
Dissertationsschrift

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

Disturbed Di�usive Processes for

Solving Partitioning Problems on Graphs

von

Henning Meyerhenke

Paderborn, 4. April 2008

Fakultät für Elektrotechnik, Informatik und Mathematik

Universität Paderborn

Zusammenfassung

Die grundlegende Thematik der vorliegenden Dissertation ist die Identi�zierung dichter

Regionen eines ungerichteten Graphen G = (V,E). Eine dichte Region ist dabei eine Teil-
menge der Knoten V ′ ⊂ V mit vielen Kanten, die zwischen Knoten aus V ′ verlaufen, aber

vergleichsweise wenigen Kanten zu Knoten in V \V ′. Die Bestimmung dieser Gebiete ist

bei der Lösung des Graphpartitionierungsproblems (GPP) sowie verwandten Aufgaben

der Clusteranalyse hilfreich. Das GPP besteht in der Erstellung einer Partitionierung

von V in k gleich groÿe Teilmengen (Partitionen, Cluster) derart, dass die Zahl der Kan-

ten, die zwischen verschiedenen Clustern verlaufen, minimiert wird. Es gibt zahlreiche

Anwendungen, die die Lösung dieser oder ähnlicher Fragestellungen benutzen. Beispiele

sind unter anderem parallele numerische Simulationen, Netzwerkanalyse, Schaltkreisent-

wurf sowie Genanalyse in der Bioinformatik.

GPP und alle relevanten Formulierungen verwandter Partitionierungsprobleme sind

NP-schwer, so dass keine Polynomialzeit-Algorithmen für ihre optimale Lösung

bekannt sind. Partitionierungsbibliotheken, die dem aktuellen Stand der Technik

entsprechen, benutzen lokale Knotenaustauschheuristiken innerhalb eines mehrstu�gen

Verbesserungsprozesses. Sie erzielen damit gute Lösungen in sehr kurzer Zeit. Jedoch

entsprechen diese Lösungen nicht in jedem Fall den Anforderungen der Benutzer. Dies

betri�t zum einen die Wahl der Zielfunktion im Optimierungsprozess, zum anderen die

Form der Partitionen. Auÿerdem sind die am häu�gsten eingesetzten Partitionierungs-

heuristiken schwierig zu parallelisieren, da sie inhärent sequentielle Teile enthalten. Eine

solche Parallelisierung ist aber notwendig für den e�zienten Einsatz als Lastbalancierer

in parallelen Anwendungen. Zur Clusteranalyse von Graphen, bei der die Partitionen

bzw. Cluster nicht gleich groÿ sein müssen, gibt es kein Verfahren, das sowohl sehr ef-

�zient arbeitet, Ergebnisse von sehr hoher Qualität in vielen verschiedenen Anwendungen

liefert, als auch theoretisch wohlverstanden ist.

Um diese Nachteile bestehender Methoden zu beseitigen, entwerfen und untersuchen

wir in dieser Arbeit den gestörten Di�usionsprozess FOS/C. Er kann dichte Gebiete eines

Graphen von solchen mit wenigen Kanten unterscheiden, was wir mit seiner Beziehung

zu Random Walks erklären. Durch die Kombination von FOS/C mit Bubble � einem

generischen Verfahren ähnlich zu Lloyds k-means-Algorithmus � erhalten wir den itera-

tiven und inhärent parallelen Algorithmus Bubble-FOS/C zur (Re)Partitionierung und

Clusteranalyse von Graphen. In unseren theoretischen Untersuchungen zu FOS/C und

Bubble-FOS/C beleuchten wir den Bezug zu Random Walks und zur Pseudoinversen

der Laplacematrix des Eingabegraphen. Die dabei erzielten Ergebnisse führen unter an-

iii

derem zu einem verbesserten Lösungsprozess von FOS/C und zu einem Beweis, dass

Bubble-FOS/C gegen ein lokales Optimum konvergiert, welches durch eine Potential-

funktion charakterisiert werden kann.

Da Bubble-FOS/C die Lösung vieler linearer Gleichungssysteme erfordert, konstru-

ieren wir einen e�zienten Löser auf Basis des algebraischen Mehrgitterverfahrens (AMG).

Die Graphhierarchie, die von diesem Löser erstellt wird, benutzen wir gleichzeitig für den

mehrstu�gen Partitionierungsprozess, der lokale Verbesserungen mit Bubble-FOS/C

durchführt. Obwohl unser AMG-Löser eine deutliche Beschleunigung im Vergleich zu

vorherigen Implementierungen hervorruft, bleibt die Laufzeit von Bubble-FOS/C weit-

erhin sehr hoch. Daher kann die gute Lösungsqualität des Algorithmus, die in Experi-

menten zur Graphpartitionierung beobachtet werden kann, kaum in der Praxis genutzt

werden. Weitere Möglichkeiten zur Beschleunigung werden diskutiert, aber sie sind ent-

weder nicht immer erfolgreich oder erfordern eine sehr aufwändige Implementierung.

Deshalb entwickeln wir in einem nächsten Schritt eine sehr viel schnellere und ein-

fachere Methode zur Verbesserung von Partitionierungen. Diese Methode basiert auf

einem anderen gestörten Di�usionsverfahren, das nur begrenzte Bereiche des Graphen

betrachtet und auch einen hohen Grad an Parallelität aufweist. Das neue Verfahren

kombinieren wir mit Bubble-FOS/C zu einem neuen mehrstu�gen heuristischen Algo-

rithmus namensDibaP. Eine Besonderheit dieser Kombination ist, dass ihre Mehrstufen-

Hierarchie durch zwei verschiedene Konstruktionsansätze erstellt wird. Verglichen mit

Bubble-FOS/C, zeigt die neue Heuristik eine deutliche Beschleunigung und erhält

gleichzeitig die positiven Eigenschaften des langsameren Algorithmus. Ausführliche Ex-

perimente zeigen ein extrem gutes Verhalten bei der Partitionierung von Graphen, die aus

numerischen Simulationen stammen. DibaP erzeugt durchgängig bessere Ergebnisse als

die sehr häu�g eingesetzten BibliothekenMETIS und Jostle. Weiterhin haben wir mit

unserem neuen Algorithmus eine groÿe Zahl der besten bekannten Partitionierungen von

sechs weit verbreiteten Benchmark-Graphen verbessert. Auch in den verwandten Prob-

lemen der Lastbalancierung durch Repartitionierung und der Clusteranalyse verbessert

DibaP die Lösungsqualität des Stands der Technik in vielen Fällen.

Insofern besteht die vorliegende Arbeit aus praktischen und theoretischen Fortschrit-

ten für die (Re)Partitionierung und die Clusteranalyse von Graphen durch die Entwick-

lung neuer erfolgreicher heuristischer Algorithmen und die theoretische Analyse einiger

wichtiger Eigenschaften dieser Algorithmen.

iv

Abstract

The underlying theme of this thesis is the detection of dense regions of an undirected

graph G = (V,E). A dense region is a subset of the nodes V ′ ⊂ V with many edges

between nodes in V ′ and only few edges to nodes in V \V ′. The identi�cation of these

regions is helpful for solving the graph partitioning problem (GPP) and related clustering

tasks. The GPP asks for a partition of V into k equally sized subdomains (clusters)

such that the number of inter-cluster edges is minimized. Applications that involve

problems related to GPP are numerous; they include parallel numerical simulations,

network analysis, circuit design, and gene analysis in bioinformatics.

GPP and all relevant formulations of related partitioning problems are NP-hard, so
that no polynomial-time algorithms for their optimal solution are known. State-of-the-art

graph partitioning libraries employ local node-exchanging heuristics within a multilevel

framework and yield good solutions in very short time. However, the computed partitions

do not necessarily meet the requirements of all users. This includes the choice of the ap-

propriate objective function and the shape of the computed subdomains. Furthermore,

due to their sequential nature, the most popular partitioning heuristics are di�cult to

parallelize, which is necessary for their e�cient use as load balancers in parallel applica-

tions. For graph clustering problems, where the cluster sizes do not need to be balanced,

there is no method which is both highly e�cient, delivers high-quality results in many

diverse applications, and is theoretically well understood.

To overcome these drawbacks, we introduce the disturbed di�usion scheme FOS/C.

It is capable of distinguishing dense from sparse graph regions, which we explain by

its relation to random walks. The combination of FOS/C with the k-means related

framework Bubble yields the iterative and inherently parallel (re)partitioning/clustering

algorithm Bubble-FOS/C. In our theoretical investigations on FOS/C and Bubble-

FOS/C, we examine the random walk relation and its connection to the pseudoinverse

of the input graph's Laplacian matrix. Amongst others, the derived results lead to an

enhanced solution process of FOS/C and to a proof that Bubble-FOS/C converges to

a local optimum which can be characterized by a potential function.

Since Bubble-FOS/C requires the solution of many linear systems, we construct an

e�cient algebraic multigrid solver, whose graph hierarchy is simultaneously used for a

multilevel improvement process of the partitions. Despite the fact that our algebraic

multigrid approach is signi�cantly faster than previous implementations, the running

time of Bubble-FOS/C is still very high. Thus, its very good solution quality expe-

rienced in graph partitioning experiments can hardly be exploited in practice. Further

v

acceleration approaches are discussed, but they are either not always successful or very

complicated to implement.

That is why we develop in a next step a much faster and easier method for the improve-

ment of partitions. This method is based on a di�erent disturbed di�usive process, which

is restricted to local areas of the graph and also contains a high degree of parallelism.

By coupling this new technique with Bubble-FOS/C in a multilevel framework based

on two di�erent hierarchy construction methods, we obtain our new heuristic DibaP for

(re)partitioning and clustering graphs. Compared to Bubble-FOS/C, DibaP shows a

considerable acceleration, while retaining the positive properties of the slower algorithm.

Extensive experiments with popular benchmark graphs show an extremely good behavior

for partitioning graphs stemming from numerical simulations. DibaP computes consis-

tently better results than the state-of-the-art libraries METIS and Jostle. Moreover,

with our new algorithm, we have improved a large number of the best known partitions of

six widely used benchmark graphs. In the related problems of load balancing by reparti-

tioning and graph clustering, DibaP also improves the solution quality of state-of-the-art

programs in many cases.

Insofar, our work consists of practical and theoretical advances concerning graph

(re)partitioning and graph clustering, achieved by the development of new successful

heuristic algorithms and the theoretical analysis of some important properties of these

algorithms.

vi

Contents

1. Introduction 1

1.1. Applications . 1

1.2. Motivation . 3

1.3. Related Work . 4

1.3.1. Graph Partitioning . 4

1.3.2. Load Balancing by Repartitioning 8

1.3.3. Graph Clustering . 10

1.3.4. Bubble Framework and (Disturbed) Di�usion 13

1.4. Outline of our Results . 15

1.5. Publications . 17

2. Preliminaries 19

2.1. Problem De�nition . 20

2.1.1. Graph Partitioning . 20

2.1.2. Load Balancing by Repartitioning 22

2.1.3. Graph Clustering . 23

2.2. First Order Di�usion Scheme . 24

3. Disturbed Di�usion 27

3.1. Disturbed Di�usion Scheme FOS/C . 27

3.2. Connections between FOS/C and Random Walks 31

3.3. FOS/C on Distance-Transitive Graphs . 38

3.4. FOS/C on the Torus . 43

3.5. FOS/V: FOS/C with a Virtual Vertex . 49

4. A Shape-optimizing Partitioning Algorithm 55

4.1. Generic Bubble-FOS/C Algorithm . 56

4.1.1. Initial Centers . 56

4.1.2. The Main Loop . 58

4.2. Computational Complexity and Inherent Parallelism of Bubble-FOS/C . 59

4.3. Convergence and Connectedness Results on Bubble-FOS/C 60

4.3.1. Convergence towards a Local Optimum 60

4.3.2. Connected Subdomains on Vertex-Transitive Graphs 63

4.4. Algebraic Multigrid for Bubble-FOS/C 65

vii

Contents

4.4.1. Fundamentals of Algebraic Multigrid 65

4.4.2. General AMG Coarsening and Solution Process 66

4.4.3. Details of our AMG Implementation 67

4.5. Extensions to Bubble-FOS/C for Graph Partitioning 71

4.5.1. Consolidation: Mixing AssignSubdomain and ComputeCenters . 71

4.5.2. Balancing Methods . 72

4.5.3. The Extended Algorithm . 73

4.6. Multilevel Paradigm with Algebraic Multigrid 73

4.7. Experimental Results . 75

4.7.1. Bubble-FOS/C on the 2D Torus 75

4.7.2. Graph Partitioning . 77

4.7.3. Graph Clustering . 85

4.7.4. Parallelism . 87

4.8. Load Balancing and Partial Graph Coarsening 88

4.8.1. Partial Graph Coarsening . 89

4.8.2. Load Balancing Experiments . 90

4.8.3. A Possible Enhancement by Adaptive Graph Coarsening 92

4.9. Discussion . 93

5. Faster Di�usion-based Partitioning 95

5.1. A New Local Improvement Method: TruncCons 95

5.1.1. Connection to Random Walks . 97

5.1.2. Notion of Active and Inactive Nodes 97

5.1.3. Discussion of TruncCons . 98

5.2. The (Re)Partitioning and Clustering Algorithm DibaP 99

5.2.1. Combined Hierarchies, Combined Algorithms 99

5.2.2. Computational Complexity . 101

5.2.3. Multiple Coarse Solutions . 101

5.3. Problem-speci�c Adaptations and Implementation Details 101

5.4. Experimental Results . 102

5.4.1. Graph Partitioning . 103

5.4.2. Load Balancing by Repartitioning 112

5.4.3. Graph Clustering . 116

5.5. Parallelism . 119

5.6. Discussion . 119

6. Conclusions and Future Work 123

Bibliography 125

viii

Contents

A. Appendix 135

A.1. Bubble-FOS/C: Additional Experimental Results 135

A.2. DibaP: Additional Experimental Results 136

A.3. Description of Random Graphs with Planted Partitions (Model 2) 138

A.4. DibaP: Best-known Edge-cut Results . 139

ix

Contents

x

1. Introduction

A natural way to express relationships between di�erent entities are graphs. Each entity

is modeled by a node and nodes are connected by edges if and only if they are related.

In many applications it is of interest to know which nodes can be grouped together to

form highly connected (dense) subgraphs based on these relationships. The problem of

determining these subgraphs � which are also called clusters, parts, or subdomains � is

the underlying theme of this thesis. Our results can be used for graph partitioning, load

balancing by repartitioning, and graph clustering. In the following we describe what these

terms refer to and which speci�c applications pro�t from an e�cient and high-quality

determination of dense subgraphs.

1.1. Applications

Graph partitioning is a widely used technique in computer science, engineering, and

related �elds. The most common formulation of the graph partitioning problem for

an undirected graph G = (V,E) asks for a division (partition) of V into k pairwise

disjoint subsets of size at most d|V |/ke such that the edge-cut, i.e., the total number of

edges having their incident nodes in di�erent subdomains, is minimized. Its applications

include circuit layout [Fidu 82], air-tra�c control [Bich 07], and the analysis of dynamical

systems [Dell 06], to name only a few. They all have in common that edges between

di�erent subdomains have a di�erent impact than internal edges. This impact can be a

lower speed, a higher cost, or other undesirable features.

We mainly consider the use of graph partitioning for balancing the computational

load in numerical simulations. Such simulations typically analyze natural or scienti�c

processes that can be expressed via partial di�erential equations (PDEs). To make

these equations solvable, they are discretized within the simulation domain, e. g., by

the �nite element method (FEM). Such a discretization yields a mesh, which can be

regarded as a graph with geometric (and possibly other) information. Application areas

of such simulations are �uid dynamics, structural mechanics, nuclear physics, and many

others [Fox 94].

The solutions of discretized PDEs are often computed by iterative numerical solvers.

Due to the involved computations and high memory space requirements, these solvers

have become classical applications for parallel computers with many processing nodes

connected by some communication network. To utilize all processors in an e�cient

manner, the computational tasks, represented by the mesh elements, must be distributed

1

CHAPTER 1. INTRODUCTION

Figure 1.1.: Triangular mesh with holes representing airfoils (left) and its dual graph
(right) with their respective partitions into ten subdomains. In each �gure
nodes of the same subdomain (and edges connecting them) have the same
color; edges connecting nodes of di�erent subdomains are shaded in grey.

onto the processors evenly. Moreover, the computational tasks of an iterative numerical

solver depend on each other. Neighboring elements of the mesh need to exchange their

values in every iteration to update their own value. Since inter-processor communication

is much more expensive than local computation, neighboring mesh elements should reside

on the same processor. Hence, a good distribution can be found by solving the graph

partitioning (or a similar) problem for the mesh or its dual graph (in the dual graph G′

of G, faces of G are replaced by nodes; these nodes in G′ are connected by an edge if and

only if their corresponding faces in G are adjacent, see Figure 1.1) [Schl 03].

Furthermore, in many numerical simulations some areas of the mesh are more inter-

esting than others. For instance, during the simulation of the interaction of a gas bubble

with a surrounding liquid, one is interested in the conditions very close to the boundary

of the �uids rather than far away. To obtain an accurate solution, a high resolution of the

mesh is required in the areas of interest. On the other hand, a uniformly high resolution

is often not feasible due to limited main memory. That is why one has to work with

di�erent resolutions in di�erent areas. Meshes with this property are called adaptive.

The areas of interest may also change during the course of the simulation. In the above

example, the gas bubble might change its position within the surrounding liquid, e. g.,

rise to the top. This behavior requires changes in the mesh, which may result in in load

imbalances that delay the completion of the computation. Hence, after the mesh has

been adapted again, its elements need to be redistributed such that every processor has

a similar computational e�ort again. While this can be done by (re)partitioning the new

mesh, the redistribution not only needs to �nd a new partition of high quality. It should

also move as few nodes as possible to other processors because this migration causes high

communication costs and (possibly expensive) changes in the local mesh data structure.

The task of clustering refers to the combination of objects to groups (clusters) such

2

CHAPTER 1. INTRODUCTION

that objects of the same group are more similar to each other than to objects from

other groups [Jain 99], where similarity is usually application-dependent. It is a very

important tool for the analysis and exploration of data arising in many di�erent �elds

such as pattern recognition, bioinformatics, and business computing. In recent years

the determination of clusters within graphs has received considerable attention, e. g.,

for image segmentation [Shi 00], detection of protein families [Enri 02], or the analysis

of physical and social networks [Flak 02, Newm 04]. Generally speaking, clusters in a

graph are dense node subsets that are only sparsely connected to each other. This notion

is intentionally vague [Zhao 03], as it is again application-dependent and in general hard

to formalize. In contrast to graph partitioning, the number of clusters is not always part

of the input, and no explicit constraints on the cluster sizes are given.

1.2. Motivation

All relevant formulations of the aforementioned problems are combinatorially very hard

to solve. More precisely, they are NP-hard, so that no polynomial-time algorithms for

their optimal solution are known. In practice fast heuristics are preferred, whose quality

is usually determined experimentally.

State-of-the-art graph partitioning libraries employ node-exchanging heuristics within

a multilevel framework for edge-cut minimization, cf. Section 1.3.1. They yield good

solutions in very short time, but the computed partitions do not necessarily meet the

requirements of all users. First of all, the edge-cut is not always a good measure for the

total running time of parallel numerical simulations [Vand 95]. The number of boundary

vertices (vertices that have a neighbor in a di�erent subdomain), for instance, models the

communication volume between processors more accurately than the edge-cut [Hend 98].

Moreover, the edge-cut is a summation norm, while often the maximum norm is of higher

importance. For some applications, the shape of the subdomains plays a signi�cant role.

It can be assessed by various measures such as aspect ratio [Diek 00], maximum diame-

ter [Pell 07a], connectedness, or smooth boundaries. Nevertheless, current partitioning-

based load balancers do not take these facts fully into account.

While the total number of boundary vertices can be minimized by hypergraph par-

titioning [Devi 06], an optimization of partition shapes requires additional techniques

(e. g., [Diek 00, Pell 07a]), which are far from being mature. Furthermore, due to their

sequential nature, the most popular partitioning heuristics are di�cult to parallelize.

Although signi�cant progress has been made (see Section 1.3.2), an inherently parallel

graph partitioning algorithm can be expected to yield better solutions for partitioning

as well as repartitioning, possibly also in shorter time.

The drawbacks of current graph clustering techniques are of a di�erent nature. Due

to the existence of various application-dependent graph clustering objectives and the

hardness of their optimization, numerous algorithms and techniques for this problem

have been developed, cf. Section 1.3.3. Unfortunately, as we will point out later in this

3

CHAPTER 1. INTRODUCTION

chapter, there is no method which is both e�cient (i. e., with linear or close to linear

running time), delivers high-quality results in many di�erent application areas, and is

theoretically well understood (e. g., with provable convergence in theoretical and practical

settings). Closest to these requirements is the kernel k-means algorithm [Dhil 07]. Thus,

its library implementation is used as a standard of comparison for our algorithms.

To overcome the drawbacks of the established heuristics, we follow a way of partitioning

and clustering that is di�erent from the techniques used in state-of-the-art libraries. It

has been shown experimentally that a shape-optimizing approach (based on the Bubble

framework or similar ideas) is very promising [Wals 95, Diek 00, Scha 05, Pell 07a], also

see Section 1.3.4. The resulting graph partitions computed by most of these methods

tend to be convex (curved outward), meet more requirements of the users than those

of traditional node-exchanging heuristics, and induce small migration costs when used

for load balancing by repartitioning. Moreover, the Bubble framework, whose idea is

very similar to Lloyd's geometric k-means clustering algorithm [Lloy 82], is appealing

in two additional respects. First, it uses a direct approach to obtain k > 2 subdo-

mains, which is preferable to a recursive application of bisectioning (partitioning into two

parts) [Simo 97]. The second advantage is that, in principle, the necessary operations

for computing distances contain a high degree of parallelism. We circumvent previous

problems of the Bubble framework by computing these distances or, more precisely,

the similarities of nodes, by disturbed di�usion schemes, which do not require geometric

information on the graph. The natural process di�usion (more details can be found in

Section 2.2) sends load entities faster into densely connected regions of a graph than into

sparse regions. As we will see later on, by disturbing the di�usive schemes, we avoid

their balancing property and obtain e�cient and e�ective mechanisms for distinguishing

dense from sparse graph regions.

1.3. Related Work

1.3.1. Graph Partitioning

In order to structure previous related work on the graph partitioning problem, we use

three di�erent categories. The �rst category contains algorithms of mainly theoretical

nature, which �nd approximate solutions to this NP-hard problem. The second category

contains heuristics that compute their solutions from scratch, having a global view on

the input graph. In contrast to this, the heuristics in category three have only a local

view, which means that they improve a given partition iteratively by changes in limited

(local) areas of the graph.

1.3.1.1. Approximation Algorithms

Most approximation algorithms for graph partitioning or similar problems are either

based on linear or semide�nite programming or on spectral arguments, i. e., properties

4

CHAPTER 1. INTRODUCTION

derived from the eigenvalues and -vectors of a matrix corresponding to the graph, cf.

Khandekar et al. [Khan 06]. Up to now, the best approximation ratio is O(
√

log n) in

time Õ(n2) [Aror 04, Aror 07]. Alternatively, one can obtain subquadratic running time

of Õ(n3/2) with an approximation ratio of O(log n) [Aror 07]. Note that both running

time values neglect polylogarithmic factors.

References to more results on approximation ratios, bounds on the solution quality

(in particular for special graph classes), and approximation algorithms can be found

in Monien et al. [Moni 06]. However, while these bounds and algorithms are of high

theoretical importance, their practical relevance is in most cases minor. In practice a

quadratic running time is prohibitive for large graphs, which are typical of numerical

simulations or circuit layout. While having a worst-case deviation guarantee is certainly

positive, practical heuristics might achieve better results on relevant real-world instances.

In any case, both approximation algorithms use very involved algorithmic techniques, so

that the O-notation hides very large constants. That is why for applications with large

inputs faster heuristics have been developed, which are described below.

1.3.1.2. Global Heuristics

Spectral methods. The fundamental idea of spectral partitioning methods dates back

to Fiedler [Fied 73, Fied 75]. He has investigated what the second smallest eigenvalue

λ2 and its corresponding eigenvector z2 (also known as Fiedler vector) of a graph's

Laplacian matrix (cf. Chapter 2) reveal about the graph's structure. Based on these

results, Pothen et al. [Poth 90] has developed a bipartitioning algorithm that decides

the subdomain a�liation of a node depending on its entry in z2. The reason for this is

the connection to the integer program described in Section 2.1.1 that models the edge-

cut minimization. If one relaxes the integer condition by allowing continuous solution

values, the optimal relaxed solution is given by z2. Let m be the median value in z2.

The bipartitioning can then be done as follows. All nodes with a larger value in z2

than m are assigned to the �rst subdomain, all other nodes to the second one. This

approach has been extended to more than two partitions without recursion by using

more eigenvectors [Hend 95b]. The Lanczos algorithm (see e. g., [Demm 97]) makes the

computation of the leading eigenvectors practical for large graphs, as each iteration has

a complexity linear in the number of edges. Nevertheless, an accurate solution, which is

reported to cost O(n3/2) total operations for sparse graphs in practice [Shi 00], is still

more expensive than employing the subsequent geometric methods or local heuristics.

Geometric approaches and linear orderings. There exist numerous geometric parti-

tioning methods which belong to the category of global heuristics. They require that

the spatial location of each node is speci�ed. One representative of such geometry-based

algorithms are space-�lling curves [Saga 94, Zumb 03]. They compute a linear ordering

of the graph nodes, i. e., a bijective mapping from V to {1, . . . , |V |}. This mapping

aims at the preservation of the nodes' locality in space. Since this approach takes only

5

CHAPTER 1. INTRODUCTION

the geometric properties instead of the adjacency structure of the graph into account,

the solution quality su�ers if these two do not coincide. This happens for example in

meshes that contain holes or �ssures [Scha 04b]. Similar problems arise for other geo-

metric approaches. Hence, despite their high speed and low memory consumption, the

applicability of these methods is mostly limited to a restricted class of inputs. For this

reason and since we do not require graphs to have geometric information in this thesis,

we refer the interested reader to Schloegel et al. [Schl 03] for a more detailed description

of geometric methods. More global heuristics, which are less important in our context,

are described therein as well.

A method related to space-�lling curves, which computes linear orderings without

geometric information, uses so-called graph-�lling curves (GFC) [Scha 04b]. The GFC

solutions appear to be better than those of space-�lling curves. Yet, they cannot compete

with solutions computed by state-of-the-art multilevel algorithms described below.

1.3.1.3. Multilevel Paradigm

In most cases local heuristics can only be e�ective if they start with a reasonably good

initial solution. Such a solution can be provided by the multilevel approach [Hend 95a],

which has paved the way for nowadays successful local graph partitioning heuristics. The

multilevel approach consists of three phases. Instead of computing a partition immedi-

ately for large input graphs, one computes a hierarchy of graphs G0, . . . , Gl by recursive

coarsening in the �rst phase. Gl ought to be very small in size, but similar in structure

to the input graph G0. Due to its small size, it is easy to compute a very good initial

solution for Gl. This is done in the second phase, using one of di�erent possible strate-

gies such as spectral partitioning [Hend 95a] or coarsening until the number of remaining

nodes equals the number of subdomains. After that, the solution is interpolated to the

next-�ner graph recursively. In this �nal phase the interpolated solution is re�ned using

the desired local improvement algorithm, for example one of those described below.

The coarsening of the �rst phase ought to be very fast. It is typically done by comput-

ing a matching of the graph, which should have a high cardinality and a high weight. The

matched nodes are combined to form super-nodes in the next hierarchy level. Di�erent

matching techniques have been used for this purpose, for example the two-approximation

of a maximum weighted matching [Prei 99]. Being the �rst linear-time approximation

algorithm for this problem, it has initiated further work, which has improved the ap-

proximation factor to 2
3 − ε [Drak 05]. A more detailed discussion of matching strategies

can be found in Monien et al. [Moni 07] and an experimental comparison in Maue and

Sanders [Maue 07]. Recently, and independently of our work, a coarsening based on

algebraic multigrid techniques has been used in a multilevel algorithm for graph layout

optimization [Safr 06].

The strength of the multilevel approach becomes already apparent if no local improve-

ment in the second phase takes place. Even if the initial solution on the coarsest level is

6

CHAPTER 1. INTRODUCTION

determined randomly, this will usually yield a better solution than a random partition

on the �nest graph. This e�ect is due to the locality enhancement brought about by the

coarsening process.

1.3.1.4. Local Heuristics

Kernighan-Lin and Helpful-Sets. Probably the most popular local heuristic for graph

partitioning is the Kernighan-Lin (KL) heuristic [Kern 70], which has been developed

originally for circuit partitioning. Its running time has been improved by Fiduccia and

Mattheyses (FM) [Fidu 82] such that it is linear in the number of edges. As the main

algorithmic idea has not changed, one often speaks of KL, although current implemen-

tations are based on the FM improvements. We refer to it either way.

Its idea is to improve an existing bipartition by performing node exchanges that reduce

the edge-cut. In order to escape bad local optima, KL performs several passes, either

a �xed number or until no further improvements can be found. In each pass it starts

by computing for each node v how much the edge-cut would di�er if v changed its

subdomain. This di�erence value is called gain. Then, in an iterative process each node

is moved logically exactly once to the other subdomain. The order in which this happens

is based on the currently possible edge-cut gain yielded by the migration, from best to

worst. After each migration of a node v, the respective gain value of v's neighbors are

updated. Moreover, the situation is marked if its edge-cut value is the best so far and

the subdomains are balanced. After all nodes have been examined, one determines if the

best solution found in this pass is better than the one of the previous pass. If so, this

local optimum is stored by performing all necessary moves physically.

Although no theoretical approximation rate guarantees are known for KL, its experi-

mental results are convincing. If the initial partition is not extremely bad, this heuristic

is able to �nd partitions with a good quality. Moreover, its fast running time makes it

very appealing. That is why state-of-the-art partitioning libraries likeMETIS [Kary 98a]

and Jostle [Wals 07a] and several others use some variant of the KL algorithm within

a multilevel approach. Some of them use direct k-way implementations of KL. This is in

principle much more complicated than the 2-way approach sketched above, but can be

simpli�ed to be practical [Kary 98b], resulting in a very e�ective algorithm. It should

be mentioned, however, that the linear running time in |E| is only possible if the edge

weights take on discrete values of a �nite interval. Only then the node order based on

gain values can be generated this fast by a bucket-sort mechanism. A major drawback is

the neglect of the resulting subdomain shapes, e. g., if they are connected or have small

diameters. Moreover, the movement of nodes one after another is a strictly sequential

process, which makes a parallelization very challenging. Successful attempts at such a

parallelization are described in Section 1.3.2.

Similar to KL, the Helpful-Set (HS) heuristic for bipartitioning [Diek 95] uses local

search based on node exchanges. It has evolved from a constructive proof by Hromkovi£

7

CHAPTER 1. INTRODUCTION

and Monien on the bisection bandwidth of regular graphs [Hrom 91]. The main di�erence

to KL is that HS migrates not only single nodes to the other subdomain, but also larger

node sets. It is based on the concept of helpfulness of a node set. Analogous to the gain

of a single node in KL, the helpfulness of a node set S is de�ned as the reduction of cut

edges caused by migrating S. Starting with an initial balanced partition Π = π1∪π2, the

HS algorithm reduces the cut size iteratively, until some termination criterion such as a

desired cut size is met. In each iteration one searches for an s-helpful set in π1, s > 0,
and moves it to π2. To restore the balance of Π, one searches for an s′-helpful set in π2

of equal size with s + s′ > 0 and moves it to π1. In this way one ensures that the cut

size is decreased in each iteration.

HS has been implemented in the partitioning library Party [Moni 00, Moni 04]. Its

speed is nearly comparable to that of popular KL-based libraries, while the quality is

reported to be often better in terms of the edge-cut [Scha 06]. We do not know of any

successful parallelization of HS. As in KL, the node movement is a sequential process. It

would be very di�cult to ensure that di�erent processors do not move the same node in

di�erent helpful sets at the same time.

Metaheuristics. In recent years a number of metaheuristics have been applied to

graph partitioning (and graph clustering) problems. Some of these works use con-

cepts that have already been very popular in other application domains such as ge-

netic or evolutionary algorithms [Sope 04, Chev 06], multi-agent and ant-colony opti-

mization [Koro 04, Come 06], and simulated annealing [Jerr 98]. Furthermore, two less

established metaheuristics called PROBE (Population Reinforced Optimization Based

Exploration) [Char 07] and Fusion Fission [Bich 07] have been adapted to or developed

for graph partitioning. Most of these algorithms are able to produce solutions of a very

high quality if they are allowed to run for a very long time. In practice, however, the

running time investment necessary for good average solutions is too high, so that these

methods are not widely used apart from special applications.

1.3.2. Load Balancing by Repartitioning

Recall that balancing the load in a numerical simulation requires the optimization of at

least two objectives. On the one hand, it is crucial for an e�cient simulation to compute

a nearly balanced partition of high quality. On the other hand, the repartitioning process

should not migrate too many vertices to di�erent processors. Last but not least, load

balancing should not be very expensive. Otherwise, it would not lead to running time

savings within the whole simulation.

In order to consider these multiple objectives, di�erent strategies have been explored

in the literature. Two simple ones and their limitations are described by Schloegel et

al. [Schl 97]. One is to compute a new graph partition from scratch and then to de-

termine a migration-minimal mapping between the old and the new partition. This

approach delivers good partitions. Yet, as the migration minimization is decoupled from

8

CHAPTER 1. INTRODUCTION

the partitioning process, the migration volume is often very high. Another strategy

simply migrates vertices from overloaded subdomains to underloaded ones, until a new

balanced partition is reached. While this leads to optimal migration costs, it often deliv-

ers partitions of poor quality. To improve these simple schemes, Schloegel et al. proposes

a multilevel algorithm with three main features. First of all, the coarsening algorithm

contracts only nodes of the same subdomain. By this means the coarsest partition still

corresponds to the input partition. In the local improvement phase, two algorithms

are used. On the coarse hierarchy levels, a di�usive scheme takes care of balancing the

subdomain sizes. Since this might a�ect the partition quality negatively, a re�nement

algorithm is employed on the �ner levels. It aims at edge-cut minimization by pro�table

swaps of boundary vertices. Subsequent work of the same authors combines the scratch-

remap approach with the aforementioned di�usive methods to obtain the best of both

schemes [Schl 00].

Di�usion has been used for load balancing by repartitioning as a means to compute how

much load needs to be migrated between subdomains [Schl 01]. However, until recently,

it has played only an implicit role in determining which elements should be migrated.

Our methods and Pellegrini's algorithm ([Pell 07a] and Section 1.3.4.2) di�er exactly in

this respect from previous work, as their di�usive schemes direct the (re)partitioning

process by computing the migrating elements explicitly.

Migration minimization with virtual vertices has been used by, amongst others, Hen-

drickson et al. [Hend 96]. For each subdomain an additional vertex is added, which may

not change its a�liation. It is connected to each vertex v of this subdomain by an edge

whose weight is proportional to the communication cost for moving v. In this way a

partitioning of the new graph considers both migration costs and partition quality.

If one needs to balance the load in a parallel numerical application, one can as-

sume that the application mesh is already stored in a distributed way on the pro-

cessors. In this case, due to the resource limitations, it is often impossible, or

at least not advisable, to repartition sequentially on one processor. Yet, while

numerous high-quality sequential graph and hypergraph partitioning libraries ex-

ist (Chaco [Hend 94], Jostle [Wals 07a], METIS [Kary 98a], Party [Moni 04], Pa-

ToH [Cata 01], Plum [Olik 98], Scotch [Pell 07b], etc.), most of them for over a decade,

the situation has been di�erent for distributed/parallel repartitioning until recently. This

is probably due to the increased complexity caused by parallel processing. The parallel

versions of METIS [Kary 98a, Schl 02] and Jostle [Wals 97, Wals 00, Wals 07a] have

been popular for several years, so that they will serve us as standard of reference. Only

recently they have been supplemented by the load balancing toolkit Zoltan [Cata 07]

with its parallel hypergraph partitioner (its solution quality for our benchmark graph

� as opposed to hypergraph � problems is not competitive, however). All these paral-

lel packages are mainly based on local improvement by KL/FM, but many also include

techniques to circumvent some drawbacks of the latter.

9

CHAPTER 1. INTRODUCTION

1.3.3. Graph Clustering

The �eld of clustering has received considerable attention in the past decades. It is

therefore impossible to give a complete overview in this thesis. Instead, we concentrate

on graph clustering methods that are related to our techniques. This relation can be

a similar approach or a similar objective. For more details on clustering methods not

dealing with graphs, the interested reader is referred to Jain et al.'s survey [Jain 99]. An

experimental study comparing di�erent graph clustering algorithms and their clustering

objectives has been performed by Brandes et al. [Bran 07].

One geometric clustering algorithm we do describe is Lloyd's k-means algo-

rithm [Lloy 82]. It is one of the most popular algorithms for clustering geometric point

data and related to our work despite its geometric nature. Lloyd's algorithm, whose

input is a d-dimensional point set and the number of clusters k, starts by choosing for

each cluster a representative center point. These centers do not have to be part of the

input. The k-means objective function, which aims at the minimization of the sum of

the squared Euclidean distances between each point p and the center of p's cluster, is

NP-hard to optimize globally for k ≥ 2 [Drin 04]. Lloyd's algorithm �nds a local op-

timum by two iterated alternating operations. The �rst one assigns each point to the

cluster of its nearest center, while the second determines new centers for each cluster.

The latter is done by choosing the respective center of gravity of a cluster. It can be

shown that the objective function is locally minimized by these alternating operations,

so that convergence is reached eventually [Seli 84].

1.3.3.1. Algorithms using Maximum Flow for Cut Minimization

A clustering method based on minimum cut trees has been suggested by Flake et

al. [Flak 02]. Their algorithm uses the well-known relationship between maximum �ows

and minimum cuts (cf. e. g., [Corm 01]). It is shown that the density within some cluster

and the sparsity of the edges between two clusters can be governed by a single param-

eter α. This α denotes the weight of additional edges, with which each node of the

graph is connected to an arti�cial sink vertex. For this augmented graph a minimum cut

tree is computed. After the removal of the arti�cial sink from this tree, its connected

components are the clusters found by the algorithm. It should be noted that α controls

indirectly the number of clusters, which is not prede�ned. By varying α, one can obtain a

hierarchical clustering. For most practical cases the proposed method requires O(kn3/2)
time, where k is the number of clusters found.

The basic idea of maximum �ows is also utilized by Lang and Rao [Lang 04], whose

algorithm MQI aims at the optimization of cut notions with quotients such as conduc-

tance or expansion for two clusters. Besides the graph, MQI takes an initial partition

Π = π1 ∪̇π2 as input and builds a directed �ow network from it. Amongst other transfor-

mations, this is done by deleting all nodes of subdomain π2 and connecting an arti�cial

source to the nodes of π1 that lie at the cut. All nodes of π1 are also connected to an arti-

10

CHAPTER 1. INTRODUCTION

�cial sink by speci�cally weighted edges. The result of a maximum �ow problem on this

network yields an improved cut if it exists. It is shown experimentally that MQI delivers

very good solutions in not much more than linear time by coupling METIS (for the ini-

tial solutions) with an e�cient max-�ow solver. Nevertheless, its applicability to general

clustering problems is limited by the restriction to only two subdomains. A recursive

application usually yields inferior results compared to direct k-way methods [Simo 97].

1.3.3.2. Graph Clustering with Random Walks

A random walk on a graph starts on a node v and then chooses the next node to visit

from the set of neighbors (possibly including v itself) based on transition probabilities.

The latter can for instance re�ect the importance of an edge. This iterative process can

be repeated an arbitrarily number of times. It is governed by the so-called transition

matrix, whose entries denote the edges' transition probabilities. As a di�usion matrix is

stochastic, it can be seen as such a transition matrix. More details about random walks

(and their relations to di�usion) can be found in Lovász's survey [Lova 93].

Both di�usion and random walks are known to identify dense graph regions: Once a

random walk reaches a dense region, it will stay there for a long time, before leaving it

via one of the relatively few outgoing edges. An alternative view on this considers the

adjacency matrix A of the graph and a corresponding transition matrix P. An entry

{u, v} of the matrix At gives the number of paths from u to v with length t. Similarly,

Pt
{u,v} denotes the probability of a random walk that starts in u to be located on v after

t steps. If u and v are in the same dense region of the graph, this probability is above the

average. One could also say that u and v are connected by many paths of short length.

The fact that random walks identify dense regions is used by van Dongen and his

co-authors [Dong 00, Enri 02], who introduce a graph clustering algorithm that does not

require the number of clusters a priori. It deals with the general problem arising whenever

the t-step transition matrix Pt of a random walk is used to group graph nodes. If t is

too large, Pt is close to the stationary distribution and contains hardly any information

about the graph structure. On the other hand, t should be large enough to consider

paths of a certain length. To bypass this dilemma, a nonlinear matrix operator which

strengthens the di�erences between all rows of the matrix is combined with the traditional

multiplication with P. This leads to meaningful clusters, but the problem size is limited,

as intermediate results include a densely populated matrix.

Similar concepts are used for the clustering algorithm by Harel and Koren [Hare 01].

The latter computes separator edges iteratively based on the similarity of their incident

nodes. This similarity is derived from the sum of transition probabilities of random walks

with very few steps. The iterative procedure is very fast and does not require the input

of k. Unfortunately, it is not proven that it converges and it is also not made clear that

the computed set of separator edges always leads to a reasonable clustering.

The strong connection between random walks and di�usion is also used by Lafon and

11

CHAPTER 1. INTRODUCTION

Lee [Lafo 06], whose key ideas are the de�nition of a di�usion-based distance measure

between the nodes and a mapping of the nodes to a lower-dimensional space. This

mapping yields an embedding that uses the principal eigenvectors of a di�usion kernel

matrix as the basis of the image space. Thereby, the Euclidean distance of points in the

image space corresponds (approximately) to their di�usion distance in the feature space.

After the transformation one can apply established geometric clustering algorithms such

as k-means, whose distance computations are then based on di�usion distances. The

disadvantage of this approach is the expensive computation of eigenvectors. Moreover,

the number of eigenvalues and -vectors needed for an accurate approximation is not

known beforehand. It requires an intricate analysis of the matrix spectrum instead. This

problem is actually related to the unknown random walk length t mentioned before.

A similar idea of de�ning a distance measure based on random walks and a corre-

sponding embedding is followed by Fouss et al. [Fous 07], which utilizes the commute

time of random walks as a distance measure. The commute time denotes for two nodes

u, v the expected number of steps a random walk needs to start in u, visit v, and come

back to u again. Due to the well-known relationship between electrical resistance and

commute times [Doyl 84], it follows that this distance measure between nodes u and v

decreases if the number of paths between these nodes increases. Fouss et al. shows that

the commute time can be expressed as a distance measure based on the pseudoinverse

(also known as Moore-Penrose inverse [Golu 96]) matrix of the graph's Laplacian. The

resulting Euclidean Commute Time Distance (ECTD) follows the basic idea of Lafon's

and Lee's di�usion distances. First of all, it determines how well-connected two nodes

are. Secondly, it is shown that the feature space can be projected into a Euclidean sub-

space, where this projection approximately preserves the ECTD. Again, the embedded

data can be clustered by established geometric clustering algorithms. However, while

no eigenproblems have to be solved for this method, one of its drawbacks is that the

computation of the Laplacian's pseudoinverse becomes �intractable� [Fous 07, p. 359] for

large graphs. Although Fouss et al. describes an iterative procedure as a workaround to

ease this problem, this does not change the fact that, in general, the pseudoinverse (even

of sparse matrices) is a dense matrix whose computation has a lower bound of Ω(n2).

1.3.3.3. Spectral Methods and Kernel k-means

In order to optimize quality measures based on cut notions, spectral methods have been

used a number of times for graph clustering [Shi 00, Ng 01, Kann 04]. Analogous to their

predecessors in graph partitioning, they are based on the relaxation of the integer program

for the normalized cut, which is described in Section 2.1.3. The optimization of the more

recent measure modularity has also been addressed by spectral techniques [Newm 06].

All such methods yield clusters with many intra-cluster edges and only few inter-cluster

edges, but require costly eigenvector (or singular vector [Frit 08]) computations.

Zha et al. [Zha 01] and Ding et al. [Ding 04] relate k-means to principal component

12

CHAPTER 1. INTRODUCTION

Figure 1.2.: Sketch of the main Bubble framework operations: Determine initial centers
for each subdomain (left), assign each node to the subdomain of the nearest
center (middle), and compute new subdomain centers (right).

analysis, which is a statistical method to describe data by a small number of important

representatives. These representatives are in this case principal eigenvectors; all other

data are given as their linear combinations. Based on these previous results, Dhillon et

al. [Dhil 07] has developed the weighted kernel k-means (KKM) algorithm. Its authors

show that KKM is a quite general and powerful approach, which can optimize a variety

of graph partitioning and clustering objectives. Particularly appealing is that these ob-

jectives, which are frequently addressed by spectral methods, can be locally optimized by

kernel k-means without expensive spectral algorithms. In each iteration of the algorithm,

the objective is optimized by local changes of the cluster a�liation. This optimization

is realized for each node by choosing the cluster with minimum distance, where this dis-

tance is computed in part by entries of a kernel matrix. KKM eliminates the problem that

geometric k-means type algorithms can separate only convex clusters. By mapping the

input to a higher-dimensional space using a nonlinear function, separating hyperplanes

in this image space are nonlinear in the feature space.

A slight �aw of KKM is that its convergence is only guaranteed if a positive semide�nite

kernel matrix is used. As the KKM authors point out, this convergence property should

be sacri�ced in favor of a better solution quality [Dhil 04, Dhil 07, Section 4.4], which can

be obtained by using a negative diagonal shift of the kernel matrix. The larger this shift,

the more are nodes willing to change their clusters, thereby reducing the likelihood of bad

local optima. Kernel k-means has been implemented, together with some improvements

like local search, in the graph clustering program Graclus [Dhil 07].

1.3.4. Bubble Framework and (Disturbed) Di�usion

The Bubble framework is related to Lloyd's k-means algorithm [Lloy 82] well-known in

cluster analysis and transfers its ideas to graphs. Its �rst step is to choose initial cluster

representatives (centers), one for each cluster. As illustrated in Figure 1.2, all remaining

vertices are assigned to their closest center vertex w. r. t. some distance or similarity

measure. After the subdomain assignment each cluster computes its new center for the

next iteration. The two operations assigning vertices to clusters and computing new

centers can be repeated alternately a �xed number of times or until a stable state is

reached. For graph partitioning the algorithm has been introduced under the name

13

CHAPTER 1. INTRODUCTION

Bubble by Diekmann et al. [Diek 00], which provides references to previous related

ideas like Walshaw et al. [Wals 95]. The name has been chosen because the assignment

process resembles soap bubbles which grow simultaneously, starting at the centers and

colliding at common borders. It is important to note that the actual implementation of

the framework operations can di�er signi�cantly, as pointed out in the following.

1.3.4.1. Bubble Implementations based on Graph Distance or Geometry

A �rst implementation described (but not developed) by Schamberger [Scha 06, p. 66]

relies on graph distances. It takes both a very long running time and delivers unsatisfac-

tory results, so that we forgo a detailed description. A second approach is described by

Diekmann et al. [Diek 00]. Here, the centers are distributed more evenly over the graph.

This is accomplished by choosing only one initial center node at random. The others

are chosen one after another furthest away from the current center nodes w. r. t. the

graph distance. To compute the new subdomains, the smallest subdomain with at least

one adjacent unassigned vertex grabs the vertex with the smallest Euclidean distance

to its center. The new center of a partition is determined as the vertex for which the

(approximate) sum of Euclidean distances to all other vertices of the same partition is

minimal. These changes to the �rst approach solve some of its problems, for instance the

initial center distribution is improved. Also, the computation of the new centers is sped

up. Besides being connected, the subdomains are usually geometrically well-shaped by

including coordinates in the choice of the next vertex. As a downside, the dependence on

coordinates makes this version only applicable if such information is provided. Moreover,

the Euclidean distance of two nodes might not coincide with the graph structure at all,

leading to unsatisfactory solutions, as already explained for other geometric methods.

Note that both of these Bubble implementations cannot be parallelized easily due to

the strictly serial assignment process.

1.3.4.2. Disturbed Di�usion Schemes for Partitioning

In order to overcome the problems of previous Bubble implementations, Scham-

berger [Scha 04a, Scha 05] has developed two disturbed di�usion schemes called FOS/L

and FOS/A. We call a di�usive mechanism disturbed if it is modi�ed such that it does

not result in a balanced load distribution, in which every node has the same amount of

load. Integrated into Bubble, a mechanism based on disturbed di�usion is to re�ect how

well-connected the center nodes are to all other vertices of the graph. FOS/L achieves

this by iterating FOS a �xed number of times, starting with a suitable initial load vector.

In FOS/A one disturbs the iteration by a drain concept, where a small amount of load is

shifted in each iteration to a set of source nodes. In a similar way the drain concept will

be used for our scheme FOS/C. Thus, it is explained in more detail in the next chapter.

Schamberger's experiments show a promising partitioning quality of his methods. After

several Bubble iterations the centers tend indeed to be within dense regions, while the

14

CHAPTER 1. INTRODUCTION

subdomain boundaries are often in sparse ones. However, he also points out that the

practical relevance of his methods is very limited. Since an automatic procedure for

determining a suitable number of iterations for FOS/L has not been found, this approach

is very unreliable and needs extensive manual �ne-tuning. The major drawback of FOS/A

is its high running time because its convergence on large graphs is extremely slow. A

theoretical problem is the changing amount of drain in FOS/A, depending on how much

load a node has. This makes an analysis of the algorithm very di�cult. It is therefore

our objective to improve this situation by a faster and more reliable disturbed di�usion

scheme, which is also easier to analyze.

Very recently, Pellegrini [Pell 07a] has addressed some drawbacks of the KL/FM heuris-

tic. His partitioning approach aims at improved partition shapes, based on a di�usive

mechanism used together with FM improvement. For the di�usion process the algorithm

replaces whole partition regions not close to partition boundaries by one super-node.

This replacement reduces the number of di�usive operations. As additionally the di�u-

sion process is stopped when no more changes in the subdomain a�liation are expected,

an acceptable overall speed is achieved. The implementation described is only capable of

recursive bisection. As Pellegrini points out, a �full k-way di�usion algorithm is therefore

required� [Pell 07a, p. 202] to improve the quality for large k.

1.4. Outline of our Results

The contribution of this thesis consists of both theoretical and practical results advancing

the current state of graph partitioning, load balancing by repartitioning, and graph

clustering. In summary these are the following:

� We introduce a new disturbed di�usion scheme called FOS/C and prove that it is a

similarity measure. It does not require the speci�cation of the number of di�usion

iterations, which is accomplished by taking the limit of an in�nite series. We prove

that this in�nite series and therefore FOS/C converges. Its convergence state can

be computed by fast linear solvers, which is a major acceleration compared to the

previous scheme FOS/A. To circumvent numerical issues, FOS/C is slightly altered

by introducing a virtual vertex. This modi�cation makes the solution process of

the linear solvers faster and more robust. (Sections 3.1, 3.2, and 3.5)

� By relating FOS/C to random walks, we demonstrate why it is able to distinguish

sparse from dense graph regions. Moreover, we prove that FOS/C computes entries

of the pseudoinverse of the graph's Laplacian matrix, which plays a major role in

the related Euclidean commute time distance (ECTD) measure for graph cluster-

ing. For distance-transitive graphs like the hypercube we show that the FOS/C

convergence state (the Laplacian's pseudoinverse, respectively) can be character-

ized by means of a certain �ow distribution. This characterization is shown not to

hold in general for torus graphs. (Sections 3.2, 3.3 and 3.4)

15

CHAPTER 1. INTRODUCTION

� The integration of the similarity measure FOS/C into the Bubble framework yields

the algorithm Bubble-FOS/C. We analyze the algorithm's complexity and make

it applicable to graph clustering as well as graph (re)partitioning problems. More-

over, we give an indication why Bubble-FOS/C obtains the solution with the

globally shortest boundary on the torus in our experiments. Our main theoretical

result regarding Bubble-FOS/C is a proof based on a potential function, which

shows that the algorithm always converges to a local optimum. To the best of our

knowledge, this convergence proof and its potential function are the �rst substan-

tial theoretical results on shape-optimizing graph partitioning algorithms and their

solutions. We also prove that Bubble-FOS/C yields connected subdomains on

vertex-transitive graphs when k = 2. (Sections 4.1, 4.2, 4.3, 4.5, and 4.7.1)

� Algebraic multigrid (AMG) is a fast solver for certain linear systems and has not

been designed originally for semide�nite Laplacian system matrices, which arise

in Bubble-FOS/C. After proving that AMG can be applied in principle to our

problem class as well, we assemble and implement AMG components that suit our

needs. Especially notable is the use of the AMG hierarchy not only for solving

linear systems, but also for multilevel improvement in the partitioning/clustering

process. As veri�ed experimentally, our new AMG approach is able to speed up

Bubble-FOS/C nearly �ve times compared to a related implementation that uses

conjugate gradient as sparse iterative linear solver. (Sections 4.4, 4.6, and 4.7)

� Our experiments on FEM meshes also show that Bubble-FOS/C's implicit opti-

mization of the subdomain shapes results in partitions of these graphs with sub-

domains that have short boundaries, good edge-cut values, low diameters, and are

very often connected. Nevertheless, even with the acceleration by AMG, Bubble-

FOS/C is up to three orders of magnitude slower than established graph partition-

ing libraries. Accelerations based on computing FOS/C on graph approximations

instead of the whole graph are only partially helpful. (Sections 4.7 and 4.8).

� The fact that Bubble-FOS/C delivers high-quality graph partitioning solu-

tions and that it has been studied theoretically, makes it very appealing as

(re)partitioning tool. However, Bubble-FOS/C's high running time makes an

exploitation of its solution quality hardly possible for large graphs occurring in

practice. That is why we aim subsequently at the development of a faster heuristic

that retains the positive properties of Bubble-FOS/C, but is signi�cantly faster

and suitable for practical deployment. As detailed below, our work in Chapter 5

achieves this objective and constitutes the most important part of this thesis from

a practical point of view.

� Since we attribute the speed problem of Bubble-FOS/C to its global approach,

we develop a faster di�usion-based method called TruncCons, which improves

a given partition by local changes. We combine Bubble-FOS/C and Trunc-

16

CHAPTER 1. INTRODUCTION

Cons to obtain a linear-time (in k · |E|) multilevel algorithm called DibaP, which

constitutes our main algorithmic achievement. The �ne multilevel hierarchy levels

are processed with fast algorithms for hierarchy construction (matchings) and local

partition improvement (TruncCons). Only on the coarse levels, Bubble-FOS/C

is used to compute a good starting solution. (Sections 5.1, 5.2, and 5.3)

� The solution quality of DibaP is excellent. In our experiments DibaP delivers

better graph partitioning solutions than the state-of-the-art partitioning libraries

METIS and Jostle in terms of the edge-cut and the number of boundary vertices,

both in the summation and in the maximum norm. Also problems from the two

other considered �elds repartitioning and clustering are nearly always solved with a

comparable or better quality than by state-of-the-art libraries. Although DibaP is

still slower than established libraries for our three application domains, its running

time is reasonable. (Section 5.4)

� Also notable is the fact that DibaP improves for six benchmark graphs a large

number (more than 80 out of 144) of their best known partitions w. r. t. the edge-cut.

These six graphs are among the eight largest in a popular benchmark set [Sope 04,

Wals 07b], which contains 34 graphs in total. (Section 5.4.1.6)

1.5. Publications

Parts of this thesis have been published in preliminary form in the proceedings of the

subsequent peer-reviewed computer science conferences (followed by the reference of our

respective contribution): 11th International Euro-Par Conference [Meye 05], 20th Inter-

national Parallel and Distributed Processing Symposium [Meye 06a], 12th International

Euro-Par Conference [Meye 06c], and 17th International Symposium on Algorithms and

Computation [Meye 06b]. Our publication appearing in the proceedings of the 22nd In-

ternational Parallel and Distributed Processing Symposium [Meye 08] has been selected

by the program committee as the best paper of the conference's algorithm track.

Additionally, parts of this work have been presented at two events without refereed

proceedings, the Dagstuhl Seminar Web Information Retrieval and Linear Algebra

Algorithms (2007) and the Oberwolfach Workshop on Algorithm Engineering [Meye 07].

Note that many results of Chapters 3 and 4 in this thesis have been developed jointly

with the co-authors of the aforementioned publications. In the following I will present

algorithms and proofs which have been developed by myself or in collaboration. Proofs

to which I have not contributed are omitted and replaced by a literature reference at the

beginning of the result.

17

CHAPTER 1. INTRODUCTION

18

2. Preliminaries

In this section we de�ne some terminology and give formal de�nitions of the partitioning

problems considered in this thesis.

De�nition 2.1. An edge-weighted graph G = (V,E, ω) is a triple with the set of vertices

(or nodes) V , a set of edges E ⊆ V × V , and an edge weight function ω : V × V → R≥0.

By de�nition, if e /∈ E, we have ω(e) = 0. If G is unweighted, we assume ω(u, v) = 1
for all (u, v) ∈ E. G is called undirected if ω is symmetric, i. e., ω(u, v) = ω(v, u) for all
(u, v) ∈ E. An undirected edge between nodes u and v is written as {u, v}. Note that

we sometimes write ωe instead of ω(e). Usually, the number of nodes |V | is denoted by

n, the number of edges |E| by m.

Remark 2.2. Note that, unless stated otherwise, we assume throughout this thesis that

all graphs are undirected. While it is certainly possible to ask for partitions or clusterings

of directed graphs, the majority of applications require only undirected graphs. It would

be interesting to investigate in future work, however, if our methods can be extended

to work for directed graphs, too. Moreover, we assume all graphs to be sparse, i. e.,

m = O(n). For most applications in our problem areas, sparseness is a reasonable or

even natural assumption.

Remark 2.3. We also assume that the graphs to be partitioned or clustered are connected

and simple, i. e., they do not contain self-loops (u, u) or multiple edges with the same

endpoints. Additionally, we assume them to be �nite. Finiteness and the lack of self-loops

are natural assumptions, and connectedness can be simply enforced by focusing on the

connected components. Furthermore, a graph with parallel edges can be transformed into

an (equivalent) simple graph by merging multiple edges and adjusting the edge weight.

Notation 2.4. Matrices are written in bold font, but a matrix entry [L]u,v is also written
as lu,v. Given a vector w, [w]v denotes its v-th component. Sometimes we also use wv

as a shorter variant of this notation. In case we refer to the v-th entry of the i-th vector

in a series, we write [wi]v. The scalar (inner) product of two vectors x and y of length n

is written as 〈x, y〉 =
∑n

i=1 xiyi. Moreover, x and y are called perpendicular, denoted by

x ⊥ y, if 〈x, y〉 = 0.

De�nition 2.5. The Laplacian matrix L of a graph G is de�ned as follows:

[L]u,v :=


−ω(e) u 6= v, e = {u, v} ∈ E ,

deg(u) = −
∑

q 6=u[L]u,q u = v ,

0 otherwise .

19

CHAPTER 2. PRELIMINARIES

Fact 2.6. For undirected graphs, L is a symmetric positive semide�nite matrix [Chun 97].

Let the eigenvalues of L be denoted by λ1 ≤ λ2 ≤ . . . λn. It is well-known that λ1 = 0
and that the multiplicity of the eigenvalue 0 equals the number of connected compo-

nents [Fied 73]. Hence, if G is connected, λ2 > 0 and L has rank n − 1, so that

its null space {x ∈ Rn : Lx = 0} has dimension 1. The largest eigenvalue of a

matrix is bounded from above by any induced matrix norm (e. g., [Meis 05]). Hence:

λn ≤ ‖L‖1 = 2maxdeg(G), where maxdeg(G) := max{[L]u,u |u ∈ V } denotes the maxi-

mum weighted degree of G.

Note that in the following we use the terms graph and matrix interchangeably. The

same holds for edge weight and matrix (o�-diagonal) entry. If another matrix than the

Laplacian is meant as graph representative, the meaning will be clear from the context.

2.1. Problem De�nition

2.1.1. Graph Partitioning

De�nition 2.7. Given an undirected graph G = (V,E, ω) with vertex set V of size n,

edge set E of size m, and the edge weight function ω. Then, a k-way partition Π of G is

a function

Π : V → {1, . . . , k} .

Such a partition divides the vertex set V into k disjoint subsets

V = π1 ∪̇π2 ∪̇ . . . ∪̇πk .

Edges connecting nodes of two di�erent subdomains belong to the so-called cut of Π.

De�nition 2.8. Let G = (V,E, ω) be a graph and let dist(u, v) denote the graph distance
between nodes u, v ∈ V , i. e., the length of the shortest path connecting them. Moreover,

let the a�liation of a node u to a subdomain πc be either denoted as Π(u) = c or as

u ∈ πc. Then, the quality measures external edges (or cut edges), boundary nodes, and

diameter are de�ned for a subdomain πc as

ext(πc) :=
∑
e∈C

ω(e) with C := {e = {u, v} : Π(u) = c ∧Π(v) 6= c} (external edges) ,

bnd(πc) := |{v ∈ V : Π(v) = c ∧ ∃{u, v} ∈ E : Π(u) 6= c}| (boundary nodes) ,

diam(πc) := max
u,v∈πc

{dist(u, v)} (diameter) .

If πc forms more than one connected component in G, we call πc disconnected and set

diam(πc) := ∞. Note that bnd can also be extended easily to node-weighted graphs by

summing up the weights of boundary nodes instead of taking their number.

These three measures can be of di�erent importance in di�erent applications. Exter-

nal edges, for example, are used as an objective in circuit layout problems, where they

20

CHAPTER 2. PRELIMINARIES

model connections between di�erent modules. As these connections cause higher costs

than wires within a module, they are undesirable [Kern 70]. In parallel applications,

where the graph models data dependencies between objects, boundary nodes represent

those objects which require inter-processor communication to obtain required data from

neighboring nodes. Since inter-processor communication is much more expensive than

local computation, the number of boundary nodes should be minimized [Hend 98]. Cer-

tain parallel numerical applications such as preconditioners additionally pro�t from good

partition shapes. For a fast convergence of the underlying solvers, elongated subdomains

with jagged boundaries should be avoided. Although the diameter does not measure

such artifacts explicitly, it gives an indication if a subdomain is rather compact (i. e.,

resembles a circle) or elongated [Diek 00].

As the measures above are de�ned for one subdomain only, one needs to specify how the

quality of the complete partition should be assessed. Again, this is application-dependent.

For a chip design the total number of external edges is typically of highest importance.

In contrast to this, parallel applications need to wait for the processor computing longest.

There one should minimize the maximum number of boundary nodes. The sum and the

maximum are the extreme cases `1 and `∞ of the more general `p-norms for a vector

x = (x1, . . . , xn)T :

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

for 1 ≤ p <∞ and ‖x‖∞ = max{|xi| : 1 ≤ i ≤ n} .

Whereas `1 takes all entries of the input into account, `∞ focuses only on local behavior

� the most extreme value. The norms in between can be used to measure both global

and local appearance. In this thesis we consider only `1 and `∞ because none of the two

should be neglected, as there are important applications for both of them. On the other

hand, real applications for the other norms are less common.

The edge-cut of a partition Π, i. e., the weight of the edges whose endpoints belong to

di�erent parts, has been the most important graph partitioning metric. It is de�ned as

cut(Π) :=
∑

e={u,v},Π(u) 6=Π(v)

ω(e) ,

which is half the summation norm `1 of ext. In case of an unweighted graph, it is just

the number of edges running between di�erent subdomains. The balance of Π is de�ned

as

bal(Π) :=
max1≤i≤k |Vi|
d|V |/ke

.

A partition is called balanced if bal(Π) = 1. The most common formulation of the

graph partitioning problem is as follows:

Problem 2.9. Given an undirected graph G = (V,E, ω) and k ∈ N, �nd a balanced

k-way partition Π of G with minimum edge-cut.

21

CHAPTER 2. PRELIMINARIES

This problem is known to be NP-hard, and its decision variant is NP-complete. This

holds even if k = 2 (in which case Π is called a bisection) and all edge weights are

one [Gare 74]. Hence, no deterministic polynomial-time algorithm is known to solve

the graph partitioning problem optimally. Other variants of the traditional problem

formulation of De�nition 2.9 exist. For example, it is often the case that the balance

constraint is relaxed to allow a small imbalance, e. g., bal(Π) ≤ 1.03. It is frequently

observed [Simo 97, Kary 98b] that this can lead to partitions with a higher quality. As

indicated above, the maximum number of boundary nodes should be preferred in parallel

numerical simulations for modeling the application's communication volume.

In spite of being only an approximation to the communication volume of the underlying

numerical application, the edge-cut has been extremely popular as optimization objective

in graph partitioning. Edge-cut minimization of a bipartition can be formulated as an

integer program (e. g., [Lang 05]): Let xi ∈ {−1, 1} be an indicator variable, which

denotes to which of the two subdomains node i belongs. Minimizing the edge-cut is then

equivalent to minimizing the objective function 1
4x

TLx. L is the Laplacian matrix of

the graph, and 1
4 is included to model the number of cut edges exactly. The balance

condition is expressed by the constraint
∑

i xi = 0 in this quadratic integer program.

2.1.2. Load Balancing by Repartitioning

Load balancing is an essential tool in parallel processing for an e�cient utilization of

the computational resources. In this thesis we only consider load balancing of parallel

computations in which the computations depend on each other. An example would be

numerical simulations whose domains are discretized into meshes. These simulations

typically employ iterative solvers which exchange information between neighboring mesh

elements in every iteration. Inter-processor communication can be therefore minimized

by a balanced partition with few boundary nodes.

If the mesh is severely altered during the simulation, intolerable load imbalances can

arise. These are eliminated by computing a new balanced partition. A redistribution of

the elements according to the new partition requires some nodes to change their processor.

Such a change is called migration, which is de�ned as:

De�nition 2.10. For a graph G = (V,E), its old partition Π1, and its new partition Π2

the c-th entry (1 ≤ c ≤ k) of the vectors migin and migout is de�ned as

migin(c) := |{v : Π1(v) 6= c ∧Π2(v) = c}| (incoming migration) ,

migout(c) := |{v : Π1(v) = c ∧Π2(v) 6= c}| (outgoing migration) .

If we only speak of the migration volume mig without specifying if it is incoming or

outgoing, we refer to either mig1 := ‖migin‖1 = ‖migout‖1 for the summation norm or

to mig∞ := ‖migin +migout‖∞ for the maximum norm.

22

CHAPTER 2. PRELIMINARIES

Problem 2.11. Given an undirected graph G = (V,E, ω), k ∈ N, and its k-way partition
Π1, �nd a new balanced k-way partition Π2 of G such that

� the migration volume mig between Π1 and Π2 is minimized and

� Π2 is optimized w. r. t. the edge-cut or the number of boundary nodes.

Which norm is chosen to measure the migration volume or the partition quality, depends

on the application and should be chosen accordingly. Note that the quality of Π2 can be

measured in another metric such as the diameter, too.

Since both objectives (migration and partition quality) may contradict each other, a

simultaneous optimization is often not possible. In these cases one can assign weights

to the objectives and minimize their linear combination [Schl 00]. Then, the problem is

obviously also NP-hard since it solves the graph partitioning problem if the migration

weight is set to zero. Alternatively, we can ask for a pareto-optimal solution, i. e., a

solution for which there exists no other solution that is not worse in one objective and

strictly better in the other one [Baño 06].

2.1.3. Graph Clustering

Recall that clustering refers in general to the placement of objects into groups (clusters)

such that objects of the same group are similar to each other and objects of di�erent

groups are dissimilar. In graph terms this objective is translated into �nding subsets of V

that are densely connected within themselves, but sparsely connected to each other. Both

of these formulations are very imprecise and underspeci�ed. This is necessary because,

as in graph partitioning, di�erent applications require di�erent objectives.

Mathematically, a clustering Π is also a partition of V , just as in De�nition 2.7.

The major di�erence between the graph partitioning problem and the graph clustering

problem is that the latter requires (at least approximately) balanced partitions, while

now cluster sizes can be (almost) arbitrary. Moreover, the number of subdomains k is

known in the graph partitioning problem. For graph clustering, however, it can be, but

does not have to be necessarily, part of the input. It is therefore often an advantage

to employ an algorithm that does not require the speci�cation of k. However, if k can

be speci�ed a priori, an exploitation of this information can be expected to improve the

solution quality.

The multitude of applications for graph clustering has led to the existence of many

di�erent quality measures or objective functions. They can be used to steer the optimiza-

tion process of the algorithm, to compare the results of di�erent clustering algorithms,

or to indicate whether the clustering found has too few or too many clusters. Most of

them follow the paradigm of intra-cluster-density versus inter-cluster-sparsity [Gaer 05].

Expansion and conductance [Kann 04] are local measures taking the minimum of all sub-

domains. In contrast to them, coverage [Gaer 05], modularity [Newm 04], and normalized

cut [Shi 00] are global measures taking the sum. The optimization of all these measures is

23

CHAPTER 2. PRELIMINARIES

NP-hard. For coverage this follows directly from the hardness of edge-cut minimization.

Hardness proofs for the others can be found in the literature [Kaib 04, Sima 06, Shi 00].

The best approximation ratio for conductance known so far is O(
√

log n) [Aror 07].
In this thesis we focus on the normalized cut since it is a generalization of the edge-

cut to imbalanced partitions. Moreover, it has a non-local view and has been applied

successfully to a variety of applications [Dhil 07]. For a graph G = (V,E, ω) and its

k-way clustering Π the normalized cut NCut(Π) is de�ned as

NCut(Π) :=
k∑
c=1

∑
u∈πc,v /∈πc

ω(u, v)∑
u∈πc,v∈V ω(u, v)

.

The generalization or normalization is necessary to cope with the missing constraint on

the cluster sizes since an optimal k-clustering w. r. t. the edge-cut would simply cut o� the

k− 1 nodes with smallest degree. Note that minimizing the normalized cut is equivalent

to maximizing another measure, the normalized association [Shi 00]. The latter sums

over the weight of the intra-cluster edges versus the weight of all edges in each cluster.

Just like in the case of the edge-cut, the minimization of the normalized cut for a

bisection Π = {π1, π2} of G can be expressed as an integer program [Shi 00]

min
Π
NCut(Π) = min

x

xTLx
xTDx

with the constraints xi ∈ {1,−b} and xTD · 1 = 0, where b =∑
v∈π1

deg(v)/
∑

u∈π2
deg(u) and D denotes the diagonal matrix of the node de-

grees in G. If the entries of x are allowed to take on real values, the relaxed optimal

solution can be computed by solving the generalized eigenvalue problem Lx = λDx.

This fact is exploited by spectral methods for graph clustering, which derive their cluster

a�liation by interpreting one or more eigenvectors of L.

Since our algorithms need the speci�cation of the number of clusters k, we formulate

the according graph clustering problem as follows:

Problem 2.12. Given an undirected graph G = (V,E, ω) and k ∈ N, �nd a k-way

clustering Π of G with minimum normalized cut.

The a priori speci�cation of k can be seen as a limitation. A way of circumventing

it, is to use a multilevel approach in which an algorithm not requiring the parameter k

(e. g., the one of Enright et al. [Enri 02] or the one of Fritzsche et al. [Frit 08]), which

computes the initial solution and k on a coarse representation of the input. Yet, such an

approach is not pursued further here, but left to future work.

2.2. First Order Di�usion Scheme

Di�usive processes can be used to model a large variety of important transport phenom-

ena. These phenomena arise in very diverse areas such as heat �ow, particle motion

24

CHAPTER 2. PRELIMINARIES

in solvents, and the spread of diseases. In a discrete setting on graphs, di�usion is an

iterative process which exchanges splittable load entities between neighboring vertices,

usually until all vertices have the same amount of load. That is why in computer science

one has studied di�usion in graphs as one of the major tools for balancing the load in

parallel computations [Xu 97].

The general or �rst order di�usion scheme (FOS) has been introduced independently

by Cybenko [Cybe 89] and Boillat [Boil 90]. Since we often consider edge-weighted graphs

(without node weights, unless stated otherwise explicitly), we use the extension to edge-

weighted FOS by Diekmann et al. [Diek 99].

FOS belongs to the class of local iterative algorithms for balancing the load in inde-

pendent parallel computations. Given a graph G = (V,E, ω) and a load (or workload)

wv ∈ R for each node v ∈ V , these algorithms distribute the total amount of load step-

wise to the nodes of the graph. Finally, in the convergence state of these algorithms,

each node has the same average amount of load. This process is performed by local

operations only, i. e., only nodes adjacent to each other perform load exchanges. Below,

we introduce FOS formally and present some results necessary to understand our work

on disturbed di�usion.

De�nition 2.13 (FOS). Given a connected graph G = (V,E, ω), a suitably chosen

constant α > 0, and an initial load vector w(0) ∈ Rn. Let w
(t)
u denote the load of node u

in timestep t. Then, the edge-weighted �rst order di�usion scheme (FOS) performs the

following operations in each iteration t > 0:

x
(t−1)
e={u,v} = αωe(w(t−1)

u − w(t−1)
v) ,

w(t)
u = w(t−1)

u −
∑

e={u,v}∈E

x(t−1)
e ,

where x
(t)
e={u,v} denotes the load exchange via edge e in iteration t.

In matrix-vector notation the FOS iteration of load updates can be written as w(t) =
Mw(t−1). The matrix M = I − αL is the di�usion matrix of G. It is symmetric and

doubly-stochastic, i. e., all entries are nonnegative and all row and column sums are

one [Cybe 89].

The constant α is chosen such that the eigenvalues of M, denoted by µi with µi =
1−αλi, 1 ≤ i ≤ n, lie in the interval (−1, 1]. This can be achieved by α < maxdeg(G)−1,

where maxdeg(G) := max1≤v≤n{deg(v)}. A typical choice is α := (maxdeg(G) + 1)−1.

In case that G is bipartite, we additionally require that at least one diagonal entry

of M is positive. Then, since µ1 = 1 and |µi| < 1 for 2 ≤ i ≤ n if G is con-

nected, the FOS iteration converges towards the average (or balanced) load situation

w := 1
n(
∑n

i=1w
(0)
i)(1, . . . , 1)T , which has been shown by Cybenko [Cybe 89]. The con-

vergence speed is dominated by γ := max{|µ2|, |µn|}, whose value depends on the graph

structure.

25

CHAPTER 2. PRELIMINARIES

De�nition 2.14. Let A ∈ {−1, 0, 1}n×m be the node-edge incidence matrix of

G (e. g., [Diek 99]) with AAT = L. Each column of A corresponds to an edge, each

row to a node. Note that each column has exactly two nonzero entries, −1 and +1. In
the column of edge e = {u, v} the nonzero entries appear in the rows corresponding to

the incident nodes u and v. In case of undirected graphs, the signs of the nonzero entries

of A de�ne an implicit (and arbitrary) direction of the edges. (In the following chapters

we usually make the natural assumption that �ow on an edge is directed from the node

with higher load to the node with lower load.)

De�nition 2.15. [Diek 99] A �ow function f : E → R is called balancing if and only if

Af = w−w. The FOS migrating �ow f∗ is the sum of all load exchanges via the edges

of G during the FOS iteration: f∗ :=
∑∞

t=0 x
(t).

Lemma 2.16. [Hu 99, Diek 99] Let Ã = AF be the (edge-weighted) node-edge incidence

matrix of G = (V,E, ω) and let F be an m×m diagonal matrix with [F]i,i =
√
ωi. The

solution of the `2-minimization problem

minimize ‖F−1f‖2 over all f with Ãf = d

is given by f = ÃT z, where Lz = d with d, z ∈ Rn, provided that d ⊥ w. Using this

minimization problem, it can be shown that the FOS migrating �ow f∗ is the unique

‖ · ‖2-minimal balancing �ow.

Note that in case one wants to minimize ‖Ff‖2 over all f with AF−1f = d, one has

to use the inverse 1/ωe instead of the edge weights ωe in all di�usion formulas.

The most positive features of FOS are the locality of its operations and the optimality

of the computed balancing �ow. However, if used for load balancing, FOS should be

replaced by the second order di�usion scheme SOS. The latter shares the same positive

properties, but converges signi�cantly faster towards the average load [Muth 98].

26

3. Disturbed Di�usion

A shape-optimizing approach to partitioning by means of the Bubble framework has

been identi�ed as very promising, see Schamberger [Scha 06] or Section 1.3.4 of this

thesis. However, previous implementations of the Bubble operations are pre-mature

and show some serious drawbacks, as pointed out in Section 1.3.4. In order to bene�t

from shape optimization, our objective is to overcome these drawbacks without requiring

geometric information on the graph.

Regarding graph clustering, it is furthermore of interest to be able to group nodes

based on their similarity. We therefore introduce in Section 3.1 a new disturbed di�usive

process called FOS/C and prove some of its basic properties. It accomplishes signi�cant

advantages compared to the previous di�usion schemes in Bubble implementations, in

particular w. r. t. robustness and computational requirements. As shown in Section 3.2

by its relation to random walks, FOS/C can be used as a similarity measure for the

graph nodes. This measure regards two nodes or graph regions as similar if they are

well-connected, which means that they are connected by many paths of short length. In

Sections 3.3 and 3.4, the behavior of FOS/C on distance-transitive and torus graphs is

investigated and several properties of the di�usive load distributions are derived. Finally,

FOS/C is modi�ed such that its solution can be computed faster. This acceleration is

achieved in Section 3.5 by the introduction of a virtual vertex. The relation of this

modi�ed scheme to FOS/C and its relevant properties are also explored.

3.1. Disturbed Di�usion Scheme FOS/C

We call a di�usion scheme disturbed if it is modi�ed such that it does not result in

a balanced load distribution. In contrast to the ordinary �rst order di�usion scheme

FOS, our new disturbed di�usion scheme FOS/C (C for constant drain) performs two

load-changing operations in each iteration. While the �rst step is the original di�usion

operation, the second one introduces a disturbance based on drain. It subtracts some

�xed load amount δ (the drain) from each node and adds the total drain evenly onto some

selected source nodes, denoted by the set S ⊂ V (see Figure 3.1). This disturbance by

the drain concept avoids the meaningless balanced load distribution in the convergence

state, as we will see later on.

De�nition 3.1. (FOS/C) Given a graph G = (V,E, ω), a set of source nodes ∅ 6= S ⊂ V ,

and suitably chosen constants α > 0 (cf. Section 2.2) and δ > 0. Let the initial load

27

CHAPTER 3. DISTURBED DIFFUSION

Figure 3.1.: Sketch of the drain concept with three nodes in the source set S.

vector w(0) and the drain vector d be de�ned as follows:

w(0)
v =

 n
|S| v ∈ S ,

0 otherwise ,
and dv =

 δn
|S| − δ v ∈ S ,

−δ otherwise .

Then, the edge-weighted FOS/C di�usion scheme performs the following operations in

each iteration t > 0:

x
(t−1)
e={u,v} = αωe(w(t−1)

u − w(t−1)
v) ,

w(t)
u =

(
w(t−1)
u −

∑
e={u,v}

x(t−1)
e

)
+ du .

The update of the load vector can be written in matrix-vector notation as w(t) =
Mw(t−1) + d, with M being the di�usion matrix of G. Note that, since 〈d,1〉 = 0, this
iterative load update does not change the total amount of system load. Node weights

� if desired � can be incorporated into FOS/C by weighting the drain vector entries

proportionally.

It requires a deeper analysis to see if FOS/C suits our needs, i. e., that load values can

be derived from it which re�ect how well-connected nodes or regions of a graph are with

each other. That is why we need to know if FOS/C reaches a convergence state, where

w(t) does not change any more. (In Markov chain theory such a state is also known as

steady state or stationary distribution.)

Lemma 3.2. Let M be a di�usion matrix and let d be a vector such that d ⊥ 1 =
(1, . . . , 1)T . Then, limt→∞(

∑t
i=0 Mi)d = (I−M)−1d.

Proof. Recall that 1 is an eigenvector to the simple eigenvalue 1 of M. Since d ⊥ 1, i. e.,

28

CHAPTER 3. DISTURBED DIFFUSION

∑n
j=1 dj = 0, it follows that limt→∞Mt+1d = 0. Hence,

lim
t→∞

(I−M)(I + M + M2 + · · ·+ Mt)d

= lim
t→∞

(I−Mt+1)d = lim
t→∞

d−Mt+1d

= d .

Therefore, (I + M + M2 + · · · + Mt) is the inverse to (I −M) in (I −M)d for t → ∞
and any vector d perpendicular to 1, so that the claim follows.

Theorem 3.3. The FOS/C scheme converges for any arbitrary initial load vector w(0),

provided that d ⊥ 1.

Proof. Repeatedly applying the FOS/C update rule to the initial load vector w(0), we

obtain

w(1) = Mw(0) + d

w(2) = Mw(1) + d = M(Mw(0) + d) + d = M2w(0) + (M + I)d
...

w(t) = Mtw(0) + (
t−1∑
i=0

Mi)d .

Due to the convergence of FOS to the average (balanced) load w, Lemma 3.2, and d ⊥ 1

this yields

w(∞) = lim
t→∞

Mtw(0) + (I−M)−1d

= w + (αL)−1d .

Hence, the convergence state w(∞) of FOS/C is composed of two parts. The �rst one

is the balanced load distribution w, while the second one depends only on α, L, and d.

Consequently, the �rst part is independent of the source set S, while the second one is

independent of the initial load w(0). More precisely, the choice of w(0) only determines

the total load within the system, i. e., the sum of all its entries. To make convergence

loads of di�erent source sets comparable, it is therefore necessary to �x this total load

by using the same w, e. g., the zero vector.

Note that, although the inverse L−1 itself does not exist, the last equation in the

previous lemma is well-de�ned. The matrix L−1 acts directly on d, which is perpendicular

to 1. The vector 1 is the eigenvector corresponding to the eigenvalue λ1 = 0 of L. Since

L is a real symmetric matrix, its eigenvectors form a basis of Rn [Tref 97, Ch. 24]. Hence,

we can represent d as a linear combination of the eigenvectors zj of L: d =
∑n

j=1 ajzj

29

CHAPTER 3. DISTURBED DIFFUSION

with aj ∈ R. The property d ⊥ 1 = z1 can be written as

0 = 〈d, z1〉 =
n∑
i=1

di · [z1]i =
n∑
i=1

n∑
j=1

aj [zj]i · [z1]i =
n∑
j=1

aj〈zj , z1〉 .

Since all the eigenvectors are orthogonal to each other, we have:
∑n

j=1 aj〈zj , z1〉 =
a1〈z1, z1〉. As 〈z1, z1〉 > 0, the coe�cient a1 must be zero. This leads to the well-

de�ned expression: L−1d =
∑n

j=2 ajλ
−1
j zj . Note that more details on the series

limt→∞
∑t

i=0 Mid and the matrices involved are given in Section 3.2.

Corollary 3.4. The convergence state w(∞) of FOS/C exists and can be characterized

as

w(∞) = Mw(∞) + d

⇔ (I−M)w(∞) = d

⇔ αLw(∞) = d .

Thus, w(∞) can be determined by solving the system of linear equations Lw = d, where

w = αw(∞). We usually refer to the vector w as the convergence load vector.

Remark 3.5. If the set of source nodes S contains only one node, we call the computation

of the FOS/C convergence state a single-source FOS/C procedure, otherwise it is called

a multiple-source FOS/C procedure.

As we assume that G is sparse, w can be computed by sparse iterative methods with

subquadratic space complexity. For example, a linear system Lw = d describing the

convergence state could be solved in principle by iterating FOS/C or similar di�usive

methods. They have the advantage not to require global operations because nodes must

exchange data only with their neighbors. Solvers such as Conjugate Gradient (CG)

or multigrid methods [Saad 03] are preferable if global knowledge is available. They

usually show a much faster convergence and a running time signi�cantly below O(n2).
Our experiments on various benchmark graphs indicate that standard CG, using global

operations, already yields a speedup of at least two orders of magnitude compared to the

FOS/C iteration w(t) = Mw(t−1) + d.

Before we investigate the connection between FOS/C and random walks in the next

section, we show some fundamental properties of FOS/C. This can be done by relating

it to a �ow problem and the ‖ · ‖2-optimality of FOS.

Observation 3.6. Since FOS/C solves Lw = d for w with d ⊥ 1 = w, we can observe

by using Lemma 2.16: The migrating �ow f = ATw in the FOS/C convergence state

equals the ‖ · ‖2-minimal �ow that balances the vector d. In this load balancing problem,

the nodes belonging to S send the respective load amount δ to all other nodes in the graph,

which act as δ-consuming sinks.

30

CHAPTER 3. DISTURBED DIFFUSION

Corollary 3.7. If either the �ow or the loads in the convergence state are known, the

respective other quantity can be computed easily: fe={u,v} = wu −wv. Note that the �ow

does not determine absolute values for the loads, only relative ones. To obtain absolute

values from the �ow, one needs to specify one of the load values.

Proposition 3.8. Consider the load vector w in the convergence state of FOS/C and

the corresponding �ow problem described in Observation 3.6. Then, the node v with

maximum load value in w belongs to the set of source nodes S.

Proof. Assume the opposite, i.e., v /∈ S. Since v has the highest load, no �ow is directed

towards v because the �ow on an edge is the load di�erence of its incident nodes. Hence, in

the �ow problem equivalent to FOS/C v does not receive any load. This is a contradiction

to the initial setting because all nodes not in S receive a load amount of δ by de�nition.

Proposition 3.9. Let the graph G = (V,E, ω) and the load vector w of an FOS/C

procedure with source set S be given. Then for each vertex v ∈ V there is a path (v =
v0, v1, . . . , vl = s) with s ∈ S and {vi, vi+1} ∈ E such that wvi < wvi+1 , 0 ≤ i < l.

Proof. Assume that the claim is untrue, so that no such monotonously increasing path

exists. Moreover, recall that the convergence state of FOS/C is equivalent to a �ow

problem where all vertices v ∈ V \S receive a load amount of δ. Now, let j be the

smallest index such that the monotonous path from v to s ∈ S stops in vj /∈ S because

wvj ≥ wv′ ∀(vj , v′) ∈ E. This means that vj is a local maximum w. r. t. its load, so that

the �ow on its incident edges directs from vj away. Hence, vj would not receive any load.

As all non-source vertices must receive a load amount of δ, our assumption is wrong and

the claim true.

3.2. Connections between FOS/C and Random Walks

Grouping nodes based on their similarity requires a formal notion of how similarity is

determined and which important properties a similarity measure should have.

De�nition 3.10. (comp. [Kauf 96, p. 440]) Let V be a �nite set of nodes. We call a

function S : V × V → R a similarity measure for V if

� S(u, v) = S(v, u) for all u, v ∈ V and

� S(u, u) ≥ S(u, v) for all u, v ∈ V .

The symmetric matrix S = (su,v = S(u, v)) is called similarity matrix.

In order to show why FOS/C reveals a structural similarity between graph nodes or

regions, we relate it to random walks.

31

CHAPTER 3. DISTURBED DIFFUSION

De�nition 3.11. A random walk on a graph G = (V,E, ω) is a discrete time stochastic

process de�ned as follows: Starting on an initial node, a random walk performs the

following in each iteration. First, it chooses one of the neighbors of the current node

v randomly (where the probabilities are proportional to the edge weights). Then, it

proceeds to the neighbor just chosen to start the next iteration. In some models one can

also use a positive probability for staying on the current node.

As indicated before in Section 1.3, a random walk visiting a densely connected region

of a graph is likely to visit many nodes of this region, before leaving it via one of the

relatively few external edges. Moreover, the (shortest) paths between nodes of di�erent

clusters go all via these few external edges. On the other hand, nodes of the same cluster

are connected to each other by many (shortest) paths of small length. This explains

intuitively why random walks can be helpful for distinguishing internal from external

edges or dense from sparse graph regions.

Based on how the transition probabilities are de�ned, di�erent types of random walks

can be distinguished. They have in common that a random walk has the Markov property.

This means that the probability of going from node u to node v in timestep t depends

only on the state in timestep t− 1, not on the states in the timesteps before. Moreover,

random walks are time-homogeneous, i. e., their transition probabilities are independent

of the timestep.

It is well-known that ordinary, i. e., undisturbed, di�usion and random walks are

closely related, see Lovász's survey on random walks [Lova 93]. In particular, the doubly-

stochastic di�usion matrix M can be considered as the transition matrix of a random

walk on V (G). Using the random walk notion, [M]u,v denotes the probability for a ran-

dom walk located in node u to move to node v in the next timestep. In order to examine

the relationship between disturbed di�usion and random walks, we show that the most

important part of an FOS/C convergence load is the sum of random walk transition

probabilities. These probabilities are determined by the di�usion matrix M, and the

random walks have an increasing number of steps.

Notation 3.12. Let [w(t)]uv ([w(t)]Sv) denote the load on node v in timestep t in a single-

source (multiple-source) FOS/C procedure with node u as source (source set S). Recall

that, whenever the timestep t is omitted, we refer to the convergence state of FOS/C.

Lemma 3.13. Consider a multiple-source FOS/C procedure on graph G = (V,E, ω) with
source set S. Then, for any node v ∈ V :

[w(t)]Sv = [Mtw(0)]Sv +
nδ

|S|

(
t−1∑
i=0

∑
u∈S

[Mi]v,u

)
− t|S|δ .

Proof. The FOS/C iteration scheme in timestep t for node v and source set S can be

32

CHAPTER 3. DISTURBED DIFFUSION

written as (Theorem 3.3)

[w(t)]Sv = [Mtw(0) +
t−1∑
i=0

(Mi)d]Sv .

Now, we split the drain vector into two parts as d = d1 + d2, one for the source set

S and one for the nodes in V \S. The �rst part d1 contains the entry δn
|S| − δ = δ(n−|S|)

|S|
in every row which corresponds to a node in S and zeros elsewhere. Similarly, d2 has

an entry of −δ in every row corresponding to a node in V \S and zeros elsewhere. This

split, some rearranging, and using the fact that M is stochastic (has row sum 1) and a

linear operator yield

[w(t)]Sv = [Mtw(0)]Sv + [
t−1∑
i=0

Mid1]Sv + [
t−1∑
i=0

Mid2]Sv

= [Mtw(0)]Sv +
t−1∑
i=0

(
δ(n− |S|)

|S|
∑
u∈S

[Mi]v,u + (−δ)
∑
u/∈S

[Mi]v,u

)

= [Mtw(0)]Sv +
t−1∑
i=0

(
δ(n− |S|)

|S|
∑
u∈S

[Mi]v,u − δ
∑
u∈S

(1− [Mi]v,u)

)

= [Mtw(0)]Sv +
nδ

|S|

(
t−1∑
i=0

∑
u∈S

[Mi]v,u

)
− t|S|δ .

Corollary 3.14. Consider a single-source FOS/C procedure on graph G = (V,E, ω) with
node u ∈ V as source. Then, for any node v ∈ V :

[w(t)]uv = [Mtw(0)]uv + nδ(
t−1∑
i=0

[Mi]v,u)− tδ .

Proposition 3.15. For any graph G = (V,E) and two arbitrary, but �xed nodes u, v ∈ V
it holds:

[w]uv = [w]vu .

Proof. Due to Corollary 3.14 we have

[w]vu − [w]uv = lim
t→∞

[Mtw(0)]vu − [Mtw(0)]uv + nδ

(
t∑
i=0

[Mi]u,v −
t∑
i=0

[Mi]v,u

)
− tδ + tδ .

The �rst two terms after the limit both converge towards the average load w [Cybe 89],

also in the edge-weighted case [Diek 99]. Hence, they vanish just as the last two terms,

33

CHAPTER 3. DISTURBED DIFFUSION

yielding

[w]vu − [w]uv = lim
t→∞

nδ(
t∑
i=0

[Mi]u,v − [Mi]v,u) .

As M is symmetric, all its powers are symmetric, too. Hence, all summands are zero,

implying the claim.

Considering the original FOS/C de�nition, the fact that this kind of load symmetry

holds on all graphs is somewhat surprising. One might not expect such a property in

graphs without any symmetry whatsoever. Its high relevance will become fully clear in

Chapter 4, when the load symmetry is used to prove the convergence of the algorithm

Bubble-FOS/C. Together with Proposition 3.8, we can deduce here that FOS/C is a

similarity measure, which is important for its use in clustering algorithms:

Corollary 3.16. As [w]uv = [w]vu and [w]uu > [w]uv for all u, v ∈ V , FOS/C is a similarity

measure for the nodes of a graph. The matrix W′ = (w′u,v = [w]uv) is the FOS/C similarity

matrix.

Note that similarity measures are sometimes also required to lie in the interval [0, 1],
which is not ful�lled by FOS/C (but could be ensured by some suitable scaling).

Lemma 3.13 and the proof of Proposition 3.15 also show that for the interpretation of

the load distribution in the convergence state only the sum term nδ(
∑∞

i=0[M
i]u,v) in the

middle part is of interest. The expression [Mi]u,v denotes the probability of a random

walk described by M to start in v and be located on u after i steps. In its spectral

decomposition [Tref 97, Ch. 24], this matrix entry can be written as follows:

[Mi]u,v =
n∑
j=1

µij [zj]u[zj]v ,

where zj denotes the j-th eigenvector and µj the j-th eigenvalue of M. Recall that

the largest absolute eigenvalue of M is µ1 = 1. It corresponds to the eigenvector z1 =
(1, . . . , 1)T (or any scalar multiple of this vector). Since µ1 is simple (Section 2.2), |µi| < 1
for all i > 1. Hence, the µti with 2 ≤ i ≤ n converge to 0 if t → ∞ and the limit of the

spectral decomposition is

lim
t→∞

n∑
j=1

µtj [zj]u[zv]v = [z1]u[z1]v .

Thus, all entries of Mt converge towards [z1]u[z1]v. As z1 is the balanced distribution

with all entries equal, the summands with large i in
∑t−1

i=0[M
i]v,u of Lemma 3.13 are of

low importance. These values are already very similar, regardless of the choice of v and

u. In contrast to this, the summands for small values of i reveal by the random walk

interpretation if two nodes are connected to each other by many short paths or not.

One might wonder why it is necessary to iterate FOS/C for an in�nite number of steps

if only the �rst few iterates contribute signi�cantly to the result. The reason is that by

34

CHAPTER 3. DISTURBED DIFFUSION

taking the results of all random walks with lengths 0, . . . ,∞ into account, FOS/C can

be used for general graphs without determining a speci�c suitable walk length. Hence,

FOS/C is a very robust mechanism for identifying if two nodes u and v are densely

connected to each other. This notion of connectedness can be extended to graph regions

as well by using a larger source set S.

An alternative way of interpreting the convergence load of FOS/C uses random walk

measures and their connection to a certain matrix. We explore this further connection

in the following, which also yields an alternative proof for the FOS/C load symmetry.

De�nition 3.17. Let X
(t)
u be the random variable representing the node visited in

timestep t by a random walk starting in u in timestep 0. Furthermore, let the balanced

distribution vector be π = (1
n , . . . ,

1
n)T and let τu be de�ned as τu := min{t ≥ 0 : X(t)

u =
s} for any u ∈ V . Then, the (expected) hitting time H is de�ned as H[u, s] := E [τu].1

Moreover, the commute time C[u, v] between nodes u and v is de�ned as C[u, v] :=
H[u, v] +H[v, u].

One can describe the hitting time H[u, v] as the expected timestep in which a random

walk starting in u visits v for the �rst time. The commute time also includes the way back

and is therefore symmetric. Fouss et al. [Fous 07] uses the square root of the commute

time C[u, v] as a distance measure between graph nodes u, v ∈ V . This Euclidean

Commute Time Distance (ECTD) follows a similar idea as FOS/C of re�ecting how well-

connected two nodes are. The commute time can be computed by using the following

lemma:

Lemma 3.18. [Fous 07] The commute time between nodes u and v can be computed

as C[u, v] = volG(l†u,u + l†v,v − 2l†u,v), where volG is the volume of graph G, volG =∑n
j=1 deg(j).

The matrix L† is called (Moore-Penrose) pseudoinverse [Golu 96, p. 257f.] or dis-

crete Green's function [Elli 01a] of L. Like L, it is symmetric positive semide�nite and

doubly centered, i. e., both row sum and column sum are zero. If (λi 6= 0, zi) is the

i-th pair of eigenvalues/-vectors of L, (λ−1
i , zi) is the analogous i-th pair of L†. All

pairs (λi = 0, zi) are eigenvalues/-vectors of both L and L† (comp. [Fous 07]). Thus:

[L†]u,v =
∑n

i=2 λ
−1
i [zi]u[zi]v. The pseudoinverse can also be used to compute the FOS/C

convergence load vector w directly. One way to see this is to consider w in Lw = d as

a solution to the least square problem minw∈Rn ‖d − Lw‖2. It is known that w = L†d

provides the solution to this minimization problem [Golu 96, p. 256f.]. Since d ⊥ 1, a

solution w which attains the minimum value 0 exists (Corollary 3.4), so that the FOS/C

convergence vector w can also be stated as w = L†d.

Consequently, apart from linear solvers, the convergence load w = αw(∞) can be com-

puted by iterating FOS/C (i. e., by successive matrix-vector products Mtd similar to the

1Note that this de�nition, which is also used by other authors [Norr 97, Fous 07], yields H[u, u] =
0 for all u ∈ V . Yet, alternative formulations also exist, which result in H[u, u] 6= 0 for all u ∈
V [Boll 98].

35

CHAPTER 3. DISTURBED DIFFUSION

power iteration method for computing eigenvectors [Golu 96]), or by using the eigenval-

ues and -vectors of L†, or by direct pseudoinversion. Yet, direct pseudoinversion is for

general graphs as complex as inversion and requires Ω(n2) operations [Elli 01a]. Also

the former two approaches are not recommended in practice. Power iteration methods

usually converge very slowly [Golu 96, Ch. 7.3], which we could con�rm in our own ex-

periments. Similarly, computing (nearly) all the eigenvalues and -vectors of L†, even with

a fast eigensolver, is computationally very expensive, too. Storing all these eigenvectors

or the (in general dense) matrix L† also requires O(n2) storage. This is only possible

for rather small graphs. On the other hand, if L† is already known, FOS/C convergence

loads can be computed very easily. In any case, the following results provide an elegant

interpretation of these load values in terms of L†.

Proposition 3.19. Let S be the source set in a multiple-source FOS/C procedure with

w = (0, . . . , 0)T . Then, the entries of the FOS/C convergence load vector w can be

computed as

[w]Sv = [L†d]Sv =
nδ

|S|
∑
u∈S

l†v,u .

Proof. Recall that the row sum of L† is always 0 and that w = L†d. Hence, by splitting

the drain vector into two parts, one with only negative entries, one with only positive

ones, we obtain

[w]Sv = [L†d]Sv =
n∑
u=1

l†v,udu =
δ(n− |S|)

|S|
∑
u∈S

l†v,u − δ
∑
u/∈S

l†v,u

=
δ(n− |S|)

|S|
∑
u∈S

l†v,u + δ
∑
u∈S

l†v,u − δ

n∑
u=1

l†v,u

=
nδ

|S|
∑
u∈S

l†v,u .

Corollary 3.20. Let s be the source in a single-source FOS/C procedure. Then, the

entries of the FOS/C convergence load vector w can be computed as

[w]sv = [L†d]sv = nδ · l†v,s .

Consequently, the FOS/C similarity matrix equals the pseudoinverse of the graph's

Laplacian up to scaling. Now, the load symmetry of FOS/C also follows from the fact

that L† is a symmetric matrix.

Returning to the random walk notion, both measures hitting and commute time can

be related to FOS/C, too, by the following results.

Corollary 3.21. By using the formulas of Lemma 3.18 and Corollary 3.20, the commute

36

CHAPTER 3. DISTURBED DIFFUSION

time between nodes u and v can be expressed in terms of FOS/C convergence loads as

C[u, v] = volG

(
[w]uu + [w]vv − 2[w]uv

δn

)
.

Theorem 3.22. [Meye 06b] In the convergence state it holds for two nodes u, v ∈ V not

necessarily distinct from a source s ∈ V :

[w]su − [w]sv = δ(H[v, s]−H[u, s]) .

The main commonality of ECTD and FOS/C is the underlying notion of random walks

to determine the similarity of graph nodes. Both can express this notion by means of the

pseudoinverse of the graph's Laplacian matrix. As we will show next, on vertex-transitive

graphs (cf. De�nition 3.25) a maximization of the FOS/C similarity is even equivalent

to the minimization of the commute time distance. Hence, embedded into center-based

clustering algorithms (i. e., where each cluster has one distinguished center node to which

distances are computed) such as k-means, both measures yield the same clustering results

on vertex-transitive graphs such as the hypercube or the torus (see Sections 3.3 and 3.4).

Theorem 3.23. For arbitrary nodes u, v ∈ V of a vertex-transitive (unweighted) graph

G = (V,E) and a source set S ⊂ V it holds:

arg min
u∈V

∑
v∈S

C[u, v] = arg max
u∈V

[w]Su .

Similarly, for a node v ∈ V and nodes u1, . . . , uk ∈ V :

arg min
c=1,...,k

C[uc, v] = arg max
c=1,...,k

[w]uc
v .

Proof. Due to a result of Alon and Spencer (see Lemma 3.42) we have [Mt]v,v = [Mt]u,u
for all u, v ∈ V of an unweighted vertex-transitive graph G. Combining Proposition 3.15

and Corollary 3.20, we get:

l†u,u − l†v,v =
[w]uu − [w]vv

nδ
= lim

t→∞

t∑
i=0

[Mi]u,u − [Mi]v,v = 0 .

Since all diagonal entries of L†(G) are equal, the values volG, l
†
u,u, and l

†
v,v can be seen

as constants, yielding

arg min
u∈V

∑
v∈S

C[u, v] = arg min
u∈V

∑
v∈S

volG(l†u,u + l†v,v − 2l†u,v)

= arg min
u∈V

∑
v∈S

−2l†u,v = arg max
u∈V

∑
v∈S

l†u,v

= arg max
u∈V

[w]Su .

37

CHAPTER 3. DISTURBED DIFFUSION

A similar series of arguments yields: arg minc=1,...,k C[uc, v] = arg maxc=1,...,k l
†
uc,v =

arg maxc=1,...,k[w]uc
v .

An important aspect where the methods di�er from each other is crucial for their

complexity and in favor of FOS/C. To compute the distance to some node v for all other

nodes within a center-based clustering algorithm, FOS/C requires only the v-th row of L†,

which is computed by solving a single-source procedure. ECTD, however, also needs all

diagonal entries of L†. To determine them by computing the whole pseudoinverse matrix,

becomes intractable for larger problems, as also remarked by Fouss et al. [Fous 07]. Both

running time, which is at least quadratic, and space consumption become prohibitive. By

using additional techniques such as a sparse Cholesky factorization, Fouss et al. has been

able to tackle sparse graphs with up to 150,000 nodes. Compared to what is theoretically

feasible with sparse iterative linear solvers for FOS/C on commodity hardware (sparse

linear systems with a few million variables can be solved on any modern desktop computer

with 2 GB main memory), the quantity 150,000 is relatively small.

3.3. FOS/C on Distance-Transitive Graphs

After these results on general graphs, we turn our attention to the behavior of FOS/C

on two speci�c, but important, graph classes. In view of the previous �ndings, one can

see this also as an analysis of the Laplacian's pseudoinverse whenever the convergence

state of FOS/C is concerned. Note that, as pointed out by Ellis [Elli 01a], closed-form

functions for the pseudoinverse must be computed for each new class of graphs.

This section deals with distance-transitive graphs, a class of which several representa-

tives are very important in parallel network topologies and coding theory. We show that

the FOS/C load distribution (respectively the entries of L†) can be computed for this

class by relating it to a �ow problem. The graphs considered in this section are assumed

to be unweighted and all FOS/C procedures have only one single source.

De�nition 3.24. [Bigg 93, p. 115] Given a graph G = (V,E), a permutation π of V is

an automorphism of G if

{u, v} ∈ E ⇔ {π(u), π(v)} ∈ E,∀u, v ∈ V .

The set of all automorphisms of G, with the operation of composition, is the automor-

phism group of G, denoted by Aut(G).

De�nition 3.25. [Gros 04, p. 12] A graph G = (V,E) is vertex-transitive if for any two

distinct vertices of V there is an automorphism mapping one to the other.

An even stronger property is distance-transitivity:

De�nition 3.26. [Bigg 93, p. 118] A graph G = (V,E) is distance-transitive if, for all

vertices u, v, x, y ∈ V such that dist(u, v) = dist(x, y), there exists an automorphism ϕ

for which ϕ(u) = x and ϕ(v) = y.

38

CHAPTER 3. DISTURBED DIFFUSION

Distance-transitive graphs are symmetric graphs and therefore vertex-transitive, edge-

transitive, and regular [Bigg 93, Chs. 15 and 20]. One important subclass of distance-

transitive graphs are Hamming graphs [Bon 07]. The concept of Hamming distance,

represented by path lengths in Hamming graphs, frequently occurs in coding theory

for error detection and correction [Adam 91]. A very well-known Hamming graph is

the hypercube [Leig 92], which is also important as a topology for connecting parallel

processors. Other distance-transitive graphs are the Petersen graph, complete graphs,

and complete bipartite graphs with parts of equal size [Gods 01, Ch. 4.5].

De�nition 3.27. Let Ni(u) := {v ∈ V |dist(u, v) = i} denote the i-neighborhood of u.

A graph G = (V,E) has a level structure (is a level structure graph) w. r. t. a node s ∈ V
if V can be partitioned into levels {s} = L0, L1, . . . , LΛ such that for all 0 ≤ i ≤ Λ:

∀u, v ∈ Li ∀j ∈ {0, . . . ,Λ} : |N1(u) ∩ Lj | = |N1(v) ∩ Lj |

and L0 ∪̇ . . . ∪̇LΛ = V .

Lemma 3.28. [Bigg 93, p. 155f.][Gods 01, p. 67] If G = (V,E) is distance-transitive,

then Ni(s) forms the i-th level Li(s) of a level structure in G w. r. t. an arbitrary, but

�xed node s ∈ V .

As an example, the κ-dimensional hypercube Q(κ) has Λ = κ + 1 such levels. The

results of this section can be derived by means of this level structure and the equivalence

of FOS/C to the following ‖ · ‖2-minimal �ow problem.

De�nition 3.29. Consider the �ow problem of Observation 3.6, where s sends a load

amount of δ to all other vertices of G, which act as δ-consuming sinks. If the �ow

is distributed such that for all v ∈ V \{s} the same �ow amount is routed on every

(not necessarily edge-disjoint) shortest path from s to v, we call this the uniform �ow

distribution. Note that in case more than one shortest path traverses the same edge e,

the total �ow on e is the �ow sum of all shortest paths via e.

The reason, why this �ow problem is interesting, is its connection to FOS/C. Recall

from Observation 3.6 that the ‖·‖2-minimal solution of the �ow problem of De�nition 3.29

is equal to the solution of the underlying FOS/C procedure.

Proposition 3.30. Let G be a distance-transitive graph. Then, w
(t)
u = w

(t)
v holds for all

vertices u, v with the same graph distance to s and all timesteps t ≥ 0.

Proof. Due to the choice of w(0), the claim is trivially ful�lled for t = 0. Following from

the level structure of G, the FOS/C iteration formula for vertex v and timestep t+1 can

be rewritten as

w(t+1)
v = w(t)

v + dv − α

Λ∑
i=0

∑
{u,v}∈E∧u∈Li

w(t)
v − w(t)

u ,

39

CHAPTER 3. DISTURBED DIFFUSION

where Λ denotes the number of levels w. r. t. s. Now the claim follows by induction

because the �ow between levels i− 1 and i and also i and i+ 1 is for all edges between

the respective two levels equal in timestep t. Since also the number of edges connecting

the same two levels is the same for each vertex (Lemma 3.28), each term contributes the

same amount of load to w
(t+1)
v .

We know by Proposition 3.9 that for each vertex v ∈ V \{s} of an arbitrary graph there
exists a path from v to s such that by traversing it, the load amount increases. Now we

can show that for distance-transitive graphs this property holds on every shortest path.

Theorem 3.31. If G is distance-transitive, then for all u, v ∈ V with dist(u, s) <

dist(v, s) it holds that [w]su > [w]sv.

Proof. Recall the equivalence of the FOS/C convergence state to the ‖ · ‖2-minimal �ow

problem of Observation 3.6. When load is sent from node s to a node v ∈ Li, this load

has to pass all levels Li′ with i
′ < i, 0 < i ≤ Λ. Shortcuts are not possible due to the

properties of the level structure. This means that at least one vertex v′ ∈ Li−1 exists

with a positive �ow of load towards v ∈ Li. Since f{v′,v} = [w]sv′ − [w]sv, v
′ must have a

higher load than v. Due to the load equality in level i− 1 (Proposition 3.30), all vertices

of level i− 1 have a higher load than vertices in level i.

Note that, although the order induced by the FOS/C di�usion distance corresponds to

the one induced by the ordinary graph distance, the load di�erences across levels re�ect

their connectivity, so that FOS/C still reveals more information. This becomes clear

in the following, where we derive alternative representations of the convergence �ow f .

Once the �ow is known, the loads can be deduced from it.

Lemma 3.32. Let G = (V,E) be a distance-transitive graph, s ∈ V , and e = {u, v} ∈ E
with u ∈ Li(s) and v ∈ Li+1(s) (0 < i < Λ). Then, the number of shortest paths starting

in s and ending in level i is equal for all vertices in Li.

Similarly, let V ′ :=
⋃Λ
j=i+2 Lj be the subset of nodes further away from s than v. Then,

there are exactly as many shortest paths from s to V ′ via v as via any other vertex in

level i+ 1.

Proof. We prove the �rst claim by induction on the level number i: For i = 1, there is
exactly one respective shortest path from s to any arbitrary vertex u′ ∈ L1. Assuming

now the claim to be true for all i′ ≤ i, let v′ 6= v be a vertex in level i+ 1. The number
of shortest paths to the neighbors in level i of v′ is the same as for the neighbors in level

i of v. Moreover, the number of neighbors is also the same for v and v′ (Lemma 3.28).

Since the edges {u, v} and {u′, v′} (with u′ ∈ Li) are disjoint, the claim follows also for

level i+ 1.
For a similar proof of the second claim, let v ∈ Li+1 with v 6= v. As v and v are reached

by the same number of shortest paths and they have the same number of neighbors in

Li+2, level Li+2 may serve as induction basis. We know by Lemma 3.28 that the nodes in

40

CHAPTER 3. DISTURBED DIFFUSION

level Lj have the same number of neighbors in level Lj+1, i+ 2 ≤ j < Λ. The respective
edges running between nodes of consecutive levels are each part of a new shortest path.

Hence, an inductive step from j to j + 1 adds the same number of shortest paths from

s to Lj+1 via v and via v. Combined with the �rst part, we obtain that v and v are

crossed by the same number of shortest paths from s to V ′.

Corollary 3.33. Let G and e be de�ned as in Lemma 3.32. Then e lies on the same

number of shortest paths from s to nodes in Lj(s), i < j ≤ Λ, as any other edge e′ =
{u′, v′} with u′ ∈ Li(s) and v′ ∈ Li+1(s).

Theorem 3.34. Let G and s be de�ned as in Lemma 3.32 and let Ei,i+1(s) := {{u, v} :
u ∈ Li, v ∈ Li+1} denote the set of edges running between levels i and i+ 1, 0 ≤ i < Λ.
Then, the FOS/C convergence �ow fe on an edge e = {u, v} ∈ Ei,i+1(s) is given by

wu − wv = fe =
δ

|Ei,i+1(s)|
·

Λ∑
j=i+1

|Lj | .

Proof. We have seen before that the load which reaches u ∈ Li needs to pass all levels

Li′ with i
′ < i. Moreover, nodes of the same level have the same load (Proposition 3.30).

Consequently, edges running between the same two levels get the same amount of �ow

since the �ow is the load di�erence. As all nodes in levels larger than i need to receive their

load amount δ, the total amount of load crossing the edges of Ei,i+1(s) is δ
∑Λ

j=i+1 |Lj |,
which has to be divided by the number of edges to obtain the convergence �ow on a

single edge e ∈ Ei,i+1(s).

Since we can determine the size of each level and the number of edges between di�erent

levels by simple breadth-�rst-search (BFS) techniques, the FOS/C convergence �ow f

can be computed on distance-transitive graphs without solving a linear system. While

BFS is asymptotically not faster than an optimal linear solver, the constants involved in

the running time of BFS can be expected to be much smaller.

Each node of the κ-dimensional hypercube Q(κ) corresponds to a bit-string of length

κ. Since Q(κ) is κ-regular, vertex- and edge-transitive [Bigg 93], we may assume w. l. o. g.

that s = 0κ. Due to its known structure, the FOS/C convergence �ow on the hypercube

can be stated more explicitly and the monotonicity result can be further improved.

Corollary 3.35. On the κ-dimensional hypercube Q(κ) = (V,E), the FOS/C conver-

gence �ow fe on an edge e = {u, v} ∈ E (u in level i, v in level i+1, 0 ≤ i < Λ) is

wu − wv = fe = δ

(κ
i)(κ−i)

·
∑κ

j=i+1

(
κ
j

)
.

Proof. Since one chooses i out of κ bits to be set to 1 to reach a level-i vertex, level i of

Q(κ) contains
(
κ
i

)
vertices. Consequently, |Ei,i+1(s)| =

(
κ
i

)
(κ− i), as each node in level

i has κ− i neighbors in level i+ 1.

41

CHAPTER 3. DISTURBED DIFFUSION

Theorem 3.36. For all nodes u, v ∈ V of Q(κ) = (V,E), the monotonicity result of

Theorem 3.31 holds in all timesteps t ≥ 0, not only in the convergence state: If s is the

source node (w. l. o. g. s = 0κ) and dist(u, s) < dist(v, s), [w(t)]su > [w(t)]sv for all t ≥ 0.

Proof. The claim is proved by induction on t. Due to Theorem 3.30 we can denote the

load of a vertex in level l, 1 ≤ l < κ, and timestep t by w
(t)
l . Thus, we rewrite the update

procedure of FOS/C on Q(κ) as

w
(t)
l := w

(t−1)
l − δ + lα(w(t−1)

l−1 − w
(t−1)
l) + (κ− l)α(w(t−1)

l+1 − w
(t−1)
l) .

Note that, by restricting l to lie between 1 and κ− 1, the indices of w lie all between

0 and κ. Whenever in the following indices of w are not in the interval [0, κ], the
corresponding load values are 0. If u is in level zero (which means it equals the source

node), the claim can be shown analogous to the second part of the proof of Theorem 3.46.

The claim holds for t = 0 due to the structure of w(0) (only s has positive load, all

other vertices have zero load). Assuming that the claim holds for all t′ ≤ t, we can

deduce for all κ and α < (κ+ 1)−1:

w
(t)
l ≥ w

(t)
l+1

⇔ w
(t)
l (1− (κ+ 1)α) ≥ w

(t)
l+1(1− (κ+ 1)α)

⇔ w
(t)
l (1− κα) + w

(t)
l+1α ≥ w

(t)
l+1(1− κα) + w

(t)
l α

IH⇒ w
(t)
l (1− κα) + w

(t)
l+1α+ w

(t)
l−1lα > w

(t)
l+1(1− κα) + w

(t)
l α+ w

(t)
l lα .

Like the previous step, the following one uses the induction hypothesis. Note that

even if level l + 2 does not exist, this step is feasible. Adding 0 on the right side of the

inequation does not change its validity. Some more additions and rearranging yield

IH⇒ w
(t)
l−1lα+ w

(t)
l (1− κα) + w

(t)
l+1α+ w

(t)
l+1(κ− l − 1)α >

w
(t)
l (l + 1)α+ w

(t)
l+1(1− κα) + w

(t)
l+2(κ− l − 1)α

⇔ w
(t)
l−1lα+ w

(t)
l (1− κα) + w

(t)
l+1(κ− l)α ≥

w
(t)
l (l + 1)α+ w

(t)
l+1(1− κα) + w

(t)
l+2(κ− l − 1)α

⇔ w
(t)
l + lα(w(t)

l−1 − w
(t)
l)− κα(w(t)

l − w
(t)
l+1) + lα(w(t)

l − w
(t)
l+1) ≥

w
(t)
l+1 + α(w(t)

l − w
(t)
l+2 − w

(t)
l+1 + w

(t)
l+2)− (κ− l − 1)α(w(t)

l+1 − w
(t)
l+2)

+lα(w(t)
l − w

(t)
l+1)

⇔ w
(t)
l + lα(w(t)

l−1 − w
(t)
l) + (κ− l)α(w(t)

l+1 − w
(t)
l)− δ ≥

w
(t)
l+1 + (l + 1)α(w(t)

l − w
(t)
l+1) + (κ− l − 1)α(w(t)

l+2 − w
(t)
l+1)− δ

⇔ w
(t+1)
l ≥ w

(t+1)
l+1 .

42

CHAPTER 3. DISTURBED DIFFUSION

Theorem 3.37. Let G be a distance-transitive graph. Then, the uniform �ow distribution

of De�nition 3.29 yields the ‖ · ‖2-minimal FOS/C convergence �ow on G.

Proof. Due to monotonicity (Theorem 3.31) we know that the FOS/C convergence �ow

on an edge always directs from s away. Recall that the edges e = {u, v} and e′ =
{u′, v′} with u, u′ ∈ Li and v, v

′ ∈ Li+1 are part of the same number of shortest paths

(Corollary 3.33). Hence, the uniform �ow distribution yields an even division of the �ow

between two levels. Such an even division is also obtained in the FOS/C convergence

state (Theorem 3.34). Moreover, the amount of �ow that has to reach the vertices of

all levels Lj , j ≥ i, 1 ≤ i ≤ Λ, in the FOS/C convergence state is known. It is just

the number of vertices in all such levels times δ. Hence, the amount of �ow passing a

level is �xed, so that the uniform distribution of the �ow and the ‖ · ‖2-minimal FOS/C

convergence �ow coincide.

It would be nice to �nd such a simple characterization of the convergence �ow for

more graph classes. On the other hand, simple can also mean that not much more

information on the structure is provided than with the ordinary graph distance. For

distance-transitive graphs it tells us at least something about how well-connected the

di�erent levels are in terms of the similarity measure FOS/C.

3.4. FOS/C on the Torus

We have seen that the FOS/C convergence �ow equals the uniform �ow distribution on

distance-transitive graphs. In this section we show that this property does not hold for

the torus in general, despite the numerous torus symmetries such as vertex-transitivity.

We also analyze other properties of the load distribution, in particular during the FOS/C

iteration, not only in the convergence state. Note that we consider again only single-

source FOS/C procedures and unweighted graphs in this section.

De�nition 3.38. The κ-dimensional torus T [d1, . . . , dκ] = (V,E) is de�ned as:

V = {(u1, . . . , uκ) | − bdν − 1
2

c ≤ uν ≤ ddν − 1
2

e for 1 ≤ ν ≤ κ} and

E = {{(u1, . . . , uκ), (v1, ..., vκ)} | ∃ 1 ≤ µ ≤ κ with

(vµ = uµ + 1 ∨ (vµ = −bdµ − 1
2

c ∧ uµ = ddµ − 1
2

e)) and uν = vν for ν 6= µ} .

Remark 3.39. A torus graph G = (V,E) is vertex-transitive. This can be veri�ed by

showing that every κ-dimensional, integral translation vector is an automorphism. Al-

ternatively, one can use the fact that a cycle graph Cn is a Cayley graph for the cyclic

group Zn. As a κ-dimensional torus is the graph product of κ cycle graphs, it is also a

Cayley graph, which is a class of vertex-transitive graphs (comp. [Gros 04, p. 505f.]).

Torus graphs are very important in theory [Leig 92] and practice [The 02], e. g., be-

cause they have bounded degree, are regular and vertex-transitive. They also correspond

43

CHAPTER 3. DISTURBED DIFFUSION

(a) (b) (c)

Figure 3.2.: Convergence �ow of FOS/C on tori of size (a) 3x3 and (b) 5x5 with δ = 1.
(c) Illustration of the square made of the edges e1, e2, e3, and e4 as in the
proof of Theorem 3.40.

to numerical simulation problems that decompose their domain by structured grids with

cyclic boundary conditions.

In the following theorem we show that the uniform �ow distribution among the shortest

paths is not ‖·‖2-optimal on the torus in general. The intuitive reason is that the number

of shortest paths from a source s to another vertex u does not depend on its distance to

s alone.

Theorem 3.40. The uniform �ow distribution on the 2D torus yields the ‖ · ‖2-minimal

�ow for d1 = d2 ∈ {2, 3, 4, 5}, but not for odd d1 = d2 ≥ 7.

Proof. The FOS/C convergence �ows for torus graphs of size 3×3 and 5×5 are depicted

in Figures 3.2(a) and 3.2(b). (Note that the lines with only one nodal endpoint denote

wraparound edges.) One can easily verify that the claim holds for these two instances

and that the tori of size 2×2 and 4×4 are isomorphic to the hypercubes Q(2) and Q(4),
respectively. Recall that the convergence �ow distribution of hypercubes has been shown

to be uniform.

Hence, we examine a d1×d2-torus with d1 = d2 odd and not smaller than 7. Intuitively,
the property does not hold for larger tori because near the diagonal there are more

shortest paths than on an axis. Thus, by rerouting some of the uniform �ow towards

the diagonal, the costs can be reduced. We proceed by setting d := d1−1
2 and assuming

w. l. o. g. that s = (0, 0). Consider now the square consisting of the nodes (d − 1, d −
2), (d, d− 2), (d, d− 1), (d− 1, d− 1), see Figure 3.2(c). Denote � with a slight abuse of

notation � the following edges as well as the �ow on them by

e1 = {(d− 1, d− 2), (d− 1, d− 1)} ,

e2 = {(d− 1, d− 1), (d, d− 1)} ,

e3 = {(d− 1, d− 2), (d, d− 2)} , and

e4 = {(d, d− 2), (d, d− 1)} .

44

CHAPTER 3. DISTURBED DIFFUSION

For the ‖ · ‖2-minimal �ow it is necessary that e1 + e2 = e3 + e4. Otherwise, some �ow

from node (d− 1, d− 2) to node (d, d− 1) could be rerouted to decrease the costs.

Observe that in the uniform �ow distribution the amount of �ow routed via e4 is either

sent to (d, d−1) or to (d, d). The amount on e4 destined alone to (d, d−1) is the quotient
of the number of shortest paths to (d, d− 1) via (d, d− 2) and the number of all shortest

paths to (d, d − 1). It is well-known that the number of shortest paths from (0, 0) to

(x, y) on the torus is
(
x+y
x

)
=
(
x+y
y

)
. Thus, by applying the same quotient argument for

the �ow to (d, d), we obtain

e4 =
(

2d− 2
d− 2

)
·

(
1(

2d−1
d−1

) +
1(
2d
d

)) and e2 =
(

2d− 2
d− 1

)
·

(
1(

2d−1
d−1

) +
1(
2d
d

)) ≥ e4

because
(
n
k

)
is maximized for k = n/2. It remains to be shown that e1 > e3 holds.

Similar as before, we have

e1 =
(

2d− 3
d− 1

)
·

(
1(

2d−2
d−1

) +
1(

2d−1
d−1

) +
1(

2d−1
d−1

) +
2(
2d
d

)) ,

e3 =
(

2d− 3
d− 1

)
·

(
1(

2d−2
d−2

) +
1(

2d−1
d−1

) +
1(
2d
d

)) .

Some rearranging yields

e1 − e3(
2d−3
d−1

) =
(3d2 − 7d+ 2)(d!)2

d(d− 1)(2d!)
.

Provided that d > 2, we have: 3d2 − 7d+ 2 = 3d · d− 7d+ 2 ≥ 9d− 7d+ 2 = 2d+ 2 > 0.
Thus, e1 − e3 > 0, implying the claim.

We �nish the results on the uniform �ow distribution by the following proposition.

Note that, since we have shown above that the uniform �ow is not ‖ · ‖2-minimal for

general torus graphs, its implication is not an equivalence.

Proposition 3.41. If on a graph G = (V,E) the uniform �ow distribution is ‖ · ‖2-

minimal, then for {u, v} ∈ E and dist(u, s) < dist(v, s) it holds that wu > wv.

Proof. Since load is routed uniformly via shortest paths, we know that some load is

routed over every shortest path. Therefore, as u is on a shortest path from s to v, the

load di�erence (which is the �ow) between u and v must be positive.

Now set α := (deg(G)+ 1)−1, so that all entries of the di�usion matrix M are either 0
or α. This is a usual choice for transition matrices in random walk theory. Consider an

arbitrary κ-dimensional torus T [d1, . . . , dκ]. Due to vertex-transitivity, we may assume

w. l. o. g. that the source node s is the zero-vector.

45

CHAPTER 3. DISTURBED DIFFUSION

Lemma 3.42. [Alon 00, p. 151] For vertex-transitive graphs G, all automorphisms ϕ,

and all timesteps t it holds: [Mt]u,v = [Mt]ϕ(u),ϕ(v).

Observation 3.43. From this result by Alon and Spencer it follows that on vertex-

transitive graphs the FOS/C load vector underlies the same permutation induced by an

automorphism ϕ as the variables of M. Hence, all single-source FOS/C procedures yield

a permutation of the same load vector on these graphs.

Using Lemma 3.42 and its statement on automorphisms, the following theorem regard-

ing the monotonicity of the di�usion load can be derived.

Theorem 3.44. [Meye 06b] Let T [d1, . . . , dκ] = (V,E), κ arbitrary, be a torus graph.

For α = (deg(G) + 1)−1 and all adjacent nodes u, v ∈ V distinct from s ∈ V with

dist(u, s) = dist(v, s)− 1 it holds:

∀t ∈ N0 : [Mt]u,s ≥ [Mt]v,s .

Note that one can show with a modi�ed three-dimensional hypercube as a coun-

terexample that this monotonicity does not hold for all vertex-transitive graphs in all

timesteps. Furthermore, the general result [M2t]u,u ≥ [M2t]u,v for random walks without

loops on vertex-transitive graphs can be found in Alon and Spencer [Alon 00, p. 150]. It

is improved signi�cantly on torus graphs by Theorem 3.44.

Lemma 3.45. Assume w. l. o. g. that the source node is the origin (0, . . . , 0). Then, node
u = (u1, . . . , uκ) has the same load as ϕ(u), where ϕ is an automorphism that re�ects any

of the κ coordinates of u at the corresponding middle axis. Hence, the load distribution

is symmetric w. r. t. all the axes and the origin of T .

Proof. Due to Lemma 3.42 all which remains to be shown is that a map ϕi(u1, . . . , uκ) 7→
(u1, . . . , ui−1,−ui, ui+1, . . . , uκ), which performs the described re�ection w. r. t. to the

middle axis of dimension i, is an automorphism. The remainder of the claim (the sym-

metry w. r. t. the origin) then follows because it can be expressed as a concatenation of

automorphisms. Such a concatenation is again an automorphism (cf. De�nition 3.24).

Note that in case di is even, the nodes with the highest distance in dimension i are mapped

onto themselves: ϕi(u1, . . . , ui−1,
di
2 , ui+1, . . . , uκ) 7→ (u1, . . . , ui−1,−ui, ui+1, . . . , uκ) =

(u1, . . . , ui−1,
di
2 , ui+1, . . . , uκ).

Since ϕi is a bijection, it su�ces to show that {u, v} ∈ E ⇒ {ϕi(u), ϕi(v)} ∈ E holds.

Let v be a neighbor of u in the j-th dimension: v = (u1, . . . , uj−1, uj ± 1, uj+1, . . . , uκ).
(The use of wrap-around edges for the neighbor relation can be handled by an appropri-

ate use of the modulo function.) Then, if i = j, we have ϕi(v) = (u1, . . . , uj−1,−ui ±
1, uj+1, . . . , uκ), which is obviously a neighbor of ϕi(u). Otherwise, i. e., if i 6= j and

w. l. o. g. i > j, then ϕi(v) = (u1, . . . , uj−1, uj±1, uj+1, . . . , ui−1,−ui, ui+1, . . . , uκ). Con-
sequently, ϕi(v) is again a neighbor of ϕi(u), proving the claim.

46

CHAPTER 3. DISTURBED DIFFUSION

Following from Lemma 3.45, the FOS/C load distribution on a torus and a grid graph

are equal in all timesteps if their di are all odd and s is located at the center of the

graphs. In this case the torus is not di�erent from the grid because there is no �ow

via its wraparound edges: The incident nodes of these edges have the same load, which

results in a zero �ow. Finally, the monotonicity result of Theorem 3.44 can be re�ned as

follows.

Theorem 3.46. Let the torus T and its vertices s, u, v be de�ned as in Theorem 3.44.

1. ∀t < dist(u, s) : [w(t)]su = [w(t)]sv = −tδ, ∀t ∈ {dist(u, s), . . . ,∞} : [w(t)]su > [w(t)]sv.

2. Let dν ≥ 4 for all 1 ≤ ν ≤ κ. Then: [w(t)]ss > [w(t)]sv′ for all timesteps t and all

v′ ∈ V \{s}.

Proof. The �rst claim follows directly by combining Corollary 3.14 and Theorem 3.44.

For the second claim let u′ denote one arbitrary (but �xed) neighbor of s. Other nodes

than the neighbors need not be considered due to the monotonicity established in the

�rst part. The remainder of the proof uses induction on the timestep t. For t = 0 the

claim is trivially ful�lled due to the choice of w(0). Assume now that the claim is true for

timestep t. Then, with ∆ := maxdeg(G), α = (∆ + 1)−1, and the fact that G is regular:

[w(t+1)]ss − [w(t+1)]su′ = [w(t)]ss + (n− 1)δ − α
(∑
{s,u}∈E

[w(t)]ss − [w(t)]su
)

−
(
[w(t)]su′ − δ − α

(∑
{u′,v}∈E

[w(t)]su′ − [w(t)]sv
))

= nδ + (1− α∆)([w(t)]ss − [w(t)]su′)

+α
(∑
{s,u}∈E

[w(t)]su −
∑

{u′,v}∈E

[w(t)]sv
)
.

Extracting [w(t)]ss and [w(t)]su′ from their respective sums and (1− α∆) = α yield

[w(t+1)]ss − [w(t+1)]su′ = nδ + α
(
[w(t)]ss − [w(t)]su′ − [w(t)]ss +

∑
{s,u}∈E, u 6=u′

[w(t)]su

+ [w(t)]su′ +
∑

{u′,v}∈E, v 6=s

[w(t)]sv
)

= nδ + α
(∑
{s,u}∈E, u 6=u′

[w(t)]su −
∑

{u′,v}∈E, v 6=s

[w(t)]sv
)
.

Observe that both sums above have ∆−1 summands. Moreover, we can rewrite the sum

term as follows:
∑

{s,u}∈E, u 6=u′ [w
(t)]su −

∑
{u′,v}∈E, v 6=s[w

(t)]sv =
∑∆−1

i=1 ([w(t)]sui
− [w(t)]svi

)
with {s, ui} ∈ E, ui 6= u′, {u′, vi} ∈ E, and vi 6= s. Let w. l. o. g. u′ = (s1, . . . , sj−1, sj +
1, sj+1, . . . , sκ) and choose u′′ := (s1, . . . , sj−1, sj −1, sj+1, . . . , sκ) as its re�ection across

s. By Lemma 3.45 both u′ and u′′ always have the same load, so that [w(t)]su′ and [w(t)]su′′
are interchangeable.

47

CHAPTER 3. DISTURBED DIFFUSION

5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

40

45

50

55

Figure 3.3.: Contour lines of FOS/C convergence load on a 2D torus.

The ui corresponding to vi is chosen as ui = (v1, . . . , vj−1, vj − 1, vj+1, . . . , vκ). Hence,
we subtract [w(t)]svi

from the load of one of its neighbors ui that is also a neighbor of s. By

Theorem 3.44 we have ∀t ∈ N0 : [Mt]ui,s ≥ [Mt]vi,s and therefore [w(t)]sui
− [w(t)]svi

≥ 0
for each summand. Finally, this yields [w(t+1)]ss − [w(t+1)]su′ ≥ nδ > 0.

A natural question in the context of tori and FOS/C is if one can characterize the

FOS/C convergence load distribution more concretely. For the two-dimensional torus we

have conducted experiments that reveal a certain shape of the distribution. An example

is presented in Figure 3.3, which shows the contour lines of the FOS/C convergence load

on T [55, 55] with source (0, 0). Nodes on these lines have the same amount of load.

Very close to the source the contour lines resemble a square with one corner pointing

downwards. When one moves away from the source, the contour lines get a circular shape.

Finally, in the corners of the torus, the contour lines become hyperbolic. Other square

tori show a similar behavior. These experiments con�rm results of Ellis's experiments

on torus hitting times [Elli 01b]. The circular contour lines appear to be dominating in

the load distribution. However, the possibility to use the wrap-around edges seems to

prevent the continuation of these circular shapes in the corners of the torus.

Note that the contour lines remain circular in an asymptotic sense on an in�nite grid,

even if one moves far away from the source, which has been shown by Mangad:

Theorem 3.47. [Mang 66] Let P = (xP , yP), Q = (xQ,yQ) be two arbitrary nodes (and

their coordinates) of an in�nite two-dimensional grid with mesh width h. Furthermore,

let γ = 0.57722 . . . be Euler's constant. If ρ = PQ =
√

((xQ − xP)2 + (yQ − yP)2, then
the bounds for the discrete Green's function (Laplacian pseudoinverse) gP (Q) are

53 · 6h2

ρ2
≤ 2πgP (Q)− log ρ− 3

2
log 2− γ ≤ 53 · 6h2

ρ2
+

h2

12ρ2
, ρ ≥ h > 0 .

48

CHAPTER 3. DISTURBED DIFFUSION

Consequently, all nodes Q with the same Euclidean distance to P have the same value

gP (Q) in an asymptotic sense, which leads to circular isolines.

3.5. FOS/V: FOS/C with a Virtual Vertex

After these results for speci�c graph classes, we turn our attention to solving FOS/C

procedures on general graphs again. It has already been shown in this chapter that their

convergence state can be computed by solving a linear system. Recall that this can be

accomplished by fast linear solvers such as CG or algebraic multigrid. However, since

L is semide�nite and therefore singular, signi�cant numerical issues may arise during

the execution of these algorithms. They include a relatively slow convergence or even

divergence. This is due to the fact that the vectors involved need to be orthogonal to

(1, . . . , 1)T . In �nite precision arithmetic it can happen that the vectors deviate from this

orthogonality constraint. That is why we alter FOS/C slightly by introducing a virtual

vertex. We obtain a new similarity measure, called FOS/V (V for virtual vertex), that

circumvents the aforementioned numerical problems.

De�nition 3.48. Given a graph G = (V,E, ω) and a constant φ > 0, we construct a

new graph Gext = (Vext, Eext, ωext) by inserting a virtual vertex ṽ that is connected to

all other vertices by an edge of weight φ: Vext := V ∪ {ṽ}, E′ := E ∪ {{v, ṽ} | v ∈ V }
with ωext(e) = ω(e) for all e ∈ E and ωext({v, ṽ}) = φ.

The Laplacian matrix of Gext has one additional row and one additional column com-

pared to that of G. Both this row and this column contain the entry −φ everywhere

except for the common diagonal entry, which is |V | · φ. Introducing a virtual vertex into

the graph, results in a modi�ed �ow problem solved by FOS/C. This is re�ected in the

drain vector. In the original scheme all nodes v ∈ V \S consume a load amount of δ each.

Here, it is the virtual vertex v′ which consumes all load sent out by the source nodes:

[dext]v =


δn
|S| v ∈ S ,

0 v ∈ V \S ,

−δn v = v′ .

The resulting linear system Lextwext = dext would not be easier to solve because Lext is

still symmetric positive semide�nite. However, as pointed out by Kaasschieter [Kaas 88],

the semide�nite property can be changed by �xing r solution values in wext to some

speci�ed value and removing the corresponding row and column from the linear system.

The number r is the dimension of the null space {x ∈ Rn : Lextx = 0}, which is 1
for Lext (Fact 2.6). The removal of the row and column representing ṽ results in a

symmetric positive-de�nite matrix whose condition can be controlled by the parameter

φ. Note that this simple preconditioning has a meaningful interpretation by the notion

of sending load to the virtual vertex. Node weights can be incorporated by setting the

49

CHAPTER 3. DISTURBED DIFFUSION

weight of a virtual edge to the node weight times φ. In the remainder of this section,

we show that the modi�cation by inserting and deleting v′ results in a convergence state

that can be used in a comparable manner as that of FOS/C.

De�nition 3.49. Let the matrix L′ and the vectors w′ and d′ comply with their coun-

terparts Lext, wext, and dext, respectively, except that all entries corresponding to ṽ have

been removed.

De�nition 3.50. (FOS/V) Given a graph G = (V,E, ω), a set of source nodes S, an

initial load vector w′(0), the modi�ed drain vector d′ and a constant α′ := (maxdeg(G)+
φ+ 1)−1. Then, the load vector updates of the iterative FOS/V scheme can be written

in matrix-vector notation as w′(t) = M′w′(t−1) + d′, where M′ = I− α′L′−1.

Lemma 3.51. The eigenvalues of M′ lie in the interval (−1, 1).

Proof. The matrices L and L′ = L+φI have the same eigenvectors; their eigenvalues are

only shifted by φ: Lz = λz ⇔ Lz + φz = (λ + φ)z ⇔ L′z = (λ + φ)z. That is why the

eigenvalues µ′i of M
′ can be written as µ′i = 1−α′(λi+φ) = 1−(λi+φ)/(maxdeg(G)+φ+

1), 1 ≤ i ≤ n. Due to Remark 2.6 we know that 0 = λ1 < λ2 ≤ · · · ≤ λn ≤ 2 maxdeg(G).
Hence:

−1 < 1− 2 maxdeg(G) + φ

maxdeg(G) + φ+ 1
≤ µ′i ≤ 1− φ

maxdeg(G) + φ+ 1
< 1 .

Lemma 3.52. FOS/V converges for any initial load vector w′(0). More precisely, w′(∞) =
(I−M′)−1d′ = (L+φI)−1d′

α and [w′]uv = δn[(L + φI)−1]v,u.

Proof. The introduction of the virtual vertex changes the expansion of the scheme only

slightly compared to FOS/C:

w′(t) = (M′)tw′(0) + ((M′)t−1 + · · ·+ M′ + I)d .

Since the absolute value of the largest eigenvalue of M′ is smaller than 1, we have

limt→∞(M′)t = 0. Due to the same reason, the series limt→∞
∑t

i=0(M
′)i converges

towards (I−M′)−1 = (α′L′)−1 = α′−1L′−1 [Saad 03, p. 19], which is nonsingular.

Note that the initial load vector does not contribute to the �nal solution. (This behav-

ior is not fundamentally di�erent from before since in the scheme without virtual vertex

it determines only the total load amount in the system.) Hence, w(∞) =
∑∞

i=0 M′d =
α−1(L′−1d′). Finally, since the non-source entries of the drain vector are zero:

[w′]uv = [L′−1d′]uv = δn[L′−1]v,u +
∑
u′ 6=u

[L′−1]v,u′du′

= δn[(L + φI)−1]v,u .

50

CHAPTER 3. DISTURBED DIFFUSION

(a) FOS/C (b) FOS/V, φ = 0.001

(c) FOS/V, φ = 0.005 (d) FOS/V, φ = 0.1

Figure 3.4.: Di�erent load distributions on the graph biplane9 with the same source node
with di�erent φ. The tiny red and yellow regions indicate high load values.
Green, cyan, and light blue represent medium load values, while dark blue
and black indicate low load values.

A result of Stieltjes [Stie 86] (compare [McDo 95]) is now helpful for showing that

FOS/V is also a similarity measure.

Lemma 3.53. [Stie 86] Let A ∈ Rn×n be a symmetric, nonsingular, and diagonally

dominant M-matrix, i. e., the eigenvalues of A are positive, A ·1 is a nonnegative vector,

and for all i, j ∈ {1, . . . , n}: ai,i > 0 and ai,j ≤ 0 for i 6= j. Let C = A−1 and �x

i ∈ {1, . . . , n}. Then ci,i ≥ cj,i ≥ 0 for all j ∈ {1, . . . , n}.

Corollary 3.54. Recall from Lemma 3.52 that [w′]uv = δn[(L+φI)−1]v,u. It is well-known
for a quadratic nonsingular matrix A that (A−1)T = (AT)−1 [Bron 97, p. 244]. More-

over, it follows directly from its de�nition that L+φI is a diagonally dominant M-matrix

51

CHAPTER 3. DISTURBED DIFFUSION

Table 3.1.: CG iterations needed to solve a single-source FOS/C or FOS/V procedure on
di�erent graphs.

Graph |V | |E| FOS/C φ = 0.001 φ = 0.05 φ = 0.1

biplane9 21,701 42,038 860 579 324 78

shock9 36,476 71,290 1043 676 347 82

ocean 143,437 409,593 753 635 400 103

naca 124,799 4,162,508 242 242 239 192

dime20 224,843 336,024 4586 745 341 78

and also nonsingular. Hence, we have [w′]uv = [w′]vu and [w′]vv ≥ [w′]vu (Lemma 3.53), so

that FOS/V is also a similarity measure.

The results above show that there are two major di�erences between the convergence

states of FOS/C and FOS/V. First, the limit of the series in the latter contains M′

instead of M. The second di�erence is the modi�ed de�nition of the drain vector. These

changes have one major consequence for the load vector in FOS/V: the higher φ is, the

closer stays most of the load around the source set S. This property is visualized in

Figure 3.4. There, the same disturbed di�usion problem is solved four times, each with

a di�erent φ, resulting in very di�erent distributions w. r. t. the steepness of the load

function. Since the load function should not be too steep for meaningful results, φ may

not be set to arbitrarily high values. An example setting for this value and its in�uence

on partitioning speed and quality is presented in Section 4.7. A theoretical quanti�cation

of the di�erence between FOS/C and FOS/V in terms of eigenvalues and -vectors is given

next. It reveals why φ should not be too small, either.

Theorem 3.55. The di�erence of FOS/C and FOS/V can be quanti�ed as

[w]sv − [w′]sv = δn
(
− 1
φ

+
n∑
j=2

(
1
λj

− 1
λj + φ

)[zj]v[zj]s
)
.

Proof. Recall that the matrices L and L′ have the same eigenvectors. Hence, z1 =
(1, . . . , 1)T and it follows from Corollary 3.20 and Lemma 3.52:

[w]sv − [w′]sv = δn
(
l†v,s − [(L + φI)−1]v,s

)
= δn

(n∑
j=2

λ−1
j [zj]v[zj]s −

n∑
j=1

(λj + φ)−1[zj]v[zj]s
)

= δn
(
− 1
φ

+
n∑
j=2

(
1
λj

− 1
λj + φ

)[zj]v[zj]s
)
.

The parameter φ appears twice in the �nal term δn(− 1
φ +

∑n
j=2(

1
λj
− 1

λj+φ
)zv,jzs,j).

Its �rst occurrence indicates that φ should not tend to zero. Otherwise, the di�erence to

52

CHAPTER 3. DISTURBED DIFFUSION

FOS/C would go to in�nity. A large φ, on the other hand, would yield a large di�erence

in (1
λj
− 1
λj+φ

). Unfortunately, a good choice of φ needs to be determined experimentally,

which is certainly a drawback of the method. Table 3.1, however, shows the e�ectiveness

of the virtual vertex approach. For several graphs it displays the number of CG iterations

necessary to solve a single-source procedure of FOS/C (φ = 0) or FOS/V to a certain

accuracy. Clearly, the higher φ becomes, the fewer iterations are necessary. Only the

graph naca provides little room for improvement, unless φ is very high.

Using a virtual vertex has even more advantages than improving the convergence and

robustness of iterative solvers. If several di�erent load distributions computed by FOS/V

have to be compared, the virtual vertex acts as a common reference if its load value

is always �xed to 0. Thus, a normalization by �xing w is not necessary any more.

Moreover, unlike in our previous work on the subject with Schamberger [Meye 05], the

virtual vertex is eliminated from the actual solution process, which makes the use of

multigrid/multilevel methods easier and further speeds up the computations.

53

CHAPTER 3. DISTURBED DIFFUSION

54

4. A Shape-optimizing Partitioning

Algorithm

In the previous chapter it has been shown that FOS/C is able to determine if two nodes

(or regions) of a graph are densely connected with each other. This property makes it a

good choice as a similarity measure within a graph clustering/partitioning algorithm. By

integrating FOS/C into the Bubble framework, we facilitate that Bubble can distin-

guish dense from sparse regions of a graph. Moreover, the employment of FOS/C yields

an implicit optimization of the subdomain shapes. This can be seen from meshes that

stem from numerical simulations and have geometric information; their subdomains tend

to be convex in a geometric sense.

How the integration of FOS/C into Bubble is done, is shown in this chapter. Note

that FOS/V is only mentioned in the experimental section within this chapter. On a

practical level there is only a small di�erence to FOS/C. Within an implementation

one can switch easily between the two methods. Moreover, FOS/V would require the

speci�cation of another parameter, the virtual edge weight φ. Hence, we simply use

FOS/C as a representative for both in our algorithmic considerations (and even in the

name of the algorithm Bubble-FOS/C).

In its generic form, Bubble-FOS/C is suitable for graph clustering as an extension of

Lloyd's k-means algorithm to graphs. Additional balancing methods make it also suitable

for graph partitioning. Yet, since our clustering approach is also based on partitioning the

input (in contrast to building a hierarchy of clusters by merging or division), we simply

refer to the process of partitioning for computing a new partition Π of V , regardless of

its use for graph clustering or graph (re)partitioning.

After the de�nition of Bubble-FOS/C and the description of extensions to the generic

framework, we discuss its computational complexity. The main theoretical result of this

chapter consists of a proof that Bubble-FOS/C converges. In particular, we show by

means of a potential function that it stops at a local optimum. How this convergence state

may look like in a special case, is examined on the two-dimensional torus in the second

part of this chapter. This second part deals with practical aspects of Bubble-FOS/C,

in particular its implementation and experimental outcomes. It includes the explana-

tion of the algebraic multigrid solver assembled speci�cally to solve FOS/C procedures

faster. In order to make Bubble-FOS/C suitable for partitioning graphs into equally

sized subdomains, additional methods are described and integrated into the algorithm.

That our algorithm yields good graph partitioning results, is demonstrated by extensive

55

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Algorithm 1 GenericBubble-FOS/C (G, k, Π) → Π
01 if Π is de�ned then

/* ComputeCenters */
02 parallel for c = 1, . . . , k do
03 Initialize dc (S = πc)
04 Solve Lwc = dc
05 zc = argmaxv∈πc

[wc]v

06 else

/* Arbitrary initial centers */
07 Z = InitialCenters(G, k)

08 for τ = 1, 2, . . . until convergence

/* AssignSubdomain */
09 parallel for c = 1, . . . , k do
10 Initialize dc (S = {zc})
11 Solve and normalize Lwc = dc
12 parallel for each v ∈ V do

13 Π(v) = argmaxc∈{1,...,k}[wc]v

/* ComputeCenters */
14 parallel for c = 1, . . . , k do
15 Initialize dc (S = πc)
16 Solve Lwc = dc
17 zc = argmaxv∈πc

[wc]v

18 return Smooth(Π)

experiments. Following their presentation, possible improvements of Bubble-FOS/C's

running time are discussed.

4.1. Generic Bubble-FOS/C Algorithm

The major two alternating operations of the Bubble framework, as described in Sec-

tion 1.3.4, are the assignment of nodes to the nearest subdomain center and the compu-

tation of center nodes for each of these subdomains. Both operations require a notion of

distance or similarity, which we provide in Bubble-FOS/C by FOS/C procedures, as

shown in the outline of Algorithm 1. It is explained in more detail below.

De�nition 4.1. Let Π = {π1, . . . , πk} denote the set of the current subdomains, Z =
{z1, . . . , zk} the set of the current center nodes, and Π(τ) and Z(τ) their instances in

iteration τ of Bubble-FOS/C (where τ = 0 is assumed in the step before the loop).

4.1.1. Initial Centers

As the �rst step of the algorithm, pairwise disjoint initial centers (lines 1 to 7) need

to be determined. If an initial partition is provided in Π, this can be done by simply

performing the ComputeCenters operation (lines 2 to 5), which is explained in more

56

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Algorithm 2 LoadBasedInitialCenters (G, k) → Z

/* Vector variables are written in bold font */

/* Init variables and �rst center */
1 z = random v ∈ V ; Z[1] = z; x = 0

/* Compute remaining centers */
2 for c = 2 to k
3 Compute load vector [w]z

4 x = x + [w]z

5 z′ = argminv{[x]v}
6 Z[c] = z′

7 z = z′

8 return Z

Input: Centers / Partition

Corresponding initial
FOS/C load distribution

Final load
distribution

New partition /
new centers

Figure 4.1.: Schematic view of AssignSubdomain (left) and ComputeCenters (right).

detail below. Otherwise, the centers are computed in an arbitrary manner (line 7). If

the number of nodes in the graph equals k, each node becomes a center. Yet, if |V | > k,

a good strategy how to compute the center nodes is important. Schamberger [Scha 06]

has proposed to choose all center nodes randomly or to choose the subdomain number

for each node randomly at the beginning. While these approaches are feasible, they can

result in very bad initial partitions.

To avoid the choice of a very bad center set, we would like to gain more control over

the distribution of the centers in the graph. Therefore, we extend previous work to the

di�usion-based setting with FOS/C. As in Diekmann et al. [Diek 00], we choose only one

initial node randomly, which becomes the �rst center. Then, to �nd the initial center

of the next subdomain, Diekmann et al. performs a breadth-�rst search (BFS) from all

already chosen center nodes. The node which is found last becomes the next center. The

idea of choosing the next center farthest away is modi�ed here to incorporate disturbed

di�usion. We replace BFS by FOS/C for computing the next center in the procedure

LoadBasedInitialCenters, see Algorithm 2. This procedure chooses the next center

least similar (i. e., with minimum FOS/C loads: argminv{
∑

z∈Z [w]zv}) to all already

57

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

chosen centers. On a small graph, e. g., the coarsest graph of a multilevel hierarchy, the

computation of the FOS/C loads is not expensive. It can even be repeated with di�erent

initial centers to have a choice from di�erent sets of centers. By this repetition, outliers

with a really poor solution quality can be avoided in most cases.

4.1.2. The Main Loop

After initial centers have been found, the two operations AssignSubdomain (lines 9 to 13)

and ComputeCenters (lines 14 to 17) are alternated, until convergence is reached (line 8).

Convergence can be detected, for example, by testing if the center set has changed from

one iteration to the next one.

How FOS/C procedures are used and what their e�ect is within Bubble-FOS/C,

is illustrated graphically for a path graph and k = 3 in Figure 4.1. For the operation

AssignSubdomain (left), we are given a center node for each subdomain (top). Indepen-

dently for each subdomain we compute a single-source FOS/C procedure whose source

set consists only of the respective center node. After the load is spread, the k load func-

tions de�ned on the nodes have a hilly shape (middle). Finally, we assign each node v to

the subdomain it has obtained the highest load amount from (bottom).

For ComputeCenters (right) the source set is not a single node. Instead, all nodes of

subdomain c belong to the source set Sc of the c-th multiple-source FOS/C procedure, 1 ≤
c ≤ k. After performing the respective multiple-source FOS/C procedure independently

for each subdomain (middle), the node with the highest load of each respective subdomain

becomes its new center node (bottom). The rare case of ties within these two operations

is handled in the following manner. If a node has received the same highest load from

more than one FOS/C procedure within AssignSubdomain, it chooses the subdomain it

already belongs to, or � if the current subdomain is not among the candidates � the one

with the smallest index. In case more than one node is a candidate for the new center

within ComputeCenters, we proceed analogously.

Boundary Smoothing

The �nal (optional) operation before returning the partition Π is Smooth (line 18). It is

based on work by Schamberger [Scha 06, p. 90] and aims at a greedy reduction of external

edges. This is done by moving boundary nodes to di�erent subdomains if this reduces

the number of external edges. Note that, unlike the KL heuristic, Smooth considers

only nodes that are at a subdomain boundary when the routine is started. The order

in which the moves happen, is based on priorities. For each boundary node v and each

adjacent subdomain c one priority value pcv := [wΠ(v)]v − [wc]v is computed. A value

pcv speci�es how strongly node v would like to migrate to subdomain c, where a smaller

value expresses a higher desire to move.

58

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

4.2. Computational Complexity and Inherent Parallelism of

Bubble-FOS/C

The complexity of the Bubble-FOS/C algorithm is dominated by the running time of

the for-loop over τ . Each FOS/C based operation within this loop requires the solution

of k linear systems. Since we assume these systems to be sparse (i. e., m = O(n)), we
can apply sparse linear solvers such as conjugate gradient (CG). (For an overview on

sparse linear solvers see, e. g., Saad's textbook [Saad 03].) As an iterative solver CG

has subquadratic runtime, where the actual convergence rate depends on the spectral

condition number of the matrix. For matrices stemming from numerical simulations, it

is known that CG typically requires O(n3/2) operations for 2D problems and O(n4/3)
for 3D problems [Shew 94]. Algebraic multigrid can even achieve linear running time

for certain matrices that model two-dimensional numerical problems [Ster 06]. Yet, for

classes of matrices not covered by classical AMG theory, extensive �ne-tuning is often

needed to obtain linear or close to linear running time.

In any case, every iteration of the loop requires O(kĉ) operations, where ĉ denotes the
cost for solving one linear system, which depends on the solver, as noted above. The

total running time of Bubble-FOS/C is then O(τ̂ kĉ), where τ̂ denotes the total number
of iterations. By employing a multilevel approach (cf. Section 4.6), convergence can be

observed in practice after τ̂ = O(1) iterations. In the optimal case, where τ̂ is constant

and ĉ linear, this results in O(kn). While the linear dependence on n is optimal, the

factor k is not desirable.

For both operations AssignPartition and ComputeCenters it is necessary to solve k

FOS/C procedures, one for each subdomain. Put it a di�erent way, for each node one

computes k load values. Observe that the k procedures belonging to the same operation

are independent from each other. Hence, the order in which the k load values of a node

v are computed, is totally irrelevant. Their solutions can be computed concurrently, for

example by k parallel processors. Furthermore, once the load values are computed for

all nodes, their evaluation also contains parallelism. While the assignment of nodes to

subdomains is independent for each node, the center determination is independent for

each subdomain. The fact that most computations of the Bubble-FOS/C algorithm can

be made concurrently, makes it predestined for parallel execution. Unlike the KL/FM

partitioners, it does not require complex routines to ensure data consistency. Instead,

simple synchronizations that guarantee the completion of all required computations are

su�cient.

Regarding memory consumption, Bubble-FOS/C has a drawback that should not be

unmentioned. Since we calculate k load values per node, the total amount of memory

required is O(k · n), a factor of k higher than the input size. This high consumption

is certainly undesirable, no matter if Bubble-FOS/C is executed sequentially or in

parallel. A method to reduce the required memory size as well as the running time, is

discussed in Section 4.8.

59

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

4.3. Convergence and Connectedness Results on

Bubble-FOS/C

4.3.1. Convergence towards a Local Optimum

It is well-known that Lloyd's geometric k-means algorithm converges to a local opti-

mum [Seli 84]. That a very similar convergence property also holds for our algorithm

Bubble-FOS/C depicted as Algorithm 1, is proved in this section. The proof relies on

the FOS/C load symmetry property and a potential function, for which the algorithm

�nds a local maximum. This proof and its potential function provide a solid characteri-

zation of our algorithm and the solutions it computes.

De�nition 4.2. Let the function F (Π, Z, τ) be de�ned as follows:

F (Π, Z, τ) :=
k∑
c=1

∑
v∈π(τ)

c

[w]z
(τ)
c
v .

Note that the basic structure of F resembles the objective function in k-means cluster

analysis [Seli 84]. Yet, here we adapt it to the graph setting by replacing the squared

Euclidean distance to the nearest center by the highest FOS/C load for each node, which

also necessitates its maximization instead of its minimization.

Since it is obvious that F has a �nite upper bound on any �nite graph G, it remains

to be shown that F is increased by every Bubble-FOS/C operation, until convergence

is reached. For this we show in the following that the two operations AssignPartition

and ComputeCenters each maximize the value of F w. r. t. their input.

Lemma 4.3. The partition computed by AssignPartition maximizes the value of F for

a given set of centers Z.

Proof. Applying AssignPartition means to �x the set Z and compute k single-source

FOS/C procedures. Since each node contributes exactly one of its k load values to F

and chooses for this the maximum one, F is maximized for �xed Z.

To show the analogous property for ComputeCenters, it is crucial to use the load

symmetry between the sources of two single-source FOS/C procedures (Proposition 3.15).

Lemma 4.4. The set of center nodes determined by ComputeCenters maximizes the

value of F for a given partition Π.

Proof. Let Π = π1 ∪̇ . . . ∪̇πk be the current partition. ComputeCenters solves for each

subdomain πc, c ∈ {1, . . . , k}, a multiple-source FOS/C procedure, where the whole re-

spective subdomain acts as source. Consider one of these subdomains πc and its multiple-

source FOS/C procedure with respective drain vector d and S := πc. The FOS/C pro-

cedure solves Lw = d for w. Our aim is now to split this procedure into subprocedures

60

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

that solve Lwi = di for wi, i ∈ S, and that satisfy
∑

i∈S di = d. Note that wi and di

denote vectors here, not vector entries. Such a splitting

Lw = d⇔ L(w1 + w2 + · · ·+ w|S|) = d1 + d2 + · · ·+ d|S|

indeed exists because L is a linear operator. Each subprocedure Lwi = di can be de�ned

as an ordinary single-source di�usion procedure. The only di�erence is that it is scaled

by 1
|S| , i. e., the drain constant is δ

|S| instead of δ and the total drain is δn
|S| instead of δn.

Entry v of the drain vector di is then

[di]v =

 δn
|S| −

δ
|S| v ∈ S, v source of subprocedure i ,

− δ
|S| else .

The perpendicularity property di ⊥ (1, . . . , 1)T holds for all i ∈ S since the sum of all

entries in each vector di equals
δn
|S| −

δ
|S| + (n− 1) · −δ|S| = 0. Thus, each subprocedure has

a solution. This solution can again be normalized to be unique and comparable (e. g.,

by the additional constraint wi ⊥ (1, . . . , 1)T for all i). Moreover,
∑

i∈S di = d holds

as well: For v ∈ V \S we have:
∑

i∈S [di]v = −δ and for v ∈ S the sum evaluates to:∑
i∈S [di]v = δn

|S| −
δ
|S| + (|S| − 1) · −δ|S| = δn

|S| − δ.

Recall that the new center of subdomain πc is the node with the highest load of the

considered multiple-source FOS/C procedure. In other words, the node v is chosen such

that [w]v is maximal over all v ∈ V . From the above it also follows that [w]Sv =
∑

i∈S [w]iv.
Due to Proposition 3.15 it holds that

∑
i∈S [w]iv =

∑
i∈S [w]vi . Thus, the new center zc

is the node for which the most load remains within the subdomain πc in a single-source

FOS/C procedure. Consequently, the contribution
∑

v∈πc
[w]zc

v of this subdomain to

F is maximized. As the maximization property holds for all subdomains, the claim

follows.

This result shows that the operation ComputeCenters determines an optimal set of

centers without an exhaustive search among all nodes. Insofar it is also of interest

for related methods, for example the k-means variant using Euclidean commute times

(ECTD) as a distance measure [Yen 05]. On vertex-transitive graphs it computes the

same solutions as Bubble-FOS/C due to Theorem 3.23. Let us therefore consider

graphs that are not vertex-transitive. ECTD-k-means determines a new center v as

arg minv∈πc

∑
u∈πc

C[u, v]. No explicit procedure that would be faster than brute force

is provided by its authors. In the best case, which assumes that the subdomains are of

asymptotically equal size n/k, the brute force running time is O(n2/k) to compute all

k center nodes, even if the pseudoinverse L† is known. The reason is that the distance

of each node pair in a cluster needs to be considered; there are O(n2/k2) such pairs per

cluster. Due to the similarities between FOS/C and ECTD established in Section 3.2 a

faster way is possible, provided that the entries of L† can be accessed in constant time

61

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

and k is not too large:

arg min
v∈πc

∑
u∈πc

C[u, v] = arg min
v∈πc

∑
u∈πc

l†v,v + l†u,u − 2l†u,v = arg min
v∈πc

∑
u∈πc

l†v,v − 2l†u,v

= arg min
v∈πc

|πc| · l†v,v − 2
∑
u∈πc

l†u,v = arg min
v∈πc

|πc| · [w]vv − 2
∑
u∈πc

[w]uv .

As shown in the proof of Lemma 4.4, the value of the sum
∑

u∈πc
[w]uv for every node

v can be computed by one multiple-source FOS/C procedure with source set πc. In this

way, the complexity of computing all centers is O(kĉ), where ĉ denotes again the cost for

solving one FOS/C procedure. In the case of an optimal solver, we get O(kĉ) = O(kn),
which improves on O(n2/k) in the case of k ∈ o(

√
n).

For the �nal convergence proof regarding Bubble-FOS/C we need one more propo-

sition concerning the correctness of the algorithm.

Proposition 4.5. During the execution of Bubble-FOS/C there are exactly k di�erent

center nodes and exactly k subdomains in each iteration τ .

Proof. Observe that "≤" is obvious, so that it su�ces to show that there are at least

k di�erent center nodes and subdomains in each iteration. For the initial placement of

centers we can easily ensure that k disjoint center nodes are chosen. Moreover, we know

due to Proposition 3.8 that the centers determined by ComputeCenters belong to their

own subdomain and must be di�erent.

In the remainder we show that AssignPartition keeps each center in its current sub-

domain. Consider two arbitrary, but distinct centers zi and zj . Due to Proposition 3.15

we know that [w]zj
zi = [w]zi

zj
. As [w]zi

zi
> [w]zi

zj
(Proposition 3.8), we obtain [w]zi

zi
> [w]zj

zi .

Therefore, all center nodes remain in their subdomain.

Theorem 4.6. Bubble-FOS/C converges and produces a k-way partition. This parti-

tion is a local optimum of the potential function F .

Proof. As F is maximized in every iteration of Bubble-FOS/C, it is strictly increasing

in every iteration, until no local improvements are possible. Hence, since F is bounded,

Bubble-FOS/C must always converge to a local maximum of F , which contains k

subdomains due to Proposition 4.5.

If Bubble-FOS/C is used for partitioning within a multilevel hierarchy, it converges

very quickly. Our experiments indicate that usually three to �ve iterations of the main

loop are su�cient to reach convergence on each level. This behavior has both a positive

and a negative side. On the one hand, it shows the e�ectiveness of integrating Bubble-

FOS/C into a multilevel hierarchy. The initial choice on each hierarchy level seems to

be not far away from a local optimum. On the other hand, however, the quality of such a

local optimum can be far away from the globally best value. Since convergence happens

so quickly, the actual search space appears to be very narrow. Hence, one can expect

62

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

“main cut”

c
1

c
2

A

T

B

1 2

Figure 4.2.: Sketch of the situation assumed in Theorem 4.7.

that additional algorithmic techniques are necessary to escape bad local optima. Such

a technique has been implemented for our related algorithm DibaP and is also viable

for Bubble-FOS/C. Its idea is to choose the best among multiple solutions on a coarse

level of the multilevel hierarchy (see Section 5.2.3). Other local search techniques might

be pro�table as well.

4.3.2. Connected Subdomains on Vertex-Transitive Graphs

For some applications that use partitioning or clustering as an intermediate step, it is

important that all subdomains are connected, i. e., they have exactly one connected com-

ponent each. Experiments with FEM graphs reveal that the subdomains computed by

Bubble-FOS/C are (nearly always) connected if the algorithm is allowed to perform suf-

�ciently many iterations. Unfortunately, we have not been able to verify this observation

theoretically for all connected graphs. However, the following theorem makes a step to-

wards this. It proves the connectedness of subdomains for all connected vertex-transitive

graphs and k = 2 without requiring that Bubble-FOS/C has already converged. While

the restriction to vertex-transitive graphs is mostly of theoretical interest, the result

might become useful as a starting point for more general graph classes.

Theorem 4.7. Let G = (V,E) be a connected vertex-transitive graph. Fix two arbitrary

di�erent vertices c1, c2 ∈ V . Let the operation AssignPartition divide V into the two

subdomains π1 = {u ∈ V | [w]c1u ≥ [w]c2u } and π2 = {u ∈ V | [w]c1u < [w]c2u }. Then, π1

and π2 are each connected components in G.

Proof. First recall the following relationship between hitting times and the load vectors

of FOS/C from Theorem 3.22:

[w]vu − [w]vv = δ(H[v, v]−H[u, v]) .

Also recall that [w]uv = [w]vu holds for all u, v ∈ V (Proposition 3.15) and that H[v, v]
is zero, which follows from the de�nition of hitting times. Furthermore, we can choose

the drain constant δ to be one. From the proof of Theorem 3.23 we know that for all

63

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

vertex-transitive graphs G = (V,E) and all u, v ∈ V it holds that [w]uu = [w]vv, so that

we obtain

[w]vv = [w]uu ∧ [w]uv = [w]vu ⇒ [w]vu − [w]vv = [w]uv − [w]uu
δ=1= −H[u, v] = −H[v, u] .

Now assume for sake of contradiction that the subdomain π2 is not connected. In this

case there exists a node-separator T ⊆ π1 such that there are at least two components

A,B ⊆ π2 which are not connected by a path via π2. Assume w. l. o. g. that c2 ∈ B, as

shown in Figure 4.2. Then for some vertex a ∈ A we obtain

[w]c2a > [w]c1a ⇔ [w]c2a − [w]c2c2 > [w]c1a − [w]c1c1
⇔ H[c2, c2]−H[a, c2] > H[c1, c1]−H[a, c1]

⇔ H[a, c1] > H[a, c2] .

In the same manner we have for each vertex x ∈ T that

H[x, c1] ≤ H[x, c2] .

Let Xt be the random variable representing the node visited in timestep t by a random

walk, and let Fu(x) be the event that a �xed vertex x is the �rst vertex visited in T of a

random walk starting from some u ∈ V . Furthermore, denote by τa(T) := mint∈N{Xt ∈
T | X0 = a} and let τa,T (c1) := mint∈N{Xt = c1 | X0 = a}− τa(T). By using conditional

expectations (E [Y] =
∑

xPr [X = x] E [Y |X = x]) [Grim 01, p. 67], we obtain

H[a, c1] = E [τa(c1)]

= E [τa(T) + τa,T (c1)]

=
∑
x∈T

Pr [Fa(x)] ·
(
E [τa(T) + τa,T (c1) | Fa(x)]

)
,

which can be transformed by using the linearity of conditional expectations into

=
∑
x∈T

Pr [Fa(x)] ·
(
E [τa(T) | Fa(x)] + E [τa,T (c1) | Fa(x)]

)
=
∑
x∈T

Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)] + E [τx(c1) | Fa(x)]

)
=
∑
x∈T

Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)] +H[x, c1]

)
.

Exactly the same arguments yield

H[a, c2] =
∑
x∈T

Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)] +H[x, c2]

)
.

64

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Due to H[x, c1] ≤ H[x, c2] for each x ∈ T we �nally obtain

H[a, c1] =
∑
x∈T

Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)] +H[x, c1]

)
≤
∑
x∈T

Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)] +H[x, c2]

)
= H[a, c2] ,

which is a contradiction to our assumption H[a, c1] > H[a, c2]. Therefore, the subdomain

π2 has to be connected.

The proof that π1 is always connected is done in the same way. Assume the converse

and let A and B be two disconnected components of π1 with a node separator T ⊆ π2

such that c1 ∈ B. For a vertex a ∈ A we have H[a, c1] ≤ H[a, c2] and for every vertex

x ∈ T it holds that H[x, c1] > H[x, c2]. Consequently,

H[a, c2] =
∑
x∈T

Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)] +H[x, c2]

)
<
∑
x∈T

Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)] +H[x, c1]

)
= H[a, c1] ,

which is a contradiction to our assumption H[a, c1] ≤ H[a, c2], and the claim of the

theorem follows.

4.4. Algebraic Multigrid for Bubble-FOS/C

Most work performed by theBubble-FOS/C algorithm consists in solving linear systems

of the form Lw = d. More precisely, in each iteration of the main loop, 2k of these

systems need to be solved. Since we assume that the input graphs are sparse (m =
O(n)), direct solvers are not applicable. They would cause a prohibitive running time

(cubic) and memory consumption (quadratic). Instead, the solution process can be

performed by the very popular Conjugate Gradient algorithm (CG) algorithm, which

is suitable for symmetric positive semide�nite systems as long as the right-hand side is

consistent [Kaas 88], i. e., as long as a solution exists. Yet, the convergence of CG tends

to slow down considerably when the linear systems stemming from numerical simulations

become larger [Shew 94]. Furthermore, recall that within one Bubble-FOS/C operation

only the drain vector d di�ers for each subdomain since the matrix L depends only on

the graph and is the same for all k FOS/C procedures.

4.4.1. Fundamentals of Algebraic Multigrid

The decreasing convergence speed of CG and the multiple occurrence of L are exploited

in the following by applying an algebraic multigrid (AMG) solver. Multigrid methods

65

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

(e. g., [Trot 00]) are among the fastest iterative solvers and preconditioners for large linear

systems derived from a wide class of partial di�erential equations. They are based on

the observation that relaxation methods such as Jacobi or Gauss-Seidel eliminate high-

frequency (unsmooth) error components in the solution vector very e�ectively. However,

the reduction of low-frequency error components takes them a very large number of

iterations. That is why these relaxation methods are also called smoothers.

In order to eliminate also the low-frequency error quickly, a multigrid algorithm uses

a hierarchy of matrices (also called grids, leading to the name multigrid), whose size de-

creases from one hierarchy level to the next one. If one passes a linear system with smooth

error to the next coarser matrix of the hierarchy, the low-frequency components become

oscillatory (unsmooth) again. Consequently, these oscillatory error components can be

smoothed e�ciently by relaxation methods again. Similar to the multilevel paradigm

used for graph partitioning, this process is continued recursively, until the linear sys-

tem on the coarsest level is small enough to be solved directly with adequate resource

consumption.

AMG is an extension of classical multigrid to cases where no geometric information

is available in connection with the matrix. One of the major di�erences between the

two methods is the construction of the hierarchy. Classical geometric multigrid meth-

ods operate on �xed hierarchies, which sometimes have very simple construction rules.

These hierarchies can also be derived from successive mesh re�nements performed by the

meshing algorithm of the underlying numerical application.

In contrast to this, AMG constructs its own hierarchy by a top-down coarsening ap-

proach. For this, only the matrix corresponding to the �nest mesh is necessary. That

is why AMG, as opposed to geometric multigrid, is sometimes seen as a �black box ap-

proach�. On the other hand, such a categorization is only half the truth. To be highly

e�ective, AMG requires for non-standard problems a wise choice of components as well

as parameters. For positive semide�nite matrices such as the Laplacian matrices arising

in FOS/C procedures, this guidance by the user or developer is also necessary. Never-

theless, AMG is so appealing to us for two reasons. First, a successful tuning can be

expected to result in a very e�cient solver. Second, its hierarchy construction has to be

made only once and can then be reused for all linear systems with the same matrix L.

Hence, this sometimes expensive task can be amortized over at least 2k systems in our

application.

4.4.2. General AMG Coarsening and Solution Process

Coarsening a matrix L = Lf to obtain the coarse matrix Lc (f = �ne, c = coarse) of

the next hierarchy level consists of three main steps: First, one determines the coarse

vertices that are transferred to the next level. They must facilitate a signi�cant reduction

of the number of nodes and edges in the next level. Moreover, they have to be able to

interpolate those nodes accurately which are not retained within the coarse matrix. That

66

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

(a) (b)

Figure 4.3.: (a) Two-grid cycle with coarse grid correction. (b) Sketch of V-cycle.

is why one prefers nodes with many strong couplings. In graph terminology these are

nodes which are connected to many other nodes by edges with a high weight (see Briggs

et al. [Brig 00, Ch. 8] for more details).

After having computed the set of coarse nodes, one determines interpolation weights

and sets up the prolongation matrix P. The choice of the interpolation weights should

be consistent with the problem and the coarsening scheme employed since it is crucial for

a fast convergence of the solver [Stub 01]. The coarse matrix is determined by applying

the Galerkin principle, i. e., Lc is computed as Lc := RLfP (R = PT is the restriction

matrix), the Galerkin operator. The weight of an entry (u, v) of the coarse matrix

Lc is therefore computed as (Lc)u,v =
∑n

i=1

∑n
j=1 ru,ili,jpj,v =

∑n
i=1

∑n
j=1 pi,uli,jpj,v.

Hence, the edge weights of coarse nodes are computed as weighted aggregations. Each

aggregation considers nodes of distance at most 3 in the �ne matrix/graph. This process

of obtaining a coarser representation of the original matrix can be continued recursively

to yield a complete multigrid hierarchy.

Following the hierarchy construction in the setup phase, the actual solution process is

performed by an algorithm which consists of the following main operations: presmooth-

ing, restriction, solving the coarse problem recursively, interpolating the coarse solution,

and postsmoothing. This is shown for two matrices in Figure 4.3(a), where Ωh and Ω2h

denote the matrices corresponding to the �ne and the coarse discretization domain, re-

spectively. Using recursion, such a scheme can be applied to the complete hierarchy.

Depending on the way the recursive traversal is performed, di�erent solution algorithms

(so-called cycles) are distinguished. For example, due to its shape, going down the hier-

archy and up again to the �nest level is called a V-cycle (see Figure 4.3(b); ΩH denotes

the coarsest matrix, S1 and S2 smoothing operators).

4.4.3. Details of our AMG Implementation

After the description of the general ingredients of an AMG algorithm, we explain in this

section how they are realized in our implementation for solving FOS/C procedures. First

67

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

of all, we show that AMG is actually suitable for solving the occurring linear systems.

This is not self-evident since the traditional multigrid theory has been developed for

nonsingular matrices [Stub 00]. If no virtual vertex is used, the Laplacian matrices in

our FOS/C procedures do not fall into this category. Since AMG is often faster than

other iterative methods, there have been attempts to transfer the algorithm to other

graph classes as well, including singular matrices (e. g., [Virn 07]). Neglecting numerical

issues, we can show that AMG is applicable to our problem of solving FOS/C procedures

with symmetric positive semide�nite Laplacian matrices as well:

Proposition 4.8. An FOS/C procedure represented by a linear system of the form Lw =
d can be solved by an AMG algorithm.

Proof. There exists a solution for the equation Lw = d because d ⊥ 1 (Theorem 3.3).

Now consider a two-level procedure. Let the matrix and the vectors of the �ne level be

subscripted with f (for �ne), those of the coarse level by c (for coarse). In particular:

Lf := L, wf := w, and df := d.

Let the approximation of the solution vector w be denoted by ŵ. The residual vector rf

is de�ned as rf := df−Lf ŵf . It holds that rf ⊥ 1 since df ⊥ 1 and Lf ŵf ⊥ 1. The latter

can be veri�ed easily as follows: 〈Lf ŵf ,1〉 =
∑n

i=1

∑n
j=1 li,jŵj =

∑n
j=1 ŵj

∑n
i=1 li,j =∑n

j=1 ŵj · 0 = 0.
On the coarse level we need to solve Lcec = rc for the coarse error ec, where Lc = RLfP

and rc = Rrf . Since the prolongation matrix has been constructed such that the column

sum of R (or, equivalently, the row sum of P) is 1, rc ⊥ 1 holds as well. Moreover, Lc

is again symmetric positive semide�nite. Symmetry follows from: [Lc]u,v = [RLfP]u,v =∑n
i=1

∑n
j=1 ru,ili,jpj,v =

∑n
j=1

∑n
i=1 rv,jlj,ipi,u = [Lc]v,u. One can also verify for an arbi-

trary vector x of compatible size: 〈Lcx, x〉 = 〈RLfPx, x〉 = 〈LfPx,RTx〉 = 〈LfPx,Px〉.
For y := Px follows 〈Lfy, y〉 ≥ 0 because Lf is positive semide�nite and therefore also Lc.

Consequently, the coarse problem has a solution, too. This argument can be continued

recursively, so that an algebraic multigrid method is applicable.

While Proposition 4.8 helps to estimate if AMG can be useful at all for us, it does not

consider the actual convergence behavior. The latter has been investigated by Friedho�

and Heming [Frie 07]. They state conditions under which an AMG algorithm can be

proved to converge while solving FOS/C procedures.

As the next step, we describe the two coarsening algorithms used in our implementa-

tion. Then, after giving details on the applied interpolation scheme, we describe brie�y

which solution algorithms have been implemented and what their di�erences are.

4.4.3.1. Selecting Coarse Nodes

The mechanism for selecting the nodes that are retained in the coarse matrix has to

ful�ll several properties to meet our requirements. First of all, it needs to ensure a

fast convergence. Another objective, which con�icts with fast convergence, is a fast

68

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

reduction of the matrix size. Smaller matrices lead to less memory consumption and a

faster execution time per iteration in the solution phase. On the other hand, a more

aggressive coarsening can a�ect the convergence behavior in a negative way. That is why

one needs to �nd a good balance between these two goals. For our purposes a relatively

aggressive scheme is preferred in order to keep the number of hierarchy levels small.

As we will see later on, this is important for fast multilevel partitioning. Moreover, if

AMG is used for matrices describing 3D problems, mild coarsening tends to increase the

memory consumption to an undesirable amount [Ster 06].

That is why we use PMIS coarsening [Ster 06], which has been developed speci�cally

for keeping the memory requirements moderate in 3D problems. It also keeps the number

of created hierarchy levels rather small. The selection of the coarse nodes by PMIS uses

the notion of maximum weight independent sets (MWIS) from graph theory. All nodes

v ∈ V get a weight gv, which denotes the number of strong couplings to the neighbors of v.

(Recall that, generally speaking, strong couplings are o�-diagonal entries whose absolute

value is above a threshold.) Then, based on these weights, PMIS computes an MWIS

I, which becomes the (preliminary) set of coarse nodes C. That way, two properties are

achieved. The set C is very small and nodes are preferred that can interpolate many

other nodes accurately because they have many strong couplings. However, MWIS is

an NP-hard problem, so that we employ a fast greedy heuristic, which looks for nodes

with locally highest weight. In addition, nodes not in I that have no strongly coupled

neighbor in C have to be moved from the set of non-coarse (or �ne) nodes, which is

denoted by F := V \C, to C.
In cases where PMIS coarsens too much, we neglect its result. Instead, CLJP coarsen-

ing [Hens 02] is applied, which tends to coarsen less aggressively. The major algorithmic

di�erence between the two is that CLJP adjusts the node weights gv during the process.

More precisely, it reduces the weight of vertices whose neighbors are inserted into C by

q := 1. This adjustment re�ects that the coupling to a coarse neighbor has already been

taken into account. In our implementation we also vary the size of q adaptively. This

gives us more control over the resulting matrix size.

4.4.3.2. Interpolation Weights

Our experiments with di�erent interpolation schemes con�rm general experi-

ence [Stub 01] that this choice is crucial in order to obtain a satisfying convergence of

the solver. A simple M-matrix interpolation [Stub 00, p. 448] leads to a very slow con-

vergence in connection with the coarsening schemes used, when our FOS/C procedures

have more than approximately 50,000 nodes.

Our second choice, called classical interpolation, works well for our class of problems.

It has also been used by Safro et al. [Safr 06] within a multilevel approach for optimizing

linear orderings of matrices. For variables (resp. nodes) i, j of the current matrix (resp.

graph) let I(j) denote the index of node j in the coarse matrix and de�ne Ni as the

69

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Algorithm 3 FMV-cycle(Lf , w, d, level)→ w

/* Precondition: FMV-cycle and V-cycle have access to */
/* the matrix hierarchies of L, R, and P, */

1 if Lf is coarse enough then
2 w = V-cycle(Lf , w, d, level);
3 else

/* Restriction of residual: */
4 r = R(d− Lfw);

/* Recursive call with Lc = L[level+1]: */
5 e = FMV-cycle(Lc, e, r, level + 1);

/* Interpolation of coarse error: */
6 w = w + Pe;

/* Call to V-cycle: */
7 w = V-cycle(Lf , w, d, level);
8 return w;

neighbors i that are in the coarse set C.

[P]i,I(j) =


ωi,j/

∑
k∈Ni

ωi,k for i ∈ F, j ∈ Ni ,

1 for i ∈ C, j = i ,

0 otherwise .

Weights below a given threshold η (e. g., η = 1/16) are not included. This truncation
reduces the number of nonzero entries in the coarse matrix. Consequently, it saves

memory space and solution time. If the threshold is not too large (one even �nds η = 1/5
in the literature [Safr 06]), the convergence speed is hardly a�ected. After a truncation

the remaining values of a row are scaled such that the row sum in P is always 1. In

this way, as also pointed out by Safro et al., one can interpret the entry [P]i,I(j) as the
likelihood of i to belong to the aggregate at position I(j).

4.4.3.3. Solution Phase

For the solution phase we have implemented two algorithms, the V-cycle (Figure 4.3 (b))

and the full multigrid V-cycle (FMV-cycle) (cf. [Brig 00, Ch. 3] or Algorithm 3). Both

algorithms have access to the hierarchy constructed in the setup phase. The V-cycle

algorithm can act as an iterative solution algorithm itself. Alternatively, a V-cycle can

be used within an FMV-cycle. All calls to V-cycles made by an FMV-cycle can be iterated

more than once, but in our implementation only one iteration is used. A standard CG

implementation serves us as the direct solver on the lowest level.

To solve a linear system Lw = d iteratively, both algorithms are repeated, until the

desired error tolerance in the residual is reached. One FMV-cycle is more costly than

one V-cycle, but its convergence is also better. Our experiments show clearly that, in

70

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Input: Partition

Corresponding initial
FOS/C load distribution

Final load
distribution

New partition

Figure 4.4.: Schematic view of the Consolidation operation.

total, the gain in convergence speed outweighs the increased costs per cycle. Hence, we

use the faster FMV-cycle as AMG solution algorithm in all our subsequent experiments.

4.5. Extensions to Bubble-FOS/C for Graph Partitioning

4.5.1. Consolidation: Mixing AssignSubdomain and ComputeCenters

Recall that the loop in Lloyd's k-means algorithm consists only of two alternating op-

erations. For our purposes they have been transformed into AssignSubdomain and

ComputeCenters. In case Bubble-FOS/C is used for graph (re)partitioning, we also

use another operation, which is a mixture of the two. It is called Consolidation and

computes a new partition from a given one. Its process is sketched in Figure 4.4. The ini-

tial load distribution is the same as for ComputeCenters. Hence, the source set contains

all nodes of the subdomain currently considered. Yet, after computing the corresponding

FOS/C procedure for each subdomain, the resulting load distributions are evaluated as

in AssignSubdomain. Each node is assigned to the subdomain from which it has received

the highest load. In summary, Consolidation computes the FOS/C convergence load of

ComputeCenters, but identi�es new subdomains instead of centers from that.

Our experiments with the Consolidation operation indicate its potential for graph

partitioning. Due to the di�erent sizes of the source sets, it contains an implicit balancing

method. This results from a steeper load distribution obtained with smaller source sets.

Usually this balancing is not su�cient to obtain almost equally sized subdomains. In

particular because Consolidation works only reasonably well if the subdomain sizes

do not di�er extremely. Yet, it is a di�usion-based process that has some balancing

capabilities, moves subdomains in the direction of their desired positions, and can be

integrated easily into Bubble.

The balancing property makes Consolidation unsuitable whenever Bubble-FOS/C

is used for graph clustering. There, equally sized subdomains are rarely the correct

solution. Apart from these practical considerations, there is also a theoretical drawback

of using Consolidation. So far, it is unclear how to transfer the convergence proof of

Bubble-FOS/C to the extended algorithm with Consolidation operations. This is

71

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

mainly due to the fact that, unlike the potential function F , Consolidation does not

use the notion of subdomain centers.

4.5.2. Balancing Methods

WhenBubble-FOS/C is used for graph (re)partitioning, we need to ensure that it gener-

ates partitions which stay within the user-de�ned imbalance. That is why two additional

balancing operations are employed. Since large parts of them have been developed by

Schamberger [Scha 06, p. 87�.] and our modi�cations a�ect more the implementation

than the algorithmic idea, we describe the operations only brie�y.

The �rst one takes the k FOS/C load vectors computed by an AssignPartition or

Consolidation operation. Then, it determines for each vector wc, c ∈ {1, . . . , k}, a
scalar value ξc with the following property. If all wc are multiplied with their respective

ξc, a new evaluation of the resulting load values yields a (more) balanced partition. This

procedure called ScaleBalance is relatively simple and fast. Moreover, it retains the

good properties (like the shape) of the subdomains. The balancing succeeds in many

cases, but there are exceptions to this rule. These include situations with a very high

imbalance or very large k.

Whenever balancing by scaling the load vectors is not successful, an additional bal-

ancing method called FlowBalance is employed. First, it computes the amount of

nodes that have to migrate between di�erent subdomains. This computation is done by

di�usive load balancing to achieve `2-minimal migration costs [Diek 99]. Then, for each

node v and each subdomain c, a priority pcv is computed as

pcv :=
[w]cv

[w]Π(v)
v

.

Similar to the priority values for boundary smoothing (Section 4.1.2), the priorities pcv

computed here express how certain the a�liation of a node v ∈ V to its current sub-

domain is. (A value close to one indicates a low certainty because the respective node

is also drawn to another subdomain.) The nodes are then moved in the order of these

priorities, so that the �uncertain� nodes are migrated �rst. These moves are repeated,

until the balancing �ow is saturated and the partition Π balanced.

A priority-based order of node moves results in sequential parts of this process. One

could argue that the number of computations is small compared to solving many linear

systems. Yet, if executed in parallel on di�erent processors, it would require many

communication steps to ensure the correct order of migration steps. That is why we have

also developed a di�erent version more suitable for parallel computers with distributed

memory. The original idea is modi�ed such that the movement of nodes is performed in

rounds, where each round moves the nodes that are at the current subdomain borders.

Additional techniques avoid moves to interfere with each other. That way, the number

of communication operations for updating priorities can be reduced.

72

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Algorithm 4 Bubble-FOS/C-Part(G, k, Π, maxOuter, maxInner) → Π
01 if Π is de�ned
02 then /* ComputeCenters */
03 parallel for c = 1, . . . , k do
04 Initialize dc (S = πc)
05 Solve Lwc = dc
06 zc = argmaxv∈πc

[wc]v

07 else /* Find initial centers */
08 Z = LoadBased-

InitialCenters(G, k)

/* Initial AssignSubdomain */
09 parallel for c = 1, . . . , k do
10 Initialize dc (S = {zc})
11 Solve and normalize Lwc = dc
12 parallel for each v ∈ V do

13 Π(v) = argmaxc∈{1,...,k}[wc]v

14 for τ = 1 to maxOuter

/* ComputeCenters */
15 parallel for c = 1, . . . , k do
16 Initialize dc (S = πc)
17 Solve Lwc = dc
18 zc = argmaxv∈πc

[wc]v

/* AssignSubdomain */
19 parallel for c = 1, . . . , k do
20 Initialize dc (S = {zc})
21 Solve and normalize Lwc = dc
22 parallel for each v ∈ V do

23 Π(v) = argmaxc∈{1,...,k}[wc]v

24 Π = ScaleBalance(G, k,Π,W)

25 for j = 1 to maxInner

/* Consolidation */
26 parallel for c = 1, . . . , k do
27 Initialize dc (S = πc)
28 Solve and normalize Lwc = dc
29 parallel for each v ∈ V do

30 Π(v) = argmaxc∈{1,...,k}[wc]v

31 Π = ScaleBalance(G, k,Π,W)

32 Π = FlowBalance(G, k,Π,W)

33 return Smooth(Π)

4.5.3. The Extended Algorithm

The extended Bubble-FOS/C algorithm is depicted as Algorithm 4. It includes the

aforementioned features Consolidation and balancing. This integration requires some

changes in the order of the operations, but no modi�cations of the underlying ideas. Note

that W denotes the n× k matrix whose columns are the k load vectors w1 to wk.

Implemented in this way, Bubble-FOS/C is suitable for partitioning graphs into

equally sized subdomains. To consider other practical aspects, additional adaptations

have been made. For example, in practice one does not wait until the main loop converges.

Instead, the loop is stopped after a �xed number of iterations. Using the multilevel

paradigm, a very small number of iterations is already su�cient to obtain good solutions.

This paradigm and our modi�cations to the standard multilevel approach are described

next.

4.6. Multilevel Paradigm with Algebraic Multigrid

For a good performance in terms of speed and quality of the Bubble-FOS/C algorithm,

it is crucial to bring about its convergence to a locally optimal solution after a constant

number of iterations. This can be achieved by employing a multilevel scheme. The mul-

tilevel concept is known to work well for graph partitioning [Hend 95a] and has also been

73

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Figure 4.5.: Illustration of multilevel paradigm.

used for graph clustering [Dhil 07]. Its idea is illustrated in Figure 4.5 and has already

been described in Section 1.3.1. In summary, the main steps are recursive coarsening

(left side of Figure 4.5), computing an initial solution on the coarsest graph (bottom),

and then recursive interpolation and local improvement (right side). The underlying idea

is that on each level but the coarsest, the local improvement process is started with an

already reasonable solution. Hence, the convergence of Bubble-FOS/C can be expected

to be very fast, so that the additional work is more than compensated.

Most state-of-the-art partitioning libraries use approximate maximum weight match-

ings or very similar methods for coarsening within the multilevel scheme. For Bubble-

FOS/C we opt for an alternative way. Recall that linear systems have to be solved for

Bubble-FOS/C, which is done by algebraic multigrid (AMG). As we have explained

above, AMG also constructs a hierarchy of graphs. Hence, instead of computing an ad-

ditional hierarchy based on matchings, we use the existing AMG hierarchy. That is why

a fast reduction of the matrix sizes is important in our AMG coarsening schemes. Deep

hierarchies would cause long running times, possibly even without yielding much better

solutions than more shallow hierarchies.

Similar ideas of using AMG for providing multilevel hierarchies have been pursued

independently by Safro et al. [Safr 06]. In a simpler form it has been used for a multilevel

procedure computing the Fiedler vector z2 for spectral partitioning [Drie 95].

Note that for the local improvement on any given hierarchy level l, the AMG algorithm

within Bubble-FOS/C needs to start on level l, too. However, if AMG were called as

a black-box solver on level l, it would construct a completely new hierarchy with level

l as its top. That is why we have adapted the standard AMG algorithm such that

no duplicate hierarchies are built. If started on level l, all solution algorithms in our

implementation use the hierarchy that has been built at the beginning with the �nest

74

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

graph/matrix as its topmost level.

4.7. Experimental Results

The experiments are based on our C/C++ implementation of the extended Bubble-

FOS/C algorithm for graph partitioning (Algorithm 4) and the generic Bubble-FOS/C

algorithm for graph clustering (Algorithm 1). They have been conducted on a computer

equipped with an Intel Core 2 Duo 6600 CPU and 1 GB RAM. The operating system is

Linux (openSUSE 10.2, Kernel 2.6.18) and the main code has been compiled with the Intel

C/C++ compiler 10.0. The compiler uses level 2 optimization and auto-parallelization

for all programs under consideration (except forGraclus, which has been compiled with

GCC 4.1). For Bubble-FOS/C we also use POSIX threads for parallelizing some parts

of the hierarchy construction and the solution of linear systems. This allows for the use of

both processor cores. Threads are not available for the serial libraries METIS, Jostle,

and Graclus, which serve as standards of reference for graph partitioning (METIS and

Jostle) and graph clustering (Graclus). This aspect is discussed in more detail in

Section 4.7.4.

An issue to consider is the dependence on �random in�uences�. As an example, the

order in which the vertices are stored within the graph data structure play a signi�cant

role for node-exchanging partitioning algorithms like KL/FM [Scha 03, Elsn 05] (and

also kernel k-means with local search, as in Graclus). This is due to the fact that the

order in which the nodes are inserted into the gain buckets determine the order of the

corresponding moves. Di�erent orders can lead to di�erent local optima. Hence, in our

experiments the programsMETIS, Jostle, andGraclus are run ten times on the same

graph, but with a randomly permuted vertex set. The edges are permuted accordingly,

so that the resulting graphs are isomorphic to the original one. For Bubble-FOS/C

the order of the vertices is insigni�cant because the di�usive partitioning operations are

hardly a�ected by it. Only in the rare case of ties in the load values small changes

can occur, which are mostly irrelevant. That is why we account for random in�uences

in Bubble-FOS/C by performing ten runs on the same graph with di�erent random

seeds, resulting in di�erent choices for the �rst center vertex.

4.7.1. Bubble-FOS/C on the 2D Torus

Grid graphs are frequently used as �nite element discretizations of planar domains. Often,

they are adaptively re�ned, so that di�erent areas of the grid have a di�erent number of

elements per area. For simpler problems, however, also grids of the same resolution are

used. It is also not uncommon to use cyclic boundary conditions, which are simulated

by a torus instead of a grid. Insofar it is interesting to see how partitions computed by

Bubble-FOS/C on a 2D torus look like and which properties they have.

For an assessment of AssignPartition recall important properties of FOS/C on the

75

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Figure 4.6.: Partition with eight subdomains of a 256×256 torus computed by Bubble-
FOS/C.

torus. Its convergence load is symmetric (Proposition 3.15) and monotonous (Theo-

rem 3.46). Moreover, all single-source FOS/C procedures yield the same convergence

load vector up to permutation. Recall that we can conclude from Mangad's result (The-

orem 3.47) that, asymptotically, FOS/C yields circular isolines on an in�nite 2D-grid.

Moreover, based on our experimental data and theoretical results of Ellis [Elli 01a], we

also know for the torus that the isolines of the load have a certain shape, which is close

to circular in a not too far distance from the source node. In many cases the subdo-

main boundaries tend to be in such a distance from their nearest source nodes where the

isolines are circular. Hence, the subdomain a�liation is decided implicitly by geometry,

namely by Euclidean distances corresponding to the radii of the isolines.

If we assume that certain degeneracies such as discretization errors can be neglected,

the assignment of nodes to subdomains based on Euclidean distances results in sub-

domains with the Voronoi property. This means that each subdomain contains those

nodes which are closest to its center node w. r. t. to Euclidean distance. Voronoi cells

have the property to be connected and convex, which follows from the fact that they are

intersections of halfplanes [Berg 97, Ch. 7].

The correspondence to Voronoi cells and their convexity is an indication that Bubble-

FOS/C indeed computes partitions with short boundaries, at least on a torus. This

indication is further con�rmed experimentally. With a large enough number of iterations,

Bubble-FOS/C computes the regular hexagonal tessellation of the torus depicted in

Figure 4.6, even without balancing or smoothing. In the geometric setting such a partition

is known to be the global optimum of Lloyd's geometric k-means algorithm [Newm 82]

and to have the shortest possible boundary (e. g., [Puu 05]). Although being no rigorous

proof, these observations give some evidence that Bubble-FOS/C performs well on

torus graphs and those with some similarity to the torus or grid structure.

76

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Table 4.1.: Graphs used in the experiments of Section 4.7.2.

Size Degree

Graph |V | |E| min max avg Origin

airfoil1 4,253 12,289 3 9 5.779 FEM 2D

crack 10,240 30,380 3 9 5.934 FEM 2D

whitacker (dual) 19,190 28,581 2 3 2.979 FEM 2D dual

biplane9 21,701 42,038 2 4 3.874 FEM 2D

stufe10 24,010 46,414 2 4 3.866 FEM 2D

altr4 26,089 163,038 5 24 12.499 FEM 3D

shock9 36,476 71,290 2 4 3.909 FEM 2D

wing 62,032 121,544 2 4 3.919 FEM 3D dual

4.7.2. Graph Partitioning

4.7.2.1. Experimental Settings

For the experiments presented in this section we have chosen eight graphs of small to

medium size, see Table 4.1, that are or have been frequently used as benchmark instances.

This sample is on the one hand large enough to draw valid conclusions from its results,

on the other hand it is small enough to keep the evaluation e�orts of very detailed

experiments tolerable and the presentation of the results concise. Note that, apart from

the extensive experiments presented below, we have used more graphs than these eight

ones in further experiments with Bubble-FOS/C and its competitors. These additional

results con�rm the general trend and are therefore omitted here.

The choice of the metrics used for comparing di�erent programs or algorithms plays a

major role for the evaluation, too. This choice is certainly based on the application for

which the graph partitioners are employed. Since we focus on numerical simulations, we

do not only consider the edge-cut (EC). As Hendrickson has pointed out [Hend 98], the

number of boundary nodes (BN, bnd) is a more accurate measure for the communication

within numerical solvers than the edge-cut. Note that the edge-cut is the summation

norm of the external edges (ext) divided by 2 to account for counting each edge twice. For
some applications not only the summation norm `1 of ext and bnd over all k partitions

has to be considered, but also the maximum norm `∞. This is particularly the case for

parallel simulations, where all processors have to wait for the one computing longest.

That is why we record ext and bnd in both norms. Their formal de�nition is given in

Section 2.1.1. If tables are used for presenting results, the best value in each category is

usually written in bold font.

4.7.2.2. Finding suitable Loop Parameters

Our �rst objective is to determine suitable values for the number of loop iterations within

Bubble-FOS/C. The iteration count of the outer loop (maxOuter), during which the

assignment to subdomains and the center computation take place, is abbreviated by AC,

77

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Figure 4.7.: Number of external edges and boundary nodes of Bubble-FOS/C solutions
in di�erent loop parameter settings AC/CO for `1- and `∞-norm, averaged
over all k.

while the iteration count of the inner loop (maxInner) is abbreviated by CO, which stands

for consolidation. In Figure 4.7 we compare the number of external edges and boundary

nodes in the summation (left) and the maximum norm (right) for four di�erent iteration

number combinations. The results are averaged over all graphs in the benchmark set and

all k ∈ {4, 8, 12, 16, 20}. A detailed presentation of the results for each k can be found

in Tables A.1 and A.2 in the appendix. The average running times show no surprising

behavior; they range from 7.87s for AC2/CO1 to 18.14s for AC3/CO3.

Regarding the quality, the combination of three outer and three inner loop iterations

generally yields the best results. This is hardly surprising because this combination

also invests the highest amount of running time in our experiments. Observe that, in

particular in the maximum norm, the two other settings AC2/CO2 and AC3/CO2 are

hardly worse than the best one. It seems that in many cases AC3/CO2 computes a

partition close to a local optimum of Bubble-FOS/C. Thus, additional loop iterations

do not yield signi�cant improvements.

4.7.2.3. In�uence of Linear Solver and Virtual Vertex

Our most signi�cant algorithmic modi�cation to previous Bubble-FOS/C implementa-

tions (the latter are based on our work with Schamberger [Meye 05, Meye 06c, Scha 06])

is the introduction of AMG for solving the linear systems within FOS/C procedures and

for providing a multilevel hierarchy. To judge how running time and quality are a�ected

by this modi�cation, we compare it to our previous implementation of Bubble-FOS/C,

which uses CG as linear solver and a multilevel coarsening based on matchings.

Figure 4.8 compares the solution quality achieved by both variants (with AMG and

with CG) for the parameter combination AC3/CO2. The values shown in the respective

two leftmost columns are the external edges (EC/EE) and boundary nodes (BN) in both

78

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Figure 4.8.: Quality comparison (number of external edges and boundary nodes in both
norms) between the CG and the AMG version of Bubble-FOS/C (two
leftmost bars in each column) and between the use of FOS/C and FOS/V
as similarity measure (two rightmost bars), averaged over all k.

relevant norms (`1 and `∞), averaged over all graphs in the benchmark set and over all

k. A more detailed presentation of these data can be found in Table A.3 in the appendix.

These results indicate that the solution quality of both Bubble-FOS/C variants are

very similar, although they show a slight advantage to the CG solver combined with a

multilevel matching hierarchy. A possible reason for this small discrepancy could be the

di�erent coarsening approaches of AMG and the matching algorithm. While the matching

algorithm is adjusted such that star-like subgraphs (few nodes with high weights and

many nodes with low weights) are avoided, AMG coarsening often produces these stars.

Sometimes such subgraphs can be disadvantageous for multilevel partitioning [Moni 04]

and future work could address this issue in connection with AMG. Yet, the loss in quality

is well below 1% and therefore rather small. In comparison the running time improvement

of the AMG version is signi�cant. As shown in Figure 4.9 by the two topmost bars in

each row, the running times are reduced by a factor between 4 and 5.

Also note that the speedup, whose detailed numerical values are displayed in Fig-

ure 4.10, between the two methods increases when k becomes larger. These data show

that the introduction of AMG within Bubble-FOS/C constitutes a considerable accel-

eration for the benchmark graphs. Hence, as expected, the much more involved imple-

mentation of a multigrid solver � compared to the relatively simple CG � pays o�. Since

the convergence rate of the CG solver, unlike that of AMG, depends on the system size,

one can expect that the speedup achieved by AMG increases for larger graphs. One has

to consider, however, that solving large linear systems with AMG is not inexpensive,

either. This stems from the fact that the hierarchy construction can become very costly

because large matrices have to be multiplied with each other.

So far, both variants of Bubble-FOS/C using the di�erent linear solvers are run

without making use of the virtual vertex notion described in Section 3.5. It is also of

79

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Figure 4.9.: Running time (in seconds) comparison between di�erent linear solvers in
Bubble-FOS/C (two upper bars in each row) and between FOS/C and
FOS/V (two lower bars) as similarity measure within Bubble.

interest how the running time and the quality are a�ected if the virtual vertex scheme

FOS/V is used instead of FOS/C. Therefore, we have repeated our experiments, but this

time the virtual vertex and a higher CO iteration count is used. The FOS/V parameter

φ is �xed to 1/512 because the main conclusions drawn from the results are very similar

if φ is not varied too much from this setting. (Recall that φ should not be chosen too

large or too small.) Note that AMG and CG are in�uenced very similarly w. r. t. running

time and quality in our experiments, so that details of the latter are omitted.

As shown in Figures 4.9 and 4.10, the
Speedup Speedup

k AMG vs CG FOS/V vs FOS/C

4 4.01 1.23

8 4.51 1.22

12 4.64 1.23

16 4.74 1.23

20 4.87 1.24

avg 4.67 1.23

Figure 4.10.: Running time speedups ob-

tained by using AMG instead

of CG (left) and FOS/V in-

stead of FOS/C (right).

speedup by using the virtual vertex no-

tion is consistently around 23% for φ =
1/512. Interestingly, the quality of the re-
sults is also improved for the summation

norm. This can be concluded from Fig-

ure 4.8 (and Table A.4 in the appendix),

which shows the quality values in the two

rightmost bars of each category for both

AMG approaches, with FOS/C and with

FOS/V. On the other hand, for the max-

imum norm a slight decrease in solution

quality is also apparent.

In summary AMG and FOS/V yield a

running time improvement with a factor of about �ve to six compared to our previous

work with Schamberger, while the decrease in solution quality is negligible.

80

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Table 4.2.: Comparison of Bubble-FOS/C using with kMeTiS and Jostle for `1-norm
and k = 16, detailed for each graph.

kMeTiS Jostle Bubble-FOS/C

Graph EC bnd EC bnd EC bnd

airfoil1 551.2 550.6 541.2 537.2 555.8 556.9

crack 1251.8 1231.1 1182.4 1160.4 1220.0 1197.6

whitacker_dual 640.2 1271.6 624.9 1239.2 591.2 1149.2

biplane9 822.8 1403.2 779.5 1408.8 813.3 1241.0

stufe10 712.8 1167.7 769.0 1289.0 748.0 939.8

altr4 7759.7 4551.5 7608.8 4457.2 7214.1 4206.6

shock9 1247.6 2099.4 1129.4 1980.0 1169.9 1766.3

wing 4611.6 8277.7 4639.4 8315.5 4765.8 7521.4

Table 4.3.: Comparison of Bubble-FOS/C using with kMeTiS and Jostle for `∞-
norm and k = 16, detailed for each graph.

kMeTiS Jostle Bubble-FOS/C

Graph ext bnd ext bnd ext bnd

airfoil1 97.4 48.9 104.4 50.9 105.3 52.6

crack 221.6 108.7 211.7 103.5 209.6 103.0

whitacker_dual 110.1 108.9 108.5 107.5 101.8 97.2

biplane9 150.2 125.8 147.4 131.1 144.6 103.1

stufe10 130.6 106.9 172.2 141.7 111.8 69.2

altr4 1291.3 373.8 1260.8 362.9 1110.2 318.7

shock9 223.3 186.5 204.9 179.1 200.1 143.1

wing 790.9 697.4 902.7 781.5 713.3 559.0

4.7.2.4. Comparison to METIS and Jostle

Next, we evaluate our algorithm Bubble-FOS/C against METIS (more precisely

kMeTiS 4.01 [Kary 98b], which implements direct k-way KL/FM improvement) and

Jostle 3.02 [Wals 07a] because these two are state-of-the-art KL/FM partitioners. They

are probably also the most popular general purpose sequential graph partitioners due to

their speed and adequate quality. Both are used with default settings, so that their opti-

mization objective is the edge-cut. We allow all programs to generate partitions with at

most 3% imbalance, i. e., whose largest partition is at most 3% larger than the average

partition size. To specify this is important because a higher imbalance can result in

better partitions. Note that Scotch [Pell 07b] is not included in our presentation since

our experiments show that kMeTiS delivers on average comparable or better results and

is signi�cantly faster. As can be expected for any recursive bipartitioning approach like

Scotch, the loss in quality becomes particularly signi�cant for larger k.

1The variant of METIS which yields shorter boundaries than kMeTiS is not chosen because its results
show much higher edge-cut values than kMeTiS.

2Our experiments indicate that release 3.0 yields the same or comparable results as the latest release
3.1.

81

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Figure 4.11.: Partitioning quality of Jostle and Bubble-FOS/C relative to kMeTiS
in the `1-norm for di�erent k.

Figure 4.12.: Partitioning quality of Jostle and Bubble-FOS/C relative to kMeTiS
in the `∞-norm for di�erent k.

The �rst comparison between Bubble-FOS/C � here represented by the parameter

setting AC3/CO3 with virtual vertex and φ = 1/512 � and its KL/FM counterparts

shows the detailed average values for each graph obtained in ten runs on the benchmark

set for k = 16. Table 4.2 displays the results in the summation norm, while Table 4.3

shows them in the maximum norm. The summation norm results reveal that Bubble-

FOS/C is able to compute partitions with the best total number of boundary nodes

in most cases. There is no clear winner w. r. t. the edge-cut, but Jostle obtains most

best values (four out of eight). In the maximum norm Bubble-FOS/C is clearly the

best. Except for the smallest graph airfoil1, it attains the best results regarding both the

number of external edges and boundary nodes.

In order to estimate how the quality of the three programs relates to each other over a

variety of values for k, we adopt the following evaluation scheme. For all values obtained

for a graph (time, external edges, and boundary nodes) we use the results of kMeTiS

as standard of reference. This means that each value of the other two partitioners is

divided by the respective value of kMeTiS. Then, for each k and each metric, an average

value of these ratios over all graphs is computed. These average values are displayed in

82

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Figure 4.13.: Partitioning the shock9 graph into 16 subdomains. The solution of METIS
(left) shows jagged boundaries and elongated subdomain parts. Jostle's
partition (middle) has somewhat smoother boundaries. Bubble-FOS/C
(right) computes a solution where the shape-optimizing approach becomes
apparent in the nearly convex subdomains.

Figures 4.11 (summation norm) and 4.12 (maximum norm) in the rows for the respective

k. The column termed avg contains the respective average value of the averaged ratios.

In this way each graph enters the averaging process equally to ensure a fair comparison.

Clearly, our algorithm Bubble-FOS/C is able to compute the partitions with the

shortest boundaries, both in the summation and the maximum norm. It is also able

to compute partitions with the fewest maximum external edges except for k = 4. The

traditional edge-cut metric is best optimized in most cases by Jostle, but Bubble-

FOS/C is not far behind. It is therefore possible to conclude from these data that the

partitions computed by Bubble-FOS/C show the best overall properties compared to

its competitors, at least for k ∈ {8, 12, 16, 20}. The largest improvement can be seen for

the maximum number of boundary nodes, the metric which probably measures best the

communication costs of parallel numerical solvers. In this metric our algorithm is 13.2%
better than kMeTiS and 16.3% better than Jostle.

Regarding the shape of the subdomains, Figure 4.13 makes some of the major di�er-

ences between the three programs visible. In particular kMeTiS computes solutions with

jagged boundaries. Jostle on the other hand seems to aim at rectangular shapes, which

is a good idea for edge-cut minimization. For short boundaries, however, convex subdo-

mains are preferable. Although not all subdomains in the solution of Bubble-FOS/C

are convex, the shape optimizing approach based on FOS/C is certainly recognizable.

We are also interested in the diameter and connectedness of the subdomains. Bubble-

FOS/C computes partitions with disconnected subdomains only in 3.5% of our test runs.

In contrast to this, kMeTiS and Jostle perform considerably worse, as they produce

disconnected subdomains in 11.3% and 14.5% of the cases, respectively. To compare the

diameter of the partitions, we evaluate the experiments for a medium number of subdo-

mains, k = 12. Both in the summation norm and the maximum norm, Bubble-FOS/C

computes solutions whose diameter is the smallest on average. Compared to Jostle,

which is on average better than kMeTiS in this category, our algorithm performs 4.6%
(`1) and 10.5% (`∞) better, respectively.

83

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

Table 4.4.: Comparison of Bubble-FOS/C in di�erent parameter settings for `1- and
`∞-norm and k = 2.

AC2/CO2 AC3/CO2 AC3/CO3

EC bnd1 bnd∞ EC bnd1 bnd∞ EC bnd1 bnd∞

2495.54 1630.39 904.33 2390.70 1573.83 849.96 2525.43 1652.86 910.11

The running times of the three programs are clearly in favor of kMeTiS and Jostle.

kMeTiS requires only approximately two hundredth of a second to partition the graphs

of the benchmark set. The other KL/FM partitioner Jostle is about 2.5 times slower

than kMeTiS, which is still very fast. Compared to these state-of-the-art libraries,

Bubble-FOS/C requires much more running time. The values range from 5.58s for

k = 4 to 23.81s for k = 20. Although we have sped up the algorithm by a factor of more

than �ve compared to its previous state without AMG and the virtual vertex, it is still

up to three orders of magnitude slower than its established competitors.

4.7.2.5. In�uence of k

Our experiments indicate that Bubble-FOS/C in its current form is not very suitable

for bipartitioning, i. e., when k = 2. A comparison of the data displayed in Table 4.4

with the values in Tables A.1 and A.2 reveals surprising results: For k = 2 the average

edge-cut values in the summation norm `1 are much higher than for k = 4 and even

higher k. Since the number of external edges typically increases with increasing k, this

observation leaves only the conclusion that Bubble-FOS/C does not work properly

for k = 2. One conjecture why this is the case is that the FOS/C load distributions

interfere with each other in an unfavorable manner. Apparently, there are large regions

with nodes whose load values for the two di�erent subdomains are quite close together.

Insofar, the decision to which subdomain they are assigned, is close to arbitrary. This

e�ect of ambiguous a�liations is much smaller for larger k because such indecisive regions

are smaller. Another reason might be a bad placement of the initial center nodes. While

for large k it is likely to �nd a suitable initial spot for some centers, this might not be

the case for bipartitioning. The iterative Bubble learning process is then not able to

recover from such a situation.

Also, the number of subdomains k in�uences the running time of Bubble-FOS/C.

Inspecting Figure 4.9, we see that this in�uence is close to linear because doubling k also

(nearly) doubles the running time of Bubble-FOS/C. The reason for this is simple.

If k is doubled, the number of linear systems to be solved is also doubled. Since this

part of the algorithm is by far the most expensive one, the total running time is also

nearly doubled. Such an e�ect cannot be observed with our two competitors. METIS

and Jostle require hardly more time for partitioning if k is increased. That is why the

running time gap between our algorithm and the other two libraries becomes larger and

larger with increasing k. A remedy for this problem is of high interest, see Section 4.8.1.

84

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

(a) (b) (c)

Figure 4.14.: Three arti�cial data sets with intertwined clusters and their clusterings with
the Bubble-FOS/C algorithm.

4.7.3. Graph Clustering

As the generic Bubble-FOS/C algorithm is meant for clustering into subdomains of

arbitrary size, we would also like to know how it performs on clustering problems. For

highly unstructured clustering problems such as random graphs the AMG hierarchy con-

struction shows some de�ciencies. The operator complexity, i. e., the total number of

edges in the complete hierarchy, becomes quite high, which results in high running times.

More importantly, the clustering quality is not satisfactory. That is why we have used

the CG solver with the matching hierarchy instead. To aim at high-quality solutions,

the operations ComputeCenters and AssignPartition are called alternately four times

on each hierarchy level. All instances used in this section are rather small and should be

seen as a proof-of-concept. For more clustering results refer to Section 5.4.3.

Recall that geometric k-means separates clusters only by hyperplanes. The reason is

that the cluster a�liation is determined by the closest cluster center, so that essentially a

Voronoi partition [Berg 97, Ch. 7] of the input is generated. When FOS/C is used instead

of Euclidean distances, this limitation is no longer valid. This is shown in Figure 4.14.

The cluster a�liation of the points in these three arti�cial 2D datasets are given as usual

by their colors. Due to the intertwined structure of the clusters, k-means would fail

for these instances, while Bubble-FOS/C works very well (except for a few debatable

a�liations in the rightmost example).

Note that geometric datasets have to be transformed into edge-weighted graphs �rst, so

that Bubble-FOS/C can work with them adequately. This transformation is begun by

computing a minimum spanning tree between the input points to ensure connectedness

of the graph. Additionally, for each node v, edges to the three nodes closest in Euclidean

space to v are inserted. The weight of an edge e = {u, v} is chosen proportional to e−x,

where x denotes the distance of u and v in Euclidean space. Hence, long edges get an

extremely low weight. Note that we are aware of other algorithms, which can solve such

simple planar instances equally well (e. g., geometric ones that build a minimum spanning

tree and delete long edges [Page 74]). We have included these simple 2D examples nev-

ertheless to show the di�erences one experiences, when the same algorithmic framework,

but di�erent distance/similarity measures are used.

The second experiment consists in a simple community detection problem. It uses

85

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

3 4

3 3

3 2

3 1

3 0

2 9

2 8

2 7

2 6

2 5

2 4

2 3

2 2

2 1

2 0

1 9

1 8

1 7

1 6

1 5

1 4

1 3

1 2

1 1

1 0

9

8

7

6

5

4

3
2

1

Figure 4.15.: Clustering of Zachary's karate club graph. (Note that, although the edges
are drawn in a directed manner, the graph is in fact undirected.)

Table 4.5.: Normalized cut values of Bubble-FOS/C and Graclus on randomly gen-
erated graphs.

NCut (Graclus) NCut (Bubble-FOS/C)

n k=6 k=8 k=12 k=6 k=8 k=12

211 0.328 0.641 0.704 0.367 1.042 0.771

212 0.323 0.626 0.678 0.370 1.404 0.868

213 0.331 0.639 0.796 0.511 1.674 0.882

214 0.335 0.641 0.716 0.477 1.296 1.218

the real-world example of Zachary's karate club [Zach 77] with 34 nodes that form 2
clusters. The correct clustering is known and shown in Figure 4.15 by di�erent colors

(light orange and blue). Our algorithm computes a clustering that nearly matches the

correct one. Only the node labeled with 3 and shown in both colors (and framed in

red) should belong to the blue cluster, but is put into the other one. Note that this is

not necessarily a �aw in the heuristic because node 3 has eight edges in total, four are

incident to the �rst and four to the second cluster.

Another group of experiments is performed on randomly generated undirected graphs

following the idea of planted partitions [Jerr 98]. Such clustered graphs are generated by

specifying the cluster sizes and probabilities for intra- and inter-cluster edges a priori.

Then, the edges of the graph are determined by these probabilities.

In this set of experiments we have switched o� the smooth operation. On these

highly irregular instances it worsens the solution instead of improving it. We compare

the results of Bubble-FOS/C to those of Graclus. Recall that the latter has been

implemented by Dhillon et al. [Dhil 07] and is based on their kernel k-means algorithm

enriched with additional features such as local search.

The twelve clustering problems used here have four di�erent graph sizes n ∈
{210, 211, 212, 213} and three di�erent cluster numbers k ∈ {6, 8, 12}. For our experi-

86

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

ments we determine the cluster sizes randomly such that the largest one is at most twice

as large as the smallest one. Then, for each node we draw the number of intra- and

inter-cluster edges from two di�erent normal distributions. Finally, the corresponding

edges are added uniformly at random. The parameters of the normal distributions for

creating the planted partitions are as follows: µint = 4.3, σint = 1.1, µext = 0.3, σext = 0.3
for k = 6 and k = 12 and µint = 5.1, σint = 1.3, µext = 0.45, σext = 0.35 for k = 8, where
µint is the mean intra-cluster degree, µext the mean inter-cluster degree, and σint and

σext their respective standard deviations. This set of parameters results in node degrees

between 1 and 12.
The results of these instances are shown in Table 4.5 and compare the normalized

cut values of Bubble-FOS/C to those of Graclus (KKM). Graclus is consistently

better than Bubble-FOS/C. Our algorithm has particular problems with the instances

that have eight clusters, probably due to the higher inter-cluster degree. Moreover, the

running time of Bubble-FOS/C is about two orders of magnitude slower than that of

Graclus. The latter requires less than 0.1s on these small instances. To summarize,

our graph clustering experiments with Bubble-FOS/C and Graclus show:

� It may happen, in particular when k becomes larger, that (at least) one cluster

center is not placed correctly in the beginning. Hence, one planted cluster contains

more than one center, while another planted cluster contains no center. The itera-

tive learning process of Bubble-FOS/C seems to have di�culties to recover from

such a misplacement, leading to solutions with an inferior normalized cut.

� A careful inspection of the clusterings reveals that if the normalized cut is not

extremely higher than that of Graclus, the result computed by Bubble-FOS/C

is a reasonable clustering that deviates not very much from the correct one.

� The comparison to Graclus shows that Bubble-FOS/C is signi�cantly slower

(similar to the speed gap experienced during the partitioning experiments compared

to METIS and Jostle) and also worse in terms of quality.

More experiments on planted partitions with comparisons of Bubble-FOS/C to Gr-

aclus and our other algorithm DibaP can be found in Section 5.4.3. There, we also

motivate the use of Graclus and give more details on the algorithmic settings used in

the experiments.

It is clear that the speed of Bubble-FOS/C needs to be improved to be competitive

� just like for graph partitioning. But unlike before, for graph clustering it is necessary

to improve the quality, too. In particular a mechanism to escape from bad initial center

placements is necessary.

4.7.4. Parallelism

Recall that our experimental data including the running time have been assembled on

a dual-core machine using POSIX threads in our implementation of Bubble-FOS/C.

87

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

One might argue that a comparison to the sequential libraries METIS, Jostle, and

Graclus is biased since they do not make use of threads. We would like to make a

case against this argumentation. First, all programs are run on the same hardware.

Most modern standard desktop processors come with at least two cores nowadays and

the number of cores will increase over the years due to technological progress. Hence,

it is highly advisable to exploit all of these computational capabilities in order to fully

utilize this progress. To our knowledge, however, no thread-parallel versions of METIS,

Jostle, and Graclus exist. A reason for this could be the inherent sequential parts

within the KL/FM heuristic. Parallelism by threads would probably deliver only small

running time improvements. Moreover, automatic parallelism o�ered by the compiler

is enabled for all programs except Graclus, so that the KL/FM partitioners pro�t

somewhat from the parallel capabilities of the hardware.

Our experiments with the benchmark graphs of Table 4.1 show that Bubble-FOS/C

attains a speedup of about 1.3 on the employed dual-core processor. This means that the

threaded implementation is a factor of 1.3 faster than the non-threaded version. On our

dual-core machine, this speedup corresponds to an e�ciency of 0.65. Although we have

gained a 30% improvement over the serial version, such low values are hardly satisfactory.

Based on our data, we believe that this behavior stems from thread and cache con�icts.

A thread is not likely to �nish the complete solution phase of its assigned linear system.

Instead, the CPU scheduler replaces it by another thread to ensure fairness. Next time

the thread is restarted, all its data need to be loaded from memory into cache. This is a

relatively expensive operation, which may prevent a better speedup.

4.8. Load Balancing and Partial Graph Coarsening

It has been described that AMG is in principle an optimal linear solver regarding its

computational complexity and that we have achieved a signi�cant speedup compared to

the related implementation of Bubble-FOS/C, which is based on a CG solver and a

matching hierarchy. Nevertheless, our algorithm is still very time-consuming compared to

established partitioning libraries. This is already true for medium-sized graphs with some

tens of thousands of nodes. It even worsens for larger graphs. In a distributed-memory

implementation the parallel speedup for graphs of medium size would be limited due

to the unfavorable computation-communication ratio. An additional drawback for large

graphs is the quite expensive AMG hierarchy construction. Moreover, the construction

algorithm is not easy to implement e�ciently for distributed memory parallelism. Usage

of the CG version would not improve the speed because the convergence rate of the CG

solver typically slows down with the system size. Hence, a straightforward parallelization

of Bubble-FOS/C for a large number of processors would hardly be able to achieve

totally satisfactory running times. Consequently, to increase the practical relevance of

our algorithm as a repartitioner for balancing the load in adaptive numerical simulations,

additional techniques for its acceleration are required.

88

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

The major reason for the high running time compared to the state-of-the-art is the

global approach of Bubble-FOS/C. Although its multilevel scheme provides a rea-

sonably good initial partition on each level, the improvement process is not localized.

Instead, the k linear systems of each FOS/C procedure are solved on the whole graph.

Observe, however, that nodes in regions far away from the source set are very unlikely

to become its new center or to belong to the corresponding subdomain. Thus, for these

regions it should be su�cient to work with an approximation of them with fewer nodes

and edges to reduce the complexity.

4.8.1. Partial Graph Coarsening

The locality observation is exploited in the following to speed up the computations

under certain circumstances. We will describe the method developed with Scham-

berger [Meye 06c] only brie�y here. As will be shown, it is only successful in certain

cases. Yet, we do not want to forgo its description since its idea of localization is very

valuable. It is also helpful to understand the alternative coarsening method we propose

afterwards.

Assume that k FOS/C procedures have to be solved on a large input graph. First, a

multilevel hierarchy based on approximate maximum weighted matchings is built. The

procedures are then projected onto the coarsest level of this hierarchy, where they are

solved by a standard solver such as CG. Figure 4.16 (left) illustrates a solution for one

linear system on the coarsest level. Its highest load values (red color) can be found

around the originating source node. Since the coarsening process has preserved the

general graph structure, the load distributions on the lowest level can be expected to

have a similar shape as the load distributions on the original graph. Hence, we are able

to use them to determine the most relevant parts of the solution. To do this, the solutions

are interpolated back onto the original graph. There, the nodes are classi�ed based on

their interpolated FOS/C loads into the three categories high, medium, and low.

The next step is performed independently for each linear system. Based on the cat-

egories, a new graph is assembled with di�erent hierarchy levels of the original graph.

Regions with high loads are carried over uncoarsened. In contrast to this, for regions

with low values their approximation of the coarsest hierarchy level is used. Regions with

medium loads are represented by a medium level of the hierarchy. Since this results

in a graph with some coarsened and some uncoarsened areas, the method is termed

partial graph coarsening (PGC). The original linear system is then projected onto the

partially coarsened graph and solved. An example of a partially coarsened graph is given

in Figure 4.16 (middle). The colors represent an FOS/C load distribution that has been

calculated with such a varying accuracy.

The solution of the system with varying accuracy is then evaluated for

AssignPartition or ComputeCenters in the usual manner. Depending on how strongly

the graph has been coarsened, this modi�ed solution process is reduced in complexity

89

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

8.695211e-01 1.155947e+03 1.226557e-02 1.760585e+03

Figure 4.16.: Illustration of partial graph coarsening: Left: Vertex loads (colors from high
to low: red, orange, yellow, green, cyan, blue, black) of one linear system
on the lowest level. Middle: Final solution of the linear system on a graph
assembled with varying accuracy. This solution has been computed for the
pink subdomain in the displayed partition (right). Cut edges of the initial
partition are not drawn completely.

compared to the generic one, although k additional (but small) linear systems have to

be solved. Particularly for large k the additional work performed is supposed to pay o�

because the largest linear systems are reduced in size. By this means, the approximately

linear scaling in k of the running time can be expected to be removed or at least eased.

Note that for each of the k linear systems a di�erent part of the graph is important.

Hence, for each part di�erent hierarchy levels contribute to the respective solutions.

In a distributed parallel setting, the graph and also the linear systems with varying

accuracy are already stored in a distributed fashion over the processors. Hence, it would

be natural to employ a parallel solver acting on these data in a distributed fashion. With

PGC, however, another approach is viable. Since each linear system of varying accuracy

is smaller than the original input graph, it can be sent to one of the processors. More

precisely, each processor sends its part of the linear system i to processor i (0 ≤ i < k).

Then, processor i solves linear system i with a sequential linear solver, which does not

require any communication. Afterwards, the computed load values are sent back to the

processors of their originating parts. This approach is termed domain sharing. Its main

di�erence to the standard approach is that only two large communication operations

take place, before the solution process and afterwards, instead of three communication

necessary within each iteration of a standard parallel CG solver.

4.8.2. Load Balancing Experiments

To evaluate PGC, load balancing experiments have been conducted with an MPI parallel

implementation of Bubble-FOS/C on a cluster system with 200 computing nodes, each

of which has two Intel Xeon 3.2 GHz EM64T processors and 4 GB RAM. In our tests

we have used only one processor per node and for parallel communication the Scali MPI

implementation via the In�niband interconnection. The test graphs are a number of

di�erent 2D and 3D FEM graphs of di�erent sizes. The task to be performed by Bubble-

90

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

FOS/C is to repartition the initial partitions of these graphs. Note that the number k

of subdomains matches the number of processing nodes used, k ∈ {8, 16, 32, 64}. The

initial partitions are provided by the partitioning library Party [Moni 04].

Two di�erent versions of our algorithm are compared to evaluate the partial graph

coarsening approach. Both perform the same number of outer and inner loop iterations

within the Bubble-FOS/C algorithm. The �rst version is the standard algorithm for

graph repartitioning without partial graph coarsening and without any multilevel hier-

archy. It uses a standard parallel CG solver with a distributed graph data structure.

The new scheme employs the partial graph coarsening approach, where the coarsening

is done with approximate maximum weighted matchings. It also uses the domain shar-

ing communication scheme. Several important parts of the implementation are due to

Schamberger [Meye 06c, Scha 06]. That is why we address only important outcomes

regarding PGC, which can be summarized as follows.

� All repartitioning tasks for graphs with up to half a million nodes and four million

edges can be performed within two minutes with the respective fastest algorithm

version.

� Doubling k also results in doubling the number of processors in our experimental

setting. Yet, since the communication overhead increases with larger k, the running

time of the generic algorithm still becomes larger with increasing k.

� If k ≤ 16, most subdomains are still close to the respective source sets. Thus, the

partial graph coarsening process is not very e�ective, as most subdomains are not

coarsened at all. The additional work invested is not compensated in these cases,

so that for small k the generic approach is still faster than PGC.

� With a large number of subdomains (k ≥ 32) it is likely that a large fraction of them
can be coarsened quite well with PGC. Indeed, as anticipated, the experiments

show a signi�cant running time improvement for PGC with domain sharing in

these settings. While the running time of the generic algorithm generally becomes

slower if k is increased, the new algorithm version speeds up with increasing k.

Thus, the new method is able to alleviate the problem of the approximately linear

dependence of the running time on k. Moreover, it is up to 4 times faster than

the generic approach. Both PGC and the domain sharing communication pattern

contribute to this acceleration.

� Regarding the partitioning quality and migration volume, Bubble-FOS/C tends

to achieve better results than the parallel version of METIS. Compared to parallel

Jostle, similar quality values and migration costs can be observed. Clearly in

favor of Bubble-FOS/C is the shape of the subdomains and their connectedness.

91

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

4.8.3. A Possible Enhancement by Adaptive Graph Coarsening

The experimental results sketched above show that partial graph coarsening combined

with domain sharing is successful for larger values of k. One of the main problems of

Bubble-FOS/C, its linear dependence on k, can be weakened in this way. It is, however,

for k around 16 and smaller slower than the generic approach without a multilevel hier-

archy. Such settings do not allow a signi�cant coarsening with PGC. More importantly,

considering how many processors are involved in the computations, PGC with domain

sharing is still quite time-consuming compared to state-of-the-art load balancers such as

the parallel versions of METIS and Jostle.

The major reason for the moderate acceleration of the expensive generic Bubble-

FOS/C by partial graph coarsening and domain sharing is that the localization of the

approach is not always successful. Only if large regions can be identi�ed as �far away�

from the source set, the main part of the computational work of the solver is concentrated

around the nodes of the source set. Yet, a more aggressive coarsening scheme is viable.

Observe that very accurate FOS/C loads are only needed in those areas that are highly

relevant for the assignment of nodes to subdomains or for computing a new center node.

For AssignPartition these areas are the boundaries of the subdomains to be computed,

while for ComputeCenters it is the region around the new center. In all other areas,

the load values are so di�erent that a correct choice of subdomains/centers can be made

without a high precision.

Our new proposal of an adaptive graph coarsening scheme works as follows: The �rst

part consisting of uniform coarsening and solving the linear system projected onto the

coarsest level is equivalent to the related approach PGC. After that, the determination

of the relevance of parts is modi�ed signi�cantly. For each node one computes based on

its k FOS/C load values how often it may be merged during the matching coarsening

process. Nodes whose two (or more) highest load values are close together must not be

merged and therefore remain uncoarsened. The larger the di�erence between the highest

and the other load values of a node v is, the more often v may take part in the coarsening

process. Then, the matching algorithm used before, but modi�ed to take the maximum

level number of nodes into account, is employed to compute an approximation of the

linear system. The relevance and therefore the maximum number of valid coarsening

steps for a node change only slowly with its distance from the most important parts.

That is why this approximation by adaptive coarsening is characterized by smoother

transitions in the graph resolution.

Experiments with a draft implementation of the latter scheme indicate that the main

idea of coarsening irrelevant parts without modifying the �nal partitioning result works

quite well. The resulting linear systems are signi�cantly more coarsened than with the

related PGC approach, but still usable for Bubble-FOS/C. However, this new coarsen-

ing scheme is more complicated than the one used before. A thorough implementation

and integration into Bubble-FOS/C has therefore not been conducted yet.

92

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

4.9. Discussion

The integration of FOS/C (or FOS/V) into the Bubble framework yields an iterative

graph clustering/partitioning algorithm, which has the nice theoretical property to always

converge towards a local optimum. On vertex-transitive graphs the algorithm computes

connected subdomains, and on the two-dimensional torus it even �nds the globally best

solution (neglecting discretization errors). Our implementation with FOS/V and alge-

braic multigrid, both as linear solver and as a means for multilevel hierarchy construction,

is about �ve to six times faster than related Bubble-FOS/C implementations. Experi-

mental comparisons against the cutting-edge partitioning libraries METIS and Jostle

can be summarized brie�y as follows: Bubble-FOS/C's solutions attain fewer boundary

nodes and often also a smaller edge-cut, in particular in the maximum norm. Yet, due to

the high running time (Bubble-FOS/C is two to three orders of magnitude slower than

the state-of-the-art), its practical relevance for high-performance simulations is doubt-

ful. For graph clustering problems not only the running time of Bubble-FOS/C is a

problem. Also the solution quality needs to be enhanced to be competitive to the kernel

k-means based program Graclus.

The running time problem is partially addressed by two coarsening schemes (partial

and adaptive graph coarsening). They follow the idea to coarsen irrelevant areas of

the graph to solve linear systems only on an approximation of them. For large k this

results in computations that are mostly concentrated on limited local areas of the graph.

Yet, despite a more complicated algorithm, a large gap to the state-of-the-art libraries

regarding running time remains. Insofar it is of utmost interest to design a faster and

simpler algorithm. It should retain the main ideas of Bubble-FOS/C by using di�usive

arguments for partitioning and of adaptive graph coarsening by a local improvement

approach which concentrates on the respective most relevant graph regions. Such an

algorithm is presented in the next chapter.

93

CHAPTER 4. A SHAPE-OPTIMIZING PARTITIONING ALGORITHM

94

5. Faster Di�usion-based Partitioning

We have seen in the previous chapter that our algorithm Bubble-FOS/C, which com-

bines disturbed di�usion with the Bubble framework, computes high-quality graph par-

titions with good shapes (whereas its clustering quality needs to be improved). Its

disturbed di�usion scheme FOS/C is, however, quite expensive to compute compared

to established partitioning heuristics � even after the introduction of our acceleration

techniques. Consequently, the running time of our partitioning algorithm is too slow for

real practical value. Although the global approach of solving many linear systems on

the whole graph has been identi�ed as Bubble-FOS/C's major drawback, the proposed

coarsening approaches for a stronger localization have been only partially successful.

While multigrid coarsening becomes very slow for large graphs, partial graph coarsen-

ing is only e�ective for a large number of subdomains, and adaptive graph coarsening

requires a very complex and challenging implementation, particularly in parallel.

To overcome these limitations, we design in this chapter a fast and truly local algorithm

to improve partitions generated in a multilevel process. It is simple to implement and

exploits the observation that, once a reasonably good solution has been found, alterations

during a local improvement step take place mostly at the subdomain boundaries. Like

Bubble-FOS/C, the new algorithm TruncCons is also based on disturbed di�usion,

where the disturbance is realized by truncating the di�usion process after a small number

of iterations. This truncation allows for a concentration of the computations around the

subdomain boundaries, where the changes in subdomain a�liation occur. Since also no

linear systems need to be solved, no algebraic multigrid hierarchy has to be constructed.

Instead, a much faster matching algorithm can be used to create a multilevel hierarchy

for a successive improvement of the solution.

The initial solution on the coarsest hierarchy level of our new method is provided

by Bubble-FOS/C. In fact, we can choose among several Bubble-FOS/C solutions

to continue only with the best one. We will see later on that such a selection process

alleviates problems that come from bad initial center placements. The combination of

Bubble-FOS/C and TruncCons is called DibaP and, with some problem-speci�c

extensions, performs very well in practice, as we show by extensive experiments.

5.1. A New Local Improvement Method: TruncCons

Recall from the previous chapter that the Consolidation operation is used to determine

a new partition Π from a given one (cf. Figure 4.4 in Section 4.5). That is why it can be

95

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

seen as a mixture of AssignPartition and ComputeCenters. As shown in Algorithm 5

(lines 2-9), one Consolidation operation performs the following independently for each

partition πc: First, the source set S is initialized with πc and the nodes of πc receive an

equal amount of high initial load, e. g., n/|S|. In contrast to that, the other nodes' initial

load is set to a low value, e. g., 0 (lines 3-5). Then, a disturbed di�usive method is used

to distribute this load within the graph. In the previous chapter we have used FOS/C,

but this should be avoided due to its high running time � unless the graph is small.

To restrict the computational e�ort to areas close to the partition boundaries, we use

here a small number ψ of FOS iterations (cf. Section 2.2) for distributing the load (lines

6-7). Hence, the disturbance comes from stopping the di�usive scheme long before conver-

gence is reached. Although it corresponds to Schamberger's discarded FOS/L [Scha 06,

p. 73], we call this di�usive method truncated �rst order di�usion scheme (FOS/T). It

can be written more formally as:

De�nition 5.1. (FOS/T) Given a graph G = (V,E, ω), a source set ∅ 6= S ⊂ V , and

suitably chosen constants α > 0 and ψ ∈ N. Let the initial load vector w(0)be de�ned as

[w(0)]v =

 n
|S| v ∈ S ,

0 otherwise .

Then, the �nal load of a node v is obtained by ψ FOS iterations. More precisely, [w(ψ)
c]v =

[Mψ · w(0)
c]v, where M is the (possibly edge-weighted) di�usion matrix of G. This load

situation can be computed by iterative load exchanges, too:

[w(t)]v = [w(t−1)]v − α
∑

{u,v}∈E

ωe([w(t−1)]v − [w(t−1)]u) for 1 ≤ t ≤ ψ .

After the load is distributed with FOS/T for all k subdomains, we assign each node v

to the subdomain it has obtained the highest load from (lines 8-9). This completes one

Consolidation operation, which can be repeated several times to facilitate su�ciently

large movements of the subdomains (cf. the for loop in line 1 of Algorithm 5). We

denote the number of repetitions by Λ and call the whole method TruncCons (truncated

di�usion consolidations).

Note that the Bubble operations AssignPartition and ComputeCenters are very

problematic in connection with FOS/T, as indicated by Schamberger's related work on

shape-optimizing graph partitioning [Scha 04a, Scha 06].1 He has used FOS/T as a struc-

tural similarity measure for these other two Bubble operations.2 Such an approach does

not work well. For AssignPartition and ComputeCenters the choice of the number ψ

1That is why we have chosen not to call our new method Bubble-FOS/T.
2Note that in his early work [Scha 04a] on shape optimization Schamberger calls the AssignPartition
operation Consolidation. Later, he uses Consolidation as the name for an operation that is a
mixture of AssignPartition and ComputeCenters [Scha 06]. We have decided to adopt the latter
nomenclature.

96

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Algorithm 5 TruncCons (M, k, Π, Λ, ψ) → Π
01 for τ = 1 to Λ

/* Begin Consolidation */
02 parallel for each πc do

/* Initial load */
03 Sc = πc; wc = (0, . . . , 0)T

04 for each v ∈ Sc do
05 [wc]v = n/|S|

/* ψ FOS iterations */
06 for t = 1 to ψ do

07 wc = M · wc
/* assign nodes to subdomains */

08 parallel for each v ∈ V do

09 Π(v) = argmaxc∈{1,...,k}[wc]v
/* End Consolidation */

10 return Π

of FOS iterations is crucial. It is di�cult to determine and should neither be too small

nor too large in order to obtain meaningful load distributions. Hence, as pointed out by

Schamberger himself [Scha 06, p. 73], in such a setting it is extremely doubtful if FOS/T

can provide a practically useful non-balanced load distribution based on node connec-

tivity. For the improvement of reasonable partitions with Consolidation, however, we

will see that FOS/T is an excellent choice, which provides meaningful load distributions

derived from disturbed di�usion.

5.1.1. Connection to Random Walks

To understand why one can expect TruncCons to work well, consider the following

analogy. Recall that the stochastic di�usion matrix M can be seen as the transition

matrix of a random walk. Let S := πc for some c ∈ {1, . . . , k}, so that the source set

is one of the current subdomains. Hence, we can assume that for each node v ∈ S we

have one random walk starting on v. Then, the �nal load on node u is proportional

to the sum of the probabilities for each of these random walks to reach u ∈ V after ψ

steps. Since random walks need relatively long to leave dense regions, each node should

be assigned to the subdomain with the highest load. With this subdomain it is most

densely connected w. r. t. to the random walk notion described above.

5.1.2. Notion of Active and Inactive Nodes

Observe that during a TruncCons operation only certain nodes really take part in the

iterative FOS/T load exchange of De�nition 5.1.

De�nition 5.2. A node v ∈ V is called active in iteration t > 0 of an FOS/T procedure

97

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

if it has a neighbor u ∈ V with the property: [w(t−1)]u 6= [w(t−1)]v. Nodes that are not
active are called inactive.

All load exchanges of an inactive node result in a �ow of 0 on its incident edges. Hence,
they do not change the load situation at all and can be ignored. How to detect (most)

inactive nodes, can be seen easily:

Observation 5.3. Let V
(t)
inact ⊆ V be the set of inactive nodes in iteration t > 0 of the

FOS/T procedure invoked for a subdomain πc during a TruncCons operation. Then, a

node v ∈ V is member of V
(t)
inact if for every boundary node u ∈ πc, we have: dist(v, u) >

t− x, where x = 0 for v ∈ V \πc and x = 1 for v ∈ πc.

This observation might not give away all inactive nodes since there might be nodes that

are closer to the boundary and have only neighbors with the same load by coincidence.

However, one can expect these cases to be very rare and most likely the vast majority of

inactive nodes are covered.

So, by keeping track of active and inactive nodes using the above observation, we are

able to ignore nearly all load exchange computations that do not change the respective

loads on the incident nodes. In this way, the di�usive process of partition improvement is

restricted to local areas close to the subdomain boundaries. The complexity of FOS/T is

therefore greatly reduced in practice, although the e�ectiveness of the reduction depends

on several factors. These are the iteration number t, the number of subdomains k, and

the size and the structure of the graph. We can avoid more computations if t and k are

small and the graph is large and sparse than in the opposite case.

5.1.3. Discussion of TruncCons

TruncCons retains the basic ideas of Bubble-FOS/C. It uses a disturbed di�usion

scheme with a random walk connection to assign to each node a load value for each sub-

domain. This similarity makes it easy to integrate into our work, both conceptually and

implementation-wise. As TruncCons does not require the solution of linear systems,

AMG is not required. Hence, for providing a multilevel hierarchy we can use approximate

maximum weighted matchings instead. Using such matchings is advantageous because

they are much faster to compute for large graphs than the hierarchy construction of

AMG, whose computation of the coarse matrices involves matrix-matrix multiplications.

It should be added that for small ψ (in our experiments we mostly use a value of

ψ ≤ 25) and su�ciently large graphs it is almost certain that TruncCons requires

fewer iterations (of such simplicity) than a linear solver like CG for Bubble-FOS/C.

Compared to AMG and its cycles, the amount of operations per iteration is greatly

reduced. Thus, savings in the running time can be expected also versus the faster linear

solver. Compared to the partial graph coarsening (PGC) method of Section 4.8, our

new algorithm always achieves a true localization of the computational e�ort around the

subdomain boundaries. In contrast to this, PGC succeeds in this only for large k.

98

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Algorithm 6 GenericDibaP (G = (V,E), k, Π, thrsh, level, Λ, ψ) → Π
01 if |V | < thrsh then
02 Π = MultilevelBubble-FOS/C (G, k, Π)
03 else

04 [G′, Π′] = MatchingCoarsen(G, Π)
05 Π′ = GenericDibaP (G′, k, Π′, thrsh, level + 1, Λ, ψ)
06 Π = Interpolate(Π′)

07 Π = TruncCons (M(G), k, Π, Λ, ψ)

08 if (level == 0) then
09 Π = Smooth(Π)

10 return Π

Another advantage of FOS/T and TruncCons is its simplicity. The load exchanges

via the edges are very basic operations. Apart from the CPU, very fast dedicated hard-

ware such as general purpose graphics processors can be employed for these computa-

tions. An implementation based on this idea is part of future work. The simplicity

makes TruncCons also more appealing than adaptive graph coarsening (Section 4.8).

While the latter also restricts the computational e�ort to limited areas, it is much more

complicated to implement.

Observe that local improvements by TruncCons are inherently parallel processes. As

with Bubble-FOS/C, computing the �nal disturbed di�usion load can be performed

independently for each subdomain. Moreover, the determination of the maximum load

for a�liating the nodes to subdomains is independent for each node. Even within each

FOS/T iteration the load updates are independent for each node (if additional memory

is used). Hence, both shared-memory and distributed-memory parallelizations can be

expected to deliver noticeable accelerations.

In summary, one can say that our new algorithm makes Schamberger's ideas [Scha 04a]

robust, practicable, and fast. Moreover, although showing some di�erences, it can be

viewed as a k-way extension of the di�usive part in Pellegrini's work on shape optimiza-

tion [Pell 07a] mentioned in Section 1.3.4. Now that our truly local scheme for improving

partitions based on disturbed di�usion is available, we need to specify how to use it in

the context of our previous work. Of course, the outcome is supposed to be much faster

than Bubble-FOS/C. At the same time, the new algorithm needs to retain or improve

Bubble-FOS/C's solution quality. The solution to this problem is addressed in the

subsequent sections.

5.2. The (Re)Partitioning and Clustering Algorithm DibaP

5.2.1. Combined Hierarchies, Combined Algorithms

For the integration of TruncCons with Bubble-FOS/C we follow a well-known prac-

tice in computer science. Two algorithms that solve the same problem at di�erent speeds

99

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Figure 5.1.: Sketch of the combined multilevel hierarchy and the corresponding partition-
ing algorithms used within DibaP.

can be combined as follows. The slow algorithm (here Bubble-FOS/C), which has a

favorable property (here it delivers a high solution quality � at least for (re)partitioning),

is used for computing a solution to a coarse representation of the input. Afterwards,

this coarse solution is fed into a faster algorithm (here TruncCons), which uses it as

a starting point to solve the original problem. A similar combination concept described

by Jájá in his textbook [JaJa 92, Ch. 2.6] is called accelerated cascading. In our case

this combination yields an e�cient multilevel graph partitioning algorithm that we call

DibaP (Di�usion-based Partitioning).

As shown in Figure 5.1, the �ne levels of DibaP's multilevel hierarchy are constructed

by approximate maximum weight matchings (1). Once the graphs are su�ciently small,

we switch the construction mechanism to the more expensive AMG coarsening (2). This

is advantageous because, after computing initial centers and a partition with Bubble-

FOS/C (3), we use the latter algorithm also as the improvement strategy on the next few

hierarchy levels (4). Since AMG is employed to solve the occurring linear systems, such

a hierarchy needs to be built anyway. On the �ner parts of the hierarchy constructed by

matchings, the faster TruncCons is used as the local improvement algorithm (5). A

formal de�nition of DibaP is displayed as Algorithm 6. The initial call assigns 0 to the

parameter level. Implementation details and additional operations such as balancing

are discussed in Section 5.3.

Note that it is questionable whether TruncCons can be adapted to (re)partition

or cluster graphs equally well without using Bubble-FOS/C before. Our experiments

indicate that the subdomain shapes and other important properties of the solutions su�er

in quality if TruncCons is used too early in the multilevel process or even exclusively.

100

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

The combination of the algorithms is therefore necessary to obtain speed and quality.

5.2.2. Computational Complexity

For su�ciently large graphs it is clear that the running time of DibaP is dominated by

that of TruncCons. The reason is simply that the size of the hierarchy level on which

the algorithm switch takes place can be �xed with a constant, the parameter thrsh. In

that case the Bubble-FOS/C part of DibaP requires nearly always the same amount

of time for the same amount of subdomains, regardless of the input graph size.

Within TruncCons one performs for each subdomain Λ times ψ FOS iterations. In

the (unrealistic) worst case, for each edge of the graph a load exchange takes place in

every iteration. Hence, in this case the running time is proportional to k · Λ · ψ · |E|.
The a�liation of nodes to subdomains requires n · k operations. If Λ and ψ are seen as

constants, the asymptotic running time is bounded by O(k · |E|). The linear dependence
on the factor k � instead of an additive penalty for increasing the number of subdomains

� can be seen as the major drawback in the running time of TruncCons. Furthermore,

the product Λ ·ψ might be quite large, depending on the user choice. On the other hand,

due to the notion of (in)active nodes, the number of operations actually performed will

be much smaller in practice. Since the savings depend on many factors that di�er from

input to input, a theoretical worst-case analysis is not likely to predict the �nal running

time accurately. That is why we also refer to our experiments in Section 5.4.1.5, which

essentially con�rm our theoretical result of O(k · |E|).

5.2.3. Multiple Coarse Solutions

The use of Bubble-FOS/C for computing an initial solution within the multilevel frame-

work provides an interesting opportunity for avoiding bad initial partitions. Recall that

in Bubble-FOS/C it is possible to select the most suitable set of initially chosen centers

from a sample. A similar idea of choosing from multiple solutions can be pursued here.

Before starting multilevel partitioning with TruncCons, we call Bubble-FOS/C a

number of times and keep only the best of the solutions. Since the graph on the coarsest

TruncCons level (the �nestBubble-FOS/C level) is relatively small, Bubble-FOS/C

returns a solution quite fast. Experiments in Section 5.4.1 reveal several positive e�ects

of this sampling approach. Which metric is used to determine the best solution, depends

on the application and can be chosen by the user.

5.3. Problem-speci�c Adaptations and Implementation

Details

As before, for graph partitioning and repartitioning the subdomain sizes have to meet

speci�ed balance constraints. Regarding this aspect, another advantage of DibaP (re-

spectively TruncCons) becomes apparent. Like Bubble-FOS/C, it computes k load

101

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

values for each node based on a di�usive process. This similarity of the algorithms allows

for an easy adaptation of the balancing methods described in the previous chapter for

their use with TruncCons. The same applies to the operation Smooth, which is used

on the �nest level to straighten the subdomain boundaries of the �nal solution.

Whenever DibaP is used for repartitioning, one part of its input is an initial partition.

We can assume that this partition is probably more unbalanced than advisable. It

might also contain some undesirable artifacts. Nevertheless, its quality is not likely to be

extremely bad, as it has emerged from a previous partition of good quality. It is therefore

reasonable to improve the initial partition instead of starting from scratch. If DibaP is

called, although the balance of the partition is below the imbalance threshold, we perform

TruncCons with very small Λ and ψ (e. g., both are set to 3) on the input graph only.

This is relatively inexpensive, but eliminates possible artifacts. It also improves the

quality of the subdomains somewhat, while it generates hardly any migration costs. In

the other case, which means that rebalancing is really necessary, the multilevel paradigm

comes into play again. A matching hierarchy is constructed until only a few thousand

nodes remain in the coarsest graph. The initial partition is projected downwards the

hierarchy onto the coarsest level. This projection is done in the following manner. Recall

that, due to the hierarchy construction by matchings, a node v in the graph of level i+1
has one or two parent nodes in the graph of level i. If all parent nodes are in the same

subdomain πc, v is also assigned to πc. Otherwise, v is assigned to the subdomain of the

parent node with the higher weight, where ties are broken arbitrarily. On the coarsest

level the graph is partitioned with Bubble-FOS/C, starting with the projected initial

solution. Going up the multilevel hierarchy recursively, the result is then improved with

TruncCons and interpolated to the next level.

It may happen that the matching algorithm has hardly coarsened a level, in order to

avoid star-like subgraphs with strongly varying node degrees. This limited coarsening

yields two very similar adjacent levels. Local improvement with TruncCons on both

of these levels would essentially result in the same work being done twice. That is why

in such a case TruncCons is skipped on the higher level of the two (which is processed

after the lower one in the improvement phase).

Keeping track of active nodes within TruncCons is currently done with an array, in

which we store for each node its status. This could be possibly improved by a faster data

structure that considers only the active nodes, such as a set based on hashing.

5.4. Experimental Results

There are three major parameters that control the quality and running time of DibaP.

The �rst one is the switch threshold thrsh, denoting the size of the hierarchy level at

which the switch between TruncCons and Bubble-FOS/C takes place. On the next-

lower level, an initial solution is computed by multilevel Bubble-FOS/C and afterwards

re�ned by TruncCons. In our experiments we have used di�erent values for thrsh,

102

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Table 5.1.: Graphs used in the experiments of Section 5.4.1.

Size Degree

Graph |V | |E| min max avg Origin

tooth 78,136 452,591 3 39 11.585 FEM 3D

rotor 99,617 662,431 5 125 13.300 FEM 3D

598a 110,971 741,934 5 26 13.372 FEM 3D

ocean 143,437 409,593 1 6 5.711 FEM 3D

144 144,649 1,074,393 4 26 14.855 FEM 3D

wave 156,317 1,059,331 3 44 13.554 FEM 3D

m14b 214,765 1,679,018 4 40 15.636 FEM 3D

auto 448,695 3,314,611 4 37 14.774 FEM 3D

ranging from 1, 000 to 10, 000. The actual choices for the presented data depend on

the application and are speci�ed in the upcoming sections. It turns out that for graph

clustering the thrsh value should often be smaller than for graph (re)partitioning. This

probably results from the limited clustering solution qualities obtained with Bubble-

FOS/C in random graphs.

The hard- and software environment for the graph partitioning experiments with

DibaP is the same as in Section 4.7. To exploit the parallelism o�ered by the dual-core

processor, we have parallelized the computation of the disturbed di�usion loads within

TruncCons by POSIX threads. More precisely, for each subdomain one thread is re-

sponsible for computing the FOS/T load values. As discussed in Section 4.7.4, threads

are not available for the programs that serve as standard of reference.

The test graphs in this chapter are much larger to better re�ect typical input sizes

for the utilized hardware. These graphs are a mixture of real-world instances, generated

data that imitate real-world problems, and randomly generated graphs. Such a variety

avoids the concentration on problems which are too similar to each other. Again, the

graph partitioning and clustering experiments are repeated ten times for each graph.

The repartitioning experiments are conducted only once per graph sequence. Since each

sequence consists of at least 46 graphs, random in�uences are averaged over the whole

sequence. As before, running times are given in seconds (unless stated otherwise) and

best values within a table row are written in bold font.

5.4.1. Graph Partitioning

The graphs used in the graph partitioning experiments of this chapter are displayed in

Table 5.1. They have been chosen because of their public availability from Chris Wal-

shaw's well-known graph partitioning archive [Sope 04, Wals 07b]. Furthermore, they

are the eight largest graphs therein w. r. t. the number of nodes and represent the gen-

eral trends in our experiments. Hence, they constitute a good sample and also model

large enough problems from three-dimensional numerical simulations (598a and m14b

are meshes of submarines and auto of a car [Huan 06]).

103

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Table 5.2.: Parameter settings and resulting running times in seconds of DibaP for par-
titioning the �average benchmark graph�. Left: In�uence of multiple coarse
solutions. Right: In�uence of loop parameters Λ and ψ.

Setting Λ ψ #coarse Time (s)

1a 10 14 1 16.52

2a 10 14 3 18.73

3a 14 19 1 36.51

4a 14 19 3 39.21

Setting Λ ψ #coarse Time (s)

1b 6 9 3 7.53

2b 10 9 3 10.53

3b 10 14 3 18.73

4b 14 19 3 39.21

In the experiments presented in this section, Bubble-FOS/C is used for all hierarchy

levels with less than 5000 nodes. Larger levels are processed with TruncCons. Bubble-
FOS/C performs two iterations of ComputeCenters and AssignPartition, followed by

two Consolidations, and uses FOS/V as similarity measure (φ = 1/512). The AMG

multilevel coarsening is stopped when the graph has at most 48 · k nodes.

5.4.1.1. In�uence of Multiple Coarse Solutions

First of all, we would like to evaluate how strongly multiple coarse solutions computed

by Bubble-FOS/C increase the average partitioning quality and if the running time is

a�ected severely by this. That is why we have conducted a set of experiments where the

loop parameters Λ and ψ are �xed, but the number of coarse solutions are varied.

Table 5.2 (left) displays the parameter settings and the resulting running times for

partitioning the benchmark set with DibaP. The data are highly aggregated, as they are

averaged over all graphs, di�erent numbers of k (k ∈ {4, 8, 12, 16, 20, 32}), and all ten runs
on each graph. In order to compare di�erent parameter settings, such an aggregation is

helpful since it reveals the trends within the data generated by the same basic algorithm.

The quality obtained by DibaP in the four settings is shown in Figure 5.2. The �rst

two columns show the aggregated values for the external edges and boundary nodes in

the summation norm, respectively. Then, in the next two columns, the data for the

maximum norm follow. Note that for presentation reasons the values in the �rst three

columns have been divided by the factor shown in the x-axis.

The parameter settings 1a and 2a di�er from each other in the number of initial

coarse solutions computed by Bubble-FOS/C (one for the �rst one, three for the second

one). This holds similarly for the settings 3a and 4a. It is of course not surprising that

the average solution quality is improved by choosing the best out of more than one

initial solutions, as can be seen from the data. Similarly, that the most time-consuming

parameter setting achieves the best quality meets our expectations. Yet, it is remarkable

that the average quality of setting 2a is consistently better than of setting 3a, although
much less computational e�ort has been invested. This indicates that selecting a very

good initial partition is also very helpful for saving running time. It is much cheaper than

additional TruncCons operations, as can be seen by the large running time di�erence

104

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Figure 5.2.: Solution quality obtained by DibaP in the four di�erent parameter settings
of Table 5.2 (left).

between settings 2a and 3a. One can expect that the gain derived from multiple solutions

declines with an increasing number of initial solutions. While three might not be the

best choice, our experiments are only meant to show the general trend rather than an

optimal value.

Another positive in�uence of having multiple choices is the reduced variance in the

data. For example for k = 12, selecting the best of three initial solutions reduces the

variance in the edge-cut by an average factor of more than six. Hence, the results are not

only better on average, but also more reliable in the sense that they deviate less from

the mean. That is why we use in the following experiments the best w. r. t. the edge-cut

of three initial solutions generated by Bubble-FOS/C.

5.4.1.2. Di�erent Loop Parameters Λ and ψ

Before we compare our new algorithm to other ones, we should �nd out which parameters

Λ and ψ work well. For this we have selected four di�erent combinations of them, as can

be seen in Table 5.2 (right). Their solution quality is depicted in Figure 5.3, whose three

�rst data columns are scaled for presentation reasons. Again, the most expensive version

attains the best quality in all four metrics. Yet, setting 3b with Λ = 10, ψ = 14 is not too

far behind, in particular not for the number of boundary nodes in the maximum norm

(BN∞). Considering that it requires less than half of the running time (cf. the right part

of Table 5.2), it should be regarded as a good alternative in practice.

It becomes also apparent that a su�ciently large ψ is of really high importance. While

the values on the partition quality of settings 1b and 2b do not deviate from each other

very much, the increase of ψ from the second to the third setting results in a large quality

improvement. (Of course, this also involves a large increase in running time.) If one is

interested in a fast and only reasonably good solution, one can choose rather small values

of Λ and ψ. To obtain a really high quality, however, ψ = 9 is apparently not enough.

105

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Figure 5.3.: Solution quality obtained by DibaP in the four di�erent parameter settings
of Table 5.2 (right).

Table 5.3.: Quality and running time of Bubble-FOS/C and DibaP for three di�erent
pairs of graphs and k.

Bubble-FOS/C DibaP

Graph k EC bnd∞ Time (s) EC bnd∞ Time (s)

tooth 8 12821.4 1287.0 43.29 12394.4 1222.4 4.87

144 16 41208.8 1400.1 222.67 39431.0 1484.1 20.15

m14b 32 75354.8 1347.5 820.08 68611.2 1292.9 50.51

For really excellent results the loop parameters have to be increased signi�cantly, as it

has been done in settings 3b and 4b.

5.4.1.3. Comparison to Bubble-FOS/C

In order to show that DibaP constitutes a substantial acceleration, we compare its

running time to that of Bubble-FOS/C. We also include some of the quality measures

to estimate how the partitioning results di�er. A complete run of Bubble-FOS/C

on all large benchmark graphs would be extremely time-consuming. Since the general

trend is always very similar, we have restricted our detailed experiments to a subset of

the benchmark graphs and subdomain numbers k. Our presentation is restricted to a

representative sample of this subset, see Table 5.3. It displays the edge-cut, the maximum

number of boundary nodes, and the running time for Bubble-FOS/C and DibaP. For

these experiments Bubble-FOS/C is called with parameters AC3/CO2 and φ = 1/512,
while DibaP uses the setting Λ = 10, ψ = 14.

The results show that DibaP is a factor of about 9 to 16 faster than Bubble-FOS/C.

As could be expected, the speed gain increases with the size of the graph and k. Moreover,

the edge-cut is also better withDibaP, while the maximum boundary length is sometimes

better, sometimes worse than with Bubble-FOS/C. Since the values for the omitted

two quality measures are in favor of DibaP, we conclude that in most cases it improves

the partition quality compared to Bubble-FOS/C, and it is signi�cantly faster.

106

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Table 5.4.: Comparison of DibaP with kMeTiS and Jostle for `1-norm and
k = 16, detailed for each graph.

kMeTiS Jostle DibaP (Λ = 10, ψ = 14)

Graph EC bnd EC bnd EC bnd

tooth 20408.1 11744.9 19619.0 11257.4 18724.8 10745.6

rotor 24118.6 12808.7 23898.4 12676.0 22819.6 12063.7

598a 29400.6 15255.1 28679.7 14841.1 27057.4 13859.0

ocean 10159.9 14876.4 9106.7 14929.7 9530.7 13387.0

144 42857.5 20533.5 41795.1 20016.8 39431.0 18736.3

wave 48101.1 24899.8 48504.9 25076.7 44788.4 23130.7

m14b 49207.8 22749.4 48234.5 22197.5 44708.7 20409.8

auto 87855.9 44293.3 90075.6 45234.3 80298.8 40282.3

Table 5.5.: Comparison of DibaP with kMeTiS and Jostle for `∞-norm and
k = 16, detailed for each graph.

kMeTiS Jostle DibaP (Λ = 10, ψ = 14)

Graph ext bnd ext bnd ext bnd

tooth 3771.2 1069.7 4191.6 1171.1 3256.2 904.6

rotor 4255.4 1134.7 4451.6 1158.8 4189.2 1100.2

598a 5438.7 1391.5 5529.0 1398.0 4696.6 1195.2

ocean 1874.5 1359.4 1808.1 1472.8 1758.2 1213.4

144 7074.2 1679.2 7327.3 1740.1 6227.0 1484.1

wave 7800.4 2022.3 7980.0 2056.7 7217.1 1862.5

m14b 8853.5 2020.8 9077.8 2050.5 7553.1 1723.9

auto 15541.8 3917.8 16631.9 4099.2 14686.7 3673.8

5.4.1.4. Comparison to METIS and Jostle

Analogous to the previous chapter, we compare our new partitioning algorithm DibaP

(Λ = 10, ψ = 14, unless stated otherwise) to the state-of-the-art libraries METIS and

Jostle. (Recall that Pellegrini's Scotch is not included because our experiments have

shown that Scotch is slower than kMeTiS and does not deliver better solution qualities

compared to kMeTiS.) The �rst set of results is displayed in Tables 5.4 and 5.5, for which

we have chosen k = 16. The values of the quality measures obtained on this representative

sample are shown for each graph in detail; in the summation norm in Table 5.4, in the

maximum norm in Table 5.5. Except for one value, the edge-cut of the graph ocean,

DibaP is able to achieve the best values in all metrics and for all graphs. This is

insofar remarkable as DibaP even obtains almost always better edge-cuts, although the

underlying di�usive algorithms do not explicitly optimize this metric like kMeTiS and

Jostle using KL/FM.

Similar as before, we also present the aggregated quality values for di�erent k. Fig-

ures 5.4 (summation norm) and 5.5 (maximum norm) show the average quality of parti-

tioning the benchmark set relative to the values obtained by kMeTiS. In both �gures,

107

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Figure 5.4.: Partitioning quality (`1-norm) of Jostle and DibaP relative to kMeTiS
for di�erent k.

Figure 5.5.: Partitioning quality (`∞-norm) of Jostle and DibaP relative to kMeTiS
for di�erent k.

i. e., for both norms, our algorithm DibaP obtains all possible best values for the di�er-

ent values of k. On average it beats kMeTiS by 6.6% (edge-cut), 7.8% (sum of boundary

nodes), 7.2% (maximum external edges), and 8.4% (maximum boundary nodes), respec-

tively. Versus Jostle, these relative values are even a little bit better. Recall that if

DibaP is allowed to perform more iterations, e. g., Λ = 14 and ψ = 19, its average

solution quality can be even further improved (cf. Figure 5.2).

To provide the reader with a visual impression on how DibaP's results di�er from

those of kMeTiS and Jostle, we include a 12-partitioning of the 2D graph t60k (also

available from Walshaw's archive), see Figure 5.6. The partitioning computed by DibaP

(Λ = 12, ψ = 18) has not only fewer cut edges and boundary nodes in both norms

than the other libraries. Its partition boundaries also appear to be smoother and the

subdomains have a smaller maximum diameter (165, compared to 253 (kMeTiS) and

179 (Jostle)). A similar trend w. r. t. the diameter can be found in an 8-partitioning

108

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

(a) kMeTiS (b) Jostle (c) DibaP-long

Figure 5.6.: Partitionings of the graph t60k (|V | = 60005, |E| = 89440) into k = 12
subdomains with the three partitioners.

(a) kMeTiS (b) Jostle (c) DibaP

Figure 5.7.: Partitionings of biplane9 (|V | = 21701, |E| = 42038) into k = 8 subdomains
with the three partitioners.

of the smaller graph biplane9, see Figure 5.7. Also note the again smoother boundaries

produced with DibaP and that both other libraries generate a partition with two large

disconnected node sets.

A detailed comparison of the diameter values for k = 16 on our benchmark graphs of

Table 5.1 reveals similar results. DibaP is on average 4.4% (`1-norm) and 5.9% (`∞-

norm) better than Jostle, respectively. On kMeTiS the improvements are slightly

larger. Since disconnected subdomains (whose diameter is set to ∞) do not enter into

these comparisons, the real values of kMeTiS and Jostle tend to be worse than those

computed and used for the comparison above. Our algorithm yields disconnected sub-

domains in only 2.1% of the experiments, while kMeTiS exhibits a more than doubled

ratio of 4.4%. Much worse is Jostle, which produces disconnected subdomains in 22.3%
of the runs.

It must be noted that the gain in solution quality obtained withDibaP versus kMeTiS

and Jostle is clearly bought with a higher computational e�ort. This becomes clear in

Table 5.6, which shows the average running time in seconds for partitioning the bench-

mark set in di�erent numbers of subdomains. The two established libraries are known to

be very fast, and DibaP is not able to keep up with their speed. To provide an average

109

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Table 5.6.: Average running times in seconds on an Intel Core 2 Duo 6600 processor for parti-
tioning the benchmark graphs with kMeTiS, Jostle, and DibaP (Λ = 10, φ = 14).

k kMeTiS Jostle DibaP

4 0.33 0.62 6.65

8 0.34 0.70 11.56

12 0.35 0.77 15.98

16 0.36 0.83 20.18

20 0.37 0.89 24.30

32 0.39 1.04 33.73

avg 0.36 0.81 18.73

value derived from the experiments with di�erent numbers of subdomains, one can say

that kMeTiS is about 50 times faster than DibaP, Jostle 20 times.

This speed gap becomes particularly evident for larger k, which is mainly due to the

fact that � in contrast to kMeTiS and Jostle �DibaP scales nearly linearly with k, i. e.,

doubling k results in a nearly doubled running time. The linear scaling in k has already

been observed with Bubble-FOS/C. There, it has been alleviated by partial graph

coarsening. A similar idea might work here as well. If k is large (and each subdomain

relatively small), the movement of the subdomains is likely to be rather small. Hence,

a partial or adaptive coarsening of the active nodes depending on the distance to the

boundary would reduce the number of necessary computations. Future work will need

to show if this approach results in a similarly high solution quality.

On a closer look, however, the absolute running times of DibaP are already quite

satisfactory. They range from a few seconds to a few minutes for our benchmark graphs.

Among other improvements, we plan for a distributed-memory parallelization of Trunc-

Cons. If one assumes a parallel graph partitioning or load balancing scenario with k

processors for k partitions, one may divide the sequential running times of DibaP by

k · e (where 0 < e ≤ 1 denotes the e�ciency of the parallel program). In such a case

its parallel running time on k processors can be expected to be at most a few dozens of

seconds even for large problems, which is certainly acceptable.

5.4.1.5. In�uence of k and the Graph Size

Since Bubble-FOS/C apparently does not work well for k = 2, it is interesting to note

that this �aw does not hold any more for DibaP. Experiments analogous to those of the

previous section reveal that DibaP is in all four quality measures (external edges and

boundary nodes in both norms) one to three percent better than kMeTiS and Jostle.

This is not as good as for higher k, probably because of the inferior starting solution

provided by Bubble-FOS/C. Yet, it is much better than our previous algorithm and

still improves on the competing libraries. This is all the more remarkable if one considers

that these libraries are based on the KL/FM heuristic, which has been developed initially

for bipartitioning.

110

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Table 5.7.: Scaled running times of DibaP (Λ = 10, ψ = 14) on graphs from the mrng
series with k = 8 (left) and on the benchmark graphs from Table 5.1 (right).

Graph |V | |E| Time / |E| (µs)

mrng1 257,000 505,048 19.07

mrng2 1,017,253 2,015,714 24.52

mrng3 4,039,160 8,016,848 15.63

mrng4 7,533,224 14,991,280 17.28

k Time / k (s) Time / k0.8 (s)

4 1.66 2.19

8 1.45 2.19

12 1.33 2.19

16 1.26 2.2

20 1.22 2.21

32 1.05 2.11

To estimate how the graph size enters into the running time, an evaluation of DibaP's

non-aggregated running times on the benchmark graph shows that |E| is much more

important than |V |. For example, the graph ocean can be partitioned faster than the

graph tooth, although it has twice as many vertices. The reason for this is that it has

fewer edges.

Additionally, we have conducted experiments on four graphs from themrng series (dual

graphs of 3D FEM meshes). These graphs have di�erent sizes, but a similar structure.

Thus, the results are not biased on the graph structure. The smallest graph mrng1 has

257,000 nodes, the largest one mrng4 around 7.5 million, see Table 5.7 (left). All four

graphs have a very similar average degree of just below four. Without going into detail

here, the experimental data con�rm that the graph size enters approximately linearly

into the running time. As a representative example, running times for k = 8 are shown

in Table 5.7 (left). Note that the times are divided by |E| and are given in microseconds.

These values indicate that an increase in the graph size results in a very similar increase in

running time. The primary reasons for variations in the data are the partition placement

and the resulting number of (in)active nodes.

Table 5.7 (right) contains the average running times of DibaP divided by k on the

eight benchmark graphs of Table 5.1. The division by the number of subdomains shows

that the in�uence of k is not totally linear. If one divides the running time by k0.8 (right-

most column), however, the results are nearly constant. While an extrapolation of these

data to asymptotic behavior may be shaky, we can still conclude that our experiments

mostly con�rm our expectations drawn from theoretical considerations: DibaP scales

approximately linearly with |E| and k.

5.4.1.6. Best Known Edge-Cut Results

Chris Walshaw's benchmark archive [Wals 07b], from which the test graphs of this sec-

tion have been taken, also collects the best known partitions for each of the 34 graphs

contained therein. More precisely, it stores partitions with the lowest edge-cut currently

known. At the moment results of more than 20 algorithms are considered. Many of these

algorithms are signi�cantly more time-consuming than METIS and Jostle used in our

experiments above.

111

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

With each graph 24 partitions are recorded, one for six di�erent numbers of subdomains

(k ∈ {2, 4, 8, 16, 32, 64}) in four di�erent imbalance settings (0%, 1%, 3%, 5%). Using

DibaP in various parameter settings (Λ ≤ 15, ψ ≤ 20), we have been able to improve

more than 80 of these currently best known edge-cut values for six of the eight largest

graphs in the archive. More details can be found in Table A.11 in the appendix. The

complete list of improvements with the actual edge-cut values and the corresponding

partition �les are available from Walshaw's archive.

Note that none of our records is for k = 2. We conjecture that this is the case

because the starting solutions computed by Bubble-FOS/C are not really good for

k = 2. Moreover, these records are mostly held by expensive tailor-made bipartitioning

algorithms. Unless they are extended to k > 2, their high quality is not likely to sustain

for larger k because recursive bipartitioning typically yields inferior results compared to

direct k-way methods for large k [Simo 97].

5.4.2. Load Balancing by Repartitioning

5.4.2.1. Setting

The DibaP implementation used for the load balancing experiments includes the modi-

�cations discussed in Section 5.3. Otherwise, it shares the same code basis as the graph

partitioning variant. Hence, unlike the parallel versions of METIS and Jostle, our load

balancer is not prepared yet for a distributed-memory parallelization. That is why we

concentrate in the following on the quality of the experiments and neglect their running

time. Comparing the latter is part of future work once an MPI parallel version of DibaP

exists. Major deviations from the running time ratios observed in the previous section

on graph partitioning are not likely. On the other hand, we believe that DibaP's inher-

ent parallelism is able to reduce the speed gap between our algorithm and the KL/FM

partitioners somewhat.

In the previous section we have concluded that Λ = 10, ψ = 14, and three coarse

solutions computed by Bubble-FOS/C are parameter settings that provide a very good

trade-o� between running time and quality. That is why we choose these values for all

load balancing experiments. The other parameters for Bubble-FOS/C within DibaP

are unchanged except for thrsh, which is set to 8, 000, and for the abdication of the

virtual vertex notion (FOS/V).

Our benchmark set comprises two di�erent sets of graph sequences. Twelve sequences

are made of 101 frames of small graphs (around 10,000 to 15,000 nodes each), which are

repartitioned into k = 12 subdomains. The second set consists of three sequences of larger

graphs (between 110,000 and 1,100,000 nodes each), which are repartitioned into k = 16
subdomains. While the sequence bigtric has 101 frames, the sequences bigbubbles and

bigtrace have only 46 frames. All graphs of these 15 sequences have a two-dimensional

geometry and have been generated to resemble applications from numerical simulations

such as �uid dynamics. (For more details on the generation process the reader is referred

112

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Figure 5.8.: Average partition quality (boundary nodes, external edges) in the `1- and
`∞-norm for repartitionings relative to ParMETIS on twelve small (left)
and three large (right) graph sequences.

to Marquardt and Schamberger [Marq 05], who have provided the sequence data. A

visual impression of some of the data is given by Schamberger [Scha 06, p. 104f.]. The

graph of frame i+1 in a given sequence is obtained from the graph of frame i by changes

restricted to local areas. As an example, some areas are coarsened, whereas others are

re�ned. These changes are in most cases due to the movement of an object in the

simulation domain and often result in unbalanced subdomain sizes.

In addition to the graph partitioning metrics used in the previous section, we are

here also interested in migration costs. These costs result from data that change their

processor after the repartitioning process. As described in Section 1.3.2, we count the

number of nodes that change their subdomain from one frame to the next as a measure

of these costs. One could alternatively assign cost weights to the partition objective and

the migration volume to evaluate the linear combination of both. Since these weights

depend both on the underlying application and the parallel architecture, we have not

pursued this further here.

One might wonder if a multilevel scheme is really needed for repartitioning. It could be

possible that improvements on the �nest graph already su�ce. Our experiments indicate

that a multilevel approach is indeed necessary in order to produce large enough move-

ments of the subdomains that keep up with the movements of the simulation. Partitions

generated by multilevel DibaP are of a noticeably higher quality regarding the graph

partitioning metrics than by TruncCons without multilevel approach. Also, using a

multilevel hierarchy results in very steady migration costs, which rarely deviate much

from the mean. The partitioner ParMETIS seems to follow a di�erent migration strat-

egy. As we will see below, it tends to migrate either very many or very few vertices during

a sequence. It is not easy to say which strategy is de�nitely better, but our experiments

suggest clearly that ParMETIS yields higher migration costs than DibaP.

113

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Table 5.8.: Average migration volume in the `1- and `∞-norm for repartitionings com-
puted by ParMETIS, Jostle, and DibaP on all �fteen graph sequences.

ParMETIS Jostle DibaP

Sequence mig1 mig∞ mig1 mig∞ mig1 mig∞

bubbles 2460.7 992.1 1723.9 623.3 1775.0 586.0

change 284.4 132.1 330.9 130.4 352.2 119.8

circles 3200.5 1226.9 2128.6 799.9 2164.1 794.2

fastrot 4314.3 1616.5 3229.6 1211.9 3094.8 1236.9

fasttric 4648.1 1756.9 3466.6 1313.0 2940.0 1189.6

heat 299.8 121.9 286.5 106.9 561.1 189.8

re�ne 1.5 1.2 114.2 37.2 30.6 10.6

ring 3369.8 1305.9 2684.0 765.4 2584.1 692.2

rotation 2914.9 1288.7 2281.1 1055.0 2421.6 1028.4

slowrot 3928.4 1451.8 2774.7 961.4 2511.4 911.9

slowtric 3094.9 1213.5 2322.1 872.2 2165.1 878.5

trace 977.5 388.1 896.0 327.7 781.9 282.1

bigtric 27563.2 8972.4 20170.0 6762.8 22248.3 5938.8

bigbubbles 197449.2 68469.0 157475.0 50356.1 182205.9 46730.8

bigtrace 71934.6 26166.9 61294.1 20127.8 90358.2 24898.8

5.4.2.2. Comparison to other Libraries

As before, we compare our new algorithm DibaP to the state-of-the-art. For repartition-

ing these are the parallel versions of the graph partitioners METIS and Jostle. The

load balancing toolkit Zoltan [Cata 07], whose integrated KL/FM partitioner is based

on the hypergraph concept, is not included in the detailed presentation. Our experiments

with it indicate that its current version 3.0 is not as suitable for our benchmark set of

FEM graphs. In the repartition setting Zoltan yields many disconnected subdomains

and very high migration costs, while the number of external edges and boundary nodes

are in general also higher than those of DibaP, ParMETIS, and Jostle. If set to re-

�ne, Zoltan migrates signi�cantly less. At the same time the graph partitioning metrics

become even worse. Insofar we conclude that currently the dedicated graph (as opposed

to hypergraph) partitioners seem more suitable for this problem type.

The partitioning quality regarding the boundary nodes and external edges measured

in our experiments with ParMETIS, Jostle, and DibaP are displayed in Figure 5.8,

where the values are shown relative to ParMETIS. Moreover, the values are averaged

over all small sequences on the left and over all large sequences on the right. (The

corresponding non-aggregated data values can be found in Tables A.5, A.6, and A.7 in

the appendix.) Additionally, we are interested in the migration costs, which are recorded

in both norms and detailed for each sequence in Table 5.8.

The averaged graph partitioning metrics show that DibaP is able to compute the best

partitions on average. DibaP's migration volume is best for six (out of 15) sequences in

the summation norm. Compared to this, only parallel Jostle is competitive. Its par-

114

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Figure 5.9.: Number of migrating nodes (`∞-norm) in each frame of the slowrot sequence
for DibaP (grey square), METIS (orange diamond), and Jostle (purple
triangle).

titions have a lower quality, but its migration volume is best for eight sequences in the

summation norm. In the maximum norm the results are not fundamentally di�erent, but

DibaP performs even better than before. Again, it attains the best partitions. More-

over, the migration volume is also best for ten sequences. As a representative example,

Figure 5.9 shows the migration volumes of each frame within the slowrot sequence in the

`∞-norm. One can see the di�erent strategies of the three programs. While Jostle and

DibaP have a relatively constant migration volume, the values for ParMETIS �uctuate

extremely. In general, these outcomes concerning the solution quality con�rm results

derived from experiments with Bubble-FOS/C [Meye 05]. The additional advantage of

DibaP compared to Bubble-FOS/C is that the high solution quality can be exploited

in a much more reasonable amount of time.

The load balancing results described above lead to the conclusion that our algorithm

concentrates very much on getting good partitions. However, it seems to neglect the

second objective migration costs in some cases. This behavior is not totally surprising

since no explicit mechanisms for migration optimization are used within DibaP. Such

mechanisms could be integrated if one �nds in other experiments that DibaP's migration

costs become too high. Reducing Λ, the number of consolidations, could already avoid

large subdomain movements, depending on the input.

In summary one can say that, in almost all cases, DibaP computes the best reparti-

tionings w. r. t. to the graph partitioning metrics. Concerning the migration volume, the

results are not as clear. The `1-norm values are slightly in favor of Jostle (eight times

best) compared to DibaP (six times best). Yet, in the `∞-norm of the migration volume,

DibaP is the clear winner again. The strategy of ParMETIS to migrate either very few

115

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

or very many nodes does not seem to pay o� on average since ParMETIS computes in

most cases the worst solutions.

The graph partitioning experiments give rise to the conjecture that an MPI parallel

version of DibaP will be signi�cantly slower than ParMETIS and Jostle. On the

other hand, input sizes with a few hundreds of thousands of nodes per processor can

be expected to be repartitioned within a few dozens of seconds or minutes by DibaP,

which is certainly acceptable is most cases. We would like to stress the fact that a

high repartitioning quality is very important. Usually, the most time consuming parts of

numerical simulations are the numerical solvers. Hence, a reduced communication volume

provided by an excellent partition can be expected to pay o� unless the repartitioning

time is extremely high.

5.4.3. Graph Clustering

To analyze DibaP's graph clustering capabilities, we have constructed random graphs

from two di�erent models. Both follow the idea of the popular planted partition model de-

vised by Jerrum and Sorkin [Jerr 98], which has been motivated already in Section 4.7.3.

The �rst model we use is the same as the one used in Section 4.7.3 with Bubble-FOS/C,

only the graphs are larger here. Our second choice is the original model of Jerrum and

Sorkin, which is explained below. BesidesDibaP, Bubble-FOS/C (this time with AMG

hierarchy and solver for enhanced speed) is included in the second set of experiments to

test it on another model as well. Both our algorithms do not use the smooth operation

because it would worsen the results on these highly irregular instances.

Again, the kernel k-means implementation Graclus [Dhil 07] serves us as a standard

of reference for evaluating our algorithms on graph clustering problems. Our choice is

motivated by the following considerations. First of all, Graclus is freely available and

has been designed for solving clustering problems that are also addressed by DibaP

and Bubble-FOS/C. It also requires the speci�cation of k and one of its optimization

objectives is the normalized cut. Moreover, it is very fast, computes solutions of good

quality, and can be regarded as state-of-the-art for optimizing the normalized cut criterion

in our graph clustering problems. We forbear from the use of an algorithm based on the

Euclidean Commute Time Distance. To compute these distances is very expensive due

to the pseudoinversion of the Laplacian and hardly tractable for large instances.

The DibaP parameters that have been changed compared to the graph partitioning

experiments are the number of Bubble operations and the switch threshold thrsh. The

latter is set to 8, 000 for model 2; thrsh = 4, 000 is about 30% faster, but yields slightly

worse results. For model 1 we set thrsh to 2, 000 only. Higher values result in a lower

solution quality. Consolidations within Bubble-FOS/C are not used. Thus, the number

of AssignPartition and ComputeCenters operations is increased to 4 each.

116

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Table 5.9.: Experimental results showing the normalized cut values computed by DibaP
and Graclus for the graphs of model 1.

Graclus DibaP

Graph size / k 6 8 12 6 8 12

214 0.335 0.641 0.716 0.363 0.641 0.803

215 0.337 0.643 0.672 0.334 0.643 0.703

216 0.339 0.644 0.716 0.336 0.644 0.705

217 0.338 0.643 0.670 0.335 0.643 0.955

218 - 0.643 0.671 - 0.642 0.666

average 0.337 0.643 0.682 0.342 0.643 0.757

5.4.3.1. Random Graph Model 1

The graphs of model 1 in this section have between 214 and 218 nodes. Their planted par-

titions have been constructed by normal distributions with the same parameters (except

for the size) as their smaller counterparts in Section 4.7.3. Hence, the mean internal and

external degree and their standard deviations are given by µint = 4.3, σint = 1.1, µext =
0.3, σext = 0.3 for k = 6 and k = 12 and µint = 5.1, σint = 1.3, µext = 0.45, σext = 0.35
for k = 8, resulting in node degrees between 1 and 12.

Table 5.9 shows the normalized cut values derived in the experiments on these graphs.

For k = 8 both algorithms obtain the same values. Apparently, these instances are rela-

tively easy, so that both algorithms always compute the same local optimum. Possibly,

considering the di�erent approaches of the algorithms, this local optimum might even be

the global one. For k = 6 DibaP obtains the best values in three out of four cases, but

Graclus is the best on average. Graclus also performs better for k = 12. In summary,

one can say that the solution quality of both algorithms on these instances is similar. Yet,

Graclus is slightly better, in particular for larger k, where DibaP sometimes inherits

the Bubble-FOS/C problem of bad initial centers. Moreover, on average Graclus is

by a factor of 34 faster than DibaP.

Note that the combination n = 218 and k = 6 is left out because the construction

mechanism has failed repeatedly to build connected graphs. Graphs with more than

one connected component are in principle no problem for the algorithm DibaP. Each

component can be seen as a cluster, so that the actual work is spent on each component

separately. However, since our algorithm optimizes the normalized cut only implicitly,

an optimal combination of all components is not integrated into our implementation yet.

That is why we use only connected graphs and leave the handling of disconnected ones

to future work.

5.4.3.2. Random Graph Model 2

A graph G = (V,E) of model 2 is generated di�erently than before. One also speci�es

the cluster sizes, but instead of drawing the node degrees from a normal distribution,

117

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Table 5.10.: Experimental results showing the normalized cut values computed by
Bubble-FOS/C, DibaP, and Graclus for the graphs of model 2.

Graclus Bubble-FOS/C DibaP

Setting / k 9 13 17 9 13 17 9 13 17

1 4.70 9.55 12.22 7.20 10.10 12.88 4.32 8.23 12.03

2 3.65 5.80 8.42 6.46 10.27 13.11 3.31 5.46 7.80

3 4.02 6.74 9.57 6.94 10.77 13.82 3.44 5.84 9.57

4 4.72 9.62 12.31 7.13 10.21 12.71 4.60 8.15 12.11

5 3.57 5.97 8.52 6.69 10.19 13.17 2.82 5.33 7.75

6 3.98 6.72 9.90 7.01 10.78 13.68 3.67 6.19 9.80

7 4.64 9.69 12.41 7.09 10.31 12.78 4.30 8.01 12.07

8 3.55 6.08 8.68 7.11 10.36 13.54 2.99 5.24 8.14

9 4.06 6.88 12.90 7.35 10.62 12.78 3.57 7.03 9.53

avg 4.10 7.45 10.55 7.00 10.40 13.16 3.67 6.61 9.87

one determines for each node pair (u, v) whether {u, v} ∈ E based on the parameters

pint and pext in the following manner. Let Xu,v ∈ [0, 1] be a random variable drawn from

a standard uniform distribution for the pair (u, v). Then, if u and v are in the same

cluster, {u, v} ∈ E ⇔ Xu,v < pint. Similarly, if u and v are not in the same cluster,

{u, v} ∈ E ⇔ Xu,v < pext.

For our experiments we have constructed 27 graphs in this way, nine for each number

of clusters k ∈ {9, 13, 17}. Odd numbers have been selected for k to add more varia-

tion compared to previous experiments. The graph sizes range from 20, 000 over 40, 000
to 80, 000, which is not very large, so that we can include Bubble-FOS/C in our ex-

periments as well. While the cluster sizes can vary considerably from the mean size,

extremely large or small clusters are avoided because both di�usion-based algorithms

have problems with such instances. Usually, the cluster sizes are at most three times

larger or three times smaller than the mean. However, some clusters have only about

10% of the mean size. The parameters pint and pext have been chosen inverse propor-

tional to n · k to obtain a sparse structure. Their actual values are shown in Tables A.8,

A.9, and A.10 in the appendix.

The evaluation of the normalized cut values obtained by Graclus, Bubble-FOS/C,

and DibaP (Table 5.10) yields �rst of all that Bubble-FOS/C cannot compete with the

other two programs. Insofar it is surprising that DibaP, the combination of Bubble-

FOS/C and TruncCons, performs very well. It computes the best normalized cut

values in 26 out of 27 cases. As a result, the average values are signi�cantly better than

those of Graclus. Based on these results, one can conclude that DibaP is more suitable

for random graph instances of model 2 than the state-of-the-art program Graclus � at

least if the cluster sizes do not deviate too much from the mean value. However, the

better solution quality of DibaP has to be paid by a much higher running time. For the

most time-consuming instance our algorithm requires 225s. Averaged over all instances

in this model, Graclus is faster by a factor of 60. As indicated above, this factor can

118

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

be reduced below 50 by using a smaller value for thrsh without sacri�cing the solution

quality much.

5.5. Parallelism

Recall that the running times presented for DibaP are based on its POSIX threaded

version. A comparison of the threaded implementation to its non-threaded counterpart

reveals that the obtainable speedup is larger than that of Bubble-FOS/C. More pre-

cisely, the thread parallelization makes DibaP faster by a factor of 1.55 on average. This

corresponds to an e�ciency of 77.5% on the dual-core test machine. Such a value is not

extremely good, but still satisfactory, considering the thread overhead and our program's

sequential parts. In any case, it improves over Bubble-FOS/C, which achieves only a

speedup of 1.3 on average.

In a future distributed-memory implementation of DibaP, the major concern should lie

on an e�cient execution of TruncCons. Assuming that the graph is distributed over the

processors, the communication of the updated load values in each FOS/T iteration can be

very �ne-granular. Such a low ratio of computational operations versus communication

operations may prevent high speedups, depending on the parallel machine architecture

employed. To circumvent this problem, one could use the basic idea of domain sharing

presented in Section 4.8.1. Before computing the load values, each processor determines

for subdomain i, 0 ≤ i < k, the possibly active nodes. These are those nodes whose

distance to the subdomain boundary is at most ψ. Then, the subgraph induced by

these nodes is sent to processor i. This processor combines all received subgraphs. It

can then compute the FOS/T di�usion loads without further communication except for

sending back the �nal load values to the originating processors. The Bubble-FOS/C

experiments described in Section 4.8.2 for domain sharing and partial graph coarsening

show that two large communication operations are often faster than many small ones.

A complex parallelization of Bubble-FOS/C with its AMG solver might not be neces-

sary. Instead, each processor computes one (or more) initial Bubble-FOS/C solution(s)

on the coarsest TruncCons level. The best one of these solutions is communicated to

all processors and constitutes the starting point for the multilevel TruncCons improve-

ment process. Since Bubble-FOS/C is quite fast on small graphs, the running time of

such a concurrent sampling for the initial solution can be expected to be marginal.

5.6. Discussion

The local improvement scheme TruncCons developed in this chapter is a fast and very

e�ective tool for improving graph partitions. Our new algorithm DibaP, which com-

bines Bubble-FOS/C and TruncCons, attains excellent results in graph partitioning,

as our experiments on popular benchmark graphs show. It achieves partitions with a

signi�cantly higher quality than kMeTiS and Jostle, two very popular state-of-the-art

119

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

libraries. While shorter boundary lengths have also been attained with Bubble-FOS/C,

DibaP computes fewer external edges in the summation and the maximum norm, too.

This is con�rmed by the computation of a large number of best-known partitions w. r. t.

the edge-cut for six graphs of a popular benchmark archive.

There are two possible reasons for the improved edge-cut results of the hybrid approach

DibaP compared to using Bubble-FOS/C alone. First and foremost, in Section 3.2

we have argued that nodes of the same cluster are connected by many shortest paths of

small length, whereas the shortest paths of nodes in di�erent clusters lead via very few

external edges. Since the local improvement scheme TruncCons uses exactly this notion

of random walks of short length (whereas Bubble-FOS/C considers random walks of all

lengths), it is able to detect which nodes and regions are connected to each other by these

short paths and which are not. Thereby TruncCons improves the boundary regions

of reasonable initial partitions very well w. r. t. the edge-cut. The second � probably

less important � reason could be the di�erent coarsening scheme. While the employed

matching algorithm aims at a very uniform coarsening, the AMG coarsening algorithm

produces few nodes with large degree and many nodes of small degree. For large graphs

this irregularity in the AMG coarsening might lead to somewhat worse solutions because

the structure of the original graph is not retained well enough on the coarse levels.

Another advantage of DibaP compared to the KL/FM heuristic is that the computed

subdomains appear to be more compact with smoother boundaries than those computed

by kMeTiS and Jostle. Although DibaP is clearly slower than the two established

KL/FM libraries, its running time on a dual-core processor is acceptable for all but

extremely large inputs. Even a graph with 7.5 million nodes and 15 million edges can be

partitioned into eight subdomains within �ve minutes on commodity dual-core hardware.

In particular, DibaP is much faster than our previous algorithm Bubble-FOS/C.

The load balancing quality of DibaP is very good due to the superior partitions

computed. The required migration volume is not in all cases better than with state-of-

the-art libraries, but the experiments reveal an advantage at least for the maximum norm.

In particular for problems that favor a high partition quality over migration volume and

duration of repartitioning, we advocate DibaP as the tool of choice.

Clustering problems on random graphs are solved by DibaP with a high solution

quality in many cases. While random graphs of one model are clustered slightly better

by Graclus, DibaP is clearly the best for the widely used second planted partition

model. Yet, the graphs are connected and cluster sizes in the experimental data are not

chosen completely arbitrarily. The extension of our results to extremely small or large

clusters should be part of future work. One possible approach could be to start with

a very large number of clusters and to merge them iteratively. The clusters to merge

are chosen greedily based on the improvement of the optimization objective. Another

possible improvement is the integration of local search techniques. They might help to

avoid problems with bad solutions on the coarsest level, in particular when k is large.

120

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

Although DibaP o�ers a superior solution quality than the state-of-the-art in many

cases, its deployment in time-critical applications also depends on its running time. Cur-

rently, the speed gap between our algorithm and its best competitors is between one and

two orders of magnitude. This is certainly a signi�cant di�erence, but there are several

starting points to improve the situation in future work. One of them consists in elimi-

nating the nearly linear dependence on k in the running time. This might be possible

by techniques similar to partial graph coarsening, which has been partially e�ective for

Bubble-FOS/C.

Another aspect for future work is a distributed-memory parallelization. Since the most

time-consuming parts of DibaP (the di�usive operations within TruncCons) exhibit

a large degree of parallelism, signi�cant accelerations can be expected. An e�cient

parallelization might also close the speed gap partially because the KL/FM heuristic

within METIS and Jostle and the local search of Graclus are di�cult to parallelize.

Furthermore, the simplicity of the di�usive operations within TruncCons makes the use

of fast parallel streaming hardware possible. As part of future work, we investigate the

explicit use of SIMD instruction extensions of modern CPUs and the use of fast streaming

graphics processors. Since graphics processors have a much higher performance for such

simple operations than CPUs, additional accelerations might be possible.

121

CHAPTER 5. FASTER DIFFUSION-BASED PARTITIONING

122

6. Conclusions and Future Work

Three related problems have been considered in this thesis, graph partitioning, load

balancing by repartitioning, and graph clustering. All of them have in common that

they are combinatorially di�cult and require the identi�cation of densely connected

regions of a graph. In the introduction we have argued that heuristics which determine

subdomains with good shapes are very promising, in particular for graph partitioning and

repartitioning. Drawbacks of previous shape-optimizing techniques have been identi�ed

and then eliminated by the introduction of our new similarity measure FOS/C, which

is based on disturbed di�usion. After its theoretical analysis, which involves its relation

to random walks, we use FOS/C as a similarity measure in the partitioning algorithm

Bubble-FOS/C.

By introducing algebraic multigrid techniques into the solution process of Bubble-

FOS/C, we have accelerated the algorithm signi�cantly without sacri�cing its high so-

lution quality for graph partitioning. However, the running time of Bubble-FOS/C

and its quality for clustering problems are still not competitive to the state-of-the-art in

our experiments. Thus, we have reiterated the main core of the algorithm engineering

cycle [Sand 07], which consists of design, analysis, implementation, and experimental

evaluation. As a result, we have devised the much faster algorithm DibaP, which has a

running time that is approximately linear in |E| and k and attains a very high quality

in all considered applications. For graph partitioning it computes a signi�cant number

(more than 80 out of 144) of best known edge-cut values for six of the eight largest

graphs contained in a well-known benchmark set. Additionally, extensive experiments

demonstrate that DibaP delivers better partitions than kMeTiS and Jostle � two

state-of-the-art graph partitioning libraries using the KL/FM heuristic. The outcomes

of the repartitioning and graph clustering experiments are not as clear, but they also

show that DibaP's solution quality competes with the state-of-the-art or is even better.

All these results verify our introductory assumption that di�usive shape optimization

is a successful approach for providing (re)partitions of superior quality without requiring

geometric information. Our algorithm DibaP overcomes the drawbacks of traditional

KL-based algorithms, so that it meets the requirements most users expect from a graph

(re)partitioner. Moreover, its linear running time improves on many related graph clus-

tering algorithms. It must be noted, however, that the speed gap to fast state-of-the-art

tools in partitioning and clustering is still between one and two orders of magnitude,

although the absolute running times of DibaP are quite satisfactory.

123

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Future work should therefore concentrate on a further acceleration of di�usive par-

titioning techniques. Of utmost importance is a distributed-memory parallelization of

DibaP, which would in the ideal case also eliminate the nearly linear dependence on k

in the running time. Theoretically, starting from our convergence results, it would be

interesting to obtain more knowledge on the relation of the Bubble framework and dis-

turbed di�usion schemes. Of particular concern is the behavior of TruncCons and how

to guarantee connected partitions. Another interesting aspect is an extension of our re-

sults to directed graphs. Since their Laplacian and di�usion matrices are not symmetric,

many techniques from linear algebra we have used before are not applicable.

Considering that heterogeneous and hierarchical computing environments have become

common, the generation of partitions speci�cally suited for simulations executed on such

processor topologies would be an interesting extension. Hierarchical techniques could

also help in the design of disturbed di�usive clustering methods that do not require the

number of clusters a priori. An elimination of the parameter k could be possibly done by

a multilevel algorithm in the spirit of DibaP, which combines two clustering algorithms.

The coarsest solution would be computed by an (expensive) algorithm that determines k;

the multilevel re�nement could be done by a faster algorithm such as TruncCons. Tests

will need to show if such a multilevel procedure is successful. Other possible extensions

for graph clustering include the extension to time-dependent graphs that do not allow

global knowledge and a higher robustness of the clustering quality for instances with

completely arbitrary cluster sizes.

124

Bibliography

[Adam 91] J. Adamek. Foundations of Coding: Theory and Applications of Error-Correcting

Codes with an Introduction to Cryptography and Information Theory. John Wiley &
Sons, Inc., 1991.

[Alon 00] N. Alon and J. H. Spencer. The Probabilistic Method. J. Wiley & Sons, 2nd Ed.,
2000.

[Aror 04] S. Arora, E. Hazan, and S. Kale. �0(
√

log n) Approximation to SPARSEST CUT in
Õ(n2) Time�. In: Proceedings of the 45th Symposium on Foundations of Computer

Science (FOCS'04), pp. 238�247, IEEE Computer Society, 2004.

[Aror 07] S. Arora and S. Kale. �A combinatorial, primal-dual approach to semide�nite pro-
grams�. In: Proceedings of the 39th Annual ACM Symposium on Theory of Comput-

ing (STOC'07), pp. 227�236, ACM, 2007.

[Baño 06] R. Baños, C. Gil, B. Paechter, and J. Ortega. �Parallelization of population-based
multi-objective meta-heuristics: An empirical study�. Applied Mathematical Mod-

elling, Vol. 30, No. 7, pp. 578�592, July 2006.

[Berg 97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

geometry: algorithms and applications. Springer-Verlag, 1997.

[Bich 07] C.-E. Bichot. �A new Method, the Fusion Fission, for the relaxed k-way graph
partitioning problem, and comparisons with some Multilevel algorithms�. Journal of
Mathematical Modelling and Algorithms, Vol. 6, No. 3, pp. 319�344, 2007.

[Bigg 93] N. Biggs. Algebraic Graph Theory. Cambridge University Press, 1993.

[Boil 90] J. E. Boillat. �Load Balancing and Poisson Equation in a Graph�. Concurrency �

Practice & Experience, Vol. 2, No. 4, pp. 289�314, 1990.

[Boll 98] B. Bollobás. Modern Graph Theory. Springer-Verlag, 1998.

[Bon 07] J. van Bon. �Finite primitive distance-transitive graphs�. European Journal of Com-

binatorics, Vol. 28, No. 2, pp. 517�532, February 2007.

[Bran 07] U. Brandes, M. Gaertler, and D. Wagner. �Engineering Graph Clustering: Models
and Experimental Evaluation�. ACM Journal of Experimental Algorithmics, Vol. 12,
2007. Article 1.1.

[Brig 00] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. SIAM, 2nd
Ed., 2000.

[Bron 97] I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig. Taschenbuch der

Mathematik. Verlag Harri Deutsch, 3rd Ed., 1997.

125

Bibliography

[Cata 01] U. Catalyurek and C. Aykanat. �A hypergraph-partitioning approach for coarse-grain
decomposition�. In: Proceedings of the 2001 ACM/IEEE Conference on Supercom-

puting, p. 28 (CD), ACM, 2001.

[Cata 07] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and L. Riesen.
�Hypergraph-based Dynamic Load Balancing for Adaptive Scienti�c Computations�.
In: Proceedings of the 21st International Parallel and Distributed Processing Sympo-

sium (IPDPS'07), IEEE Computer Society, 2007. Best Algorithms Paper Award.

[Char 07] P. Chardaire, M. Barake, and G. P. McKeown. �A PROBE-Based Heuristic for
Graph Partitioning�. IEEE Transactions Comput., Vol. 56, No. 12, pp. 1707�1720,
2007.

[Chev 06] C. Chevalier and F. Pellegrini. �Improvement of the E�ciency of Genetic Algorithms
for Scalable Parallel Graph Partitioning in a Multi-level Framework�. In: Proceedings
of the 12th International Euro-Par Conference, pp. 243�252, Springer-Verlag, 2006.

[Chun 97] F. R. K. Chung. Spectral Graph Theory (CBMS Regional Conference Series in

Mathematics, No. 92). American Mathematical Society, February 1997.

[Come 06] F. Comellas and E. Sapena. �A Multiagent Algorithm for Graph Partitioning�.
In: Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2006,
pp. 279�285, Springer-Verlag, 2006.

[Corm 01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press, 2nd Ed., 2001.

[Cybe 89] G. Cybenko. �Dynamic Load Balancing for Distributed Memory Multiprocessors�.
Parallel and Distributed Computing, Vol. 7, pp. 279�301, 1989.

[Dell 06] M. Dellnitz, M. Hessel-von Molo, P. Metzner, R. Preis, and C. Schütte. �Graph algo-
rithms for dynamical systems�. In: Modeling and Simulation of Multiscale Problems,
pp. 619�646, Springer-Verlag, 2006.

[Demm 97] J. W. Demmel. Applied numerical linear algebra. SIAM, 1997.

[Devi 06] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek.
�Parallel Hypergraph Partitioning for Scienti�c Computing�. In: Proceedings of

the 20th International Parallel and Distributed Processing Symposium (IPDPS'06),
IEEE, 2006.

[Dhil 04] I. Dhillon, Y. Guan, and B. Kulis. �A Uni�ed View of Kernel k-means, Spectral Clus-
tering and Graph�. Tech. Rep. TR-04-25, University of Texas at Austin, Department
of Computer Science, 2004.

[Dhil 07] I. S. Dhillon, Y. Guan, and B. Kulis. �Weighted Graph Cuts without Eigenvec-
tors: A Multilevel Approach�. IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 29, No. 11, pp. 1944�1957, 2007.

[Diek 00] R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw. �Shape-optimized Mesh
Partitioning and Load Balancing for Parallel Adaptive FEM�. J. Parallel Computing,
Vol. 26, pp. 1555�1581, 2000.

126

Bibliography

[Diek 95] R. Diekmann, B. Monien, and R. Preis. �Using Helpful Sets to Improve Graph
Bisections�. In: D. F. Hsu, A. L. Rosenberg, and D. Sotteau, Eds., Interconnec-
tion Networks and Mapping and Scheduling Parallel Computations, pp. 57�73, AMS,
1995.

[Diek 99] R. Diekmann, A. Frommer, and B. Monien. �E�cient schemes for nearest neighbor
load balancing�. Parallel Computing, Vol. 25, No. 7, pp. 789�812, 1999.

[Ding 04] C. Ding and X. He. �K-means Clustering via Pricipal Component Analysis�. In:
Proceedings of the 21st International Conference on Machine Learning, pp. 225�232,
ACM, 2004.

[Dong 00] S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, Univ. of Utrecht,
2000.

[Doyl 84] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. Math. Assoc. of
America, 1984.

[Drak 05] D. E. Drake Vinkemeier and S. Hougardy. �A linear-time approximation algorithm
for weighted matchings in graphs�. ACM Transactions Algorithms, Vol. 1, No. 1,
pp. 107�122, 2005.

[Drie 95] R. V. Driessche and D. Roose. �A Graph Contraction Algorithm for the Fast Cal-
culation of the Fiedler Vector of a Graph�. In: Proceedings of the 7th Conference

Parallel Processing for Scienti�c Computing (PPSC'95), pp. 621�626, SIAM, 1995.

[Drin 04] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. �Clustering Large
Graphs via the Singular Value Decomposition�. Mach. Learn., Vol. 56, No. 1-3,
pp. 9�33, 2004.

[Elli 01a] R. B. Ellis. �Discrete Green's functions for products of regular graphs�. In: AMS

National Conference, invited talk, special session on Graph Theory, 2001.

[Elli 01b] R. B. Ellis. �Torus Hitting Times and Green's Functions�. http://math.iit.edu/
~rellis/comb/torus/torus.html, 2001. Last access: 24 Jan 2008.

[Elsn 05] U. Elsner. �The in�uence of random number generators on graph partitioning algo-
rithms�. Electr. Transactions on Numerical Analysis, Vol. 21, pp. 125�133, 2005.

[Enri 02] A. J. Enright, S. van Dongen, and C. A. Ouzounis. �An e�cient algorithm for
large-scale detection of protein families�. Nucleic Acids Research, Vol. 30, No. 7,
pp. 1575�1584, 2002.

[Fidu 82] C. M. Fiduccia and R. M. Mattheyses. �A linear-time heuristic for improving network
partitions�. In: Proceedings of the 19th Conference on Design automation (DAC'82),
pp. 175�181, IEEE Press, 1982.

[Fied 73] M. Fiedler. �Algebraic connectivity of graphs�. Czechoslovak Mathematical Journal,
Vol. 23, No. 98, pp. 298�305, 1973.

[Fied 75] M. Fiedler. �A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory�. Czechoslovak Mathematical Journal, Vol. 25, pp. 619�
633, 1975.

[Flak 02] G. W. Flake, R. Tarjan, and K. Tsioutsiouliklis. �Graph Clustering and Minimum
Cut Trees�. Internet Mathematics, Vol. 1, No. 4, pp. 385�408, 2002.

127

Bibliography

[Fous 07] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. �Random-Walk Computation
of Similarities between Nodes of a Graph with Application to Collaborative Rec-
ommendation�. IEEE Transactions on Knowledge and Data Engineering, Vol. 19,
No. 3, pp. 355�369, 2007.

[Fox 94] G. Fox, R. Williams, and P. Messina. Parallel Computing Works! Morgan Kaufmann,
1994.

[Frie 07] S. Friedho� and M. Heming. �Laplace-Matrizen Iterationsverfahren�. Bachelor The-
sis, Department of Mathematics and Informatics, Bergische Universität Wuppertal,
2007.

[Frit 08] D. Fritzsche, V. Mehrmann, D. B. Szyld, and E. Virnik. �An SVD approach to iden-
tifying meta-stable states of Markov chains�. Electronic Transactions on Numerical

Analysis, Vol. 29, pp. 46�69, 2008.

[Gaer 05] M. Gaertler. �Clustering�. In: U. Brandes and T. Erlebach, Eds., Network Analysis:
Methodological Foundations, pp. 178�215, Springer-Verlag, 2005.

[Gare 74] M. R. Garey, D. S. Johnson, and L. Stockmeyer. �Some simpli�ed NP-complete prob-
lems�. In: Proceedings of the 6th Annual ACM Symposium on Theory of Computing

(STOC'74), pp. 47�63, ACM Press, 1974.

[Gods 01] C. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag, April 2001.

[Golu 96] G. H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins Univ. Press,
3rd Ed., 1996.

[Grim 01] G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford
University Press, 3rd Ed., 2001.

[Gros 04] J. L. Gross and J. Yellen, Eds. Handbook of Graph Theory. CRC Press, 2004.

[Hare 01] D. Harel and Y. Koren. �On Clustering Using Random Walks�. In: Proceed-

ings of 21st Foundations of Software Technology and Theoretical Computer Science

(FSTTCS'01), pp. 18�41, Springer-Verlag, 2001.

[Hend 94] B. Hendrickson and R. Leland. The Chaco user's guide � Version 2.0. 1994.

[Hend 95a] B. Hendrickson and R. Leland. �A Multi-Level Algorithm For Partitioning Graphs�.
In: Proceedings Supercomputing '95, p. 28 (CD), ACM Press, 1995.

[Hend 95b] B. Hendrickson and R. Leland. �An improved spectral graph partitioning algorithm
for mapping parallel computations�. SIAM J. Sci. Comput., Vol. 16, No. 2, pp. 452�
469, 1995.

[Hend 96] B. Hendrickson, R. Leland, and R. V. Driessche. �Enhancing Data Locality by Using
Terminal Propagation�. In: Proceedings of the 29th Hawaii International Conference

on System Sciences (HICSS'96) Volume 1: Software Technology and Architecture,
p. 565, IEEE Computer Society, 1996.

[Hend 98] B. Hendrickson. �Graph Partitioning and Parallel Solvers: Has the Emperor No
Clothes?�. In: Proceedings of Irregular'98, pp. 218�225, Springer-Verlag, 1998.

[Hens 02] V. E. Henson and U. Meier-Yang. �BoomerAMG: A parallel algebraic multigrid
solver and preconditioner�. Appl. Numer. Math., Vol. 41, No. 1, pp. 155�177, 2002.

128

Bibliography

[Hrom 91] J. Hromkovi£ and B. Monien. �The Bisection Problem for Graphs of Degree 4 (Con-
�guring Transputer Systems)�. In: Proceedings of the 16th International Symposium

on Mathematical Foundations of Computer Science (MFCS'91), pp. 211�220, 1991.

[Hu 99] Y. F. Hu and R. F. Blake. �An Improved Di�usion Algorithm for Dynamic Load
Balancing�. Parallel Computing, Vol. 25, No. 4, pp. 417�444, 1999.

[Huan 06] S. Huang, E. Aubanel, and V. C. Bhavsar. �PaGrid: A Mesh Partitioner for Com-
putational Grids�. J. Grid Comput., Vol. 4, No. 1, pp. 71�88, 2006.

[Jain 99] A. K. Jain, M. N. Murty, and P. J. Flynn. �Data clustering: a review�. ACM

Computing Surveys, Vol. 31, No. 3, pp. 264�323, 1999.

[JaJa 92] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[Jerr 98] M. Jerrum and G. B. Sorkin. �The metropolis algorithm for graph bisection�. Discrete
Appl. Math., Vol. 82, No. 1-3, pp. 155�175, 1998.

[Kaas 88] E. F. Kaasschieter. �Preconditioned conjugate gradients for solving singular systems�.
J. of Computational and Applied Mathematics, Vol. 24, No. 1-2, pp. 265�275, 1988.

[Kaib 04] V. Kaibel. �On the Expansion of Graphs of 0/1-Polytopes�. In: M. Grötschel, Ed.,
The Sharpest Cut: The Impact of Manfred Padberg and His Work, pp. 199�216,
SIAM, 2004.

[Kann 04] R. Kannan, S. Vempala, and A. Vetta. �On Clusterings: Good, Bad and Spectral�.
Journal of the ACM, Vol. 51, No. 3, pp. 497�515, 2004.

[Kary 98a] G. Karypis and V. Kumar. MeTiS: A Software Package for Partitioning Unstrctured

Graphs, Partitioning Meshes, [...], Version 4.0. 1998.

[Kary 98b] G. Karypis and V. Kumar. �Multilevel k-way Partitioning Scheme for Irregular
Graphs�. J. Parallel Distrib. Comput., Vol. 48, No. 1, pp. 96�129, 1998.

[Kauf 96] H. Kaufmann and H. Pape. �Clusteranalyse�. In: L. Fahrmeir, A. Hamerle, and
G. Tutz, Eds., Multivariate statistische Verfahren, Walter de Gryter & Co., 1996.

[Kern 70] B. W. Kernighan and S. Lin. �An e�cient heuristic for partitioning graphs�. Bell

Systems Technical Journal, Vol. 49, pp. 291�308, 1970.

[Khan 06] R. Khandekar, S. Rao, and U. Vazirani. �Graph Partitioning using Single Com-
modity Flows�. In: Proceedings of the 38th Annual ACM Symposium on Theory of

Computing (STOC'06), pp. 385�390, ACM, 2006.

[Koro 04] P. Korosec, J. Silc, and B. Robic. �Solving the mesh-partitioning problem with an
ant-colony algorithm�. Parallel Computing, Vol. 30, No. 5-6, pp. 785�801, 2004.

[Lafo 06] S. Lafon and A. B. Lee. �Di�usion Maps and Coarse-Graining: A Uni�ed Framework
for Dimensionality Reduction, Graph Partioning and Data Set Parametrization�.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 9,
pp. 1393�1403, 2006.

[Lang 04] K. Lang and S. Rao. �A Flow-Based Method for Improving the Expansion or Con-
ductance of Graph Cuts�. In: Proceedings of the 10th International Conference

on Integer Programming and Combinatorial Optimization (IPCO'04), pp. 325�337,
Springer-Verlag, 2004.

129

Bibliography

[Lang 05] K. Lang. �Fixing two weaknesses of the Spectral Method�. In: Proceedings of Ad-

vances in Neural Information Processing Systems 18 (NIPS'05), 2005.

[Leig 92] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,

Hypercubes. Morgan Kaufmann Publishers, 1992.

[Lloy 82] S. P. Lloyd. �Least squares quantization in PCM�. IEEE Transactions on Information

Theory, Vol. 28, No. 2, pp. 129�136, 1982.

[Lova 93] L. Lovász. �Random Walks on Graphs: A Survey�. Combinatorics, Paul Erdös is

Eighty, Vol. 2, pp. 1�46, 1993.

[Mang 66] M. Mangad. �Bounds for the Two-Dimensional Discrete Harmonic Green's Function�.
Mathematics of Computation, Vol. 20, No. 93, pp. 60�67, Jan. 1966.

[Marq 05] O. Marquardt and S. Schamberger. �Open Benchmarks for Load Balancing Heuristics
in Parallel Adaptive Finite Element Computations�. In: Proceedings of the Inter-

national Conference on Parallel and Distributed Processing Techniques and Applica-

tions, (PDPTA'05), pp. 685�691, CSREA Press, 2005.

[Maue 07] J. Maue and P. Sanders. �Engineering Algorithms for Approximate Weighted Match-
ing�. In: Proceedings of the 6th International Workshop on Experimental Algorithms

(WEA'07), pp. 242�255, Springer-Verlag, 2007.

[McDo 95] J. J. McDonald, M. Neumann, H. Schneider, and M. J. Tsatsomeros. �Inverse M -
Matrix Inequalities and Generalized Ultrametric Matrices�. Linear Algebra and Its

Applications, Vol. 220, pp. 321�341, Apr. 1995.

[Meis 05] A. Meister. Numerik linearer Gleichungssysteme. Vieweg, 2nd Ed., 2005.

[Meye 05] H. Meyerhenke and S. Schamberger. �Balancing Parallel Adaptive FEM Computa-
tions by Solving Systems of Linear Equations�. In: Proceedings of the 11th Interna-

tional Euro-Par Conference, pp. 209�219, Springer-Verlag, 2005.

[Meye 06a] H. Meyerhenke, B. Monien, and S. Schamberger. �Accelerating Shape Optimizing
Load Balancing for Parallel FEM Simulations by Algebraic Multigrid�. In: Proceed-
ings of the 20th IEEE International Parallel and Distributed Processing Symposium

(IPDPS'06), p. 57 (CD), IEEE Computer Society, 2006.

[Meye 06b] H. Meyerhenke and T. Sauerwald. �Analyzing Disturbed Di�usion on Networks�. In:
Proceedings of the 17th International Symposium on Algorithms and Computation

(ISAAC'06), pp. 429�438, Springer-Verlag, 2006.

[Meye 06c] H. Meyerhenke and S. Schamberger. �A Parallel Shape Optimizing Load Bal-
ancer�. In: Proceedings of the 12th International Euro-Par Conference, pp. 232�242,
Springer-Verlag, 2006.

[Meye 07] H. Meyerhenke, B. Monien, S. Schamberger, and T. Sauerwald. �Graph Cluster-
ing based on Disturbed Di�usion�. In: Proceedings of the Oberwolfach Workshop

Algorithm Engineering, Math. Forschungsinstitut Oberwolfach Report No. 25/2007,
pp. 1430�1431, 2007.

[Meye 08] H. Meyerhenke, B. Monien, and T. Sauerwald. �A New Di�usion-based Multilevel
Algorithm for Computing Graph Partitions of Very High Quality�. In: Proceedings of
the 22nd International Parallel and Distributed Processing Symposium (IPDPS'08)

(to appear), IEEE Computer Society, 2008. Best Algorithms Paper Award.

130

Bibliography

[Moni 00] B. Monien, R. Preis, and R. Diekmann. �Quality Matching and Local Improvement
for Multilevel Graph-Partitioning�. Parallel Computing, Vol. 26, No. 12, pp. 1609�
1634, 2000.

[Moni 04] B. Monien and S. Schamberger. �Graph Partitioning with the Party Library: Helpful-
Sets in Practice�. In: Proceedings of the 16th Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD'04), pp. 198�205, IEEE Computer
Society, 2004.

[Moni 06] B. Monien, S. Schamberger, U.-P. Schroeder, and H. Meyerhenke. �On Balanc-
ing of Dynamic Networks�. In: New Trends in Parallel & Distributed Computing,

Proceedings of the 6th International Heinz Nixdorf Symposium, pp. 171�181, HNI
Verlagsschriftenreihe, 2006.

[Moni 07] B. Monien, R. Preis, and S. Schamberger. �Approximation Algorithms for Multi-
level Graph Partitioning�. In: T. F. Gonzalez, Ed., Handbook of Approximation

Algorithms and Metaheuristics, Chap. 60, pp. 1�15, Taylor & Francis, 2007.

[Muth 98] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. �First- and Second-Order Di�usive
Methods for Rapid, Coarse, Distributed Load Balancing�. Theory Comput. Syst.,
Vol. 31, pp. 331�354, 1998.

[Newm 04] M. E. J. Newman and M. Girvan. �Finding and evaluating community structure
in networks�. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),
Vol. 69, No. 2, 2004.

[Newm 06] M. E. J. Newman. �Modularity and community structure in networks�. Proceedings
of National Academy of Sciences, Vol. 103, p. 8577, 2006.

[Newm 82] D. J. Newman. �The hexagon theorem�. IEEE Transactions on Information Theory,
Vol. 28, No. 2, pp. 137�138, 1982.

[Ng 01] A. Y. Ng, M. I. Jordan, and Y. Weiss. �On spectral clustering: Analysis and an
algorithm�. In: Proceedings of Advances in Neural Information Processing Systems

14 (NIPS'01), pp. 849�856, 2001.

[Norr 97] J. R. Norris. Markov Chains. Cambridge University Press, 1997.

[Olik 98] L. Oliker and R. Biswas. �PLUM: Parallel Load Balancing for Adaptive Unstructured
Meshes�. J. Parallel and Distributed Computing, Vol. 52, No. 2, pp. 150�177, 1998.

[Page 74] R. L. Page. �ACM Algorithm 479: A minimal spanning tree clustering method�.
Commun. ACM, Vol. 17, No. 6, pp. 321�323, 1974.

[Pell 07a] F. Pellegrini. �A parallelisable multi-level banded di�usion scheme for computing bal-
anced partitions with smooth boundaries�. In: Proceedings of the 13th International

Euro-Par Conference, pp. 195�204, Springer-Verlag, 2007.

[Pell 07b] F. Pellegrini. �Scotch and libScotch 5.0 User's Guide�. Tech. Rep., LaBRI, Université
Bordeaux I, December 2007.

[Poth 90] A. Pothen, H. Simon, and K. Liou. �Partitioning sparse matrices with eigenvectors
of graphs�. SIAM Journal of Matrix Analysis, Vol. 11, pp. 430�452, 1990.

131

Bibliography

[Prei 99] R. Preis. �Linear time 1/2-approximation algorithm for maximum weighted matching
in general graphs�. In: Proceedings of the 16th Symposium on Theoretical Aspects of

Computer Science (STACS'99), pp. 259�269, Springer-Verlag, 1999.

[Puu 05] T. Puu. �On the Genesis of Hexagonal Shapes�. Networks and Spatial Economics,
Vol. 5, No. 1, pp. 5�20, March 2005.

[Saad 03] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd Ed., April 2003.

[Safr 06] I. Safro, D. Ron, and A. Brandt. �Graph minimum linear arrangement by multilevel
weighted edge contractions�. J. Algorithms, Vol. 60, No. 1, pp. 24�41, 2006.

[Saga 94] H. Sagan. Space Filling Curves. Springer-Verlag, 1994.

[Sand 07] P. Sanders, K. Mehlhorn, R. Möhring, B. Monien, P. Mutzel, and D. Wagner. �Algo-
rithm Engineering � An Attempt at a De�nition�. In: Proceedings of the Oberwolfach
Workshop Algorithm Engineering, Math. Forschungsinstitut Oberwolfach Report No.

25/2007, pp. 1386�1387, 2007.

[Scha 03] S. Schamberger. �Improvements to the Helpful-Set Heuristic and a New Evaluation
Scheme for Graph-Partitioners�. In: International Conference on Computational

Science and its Applications (ICCSA'03), pp. 49�59, Springer-Verlag, 2003.

[Scha 04a] S. Schamberger. �On Partitioning FEM Graphs using Di�usion�. In: Proceedings of
the HPGC Workshop of the 18th International Parallel and Distributed Processing

Symposium (IPDPS'04), IEEE Computer Society, 2004.

[Scha 04b] S. Schamberger and J.-M. Wierum. �A Locality Preserving Graph Ordering Ap-
proach for Implicit Partitioning: Graph-Filling Curves�. In: Proceedings of the

17th International Conference on Parallel and Distributed Computing Systems

(PDCS'04), pp. 51�57, ISCA, 2004.

[Scha 05] S. Schamberger. �A Shape Optimizing Load Distribution Heuristic for Parallel Adap-
tive FEM Computations�. In: 8th International Conference on Parallel Computing

Technologies (PaCT'05), pp. 263�277, Springer-Verlag, 2005.

[Scha 06] S. Schamberger. Shape Optimized Graph Partitioning. PhD thesis, Universität Pader-
born, 2006.

[Schl 00] K. Schloegel, G. Karypis, and V. Kumar. �A uni�ed algorithm for load-balancing
adaptive scienti�c simulations�. In: Proceedings of Supercomputing 2000, p. 59 (CD),
IEEE Computer Society, 2000.

[Schl 01] K. Schloegel, G. Karypis, and V. Kumar. �Wavefront Di�usion and LMSR: Algo-
rithms for Dynamic Repartitioning of Adaptive Meshes�. IEEE Transactions on

Parallel and Distributed Systems, Vol. 12, No. 5, pp. 451�466, 2001.

[Schl 02] K. Schloegel, G. Karypis, and V. Kumar. �Parallel static and dynamic multi-
constraint graph partitioning�. Concurrency and Computation: Practice and Ex-

perience, Vol. 14, No. 3, pp. 219�240, 2002.

[Schl 03] K. Schloegel, G. Karypis, and V. Kumar. �Graph Partitioning for High Performance
Scienti�c Simulations�. In: The Sourcebook of Parallel Computing, pp. 491�541,
Morgan Kaufmann, 2003.

132

Bibliography

[Schl 97] K. Schloegel, G. Karypis, and V. Kumar. �Multilevel di�usion schemes for reparti-
tioning of adaptive meshes�. J. Parallel Distrib. Comput., Vol. 47, No. 2, pp. 109�124,
1997.

[Seli 84] S. Z. Selim and M. A. Ismail. �K-means-type algorithms: a generalized convergence
theorem and characterization of local optimality�. IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 6, pp. 81�87, 1984.

[Shew 94] J. R. Shewchuk. �An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain�. Tech. Rep. CMU-CS-94-125, School of Computer Science, Carnegie
Mellon University, 1994.

[Shi 00] J. Shi and J. Malik. �Normalized Cuts and Image Segmentation�. IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, pp. 888�905, 2000.

[Sima 06] J. �íma and S. E. Schae�er. �On the NP-completeness of some graph cluster mea-
sures�. In: Proceedings of the 32nd International Conference on Current Trends in

Theory and Practice of Informatics (SOFSEM'06), pp. 530�537, Springer-Verlag,
2006.

[Simo 97] H. D. Simon and S.-H. Teng. �How Good is Recursive Bisection?�. SIAM J. Sci.

Comput., Vol. 18, No. 5, pp. 1436�1445, 1997.

[Sope 04] A. J. Soper, C. Walshaw, and M. Cross. �A Combined Evolutionary Search and
Multilevel Optimisation Approach to Graph Partitioning�. J. Global Optimization,
Vol. 29, No. 2, pp. 225�241, 2004.

[Ster 06] H. D. Sterck, U. M. Yang, and J. J. Heys. �Reducing Complexity in Parallel Algebraic
Multigrid Preconditioners�. SIAM J. Matrix Anal. Appl., Vol. 27, No. 4, pp. 1019�
1039, 2006.

[Stie 86] T. J. Stieltjes. �Sur les racines de l'équationXn = 0�. Acta Math., Vol. 9, pp. 385�400,
1886.

[Stub 00] K. Stüben. �An introduction to algebraic multigrid�. In: U. Trottenberg, C. W.
Oosterlee, and A. Schüller, Eds., Multigrid, pp. 413�532, Academic Press, 2000.
Appendix A.

[Stub 01] K. Stüben. �A review of algebraic multigrid�. J. Comput. Appl. Math., Vol. 128,
No. 1-2, pp. 281�309, 2001.

[The 02] The BlueGene/L Team. �An Overview of the BlueGene/L Supercomputer�. In:
Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, pp. 1�22, ACM,
2002.

[Tref 97] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, June 1997.

[Trot 00] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2000.

[Vand 95] D. Vanderstraeten, R. Keunings, and C. Farhat. �Beyond Conventional Mesh Par-
titioning Algorithms and the Minimum Edge Cut Criterion: Impact on Realistic
Applications�. In: Proceedings of the Seventh SIAM Conference on Parallel Process-

ing for Scienti�c Computing (PPSC'95), pp. 611�614, SIAM, 1995.

[Virn 07] E. Virnik. �An Algebraic Multigrid Preconditioner for a Class of Singular M-
Matrices�. SIAM J. Sci. Comput., Vol. 29, No. 5, pp. 1982�1991, 2007.

133

Bibliography

[Wals 00] C. Walshaw and M. Cross. �Parallel Optimisation Algorithms for Multilevel Mesh
Partitioning�. J. Parallel Computing, Vol. 26, No. 12, pp. 1635�1660, 2000.

[Wals 07a] C. Walshaw and M. Cross. �JOSTLE: Parallel Multilevel Graph-Partitioning Soft-
ware � An Overview�. In: F. Magoules, Ed., Mesh Partitioning Techniques and

Domain Decomposition Techniques, pp. 27�58, Civil-Comp Ltd., 2007. (Invited chap-
ter).

[Wals 07b] C. Walshaw. �The Graph Partitioning Archive�. http://staffweb.cms.gre.ac.

uk/~c.walshaw/partition/, 2007.

[Wals 95] C. Walshaw, M. Cross, and M. G. Everett. �A Localised Algorithm for Optimising
Unstructured Mesh Partitions�. International J. Supercomputer Appl., Vol. 9, No. 4,
pp. 280�295, 1995.

[Wals 97] C. Walshaw, M. Cross, and M. G. Everett. �Parallel Dynamic Graph Partitioning for
Adaptive Unstructured Meshes�. J. Parallel Distributed Computing, Vol. 47, No. 2,
pp. 102�108, 1997.

[Xu 97] C. Xu and F. C. M. Lau. Load Balancing in Parallel Computers. Kluwer, 1997.

[Yen 05] L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M. Verleysen, and M. Saerens. �Clustering
using a random-walk based distance measure�. In: Proceedings of the 13th European

Symposium on Arti�cial Neural Networks (ESANN'05), pp. 317�324, 2005.

[Zach 77] W. W. Zachary. �An information �ow model for con�ict and �ssion in small groups�.
Journal of Anthropological Research, Vol. 33, pp. 452�473, 1977.

[Zha 01] H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon. �Spectral Relaxation for
K-means Clustering�. In: Proceedings of Advances in Neural Information Processing

Systems 14 (NIPS'01), pp. 1057�1064, MIT Press, 2001.

[Zhao 03] Y. Zhao and G. Karypis. �Clustering in the life sciences�. In: M. Brownstein,
A. Khodursky, and D. Conni�e, Eds., Functional Genomics: Methods and Protocols,
pp. 183�218, Humana Press, 2003.

[Zumb 03] G. Zumbusch. Parallel Multilevel Methods: Adaptive Mesh Re�nement and Loadbal-

ancing. Teubner, 2003.

134

A. Appendix

A.1. Bubble-FOS/C: Additional Experimental Results

Table A.1.: Comparison of Bubble-FOS/C in di�erent parameter settings for `1-norm.

AC2/CO1 AC2/CO2 AC3/CO2 AC3/CO3

k EC bnd EC bnd EC bnd EC bnd

4 931.18 995.09 885.29 960.81 876.53 956.94 868.84 942.95

8 1406.66 1527.39 1381.44 1499.61 1374.35 1492.91 1365.20 1483.63

12 1855.50 1998.73 1841.18 1978.25 1837.19 1970.00 1826.61 1957.74

16 2191.84 2391.20 2164.10 2356.75 2155.86 2346.54 2148.34 2334.14

20 2535.04 2755.33 2494.36 2718.29 2486.95 2714.53 2472.36 2699.26

avg 1784.04 1933.55 1753.27 1902.74 1746.18 1896.18 1736.27 1883.54

Table A.2.: Comparison of Bubble-FOS/C in di�erent parameter settings for `∞-norm

AC2/CO1 AC2/CO2 AC3/CO2 AC3/CO3

k ext bnd ext bnd ext bnd ext bnd

4 548.89 293.98 518.23 279.85 523.69 281.79 517.63 278.80

8 438.24 237.64 431.66 234.06 427.11 231.28 426.24 232.10

12 401.58 215.44 393.93 209.45 389.70 208.48 393.15 206.75

16 345.94 185.73 343.66 183.41 338.86 181.05 338.70 179.41

20 328.53 175.63 325.19 175.48 321.26 173.65 324.48 174.86

avg 412.63 221.68 402.53 216.45 400.13 215.25 400.04 214.39

Table A.3.: Comparison of Bubble-FOS/C using AMG with Bubble-FOS/C using
CG for `1- and `∞-norm and AC3/CO2.

Bubble-FOS/C with CG and AC3/CO2 Bubble-FOS/C with AMG and AC3/CO2

k EC bnd1 ext∞ bnd∞ EC bnd1 ext∞ bnd∞

4 870.3 954.5 529.2 282.2 876.5 956.9 523.7 281.8

8 1368.7 1480.6 426.1 230.5 1374.4 1492.9 427.1 231.3

12 1833.3 1968.2 392.9 207.4 1837.2 1970.0 389.7 208.5

16 2150.0 2336.1 336.4 180.5 2155.9 2346.5 338.9 181.1

20 2475.4 2701.1 322.0 174.3 2487.0 2714.5 321.3 173.7

avg 1739.5 1888.1 401.3 215.0 1746.2 1896.2 400.1 215.3

135

APPENDIX A. APPENDIX

Table A.4.: Comparison of Bubble-FOS/C using AMG without and with the virtual
vertex (φ = 1/512) for `1- and `∞-norm and AC3/CO3.

Bubble-FOS/C (AMG) Bubble-FOS/C (AMG) with virtual vertex

k EC bnd1 ext∞ bnd∞ EC bnd1 ext∞ bnd∞

4 868.8 943.0 517.6 278.8 868.7 934.2 526.6 278.5

8 1365.2 1483.6 426.2 232.1 1361.0 1468.9 429.2 231.0

12 1826.6 1957.7 393.2 206.8 1818.0 1954.9 399.1 213.3

16 2148.3 2334.1 338.7 179.4 2134.8 2322.4 337.1 180.7

20 2472.4 2699.3 324.5 174.9 2474.1 2678.6 321.7 172.2

avg 1736.3 1883.5 400.0 214.4 1731.3 1871.8 402.7 215.1

A.2. DibaP: Additional Experimental Results

Table A.5.: Average edge-cut, boundary nodes, and migration volume in the `1-norm for
repartitionings computed by ParMETIS, Jostle, and DibaP on twelve
small graph sequences.

ParMETIS Jostle DibaP

Sequence EC bnd1 EC bnd1 EC bnd1

bubbles 366.7 723.8 323.8 638.6 312.8 612.1

change 357.9 706.5 308.4 607.6 297.9 588.8

circles 371.2 733.0 328.8 646.4 314.2 610.0

fastrot 433.6 857.4 385.2 757.9 362.2 705.9

fasttric 455.0 900.1 407.5 803.2 376.3 741.8

heat 182.2 360.2 154.5 304.2 159.5 306.4

re�ne 225.9 448.6 199.9 389.1 191.3 377.6

ring 274.4 541.1 238.0 471.2 231.0 446.5

rotation 387.9 767.7 342.6 675.3 341.0 662.7

slowrot 431.7 853.5 383.5 754.9 359.3 703.9

slowtric 502.1 994.0 434.2 856.5 406.7 796.5

trace 328.1 644.1 285.4 557.9 273.6 524.8

136

APPENDIX A. APPENDIX

Table A.6.: Average number of external edges, boundary nodes, and migration volume
in the `∞-norm for repartitionings computed by ParMETIS, Jostle, and
DibaP on twelve small graph sequences.

ParMETIS Jostle DibaP

Sequence ext∞ bnd∞ ext∞ bnd∞ ext∞ bnd∞

bubbles 86.0 84.8 75.4 74.1 66.0 64.3

change 83.0 81.5 70.9 69.6 64.6 63.6

circles 81.1 80.1 74.4 72.9 66.7 63.7

fastrot 96.1 94.8 86.4 84.7 73.6 71.4

fasttric 98.4 97.1 92.1 90.4 77.6 76.3

heat 56.9 56.2 45.1 44.4 48.1 46.6

re�ne 47.6 46.6 42.9 41.2 36.2 35.7

ring 71.3 69.9 61.1 60.5 59.9 57.1

rotation 90.0 88.7 80.3 78.8 71.3 70.0

slowrot 93.2 91.9 82.2 80.7 70.4 68.7

slowtric 112.9 111.6 97.6 95.8 78.5 76.4

trace 73.8 71.9 65.9 63.8 58.9 56.3

Table A.7.: Average number of external edges and boundary nodes in the `1- and `∞-
norm for repartitionings computed by ParMETIS, Jostle, and DibaP on
three large graph sequences.

ParMETIS Jostle DibaP

Sequence / norm ext bnd ext bnd ext bnd

bigtric (`1) 1866.3 3717.7 1569.4 3121.9 1436.8 2865.9

bigtric (`∞) 321.3 319.6 267.0 265.5 230.9 229.7

bigbubbles (`1) 4716.2 9387.2 3974.8 7873.7 3527.1 7041.7

bigbubbles (`∞) 845.7 840.3 740.4 729.0 615.4 613.5

bigtrace (`1) 4124.9 8212.2 3349.1 6630.9 2919.7 5815.5

bigtrace (`∞) 718.7 713.2 584.5 577.8 463.9 461.7

137

APPENDIX A. APPENDIX

A.3. Description of Random Graphs with Planted Partitions

(Model 2)

Table A.8.: Parameters (size n, intra-cluster edge probability pint, inter-cluster edge
probability pext) and resulting node degree values for randomly generated
graphs with planted partitions and k = 9. Note: pint ∈ {1200

n·k ,
2500
n·k },

pext ∈ {110
n·k ,

150
n·k }.

k = 9, Setting 1 2 3 4 5 6 7 8 9

n · 104 2 2 2 4 4 4 8 8 8

pint · 10−3 6.667 13.889 13.889 3.333 6.944 6.944 1.667 3.472 3.472

pext · 10−3 0.611 0.611 0.833 0.306 0.306 0.417 0.153 0.153 0.208

minimum degree 6 9 13 3 7 10 5 6 11

maximum degree 56 83 88 57 92 95 62 89 95

average degree 28.396 47.642 51.467 28.427 47.698 51.555 28.398 47.696 51.545

Table A.9.: Parameters (size n, intra-cluster edge probability pint, inter-cluster edge
probability pext) and resulting node degree values for randomly generated
graphs with planted partitions and k = 13. Note: pint ∈ {1200

n·k ,
2500
n·k },

pext ∈ {110
n·k ,

150
n·k }.

k = 13, Setting 1 2 3 4 5 6 7 8 9

n · 104 2 2 2 4 4 4 8 8 8

pint · 10−3 4.615 9.615 9.615 2.308 4.808 4.808 1.154 2.404 2.404

pext · 10−3 0.423 0.423 0.577 0.212 0.212 0.288 0.106 0.106 0.144

minimum degree 1 3 5 2 3 4 1 3 4

maximum degree 35 52 55 36 51 57 37 53 57

average degree 15.972 24.893 27.691 16.034 24.987 27.783 15.972 24.948 27.761

Table A.10.: Parameters (size n, intra-cluster edge probability pint, inter-cluster edge
probability pext) and resulting node degree values for randomly generated
graphs with planted partitions and k = 17. Note: pint ∈ {1200

n·k ,
2500
n·k },

pext ∈ {110
n·k ,

150
n·k }.

k = 17, Setting 1 2 3 4 5 6 7 8 9

n · 104 2 2 2 4 4 4 8 8 8

pint · 10−3 3.529 7.353 7.353 1.765 3.676 3.676 0.882 1.838 1.838

pext · 10−3 0.324 0.324 0.441 0.162 0.162 0.221 0.081 0.081 0.110

minimum degree 1 2 3 1 2 2 1 1 1

maximum degree 29 37 40 28 39 41 30 39 42

average degree 10.796 15.981 18.201 10.836 15.989 18.188 10.781 15.957 18.144

138

APPENDIX A. APPENDIX

A.4. DibaP: Best-known Edge-cut Results

Table A.11.: Instances of benchmark graphs for whichDibaP has computed the currently
best-known edge-cut values (marked by X, 84 in total out of 144 possible
ones for these six graphs) for the speci�ed numbers of partitions k in di�erent
imbalance settings. Last update: 29 Feb 2008.

Imbalance 0% 1% 3% 5%

Graph / k 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

tooth X X X X X X X

598a X X X X X X X X X

144 X X X X X X X X X X

wave X X X X X X X X X X X X X X X X X X

m14b X

auto X

139

