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Zusammenfassung

Die grundlegende Thematik der vorliegenden Dissertation ist die Identifizierung dichter
Regionen eines ungerichteten Graphen G = (V| E). Eine dichte Region ist dabei eine Teil-
menge der Knoten V/ C V mit vielen Kanten, die zwischen Knoten aus V' verlaufen, aber
vergleichsweise wenigen Kanten zu Knoten in V\V’. Die Bestimmung dieser Gebiete ist
bei der Losung des Graphpartitionierungsproblems (GPP) sowie verwandten Aufgaben
der Clusteranalyse hilfreich. Das GPP besteht in der Erstellung einer Partitionierung
von V in k gleich grofse Teilmengen (Partitionen, Cluster) derart, dass die Zahl der Kan-
ten, die zwischen verschiedenen Clustern verlaufen, minimiert wird. Es gibt zahlreiche
Anwendungen, die die Losung dieser oder dhnlicher Fragestellungen benutzen. Beispiele
sind unter anderem parallele numerische Simulationen, Netzwerkanalyse, Schaltkreisent-
wurf sowie Genanalyse in der Bioinformatik.

GPP und alle relevanten Formulierungen verwandter Partitionierungsprobleme sind
NP-schwer, so dass keine Polynomialzeit-Algorithmen fiir ihre optimale Losung
bekannt sind. Partitionierungsbibliotheken, die dem aktuellen Stand der Technik
entsprechen, benutzen lokale Knotenaustauschheuristiken innerhalb eines mehrstufigen
Verbesserungsprozesses. Sie erzielen damit gute Ldsungen in sehr kurzer Zeit. Jedoch
entsprechen diese Losungen nicht in jedem Fall den Anforderungen der Benutzer. Dies
betrifft zum einen die Wahl der Zielfunktion im Optimierungsprozess, zum anderen die
Form der Partitionen. Aufferdem sind die am haufigsten eingesetzten Partitionierungs-
heuristiken schwierig zu parallelisieren, da sie inhérent sequentielle Teile enthalten. Eine
solche Parallelisierung ist aber notwendig fiir den effizienten Einsatz als Lastbalancierer
in parallelen Anwendungen. Zur Clusteranalyse von Graphen, bei der die Partitionen
bzw. Cluster nicht gleich groft sein miissen, gibt es kein Verfahren, das sowohl sehr ef-
fizient arbeitet, Ergebnisse von sehr hoher Qualitit in vielen verschiedenen Anwendungen
liefert, als auch theoretisch wohlverstanden ist.

Um diese Nachteile bestehender Methoden zu beseitigen, entwerfen und untersuchen
wir in dieser Arbeit den gestorten Diffusionsprozess FOS/C. Er kann dichte Gebiete eines
Graphen von solchen mit wenigen Kanten unterscheiden, was wir mit seiner Beziehung
zu Random Walks erkléren. Durch die Kombination von FOS/C mit BUBBLE — einem
generischen Verfahren dhnlich zu Lloyds k-means-Algorithmus — erhalten wir den itera-
tiven und inhérent parallelen Algorithmus BUBBLE-FOS/C zur (Re)Partitionierung und
Clusteranalyse von Graphen. In unseren theoretischen Untersuchungen zu FOS/C und
BUBBLE-FOS/C beleuchten wir den Bezug zu Random Walks und zur Pseudoinversen

der Laplacematrix des Eingabegraphen. Die dabei erzielten Ergebnisse fiihren unter an-
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derem zu einem verbesserten Losungsprozess von FOS/C und zu einem Beweis, dass
BuBBLE-FOS/C gegen ein lokales Optimum konvergiert, welches durch eine Potential-
funktion charakterisiert werden kann.

Da BUBBLE-FOS/C die Losung vieler linearer Gleichungssysteme erfordert, konstru-
ieren wir einen effizienten Loser auf Basis des algebraischen Mehrgitterverfahrens (AMG).
Die Graphhierarchie, die von diesem Loser erstellt wird, benutzen wir gleichzeitig fiir den
mehrstufigen Partitionierungsprozess, der lokale Verbesserungen mit BUBBLE-FOS/C
durchfiihrt. Obwohl unser AMG-Léser eine deutliche Beschleunigung im Vergleich zu
vorherigen Implementierungen hervorruft, bleibt die Laufzeit von BUBBLE-FOS/C weit-
erhin sehr hoch. Daher kann die gute Losungsqualitidt des Algorithmus, die in Experi-
menten zur Graphpartitionierung beobachtet werden kann, kaum in der Praxis genutzt
werden. Weitere Moglichkeiten zur Beschleunigung werden diskutiert, aber sie sind ent-
weder nicht immer erfolgreich oder erfordern eine sehr aufwindige Implementierung.

Deshalb entwickeln wir in einem n#chsten Schritt eine sehr viel schnellere und ein-
fachere Methode zur Verbesserung von Partitionierungen. Diese Methode basiert auf
einem anderen gestorten Diffusionsverfahren, das nur begrenzte Bereiche des Graphen
betrachtet und auch einen hohen Grad an Parallelitit aufweist. Das neue Verfahren
kombinieren wir mit BUBBLE-FOS/C zu einem neuen mehrstufigen heuristischen Algo-
rithmus namens DIBAP. Eine Besonderheit dieser Kombination ist, dass ihre Mehrstufen-
Hierarchie durch zwei verschiedene Konstruktionsansitze erstellt wird. Verglichen mit
BuBBLE-FOS/C, zeigt die neue Heuristik eine deutliche Beschleunigung und erhilt
gleichzeitig die positiven Eigenschaften des langsameren Algorithmus. Ausfiihrliche Ex-
perimente zeigen ein extrem gutes Verhalten bei der Partitionierung von Graphen, die aus
numerischen Simulationen stammen. DIBAP erzeugt durchgéngig bessere Ergebnisse als
die sehr hdufig eingesetzten Bibliotheken METIS und JOosTLE. Weiterhin haben wir mit
unserem neuen Algorithmus eine grofse Zahl der besten bekannten Partitionierungen von
sechs weit verbreiteten Benchmark-Graphen verbessert. Auch in den verwandten Prob-
lemen der Lastbalancierung durch Repartitionierung und der Clusteranalyse verbessert
DiBAP die Lésungsqualitdt des Stands der Technik in vielen Fillen.

Insofern besteht die vorliegende Arbeit aus praktischen und theoretischen Fortschrit-
ten fiir die (Re)Partitionierung und die Clusteranalyse von Graphen durch die Entwick-
lung neuer erfolgreicher heuristischer Algorithmen und die theoretische Analyse einiger

wichtiger Eigenschaften dieser Algorithmen.
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Abstract

The underlying theme of this thesis is the detection of dense regions of an undirected
graph G = (V, E). A dense region is a subset of the nodes V' C V with many edges
between nodes in V’ and only few edges to nodes in V\V’. The identification of these
regions is helpful for solving the graph partitioning problem (GPP) and related clustering
tasks. The GPP asks for a partition of V into k equally sized subdomains (clusters)
such that the number of inter-cluster edges is minimized. Applications that involve
problems related to GPP are numerous; they include parallel numerical simulations,
network analysis, circuit design, and gene analysis in bioinformatics.

GPP and all relevant formulations of related partitioning problems are NP-hard, so
that no polynomial-time algorithms for their optimal solution are known. State-of-the-art
graph partitioning libraries employ local node-exchanging heuristics within a multilevel
framework and yield good solutions in very short time. However, the computed partitions
do not necessarily meet the requirements of all users. This includes the choice of the ap-
propriate objective function and the shape of the computed subdomains. Furthermore,
due to their sequential nature, the most popular partitioning heuristics are difficult to
parallelize, which is necessary for their efficient use as load balancers in parallel applica-
tions. For graph clustering problems, where the cluster sizes do not need to be balanced,
there is no method which is both highly efficient, delivers high-quality results in many
diverse applications, and is theoretically well understood.

To overcome these drawbacks, we introduce the disturbed diffusion scheme FOS/C.
It is capable of distinguishing dense from sparse graph regions, which we explain by
its relation to random walks. The combination of FOS/C with the k-means related
framework BUBBLE yields the iterative and inherently parallel (re)partitioning/clustering
algorithm BUBBLE-FOS/C. In our theoretical investigations on FOS/C and BUBBLE-
FOS/C, we examine the random walk relation and its connection to the pseudoinverse
of the input graph’s Laplacian matrix. Amongst others, the derived results lead to an
enhanced solution process of FOS/C and to a proof that BUBBLE-FOS/C converges to
a local optimum which can be characterized by a potential function.

Since BUBBLE-FOS/C requires the solution of many linear systems, we construct an
efficient algebraic multigrid solver, whose graph hierarchy is simultaneously used for a
multilevel improvement process of the partitions. Despite the fact that our algebraic
multigrid approach is significantly faster than previous implementations, the running
time of BUBBLE-FOS/C is still very high. Thus, its very good solution quality expe-

rienced in graph partitioning experiments can hardly be exploited in practice. Further



acceleration approaches are discussed, but they are either not always successful or very
complicated to implement.

That is why we develop in a next step a much faster and easier method for the improve-
ment of partitions. This method is based on a different disturbed diffusive process, which
is restricted to local areas of the graph and also contains a high degree of parallelism.
By coupling this new technique with BUBBLE-FOS/C in a multilevel framework based
on two different hierarchy construction methods, we obtain our new heuristic DIBAP for
(re)partitioning and clustering graphs. Compared to BUBBLE-FOS/C, DIBAP shows a
considerable acceleration, while retaining the positive properties of the slower algorithm.
Extensive experiments with popular benchmark graphs show an extremely good behavior
for partitioning graphs stemming from numerical simulations. DIBAP computes consis-
tently better results than the state-of-the-art libraries METIS and JOSTLE. Moreover,
with our new algorithm, we have improved a large number of the best known partitions of
six widely used benchmark graphs. In the related problems of load balancing by reparti-
tioning and graph clustering, DIBAP also improves the solution quality of state-of-the-art
programs in many cases.

Insofar, our work consists of practical and theoretical advances concerning graph
(re)partitioning and graph clustering, achieved by the development of new successful
heuristic algorithms and the theoretical analysis of some important properties of these

algorithms.
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1. Introduction

A natural way to express relationships between different entities are graphs. Each entity
is modeled by a node and nodes are connected by edges if and only if they are related.
In many applications it is of interest to know which nodes can be grouped together to
form highly connected (dense) subgraphs based on these relationships. The problem of
determining these subgraphs — which are also called clusters, parts, or subdomains — is
the underlying theme of this thesis. Our results can be used for graph partitioning, load
balancing by repartitioning, and graph clustering. In the following we describe what these
terms refer to and which specific applications profit from an efficient and high-quality

determination of dense subgraphs.

1.1. Applications

Graph partitioning is a widely used technique in computer science, engineering, and
related fields. The most common formulation of the graph partitioning problem for
an undirected graph G = (V, E) asks for a division (partition) of V into k pairwise
disjoint subsets of size at most [|V|/k]| such that the edge-cut, i.e., the total number of
edges having their incident nodes in different subdomains, is minimized. Its applications
include circuit layout [Fidu 82], air-traffic control [Bich 07|, and the analysis of dynamical
systems [Dell 06], to name only a few. They all have in common that edges between
different subdomains have a different impact than internal edges. This impact can be a
lower speed, a higher cost, or other undesirable features.

We mainly consider the use of graph partitioning for balancing the computational
load in numerical simulations. Such simulations typically analyze natural or scientific
processes that can be expressed via partial differential equations (PDEs). To make
these equations solvable, they are discretized within the simulation domain, e.g., by
the finite element method (FEM). Such a discretization yields a mesh, which can be
regarded as a graph with geometric (and possibly other) information. Application areas
of such simulations are fluid dynamics, structural mechanics, nuclear physics, and many
others [Fox 94].

The solutions of discretized PDEs are often computed by iterative numerical solvers.
Due to the involved computations and high memory space requirements, these solvers
have become classical applications for parallel computers with many processing nodes
connected by some communication network. To utilize all processors in an efficient

manner, the computational tasks, represented by the mesh elements, must be distributed
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Figure 1.1.: Triangular mesh with holes representing airfoils (left) and its dual graph
(right) with their respective partitions into ten subdomains. In each figure
nodes of the same subdomain (and edges connecting them) have the same
color; edges connecting nodes of different subdomains are shaded in grey.

onto the processors evenly. Moreover, the computational tasks of an iterative numerical
solver depend on each other. Neighboring elements of the mesh need to exchange their
values in every iteration to update their own value. Since inter-processor communication
is much more expensive than local computation, neighboring mesh elements should reside
on the same processor. Hence, a good distribution can be found by solving the graph
partitioning (or a similar) problem for the mesh or its dual graph (in the dual graph G’
of G, faces of G are replaced by nodes; these nodes in G’ are connected by an edge if and
only if their corresponding faces in G are adjacent, see Figure 1.1) [Schl 03].
Furthermore, in many numerical simulations some areas of the mesh are more inter-
esting than others. For instance, during the simulation of the interaction of a gas bubble
with a surrounding liquid, one is interested in the conditions very close to the boundary
of the fluids rather than far away. To obtain an accurate solution, a high resolution of the
mesh is required in the areas of interest. On the other hand, a uniformly high resolution
is often not feasible due to limited main memory. That is why one has to work with
different resolutions in different areas. Meshes with this property are called adaptive.
The areas of interest may also change during the course of the simulation. In the above
example, the gas bubble might change its position within the surrounding liquid, e. g.,
rise to the top. This behavior requires changes in the mesh, which may result in in load
imbalances that delay the completion of the computation. Hence, after the mesh has
been adapted again, its elements need to be redistributed such that every processor has
a similar computational effort again. While this can be done by (re)partitioning the new
mesh, the redistribution not only needs to find a new partition of high quality. It should
also move as few nodes as possible to other processors because this migration causes high
communication costs and (possibly expensive) changes in the local mesh data structure.

The task of clustering refers to the combination of objects to groups (clusters) such
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that objects of the same group are more similar to each other than to objects from
other groups [Jain 99|, where similarity is usually application-dependent. It is a very
important tool for the analysis and exploration of data arising in many different fields
such as pattern recognition, bioinformatics, and business computing. In recent years
the determination of clusters within graphs has received considerable attention, e.g.,
for image segmentation [Shi 00|, detection of protein families [Enri 02|, or the analysis
of physical and social networks [Flak 02, Newm 04]|. Generally speaking, clusters in a
graph are dense node subsets that are only sparsely connected to each other. This notion
is intentionally vague [Zhao 03], as it is again application-dependent and in general hard
to formalize. In contrast to graph partitioning, the number of clusters is not always part

of the input, and no explicit constraints on the cluster sizes are given.

1.2. Motivation

All relevant formulations of the aforementioned problems are combinatorially very hard
to solve. More precisely, they are NP-hard, so that no polynomial-time algorithms for
their optimal solution are known. In practice fast heuristics are preferred, whose quality
is usually determined experimentally.

State-of-the-art graph partitioning libraries employ node-exchanging heuristics within
a multilevel framework for edge-cut minimization, cf. Section 1.3.1. They yield good
solutions in very short time, but the computed partitions do not necessarily meet the
requirements of all users. First of all, the edge-cut is not always a good measure for the
total running time of parallel numerical simulations [Vand 95|. The number of boundary
vertices (vertices that have a neighbor in a different subdomain), for instance, models the
communication volume between processors more accurately than the edge-cut [Hend 98].
Moreover, the edge-cut is a summation norm, while often the maximum norm is of higher
importance. For some applications, the shape of the subdomains plays a significant role.
It can be assessed by various measures such as aspect ratio [Diek 00], maximum diame-
ter [Pell 07al, connectedness, or smooth boundaries. Nevertheless, current partitioning-
based load balancers do not take these facts fully into account.

While the total number of boundary vertices can be minimized by hypergraph par-
titioning [Devi 06|, an optimization of partition shapes requires additional techniques
(e.g., [Diek 00, Pell 07al), which are far from being mature. Furthermore, due to their
sequential nature, the most popular partitioning heuristics are difficult to parallelize.
Although significant progress has been made (see Section 1.3.2), an inherently parallel
graph partitioning algorithm can be expected to yield better solutions for partitioning
as well as repartitioning, possibly also in shorter time.

The drawbacks of current graph clustering techniques are of a different nature. Due
to the existence of various application-dependent graph clustering objectives and the
hardness of their optimization, numerous algorithms and techniques for this problem

have been developed, cf. Section 1.3.3. Unfortunately, as we will point out later in this
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chapter, there is no method which is both efficient (i.e., with linear or close to linear
running time), delivers high-quality results in many different application areas, and is
theoretically well understood (e. g., with provable convergence in theoretical and practical
settings). Closest to these requirements is the kernel k-means algorithm [Dhil 07]. Thus,
its library implementation is used as a standard of comparison for our algorithms.

To overcome the drawbacks of the established heuristics, we follow a way of partitioning
and clustering that is different from the techniques used in state-of-the-art libraries. It
has been shown experimentally that a shape-optimizing approach (based on the BUBBLE
framework or similar ideas) is very promising [Wals 95, Diek 00, Scha 05, Pell 07a], also
see Section 1.3.4. The resulting graph partitions computed by most of these methods
tend to be convexr (curved outward), meet more requirements of the users than those
of traditional node-exchanging heuristics, and induce small migration costs when used
for load balancing by repartitioning. Moreover, the BUBBLE framework, whose idea is
very similar to Lloyd’s geometric k-means clustering algorithm [Lloy 82|, is appealing
in two additional respects. First, it uses a direct approach to obtain k& > 2 subdo-
mains, which is preferable to a recursive application of bisectioning (partitioning into two
parts) [Simo 97]. The second advantage is that, in principle, the necessary operations
for computing distances contain a high degree of parallelism. We circumvent previous
problems of the BUBBLE framework by computing these distances or, more precisely,
the similarities of nodes, by disturbed diffusion schemes, which do not require geometric
information on the graph. The natural process diffusion (more details can be found in
Section 2.2) sends load entities faster into densely connected regions of a graph than into
sparse regions. As we will see later on, by disturbing the diffusive schemes, we avoid
their balancing property and obtain efficient and effective mechanisms for distinguishing

dense from sparse graph regions.

1.3. Related Work

1.3.1. Graph Partitioning

In order to structure previous related work on the graph partitioning problem, we use
three different categories. The first category contains algorithms of mainly theoretical
nature, which find approximate solutions to this N"P-hard problem. The second category
contains heuristics that compute their solutions from scratch, having a global view on
the input graph. In contrast to this, the heuristics in category three have only a local
view, which means that they improve a given partition iteratively by changes in limited

(local) areas of the graph.

1.3.1.1. Approximation Algorithms

Most approximation algorithms for graph partitioning or similar problems are either

based on linear or semidefinite programming or on spectral arguments, i.e., properties
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derived from the eigenvalues and -vectors of a matrix corresponding to the graph, cf.
Khandekar et al. [Khan 06]. Up to now, the best approximation ratio is O(y/logn) in
time O(n?) [Aror 04, Aror 07]. Alternatively, one can obtain subquadratic running time
of O(n3/?) with an approximation ratio of O(logn) [Aror 07]. Note that both running
time values neglect polylogarithmic factors.

References to more results on approximation ratios, bounds on the solution quality
(in particular for special graph classes), and approximation algorithms can be found
in Monien et al. [Moni 06]. However, while these bounds and algorithms are of high
theoretical importance, their practical relevance is in most cases minor. In practice a
quadratic running time is prohibitive for large graphs, which are typical of numerical
simulations or circuit layout. While having a worst-case deviation guarantee is certainly
positive, practical heuristics might achieve better results on relevant real-world instances.
In any case, both approximation algorithms use very involved algorithmic techniques, so
that the O-notation hides very large constants. That is why for applications with large

inputs faster heuristics have been developed, which are described below.

1.3.1.2. Global Heuristics

Spectral methods. The fundamental idea of spectral partitioning methods dates back
to Fiedler |Fied 73, Fied 75]. He has investigated what the second smallest eigenvalue
A2 and its corresponding eigenvector zs (also known as Fiedler vector) of a graph’s
Laplacian matrix (cf. Chapter 2) reveal about the graph’s structure. Based on these
results, Pothen et al. [Poth 90| has developed a bipartitioning algorithm that decides
the subdomain affiliation of a node depending on its entry in zo. The reason for this is
the connection to the integer program described in Section 2.1.1 that models the edge-
cut minimization. If one relaxes the integer condition by allowing continuous solution
values, the optimal relaxed solution is given by 29. Let ™ be the median value in zs.
The bipartitioning can then be done as follows. All nodes with a larger value in zo
than 77 are assigned to the first subdomain, all other nodes to the second one. This
approach has been extended to more than two partitions without recursion by using
more eigenvectors [Hend 95b]. The Lanczos algorithm (see e.g., [Demm 97|) makes the
computation of the leading eigenvectors practical for large graphs, as each iteration has
a complexity linear in the number of edges. Nevertheless, an accurate solution, which is
reported to cost O(n3/2) total operations for sparse graphs in practice [Shi 00], is still

more expensive than employing the subsequent geometric methods or local heuristics.

Geometric approaches and linear orderings. There exist numerous geometric parti-
tioning methods which belong to the category of global heuristics. They require that
the spatial location of each node is specified. One representative of such geometry-based
algorithms are space-filling curves [Saga 94, Zumb 03]. They compute a linear ordering
of the graph nodes, i.e., a bijective mapping from V to {1,...,|V]|}. This mapping

aims at the preservation of the nodes’ locality in space. Since this approach takes only
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the geometric properties instead of the adjacency structure of the graph into account,
the solution quality suffers if these two do not coincide. This happens for example in
meshes that contain holes or fissures [Scha 04b]. Similar problems arise for other geo-
metric approaches. Hence, despite their high speed and low memory consumption, the
applicability of these methods is mostly limited to a restricted class of inputs. For this
reason and since we do not require graphs to have geometric information in this thesis,
we refer the interested reader to Schloegel et al. [Schl 03] for a more detailed description
of geometric methods. More global heuristics, which are less important in our context,
are described therein as well.

A method related to space-filling curves, which computes linear orderings without
geometric information, uses so-called graph-filling curves (GFC) [Scha 04b]. The GFC
solutions appear to be better than those of space-filling curves. Yet, they cannot compete

with solutions computed by state-of-the-art multilevel algorithms described below.

1.3.1.3. Multilevel Paradigm

In most cases local heuristics can only be effective if they start with a reasonably good
initial solution. Such a solution can be provided by the multilevel approach [Hend 95a],
which has paved the way for nowadays successful local graph partitioning heuristics. The
multilevel approach consists of three phases. Instead of computing a partition immedi-
ately for large input graphs, one computes a hierarchy of graphs G, ..., G; by recursive
coarsening in the first phase. G; ought to be very small in size, but similar in structure
to the input graph Gg. Due to its small size, it is easy to compute a very good initial
solution for G;. This is done in the second phase, using one of different possible strate-
gies such as spectral partitioning [Hend 95a] or coarsening until the number of remaining
nodes equals the number of subdomains. After that, the solution is interpolated to the
next-finer graph recursively. In this final phase the interpolated solution is refined using
the desired local improvement algorithm, for example one of those described below.

The coarsening of the first phase ought to be very fast. It is typically done by comput-
ing a matching of the graph, which should have a high cardinality and a high weight. The
matched nodes are combined to form super-nodes in the next hierarchy level. Different
matching techniques have been used for this purpose, for example the two-approximation
of a maximum weighted matching [Prei 99]. Being the first linear-time approximation
algorithm for this problem, it has initiated further work, which has improved the ap-
proximation factor to % — € [Drak 05]. A more detailed discussion of matching strategies
can be found in Monien et al. [Moni 07] and an experimental comparison in Maue and
Sanders [Maue 07]. Recently, and independently of our work, a coarsening based on
algebraic multigrid techniques has been used in a multilevel algorithm for graph layout
optimization [Safr 06].

The strength of the multilevel approach becomes already apparent if no local improve-

ment in the second phase takes place. Even if the initial solution on the coarsest level is
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determined randomly, this will usually yield a better solution than a random partition
on the finest graph. This effect is due to the locality enhancement brought about by the

coarsening process.

1.3.1.4. Local Heuristics

Kernighan-Lin and Helpful-Sets. Probably the most popular local heuristic for graph
partitioning is the Kernighan-Lin (KL) heuristic [Kern 70], which has been developed
originally for circuit partitioning. Its running time has been improved by Fiduccia and
Mattheyses (FM) [Fidu 82] such that it is linear in the number of edges. As the main
algorithmic idea has not changed, one often speaks of KL, although current implemen-
tations are based on the FM improvements. We refer to it either way.

Its idea is to improve an existing bipartition by performing node exchanges that reduce
the edge-cut. In order to escape bad local optima, KL performs several passes, either
a fixed number or until no further improvements can be found. In each pass it starts
by computing for each node v how much the edge-cut would differ if v changed its
subdomain. This difference value is called gain. Then, in an iterative process each node
is moved logically exactly once to the other subdomain. The order in which this happens
is based on the currently possible edge-cut gain yielded by the migration, from best to
worst. After each migration of a node v, the respective gain value of v’s neighbors are
updated. Moreover, the situation is marked if its edge-cut value is the best so far and
the subdomains are balanced. After all nodes have been examined, one determines if the
best solution found in this pass is better than the one of the previous pass. If so, this
local optimum is stored by performing all necessary moves physically.

Although no theoretical approximation rate guarantees are known for KL, its experi-
mental results are convincing. If the initial partition is not extremely bad, this heuristic
is able to find partitions with a good quality. Moreover, its fast running time makes it
very appealing. That is why state-of-the-art partitioning libraries like METIS [Kary 98a]
and JOSTLE |[Wals 07a| and several others use some variant of the KL algorithm within
a multilevel approach. Some of them use direct k-way implementations of KL. This is in
principle much more complicated than the 2-way approach sketched above, but can be
simplified to be practical [Kary 98b], resulting in a very effective algorithm. It should
be mentioned, however, that the linear running time in |E| is only possible if the edge
weights take on discrete values of a finite interval. Only then the node order based on
gain values can be generated this fast by a bucket-sort mechanism. A major drawback is
the neglect of the resulting subdomain shapes, e. g., if they are connected or have small
diameters. Moreover, the movement of nodes one after another is a strictly sequential
process, which makes a parallelization very challenging. Successful attempts at such a
parallelization are described in Section 1.3.2.

Similar to KL, the Helpful-Set (HS) heuristic for bipartitioning |Diek 95| uses local

search based on node exchanges. It has evolved from a constructive proof by Hromkovi¢
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and Monien on the bisection bandwidth of regular graphs [Hrom 91|. The main difference
to KL is that HS migrates not only single nodes to the other subdomain, but also larger
node sets. It is based on the concept of helpfulness of a node set. Analogous to the gain
of a single node in KL, the helpfulness of a node set S is defined as the reduction of cut
edges caused by migrating S. Starting with an initial balanced partition II = my Ums, the
HS algorithm reduces the cut size iteratively, until some termination criterion such as a
desired cut size is met. In each iteration one searches for an s-helpful set in 7, s > 0,
and moves it to my. To restore the balance of II, one searches for an s'-helpful set in o
of equal size with s + s’ > 0 and moves it to m1. In this way one ensures that the cut
size is decreased in each iteration.

HS has been implemented in the partitioning library PARTY [Moni 00, Moni 04]. Its
speed is nearly comparable to that of popular KL-based libraries, while the quality is
reported to be often better in terms of the edge-cut [Scha 06]. We do not know of any
successful parallelization of HS. As in KL, the node movement is a sequential process. It
would be very difficult to ensure that different processors do not move the same node in

different helpful sets at the same time.

Metaheuristics. In recent years a number of metaheuristics have been applied to
graph partitioning (and graph clustering) problems. Some of these works use con-
cepts that have already been very popular in other application domains such as ge-
netic or evolutionary algorithms [Sope 04, Chev 06|, multi-agent and ant-colony opti-
mization [Koro 04, Come 06], and simulated annealing [Jerr 98]. Furthermore, two less
established metaheuristics called PROBE (Population Reinforced Optimization Based
Exploration) [Char 07] and Fusion Fission [Bich 07] have been adapted to or developed
for graph partitioning. Most of these algorithms are able to produce solutions of a very
high quality if they are allowed to run for a very long time. In practice, however, the
running time investment necessary for good average solutions is too high, so that these

methods are not widely used apart from special applications.

1.3.2. Load Balancing by Repartitioning

Recall that balancing the load in a numerical simulation requires the optimization of at
least two objectives. On the one hand, it is crucial for an efficient simulation to compute
a nearly balanced partition of high quality. On the other hand, the repartitioning process
should not migrate too many vertices to different processors. Last but not least, load
balancing should not be very expensive. Otherwise, it would not lead to running time
savings within the whole simulation.

In order to consider these multiple objectives, different strategies have been explored
in the literature. Two simple ones and their limitations are described by Schloegel et
al. [Schl 97|. One is to compute a new graph partition from scratch and then to de-
termine a migration-minimal mapping between the old and the new partition. This

approach delivers good partitions. Yet, as the migration minimization is decoupled from
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the partitioning process, the migration volume is often very high. Another strategy
simply migrates vertices from overloaded subdomains to underloaded ones, until a new
balanced partition is reached. While this leads to optimal migration costs, it often deliv-
ers partitions of poor quality. To improve these simple schemes, Schloegel et al. proposes
a multilevel algorithm with three main features. First of all, the coarsening algorithm
contracts only nodes of the same subdomain. By this means the coarsest partition still
corresponds to the input partition. In the local improvement phase, two algorithms
are used. On the coarse hierarchy levels, a diffusive scheme takes care of balancing the
subdomain sizes. Since this might affect the partition quality negatively, a refinement
algorithm is employed on the finer levels. It aims at edge-cut minimization by profitable
swaps of boundary vertices. Subsequent work of the same authors combines the scratch-
remap approach with the aforementioned diffusive methods to obtain the best of both
schemes [Schl 00].

Diffusion has been used for load balancing by repartitioning as a means to compute how
much load needs to be migrated between subdomains [Schl 01]. However, until recently,
it has played only an implicit role in determining which elements should be migrated.
Our methods and Pellegrini’s algorithm (|Pell 07a] and Section 1.3.4.2) differ exactly in
this respect from previous work, as their diffusive schemes direct the (re)partitioning

process by computing the migrating elements explicitly.

Migration minimization with virtual vertices has been used by, amongst others, Hen-
drickson et al. [Hend 96|. For each subdomain an additional vertex is added, which may
not change its affiliation. It is connected to each vertex v of this subdomain by an edge
whose weight is proportional to the communication cost for moving v. In this way a

partitioning of the new graph considers both migration costs and partition quality.

If one needs to balance the load in a parallel numerical application, one can as-
sume that the application mesh is already stored in a distributed way on the pro-
cessors. In this case, due to the resource limitations, it is often impossible, or
at least not advisable, to repartition sequentially on one processor. Yet, while
numerous high-quality sequential graph and hypergraph partitioning libraries ex-
ist (CHACO [Hend 94|, JosTLE [Wals 07a], METIS [Kary 98a|, PARTY [Moni 04|, Pa-
ToH [Cata 01], PLuM [Olik 98], ScoTcH [Pell 07b|, etc.), most of them for over a decade,
the situation has been different for distributed /parallel repartitioning until recently. This
is probably due to the increased complexity caused by parallel processing. The parallel
versions of METIS [Kary 98a, Schl 02| and JosTLE [Wals 97, Wals 00, Wals 07a| have
been popular for several years, so that they will serve us as standard of reference. Only
recently they have been supplemented by the load balancing toolkit ZoLTAN [Cata 07|
with its parallel hypergraph partitioner (its solution quality for our benchmark graph
— as opposed to hypergraph — problems is not competitive, however). All these paral-
lel packages are mainly based on local improvement by KL/FM, but many also include

techniques to circumvent some drawbacks of the latter.
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1.3.3. Graph Clustering

The field of clustering has received considerable attention in the past decades. It is
therefore impossible to give a complete overview in this thesis. Instead, we concentrate
on graph clustering methods that are related to our techniques. This relation can be
a similar approach or a similar objective. For more details on clustering methods not
dealing with graphs, the interested reader is referred to Jain et al.’s survey [Jain 99]. An
experimental study comparing different graph clustering algorithms and their clustering
objectives has been performed by Brandes et al. [Bran 07].

One geometric clustering algorithm we do describe is Lloyd’s k-means algo-
rithm |Lloy 82]. It is one of the most popular algorithms for clustering geometric point
data and related to our work despite its geometric nature. Lloyd’s algorithm, whose
input is a d-dimensional point set and the number of clusters k, starts by choosing for
each cluster a representative center point. These centers do not have to be part of the
input. The k-means objective function, which aims at the minimization of the sum of
the squared Euclidean distances between each point p and the center of p’s cluster, is
NP-hard to optimize globally for £ > 2 [Drin 04]. Lloyd’s algorithm finds a local op-
timum by two iterated alternating operations. The first one assigns each point to the
cluster of its nearest center, while the second determines new centers for each cluster.
The latter is done by choosing the respective center of gravity of a cluster. It can be
shown that the objective function is locally minimized by these alternating operations,

so that convergence is reached eventually [Seli 84].

1.3.3.1. Algorithms using Maximum Flow for Cut Minimization

A clustering method based on minimum cut trees has been suggested by Flake et
al. [Flak 02]. Their algorithm uses the well-known relationship between maximum flows
and minimum cuts (cf. e. g., [Corm 01]). It is shown that the density within some cluster
and the sparsity of the edges between two clusters can be governed by a single param-
eter . This o denotes the weight of additional edges, with which each node of the
graph is connected to an artificial sink vertex. For this augmented graph a minimum cut
tree is computed. After the removal of the artificial sink from this tree, its connected
components are the clusters found by the algorithm. It should be noted that « controls
indirectly the number of clusters, which is not predefined. By varying «, one can obtain a
hierarchical clustering. For most practical cases the proposed method requires (’)(lm3/ 2)
time, where k is the number of clusters found.

The basic idea of maximum flows is also utilized by Lang and Rao [Lang 04|, whose
algorithm MQI aims at the optimization of cut notions with quotients such as conduc-
tance or expansion for two clusters. Besides the graph, MQI takes an initial partition
II = 7; Uy as input and builds a directed flow network from it. Amongst other transfor-
mations, this is done by deleting all nodes of subdomain w2 and connecting an artificial

source to the nodes of m that lie at the cut. All nodes of m; are also connected to an arti-
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ficial sink by specifically weighted edges. The result of a maximum flow problem on this
network yields an improved cut if it exists. It is shown experimentally that MQI delivers
very good solutions in not much more than linear time by coupling METIS (for the ini-
tial solutions) with an efficient max-flow solver. Nevertheless, its applicability to general
clustering problems is limited by the restriction to only two subdomains. A recursive

application usually yields inferior results compared to direct k-way methods [Simo 97].

1.3.3.2. Graph Clustering with Random Walks

A random walk on a graph starts on a node v and then chooses the next node to visit
from the set of neighbors (possibly including v itself) based on transition probabilities.
The latter can for instance reflect the importance of an edge. This iterative process can
be repeated an arbitrarily number of times. It is governed by the so-called transition
matriz, whose entries denote the edges’ transition probabilities. As a diffusion matrix is
stochastic, it can be seen as such a transition matrix. More details about random walks
(and their relations to diffusion) can be found in Lovasz’s survey [Lova 93].

Both diffusion and random walks are known to identify dense graph regions: Once a
random walk reaches a dense region, it will stay there for a long time, before leaving it
via one of the relatively few outgoing edges. An alternative view on this considers the
adjacency matrix A of the graph and a corresponding transition matrix P. An entry
{u, v} of the matrix A’ gives the number of paths from u to v with length ¢. Similarly,
P?{u’v} denotes the probability of a random walk that starts in u to be located on v after
t steps. If w and v are in the same dense region of the graph, this probability is above the
average. One could also say that v and v are connected by many paths of short length.

The fact that random walks identify dense regions is used by van Dongen and his
co-authors [Dong 00, Enri 02|, who introduce a graph clustering algorithm that does not
require the number of clusters a priori. It deals with the general problem arising whenever
the t-step transition matrix P! of a random walk is used to group graph nodes. If ¢ is
too large, Pt is close to the stationary distribution and contains hardly any information
about the graph structure. On the other hand, ¢ should be large enough to consider
paths of a certain length. To bypass this dilemma, a nonlinear matrix operator which
strengthens the differences between all rows of the matrix is combined with the traditional
multiplication with P. This leads to meaningful clusters, but the problem size is limited,
as intermediate results include a densely populated matrix.

Similar concepts are used for the clustering algorithm by Harel and Koren |Hare 01].
The latter computes separator edges iteratively based on the similarity of their incident
nodes. This similarity is derived from the sum of transition probabilities of random walks
with very few steps. The iterative procedure is very fast and does not require the input
of k. Unfortunately, it is not proven that it converges and it is also not made clear that
the computed set of separator edges always leads to a reasonable clustering.

The strong connection between random walks and diffusion is also used by Lafon and
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Lee |Lafo 06|, whose key ideas are the definition of a diffusion-based distance measure
between the nodes and a mapping of the nodes to a lower-dimensional space. This
mapping yields an embedding that uses the principal eigenvectors of a diffusion kernel
matrix as the basis of the image space. Thereby, the Euclidean distance of points in the
image space corresponds (approximately) to their diffusion distance in the feature space.
After the transformation one can apply established geometric clustering algorithms such
as k-means, whose distance computations are then based on diffusion distances. The
disadvantage of this approach is the expensive computation of eigenvectors. Moreover,
the number of eigenvalues and -vectors needed for an accurate approximation is not
known beforehand. It requires an intricate analysis of the matrix spectrum instead. This
problem is actually related to the unknown random walk length ¢t mentioned before.

A similar idea of defining a distance measure based on random walks and a corre-
sponding embedding is followed by Fouss et al. [Fous 07], which utilizes the commute
time of random walks as a distance measure. The commute time denotes for two nodes
u, v the expected number of steps a random walk needs to start in w, visit v, and come
back to u again. Due to the well-known relationship between electrical resistance and
commute times [Doyl 84|, it follows that this distance measure between nodes u and v
decreases if the number of paths between these nodes increases. Fouss et al. shows that
the commute time can be expressed as a distance measure based on the pseudoinverse
(also known as Moore-Penrose inverse [Golu 96]) matrix of the graph’s Laplacian. The
resulting Fuclidean Commute Time Distance (ECTD) follows the basic idea of Lafon’s
and Lee’s diffusion distances. First of all, it determines how well-connected two nodes
are. Secondly, it is shown that the feature space can be projected into a Euclidean sub-
space, where this projection approximately preserves the ECTD. Again, the embedded
data can be clustered by established geometric clustering algorithms. However, while
no eigenproblems have to be solved for this method, one of its drawbacks is that the
computation of the Laplacian’s pseudoinverse becomes “intractable” [Fous 07, p. 359 for
large graphs. Although Fouss et al. describes an iterative procedure as a workaround to
ease this problem, this does not change the fact that, in general, the pseudoinverse (even

of sparse matrices) is a dense matrix whose computation has a lower bound of (n?).

1.3.3.3. Spectral Methods and Kernel k-means

In order to optimize quality measures based on cut notions, spectral methods have been
used a number of times for graph clustering [Shi 00, Ng 01, Kann 04]. Analogous to their
predecessors in graph partitioning, they are based on the relaxation of the integer program
for the normalized cut, which is described in Section 2.1.3. The optimization of the more
recent measure modularity has also been addressed by spectral techniques [Newm 06].
All such methods yield clusters with many intra-cluster edges and only few inter-cluster
edges, but require costly eigenvector (or singular vector |Frit 08]) computations.

Zha et al. [Zha 01] and Ding et al. [Ding 04] relate k-means to principal component
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Figure 1.2.: Sketch of the main BUBBLE framework operations: Determine initial centers
for each subdomain (left), assign each node to the subdomain of the nearest
center (middle), and compute new subdomain centers (right).

analysis, which is a statistical method to describe data by a small number of important
representatives. These representatives are in this case principal eigenvectors; all other
data are given as their linear combinations. Based on these previous results, Dhillon et
al. |Dhil 07] has developed the weighted kernel k-means (KKM) algorithm. Its authors
show that KKM is a quite general and powerful approach, which can optimize a variety
of graph partitioning and clustering objectives. Particularly appealing is that these ob-
jectives, which are frequently addressed by spectral methods, can be locally optimized by
kernel k-means without expensive spectral algorithms. In each iteration of the algorithm,
the objective is optimized by local changes of the cluster affiliation. This optimization
is realized for each node by choosing the cluster with minimum distance, where this dis-
tance is computed in part by entries of a kernel matrix. KKM eliminates the problem that
geometric k-means type algorithms can separate only convex clusters. By mapping the
input to a higher-dimensional space using a nonlinear function, separating hyperplanes
in this image space are nonlinear in the feature space.

A slight flaw of KIKKM is that its convergence is only guaranteed if a positive semidefinite
kernel matrix is used. As the KKM authors point out, this convergence property should
be sacrificed in favor of a better solution quality [Dhil 04, Dhil 07, Section 4.4], which can
be obtained by using a negative diagonal shift of the kernel matrix. The larger this shift,
the more are nodes willing to change their clusters, thereby reducing the likelihood of bad
local optima. Kernel k-means has been implemented, together with some improvements

like local search, in the graph clustering program GracLUs |Dhil 07].

1.3.4. Bubble Framework and (Disturbed) Diffusion

The BUBBLE framework is related to Lloyd’s k-means algorithm [Lloy 82| well-known in
cluster analysis and transfers its ideas to graphs. Its first step is to choose initial cluster
representatives (centers), one for each cluster. As illustrated in Figure 1.2, all remaining
vertices are assigned to their closest center vertex w.r.t. some distance or similarity
measure. After the subdomain assignment each cluster computes its new center for the
next iteration. The two operations assigning vertices to clusters and computing new
centers can be repeated alternately a fixed number of times or until a stable state is

reached. For graph partitioning the algorithm has been introduced under the name
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BUBBLE by Diekmann et al. [Diek 00|, which provides references to previous related
ideas like Walshaw et al. [Wals 95]. The name has been chosen because the assignment
process resembles soap bubbles which grow simultaneously, starting at the centers and
colliding at common borders. It is important to note that the actual implementation of

the framework operations can differ significantly, as pointed out in the following.

1.3.4.1. Bubble Implementations based on Graph Distance or Geometry

A first implementation described (but not developed) by Schamberger [Scha 06, p. 66]
relies on graph distances. It takes both a very long running time and delivers unsatisfac-
tory results, so that we forgo a detailed description. A second approach is described by
Diekmann et al. [Diek 00]. Here, the centers are distributed more evenly over the graph.
This is accomplished by choosing only one initial center node at random. The others
are chosen one after another furthest away from the current center nodes w.r.t. the
graph distance. To compute the new subdomains, the smallest subdomain with at least
one adjacent unassigned vertex grabs the vertex with the smallest Euclidean distance
to its center. The new center of a partition is determined as the vertex for which the
(approximate) sum of Euclidean distances to all other vertices of the same partition is
minimal. These changes to the first approach solve some of its problems, for instance the
initial center distribution is improved. Also, the computation of the new centers is sped
up. Besides being connected, the subdomains are usually geometrically well-shaped by
including coordinates in the choice of the next vertex. As a downside, the dependence on
coordinates makes this version only applicable if such information is provided. Moreover,
the Euclidean distance of two nodes might not coincide with the graph structure at all,
leading to unsatisfactory solutions, as already explained for other geometric methods.
Note that both of these BUBBLE implementations cannot be parallelized easily due to

the strictly serial assignment process.

1.3.4.2. Disturbed Diffusion Schemes for Partitioning

In order to overcome the problems of previous BUBBLE implementations, Scham-
berger [Scha 04a, Scha 05] has developed two disturbed diffusion schemes called FOS/L
and FOS/A. We call a diffusive mechanism disturbed if it is modified such that it does
not result in a balanced load distribution, in which every node has the same amount of
load. Integrated into BUBBLE, a mechanisin based on disturbed diffusion is to reflect how
well-connected the center nodes are to all other vertices of the graph. FOS/L achieves
this by iterating FOS a fixed number of times, starting with a suitable initial load vector.
In FOS/A one disturbs the iteration by a drain concept, where a small amount of load is
shifted in each iteration to a set of source nodes. In a similar way the drain concept will
be used for our scheme FOS/C. Thus, it is explained in more detail in the next chapter.

Schamberger’s experiments show a promising partitioning quality of his methods. After

several BUBBLE iterations the centers tend indeed to be within dense regions, while the
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subdomain boundaries are often in sparse ones. However, he also points out that the
practical relevance of his methods is very limited. Since an automatic procedure for
determining a suitable number of iterations for FOS/L has not been found, this approach
is very unreliable and needs extensive manual fine-tuning. The major drawback of FOS/A
is its high running time because its convergence on large graphs is extremely slow. A
theoretical problem is the changing amount of drain in FOS/A, depending on how much
load a node has. This makes an analysis of the algorithm very difficult. It is therefore
our objective to improve this situation by a faster and more reliable disturbed diffusion
scheme, which is also easier to analyze.

Very recently, Pellegrini [Pell 07a| has addressed some drawbacks of the KL /FM heuris-
tic. His partitioning approach aims at improved partition shapes, based on a diffusive
mechanism used together with FM improvement. For the diffusion process the algorithm
replaces whole partition regions not close to partition boundaries by one super-node.
This replacement reduces the number of diffusive operations. As additionally the diffu-
sion process is stopped when no more changes in the subdomain affiliation are expected,
an acceptable overall speed is achieved. The implementation described is only capable of
recursive bisection. As Pellegrini points out, a “full k-way diffusion algorithm is therefore

required” [Pell 07a, p. 202] to improve the quality for large k.

1.4. Outline of our Results

The contribution of this thesis consists of both theoretical and practical results advancing
the current state of graph partitioning, load balancing by repartitioning, and graph

clustering. In summary these are the following:

e We introduce a new disturbed diffusion scheme called FOS/C and prove that it is a
similarity measure. It does not require the specification of the number of diffusion
iterations, which is accomplished by taking the limit of an infinite series. We prove
that this infinite series and therefore FOS/C converges. Its convergence state can
be computed by fast linear solvers, which is a major acceleration compared to the
previous scheme FOS/A. To circumvent numerical issues, FOS/C is slightly altered
by introducing a virtual vertex. This modification makes the solution process of

the linear solvers faster and more robust. (Sections 3.1, 3.2, and 3.5)

e By relating FOS/C to random walks, we demonstrate why it is able to distinguish
sparse from dense graph regions. Moreover, we prove that FOS/C computes entries
of the pseudoinverse of the graph’s Laplacian matrix, which plays a major role in
the related Euclidean commute time distance (ECTD) measure for graph cluster-
ing. For distance-transitive graphs like the hypercube we show that the FOS/C
convergence state (the Laplacian’s pseudoinverse, respectively) can be character-
ized by means of a certain flow distribution. This characterization is shown not to

hold in general for torus graphs. (Sections 3.2, 3.3 and 3.4)
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e The integration of the similarity measure FOS/C into the BUBBLE framework yields
the algorithm BuBBLE-FOS/C. We analyze the algorithm’s complexity and make
it applicable to graph clustering as well as graph (re)partitioning problems. More-
over, we give an indication why BUBBLE-FOS/C obtains the solution with the
globally shortest boundary on the torus in our experiments. Our main theoretical
result regarding BUBBLE-FOS/C is a proof based on a potential function, which
shows that the algorithm always converges to a local optimum. To the best of our
knowledge, this convergence proof and its potential function are the first substan-
tial theoretical results on shape-optimizing graph partitioning algorithms and their
solutions. We also prove that BUBBLE-FOS/C yields connected subdomains on
vertex-transitive graphs when k& = 2. (Sections 4.1, 4.2, 4.3, 4.5, and 4.7.1)

e Algebraic multigrid (AMG) is a fast solver for certain linear systems and has not
been designed originally for semidefinite Laplacian system matrices, which arise
in BUBBLE-FOS/C. After proving that AMG can be applied in principle to our
problem class as well, we assemble and implement AMG components that suit our
needs. Especially notable is the use of the AMG hierarchy not only for solving
linear systems, but also for multilevel improvement in the partitioning/clustering
process. As verified experimentally, our new AMG approach is able to speed up
BUBBLE-FOS/C nearly five times compared to a related implementation that uses

conjugate gradient as sparse iterative linear solver. (Sections 4.4, 4.6, and 4.7)

e Our experiments on FEM meshes also show that BUBBLE-FOS/C’s implicit opti-
mization of the subdomain shapes results in partitions of these graphs with sub-
domains that have short boundaries, good edge-cut values, low diameters, and are
very often connected. Nevertheless, even with the acceleration by AMG, BUBBLE-
FOS/C is up to three orders of magnitude slower than established graph partition-
ing libraries. Accelerations based on computing FOS/C on graph approximations

instead of the whole graph are only partially helpful. (Sections 4.7 and 4.8).

e The fact that BUBBLE-FOS/C delivers high-quality graph partitioning solu-
tions and that it has been studied theoretically, makes it very appealing as
(re)partitioning tool. However, BUBBLE-FOS/C’s high running time makes an
exploitation of its solution quality hardly possible for large graphs occurring in
practice. That is why we aim subsequently at the development of a faster heuristic
that retains the positive properties of BUBBLE-FOS/C, but is significantly faster
and suitable for practical deployment. As detailed below, our work in Chapter 5
achieves this objective and constitutes the most important part of this thesis from

a practical point of view.

e Since we attribute the speed problem of BUBBLE-FOS/C to its global approach,
we develop a faster diffusion-based method called TRUNCCONS, which improves
a given partition by local changes. We combine BUBBLE-FOS/C and TRUNC-
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CONS to obtain a linear-time (in & - |E'|) multilevel algorithm called DiBAP, which
constitutes our main algorithmic achievement. The fine multilevel hierarchy levels
are processed with fast algorithms for hierarchy construction (matchings) and local
partition improvement (TRUNCCONS). Only on the coarse levels, BUBBLE-FOS/C

is used to compute a good starting solution. (Sections 5.1, 5.2, and 5.3)

e The solution quality of DIBAP is excellent. In our experiments DIBAP delivers
better graph partitioning solutions than the state-of-the-art partitioning libraries
METIS and JOSTLE in terms of the edge-cut and the number of boundary vertices,
both in the summation and in the maximum norm. Also problems from the two
other considered fields repartitioning and clustering are nearly always solved with a
comparable or better quality than by state-of-the-art libraries. Although DIBAP is
still slower than established libraries for our three application domains, its running

time is reasonable. (Section 5.4)

e Also notable is the fact that DIBAP improves for six benchmark graphs a large
number (more than 80 out of 144) of their best known partitions w.r. t. the edge-cut.
These six graphs are among the eight largest in a popular benchmark set [Sope 04,
Wals 07b|, which contains 34 graphs in total. (Section 5.4.1.6)

1.5. Publications

Parts of this thesis have been published in preliminary form in the proceedings of the
subsequent peer-reviewed computer science conferences (followed by the reference of our
respective contribution): 11th International Euro-Par Conference [Meye 05], 20th Inter-
national Parallel and Distributed Processing Symposium [Meye 06a], 12th International
Euro-Par Conference [Meye 06¢|, and 17th International Symposium on Algorithms and
Computation [Meye 06b]. Our publication appearing in the proceedings of the 22nd In-
ternational Parallel and Distributed Processing Symposium [Meye 08| has been selected
by the program committee as the best paper of the conference’s algorithm track.
Additionally, parts of this work have been presented at two events without refereed
proceedings, the Dagstuhl Seminar Web Information Retrieval and Linear Algebra
Algorithms (2007) and the Oberwolfach Workshop on Algorithm Engineering [Meye 07].

Note that many results of Chapters 3 and 4 in this thesis have been developed jointly
with the co-authors of the aforementioned publications. In the following I will present
algorithms and proofs which have been developed by myself or in collaboration. Proofs
to which I have not contributed are omitted and replaced by a literature reference at the

beginning of the result.
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2. Preliminaries

In this section we define some terminology and give formal definitions of the partitioning

problems considered in this thesis.

Definition 2.1. An edge-weighted graph G = (V, E,w) is a triple with the set of vertices
(or nodes) V, a set of edges E C V x V', and an edge weight function w: V xV — R>y.
By definition, if e ¢ E, we have w(e) = 0. If G is unweighted, we assume w(u,v) = 1
for all (u,v) € E. G is called undirected if w is symmetric, i.e., w(u,v) = w(v,u) for all
(u,v) € E. An undirected edge between nodes u and v is written as {u,v}. Note that
we sometimes write w, instead of w(e). Usually, the number of nodes |V| is denoted by

n, the number of edges |E| by m.

Remark 2.2. Note that, unless stated otherwise, we assume throughout this thesis that
all graphs are undirected. While it is certainly possible to ask for partitions or clusterings
of directed graphs, the majority of applications require only undirected graphs. It would
be interesting to investigate in future work, however, if our methods can be extended
to work for directed graphs, too. Moreover, we assume all graphs to be sparse, i.e.,
m = O(n). For most applications in our problem areas, sparseness is a reasonable or

even natural assumption.

Remark 2.3. We also assume that the graphs to be partitioned or clustered are connected
and simple, i.e., they do not contain self-loops (u,u) or multiple edges with the same
endpoints. Additionally, we assume them to be finite. Finiteness and the lack of self-loops
are natural assumptions, and connectedness can be simply enforced by focusing on the
connected components. Furthermore, a graph with parallel edges can be transformed into
an (equivalent) simple graph by merging multiple edges and adjusting the edge weight.
Notation 2.4. Matrices are written in bold font, but a matrix entry [L], , is also written
as ly. Given a vector w, [w], denotes its v-th component. Sometimes we also use w,
as a shorter variant of this notation. In case we refer to the v-th entry of the ¢-th vector
in a series, we write [w;],. The scalar (inner) product of two vectors x and y of length n
is written as (z,y) = Y ;" x;y;. Moreover, z and y are called perpendicular, denoted by
z Ly, if (x,y) = 0.

Definition 2.5. The Laplacian matriz L of a graph G is defined as follows:

—w(e) u#ve={uv}ekl,
[L]U,U = deg(u) = - Z(Hﬁu[L]u,q U="uv,
0 otherwise .

19



CHAPTER 2. PRELIMINARIES

Fact 2.6. For undirected graphs, L is a symmetric positive semidefinite matriz [Chun 97].
Let the eigenvalues of L be denoted by A\ < Ao < ... A\,. It is well-known that Ay = 0
and that the multiplicity of the eigenvalue 0 equals the number of connected compo-
nents [Fied 73]. Hence, if G is connected, Ao > 0 and L has rank n — 1, so that
its null space {x € R™ : Lax = 0} has dimension 1. The largest eigenvalue of a
matriz is bounded from above by any induced matriz norm (e.gq., [Meis 05]). Hence:
An < ||Ljl1 = 2 maxdeg(G), where maxdeg(G) := max{[L], | u € V} denotes the mazi-
mum weighted degree of G.

Note that in the following we use the terms graph and matriz interchangeably. The
same holds for edge weight and matriz (off-diagonal) entry. If another matrix than the

Laplacian is meant as graph representative, the meaning will be clear from the context.

2.1. Problem Definition

2.1.1. Graph Partitioning

Definition 2.7. Given an undirected graph G = (V, E,w) with vertex set V of size n,
edge set E of size m, and the edge weight function w. Then, a k-way partition II of G is

a function

Im:v—-{1,...,k}.

Such a partition divides the vertex set V into k disjoint subsets
V:mUﬂgU...ka.

Edges connecting nodes of two different subdomains belong to the so-called cut of II.

Definition 2.8. Let G = (V, E,w) be a graph and let dist(u, v) denote the graph distance
between nodes u,v € V, i.e., the length of the shortest path connecting them. Moreover,
let the affiliation of a node u to a subdomain 7. be either denoted as II(u) = ¢ or as
u € .. Then, the quality measures external edges (or cut edges), boundary nodes, and

diameter are defined for a subdomain 7. as

ext(m,) = Zw(e) with C := {e = {u, v} : II(u) = ¢ ATl(v) # ¢} (external edges),
eecC
bnd(m.) = |{veV:I(v)=cAIH{u,v} e E:I(u) # c}| (boundary nodes),
diam(m.) = Inax {dist(u,v)} (diameter) .

If 7, forms more than one connected component in G, we call 7w, disconnected and set
diam(m.) := oco. Note that bnd can also be extended easily to node-weighted graphs by
summing up the weights of boundary nodes instead of taking their number.

These three measures can be of different importance in different applications. Exter-

nal edges, for example, are used as an objective in circuit layout problems, where they
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model connections between different modules. As these connections cause higher costs
than wires within a module, they are undesirable [Kern 70]. In parallel applications,
where the graph models data dependencies between objects, boundary nodes represent
those objects which require inter-processor communication to obtain required data from
neighboring nodes. Since inter-processor communication is much more expensive than
local computation, the number of boundary nodes should be minimized [Hend 98]. Cer-
tain parallel numerical applications such as preconditioners additionally profit from good
partition shapes. For a fast convergence of the underlying solvers, elongated subdomains
with jagged boundaries should be avoided. Although the diameter does not measure
such artifacts explicitly, it gives an indication if a subdomain is rather compact (i.e.,
resembles a circle) or elongated [Diek 00].

As the measures above are defined for one subdomain only, one needs to specify how the
quality of the complete partition should be assessed. Again, this is application-dependent.
For a chip design the total number of external edges is typically of highest importance.
In contrast to this, parallel applications need to wait for the processor computing longest.
There one should minimize the maximum number of boundary nodes. The sum and the
maximum are the extreme cases {1 and f, of the more general {,-norms for a vector

v = (21,...,0,)7:

n 1/1’
lzll, = (Z wp) for 1 < p < oo and ||z]ee = max{|z;| : 1 <i<n}.

i=1

Whereas ¢; takes all entries of the input into account, ¢, focuses only on local behavior
— the most extreme value. The norms in between can be used to measure both global
and local appearance. In this thesis we consider only ¢; and {o, because none of the two
should be neglected, as there are important applications for both of them. On the other
hand, real applications for the other norms are less common.

The edge-cut of a partition II, i. e., the weight of the edges whose endpoints belong to

different parts, has been the most important graph partitioning metric. It is defined as

cut(I) := Z w(e),

e={u,v}, IT(u)#II(v)

which is half the summation norm ¢; of ext. In case of an unweighted graph, it is just
the number of edges running between different subdomains. The balance of 11 is defined

as
maxi <<k | Vil

[1VI/k]

A vpartition is called balanced if bal(II) = 1. The most common formulation of the

bal(II) :=

graph partitioning problem is as follows:

Problem 2.9. Given an undirected graph G = (V, E,w) and k € N, find a balanced

k-way partition II of G with minimum edge-cut.
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This problem is known to be NP-hard, and its decision variant is N'P-complete. This
holds even if k& = 2 (in which case II is called a bisection) and all edge weights are
one [Gare 74|. Hence, no deterministic polynomial-time algorithm is known to solve
the graph partitioning problem optimally. Other variants of the traditional problem
formulation of Definition 2.9 exist. For example, it is often the case that the balance
constraint is relaxed to allow a small imbalance, e.g., bal(II) < 1.03. It is frequently
observed [Simo 97, Kary 98b] that this can lead to partitions with a higher quality. As
indicated above, the maximum number of boundary nodes should be preferred in parallel
numerical simulations for modeling the application’s communication volume.

In spite of being only an approximation to the communication volume of the underlying
numerical application, the edge-cut has been extremely popular as optimization objective
in graph partitioning. Edge-cut minimization of a bipartition can be formulated as an
integer program (e.g., |Lang 05]): Let z; € {—1,1} be an indicator variable, which
denotes to which of the two subdomains node ¢ belongs. Minimizing the edge-cut is then
equivalent to minimizing the objective function ixTLx. L is the Laplacian matrix of
the graph, and % is included to model the number of cut edges exactly. The balance

condition is expressed by the constraint ), x; = 0 in this quadratic integer program.

2.1.2. Load Balancing by Repartitioning

Load balancing is an essential tool in parallel processing for an efficient utilization of
the computational resources. In this thesis we only consider load balancing of parallel
computations in which the computations depend on each other. An example would be
numerical simulations whose domains are discretized into meshes. These simulations
typically employ iterative solvers which exchange information between neighboring mesh
elements in every iteration. Inter-processor communication can be therefore minimized
by a balanced partition with few boundary nodes.

If the mesh is severely altered during the simulation, intolerable load imbalances can
arise. These are eliminated by computing a new balanced partition. A redistribution of
the elements according to the new partition requires some nodes to change their processor.

Such a change is called migration, which is defined as:

Definition 2.10. For a graph G = (V| E), its old partition II;, and its new partition Iy
the c-th entry (1 < ¢ < k) of the vectors mig™ and mig® is defined as

mig™(c) = |{v: i(v) # c AT (v) (incoming migration),

= C |
mig®(c) {v: 1 (v) = ¢ ATla(v) # ¢}| (outgoing migration) .

If we only speak of the migration volume mig without specifying if it is incoming or

outgoing, we refer to either migy = ||mig™||; = ||mig°“||; for the summation norm or

out||oo for the maximum norm.

to Migeo = ||mig™ + mig
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Problem 2.11. Given an undirected graph G = (V, E,w), k € N, and its k-way partition
Iy, find a new balanced k-way partition Ily of G such that

e the migration volume mig between II; and IIy is minimized and
e II5 is optimized w.r.t. the edge-cut or the number of boundary nodes.

Which norm is chosen to measure the migration volume or the partition quality, depends
on the application and should be chosen accordingly. Note that the quality of Il can be
measured in another metric such as the diameter, too.

Since both objectives (migration and partition quality) may contradict each other, a
simultaneous optimization is often not possible. In these cases one can assign weights
to the objectives and minimize their linear combination [Schl 00]. Then, the problem is
obviously also NP-hard since it solves the graph partitioning problem if the migration
weight is set to zero. Alternatively, we can ask for a pareto-optimal solution, i.e., a
solution for which there exists no other solution that is not worse in one objective and
strictly better in the other one [Bano 06].

2.1.3. Graph Clustering

Recall that clustering refers in general to the placement of objects into groups (clusters)
such that objects of the same group are similar to each other and objects of different
groups are dissimilar. In graph terms this objective is translated into finding subsets of V'
that are densely connected within themselves, but sparsely connected to each other. Both
of these formulations are very imprecise and underspecified. This is necessary because,
as in graph partitioning, different applications require different objectives.

Mathematically, a clustering II is also a partition of V, just as in Definition 2.7.
The major difference between the graph partitioning problem and the graph clustering
problem is that the latter requires (at least approximately) balanced partitions, while
now cluster sizes can be (almost) arbitrary. Moreover, the number of subdomains k is
known in the graph partitioning problem. For graph clustering, however, it can be, but
does not have to be necessarily, part of the input. It is therefore often an advantage
to employ an algorithm that does not require the specification of k. However, if k can
be specified a priori, an exploitation of this information can be expected to improve the
solution quality.

The multitude of applications for graph clustering has led to the existence of many
different quality measures or objective functions. They can be used to steer the optimiza-
tion process of the algorithm, to compare the results of different clustering algorithms,
or to indicate whether the clustering found has too few or too many clusters. Most of
them follow the paradigm of intra-cluster-density versus inter-cluster-sparsity [Gaer 05].
FEzpansion and conductance [Kann 04] are local measures taking the minimum of all sub-
domains. In contrast to them, coverage [Gaer 05|, modularity [Newm 04], and normalized

cut [Shi 00] are global measures taking the sum. The optimization of all these measures is
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NP-hard. For coverage this follows directly from the hardness of edge-cut minimization.
Hardness proofs for the others can be found in the literature [Kaib 04, Sima 06, Shi 00].
The best approximation ratio for conductance known so far is O(y/logn) [Aror 07].

In this thesis we focus on the normalized cut since it is a generalization of the edge-
cut to imbalanced partitions. Moreover, it has a non-local view and has been applied
successfully to a variety of applications [Dhil 07]. For a graph G = (V, E,w) and its
k-way clustering II the normalized cut NCut(II) is defined as

w(u,v)
NCut Z uEﬂc,vgéﬂc )
>

uEm,UEV ( U)

The generalization or normalization is necessary to cope with the missing constraint on
the cluster sizes since an optimal k-clustering w.r. t. the edge-cut would simply cut off the
k — 1 nodes with smallest degree. Note that minimizing the normalized cut is equivalent
to maximizing another measure, the normalized association [Shi 00]. The latter sums
over the weight of the intra-cluster edges versus the weight of all edges in each cluster.

Just like in the case of the edge-cut, the minimization of the normalized cut for a

bisection IT = {71, m2} of G can be expressed as an integer program [Shi 00]

L
min NCut(Il) = min jTDz
with the constraints z; € {1,-b} and 2'D-1 = 0, where b =

> vem d€g(v)/ > er, deg(u) and D denotes the diagonal matrix of the node de-
grees in . If the entries of x are allowed to take on real values, the relaxed optimal
solution can be computed by solving the generalized eigenvalue problem Lz = ADz.
This fact is exploited by spectral methods for graph clustering, which derive their cluster
affiliation by interpreting one or more eigenvectors of L.

Since our algorithms need the specification of the number of clusters k, we formulate

the according graph clustering problem as follows:

Problem 2.12. Given an undirected graph G = (V,E,w) and k& € N, find a k-way

clustering II of G with minimum normalized cut.

The a priori specification of k can be seen as a limitation. A way of circumventing
it, is to use a multilevel approach in which an algorithm not requiring the parameter k
(e.g., the one of Enright et al. [Enri 02| or the one of Fritzsche et al. [Frit 08]), which
computes the initial solution and k on a coarse representation of the input. Yet, such an

approach is not pursued further here, but left to future work.

2.2. First Order Diffusion Scheme

Diffusive processes can be used to model a large variety of important transport phenom-

ena. These phenomena arise in very diverse areas such as heat flow, particle motion
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in solvents, and the spread of diseases. In a discrete setting on graphs, diffusion is an
iterative process which exchanges splittable load entities between neighboring vertices,
usually until all vertices have the same amount of load. That is why in computer science
one has studied diffusion in graphs as one of the major tools for balancing the load in
parallel computations [Xu 97].

The general or first order diffusion scheme (FOS) has been introduced independently
by Cybenko [Cybe 89| and Boillat [Boil 90|. Since we often consider edge-weighted graphs
(without node weights, unless stated otherwise explicitly), we use the extension to edge-
weighted FOS by Diekmann et al. [Diek 99].

FOS belongs to the class of local iterative algorithms for balancing the load in inde-
pendent parallel computations. Given a graph G = (V, E,w) and a load (or workload)
wy € R for each node v € V, these algorithms distribute the total amount of load step-
wise to the nodes of the graph. Finally, in the convergence state of these algorithms,
each node has the same average amount of load. This process is performed by local
operations only, i.e., only nodes adjacent to each other perform load exchanges. Below,
we introduce FOS formally and present some results necessary to understand our work

on disturbed diffusion.

Definition 2.13 (FOS). Given a connected graph G = (V, F,w), a suitably chosen
constant a > 0, and an initial load vector w© e R™. Let wq(f) denote the load of node u
in timestep t. Then, the edge-weighted first order diffusion scheme (FOS) performs the

following operations in each iteration ¢ > 0:

t—1 — _
xi={u),v} = Oawe(wl(f b— wz(;t 1)) )
w® = Wl Z 20D
e={u,v}eF
where xit:){u v} denotes the load exchange via edge e in iteration t.

In matrix-vector notation the FOS iteration of load updates can be written as w(*) =
Muw®D . The matrix M = I — oL is the diffusion matriz of G. Tt is symmetric and
doubly-stochastic, i.e., all entries are nonnegative and all row and column sums are
one [Cybe 89].

The constant « is chosen such that the eigenvalues of M, denoted by p; with p; =
1—a);, 1 <i < n,liein the interval (—1,1]. This can be achieved by a@ < maxdeg(G)~!,
where maxdeg(G) := maxj<,<,{deg(v)}. A typical choice is @ := (maxdeg(G) + 1)~ L.
In case that G is bipartite, we additionally require that at least one diagonal entry
of M is positive. Then, since u3 = 1 and |u;| < 1 for 2 < i < n if G is con-
nected, the FOS iteration converges towards the average (or balanced) load situation
we= (3", wgo))(l, ..., )T which has been shown by Cybenko [Cybe 89]. The con-
vergence speed is dominated by v := max{|uz|, |pn|}, whose value depends on the graph

structure.
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Definition 2.14. Let A € {—1,0,1}"*™ be the node-edge incidence matrix of
G (e.g., [Diek 99]) with AAT = L. Each column of A corresponds to an edge, each
row to a node. Note that each column has exactly two nonzero entries, —1 and +1. In
the column of edge e = {u,v} the nonzero entries appear in the rows corresponding to
the incident nodes u and v. In case of undirected graphs, the signs of the nonzero entries
of A define an implicit (and arbitrary) direction of the edges. (In the following chapters
we usually make the natural assumption that flow on an edge is directed from the node
with higher load to the node with lower load.)

Definition 2.15. [Diek 99] A flow function f : E — R is called balancing if and only if
Af =w—w. The FOS migrating flow f* is the sum of all load exchanges via the edges
of G during the FOS iteration: f*:= > 2®.

Lemma 2.16. [Hu 99, Diek 99] Let A = AF be the (edge-weighted) node-edge incidence
matriz of G = (V, E,w) and let F be an m x m diagonal matriz with [F|;; = \/w;. The

solution of the fo-minimization problem
minimize |[FLf||a over all f with Af =d

15 gwen by f = ATz, where Lz = d with d,z € R™, provided that d 1 w. Using this
minimization problem, it can be shown that the FOS migrating flow f* is the unique

|| - [|2-minimal balancing flow.

Note that in case one wants to minimize ||F f||2 over all f with AF~!f = d, one has
to use the inverse 1/w, instead of the edge weights w, in all diffusion formulas.

The most positive features of FOS are the locality of its operations and the optimality
of the computed balancing flow. However, if used for load balancing, FOS should be
replaced by the second order diffusion scheme SOS. The latter shares the same positive

properties, but converges significantly faster towards the average load [Muth 98].
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3. Disturbed Diffusion

A shape-optimizing approach to partitioning by means of the BUBBLE framework has
been identified as very promising, see Schamberger [Scha 06] or Section 1.3.4 of this
thesis. However, previous implementations of the BUBBLE operations are pre-mature
and show some serious drawbacks, as pointed out in Section 1.3.4. In order to benefit
from shape optimization, our objective is to overcome these drawbacks without requiring
geometric information on the graph.

Regarding graph clustering, it is furthermore of interest to be able to group nodes
based on their similarity. We therefore introduce in Section 3.1 a new disturbed diffusive
process called FOS/C and prove some of its basic properties. It accomplishes significant
advantages compared to the previous diffusion schemes in BUBBLE implementations, in
particular w.r.t. robustness and computational requirements. As shown in Section 3.2
by its relation to random walks, FOS/C can be used as a similarity measure for the
graph nodes. This measure regards two nodes or graph regions as similar if they are
well-connected, which means that they are connected by many paths of short length. In
Sections 3.3 and 3.4, the behavior of FOS/C on distance-transitive and torus graphs is
investigated and several properties of the diffusive load distributions are derived. Finally,
FOS/C is modified such that its solution can be computed faster. This acceleration is
achieved in Section 3.5 by the introduction of a virtual vertex. The relation of this

modified scheme to FOS/C and its relevant properties are also explored.

3.1. Disturbed Diffusion Scheme FOS/C

We call a diffusion scheme disturbed if it is modified such that it does not result in
a balanced load distribution. In contrast to the ordinary first order diffusion scheme
FOS, our new disturbed diffusion scheme FOS/C (C for constant drain) performs two
load-changing operations in each iteration. While the first step is the original diffusion
operation, the second one introduces a disturbance based on drain. It subtracts some
fixed load amount d (the drain) from each node and adds the total drain evenly onto some
selected source nodes, denoted by the set S C V (see Figure 3.1). This disturbance by
the drain concept avoids the meaningless balanced load distribution in the convergence

state, as we will see later on.

Definition 3.1. (FOS/C) Given a graph G = (V, E,w), a set of source nodes ) # S C V,
and suitably chosen constants o > 0 (cf. Section 2.2) and § > 0. Let the initial load
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Figure 3.1.: Sketch of the drain concept with three nodes in the source set S.

vector w(©) and the drain vector d be defined as follows:

n on
w(o): F UES, and dv: m—(s ’UES,

’ 0  otherwise, -6 otherwise .

Then, the edge-weighted FOS/C diffusion scheme performs the following operations in

each iteration ¢ > 0:

(t=1)

Ie:{u,v} = awe(wgt_l) - wgt—l)) s
w&t) = (wz(f*l) — Z w§t71)> +dy .
e={u,v}

The update of the load vector can be written in matrix-vector notation as w(®) =
Muw*~1) + d, with M being the diffusion matrix of G. Note that, since (d,1) = 0, this
iterative load update does not change the total amount of system load. Node weights
— if desired — can be incorporated into FOS/C by weighting the drain vector entries

proportionally.

It requires a deeper analysis to see if FOS/C suits our needs, i. e., that load values can
be derived from it which reflect how well-connected nodes or regions of a graph are with
each other. That is why we need to know if FOS/C reaches a convergence state, where
w® does not change any more. (In Markov chain theory such a state is also known as

steady state or stationary distribution.)

Lemma 3.2. Let M be a diffusion matriz and let d be a vector such that d L 1 =
(1,..., )7, Then, limy_oo(3t_o M¥)d = (I - M)~ d.

Proof. Recall that 1 is an eigenvector to the simple eigenvalue 1 of M. Sinced L 1,1i.e.,
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> j=1d; =0, it follows that lim; oo Mi+ld = 0. Hence,

tlim(I—M)(I+M+M2+~--+Mt)d
= lim(I-M")d = Jim d — Mg

t—o0

= d.

Therefore, (I + M + M? + ... + M) is the inverse to (I — M) in (I — M)d for t — oo

and any vector d perpendicular to 1, so that the claim follows. O

Theorem 3.3. The FOS/C scheme converges for any arbitrary initial load vector w0,
provided that d L 1.

Proof. Repeatedly applying the FOS/C update rule to the initial load vector w® we

obtain

w = Mw® 44
w? = Mw® +d=MMuw® +d)+d=Muw®+ M+1)d

t—1
w® = Mtw(0)+(ZMi)d.
=0

Due to the convergence of FOS to the average (balanced) load w, Lemma 3.2, and d 1 1
this yields

w™>) = lim Mw©® 4+ (1 —M)"ld
= w+ (L) d.

O

Hence, the convergence state w(®) of FOS/C is composed of two parts. The first one
is the balanced load distribution w, while the second one depends only on «, L, and d.
Consequently, the first part is independent of the source set S, while the second one is
independent of the initial load w(®). More precisely, the choice of w(® only determines
the total load within the system, i.e., the sum of all its entries. To make convergence
loads of different source sets comparable, it is therefore necessary to fix this total load
by using the same w, e. g., the zero vector.

Note that, although the inverse L~! itself does not exist, the last equation in the
previous lemma is well-defined. The matrix L~! acts directly on d, which is perpendicular
to 1. The vector 1 is the eigenvector corresponding to the eigenvalue \; = 0 of L. Since
L is a real symmetric matrix, its eigenvectors form a basis of R" [Tref 97, Ch. 24|. Hence,

we can represent d as a linear combination of the eigenvectors z; of L: d = Z?:l a;z;
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with a; € R. The property d L 1 = z; can be written as

0={(d,z1) => di-[2)i =Y > ajlzli-[a)i = a;(zj,2).
i=1 Jj=1

i=1 j=1

Since all the eigenvectors are orthogonal to each other, we have: Y70, a;j(zj,21) =

a1{z1,21). As (z1,21) > 0, the coefficient a; must be zero. This leads to the well-
defined expression: L~'d = Z?:z aj)\j_lzj. Note that more details on the series

lim; o0 ZE:O M'd and the matrices involved are given in Section 3.2.

Corollary 3.4. The convergence state w(™) of FOS/C exists and can be characterized

as
w® = Mw®> +d
& I-Mw™>® = d
& aLw™® = d.

Thus, w(®) can be determined by solving the system of linear equations Lw = d, where

w = aw(®). We usually refer to the vector w as the convergence load vector.

Remark 3.5. If the set of source nodes S contains only one node, we call the computation
of the FOS/C convergence state a single-source FOS/C procedure, otherwise it is called
a multiple-source FOS/C procedure.

As we assume that G is sparse, w can be computed by sparse iterative methods with
subquadratic space complexity. For example, a linear system Lw = d describing the
convergence state could be solved in principle by iterating FOS/C or similar diffusive
methods. They have the advantage not to require global operations because nodes must
exchange data only with their neighbors. Solvers such as Conjugate Gradient (CQG)
or multigrid methods [Saad 03] are preferable if global knowledge is available. They
usually show a much faster convergence and a running time significantly below O(n?).
Our experiments on various benchmark graphs indicate that standard CG, using global
operations, already yields a speedup of at least two orders of magnitude compared to the
FOS/C iteration w® = Mw*~1 4 4.

Before we investigate the connection between FOS/C and random walks in the next
section, we show some fundamental properties of FOS/C. This can be done by relating

it to a flow problem and the || - ||2-optimality of FOS.

Observation 3.6. Since FOS/C solves Lw = d for w with d 1. 1 = w, we can observe
by using Lemma 2.16: The migrating flow f = ATw in the FOS/C convergence state
equals the || - ||2-minimal flow that balances the vector d. In this load balancing problem,
the nodes belonging to S send the respective load amount 0 to all other nodes in the graph,

which act as d-consuming sinks.
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Corollary 3.7. If either the flow or the loads in the convergence state are known, the
respective other quantity can be computed easily: fe—{y ) = Wy — wy. Note that the flow
does not determine absolute values for the loads, only relative ones. To obtain absolute

values from the flow, one needs to specify one of the load values.

Proposition 3.8. Consider the load vector w in the convergence state of FOS/C and
the corresponding flow problem described in Observation 3.6. Then, the node v with

mazximum load value in w belongs to the set of source nodes S.

Proof. Assume the opposite, i.e., v ¢ S. Since v has the highest load, no flow is directed
towards v because the flow on an edge is the load difference of its incident nodes. Hence, in
the flow problem equivalent to FOS/C v does not receive any load. This is a contradiction

to the initial setting because all nodes not in S receive a load amount of § by definition.
O

Proposition 3.9. Let the graph G = (V,E,w) and the load vector w of an FOS/C
procedure with source set S be given. Then for each vertex v € V there is a path (v =
V0,V1,...,v = 8) with s € S and {v;,viy1} € E such that w,, < wy,,,,0 <i <.

Proof. Assume that the claim is untrue, so that no such monotonously increasing path
exists. Moreover, recall that the convergence state of FOS/C is equivalent to a flow
problem where all vertices v € V\S receive a load amount of §. Now, let j be the
smallest index such that the monotonous path from v to s € S stops in v; ¢ S because
Wy, > wy V(vj,v") € E. This means that v; is a local maximum w.r.t. its load, so that
the flow on its incident edges directs from v; away. Hence, v; would not receive any load.
As all non-source vertices must receive a load amount of §, our assumption is wrong and

the claim true. O

3.2. Connections between FOS/C and Random Walks

Grouping nodes based on their similarity requires a formal notion of how similarity is

determined and which important properties a similarity measure should have.

Definition 3.10. (comp. [Kauf 96, p. 440]) Let V be a finite set of nodes. We call a

function §: V x V — R a similarity measure for V if
o S(u,v) = S(v,u) for all u,v € V and
e S(u,u) > S(u,v) for all u,v e V.
The symmetric matrix S = (sy,, = S(u,v)) is called similarity matriz.

In order to show why FOS/C reveals a structural similarity between graph nodes or

regions, we relate it to random walks.
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Definition 3.11. A random walk on a graph G = (V, E,w) is a discrete time stochastic
process defined as follows: Starting on an initial node, a random walk performs the
following in each iteration. First, it chooses one of the neighbors of the current node
v randomly (where the probabilities are proportional to the edge weights). Then, it
proceeds to the neighbor just chosen to start the next iteration. In some models one can

also use a positive probability for staying on the current node.

As indicated before in Section 1.3, a random walk visiting a densely connected region
of a graph is likely to visit many nodes of this region, before leaving it via one of the
relatively few external edges. Moreover, the (shortest) paths between nodes of different
clusters go all via these few external edges. On the other hand, nodes of the same cluster
are connected to each other by many (shortest) paths of small length. This explains
intuitively why random walks can be helpful for distinguishing internal from external

edges or dense from sparse graph regions.

Based on how the transition probabilities are defined, different types of random walks
can be distinguished. They have in common that a random walk has the Markov property.
This means that the probability of going from node u to node v in timestep ¢t depends
only on the state in timestep ¢ — 1, not on the states in the timesteps before. Moreover,
random walks are time-homogeneous, i.e., their transition probabilities are independent

of the timestep.

It is well-known that ordinary, i.e., undisturbed, diffusion and random walks are
closely related, see Lovész’s survey on random walks |Lova 93]. In particular, the doubly-
stochastic diffusion matrix M can be considered as the transition matrix of a random
walk on V(G). Using the random walk notion, [M], ,, denotes the probability for a ran-
dom walk located in node u to move to node v in the next timestep. In order to examine
the relationship between disturbed diffusion and random walks, we show that the most
important part of an FOS/C convergence load is the sum of random walk transition
probabilities. These probabilities are determined by the diffusion matrix M, and the

random walks have an increasing number of steps.

Notation 3.12. Let [w®]* ([w®]Y) denote the load on node v in timestep ¢ in a single-
source (multiple-source) FOS/C procedure with node u as source (source set S). Recall

that, whenever the timestep ¢ is omitted, we refer to the convergence state of FOS/C.

Lemma 3.13. Consider a multiple-source FOS/C procedure on graph G = (V, E,w) with

source set S. Then, for any node v € V :

[y = M) + 7?, (Z Z[Mi]uu) —t[S]0.

1=0 ues

Proof. The FOS/C iteration scheme in timestep ¢ for node v and source set S can be
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written as (Theorem 3.3)

t—1
]y = MW+ (M)
i=0
Now, we split the drain vector into two parts as d = dy + ds, one for the source set
S and one for the nodes in V'\S. The first part d; contains the entry %‘ - = 5(71‘;15‘)

in every row which corresponds to a node in S and zeros elsewhere. Similarly, do has
an entry of —0 in every row corresponding to a node in V'\\S and zeros elsewhere. This
split, some rearranging, and using the fact that M is stochastic (has row sum 1) and a

linear operator yield

t—1 t—1
[w®]d = [Mtw(o)]5+[ZMid1]5+[ZMid2]f
1=0 =0

= MO Y (‘5(”‘;'5') S (M + (—0) Z[Mi]v,u>

=0 uesS ugS
t—1
o(n—|S i %
=0 uesS ueS
t—1
— M8 nd M —t|S|o
= MO i (05T —lsis.
=0 ues

Corollary 3.14. Consider a single-source FOS/C procedure on graph G = (V, E,w) with
node u € V as source. Then, for any node v € V :
-1
[w ™ = M w2 + ns (> [M],.0) — 16
i=0

Proposition 3.15. For any graph G = (V, E) and two arbitrary, but fired nodes u,v € V
it holds:

Proof. Due to Corollary 3.14 we have

w]? — [w]* = lim [Mw@)2 — [Mfw©O]% + né (Z[Mi]w - Z[Mi]v,u> —t5+ 6.

t—o0 c
=0 =0

The first two terms after the limit both converge towards the average load w [Cybe 89|,

also in the edge-weighted case [Diek 99|. Hence, they vanish just as the last two terms,
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yielding
t

0 [t = Jim nd(3 (M M)
i=0
As M is symmetric, all its powers are symmetric, too. Hence, all summands are zero,

implying the claim. O

Considering the original FOS/C definition, the fact that this kind of load symmetry
holds on all graphs is somewhat surprising. One might not expect such a property in
graphs without any symmetry whatsoever. Its high relevance will become fully clear in
Chapter 4, when the load symmetry is used to prove the convergence of the algorithm
BuBBLE-FOS/C. Together with Proposition 3.8, we can deduce here that FOS/C is a

similarity measure, which is important for its use in clustering algorithms:

Corollary 3.16. As [w]} = [w]}, and [w]g > [w] for allu,v € V, FOS/C is a similarity

u

measure for the nodes of a graph. The matrizs W' = (w),,, = [w]l) is the FOS/C similarity

v
matriz.

Note that similarity measures are sometimes also required to lie in the interval [0, 1],
which is not fulfilled by FOS/C (but could be ensured by some suitable scaling).

Lemma 3.13 and the proof of Proposition 3.15 also show that for the interpretation of
the load distribution in the convergence state only the sum term nd(>_:0 M, ) in the
middle part is of interest. The expression [M],, denotes the probability of a random
walk described by M to start in v and be located on u after ¢ steps. In its spectral

decomposition [Tref 97, Ch. 24|, this matrix entry can be written as follows:
M = > sihlzilulzilo s
j=1

where z; denotes the j-th eigenvector and p; the j-th eigenvalue of M. Recall that
the largest absolute eigenvalue of M is u; = 1. It corresponds to the eigenvector z; =
(1,...,1)T (or any scalar multiple of this vector). Since p is simple (Section 2.2), || < 1
for all ¢ > 1. Hence, the u! with 2 <4 < n converge to 0 if ¢ — co and the limit of the

spectral decomposition is

n
lim S pfzilulzolo = [aalulzao
j=1

Thus, all entries of M! converge towards [21],[21]v. As 21 is the balanced distribution
with all entries equal, the summands with large 7 in Zf;é[M’]vu of Lemma 3.13 are of
low importance. These values are already very similar, regardless of the choice of v and
u. In contrast to this, the summands for small values of ¢ reveal by the random walk
interpretation if two nodes are connected to each other by many short paths or not.

One might wonder why it is necessary to iterate FOS/C for an infinite number of steps

if only the first few iterates contribute significantly to the result. The reason is that by
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taking the results of all random walks with lengths 0,..., 00 into account, FOS/C can
be used for general graphs without determining a specific suitable walk length. Hence,
FOS/C is a very robust mechanism for identifying if two nodes u and v are densely
connected to each other. This notion of connectedness can be extended to graph regions
as well by using a larger source set S.

An alternative way of interpreting the convergence load of FOS/C uses random walk
measures and their connection to a certain matrix. We explore this further connection

in the following, which also yields an alternative proof for the FOS/C load symmetry.

Definition 3.17. Let Xq(f) be the random variable representing the node visited in
timestep ¢ by a random walk starting in « in timestep 0. Furthermore, let the balanced
distribution vector be m = (%, e %)T and let 7, be defined as 7, := min{t > 0: X,(f) =
s} for any u € V. Then, the (expected) hitting time H is defined as H|u, s] := E[7,].!
Moreover, the commute time Clu,v] between nodes u and v is defined as Clu,v] :=

Hlu,v] + H[v,u.

One can describe the hitting time H[u,v] as the expected timestep in which a random
walk starting in u visits v for the first time. The commute time also includes the way back
and is therefore symmetric. Fouss et al. [Fous 07] uses the square root of the commute
time Clu,v] as a distance measure between graph nodes u,v € V. This Euclidean
Commute Time Distance (ECTD) follows a similar idea as FOS/C of reflecting how well-
connected two nodes are. The commute time can be computed by using the following

lemma:

Lemma 3.18. [Fous 07| The commule time between nodes u and v can be computed
as Clu,v] = volg(ll,u + l:r,,v — 2l2,v), where volg is the volume of graph G, volg =
Z?:l deg(j)-

The matrix L' is called (Moore-Penrose) pseudoinverse [Golu 96, p. 257f.] or dis-
crete Green’s function [Elli 0la] of L. Like L, it is symmetric positive semidefinite and
doubly centered, i.e., both row sum and column sum are zero. If (\; # 0,z2;) is the
i-th pair of eigenvalues/-vectors of L, (A1, z;) is the analogous i-th pair of Lf. All
pairs (\; = 0,2;) are eigenvalues/-vectors of both L and LT (comp. [Fous 07]). Thus:
L0 = 305 A zilu[zi)o. The pseudoinverse can also be used to compute the FOS/C
convergence load vector w directly. One way to see this is to consider w in Lw = d as
a solution to the least square problem minycgn ||d — Law||2. It is known that w = Lfd
provides the solution to this minimization problem [Golu 96, p. 256f.]. Since d L 1, a
solution w which attains the minimum value 0 exists (Corollary 3.4), so that the FOS/C
convergence vector w can also be stated as w = Lid.

Consequently, apart from linear solvers, the convergence load w = aw(® can be com-

puted by iterating FOS/C (i. e., by successive matrix-vector products M'd similar to the

'Note that this definition, which is also used by other authors [Norr 97, Fous 07, yields Hlu,u] =
0 for all w € V. Yet, alternative formulations also exist, which result in Hlu,u] # 0 for all u €
V' [Boll 9].
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power iteration method for computing eigenvectors |Golu 96]), or by using the eigenval-
ues and -vectors of LT, or by direct pseudoinversion. Yet, direct pseudoinversion is for
general graphs as complex as inversion and requires Q(n?) operations [Elli 0la]. Also
the former two approaches are not recommended in practice. Power iteration methods
usually converge very slowly [Golu 96, Ch. 7.3], which we could confirm in our own ex-
periments. Similarly, computing (nearly) all the eigenvalues and -vectors of LT, even with
a fast eigensolver, is computationally very expensive, too. Storing all these eigenvectors
or the (in general dense) matrix LT also requires O(n?) storage. This is only possible
for rather small graphs. On the other hand, if LT is already known, FOS/C convergence
loads can be computed very easily. In any case, the following results provide an elegant

interpretation of these load values in terms of L.

Proposition 3.19. Let S be the source set in a multiple-source FOS/C procedure with
w = (0,...,0)T. Then, the entries of the FOS/C convergence load vector w can be

computed as
nd T

wlf = L)} = g

Proof. Recall that the row sum of L is always 0 and that w = Lfd. Hence, by splitting
the drain vector into two parts, one with only negative entries, one with only positive

ones, we obtain

[w]¥ = [Ltd]d }:z = |S‘§:z —5y 1,

ues ugS
= |S|§:z +6y 1, —o> 1,
uesS ues u=1

- |S|Zl

u€eS

O]

Corollary 3.20. Let s be the source in a single-source FOS/C procedure. Then, the

entries of the FOS/C convergence load vector w can be computed as
[w} = [Ld]} = nd -1,

Consequently, the FOS/C similarity matrix equals the pseudoinverse of the graph’s
Laplacian up to scaling. Now, the load symmetry of FOS/C also follows from the fact
that LT is a symmetric matrix.

Returning to the random walk notion, both measures hitting and commute time can
be related to FOS/C, too, by the following results.

Corollary 3.21. By using the formulas of Lemma 8.18 and Corollary .20, the commute
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time between nodes u and v can be expressed in terms of FOS/C convergence loads as

Ol = v (B =200

Theorem 3.22. [Meye 06b] In the convergence state it holds for two nodes u,v € V not

necessarily distinct from a source s € V:

The main commonality of ECTD and FOS/C is the underlying notion of random walks
to determine the similarity of graph nodes. Both can express this notion by means of the
pseudoinverse of the graph’s Laplacian matrix. As we will show next, on vertex-transitive
graphs (cf. Definition 3.25) a maximization of the FOS/C similarity is even equivalent
to the minimization of the commute time distance. Hence, embedded into center-based
clustering algorithms (i. e., where each cluster has one distinguished center node to which
distances are computed) such as k-means, both measures yield the same clustering results

on vertex-transitive graphs such as the hypercube or the torus (see Sections 3.3 and 3.4).

Theorem 3.23. For arbitrary nodes u,v € V of a vertex-transitive (unweighted) graph
G = (V,E) and a source set S C V it holds:

in» Clu,v] = 5.
arg min > [u,v] = arg qulea&{[w]"
v

Simalarly, for a node v € V and nodes uy,...,ux € V:

Uc

arg min Clue,v] = arg max [w]y°.

c=1,...k c=1,...,k
Proof. Due to a result of Alon and Spencer (see Lemma 3.42) we have [M!],, , = [M'],,,,
for all u,v € V' of an unweighted vertex-transitive graph G. Combining Proposition 3.15

and Corollary 3.20, we get:

t
v . .
no = tli{& ‘ O[Mz}u,u — M}y =0.
1=

[w]y — [w]

le,_lzm::

Since all diagonal entries of LT(G) are equal, the values volg, l};u, and l;v can be seen

as constants, yielding

arg Iurél‘r/l Z Clu,v] = arg Ing‘I/l Z volg(lqlu + l;rw - 2ll’v)
veS ves
= arg 2061‘1/1 —21:571} = argmax Z ljw
veS veES

_ S
= argmaxfw], .
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A similar series of arguments yields: argmin.—; _j Cluc,v] = argmaxc—1 ZLC,U

geeey

arg maxe—i, Wy -

An important aspect where the methods differ from each other is crucial for their
complexity and in favor of FOS/C. To compute the distance to some node v for all other
nodes within a center-based clustering algorithm, FOS/C requires only the v-th row of LT,
which is computed by solving a single-source procedure. ECTD, however, also needs all
diagonal entries of L. To determine them by computing the whole pseudoinverse matrix,
becomes intractable for larger problems, as also remarked by Fouss et al. [Fous 07]. Both
running time, which is at least quadratic, and space consumption become prohibitive. By
using additional techniques such as a sparse Cholesky factorization, Fouss et al. has been
able to tackle sparse graphs with up to 150,000 nodes. Compared to what is theoretically
feasible with sparse iterative linear solvers for FOS/C on commodity hardware (sparse
linear systems with a few million variables can be solved on any modern desktop computer

with 2 GB main memory), the quantity 150,000 is relatively small.

3.3. FOS/C on Distance-Transitive Graphs

After these results on general graphs, we turn our attention to the behavior of FOS/C
on two specific, but important, graph classes. In view of the previous findings, one can
see this also as an analysis of the Laplacian’s pseudoinverse whenever the convergence
state of FOS/C is concerned. Note that, as pointed out by Ellis [Elli 01a], closed-form
functions for the pseudoinverse must be computed for each new class of graphs.

This section deals with distance-transitive graphs, a class of which several representa-
tives are very important in parallel network topologies and coding theory. We show that
the FOS/C load distribution (respectively the entries of L) can be computed for this
class by relating it to a flow problem. The graphs considered in this section are assumed

to be unweighted and all FOS/C procedures have only one single source.

Definition 3.24. [Bigg 93, p. 115] Given a graph G = (V, E), a permutation 7 of V' is

an automorphism of G if
{u,v} € E < {n(u),n(v)} € E,Yu,v € V.
The set of all automorphisms of G, with the operation of composition, is the automor-

phism group of G, denoted by Aut(G).
Definition 3.25. [Gros 04, p. 12| A graph G = (V, E) is vertez-transitive if for any two

distinct vertices of V' there is an automorphism mapping one to the other.
An even stronger property is distance-transitivity:

Definition 3.26. [Bigg 93, p. 118] A graph G = (V, E) is distance-transitive if, for all
vertices u, v, x,y € V such that dist(u,v) = dist(x,y), there exists an automorphism ¢

for which p(u) = z and ¢(v) = y.
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Distance-transitive graphs are symmetric graphs and therefore vertex-transitive, edge-
transitive, and regular [Bigg 93, Chs. 15 and 20]. One important subclass of distance-
transitive graphs are Hamming graphs [Bon 07]. The concept of Hamming distance,
represented by path lengths in Hamming graphs, frequently occurs in coding theory
for error detection and correction [Adam 91]. A very well-known Hamming graph is
the hypercube [Leig 92|, which is also important as a topology for connecting parallel
processors. Other distance-transitive graphs are the Petersen graph, complete graphs,

and complete bipartite graphs with parts of equal size [Gods 01, Ch. 4.5].

Definition 3.27. Let N;(u) := {v € V|dist(u,v) = i} denote the i-neighborhood of w.
A graph G = (V, E) has a level structure (is a level structure graph) w.r.t. anode s € V
if V' can be partitioned into levels {s} = Lo, L1, ..., L such that for all 0 <i < A:

Vu,’ueLiVjE{O,...,A}:|N1(u)ﬂLj| = |N1(U)ﬂLj|
and LoU...ULy, = V.

Lemma 3.28. [Bigg 93, p. 155f.[[Gods 01, p. 67] If G = (V, E) is distance-transitive,
then N;(s) forms the i-th level L;i(s) of a level structure in G w.r.t. an arbitrary, but
fized node s € V.

As an example, the k-dimensional hypercube Q(k) has A = k + 1 such levels. The
results of this section can be derived by means of this level structure and the equivalence

of FOS/C to the following || - ||2-minimal flow problem.

Definition 3.29. Consider the flow problem of Observation 3.6, where s sends a load
amount of § to all other vertices of GG, which act as d-consuming sinks. If the flow
is distributed such that for all v € V\{s} the same flow amount is routed on every
(not necessarily edge-disjoint) shortest path from s to v, we call this the uniform flow
distribution. Note that in case more than one shortest path traverses the same edge e,

the total flow on e is the flow sum of all shortest paths via e.

The reason, why this flow problem is interesting, is its connection to FOS/C. Recall
from Observation 3.6 that the |- ||2-minimal solution of the flow problem of Definition 3.29

is equal to the solution of the underlying FOS/C procedure.

Proposition 3.30. Let G be a distance-transitive graph. Then, wl(f) = wq(,t) holds for all

vertices u,v with the same graph distance to s and all timesteps t > 0.

Proof. Due to the choice of w(®), the claim is trivially fulfilled for t = 0. Following from
the level structure of G, the FOS/C iteration formula for vertex v and timestep ¢+ 1 can

be rewritten as

A
wiHD) = w® 1 d, - O‘Z Z wit) — w) |
=0 {u,v}eEAUEL;
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where A denotes the number of levels w.r.t. s. Now the claim follows by induction
because the flow between levels ¢ — 1 and ¢ and also ¢ and ¢ + 1 is for all edges between
the respective two levels equal in timestep t. Since also the number of edges connecting
the same two levels is the same for each vertex (Lemma 3.28), each term contributes the

same amount of load to wq(,tH). ]

We know by Proposition 3.9 that for each vertex v € V\{s} of an arbitrary graph there
exists a path from v to s such that by traversing it, the load amount increases. Now we

can show that for distance-transitive graphs this property holds on every shortest path.

Theorem 3.31. If G is distance-transitive, then for all u,v € V with dist(u,s) <
dist(v, s) it holds that [w]3 > [w]3.

v

Proof. Recall the equivalence of the FOS/C convergence state to the || - ||2-minimal flow
problem of Observation 3.6. When load is sent from node s to a node v € L;, this load
has to pass all levels Ly with ¢/ < 7, 0 < 4 < A. Shortcuts are not possible due to the

properties of the level structure. This means that at least one vertex v’ € L; 1 exists

s

5 — [w]3, v must have a

with a positive flow of load towards v € L;. Since fr 1 = [w]
higher load than v. Due to the load equality in level i — 1 (Proposition 3.30), all vertices

of level ¢ — 1 have a higher load than vertices in level 4. O

Note that, although the order induced by the FOS/C diffusion distance corresponds to
the one induced by the ordinary graph distance, the load differences across levels reflect
their connectivity, so that FOS/C still reveals more information. This becomes clear
in the following, where we derive alternative representations of the convergence flow f.

Once the flow is known, the loads can be deduced from it.

Lemma 3.32. Let G = (V, E) be a distance-transitive graph, s € V, and e = {u,v} € E
with u € Li(s) and v € Liy1(s) (0 <i < A). Then, the number of shortest paths starting
in s and ending in level i is equal for all vertices in L;.

Similarly, let V' .= U;‘X:H-Q L; be the subset of nodes further away from s than v. Then,
there are ezactly as many shortest paths from s to V' via v as via any other verter in
level 14 1.

Proof. We prove the first claim by induction on the level number ¢: For ¢ = 1, there is
exactly one respective shortest path from s to any arbitrary vertex u’ € L. Assuming
now the claim to be true for all i’ < 1, let v' # v be a vertex in level 7 + 1. The number
of shortest paths to the neighbors in level 7 of v’ is the same as for the neighbors in level
i of v. Moreover, the number of neighbors is also the same for v and v/ (Lemma 3.28).
Since the edges {u,v} and {u/,v'} (with «' € L;) are disjoint, the claim follows also for
level 4+ 1.

For a similar proof of the second claim, let v € L; 11 with T # v. As ¥ and v are reached
by the same number of shortest paths and they have the same number of neighbors in

L;i2, level Lo may serve as induction basis. We know by Lemma 3.28 that the nodes in
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level L; have the same number of neighbors in level L; 1, ¢ +2 < j < A. The respective
edges running between nodes of consecutive levels are each part of a new shortest path.
Hence, an inductive step from j to j + 1 adds the same number of shortest paths from
s to Lj;q via v and via . Combined with the first part, we obtain that v and v are

crossed by the same number of shortest paths from s to V. O

Corollary 3.33. Let G and e be defined as in Lemma 3.32. Then e lies on the same
number of shortest paths from s to nodes in Lj(s), i < j < A, as any other edge € =
{u',v'} with v’ € Li(s) and v' € Li11(s).

Theorem 3.34. Let G and s be defined as in Lemma 3.32 and let E; ;11(s) = {{u,v} :
u € Li, v € Lit1} denote the set of edges running between levels i and i+ 1, 0 < i < A.
Then, the FOS/C convergence flow fo on an edge e = {u,v} € E;i11(s) is given by

S A
Wy — Wy = fo=——F7—- L:l.

Proof. We have seen before that the load which reaches u € L; needs to pass all levels
Ly with i < . Moreover, nodes of the same level have the same load (Proposition 3.30).
Consequently, edges running between the same two levels get the same amount of flow
since the flow is the load difference. As all nodes in levels larger than ¢ need to receive their
load amount 4, the total amount of load crossing the edges of E; j11(s) is 52?:”1 |Ljl,
which has to be divided by the number of edges to obtain the convergence flow on a

single edge e € E; ;11(s). O

Since we can determine the size of each level and the number of edges between different
levels by simple breadth-first-search (BFS) techniques, the FOS/C convergence flow f
can be computed on distance-transitive graphs without solving a linear system. While
BFS is asymptotically not faster than an optimal linear solver, the constants involved in
the running time of BES can be expected to be much smaller.

Each node of the k-dimensional hypercube Q(k) corresponds to a bit-string of length
k. Since Q(k) is k-regular, vertex- and edge-transitive [Bigg 93], we may assume w.l. 0. g.
that s = 0. Due to its known structure, the FOS/C convergence flow on the hypercube

can be stated more explicitly and the monotonicity result can be further improved.

Corollary 3.35. On the k-dimensional hypercube Q(r) = (V,E), the FOS/C conver-

gence flow fo on an edge e = {u,v} € E (u in level i, v in level i+1, 0 < i < A) is
)

Wy — Wy = fe = W ) E;:Hl (;)

Proof. Since one chooses i out of k bits to be set to 1 to reach a level-i vertex, level i of

Q(r) contains (7) vertices. Consequently, |E;;11(s)| = (})(k — i), as each node in level

1 has k — ¢ neighbors in level ¢ + 1. O
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Theorem 3.36. For all nodes u,v € V of Q(k) = (V, E), the monotonicity result of
Theorem 8.81 holds in all timesteps t > 0, not only in the convergence state: If s is the
source node (w.l. 0.g. s = 0%) and dist(u,s) < dist(v, s), [w®]$ > [w®]* for all t > 0.

Proof. The claim is proved by induction on t. Due to Theorem 3.30 we can denote the
(t)

load of a vertex in level [, 1 <[ < , and timestep ¢ by w;”’. Thus, we rewrite the update
procedure of FOS/C on Q(k) as

wl(t) — wl(t—l) — 5+l (wl(t 11) l(t—l)) + (H . l)a(wl(i_ll) . wl(t_l))'

Note that, by restricting [ to lie between 1 and x — 1, the indices of w lie all between
0 and k. Whenever in the following indices of w are not in the interval [0, x|, the
corresponding load values are 0. If u is in level zero (which means it equals the source
node), the claim can be shown analogous to the second part of the proof of Theorem 3.46.

The claim holds for ¢ = 0 due to the structure of w(© (only s has positive load, all
other vertices have zero load). Assuming that the claim holds for all ¢ < ¢, we can
deduce for all x and a < (k + 1)1

2 )
(t) _ ®) (1 _

& w (1-(k+1)a)>w/(1-(k+1)a)

& wl(t)(l — Ka) + wl(i)loz > wl(j_)l(l — Kka) + wl(t)a

4 wl(t)( — Ka) + wl(ﬁla + w(t) la > wz(jr)1(1 — ko) + wl( Vo + w(t)l

Like the previous step, the following one uses the induction hypothesis. Note that
even if level [ + 2 does not exist, this step is feasible. Adding 0 on the right side of the

inequation does not change its validity. Some more additions and rearranging yield

& wl(t_)lla + wl(t)(l — k) + wl(j_)la + wl(i)l(ﬁ; —l-1Da>

wl(t)(l +1a+ w® (1 — ko) + wl(i)Q(/i —l-1a

I+1
& wl(t_)lloz + wl(t)(l — k) + wl(i)l(m —la >
wl(t)(l +Da+ wl(fr)l(l — Ka) + wl(i)Q(ﬁ: —l-1a
& w) +la(w? —w) — ra(w) —wl)) +la( —w) >

wz(& + a(wz(t) wl(t+)2 wl(+)1 + wl(+)2) (k—1— 1)0‘(“71(21 wl(t+)2)

Haw® —u®)

wl( ) 4 loz(wl(li)1 — wl(t)) +(k — l)a(wl(i)l — wl(t)) -0 >

wl(i)l + 4+ 1D)a(w l(t) — wl(i)l) +(k—1— 1)oz(1,ul(i)2 wl(i)l) )

wl(t—H) > l(t++1)'
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Theorem 3.37. Let G be a distance-transitive graph. Then, the uniform flow distribution
of Definition 3.29 yields the || - ||2-minimal FOS/C convergence flow on G.

Proof. Due to monotonicity (Theorem 3.31) we know that the FOS/C convergence flow
on an edge always directs from s away. Recall that the edges e = {u,v} and ¢ =
{u/,v'} with u,u’ € L; and v,v" € L;1; are part of the same number of shortest paths
(Corollary 3.33). Hence, the uniform flow distribution yields an even division of the flow
between two levels. Such an even division is also obtained in the FOS/C convergence
state (Theorem 3.34). Moreover, the amount of flow that has to reach the vertices of
all levels Lj, j > ¢, 1 < i < A, in the FOS/C convergence state is known. It is just
the number of vertices in all such levels times §. Hence, the amount of flow passing a
level is fixed, so that the uniform distribution of the flow and the || - ||s-minimal FOS/C

convergence flow coincide. O

It would be nice to find such a simple characterization of the convergence flow for
more graph classes. On the other hand, simple can also mean that not much more
information on the structure is provided than with the ordinary graph distance. For
distance-transitive graphs it tells us at least something about how well-connected the

different levels are in terms of the similarity measure FOS/C.

3.4. FOS/C on the Torus

We have seen that the FOS/C convergence flow equals the uniform flow distribution on
distance-transitive graphs. In this section we show that this property does not hold for
the torus in general, despite the numerous torus symimetries such as vertex-transitivity.
We also analyze other properties of the load distribution, in particular during the FOS/C
iteration, not only in the convergence state. Note that we consider again only single-

source FOS/C procedures and unweighted graphs in this section.
Definition 3.38. The k-dimensional torus T[dy,...,ds] = (V, E) is defined as:

dy, —1 d, —1

Vo= {(ui,...,us)| — |
E = {{(u1,...,ug), (v1,...;v5)} |31 < p < k with

d,—1 d,—1
H2 J/\u#:[u

| <u, <T

| for 1 <v <k} and

(vp=up+1V (vy=—[ 1) and u, = v, for v # u}.

Remark 3.39. A torus graph G = (V, E) is vertex-transitive. This can be verified by
showing that every x-dimensional, integral translation vector is an automorphism. Al-
ternatively, one can use the fact that a cycle graph C), is a Cayley graph for the cyclic
group Z,. As a k-dimensional torus is the graph product of k cycle graphs, it is also a

Cayley graph, which is a class of vertex-transitive graphs (comp. [Gros 04, p. 505f.]).

Torus graphs are very important in theory |Leig 92| and practice [The 02], e.g., be-

cause they have bounded degree, are regular and vertex-transitive. They also correspond
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(c)

Figure 3.2.: Convergence flow of FOS/C on tori of size (a) 3x3 and (b) 5x5 with § = 1.
(c) Mlustration of the square made of the edges eq, €9, e3, and e4 as in the
proof of Theorem 3.40.

to numerical simulation problems that decompose their domain by structured grids with
cyclic boundary conditions.

In the following theorem we show that the uniform flow distribution among the shortest
paths is not || -||2-optimal on the torus in general. The intuitive reason is that the number
of shortest paths from a source s to another vertex v does not depend on its distance to

s alone.

Theorem 3.40. The uniform flow distribution on the 2D torus yields the || - ||2-minimal
flow for di = ds € {2,3,4,5}, but not for odd dy = dy > 7.

Proof. The FOS/C convergence flows for torus graphs of size 3 x 3 and 5 x 5 are depicted
in Figures 3.2(a) and 3.2(b). (Note that the lines with only one nodal endpoint denote
wraparound edges.) One can easily verify that the claim holds for these two instances
and that the tori of size 2 x 2 and 4 x 4 are isomorphic to the hypercubes Q(2) and Q(4),
respectively. Recall that the convergence flow distribution of hypercubes has been shown
to be uniform.

Hence, we examine a dy X do-torus with d; = ds odd and not smaller than 7. Intuitively,
the property does not hold for larger tori because near the diagonal there are more
shortest paths than on an axis. Thus, by rerouting some of the uniform flow towards

the diagonal, the costs can be reduced. We proceed by setting d := %

and assuming
w.l.o.g. that s = (0,0). Consider now the square consisting of the nodes (d — 1,d —
2),(d,d—2),(d,d—1),(d —1,d — 1), see Figure 3.2(c). Denote — with a slight abuse of

notation — the following edges as well as the flow on them by

er. ={(d-1,d-2),(d-1,d-1)},
ea ={(d-1,d-1),(d,d—1)},

es ={(d-1,d-2),(d,d—2)}, and
es ={(d,d—2),(d,d—1)}.
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For the || - ||2-minimal flow it is necessary that e; 4+ ez = e3 + e4. Otherwise, some flow
from node (d — 1,d — 2) to node (d,d — 1) could be rerouted to decrease the costs.

Observe that in the uniform flow distribution the amount of flow routed via e4 is either
sent to (d,d—1) or to (d,d). The amount on ey destined alone to (d,d—1) is the quotient
of the number of shortest paths to (d,d — 1) via (d,d — 2) and the number of all shortest
paths to (d,d — 1). It is well-known that the number of shortest paths from (0,0) to
(z,y) on the torus is (*}¥) = (‘T;;y) Thus, by applying the same quotient argument for
the flow to (d,d), we obtain

64:(§;;>.<G£h-kéﬁ>amuaz(§;f>.<6£h-kéb)264

because (Z) is maximized for £ = n/2. It remains to be shown that e; > es holds.

Similar as before, we have
. (Qd - 3) < N SRS S )
1= : — — — )
d-1) \(G5)  CGo) G2 G

() (e ara)

Some rearranging yields

er —es  (3d? —7d + 2)(d!)?

(=3 d(d—1)(2d))

Provided that d > 2, we have: 3d?> —7d+2=3d-d—Td+2>9d—7d+2 = 2d+2 > 0.
Thus, e; — e3 > 0, implying the claim. O

We finish the results on the uniform flow distribution by the following proposition.
Note that, since we have shown above that the uniform flow is not || - ||o-minimal for

general torus graphs, its implication is not an equivalence.

Proposition 3.41. If on a graph G = (V, E) the uniform flow distribution is || - ||2-
minimal, then for {u,v} € E and dist(u, s) < dist(v, s) it holds that w, > w,.

Proof. Since load is routed uniformly via shortest paths, we know that some load is
routed over every shortest path. Therefore, as u is on a shortest path from s to v, the

load difference (which is the flow) between w and v must be positive. O

Now set a := (deg(G)+1)~!, so that all entries of the diffusion matrix M are either 0
or a. This is a usual choice for transition matrices in random walk theory. Consider an
arbitrary s-dimensional torus T'[d;, ..., d]. Due to vertex-transitivity, we may assume

w.l.0.g. that the source node s is the zero-vector.
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Lemma 3.42. [Alon 00, p. 151] For vertez-transitive graphs G, all automorphisms ¢,

and all timesteps t it holds: [M"]y, = [M], () o(0)-

Observation 3.43. From this result by Alon and Spencer it follows that on vertez-
transitive graphs the FOS/C load vector underlies the same permutation induced by an
automorphism ¢ as the variables of M. Hence, all single-source FOS/C procedures yield

a permutation of the same load vector on these graphs.

Using Lemma 3.42 and its statement on automorphisms, the following theorem regard-

ing the monotonicity of the diffusion load can be derived.

Theorem 3.44. [Meye 06b] Let T(dy,...,d.] = (V,E), K arbitrary, be a torus graph.
For a = (deg(G) + 1)~! and all adjacent nodes u,v € V distinct from s € V with
dist(u, s) = dist(v, s) — 1 it holds:

Vt € No: M5 > [Mys.

Note that one can show with a modified three-dimensional hypercube as a coun-
terexample that this monotonicity does not hold for all vertex-transitive graphs in all
timesteps. Furthermore, the general result [M?],,,, > [M?], , for random walks without
loops on vertex-transitive graphs can be found in Alon and Spencer [Alon 00, p. 150]. It
is improved significantly on torus graphs by Theorem 3.44.

Lemma 3.45. Assume w.l. 0. g. that the source node is the origin (0,...,0). Then, node
u=(u1,...,us) has the same load as p(u), where ¢ is an automorphism that reflects any
of the k coordinates of u at the corresponding middle axis. Hence, the load distribution

1s symmetric w.r.t. all the axes and the origin of T.

Proof. Due to Lemma 3.42 all which remains to be shown is that a map ¢;(u1, ..., us) —
(Ug, ...y Ujm1, —Ujy Uig1, - - -, Uk ), which performs the described reflection w.r.t. to the
middle axis of dimension 7, is an automorphism. The remainder of the claim (the sym-
metry w.r.t. the origin) then follows because it can be expressed as a concatenation of
automorphisms. Such a concatenation is again an automorphism (cf. Definition 3.24).
Note that in case d; is even, the nodes with the highest distance in dimension ¢ are mapped
onto themselves: ¢;(uy,...,u;j_1, %,uiﬂ, coy ) o (UL W, Uy Ui Ty e, Ug) =
(ug, ..., ui—1, %,Ui+1, ceey Ug)-

Since ¢; is a bijection, it suffices to show that {u,v} € E = {¢;(u), p;(v)} € E holds.
Let v be a neighbor of u in the j-th dimension: v = (u1,...,uj—1,u; £ 1, uj41,...,ux).

(The use of wrap-around edges for the neighbor relation can be handled by an appropri-

ate use of the modulo function.) Then, if i = j, we have ¢;(v) = (uy,...,uj—1, —u; £
1,%j41,...,us), which is obviously a neighbor of ¢;(u). Otherwise, i.e., if i # j and
w.l.o.g. i > j, then p;j(v) = (w1, ..., uj—1, v £, Ujqp1, ..., UWim1, —Uj, Uig1, - - -, Uy). Con-
sequently, o;(v) is again a neighbor of ¢;(u), proving the claim. O
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Following from Lemma 3.45, the FOS/C load distribution on a torus and a grid graph
are equal in all timesteps if their d; are all odd and s is located at the center of the
graphs. In this case the torus is not different from the grid because there is no flow
via its wraparound edges: The incident nodes of these edges have the same load, which
results in a zero flow. Finally, the monotonicity result of Theorem 3.44 can be refined as

follows.
Theorem 3.46. Let the torus T and its vertices s,u,v be defined as in Theorem 3.44.

1.Vt < dist(u, s) : [w®]E = [w®])3 = —td, Vt € {dist(u,s),...,00} : [wB]Z > [w»)]3.

u

2. Letd, >4 for all 1 <v < x. Then: [w®]2 > [w®]3, for all timesteps t and all
v e V\{s}.

Proof. The first claim follows directly by combining Corollary 3.14 and Theorem 3.44.
For the second claim let «’ denote one arbitrary (but fixed) neighbor of s. Other nodes
than the neighbors need not be considered due to the monotonicity established in the
first part. The remainder of the proof uses induction on the timestep ¢t. For ¢t = 0 the
claim is trivially fulfilled due to the choice of w(®). Assume now that the claim is true for
timestep ¢. Then, with A := maxdeg(G), a = (A +1)7!, and the fact that G is regular:

R e O e (D R U e
{s,u}ek
(O =5 —a( X W - @)
{u'w}eFE

= 16+ (1 - ad)([w]; — [w"]})

ta( D0 - > ;).

{s,u}€E {v' v}eE
Extracting [w®]% and [w®]?, from their respective sums and (1 — aA) = a yield

R F e P R (R U PR ) FE D W L

{s,u}€E, u#u’'
O+ > )
{v' w}eE, v#s

= nd+ a( Z [w®]3 — Z [w(t)]q‘j) .

{s,u}€E, u#u {vw w}eE, v#s

Observe that both sums above have A—1 summands. Moreover, we can rewrite the sum
term as follows: D¢ vep s [w®]s — Z{u/w}eEw#s[w(t)}fj = Zfz_ll([w(t)]ii — w®]3)
with {s,u;} € E, u; # v/, {v/,v;} € E, and v; # s. Let w.l.o.g. v/ = (s1,...,8j-1,8; +
1,841, -,5k) and choose v’ := (s1,...,8j-1,5j —1,8j41,...,8x) as its reflection across
s. By Lemma 3.45 both ' and u” always have the same load, so that [w®]3, and [w(®]3,,

are interchangeable.
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Figure 3.3.: Contour lines of FOS/C convergence load on a 2D torus.

The w; corresponding to v; is chosen as u; = (v1,...,vj-1,vj — 1,0j41,...,v). Hence,
we subtract [w(t)]f}i from the load of one of its neighbors u; that is also a neighbor of s. By
Theorem 3.44 we have Vt € Ng : [M],, s > [M'],, , and therefore [w®]5 — [w®]5 >0
for each summand. Finally, this yields [w®V]3 — [wt D], > ng > 0. O

A natural question in the context of tori and FOS/C is if one can characterize the
FOS/C convergence load distribution more concretely. For the two-dimensional torus we
have conducted experiments that reveal a certain shape of the distribution. An example
is presented in Figure 3.3, which shows the contour lines of the FOS/C convergence load
on T'[55, 55] with source (0,0). Nodes on these lines have the same amount of load.

Very close to the source the contour lines resemble a square with one corner pointing
downwards. When one moves away from the source, the contour lines get a circular shape.
Finally, in the corners of the torus, the contour lines become hyperbolic. Other square
tori show a similar behavior. These experiments confirm results of Ellis’s experiments
on torus hitting times [Elli 01b]. The circular contour lines appear to be dominating in
the load distribution. However, the possibility to use the wrap-around edges seems to
prevent the continuation of these circular shapes in the corners of the torus.

Note that the contour lines remain circular in an asymptotic sense on an infinite grid,

even if one moves far away from the source, which has been shown by Mangad:

Theorem 3.47. [Mang 66] Let P = (zp,yp), Q = (xQ,yq) be two arbitrary nodes (and
their coordinates) of an infinite two-dimensional grid with mesh width h. Furthermore,
let v = 0.57722... be Buler’s constant. If p = PQ = \/((zg — zp)? + (yo — yp)?, then

the bounds for the discrete Green’s function (Laplacian pseudoinverse) gp(Q) are

53 - 6h2 3 53 - 6h2 h?
<9 -1 —Zlog2 —~ < >h>0.
R mgp(Q) —logp — log2 — v < 2 Ty rzh>
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Consequently, all nodes @ with the same Euclidean distance to P have the same value

gp(Q) in an asymptotic sense, which leads to circular isolines.

3.5. FOS/V: FOS/C with a Virtual Vertex

After these results for specific graph classes, we turn our attention to solving FOS/C
procedures on general graphs again. It has already been shown in this chapter that their
convergence state can be computed by solving a linear system. Recall that this can be
accomplished by fast linear solvers such as CG or algebraic multigrid. However, since
L is semidefinite and therefore singular, significant numerical issues may arise during
the execution of these algorithms. They include a relatively slow convergence or even
divergence. This is due to the fact that the vectors involved need to be orthogonal to
(1,...,1)T. In finite precision arithmetic it can happen that the vectors deviate from this
orthogonality constraint. That is why we alter FOS/C slightly by introducing a virtual
vertex. We obtain a new similarity measure, called FOS/V (V for virtual vertex), that

circumvents the aforementioned numerical problems.

Definition 3.48. Given a graph G = (V, E,w) and a constant ¢ > 0, we construct a
new graph Geyr = (Vewt, Eext, Wert) by inserting a virtual vertex ¢ that is connected to
all other vertices by an edge of weight ¢: Vipy := V U {0}, E' := EU{{v,0}|v € V}
with wezt(e) = w(e) for all e € E and weqzt({v,7}) = ¢.

The Laplacian matrix of G, has one additional row and one additional column com-
pared to that of G. Both this row and this column contain the entry —¢ everywhere
except for the common diagonal entry, which is [V - ¢. Introducing a virtual vertex into
the graph, results in a modified flow problem solved by FOS/C. This is reflected in the
drain vector. In the original scheme all nodes v € V'\ 'S consume a load amount of § each.

Here, it is the virtual vertex v’ which consumes all load sent out by the source nodes:

‘%”‘ veS,
[de.rt]v = 0 RS V\S,
—on v=1.

The resulting linear system Leyiwert = degr would not be easier to solve because Ley; is
still symmetric positive semidefinite. However, as pointed out by Kaasschieter [Kaas 88|,
the semidefinite property can be changed by fixing r solution values in we,: to some
specified value and removing the corresponding row and column from the linear system.
The number r is the dimension of the null space {x € R" : Leyxx = 0}, which is 1
for Leg: (Fact 2.6). The removal of the row and column representing o results in a
symmetric positive-definite matrix whose condition can be controlled by the parameter
¢. Note that this simple preconditioning has a meaningful interpretation by the notion

of sending load to the virtual vertex. Node weights can be incorporated by setting the
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weight of a virtual edge to the node weight times ¢. In the remainder of this section,
we show that the modification by inserting and deleting v’ results in a convergence state

that can be used in a comparable manner as that of FOS/C.

Definition 3.49. Let the matrix L’ and the vectors w’ and d’ comply with their coun-
terparts Leyt, Weszt, and deyy, respectively, except that all entries corresponding to v have

been removed.

Definition 3.50. (FOS/V) Given a graph G = (V, E,w), a set of source nodes S, an
initial load vector w'(?), the modified drain vector d’ and a constant o’ := (maxdeg(G) +
¢ + 1)1 Then, the load vector updates of the iterative FOS/V scheme can be written

in matrix-vector notation as w'® = M/w/*=1) + & where M/ =T — o/L/~1.
Lemma 3.51. The eigenvalues of M lie in the interval (—1,1).

Proof. The matrices L and L’ = L + ¢I have the same eigenvectors; their eigenvalues are
only shifted by ¢: Lz = Az & Lz + ¢z = (A + ¢)z & L'z = (A + ¢)z. That is why the
eigenvalues i of M’ can be written as p; = 1—o/(A\i+¢) = 1—(\i+¢)/(maxdeg(G) + ¢+
1), 1 <i < n. Due to Remark 2.6 we know that 0 = A\; < Ay < -+ <\, < 2maxdeg(G).

Hence:

2
R maxdeg(G) + ¢ <<1- ¢ <1.
maxdeg(G) + ¢ + 1 maxdeg(G) + ¢ + 1
O
Lemma 3.52. FOS/V converges for any initial load vector w'©) . More precisely, w'() =

(T— M)t = LD g (/)2 = Sn[(L+ ¢T) Y, .

Proof. The introduction of the virtual vertex changes the expansion of the scheme only
slightly compared to FOS/C:

w/(t) _ (M/)twl(O) + ((Ml)t—l 4t M’ + I)d

Since the absolute value of the largest eigenvalue of M’ is smaller than 1, we have
lim;_,(M’)! = 0. Due to the same reason, the series lim;_o > -_(M’)’ converges
towards (I — M/')~! = (o/L/)~! = o/7'L/~! [Saad 03, p. 19], which is nonsingular.

Note that the initial load vector does not contribute to the final solution. (This behav-
ior is not fundamentally different from before since in the scheme without virtual vertex
it determines only the total load amount in the system.) Hence, w(*®) = Yo Md =

a~Y(L'~'d'). Finally, since the non-source entries of the drain vector are zero:

[w/]g = [Llild/]g = 5”[1‘/71]11# + Z [Llil]v,u’du’
u'#u
= on[(L+¢I) pu.
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(a) FOS/C (b) FOS/V, ¢ = 0.001

(c) FOS/V, ¢ = 0.005 (d) FOS/V,¢ = 0.1

Figure 3.4.: Different load distributions on the graph biplane9 with the same source node
with different ¢. The tiny red and yellow regions indicate high load values.
Green, cyan, and light blue represent medium load values, while dark blue
and black indicate low load values.

O

A result of Stieltjes [Stie 86] (compare [McDo 95]) is now helpful for showing that

FOS/V is also a similarity measure.

Lemma 3.53. [Stie 86] Let A € R™ "™ be a symmetric, nonsingular, and diagonally
dominant M-matriz, 1. e., the eigenvalues of A are positive, A -1 is a nonnegative vector,
and for all i,j € {1,...,n}: a;; > 0 and a;; < 0 fori # j. Let C = A~ and fiz
ie{l,....,n}. Thenc;; >cj; >0 forall j € {1,...,n}.

Corollary 3.54. Recall from Lemma 8.52 that [w'|* = dn[(L+¢1) ", .. It is well-known
for a quadratic nonsingular matriz A that (A=1)T = (AT)=1 [Bron 97, p. 244]. More-
over, it follows directly from its definition that L+ ¢l is a diagonally dominant M-matriz
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Table 3.1.: CG iterations needed to solve a single-source FOS/C or FOS/V procedure on
different graphs.

| Graph | V| | B [ FOS/C|¢=0001]¢=005]¢=01]
biplane9 | 21,701 | 42,038 860 579 324 78
shock9 | 36,476 | 71,290 1043 676 347 82
ocean | 143,437 | 409,593 753 635 400 103
naca | 124,799 | 4,162,508 | 242 242 239 192
dime20 | 224,843 | 336,024 || 4586 745 341 78

and also nonsingular. Hence, we have [w'|% = [w']Y and [w']}) > [W']Y, (Lemma 8.53), so

that FOS/V is also a similarity measure.

The results above show that there are two major differences between the convergence
states of FOS/C and FOS/V. First, the limit of the series in the latter contains M’
instead of M. The second difference is the modified definition of the drain vector. These
changes have one major consequence for the load vector in FOS/V: the higher ¢ is, the
closer stays most of the load around the source set S. This property is visualized in
Figure 3.4. There, the same disturbed diffusion problem is solved four times, each with
a different ¢, resulting in very different distributions w.r.t. the steepness of the load
function. Since the load function should not be too steep for meaningful results, ¢ may
not be set to arbitrarily high values. An example setting for this value and its influence
on partitioning speed and quality is presented in Section 4.7. A theoretical quantification
of the difference between FOS/C and FOS/V in terms of eigenvalues and -vectors is given

next. It reveals why ¢ should not be too small, either.

Theorem 3.55. The difference of FOS/C and FOS/V can be quantified as

wls — )i = dn( = 5 + g; - g el bl

Proof. Recall that the matrices L and L’ have the same eigenvectors. Hence, z; =
(1,..., 1) and it follows from Corollary 3.20 and Lemma 3.52:

wly = [l = on (i~ (L +oD7,,)

= on( A llerle = 300 + ) [elulzls)
j=2

=
1,1 1
= 5”( "% + ;()\j - w)[»’«“ﬂv[%]s) .
O

The parameter ¢ appears twice in the final term (571(—% + Zyzg(% — /\J_—L(b)zv,jz&j).

Its first occurrence indicates that ¢ should not tend to zero. Otherwise, the difference to
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FOS/C would go to infinity. A large ¢, on the other hand, would yield a large difference
in (/\—1] — ﬁ) Unfortunately, a good choice of ¢ needs to be determined experimentally,
which is certainly a drawback of the method. Table 3.1, however, shows the effectiveness
of the virtual vertex approach. For several graphs it displays the number of CG iterations
necessary to solve a single-source procedure of FOS/C (¢ = 0) or FOS/V to a certain
accuracy. Clearly, the higher ¢ becomes, the fewer iterations are necessary. Only the
graph naca provides little room for improvement, unless ¢ is very high.

Using a virtual vertex has even more advantages than improving the convergence and
robustness of iterative solvers. If several different load distributions computed by FOS/V
have to be compared, the virtual vertex acts as a common reference if its load value
is always fixed to 0. Thus, a normalization by fixing w is not necessary any more.
Moreover, unlike in our previous work on the subject with Schamberger [Meye 05], the
virtual vertex is eliminated from the actual solution process, which makes the use of

multigrid /multilevel methods easier and further speeds up the computations.
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4. A Shape-optimizing Partitioning
Algorithm

In the previous chapter it has been shown that FOS/C is able to determine if two nodes
(or regions) of a graph are densely connected with each other. This property makes it a
good choice as a similarity measure within a graph clustering/partitioning algorithm. By
integrating FOS/C into the BUBBLE framework, we facilitate that BUBBLE can distin-
guish dense from sparse regions of a graph. Moreover, the employment of FOS/C yields
an implicit optimization of the subdomain shapes. This can be seen from meshes that
stem from numerical simulations and have geometric information; their subdomains tend
to be convex in a geometric sense.

How the integration of FOS/C into BUBBLE is done, is shown in this chapter. Note
that FOS/V is only mentioned in the experimental section within this chapter. On a
practical level there is only a small difference to FOS/C. Within an implementation
one can switch easily between the two methods. Moreover, FOS/V would require the
specification of another parameter, the virtual edge weight ¢. Hence, we simply use
FOS/C as a representative for both in our algorithmic considerations (and even in the
name of the algorithm BUBBLE-FOS/C).

In its generic form, BUBBLE-FOS/C is suitable for graph clustering as an extension of
Lloyd’s k-means algorithm to graphs. Additional balancing methods make it also suitable
for graph partitioning. Yet, since our clustering approach is also based on partitioning the
input (in contrast to building a hierarchy of clusters by merging or division), we simply
refer to the process of partitioning for computing a new partition Il of V', regardless of
its use for graph clustering or graph (re)partitioning.

After the definition of BUBBLE-FOS/C and the description of extensions to the generic
framework, we discuss its computational complexity. The main theoretical result of this
chapter consists of a proof that BUBBLE-FOS/C converges. In particular, we show by
means of a potential function that it stops at a local optimum. How this convergence state
may look like in a special case, is examined on the two-dimensional torus in the second
part of this chapter. This second part deals with practical aspects of BUBBLE-FOS/C,
in particular its implementation and experimental outcomes. It includes the explana-
tion of the algebraic multigrid solver assembled specifically to solve FOS/C procedures
faster. In order to make BUBBLE-FOS/C suitable for partitioning graphs into equally
sized subdomains, additional methods are described and integrated into the algorithm.

That our algorithm yields good graph partitioning results, is demonstrated by extensive
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Algorithm 1 GENERICBUBBLE-FOS/C (G, k, II) — II

o1 if II is defined then
/* ComputeCenters */
02 parallel for c=1,...,k do

03 Initialize d. (S = m)
04 Solve Lw, = d.
05 2, = argmax, ¢, [Wely
os else
/* Arbitrary initial centers */
o7 Z = INITIALCENTERS(G, k)
os for 7=1,2,... until convergence

/* AssignSubdomain */
09 parallel for c=1,...,k do

10 Initialize d. (S = {z.})

11 Solve and normalize Lw, = d.
12 parallel for each v € V do

13 II(v) = argmax.c gy, gy [Welov

/* ComputeCenters */
14 parallel for c=1,...,k do

15 Initialize d. (S = m)
16 Solve Lw, = d.
17 Ze = argmax,,c . [wC]U

15 return SMOOTH(II)

experiments. Following their presentation, possible improvements of BUBBLE-FOS/C’s

running time are discussed.

4.1. Generic Bubble-FOS/C Algorithm

The major two alternating operations of the BUBBLE framework, as described in Sec-
tion 1.3.4, are the assignment of nodes to the nearest subdomain center and the compu-
tation of center nodes for each of these subdomains. Both operations require a notion of
distance or similarity, which we provide in BUBBLE-FOS/C by FOS/C procedures, as

shown in the outline of Algorithm 1. It is explained in more detail below.

Definition 4.1. Let II = {7y,...,m} denote the set of the current subdomains, Z =
{z1,..., 2} the set of the current center nodes, and II(") and Z(7) their instances in

iteration 7 of BUBBLE-FOS/C (where 7 = 0 is assumed in the step before the loop).

4.1.1. Initial Centers

As the first step of the algorithm, pairwise disjoint initial centers (lines 1 to 7) need
to be determined. If an initial partition is provided in II, this can be done by simply

performing the ComputeCenters operation (lines 2 to 5), which is explained in more
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Algorithm 2 LOADBASEDINITIALCENTERS (G, k) — Z

/* Vector variables are written in bold font */

/* Init variables and first center */
1 z=randomveV; Z[l]=2;x=0

/* Compute remaining centers */
2 forc=2tok

3 Compute load vector [w]?
4 X =x + [w]?

5 2! = argmin,{[x],}

6 Ze] = 2

7 z=2

8 return 7

Input: Centers / Partition

I Corresponding initial 111
o000~ FOS/C load distribution o—oPpp-p-0-0-0-0-0-0
0-0-0-0-0-0-P PP -°

0=0-0—0—0—0—0-0—0-0—-0—0 0-0-0—-0-0—0—-0-0—-0-0—-0-0
o_!_!_':_',_o_o_o o000 Final load Mee.
o-o-o-o-opphpeoo distribution 0-0-0-0-0- 00 PP IO
0-0-0-0-0-0-0-0-0-0-0-0 0-0-0-0-0-0-0-0-0-0—0—0
iti I nnlll
|I| ils.. New partition / ins
0—0—0=0=0m0m0=0=0=0—0—0 new centers 0-0-0-0-0—0=0~0-0-0-0—0

Figure 4.1.: Schematic view of AssignSubdomain (left) and ComputeCenters (right).

detail below. Otherwise, the centers are computed in an arbitrary manner (line 7). If
the number of nodes in the graph equals k, each node becomes a center. Yet, if |V| > k,
a good strategy how to compute the center nodes is important. Schamberger [Scha 06]
has proposed to choose all center nodes randomly or to choose the subdomain number
for each node randomly at the beginning. While these approaches are feasible, they can
result in very bad initial partitions.

To avoid the choice of a very bad center set, we would like to gain more control over
the distribution of the centers in the graph. Therefore, we extend previous work to the
diffusion-based setting with FOS/C. As in Diekmann et al. [Diek 00], we choose only one
initial node randomly, which becomes the first center. Then, to find the initial center
of the next subdomain, Diekmann et al. performs a breadth-first search (BFS) from all
already chosen center nodes. The node which is found last becomes the next center. The
idea of choosing the next center farthest away is modified here to incorporate disturbed
diffusion. We replace BFS by FOS/C for computing the next center in the procedure
LoADBASEDINITIALCENTERS, see Algorithm 2. This procedure chooses the next center

least similar (i.e., with minimum FOS/C loads: argmin,{> . .,[w]}) to all already
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chosen centers. On a small graph, e. g., the coarsest graph of a multilevel hierarchy, the
computation of the FOS/C loads is not expensive. It can even be repeated with different
initial centers to have a choice from different sets of centers. By this repetition, outliers

with a really poor solution quality can be avoided in most cases.

4.1.2. The Main Loop

After initial centers have been found, the two operations AssignSubdomain (lines 9 to 13)
and ComputeCenters (lines 14 to 17) are alternated, until convergence is reached (line 8).
Convergence can be detected, for example, by testing if the center set has changed from

one iteration to the next one.

How FOS/C procedures are used and what their effect is within BuBBLE-FOS/C,
is illustrated graphically for a path graph and & = 3 in Figure 4.1. For the operation
AssignSubdomain (left), we are given a center node for each subdomain (top). Indepen-
dently for each subdomain we compute a single-source FOS/C procedure whose source
set consists only of the respective center node. After the load is spread, the k load func-
tions defined on the nodes have a hilly shape (middle). Finally, we assign each node v to

the subdomain it has obtained the highest load amount from (bottom).

For ComputeCenters (right) the source set is not a single node. Instead, all nodes of
subdomain ¢ belong to the source set S, of the c-th multiple-source FOS/C procedure, 1 <
¢ < k. After performing the respective multiple-source FOS/C procedure independently
for each subdomain (middle), the node with the highest load of each respective subdomain
becomes its new center node (bottom). The rare case of ties within these two operations
is handled in the following manner. If a node has received the same highest load from
more than one FOS/C procedure within AssignSubdomain, it chooses the subdomain it
already belongs to, or — if the current subdomain is not among the candidates — the one
with the smallest index. In case more than one node is a candidate for the new center

within ComputeCenters, we proceed analogously.

Boundary Smoothing

The final (optional) operation before returning the partition IT is SMmooTH (line 18). It is
based on work by Schamberger [Scha 06, p. 90| and aims at a greedy reduction of external
edges. This is done by moving boundary nodes to different subdomains if this reduces
the number of external edges. Note that, unlike the KL heuristic, SMOOTH considers
only nodes that are at a subdomain boundary when the routine is started. The order
in which the moves happen, is based on priorities. For each boundary node v and each
adjacent subdomain ¢ one priority value py = [wri(y)]y — [we]v is computed. A value
pS specifies how strongly node v would like to migrate to subdomain ¢, where a smaller

value expresses a higher desire to move.
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4.2. Computational Complexity and Inherent Parallelism of
Bubble-FOS/C

The complexity of the BUBBLE-FOS/C algorithm is dominated by the running time of
the for-loop over 7. Each FOS/C based operation within this loop requires the solution
of k linear systems. Since we assume these systems to be sparse (i.e., m = O(n)), we
can apply sparse linear solvers such as conjugate gradient (CG). (For an overview on
sparse linear solvers see, e.g., Saad’s textbook [Saad 03].) As an iterative solver CG
has subquadratic runtime, where the actual convergence rate depends on the spectral
condition number of the matrix. For matrices stemming from numerical simulations, it
is known that CG typically requires O(n®?) operations for 2D problems and O(n*/?)
for 3D problems [Shew 94]. Algebraic multigrid can even achieve linear running time
for certain matrices that model two-dimensional numerical problems [Ster 06]. Yet, for
classes of matrices not covered by classical AMG theory, extensive fine-tuning is often
needed to obtain linear or close to linear running time.

In any case, every iteration of the loop requires O(k¢) operations, where ¢ denotes the
cost for solving one linear system, which depends on the solver, as noted above. The
total running time of BUBBLE-FOS/C is then O(7k¢), where 7 denotes the total number
of iterations. By employing a multilevel approach (cf. Section 4.6), convergence can be
observed in practice after 7 = O(1) iterations. In the optimal case, where 7 is constant
and ¢ linear, this results in O(kn). While the linear dependence on n is optimal, the
factor k is not desirable.

For both operations AssignPartition and ComputeCenters it is necessary to solve k
FOS/C procedures, one for each subdomain. Put it a different way, for each node one
computes k load values. Observe that the k procedures belonging to the same operation
are independent from each other. Hence, the order in which the &k load values of a node
v are computed, is totally irrelevant. Their solutions can be computed concurrently, for
example by k parallel processors. Furthermore, once the load values are computed for
all nodes, their evaluation also contains parallelism. While the assignment of nodes to
subdomains is independent for each node, the center determination is independent for
each subdomain. The fact that most computations of the BuBBLE-FOS/C algorithm can
be made concurrently, makes it predestined for parallel execution. Unlike the KL/FM
partitioners, it does not require complex routines to ensure data consistency. Instead,
simple synchronizations that guarantee the completion of all required computations are
sufficient.

Regarding memory consumption, BUBBLE-FOS/C has a drawback that should not be
unmentioned. Since we calculate k load values per node, the total amount of memory
required is O(k - n), a factor of k higher than the input size. This high consumption
is certainly undesirable, no matter if BUBBLE-FOS/C is executed sequentially or in
parallel. A method to reduce the required memory size as well as the running time, is

discussed in Section 4.8.
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4.3. Convergence and Connectedness Results on
Bubble-FOS/C

4.3.1. Convergence towards a Local Optimum

It is well-known that Lloyd’s geometric k-means algorithm converges to a local opti-
mum [Seli 84|. That a very similar convergence property also holds for our algorithm
BuBBLE-FOS/C depicted as Algorithm 1, is proved in this section. The proof relies on
the FOS/C load symmetry property and a potential function, for which the algorithm
finds a local maximum. This proof and its potential function provide a solid characteri-

zation of our algorithm and the solutions it computes.

Definition 4.2. Let the function F(II, Z, 7) be defined as follows:

k
FILzr) =3 3 .

=1 vaﬁT)

Note that the basic structure of F' resembles the objective function in k-means cluster
analysis [Seli 84]. Yet, here we adapt it to the graph setting by replacing the squared
Euclidean distance to the nearest center by the highest FOS/C load for each node, which
also necessitates its maximization instead of its minimization.

Since it is obvious that F' has a finite upper bound on any finite graph G, it remains
to be shown that F is increased by every BUBBLE-FOS/C operation, until convergence
is reached. For this we show in the following that the two operations AssignPartition

and ComputeCenters each maximize the value of F' w.r.t. their input.

Lemma 4.3. The partition computed by AssignPartition mazimizes the value of F for

a given set of centers Z.

Proof. Applying AssignPartition means to fix the set Z and compute k single-source
FOS/C procedures. Since each node contributes exactly one of its k load values to F

and chooses for this the maximum one, F' is maximized for fixed Z. O

To show the analogous property for ComputeCenters, it is crucial to use the load

symmetry between the sources of two single-source FOS/C procedures (Proposition 3.15).

Lemma 4.4. The set of center nodes determined by ComputeCenters maximizes the

value of F for a given partition I1.

Proof. Let II = my U...Um, be the current partition. ComputeCenters solves for each
subdomain ., ¢ € {1,...,k}, a multiple-source FOS/C procedure, where the whole re-
spective subdomain acts as source. Consider one of these subdomains 7. and its multiple-
source FOS/C procedure with respective drain vector d and S := m.. The FOS/C pro-

cedure solves Lw = d for w. Our aim is now to split this procedure into subprocedures
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that solve Lw; = d; for w;, ¢ € S, and that satisfy ZieS d; = d. Note that w; and d;

denote vectors here, not vector entries. Such a splitting
Lw:d<:>L(w1+w2++w‘S‘) :d1+d2++d|5|

indeed exists because L is a linear operator. Each subprocedure Lw; = d; can be defined
as an ordinary single-source diffusion procedure. The only difference is that it is scaled
by |—3q|, i.e., the drain constant is %g' instead of 0 and the total drain is %“ instead of dn.
Entry v of the drain vector d; is then

5—”| — % v € S, v source of subprocedure 7,

— % else.

[dl]v =

The perpendicularity property d; L (1,...,1)T holds for all i € S since the sum of all
entries in each vector d; equals %"‘ — %‘ +(n-1)- ﬁ = 0. Thus, each subprocedure has
a solution. This solution can again be normalized to be unique and comparable (e.g.,
by the additional constraint w; L (1,...,1)" for all §). Moreover, > ,.gd; = d holds
as well: For v € V\S we have: ) . ¢[d;], = —d and for v € S the sum evaluates to:
Sieslddo = 8 — &+ (S| —1)- 2 = 22 .

Recall that the new center of subdomain 7, is the node with the highest load of the
considered multiple-source FOS/C procedure. In other words, the node v is chosen such
that [w], is maximal over all v € V. From the above it also follows that [w]] = >, g[w]?.
Due to Proposition 3.15 it holds that Y, glw]i = >, cg[w]?. Thus, the new center z,
is the node for which the most load remains within the subdomain 7. in a single-source
FOS/C procedure. Consequently, the contribution »
I is maximized. As the maximization property holds for all subdomains, the claim

follows. =

[w]Ze of this subdomain to

This result shows that the operation ComputeCenters determines an optimal set of
centers without an exhaustive search among all nodes. Insofar it is also of interest
for related methods, for example the k-means variant using Fuclidean commute times
(ECTD) as a distance measure [Yen 05]. On vertex-transitive graphs it computes the
same solutions as BUBBLE-FOS/C due to Theorem 3.23. Let us therefore consider
graphs that are not vertex-transitive. ECTD-k-means determines a new center v as
arg minyer, Y ,er. Clu,v]. No explicit procedure that would be faster than brute force
is provided by its authors. In the best case, which assumes that the subdomains are of
asymptotically equal size n/k, the brute force running time is O(n?/k) to compute all
k center nodes, even if the pseudoinverse L is known. The reason is that the distance
of each node pair in a cluster needs to be considered; there are O(n?/k?) such pairs per
cluster. Due to the similarities between FOS/C and ECTD established in Section 3.2 a

faster way is possible, provided that the entries of Lt can be accessed in constant time
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and k is not too large:

arg 1r}r€11ﬂn Clu,v] = arg irenﬂn ; llﬂ, + ll,u — QZIW = arg irélﬂn Z l;rw — QZLU
c C UET, c

UET UET

= arg min |7,/ - l:r,yv -2 l:ﬂ,v = arg min |7| - [w]; — 2 E [w]y .
VET, UET, VET, wen
(&

As shown in the proof of Lemma 4.4, the value of the sum »_ __ [w]¥ for every node

uEme
v can be computed by one multiple-source FOS/C procedure with source set m.. In this
way, the complexity of computing all centers is O(k¢), where ¢ denotes again the cost for
solving one FOS/C procedure. In the case of an optimal solver, we get O(ké¢) = O(kn),
which improves on O(n?/k) in the case of k € o(y/n).

For the final convergence proof regarding BuBBLE-FOS/C we need one more propo-

sition concerning the correctness of the algorithm.

Proposition 4.5. During the execution of BUBBLE-FOS/C there are exactly k different

center nodes and ezxactly k subdomains in each iteration 7.

Proof. Observe that "<" is obvious, so that it suffices to show that there are at least
k different center nodes and subdomains in each iteration. For the initial placement of
centers we can easily ensure that k disjoint center nodes are chosen. Moreover, we know
due to Proposition 3.8 that the centers determined by ComputeCenters belong to their
own subdomain and must be different.

In the remainder we show that AssignPartition keeps each center in its current sub-

domain. Consider two arbitrary, but distinct centers z; and z;. Due to Proposition 3.15

we know that [w]? = [w]Zi. As [w]Z > [w]Z (Proposition 3.8), we obtain [w]Z > S
Therefore, all center nodes remain in their subdomain. O

Theorem 4.6. BUBBLE-FOS/C converges and produces a k-way partition. This parti-

tion is a local optimum of the potential function F.

Proof. As F' is maximized in every iteration of BUBBLE-FOS/C, it is strictly increasing
in every iteration, until no local improvements are possible. Hence, since F' is bounded,
BuBBLE-FOS/C must always converge to a local maximum of F, which contains k

subdomains due to Proposition 4.5. 0

If BuBBLE-FOS/C is used for partitioning within a multilevel hierarchy, it converges
very quickly. Our experiments indicate that usually three to five iterations of the main
loop are sufficient to reach convergence on each level. This behavior has both a positive
and a negative side. On the one hand, it shows the effectiveness of integrating BUBBLE-
FOS/C into a multilevel hierarchy. The initial choice on each hierarchy level seems to
be not far away from a local optimum. On the other hand, however, the quality of such a
local optimum can be far away from the globally best value. Since convergence happens

so quickly, the actual search space appears to be very narrow. Hence, one can expect
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“main cut”

Figure 4.2.: Sketch of the situation assumed in Theorem 4.7.

that additional algorithmic techniques are necessary to escape bad local optima. Such
a technique has been implemented for our related algorithm DIBAP and is also viable
for BUBBLE-FOS/C. Its idea is to choose the best among multiple solutions on a coarse
level of the multilevel hierarchy (see Section 5.2.3). Other local search techniques might

be profitable as well.

4.3.2. Connected Subdomains on Vertex-Transitive Graphs

For some applications that use partitioning or clustering as an intermediate step, it is
important that all subdomains are connected, i. e., they have exactly one connected com-
ponent each. Experiments with FEM graphs reveal that the subdomains computed by
BUBBLE-FOS/C are (nearly always) connected if the algorithm is allowed to perform suf-
ficiently many iterations. Unfortunately, we have not been able to verify this observation
theoretically for all connected graphs. However, the following theorem makes a step to-
wards this. [t proves the connectedness of subdomains for all connected vertex-transitive
graphs and k = 2 without requiring that BUBBLE-FOS/C has already converged. While
the restriction to vertex-transitive graphs is mostly of theoretical interest, the result

might become useful as a starting point for more general graph classes.

Theorem 4.7. Let G = (V, E) be a connected vertez-transitive graph. Fiz two arbitrary
different vertices c1, co € V. Let the operation AssignPartition divide V into the two
subdomains m = {u € V | [w]} > [w]2} and mp = {u € V | [w]§} < [w]$2}. Then, m

and o are each connected components in G.

Proof. First recall the following relationship between hitting times and the load vectors
of FOS/C from Theorem 3.22:

Also recall that [w]¥ = [w]}, holds for all u,v € V' (Proposition 3.15) and that H v, v]
is zero, which follows from the definition of hitting times. Furthermore, we can choose

the drain constant J to be one. From the proof of Theorem 3.23 we know that for all
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vertex-transitive graphs G = (V, E) and all u,v € V it holds that [w]¥ = [w]Y, so that

v
we obtain

Now assume for sake of contradiction that the subdomain 75 is not connected. In this
case there exists a node-separator T' C 71 such that there are at least two components
A, B C w9 which are not connected by a path via my. Assume w.l.0.g. that co € B, as

shown in Figure 4.2. Then for some vertex a € A we obtain

[w]g > [wlg! & [w]g? = [w]g > [wlg = [wlg

& Hlc, c2] — Hla, c2] > Hley, e1] — Hla, 1]
< Hla,c1] > Hla, c2] -

In the same manner we have for each vertex x € T that
H[CL" Cl] < H[CL’, 62] :

Let X; be the random variable representing the node visited in timestep ¢ by a random
walk, and let F,,(x) be the event that a fixed vertex z is the first vertex visited in T of a
random walk starting from some u € V. Furthermore, denote by 7,(T") := mingen{X; €
T | Xo = a} and let 7, 7(c1) := mingen{X; = ¢1 | Xo = a} — 7,(T"). By using conditional
expectations (E[Y ] =) Pr[X =z |E[Y |X = z]) [Grim 01, p. 67|, we obtain

Hla,c1] = E[74(c1)]
=E[7(T) + 1a1(c1) ]
=S " Pr(Fu(2)] (E[7a(T) +rar(ecr) | Fal)]),

zeT

which can be transformed by using the linearity of conditional expectations into

=Y Pr[Fu(@)]- (E[na(T) | Fole)] +Elrar(cr) | Falx)])

zeT

=Y Pr(Fu(2)] (Elna(2) | Fal@)] +E[m(cr) | Falz)])
z€eT

= Pr[Fu@)] - (Elrale) | Fale)] + Hlz,cr]).
zeT

Exactly the same arguments yield

Hla,eo] = ) Pr[Fo(w)]- (E[ralz) | Fala)] + Hlz,c2]) .

zeT
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Due to H[z,c1] < H[xz,ca] for each x € T we finally obtain
Hla,c1] =Y Pr[Fo(@)] (E[7a(@) | Falz)] + Hlz,c1])

< S Pr[Fue)] - (E[ma(a) | Falw)] + Hlr,c3])

which is a contradiction to our assumption H{a, ci] > Hla, co]. Therefore, the subdomain
79 has to be connected.

The proof that m; is always connected is done in the same way. Assume the converse
and let A and B be two disconnected components of m; with a node separator T' C o
such that ¢; € B. For a vertex a € A we have Hla,c1] < Hla,co] and for every vertex
x € T it holds that H|x,c1] > H[z,c2]. Consequently,

Hla,co] =) Pr[Fo(2)]- (Elma(2) | Fale)] + Hlz, c2])

which is a contradiction to our assumption Hla,c1] < Hla,c2], and the claim of the

theorem follows. O

4.4. Algebraic Multigrid for Bubble-FOS/C

Most work performed by the BUBBLE-FOS/C algorithm consists in solving linear systems
of the form Lw = d. More precisely, in each iteration of the main loop, 2k of these
systems need to be solved. Since we assume that the input graphs are sparse (m =
O(n)), direct solvers are not applicable. They would cause a prohibitive running time
(cubic) and memory consumption (quadratic). Instead, the solution process can be
performed by the very popular Conjugate Gradient algorithm (CG) algorithm, which
is suitable for symmetric positive semidefinite systems as long as the right-hand side is
consistent [Kaas 88], i.e., as long as a solution exists. Yet, the convergence of CG tends
to slow down considerably when the linear systems stemming from numerical simulations
become larger [Shew 94|. Furthermore, recall that within one BUBBLE-FOS/C operation
only the drain vector d differs for each subdomain since the matrix L depends only on

the graph and is the same for all k£ FOS/C procedures.

4.4.1. Fundamentals of Algebraic Multigrid

The decreasing convergence speed of CG and the multiple occurrence of L are exploited

in the following by applying an algebraic multigrid (AMG) solver. Multigrid methods
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(e.g., |Trot 00]) are among the fastest iterative solvers and preconditioners for large linear
systems derived from a wide class of partial differential equations. They are based on
the observation that relaxation methods such as Jacobi or Gauss-Seidel eliminate high-
frequency (unsmooth) error components in the solution vector very effectively. However,
the reduction of low-frequency error components takes them a very large number of
iterations. That is why these relaxation methods are also called smoothers.

In order to eliminate also the low-frequency error quickly, a multigrid algorithm uses
a hierarchy of matrices (also called grids, leading to the name multigrid), whose size de-
creases from one hierarchy level to the next one. If one passes a linear system with smooth
error to the next coarser matrix of the hierarchy, the low-frequency components become
oscillatory (unsmooth) again. Consequently, these oscillatory error components can be
smoothed efficiently by relaxation methods again. Similar to the multilevel paradigm
used for graph partitioning, this process is continued recursively, until the linear sys-
tem on the coarsest level is small enough to be solved directly with adequate resource
consumption.

AMG is an extension of classical multigrid to cases where no geometric information
is available in connection with the matrix. One of the major differences between the
two methods is the construction of the hierarchy. Classical geometric multigrid meth-
ods operate on fixed hierarchies, which sometimes have very simple construction rules.
These hierarchies can also be derived from successive mesh refinements performed by the
meshing algorithm of the underlying numerical application.

In contrast to this, AMG constructs its own hierarchy by a top-down coarsening ap-
proach. For this, only the matrix corresponding to the finest mesh is necessary. That
is why AMG, as opposed to geometric multigrid, is sometimes seen as a “black box ap-
proach”. On the other hand, such a categorization is only half the truth. To be highly
effective, AMG requires for non-standard problems a wise choice of components as well
as parameters. For positive semidefinite matrices such as the Laplacian matrices arising
in FOS/C procedures, this guidance by the user or developer is also necessary. Never-
theless, AMG is so appealing to us for two reasons. First, a successful tuning can be
expected to result in a very efficient solver. Second, its hierarchy construction has to be
made only once and can then be reused for all linear systems with the same matrix L.
Hence, this sometimes expensive task can be amortized over at least 2k systems in our

application.

4.4.2. General AMG Coarsening and Solution Process

Coarsening a matrix L = L¢ to obtain the coarse matrix L. (f = fine, ¢ = coarse) of
the next hierarchy level consists of three main steps: First, one determines the coarse
vertices that are transferred to the next level. They must facilitate a significant reduction
of the number of nodes and edges in the next level. Moreover, they have to be able to

interpolate those nodes accurately which are not retained within the coarse matrix. That
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Figure 4.3.: (a) Two-grid cycle with coarse grid correction. (b) Sketch of V-cycle.

is why one prefers nodes with many strong couplings. In graph terminology these are
nodes which are connected to many other nodes by edges with a high weight (see Briggs
et al. [Brig 00, Ch. 8] for more details).

After having computed the set of coarse nodes, one determines interpolation weights
and sets up the prolongation matrix P. The choice of the interpolation weights should
be consistent with the problem and the coarsening scheme employed since it is crucial for
a fast convergence of the solver [Stub 01]. The coarse matrix is determined by applying
the Galerkin principle, i.e., L, is computed as L¢ := RL¢P (R = P7 is the restriction
matrix), the Galerkin operator. The weight of an entry (u,v) of the coarse matrix
L. is therefore computed as (L¢)yw = D iy Z;‘L:1 Tuili jPio = Yoiey Z?Zl Piuli,jPjo-
Hence, the edge weights of coarse nodes are computed as weighted aggregations. Each
aggregation considers nodes of distance at most 3 in the fine matrix/graph. This process
of obtaining a coarser representation of the original matrix can be continued recursively
to yield a complete multigrid hierarchy.

Following the hierarchy construction in the setup phase, the actual solution process is
performed by an algorithm which consists of the following main operations: presmooth-
ing, restriction, solving the coarse problem recursively, interpolating the coarse solution,
and postsmoothing. This is shown for two matrices in Figure 4.3(a), where Q" and Q2"
denote the matrices corresponding to the fine and the coarse discretization domain, re-
spectively. Using recursion, such a scheme can be applied to the complete hierarchy.
Depending on the way the recursive traversal is performed, different solution algorithms
(so-called cycles) are distinguished. For example, due to its shape, going down the hier-
archy and up again to the finest level is called a V-cycle (see Figure 4.3(b); Qf denotes

the coarsest matrix, S; and Sy smoothing operators).

4.4.3. Details of our AMG Implementation

After the description of the general ingredients of an AMG algorithm, we explain in this

section how they are realized in our implementation for solving FOS/C procedures. First
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of all, we show that AMG is actually suitable for solving the occurring linear systems.
This is not self-evident since the traditional multigrid theory has been developed for
nonsingular matrices [Stub 00]. If no virtual vertex is used, the Laplacian matrices in
our FOS/C procedures do not fall into this category. Since AMG is often faster than
other iterative methods, there have been attempts to transfer the algorithm to other
graph classes as well, including singular matrices (e. g., [Virn 07]). Neglecting numerical
issues, we can show that AMG is applicable to our problem of solving FOS/C procedures

with symmetric positive semidefinite Laplacian matrices as well:

Proposition 4.8. An FOS/C procedure represented by a linear system of the form Lw =
d can be solved by an AMG algorithm.

Proof. There exists a solution for the equation Lw = d because d L 1 (Theorem 3.3).
Now consider a two-level procedure. Let the matrix and the vectors of the fine level be
subscripted with f (for fine), those of the coarse level by ¢ (for coarse). In particular:
Ly :=L, wy :=w, and dy := d.

Let the approximation of the solution vector w be denoted by . The residual vector ry
is defined as 7y := dy —Lgwy. It holds that ry L 1 since dy L 1 and Lewy L 1. The latter
can be verified easily as follows: (Lyy, 1) = Y701, >0 Ly = D20 w5 > i iy =
Z?Zl w; -0 =0.

On the coarse level we need to solve L¢ee. = r. for the coarse error e., where L, = RL¢P
and r. = Rry. Since the prolongation matrix has been constructed such that the column
sum of R (or, equivalently, the row sum of P) is 1, r. L 1 holds as well. Moreover, L
is again symmetric positive semidefinite. Symmetry follows from: L]y, = [RL¢P]y ., =
Yoy Z?:l Tu,ili jDjv = 2?21 Yo 7o iljipiu = [Le)ou. One can also verify for an arbi-
trary vector = of compatible size: (L.x,z) = (RL¢Px, z) = (L¢Pz,RTz) = (L¢Pz, Pz).
For y := Pz follows (Lgy, y) > 0 because Ly is positive semidefinite and therefore also L.
Consequently, the coarse problem has a solution, too. This argument can be continued

recursively, so that an algebraic multigrid method is applicable. O

While Proposition 4.8 helps to estimate if AMG can be useful at all for us, it does not
consider the actual convergence behavior. The latter has been investigated by Friedhoff
and Heming [Frie 07]. They state conditions under which an AMG algorithm can be
proved to converge while solving FOS/C procedures.

As the next step, we describe the two coarsening algorithms used in our implementa-
tion. Then, after giving details on the applied interpolation scheme, we describe briefly

which solution algorithms have been implemented and what their differences are.

4.4.3.1. Selecting Coarse Nodes

The mechanism for selecting the nodes that are retained in the coarse matrix has to
fulfill several properties to meet our requirements. First of all, it needs to ensure a

fast convergence. Another objective, which conflicts with fast convergence, is a fast
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reduction of the matrix size. Smaller matrices lead to less memory consumption and a
faster execution time per iteration in the solution phase. On the other hand, a more
aggressive coarsening can affect the convergence behavior in a negative way. That is why
one needs to find a good balance between these two goals. For our purposes a relatively
aggressive scheme is preferred in order to keep the number of hierarchy levels small.
As we will see later on, this is important for fast multilevel partitioning. Moreover, if
AMG is used for matrices describing 3D problems, mild coarsening tends to increase the
memory consumption to an undesirable amount [Ster 06].

That is why we use PMIS coarsening [Ster 06], which has been developed specifically
for keeping the memory requirements moderate in 3D problems. It also keeps the number
of created hierarchy levels rather small. The selection of the coarse nodes by PMIS uses
the notion of maximum weight independent sets (MWIS) from graph theory. All nodes
v € V get a weight g,,, which denotes the number of strong couplings to the neighbors of v.
(Recall that, generally speaking, strong couplings are off-diagonal entries whose absolute
value is above a threshold.) Then, based on these weights, PMIS computes an MWIS
Z, which becomes the (preliminary) set of coarse nodes C. That way, two properties are
achieved. The set C is very small and nodes are preferred that can interpolate many
other nodes accurately because they have many strong couplings. However, MWIS is
an N'P-hard problem, so that we employ a fast greedy heuristic, which looks for nodes
with locally highest weight. In addition, nodes not in Z that have no strongly coupled
neighbor in C' have to be moved from the set of non-coarse (or fine) nodes, which is
denoted by F :=V\C, to C.

In cases where PMIS coarsens too much, we neglect its result. Instead, CLJP coarsen-
ing |Hens 02] is applied, which tends to coarsen less aggressively. The major algorithmic
difference between the two is that CLJP adjusts the node weights g, during the process.
More precisely, it reduces the weight of vertices whose neighbors are inserted into C by
q := 1. This adjustment reflects that the coupling to a coarse neighbor has already been
taken into account. In our implementation we also vary the size of ¢ adaptively. This

gives us more control over the resulting matrix size.

4.4.3.2. Interpolation Weights

Our experiments with different interpolation schemes confirm general experi-
ence [Stub 01] that this choice is crucial in order to obtain a satisfying convergence of
the solver. A simple M-matrix interpolation [Stub 00, p. 448| leads to a very slow con-
vergence in connection with the coarsening schemes used, when our FOS/C procedures
have more than approximately 50,000 nodes.

Our second choice, called classical interpolation, works well for our class of problems.
It has also been used by Safro et al. [Safr 06] within a multilevel approach for optimizing
linear orderings of matrices. For variables (resp. nodes) i, of the current matrix (resp.

graph) let I(j) denote the index of node j in the coarse matrix and define N; as the
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Algorithm 3 FMV-cYCLE(Lf, w, d, level)— w

/* Precondition: FMV-CYCLE and V-CYCLE have access to */
/* the matrix hierarchies of L, R, and P, */

1 if Lg is coarse enough then
2 w = V-CYCLE(L¢, w, d, level);
3 else
/* Restriction of residual: */
4 r = R(d — Lyw);

/* Recursive call with Lo = L[level+1]: */
5 e = FMV-cYCLE(L, e, r, level + 1);

/* Interpolation of coarse error: */
6 w=w + Pe;

/* Call to V-cycle: */

7 w = V-CYCLE(Lg, w, d, level);
s return w;

neighbors ¢ that are in the coarse set C.

wi»j/ZkENi Wi k for 7 € F, ] S Ni>
[Plirg) =41 forieC,j=1,

0 otherwise .

Weights below a given threshold 7 (e.g., n = 1/16) are not included. This truncation
reduces the number of nonzero entries in the coarse matrix. Consequently, it saves
memory space and solution time. If the threshold is not too large (one even finds n = 1/5
in the literature [Safr 06]), the convergence speed is hardly affected. After a truncation
the remaining values of a row are scaled such that the row sum in P is always 1. In
this way, as also pointed out by Safro et al., one can interpret the entry [P]; ;(;) as the

likelihood of i to belong to the aggregate at position I(j).

4.4.3.3. Solution Phase

For the solution phase we have implemented two algorithms, the V-cycle (Figure 4.3 (b))
and the full multigrid V-cycle (FMV-cycle) (cf. |Brig 00, Ch. 3] or Algorithm 3). Both
algorithms have access to the hierarchy constructed in the setup phase. The V-cycle
algorithm can act as an iterative solution algorithm itself. Alternatively, a V-cycle can
be used within an FMV-cycle. All calls to V-cycles made by an FMV-cycle can be iterated
more than once, but in our implementation only one iteration is used. A standard CG
implementation serves us as the direct solver on the lowest level.

To solve a linear system Lw = d iteratively, both algorithms are repeated, until the
desired error tolerance in the residual is reached. One FMV-cycle is more costly than

one V-cycle, but its convergence is also better. Our experiments show clearly that, in
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Figure 4.4.: Schematic view of the Consolidation operation.

total, the gain in convergence speed outweighs the increased costs per cycle. Hence, we

use the faster FMV-cycle as AMG solution algorithm in all our subsequent experiments.

4.5. Extensions to Bubble-FOS/C for Graph Partitioning

4.5.1. Consolidation: Mixing AssignSubdomain and ComputeCenters

Recall that the loop in Lloyd’s k-means algorithm consists only of two alternating op-
erations. For our purposes they have been transformed into AssignSubdomain and
ComputeCenters. In case BUBBLE-FOS/C is used for graph (re)partitioning, we also
use another operation, which is a mixture of the two. It is called Consolidation and
computes a new partition from a given one. Its process is sketched in Figure 4.4. The ini-
tial load distribution is the same as for ComputeCenters. Hence, the source set contains
all nodes of the subdomain currently considered. Yet, after computing the corresponding
FOS/C procedure for each subdomain, the resulting load distributions are evaluated as
in AssignSubdomain. Fach node is assigned to the subdomain from which it has received
the highest load. In summary, Consolidation computes the FOS/C convergence load of
ComputeCenters, but identifies new subdomains instead of centers from that.

Our experiments with the Consolidation operation indicate its potential for graph
partitioning. Due to the different sizes of the source sets, it contains an implicit balancing
method. This results from a steeper load distribution obtained with smaller source sets.
Usually this balancing is not sufficient to obtain almost equally sized subdomains. In
particular because Consolidation works only reasonably well if the subdomain sizes
do not differ extremely. Yet, it is a diffusion-based process that has some balancing
capabilities, moves subdomains in the direction of their desired positions, and can be
integrated easily into BUBBLE.

The balancing property makes Consolidation unsuitable whenever BUBBLE-FOS/C
is used for graph clustering. There, equally sized subdomains are rarely the correct
solution. Apart from these practical considerations, there is also a theoretical drawback
of using Consolidation. So far, it is unclear how to transfer the convergence proof of
BuBBLE-FOS/C to the extended algorithm with Consolidation operations. This is
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mainly due to the fact that, unlike the potential function F', Consolidation does not

use the notion of subdomain centers.

4.5.2. Balancing Methods

When BUBBLE-FOS/C is used for graph (re)partitioning, we need to ensure that it gener-
ates partitions which stay within the user-defined imbalance. That is why two additional
balancing operations are employed. Since large parts of them have been developed by
Schamberger [Scha 06, p. 87ff.] and our modifications affect more the implementation
than the algorithmic idea, we describe the operations only briefly.

The first one takes the k¥ FOS/C load vectors computed by an AssignPartition or
Consolidation operation. Then, it determines for each vector w., ¢ € {1,...,k}, a
scalar value . with the following property. If all w,. are multiplied with their respective
e, a new evaluation of the resulting load values yields a (more) balanced partition. This
procedure called SCALEBALANCE is relatively simple and fast. Moreover, it retains the
good properties (like the shape) of the subdomains. The balancing succeeds in many
cases, but there are exceptions to this rule. These include situations with a very high
imbalance or very large k.

Whenever balancing by scaling the load vectors is not successful, an additional bal-
ancing method called FLOWBALANCE is employed. First, it computes the amount of
nodes that have to migrate between different subdomains. This computation is done by
diffusive load balancing to achieve f2-minimal migration costs [Diek 99]. Then, for each

node v and each subdomain c, a priority pS is computed as

Similar to the priority values for boundary smoothing (Section 4.1.2), the priorities p
computed here express how certain the affiliation of a node v € V to its current sub-
domain is. (A value close to one indicates a low certainty because the respective node
is also drawn to another subdomain.) The nodes are then moved in the order of these
priorities, so that the “uncertain” nodes are migrated first. These moves are repeated,
until the balancing flow is saturated and the partition II balanced.

A priority-based order of node moves results in sequential parts of this process. One
could argue that the number of computations is small compared to solving many linear
systems. Yet, if executed in parallel on different processors, it would require many
communication steps to ensure the correct order of migration steps. That is why we have
also developed a different version more suitable for parallel computers with distributed
memory. The original idea is modified such that the movement of nodes is performed in
rounds, where each round moves the nodes that are at the current subdomain borders.
Additional techniques avoid moves to interfere with each other. That way, the number

of communication operations for updating priorities can be reduced.
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Algorithm 4 BUBBLE-FOS/C-PART(G, k, II, maxOuter, maxInner) — II

o if II is defined /* AssignSubdomain */
02 then /* ComputeCenters */ 19 parallel for c=1,....k do
03 parallel for c=1,...,k do 20 Initialize d. (S = {z})
04 Initialize d. (S = 7.) 21 Solve and normalize Lw, = d,
05 Solve Lw, = d,. 22 parallel for each v € V do
06 2, = argmax, ¢, [Wely 23 II(v) = argmaxc€{17...7k}[wc]v
o7 else /* Find initial centers */ 24 IT = SCALEBALANCE(G, k, I, W)
08 7 = LOADBASED- .
25 for j = 1 to maxInner

INITIALCENTERS(G, k)

* Consolidation *
/* Initial AssignSubdomain */ / /

> 26 parallel for c=1,...,k do
o paIré.lgell. fOIC'lC TS’ 1_’ -,k do 27 Initialize d. (S = 7¢)
10 nitialize de ( __{ZC}) 28 Solve and normalize Lw, = d,
11 Solve and normalize Lw,. = d, 2o parallel for cach v € V do
12 parallel for each v € V do w0 TI(v) = argmax.c( [weo
13 (v) = argmax ey gy [Welov e
31 IT = SCALEBALANCE(G, k,II, W)

14 for 7 =1 to maxQOuter

32 IT = FLOWBALANCE(G, k, II, W)
/* ComputeCenters */

15 parallel for c=1,...,k do 33 return SMOOTH(II)
16 Initialize d. (S = m)

17 Solve Lw, = d.

18 Ze = argmax, ¢ [Wely

4.5.3. The Extended Algorithm

The extended BUBBLE-FOS/C algorithm is depicted as Algorithm 4. It includes the
aforementioned features Consolidation and balancing. This integration requires some
changes in the order of the operations, but no modifications of the underlying ideas. Note
that W denotes the n x k& matrix whose columns are the k£ load vectors wy to wg.
Implemented in this way, BUBBLE-FOS/C is suitable for partitioning graphs into
equally sized subdomains. To consider other practical aspects, additional adaptations
have been made. For example, in practice one does not wait until the main loop converges.
Instead, the loop is stopped after a fixed number of iterations. Using the multilevel
paradigm, a very small number of iterations is already sufficient to obtain good solutions.
This paradigm and our modifications to the standard multilevel approach are described

next.

4.6. Multilevel Paradigm with Algebraic Multigrid

For a good performance in terms of speed and quality of the BUBBLE-FOS/C algorithm,
it is crucial to bring about its convergence to a locally optimal solution after a constant
number of iterations. This can be achieved by employing a multilevel scheme. The mul-

tilevel concept is known to work well for graph partitioning [Hend 95a] and has also been
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Figure 4.5.: Mllustration of multilevel paradigm.

used for graph clustering [Dhil 07]. Its idea is illustrated in Figure 4.5 and has already
been described in Section 1.3.1. In summary, the main steps are recursive coarsening
(left side of Figure 4.5), computing an initial solution on the coarsest graph (bottom),
and then recursive interpolation and local improvement (right side). The underlying idea
is that on each level but the coarsest, the local improvement process is started with an
already reasonable solution. Hence, the convergence of BUBBLE-FOS/C can be expected
to be very fast, so that the additional work is more than compensated.

Most state-of-the-art partitioning libraries use approximate maximum weight match-
ings or very similar methods for coarsening within the multilevel scheme. For BUBBLE-
FOS/C we opt for an alternative way. Recall that linear systems have to be solved for
BuBBLE-FOS/C, which is done by algebraic multigrid (AMG). As we have explained
above, AMG also constructs a hierarchy of graphs. Hence, instead of computing an ad-
ditional hierarchy based on matchings, we use the existing AMG hierarchy. That is why
a fast reduction of the matrix sizes is important in our AMG coarsening schemes. Deep
hierarchies would cause long running times, possibly even without yielding much better
solutions than more shallow hierarchies.

Similar ideas of using AMG for providing multilevel hierarchies have been pursued
independently by Safro et al. [Safr 06]. In a simpler form it has been used for a multilevel
procedure computing the Fiedler vector zo for spectral partitioning [Drie 95].

Note that for the local improvement on any given hierarchy level [, the AMG algorithm
within BuBBLE-FOS/C needs to start on level [, too. However, if AMG were called as
a black-box solver on level [, it would construct a completely new hierarchy with level
[ as its top. That is why we have adapted the standard AMG algorithm such that
no duplicate hierarchies are built. If started on level [, all solution algorithms in our

implementation use the hierarchy that has been built at the beginning with the finest
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graph /matrix as its topmost level.

4.7. Experimental Results

The experiments are based on our C/C-++ implementation of the extended BUBBLE-
FOS/C algorithm for graph partitioning (Algorithm 4) and the generic BUBBLE-FOS/C
algorithm for graph clustering (Algorithm 1). They have been conducted on a computer
equipped with an Intel Core 2 Duo 6600 CPU and 1 GB RAM. The operating system is
Linux (openSUSE 10.2, Kernel 2.6.18) and the main code has been compiled with the Intel
C/C++ compiler 10.0. The compiler uses level 2 optimization and auto-parallelization
for all programs under consideration (except for GRACLUS, which has been compiled with
GCC 4.1). For BUBBLE-FOS/C we also use POSIX threads for parallelizing some parts
of the hierarchy construction and the solution of linear systems. This allows for the use of
both processor cores. Threads are not available for the serial libraries METIS, JOSTLE,
and GRACLUS, which serve as standards of reference for graph partitioning (METIS and
JOSTLE) and graph clustering (GRACLUS). This aspect is discussed in more detail in
Section 4.7.4.

An issue to consider is the dependence on “random influences”. As an example, the
order in which the vertices are stored within the graph data structure play a significant
role for node-exchanging partitioning algorithms like KL /FM [Scha 03, Elsn 05| (and
also kernel k-means with local search, as in GRACLUS). This is due to the fact that the
order in which the nodes are inserted into the gain buckets determine the order of the
corresponding moves. Different orders can lead to different local optima. Hence, in our
experiments the programs METIS, JOSTLE, and GRACLUS are run ten times on the same
graph, but with a randomly permuted vertex set. The edges are permuted accordingly,
so that the resulting graphs are isomorphic to the original one. For BuBBLE-FOS/C
the order of the vertices is insignificant because the diffusive partitioning operations are
hardly affected by it. Only in the rare case of ties in the load values small changes
can occur, which are mostly irrelevant. That is why we account for random influences
in BUBBLE-FOS/C by performing ten runs on the same graph with different random

seeds, resulting in different choices for the first center vertex.

4.7.1. Bubble-FOS/C on the 2D Torus

Grid graphs are frequently used as finite element discretizations of planar domains. Often,
they are adaptively refined, so that different areas of the grid have a different number of
elements per area. For simpler problems, however, also grids of the same resolution are
used. It is also not uncommon to use cyclic boundary conditions, which are simulated
by a torus instead of a grid. Insofar it is interesting to see how partitions computed by
BUBBLE-FOS/C on a 2D torus look like and which properties they have.

For an assessment of AssignPartition recall important properties of FOS/C on the
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F

Figure 4.6.: Partition with eight subdomains of a 256 x 256 torus computed by BUBBLE-
FOS/C.

torus. lts convergence load is symmetric (Proposition 3.15) and monotonous (Theo-
rem 3.46). Moreover, all single-source FOS/C procedures yield the same convergence
load vector up to permutation. Recall that we can conclude from Mangad’s result (The-
orem 3.47) that, asymptotically, FOS/C yields circular isolines on an infinite 2D-grid.
Moreover, based on our experimental data and theoretical results of Ellis |Elli 01la], we
also know for the torus that the isolines of the load have a certain shape, which is close
to circular in a not too far distance from the source node. In many cases the subdo-
main boundaries tend to be in such a distance from their nearest source nodes where the
isolines are circular. Hence, the subdomain affiliation is decided implicitly by geometry,
namely by Euclidean distances corresponding to the radii of the isolines.

If we assume that certain degeneracies such as discretization errors can be neglected,
the assignment of nodes to subdomains based on Fuclidean distances results in sub-
domains with the Vorono: property. This means that each subdomain contains those
nodes which are closest to its center node w.r.t. to Euclidean distance. Voronoi cells
have the property to be connected and convex, which follows from the fact that they are
intersections of halfplanes [Berg 97, Ch. 7].

The correspondence to Voronoi cells and their convexity is an indication that BUBBLE-
FOS/C indeed computes partitions with short boundaries, at least on a torus. This
indication is further confirmed experimentally. With a large enough number of iterations,
BUBBLE-FOS/C computes the regular hexagonal tessellation of the torus depicted in
Figure 4.6, even without balancing or smoothing. In the geometric setting such a partition
is known to be the global optimum of Lloyd’s geometric k-means algorithm [Newm 82]
and to have the shortest possible boundary (e.g., [Puu 05]). Although being no rigorous
proof, these observations give some evidence that BUBBLE-FOS/C performs well on

torus graphs and those with some similarity to the torus or grid structure.
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Table 4.1.: Graphs used in the experiments of Section 4.7.2.

Size Degree
Graph V] ‘ |E| min ‘ max ‘ avg Origin

airfoill 4,253 12,289 3 9 5.779 FEM 2D

crack 10,240 | 30,380 3 9 5.934 FEM 2D
whitacker (dual) 19,190 | 28,581 2 3 2.979 || FEM 2D dual

biplane9 21,701 | 42,038 2 4 | 3874 FEM 2D

stufel0 24,010 46,414 2 4 3.866 FEM 2D

altrd 26,089 | 163,038 5 24 12.499 FEM 3D

shock9 36,476 71,290 2 4 3.909 FEM 2D
wing 62,032 | 121,544 2 4 3.919 FEM 3D dual

4.7.2. Graph Partitioning
4.7.2.1. Experimental Settings

For the experiments presented in this section we have chosen eight graphs of small to
medium size, see Table 4.1, that are or have been frequently used as benchmark instances.
This sample is on the one hand large enough to draw valid conclusions from its results,
on the other hand it is small enough to keep the evaluation efforts of very detailed
experiments tolerable and the presentation of the results concise. Note that, apart from
the extensive experiments presented below, we have used more graphs than these eight
ones in further experiments with BUBBLE-FOS/C and its competitors. These additional
results confirm the general trend and are therefore omitted here.

The choice of the metrics used for comparing different programs or algorithms plays a
major role for the evaluation, too. This choice is certainly based on the application for
which the graph partitioners are employed. Since we focus on numerical simulations, we
do not only consider the edge-cut (EC). As Hendrickson has pointed out [Hend 98], the
number of boundary nodes (BN, bnd) is a more accurate measure for the communication
within numerical solvers than the edge-cut. Note that the edge-cut is the summation
norm of the external edges (ext) divided by 2 to account for counting each edge twice. For
some applications not only the summation norm ¢; of ext and bnd over all k partitions
has to be considered, but also the maximum norm /. This is particularly the case for
parallel simulations, where all processors have to wait for the one computing longest.
That is why we record ext and bnd in both norms. Their formal definition is given in
Section 2.1.1. If tables are used for presenting results, the best value in each category is

usually written in bold font.

4.7.2.2. Finding suitable Loop Parameters

Our first objective is to determine suitable values for the number of loop iterations within
BUBBLE-FOS/C. The iteration count of the outer loop (maxOuter), during which the

assignment to subdomains and the center computation take place, is abbreviated by AC|
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Figure 4.7.: Number of external edges and boundary nodes of BUBBLE-FOS/C solutions
in different loop parameter settings AC/CO for ¢;- and ¢y-norm, averaged
over all k.

while the iteration count of the inner loop (maxInner) is abbreviated by CO, which stands
for consolidation. In Figure 4.7 we compare the number of external edges and boundary
nodes in the summation (left) and the maximum norm (right) for four different iteration
number combinations. The results are averaged over all graphs in the benchmark set and
all k € {4,8,12,16,20}. A detailed presentation of the results for each k can be found
in Tables A.1 and A.2 in the appendix. The average running times show no surprising
behavior; they range from 7.87s for AC2/COL1 to 18.14s for AC3/CO3.

Regarding the quality, the combination of three outer and three inner loop iterations
generally yields the best results. This is hardly surprising because this combination
also invests the highest amount of running time in our experiments. Observe that, in
particular in the maximum norm, the two other settings AC2/CO2 and AC3/CO2 are
hardly worse than the best one. It seems that in many cases AC3/CO2 computes a
partition close to a local optimum of BUBBLE-FOS/C. Thus, additional loop iterations

do not yield significant improvements.

4.7.2.3. Influence of Linear Solver and Virtual Vertex

Our most significant algorithmic modification to previous BUBBLE-FOS/C implementa-
tions (the latter are based on our work with Schamberger [Meye 05, Meye 06c, Scha 06])
is the introduction of AMG for solving the linear systems within FOS/C procedures and
for providing a multilevel hierarchy. To judge how running time and quality are affected
by this modification, we compare it to our previous implementation of BUBBLE-FOS/C,
which uses CG as linear solver and a multilevel coarsening based on matchings.

Figure 4.8 compares the solution quality achieved by both variants (with AMG and
with CQG) for the parameter combination AC3/CO2. The values shown in the respective
two leftmost columns are the external edges (EC/EE) and boundary nodes (BN) in both
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Figure 4.8.: Quality comparison (number of external edges and boundary nodes in both
norms) between the CG and the AMG version of BUBBLE-FOS/C (two
leftmost bars in each column) and between the use of FOS/C and FOS/V
as similarity measure (two rightmost bars), averaged over all k.

relevant norms (¢; and /), averaged over all graphs in the benchmark set and over all
k. A more detailed presentation of these data can be found in Table A.3 in the appendix.
These results indicate that the solution quality of both BUBBLE-FOS/C variants are
very similar, although they show a slight advantage to the CG solver combined with a
multilevel matching hierarchy. A possible reason for this small discrepancy could be the
different coarsening approaches of AMG and the matching algorithm. While the matching
algorithm is adjusted such that star-like subgraphs (few nodes with high weights and
many nodes with low weights) are avoided, AMG coarsening often produces these stars.
Sometimes such subgraphs can be disadvantageous for multilevel partitioning [Moni 04]
and future work could address this issue in connection with AMG. Yet, the loss in quality
is well below 1% and therefore rather small. In comparison the running time improvement
of the AMG version is significant. As shown in Figure 4.9 by the two topmost bars in
each row, the running times are reduced by a factor between 4 and 5.

Also note that the speedup, whose detailed numerical values are displayed in Fig-
ure 4.10, between the two methods increases when k becomes larger. These data show
that the introduction of AMG within BUBBLE-FOS/C constitutes a considerable accel-
eration for the benchmark graphs. Hence, as expected, the much more involved imple-
mentation of a multigrid solver — compared to the relatively simple CG — pays off. Since
the convergence rate of the CG solver, unlike that of AMG, depends on the system size,
one can expect that the speedup achieved by AMG increases for larger graphs. One has
to consider, however, that solving large linear systems with AMG is not inexpensive,
either. This stems from the fact that the hierarchy construction can become very costly
because large matrices have to be multiplied with each other.

So far, both variants of BUBBLE-FOS/C using the different linear solvers are run

without making use of the virtual vertex notion described in Section 3.5. It is also of
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Figure 4.9.: Running time (in seconds) comparison between different linear solvers in
BUBBLE-FOS/C (two upper bars in each row) and between FOS/C and
FOS/V (two lower bars) as similarity measure within BUBBLE.

interest how the running time and the quality are affected if the virtual vertex scheme
FOS/V is used instead of FOS/C. Therefore, we have repeated our experiments, but this
time the virtual vertex and a higher CO iteration count is used. The FOS/V parameter
¢ is fixed to 1/512 because the main conclusions drawn from the results are very similar
if ¢ is not varied too much from this setting. (Recall that ¢ should not be chosen too
large or too small.) Note that AMG and CG are influenced very similarly w.r. t. running

time and quality in our experiments, so that details of the latter are omitted.

As shown in Figures 4.9 and 4.10, the

. ) Speedup Speedup
speedup by using the virtual vertex no-
o . k | AMG vs CG | FOS/V vs FOS/C
tion is comsistently around 23% for ¢ =
. . 4 4.01 1.23
1/512. Interestingly, the quality of the re-
sults is also improved for the summation i 451 122
. . 12 4.64 1.23
norm. This can be concluded from Fig-
. . 16 4.74 1.23
ure 4.8 (and Table A4 in the appendix),
which shows the quality values in the two 20 4.87 1.24

rightmost bars of each category for both ’ avg ‘ 4.67 ‘ 1.23 ‘
AMG approaches, with FOS/C and with
FOS/V. On the other hand, for the max-

imum norm a slight decrease in solution

Figure 4.10.: Running time speedups ob-
tained by using AMG instead
of CG (left) and FOS/V in-

uality is also apparent.
ety PP stead of FOS/C (right).

In summary AMG and FOS/V yield a
running time improvement with a factor of about five to six compared to our previous

work with Schamberger, while the decrease in solution quality is negligible.
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Table 4.2.: Comparison of BUBBLE-FOS/C using with KMET1S and JOSTLE for ¢;-norm
and k = 16, detailed for each graph.

KMETIS JosTLE BuBBLE-FOS/C

Graph EC | bnd EC | bnd EC | bnd
airfoil1 551.2 | 550.6 || 541.2 [ 537.2 || 5558 | 5569
crack 1251.8 | 1231.1 || 1182.4 | 1160.4 | 1220.0 | 1197.6
whitacker _dual || 640.2 | 1271.6 | 624.9 | 12302 || 591.2 | 1149.2
biplane 822.8 | 14032 | 779.5 | 14088 || 8133 | 1241.0
stufel0 712.8 | 1167.7 | 769.0 | 1280.0 || 7480 | 939.8
altrd 7759.7 | 4551.5 || 7608.8 | 4457.2 | 7214.1 | 4206.6
shock9 1247.6 | 2099.4 || 1129.4 | 1980.0 | 1169.9 | 1766.3
wing 4611.6 | 8277.7 || 4639.4 | 83155 || 47658 | 7521.4

Table 4.3.: Comparison of BUBBLE-FOS/C using with KMETIS and JOSTLE for /o-
norm and k = 16, detailed for each graph.

KMETIS JOSTLE BuBBLE-FOS/C
Graph ext ‘ bnd ext bnd ext ‘ bnd
airfoill 97.4 48.9 104.4 50.9 105.3 52.6
crack 221.6 | 108.7 211.7 | 103.5 209.6 103.0
whitacker dual 110.1 | 108.9 108.5 | 107.5 101.8 97.2
biplane9 150.2 | 125.8 1474 | 1311 144.6 103.1
stufel0 130.6 | 106.9 172.2 | 141.7 111.8 69.2
altr4 1291.3 | 373.8 || 1260.8 | 362.9 || 1110.2 | 318.7
shock9 223.3 | 186.5 204.9 | 1791 200.1 143.1
wing 790.9 | 6974 902.7 | 781.5 713.3 559.0

4.7.2.4. Comparison to METIS and Jostle

Next, we evaluate our algorithm BUBBLE-FOS/C against METIS (more precisely
KMETIS 4.01 [Kary 98b], which implements direct k-way KL/FM improvement) and
JosTLE 3.02 [Wals 07a] because these two are state-of-the-art KI./FM partitioners. They
are probably also the most popular general purpose sequential graph partitioners due to
their speed and adequate quality. Both are used with default settings, so that their opti-
mization objective is the edge-cut. We allow all programs to generate partitions with at
most 3% imbalance, i.e., whose largest partition is at most 3% larger than the average
partition size. To specify this is important because a higher imbalance can result in
better partitions. Note that SCOTCH [Pell 07b] is not included in our presentation since
our experiments show that KMETTIS delivers on average comparable or better results and
is significantly faster. As can be expected for any recursive bipartitioning approach like

SCOTCH, the loss in quality becomes particularly significant for larger k.

!The variant of METIS which yields shorter boundaries than KMETIS is not chosen because its results
show much higher edge-cut values than KMETIS.

20ur experiments indicate that release 3.0 yields the same or comparable results as the latest release
3.1.
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Figure 4.11.: Partitioning quality of JOSTLE and BUBBLE-FOS/C relative to KMETIS
in the ¢1-norm for different k.

Relative No. of Ext. Edges Relative No. of Boundary Nodes
1.080 1.080
1.060 1.060
1.040 1.040 —
1.020 — 1.020 —
1.000 — 1.000 —
0.980 — 0.980 —
0.960 — 0.960 —
0.940 — 0.940 —
0.920 — 0.920 —
0.900 — 0.900 —
0.880 — 0.880 —
0.860 — 0.860 —
0.840 — 0.840 —

4 8 12 16 20 avg 4 8 12 16 20 avg

[ kMetis
[l Jostle
[l Bubble-FOS/C

Figure 4.12.: Partitioning quality of JOSTLE and BUBBLE-FOS/C relative to KMETIS
in the f-norm for different k.

The first comparison between BUBBLE-FOS/C — here represented by the parameter
setting AC3/CO3 with virtual vertex and ¢ = 1/512 — and its KL/FM counterparts
shows the detailed average values for each graph obtained in ten runs on the benchmark
set for k = 16. Table 4.2 displays the results in the summation norm, while Table 4.3
shows them in the maximum norm. The summation norm results reveal that BUBBLE-
FOS/C is able to compute partitions with the best total number of boundary nodes
in most cases. There is no clear winner w.r.t. the edge-cut, but JOSTLE obtains most
best values (four out of eight). In the maximum norm BUBBLE-FOS/C is clearly the
best. Except for the smallest graph airfoill, it attains the best results regarding both the
number of external edges and boundary nodes.

In order to estimate how the quality of the three programs relates to each other over a
variety of values for k, we adopt the following evaluation scheme. For all values obtained
for a graph (time, external edges, and boundary nodes) we use the results of KMETIS
as standard of reference. This means that each value of the other two partitioners is
divided by the respective value of KMETTS. Then, for each k and each metric, an average

value of these ratios over all graphs is computed. These average values are displayed in
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Figure 4.13.: Partitioning the shock9 graph into 16 subdomains. The solution of METIS
(left) shows jagged boundaries and elongated subdomain parts. JOSTLE’s
partition (middle) has somewhat smoother boundaries. BUBBLE-FOS/C
(right) computes a solution where the shape-optimizing approach becomes
apparent in the nearly convex subdomains.

Figures 4.11 (summation norm) and 4.12 (maximum norm) in the rows for the respective
k. The column termed avg contains the respective average value of the averaged ratios.
In this way each graph enters the averaging process equally to ensure a fair comparison.

Clearly, our algorithm BUBBLE-FOS/C is able to compute the partitions with the
shortest boundaries, both in the summation and the maximum norm. It is also able
to compute partitions with the fewest maximum external edges except for k = 4. The
traditional edge-cut metric is best optimized in most cases by JOSTLE, but BUBBLE-
FOS/C is not far behind. It is therefore possible to conclude from these data that the
partitions computed by BUBBLE-FOS/C show the best overall properties compared to
its competitors, at least for k € {8,12,16,20}. The largest improvement can be seen for
the maximum number of boundary nodes, the metric which probably measures best the
communication costs of parallel numerical solvers. In this metric our algorithm is 13.2%
better than KMETIS and 16.3% better than JOSTLE.

Regarding the shape of the subdomains, Figure 4.13 makes some of the major differ-
ences between the three programs visible. In particular KMETIS computes solutions with
jagged boundaries. JOSTLE on the other hand seems to aim at rectangular shapes, which
is a good idea for edge-cut minimization. For short boundaries, however, convex subdo-
mains are preferable. Although not all subdomains in the solution of BUBBLE-FOS/C
are convex, the shape optimizing approach based on FOS/C is certainly recognizable.
We are also interested in the diameter and connectedness of the subdomains. BUBBLE-
FOS/C computes partitions with disconnected subdomains only in 3.5% of our test runs.
In contrast to this, KMETIS and JOSTLE perform considerably worse, as they produce
disconnected subdomains in 11.3% and 14.5% of the cases, respectively. To compare the
diameter of the partitions, we evaluate the experiments for a medium number of subdo-
mains, £ = 12. Both in the summation norm and the maximum norm, BUBBLE-FOS/C
computes solutions whose diameter is the smallest on average. Compared to JOSTLE,
which is on average better than KMETIS in this category, our algorithm performs 4.6%
(£1) and 10.5% (£~ ) better, respectively.
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Table 4.4.: Comparison of BUBBLE-FOS/C in different parameter settings for ¢;- and
{so-norm and k = 2.

AC2/CO2 AC3/CO2 AC3/CO3
EC | bnd; | bnds EC | bnd; | bnd EC | bnd; | bndy
\ 2495.54 \ 1630.39 \ 904.33 H 2390.70 \ 1573.83 \ 849.96 H 2525.43 \ 1652.86 \ 910.11 \

The running times of the three programs are clearly in favor of KMETIS and JOSTLE.
KMETIS requires only approximately two hundredth of a second to partition the graphs
of the benchmark set. The other KL /FM partitioner JOSTLE is about 2.5 times slower
than KMETIS, which is still very fast. Compared to these state-of-the-art libraries,
BuBBLE-FOS/C requires much more running time. The values range from 5.58s for
k =4 to 23.81s for kK = 20. Although we have sped up the algorithm by a factor of more
than five compared to its previous state without AMG and the virtual vertex, it is still

up to three orders of magnitude slower than its established competitors.

4.7.2.5. Influence of &

Our experiments indicate that BUBBLE-FOS/C in its current form is not very suitable
for bipartitioning, i.e., when k = 2. A comparison of the data displayed in Table 4.4
with the values in Tables A.1 and A.2 reveals surprising results: For k = 2 the average
edge-cut values in the summation norm ¢; are much higher than for £ = 4 and even
higher k. Since the number of external edges typically increases with increasing k, this
observation leaves only the conclusion that BUBBLE-FOS/C does not work properly
for K = 2. One conjecture why this is the case is that the FOS/C load distributions
interfere with each other in an unfavorable manner. Apparently, there are large regions
with nodes whose load values for the two different subdomains are quite close together.
Insofar, the decision to which subdomain they are assigned, is close to arbitrary. This
effect of ambiguous affiliations is much smaller for larger k because such indecisive regions
are smaller. Another reason might be a bad placement of the initial center nodes. While
for large k it is likely to find a suitable initial spot for some centers, this might not be
the case for bipartitioning. The iterative BUBBLE learning process is then not able to
recover from such a situation.

Also, the number of subdomains k influences the running time of BuBBLE-FOS/C.
Inspecting Figure 4.9, we see that this influence is close to linear because doubling k also
(nearly) doubles the running time of BUBBLE-FOS/C. The reason for this is simple.
If k is doubled, the number of linear systems to be solved is also doubled. Since this
part of the algorithm is by far the most expensive one, the total running time is also
nearly doubled. Such an effect cannot be observed with our two competitors. METIS
and JOSTLE require hardly more time for partitioning if k is increased. That is why the
running time gap between our algorithm and the other two libraries becomes larger and

larger with increasing k. A remedy for this problem is of high interest, see Section 4.8.1.
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Figure 4.14.: Three artificial data sets with intertwined clusters and their clusterings with
the BuBBLE-FOS/C algorithm.

4.7.3. Graph Clustering

As the generic BUBBLE-FOS/C algorithm is meant for clustering into subdomains of
arbitrary size, we would also like to know how it performs on clustering problems. For
highly unstructured clustering problems such as random graphs the AMG hierarchy con-
struction shows some deficiencies. The operator complexity, i.e., the total number of
edges in the complete hierarchy, becomes quite high, which results in high running times.
More importantly, the clustering quality is not satisfactory. That is why we have used
the CG solver with the matching hierarchy instead. To aim at high-quality solutions,
the operations ComputeCenters and AssignPartition are called alternately four times
on each hierarchy level. All instances used in this section are rather small and should be
seen as a proof-of-concept. For more clustering results refer to Section 5.4.3.

Recall that geometric k-means separates clusters only by hyperplanes. The reason is
that the cluster affiliation is determined by the closest cluster center, so that essentially a
Voronoi partition [Berg 97, Ch. 7| of the input is generated. When FOS/C is used instead
of Euclidean distances, this limitation is no longer valid. This is shown in Figure 4.14.
The cluster affiliation of the points in these three artificial 2D datasets are given as usual
by their colors. Due to the intertwined structure of the clusters, k-means would fail
for these instances, while BUBBLE-FOS/C works very well (except for a few debatable
affiliations in the rightmost example).

Note that geometric datasets have to be transformed into edge-weighted graphs first, so
that BUuBBLE-FOS/C can work with them adequately. This transformation is begun by
computing a minimum spanning tree between the input points to ensure connectedness
of the graph. Additionally, for each node v, edges to the three nodes closest in Euclidean
space to v are inserted. The weight of an edge e = {u, v} is chosen proportional to e™*,
where = denotes the distance of v and v in Euclidean space. Hence, long edges get an
extremely low weight. Note that we are aware of other algorithms, which can solve such
simple planar instances equally well (e. g., geometric ones that build a minimum spanning
tree and delete long edges [Page 74]). We have included these simple 2D examples nev-
ertheless to show the differences one experiences, when the same algorithmic framework,

but different distance/similarity measures are used.

The second experiment consists in a simple community detection problem. It uses
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Figure 4.15.: Clustering of Zachary’s karate club graph. (Note that, although the edges
are drawn in a directed manner, the graph is in fact undirected.)

Table 4.5.: Normalized cut values of BUBBLE-FOS/C and GRACLUS on randomly gen-
erated graphs.

NCut (GRACLUS) || NCut (BuspLE-FOS/C) |
n k=6 [ k=8 [k=12 || k=6 | k=8 | k=12
211 11 0.328 | 0.641 | 0.704 || 0.367 | 1.042 0.771
212 11 0.323 | 0.626 | 0.678 || 0.370 | 1.404 0.868
213 11 0.331 | 0.639 | 0.796 || 0.511 | 1.674 0.882
24 | 0.335 | 0.641 | 0.716 || 0.477 | 1.296 1.218

the real-world example of Zachary’s karate club |Zach 77| with 34 nodes that form 2
clusters. The correct clustering is known and shown in Figure 4.15 by different colors
(light orange and blue). Our algorithm computes a clustering that nearly matches the
correct one. Only the node labeled with 3 and shown in both colors (and framed in
red) should belong to the blue cluster, but is put into the other one. Note that this is
not necessarily a flaw in the heuristic because node 3 has eight edges in total, four are
incident to the first and four to the second cluster.

Another group of experiments is performed on randomly generated undirected graphs
following the idea of planted partitions [Jerr 98]. Such clustered graphs are generated by
specifying the cluster sizes and probabilities for intra- and inter-cluster edges a priori.
Then, the edges of the graph are determined by these probabilities.

In this set of experiments we have switched off the sSMOOTH operation. On these
highly irregular instances it worsens the solution instead of improving it. We compare
the results of BuBBLE-FOS/C to those of GRACLUS. Recall that the latter has been
implemented by Dhillon et al. [Dhil 07] and is based on their kernel k-means algorithm
enriched with additional features such as local search.

The twelve clustering problems used here have four different graph sizes n €
{210 211 212 9131 and three different cluster numbers k € {6,8,12}. For our experi-
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ments we determine the cluster sizes randomly such that the largest one is at most twice
as large as the smallest one. Then, for each node we draw the number of intra- and
inter-cluster edges from two different normal distributions. Finally, the corresponding
edges are added uniformly at random. The parameters of the normal distributions for
creating the planted partitions are as follows: pint = 4.3, 0int = 1.1, tlezt = 0.3, 0zt = 0.3
for k=6 and k =12 and pint = 5.1, 04t = 1.3, pext = 0.45, 0epr = 0.35 for k = 8, where
Wint 1S the mean intra-cluster degree, et the mean inter-cluster degree, and oy, and
Oept their respective standard deviations. This set of parameters results in node degrees
between 1 and 12.

The results of these instances are shown in Table 4.5 and compare the normalized
cut values of BUBBLE-FOS/C to those of GracLUS (KKM). GRACLUS is consistently
better than BUBBLE-FOS/C. Our algorithm has particular problems with the instances
that have eight clusters, probably due to the higher inter-cluster degree. Moreover, the
running time of BUBBLE-FOS/C is about two orders of magnitude slower than that of
GRACLUS. The latter requires less than 0.1s on these small instances. To summarize,

our graph clustering experiments with BUBBLE-FOS/C and GRACLUS show:

e It may happen, in particular when k becomes larger, that (at least) one cluster
center is not placed correctly in the beginning. Hence, one planted cluster contains
more than one center, while another planted cluster contains no center. The itera-
tive learning process of BUBBLE-FOS/C seems to have difficulties to recover from

such a misplacement, leading to solutions with an inferior normalized cut.

e A careful inspection of the clusterings reveals that if the normalized cut is not
extremely higher than that of GRACLUS, the result computed by BUBBLE-FOS/C

is a reasonable clustering that deviates not very much from the correct one.

e The comparison to GRACLUS shows that BUBBLE-FOS/C is significantly slower
(similar to the speed gap experienced during the partitioning experiments compared

to METIS and JOSTLE) and also worse in terms of quality.

More experiments on planted partitions with comparisons of BUBBLE-FOS/C to GRr-
ACLUS and our other algorithm DIBAP can be found in Section 5.4.3. There, we also
motivate the use of GRACLUS and give more details on the algorithmic settings used in
the experiments.

It is clear that the speed of BUBBLE-FOS/C needs to be improved to be competitive
— just like for graph partitioning. But unlike before, for graph clustering it is necessary
to improve the quality, too. In particular a mechanism to escape from bad initial center

placements is necessary.

4.7.4. Parallelism

Recall that our experimental data including the running time have been assembled on

a dual-core machine using POSIX threads in our implementation of BuBBLE-FOS/C.

87



CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

One might argue that a comparison to the sequential libraries METIS, JOSTLE, and
GRACLUS is biased since they do not make use of threads. We would like to make a
case against this argumentation. First, all programs are run on the same hardware.
Most modern standard desktop processors come with at least two cores nowadays and
the number of cores will increase over the years due to technological progress. Hence,
it is highly advisable to exploit all of these computational capabilities in order to fully
utilize this progress. To our knowledge, however, no thread-parallel versions of METIS,
JOSTLE, and GRACLUS exist. A reason for this could be the inherent sequential parts
within the KL/FM heuristic. Parallelism by threads would probably deliver only small
running time improvements. Moreover, automatic parallelism offered by the compiler
is enabled for all programs except GRACLUS, so that the KL/FM partitioners profit
somewhat from the parallel capabilities of the hardware.

Our experiments with the benchmark graphs of Table 4.1 show that BuBBLE-FOS/C
attains a speedup of about 1.3 on the employed dual-core processor. This means that the
threaded implementation is a factor of 1.3 faster than the non-threaded version. On our
dual-core machine, this speedup corresponds to an efficiency of 0.65. Although we have
gained a 30% improvement over the serial version, such low values are hardly satisfactory.
Based on our data, we believe that this behavior stems from thread and cache conflicts.
A thread is not likely to finish the complete solution phase of its assigned linear system.
Instead, the CPU scheduler replaces it by another thread to ensure fairness. Next time
the thread is restarted, all its data need to be loaded from memory into cache. This is a

relatively expensive operation, which may prevent a better speedup.

4.8. Load Balancing and Partial Graph Coarsening

It has been described that AMG is in principle an optimal linear solver regarding its
computational complexity and that we have achieved a significant speedup compared to
the related implementation of BUBBLE-FOS/C, which is based on a CG solver and a
matching hierarchy. Nevertheless, our algorithm is still very time-consuming compared to
established partitioning libraries. This is already true for medium-sized graphs with some
tens of thousands of nodes. It even worsens for larger graphs. In a distributed-memory
implementation the parallel speedup for graphs of medium size would be limited due
to the unfavorable computation-communication ratio. An additional drawback for large
graphs is the quite expensive AMG hierarchy construction. Moreover, the construction
algorithm is not easy to implement efficiently for distributed memory parallelism. Usage
of the CG version would not improve the speed because the convergence rate of the CG
solver typically slows down with the system size. Hence, a straightforward parallelization
of BUBBLE-FOS/C for a large number of processors would hardly be able to achieve
totally satisfactory running times. Consequently, to increase the practical relevance of
our algorithm as a repartitioner for balancing the load in adaptive numerical simulations,

additional techniques for its acceleration are required.
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The major reason for the high running time compared to the state-of-the-art is the
global approach of BuBBLE-FOS/C. Although its multilevel scheme provides a rea-
sonably good initial partition on each level, the improvement process is not localized.
Instead, the k linear systems of each FOS/C procedure are solved on the whole graph.
Observe, however, that nodes in regions far away from the source set are very unlikely
to become its new center or to belong to the corresponding subdomain. Thus, for these
regions it should be sufficient to work with an approximation of them with fewer nodes

and edges to reduce the complexity.

4.8.1. Partial Graph Coarsening

The locality observation is exploited in the following to speed up the computations
under certain circumstances. We will describe the method developed with Scham-
berger [Meye 06¢| only briefly here. As will be shown, it is only successful in certain
cases. Yet, we do not want to forgo its description since its idea of localization is very
valuable. It is also helpful to understand the alternative coarsening method we propose
afterwards.

Assume that & FOS/C procedures have to be solved on a large input graph. First, a
multilevel hierarchy based on approximate maximum weighted matchings is built. The
procedures are then projected onto the coarsest level of this hierarchy, where they are
solved by a standard solver such as CG. Figure 4.16 (left) illustrates a solution for one
linear system on the coarsest level. Its highest load values (red color) can be found
around the originating source node. Since the coarsening process has preserved the
general graph structure, the load distributions on the lowest level can be expected to
have a similar shape as the load distributions on the original graph. Hence, we are able
to use them to determine the most relevant parts of the solution. To do this, the solutions
are interpolated back onto the original graph. There, the nodes are classified based on
their interpolated FOS/C loads into the three categories high, medium, and low.

The next step is performed independently for each linear system. Based on the cat-
egories, a new graph is assembled with different hierarchy levels of the original graph.
Regions with high loads are carried over uncoarsened. In contrast to this, for regions
with low values their approximation of the coarsest hierarchy level is used. Regions with
medium loads are represented by a medium level of the hierarchy. Since this results
in a graph with some coarsened and some uncoarsened areas, the method is termed
partial graph coarsening (PGC). The original linear system is then projected onto the
partially coarsened graph and solved. An example of a partially coarsened graph is given
in Figure 4.16 (middle). The colors represent an FOS/C load distribution that has been
calculated with such a varying accuracy.

The solution of the system with varying accuracy is then evaluated for
AssignPartition or ComputeCenters in the usual manner. Depending on how strongly

the graph has been coarsened, this modified solution process is reduced in complexity
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Figure 4.16.: Illustration of partial graph coarsening: Left: Vertex loads (colors from high
to low: red, orange, yellow, green, cyan, blue, black) of one linear system
on the lowest level. Middle: Final solution of the linear system on a graph
assembled with varying accuracy. This solution has been computed for the
pink subdomain in the displayed partition (right). Cut edges of the initial
partition are not drawn completely.

compared to the generic one, although k additional (but small) linear systems have to
be solved. Particularly for large k the additional work performed is supposed to pay off
because the largest linear systems are reduced in size. By this means, the approximately
linear scaling in k of the running time can be expected to be removed or at least eased.
Note that for each of the k linear systems a different part of the graph is important.
Hence, for each part different hierarchy levels contribute to the respective solutions.

In a distributed parallel setting, the graph and also the linear systems with varying
accuracy are already stored in a distributed fashion over the processors. Hence, it would
be natural to employ a parallel solver acting on these data in a distributed fashion. With
PGC, however, another approach is viable. Since each linear system of varying accuracy
is smaller than the original input graph, it can be sent to one of the processors. More
precisely, each processor sends its part of the linear system ¢ to processor i (0 < i < k).
Then, processor ¢ solves linear system ¢ with a sequential linear solver, which does not
require any communication. Afterwards, the computed load values are sent back to the
processors of their originating parts. This approach is termed domain sharing. Its main
difference to the standard approach is that only two large communication operations
take place, before the solution process and afterwards, instead of three communication

necessary within each iteration of a standard parallel CG solver.

4.8.2. Load Balancing Experiments

To evaluate PGC, load balancing experiments have been conducted with an MPI parallel
implementation of BUBBLE-FOS/C on a cluster system with 200 computing nodes, each
of which has two Intel Xeon 3.2 GHz EM64T processors and 4 GB RAM. In our tests
we have used only one processor per node and for parallel communication the Scali MPI
implementation via the Infiniband interconnection. The test graphs are a number of
different 2D and 3D FEM graphs of different sizes. The task to be performed by BUBBLE-
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FOS/C is to repartition the initial partitions of these graphs. Note that the number k
of subdomains matches the number of processing nodes used, k € {8,16,32,64}. The
initial partitions are provided by the partitioning library PARTY [Moni 04].

Two different versions of our algorithm are compared to evaluate the partial graph
coarsening approach. Both perform the same number of outer and inner loop iterations
within the BUBBLE-FOS/C algorithm. The first version is the standard algorithm for
graph repartitioning without partial graph coarsening and without any multilevel hier-
archy. It uses a standard parallel CG solver with a distributed graph data structure.
The new scheme employs the partial graph coarsening approach, where the coarsening
is done with approximate maximum weighted matchings. It also uses the domain shar-
ing communication scheme. Several important parts of the implementation are due to
Schamberger [Meye 06¢, Scha 06]. That is why we address only important outcomes

regarding PGC, which can be summarized as follows.

e All repartitioning tasks for graphs with up to half a million nodes and four million
edges can be performed within two minutes with the respective fastest algorithm

version.

e Doubling k also results in doubling the number of processors in our experimental
setting. Yet, since the communication overhead increases with larger k, the running

time of the generic algorithm still becomes larger with increasing k.

e If £k < 16, most subdomains are still close to the respective source sets. Thus, the
partial graph coarsening process is not very effective, as most subdomains are not
coarsened at all. The additional work invested is not compensated in these cases,

so that for small k the generic approach is still faster than PGC.

e With alarge number of subdomains (k > 32) it is likely that a large fraction of them
can be coarsened quite well with PGC. Indeed, as anticipated, the experiments
show a significant running time improvement for PGC with domain sharing in
these settings. While the running time of the generic algorithm generally becomes
slower if k is increased, the new algorithm version speeds up with increasing k.
Thus, the new method is able to alleviate the problem of the approximately linear
dependence of the running time on k. Moreover, it is up to 4 times faster than
the generic approach. Both PGC and the domain sharing communication pattern

contribute to this acceleration.

e Regarding the partitioning quality and migration volume, BUBBLE-FOS/C tends
to achieve better results than the parallel version of METIS. Compared to parallel
JOSTLE, similar quality values and migration costs can be observed. Clearly in

favor of BUBBLE-FOS/C is the shape of the subdomains and their connectedness.
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4.8.3. A Possible Enhancement by Adaptive Graph Coarsening

The experimental results sketched above show that partial graph coarsening combined
with domain sharing is successful for larger values of k. One of the main problems of
BuBBLE-FOS/C, its linear dependence on k, can be weakened in this way. It is, however,
for k around 16 and smaller slower than the generic approach without a multilevel hier-
archy. Such settings do not allow a significant coarsening with PGC. More importantly,
considering how many processors are involved in the computations, PGC with domain
sharing is still quite time-consuming compared to state-of-the-art load balancers such as
the parallel versions of METIS and JOSTLE.

The major reason for the moderate acceleration of the expensive generic BUBBLE-
FOS/C by partial graph coarsening and domain sharing is that the localization of the
approach is not always successful. Only if large regions can be identified as “far away”
from the source set, the main part of the computational work of the solver is concentrated
around the nodes of the source set. Yet, a more aggressive coarsening scheme is viable.
Observe that very accurate FOS/C loads are only needed in those areas that are highly
relevant for the assignment of nodes to subdomains or for computing a new center node.
For AssignPartition these areas are the boundaries of the subdomains to be computed,
while for ComputeCenters it is the region around the new center. In all other areas,
the load values are so different that a correct choice of subdomains/centers can be made

without a high precision.

Our new proposal of an adaptive graph coarsening scheme works as follows: The first
part consisting of uniform coarsening and solving the linear system projected onto the
coarsest level is equivalent to the related approach PGC. After that, the determination
of the relevance of parts is modified significantly. For each node one computes based on
its k FOS/C load values how often it may be merged during the matching coarsening
process. Nodes whose two (or more) highest load values are close together must not be
merged and therefore remain uncoarsened. The larger the difference between the highest
and the other load values of a node v is, the more often v may take part in the coarsening
process. Then, the matching algorithm used before, but modified to take the maximum
level number of nodes into account, is employed to compute an approximation of the
linear system. The relevance and therefore the maximum number of valid coarsening
steps for a node change only slowly with its distance from the most important parts.
That is why this approximation by adaptive coarsening is characterized by smoother

transitions in the graph resolution.

Experiments with a draft implementation of the latter scheme indicate that the main
idea of coarsening irrelevant parts without modifying the final partitioning result works
quite well. The resulting linear systems are significantly more coarsened than with the
related PGC approach, but still usable for BUBBLE-FOS /C. However, this new coarsen-
ing scheme is more complicated than the one used before. A thorough implementation

and integration into BUBBLE-FOS/C has therefore not been conducted yet.
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4.9. Discussion

The integration of FOS/C (or FOS/V) into the BuBBLE framework yields an iterative
graph clustering/partitioning algorithm, which has the nice theoretical property to always
converge towards a local optimum. On vertex-transitive graphs the algorithm computes
connected subdomains, and on the two-dimensional torus it even finds the globally best
solution (neglecting discretization errors). Our implementation with FOS/V and alge-
braic multigrid, both as linear solver and as a means for multilevel hierarchy construction,
is about five to six times faster than related BUBBLE-FOS/C implementations. Experi-
mental comparisons against the cutting-edge partitioning libraries METIS and JOSTLE
can be summarized briefly as follows: BUBBLE-FOS /C’s solutions attain fewer boundary
nodes and often also a smaller edge-cut, in particular in the maximum norm. Yet, due to
the high running time (BUBBLE-FOS/C is two to three orders of magnitude slower than
the state-of-the-art), its practical relevance for high-performance simulations is doubt-
ful. For graph clustering problems not only the running time of BUBBLE-FOS/C is a
problem. Also the solution quality needs to be enhanced to be competitive to the kernel
k-means based program GRACLUS.

The running time problem is partially addressed by two coarsening schemes (partial
and adaptive graph coarsening). They follow the idea to coarsen irrelevant areas of
the graph to solve linear systems only on an approximation of them. For large k this
results in computations that are mostly concentrated on limited local areas of the graph.
Yet, despite a more complicated algorithm, a large gap to the state-of-the-art libraries
regarding running time remains. Insofar it is of utmost interest to design a faster and
simpler algorithm. It should retain the main ideas of BUuBBLE-FOS/C by using diffusive
arguments for partitioning and of adaptive graph coarsening by a local improvement
approach which concentrates on the respective most relevant graph regions. Such an

algorithm is presented in the next chapter.
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5. Faster Diffusion-based Partitioning

We have seen in the previous chapter that our algorithm BUBBLE-FOS/C, which com-
bines disturbed diffusion with the BUBBLE framework, computes high-quality graph par-
titions with good shapes (whereas its clustering quality needs to be improved). Its
disturbed diffusion scheme FOS/C is, however, quite expensive to compute compared
to established partitioning heuristics — even after the introduction of our acceleration
techniques. Consequently, the running time of our partitioning algorithm is too slow for
real practical value. Although the global approach of solving many linear systems on
the whole graph has been identified as BUBBLE-FOS/C’s major drawback, the proposed
coarsening approaches for a stronger localization have been only partially successful.
While multigrid coarsening becomes very slow for large graphs, partial graph coarsen-
ing is only effective for a large number of subdomains, and adaptive graph coarsening
requires a very complex and challenging implementation, particularly in parallel.

To overcome these limitations, we design in this chapter a fast and truly local algorithm
to improve partitions generated in a multilevel process. It is simple to implement and
exploits the observation that, once a reasonably good solution has been found, alterations
during a local improvement step take place mostly at the subdomain boundaries. Like
BuBBLE-FOS/C, the new algorithm TRUNCCONS is also based on disturbed diffusion,
where the disturbance is realized by truncating the diffusion process after a small number
of iterations. This truncation allows for a concentration of the computations around the
subdomain boundaries, where the changes in subdomain affiliation occur. Since also no
linear systems need to be solved, no algebraic multigrid hierarchy has to be constructed.
Instead, a much faster matching algorithm can be used to create a multilevel hierarchy
for a successive improvement of the solution.

The initial solution on the coarsest hierarchy level of our new method is provided
by BUBBLE-FOS/C. In fact, we can choose among several BUBBLE-FOS/C solutions
to continue only with the best one. We will see later on that such a selection process
alleviates problems that come from bad initial center placements. The combination of
BUBBLE-FOS/C and TRUNCCONS is called DIBAP and, with some problem-specific

extensions, performs very well in practice, as we show by extensive experiments.

5.1. A New Local Improvement Method: TruncCons

Recall from the previous chapter that the Consolidation operation is used to determine

a new partition IT from a given one (cf. Figure 4.4 in Section 4.5). That is why it can be
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seen as a mixture of AssignPartition and ComputeCenters. As shown in Algorithm 5
(lines 2-9), one Consolidation operation performs the following independently for each
partition m.: First, the source set S is initialized with 7. and the nodes of 7. receive an
equal amount of high initial load, e. g., n/|S|. In contrast to that, the other nodes’ initial
load is set to a low value, e.g., 0 (lines 3-5). Then, a disturbed diffusive method is used
to distribute this load within the graph. In the previous chapter we have used FOS/C,
but this should be avoided due to its high running time — unless the graph is small.

To restrict the computational effort to areas close to the partition boundaries, we use
here a small number ¢ of FOS iterations (cf. Section 2.2) for distributing the load (lines
6-7). Hence, the disturbance comes from stopping the diffusive scheme long before conver-
gence is reached. Although it corresponds to Schamberger’s discarded FOS/L [Scha 06,
p. 73], we call this diffusive method ¢runcated first order diffusion scheme (FOS/T). It

can be written more formally as:

Definition 5.1. (FOS/T) Given a graph G = (V, E,w), a source set ) # S C V, and
suitably chosen constants o > 0 and 1 € N. Let the initial load vector w(®be defined as

n
[w(o)]v _ m DS Sa
0 otherwise .

Then, the final load of a node v is obtained by ¢ FOS iterations. More precisely, [wgp)]v =
MY - wé(’)]v, where M is the (possibly edge-weighted) diffusion matrix of G. This load

situation can be computed by iterative load exchanges, too:

W], = [V, —a > we(fw D], = [wlV],) for 1 <t <.
{u,v}eFE

After the load is distributed with FOS/T for all k£ subdomains, we assign each node v
to the subdomain it has obtained the highest load from (lines 8-9). This completes one
Consolidation operation, which can be repeated several times to facilitate sufficiently
large movements of the subdomains (cf. the for loop in line 1 of Algorithm 5). We
denote the number of repetitions by A and call the whole method TRUNCCONS (truncated
diffusion consolidations).

Note that the BUBBLE operations AssignPartition and ComputeCenters are very
problematic in connection with FOS/T, as indicated by Schamberger’s related work on
shape-optimizing graph partitioning [Scha 04a, Scha 06].! He has used FOS/T as a struc-
tural similarity measure for these other two BUBBLE operations.? Such an approach does

not work well. For AssignPartition and ComputeCenters the choice of the number

!That is why we have chosen not to call our new method BusLE-FOS/T.

*Note that in his early work [Scha 04a] on shape optimization Schamberger calls the AssignPartition
operation Consolidation. Later, he uses Consolidation as the name for an operation that is a
mixture of AssignPartition and ComputeCenters [Scha 06]. We have decided to adopt the latter
nomenclature.
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Algorithm 5 TRUNCCONs (M, k, II, A, ¢) — 11
on forT=1to A

/* Begin Consolidation */
02 parallel for each 7. do
/* Initial load */
03 Se = 7e; we = (0,...,0)T

04 for each v € S. do
05 [Wely =n/|S]
/* ¢ FOS iterations */
06 fort=1to ¢y do
o7 we = M - w,

/* assign nodes to subdomains */
08 parallel for each v € V do
09 (v) = argmaxce{lw.’k}[wc}v

/* End Consolidation */

10 return II

of FOS iterations is crucial. It is difficult to determine and should neither be too small
nor too large in order to obtain meaningful load distributions. Hence, as pointed out by
Schamberger himself [Scha 06, p. 73|, in such a setting it is extremely doubtful if FOS/T
can provide a practically useful non-balanced load distribution based on node connec-
tivity. For the improvement of reasonable partitions with Consolidation, however, we
will see that FOS/T is an excellent choice, which provides meaningful load distributions

derived from disturbed diffusion.

5.1.1. Connection to Random Walks

To understand why one can expect TRUNCCONS to work well, consider the following
analogy. Recall that the stochastic diffusion matrix M can be seen as the transition
matrix of a random walk. Let S := 7. for some ¢ € {1,...,k}, so that the source set
is one of the current subdomains. Hence, we can assume that for each node v € S we
have one random walk starting on v. Then, the final load on node u is proportional
to the sum of the probabilities for each of these random walks to reach v € V after ¢
steps. Since random walks need relatively long to leave dense regions, each node should
be assigned to the subdomain with the highest load. With this subdomain it is most

densely connected w.r.t. to the random walk notion described above.

5.1.2. Notion of Active and Inactive Nodes

Observe that during a TRUNCCONS operation only certain nodes really take part in the
iterative FOS/T load exchange of Definition 5.1.

Definition 5.2. A node v € V is called active in iteration ¢ > 0 of an FOS/T procedure
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if it has a neighbor u € V with the property: [w*~Y], # [w*~Y],. Nodes that are not

active are called inactive.

All load exchanges of an inactive node result in a flow of 0 on its incident edges. Hence,
they do not change the load situation at all and can be ignored. How to detect (most)

inactive nodes, can be seen easily:

Observation 5.3. Let V(t)

inact

C V be the set of inactive nodes in iteration t > 0 of the
FOS/T procedure invoked for a subdomain w. during a TRUNCCONS operation. Then, a
node v € V is member of Viga)wt if for every boundary node u € 7., we have: dist(v,u) >

t —x, where x =0 for v € V\m. and x = 1 for v € 7.

This observation might not give away all inactive nodes since there might be nodes that
are closer to the boundary and have only neighbors with the same load by coincidence.
However, one can expect these cases to be very rare and most likely the vast majority of
inactive nodes are covered.

So, by keeping track of active and inactive nodes using the above observation, we are
able to ignore nearly all load exchange computations that do not change the respective
loads on the incident nodes. In this way, the diffusive process of partition improvement is
restricted to local areas close to the subdomain boundaries. The complexity of FOS/T is
therefore greatly reduced in practice, although the effectiveness of the reduction depends
on several factors. These are the iteration number ¢, the number of subdomains &, and
the size and the structure of the graph. We can avoid more computations if ¢ and k are

small and the graph is large and sparse than in the opposite case.

5.1.3. Discussion of TruncCons

TRUNCCONS retains the basic ideas of BUBBLE-FOS/C. It uses a disturbed diffusion
scheme with a random walk connection to assign to each node a load value for each sub-
domain. This similarity makes it easy to integrate into our work, both conceptually and
implementation-wise. As TRUNCCONS does not require the solution of linear systems,
AMG is not required. Hence, for providing a multilevel hierarchy we can use approximate
maximum weighted matchings instead. Using such matchings is advantageous because
they are much faster to compute for large graphs than the hierarchy construction of
AMG, whose computation of the coarse matrices involves matrix-matrix multiplications.

It should be added that for small ¢ (in our experiments we mostly use a value of
1 < 25) and sufficiently large graphs it is almost certain that TRUNCCONS requires
fewer iterations (of such simplicity) than a linear solver like CG for BUBBLE-FOS/C.
Compared to AMG and its cycles, the amount of operations per iteration is greatly
reduced. Thus, savings in the running time can be expected also versus the faster linear
solver. Compared to the partial graph coarsening (PGC) method of Section 4.8, our
new algorithm always achieves a true localization of the computational effort around the

subdomain boundaries. In contrast to this, PGC succeeds in this only for large k.
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Algorithm 6 GENERICDIBAP (G = (V, E), k, II, thrsh, level, A, ¢) — 11
o1 if |V| < thrsh then
02 IT = MurTiLEVELBUBBLE-FOS/C (G, k, II)
03 else
04 [G’, II'] = MATCHINGCOARSEN(G, II)
05 II" = GENERICDIBAP (G, k, II', thrsh, level + 1, A, ¢)
06 IT — INTERPOLATE(II')

or I = TRUNCCONS (M(G), k, II, A, ¢)

s if (level == 0) then
09 IT = SmooTH(II)

10 return II

Another advantage of FOS/T and TRUNCCONS is its simplicity. The load exchanges
via the edges are very basic operations. Apart from the CPU, very fast dedicated hard-
ware such as general purpose graphics processors can be employed for these computa-
tions. An implementation based on this idea is part of future work. The simplicity
makes TRUNCCONS also more appealing than adaptive graph coarsening (Section 4.8).
While the latter also restricts the computational effort to limited areas, it is much more
complicated to implement.

Observe that local improvements by TRUNCCONS are inherently parallel processes. As
with BUBBLE-FOS/C, computing the final disturbed diffusion load can be performed
independently for each subdomain. Moreover, the determination of the maximum load
for affiliating the nodes to subdomains is independent for each node. Even within each
FOS/T iteration the load updates are independent for each node (if additional memory
is used). Hence, both shared-memory and distributed-memory parallelizations can be
expected to deliver noticeable accelerations.

In summary, one can say that our new algorithm makes Schamberger’s ideas [Scha 04a)
robust, practicable, and fast. Moreover, although showing some differences, it can be
viewed as a k-way extension of the diffusive part in Pellegrini’s work on shape optimiza-
tion [Pell 07a] mentioned in Section 1.3.4. Now that our truly local scheme for improving
partitions based on disturbed diffusion is available, we need to specify how to use it in
the context of our previous work. Of course, the outcome is supposed to be much faster
than BUBBLE-FOS/C. At the same time, the new algorithm needs to retain or improve
BUBBLE-FOS/C’s solution quality. The solution to this problem is addressed in the

subsequent sections.

5.2. The (Re)Partitioning and Clustering Algorithm DibaP

5.2.1. Combined Hierarchies, Combined Algorithms

For the integration of TRUNCCONS with BUBBLE-FOS/C we follow a well-known prac-

tice in computer science. Two algorithms that solve the same problem at different speeds

99



CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

=9 =
Z90 =

Q= o=2

n Q9 &

o® =9 G

2 o 233

ERNEN -
iy

3) Initial centers and Bubble-FOS/C

Figure 5.1.: Sketch of the combined multilevel hierarchy and the corresponding partition-
ing algorithms used within DIBAP.

can be combined as follows. The slow algorithm (here BUBBLE-FOS/C), which has a
favorable property (here it delivers a high solution quality — at least for (re)partitioning),
is used for computing a solution to a coarse representation of the input. Afterwards,
this coarse solution is fed into a faster algorithm (here TRUNCCONS), which uses it as
a starting point to solve the original problem. A similar combination concept described
by Jaja in his textbook [JaJa 92, Ch. 2.6] is called accelerated cascading. In our case
this combination yields an efficient multilevel graph partitioning algorithm that we call
DIBAP (Diffusion-based Partitioning).

As shown in Figure 5.1, the fine levels of DIBAP’s multilevel hierarchy are constructed
by approximate maximum weight matchings (1). Once the graphs are sufficiently small,
we switch the construction mechanism to the more expensive AMG coarsening (2). This
is advantageous because, after computing initial centers and a partition with BUBBLE-
FOS/C (3), we use the latter algorithm also as the improvement strategy on the next few
hierarchy levels (4). Since AMG is employed to solve the occurring linear systems, such
a hierarchy needs to be built anyway. On the finer parts of the hierarchy constructed by
matchings, the faster TRUNCCONS is used as the local improvement algorithm (5). A
formal definition of DIBAP is displayed as Algorithm 6. The initial call assigns 0 to the
parameter level. Implementation details and additional operations such as balancing
are discussed in Section 5.3.

Note that it is questionable whether TRUNCCONS can be adapted to (re)partition
or cluster graphs equally well without using BUBBLE-FOS/C before. Our experiments
indicate that the subdomain shapes and other important properties of the solutions suffer

in quality if TRUNCCONS is used too early in the multilevel process or even exclusively.
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The combination of the algorithms is therefore necessary to obtain speed and quality.

5.2.2. Computational Complexity

For sufficiently large graphs it is clear that the running time of DIBAP is dominated by
that of TRUNCCONS. The reason is simply that the size of the hierarchy level on which
the algorithm switch takes place can be fixed with a constant, the parameter thrsh. In
that case the BUBBLE-FOS/C part of DIBAP requires nearly always the same amount
of time for the same amount of subdomains, regardless of the input graph size.

Within TRUNCCONS one performs for each subdomain A times ¢ FOS iterations. In
the (unrealistic) worst case, for each edge of the graph a load exchange takes place in
every iteration. Hence, in this case the running time is proportional to k- A -1 - |E].
The affiliation of nodes to subdomains requires n - k operations. If A and 1 are seen as
constants, the asymptotic running time is bounded by O(k - |E|). The linear dependence
on the factor k — instead of an additive penalty for increasing the number of subdomains
— can be seen as the major drawback in the running time of TRUNCCONS. Furthermore,
the product A -1 might be quite large, depending on the user choice. On the other hand,
due to the notion of (in)active nodes, the number of operations actually performed will
be much smaller in practice. Since the savings depend on many factors that differ from
input to input, a theoretical worst-case analysis is not likely to predict the final running
time accurately. That is why we also refer to our experiments in Section 5.4.1.5, which

essentially confirm our theoretical result of O(k - |E).

5.2.3. Multiple Coarse Solutions

The use of BUBBLE-FOS/C for computing an initial solution within the multilevel frame-
work provides an interesting opportunity for avoiding bad initial partitions. Recall that
in BUBBLE-FOS/C it is possible to select the most suitable set of initially chosen centers
from a sample. A similar idea of choosing from multiple solutions can be pursued here.
Before starting multilevel partitioning with TRUNCCONS, we call BUBBLE-FOS/C a
number of times and keep only the best of the solutions. Since the graph on the coarsest
TRUNCCONS level (the finest BUBBLE-FOS/C level) is relatively small, BUBBLE-FOS/C
returns a solution quite fast. Experiments in Section 5.4.1 reveal several positive effects
of this sampling approach. Which metric is used to determine the best solution, depends

on the application and can be chosen by the user.

5.3. Problem-specific Adaptations and Implementation
Details

As before, for graph partitioning and repartitioning the subdomain sizes have to meet
specified balance constraints. Regarding this aspect, another advantage of DIBAP (re-

spectively TRUNCCONS) becomes apparent. Like BUBBLE-FOS/C, it computes k load
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values for each node based on a diffusive process. This similarity of the algorithms allows
for an easy adaptation of the balancing methods described in the previous chapter for
their use with TRUNCCONS. The same applies to the operation SMOOTH, which is used
on the finest level to straighten the subdomain boundaries of the final solution.

Whenever DIBAP is used for repartitioning, one part of its input is an initial partition.
We can assume that this partition is probably more unbalanced than advisable. It
might also contain some undesirable artifacts. Nevertheless, its quality is not likely to be
extremely bad, as it has emerged from a previous partition of good quality. It is therefore
reasonable to improve the initial partition instead of starting from scratch. If DIBAP is
called, although the balance of the partition is below the imbalance threshold, we perform
TRUNCCONS with very small A and 9 (e.g., both are set to 3) on the input graph only.
This is relatively inexpensive, but eliminates possible artifacts. It also improves the
quality of the subdomains somewhat, while it generates hardly any migration costs. In
the other case, which means that rebalancing is really necessary, the multilevel paradigm
comes into play again. A matching hierarchy is constructed until only a few thousand
nodes remain in the coarsest graph. The initial partition is projected downwards the
hierarchy onto the coarsest level. This projection is done in the following manner. Recall
that, due to the hierarchy construction by matchings, a node v in the graph of level ¢ + 1
has one or two parent nodes in the graph of level ¢. If all parent nodes are in the same
subdomain 7, v is also assigned to m.. Otherwise, v is assigned to the subdomain of the
parent node with the higher weight, where ties are broken arbitrarily. On the coarsest
level the graph is partitioned with BUuBBLE-FOS/C, starting with the projected initial
solution. Going up the multilevel hierarchy recursively, the result is then improved with
TRUNCCONS and interpolated to the next level.

It may happen that the matching algorithm has hardly coarsened a level, in order to
avoid star-like subgraphs with strongly varying node degrees. This limited coarsening
yields two very similar adjacent levels. Local improvement with TRUNCCONS on both
of these levels would essentially result in the same work being done twice. That is why
in such a case TRUNCCONS is skipped on the higher level of the two (which is processed
after the lower one in the improvement phase).

Keeping track of active nodes within TRUNCCONS is currently done with an array, in
which we store for each node its status. This could be possibly improved by a faster data

structure that considers only the active nodes, such as a set based on hashing.

5.4. Experimental Results

There are three major parameters that control the quality and running time of DIBAP.
The first one is the switch threshold thrsh, denoting the size of the hierarchy level at
which the switch between TRUNCCONS and BUBBLE-FOS/C takes place. On the next-
lower level, an initial solution is computed by multilevel BUBBLE-FOS/C and afterwards
refined by TRUNCCONS. In our experiments we have used different values for thrsh,
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Table 5.1.: Graphs used in the experiments of Section 5.4.1.

’ H Size H Degree H ‘
’ Graph H V] ‘ |E| H min ‘ max ‘ avg H Origin ‘
tooth 78,136 452,591 3 39 11.585 || FEM 3D
rotor 99,617 662,431 125 | 13.300 || FEM 3D
598a 110,971 | 741,934 26 | 13.372 | FEM 3D
ocean 143,437 409,593 6 5.711 FEM 3D
144 144,649 | 1,074,393 26 14.855 || FEM 3D
wave 156,317 | 1,059,331 44 | 13.554 || FEM 3D
mldb | 214,765 | 1,679,018 40 | 15.636 || FEM 3D
auto 448,695 | 3,314,611 37 | 14.774 | FEM 3D

NG IS YJCH) S [ S RS

ranging from 1,000 to 10,000. The actual choices for the presented data depend on
the application and are specified in the upcoming sections. It turns out that for graph
clustering the thrsh value should often be smaller than for graph (re)partitioning. This
probably results from the limited clustering solution qualities obtained with BUBBLE-
FOS/C in random graphs.

The hard- and software environment for the graph partitioning experiments with
DiBAP is the same as in Section 4.7. To exploit the parallelism offered by the dual-core
processor, we have parallelized the computation of the disturbed diffusion loads within
TrUNCCONS by POSIX threads. More precisely, for each subdomain one thread is re-
sponsible for computing the FOS/T load values. As discussed in Section 4.7.4, threads
are not available for the programs that serve as standard of reference.

The test graphs in this chapter are much larger to better reflect typical input sizes
for the utilized hardware. These graphs are a mixture of real-world instances, generated
data that imitate real-world problems, and randomly generated graphs. Such a variety
avoids the concentration on problems which are too similar to each other. Again, the
graph partitioning and clustering experiments are repeated ten times for each graph.
The repartitioning experiments are conducted only once per graph sequence. Since each
sequence consists of at least 46 graphs, random influences are averaged over the whole
sequence. As before, running times are given in seconds (unless stated otherwise) and

best values within a table row are written in bold font.

5.4.1. Graph Partitioning

The graphs used in the graph partitioning experiments of this chapter are displayed in
Table 5.1. They have been chosen because of their public availability from Chris Wal-
shaw’s well-known graph partitioning archive [Sope 04, Wals 07b|. Furthermore, they
are the eight largest graphs therein w.r.t. the number of nodes and represent the gen-
eral trends in our experiments. Hence, they constitute a good sample and also model
large enough problems from three-dimensional numerical simulations (598a¢ and m14b

are meshes of submarines and auto of a car [Huan 06]).
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Table 5.2.: Parameter settings and resulting running times in seconds of DIBAP for par-
titioning the “average benchmark graph”. Left: Influence of multiple coarse
solutions. Right: Influence of loop parameters A and 1.

‘ Setting H A ‘ Y ‘ #coarse ‘ Time (s) ‘ ‘ Setting H A ‘ Y ‘ #coarse ‘ Time (s) ‘
la 10 | 14 1 16.52 1b 6 9 3 7.53
2a 10 | 14 3 18.73 2b 10| 9 3 10.53
3a 14 | 19 1 36.51 3b 10 | 14 3 18.73
4a 14 | 19 3 39.21 4b 14 | 19 3 39.21

In the experiments presented in this section, BUBBLE-FOS/C is used for all hierarchy
levels with less than 5000 nodes. Larger levels are processed with TRUNCCONS. BUBBLE-
FOS/C performs two iterations of ComputeCenters and AssignPartition, followed by
two Consolidations, and uses FOS/V as similarity measure (¢ = 1/512). The AMG

multilevel coarsening is stopped when the graph has at most 48 - £ nodes.

5.4.1.1. Influence of Multiple Coarse Solutions

First of all, we would like to evaluate how strongly multiple coarse solutions computed
by BUBBLE-FOS/C increase the average partitioning quality and if the running time is
affected severely by this. That is why we have conducted a set of experiments where the
loop parameters A and v are fixed, but the number of coarse solutions are varied.

Table 5.2 (left) displays the parameter settings and the resulting running times for
partitioning the benchmark set with DIBAP. The data are highly aggregated, as they are
averaged over all graphs, different numbers of k (k € {4, 8,12, 16,20, 32}), and all ten runs
on each graph. In order to compare different parameter settings, such an aggregation is
helpful since it reveals the trends within the data generated by the same basic algorithm.
The quality obtained by DIBAP in the four settings is shown in Figure 5.2. The first
two columns show the aggregated values for the external edges and boundary nodes in
the summation norm, respectively. Then, in the next two columns, the data for the
maximum norm follow. Note that for presentation reasons the values in the first three
columns have been divided by the factor shown in the z-axis.

The parameter settings la and 2a differ from each other in the number of initial
coarse solutions computed by BUBBLE-FOS /C (one for the first one, three for the second
one). This holds similarly for the settings 3a and 4a. It is of course not surprising that
the average solution quality is improved by choosing the best out of more than one
initial solutions, as can be seen from the data. Similarly, that the most time-consuming
parameter setting achieves the best quality meets our expectations. Yet, it is remarkable
that the average quality of setting 2a is consistently better than of setting 3a, although
much less computational effort has been invested. This indicates that selecting a very
good initial partition is also very helpful for saving running time. It is much cheaper than

additional TRUNCCONS operations, as can be seen by the large running time difference
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Figure 5.2.: Solution quality obtained by DIBAP in the four different parameter settings
of Table 5.2 (left).

between settings 2a and 3a. One can expect that the gain derived from multiple solutions
declines with an increasing number of initial solutions. While three might not be the
best choice, our experiments are only meant to show the general trend rather than an
optimal value.

Another positive influence of having multiple choices is the reduced variance in the
data. For example for k£ = 12, selecting the best of three initial solutions reduces the
variance in the edge-cut by an average factor of more than six. Hence, the results are not
only better on average, but also more reliable in the sense that they deviate less from
the mean. That is why we use in the following experiments the best w.r.t. the edge-cut
of three initial solutions generated by BUBBLE-FOS/C.

5.4.1.2. Different Loop Parameters A and v

Before we compare our new algorithm to other ones, we should find out which parameters
A and v work well. For this we have selected four different combinations of them, as can
be seen in Table 5.2 (right). Their solution quality is depicted in Figure 5.3, whose three
first data columns are scaled for presentation reasons. Again, the most expensive version
attains the best quality in all four metrics. Yet, setting 3b with A = 10, ¢ = 14 is not too
far behind, in particular not for the number of boundary nodes in the maximum norm
(BN ). Considering that it requires less than half of the running time (cf. the right part
of Table 5.2), it should be regarded as a good alternative in practice.

It becomes also apparent that a sufficiently large 1 is of really high importance. While
the values on the partition quality of settings 1b and 2b do not deviate from each other
very much, the increase of ¢ from the second to the third setting results in a large quality
improvement. (Of course, this also involves a large increase in running time.) If one is
interested in a fast and only reasonably good solution, one can choose rather small values

of A and . To obtain a really high quality, however, ¢ = 9 is apparently not enough.
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Solution Quality
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Figure 5.3.: Solution quality obtained by DIBAP in the four different parameter settings
of Table 5.2 (right).

Table 5.3.: Quality and running time of BUBBLE-FOS/C and DIBAP for three different
pairs of graphs and k.

BUBBLE-FOS/C DiBaP

Graph | k EC | bnds | Time (s) EC | bnds | Time (5)
tooth | 8 || 12821.4 [ 1287.0 | 4329 [ 12394.4 [ 1222.4 | 4.87
144 | 16 || 41208.8 | 1400.1 | 22267 | 39431.0 | 14841 | 20.15
m14b | 32 || 75354.8 | 13475 | 820.08 | 68611.2 | 1292.9 | 50.51

For really excellent results the loop parameters have to be increased significantly, as it

has been done in settings 3b and 4b.

5.4.1.3. Comparison to Bubble-FOS/C

In order to show that DIBAP constitutes a substantial acceleration, we compare its
running time to that of BUBBLE-FOS/C. We also include some of the quality measures
to estimate how the partitioning results differ. A complete run of BUBBLE-FOS/C
on all large benchmark graphs would be extremely time-consuming. Since the general
trend is always very similar, we have restricted our detailed experiments to a subset of
the benchmark graphs and subdomain numbers k. Our presentation is restricted to a
representative sample of this subset, see Table 5.3. It displays the edge-cut, the maximum
number of boundary nodes, and the running time for BUBBLE-FOS/C and DIBAP. For
these experiments BUBBLE-FOS/C is called with parameters AC3/CO2 and ¢ = 1/512,
while DIBAP uses the setting A = 10, ¢ = 14.

The results show that DIBAP is a factor of about 9 to 16 faster than BUBBLE-FOS/C.
As could be expected, the speed gain increases with the size of the graph and k. Moreover,
the edge-cut is also better with DIBAP, while the maximum boundary length is sometimes
better, sometimes worse than with BuBBLE-FOS/C. Since the values for the omitted
two quality measures are in favor of DIBAP, we conclude that in most cases it improves

the partition quality compared to BUBBLE-FOS/C, and it is significantly faster.
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Table 5.4.: Comparison of DIBAP with KMETIS and JOSTLE for ¢;-norm and
k = 16, detailed for each graph.
KMETIS JOSTLE Di1BAP (A =10, ¢ = 14)

Graph || EC bnd EC [ bnd EC | bnd
tooth 20408.1 | 11744.9 || 19619.0 | 11257.4 || 18724.8 10745.6
rotor 24118.6 | 12808.7 || 23898.4 | 12676.0 || 22819.6 12063.7
598a 29400.6 | 15255.1 || 28679.7 | 14841.1 || 27057.4 13859.0
ocean 10159.9 | 14876.4 || 9106.7 | 14929.7 9530.7 13387.0
144 42857.5 | 20533.5 || 41795.1 | 20016.8 || 39431.0 18736.3
wave 48101.1 | 24899.8 || 48504.9 | 25076.7 || 44788.4 23130.7
ml4b 49207.8 | 22749.4 || 48234.5 | 22197.5 || 44708.7 20409.8
auto 87855.9 | 44293.3 || 90075.6 | 45234.3 || 80298.8 40282.3

Table 5.5.: Comparison of DIBAP with KMETIS and JOSTLE for /s.-norm and

k = 16, detailed for each graph.

KMETIS JOSTLE DiBaP (A =10, ¢ = 14)

Graph ext bnd ext ‘ bnd ext ‘ bnd
tooth 3771.2 | 1069.7 4191.6 | 1171.1 3256.2 904.6
rotor 4255.4 | 1134.7 4451.6 | 1158.8 4189.2 1100.2
598a 5438.7 | 1391.5 5529.0 | 1398.0 4696.6 1195.2
ocean 1874.5 | 1359.4 1808.1 1472.8 1758.2 1213.4

144 7074.2 | 1679.2 7327.3 | 1740.1 6227.0 1484.1
wave 7800.4 | 2022.3 7980.0 | 2056.7 7217.1 1862.5
ml4b 8853.5 | 2020.8 9077.8 | 2050.5 7553.1 1723.9
auto 15541.8 | 3917.8 || 16631.9 | 4099.2 || 14686.7 3673.8

5.4.1.4. Comparison to METIS and Jostle

Analogous to the previous chapter, we compare our new partitioning algorithm DIBAP
(A = 10, ¢» = 14, unless stated otherwise) to the state-of-the-art libraries METIS and
JOSTLE. (Recall that Pellegrini’s SCOTCH is not included because our experiments have
shown that SCOTCH is slower than KMETIS and does not deliver better solution qualities
compared to KMETTS.) The first set of results is displayed in Tables 5.4 and 5.5, for which
we have chosen k = 16. The values of the quality measures obtained on this representative
sample are shown for each graph in detail; in the summation norm in Table 5.4, in the
maximum norm in Table 5.5. Except for one value, the edge-cut of the graph ocean,
This is

insofar remarkable as DIBAP even obtains almost always better edge-cuts, although the

DiBAP is able to achieve the best values in all metrics and for all graphs.

underlying diffusive algorithms do not explicitly optimize this metric like KMETIS and
JosTLE using KL /FM.

Similar as before, we also present the aggregated quality values for different k. Fig-
ures 5.4 (summation norm) and 5.5 (maximum norm) show the average quality of parti-

tioning the benchmark set relative to the values obtained by KMETIS. In both figures,
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Figure 5.4.: Partitioning quality (£;-norm) of JOSTLE and DIBAP relative to KMETIS
for different k.
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Figure 5.5.: Partitioning quality (fsc-norm) of JOSTLE and DIBAP relative to KMETIS
for different k.

i.e., for both norms, our algorithm DIBAP obtains all possible best values for the differ-
ent values of k. On average it beats KMETIS by 6.6% (edge-cut), 7.8% (sum of boundary
nodes), 7.2% (maximum external edges), and 8.4% (maximum boundary nodes), respec-
tively. Versus JOSTLE, these relative values are even a little bit better. Recall that if
DIBAP is allowed to perform more iterations, e.g., A = 14 and ¥ = 19, its average
solution quality can be even further improved (cf. Figure 5.2).

To provide the reader with a visual impression on how DIBAP’s results differ from
those of KMETIS and JOSTLE, we include a 12-partitioning of the 2D graph t60k (also
available from Walshaw’s archive), see Figure 5.6. The partitioning computed by DIBAP
(A = 12, ¢ = 18) has not only fewer cut edges and boundary nodes in both norms
than the other libraries. Its partition boundaries also appear to be smoother and the
subdomains have a smaller maximum diameter (165, compared to 253 (KMET1S) and

179 (JOSTLE)). A similar trend w.r.t. the diameter can be found in an 8-partitioning
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(a) KMETIS (b) JOSTLE (c) DiBAP-long

Figure 5.6.: Partitionings of the graph t60k (|V| = 60005, |[E| = 89440) into k = 12
subdomains with the three partitioners.

(a) KMETIS (b) JosTLE (c) D1BAP

Figure 5.7.: Partitionings of biplane9 (|V| = 21701, |E| = 42038) into k = 8 subdomains
with the three partitioners.

of the smaller graph biplaned, see Figure 5.7. Also note the again smoother boundaries
produced with DIBAP and that both other libraries generate a partition with two large
disconnected node sets.

A detailed comparison of the diameter values for kK = 16 on our benchmark graphs of
Table 5.1 reveals similar results. DIBAP is on average 4.4% (¢;-norm) and 5.9% ({oo-
norm) better than JOSTLE, respectively. On KMETIS the improvements are slightly
larger. Since disconnected subdomains (whose diameter is set to co) do not enter into
these comparisons, the real values of KMETIS and JOSTLE tend to be worse than those
computed and used for the comparison above. Our algorithm yields disconnected sub-
domains in only 2.1% of the experiments, while KMETIS exhibits a more than doubled
ratio of 4.4%. Much worse is JOSTLE, which produces disconnected subdomains in 22.3%
of the runs.

It must be noted that the gain in solution quality obtained with DIBAP versus KMETIS
and JOSTLE is clearly bought with a higher computational effort. This becomes clear in
Table 5.6, which shows the average running time in seconds for partitioning the bench-
mark set in different numbers of subdomains. The two established libraries are known to

be very fast, and DIBAP is not able to keep up with their speed. To provide an average
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Table 5.6.: Average running times in seconds on an Intel Core 2 Duo 6600 processor for parti-
tioning the benchmark graphs with KMETIS, JOSTLE, and DIBAP (A = 10, ¢ = 14).

k ‘ KMETIS | JOSTLE ‘ DiBaP

4 0.33 0.62 6.65
8 0.34 0.70 | 11.56
12 | 0.35 0.77 | 15.98
16 | 0.36 083 | 20.18
20 | 0.37 0.89 | 24.30
32 | 0.39 1.04 | 3373

| avg | 0.36 081 | 1873 |

value derived from the experiments with different numbers of subdomains, one can say
that KMETIS is about 50 times faster than DIiBAP, JOSTLE 20 times.

This speed gap becomes particularly evident for larger k, which is mainly due to the
fact that —in contrast to KMETIS and JOSTLE — DIBAP scales nearly linearly with k, i.e.,
doubling k results in a nearly doubled running time. The linear scaling in k£ has already
been observed with BUBBLE-FOS/C. There, it has been alleviated by partial graph
coarsening. A similar idea might work here as well. If k is large (and each subdomain
relatively small), the movement of the subdomains is likely to be rather small. Hence,
a partial or adaptive coarsening of the active nodes depending on the distance to the
boundary would reduce the number of necessary computations. Future work will need
to show if this approach results in a similarly high solution quality.

On a closer look, however, the absolute running times of DIBAP are already quite
satisfactory. They range from a few seconds to a few minutes for our benchmark graphs.
Among other improvements, we plan for a distributed-memory parallelization of TRUNC-
Cons. If one assumes a parallel graph partitioning or load balancing scenario with &
processors for k partitions, one may divide the sequential running times of DIBAP by
k- e (where 0 < e < 1 denotes the efficiency of the parallel program). In such a case
its parallel running time on k processors can be expected to be at most a few dozens of

seconds even for large problems, which is certainly acceptable.

5.4.1.5. Influence of k and the Graph Size

Since BUBBLE-FOS/C apparently does not work well for k = 2, it is interesting to note
that this flaw does not hold any more for DIBAP. Experiments analogous to those of the
previous section reveal that DIBAP is in all four quality measures (external edges and
boundary nodes in both norms) one to three percent better than KMETIS and JOSTLE.
This is not as good as for higher k, probably because of the inferior starting solution
provided by BUBBLE-FOS/C. Yet, it is much better than our previous algorithm and
still improves on the competing libraries. This is all the more remarkable if one considers
that these libraries are based on the KL/FM heuristic, which has been developed initially

for bipartitioning.
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Table 5.7.: Scaled running times of DIBAP (A = 10, v = 14) on graphs from the mrng
series with k = 8 (left) and on the benchmark graphs from Table 5.1 (right).

| & | Time / k (5) | Time / £°% (5) |

[ Graph | |v| [ [E| | Time/|E[(s)]| [ 1.66 2.19
mrngl 257,000 505,048 19.07 8 1.45 2.19
mrng2 | 1,017,253 | 2,015,714 24.52 12 1.33 2.19
mrng3 | 4,039,160 | 8,016,848 15.63 16 1.26 2.2
mrngd | 7,533,224 | 14,991,280 17.28 20 1.22 2.21

32 1.05 2.11

To estimate how the graph size enters into the running time, an evaluation of DIBAP’s
non-aggregated running times on the benchmark graph shows that |F| is much more
important than |V|. For example, the graph ocean can be partitioned faster than the
graph tooth, although it has twice as many vertices. The reason for this is that it has
fewer edges.

Additionally, we have conducted experiments on four graphs from the mrng series (dual
graphs of 3D FEM meshes). These graphs have different sizes, but a similar structure.
Thus, the results are not biased on the graph structure. The smallest graph mrng! has
257,000 nodes, the largest one mrng4 around 7.5 million, see Table 5.7 (left). All four
graphs have a very similar average degree of just below four. Without going into detail
here, the experimental data confirm that the graph size enters approximately linearly
into the running time. As a representative example, running times for k = 8 are shown
in Table 5.7 (left). Note that the times are divided by |E| and are given in microseconds.
These values indicate that an increase in the graph size results in a very similar increase in
running time. The primary reasons for variations in the data are the partition placement
and the resulting number of (in)active nodes.

Table 5.7 (right) contains the average running times of DIBAP divided by k on the
eight benchmark graphs of Table 5.1. The division by the number of subdomains shows
that the influence of k is not totally linear. If one divides the running time by k8 (right-
most column), however, the results are nearly constant. While an extrapolation of these
data to asymptotic behavior may be shaky, we can still conclude that our experiments
mostly confirm our expectations drawn from theoretical considerations: DIBAP scales

approzimately linearly with |E| and k.

5.4.1.6. Best Known Edge-Cut Results

Chris Walshaw’s benchmark archive [Wals 07b], from which the test graphs of this sec-
tion have been taken, also collects the best known partitions for each of the 34 graphs
contained therein. More precisely, it stores partitions with the lowest edge-cut currently
known. At the moment results of more than 20 algorithms are considered. Many of these
algorithms are significantly more time-consuming than METIS and JOSTLE used in our

experiments above.
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With each graph 24 partitions are recorded, one for six different numbers of subdomains
(k € {2,4,8,16,32,64}) in four different imbalance settings (0%, 1%, 3%,5%). Using
DIBAP in various parameter settings (A < 15, ¢» < 20), we have been able to improve
more than 80 of these currently best known edge-cut values for six of the eight largest
graphs in the archive. More details can be found in Table A.11 in the appendix. The
complete list of improvements with the actual edge-cut values and the corresponding
partition files are available from Walshaw’s archive.

Note that none of our records is for & = 2. We conjecture that this is the case
because the starting solutions computed by BUBBLE-FOS/C are not really good for
k = 2. Moreover, these records are mostly held by expensive tailor-made bipartitioning
algorithms. Unless they are extended to k£ > 2, their high quality is not likely to sustain
for larger k£ because recursive bipartitioning typically yields inferior results compared to

direct k-way methods for large k [Simo 97].

5.4.2. Load Balancing by Repartitioning
5.4.2.1. Setting

The DIiBAP implementation used for the load balancing experiments includes the modi-
fications discussed in Section 5.3. Otherwise, it shares the same code basis as the graph
partitioning variant. Hence, unlike the parallel versions of METIS and JOSTLE, our load
balancer is not prepared yet for a distributed-memory parallelization. That is why we
concentrate in the following on the quality of the experiments and neglect their running
time. Comparing the latter is part of future work once an MPI parallel version of DIBAP
exists. Major deviations from the running time ratios observed in the previous section
on graph partitioning are not likely. On the other hand, we believe that DIBAP’s inher-
ent parallelism is able to reduce the speed gap between our algorithm and the KL/FM
partitioners somewhat.

In the previous section we have concluded that A = 10, ¢ = 14, and three coarse
solutions computed by BUBBLE-FOS/C are parameter settings that provide a very good
trade-off between running time and quality. That is why we choose these values for all
load balancing experiments. The other parameters for BUBBLE-FOS/C within DIBAP
are unchanged except for thrsh, which is set to 8,000, and for the abdication of the
virtual vertex notion (FOS/V).

Our benchmark set comprises two different sets of graph sequences. Twelve sequences
are made of 101 frames of small graphs (around 10,000 to 15,000 nodes each), which are
repartitioned into kK = 12 subdomains. The second set consists of three sequences of larger
graphs (between 110,000 and 1,100,000 nodes each), which are repartitioned into k& = 16
subdomains. While the sequence bigtric has 101 frames, the sequences bigbubbles and
bigtrace have only 46 frames. All graphs of these 15 sequences have a two-dimensional
geometry and have been generated to resemble applications from numerical simulations

such as fluid dynamics. (For more details on the generation process the reader is referred
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Figure 5.8.: Average partition quality (boundary nodes, external edges) in the ¢1- and
lso-norm for repartitionings relative to PARMETIS on twelve small (left)
and three large (right) graph sequences.

to Marquardt and Schamberger [Marq 05], who have provided the sequence data. A
visual impression of some of the data is given by Schamberger [Scha 06, p. 104f.]. The
graph of frame i+ 1 in a given sequence is obtained from the graph of frame ¢ by changes
restricted to local areas. As an example, some areas are coarsened, whereas others are
refined. These changes are in most cases due to the movement of an object in the

simulation domain and often result in unbalanced subdomain sizes.

In addition to the graph partitioning metrics used in the previous section, we are
here also interested in migration costs. These costs result from data that change their
processor after the repartitioning process. As described in Section 1.3.2, we count the
number of nodes that change their subdomain from one frame to the next as a measure
of these costs. One could alternatively assign cost weights to the partition objective and
the migration volume to evaluate the linear combination of both. Since these weights
depend both on the underlying application and the parallel architecture, we have not

pursued this further here.

One might wonder if a multilevel scheme is really needed for repartitioning. It could be
possible that improvements on the finest graph already suffice. Our experiments indicate
that a multilevel approach is indeed necessary in order to produce large enough move-
ments of the subdomains that keep up with the movements of the simulation. Partitions
generated by multilevel DIBAP are of a noticeably higher quality regarding the graph
partitioning metrics than by TRUNCCONS without multilevel approach. Also, using a
multilevel hierarchy results in very steady migration costs, which rarely deviate much
from the mean. The partitioner PARMETIS seems to follow a different migration strat-
egy. As we will see below, it tends to migrate either very many or very few vertices during
a sequence. It is not easy to say which strategy is definitely better, but our experiments

suggest clearly that PARMETIS yields higher migration costs than DIBAP.
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Table 5.8.: Average migration volume in the ¢;- and /.-norm for repartitionings com-
puted by PARMETIS, JOSTLE, and DIBAP on all fifteen graph sequences.

PARMETIS JOSTLE DiBaP
Sequence mig ‘ migeo mig: mige mig: migeo
bubbles 2460.7 992.1 1723.9 623.3 1775.0 586.0
change 284.4 132.1 330.9 130.4 352.2 119.8
circles 3200.5 1226.9 2128.6 799.9 2164.1 794.2
fastrot 4314.3 1616.5 3229.6 1211.9 3094.8 1236.9
fasttric 4648.1 1756.9 3466.6 1313.0 2940.0 1189.6
heat 299.8 121.9 286.5 106.9 561.1 189.8
refine 1.5 1.2 114.2 37.2 30.6 10.6
ring 3369.8 1305.9 2684.0 765.4 2584.1 692.2
rotation 2914.9 1288.7 2281.1 1055.0 2421.6 1028.4
slowrot 3928.4 1451.8 2774.7 961.4 2511.4 911.9
slowtric 3094.9 1213.5 2322.1 872.2 2165.1 878.5
trace 977.5 388.1 896.0 327.7 781.9 282.1
bigtric 27563.2 8972.4 20170.0 6762.8 22248.3 5938.8
bigbubbles || 197449.2 | 68469.0 || 157475.0 | 50356.1 182205.9 | 46730.8
bigtrace 71934.6 | 26166.9 61294.1 | 20127.8 90358.2 24898.8

5.4.2.2. Comparison to other Libraries

As before, we compare our new algorithm DIBAP to the state-of-the-art. For repartition-
ing these are the parallel versions of the graph partitioners METIS and JOSTLE. The
load balancing toolkit ZoLTAN [Cata 07|, whose integrated KL/FM partitioner is based
on the hypergraph concept, is not included in the detailed presentation. Our experiments
with it indicate that its current version 3.0 is not as suitable for our benchmark set of
FEM graphs. In the repartition setting ZOLTAN yields many disconnected subdomains
and very high migration costs, while the number of external edges and boundary nodes
are in general also higher than those of DIBAP, PARMETIS, and JOSTLE. If set to re-
fine, ZOLTAN migrates significantly less. At the same time the graph partitioning metrics
become even worse. Insofar we conclude that currently the dedicated graph (as opposed
to hypergraph) partitioners seem more suitable for this problem type.

The partitioning quality regarding the boundary nodes and external edges measured
in our experiments with PARMETIS, JOSTLE, and DIBAP are displayed in Figure 5.8,
where the values are shown relative to PARMETIS. Moreover, the values are averaged
over all small sequences on the left and over all large sequences on the right. (The
corresponding non-aggregated data values can be found in Tables A.5, A.6, and A.7 in
the appendix.) Additionally, we are interested in the migration costs, which are recorded
in both norms and detailed for each sequence in Table 5.8.

The averaged graph partitioning metrics show that DIBAP is able to compute the best
partitions on average. DIBAP’s migration volume is best for six (out of 15) sequences in

the summation norm. Compared to this, only parallel JOSTLE is competitive. Its par-
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Figure 5.9.: Number of migrating nodes (¢o-norm) in each frame of the slowrot sequence
for DIBAP (grey square), METIS (orange diamond), and JOSTLE (purple
triangle).

titions have a lower quality, but its migration volume is best for eight sequences in the
summation norm. In the maximum norm the results are not fundamentally different, but
DiBAP performs even better than before. Again, it attains the best partitions. More-
over, the migration volume is also best for ten sequences. As a representative example,
Figure 5.9 shows the migration volumes of each frame within the slowrot sequence in the
loo-norm. One can see the different strategies of the three programs. While JOSTLE and
DiBAP have a relatively constant migration volume, the values for PARMETIS fluctuate
extremely. In general, these outcomes concerning the solution quality confirm results
derived from experiments with BUBBLE-FOS/C [Meye 05]. The additional advantage of
DiBAP compared to BUBBLE-FOS/C is that the high solution quality can be exploited

in a much more reasonable amount of time.

The load balancing results described above lead to the conclusion that our algorithm
concentrates very much on getting good partitions. However, it seems to neglect the
second objective migration costs in some cases. This behavior is not totally surprising
since no explicit mechanisms for migration optimization are used within DIBAP. Such
mechanisms could be integrated if one finds in other experiments that DIBAP’s migration
costs become too high. Reducing A, the number of consolidations, could already avoid

large subdomain movements, depending on the input.

In summary one can say that, in almost all cases, DIBAP computes the best reparti-
tionings w.r.t. to the graph partitioning metrics. Concerning the migration volume, the
results are not as clear. The /1-norm values are slightly in favor of JOSTLE (eight times
best) compared to DIBAP (six times best). Yet, in the s-norm of the migration volume,

DiBAP is the clear winner again. The strategy of PARMETIS to migrate either very few
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or very many nodes does not seem to pay off on average since PARMETIS computes in

most cases the worst solutions.

The graph partitioning experiments give rise to the conjecture that an MPI parallel
version of DIBAP will be significantly slower than PARMETIS and JosSTLE. On the
other hand, input sizes with a few hundreds of thousands of nodes per processor can
be expected to be repartitioned within a few dozens of seconds or minutes by DIBAP,
which is certainly acceptable is most cases. We would like to stress the fact that a
high repartitioning quality is very important. Usually, the most time consuming parts of
numerical simulations are the numerical solvers. Hence, a reduced communication volume
provided by an excellent partition can be expected to pay off unless the repartitioning

time is extremely high.

5.4.3. Graph Clustering

To analyze DIBAP’s graph clustering capabilities, we have constructed random graphs
from two different models. Both follow the idea of the popular planted partition model de-
vised by Jerrum and Sorkin [Jerr 98], which has been motivated already in Section 4.7.3.
The first model we use is the same as the one used in Section 4.7.3 with BUBBLE-FOS/C,
only the graphs are larger here. Our second choice is the original model of Jerrum and
Sorkin, which is explained below. Besides DIBAP, BUBBLE-FOS/C (this time with AMG
hierarchy and solver for enhanced speed) is included in the second set of experiments to
test it on another model as well. Both our algorithms do not use the SMOOTH operation

because it would worsen the results on these highly irregular instances.

Again, the kernel k-means implementation GRACLUS |Dhil 07] serves us as a standard
of reference for evaluating our algorithms on graph clustering problems. Our choice is
motivated by the following considerations. First of all, GRACLUS is freely available and
has been designed for solving clustering problems that are also addressed by DIBAP
and BUBBLE-FOS/C. It also requires the specification of k£ and one of its optimization
objectives is the normalized cut. Moreover, it is very fast, computes solutions of good
quality, and can be regarded as state-of-the-art for optimizing the normalized cut criterion
in our graph clustering problems. We forbear from the use of an algorithm based on the
Euclidean Commute Time Distance. To compute these distances is very expensive due

to the pseudoinversion of the Laplacian and hardly tractable for large instances.

The DiBAP parameters that have been changed compared to the graph partitioning
experiments are the number of BUBBLE operations and the switch threshold thrsh. The
latter is set to 8,000 for model 2; thrsh = 4,000 is about 30% faster, but yields slightly
worse results. For model 1 we set thrsh to 2,000 only. Higher values result in a lower
solution quality. Consolidations within BUBBLE-FOS/C are not used. Thus, the number

of AssignPartition and ComputeCenters operations is increased to 4 each.
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Table 5.9.: Experimental results showing the normalized cut values computed by DIBAP
and GRACLUS for the graphs of model 1.

GRACLUS DiBAP
Graph size / k 6 8 12 6 8 12

o4 0.335 | 0.641 | 0.716 || 0.363 | 0.641 | 0.803
215 0.337 | 0.643 | 0.672 || 0.334 | 0.643 | 0.703
216 0.339 | 0.644 | 0.716 || 0.336 | 0.644 | 0.705
217 0.338 | 0.643 | 0.670 || 0.335 | 0.643 | 0.955
218 - 0.643 | 0.671 - 0.642 | 0.666

| average [ 0.337 [ 0.643 | 0.682 || 0.342 | 0.643 | 0.757 |

5.4.3.1. Random Graph Model 1

The graphs of model 1 in this section have between 2'* and 2'® nodes. Their planted par-
titions have been constructed by normal distributions with the same parameters (except
for the size) as their smaller counterparts in Section 4.7.3. Hence, the mean internal and
external degree and their standard deviations are given by pins = 4.3, 0ing = 1.1, flegr =
0.3,0¢pt = 0.3 for k = 6 and k = 12 and pint = 5.1, 04 = 1.3, plegr = 0.45,0¢4¢ = 0.35
for k = 8, resulting in node degrees between 1 and 12.

Table 5.9 shows the normalized cut values derived in the experiments on these graphs.
For k = 8 both algorithms obtain the same values. Apparently, these instances are rela-
tively easy, so that both algorithms always compute the same local optimum. Possibly,
considering the different approaches of the algorithms, this local optimum might even be
the global one. For k = 6 DIBAP obtains the best values in three out of four cases, but
GRACLUS is the best on average. GRACLUS also performs better for k = 12. In summary,
one can say that the solution quality of both algorithms on these instances is similar. Yet,
GRACLUS is slightly better, in particular for larger k, where DIBAP sometimes inherits
the BuBBLE-FOS/C problem of bad initial centers. Moreover, on average GRACLUS is
by a factor of 34 faster than DIiBAP.

Note that the combination n = 2'® and k = 6 is left out because the construction
mechanism has failed repeatedly to build connected graphs. Graphs with more than
one connected component are in principle no problem for the algorithm DIBAP. Each
component can be seen as a cluster, so that the actual work is spent on each component
separately. However, since our algorithm optimizes the normalized cut only implicitly,
an optimal combination of all components is not integrated into our implementation yet.
That is why we use only connected graphs and leave the handling of disconnected ones

to future work.

5.4.3.2. Random Graph Model 2

A graph G = (V, E) of model 2 is generated differently than before. One also specifies

the cluster sizes, but instead of drawing the node degrees from a normal distribution,
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Table 5.10.: Experimental results showing the normalized cut values computed by
BuBBLE-FOS/C, DIBAP, and GRACLUS for the graphs of model 2.

GRACLUS BuBBLE-FOS/C DiBaP
Setting / k || 9 13 17 9 13 17 9 13 17
1 470 | 9.55 | 12.22 || 7.20 | 10.10 | 12.88 || 4.32 | 8.23 | 12.03
2 3.65 | 5.80 | 842 || 6.46 | 10.27 | 13.11 | 3.31 | 5.46 | 7.80
3 4.02 | 674 | 9.57 | 6.94 | 1077 | 13.82 || 3.44 | 5.84 | 9.57
4 472 | 962 | 1231 || 7.13 | 10.21 | 12.71 || 4.60 | 8.15 | 12.11
5 357 | 5.97 | 852 || 6.60 | 10.19 | 13.17 || 2.82 | 5.33 | 7.75
6 398 | 6.72 | 9.90 || 7.01 | 10.78 | 13.68 | 3.67 | 6.19 | 9.80
7 464 | 9.69 | 12.41 || 7.00 | 10.31 | 12.78 | 4.30 | 8.01 | 12.07
8 3.55 | 6.08 | 8.68 || 7.11 | 10.36 | 13.54 | 2.99 | 5.24 | 8.14
9 4.06 | 6.88 | 12.90 || 7.35 | 10.62 | 12.78 || 3.57 | 7.03 | 9.53
avg | 410 | 7.45 [ 1055 | 7.00 | 10.40 [ 13.16 || 3.67 | 6.61 | 9.87 |

one determines for each node pair (u,v) whether {u,v} € E based on the parameters
Pint and Pegy in the following manner. Let X, , € [0,1] be a random variable drawn from
a standard uniform distribution for the pair (u,v). Then, if v and v are in the same
cluster, {u,v} € F © X, < Dins. Similarly, if v and v are not in the same cluster,
{u,v} € E < Xy < Deat.

For our experiments we have constructed 27 graphs in this way, nine for each number
of clusters k € {9,13,17}. Odd numbers have been selected for k to add more varia-
tion compared to previous experiments. The graph sizes range from 20,000 over 40, 000
to 80,000, which is not very large, so that we can include BUBBLE-FOS/C in our ex-
periments as well. While the cluster sizes can vary considerably from the mean size,
extremely large or small clusters are avoided because both diffusion-based algorithms
have problems with such instances. Usually, the cluster sizes are at most three times
larger or three times smaller than the mean. However, some clusters have only about
10% of the mean size. The parameters p;,; and pe;+ have been chosen inverse propor-
tional to n - k to obtain a sparse structure. Their actual values are shown in Tables A.8,
A9, and A.10 in the appendix.

The evaluation of the normalized cut values obtained by GRACLUS, BUBBLE-FOS/C,
and DIBAP (Table 5.10) yields first of all that BUBBLE-FOS/C cannot compete with the
other two programs. Insofar it is surprising that DIBAP, the combination of BUBBLE-
FOS/C and TRUNCCONS, performs very well. It computes the best normalized cut
values in 26 out of 27 cases. As a result, the average values are significantly better than
those of GRACLUS. Based on these results, one can conclude that DIBAP is more suitable
for random graph instances of model 2 than the state-of-the-art program GRACLUS — at
least if the cluster sizes do not deviate too much from the mean value. However, the
better solution quality of DIBAP has to be paid by a much higher running time. For the
most time-consuming instance our algorithm requires 225s. Averaged over all instances

in this model, GRACLUS is faster by a factor of 60. As indicated above, this factor can
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be reduced below 50 by using a smaller value for thrsh without sacrificing the solution

quality much.

5.5. Parallelism

Recall that the running times presented for DIBAP are based on its POSIX threaded
version. A comparison of the threaded implementation to its non-threaded counterpart
reveals that the obtainable speedup is larger than that of BuBBLE-FOS/C. More pre-
cisely, the thread parallelization makes DIBAP faster by a factor of 1.55 on average. This
corresponds to an efficiency of 77.5% on the dual-core test machine. Such a value is not
extremely good, but still satisfactory, considering the thread overhead and our program’s
sequential parts. In any case, it improves over BUBBLE-FOS/C, which achieves only a
speedup of 1.3 on average.

In a future distributed-memory implementation of DIBAP, the major concern should lie
on an efficient execution of TRUNCCONS. Assuming that the graph is distributed over the
processors, the communication of the updated load values in each FOS/T iteration can be
very fine-granular. Such a low ratio of computational operations versus communication
operations may prevent high speedups, depending on the parallel machine architecture
employed. To circumvent this problem, one could use the basic idea of domain sharing
presented in Section 4.8.1. Before computing the load values, each processor determines
for subdomain ¢, 0 < ¢ < k, the possibly active nodes. These are those nodes whose
distance to the subdomain boundary is at most ¢. Then, the subgraph induced by
these nodes is sent to processor i. This processor combines all received subgraphs. It
can then compute the FOS/T diffusion loads without further communication except for
sending back the final load values to the originating processors. The BuBBLE-FOS/C
experiments described in Section 4.8.2 for domain sharing and partial graph coarsening
show that two large communication operations are often faster than many small ones.

A complex parallelization of BUBBLE-FOS/C with its AMG solver might not be neces-
sary. Instead, each processor computes one (or more) initial BUBBLE-FOS /C solution(s)
on the coarsest TRUNCCONS level. The best one of these solutions is communicated to
all processors and constitutes the starting point for the multilevel TRUNCCONS improve-
ment process. Since BUBBLE-FOS/C is quite fast on small graphs, the running time of

such a concurrent sampling for the initial solution can be expected to be marginal.

5.6. Discussion

The local improvement scheme TRUNCCONS developed in this chapter is a fast and very
effective tool for improving graph partitions. Our new algorithm DIBAP, which com-
bines BUBBLE-FOS/C and TRUNCCONS, attains excellent results in graph partitioning,
as our experiments on popular benchmark graphs show. It achieves partitions with a

significantly higher quality than KMETIS and JOSTLE, two very popular state-of-the-art

119



CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

libraries. While shorter boundary lengths have also been attained with BUBBLE-FOS/C,
DiBAP computes fewer external edges in the summation and the maximum norm, too.
This is confirmed by the computation of a large number of best-known partitions w.r. t.
the edge-cut for six graphs of a popular benchmark archive.

There are two possible reasons for the improved edge-cut results of the hybrid approach
DIBAP compared to using BUBBLE-FOS/C alone. First and foremost, in Section 3.2
we have argued that nodes of the same cluster are connected by many shortest paths of
small length, whereas the shortest paths of nodes in different clusters lead via very few
external edges. Since the local improvement scheme TRUNCCONS uses exactly this notion
of random walks of short length (whereas BUBBLE-FOS/C considers random walks of all
lengths), it is able to detect which nodes and regions are connected to each other by these
short paths and which are not. Thereby TRUNCCONS improves the boundary regions
of reasonable initial partitions very well w.r.t. the edge-cut. The second — probably
less important — reason could be the different coarsening scheme. While the employed
matching algorithm aims at a very uniform coarsening, the AMG coarsening algorithm
produces few nodes with large degree and many nodes of small degree. For large graphs
this irregularity in the AMG coarsening might lead to somewhat worse solutions because
the structure of the original graph is not retained well enough on the coarse levels.

Another advantage of DIBAP compared to the KL /FM heuristic is that the computed
subdomains appear to be more compact with smoother boundaries than those computed
by KMETIS and JosTLE. Although DIBAP is clearly slower than the two established
KL/FM libraries, its running time on a dual-core processor is acceptable for all but
extremely large inputs. Even a graph with 7.5 million nodes and 15 million edges can be
partitioned into eight subdomains within five minutes on commodity dual-core hardware.
In particular, DIBAP is much faster than our previous algorithm BuBBLE-FOS/C.

The load balancing quality of DIBAP is very good due to the superior partitions
computed. The required migration volume is not in all cases better than with state-of-
the-art libraries, but the experiments reveal an advantage at least for the maximum norm.
In particular for problems that favor a high partition quality over migration volume and
duration of repartitioning, we advocate DIBAP as the tool of choice.

Clustering problems on random graphs are solved by DIBAP with a high solution
quality in many cases. While random graphs of one model are clustered slightly better
by GRAcLUS, DIBAP is clearly the best for the widely used second planted partition
model. Yet, the graphs are connected and cluster sizes in the experimental data are not
chosen completely arbitrarily. The extension of our results to extremely small or large
clusters should be part of future work. One possible approach could be to start with
a very large number of clusters and to merge them iteratively. The clusters to merge
are chosen greedily based on the improvement of the optimization objective. Another
possible improvement is the integration of local search techniques. They might help to

avoid problems with bad solutions on the coarsest level, in particular when k is large.
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Although DIBAP offers a superior solution quality than the state-of-the-art in many
cases, its deployment in time-critical applications also depends on its running time. Cur-
rently, the speed gap between our algorithm and its best competitors is between one and
two orders of magnitude. This is certainly a significant difference, but there are several
starting points to improve the situation in future work. One of them consists in elimi-
nating the nearly linear dependence on k in the running time. This might be possible
by techniques similar to partial graph coarsening, which has been partially effective for
BuBBLE-FOS/C.

Another aspect for future work is a distributed-memory parallelization. Since the most
time-consuming parts of DIBAP (the diffusive operations within TRUNCCONS) exhibit
a large degree of parallelism, significant accelerations can be expected. An efficient
parallelization might also close the speed gap partially because the KL/FM heuristic
within METIS and JOSTLE and the local search of GRACLUS are diflicult to parallelize.
Furthermore, the simplicity of the diffusive operations within TRUNCCONS makes the use
of fast parallel streaming hardware possible. As part of future work, we investigate the
explicit use of SIMD instruction extensions of modern CPUs and the use of fast streaming
graphics processors. Since graphics processors have a much higher performance for such

simple operations than CPUs, additional accelerations might be possible.
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6. Conclusions and Future Work

Three related problems have been considered in this thesis, graph partitioning, load
balancing by repartitioning, and graph clustering. All of them have in common that
they are combinatorially difficult and require the identification of densely connected
regions of a graph. In the introduction we have argued that heuristics which determine
subdomains with good shapes are very promising, in particular for graph partitioning and
repartitioning. Drawbacks of previous shape-optimizing techniques have been identified
and then eliminated by the introduction of our new similarity measure FOS/C, which
is based on disturbed diffusion. After its theoretical analysis, which involves its relation
to random walks, we use FOS/C as a similarity measure in the partitioning algorithm
BuBBLE-FOS/C.

By introducing algebraic multigrid techniques into the solution process of BUBBLE-
FOS/C, we have accelerated the algorithm significantly without sacrificing its high so-
lution quality for graph partitioning. However, the running time of BUBBLE-FOS/C
and its quality for clustering problems are still not competitive to the state-of-the-art in
our experiments. Thus, we have reiterated the main core of the algorithm engineering
cycle [Sand 07], which consists of design, analysis, implementation, and experimental
evaluation. As a result, we have devised the much faster algorithm DIBAP, which has a
running time that is approximately linear in |F| and k& and attains a very high quality
in all considered applications. For graph partitioning it computes a significant number
(more than 80 out of 144) of best known edge-cut values for six of the eight largest
graphs contained in a well-known benchmark set. Additionally, extensive experiments
demonstrate that DIBAP delivers better partitions than KMETIS and JOSTLE — two
state-of-the-art graph partitioning libraries using the KL/FM heuristic. The outcomes
of the repartitioning and graph clustering experiments are not as clear, but they also
show that DIBAP’s solution quality competes with the state-of-the-art or is even better.

All these results verify our introductory assumption that diffusive shape optimization
is a successful approach for providing (re)partitions of superior quality without requiring
geometric information. Our algorithm DIBAP overcomes the drawbacks of traditional
KL-based algorithms, so that it meets the requirements most users expect from a graph
(re)partitioner. Moreover, its linear running time improves on many related graph clus-
tering algorithms. It must be noted, however, that the speed gap to fast state-of-the-art
tools in partitioning and clustering is still between one and two orders of magnitude,

although the absolute running times of DIBAP are quite satisfactory.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Future work should therefore concentrate on a further acceleration of diffusive par-
titioning techniques. Of utmost importance is a distributed-memory parallelization of
D1iBAP, which would in the ideal case also eliminate the nearly linear dependence on k
in the running time. Theoretically, starting from our convergence results, it would be
interesting to obtain more knowledge on the relation of the BUBBLE framework and dis-
turbed diffusion schemes. Of particular concern is the behavior of TRUNCCONS and how
to guarantee connected partitions. Another interesting aspect is an extension of our re-
sults to directed graphs. Since their Laplacian and diffusion matrices are not symmetric,
many techniques from linear algebra we have used before are not applicable.

Considering that heterogeneous and hierarchical computing environments have become
common, the generation of partitions specifically suited for simulations executed on such
processor topologies would be an interesting extension. Hierarchical techniques could
also help in the design of disturbed diffusive clustering methods that do not require the
number of clusters a priori. An elimination of the parameter k could be possibly done by
a multilevel algorithm in the spirit of DIBAP, which combines two clustering algorithms.
The coarsest solution would be computed by an (expensive) algorithm that determines k;
the multilevel refinement could be done by a faster algorithm such as TRUNCCONS. Tests
will need to show if such a multilevel procedure is successful. Other possible extensions
for graph clustering include the extension to time-dependent graphs that do not allow
global knowledge and a higher robustness of the clustering quality for instances with

completely arbitrary cluster sizes.
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A. Appendix

A.1l. Bubble-FOS/C: Additional Experimental Results

Table A.1.: Comparison of BUBBLE-FOS/C in different parameter settings for ¢1-norm.

AC2/C01 AC2/CO2 AC3/CO2 AC3/CO3
k EC [ bnd EC | bnd EC [ bnd EC | bnd
4 || 931.18 [ 995.00 [ 885.290 | 960.81 [| 876.53 | 956.94 | 868.84 | 942.95
8 || 1406.66 | 1527.30 || 1381.44 | 1499.61 || 1374.35 | 1492.91 | 1365.20 | 1483.63
12 || 1855.50 | 1998.73 || 1841.18 | 1978.25 || 1837.19 | 1970.00 || 1826.61 | 1957.74
16 || 2191.84 | 2391.20 || 2164.10 | 2356.75 || 2155.86 | 2346.54 || 2148.34 | 2334.14
20 || 2535.04 | 2755.33 || 2494.36 | 2718.20 | 2486.95 | 2714.53 || 2472.36 | 2699.26

| avg [| 1784.04 [ 193355 || 1753.27 | 1902.74 || 1746.18 | 1806.18 || 1736.27 | 1883.54 |

Table A.2.: Comparison of BUBBLE-FOS/C in different parameter settings for £o,-norm

AC2/CO1 AC2/CO2 AC3/CO2 AC3/CO3
k ext | bnd ext | bnd ext | bnd ext | bnd
548.89 | 203.98 || 518.23 | 279.85 || 523.60 | 281.79 || 517.63 | 278.80
438.24 | 237.64 || 431.66 | 234.06 | 427.11 | 231.28 || 426.24 | 232.10
12 || 401.58 | 215.44 | 393.93 | 209.45 || 389.70 | 208.48 | 393.15 | 206.75
16 || 345.94 | 185.73 || 343.66 | 183.41 || 338.86 | 181.05 | 338.70 | 179.41
20 || 32853 | 175.63 || 325.19 | 175.48 || 321.26 | 173.65 || 324.48 | 174.86

| avg || 412.63 | 221.68 || 402.53 | 216.45 || 400.13 [ 215.25 || 400.04 | 214.39 |

Table A.3.: Comparison of BUBBLE-FOS/C using AMG with BuBBLE-FOS/C using
CG for ¢;- and /oo-norm and AC3/CO2.

BusBLE-FOS/C with CG and AC3/CO2 || BuBBLE-FOS/C with AMG and AC3/CO2
k|| EC | bndi | extw bnds EC | budi | exto bndo
870.3 | 954.5 | 529.2 282.2 876.5 | 956.9 | 523.7 281.8
1368.7 | 1480.6 | 426.1 230.5 1374.4 | 14929 | 427.1 231.3
12 || 1833.3 | 1968.2 | 392.9 207.4 1837.2 | 1970.0 | 389.7 208.5
16 || 2150.0 | 2336.1 | 336.4 180.5 2155.9 | 2346.5 | 338.9 181.1
20 || 2475.4 | 2701.1 | 322.0 174.3 2487.0 | 27145 | 321.3 173.7
| avg [| 1739.5 | 1888.1 [ 4013 | 215.0 | 17462 | 1896.2 | 400.1 | 215.3
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Table A.4.: Comparison of BUBBLE-FOS/C using AMG without and with the virtual
vertex (¢ = 1/512) for ¢1- and {s-norm and AC3/CO3.

BuBBLE-FOS/C (AMG) BuBBLE-FOS/C (AMG) with virtual vertex

k || EC | budi [ exte [ bnds | EC [ budi | exte | bnds
868.8 | 943.0 | 517.6 | 278.8 || 868.7 | 934.2 | 526.6 278.5

1365.2 | 1483.6 | 426.2 | 232.1 || 1361.0 | 1468.9 | 429.2 231.0

12 || 1826.6 | 1957.7 | 393.2 | 206.8 || 1818.0 | 1954.9 | 399.1 213.3
16 || 2148.3 | 2334.1 | 338.7 | 179.4 || 2134.8 | 2322.4 | 337.1 180.7
20 || 2472.4 | 2699.3 | 324.5 | 174.9 || 24741 | 2678.6 | 321.7 172.2

| avg || 1736.3 | 1883.5 | 400.0 | 214.4 || 1731.3 | 1871.8 | 402.7 | 215.1

A.2. DibaP: Additional Experimental Results

Table A.5.: Average edge-cut, boundary nodes, and migration volume in the ¢;-norm for
repartitionings computed by PARMETIS, JosTLE, and DIBAP on twelve

small graph sequences.

PARMETIS

JOSTLE DiBaP

Sequence EC bnd;

EC \bnd1 EC | bnd

bubbles 366.7 | 723.8

323.8 638.6 312.8 | 612.1

change 357.9 | 706.5

308.4 | 607.6 || 297.9 | 588.8

circles 371.2 | 733.0

328.8 646.4 314.2 | 610.0

fastrot 433.6 | 857.4

385.2 | 757.9 362.2 | 705.9

fasttric 455.0 | 900.1

407.5 | 803.2 376.3 | 741.8

heat 182.2 | 360.2

154.5 | 304.2 159.5 | 306.4

refine 225.9 | 448.6

199.9 | 389.1 191.3 | 377.6

ring 274.4 | 541.1

238.0 | 471.2 231.0 | 446.5

rotation 3879 | 767.7

342.6 | 675.3 || 341.0 | 662.7

slowrot 431.7 | 853.5

383.5 | 754.9 || 359.3 | 703.9

slowtric 502.1 | 994.0

434.2 | 856.5 || 406.7 | 796.5

trace 328.1 | 644.1

285.4 | 557.9 | 273.6 | 524.8
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Table A.6.: Average number of external edges, boundary nodes, and migration volume
in the fo-norm for repartitionings computed by PARMETIS, JOSTLE, and
DiBAP on twelve small graph sequences.

PARMETIS JOSTLE DiBaP

Sequence extoo | bndso extoo | bndeo extoo ‘ bnd

bubbles 86.0 84.8 75.4 74.1 66.0 | 64.3
change 83.0 81.5 70.9 69.6 64.6 | 63.6
circles 81.1 80.1 74.4 72.9 66.7 | 63.7
fastrot 96.1 94.8 86.4 84.7 73.6 | 71.4
fasttric 98.4 97.1 92.1 90.4 77.6 | 76.3

heat 56.9 56.2 45.1 | 44.4 48.1 46.6
refine 47.6 46.6 42.9 41.2 36.2 | 35.7
ring 71.3 69.9 61.1 60.5 59.9 | 57.1

rotation 90.0 88.7 80.3 78.8 71.3 | 70.0
slowrot 93.2 91.9 82.2 80.7 70.4 | 68.7
slowtric 112.9 | 111.6 97.6 95.8 78.5 | 76.4

trace 73.8 71.9 65.9 63.8 58.9 | 56.3

Table A.7.: Average number of external edges and boundary nodes in the £1- and {-
norm for repartitionings computed by PARMETIS, JOSTLE, and DIBAP on
three large graph sequences.

PARMETIS JOSTLE DisaP
Sequence / norm ext bnd ext bnd ext ‘ bnd
bigtric (¢1) 1866.3 | 3717.7 || 1569.4 | 3121.9 || 1436.8 | 2865.9
bigtric (o) 321.3 | 3190.6 | 267.0 | 2655 || 230.9 | 229.7

bigbubbles (¢1) || 4716.2 | 9387.2 || 3974.8 | 7873.7 || 3527.1 | 7041.7
bigbubbles (f~) | 845.7 | 840.3 | 7404 | 720.0 || 615.4 | 613.5
bigtrace (¢1) 4124.9 | 8212.2 || 3349.1 | 6630.9 || 2919.7 | 5815.5
bigtrace (£oo) 7187 | 7132 | 584.5 | 577.8 || 463.9 | 461.7
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A.3. Description of Random Graphs with Planted Partitions
(Model 2)

Table A.8.: Parameters (size n, intra-cluster edge probability pj,.:, inter-cluster edge
probability pe;¢) and resulting node degree values for randomly generated

graphs with planted partitions and £k = 9. Note: pj € {13,%0, % ,
Dext € {%7 % .
k=9Setting | 1 | 2 [ 3 [ 4 | 5 | 6 | 7 | 8 | 9
n-10* 2 2 2 4 4 4 8 8 8
Pint - 1072 6.667 | 13.889 | 13.889 | 3.333 6.944 6.944 1.667 3.472 3.472
Peat - 1073 0.611 0.611 0.833 0.306 0.306 0.417 0.153 0.153 0.208
minimum degree 6 9 13 3 7 10 5 6 11
maximum degree 56 83 88 57 92 95 62 89 95
average degree 28.396 | 47.642 | 51.467 | 28.427 | 47.698 | 51.555 | 28.398 | 47.696 | 51.545

Table A.9.: Parameters (size n, intra-cluster edge probability pj,:, inter-cluster edge
probability pe;¢) and resulting node degree values for randomly generated

graphs with planted partitions and & = 13. Note: pj € {%,% ,
110 150
Pext € {n-k:’ n-kd:
k=13,Setting | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 [ 9
n-10* 2 2 2 4 4 4 8 8 8
Pint - 1072 4.615 9.615 9.615 2.308 4.808 4.808 1.154 2.404 2.404
Pext - 1073 0.423 0.423 0.577 0.212 0.212 0.288 0.106 0.106 0.144
minimum degree 1 3 5 2 3 4 1 3 4
maximum degree 35 52 55 36 51 57 37 53 57
average degree 15.972 | 24.893 | 27.691 | 16.034 | 24.987 | 27.783 | 15.972 | 24.948 | 27.761

Table A.10.: Parameters (size n, intra-cluster edge probability p;,:, inter-cluster edge

probability pey:) and resulting node degree values for randomly generated

graphs with planted partitions and k& = 17. Note: piu € {%,% ,
c {110 150
Dext k' nkJ:

k=17,8ettng | 1 [ 2 | 3 | 4 | 5 | 6 | 7 | 8 [ 9
n-10* 2 2 2 4 4 4 8 8 8
Pint - 107° 3.529 | 7.353 | 7.353 | 1.765 | 3.676 | 3.676 | 0.882 | 1.838 | 1.838
Peat - 1072 0.324 | 0.324 | 0.441 | 0.162 | 0.162 | 0.221 | 0.081 | 0.081 | 0.110
minimum degree 1 2 3 1 2 2 1 1 1
maximum degree | 29 37 40 28 39 41 30 39 42
average degree | 10.796 | 15.981 | 18.201 | 10.836 | 15.989 | 18.188 | 10.781 | 15.957 | 18.144
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A.4. DibaP: Best-known Edge-cut Results

Table A.11.: Instances of benchmark graphs for which DIBAP has computed the currently
best-known edge-cut values (marked by X, 84 in total out of 144 possible
ones for these six graphs) for the specified numbers of partitions & in different
imbalance settings. Last update: 29 Feb 2008.

Imbalance 0% 1% 3% ‘ 5%

Graph / k 4 ‘ 8 ‘ 16 ‘ 32 ‘ 64 4 ‘ 8 ‘ 16 ‘ 32 ‘ 64 4 ‘ 8 ‘ 16 ‘ 32 ‘ 64 4 ‘ 8 ‘ 16 ‘ 32 ‘ 64
tooth X X X X X X X
598a X X X X X X X X X

144 X X X X X X X X X X

wave X X X X X X X X X X
ml4b X X X X X X X X X X
auto X X X X X X X X X X
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