
Faculty for Computer Science, Electrical Engineering and Mathematics

A Value-Centered Software Engineering

Approach for Unique and Novel Software-Based

Solutions

Aligning Design Thinking with a Coopetition-Based

Evolutionary Software Development

Björn Senft

Dissertation submitted in partial fulfillment of the requirements for the

degree of Doktor der Naturwissenschaften (Dr. rer. nat.)

Supervisor Prof. Dr. Gregor Engels

March, 2021

Björn Senft

A Value-Centered Software Engineering Approach for Unique and Novel Software-Based Solutions

Doctoral Dissertation, March, 2021

Supervisor: Prof. Dr. Gregor Engels

Paderborn University

Research Group Databases and Information Systems

Department of Computer Science

Faculty for Computer Science, Electrical Engineering and Mathematics

Zukunftsmeile 2

D-33102 Paderborn

Abstract

The development of unique and novel software-based solutions poses the challenge that

we are very bad oracles when it comes to the correct prediction of value. Various studies

show that we are only successfull in predicting value in 10% to 33% of the cases. One

reason for this is that all constraints and dependencies can only become apparent in actual

use. Furthermore, the initial evaluation of solutions is complicated by the fact that for a

more profound evaluation of an innovation, a tangible prototype is usually required from the

respondents. One possible approach to solve this problem is Design Thinking. However how

Design Thinking is integrated with software development is still open. This thesis addresses

this problem by introducing an approach called Insight-centric Design and Development

(ICeDD). ICeDD integrates Design Thinking as a mixture of Front-End Technique and

Integrated Development Philosophy. This is due to the fact that ICeDD recognizes that the

best learning results can only be achieved by experimenting in parallel with prototypes that

can already be used as good as possible under real conditions (i.e. software prototypes) and

on the other hand that software development is generally expensive and takes significantly

more time than e.g. simple paper prototypes. Hence, ICeDD guides through the different

stages needed for using with software development from finding adequate design challenges

over doing Design Thinking with non-software prototypes to create cheap and fast learning

outcomes. Furthermore, ICeDD guides in preparing the outcomes of this stage to be used in

software development and finally shows how to design the software development so that the

4Ps (people, process, product, and project) fit to the needs of developing and experimenting

with several software alternatives at once to extent Design Thinking with more than one

alternative also into software development. Furthermore, the feasibility of ICeDD is proven

with the help of a case study.

iii

Zusammenfassung
Die Entwicklung einzigartiger und neuartiger software-basierter Lösungen birgt die Heraus-

forderung, dass wir sehr schlechte Orakel sind was die korrekte Vorhersage von Wert betrifft.

Verschiedene Studien belegen, dass wir nur in 10% bis 33% der Fälle erfolgreich den Wert

vorhersagen. Dies liegt zum einen daran, dass alle Einschränkungen und Abhängigkeiten erst

im tatsächlichen Gebrauch zum Vorschein treten können. Zudem wird die initiale Bewertung

der Lösungen erschwert durch die Tatsache, dass für eine tiefgreifendere Bewertung einer

Innovation in der Regel ein anfassbarer Prototyp von den Befragten benötigt wird. Ein

möglicher Ansatz zur Lösung dieses Problem ist Design Thinking. Allerdings ist noch offen

wie Design Thinking am Besten in die Software Entwicklung eingebettet werden sollte.

Diese Arbeit addressiert dieses Problem durch die Einführung des Ansatzes Insight-centric

Design and Development (ICeDD). ICeDD integriert Design Thinking als eine Mischung

aus Front-End-Technik und Integrierte Entwicklungsphilosophie. Dies ist darauf begründet,

dass ICeDD anerkennt, dass die besten Lernergebnisse nur durch paralleles Experimen-

tieren mit Prototypen erzielt werden können, die bereits unter realen Bedingungen so gut

wie möglich genutzt werden können (also Software-Prototypen) und zum anderen, dass

Software-Entwicklung in der Regel teuer ist und deutlich mehr Zeit in Anspruch nimmt als

z.B. einfache Papierprototypen. Daher führt ICeDD durch die verschiedenen Phasen, die

für den Einsatz von Design Thinking in der Softwareentwicklung notwendig sind, von der

Suche nach einer geeigneten Design Challenge über die Durchführung von Design Thinking

mit Nicht-Software-Prototypen, um schnell und kostengünstig zu ersten Lernergebnissen

zu kommen. Darüber hinaus führt ICeDD durch die Vorbereitung der Ergebnisse dieser

Phase für die Nutzung in der Software-Entwicklung und zeigt schließlich, wie man die

Software Entwicklung so gestaltet, dass die 4Ps (Menschen, Prozess, Produkt und Projekt)

zu den Bedürfnissen der Entwicklung und dem gleichzeitigen Experimentieren mit mehreren

Software-Alternativen auf einmal passen, damit Design Thinking mit mehr als einer Al-

ternative auch in der Software-Entwicklung verwendet werden kann. Außerdem wird die

Machbarkeit von ICeDD mit Hilfe einer Fallstudie belegt.

iv

Danksagung
Eine der wertvollsten Fähigkeiten der Menschheit ist es Wissen über Generationen hinweg

weiterzugeben. Entsprechend fußen unsere Erfolge zu einem Großteil auf den Schultern

derjenigen, die vor uns waren. Auch wenn eine Promotion eine eigenständige Arbeit ist,

wäre sie ohne die Unterstützung anderer Menschen so nicht denkbar. Daher möchte ich mich

an dieser Stelle bei den vielen Personen bedanken, die direkten oder indirekten Einfluss auf

die Entstehung dieser Arbeit hatten.

Zuallererst möchte ich mich bei meinem Doktorvater Prof. Dr. Gregor Engels bedanken.

Ohne seine Unterstützung und seine Offenheit gegenüber neuen Wegen im Rahmen inter-

disziplinärer Forschung hätte die Arbeit in dieser Form nicht entstehen können. Zudem

wurde sie durch seine intensive wissenschaftliche Betreuung, Diskussionen und Denkanstöße

maßgeblich geprägt. Durch seine gute Vernetzung mit der Industrie und den praxisnahen

Projekten, die ich im SICP - Software Innovation Campus Paderborn durchführen durfte,

hatte ich zudem die Möglichkeit meine Forschung mit den Erfordernissen der Industrie

abzugleichen.

Ein besonderer Dank gebührt meiner Familie, insbesondere meinen Eltern Klaus und Han-

nelore sowie meinen beiden Onkel Gerhard und Wilfried Plass. Ohne ihre Ermunterung,

Unterstützung und die Sicherheit, die sie mir über die Jahre gegeben haben, hätte ich diesen

fachlichen Weg mit Studium und Promotion wahrscheinlich nie einschlagen können. Zudem

wurde der Grundstein für mein Interesse an Informatik durch meinen Vater gelegt, der für

meine Geschwister und mich sehr früh einen PC erworben hat, da er hierin für uns die besten

Zukunftsmöglichkeiten gesehen hat.

Einen wesentlichen Einfluss hatten zudem die unzähligen Diskussionen mit meinen Kollegen

aus den verschiedensten Disziplinen und der AG Engels, die zur Schärfung dieser Arbeit

beigetragen haben und bei denen ich mich an dieser Stelle bedanken möchte. Hierbei sind

zwei Personen besonders hervorzuheben. Zum einen mein Kollege Holger Fischer, der

während meiner Promotion zu einem guten Freund geworden ist. Für die vielen Diskussio-

nen besonders im Bereich der mensch-zentrierten Gestaltung, der Unterstützung und der

gegenseitigen Motivation möchte ich ihm herzlich danken. Zum anderen ist Simon Oberthür

an dieser Stelle hervorzuheben. Seine überaus konstruktive Diskussionskultur und Offenheit

waren ein sehr wertvolles Element im Zusammenspiel mit dem sehr guten Auge meines

Doktorvaters für Details und Herausforderungen, die mir bei dieser Arbeit sehr geholfen

haben.

v

Contents

I Preliminaries & Foundations 1

1 Preliminaries 3

1.1 Introduction . 3

1.1.1 Decide on how to make sense of a situation 6

1.1.2 Preparing for Adoption . 7

1.1.3 Special Features of Software for Prototyping 8

1.2 Research Question, Objectives, & Fitness Function 10

1.3 General Research Approach . 17

1.3.1 Research in General . 18

1.3.2 Our Research Approach . 22

1.4 Overview of Publications . 27

1.5 Overview of Thesis Structure . 28

2 Foundations 31

2.1 Diffusion of Innovations . 31

2.2 Design Thinking . 40

II Solution 45

3 Solution Concept 47

3.1 Solution Concept: Insight-centric Design & Development (ICeDD) 47

3.2 Related Work Regarding the Overall Solution Concept 56

3.3 Summary . 58

4 ICeDD Stage (1): Initialize Design Thinking 61

4.1 Requirements & Overview . 61

4.2 On-Site Feature Requests . 68

4.2.1 Towards a Tool-Guided Elicitation Process 68

4.2.2 Classification of Elicitation Techniques 70

4.2.3 Vision Backlog – A Prototype for a Tool-Guided Elicitation Process 73

4.2.4 Evaluation . 75

vii

4.3 Feature Requests from Systematic Analysis 77

4.3.1 Grounded Theory . 78

4.3.2 Our Grounded Theory Instance 81

4.4 Summary and Discussion . 83

5 ICeDD Stage (2): Execute Design Thinking with Non-Software 87

5.1 Requirements & Overview . 87

5.2 Our Design Thinking Instance . 89

5.3 Findings . 93

5.4 Summary and Discussion . 95

6 ICeDD Stage (3): Prepare Design Thinking with Software 97

6.1 Requirements & Overview . 97

6.2 Design Thinking Requirements Framework (DTRF) 102

6.2.1 Transformation Process . 103

6.2.2 Capture Cards . 104

6.2.3 Related Work . 110

6.2.4 Feasibility Study . 112

6.3 Summary and Discussion . 117

7 ICeDD Stage (4): Execute Design Thinking with Software 119

7.1 Requirements & Overview . 119

7.2 People, Project, Product, and Process . 122

7.2.1 Process . 122

7.2.2 Product . 129

7.2.2.1 Macro-Architecture . 130

7.2.2.2 Implementation Example 139

7.2.3 People . 142

7.2.4 Project . 143

7.3 Tools . 144

7.3.1 Experiment Design System . 146

7.3.2 Technical Assignment System . 150

7.3.3 Quantitative Data System . 153

7.4 Summary and Discussion . 156

III Evaluation & Epilog 161

8 Evaluation 163

8.1 History in Paderborn App . 163

8.2 Application Case Study regarding Innovation Assumptions 171

viii

8.2.1 Concept and Conduction . 172

8.2.2 Results and Discussion . 175

8.3 OWL.Culture-Platform . 177

8.3.1 Context . 177

8.3.2 Concept . 179

8.3.3 Evaluation Instruments . 187

8.3.3.1 Questionnaire . 187

8.3.3.2 Work Products . 193

8.3.4 Conduction and results . 202

8.3.4.1 Questionnaire results . 203

8.3.4.2 Work Product Evaluation Results 208

8.3.5 Summary and Discussion . 221

9 Epilog 225

9.1 Summary . 225

9.2 Discussion . 229

9.3 Future Work . 234

Bibliography 235

ix

Part I

Preliminaries & Foundations

Preliminaries 1
1.1 Introduction

Implementing unique and novel software-based solutions contains the great challenge that

designers (e. g. UX or Requirements Engineer) can only build on existing knowledge

to a limited extent. This limits the designer in accurately predicting what delivers value

for the users. To illustrate how difficult it is to make accurate predictions, have a look at

the following real–world example. The default experience for the Netflix Frontpage (see

Fig. 1.1a) is a simple page with a Sign In–Button and a Start Your Free Month–Button

offering three information: Their basic offering, the costs, and their promise to be able to

use it anywhere.

(a) default experience (b) example prototype

Fig. 1.1.: Example for Qualitative Experiments regarding the Frontpage by Netflix [@BI16].

Our intuition tells us that we can convince more people to sign up and use the service if

we give them more information about what shows and movies they can expect there. This

is the way Netflix thought [@BI16] and a nice example of a unique and novel software-

based solution on domain level in which we are especially interested in this thesis. Thus,

they implemented a prototype where users could browse the library without logging in

(see Figure 1.1b). They tested it against the default experience (see Figure 1.1a) and were

surprised that the default experience still has a better conversion rate.

Their first guess was that their intuition is right, but their implementation was not good enough.

They implemented four more prototypes that they tested against the default experience. The

other four prototypes were inferior to it as well. However, Netflix learnt during their tests

why their default experience is better than their supposed improvement (see [@BI16]).

3

Although it was only a moderate change, Netflix was unable to predict that it would deteriorate.

This in turn coincides with the experience others have had with unique and novel ideas.

Kohavi et al. [Koh+09] give an overview of the figures of some companies such as Microsoft,

Netflix or Web Analytics. Between 66% and 90% of their implemented ideas fail to show

value. This means that in most cases experts have suggested to implement a certain feature

but had been wrong in estimating its value.

Current development approaches like agile software development (e.g. scrum) or human–

centered design are only of limited help in this challenge if used on their own. As Norman &

Verganti [NV14] argue, these approaches only fit incremental innovations as they optimize

along a known solution path. But they do not try to understand the problem and find more

suitable solution paths. Norman & Verganti use hill climbing to illustrate this (see Figure 1.2).

For a set of design parameters we can achieve a certain product quality. Agile software

development or human–centered design would start at a certain point (e. g. A) and manipulate

the design parameter to reach a higher product quality (climb the hill). They would do it

till they reach the local maxima (C in this case.). The challenge with this is, that they don’t

know that there is a another set of design parameters (B) with which they could achieve

an even better product quality (D). Only if e. g. C is not satisfying, they would search

for B to find a better set of design parameters. On the other hand, approaches like Design

Thinking (see section 2.2 for more information) with its diverging and converging thinking

for understanding underlying problems and suitable solutions (cf. Plattner et al. [PML10])

would start with several starting points and try to estimate the hill sizes by climbing them in

parallel. Once a set of design parameters is found to be inferior, it would be dropped. This

makes Design Thinking more suitable in finding a solution delivering a high product quality

/ value than agile software development or human–centered design. However, it is unclear

how Design Thinking can be applied successfully in software development [LMW11].

Pr
od
uc
tQ
ua
lit
y

Design Parameter

A

C

B

D

Fig. 1.2.: Hill Climbing representation with Design Parameters on the x-axis and Product Quality

on the y-axis. Own representation based on [NV14]

4 Chapter 1 Preliminaries

Lindberg et al. [LMW11] see two ways in which Design Thinking can be applied to software

development. On the one hand as Front–End Technique and on the other hand as Integrated

Development Philosophy. In case of the Front–End Technique, Design Thinking would be

placed as a phase prior to the development process. The output of the Design Thinking phase

would be a single solution that would then be implemented as software. Design Thinking as

Integrated Development Philosophy is implemented as a one–team approach. This means

that all core members (e.g. software developer, designer, lead user) are involved throughout

the development process.

As already mentioned, current approaches only fit incremental innovations. But in this

thesis, the focus is on radical innovations. The challenge with radical innovations is that

you can only define them as such ex post, because innovation implies that something is

already adopted. Accordingly, we can only consider the first part of it, i.e. radicalism, for

software development, as we cannot guarantee an adoption. This is one reason why there

are approaches which make a difference between innovation and invention. One of such

approaches is from Dahlin & Behrens [DB05] which we use to further break down radical

innovation. Most important for us is their definition of technological radicalness which

is actually quite similar to what we understand under radical innovation but mapped to

technology. They state that a successful radical invention is defined by the following three

criteria:

• Criterion 1. The invention must be novel: it needs to be dissimilar from prior inven-

tions.

• Criterion 2. The invention must be unique: it needs to be dissimilar from current

inventions.

• Criterion 3. The invention must be adopted: it needs to influence the content of future

inventions.

Criterion 1 is a comparison with the past and Criterion 2 with the present. If both criterions

apply, we have created a radical invention that potentially can become a successful radical

invention. If all three criteria have been fulfilled an invention can be considered as a

successful radical invention or in our words a radical innovation.

As can be seen in Criterion 3, the term successful radical invention implies that something

must be adopted. But it can only be ex post determined whether something has been adopted

and influenced the content of future inventions. This makes this criterion less applicable in

a development approach as we can only integrate guesses on what terms the invention is

adopted and therefore gets to be an innovation.

1.1 Introduction 5

We will continue to use the definition of a ’successful radical invention’ as a synonym for a

radical innovation like Norman and Verganti [NV14] do. Since Criterion 3 does not allow us

to guarantee that the development process will lead to radical innovation, we limit ourselves

to the first two criteria for now. Hence, we are not talking about radical innovations or

’successful radical invention’, but unique and novel software-based solutions.

If our software application is unique and novel, which is a prerequisite for radical innovations,

we can neither rely on data from the past nor the present. Hence, constraints and interacting

dependencies must be uncovered instead of analyzing or categorizing observations with

existing knowledge. This in turn is only possible by probing or acting and observe the effects,

which is what Netflix did as well in the Sign–Up example, described earlier. But how do we

decide if in the current situation probing or acting and observing the effects is necessary or

maybe analyzing is the best way to do it?

1.1.1 Decide on how to make sense of a situation

This is outlined by Kurtz and Snowden [KS03] in the Cynefin framework, which is developed

to address "[...] the dynamics of situations, decisions, perspectives, conflicts, and changes in

order to come to a consensus for decision–making under uncertainty". Instead of following

a one size fits all approach [@LS16], it’s advocating different decision–making approaches

according to the context / domain. Very briefly, in Cynefin we have clockwise (see Figure 1.3)

the domains Chaotic, Complex, Complicated, and Obvious. In the Chaotic domain, we know

the least about the context and its constraints including interacting dependencies. The more

we get to the Obvious domain, the more we know about the constraints and the better we

can predict future states. Therefore, the closer we get to the Obvious domain, the better we

can plan. The less we know, the more we must try out with different alternatives, to uncover

and understand dependencies and constraints.

Unique and novel software-based solutions are related to the unordered domains Chaotic and

Complex that are the domains of novel and emergent practices, whereas according to Kurtz

and Snowden [KS03], incremental innovations are mainly located between the boundary

of Obvious and Complicated. The high probability that unique and novel software-based

solutions fall into these two domains also means that a mere selection of solutions is not

enough, but that problem and solution understandings must be developed creatively.

6 Chapter 1 Preliminaries

Online
Development

Offline
Development

Obvious

ComplicatedComplex

Chaotic

Disorder

probe - sense - respond sense - analyze - respond

sense - categorize - respondact - sense - respond

Novel Practice Best Practice

Good PracticeEmergent PracticeU
n-O

rdered O
rd

er
ed

Fig. 1.3.: The Cynefin Framework and its five domains Obvious, Complicated, Complex, Chaotic,

and Disorder. Own representation based on [KS03]

1.1.2 Preparing for Adoption

In addition to the first and second criteria (past and present perspective), the third criterion

(future perspective) for radical innovations should also be considered in the approach. Even

if an innovation cannot be predicted, it is important to know the attributes that influence

the adoption of innovations (see section 2.1). According to Rogers [Rog10], innovation

means that something is considered new by an individual or a group. It is irrelevant whether

individuals or groups already exist who no longer regard it as new. Not even the time is

important for this. It is only about the subjective perception of individuals or groups, whether

something is regarded as innovation / new or not.

Innovations do not spread arbitrarily or abruptly but are subject to a certain lawfulness. The

process that describes this is defined by Rogers as Diffusion of Innovations and consists of

four main elements. An (1) innovation is communicated through certain (2) channels over

(3) time between the members of a (4) social system. The first main element is particularly

interesting, as it describes five attributes which have an influence on the product and the

development process:

1. Relative Advantage is the degree to which an innovation is perceived as better than

the idea to be replaced. At this point, it is not important whether the innovation

provides objectively large advantages, but whether it is perceived as advantageous by

the individual. The more advantageously an innovation is perceived, the faster it is

accepted.

1.1 Introduction 7

2. Compatibility is the degree to which an innovation is perceived to be compatible with

the current value system, past experiences and needs of the adopters. If an innovation

is incompatible, an adoption often requires a new value system, which is a relatively

slow process. Therefore, compatible innovations are accepted faster than incompatible

ones.

3. Complexity is the degree to which an innovation is perceived as difficult to understand

and use. Innovations that are easier to understand spread more rapidly than innovations

that require the adopter to learn new skills and knowledge.

4. Trialability is the degree to which an innovation is experimented with to some extent.

An innovation that can be experimented with represents less uncertainty for the

individual.

5. Observability is the degree to which the results of an innovation are visible to others.

The easier it is for individuals to see the results of an innovation, the more likely they

are to adopt them.

Regarding the development of unique and novel software-based solutions, this means that

the more tangible they are, the better these innovations can be assessed. Depending on the

compatibility, it could take a longer time till people accept and give positive feedback. The

more incompatible it is, the longer it can be acceptable that people don’t like it. Therefore,

the goal must be to build tangible prototypes or software-based solutions as quickly as

possible so that the relative value can be assessed at an early stage and with less bias.

1.1.3 Special Features of Software for Prototyping

As Boehm [Boe06a] points out in his summary of past software experiences, software

development has always been in the continuum between engineer software like you engineer

hardware and software crafting. The former means a process where everything is preplanned

to ensure the quality before the first execution in the actual context of use. The second

corresponds to a process of experimenting and working with rapid prototypes even in the

actual context of use.

Software development methods oriented from the 1970’s to the early 2000’s more on the

first part of the continuum. There were many reasons for this, such as contract design

or infrastructure costs (e.g. testing, operation, distribution). The result, however, was an

environment that is not beneficial for prototyping and experimenting and with that also not

for acting and probing which we need for unique and novel software-based solutions. Why

isn’t such an environment beneficial for prototyping and experimenting?

8 Chapter 1 Preliminaries

Software created in these approaches usually are written in one technology and made to run

on a system with shared libraries and fixed hardware. This leads to side effects if for example

several versions of a shared library are required, or multiple applications require the same

resource. Because multiple applications share a not isolated operating environment, changes

can result in an unstable system. Therefore, changes are seldom made on such a system. In

addition, a manual distribution, as is usual with such systems, leads to a higher effort and

higher risk (cf. Knight Capital’s bankruptcy due to incorrect deployment [@Sev14]).

Depending on the complexity of the already implemented code, it could be that a switch

in technology becomes too expensive, because everything must be transferred at once. In

addition, polyglotism is usually not possible in relation to technologies. This leads to the

fact that despite more suitable concepts in other technologies, the concepts and constraints

of the initially selected technology must be preferred.

Using sequential, phase–oriented software development, software is usually implemented

with a point–based engineering approach (cf. Denning et al. [DGH08]) that results in a

large overhead compared to set–based concurrent engineering as soon as changes must be

communicated (see Ward et al. [War+95]). This overhead resulting from changes can make

it seem unfeasible to integrate insights from experiments. In combination with figures about

the relative cost of changing software (cf. Stecklein et al. [Ste+04]), it has also manifested

the image that it is only possible to implement one solution at a time.

In summary, this inhibits prototyping and experiments as following:

• Risk to change a running system is high

• High effort to host several alternatives at the same time

• Integrating findings is associated with a high level of effort

• Technology decisions from the past limit the ability to make decisions in the future

Fortunately, this has changed since the advent of agile software development in the early

2000s. Agile software development put the testing of smaller executable software artifacts

by customers in the foreground. Also, technologies and approaches like Cloud Comput-

ing [Arm+10], Containerization [Pah15], DevOps [SC17], and Microservices or Evolution-

ary IT Systems [DGH08] have a positive impact on the risk to change a system, the effort to

host, and the effect of technology decisions from the past. Hence, several advancements in

the recent past enable us to work more with prototyping and experimenting like it is the case

in software crafting and reduce the need to do engineer software like you engineer hardware

as Boehm states.

1.1 Introduction 9

1.2 Research Question, Objectives, & Fitness Function

Developing unique and novel software-based solutions contains several challenges as already

pointed out in the introduction. The starting point, which already results from the definition of

unique and novel software-based solutions, is a very incomplete understanding. The best way

to improve understanding in this situation is to act and probe (as Kurtz and Snowden [KS03]

define it) in order to uncover constraints and interacting dependencies. But especially doing

this with the medium software seems to be unfeasible. Nevertheless, it is essential to act

and probe with software-based solutions in the actual context of use as can been seen in

the Netflix Signup Example from the introduction. Would Netflix have used the alternative

solution from the beginning and never have tested different alternatives, they would have

been stuck with a bad design and could not explain to themselves why the front page works

badly. This is underpinned by the results of Kohavi et al. [Koh+09] which can be summarized

as we are very bad oracles regarding the real value of our proposed software. From these,

we derive our general research question:

How can unique and novel software-based solutions be developed that provide users

with value in the actual context of use?

Objectives

In order to work on this general research question, a puristic computer science approach is

not sufficient. The object of research is not limited to the internal structure of the software

system, but also includes, through the software development process, the people who are

involved in the development of the software, the context of use, and of course the process

itself. This results in the necessity of an interdisciplinary approach, which is in line with the

definition of software engineering by Boehm:

„In this regard, I am adapting the [...] definition of ”engineering” to

define engineering as ”the application of science and mathematics by

which the properties of software are made useful to people.” The

phrase ”useful to people” implies that the relevant sciences include

the behavioral sciences, management sciences, and economics, as

well as computer science.

— Boehm [Boe06a]

For this reason, we derive our first objective for working on the research question:

10 Chapter 1 Preliminaries

Objective 1. Identification of findings from other disciplines useful for the development of

unique and novel software-based solutions.

As a second step, we can already set objectives for the design of a software development

approach for unique and novel software-based solutions. Understanding and learning must

be a keystone in such an approach, which results in several constraints.

First of all, the learning success is strongly limited by the use of only one possible solution.

Due to the assumed uniqueness and novelty, we are in a situation where we cannot evaluate

a product on the basis of an existing set of rules, but have to build that set ourselves. For

that, dependencies and constraints have to be identified. In a not well understood real-world

context this is only possible by manipulating design parameters of possible solutions to

learn from the differences (in the sense of the Cynefin framework to act and probe). This is

the only way to make statements that go beyond whether something is basically working or

not.Therefore, our second objective is:

Objective 2. A possible approach for developing unique and novel software-based solutions

must support multiple solutions simultaneously in order to learn from their difference about

dependencies and constraints.

Furthermore, to achieve our goal of providing users with value in the actual context of use,

it is not only important to compare alternatives with each other, but also how these are

compared to each other. As Hoare [Hoa69] already stated in 1969: ”the most important

property of a program is whether it accomplishes the intention of its user”. That the software

actually accomplishes the intention can only be assured if used in the real world. Until then,

everything about the software is just a thought experiment, a limited space of testing, where

unknown or neglected dependencies can not come forward. Hence, it is essential for the

learning outcome that alternative solutions can as well be tested in the real world (like in the

Netflix Signup Example). To make this possible, among other things, a suitable distribution

mechanism is required, which is why we set the following further objective:

Objective 3. Since the actual value can only be determined during operation, the structure

and processes must support the simultaneous operation of several software solutions.

In a perfect world, the solution is limited only by the properties of the context of use and not

by other factors such as technology. Of course, this is not always possible, but technological

decisions should limit the solution space as little as possible in the long run. For unique and

novel software-based solutions this is more important than ever. The basic assumption here

is that the basis for fundamental decisions remains volatile. Therefore, in principle, it is

1.2 Research Question, Objectives, & Fitness Function 11

hardly possible to make technical decisions that will last over a longer period of time. If this

is nevertheless done, this can mean an unjustified restriction of the solution space, resulting

in our next objective:

Objective 4. As the understanding of the problem and solution space will change over time,

technological decisions should be made in such a way that decisions in the future are as

independent as possible of them.

Solutions can not only be limited by technological decisions but also by the development

approach itself. Is the approach purely descriptive about a current state? Does it align new

technological solutions to the current state? Or does it even improve the current state in

conjunction with the new technological solutions? And if it improves the state, how much of

the already existing state is kept and how much is created from scratch? For creating unique

and novel software-based solutions that provide users with value in the actual context of

use it is indispensable that novel tasks, structures and processes are introduced to the user

(innovations on the domain level). From these we derive the following objective:

Objective 5. A corresponding development approach must be able to develop new ideas on

how to shape the context of use.

The previous objectives referred to the possibility of using alternatives in software develop-

ment. This is important to enable effective and efficient learning in the area of unique and

novel software-based solutions. However, the learning process itself must also be geared to

this situation. This results in our final objective:

Objective 6. Developing unique and novel software-based solutions implies that the devel-

opment process itself is also a learning and understanding process. Therefore, a learning

cycle that considers several alternatives must be defined in such a development.

Fitness Function

To operationalise our objectives we are borrowing the concept of Fitness Function (FF) from

evolutionary architectures (see Ford et al. [FPK17]). Ford et al. introduced this concept

following the idea of FF in genetic algorithm. There it is used to define when an algorithm

successfully evolved to have the desired properties. Evolutionary architectures change over

time as well as genetic algorithms. They too try to find the best way to fulfill the desired

properties by slowly approximating to the desired state. Therefore, it does not makes sense

to define a simple true/false function, but we need a function that illustrates the progress.

12 Chapter 1 Preliminaries

With the objectives, a desired state for a development method for unique and novel software-

based solutions has been defined. But still, it remains unclear how such a method is expressed

in detail to make it work like desired. In fact, we face the same challenge in developing

such a method, for which reason we want to develop such a method. Therefore, we can

also assume that our understanding of problem and solution space regarding such methods

will develop further over time. Which is why we also need to develop such methods in an

evolutionary way and thus need something that helps us objectively evaluate how well we

are approaching the desired state.

As a result, the challenges and objectives already mentioned have led us to define a FF

guiding us in reaching our goal. The optimal state that we hereby define refers above all to

the feasibility of such methods according to our previous knowledge. It can not be guaranteed

that all required characteristics are already considered and also not that this leads to the best

possible solution to develop unique and novel software-based solutions. This is the reason

why this FF can be subject to change.

The FF itself consists of various characteristics for each of them a mathematical function is

defined, which outputs a value between 0 and 5 on the basis of assessable conditions. We

adjust the value range from 0 to 5 for each characteristic in order to make them comparable

with each other. As mathematical functions we use only discrete functions and mainly two

types of them. For the first type, the total is formed from the conditions that are fulfilled.

This is used when conditions are equally justified and independent of each other. The second

type is used for consecutive conditions. Here, a higher value is given depending on how

many conditions are fulfilled. In total, we have defined the five characteristics Alternatives,

Operating Alternatives, Consequences of Technological Decisions, Focus on Novelty, and

Learning Cycle. These can be displayed as Radar Chart as shown in Figure 1.4.

0
1
2
3
4
5

Alterna�ves

Opera�ng Alterna�ves

Consequences of
Technological DecisionsFocus on Novelty

Learning Cycle

Fig. 1.4.: Example Radar Chart for our Fitness Function (FF).

1.2 Research Question, Objectives, & Fitness Function 13

Alternatives

Our first characteristic is Alternatives, which we derived from Objective 2. We are using

consecutive conditions for this characteristic. We refined the objective as such that we

included the temporal aspect in addition to the requirement of having multiple solutions.

In addition, we have introduced a distinction regarding the medium, because as mentioned

before, software as medium in comparison to other media can be expensive and we need

shorter learning cycles depending on the context.

Value Condition

0 Only one solution is supported at all times.

1,25 At least two solutions are supported, but not simultaneously.

2,5 At least two solutions are simultaneously supported, but created sequentially.

3,75 At least two solutions are simultaneously supported and created in parallel.

5 At least two solutions are simultaneously supported, created in parallel, and can be

present as software as well as non-software.

Operating Alternatives

The second characteristic is Operating Alternatives, which is derived from Objective 3. For

experiments in production it is important that a fallback mechanism is present to guarantee

the smooth continuation of work in the event of an error. This also includes an automatic

rollback of an update, as the Knight Capital case [@Sev14]) shows. Therefore, there is a need

for automated deployment and configuration. This is as well needed to prepare and support

numerous experiments with different alternatives. Which, in turn, require an assignment

possibility to different user groups, which can be carried out online. Supporting these is a

component based deployment as this enables us to timely rollback an update without taking

down the whole system or waiting for a complete new instance of such system. As these

conditions can help independently we are using the first type of mathematical function.

Value Condition

+1,25 Online Fallback Mechanism.

+1,25 Component based Deployment.

+1,25 Automatic Deployment and Configuration.

+1,25 Automatic User Specific Online Orchestration.

14 Chapter 1 Preliminaries

Consequences of Technological Decisions

Consequences of Technological Decisions is the third characteristic of our FF which is

derived from Objective 4. The impact of decisions can be reduced by increasing the number

of possible combinations and reducing dependencies. We can highly increase the number of

possible combinations if we are able to use different programming languages (Polyglotism).

Polyglotism is usually not possible in relation to technologies. This leads to the fact that

despite more suitable concepts in other technologies, the concepts and constraints of the

initially selected technology must be preferred. The use of System of Systems (cf. [DGH08;

FPK17]) helps to enable polyglotism related to technologies nevertheless. Independence of

UI and Model Layer allows a more rapid development of the UI as it can freely rearrange

available data and do not have to refrain to constraints introduced to the model by other UI

components. This situation can be improved even more, when parallel models can be used

as they allow in the model layer as well to rearrange and introduce data with less interaction

with other components.

Value Condition

+1 Polyglotism

+1 Independence of UI and Model Layer

+1 Parallel Models

System of Systems

+0,5 Suite of Small Services

+0,5 Bounded Contexts

+0,5 Services run in its own Process

+0,5 Independently Deployable Services

Focus on Novelty

Our fourth characteristic Focus on Novelty is derived from Objective 5. In [FS16], we

introduced order picking as an example to illustrate the difference between the actual non-

digital world, a digital copy, and unique and novel software-based solutions. As can been

seen in Figure 1.5, the actual order picking process is running completely analog with a

physical clipboard. A digital copy of that without introducing changes to the workflow and

maybe just minor improvements is the use of a software on a tablet that mimics the physical

clipboard including its workflow. Pick-by Vision with Augmented Reality is introducing a

1.2 Research Question, Objectives, & Fitness Function 15

complete new workflow to the picker as he is guided directly to the shelf via a funnel and

doesn’t have to search for it with a list. We use this distinction to determine the method in

terms of its focus on the creation of unique and novel software-based solutions.

Actual Digital Copy Unique and Novel

Pic
k-b
y V
isio
n (
AR
)

Cli
pb
oa
rd

Ta
ble
t

Warehouse

Fig. 1.5.: Example: Decision about the degree of novelty. Adapted from [FS16]

Value Condition

0 Method is only descriptive about current state.

1, 66 Method describes current state and creates a digital copy.

3, 33 Method describes current state, creates a digital copy and makes incremental im-

provements.

5 Method does not merely copy current state but creates novel solutions (this includes

e.g. structure, tasks, or processes)

Learning Cycle

Derived from Objective 6 and Objective 2 is the last characteristic Learning Cycle. The

main difference between the conditions is the explicitness of the learning cycle and the use

of alternatives.

Value Condition

0 There is no learning cycle intended in the method.

1,25 A learning cycle is intended, but not explicitly defined.

16 Chapter 1 Preliminaries

2,5 A learning cycle is intended, explicitly defined, but refers only to one solution at a

time.

3,75 A learning cycle is intended, explicitly defined and refers to several alternatives at a

time.

5 A learning cycle is intended, explicitly defined, refers to several alternatives at a

time, and adapts it according to the context.

1.3 General Research Approach

„Process/methodology PhDs can be very hard to

make ’watertight’ because they tend to become too

voluminous and have too many inter-related

aspects to be able to effectively justify. Although

you may want to set the thesis within the context of

a complete process, I would try to have some very

clear aspects that you see as your ’contribution’.

This will make it easier to defend.

— Reviewer for the Doctoral Consortium of the

British HCI 2016

Developing and researching a software development approach for unique and novel software-

based solutions is challenging for several reasons. People are involved, the software develop-

ment domain itself is complex, and the target domain is not yet fully understood. Therefore,

mathematical proof for this is only conditionally suitable. Working with controlled experi-

ments is also difficult. The lack of knowledge leads to the fact that e.g. in the test design

confounding variables are not properly considered or the operationalisation does not comply

with what should actually be measured. In addition, controlled experiments (or A/B tests)

with software development methods are very resource intensive as they have to be performed

with several people over weeks or months in order to obtain reliable results. Is it even

possible to do research in such a domain and if so how? How do we develop and research

software development approaches for such a domain as unique and novel software-based

solutions?

1.3 General Research Approach 17

1.3.1 Research in General

To answer this question, we will start with Dodig-Crnkovic’s discourse on scientific methods

in computer science [Dod02]. She starts with a possible view on science which illustrates

the plurality of different sciences. Logical reasoning is present in every kind of science and,

together with Mathematics, represents the most abstract and exact sciences. They have the

highest degree of certainty and are therefore usually the most desirable. Research subject are

abstract objects like propositions or numbers which are mainly researched via deduction.

These two are indispensable for the natural sciences, while they are more important for

physics than for chemistry or biology. As the natural sciences need them only as a tool

they don’t question the internal structure and therefore hide the deeper structure of Logic

and Mathematics from the outside. While Logic and Mathematics are purely theoretical,

natural sciences have as well empirical elements, meaning elements based on observation or

experience. Reason behind it are the natural objects (e.g. physical bodies or living organisms)

that are the research subject. Theoretical elements need to be aligned with how the natural

objects behave. Therefore, the predominant method is not deduction but as Popper [Pop05]

calls it the hypothetico-deductive method:

„Hypothetico-deductive method, also called H-D method or H-D,

procedure for the construction of a scientific theory that will account

for results obtained through direct observation and experimentation

and that will, through inference, predict further effects that can then

be verified or disproved by empirical evidence derived from other

experiments.

— ENCYCLOPÆDIA BRITANNICAa

ahttps://www.britannica.com/science/hypothetico-deductive-method

Natural objects have the advantage for researchers that they are subject to laws of nature that

humans cannot enact or override at will. Social and cultural objects on the other hand may

be subject to laws enacted by humans. These laws can therefore only occur temporarily or

only for a certain subgroup. Therefore, an interpretive method is required for these objects,

which interprets the data in context or makes sense of it. The theory and methodology for

such interpretations is called hermeneutics.

Social sciences, who study humans as social beings (alone or in groups), rely therefore

mostly on qualitative methods with the goal to understand and describe phenomenons. But

they have as well quantitative aspects, primarily statistics. This is also the difference to

humanities, which very rarely depend on any statistical method.

18 Chapter 1 Preliminaries

These interrelations between the different sciences have been illustrated by Dodig-Crnkovic

in Figure 1.6. The inner regions are the prerequisites for the outer regions. Therefore,

Logic is put in the most inner region as the core of all sciences. It is just one possible view

for todays sciences, but shows quite clearly the specific areas of validity of the different

sciences.

Fig. 1.6.: What is Science? One possible view from [Dod02]

Of course, there are not only hard-separated sciences, but more and more sciences that also

look at cross-sectional/interdisciplinary topics and search their methods in very broad areas.

Mechanical Engineering is an example for that. It is combining elements from physics,

chemistry, economics, psychology, electrical engineering and computer science to advance

with its research subject.

Although computer science is often seen with its roots in mathematical tradition especially

related to algorithms and information structure, it has as well an empirical tradition (cf.

Dodig-Crnkovic [Dod02]). The later one developed in Great Britain, whereas e. g. Germany

and France had a stronger focus on the first one. Taking the software engineering definition

from Boehm (cf. section 1.2 Objectives) or the statement of Hoare [Hoa69] (Developer

of the Quicksort Algorithm) that ’the most important property of a program is whether it

accomplishes the intention of its user’ makes it clear that computer science is as well such

an interdisciplinary science. The subjects of research in computer science lie in the validity

1.3 General Research Approach 19

area of all sciences and therefore as computer scientists we need as well methods from the

different sciences, especially empirical methods.

But as soon as we enter the domain of empiricism, we leave logic and mathematics with their

fundamental truths and enter an area where it cannot be said with absolute certainty what is

right or wrong. Nevertheless, empiricism has it’s ways to assess it’s research. The base for

this are the three quality criterion objectivity, reliability, and validity which originate from

quantitative research.

Objectivity is a general quality criterion of scientific investigations: Different researchers

must arrive at the same results under the same (experimental) conditions (independent of

the results from the experimental situation and the test managers) [HSE13; Ren+12].

This criterion is of particular interest for quantitative research. In qualitative research, how-

ever, this criterion is viewed critically, since data collection in qualitative research is geared

to the social situation and therefore objectivity is hardly feasible or not considered desirable

(cf. [HSE13]). Instead, the concept of inner comparability exists as an approximation for

data collection, which is based on the assumption that objectivity cannot be achieved by

the researchers behaving in the same way, but rather by their behaving context-specifically

and thus creating the same inner situation. In case of data analysis the concept created to

approximate objectivity in qualitative research is intersubjectivity, which expresses that a fact

is equally recognizable and comprehensible for several viewers. Further criteria according

to Mayring [May16] to increase objectivity in case of qualitative research are rule guidance

and procedural documentation.

Reliability Reliability refers to the dependability and consistency of an investigation. An

instrument is reliable if it delivers the same or similar results with a relatively constant

behavior [HSE13; Ren+12].

For quantitative research, this usually means that studies can be repeated and that the results

are the same or similar if the reliability is high (repetitive reliability). This concept is

rather counterproductive for qualitative research, since it emphasizes the uniqueness of each

(research) situation and partly assumes that, for example, the participants change in the

course of the research process. Nevertheless, in qualitative research, interrater reliability,

consensus among the researchers and procedural documentation lead not only to increased

independence from the researcher, but also to a reduction in the susceptibility to errors. The

very quality targeted by reliability.

20 Chapter 1 Preliminaries

Validity concerns the extent to which a study measures what it intended to measure [Ren+12;

HSE13].

This quality criterion is important for quantitative as well as qualitative research. In general it

can be broken down into internal and external validity. Internal validity concerns the degree

a study was successful in eliminating potential confounding variables. This is something

closely related to explanatory (respectively hypothesis testing) studies and therefore usually

not of interest for qualitative studies.

External validity or Generalizability "refers to the extent to which a study’s results apply

to a wider range of people and settings than those actually studied. As a result, qualitative

researchers have often employed the concept of ‘transferability’; this concept does not imply

that results can uncritically be generalized, but that they may apply more broadly, depending

on differences in the nature and context of the situation to which they are transferred" [MR15].

As can been seen in this definition of external validity it can be distinguished between

generalization of the results to the basic population and to other situations. Although

a statistical generalization regarding the population is intended in quantitative research,

qualitative research usually does not have this as goal and uses such a small sample that it is

not possible at all. The generalization of the results to other situations on the other hand

is firmly coded in the basic principles of qualitative research by researching the research

subject in its natural habitat and not changing it actively. This is in contrast to quantitative

research, which often can not rely on the natural setting or has to manipulate the research

subject in order to eliminate potential confounding variables.

As already mentioned in the descriptions of these three quality criteria, it is usually not

possible to have all criteria in their highest quality. Instead, it has to be decided which criteria

should be prioritized higher and what is an acceptable quality according to the research

situation. Helfferich [Hel11] provides an initial guidance of whether quantitative research

methods or qualitative research methods should be used:

”Qualitative research methods justify their approach in contrast to quantitative methods with

the special character of their subject matter: Qualitative research reconstructs meaning or

subjective views [...]. Their research mission is understanding, working with linguistic

utterances as ’symbolically pre-structured objects’ or with written texts as their ’coagulated

forms’. The object cannot be grasped through measurement, i.e. through the methodological

approach of standardized research.”

An example from our side for differentiating the need between quantitative and qualitative

research is the conducting of a survey on how many companies perform agile software devel-

opment. One could ask the companies whether they work with agile software development

and offer only the answer yes/no. This can be used to make a quantified statement about

1.3 General Research Approach 21

how many companies claim to work with agile software development. The problem here

is that we do not know what the individual companies understand by this. So it can be

that a company works very strongly with agile software development, but still answered

with no. The reason for this can lie in a very detailed understanding and not reaching one’s

own standards. On the other hand, a company may have answered yes because it started

programming randomly in a small project without any requirements. Understanding and

elaborating these individual perspectives is the purpose of qualitative research.

1.3.2 Our Research Approach

With this knowledge about the basic features of scientific research methods, we come back

to the question how we want to work on our research question ”How can unique and novel

software-based solutions be developed that provide users with value in the actual context of

use?”. First of all, if we examine the question, it is an explorative and not an explanatory

or descriptive research question. We do not hypothesize that something is different from

something else, want to give evidence that something works in a certain way or just trying to

describe a state. We ask how something could work, we are trying to reconstruct meaning.

This reconstructing meaning is exactly the area for which qualitative research is used.

Furthermore, we have already identified initial indicators that suggest that a solution to this

question would have to produce alternatives and include them in an evaluation step. To pro-

vide evidence that this is indeed the case, we would need a functioning development approach

for this and compare it with a traditional approach (e.g. Scrum). In our introduction and

objectives we have already suggested that the probably best solution for this is to experiment

with different alternatives to uncover dependencies and constraints (see section 1.1.1). This

is based on the insights from the Cynefin Framework as well as the research methods of other

disciplines to make sense of not well understood contexts. As already mentioned, however,

such an approach did not seem possible so far (cf. section 1.1.3) and current approaches

primarily aim at incremental innovation rather than reconstructing meaning using software

(cf. [NV14]). Therefore, the first step must be to work out what is necessary in software

development to be able to work like this. For this we assume, without proving it, that the

findings from the Cynefin Framework and the other disciplines for reconstructing meaning

can be transferred to software development (our first axiom). Once such an approach has

been developed, work can be done to substantiate or disprove the transferability.

In the spirit of the British HCII reviewer to prevent the thesis from becoming too voluminous

and having too many inter-related aspects, we focus in this work on identifying, understanding

and describing phenomenons related to the development of unique and novel software-based

solutions as well as providing evidence for the general feasibility of such an approach. We

22 Chapter 1 Preliminaries

are not interested in conclusively proving that an accordant approach is better suited than

already existing modern software development methods, but rather that the feasibility is

given and reasonable.

Since our focus is on developing such an approach, we assume on the basis of our first axiom

that we still have to uncover dependencies and limitations. On the one hand, this means

that quantitative studies cannot be carried out at an acceptable level regarding reliability

and validity. On the other hand, purely theoretical considerations make little sense as they

cannot yet be aligned with the research subject. Instead, the emphasis is on understanding

and elaborating this context and therefore having a high external validity. This requires

little to no obstruction of the research subject. One way to choose an appropriate research

method for this is the ABC framework by Stol and Fitzgerald [SF18]. They use the variables

obtrusive research and universal contexts and systems to divide research methods into

the four quadrants natural settings, contrived settings, neutral settings and non-empirical

settings. According to this classification, best suited for our requirements are methods from

the quadrant of natural settings like field studies and field experiments. One such method

that falls into this quadrant is Action Research [Lew46].

What is the difference of Action Research to other methods that makes it more suitable?

To this end, we must first distinguish between two basic research directions. Stol and

Fitzgerald [SF18] distinguish between Knowledge-Seeking Research and Solution-Seeking

Research. The main difference is that the former attempts to describe a status quo and

therefore has its focus on phenomenons and characteristics, while the latter tries to develop

or improve solutions that can help to overcome challenges e. g. in the development of

software systems and supporting processes. Action Research has manifested as critique to

most empirical methods who only attempt to observe the world as it currently exists without

trying to solve real-world problems. Instead, Action Research tries to ”solve a real-world

problem while studying simultaneously the experience of solving this problem” [Eas+08].

It can therefore be classified as Solution-Seeking Research, the kind of research implied by

our research question.

Action Research facilitates an approach that aims to intervene in the studied situations for

the explicit purpose of improving the situation. It is aligned to a learning cycle where you

try to incrementally and iteratively improve your problem and solution understanding. But

therefore, the results created with this method are closely linked to the studied situation.

This means that the transferability to other situations is only given to a limited amount. On

the other side, the external validity is quite high with this method. The latter one is more

important for us than the transferability because of the way we use Action Research as a

foundation for further literature research trying to explain phenomena with existing scientific

knowledge.

1.3 General Research Approach 23

We assume that most phenomena affecting the development of unique and novel software-

based solutions have already been described or explored in more detail. Hence, our first

priority is not to describe the current status quo but to become aware of these phenomena

in order to identify them in the corresponding disciplines. We use Action Research in

an iterative and incremental way to approach our solution by introducing subgoals and

learning from trying to achieve these the underlying constraints and dependencies. These

constraints and dependencies are further elaborated with a literature research to identify

possible requirements. Therefore, for this use case, transferability of the results on the Action

Research stage is not necessary as it is the input for a literature research identifying already

well-documented evidences. In concrete terms, our main instantiation of Action Research is

an inquiry-based learning approach with a student project group1.

In the master’s programme in computer science at the Paderborn Universtiy, a practical

project for the students, in the following called project group, is scheduled. It has a volume

of 20 ECTS (30 ECTS till September 2017) and is spread over two semesters. In accordance

with the framework guidelines, teamwork and organisation will be tested in practice in a

group of up to 16 students. The students will get to know an extensive development process

in their own experience in a team and will be supported in their personality development.

In terms of content, they are introduced to current research topics that typically originate

from the organiser’s field of interest. In our case, this is the software development process.

However, it is difficult to explore this process without a surrounding framework, especially

by students who do not yet have the experience knowledge of an expert [Ben84].

Our project group was therefore mainly embedded in the context of the History in Paderborn

App (HiP-App), which is primarily about the development of an app that makes the history

of Paderborn accessible in an appealing way. This helps the students to focus on a concrete

goal and to gain experience in the development of software systems in such environments.

In addition, they should learn how to build a formative research process for the research

of the software development process and the product (inspired by the ideas of Action

Research [Lew46], Grounded Theory [Str+96], and Design Thinking [PML10]). This results

in the project group considering the three research subjects product, software development

process and research process.

Since the examination regulations do not provide for a continuous course, the project group

is designed in such a way that a new one can be started each semester and two project groups

can formally overlap. This gave us an average of 16 students per semester, divided into

two teams. One team consists half of students who have already completed one semester

and half of new students. Thus, the project group renews itself every semester and the

students have the possibility to practice the knowledge transfer, but also to critically question

1This has been published and discussed on the conference Forschendes Lernen - The wider view, 2017 [SOF18]

24 Chapter 1 Preliminaries

their own procedures. To support inquiry-based learning by the students, we primarily

use retrospective meetings, student discussions, task forces, steering meetings and design

thinking workshops.

The retrospective meetings or sprint reviews are a method from Scrum (Schwaber & Beedle

2002). In Scrum, as in our case, we have subdivided the development activity into fixed

time blocks, so-called sprints. After each sprint (usually one week) the teams analyse the

positive and negative measures and discuss their improvement. The results are recorded

in meeting notes in a wiki system and thus serve as a formative evaluation of the software

development process. In addition, the current challenges are regularly discussed with the

organizers in a steering meeting across teams.

Furthermore, individual discussions take place each semester between the students and

the organizers. These are based on appraisal interviews [WH10]. In the first discussion at

the end of the semester, goals for the next semester are set together with the student, the

familiarization in the project group is discussed and impulses for own reflection and further

development are set. This is deliberately done at the end of the first semester so that the

students have a more realistic picture of what can be achieved in the project group. In the

second discussion, the students reflect on what they have learned and the changes they have

experienced since the beginning of the project group.

With the help of the task force, impulses are given for professional discussion in various

areas such as requirements analysis, architecture or quality assurance. This takes place

in close cooperation between the students and the organizers and serves to ensure that, in

addition to product development, subject-specific research is not lost sight of.

In conjunction with students of cultural studies, we also conducted design thinking workshops.

In this way, students learn to work together on an interdisciplinary basis and to question their

own views and approaches. In this way they also learn a research process that iteratively

develops, evaluates and improves products and ideas.

With this setting of a project group doing inquiry-based learning, we iteratively approached

our goal of a software development approach for unique and novel software-based solutions

term by term. We started the project group in December 2014 and finished the last round in

September 2019. During this period we had a total of 71 students who participated in the

project group. But more importantly, we tried out each term new aspects and learned from

them (for a full list see Table 8.1 in section 8.1).

In supplement to the group work, a seminar was part of the project group. At the start

of the project group this seminar was scheduled right at the beginning but changed in the

following semesters. Then, each student that freshly joined the project group had around

half a semester to get accustomed to the project group. Afterwards the student had to

1.3 General Research Approach 25

work out a seminar topic in coordination with the supervisors and the other team members

that should reflect and overcome current challenges in the project group (for a full list

see Table 8.2 in section 8.1).

These illustrates quite good the broad topics in the project group that arise because of the

setting. It was not just the pure focus on developing a research tool, but developing a product

and learn from that about product development itself but also how to research a software

development process via Action Research. This undermines as well that this setting has a

high external validity as problems from the pure product development arose as well.

Besides our Action Research cycle based on insights we gained from the project group and

then further elaborating on them with a literature research, we had two additional projects we

used to gain insights and as a case study regarding the feasibility of chosen aspects. These

projects are a Firefighter Training System [SFS14] and the centre for music edition and media

(ZenMEM) [Mei+16b]. Furthermore we switched the project group from the HiP-App to

the OWL.Culture-Portal in October 2018 as part of the reboot. For further information about

how we did the case studies and our gained insights from the project group have a look at

chapter 8.

In response to our initial question as to whether it is at all possible to conduct research in this

domain, we can clearly answer yes. But as our discourse on scientific methods has shown,

most of the methods are not applicable to our situation. We have not sufficient knowledge yet,

so it is not guaranteed that theoretical considerations are already aligned with the research

subject. Quantitative methods have the problem that for a high reliability and validity, they

need sufficient knowledge as well. Therefore, qualitative methods are particularly suitable

as we try to understand the context. For the reason of understanding, our main quality

criterion is external validity. Which is why we decided for an Action Research inspired

research approach with a inquiry-based learning project group. This ensures high external

validity, allowing dependencies and limitations to manifest themselves and enabling us to

become aware of such phenomena. But as we assume that most phenomena have already

been well-documented in other contexts, we don’t need a strong transferability as we are

using the inputs from the project group for a literature research to reveal well-documented

evidences for the phenomena. Furthermore, by using this research approach iteratively, we

can incrementally develop and evaluate our approach in a case style manner in respect to

feasibility. For this we also use other projects.

26 Chapter 1 Preliminaries

1.4 Overview of Publications

As already described in the research approach, this work was not done in a waterfall-like

research style, but in an iterative style based on action research. The seed for this research

was work [Klo+11; Böc+11; Mei+16b; FS16; FSS17] in the area of innovative software

systems which lead to the questioning if current approaches are actually sufficient for such

systems. In [SFS14] we explored firefighter training as a mostly analogous area for possible

digitalization potentials which lead to insights about the adoption of innovations and with that

about the importance of tangible prototypes early in the requirements phase. Furthermore,

this is the foundation for our application case study regarding the adoption of innovation

theories in software development (presented in section 8.2) and one of our main assumptions

for ICeDD that we also need to experiment with different software alternatives and not just

non-software prototypes.

Based on these findings, we have developed initial approaches [SO16; Mei+16a; Mei+16b;

Fis+18] to make the problem of tacit knowledge, which occurs frequently in unique and

novel software-based solutions, manageable by focussing more on the full learning cycle

instead of just creating software like it is the case in agile software development. In addition

to these approaches, we have also experimented with Design Thinking [Gre+16] which

lead in conjunction with the approaches to our solution concept [Sen+19] which we present

in section 3.1.

As the initiation of Design Thinking and therefore our approach proved to be challenging, we

have developed with on-site feature requests and feature requests from systematic analysis

two approaches to support with this task. On-site feature requests [Sen+18] is basically

an assistance system for users to enable them to use requirements engineering methods to

create more informative feature requests which can later on be used by the value designer

to create design challenges. Feature requests from systematic analysis [BMS20; Mei+16a]

is based on grounded theory and has its goal in refining information based on an iterative

process conducted by the value designer.

Furthermore, in [BBS16], we have initially discussed the need for need for evolutionary

software systems to be able to cope with change, especially in case of unique and novel

software-based solutions that tend to change quite rapid in contrast to already well-established

systems.

We presented our research approach based on action research in conjunction with a continu-

ously running student project group in [SOF18] and put it up for discussion.

1.4 Overview of Publications 27

1.5 Overview of Thesis Structure

In Figure 1.7, we give an overview of the thesis structure. The thesis is separated in essentially

three parts, namely Preliminaries & Foundations, Solution, and Evaluation & Epilog.

Preliminaries Foundations

Solution Concept

On-Site Feature Requests
Feature Requests from Systematic

Analysis

Design Thinking Instance

Design Thinking Requirements Framework

People, Project, Product, and Process Tools

Evaluation (Case Studies) Epilog

Chp. 1 Chp. 2

Chp. 8

Chp. 3

Chp. 9

Chp. 4

Chp. 5

Chp. 6

Chp. 7

Fig. 1.7.: Overview of Thesis Structure

28 Chapter 1 Preliminaries

Chapter 1 contains the preliminaries with the introduction, the research question, research

approach and publication overview.

In Chapter 2, we are presenting the foundations regarding our general solution concept which

includes Diffusions of Innovations and Design Thinking. Further foundations that are not

linked to the overall solution approach are presented if needed for the single stages in the

Solution part.

The Solution part consists of the overall solution concept in Chapter 3, which is a brief de-

scription of our approach ICeDD, and a chapter for each stage of ICeDD except optimization

as it is included only to highlight the transition to approaches optimized for incremental

innovation.

Chapter 4, which is describing the initialization stage to find a good design challenge is

further broken down into On-Site Feature Requests and Feature Requests from Systematic

Analysis.

Chapter 5 explains how we used Design Thinking with non-software prototypes including

how we adapted it to make it fit to software development in ICeDD. As we are producing

mainly non-software artifacts like paper prototypes and not necessarily a complete require-

ments in this stage, we need a further refinement of the artifacts in this stage to be able to

use them in software development.

This preparation stage is treated in Chapter 6.

The last chapter in this part is Chapter 7 which handles the integration of Design Thinking

into the software development process. As it is an adaption of a software development

process, we have used the 4Ps (people, process, product, and project) from the unified

software development process to further break it down. Part of the 4Ps are also tools that are

necessary to automate the process to make it feasible, which are presented for our approach

in this chapter in the Tools section, which also concludes this chapter.

In the next part Evaluation & Epilog we begin with Chapter chapter 8 which includes the

case study for our overall research approach in section 8.1, an application case study to

evaluate if the assertions from innovations theories can be applied to software development

in section 8.2, and finally our main case study in section 8.3 which give evidences that

ICeDD is feasible.

In Chapter 9 we discuss the fulfillment of the fitness function regarding ICeDD and summa-

rize our main contributions. Finally, we sketch future work by conducting further studies

regarding efficiency and effectiveness of ICeDD, further refinement of the tools to make the

approach more viable as well as the planned usage of ICeDD in a funded project phase of

the OWL.Culture-Platform.

1.5 Overview of Thesis Structure 29

Foundations 2
In this chapter, we give an overview of foundations relevant to the understanding of the

overall software development approach we have devised in this thesis. As already mentioned

in the introduction, an understanding of what unique and novel software-based solutions

mean for software development is essential. For this purpose, we present in section 2.1

the Diffusion of Innovations theory of Rogers [Rog10]. Roger’s work, although already

published in the 1960s, is one of the most cited works in this field and its basic assumptions

are still used in today’s textbooks on the subject, e.g. by Jürgen Hauschildt [Hau+16],

one of the most renowned innovation researchers in Germany. Furthermore, we present

in section 2.2 the basics of design thinking. As we have mentioned in the introduction, for

the development of unique and novel software-based solutions it is essential to act and probe.

Design thinking is a mean to do this systematically, but it is yet unknown how to apply it to

software development.

2.1 Diffusion of Innovations

„An innovation is an idea, practice, or object that is

perceived as new by an individual or other unit of

adoption. It matters little, so far as human

behavior is concerned, whether or not an idea is

”objectively” new as measured by the lapse of time

since its first use or discovery. The perceived

newness of the idea for the individual determines

his or her reaction to it. If an idea seems new to the

individual, it is an innovation.

— Everett M. Rogers

[Rog10]

Innovation according to Rogers means that something is seen as novel by an individual

or a group. It is irrelevant whether individuals or groups already exist who no longer

regard it as novel. Not even the time is important for this. It is only about the subjective

31

perception of individuals or groups, whether something is regarded as innovation / novel or

not. Innovations can be ideas, practices or objects.

The understanding of innovation is elementary for the correct method selection, documenta-

tion methods and interpretation of results in the context of the development of innovative

systems. At the beginning of the development of innovative systems, such as the Internet,

there may be no or other user needs and only with the development and diffusion do new

needs and ideas emerge.

In addition, researchers can come across application partners or discussion/test persons who

interpret innovations in completely different ways. This is shown by an example in the book

Diffusion of Innovations by Rogers [Rog10], which at the same time is the basis for this

section.

An example of this is a project of the Peruvian government to help the inhabitants of a small

village to increase their health and life expectancy. An important element was to convince

the inhabitants to boil their water before drinking it. The reason for this is due to the fact that

the inhabitants use water sources that show signs of pollution and thus have an increased

risk of waterborne diseases. Although this problem could be solved by a water treatment

plant, it is too expensive for the village.

After a two-year water boiling campaign, during which, among other things, discussions with

doctors clarified the situation, only eleven of the 200 families in the village were persuaded

to boil their water before drinking. According to Rogers, three types can be identified in

this example. First, the custom-oriented adopters who boil water because they are ill and

because it is common in their culture to avoid extremely hot or cold medicine / goods as

sick people. Water is considered extremely cold if it has not been boiled. If they were not ill,

they would never drink boiled water, as they were taught from childhood that it was only for

the sick.

The second group is made up of persuaded adopters, who feel that healthcare professionals

are friendly, that the knowledge they bring with them is useful, and that they bring with

them protection from uncertain dangers. As an example, Rogers cites a family who moved

to the village from the plateau a generation ago. This gives the family an outsider status,

and they don’t have to worry about damaging their status.

The last group are the rejectors, which is the largest group in this example. They do not

understand the theories behind bacteria and argue that something so small that it is impossible

to see, cannot harm something as big as a human being. And there would be enough real

dangers, like hunger or poverty, to worry about. [Rog10, pp. 1]

32 Chapter 2 Foundations

For the development of uniqe and novel software-based solutions, it can be assumed, among

other things, that the diffusion process and the reliability of information sources must be

taken into account. Therefore, these two aspects will be explained below.

Diffusion

These novel ideas, practices or objects do not spread arbitrarily or abruptly, but are subject

to a certain regularity. The process that describes this is defined by Rogers as diffusion

and consists of four main elements. An (1) innovation is communicated through certain (2)

channels over (3) time between the members of a (4) social system. According to Rogers,

these four elements can be found in any study on diffusion research.

1. Innovation can be divided into 5 attributes that influence diffusion:

1. Relative Advantage is the degree to which an innovation is perceived as better than

the idea to be replaced. At this point, it is not important whether the innovation

provides objectively large advantages, but whether it is perceived as advantageous by

the individual. The more advantageously an innovation is perceived, the faster it is

accepted.

2. Compatibility is the degree to which an innovation is perceived to be compatible with

the current value system, past experiences and adaptor needs. If an innovation is

incompatible, an adaptation often requires a new value system, which to adapt is a

relatively slow process. Therefore, compatible innovations are accepted faster than

incompatible ones.

3. Complexity is the degree to which an innovation is perceived as difficult to understand

and use. Innovations that are easier to understand spread faster than innovations that

require the adopter to learn new skills and knowledge.

4. Trialability is the degree to which an innovation can be tried out. An innovation that

can be tried out is less uncertain for the individual.

5. Observability is the degree to which the results of an innovation are visible to others.

The easier it is for individuals to see the results of an innovation, the more likely they

are to adapt them.

2.1 Diffusion of Innovations 33

2. Communication Channels are the paths through the messages from one individual is

to reach another. The path through the channels of the mass media is more effective when it

comes to imparting knowledge about innovations, whereas the path through interpersonal

communication is particularly suitable for shaping or changing attitudes towards innova-

tions. Consequently, this influences the decision to accept or reject an innovation. For most

individuals it is true that they evaluate innovations on the basis of close colleagues and not

on the basis of scientific knowledge. Therefore, these colleagues serve as role models so to

speak.

One challenge in communication is the fact that most communication takes place between

people who share certain characteristics, since such situations lead to more effective com-

munication. In diffusion processes, on the other hand, the situation of having two dialogue

partners with different characteristics is more common and with it an effective communi-

cation gets more difficult as they first need to understand what the other partner is actually

referring to.

3. Time is involved in the innovation decision-making process, innovation and adaptation

rate. The innovation decision process can be divided into the parts knowledge, opinion,

decision, implementation and confirmation. In the first part an individual learns about

the existence of an innovation and makes first experiences with it. In the second part, the

individual forms a benevolent or not benevolent opinion about the innovation before it comes

to the activities that lead him to decide for or against an innovation. Once the individual has

opted for the innovation, it begins to use it and possibly re-evaluate it at a later point in time.

Innovation indicates how early an individual is in the adoption of an innovation relative to

other individuals.

The rate of adaptation indicates the speed at which an innovation is accepted by members of

a social system.

4. Social System is defined as coherent units that together pursue a common goal. A

social system is characterized by a structure that is defined by the systematic agreements of

the units of a system and gives it stability and regularity in relation to individual behavior in

the system. An important aspect of the social structure are norms that represent established

patterns of action for members of the system.

Three types can be distinguished with regard to opinion forming and innovation decisions.

In the case of the optional decision whether an innovation should be accepted or rejected,

it is made independently of decisions of other members of the system. With the second

type, the collective decision, it is made on the basis of a consensus of the members of a

system. The last type of decision is the authority. Here decisions are based on the judgment

of relatively few individuals who possess power, status or technical expertise in the system.

34 Chapter 2 Foundations

The degree is expressed by opinion leadership, which describes the extent to which a single

individual can informally influence other individuals.1

The complexity of the factors influencing diffusion that have been presented so far means

that individuals in a social system do not all accept an innovation at the same time. Rather,

individuals accept the innovation in a temporal sequence that allows for subdivision into

different adopter categories based on the time at which they first used a novel idea [Rog10,

p. 267].

100%

50%

0%

Qualitative Time

Fig. 2.1.: S-Curve illustrating the generalized adoption of an innovation.

A generalization for the distribution of adaptors that Rogers has set up, states that they

tend to follow an s-curve, as shown in Figure 2.1, over time and approach a normal distri-

bution [Rog10, p. 298]. How exactly this s-curve runs and really hits the 100% depends,

however, on the innovation itself and external factors such as communication or the social

system.

For validating possible unique and novel software-based solutions (like in the Netflix example

in section 1.1), this s-curve means that for the interpretation of results and requirements an

assessment must be made of how widespread an innovation is already in order to be able to

assess the significance of the results.

If an innovation for a social system is relatively novel and not yet very widespread, then this

may mean that, for example, the relative advantage or observability from the point of view

of most individuals of the system under consideration is not yet given. In the case of surveys

on the added value of innovation, most would answer rather negatively, because otherwise

they would have accepted the innovation (if this were the only two reasons). From this it can

be assumed that results must be critically questioned at the very beginning of the diffusion

of an innovation in order, for example, not to reject an innovation that can provide added

value on the basis of subjective perception.

1The statements in this part are based up to this point on [Rog10, pp. 1–37]

2.1 Diffusion of Innovations 35

However, these information about the diffusion of innovations may not be sufficient for

developing unique and novel software-based solutions. In order to save resources, for

example, in the early phase only those members of the social system should be taken who are

very innovative, since they are more open to the novel ideas and are later to function as role

models / multipliers within the framework of a large field trial for the other individuals.

To this end, a categorisation must be introduced that classifies the members of the social

system on the basis of their innovativeness. One method of doing this categorization took a

dominant position in the early 1960s, namely categorization based on the s-curve [Rog10,

p.272, p.297].

Adopter/User Categorisation

In order to be able to carry out a categorization, it must be decided how many adopter

categories are used, what proportion of the total social system is assigned to each category

and according to which methodology this should be done [Rog10, p.279].

Ideally, the division into adopter categories should be complete, mutually exclusive and de-

rived from a single classification criteria. Complete in this context means that all individuals

of a considered social system can be assigned to a category. In addition, mutual exclusion

prevents an individual from appearing in two different categories. [Rog10, p.280]

These requirements are met, among other things, by criteria that can be represented by

continuous functions. In this case, for example, the output values of the function could be

assigned to different categories according to a division of the value ranges. Innovativeness

of an individual is a criterion that can be presented in this way.

This is due to the relativity of the comparison of one individual with the other individuals in

the social system with respect to the time at which an innovation was accepted. As a result,

it can be determined for each individual whether it is more or less innovative than others in

the social system. The partitioning into discrete categories in such cases is only conceptual,

similar to the classification of automobiles into small car class, lower middle class, middle

class, upper middle class, upper class and luxury class. Such a classification simplifies the

understanding and results in a loss of information. [Rog10, p. 280]

As a result of the approximation of the s-curve for the distribution of the adopters over

time to a normal distribution, this can be represented as a density function of a normal

distribution. The density function in this case would be innovativeness of an individual with

the consequence that on the left side it is indicated how many individuals are particularly

innovative and on the right side how many are not at all.

36 Chapter 2 Foundations

The normal distribution has some useful properties that help with classification. For example,

the average x is always in the middle of the distribution and the width can be specified

using the standard deviation �. The latter is because in a normal distribution, the function

is mirrored on the other side of the average. This also makes it possible to determine how

many percent of the measured values are within a range defined by the standard deviation.

The ±� interval would contain about 68% of all measured values and the ±2� interval about

95% of all measured values.

Rogers used these two statistical properties, the mean value (x) and the standard deviation

(�), to divide the normal distribution of the adaptors into five categories. This methodology

is said to be the most widely used, if not the only one, in diffusion research today. It fulfils all

three principles proposed by Rogers. The five categories are complete (with the exception

of non-adopters), mutually exclusive, and derived on the basis of a single classification

principle. [Rog10, pp. 280–282]

Innovators

Early Adopters

Early Majority

Late Majority

Laggards

2,5 % 13,5 % 34 % 34 % 16 %

Fig. 2.2.: Density function of the normal distribution with drawing of the individual Adopter

categories and their share in the total quantity.

Figure 2.2 shows the five categories Innovators, Early Adopters, Early Majority, Late

Majority and Laggards. Terms like Innovators and Early Adopters are widely used and

understood by the public [Rog10, p. 282].

Innovators represent 2.5% of the total amount and are in the interval [−∞, x−2�]. The early

adopters with 13,5% is in the interval [x − 2�, x − �]. On the other hand, the laggards with

16% in the interval [x+ �,∞] represent the asymmetric counterpart. In between, the largest

groups are the early majority and late majority with 34% each in the interval [x − �, x] and

[x, x + �].

That this categorization is not symmetrical in the sense that there are as many large categories

to the left as to the right of the mean (x) is due to the large differences within the groups

innovators and early adopters, which are not found in the group of laggards [Rog10, p.

281].

2.1 Diffusion of Innovations 37

In the following, the categories are presented as ideal types2. According to Rogers these are

based on observations of reality and are designed to allow comparisons. Ideal types are not

an average of all observations concerning an adopter category, but are based on abstractions

of empirical investigations. Therefore, exceptions to the ideal types can be found. [Rog10,

p.282]

Innovators have as their most prominent characteristic their adventurousness, which is

almost an addiction and is based on their desire for the bold, daring and risky. In view of

their interest in novel ideas they break out of the local circle of colleagues and have rather

cosmopolitan social relations. Friendship with other innovators is common, regardless of

the geographical distance between individuals. Innovators have to meet some preconditions.

They should have sufficient resources to compensate for any losses caused by unprofitable

innovations. They also need the ability to understand and apply complex technological

knowledge. In addition, they must be able to deal with great uncertainties about innovation,

because setbacks in innovation at an early stage are inevitable. Although innovators are not

necessarily respected by other members of the social system, they play an important role in

diffusion. By introducing innovations from outside the social system boundaries, it triggers

novel ideas within the social system.

Early Adopters are better integrated into the social system than innovators, as they are less

cosmopolitan, but more local. Early adopters have the highest degree of opinion leadership

in the social system compared to the other groups and they know this, which is why they try

to maintain a central position in the communication channels. They are consulted by other

individuals when it comes to adopting innovations, as they are not too far from the average

on this issue. They are respected by their colleagues and are regarded as the epitome of the

successful and discreet use of novel ideas. Therefore, they serve as role models and help to

reach critical mass. Early adopters reduce the uncertainties of others about a novel idea by

adopting it and provide their colleagues with a subjective assessment of the adoption via

interpersonal networks.

Early Majority adopts novel ideas before the average member of a social system and is

one of the largest groups. Due to their central position in the distribution, they play an

important role in the diffusion process. They provide the connections for the interpersonal

networks of the social system. Despite their frequent interactions with colleagues, they

seldom assume the position of opinion leadership in the social system. The duration of their

innovation decisions is seen longer relative to the innovators and the early adopters; they

2Based on the descriptions of Rogers [Rog10, p.282ff]

38 Chapter 2 Foundations

think thoroughly. Their credo is ”Be neither the first to try something new, nor the last to set

aside the old”.

Late Majority makes up exactly like the early majority 1/3 of the total population, with

the individuals in this group accepting innovations only after the average member. They are

sceptical about innovations and do not accept them until most others have done so. Their

motivation to accept an innovation is mainly derived from two things. On the one hand the

economic necessity and on the other hand the increasing pressure from their colleagues.

Late majority individuals have relatively scarce resources. As a result, most uncertainties

must be removed before they feel confident about accepting an innovation.

Laggards are the last in the social system to accept an innovation. They have almost no

opinion leadership and represent the group with the strongest local orientation, sometimes

even so far that they are almost isolated in the social networks of the social system. Individuals

in this group often interact only with people who think similarly traditional as themselves.

Their point of reference is the past and so their decisions are often based on what has been

done before. Their innovation decision-making process takes a relatively long time and is

lagging behind the known knowledge about innovation. They also tend to be suspicious of

innovation. This is partly due to their precarious economic situation, which forces them

to be extremely cautious when it comes to accepting innovations. Resistance to these can

therefore be completely rational from the laggards point of view.

This classification into the five classes Innovators, Early Adaptors, Early Majority, Late

Majority, and Laggards helps us to interpret results we got from validating unique and novel

software-based solutions as well as to carefully select participants we do these validations

with. To be able to choose in which category an individual possibly falls, Rogers has accumu-

lated variables related to innovativeness after extensive literature research. He summarized

these as generalizations under the three headings (1) Socioeconomic status, (2) Personal

variables and (3) Communication behavior. For more details about the generalizations, you

can look directly at [Rog10, p. 287 - 292].

In summary, the findings that can be drawn from diffusion research for the question of unique

and novel software-based solutions are that users and discussion partners for innovations

have to be carefully selected and the strategy with regard to method and evaluation adopted

accordingly. This is essential for an acting and probing approach (as required for unique and

novel software-based solutions, cf. section 1.1.1 and section 1.2) regarding domain related

innovations as it requires regular validating of the proposed solutions with real users. In

addition, requirements and statements can change during the diffusion process.

2.1 Diffusion of Innovations 39

2.2 Design Thinking

Besides the innovation theory in general that we introduced in the previous section, under-

standing design thinking as a systematic way to act and probe as well as to create unique and

novel solutions is essential for understanding the developed software development approach

in this thesis. In the following, we will present the basics of design thinking as it is a well-

researched process (see e. g. the ’Understanding Innovation’ book series at SpringerLink3)

for acting and probing that is also already in use in industry (e. g. at SAP4 or IBM5).

Design Thinking describes first and foremost the way of thinking in the discipline of design.

As Dorst [Dor11] points out, there is an "[...]incredibly diverse array of design practices[...]",

with multiple perspectives and rich pictures which led to different modes of design thinking.

Only by the demand of using this paradigm for dealing with problems in many professions,

the urge rose to have a clear and definite knowledge about design thinking. However, this is

problematic for the design research community, which is shy of oversimplifying its research

object. Nevertheless, there are some key aspects that we will present here.

The core of design thinking "[...]is the need to create ideas and find solutions, which are as

viable as possible for certain groups of users" (cf. [LMW11]). It is about finding innovations

that work and for that it is crucial to align the different perspectives on a product. The

very basic interdisciplinary view on this is the triad of desirability, feasibility, and viability

(see Figure 2.3) like Weiss [Wei02] for example proposes. Desirability describes what

motivates / delivers value for the users and therefore needs an understanding of how people

interpret and interact with the things they encounter in the world. Feasibility is about

the technology and how to use it, so that a meaningful product for the user is created.

Viability means the alignment with the organization’s strategic objectives and competitive

positioning.

Lindberg, Meinel, and Wagner [LMW11] argue therefore that as design thinking tries "[...]to

offer a very concrete solution to a complex problem that is socially highly ambiguous and

hence neither easy nor certain to comprehend", its problems are close to wicked problems,

blurred in character and not definitely definable. Dorst [Dor11] uses an analogy to the

epistemological steps described by Peirce to explain what solving problems in design means.

He puts up the equation "What (thing) + How (working principle) leads to Value (aspired)"

to describe the human problem solving. If the "What" and "How" are known but not the

"Value", we can predict the result or value, which is deduction. On the other hand if the

"What" and "Value" are known and the "How" is missing, we can propose working principles,

3https://link.springer.com/bookseries/8802
4https://experience.sap.com/skillup/introduction-to-design-thinking/
5https://www.ibm.com/design/thinking/

40 Chapter 2 Foundations

https://link.springer.com/bookseries/8802
https://experience.sap.com/skillup/introduction-to-design-thinking/
https://www.ibm.com/design/thinking/

Human
Factors

Desirability

Business
Factors
Viability

Technical
Factors
Feasibility

Fig. 2.3.: Innovation Triad based on Weiss [Wei02]

which is induction. This leads us to our problem solving for finding the "What", or in our

terms the solution / product. If we know the "How" and the desired "Value", we can create

a design that works within known working principles and for a scenario of known value

creation. But design problems are more associated with a more open form of this, where

neither the "What" nor the "How" are known.

In order to face this situation, in which neither the solution nor the working principles are

known, there are two fundamental pairs of terms that are indispensible for Design Thinking:

problem and solution space on the hand and diverging and converging thinking on the

other. These two pairs are often illustrated as so-called Design Thinking Double Diamond

(cf. [Nor13] or Figure 2.4 for a possible variant). The basic idea is that problem and solution

space are iteratively explored and aligned with the help of diverging and converging thinking

in each space.

According to Lindberg, Meinel, and Wagner [LMW11] this is a fundamental difference

between Design Thinking and science. Science would primarily explore the solution while

working with an initial problem, whereas Design Thinking sees both solution and problem

as something to be explored. Furthermore, sciences analytical thinking takes a problem and

divides it in smaller problems till a solution can be found, whereas Design Thinking creates

new options before selecting the most suitable.

With the Design Thinking Double Diamond we have the phases of design thinking but not a

process to run through it. Norman [Nor13] introduces for that the human-centered design

process that consists of the four activities:

1. Observation

2. Idea generation (ideation)

2.2 Design Thinking 41

? !

Observing & Synthesizing

Exploration of the
problem space

Exploration of the
solution space

Ideating & Prototyping

converge

convergediv
erg
e

div
erg
e

Fig. 2.4.: Problem and Solution Space in Design Thinking including diverging and converging

Thinking. Own illustration based on Lindberg, Meinel, and Wagner [LMW11]

3. Prototyping

4. Testing

These four activities are iterated over and over in order to gain insights and getting closer to

the desired solution. To emphasize that with each iteration progress is made, it is also called

spiral model. This is the most basic form, which is often refined to five basic activities or

stages visualized as the design thinking micro cycle (cf. Figure 2.5). The single stages as

defined by [@DS19; @Doo+18] are Empathize, Define, Ideate, Prototype, and Test.

Empathize

Define

IdeatePrototype

Test

Fig. 2.5.: Design Thinking Micro Cycle

In the first stage Empathize the foundation of human-centered design will be laid. The

goal is to understand the problems of the particular users as these are rarely the problems

of the corresponding designers. Therefore, empathy is build by learning the users value

through observation, engagement (e.g. contextual inquiry or interviews), and immersion (e.

42 Chapter 2 Foundations

g. empathy map). Only with this knowledge a solution can be developed that is focussed on

the user needs.

The second stage is Define in which the findings of the Empathize stage are processed into

actionable problem statements. These actionable problem statements can be for example

Point of View (POV) (cf. Dam and Siang [@DS20]).

With the actionable problem statement, ideas to solve this problem can be generated. This is

the third stage Ideate. The goal here is to explore a wide solution space to build a repository

consisting of a large quantity and diversity of ideas.

This repository is the base to narrow down possible solutions to a few prototypes which are

created in the fourth stage Prototype. The idea is to get ideas out of your head and into the real

world so that people can experience and interact with them. Such kind of prototypes are the

most successful as all assessed properties are physically present and people can experience

them in the intended context. Just talking about ideas would incorporate the problem that

the people need to interpolate missing information but not necessarily communicate the

interpolation resulting in misunderstandings.

Experiencing and getting feedback based on the prototypes is the last stage Test. This stage is

not about verifying that the prototype matches the specification but to validate if the intended

problem can be solved with the prototype, to learn more about the user, to gather feedback,

and to refine solutions.

Whereas Interaction-Design.org and the Stanford d.school [@DS19; @Doo+18] define

these stages in this order, Plattner et al. as well as Uebernickel [PML10; Ueb+15] have

switched the order. Their first step is Define followed by Empathize.

For the equation "What (thing) + How (working principle) leads to Value (aspired)", where

"What" and "How" are unknown, we have shown how design thinking works to find them.

What is missing, however, is the definition of "Value" to be created so that the equation

can be resolved. Defining this, is the initial framing activity in design thinking, whereas

framing stands "for the creation of a (novel) standpoint from which a problematic situation

can be tackled" [Dor11]. The resulting standpoint is called design challenge. As you can

imagine from this equation, the design challenge has a huge impact on the outcome of the

design thinking as it frames the "What" and "How". Hence it "[...]should be approachable,

understandable and actionable, and it should be clearly scoped—not too big or too small,

not too vague or too simple" [IDE13].

2.2 Design Thinking 43

Part II

Solution

Solution Concept 3
In this chapter, we give an overview of our solution concept for developing unique and novel

software-based solutions in section 3.1. The individual stages introduced in this concept

are presented in the following chapters 4-7. An integral part of the solution concept is

the assumption that the validation of a solution should be carried out using trialable and

observable prototypes to gain a better understanding. This results from the assertions of

the Diffusion of Innovations theory (see section 2.1) and Design Thinking (see section 2.2).

Therefore, we conducted a case study to test the applicability of this assumption for software

development prior to the development of this solution concept. We present this case study,

which supports our assumption, in section 8.2.

3.1 Solution Concept: Insight-centric Design &

Development (ICeDD)

From the previous section it becomes clear how important Design Thinking is for the

development of unique and novel software-based solutions. Above all, diverging and con-

verging thinking (cf. Transitions in Cynefin [KS03]) as well as working with prototypes (cf.

Preparing for Adoption in section 2.1) are essential in order to find yet unknown interacting

dependencies and constraints. However, once we enter the ordered domains (Obvious and

Complicated) according to the Cynefin Framework, it is better to make decisions based on

analysis or categorization than probing and acting (see section 1.1.1). Therefore, the solution

should be limited to the transition from the unordered domains to the ordered domains in

order to give priority to the established methods there.

Transition means a continuous improvement of the understanding, whereby at the beginning

there is a very incomplete understanding. Therefore, less properties of the final product

are needed at the beginning, but more probing with different cheap solutions is needed to

efficiently improve our understanding. As a result, other media are more suitable than func-

tionally integer software for use in the early phases. For example, paper prototypes can be

produced much faster and cheaper if they are not to be all–inclusive or if interaction is less im-

portant. This is also pursued in set–based concurrent engineering in automotive engineering,

where clay models instead of finished car bodies are the starting point [War+95].

47

Technical

Integration

Look-and-Feel

Value

Fig. 3.1.: Prototype Levels. Own representation based on Houde and Hill [HH97]

Which general levels a prototype can have are described by Houde et al. [HH97] (cf. Fig. 3.1).

The levels of prototypes they describe are Value, Technical, Look & Feel, and Integration.

Houde et al. called Value Role in their paper, which translates to ”what an artifact could

do for a user”. We find that a better description for this is Value, according to the idea of

Value–Based Software Engineering [Boe06b]. In this context Value is not a financial term,

but is meant as ”relative worth, utility, or importance”. The Technical or Implementation

Level is for ”answering technical questions about how a future artifact might actually be

made to work”. And the Look & Feel Level to ”explore and demonstrate options for the

concrete experience of an artifact”. The last level is Integration, which can be an integration

of properties of two or all three levels.

Unfortunately, Houde et al. [HH97] do not describe how to navigate through the levels.

Therefore, we use the recommended user experience design process proposed by May-

hew [May12] (cf. Fig. 3.2). They suggest that the first thing to be determined is the utility as

it is the prerequisite of a ”great [...] user experience”. This allows a goal–oriented develop-

ment and minimizes the risks of changes on the functional or technical level (cf. Stecklein

et al. [Ste+04] and point–based engineering [War+95] for the cost effects of changes on

those levels.). It also coincides with the basic ideas of Value–Based Software Engineering,

which sees value (e.g. utility) as guidance providing and a shortening of the consideration of

value as the cause of most software project failures (cf. Boehm [Boe06b]). For this reason,

our approach also starts at the value level, which includes usability and persuasiveness (cf.

diffusion in section 2.1).

In contrast to the recommended user experience design process, we do not see the need

that Functional Integrity must follow subsequently Graphic Design. Due to the greater

adoption of the Model–View–Presenter (MVP) architecture pattern (cf. Potel [Pot96] and

Fowler [@Fow06]) in software technologies (e.g. .NET or Angular) the presentation layer

got more separated from the logic layer (e.g. in comparison to MVC). This allows a largely

48 Chapter 3 Solution Concept

U�lity

Usability

Persuasiveness

Graphic Design

Func�onal Integrity

usefulness, importance, or interest of the content to the user

achieve specified goals with effec�veness, efficiency,
and sa�sfac�on in a specified context of use

extent to which product
encourages and promotes „conversions“.

The way colors, images, and other media
are used to invoke emo�onal reac�ons that
may or may not contribute
to the product goals

Extent to which a product
works as intended

Fig. 3.2.: Recommended user experience design process. Own representation based on May-

hew [May12]

independent development of these levels (Technical and Look & Feel related to the prototype

levels), which is why they can be developed in parallel.

As a result, for navigation through the prototype levels, Value must first be identified. In

the next step, Technical and Look & Feel integrated with Value can be examined in parallel.

Finally, integration is achieved across all three levels.

This leads us to our software development approach to handle the challenge of develop-

ing unique and novel software-based solutions which we call Insight-centric Design and

Development (ICeDD) (cf. Figure 3.3).

Insights is intended to emphasize that this approach, like qualitative research, is mainly

concerned with the reconstruction of meaning and the understanding of the problem and

solution space. The focus is on creating unique and novel software-based solutions in terms

of Value and not Technical or Look & Feel. Incremental improvements like in human–

centered design (cf. Norman and Verganti [NV14]) and reliable measurement is outsourced

to the (5) Optimization stage, which is the final stage. The other four stages in ICeDD

are (1) Initialize Design Thinking, (2) Execute Design Thinking with Non–Software, (3)

Prepare Design Thinking with Software, and (4) Execute Design Thinking with Software.

We have divided Design Thinking into (2) Execute Design Thinking with Non–Software and

(4) Execute Design Thinking with Software in order to take advantage of the non–software

benefits, especially at the beginning when the problem and solution space is expanded by

building many different solutions. In the following we will give a brief overview of these

stages and further elaborate on them in the corresponding chapters 4-7.

3.1 Solution Concept: Insight-centric Design & Development (ICeDD) 49

ValueValue

TechnicalTechnical

Field StudyField Study

OptimizationOptimization

Look & FeelLook & Feel

1

2

3

4

5

Seed

Software

Integration

Software

Integration

Prepare

Integration

Prepare

Integration

Prepare

Integration

Fig. 3.3.: Integrated Process for ICeDD based on [KS03; May12; HH97; LMW11; JBR99]

50 Chapter 3 Solution Concept

Stage (1): Initialize Design Thinking The result of the Design Thinking process is highly

dependent on an adequate design challenge. According to the Stanford d.school [@dsc16],

the design challenge frames the process and should not constrain to one problem to solve nor

leave it too broad which gives troubles in finding tangible problems. Ideally, it should include

multiple characters, problems, and multiple needs of the characters, with the characters,

problems, and needs in themselves being similar.

This is good to evaluate a design challenge in retrospect but helps only to a limited extent

in finding such a challenge. To find appropriate design challenges and therefore initialize

our approach, we propose the two possible paths On–Site Feature Requests and Feature

Requests from Systematic Analysis.

On–Site Feature Requests is the idea of users stating asynchronously requests for improve-

ments in a structured way. The necessity for this lies in Tacit Knowledge (cf. Gervasi et

al. [Ger+13]) and the fact that certain knowledge is hard to recall without specific cues

(cf. Gervasi et al. [Ger+13] and Benner [Ben84]). It is therefore important that users can

define such requirements from their work context. In [Sen+18] we proposed a tool–guided

elicitation process to empower users to do such requests in a structured way.

The other path of Feature Requests from Systematic Analysis is based on the analysis by

an external person. Since our context does not allow a mere categorization or analysis

(cf. section 1.1.1), a traditional systems analysis with the aim to examine an existing process

in order to optimize it is not useful. Instead, we need a theory–generating approach that

makes it possible to find unknown problems or solutions as well. In [Mei+16b; BMS20]

we adopted Grounded Theory for software development to create such a theory generating

approach.

With results from these two paths, a design challenge is created to start finding different

solution designs and evaluate them with the help of Design Thinking.

Stage (2): Execute Design Thinking with Non–Software In this stage Design Thinking

with the help of non–software prototypes and design challenges from the previous stages

is carried out. The goal is to explore the problem and solution space with non–software

prototypes to get a better understanding before software is used as a medium. Since Design

Thinking is a methodology, it must be initiated according to the conditions (e.g. duration or

stakeholders).

In our projects we have initiated Design Thinking as a one–day workshop format in which

both developers and users participate. This workshop sensitizes the various stakeholders to

each other and generates initial ideas. In a further step, these ideas are refined by the Value

Designer (see Roles in paragraph 3.1) in coordination with the respective stakeholders.

3.1 Solution Concept: Insight-centric Design & Development (ICeDD) 51

The possible solutions should be reduced in this stage to at least two, but not more than

five solutions. Result of this stage are non–software prototypes optimized on a Value Level

and their documentation. Since the prototypes are more abstract than it is necessary for an

implementation, they still must be prepared for implementation.

Stage (3): Prepare Design Thinking with Software Overall goal of this stage is to refine

the prototypes on a Technical and Look & Feel Level and transfer them into requirements

that can be used in a software development process (Prepare Integration). The task of

the refinement on the Technical and Look & Feel Level is not to come up with novel

solutions regarding these levels, but to align already existing solutions to the discovered

value propositions from the previous stage. The Value Designer (see Roles in paragraph 3.1)

supports the designer (Look & Feel) or the software developer (Technical) to ensure that the

value is not lost.

The next step is to integrate all three levels (Value, Technical, and Look & Feel) on the

requirements level (cf. Figure 3.3). The requirements should be specific and understandable

but not include all underlying decisions to not overburden the developer. Nevertheless, it

should be possible to understand the underlying incentives if necessary, in order to understand

freedoms and make adjustments. Therefore, the requirements should be linked to the sources

to allow traceability.

Stage (4): Execute Design Thinking with Software Using Design Thinking means

evolution of the problem and solution understanding, experimenting with alternatives, and

short learning cycles. Challenges in software development that arise from these have been

listed in section 1.1.3. In order to overcome these, an adapted software development approach

is required. To adapt such an approach, the 4P’s (cf. Figure 3.4) described by Jacobson et

al. [JBR99] are quite useful:

”The end result of a software project is a product that is shaped by many different types

of people as it is developed. Guiding the efforts of the people involved in the project is a

software development process, a template that explains the steps needed to complete the

project. Typically, the process is automated by a tool or set of tools.”

This means that it is not appropriate for a solution to consider only the process or only

the product characteristics, since all the 4P’s depend on each other. For example, product

properties to enable incremental development may represent an overhead when a strictly

sequential process is required (e.g. for legal reasons). Furthermore, tools can be needed to

make a process practicable at all. Or people carry out processes differently because they

52 Chapter 3 Solution Concept

Process

People Project Tools

Product

Participants

Template

Automation

Result

Fig. 3.4.: The 4P’s People, Project, Product, Process, and Tools from the Unified Software Devel-

opment Process [JBR99]. Own representation.

do not match with their mindset. Therefore, we describe in this section for all 4P’s the

characteristics, which makes Design Thinking with Software possible.

People It is important for the persons involved to understand that the artefacts created

in this stage do not necessarily remain as they are and are partly discarded. Since at this

stage the development of an understanding of the value comes first, people must be able to

concentrate on the properties of the application that are necessary for the valuation of this

application. A mindset with which the perfect application is to be developed immediately

is not beneficial at this point. There should be a basic understanding of experimenting.

Otherwise the same requirements apply as in agile software development.

Product As Denning et al. [DGH08] emphasize, traditional preplanned development

focus on architectures that meet specifications from knowable and collectable requirements,

do not need to change before the system is implemented, and can be intellectually grasped

by individuals. This is not compatible with our requirements for Design Thinking, which is

why we need evolutionary architectures instead.

Evolutionary architectures are designed for continuous adaptation through successive rapid

changes or through competition between several systems [DGH08]. Ford et al. [FPK17]

describe how evolutionary architectures can be achieved through appropriate coupling and

allowing for incremental change. Patterns like Model–View–Presenter [Pot96] separate the

presentation logic from the domain logic and therefore enable an independent development

of the UI from the Backend. Event–driven architectures and Microservices allow more

loosely coupled smaller components that can be polyglot regarding technology.

3.1 Solution Concept: Insight-centric Design & Development (ICeDD) 53

Event sourcing [@Fow05a] is particularly interesting in this context, as it enables parallel

models, reconstruction of model states, and synergy effects, e.g. for the collection of

interaction data. With parallel models the operation of different versions can be enabled on

the one hand. On the other hand, data models can be adapted with less consideration of side

effects. Model state reconstruction is useful for troubleshooting, preparing test environments,

and data recovery.

In summary, evolutionary architectures help to provide fallback variants, increase reliability,

develop individual components independently, and reduce the complexity of the individual

components. By using synergies with event sourcing, it reduces the effort for data collection

in experiments.

Process The requirement for this stage is the rapid implementation of software alternatives

and conducting of field studies / experiments. In the previous stages an understanding of

interacting dependencies, constraints, problem space, and solution space has been deepened.

Therefore, the requirements at this stage should be stable to the extent that changes no longer

occur in such a likeliness that cycles of several hours are useful and necessary. For this

reason, these cycle lengths do not have to be supported in this stage and longer cycles can

be considered, as in agile software development (cf. Terho et al. [Ter+17]).

DevOps including Continuous Deployment in combination with Agile Software Devel-

opment is very suitable for this. According to Sharma et al. [SC17], DevOps’ goal is to

accelerate and increase the frequency with which production changes are made available in

order to receive feedback from real users as early and frequently as possible. Consequently,

these processes ensure the timely availability of alternatives for studies / experiments.

If you compare the Build–Measure–Learn Cycle from Lean Management (cf. Poppendieck

and Poppendieck [PP03]) with the principles of the Agile Software Development (cf.

Meyer [Mey14]) it stands out that Agile Software Development is focused on an accel-

eration of the Build step to increase the frequency of user feedback. The parts Measure and

Learn and their expression are missing. However, these are indispensable in order to learn

from their use.

To improve this situation, the implementation is embraced by a process for conducting

studies / experiments. At this stage, field studies / experiments are to be used instead of

controlled experiments. The advantage of field studies / experiments is the high external

validity. We need this as we are still in a state where our mission is understanding and

for that we need to reconstruct meaning or subjective perspectives from the usage in pro-

duction. The disadvantage of field studies / experiments is the usually lower reliability

compared to controlled experiments. At this point, however, controlled experiments would

54 Chapter 3 Solution Concept

not be appropriate, since they require a good knowledge of dependencies and confounding

variables.

Project For each design challenge that ran through the third stage, a project is initialized.

The aim is to understand which of the problems and solutions found lead to a value.

Tools In order to make studies / experimentation with software solutions more feasible, au-

tomation and assistance tools are needed. The use of evolutionary architectures, as described

in product, in combination with containerization [Pah15], cloud architectures [Arm+10]

and a build server for the continuous deployment pipeline enables independent automated

deployment as well as roll–back of the individual alternatives, versions or components.

To make them available during a study / experiment a user specific online orchestration tool

should be present. Its task is to orchestrate (e.g. by rerouting or feature toggles) the different

alternatives, versions or components individually for each user. An opt–out for the user is

essential so that he can continue to work productively with the system in the event of errors

or malfunctions.

Since data (e.g. interaction data, surveys or free annotations) accumulate in experiments, a

tool is required in which these can be stored, aggregated, and analyzed.

Finally an experiment management system is needed, that guides the users of ICeDD through

the experiment design and controls the tools for orchestration and data accordingly.

Stage (5): Optimization / Incremental Improvement The main objective of ICeDD is to

better understand the problem and solution space in cases of little or no knowledge. Once the

fundamental interacting dependencies and constraints have been understood, it is possible,

for example, to design a controlled experiment to learn in detail how the solution can be

further optimized. Without this, it would not be possible to eliminate interfering factors

and explain why the experiment has a valid operationalisation. Of course, other methods

that are suitable for incremental innovation (cf. Norman and Verganti [NV14]) can also be

used for optimization. This stage is listed here to emphasize that this is not a one size fits all

approach. Accordingly, and because it can be achieved with existing methods, it is not the

focus of this thesis and will not be discussed further below, unlike the other stages.

3.1 Solution Concept: Insight-centric Design & Development (ICeDD) 55

Roles In ICeDD we have the normal software development team as in Scrum as well as

users. The difference is that instead of a product owner we have a role called Value Designer.

Her main purpose is to ensure that intentions of the stakeholders are met, and value is deliv-

ered with the software application. In terms of Value Based Software Engineering [Boe06b]

the Value Designer is responsible to identify all success critical stakeholders and to mediate

between them. Therefore, she neither must be a domain expert nor a technology expert but

needs considerable knowledge of both sides. She is the only role involved in all stages as

well steps of ICeDD.

3.2 Related Work Regarding the Overall Solution

Concept

In this section, we would like to situate our overall solution concept with regard to similarities

and differences to related work. We will start with work that is closest to our concept,

namely work that has also dealt with the integration of software development and design

thinking. To identify them, we are using the chapter ”Design thinking: A fruitful concept

for it development?” from Lindberg, Meinel, and Wagner [LMW11] which is part of the

”Understanding Innovation” book series that is mainly summarizing the fundamentals in

design thinking. Hence, we assume that researchers working on the topic of integrating

design thinking and software development will have to cite this paper to situate their own

work into state of the art. Accordingly, we have used the cited by function of SpringerLink

where the book series was published and Google Scholar to find papers that cited this very

chapter and updated it in April 2020.

At SpringerLink, we got a total of 35 results and at Google Scholar a total of 121. In the

first step, we reduced the results based on the title and abstract in terms of relevance for the

integration of design thinking and software development. Correspondingly, 12 publications

were left over at SpringerLink and 17 at Google Scholar (our own publications already

excluded). From these publications, 11 were found both at Google Scholar and SpringerLink

which leaves us with a total of 18 publications that are stating in the title and/or abstract

that they handle the integration of design thinking and software development. 6 of these 18

publications turned out to be inappropriate on closer reading, as they did not go into detail

about the integration of design thinking and software development.

7 publications [XAA15; Luc+17; Soh+19; ODr16; MV19; GSA16; Kow+14] were identi-

fied that integrate design thinking as a Front–End Technique into the software development

process. This means that they stop with the milestone x–is finished prototype and use only

one solution for the software development, which has the disadvantage that they cannot

56 Chapter 3 Solution Concept

experiment in the real world with software. To uncover certain dependencies or constraints

like in the Netflix example (see section 1.1), at least two alternatives must be compared in

an experiment in production. This is where our approach differs from the approaches men-

tioned in the publications, as we explicitly promote experimentation with several software

alternatives.

Closest to our approach are the remaining 5 publications [DPU19; Dob+20; DP19; PA16;

DP+17] by the two collaborating authors Dobrigkeit and de Paula. They separate their

approach into the three phases Design Thinking Phase, Initial Development Phase, and

Development Phase, whereas they state that the main difference ”between the three phases is

the ratio between Design Thinking, Lean Startup and development activities”. The Design

Thinking Phase has a similar concept to our Stage (2): Execute Design Thinking with Non-

Software, but they presuppose the design challenge, which we develop explicitly in our Stage

(1): Initialize Design Thinking. Their Initial Development Phase is actually a phase in which

with mainly lean development a minimum viable product shall be developed by refining

and testing the product vision from the previous phase with respect to desirability, technical

feasibility and business viability. Therefore, they must have already reduced their ideas to

a single solution idea or must do so in this phase. Testing will only take place in the next

phase. Our approach differs from it again in the emphasis that several alternatives are to be

tested with the software and we have explicitly defined how we want to transfer findings

from Design Thinking into agile software requirements (cf. Meyer [Mey14, pp.119]) and

thereby preserve findings in a comprehensible way. This is mainly due to the fact that, in

contrast to Dobrigkeit and de Paula, we do not follow a process in which the same team

shall participate equally in all tasks.

The final phase Development is for testing the MVP and gradually refining it into a product,

whereas during the build you can have design thinking breakouts if necessary. Refining is

quite similar to what we propose with Stage (5): Optimization / Incremental Improvement

and testing is happening in our case already in Stage (4): Execute Design Thinking with

Software. A fundamental difference is our understanding of the product. Whereas Dobrigkeit

and de Pauly think of it more in the sense of a monolithic system, our understanding of it is a

System of Systems. Accordingly, we see for our approach that for each new value proposition

or feature it has to be passed through completely, from which a corresponding system for

the system of systems is created or integrated into an existing system.

Apart from Design Thinking, there are also similarities between our approach and the

idea of continuous experimentation. Continuous experimentation is an idea introduced by

Olsson, Alahyari, and Bosch [OAB12], which is actually a combination of the ideas of

continuous software engineering (see [FS14; Bos14]) and controlled online experiments

(see [Koh+08]). Basically what they state is that you should continuously do experiments

3.2 Related Work Regarding the Overall Solution Concept 57

and the possibility to do so is given to you by the efforts in continuous software engineering,

especially with continuous deployment. Experiments are to be understood here as controlled

experiments with a focus on quantitative data (cf. [OB14]). This is a fundamental difference

to our approach where we focus on qualitative experiments. According to our approach,

controlled experiments (sometimes also called A/B tests) would only be considered in Stage

(5): Optimization / Incremental Improvement. Furthermore, the continuous experiments in

this context are aimed at incremental innovations and not at novel and unique software-based

solutions as we do. From the continuous software engineering we are using concepts such as

continuous integration, testing and deployment. In the future it could be exciting to integrate

further concepts from this area, such as the process model from Krusche [Kru16; Kru+14],

to further increase the construct validity of the software development (the degree to which

we implemented the software matches the intent of the ”specification”).

3.3 Summary

Developing unique and novel software-based solutions requires to validate different possible

solution designs regularly with observable and triable prototypes in order to learn from them.

One way to approach this systematically is Design Thinking, whereby the most sensible

application in software development is still open. In our solution concept we present a

variant in which Design Thinking is a hybrid variant between Front-End (only done before

the development) and fully integrated approach (the same team works together the whole

time). Furthermore, we describe how we can transition from prototypes reduced only on

their value to software-based solutions that already contain enough background knowledge

to further refine them with existing software development approaches. For this purpose, we

have introduced stages that will be further elaborated in detail in the following chapters 4-7.

The last stage, Optimization, is an exception to this, as it is only intended to highlight where

the existing software development approaches, which focus on incremental innovation, can

be applied.

As this is a solution concept and not the solution in detail, we will not start to apply our

fitness function at this point and not discuss further in how far the solution fits our objectives.

We have not defined enough details about our solution yet to decide for each characteristic

of the fitness function to what extent it is met. Instead, we will do this later for each stage

and summarize for the whole solution how far the fitness function is met in section 9.2.

Nevertheless, regarding the research question, we can already argue that this can be a way

to develop unique and novel software-based solutions that provide users with value in the

actual context of use. The reason for this lies in the usage of Design Thinking, which we

58 Chapter 3 Solution Concept

already found in the introduction (cf. section 1.1) to be very suitable for our needs. Design

Thinking supports learning from multiple solutions simultaneously regarding dependencies

and constraints and by further using that also with software, we ensure the usage of multiple

solutions to learn from for the whole process (cf. Objective 2, Objective 3 and Objective 6).

Objective 3 as well as Objective 4 is also supported by the integration of DevOps and

evolutionary architectures. Design thinking is also attested to be very suitable for generating

novel ideas, which is why Objective 5 is also very likely fulfilled. As already described, the

extent to which these objectives are actually met will be analyzed in detail in the chapters

for the individual stages.

3.3 Summary 59

ICeDD Stage (1): Initialize

Design Thinking

4

In the previous chapter an overview of ICeDD as our development approach for unique and

novel software-based solutions has been given. In this chapter, we will present the first stage

of ICeDD, which is to initialize Design Thinking. First we discuss the requirements for

this stage and give an overview of the stage in section 4.1. Essential for this stage are two

paths that have the goal to create a design challenge. The first path On-Site Feature Requests

will be presented in section 4.2, whereas the second path Feature Requests from Systematic

Analysis will be presented in section 4.3. Our findings in this chapter are summarized and

discussed in section 4.4.

4.1 Requirements & Overview

„Every design process begins with a specific and intentional problem to

address; this is called a design challenge. A challenge should be

approachable, understandable and actionable, and it should be

clearly scoped—not too big or too small, not too vague or too simple.

— IDEO [IDE13]

With the design challenge we define the frame within which we operate in our approach.

If the design challenge is defined big and vague, it is more difficult to focus and dig deep.

Therefore, more general results are produced that do not necessarily address a users problem.

On the other hand, a very small and simple design challenge bears the problem that it doesn’t

allow for variations and explorations. In such cases we cannot be sure that that what we do

is actually delivering a value.

Normally, a design challenge is about one of two types of problems (cf. [IDE13; @Roy+16;

Sch17]). The first type of problem is something to create that is desired to exist but not yet

be the case. The second problem type refers to already existing things that are either to be

improved or changed. These problems can be reframed as "How might we ...?" questions

as Schallmo [Sch17] and IDEO [IDE13] propose. The K12 Lab of the dschool at Stanford

suggests on the other hand the following scaffolds:

61

• Redesign the (situation) experience.

• Design a way for (specific group of people) to better (situation) .

• How might we help (achieve some goal) .

Additionally to these scaffolds, the K12 Lab also provides resources to test design challenges

for their applicability. Within this, for example, a test plan (The Challenge Generator) for

the different phases of design thinking is included. Quite helpful is the decision matrix to

decide if the design challenge is too broad or narrow. For example, if not multiple characters,

multiple problems and multiple needs of the characters are included, the design challenge is

too narrow. On the other hand if there are no similarities between characters, similarities

between problems, or similarities between needs, the design challenge is too broad. These

tests mainly help to validate a design challenge but not to come up with a good one.

IDEO [IDE13], Schallmo [Sch17], and Uebernickel et al. [Ueb+15] go a step further and

describes a starting point for a design challenge. They suggest to list possible topics which

results of "[..]all problems you’ve noticed or things you’ve wished for" and reframe them

to "How might we?" questions in order to formulate design challenges. Their process for

creating design challenges looks like this:

1. Deriving different topics including a short description

2. Discussion and assessment (potential as low, middle, or high) of the different topics

3. Choosing one topic

Even though Uebernickel et al. list concrete methods for this approach, all three sources

remain very general in terms of implementation. They are particularly suitable for posthu-

mously questioning the validity of the design challenges and possibly working on the

formulation, but not for identifying the initial problems (improved / desired). For the identi-

fication of these initial problems we suggest the two different approaches On-Site Feature

Requests and Systematic Analysis (cf. Figure 4.1). The main difference as already described

in paragraph 3.1 is that the former is based on the idea that users are enabled to make feature

requests as they are regularly working and the latter is based on an analyst called in to analyze

the context.

But why do we need such a distinction? Our assumption from the introduction is that we

are developing software systems that not only automate static well-known routines (digital

copy) but also introduce unique and novel aspects (from the perspective of the application

domain) into the software system. Pfeiffer and Suphan described the consequences of such

goals:

62 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

„In fact, sophisticated techniques of standardization and digitalization

create new complexities and new areas of system-immanent

unpredictability, not intentionally but nonetheless unavoidable. The

ability to deal with those on an ad hoc and situational basis is a skill

that comes from experience–and it does not fit into the standard

routine/non-routine dichotomy.

— Pfeiffer and Suphan [PS15]

Seed

On-Site Analysis

Initialize Design Thinking1

Fig. 4.1.: Initialize Design Thinking Process

As the value designer (see paragraph 3.1) often lacks specific production and process

knowledge (cf. innovators in Pfeiffer and Suphan [PS15]), we usually need experts to

give hints on what could potentially be interesting and to validate the proposed value. In

contrast to other stages like novices, experts performance is not distinguished by the need of

explicit rules, guidelines, or maxims but to her experience that allows her to connect her

understanding of the situation to an appropriate action (cf. Dreyfus and Dreyfus [DD88] and

Benner [Ben84]). This personal and contextual knowledge is also called tacit knowledge

and "cannot easily be written down, formalised or aggregated. Since tacit knowledge cannot

be expressed propositionally, exactly how particular work tasks are accomplished and any

decision rules that may underlie any skilled performance cannot easily be provided" (Gervasi

et al. [Ger+13]). Some tacit knowledge is hard to recall without cues (cf. Maiden and

Rugg [MR96]) and in general a systematic process is needed to uncover tacit knowledge

(cf. Gervasi et al. [Ger+13]). This is why we are proposing the two approaches of On-Site

Feature Requests and Systematic Analysis.

That this is an ongoing problem in requirements engineering is indicated by recent studies

like "Naming the pain in requirements engineering" from Fernandéz et al. [Fer+17]. They

4.1 Requirements & Overview 63

designed a survey family on the status quo and problems in practical requirements engineering

which they conducted with 228 companies from 10 different countries. The ten most cited

requirements problems had been:

1. Incomplete and/or hidden requirements: 109 (48% named it)

2. Communication flaws between team and customer: 93 (41%)

3. Moving targets: 76 (33%)

4. Underspecified requirements: 76 (33%)

5. Time boxing/Not enough time in general: 72 (32%)

6. Communication flaws within the project team: 62 (27%)

7. Stakeholders with difficulties separating requirements from solution design: 56 (25%)

8. Insufficient support by customer: 45 (20%)

9. Inconsistent requirements: 44 (19%)

10. Weak access to customer needs and/or business information: 42 (18%)

The first 4 problems as well as problem 8 and 10 could be a direct result of tacit knowledge

in requirements engineering leading to the described effects. Interestingly, 1. Incomplete

and/or hidden requirements and 3. Moving targets were already among the most cited

problems in the famous 1995 Standish Report [Gro+95]. Therefore, according to the current

state of requirements engineering, it seems to make sense to place the two approaches On-Site

Feature Requests and Systematic Analysis before Design Thinking in order to identify the

Design Challenge. With this insight, the requirements for an approach to finding design

challenges can be more precisely defined.

First of all, we focus on our Fitness Function (FF) from section 1.2. From this, the technology

independent characteristics Alternatives, Focus on Novelty, and Learning Cycle are espe-

cially interesting for this stage. Operating Alternatives and Consequences of Technological

Decisions are part of the technological implementation which is part of the later stages.

From the definition of a good design challenge it is immanent that the output of this stage is

describing a multi-faceted problem for which the solution is not immediately apparent. With

our goal of unique and novel software solutions we defined as well to stay in the Chaotic and

Complex domain (cf. section 1.1.1). Hence, if the problem and solution space are already

well known and solutions are immediately apparent or can be derived from analysis it would

be more fitting to the Complicated or Obvious domain. But for these domains it would

be better to directly skip to the fifth stage Optimization (cf. section 3.1). Therefore, our

first requirement on this stage is that only results that include multiple characters, multiple

problems and multiple needs of the characters as well as results for which solutions are

not immediately apparent or can be easily derived by analysis are to be used for a design

64 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

challenge and the consecutive stage. All other results have to be either refined or can be

used directly in the fifth stage.

Our default assumption is that we operate in the Chaotic and Complex domain, which

means that problem and solution space are unknown to a high degree. This also implies

that especially coming from Chaotic domain the only options are either by imposition or

learning by diverging / converging or swarming to cross the boundaries (see [KS03]). The

first would lead us to the Obvious domain, where solutions are immediately apparent. This

would contradict our first requirement. Therefore, it is essential that we learn by means of

divergence and convergence or swarming and thus already introduce learning cycles. For

this implementation it is therefore necessary that a learning cycle explicitly exists that also

integrates several alternative at the same time and thus is our second requirement.

Moreover, in order to achieve novelty, it is indispensable that the survey instruments do

not only survey the current state but as well possible potentials (e.g. challenges or gaps),

which is our third requirement. Otherwise, if we focus only on the well known problem

and solution space, we would contradict the first requirement.

In addition to the requirements arising from the FF, we have already introduced the challenge

regarding experts and the associated tacit knowledge earlier in this section. To further refine

this for our requirements, we have a look at Müsseler [MR17, pp.607-609], who provides a

more detailed description of experts based on psychological findings. He summarizes the

key points as following:

• Experts encode problems more efficiently than novices and have better elaborated

problem representations.

• Experts remember problem relevant information better. The better memory is due to

broader and better organized knowledge, not to better basic cognitive capacities (e.g.

wider memory span).

• Experts use different problem-solving strategies than novices.

• You become an expert through intensive practice.

Hence, expertism depends on learning. Which possible learning processes are assumed in

science to become an expert, he also presents as following:

• Storage of episodes: Initially, problems are solved by a complex and step-by-step

application of operators. At the same time, each individual problem solving episode

is saved with its solution. The more often the same problem is solved, the higher the

probability that the solution can be retrieved directly from memory.

4.1 Requirements & Overview 65

• Chunking of procedures: If the same problem-solving operators have to be applied

frequently one after the other, a new operator is formed which combines these operators.

This allows problems that used to be solved in multiple steps to be solved in a single

step.

• Knowledge compilation: Initially, problems with a certain factual knowledge (declara-

tive knowledge) and general heuristics such as hill climbing are dealt with. If the same

factual knowledge is repeatedly needed to achieve a particular sub-goal, a procedure

is generated that allows the sub-goals to be achieved directly and much more quickly.

What these processes have in common is that by repeatedly solving the same problem, an

optimized solution path in terms of usage of cognitive resources is created. So these depend

on long-term memory. Besides the sensory register and the working memory, long-term

memory is one of the three memories in Broadbent’s memory model, which forms the

basis of numerous multi-storage models [MR17, pp.403-434]. As a short explanation, the

sensory register is an upstream processing in order to analyse many stimuli with limited

processing resources in a less time-consuming way, e.g. to filter out the speaker’s voice that

one listens to and to "overhear" the others. The stimuli forwarded from this are transferred

to the working memory, which is used for a greater processing depth (One can think of

this analogous to a CPU cache). According to Miller, this can hold up to 7+/-2 Chunks1

active, but only as long as they are constantly used and thus refreshed (see [Mil56; MR17]).

Long-term memory differs from working memory mainly in the much greater amount of

information that is available for a very long time.

The interesting thing of the long-term memory for our expert challenge is the way it is

structured and working. It can be divided into a declarative (further subdivision into episodic

knowledge and semantic knowledge) and a non-declarative system (further subdivision into

perceptual knowledge and procedural knowledge). The declarative system stands for verbally

reportable episodes and knowledge. In contrast to this stands the non-declarative, which

existence is evidenced by a variety of situations in which experience shows an aftereffect

even if it cannot be reported (e.g. try to describe how to tie your shoes or how to drive a

bicycle.). Our challenge of tacit knowledge can therefore be traced back to this memory

system.

Furthermore, Müsseler [MR17, pp.414-415] explains findings on context effects during

learning and retrieval. With the learning of the "actually interesting" information, certain

aspects of the learning context are always stored as well. For example, Godden and Bad-

deley [GB75] conducted an experiment with members of a diving school who learned a

list of words on land and underwater. This was followed by a memory test that took place

1A grouping of single elements to larger meaningful units. For example, it is more difficult to keep the numbers

0,5,0,1,2,0,2,0 than the date 05.01.2020.

66 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

again on land or under water. The memory test showed that the number of freely reproduced

words was high when the learning and testing phases took place in the same context. Each

change of context between the learning and testing phases led to a deterioration of memory

performance. However, such a drastic difference is not necessary as other experiments

showed, where for example the mere variation of background color, font color and screen

position led to similar effects.

From the structure and function of long-term memory, especially in relation to declarative

and non-declarative systems and contextual effects, we derive our fourth requirement. The

methods at this stage must at least partially query information in a context that is as close as

possible to the user’s work context in order to determine the presence of tacit knowledge

and to activate as much knowledge as possible.

Sutcliffe and Sawyer [SS13] summarize the situation to deal with tacit knowledge from

perspective of requirements engineering as an known unknown. From their "[...] experience

and the evidence in previous surveys[...], interviews and workshops are more effective for

tacit knowledge elicitation among the basic techniques since they approximate to natural

conversations [...]". But they limit that all methods based on natural language communication,

such as interviews, workshops and scenarios, carry the risk of ambiguous interpretation. This

should also apply to observations, as user viewpoints are hidden and observer viewpoints

may differ. Furthermore, they argue that "[...] the power of ethnography comes at the penalty

of resources necessary for long-term observations, and the sampling to detect unknown

unknowns is often a matter of luck."

For the reason of the sampling rate and our fourth requirement, we introduce in section 4.2

the concept of a tool-guided elicitation process to locate and scope problems and be applied

by users independently from value designers for on-site feature requests. This is to ensure

that the users can document opportunities as soon as they occur during their tasks and don’t

have to wait for a value designer with the risk of not remembering it as soon as she arrives.

Such an approach has the challenge, however, that the users are not value designers and

therefore do not have the necessary knowledge to set up requirements of the appropriate

quality for software development or design thinking. Therefore, it is the goal to ensure a

quality by tool support, which helps the value designer with the further decision making

and which she can use as basis for further steps in the systematic analysis. Accordingly, the

systematic analysis must fulfill all requirements as a refinement and alternative approach to

on-site feature requests.

In the next sections we introduce our approaches to on-site feature requests (section 4.2) and

systematic analysis (section 4.3).

4.1 Requirements & Overview 67

4.2 On-Site Feature Requests

In this section we present our idea on how to make it possible for users to asynchronously give

feedback on insights they gained during their work, problems they encounter, and visions

they have for further developments. We assume that these users are experts who are not

developers or requirements engineers. Furthermore, current solutions such as feature requests

via e-mail or ticketing systems like Jira only take unstructured information. Therefore, we

inevitable run into problems such as incomplete or hidden requirements and stakeholders with

difficulties in separating requirements from known solution design [Fer+17]. Our solution

for this challenge is to empower the users to participate independently and asynchronously

in the requirements elicitation process via an assisting system that helps them to structure

their thoughts so that they can straightaway suggest and describe experienced problems as

well as new ideas and changes. To achieve this, we orient ourselves on methods already

established in requirements engineering. The main contribution of this section, based on the

paper [Sen+18] and the thesis [Pat17], is to discuss and evaluate the possibility of such a

tool-guided elicitation process. For that we present

• the details of the idea of a tool guided elicitation process (see section 4.2.1),

• a classification of requirements elicitation techniques regarding their usability and

usefulness to locate and scope problems and be applied by users independently from

requirements engineers (see section 4.2.2),

• how we integrated selected elicitation techniques in our software prototype called

Vision Backlog as a proof of concept that such a tool is technical feasible (see sec-

tion 4.2.3),

• and the results of an initial study regarding the usability of the tool as well as the

usefulness of the results (see section 4.2.4).

4.2.1 Towards a Tool-Guided Elicitation Process

Elicitation requires specific skills. Among all the stakeholders, only requirements engineers

or value designer are familiar with those [Yoz14]. If stakeholders must depend on this

role for elicitation all the time, the requirements engineer or value designer can become a

bottleneck. Furthermore, in small organizations the requirements engineer or value designer

is a relatively busy resource. Typically, naive stakeholders focus more on the suspected

solution rather than the actual problem they are facing. Often, they are not even aware of the

actual problem. But identifying the core of the stakeholder’s problem is an almost necessary

step to quality requirements [BR01] and therefore to a better understanding for a good design

challenge. Additionally, notes, lists, or sketches which are mostly used to record needs

68 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

or expectations of stakeholders are not efficient ways, as they cannot naturally be tied to

actual requirements [Yoz14]. Formal meetings are not feasible enough to thoroughly extract

stakeholder’s needs, expectations, etc. [Yoz14]. Stakeholders can get insights about their

needs literally any time, especially when they are working on it. It could be hard during

formal meetings to point out or recollect specific things [BR01; Bat+13; Mai+10].

Requirements elicitation is described as learning, uncovering, extracting, surfacing, or

discovering needs of customers, users, and other potential stakeholders by Hickey and

Davis [HD04]. In the requirements engineering process, elicitation is one activity besides

analysis, triage, specification, and verification. Although most existing models show these

activities in an ordered sequence, Hickey and Davis state that in reality, requirements

activities are not performed sequentially, but iteratively and in parallel. This is an important

insight for a tool-guided elicitation process, as it emphasizes that elicitation will never be

unidirectional and must be conducted continuously.

Hence, a tool-guided elicitation process for users will never be a complete substitute for

user researcher and requirements engineers as analysts. Instead, the activity of requirements

elicitation will be shared among stakeholders and analysts with feedback mechanism between

these two groups. A tool-guided process would not replace requirements analysts, but it

will ease their work by reducing efforts and time spent on eliciting correct and complete

requirements. Because of our use case, a tool-guided process must support and connect both

stakeholders and analysts.

Just as much, the tool must support a learning process over the time like it is normal

in approaches as Design Thinking, DevOps and Lean UX. Innovations are not adopted

immediately by everyone at once but need time to prove their advantages. Usually they

are adapted during the adoption process in a way that was not intended by the originators

(see [Rog10]). Complex and chaotic problem domains need to be handled with a strategy

that involves probing / acting as starting point to sense the effects and react accordingly to it

(cf. [KS03]). Thus, we are safe to assume that the initial requests made with the tool need to

be adapted and refined over the time.

To sum up, a tool-guided requirements elicitation process should capture the stakeholder’s

exact needs and expectations in the form of goals with associated context and always be avail-

able so that stakeholders can benefit from it at any time. The captured knowledge/information

through this system shall help requirements engineers or value designers to extract tacit

knowledge and to formulate more accurate and complete requirements. All the stakeholders

shall actively participate in understanding the underlying problem to collectively reach an

appropriate solution.

4.2 On-Site Feature Requests 69

Besides the tool approach and its potential users, it must be defined which techniques should

be incorporated. According to Maiden [Mai13], the primary function of requirements work

is to locate and scope problems, then create and describe solutions. Hall [Hal13] once stated

that the first rule of user research is to never ask anyone what they want. Nielsen [@Nie01]

goes into the same direction and states that to design the best UX, pay attention to what

users do, not what they say. Adding the ‘I can’t tell you what I want, but I’ll know it when

I see it’ [Boe88] dilemma, it gets obvious that for user participation we should start with

techniques that focus on locating and scoping problems instead of on creating and describing

solutions. In the following, possible elicitation techniques are classified for a potential use

in a tool-guided elicitation process.

4.2.2 Classification of Elicitation Techniques

Based on a literature research, we gathered requirements elicitation techniques from different

disciplines like social science, design, usability engineering and requirements engineering

(see Table 4.1 for the gathered techniques). These techniques need to be classified in

accordance to their usefulness for our goals.

This classification can be done in many ways. One way is to classify them according to

the means of communication they involve: conversational, observational, analytic, and

synthetic [Zha07]. The conversational method is based on verbal communication between

two or more people. Methods in this category are called verbal methods. The best example

is interviews. The observational method is based on understanding problem domain by

observing human activities. There are requirements which people cannot verbally articulate

properly. Those are acquired through observational methods, for example protocol analysis.

Analytic methods provide ways to explore the existing documentation of the product or

knowledge and acquire requirements from a series of deductions which help analysis capture

information about application domain, workflow and product features. Examples include

card sorting. Synthetic methods systematically combine conversational, observational and

analytical methods into a single method. They provide models to explore product features

and interaction possibilities. An example is prototyping with storyboards. Although the

techniques mentioned above make sense, these schemes are not much of a help considering

our goals. The primary concern is that the stakeholders should focus on the problems they

are facing and should not get distracted by solution or implementation details. Another

challenge is that a technique should be representable in a software. Examining the litera-

ture that describes these techniques [McM04; ZC05], following classification criteria are

established:

70 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

• Locating and scoping problems:

Is the technique intended to locate and scope problem and not solution oriented?

• Suitable for autarkic execution:

Can techniques be used individually, and it is not performed as a group activity?

• Practicable for both stakeholder and analyst:

Can the technique be used by both stakeholder and analysts?

• Representable in software

Can the technique be imitated as a software?

Direct answers to locating and scoping problems and suitable for autarkic execution can

be found in the above-mentioned literature. Considering how much in-depth knowledge is

required to use a specific elicitation technique, whether it can be used by stakeholders is

indicated by practicable for both stakeholder and analyst, keeping in mind that stakeholders

must not learn anything new. Representable in software classifies techniques as per their

ability to be imitated as software. There already exist software which implement certain

techniques [@Big18; Coo94; CRC07; ACO16]. Other techniques are included in our

prototype and the usage is described in section 4.2.3. Techniques which fulfill a specific

criterion are marked in Table 4.1.

4.2 On-Site Feature Requests 71

Technique

locating

and

scoping

problems

suitable

for

autarkic

execution

practicable

for both

stake-

holder and

analyst

represen-

table in

software

Interview [Coo94]

Questionnaire [ZC05; FF94]

Task analysis

[ZC05; Wil+89; CK96]

Domain analysis [Pri90]

Observation [ZC05]

Protocol analysis

[ZC05; GL93]

Prototyping [SS97]

Brainstorming

[ZC05; Osb63]

Card sorting [ZC05]

Joint Application

Development [WS95]

Scenarios [ZC05]

Viewpoints [ZC05]

SWOT analysis [PW98]

Theory of change [TC12]

Problem definition

[KJ12; @Nes17]

Repertory grids

[Kel03; FBB04]

Laddering

[VZ09; Hin65; Gut82]

Literature review [Gre08]

Persona [CRC07; @Nes17]

Tab. 4.1.: Classification criterion for elicitation techniques

72 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

4.2.3 Vision Backlog – A Prototype for a Tool-Guided Elicitation

Process

Based on this classification, the elicitation techniques listed in Table 4.2 have been selected

to be implemented in our prototype that we call Vision Backlog. The selected elicitation

techniques intend to gather diverse information at different stages of the elicitation process.

These techniques are practiced in different formats with different surrounding environment

settings.

No Technique Purpose

1 Interview

Structured stakeholder interviews are used to gather

information about their personal attributes, their goals,

business drivers behind them, underlying contexts and the

domain

2 Questionnaire Similar to the interview

3 Domain analysis

Used along with interview to gather domain specific

information like vocabulary, specific terms used during

execution of a specific process or a task

4 Task analysis

Used to gather information about the tasks stakeholders

perform, subtasks and concrete steps, with contextual

information like specific skills required

5 Problem definition

Used along with questionnaire to gather information about

stakeholder’s problems with current processes or tasks along

with possible alternatives

6 Theory of change

Used along with interview to make stakeholder think about

their high-level goals with tasks those help them achieve the

goal, and potential risks etc.

7 SWOT analysis
Used to gather information about possible improvements,

challenges and alternatives to the tasks stakeholders performs

8 Persona
Provide all the project stakeholders with a common

understanding of their target user

Tab. 4.2.: Selected elicitation techniques and their purpose in Vision Backlog

To be usable in Vision Backlog, we analyzed these techniques for common factors and found

one in questioning. Based on this insight, we created in total 34 questions corresponding to

the purpose of the different selected techniques. The questions are intended to ask information

about stakeholder goals, activities, aptitudes, attitudes, and skills. These questions have

been integrated in the stakeholder view of Vision Backlog. The stakeholder view is intended

for stakeholders (like users) to be able to enter data about the task they perform, and more

contextual data like why they perform this task, what tools or knowledge they require to

perform it, and if there are any alternatives to this task. Along with these information, they

provide personal information like education they have had, job designation, and skills they

4.2 On-Site Feature Requests 73

possess. That is why the stakeholder view mainly separates in the two areas tasks and user

profile. The user profile area (see Figure 4.2) is presented on the very first login with a help

pop-up that explains the purpose of the application and the different functionalities including

their importance. In this area the stakeholders create a personal profile. The questions we

ask are based on Cooper’s suggestions for Personas [CRC07] and generalized categorization

for the adopter categories on how innovations are adopted by different groups of people

from Rogers [Rog10].

Fig. 4.2.: User Profile Creation

In the task area (see Figure 4.3), the stakeholder can create tasks as they perform them as part

of their job. They can provide details about how frequently and how important the task is,

the reason behind performing this task, and any improvements she can think of. This area is

divided into four steps Quick intro, Think about it, Supporting details, and Finishing details.

Within each step a description is given what this step is about. It is also possible to suspend

doing the steps and continue them afterwards. Within the step Quick intro the user shall give

an overview of the task, she wants to tell the analyst more about. The questions in this step

are about a short description of the task, frequency, importance, his role, and an overview

of the steps necessary in this task. In the next step Think about it a short rationale for this

task shall be given before getting to the Supporting details step. In this step information

regarding the context and the impacts of this task is given. In the last step Finishing details

additional information about other involved people are given as well as possible factors for

improvements.

Besides the stakeholder view with the user profile and task area, we implemented an analyst

view (see Figure 4.4). This view is dedicated to the usability / requirements engineer to

explore and discover inputs from the stakeholders. It has various filter and sorting options

in this view. Additionally, it can structure the task descriptions from the stakeholders into

74 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

Fig. 4.3.: Vision Backlog – Stakeholder View: Task Creation

features for the further development. Besides these functionalities for sorting the created task

descriptions, this view also includes a dashboard presenting the users with their attributes

for creating personas as well as an overview of the system.

Fig. 4.4.: Vision Backlog – Analyst View: Task List Screen

4.2.4 Evaluation

We evaluated Vision Backlog with an initial two levels study consisting of a usability test

and an expert review on the content quality. These two evaluations have been conducted

non-consecutively. The entered data from the usability tests have been used for the expert

reviews on the content quality.

The goal of the usability test was to show that stakeholders can understand the tasks presented

in Vision Backlog and are able to use the tool with the selected elicitation techniques. We

have been using the single evaluation from AttrakDiff [HBK03] to survey the usability

4.2 On-Site Feature Requests 75

and attractiveness of our tool with a total of five participants. The usability test itself was

done remotely and asynchronously. The summed-up results of the survey are presented

in Figure 4.5. The meaning of the terms used in the diagram are as followed:

• Pragmatic Quality (PQ) indicates how successful users are in achieving their goals

with the product,

• Hedonic Quality- stimulation (HQ-S) indicates to what extent the product supports

human needs of developing something new in terms of novel, interesting and stimu-

lating functions, contents, interaction and presentation styles,

• Hedonic Quality- identity (HQ-I) indicates to what extent the product allows user

to identify with it and,

• Attractiveness (ATT) is the global value of the product to which Hedonic and prag-

matic qualities contribute equally

Fig. 4.5.: Usability evaluation results

The results indicate that Vision Backlog is rated positive, but the confidence level for PQ

(1,62) and HQ (0,95) are quite huge, meaning that the participants evaluated the application

differently. Overall, the participants have been successful in achieving their goals and rated

the application attractive, but there is still room for improvement.

The goal of the expert review was to assess if the yielded results are useful for the further

process, which is why all participants had a background in computer science and experiences

in requirements elicitation. In total, we had three participants for the expert review on the

content quality. They used the analyst’s view and had to answer five questions afterwards

in an online form with a four-point scale for the answers (see Table 4.3). Overall, the

participants rated that the utilized techniques have been explained properly and how they

76 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

are related to requirements elicitation. They strongly agreed that the analytics provided by

Vision Backlog were helpful but showed a differentiated picture regarding the representation

of the analytics.

Strongly

Agree
Agree Disagree

Strongly

Dis-

agree

The concepts Vision-analytics uses i.e. Per-

sona are explained properly
66.7% 33.3% 0% 0%

The application explains how the concepts

used can be used for eliciting requirements
66.7% 33.3% 0% 0%

The semantic segregation of the data is help-

ful
66.7% 33.3% 0% 0%

The analytics provided are helpful 100% 0% 0% 0%

The structure used i.e. lists to represent the

analytics are helpful
33.3% 33.3% 33.3% 0%

Tab. 4.3.: Usefulness evaluation results

This marks the end of this section on on-site feature requests. As we mentioned in the

beginning, this can only be a supplement to a systematic analysis, which we will present in

the following section.

4.3 Feature Requests from Systematic Analysis

The systematic analysis at this point aims at exploring the problem space in order to develop a

suitable design challenge for the design thinking process, which in turn leads to an improved

understanding of the problem space as well as an understanding of the solution space and

the connection between both spaces. Its goal is not to come up with specific functional

requirements or qualitative requirements for already developing the solution but to understand

the general conditions (cf. Pohl [Poh07] on the three types of requirements) and to gain an

initial idea of possible features.

As we have mentioned in the previous section, Sutcliffe and Sawyer [SS13] propose for this

stage techniques that approximate to natural conversations. In fact, they propose qualitative

techniques without calling it like this. For this stage they are best suited as they try to

reconstruct meaning or subjective views (see section 1.3), which is exactly what we need.

Therefore, qualitative methods are first of all fundamentally suitable as main method, whether

e.g. from requirements engineering, usability engineering or the social sciences.

4.3 Feature Requests from Systematic Analysis 77

But there is a restriction to it. Either alone or in combination with others, they must be able

to develop new concepts in discussion with the empirical material and not rely solely on

already known concepts for their implementation. Otherwise, there is a high probability that

we will only move in the complicated or obvious domain (see section 1.1.1) with solutions

immediately apparent or that can be easily derived by analysis. This in contrast would

contradict our first requirement and wouldn’t lead to a good design challenge.

One approach which aims at the development of new concepts, more specifically at the

development of theories, is Grounded Theory. Grounded Theory also meets the second

requirement through an explicit learning cycle. The fulfillment of the third requirement is

not explicitly excluded by Grounded Theory, but must be ensured by the implementation of

it.

4.3.1 Grounded Theory

Strübing [Str04] describes Grounded Theory as a practice which operates with a permanent

iteration of the epistemological steps induction, abduction, and deduction, continuously

developing, testing and modifying theories (cf. Figure 4.6). These epistemological steps are

described by Peirce as following:

„It [induction] never can originate any idea whatever. No more can

deduction. All the ideas of science come to it by abduction. Abduction

consists in studying facts and devising a theory to explain them.[...]

Abduction is the process of forming an explanatory hypothesis. It is

the only logical operation which introduces any new idea; for

induction does nothing but determine a value, and deduction merely

evolves the necessary consequences of a pure hypothesis. Deduction

proves that something must be; Induction shows that something

actually is operative; Abduction merely suggests that something may

be. Its only justification is that from its suggestion deduction can draw

a prediction which can be tested by induction, and that, if we are ever

to learn anything or to understand phenomena at all, it must be by

abduction that this is to be brought about.[...]The first starting of a

hypothesis and the entertaining of it, whether as a simple

interrogation or with any degree of confidence, is an inferential step

which I propose to call abduction.

— Peirce

As cited in [AND94]

78 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

Muller and Kogan [MK12] describe Grounded Theory as "a set of practices for exploring

a new domain, or a domain without an organizing theory[...]. The practices are strongly

grounded in the data and the theory is said to emerge from the data." Furthermore, they

describe research with it as something that "[...]usually begins with a broad very shallow set

of unorganized information[...]. Over time, through a series of disciplined procedures[...],

the information becomes more narrowly focused, and understood in greater depth[...]."

t

increasing
conceptual level
of the emerging
theory

Fig. 4.6.: Schematic process model of grounded theory based on Strübing [Str04]

In other words, it is an agile process in which, in contrast to agile software development, not

a product but a theory is developed and to a certain degree validated step by step. As Strauss

and Corbin [SC94] point out, the means used for this purpose overlap with those of other

qualitative research methods. Thus, quantitative data can be used as well as combinations of

qualitative and quantitative techniques of analysis. The main difference between Grounded

Theory and other qualitative methods is the emphasis upon theory development.

The advantages and disadvantages of using grounded theory are worked out by Muller and

Kogan [MK12]. They highlight that Grounded Theory is useful to explore new domains or

a domain without a dominant theory, for constructing a theory of this new domain, and to

avoid a premature conclusion about the domain. However it should not be useful for testing

a hypothesis, or for trying to prove or disprove a theory.

4.3 Feature Requests from Systematic Analysis 79

For the understanding of the core tasks in grounded theory, it is important to remember that

qualitative research’s goal is to reconstruct meaning, as mentioned in section 1.3. A central

task of qualitative data analysis for this purpose is therefore to create an interpretative gateway

to the data material obtained, i.e. to make sense of the data. In Grounded Theory, this process

is called coding and is distinguished into two possible variants (see Strübing [Str04]). The

first variant focuses on coding using predefined categories based on the research question and

a subsequent analysis. This idea equals, for example, with the qualitative content analysis

(cf. Gläser, Laudel, and Grit [GL09] or Mayring [May00]). Whereas in the case of the

second variant, which is aimed by Grounded Theory, it is assumed that a theoretical framing

does not yet exist and in this case coding is not understood as the subsumption of qualitative

data among existing concepts, but as the process of the development of these very concepts

in discussion with the empirical material. This implies a continuous analytic comparison

with the data to successively develop these concepts.

Strauss and Glaser [Str04] have developed a three-stage coding model consisting of open

coding, axial coding, and selective coding to achieve this. Open coding is the writing of

simple descriptive labels (see Muller and Kogan [MK12]) to break up the data by analytically

preparing individual phenomena (see Strübing [Str04]). In the next stage, axial coding,

relationships among the codes are searched for to create a phenomenal context model (see

Strübing [Str04] or Muller and Kogan [MK12]). The stage of selective coding serves to

integrate the theoretical concepts developed to date in relation to these few core categories

(see Strübing [Str04]), i.e. the axial codes that are more important than others will be

determined (see Muller and Kogan [MK12]).

Although Grounded Theory originated from sociology [SC94] it is as well widely used in

software engineering. Muller and Kogan [MK12] give an overview for this, ranging from the

developers’ orientation to new projects, software testing and quality processes, to developers’

views on user interface design issues and team cohesion. Summed up, Grounded Theory

has been used to explore the needs of scholars in media studies and for an examination of

software engineering methods.

Grounded Theory can therefore be used particularly well in this stage to initially build up

a valid knowledge base and understanding and to translate this into a design challenge.

Furthermore, the approach of Grounded Theory can be extended into product development

with the help of Design Thinking to more deeply validate the theories and insights gained

from the social-scientific approach through implementation in products and testing them

in practice. This results in an ideal collaboration between Grounded Theory and Design

Thinking.

80 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

4.3.2 Our Grounded Theory Instance

Since Grounded Theory in its basic form is a methodology rather than a specific method,

it offers many freedoms to shape the research process. The exact design can therefore be

formulated according to the research perspective and the research phenomenon [MM11].

In [Mei+16a], we present an instantiation of grounded theory that was developed in close

collaboration between media researcher and computer scientists for the project centre for

music edition and media (ZenMEM)2. A schematic visualization of this grounded theory

instance is presented in Figure 4.7.

t

increasing
understanding of
user needs and
general conditions

Fig. 4.7.: Schematic process model of the interdisciplinary research process with grounded theory

(following Strübing [Str04])

With ZenMEM, we didn’t start on a completely greenfield site, but with Edirom3 we had a

digital tool for creating digital music editions that already supported rudimentary functions

such marking measures and with MEI4 an XML schema for encoding music editions. Never-

theless, there were still many manual and non-digitized activities (cf. Rittmeier, Engels, and

2https://www.zenmem.de
3https://www.edirom.de/edirom-projekt/software/
4https://music-encoding.org/

4.3 Feature Requests from Systematic Analysis 81

https://www.zenmem.de
https://www.edirom.de/edirom-projekt/software/
https://music-encoding.org/

Teetz [RET19] on identifying digitalization potentials in business processes) in this area.

For this reason, we started grounded theory with a reverse engineering phase of the existing

digital tools regarding the offered functionalities and to identify first structural weaknesses

of the used data model. The resulting insights offer first clues for question dimensions for a

quantitative questionnaire and a qualitative guideline.

Furthermore, the insights from a musicological hospitation were used, where the different

approaches of the scientific work of music editors were explained, in particular with the

Edirom software. A quantitative questionnaire and a qualitative guideline was then developed

with this and with technical literature. The quantitative survey focused on the overall

population with its characteristics, in particular its software and technology affinity, and

usage of Edirom. Since the quantitative method is used to generate overviews of many users,

it was supplemented by a qualitative method in order to go into depth and investigate, for

example, implicit knowledge, unconscious routines or habitualized working methods.

The quantitative questionnaire was realized as online survey as the target group is a technically

special and geographically strongly distributed group of persons. It is subdivided into four

major thematic complexes: "How does scientific work and editorial activity work?", "How

is Edirom used in scientific work?", "How are the participants involved in external scientific

communication?", and "What sociodemographic and musical background do the participants

have and what is their technology affinity?". Within the questionnaire, mainly closed

questions were used, as these are characterised by a better comparability of the answers.

As instrument for the qualitative guideline, the narrative guideline interview with a problem-

centered fraction was selected in order to address implicit knowledge, work routines, expertise

and certainties. The advantage of this decision is that it allows the greatest possible freedom

with regard to the formulation of questions, strategies of questioning and the order of the

questions as well as for the narration of the editors (cf. [Hel11]). In total, interviews were

conducted with eight editors that lasted between 90 and 180 minutes and were then evaluated

with a variant of Strauss and Corbin’s coding, as suggested by Przyborski and Wohlrab-

Sahr [PW09]. On the one hand, these provided concrete hints for optimizing the software,

but also context information on the working conditions, routines and experiences of the

editors. In addition, they provided very good insights into the change processes of knowledge

work, knowledge management and the knowledge acquired as such.

Furthermore, the qualitative interviews have revealed that not only editors are involved

in creating music editions, but also assistants who digitize and marking measures on the

selected sources and then specify the concordances. This process could therefore not be

investigated by the interviews and therefore required further empirical investigations. Since

these activities are very standardized processes, the assistants were observed and questioned

82 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

in their work with the help of a contextual interview (cf. [BHB04]), which is a common

method in usability engineering.

In the next step, the users are described with this knowledge. User roles or personas

are suitable for this. User roles according to Constantine and Lockwood [CL99] in their

simplest form are lists of characteristics such as needs, interests, expectations, behavior

and responsibilities. In contrast, personas (cf. [CRC07]) are not stereotypes, but archetypes

based on empirical data. Thus, in contrast to user roles, they can be used as an abstraction

of real persons, which is why we use personas to model users. The data from the previous

investigations are excellently suited for this type formation.

With the data and knowledge gained in this way, design challenges can be construed in a

well-founded manner that meet the requirements as defined in section 4.1.

4.4 Summary and Discussion

In this chapter we have presented the first stage of ICeDD, our approach to develop unique

and novel software-based solutions. The main goal of this stage is to identify a fitting design

challenge as it sets the scope for all further Design Thinking activities and thus the first

essential step for the execution of Design Thinking in the context of software development.

Even though the design challenge is so important, the existing literature hardly addresses

how to identify a good design challenge, but rather how to validate it posthumously. For this

reason we present two ways to identify this design challenge for the further development of

unique and novel software-based solutions.

The first way is through on-site feature requests (section 4.2). Literature still presents tacit

knowledge as an important challenge in requirements elicitation. In a follow-up investigation,

we created a link between tacit knowledge and findings on expert knowledge in psychology.

From these findings we concluded that we need an assistance system that enables the user

to document findings regarding issues and possible solutions in a structured way while

performing his normal tasks as knowledge is often only activated in the context it is needed.

Accordingly, we developed a prototype (section 4.2.3) of such an assistance system and

evaluated it (section 4.2.4) by means of a usability test for end users and an expert review

for the usage of results by requirements analysts.

As on-site feature requests cannot guarantee that the users are already documenting every-

thing like it is needed for a good design challenge, it may need to be supplemented by a

systematic analysis. The systematic analysis (section 4.3) also functions as a starting point

that can be triggered without specific on-site feature requests from the users. Furthermore,

4.4 Summary and Discussion 83

goal of the systematic analysis is not to document functional requirements for the digital

copy of something existing, but to understand the general conditions and come up with theo-

ries on how the situation can be improved with unique and novel software-based solutions.

Accordingly, we need a theory-generating procedure at this point, which we have found

with Grounded Theory (section 4.3.1) and have transferred it interdisciplinary into a usable

instance in the ZenMEM project (section 4.3.2).

Overall, we have met the requirements we set ourselves for this stage (section 4.1). The

first requirement is actually something that comes at the end of this stage and is dependent

on the domain context. Our second requirement is regarding the learning cycle, which is

also a characteristic in our FF. By using Grounded Theory in the systematic analysis and

having the systematic analysis also as a refinement instrument for on-site feature requests,

we have an explicitly defined learning cycle, as Grounded Theory itself emphasizes the

iterative learning from data. Moreover, Grounded Theory is a methodology that can and

should be adapted to the current context. Even though we have presented one possible

variant as a concrete instance, Grounded Theory can also be used in another development

project in different variant. Furthermore, Grounded Theory is not limited to one possible

solution, but also allows for the highlighting of different approaches, e.g. through the

selective coding. Accordingly, in this stage we fulfil the highest form of the characteristic

Learning Cycle of the FF, since we intended a learning cycle that is explicitly defined, refers

to several alternatives and can be adapted according to the context. Furthermore, we fulfill

the Alternatives characteristic of the FF at least partially, because at least two solutions can

be supported simultaneously in parallel with grounded theory, but we cannot yet guarantee

that they are implementable as software.

The third requirement is referring to novelty and we have defined that it is indispensable that

the survey instruments do not only survey the current state but as well possible potentials (e.g.

challenges or gaps). Grounded Theory is originally intended to describe existing states as

well as possible by iteratively improving the understanding of the state as a theory generating

procedure based on empirical data. However, it does not have to be limited to this and can

also be used to iteratively develop and improve new ideas, e.g. by means of expert interviews.

These can be incremental innovations, but also completely new solutions. However, the limit

here is the restricted significance without an observable and triable prototype (see section 2.1

and section 8.2). Nevertheless, with this we can assume that Grounded Theory does not

merely copy the current state but also is able to creates novel solutions, which is completely

fulfilling the characteristic Focus on Novelty of the FF.

The results regarding the FF are presented visually in Figure 4.8. We haven’t looked at

the other characteristics of the FF in this stage and therefore don’t fulfill them as they are

technology related and we don’t yet look at this in this stage. Besides the first requirement

84 Chapter 4 ICeDD Stage (1): Initialize Design Thinking

and the requirements deriving from the fitness function, we had one other requirement,

namely that methods at this stage must at least partially query information in a context that

is as close as possible to the user’s work context in order to determine the presence of tacit

knowledge and to activate as much knowledge as possible. The on-site feature request path

allows us to exactly do this, but we can also adapt the grounded theory for example by using

contextual inquiry [BH99] to achieve this goal.

0

1

2

3

4

5
Alterna�ves

Opera�ng Alterna�ves

Consequences of
Technological DecisionsFocus on Novelty

Learning Cycle

Fig. 4.8.: Radar Chart for Stage 1 regarding our Fitness Function (FF).

The most important findings in this chapter are the requirements for methods to derive design

challenges to develop unique and novel software-based solutions. The two paths on-site

feature requests and systematic analysis should be there to ensure that as much knowledge

as possible is gathered for potential solutions. However, the manifestations that we have

presented for these two paths represent only one possible variant. Neither the presented tool

for the on-site feature requests nor Grounded Theory with our instance of it must be used.

However, in our context both have proven to be very advantageous. For generalizations,

though, further extensive studies have to be done in this area, since we have mainly focused

on the feasibility.

4.4 Summary and Discussion 85

ICeDD Stage (2): Execute

Design Thinking with

Non-Software

5

In this chapter we are presenting the second stage of our approach ICeDD to develop unique

and novel software-based solutions. Within the first stage (see chapter 4), we have identified

a possible design challenge that we will use in this stage to conduct design thinking in order

to learn from prototypes more about the problem and solution space. Design Thinking in

this stage refers mainly to the identification and validation of value by means of prototypes

that do not use software as a medium. The reasons for this and other requirements are

described in section 5.1. As Design Thinking is a methodology like Grounded Theory, we

need to instantiate it for our purposes. In section 5.2, we are presenting our instantiation of

Design Thinking. The findings leading to this instantiation from conducting several Design

Thinking runs are presented and discussed in section 5.3. Finally, this chapter and the second

stage are summarized and discussed in section 5.4.

5.1 Requirements & Overview

As can be seen e.g. from the recommended user experience design process [May12] or the

basic idea of value-based software engineering [Boe06b], value should be identified first. In

the previous stage, we identified a design challenge with the underlying constraints that will

form the basis for further steps to identify and validate the value in this stage. The restriction

of the systematic analysis in the previous stage is the validation capability, since it doesn’t

produce trialable and observable objects as required for a better understanding of unique

and novel software-based solutions (cf. paragraph 2.1). Furthermore, it is mainly limited to

existing solutions, which means that not all effects that may occur with a unique and novel

software-based solution can necessarily be observed. For this reason, the aim of this stage is

to further deepen and validate the existing understanding of the problem space with the help

of trialable and observable objects, as well as to identify possible solutions, and to align

problem and solution space in order to further identify and validate the value.

87

In our case, the trialable and observable objects are prototypes of possible solutions for the

intended problem. Furthermore, we restrict the properties that these prototypes should have

as we are still on the initial identification and validation of the value. As a short reminder,

value means in our case something that is of relative worth, utility, or importance for a user.

Hence, the prototypes in this stage need mainly the properties related to value (cf. prototype

levels in section 3.1). All additional properties from the technical or look-and-feel level can

or would be unnecessary overhead for the validation level of this stage1. This leads to our

first requirement for this stage, which is to have trialable and observable prototypes that

have only the complexity needed to validate value at this stage.

For the next requirements we will refer again to the single characteristics of our FF (see sec-

tion 1.2). First of all, we can exclude the characteristics Operating Alternatives and Con-

sequences of Technological Decisions for this stage. Operating Alternatives is related to

operating software alternatives in production and for Consequences of Technological De-

cisions we would have to make lasting decisions regarding technologies in this stage. But

both would imply that we introduce unnecessary complexity as right now only properties of

the value level are important and the technology level is subsequent. On the other hand, the

characteristics Learning Cycle, Focus on Novelty, and Alternatives must be considered at

this stage.

We need to test with alternatives to improve our understanding. Only by testing with

alternatives we can derive from the differences and the assessment of these what in detail is

beneficial or not. Also, as our goal is to develop unique and novel software-based solutions

and the preceding systematic analysis couldn’t have been tested yet in practice, we assume

that our understanding of problem and solution space will still change radically after the tests.

Hence, we will need several iterations to consolidate our understanding. That is why our

second requirement is a learning cycle that is also explicitly defined and refers to several

alternatives at a time.

As the learning cycle needs alternatives to be able to increase understanding even more

than the systematic analysis, we need to support at least two solutions simultaneously in

this stage. Furthermore as we assume that our understanding will change radically in this

stage, we need multiple iterations to consolidate our understanding which in conjunction

with our first requirement means that we should focus in this stage on non-software as a

medium (cf. section 1.1.3 or section 3.1). In addition, we should have the option to create

the solutions in parallel to increase the speed we can iterate through the learning cycle even

1For example, one could introduce filtering according to distance from the user position as an added value

for an event portal. This could be done e.g. by the distance in length (e.g. km) or by the travel time by car,

bicycle or public transport. To validate the value at this stage, it is unnecessary to introduce algorithms for

routing and distance calculation; it is sufficient to demonstrate the idea in a prototype using static examples

without any application logic at all.

88 Chapter 5 ICeDD Stage (2): Execute Design Thinking with Non-Software

further. Hence, our third requirement is to support at least two solutions simultaneously,

that can be created in parallel.

Within the first stage, we have ensured that the design challenge includes multiple characters,

multiple problems, and multiple needs of the characters as well as problems for which

solutions are not immediately apparent or can be easily derived by analysis. This is so, so

that we can stay open minded, explore further the problem and solution space as well as

to find alternative solutions that are maybe better suited. The goal is not to stick to already

established solution paths, this is why our fourth requirement is to create novel (e.g. in

the sense of structure, tasks, or processes) alternative solutions in this stage in contrast to

already established solution paths.

Design Thinking (cf. section 2.2) is particularly suitable for meeting the requirements of this

stage. The diverging and converging thinking over the problem and solution space (see Fig-

ure 2.4 in section 2.2) ensures to create novel solutions (fourth requirement). Combined

with the micro cycle (see Figure 2.5 in section 2.2), we have an explicitly defined learning

cycle that intentionally includes different alternatives (second requirement). Furthermore,

the focus of Design Thinking is to learn with prototypes as trialable and observable objects

(first requirement) and as well to create with the diverging and converging thinking at least

two solutions simultaneously in parallel (third requirement).

As Design Thinking is more like a methodology, there is not the one Design Thinking

process. Therefore, a concrete instantiation of Design Thinking is needed. In the next

section we thus describe in detail the developed instantiation of Design Thinking for our

approach.

5.2 Our Design Thinking Instance

In section 2.2 we have presented design thinking in general. The most important concepts

include the alignment of different perspectives (see Figure 2.3), converging and diverging

thinking in the problem and solution space (see Figure 2.4) and the design thinking micro

cycle (see Figure 2.5). For the micro cycle, we have presented that there are different

versions and orders. To instantiate our design thinking instance, we have to choose the

version we want to use. We decided to stick for that with the order and definition of the

Stanford d.school2 as we think it is more open minded to start with trying to understand

the users before defining the problem and therefore restricting ourselves. Furthermore this

allows us to reuse resources offered by the Stanford d.school to conduct Design Thinking.

2For a more detailed look into how literature defines the different stages have a look at [@Wal12].

5.2 Our Design Thinking Instance 89

Our design thinking instance is mainly based on the Design Thinking Playbook by Tran [@Tra16]

and has some minor adjustments based on the insights we gained during conduction of

several design thinking runs. Accordingly, in the following we present Design Thinking

after the Design Thinking Playbook and explain our changes to it. First of all, it consists

of the five phases Initiate, Discover, Create, Learn, Post-Work (see Figure 5.1), whereas

the phases Discover, Create, and Learn represent the design thinking micro cycle and are

intended to be iterable.

INITIATE DISCOVER POST-WORKCREATE LEARN

Topic Activate Empathy Define Ideate Prototype Test ShareSolution
Documentation

Fig. 5.1.: Design Thinking Process based on Design Thinking Playbook by Tran [@Tra16].

In contrast to the Design Thinking Playbook, which was intended as a 6 week sprint, our

design thinking can either be conducted as design sprint (like in section 8.3) or as con-

densed workshop format, as we found that a workshop can be more suited in our context

(see section 5.3). The main difference between design sprint and workshop format is the

duration. Google for example introduced design sprints in their context that lasts five days

(see [KZK16]). In our context we define design thinking workshops as design thinking

instances that lasts no longer than two days and everything else as design sprint.

To explain our instance we will use a design thinking workshop we conducted in the context

of education and training in industry 4.0. The starting point is the Initiate phase that we

usually begin with an impulse presentation (see [Sen20d, slides 1–19]) to introduce the

participants to the design challenge. After a short introduction to design thinking and the

most important rules of it (see [Sen20d, slides 20–32]), the design challenge is presented

explicitly (Topic) as the workshop goal, which is available for everyone printed out to be read

during the entire workshop (see [Sen20c]). This initiation is the first difference in the process

to the Design Thinking Playbook as they didn’t intend to give an impulse presentation to

give the participants a glance about what the design challenge would be, nor did they intend

to explain Design Thinking in general. In our case, we consider both to be necessary, as

our participants are usually a diverse mix of people and do not necessarily already have an

understanding of what design thinking is all about, and some of them have not yet been

working in the domain covered by the design challenge.

After this, the design thinking micro cycle starts with the Discover phase. As the first

step (see [Sen20d, slides 35–36]), the participants context knowledge regarding the design

challenge is activated (Activation), which includes the affected stakeholders, gaps, values,

and basic conditions. It is carried out as individual work in which the participants should

90 Chapter 5 ICeDD Stage (2): Execute Design Thinking with Non-Software

write down their knowledge within a certain time frame (in the workshop about 10 minutes)

without paying attention to correctness. This is like in the Design Thinking Playbook, but

we will use in the following the memory model of humans to further explain why we kept it

and think it is useful. Müsseler [MR17, p.419] explains as a widespread concept of semantic

memory that it is working like a hierarchical organized semantic network. This means, for

example, that there is a node "water" with a link to the nodes "boat" and "watermelon" but

no direct link between "boat" and "watermelon". There are three key concepts for working

with this model. First, a node gets a higher activation if a concept is mentally processed

that is linked with the node. Secondly, the activation of one node increases the activation

of linked nodes. And thirdly, in phases of inactivity, the activation of all nodes decrease.

Hence, if the participants start with an activation step, the activation of nodes related to the

design challenge should be increased and therefore more knowledge should be available in

the next steps. In addition to the memory, we also use this step to put the participants’ initial

assumptions on paper (see [Sen20j, working sheet 1]), so that in the next steps contradictions

become clearer compared to the other participants.

The next step is Empathy in which the participants should interview stakeholders and check

their assumptions from the first step. In our workshop format the participants interview each

other in pairs (see [Sen20d, slides 37–39]). To help them, they are told to pay attention

to "interesting statements", "problems", "opportunities", "interpretations", "ideas", and

"insights". Subsequently, they should note this down on sticky notes accordingly. Due to

the time available, these are the only aids for the participants in the workshop format for

conducting the interviews. In the case of a sprint, the participants receive further information

on how to conduct qualitative interviews (see [Sen20a] or section 8.3.3.2). Furthermore, in

the sprint they already work together in the subgroup, which remains until the end of the

sprint.

In the next step Define (see [Sen20d, slides 40–42]), the participants work together in

subgroups (up to 8 people) to first formulate POVs and then problem definitions. For the

POVs, they are introduced to use the sticky notes from their interviews and write them in the

POV template of working sheet 2 (see [Sen20f]) as needs and not solutions. For the problem

definition they can thus draw on the collected points of views from the entire subgroup and

formulate at least five problems on worksheet 3 using the criteria "only one user group", "a

real problem", "no solution in question form", "invites to different solutions", "inspiring and

motivational" from Tran [@Tra16]. Furthermore, the participants shall assess the problem

definitions and in case of the workshop decide on one (which can also be a combination) to

further work with.

The step Define finished the first phase Discover and with that as well the exploring of

the problem space. With the next phase Create, the solution space is going to be explored.

5.2 Our Design Thinking Instance 91

For this, the first step Ideate is there to create as many ideas possible on how to solve the

problem and be reduced to the most promising one with diverging and converging thinking.

Accordingly, in the case of the workshop we have divided this step into four substeps

(see [Sen20d, slides 43–49]).

As the first substep, the participants have the task to create as many "crazy" ideas as possible.

To encourage them to do so, they first got an impulse with science fiction ideas that got

reality and Clarke’s three laws. This impulse is as well different to the Design Thinking

Playbook as we wanted to explicitly encourage the participants to think outside of the box.

Secondly, they were put under time pressure to write down 50 ideas in ten minutes on sticky

notes, so that they are not able to overthink their ideas and already assess them regarding

feasibility. However, this excludes group work, so this substep is done individually.

In order to better discuss these ideas in the subgroup, in the next substep five ideas are

substantiated using worksheet 4 (see [Sen20f]). These are then shared, thematically ordered,

and prioritized within the subgroup in substep three. As last substep, with the help of working

sheet 5 (see [Sen20f]) a common idea is created in the subgroup to create a prototype for.

The common idea can be one idea selected from these substantiated ideas or a combination

of different ideas.

With the common idea, the next step is to create a prototype (see [Sen20d, slides 50–55])

which shall focus on the value level with regard to its properties as to our first requirement

for this stage. To support the creation of prototypes, the participants get a testing card

(see [Sen20f, working sheet 6]) to fill out in advance. On the testing card they are encouraged

to think about what they want to test with the prototype, how they will do it, how they will

measure it, and when they are right. It has to be kept in mind, that the purpose of the

prototypes in this stage are not to examine the technical feasibility but are just a means to

transport and validate an idea.

The validation of the idea brings us to the next phase Learn with the step Test. In the original

process this phase included as well Share but we chose to put it at the end, because it is a

good conclusion in our workshop format and after the intensive workshop the participants

usually do not have so many comments in this step. For the Test step, the participants actually

get two working sheets. The first working sheet is the learning card (see [Sen20f, working

sheet 7]) which actually reflects the testing card and is for observing how the prototype is

used by the people outside of the group. The second working sheet is the feedback grid

(see [Sen20f, working sheet 8]). This is the for the people trying out the prototype to structure

their feedback. It is important not only to criticize the negative aspects, but also to point out

what you liked best, what should be improved and what was not understood. Only through

this more detailed feedback it is possible to better understand the problem and solution space

92 Chapter 5 ICeDD Stage (2): Execute Design Thinking with Non-Software

and to adapt the ideas accordingly. To reflect and use the feedback promptly, part of this

step is also the adaptation of the prototype or the idea.

The Post-Work phase in the original process by Tran [@Tra16] included in this phase a step

called solution rollout, which is mainly a roadmap on how to create the product. In our case

this stage is still far from a comprehensive understanding of the final product. This will only

be developed in the next stages of the approach. Accordingly, it is essential that the findings

from this are recorded accordingly for the subsequent stages. On the one hand, this includes

the working sheets of the individual participants / groups including the sticky notes, on the

other hand also the final prototypes of this stage. For the prototypes, we created a poster

(see [Sen20e]) to summarize the core aspects of the prototype to not have just the prototype

itself.

In the last step Share this stage will be finished by sharing the final results with the other

groups. For the workshop format we choose a format where the groups will go from one

prototype to the next and the group of the prototype will present it. A trying out of the

prototypes would take too much time for the amount of participants usually involved in this

stage.

In this section we have presented a design thinking instance based on the Design Thinking

Playbook by Tran [@Tra16]. Its main purpose is to explore problem and solution space on

the value level. Therefore, the steps in this instance are restricted to the value level. This

includes that the prototypes have mainly properties that are required to validate ideas on

the value level, which is why mostly wireframes, physicial prototypes made out of paper or

lego, videos and theatre, story telling metaphor or customer journeys (see [Sen20a, slides

60–68]) are used in this stage.

5.3 Findings

The presented Design Thinking instance in the previous section is largely based on Tran’s

Design Thinking Playbook [@Tra16] from Stanford d.school (K12 Lab Network). As part

of the Hasso Plattner Institute, Stanford d.school is one of the driving forces behind Design

Thinking research and as such is also heavily involved in a book series on Design Thinking

at Springer Link3. Hence, they are well informed about the state of research on Design

Thinking and how to best conduct it. Furthermore, this book series gives a great overview on

evaluations of Design Thinking effectiveness and efficiency in general, but also in particular

for software development. Thus, in this section we will not focus on the evaluation of Design

3https://link.springer.com/bookseries/8802

5.3 Findings 93

https://link.springer.com/bookseries/8802

Thinking in general or its applicability in software development, but rather present our

findings from the conduction of our Design Thinking instance on several occasions.

In total, we have conducted seven Design Thinking workshops (one to two days) and two

Design Thinking sprints (accompanying the semester) based on our instance between 2015

and 20194. For each run, we had 17 to 60 participants (learning 4.0) with one run consisting

only of computer scientists and the other runs of computer scientists and at least one other

area but a maximum of four other areas.

For our workshop format we have experienced seven hours as the lowest limit to go through

the Design Thinking process and get useful results (see Table 5.1 for an example schedule).

Although with the Wallet Project [@Bot16] there is a Design Thinking workshop, which is

designed for 90 minutes + debriefing, it is mainly aimed at giving an impression of Design

Thinking and not on developing a real product in the given time frame. For working on a

more complex topic even the seven hours make the impression on the participants that the

workshop is tightly packed. Some parts like Crazy Ideas are intentionally kept very short

to increase the pressure and force the participants to focus. In the case of Crazy Ideas, this

means that the time constraint forces them to stop thinking about the feasibility of their

ideas and just write them down without reflection. In general, however, the times have been

chosen in such a way that there is enough time to exchange thoughts, but not so much that

large parts of the group become idle.

The workshop format is especially beneficial to create awareness (in the project and stake-

holders) of the different point of views, be it from stakeholders of the same or a different

area. It is as well quite beneficial to fundamentally align the different perspectives. Due

to the tight time frame, however, the ideas cannot be prepared in such a way that they are

already suitable for technical implementation. Therefore, especially after the workshop, the

prototypes have to be refurbished further until they can actually be realized as software.

On the contrary, in case of a sprint, the time frame could allow for more elaborated prototypes.

However, the challenge here is that the risk that parts of the group become idle is higher

than in the workshop and this can lead to tension in the group. Firstly, we have observed

that there may be a discrepancy between the desired activities and those of Design Thinking

(cf. section 8.3.4.1). For a small period of time, this is still acceptable for the participants,

but dissatisfaction increases with the length and intensity of the period. Secondly, when

working on tasks, it may happen that one part of the group is better suited to do them and

4see e.g. https://www.sicp.de/nachricht/news/design-thinking-heiliger-liborius/

https://www.sicp.de/nachricht/news/design-thinking-grenzen-ueberwinden/

https://www.sicp.de/nachricht/news/kultur-digitalisieren-sicp-ist-mitinitiator-

beim-infotag-owlkultur-portal/

https://www.sicp.de/en/nachricht/news/lernen-40-wie-sieht-die-berufliche-

bildung-zukuenftig-aus/

94 Chapter 5 ICeDD Stage (2): Execute Design Thinking with Non-Software

https://www.sicp.de/nachricht/news/design-thinking-heiliger-liborius/
https://www.sicp.de/nachricht/news/design-thinking-grenzen-ueberwinden/
https://www.sicp.de/nachricht/news/kultur-digitalisieren-sicp-ist-mitinitiator-beim-infotag-owlkultur-portal/
https://www.sicp.de/nachricht/news/kultur-digitalisieren-sicp-ist-mitinitiator-beim-infotag-owlkultur-portal/
https://www.sicp.de/en/nachricht/news/lernen-40-wie-sieht-die-berufliche-bildung-zukuenftig-aus/
https://www.sicp.de/en/nachricht/news/lernen-40-wie-sieht-die-berufliche-bildung-zukuenftig-aus/

Time Step

09:00 – 09:30 Introduction / Topic / Impulse (cf. [Sen20d, slide 1–34])

09:30 – 09:40 Activate (cf. [Sen20d, slide 35–36])

09:40 – 10:00 Empathy / Interviews (cf. [Sen20d, slide 37–38])

10:00 – 10:15 Empathy / Interview Results (cf. [Sen20d, slide 39])

10:15 – 10:30 Define / Point of Views (cf. [Sen20d, slide 40–41])

10:30 – 11:00 Define / Problem Definition (cf. [Sen20d, slide 42])

11:00 – 11:10 Ideate / Crazy Ideas (cf. [Sen20d, slide 43–46])

11:10 – 11:25 Ideate / Substantiate Ideas (cf. [Sen20d, slide 47])

11:25 – 11:45 Ideate / Share Ideas (cf. [Sen20d, slide 48])

11:45 – 12:00 Ideate / Common Idea (cf. [Sen20d, slide 49])

12:00 – 13:00 Lunch Break

13:00 – 14:00 Prototype (cf. [Sen20d, slide 50-55])

14:00 – 15:00 Test (cf. [Sen20d, slide 56–57])

15:00 – 15:30 Solution Documentation (cf. [Sen20d, slide 58–59])

15:30 Share (cf. [Sen20d, slide 60])

Tab. 5.1.: Example Time Schedule for a Design Thinking Workshop

thus works on them more than other parts of the group. The longer this task is worked

on, the more present this imbalance becomes. In addition, there is a danger that not all

participants can allocate the same amount of time for Design Thinking over longer periods

of time, which also creates an imbalance. Overall, these effects can lead to resignation and

idling and a negative effect on the outcome of the Design Thinking run.

Sometimes we could observe that some groups / participants had problems to understand

what they should do or to focus on the task. In the feedback discussions with the students from

the project group (see section 8.1 and section 8.3) we were told that they often understood

Design Thinking and the meaning behind the individual steps only after the second run. In

addition, some of the participants lacked the experience to build prototypes creatively and

quickly. For these reasons, it is recommended that each group be assigned a "supervisor"

who already has experience with Design Thinking and who will help the group to focus, to

intervene quickly when uncertainties arise, and to give impulses on how to build prototypes,

for example. This is only possible to a limited extent when supervising several groups.

5.4 Summary and Discussion

In this chapter we have presented the second stage of our approach ICeDD, whose primary

goal is the identification and validation of value and thus also the further exploration of the

problem and solution space. To ensure that we are doing this, we have gathered requirements

in section 5.1 which turned to Design Thinking into a good fit. As Design Thinking, similar

5.4 Summary and Discussion 95

to Grounded Theory, is a methodology, it needs to be instantiated for the context. This

instantiation for our context is described in section 5.2, which is mainly based on the

Design Thinking Playbook with further refinements from our side. Additionally, we have

summarized our findings from conducting Design Thinking in our context in section 5.3.

By working with several groups per Design Thinking run it was always possible to create in

parallel at least two different solutions simultaneously (third requirement). Furthermore,

the participants were able to detach themselves from already established solutions in the

process and thus produced solutions in general that were novel in the sense of structure,

tasks, or processes (fourth requirement). The creation of trialable and observable prototypes

was not successful in all cases, as some prototypes could only be understood through

explanations. But in general the particpants were able to create such prototypes (first

requirement). Especially in case of the workshop format, the participants created prototypes

with non-software that were focussed on the necessary complexity to validate the value. In

our instance but as well in Design Thinking in general a learning process is hard encoded

in the process. That this worked in our instance is substantiated by the changes made

by the participants after each learning phase. Moreover, the individual work phases and

the exchange with the other groups ensured that the learning process referred to several

alternatives at a time (second requirement). How this is reflected in our FF is presented

in Figure 5.2

0

1

2

3

4

5
Alterna�ves

Opera�ng Alterna�ves

Consequences of
Technological DecisionsFocus on Novelty

Learning Cycle

Fig. 5.2.: Radar Chart for Stage 2 regarding our Fitness Function (FF).

96 Chapter 5 ICeDD Stage (2): Execute Design Thinking with Non-Software

ICeDD Stage (3): Prepare

Design Thinking with

Software

6

Lindberg, Meinel, and Wagner [LMW11] argue that there is a risk of a fundamental disruption

of the knowledge flow between design thinking and subsequent development stages. In this

chapter, we are presenting our process to prepare Design Thinking with software including

its requirements (see section 6.1) that shall support the knowledge flow, but also allowing

us to use Design Thinking in a hybrid approach like mentioned in chapter 3. In addition

to a refinement of the Technical and Look-and-Feel level as well as the integration of

value, technical, and look-and-feel, this stage is mainly about the transformation of the

findings from the Design Thinking from the previous stage into agile software specification

/ documentation. As this transformation with the specification / documentation is novel, we

developed a framework to do so, which we present in section 6.2 including its feasibility

evaluation in section 6.2.4. Our findings in this chapter are summarized and discussed

in section 6.3

6.1 Requirements & Overview

In the first stage of our approach (see section 4.1), we have identified a possible value

proposition described as design challenge. This design challenge was taken in the second

stage (see section 5.1) to initialize a design thinking instance to further elaborate and validate

the problem and solution space regarding the value. For this purpose, among other things,

prototypes were produced which were optimized in their properties to learn about the value

proposition. To achieve this, these prototypes are ’very experimental and consist of any

material that allows achieving information about the ideas behind the [value proposition] (and

not so much about its technical specifications)’ [LMW11]. This is a fundamental difference

to normal software prototypes, which are generally made of the same material as the final

product and are meant to be iterated into the final solution as soon as possible [LMW11].

Furthermore, in the second stage, requirements were identified with design thinking, which

in their form (e.g. interview transcripts or Point of View (POV)) do not yet correspond to the

otherwise usual technical specifications (e.g. atomic requirements shell (see Figure 6.1 for an

97

example) or user stories) in software development. For these reasons, Lindberg, Meinel and

Wagner [LMW11] see ’the risk of a fundamental disruption of the knowledge flow between

[...] design thinking and subsequent development stages due to dissimilar communication

media used in design thinking and IT development’ if used as a front-end technique and not

with an integrated design thinking strategy (cf. section 1.1).

Requirement#: A12 RequirementType: Functional Event / use case #:
Description: The user interface must be operable via various input op�ons.

Rationale: In addi�on to the classic input via mouse and keyboard, the execu�on view
also includes input via touch. Se�ng up the individual devices for an
exercise is most likely done using a Tablet PC. In addi�on, the user
interface for post-processing must be operable via another form of
interac�on.

Source: Björn Senft
Fit Criterion: The user interface can be operated via mouse + keyboard as well as via

touch without unwanted interactions.

Satisfaction: Dissatisfaction:
Dependencies: Conflicts :
SupportingMaterial:
History: Created on 04.02.2013

Fig. 6.1.: Example of the atomic requirements shell used in the firefighter training system (see sec-

tion 8.2).

In our case, we have decided for a mixture of front-end technique and integrated design

thinking strategy. This means that we do not consider design thinking to be completely

finished after the previous stage, but continue it in this and the next stage. However, we

limit the continuation to the extent that we do not use a one team approach where all team

members work together on the same task at any time. Instead, individual team members

can work more independently in their own domains (e.g. UI Design, Software Architecture,

Algorithms, or Business) to deliver the proposed value as intended with concurrent set-based

engineering (cf. [War+95]). An exception is the value designer (see paragraph 3.1), who is

responsible to mediate between the success-critical stakeholders and has to ensure that the

value is considered and delivered (cf. paragraph 3.1 and [Boe06b]). This is why she has to

be included in each stage and step. It follows from this, however, that there is a certain risk

of disruption of the knowledge flow as seen by Lindberg, Meinel and Wagner [LMW11].

Even though, the risk should be significantly lower than in the case of pure front-end

design thinking, since the value designer is continuously involved and all success-critical

stakeholders should have been made aware of each other at least in the previous stage.

Accordingly, we have developed a process for this stage that is illustrated in Figure 6.2. It

consists of the steps Transform, Look & Feel, Technical, and Prepare Integration. The first

step is actually the transformation of the design thinking results to be used in software devel-

opment. The further steps are based on the technical and look-and-feel level of prototypes

98 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

with the subsequent integration of these levels with value as introduced in paragraph 3.1 in

accordance with the recommended ux design process by Mayhew [May12].

TechnicalTechnicalLook & FeelLook & Feel
Prepare

Integration

Prepare

Integration

Prepare

Integration

Prepare Design Thinking with Software3

TransformTransform

Fig. 6.2.: Prepare Design Thinking with Software Process Overview.

The first step in this stage to transform design thinking results into agile software requirements

(cf. Meyer [Mey14, pp.119]) is essential to support the knowledge flow but also to have

documentation for the future to understand decisions and what parts can be changed. There

are various things to consider for the transformation of the design thinking results into agile

software requirements. First of all, we can look at the objectives and fitness functions for

our approach (see section 1.2) again to determine the general requirements for this stage.

Our most important requirement is embedded in our research question that we want to

provide value (in the sense of Boehm [Boe06b]) for the user in the actual context of use.

Accordingly, the preceding stages are designed to identify and initially validate such a value.

Thus, the most essential element that we can draw from the previous stages is value. This

also means that all further software requirements are derived from this value. So, our first

requirement at this stage is:

Requirement 6.1.1. The value of the unique and novel software-based solution must be

explicitly defined.

Furthermore, we assume that understanding of the problem and solution space remain

subject to change. Accordingly, the software requirements are not yet final and may change.

To avoid that the software requirement specification have to be constantly rewritten in its

6.1 Requirements & Overview 99

entirety, the second requirement is the establishment of a requirements hierarchy with the

basic value at the root and further refinements the further down you go. With this concept,

sub hierarchies can easily be removed or changed in the software requirements specification.

It also ensures that technical requirements cannot be defined detached from the value and

therefore it supports the traceability of decisions as well as the understanding of what can

be changed.

Requirement 6.1.2. In this stage, the software requirements are first defined in a require-

ments hierarchy with the basic value at the root and further refinements the further down

you go.

The traceability of decisions related to value brings us to a further requirement, the traceability

of decisions based on insights from the previous stages. Besides the value proposition,

insights are made in the previous stages that further explain or limit certain aspects. These

can be included in e. g. interview, test, or observation documentation. To not overload

the developers with information and increase the clutter, it is desirable not to write these

information in its entirety directly into the requirements specification. However, it can

happen that developers have to use this information to clarify requirements or feasibility of

a solution idea. Therefore, the third requirement is:

Requirement 6.1.3. As part of the software requirements specification the references to the

information from the previous stage are maintained.

Moreover, as already described several times, we can only be sure about the validity of

an idea when it has been used in the actual context of use and has proven itself there (cf.

e.g. the Netflix example section 1.1, objective 2 and 3 section 1.2, or the application case

study of diffusions of innovations section 8.2). It is therefore not enough to test just with

non-software prototypes, but different (see objective 2) prototypes must be implemented as

actual software and tested in the actual context of use (see objective 3). Consequently, our

fourth requirement for the transformation is:

Requirement 6.1.4. For each value at least two solution alternatives are represented in

software requirements and in best case can be created in parallel (see fitness function

alternatives).

These aforementioned requirements refer to the transformation of design thinking results into

software requirements, a further step is the elaboration of the technical level. As described

in the previous stage (see section 5.3) the prototypes have been refurbished to a point that

a rough idea on how to implement them on a technical level is given. However, this does

100 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

not mean that they can actually be implemented as they were only tested regarding their

value (or desirability, see section 2.2) and not their feasibility. Therefore, at this stage, more

specific solutions must be developed at the technical level in terms of value and tested using

technical prototypes. This also includes the development of a micro architecture and the

consideration of the macro-architecture.

To explain the decision regarding architecture, we have to first explain the difference between

micro and macro-architecture. The macro-architecture represents the general idea of the

system and its fundamental architecture decisions, e.g. on structures, components, data

stores or architecture styles, whereas the micro architecture refers to the architecture within a

specific component and its detailed design (cf. [HW95; Ger+16; KSW13]). There might be

cross-functional values which are related to all components, but values identified from the

previous stages will usually relate to specific components and not to the overall system as

cross-functional values are met by means of more specific values (e. g. transportation can be

achieved by bike, public transport, car and so on which have their individual characteristics

and can even be combined). Furthermore, in objective 4 (see section 1.2) we have defined

that the influence of technological decisions on future decisions should be minimized which

includes that decisions on how to deliver one value should interfere with the decision on

how to deliver another value as little as possible. Hence, technological decisions for a value

should primarily done on the micro architecture level.

Nevertheless, it cannot be guaranteed that a micro architecture is completely independent

of the macro-architecture, so the macro-architecture (we further elaborate how a macro-

architecture for our system can be designed in section 7.1) has to be considered but not

designed in this stage. From this, we derive our fifth requirement:

Requirement 6.1.5. In this stage, on the technical level, the value should be reflected

primarily in the micro architecture and take into account the macro-architecture.

First technical prototypes, to evaluate the technical feasibility are also part of this step.

To achieve this, standard procedures in software development for the implementation of

technical prototypes or proof of concepts can be used. The exact technical design, however,

should be left to the team, as usual in agile software development.

In addition to the technical level, the look and feel level is to be worked on in parallel

(see Figure 6.2). The look and feel level is described by Houde and Hill [HH97] as the

concrete experience of an artifact, what it would be like to look at and interact with, in short

how the interface to the user is designed (interaction and perception wise (e.g. visually)).

For prototype creation on this level, the standard processes in design, such as those described

by Mayhew [May12], can be used to elaborate them according to the value idea.

6.1 Requirements & Overview 101

For the final step in this stage, all three levels have to be integrated. It has to be ensured that

the technical level and the look and feel level align well with the value level as well with each

other. Hence, in this step the value designer, designer (look and feel), and software developer

(technical) evaluate together the results of the previous steps, discuss the alignment, and

make adjustments where necessary. If insights are made in this step that require fundamental

changes, it is possible to go back to the respective previous step or stage. Hence, our sixth

requirement is:

Requirement 6.1.6. The final results of the integration shall be documented within the

structure resulting from the second requirement.

In summary, this stage consists of four steps, of which two steps (Look & Feel and Technical)

can be performed using existing standard methods, which is why we will not go into them in

detail in the following. Especially for the step Transform we have developed a corresponding

framework, which we present in the next section. This framework also allows the integration

of the final results of the Prepare Integration step into a software requirements hierarchy

and thus also serves to fulfill the last requirement.

6.2 Design Thinking Requirements Framework (DTRF)

In this section, we present our framework to transform design thinking results into agile

software requirements, which was developed in conjunction with a master thesis [Kle19]. Its

focus is not on the general process integration of design thinking and agile software develop-

ment, but on the specification of requirements for agile software development based on the

outputs of the design thinking activities. Therefore, it mainly consists of templates similar

to the atomic requirements shell (as example see Figure 6.1 on page 98) by Robertson and

Robertson [RR06] to capture and structure information. The templates we have developed

are called Capture Cards. They can either be filled out and arranged pen and paper based, or

digitally. For the digital version we created a page template in the wiki system Confluence,

in which the Capture Cards filled out pen and paper based will be entered later as well. This

later step is the last step of a three step process we have devised to transform the information

from design thinking to agile software requirements (see Figure 6.3). In the following we

will explain this process, before we go into detail about Capture Cards and last but not least

compare our approach to other existing approaches.

102 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

6.2.1 Transformation Process

The basic idea behind the Transformation Process is a step-by-step formalization of the design

thinking results. Starting point is the collection of information gathered with design thinking.

As design thinking is intended to be done iteratively, being open-minded, incorporating

diverging / converging thinking, learning with the help of prototypes, and exploring problem

and solution space, the resulting information is not yet highly structured and often associated

with a certain artifact created during design thinking. If we try to transform this large amount

of unstructured information into a highly formalized structure in one step, this could lead to

an overload. We have therefore opted for a three-step process (see Figure 6.3).

Transform

Capturing

Basic

Information

Assessment

and Division

Compilation

of Results

Fig. 6.3.: Process to Transform Design Thinking Results into Agile Software Requirements.

The first step is Capturing Basic Information, which is optimized to capture information

in small unrelated chunks. Like in qualitative content analysis (cf. [May00; GL09]), the

first step is to synthesize and extract the information into small chunks from the design

thinking results. In the next step, the information is categorized with the help of a broad set

of categories. This is where the pen and paper based Capture Cards come into effect. We

are using these to capture the small information chunks and assign them already a broad

category (see Table 6.1). Furthermore, dynamic categories in the form of initial objectives

or alternatives are created, in addition to the predefined categories from the Capture Cards.

These need not yet be the final objectives, but all Capture Cards should already refer to such

an objective. Expected output of this step are multiple Capture Cards for each category.

In the next step Assessment and Division, the objectives are assessed regarding their com-

plexity to implement and if necessary split into new objectives. This is a three-tier step,

where in the first tier it is discussed with all participating team members how the objectives

6.2 Design Thinking Requirements Framework (DTRF) 103

are intended to be reached, how much resources are needed, and how complete the objective

already is, which is actually the same as assigning Story Points in Agile Development

(see [Mey14]).

In the second tier, this complexity assessment is used to further split or merge objectives

to get actionable objectives. The goal is, that for a sub-objective, manageable User Stories

can be created that are not too big to be implemented in one sprint. Furthermore, the lowest

sub-objective shouldn’t be as big that more than three months are needed to be implemented

as it contradicts the idea of bounded contexts and the flexibility to evolve the system by

re-implementing a service (cf. [Eva04; DGH08])

The third tiers goal is to prioritize the objectives according to their value. As Boehm [Boe06b]

states, traditional software development treats requirements value-neutral. This is a problem

if not everything can be implemented with the given resources or features that deliver

less value are implemented before other features. For this reason, the objectives shall be

prioritized according to the value (that can be found in the Values and Needs Capture Cards).

A simple prioritization scale that can be used is e.g. high, medium and low.

The last step in our transformation process is to digitalize and aggregate the results. For that,

we are using the mentioned digital Capture Cards. Each Objective will get a separate wiki

page where the other categories related the Objective are collected. Furthermore Hyperlinks

to additional material and for the hierarchy are introduced and maintained. From these

digital Capture Cards Epics with the corresponding User Stories can be created, which link

to the Digital Capture Card itself for additional information.

6.2.2 Capture Cards

There are a total of seven Capture Cards, each presenting one category (see Table 6.1).

The categories are Background, Objective, Needs, Values, Material, Hierarchy, and Misc.

Background and Material serve above all to make it traceable (cf. Requirement 6.1.3) where

certain requirements come from, whereas Objective describes concisely the desired func-

tionality derived from the Needs and Values (cf. Requirement 6.1.2 and Requirement 6.1.1).

The purpose of Hierarchy is to enable us to have alternatives as well as refining objectives to

more actionable sub-objectives (cf. Requirement 6.1.4). Misc is used for additional specific

information that cannot generally be mapped into the other categories. In general, the pen

and paper based Capture Cards maintain their link to the objective by writing out it explicitly

at the end of the card, whereas the digital Capture Cards for one objective are collected on a

single wiki page.

104 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

Category Name Category Summary Category Fields

Background
Context information about conducted design

thinking activity.

date, topic, partic-

ipants, motivation

Objective
Functionality desired by a user described as a

concise goal.

(first priority esti-

mation)

Needs
Information about user needs derived from de-

sign thinking results.
Point of Views

Values
Relative worth, utility, or importance of the func-

tionality defined in Objective.

User Values,

Business Values

Material
Recordings of more tangible results of design

thinking as well as Technical and Look-and-Feel.
None

Hierarchy
Relations between objectives described by

parent-child-relation or alternative objectives.

Alternative

Objectives,

Super-Objective,

Sub-Objectives

Misc
Any additional information that does not fit into

the above categories.
Additional

Tab. 6.1.: Category Overview.

In the following, we will further explain the different categories and give examples for filled

out Capture Cards.

Backgroud

Background

Date 08.10.2018 – 19.05.2019

Topic Event portal

Participants Björn, Simon, PG W18/19

Motivation
Making cultural events in a decentrally organized region visible to inter-

ested parties.

"A website that bundles the cultural events of the OWL region and makes them accessible

to interested parties while maintaining the local identity."

Tab. 6.2.: Capture Card: Background

The idea behind the Background capture card is to give context information about the

circumstances the underlying information have been gathered, especially during the design

thinking activities. Hence, the most critical part is the motivation for the activities, which in

case for the design thinking activities is the underlying design challenge. Furthermore, the

topic is a further restriction for what the activities have been conducted. Date and Participants

6.2 Design Thinking Requirements Framework (DTRF) 105

give an overview of the actuality of the data and the persons involved. Especially the involved

persons are crucial to easily understand the reliability of background as well as whom to ask

for further clarification.

Objective

Objective

"A website that bundles the cultural events of the OWL region and makes them accessible

to interested parties while maintaining the local identity."

Tab. 6.3.: Capture Card: Objective

Objective is the essential part connecting all Capture Cards and the bridge between values

and functionality. It describes the functionality desired by users concisely and is the first

time to put functionality instead of values in the foreground. By defining the functionality,

it further refines how a value shall be delivered and clarifies the goal for the developers

even more. The granularity highly depends on the results from the design challenge and

can be as broad as in this example (see Table 6.3) or be so specific that it cannot be further

broken down into sub-objectives. The latter case is rather a result of further refinements in

the Technical step of this stage or of the Optimization stage. Results of the design thinking

from the previous level should be at a level where this specific granularity is not possible.

Needs

The needs are actually the collected Point of View (POV)s from the previous stage (see sec-

tion 5.2) that are important for an objective.

106 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

Needs

Point of Views

• A new resident with yet a small social circle in this region needs to know what she

can do but the main information source is mostly the social circle and information

regarding cultural events in OWL on the internet is quite scattered.«Ref#1»

• An international student who is new to this region needs an onboarding to this

region and its events because she doesn’t know what OWL stands for, how this

region is connected and what places are still accessible by public transit from her

location.«Ref#2»

• A visitor who is only for a short time in the region needs to find out what she can

do spontaneously on an evening because her meeting was shorter and she doesn’t

want to spend the full evening isolated in the hotel room.«Ref#3»

"A website that bundles the cultural events of the OWL region and makes them accessible

to interested parties while maintaining the local identity."

Tab. 6.4.: Capture Card: Needs

Values

We have defined value as ’relative worth, utility, or importance’. From the Needs we can

derive Values for a user that give a more convenient presentation of what shall be delivered

than the full description of user, needs, and additional insights as it is the case in Needs.

Additionally, several needs from different user categories may be subsumed under one value

if they overlap. Besides user value, we present here as well the business value, but due

to transparency of this potentially contradicting values, we separate them. Nevertheless,

the business value is essential as it introduces the viability dimension of a proposed user

value.

6.2 Design Thinking Requirements Framework (DTRF) 107

Values

User values

• Finding events in OWL without the need of a social circle.

– Building a social circle based on common interests in certain events.

– Challenge own social circle to new things.

• Finding events in OWL without knowledge about the geographical and transit

structure.

• Spontaneously find events that are reachable within an acceptable travel time.

Business values

• Make cultural events in OWL visible.«Ref#5»

• To perceive the cultural region OWL more strongly as a whole.«Ref#5»

• Reach more target groups.«Ref#5»

• Overcoming regional borders.«Ref#5»

• Strengthen the cultural profile and identity of the region.«Ref#5»

"A website that bundles the cultural events of the OWL region and makes them accessible

to interested parties while maintaining the local identity."

Tab. 6.5.: Capture Card: Values

Material

Material

• "Machbarkeitsstudie" 2018

• Interview Results, Project Group OWL.Cultur-Platform

• Website: The 7 Factors that Influence User Experience

• Website: Usability: A part of the User Experience

"A website that bundles the cultural events of the OWL region and makes them accessible

to interested parties while maintaining the local identity."

Tab. 6.6.: Capture Card: Material

Material is the recordings of more tangible results of design thinking (e.g. photos of

demonstrators, interview results) as well as Technical (e.g. technical prototypes) and Look-

and-Feel (e.g. visual mock-ups). It is to support the understanding of reasons behind design

decisions as well as to transport design decisions better. In our example (see Table 6.6),

we are referencing a more vague objective (see Table 6.3), which is why we haven’t used

108 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

https://www.sicp.de/fileadmin/sicp/nachrichten/2018/Machbarkeitsstudie_Kultur-Portal_web.pdf
https://www.interaction-design.org/literature/article/the-7-factors-that-influence-user-experience
https://www.interaction-design.org/literature/article/usability-a-part-of-the-user-experience

visual mock-ups or prototype screenshots in the Material but referenced the interview results,

feasibility study and some more general guidelines. In sub-objectives, like "In the 75%-

100% initial visible content to the user, transport the core idea of the portal as well as the

core functionality with a search field and only present events after scrolling down." for the

Landing Page for such a website, more tangible and functionality related material, especially

from the Technical and Look-and-Feel Level would be included.

Hierarchy

This capture card is to maintain the relations between different objectives and alternatives. In

our example (see Table 6.3) the objective is already the super-objective, which is why only

sub-objectives are set (see Table 6.7). For the corresponding sub-objective, this objective

(Table 6.3) would be set as super-objective. In each case (super-objective and sub-objective)

only the first degree will be considered to reduce redundancy as well as cluttering. If there

is an alternative objective, like for the landing page, all alternatives to this objective would

be referenced under Alternatives.

Hierarchy

Alternatives

Super-Objective

Sub-Objectives

• LandingPageEvents: "In the 75%-100% initial visible content to the user, transport

the core idea of the portal as well as the core functionality with a search field and

only present events after scrolling down."

• LandingPageOnboarding: "In the 75%-100% initial visible content to the user,

transport the core idea of the portal as well as the core functionality with a search

field and only present description of further features after scrolling down."

• Profile: "Let the user create an account with basic information to save interesting

events."

• Event Details: "Present the details for an event that are interesting for a user."

• Event Overview: "Present a set of events and give the user the option to further

refine their search based on filters and browse through the results."

"A website that bundles the cultural events of the OWL region and makes them accessible

to interested parties while maintaining the local identity."

Tab. 6.7.: Capture Card: Hierarchy

6.2 Design Thinking Requirements Framework (DTRF) 109

Misc

Misc is to capture any additional information that does not fit into the other categories. This

can include Comments about the given information as well as Questions or additional remarks.

Possible additional requirements (e.g. on hard- or software) or additional constraints can be

documented here as well.

Misc

Additional Information

• Comment: Although the OWL.Kultur-Portal is intended to help overcome regional

borders, it is important to maintain local identity, which is why it should refer back

to local platforms whenever possible (e.g. hyperlinks in the details).

• Question: Are we missing the "normal" user as user group?

"A website that bundles the cultural events of the OWL region and makes them accessible

to interested parties while maintaining the local identity."

Tab. 6.8.: Capture Card: Misc

6.2.3 Related Work

If we take our requirements for this stage, the three main parts for this step Transform with

our design thinking requirements transformation framework as instantiation are requirements

definition / documentation, traceability, and hierarchy. According to this we explain in the

following how our solution differs from others beginning with requirements definition.

As already introduced in the introduction, our Capture Cards are inspired by the atomic

requirements shell by Robertson and Robertson [RR06]. The requirements shell is intended to

map low-level requirements, with its rationale, and a dedicated fit criterion that is measurable.

It also integrates elements for tracing requirements such as source respectively originator and

supporting materials. However, source is only intended to briefly and concisely name the

person(s) who wrote/stated this requirement. It is not intended to give additional contextual

information about the emergence of these requirements as it is done with background in our

case. Furthermore, although you can link dependencies within the requirements shell, it

is not intended to create a requirements hierarchy. The dependencies are more related to

blocking or restricting requirements. Lastly, the requirements shell does not enforce you to

explicitly state anything about the needs and values.

The requirements shell is a good example of a requirements template originated in a time

waterfall models were predominent. De-facto standard for requirements definition in the

110 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

world of agile software development are user stories, which describe ’scenarios that represent

user interactions with a system’ (cf. [Mey14, p. 10]). Meyer [Mey14, pp. 119-121] describe

user stories as the description of a fine-grain functionality of the system as seen by its users

which usually follows a standard style consisting of the triple category of user, goal, benefit.

Within this way of describing units of system functionality from the perspective of users

lies its strength and weaknesses in agile software development. First and foremost, this

type of requirements definition has the advantage of getting the team to think the system

more from the user’s point of view and less from the point of view on how to improve the

existing code. However, this also brings disadvantages such as a more difficult estimation

of the implementation effort, since the concrete implementation is not dealt with and thus

it is not immediately obvious what effects a user story has on the technical foundation. In

agile development, however, this is partly desired, since this decision shall be left to the

team as a body of experts. The difference to our approach is that user stories are already

strongly linked to the functionalities of the system to be implemented. Values and Needs on

the other side describe goals from a more system independent level and are therefore less

threatened by change. However, these two can be used wonderfully as a basis to formulate

appropriate user stories in the further course. Furthermore, user stories are missing links to

supporting material or documentation of how and why certain user stories arose. This makes

it extremely difficult to change them and the system, as there is no traceability for decisions,

as it is the case with our framework. User Stories in their standard form of category of user,

goal, and benefit also do not support the representation of a hierarchy or alternative system

designs.

Requirements traceability refers to the ’ability to describe and follow the life of a requirement,

in both a forwards and backwards direction’ [GF94]. In addition, a distinction is made

between pre-requirements specification traceability and post-requirements specification

traceability, where requirements specification is understood as the step of creating user stories

or requirements with the requirements shell in terms of concrete system functionality. In

this sense our framework falls under the pre-requirements specification traceability, whereas

most research is concerned with post-requirements specification traceability (cf. [RM17;

GF94]). In general, however, we do not use an elaborate metamodel or tools to establish

traceability, but use simple text-based references or hyperlinks. According to Pohl [Poh07,

pp.515], this is one of the most basic forms of representation in requirements traceability.

We decided for this to have the flexibility to include all kind of different artifacts.

As for the hierarchy, software development is usually done under the premise to create

one solution design and not different alternatives (cf. point based engineering, Ward et

al. [War+95], Denning et al. [DGH08], and section 1.1.3). Furthermore, especially in lean

design or agile software development, great attention is paid to reduce ’waste’. According

to Meyer [Mey14], in software this is anything not delivered to the customer. Further

6.2 Design Thinking Requirements Framework (DTRF) 111

hierarchies and alternatives can be seen as ’waste’ in this definition as they are not shipped

to the customer respective getting the default user experience. Nevertheless, there are

approaches in software development to feature such hierarchies and even mapping different

alternatives. These are mainly goal models, with their most prominent representatives

AND/OR trees, i*, and KAOS (cf. [Poh07, p.103]), and feature models (cf. [Bat05]). They

are all dedicated modelling languages with their own syntax and besides i* are built as tree

structures which usually include special annotations for the links to mark them as e. g. and,

or, or xor links. Traceability as we needed for our case is not included in these models as

well as additional descriptions like we have in Background, Values, and Needs. Moreover,

we have so far relied primarily on text and hyperlink-based documentation in order to reduce

media disruption and maintain flexibility. Using such models with extra tools would mean

additional media disruption and restriction in linking to supporting materials. This is why

we explicitly do not use these as main component to model our requirements hierarchy

/ alternatives but stick to plain text references and hyperlinks without additional checks.

Nevertheless, it could be interesting to include these models as additional documentation or

to extend hyperlinks (in the corresponding system) to represent these models in the future

without additional media disruption and losing flexibility.

6.2.4 Feasibility Study

An initial feasibility study has been conducted to assess the suitability of this framework

to transform design thinking results into software requirements. For that, our main goal

of this study was to determine how software developers use and assess this framework,

which is why we had a more detailed look in how the framework was understood, how well

pre-requirements specification traceability was supported, how the handling of alternatives

was implemented, and to what extent the framework has helped to clarify Needs and Values

as motivators for the definition of requirements. To do this, we are using an a/b setup with

observation, questionnaires, and analysis of the created artifacts as evaluation instruments.

For the a/b setup we rely for one half of the participants on our developed framework and let

the other half create agile software requirements (epics and user stories) directly with the

help of the ’product requirements document’ template embedded in confluence1.

In order to use this framework, participants must first go through design thinking to have

appropriate artifacts that they can transform into agile software requirements. We therefore

embedded this study in our case study OWL.Culture-Platform (see section 8.3) directly

after the conduction of design thinking with non-software. Accordingly, the participants are

students (see section 8.3.1 for further information) who already received an introduction to

1https://www.atlassian.com/software/confluence/templates/product-requirements-

document

112 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

https://www.atlassian.com/software/confluence/templates/product-requirements-document
https://www.atlassian.com/software/confluence/templates/product-requirements-document

SCRUM (including the concept of epics and user stories) as one agile software development

method (see section 8.3.2,lego4scrum Workshop). Furthermore, they have already been

working in six teams of three people prior to this study. We continue to use these teams and

let three teams use our developed framework, whereas the other three teams shall directly

create agile software requirements.

For the conduction of the feasibility study, the teams working with the framework get an

introduction into the framework. The next step is for all teams to fill out a questionnaire to

determine their current knowledge and experience regarding agile software requirements.

After that, the teams working without the framework start directly to create epics and user

stories without getting further hints or being influenced by the investigator. The teams

using the framework are going through the three phases (Capturing Basic Information,

Revision and Refinement, and Compilation of results) of the framework and have as last

step the creation of epics and user stories based on the digitized Capture Cards and the

’product requirements document’ template in confluence. After that, they have to fill out the

second part of the questionnaire which captures the participants perception of the process

irregardless of the framework. In case of the teams using the framework, follow up questions

regarding the framework itself, the artifacts, and the process regarding its usability are asked.

In the other case, the participants have to describe the approach they used and what major

challenges they faced. As a last step, the single artifacts are analysed.

12,5%

12,5%

25,0%

12,5%

25,0%

12,5%

50,0%

37,5%

75,0%

87,5%

62,5%

37,5%

12,5%

75,0%

62,5%

75,0%

50,0%

37,5%

12,5%

37,5%

37,5%

12,5%

12,5%

12,5%

25,0%

12,5%

25,0%

37,5% 12,5%

Before DTRF

A�er DTRF

Before Direct

A�er Direct

DTRF

Direct

DTRF

Direct

DTRF

Direct

Co
nfi
de
nt

to
cr
ea
te

So
�w

ar
e
Re
qu

ire
m
en
ts

Sp
ec
ifi
ca
�o

ns
⁺

M
or
e

co
nfi

de
nt

to
fa
ce

pr
oc
es
s

ag
ai
n

be
ca
us
e
of

th
is
ru
n

No
tl
os
ti
n

pr
oc
es
s

Go
od

un
de
r-

st
an
di
ng

Ep
ics

an
d

Us
er

St
or
ie
s

COMPARISON OF UNDERSTANDING

Strongly Agree | ⁺Very Confident 1 2 3 4 5 Strongly Disagree | ⁺Very Insecure

Fig. 6.4.: Design Thinking Requirements Framework (DTRF) Evaluation Results Questionnaire:

Understanding. {Before, After} DTRF=Questionnaire for DTRF teams {before, after}

they used DTRF and created agile software requirements. {Before, After} Direct =

Questionnaire for teams {before, after} they directly created agile software requirements.

The first results we want to discuss from our evaluation is how DTRF changed the par-

ticipants understanding of agile requirements specification. In Figure 6.4 we present the

main results on this topic. In general, creating software requirements specifications (SRS)

during the evaluation made the participants more confident to create them again. However,

6.2 Design Thinking Requirements Framework (DTRF) 113

the Direct participants stated more often that they are confident with creating SRS than

DTRF participants. We believe that this result can be explained by the fact that the Direct

participants immediately and significantly longer dealt with SRS than the DTRF participants

in our evaluation. Although, 75% of all the participants stated that they are familiar with

Epics and User Stories, our observations during the evaluation suggests otherwise, which is

why there could be a training effect. In the questionnaire after the creation, the participants

of both DTRF and Direct teams (strongly) agreed that they have a good understanding of

these terms. Interestingly, the participants using DTRF stated more likely that they are more

confident to face the process again and to always knew what to do next during the whole

requirements specification process.

25,0%

12,5%

12,5%

12,5%

62,5%

12,5%

12,5%

12,5%

37,5%

12,5%

62,5%

62,5%

50,0%

87,5%

37,5%

12,5%

37,5%

37,5%

12,5%

62,5%

62,5%

50,0%

75,0%

62,5%

62,5%

87,5%

12,5%

12,5%

37,5%

87,5%

50,0%

62,5%

12,5%

12,5%

12,5%

12,5%

12,5%

12,5%

12,5%

25,0%

12,5%

12,5%

25,0%

12,5%

12,5%

12,5%

First Impression⁺

Process was overall easy to follow

Convenient to specify requirements
from Digital Capture Cards informa�on

Complexity of framework is appropriate

Helpful for iden�fying, specifying,
and tracking of alterna�ve solu�ons

Number of categories is appropriate⁺⁺

Naming of categories is understandable

Digital Capture Cards will assist
requirements traceability

Clear which informa�on to enter for all categories

Able to assess the complexity of Objec�ves

Spli�ng of Objec�ves felt intui�ve

¬Problema�c to keep Overview of all Capture Cards

Preliminary priori�sa�on was helpful

Digital Capture Card to organize results was helpful

¬Felt redudant to fill out Digital Capture Cards

¬Lot of effort to fill out Digital Capture Cards

DT
RF

in
Ge

ne
ra
l

DT
RF

Ar
�f
ac
ts

DT
RF

Pr
oc
es
s

DESIGN THINKING REQUIREMENTS FRAMEWORK (DTRF)

Strongly Agree | ⁺Impressive | ⁺⁺Way too many 1 2 3 4 5 Strongly Disagree | ⁺Disappoin�ng | ⁺⁺Clearly not enough

Fig. 6.5.: Design Thinking Requirements Framework (DTRF) Evaluation Results Questionnaire:

Framework.

The next results are regarding the perceived usability of DTRF, which are presented in Fig-

ure 6.5. Of the eight participants who used DTRF, seven expressed that they had a positive or

impressive first impression of DTRF, while one rated it neutrally. Overall the vast majority

(>62,5%) stated that the process was overall easy to follow, the complexity of the framework

was appropriate, and that it was convenient to specify requirements from Digital Capture

Card Information. From the three teams using DTRF in this evaluation, only one team found

alternatives, but they stated that they agree that DTRF is ’helpful for identifying, specifying,

and tracking of alternative solutions’. As only one team could answer this question, it sums

up to 37,5% to highlight that not all participants answered this question contrary to the other

questions.

114 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

For the DTRF artifacts, all participants of the DTRF teams stated that they (strongly) agree

that the digital Capture Cards will assist requirements traceability. Also the participants

declared except one that the number of categories is just right. The understandable naming

of the categories was answered affirmatively by only 37.5% of the participants, while 50%

were neutral. From the comments to this question, it can be assumed that some participants

had problems to distinguish why Values and Needs are separated and the difference between

Background, Material, and Misc. Our observations were that the participants expressed

significant issues at first regarding the understanding of certain categories. This could

possibly be due to unclear definitions or the difficulty for participants to convert their

mindset from a purely functional requirements specification to a value-based one.

The latter is supported by the fact that even if Values and Needs were actually be worked on

with DT in the previous stage of our approach, our observations show that the participants

found it difficult to identify them directly and spent a correspondingly large amount of

time identifying them in the evaluation. Our analysis of the DTRF artifacts showed that all

three teams have been using user teams, but only as a category without further describing

it. In addition, Needs and Values are described from the point of view of a user without

using functionalities, but already removed additional information about the user and insights

like they did previously in the interview results (see section 8.3.4.2). Furthermore, the

evaluation of the main case study on the OWL.Culture-Platform shows that even in the

previous stages, the participants already had difficulties with the formulation of POVs from

the user’s perspective (cf. section 8.3.4.2 and section 8.3.5).

Regarding the DTRF process, a majority of more than 62,5% expressed a neutral opinion

whether it was clear which information to enter for all categories (see also previous paragraph).

75% of the participants (strongly) agree that they were able to assess the complexity of

the objectives and splitting them felt intuitive. One participant commented that it was not

clear to what degree the splitting should be done and another that she was unsure about

including technical aspects. 37,5% found it problematic to keep overview of all Capture

Cards in contrast to 50% not finding it difficult. This could indicate that the physical usage

of Capture Cards is not beneficial, especially as all teams have used only three to eight

objectives (including the sub-objectives). Besides one participant, all participants agree that

the preliminary prioritization was helpful and all participants agreed on that the usage of

digital Capture Cards to organize results was helpful. Two participants felt it redundant to

fill out the digital Capture Cards after filling out the Capture Cards (paper based) and only

one participant felt that it takes a lot of effort to fill out the digital Capture Cards.

Overall, the participants were extremely positive about the use of DTRF and confirmed its

usefulness. To what extent the usefulness is actually given, we checked by analyzing the

6.2 Design Thinking Requirements Framework (DTRF) 115

artifacts of the DTRF teams in comparison with the Direct teams and comparing them with

our observation notes.

The Direct teams, that directly created epics and user stories, were functionality focussed

with the mention of the word user without further defining it. 8 of 16 epics they created

were described without a single reference (neither to the previous design thinking results

nor additional material like scientific studies). 3 epics referenced interview results generally

and 5 have included references into their user stories. From our observations, these teams

revealed issues to identify the actual stakeholders. Furthermore, they had problems to asses

the final complexity of objectives resulting in too small objectives for proper User Stories.

Only one of the teams actually linked material supporting their decisions.

Regarding the DTRF teams, only one used users groups, but only as a category without

further describing it. As already mentioned, they all described Needs and Values from

a user’s point of view without using functionalities. In addition, they all linked material

supporting their decisions, but without mentioning the exact position. Based on the digital

Capture Cards, they created Epics and User Stories, whereas the Objective was used in all

cases to name the epic. Due to time constraints during the evaluation, not for all objectives

User Stories have been created. All User Stories in the Epics are linked to the corresponding

sub-objectives, whereas the link text was the sub-objective. Goals and Background of the

Epics have been described without using functionalities.

Comparing the artifacts created by DTRF teams and Direct teams, the DTRF teams were

actually less focussed on functionality and created a hierarchy based on the Values and Needs.

The Direct teams were more focussed on functionalities, which was reflected as well in the

way they created their hierarchies with Epics and User Stories directly. In this sense, DTRF

showed that it can help that the value is explicitly defined and is on top of a requirements

hierarchy with further refinements the further down you go. Although the defined Values

and Needs by DTRF teams do not suffice the wished quality of them, it is still significantly

better than the quality of the Direct teams. It also helped to better split objectives into

actionable sub-objectives in comparison to directly creating the Epics and User Stories

with functionalities in mind. Also, the traceability is more given with the artifacts created

by the DTRF teams compared to the Direct teams, although the used references could be

more specific. Overall, the evaluation shows evidence that DTRF works and can meet the

requirements placed on it. A big challenge, however, seems to be the change of the mindset

to value instead of function oriented thinking.

116 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

6.3 Summary and Discussion

In this chapter we have presented the third stage of our approach ICeDD, whose primary

goal is the transformation and refinement of Design Thinking results from the previous

stage to be able to continue it in software development. For that, we have introduced a

process to achieve this in section 6.1. This process consists of the steps Transform, Technical,

Look-and-Feel, and Prepare Integration, whereas the last three steps are the refinement and

can be done with already existing methods which is why they are only briefly introduced.

For Transform, on the other hand, it was an open question on how to ensure the knowledge

flow from Design Thinking (cf. [LMW11]), especially without overburdening the developers

with information. Furthermore, agile software specifications / documentation usually do

not consider alternative solution designs but stick to only one solution at a time, but the

alternative solution designs are needed for the next stage. Therefore, we proposed a solution

for the Transform step, which we present in section 6.2.

We call this solution for the Transform step Design Thinking Requirements Framework

(DTRF) and it consists of a process (section 6.2.1) in which we incrementally prepare the

information from Design Thinking for software development. One key element in this

process are the so called Capture Cards (section 6.2.2), which are templates to structure and

relate the Design Thinking results from the previous stage. This proposed solution was then

evaluated regarding its usability and feasibility in section 6.2.4 Result of this feasibility study

was that in our case the participants were very positive about the use of DTRF and confirmed

its usefulness. An analysis of the artifacts revealed that DTRF helped the participants to

stay more focussed on the Values and Needs and less on functionality, as well as to create

a hierarchy and split objectives, and to make it more traceable. But it also became clear

that the change of the mindset to value instead of function oriented thinking is still a big

challenge as the quality was not yet as good as wished.

In relation to our defined fitness functions (see section 1.2), we fulfill Alternatives to the fullest

with the fourth requirement. Operating Alternatives (Component based Deployment) and

Consequences of Technological Decisions (Bounded Context) are supported with the fifth

requirement, but most of it will be covered in the next stage (see section 7.1) as this stage

is not about implementing software but preparing it. As this stage is about transforming

results and preparing the implementation with the current knowledge (cf. section 3.1, we

are not focused in this approach on unique and novel technical or look and feel solutions),

the fitness function Focus on Novelty is not of concern for this stage. For the last fitness

function Learning Cycle, the condition "A learning cycle is intended, explicitly defined and

refers to several alternatives at a time." is fulfilled as we have defined it with the Prepare

Integration step and our fourth requirement to represented at least two solution alternatives

in software requirements. How this is reflected in our FF is presented in Figure 6.6

6.3 Summary and Discussion 117

0

1

2

3

4

5
Alterna�ves

Opera�ng Alterna�ves

Consequences of
Technological DecisionsFocus on Novelty

Learning Cycle

Fig. 6.6.: Radar Chart for Stage 3 regarding our Fitness Function (FF).

Although, we have shown that in our context our process was useful and that it helped

to keep findings regarding Value, further research is needed. The main objective of the

evaluation of DTRF was to show that it is feasible, but not yet how well suited it is. For the

latter, further evaluations with more participants and stricter comparison conditions must

be carried out in order to obtain reliable and generalizable results. It is also not yet clear

whether the granularity we have used in our process and specification/documentation is the

most optimal. We have only taken very rudimentary information from Design Thinking

into the specification/documentation and references to the Design Thinking artifacts are

relatively imprecise. If, for example, qualitative content analysis was used for the Design

Thinking artifacts, accurate references could be made that could be traced back to the source.

However, this is a significant additional effort that must pay off in the short, medium or long

term.

118 Chapter 6 ICeDD Stage (3): Prepare Design Thinking with Software

ICeDD Stage (4): Execute

Design Thinking with

Software

7

In the first stage (chapter 4) we identified a design challenge that serves as a basis for Design

Thinking with non-software in the next stage (chapter 5). We started with non-software

as a medium as it is usually more efficient to build prototypes with it as it would be with

software (cf. Stecklein et al. [Ste+04]). Nevertheless, it is essential to try out different

alternatives also with software in real-world contexts (cf. section 1.1 or section 2.1), which

is done in this stage as a continuation of Design Thinking. To be able to do so, we have

refined and transformed the Design Thinking results with non-software in the third stage

(chapter 6) into an agile software specification / documentation. In section 7.1, we are

giving requirements and an overview of this stage which is based on the 4Ps. Accordingly,

in section 7.2 we are presenting the usage of each P in our approach. The first P process

(section 7.2.1) is adapting an experimentation process for qualitative experiments to be done

within software development. In section 7.2.2, we are discussing the necessary product

features, especially the needed macro-architecture, to support experimentation in this stage.

Finally, in section 7.2.3 the prerequisites of the people and in section 7.2.4 the shaping as

a project are discussed. An important point for the feasibility of this stage is viability. To

substantiate this, we have developed tools which we present in section 7.3. Finally, we are

summarizing this chapter and discuss the results in section 7.4.

7.1 Requirements & Overview

The basic idea of this stage is to continue Design Thinking by trying out different alternatives

in a productive environment to learn from that. The main reason for that is the assumption

that only if the software-based solutions are used in the real world can it be guaranteed and

evaluated whether they fulfil the intention of the user and thus keep their value (relative

worth, utility, importance) proposition (see section 1.1). This is supported by research in the

area of innovation (cf. section 2.1), whose applicability to software we have investigated in

a first application case study (see section 8.2).

119

Of our objectives for the approach, Objective 2 (Support multiple solutions simultaneously),

Objective 3 (Simultaneous operation of several software solutions), Objective 4 (Indepen-

dence of technological decisions) and Objective 6 (Explicitly defined learning cycle) are

particularly interesting at this stage as they are directly related to the goal of this stage of

having different software alternatives to learn from. Objective 5 (Novelty) is not in the focus

of this stage, as this stage is only about validating and learning from the software alternatives

regarding value. This is why, among the fitness functions as operationalised objectives

(see section 1.2), the functions Alternatives, Operating Alternatives, Consequences of Tech-

nological Decisions, and Learning Cycle with their inherent requirements are particularly

relevant.

Consequently, in this section we describe how we can try out different software alternatives

in order to learn from them to what extent they provide value and which characteristics this

may be due to. This includes that the software development has to be aligned accordingly to

enable this. Which is why it is necessary to look at all parts of the software development.

To do so, we are using the basic structure in software development introduced by Jacobson,

Booch, and Rumbach [JBR99] as The Four Ps: People, Project, Product, and Process:

”The end result of a software project is a product that is shaped by many different types

of people as it is developed. Guiding the efforts of the people involved in the project is a

software development process, a template that explains the steps needed to complete the

project. Typically, the process is automated by a tool or set of tools.”

Process

People Project Tools

Product

Participants

Template

Automation

Result

Section 7.2 Section 7.3

Fig. 7.1.: The 4P’s People, Project, Product, Process, and Tools from the Unified Software Devel-

opment Process [JBR99]. Own representation.

Accordingly, the following sections are structured based on The Four P’s to discuss the

implications of experimenting with different software alternatives in detail in them (cf. Fig-

ure 7.1). Most crucial in the sense of effectivity are People, Project, Product, and Process

as they define how we will develop the software. In contrast, Tools is most crucial in the

120 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

sense of efficiency and with that also the viability. This is why we bundled People, Project,

Product, and Process in section 7.2 and Tools in section 7.3.

Furthermore, this learning with the help of comparing alternatives in usage is a well-known

process in various fields including computer science, but not necessarily that explicit in

software development. It is called experimentation, for which we use the definition of Hussy,

Schreier, and Echterhoff [HSE13, pp.120–145] to explain it in more detail. This is because,

unlike, for example, Thomke [Tho03], Stol and Fitzgerald [SF18], or Kohavi et al. [Koh+08],

it is not purely narrative, but defines concrete characteristics that distinguish experiments.

An experiment is the systematic observation of dependent variables while manipulating

independent variables, whereby there must be a temporal order between independent and

dependent variables and at least two variations of one independent variable are needed. In

our case, the dependent variable is the value we want to deliver, which may include an

corresponding operationalisation. The independent variable is represented by the variations

in the different software alternatives. This separation of independent and dependent variables

including the temporal order is the foundation for experiments.

Furthermore, there is not one single type of experiment, but different types. To distinguish

them, two questions are asked. Are the participants randomly assigned? And is it conducted

in a laboratory setting in which confounding variables are tried to be controlled / eliminated

as good as possible? If it is conducted in a laboratory setting and the participants are

randomly assigned, it is called a (laboratory) experiment or controlled experiment. If the

participants are not randomly assigned, it is called a quasi-experiment. On the other hand,

if the experiment is done in the field exercising less control over confounding variables, it

is called a field experiment when the participants are randomly assigned. Otherwise it is a

field study.

With this experiment classification we can further pin down what we need in our case. In

this stage, it is the first time that we use the value propositions implemented in software in

the real world and not under laboratory conditions. The reason we are doing this is, that all

effects can only come to light in real usage, as they are not consciously or unconsciously

masked by artificial situations. So we are still trying to understand rather than proving if,

how, and why value is delivered. Therefore, experiments at this stage cannot and should not

yet take place under laboratory conditions, as not all confounding variables can be known.

Hence, the experiments are done in the field, which only makes field experiments and field

studies appropriate. Accordingly, our first requirement for this stage is in addition to those

resulting from the objectives and fitness functions mentioned above:

Requirement 7.1.1. Experiments done in this stage have to be conducted as field study or

field experiment.

7.1 Requirements & Overview 121

Furthermore, as we are still trying to understand rather than prove, qualitative meth-

ods are more important to be used in the experiments than quantitative ones (cf. sec-

tion 1.3 or [Hel11; MR15]). However, experiments are usually regarded as a quantitative

method (see e.g. [HSE13]), as they are often linked to laboratory experiments that try to test

a hypothesis by operationalising the variables and controlling the experimental environment.

Furthermore, because of that, the quality criteria typical for quantitative methods like re-

peatability are applied to quantitative experiments (see section 1.3). This would actually

contradict our goal. But experiments do not necessarily have to be mainly quantitative,

but can also be qualitative in which case they are called qualitative experiments. Usually,

qualitative experiments are conducted ”naturally” / authentic and do not have repeatability

as condition (cf. [Bur10]).

Kleining [Kle91] defines the qualitative experiment as "the intervention, according to scien-

tific rules, in a [...] given situation to investigate its structure. It is the explorative, heuristic

form of the experiment." (Translation by the author). Furthermore, the basic rules for quali-

tative research (cf. section 1.3) apply as well for qualitative experiments, which includes

openness of the researcher, openness of the research object, maximum structural variation of

the research object, and analysis for similarities (cf. [Bur10; Kle91]). This matches actually

our goals for experiments in this stage, which is why our second requirement is:

Requirement 7.1.2. Experiments in this stage have to be conducted as qualitative experi-

ments.

7.2 People, Project, Product, and Process

The main issue with current software development processes regarding experimentation

or learning from different software alternatives is that they are optimized solely on the

implementation (cf. paragraph 3.1). But in order to learn from software alternatives by e.g.

experimentation, it has to be defined what you want to learn from them, what properties

have to be implemented to be able to do so, how you will generate the data, and how you will

interpret them (cf. [Ado06; RB04]). This is why it is important to first define the process

to ensure these things and derive from that the necessary properties regarding the product,

people, and finally the project.

7.2.1 Process

In the previous section, we have already defined that the best possible way to learn from

software alternatives is the usage of qualitative experiments. We will use the process to

122 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

conduct qualitative experiments as scaffold for our process and combine it with software

development to achieve our main goal for this stage. On a high level, the process to conduct

experiments do not differ much from other general learning processes like Build-Measure-

Learn (see [PP03]) or Observe-Orient-Decide-Act (cf.[Ado06]). Thomke [Tho03], for

example, defines the high-level experimentation process as:

Field Study / Field Experiment

DesignDesignDesign BuildBuildBuildBuild

RunRunRunRunAnalyzeAnalyzeAnalyzeAnalyze

Fig. 7.2.: Process Overview for this stage based on general experimentation process by

Thomke [Tho03].

1. Design: One conceives of or designs an experiment.

2. Build: One builds the software needed to conduct that experiment.

3. Run: One runs the experiment.

4. Analyze: One analyzes the result.

We will use this simple process of Thomke, that can be run iteratively, and refine it into

the process we need in this stage (see Figure 7.2). To derive the necessary steps for the

first activity Design (see Figure 7.3), we will primarily use the features of an experiment

described by Hussy, Schreier, and Echterhoff in their book on research methods [HSE13].

The first thing that has to be set in the Design of an experiment is the research question.

For quantitative experiments, this would usually be a falsifiable hypothesis that should be

verified. In the case of qualitative experiments, however, no hypotheses are to be verified,

but sense and structure are to be explored. Therefore, hypotheses as research questions make

less sense here, but rather more research questions that ask about the structure of a research

7.2 People, Project, Product, and Process 123

Design

Set Research

Question

Set Experiment

Layout

Set Experiment

Methods

Decide to be realised

combinations

Decide the number

of participants per

combination

Decide if participants

can be assigned to

multiple

combinations

Decide assignment

method of

participants to

combinations

Fig. 7.3.: Design activity for field studies / experiments in this stage.

object. In our case, we propose to set the research question as how to deliver the value we

identified in the previous stage.

With the research question set, the next step is to decide for an experiment layout. An experi-

ment layout is actually an overview of the independent variables used in the experiments with

their (possible) variations. This can be unifactorial, if only one independent variable is used,

or multifactorial, if several independent variables are used. The experiment layouts purpose

is to set which variations are used in the experiment. In case of a multifactorial layout,

this indicates which variations of an independent variable are combined with variations of

another independent variable in the experiment.

To create such an experiment layout, first the independent variables must be defined. If we

are looking only at an objective without further sub-objectives (see section 6.2.2), we will

use an unifactorial experiment layout with the objective as independent variable. Otherwise,

we have to use a multifactorial experiment layout where the sub-objectives become the

respective independent variables. Furthermore, the variations for the independent variables

must be defined1. For that, we use the software alternatives defined in the digital capture

cards for the respective (sub-)objective.

1To increase the learning output, the variations can be set systematically. Burkart [Bur10] lists for this the

techniques separation - segmentation, combination, reduction, adjustment - intensification, substitution, and

transformation. Accordingly, it may make sense to adapt the existing variations in line with these techniques.

124 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

The third step in this activity is to define the experiment methods. This is about how data

in the experiments are actually generated. In a quantitative experiment, it could be that

for example eye tracking is used in conjunction with a questionnaire. For our qualitative

experiment at this stage, the main methods shall be qualitative methods, which can be

supplemented by quantitative methods (see section 1.3).

In software development, one method that gets quite close to what we are trying to do in

our qualitative experiment is Usability Testing (see [DF12]). It has its origins in Usability

Engineering and is one of the most widely used usability evaluation methods (cf. for

example [@Bes10]). According to Dumas and Fox [DF12], the basic characteristic of

usability testing is

• the focus on usability

• and end users or potential end users as participants,

• who perform tasks with a product or prototype,

• usually while thinking aloud.

This combination of end users working with a product or prototype while thinking aloud is

what makes Usability Testing quite compelling for this stage. First of all, with this method,

the software alternatives are used by real users and not just e.g. reviewed by an expert.

Secondly, by having the users stating their thoughts while using the software alternative,

we gather qualitative data about what the user expected, what she is trying to achieve next,

what was surprising for her, what she did not understand and so on - in short it helps us to

further explore sense and structure of the prototype regarding the proposed value.

Furthermore, we can scale up the usability test over several iterations. In the beginning, we

can use moderated usability tests conducted on-site or in a laboratory with both participant

and investigator physically present. This has the advantage that more details can be observed

and the usability test can be conducted more interactively and therefore giving the investigator

more possibilities to inquire and challenge her understanding. But this setting is quite

resource intensive as both participant and investigator have to be physically present at the

same place and time. To overcome the place restriction, moderated / synchronous remote

usability tests can be used, which has the disadvantage that the investigator can only observe

and interact with the participant via the technical equipment. For overcoming the time

restriction as well, the usability test can be conducted as unmoderated / asynchronous remote

usability test with the additional disadvantage that the investigator cannot intervene during

the test. Besides being able to get feedback from more participants by conducting remote

usability tests, they allow to integrate participants who would be difficult to reach otherwise

because of the distance as well.

7.2 People, Project, Product, and Process 125

Thus, in a first iteration, insights can be generated with a small number of participants on

site. Through further iterations, more and more participants can be integrated remotely,

thus generating more generalizable insights step by step. However, this cannot be extended

arbitrarily, as there is a limit to the number of participants that can be involved, due to the nec-

essary manual evaluation of the qualitative data and with that the justifiable experimentation

costs in relation to the knowledge gained.

With the research question, experimentation layout, and the experimentation method, it can

be decided which variations are tested together (combination) per experiment run. Among

other things, it plays a role here whether the variations have an influence on each other. It

may be that one wants to minimize this influence or even cause it in order to observe the

correlations.

With the decision about the to be realized combinations, the number of participants per

combination has to be set in accordance to the experimentation methods. In addition, it has

to be decided if one participant can do multiple combinations or can only be assigned to

one combination.

The last step is to decide how the participants are assigned to the combinations. On the

level of the experimentation design this can be done randomly or systematically, which is, as

mentioned earlier, the difference between field experiment and field study. The systematic

approach is particularly suitable if, for example, the learning output is to be increased

by using extreme user groups. Randomized assignment makes sense if a higher degree of

generalisability is desired or if the aim is to bring to light potentially unthought-of participant

introduced effects. This last step concludes the Design activity.

Build (see Figure 7.4) is the next activity. It actually consists of the three steps Implementa-

tion, Data Preparation, and Infrastructure Preparation that can be done in parallel. For the

Implementation of software alternatives, we have already prepared epics and user stories in

the previous stage for agile software development, which makes sense in this stage as we are

expecting changing requirements and want to already learn from smaller increments. Hence,

we will use agile software development to implement our software alternatives. As agile

software development is more like a compendium of ideas or a methodology, we still have

to choose a specific method to use. For that we will use SCRUM as the most dominant agile

software development method, which has its focus more on the organizational aspects of

how to precisely develop software iteratively [Mey14]. In our use of SCRUM, the role of the

product owner is taken over by the value designer and the role of the SCRUM master by a

person from the development team. Otherwise, we will stick to the process and practices as

described by Meyer [Mey14] for implementing the software alternatives for our qualitative

experiment.

126 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

Build

Implementation of

software alternatives

Preparing necessary

data to run

experiment

Prepare

Infrastructure to run

experiment

Fig. 7.4.: Build activity for field studies / experiments in this stage.

The second step is the preparation of data necessary to run the experiment. Usually, software

needs additional data to perform certain calculations or to provide functionality. For example,

to show events on a map, the software needs events with their geo position and map data (e.g.

OpenStreetMap) for the area under consideration. It could be that for this, sample data has to

be created / derived from real world data or already existing data has to be prepared for the

use in the software. The later could also include that existing data is prepared for a protected

use in the experiment, so that errors in the software do not affect the existing data. Data

preparation can also mean that the data is prepared in a way that it can be bundled with the

software to create a self-contained deployment (all things necessary to run the software is

included in the deployment). This is particularly useful if it is intended that the participants

should always work from the same starting point.

The last step is the preparation of the infrastructure for the experiment. This can include,

among other things, the invitation of participants, scheduling of experiments, preparing

the data collection, preparing the deployment, or setting up the technical assignment of

participants to the according variations. For the invitation of participants, the decision about

randomized or systematic assignment has to be considered for the selection of possible partic-

ipants. In the case of synchronous experiments (investigator and participant simultaneously

run through the experiment), appointments have to be found, while in the asynchronous case

only the time period, in which it has to take place, has to be defined. For both cases, the

scheduling of experiments in relation to other experiments is crucial. It should be prevented

that other experiments running at the same time falsify the own experiment. Furthermore, if

a ramp-up strategy (starting with a few participants and increasing the number over time,

see also [Koh+08, p. 164])) is being considered, this has to be included as well in both the

7.2 People, Project, Product, and Process 127

scheduling and invitation. It is not uncommon, especially in qualitative research, to react to

the first runs and adjust the subsequent runs accordingly (e.g. cf. [Hel11]). But with time,

less adjustment is needed and more participants can be invited at once.

In addition to these tasks, the infrastructure has to be prepared to be able to collect the data

for the experiment. This means that the different data, which can be unstructured, semi-

structured or structured, can be stored and related to the experiment, especially to the run

(including the variation and the participant). In particular for unstructured or semi-structured

data such as videos, transcriptions or field notes, the setup of an appropriate file storage

system may be necessary, whereas structured data, like eye tracking, may need special

database systems. To be able to collect data, the software needs to be deployed somewhere

and run. Hence, a deployment strategy has to be created and the necessary infrastructure

be prepared for the deployment. The deployment could be for example into the cloud, on

a physical device with internet connection like a smartphone, or an offline system like a

machine controller.

Last but not least, the technical assignment of participants to the according variations has to be

selected. This depends on the deployment / software architecture as well as the decision about

the assignment of participants on experiment level. Kohavi et al. [Koh+08, pp. 163–170] give

a good overview for web based applications on how to do this technically. They distinguish

between the randomization algorithm and assignment method. The randomization algorithm

could be for example the combination of a random number generator with caching of the

assignment or hashing the user id and using the modular function to assign a participant

to a variation. For the assignment method, traffic splitting, page rewriting on the server or

branching in code on client-side could be used for example. However, this does not exclude

other technical assignment methods.

With the necessary things built and prepared for the experiment, the next activity is the

actual Run of the experiment (see Figure 7.5). For each run with a participant, the run has

to be prepared, performed, and cleaned up. Preparation can include things like starting the

software alternative, initializing it with the necessary data or starting the monitoring. Run is

the actual conduction of the experiment, which includes the actual conduction as well as a

possible introduction, pre- and post questionnaires / interviews, or data collection in general.

Clean-up of the experiment can include reverting changes done during the experiment and

should always include a reflection of it, to be able to adapt in the next runs to insights made

in the current run.

The last activity in our process is Analyze. The first step in this activity is to prepare

the data for analysis / exploration, which can include compiling, arranging, coding and

processing, actually every step necessary to work with the data. With the data prepared, the

data analyzation and / or exploration can be done for example with the help of qualitative

128 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

Run

<<For each run with participant>>

Prepare Run

Run

Clean Up

Fig. 7.5.: Run activity for field studies / experiments in this stage.

content analysis or any other mean appropriate for that. Finally, the results of the analysis

have to be interpreted and the next steps have to be derived, e.g. moving on to the next stage

Optimization, adjustments to the experiment, or jumping back to one of the previous stages.

This concludes the process in this stage.

Analyze

Prepare Data for

Analysis / Exploration

Data Analysis /

Exploration

Interpretation of

Results

Planning of Next

Steps

Fig. 7.6.: Analyze activity for field studies / experiments in this stage.

7.2.2 Product

The presented process for experimentation results in certain requirements for the product.

First of all, it must be possible to operate different variations / software alternatives si-

multaneously. This includes that with the help of the alternatives the best fitting solutions

should be found and a large part of the alternatives will be obsolete. Furthermore, changes

over time are expected, but also short-term changes due to findings in an experiment run.

These three points changes over time, alternatives to experiment with, and finding the best

7.2 People, Project, Product, and Process 129

fitting solutions are actually describing evolution, which is no unknown concept in software

development. Denning [DGH08] discusses evolution on the level of software development

and distinguishes between two ways of making software development evolutionary. The

first is the successive release of a system, which is the familiar process of software product

releases. Challenge with this way are for example the required very short release cycle for

the full system, the inflexibility regarding technologies, or the configuration complexity to

run multiple experiments. The other way is having many systems competing by mimicking

natural evolution.

This way of having many systems that make up a composite system is called System of

Systems. Damm and Vincentelli [DV15] define ”System of Systems as a recursively defined

entity where the top element is made of a set of [constituent systems]. Each [constituent

system] may be itself a system of systems.” Furthermore, they cite coopetition as a further

characteristic of System of Systems, which means a mixture of cooperation and competition

between the individual systems to achieve a higher goal. Klein and van Vlient [KV13] further

define it as ”an assemblage of components which individually may be regarded as systems,

and which possesses the additional properties that the constituent systems are operationally

independent, and are managerially independent”. Under operationally independent they

understand, that ”each constituent system operates to achieve a useful purpose independent

of its’ participation in the system of systems”. Managerial independence is defined by them

as ”each constituent system is managed and evolved, at least in part, to achieve its’ own

goals rather than the system of systems goals”. This idea of System of Systems, where the

constituent systems are operationally and managerially independent is actually the kind of

macro-architecture (cf. section 6.1 and [HW95]) we are seeking for this stage.

7.2.2.1. Macro-Architecture

In the following, we will discuss how such a System of Systems macro-architecture for quali-

tative experiments can be achieved. For this purpose, it must be answered how managerial

and operational independence can be established, for which we are adapting existing patterns

from other areas like scalability.

To establish managerial independence, the first thing we do is to look at the system

from a domain perspective. In software development, domain-driven design was realized

to actually incorporate a systematic and effective domain modelling (see [Eva04]). Part

of it is the pattern Bounded Context (see Figure 7.7 for a schematic illustration), which

”delimits the applicability of a particular model so that team members have a clear and shared

understanding of what has to be consistent and how it relates to other contexts” [Eva04, p.

335 ff.]. By omitting the domain of other bounded contexts and only looking at your own, the

130 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

coupling, coordination, and complexity should be simplified (see [FPK17]). Furthermore,

with a ”larger domain, it gets progressively harder to build a single unified model” as for

example people start to use subtly different vocabularies [@Fow14]. Therefore, bounded

contexts are well suited to break up a larger system into smaller parts that can be managed

independently.

Event Organization
Context

Event Participation
Context

UserPermit

Security Concept

Organizer

Event

Venue

User

Event

Participated Events

Recommender

Fig. 7.7.: Schematic Illustration of two Bounded Contexts.

To partition bounded contexts, we can use our hierarchy from the previous stage (see sec-

tion 6.2). If a subtree in this hierarchy becomes too complex, we can extract it into a new

bounded context. We can also view our variations / software alternatives as bounded con-

texts. However, with this and generally for bounded contexts, it cannot be guaranteed that

concepts are always located in only one bounded context. For example, in Figure 7.7 the

concepts User and Event are concepts shared between Event Organization Context and Event

Participation Context. To enable such a partition but still be managerially independent, we

need parallel models.

A parallel model is actually an alternative representation of the state of a concept like User

in Event Organization Context and Event Participation Context. To achieve such a parallel

model, Fowler [@Fow05b] states that the best is if the system is designed with Event Sourcing

(In this case, event means a technical event as in an event-driven architecture and not event

in the sense of the OWL.Culture-Platform.). The idea behind Event Sourcing is to not persist

the current state of the objects like in active records, but the events that lead to the current

state (cf. [Bet+13; @Fow05a] or Figure 7.8 for an example). It is actually a quite common

and intuitive pattern that is used in software development for example in code versioning

systems like svn or transaction logs in sql. Best known examples are probably bank (saving)

accounts where the truth lies in the individual deposits and withdrawals (transactions) and

7.2 People, Project, Product, and Process 131

the total value is only displayed as additional information. Lawyers use a similar procedure

to edit contract texts; it is not the text itself that is edited, but a change list is maintained.

Domain Model

ORM
Layer

RDBMS

Load

Save

AccountBalance
Aggregate for Account 501

0.00

ID Account Owner Balance
… … …
501 Björn Senft 0.00
502 Simon Oberthür 300.00

Query results

Update statement

Command HandlerCommand:
Credit 100€ from
Simon Oberthür to Björn Senft

AccountBalance
Aggregate for Account 502

300.00

(a) Active Record

Domain Model

AccountBalance
Aggregate for Account 501

0.00

AccountBalance
Aggregate for Account 502

300.00

Command HandlerCommand:
Transfer 100€ from
Simon Oberthür to Björn Senft

Event Store

R
ec
ei
ve
d
10

0€
fro

m
Ac

c
50

2

D
eb

it
10

0€

C
re
di
t2

00
€

…C
re
di
t5

0€

D
eb

it
50

0€

Events
belonging to
Account 501

Query Append

(b) Event Sourcing

Fig. 7.8.: Example Comparison of Active Record and Event Sourcing.

And how does Event Sourcing help us to maintain parallel models? With Event Sourcing

we are getting two features that are crucial for this. First of all, we get an Event-Driven

Architecture, which helps on the one side to decouple the systems more as they omit the need

to subscribe to a full domain model. On the other side, it makes the synchronization simpler

as we do not have to compare two states and figure out the differences but get the changes

directly. Secondly, we get an audit log, which helps us to identify the reason for an incorrect

state and to repair it easily by introducing a retroactive event (An event undoing something

that happened in the past). Furthermore, the audit log helps us to merge changes from two

or more services and check their permissiveness. In this way we can achieve on the one

hand that we can experiment with several alternatives simultaneously. On the other hand,

existing System of Systems can operate the old and new version of a system simultaneously

in this way until the complete System of Systems is converted to the new system. In this way,

we reduce the potential costs for experimentation and technology decisions.

But of course, Event Sourcing has as well some drawbacks. In order to understand them, it

is among other things important to understand which assumptions are made around Event

Sourcing. First of all, Betts et al. [Bet+13] state as essential characteristics of events in

Event Sourcing that events happen in the past, events are immutable, events are one-way

messages, events include parameters that provide additional information about the event,

and events should describe the business intent. Therefore, events must not be changed, which

also applies to faulty events as well as to subsequent changes in the structure of an event.

For faulty events, we can use the previously mentioned retroactive events. In the case of

subsequent changes to the structure of an event, this means that special care must be taken

with the initial design of the event and it should not include too much context. For example,

132 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

an EventChanged event in our OWL.Culture-Platform example would be a quite bad design

as all attributes later on added to an event results in a new structure of the EventChanged

event. It would be better to have smaller events like a EventVenueChanged event. This

also results in challenges in data protection, for example if personal data is to be deleted.

Therefore, it is not completely forbidden to change the events afterwards. However, it should

remain the exception and not the normal way of working with the events (cf. [OSJ17] for

examples on challenges and how to update events in Event Sourcing).

Service
Interfaces

Read Side

Write Side

Event Store
Publishes Events
after they have
been saved

Denormalized Read Store
Subscribes to Events
on the Write Side

Query

Append
events

Events

Query response

User views data
in the UI

User makes a
change in the UI

Command

Fig. 7.9.: Event Sourcing and Command Query Responsibility Segregation Pattern Combined.

Furthermore, Event Sourcing introduces an especially big challenge regarding performance

and querying. Depending on the number of events, it could take a long time to replay the

events to load a domain object’s state. Furthermore, it is quite difficult to search for example

relational data within events. This is why it is recommended to combine Event Sourcing

with the Command Query Responsibility Segregation (CQRS) pattern (see [Bet+13, p. 243]).

CQRS describes in its core that you use a different model to update information than you

use for reading information (cf. [Bet+13, p. 223 ff.] or [@Fow11]). In Figure 7.9, we have

illustrated how CQRS works in conjunction with Event Sourcing. When a user wants to

view data, a query on the read side is made, which gets her the corresponding data. If she

makes changes in the UI, a command is created that is sent to the write side, which checks

the commands permissiveness. The difference between a command and an event is that the

event is always in the past and the command is an intent to change something. When the

check is successful, an event is created and appended in the event store. An event store is

actually the specialized database to store our events for the event sourcing. The read store

7.2 People, Project, Product, and Process 133

has subscribed to the event store and gets the corresponding new events, which it handles to

update itself. Like that, we can use as read store e.g. a relational database like PostgreSQL,

a document oriented databases like MongoDB, or different database types in parallel, but

still persist our data in an event store.

Another important perspective on the managerial independence, besides the domain per-

spective, is the perspective on the different layers we usually have in a software. One

quite common separation in layers is the three layered architecture Presentation, Domain,

and Data (see Figure 7.10). Presentation is in the sense of the four layered architecture

by Evans [Eva04] a combination of User Interface (Showing information to the user and

interpreting her commands) and Application Layer (Defines the job the software has to

do and directs it to the domain objects). Domain is the same as the Domain Layer, which

means it is responsible for representing the concepts of the business, information about

the business situation, and business rules. Data is just for accessing and storing the data

and is a specialized part of the Infrastructure Layer in the four layered architecture, which

shall in general provide generic technical capabilities. One concept, that is quite important

here is the Presentation Domain Separation (see [@Fow03; Fow01]), as it allows to (more)

independently develop the Presentation layer from the Domain layer.

Presentation

Domain

Data

Fig. 7.10.: Presentation-Domain-Data-Layering. Own representation based on [@Fow15]

134 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

Take for example an online banking account. In this setting, it is important e.g. for an user

to not lose money because of an unreliable system. Hence, the data integrity especially

regarding managing the transactions (and depending on the system the current balance) is

essential. However, new interactive forms of presentation or services that work on the data

can be interesting and have a lower expectation regarding reliability as long as they do not

affect data integrity. For example, having a virtual division into budgets (household, work,

leisure) or a visual breakdown of regular debits. To realise these functionalities, the persisted

data does not necessarily have to be touched, but for the presentation the data may have to be

structured differently and aggregated with data from other services. This is why especially

Presentation Domain Separation is so important for experimentation, since the Presentation

layer often requires a different change cycle than the Domain layer. It is also what Sharma

and Coyne [SC17, p. 4] mean when they are saying that Systems of engagement need to be

capable of more rapid changes compared to Systems of record, which are only there to keep

and present the data without much interaction.

To achieve Presentation Domain Separation, the Model-View-ViewModel (MVVM) (see Fig-

ure 7.11) pattern is quite useful as its main goal is to decouple Presentation from Domain as

good as possible to enable designers to independently develop Presentation without the need

of taking into consideration the actual model in Domain. MVVM is actually a combination

of the patterns Model View Presenter (MVP) and Presentation Model (see [@Smi09]). The

basic separation in MVP (see [Pot96; @Smi09]) is that what you see on the screen is the

View, the data it displays is the Model, and the Presenter hooks the two together. It is no

coincidence that this pattern is very close to Model View Controller as it has its origins in

it [Pot96], but with the main differences of the required observer synchronization between

View and Presenter and a one to one relation between View and Presenter [@Fow06]. The

pattern Presentation Model on the other hand is simply ”pulling the state and behavior of

the view out into a model class that is part of the presentation” [@Fow04]. Furthermore, it

is intended that the Presentation Model takes over the coordination with the Domain layer

as well as providing an interface for Presentation, so that decision making can be minimized

in Presentation.

By putting these two patterns together, Smith [@Smi09] explains MVVM as having a

View that binds to properties on a ViewModel, which, in turn, exposes data contained in

model objects and other state specifics to the view. Changes from the view are delegated via

Commands to the ViewModel, which updates the Model. If property values in the ViewModel

change, those new values automatically propagate to the View via data binding. The View

itself binds to the properties of the ViewModel simply by setting it as the data context of

the View. Furthermore, the ViewModel does not need a reference to the View unlike in the

case of MVP, The reason are the bindings that are used to propagate the properties and

commands to delegate actions triggered in the View to the ViewModel. Although MVVM

7.2 People, Project, Product, and Process 135

Data Bindings
and Commands

ViewModel updates Model

Send Notifications

Send Notifications

View

ViewModel Model

State and
Operations

Fig. 7.11.: Model-View-ViewModel (MVVM) Pattern. Own representation based on [@Mic12]

was originally developed for the use in the .NET context, it is a general pattern that is used

in other technologies as well like Angular2 or in native Android applications3.

Hence, with the help of the MVVM pattern we can achieve a managerial independence of

Presentation and Domain layer, which helps us to use different technologies for both layers.

In addition, it allows us to independently develop the Presentation layer, which allows shorter

iterations and with that a more fitting developing situation, especially to experiment with

alternatives on the different layers. If we wouldn’t have this, we would need to use the same

high requirements for every part of the system.

In summary for managerial independence in general as prerequisite for System of Systems,

we can achieve it at domain level by using bounded contexts with Event Sourcing and CQRS

for realization. On the software level with the different layers, we can use Presentation

Domain Separation with the help of the MVVM pattern.

Besides the managerial independence, we also need operational independence to realize

our System of Systems macro-architecture to support experimentation. For the constituent

systems, that can be derived from the bounded contexts, this means that they can be deployed

and run independently of other constituent systems. To achieve this, the first thing should

be that each constituent system can run in their own process. In order to be able to run a

constituent system, it has to be deployed, which makes an independent deployment as well a

requirement for operational independence.

2https://angular.io/start/start-data
3https://developer.android.com/topic/libraries/data-binding

136 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

https://developer.android.com/topic/libraries/data-binding

But what does independent deployment mean? For that, we can take as foundation a typical

Continuous Integration and Deployment Pipeline (see Figure 7.12) as for example described

by Shahin, Babar, and Zhu [SAZ17] or Ford, Parsons, and Kua [FPK17]. In the first step,

the developer commits the code into the code versioning system, from where it is taken

into the Continuous Integration pipeline. Within the Continuous Integration pipeline the

code is built and tests like unit testing and static code analysis are done. If everything

went successful, the build artifact is handed over to the Continuous Deployment pipeline,

where it is deployed into a staging environment to run automated acceptance tests. If the

acceptance tests are successful as well, the build artifact gets automatically deployed into the

production environment. The difference between Continuous Deployment and Continuous

Delivery is the needed manual approval in Continuous Delivery to deploy build artifacts to

the production environment. If all these steps can be performed without relying on parts of

the other constituent systems, one can consider it an independent deployment.

Build Test Acceptance
Test Production

Developers Code
Versioning
System

Continuous DeploymentContinuous Integration

Fig. 7.12.: Continous Integration and Deployment Pipeline. Own representation based on [SAZ17].

In detail, this means that code of the individual constituent system needs to be separated to

be able to build the constituent systems independently. Furthermore, build dependencies

to other constituent systems must not be present or rather have to be minimized. The same

applies to the tests on integration level, which can be carried along with the source code.

Acceptance tests should be divided into one of two areas. On the one hand, acceptance

tests that only refer to the individual constituent system and, on the other hand, acceptance

tests that refer to the interaction in the System of Systems. In a System of Systems it will

not be possible to avoid that acceptance tests also refer to the interaction of the originally

independent constituent systems. However, for an acceptance test that fails in this case can

not be assumed that the constituent system that triggered the acceptance test is to blame.

With this separation it can be ensured that the constituent system, if considered separately,

fulfills the requirements, even if it leads to an error in a deployment in a specific System of

Systems. For the last step to be considered as a completely independent deployment, the

deployment artifact must include everything needed to run the constituent system on any

system (infrastructure). This can include frameworks, libraries, or even data. Overall, there

may of course be nuances in terms of independence. For example, a deployment artifact does

7.2 People, Project, Product, and Process 137

not necessarily have to be executable itself, but can only provide the necessary references to

libraries for cross plattforms or a special platform (see e.g. .NET Core Publishing4).

The last characteristic for operational independence that we consider is the communication

between constituent systems. On the one hand, it must be ensured that the constituent

systems are connected via common standardized interfaces such as Representational State

Transfer (REST) (e.g. cf. [@Fow10] for a detailed explanation of REST). Furthermore, it

must be possible to configure references to other constituent systems dynamically at runtime.

By combining these two points, the constituent systems can be connected to each other at

runtime, provided that they offer the required functions. Besides the common standardized

interfaces, it is also essential for communication to use the BASE (Basically Available, Soft

state, Eventual consistency) semantic instead of the ACID (Atomicity, Consistency, Isolation,

Durability). BASE was introduced by Pritchett [Pri08] for scaling databases and is intended

to be optimistic and accepting that the database consistency will be in a state of flux. ACID

in contrast is pessimistic and forces consistency at the end of every operation. For our

communication using the BASE semantic means, that we acknowledge the fact that the other

constituent system is available as much as possible, but without any kind of (consistency)

guarantees (Basically Available). Furthermore, it means that we are in a soft state which has

a probability to be in the correct state after some amount of time, but it is not guaranteed.

The last point is that we will be eventually consistent with our expectations, if the system is

functioning and we wait long enough after any given set of inputs. By incorporating the

BASE semantic, we ensure that our constituent systems can handle communication errors and

longer response times. This enables us to e.g. redirect a request from a failing instance of a

constituent system to another. In best case, our System of Systems or constituent system is so

designed that it can still serve its purpose even without having the other constituent system

answering. Netflix for example is so designed that e.g. if the bookmarking service fails, the

overall system is still capable of serving streams (cf. [Bas+19]). For our experiments, this

means that we achieve with this a fallback mechanism, which is essential for experiments in

the actual context of use as they allow less mature systems to be tested without interfering

to much with the actual work (be it explicit test sessions in which no work can be done or

failing systems that inhibit working).

In this part, we have shown how to achieve a System of Systems architecture, where the

constituent systems are managerial and operational independent. For managerial indepen-

dence, we are using bounded context to get a separation on domain level with the help of

Event Sourcing and CQRS. A further separation on the level of the three layer architecture

is introduced with Presentation Domain Separation and MVVM to realize this separation.

Operational independence is achieved by having each system run in it owns process, being

independetly deployable, and having a standardized communication based on the BASE

4https://docs.microsoft.com/en-us/dotnet/core/deploying/

138 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

https://docs.microsoft.com/en-us/dotnet/core/deploying/

semantic and configureable during runtime. This System of Sytems architecture is important

for actually conducting our qualitative experiments (cf. section 1.1.3). In the following, we

will give an example on how these patterns are instantiated with specific technologies in one

of our projects.

7.2.2.2. Implementation Example

We will use the OWL.Culture-Portal (see section 8.3) to explain how a technical imple-

mentation of the aforementioned patterns can be realized. Since the OWL.Culture-Portal

is intended to be an event site, among other things, the use of web technologies for its

realization is natural. However, this generally makes sense for System of Systems because as

Denning [DGH08] points out, the www is one of the oldest and most mature examples of a

functioning System of Systems.

Moreover, web technologies do not mean that physically separate units have to communicate

with each other. You can also start web servers on your own computer and access them via

the loopback network. For example, Edirom5 has been implemented as a client application

with web technologies, where an application server is started within an Eclipse environment

and the Eclipse environment displays a full-screen web view pointing to the application

server. For the user it feels like a native application. With the upcoming of Progressive Web

Apps (PWA) [@RB15; @Osm15], this workaround with a specific wrapper application is not

necessary anymore as applications are directly installable from the browser. Furthermore,

app store provider like Microsoft are going to offer PWAs in their app stores and have

implemented the possibility to add them manually or automated by a web crawler, if certain

properties are fulfilled6. In addition, with WebAssembly7, PWAs are capable of running

high-level languages like C/C++/C#/Rust natively in the browser, which allows further

polyglotism regarding language and technology.

In the following, we will present our selection of standard technologies. Although we want

to allow polygotism in terms of technology and language, it makes sense to agree in a project

on a set of standard technologies to be used if there is no serious reason against it. If we look

back at the expert discussion in section 4.1, it is noticeable that the expert characteristics

also apply to developers. This means that no developer can be an expert in every technology,

and thus progress equally well and quickly in every technology. If we use a high variety of

technologies, we make it more difficult for the developers to support each other and to move

forward with the project, because they always have to learn again about the technology in

5https://github.com/Edirom/Edirom-Editor
6https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps-edgehtml/

microsoft-store
7https://webassembly.org/

7.2 People, Project, Product, and Process 139

https://github.com/Edirom/Edirom-Editor
https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps-edgehtml/microsoft-store
https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps-edgehtml/microsoft-store
https://webassembly.org/

question. Nevertheless, if it is about the use of an already well-implemented constituent

system, where only minor changes have to be made and it is not a core component, or if the

tool support of a technology is much better than the standard set and thus justifies the effort,

the use of other technologies is definitely desired.

Data

Write Side

Data

Write Side

Data

Read Side

Appropriate
Database

Data

Read Side

Appropriate
Database

DomainDomainPresentationPresentation

Fig. 7.13.: Implementation of Presentation-Domain-Data-Layering in OWL.Culture-Portal. The

hexagon representation is based on the microservice representation by NGINX and is

meant to emphasize that these are constituent systems.

With these general decisions, we can first address managerial independence by starting with

Presentation Domain Separation. In Figure 7.13, we have illustrated the separation in the

individual layers Presentation, Domain, and Data in the OWL.Culture-Portal and which

basic technologies we use in which layer. Based on the Bounded Contexts we create separate

constituent systems for each layer to allow an individual evolution as stated previously.

For the Presentation layer we are using Angular with TypeScript as base technologies.

TypeScript as programming language allows a better testability than javascript because of

the static typing and is the default language for Angular 2+. Angular has the advantage that

it natively implements the MVVM pattern and supports PWA out of the box. Furthermore, it

structures the user interface into components which can be exported into web components.

This helps us to load and unload components during runtime but also the to be created

components to be used in other web frameworks and therefore making the decision about

the technology less sticking. The communication with the consituent systems in the Domain

layer is abstracted away from the user interface code by so called services in Angular, which

140 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

inject the necessary data into the view via dependency injection. This way, even the HTML

code becomes more reuseable as it does not need to know about specific classes and angular

code but can just bind to them like originally intended with MVVM in WPF for example.

Unfortunately, it could be that additional Angular annotations are introduced to the html

code to be working with Angular as framework. The connection of the service with the

constituent system on the Domain level is realized via HTTP calls on a REST interface.

Therefore, constituent systems on the Domain level have to offer a REST interface. To

achieve this, we are using Web API projects from ASP.NET Core in conjunction with C# and

the OpenAPI Specification. OpenAPI Specification8 is a standard for programming language-

agnostic interface descriptions of REST APIs, which is backed by the Linux Foundation.

Besides the standardized description of APIs, it allows the automatic technology related

generation of interfaces. The decision for ASP.NET Core with C# was actually done in a

previous project (see section 8.1) with the intent to harmonize the technologies for a cross

plattform mobile development. At that point in time, there was only the choice between

pure javascript frameworks for backend and frontend or Xamarin with C# as basis for cross

platform development and ASP.NET Core for the backend. Because of the better testability,

we decided to use ASP.NET Core with C#. Nevertheless, ASP.NET Core itself also offers

some advantages9 such as running on different plattforms (e.g. Windows, Linux, Mac), being

ready for containerization (.NET Core is more modular and lightweight than .NET which

makes contaienr images much smaller), the possibility to install applications side-by-side

(.NET Core allows side-by-side installation of different .NET Core runtime versions on the

same machine and with this different applications that require different .NET Core runtime

versions), and having with EF Core a mature object relational mapper.

On the Data layer, we are implementing CQRS with Event Sourcing by using Event Store10

on the Write Side and an appropriate database (like e.g. PostgreSQL, MongoDB, or Neo4j)

on the Read Side. Event Store is an event store, which is a ”mechanism to store events and

to return the stream of events associated with an aggregate instance so that events can be

replayed to recreate the state of the aggregate” [Bet+13]. Using Event Store as an event store

especially developed for event sourcing has some benefits. First of all, unlike a message

broker, it is optimized not only for the distribution of events, but also for their persistence.

For each class or instance of a consituent system, a message stream to persist and distribute

the events can be created. It has already integrated the mechanisms for access control lists

(ACL) and thus enables data protection. This is especially useful if the experiment data is

confidential. Furthermore, it allows temporal correlation queries called projections to query

event streams for events related to certain criterias and time, which is quite helpful for new

8http://spec.openapis.org/oas/v3.0.3
9https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server

10https://eventstore.com

7.2 People, Project, Product, and Process 141

http://spec.openapis.org/oas/v3.0.3
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server
https://eventstore.com

value propositions build ontop of the data of already existing value propositions. Finally, it

has already been optimized for scalability and performance in the field of event sourcing.

The Domain Layer is actually responsible for synchronising the write and read side.

In addition to the use of technologies to achieve managerial independence, we also give an

example of how operational independence can be supported by technology. Ensuring that

each constituent system runs in its own process can be achieved straightforward by putting

them in a container, which encapsulates the code and all its dependencies so that it can

run uniformly and consistently on any infrastructure11. As container engine Docker12 or

Podman can be used.

For the build and deployment preparation a continuous integration and deployment pipeline

like for example integrated in GitLab, Jenkins, or Azure DevOps can be used. The actual

deployment or orchestration of the container is usually done by a container orchestration

engine like Docker Compose13 or Kubernetes14. Using Kubernetes has the advantage

that it is part of the Cloud Native Computing Foundation and regarded as the defacto

standard in this area (cf. e.g. https://github.com/containers/libpod#out-of-

scope). Furthermore, by using Kubernetes YAML as file format to describe the orchestration

of a constituent system allows the deployment on different infrastructures. The infrastructures

can be e.g. cloud based with Kubernetes itself, a local machine with minikube15 or with

podman16 (which eliminates the need of kubernetes services), and with K3S17 even IoT &

Edge computing based. This also concludes our implementation example.

7.2.3 People

The process for qualitative experiments and the macro-architecture result in certain require-

ments for the people involved in this stage. Let us start with the creation of qualitative

experiments. Setting up good qualitative experiments from scratch usually requires good

knowledge about empirical research with people like it is the case in social sciences or in

psychology. However, we cannot assume that this is a universal requirement for all people

involved in this process. It is illusory to assume that, in addition to their expertise in their

specialist areas, all developers can build up the necessary expertise to set up qualitative

experiments independently (cf. Expert discussion in section 4.1). However, they should have

a basic understanding of qualitative experiments and roughly understand which properties

11https://www.ibm.com/cloud/learn/containerization
12https://www.docker.com/
13https://docs.docker.com/compose/
14https://kubernetes.io/
15https://github.com/kubernetes/minikube
16https://podman.io/
17https://k3s.io/

142 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

https://github.com/containers/libpod#out-of-scope
https://github.com/containers/libpod#out-of-scope
https://www.ibm.com/cloud/learn/containerization
https://www.docker.com/
https://docs.docker.com/compose/
https://kubernetes.io/
https://github.com/kubernetes/minikube
https://podman.io/
https://k3s.io/

are required in the variations / software alternatives and which are not necessary for the

experiment. And of course, as they are intended to develop the variations / software alterna-

tives with the help of SCRUM, they need basic knowledge of agile software development as

well.

In order to be able to set up good qualitative experiments nevertheless, we use the value

designer (see paragraph 3.1) and suggest a tool that supports the setup (see section 7.3.1).

The person holding the role of value designer is primarily responsible for the design of

the qualitative experiments. Through her role in the previous stages, she should have the

best understanding of the value propositions, which is highly valuable for the design. It

is therefore essential for her to have the necessary expertise to carry out independently

qualitative experiments with people. Furthermore, she is the first contact person for the

developers for questions regarding the experiment and necessary properties of the variations

/ software alternatives for the execution of the experiment. Accordingly, she must be

able to make technical assessments. As the primary person responsible for the qualitative

experiments, she has to schedule as well the experiments with the participants, which brings

us to the next group of people involved in this process.

A qualitative experiment puts special requirments on the participants too. Within such an

experiment it is not sufficient to just use the variation / software alternative. At the same

time, the participants have to express (thinking aloud) as well as possible for example what

is on their minds, what they expect, what bothers them, or what they liked. The better they

are capable of expressing themselves, the better we can understand the situation. Of course

a good investigator can intervene here, but only to a certain extent.

With regard to the macro-architecture, the developers are faced with a challenge. The

widespread use of the selected patterns has only recently begun, especially in the field of cloud

computing for scalability and performance (cf. e.g. [Bet+13]), but not yet for conducting

experiments. Accordingly, developers need to become familiar with the corresponding

patterns and understand how they relate to experiments.

7.2.4 Project

Jacobson, Booch, and Rumbaugh [JBR99] define Project as the ”[...] organizational element

through which software development is managed” and has as outcome a released poduct.

In our context, the outcome of a project would be the experiment results. Accordingly, for

each value proposition identified in the previous stage we would set up a new project and

thus a new experiment (cf. Set Research Question step in Design activity).

7.2 People, Project, Product, and Process 143

For the realization of the project, at least one value designer is needed, who can also be a

developer. Furthermore, at least one developer is required. Regarding the participants, if we

use the criteria for usability tests, we need at least five participants, who cannot be value

designer or developer in this project. Furthermore, the required infrastructure such as a cloud

computing infrastructure or the tools for automating process steps (see also section 7.3) must

be set up for the project.

This concludes our presentation and discussion on how we can try out different software

alternatives in order to learn from them to what extent they provide value and which charac-

teristics this may be due to in software development with the help of The Four Ps (Process,

Product, People, and Project). In the next section, we will give an overview of how single

steps in the process could be automatized with specific tools.

7.3 Tools

The Four Ps not only consist of Process, Product, People, and Project, but includes Tools

to automate the Process as well. Jacobson, Booch, and Rumbaugh [JBR99, pp.22] state

that the process is strongly influenced by tools as ”tools are good at automating repetitive

tasks, keeping things structured, managing large amounts of information, and guiding you

along a particular development path”. Tools are therefore integral to the process and are

essential for the viability of it as they influence the resources needed to conduct a process as

well as the effectivity. For this reason we are presenting and discussing tools in this section

to give evidence for the viability of the process. In section 7.2.2.1, we already mentioned

continuous integration and continuous deployment pipelines as a tool for automatizing

the build and deployment process of a variation / software alternative. Looking at our

process for qualitative experiments, we have the four major activities Design, Build, Run,

and Analyze from which we can derive further tools for automating / supporting our process

(see Figure 7.14).

Looking first at Design, it becomes clear that a tool support will be more related to guidance

and structuring than automating as it doesn’t include many repetitive tasks but mainly human

decisions. We explore in section 7.3.1 (Experiment Design System) how such a constituent

system that guides and structures the design process can look like. As it is setting up the

experiment, we further use it to initialize a project (qualitative experiment) and to coordinate

with the other constituent systems in our tool suite.

The next activity Build consists of the steps Implementation of software alternatives, Prepar-

ing necessary data to run experiment, and Prepare Infrastructure to run experiment. For

the first step, we already introduced the continuous integration and continuous deployment

144 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

Quantitative
Data

Qualitative
Data

Experiment
Design

Technical
Assignment

Field Study / Field Experiment
Tool Suite

Experiment
Build

Fig. 7.14.: Overview of Tools for Automating the Field Study / Field Experimentation Process.

pipeline which depends strongly on the technologies used. In general, tools for conducting

continuous software engineering (cf. [Bos14]) can be beneficial for this step. The next step

Preparing necessary data to run experiment is quite depending on the implementation, which

is why we can not further say anything about it. The preparation of the infrastructure is done

in the Experiment Design constituent system as it setups the project and coordinates with

the different constituent systems. Accordingly, the tools in the Build Experiment constituent

system depend heavily on the technologies used, which is why we will not go into this in

more detail at this point.

For the activity Run, we first have to enable the technical assignment, so that the respective

participant receives the variations she is supposed to receive. We are using a Technical As-

signment constituent system for this, which we further describe and evaluate in section 7.3.2.

Furthermore, the qualitative and quantitative data has to be collected. For gathering qualita-

tive data, especially with thinking aloud in a usability test, there are already great tools out

in the field like Morae18, Validately19, lookback20 or for doing surveys for example LimeSur-

vey21. This is why we are not going to look further into the Qualitative Data constituent

18https://www.techsmith.com/tutorial-morae-current.html
19https://validately.com/
20https://lookback.io/
21https://www.limesurvey.org/

7.3 Tools 145

https://www.techsmith.com/tutorial-morae-current.html
https://validately.com/
https://lookback.io/
https://www.limesurvey.org/

system at this point either. In case of quantitative data, it is mainly about collecting the

data, which is what we looked at and evaluated in section 7.3.3. The reason, why we looked

further into the Quantitative Data constituent system, is the question if our event sourcing

infrastructure can be used for that as well, to use synergies.

Our last activity is Analyze, which highly depends on the selected method and the data itself,

which is why we have not introduced a separate constituent system for it, but include it into

the Quantitative Data and Qualitative Data constituent systems.

In the following we give an overview of how the non-standard parts of the constituent sys-

tems Experiment Design, Technical Assignment System, and Quantitative Data System can be

designed. The exemplary systems in these parts have been developed and evaluated in con-

junction with the the master theses [Sch19] (Experiment Design System), [Abi19] (Technical

Assignment System), and [Kra18] (Quantitative Data System) based on the previously intro-

duced concepts for qualitative experiments and partly on the overview of Kohavi [Koh+08]

for concepts in online controlled experiments. We present these exemplary systems in more

detail at this point in order to provide evidence for the support possibility by tools and thus

also the viability of the process.

7.3.1 Experiment Design System

In our discussion about the people (see section 7.2.3), we already mentioned the challenge

of defining experiments as a normal software developer. Even though we have assigned

the main responsibility for designing experiments to the value designer, who must have the

appropriate background knowledge, we think it makes sense to have a system that supports

the creation of experiments. First of all, it can help normal developers understanding the

terms and basic structure of an experiment including the rationales behind it. Furthermore,

a structured experiment design that is already digitally available can be further used in

other systems to e.g. initialize them accordingly. We therefore developed a system called

FEXP (Feature Experimentation Platform) that lets you define qualitative or quantitative

experiments, which has a guided mode to support the understanding of the terms and

guiding through the individual steps (see Figure 7.15). However, this is only a first prototype

to develop an understanding of the usefulness of the guided mode and the feasibility of

interactions with other services. In the following, we will present and discuss this prototype

in order to provide evidence for the tool support possibility for the first activity Design.

In Figure 7.16, the details that are defined for an experiment can be seen. It is mainly the

experiment name itself with a further description, which in our case is a link to get further

details. Most importantly is the hypothesis, which is in case of a qualitative experiment the

research question of how to deliver the value we identified (see section 7.2.1). Furthermore,

146 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

Fig. 7.15.: Guided Mode in our prototype FEXP to define experiments.

the time period in which the experiment should take place is defined, as well as the experi-

mental unit and sampling rate. The experimental unit is describing the set of entities to be

studied like for example all users. The sampling rate specifies how many entities from this

set should participate in the experiment.

Furthermore the different variations (in this system called Feature Variants) can be defined

and controlled if they shall be active in the experiment and which one of them is the control

variation or default experience if new variations shall be compared to a design already in use.

This definition is used to initialize a technical assignment system that uses feature toggles

(see e.g. [@Hod17] for a description of feature toggles). As this was the first prototype tool

we developed, we are not using the technical assignment system presented in section 7.3.2,

but a simpler version that only supports feature toggles. Feature toggling means enabling or

disabling code branches by usually using if else statements with a boolean variable. The

system in this case can be asked if for a certain user the corresponding code branch shall be

activated and returns a boolean value. Furthermore, boilerplate code for using the system

is generated under Usage for the corresponding technologies (in this case for Java and

TypeScript). This is one disadvantage of feature toggling, that you need native code to make

7.3 Tools 147

Fig. 7.16.: Details Overview of an experiment in our prototype FEXP.

it work and if there is not already something written in the technology you want to use, you

have to write it yourself.

The quantitative measurement units for an experiment can be defined under Actions. Quanti-

tative data that is then collected during an experiment can this way be linked to the defined

measuring unit and the experiment itself.

For this system we are not considering qualitative data yet as it can be more vague what

data will be collected and it highly depends on the method itself. Furthermore, we have

not introduced a system supporting the selection of the right method. To complement the

Experiment Design System with such a functionality, one could, for example, build on the

proposal by Fischer, Strenge, and Nebe [FSN13] for a tool for selecting usability methods.

In order to get an overview of current and past experiments, this system also provides an

overview of these experiments (see Figure 7.17). This concludes the definition features of

this prototype, which queries the most essential characteristics of experiments according to

our definition in section 7.2.1 and Kohavi et al. [Koh+08] overview for online controlled

experiments.

148 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

Fig. 7.17.: Running and finished experiments overview in our prototype FEXP.

For the evaluation regarding the feasibility of this tool, a usability test (as part of the master

thesis) with a fictitious bookstore as case was carried out, as well as a case study within the

OWL.Culture Portal case study to investigate its use in a real project (see section 8.3.4.2,

Work product #9: Experiment Definitions). In both cases, the participants were the second

group of students (10 in total) of the project group as described in section 8.3.4.

The usability test defines 18 tasks that the participants have to complete and covers all

functionalities of the prototype. This includes the creation of an experiment (with and

without the guided mode), introducing feature toggling in code, a simulated run (a simulator

was written according to the Wizard of Oz method), ramp-up (increasing the sampling rate in

an ongoing experiment), as well as the analysis of quantitative data regarding the variations

using Kibana as an external data exploration tool. From these 18 tasks, 15 tasks could be

solved by all participants. One participant could not define a control variation with two

additional variations. Two participants had problems to define the code for feature toggling,

which could be more a problem of the used programming language. Not a single participant

was able to decide which feature variation differed statistically significant from the control

variation. Overall, this shows that the participants were able to use this tool to solve the

tasks intended with it and therefore is a first evidence for the viability of the process in this

stage.

Since we have no alternative solutions for this prototype, classic A/B tests cannot be carried

out to put usability into perspective. Therefore, we decided to use the System Usability

7.3 Tools 149

Scale (SUS) [Bro+96], which offers an easy way to quantify usability on a scale from 0 to

100. Unfortunately, the score on this scale is relative and could be in general lower for a

certain product category like enterprise resource planning systems. To put it into relation

for the totality of software products, Bangor, Kortum, and Miller [BKM09] developed an

adjective rating scale for the system usability scale score to translate it into a descriptive

score based on their database of conducted studies with system usability scale. Overall, we

got an average SUS score of 82.73 for using the system without the guiding mode and a

score of 86.36 for using it with the guiding mode. First of all, this shows a slight tendency

that the guiding mode could be helpful in defining and using experiments. Furthermore,

these scores can be translated into ”excellent” for the guiding mode and ”good” without it

according to Bangor, Kortum and Miller [BKM09].

In the case study, the use of this prototpye for real qualitative experiments showed in summary

that the participants were able to define usable experiments. For more details, look directly

at section 8.3.4.2, Work product #9: Experiment Definitions.

In summary, we provided evidence that the use of an Experiment Design System can be

useful. However, for the exact design of such a system further studies have to be made.

Furthermore, we have currently only considered the interaction with other simple systems

that have been specially developed for this purpose. Nevertheless, this seems to be feasible

in principle and with that we provided first evidence for the viability of the process in this

stage.

7.3.2 Technical Assignment System

An automated technical assignment has the benefit of being less error prone, an audit log to

understand which variation was delivered to which user at what time, and possible automatic

fallback e.g. in case of a failing instance or deployment (cf. [@Sev14]). For actually

establishing such automated technical assignment, we first have to look at how our different

variations / software alternatives are implemented. More precisely, how the separation of

the variations was solved in terms of implementation. This can in principle be realized by a

physical or logical separation. A physical separation in this context means that a variation is

operationally independent from the other variations in an experiment. Accordingly, for a

logical separation this means that the individual variations cannot be deployed and addressed

independently of each other, so the separation must take place logically within the constituent

system. A combination of physical and logical separation is also imaginable.

The advantage of physical separation is the independence of each variation from the other

variations. Thus, different versions of frameworks or completely different frameworks can be

used for each variation. In addition, the technical assignment can be performed independently

150 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

of the technology used to implement the variation as it can be done outside of the constituent

system (Keep in mind that each constituent system shall have a standardized communication

interface). The disadvantage of this approach is the high resource consumption due to the

individual deployment of each variation, even in case of small variations. Furthermore, for

a multifactorial experiment layout (see section 7.2.1) a separate system must be set up for

each combination of independent variables (mostly sub-objectives in our case), which leads

to code redundancy among other things.

On the other hand, the advantage of a logical separation is a low overhead for the implemen-

tation, because it is not necessary to set up a separate project, repository, pipeline, etc. for

each variation. Furthermore, it is not necessary to deploy a complete constituent system

for each variation, especially beneficial is it if there are only small differences. Likewise,

multi-factorial experiment layouts can be better implemented, since all combinations are

available in one system and there is no need to redirect requests; all that is needed is to enable

the corresponding feature branches. Disadvantages are the larger size of the deployment

artifact as every variation is shipped, unforeseen reciprocal effects between the variations

(e.g. bugs that crash the constituent system), or a higher configuration effort within the

code.

Back to the technical assignment, this means that we need two different ways to perform

it. First, in the case of logical separation, the assignment is done within the code, which

requires a system that returns what variations a given user should receive. In the simplest

case, this is a query for each variation, returning a boolean whether or not to activate it. For

the physical separation, we need a system that routes the requests to the correct variations.

In Figure 7.18, we have illustrated these systems which we call Orchestration Configuration

and Orchestrator.

The Orchestration Configuration system is responsible for managing the different assignment

rules and to compute the assignment of variations to the user. It can be queried by the

Orchestrator system or directly by the constituent system holding the variations. In case

of the Orchestrator system, the Orchestrator system would take the information from the

Orchestration Configuration system and decide how to route the request.

The Orchestrator system flexibly combines the physical separated systems to a composition.

To be able to do this, they need to be in a network with the Orchestrator. Then the Orches-

trator system can act on the edge of the network as an access point for all incoming requests

and route them accordingly. In terms of network terminology, the Orchestrator system can

be implemented as an edge router or reverse proxy. Simply put, the main difference between

these two is that the edge router is stateless and the reverse proxy is stateful. Whereas

the edge router just forwards the requests to the corresponding systems, the reverse proxy

terminates the connection (not to be confused with closing a connection) from the outside

7.3 Tools 151

Technical Assignment

Orchestration
Configuration

Orchestrator

Fig. 7.18.: Constituent Systems in the Technical Assignment System.

and opens a new connection to the corresponding variation. This makes it easier for the

reverse proxy to assign the same variation to a user over and over again, but also limits its

performance compared to the edge router.

In [Abi19], we created a prototype of our technical assignment system with a custom

implementation of a reverse proxy as Orchestrator system. As for the prototype for the

Experiment Design system, we did as well a usability test with the participants from the

second group of students (10 in total) of the project group as described in section 8.3.4.

Additionally, a performance analysis was conducted to better understand the effects of further

computations on the routing, especially regarding response time and throughput.

For the usability test, the participants had to work on seven tasks that included the setup of

a project, selecting the appropriate technical assignment method (e.g. feature toggling or

canary release (ramp-up strategy)), creating assignment rules, deactivating feature variations

for a specific user, and deleting feature variations and projects. Although all participants were

able to solve all tasks, some of them had problems understanding the terminology used in

the system especially regarding the naming of the assignment methods. This is also reflected

in the quantitative evaluation of the usability, for which we used the System Usability Scale

(SUS) as for the Experiment Design system prototpye. In total we got a score of 77.88, which

reflects to only ”good” according to Bangor, Kortum, and Miller [BKM09].

As for the performance test, we used a middleware based architecture to build up a pipeline in

which we could add different middlewares like the routing based on IP, or the identification

of users based on an id, and mirroring requests for dark launches. We tested the effects

152 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

of the middlewares individually and all together on the throughput and response time on

three different setups (1 Node (4 CPU - 4000 Mib Memory), 2 Nodes (each 4 CPU - 4000

Mib Memory), and 2 Nodes (each 7 CPU - 7000 Mib Memory) with each one instance

running on it) with the help of Apache JMeter. For the response time, having the system run

on two nodes already decreased the time by a factor in the area of 3 to 8.5 for all settings.

Increasing the CPU and Memory just had an effect of factor roughly 1 to 1.5. The effect on

the throughput is roughly by a factor 2 for doubling the number of nodes and as well again

for nearly doubling the resources. Having this big effect on the response time could indicate

that our test setting (ramp-up 100 threads in 100 seconds, with each thread making one get

and one post request) was bringing the single node on its limitations regarding simultaneous

requests in contrast to the two node setups. Therefore, for the comparison of the middlewares

we will mainly discuss the differences in the two node setups.

Looking at the response times, the response time for the individual middlewares increased

by a factor of 1.5 to 2.5 and by a factor of 2.8 if all middlewares are combined. To set

it in comparison, turning off the cache would decrease the response time by 1.9. For the

throughput, the decrease for the individual middlewares is by factor 1.5 to 2 and factor 2.9

for all middlewares turned on. Turning the cache off would decrease the throughput by

2.1. To get a feeling for the absolute times, the response time for just the reverse proxy

was in the second setup 4059 ms and 3074 ms in the third setup. Turning all middlewares

on put the response time to 4736 ms for the second setup and 4632 ms for the third setup.

Overall, the performance results are satisfactory and speak for a feasible use in productive

environments.

In summary, we provided evidence that a Technical Assignment system is feasible and can

be useful. The test users in the usability test were able to conduct all tasks intended with

the system. Furthermore, the performance analysis showed that this constituent system has

an acceptable effect on the response time and throughput. Hence, we delivered with this

constituent system additional evidence for the viability of our process. Nevertheless, it was

mainly a first prototype that still has potential for a better performance and usability. For

further studies, we would recommend to evaluate existing solutions as well like the edge

router traefik22, which was not feasible to use for our purpose at the time of this evaluation.

7.3.3 Quantitative Data System

For the Quantitative Data system, we look at the data collection from the Run activity as

well as data preparation and analysis / exploration steps from the Analyze activity in regard

of quantitative data. The interpretation and planning of next steps involves mainly individual

22https://containo.us/traefik/

7.3 Tools 153

https://containo.us/traefik/

human decisions for which it is difficult to deliver guidance or automation. Accordingly, we

propose additional constituent systems for the remaining three steps Collection, Preparation,

and Analysis (see Figure 7.19).

Quantitative Data

Collection Analysis

Preparation

Fig. 7.19.: Constituent Systems in the Quantitative Data System.

Quantitative data can be counted, measured, and expressed using numbers, it is highly

structured and usually can be broken down into smaller chunks. Some typical examples in

the area of software development for quantitative data are survey results, measuring how

many clicks a user needed to complete a task, or eye tracking. Of course there are many

more potential quantitative data sources that can be used in software development, but we

will stick to the mentioned examples to explain how they can be broken down into smaller

chunks. A survey for example, can be broken down into events about the answering of the

single questions. Measuring clicks is a typical example for the use of UI events to make

statements about usability. Eye tracking is nothing more than the regular determination

of the position of the eyes in relation to the screen and thus a continuous stream of events

informing about the current position. Thus, we assume that quantitative data can usually be

broken down into smaller events.

This property, that quantitative data can be represented as a sequence of smaller events is very

advantageous for our Collection system. For our macro-architecture (see section 7.2.2.2)

we have specified that we need event sourcing and thus an event store. Accordingly, we

can use the event store, which we need for the macro-architecture anyway, to collect and

store the quantitative data. This has the advantage in terms of resource consumption and

implementation effort that we do not have to set up an extra system for data collection. A

disadvantage is the fact that event stores are usually not optimized for the searchability

154 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

of events with complex queries, but for persistence. However, this disadvantage can be

compensated for with the Preparation system.

The main goal of the Preparation system is the aggregation and indexing of the quantitative

data as well as making it searchable for the analysis and exploration. The fact that this

system is separate from the collection is actually beneficial as it often has high hardware

requirements due to indexing and optimizations for searchability. In contrast to the event

store, optimized systems that would not run on every target platform can also be used this

way. Furthermore, this separation means that data can also be collected without a connection

to the Preparation system. This data can then later be imported into the Preparation system

either automatically if a connection can be made (e.g. via internet) or manually after prior

checking. Especially the latter point should not be underestimated, since in certain contexts

such as production plants experiments could be done, but the data must first be cleared by

the respective company, which also has an interest in the system not being directly connected

to the internet.

The Analysis system builds on top of the Preparation system. It mainly includes data

visualization and exploration tools as well as statistic analysis tools. Furthermore, process

mining or machine learning functionalities could be integrated to identify patterns that can

be further investigated.

In [Kra18], we have implemented exemplarily a Quantitative Data system to investigate

whether this concept is technically feasible and whether the performance is satisfactory. For

the Collection system we have used the same event store as in our implementation example

for the macro-architecture (see section 7.2.2.2) supplemented by a tool to export the events

to the Preparation system. As Preparation system we decided for Elasticsearch23 because

of its http interface which includes as well a sophisticated search query dsl and the better

integration with our possible data visualization and exploration tools. Other candidates

had been Solr24, Algolia25, Spark26, and a custom implementation. For this exemplary

implementation, the Analysis system only consists of a data visualization and exploration

tool as it is the most crucial part in data analysis and the further tools are more specific

to the context of the quantitative data. Possible candidates for the data exploration and

visualization were Kibana27, Grafana28, Redash29, and a custom implementation. Even if

the nuances between these individual tools are only very small, in the end we chose Kibana

because of its better integration with Elasticsearch. With all these decisions, it must be

23https://www.elastic.co/elasticsearch
24https://lucene.apache.org/solr/
25https://www.algolia.com/
26https://spark.apache.org/
27https://www.elastic.co/kibana
28https://grafana.com/
29https://redash.io/

7.3 Tools 155

https://www.elastic.co/elasticsearch
https://lucene.apache.org/solr/
https://www.algolia.com/
https://spark.apache.org/
https://www.elastic.co/kibana
https://grafana.com/
https://redash.io/

kept in mind that the system selection was made with the aim of achieving a quick proof of

concept. Accordingly, a different set of systems may be more appropriate depending on the

context.

For the performance analysis, it was important to us that this System of Systems can handle

a realistic amount of events. Therefore, we have chosen a very successful experiment of

Henze, Rukzio, and Boll [HRB11] as benchmark for our exemplary implementation. Henze,

Rukzio, and Boll [HRB11] have developed a game as a mobile app to investigate the accuracy

and error rate of touch input regarding target size and screen location. Over three months,

they have collected 120,626,225 touch events from 91,731 installations, which translates to

roughly 15 events per second on average. In our performance test, on a laptop with an Intel

Core i7 2.7 Ghz and 16 GB memory, the event store was the bottleneck with a processing

capacity of about 5,000 events per second. Elasticsearch was able to index 16,000 events

per second and Kibana was able to render around 120 million documents in 1535ms, which

includes the query to Elasticsearch. Looking at the system in its entirety, it is able to store,

index, and visualize 150,000 events in 46.5 seconds. This performance is more than sufficient

for handling what was generated during the experiment of Heinze, Rukzio, and Boll as

well as for most cases. To put in comparison, Urban, Sreenivasan, and Kannan [@USK16]

stated in 2016 that Netflix as a whole platform is handling 150,000 to 450,000 requests per

second.

In summary, our idea of a Quantitative Data system is technically feasible and has a sufficient

performance for most use cases. Even for higher demands, it could be researched to what

extent a horizontal scaling could fulfil the demands. Although, we measured same strange

behavior of event store regarding the performance which we could not completely explain

and only eliminate by tweaking the configuration which could contradict this goal. This is

also the last evidence we provide for the viability of our process.

7.4 Summary and Discussion

In this chapter, we have presented and discussed the last stage of our approach ICeDD.

The main goal of this stage is to extend Design Thinking into software development. To

be precisely, we wanted to achieve that the converge phase of Design Thinking didn’t end

with only one solution alternative in the previous stage but with at least two so that we

can actually implement them in this stage as software and compare them in the actual

context of use. As mentioned several times (e.g. in section 1.1), this use of software

alternatives in the actual context of use is important to truly uncover all constraints and

interacting dependencies. If the software alternatives are not tested in actual usage, it is

156 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

always restricted to the thought model of the researcher or certain knowledge of the user is

not activated (cf. section 4.1). Furthermore, if we are not using at least two alternatives, we

cannot compare them and conclude from the difference what is actually delivering value

and how. Therefore, experimenting is of utmost importance for this stage.

In section 7.1 we discuss the general requirements for conducting experiments with software

and what this means for the software development process. A key finding of this is the

need to adapt the software development process to field studies / field experiments, which in

the end affects the 4Ps (People, Process, Product, and Project) as introduced by Jacobson,

Booch, and Rumbaugh [JBR99]. We use this structure of 4Ps in section 7.2 to discuss in

detail how the software development process in this stage has to be adapted.

The starting point is the process in section 7.2.1 which we define based on the general steps

Design, Build, Run, and Analyze for conducting experiments. Whereas Design, Run, and

Analyze are more related to experiments in general, Build is actually an adaption of agile

software development to implement different alternatives at once and preparing data as well

as infrastructure for the experiments. We further derive the necessary product properties

from this process in section 7.2.2 to not contradict the process but supporting it.

The main finding for the product is that we need an evolutionary software architecture that,

in our can case, shall be realized as a System of Systems architecture. In our case, the System

of Systems architecture has the advantage that it is based on independent subsystems, which

can be technologically independent of each other. On the one hand, this allows us to let

systems compete against each other, as is the case in nature with evolution, and on the other

hand, technological decisions from the past limit us only to a limited extent in what we want

to try out. To realize this, we need to distinguish between macro- and micro-architecture,

whereas the macro-architecture describes how the systems interact with other systems and

the micro-architecture is related to the internal architecture of a system. Accordingly, for

the realization of a System of Systems architecture the macro-architecture is more important.

We discuss its realization on the basis of existing patterns from other areas in section 7.2.2.1

and give an example for a concrete implementation in section 7.2.2.2.

Last but not least, we discuss the implications for the people in section 7.2.3 and for the

project in section 7.2.4. The most important implication is that the value designer shall be

primarily responsible for the design of the qualitative experiments and needs the related

empirical knowledge to not overstress the developers.

To provide evidence for the viability of our process for this stage, we are discussing a

potential tool suite in section 7.3 as ”tools are good at automating repetitive tasks, keeping

things structured, managing large amounts of information, and guiding you along a particular

development path” [JBR99, pp.22]. Furthermore, we discuss three tools Experiment Design

7.4 Summary and Discussion 157

System, Technical Assignment System, and Quantitative Data System in detail and present

our first evaluations of their usability and feasibility. In general, they proved to be feasible

and with that provided evidence for the overall viability of the process.

In the requirements in section 7.1, we have defined that from our FF especially Alternatives,

Operating Alternatives, Consequences of Technological Decisions, and Learning Cycle

are relevant. We fully and completely fulfil Alternatives as we are actually creating at

least two solutions simultaneously in parallel based on the requirements specification /

documentation from the previous stage in software. Furthermore, we can operate these

alternative independently as with the System of Systems macro-architecture we proposed, we

are getting an component based deployment, can configure and deploy it automatically with

a CI/CD pipeline and due to the Technical Assignment System, we have an online fallback

mechanism as well as an automatic user specific online orchestration.

The Consequences of Technological Decisions are kept at a minimum as well because of

our System of Systems macro-architecture. With this macro-architecture, we allow to freely

use programming languages and other technologies on the micro-architecture level of a

constituent system and achieve therefore Polyglotism. Furthermore, we introduced with

MVVM a strong independence from UI and Model Layer. By using event sourcing in

conjunction with CQRS, we allow parallel models and furthermore the decomposition into

a suite of small services, that run their own processes, are independently deployable and

have a bounded context.

0

1

2

3

4

5
Alterna�ves

Opera�ng Alterna�ves

Consequences of
Technological DecisionsFocus on Novelty

Learning Cycle

Fig. 7.20.: Radar Chart for Stage 4 regarding our Fitness Function (FF).

Last but not least, with the explicit definition of an experimentation process we get an

explicitly defined learning cycle that refers to several alternatives at a time. As we are still

allowing to select the best fitting methods in the Design activity, we further enable this

158 Chapter 7 ICeDD Stage (4): Execute Design Thinking with Software

learning cycle to adapt it according to the context. Hence, we also fulfill this characteristic

to the fullest. How this is reflected in our FF is presented in Figure 7.20.

The most important thing about this chapter was to show that experimenting with software is

possible. In section 1.1.3, we pointed out possible issues that could inhibit experimentation

with software. These have been the foundation for tackling these on a conceptual level

in section 7.2. In order to show that our concept is not only feasible but also viable, we

have presented and discussed tools in section 7.3. Overall, we have delivered evidence that

the issues mentioned in section 1.1.3 can be challenged even if they are primarily on an

argumentative level. Nevertheless, the concepts, especially for the macro-architecture, are

largely based on already established and widely used patterns, but up to now not so specific

for experimentation. Furthermore, the tools have been evaluated regarding their feasibility

and usability. This is why this should still be a good foundation for further research. In

further studies, especially the effectiveness and efficiency has to be researched in more detail

as goal in this thesis is primarily to look at the feasibility. Hence, we can not be sure that

this stage will deliver the intended results although having good arguments for that.

7.4 Summary and Discussion 159

Part III

Evaluation & Epilog

Evaluation 8
In this chapter we are summarizing the challenges and results from our general research

approach in section 8.1. Furthermore, as we already mentioned in chapter 3, we conducted an

application case study for the assumptions we made based on the assertions of the Diffusion

of Innovations theory (see section 2.1) and Design Thinking (see section 2.2) which we

present in section 8.2. Moreover, we are presenting and discussing a feasibility case study

to give evidence on the feasibility of the last three stages as well as their ability to interact

with another in section 8.3.

8.1 History in Paderborn App

This case study is actually a summary of challenges and results from our general research

approach that we described in section 1.3. In the sense of the Case Study Research Cycle

(see Figure 8.1) of Yin [Yin17] it is not a case study in which the individual phases Plan,

Design, Prepare, Collect, Analyze and Share are run through once, but repeated times.

What stays the same over all iteration is the main case with the History in Paderborn App

(cf. [Gre+16]) and some evaluation instruments.

Plan Design

Prepare

Collect

AnalyzeShare

Fig. 8.1.: Case Study Research Cycle. Own Representation based on [Yin17]

As a short recap, the History in Paderborn App has the aim to make the history of Paderborn

accessible in an appealing way via an App. The unique character of this is the vision of

a multi-modal, spatial-bound communication of historical knowledge. For this we have

163

worked together with researchers from the humanities in the fields of history, art history,

german medieval studies, and german linguistics. In other words, we could describe the

History in Paderborn App as a new form of scientific communication with the general

public. This makes this case very suitable for our approach as the History in Paderborn App

represents a unique and novel software-based solution.

The general design of this case study, including the participants and some evaluation in-

struments, haven been described in section 1.3 and in [SOF18]. As a small summary, the

participants are students of the Master’s program in Computer Science at the Paderborn

University, who participate in a student project group over two semesters (30 ECTS till 2017,

20 ECTS afterwards). As general evaluation tools we use retrospective meetings, student

discussions, task forces, steering meetings, Design Thinking workshops, and individual

discussions between the students and the organizer that take place every semester.

The aim of this case study was to gradually develop our software development approach

for unique and novel software solutions over several iterations in an environment as real as

possible. Starting point for this was the status of software development methods in 2015

(cf. e.g. Lindgren and Münch [LM15]). From this, our approach was gradually developed,

with challenges, limitations, and requirements emerging each iteration. Each iteration, a

newly developed part of the approach was used and therefore each iteration new challenges,

limitations, and requirements could emerge. This is a common approach in Design Thinking,

Grounded Theory, or Action Research, for example, to develop and refine a theory (in our

case how a software development approach for unique and novel solutions shall look like)

iteratively. Hence, each term started a new iteration with a new goal (see Table 8.1).

Term Goal

Winter 2014/2015 Beginning of the project group. How to do agile software devel-

opment with scrum in a team?

Summer 2015 First overlapping project group. How to transfer the knowledge

of the existing students to the new ones?

Winter 2015/2016 Increasing number of students (>10 Students). How to scale up

to two teams? How to use a Continuous Integration Pipeline?

Summer 2016 Challenges from framework usage over a longer period of time.

How to harmonize technologies?

Winter 2016/2017 Increasing complexity of implemented system. How to break

down the system into microservices?

Summer 2017 From release driven to everything is a protoype. How to do

continuous delivery and incorporate quality assurance?

Winter 2017/2018 Synchronization and dependency challenges of services. How

to incorporate Event Sourcing and CQRS to make systems more

independent?

164 Chapter 8 Evaluation

Summer 2018 Increasing complexity of operated services. How to operate and

maintain a system of software systems?

Tab. 8.1.: Project group main goals for each term with the corresponding research question

In addition to the main objectives of each semester, further topics were dealt with within

the scope of a seminar. This brought to light not only new challenges but also solutions for

these. An overview of the seminar topics is given in Table 8.2. The thing is that the topics

are not necessarily aligned with the term goals. In some cases, further new findings have

emerged on an old term goal or the previous solutions have not yet proved suitable. In other

cases, the students showed vision and dealt with problems and solutions that were relevant

for the project group but could not be implemented yet because other things were missing or

not ready yet (e.g. continuous delivery in may 2015 that could not be fully implemented till

summer 2017).

Term Seminar Topics

February 2015 Knowledge Management

Scrum & DevOps

Software Testing (Testing and Agile Testing)

AngularJS & Play!Framework

Reactive Design

Android Development

s May 2015 Scaled Agile Development

Logging / Analytics

Location based services (e. g. indoor/outdoor navigation, beacon,

GPS)

DevOps / Continuous Delivery Pattern (e. g. Dark launches,

Branching in Code)

Augmented Reality

Design Guidelines & Usability

Requirements Engineering (Elicitation, Specification)

September 2015 Containerization (Docker)

Infrastructure as Code (Puppet and Chef)

Resilience with DevOps

Change Management

Microservices

Reactive Design

8.1 History in Paderborn App 165

August 2016 Usability Evaluation Process

User Onboarding in Mobile Apps

Animations

Implementation of Augmented Reality in Xamarin

Quality Assurance in Continuous Delivery

Operating a system of systems (Docker Cloud)

Architecture paradigms in Android and iOS

March 2017 Realization of Quality Assurance environments for HiP-App

(Mobile)

Concepts for CMS Quality Assurance environments (Web)

Concepts of different avatars based on GenderMag method

Web technologies for visualizing and interacting with Geo-Data

Indoor navigation utilizing BLE beacons

Angular Universal & Augury

Indexing and Searching with Elasticsearch

User Onboarding in Web Applications

August 2017 Event Sourcing & CQRS

Recommender systems

Machine learning techniques for Gamification

Accessibility for users with special abilities for HiP-App

Improvements of usability based on UI/UX

Monitoring & Service Discovery

Grow effective software development team

Improving the exploration experience - new modes, quests, and

reward systems

Geofences for Gamifcation and Exploration

March 2018 Building interactive voice interfaces: An overview

Automatic Client Generation from a Swagger Specification

Social Media in the HiP-App

Test strategies for Microservices

Progressive Web Applications

Visual sight detection using the Google Cloud Vision API

Tracking user engagement and app usage by means of Analytics

service

Centralized Logging and Monitoring

166 Chapter 8 Evaluation

August 2018 Security Threats and best practices in Angular to avoid them

Navigational structure and resulting user interaction of a Web

App

Best Practice for Documentation

API Gateway & Circuit Breaker Patterns

Peer-to-Peer Services on Mobile Phone using the internet

Stronger Web Authentication

Assistive Technology for people with vision defects

Real-time web functionality with SignalR

Tab. 8.2.: Seminar topics

In sense of the three quality criterion objectivity, reliability, and validity, this case study has

its focus strongly on validity and not very much on the reliability of the results in the sense

of repeatability. The insights generated each iteration do not serve to be taken as general

truth, but as a basis for a further literature research. We assume that in most cases research

has already taken place. This can be exactly in the discipline of Software Engineering or

in similar adjacent disciplines like psychology. This approach is in essence a systematic

literature search based on the principles of Action Research. Therefore, we need a high

validity for a successful implementation to ensure that the corresponding effects can come

to light.

This case study is not intended to demonstrate the feasibility of the overall approach. The

case study on the OWL.Culture-Platform serves that purpose (see section 8.3). The main

purpose of this case study is to explain the basis on which certain concepts were integrated

into our approach. For this purpose, we present in the following insights that resulted from

the implementation of this case study to highlight how practical experiences influenced our

approach.

We started the project with an agile software development approach with a team in winter

term 2014/2015. As development method we decided for the widespread Scrum. One of

the students took over the role of Scrum Master. The Product Owners were represented by

the Humanities. The advisors of the project group had an advisory and light steering role.

Mock-ups were created for the software to be developed and discussed with the product

owners.

After using Scrum for several months, one thing stood out. The official Scrum Guide [@SS17]

as well as other Sources like from Meyer [Mey14] hide very well the complexity and chal-

lenges behind the product owner role. The product owner has the responsibility to clearly

express product backlog items, prioritize them, and optimizing the value of the work the

development team performs. Although this sounds simple, we quickly got into a situation

8.1 History in Paderborn App 167

where we had to rework and throw away more often than we accepted features, even though

the product owners in this case were the actual customers who should have known best what

functionality was needed. This made us think if something with the role or with our context

was odd, which is why we did a literature research on people specific characteristics that

could have an influence on this as well special characteristics that related to the context.

Thanks to the author’s psychological knowledge, the first one quickly led to the findings

regarding experts and tacit knowledge (see section 7.1). The second has led to discussions

about the properties of digital humanities (cf. [Bur+12] and with that to the questioning

of whether agile software development is really that agile, which led to discussions about

hybrid software development methods (cf. [Kuh+17]) as well as alternative agile defini-

tions for software development (see [Ado06]). Especially the latter led to the rethinking of

whether agility has to be considered depending on the context and thus to a search in project

management with the discovery of the Cynefin framework (cf. section 1.1.1 or [KS03]) as a

classification help. For the product owner, these findings meant above all, that in certain

contexts he can only predict the value of the items in the product backlog to a limited extent

(cf. [Koh+09]) and that this value can only be realistically determined by a realization in

software.

It was precisely this necessity for implementation in software that was very unsatisfactory

for all those involved. For example, a useful requirement for the HiP-App was that it should

support communication for collaborative content creation. In order to realize this, it was

agreed to implement a chat system that was also tested for usability during development.

Only conversations with users in real usage revealed that they prefer other established

communication channels. This made the chat system obsolete and also the immense energy

that the developers put into it, since software development is comparatively expensive

(cf. [Ste+04]). When most of the things you do turn out to be useless this is very demotivating.

For this reason we researched if there are possibilities to obtain these findings in a better

cost-benefit ratio and why usability engineering did not help here. This lead us to the insights

from Frohlich and Sarvas [FS11] as well as Norman and Verganti [NV14] that Usability

Engineering is mainly made for incremental rather than radical innovations. Further research

into methods for radical innovations led to concurrent set-based engineering (cf. [War+95])

as foundation for lean development (cf. [Rie11]) and Design Thinking (see section 2.2) due

to its proximity to existing usability engineering / user experience methods.

As stated in the work of Lindberg et al. [LMW11], it was not clear at the time how Design

Thinking could be integrated best into the software development process. Therefore, we

have tested several iterations with variants from a two-day workshop, a one-week workshop

to a semester-accompanying (integrative, decoupled) workshop. The first two are more

the mentioned Front–End Technique for integrating Design Thinking and the later one the

Integrated Development Philosophy (see [LMW11]). The decoupled semester-accompanying

168 Chapter 8 Evaluation

version is the one presented in the OWL.Cultur-Platform (see section 8.3 and section 5.2)

which is the combination of Front–End Technique and Integrated Development Philosophy.

The disadvantages of the Front-End Technique in our case were that we were able to build up

initial knowledge in the combination of computer science students and humanities students,

but did not come up with any concretely conceivable software products. A realization in

software would be unthinkable in this short time period. Longer formats that were running

integratively had the disadvantage that the participants brought different skills with them and

were more involved in certain parts and less so in others. We observed the two-day workshop

as adequate to avoid the conflicts arising from the different contributions. Nevertheless,

this variant lacks the further learning through prototyping until it has become a usable

software product, which is why we have added a phase to this two-day workshop in which

the developers continue Design Thinking on their own and get feedback from outside on

their prototypes at given times.

Putting these organizational ideas into practice, however, also leads to effects on software

development, especially through the need for evolution and experimentation. After a year

of working on the software, we found that it became difficult to modify it, although we

used modularity within the software. Technological decisions that seemed right in the past

suddenly prevent useful technological implementations in the present. It became increasingly

difficult to adapt the database schema for the individual modules. The original framework

did not really adhere to semantic versioning, and minor changes often meant that the entire

application had to be adapted all at once in order to keep it executable and compilable. This

resulted in significantly less resources being available for own experiments. Furthermore,

CMS and mobile app, each of which was the responsibility of a separate team, have developed

into independent entities, although they share many commonalities. We have used these

experiences from the first year of software development as a basis for further literature

research regarding evolvability and experiments with software. The two main results of this

were Conway’s Law and microservices.

Conway’s Law actually states that ”organizations which design systems [...] are constrained

to produce designs which are copies of the communication structures of these organiza-

tions” [Con68]. Kwan, Cataldo, and Damian [CKD12] revisited it for software development

including evidence from software development research and came to the conclusion that

in software development as well the tasks and the communication structure have a bigger

influence on the architecture than the proposed architecture design. This has encouraged

us to harmonize technologies in order to be more flexible in the design of tasks, e.g. by

simplifying the relocation of development capacities and the possibility, especially with

regard to bounded contexts, to draw the system boundaries differently than along technolo-

gies. In addition, the experience we have gained with the technology that has been in use

to date has been taken into account in the selection for harmonization. Accordingly, we

8.1 History in Paderborn App 169

have added stability as an important criterion for us when selecting the technology for

evolutionary systems. The more you can rely on the reliability of your foundation, the better

you can conduct your own experiments without having to constantly react to changes in the

foundation.

Microservices were a relatively new term around 2015 for which conferences, online talks,

and podcasts were often the best sources for the newest information [Thö15]. At that

time, Thönes [Thö15] defined the term microservice as ”a small application that can be

deployed independently, scaled independently, and tested independently and that has a single

responsibility”, which is actually what we were looking for. Dragoni, et al. [Dra+18] defined

as basic principles for microservices Bounded Context, Size, and Independency, which can be

summed up to small services with a loose coupling and high cohesion that combine related

functionalities into a single business capability. Furthermore, they as well as Lewis and

Fowler [@LF14] point out the importance of infrastructure automation including continuous

integration and continuous delivery/deployment to develop microservices. Consequently,

our further research in this area went in the direction of how to create bounded context

in order to implement small services that can operate independently of each other and are

supported by an appropriate infrastructure automation.

Regarding the bounded contexts, we first started by creating two bounded contexts for

content creation and consumption in the app. As we had domain objects like user that

were shared between these two bounded contexts and the consumption in the app had

slightly different requirements (e.g. scalability or need for relational data) on the database

than the content creation, we decided for a separation with CQRS. However, the use of a

relational database directly with a more document-oriented one proved to be problematic

with regard to synchronization. Which is why we further investigated into this challenge and

found out about Event Sourcing, that we started to implement in August 2017. But we had

difficulties with this because the participants had problems with the granularity of events

and treated them rather as objects (e.g. EventChanged with all properties of an Event instead

of e.g. EventLocationChanged). It has nevertheless proven to be very beneficial for parallel

models.

With the Bounded Contexts also came the creation of smaller independently deployable

services. While in the beginning these services could be maintained and operated manually,

the need to monitor and configure them automatically quickly arose. Hence, the change

from Docker alone to a Kubernetes infrastructure that unifies and simplifies configuration,

monitoring and distribution was made in September 2018. At that time, the services were

manually deployed to the specific virtual machine via docker and a virtual machine with

nginx as reverse proxy and manual configuration served as the central access point to these

170 Chapter 8 Evaluation

services. Not only was the manual configuration very error-prone, monitoring was much

more complex to implement due to a lack of standardization.

Although much more has been learned in this process and more than enough empirical

material can be discussed for further analysis, the aim of this section is primarily to give an

impression of how the research process described in section 1.3 has influenced the procedure

and the decision-making process. In the following we would like to discuss this research

process, which is oriented towards external validity and qualitative instruments.

All in all, we found this kind of research process very helpful in which gaps are approached

from the current state of the art with a practical project. Through the actual use of methods

and patterns, the complexity behind supposedly simple formulations such as the task of the

product owner becomes clear and tangible. In addition, the interaction of different areas

such as requirements analysis, operation, or development can be observed at an early stage

and be better understood through targeted intervention. However, the gradual development

of a solution in this way requires a correspondingly long time, especially until one has

reached the edge of the current state of research/technology. In this case from December

2014 to September 2018, i.e. around three and a half years. In addition, most of the interim

results are the results of qualitative methods, which are of course highly vulnerable in

terms of their generalizability and repeatability and can be correspondingly difficult to

publish scientifically. Even in the sciences, from which many of these procedures come,

their use is strongly discussed (cf. [Hel11, p.9], [MM10]). Accordingly, it may be more

difficult to publish and discuss interim results in fields that have used little or no qualitative

methods so far. Moreover, this type of research requires at the end a lot of additional effort

(interviews, planning and implementation of the individual learning processes, clarification

of the observed effects with the state of research, etc.) for a method developed compared to

approaches in which methods based on theoretical consideration are developed. For that,

the result of such a process is at the end a developed method with an arguably high external

validity.

8.2 Application Case Study regarding Innovation

Assumptions

An integral part of our approach is to prefer early testing with prototypes prior to specification

and development of a final system. On the one hand, this is due to the fact that certain effects,

if they were previously unknown or unconsidered, can only occur if the system is used or

tested in practice (cf. section 5.2). On the other hand, because of the way we humans adopt

innovations. According to Rogers (see section 2.1 or [Rog10]), in addition to things such as

8.2 Application Case Study regarding Innovation Assumptions 171

relative advantage or compatibility, factors like complexity, testability, and observability

are to be mentioned. The latter three factors can be influenced by prototypes and thus also

the tendency of the participants to judge the solution more realistically and not to reject it

directly due to uncertainties. This case study examines whether innovation theory can be

applied to software development and whether prototypes tested in a realistic environment

have an effect on the evaluation of a solution.

For this we are using the case of IT support in the practical training of fire brigades, which

we also described in [SFS14]. At the time of the study, this was still largely unexplored, in

contrast to IT support in the training of managers or the use of IT in the field (see [MK13]). In

addition, it was characterized by a high number of manual activities and tactical procedures,

which must be practiced intensively by the voluntary fire brigade and beginners in order to

guarantee safe handling during operation. Hence, it was a good starting point for unique and

novel software-based solutions.

8.2.1 Concept and Conduction

The case study itself is structured in three parts: requirements analysis, implementation of

a prototype and a subsequent usability test in which the prototype is used in as realistic a

setting as possible. The idea behind this structuring is to collect ideas for problems and

solutions in the requirements analysis with classical tools and to discuss a promising idea

with stakeholders at the concept level already at the end of this phase. This results in a

picture of how this idea is accepted without a tangible prototype. The prototype is then

implemented based on the requirements from the requirements analysis and handed over

to the stakeholders in a usability test in a realistic setting for testing. The attitude of the

stakeholders to the idea is collected as well in the usability test. From this it can then be

deduced whether and what effect the test of a prototype in a realistic setting has on the

evaluation of a solution by the stakeholders and whether the innovation theory can be applied

to this setting.

The requirements analysis is divided into a document and system analysis, a user observation

of an exercise and an analysis of the stakeholders. For the document and system analysis

legal documents about the structure of the fire brigade system and the training, requirement

documents for software systems in the fire brigade system, as well as similar systems on the

market were analyzed. From this a meaningful subdivision in preparation, execution and

debriefing of exercises has crystallized as well as a basic understanding of the structure and

tasks in a fire brigade especially for training.

In the next step, a structured user observation of an exercise was carried out in order to gain

insights into the practical training operations. The findings serve to identify problems as well

172 Chapter 8 Evaluation

as potentials in practical training operations with regard to IT support. For the preparation

of the structured user observation, findings from a preliminary survey of the Dortmund

fire brigade were used in addition to the findings from the document and system analysis.

This preliminary survey included information on the stakeholders to be observed, including

their work tasks and interests/objectives, the structure of the environment and presence of

technology (e.g. surveillance cameras), number and positioning of observers, and necessary

documentation forms.

The scenario of the observed exercise was a fire caused by handicrafts in an apartment house

in which missing persons are suspected. According to the training concept of the Dortmund

Fire Department, each year there is a training focal point which must be completed by each

fire station with an operation exercise. In the year of the observation it was fire fighting

with the mentioned scenario. The Dortmund Fire Department has a special training facility

for the training, which also includes a fire training house (see FigureFigure 8.2a). This fire

training houses purpose is to simulate apartment house fires as realistic as possible, which is

why it was designed to work in a controlled manner with real fire and smoke.

(a) Fire Training House (b) Control Desk

Fig. 8.2.: Fire Training House including Control Desk of the Dortmund Fire Department.

For the exercise several observers positioned themselves around the fire training house and

close to important stakeholders like the squad leader and made notes. Due to the high heat

and smoke it was not possible to enter the fire training house without breathing protection.

However, in the control room (see FigureFigure 8.2b) there was the possibility to follow all

radio traffic as well as the proceeding troops by video surveillance and the thermal imaging

camera of the accompanying instructors.

A lot of effort is put into carrying out such an exercise. Not only is a special building needed

where the conditions are as realistic as possible, but several people are needed to observe the

exercise and discuss the units’ procedures in the debriefing session and point out possible

mistakes. From the document analysis and for this reason we decided for an Augmented

8.2 Application Case Study regarding Innovation Assumptions 173

Reality smoke simulation (see FigureFigure 8.3b) as IT support. The idea behind it is that

AR allows to train under realistic conditions on site and to record the exercise accordingly

(e.g. walking routes).

Next, we had expert interviews with firefighters from volunteer and professional brigades

who are responsible for training at site level. A total of seven people were interviewed about

the actual and desired state of the practical training. As part of the desired state, the concept of

an augmented reality smoke simulation was presented orally and the interviewees were asked

for their assessment. Subsequently, the interviews were transcribed, extracted, processed,

and then evaluated with regard to the research question according to Gläser [GL09].

We used these results from the document and system analysis, the user observation and the

expert interviews for the AR smoke simulation requirements and implemented a system ac-

cordingly. The core of this system consists of a smoke gas simulation (see FigureFigure 8.3b),

which is faded in according to the depth information of a Kinect and the position in the

room. To increase immersion, a custom Video-See-Through Mount (see FigureFigure 8.3c)

was designed to restrict the participants’ view only to the mount with a sheet (see Fig-

ureFigure 8.3a).

(a) Experimental Setting

(b) Augmented Reality Smoke Simulation

(c) Custom Video-See-Through Mount

Fig. 8.3.: Prototype Test for Room Smoked in Augmented Reality.

Furthermore, to make it more realistic not only the execution of the training with the aug-

mented reality smoke simulation was implemented but also the other phases (see Figure 8.4).

For the preparation, the task was to setup a positioning system based on wifi tracking (see Fig-

ure 8.4b) and to define the room that shall be smoked (see Figure 8.4c). The debriefing

view includes a map with the visualization of the walking paths of the proceeding troop

(see Figure 8.4d).

174 Chapter 8 Evaluation

(a) Firefighter Training System (b) Prepare Tracking

(c) Defining Smoke Border (d) Training Debriefing

Fig. 8.4.: Prototype: Firefighter Training System - Fire Operation

This prototype was then tested in a usability test with five persons, whereas four persons

had been members of voluntary fire brigades and one person of the Federal Agency for

Technical Relief (THW). As already mentioned, the aim of the usability test was not to

uncover concrete usability problems, but rather to make the techniques comprehensible

and testable for the participants in a concrete scenario. Therefore, the participants have

to go through all phases. After each phase, they had to answer a questionnaire regarding

the assessment of the prototype and the INTUI questionnaire [UD10] for measuring the

intuitiveness / immersion. In addition, a schematic representation of a better integrated

variant of the demonstrator (see Figure 8.5) was shown after the implementation phase in

order to serve both as a comparison to the early development stage of the prototype and as a

stimulus for the imagination.

8.2.2 Results and Discussion

In the expert interviews, all interview participants expressed ideas for the desired state. Most

participants responded with the idea of a (partially) automated recording of the exercise. In

addition, the desire for a central platform for teaching content and professional exchange

was expressed several times. There were also requests for animations and a promotion of

8.2 Application Case Study regarding Innovation Assumptions 175

Fig. 8.5.: Schematic representation for a more realistic integration of the prototype into the protec-

tive clothing.

realism, and even augmented reality was once mentioned directly, although it was not yet

known to the general public at that time. Another frequently mentioned wish is to have the

same possibilities mobile as in a classroom. Almost all ideas were described from the user’s

point of view and did not yet aim at concrete technical solutions.

The direct addressing and discussion of Augmented Reality as a concrete solution, however,

has proven to be difficult. Participants couldn’t really imagine what this technology is about

and what advantages and disadvantages it has. They struggled as well with picturing possible

use cases. In summary, the participants had problems recognizing the relative advantage

and classifying the implications of this technology, which is why they tended to oppose this

technology.

In the usability test, the participants have on average more positive mentions than negative

mentions in the individual phases (between 1-2 more mentions in an average of 4 mentions).

For the augmented reality part it was on average two more positive mentions and the

negatives were mainly limited to the representation of the smoke. The results of the INTUI

questionnaire for this phase also suggest that the participants experienced a high level of

immersion or intuitivity. The values for verbalization ability, magic experience, and ease are

all above 5 on a scale of 1 to 7. Only the gut feeling is evaluated neutrally. This indicates

that the participants were able to familiarize themselves well with the technology.

This is also supported by the fact that the participants noted further possible applications. It

starts with concepts for normal operations and ends with suggestions for a more realistic

training situation. Here, the effect of the layer formation of the smoke within a room fire was

176 Chapter 8 Evaluation

called above all. In addition, a stronger inclusion of the other senses, above all the sense of

hearing and touch, was wished for the best possible closeness to reality. Advantages are seen

in the small preparation efforts, the missing dependence on the location, and the possibility

to interrupt an exercise immediately.

Whereas in the expert interviews only one person was positive towards augmented reality,

after trying out the prototypes in the usability test all participants had a positive attitude

towards augmented reality. Hence, in our case study the test of a prototype in a realistic envi-

ronment had an effect on the evaluation of a solution. We, therefore, regard the applicability

of the innovation theory as given. This shows that it is advantageous for a more realistic

assessment of solutions if they can be tested as early as possible under realistic conditions.

Such an assumption is also supported by the Cynefin Framework (cf. section 1.1.1), Design

Thinking (cf. section 2.2) and the theories of expert knowledge (cf. section 4.1). For our

solution concept this means, that it is not only favorable to test with prototypes but it could

also be advantageous

8.3 OWL.Culture-Platform

In this case study, the interaction of the individual stages (cf. Figure 8.6) is studied. Further-

more, it is investigated how developers with little or no previous knowledge of this kind of

approach are able to work with it. For this purpose, the individual stages of the approach are

passed through by a student project group (mainly stage three to five) within one year. In

the following we will describe our case (section 8.3.1) as well as the general concept of the

case study (section 8.3.2). Furthermore, we are presenting the evaluation instruments we

are using for the case study including the expected results in section 8.3.3. As evaluation

instruments we are using a questionnaire (section 8.3.3.1) and analysis of the individual work

products created (section 8.3.3.2). The conduction of the case study including the results

from each evaluation instrument are presented and discussed in section 8.3.4. In section 8.3.5

this section is summarized and discussed.

8.3.1 Context

Our case in this case study is the OWL.Culture-Platform. The goal of the OWL.Culture-

Platform is to bundle the Ostwestfalen-Lippe (OWL) region’s cultural offerings and make

them more visible and usable in the future. OWL as a region consists of five counties and

one county free city, each of which operates its own event site for cultural offerings. The

resulting borders make cultural exchange beyond the city and county borders more difficult.

8.3 OWL.Culture-Platform 177

Initialize Design Thinking

Execute Design Thinking
with Non-Software

Prepare Design Thinking
with Software

Execute Design Thinking
with Software

 Optimization

1

2

3

4

5

Fig. 8.6.: Solution Overview

Furthermore, existing systems such as events on Facebook are also strongly oriented towards

administrative borders (e.g. city boundaries) and not towards accessibility (e. g. by public

transport or car). Therefore, the OWL.Culture-Platform with its bundling and explorability

across administrative borders represents a unique and novel software-based solution. This

makes it extremely suitable to be used as a case for a case study on our approach.

The team that uses our developed approach in this case study is a student project group.

As already introduced in section 1.3, a student project group is part of the master course

computer science at the Paderborn University. In that, a group of 8-20 students work together

over a period of a year on a research topic determined by the group organizer. The workload

is 20 ECTS which corresponds to approximately 15 hours/week (1 ECTS~30 hours).

Goals of the project group according to the guidelines [@Dep18] are on a personal develop-

ment level and on a research level. For the personal development, the students shall learn to

work in a team, organizing a project, how to report progress and research findings as well

as to experience an extensive development process in a team. In addition to the personal

development, the project group shall contribute actively but not primarily to university

research on current research topics and prepare for a master’s thesis in this area.

How is this possibly affecting this case study? The team members are inexperienced

regarding software development projects. This includes the development itself, working

in a team as well as organizing such a project. Furthermore, the team members are not

working full-time (40h/week) on the project but only part-time (~15h/week). Hence, they

not only have to learn our approach but have to sharpen their skills regarding development,

team work, and organizing during the project with less time than a normal employee would

178 Chapter 8 Evaluation

have. This is a challenge because problems that may occur in this case study can only be

partly attributed to the approach. It could be that the problems just occured because of the

inexperience.

On the other hand, this inexperience could lead to team members learning the approach

better. They do not have the expert knowledge that makes a certain approach look like

no alternative (cf. Cognitive Flexibility [Dan10] and section 4.1). Also it could lead to a

faster adaption due to less conflicts with existing value systems (cf. compatibility with value

systems in section 2.1).

In general, we assess this situation positively for the case study. As already mentioned

in section 1.3.2, this thesis focuses on the feasibility and not the performance compared

to other approaches. We do not need to have a team perform at its very best with this

approach to be able to compare it with other approaches. We just need a team to successfully

implement the approach to be able to discuss its feasibility. Therefore, related to the possible

limitations mentioned above, if the team members can successfully implement the approach

although they have less time and more things to learn, then this should also be possible

for experienced full-time employee. And if there is a negative effect because of the expert

knowledge and the value system of experienced developers, it cannot occur in this setting,

so we’ve eliminated a potential interfering variable.

With the goal, the case, and the participant in mind, we can go to the construction of the case

study with the individual phases and tasks (section 8.3.2) before we discuss the evaluation

instruments (section 8.3.3), and finally the conduction including the results (section 8.3.4).

8.3.2 Concept

The first stage (see Figure 8.6), Initializing Design Thinking, was already conducted sepa-

rately from the other stages without the student project group. This stage was already entered

in 2016, when initial ideas were analysed and formalized in the form of two project proposals,

which were not approved. As a result, a further feasibility analysis was carried out, the

integral part of which was a design thinking workshop in september 2017 (cf. [@Neg17]).

The design thinking workshop was conducted in an earlier version of the workshop format that

we presented in section 5.2. Rather than developing immediately implementable solutions,

the aim was to explore the problem and solution space and validate the ideas already collected.

Accordingly, the target groups participating in the workshop were artists, decision-makers

from culture, tourism and economy as well as people interested in culture. In total there

were 61 participants from these groups. Outcome of the workshop were eleven concrete

ideas of the eleven sub-groups in the form of handcrafted prototypes as well as 97 less

8.3 OWL.Culture-Platform 179

concrete ideas and a better understanding of the needs of the individual groups. These

were analysed, processed and summarized in the so-called feasibility study OWL.Culture-

Platform [@KNO18]. This feasibility study provides the basis for the design challenge

(cf. section 2.2 and section 4.1) and thus the conclusion of the first phase.

As design challenge we decide for the following:

How can we make Culture in OWL more attractive for Students and Young Profes-

sionals (with the help of Software)?

– For finding and consuming culture

– For creating culture / art

– For organizing cultural events

We deliberately reduced the design challenge to students and young professionals for two

reasons. First of all, we have better access to students as test subjects than to creative artists

and decision-makers through our integration in the university context. This is reinforced

by the student project group, which shall pass the individual stages, as they can integrate

additional friends and acquaintances. Secondly, the first phase took place before the student

project group was formed. As a result, there is a potential lack of understanding or empathy

for the other target groups and the overall context. In order to compensate for this, we

decided for a context with students and young professionals for the design challenge.

This leads us to the stages of our approach whose interaction we mainly examine in this

case study. These are the stages 2. Execute Design Thinking with Non-Software, 3. Prepare

Design Thinking with Software, and 4. Execute Design Thinking with Software, which

are genuine for our developed approach. Stage 5. Optimize is the traditional incremental

innovative software development that is not in the focus of this case study. The individual

phases and tasks for passing through these three stages are presented in Table 8.3, while

the individual stages are highlighted according to their color from Figure 8.6. Tasks that

are not highlighted are not originally necessary for the implementation of the approach, but

are introduced to teach the participants the necessary concepts at appropriate points. In the

following we will explain the individual phases and tasks.

The first phase with the tasks 1 to 7 is the introductory phase. Goal of this phase is to

introduce the team members to the case as well as to the mindset of the approach and some

specific methods.

During Onboarding (task 1), the participants meet for the first time in this constellation.

Until then, we assumed that they have no prior knowledge of the approach, its mindsets and

the case to be worked on. Therefore, the first part of Onboarding is a brief introduction to

180 Chapter 8 Evaluation

Week Task

1 1 Onboarding

2 2 3 Ideas for the OWL.Culture-Platform

3 3 1. Presentation Block

4 4 lego4scrum Workshop

5 5 2. Presentation Block

6 6 Design Thinking Introduction

7 7 3. Presentation Block + Introduction to Expert Interviews

8 8 Interview Guidelines

9 9-10 Present Results from Interviews

10 11-12 Pitch Ideas + Present Low Fidelity Prototypes

11 12-15 Create High Fidelity Prototypes

12 15 Internal Fair

13 15-17 Integrate Insight from Internal Fair for External Fair

14 17 External Fair

15 17-18 Preparation of the Results of the External Fair

16 19-20 Transforming Design Thinking Results into Agile Software Requirements

17 20-23 Determination of Minimum Viable Product

18 24 Presentation of Design Thinking Phase Results

19 25-29 High Fidelity Prototype of the Minimum Viable Product

20 30-43 Implementation of the Minimum Viable Product

21 31 Introduction to Feature Experimentation Platform

22 40 Introduction to Experiment Assignment Methods

23 44-46 Implementation and Preparation of Experiments

24 46 On-Site Experiments

25 47 Analysis of the Experiments and Preparation of the Final Presentation

26 48 Final Presentation

Tab. 8.3.: OWL.Culture-Platform Schedule. ■ Stage 2: Execute Design Thinking with Non-

Software, ■ Stage 3: Prepare Design Thinking with Software, ■ Stage 4: Execute

Design Thinking with Software.

8.3 OWL.Culture-Platform 181

the case, the mindset/approach, the technologies to be used, and the organization in general

(cf. [Sen20g]). This is followed by a team game (Egg Drop Challenge1) that has two goals.

First, it is an icebreaker for the participants to get to know each other. Second, it shall teach

the participants the lesson that cost of learning can seem large but put into perspective it is

usually a good idea. The learning by testing in the field is an essential part in our approach

that the experience of this game is meant to internalize. The third and last part of this task

is an introduction to working culture, personality types and intercultural communication.

This serves as preparation for teamwork, independent working and sensitization to other

cultures. Especially the last part is important as the computer science masters programme at

the Paderborn University has a high internationalization rate and it is the first time for many

students to work with people from different cultural backgrounds and different working

cultures.

Task 2 3 Ideas for the OWL.Culture-Platform corresponds to the activation step of the

second stage Execute Design Thinking with Non-Software. The 3 ideas are actually our work

product #1 that we will further analyze (see section 8.3.3.2). We deliberately set this task

at the beginning, even though the remaining parts of this stage do not start until 5 weeks

later. We want to give the participants the time to familiarize themselves with the case and

let their ideas mature. The exact task for the participants is this:

To start you up with the OWL.Culture Platform, everyone shall send me at

least three ideas what he/she would do to improve the situation in Ostwestfalen-

Lippe (https: // en. wikipedia. org/ wiki/ Ostwestfalen-Lippe). This

can be about finding, organizing, advertising, and whatever you can think of

related to culture (art, history, musicals, concerts, cinema, fairs, and so on). I

anticipate Point of Views (see https: // www. interaction-design. org/

literature/ article/ stage-2-in-the-design-thinking-process-define-

the-problem-and-interpret-the-results) for all ideas.

The following phase with the tasks 3 to 7 serves to make the participants more familiar

with the underlying concepts of the approach. The basic structure of this phase consists of

a theory block followed by a practice block, which is intended to deepen and internalize

the theory through practical experience. Within the theory block two sub-groups present a

paper that they chose during the Onboarding event. For each presented paper two additional

groups are selected as ’opposing groups’. They must prepare the paper and discuss with

the presenters the strengths and weaknesses of the paper as well as its applicability. This is

to ensure that the participants are already familiar with the content of the paper before the

1In the Egg Drop Challenge the participants shall protect a fresh egg from breaking when dropped approximately

4 metres onto concrete using only paper and adhesive tape. The material of the final version costs money as

well as a broken egg in the test run. The participants are free to carry out a test run and take the risk.

182 Chapter 8 Evaluation

https://en.wikipedia.org/wiki/Ostwestfalen-Lippe
https://www.interaction-design.org/literature/article/stage-2-in-the-design-thinking-process-define-the-problem-and-interpret-the-results
https://www.interaction-design.org/literature/article/stage-2-in-the-design-thinking-process-define-the-problem-and-interpret-the-results
https://www.interaction-design.org/literature/article/stage-2-in-the-design-thinking-process-define-the-problem-and-interpret-the-results

presentation and can establish new connections or manifest existing knowledge during the

presentation and discussion.

The first block of theory and practice is thematically based on the historical development of

software development methods to the point of agile software development methodology and

the significance of loops in these methods. The papers "A view of 20th and 21st century

software engineering" by Boehm [Boe06a], "Understanding the relations between iterative

cycles in software engineering" by Terho et al. [Ter+17] and "What lessons can the agile

community learn from a maverick fighter pilot?" by Adolph [Ado06] will be presented for

this purpose. This is followed by a lego4scrum Workshop2 in the practical part in order

to acquaint the participants with Scrum as an agile software development method. In our

case the lego4scrum workshop is divided into a theoretical part and a practical part. The

theoretical part (cf. [Sen20h]3) serves as an additional introduction to the theories of Scrum

to meet the university requirements. In the practical part, the participants have to "build a

Lego town consisting of houses, cars, airplanes, roads and other objects". The single parts to

build are written as user stories and are kept in a backlog. The building process is organized

in several sprints with the corresponding scrum events like sprint planning or retrospective

meeting.

As the next step, the participants learn in the following block the difference between point-

based concurrent engineering (as the classical way in software engineering) and set-based

concurrent engineering and how design thinking is related to that as well as to agile software

development. For that, the papers "The second Toyota paradox: How delaying decisions can

make better cars faster“ from Ward et al. [War+95] and "Design Thinking: A Fruitful Concept

for IT Development?" from Lindberg, Meinel and Wagner [LMW11] will be presented. In

the practical part, a theoretical introduction to design thinking was given (cf. [Sen20b])

and a short design thinking workshop conducted to familiarize the participants with design

thinking. The workshop is based on the Wallet-Project from the Stanford d.school and is

carried out with the help of the facilitator guide (cf. [Sen20i]) and the corresponding working

sheets (cf. [Sen20j]).

The last block is to point out the limitations of agile software development regarding radical

innovations and the need for field experiments. For this, the papers "Incremental and radical

innovation: Design research vs. technology and meaning change" from Norman and Ver-

ganti [NV14] and "Online Experimentation at Microsoft" from Kohavi et al. [Koh+09] will

be presented. This theoretical part is immediately followed by the practical implementation

of the rest of the second stage Execute Design Thinking with Non-Software, which will be

conducted in teams of three people.

2https://www.lego4scrum.com/
3Based on https://www.mountaingoatsoftware.com/agile/scrum/resources/a-reusable-

scrum-presentation

8.3 OWL.Culture-Platform 183

https://www.lego4scrum.com/
https://www.mountaingoatsoftware.com/agile/scrum/resources/a-reusable-scrum-presentation
https://www.mountaingoatsoftware.com/agile/scrum/resources/a-reusable-scrum-presentation

Fig. 8.7.: Design Thinking Process

As the participants already went through the activation, the next step in this stage is to

gain empathy with the help of interviews (see Figure 8.7 and section 5.2). For this, a short

introduction to interviews (cf. [Sen20a]) is given based on material from Helfferich [Hel11].

The task (8) of the teams is then to create an interview guideline (work product #2). Part of

the interview guideline are the questions for the interview as well as the eighteen questions

from Helfferich [Hel11] to prepare such interviews (Preparation, Conduction and Evaluation).

After that, the teams conduct the interviews regarding their described target groups in the

interview guideline with friends, relatives and students of the university in the ninth and

tenth week. In the tenth week they present their results (task 09, slides are work product #3)

in front of the other groups so that everyone can benefit from their insights.

Based on the insights they gained as part of their interviews and the results from the other

teams, the next task (10) is to create ideas and build low-fidelity prototypes (work product

#4) which will be pitched in week 12. For this, the prototype part of the design thinking

theory presentation (cf. [Sen20b]) will be held again. This task corresponds to the creation

phase of our design thinking workshop format. Goal is to define ideas (cf. Create Phase in

Figure 8.7) with corresponding low-fidelity prototypes and already get feedback to them

from the other teams before going to build more sophisticated prototypes which includes

more than the to be delivered value.

The next task (11) for the teams is then for each one to create a high fidelity prototype

(work product #5) (cf. [Sen20b]). These prototypes mark the completion of the create phase

and will be evaluated in the learn phase via two fairs (cf. Learn Phase Figure 8.7). The

concept of the fair is that each team exhibit their high-fidelity prototype and gather feedback

(work product #6) with the help of the test and learning card (cf. [Sen20f], 5 Lern-Karte

and 6 Test-Karte, translated to english) and the feedback grid (cf. [Sen20f], 07 Feedback-

Bogen, translated to english). While on the internal fair (task 12) the other teams try out the

prototypes, on the external fair (task 14) the target group are other students and it takes place

on the main campus in front of the library (see Figure 8.8). There are two weeks between

the two fairs to give the teams enough time to incorporate the feedback and experiences (e.g.

on the implementation) into their prototypes and exhibition stand (task 13).

This stage is finished by task 15, Preparation of the Results of the External Fair which

corresponds to the Post-Work Phase (cf. Figure 8.7). Within this task, the participants have

184 Chapter 8 Evaluation

Fig. 8.8.: External Fair

to process the feedback from the external fair and incorporate it into their prototype before

continuing with the next stage.

The next stage is to Prepare Design Thinking with Software. For this, the results of the

previous stage have to be transformed into agile software requirements (task 16). In our

case, this will be done via the Design Thinking Requirements Framework (DTRF) presented

in section 6.2. Since we also use this opportunity to evaluate this framework, we will conduct

an experiment at this point in which one half of the group performs the transformation using

the framework and the other half of the group does it solely based on their knowledge of

agile software development.

The result of the last task is a list of epics and user stories (work product #7) linked to

specific design thinking artefacts. The challenge here is the natural ability of design thinking

to generate partly overlapping and partly independent ideas. As a result, we do not get a

single coherent product and there can be partial overlaps between the groups. Therefore,

the epics and user stories from task 16 must be consolidated and prioritized in task 17. The

prioritization has its focus on the indispensible features necessary for a minimum viable

product as we are developing in a green field. Otherwise, we would not be able to experiment

in as natural a setting as possible, but could only set up strictly isolated experiments.

This point is an important milestone in this case study for two reasons. On the one hand, it

creates the prerequisites for actively turning to software development. On the other hand,

this is the halftime of the case study. Therefore, a summarizing presentation of the previous

results takes place at this point (task 18), which is designed in the form of several stations

and is also open to external parties.

With the transformed and prioritized design thinking results, the potential Value, the things

that have "relative worth, utility, or importance" to the users, has been gathered. According

to our approach (cf. section 3.1), in the next step, the Technical level (”answering technical

questions about how a future artifact might actually be made to work”) and the Look &

8.3 OWL.Culture-Platform 185

Feel level ("explore and demonstrate options for the concrete experience of an artifact")

will be explored in parallel. This is done in task 19 where a high fidelity prototype of the

minimum viable product will be developed as well as technical concepts evaluated. This

time, the high fidelity prototype includes already technical functionalities that are partly

mocked with the Wizard of Oz method (cf. [Kel84]). Foundation for the backend services

will be a natural language processing pipeline for cultural events developed in a previous

seminar at the Paderborn University.

With this high-fidelity prototype, which has designed, implemented and evaluated both Look

& Feel and Technical concepts as well as integrated all three levels (Value, Look & Feel, and

Technical), the actual implementation of the minimum viable product (task 20) can begin.

This also marks the beginning of the fourth stage (Execute Design Thinking with Software).

The implementation of the minimum viable product (work product #8) will be done as a

System of Systems (cf. section 7.2.2) realized as Docker containers that are deployed on a

Kubernetes cluster set-up by Rancher. For the continuos deployment pipeline, the integrated

GitLab CI/CD pipeline will be used. As UI Framework Angular 7 with Typescript will

be used. On the backend side, .NET Core with web-apis and C# will be used as standard

implementation if other technologies are not preferred. The services on the backend side

shall work with event sourcing and CQRS (see section 7.2.2.1) to enable the use of parallel

models and achieve a higher evolvability. As event store for event sourcing, Event Store4

will be used. The development method to develop the software is Scrum.

With the minimum viable product finished as the prerequisite to conduct experiments in a

natural setting, the implementation and preparation of experiments can start. To prepare this,

the participants were already familiarized with the definition of experiments (task 21) and the

technical assignment of experiments (task 22) during the implementation of the minimum

viable product. The familiarization with the definition of experiments is carried out in the

form of an introduction to the Feature Experimentation Platform system by an usability

test (see section 7.3.1), and the introduction to the technical assignment of experiments is

carried out as an introduction to the Technical Assignment system with another usability test

(see section 7.3.2).

The experiments wil be defined (work product #9) in the Feature Experimentation Platform

tool and then the additional variants are implemented (work product #10) accordingly (task

23). Designed as field experiments, it is indispensable for them to collect qualitative data

in order to understand and explain why certain situations arise. This requires above all

the possibility to actively question the participants of the experiments. This is why these

experiments will be carried out on site with stakeholders of the OWL.Culture-Platform (task

24).

4https://eventstore.org

186 Chapter 8 Evaluation

https://eventstore.org

The last task in this fourth stage is the analysis (work product #11) of theses experiments

(task 25). Finally, all results of the tasks up to this point will be summarized in a presentation

by the participants (task 26). The fifth stage Optimization is not part of the consideration of

this case study. With the presence of the product and the learning from the experiments,

the corresponding parts can be improved incrementally, as according to Norman and Ver-

ganti [NV14], using existing software development methods such as Scrum and therefore it

should be possible to conduct the fifth stage from this point on.

8.3.3 Evaluation Instruments

In order to measure the interaction of the individual stages and to what extent inexperienced

developers are able to work with our approach, we use two measuring instruments. This is

on the one hand a standardized questionnaire and on the other hand it is the examination of

the individual work products.

8.3.3.1. Questionnaire

For the questionnaire we use the student course critique for project groups, which has been

in use for several years and has proven itself accordingly. This is an excellent tool for the

questions we have in this case study, as it asks for important factors for project groups such

as difficulty, effort, affinity, group dynamics, advisor relationship and task adequacy. How

exactly these factors are related to our case study is explained in the following using the

individual parts of the student course critique.

The first part with the first three blocks (see Table 8.4) focus on the expectations of the

participants and some general information. In 1. Questions about you study time in the

Master’s program and the location of the bachelors degree are queried. Especially the

latter is revealing to what extent the study contents of the Bachelor in Paderborn can be

accepted as given. In addition with the study time it gives some indicator for potential

conflicts because of unaware diversity5. In particular, a high degree of diversification is an

argument in favour of better generalizable results. If the participants had studied exclusively

in Paderborn, it could be argued that the results came from the studies in Paderborn and

cannot be generalized.

The second block General Questions asks for general classifications of the project. It begins

with the difficulty level. The best result here would be a 3, since the participants were not

5Paderborn’s Master’s program in Computer Science has a high degree of internationalization (2/3 foreign

students in 2019). Especially in such practical projects, for the first time the differences in the cultures to

which the participants have yet to adjust are clearly visible.

8.3 OWL.Culture-Platform 187

Shortcode Question Answer Option

1. Questions about you

Study Time

How many semesters have you

already been studying in the

Master’s program?

▢

1

▢

2

▢

3

▢

4

▢

5

▢

>=6

Bachelor Location
Where have you earned your

Bachelor’s degree?

▢

in Paderborn

▢

somewhere else in Germany
▢

outside Germany

2. General Questions

PG Difficulty
How do you rate the PG’s dif-

ficulty level?
too

easy
▢

1

▢

2

▢

3

▢

4

▢

5

too
difficult

Time Spent
How much time did you spend

on PG work per week?
▢

approximately 15h

▢

far less

▢

far more

Project Field
Which discipline matches your

project best?

▢

Software Engineering

▢

Algorithm Design
▢

Networks and Communication
▢

Computer Systems

▢

Intelligence and Data

PG Research Type

Please rate the PG regarding

the terms research-oriented

and practice-oriented

research-
oriented

▢

1

▢

2

▢

3

▢

4

▢

5

practice-
oriented

3. Choice of the Project Group

Looking For Field
I was looking for a PG associ-

ated to

▢

Software Engineering

▢

Algorithm Design
▢

Networks and Communication
▢

Computer Systems

▢

Intelligence and Data
▢

I had no preference

Looked For Type
I was looking for a PG with a

focus on
research

▢

1

▢

2

▢

3

▢

4

▢

5
practice

Preferred PG I joined my preferred PG
▢

Yes

▢

No

▢

I had no preferred PG

Attended

Announcement

I attended the project groups

announcement event
▢

Yes

▢

No

Realistic

Introduction

The event provided me a real-

istic impression of the PG
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Prior Expectations

Prior to the PG I had an accu-

rate impression of how the PG

will be like

agree
▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Tab. 8.4.: Questionnaire Part 1: General Information and Expectations

188 Chapter 8 Evaluation

overstrained by the tasks and the approach and considered them not as trivial. The latter in

particular may indicate that the participants did not understand the tasks correctly, which is

why they erroneously judge them to be too easy.

A student project group course has a workload of 20 ECTS spread over a year, which roughly

translates to 600 hours or approximately 15h/week. Therefore, for the second question, the

participants should answer approximately 15 hours in the best case. Otherwise, this indicates

that the tasks were overstraining or were not handled with the intended thoroughness or that

they were wrongly assessed in their scope by the authors.

The third question aims at the classification of the project group on the basis of the focus

areas in the Paderborn Master’s programme. Since our approach is focused on requirements

engineering and system design, the best answer here is Software Engineering. However, we

use different techniques from the other focus areas (cf. section 7.3). If therefore the other

areas were chosen, this would indicate that they are too much in the focus and are no longer

recognizably only a tool to achieve the goals of our approach.

Although this is a case study in which our approach is evaluated, the best result of the fourth

question of this block regarding the type of research is that it is a practice-oriented project

group. This would speak for a more natural setting in which software development is in the

foreground and not academic application and research. On the one hand, this improves the

generalizability of the results and on the other hand, it indicates that at least the participants

did not perceive any confounding variables resulting from the test setting.

The third block of this first part is about the expectations the participants had prior joining

the project group. This includes for which focus area and research type they were looking for

as well as they have joined their preferred project group. The better the match here, the more

likely it is that they are open to the ideas of our approach (see Diffusions of Innovations,

Value System paragraph 2.1).

Furthermore, the influence of the announcement meeting on the expectations is asked. Each

semester an announcement meeting is held to introduce the students to all the project groups

starting that semester and the advisors are then available to answer questions. As this is not

mandatory it is asked as well if the students took part in it. Furthermore, it was asked if the

students had a an accurate impression of how the PG will be like before joining it.

The second part (see Table 8.5) focuses on the advisors6, the team, and the adequacy of the

tasks, i.e. the general conditions that determine the success of the case study regardless of

the approach.

6Advisors is the term used in students project groups for the teaching staff organizing the project.

8.3 OWL.Culture-Platform 189

Shortcode Question Answer Option

4. Advisors

Easy Contact
The advisors where easy to get into

contact with
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Competent

Answers

The advisors competently an-

swered questions
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Guidelines
The advisors should have given

more guidelines
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Too little Managing
The advisors managing of the

group was too little
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Too much Influence
The advisors exercised too much

influence
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Sufficient Feedback
The advisors provided me with suf-

ficient feedback
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Atmosphere

The atmosphere between group

members and advisors was pleas-

ant

agree
▢

1

▢

2

▢

3

▢

4

▢

5
disagree

5. Tasks and Team

Tasks

Understandable
The tasks were understandable agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Satisfied with

Responsibilities

I was satisfied with my responsi-

bilities
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Satisfied with

Workload

I was satisfied with my workload

(regarding the amount of work I

did and the work I got assigned)

agree
▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Well Internal

Communication

The group’s internal communica-

tion and selforganization worked

well

agree
▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Pleasant Group

Atmosphere

The atmosphere between group

members was pleasant
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Sufficient Feedback

from Group

The other group members pro-

vided me with sufficient feedback
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Satisfied with other

Members

I was satisfied with the other mem-

bers of the PG
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Tab. 8.5.: Questionnaire Part 2: Advisors, Team, Task Adequacy

190 Chapter 8 Evaluation

Within the fourth block (Advisors), the involvement of the investigator is captured from the

point of view of the participants. The role as investigator and advisor in this case study is on

the one hand to teach the participants the approach and to support them in case of problems.

On the other hand, to grant freedoms and to limit the influence to the most necessary extent

in order to limit confounding effects by the investigator participants’ relationship.

Besides the basic things like Easy Contact, Competent Answers, Sufficient Feedback, and

Atmosphere, especially the questions about Guidelines, Too Little Managing and Too Much

Influence are interesting for this case study. These last three must be seen as a package in

order to evaluate the influence of the advisor/investigator from the participant’s perspective.

In the manner in which these three questions are asked, they can be interpreted differently

in the area three to five. On the one hand, it can mean that the participant regards three

as optimal and five as the other negative. On the other hand it can mean that five fully

contradicts the statement in the question and that this would thus be the optimal answer.

Therefore, these three questions need to be considered together and it is positive for the case

study if the participants consistently choose the range between three and five for all three

questions.

The fifth block (Tasks and Team) is divided into the first three questions regarding task

adequacy and the last four questions regarding team dynamics. An advantage for the case

study in these cases is an answer behavior close to agree. This would argue for appropriate

tasks and advantageous team dynamics that do not interfere with the case study.

The last part (see Table 8.6) consists of the three blocks Tools, Conclusion, and Praise,

Criticism and Suggestions, whereas the last block only consists of a free-text-field for further

feedback from the participants. In the block Tools, the provided tools as well as the self-

organized tools are captured, as well as whether the provided tools are regarded as useful

and whether requested tools were organized.

Conclusion captures the relation of the participants with the approach. The first question

about the learning outcome also gives feedback of how well the participants are already

used to this kind of approach. Generally speaking, answers on the right side (disagree) of

the scale are more favorable for our approach as the other side (agree) would mean that it is

not as novel and this raises the question if it is necessary. To verify that the approach is not

only seen as novel but as well as useful this is captured in the fourth question of this block.

Furthermore, it is asked if the prior knowledge was sufficient to participate in the project,

i.e. if the given information was sufficient to work with the approach and if the information

was helping to gain an understanding of the approach (gained understanding). The second

last question asks if the participants are motivated to further work in this field and the last

question is for a summed up assessment of the complete project group.

8.3 OWL.Culture-Platform 191

Shortcode Question Answer Option

6. Tools

Provided Tools

The following tools were provided

by the advisors (e.g. mailing list,

repositories, wiki, software, hard-

ware, etc.)

Free-Text Field

Useful Tools
The tools provided by the advisors

were useful
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Got Requested

Tools

The advisors organized the tools

requested by the group
agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Self-Organized

Tools

The following tools were orga-

nized by the group:
Free-Text Field

7. Conclusion

Only learned Little

I already knew major portions of

the PG’s contents so I only learned

little

agree
▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Prior Knowledge

Sufficient

My prior knowledge was sufficient

to effectively participate in the

PG’s work

agree
▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Gained

Understanding

The PG provided me with deeper

and sounder understanding of the

relevant topics

agree
▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Gained Useful

Experience
I gained useful experience agree

▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Wants to Deepen

Knowledge

I would like to deepen my knowl-

edge in the field the group worked

on

agree
▢

1

▢

2

▢

3

▢

4

▢

5
disagree

Overall good

Impression

My overall impression of the

project group
good

▢

1

▢

2

▢

3

▢

4

▢

5
poor

8. Praise, Criticism and Suggestions

Further Feedback Here you can give further feedback Free-Text Field

Tab. 8.6.: Questionnaire Part 3

192 Chapter 8 Evaluation

8.3.3.2. Work Products

Our second evaluation instrument besides the standardized questionnaire is the examination

of the individual work products. Whereas the standardized questionnaire is mainly to evaluate

if inexperienced developers are able to work with our approach, the examination of the

individual work products is to assess the quality and the interaction between the different

stages. Within the description of the different stages section 8.3.2 we described the created

work products and numbered them accordingly (work product #XX). The full list of the

work products created in this case study can be found in Table 8.7.

Title

1 3 Ideas for the OWL.Culture-Platform

2 Interview Guideline

3 Interview Results Summary

4 Low Fidelity Prototype

5 High Fidelity Prototype

6 Fair Feedback

7 Agile Software Requirements

8 Minimum Viable Product

9 Experiment Definitions

10 Experiment Implementation

11 Experiment Analysis

Tab. 8.7.: Individual Work Products

Work product #1: 3 Ideas for the OWL.Culture-Platform This work product is not a

prerequisite for the further stages. However, it can be used to determine the extent to which

the participants are already able to distinguish between problem and solution as well as

user needs and technical needs as this work product should consist in underpinning Point

of View (POV) and a corresponding technical solution idea according to the task. The

POV should be a description of the user, her need, and insights that substantiate this need

(see section 5.1). This makes it to an actionable and meaningful problem statement as we

have a specific user with its need and the supporting information that helps us to decide to

what extent our solution idea actually matches the need. It also allows us to think about

different solutions, as it has the actual intention and does not directly focus on a technical

solution. Therefore, the ideas are first analyzed with regard to the POV to what extent they are

explicitly named, the proposed structure from [User. . . (descriptive)] needs [need. . . (verb)]

because [insight. . . (compelling)] is used, or they exist in this order in another form.

In order to determine other forms as well to evaluate the quality of the POV, we first mark all

occurrences that can be assigned to either User, needs or insight. In the second step we assess

8.3 OWL.Culture-Platform 193

these occurrences. For User, we categorize whether only the word user, an umbrella term

for a specific user group, or an exact description of the user is used. Needs are categorized

into if they try to solve the need of the corresponding user or another and if it is an action or

a description. If a need is not written as an action it is hiding the underlying task of the user

and therefore important information of what she is actually trying to achieve. Finally, for

insight we categorize to what extent the insights represent challenges, gaps, limitations or

deeper needs related to the corresponding need.

After the analysis of the POV, as a basis for all solution ideas, the separation of problem

and solution space is analyzed. For this purpose, the separation of problem and solution

space is categorized in an initial categorization with regard to obviousness (explicitly named,

comprehensible due to text structuring, and not present or implicitly present). In a second

step, it is analyzed whether a direct connection is made between the solution and the problem

and whether the solution and the problem space are actually cleanly separated.

It follows from this that a high-quality idea follows a clear separation between problem and

solution space and clearly represents the connection between the two. In addition, at least

one user group must be explicitly described in the problem space within the POV as well

as a need in the form of an action of this user group and the associated insights, which are

derived from challenges, gaps, limitations or deeper needs related to the corresponding need.

This is essential to develop and validate different solution alternatives. If the participants

have already mastered this, they have the best prerequisites for carrying out the approach.

Work product #2: Interview Guideline This is the result of the preparation for the Empathy

Design Thinking step that has as goal to getting to the bottom of latent user needs, explore

surprising, develop empathy through interviews, observations, and personal experience

(see [Sen20b]). Furthermore it is for joint sense-making, unite perspectives and gain insights

out of them through analytical condensing and focussing on one user.

The Interview Guideline consists of the question set for the interviews and the 18 decision

steps by Helfferich, whereas the decisions serve to to "determine the object of research,

its theoretical location, the form of the interview and the evaluation strategies" [Hel11,

pp. 168-171]:

1. Decision for a (precise) research object

2. Choosing a target group and narrowing down the sample

3. Decision for an interview form

4. Decision for an evaluation strategy

5. Decision and clarifications related to interview behavior

194 Chapter 8 Evaluation

6. Decision related to the strangeness/familiarity of the actors

7. Decisions to profile the professional role in advance

8. Decisions to profile the professional role in the interview

9. Decisions on the design of spatial aspects

10. Decisions for the behavior of the interviewees in difficult interview situations

11. Decisions regarding the design of instruments

12. Decisions for recruitment channels

13. Decisions on dealing with ethical aspects

14. Decisions on the scheduling of execution

15. Decisions on personnel implementation

16. Decisions related to research documentation

17. Decisions related to the continuation of interview qualification into the evaluation

phase

18. Decisions on the use of other instruments

The Decision for a (precise) research object is the most important decision in this work

product. It is the basis for the further decisions, especially for the interview form, the specific

questions, and the target group. According to Helfferich the research object consists of a

content-related facet (e.g. event organization, event consumption, software development)

and a theoretical-methodological facet (What should be presented as a result? e.g. patterns

of interpretation, subjective theories, structures of meaning, coping patterns). Thus, we

first check whether both parts are present. If this is the case, we look at the quality of the

respective facet.

For the content-related facet a thorough description of the context is important, since also

here as in requirements engineering it is valid that if context and relevant context aspects

are not considered, this leads directly to errors (cf. [Poh07, p.55]). Therefore, this facet is

categorized according to whether the context is described with more than one sentence and

analyzed how it is described.

The theoretical-methodological facet is limited by the assignment of the interviews to

the Empathy Design Thinking phase, as already described above. This way, the facet is

analyzed to see if it can capture latent user needs, explore surprising, and develop empathy

(e.g. through subjective theories, coping patterns, patterns of interpretation, structures of

meaning). It would not be good if this facet was limited only to the mere collection of

information and content, as this would be contrary to qualitative techniques (see [Hel11,

p. 168]) and thus also to the reconstruction of meaning as well as the understanding of the

problem which is the foundation for gaining empathy.

8.3 OWL.Culture-Platform 195

Choosing a target group and narrowing down the sample is important in the sense that it

determines the generalizability of the results as well as ensuring that the desired objectives

of the research object can be achieved. To this end, the decision should precisely define

the group to be interviewed (including an exhaustive description of the group), how many

interviewee are necessary, and a discussion of the extent to which this is relevant to the

research object. Accordingly, at this point it is analysed to what extent the group to be

investigated is described, the number of participants and their characteristics are defined

and a connection to the research object is established.

Decision for an interview form depends on the previous decisions, as the interview forms

(see [Sen20a] for interview forms presented to the participants) are specialized for certain

applications. Therefore, it will be checked at this point to what extent the selected interview

forms are related to the previous decisions.

In order to prevent the results of the interviews leading to stereotypes based on the assump-

tions and inclinations of the interviewers, it is essential to define an evaluation strategy that

guarantees the objectivity of the results. Hence, the Decision for an evaluation strategy

is analyzed regarding the intermediate steps introduced to get to the final results. The less

intermediate steps are present the more difficult it gets to comprehend how the interviewer

got to the results. For example, omitting the recording and transcription of the spoken word

leads to a situation in which only what the interviewer considers to be important during the

interview is recorded and thus important sentences of the interviewee can be lost for the

objective analysis.

According to Helfferich [Hel11, p. 169], these four decisions make up the bulk of the

decision-making work. The other decisions relate to individual aspects, but these are largely

no longer open. These individual aspects include interview behavior, the relationship between

interviewer and interviewee, concrete preparations and further decisions on implementation

details. We will therefore analyse these individual aspects in relation to the previous four

main decisions.

In addition to these decisions, this work product also naturally consists of the question

set respective the concrete interview questions and the interview structure. As we have

learned in section 4.1, knowledge is not always available on an ad-hoc basis, but requires an

activation either by working in that context or by imaging to be in this context (the more

triggers, the better we can imagine it and the more related knowledge is activated). Therefore,

we will first analyze to what extent the participants are activated with respect to the context.

Will the actual questions be started immediately? Is there an activation phase? How is this

designed?

196 Chapter 8 Evaluation

The next part of the analysis of the questions deals with their design. Are these openly

designed and encourage the interviewee to report in detail about himself or are they rather

closed and ask for information or serve only to confirm the ideas of the interviewer? As

already described above, it is essential for the development of empathy to understand how

users act and from which motives. A pure factual information that someone is using a certain

website is therefore less helpful than a description from which can be derived what goals

the person is trying to achieve and what deeper needs (e.g. motives or emotions) are behind

it.

Furthermore, the dig deep mentioned in design thinking is crucial for building empathy.

This means that the understanding of the statements made has to be verified by in-depth

follow-up questions. Therefore, it is investigated to what extent such follow-up questions

exist and are suitable to deepen or validate the understanding.

Work product #3: Interview Results Summary As mentioned in the concept section 8.3.2,

the purpose of this work product is to share the results of one’s own interviews with the

other groups so that they can also benefit from them. Since the other groups were of course

not part of the interview, the first question is whether enough context information is given

to the conduction of the interviews so that the other groups can understand what happened

and to what certain answers could be linked. Was the interview introduced? Are there any

details about the number of participants, their background, and the length of the interviews?

Were there any deviations from the 18 decisions?

The most important part here, however, are definitely the results presented. Since we are

still in an understanding phase, it is important that the results are not only condensed on a

factual basis, but also the corresponding individual stories. Only this makes it possible to

derive further hypotheses on user needs. It is not the aim to confirm existing knowledge by

a quantitative method, but to make sense and to generate new insights. For this reason, the

results are checked to see whether they only reflect facts in a condensed form, tell underlying

stories or do both.

Work product #4: Low Fidelity Prototype Goal of this work product is to define ideas

(cf. Create Phase in Figure 8.7) with corresponding low-fidelity prototypes on a Value

level (see Figure 8.9 and cf. section 3.1). Hence, the first prerequisite is the existence of

related POV. The check of the POV takes place in the same way as in work product #1.

Furthermore, in the best case, there is a POV’s comprehensive problem definition, which

also describes the user group and the context. If this is not available, our design challenge

(see section 8.3.2) can still be assumed to be the fundamental problem.

8.3 OWL.Culture-Platform 197

Implementation

Integration

Look-and-Feel

Value

Fig. 8.9.: Prototype Levels: Value

In the next step, we evaluate the selected prototype techniques for the low fidelity prototype.

Suitable prototyping techniques for this stage are concepts, digital wireframes, analogous

wireframes, physical prototypes, story-telling metaphor, or theatre and videos (cf. [Sen20b,

slides 60–68]). However, this is not an exclusive list. For the quality of the implementa-

tion, we refer in the evaluation to the do’s and don’ts for the prototypes from slides 59-78

in [Sen20b]. In this stage, the participants shall focus on understanding the problem and

possible solutions, install information and structure, make it tangible and observe how others

use the prototype. Don’ts for this stage are prototypes that are presented as a finished product,

have complexity that is not necessary for understanding the value, and prototypes that need

to be explained.

Finally, it is investigated to what extent a connection between POV, idea and prototype has

been established.

Work product #5: High Fidelity Prototype The goal of this work product is to have a proto-

type that feels already like a real product but hasn’t implemented the necessary functionality.

It is to have an artefact with a high immersion that users can try out and doesn’t need as

many resources as software to be implemented. This is based on the idea to try out as early

as possible and as close as possible to reality the solutions (cf. section 8.2). Therefore, this

prototype is about value, look & feel, and integration of these two (see Figure 8.10). This

includes that the participants shall include the insights from value and look & feel as well as

interactions, but leave out functionality (cf. [Sen20b, slides 72–77]).

As first step we analyse the foundation of the high-fidelity prototypes. What kind of tools

are used to create the prototype? In which way do they limit them to only include value and

look & feel or encourage to include more? What is the amount of boilerplate stuff that you

have to do to achieve the things necessary for this prototype?

198 Chapter 8 Evaluation

Implementation

Integration

Look-and-Feel

Value

Fig. 8.10.: Prototype Levels: Value, Look & Feel, Integration

In the next step we have a closer look at the high-fidelity prototypes itself. Do they incorporate

only value related concepts and look & feel or have they already added functionality? If they

added functionality was it already implemented or done like in the Wizard of Oz method

(see [Kel84]) to mock this functionality? Is the prototype based on the previous low-fidelity

prototype? What is the immersion level? Are transitions obviously done manually or not

fluent? Are they using a consistent design language? Is the information presented complete

and related to real world data? Did the participants design the prototype as throw-away

prototype or as reusable prototype that shall be evolved to a product? If it is designed as

reusable prototype, what parts are designed to be reusable?

Work product #6: Fair Feedback This work product summarizes the feedback the partici-

pants got on their prototypes. As with all survey instruments, in order to collect this feedback,

it is important to first define which hypothesis is being investigated, which questions shall be

answered and what the fail/pass conditions are. This is the only way to observe in a targeted

manner. In order to achieve this, the participants have been given the test and learning cards

as an obligation for the internal fair (see [Sen20f, Working Sheets 6 and 7]). These cards

are based on the testing and learning card from the Design Thinking Playbook [@Tra16]

and consist in their basic structure of Step 1: Hypothesis - We believe that . . . , Step 2: Test -

To verify that, we will . . . , Step 3: Metric - And measure . . . , and Step 4: Criteria - We are

right if . . . respectively Step 1: Hypothesis - We believed that . . . , Step 2: Observation - We

observed . . . , Step 3: Learnings and Insights - From that we learned that . . . , and Step 4:

Decisions and Actions - Therefore, we will Since this work product is only the collection

of the feedback, the test card is not necessarily part of this work product. However, the

completed learning card should at least appear in the feedback on the internal fair, at best as

well in the feedback for the external fair.

8.3 OWL.Culture-Platform 199

In addition, we have the situation that our knowledge of the problem space at this level is

not yet secured (cf. section 1.1.1), which is why it is necessary not only to ask for potential

challenges, but also what works or has been particularly valued and what has not been under-

stood. To support the participants in giving and gathering such feedback, we have handed

them out the feedback grid (see [Sen20f, Working Sheet 8]) from Tran [@Tra16] which

actually asks for Things I like most, Things that can be improved, Things I don’t understand,

and New ideas to consider. These points should therefore appear in the documented feedback

from both fairs.

Work product #7: Agile Software Requirements As mentioned in section 8.3.2, the evalu-

ation for the Design Thinking Requirements Framework (DTRF) has been done in conjunction

with a master thesis and is presented in section 6.2. The additional part of this work product

is the derivation of the minimum viable product out of the results from the DTRF. This has to

be a synthesis of the different group results with a sustained connection to the DTRF results.

Therefore, at this point it will be examined to what extent the results of different groups have

been combined and how the connection to the actual results will be maintained.

Work product #8: Minimum Viable Product Even if no alternatives should yet be imple-

mented in this work product, it is already possible to analyze the extent to which the system

can be changed and the participants can implement the technical concepts for evolutionary

systems (cf. section 7.2.2). The database and domain logic is provided by a natural language

processing (nlp) pipeline, which has already been developed in another project preceding

this case study. This nlp pipeline (see Figure 8.11) consists of a crawler (for events in OWL),

an enricher (enhance, refine, and expand raw data from crawler), a data store (structured data

model and API gateway), and a recommender (recommending events). It was developed

with the idea of event sourcing in mind and thus uses a message-driven architecture. The

participants will adapt individual parts of this pipeline, but above all they will develop the

web frontend.

Even if the pipeline was already developed before this case study, we analyse it first, as the

participants are dependent on it and its changeability. The analysis takes place primarily

with regard to the implementation of event sourcing and CQRS, since these two patterns are

the key for us to use parallel models and thus for the independent changeability of individual

components as well as the simultaneous operation of different variants. Problems should

arise during the change attempts by the participants of the case study.

Further analysis will focus on the implementation of the frontend. Among other things,

the implementation of the Model View Presenter or Model View ViewModel pattern is

considered, which is to guarantee the detached development of the frontend from the backend.

200 Chapter 8 Evaluation

Crawler DataEnricher DataStore Recommender

Web Frontend

Fig. 8.11.: nlp-Pipeline developed preceding this case study.

In addition to the technical implementation, we record the extent to which the participants

were blocked during the development of frontend components by changes to the backend

and the extent to which backend properties were successfully changed subsequently for the

frontend or had to be changed. This is the connection between frontend and backend.

For the frontend itself, certain technical properties must also be met, so that it can be

easily adapted in the future and allows the simultaneous operation of different alternatives.

This means that the frontend should also support the replacement and online loading of

components. One way in which this can be realized is through web components. Since

we have not specified how the participants are to implement this, we consider the extent to

which components can be exchanged and loaded online.

Work product #9: Experiment Definitions The minimum requirements for an experiment

definition are a hypothesis, an evaluation criterion (dependent variable), treatments, test

participants and experiment conditions (cf. section 7.2.1 and [Ren+12]). The experiment

conditions and the test participants are already predefined to a certain degree by the advisor

/ investigator. The participants should carry out the experiments on site with the steering

committee of the OWL.Culture-Platform. This results in the participants having a time win-

dow of 120 minutes for their experiments and a large meeting room in which all experiments

with the members of the steering committee are carried out simultaneously. The members

of the steering committee (maximum 20 persons) are representatives of the local authorities

in the field of culture and other cultural stakeholders. Hence, the participants have to define

at least a hypothesis, evaluation criterion and treatments.

Thus, we check first whether all these three parts are defined and possibly also further parts.

Subsequently, we analyse the design of the individual parts and their interaction. Due to

the current stage in the approach with the associated uncertainties, we expect above all

definitions here that are based on qualitative techniques and are closer to a usability test than

to a controlled experiment. Further, we expect the hypothesis to have a low granularity. This

8.3 OWL.Culture-Platform 201

should be expressed in the treatments, here the different software components, to the extent

that these do not only cover one level in a software component hierarchy, but several.

Work product #10: Experiment Implementation To this work product we include the

preparatory measures for the execution of the experiment as well as the actual implementation.

Which evaluation strategy shall be used and how is the collection of data organized? How

is the experiment structured from the greeting to the introduction, the guidance through

the experiment and the farewell? Which media should be used for data recording and how

were they prepared to assure that they work in the experiment? How is additional support

required for the experiments realized?

Work product #11: Experiment Analysis Last but not least, the experiment analysis is

analysed. What was the evaluation strategy? How many intermediary steps have been

documented? Is it obvious which statements are based on which experiments? Did they

gathered additional insights? Is there a summary for each hypothesis with the variants,

results / action to take, and additional insights?

This marks the last work product to be examined. In the next section we come to the

conduction of the case study as well as their results.

8.3.4 Conduction and results

This case study was conducted by the thesis author as advisor and investigator. A total of

18 computer science students participated in this case study as part of the project group

of the master’s degree course in computer science in Paderborn. These 18 students are

divided into two groups. On the one hand a group, which started already in the semester

before and carried out the quality assurance and archiving of the HiP-App in this one, thus

the optimization phase. This group did not come into contact with the approach or design

thinking in the first semester. The second group consisting of the remaining 10 students

started the project group with the case study.

Accordingly, both groups are at the same level of unknowingness about the approach.

However, this also means that some of the participants drop out after the first half of the

case study. This, however, is not further tragic for the case study, since after the first half,

i.e. one semester, a new stage begins in which work is again carried out as a whole group

and not in subgroups (cf. section 8.3.2). Thus, we conducted the questionnaire at two points

(at the end of each half) of the case study in order to receive feedback from all participants

as well as for all parts of the case study.

202 Chapter 8 Evaluation

8.3.4.1. Questionnaire results

For the first survey after the first half of the case study, 17 of the 18 participants filled out

the questionnaire, whereas for the second half all remaining 10 participants filled it out

(see Table 8.8). 23,5% (20%) earned their Bachelor’s degree in Paderborn and 11,8% (20%)

somewhere else in Germany. The majority of 64,7% (60%) earned their degree outside

Germany. Hence, we have a high degree of diversification, which is an argument in favour

of better generalizable results.

Participants of the PG who filled out questionnaires: 17 (10)

Where have you earned your Bachelor’s degree?

23,5% (20%) in Paderborn

11,8% (20%) somewhere else in Germany

64,7% (60%) outside Germany

How much time did you spend on PG work per week?

Approximately 15h 94,1% (100%)

far less 5,9% (0%)

far more 0% (0%)

Which discipline matches your project best?

Software Engineering 100% (100%)

Algorithm Design 0% (0%)

Networks and Communication 0% (0%)

Computer Systems 0% (0%)

Intelligence and Data 0% (0%)

I was looking for a PG associated to

Software Engineering 94,1% (100%)

Algorithm Design 0% (0%)

Networks and Communication 0% (0%)

Computer Systems 0% (0%)

Intelligence and Data 0% (0%)

I had no preference 5,9% (0%)

I joined my preferred PG

Yes 94,1% (100%)

No 0% (0%)

I had no preferred PG 5,9% (0%)

Tab. 8.8.: Participants Overview from Questionnaire. XX (YY), XX = 1. Survey, YY = 2. Survey

All participants, except one who has no preference, have joined their preferred project group.

In addition, the participants consider the project group as part of the Software Engineering

focus area, which suggests that the techniques from the other focus areas we use have not

come to the foreground too much and that everyone with a preference joined their preferred

focus area (see Table 8.8).

8.3 OWL.Culture-Platform 203

In general, the participants spent about 15 hours a week on the project, which, as already

mentioned, is the best possible result for us, as it corresponds exactly to the desired workload.

Around 3/4 of the participants answered for the difficult level with three (neither too easy

nor too difficult) and around 1/4 with four (difficult), which is as well a good result as it

indicates that the level of difficulty was generally reasonable, well accepted and only slightly

more challenging for some (see Figure 8.12).

5,9%

40,0%

52,9%

50,0%

11,8%

22,2%

47,1%

20,0%

29,4%

40,0%

35,3%

55,6%

76,5%

80,0%

41,2%

40,0%

11,8%

10,0%

29,4%

23,5%

20,0%

5,9%

5,9%

11,8% 11,8%

22,2%

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

Di
ffi
cu
lty

Le
ve
l

Pr
oj
ec
ti
s

Pr
ac
�c
e-
Or
ie
nt
ed

Lo
ok
in
g
fo
r

Pr
ac
�c
e
or

Re
se
ar
ch

Pr
io
rA

cc
ur
at
e

Im
pr
es
sio

n
of

Pr
oj
ec
t

PROJECT GROUP

Too Easy 1 | Practice 2+3 | Agree 4 1 2 3 4 5 Too Difficult 1 | Research 2+3 | Disagree 4

Fig. 8.12.: Evaluation Chart Summary General

Around 80% to 90% of the participants looked for a practice-oriented project group, which

they have mainly found according to their answers as around 50% to 60% consider this project

as research oriented (see Figure 8.12). Around 40% do not determine whether the project

is more practice-oriented or research oriented. One thing that stands out is the increased

number of responses in the first survey, which assess the project as less practice-oriented

than in the second. This may be due to the attitude of some participants that the requirements

work in the first half is considered less practice-oriented than the actual implementation

work, as can be assumed from the Further Feedback section and discussion of the results

with the participants. Overall, the results speak for a more natural setting mimicking a

software development project, which is positive for generalizability and also for the research

methodology that seem to not disturb the project too much.

Furthermore, a relative majority (47.1%) in the first survey and an absolute majority (77.8%)

in the second indicate that they had a more or less accurate impression of how the project

will be like. We have no conclusive explanation for the fact that in the second survey

significantly more participants spoke out in favour of an accurate impression of how the

project will be like. This could be due to the fact that the first group started with the idea of

History in Paderborn App (cf. section 8.1) and did not know that it will be changed to the

204 Chapter 8 Evaluation

OWL.Culture-Platform. Or it could be because in the second half the participants rated the

development work as what they expected.

With the overview of the participants we can turn to the advisors as the next part of the

questionnaire. In Figure 8.13 we have visualized the results for this part. There’s a special

thing here. For all shortcodes preceded by the ¬ character, we display the results in reverse

order. So 1 is switched with 5, 2 with 4 and a 3 remains a 3. We do this where we have

classified a 5 as a good answer (see section 8.3.3.1). This makes it easier to read the diagrams,

as now all positive rashes for the case study are on the left side.

72,7%

85,7%

50,0%

57,1%

5,9%

11,1%

23,5%

33,3%

23,5%

11,1%

41,2%

22,2%

58,8%

66,7%

18,2%

14,3%

25,0%

28,6%

17,6%

11,1%

17,6%

22,2%

35,3%

33,3%

17,6%

33,3%

29,4%

22,2%

9,1%

29,4%

33,3%

23,5%

33,3%

23,5%

33,3%

23,5%

22,2%

11,8%

11,1%

16,7%

14,3%

11,8%

44,4%

23,5%

11,1%

5,9%

22,2%

5,9%

22,2%

8,3%

35,3%

11,8%

11,8%

11,8%

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

Ea
sy

Co
nt
ac
t

Co
m
pe

te
nt

An
sw

er
s

¬G
ui
de

lin
es

¬T
oo

lit
tle

M
an

ag
in
g

¬T
oo

m
uc
h

In
flu

en
ce

Su
ffi
cie

nt
Fe
ed

ba
ck

At
m
os
ph

er
e

ADVISOR

Agree 1 2 3 4 5 Disagree

Fig. 8.13.: Evaluation Chart Summary Advisor

A clear absolute majority indicated that the advisors were both easy to contact and gave

competent answers. A relative majority of the participants think that the advisors could

have given more guidelines, whereas in the first survey even more stated it as a 5 and not

a 4 (with regard to ¬). This indicates that the participants lacked orientation, especially

in the first half. In the discussion of the results, participants made it clear that they would

have liked to know better what tasks are to be performed. However, especially in the first

half, there was a plan that was broken down into tasks / milestones on a weekly basis and

presented during the onboarding (see [Sen20g]). Therefore, we would conclude that it was

due to miscommunication or tasks unfamiliar to the participants (cf section 8.1, where the

participants put on record that they understood and appreciated design thinking and its steps

only in the second run).

8.3 OWL.Culture-Platform 205

For ¬Too little managing and ¬Too much influence we will also first consider the values 4

and 5, because as mentioned in section 8.3.3.1, we classify the values 1 to 3 as positive (keep

¬ in mind). In both cases the participants were more negative in the first survey. The exact

reasons for this are unknown, but it may have been due to the larger group size. However,

these negative responses were limited to 11.1% to 35.3%, and by far 64.7% to 88.9% of the

respondents saw the influence and the managing of the advisors positive.

As stated in section 8.3.3.1, the three questions ¬Guidelines, ¬Too Little Managing, and

¬Too Much Influence have to be seen as package in regard to interpretation of the influence

of the advisor/investigator from the participant’s perspective. For all three, the answers in

the majority of both surveys are in the range 1 to 3, which suggests that the influence of the

advisors/investigators on the project was good in the sense of implementing the approach,

but it was not yet optimal. Since this case study does not focus on comparison with other

approaches, but on feasibility, we interpret the overall result as positive for it. Positive was

as well the atmosphere between the participants and the advisors as well as the feedback the

participants got from the advisors.

The participants answered that the following tools were used: Jira, Confluence, GitLab,

Slack, E-Mail List, OpenStack, Rancher, Auth0, Indigo. All of them were mainly managed

by the participants and, except for Indigo, provided by the advisors. The tools provided by

the advisors were considered useful (82.4% respective 90%).

The next part with Tasks and Teams (see Figure 8.14) is the last part that looks at the

conditions of this case study. The tasks were understandable. The fact that 76,5% of the

participants think so in the first survey and 90% in the second as well as the assessment that

the requirements engineering tasks in the first half were not seen as practical underlines

our theory that the results of ¬Guidelines are related to the unfamiliarity of the tasks for

the participants. Furthermore the participants were satisfied with the workload (76.5%

respective 80%) as well with the responsibilities (76.4% respective 90%).

In regard to the team dynamics it was stated by the participants that the group’s internal

communication and self organization worked well (82.4%), the atmosphere between group

members was pleasant (100% respective 90%), the other group members provided sufficient

feedback (76.5% respective 100%), and that they are generally satisfied with the other

members (82.4% respective 80%).

In summary, neither the advisors nor the tools, tasks, or team dynamics should have a

negative effect on the case study.

With the consideration of the conditions of the case study, we can now come to the relation

of the participants with the approach (see Figure 8.15). ¬Only learned Little was agreed

by a relative majority in the first survey (47.1%) and an absolute majority (60%) in the

206 Chapter 8 Evaluation

41,2%

60,0%

58,8%

60,0%

47,1%

60,0%

70,6%

70,0%

88,2%

70,0%

70,6%

50,0%

70,6%

70,0%

35,3%

30,0%

17,6%

30,0%

29,4%

20,0%

11,8%

20,0%

11,8%

20,0%

5,9%

50,0%

11,8%

10,0%

11,8%

17,6%

10,%

11,8%

10,%

5,9%

17,6%

11,8%

5,9%5,9%

10,0%

5,9%5,9%

10,0%

11,8%

10,0%

10,0%

5,9%

5,9%

10,0%

5,9%

10,0%

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

Ta
sk
s

Un
de
rs
ta
nd
ab
le

Sa
tis
fie
d
w
ith

Re
sp
on
sib
ili
te
s

Sa
tis
fie
d
w
ith

W
or
kl
oa
d

W
el
lI
nt
er
na
l

Co
m
m
un
ica
�o
n

Pl
ea
sa
nt
Gr
ou
p

At
m
os
ph
er
e

Su
ffi
cie
nt
Fe
ed
ba
ck

fro
m
Gr
ou
p

Sa
tis
fie
d
w
ith
ot
he
r

M
em
be
rs

TASKS AND TEAMS

Agree 1 2 3 4 5 Disagree

Fig. 8.14.: Evaluation Chart Summary Tasks and Teams

8.3 OWL.Culture-Platform 207

second survey, which indicates that this kind of approach was novel to the majority of the

participants and is positive as discussed in section 8.3.3.1. The approach and the experience

gained through carrying it out are also seen as useful (76.4% respective 90%).

5,9%

47,1%

10,0%

50,0%

50,0%

52,9%

90,0%

70,6%

70,0%

52,9%

50,0%

41,2%

60,0%

41,2%

50,0%

31,3%

20,0%

23,5%

17,6%

20,0%

23,5%

40,0%

29,4%

20,%

30,%

6,3%6,3%6,3%

20,%

17,6%

17,6%

23,5%

20,0%

11,8%

10,0%

10,0%

11,8%

10,0%

5,9%

10,0%

10,0%

5,9%

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

1. Survey

2. Survey

¬O
nl
y
le
ar
ne
d

Lit
tle

Pr
io
rK
no
w
le
dg
e

Su
ffi
cie
nt

Ga
in
ed

Un
de
rs
ta
nd
in
g

Ga
in
ed
Us
ef
ul

Ex
pe
rie
nc
e

W
an
ts
to
De
ep
en

Kn
ow
le
dg
e

Ov
er
al
lg
oo
d

Im
pr
es
sio
n

CONCLUSION

Agree 1 2 3 4 5 Disagree

Fig. 8.15.: Evaluation Chart Summary Conclusion

Furthermore 88.3% respective 60% agreed on that the prior knowledge was sufficient to

participate in the project. This means that the given information was sufficient to work with

the approach. In addition, these were sufficient to give the participants the impression that

they had developed a deeper and sounder understanding (81.3% respective 70%).

The overall impression of the project was good (76.4% respective 90%) and the participants

want to deepen their knowledge in this field (88.2% respective 90%). In summary, it can be

assumed that the approach was new for the participants, could be learnt with the information

given, proved useful to them and was seen as positive.

8.3.4.2. Work Product Evaluation Results

As the questionnaire results indicated, inexperienced developers are able to work with our

approach with the given information. With this in mind, we now focus on the quality of

the results and the interaction of the individual stages with the help of the evaluation of the

individual work products.

208 Chapter 8 Evaluation

Work product #1: 3 Ideas for the OWL.Culture-Platform As already stated, this work

product is not a prerequisite for the further stages and is mainly analyzed to determine

the extent to which the participants are already able to distinguish between problem and

solution as well as user needs and technical needs. The analysis was performed as described

in section 8.3.3.2 for this purpose.

The first part of the analysis examines the POVs as a basic mean of describing user needs

detached from technical solutions. From the 18 participants, two participant marked POVs

explicitly. 12 participants (including the two marking them explicitly) used the proposed

structure [User. . . (descriptive)] needs [need. . . (verb)] because [insight. . . (compelling)],

whereas only 9 used it continuously. Within the ideas of four participants, it was not possible

to recognize each of the three properties User, Need, and Insight. Six participants only

used the word user, another six participants used an umbrella term for a specific user group,

and another five participants used a description for their users. One participant failed to

include user at all. For four participants it was not possible to extract something that could

count as a need. The rest, except two, try to solve the need of the corresponding user or

another. Of these 14 trying to solve the need of the corresponding user or another, seven

use an action as need, whereas five use a description. In addition to the 12 participants who

used the proposed structure, insights could be identified for another participant. From these

13 participants with insights, eleven used them consistently to describe challenges, gaps,

limitations or deeper needs.

In summary, the three properties User, Need, and Insight can only be found in the ideas of

the participants who have used the proposed structure. This means that each of the these

three properties are consistently found only with nine of the 18 participants. Furthermore,

the quality of the POVs vary greatly. In regard to users, only five participants described their

users in detail. From the 14 of 18 participants describing a need corresponding to a user,

only seven participants described the need as action. Only 13 of the participants described

supporting insights, eleven of which consistently used them for challenges, gaps, limitations

or deeper needs. Even if this status is not bad in respect of previous knowledge, it is not

sufficient to be able to work reasonably with the approach. Without properly defined User,

Need, and Insight it is not possible to understand as developer the intention of the user and

constraints as well as opportunities for possibly different solutions. Accordingly, this makes

experimenting more difficult and thus better understanding of the problem.

The next part of the analysis is the separation of problem and solution space review. Only

one participant explicitly named its parts in problem and solution and for additional two

participants it was comprehensible due to text structuring. For the remaining 15 participants

this was not present or implicitly present. More precisely, four of these 15 participants

described only solutions and 11 participants only problems. Furthermore, no one made an

8.3 OWL.Culture-Platform 209

explicit connection between problem and solution space and no one made a clear separation

as parts of the solution or the problem could be found vice versa if both were present. This

is a rather disastrous result.

Work product #2: Interview Guideline In the previous work product we were able to

analyse to what extent the participants are able to distinguish between user needs and

technical needs. In this part it is primarily about analyzing to what extent the participants are

able to capture user needs. As described in the concept (see section 8.3.2), the 18 participants

in this phase work in six subgroups of three persons each. Therefore, we have six interview

guidelines to examine, starting with the 18 decisions.

Regarding the first decision about the research object, all six groups consider only the

content-related facet. Therefore, at this point only the content-related facet can be analyzed

and not the theoretical-methodological facet. All six groups do not further describe the

context, but only name it in one sentence, which concludes a further analysis on this point.

For the next decision about the target group, all six groups described their target group more

or less only with umbrella terms. Three groups additionally defined the age range they are

interested in. Furthermore three groups defined the number of interviewee they require and

not a single group made a link to the research object.

Regarding the interview form, three groups decided for a guideline interview, two groups

for a problem-centered interview, and one group for a scenic interview. Not a single group

made a link to their preceding decisions. With regard to the groups with a problem-centered

form of interview, it is questionable whether this fits the current situation. For this, an exact

problem with a previous level of knowledge is assumed. However, this is not guaranteed at

this stage.

For the evaluation strategies, two groups introduced intermediate steps whereas four groups

only described what should be evaluated as end results. The two groups that have described

intermediate steps have decided for a purely qualitative study. For the other four groups,

two have also decided for this and the other two want to carry out an additional quantitative

study.

The remaining decisions relate mainly to general aspects and not to the previous main

decisions. On the positive side, all groups have decided that, in addition to an interviewer,

at least one transcriber should always take part in the interview. However, the planned

time per interview is negative. Three groups plan only 5-10 minutes, two don’t give any

information and one group plans 15-45 minutes. In our experience, at least 15 minutes

including activation are necessary to build and validate a deeper understanding.

210 Chapter 8 Evaluation

In summary, the 18 decisions of the groups can not ensure that they are getting to the bottom

of latent user needs, explore surprising, and develop empathy. The quality is simply not high

enough for this. In many cases, the links to previous decisions and more precise descriptions

are missing. On the other hand, the quality should still be sufficient to get these answers.

That leaves us with the question set. Three of the six groups actually introduced an activation

phase, whereas the scenic group realized it via storytelling in a slideshow and the other two

via structure that begins with general questions and build up to more specific ones to the

research object towards the end. Although all groups focus on getting factual information, the

questions have the potential to build a deeper understanding of the interviewees. However,

this depends primarily on the interviewees and their situation-specific follow-up questioning,

even though all groups have defined follow-up questions. The problem with these, however,

is that they are only very superficial and only go one level lower.

The analysis of the interview guidelines shows that all groups are prepared for the interviews

and have the potential to build empathy. However, the quality does not correspond to one

that would ensure that latent user needs, surprising, and information regarding empathy are

actually captured. Much depends on the individual skill for in-depth follow-up questions.

Work product #3: Interview Results Summary These are the results of the interviews of

the individual groups, in order to inform the others about exactly these so that they can

also profit from them. To start with how helpful they were, we will look at the context

information about the conduction of the interviews first.

From six groups, four groups presented their results on the basis of the questions, resulting

in what the interview asked. The group with the Scenic Interview presented the results of

the interview before, so that the content of the interview is also clear for this group. This

leaves one group that did not describe how the interview was designed.

Furthermore, five of the six groups have broken down information about the interviewees.

All of these five groups indicated the number of interviewees, which was between 8 and 12

with an average of 10.6. In the case of four groups, it can be seen from the description that

they were local and international students. In addition, three of these groups also indicate

which subject areas they come from or that they come from different fields. One group only

gave information that they were students and another group did not give any information

about the participants.

Just three groups gave information to the duration of the interviews with an average of 8

minutes, an average of 10 minutes, and 10-15 minutes. One group deviated from their planed

interview duration by having 5 minutes longer interviews. In general, however, no group

has mentioned deviations from the interview guidelines.

8.3 OWL.Culture-Platform 211

With the analysis of the context information, we now come to the results themselves. Actually

all six groups present their results in a condensed fact form. Only one group also provides

background stories of the interviewees.

In summary, it can be said that the groups in this work product tend to present results

immediately condensed as facts. By immediately removing the life realities of the individual

interviewees, important information is also removed for further decisions. This way, the

problem space is severely restricted at a very early stage, which can have a negative effect

on further solution finding. Nevertheless, five of the six groups have created transcripts in

addition to the presentation in which the individual life realities are still preserved. Therefore,

the negative consequences are likely to be limited.

Work product #4: Low Fidelity Prototype Five of six groups are using underlying POVs,

whereas the other group uses a scenario description / user stories. Of these five groups,

four have used the proposed sentence structure, while one group uses a table divided into

user, need, and insight. Three groups that used the proposed sentence structure did not

consistently define the insights for every POV. They as well only used the term user. The

other two groups used an umbrella term. The one group that did not use POVs have at least

a user description included and describes the needs of the user as actions. For the rest of the

groups, three use their needs solely or mainly as description and two groups describe their

needs as action. The quality and usage of the POVs correlate with that of work product #1.

In addition to the POVs, two teams used user stories to describe their idea. Only one group

had a comprehensive problem definition that included user group and context, but had no

POV.

As prototyping techniques all groups used wireframes, whereas four groups used the digital

variant and two groups used the analogous variant. The extent to which they adhered to the

first do (focus on understanding the problem and possible solutions) is difficult to evaluate

for most groups due to the quality of the POVs and the lack of problem definitions. However,

what can be stated here is that all groups have focused solely on the information architecture

and navigation and have not on other parts not necessary at this point. Furthermore all

low-fidelity prototypes are tangible and can be used either by clicking on it for most digital

wireframes or by changing to new screens or adding sticky notes. Not a single group presented

their prototypes as finished product (e.g. by incorporating functionality or focussing on the

look) and all prototypes are self-explaining.

The last part of the analysis to what extent a connection between POV, idea, and prototype

has been established, has shown that no group made this direct connection. However, all

POVs can be found in the wireframes.

212 Chapter 8 Evaluation

In summary, it can be said about this work product that the participants were consistently

able to focus on the essential parts of the prototype without adding unnecessary parts.

Accordingly, the first prototypes can be tested on the value level at this point at a lower cost

than software prototypes. The problems with the uncleanly defined POVs are reflected in the

quality of the problem definition and thus also in the prototypes of this stage. Without clearly

defined POVs and problem definitions, it is difficult to develop appropriate test scenarios for

how the solution will presumably be used as well as to focus on what is actually needed in

the solution.

Work product #5: High Fidelity Prototype Three groups used dedicated mock-up / visual

prototyping tools for their high-fidelity prototypes whereas the other three groups decided

to use HTML / CSS web frameworks with backend functionality. The dedicated mock-up

/ visual prototyping tools used are Adobe XD, Balsamiq, and Indigo Design. These are

characterized by the fact that each individual change is represented by a new screen, similar

to the wireframes. In addition, they allow for more extensive representations than just

the wireframe representation. Usually each of these tools offers a navigation between the

screens with the help of hitboxes. For example, hitboxes can be defined for areas of a screen

that perform an action during activation, e.g. the display of another screen. Screens are

usually used with fixed widths and heights, so they are not responsive. However, this has the

advantage that the additional complexity and the boilerplate code for the responsiveness are

omitted. Special features of the tools can be e.g. automatic animations, reusable components,

components with states, generated replication of components, or also the export and use in

different end devices like a PC with a web-browser or as app in a smartphone. Such tools are

optimized to create a visual representation of the prototype, which feels like a real product

but has no functionality yet, fast and resource-saving. Accordingly, they limit themselves to

the value and look & feel level and allow interaction but no further functionality or domain

logic. These tools usually require no to only a bit boilerplate as you can directly draw your

interface or import your graphics.

In contrast to these tools are dedicated HTML / CSS web frameworks with backend func-

tionality. These are used for prototypes if you want to reuse code and evolve the prototype.

The advantage of this approach is the reusability of components. Some web frameworks,

such as django7 are also optimized for rapid prototyping. In this case, rapid prototyping

does not necessarily mean that it is faster than the tools presented above, but that it is faster

and easier to set up first prototypes compared to other web frameworks, since they typically

generate a lot of boilerplate code automatically.

7https://www.djangoproject.com/

8.3 OWL.Culture-Platform 213

https://www.djangoproject.com/

In our current phase, however, such HTML / CSS web frameworks are not advantageous. In

order to be able to play out the advantage of reusability, many components are required which

will also be used in other prototypes in this form in the future. However, these prototypes

are about building understanding and trying out different possible solutions, which is why

most likely many components will not find their way into the final product or will find their

way in a strongly changed form (cf. [Koh+09] and section 1.1). Additionaly, they limit the

solution space by the technical feasibility. If they are rapid prototyping variants, only the

prefabricated components can be used; if they are normal frameworks, the solution space

that can be tried out is limited solely by the implementation effort. These tools still require

a lot more boilerplate than the tools presented above, e.g. for correct layouting or just for

setting up the project. Furthermore, they do not encourage to concentrate only on value and

look & feel, but also to implement functionalities.

With the tools analysed, we can come now to the prototypes itself. The three groups that

used dedicated mock-up / visual prototyping tools have and could only incorporate value

related concepts and look & feel, but not add functionality. In contrast to that, all three

groups that used the dedicated web frameworks already started to add functionality that was

not mocked with a Wizard of Oz kind method but implemented in a rudimentary way. For

all six prototypes it holds true that they are based on the previous low-fidelity prototype of

the respective group.

All six groups reached a high immersion level regarding their prototypes. They used one

design language consistently throughout the entire prototype. Furthermore, no prototype

required manual intervention to interact with it and the transitions are running smoothly.

The information presented in each prototype was complete and related to real world data. All

prototypes can be used outside the tool, e.g. in a web browser. Moreover, in addition to the

PC-optimized prototypes, two groups (dedicated mock-up / visual prototyping tools) have

also designed a prototype as a mobile version, which can run directly on mobile devices.

Of course, the layout, information structure, and visual language can be reused for all

prototypes. But in case of the groups using the web frameworks, the visual elements as well

as the functionality has been designed to be reused in further prototypes and have been as

well propagated like this by these groups. Hence, the three groups designing their prototypes

with dedicated mock-up / visual prototyping tools have designed it as throw-away prototypes

whereas the other three groups designed it as reusable prototype that shall be evolved to a

product.

In summary, all the groups have managed to build a prototype that feels already like a

real product, whereas one half didn’t implement any functionalities and the other half

implemented the functionalities in a rudimentary way. In terms of the amount of ideas

implemented, the groups don’t differ significantly, but two groups that used the dedicated

214 Chapter 8 Evaluation

prototype tools managed to work out visualization and interaction concepts for a mobile

variant in addition to the desktop variant.

Work product #6: Fair Feedback Only one of the groups included the learning card in

their documentation and that only for the internal fair. The same group used the given

structure of the feedback grid within their documentation of the internal fair feedback.

Furthermore, for the internal fair feedback two additional groups used a subset of the feedback

grid with Things I like most and Things that can be improved. This same structure has been

used by two groups for the external fair, whereas one group additionaly documented ideas.

The rest was unstructured feedback mainly regarding improvements / bugs and occasionally

parts that are not understood. It has not been indicated that the groups have no further data

for the other two parts of the feedback grid.

The groups have rather rudimentarily written down their results in this work product. A

systematic, target-oriented observation can still be read out for the internal trade fair in an

isolated case, but no longer for the external one. The focus of most of them was above all on

the improvements and partly on the things that are already good. All in all, this work product

in this form does not allow much learning, which contributes to a better understanding of

the needs and challenges of the users.

Work product #7: Agile Software Requirements As the results from the Transformation

Framework evaluation show, the participants using the framework had been successfull

in keeping the design thinking results, derive from them agile software requirements, and

sustain the connection between both. The derivation of the minimum viable product was

also successful. In the Epics, which overlapped in several groups, the findings from the

corresponding groups were used (e.g. by including the screenshots of the different prototypes)

and the connection to the results from design thinking / Transformation Framework was

maintained by including links to the corresponding wiki pages und references.

Work product #8: Minimum Viable Product The first thing we analyse is the nlp pipeline

as foundation for the development of the minimum viable product in this case study. Its

components were developed in different technologies communicating together over HTTP

REST-APIs defined with OpenAPI. To be specific about the technologies, the crawler

and the data store were implemented in C# with ASP.NET Core, the data enricher was

implemented in Java, and the recommender in Python. All of these components have been

packed individually into a container (Docker) and are deployed via a CI/CD pipeline from

GitLab to a Rancher controlled Kubernetes Cluster (see Figure 8.16). The discovery of

the components in the cluster takes place via the kubernetes own DNS system and service

8.3 OWL.Culture-Platform 215

definitions created for it. They are accessible through Traefik via normal URLs defined as

Ingresses to the outside world . Communication between the components is event-driven.

However, the observer pattern is not used, but each component is initialized with the end

points of the components required for this component. This cannot be changed during

runtime in the component, but by using the service definition in the kubernetes cluster the

routing to the corresponding instance can be controlled during runtime. In this way, the

components of the backend are technology-independent and can be exchanged without other

components noticing if the API stays the same.

Even if event-driven communication has been used, it does not automatically mean that

it is particularly suitable for event sourcing or beneficial for parallel models. In this case,

there are the three main events CulturalEventCreated, CulturalEventDeleted, and Cultur-

alEventUpdated. The challenge with these is that they act like a central database schema.

All properties that are used by the single components have to be represented in these events

as all components use them. Therefore, all adjustments to the schema must also be made in

all components. This in turn is counterproductive for parallel models and an independent

development of individual components. In this case study this has been shown several

times, among other things, when it came to changing a date format that in the end had to

be changed in all components under the increased effort of the different technologies. It

would have been better if the events had been defined on a more fine granular level, for

example EventDateChanged and EventLocationChanged. Like this, each component would

only have to listen to the events required for them and could introduce new events without

considering all other components.

In the next step, we will examine the frontend and the interaction between it and the nlp

pipeline as the backend. First of all, the frontend was realized with Angular (Angular 7.x)

that uses an architecture consiting of Templates, Components, and Services. The Templates,

which translate to View in the MVP or MVVM pattern, actually consists of HTML Templates

that can use every HTML framework and include data via property bindings on the component

(see Figure 8.17). Changes to these properties are propagated via the event binding. The

Component includes logic specific to the views and get data injected as well as non-view

specific functionalities by Services. Components act as Presenters or ViewModels as we are

using bindings. The Services on the other hand are ’encompassing any value, function, or

feature that an app needs’8. In this sense, a Service is more than the Model, but in this case

it is used as well for getting and pushing data to the backend. For example, the participants

implemented different interchangeable service to either mock data or getting it from the

backend. Hence, with the use of Angular a clear implementation of the MVP respectively

MVVM pattern is given.

8https://angular.io/guide/architecture-services
9https://angular.io/guide/architecture-components

216 Chapter 8 Evaluation

https://angular.io/guide/architecture-services
https://angular.io/guide/architecture-components

Fig. 8.16.: Minimum Viable Product in Rancher controlled Kubernetes Cluster

8.3 OWL.Culture-Platform 217

Template

< >

Component

{ }

Metadata
Property
Binding

Event
Binding

Fig. 8.17.: Relation between Template and Component in Angular. Own representation based on

Angular Docs9.

This has several advantages for us regarding the detached development of the frontend from

the backend, the adaption, and the simultaneous operation of alternatives. In case of the

detached development, the View doesn’t need to consider the data structure of the backend

as it can be restructured for it by either the Service/Model or the Component/ViewModel.

That this is working is showing the use of different Services by the participants to either

mock a data source or using the backend directly. This enabled them to start developing

and trying out the View before all changes have been made to the backend. Furthermore,

the way Angular implements the Components allows you to use them as web components

or simply load web components and fill them with data from the Services. With this, we

can load components online and as well mix different web technologies. Hence, with the

replacement and online loading of web components we achieve easy adaption in the future

as well as the simultaneous operation of different alternatives.

In summary, the analysis of this work product shows that evolutionary software development

is feasible in this case study. This worked particularly well in the front end area, probably

due to the forced implementation by Angular. At the level of the backend, however, problems

arose with the correct implementation of the event sourcing pattern as it was already with

the previous project groups (cf. section 8.1). This restricted the evolutionary capability of

the system as well as the simultaneous operation of different alternatives.

Work product #9: Experiment Definitions The participants defined in total 11 experiments

in FEXP (see section 7.3.1) and Jira (as it allows more information than in FEXP). An example

of such an experiment is the one about the Scrollview on Landing page. The underlying

challenge is that "Users don’t recognize that landing page is scrollable" with the two possible

treatments (variants) (see Figure 8.18) to have the imageview of the landing page set to 75%

instead of 100% or to add a scroll arrow at the bottom. The hypothesis of the experiment is

"Having a solution for showing that there is more content on the landing page than just the

218 Chapter 8 Evaluation

search bar helps the user and doesn’t lead to skip the "unseen", both solutions meet user’s

needs in UX and functionality.". Whether the experiment participants recognized further

content and how they perceived the functionality is what is to be tested. To do this, a set

of quantitative and qualitative questions are asked. Like this, all experiments are defined.

Hence, all experiments have a hypothesis, treatments, and evaluation criteria defined.

100% 75%
✓

✓

X

Fig. 8.18.: Example Experiment: Scrollview on Landing page

From the eleven experiments, ten experiments defined their hypothesis in a cause effect

relationship format, which is good. One hypothesis is not really a hypothesis as it only

describes an action. All eleven hypotheses are on a granularity level that their treatments

(two per each experiment) only cover one level in a software component hierarchy or just one

small software component. This means that the hypotheses have already a high granularity

which is desired in the optimization stage of this approach but not in this since the questions

still relate primarily to the meaningfulness of the intended value. Nevertheless, there is a

chance for further information through the choice of a quantitative and qualitative survey to

capture the evaluation criteria. All parts defined in the single experiments relate to each other

or are fitted together. Summed up, the participants were able to define different experiments

although they are not yet on the desired granularity level.

Work product #10: Experiment Implementation To conduct these experiments, they have

been wrapped up in a story that leads to single tasks which will trigger a single experiment.

The tasks itself are described from a user perspective and not in a way like "now press

this button". The story is divided into two parts that can be used independently of each

other. In the first part, half of the treatments are tested and the other half in the second part.

Depending on the length of the experiments, both treatments can be tested this way without

repeating the tasks.

Furthermore, the story with the tasks is handed out to the experiment participants on paper.

This paper also includes the questions on the individual experiments at the corresponding

points. A consent relating to the personal data and a general questionnaire about the experi-

ment participant is as well included. The general introduction and farewell was carried out

8.3 OWL.Culture-Platform 219

by the advisor / investigator for all test participants simultaneously and supplemented by the

participants for the individual experiment participants.

For data recording the participants are using paper questionnaire as well as screen and

audio recording. For the screen and audio recording ten Laptops have been prepared with

corresponding capturing software as well as with an offline version of the to be tested

software in case the internet connection breaks. The functionality of the software and

recording capability was tested by the participants for all laptops the day before. In addition,

the experiment participants were instructed to think aloud. Besides this, no additional notes

have been made.

The assignment of the treatments is done via feature branching in code like it already uses

FEXP. However, this is done manually and does not use FEXP, because FEXP currently only

assigns treatments randomly according to user ID and cannot be influenced from outside.

In general, the participants conducted a well performed usability test with different alter-

natives. They have issued tasks that lead to certain functions being used or highlighting

the fact that these functions cannot be found. A user-centered task description was used.

With Thinking-Aloud, Screen Recording, Audio Recording and Questionnaires they used

the very common instruments of a usability test. This will also allow them to dig deeper

into problems that occured and gather additional feedback in the analysis.

To implement the different experiments with their treatments the participants logged in

total 173.5 hours. On average implementing one experiment took 15.75 hours, whereas the

median is 4.85 hours.

Work product #11: Experiment Analysis The strategy for the experiment analysis consists

primarily of analyzing the questions. An analysis of the screen and audio recordings is

hardly or not at all included. In total the analysis consists of two steps, where in the first step

the answers were collected in a table. To be precise, there are two tables. In the first table

the answers are combined to one half of the treatments and in the second half to the other

half. If the answers are not free text answers, all statements can be assigned pseudonomized

to the test subjects. The second step involves the aggregation of the results into the two

treatments. The result of this step is a document with an overview of the experiments, the

associated treatments, the results, and corresponding suggestions.

Whereas the analysis of the questionnaire was well performed, the participants missed the

opportunity to gather or document additional insights via the screen and audio recordings.

Due to the thinking aloud, it is very likely that additional information can be found here that

is not requested by the questionnaires, even though a total of 168 questions were worked

out.

220 Chapter 8 Evaluation

8.3.5 Summary and Discussion

In this section we have presented our case study with the OWL.Culture-Platform as case to

investigate the feasibility of the overall approach. For this purpose, we have used a student

project group (participants) that has gone through the various stages of the approach over a

period of one year. Since we did not assume any prior knowledge of the approach among

the participants, additional elements were carried out in order to bring the approach and its

background closer to the students. In order to assess the feasibility of the approach, this case

study relied primarily on questionnaires and the assessment of the work products of each

task as evaluation instruments.

The questionnaire serves on the one hand to record the participants’ view of the approach and

on the other hand to measure potential negative influencing factors related to the case study.

For this purpose, among other things, the topics project affinity, influence of the advisors /

investigators, tasks, team, tools, degree of difficulty, and impression of the approach were

asked. The participants needed only the estimated workload, the level of difficulty was

generally reasonable, well accepted, and only slightly more challenging for some. Overall,

the results speak for a more natural setting mimicking a software development project, which

is positive for generalizability and also for the research methodology that seem to not disturb

the project too much. The advisors / investigators role with regard to influence and managing

was seen positive, but it was not yet optimal as participants lacked orientation, especially

in the first half of the case study. Furthermore, the participants got the tools they needed

and considered the tools provided by the advisors useful. Tasks were understandable and

appropriate in scope. With regard to the team dynamics, the participants also expressed

themselves positively. Accordingly, in this case study, no excessive confounding effects by

the supervisors, the tasks, or the participants are to be expected.

The participants were mainly positive about the approach. They said that they considered the

approach to be new to them. They also think that they have gained a deeper understanding

of the approach and that the gained experiences are useful. Overall the participants state that

they have a good impression of the approach and want to continue to work in this area.

The questionnaire results show that, from the participants’ point of view, the case study

was carried out well and the tension between supervisor and investigator was satisfactorily

resolved. In addition, the participants understood the approach, found what they had learnt

to be useful, assessed the overall approach positively, and wanted to deepen their knowledge

in this area. This speaks for the feasibility of the approach from the participants’ point of

view.

Whether the feasibility at the content level is also given was checked by the evaluation of

the individual work products. A total of 11 work products from the various stages of the

8.3 OWL.Culture-Platform 221

approach were used for this purpose. In general, this evaluation has shown that the approach

is also feasible at the content level and that the interaction between the individual stages

works.

However, it has also revealed some weaknesses in the approach. About half of the par-

ticipants had difficulty formulating requirements from the user’s point of view. The main

problems were the weak separation of problem and solution space, the description of users,

and the inability to describe users actions and not structural requirements. As a result, the

solution space is restricted at a very early stage and underlying problems are not compre-

hensibly documented. Apparently, some developers tend to specify the solution as early

as possible and to avoid potential additional work (cf. point based engineering, Denning

et al. [War+95] and section 1.1.3). This was also evident in the high-fidelity prototypes,

where two groups tried to implement functionalities with web frameworks in order to ensure

reusability and reduce potential additional work, but could not have these effects in the

corresponding stage.

That the developers try this is not bad per se. They may be experts in more technical areas

of software development and accordingly their quality is to think exactly in these areas.

Accordingly, the involvement of such persons should be carefully considered. Two possible

ways would be less involvement in the first three stages or more steering by appropriately

trained personnel.

In the case of less involvement, these persons could, for example, only participate in a

dedicated design thinking workshop like our instance (see section 5.2) in order to be sensitised

to the context of use. Further requirements work could be done by the value designer and

only when the value is set (e.g. technical prototypes in stage 3), these technical persons start

to work on it.

If these people are to work continuously, steering by appropriately trained personnel is

important. The value designer should have a strong empirical und user centered background

and needs to continuously monitor the approach. She must ensure that these people focus

theirselves on the user and deliver high quality results although it is not their area. This

includes as well guidance regarding interview conduction, or prototype creation, experiments,

and empirical evaluations.

Another challenge was the implementation of the technical requirements resulting from

the experiments and evolutionary systems. In principle, these were implemented, but not

necessarily in a good quality. Especially the implementation of event sourcing proved to

be problematic. The participants oriented themselves far too much on active records, in

which a state is persisted and the state is modelled accordingly. They tried to do the same

with the events in event sourcing instead of getting to a much finer granularity. Without

222 Chapter 8 Evaluation

already having extensive experience in the implementation of certain architectural patterns,

the implementation will always be problematic. One solution could be an architecture expert

who reviews each pull request accordingly. However, this may not be feasible in terms

of time. Another promising solution could be automated checking at IDE level or in the

continuous delivery pipeline with corresponding feedback. For example, the introduction of

Lighthouse10 with its score system in the continous delivery pipeline has led to participants

reducing the technical debt of the frontend and introducing fewer new ones or eliminating

them quickly. Accordingly, we need to evaluate how such automated checks could look for

our system architecture and introduce them into the continuous delivery pipeline, e.g. as a

Fitness Function (cf. [FPK17]).

10https://developers.google.com/web/tools/lighthouse/

8.3 OWL.Culture-Platform 223

https://developers.google.com/web/tools/lighthouse/

Epilog 9
In this chapter, we are summarizing the overall results of this thesis in section 9.1. Fur-

thermore, we discuss the results in section 9.2 before giving an outlook on future work

in section 9.3.

9.1 Summary

In chapter 1, we have introduced you to the challenges of developing unique and novel

software-based solutions, especially at the domain level. The main issue with it is the fact that

we start on a greenfield regarding problem and solution space and therefore cannot be certain

about the predictions we make regarding the value and proposed software-based solutions

(cf. Kohavi et al. [Koh+09]). Furthermore, existing software development approaches like

SCRUM seem to not fit anymore as they are optimized for incremental innovations and

not unique and novel software-based solutions (cf. Norman and Verganti [NV14]). Kurtz

and Snowden [KS03] have introduced a sense-making framework that helps to understand

why existing software development methods are not that helpful. In short, the development

of unique and novel software-based solutions means that we are acting in the chaotic and

complex space in which we have to uncover the constraints and interacting dependencies by

trying out different alternatives to learn from their difference. On top of that, the diffusion

process of innovations make it difficult to assess potential solutions during development,

which is why we have introduced the basic characteristics in section 2.1. Design thinking

with its diverging and converging thinking, the separation of problem and solution space, as

well as the focus on learning with the help of tangible prototypes, seems to be best suited to

meet this challenge, which is why it is introduced in section 2.2.

However, the integration of design thinking with software development is unclear as Lindberg,

Meinel and Wagner [LMW11] state. Is it best to use it as a front-end technique (which means

that design thinking is finished before any code is written) or use it as a fully integrated

development philosophy? We decided for a mixture between front-end technique and fully

integrated development philosophy for our approach we call Insight-Centric Design and

Development (ICeDD) and present its concept in section 3.1. One reason for this is the

cost of creating software prototypes as they e.g. always need boilerplate code to be setup,

restrict your ideas by the framework, or need more than general knowledge to be created.

225

For example, paper or lego prototypes are usually quite cheap to make for prototypes with a

reduced feature set and can be created by almost everyone as we usually learnt the necessary

skills for that already. This way, we can better include other stakeholders in the process and

learn from their knowledge. Otherwise, they would need to idle in certain phases which can

be frustrating. This brings us to the other main reason. Most stakeholders involved in this

process, including the developers, are experts in certain fields, which is why they tend to

prefer certain tasks over others. A software developer can be good a solving technical issues

and this is what she really likes, but e. g. has little knowledge and interest in interviews

and therefore doesn’t want to do them as main part of her work. In order to take account

of this situation, we do not force all participants to be equally involved throughout the

process, but include them accordingly in the different stages. The only role equally involved

is the value designer as the advocate for the value proposition. In Figure 9.1, we present

ICeDD in an illustrative way. We start on a greenfield and explore the problem and solution

space initially with the help of grounded theory with the result of a design challenge. The

design challenge is the starting point for design thinking with non-software as medium and

has the goal of further exploring the problem and solution space with the help of tangible

non-software prototypes. The results and prototypes from this are taken into the stage design

thinking with software as a medium to test at least two alternatives with field experiments

to learn from their difference in as natural a context as possible. With finishing this stage,

enough knowledge is created to switch to the optimization stage in which we can focus

on incremental innovations through e.g. agile software development or online controlled

experiments.

Greenfield
Design Thinking with

Non- Software
Design Thinking with

Software

Exploring Problem Space
with Grounded Theory

Exploring Problem and
Solution Space

with Design Thinking

Software Field Experiments

Design Challenge
Prototypes and
Value Definition

Fig. 9.1.: Schematic representation of our approach.

Besides an overview of our approach, we also go into details of the single stages, which are

illustrated in Figure 9.2. They are ICeDD Stage (1): Initialize Design Thinking, ICeDD

Stage (2): Execute Design Thinking with Non-Software, ICeDD Stage (3): Prepare Design

Thinking with Software, ICeDD Stage (4): Execute Design Thinking with Software, and

ICeDD Stage (5): Optimization, whereas the last stage is not discussed in detail as it is there

to emphasize how this approach is connected to existing software development methods.

226 Chapter 9 Epilog

The first stage is presented and discussed in chapter 4. It became necessary because design

thinking requires an appropriate design challenge, but the literature mainly deals with how

to evaluate the quality of a design challenge ex post and not on how to derive a good one

for software-based solutions. Based on our findings on expert knowledge, we developed

an approach based on the grounded theory methodology as a theory generating approach

(see section 4.3). Furthermore, we have supplemented this approach with on-site feature

requests (see section 4.2) as expert knowledge is often only activated in their needed context

and this way we want to ensure that we can also get the cases that have been maybe forgotten

or not popped up during the systematic analysis with an analyst. Although grounded theory is

a theory-generating method, its limitations lie in its validability, since it is designed primarily

for observational and interview techniques rather than learning through concrete prototypes

(cf. section 2.1 and section 1.1.1). Therefore, this level alone is not enough and we primarily

take our design challenge from the insights we have gained in this level.

Initialize Design Thinking

Execute Design Thinking
with Non-Software

Prepare Design Thinking
with Software

Execute Design Thinking
with Software

 Optimization

1

2

3

4

5

Fig. 9.2.: Solution Overview

The design challenge is the starting point for the next stage ICeDD Stage (2): Execute

Design Thinking with Non-Software, which we present and discuss in chapter 5. In its

essence, this stage is actually normal design thinking. However, since design thinking is

also a methodology and needs to be adapted to our context, we have developed our instance

based on the K12 Labs proposal for the implementation of design thinking, which we present

in section 5.2. A main difference in our instance is that it is mainly designed as a 1-2 day

workshop rather than a 6 week design sprint. Our goal was not to develop with it a fully

finished product but create awareness and empathy for the different stakeholders as well

as explore the problem and solution space further to find appropriate value propositions.

This is mainly because we have observed (cf. section 5.3 for our findings in conducting

design thinking) that for all our stakeholders it was appropriate to focus one or two days

9.1 Summary 227

on this stage, but difficult to engage in it for a longer period. The results of this stage are

very experimental prototypes and additional insights, which are documented in various

artifacts.

To make these prototypes and findings usable for software development we introduced the

third stage ICeDD Stage (3): Prepare Design Thinking with Software, which we present

and discuss in chapter 6. For this we have to do two things in particular. First, we need

to transform the experimental prototypes and insights into an agile software specification

/ documentation. To do this, we must, among other things, structure them and make it

possible to represent alternatives. For this purpose we have developed a transformation

framework (DTRF) (see section 6.2) and gave evidence for its feasibility with a usability test

(see section 6.2.4). Furthermore, in terms of the prototype level of Houde and Hill [HH97]

and the recommended ux design process by Mayhew [May12], the Technical and the Look

& Feel level must be populated and all levels must be integrated. This also completes this

stage and provides the basis for implementing concrete software solutions.

The implementation of different software solutions or rather experimenting with different

software solutions is the main part of the fourth stage ICeDD Stage (4): Execute Design

Thinking with Software, which we present and discuss in chapter 7. As we mentioned in the

introduction (see section 1.1), before we have tested something in reality we cannot be sure

that we have considered all constraints and dependencies. That is why it is so important to

test our software-based solutions in reality with at least two alternatives to build a better

understanding of the problem and solution space based on the differences. Accordingly, we

have to experiment in this stage, more precisely to conduct qualitative experiments in the

form of field studies / field experiments. This means that we have to change the software

development process to experimenting with at least two solution alternatives. A change in

the software development process does not only mean a change in the process itself, but in

the sense of 4P (Jacobson, Booch, and Rumbaugh [JBR99, pp.15]) involves the product,

the people, and the project as well. Accordingly, we have divided section 7.2 into these

same 4Ps, which are interrelated. The starting point is the process, as it is essential for

this stage and restricts the further Ps. Based on the general experimental process Design,

Build, Run, and Analyze we have refined and adapted the process for software development /

qualitative experiments with software (see section 7.2.1). The experimentation itself requires

certain product properties, which we have defined in section 7.2.2 in the form of a macro-

architecture. With experimenting we have a situation similar to natural evolution, where

different alternatives compete against each other and furthermore we have to assume at

this stage that our knowledge of problem and solution space has not yet consolidated to the

extent that there are no more changes. Accordingly, we need an evolutionary architecture

that allows testing with different alternatives and also allows changes over time. We have

found this with the System of Systems architecture. For the concrete realization, we have

228 Chapter 9 Epilog

adapted established patterns from other areas of software engineering such as scalability.

In addition, we present the implications for the people in section 7.2.3 and for the project

in section 7.2.4. Besides the adaptation of these 4Ps, a very important point is the viability

of the process. In order to provide evidence for the viability, we present and discuss tools

in section 7.3 as they ”[...] are good at automating repetitive tasks, keeping things structured,

managing large amounts of information, and guiding you along a particular development

path” [JBR99, pp.22] and therefore influence the resources and effectivity of a process. We

have developed tools for process parts that had not yet tools and provided evidence for their

feasibility with the help of usability tests and the implementation itself.

As mentioned at the beginning, these 4 stages are in the focus of this thesis. The 5th

stage only serves as a highlighting for the connection to existing methods for incremental

innovations like Scrum or online controlled experiments. To investigate the interaction

of the most important stages in this approach, we have conducted a feasibility case study,

which we present and discuss in section 8.3. We use the OWL.Culture-Platform as a case

and have a first prototype of it developed by a student project group in computer science,

which consists of up to 18 students and runs for a year. The first stage has already been

completed for the OWL.Culture-Platform prior to the case study, which is why the students

complete only the further stages 2-4. For the evaluation, we used surveys to measure the

usability of the approach from the perspective of the participants, but also to identify possible

confounding factors. Furthermore, we analyzed the individual artifacts created in each stage

in order to assess the quality of the work results and the interaction of each stage. The

surveys showed that the participants perceived the approach as feasible and also evaluated it

positively. Furthermore, the analysis of the artifacts has shown that the approach is feasible

and that the interaction between the different stages works. However, it was also found

that most of the participants had great difficulties to formulate requirements from a user

perspective and to maintain a separation between problem and solution. This concludes our

summary and in the following we discuss the results of this thesis.

9.2 Discussion

For the discussion of this thesis, we will start with our objectives from section 1.2, more

precisely with their operationalization as Fitness Function (FF). In the summary and discus-

sion of each stage we have already discussed the fulfillment of the fitness function based

on the individual stage. These are summarized in Figure 9.3. However, a discussion of the

fitness function in relation to the overall approach is still missing.

Our first characteristic of our FF is Alternatives. For this, we have defined that it is fully

fulfilled if ”at least two solutions are simultaneously supported, created in parallel, and

9.2 Discussion 229

0

1

2

3

4

5
Alterna�ves

Opera�ng Alterna�ves

Consequences of
Technological DecisionsFocus on Novelty

Learning Cycle

(a) ICeDD Stage (1): Initialize Design Thinking

0

1

2

3

4

5
Alterna�ves

Opera�ng Alterna�ves

Consequences of
Technological DecisionsFocus on Novelty

Learning Cycle

(b) ICeDD Stage (2): Execute Design Thinking with

Non-Software

0

1

2

3

4

5
Alterna�ves

Opera�ng Alterna�ves

Consequences of
Technological DecisionsFocus on Novelty

Learning Cycle

(c) ICeDD Stage (3): Prepare Design Thinking with

Software

0

1

2

3

4

5
Alterna�ves

Opera�ng Alterna�ves

Consequences of
Technological DecisionsFocus on Novelty

Learning Cycle

(d) ICeDD Stage (4): Execute Design Thinking with

Software

Fig. 9.3.: Summary of the FF results for the individual stages.

can be present as software as well as non-software”. In our first stage, we have ensured

that the corresponding design challenge at least two solutions can be found and created in

parallel, but we cannot yet ensure at this stage that it can also be present as software, which

is why we it only got 3,75. Furthermore, we create at least two solutions in the second

stage, but since the focus here is still on value, it is not yet ensured that the solutions can

actually be implemented as software. However, it is still ensured that at least two solution

alternatives are available at the end. This changes only in the third stage, in which we

transform the results from the second stage for software development and enrich them with

the Technical and Look & Feel levels. In this way we achieve that ”at least two solutions

are simultaneously supported, created in parallel, and can be present as software as well as

non-software”. As we are using these in the fourth stage and develop actual software, this

also holds true for that stage. Accordingly, the characteristic Alternatives is also fulfilled for

the overall approach.

The next characteristic is Operating Alternatives, which is related to the implemented

software. This is why stage 1-3 do not fulfill it as they are not concerned about the specific

implementation yet, but stage 4 is. We have defined that it is fully fulfilled if we have an

Online Fallback Mechanism, Component based Deployment, Automatic Deployment and

230 Chapter 9 Epilog

Configuration, and Automatic User Specific Online Orchestration. By using our System of

Systems macro-architecture, we ensure that we get constituent systems that can be deployed

and run individually and therefore get a component based deployment. Furthermore, by

introducing a CI/CD pipeline the deployment and configuration of the constituent systems can

also be done automatically as well as automatically reverting back to a previous version. In

conjunction with the introduced Technical Assignment System (section 7.3.2) we can ensure

an Online Fallback Mechanism, but also an Automatic User Specific Online Orchestration as

we can individually control which user gets redirected to which constituent system but also

with feature toggling which feature is activated. Correspondingly, this characteristic is also

completely fulfilled for the overall approach, since only the fourth stage refers to concrete

software and also fulfils this completely.

The third characteristic is Consequences of Technological Decisions, which is fully fulfilled

if different programming languages and technologies (Polyglotism) can be used, the UI

is independent of the Model layer, we can support parallel models, and have a System of

Systems architecture (Suite of Small Services, Bounded Contexts, Services run in its own

Process, Independently Deployable Services)). This is also only related to the fourth stage,

which fulfills it completely. We have a System of Systems macro-architecture that uses

Bounded Contexts to split services on a managerial level in a suite of small services or

constituent systems and additionally have ensured with it that each constituent system or

service runs in its own process and is independently deployable. Furthermore, by introducing

event sourcing and CQRS we have enabled the creation of parallel models by utilizing the

event-driven architecture obtained with event sourcing. This also allows us to use completely

different technologies in the services as long as they adhere to the macro-architecture that

mainly requires REST-APIs as a means for a unified communication and the usage of event

sourcing. With the introduction of MVVM, we have also ensured the independence of UI

and Model.

For the fourth characteristic Focus on Novelty, we have defined that it is fully fulfilled if the

”method does not merely copy current state but creates novel solutions (this includes e.g.

structure, tasks, or processes). If we look at Figure 9.3, we see that the first two stages fulfill

this, but not the third and fourth stage. In the first stage, we are using grounded theory as

a theory generating approach and with that fulfill that we do not focus only on describing

the current state but also creating new ideas on how the state could be changed. But as

asking experts about new ideas without having a tangible prototype is not very promising

(cf. section 2.1 for when an innovation is likely to be adopted), we additionally need design

thinking in the next stage. With Design Thinking and its diverging and converging thinking

we ensure that we do not stick to only the current state but also create novel solutions that

are tested out with tangible prototypes. We are ending this stage with the converging phase

of design thinking in which we still have at least two alternative solutions. Accordingly, the

9.2 Discussion 231

next stages serve only for further convergence and not for divergence. That is why they do

not fulfil the focus on novelty. But if we look at the overall approach, we fully meet the

Focus on Novelty characteristic, because we do this already in the first two stages and then

only converge.

Our last characteristic is Learning Cycle that is fulfilled if ”a learning cycle is intended,

explicitly defined, refers to several alternatives at a time, and adapts it according to the

context”. All stages beside the third stage have introduced an explicitly defined learning

cycle that refers to several alternatives at a time and adapts it according to the context. The

first stage has it with grounded theory, the second stage with design thinking, and the fourth

stage with qualitative experiments. The third stage is not fully covering it as it has a learning

cycle that uses several alternatives but is not adapting to its context. However, at this stage it

is not necessary for the learning cycle to adapt to the context, since this stage is not primarily

concerned with new insights, but with the transformation of existing ones. Accordingly, our

overall approach also fully meets this characteristic. In Figure 9.4, we have illustrated all

characteristics related to the overall approach in a radar chart.

0

1

2

3

4

5
Alterna�ves

Opera�ng Alterna�ves

Consequences of
Technological DecisionsFocus on Novelty

Learning Cycle

Fig. 9.4.: Radar Chart for our approach ICeDD regarding our FF.

With the FF now completed for the approach, we can next discuss our objectives. Objective 2

is represented by the two characteristics Alternatives and Learning Cycle, with Alternatives

being derived entirely from Objective 2. In short, Objective 2 defines that we need to

learn about dependencies and constraints from the difference of multiple solutions that are

simultaneously supported. Accordingly, fulfilling these two characteristics means that we

have also fulfilled Objective 2.

Objective 3 is about supporting the simultaneous operation of several software solutions. It

is fully represented by the characteristic Operating Alternatives. Hence, as we have fully

fulfilled Operating Alternatives, we have as well fulfilled this objective.

232 Chapter 9 Epilog

Objective 4 is there to ensure that technological decisions restrict us in the future as few as

possible. This objective is fully covered by the characteristic Consequences of Technological

Decisions, which we fulfill completely as well with our approach. Therefore, this objective

is fulfilled as well.

Objective 5 is concerned with the development of new ideas on how to shape the context of

use. The characteristic Focus on Novelty is only derived from this objective and no other

characteristic is related to this objective. By completely fulfilling this characteristic as well,

we also fulfill this objective.

Objective 6 is the last objective related to our FF and defines that the development process

itself should be a learning and understanding process. From this objective we have only

derived the characteristic Learning Cycle, which we already mentioned fulfill completely.

Therefore, this objective is fulfilled as well.

Our last objective is Objective 1 which requires that findings from other disciplines useful for

the development of unique and novel software-based solutions are identified. In this thesis,

we have ensured it with the help of our research approach (see section 1.3.2). We have used

Action Research as a foundation to uncover potential issues in the development process and

take these to conduct a literature research also in other fields. Overall, this was an iterative

and incremental research approach for developing our approach for developing unique and

novel software-based solutions. In section 8.1 we have summarized challenges and results

from this approach. This way, we have integrated results from economics with Diffusions of

Innovations for innovations or the Cynefin framework to understand the basic properties we

need for our approach. Furthermore, by identifying the challenge of tacit knowledge, we got

to expert knowledge and psychology which strongly influenced the way we structured our

approach and included certain aspects like the On-Site Feature Requests. For the creation of

design challenges we have identified the need for a theory generating approach, which found

in social sciences with grounded theory. Design Thinking as generalized approach on how

designers are working got the foundation for our approach and was adapted accordingly for

software development. Accordingly, we have also fulfilled the goal of integrating findings

from other disciplines into our approach in order to obtain a meaningful approach.

Our research approach has helped us to achieve a high level of validity, even if this was at

the expense of reliability. However, we were able to compensate for this with the help of the

literature research and thus with well-proven findings. Furthermore, it has helped us to focus

on points that are actually and not just theoretically important for the approach, since our

research approach is based on problems that have arisen in actual development. However,

one could argue that due to the university setting with the project group, the whole thing is

not really transferable to software development companies.

9.2 Discussion 233

Overall, in this thesis we have given with ICeDD a possible approach for developing unique

and novel software-based solutions that is mainly based on well-proven findings from differ-

ent disciplines including computer science. We have delivered evidence for the feasibility of

this approach on an argumentation level in the single stages but also with our OWL.Culture-

Platform case study in section 8.3. The feasibility was also what was in focus of this thesis.

What is missing, is further evidence that ICeDD is actually better in developing unique and

novel software-based solutions than other approaches. This brings us to the next part, future

work.

9.3 Future Work

The focus of this thesis was to develop an approach for unique and novel software-based

solutions and give evidence for its feasibility. Neither the efficiency nor the effectivity have

yet been evaluated. In future studies this has to be done by doing for example a controlled

experiment in which one group is using this approach (ICeDD) and another one an alternative

approach like Scrum alone.

Furthermore, as the focus was on the feasibility, the single stages included only the nec-

essary parts for showing the feasibility of the approach. Especially the tools are just first

prototypes with rudimentary features that have potential for further improvements. Hence, in

further studies it can be researched how the individual parts of this approach can be further

improved.

As the OWL.Culture-Platform got a funding starting from 2020, we can actually try out

this approach with a real company. Besides further looking into how to actually implement

the macro-architecture correctly, we will further look into realizing qualitative experiments.

In this thesis, we only conducted a rudimentary experiment at the end of the case study

in section 8.3. For this project, we want to further improve our tool set for qualitative

experiments, especially for conducting remote testing. It is planned to continuously do user

studies in this three year project with actual users in the Ostwestfalen-Lippe (OWL) region.

Furthermore, the goal is not to develop a research prototype, but a working product. Hence,

we can experiment in a more realistic setting than we already had with our student project

group.

234 Chapter 9 Epilog

Bibliography

[Abi19] Zain Ul Abidin. “User Specific Online Feature Orchestration”. MA thesis. 2019 (cit. on

pp. 146, 152).

[Ado06] S. Adolph. “What lessons can the agile community learn from a maverick fighter

pilot?” In: AGILE 2006 (AGILE’06). July 2006 (cit. on pp. 122, 123, 168, 183).

[AND94] PEK VAN ANDEL. “Anatomy of the Unsought Finding. Serendipity: Orgin, History,

Domains, Traditions, Appearances, Patterns and Programmability”. In: The British

Journal for the Philosophy of Science 45.2 (June 1994), pp. 631–648. eprint: http:

//oup.prod.sis.lan/bjps/article-pdf/45/2/631/9745686/631.pdf

(cit. on p. 78).

[Arm+10] Michael Armbrust, Armando Fox, Rean Griffith, et al. “A View of Cloud Computing”.

In: Commun. ACM 53.4 (Apr. 2010), pp. 50–58 (cit. on pp. 9, 55).

[ACO16] N. L. Atukorala, C. K. Chang, and K. Oyama. “Situation-Oriented Requirements Elic-

itation”. In: 2016 IEEE 40th Annual Computer Software and Applications Conference

(COMPSAC). Vol. 1. June 2016, pp. 233–238 (cit. on p. 71).

[BKM09] Aaron Bangor, Philip Kortum, and James Miller. “Determining what individual SUS

scores mean: Adding an adjective rating scale”. In: Journal of usability studies 4.3

(2009), pp. 114–123 (cit. on pp. 150, 152).

[Bas+19] Ali Basiri, Lorin Hochstein, Nora Jones, and Haley Tucker. “Automating chaos experi-

ments in production”. In: 2019 IEEE/ACM 41st International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE. 2019, pp. 31–40

(cit. on p. 138).

[Bat+13] A. Batool, Y. H. Motla, B. Hamid, et al. “Comparative study of traditional requirement

engineering and Agile requirement engineering”. In: 2013 15th International Confer-

ence on Advanced Communications Technology (ICACT). Jan. 2013, pp. 1006–1014

(cit. on p. 69).

[Bat05] Don Batory. “Feature models, grammars, and propositional formulas”. In: Interna-

tional Conference on Software Product Lines. Springer. 2005, pp. 7–20 (cit. on p. 112).

[Ben84] Patricia Benner. “From novice to expert”. In: Menlo Park (1984) (cit. on pp. 24, 51,

63).

[Bet+13] Dominic Betts, Julian Dominguez, Grigori Melnik, Fernando Simonazzi, and Mani

Subramanian. Exploring CQRS and Event Sourcing: A Journey into High Scalability,

Availability, and Maintainability with Windows Azure. 1st. Microsoft patterns &

practices, 2013 (cit. on pp. 131–133, 141, 143).

235

http://oup.prod.sis.lan/bjps/article-pdf/45/2/631/9745686/631.pdf
http://oup.prod.sis.lan/bjps/article-pdf/45/2/631/9745686/631.pdf

[BH99] Hugh Beyer and Karen Holtzblatt. “Contextual Design”. In: Interactions 6.1 (Jan.

1999), pp. 32–42 (cit. on p. 85).

[BHB04] Hugh Beyer, Karen Holtzblatt, and Lisa Baker. “An Agile Customer-Centered Method:

Rapid Contextual Design”. In: Extreme Programming and Agile Methods - XP/Agile

Universe 2004. Ed. by Carmen Zannier, Hakan Erdogmus, and Lowell Lindstrom.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 50–59 (cit. on p. 83).

[Böc+11] Irina Böckelmann, Daniel Schenk, Thoralf Rößler, et al. Physiologische Beanspruch-

ungsreaktionen bei der Anwendung von kopfgetragenen AR-Displays. 2011 (cit. on

p. 27).

[Boe88] B. W. Boehm. “A spiral model of software development and enhancement”. In: Com-

puter 21.5 (May 1988), pp. 61–72 (cit. on p. 70).

[Boe06a] Barry Boehm. “A view of 20th and 21st century software engineering”. In: Pro-

ceedings of the 28th international conference on Software engineering. ACM. 2006,

pp. 12–29 (cit. on pp. 8, 10, 183).

[Boe06b] Barry W Boehm. “Value-based software engineering: Overview and agenda”. In:

Value-based software engineering. Springer, 2006, pp. 3–14 (cit. on pp. 48, 56, 87,

98, 99, 104).

[BBS16] Benjamin W. Bohl, Axel Berndt, and Björn Senft. “Formate als Sackgassen: Hand-

lungsempfehlungen”. In: Konferenzabstracts der 3. Tagung des Verbands "Digital

Humanities im deutschsprachigen Raum e. V." Leipzig, Mar. 2016, pp. 103–107 (cit.

on p. 27).

[Bos14] Jan Bosch. “Continuous Software Engineering: An Introduction”. In: Continuous

Software Engineering. Ed. by Jan Bosch. Cham: Springer International Publishing,

2014, pp. 3–13 (cit. on pp. 57, 145).

[Bro+96] John Brooke et al. “SUS-A quick and dirty usability scale”. In: Usability evaluation

in industry 189.194 (1996), pp. 4–7 (cit. on p. 150).

[BR01] Glenn J. Browne and Michael B. Rogich. “An Empirical Investigation of User Re-

quirements Elicitation: Comparing the Effectiveness of Prompting Techniques”. In:

Journal of Management Information Systems 17.4 (2001), pp. 223–249. eprint: https:

//doi.org/10.1080/07421222.2001.11045665 (cit. on pp. 68, 69).

[Bur+12] Anne Burdick, Johanna Drucker, Peter Lunenfeld, Todd Presner, and Jeffrey Schnapp.

Digital_Humanities. Mit Press, 2012 (cit. on p. 168).

[BMS20] Bianca Burgfeld-Meise, Dorothee M Meister, and Björn Senft. “Subjektorientierte

Softwareentwicklung als medienpädagogische Herausforderung”. In: MedienPäda-

gogik: Zeitschrift für Theorie und Praxis der Medienbildung 39 (2020), pp. 86–102

(cit. on pp. 27, 51).

[Bur10] Thomas Burkart. “Qualitatives Experiment”. In: Handbuch Qualitative Forschung

in der Psychologie. Ed. by Günter Mey and Katja Mruck. Wiesbaden: VS Verlag für

Sozialwissenschaften, 2010, pp. 252–262 (cit. on pp. 122, 124).

236 Bibliography

https://doi.org/10.1080/07421222.2001.11045665
https://doi.org/10.1080/07421222.2001.11045665

[CK96] P. Carlshamre and J. Karlsson. “A usability-oriented approach to requirements engi-

neering”. In: Proceedings of the Second International Conference on Requirements

Engineering. Apr. 1996, pp. 145–152 (cit. on p. 72).

[CKD12] M. Cataldo, I. Kwan, and D. Damian. “Conway’s Law Revisited: The Evidence for

a Task-Based Perspective”. In: IEEE Software 29.01 (Jan. 2012), pp. 90–93 (cit. on

p. 169).

[CL99] Larry L Constantine and Lucy AD Lockwood. Software for use: a practical guide to

the models and methods of usage-centered design. Pearson Education, 1999 (cit. on

p. 83).

[Con68] Melvin E Conway. “How do committees invent”. In: Datamation 14.4 (1968), pp. 28–

31 (cit. on p. 169).

[Coo94] Nancy J Cooke. “Varieties of knowledge elicitation techniques”. In: International

Journal of Human-Computer Studies 41.6 (1994), pp. 801–849 (cit. on pp. 71, 72).

[CRC07] Alan Cooper, Robert Reimann, and David Cronin. “Modeling Users: Personas and

Goals”. In: About Face 3: The Essentials of Interaction Design. Wiley Publishing,

2007 (cit. on pp. 71, 72, 74, 83).

[DB05] Kristina B. Dahlin and Dean M. Behrens. “When is an invention really radical?:

Defining and measuring technological radicalness”. In: Research Policy 34.5 (2005),

pp. 717–737 (cit. on p. 5).

[DV15] Werner Damm and Alberto Sangiovanni Vincentelli. “A Conceptual Model of System

of Systems”. In: Proceedings of the Second International Workshop on the Swarm at

the Edge of the Cloud. SWEC ’15. Seattle, Washington: Association for Computing

Machinery, 2015, pp. 19–27 (cit. on p. 130).

[Dan10] Erik Dane. “Reconsidering the Trade-off Between Expertise and Flexibility: a Cog-

nitive Entrenchment Perspective”. In: Academy of Management Review 35.4 (2010),

pp. 579–603. eprint: https://doi.org/10.5465/amr.35.4.zok579 (cit. on

p. 179).

[DGH08] Peter J. Denning, Chris Gunderson, and Rick Hayes-Roth. “The Profession of IT:

Evolutionary System Development”. In: Commun. ACM 51.12 (Dec. 2008), pp. 29–31

(cit. on pp. 9, 15, 53, 104, 111, 130, 139).

[Dob+20] Franziska Dobrigkeit, Philipp Pajak, Danielly de Paula, and Matthias Uflacker.

“DT@IT Toolbox: Design Thinking Tools to Support Everyday Software Devel-

opment”. In: Design Thinking Research : Investigating Design Team Performance.

Ed. by Christoph Meinel and Larry Leifer. Cham: Springer International Publishing,

2020, pp. 201–227 (cit. on p. 57).

[DP19] Franziska Dobrigkeit and Danielly de Paula. “Design Thinking in Practice: Understand-

ing Manifestations of Design Thinking in Software Engineering”. In: Proceedings of

the 2019 27th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. ESEC/FSE 2019. Tallinn,

Estonia: Association for Computing Machinery, 2019, pp. 1059–1069 (cit. on p. 57).

Bibliography 237

https://doi.org/10.5465/amr.35.4.zok579

[DP+17] Franziska Dobrigkeit, Danielly de Paula, et al. “The best of three worlds-the creation of

INNODEV a software development approach that integrates design thinking, SCRUM

and lean startup”. In: DS 87-8 Proceedings of the 21st International Conference

on Engineering Design (ICED 17) Vol 8: Human Behaviour in Design, Vancouver,

Canada, 21-25.08. 2017. 2017, pp. 319–328 (cit. on p. 57).

[DPU19] Franziska Dobrigkeit, Danielly de Paula, and Matthias Uflacker. “InnoDev: A Software

Development Methodology Integrating Design Thinking, Scrum and Lean Startup”.

In: Design Thinking Research : Looking Further: Design Thinking Beyond Solution-

Fixation. Ed. by Christoph Meinel and Larry Leifer. Cham: Springer International

Publishing, 2019, pp. 199–227 (cit. on p. 57).

[Dod02] Gordana Dodig-Crnkovic. “Scientific methods in computer science”. In: Proceedings

of the Conference for the Promotion of Research in IT at New Universities and at

University Colleges in Sweden, Skövde, Suecia. 2002, pp. 126–130 (cit. on pp. 18, 19).

[Dor11] Kees Dorst. “The core of ‘design thinking’ and its application”. In: Design Studies

32.6 (2011). Interpreting Design Thinking, pp. 521–532 (cit. on pp. 40, 43).

[Dra+18] Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, et al. “Microservices: How

To Make Your Application Scale”. In: Perspectives of System Informatics. Ed. by

Alexander K. Petrenko and Andrei Voronkov. Cham: Springer International Publishing,

2018, pp. 95–104 (cit. on p. 170).

[DD88] Hubert L. Dreyfus and Stuart E. Dreyfus. Künstliche Intelligenz : von den Grenzen der

Denkmaschine und dem Wert der Intuition. Aus dem Engl. übers. 1988 (cit. on p. 63).

[DF12] Joseph C. Dumas and Jean E. Fox. “Usability Testing”. In: Human Computer Interac-

tion Handbook: Fundamentals, Evolving Technologies, and Emerging Applications.

Ed. by Julie A Jacko. CRC press, 2012, pp. 1221–1241 (cit. on p. 125).

[Eas+08] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian. “Select-

ing Empirical Methods for Software Engineering Research”. In: Guide to Advanced

Empirical Software Engineering. Ed. by Forrest Shull, Janice Singer, and Dag I. K.

Sjøberg. London: Springer London, 2008, pp. 285–311 (cit. on p. 23).

[Eva04] Eric Evans. Domain-driven design: tackling complexity in the heart of software.

Addison-Wesley Professional, 2004 (cit. on pp. 104, 130, 134).

[Fer+17] D. Méndez Fernández, S. Wagner, M. Kalinowski, et al. “Naming the pain in require-

ments engineering”. In: Empirical Software Engineering 22.5 (Oct. 2017), pp. 2298–

2338 (cit. on pp. 63, 68).

[FS16] Holger Fischer and Björn Senft. “Human-Centered Software Engineering as a Chance

to Ensure Software Quality Within the Digitization of Human Workflows”. In: Human-

Centered and Error-Resilient Systems Development. Proceedings of the 6th Interna-

tional Conference on Human-Centered Software Engineering (HCSE). Vol. 9856.

LNCS. Springer, 2016, pp. 30–41 (cit. on pp. 15, 16, 27).

238 Bibliography

[Fis+18] Holger Fischer, Björn Senft, Florian Rittmeier, and Stefan Sauer. “A Canvas Method to

Foster Interdisciplinary Discussions on Digital Assistance Systems”. In: Design, User

Experience, and Usability: Theory and Practice. Proceedings of the 20th International

Conference on Human-Computer Interaktion (HCI International 2018). Ed. by Aaron

Marcus and Wentao Wang. LNCS, vol. 10918. Springer, 2018, pp. 711–724 (cit. on

p. 27).

[FSS17] Holger Fischer, Björn Senft, and Katharina Stahl. “Akzeptierte Assistenzsysteme in

der Arbeitswelt 4.0 durch systematisches Human-Centered Software Engineering”.

In: Wissenschafts- und Industrieforum 2017 - Intelligente Technische Systeme. Ed.

by Eric Bodden, Falko Dressler, Roman Dumitrescu, et al. Vol. 369. Paderborn:

Verlagsschriftenreihe des Heinz Nixdorf Instituts, 2017, pp. 197–210 (cit. on p. 27).

[FSN13] Holger Gerhard Fischer, Benjamin Strenge, and Karsten Nebe. “Towards a Holistic

Tool for the Selection and Validation of Usability Method Sets Supporting Human-

Centered Design”. In: Design, User Experience, and Usability. Design Philosophy,

Methods, and Tools. Vol. 8012. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2013, pp. 252–261 (cit. on p. 148).

[FS14] Brian Fitzgerald and Klaas-Jan Stol. “Continuous Software Engineering and Beyond:

Trends and Challenges”. In: Proceedings of the 1st International Workshop on Rapid

Continuous Software Engineering. RCoSE 2014. Hyderabad, India: ACM, 2014,

pp. 1–9 (cit. on p. 57).

[FF94] William Foddy and William H Foddy. Constructing questions for interviews and

questionnaires: Theory and practice in social research. Cambridge university press,

1994 (cit. on p. 72).

[FPK17] Neal Ford, Rebecca Parsons, and Patrick Kua. Building Evolutionary Architectures:

Support Constant Change. " O’Reilly Media, Inc.", 2017 (cit. on pp. 12, 15, 53, 131,

137, 223).

[Fow01] M. Fowler. “Separating user interface code”. In: IEEE Software 18.2 (2001), pp. 96–97

(cit. on p. 134).

[FBB04] Fay Fransella, Richard Bell, and Don Bannister. A manual for repertory grid technique.

John Wiley & Sons, 2004 (cit. on p. 72).

[FS11] David M. Frohlich and Risto Sarvas. “HCI and Innovation”. In: CHI ’11 Extended

Abstracts on Human Factors in Computing Systems. CHI EA ’11. Vancouver, BC,

Canada: Association for Computing Machinery, 2011, pp. 713–728 (cit. on p. 168).

[Ger+16] Sebastian Gerdes, Stefanie Jasser, Matthias Riebisch, et al. “Towards the Essentials

of Architecture Documentation for Avoiding Architecture Erosion”. In: Proccedings

of the 10th European Conference on Software Architecture Workshops. ECSAW ’16.

Copenhagen, Denmark: Association for Computing Machinery, 2016 (cit. on p. 101).

[Ger+13] V. Gervasi, R. Gacitua, M. Rouncefield, et al. “Unpacking Tacit Knowledge for Re-

quirements Engineering”. In: Managing Requirements Knowledge. Ed. by Walid

Maalej and Anil Kumar Thurimella. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 23–47 (cit. on pp. 51, 63).

Bibliography 239

[GL09] Jochen Gläser and Grit Laudel. Experteninterviews und qualitative Inhaltsanalyse. 3.,

überarbeitete Auflage. 2009 (cit. on pp. 80, 103, 174).

[GB75] Duncan R Godden and Alan D Baddeley. “Context-dependent memory in two natural

environments: On land and underwater”. In: British Journal of psychology 66.3 (1975),

pp. 325–331 (cit. on p. 66).

[GL93] J. A. Goguen and C. Linde. “Techniques for requirements elicitation”. In: [1993]

Proceedings of the IEEE International Symposium on Requirements Engineering. Jan.

1993, pp. 152–164 (cit. on p. 72).

[GF94] O. C. Z. Gotel and C. W. Finkelstein. “An analysis of the requirements traceabil-

ity problem”. In: Proceedings of IEEE International Conference on Requirements

Engineering. Apr. 1994, pp. 94–101 (cit. on p. 111).

[Gre08] Sue Greener. Business research methods. BookBoon, 2008 (cit. on p. 72).

[Gre+16] Markus Greulich, Nicola Karthaus, Simon Oberthür, et al. “Design Thinking als

Methode in den Digital Humanities. Optionen interdisziplinären, forschenden Lehrens

und Lernens”. In: Konferenzabstracts der 45. Jahrestagung der Deutschen Gesellschaft

für Hochschuldidaktik. 2016 (cit. on pp. 27, 163).

[Gro+95] Standish Group et al. “The Standish Group Report-CHAOS”. In: The Standish Group

(1995) (cit. on p. 64).

[GSA16] Kavitha Gurusamy, Narayanan Srinivasaraghavan, and Sisira Adikari. “An Integrated

Framework for Design Thinking and Agile Methods for Digital Transformation”. In:

Design, User Experience, and Usability: Design Thinking and Methods. Ed. by Aaron

Marcus. Cham: Springer International Publishing, 2016, pp. 34–42 (cit. on p. 56).

[Gut82] Jonathan Gutman. “A Means-End Chain Model Based on Consumer Categorization

Processes”. In: Journal of Marketing 46.2 (1982), pp. 60–72. eprint: https://doi.

org/10.1177/002224298204600207 (cit. on p. 72).

[Hal13] Erika Hall. Just enough research. A Book Apart New York, 2013 (cit. on p. 70).

[HBK03] Marc Hassenzahl, Michael Burmester, and Franz Koller. “AttrakDiff: Ein Fragebogen

zur Messung wahrgenommener hedonischer und pragmatischer Qualität”. In: Mensch

& Computer 2003: Interaktion in Bewegung. Ed. by Gerd Szwillus and Jürgen Ziegler.

Wiesbaden: Vieweg+Teubner Verlag, 2003, pp. 187–196 (cit. on p. 75).

[Hau+16] Jürgen Hauschildt, Sören Salomo, Carsten Schultz, and Alexander Kock. Innovations-

management. Vahlen, 2016 (cit. on p. 31).

[Hel11] Cornelia Helfferich. Die Qualität qualitativer Daten : Manual für die Durchführung

qualitativer Interviews [Elektronische Ressource]. 2011 (cit. on pp. 21, 82, 122, 128,

171, 184, 194–196).

[HRB11] Niels Henze, Enrico Rukzio, and Susanne Boll. “100,000,000 Taps: Analysis and

Improvement of Touch Performance in the Large”. In: Proceedings of the 13th In-

ternational Conference on Human Computer Interaction with Mobile Devices and

Services. MobileHCI ’11. Stockholm, Sweden: Association for Computing Machinery,

2011, pp. 133–142 (cit. on p. 156).

240 Bibliography

https://doi.org/10.1177/002224298204600207
https://doi.org/10.1177/002224298204600207

[HD04] ANN M. HICKEY and ALAN M. DAVIS. “A Unified Model of Requirements Elicita-

tion”. In: Journal of Management Information Systems 20.4 (2004), pp. 65–84. eprint:

https://doi.org/10.1080/07421222.2004.11045786 (cit. on p. 69).

[Hin65] Dennis Neil Hinkle. “The change of personal constructs from the viewpoint of a theory

of construct implications”. PhD thesis. The Ohio State University, 1965 (cit. on p. 72).

[Hoa69] Charles Antony Richard Hoare. “An axiomatic basis for computer programming”. In:

Communications of the ACM 12.10 (1969), pp. 576–580 (cit. on pp. 11, 19).

[HW95] Joseph E Hollingsworth and Bruce W Weide. “Micro-Architecture vs. Macro-

Architecture”. In: Proceedings of the Seventh Annual Workshop on Software Reuse.

Citeseer. 1995 (cit. on pp. 101, 130).

[HH97] Stephanie Houde and Charles Hill. “What do prototypes prototype?” In: Handbook

of human-computer interaction. Elsevier, 1997, pp. 367–381 (cit. on pp. 48, 50, 101,

228).

[HSE13] Walter Hussy, Margrit Schreier, and Gerald Echterhoff. Forschungsmethoden in Psy-

chologie und Sozialwissenschaften. 2. Aufl. Berlin Heidelberg New York: Springer-

Verlag, 2013 (cit. on pp. 20, 21, 121–123).

[IDE13] IDEO LLC. Design Thinking for Educators. Online available under https : / /

designthinkingforeducators.com/toolkit/ (visited on Jul. 10, 2019). IDEO-

books, 2013 (cit. on pp. 43, 61, 62).

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified software development

process. Addison-Wesley Professional, 1999 (cit. on pp. 50, 52, 53, 120, 143, 144,

157, 228, 229).

[Kel84] J. F. Kelley. “An Iterative Design Methodology for User-friendly Natural Language

Office Information Applications”. In: ACM Trans. Inf. Syst. 2.1 (Jan. 1984), pp. 26–41

(cit. on pp. 186, 199).

[Kel03] George Kelly. The psychology of personal constructs: Volume two: Clinical diagnosis

and psychotherapy. Routledge, 2003 (cit. on p. 72).

[KJ12] Lucy Kimbell and Joe Julier. “The social design methods menu”. In: perpetual beta

(2012) (cit. on p. 72).

[KV13] John Klein and Hans van Vliet. “A Systematic Review of System-of-Systems Architec-

ture Research”. In: Proceedings of the 9th International ACM Sigsoft Conference on

Quality of Software Architectures. QoSA ’13. Vancouver, British Columbia, Canada:

Association for Computing Machinery, 2013, pp. 13–22 (cit. on p. 130).

[Kle91] Gerhard Kleining. Das qualitative experiment. 1991 (cit. on p. 122).

[Kle19] Markus Klemens. “Developing a Conceptual Framework for Transforming Design

Thinking Results into Agile Software Requirements with Preservation of Alternative

Solutions”. MA thesis. 2019 (cit. on p. 102).

Bibliography 241

https://doi.org/10.1080/07421222.2004.11045786
https://designthinkingforeducators.com/toolkit/
https://designthinkingforeducators.com/toolkit/

[Klo+11] Florian Klompmaker, Björn Senft, Karsten Nebe, Clemens Busch, and Detlev Willem-

sen. “User Centered Design Process of OSAMi-D - Developing User Interfaces for a

Remote Ergometer Training Application”. In: HEALTHINF 2011 - Proceedings of the

International Conference on Health Informatics, Rome, Italy, 26-29 January, 2011.

2011, pp. 268–273 (cit. on p. 27).

[KZK16] Jake Knapp, John Zeratsky, and Braden Kowitz. Sprint: How to solve big problems

and test new ideas in just five days. Simon and Schuster, 2016 (cit. on p. 90).

[Koh+08] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M. Henne. “Con-

trolled experiments on the web: survey and practical guide”. In: Data Mining and

Knowledge Discovery 18.1 (July 2008), pp. 140–181 (cit. on pp. 57, 121, 127, 128,

146, 148).

[Koh+09] Ronny Kohavi, Thomas Crook, Roger Longbotham, et al. “Online experimentation at

Microsoft”. In: Data Mining Case Studies 11 (2009), p. 39 (cit. on pp. 4, 10, 168, 183,

214, 225).

[Kow+14] Thomas Kowark, Franziska Häger, Ralf Gehrer, and Jens Krüger. “A Research Plan for

the Integration of Design Thinking with Large Scale Software Development Projects”.

In: Design Thinking Research: Building Innovation Eco-Systems. Ed. by Larry Leifer,

Hasso Plattner, and Christoph Meinel. Cham: Springer International Publishing, 2014,

pp. 183–202 (cit. on p. 56).

[Kra18] Janis Krasemann. “Designing and Implementing a System for Passive User Feedback”.

MA thesis. 2018 (cit. on pp. 146, 155).

[KSW13] Stephan Kraus, Guido Steinacker, and Oliver Wegner. “Teile und Herrsche–Kleine

Systeme für große Architekturen”. In: OBJEKTspektrum 5 (2013), pp. 8–13 (cit. on

p. 101).

[Kru16] Stephan Krusche. “Rugby - A Process Model for Continuous Software Engineering”.

PhD thesis. Technical University Munich, Germany, 2016 (cit. on p. 58).

[Kru+14] Stephan Krusche, Lukas Alperowitz, Bernd Bruegge, and Martin O. Wagner. “Rugby:

An Agile Process Model Based on Continuous Delivery”. In: Proceedings of the 1st

International Workshop on Rapid Continuous Software Engineering. RCoSE 2014.

Hyderabad, India: ACM, 2014, pp. 42–50 (cit. on p. 58).

[Kuh+17] Marco Kuhrmann, Philipp Diebold, Jürgen Münch, et al. “Hybrid Software and System

Development in Practice: Waterfall, Scrum, and Beyond”. In: Proceedings of the 2017

International Conference on Software and System Process. ICSSP 2017. Paris, France:

Association for Computing Machinery, 2017, pp. 30–39 (cit. on p. 168).

[KS03] Cynthia F Kurtz and David J Snowden. “The new dynamics of strategy: Sense-making

in a complex and complicated world”. In: IBM systems journal 42.3 (2003), pp. 462–

483 (cit. on pp. 6, 7, 10, 47, 50, 65, 69, 168, 225).

[Lew46] Kurt Lewin. “Action research and minority problems”. In: Journal of social issues

2.4 (1946), pp. 34–46 (cit. on pp. 23, 24).

242 Bibliography

[LMW11] Tilmann Lindberg, Christoph Meinel, and Ralf Wagner. “Design Thinking: A Fruitful

Concept for IT Development?” In: Design Thinking: Understand – Improve – Apply. Ed.

by Christoph Meinel, Larry Leifer, and Hasso Plattner. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 3–18 (cit. on pp. 4, 5, 40–42, 50, 56, 97, 98, 117, 168,

183, 225).

[LM15] Eveliina Lindgren and Jürgen Münch. “Software Development as an Experiment

System: A Qualitative Survey on the State of the Practice”. In: Agile Processes in

Software Engineering and Extreme Programming. Ed. by Casper Lassenius, Torgeir

Dingsøyr, and Maria Paasivaara. Cham: Springer International Publishing, 2015,

pp. 117–128 (cit. on p. 164).

[Luc+17] Percival Lucena, Alan Braz, Adilson Chicoria, and Leonardo Tizzei. “IBM Design

Thinking Software Development Framework”. In: Agile Methods. Ed. by Tiago Silva

da Silva, Bernardo Estácio, Josiane Kroll, and Rafaela Mantovani Fontana. Cham:

Springer International Publishing, 2017, pp. 98–109 (cit. on p. 56).

[Mai13] N. Maiden. “So, What Is Requirements Work?” In: IEEE Software 30.2 (Mar. 2013),

pp. 14–15 (cit. on p. 70).

[Mai+10] N. Maiden, S. Jones, K. Karlsen, et al. “Requirements Engineering as Creative Problem

Solving: A Research Agenda for Idea Finding”. In: 2010 18th IEEE International

Requirements Engineering Conference. Sept. 2010, pp. 57–66 (cit. on p. 69).

[MR96] Neil AM Maiden and Gordon Rugg. “ACRE: selecting methods for requirements

acquisition”. In: Software Engineering Journal 11.3 (1996), pp. 183–192 (cit. on

p. 63).

[MK13] Robin Marterer and Rainer Koch. “Möglichkeiten der IT-Unterstützung für die Pla-

nung, Steuerung, Protokollierung und Auswertung von Einsatzübungen der Behörden

und Organisationen mit Sicherheitsaufgaben”. In: Tagungsband der Jahresfachtagung

der Vereinigung zur Förderung des deutschen Brandschutzes (vfdb). Weimar, 2013

(cit. on p. 172).

[MR15] Joseph A. Maxwell and L. Earle Reybold. “Qualitative Research”. In: International

Encyclopedia of the Social & Behavioral Sciences (Second Edition). Ed. by James D.

Wright. Second Edition. Oxford: Elsevier, 2015, pp. 685–689 (cit. on pp. 21, 122).

[May12] Deborah J. Mayhew. “Usability + Persuasiveness + Graphic Design = eCommerce

User Experience”. In: Handbook of human-computer interaction. Elsevier, 2012,

pp. 1181–1194 (cit. on pp. 48–50, 87, 99, 101, 228).

[May16] Philipp Mayring. Einführung in die qualitative Sozialforschung. ger. 6th ed. Beltz

Verlagsgruppe, 2016 (cit. on p. 20).

[May00] Philipp Mayring. “Qualitative Content Analysis”. In: Forum Qualitative Sozial-

forschung / Forum Qualitative Social Research 1.2 (2000) (cit. on pp. 80, 103).

[McM04] J. McManus. “A stakeholder perspective within software engineering projects”.

In: 2004 IEEE International Engineering Management Conference (IEEE Cat.

No.04CH37574). Vol. 2. Oct. 2004, 880–884 Vol.2 (cit. on p. 70).

Bibliography 243

[MV19] Yalcinkaya Mehmet and Singh Vishal. “Exploring the use of Gestaltâ=C™s principles

in improving the visualization, user experience and comprehension of COBie data

extension”. In: Engineering, Construction and Architectural Management 26.6 (Jan.

2019), pp. 1024–1046 (cit. on p. 56).

[Mei+16a] Bianca Meise, Yevgen Mexin, Franziska Schloots, Björn Senft, and Anastasia Waw-

ilow. “Interdisziplinäre Forschung als Basis nachhaltiger Entscheidungsprozesse in

der Softwareentwicklung. Dezentral, vernetzt, kollaborativ”. In: Konferenzband zur

1. interdisziplinäre Konferenz zur Zukunft der Wertschöpfung (2016). Ed. by Jens

Wulfsberg, Tobias Redlich, and Manuel Moritz, p. 221 (cit. on pp. 27, 81).

[Mei+16b] Bianca Meise, Yevgen Mexin, Franziska Schloots, et al. “Von implizitem Wissen zu

nachhaltigen Systemanforderungen”. In: Tagungsband der Forschungsdaten in den

Geisteswissenschaften (FORGE). 2016 (cit. on pp. 26, 27, 51).

[MM11] Günter Mey and Katja Mruck, eds. Grounded Theory Reader. VS Verlag für Sozial-

wissenschaften, 2011 (cit. on p. 81).

[Mey14] Bertrand Meyer. Agile!: The Good, the Hype and the Ugly. Springer Science &

Business Media, 2014 (cit. on pp. 54, 57, 99, 104, 111, 126, 167).

[Mil56] George A Miller. “The magical number seven, plus or minus two: Some limits on

our capacity for processing information.” In: Psychological review 63.2 (1956), p. 81

(cit. on p. 66).

[MM10] Katja Mruck and Günter Mey. “Einleitung”. In: Handbuch Qualitative Forschung in

der Psychologie. Ed. by Günter Mey and Katja Mruck. Wiesbaden: VS Verlag für

Sozialwissenschaften, 2010, pp. 11–32 (cit. on p. 171).

[MK12] Michael J Muller and Sandra Kogan. “Grounded Theory Method in Human-Computer

Interaction and Computer Supported Cooperative Work”. In: The Human-Computer

Interaction Handboook. CRC Press, Boca Raton {ua} (2012), pp. 1003–1023 (cit. on

pp. 79, 80).

[MR17] Jochen Müsseler and Martina Rieger. Allgemeine Psychologie. 3. Aufl. Berlin, Heidel-

berg: Springer-Verlag, 2017 (cit. on pp. 65, 66, 91).

[NV14] Donald A Norman and Roberto Verganti. “Incremental and radical innovation: Design

research vs. technology and meaning change”. In: Design issues 30.1 (2014), pp. 78–

96 (cit. on pp. 4, 6, 22, 49, 55, 168, 183, 187, 225).

[Nor13] Donald A. Norman. “The Design of Everyday Things”. In: The MIT Press, 2013.

Chap. Design Thinking, pp. 217–257 (cit. on p. 41).

[ODr16] Kieran O’Driscoll. “The agile data modelling & design thinking approach to informa-

tion system requirements analysis”. In: Journal of Decision Systems 25.sup1 (2016),

pp. 632–638. eprint: https://doi.org/10.1080/12460125.2016.1189643

(cit. on p. 56).

244 Bibliography

https://doi.org/10.1080/12460125.2016.1189643

[OAB12] H. H. Olsson, H. Alahyari, and J. Bosch. “Climbing the "Stairway to Heaven" – A

Mulitiple-Case Study Exploring Barriers in the Transition from Agile Development

towards Continuous Deployment of Software”. In: 2012 38th Euromicro Conference

on Software Engineering and Advanced Applications. 2012, pp. 392–399 (cit. on

p. 57).

[OB14] Helena Holmström Olsson and Jan Bosch. “The HYPEX Model: From Opinions to

Data-Driven Software Development”. In: Continuous Software Engineering. Ed. by

Jan Bosch. Cham: Springer International Publishing, 2014, pp. 155–164 (cit. on p. 58).

[Osb63] Alex F. (Alex Faickney) Osborn. Applied imagination : principles and procedures

of creative problem solving. English. 3d rev. ed. Includes bibliographical references.

New York : Charles Scribner’s Sons, 1963 (cit. on p. 72).

[OSJ17] M. Overeem, M. Spoor, and S. Jansen. “The dark side of event sourcing: Managing

data conversion”. In: 2017 IEEE 24th International Conference on Software Analysis,

Evolution and Reengineering (SANER). 2017, pp. 193–204 (cit. on p. 133).

[Pah15] C. Pahl. “Containerization and the PaaS Cloud”. In: IEEE Cloud Computing 2.3 (May

2015), pp. 24–31 (cit. on pp. 9, 55).

[Pat17] Nitish Patkar. “Vision Backlog”. MA thesis. 2017 (cit. on p. 68).

[PA16] Danielly F. O. de Paula and Cristiano C. Araújo. “Pet Empires: Combining Design

Thinking, Lean Startup and Agile to Learn from Failure and Develop a Successful

Game in an Undergraduate Environment”. In: HCI International 2016 – Posters’

Extended Abstracts. Ed. by Constantine Stephanidis. Cham: Springer International

Publishing, 2016, pp. 30–34 (cit. on p. 57).

[PS15] Sabine Pfeiffer and Anne Suphan. “The labouring capacity index: Living labouring

capacity and experience as resources on the road to industry 4.0”. In: Retrieved January

30 (2015), p. 2016 (cit. on p. 63).

[PW98] David W. Pickton and Sheila Wright. “What’s swot in strategic analysis?” In: Strategic

Change 7.2 (1998), pp. 101–109. eprint: https://onlinelibrary.wiley.com/

doi/pdf/10.1002/%28SICI%291099-1697%28199803/04%297%3A2%3C101%

3A%3AAID-JSC332%3E3.0.CO%3B2-6 (cit. on p. 72).

[PML10] Hasso Plattner, Christoph Meinel, and Larry Leifer. Design thinking: understand–

improve–apply. Springer Science & Business Media, 2010 (cit. on pp. 4, 24, 43).

[Poh07] Klaus Pohl. Requirements Engineering. 1st ed. Heidelberg: dpunkt.verlag GmbH,

2007 (cit. on pp. 77, 111, 112, 195).

[PP03] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile

Toolkit: An Agile Toolkit. Addison-Wesley, 2003 (cit. on pp. 54, 123).

[Pop05] Karl Popper. The logic of scientific discovery. Routledge, 2005 (cit. on p. 18).

[Pot96] Mike Potel. MVP: Model-View-Presenter The Taligent Programming Model for C++

and Java. Tech. rep. Taligent Inc, 1996 (cit. on pp. 48, 53, 135).

[Pri90] Rubén Prieto-Díaz. “Domain Analysis: An Introduction”. In: SIGSOFT Softw. Eng.

Notes 15.2 (Apr. 1990), pp. 47–54 (cit. on p. 72).

Bibliography 245

https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291099-1697%28199803/04%297%3A2%3C101%3A%3AAID-JSC332%3E3.0.CO%3B2-6
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291099-1697%28199803/04%297%3A2%3C101%3A%3AAID-JSC332%3E3.0.CO%3B2-6
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291099-1697%28199803/04%297%3A2%3C101%3A%3AAID-JSC332%3E3.0.CO%3B2-6

[Pri08] Dan Pritchett. “BASE: An Acid Alternative”. In: Queue 6.3 (May 2008), pp. 48–55

(cit. on p. 138).

[PW09] Aglaja Przyborski and Monika Wohlrab-Sahr. Qualitative Sozialforschung: Ein Ar-

beitsbuch. Walter de Gruyter, 2009 (cit. on p. 82).

[RM17] P. Rempel and P. Mäder. “Preventing Defects: The Impact of Requirements Traceability

Completeness on Software Quality”. In: IEEE Transactions on Software Engineering

43.8 (Aug. 2017), pp. 777–797 (cit. on p. 111).

[Ren+12] Karl-Heinz Renner, Timo Heydasch, Gerhard Ströhlein, Timo Heydasch, and Gerhard

Strohlein. Forschungsmethoden der Psychologie - Von der Fragestellung zur Präsen-

tation. 1. Aufl. 2012. Berlin Heidelberg New York: Springer-Verlag, 2012 (cit. on

pp. 20, 21, 201).

[Rie11] Eric Ries. The lean startup: How today’s entrepreneurs use continuous innovation to

create radically successful businesses. Crown Books, 2011 (cit. on p. 168).

[RET19] Florian Rittmeier, Gregor Engels, and Alexander Teetz. “Process Weakness Patterns

for the Identification of Digitalization Potentials in Business Processes”. In: Busi-

ness Process Management Workshops. Ed. by Florian Daniel, Quan Z. Sheng, and

HamidEditors Motahari. Vol. 342. Lecture Notes in Business Information Processing.

Springer International Publishing, 2019, pp. 531–542 (cit. on p. 82).

[RR06] Suzanne Robertson and James Robertson. Mastering the Requirements Process. 2.

Edition. Addison-Wesley Professional, 2006 (cit. on pp. 102, 110).

[Rog10] Everett M Rogers. Diffusion of innovations. Simon and Schuster, 2010 (cit. on pp. 7,

31, 32, 35–39, 69, 74, 171).

[RB04] Robert Rousseau and Richard Breton. “The M-OODA: A model incorporating control

functions and teamwork in the OODA loop”. In: Proc. Command and Control Res, &

Tech. Symp. 2004 (cit. on p. 122).

[Sch17] Daniel R.A. Schallmo. Design Thinking erfolgreich anwenden. Springer Fachmedien

Wiesbaden, 2017 (cit. on pp. 61, 62).

[Sch19] Peter Schick. “Design and Implementation of an Online Feature Experimentation

Platform”. MA thesis. 2019 (cit. on p. 146).

[Sen+18] Björn Senft, Holger Fischer, Simon Oberthür, and Nitish Patkar. “Assist Users to

Straightaway Suggest and Describe Experienced Problems”. In: Design, User Experi-

ence, and Usability: Theory and Practice. Ed. by Aaron Marcus and Wentao Wang.

Cham: Springer International Publishing, 2018, pp. 758–770 (cit. on pp. 27, 51, 68).

[SFS14] Björn Senft, Holger Fischer, and Christian Sudbrock. “IT-Unterstützung im praktischen

Ausbildungsbetrieb der Feuerwehr”. In: Mensch & Computer 2014 - Workshopband.

De Gruyter Oldenbourg, 2014, pp. 111–116 (cit. on pp. 26, 27, 172).

[SO16] Björn Senft and Simon Oberthür. “Auf dem Weg zu einer experimentellen und ev-

idenzbasierten Softwareentwicklung in den Digital Humanities”. In: Konferenzab-

stracts der 3. Tagung des Verbands "Digital Humanities im deutschsprachigen Raum

e. V." 2016 (cit. on p. 27).

246 Bibliography

[SOF18] Björn Senft, Simon Oberthür, and Holger Fischer. “Forschendes Lernen in der Infor-

matik - In praxisnaher Projektgruppe einen Softwareentwicklungsprozess erforschen”.

In: Schriften zur allgemeinen Hochschuldidaktik - Band 3. Tagungsband Forschendes

Lernen - The wider view. 2018 (cit. on pp. 24, 27, 164).

[Sen+19] Björn Senft, Florian Rittmeier, Holger Fischer, and Simon Oberthür. “A Value-

Centered Approach for Unique and Novel Software Applications”. In: Design, User

Experience, and Usability. Practice and Case Studies. 2019 (cit. on p. 27).

[Sen20a] Senft, Björn. Design Thinking - Empathy Phase. https : / / uni - paderborn .

sciebo.de/s/sxImLBpQD1DkRa8. Accessed: 2020-02-03. 2020 (cit. on pp. 91,

93, 184, 196).

[Sen20b] Senft, Björn. Design Thinking Theory. https://uni-paderborn.sciebo.de/s/

6b0SdXy6R2e1rYO. Accessed: 2020-02-03. 2020 (cit. on pp. 183, 184, 194, 198).

[Sen20c] Senft, Björn. Design Thinking Workshop - Day’s Goal. https://uni-paderborn.

sciebo.de/s/dM2VdjX3CZJ5CSZ. Accessed: 2020-02-03. 2020 (cit. on p. 90).

[Sen20d] Senft, Björn. Design Thinking Workshop - Presentation. https://uni-paderborn.

sciebo.de/s/Z3OL2EzfYUiWqgY. Accessed: 2020-02-03. 2020 (cit. on pp. 90–92,

95).

[Sen20e] Senft, Björn. Design Thinking Workshop - Solution Documentation. https://uni-

paderborn.sciebo.de/s/PX9mmEdByEApyzr. Accessed: 2020-02-03. 2020 (cit.

on p. 93).

[Sen20f] Senft, Björn. Design Thinking Workshop - Working Sheets. https : / / uni -

paderborn.sciebo.de/s/pcwoJ8oshYirYfl. Accessed: 2020-02-03. 2020 (cit.

on pp. 91, 92, 184, 199, 200).

[Sen20g] Senft, Björn. Onboarding Slides. https://uni- paderborn.sciebo.de/s/

zy42PZz3bDpmzXl. Accessed: 2020-02-03. 2020 (cit. on pp. 182, 205).

[Sen20h] Senft, Björn. Scrum Introduction / Lego 4 Scrum Workshop. https : / / uni -

paderborn.sciebo.de/s/4l7BHqNZ9IH55r2. Accessed: 2020-02-03. 2020 (cit.

on p. 183).

[Sen20i] Senft, Björn. The Wallet Project - Facilitators Guide. https://uni-paderborn.

sciebo.de/s/JU6MNQ9sqePvFXV. Accessed: 2020-02-03. 2020 (cit. on p. 183).

[Sen20j] Senft, Björn. The Wallet Project - Working Sheets. https://uni- paderborn.

sciebo.de/s/5wtIxs7UBtzG9NH. Accessed: 2020-02-03. 2020 (cit. on pp. 91,

183).

[SAZ17] M. Shahin, M. Ali Babar, and L. Zhu. “Continuous Integration, Delivery and Deploy-

ment: A Systematic Review on Approaches, Tools, Challenges and Practices”. In:

IEEE Access 5 (2017), pp. 3909–3943 (cit. on p. 137).

[SC17] S Sharma and B Coyne. DevOps for Dummies. 3rd Limited IBM edn. 2017 (cit. on

pp. 9, 54, 135).

Bibliography 247

https://uni-paderborn.sciebo.de/s/sxImLBpQD1DkRa8
https://uni-paderborn.sciebo.de/s/sxImLBpQD1DkRa8
https://uni-paderborn.sciebo.de/s/6b0SdXy6R2e1rYO
https://uni-paderborn.sciebo.de/s/6b0SdXy6R2e1rYO
https://uni-paderborn.sciebo.de/s/dM2VdjX3CZJ5CSZ
https://uni-paderborn.sciebo.de/s/dM2VdjX3CZJ5CSZ
https://uni-paderborn.sciebo.de/s/Z3OL2EzfYUiWqgY
https://uni-paderborn.sciebo.de/s/Z3OL2EzfYUiWqgY
https://uni-paderborn.sciebo.de/s/PX9mmEdByEApyzr
https://uni-paderborn.sciebo.de/s/PX9mmEdByEApyzr
https://uni-paderborn.sciebo.de/s/pcwoJ8oshYirYfl
https://uni-paderborn.sciebo.de/s/pcwoJ8oshYirYfl
https://uni-paderborn.sciebo.de/s/zy42PZz3bDpmzXl
https://uni-paderborn.sciebo.de/s/zy42PZz3bDpmzXl
https://uni-paderborn.sciebo.de/s/4l7BHqNZ9IH55r2
https://uni-paderborn.sciebo.de/s/4l7BHqNZ9IH55r2
https://uni-paderborn.sciebo.de/s/JU6MNQ9sqePvFXV
https://uni-paderborn.sciebo.de/s/JU6MNQ9sqePvFXV
https://uni-paderborn.sciebo.de/s/5wtIxs7UBtzG9NH
https://uni-paderborn.sciebo.de/s/5wtIxs7UBtzG9NH

[Soh+19] Osama Sohaib, Hiralkumari Solanki, Navkiran Dhaliwa, Walayat Hussain, and Muham-

mad Asif. “Integrating design thinking into extreme programming”. In: Journal of

Ambient Intelligence and Humanized Computing 10.6 (June 2019), pp. 2485–2492

(cit. on p. 56).

[SS97] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good Practice Guide.

1st. New York, NY, USA: John Wiley & Sons, Inc., 1997 (cit. on p. 72).

[Ste+04] Jonette M Stecklein, Jim Dabney, Brandon Dick, et al. “Error cost escalation through

the project life cycle”. In: (2004) (cit. on pp. 9, 48, 119, 168).

[SF18] Klaas-Jan Stol and Brian Fitzgerald. “The ABC of software engineering research”. In:

ACM Transactions on Software Engineering and Methodology (TOSEM) 27.3 (2018),

p. 11 (cit. on pp. 23, 121).

[SC94] Anselm Strauss and Juliet Corbin. “Grounded theory methodology”. In: Handbook of

qualitative research 17 (1994), pp. 273–85 (cit. on pp. 79, 80).

[Str+96] Anselm L Strauss, Juliet M Corbin, Solveigh Niewiarra, and Heiner Legewie.

Grounded theory: Grundlagen qualitativer sozialforschung. Beltz, Psychologie-Verlag-

Union Weinheim, 1996 (cit. on p. 24).

[Str04] Jörg Strübing. Grounded Theory. VS Verlag für Sozialwissenschaften, 2004 (cit. on

pp. 78–81).

[SS13] Alistair Sutcliffe and Pete Sawyer. “Requirements elicitation: Towards the unknown

unknowns”. In: 2013 21st IEEE International Requirements Engineering Conference

(RE). IEEE. 2013, pp. 92–104 (cit. on pp. 67, 77).

[TC12] Dana H Taplin and Heléne Clark. “Theory of change basics: A primer on theory of

change”. In: New York: Actknowledge (2012) (cit. on p. 72).

[Ter+17] Henri Terho, Sampo Suonsyrjä, Kari Systä, and Tommi Mikkonen. “Understanding

the relations between iterative cycles in software engineering”. In: Proceedings of the

50th Hawaii International Conference on System Sciences. 2017 (cit. on pp. 54, 183).

[Tho03] Stefan H Thomke. Experimentation matters: unlocking the potential of new technolo-

gies for innovation. Harvard Business Press, 2003 (cit. on pp. 121, 123).

[Thö15] J. Thönes. “Microservices”. In: IEEE Software 32.1 (2015), pp. 116–116 (cit. on

p. 170).

[Ueb+15] Falk Uebernickel, Walter Brenner, Britta Pukall, Therese Naef, and Bernhard Schindl-

holzer. Design Thinking: Das Handbuch. Frankfurter Allgemeine Buch, 2015 (cit. on

pp. 43, 62).

[UD10] Daniel Ullrich and Sarah Diefenbach. “INTUI. Exploring the facets of intuitive inter-

action”. In: Mensch & Computer 2010: Interaktive Kulturen (2010) (cit. on p. 175).

[VZ09] Vero Vanden Abeele and Bieke Zaman. Laddering the User Experience! eng. 2009

(cit. on p. 72).

248 Bibliography

[War+95] Allen Ward, Jeffrey K Liker, John J Cristiano, Durward K Sobek, et al. “The second

Toyota paradox: How delaying decisions can make better cars faster”. In: Sloan

management review 36 (1995), pp. 43–43 (cit. on pp. 9, 47, 48, 98, 111, 168, 183,

222).

[Wei02] Laura Weiss. “Developing tangible strategies”. In: Design Management Journal

(Former Series) 13.1 (2002), pp. 33–38. eprint: https://onlinelibrary.wiley.

com/doi/pdf/10.1111/j.1948-7169.2002.tb00296.x (cit. on pp. 40, 41).

[Wil+89] Michael Wilson et al. “Task models for knowledge elicitation”. In: Knowledge Elici-

tation: principles, techniques and applications (1989), pp. 197–220 (cit. on p. 72).

[WH10] Brigitte Winkler and Helmut Hofbauer. “Das Mitarbeitergespräch als Führungsin-

strument”. In: Handbuch für Führungskräfte und Personalverantwortliche 4 (2010)

(cit. on p. 25).

[WS95] Jane Wood and Denise Silver. Joint Application Development (2Nd Ed.) New York,

NY, USA: John Wiley & Sons, Inc., 1995 (cit. on p. 72).

[XAA15] Bianca H. Ximenes, Isadora N. Alves, and Cristiano C. Araújo. “Software Project

Management Combining Agile, Lean Startup and Design Thinking”. In: Design, User

Experience, and Usability: Design Discourse. Ed. by Aaron Marcus. Cham: Springer

International Publishing, 2015, pp. 356–367 (cit. on p. 56).

[Yin17] Robert K Yin. Case study research and applications: Design and methods. Sage

publications, 2017 (cit. on p. 163).

[Yoz14] K. Yozgyur. “A proposal for a requirements elicitation tool to increase stakeholder

involvement”. In: 2014 IEEE 5th International Conference on Software Engineering

and Service Science. June 2014, pp. 145–148 (cit. on pp. 68, 69).

[Zha07] Zheying Zhang. “Effective requirements development-a comparison of requirements

elicitation techniques”. In: Software Quality Management XV: Software Quality in the

Knowledge Society, E. Berki, J. Nummenmaa, I. Sunley, M. Ross and G. Staples (Ed.)

British Computer Society (2007), pp. 225–240 (cit. on p. 70).

[ZC05] Didar Zowghi and Chad Coulin. “Requirements Elicitation: A Survey of Techniques,

Approaches, and Tools”. In: Engineering and Managing Software Requirements. Ed.

by Aybüke Aurum and Claes Wohlin. Berlin, Heidelberg: Springer Berlin Heidelberg,

2005, pp. 19–46 (cit. on pp. 70, 72).

Internet

[@Bes10] Martin Beschnitt. Verbreitung und Relevanz von Usability-Methoden in der Praxis.

2010. URL: https://www.usabilityblog.de/verbreitung-und-relevanz-

von-usability-methoden-in-der-praxis/ (visited on Apr. 2, 2020) (cit. on

p. 125).

Internet 249

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1948-7169.2002.tb00296.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1948-7169.2002.tb00296.x
https://www.usabilityblog.de/verbreitung-und-relevanz-von-usability-methoden-in-der-praxis/
https://www.usabilityblog.de/verbreitung-und-relevanz-von-usability-methoden-in-der-praxis/

[@Big18] Garenne Bigby. 10 Card Sorting Tools for Surveying Information Architecture (IA).

2018. URL: https://dynomapper.com/blog/19- ux/428- card- sorting-

tools (visited on Dec. 4, 2019) (cit. on p. 71).

[@BI16] Anna Blaylock and Navin Iyengar. Art vs. Science: Using A/B Testing To Inform Your

Designs (Netflix at Designers + Geeks). 2016. URL: https://www.youtube.com/

watch?v=RHWVWiiW8DQ (visited on Apr. 20, 2018) (cit. on p. 3).

[@Bot16] Thomas Both. The Wallet Project. 2016. URL: https://dschool-old.stanford.

edu/groups/designresources/wiki/4dbb2/the_wallet_project.html

(visited on Jan. 14, 2020) (cit. on p. 94).

[@dsc16] Stanford d.school. Create Design Challenges Guidelines. 2016. URL: https://

dschool-old.stanford.edu/groups/k12/wiki/613e8/Create_Design_

Challenges_Guidelines.html (visited on Jan. 10, 2019) (cit. on p. 51).

[@DS19] Rikke Dam and Teo Siang. 5 Stages in the Design Thinking Process. 2019. URL:

https://www.interaction-design.org/literature/article/5-stages-

in-the-design-thinking-process (visited on Sept. 18, 2019) (cit. on pp. 42,

43).

[@DS20] Rikke Dam and Teo Siang. Stage 2 in the Design Thinking Process: Define the Prob-

lem and Interpret the Results. 2020. URL: https://www.interaction-design.

org/literature/article/stage-2-in-the-design-thinking-process-

define-the-problem-and-interpret-the-results (visited on May 18, 2020)

(cit. on p. 43).

[@Dep18] Paderborn University Department of Computer Science. General Guidelines - Project

Groups. 2018. URL: https://cs.uni- paderborn.de/en/studies/study-

elements/general-guidelines/project-groups/ (visited on Oct. 10, 2019)

(cit. on p. 178).

[@Doo+18] Scott Doorley, Sarah Holcomb, Perry Klebahn, Kathryn Segovia, and Jeremy Ut-

ley. Design Thinking Bootleg. 2018. URL: https://dschool.stanford.edu/

resources/design-thinking-bootleg (visited on Sept. 18, 2019) (cit. on pp. 42,

43).

[@Fow14] Martin Fowler. Bounded Context. 2014. URL: https://www.martinfowler.com/

bliki/BoundedContext.html (visited on Apr. 9, 2020) (cit. on p. 131).

[@Fow11] Martin Fowler. CQRS. 2011. URL: https://martinfowler.com/bliki/CQRS.

html (visited on Apr. 9, 2020) (cit. on p. 133).

[@Fow05a] Martin Fowler. Event Sourcing. 2005. URL: https://martinfowler.com/eaaDev/

EventSourcing.html (visited on Jan. 10, 2020) (cit. on pp. 54, 131).

[@Fow06] Martin Fowler. GUI Architectures. 2006. URL: https://martinfowler.com/

eaaDev/uiArchs.html (visited on Apr. 9, 2020) (cit. on pp. 48, 135).

[@Fow05b] Martin Fowler. Parallel Model. 2005. URL: https://martinfowler.com/eaaDev/

ParallelModel.html (visited on Apr. 9, 2019) (cit. on p. 131).

250 Bibliography

https://dynomapper.com/blog/19-ux/428-card-sorting-tools
https://dynomapper.com/blog/19-ux/428-card-sorting-tools
https://www.youtube.com/watch?v=RHWVWiiW8DQ
https://www.youtube.com/watch?v=RHWVWiiW8DQ
https://dschool-old.stanford.edu/groups/designresources/wiki/4dbb2/the_wallet_project.html
https://dschool-old.stanford.edu/groups/designresources/wiki/4dbb2/the_wallet_project.html
https://dschool-old.stanford.edu/groups/k12/wiki/613e8/Create_Design_Challenges_Guidelines.html
https://dschool-old.stanford.edu/groups/k12/wiki/613e8/Create_Design_Challenges_Guidelines.html
https://dschool-old.stanford.edu/groups/k12/wiki/613e8/Create_Design_Challenges_Guidelines.html
https://www.interaction-design.org/literature/article/5-stages-in-the-design-thinking-process
https://www.interaction-design.org/literature/article/5-stages-in-the-design-thinking-process
https://www.interaction-design.org/literature/article/stage-2-in-the-design-thinking-process-define-the-problem-and-interpret-the-results
https://www.interaction-design.org/literature/article/stage-2-in-the-design-thinking-process-define-the-problem-and-interpret-the-results
https://www.interaction-design.org/literature/article/stage-2-in-the-design-thinking-process-define-the-problem-and-interpret-the-results
https://cs.uni-paderborn.de/en/studies/study-elements/general-guidelines/project-groups/
https://cs.uni-paderborn.de/en/studies/study-elements/general-guidelines/project-groups/
https://dschool.stanford.edu/resources/design-thinking-bootleg
https://dschool.stanford.edu/resources/design-thinking-bootleg
https://www.martinfowler.com/bliki/BoundedContext.html
https://www.martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/ParallelModel.html
https://martinfowler.com/eaaDev/ParallelModel.html

[@Fow15] Martin Fowler. Presentation Domain Data Layering. 2015. URL: https : / /

martinfowler.com/bliki/PresentationDomainDataLayering.html (vis-

ited on Apr. 7, 2020) (cit. on p. 134).

[@Fow03] Martin Fowler. Presentation Domain Separation. 2003. URL: https : / /

martinfowler.com/bliki/PresentationDomainSeparation.html (visited

on Apr. 7, 2020) (cit. on p. 134).

[@Fow04] Martin Fowler. Presentation Model. 2004. URL: https://www.martinfowler.

com/eaaDev/PresentationModel.html (visited on Apr. 7, 2020) (cit. on p. 135).

[@Fow10] Martin Fowler. Richardson Maturity Model. 2010. URL: https://martinfowler.

com/articles/richardsonMaturityModel.html (visited on Apr. 10, 2020) (cit.

on p. 138).

[@Hod17] Pete Hodgson. Feature Toggles (aka Feature Flags). 2017. URL: https : / /

martinfowler.com/articles/feature- toggles.html (visited on Apr. 14,

2020) (cit. on p. 147).

[@KNO18] Nicola Karthaus, Antje Nöhren, and Simon Oberthür. MACHBARKEITSSTUDIE

DIGITALES OWL•KULTUR-PORTAL. 2018. URL: https://www.ostwestfalen-

lippe.de/images/stories/Machbarkeitsstudie_Kultur- Portal_web.

pdf (visited on Oct. 2, 2019) (cit. on p. 180).

[@LF14] James Lewis and Martin Fowler. Microservices - a definition of this new architectural

term. 2014. URL: https://martinfowler.com/articles/microservices.

html (visited on Apr. 20, 2020) (cit. on p. 170).

[@LS16] Ben Linders and Dave Snowden. Q&A with Dave Snowden on Leadership and Using

Cynefin for Capturing Requirements. 2016. URL: https : / / www . infoq . com /

articles/dave-snowden-leadership-cynefin-requirements (visited on

June 27, 2018) (cit. on p. 6).

[@Mic12] Microsoft. The MVVM Pattern. 2012. URL: https://docs.microsoft.com/en-

us/previous-versions/msp-n-p/hh848246(v=pandp.10) (visited on Apr. 8,

2020) (cit. on p. 136).

[@Neg17] Julia Negri. Kultur digitalisieren: SICP ist Mitinitiator beim Infotag “OWL.Kultur-

Portal”. 2017. URL: https : / / www . sicp . de / nachricht / news / kultur -

digitalisieren - sicp - ist - mitinitiator - beim - infotag - owlkultur -

portal/ (visited on Oct. 2, 2019) (cit. on p. 179).

[@Nes17] Nesta. Tools - Development Impact and You. 2017. URL: http://diytoolkit.org/

tools/ (visited on Dec. 3, 2019) (cit. on p. 72).

[@Nie01] Jakob Nielsen. First Rule of Usability? Don’t Listen to Users. 2001. URL: https:

//www.nngroup.com/articles/first-rule-of-usability-dont-listen-

to-users/ (visited on Dec. 4, 2019) (cit. on p. 70).

[@Osm15] Addy Osmani. Getting Started with Progressive Web Apps. 2015. URL: https://

developers.google.com/web/updates/2015/12/getting-started-pwa

(visited on Apr. 12, 2020) (cit. on p. 139).

Internet 251

https://martinfowler.com/bliki/PresentationDomainDataLayering.html
https://martinfowler.com/bliki/PresentationDomainDataLayering.html
https://martinfowler.com/bliki/PresentationDomainSeparation.html
https://martinfowler.com/bliki/PresentationDomainSeparation.html
https://www.martinfowler.com/eaaDev/PresentationModel.html
https://www.martinfowler.com/eaaDev/PresentationModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://www.ostwestfalen-lippe.de/images/stories/Machbarkeitsstudie_Kultur-Portal_web.pdf
https://www.ostwestfalen-lippe.de/images/stories/Machbarkeitsstudie_Kultur-Portal_web.pdf
https://www.ostwestfalen-lippe.de/images/stories/Machbarkeitsstudie_Kultur-Portal_web.pdf
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.infoq.com/articles/dave-snowden-leadership-cynefin-requirements
https://www.infoq.com/articles/dave-snowden-leadership-cynefin-requirements
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://www.sicp.de/nachricht/news/kultur-digitalisieren-sicp-ist-mitinitiator-beim-infotag-owlkultur-portal/
https://www.sicp.de/nachricht/news/kultur-digitalisieren-sicp-ist-mitinitiator-beim-infotag-owlkultur-portal/
https://www.sicp.de/nachricht/news/kultur-digitalisieren-sicp-ist-mitinitiator-beim-infotag-owlkultur-portal/
http://diytoolkit.org/tools/
http://diytoolkit.org/tools/
https://www.nngroup.com/articles/first-rule-of-usability-dont-listen-to-users/
https://www.nngroup.com/articles/first-rule-of-usability-dont-listen-to-users/
https://www.nngroup.com/articles/first-rule-of-usability-dont-listen-to-users/
https://developers.google.com/web/updates/2015/12/getting-started-pwa
https://developers.google.com/web/updates/2015/12/getting-started-pwa

[@Roy+16] Adam Royalty, Rich Crandall, Katie Krummeck, and Devon Young. Create Design

Challenges Guidelines. 2016. URL: https://dschool- old.stanford.edu/

groups/k12/wiki/613e8/Creating_Design_Challenges.html (visited on

July 10, 2019) (cit. on p. 61).

[@RB15] Alex Russel and Frances Berriman. Progressive Web Apps: Escaping Tabs Without Los-

ing Our Soul. 2015. URL: https://medium.com/@slightlylate/progressive-

apps-escaping-tabs-without-losing-our-soul-3b93a8561955 (visited on

Apr. 12, 2020) (cit. on p. 139).

[@SS17] Ken Schwaber and Jeff Sutherland. The Scrum Guide: The Definitive Guide to Scrum:

The Rules of the Game. 2017. URL: https://www.scrumguides.org/scrum-

guide.html (visited on Apr. 17, 2020) (cit. on p. 167).

[@Sev14] Doug Seven. Knightmare: A DevOps Cautionary Tale. 2014. URL: https : / /

dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

(visited on Jan. 10, 2019) (cit. on pp. 9, 14, 150).

[@Smi09] Josh Smith. Patterns - WPF Apps With The Model-View-ViewModel Design Pattern.

2009. URL: https://docs.microsoft.com/en-us/archive/msdn-magazine/

2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-

design-pattern (visited on Apr. 7, 2020) (cit. on p. 135).

[@Tra16] Norman Tran. Design Thinking Playbook. 2016. URL: https://dschool.stanford.

edu/resources/design-thinking-playbook-from-design-tech-high-

school (visited on July 10, 2019) (cit. on pp. 90, 91, 93, 199, 200).

[@USK16] Steve Urban, Rangarajan Sreenivasan, and Vineet Kannan. It’s All A/Bout Testing: The

Netflix Experimentation Platform. 2016. URL: https://medium.com/netflix-

techblog/its- all- a- bout- testing- the- netflix- experimentation-

platform-4e1ca458c15 (visited on Apr. 20, 2018) (cit. on p. 156).

[@Wal12] Gerd Waloszek. Introduction to Design Thinking. 2012. URL: https://experience.

sap.com/skillup/introduction-to-design-thinking/ (visited on Sept. 18,

2019) (cit. on p. 89).

252 Bibliography

https://dschool-old.stanford.edu/groups/k12/wiki/613e8/Creating_Design_Challenges.html
https://dschool-old.stanford.edu/groups/k12/wiki/613e8/Creating_Design_Challenges.html
https://medium.com/@slightlylate/progressive-apps-escaping-tabs-without-losing-our-soul-3b93a8561955
https://medium.com/@slightlylate/progressive-apps-escaping-tabs-without-losing-our-soul-3b93a8561955
https://www.scrumguides.org/scrum-guide.html
https://www.scrumguides.org/scrum-guide.html
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://docs.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://dschool.stanford.edu/resources/design-thinking-playbook-from-design-tech-high-school
https://dschool.stanford.edu/resources/design-thinking-playbook-from-design-tech-high-school
https://dschool.stanford.edu/resources/design-thinking-playbook-from-design-tech-high-school
https://medium.com/netflix-techblog/its-all-a-bout-testing-the-netflix-experimentation-platform-4e1ca458c15
https://medium.com/netflix-techblog/its-all-a-bout-testing-the-netflix-experimentation-platform-4e1ca458c15
https://medium.com/netflix-techblog/its-all-a-bout-testing-the-netflix-experimentation-platform-4e1ca458c15
https://experience.sap.com/skillup/introduction-to-design-thinking/
https://experience.sap.com/skillup/introduction-to-design-thinking/

List of Acronyms

HiP-App History in Paderborn App

FF Fitness Function

POV Point of View

nlp natural language processing

OWL Ostwestfalen-Lippe

Internet 253

List of Figures

1.1 Example for Qualitative Experiments regarding the Frontpage by Netflix [@BI16]. 3

1.2 Hill Climbing representation with Design Parameters on the x-axis and Product

Quality on the y-axis. Own representation based on [NV14] 4

1.3 The Cynefin Framework and its five domains Obvious, Complicated, Complex,

Chaotic, and Disorder. Own representation based on [KS03] 7

1.4 Example Radar Chart for our Fitness Function (FF). 13

1.5 Example: Decision about the degree of novelty. Adapted from [FS16] 16

1.6 What is Science? One possible view from [Dod02] 19

1.7 Overview of Thesis Structure . 28

2.1 S-Curve illustrating the generalized adoption of an innovation. 35

2.2 Density function of the normal distribution with drawing of the individual

Adopter categories and their share in the total quantity. 37

2.3 Innovation Triad based on Weiss [Wei02] 41

2.4 Problem and Solution Space in Design Thinking including diverging and

converging Thinking. Own illustration based on Lindberg, Meinel, and Wag-

ner [LMW11] . 42

2.5 Design Thinking Micro Cycle . 42

3.1 Prototype Levels. Own representation based on Houde and Hill [HH97] . . . 48

3.2 Recommended user experience design process. Own representation based on

Mayhew [May12] . 49

3.3 Integrated Process for ICeDD based on [KS03; May12; HH97; LMW11; JBR99] 50

3.4 The 4P’s People, Project, Product, Process, and Tools from the Unified Soft-

ware Development Process [JBR99]. Own representation. 53

4.1 Initialize Design Thinking Process . 63

4.2 User Profile Creation . 74

4.3 Vision Backlog – Stakeholder View: Task Creation 75

4.4 Vision Backlog – Analyst View: Task List Screen 75

4.5 Usability evaluation results . 76

4.6 Schematic process model of grounded theory based on Strübing [Str04] . . . 79

254

4.7 Schematic process model of the interdisciplinary research process with grounded

theory (following Strübing [Str04]) . 81

4.8 Radar Chart for Stage 1 regarding our Fitness Function (FF). 85

5.1 Design Thinking Process based on Design Thinking Playbook by Tran [@Tra16]. 90

5.2 Radar Chart for Stage 2 regarding our Fitness Function (FF). 96

6.1 Example of the atomic requirements shell used in the firefighter training system

(see section 8.2). 98

6.2 Prepare Design Thinking with Software Process Overview. 99

6.3 Process to Transform Design Thinking Results into Agile Software Requirements.103

6.4 Design Thinking Requirements Framework (DTRF) Evaluation Results Ques-

tionnaire: Understanding. {Before, After} DTRF=Questionnaire for DTRF

teams {before, after} they used DTRF and created agile software requirements.

{Before, After} Direct = Questionnaire for teams {before, after} they directly

created agile software requirements. 113

6.5 Design Thinking Requirements Framework (DTRF) Evaluation Results Ques-

tionnaire: Framework. 114

6.6 Radar Chart for Stage 3 regarding our Fitness Function (FF). 118

7.1 The 4P’s People, Project, Product, Process, and Tools from the Unified Soft-

ware Development Process [JBR99]. Own representation. 120

7.2 Process Overview for this stage based on general experimentation process by

Thomke [Tho03]. 123

7.3 Design activity for field studies / experiments in this stage. 124

7.4 Build activity for field studies / experiments in this stage. 127

7.5 Run activity for field studies / experiments in this stage. 129

7.6 Analyze activity for field studies / experiments in this stage. 129

7.7 Schematic Illustration of two Bounded Contexts. 131

7.8 Example Comparison of Active Record and Event Sourcing. 132

7.9 Event Sourcing and Command Query Responsibility Segregation Pattern

Combined. 133

7.10 Presentation-Domain-Data-Layering. Own representation based on [@Fow15] 134

7.11 Model-View-ViewModel (MVVM) Pattern. Own representation based on [@Mic12]136

7.12 Continous Integration and Deployment Pipeline. Own representation based

on [SAZ17]. 137

7.13 Implementation of Presentation-Domain-Data-Layering in OWL.Culture-Portal.

The hexagon representation is based on the microservice representation by

NGINX and is meant to emphasize that these are constituent systems. 140

List of Figures 255

7.14 Overview of Tools for Automating the Field Study / Field Experimentation

Process. 145

7.15 Guided Mode in our prototype FEXP to define experiments. 147

7.16 Details Overview of an experiment in our prototype FEXP. 148

7.17 Running and finished experiments overview in our prototype FEXP. 149

7.18 Constituent Systems in the Technical Assignment System. 152

7.19 Constituent Systems in the Quantitative Data System. 154

7.20 Radar Chart for Stage 4 regarding our Fitness Function (FF). 158

8.1 Case Study Research Cycle. Own Representation based on [Yin17] 163

8.2 Fire Training House including Control Desk of the Dortmund Fire Department.173

8.3 Prototype Test for Room Smoked in Augmented Reality. 174

8.4 Prototype: Firefighter Training System - Fire Operation 175

8.5 Schematic representation for a more realistic integration of the prototype into

the protective clothing. 176

8.6 Solution Overview . 178

8.7 Design Thinking Process . 184

8.8 External Fair . 185

8.9 Prototype Levels: Value . 198

8.10 Prototype Levels: Value, Look & Feel, Integration 199

8.11 nlp-Pipeline developed preceding this case study. 201

8.12 Evaluation Chart Summary General . 204

8.13 Evaluation Chart Summary Advisor . 205

8.14 Evaluation Chart Summary Tasks and Teams 207

8.15 Evaluation Chart Summary Conclusion . 208

8.16 Minimum Viable Product in Rancher controlled Kubernetes Cluster 217

8.17 Relation between Template and Component in Angular. 218

8.18 Example Experiment: Scrollview on Landing page 219

9.1 Schematic representation of our approach. 226

9.2 Solution Overview . 227

9.3 Summary of the FF results for the individual stages. 230

9.4 Radar Chart for our approach ICeDD regarding our FF. 232

256

List of Tables

4.1 Classification criterion for elicitation techniques 72

4.2 Selected elicitation techniques and their purpose in Vision Backlog 73

4.3 Usefulness evaluation results . 77

5.1 Example Time Schedule for a Design Thinking Workshop 95

6.1 Category Overview. 105

6.2 Capture Card: Background . 105

6.3 Capture Card: Objective . 106

6.4 Capture Card: Needs . 107

6.5 Capture Card: Values . 108

6.6 Capture Card: Material . 108

6.7 Capture Card: Hierarchy . 109

6.8 Capture Card: Misc . 110

8.1 Project group main goals for each term with the corresponding research question165

8.2 Seminar topics . 167

8.3 OWL.Culture-Platform Schedule. ■ Stage 2: Execute Design Thinking with

Non-Software, ■ Stage 3: Prepare Design Thinking with Software, ■ Stage

4: Execute Design Thinking with Software. 181

8.4 Questionnaire Part 1: General Information and Expectations 188

8.5 Questionnaire Part 2: Advisors, Team, Task Adequacy 190

8.6 Questionnaire Part 3 . 192

8.7 Individual Work Products . 193

8.8 Participants Overview from Questionnaire. XX (YY), XX = 1. Survey, YY =

2. Survey . 203

List of Tables 257

	Titlepage
	Abstract
	Contents
	I Preliminaries & Foundations
	1 Preliminaries
	1.1 Introduction
	1.1.1 Decide on how to make sense of a situation
	1.1.2 Preparing for Adoption
	1.1.3 Special Features of Software for Prototyping

	1.2 Research Question, Objectives, & Fitness Function
	1.3 General Research Approach
	1.3.1 Research in General
	1.3.2 Our Research Approach

	1.4 Overview of Publications
	1.5 Overview of Thesis Structure

	2 Foundations
	2.1 Diffusion of Innovations
	2.2 Design Thinking

	II Solution
	3 Solution Concept
	3.1 Solution Concept: Insight-centric Design & Development (ICeDD)
	3.2 Related Work Regarding the Overall Solution Concept
	3.3 Summary

	4 ICeDD Stage (1): Initialize Design Thinking
	4.1 Requirements & Overview
	4.2 On-Site Feature Requests
	4.2.1 Towards a Tool-Guided Elicitation Process
	4.2.2 Classification of Elicitation Techniques
	4.2.3 Vision Backlog – A Prototype for a Tool-Guided Elicitation Process
	4.2.4 Evaluation

	4.3 Feature Requests from Systematic Analysis
	4.3.1 Grounded Theory
	4.3.2 Our Grounded Theory Instance

	4.4 Summary and Discussion

	5 ICeDD Stage (2): Execute Design Thinking with Non-Software
	5.1 Requirements & Overview
	5.2 Our Design Thinking Instance
	5.3 Findings
	5.4 Summary and Discussion

	6 ICeDD Stage (3): Prepare Design Thinking with Software
	6.1 Requirements & Overview
	6.2 Design Thinking Requirements Framework (DTRF)
	6.2.1 Transformation Process
	6.2.2 Capture Cards
	6.2.3 Related Work
	6.2.4 Feasibility Study

	6.3 Summary and Discussion

	7 ICeDD Stage (4): Execute Design Thinking with Software
	7.1 Requirements & Overview
	7.2 People, Project, Product, and Process
	7.2.1 Process
	7.2.2 Product
	7.2.2.1 Macro-Architecture
	7.2.2.2 Implementation Example

	7.2.3 People
	7.2.4 Project

	7.3 Tools
	7.3.1 Experiment Design System
	7.3.2 Technical Assignment System
	7.3.3 Quantitative Data System

	7.4 Summary and Discussion

	III Evaluation & Epilog
	8 Evaluation
	8.1 History in Paderborn App
	8.2 Application Case Study regarding Innovation Assumptions
	8.2.1 Concept and Conduction
	8.2.2 Results and Discussion

	8.3 OWL.Culture-Platform
	8.3.1 Context
	8.3.2 Concept
	8.3.3 Evaluation Instruments
	8.3.3.1 Questionnaire
	8.3.3.2 Work Products

	8.3.4 Conduction and results
	8.3.4.1 Questionnaire results
	8.3.4.2 Work Product Evaluation Results

	8.3.5 Summary and Discussion

	9 Epilog
	9.1 Summary
	9.2 Discussion
	9.3 Future Work

	Bibliography

