functions. These are used to construct Lie groups ACLp([a, b], G) of absolutely
continuous functions with values in an infinite-dimensional Lie group G. We extend the
notion of Lp-regularity of infinite-dimensional Lie groups introduced by Glöckner to this
setting and adapt several results and tools.
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Contents

Deutsche Zusammenfassung: Im ersten Teil der Dissertation wiederholen wir den Begriff
der Differenzierbarkeit von vektorwertigen Funktionen auf topologischen Gruppen ent-
lang der Einparametergruppen und wir führen den Begriff der Ck,l-Funktionen auf Pro-
dukten von topologischen Gruppen ein. Wir untersuchen die Eigenschaften der Ck- und
Ck,l-Funktionen sowie der lokalkonvexen Räume Ck(G,E) und Ck,l(G×H,E). Weiter
beweisen wir ein Exponentialgesetz von der Form Ck,l(G × H,E) ∼= Ck(G,C l(H,E)),
welches unter bestimmten Voraussetzungen an G und H gilt.

Im zweiten Teil der Arbeit zeigen wir, dass falls G eine lokal exponentielle Liegruppe
oder ein direkter Limes bestimmter Liegruppen ist, das obere Differentialkalkül mit dem
Differentialkalkül auf G als lokalkonvexe Mannigfaltigkeit übereinstimmt.

Im dritten Teil untersuchen wir Lebesgue-Räume Lp([a, b], E) der Lusin-messbaren
vektorwertigen Funktionen und die Vektorräume ACLp([a, b], E) der entsprechenden ab-
solutstetigen Funktionen. Diese nutzen wir um Liegruppen ACLp([a, b], G) der absolut-
stetigen Funktionen mit Werten in einer unendlich-dimensionalen Liegruppe G zu kon-
struieren. Wir erweitern den Begriff der Lp-Regularität von unendlich-dimensionalen
Liegruppen, eingeführt von Glöckner, auf diesen Rahmen und passen einige Ergebnisse
an.

vi



1 Introduction

Exponential laws

Exponential laws of the form C∞(M ×N,E) ∼= C∞(M,C∞(N,E)) for spaces of vector-
valued smooth functions on manifolds are essential tools in infinite-dimensional calculus
and infinite-dimensional Lie theory (cf. works by Kriegl and Michor [28], Kriegl, Michor
and Rainer [29], Alzaareer and Schmeding [1], Glöckner [19], Glöckner and Neeb [21],
Neeb and Wagemann [34], and others). Stimulated by the research by Beltiţă and Nicolae
[4], we devote the first part of this work to providing exponential laws for function spaces
on topological groups.

Let G be a topological group, U ⊆ G be an open subset, f : U → E be a function
to a locally convex space and L(G) := Homcts(R, G) be the set of continuous one-
parameter subgroups γ : R → G, endowed with the compact-open topology. For x ∈ U
and γ ∈ L(G) let us write

Dγf(x) := lim
t→0

1

t
(f(x · γ(t))− f(x))

if the limit exists. Following Riss [40] and Boseck et al. [8], we say that f is Ck (where
k ∈ N0 ∪ {∞}) if f is continuous, the iterated derivatives

d(i)f(x, γ1, . . . , γi) := (Dγi · · ·Dγ1f)(x)

exist for all x ∈ U , i ∈ N with i ≤ k and γ1, . . . , γi ∈ L(G), and the obtained maps
d(i)f : U × L(G)i → E are continuous. We endow the space Ck(U,E) of all Ck-maps
f : U → E with the compact-open Ck-topology (recalled in Definition 2.1.3). If G and
H are topological groups and f : G×H → E is C∞, then f∨(x) := f(x, •) ∈ C∞(H,E)
for all x ∈ G. With a view towards universal enveloping algebras, Beltiţă and Nicolae
[4] verified that f∨ ∈ C∞(G,C∞(H,E)) and showed that the linear map

Φ: C∞(G×H,E)→ C∞(G,C∞(H,E)), f 7→ f∨

is a topological embedding.
Recall that a Hausdorff space X is called a kR-space if functions f : X → R are

continuous if and only if f
∣∣
K

is continuous for each compact subset K ⊆ X. We obtain
the following criterion for surjectivity of Φ (Theorem 2.5.5):

Theorem A. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H, and
E be a locally convex space. If U × V × L(G)i × L(H)j is a kR-space for all i, j ∈ N0,
then

Φ: C∞(U × V,E)→ C∞(U,C∞(V,E)), f 7→ f∨

is an isomorphism of topological vector spaces.
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1 Introduction

The condition is satisfied, for example, if both G and H are locally compact or both
G and H are metrizable (see Corollary 2.5.7).

Generalizing the case of open subsets U and V in locally convex spaces treated by
Alzaareer and Schmeding [1] and Glöckner and Neeb [21], we introduce Ck,l-functions
f : U × V → E on open subsets U ⊆ G and V ⊆ H of topological groups with separate
degrees k, l ∈ N0 ∪ {∞} of differentiability in the two variables, and a natural topology
on the space Ck,l(U × V,E) of such maps (see Definition 2.2.1 for details). Theorem A
is a consequence of the following result (Theorem 2.5.4):

Theorem B. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H, let E
be a locally convex space and k, l ∈ N0 ∪ {∞}. If U × V × L(G)i × L(H)j is a kR-space
for all i, j ∈ N0 with i ≤ k, j ≤ l, then

Φ: Ck,l(U × V,E)→ Ck(U,C l(V,E)), f 7→ f∨

is an isomorphism of topological vector spaces.

A special case of the above theorem (for subsets U , V of locally convex spaces) can
also be found in [1].

Differentiability on Lie groups

Let f : G → E be a function on an infinite-dimensional Lie group G with values in a
locally convex space E. Another possible concept of differentiability of such functions was
popularized by Milnor [30], where G is considered as a differentiable infinite-dimensional
manifold and the differential calculus arises from the calculus of functions between locally
convex spaces, the so-called Keller-Ckc -calculus [27], going back to A. Bastiani [2] (we will
call such functions Ckmfd-functions, see Definition 3.1.1). The second part of this work is
devoted to the question, under which conditions do both the concepts of differentiability
of vector-valued functions on infinite-dimensional Lie groups coincide. We obtain the
following result (Theorem 3.2.10):

Theorem C. Let E be a locally convex space and k ∈ N0 ∪ {∞}. If G is a locally
exponential Lie group or a direct limit Lie group of an ascending sequence G1 ⊆ G2 ⊆ · · ·
of finite-dimensional Lie groups such that the inclusions Gn → Gn+1 are continuous,
then Ck(G,E) = Ckmfd(G,E) as topological vector spaces.

The interplay of differentiability along one-parameter subgroups and differentiability
on a Lie group G as a manifold plays a role, for example, in the study of spaces of smooth
vectors, cf [31], [33].

Measurable regularity of Lie groups

In [30], Milnor calls an infinite-dimensional Lie group G modelled on a sequentially
complete locally convex space (with Lie algebra g and identity element e) regular if for
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every smooth curve γ : [0, 1]→ g the initial value problem

η′ = η.γ, η(0) = e, (1.1)

has a (necessarily unique) solution Evol(γ) : [0, 1]→ G and the function

evol : C∞([0, 1], g)→ G, γ 7→ Evol(γ)(1)

so obtained is smooth.
Further, Glöckner [20] and Neeb [32] deal with the concept of Ck-regularity, investigat-

ing whether the above initial value problem has a solution for every Ck-curve γ (the solu-
tion Evol(γ) being a Ck+1-curve then) and whether the function evol : Ck([0, 1], g)→ G
is smooth.

Generalizing this theory even more, in [17] Glöckner constructs Lebesgue spaces
LpB([a, b], E) of Borel measurable functions γ : [a, b] → E with values in Fréchet spaces
E (for p ∈ [1,∞]) and introduces spaces of certain absolutely continuous E-valued
functions η : [a, b] → E (denoted by ACLp([a, b], E)) with derivatives in LpB([a, b], E).
Having a Lie group structure on the spaces ACLp([0, 1], G) available, in [17] a Fréchet-
Lie group G is called Lp-semiregular if the initial value problem (1.1) has a solution
Evol(γ) ∈ ACLp([0, 1], G) for every γ ∈ LpB([0, 1], g), and G is called Lp-regular if it
is Lp-semiregular and the map Evol : LpB([0, 1], g) → ACLp([0, 1], G), γ 7→ Evol(γ) is
smooth.

Since the sum of two vector-valued Borel measurable functions may be not Borel
measurable, certain assumptions need to be made to obtain a vector space structure
on the space of the maps which can be considered. This implies that the concepts of
Lp-regularity (mentioned above) only make sense for Fréchet-Lie groups (and some other
classes of Lie groups described in [17]).

To loosen this limitation, in the third part of this work we recall the notion of Lusin-
measurable functions in Definition 4.1.2, which have the advantage that vector-valued
Lusin-measurable functions always form a vector space, and define the corresponding
Lebesgue spaces Lp([a, b], E) in Definition 4.1.10. Further, in Lemma 4.1.8, we recall that
under certain conditions there is a close relation between Lusin and Borel measurable
functions (known as Lusin’s Theorem). This leads to the result that the Lebesgue spaces
LpB([a, b], E) constructed in [17] coincide with our Lebesgue spaces Lp([a, b], E), due to
the conditions needed for Borel measurable functions to form a vector space. (Note that
Lebesgue spaces of Lusin-measurable functions are also considered by Florencio, Mayoral,
Paúl [11], for example. Also Bourbaki [9], Thomas [43] work with Lusin measurability.)

We lean on the theory established in [17] and construct locally convex topological
vector spaces ACLp([a, b], E) of functions with values in sequentially complete locally
convex spaces and Lie groups ACLp([a, b], G). In Definition 4.3.7 we define the notion
of Lp-regularity for infinite-dimensional Lie groups modelled on such spaces and adopt
several useful results from [17]. In particular (Theorem 4.3.9):

Theorem D. If G is an Lp-semiregular Lie group, then the function Evol : Lp([0, 1], g)→
ACLp([0, 1], G) is smooth if and only if Evol is smooth as a function to C([0, 1], G).

3



1 Introduction

As a consequence, we get (Theorem 4.3.10):

Theorem E. Let G be a Lie group modelled on a sequentially complete locally convex
space and p, q ∈ [1,∞] with q ≥ p. If G is Lp-regular, then G is Lq-regular. Furthermore,
in this case G is C0-regular.

Moreover, we show (Theorem 4.3.13):

Theorem F. Let G be a Lie group modelled on a sequentially complete locally convex
space. Let Ω ⊆ Lp([0, 1], g) be an open 0-neighbourhood. If for every γ ∈ Ω there exists
the corresponding Evol(γ) ∈ ACLp([0, 1], G), then G is Lp-semiregular. If, in addition,
the function Evol : Ω→ ACLp([0, 1], G) is smooth, then G is Lp-regular.

Notation All topological spaces are assumed Hausdorff. We call a function f : X → Y
between topological spaces X and Y a topological embedding if f is a homeomorphism
onto its image (it is known that an injective map f is a topological embedding if and
only if the topology on X is initial with respect to f , that is, X carries the coarsest
topology making f continuous). All vector spaces are R-vector spaces (and locally convex
topological vector spaces are called ”locally convex spaces” for short). Wherever we write
[a, b], we always mean an interval in R with a < b.
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2 Exponential laws for spaces of
differentiable functions on topological
groups

In Section 2.1, we recall the notion of a Ck-function f : U → E on an open subset of a
topological group with values in a locally convex space and the definition of the locally
convex space Ck(U,E). Further, in Section 2.2, we consider vector-valued functions
on products of topological groups with different degrees of differentiability in the two
factors (called Ck,l-functions) and the associated function spaces Ck,l(U × V,E). After
studying some properties of differentiable functions and the function spaces (Sections
2.3 and 2.4), we prove the exponential law Ck,l(U × V,E) ∼= Ck(U,C l(V,E)) in Section
2.5 (Theorem 2.5.4).

2.1 Differentiability on topological groups

Definition 2.1.1. Let G be a topological group. A one-parameter subgroup is a group
homomorphism γ : R→ G. We denote by L(G) := Homcts(R, G) the set of all continuous
one-parameter subgroups endowed with the compact-open topology.

Note that the space L(G) does not have a topological vector space structure in general.

Remark 2.1.2. For a topological group G, the evaluation map L(G)×R→ G, (γ, t) 7→
γ(t) is continuous.

If G, H are topological groups, γ ∈ L(G) and ϕ : G → H is a continuous group
homomorphism, then ϕ ◦ γ ∈ L(H) and the function L(ϕ) : L(G)→ L(H), γ 7→ ϕ ◦ γ is
continuous (cf. [21, Appendix A.5], see also [14, Appendix B]).

For ψ = (γ, η) ∈ C(R, G × H) it is easy to see that ψ ∈ L(G × H) if and only if
γ ∈ L(G) and η ∈ L(H). Moreover, the natural map

(L(pr1),L(pr2)) : L(G×H)→ L(G)× L(H)

(where pr1 : G×H → G, pr2 : G×H → H are the coordinate projections) is a homeo-
morphism (cf. [21, Appendix A.5], [14, Appendix B]).

Now, we recall the notion of differentiability along one-parameter subgroups of vector-
valued functions on topological groups:

5



2 Exponential laws

Definition 2.1.3. Let U ⊆ G be an open subset of a topological group G and E be a
locally convex space. For a map f : U → E, x ∈ U and γ ∈ L(G) we define

d(1)f(x, γ) := df(x, γ) := Dγf(x) := lim
t→0

1

t
(f(x · γ(t))− f(x))

if the limit exists.
We call f a Ck-map for k ∈ N if f is continuous and for each x ∈ U , i ∈ N with i ≤ k

and γ1, . . . , γi ∈ L(G) the iterative derivatives

d(i)f(x, γ1, . . . , γi) := (Dγi · · ·Dγ1f)(x)

exist and define continuous maps

d(i)f : U × L(G)i → E, (x, γ1, . . . , γi) 7→ (Dγi · · ·Dγ1f)(x).

If f is Ck for each k ∈ N, then we call f a C∞-map or smooth. Further, we call
continuous maps C0 and write d(0)f := f .

The set of all Ck-maps f : U → E will be denoted by Ck(U,E) and we endow it with
the initial topology with respect to the family (d(i))i∈N0,i≤k of maps

d(i) : Ck(U,E)→ C(U × L(G)i, E), f 7→ d(i)f

(where the right-hand side is equipped with the compact-open topology) turning Ck(U,E)
into a Hausdorff locally convex space. (This topology is known as the compact-open Ck-
topology.)

Remark 2.1.4. Note that the compact-open topology on C(U,E) coincides with the
compact-open C0-topology.

Remark 2.1.5. Let E, F be locally convex spaces and f : U → F be a continuous
function on an open subset U ⊆ E. The directional derivative is defined as

df(x, y) := Dyf(x) := lim
t→0

1

t
(f(x+ ty)− f(x)),

for x ∈ U , y ∈ E. The function f is called Ck if for each 1 ≤ i ≤ k the differential

d(i)f : U × Ei → F, d(i)f(x, y1, . . . , yi) := (Dyi · · ·Dy1f)(x)

is defined and continuous. If f is Ck for each k ∈ N, then f is called C∞. This
concept can be understood as a special case of the concept in Definition 2.1.3, as E
is, in particular, a topological group and E ∼= L(E) via y 7→ γy, where γy denotes the
one-parameter subgroup of E of the form t 7→ ty.

In the case E = R, we write

f ′ : U → F, f ′(s) := lim
t→0

1

t
(f(s+ t)− f(s)).
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2.2 Differentiability on products of topological groups

2.2 Differentiability on products of topological groups

Definition 2.2.1. Let U ⊆ G and V ⊆ H be open subsets of topological groups G and
H, let E be a locally convex space. For a map f : U × V → E, x ∈ U , y ∈ V , γ ∈ L(G)
and η ∈ L(H) we define

d(1,0)f(x, y, γ) := D(γ,0)f(x, y) := lim
t→0

1

t
(f(x · γ(t), y)− f(x, y))

and

d(0,1)f(x, y, η) := D(0,η)f(x, y) := lim
t→0

1

t
(f(x, y · η(t))− f(x, y))

whenever the limits exist.
We call a continuous map f : U × V → E a Ck,l-map for k, l ∈ N0 ∪ {∞} if the

derivatives

d(i,j)f(x, y, γ1, . . . , γi, η1, . . . , ηj) := (D(γi,0) · · ·D(γ1,0)D(0,ηj) · · ·D(0,η1)f)(x, y)

exist for all x ∈ U , y ∈ V , i, j ∈ N0 with i ≤ k, j ≤ l and γ1, . . . , γi ∈ L(G), η1, . . . , ηj ∈
L(H), and define continuous functions

d(i,j)f : U × V × L(G)i × L(H)j → E

(x, y, γ1, . . . , γi, η1, . . . , ηj) 7→ (D(γi,0) · · ·D(γ1,0)D(0,ηj) · · ·D(0,η1)f)(x, y).

We endow the space Ck,l(U × V,E) of all Ck,l-functions f : U × V → E with the initial
topology with respect to the family of maps

d(i,j) : Ck,l(U × V,E)→ C(U × V × L(G)i × L(H)j , E), f 7→ d(i,j)f,

with i, j ∈ N0, i ≤ k, j ≤ l, which is a Hausdorff locally convex vector topology (called
the compact-open Ck,l-topology.)

Remark 2.2.2. If k = 0 or l = 0, then the definition of Ck,l-maps f : U × V → E
also makes sense if U or V , respectively, is any Hausdorff topological space. All further
results for Ck,l-maps on topological groups carry over to this situation.

Remark 2.2.3. Simple computations show that for k ≥ 1 a map f : U → E is Ck if and
only if f is C1 and df : U ×L(G)→ E is Ck−1,0; in this case we have d(i,0)(df) = d(i+1)f
for all i ∈ N with i ≤ k − 1.

Similarly, we can show that a map f : U × V → E is Ck,0 if and only if f is C1,0 and
d(1,0)f : U × (V ×L(G))→ E is Ck−1,0, then d(i,0)(d(1,0)f) = d(i+1,0)f for all i as above.

Further, if a map f : U × V → E is Ck,l, then for each i, j ∈ N0 with i ≤ k, j ≤ l and
fixed γ1, . . . , γi ∈ L(G), η1, . . . , ηj ∈ L(H) the map

D(γi,0) · · ·D(γ1,0)D(0,ηj) · · ·D(0,η1)f : U × V → E

is Ck,l−j if i = 0, and Ck−i,0 otherwise.
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2 Exponential laws

We warn the reader that the full statement of Schwarz’ Theorem does not carry over
to non-abelian topological groups; for a C2-function f : G → R and γ, η ∈ L(G) it can
happen that DγDηf 6= DηDγf .

Example 2.2.4. Consider the following subgroup G of GL3(R):

G :=

x =

1 x1 x2

0 1 x3

0 0 1

 : x1, x2, x3 ∈ R


(known as the Heisenberg group) and γ, η ∈ L(G) defined as

γ(t) :=

1 t 0
0 1 0
0 0 1

 , η(t) :=

1 0 0
0 1 t
0 0 1

 (∀t ∈ R).

Then (G, ·) ∼= (R3, ∗) as topological groups via

ϕ : G→ R3, x :=

1 x1 x2

0 1 x3

0 0 1

 7→ (x1, x2, x3),

where the group multiplication ∗ : R3 ×R3 → R3 is defined as

(x1, x2, x3) ∗ (y1, y2, y3) := ϕ(ϕ−1(x1, x2, x3) · ϕ−1(y1, y2, y3))

= (x1 + y1, x2 + x1y3 + y2, x3 + y3).

Let g : R3 → R be a C2-map in the usual sense and define

f := g ◦ ϕ : G→ R,

which is a C2-map by Lemma 2.3.2. Then for each x ∈ G, the derivatives Dγf(x),
Dηf(x), (DηDγf)(x) and (DγDηf)(x) can be expressed using the partial derivatives of
g.

First, we have

Dγf(x) = lim
t→0

1

t
(f(x · γ(t))− f(x)) = lim

t→0

1

t
(g(ϕ(x · γ(t)))− g(ϕ(x)))

= lim
t→0

1

t
(g(x1 + t, x2, x3)− g(x1, x2, x3))

= lim
t→0

1

t
(g((x1, x2, x3) + t(1, 0, 0))− g(x1, x2, x3)) =

∂

∂x1
g(x1, x2, x3).

Further,

Dηf(x) = lim
t→0

1

t
(f(x · η(t))− f(x)) = lim

t→0

1

t
(g(ϕ(x · η(t)))− g(ϕ(x)))

= lim
t→0

1

t
(g(x1, x2 + tx1, x3 + t)− g(x1, x2, x3))

= x1 ·
∂

∂x2
g(x1, x2, x3) +

∂

∂x3
g(x1, x2, x3).

8



2.2 Differentiability on products of topological groups

Now,

(DηDγf)(x) = lim
t→0

1

t
(Dγf(x · η(t))−Dγf(x))

= lim
t→0

1

t

(
∂

∂x1
g(x1, x2 + tx1, x3 + t)− ∂

∂x1
g(x1, x2, x3)

)
= x1 ·

∂2

∂x1∂x2
g(x1, x2, x3) +

∂2

∂x1∂x3
g(x1, x2, x3).

And, finally

(DγDηf)(x) = lim
t→0

1

t
(Dηf(x · γ(t))−Dηf(x))

= lim
t→0

1

t

(
(x1 + t) · ∂

∂x2
g(x1 + t, x2, x3) +

∂

∂x3
g(x1 + t, x2, x3)

− x1 ·
∂

∂x2
g(x1, x2, x3)− ∂

∂x3
g(x1, x2, x3)

)
= lim

t→0

x1

t

(
∂

∂x2
g(x1 + t, x2, x3)− ∂

∂x2
g(x1, x2, x3)

)
+ lim
t→0

1

t

(
∂

∂x3
g(x1 + t, x2, x3)− ∂

∂x3
g(x1, x2, x3)

)
+ lim
t→0

∂

∂x2
g(x1 + t, x2, x3)

= x1 ·
∂2

∂x1∂x2
g(x1, x2, x3) +

∂2

∂x1∂x3
g(x1, x2, x3) +

∂

∂x2
g(x1, x2, x3)

= (DηDγf)(x) +
∂

∂x2
g(x1, x2, x3).

Thus we see that if ∂
∂x2

g(x1, x2, x3) 6= 0, then (DγDηf)(x) 6= (DηDγf)(x).

Nevertheless, we can prove the following restricted version of Schwarz’ Theorem for
Ck,l-maps:

Proposition 2.2.5. Let U ⊆ G and V ⊆ H be open subsets of topological groups G
and H, let E be a locally convex space and f : U × V → E be a Ck,l-map for some
k, l ∈ N ∪ {∞}. Then the derivatives

(D(0,ηj) · · ·D(0,η1)D(γi,0) · · ·D(γ1,0)f)(x, y)

exist for all (x, y) ∈ U ×V , i, j ∈ N with i ≤ k, j ≤ l and γ1, . . . , γi ∈ L(G), η1, . . . , ηj ∈
L(H) and we have

(D(0,ηj) · · ·D(0,η1)D(γi,0) · · ·D(γ1,0)f)(x, y)

= (D(γi,0) · · ·D(γ1,0)D(0,ηj) · · ·D(0,η1)f)(x, y).

Proof. First we prove the assertion for j = 1 by induction on i.
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2 Exponential laws

Base case: Let (x, y) ∈ U × V , γ ∈ L(G) and η ∈ L(H). For suitable ε, δ > 0 we
define the continuous map

h : ]− ε, ε[×[−δ, δ[→ E, (s, t) 7→ f(x · γ(s), y · η(t)),

and obtain the partial derivatives of h via

∂h

∂s
(s, t) = lim

r→0

1

r
(h(s+ r, t)− h(s, t))

= lim
r→0

1

r
(f(x · γ(s) · γ(r), y · η(t))− f(x · γ(s), y · η(t)))

= D(γ,0)f(x · γ(s), y · η(t)),

and analogously,

∂h

∂t
(s, t) = D(0,η)f(x · γ(s), y · η(t))

and

∂2h

∂s∂t
(s, t) = (D(γ,0)D(0,η)f)(x · γ(s), y · η(t)).

The obtained maps ∂h
∂s , ∂h∂t and ∂2h

∂s∂t are continuous, hence we apply [21, Lemma 1.3.18],

which states that in this case also the partial derivative ∂2h
∂t∂s exists and coincides with

∂2h
∂s∂t . Therefore, we have

(D(γ,0)D(0,η)f)(x, y) =
∂2h

∂s∂t
(0, 0) =

∂2h

∂t∂s
(0, 0) = lim

r→0

1

r

(
∂h

∂s
(0, r)− ∂h

∂s
(0, 0)

)
= lim

r→0

1

r

(
D(γ,0)f(x, y · η(r))−D(γ,0)f(x, y)

)
= (D(0,η)D(γ,0)f)(x, y).

Thus the assertion holds for i = 1.
Induction step: Now, let 2 ≤ i ≤ k, (x, y) ∈ U × V , γ1, . . . , γi ∈ L(G) and η ∈ L(H).

Consider the map

g1 : U × V → E, (x, y) 7→ (D(γi−1,0) · · ·D(γ1,0)f)(x, y),

which is C1,0 (see Remark 2.2.3). Further, g1 is C0,1, because

D(0,η)g1(x, y) = (D(0,η)D(γi−1,0) · · ·D(γ1,0)f)(x, y)

= (D(γi−1,0) · · ·D(γ1,0)D(0,η)f)(x, y),

by the induction hypothesis, and we see that

(D(γi,0)D(0,η)g1)(x, y) = (D(γi,0)D(γi−1,0) · · ·D(γ1,0)D(0,η)f)(x, y),

10



2.2 Differentiability on products of topological groups

whence g1 is C1,1. By the base case, the derivative (D(0,η)D(γi,0)g1)(x, y) exists and
equals (D(γi,0)D(0,η)g1)(x, y), thus we get

(D(γi,0) · · ·D(γ1,0)D(0,η)f)(x, y) = (D(γi,0)D(0,η)g1)(x, y)

= (D(0,η)D(γi,0)g1)(x, y)

= (D(0,η)D(γi,0) · · ·D(γ1,0)f)(x, y).

Hence the assertion holds for j = 1.

Now, let 2 ≤ j ≤ l, 1 ≤ i ≤ k, γ1, . . . , γi ∈ L(G), η1, . . . , ηj ∈ L(H) and (x, y) ∈ U×V .
By Remark 2.2.3, the map

g2 : U × V → E, (x, y) 7→ (D(0,ηj−1) · · ·D(0,η1)f)(x, y)

is Ck,1, whence we have

(D(0,ηj)D(γi,0) · · ·D(γ1,0)D(0,ηj−1) · · ·D(0,η1)f)(x, y)

= (D(0,ηj)D(γi,0) · · ·D(γ1,0)g2)(x, y)

= (D(γi,0) · · ·D(γ1,0)D(0,ηj)g2)(x, y)

= (D(γi,0) · · ·D(γ1,0)D(0,ηj) · · ·D(0,η1)f)(x, y), (2.1)

using the first part of the proof. But we also have

(D(0,ηj)D(γi,0) · · ·D(γ1,0)D(0,ηj−1) · · ·D(0,η1)f)(x, y)

= (D(0,ηj)D(0,ηj−1) · · ·D(0,η1)D(γi,0) · · ·D(γ1,0)f)(x, y), (2.2)

by induction, whence (2.2) equals (2.1), that is

(D(0,ηj) · · ·D(0,η1)D(γi,0) · · ·D(γ1,0)f)(x, y)

= (D(γi,0) · · ·D(γ1,0)D(0,ηj) · · ·D(0,η1)f)(x, y),

and the proof is finished.

Corollary 2.2.6. Let U ⊆ G and V ⊆ H be open subsets of topological groups G and
H, let E be a locally convex space and k, l ∈ N0 ∪ {∞}. A map f : U × V → E is Ck,l

if and only if the map

g : V × U → E, (y, x) 7→ f(x, y)

is C l,k. Moreover, we have

d(j,i)g(y, x, η1, . . . , ηj , γ1, . . . , γi) = d(i,j)f(x, y, γ1, . . . , γi, η1, . . . , ηj)

for all x ∈ U , y ∈ V , i, j ∈ N0 with i ≤ k, j ≤ l and γ1, . . . , γi ∈ L(G), η1, . . . , ηj ∈
L(H).

11



2 Exponential laws

Proof. First, we assume that l = 0, that is, f : U × V → E is Ck,0. Then for x ∈ U ,
y ∈ V and γ ∈ L(G) we have

d(1,0)f(x, y, γ) = lim
t→0

1

t
(f(x · γ(t), y)− f(x, y))

= lim
t→0

1

t
(g(y, x · γ(t))− g(y, x)) = d(0,1)g(y, x, γ),

and similarly we get d(0,i)g(y, x, γ1, . . . , γi) = d(i,0)f(x, y, γ1, . . . , γi) for each i ∈ N with
i ≤ k and γ1, . . . , γi ∈ L(G). The obtained differentials d(0,i)g : V × U × L(G)i → E are
obviously continuous, hence g is C0,k. The other implication, as well as the case k = 0,
can be proven analogously.

If k, l ≥ 1, then the assertion follows immediately from Proposition 2.2.5.

Remark 2.2.7. Using Remark 2.2.3 and Corollary 2.2.6, we can easily show that if
f : U×V → E is Ck,l, then for all i, j ∈ N0 with i ≤ k, j ≤ l and fixed γ1, . . . , γi ∈ L(G),
η1, . . . , ηj ∈ L(H) the maps

D(γi,0) · · ·D(γ1,0)D(0,ηj) · · ·D(0,η1)f : U × V → E

are Ck−i,l−j .

2.3 Properties of Ck- and Ck,l-functions

Lemma 2.3.1. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H, let E,
F be locally convex spaces, λ : E → F be a continuous linear map and k, l ∈ N0 ∪ {∞}.

(a) If f : U → E is a Ck-map, then the map λ ◦ f : U → F is Ck.

(b) If f : U × V → E is a Ck,l-map, then the map λ ◦ f : U × V → F is Ck,l.

Proof. To prove (a), let x ∈ U , γ ∈ L(G) and t 6= 0 small enough, then we have

λ(f(x · γ(t)))− λ(f(x))

t
= λ

(
f(x · γ(t))− f(x)

t

)
→ λ(df(x, γ)),

as t→ 0, because λ is assumed linear and continuous. Thus, the derivative d(λ◦f)(x, γ)
exists and we have d(λ ◦ f)(x, γ) = (λ ◦ df)(x, γ).

Proceeding similarly, for each i ∈ N with i ≤ k, γ1, . . . , γi ∈ L(G) we obtain the
derivatives d(i)(λ◦f)(x, γ1, . . . , γi) = (λ◦d(i)f)(x, γ1, . . . , γi). Since each of the obtained
maps d(i)(λ ◦ f) = λ ◦ d(i)f : U × L(G)i → F is continuous, we see that the map λ ◦ f is
Ck.

Analogously, assertion (b) can be proved showing that for each i, j ∈ N0 with i ≤ k,
j ≤ l we have d(i,j)(λ ◦ f) = λ ◦ d(i,j)f .
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2.3 Properties of Ck- and Ck,l-functions

Lemma 2.3.2. Let G and H be topological groups, E be a locally convex space. Let
ϕ : G → H be a continuous group homomorphism and f : V → E be a Ck-map (k ∈
N ∪ {∞}) on an open subset V ⊆ H. Then for U := ϕ−1(V ) the map

f ◦ ϕ
∣∣
U

: U → E, x 7→ f(ϕ(x))

is Ck.

Proof. Obviously, the map f ◦ ϕ
∣∣
U

is continuous. Now, let x ∈ U and γ ∈ L(G). For
t 6= 0 small enough we have

f(ϕ(x · γ(t)))− f(ϕ(x))

t
=
f(ϕ(x) · ϕ(γ(t)))− f(ϕ(x))

t
→ df(ϕ(x), ϕ ◦ γ)

as t→ 0, since ϕ ◦ γ ∈ L(H), see Remark 2.1.2. Therefore d(f ◦ ϕ
∣∣
U

)(x, γ) exists and is
given by df(ϕ(x), ϕ ◦ γ).

Repeating the above steps, we obtain for i ∈ N with i ≤ k, γ1, . . . , γi ∈ L(G) the
derivatives d(i)(f ◦ ϕ

∣∣
U

)(x, γ1, . . . , γi) = d(i)f(ϕ(x), ϕ ◦ γ1, . . . , ϕ ◦ γi).
Now, recall that the map L(ϕ) : L(G)→ L(H), η 7→ ϕ◦η is continuous (Remark 2.1.2),

whence also each of the maps

d(i)(f ◦ ϕ
∣∣
U

) := (d(i)f) ◦ (ϕ
∣∣
U
× L(ϕ)× · · · × L(ϕ)︸ ︷︷ ︸

i-times

) : U × L(G)i → E

is continuous. Hence f ◦ ϕ
∣∣
U

is Ck.

Lemma 2.3.3. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H, let
(Eα)α∈A be a family of locally convex spaces with direct product E :=

∏
α∈AEα and the

coordinate projections prα : E → Eα. For k, l ∈ N0 ∪ {∞} the following holds:

(a) A map f : U → E is Ck if and only if all of its components fα := prα ◦f are Ck.

(b) A map f : U × V → E is Ck,l if and only if all of its components fα := prα ◦f are
Ck,l.

Proof. To prove (a), first recall that because each of the projections prα is continuous
and linear, the compositions prα ◦f are Ck if f is Ck, by Lemma 2.3.1 (a).

Conversely, assume that each fα is Ck and let x ∈ U , γ ∈ L(G) and t 6= 0 small
enough. Then we have

1

t
(f(x · γ(t))− f(x)) =

(
1

t
(fα(x · γ(t))− fα(x))

)
α∈A

.

Since 1
t (fα(x · γ(t))− fα(x)) converges to dfα(x, γ) as t→ 0 for each α ∈ A, the deriva-

tive df(x, γ) exists and is given by (dfα(x, γ))α∈A.
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2 Exponential laws

Repeating the above steps, we obtain for i ∈ N with i ≤ k and γ1, . . . , γi ∈ L(G)
the derivatives d(i)f(x, γ1, . . . , γi) =

(
d(i)fα(x, γ1, . . . , γi)

)
α∈A, which define continuous

maps

d(i)f =
(
d(i)fα

)
α∈A

: U × L(G)i → E.

Therefore, f is Ck.
The assertion (b) can be proven similarly, by using Lemma 2.3.1 (b) and showing that

for all i, j ∈ N0, with i ≤ k, j ≤ l we have d(i,j)f =
(
d(i,j)fα

)
α∈A.

Lemma 2.3.4. Let U ⊆ G be an open subset of a topological group G, and E be a locally
convex space. A continuous map f : U → E is C1 if and only if there exists a continuous
map

f [1] : U [1] → E

on the open set

U [1] := {(x, γ, t) ∈ U × L(G)×R : x · γ(t) ∈ U}

such that

f [1](x, γ, t) =
1

t
(f(x · γ(t))− f(x))

for each (x, γ, t) ∈ U [1] with t 6= 0.
In this case we have df(x, γ) = f [1](x, γ, 0) for all x ∈ U and γ ∈ L(G).

The above lemma is a special case of the following lemma:

Lemma 2.3.5. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H, let
E be a locally convex space. A continuous map f : U × V → E is C1,0 if and only if
there exists a continuous map

f [1,0] : U [1] × V → E,

where

U [1] := {(x, γ, t) ∈ U × L(G)×R : x · γ(t) ∈ U},

such that

f [1,0](x, γ, t, y) =
1

t
(f(x · γ(t), y)− f(x, y))

for each (x, γ, t, y) ∈ U [1] × V with t 6= 0.
In this case we have d(1,0)f(x, y, γ) = f [1,0](x, γ, 0, y) for all x ∈ U , y ∈ V and

γ ∈ L(G).
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2.3 Properties of Ck- and Ck,l-functions

Proof. First, assume that the map f [1,0] exists and is continuous. Then for x ∈ U , y ∈ V ,
γ ∈ L(G) and t 6= 0 small enough we have

1

t
(f(x · γ(t), y)− f(x, y)) = f [1,0](x, γ, t, y)→ f [1,0](x, γ, 0, y)

as t→ 0. Hence d(1,0)f(x, y, γ) exists and is given by f [1,0](x, γ, 0, y), whence the map

d(1,0)f : U × V × L(G)→ E, (x, y, γ) 7→ f [1,0](x, γ, 0, y)

is continuous. Thus f is C1,0.
Conversely, let f be a C1,0-map. Then we define

f [1,0] : U [1] × V → E, f [1,0](x, γ, t, y) : =

{
f(x·γ(t),y)−f(x,y)

t if t 6= 0,

d(1,0)f(x, y, γ) if t = 0.

Since f is continuous, the map f [1,0] is continuous at each (x, γ, t, y) with t 6= 0 (by the
continuity of the evaluation map L(G)×R→ G). Given x0 ∈ U and γ0 ∈ L(G), we have
(x0, γ0, 0) ∈ U [1]; the subset W := Ux0 × Uγ0×]− ε, ε[⊆ U [1] is an open neighborhood of
(x0, γ0, 0) in U [1], where Ux0 ⊆ U and Uγ0 ⊆ L(G) are open neighborhoods of x0 and γ0,
respectively, and ε > 0. Now, for fixed (x, γ, y) ∈ Ux0×Uγ0×V we define the continuous
curve

h : ]− ε, ε[→ E, h(t) := f(x · γ(t), y).

Then for t ∈]− ε, ε[, s 6= 0 with t+ s ∈]− ε, ε[ we have

h(t+ s)− h(t)

s
=
f(x · γ(t+ s), y)− f(x · γ(t), y)

s

=
f(x · γ(t) · γ(s), y)− f(x · γ(t), y)

s
→ d(1,0)f(x · γ(t), y, γ)

as s → 0. Thus, the derivative h′(t) exists and is given by d(1,0)f(x · γ(t), y, γ). The so
obtained map h′ : ] − ε, ε[→ E is continuous, hence h is a C1-curve (see [21] for details
on C1-curves with values in locally convex spaces and also on weak integrals which we
use in the next step). We use the Fundamental Theorem of Calculus ([21, Proposition
1.1.5]) and obtain for t 6= 0

f [1,0](x, γ, t, y) =
1

t
(f(x · γ(t), y)− f(x, y)) =

1

t
(h(t)− h(0))

=
1

t

∫ t

0
h′(τ)dτ =

1

t

∫ t

0
d(1,0)f(x · γ(τ), y, γ)dτ

=
1

t

∫ 1

0
td(1,0)f(x · γ(tu), y, γ)du =

∫ 1

0
d(1,0)f(x · γ(tu), y, γ)du.

But if t = 0, then∫ 1

0
d(1,0)f(x · γ(0), y, γ)du = d(1,0)f(x, y, γ) = f [1,0](x, γ, 0, y),
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hence

f [1,0](x, γ, t, y) =

∫ 1

0
d(1,0)f(x · γ(tu), y, γ)du

for all (x, γ, t, y) ∈W × V . Since the map

W × V × [0, 1]→ E, (x, γ, t, y, u) 7→ d(1,0)f(x · γ(tu), y, γ)

is continuous, also the parameter-dependent integral

W × V → E, (x, γ, t, y) 7→
∫ 1

0
d(1,0)f(x · γ(tu), y, γ)du = f [1,0](x, γ, t, y)

is continuous (by [21, Lemma 1.1.11]), in particular in (x0, γ0, 0, y). Consequently, f [1,0]

is continuous.

We use Lemma 2.3.4, as well as the analogue for C1-maps on locally convex spaces
(which can be found in [21, Lemma 1.2.10]), for the proof of a chain rule for compositions
of Ck-functions f : G → E and g : E → F , which will be provided after the following
version:

Lemma 2.3.6. Let G be a topological group, P be a topological space and E, F be locally
convex spaces. Let U ⊆ G, V ⊆ E be open subsets, and k ∈ N∪ {∞}. If f : U ×P → E
is a Ck,0-map such that f(U × P ) ⊆ V , and g : V → F is a Ck-map, then

g ◦ f : U × P → F

is a Ck,0-map.

Proof. We may assume that k is finite and prove the assertion by induction.
Base case: Assume that f is C1,0, g is C1 and let x ∈ U , p ∈ P and γ ∈ L(G). For

t 6= 0 small enough we have

g(f(x · γ(t), p))− g(f(x, p))

t
=
g
(
f(x, p) + tf(x·γ(t),p)−f(x,p)

t

)
− g(f(x, p))

t

=
g(f(x, p) + t · f [1,0](x, γ, t, p))− g(f(x, p))

t

= g[1](f(x, p), f [1,0](x, γ, t, p), t),

where g[1], f [1,0] are the continuous maps from [21, Lemma 1.2.10] and Lemma 2.3.5.
Consequently, we have

g(f(x · γ(t), p))− g(f(x, p))

t
→ g[1](f(x, p), f [1,0](x, γ, 0, p), 0)

= dg(f(x, p), d(1,0)f(x, p, γ))
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2.3 Properties of Ck- and Ck,l-functions

as t → 0. Therefore, the derivative d(1,0)(g ◦ f)(x, p, γ) exists and is given by the
directional derivative dg(f(x, p), d(1,0)f(x, p, γ)).

Consider the continuous map

h : U × P × L(G)→ E, (x, p, γ) 7→ f(x, p).

Since d(1,0)(g ◦ f)(x, p, γ) = (dg ◦ (h, d(1,0)f))(x, p, γ), the map

d(1,0)(g ◦ f) = dg ◦ (h, d(1,0)f) : U × P × L(G)→ F

is continuous, whence g ◦ f is C1,0.
Induction step: Now, assume that f is Ck,0 and g is Ck for some k ≥ 2. By Remark

2.2.3, the map d(1,0)f : U × (P ×L(G))→ E is Ck−1,0, and it is easily seen that the map
h : U × (P ×L(G))→ E defined in the base case is Ck,0. Hence, using Lemma 2.3.3 (b),
we see that (h, d(1,0)f) : U× (P ×L(G))→ E×E is a Ck−1,0-map. Since dg : V ×E → F
is Ck−1 (see [21, Definition 1.3.1]), the map

d(1,0)(g ◦ f) = dg ◦ (h, d(1,0)f) : U × (P × L(G))→ F

is Ck−1,0, by the induction hypothesis, and from Remark 2.2.3, it follows that g ◦ f is
Ck,0.

Lemma 2.3.7. Let G be a topological group, E, F be locally convex spaces and k ∈
N∪{∞}. Let U ⊆ G, V ⊆ E be open subsets. If f : U → E is a Ck-map with f(U) ⊆ V
and also g : V → F is a Ck-map, then the map

g ◦ f : U → F

is Ck.

Proof. We may assume that k is finite and prove the assertion by induction.
Base case: Assume that f and g are C1-maps. Analogously to the preceding lemma,

for x ∈ U , γ ∈ L(G) and t 6= 0 small enough we have

1

t
(g(f(x · γ(t)))− g(f(x))) = g[1](f(x), f [1](x, γ, t), t),

with continuous maps f [1] as in Lemma 2.3.4 and g[1] as in [21, Lemma 1.2.10]. Thus,
the derivative d(g ◦ f)(x, γ) exists and we have

d(g ◦ f)(x, γ) = g[1](f(x), f [1](x, γ, 0), 0) = dg(f(x), df(x, γ)).

Using the continuous function

h : U × L(G)→ E, (x, γ) 7→ f(x),

we see that

d(g ◦ f) = dg ◦ (h, df) : U × L(G)→ F

17



2 Exponential laws

is continuous, hence g ◦ f is a C1-map.
Induction step: Now, let f and g be Ck-maps for some k ≥ 2. Then the function

df : U × L(G) → E is Ck−1,0, by Remark 2.2.3, and the map h : U × L(G) → E is
obviously Ck,0. We use Lemma 2.3.3 (b) and see that (h, df) : U × L(G) → E × E is
a Ck−1,0-map. By [21, Definition 1.3.1], the map dg : V × E → F is Ck−1, hence by
Lemma 2.3.6, the composition

d(g ◦ f) = dg ◦ (h, df) : U × L(G)→ F

is Ck−1,0, whence g ◦ f is Ck, by Remark 2.2.3.

2.4 Properties of spaces of Ck- and Ck,l-functions

The following two propositions provide a relation between Ck- and Ck,l-maps on products
of topological groups (a version can also be found in [8]), in particular, we will conclude
that C∞,∞(U × V,E) = C∞(U × V,E) (Corollary 2.4.3).

Proposition 2.4.1. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H,
let E be a locally convex space and k ∈ N0 ∪ {∞}. If f : U × V → E is Ck,k, then f is
Ck.

Moreover, the inclusion map

Ψ: Ck,k(U × V,E)→ Ck(U × V,E), f 7→ f

is continuous and linear.

Proof. The case k = 0 is trivial. For k ≥ 1, we show by induction on i ∈ N with i ≤ k
that for all (x, y) ∈ U ×V , (γ1, η1), . . . , (γi, ηi) ∈ L(G×H) the derivatives of f are given
by

d(i)f((x, y), (γ1, η1), . . . ,(γi, ηi)) (2.3)

=

i∑
j=0

∑
Ij,i

d(j,i−j)f(x, y, γr1 , . . . , γrj , ηs1 , . . . , ηsi−j )

where Ij,i ranges through the sets {r1, . . . , rj} ⊆ {1, . . . , i} with r1 < · · · < rj and we
write {1, . . . , i} \ Ij,i = {s1, . . . , si−j} with s1 < · · · < si−j .

Base case: Let (x, y) ∈ U×V and (γ, η) ∈ L(G×H), that is, γ ∈ L(G) and η ∈ L(H),
see Remark 2.1.2. For t 6= 0 small enough we have

f((x, y) · (γ(t), η(t)))− f(x, y)

t

=
f(x · γ(t), y · η(t))− f(x, y)

t

=
f(x · γ(t), y · η(t))− f(x · γ(t), y)

t
+
f(x · γ(t), y)− f(x, y)

t

=
g(y · η(t), x · γ(t))− g(y, x · γ(t))

t
+
f(x · γ(t), y)− f(x, y)

t
,

18



2.4 Properties of spaces of Ck- and Ck,l-functions

where g is the map g : V × U → E, (y, x) 7→ f(x, y). By Corollary 2.2.6, the map g is
C1,1, whence the map g[1,0] is defined and continuous, as well as f [1,0] (see Lemma 2.3.5).
Thus we have

g(y · η(t), x · γ(t))− g(y, x · γ(t))

t
+
f(x · γ(t), y)− f(x, y)

t

= g[1,0](y, η, t, x · γ(t)) + f [1,0](x, γ, t, y)

→ g[1,0](y, η, 0, x) + f [1,0](x, γ, 0, y)

as t→ 0. Therefore, the derivative df((x, y), (γ, η)) exists and is given by

df((x, y), (γ, η)) = g[1,0](y, η, 0, x) + f [1,0](x, γ, 0, y)

= d(1,0)g(y, x, η) + d(1,0)f(x, y, γ)

= d(0,1)f(x, y, η) + d(1,0)f(x, y, γ).

Induction step: Assume that 2 ≤ i ≤ k, (x, y) ∈ U×V , (γ1, η1), . . . , (γi, ηi) ∈ L(G×H).
Then for t 6= 0 small enough we have

1

t

(
d(i−1)f((x · γi(t), y · ηi(t)), (γ1, η1), . . . , (γi−1, ηi−1))

− d(i−1)f((x, y), (γ1, η1), . . . , (γi−1, ηi−1))
)

=
i−1∑
j=0

∑
Ij,i−1

1

t

(
d(j,i−j−1)f(x · γi(t), y · ηi(t), γr1 , . . . , γrj , ηs1 , . . . , ηsi−j−1)

− d(j,i−j−1)f(x, y, γr1 , . . . , γrj , ηs1 , . . . , ηsi−j−1)
)

=

i−1∑
j=0

∑
Ij,i−1

1

t

(
(D(γrj ,0) · · ·D(γr1 ,0)D(0,ηsi−j−1 ) · · ·D(0,η1)f)(x · γi(t), y · ηi(t))

− (D(γrj ,0) · · ·D(γr1 ,0)D(0,ηsi−j−1 ) · · ·D(0,η1)f)(x, y)
)
.

Each of the maps

D(γrj ,0) · · ·D(γr1 ,0)D(0,ηsi−j−1 ) · · ·D(0,η1)f : U × V → E
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2 Exponential laws

is C1,1 (see Remark 2.2.7), hence C1 (by the base case) and we have

i−1∑
j=0

∑
Ij,i−1

1

t

(
(D(γrj ,0) · · ·D(γr1 ,0)D(0,ηsi−j−1 ) · · ·D(0,η1)f)(x · γi(t), y · ηi(t))

− (D(γrj ,0) · · ·D(γr1 ,0)D(0,ηsi−j−1 ) · · ·D(0,η1)f)(x, y)
)

→
i−1∑
j=0

∑
Ij,i−1

(
(D(γrj ,0) · · ·D(γr1 ,0)D(0,ηi)D(0,ηsi−j−1 ) · · ·D(0,η1)f)(x, y)

+ (D(γi,0)D(γrj ,0) · · ·D(γr1 ,0)D(0,ηsi−j−1 ) · · ·D(0,η1)f)(x, y)
)

=
i∑

j=0

∑
Ij,i

d(j,i−j)f(x, y, γr1 , . . . , γrj , ηs1 , . . . , ηsi−j )

as t→ 0 (using Proposition 2.2.5). Thus (2.3) holds, and we have

d(i)f =

i∑
j=0

∑
Ij,i

d(j,i−j)f ◦ gIj,i ,

where

gIj,i : U × V × L(G×H)i → U × V × L(G)j × L(H)i−j ,

(x, y, (γ1, η1), . . . , (γi, ηi)) 7→ (x, y, γr1 , . . . , γrj , ηs1 , . . . , ηsi−j )

are continuous maps (see Remark 2.1.2). Hence f is Ck.
The linearity of the map Ψ is clear. Further, each of the maps

g∗Ij,i : C(U × V × L(G)j × L(H)i−j , E)→ C(U × V × L(G×H)i, E),

h 7→ h ◦ gIj,i

is continuous (see [21, Appendix A.5] or [14, Lemma B.9]), whence each of the maps

d(i) ◦Ψ =

i∑
j=0

∑
Ij,i

g∗Ij,i ◦ d
(j,i−j)

is continuous. Since the topology on Ck(U × V,E) is initial with respect to the maps
d(i), the continuity of Ψ follows.

Proposition 2.4.2. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H,
let E be a locally convex space and k, l ∈ N0. If f : U × V → E is a Ck+l-map, then f
is Ck,l.

Moreover, the inclusion map

Ψ: Ck+l(U × V,E)→ Ck,l(U × V,E), f 7→ f

is continuous and linear.

20



2.5 The exponential law

Proof. We denote by εG ∈ L(G) the constant map εG : R→ G, t 7→ eG, where eG is the
identity element of G, and εH ∈ L(H) is defined analogously.

Let x ∈ U , y ∈ V , γ1, . . . , γi ∈ L(G) and η1, . . . , ηj ∈ L(H) for some i, j ∈ N0 with
i ≤ k, j ≤ l. Then we obviously have

d(i,j)f(x, y,γ1, . . . , γi, η1, . . . , ηj)

= d(i+j)f((x, y), (γ1, εH), . . . , (γi, εH), (εG, η1), . . . , (εG, ηj)).

Each of the maps

ρi,j : U × V × L(G)i × L(H)j → U × V × L(G×H)i+j ,

(x, y, γ1, . . . , γi, η1, . . . , ηj) 7→ (x, y, (γ1, εH), . . . (γi, εH), (εG, η1), . . . (εG, ηj))

is continuous (see Remark 2.1.2) and we have

d(i,j)f = d(i+j)f ◦ ρi,j .

Therefore, f is Ck,l.

The linearity of the map Ψ is clear. Further, by [21, Appendix A.5] (see also [14,
Lemma B.9]), each of the maps

ρ∗i,j : C(U × V × L(G×H)i+j , E)→ C(U × V × L(G)i × L(H)j , E),

h 7→ h ◦ ρi,j

is continuous, whence each of the maps

d(i,j) ◦Ψ = ρ∗i,j ◦ d(i+j)

is continuous. Hence, the continuity of Ψ follows, since the topology on the space
Ck,l(U × V,E) is initial with respect to the maps d(i,j).

Corollary 2.4.3. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H,
let E be a locally convex space. A map f : U × V → E is C∞ if and only if f is C∞,∞.

Moreover, the map

Ψ: C∞(U × V,E)→ C∞,∞(U × V,E), f 7→ f

is an isomorphism of topological vector spaces.

Proof. The assertion is an immediate consequence of Propositions 2.4.1 and 2.4.2.

2.5 The exponential law

We recall the classical Exponential Law for spaces of continuous functions which can be
found, for example, in [21, Appendix A.5]:
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Proposition 2.5.1. Let X1, X2, Y be topological spaces. If f : X1 × X2 → Y is a
continuous map, then also the map

f∨ : X1 → C(X2, Y ), x 7→ f∨(x) := f(x, •)

is continuous. Moreover, the map

Φ: C(X1 ×X2, Y )→ C(X1, C(X2, Y )), f 7→ f∨

is a topological embedding.
If X2 is locally compact or X1 ×X2 is a k-space, or X1 ×X2 is a kR-space and Y is

completely regular, then Φ is a homeomorphism.

The following terminology is used here:

Remark 2.5.2. (a) A Hausdorff topological space X is called a k-space if functions
f : X → Y to a topological space Y are continuous if and only if the restrictions
f
∣∣
K

: K → Y are continuous for all compact subsets K ⊆ X. All locally compact
spaces and all metrizable spaces are k-spaces.

(b) A Hausdorff topological space X is called a kR-space if real-valued functions
f : X → R are continuous if and only if the restrictions f

∣∣
K

: K → R are con-
tinuous for all compact subsets K ⊆ X. Each k-space is a kR-space, hence also
each locally compact and each metrizable space is a kR-space.

(c) A Hausdorff topological space X is called completely regular if its topology is initial
with respect to the set C(X,R). Each Hausdorff locally convex space (moreover,
each Hausdorff topological group) is completely regular, see [22], as well as each
Hausdorff locally compact space.

Theorem 2.5.3. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H, let
E be a locally convex space and k, l ∈ N0 ∪ {∞}. Then the following holds:

(a) If a map f : U × V → E is Ck,l, then the map

f∨(x) := f(x, •) : V → E, y 7→ f∨(x)(y) := f(x, y)

is C l for each x ∈ U and the map

f∨ : U → C l(V,E), x 7→ f∨(x)

is Ck.

(b) The map

Φ: Ck,l(U × V,E)→ Ck(U,C l(V,E)), f 7→ f∨

is linear and a topological embedding.
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2.5 The exponential law

Proof. (a) We will consider the following cases:

The case k = l = 0 : This case is covered by the classical Exponential Law, Proposition
2.5.1.

The case k = 0, l ≥ 1 : Let x ∈ U ; the map f∨(x) = f(x, •) is obviously continuous,
and for y ∈ V , η ∈ L(H) and t 6= 0 small enough we have

1

t
(f∨(x)(y · η(t))− f∨(x)(y)) =

1

t
(f(x, y · η(t))− f(x, y))→ D(0,η)f(x, y)

as t → 0. Thus Dη(f
∨(x))(y) exists and equals D(0,η)f(x, y) = (D(0,η)f)∨(x)(y). Pro-

ceeding similarly, for each j ∈ N with j ≤ l and η1, . . . ηj ∈ L(H), we obtain the
derivatives (

Dηj · · ·Dη1(f∨(x))
)

(y) = (D(0,ηj) · · ·D(0,η1)f)∨(x)(y) (2.4)

The obtained differentials d(j)(f∨(x)) = (d(0,j)f)∨(x) : V × L(H)j → E are continuous,
therefore f∨(x) is C l.

Further, by the classical Exponential Law 2.5.1, each of the maps

f∨ : U → C(V,E), x 7→ f∨(x),

(d(0,j)f)∨ : U → C(V × L(H)j , E), x 7→ (d(0,j)f)∨(x)

is continuous, and we have d(j) ◦ f∨ = (d(0,j)f)∨ for all j ∈ N0 with j ≤ l. Thus, the
continuity of f∨ follows from the fact that the topology on C l(V,E) is initial with respect
to the maps d(j).

The case k ≥ 1, l ≥ 0 : By the preceding steps, the map f∨(x) is C l for each x ∈ U
(with derivatives given in (2.4)). Now we show by induction on i ∈ N with i ≤ k that

(Dγi · · ·Dγ1(f∨))(x) = (D(γi,0) · · ·D(γ1,0)f)∨(x) (2.5)

for all x ∈ U and γ1, . . . , γi ∈ L(G).

Base case: Since f is C1,0, by Lemma 2.3.5 the map f [1,0] : U [1]×V → E is continuous,
hence so is the map (f [1,0])∨ : U [1] → C(V,E) (see Proposition 2.5.1). Let (x, γ, t) ∈ U [1]

such that t 6= 0 and let y ∈ V . Then we have

1

t
(f∨(x · γ(t))(y)− f∨(x)(y)) =

1

t
(f(x · γ(t), y)− f(x, y))

= f [1,0](x, γ, t, y) = (f [1,0])∨(x, γ, t)(y).

Therefore

1

t
(f∨(x · γ(t))− f∨(x)) = (f [1,0])∨(x, γ, t)

→ (f [1,0])∨(x, γ, 0) = (D(γ,0)f)∨(x)

as t→ 0. Thus, Dγ(f∨)(x) exists and is given by (D(γ,0)f)∨(x).
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Induction step: Now, let 2 ≤ i ≤ k, x ∈ U and γ1, . . . , γi ∈ L(G). For t 6= 0 small
enough we have

1

t

(
(Dγi−1 · · ·Dγ1(f∨))(x · γi(t))− (Dγi−1 · · ·Dγ1(f∨))(x)

)
=

1

t

(
(D(γi−1,0) · · ·D(γ1,0)f)∨(x · γi(t))− (D(γi−1,0) · · ·D(γ1,0)f)∨(x)

)
by the induction hypothesis. But the map D(γi−1,0) · · ·D(γ1,0)f : U × V → E is C1,0 (see
Remark 2.2.3), hence by the base case we have

1

t

(
(D(γi−1,0) · · ·D(γ1,0)f)∨(x · γi(t))− (D(γi−1,0) · · ·D(γ1,0))f

∨(x)
)

→ Dγi((D(γi−1,0) · · ·D(γ1,0)f)∨)(x) = (D(γi,0) · · ·D(γ1,0)f)∨(x),

which shows that (Dγi · · ·Dγ1(f∨))(x) exists and is given by (D(γi,0) · · ·D(γ1,0)f)∨(x),
thus (2.5) holds.

From Remark 2.2.7, we know that each of the maps

D(γi,0) · · ·D(γ1,0)f : U × V → E

is C0,l, hence (D(γi,0) · · ·D(γ1,0)f)∨(x) ∈ C l(V,E) for each x ∈ U . Now, it remains to
show that each of the maps

d(i)(f∨) : U × L(G)i → C l(V,E),

(x, γ1, . . . , γi) 7→ (Dγi · · ·Dγ1(f∨))(x) = (D(γi,0) · · ·D(γ1,0)f)∨(x)

is continuous. To this end, let y ∈ V , j ∈ N0 with j ≤ l and η1, . . . , ηj ∈ L(H). Then
we have

(d(j) ◦ d(i)(f∨))(x, γ1, . . . , γi)(y, η1, . . . , ηj)

= d(j)(d(i)(f∨)(x, γ1, . . . , γi))(y, η1, . . . , ηj)

=
[
Dηj · · ·Dη1 [(Dγi · · ·Dγ1(f∨))(x)]

]
(y)

Using (2.5) and (2.4) in turn we obtain[
Dηj · · ·Dη1 [(Dγi · · ·Dγ1(f∨))(x)]

]
(y)

=
[
Dηj · · ·Dη1 [(D(γi,0) · · ·D(γ1,0)f)∨(x)]

]
(y)

= (D(0,ηj) · · ·D(0,η1)D(γi,0) · · ·D(γ1,0)f)∨(x)(y).

Finally, from Proposition 2.2.5 we conclude

(D(0,ηj) · · ·D(0,η1)D(γi,0) · · ·D(γ1,0)f)∨(x)(y)

= (D(γi,0) · · ·D(γ1,0)D(0,ηj) · · ·D(0,η1)f)∨(x)(y)

= d(i,j)f(x, y, γ1, . . . , γi, η1, . . . , ηj)

= (d(i,j)f ◦ ρi,j)(x, γ1, . . . , γi, y, η1, . . . , ηj)

= (d(i,j)f ◦ ρi,j)∨(x, γ1, . . . , γi)(y, η1, . . . , ηj),
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where ρi,j is the continuous map

ρi,j : U × L(G)i × V × L(H)j → U × V × L(G)i × L(H)j ,

(x, γ, y, η) 7→ (x, y, γ, η).

Now, from the classical Exponential Law 2.5.1, it follows that the maps

(d(i,j)f ◦ ρi,j)∨ : U × L(G)i → C(V × L(H)j , E)

are continuous, and we have shown that

d(j) ◦ d(i)(f∨) = (d(i,j)f ◦ ρi,j)∨, (2.6)

thus the continuity of d(i)(f∨) follows from the fact that the topology on C l(V,E) is
initial with respect to the maps d(j), whence f∨ is Ck.

(b) The linearity and injectivity of Φ is clear. To show that Φ is a topological embed-
ding we will prove that the given topology on Ck,l(U × V,E) is initial with respect to
Φ. We define the functions

ρ∗i,j : C(U × V × L(G)i × L(H)j , E)→ C(U × L(G)i × V × L(H)j , E),

g 7→ g ◦ ρi,j ,

and

Ψi,j : C(U × L(G)i × V × L(H)j , E)→ C(U × L(G)i, C(V × L(H)j , E)),

g 7→ g∨

for i, j ∈ N0 such that i ≤ k, j ≤ l. Then we have

(d(i,j)f ◦ ρi,j)∨ = (Ψi,j ◦ ρ∗i,j ◦ d(i,j))(f).

On the other hand, we have

d(j) ◦ d(i)(f∨) = (C(U × L(G)i, d(j)) ◦ d(i) ◦ Φ)(f),

where C(U × L(G)i, d(j)) are the maps

C(U × L(G)i, C l(V,E))→ C(U × L(G)i, C(V × L(H)j , E)),

g 7→ d(j) ◦ g.

Thus, from (2.6) follows the equality

C(U × L(G)i, d(j)) ◦ d(i) ◦ Φ = Ψi,j ◦ ρ∗i,j ◦ d(i,j).

The given topology on Ck,l(U × V,E) is initial with respect to the family (d(i,j)) by
definition, hence the topology is initial with respect to the family of maps Ψi,j ◦ρ∗i,j ◦d(i,j)

(see [21, Appendix A.5], Proposition 2.5.1 and [21, Appendix A.2] for transitivity of
initial topologies). But by the above equality, this topology is also initial with respect
to the maps C(U × L(G)i, d(j)) ◦ d(i) ◦ Φ, hence it is is initial with respect to Φ. This
completes the proof.
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Theorem 2.5.4. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H, let
E be a locally convex space and k, l ∈ N0∪{∞}. If U ×V ×L(G)i×L(H)j is a kR-space
for all i, j ∈ N0 with i ≤ k, j ≤ l, then

Φ: Ck,l(U × V,E)→ Ck(U,C l(V,E)), f 7→ f∨

is an isomorphism of topological vector spaces.

Proof. We need to show that if g ∈ Ck(U,C l(V,E)), then the map

g∧ : U × V → E, g∧(x, y) := g(x)(y)

(which is continuous, since the locally convex space E is completely regular and we
assumed that U ×V is a kR-space, see Proposition 2.5.1) is Ck,l. As Φ(g∧) = (g∧)∨ = g,
the map Φ will be surjective, hence an isomorphism of topological vector spaces (being
a linear topological embedding by Theorem 2.5.3).

To this end, we fix x ∈ U , then g(x) ∈ C l(U,E) and for y ∈ V , η ∈ L(H) and t 6= 0
small enough we have

1

t
(g∧(x, y · η(t))− g∧(x, y)) =

1

t
(g(x)(y · η(t))− g(x)(y))→ d(g(x))(y, η)

as t → 0. Thus, d(0,1)(g∧)(x, y, η) exists and equals d(g(x))(y, η) = (d(1) ◦ g)(x)(y, η) =
(d(1) ◦ g)∧(x, y, η). Analogously, for j ∈ N0 with j ≤ l and η1, . . . , ηj ∈ L(H) we obtain
the derivatives

d(0,j)(g∧)(x, y, η1, . . . , ηj) = (d(j) ◦ g)∧(x, y, η1, . . . , ηj).

But for fixed (y, η1, . . . , ηj) we have

(d(j) ◦ g)∧(x, y, η1, . . . , ηj) = (d(j) ◦ g)(x)(y, η1, . . . , ηj)

= (ev(y,η1,...,ηj) ◦ d(j) ◦ g)(x),

where ev(y,η1,...,ηj) is the continuous linear map

ev(y,η1,...,ηj) : C(V × L(H)j , E)→ E, h 7→ h(y, η1, . . . , ηj).

Since also d(j) : C l(V,E)→ C(V × L(H)j , E) is continuous and linear, the composition
ev(y,η1,...,ηj) ◦ d(j) ◦g : U → E is Ck, by Lemma 2.3.1. Thus for γ ∈ L(G) and t 6= 0 small
enough we obtain

1

t
(d(0,j)(g∧)(x · γ(t), y, η1, . . . , ηj)− d(0,j)(g∧)(x, y, η1, . . . , ηj))

=
1

t
((ev(y,η1,...,ηj) ◦ d(j) ◦ g)(x · γ(t))− (ev(y,η1,...,ηj) ◦ d(j) ◦ g)(x))

→ d(ev(y,η1,...,ηj) ◦ d(j) ◦ g)(x, γ),
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2.5 The exponential law

as t→ 0. Thus d(1,j)(g∧)(x, y, γ, η1, . . . , ηj) is given by

d(ev(y,η1,...,ηj) ◦ d(j) ◦ g)(x, γ) = (ev(y,η1,...,ηj) ◦ d(j) ◦ dg)(x, γ)

= (d(j) ◦ dg)(x, γ)(y, η1, . . . , ηj)

= (d(j) ◦ dg)∧(x, γ, y, η1, . . . , ηj).

Analogously, for each i ∈ N0 with i ≤ k and γ1, . . . , γi ∈ L(G) we obtain

d(i,j)(g∧)(x, y, γ1, . . . , γi, η1, . . . , ηj) = (d(j) ◦ d(i)g)∧(x, γ1, . . . , γi, y, η1, . . . , ηj).

To see that g∧ is Ck,l we need to show that the maps

d(i,j)(g∧) : U × V × L(G)i × L(H)j → E, (2.7)

(x, y, γ1, . . . , γi, η1, . . . , ηj) 7→ (d(j) ◦ d(i)g)∧(x, γ1, . . . , γi, y, η1, . . . , ηj)

are continuous for all i, j ∈ N0 with i ≤ k, j ≤ l. To this end, consider the continuous
maps

d(j) ◦ d(i)g : U × L(G)i → C(V × L(H)j , E).

By Proposition 2.5.1, the maps (d(j)◦d(i)g)∧ : U×L(G)i×V ×L(H)j → E are continuous,
since E is completely regular and we assumed that U×V ×L(G)i×L(H)j is a kR-space,
hence the maps d(i,j)(g∧) are continuous and g∧ is Ck,l.

Theorem 2.5.5. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H,
and E be a locally convex space. If U×V ×L(G)i×L(H)j is a kR-space for all i, j ∈ N0,
then

Φ: C∞(U × V,E)→ C∞(U,C∞(V,E)), f 7→ f∨

is an isomorphism of topological vector spaces.

Proof. The assertion follows from Theorem 2.5.4, since C∞,∞(U×V,E) = C∞(U×V,E),
by Corollary 2.4.3.

Remark 2.5.6. From [24, Definition 3.25] we recall that a topological group G is called
a pro-Lie group if G is complete and each identity neighborhood of G contains a normal
subgroup N such that G/N is a Lie group. Theorem 3.39 in [24] states in particular
that a topological group G is a pro-Lie group if and only if G is a projective limit of Lie
groups. It is known that each almost connected locally compact topological group is a
pro-Lie group (recall that a topological group G is called almost connected if G/G0 is
compact, where G0 denotes the identity component of G).

Corollary 2.5.7. Let U ⊆ G, V ⊆ H be open subsets of topological groups G and H,
let E be a locally convex space and k, l ∈ N0 ∪ {∞}. Assume that at least one of the
following conditions is satisfied:

(a) l = 0 and V is locally compact,
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(b) k, l <∞ and U × V × L(G)k × L(H)l is a kR-space,

(c) G and H are metrizable,

(d) G and H are locally compact,

(e) G and H are almost connected pro-Lie groups.

Then the map

Φ: Ck,l(U × V,E)→ Ck(U,C l(V,E)), f 7→ f∨

is an isomorphism of topological vector spaces.

Proof. (a) As in the proof of Theorem 2.5.4, we need to show that for g ∈ Ck(U,C(V,E))
we have g∧ ∈ Ck,0(U × V,E). The computations of the derivatives of g∧ carry over
(with j = 0), hence it remains to show that the maps d(i,0)(g∧) in (2.7) are continuous
for all i ∈ N0 with i ≤ k. But since V is assumed locally compact, each of the maps
(d(0) ◦ d(i)g)∧ : U × L(G)i × V → E is continuous by Proposition 2.5.1, hence so is each
of the maps d(i,0)(g∧), as required.

(b) By [26, Proposition, p.62], if U × V × L(G)k × L(H)l is a kR-space, then so is
U ×V ×L(G)i×L(H)j for all i, j ∈ N0 with i ≤ k, j ≤ l. Hence, Theorem 2.5.4 applies
and Φ is an isomorphism of topological vector spaces.

(c) Since G is metrizable, the space C(R, G) is metrizable (see [21, Appendix A.5]
or [14, Lemma B.21]), whence so is L(G) ⊆ C(R, G) as well as U × L(G)i for each
i ∈ N0, i ≤ k as a finite product of metrizable spaces. With a similar argumentation
we conclude that also V × L(H)j is metrizable for each j ∈ N0 with j ≤ l, whence so
is U × V × L(G)i × L(H)j . But each metrizable space is a k-space, hence a kR-space.
Therefore, Theorem 2.5.4 applies in this case and Φ is an isomorphism of topological
vector spaces.

(d) As G is locally compact, it is known that the identity component G0 of G (being a
connected locally compact subgroup of G) is a pro-Lie group, see Remark 2.5.6. Hence,
by [24, Theorem 3.12], L(G) is a pro-Lie algebra, and from [24, Proposition 3.7], it
follows that L(G) is homeomorphic to RI for some set I. Since also H is assumed
locally compact, for all i, j ∈ N0 with i ≤ k, j ≤ l we have U × V × L(G)i × L(H)j ∼=
U × V × (RI)i × (RJ)j for some set J . Now, from [38, Theorem 5.6 (ii)], it follows
that U × V ×L(G)i ×L(H)j is a kR-space, being homeomorphic to a product of locally
compact spaces (hence completely regular locally pseudocompact kR-spaces), whence
Theorem 2.5.4 applies and Φ is an isomorphism of topological vector spaces.

(e) Since G is a pro-Lie group, L(G) is homeomorphic to RI for some set I (see Remark
2.5.6 and [24, Theorem 3.12, Proposition 3.7]). Since, in addition, G is almost connected,
there exist a compact subgroup CG of G and a set K such that G is homeomorphic to
CG×RK (by Theorem 8.6 in [25]). Likewise, L(H) ∼= RJ and H ∼= CH×RL. Altogether,
we have G ×H × L(G)i × L(H)j ∼= CG × RK × CH × RL × (RI)i × (RJ)j , which is a
kR-space, being homeomorphic to a product of locally compact spaces (hence completely
regular locally pseudocompact kR-spaces) by [38, Theorem 5.6 (ii)]. From [6, Theorem,
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2.5 The exponential law

p. 28], it follows that U × V × L(G)i × L(H)j is a kR-space, being an open subset of a
completely regular kR-space. Hence Theorem 2.5.4 applies and Φ is an isomorphism of
topological vector spaces.
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3 Differentiability along one-parameter
subgroups compared to differentiability
on Lie groups as manifolds

After recalling the concept of differentiability of functions on manifolds in Section 3.1,
we prove that for functions defined on a locally exponential Lie group or a certain direct
limit Lie group, the two concepts of differentiability coincide (Section 3.2, Theorem
3.2.10).

3.1 Differentiability on manifolds

Let M be a smooth manifold modeled on a locally convex space E, that is, M be a Haus-
dorff topological space together with an atlas of charts ϕ : Uϕ → Vϕ (homeomorphisms
between open subsets of M and E) such that the transition maps ψ ◦ ϕ−1 are smooth
functions (as in [16]). The definition of the tangent space TxM , the tangent manifold
TM and tangent maps between tangent spaces are defined in the usual way.

We recall the concept of differentiability for functions between manifolds.

Definition 3.1.1. Let M , N be manifolds modeled on locally convex spaces, f : M → N
be a continuous function. For k ∈ N∪ {∞}, we call f a Ckmfd-function if for each x ∈M
there are charts ϕ for M around x and ψ for N around f(x) such that the composition
ψ ◦ f ◦ ϕ−1 is Ck. In this case, if N is a locally convex space, then we write

dmfdf : TM → N, [γ] 7→ (f ◦ γ)′(0)

for the second component of the tangent map Tf : TM → N × N . Here [γ] denotes a
geometric tangent vector (equivalence class of the curves γ). Further, for a C1

mfd-curve
f : R→ N to a manifold N we define f ′ : R→ TN, f ′(t) := Tf(t, 1).

We denote by Ckmfd(M,E) the space of all Ckmfd-functions f : M → E (where E is a
locally convex space) and endow this space with the initial topology with respect to the
family (d(i))i∈N0,i≤k of mappings

d(i) : Ckmfd(M,E)→ C(Vϕ × F i, E), f 7→ d(i)(f ◦ ϕ−1),

for charts ϕ : Uϕ → Vϕ of the maximal atlas of M , where F is the modelling space of M .
This topology turns Ckmfd(M,E) into a Hausdorff locally convex vector space.

We will often use the following facts without further mention:
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Remark 3.1.2. A function f : E → F is Ck if and only if f is C1 and the differential
df : E × E → F is Ck−1. If f : M → E is Ckmfd, then dmfdf : TM → E is Ck−1

mfd .

Further, compositions of composable Ckmfd- (resp. Ck-) functions are Ckmfd (resp. Ck).
Each continuous linear function between locally convex spaces is C∞.

A function between locally convex spaces is Ckmfd if and only if it is Ck.

3.2 Differentiability on certain Lie groups

In this section, we will always assume that E is a locally convex topological vector space
and that G is a smooth Lie group modeled on a locally convex space F , that is, G is
a group endowed with a smooth manifold structure modeled on F such that the group
multiplication mG : G×G→ G and the inversion jG : G→ G are smooth functions.

We will prove that the concepts of differentiability on G as a topological group and
as a manifold coincide if G is locally exponential or if G is a direct limit Lie group
G = lim−→ Gn of certain Lie groups Gn. We denote by g := TeG the Lie algebra of G,
where TeG is the tangent space of G at the identity element e. We write σ : G× TG→
TG, (x, v) 7→ x.v := Tλx(v) for the smooth left action of G on the tangent group TG,
where Tλx is the tangent map of the left translation λx : y 7→ x · y on G.

Remark 3.2.1. (i) Recall that a Lie group G is called locally exponential if G has a
C∞mfd-exponential function exp: g → G and there exists an open 0-neighborhood
U ⊆ g such that exp

∣∣
U

is a diffeomorphism onto an open e-neighborhood V ⊆ G;
we denote its inverse by log : V → U . In this case, if γ is a continuous one-
parameter subgroup, then γ is C∞mfd and there exists a unique v ∈ g such that
γ(t) = exp(tv) =: γv(t). Moreover, the function Γ: g→ L(G), v 7→ γv is a homeo-
morphism with the inverse Γ−1 : L(G)→ g, γ 7→ [γ] = γ′(0). We equip L(G) with
the locally convex topological vector space structure making Γ an isomorphism of
locally convex spaces (hence C∞). (Details on locally exponential Lie groups can
be found, for example, in [32] or [21].)

(ii) Consider an ascending sequence of finite-dimensional Lie groups G1 ⊆ G2 ⊆ · · ·
such that the inclusions Gn → Gn+1 are continuous (hence C∞mfd, being homo-
morphisms between finite-dimensional Lie groups). Then G :=

⋃
n∈NGn admits a

Lie group structure such that G = lim−→ Gn in the category of Lie groups modeled

on locally convex vector spaces (we call G a direct limit Lie group), for the Lie
algebra g of G we have g = lim−→ gn in the category of topological Lie algebras,

where each gn denotes the Lie algebra of Gn (by [15, Theorem 4.3, (a)]). (Note
that G always has a C∞mfd-exponential function, but is not necessarily locally ex-
ponential [13, Example 5.5].) Further, we have L(G) =

⋃
n∈N L(Gn) ([13, 5.3]),

that is, each γ ∈ L(G) is a continuous one-parameter subgroup of some Gn, hence
C∞mfd; moreover, each of the functions Γn : gn → L(Gn) (as defined above) is a
homeomorphism (each Gn being locally exponential). Hence so is the function
lim−→ Γn : g → L(G) (where L(G) = lim−→ L(Gn) is the direct limit in the category

of topological spaces). But by [18, Theorem 4.4] the function Γ: g → L(G) is a
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homeomorphism (where L(G) is equipped with the compact-open topology), thus
the direct limit topology and the compact-open topology on L(G) coincide. Since
each finite-dimensional Gn and each L(Gn) ∼= gn ∼= Rdim(Gn) is locally compact, we
conclude that G×L(G)k = lim−→ (Gn×L(Gn)k), for each k ∈ N (see [12, Proposition

3.2], [23, Theorem 4.1]). As in (i), we can equip L(G) with the locally convex topo-
logical vector space structure making Γ an isomorphism of locally convex spaces.

The following properties of differentiable functions on direct limit Lie groups will
enable us to reduce the case of direct limit Lie groups to the case of locally exponential
Lie groups.

Lemma 3.2.2. Let G be a direct limit Lie group as in Remark 3.2.1 (ii) and f : G→ E
be a continuous function. For k ∈ N ∪ {∞} the following holds:

(i) f is Ck if and only if f
∣∣
Gn

: Gn → E is Ck for each n ∈ N,

(ii) f is Ckmfd if and only if f
∣∣
Gn

: Gn → E is Ckmfd for each n ∈ N.

Proof. (i) First, assume that f is Ck. For n ∈ N, the inclusion map incln : Gn → G is a
continuous homomorphism, whence f ◦ incln is Ck by Lemma 2.3.2.

Conversely, let x ∈ G and γ1, . . . , γi ∈ L(G) for some i ≤ k. Since G and L(G)
are ascending unions of Gn and L(Gn), respectively, there exists some N ∈ N such
that x, γ1, . . . , γi ∈ GN × L(GN )i. Hence d(i)f : G × L(G)i → E is defined (with
d(i)f(x, γ1, . . . , γi) := d(i)(f

∣∣
GN

)(x, γ1, . . . , γi)). This differential is continuous if and

only if d(i)f
∣∣
Gn×L(Gn)i

= d(i)(f
∣∣
Gn

) is continuous (see above) and this is satisfied by the

assumption.
(ii) See [13, Proposition 4.2].

Proposition 3.2.3. If G is a locally exponential Lie group and f : G→ E is a Ckmfd-map
for some k ∈ N0 ∪ {∞}, then f is Ck.

Proof. For k = 0 the assertion is clear. For k ≥ 1, we may assume that k < ∞ and
proceed by induction.

Base case: For x ∈ G we denote λx : y 7→ x ·y, which is a C∞mfd-function. For γ ∈ L(G)
and t 6= 0 we have

f(x · γ(t))− f(x)

t
=

(f ◦ λx ◦ γ)(t)− (f ◦ λx ◦ γ)(0)

t
→ (f ◦ λx ◦ γ)′(0),

as t→ 0, because the composition f ◦ λx ◦ γ : R→ E is a C1-curve. We rewrite

df(x, γ) = (f ◦ λx ◦ γ)′(0) = dmfdf(σ(x,Γ−1(γ))) (3.1)

and see that the differential df := dmfdf ◦ σ ◦ (idG×Γ−1) : G×L(G)→ E is continuous,
hence the function f is C1.

Induction step: Assume that f is Ckmfd for k ≥ 2. Then f is C1, by the base case.
Using (3.1), we see that the differential df can be written as a composition of Ck−1

mfd -

functions, hence it is Ck−1
mfd on the locally exponential Lie group G × L(G). Therefore,

the differential is Ck−1, by the induction hypothesis, whence f is Ck.
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Lemma 3.2.4. Let G be a locally exponential Lie group, f : G → E be a C1-map and
γ : R → G be a C1

mfd-curve. Then (f ◦ γ)′(0) = df(γ(0), κ) for some one-parameter
subgroup κ ∈ L(G).

Proof. First, we recall from Lemma 2.3.4 that the function f [1] : G × L(G) × R → E
such that f [1](x, η, t) = 1

t (f(x · η(t))− f(x)), for t 6= 0, is continuous on G× L(G)× R,

since f is assumed C1, and we have df(x, η) = f [1](x, η, 0). Now, for ε > 0 small enough
consider the continuous curve

η : ]− ε, ε[→ g, η(t) :=

{
1
t log(γ(0)−1 · γ(t)) if t 6= 0,

γ(0)−1.γ′(0) if t = 0.

Note that the continuity of η in t = 0 follows from

lim
t→0

log(γ(0)−1 · γ(t))

t
= lim

t→0

log(γ(0)−1 · γ(t))− log(γ(0)−1 · γ(0))

t

= (log ◦λγ(0)−1 ◦ γ)′(0)

= (dmfd(log) ◦ Tλγ(0)−1)(γ′(0))

= γ(0)−1.γ′(0),

using that dmfd(log) is a restriction of idg in this case. Now, for 0 6= t ∈]− ε, ε[ we have

f(γ(t))− f(γ(0))

t
=
f(γ(0) · κt(t))− f(γ(0))

t
= f [1](γ(0), κt, t)

with the one-parameter subgroup κt : R→ G, κt(s) := exp(sη(t)). Then

(f ◦ γ)′(0) = lim
t→0

f [1](γ(0), κt, t) = f [1](γ(0), κ0, 0) = df(γ(0), κ0),

and the proof is finished.

Remark 3.2.5. Assume that L(G) carries a topological vector space structure (for
example, if G is a Lie group as in Remark 3.2.1). If a function f : G→ E is C1 and the
differential df is Ck−1 on the topological group G×L(G), then f is Ck with derivatives

d(i)f(x, γ1, . . . , γi) = d(i−1)(df)((x, γ1), (γ2, γ̄0), . . . , (γi, γ̄0)), (3.2)

where γ̄0 ∈ L(L(G)) denotes the one-parameter subgroup t 7→ γ0, where γ0 ∈ L(G) is
the trivial one-parameter subgroup of G.

On the other hand, if f is Ck and df is linear in the second argument, then df is Ck−1

with derivatives

d(i)(df)((x, α), (γ1, η1), . . . , (γi, ηi))

= d(i+1)f(x, α, γ1, . . . , γi) +
i∑

j=1

d(i)f(x, ηj(1), γ1, . . . , γj−1, γj+1, . . . , γi).
(3.3)
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Proposition 3.2.6. If G is a locally exponential Lie group and f : G→ E is a Ck-map
for some k ∈ N0 ∪ {∞}, then f is Ckmfd.

Proof. For k = 0 the assertion is clearly true. Now, we assume that 1 ≤ k < ∞ and
prove the assertion by induction.

Base case: Fix g ∈ G and let ϕ : Uϕ → Vϕ ⊆ F be a chart for G around g, where F is
the modelling space of G. To show that f is C1

mfd we need to prove that f ◦ϕ−1 : Vϕ → E
is C1. To this end, let x ∈ Vϕ, y ∈ F and define the C1

mfd-curve γ : ] − ε, ε[→ G, t 7→
ϕ−1(x+ty) for suitable ε > 0. (Note that Tϕ−1(x, y) = [t 7→ ϕ−1(x+ty)] = [γ] = γ′(0).)
Then we have

d(f ◦ ϕ−1)(x, y) = lim
t→0

f(γ(t))− f(γ(0))

t
= (f ◦ γ)′(0) = df(γ(0), κ)

with the one-parameter subgroup κ := κ0 : R → G, t 7→ exp(t(γ(0)−1.γ′(0))) from
Lemma 3.2.4. Using the C∞mfd-function ω : TG → g, v 7→ πTG(v)−1.v (where πTG de-
notes the bundle projection, which is C∞mfd) we rewrite

d(f ◦ ϕ−1)(x, y) = df (πTG([γ]), (Γ ◦ ω)([γ])) ,

hence the differential

d(f ◦ ϕ−1) = df ◦ (πTG,Γ ◦ ω) ◦ Tϕ−1 : Vϕ × F → E (3.4)

is continuous and consequently f ◦ϕ−1 is a C1-function, as required. Note that we found

dmfdf([γ]) = df (πTG([γ]), (Γ ◦ ω)([γ])) , (3.5)

for each [γ] ∈ TG.
Induction step: Now, let f be a Ck-map for k ≥ 2 and ϕ be as above. By the base

case, we know that f is C1
mfd (that is, f ◦ ϕ−1 is C1). To show that d(f ◦ ϕ−1) is Ck−1,

consider the formula in (3.4). The composition (πTG,Γ◦ω)◦Tϕ−1 : Vϕ×F → G×L(G)
is C∞mfd. Further, using (3.1) we see that df is linear in the second argument, hence Ck−1

(see Remark 3.2.5), Thus df is Ck−1
mfd on the locally exponential Lie group G× L(G), by

the induction hypothesis. Therefore, the differential d(f ◦ ϕ−1) is Ck−1
mfd . Consequently,

this differential is Ck−1 as required.

Proposition 3.2.7. Let G be a direct limit Lie group as in Remark 3.2.1 (ii). A function
f : G→ E is Ck if and only if f is Ckmfd, for each k ∈ N0 ∪ {∞}.

Proof. Since each Lie group Gn is locally exponential (being finite dimensional), each of
the restrictions f

∣∣
Gn

is Ck if and only if it is Ckmfd, by Propositions 3.2.3 and 3.2.6. The
remainder follows from Lemma 3.2.2.

Using the fact that the differential df of each Ck-function f defined on a locally
exponential Lie group G or on a direct limit Lie group G (as in Remark 3.2.1) is Ck−1,
we show that in these cases the compact-open Ck-topology on Ck(G,E) can be described
in the following way (for finite k):
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Lemma 3.2.8. The compact-open Ck-topology O1 on the function space Ck(G,E) co-
incides with the initial topology O2 with respect to the functions

incl : Ck(G,E)→ C(G,E), f 7→ f,

D : Ck(G,E)→ (Ck−1(G× L(G), E),O1), f 7→ df

for each k ∈ N if G is a Lie group as in Remark 3.2.1.

Proof. First, we show that O2 ⊆ O1. This will hold, if both functions

incl : (Ck(G,E),O1)→ C(G,E), f 7→ f, (3.6)

D : (Ck(G,E),O1)→ (Ck−1(G× L(G), E),O1), f 7→ df (3.7)

are continuous. The first function (3.6) is continuous by the definition of the topology
O1, since we have incl = d(0). The continuity of the second function (3.7) will follow
from the continuity of the compositions

d(i) ◦D : (Ck(G,E),O1)→ C(G× L(G)× L(G× L(G))i, E),

f 7→ d(i)(df),
(3.8)

where d(i) : (Ck−1(G× L(G), E),O1)→ C(G× L(G)× L(G× L(G))i, E) for all 0 ≤ i ≤
k − 1. Using the two continuous functions

ρi : G× L(G)× L(G× L(G))i → G× L(G)i+1,

(x, α, (γ1, η1), . . . , (γi, ηi)) 7→ (x, α, γ1, . . . , γi),

ρj,i : G× L(G)× L(G× L(G))i → G× L(G)i,

(x, α, (γ1, η1), . . . , (γi, ηi)) 7→ (x, ηj(1), γ1, . . . , γj−1, γj+1, . . . , γi),

for 1 ≤ j ≤ i, and Equation (3.3) from Remark 3.2.5, we obtain

d(i)(df) = (d(i+1)f ◦ ρi) +
i∑

j=1

(d(i)f ◦ ρj,i)

for each f ∈ Ck(G,E). Hence, using the continuous pullbacks ρ∗i : g 7→ g ◦ ρi and
ρ∗j,i : g 7→ g ◦ ρj,i we can write each of the maps from (3.8) as

d(i) ◦D = (ρ∗i ◦ d(i+1)) +
i∑

j=1

(ρ∗j,i ◦ d(i)).

(Note that the functions d(i+1), d(i) on the right-hand side are the differential operators on
(Ck(G,E),O1).) From the definition of the compact-open Ck-topology O1 we conclude
that the composition is continuous, as required.

Now, we show that O1 ⊆ O2, which will be the case if for all 0 ≤ i ≤ k the functions

d(i) : (Ck(G,E),O2)→ C(G× L(G)i, E), f 7→ d(i)f (3.9)
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3.2 Differentiability on certain Lie groups

are continuous. For i = 0 we have d(0) = incl, hence the continuity follows from the
definition of the topology O2. Now, using the continuous functions

ξi : G× L(G)i → G× L(G)× L(G× L(G))i−1,

(x, γ1, . . . , γi) 7→ ((x, γ1), (γ2, γ̄0), . . . , (γi, γ̄0)),

where γ̄0 ∈ L(L(G)) denotes the one-parameter subgroup t 7→ γ0, where γ0 ∈ L(G) is
the trivial one-parameter subgroup of G, and Equation (3.2) from Remark 3.2.5 we can
express the functions in (3.9) as

d(i) = ξ∗i ◦ d(i−1) ◦D,

with the continuous differential operators d(i−1) on (Ck−1(G × L(G), E),O1) on the
right-hand side and the continuous pullbacks ξ∗i : g 7→ g ◦ ξi. From the definition of the
topology O2 on Ck(G,E) we conclude that the composition above is continuous for each
i, as required.

Analogously, one can prove the following known fact:

Lemma 3.2.9. The compact-open Ckmfd-topology O1 on the space Ckmfd(G,E) coincides
with the initial topology O2 with respect to the functions

incl : Ckmfd(G,E)→ C(G,E), f 7→ f,

dmfd : Ckmfd(G,E)→ (Ck−1
mfd (TG,E),O1), f 7→ dmfdf

for each k ∈ N if G is a Lie group as in Remark 3.2.1.

Using these descriptions of the topologies on the function spaces, we finally get the
main result:

Theorem 3.2.10. If G is a locally exponential Lie group or a direct limit Lie group
(as in Remark 3.2.1), E is a locally convex space and k ∈ N0 ∪ {∞}, then Ck(G,E) =
Ckmfd(G,E) as topological vector spaces.

Proof. From Propositions 3.2.3, 3.2.6 and 3.2.7, it follows that the function spaces coin-
cide as sets, it remains to show that also the topologies coincide.

The topologies on C∞(G,E) and C∞mfd(G,E) are initial with respect to the inclusion
maps C∞(G,E) → Ck(G,E) and C∞mfd(G,E) → Ckmfd(G,E) for k ∈ N0, respectively
(this is easy to verify using the definitions). Hence it suffices to prove the continuity of
both inclusion maps inclk : Ck(G,E) → Ckmfd(G,E) and inclk : Ckmfd(G,E) → Ck(G,E)
by induction on k.

Base case: The inclusion maps incl0 and incl0 coincide with the functions incl from
Lemma 3.2.8 and Lemma 3.2.9, respectively, hence they are continuous.

Induction step: By Lemma 3.2.9, the continuity of the inclusion map inclk will follow
from the continuity of the compositions

incl ◦ inclk : Ck(G,E)→ C(G,E), f 7→ f, (3.10)

dmfd ◦ inclk : Ck(G,E)→ Ck−1
mfd (TG,E), f 7→ dmfdf. (3.11)
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3 Differentiability on Lie groups

The first composition (3.10) is continuous, by Lemma 3.2.8. Now, for f ∈ Ck(G,E) and
v ∈ TG we have

dmfdf(v) = df(πTG(v), (Γ ◦ ω)(v)),

using (3.5). Recall from Lemma 3.2.8 that

D : Ck(G,E)→ Ck−1(G× L(G), E) f 7→ df

is continuous. Using the induction hypothesis, we conclude that D is continuous as a
function to Ck−1

mfd (G× L(G), E). Further, the operator

(πTG,Γ ◦ ω)∗ : Ck−1
mfd (G× L(G), E)→ Ck−1

mfd (TG,E), f 7→ f ◦ (πTG,Γ ◦ ω)

is continuous (see [21]) and we have

dmfd = (πTG,Γ ◦ ω)∗ ◦D,

by the above. Therefore, also the composition in (3.11) is continuous and the first
assertion is proved.

Now, by Lemma 3.2.8 the continuity of the inclusion map inclk will follow from the
continuity of the functions

incl ◦ inclk : Ckmfd(G,E)→ C(G,E), f 7→ f, (3.12)

D ◦ inclk : Ckmfd(G,E)→ Ck−1(G× L(G), E), f 7→ df. (3.13)

The first composition (3.12) is continuous by Lemma 3.2.9. Further, for f ∈ Ckmfd(G,E)
we have

df = dmfdf ◦ σ ◦ (idG×Γ−1),

by (3.1). The function dmfd : Ckmfd(G,E)→ Ck−1
mfd (TG,E) is continuous by Lemma 3.2.9,

and also the operator

(σ ◦ (idG×Γ−1))∗ : Ck−1
mfd (TG,E)→ Ck−1

mfd (G× L(G), E),

f 7→ f ◦ σ ◦ (idG×Γ−1)

is continuous (see [21]), hence so is the composition

D = (σ ◦ (idG×Γ−1))∗ ◦ dmfd : Ckmfd(G,E)→ Ck−1
mfd (G× L(G), E).

But by the induction hypothesis, it is continuous as a function to Ck−1(G × L(G), E),
hence the composition in (3.13) is continuous and the proof is finished.

38



4 Measurable regularity of
infinite-dimensional Lie groups based on
Lusin measurability

In Section 4.1, we recall the definition of Lusin-measurable functions between topological
spaces and construct Lebesgue spaces Lp([a, b], E) of vector-valued Lusin-measurable
functions γ : [a, b]→ E. Further, Section 4.2 describes the construction of vector spaces
ACLp([a, b], E) and Lie groups ACLp([a, b], G). In Section 4.3, we introduce the definition
of Lp-regular Lie groups and prove some important results (Theorems 4.3.9, 4.3.10 and
4.3.13).

Note that whenever we deal with Ck-functions on Lie groups in this chapter, we always
mean the differentiability in the sense of Definition 3.1.1 (that is, on the Lie group as a
manifold).

4.1 Measurable functions and Lebesgue spaces

This section starts with the description of measurability of functions between topological
spaces, which is also known as Lusin measurability. This concept of measurability was
used, for example, in [9], [11], [42] and others. Further, we present the definition of Lp-
and Lp-spaces of such functions (as in [11]) and show that these spaces coincide with the
Lp-spaces considered in [17] whenever the latter spaces are defined. Finally, we discuss
some basic properties of Lp-spaces and of functions between them.

Recall that the Borel σ-algebra B(X) on a topological space X is the σ-algebra
generated by the open subsets of X. A function γ : X → Y between topological
spaces is called Borel measurable if the preimage γ−1(A) of every open (resp. closed)
subset A ⊆ Y is in B(X). A measure µ : B(X) → [0,∞] is called inner regular if
µ(B) = sup{µ(K) : K is compact,K ⊆ B} for every Borel set B ⊆ X. Further, µ is
called locally finite if for every x ∈ X there exists a neighborhood U ⊆ X such that
µ(U) <∞. A locally finite inner regular measure is called a Radon measure. Whenever
there is a subset N ∈ B(X) such that µ(N) = 0 and an assertion holds for all x ∈ X \N
we will say that the assertion holds µ-almost everywhere or µ-a.e.

Remark 4.1.1. Note that if µ is a Radon measure and K ⊆ X is a compact subset,
then µ(K) <∞, as µ is locally finite. Further, from the inner regularity of µ, it follows
that for every Borel set B with µ(B) <∞ and every ε > 0 there exists a compact subset
K ⊆ B such that µ(B \K) ≤ ε.
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4 Measurable regularity of Lie groups

Definition 4.1.2. Let µ be a Radon measure on a topological space X. A function
γ : X → Y to a topological space Y is called Lusin µ-measurable if for every compact
subset K ⊆ X and every ε > 0 there exists a compact subset K ′ ⊆ K with µ(K \K ′) ≤ ε
such that the restriction γ|K′ is continuous.

Lemma 4.1.3. If γ : X → Y is Lusin µ-measurable, then for every Borel set B with
µ(B) <∞ and every ε > 0 exists a compact subset K ⊆ B such that µ(B \K) ≤ ε and
γ|K is continuous.

Proof. As µ is inner regular, there exists a compact set L ⊆ A with µ(A\L) ≤ ε/2, further
there exists a compact subset K ⊆ L such that µ(L \K) ≤ ε/2 and γ|K is continuous.
Since µ(A \K) = µ(A \ L) + µ(L \K) ≤ ε, the assertion is proved.

Remark 4.1.4. Obviously, every continuous function is Lusin µ-measurable.

If X is a compact space, then it is easy to see that a function γ : X → Y is Lusin
µ-measurable if and only if for every ε > 0 there exists a compact subset Kε ⊆ X such
that µ(X \Kε) ≤ ε and γ|Kε is continuous.

Further, consider two functions γ, η : X → Y such that γ(x) = η(x) µ-a.e. If γ is
Lusin µ-measurable, then so is η.

In fact, let K ⊆ X be a compact set and let ε > 0. We denote by N a Borel set such
that µ(N) = 0 and γ(x) = η(x) for x ∈ X \N . For B := K \N , Lemma 4.1.3 provides
a compact subset K ′ ⊆ B such that µ(B \K ′) ≤ ε and η|K′ = γ|K′ is continuous. Since
µ(K \K ′) = µ(N) + µ(B \K ′) ≤ ε, we see that η is Lusin µ-measurable.

The following essential criterion for Lusin µ-measurability can be found in [9], or also
in [3] as a part of Lusin’s Theorem.

Lemma 4.1.5. Let X, Y be topological spaces, µ : B(X) → [0,∞] be a Radon measure
on X. A function γ : X → Y is Lusin µ-measurable if and only if for each compact
subset K ⊆ X there exists a (pairwise disjoint) sequence (Kn)n∈N of compact subsets
Kn ⊆ K such that µ(K \

⋃
n∈NKn) = 0 and every restriction γ|Kn is continuous.

Proof. Assume that γ is Lusin µ-measurable and let K ⊆ X be a compact subset. There
exists a compact set K1 ⊆ K such that µ(K \K1) ≤ 1 and γ|K1 is continuous. Define
L1 := K \ K1 ∈ B(X). As µ(L1) < ∞, by Lemma 4.1.3 there exists a compact set
K2 ⊆ L1 such that µ(L1 \K2) ≤ 1/2 and γ|K2 is continuous. Let L2 := L1 \K2 ∈ B(X).
Then µ(L2) <∞, therefore there exists a compact set K3 ⊆ L2 such that µ(L2\K3) ≤ 1/3

and γ|K3 is continuous. Proceeding this way, we obtain a sequence of compact subsets
(Kn)n∈N in K such that µ(K \

⋃n
i=1Ki) = µ(Ln−1 \Kn) ≤ 1/n for every n. Then

µ(K \
⋃
n∈N

Kn) = µ(
⋂
n∈N

(K \
n⋃
i=1

Ki)) = lim
n→∞

µ(K \
n⋃
i=1

Ki) ≤ lim
n→∞

1

n
= 0.

As every γ|Kn is continuous, the first part of the proof is finished.
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4.1 Measurable functions and Lebesgue spaces

Conversely, given ε > 0, a compact set K ⊆ X and a sequence (Kn)n∈N of compact
sets Kn ⊆ K, we have

lim
n→∞

µ(K \
n⋃

m=1

Km) = µ(
⋂
n∈N

(K \
n⋃

m=1

Km)) = µ(K \
⋃
n∈N

Kn) = 0.

Consequently, there is some N ∈ N such that µ(K \
⋃N
m=1Km) ≤ ε. The finite union

K ′ :=
⋃N
m=1Km is a compact subset of K and γ|K′ is continuous, thus γ is Lusin

µ-measurable.

Lemma 4.1.6. Let X be a topological space and µ be a Radon measure on X.

(i) If Y , Z are topological spaces, γ : X → Y is Lusin µ-measurable and f : Y → Z is
continuous, then the composition f ◦ γ is Lusin µ-measurable.

(ii) If (Yn)n∈N are topological spaces, then γ := (γn)n∈N : X →
∏
n∈N Yn is Lusin µ-

measurable if and only if every component γn : X → Yn is Lusin µ-measurable.

Proof. (i) Let K ⊆ X be a compact subset and ε > 0. Then there exists a compact
subset K ′ ⊆ K such that µ(K\K ′) ≤ ε and γ|K′ is continuous. Then obviously (f ◦γ)|K′
is continuous, whence f ◦ γ is Lusin µ-measurable.

(ii) If γ : X →
∏
n∈N Yn is Lusin µ-measurable, then from (i), it follows that every

γm = prm ◦γ is Lusin µ-measurable, where prm :
∏
n∈N Yn → Ym are the coordinate

projections.

On the other hand, fix ε > 0 and a compact subset K ⊆ X. Then for each n ∈ N
there is a compact subset Kn ⊆ K such that γn|Kn is continuous and µ(K \Kn) ≤ ε/2n,
as each γn is Lusin µ-measurable. Then the intersection Kε :=

⋂
n∈NKn is a compact

subset of K with

µ(K \Kε) = µ(
⋃
n∈N

(K \Kn)) ≤
∞∑
n=1

µ(K \Kn) ≤
∞∑
n=1

ε

2n
= ε.

Since Kε ⊆ Kn for each n ∈ N, the restriction γ|Kε is continuous, thus γ is Lusin
µ-measurable.

Remark 4.1.7. From Lemma 4.1.6 easily, it follows that vector-valued Lusin µ-measurable
functions form a vector space.

From now on we will work with functions defined on an interval [a, b] ⊆ R, the con-
sidered measure will always be the Lebesgue-Borel measure λ and we will call Lusin
λ-measurable functions γ : [a, b]→ X just measurable for short.

The relation between Lusin µ-measurable functions and Borel measurable functions is
known as Lusin’s Theorem and can be found in several versions in [3], [10], and others.
We prove a special case which will suffice for our purposes.
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4 Measurable regularity of Lie groups

Lemma 4.1.8. Let X be a topological space. If γ : [a, b]→ X is measurable, then there
exists a Borel measurable function γ̄ : [a, b]→ X such that γ̄(t) = γ(t) a.e.

On the other hand, if X has a countable base, then every Borel measurable function
γ : [a, b]→ X is measurable.

Proof. If γ : [a, b] → X is measurable, then by Lemma 4.1.5 there exists a sequence
(Kn)n∈N of compact subsets of [a, b] such that γ|Kn is continuous for every n ∈ N and
λ([a, b] \

⋃
n∈NKn) = 0. We define

γ̄(t) := γ(t), if t ∈ Kn for some n ∈ N,

and

γ̄(t) := x0 ∈ X, otherwise,

and show that the obtained function is Borel measurable. Let U ⊆ X be an open subset
and consider the preimage

γ̄−1(U) = (γ̄−1(U) ∩N) ∪ (γ̄−1(U) ∩
⋃
n∈N

Kn),

where N := [a, b] \
⋃
n∈NKn. The subset

γ̄−1(U) ∩
⋃
n∈N

Kn =
⋃
n∈N

(γ̄−1(U) ∩Kn) =
⋃
n∈N

(γ̄|Kn)−1(U) =
⋃
n∈N

(γ|Kn)−1(U)

is a Borel subset of [a, b]. Further, γ̄−1(U) ∩ N = N if x0 ∈ U , and γ̄−1(U) ∩ N = ∅
otherwise, hence γ̄−1(U) is a Borel set, as required.

Now, assume that γ : [a, b] → X is Borel measurable and X has a countable base
denoted by (Vn)n∈N. For every n ∈ N, the preimage γ−1(Vn) is a Borel subset of [a, b],
hence using the regularity of the Lebesgue measure λ, for a fixed ε > 0 we obtain open
subsets Un ⊆ [a, b] and compact subsets Kn ⊆ [a, b] such that

Kn ⊆ γ−1(Vn) ⊆ Un and λ(Un \Kn) ≤ ε/2n+1

for every n ∈ N. We define the Borel set B :=
⋃
n∈N(Un \ Kn) and show that for

A := [a, b] \B the restriction γ|A is continuous.
In fact, for every n ∈ N we have

γ−1(Vn) ∩A ⊆ Un ∩A = ((Un \Kn) ∪Kn) ∩A = Kn ∩A ⊆ γ−1(Vn) ∩A,

in other words,
γ−1(Vn) ∩A = Un ∩A

is an open set in A.
Finally, by Remark 4.1.1 there exists a compact subset K ⊆ A such that λ(A\K) ≤ ε/2.

Since

λ([a, b] \K) = λ(B) + λ(A \K) ≤
∞∑
n=1

ε/2n+1 + ε/2 = ε

and γ|K is continuous, we conclude that γ is measurable.
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4.1 Measurable functions and Lebesgue spaces

The next lemma can be found in [11].

Lemma 4.1.9. Let E be a locally convex space, γ : [a, b]→ E be a measurable function.
Then the following assertions are equivalent:

(i) γ(t) = 0 a.e.,

(ii) α(γ(t)) = 0 a.e., for each continuous linear functional α on E,

(iii) q(γ(t)) = 0 a.e., for each continuous seminorm q on E.

Definition 4.1.10. Let γ : [a, b] → R be a measurable function and γ̄ : [a, b] → R be a
Borel measurable function such that γ̄(t) = γ(t) a.e. (as in Lemma 4.1.8). We define∫ b

a
γ(t) dt :=

∫ b

a
γ̄(t) dt.

For a locally convex space E and p ∈ [1,∞[, we denote by Lp([a, b], E) the vector
space of measurable functions γ : [a, b] → E such that for every continuous seminorm q
on E we have ∫ b

a
q(γ(t))p dt <∞.

We endow Lp([a, b], E) with the locally convex topology defined by the family of semi-
norms

‖γ‖Lp,q :=

(∫ b

a
q(γ(t))p dt

) 1
p

.

Further, we denote by L∞([a, b], E) the vector space of measurable maps γ : [a, b]→ E
such that there exists some Borel set N ⊆ [a, b] such that λ(N) = 0 and γ([a, b] \N) is
bounded. We endow L∞([a, b], E) with the locally convex topology defined by the family
of seminorms

‖γ‖L∞,q := ess supt∈[a,b] q(γ(t))

for continuous seminorms q on E.
For p ∈ [1,∞], define

Np := {γ ∈ Lp([a, b], E) : γ(t) = 0 a.e.}.

From Lemma 4.1.9, it follows that Np = {0} in Lp([a, b], E), thus we obtain Hausdorff
locally convex spaces

Lp([a, b], E) := Lp([a, b], E)/Np

consisting of equivalence classes

[γ] := {η ∈ Lp([a, b], E) : η(t) = γ(t) a.e.},

with seminorms
‖[γ]‖Lp,q := ‖γ‖Lp,q.
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4 Measurable regularity of Lie groups

Remark 4.1.11. By [11], γ ∈ L∞([a, b], E) if and only if for every continuous seminorm
q on E the composition q ◦ γ is essentially bounded. By definition, γ ∈ Lp([a, b], E) if
and only if q ◦ γ ∈ Lp([a, b]) (as in [11]).

In [17], the author defines Lebesgue spaces of Borel measurable functions with values
in Fréchet spaces as follows.

Definition 4.1.12. Let E be a Fréchet space. For p ∈ [1,∞[, the space LpB([a, b], E)
is the vector space of Borel measurable functions γ : [a, b] → E such that γ([a, b]) is
separable and q ◦γ ∈ Lp([a, b]) for each continuous seminorm q on E. The locally convex
topology on LpB([a, b], E) is defined by the (countable) family of seminorms

‖γ‖Lp,q := ‖q ◦ γ‖Lp =

(∫ b

a
q(γ(t))p dt

) 1
p

.

Further, the vector space L∞B ([a, b], E) consists of Borel measurable maps γ : [a, b]→ E
such that γ([a, b]) is separable and bounded. The locally convex topology on the space
L∞B ([a, b], E) is defined by the family of seminorms

‖γ‖L∞,q := ‖q ◦ γ‖L∞ = ess supt∈[a,b] q(γ(t)).

For Np := {γ ∈ LpB([a, b], E) : γ(t) = 0 a.e.}, the Hausdorff locally convex spaces

LpB([a, b], E) := LpB([a, b], E)/Np

consist of equivalence classes

[γ] := {η ∈ LpB([a, b], E) : η(t) = γ(t) a.e.},

and are endowed with the topologies defined by seminorms

‖[γ]‖Lp,q := ‖γ‖Lp,q.

Remark 4.1.13. For locally convex spaces E having the property that every separable
closed vector subspace S ⊆ E can be written as a union S =

⋃
n∈N Fn of vector subspaces

F1 ⊆ F2 ⊆ · · · which are Fréchet spaces in the induced topology (such spaces are called
(FEP)-spaces in [17]), the spaces LpB([a, b], E) and LpB([a, b], E) are constructed in [17]
in the same way.

Definition 4.1.14. If E is an arbitrary locally convex space, then the vector space
L∞rc([a, b], E) consists of Borel measurable functions γ : [a, b] → E such that γ([a, b])
is compact and metrizable. The seminorms ‖γ‖L∞,q := ess supt∈[a,b] q(γ(t)) define the
locally convex topology on L∞rc([a, b], E).

For Nrc := {γ ∈ L∞rc([a, b], E) : γ(t) = 0 a.e.} the Hausdorff locally convex space

L∞rc([a, b], E) := L∞rc([a, b], E)/Nrc
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4.1 Measurable functions and Lebesgue spaces

consists of equivalence classes

[γ] := {η ∈ L∞rc([a, b], E) : η(t) = γ(t) a.e.},

with seminorms

‖[γ]‖L∞,q := ‖γ‖L∞,q.

Note that in [17], the author constructs all of the above Lebesgue spaces even in a more
general form, consisting of Borel measurable functions γ : X → E defined on arbitrary
measure spaces (X,Σ, µ).

Using the close relation between the two concepts of measurability, we prove that the
spaces LpB([a, b], E) coincide with our Lebesgue spaces.

Proposition 4.1.15. If E is a Fréchet space, then LpB([a, b], E) ∼= Lp([a, b], E) as topo-
logical vector spaces, for each p ∈ [1,∞].

Proof. Clearly, using Lemma 4.1.8 we see that LpB([a, b], E) ⊆ Lp([a, b], E) because for
γ ∈ LpB([a, b], E) the image γ([a, b]) is separable and metrizable, hence has a countable
base.

On the other hand, for every γ ∈ Lp([a, b], E) we can construct some Borel measurable
γ̄ with [γ] = [γ̄] such that the image γ̄([a, b]) = {x0} ∪

⋃
n∈N γ(Kn) is separable (and

bounded if p =∞), using Lemma 4.1.8 again. Therefore, LpB([a, b], E) ∼= Lp([a, b], E) as
topological vector spaces (as the equality of the topologies is obvious).

Remark 4.1.16. If E is an (FEP)-space, then also LpB([a, b], E) ∼= Lp([a, b], E) as topo-
logical vector spaces. To see this, we only need to show that every γ ∈ LpB([a, b], E) is
measurable, the rest of the proof is identical to the above.

Since im(γ) is separable, the vector subspace span (im(γ)) is separable and closed,
hence there is an ascending sequence F1 ⊆ F2 ⊆ · · · of vector subspaces such that

span (im(γ)) =
⋃
n∈N

Fn

and each Fn is a separable Fréchet space (see [17, Lemma 1.39]). Consider the sets
B1 := γ−1(F1), Bn := γ−1(Fn \ Fn−1) for n ≥ 2. Then [a, b] is a disjoint union of
the Borel sets (Bn)n∈N, and γ|Bn : Bn → Fn is Borel measurable, hence measurable by
Lemma 4.1.8. Therefore, γ : [a, b]→ E is measurable.

Remark 4.1.17. For an arbitrary locally convex space E we have L∞rc([a, b], E) ⊆
L∞([a, b], E). Again, it suffices to prove that each γ ∈ L∞rc([a, b], E) is measurable. This
is true (by Lemma 4.1.8), since the closure of the image of γ is compact and metrizable,
hence has a countable base.

We discuss some properties of Lebesgue spaces and functions between them.
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4 Measurable regularity of Lie groups

Remark 4.1.18. For 1 ≤ p ≤ r ≤ ∞ we have

C([a, b], E) ⊆ L∞([a, b], E) ⊆ Lr([a, b], E) ⊆ Lp([a, b], E) ⊆ L1([a, b], E)

with continuous inclusion maps, as for a continuous seminorm q on E we have

‖γ‖Lp,q ≤ (b− a)
1
p
− 1

r ‖γ‖Lr,q,

resp.

‖γ‖Lr,q ≤ (b− a)
1
p ‖γ‖L∞,q.

(Here, C([a, b], E) is endowed with the topology of uniform convergence, with continuous
seminorms ‖γ‖∞,q = ‖γ‖L∞,q.)

Lemma 4.1.19. Let E, F be locally convex spaces and f : E → F be continuous and
linear. If γ ∈ Lp([a, b], E) for p ∈ [1,∞], then f ◦ γ ∈ Lp([a, b], F ) and the map

Lp([a, b], f) : Lp([a, b], E)→ Lp([a, b], F ), γ 7→ f ◦ γ

is continuous and linear.

Proof. From Lemma 4.1.6, it follows that f ◦ γ is measurable. Further, for every contin-
uous seminorm q on F , the composition q ◦ f is a continuous seminorm on E, whence
q ◦ (f ◦ γ) ∈ Lp([a, b]). Therefore f ◦ γ ∈ Lp([a, b], F ).

Since

‖f ◦ γ‖Lp,q = ‖γ‖Lp,q◦f ,

the linear function Lp([a, b], f) is continuous.

Remark 4.1.20. From Lemma 4.1.19 we easily conclude that for locally convex spaces
E and F we have

Lp([a, b], E × F ) ∼= Lp([a, b], E)× Lp([a, b], F )

as locally convex spaces. In fact, the function

Lp([a, b], E × F )→ Lp([a, b], E)× Lp([a, b], F ), γ 7→ (pr1 ◦γ,pr2 ◦γ)

is continuous linear (where pr1, pr2 are the projections on the first, resp., second com-
ponent of E × F ) and is a linear bijection with the continuous inverse

Lp([a, b], E)× Lp([a, b], F )→ Lp([a, b], E × F ), (γ1, γ2) 7→ λ1 ◦ γ1 + λ2 ◦ γ2,

where λ1 : E → E × F, x 7→ (x, 0) and λ2 : F → E × F, y 7→ (0, y) are continuous and
linear.

Note that in Lemma 4.1.19 and Remark 4.1.20, one can replace Lp with Lp.
The following property of Lp-spaces is called locality axiom in [17].
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Lemma 4.1.21. For any a = t0 < t1 < . . . < tn = b, the function

ΓE : Lp([a, b], E)→
n∏
j=1

Lp([tj−1, tj ], E), [γ] 7→
(

[γ|[tj−1,tj ]]
)
j=1...,n

is an isomorphism of topological vector spaces.

Proof. If [γ] ∈ Lp([a, b], E), then obviously [γ|[tj−1,tj ]] ∈ Lp([tj−1, tj ], E) for every j ∈
{1, . . . , n}, and the continuity of the linear injective function ΓE follows from the fact
that ‖γ|[tj−1,tj ]‖Lp,q ≤ ‖γ‖Lp,q for every continuous seminorm q on E.

On the other hand, given ([γ1], . . . , [γn]) ∈
∏n
j=1 L

p([tj−1, tj ], E), the function

γ(t) := γj(t), if t ∈ [tj−1, tj [, γ(t) := γn(t), if t ∈ [tn−1, tn]

is measurable and q ◦ γ ∈ Lp([a, b]) for every continuous seminorm q on E. Further, if
p <∞, then we have

‖γ‖Lp,q ≤
n∑
j=1

‖γj‖Lp,q,

otherwise, we have
‖γ‖L∞,q ≤ max

j=1,...,n
‖γj‖L∞,q.

Therefore, the function ΓE is surjective and the inverse Γ−1
E is continuous, hence the

proof is finished.

Remark 4.1.22. From the above lemma, it readily follows that a function γ : [a, b]→ E
is in Lp([a, b], E) if and only if γ|[tj−1,tj ] ∈ Lp([tj−1, tj ], E) for some partition a = t0 <
t1 < . . . < tn = b.

As in [17, Lemma 2.1], we obtain the following result.

Lemma 4.1.23. Let X be a topological space, U ⊆ X be an open subset and E, F
be locally convex spaces. Let f : U × E → F be a continuous function which is linear
in the second argument. If η ∈ C([a, b], U) and γ ∈ Lp([a, b], E) for p ∈ [1,∞], then
f ◦ (η, γ) ∈ Lp([a, b], F ).

Proof. By Lemma 4.1.6, the composition f ◦ (η, γ) is a measurable function.
Now, consider the continuous function

hη : [a, b]× E → F, hη(t, v) := f(η(t), v).

Let q be a continuous seminorm on F . Then hη([a, b] × {0}) = {0} ⊆ Bq
1(0), thus

[a, b] × {0} ⊆ V , where V := h−1
η (Bq

1(0)) is an open subset of [a, b] × E. Using the
Wallace Lemma, we find an open subset W ⊆ E such that [a, b]×{0} ⊆ [a, b]×W ⊆ V .
Then there is a continuous seminorm π on E such that

[a, b]× {0} ⊆ [a, b]×Bπ
1 (0) ⊆ [a, b]×W ⊆ V.
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4 Measurable regularity of Lie groups

We show that for each (t, v) ∈ [a, b]×E we have q(hη(t, v)) ≤ π(v). In fact, if π(v) > 0,
then (using the linearity of f in v) we have (1/π(v))q(hη(t, v)) = q(hη(t, (1/π(v))v)) ≤ 1. If

π(v) = 0, then for each r > 0 we have rv ∈ Bπ
1 (0), whence rq(hη(t, v)) = q(hη(t, rv)) ≤ 1,

that is q(hη(t, v)) ≤ 1/r, consequently q(hη(t, v)) = 0 = π(v).
Now, if p <∞, then∫ b

a
q(f(η(t), γ(t)))p dt =

∫ b

a
q(hη(t, γ(t)))p dt ≤

∫ b

a
π(γ(t))p dt <∞,

thus q ◦ (f ◦ (η, γ)) ∈ Lp([a, b]).
If p =∞, then q(f(η(t), γ(t))) ≤ π(γ(t)), whence

ess supt∈[a,b](q(f(η(t), γ(t)))) ≤ ess supt∈[a,b](π(γ(t))) <∞,

thus q ◦ (f ◦ (η, γ)) ∈ L∞([a, b]).

Lemma 4.1.24. Let E1, E2, E3 and F be locally convex spaces, U ⊆ E1, V ⊆ E2 be
open subsets and the function f : U × V × E3 → F be a C1-function and linear in the
third argument. Then the function

f̃ : U × C([a, b], V )× Lp([a, b], E3)→ Lp([a, b], F ),

(u, η, [γ]) 7→ [f(u, •) ◦ (η, γ)]

is continuous.(Here C([a, b], V ) is endowed with the topology of uniform convergence.)

Proof. Fix some (ū, η̄, [γ̄]) ∈ U × C([a, b], V ) × Lp([a, b], E3) and let q be a continuous
seminorm on F . The subset K := {ū}× η̄([a, b]) ⊆ U×V is compact, hence from Lemma
[17, Lemma 1.61], it follows that there are seminorms π on E1 × E2 and π3 on E3 such
that K +Bπ

1 (0) ⊆ U × V and

q(f(u, v, w)− f(u′, v′, w′)) ≤ π3(w − w′) + π(u− u′, v − v′)π3(w′)

for all (u, v), (u′, v′) ∈ K+Bπ
1 (0), w,w′ ∈ E3. We may assume π(x, y) = max{π1(x), π2(y)}

for some continuous seminorms π1 on E1, π2 on E2. Then, setting

U0 := Bπ1
1 (ū), V0 := η̄([a, b]) +Bπ2

1 (0),

we define an open neighborhood

Ω := U0 × C([a, b], V0)× Lp([a, b], E3)

of (ū, η̄, [γ̄]) and see that if (u, η, [γ])→ (ū, η̄, [γ̄]) in Ω, then f̃(u, η, [γ])→ f̃(ū, η̄, [γ̄]) in
Lp([a, b], E3), because

‖f̃(u, η, [γ])− f̃(ū, η̄, [γ̄])‖Lp,q

≤ ‖[γ − γ̄]‖Lp,π3 + max{π1(u− ū), ‖η − η̄‖L∞,π2}‖[γ̄]‖Lp,π3 → 0.

In other words, f̃ is continuous in (ū, η̄, [γ̄]).
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Proposition 4.1.25. Let E1, E2, F be locally convex spaces, let V ⊆ E1 be open and the
function f : V ×E2 → F be Ck+1 for k ∈ N∪{0,∞} and linear in the second argument.
Then for p ∈ [1,∞] the function

Θf : C([a, b], V )× Lp([a, b], E2)→ Lp([a, b], F ), (η, [γ]) 7→ [f ◦ (η, γ)]

is Ck.

Proof. For k = 0, the assertion holds by Lemma 4.1.24. Further, we may assume k <∞
and proceed by induction.

Base case: k = 1. The map Θf is continuous by the previous step; we show that
for all (η, [γ]) ∈ C([a, b], V )×Lp([a, b], E2) and (η̄, [γ̄]) ∈ C([a, b], E1)×Lp([a, b], E2) the
directional derivative

d(Θf )(η, [γ], η̄, [γ̄]) := lim
h→0

Θf (η + hη̄, [γ + hγ̄])−Θf (η, [γ])

h

exists in Lp([a, b], F ) and equals [df ◦ (η, γ, η̄, γ̄)].

Given η, [γ], η̄, [γ̄] as above, we note that η([a, b]) is a compact subset of the open subset
V ⊆ E1, thus there exists an open 0-neighborhood U ⊆ E1 such that η([a, b]) + U ⊆ V .
Further, there is some balanced 0-neighborhood W ⊆ U such that W + W ⊆ U . As
η̄([a, b]) is bounded in E1 (being compact), for some ε > 0 we have η̄([a, b]) ⊆ 1/εW . In
this manner we obtain an open subset

Ω :=]− ε, ε[×(η([a, b]) +W )× 1

ε
W × E2 × E2 ⊆ R× V × E1 × E2 × E2

such that ]−ε, ε[×η([a, b])×η̄([a, b])×γ([a, b])×γ̄([a, b]) ⊆ Ω and for all (t, w, w̄, x, x̄) ∈ Ω
we have (w + tw̄, x + tx̄) ∈ V × E2 (that is, Ω corresponds to a subset of (V × E2)[1]

constructed as in Lemma 2.3.4).

Now f [1] : (V × E2)[1] → F is Ck and thus C1 (see [5]). Hence the function

Ω→ F, (t, w, w̄, x, x̄) 7→ f [1](w, x, w̄, x̄, t)

is C1 and linear in (x, x̄), thus from Lemma 4.1.24, it follows (identifying the vector
space Lp([a, b], E2 × E2) with Lp([a, b], E2)× Lp([a, b], E2), see Remark 4.1.20) that

(t, ϕ, ϕ̄, [ψ], [ψ̄]) 7→ [f [1](•, t) ◦ (ϕ,ψ, ϕ̄, ψ̄)] ∈ Lp([a, b], F )

is continuous on

]− ε, ε[×C([a, b], η([a, b]) +W )× C([a, b], 1/εW )× Lp([a, b], E2)× Lp([a, b], E2).

Hence

]− ε, ε[→ Lp([a, b], F ), t 7→ [f [1](•, t) ◦ (η, γ, η̄, γ̄)]
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4 Measurable regularity of Lie groups

is continuous. Therefore, we have

d(Θf )(η, [γ], η̄, [γ̄]) = lim
h→0

1

h
(Θf (η + tη̄, [γ + tγ̄])−Θf (η, [γ]))

= lim
h→0

1

t
([f ◦ (η + tη̄, γ + tγ̄)]− [f ◦ (η, γ)])

= lim
h→0

[f [1](•, h) ◦ (η, γ, η̄, γ̄)]

= [f [1](•, 0) ◦ (η, γ, η̄, γ̄)] = [df ◦ (η, γ, η̄, γ̄)]

in Lp([a, b], F ).

It remains to show that

d(Θf ) : C([a, b], V )× Lp([a, b], E2)× C([a, b], E1)× Lp([a, b], E2)→ Lp([a, b], F )

is continuous. But as the function

V × E1 × E2 × E2 → F, (w, w̄, x, x̄) 7→ df(w, x, w̄, x̄) (4.1)

is C1 and linear in (x, x̄), by base case

C([a, b], V )× C([a, b], E1)× Lp([a, b], E2)× Lp([a, b], E2)→ Lp([a, b], F ),

(ϕ, ϕ̄, [ψ], [ψ̄]) 7→ [df ◦ (ϕ,ψ, ϕ̄, ψ̄)]

is continuous (we identify the Lp-spaces again, as above), hence d(Θf ) is continuous.
Therefore, Θf is C1.

Induction step: Now, assume that f is Ck+2. Then Θf is C1 by base case and df is
Ck+1. Then the map in (4.1) is Ck+1 and linear in (x, x̄), hence by induction hypothesis,
the map (ϕ, ϕ̄, [ψ], [ψ̄]) 7→ [df ◦ (ϕ,ψ, ϕ̄, ψ̄)] = d(Θf )(ϕ, [ψ], ϕ̄, [ψ̄]) is Ck. Hence Θf is
Ck+1.

Remark 4.1.26. The properties proved in Lemma 4.1.23 and Proposition 4.1.25 are
called pushforward axioms in [17] (see [17, Lemma 2.4] and [17, Propositions 2.2, 2.3],
respectively).

4.2 Spaces ACLp([a, b], E) and ACLp([a, b], G)

Similarly to [17], we construct locally convex spaces ACLp([a, b], E) and Lie groups
ACLp([a, b], G).

A function γ : [a, b]→ R is called absolutely continuous if for every ε > 0 there exists
some δ > 0 such that

∑n
k=1 |γ(βk) − γ(αk)| < ε whenever a ≤ α1 < β1 ≤ α2 < β2 ≤

· · · ≤ αn < βn ≤ b with
∑n

k=1(βk − αk) < δ. Every absolutely continuous function γ is
continuous and the derivative γ′ exists a.e.

Further, we recall the Fundamental Theorem of Calculus for Lebesgue Integrals from
[10]:
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4.2 Spaces ACLp([a, b], E) and ACLp([a, b], G)

Lemma 4.2.1. If γ ∈ L1([a, b]), then

η(t) :=

∫ t

a
γ(s) ds

is an absolutely continuous function on [a, b] and η′(t) = γ(t) a.e.

On the other hand, assume that η : [a, b] → R is absolutely continuous and define
γ(t) := η′(t) whenever the derivative exists, otherwise γ(t) := 0. Then γ ∈ L1([a, b]) and

η(t) = η(a) +

∫ t

a
γ(s) ds

for every t ∈ [a, b].

For vector-valued functions, the following concept of integrability is well known.

Definition 4.2.2. Let E be a locally convex space and let γ : [a, b] → E be such that
α ◦ γ ∈ L1([a, b]) for every continuous linear form α ∈ E′. If there exists some w ∈ E
such that

α(w) =

∫ b

a
α(γ(t)) dt

for every α, then w is called the weak integral of γ from a to b, and we write
∫ b
a γ(t) dt :=

w.

As the continuous linear forms separate the points on E, the weak integral of a function
γ is unique if it exists.

Further, in this case we have

q

(∫ b

a
γ(t) dt

)
≤
∫ b

a
q(γ(t)) dt

for every continuous seminorm q on E.

Remark 4.2.3. In [41], the weak integral
∫
X γ dµ is defined for any suitable function

γ : X → E on a measure space X. It is known, that if the locally convex space E
has the metric convex compactness property (that is, the closed convex hull of every
metrizable compact subset of E is compact), then every continuous function γ : X → E
on a compact space X has a weak integral

∫
X γ dµ.

Remark 4.2.4. Since |α| is a continuous seminorm on E, for every α ∈ E′, every
γ ∈ L1([a, b], E) satisfies the condition α ◦ γ ∈ L1([a, b]).

We use [7, §5] and get a result for functions in L1([a, b], E), which is similar to the
first part of the Fundamental Theorem of Calculus.
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4 Measurable regularity of Lie groups

Proposition 4.2.5. Let E be a locally convex space, let γ ∈ L1([a, b], E). If the function

η : [a, b]→ E, η(t) :=

∫ t

a
γ(s) ds (4.2)

is defined, then η is continuous.

Moreover, if E is metrizable, then for almost every t ∈ [a, b] the derivative η′(t) exists
and equals γ(t).

Proof. To prove the continuity of η in every t ∈ [a, b], let q be a continuous seminorm on
E and let ε > 0. Then there exists some δ > 0 such that whenever |t− r| < δ, we have∣∣∣∫ tr q(γ(s)) ds

∣∣∣ < ε (follows from the Fundamental Theorem of Calculus, Lemma 4.2.1).

Therefore

q(η(t)− η(r)) = q

(∫ t

a
γ(s) ds−

∫ r

a
γ(s) ds

)
= q

(∫ t

r
γ(s) ds

)
≤
∣∣∣∣∫ t

r
q(γ(s)) ds

∣∣∣∣ < ε,

whence η is continuous in t.

Now, assume that E is metrizable and recall that by Lemma 4.1.5 there exists a
sequence of compact subsets (Kn)n∈N of [a, b] such that λ([a, b]\

⋃
n∈NKn) = 0 and γ|Kn

is continuous. We may assume that γ(t) = 0 for each t /∈
⋃
n∈NKn. Our aim is to show

that for almost every t ∈ [a, b] the difference quotient

1

r
(η(t+ r)− η(t)) =

1

r

(∫ t+r

a
γ(s) ds−

∫ t

a
γ(s) ds

)
=

1

r

∫ t+r

t
γ(s) ds

tends to γ(t) as r → 0. That is, for every ε > 0 and continuous seminorm qm on E we
have

qm

(
1

r

∫ t+r

t
γ(s) ds− γ(t)

)
= qm

(
1

r

∫ t+r

t
γ(s)− γ(t) ds

)
< ε (4.3)

for r 6= 0 small enough.

We fix some ε > 0 and some continuous seminorm qm. The set γ([a, b]) ⊆ {0} ∪⋃
n∈N γ(Kn) ⊆ E is separable, say γ([a, b]) = {ak : k ∈ N}. Thus for every t ∈ [a, b] we

find some am(t) such that

qm(γ(t)− am(t)) <
1

3
ε,

hence for every r 6= 0 small enough we have∣∣∣∣1r
∫ t+r

t
qm(γ(t)− am(t)) ds

∣∣∣∣ < 1

3
ε. (4.4)
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Furthermore, each of the functions

hk,m : [a, b]→ R, hk,m(t) := qm(γ(t)− ak)

is in L1([a, b]), hence by the Fundamental Theorem of Calculus (see Lemma 4.2.1) there
exist some sets Nk,m ⊆ [a, b] such that λ(Nk,m) = 0 and for every t /∈ Nk,m we have∣∣∣∣1r

∫ t+r

t
qm(γ(s)− ak) ds− qm(γ(t)− ak)

∣∣∣∣ < 1

3
ε (4.5)

for r 6= 0 small enough.
Consequently, for t /∈

⋃
k,m∈NNk,m we have∣∣∣∣1r

∫ t+r

t
qm(γ(s)− γ(t)) ds

∣∣∣∣ ≤ ∣∣∣∣1r
∫ t+r

t
qm(γ(s)− γ(t))− qm(γ(s)− am(t)) ds

∣∣∣∣
+

∣∣∣∣1r
∫ t+r

t
qm(γ(s)− am(t))− qm(γ(t)− am(t)) ds

∣∣∣∣
+

∣∣∣∣1r
∫ t+r

t
qm(γ(t)− am(t)) ds

∣∣∣∣
<

∣∣∣∣1r
∫ t+r

t
qm(γ(s)− γ(t))− qm(γ(s)− am(t)) ds

∣∣∣∣
+

1

3
ε+

1

3
ε,

using the estimates in (4.5) and (4.4). Finally,∣∣∣∣1r
∫ t+r

t
qm(γ(s)− γ(t))− qm(γ(s)− am(t)) ds

∣∣∣∣
≤ 1

|r|

∣∣∣∣∫ t+r

t
|qm(γ(s)− γ(t))− qm(γ(s)− am(t))| ds

∣∣∣∣
≤ 1

|r|

∣∣∣∣∫ t+r

t
qm(γ(s)− γ(t)− γ(s) + am(t)) ds

∣∣∣∣
=

1

|r|

∣∣∣∣∫ t+r

t
qm(γ(t)− am(t)) ds

∣∣∣∣ < 1

3
ε,

using (4.4) again.
Altogether, we have

qm

(
1

r

∫ t+r

t
γ(s)− γ(t) ds

)
=

1

|r|
qm

(∫ t+r

t
γ(s)− γ(t) ds

)
≤ 1

|r|

∣∣∣∣∫ t+r

t
qm(γ(s)− γ(t)) ds

∣∣∣∣
≤
∣∣∣∣1r
∫ t+r

t
qm(γ(s)− γ(t)) ds

∣∣∣∣ < ε

by the above. Thus the desired estimate (4.3) holds for each t /∈
⋃
k,m∈NNk,m and

λ(
⋃
k,m∈NNk,m) = 0, whence the proof is finished.
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Even if the range E is not metrizable, the next lemma can be used to show that η as
in (4.2) uniquely determines the corresponding [γ] ∈ L1([a, b], E).

Lemma 4.2.6. Let E be a locally convex space and let γ ∈ L1([a, b], E) such that∫ t
a γ(s) ds = 0 for all t ∈ [a, b]. Then γ(s) = 0 a.e.

Proof. Let α be a continuous linear functional on E. Then we have∫ t

a
(α ◦ γ)(s) ds = α

(∫ t

a
γ(s) ds

)
= 0

for every t ∈ [a, b]. From the Fundamental Theorem of Calculus (see Lemma 4.2.1), it
follows that (α ◦ γ)(t) = 0 a.e. As α ∈ E′ was arbitrary, from Lemma 4.1.9, it follows
that γ(t) = 0 a.e.

Now, we discuss the existence of weak integrals of Lp-functions.

Proposition 4.2.7. Let E be a sequentially complete locally convex space. Then each
γ ∈ L1([a, b], E) has a weak integral

∫ b
a γ(t) dt ∈ E.

Proof. As γ is measurable, pick a disjoint sequence (Kn)n∈N of compact sets Kn ⊆ [a, b]
such that γ|Kn is continuous and λ([a, b] \

⋃
n∈NKn) = 0 (see Lemma 4.1.5). Then for

each n ∈ N the weak integral
∫
Kn

γ(t) dt exists in E (by [41, 3.27 Theorem]). We define

a sequence wm :=
∑m

n=1

∫
Kn

γ(t) dt and show that (wm)m∈N is convergent in E and that
w := limm→∞wm is the weak integral of γ from a to b.

Fix ε > 0 and a seminorm q on E. We have

∞∑
n=1

∫
Kn

q(γ(t)) dt =

∫ b

a
q(γ(t)) dt <∞,

hence
(∑m

n=1

∫
Kn

q(γ(t)) dt
)
m∈N

is a Cauchy sequence in R, that means that there exists

some N ∈ N such that
m∑

n=k+1

∫
Kn

q(γ(t)) dt < ε,

for all m > k ≥ N . Then

q(wm − wk) = q

(
m∑

n=k+1

∫
Kn

γ(t) dt

)
≤

m∑
n=k+1

∫
Kn

q(γ(t)) dt < ε,

therefore (wm)m∈N is a Cauchy sequence in E. As E was assumed sequentially complete,
the Cauchy sequence (wm)m∈N converges to some w ∈ E.

Finally, for any continuous linear form α ∈ E′ we have

α(w) = lim
m→∞

α(wm) = lim
m→∞

m∑
n=1

∫
Kn

α(γ(t)) dt =

∫ b

a
α(γ(t)) dt,

as required.
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Definition 4.2.8. Let E be a sequentially complete locally convex space. For p ∈ [1,∞]
we denote by ACLp([a, b], E) the vector space of continuous functions η : [a, b]→ E such
that for some γ ∈ Lp([a, b], E) we have

η(t) = η(a) +

∫ t

a
γ(s) ds for all t ∈ [a, b].

As η uniquely determines [γ] (see Lemma 4.2.6), we write η′ := [γ].
The function

Φ: ACLp([a, b], E)→ E × Lp([a, b], E), η 7→ (η(a), η′) (4.6)

is an isomorphism of vector spaces and we endow ACLp([a, b], E) with the Hausdorff
locally convex topology making Φ a homeomorphism.

We consider some properties of AC-spaces and functions between them.

Lemma 4.2.9. Let E is a sequentially complete locally convex space and endow the
vector space C([a, b], E) with the topology of uniform convergence (which is defined by
the family of seminorms ‖η‖∞,q := supt∈[a,b] q(η(t)) with continuous seminorms q on E).
Then for 1 ≤ p ≤ r ≤ ∞, we have

ACL∞([a, b], E) ⊆ ACLr([a, b], E) ⊆ ACLp([a, b], E)

⊆ ACL1([a, b], E) ⊆ C([a, b], E)

with continuous inclusion maps.

Proof. We only show the continuity of the inclusion map ACL1([a, b], E)→ C([a, b], E),
as the remainder follows from Remark 4.1.18. Let η ∈ ACL1([a, b], E) and denote η′ = [γ].
For a continuous seminorm q on E and t ∈ [a, b] we have

q(η(t)) = q

(
η(a) +

∫ t

a
γ(s) ds

)
≤ q(η(a)) +

∫ t

a
q(γ(s)) ds ≤ q(η(a)) + ‖γ‖L1,q

Thus
‖η‖∞,q ≤ q(η(a)) + ‖γ‖L1,q,

whence the (linear) inclusion map is continuous.

Remark 4.2.10. From the previous lemma, it follows that for any open set U ⊆ V , the
subset ACLp([a, b], U) = incl−1(C([a, b], U)) is open in ACLp([a, b], E).

Remark 4.2.11. It is well known that the evaluation map C([a, b], E) → E, η 7→
η(α) is continuous linear for α ∈ [a, b]. By Lemma 4.2.9, so is the inclusion map
incl : ACLp([a, b], E)→ C([a, b], E), hence the evaluation map

evα : ACLp([a, b], E)→ E, η 7→ η(α)

is continuous, linear.
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Remark 4.2.12. For any t0 ∈ [a, b], consider the vector space ACt0Lp([a, b], E) consisting
of continuous functions η : [a, b]→ E such that for some γ ∈ Lp([a, b], E) we have

η(t) = η(t0) +

∫ t

t0

γ(s) ds for all t ∈ [a, b],

endowed with the locally convex topology making

Φt0 : ACt0Lp([a, b], E)→ E × Lp([a, b], E), η 7→ (η(t0), [γ])

an isomorphism of topological vector spaces. Using Remark 4.2.11, we can easily see
that ACt0Lp([a, b], E) = ACLp([a, b], E) as topological vector spaces.

Lemma 4.2.13. Let E be a sequentially complete locally convex space, p ∈ [1,∞] and
a = t0 < t1 < . . . < tn = b. Then the function

Ψ: ACLp([a, b], E)→
n∏
j=1

ACLp([tj−1, tj ], E), η 7→ (η|[tj−1,tj ])j=1,...,n (4.7)

is a linear topological embedding with closed image.

Proof. Clearly, for η ∈ ACLp([a, b], E) with η′ = [γ] and every j ∈ {1, . . . , n} we have

η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], E) with (η|[tj−1,tj ])
′ =

[
γ|[tj−1,tj ]

]
, by Lemma 4.1.21, that is,

the function Ψ is defined. Also the linearity and injectivity are clear.

We show that each of the components

ACLp([a, b], E)→ ACLp([tj−1, tj ], E), η 7→ η|[tj−1,tj ]

is continuous, which will be the case if each

ACLp([a, b], E)→ E × Lp([tj−1, tj ], E), η 7→
(
η(tj−1),

[
γ|[tj−1,tj ]

])
is continuous (using the isomorphism as in Definition 4.2.8). But the first component
is a continuous evaluation map on ACLp([a, b], E), see Remark 4.2.11, and the second
component is a composition of the continuous maps ACLp([a, b], E)→ Lp([a, b], E), η 7→
[γ] and Lp([a, b], E)→ Lp([tj−1, tj ], E), [γ] 7→

[
γ|[tj−1,tj ]

]
, see Definition 4.2.8 and Lemma

4.1.21. Therefore, Ψ is continuous.

Note that (η1, . . . , ηn) ∈ im(Ψ) ⊆
∏n
j=1ACLp([tj−1, tj ], E) if ηj(tj) = ηj+1(tj) for all

j ∈ {1, . . . , n− 1}, thus the map

Γ(η1, . . . , ηn) : [a, b]→ E, t 7→ ηj(t) for t ∈ [tj−1, tj ]

is continuous and it is easy to show that Γ(η1, . . . , ηn) ∈ ACLp([a, b], E) and that

Γ: im(Ψ)→ ACLp([a, b], E)
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is the inverse of Ψ|im(Ψ). The continuity of Γ follows from the continuity of

im(Ψ)→ E × Lp([a, b], E),

(η1, . . . , ηn) 7→ (η1(a),Γ(η1, . . . , ηn)′) = (η1(a),Γ−1
E (η′1, . . . , η

′
n)),

where ΓE is the isomorphism from Lemma 4.1.21. Hence Ψ is a topological embedding.

Finally, let (η1,α, . . . , ηn,α)α∈A be a net in im(Ψ) which converges to (η1, . . . , ηn) ∈∏n
j=1ACLp([tj−1, tj ], E). Then for every j ∈ {1, . . . , n− 1} we have

ηj(tj) = lim
α∈A

ηj,α(tj) = lim
α∈A

ηj+1,α(tj) = ηj+1(tj),

therefore (η1, . . . , ηn) ∈ im(Ψ).

Remark 4.2.14. By the above lemma, a continuous function η : [a, b] → E is in
ACLp([a, b], E) if and only if η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], E) for any a = t0 < t1 <
. . . < tn = b.

Lemma 4.2.15. Let E be a locally convex space, U ⊆ E be an open subset and f : U → R
be continuous. Then for every compact subset K ⊆ U and every ε > 0 there exists a
continuous seminorm q on E such that K +Bq

1(0) ⊆ U and

|f(x)− f(y)| < ε for x ∈ K, y ∈ Bq
1(x).

We show that C1-functions act on ACLp . The following lemma is a variant of [17,
Lemma 3.18 (a)].

Lemma 4.2.16. Let E, F be sequentially complete locally convex spaces, V ⊆ E be an
open subset and p ∈ [1,∞]. If f : V → F is a C1-function then

f ◦ η ∈ ACLp([a, b], F )

for every η ∈ ACLp([a, b], V ) and

(f ◦ η)′ = [t 7→ df(η(t), γ(t))] (4.8)

if η′ = [γ].

Proof. The composition f ◦ η is continuous and the differential df : V × E → F is
continuous and linear in the second argument, thus df ◦ (η, γ) ∈ Lp([a, b], F ) for [γ] = η′,
by Lemma 4.1.23. In other words, the function

ζ : [a, b]→ F, ζ(t) := f(η(a)) +

∫ t

a
df(η(s), γ(s)) ds (4.9)

is in ACLp([a, b], F ).
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We claim that for each continuous linear form α ∈ E′, the composition α ◦ f ◦ η is
in ACLp([a, b],R) (hence almost everywhere differentiable) and that (α ◦ f ◦ η)′(t) =
α(df(η(t), γ(t))) for almost every t ∈ [a, b]. From this, it will follow that

α(f(η(t))) = (α ◦ f ◦ η)(a) +

∫ t

a
α(df(η(s), γ(s))) ds

= α

(
f(η(a)) +

∫ t

a
df(η(s), γ(s)) ds

)
= α(ζ(t)),

for each α ∈ E′ and t ∈ [a, b], therefore f ◦ η = ζ ∈ ACLp([a, b], F ), as E′ separates
points on E. Notably, (4.8) holds.

To prove the claim, we may assume that F = R and we show that the composition
f ◦ η : [a, b]→ R is absolutely continuous.

As η([a, b]) is a compact subset of the open subset V , there is some open neighborhood
U ⊆ V of η([a, b]) and some continuous seminorm q on E such that

|f(u)− f(ū)| ≤ q(u− ū) (4.10)

for all u, ū ∈ U , by [17, Lemma 1.60]. Given ε > 0 there exists some δ > 0 such that∑n
j=1 |σ(bj) − σ(aj)| < ε whenever a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ b with∑n
j=1 |bj − aj | < δ, because the function

σ : [a, b]→ R, σ(t) :=

∫ t

a
q(γ(s)) ds

is absolutely continuous (see the Fundamental Theorem of Calculus, Lemma 4.2.1).
Therefore, we have

n∑
j=1

|f(η(bj))− f(η(aj))| ≤
n∑
j=1

q(η(bj)− η(aj))

=

n∑
j=1

q

(∫ bj

aj

γ(s) ds

)
≤

n∑
j=1

∫ bj

aj

q(γ(s)) ds < ε,

where we used (4.10) in the first step. Hence f ◦ η is absolutely continuous, thus, by
Lemma 4.2.1 there is some ϕ ∈ L1([a, b]) such that

f(η(t)) = f(η(a)) +

∫ t

a
ϕ(s) ds,

in other words

f ◦ η ∈ ACL1([a, b],R) and (f ◦ η)′(t) = ϕ(t) for a.e. t ∈ [a, b].

Now, we want to show that ϕ(t) = df(η(t), γ(t)) for almost every t ∈ [a, b], that is,
ϕ ∈ Lp([a, b]). To this end, we may assume that there exists a sequence (Kn)n∈N of
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compact subsets of [a, b] (as in Lemma 4.1.5) such that for every n ∈ N the restriction
γ|Kn is continuous , λ([a, b] \

⋃
n∈NKn) = 0 and γ(t) = 0 for every t /∈

⋃
n∈NKn.

Each of the sets

Ln := η([a, b]) ∪
n⋃

m=1

γ(Km)

is compact and metrizable, hence by [17, Lemma 1.11], there exists a locally convex
topology TXn on each vector subspace

Xn := span(Ln),

which is metrizable, separable and coarser than the induced topology OXn . Then on each
Xn, there is a countable family Λn of continuous (with respect to TXn) linear functionals
separating the points (see [42, Chapter II, Prop. 4]). Consequently, the countable family
Λ :=

⋃
n∈N Λn separates the points on the vector space X :=

⋃
n∈NXn, which enables to

define a metrizable locally convex topology TX coarser than the induced topology OX .
On the other hand, each of the m-fold sums

Lm,n := [−m,m]Ln + · · ·+ [−m,m]Ln

is compact (with respect to TXn and OXn), and Xn =
⋃
m∈N Lm,n, thus

X =
⋃

m,n∈N
Lm,n

is σ-compact.
The space X × X × R has a locally convex metrizable σ-compact topology T , say,

X × X × R =
⋃
n∈NCn. Then OCn = TCn , where OCn , TCn are the topologies on Cn

induced by E × E × R and X × X × R, respectively. Hence V [1] ∩ Cn ∈ TCn and TCn

is compact and metrizable, hence second countable. Therefore, V [1] ∩ Cn is σ-compact
(being locally compact with countable base), that is, V [1] ∩ Cn is a countable union of
compact subsets, hence so is (V ∩ X)[1] = V [1] ∩ (X × X × R) =

⋃
n∈N(V [1] ∩ Cn), so

that we may write (V ∩X)[1] =
⋃
n∈NAn with compact subsets An.

Next, we will construct a metrizable locally convex topology on X such that η ∈
ACLp([a, b], V ∩X) with η′ = [γ] ∈ Lp([a, b], X) and such that f [1]|(V ∩X)[1] remains con-
tinuous. From Lemma 4.2.15, it follows that for every k, n ∈ N there exists a continuous
seminorm qn,k on E × E × R such that for all (x, y, t) ∈ An we have

|f [1](x, y, t)− f [1](v, w, s)| < 1

k
∀(v, w, s) ∈ Bqn,k

1 (x, y, t).

Consequently, there is a continuous seminorm πn,k on E and δ > 0 such that

|f [1](x, y, t)− f [1](v, w, s)| < 1

k

∀(v, w, s) ∈ Bπn,k

1 (x)×Bπn,k

1 (y)×]t− δ, t+ δ[⊆ Bqn,k

1 (x, y, t).
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We endow X with the metrizable locally convex topology T defined by the countable
family {πn,k|X : n, k ∈ N}. This topology is coarser than the induced topology, hence

η : [a, b]→ V ∩X remains continuous and η(t)− η(a) =
∫ t
a γ(s) ds is the weak integral of

γ in X for every t ∈ [a, b]. To see this, let α be a continuous linear functional on (X, T ).
Then α is continuous with respect to the induced topology on X (which is finer than T )
hence there is some continuous linear extension A ∈ E′ of α. Thus

α(η(t)− η(a)) = A(η(t)− η(a)) =

∫ t

a
A(γ(s)) ds =

∫ t

a
α(γ(s)) ds.

Therefore, η ∈ ACLp([a, b], V ∩X) with η′ = [γ] and, by the construction of the topology,
the map f [1] is continuous in every (x, y, t) ∈ (V ∩ X)[1] with respect to the obtained
topology on X ×X ×R. As T is metrizable, the map η : [a, b]→ V ∩X is differentiable
in almost every t ∈ [a, b] with η′(t) = γ(t) (see Proposition 4.2.5), so that in every such
t we have

1

h
(f(η(t+ h)− f(η(t))) =

1

h
(f(η(t) +

η(t+ h)− η(t)

h
)− f(η(t)))

= f [1](η(t),
η(t+ h)− η(t)

h
, h)→ df(η(t), γ(t))

as h→ 0. That means, for almost every t ∈ [a, b] we have

ϕ(t) = (f ◦ η)′(t) = df(η(t), γ(t)),

whence ϕ ∈ Lp([a, b]) and f ◦ η ∈ ACLp([a, b],R).

Proposition 4.2.17. Let E, F be sequentially complete locally convex spaces, let V ⊆ E
be an open subset and p ∈ [1,∞]. If f : V → F is a Ck+2-function (for k ∈ N∪{0,∞}),
then the map

ACLp([a, b], f) : ACLp([a, b], V )→ ACLp([a, b], F ), η 7→ f ◦ η

is Ck.

Proof. The map ACLp([a, b], f) is defined by Lemma 4.2.16, by definition of the topol-
ogy on ACLp([a, b], F ) (see Definition 4.2.8), ACLp([a, b], f) will be Ck if each of the
components of

ACLp([a, b], V )→ F × Lp([a, b], F ), η 7→ (f(η(a)), (f ◦ η)′) (4.11)

is Ck. The first component

ACLp([a, b], V )→ F, η 7→ (f ◦ pr1 ◦Φ)(η) = f(η(a))

is indeed Ck, where Φ is as in Definition 4.2.8 and pr1 is the projection on the first
component. Further, for η′ = [γ] ∈ Lp([a, b], E) we have (f ◦ η)′ = [df ◦ (η, γ)] by (4.8)
and

C([a, b], V )× Lp([a, b], E)→ Lp([a, b], F ), (η, [γ]) 7→ [df ◦ (η, γ)]

is Ck, the derivative df : V ×E → F being Ck+1 and linear in the second argument (see
Proposition 4.1.25). Hence, the second component of (4.11) is Ck, as required.
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Remark 4.2.18. In particular, the above proposition states that smooth functions act
smoothly on ACLp ([17]), that is, for any smooth function f : V → F , the function
ACLp([a, b], f) is smooth.

Remark 4.2.19. Since any continuous linear function f : E → F is smooth, we conclude
from Proposition 4.2.17 that

ACLp([a, b], E × F ) ∼= ACLp([a, b], E)×ACLp([a, b], F )

as locally convex spaces (proceeding as in Remark 4.1.20).

The properties of the spaces ACLp([a, b], E), proved in the preceding, enable us to de-
fine spaces of AC-functions with values in manifolds M modeled on sequentially complete
locally convex spaces.

Definition 4.2.20. Let M be a manifold modeled on a sequentially complete locally
convex space E. For p ∈ [1,∞], denote by ACLp([a, b],M) the set of continuous functions
η : [a, b]→M such that there exists some partition a = t0 < t1 < . . . < tn = b with

ϕj ◦ η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], E)

for some charts ϕj : Uj → Vj such that η([tj−1, tj ]) ⊆ Uj for j = 1, . . . , n.

The following lemma shows, in particular, that given an AC-function with values in
a manifold, the defining property holds for any suitable partition and charts.

Lemma 4.2.21. Let η ∈ ACLp([a, b],M), let [α, β] ⊆ [a, b] and ϕ : U → V be any chart
for M such that η([α, β]) ⊆ U . Then

ϕ ◦ η|[α,β] ∈ ACLp([α, β], E).

Proof. We have α ∈ [tk, tk+1] and β ∈ [tl−1, tl] for some k, l, for the sake of simplicity we
may assume α = tk, β = tl. For j ∈ {k + 1, . . . , l} we have

ϕ ◦ η|[tj−1,tj ] = (ϕ ◦ ϕ−1
j ) ◦ (ϕj ◦ η|[tj−1,tj ]).

Since ϕ ◦ ϕ−1
j is a smooth function and ϕj ◦ η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], E), the above

composition is in ACLp([tj−1, tj ], E) by Lemma 4.2.16. From Remark 4.2.14, it follows
ϕ ◦ η|[α,β] ∈ ACLp([α, β], E).

Remark 4.2.22. IfM is a sequentially complete locally convex space, thenACLp([a, b],M)
coincides with the set defined in Definition 4.2.8, by the previous lemma.

Lemma 4.2.23. Let M , N be manifolds modeled on sequentially complete locally convex
spaces E and F , respectively. If f : M → N is a C1-map, then f ◦ η ∈ ACLp([a, b], N)
for each η ∈ ACLp([a, b],M) and p ∈ [1,∞].
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Proof. Consider a partition a = t0 < t1 < . . . < tn = b and charts ϕj : Uj → Vj for M
such that η([tj−1, tj ]) ⊆ Uj and ϕj◦η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], E) for each j ∈ {1, . . . , n}.
Since f ◦ η|[tj−1,tj ] is continuous, we find a partition tj−1 = s0 < s1 < · · · < sm = tj and
charts ψi : Pi → Qi for N such that f(η([si−1, si])) ⊆ Pi for each i ∈ {1, . . . ,m}. Then

ψi ◦ f ◦ η|[si−1,si] = (ψi ◦ f ◦ ϕ−1
j ) ◦ (ϕj ◦ η|[si−1,si]) ∈ ACLp([si−1, si], F ),

by Remark 4.2.14 and Lemma 4.2.16. Hence f ◦ η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], N) for each
j ∈ {1, . . . , n}, whence f ◦ η ∈ ACLp([a, b], N).

Remark 4.2.24. For manifolds M and N , from the above lemma, it follows that the
sets ACLp([a, b],M ×N) and ACLp([a, b],M)×ACLp([a, b], N) coincide.

Remark 4.2.25. LetG be a group, U ⊆ G be a symmetric subset containing the identity
element of G. Assume that U is endowed with a smooth manifold structure modeled
on a locally convex space E such that the inversion U → U, x → x on U is smooth,
the subset Um := {(x, y) ∈ U × U : xy ∈ U} is open in U × U and the multiplication
Um → U, (x, y) 7→ xy is smooth on Um. Further, assume that for each g ∈ G, there exists
an open identity neighborhood W ⊆ U such that gWg−1 ⊆ U and W → U, x 7→ gxg−1

is smooth. Then G can be endowed with a unique smooth manifold structure modeled
on E such that G becomes a smooth Lie group and U with the given manifold structure
becomes an open smooth submanifold.

Lemma 4.2.26. Let E1, E2 and F be sequentially complete locally convex spaces. Let M
be a smooth manifold modeled on E1 and V ⊆ E2 be an open subset. If f : M × V → F
is a Ck+2-map for some k ∈ N0 ∪ {∞} and ζ ∈ ACLp([a, b],M) for p ∈ [1,∞], then

ACLp([a, b], V )→ ACLp([a, b], F ), η 7→ f ◦ (ζ, η) (4.12)

is a Ck-map.

Proof. Since (ζ, η) ∈ ACLp([a, b],M ×V ), the above map is defined by Lemma 4.2.23; it
will be Ck if for a partition a = t0 < t1 < . . . < tn = b for ζ (as in Definition 4.2.20) the
function

ACLp([a, b], V )→
n∏
j=1

ACLp([tj−1, tj ], F ),

η 7→
(
f ◦ (ζ, η)|[tj−1,tj ]

)
j=1,...,n

is Ck (where we use the topological embedding with closed image on ACLp([a, b], F ) as
in Lemma 4.2.13). This will hold if every component

ACLp([a, b], V )→ ACLp([tj−1, tj ], F ), η 7→ f ◦ (ζ, η)|[tj−1,tj ] (4.13)

is Ck.
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Now, given charts ϕ : Uj → Vj for M with ζ([tj−1, tj ]) ⊆ Uj , for every j ∈ {1, . . . , n},
the function

ACLp([a, b], V )→ ACLp([tj−1, tj ], Vj × V ), η 7→
(
ϕj ◦ ζ|[tj−1,tj ], η|[tj−1,tj ]

)
is smooth by Lemma 4.2.13 (identifying ACLp([tj−1, tj ], Vj×V ) with ACLp([tj−1, tj ], Vj)×
ACLp([tj−1, tj ], V ), see Remark 4.2.19 ). As the composition f ◦(ϕ−1

j ×idV ) : Vj×V → F

is Ck+2, by Proposition 4.2.17 the function

ACLp([a, b], V )→ ACLp([tj−1, tj ], F ),

η 7→
(
f ◦ (ϕ−1

j × idV ) ◦ (ϕj ◦ ζ|[tj−1,tj ], η|[tj−1,tj ]

)
= f ◦ (ζ, η)|[tj−1,tj ]

is Ck. Therefore, the function in (4.13) is Ck and the proof is finished.

Now, we are able to endow the sets ACLp([a, b], G) with unique Lie group structures.

Proposition 4.2.27. Let G be a smooth Lie group modeled on a sequentially complete
locally convex space E, let p ∈ [1,∞]. Then there exists a unique Lie group structure
on ACLp([a, b], G) such that for each open symmetric eG-neighborhood U ⊆ G the subset
ACLp([a, b], U) is open in ACLp([a, b], G) and such that

ACLp([a, b], ϕ) : ACLp([a, b], U)→ ACLp([a, b], V ), η 7→ ϕ ◦ η

is a smooth diffeomorphism for every chart ϕ : U → V for G.

Proof. Step 1: ACLp([a, b], G) is a group.

As mG and jG are smooth, we have mG ◦ (η, ξ), jG ◦ η ∈ ACLp([a, b], G) for all η, ξ ∈
ACLp([a, b], G), by Lemma 4.2.23 (identifying ACLp([a, b], G×G) with ACLp([a, b], G)×
ACLp([a, b], G)). Then G̃ := ACLp([a, b], G) is a group with multiplication

mG̃ := ACLp([a, b],mG) : G̃× G̃→ G̃, (η, ξ) 7→ mG ◦ (η, ξ) =: η · ξ,

inversion

jG̃ := ACLp([a, b], jG) : G̃→ G̃, η 7→ jG ◦ η =: η−1

and identity element eG̃ : t 7→ eG.

Step 2: Existence of a Lie group structure on ACLp([a, b], G).

Consider an open symmetric eG-neighborhood U ⊆ G and a chart ϕ : U → V . As Ṽ :=
ACLp([a, b], V ) is open in ACLp([a, b], E) (see Remark 4.2.10), we endow the symmetric
subset Ũ := ACLp([a, b], U) := {η ∈ ACLp([a, b], G) : η([a, b]) ⊆ U} with the C∞-
manifold structure turning the bijection

ϕ̃ := ACLp([a, b], ϕ) : Ũ → Ṽ , η 7→ ϕ ◦ η
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into a global chart (the map is defined by Lemma 4.2.23). Obviously, eG̃ ∈ Ũ .

Further, by Lemma 4.2.16, the function

ACLp([a, b], ϕ ◦ jG|U ◦ ϕ−1) : Ṽ → Ṽ , η 7→ (ϕ ◦ jG|U ◦ ϕ−1) ◦ η

is smooth. Thus, writing

Ũ → Ũ , η 7→ (ϕ̃−1 ◦ACLp([a, b], ϕ ◦ jG|U ◦ ϕ−1) ◦ ϕ̃)(η)

= ϕ−1 ◦ ϕ ◦ jG|U ◦ ϕ−1 ◦ ϕ ◦ η
= jG ◦ η,

we see that the inversion on Ũ is smooth.

Now, consider the open subset Um := {(x, y) ∈ U × U : xy ∈ U} of U × U . As Vm :=
(ϕ×ϕ)(Um) is open in E×E, the set Ṽm := ACLp([a, b], Vm) is open in ACLp([a, b], E)×
ACLp([a, b], E), whence Ũm := (ϕ̃−1 × ϕ̃−1)(Ṽm) is open in Ũ × Ũ . Again, by Lemma
4.2.16, the function

ACLp([a, b], ϕ ◦mG ◦ (ϕ−1 × ϕ−1)|Vm) : Ṽm → Ṽ ,

η 7→ (ϕ ◦mG ◦ (ϕ−1 × ϕ−1)|Vm) ◦ η

is smooth. Therefore

Ũm → Ũ ,

(η, ξ) 7→ (ϕ̃−1 ◦ACLp([a, b], ϕ ◦mG ◦ (ϕ−1 × ϕ−1)|Vm) ◦ (ϕ̃× ϕ̃))(η, ξ)

= ϕ−1 ◦ ϕ ◦mG ◦ (ϕ−1 × ϕ−1)|Vm ◦ (ϕ× ϕ) ◦ (η, ξ)

= mG ◦ (η, ξ),

which is the multiplication on Ũm, is smooth.

Finally, fix some η ∈ G̃ and write K := im(η) ⊆ G. As the function

h : G×G→ G, (x, y) 7→ xyx−1

is smooth and h(K × {eG}) = {eG} ⊆ U , the compact set K × {eG} is a subset of the
open set h−1(U) ⊆ G×G. By the Wallace Lemma, there are open subsets WK , W of G
such that K × {eG} ⊆ WK ×W ⊆ h−1(U). We may assume W ⊆ U , then we see that
W̃ := ACLp([a, b],W ) is open in Ũ and for each ξ ∈ W̃ we have

η · ξ · η−1 = h ◦ (η, ξ) ∈ Ũ

by Lemma 4.2.23. Using Lemma 4.2.26, we see that the function

ACLp([a, b], ϕ(W ))→ Ṽ ,

ξ 7→ (ϕ ◦ h ◦ (idWK
×ϕ−1|ϕ(W ))) ◦ (η, ξ)
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is smooth, whence

W̃ → Ũ , ξ 7→ ϕ−1 ◦ (ϕ ◦ h ◦ (idWK
×ϕ−1|ϕ(W ))) ◦ (η, ϕ ◦ ξ)

= h ◦ (η, ξ)

= η · ξ · η−1

is smooth.
Consequently, by Remark 4.2.25, there exists a unique Lie group structure on G̃ turn-

ing Ũ into a smooth open submanifold and ϕ̃ into a G̃-chart around eG̃.
Step 3: Uniqueness of the Lie group structure on ACLp([a, b], G).
Let U ′ ⊆ G be an open symmetric eG-neighborhood and ϕ′ : U ′ → V ′ be a G-chart

around eG. Denote by G̃′ the group ACLp([a, b], G) endowed with the Lie group structure
turning Ũ ′ := ACLp([a, b], U ′) into an open submanifold and ϕ̃′ : Ũ ′ → ACLp([a, b], V ′)
into a chart (constructed as in Step 2). We show that both identity maps id: G̃′ → G̃
and id: G̃→ G̃′ are continuous, that is, both Lie group structures coincide.

The set U ′∩U is open in U ′, hence ϕ′(U ′∩U) is open in V ′, thus ACLp([a, b], ϕ′(U ′∩U))

is open in ACLp([a, b], V ′), and consequently Ũ ′ ∩ Ũ = ϕ̃′
−1

(ACLp([a, b], ϕ′(U ′ ∩ U))) is
open in G̃′. Writing

idŨ ′∩Ũ = ϕ̃−1 ◦ACLp([a, b], ϕ ◦ ϕ′−1|U ′∩U ) ◦ ϕ̃′|Ũ ′∩Ũ : Ũ ′ ∩ Ũ → G̃

and using Proposition 4.2.17, we see that id : G̃′ → G̃ is smooth on the open identity
neighborhood Ũ ′ ∩ Ũ , hence smooth. In the same way, we show that also id : G̃→ G̃′ is
smooth, as required.

Remark 4.2.28. One can easily show that

ACLp([a, b], G×H) ∼= ACLp([a, b], G)×ACLp([a, b], H)

as Lie groups.

Lemma 4.2.29. The inclusion map

incl : ACLp([a, b], G)→ C([a, b], G), η 7→ η

is a smooth homomorphism.

Proof. Let U ⊆ G be an open identity neighborhood, ϕ : U → V be a chart for G.
Then C([a, b], ϕ) : C([a, b], U) → C([a, b], V ), η 7→ ϕ ◦ η is a chart for C([a, b], G) and
ACLp([a, b], ϕ) : ACLp([a, b], U)→ ACLp([a, b], V ), η 7→ ϕ◦η is a chart for ACLp([a, b], G).
The function

ACLp([a, b], V )→ C([a, b], V ),

η 7→
(
C([a, b], ϕ) ◦ incl ◦ACLp([a, b], ϕ)−1

)
(η) = η

is smooth, being a restriction of the smooth inclusion map from Lemma 4.2.9. Hence
the group homomorphism incl is smooth.
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Lemma 4.2.30. For any α ∈ [a, b], the evaluation map

evα : ACLp([a, b], G)→ G, η 7→ η(α)

is a smooth homomorphism.

Proof. The function is a composition of the smooth inclusion map from Lemma 4.2.29
and the smooth evaluation map on C([a, b], G), hence smooth.

Lemma 4.2.31. Let G be a Lie group modeled on a sequentially complete locally convex
space E, let p ∈ [1,∞]. Then the function

ΓG : ACLp([a, b], G)→
n∏
j=1

ACLp([tj−1, tj ], G), η 7→
(
η|[tj−1,tj ]

)
j=1,...,n

is a smooth homomorphism and a smooth diffeomorphism onto a Lie subgroup of the
product

∏n
j=1ACLp([tj−1, tj ], G).

Proof. First of all we introduce some notations. For j = 1, . . . , n we denote Gj :=
ACLp([tj−1, tj ], G), and for an open identity neighborhood U ⊆ G and a chart ϕ : U → V
we write Uj := ACLp([tj−1, tj ], U), Vj := ACLp([tj−1, tj ], V ) and ϕj : Uj → Vj , ζ 7→ ϕ ◦ ζ.

Clearly, the map ΓG is a group homomorphism and

im(ΓG) = {(ηj)j=1,...,n ∈
n∏
j=1

Gj : ηj−1(tj) = ηj(tj) for all j ∈ {2, . . . , n}}

is a subgroup of
∏n
j=1Gj . Moreover, the function

ψ :=
n∏
j=1

ϕj :
n∏
j=1

Uj →
n∏
j=1

Vj , (ζj , . . . , ζn) 7→ (ϕ ◦ ζ1, . . . , ϕ ◦ ζn)

is a chart for
∏n
j=1Gj and ψ(im(ΓG)∩

∏n
j=1 Uj) = im(ΓE)∩

∏n
j=1 Vj , where ΓE is the lin-

ear topological embedding with closed image from Lemma 4.2.13. Therefore, im(ΓG) is a
Lie subgroup modeled on the closed vector subspace im(ΓE) of

∏n
j=1ACLp([tj−1, tj ], E).

Finally, both compositions

ψ ◦ ΓG ◦ACLp([a, b], ϕ)−1 : ACLp([a, b], V )→
n∏
j=1

Vj , η 7→ ΓE(η)

and

ACLp([a, b], ϕ) ◦ Γ−1
G ◦

(
ψ|im(ΓG)

)−1
: im(ΓE) ∩

n∏
j=1

Vj → ACLp([a, b], V ),

η 7→ Γ−1
E (η)

are smooth maps, thus we conclude that ΓG is a smooth diffeomorphism onto its image.
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4.3 Measurable regularity of Lie groups

Definition 4.3.1. Let G be a Lie group modeled on a sequentially complete locally
convex space E, let p ∈ [1,∞]. Consider η ∈ ACLp([a, b], G), a partition a = t0 < t1 <
. . . < tn = b and charts ϕj : Uj → Vj for G such that η([tj−1, tj ]) ⊆ Uj for all j and

ηj := ϕj ◦ η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], E).

Denote η′j := [γj ] ∈ Lp([tj−1, tj ], E) and set

γ(t) := Tϕ−1
j (ηj(t), γj(t))

for t ∈ [tj−1, tj [, and
γ(b) := Tϕ−1

n (ηn(b), γn(b)).

The constructed function γ : [a, b]→ TG is measurable and we write η̇ := [γ].
Further, define the left logarithmic derivative of η via

δ(η) := [ωl ◦ γ],

where [γ] = η̇ and ωl : TG→ g, v 7→ πTG(v)−1.v with the bundle projection πTG : TG→
G. (Note that the definitions of η̇ and δ(η) do not depend on the choice of the partition
and charts.)

Lemma 4.3.2. Let G be a Lie group modeled on a sequentially complete locally convex
space E and p ∈ [1,∞]. If η ∈ ACLp([a, b], G), then δ(η) ∈ Lp([a, b], g).

Proof. By definition, there exists a partition a = t0 < t1 < . . . < tn = b and there
exist charts ϕj : Uj → Vj for G such that η([tj−1, tj ]) ⊆ Uj and ηj := ϕj ◦ η|[tj−1,tj ] ∈
ACLp([tj−1, tj ], E) for every j ∈ {1, . . . , n}. We denote [γj ] := η′j and [γ] := η̇ and see
that

ωl ◦ γ|[tj−1,tj ] = ωl ◦ Tϕ−1
j ◦ (ηj , γj) ∈ Lp([tj−1, tj ], g)

by Lemma 4.1.23, since ωl ◦ Tϕ−1
j : Vj × E → g is continuous and linear in the second

argument. From Lemma 4.1.21, it follows that δ(η) = [ωl ◦ γ] ∈ Lp([a, b], g).

Recall that the tangent bundle TG of a Lie group G can be considered as a Lie group.
We identify g ∈ G with 0g ∈ TgG.

Lemma 4.3.3. Let G be a Lie group modeled on a sequentially complete locally convex
space, let p ∈ [1,∞]. For η, ζ ∈ ACLp([a, b], G) with η̇ = [γ], ζ̇ = [ξ] we have

(η · ζ)· = [t 7→ γ(t).ζ(t) + η(t).ξ(t)] (4.14)

and

(η−1)· = [t 7→ −η(t)−1.γ(t).η(t)−1]. (4.15)

Further, if f : G → H is a smooth function between Lie groups modeled on sequentially
complete locally convex spaces, then

(f ◦ η)· = [Tf ◦ γ]. (4.16)
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Proof. We prove the last equation (4.16) first. Consider a partition a = t0 < t1 < . . . <
tn = b and charts ϕj : Uj → Vj , ψj : Pj → Qj for G and H, respectively, such that

ϕj ◦ η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], E),

ψj ◦ f ◦ η|[tj−1,tj ] ∈ ACLp([tj−1, tj ], F ),

where E and F are the model spaces of G and H. Denote

[γj ] := (ϕj ◦ η|[tj−1,tj ])
′ ∈ Lp([tj−1, tj ], E),

[ξj ] := (ψj ◦ f ◦ η|[tj−1,tj ])
′ ∈ Lp([tj−1, tj ], F ).

Then (using (4.8)) we have

[ξj ] = ((ψj ◦ f ◦ ϕ−1
j ) ◦ (ϕj ◦ η|[tj−1,tj ]))

′ = [d(ψj ◦ f ◦ ϕ−1
j )(ϕj ◦ η|[tj−1,tj ], γj)].

Therefore, for [δ] := (f ◦ η)· and almost all t ∈ [tj−1, tj [ we have

δ(t) = Tψ−1
j ((ψj ◦ f ◦ η)(t), d(ψj ◦ f ◦ ϕ−1

j )((ϕj ◦ η)(t), γj(t)))

= Tψ−1
j ((ψj ◦ f ◦ ϕ−1

j ◦ ϕj ◦ η)(t), d(ψj ◦ f ◦ ϕ−1
j )((ϕj ◦ η)(t), γj(t)))

= (Tψ−1
j ◦ T (ψj ◦ f ◦ ϕ−1

j ))((ϕj ◦ η)(t), γj(t))

= (Tf ◦ Tϕ−1
j )((ϕj ◦ η)(t), γj(t))

= (Tf ◦ γ)(t).

Now,

(η · ζ)· = (mG ◦ (η, ζ))· = [TmG ◦ (γ, ξ)] = [t 7→ η(t).ξ(t) + γ(t).ζ(t)]

and

(η−1)· = (jG ◦ η)· = [TjG ◦ γ] = [t 7→ −η(t)−1.γ(t).η(t)−1].

Lemma 4.3.4. Let η, ζ ∈ ACLp([a, b], G) and denote δ(η) = [γ], η̇ = [γ̄], δ(ζ) = [ξ],
ζ̇ = [ξ̄]. Then the following holds.

(i) We have

δ(η · ζ) = [t 7→ ζ(t)−1.γ(t).ζ(t) + ξ(t)], (4.17)

and

δ(η−1) = [t 7→ −γ̄(t).η(t)−1]. (4.18)

(ii) We have δ(η) = 0 if and only if η is constant.
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(iii) We have δ(η) = δ(ζ) if and only if η = gζ for some g ∈ G.

Proof. (i) Using Equations (4.14) and (4.15), we get

δ(η · ζ) = [t 7→ (η(t)ζ(t))−1.(γ̄(t).ζ(t) + η(t).ξ̄(t))]

= [t 7→ (ζ(t)−1η(t)−1).γ̄(t).ζ(t) + (ζ(t)−1η(t)−1).η(t).ξ̄(t)]

= [t 7→ ζ(t)−1.γ(t).ζ(t) + ξ(t)],

and

δ(η−1) = [t 7→ η(t).(−η(t)−1.γ̄(t).η(t)−1)] = [t 7→ −γ̄(t).η(t)−1].

(ii) Now, we assume that δ(η) = 0, that is, [t 7→ η(t)−1.γ̄(t)] = 0 ∈ Lp([a, b], g). In
other words, η(t)−1.γ̄(t) = 0 ∈ g for a.e. t ∈ [a, b]. Let a = t0 < t1 < . . . < tn = b, charts
ϕj and [γj ] be as in Definition 4.3.1. Then for γ̄(t) ∈ Tη(t)G we have dϕj(γ̄(t)) = 0 ∈ E
for a.e. t ∈ [tj−1, tj ]. On the other hand, we have dϕj(γ̄(t)) = γj(t) for a.e. t ∈ [tj−1, tj ],
thus [γj ] = 0 ∈ Lp([tj−1, tj ], E). That means, that ϕ ◦ η|[tj−1,tj ] is constant, whence
η|[tj−1,tj ] is constant, whence η is constant.

Conversely, assume η(t) = g ∈ G for all t ∈ [a, b]. Then for some chart ϕ around g we
have

ϕ(g) = ϕ(η(t)) = ϕ(g) +

∫ t

a
γg(s) ds

for every t ∈ [a, b], thus γg(s) = 0 for a.e. s ∈ [a, b], by Lemma 4.2.6, in other words,
(ϕ ◦ η)′ = 0 ∈ Lp([a, b], E). Therefore,

γ̄(t) = Tϕ−1(ϕ(η(t)), 0) = Tϕ−1(ϕ(g), 0)

a.e., whence

δ(η) = [t 7→ η(t)−1.Tϕ−1(ϕ(g), 0)] = [t 7→ g−1.Tϕ−1(ϕ(g), 0)] = 0 ∈ Lp([a, b], g).

(iii) Now, assume [γ] = δ(η) = δ(ζ) = [ξ], then (using Equations (4.17) and (4.18))

δ(η · ζ−1) = [t 7→ ζ(t).γ(t).ζ(t)−1 − ξ̄(t).ζ(t)−1]

= [t 7→ ζ(t).ξ(t).ζ(t)−1 − ξ̄(t).ζ(t)−1]

= [t 7→ ξ̄(t).ζ(t)−1 − ξ̄(t).ζ(t)−1] = 0 ∈ Lp([a, b], g).

Then, by the above, the curve η · ζ−1 is constant, say η · ζ−1 = g ∈ G, thus η = gζ.
Conversely, assume η = gζ. We define ηg : [a, b] → G, t 7→ g in ACLp([a, b], G), then

[γg] = δ(ηg) = 0 ∈ Lp([a, b], g) (by the above), whence

δ(η) = δ(ηg · ζ) = [t 7→ ξ(t)] = δ(ζ),

using Equation (4.17).
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The following proposition (a version of [17, Lemma 5.10]) will be useful.

Proposition 4.3.5. Let G be a smooth Lie group, let E, F be locally convex spaces and
f : G×E → F be a Ck+1-function (for some k ∈ N0∪{∞}) which is linear in the second
argument. Then for p ∈ [1,∞] the function

C([a, b], G)× Lp([a, b], E)→ Lp([a, b], F ), (η, [γ]) 7→ [f ◦ (η, γ)] (4.19)

is Ck.

Proof. The function is defined by Lemma 4.1.23. We fix some η̄ ∈ C([a, b], G) and some
open identity neighborhood U ⊆ G. Then U contains some open identity neighborhood
W such that WW ⊆ U . The function in (4.19) will be Ck if the restriction

Q× Lp([a, b], E)→ Lp([a, b], F ), (η, [γ]) 7→ [f ◦ (η, γ)] (4.20)

is Ck, where Q := {ζ ∈ C([a, b], G) : η̄−1 · ζ ∈ C([a, b],W )} is an open neighborhood of
η̄.

Consider a partition a = t0 < t1 < . . . < tn = b such that

η̄(tj−1)−1η̄([tj−1, tj ]) ⊆W.

From Lemma 4.1.21, it follows that the above function will be Ck if

Q× Lp([a, b], E)→
n∏
j=1

Lp([tj−1, tj ], F ),

(η, [γ]) 7→
(

[f ◦ (η, γ)|[tj−1,tj ]]
)
j=1,...,n

is Ck, which will be the case if each component

Q× Lp([a, b], E)→ Lp([tj−1, tj ], F ), (η, [γ]) 7→ [f ◦ (η, γ)|[tj−1,tj ]] (4.21)

is Ck.
Now, by Lemmas 4.1.21 and 4.2.31, the function

Q× Lp([a, b], E)→ C([tj−1, tj ], G)× Lp([tj−1, tj ], E),

(η, [γ]) 7→ (η̄(tj−1)−1η|[tj−1,tj ], [γ|[tj−1,tj ]])

is smooth; for η ∈ Q and t ∈ [tj−1, tj ] we have

η̄(tj−1)−1η(t) = η̄(tj−1)−1η̄(t)η̄(t)−1η(t) ∈WW ⊆ U.

Thus

Q× Lp([a, b], E)→ C([tj−1, tj ], V )× Lp([tj−1, tj ], E),

(η, [γ]) 7→ (ϕ ◦ η̄(tj−1)−1η|[tj−1,tj ], [γ|[tj−1,tj ]])
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is smooth if ϕ : U → V is a chart for G. We define

g : V × E → F, (x, y) 7→ f(η̄(tj−1)ϕ−1(x), y),

which is Ck+1 and linear in the second argument, and we use Proposition 4.1.25 to obtain
a Ck-map

Q× Lp([a, b], E)→ Lp([tj−1, tj ], F ),

(η, [γ]) 7→ [g ◦ (ϕ ◦ η̄(tj−1)−1η|[tj−1,tj ], γ|[tj−1,tj ])] = [f ◦ (η, γ)|[tj−1,tj ]],

which is exactly the required function from (4.21).

We prove a version of [17, Lemma 5.29]:

Lemma 4.3.6. Let G be a smooth Lie group modeled on a sequentially complete locally
convex space E. The function

δ : ACLp([a, b], G)→ Lp([a, b], g), η 7→ δ(η)

is smooth.

Proof. First we prove that the restriction δ|Ũ is smooth for some open identity neigh-

borhood Ũ ⊆ ACLp([a, b], G). Let U ⊆ G be an open e-neighborhood and ϕ : U → V be
a chart for G. Then Ũ := ACLp([a, b], U) is an open identity neighborhood with chart
ϕ̃ := ACLp([a, b], ϕ) : ACLp([a, b], U)→ ACLp([a, b], V ). We have

δ(ϕ−1 ◦ η) = [ωl ◦ Tϕ−1 ◦ (η, γ)],

for η ∈ ACLp([a, b], V ), η′ = [γ]. Now, the function

ACLp([a, b], V )→ C([a, b], V )× Lp([a, b], E), η 7→ (η, η′)

is smooth (see Lemma 4.2.9), as well as the function

C([a, b], V )× Lp([a, b], E)→ Lp([a, b], g), (η, [γ]) 7→ [ωl ◦ Tϕ−1 ◦ (η, γ)],

since ωl◦Tϕ−1 : V ×E → g is smooth and linear in the second argument (see Proposition
4.1.25). Consequently, the function

δ|Ũ ◦ ϕ̃
−1 : ACLp([a, b], V )→ Lp([a, b], g), η 7→ δ(ϕ−1 ◦ η)

is smooth, thus the restriction δ|Ũ is smooth.

Now, we fix ζ ∈ ACLp([a, b], G) and show that δ|Ũ ·ζ is smooth. Using Lemma 4.3.4,

for η ∈ Ũ · ζ we have

δ(η) = δ((η · ζ−1) · ζ) = ζ−1.δ(η · ζ−1).ζ + δ(ζ).
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Clearly, the function

τ : Ũ · ζ → Ũ , η 7→ η · ζ−1

is smooth, and so is the function

δ|Ũ ◦ τ : Ũ · ζ → Lp([a, b], g), η 7→ δ(η · ζ−1),

by the previous step. Now, as

G× g→ g, (x, v) 7→ x−1.v.x

is smooth and linear in the second argument, the function

C([a, b], G)× Lp([a, b], g)→ Lp([a, b], g), (η, γ) 7→ η−1.γ.η

is smooth, by Proposition 4.3.5. Therefore, the function

Lp([a, b], g)→ Lp([a, b], g), γ 7→ ζ−1.γ.ζ

is smooth. Altogether, using the smoothness of

Lp([a, b], g)→ Lp([a, b], g), γ 7→ γ + δ(ζ),

we conclude that

δ|Ũ ·ζ : Ũ · ζ → Lp([a, b], g), η 7→ δ(η) = ζ−1.δ(η · ζ−1).ζ + δ(ζ)

is smooth. Thus δ is smooth on ACLp([a, b], G) and the proof is finished.

Definition 4.3.7. Let G be a smooth Lie group modeled on a sequentially complete
locally convex space. For p ∈ [1,∞], the Lie group G is called Lp-semiregular if for every
γ ∈ Lp([0, 1], g) the initial value problem

δ(η) = γ, η(0) = e (4.22)

has a solution ηγ ∈ ACLp([a, b], G) (which is unique, by Lemma 4.3.4).
An Lp-semiregular Lie group G is called Lp-regular if the function

Evol : Lp([0, 1], g)→ ACLp([a, b], G), γ 7→ ηγ (4.23)

is smooth.

Remark 4.3.8. As in [17, Remark 5.18], we note that if a Lie group G is Lp-regular,
then the function

evol : Lp([0, 1], g)→ G, γ 7→ Evol(γ)(1)

is smooth, since so is the evaluation map ev1 : ACLp([0, 1], G)→ G, η 7→ η(1) (see Lemma
4.2.30).
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4.3 Measurable regularity of Lie groups

Consider a very useful property of the function Evol ([17, Proposition 5.20]).

Theorem 4.3.9. Let G be an Lp-semiregular Lie group. Then the function Evol is
smooth if and only if Evol is smooth as a function to C([0, 1], G).

Proof. First assume that Evol : Lp([0, 1], g) → ACLp([0, 1], G) is smooth. As the inclu-
sion map incl : ACLp([0, 1], G)→ C([0, 1], G) is smooth (see Lemma 4.2.29), the compo-
sition incl ◦Evol : Lp([0, 1], g)→ C([0, 1], G) is smooth.

Conversely, assume that Evol : Lp([0, 1], g) → C([0, 1], G) is smooth; for some fixed
γ̄ ∈ Lp([0, 1], g) we are going to find some open neighborhood P of γ̄ such that the
restriction Evol |P : P → ACLp([0, 1], G) is smooth.

To this end, let U ⊆ G be an open identity neighborhood and ϕ : U → V be a
chart. Then U contains some open identity neighborhood W such that WW ⊆ U . For
ηγ̄ := Evol(γ̄), the subset

Q := {ζ ∈ C([0, 1], G) : η−1
γ̄ · ζ ∈ C([0, 1],W )}

is an open neighborhood of ηγ̄ . Set

P := Evol−1(Q).

Now, we want to show that the function

P → ACLp([0, 1], G), γ 7→ ηγ := Evol(γ) (4.24)

is smooth.

As ηγ̄ is continuous, there exists a partition 0 = t0 < t1 < · · · < tn = 1 such that
ηγ̄(tj)

−1ηγ̄([tj−1, tj ]) ⊆ W for each j ∈ {1, . . . , n}. Using the function ΓG from Lemma
4.2.31, the map in (4.24) will be smooth if

P 7→
n∏
j=1

ACLp([tj−1, tj ], G), γ 7→
(
ηγ |[tj−1,tj ]

)
j=1,...,n

(4.25)

is smooth, which will be the case if each of the components

P 7→ ACLp([tj−1, tj ], G), γ 7→ ηγ |[tj−1,tj ] (4.26)

is smooth. As left translations on the Lie group ACLp([tj−1, tj ], G) are smooth diffeo-
morphisms, the function in (4.26) will be smooth if

P 7→ ACLp([tj−1, tj ], G), γ 7→ ηγ̄(tj)
−1ηγ |[tj−1,tj ] (4.27)

is a smooth map.

Now, for every t ∈ [tj−1, tj ] we have

ηγ̄(tj)
−1ηγ(t) = ηγ̄(tj)

−1ηγ̄(t)ηγ̄(t)−1ηγ(t) ∈WW ⊆ U,
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4 Measurable regularity of Lie groups

in other words, ηγ̄(tj)
−1ηγ |[tj−1,tj ] ∈ ACLp([tj−1, tj ], U). Thus the smoothness of (4.27)

will follow from the smoothness of

P → ACLp([tj−1, tj ], E), γ 7→ ϕ ◦ ηγ̄(tj)
−1ηγ |[tj−1,tj ]. (4.28)

Using the definition of the topology on ACLp([tj−1, tj ], E) (see Definition 4.2.8), we will
show that

P → E × Lp([tj−1, tj ], E), γ 7→ (ϕ(ηγ̄(tj)
−1ηγ(tj−1)), (ϕ ◦ ηγ̄(tj)

−1ηγ |[tj−1,tj ])
′)

is smooth.
Using the assumed smoothness of P → C([0, 1], G), γ 7→ ηγ , we see that the first

component of the above function is smooth. Therefore, it remains to show that

P → Lp([tj−1, tj ], E), γ 7→ (ϕ ◦ ηγ̄(tj)
−1ηγ |[tj−1,tj ])

′ (4.29)

is smooth.
Identifying equivalence classes with functions, we have

(ϕ ◦ ηγ̄(tj)
−1ηγ |[tj−1,tj ])

′ = dϕ ◦ (ηγ̄(tj)
−1ηγ |[tj−1,tj ])

·.

Consider the smooth function

σ : G× g→ TG, (g, v) 7→ g.v.

We have

dϕ ◦ (ηγ̄(tj)
−1ηγ |[tj−1,tj ])

·

= dϕ ◦ σ ◦ (ηγ̄(tj)
−1ηγ |[tj−1,tj ], δ(ηγ̄(tj)

−1ηγ |[tj−1,tj ]))

= dϕ ◦ σ ◦ (ηγ̄(tj)
−1ηγ |[tj−1,tj ], δ(ηγ |[tj−1,tj ]))

= dϕ ◦ σ ◦ (ηγ̄(tj)
−1ηγ |[tj−1,tj ], γ|[tj−1,tj ]),

using (iii) from Lemma 4.3.4. Hence the map in (4.29) will be smooth if

P → Lp([tj−1, tj ], E), γ 7→ dϕ ◦ σ ◦ (ηγ̄(tj)
−1ηγ |[tj−1,tj ], γ|[tj−1,tj ]) (4.30)

is smooth. But this is true, the function being a composition of the smooth functions

P → C([tj−1, tj ], U)× Lp([tj−1, tj ], E), γ 7→ (ηγ̄(tj)
−1ηγ |[tj−1,tj ], γ|[tj−1,tj ])

and

C([tj−1, tj ], U)× Lp([tj−1, tj ], g)→ Lp([tj−1, tj ], g), (η, γ) 7→ dϕ ◦ σ ◦ (η, γ),

(the smoothness of the last function holds by Proposition 4.3.5, as the composition
dϕ ◦ σ : G× g→ E is linear in the second argument).

As in [17, Corollary 5.21], we obtain the following result.
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4.3 Measurable regularity of Lie groups

Theorem 4.3.10. Let G be a Lie group and p, q ∈ [1,∞] with q ≥ p. If G is Lp-regular,
then G is Lq-regular. Furthermore, in this case G is C0-regular.

Proof. Assume that G is Lp-regular and q ≥ p. Since Lq([0, 1], g) ⊆ Lp([0, 1], g) with
a smooth inclusion map (Remark 4.1.18), the Lie group G is Lq-semiregular and the
function Lq([0, 1], g) → C([0, 1], G), γ 7→ Evol(γ) is smooth. From Theorem 4.3.9, it
follows that Lq([0, 1], g) → ACLq([0, 1], G), γ 7→ Evol(γ) is smooth, whence G is Lq-
regular.

Further, since C([0, 1], g) ⊆ Lp([0, 1], g), the Lie group is C0-semiregular. Since the
inclusion map incl : C([0, 1], g) → Lp([0, 1], g) is smooth, as well as the evaluation map
ev1 : C([0, 1], G) → G, the composition C([0, 1], g) → G, γ 7→ Evol(γ)(1) is smooth,
whence G is C0-regular.

The following results will enable us to show that it suffices for a Lie group G to be
Lp-regular, if it is merely locally Lp-regular (see [17, Definition 5.19, Proposition 5.25]).

Lemma 4.3.11. For c < d in R and a ≤ α < β ≤ b define

f : [c, d]→ [a, b], f(t) := α+
t− c
d− c

(β − α).

Let G be a Lie group modeled on a sequentially complete locally convex space E. Then
the following holds:

(i) If γ ∈ Lp([a, b], E), then γ ◦ f ∈ Lp([c, d], E) and the function

Lp(f,E) : Lp([a, b], E)→ Lp([c, d], E), γ 7→ γ ◦ f

is continuous and linear.

(ii) If η ∈ ACLp([a, b], E), then η ◦ f ∈ ACLp([c, d], E) and

(η ◦ f)′ =
β − α
d− c

[γ ◦ f ],

where [γ] = η′. Furthermore, the function

ACLp(f,E) : ACLp([a, b], E)→ ACLp([c, d], E), η 7→ η ◦ f

is continuous and linear.

(iii) If η ∈ ACLp([a, b], G), then η ◦ f ∈ ACLp([c, d], G) and

δ(η ◦ f) =
β − α
d− c

[γ ◦ f ], (4.31)

where [γ] = δ(η). Furthermore, the function

ACLp(f,G) : ACLp([a, b], G)→ ACLp([c, d], G), η 7→ η ◦ f

is a smooth homomorphism.
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4 Measurable regularity of Lie groups

Proof. (i) As f is continuous and λ(f−1(N)) = 0 for every Borel set N with λ(N) = 0
(see [39, Theorem 3]), we can easily see that the composition γ ◦ f is measurable.

Assume first p <∞. By [3, Satz 19.4], the function qp ◦ (γ ◦ f) is p-integrable for each
continuous seminorm q on E, and∫ d

c
q(γ(f(t)))p dt =

d− c
β − α

∫ f(d)

f(c)
q(γ(t))p dt <∞, (4.32)

hence γ ◦ f ∈ Lp([c, d], E). Furthermore, we see that

‖γ ◦ f‖Lp,q ≤
(
d− c
β − α

) 1
p

‖γ‖Lp,q, (4.33)

whence the linear function Lp(f,E) is continuous.
Now, assume p =∞. Then for every continuous seminorm q on E we have

ess supt∈[c,d] q(γ(f(t))) ≤ ess supt∈[a,b] q(γ(t)) <∞,

that is, γ ◦ f ∈ L∞([c, d], E) and

‖γ ◦ f‖L∞,q ≤ ‖γ‖L∞,q, (4.34)

hence the linear map L∞(f,E) is continuous.
(ii) For t ∈ [c, d] we have

η(f(t))− η(f(c)) =

∫ f(t)

f(c)
γ(s) ds.

Then for any continuous linear functional A on E we have∫ f(t)

f(c)
A(γ(s)) ds =

β − α
d− c

∫ t

c
A(γ(f(s))) ds

(see [3, 19.4 Satz]), whence

η(f(t))− η(f(c)) =
β − α
d− c

∫ t

c
γ(f(s)) ds,

in other words, η ◦ f ∈ ACLp([c, d], E) with (η ◦ f)′ = β−α
d−c [γ ◦ f ].

To prove the continuity of the linear function ACLp(f,E), we show that

ACLp([a, b], E)→ E × Lp([c, d], E), η 7→ (η(f(c)), (η ◦ f)′)

is continuous (where we used the isomorphism from Definition 4.2.8). The first compo-
nent

ACLp([a, b], E)→ E, η 7→ evf(c)(η)
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is continuous, by Remark 4.2.11. Further, the map

Ψ: Lp([a, b], E)→ Lp([c, d], E), [γ] 7→ β − α
d− c

[γ ◦ f ]

is continuous, hence the second component

ACLp([a, b], E)→ Lp([c, d], E), η 7→ Ψ(η′) = (η ◦ f)′

is continuous.
(iii) As η ◦ f is a continuous curve, there exists a partition c = t0 < t1 < . . . <

tn = d and for every j ∈ {1, . . . , n} there is a chart ϕj : Uj → Vj for G such that
η(f([tj−1, tj ])) ⊆ Uj . But f([tj−1, tj ]) = [f(tj−1), f(tj)] is an interval and from Lemma
4.2.21, it follows that

ϕj ◦ η|[f(tj−1),f(tj)] ∈ ACLp([f(tj−1), f(tj)], Vj).

We have

ϕj ◦ η ◦ f |[tj−1,tj ] ∈ ACLp([tj−1, tj ], Vj),

that is, η ◦ f ∈ ACLp([c, d], G).
Next, consider a partition c = t0 < t1 < . . . < tn = d and charts ϕ : Uj → Vj with

η(f([tj−1, tj ])) ⊆ Uj . Write

fj := f |[tj−1,tj ], ηj := η|[f(tj−1),f(tj)].

Identifying equivalence classes with functions, we obtain

δ(η ◦ f)|[tj−1,tj ] = ωl ◦ Tϕ−1
j ◦ (ϕj ◦ η ◦ fj , (ϕj ◦ η ◦ fj)′)

= ωl ◦ Tϕ−1
j ◦ (ϕj ◦ η ◦ fj ,

β − α
d− c

(ϕj ◦ ηj)′ ◦ fj)

= ωl ◦ Tϕ−1
j ◦ (ϕ ◦ ηj ,

β − α
d− c

(ϕj ◦ ηj)′) ◦ fj

=
β − α
d− c

(
ωl ◦ Tϕ−1

j ◦ (ϕ ◦ ηj , (ϕj ◦ ηj)′) ◦ fj
)

=
β − α
d− c

(δ(η) ◦ f |[tj−1,tj ]),

using the formula in (ii) and the linearity of ωl ◦ Tϕ−1
j in its second argument.

Finally, for any open identity neighborhood U ⊆ G and any chart ϕ : U → V for G
the function

ACLp([a, b], V )→ ACLp([c, d], V ),

ζ 7→ (ACLp([c, d], ϕ) ◦ACLp(f,G) ◦ACLp([a, b], ϕ)−1)(ζ) = ζ ◦ f

is smooth, hence the group homomorphism ACLp(f,G) is smooth.
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4 Measurable regularity of Lie groups

The following lemma shows that the Lp-spaces have the subdivision property [17,
Lemma 5.26].

Lemma 4.3.12. Let E be a locally convex space, let γ ∈ Lp([0, 1], E). For n ∈ N and
k ∈ {0, . . . , n− 1} define

γn,k : [0, 1]→ E, γn,k(t) :=
1

n
γ

(
k + t

n

)
. (4.35)

Then γn,k ∈ Lp([0, 1], E) for every n, k and

lim
n→∞

max
k∈{0,...,n−1}

‖γn,k‖Lp,q = 0

for each continuous seminorm q on E.

More generally, the same holds for γ ∈ Lp([a, b], E) and

γn,k : [a, b]→ E, γn,k(t) :=
1

n
γ

(
a+

k(b− a) + t− a
n

)
.

Proof. The functions fn,k : [0, 1] → [k/n, k+1/n], fn,k(t) := k+t/n are as in Lemma 4.3.11,
hence γn,k = 1/n(γ ◦ fn,k) ∈ Lp([0, 1], E).

Further, for fixed n ∈ N and p =∞ we have

‖γn,k‖L∞,q =
1

n
‖γ ◦ fn,k‖L∞,q ≤

1

n
‖γ‖L∞,q

for every continuous seminorm q on E and every k ∈ {0, . . . , n− 1}, by (4.34). Hence

max
k∈{0,...,n−1}

‖γn,k‖L∞,q ≤
1

n
‖γ‖L∞,q → 0

as n→∞.

Now, if 2 ≤ p <∞, then for n ∈ N and a continuous seminorm q on E we have

‖γn,k‖Lp,q =
1

n
‖γ ◦ fn,k‖Lp,q ≤

n
1
p

n
‖γ‖Lp,q = n

1
p
−1‖γ‖Lp,q,

for each k ∈ {0, . . . , n− 1}, by (4.33). Hence

max
k∈{0,...,n−1}

‖γn,k‖Lp,q ≤ n
1
p
−1‖γ‖Lp,q → 0

as n→∞.

Finally, let p = 1. Fix some ε > 0 and a continuous seminorm q on E. Each of the
sets

Am := {t ∈ [a, b] : q(γ(t)) > m
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are in B([0, 1]) and

lim
m→∞

∫
Am

q(γ(t)) dt =

∫
⋂

m∈N Am

q(γ(t)) dt = 0,

because (Am)m∈N is a decreasing sequence and
⋂
m∈NAm = ∅. Therefore, for some

m ∈ N we have ∫
Am

q(γ(t)) dt <
ε

2
.

We fix some N ∈ N such that m/N < ε/2 and for every n ≥ N we define

An,k := {t ∈ [0, 1] : fn,k(t) ∈ Am}

Then ∫
An,k

q(γn,k(t)) dt =
1

n

∫
An,k

q(γ(fn,k(t))) dt =

∫
fn,k(An,k)

q(γ(t)) dt,

by Equation (4.32). Since fn,k(An,k) = Am ∩ [k/n, k+1/n], we obtain∫
fn,k(An,k)

q(γ(t)) dt ≤
∫
Am

q(f(t)) dt <
ε

2
,

by the choice of m. Further

‖γn,k‖L1,q =

∫ 1

0
q(γn,k(t)) dt =

∫
An,k

q(γn,k(t)) dt+

∫
[0,1]\An,k

q(γn,k(t)) dt < ε,

because q(γn,k(t)) = 1/nq(γ(fn,k(t))) ≤ m/n < ε/2 for t ∈ [0, 1] \An,k. Consequently,

max
k∈{0,...,n−1}

‖γn,k‖L1,q < ε,

in other words, maxk∈{0,...,n−1} ‖γn,k‖L1,q → 0 as n→∞, as required.

Finally, we prove that a Lie group is Lp-regular if it is locally Lp-regular [17, Propo-
sition 5.25].

Theorem 4.3.13. Let G be a Lie group modeled on a sequentially complete locally
convex space E, let g denote the Lie algebra of G. Let Ω ⊆ Lp([0, 1], g) be an open
0-neighbourhood. If for every γ ∈ Ω the initial value problem (4.22) has a (necessarily
unique) solution ηγ ∈ ACLp([0, 1], G), then G is Lp-semiregular. If, in addition, the
function Evol : Ω→ ACLp([0, 1], G), γ 7→ ηγ is smooth, then G is Lp-regular.

Proof. First, fix some γ ∈ Lp([0, 1], g) and for n ∈ N, k ∈ {0, . . . , n − 1} define γn,k ∈
Lp([0, 1], g) as in (4.35). Let Q be a continuous seminorm on Lp([0, 1], g) such that
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BQ
1 (0) ⊆ Ω. By Lemma 4.3.12, there exists some n ∈ N such that γn,k ∈ Ω for k ∈
{0, . . . , n− 1}. We set ηn,k := Evol(γn,k) ∈ ACLp([0, 1], G) and define ηγ : [0, 1]→ G via

ηγ(t) := (ηn,0 ◦ fn,0)(t), for t ∈ [0, 1/n], (4.36)

and

ηγ(t) := ηn,0(1) · · · ηn,k−1(1)(ηn,k ◦ fn,k)(t), for t ∈ [k/n, k+1/n], (4.37)

where

fn,k : [k/n, k+1/n]→ [0, 1], fn,k(t) := nt− k.

Then we easily verify that the function ηγ is continuous and from Lemma 4.3.11, it follows
that ηγ |[k/n,k+1/n] ∈ ACLp([k/n, k+1/n], G), whence ηγ ∈ ACLp([0, 1], G). Furthermore,
ηγ(0) = e and δ(ηγ) = γ. Consequently, Evol(γ) := ηγ solves the initial value problem
in (4.22) for γ, whence G is Lp-semiregular.

Now, assume that Evol : Ω→ ACLp([0, 1], G) is smooth; we will show the smoothness
of Evol on some open neighborhood of γ. From the continuity of each

πn,k : Lp([0, 1], g)→ Lp([0, 1], g), ξ 7→ ξn,k,

(see Lemma 4.3.11), it follows that there exists an open neighborhood W ⊆ Lp([0, 1], g)
of γ such that πn,k(W ) ⊆ Ω for every k ∈ {0, . . . , n− 1}. Then

Evol : W → ACLp([0, 1], G), ξ 7→ ηξ

is defined, where ηξ is as in (4.36) and (4.37). It will be smooth if we show (using Lemma
4.2.31) that each

W → ACLp([k/n, k+1/n], G), ξ 7→ ηξ|[k/n,k+1/n] (4.38)

is smooth. But, by construction, we have

ηξ|[0,1/n] = Evol(ξn,0) ◦ fn,0

and

ηξ|[k/n,k+1/n] = evol(ξn,0) · · · evol(ξn,k−1) Evol(ξn,k) ◦ fn,k,

so the smoothness of (4.38) follows from Lemma 4.3.11 and Remark 4.3.8.
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