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Abstract

In the first part of this thesis, we recall the concept of differentiability of vector-valued
functions on topological groups along one-parameter subgroups and introduce a notion
of C*!-functions on products of topological groups. We study the properties of C*- and
C*!_functions and of the locally convex spaces C*(G, E) and C*!(G x H, E). Further,
we prove an exponential law of the form C*(G x H, E) = C*(G, C'(H, E)), which holds
under suitable hypotheses on G and H.

In the second part of the thesis, we show that in cases where G is a locally exponential
Lie group or a certain direct limit Lie group the above calculus of C*-functions coincides
with the differential calculus on G as a locally convex manifold.

In the third part, we discuss Lebesgue spaces LP([a, b], E') of Lusin-measurable vector-
valued functions and the corresponding vector spaces ACr»([a,b], E) of absolutely con-
tinuous functions. These are used to construct Lie groups ACrs([a,b], G) of absolutely
continuous functions with values in an infinite-dimensional Lie group G. We extend the
notion of LP-regularity of infinite-dimensional Lie groups introduced by Glockner to this
setting and adapt several results and tools.



Contents

Deutsche Zusammengfassung: Im ersten Teil der Dissertation wiederholen wir den Begriff
der Differenzierbarkeit von vektorwertigen Funktionen auf topologischen Gruppen ent-
lang der Einparametergruppen und wir fithren den Begriff der C*!-Funktionen auf Pro-
dukten von topologischen Gruppen ein. Wir untersuchen die Eigenschaften der C*- und
C*!_Funktionen sowie der lokalkonvexen Riume C*(G, E) und C*!(G x H, E). Weiter
beweisen wir ein Exponentialgesetz von der Form C*!(G x H,E) = C*(G,C'(H, E)),
welches unter bestimmten Voraussetzungen an G und H gilt.

Im zweiten Teil der Arbeit zeigen wir, dass falls G eine lokal exponentielle Liegruppe
oder ein direkter Limes bestimmter Liegruppen ist, das obere Differentialkalkiil mit dem
Differentialkalkiil auf G als lokalkonvexe Mannigfaltigkeit iibereinstimmt.

Im dritten Teil untersuchen wir Lebesgue-Réaume LP([a,b], E) der Lusin-messbaren
vektorwertigen Funktionen und die Vektorrdume ACr»([a,b], E) der entsprechenden ab-
solutstetigen Funktionen. Diese nutzen wir um Liegruppen AC7»([a,b], G) der absolut-
stetigen Funktionen mit Werten in einer unendlich-dimensionalen Liegruppe G zu kon-
struieren. Wir erweitern den Begriff der LP-Regularitiat von unendlich-dimensionalen
Liegruppen, eingefiihrt von Glockner, auf diesen Rahmen und passen einige Ergebnisse
an.

vi



1 Introduction

Exponential laws

Exponential laws of the form C*°(M x N, E) = C*°(M,C>(N, E)) for spaces of vector-
valued smooth functions on manifolds are essential tools in infinite-dimensional calculus
and infinite-dimensional Lie theory (cf. works by Kriegl and Michor [28], Kriegl, Michor
and Rainer [29], Alzaareer and Schmeding [I], Gléckner [19], Gléckner and Neeb [21],
Neeb and Wagemann [34], and others). Stimulated by the research by Beltita and Nicolae
[4], we devote the first part of this work to providing exponential laws for function spaces
on topological groups.

Let G be a topological group, U C G be an open subset, f: U — FE be a function
to a locally convex space and £(G) := Homgs(R,G) be the set of continuous one-
parameter subgroups v: R — G, endowed with the compact-open topology. For x € U
and v € £(G) let us write

Dy () 1= lim 2(F(x (1)) — £ ()

if the limit exists. Following Riss [40] and Boseck et al. [§], we say that f is C* (where
k € INg U{oo}) if f is continuous, the iterated derivatives

d9 f(z,m,...,%) = (Dy, - Dy, f)(2)

exist for all x € U, i € N with ¢ < k and ~1,...,7 € £(G), and the obtained maps
d9f: U x £(G)" — E are continuous. We endow the space C*(U, E) of all C*-maps
f: U — E with the compact-open C*-topology (recalled in Definition [2.1.3). If G and
H are topological groups and f: G x H — E is C*, then fY(x) := f(z,e) € C*°(H, E)
for all x € G. With a view towards universal enveloping algebras, Beltita and Nicolae
[4] verified that f¥ € C*°(G,C*(H, E)) and showed that the linear map

$: C®°(G x H,E) = C®(G,C®(H,E)), f~fY

is a topological embedding.

Recall that a Hausdorff space X is called a kr-space if functions f: X — R are
continuous if and only if f ‘ ¢ 1s continuous for each compact subset K C X. We obtain
the following criterion for surjectivity of ® (Theorem [2.5.5)):

Theorem A. Let U C G, V C H be open subsets of topological groups G and H, and
E be a locally convex space. If U x V x £(Q)" x £(H) is a kr-space for all i,j € No,
then

®: C®°(U x V,E) = C®°(U,C®(V,E)), f~f"

18 an isomorphism of topological vector spaces.
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The condition is satisfied, for example, if both G and H are locally compact or both
G and H are metrizable (see Corollary [2.5.7)).

Generalizing the case of open subsets U and V in locally convex spaces treated by
Alzaareer and Schmeding [I] and Gléckner and Neeb [21], we introduce C*!-functions
f:UXxV — E on open subsets U C G and V' C H of topological groups with separate
degrees k,l € INg U {oo} of differentiability in the two variables, and a natural topology
on the space C*!(U x V, E) of such maps (see Definition for details). Theorem A
is a consequence of the following result (Theorem :

Theorem B. Let U C G, V C H be open subsets of topological groups G and H, let B
be a locally convex space and k,1 € Ng U {oo}. If U x V x £(G)* x £(H) is a kgr-space
foralli,j € Ng withi <k, 5 <I, then

o: CHU(U x V,E) —» CHU,CY(V,E)), [~ fY
18 an isomorphism of topological vector spaces.

A special case of the above theorem (for subsets U, V of locally convex spaces) can
also be found in [I].

Differentiability on Lie groups

Let f: G — FE be a function on an infinite-dimensional Lie group G with values in a
locally convex space /. Another possible concept of differentiability of such functions was
popularized by Milnor [30], where G is considered as a differentiable infinite-dimensional
manifold and the differential calculus arises from the calculus of functions between locally
convex spaces, the so-called Keller-C*-calculus [27], going back to A. Bastiani [2] (we will
call such functions C’I’;fd-functions, see Definition . The second part of this work is
devoted to the question, under which conditions do both the concepts of differentiability
of vector-valued functions on infinite-dimensional Lie groups coincide. We obtain the
following result (Theorem [3.2.10)):

Theorem C. Let E be a locally conver space and k € No U {oco}. If G is a locally
exponential Lie group or a direct limit Lie group of an ascending sequence G1 C Go C - - -
of finite-dimensional Lie groups such that the inclusions G, — Gpy1 are continuous,
then C*(G,E) = Crlflfd(G, E) as topological vector spaces.

The interplay of differentiability along one-parameter subgroups and differentiability
on a Lie group G as a manifold plays a role, for example, in the study of spaces of smooth
vectors, cf [31], [33].

Measurable regularity of Lie groups

In [30], Milnor calls an infinite-dimensional Lie group G modelled on a sequentially
complete locally convex space (with Lie algebra g and identity element e) reqular if for



every smooth curve v: [0,1] — g the initial value problem
n=ny, n(0)=e, (1.1)
has a (necessarily unique) solution Evol(y): [0,1] — G and the function
evol: C*°([0,1],9) = G, ~ > Evol(y)(1)

so obtained is smooth.

Further, Gléckner [20] and Neeb [32] deal with the concept of C*-regularity, investigat-
ing whether the above initial value problem has a solution for every C*-curve y (the solu-
tion Evol(y) being a C**!-curve then) and whether the function evol: C*([0,1],g) — G
is smooth.

Generalizing this theory even more, in [I7] Glockner constructs Lebesgue spaces
L% ([a,b], E) of Borel measurable functions 7: [a,b] — E with values in Fréchet spaces
E (for p € [1,00]) and introduces spaces of certain absolutely continuous E-valued
functions 7: [a,b] — E (denoted by ACp»([a,b], E)) with derivatives in L% ([a,b], E).
Having a Lie group structure on the spaces AC»([0, 1], G) available, in [17] a Fréchet-
Lie group G is called LP-semiregular if the initial value problem has a solution
Evol(y) € ACL»([0,1],G) for every v € L%([0,1],9), and G is called LP-regular if it
is LP-semiregular and the map Evol: L;([0,1],9) — ACr»([0,1],G),y + Evol(y) is
smooth.

Since the sum of two vector-valued Borel measurable functions may be not Borel
measurable, certain assumptions need to be made to obtain a vector space structure
on the space of the maps which can be considered. This implies that the concepts of
LP-regularity (mentioned above) only make sense for Fréchet-Lie groups (and some other
classes of Lie groups described in [17]).

To loosen this limitation, in the third part of this work we recall the notion of Lusin-
measurable functions in Definition [4.1.2] which have the advantage that vector-valued
Lusin-measurable functions always form a vector space, and define the corresponding
Lebesgue spaces LP([a, b], E') in Definition Further, in Lemma[d.1.8] we recall that
under certain conditions there is a close relation between Lusin and Borel measurable
functions (known as Lusin’s Theorem). This leads to the result that the Lebesgue spaces
L% ([a,b], E) constructed in [17] coincide with our Lebesgue spaces LP([a, b], E), due to
the conditions needed for Borel measurable functions to form a vector space. (Note that
Lebesgue spaces of Lusin-measurable functions are also considered by Florencio, Mayoral,
Padl [11], for example. Also Bourbaki [9], Thomas [43] work with Lusin measurability.)

We lean on the theory established in [17] and construct locally convex topological
vector spaces ACr»([a,b], E) of functions with values in sequentially complete locally
convex spaces and Lie groups ACr»([a,b],G). In Definition we define the notion
of LP-regularity for infinite-dimensional Lie groups modelled on such spaces and adopt
several useful results from [17]. In particular (Theorem [4.3.9):

Theorem D. IfG is an LP-semiregular Lie group, then the function Evol: LP(]0,1],g) —
AC»([0,1], G) is smooth if and only if Evol is smooth as a function to C([0,1],G).
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As a consequence, we get (Theorem |4.3.10)):

Theorem E. Let G be a Lie group modelled on a sequentially complete locally convex
space and p,q € [1,00] with ¢ > p. If G is LP-regular, then G is L9-regular. Furthermore,
in this case G is C°-regular.

Moreover, we show (Theorem {4.3.13]):

Theorem F. Let G be a Lie group modelled on a sequentially complete locally convex
space. Let Q C LP([0,1],g) be an open 0-neighbourhood. If for every -y € ) there exists
the corresponding Evol(vy) € ACr»([0,1],G), then G is LP-semiregular. If, in addition,
the function Evol: Q — ACr»(]0,1],G) is smooth, then G is LP-regular.

Notation All topological spaces are assumed Hausdorff. We call a function f: X — Y
between topological spaces X and Y a topological embedding if f is a homeomorphism
onto its image (it is known that an injective map f is a topological embedding if and
only if the topology on X is initial with respect to f, that is, X carries the coarsest
topology making f continuous). All vector spaces are R-vector spaces (and locally convex
topological vector spaces are called ”locally convex spaces” for short). Wherever we write
[a, b], we always mean an interval in R with a < b.



2 Exponential laws for spaces of
differentiable functions on topological
groups

In Section we recall the notion of a C*-function f: U — E on an open subset of a
topological group with values in a locally convex space and the definition of the locally
convex space C*(U, E). Further, in Section we consider vector-valued functions
on products of topological groups with different degrees of differentiability in the two
factors (called C*!-functions) and the associated function spaces C*!(U x V, E). After
studying some properties of differentiable functions and the function spaces (Sections
and [2.4)), we prove the exponential law C*/(U x V, E) = C*(U, CY(V, E)) in Section

(Theorem [2.5.4)).

2.1 Differentiability on topological groups

Definition 2.1.1. Let G be a topological group. A one-parameter subgroup is a group
homomorphism v: R — G. We denote by £(G) := Homs(RR, G) the set of all continuous
one-parameter subgroups endowed with the compact-open topology.

Note that the space £(G) does not have a topological vector space structure in general.

Remark 2.1.2. For a topological group G, the evaluation map £(G) x R — G, (v,t) —
~(t) is continuous.

If G, H are topological groups, v € £(G) and ¢: G — H is a continuous group
homomorphism, then ¢ oy € £(H) and the function £(¢): £(G) — £(H),y + @ o~ is
continuous (cf. [2I, Appendix A.5], see also [14, Appendix BJ).

For ¢ = (v,nm) € C(R,G x H) it is easy to see that ¢ € £(G x H) if and only if
v € £(G) and n € £(H). Moreover, the natural map

(£(pr1), £(pra)): £(G x H) = £(G) x £(H)

(where pry: G x H — G, pry: G x H — H are the coordinate projections) is a homeo-
morphism (cf. [2I, Appendix A.5], [14, Appendix B]).

Now, we recall the notion of differentiability along one-parameter subgroups of vector-
valued functions on topological groups:
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Definition 2.1.3. Let U C G be an open subset of a topological group G and E be a
locally convex space. For amap f: U — E, x € U and v € £(G) we define

A0 f () = df(r,7) 1= Dy f () 1= lim (- (0)) ~ f(2)

t—0

if the limit exists.
We call f a C*-map for k € N if f is continuous and for each z € U, i € IN with i < k
and 71, ...,7 € £(G) the iterative derivatives

d9 f(z,m,...,%) = (Dy, - Dy, f)(2)

exist and define continuous maps
dVf:Ux &G) = E, (2,7,--,%) = (D -~ Dy f) ().

If fis C* for each k € NN, then we call f a C®-map or smooth. Further, we call
continuous maps C° and write d© f := f.

The set of all C*-maps f: U — E will be denoted by C*¥(U, E) and we endow it with
the initial topology with respect to the family (d(i))iemo,isk of maps

dD: C*U,E) - C(U x £(G)',E), fdVf

(where the right-hand side is equipped with the compact-open topology) turning C*(U, E)
into a Hausdorff locally convex space. (This topology is known as the compact-open C*-

topology.)

Remark 2.1.4. Note that the compact-open topology on C(U, E) coincides with the
compact-open C%-topology.

Remark 2.1.5. Let E, F' be locally convex spaces and f: U — F be a continuous
function on an open subset U C E. The directional derivative is defined as

o1
4 () = Dy f () = lim = (f(z + 1)  f(2),
—0t
for z € U, y € E. The function f is called C* if for each 1 < i < k the differential

dVf:UxE' = F, d9Yf(z,y1,...,y:) = (Dy, - Dy, f)(x)

is defined and continuous. If f is C* for each k € N, then f is called C*. This
concept can be understood as a special case of the concept in Definition [2.1.3] as F
is, in particular, a topological group and E = £(F) via y +— -, where 7, denotes the
one-parameter subgroup of F of the form t — ty.

In the case £ = R, we write

FiUSF f(s)=lim %(f(s +1) — £(s)).

t—0
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2.2 Differentiability on products of topological groups

Definition 2.2.1. Let U C G and V' C H be open subsets of topological groups G and
H, let E be a locally convex space. Foramap f: UxV - E, ze€U,yeV,ve £(Q)
and n € £(H) we define

"0 f(w,9,7) == Dy 0) f(#,9) = lim %(f(fv (8),y) = f(2,y))
and

OV f(x,y,m) := Doy f(z,y) := lim %(f(xa y-n(t) = f(z,y))

t—0

whenever the limits exist.
We call a continuous map f: U x V. — E a C*lmap for k,1 € Ng U {oo} if the
derivatives

A f(@,y, 7, Y- ng) = (Do) Diy0)Diomy) -+ Do) £) (@, 9)
exist forallz e U,y € V,i,j € Ng with i <k, j <land yi,...,7 € £(G), m,...,n; €
£(H), and define continuous functions

AW U XV x £(Q) x &(H)Y - E

(@ Yo Y1s ooy Yir My -2, 1) (D(%O) e D(WO)D(O%) N D(Om)f)(:n,y).

We endow the space C*(U x V, E) of all C*!-functions f: U x V — E with the initial
topology with respect to the family of maps

dOD: CP U x V,E) - C(U x V x £(Q) x &(HY,E), [~ d®)},

with 4,7 € No,i < k,j <[, which is a Hausdorff locally convex vector topology (called
the compact-open Ck’l—topology.)

Remark 2.2.2. If k = 0 or | = 0, then the definition of C*'-maps f: U x V — E
also makes sense if U or V, respectively, is any Hausdorff topological space. All further
results for C*!-maps on topological groups carry over to this situation.

Remark 2.2.3. Simple computations show that for k > 1 amap f: U — E is C* if and
only if fis C' and df : U x £(G) — E is C*~10; in this case we have d®0 (df) = d0+1) f
foralli € N with i <k — 1.
Similarly, we can show that a map f: U x V — E is C*0 if and only if f is CY and
dMO f: U x (V x £(G)) = E is C* 10 then d@0) (d(10) f) = d@+10) f for all 4 as above.
Further, if amap f: U x V — E is C®!, then for each i,j € Ny with i < k, j <1 and
fixed y1,...,7vi € £&(G), m,...,n; € £(H) the map

D0y Diyy,0)PDiogyy) - Do) [ U XV = E

is CF1=7 if § = 0, and C*=%0 otherwise.
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We warn the reader that the full statement of Schwarz’ Theorem does not carry over
to non-abelian topological groups; for a C2-function f: G — R and 7,1 € £(G) it can
happen that DD, f # D,D.f.

Example 2.2.4. Consider the following subgroup G of GL3(R):

1 r1 X9
G=}Xzx=|0 1 =x3]:x1,29,23 € R
0 0 1

(known as the Heisenberg group) and v,n € £(G) defined as
1 ¢t 0 1 00
vt):=10 1 0], nt)=(0 1 ¢ (Vt € R).
0 0 1 0 01

Then (G,-) = (R3, %) as topological groups via

1 Tr1 T2
©0:G=R: =0 1 x3|— (z1,22 23),
0 0 1

where the group multiplication *: R3 x R? — R3 is defined as
(@1, 2, 23) * (y1, Y2, y3) := @@ (w1, 22,23) - ¢~ (y1, Y2, y3))
= (z1+y1, 22 + 21Y3 + Y2, T3 + Y3).
Let g: R?> — R be a C%-map in the usual sense and define
fi=gop:G—=R,

which is a C%-map by Lemma Then for each z € G, the derivatives D, f(x),
Dy f(x), (DyDf)(x) and (DD, f)(x) can be expressed using the partial derivatives of

g.
First, we have

Dy () = lim (/@ 1(0)) = £(2)) = lim 1 (9ol - 7(0))) — gl(2))

t—0

o1
= lim E(g(xl + t, o, x3) — g(x1, 22, 23))

t—0
1 0

= lim —(g((z1, 22, 23) +1(1,0,0)) — g(21, w2, 23)) = -—g(21, ¥2, x3).
t—0 t 0z

Further,

Dy (x) = lim (7 -n()) ~ f(2)) = lim ~(glp(ar - n(t))) — g(e()))

t—0
1
= %1_{% 5(9(951, wo +txy, w3 +t) — g(w1, 22, 73))
0 0

=1 ——qg\T1, 92, —ag\xr1,r9,13).
1 83:29( 1, %2, 3)+8x39( 1, T2, 3)
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Now,
.1
(DyDyf) () = lim —(Dsf(z - n(t) = Dy ()
_liml i (r1, 20 + txy, +t)_i (21,72, T3)
0t amlg 12 1,23 83:19 1,22, 23
82 82
=1 81’181’ g(xljx2’x3)+mg(xla'anxii).
And, finally

(DD, f)(x) = lim (D (& -7(1)) ~ Dyf(2))

(x1 +1) i(x +t,x JC)—i-i(:L’ +t, 22, T3)
1 8:1:29 1 , L2, T3 8:1:39 1 , L2, T3

1 8:1:29 1,72,T3 8;039 1,72,T3

. T 0 0
tlm (a$2g(xl+ ax2a$3) a$2g(x17x2ax3)>

XT3 t—0 02

2 82

+ lim1 (ag(xl +t,x9,23) — ig(xl T9 J:g)) + lim ig(:lcl +t,x9,x3)
a M M af[,':g M M a )] b
0 0
=x - 29(331, To,3) + 8:1:169639(%,962,903) + aimg(fﬂl,ﬂﬁz,ﬂﬁ?))

— (DyDyf)(x) + fmgm, 29,3).

Thus we see that if %g(ml,xg,a:g) # 0, then (DD, f)(z) # (DyD~f)(x).
Nevertheless, we can prove the following restricted version of Schwarz’ Theorem for
C*tmaps:

Proposition 2.2.5. Let U C G and V C H be open subsets of topological groups G
and H, let E be a locally convex space and f: U x V. — E be a C*'-map for some

k,l € NU{oo}. Then the derivatives
(Do) Do Piaioy - Pin0) )2 )

exist for all (x,y) e UxV,i,j e Nwithi <k, j <land,...,v € £(G), m,...,n; €
L£(H) and we have

(Do) Do) Pizi0) Dy 0) ) (@, )
= (D(’Yzwo) T D(’Yl,O)D(U,nj) T D(O,m)f)(x7 Y).-

Proof. First we prove the assertion for j = 1 by induction on 3.
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Base case: Let (z,y) € U x V, v € £(G) and n € £(H). For suitable €,§ > 0 we
define the continuous map

h: ]—6,6[X[—5,(5[—> E7 (S,t) i—>f(.’E"')/(S),y'7’](t)),
and obtain the partial derivatives of h via

gh(s, ) = lim ~(h(s +r,t) — h(s,1))

S r—07r

= lim l(f(x “(s)-y(r),y-n(t)) — flz-v(s),y-n(t)))

r—=07r

= D(%O)f(l’ . ’}/(3); Y- U(t)%

and analogously,

Oh
a(‘g? t) = D(O,n)f(x ’ ’7(3)1 Y- "7(75))
and
0%h
st 51 = (L0 Do f)@-(s),y - n(t)).
The obtained maps %, % and gj& are continuous, hence we apply |21, Lemma 1.3.18],

which states that in this case also the partial derivative % exists and coincides with

9%h
5s97- Lherefore, we have

9%h 8%h oh oh
(D0 Doy (@, y) = 552(0,0) = —=-(0,0) = lim ! <(0,r) - (0,0)>

— 9sot Otds r—0r \ Os Os
o1
= lim — (Deyo)f oy -n(r)) = Diy o) f (2, y))

= (Do, Dy,0)f) (7, ).

Thus the assertion holds for ¢ = 1.
Induction step: Now, let 2 <i <k, (z,y) €U XV, 7,...,7 € £(G) and n € £(H).
Consider the map

g1: UXV = E, (l‘,y) = (D(%'—LO) T D(’Y1,O)f)(m7y)a

which is C10 (see Remark [2.2.3)). Further, g; is C%!, because

Dog1(z,y) = (Do Diyi1,0) Dinn0)) (1)
= (D(%fl,o) T D('YI,O)D(O,T])f)(‘T7 y),

by the induction hypothesis, and we see that

(D40 D0.m91) (@ y) = (D(5,,00Dmi1.0) - D 0) Doy (@, 9),

10



2.2 Differentiability on products of topological groups

whence ¢; is C1'. By the base case, the derivative (Do) Dy;,0091) (w,y) exists and
equals (D, 0)D,n91)(7,y), thus we get

(D(yi,0) Dy 0y Doy ) (@, y) = (D00 Do,y 91) (2, y)
= (D) D,,0091) (2, y)
= (D(Um)D(’mO) T D(w,O)f)(xa Y).

Hence the assertion holds for j = 1.
Now,let 2 <j<1,1<i<k,v,....,7 € £G),m,...,n; € £(H)and (z,y) € UxV.
By Remark [2.2.3] the map

92: U X V — E’ (.%',y) = (D(O,njq) e D(0,7h)f)(x7y)
is C*1 whence we have
(D(Oﬂlj)D(%'aO) e D(’YLO)D(Oijl) T D(O,m)f)(xy Y)
= (D) D3:,0) - Dizy,0092)(, y)

= (D(’Yzwo) e D(71,0)D(0,77j)92)($7 )
= (D(%wo) o D(’7170)D(0777]') e D(Oym)f)(l‘? Y), (2.1)

using the first part of the proof. But we also have

(D0,3)P7:,0) - Pin,0) Loy 1) - Do) ) (@, y)
= (Do) Pom; 1) Pom)Piai0) - Dy 0) ) (@,9), (2.2)

by induction, whence (2.2)) equals (2.1)), that is

(Do) - Pom)yPi0) - Dy 0) ) (@, 9)
= (Di0) Do) Piogny) - Do) ) (@, 9),

and the proof is finished. O

Corollary 2.2.6. Let U C G and V C H be open subsets of topological groups G and
H, let E be a locally conver space and k,1 € NoU {oo}. A map f: U xV — E is C¥!
if and only if the map

9:VxU—=E, (y,2) f(z,y)
is CY*. Moreover, we have

d(j’i)g(yal‘anlv' sy Mgy Yy e e ”71) = d(i7j)f(x’ya/yla s YT, - anj)

forallz e U,y eV,i,j€ Ngwithi <k, j<land,...,vi € L(G), m,...,n; €
L£(H).

11



2 Exponential laws

Proof. First, we assume that [ = 0, that is, f: U x V — E is C¥9. Then for z € U,
y € V and v € £(G) we have

d0 f(z,y,v) = lim %(f(a: (8),y) — f(z,y))

t—0

O g(

— 1im L (g4, 2 - 1(1)) — gy, 2)) = d®Vg(y, 2, ),

t—0 t

and similarly we get d%9g(y, z,71,...,7%) = d%O f(z,y,1,...,7) for each i € N with
i <kand~,...,v € £(G). The obtained differentials d%g: V x U x £(G)* — F are
obviously continuous, hence g is C%*. The other implication, as well as the case k = 0,
can be proven analogously.

If k,1 > 1, then the assertion follows immediately from Proposition [2.2.5 O

Remark 2.2.7. Using Remark [2.2.3] and Corollary 2:2.6] we can easily show that if
f:UxV — Eis C* then for all 4, j € Ng with i < k, j <1 and fixed 71, ...,7 € £(G),
M,...,n; € L(H) the maps

Diio) Doy Loy - Doy [+ U XV = E

are Ck—41=7,

2.3 Properties of C*- and C*'-functions

Lemma 2.3.1. Let U C G, V C H be open subsets of topological groups G and H, let E,
F be locally convex spaces, A\: E — F be a continuous linear map and k,l € Nog U {o0}.

(a) If f: U — E is a C*-map, then the map Ao f: U — F is C*.
(b) If f: U xV — E is a C'-map, then the map Ao f: U x V — F is C¥l.
Proof. To prove (a),let z € U, v € £(G) and t # 0 small enough, then we have

Af(@-y(1) = Af(@) _ (f(:v (1) = f(w)>
t t

= Adf (z,7)),

as t — 0, because \ is assumed linear and continuous. Thus, the derivative d(Ao f)(z,~)
exists and we have d(Ao f)(x,v) = (Ao df)(z,7).

Proceeding similarly, for each ¢ € IN with ¢ < k, v1,...,7 € £(G) we obtain the
derivatives d® (Xo f)(z,71,...,%) = (Aod® f)(x, 71, ...,7). Since each of the obtained
maps d) (Ao f) = Aod®f: U x £(G)" — F is continuous, we see that the map Ao f is
Ck.

Analogously, assertion (b) can be proved showing that for each i,j € INy with ¢ < k,
j <1 we have d®)(\o f) = Xod@I)f. O

12



2.3 Properties of C*- and C*!-functions

Lemma 2.3.2. Let G and H be topological groups, E be a locally convex space. Let
0: G — H be a continuous group homomorphism and f: V — E be a C*-map (k €
INU {oo}) on an open subset V.C H. Then for U := o~ *(V) the map

fooly: U=E, z flo(x))
is C*k.

Proof. Obviously, the map f o go!U is continuous. Now, let z € U and v € £(G). For
t # 0 small enough we have

Pl ) = Sele)) _ S0 00D =S g0y oy

ast — 0, since p oy € £(H), see Remark Therefore d(f o gp‘U)(a:, ) exists and is
given by df (p(x), 9 0 7).

Repeating the above steps, we obtain for ¢ € IN with i < k, v1,...,7 € £(G) the
derivatives d(f o @‘U)(a:,fyl, ) =dD (), o, ..., 0 0.

Now, recall that the map £(p): £(G) — £(H),n — @on is continuous (Remark [2.1.2)),
whence also each of the maps

dD(fopl,) = dDf)o(p|, x (@) x -+ x £(¢): U x £G)' = E

-~

1-times
is continuous. Hence f o ‘P}U is CF. U

Lemma 2.3.3. Let U C G, V C H be open subsets of topological groups G and H, let
(Ea)aea be a family of locally convex spaces with direct product E := [[,c4 Eo and the
coordinate projections pr,,: E — E,. For k,l € Ng U {oco} the following holds:

(a) A map f: U — E is C* if and only if all of its components fo := pr,of are C*.

(b) Amap f: UxV — E is Ol if and only if all of its components f, := pr,of are
Ccki,

Proof. To prove (a), first recall that because each of the projections pr, is continuous
and linear, the compositions pr, of are C* if f is C*, by Lemma (a).

Conversely, assume that each f, is C*¥ and let x € U, v € £(G) and t # 0 small
enough. Then we have

e 2(0) = ) = ( (Gao2(0) = ule)) )

a€A

Since 1 (fo(z - (t)) — fa(®)) converges to dfa(z,7) ast — 0 for each o € A, the deriva-
tive df (z,y) exists and is given by (dfo(Z,7))aca-

13



2 Exponential laws

Repeating the above steps, we obtain for ¢ € IN with i« < k and ~1,...,7 € £(G)
the derivatives d® f(z,y1,...,7) = (d(i)fa (71, - ’%))aeA’ which define continuous
maps

40 f = (d(i)fa) LUXLG) = E.

ae

Therefore, f is CF.
The assertion (b) can be proven similarly, by using Lemma (b) and showing that

for all 4, j € No, with i <k, j <1 we have d®) f = (d®9f,) _,. -

Lemma 2.3.4. Let U C G be an open subset of a topological group G, and E be a locally
convex space. A continuous map f: U — E is C' if and only if there exists a continuous
map

il gl 5 g
on the open set
UM = {(2,7,1) e U x &G) xR :z-(t) € U}

such that
£z, 7,6) = S (G (0) = (=)

for each (x,7,t) € UM with t # 0.
In this case we have df (z,~) = fM(z,~,0) for all z € U and v € £(G).

The above lemma is a special case of the following lemma:

Lemma 2.3.5. Let U C G, V C H be open subsets of topological groups G and H, let
E be a locally convex space. A continuous map f: U x V — E is CY0 if and only if
there exists a continuous map

Oyl v » B,
where
UM = {(2,7,t) e U x £(G) xR :z-»(t) € U},
such that
7197, t) = 5 (G0, ) — F(0)
for each (x,7v,t,y) € UM x V with t # 0.

In this case we have d(l’o)f(x,y,fy) = f[l’o](a;,fy,o,y) forall x € U, y € V and
v € £(G).

14



2.3 Properties of C*- and C*!-functions

Proof. First, assume that the map f19 exists and is continuous. Then forz € U, y € V,
v € £(G) and t # 0 small enough we have

%(f(x (), y) — fla,y) = B, 7, ty) = f0(2,9,0,y)

as t — 0. Hence d19) f(z,7,~) exists and is given by f:%(z,~,0,y), whence the map
AUV x8G) = B, (2,y,7) = f12,7,0,y)

is continuous. Thus f is C10.
Conversely, let f be a C1%-map. Then we define

Ieaa)=iew) gy 2,

(1,0, ¢y(1] (1,0] .

f U XV—>E> f (xa%t’l/)- _{ d(l’o)f(x,y,'y) ift=0.

Since f is continuous, the map fI% is continuous at each (x,,t,y) with ¢t # 0 (by the
continuity of the evaluation map £(G) xR — G). Given z¢ € U and 7 € £(G), we have
(20,70,0) € UM the subset W := Uy, x Uy, x] —¢,e[C UM is an open neighborhood of
(20,70,0) in UM, where Uz € U and U,, C £(G) are open neighborhoods of zg and o,
respectively, and € > 0. Now, for fixed (x,7,y) € Uy, x Uy, X V we define the continuous
curve

h:]—ee[— E, h(t):= f(z-v(t),y).
Then for t €] — ¢,¢[, s # 0 with t + s €] — ¢, ¢[ we have
Wit +s) = h(t) _ flz-2+s)y) = flz-7(),y)

S S

_ Sy (3),w) = F@09) 00 pr ), 4)

as s — 0. Thus, the derivative h/(t) exists and is given by dM9 f(z - y(t),y,~). The so
obtained map h': | — €,¢[— E is continuous, hence h is a C'-curve (see [21] for details
on C'-curves with values in locally convex spaces and also on weak integrals which we
use in the next step). We use the Fundamental Theorem of Calculus ([21, Proposition
1.1.5]) and obtain for ¢ # 0

(£ (1)) — Fla,9) = S (0(0) ~ h(0)

t
1/ dMO f(z - ~(7),y,7)dr
0

f[l’o} (x’ 77 t’ y) =

~+

=
>

QU

\]

i

t

S e

c\Hc\

1
td(l’o)f(x'V(tU)yyﬁ)du:/ dO f(z - ~(tu), y,7)du.
0

But if t = 0, then

1
/ MO f (@ 1(0),y,7)du = dMO f(a,y,7) = F1(2,7,0,9),
0

15



2 Exponential laws

hence

1
P te) = [ 5o (0
0

for all (x,v,t,y) € W x V. Since the map
WxVx[0,1]=E, (z,7tyu)—d"f(e-y(tuw),y,”)

is continuous, also the parameter-dependent integral

1
WXV =B (z,7ty) — / A0 f(x -y (tu), y,v)du = f1O (2,5, t,y)
0

is continuous (by [2I, Lemma 1.1.11]), in particular in (2o, 70,0, y). Consequently, -0

is continuous. O]

We use Lemma as well as the analogue for C''-maps on locally convex spaces
(which can be found in [21, Lemma 1.2.10]), for the proof of a chain rule for compositions
of C*-functions f: G — E and ¢g: E — F, which will be provided after the following
version:

Lemma 2.3.6. Let G be a topological group, P be a topological space and E, F be locally
convez spaces. Let U C G,V C E be open subsets, and k € NU{oo}. If f: UXP - E
is a C*0-map such that f(U x P) CV, and g: V — F is a C*-map, then

gof:UxP—F
is a C*O-map.

Proof. We may assume that k is finite and prove the assertion by induction.
Base case: Assume that f is O, gis C' and let x € U, p € P and v € £(G). For
t # 0 small enough we have

o(F(x1(),p) — 9(f(wp)) 9 (Fp) +#HEORED) — g5z p)
N t
_ 9(f(x,p) +t- O, t,p) — 9(f(z,p)
/
= oM (f(z,p), 1,7, t,p). 1),

where glt, fI10 are the continuous maps from [2I, Lemma 1.2.10] and Lemma m
Consequently, we have

g(f(x-~(),p)) — g(f(z,p))
{

— gW(f(a,p), f19z,~,0,p),0)
= dg(f(x,p),d"0 f(z,p,7))

16



2.3 Properties of C*- and C*!-functions

as t — 0. Therefore, the derivative d"0) (g o f)(z,p,~) exists and is given by the
directional derivative dg(f(z,p),d"% f(z,p,7)).
Consider the continuous map

h:Ux Px£(G)—E, (x,p,7v)+— f(z,p).

Since d9 (g o f)(x,p,7) = (dg o (h,d**) f))(z,p,7), the map
A" (go fy=dgo (h,d™f): U x P x &QG) = F

is continuous, whence g o f is C1°.

Induction step: Now, assume that f is C*0 and g is C* for some k > 2. By Remark
the map d0) f: U x (P x £(G)) — E is C*~19 and it is easily seen that the map
h: U x (P x £(G)) — E defined in the base case is C¥°. Hence, using Lemma (b),
we see that (h,dM0) f): Ux (P x £(G)) = Ex Eis a C*~10-map. Since dg: Vx E — F
is Ck¥~1 (see [21}, Definition 1.3.1]), the map

A (go f) =dgo (h,d"Of): U x (P x &G)) > F

is C*~1.9 by the induction hypothesis, and from Remark it follows that g o f is
CRO. D

Lemma 2.3.7. Let G be a topological group, E, F be locally conver spaces and k €
INU{oo}. Let U C G,V C E be open subsets. If f: U — E is a C*-map with f(U) CV
and also g: V — F is a C*-map, then the map

gof:U—F
is CF.

Proof. We may assume that k is finite and prove the assertion by induction.
Base case: Assume that f and g are C'-maps. Analogously to the preceding lemma,
for x € U, v € £(G) and t # 0 small enough we have

1

L 9(f(@-2(1)) - g(f(2))) = g(f (@), fM (2,7, 1), 1),

with continuous maps fI! as in Lemma and ¢g!" as in [2I, Lemma 1.2.10]. Thus,
the derivative d(g o f)(z,7) exists and we have

d(go f)(w,7) = gM(f(2), fM(2,7,0),0) = dg(f (), df (z,7)).
Using the continuous function
h:Ux &(G) = E, (x,7) = f(a),
we see that

d(go f)=dgo (h,df):U x £(G) = F

17



2 Exponential laws

is continuous, hence g o f is a C'-map.

Induction step: Now, let f and g be C*-maps for some k > 2. Then the function
df: U x £(G) — E is C* 10, by Remark [2.2.3] and the map h: U x £(G) — E is
obviously C*Y. We use Lemma [2.3.3| (b) and see that (h,df): U x £(G) — E x E is
a C*10.map. By [21, Definition 1.3.1], the map dg: V x E — F is C*~1  hence by
Lemma [2:3.6] the composition

d(go f)=dgo (h,df): U x £(G) - F
is C*=1.0 whence g o f is C*, by Remark O

2.4 Properties of spaces of C*- and C*'-functions

The following two propositions provide a relation between C*- and C**-maps on products
of topological groups (a version can also be found in [§]), in particular, we will conclude
that C°>°(U x V, E) = C*°(U x V, E) (Corollary [2.4.3).

Proposition 2.4.1. Let U C G, V C H be open subsets of topological groups G and H,
let E be a locally convex space and k € No U {oco}. If f: U XV — E is CF¥ then f is
Ck.

Moreover, the inclusion map

U: CPRMU X V,E) - CYU X V,E), ff
is continuous and linear.

Proof. The case k = 0 is trivial. For k£ > 1, we show by induction on ¢ € IN with ¢ < k
that for all (z,y) € UXV, (v1,m),---, (vi,m) € £(G x H) the derivatives of f are given
by

dDF((x,9), (1, m)s - -5 (vi ) (2.3)

(2
= ZZdOﬂ_J)f(xuya’yrla e a’yrjans17~ . 'ansi,j)

J=0 I
where I;; ranges through the sets {ry,...,7;} € {1,...,¢} with r < --- < r; and we
write {1, R ,Z} \ Ij,i = {81, RN Si—j} with s1 < -+ < Si—j-
Base case: Let (x,y) € UxV and (v,n) € £(Gx H), that is, v € £(G) and n € £(H),
see Remark For t # 0 small enough we have

f((z,y) - (v(#),n(®)) = f(=,y)

t
_ S @),y -nt) - fz,y)
t
_ fea®)y-n®) = flaa(),y) | flay(t)y) - flay)
t t
_ 9y -n(®), 2 ) — gy 2 -v@t) | fle-(),y) — flz,y)
t t ’

18



2.4 Properties of spaces of C*- and C*!-functions

where g is the map ¢g: V x U — E, (y,z) — f(x,y). By Corollary the map ¢ is
CY', whence the map gl is defined and continuous, as well as f[0 (see Lemma [2.3.5)).
Thus we have

gy -n(t),z-~(@)) —gly,z-~()) n flx-v(),y) — fz,9)
t t

="y, t - y(0) + S (@, 1)
= gy, m,0,2) + (2, 7,0,y)

as t — 0. Therefore, the derivative df ((z,y), (7,n)) exists and is given by

df ((z,9), (v,1)) = g%y, n,0,2) + L0 (z,~,0,9)
= d"g(y, z,n) +d0 f(x,y,7)
= dOV f(z,y,n) +dO f(z,y,7).

Induction step: Assume that 2 <i <k, (z,y) € UXV, (y1,m), ..., (v, ni) € L(GXH).
Then for ¢ # 0 small enough we have

% (d(i_l)f((x i),y i), (vi,m)s -5 (Vie1, i)

7d(i—l)f((x’y%(71,171),...,(%71,771;1)))

1 il
= Z Z E (d(J7 / 1)f($ ’Yz(t),y ’ ni(t)77T17"' 777”]'77781?" . 77751-_]-_1)

=Dy, 0) Py 0 Piome, ;) Do) ), y)> :

Each of the maps

Diy,.0) Doy 0 Pos,_, ) Do) [ U XV = B
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2 Exponential laws

is Cb! (see Remark [2.2.7), hence C! (by the base case) and we have

i—1
1
S (P, 0 Pisny 0P, 1+ Ponn H)@ - (t), y - (1))

Jj=01;;1

= (D00 Py 0P,y Do) F(, y)>

i—1
=3 ((D(y,«jp) Dy, 0 Doy Pome, ;) Do) ) (@,9)

§=0 1 1
+ (D0 Dye,.0) Dy 00 Piome,_, ) - Piom) (=, y))
i
=N AT F (@, ey Ve s T
§=0 I;;
as t — 0 (using Proposition . Thus holds, and we have
i
d9 f = Z Z dUi=9) f o 91,4
§=0 I;;

where

9, UxV x G x H)' - U xV x &(G) x &(H)",

(@Y (Y1m1)5 -+ o5 (Vis M) = (T3 Y5 Yrrs ooy Vs Mo e v o5 s ;)

are continuous maps (see Remark [2.1.2). Hence f is C*.
The linearity of the map W is clear. Further, each of the maps

97,0 CU XV x &(GY x L(H)"™,E) = C(U x V x £(G x H)", E),
h+— ho 9I;
is continuous (see [21, Appendix A.5] or [14, Lemma B.9]), whence each of the maps
d(l) (0] \I/ = Z Zg?j,i o) d(]uz_])

is continuous. Since the topology on C*(U x V, E) is initial with respect to the maps
d®, the continuity of ¥ follows. O

Proposition 2.4.2. Let U C G, V C H be open subsets of topological groups G and H,
let E be a locally convex space and k,l € No. If f: U xV — E is a C**'-map, then f
is CFL,

Moreover, the inclusion map

U: CHY U x V,E) - CH (U x V,E), f—f

is continuous and linear.
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2.5 The exponential law

Proof. We denote by e € £(G) the constant map eg: R — G,t — eq, where eq is the
identity element of G, and ey € £(H) is defined analogously.

Let z e U,y eV, v,...,7 € £(G) and m1,...,n; € £(H) for some i,j € Ny with
1 <k, 7 <l. Then we obviously have

dOD) @y, )
= d D f((2,y), (vsen)s -, (viren), Eam), - (Eaamy))-
Each of the maps
pij: UxV x&G) x £H) - U xV x £(G x H)"™,
(T Y Y15y Yis Mooy m5) = (@0, (s €m)s -+ - (Vi €m), (Egym)s - - (€6 mj))
is continuous (see Remark and we have
d9) f = qi+i) £ o Pi-

Therefore, f is C*+.
The linearity of the map V¥ is clear. Further, by [2I, Appendix A.5] (see also [14]
Lemma B.9]), each of the maps

piji C(UxV x &G x H) E) = C(UxV x £G)" x &(H),E),
h — hopi,j

is continuous, whence each of the maps
d@d) o = pi;o d(i+3)

is continuous. Hence, the continuity of W follows, since the topology on the space
C*Y(U x V, E) is initial with respect to the maps d("7), O

Corollary 2.4.3. Let U C G, V C H be open subsets of topological groups G and H,
let E be a locally convex space. A map f: U xV — E is C™ if and only if f is C°.
Moreover, the map

U: C°(U x V,E) - C®®U xV,E), f—f
1 an tsomorphism of topological vector spaces.

Proof. The assertion is an immediate consequence of Propositions and O

2.5 The exponential law

We recall the classical Exponential Law for spaces of continuous functions which can be
found, for example, in |21, Appendix A.5]:
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2 Exponential laws

Proposition 2.5.1. Let X1, X5, Y be topological spaces. If f: X1 x Xo — Y is a
continuous map, then also the map

VX1 = C(Xa,Y), x fV(z):= f(z,0)
18 continuous. Moreover, the map
P: C(Xl XXz,Y)%C(Xl,C(XQ,Y)), f‘_>fV

s a topological embedding.
If X5 is locally compact or X1 X Xo is a k-space, or X1 X X5 is a kr-space and Y is
completely regular, then ® is a homeomorphism.

The following terminology is used here:

Remark 2.5.2. (a) A Hausdorff topological space X is called a k-space if functions
f: X — Y to a topological space Y are continuous if and only if the restrictions
f} 5 K — Y are continuous for all compact subsets K C X. All locally compact
spaces and all metrizable spaces are k-spaces.

(b) A Hausdorff topological space X is called a kgr-space if real-valued functions
f: X — R are continuous if and only if the restrictions f | i K — R are con-
tinuous for all compact subsets K C X. Each k-space is a kr-space, hence also
each locally compact and each metrizable space is a kr-space.

(¢) A Hausdorff topological space X is called completely regular if its topology is initial
with respect to the set C(X,R). Each Hausdorff locally convex space (moreover,
each Hausdorff topological group) is completely regular, see [22], as well as each
Hausdorff locally compact space.

Theorem 2.5.3. Let U C G, V C H be open subsets of topological groups G and H, let
E be a locally convex space and k,l € Ng U {oo}. Then the following holds:

(a) If a map f: U xV — E is C*, then the map
[lz) = flz,0): V=B, yw [ (2)(y) = fz,y)
is C! for each x € U and the map
U= C(V,E), xw fY(2)
is CF.
(b) The map
®: CM(U x V,E) —» C*(U,C(V,E)), [~ f"

is linear and a topological embedding.
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2.5 The exponential law

Proof. (a) We will consider the following cases:
The case k =1 = 0 : This case is covered by the classical Exponential Law, Proposition
2511
The case k =0, 1> 1: Let x € U; the map fY(z) = f(x,e) is obviously continuous,
and for y € V, n € £(H) and t # 0 small enough we have
1 1
P @ n0) ~ P @) = 5wy 0(t) — f) = Doy fy)
as t — 0. Thus Dy (f"(x))(y) exists and equals D, f(z,y) = (Do f)"(x)(y). Pro-
ceeding similarly, for each j € IN with j < [ and n,...n; € £(H), we obtain the
derivatives

(D = Doy (F(2))) () = (D00, Doy ) () () (2.4)

The obtained differentials d7)(fV(z)) = (d%9) f)V(z): V x £(H)? — E are continuous,
therefore f¥(x) is C'.
Further, by the classical Exponential Law each of the maps

fU = CWVE), aw fY(),
(d(o’j)f)v: U — OV x E(H)j7E)7 T (d(O,j)f)V(x)

is continuous, and we have d\) o f¥ = (d(%9) f)V for all j € Ny with j < I. Thus, the
continuity of fV follows from the fact that the topology on C*(V, E) is initial with respect
to the maps d\¥).

The case k > 1,1 > 0 : By the preceding steps, the map fY(z) is C! for each z € U
(with derivatives given in (2.4)). Now we show by induction on i € IN with i < k that

(Dy; - Dy (F)) (@) = (Disy0)+* Diy o) ) () (2.5)

for all z € U and 71,...,7 € £(G).

Base case: Since f is C10, by Lemmathe map fI1: U x V' — E is continuous,
hence so is the map (fH)V: UM — C(V, E) (see Proposition [2.5.1)). Let (z,v,t) € U
such that t # 0 and let y € V. Then we have

@A)~ @) = 5 (@A) y) — )
= M@, ty) = (Y)Y (@7, ) ().
Therefore

S (0) = £(@) = (Y 7,0
= (F19)(2,%,0) = (D 0.0) @)

as t — 0. Thus, D, (f")(x) exists and is given by (D(y,0f)" ().
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2 Exponential laws

Induction step: Now, let 2 < i < k, z € U and 71,...,7 € £(G). For t # 0 small
enough we have

(

| =

L Dy (F)) (@ 3i(t) = (Dypy - Doy (F)) ()
((Deyi_1,0) D ,0) )Y (@ 7i(1) = (D _y 0y Dy 0)) ¥ (@)
by the induction hypothesis. But the map D, | gy Dy, ,0)f: U XV — E'is C1O (see

Remark [2.2.3)), hence by the base case we have

1
t ((D(’Yiflao) o D(“/l,o)f)v(x (1) — (D(%fho) T D(’YLO))fv(x))

= Dy, ((D(s_1,0)** Diy0) ) ) (@) = (D 0) -+ Dy 0y ) (),
which shows that (D, --- D4, (f¥))(z) exists and is given by (D4, 0)- - Dy,.0)f)" (),

thus ([2.5)) holds.

From Remark we know that each of the maps

(Dy
1
Tt

D(’Yho)' ’YlOf UxV - F

is C%, hence (D, 0) Dy, 00f)"(x) € CYV, E) for each € U. Now, it remains to
show that each of the maps

d9(f¥): U x £(G)' — CY(V, B),

(@715, %) = (Do Doy (f))(@) = (Diy0) - Digy 0).f) Y ()
is continuous. To this end, let y € V, j € INg with j <l and m1,...,n; € £(H). Then
we have

(dD o dD (N (@, 3, ) (o, m5)
= dDdD(f) @71, w) W)
= [Dy,; - Dy [(Dy; -+~ Dy, (f)) ()] ()
Using and in turn we obtain
[Dyy -+ Dy (D -+ Dy () ()] ()
= [Dy, - Dm[(D(%O) Dy 0).f)" (@)]] ()
= (D) Poam Py Doy )7 (@) ().
Finally, from Proposition [2.2.5| we conclude
(D(Om)"'D(Om)D(%O)"'D(% 0 /)" (@)(1)
= (D(%O) e D(Vl,O)D(O,nj) (O,nl)f)v(x)( )
= d("’j)f(wvym,---,%,m,--',m)
= (A% f 0 pi ) (@, s Yo Ys - 705)
= (d) fopi)V (@, )W, - ),s
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2.5 The exponential law

where p; ; is the continuous map
pii: Ux L(G) xV x L(H)Y - U xV x £G)" x L(H),
(@,7,9,n) = (@,5,7,n)-
Now, from the classical Exponential Law it follows that the maps
(d fop)V:Ux L(GQ) — C(V x &H), E)
are continuous, and we have shown that
9D 0 dV(fY) = (@ f o pij)", (26)

thus the continuity of d(fV) follows from the fact that the topology on C(V, E) is
initial with respect to the maps dV), whence fV is C*.

(b) The linearity and injectivity of @ is clear. To show that ® is a topological embed-
ding we will prove that the given topology on C*Y(U x V, E) is initial with respect to
®. We define the functions

piji C(U XV x &G) x &H) ,E) = C(U x £G)" x V x L(H), E),

g g° pij,

and

U, C(Ux L(G)' xV x £HY,E) = C(U x £G)",0(V x &(H), F)),

g—g’

for i,j € INg such that i < k, j <. Then we have

(AP f o pig)Y = (Wijopfy0dD)(f).
On the other hand, we have
d9 o dD(fV) = (C(U x &G)',dD) o d® o @)(f),
where C(U x £(G)?,d)) are the maps
C(U x &(G)',CHV,E)) = C(U x £(G)},C(V x L(H), E)),
g d9) o g.
Thus, from follows the equality
C(U x £(G),dV)0od® o =W; ;0 p; 0diF).

The given topology on C*/(U x V, E) is initial with respect to the family (d(®7)) by
definition, hence the topology is initial with respect to the family of maps W¥; ;o p; j od(®7)
(see [21, Appendix A.5]|, Proposition and [21I, Appendix A.2] for transitivity of
initial topologies). But by the above equality, this topology is also initial with respect
to the maps C(U x £(G)",d7) o d¥) o ®, hence it is is initial with respect to ®. This
completes the proof. O
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2 Exponential laws

Theorem 2.5.4. Let U C G, V C H be open subsets of topological groups G and H, let
E be a locally convex space and k,1 € NogU{co}. IfU xV x £(G)' x £(H)? is a kg-space
foralli,j € Ng withi <k, j <1, then

d: CP U x V,E) = C*(U,CYV,E)), f~ fY
18 an isomorphism of topological vector spaces.

Proof. We need to show that if g € C*(U, CY(V, E)), then the map

g UXV = E, g"xy) = g(x)(y)

(which is continuous, since the locally convex space E is completely regular and we
assumed that U x V is a kr-space, see Proposition is CHL. As ®(g") = (¢")Y =g,
the map ® will be surjective, hence an isomorphism of topological vector spaces (being
a linear topological embedding by Theorem [2.5.3)).

To this end, we fix € U, then g(x) € C*(U,E) and for y € V, n € £(H) and t # 0
small enough we have

S0 (1) — ") = (0) - n(0) — o) (w) — dlg() (v )
as t — 0. Thus, d%V(g")(z,y,7n) exists and equals d(g(z))(y,n) = (dV) o g)(z)(y,n) =

(dD o g)"(x,y,n). Analogously, for j € Ny with j <1 and 7y,...,1; € £(H) we obtain
the derivatives

d(07j)(9/\)($7y7"717 .. 7”3) = (d(]) Og)A($7y7n17 .. 7773)
But for fixed (y,m,...,n;) we have

(d(j) og)/\(:n,y,m, comy) = (d(j) o g)(@)(y,m,---51m;5)

= (eV(ym,emy) © dY) o g)(x),
where ev(, . .y is the continuous linear map
ev(yﬂ?lw-'vnj) : C<V X ’Q(H)]7 E) — E7 h = h(yﬂ?h ceey 77])

Since also d9): CY(V, E) — C(V x £(H)?, E) is continuous and linear, the composition
eV(yn1,...m;) © d9og: U — Eis C*, by Lemma Thus for v € £(G) and ¢ # 0 small
enough we obtain

1 o '
—(@dO(gM) (@A) ysm, - m) — dOD (G @,y )

t
1 . )
= z((ev(y,m,...,nj) o d(J) © g)(x : V(t)) - (ev(y:m,...,nj) o d(J) © g)(x»

- d(ev(ym,mmj) o dW) o g)(z,7),
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2.5 The exponential law

as t — 0. Thus d9)(g")(x,y, v, M1, - - .,m;) is given by

d(ev(y,m,...,nj) o d(J) 0 g)(ac, ’7) = (ev(y,'r]1,.4.,'r]j) 0 d(j) o dg) (ma 7)
= (dY) o dg)(z,7)(y,m, -, ;)
= (d(]) © dg)/\(x7 ’Y? y7 7717 A 7nj)‘
Analogously, for each i € Ny with i < k and ~v,...,v; € £(G) we obtain
d(l’])(g/\)(.%', Yy -5 Y My - - 777]) = (d(]) o d(i)g)/\(xf‘yla e Y YTy - 7773)
To see that ¢ is C*! we need to show that the maps
A (gN): U x V x &(G) x &£(H) — E, (2.7)
(.’L‘, Yy o5 Vi My - - 777]) = (d(j) © d(i)g)/\(x7717 e Y YTy - 777])

are continuous for all 7,7 € INg with ¢ < k, j <. To this end, consider the continuous
maps

dD odWg: U x £(G)' — C(V x £(HY, E).

By Proposition the maps (d¥)odWg)": Ux L(G)' xV x £(H)’ — E are continuous,
since E is completely regular and we assumed that U x V x £(G)? x £(H)’ is a kr-space,
hence the maps d(i7j)(g/\) are continuous and ¢” is C*!, O

Theorem 2.5.5. Let U C G, V C H be open subsets of topological groups G and H,
and E be a locally conver space. If U xV x £(G)' x £(H)? is a kgr-space for alli,j € Ny,
then

Q: C®°(U x V,E) = C®(U,C*(V,E)), f~f"

is an isomorphism of topological vector spaces.

Proof. The assertion follows from Theorem since C**®(UxV,E) = C>®(UxV,E),
by Corollary O

Remark 2.5.6. From [24, Definition 3.25] we recall that a topological group G is called
a pro-Lie group if G is complete and each identity neighborhood of G contains a normal
subgroup N such that G/N is a Lie group. Theorem 3.39 in [24] states in particular
that a topological group G is a pro-Lie group if and only if G is a projective limit of Lie
groups. It is known that each almost connected locally compact topological group is a
pro-Lie group (recall that a topological group G is called almost connected if G/Gy is
compact, where G denotes the identity component of G).

Corollary 2.5.7. Let U C G, V C H be open subsets of topological groups G and H,
let E be a locally convex space and k,l € Ny U {oo}. Assume that at least one of the
following conditions is satisfied:

(a) 1 =0 and V is locally compact,
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2 Exponential laws

(b) k,l < oo and U x V x £(G)* x £(H)! is a kr-space,
(¢) G and H are metrizable,

(d) G and H are locally compact,

(e) G and H are almost connected pro-Lie groups.

Then the map
d: P U x V,E) = C*(U,CYV,E)), f~ fY
18 an isomorphism of topological vector spaces.

Proof. (a) As in the proof of Theorem we need to show that for g € C¥(U, C(V, E))
we have ¢" € CP0(U x V,E). The computations of the derivatives of g" carry over
(with j = 0), hence it remains to show that the maps d®?(g") in are continuous
for all ¢ € Ny with ¢ < k. But since V is assumed locally compact, each of the maps
(d©) o dDg)": U x £(G) x V — E is continuous by Proposition hence so is each
of the maps d“0)(g"), as required.

(b) By [26, Proposition, p.62], if U x V x £(G)* x £(H)' is a kg-space, then so is
UxV x&(G) x £(H)’ for all i,j € Ny with i <k, j < [. Hence, Theorem applies
and @ is an isomorphism of topological vector spaces.

(c) Since G is metrizable, the space C(R,G) is metrizable (see [2I, Appendix A.5]
or [14, Lemma B.21]), whence so is £(G) C C(R,G) as well as U x £(G)" for each
1 € Ng, ¢ < k as a finite product of metrizable spaces. With a similar argumentation
we conclude that also V' x £(H)’ is metrizable for each j € INg with j < I, whence so
is U xV x £(G)" x £(H)’. But each metrizable space is a k-space, hence a kgr-space.
Therefore, Theorem applies in this case and ® is an isomorphism of topological
vector spaces.

(d) As G is locally compact, it is known that the identity component G of G (being a
connected locally compact subgroup of G) is a pro-Lie group, see Remark Hence,
by [24, Theorem 3.12], £(G) is a pro-Lie algebra, and from [24, Proposition 3.7], it
follows that £(G) is homeomorphic to R for some set I. Since also H is assumed
locally compact, for all 4,5 € INg with i < k, j <[ we have U x V x £(G)" x £(H)J =
U xV x (R x (R?) for some set J. Now, from [38, Theorem 5.6 (ii)], it follows
that U x V x £(G)* x £(H)’ is a kgr-space, being homeomorphic to a product of locally
compact spaces (hence completely regular locally pseudocompact kr-spaces), whence
Theorem [2.5.4] applies and ® is an isomorphism of topological vector spaces.

(e) Since G is a pro-Lie group, £(G) is homeomorphic to R/ for some set I (see Remark
and [24, Theorem 3.12, Proposition 3.7]). Since, in addition, G is almost connected,
there exist a compact subgroup Cg of G and a set K such that G is homeomorphic to
Cg xRE (by Theorem 8.6 in [25]). Likewise, £(H) = R’ and H = Cy x RF. Altogether,
we have G x H x £(G)! x £(H)I = Cg x RE x Cy x RF x (RT)? x (R”)?, which is a
kr-space, being homeomorphic to a product of locally compact spaces (hence completely
regular locally pseudocompact kr-spaces) by [38, Theorem 5.6 (i7)]. From [0, Theorem,
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2.5 The exponential law

p. 28], it follows that U x V x £(G)" x £(H)’ is a kr-space, being an open subset of a

completely regular kgr-space. Hence Theorem applies and @ is an isomorphism of
O

topological vector spaces.
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3 Differentiability along one-parameter
subgroups compared to differentiability
on Lie groups as manifolds

After recalling the concept of differentiability of functions on manifolds in Section
we prove that for functions defined on a locally exponential Lie group or a certain direct
limit Lie group, the two concepts of differentiability coincide (Section Theorem
3.2.10)).

3.1 Differentiability on manifolds

Let M be a smooth manifold modeled on a locally convex space E, that is, M be a Haus-
dorff topological space together with an atlas of charts ¢: U, — V,, (homeomorphisms
between open subsets of M and E) such that the transition maps v o ¢~! are smooth
functions (as in [16]). The definition of the tangent space T, M, the tangent manifold
TM and tangent maps between tangent spaces are defined in the usual way.

We recall the concept of differentiability for functions between manifolds.

Definition 3.1.1. Let M, N be manifolds modeled on locally convex spaces, f: M — N
be a continuous function. For k € NU {00}, we call f a C*.,-function if for each z € M
there are charts ¢ for M around z and ¢ for N around f(z) such that the composition
o foeplis C*. In this case, if N is a locally convex space, then we write

dwtaf: TM — N, [7] = (fov)(0)

for the second component of the tangent map Tf: TM — N x N. Here [y] denotes a
geometric tangent vector (equivalence class of the curves 7). Further, for a C&lfd—curve
f: R — N to a manifold N we define f': R — TN, f'(t) :=Tf(¢t,1).

We denote by C*..(M, E) the space of all C* . -functions f: M — E (where E is a
locally convex space) and endow this space with the initial topology with respect to the
family (d¥));en i<k of mappings

d: ok

m

WM, E) = C(V, x FLE),  frsdD(fop™),

for charts ¢: U, — V,, of the maximal atlas of M, where I’ is the modelling space of M.
This topology turns C'f;fd(M , E) into a Hausdorff locally convex vector space.

We will often use the following facts without further mention:
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3 Differentiability on Lie groups

Remark 3.1.2. A function f: E — F is C* if and only if f is C! and the differential
df: ExE— Fis CF L If f: M — Eis Ckp, then dyaf: TM — E is CF 1.
Further, compositions of composable C’lljlfd— (resp. Ck-) functions are Cr];fd (resp. C¥).
Each continuous linear function between locally convex spaces is C*°.
A function between locally convex spaces is Crlflfd if and only if it is C*.

3.2 Differentiability on certain Lie groups

In this section, we will always assume that F is a locally convex topological vector space
and that G is a smooth Lie group modeled on a locally convex space F', that is, G is
a group endowed with a smooth manifold structure modeled on F' such that the group
multiplication mg: G X G — G and the inversion jg: G — G are smooth functions.

We will prove that the concepts of differentiability on G as a topological group and
as a manifold coincide if G is locally exponential or if G is a direct limit Lie group
G = hﬂ G, of certain Lie groups G,. We denote by g := T.G the Lie algebra of G,
where T.G is the tangent space of G at the identity element e. We write 0: G x TG —
TG, (z,v) — x.v := TA;(v) for the smooth left action of G on the tangent group TG,
where T\, is the tangent map of the left translation A\,: y — = -y on G.

Remark 3.2.1. (i) Recall that a Lie group G is called locally exponential if G has a
Coiq-exponential function exp: g — G and there exists an open 0-neighborhood
U C g such that exp }U is a diffeomorphism onto an open e-neighborhood V C G
we denote its inverse by log: V' — U. In this case, if v is a continuous one-
parameter subgroup, then « is C7%; and there exists a unique v € g such that
v(t) = exp(tv) =: v,(t). Moreover, the function I': g — £(G),v — 7, is a homeo-
morphism with the inverse I'~!: £(G) — g,v +— [y] = 7/(0). We equip £(G) with
the locally convex topological vector space structure making I' an isomorphism of
locally convex spaces (hence C*°). (Details on locally exponential Lie groups can
be found, for example, in [32] or [21].)

(ii) Consider an ascending sequence of finite-dimensional Lie groups G; C G C ---
such that the inclusions G,, — G,41 are continuous (hence C%,, being homo-
morphisms between finite-dimensional Lie groups). Then G := |J,,cy G admits a
Lie group structure such that G = hﬂ G, in the category of Lie groups modeled
on locally convex vector spaces (we call G a direct limit Lie group), for the Lie
algebra g of G we have g = %ﬂ gn in the category of topological Lie algebras,
where each g,, denotes the Lie algebra of G, (by [15, Theorem 4.3, (a)]). (Note
that G always has a C5;-exponential function, but is not necessarily locally ex-
ponential [I3, Example 5.5].) Further, we have £(G) = U, ey £(Grn) ([13, 5.3]),
that is, each v € £(G) is a continuous one-parameter subgroup of some G,,, hence
C2%q; moreover, each of the functions I'y: g, — £(Gy) (as defined above) is a
homeomorphism (each G,, being locally exponential). Hence so is the function
lim I'y: g — £(G) (where £(G) = lim £(Gr) is the direct limit in the category
of topological spaces). But by [I8, Theorem 4.4] the function I': g — £(G) is a
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3.2 Differentiability on certain Lie groups

homeomorphism (where £(G) is equipped with the compact-open topology), thus
the direct limit topology and the compact-open topology on £(G) coincide. Since
each finite-dimensional G,, and each £(G,,) = g,, = R%m(Gn) ig Jocally compact, we
conclude that G x £(G)F = lim (G, % £(Gp)F), for each k € N (see [12, Proposition
3.2], [23, Theorem 4.1]). Asin (i), we can equip £(G) with the locally convex topo-
logical vector space structure making I' an isomorphism of locally convex spaces.

The following properties of differentiable functions on direct limit Lie groups will
enable us to reduce the case of direct limit Lie groups to the case of locally exponential
Lie groups.

Lemma 3.2.2. Let G be a direct limit Lie group as in Remark|3.2.1| (ii) and f: G — E
be a continuous function. For k € NU {oco} the following holds:

(i) f is C* if and only sz‘G : Gp — E is C* for each n € N,
(ii) f is Cr];fd if and only if flGn: G, — FE is Cr];fd for each n € N.

Proof. (i) First, assume that f is C*. For n € N, the inclusion map incl,: G, — G is a
continuous homomorphism, whence f o incl,, is C¥ by Lemma

Conversely, let x € G and 71,...,7v € £(G) for some i < k. Since G and £(G)
are ascending unions of G, and £(G),), respectively, there exists some N € N such
that @,71,...,% € Gy x £(Gy)". Hence dDf: G x £(GQ)" — E is defined (with
d(i)f(x,71,...,yi) = d(i)(f‘GN)(x,'yl,...,’y,-)). This differential is continuous if and
only if de)f‘ans(Gn)i
assumption.

(ii) See [13, Proposition 4.2]. O

=dO(f ’ . ) 1s continuous (see above) and this is satisfied by the

Proposition 3.2.3. If G is a locally exponential Lie group and f: G — E is a Cﬁlfd—map
for some k € Ng U {oo}, then f is C*.

Proof. For k = 0 the assertion is clear. For k£ > 1, we may assume that £ < oo and
proceed by induction.
Base case: For x € G we denote A, : y — x -y, which is a CG,-function. For v € £(G)
and t # 0 we have
fla-a(t) = f(x) _ (forson)(t) = (foAson)(0)

t t

(f oAz 07)'(0),
as t — 0, because the composition fo A, ov: R = E is a Cl-curve. We rewrite

df(z,7) = (f 0 Ay ©7)'(0) = duga f(0 (2, T 71 (7)) (3.1)

and see that the differential df := dpeqf 0 0o (idg xI'™1): G x £(G) — FE is continuous,
hence the function f is C1.

Induction step: Assume that f is C’rknfd for k > 2. Then f is C!, by the base case.
Using , we see that the differential df can be written as a composition of C’;Edl—
functions, hence it is C’I’;;dl on the locally exponential Lie group G x £(G). Therefore,
the differential is C*~1, by the induction hypothesis, whence f is C*. O
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3 Differentiability on Lie groups

Lemma 3.2.4. Let G be a locally exponential Lie group, f: G — E be a C'-map and
v: R — G be a CLy-curve. Then (f o~)'(0) = df(y(0),k) for some one-parameter
subgroup k € £(Q).

Proof. First, we recall from Lemma that the function fl: G x £(G) xR — FE

such that fl(z,n,t) = 1(f(z-n(t)) — f(x)), for t # 0, is continuous on G x £(G) x R,

since f is assumed C', and we have df (x,n) = fl!(z,n,0). Now, for ¢ > 0 small enough
consider the continuous curve

n:]—eel=g,

_J4log(v(0)7t-A(2)) ift#0,
) = {7(0)1~7’(0) if ¢ = 0.

Note that the continuity of n in ¢ = 0 follows from

i 2080071 v(1) _ . Tog(v(0)7 - (#)) = log(v(0) ™ - 4(0))
t—0 t t—0 t
= (log oA, (gy-1 ©7)'(0)
= (da(log) © T\ 0)-1)(7'(0))
=50/ (0),

using that dm¢q(log) is a restriction of idy in this case. Now, for 0 # ¢ €] — ¢, e[ we have

F6(0) = £60) _ 160)- 1) = 160D _ g, 1

with the one-parameter subgroup x¢: R — G, k¢(s) := exp(sn(t)). Then

(f 07)(0) = lim fM(7(0), ke, ) = fH(7(0), ko, 0) = df (7(0), ko),

t—0

and the proof is finished. O

Remark 3.2.5. Assume that £(G) carries a topological vector space structure (for
example, if G is a Lie group as in Remark [3.2.1)). If a function f: G — E is C! and the
differential df is C*~! on the topological group G x £(G), then f is C* with derivatives

d(i)f(x7’71v s 7/71') = d(i_l)(df)((xv’yl)’ (725’70)7 AR (77;7’70))’ (32)

where 5y € £(£(G)) denotes the one-parameter subgroup t — 79, where vy € £(G) is
the trivial one-parameter subgroup of G.

On the other hand, if f is C* and df is linear in the second argument, then df is C*~!
with derivatives

dDdf)((z, @), (1,m)s -5 (Vs m3))

i (3.3)

= d(i—i_l)f(xa &, Y1y .- 772) + Zd(l)f(xa 773(1),’717 sy V=1 Vi1 - 7'71)
j=1
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3.2 Differentiability on certain Lie groups

Proposition 3.2.6. If G is a locally exponential Lie group and f: G — E is a C*-map
for some k € Ng U {o0}, then f is Cr];fd

Proof. For k = 0 the assertion is clearly true. Now, we assume that 1 < k < oo and
prove the assertion by induction.

Base case: Fix g € G and let ¢: U, — V,, C F be a chart for G around g, where F' is
the modelling space of GG. To show that f is Crlnfd we need to prove that fop™!: Vo= E
is C'. To this end, let x € V,,, y € F and define the C’élfd—curve v:]—ee[— Gt —
o~ Yz +ty) for suitable e > 0. (Note that T~ !(x,y) = [t = ¢ (x+ty)] = [7] =+(0).)
Then we have

d(f o~ )(ary) = tim 10D~ = (fo)(0) = df (+(0). v)

t—0 t

with the one-parameter subgroup x := kg: R — G,t — exp(t(y(0)~1.4/(0))) from
Lemma, Using the C2G -function w: TG — g,v — mrg(v)” Lv (where g de-
notes the bundle projection, Wthh is C°%,) we rewrite

d(f o o™ ") (z,y) = df (mra (), (T o w) (M)

hence the differential

d(fop™)=df o(rrg,Tow)oTe 'V, x F = E (3.4)

1

is continuous and consequently fop~! is a C''-function, as required. Note that we found

dwta f([7]) = df (mra([7]), (T o w)([7])) (3.5)

for each [y] € TG.

Induction step: Now, let f be a C*-map for k > 2 and ¢ be as above. By the base
case, we know that f is C’1 fd (that is, f o ™! is C'). To show that d(f o ¢™') is CF1,
consider the formula in . The composition (rrg,Tow)oTp t: V,x F — G x £(G)
is C0%y- Further, using we see that df is linear in the second argument, hence C*~!
(see Remark , Thus df is C’I’;?dl on the locally exponential Lie group G x £(G), by
the induction hypothesis. Therefore, the differential d(f o 1) is C’r'fl;dl. Consequently,
this differential is C*~! as required. U

Proposition 3.2.7. Let G be a direct limit Lie group as in Remarkm 13.2.1| (11). A function
f: G — E is C* if and only if f is C* .y, for each k € Ny U {o0}.

Proof. Since each Lie group G, is locally exponential (being finite dimensional) each of

the restrictions f ’ is C* if and only if it is C’mfd, by Propositions and |3 The
O

remainder follows from Lemma [3.2.2

Using the fact that the differential df of each C*-function f defined on a locally
exponential Lie group G or on a direct limit Lie group G (as in Remark [3.2.1) is C*~!
we show that in these cases the compact-open C*-topology on Ck(G , E) can be descrlbed
in the following way (for finite k):
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3 Differentiability on Lie groups

Lemma 3.2.8. The compact-open C*-topology O1 on the function space C*(G, E) co-
incides with the initial topology O with respect to the functions

incl: C*(G,E) = C(G,E), fw~f,
D: C*G,E) — (C*Y(G x £(G),E),01), fr df
for each k € N if G is a Lie group as in Remark[3.2.1]
Proof. First, we show that Oy C 0. This will hold, if both functions
incl: (C*(G,E),01) = C(G,E), fw—f, .
D: (C*G,E),01) — (C*1(G x £(G),E),0y), fwdf (3.7)

are continuous. The first function (3.6)) is continuous by the definition of the topology
Oy, since we have incl = d(®. The continuity of the second function (3.7)) will follow
from the continuity of the compositions

d9 o D: (CHG, E),01) — C(G x £(G) x &(G x &), E),
e dD(df),

where d): (C*1(G x £(G), E),01) — C(G x £(G) x £(G x £(G))*, F) for all 0 < i <
k — 1. Using the two continuous functions

(3.8)

1 G x &(G) x &(G x £(GR))" — G x £(G)™,
(@, 0, (yi,m), -, (i mi)) = (@ 71,05 %),
pii: G x £(G) x £(G x £(Q))" = G x £(G)",
(@, a, (vi,m), -+, (Vo mi)) = (2,15 (1), 71,y Vi1 Vi1 - -5 %),
for 1 < j <4, and Equation from Remark we obtain

d(i)(df):( Z+1 fopi +Z fopji)

for each f € C¥(G,E). Hence, using the continuous pullbacks pf: g + g o p; and
Pjit g+ go pji we can write each of the maps from (3.8) as

i
d¥0 D = (] 0 d“V) + 3 (pj; 0d).
j=1

(Note that the functions dtD | d® on the right-hand side are the differential operators on
(C*(G,E),0;).) From the definition of the compact-open C*-topology O we conclude
that the composition is continuous, as required.

Now, we show that @7 C O, which will be the case if for all 0 < i < k the functions

dD: (C*(G,E),05) — C(G x £(G)', E), frrdVf (3.9)
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3.2 Differentiability on certain Lie groups

are continuous. For i = 0 we have d(®) = incl, hence the continuity follows from the
definition of the topology Os. Now, using the continuous functions

&1 G x &(G) = G x £(G) x £(G x £(G))",
(715 71) — ((7), (2,70)s - - - (35 70)),

where 79 € £(£(G)) denotes the one-parameter subgroup t — 7, where v9 € £(G) is
the trivial one-parameter subgroup of G, and Equation (3.2)) from Remark we can
express the functions in (3.9) as

d9 = ¢ od=V o D,

with the continuous differential operators d@~1 on (C*1(G x £(G), E),O;) on the
right-hand side and the continuous pullbacks & : g = g 0 §. From the definition of the
topology O on C*(G, E) we conclude that the composition above is continuous for each
i, as required. ]

Analogously, one can prove the following known fact:

Lemma 3.2.9. The compact-open C’rflfd—topology O1 on the space C’]rflfd(G, E) coincides
with the initial topology Oy with respect to the functions

incl: C¥(G,E) —» C(G,E), [+ f,
dmfd: Cfl:’lfd(G’ E) - (Crl;;dl (TG, E)a 01)7 f = dmfdf
for each k € N if G is a Lie group as in Remark[3.2.1]

Using these descriptions of the topologies on the function spaces, we finally get the
main result:

Theorem 3.2.10. If G is a locally exponential Lie group or a direct limit Lie group
(as in Remark , E is a locally convex space and k € Ng U {0}, then C*(G, E) =
CI’flfd(G, E) as topological vector spaces.

Proof. From Propositions [3.2.3] [3.2.6| and [3.2.7], it follows that the function spaces coin-
cide as sets, it remains to show that also the topologies coincide.

The topologies on C*(G, E) and C2%,(G, E) are initial with respect to the inclusion
maps C®(G, E) — Ck(G,E) and Cq(GE) — Cfflfd(G,E) for k € Ny, respectively
(this is easy to verify using the definitions). Hence it suffices to prove the continuity of
both inclusion maps incly: C¥(G, E) — C* (G, E) and incl*: C* (G, E) — C*(G, E)
by induction on k.

Base case: The inclusion maps incly and incl® coincide with the functions incl from
Lemma [3.2.8] and Lemma [3.2.9] respectively, hence they are continuous.

Induction step: By Lemma the continuity of the inclusion map incl;, will follow
from the continuity of the compositions

incloincl,: C*(G, E) — C(G,E), [~ f, (3.10)
dmta o incly: C¥(G, E) — C* HTG,E), f+ duaf. (3.11)

37



3 Differentiability on Lie groups

The first composition (3.10|) is continuous, by Lemma Now, for f € C¥(G, E) and
v € TG we have

dwta f(v) = df (mra(v), (T o w)(v)),
using . Recall from Lemma that
D: C*(G,E) —» C*"YG x &(G),E) fw—df

is continuous. Using the induction hypothesis, we conclude that D is continuous as a
function to C* (G x £(G), E). Further, the operator

(rra,Tow)*: C*1(G x &(G), E) — C* . H(TG,E), fw fo(rrg,T ow)
is continuous (see [21]) and we have
dmfd - (WTGu I'o OU)* o D7

by the above. Therefore, also the composition in is continuous and the first
assertion is proved.

Now, by Lemma the continuity of the inclusion map incl® will follow from the
continuity of the functions

incloincl*: C*.1(G, E) —» C(G,E), f~f, (3.12)
Doincl®: C* (G, E) — C*1(G x £(Q),E), f+ df. (3.13)

The first composition (3.12)) is continuous by Lemma Further, for f € C’rljlfd(G, E)

we have
df = dgaf oo o (idg xI'™1),

by (3.1). The function dyq: Cﬁlfd(G, E) — Crlflgdl (T'G, E) is continuous by Lemma
and also the operator

(00 (idg xI™1)*: C* (TG, E) — C* G x £(G), E),
f fooo(idgxI'™)

is continuous (see [21]), hence so is the composition
D = (0o (idg xI™))* o dinta: Cha(G, E) — C* (G x £(G), E).

But by the induction hypothesis, it is continuous as a function to C*~1(G x £(G), E),
hence the composition in (3.13)) is continuous and the proof is finished. O

38



4 Measurable regularity of
infinite-dimensional Lie groups based on
Lusin measurability

In Section [4.1], we recall the definition of Lusin-measurable functions between topological
spaces and construct Lebesgue spaces LP([a,b], E) of vector-valued Lusin-measurable
functions v: [a,b] — E. Further, Section describes the construction of vector spaces
ACr»([a,b], E) and Lie groups ACp»([a,b],G). In Section[4.3] we introduce the definition
of LP-regular Lie groups and prove some important results (Theorems and
13.19).

Note that whenever we deal with C*-functions on Lie groups in this chapter, we always
mean the differentiability in the sense of Definition (that is, on the Lie group as a
manifold).

4.1 Measurable functions and Lebesgue spaces

This section starts with the description of measurability of functions between topological
spaces, which is also known as Lusin measurability. This concept of measurability was
used, for example, in [9], [I1], [42] and others. Further, we present the definition of £P-
and LP-spaces of such functions (as in [I1]) and show that these spaces coincide with the
LP-spaces considered in [17] whenever the latter spaces are defined. Finally, we discuss
some basic properties of LP-spaces and of functions between them.

Recall that the Borel o-algebra B(X) on a topological space X is the o-algebra
generated by the open subsets of X. A function v: X — Y between topological
spaces is called Borel measurable if the preimage 7~ !(A) of every open (resp. closed)
subset A C Y is in B(X). A measure p: B(X) — [0,00] is called inner regular if
w(B) = sup{u(K) : K is compact, K C B} for every Borel set B C X. Further, p is
called locally finite if for every x € X there exists a neighborhood U C X such that
w(U) < 0o. A locally finite inner regular measure is called a Radon measure. Whenever
there is a subset N € B(X) such that p(/N) = 0 and an assertion holds for all x € X \ N
we will say that the assertion holds p-almost everywhere or p-a.e.

Remark 4.1.1. Note that if ;1 is a Radon measure and K C X is a compact subset,
then u(K) < oo, as p is locally finite. Further, from the inner regularity of y, it follows
that for every Borel set B with p(B) < oo and every € > 0 there exists a compact subset
K C B such that u(B\ K) <e.
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4 Measurable regularity of Lie groups

Definition 4.1.2. Let u be a Radon measure on a topological space X. A function
v: X — Y to a topological space Y is called Lusin p-measurable if for every compact
subset K C X and every £ > 0 there exists a compact subset K’ C K with u(K\K’') <e
such that the restriction 7| is continuous.

Lemma 4.1.3. If v: X — Y 4s Lusin pu-measurable, then for every Borel set B with
w(B) < oo and every € > 0 exists a compact subset K C B such that pn(B\ K) < ¢ and
Y|k is continuous.

Proof. As i is inner regular, there exists a compact set L C A with p(A\L) < ¢/2, further
there exists a compact subset K C L such that u(L\ K) < ¢/2 and ~|g is continuous.
Since p(A\ K) = u(A\ L) + (L \ K) < ¢, the assertion is proved. O

Remark 4.1.4. Obviously, every continuous function is Lusin p-measurable.

If X is a compact space, then it is easy to see that a function v: X — Y is Lusin
p-measurable if and only if for every € > 0 there exists a compact subset K. C X such
that u(X \ K:) < e and v|k. is continuous.

Further, consider two functions v,7: X — Y such that v(z) = n(z) p-a.e. If v is
Lusin p-measurable, then so is 7.

In fact, let K C X be a compact set and let € > 0. We denote by N a Borel set such
that w(N) =0 and y(z) = n(z) for € X \ N. For B := K \ N, Lemma [4.1.3| provides
a compact subset K’ C B such that u(B\ K’) < e and n|gs = |k is continuous. Since
(K \ K') = u(N) + u(B\ K') < e, we see that 7 is Lusin p-measurable.

The following essential criterion for Lusin pu-measurability can be found in [9], or also
in [3] as a part of Lusin’s Theorem.

Lemma 4.1.5. Let X, Y be topological spaces, u: B(X) — [0,00] be a Radon measure
on X. A function v: X — Y is Lusin u-measurable if and only if for each compact
subset K C X there exists a (pairwise disjoint) sequence (Kp)nen of compact subsets
K, C K such that p(K \ U,cn Kn) = 0 and every restriction |k, is continuous.

Proof. Assume that v is Lusin p-measurable and let K C X be a compact subset. There
exists a compact set K1 C K such that (K \ K1) < 1 and 7|k, is continuous. Define
Ly == K\ K; € B(X). As u(L1) < oo, by Lemma there exists a compact set
Ky C Ly such that p(Ly \ K2) <1/2 and 7|k, is continuous. Let Ly := L1 \ K3 € B(X).
Then p(Ly) < 0o, therefore there exists a compact set K3 C Lo such that pu(Le\ K3) < 1/3
and 7|k, is continuous. Proceeding this way, we obtain a sequence of compact subsets
(Kn)nen in K such that p(K\ U, K;) = p(Ln—1 \ Ky) < /n for every n. Then

p( N\ U ) = (V0 K0) = lim (0 [J K9 < lim = =0,
neN neN i=1 i=1

As every 7|k, is continuous, the first part of the proof is finished.
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4.1 Measurable functions and Lebesgue spaces

Conversely, given £ > 0, a compact set K C X and a sequence (K, ),en of compact
sets K,, C K, we have

lim p(K\ | Km) = p(() (K \ U Kpn) = p(K\ | Kn) = 0.

n— o0
m=1 neN neN
Consequently, there is some N € N such that p(K \ U K,,) < e. The finite union
K' = U%Zl K,, is a compact subset of K and |/ is contmuous, thus v is Lusin
p-measurable. O

Lemma 4.1.6. Let X be a topological space and p be a Radon measure on X.

(i) If Y, Z are topological spaces, v: X — Y is Lusin p-measurable and f:Y — Z is
continuous, then the composition f o~ is Lusin p-measurable.

(ii) If (Yn)nen are topological spaces, then v := (Yn)nen: X — [l en Yn is Lusin p-
measurable if and only if every component ~v,: X — Y, is Lusin p-measurable.

Proof. (i) Let K C X be a compact subset and ¢ > 0. Then there exists a compact
subset K’ C K such that u(K\ K') < e and 7|k is continuous. Then obviously (fo~)|x
is continuous, whence f o+ is Lusin py-measurable.

(ii) If v: X — [l,en Yn is Lusin p-measurable, then from (i), it follows that every
Ym = P, oy is Lusin p-measurable, where pr,,: [[,cnYn — Yin are the coordinate
projections.

On the other hand, fix € > 0 and a compact subset K C X. Then for each n € N
there is a compact subset K,, C K such that v,|g, is continuous and pu(K \ K,,) < ¢/2~,
as each 7, is Lusin p-measurable. Then the intersection K. := (), oy K, is a compact
subset of K with

o0 [e.e]

(K N\ Ko) = u(|J (K \ K,)) Z (K\ K,) g

on
neN n=1 n=1

Since K. C K, for each n € N, the restriction |k, is continuous, thus 7 is Lusin
p-measurable. 0

Remark 4.1.7. From Lemmal4.1.6|easily, it follows that vector-valued Lusin u-measurable
functions form a vector space.

From now on we will work with functions defined on an interval [a,b] C R, the con-
sidered measure will always be the Lebesgue-Borel measure A\ and we will call Lusin
A-measurable functions v: [a,b] — X just measurable for short.

The relation between Lusin pg-measurable functions and Borel measurable functions is
known as Lusin’s Theorem and can be found in several versions in [3], [10], and others.
We prove a special case which will suffice for our purposes.
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4 Measurable regularity of Lie groups

Lemma 4.1.8. Let X be a topological space. If v: [a,b] — X is measurable, then there
exists a Borel measurable function 7: [a,b] — X such that ¥(t) = v(t) a.e.

On the other hand, if X has a countable base, then every Borel measurable function
v: la,b] = X is measurable.

Proof. 1If ~: [a,b] — X is measurable, then by Lemma there exists a sequence
(K )nen of compact subsets of [a,b] such that |k, is continuous for every n € N and
A[a, b] \ U,eny Kn) = 0. We define

7(t) :==~(t), if t € K,, for some n € N,
and
A(t) == zo € X, otherwise,

and show that the obtained function is Borel measurable. Let U C X be an open subset
and consider the preimage

U =T NN uETHU) N K,
neN

where N :=[a,b] \ U,,cny Kn- The subset

N K= e o) n k) = [ Glk)THO) = | Grlk,) THO)
neN neN neN neN
is a Borel subset of [a,b]. Further, y71/(U)N N = N if 29 € U, and Y (U)N N = 0
otherwise, hence 71 (U) is a Borel set, as required.

Now, assume that 7: [a,b] — X is Borel measurable and X has a countable base
denoted by (V;,)nen. For every n € N, the preimage v~ 1(V;,) is a Borel subset of [a, b],
hence using the regularity of the Lebesgue measure X, for a fixed € > 0 we obtain open
subsets Uy, C [a, b] and compact subsets K, C [a, b] such that

K, C V_I(Vn) C Uy and A(Un \ K;,) < /2!

for every n € N. We define the Borel set B := (J,,cny(Un \ K,) and show that for
A :=[a,b] \ B the restriction 7|4 is continuous.
In fact, for every n € N we have

Y V)NACU, NA= (U, \K,) UK, NA=K,NAC~ (V)N A,
in other words,
T HV)NA=U,NA

is an open set in A.
Finally, by Remark there exists a compact subset K C A such that A(A\K) < ¢/2.

Since

AJa, b))\ K) = AX(B)+ AMA\K) < is/zn+1 +ea=¢
n=1

and |k is continuous, we conclude that 7 is measurable. O]
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4.1 Measurable functions and Lebesgue spaces

The next lemma can be found in [I1].

Lemma 4.1.9. Let E be a locally convex space, v: [a,b] — E be a measurable function.
Then the following assertions are equivalent:

(i) v(t) =0 a.e.,
(ii) a(vy(t)) =0 a.e., for each continuous linear functional o on E,
(iii) q(y(t)) =0 a.e., for each continuous seminorm q on E.

Definition 4.1.10. Let v: [a,b] — R be a measurable function and 7: [a,b] — R be a
Borel measurable function such that 5(t) = v(¢) a.e. (as in Lemma [4.1.8). We define

by(t) dt = bw) dt.
[ = |

For a locally convex space E and p € [1,00[, we denote by LP([a,b], E) the vector
space of measurable functions v: [a,b] — E such that for every continuous seminorm g
on E we have

b
/ gy (1) dt < oc.

We endow LP([a,b], E) with the locally convex topology defined by the family of semi-

o Ilera = ( | s )y dt)’l’

Further, we denote by £*°([a, b], E') the vector space of measurable maps ~: [a,b] — FE
such that there exists some Borel set N C [a, b] such that A(N) = 0 and ~([a,b] \ N) is
bounded. We endow £ ([a, b], F') with the locally convex topology defined by the family
of seminorms

H'YHﬁOO,q = €8S SUPy¢[q,b) Q(’Y(t))

for continuous seminorms ¢ on F.
For p € [1, o0], define

Ny :={vy € LP([a,b], E) : v(t) =0 a.e.}.

From Lemma it follows that N, = {0} in £P([a,b], E), thus we obtain Hausdorff
locally convex spaces
LP([a, b]v E) = ﬁp([a, b]a E)/NP

consisting of equivalence classes
(] :=A{n € LP([a, 0], E) : n(t) = 7(t) ae.},

with seminorms
1 Lr g = NVl 2rq-
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4 Measurable regularity of Lie groups

Remark 4.1.11. By [11], v € £*°([a, b], E) if and only if for every continuous seminorm
q on E the composition ¢ o v is essentially bounded. By definition, v € £LP([a,b], E) if
and only if g oy € LP([a,b]) (as in [11]).

In [I7], the author defines Lebesgue spaces of Borel measurable functions with values
in Fréchet spaces as follows.

Definition 4.1.12. Let E be a Fréchet space. For p € [1, 00, the space L} ([a,b], E)
is the vector space of Borel measurable functions v: [a,b] — E such that y([a,b]) is
separable and govy € LP([a, b]) for each continuous seminorm ¢ on E. The locally convex
topology on L£7([a,b], E) is defined by the (countable) family of seminorms

hera = llovler = aty dt);

Further, the vector space L% ([a, b], E') consists of Borel measurable maps ~: [a,b] = E
such that ~([a, b]) is separable and bounded. The locally convex topology on the space
L% ([a,b], E) is defined by the family of seminorms

[7llgoo g == [lg 0 Vl[ee = ess supyepqp) ¢((2))-
For N, := {v € L%([a,b], E) : 4(t) = 0 a.e.}, the Hausdorff locally convex spaces
Lg([a,b], E) := Li([a, b], E) /Ny
consist of equivalence classes

(7] == {n € L%([a, 0], E) : n(t) = ~(t) ae.},

and are endowed with the topologies defined by seminorms

I llze.q = l7ller g

Remark 4.1.13. For locally convex spaces E having the property that every separable
closed vector subspace S C E can be written as a union S = (J,,cy Fn of vector subspaces
Fy, C F5 C -+ which are Fréchet spaces in the induced topology (such spaces are called
(FEP)-spaces in [1T]), the spaces £%([a,b], E) and L% ([a,b], E) are constructed in [I7]
in the same way.

Definition 4.1.14. If F is an arbitrary locally convex space, then the vector space
L22([a, b], E) consists of Borel measurable functions v: [a,b] — E such that v([a,b])
is compact and metrizable. The seminorms |||z ¢ 1= esssup;ciqp ¢(7(t)) define the
locally convex topology on £22([a,b], E).

For Ny, := {vy € £2([a,b], E) : v(t) = 0 a.e.} the Hausdorff locally convex space

L7e([a, 0], E) := L% ([a, b], E) /Nyc
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4.1 Measurable functions and Lebesgue spaces

consists of equivalence classes

] = {n € £7(la, 0], E) : n(t) = (1) a.e.},

with seminorms

Iz g = [17lleo q-

Note that in [I7], the author constructs all of the above Lebesgue spaces even in a more
general form, consisting of Borel measurable functions v: X — E defined on arbitrary
measure spaces (X, 3, u).

Using the close relation between the two concepts of measurability, we prove that the
spaces LY ([a,b], E) coincide with our Lebesgue spaces.

Proposition 4.1.15. If E is a Fréchet space, then LY([a,b], E) = LP([a,b], E) as topo-
logical vector spaces, for each p € [1, ).

Proof. Clearly, using Lemma we see that LY ([a,b], E) C LP([a,b], E) because for
v € L%([a,b], E) the image y([a, b]) is separable and metrizable, hence has a countable
base.

On the other hand, for every v € £P([a, b], E') we can construct some Borel measurable
7y with [y] = [}] such that the image ¥([a,b]) = {zo} U U, cn 7(Kr) is separable (and
bounded if p = ), using Lemma again. Therefore, L% ([a,b], E) = LP([a,b], E) as
topological vector spaces (as the equality of the topologies is obvious). ]

Remark 4.1.16. If E is an (FEP)-space, then also L%([a, b], E) = LP([a, b], E) as topo-
logical vector spaces. To see this, we only need to show that every v € E%([a b, E) is
measurable, the rest of the proof is identical to the above.

Since im(7) is separable, the vector subspace span (im(y)) is separable and closed,
hence there is an ascending sequence F; C Fy C --- of vector subspaces such that

span (im(7y U F,

neN

and each F,, is a separable Fréchet space (see [I7, Lemma 1.39]). Consider the sets
By := v Y(F), By := v YF, \ Fu_1) for n > 2. Then [a,b] is a disjoint union of
the Borel sets (By)nen, and 7|, : B, — F, is Borel measurable, hence measurable by
Lemma [4.1.8] Therefore, v: [a,b] — E is measurable.

Remark 4.1.17. For an arbitrary locally convex space E we have L2([a,b],E) C
L*>([a,b], E'). Again, it suffices to prove that each v € £32([a, ], E) is measurable. This
is true (by Lemma, since the closure of the image of v is compact and metrizable,
hence has a countable base.

We discuss some properties of Lebesgue spaces and functions between them.
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4 Measurable regularity of Lie groups

Remark 4.1.18. For 1 < p <r < oo we have
C(la,b], E) € L®([a,b], E) C L' ([a,b], E) C LP([a,b], E) C L ([a,b], E)

with continuous inclusion maps, as for a continuous seminorm ¢ on F we have

11
Merq <0 =a)r " llyllerq,

resp.
1
Vllzrq < (0= a)? |yl q-
(Here, C([a, b], E') is endowed with the topology of uniform convergence, with continuous
seminorms [|7|ec,q = 17l q-)

Lemma 4.1.19. Let E, F be locally convex spaces and f: E — F be continuous and
linear. If v € LP([a,b], E) for p € [1,00], then f o~ € LP([a,b], F) and the map

LP([a,b], f): LP([a,b], E) — LP([a,b], F), vy foy
1s continuous and linear.

Proof. From Lemma it follows that f o+~ is measurable. Further, for every contin-
uous seminorm ¢ on F', the composition g o f is a continuous seminorm on FE, whence
go (fo~) € LP([a,b]). Therefore f o~ € LP([a,b], F).

Since

1 ollera = Vll2egor,
the linear function £P([a,b], f) is continuous. O

Remark 4.1.20. From Lemma we easily conclude that for locally convex spaces
E and F' we have

LP([a,b], E x F) = LP([a,b], E) x LP([a, b], F)
as locally convex spaces. In fact, the function
LP(la,b], E x F) — LF([a,b], E) x LP([a,b], ), 7+~ (pry oy, pryoy)

is continuous linear (where pr;, pry are the projections on the first, resp., second com-
ponent of E' x F') and is a linear bijection with the continuous inverse

Ep([a,b],E) X ‘Cp([a’ b]7F) - ‘Cp([aa b]zE X F)7 (717’7/2) = >‘1 oy + >\2 o 72,

where \j: F — E X F,z — (2,0) and Ao: F — E x F,y — (0,y) are continuous and
linear.

Note that in Lemma [4.1.19] and Remark [4.1.20] one can replace £P with LP.
The following property of LP-spaces is called locality aziom in [17].
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4.1 Measurable functions and Lebesgue spaces

Lemma 4.1.21. For anya =1ty <t <...<t, =0, the function

FE Lp a b —> HLp Jj— 17 7 )7 [7] = ([7‘[tj71,tj}]>j:1 n

ceey

18 an isomorphism of topological vector spaces.

Proof. If [v] € LP([a,b], E), then obviously [v|j,_, 1] € LP([tj-1,t;], E) for every j €
{1,...,n}, and the continuity of the linear injective function I'y follows from the fact
that |[v]i,_,.¢;)llr.q < [[7llr,q for every continuous seminorm ¢ on E.

On the other hand, given ([y1],...,[va]) € [T}=; LP([tj-1. %], E), the function

At) = 30, 1€ Tyt il A1) 1= 7alt), 3 € € [taor, bl

is measurable and g oy € LP([a, b]) for every continuous seminorm ¢ on E. Further, if
p < o0, then we have

V]l crq < Z 17l 27 g5

otherwise, we have
Mle=q = max y;llc g

-----

Therefore, the function I'g is surjective and the inverse FEl is continuous, hence the
proof is finished. O

Remark 4.1.22. From the above lemma, it readily follows that a function v: [a,b] — E
is in LP([a,b], E) if and only if |, , ;1 € LP([tj—1,t;], E) for some partition a = # <
th<...<tp, =0

As in [I7, Lemma 2.1], we obtain the following result.

Lemma 4.1.23. Let X be a topological space, U C X be an open subset and E, F
be locally convexr spaces. Let f: U x E — F be a continuous function which is linear
in the second argument. If n € C([a,b],U) and v € LP([a,b], E) for p € [1,00], then
fo(ny) € L([a,b], F).

Proof. By Lemma the composition f o (n,7) is a measurable function.
Now, consider the continuous function

hy:la,b] x E—=F, hy(t,v) = f(n(t),v).

Let ¢ be a continuous seminorm on F. Then hy([a,b] x {0}) = {0} C B{(0), thus
[a,b] x {0} C V, where V := h,"'(B{(0)) is an open subset of [a,b] x E. Using the
Wallace Lemma, we find an open subset W C E such that [a,b] x {0} C [a,b] x W C V.
Then there is a continuous seminorm 7 on £ such that

[a,b] x {0} C [a,b] x BF(0) C [a,b] x W C V.
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4 Measurable regularity of Lie groups

We show that for each (¢,v) € [a, b] X E we have q(hy(t,v)) < w(v). In fact, if 7(v) > 0,
then (using the linearity of f in v) we have (1/(v))q(hy ( v)) = q(hy(t, (Yr@)v)) < 1. If
7(v) = 0, then for each 7 > 0 we have rv € B (0), whence rq(hy(t,v)) = q(hy(t,rv)) <1,
that is g(h,(t,v)) < /r, consequently q(hy,(t,v)) =0 = 7(v).

Now, if p < oo, then

b b b
/ q(f(n(t)ﬁ(t)))pdtZ/ q(hy(t,~(2)))P dt S/ m(y()) dt < oo,

)-

thus g o (f o (n,7)) € L¥([a, b]
(t))) < m(v(t)), whence

If p = oo, then q(f(n(t),~y

ess supyc o) (A(F(0(1), Y (1)) < 58 supep((7(1) < o,
thus qo (f o (1,7)) € L2 ([a,b]). =

Lemma 4.1.24. Let E1, E3, E3 and F be locally convexr spaces, U C E1, V C Ey be
open subsets and the function f: U x V x E3 — F be a C'-function and linear in the
third argument. Then the function

f:U x C([a,b],V) x LP([a,b], E3) — LP([a,b], F),
(uw,m, [7]) = [f (u, ®) o (n,7)]
is continuous.(Here C([a,b],V) is endowed with the topology of uniform convergence.)

Proof. Fix some (4,7, [y]) € U x C([a,b],V) x LP([a,b], E3) and let ¢ be a continuous
seminorm on F'. The subset K := {u} x7([a,b]) C U xV is compact, hence from Lemma

[I7, Lemma 1.61], it follows that there are seminorms 7 on F; X FE5 and 73 on E3 such
that K + BT(0) CU x V and

q(f(u,v,w) — f(u', 0" w") < m3(w —w') + 7(u — ', v — v )w3(w')

for all (u,v), (v',v") € K+BT(0), w,w" € E3. We may assume 7(z,y) = max{m (z), m2(y)}
for some continuous seminorms 7, on Fq, mo on Es. Then, setting

Uo := Bi'(u), Vo :=1([a,b]) + B{*(0),
we define an open neighborhood

Q= Uy x C([a,b], Vo) x LP([a, b], B3)

f( 7, [7]) and see that if (u,n, [7]) = (@,7,[3]) in ©, then f(u,n,[Y]) = f(a,7,[7]) in
L*([a,b], E3), because

17 Casm, ) = f (@, 7, 3]) | o g

< by = Allze mg + max{mi(u = @), [|n = 7l Lo s [V 2.5 = 0.

In other words, f is continuous in (i, 7, []). O
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4.1 Measurable functions and Lebesgue spaces

Proposition 4.1.25. Let E1, Eo, F be locally convex spaces, let V. C E; be open and the
function f: V x Ey — F be C**! for k € NU{0,00} and linear in the second argument.
Then for p € [1,00] the function

©7: C([a,b], V) x LP([a,b], E2) — LP([a,b], F),  (n,[7]) = [f o (n,7)]
is CF.

Proof. For k = 0, the assertion holds by Lemma[4.1.24] Further, we may assume k < 0o
and proceed by induction.

Base case: k = 1. The map ©; is continuous by the previous step; we show that
for all (n,[y]) € C([a,b],V) x LP(]a,b], E2) and (7, [7]) € C([a,b], E1) x LP(]a,b], E2) the

directional derivative

A(O7) (1, 1), 7, [7)) := lim Os(n+ hit, [y +:ﬂ> —0(n, 7))

exists in LP([a,b], F') and equals [df o (0,7, 17,7)].

Given n, [v], 7, [7] as above, we note that 7([a, b]) is a compact subset of the open subset
V C Ej, thus there exists an open 0-neighborhood U C Ej such that n([a,b]) + U C V.
Further, there is some balanced 0-neighborhood W C U such that W + W C U. As
7([a, b]) is bounded in E; (being compact), for some € > 0 we have 7([a,b]) C 1/:W. In
this manner we obtain an open subset

1
Q=] —e,e[x(n([a,b]) + W) x gWng X Ey CR XV x Ey x By x Ey

such that | —¢,e[xn([a, b]) x77([a, b]) x¥([a, b]) X ¥(]a, b]) C  and for all (¢, w,w,z,T) € 2
we have (w + tw,z + tZ) € V x Ey (that is, Q corresponds to a subset of (V x FE)!!
constructed as in Lemma [2.3.4]).

Now fH: (V x Ey)ll — F is C* and thus C' (see [5]). Hence the function

Q_>F7 (t7w7w7x7j)Hf[l](w7x?/u_]7w7t)

is C! and linear in (z,Z), thus from Lemma [4.1.24] it follows (identifying the vector
space LP([a,b], Eo x E3) with LP([a,b], E3) x LP([a,b], E3), see Remark [4.1.20)) that

(t, 0,2, [¥), () = [f1(0,8) 0 (0,4, 8,4)] € LP([a, b], F)
is continuous on
| —&,e[xC([a, b],n([a,b]) + W) x C([a, b, /esW) x LP([a,b], E2) x LP([a,b], E>).
Hence

| —e,e[= LP([a,b], F), t+ [f[l](’vt) o (1n,7,1,7)]
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4 Measurable regularity of Lie groups

is continuous. Therefore, we have

4O )1, 1), B]) = lim & (©5n + 7, by + 1)) ~ O5(n, 1)
= lim (7 o (n+ 17,7+ 19)] ~ [ o (m, 7))

= }lig%)[f[”(% h) o (n,7.7,7)]
= [fM(e,0) 0 (1,7,7,9)] = [df o (n,7,7,7)]

in LP([a,b], F).
It remains to show that

d(©y): C(la,b], V) x LP([a,b], E2) x C([a,b], E1) x LP([a,b], E2) = LP(]a,b], F)
is continuous. But as the function
VX E X FEyXx Ey— F, (w,w,z,z)— df (w,z,w,T) (4.1)
is C! and linear in (z,Z), by base case

C([a,b], V) x C([a,b], 1) x LP([a,b], Ba) x LP([a,b], Es) — LP(a,b], F),
(0, @, W], [0]) = [df o (0,9, ,9)]

is continuous (we identify the LP-spaces again, as above), hence d(0y) is continuous.
Therefore, © is Ccl.

Induction step: Now, assume that f is C**2. Then Oy is C' by base case and df is
C**+1. Then the map in is C**1 and linear in (x,Z), hence by induction hypothesis,

the map (¢, @, [¢], [¢]) = [df o (0, %, 3, ¢)] = d(©f)(e, [¢], , [¢]) is C*. Hence O is
C'k+1. OJ

Remark 4.1.26. The properties proved in Lemma and Proposition are
called pushforward azxioms in [17] (see [I7, Lemma 2.4] and [I7, Propositions 2.2, 2.3],
respectively).

4.2 Spaces ACp»([a,b], E) and ACL:([a,b],G)

Similarly to [17], we construct locally convex spaces ACr»([a,b], E) and Lie groups
ACrr(la,b],G).

A function v: [a,b] — R is called absolutely continuous if for every ¢ > 0 there exists
some ¢ > 0 such that Y ;_; [7(Bk) — V()| < € whenever a < a; < /1 < az < 2 <
v <oy < Bp <bwith Yop(Br — ag) < 6. Every absolutely continuous function v is
continuous and the derivative v/ exists a.e.

Further, we recall the Fundamental Theorem of Calculus for Lebesgue Integrals from
[10]:
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4.2 Spaces ACrr([a,b], E) and AC»([a,b],G)

Lemma 4.2.1. If v € L([a,b]), then

o) = [ 5ts)ds

is an absolutely continuous function on [a,b] and 1'(t) = v(t) a.e.
On the other hand, assume that n: [a,b] — R is absolutely continuous and define
y(t) := /() whenever the derivative exists, otherwise y(t) := 0. Then vy € L'([a,b]) and

for every t € [a,b].
For vector-valued functions, the following concept of integrability is well known.

Definition 4.2.2. Let E be a locally convex space and let 7: [a,b] — E be such that
ao~y € LY([a,b]) for every continuous linear form o € E’. If there exists some w € E
such that

for every a, then w is called the weak integral of v from a to b, and we write fab ~(t) dt ==
w.

As the continuous linear forms separate the points on F, the weak integral of a function
~ is unique if it exists.

Further, in this case we have

’ ( / " dt) < | " (e at

for every continuous seminorm ¢ on F.

Remark 4.2.3. In [41], the weak integral [, v du is defined for any suitable function
v: X — FE on a measure space X. It is known, that if the locally convex space E
has the metric convex compactness property (that is, the closed convex hull of every
metrizable compact subset of E is compact), then every continuous function v: X — E
on a compact space X has a weak integral [ v dpu.

Remark 4.2.4. Since |a| is a continuous seminorm on E, for every a € E', every
v € LY([a,b], E) satisfies the condition a0y € L!([a,b]).

We use [7, §5] and get a result for functions in £'([a,b], E), which is similar to the
first part of the Fundamental Theorem of Calculus.
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4 Measurable regularity of Lie groups

Proposition 4.2.5. Let E be a locally convex space, let v € LY([a,b], E). If the function

n: la,b] = E, n(t) = /t'y(s) ds (4.2)

1s defined, then n is continuous.
Moreover, if E is metrizable, then for almost every t € [a,b] the derivative 1/ (t) exists
and equals y(t).

Proof. To prove the continuity of 7 in every ¢ € [a, ], let ¢ be a continuous seminorm on
E and let € > 0. Then there exists some ¢ > 0 such that whenever |t — r| < §, we have

f: q(v(s)) ds‘ < ¢ (follows from the Fundamental Theorem of Calculus, Lemma |4.2.1]).

a0 =) = [ 2(61as = [0 05)
=q<[f7wnw)s [ atrisn s
whence 7 is continuous in ¢.

Now, assume that E is metrizable and recall that by Lemma there exists a
sequence of compact subsets (K, )nen of [a, b] such that A([a, b))\, ey Kn) = 0 and |k,
is continuous. We may assume that y(t) = 0 for each t ¢ |J,,cry K. Our aim is to show
that for almost every t € [a, b] the difference quotient

Yos - =2 ([ awas [awas) = [Taas

Therefore

< g,

T T

tends to y(t) as r — 0. That is, for every ¢ > 0 and continuous seminorm g¢,, on E we

have
%({[Hw@w—vw):%<f[”ﬂ@—ww@)<s (43)

T T

for r # 0 small enough.

We fix some ¢ > 0 and some continuous seminorm ¢,,. The set v([a,b]) C {0} U
Unen 7(Kn) € E is separable, say v([a,b]) = {ax : k € N}. Thus for every ¢ € [a,b] we
find some a,,(t) such that

m(1(8) — am (1)) < 3.

hence for every r # 0 small enough we have

1

t+r 1
[ ) = ane)as| < 3. (1.4
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4.2 Spaces ACrr([a,b], E) and AC»([a,b],G)

Furthermore, each of the functions
hk,m3 [av b] — R, hk:,m(t) = Qm(’}/(t) - ak:)

is in £!([a, b]), hence by the Fundamental Theorem of Calculus (see Lemma [4.2.1]) there
exist some sets Ny, C [a, b] such that A(N,,) = 0 and for every ¢t ¢ Ny, we have
1

t+r 1
L] )~ @ ds - antr) - )| < g (15)

for r # 0 small enough.
Consequently, for ¢t ¢ Uk,mEN N.m we have
1

t+r
<[ 006 = 20) = o) ~ o) s

t+r
1 / G (1(5) — A(1)) ds

r

t+r
+ '1/t Am(Y(8) — am(t)) — qm(y(t) — am(t)) ds

t+r
[ a0 - a0 ds
t+r
<3 a6 =20) = 4 (a5) = an(0) s
1 1
+§E+§€,

using the estimates in (4.5) and (4.4). Finally,

t+r
] a6 =10 = aua(5) = () s
1 t+r
< / gm(1(8) = 7(8)) — Gm(7(5) — am(®))] ds
t+r
< |1| / Gm(7(5) = () = 7(5) + am(t)) ds
t+r
=l [ a0 - an) as < 3

using (4.4) again.

Altogether, we have

dm (71, /tmv(é’) - () d8> = \rlqu (/tt+T7(8) — () d8>

S " () — () ds

Ir|
t+r
1 / G (1(5) — A(1)) ds

r

< <e

by the above. Thus the desired estimate (4.3) holds for each t ¢ U ey Nk,m and
MUk men Nk,m) = 0, whence the proof is finished. O
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4 Measurable regularity of Lie groups

Even if the range F is not metrizable, the next lemma can be used to show that n as
in (4.2)) uniquely determines the corresponding [y] € L'([a, b], E).

Lemma 4.2.6. Let E be a locally convex space and let v € L([a,b], E) such that
f;’ v(s)ds =0 for all t € [a,b]. Then y(s) =0 a.e.

Proof. Let a be a continuous linear functional on E. Then we have

/at(ao'y)(s)dsza (/at’y(s)ds> —0

for every ¢ € [a,b]. From the Fundamental Theorem of Calculus (see Lemma [4.2.1]), it
follows that (o )(t) = 0 a.e. As a € E' was arbitrary, from Lemma it follows
that y(t) = 0 a.e. O

Now, we discuss the existence of weak integrals of LP-functions.

Proposition 4.2.7. Let E be a sequentially complete locally convexr space. Then each
v € LY([a,b], E) has a weak integral fb )dt € E.

Proof. As 7 is measurable, pick a disjoint sequence (K, )nen of compact sets K, Ca,b
such that 7|k, is continuous and )\([a b\ Uyen Kn) = 0 (see Lemma . Then for
each n € N the weak mtegral f x, V(t)dt exists in E (by [41, 3.27 Theorem]) We define
a sequence wy, ==y ", | K, ~(t) dt and show that (w,)men is convergent in E and that
w = lim,;,— 0o Wiy, 1S the weak integral of v from a to b.

Fix € > 0 and a seminorm ¢ on E. We have

0 b
(v(t)) dt = t))dt < oo,
nzl/nq'y ) /a q(y(t)) dt <

hence <Z;”:1 S a(v(t)) dt) N is a Cauchy sequence in R, that means that there exists
n me

some NN € N such that
3 / )t <e,

n=k+1
for all m > k > N. Then

q(wm — wy, —q(Z/ ) Z/ ) dt < e,

n=k+1 n=k+1

therefore (wy,)men is a Cauchy sequence in E. As E was assumed sequentially complete,
the Cauchy sequence (w,)men converges to some w € E.
Finally, for any continuous linear form o € E’ we have

o) = Jim o) = Jin 3 [ atr(p = | oo,

as required. O
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4.2 Spaces ACrr([a,b], E) and AC»([a,b],G)

Definition 4.2.8. Let E be a sequentially complete locally convex space. For p € [1, o0]
we denote by AC»([a,b], E) the vector space of continuous functions 7: [a,b] — E such
that for some v € £LP([a, b], E) we have

n(t) =n(a) + / v(s)ds for all t € [a,b).

As 7 uniquely determines [y] (see Lemma [4.2.6)), we write ' := [].
The function

®: ACr»(la,b], E) — E x LP(la,b], E), 1+ (n(a),n) (4.6)

is an isomorphism of vector spaces and we endow ACys([a,b], E) with the Hausdorff
locally convex topology making ® a homeomorphism.

We consider some properties of AC-spaces and functions between them.

Lemma 4.2.9. Let E is a sequentially complete locally convex space and endow the
vector space C([a,b], E) with the topology of uniform convergence (which is defined by
the family of seminorms ||n||c,q := SuPsciap) 9(1(t)) with continuous seminorms q on E).
Then for 1 <p <r < oo, we have

AC1([a,b], E) C ACL([a,b], E) € AC1s([a, b], )
C AC;1 ([a,b], B) € C([a,b], )

with continuous inclusion maps.

Proof. We only show the continuity of the inclusion map AC71([a,b], E) — C([a,b], E),
as the remainder follows from Remark|4.1.18 Let n € ACr1([a,b], E) and denote ' = [v].
For a continuous seminorm ¢ on E and t € [a,b] we have

t t
q(n(t)) = q (n(a) +/ (s) dS) < q(n(a)) +/ q(v(s)) ds < q(n(a)) + 17l 21 4

Thus
[Mloo,g < a(n(a)) + 7]z g

whence the (linear) inclusion map is continuous. O

Remark 4.2.10. From the previous lemma, it follows that for any open set U C V, the
subset AC7»([a,b],U) = incl™*(C([a, b], U)) is open in ACrs([a,b], E).

Remark 4.2.11. It is well known that the evaluation map C([a,b],E) — E,n
n(a) is continuous linear for a € [a,b]. By Lemma so is the inclusion map
incl: ACr»([a,b], E) — C([a,b], E), hence the evaluation map

eva: ACp([a,b], E) = E, 17— n(a)

is continuous, linear.
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4 Measurable regularity of Lie groups

Remark 4.2.12. For any t; € [a, b], consider the vector space ACY, ([a,b], E) consisting
of continuous functions n: [a,b] — E such that for some v € LP([a,b], E) we have

t
n(t) =n(to) + /t v(s)ds for all t € [a,b],

endowed with the locally convex topology making
2 ACE, ([a,b], B) = E x LP([a,b], E), 1+ (n(to), [7])

an isomorphism of topological vector spaces. Using Remark [4.2.11] we can easily see
that AC,([a,b], E) = ACp»([a,b], E) as topological vector spaces.

Lemma 4.2.13. Let E be a sequentially complete locally convex space, p € [1,00] and
a=ty <ty <...<t,=0b. Then the function

U: ACpe([a,b], E) — HACLPqtj—l,tj];E)a n = (1,5 i=1,m (4.7)
j=1

1$ a linear topological embedding with closed image.
Proof. Clearly, for n € ACpr([a,b], E) with ' = [vy] and every j € {1,...,n} we have
Nlie;_rt;) € ACLe([tj—1,t5], E) with (n[i,_, ) = {7‘[%—1,%}]’ by Lemma [4.1.21} that is,

the function ¥ is defined. Also the linearity and injectivity are clear.
We show that each of the components

ACLP([G’7 b]7E) - ACLP([t]—].?t]]?E)’ "7 = n‘[tj_l,tj}

is continuous, which will be the case if each
ACp([a,8), B) = B x L([t-1,451, ), e (n(ti1); [, e])

is continuous (using the isomorphism as in Definition . But the first component
is a continuous evaluation map on ACrr([a,b], E), see Remark and the second
component is a composition of the continuous maps ACr»([a,b], E) — LP(]a,b], E),n
[v] and LP([a,b], E) = LP([tj—1,t;], E), [v] — [7|[t]._17t].]} , see Definition|4.2.8 and Lemma
4.1.21] Therefore, ¥ is continuous.

Note that (n1,...,m,) € im(¥) C [[7_; ACL([tj—1,t;], E) if m;(t;) = nj11(t;) for all
jeA{l,...,n— 1}, thus the map

L'(n,....,0n): [a,b] = E, tw—mn;(t) for t € [tj_1,t5]
is continuous and it is easy to show that I'(n1,...,n,) € ACLe([a,b], E) and that

I': im(¥) —» ACr»([a,b], E)
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4.2 Spaces ACrr([a,b], E) and AC»([a,b],G)

is the inverse of W|™(¥) The continuity of T' follows from the continuity of

im(¥) — E x LP([a,b], E),
M1, mm) = (@), T, - ma)) = (m(a), T5' (0, -, i),

where I'p is the isomorphism from Lemma[4.1.21] Hence WV is a topological embedding.
Finally, let (71.4--.,Mn,a)aca be a net in im(¥) which converges to (n1,...,7,) €
[[j-1 ACLo([tj-1,t;], E). Then for every j € {1,...,n — 1} we have

nj(t) = lim nja(t;) = lim njp1a(t;) = nj1(t),
therefore (n1,...,m,) € im(¥). O
Remark 4.2.14. By the above lemma, a continuous function 7: [a,b] — FE is in
ACrr(la,b], E) if and only if 77|[tj,1,tj] € ACrr([tj—1,t5], E) for any a = t9 < t1 <
o<ty =0

Lemma 4.2.15. Let E be a locally convex space, U C E be an open subset and f: U — R
be continuous. Then for every compact subset K C U and every € > 0 there exists a
continuous seminorm q on E such that K + B}(0) C U and

[f(x) = fly)l <e forxze K,ye Bi(x).

We show that Cl-functions act on ACp». The following lemma is a variant of [17,
Lemma 3.18 (a)].

Lemma 4.2.16. Let E, F' be sequentially complete locally convex spaces, V C E be an
open subset and p € [1,00]. If f: V — F is a C'-function then

fone ACLr([a,b], F)
for every n € AC1»([a,b],V) and
(fom) = [t — df(n(t),(t))] (4.8)
ifn' =Dl

Proof. The composition f o n is continuous and the differential df: V x E — F is
continuous and linear in the second argument, thus df o (n,v) € LP([a,b], F) for [y] =1/,
by Lemma [4.1.23] In other words, the function

C:fa, b = F, ((t) == f(n(a)) +/ df (n(s),~(s)) ds (4.9)

is in ACr»([a,b], F).
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4 Measurable regularity of Lie groups

We claim that for each continuous linear form o € E’, the composition oo f o7 is
in ACpr([a,b],R) (hence almost everywhere differentiable) and that (a o f o n)'(t) =
a(df (n(t),~(t))) for almost every t € [a,b]. From this, it will follow that

a(F0(0) = (oo fom)(a) + [ aldfn(s),1(5)) ds
—a <f<n<a>> + [ drnts) o) ds) — alC(1)),

for each a € E' and t € [a,b], therefore fon = ¢ € ACr»([a,b], F), as E’ separates
points on E. Notably, holds.

To prove the claim, we may assume that F' = R and we show that the composition
fomn: [a,b] = R is absolutely continuous.

As n([a, b]) is a compact subset of the open subset V', there is some open neighborhood
U CV of n([a,b]) and some continuous seminorm ¢ on E such that

f(w) = f(@)] < q(u—a) (4.10)

for all u, w € U, by [17, Lemma 1.60]. Given £ > 0 there exists some § > 0 such that
S lo(bj) —o(aj)| < e whenever a < a1 < by <ag <by <--- < a, < b, <b with
> j—1 |bj —aj| <4, because the function

o:la,b] = R, o(t) ::/ q(y(s)) ds

is absolutely continuous (see the Fundamental Theorem of Calculus, Lemma [4.2.1)).
Therefore, we have

n

D1 @by) = fn(ay))] < ZQ(n(bj) —n(a;))

j=1
n b n b;

_ () ds) < (4(s)) ds < e,

;q</%_ o ;/@J q(y e

where we used (4.10) in the first step. Hence f o7 is absolutely continuous, thus, by
Lemma there is some ¢ € L'([a,b]) such that

in other words
fone ACri([a,b],R) and (fon)(t) = p(t) for a.e. t € [a,b].

Now, we want to show that p(t) = df (n(t),~(t)) for almost every t € [a,b], that is,
¢ € LP([a,b]). To this end, we may assume that there exists a sequence (K, )nen of
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4.2 Spaces ACrr([a,b], E) and AC»([a,b],G)

compact subsets of [a,b] (as in Lemma [4.1.5)) such that for every n € N the restriction
YK, is continuous , A([a,b] \ U,cn Kn) = 0 and ~(t) = 0 for every t ¢ (U, cn Kn-
Each of the sets

Ly = TI([C% b]) U U ’V(Km)

m=1

is compact and metrizable, hence by [I7, Lemma 1.11], there exists a locally convex
topology Tx, on each vector subspace

Xy, :=span(Ly,),

which is metrizable, separable and coarser than the induced topology Ox, . Then on each
X, there is a countable family A,, of continuous (with respect to Tx,, ) linear functionals
separating the points (see [42, Chapter I, Prop. 4]). Consequently, the countable family
A := U, en An separates the points on the vector space X := (J,,cyy Xn, which enables to
define a metrizable locally convex topology 7Tx coarser than the induced topology Ox.
On the other hand, each of the m-fold sums

Ly = [—m,m|Ly, + -+ [—=m,m]L,

is compact (with respect to Tx, and Ox, ), and X, = J,,,cry Lim,n, thus

X= U Lmn

m,neN

is o-compact.

The space X x X x R has a locally convex metrizable o-compact topology T, say,
X XX xR =,enCn- Then Oc, = T¢,, where Oc,,, Tc, are the topologies on Cp,
induced by £ x E x R and X x X x R, respectively. Hence vilng, e Tc,, and T,
is compact and metrizable, hence second countable. Therefore, VI N C,, is o-compact
(being locally compact with countable base), that is, VI N ¢, is a countable union of
compact subsets, hence so is (VN X)) = VIl N (X x X xR) = UneN(V[” NCy), so
that we may write (V N X) = Unen An with compact subsets Ay,.

Next, we will construct a metrizable locally convex topology on X such that n €
ACrr([a,b],V N X) with ' = [y] € LP([a,b], X) and such that f[1]|(VmX)[1] remains con-
tinuous. From Lemma [4.2.15] it follows that for every k,n € N there exists a continuous
seminorm ¢y, on E x E x R such that for all (z,y,t) € A, we have

1

|f[1]($,y,t) - f[l](v,w,s)] < E V(v,w,s) € B‘lln,k(x,th)'

Consequently, there is a continuous seminorm 7, on F and ¢ > 0 such that

700G, — (0, w,5)| <
V(v,w,s) € Bf”’k (z) x Bf”‘k(y)x]t —4,t+0[C B;]"’k (z,y,t).
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4 Measurable regularity of Lie groups

We endow X with the metrizable locally convex topology T defined by the countable
family {7, r|x : n,k € N}. This topology is coarser than the induced topology, hence
n: [a,b] = V N X remains continuous and 7(¢ f ~v(s) ds is the weak integral of
v in X for every t € [a,b]. To see this, let « be a contmuous hnear functional on (X, T).
Then « is continuous with respect to the induced topology on X (which is finer than 7))
hence there is some continuous linear extension A € E’ of . Thus

a(n(t) — n(a)) = Al /A w—/aW@m&

Therefore, n € ACp»([a,b],VNX) with = [y] and, by the construction of the topology,
the map f is continuous in every (z,y,t) € (VN X)[l] with respect to the obtained
topology on X x X x R. As T is metrizable, the map n: [a,b] — V N X is differentiable
in almost every ¢ € [a,b] with n/(t) = v(t) (see Proposition [£.2.5)), so that in every such
t we have

L0ttt b — F) = 1 () + TEEZI0, gy

= ), MRy ), 40

as h — 0. That means, for almost every ¢ € [a, b] we have

p(t) = (fon)(t) =df (n(t),7(t)),
whence ¢ € LP([a,b]) and fon € ACL»([a,b],R). O
Proposition 4.2.17. Let E, F' be sequentially complete locally convex spaces, letV C E

be an open subset and p € [1,00]. If f: V — F is a C*2_function (for k € NU{0,0}),
then the map

ACLP([CL, b]7 f) : ACLP([G, b]7 V) — ACLP([av b]a F)v n— f °on
is CF.
Proof. The map ACr»([a,b], f) is defined by Lemma m 4.2.16|, by definition of the topol-
ogy on ACrs([a,b], F) (see Definition |4.2.§ u, ACr»([a,b], f) will be C* if each of the

components of
ACLr([a,0],V) = F x LP([a,0], F), 0+ (f(n(a)),(f on)) (4.11)
is C*. The first component
ACps([a, 0], V) = F, n— (fopr;o®)(n) = f(n(a))

is indeed CF, where ® is as in Definition and pr; is the projection on the first
component. Further, for ' = [y] € LP([a,b], E) we have (f on) = [df o (n,7)] by (4.8)
and

C([a,b], V) x LP([a, b], B) — LP([a,b], F), (0, []) = [df © (n,7)]

is C*, the derivative df : V x E — F being C**1 and linear in the second argument (see
Proposition [4.1.25)). Hence, the second component of (4.11)) is C*, as required. O
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4.2 Spaces ACrr([a,b], E) and AC»([a,b],G)

Remark 4.2.18. In particular, the above proposition states that smooth functions act
smoothly on ACpy» ([I7]), that is, for any smooth function f: V' — F, the function
ACrr([a,b], ) is smooth.

Remark 4.2.19. Since any continuous linear function f: E — F is smooth, we conclude
from Proposition |4.2.17| that

ACLP([CL, b], E x F) = ACLP([G, b], E) X ACLP([G, b], F)
as locally convex spaces (proceeding as in Remark [4.1.20)).

The properties of the spaces ACr»([a,b], E), proved in the preceding, enable us to de-
fine spaces of AC-functions with values in manifolds M modeled on sequentially complete
locally convex spaces.

Definition 4.2.20. Let M be a manifold modeled on a sequentially complete locally
convex space E. For p € [1,00], denote by AC»([a, b], M) the set of continuous functions
n: [a,b] — M such that there exists some partition a =to < t; < ... < t, = b with

Pj© n‘[tj_l,tj} € ACL”([tjflvtj]vE)
for some charts ¢;: U; — V; such that n([tj_1,t;]) CU; for j=1,...,n.

The following lemma shows, in particular, that given an AC-function with values in
a manifold, the defining property holds for any suitable partition and charts.

Lemma 4.2.21. Let n € ACLr([a,b], M), let (o, 8] C [a,b] and ¢: U — V be any chart
for M such that n([e, B]) CU. Then

@ o 77|[a,ﬁ] S ACLp([Oz,,B], E)

Proof. We have « € [ty, tx11] and 8 € [t;_1,t;] for some k, [, for the sake of simplicity we
may assume « = t, 5 =1t;. For j € {k+1,...,l} we have

ponli,_ i) =(pow;)o(wionl, i)
Since ¢ o goj_l is a smooth function and ¢; o nly. |41 € ACLe([tj—1,t;], E), the above
composition is in AC»([tj—1,t;], E) by Lemma [4.2.16| From Remark [4.2.14] it follows
@OU\[Q,,B] € AC([o, B], E). O

Remark 4.2.22. If M is a sequentially complete locally convex space, then ACy»([a, b], M)
coincides with the set defined in Definition by the previous lemma.

Lemma 4.2.23. Let M, N be manifolds modeled on sequentially complete locally convex

spaces E and F, respectively. If f: M — N is a Cl-map, then fon € ACrs([a,b], N)
for each n € ACrr([a,b], M) and p € [1,00].
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4 Measurable regularity of Lie groups

Proof. Consider a partition a = tg < ¢t < ... < t, = b and charts p;: U; — V; for M
such that n([t;—1,t;]) € U; and @jon|;_, ¢, € AC’Lp([ ji—1,t], E) for eachj e{l,...,n}.
Since f o ”‘[tj,l, t;] 1s continuous, we find a partition tj_1 = sg < 81 <+ < 8 = t and
charts v;: P; — @Q; for N such that f(n([s;—1,s:])) C B for each i € {1, s, mb. Then

bio fonl_ys) = iofow;)o(pjonl, .)€ ACLr([si-1,sil, F),

by Remark (4.2.14 and Lemma [4.2.16) Hence f onlit;_1,t;) € ACLr([tj—1,t;], N) for each
jed{l,.. hencefone C’Lp d

Remark 4.2.24. For manifolds M and N, from the above lemma, it follows that the
sets ACr»([a,b], M x N) and ACr»([a,b], M) x ACL»([a,b], N) coincide.

Remark 4.2.25. Let G be a group, U C G be a symmetric subset containing the identity
element of G. Assume that U is endowed with a smooth manifold structure modeled
on a locally convex space E such that the inversion U — U,z — x on U is smooth,
the subset Uy, := {(z,y) € U x U : zy € U} is open in U x U and the multiplication
Un — U, (z,y) — zy is smooth on U,,. Further, assume that for each g € G, there exists
an open identity neighborhood W C U such that gWg=! C U and W — U,z +— gxg~"
is smooth. Then G can be endowed with a unique smooth manifold structure modeled
on F such that GG becomes a smooth Lie group and U with the given manifold structure
becomes an open smooth submanifold.

Lemma 4.2.26. Let B, FEo and F be sequentially complete locally convex spaces. Let M
be a smooth manifold modeled on Fy and V C Es be an open subset. If f: M xV — F
is a C*2-map for some k € Ng U {oo} and ¢ € ACL»([a,b], M) for p € [1,00], then

ACLo([a, 4], V) = ACLo([a,b], F), 1+ fo(C,n) (4.12)

is a C*-map.

Proof. Since ((,n) € ACr»([a,b], M x V'), the above map is defined by Lemma |4.2.23} it
4.2.20) the

will be C* if for a partition a =ty < t; < ... < t, = b for ¢ (as in Definition
function

AC1»([a, 0], %HACLP i—1: 5], F),
7j=1
me (£o (Cmlire),

=1,...,n

is C* (where we use the topological embedding with closed image on ACr»([a,b], F) as
in Lemma |4.2.13]). This will hold if every component

ACLr([a,b], V) = ACLe([tj-1, 5], F),  m> fo(Cmli,_y.ey) (4.13)

is C*.
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Now, given charts ¢: U; — V; for M with (([t;—1,t;]) C Uj, for every j € {1,...,n},
the function

ACLP([a’7 b]’ V) — ACLP([tj*17tj]’ V] X V)7 n = (90] o C|[tj_1,tj]’ 77|[tj_1,tj]>

is smooth by Lemmal4.2.13| (identifying AC» ([tj—1,t;], V;x V) with ACL» ([tj—1,t;5], V)X
ACrr([tj—-1,t5], V), see Remark4.2.19). As the composition fo(goj_1 xidy): V;xV = F
is C*+2, by Proposition |4.2.17| the function

ACrr([a,b], V) = ACLr ([tj—1,t5], F),
ne (f © (4)0;1 xidy) o (¢j o C|[tj_1,tj]a77‘[tj_1,tj})
=fo (Can)’[tj,l,tj}
is C*. Therefore, the function in is C* and the proof is finished. O
Now, we are able to endow the sets ACr»([a,b],G) with unique Lie group structures.

Proposition 4.2.27. Let G be a smooth Lie group modeled on a sequentially complete
locally convex space E, let p € [1,00]. Then there exists a unique Lie group structure
on ACr»([a,b], G) such that for each open symmetric eg-neighborhood U C G the subset
ACrr([a,b],U) is open in ACr»([a,b],G) and such that

AC’Lp([a, b],go): ACLP([CL, b],U) — ACLP([CL, b],V), n—pon

is a smooth diffeomorphism for every chart p: U — 'V for G.

Proof. Step 1: ACr»([a,b],G) is a group.

As mg and jg are smooth, we have mg o (n,€), jg on € ACLr([a,b],G) for all n, £ €
ACp»(la,b],G), by Lemma [4.2.23| (identifying AC»([a,b], G x G) with AC1»([a,b], G) X
ACr»([a,b],G)). Then G := ACr»([a,b], G) is a group with multiplication

me = ACLP([aabLmG): é X é — é? (7775) = mg o (777’5) =:n-&,

inversion

ja = ACw(la,b],jc): G = G, nr jgon=in""
and identity element es: t — eg.

Step 2: Ezistence of a Lie group structure on ACr»([a,b],G).

Consider an open symmetric eg-neighborhood U C G and a chart p: U — V. AsV :=
ACr»([a,b],V) is open in ACp»([a,b], E) (see Remark [4.2.10)), we endow the symmetric
subset U := ACrs([a,b],U) := {n € ACrs([a,b],G) : n([a,b]) € U} with the C*-

manifold structure turning the bijection

¢ = ACwo(la,b],9): U=V, nwpon
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4 Measurable regularity of Lie groups

into a global chart (the map is defined by Lemma {4.2.23). Obviously, e € U.
Further, by Lemma the function

ACpe([a. bl pojcluoe™): V=V, ne (pojeluoe™)on
is smooth. Thus, writing

U—U, n= (@ "o AC((a,b], 0 jalu o) o @)(n)
=yp topojgluopTtopor
=Jjgo m,
we see that the inversion on U is smooth.

Now, consider the open subset Uy, := {(2,y) €U x U :xy € U} of U x U. As Vp, :=
(¢ x¢)(Un) is open in E x E, the set V;,, := ACLs([a, b], V) is open in ACL»([a, b], E) X
ACr»([a,b], E), whence Uy, := (7! x ¢71)(V,,,) is open in U x U. Again, by Lemma
[4:2716] the function

ACLP([G) b]v pomgo (9071 X 9071)|Vm): Vm - f/,

n— (pomgo (o

X @ Ylv,) on
is smooth. Therefore
U, — U,
(,€) = (¢~ 0o ACLr ([a,b], pomg o (¢! x o™ My,,) 0 (¢ x @) (1, €)

=¢p lopomgo(p ' x|y, o (@ xp)o(n,&)
=mgo (n,§),

which is the multiplication on [7m, is smooth.
Finally, fix some 1 € G and write K :=im(n) C G. As the function

h: GxG— G, (z,y) — zyz "

is smooth and h(K x {eq}) = {eq} C U, the compact set K x {eg} is a subset of the
open set h~1(U) C G x G. By the Wallace Lemma, there are open subsets Wy, W of G
such that K x {eg} € Wi x W C h=}(U). We may assume W C U, then we see that
W := ACp»([a,b], W) is open in U and for each £ € W we have

n-&nt=ho(ngeU
by Lemma [£.2.23] Using Lemma [4.2.26] we see that the function

ACLP([avb]7@(W)) - ‘7’
& (poho(idw, xo omn)) o (1,€)
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4.2 Spaces ACrr([a,b], E) and AC»([a,b],G)

is smooth, whence

W—=U, &9 lo(poho(idw, xo omn)) o (npof)
=ho(n,§)
:77.5.77_1

is smooth.

Consequently, by Remark there exists a unique Lie group structure on G turn-
ing U into a smooth open submanifold and © into a G-chart around ea-

Step 3: Uniqueness of the Lie group structure on ACr»([a,b],G).

Let U’ C G be an open symmetric eg-neighborhood and ¢': U’ — V' be a G-chart
around eq. Denote by G/ the group AC v ([a, ], G) endowed with the Lie group structure
turning U’ := ACp»([a,b],U’) into an open submanifold and ¢': U’ — AC»([a,b], V")
into a chart (constructed as in Step 2). We show that both identity maps id: G - G
and id: G = G’ are continuous, that is, both Lie group structures coincide.

The set U'NU is open in U’, hence ¢’ (U'NU) is open in V', thus AC1»([a, b], ¢ (U'NU))
is open in AC7»([a,b], V"), and consequently U’ N U = é’il(ACLp([a, b, (U'NU))) is
open in G'. Writing

idging =& o ACLs([a,b], 9 0 ¢ Humaw) o @' ging: U'NU — G

and using Proposition |4.2.17, we see that id: G’ — G is smooth on the open identity
neighborhood U’ N U, hence smooth. In the same way, we show that also id: G — G’ is
smooth, as required. O

Remark 4.2.28. One can easily show that
ACrr([a,b]),G x H) 2 ACs([a,b],G) x ACs([a,b], H)
as Lie groups.
Lemma 4.2.29. The inclusion map
incl: ACr»r(la,b],G) — C([a,b],G), n—n
18 a smooth homomorphism.

Proof. Let U C G be an open identity neighborhood, ¢: U — V be a chart for G.
Then C([a,b],¢): C([a,b],U) — C([a,b],V),n — @ on is a chart for C([a,b],G) and
ACrr([a,b], ) ACLe([a,b],U) — ACLr([a,b],V),n — ponis a chart for ACr»([a, b], G).
The function
ACrr([a,b], V) — C([a,b], V),
= (C([a,b], ¢) o incloACLs ([a, 8], ) ") (n) =7

is smooth, being a restriction of the smooth inclusion map from Lemma [4.2.9] Hence
the group homomorphism incl is smooth. O

65



4 Measurable regularity of Lie groups

Lemma 4.2.30. For any « € [a,b], the evaluation map
evy: ACrr([a,b],G) = G, n+— n(a)
s a smooth homomorphism.

Proof. The function is a composition of the smooth inclusion map from Lemma
and the smooth evaluation map on C(]a,b],G), hence smooth. O

Lemma 4.2.31. Let G be a Lie group modeled on a sequentially complete locally convex
space E, let p € [1,00]. Then the function

To: ACp([a,8],G) = [[ ACLo(Itj—1. 13, G), 0 (m[tj_lm)j

=1,...
j:1 yeeey Tl

18 a smooth homomorphism and a smooth diffeomorphism onto a Lie subgroup of the
product [[7_y ACL»([tj—1,5], G).

Proof. First of all we introduce some notations. For j = 1,...,n we denote G; :=

ACrr([tj-1,t;],G), and for an open identity neighborhood U C G and a chart ¢: U — V

we write Uj := ACr»([tj—1,t;],U), Vj := ACpe([tj—1,t;], V) and ¢;: U; = V},( = po.
Clearly, the map I'g is a group homomorphism and

im(rg) = {(Uj)jzl,m,n S H Gj : nj—l(tj) = nj(tj) for allj S {2, - ,n}}
j=1

is a subgroup of H?Zl G;. Moreover, the function
n n n
Y= H@ji HUj — HVJ’ Gy Cn) = (poliy . sp0(n)
j=1 j=1 j=1

is a chart for [[_; G and ¢ (im(T¢) N[ [, U;) = im(Tg)N][;_, Vj, where I'g is the lin-

ear topological embedding with closed image from Lemmal4.2.13| Therefore, im(I'g) is a

Lie subgroup modeled on the closed vector subspace im(I'g) of [T;_; ACLe([tj-1,], E).
Finally, both compositions

ol o ACLy([a,b], )"+ ACLr([a,0],V) = [[ Vi, n— Ten)
j=1
and

ACLP([CL, b], (p) o F&l (e} (’Lﬂ‘im(rc))il : IHI(FE) N H V} — ACLP([CL, b], V),
7=1

n—Tg'(n)

are smooth maps, thus we conclude that I'g is a smooth diffeomorphism onto its image.

O]
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4.3 Measurable regularity of Lie groups

Definition 4.3.1. Let G be a Lie group modeled on a sequentially complete locally
convex space F, let p € [1,00]. Consider n € ACr»([a,b],G), a partition a = tg < t1 <
... <ty =band charts ¢;: U; — Vj for G such that n([t;—1,t;]) C U; for all j and

nj = @jonli;_1t;) € ACLe([tj—1,t;], E).
Denote 77; := [v;] € LP([tj—1,t;], £) and set

Y(t) == Tt (n;(t), (1))
for t € [tj—1,t;[, and
Y(B) := Tipy, (10 (b), 1 (0)).
The constructed function v: [a,b] — T'G is measurable and we write 7 := [y].
Further, define the left logarithmic derivative of n via

0(n) := [wi o],

where [y] =7 and w;: TG — g,v — mrg(v)~1.v with the bundle projection mrg: TG —
G. (Note that the definitions of /7 and d(n) do not depend on the choice of the partition
and charts.)

Lemma 4.3.2. Let G be a Lie group modeled on a sequentially complete locally convex
space E and p € [1,00]. If n € ACLr([a,b],G), then §(n) € LP([a,b], g).

Proof. By definition, there exists a partition a = g < t; < ... < t, = b and there
exist charts ¢;: U; — Vj for G such that n([tj—1,t;]) C U;j and nj := @ on|y,_ 4, €
ACrLo([tj—1,tj], E) for every j € {1,...,n}. We denote [v;] := n; and [y] := 7 and see
that

wioYit;_yt;) = wi o Tp; ' o (n,75) € LP([tj-1,t5],9)

by Lemma [4.1.23] since w; o Tcpjfl: V; x E — g is continuous and linear in the second
argument. From Lemma [4.1.21] it follows that d(n) = [w; 0 7] € LP([a, b], g). O

Recall that the tangent bundle T'G of a Lie group G can be considered as a Lie group.
We identify g € G with 04 € T,G.

Lemma 4.3.3. Let G be a Lie group modeled on a sequentially complete locally convex
space, let p € [1,00]. Forn, ( € ACr»(la,b],G) with =[], ¢ = [£] we have

(n-¢) = [t = ~(t)-C(t) +n(t).£(1)] (4.14)

and

(™) = [t =0~ A1), (4.15)

Further, if f: G — H 1is a smooth function between Lie groups modeled on sequentially
complete locally convex spaces, then

(fon) =[Tfon] (4.16)
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4 Measurable regularity of Lie groups

Proof. We prove the last equation (4.16]) first. Consider a partition a =tg <t < ... <
t, = b and charts ;: U; — Vj, ¥;: P; — Q) for G and H, respectively, such that

@jonli;_1t;) € ACLe([tj-1,t], E),
7/}3 © f o 77|[tj_1,tj} € ACLP([tjfl’thF)’

where E and F' are the model spaces of G and H. Denote

[/yj] = (SDJ o n’[tj_l,tj])/ € Lp([tj*hthE)a
(€] = (i 0 fonly,_,e,) € LP([tj-1,t5], F).

Then (using (4.8)) we have
5] = (i 0 Fopi ") o (pjonly, s ) = [d(Wso f o ) ejonly, )]
Therefore, for [6] := (f on) and almost all ¢t € [t;_1,t;[ we have

§(t) = Tp; (5 0 f om)(t), d(vj 0 f o 05 ) (5 0 m)(E),75(1)))
= TY; (Y0 fops opjon)(t),d(w;o fop; ) ((pjon)(t),(t)))
= (Ty; o T(hj 0 f o)) (g5 0n)(t), (1))
= (Tf o Te; ) ((j0n)(t), (1)
= (T'f oy)(t).

Now,

(n-¢) = (mg o (0, Q) = [Tmg o (v,§)] = [t = n(t)-£(t) +7(£)-C(2)]

and

(") = (gon) = [Tigoy] =[t— —nt)" ~(t)nt)~"].

Lemma 4.3.4. Letn, ¢ € ACr»([a,b],G) and denote §(n) = [v], n = [¥], 6(¢) = [¢],
é: [5_] Then the following holds.

(i) We have

3(n- Q) = [t = (1) Ty ()-C(8) +E(@)), (4.17)

and
S~ = [t = =3(t)n(t)~"]. (4.18)

(ii) We have 6(n) = 0 if and only if n is constant.
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4.3 Measurable regularity of Lie groups

(11i) We have §(n) = 6(C) if and only if n = g¢ for some g € G.
Proof. (i) Using Equations (4.14) and -, we get
3(n-¢) = [t = (n(H)C) L)L (1) + (1) -£(1)]
1

t
= [t = () ')~ A®)-CE) + () ()~ H)n(t).£()]
t () A () (1) + ()],

and

S(nh) = [t = n(t)-(=n() " A@).n6) "] = [t = =3 ()0 7]

(ii) Now, we assume that 6(n) = 0, that is, [t — n(t)"*.5(t)] = 0 € L*([a,b],g). In
other words, n(t)"1.5(t) =0 € g for a.e. t € [a,b]. Let a =ty <t; < ... <t, =b, charts
¢; and [y;] be as in Definition Then for 4(t) € TG we have dp;(y(t)) =0 € E
for a.e. t € [tj—_1,t;]. On the other hand, we have dy;(¥(t)) = v;(t) for a.e. t € [t;_1,t;],
thus [v;] = 0 € LP([tj—1,t], £). That means, that ¢ onfy,_, ) is constant, whence
n’[tj_l,tj] is constant, whence 7 is constant.

Conversely, assume n(t) = g € G for all t € [a,b]. Then for some chart ¢ around g we
have

o(9) = o(n(t)) = plg) + / Yo(s) ds

for every t € [a,b], thus v4(s) = 0 for a.e. s € [a,b], by Lemma in other words,
(pon) =0¢€ LP([a,b], E). Therefore,

3(t) =T p(n(t)),0) = T~ (¢(g),0)
a.e., whence
3(n) = [t = ()" T~ (¢(9),0)] = [t = ¢~ -.Tp ™ (¢(9),0)] = 0 € L([a, 1], 9).
(iii) Now, assume [y] = 6(n) = §(¢) = [¢], then (using Equations and (4.18))

0(n-¢7h) = [t ) A(@)-CH) ™ = E01).C(H) 7]
[t = C().£().Ct) ™ = €(t)-C(t) ™)
[t = €().C(H)7" = €(t).C(t) ] = 0 € LP([a, ], 9).

Then, by the above, the curve 1 - (™! is constant, say - ("' = g € G, thus n = g(.
Conversely, assume 1 = g(. We define 7,: [a,b] = G,t — g in ACr»([a,b],G), then
[vg] = d(ng) = 0 € LP([a,b],g) (by the above), whence

8(n) = d(ng - ¢) = [t = &(t)] = 6(C),
using Equation . ]
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4 Measurable regularity of Lie groups

The following proposition (a version of [I7, Lemma 5.10]) will be useful.

Proposition 4.3.5. Let G be a smooth Lie group, let E, F be locally convex spaces and
f: GxE — F be a C*'-function (for some k € NgU{oo} ) which is linear in the second
argument. Then for p € [1,00] the function

C([a,b], G) x LP([a,b], E) — LP([a,b], F), (n,[v]) = [f o (n,7)] (4.19)
is CF.

Proof. The function is defined by Lemma [4.1.23] We fix some 77 € C([a,b], G) and some
open identity neighborhood U C G. Then U contains some open identity neighborhood
W such that WW C U. The function in (4.19) will be C* if the restriction

Q x LP([a,b], E) — L¥([a,b], ), (n,[v]) = [f o (n,7)] (4.20)
is C*, where Q := {¢ € C([a,b],G) : 771 - ¢ € C([a,b], W)} is an open neighborhood of
1.

Consider a partition a =ty < t; < ... <t, = b such that

i(tj—1) " a([tj-1,5]) S W-

From Lemma |4.1.21| it follows that the above function will be C¥ if
Q x LP(|a,b], E %HL tio1,ti], F),

mmnHQm< mﬂﬂD

=1,...,n

is C*, which will be the case if each component
Q x LP([a,b], E) = LP([tj—1, ;1. F), (0. [v]) = [f o (0, D)ty 1)) (4.21)

is CF.
Now, by Lemmas [4.1.21] and [4.2.31] the function

Q X Lp([a, b]7E) - C([ j-1,1t ]7G) X Lp([tj—htj]’E)ﬂ
(0, V) = (At 5-10) " 0l V)]
is smooth; for n € Q and ¢ € [tj_1,t;] we have
Alty1) () = Aty )" (R n(t) € WW C U
Thus
Q % Lp([a’ b]vE) — C([tj*btj]v V) X Lp([tjflatj]vE%
(1, 10) = (0o (ti—1) " nlie, vy DYy 7))
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4.3 Measurable regularity of Lie groups

is smooth if ¢: U — V is a chart for G. We define
g: VXE—>F7 (:c,y) r—>f(77(tjf1)90_1(x),y),

which is C**! and linear in the second argument, and we use Proposition [4.1.25/to obtain
a C*-map

Q x L([a,b], E) — LP([tj-1, 4], F),
(0. [V]) = [g o (@ om(ti—1) " nle, 1,0 Vit vt = LF o )ity t0)5
which is exactly the required function from . O
We prove a version of [I7, Lemma 5.29]:

Lemma 4.3.6. Let G be a smooth Lie group modeled on a sequentially complete locally
convex space E. The function

§: ACp»([a,b],G) — LP([a,b],g), 1+ d(n)
18 smooth.

Proof. First we prove that the restriction §|; is smooth for some open identity neigh-
borhood U C ACrr(la,b],G). Let U C G be an open e-neighborhood and ¢: U — V be
a chart for G. Then U := ACp»([a,b],U) is an open identity neighborhood with chart
@ :=ACLe([a,b],¢): ACLr([a,b],U) — ACL»s([a,b],V). We have

o (n, ),

(" om) =[woTy”
for n € ACr»([a,b],V), n = [7]. Now, the function
ACr([a,0],V) = C([a, 0], V) x L¥([a, 0], E), 1~ (n,7)
is smooth (see Lemma , as well as the function
C([a,b], V) x L¥([a,b], B) — LP([a,b],0),  (1.[]) = [wi o T~ o (n,7)],

since w;oTp~!: V x E — g is smooth and linear in the second argument (see Proposition

. Consequently, the function
Sl o™t ACLe([a,b], V) — LP([a,0],9), 1+ 6(p™" o)

is smooth, thus the restriction 0[5 is smooth.
Now, we fix ¢ € ACr([a,b],G) and show that 4|5 . is smooth. Using Lemma W,

for n € U - ¢ we have

5(n)=0d((m-¢H- Q) =¢""om-¢H.C+6(0).
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4 Measurable regularity of Lie groups

Clearly, the function
T U-C—=U, nen-¢1
is smooth, and so is the function
dlgor:U-¢— LP([a,blg), 0w d(n-¢h),
by the previous step. Now, as
Gxg—g, (z,0)—z o
is smooth and linear in the second argument, the function
C([a,b],G) x LP([a,b],0) = LP([a,bl,8), (n,7) =7~ "7n

is smooth, by Proposition Therefore, the function

LP([a,b], 8) = LP([a,b],9), v = CTh7C
is smooth. Altogether, using the smoothness of

LP(la, b, g) = LP([a,b],9), 7=~ +6(0),
we conclude that

Ol U-C = LP([a,0],9), = 8(n) = ¢ Ho(n- (1)L +6(C)

is smooth. Thus § is smooth on AC7»([a,b], G) and the proof is finished. O

Definition 4.3.7. Let G be a smooth Lie group modeled on a sequentially complete
locally convex space. For p € [1, 00|, the Lie group G is called LP-semiregular if for every
v € LP(]0,1], g) the initial value problem

6(m) =, n0)=e (4.22)

has a solution 1y, € ACrs([a,b], G) (which is unique, by Lemma [4.3.4)).
An LP-semiregular Lie group G is called LP-regular if the function

Evol: LP([0,1],9) = ACrr([a,b],G), ~v— 1y (4.23)
is smooth.

Remark 4.3.8. As in [I7, Remark 5.18], we note that if a Lie group G is LP-regular,
then the function

evol: LP([0,1],9) = G, ~ — Evol(v)(1)

is smooth, since so is the evaluation map evy: ACr»([0,1],G) — G,n +— n(1) (see Lemma

L250).
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4.3 Measurable regularity of Lie groups

Consider a very useful property of the function Evol ([I7, Proposition 5.20]).

Theorem 4.3.9. Let G be an LP-semiregular Lie group. Then the function Evol is
smooth if and only if Evol is smooth as a function to C([0,1],G).

Proof. First assume that Evol: LP(]0,1],9) — ACr»([0,1],G) is smooth. As the inclu-
sion map incl: AC»([0,1], G) — C([0,1], G) is smooth (see Lemma[4.2.29)), the compo-
sition inclo Evol: LP([0,1],g) — C([0, 1], G) is smooth.

Conversely, assume that Evol: LP([0,1],g) — C([0,1],G) is smooth; for some fixed
v € LP([0,1],g) we are going to find some open neighborhood P of %4 such that the
restriction Evol|p: P — ACr»(]0,1],G) is smooth.

To this end, let U C G be an open identity neighborhood and ¢: U — V be a
chart. Then U contains some open identity neighborhood W such that WW C U. For
15 := Evol(¥), the subset

Q:={Ce€C([0,1],G) : 5" - ¢ € C([0,1], W)}
is an open neighborhood of n;. Set
P := Evol }(Q).
Now, we want to show that the function
P — ACp»([0,1],G), v+ ny:=Evol(y) (4.24)

is smooth.
As ny is continuous, there exists a partition 0 = tg < 1 < --- < t, = 1 such that
n5(t;) " n5([tj—1,tj]) C W for each j € {1,...,n}. Using the function ' from Lemma

4.2.31} the map in (4.24]) will be smooth if

P [TAC ([t1,40.6), 7 () (4.25)

j=1,...
]:1 ] K 7n

is smooth, which will be the case if each of the components
P ACLr([tj-1,4].G), v = mylit;_y 1] (4.26)

is smooth. As left translations on the Lie group ACr»([tj—1,t;], G) are smooth diffeo-
morphisms, the function in (4.26|) will be smooth if
P ACLo([tj-1,t5),G), v = 5(t5) " 0l ] (4.27)

J

is a smooth map.
Now, for every t € [t;_1,t;] we have

5 (t5) " 0y (t) = n5(t;) " s (D5 ()" 0y (1) € WW C T,
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4 Measurable regularity of Lie groups

in other words, Uv(tj)flﬁv’[tj,l,tj] € ACp»([tj—1,t;],U). Thus the smoothness of (4.27)

will follow from the smoothness of
P — ACLP([tjflvtj])E% Y = @Onﬁ(tj)_ln'y“tj_htj]- (428)

Using the definition of the topology on AC»([t;—1,t;], E) (see Definition [4.2.8)), we will
show that

P— ExLP([tj1,t], E), v~ (e(ny(t;) " ny(ti-1)), (e 0 n5(t) " iyl e,0))

is smooth.
Using the assumed smoothness of P — C([0,1],G),y — 7,, we see that the first
component of the above function is smooth. Therefore, it remains to show that

P — Lp([tj—lvtj]7E)7 0 (SO © nﬁ(tj)_lnv‘[tj,l,tj]y (429)

is smooth.
Identifying equivalence classes with functions, we have

(SO © nﬁ(tj)_ln’y‘[tj,l,tj])/ = dg@ © (nﬁ(tj)_ln'y‘[tj,l,tj]).-
Consider the smooth function
0c:Gxg—TG, (g,v)— gwv.
We have
dSO o (nﬁ(tj)_1n7|[tj_1,tj]).
=dpooo(my(t)  mlie, 1,005 (t) " mylies_1a,0))
= dg@ 600 (n’?(tj)_l’r/’yhtj_l,tj]’ 6(77’Y|[t]'_1,t]']))
= d(p 000 (nﬁ(tj)_ln’yhtj_l,tj]"Y|[tj_1,tj])7
using (44¢) from Lemma [4.3.4] Hence the map in (4.29) will be smooth if
P — LP([tj1,t], E), v~ dpooomy(t;)  myli, e Vi1, (4.30)
is smooth. But this is true, the function being a composition of the smooth functions
P — C([tj1,t],U) x LP({tj—1, 651, E), v = (05(t) ™ 91t _1,7 Vit t)
and
C(ltj—1, ), U) x LP([tj—1,t5),8) = LP([tj-1, 8], 8),  (n,7) = dpooo(n,v),

(the smoothness of the last function holds by Proposition as the composition
dpoo: G x g— FE is linear in the second argument). O

As in [I7, Corollary 5.21], we obtain the following result.

74



4.3 Measurable regularity of Lie groups

Theorem 4.3.10. Let G be a Lie group and p,q € [1,00] with ¢ > p. If G is LP-regular,
then G is Li-regular. Furthermore, in this case G is C°-regular.

Proof. Assume that G is LP-regular and ¢ > p. Since L%([0,1],g) € LP([0,1],g) with
a smooth inclusion map (Remark , the Lie group G is L?-semiregular and the
function L4(]0,1],g9) — C([0,1],G),y — Evol(y) is smooth. From Theorem it
follows that L4([0,1],9) — ACL«([0,1],G),v — Evol(y) is smooth, whence G is L9-
regular.

Further, since C([0,1],¢) € LP([0,1],g), the Lie group is C°-semiregular. Since the
inclusion map incl: C([0,1],g9) — LP([0,1],g) is smooth, as well as the evaluation map
evi: C([0,1],G) — G, the composition C([0,1],9) — G,y — Evol(y)(1) is smooth,
whence G is C?-regular. O

The following results will enable us to show that it suffices for a Lie group G to be
LP-regular, if it is merely locally LP-regular (see [I7, Definition 5.19, Proposition 5.25]).

Lemma 4.3.11. Forc<d in R and a < a < 8 < b define

t—c
d—c

file,d) = [ab], f(t):=a+ (B—a).

Let G be a Lie group modeled on a sequentially complete locally convex space E. Then
the following holds:
(i) If v € LP([a,b], E), then v o f € LP([c,d], E) and the function
LP(f, E): £([a, 0], E) = LP([e,d], E), y—=yof
18 continuous and linear.
(ii) If n € ACr»([a,b], E), then no f € ACLe([c,d], E) and

(nof) = é:j[WOf],

where [y] =n'. Furthermore, the function
ACrr(f,E): ACrr([a,b], E) = AC1s([c,d], E), n—mnof
s continuous and linear.
(i1i) If n € ACrr([a,b],G), thenno f € ACrr([c,d],G) and

so ) =2"2ho 1) (4.31)

where [y] = §(n). Furthermore, the function
ACLP(f, G) : ACLP([CL7 b]a G) — ACLP([Ca d]) G)a n—mno f

is a smooth homomorphism.
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4 Measurable regularity of Lie groups

Proof. (i) As f is continuous and A(f~1(N)) = 0 for every Borel set N with A(N) = 0
(see [39, Theorem 3]), we can easily see that the composition v o f is measurable.

Assume first p < co. By [3, Satz 19.4], the function ¢P o (yo f) is p-integrable for each
continuous seminorm ¢ on F, and

d d—c [f@
[ o= 5= [ atopd <. (4.32)
c B—a Jre
hence v o f € LP([c,d], E). Furthermore, we see that
d—c\pr
o fllena < (52 )" hllena (4.33)

whence the linear function £P(f, E) is continuous.
Now, assume p = co. Then for every continuous seminorm g on E we have

ess suPyere,q) 4(V(f(1))) < esssupyepqp ¢(1(t)) < o0,
that is, yo f € L%([¢,d], E) and
7o fllzeq < il .q, (4.34)
hence the linear map £%°(f, E') is continuous.
(#7) For t € [c,d] we have
f(t)
w0 =ntr@) = [ aas

Then for any continuous linear functional A on E we have

= [ Aty

f(#)
/ Aly(s)) ds =
f(e)

(see [3, 19.4 Satz]), whence

n(r @) =) = 5=2 [ (s,

in other words, no f € ACr»([c,d], E) with (no f) = ’fl:‘c)‘[vo f]-
To prove the continuity of the linear function ACr»(f, E), we show that

ACLP([a7 b]’E) — F X Lp([ca d],E), n= (U(f(c))a (77 © f)/)

is continuous (where we used the isomorphism from Definition 4.2.8)). The first compo-
nent

ACLP([CL, b]7E) — Ea nt evf(c) (77)
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is continuous, by Remark [4.2.11] Further, the map

o f]

U2 LP([a, 0], E) = LP([e.d], E), [yl = ——

is continuous, hence the second component
ACr»([a,b], E) = LP([e,d], E), 1+ ¥()= (nof)

is continuous.

(7i1) As mo f is a continuous curve, there exists a partition ¢ = tp < t; < ... <
tn, = d and for every j € {1,...,n} there is a chart ¢;: U; — V; for G such that
n(f([tj=1,t;])) € Uj. But f([tj—1,t;]) = [f(tj—1), f(t;)] is an interval and from Lemma
it follows that

5 0 lis (e, € ACLr ([ (ti-1), f (7)), Vi)
We have
wpjomno f|[tj_1,tj] S ACLP([tjfl’ t]]’ V7)’

that is, no f € ACr»([c, d], G).
Next, consider a partition ¢ =ty < t; < ... < t, = d and charts ¢: U; — V; with
n(f([tj-1,t5])) € U;. Write

Fi= flitgaade M5 = 0l 0. 060))-
Identifying equivalence classes with functions, we obtain
5o i, 14 =wioTe; o (pjonoe fj,(pjono f;))
_ B —a
=w ngaj Lo (pjono fj, ﬁ(% onj)/ofj)

_ B
=woTp; o (pomn;, ———(pjon))ef

- fz:i (“l oTp; ' o (pony, (pjon;)) ij)
- i:i(d(n) © f|[t]'_17t]'])7

using the formula in (i) and the linearity of w; o Tgoj_l in its second argument.
Finally, for any open identity neighborhood U C G and any chart ¢: U — V for G
the function

ACLp([CL, b],V) — ACLP([C, d], V),
¢ (ACL”([Cﬂ d],(p) ° ACLp(fﬂ G) o ACLP([avb]ﬂ 90)71)(() =(of

is smooth, hence the group homomorphism ACp»(f, G) is smooth. O
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4 Measurable regularity of Lie groups

The following lemma shows that the LP-spaces have the subdivision property [17,
Lemma 5.26].

Lemma 4.3.12. Let E be a locally convex space, let v € LP([0,1], E). For n € N and
ke{0,...,n—1} define

1 kE+t
i 0.1 B, nslt)i= 2y (51 (4.35)
n n
Then ~, 1, € LP([0,1], E) for every n,k and

lim ma =0
A ax vkl 27 g

for each continuous seminorm q on E.
More generally, the same holds for v € LP(]a,b], E) and

1 k(b—a)+t—a
it 18] By ) = 1o (a4 FEZO LD,

Proof. The functions fy, : [0,1] — [k/n,k+1/n], f, 1(t) := k+t/n are as in Lemma [4.3.11
hence v, 1 = Yn(yo fni) € LP([0,1], E).
Further, for fixed n € N and p = 0o we have

1 1
H’Yn,k L®,q = EH’Y o fn,kuﬁ‘”,q < EHVHﬁwﬂ

for every continuous seminorm ¢ on E and every k € {0,...,n — 1}, by (4.34). Hence

1
|goo g < EH’YHEO‘W —0

ma.
ke{o,...,)fzq} .

as n — oo.
Now, if 2 < p < 0o, then for n € N and a continuous seminorm ¢ on E we have

1

1 ne 1 9
vnkllerq = —llve farllera < —l7lleeg =0 lylleeq,
for each k € {0,...,n — 1}, by (4.33). Hence

19
crg<nv |llgeg — 0

max
ke{0,...n—1} .

as n — oo.
Finally, let p = 1. Fix some ¢ > 0 and a continuous seminorm ¢ on E. Each of the
sets

Ap =A{t € a,b] : q(~(t)) >m

78



4.3 Measurable regularity of Lie groups
are in B([0, 1]) and

lim «wmwzj’ a(v(t)) dt = 0,

m—00 Am ﬂmeN Am

because (Am)men is a decreasing sequence and (), oy Am = 0. Therefore, for some
m € N we have

/. atroyar <

We fix some N € N such that m/N < /2 and for every n > N we define

An,k = {t € [O, 1} : fn,k(t) € Am}

Then

Amﬂ%ﬂmﬁzlémmwmmmﬁ=/‘ 4y (1)) dt

n fn,k(An,k)

by Equation (4.32)). Since fy, 1(An k) = Am N [k/n, k+1/n], we obtain

/fn’k(An‘k) q(y(t)) dt < / q(f(t)) dt < g

Am

by the choice of m. Further

1
Mmhwz/qwﬂmﬁZ/ ﬂ%ﬂmﬁ+/ (i(®)) df < e,
0 An,k [071]\An,k

because q(Vn k(t)) = Yng(v(frk(t))) <m/n < /2 for t € [0,1]\ Ay k. Consequently,

ma: <e
ke{O,...,ﬁfl} I kllerg ’

in other words, maxye(o,... n—1} [[7nkllz1,g = 0 as n — oo, as required. O

Finally, we prove that a Lie group is LP-regular if it is locally LP-regular [17, Propo-
sition 5.25].

Theorem 4.3.13. Let G be a Lie group modeled on a sequentially complete locally
convez space E, let g denote the Lie algebra of G. Let Q C LP([0,1],g) be an open
0-neighbourhood. If for every v € Q the initial value problem has a (necessarily
unique) solution n, € ACr»([0,1],G), then G is LP-semiregular. If, in addition, the
function Evol: Q — AC»([0,1],G),~ — 1, is smooth, then G is LP-regular.

Proof. First, fix some v € LP([0,1],g) and for n € N, k € {0,...,n — 1} define v, €
LP(]0,1],9) as in (4.35). Let @ be a continuous seminorm on LP([0,1],g) such that
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B?(O) C €. By Lemma [4.3.12} there exists some n € N such that v, € Q for k €
{0,...,n—1}. We set 1, , := Evol(y, 1) € AC»([0,1],G) and define n,: [0,1] = G via

My (t) = (M0 © fno)(t), fort e [0,1/n], (4.36)

and

1y(t) 2= 1n,0(1) -+ i k=1 (D) (ke © fr ) (), for t € [kfn, k+1/n], (4.37)

where
Jog: [Ffn, k1] = [0,1],  frx(t) :=nt — k.

Then we easily verify that the function 7, is continuous and from Lemma4.3.11], it follows
that 1,/ k417, € ACLe([¥/n,k+1/n],G), whence 1, € ACL»([0,1],G). Furthermore,
14(0) = e and §(n,) = 7. Consequently, Evol(y) := 7, solves the initial value problem
in for v, whence G is LP-semiregular.

Now, assume that Evol: Q@ — AC7»([0,1], G) is smooth; we will show the smoothness
of Evol on some open neighborhood of 4. From the continuity of each

Tn k- Lp([07 1]79) - Lp([07 1}39)7 5 = gn,lm

(see Lemma [4.3.11]), it follows that there exists an open neighborhood W C LP(]0, 1], g)
of  such that m, (W) C Q for every k € {0,...,n —1}. Then

Evol: W — AC»([0,1],G), & ne

is defined, where 7¢ is as in (4.36)) and (4.37)). It will be smooth if we show (using Lemma
4.2.31)) that each

W — ACLP([k/n, lf—i—l/n]7 G), & 7]5‘[1@/”7k+1/n} (4.38)
is smooth. But, by construction, we have

Nel10,1/) = Evol(&n,0) © fn 0

and
n&‘[k/n,kﬁ-l/n] = eVOl(&n,O) T eVOl(ﬁn,k—l) EVOl(gn,k) o fn,ka
so the smoothness of (4.38) follows from Lemma |4.3.11{ and Remark O
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