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Abstract

Determining Multivariate Association between Multiple Data Sets with
Applications to Neuroscience and Acoustic Networks

by Tanuj Hasija

Analyzing multivariate association among multiple data sets is essential in various fields
like biomedicine, image processing, robotics and wearable technology. Although there are
several ways to measure association between data sets, this thesis deals with correlation,
a function of the second-order moments of the data, and thus analyzes linear association
among different data sets. Statistical tools like (multiset) canonical correlation analysis can
be employed to extract maximally correlated components from different data sets. However,
whether the estimated correlation among these components is significant or is spurious due
to limited data (or noise) if often ignored. To completely characterize the linear association,
estimating the complete correlation structure, i.e., which of the extracted components are
correlated and across which data sets, is necessary.

The two most critical challenges in this context are the large number of combinations in
which components can be correlated and limited number of observations compared to the
dimensionality of the data sets. When analyzing correlation between two data sets, it can be
assumed without loss of generality that a component in the first data set can be correlated
with only one other component in the second data set. This is not true for more than two
data sets. Moreover, there can be several ways in which the components can be correlated
in more than two data sets. Some components can be correlated across all data sets, some
across different subsets of data sets and some completely uncorrelated. The second challenge
is that when the number of observations is comparable to or smaller than the dimensions of
the data, the correlation among the components is highly overestimated making the analysis
and the subsequent inference extremely dubious.

This thesis addresses the aforementioned challenges by developing novel techniques for reli-
ably determining the complete linear association between multiple data sets. First, a special
correlation structure among the components is assumed, and the knowledge and tools exist-
ing for two data sets are applied. Then the more challenging problem of arbitrary correlation
structure is addressed. The necessary and sufficient conditions under which the complete
correlation structure can be identified are theoretically derived. The proposed techniques
are based on statistical methods and thus allow interpretability, while at the same time, re-
quire minimal assumptions and thus are designed to be data driven. Their advantages over
the state-of-the-art are demonstrated using extensive numerical examples. The developed
techniques are also applied on real-world data from the fields of wireless acoustic networks,
sports science and epilepsy, where estimating the complete correlation structure and quanti-
fying the strength of association between multiple modalities lead to significant performance
gains and identification of potential biomarkers.





Zusammenfassung der Dissertation

Determining Multivariate Association between Multiple Data Sets with
Applications to Neuroscience and Acoustic Networks

des Herrn Tanuj Hasija

Die Analyse des multivariaten Zusammenhangs zwischen unterschiedlichen Datensätzen ist in di-
versen Anwendungsgebieten wie Biomedizin, Bildverarbeitung, Robotik und Wearable Technology
von grundlegender Bedeutung. Obwohl mehrere Möglichkeiten existieren, den Zusammenhang zwi-
schen Datenätzen zu messen, befasst sich diese Arbeit mit der Korrelation. Dies ist eine Funktion
der Momente zweiter Ordnung von den Daten und analysiert daher den linearen Zusammenhang
zwischen unterschiedlichen Datensätzen. Statistische Methoden wie die kanonische Korrelations-
analyse (für mehrere Datensätze) können eingesetzt werden, um stark korrelierte Komponenten aus
verschiedenen Datensätzen zu extrahieren. Ob die geschätzte Korrelation zwischen diesen Kompo-
nenten jedoch signifikant ist oder nur aufgrund von begrenzten Daten (oder Rauschen) auftritt, wird
oft nicht berücksichtigt. Um den linearen Zusammenhang vollständig charakterisieren zu können, ist
eine Schätzung der vollständigen Korrelationsstruktur - d.h. welche der extrahierten Komponenten
in welchen Datensätzen korreliert sind - erforderlich.

Die beiden größten Herausforderungen in diesem Zusammenhang sind zum einen die große Anzahl
von Kombinationen, in denen die Komponenten korreliert sein können, und zum anderen die begrenz-
te Anzahl von Beobachtungen im Vergleich zur Dimensionalität der Datensätze. Bei der Analyse
der Korrelation zwischen zwei Datensätzen kann ohne Verlust der Allgemeingültigkeit angenom-
men werden, dass eine Komponente des ersten Datensatzes nur mit einer anderen Komponente des
zweiten Datensatzes korreliert sein kann. Bei mehr als zwei Datensätzen ist dies nicht der Fall.
Außerdem kann es mehrere Möglichkeiten geben, wie die Komponenten zwischen mehr als zwei
Datensätzen korreliert sein können. Einige Komponenten können zwischen allen Datensätzen ko-
rreliert sein, einige zwischen verschiedenen Teilgruppen von Datensätzen und einige können vol-
lkommen unkorreliert sein. Die zweite Herausforderung besteht darin, dass, wenn die Anzahl der
Beobachtungen vergleichbar zu oder sogar kleiner als die Dimension der Daten ist, die Korrelation
zwischen den Komponenten deutlich zu hoch geschätzt wird, was die Analyse und die anschließende
Schlussfolgerung sehr fragwürdig erscheinen lässt.

Diese Arbeit befasst sich mit den oben genannten Herausforderungen, indem neue Methoden zur
zuverlässigen Bestimmung des vollständigen linearen Zusammenhangs zwischen mehreren Daten-
sätzen entwickelt werden. Zunächst wird eine spezielle Korrelationsstruktur zwischen den Kompo-
nenten angenommen und die Erkenntnisse und Methoden für zwei Datensätze werden angewendet.
Darauf aufbauend wird das anspruchsvollere Problem einer beliebigen Korrelationsstruktur ange-
gangen. Die notwendigen und hinreichenden Bedingungen zur Ermittlung der vollständigen Korre-
lationsstruktur werden theoretisch hergeleitet. Die entwickelten Methoden basieren auf statistischer
Theorie und schaffen somit eine Möglichkeit zur Interpretation, während sie gleichzeitig nur wenige
Annahmen erfordern und daher datengetrieben konzipiert sind. Anhand umfangreicher numerischer
Beispiele werden die Vorteile dieser neuen Methoden gegenüber dem Stand der Technik demons-
triert. Die entwickelten Techniken werden darüber hinaus auch auf reale Daten aus den Bereichen
drahtlose akustische Netzwerke, Sportwissenschaft und Epilepsie angewendet, wo die Schätzung der
vollständigen Korrelationsstruktur und der Stärke der Zusammenhänge zwischen mehreren Modali-
täten zu signifikanten Verbesserungen der Ergebnisse und zur Identifizierung potentieller Biomarker
führen.
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depicted. The green-framed blocks show the correlation within an SCV. The

blue-framed blocks show the correlations among the SCVs. . . . . . . . . . 143

8.7. Illustration of the absolute correlation coefficients within post-exercise mea-

sures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.8. Estimated correlation structure among the SCVs for a) pre-exercise and b)

post-exercise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.1. ρ̂c value for each modality pair for each 15 minutes block per group a) for

patients and b) for controls. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2. Mean value of ρ̂c across all modality pairs for each 15 minutes block per group.151

9.3. Estimated correlation structure between the extracted omponents of EDA,

HR, Temp and RR in patients for preictal data illustrated using a correlation

map. The white blocks represent nonzero correlation coefficients and the

black blocks represent zero correlation coefficients. . . . . . . . . . . . . . 152

9.4. Estimated correlation structure between the extracted components of EDA,

HR, Temp and RR in patients for postictal data. . . . . . . . . . . . . . . . 153

9.5. Estimated correlation structure between the extracted components of EDA,

HR, Temp and RR in controls for pretictal data. . . . . . . . . . . . . . . . 154

9.6. Estimated correlation structure between the extracted components of EDA,

HR, Temp and RR in controls for posttictal data. . . . . . . . . . . . . . . . 155



List of tables

6.1. Example of the correlation structure in Figure 1.1 with three data sets each

with five signal components. The entries are the correlation coefficients be-

tween signal components of different pairs of data sets. . . . . . . . . . . . 81

6.2. Example of correlation structure with four data sets each with four signal

components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3. Correlation structure of the three correlated components in four data sets

used in scenario i). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4. Correlation structure of the three correlated components in four data sets

used in scenario ii). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5. Correlation structure of the two correlated components in five data sets used

in scenario iii). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6. Correlation structure of the three correlated components in five data sets used

in scenario iv)B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7. Correlation structure of four correlated components in five data sets used in

scenario vi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1. The clustering result of the proposed technique for scenarios 1 and 2. . . . . 128

7.2. The percentage of correctly labeled frames for all sources. . . . . . . . . . 131

8.1. Number of correlated components and their canonical correlation values for

each modality pair during pre- and post-exercise measures at moderate and

high intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2. Pairwise PCA-CCA results for pre- and post-exercise measures. . . . . . . 142

xxiii





Part I.

Introduction and background
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1. Introduction

1.1. Motivation

There are numerous applications where analyzing and characterizing multivariate associa-

tion between different sets of data is vital. One such application which is easy to understand

is fusion of data from different sensors. The idea of acquiring and combining the data from

different sensors is natural to living organisms. To fully interact with the environment, hu-

mans rely on complementary information from visual, audio, tactile and other stimuli, and

a loss to process even one of them can significantly change their interaction. Similarly, dif-

ferent artificial sensors (also commonly called modalities) provide complementary data. For

example, lidar, radar and visual cameras provide unique information about an object in a

3D-space [1]. In biomedicine, each brain imaging modality like functional magnetic reso-

nance imaging (fMRI), electroencephalography (EEG), provides a unique way of measuring

the brain activity. The fMRI measures the brain activity with a high spatial resolution while

the EEG does it with a very high temporal resolution [2]. Another example is in the field

of epilepsy. Various studies have shown that an epileptic seizure induces changes in the

autonomic nervous system (ANS) of the brain [3], [4]. The ANS is a complex system con-

trolling different organs of the body and is monitored using data from different modalities

such as sweat activity, heart rate, respiratory rate and body temperature [5].

Although data from different modalities can be analyzed separately, as in the natural world,

their joint analysis brings significant advantages. For example, joint analysis of fMRI and

EEG data leads to understanding of brain activity at a highly resolved spatial and tempo-

ral scale [6]. Similarly, jointly analyzing data from different ANS modalities has shown to

improve detection and prediction of an epileptic seizure [7], [8]. Other examples include

improved object detection for autonomous driving [9], finding coupled patterns between

sea surface temperature and rainfall in oceanography [10] and extracting gene clusters in

3
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genomics [11]. However, data might not always be generated from different modalities. An-

other application where evaluating multivariate association produces benefits is multisensor

data analysis from same modality. For instance, enhanced voice activity detection (VAD)

from multiple microphones in wireless acoustic sensor network (WASN) [12], efficient ob-

ject detection using multiple spatially separated cameras [13] and an improved analysis of

brain activity in multi-subject fMRI data [14]. In all these applications, an essential step

for performing the joint analysis is to study how the data sets (obtained either from mul-

tiple modalities or from same modality) are statistically associated with each other, or in

other words, do they share some common information which can be quantified and exam-

ined?

There are various techniques which examine the association between multiple data sets.

When the availability of data points, also called observations or samples, is not an issue,

a possible solution is to employ completely data-driven approaches like [15], [16]. However,

these approaches are difficult to interpret especially in applications where the ground truth

is unknown. Semi data-driven approaches like canonical correlation analysis (CCA) [17],

independent vector analysis (IVA) [18], factor analysis [19], which assume each data set to

be generated by a simple linear mixing of underlying components, are well-suited in these

scenarios. This is because these approaches limit the model search space to avoid overfitting

and at the same time rely on minimal assumptions to let the heterogenous multiple data sets

fully interact [20]. Nonetheless in many fields, the number of samples is limited due to var-

ious constraints. For instance, the number of participants in a typical biomedical study is in

the order of ten to hundred. Similarly, in oceanography studies measuring yearly variability,

the number of samples (time points) depends on when the data collection started since we

cannot collect future data in advance. With limited data and large number of parameters to

estimate, measuring higher-order dependencies among the underlying components in multi-

ple data sets can lead to unreliable results. In this case, CCA, multiset CCA (mCCA) [21],

and their variants [13], [22], [23] which work with second-order statistics are more suitable.

These tools extract components from each data set, referred to as canonical variables, that

are highly correlated across different data sets. The canonical variables can then be used in

a plethora of applications including the ones mentioned above. Despite the abundance of

interest in extracting correlated components, one key question often remains overlooked. Is

the estimated correlation of these components actually present in the underlying system, or

is it an artifact due to noise or an insufficient number of samples?

Sometimes the answer to this question is assumed to be known apriori from domain-specific

knowledge. However, outside of that limited realm, most applications employ methods for
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Figure 1.1.: Example of a correlation structure between the latent signal components of three
data sets, s1, s2 and s3. The first component is correlated across all the data sets,
the next three are correlated across two data sets only and the fifth component in
each data set is uncorrelated with the other components.

thresholding the correlation coefficients as a way to determine the significant correlated com-

ponents. These solutions are generally heuristic and often fail for one of two main reasons: 1)

when the number of samples is limited, the correlation coefficient among the estimated com-

ponents is overestimated, even to the point of identifying nonexistent, spurious correlations,

2) the number of possible correlation structures among the extracted components combina-

torially increases as the number of data sets and their dimensions increase. It becomes even

more challenging to set heuristic thresholds when the data sets are high-dimensional as the

problems in 1) and 2) exacerbate.

Some techniques in the past have aimed to solve this as a model-order selection problem. In

signal processing, model order is the term used for the dimension of a parameter vector, i.e.,

the number of parameters of the data model [24]. Thus, estimating the number of correlated

components can be posed as a model-order selection problem. For two data sets, the signal

components are either correlated or uncorrelated across both sets, and the model-order se-

lection problem is well-defined. In this case, counting the number of correlated components

is sufficient to completely characterize the linear association among the two sets. Some of

the techniques for estimating the model order for two data sets are [25]–[29].

For more than two data sets, the model-order selection problem is not well defined. It is

possible for the components to be correlated across no data sets, all data sets, or some subset

of the collection. Figure 1.1 illustrates an example of correlation structure between the latent

signal components of three data sets, s1, s2, and s3. In most cases, however, we observe

linear mixtures of these latent components instead of observing them directly. Nonetheless,

Figure 1.1 can be used as a reference example to differentiate between the possible defini-
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tions of model-order selection for multiple data sets. Each column of the figure indicates the

components of one data set and thus components of each column have the same subscript.

Each row represents the individual signal components that can be correlated between differ-

ent pairs of data sets. In this example, each data set contains five signal components that

are mutually uncorrelated within their set. The set s1 is repeated again in the last column to

illustrate the correlation between the first and the third data set. Here, the first signal compo-

nent of each data set is correlated with the first component of all other data sets. This type

of correlation is indicated with red arrows. The next three components are correlated only

between a pair of data sets as indicated with black arrows. The fifth component of each data

set is uncorrelated with all other components.

In a special case, when the components are either correlated across all data sets or completely

uncorrelated, the model order completely characterizes the correlation information in multi-

ple data sets [30], [31]. In this case, it is assumed that the components indicated with black

arrows in Figure 1.1 are not present. However, apart from this special case, many general-

izations of model-order selection are valid (for example [13], [32]–[34]), and the problem

must be more precisely defined. For example, one formulation as in [34] is to determine the

number of components indicated with red arrows in Figure 1.1, while another as in [13] is to

determine the number of components indicated with both the red and black arrows in Figure

1.1. Moreover, determining only the model order is insufficient for characterizing the com-

plete second-order association in multiple data sets. This summary statistic only provides

the knowledge that the components exhibit correlation. This knowledge, although sufficient

for two data sets, is incomplete for multiple data sets.

Limited number of available samples presents another challenge here as the estimated corre-

lation between the components is highly overestimated when the number of samples is not

large compared to the dimensions of the data sets [13], [35]. This is commonly called as

sample-poor regime or small-sample support. In this regime, traditional CCA and mCCA

are unreliable for inferring the true linear relationship between the data sets, and a pre-

processing step or some form of regularization must be applied [36], [37]. However, this

pre-processing (or regularization) must be carefully designed to ensure that all or most of the

correlation information is included in this step [28]. For two data sets, the issue of small-

sample support is lately receiving attention [28], [29], [37]–[39]. However, in multiple data

sets, this issue is scarcely addressed and that too either for model-order selection [13] or

for estimating the latent signals themselves [40], but not yet for characterizing the complete

correlation structure.
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1.2. Contributions

The goal of this thesis is to characterize the complete linear association among multiple data

sets with limited number of samples, and reap benefits in various real-world applications by

employing this vital information. The association among different data sets is represented

through correlation between the latent components of the data sets. Since there are different

combinations in which the components can be correlated with each other, there are different

ways to characterize the joint-correlation information among all the sets.

I first propose two techniques to estimate the model order identifying the joint-correlation

information among all the data sets. This can be achieved by determining the number of

components correlated across all data sets. In case of Figure 1.1, this corresponds to deter-

mining the number of components indicated with red arrows. The first technique assumes

that the components are either correlated across all data sets or uncorrelated. In this case,

the model order completely characterizes the linear association in multiple data sets. To

this end, a generalized likelihood ratio test (GLRT)-based technique is designed specifically

for the sample-poor regime. It employs principal component analysis (PCA)-based dimen-

sionality reduction. The reduced PCA dimensions and the model-order are jointly estimated

so that the estimated PCA rank retains all the correlated components in each data set and

at the same time discards uncorrelated and noise components having smaller variance than

correlated components.

However, assuming an apriori correlation structure restricts the applicability of the previous

technique in many applications such as biomedicine, where the data sets are heterogenous

and can contain components correlated with arbitrary correlation structure. In this case, the

model order provides an incomplete summary as it only identifies that components are cor-

related. In order to achieve the goal of completely characterizing the joint-linear association,

the complete correlation structure has to be determined, i.e., which components are corre-

lated and across which data sets. For the example in Figure 1.1, the complete solution is not

just determining that the first four components are correlated but also that the first component

in each data set is correlated, and the successive components are correlated between data sets

1 and 2, 2 and 3, and 1 and 3, respectively. I then formulate and solve a more general model

selection problem by utilizing the joint information in the composite coherence (whitened

covariance) matrix of all data sets [41], denoted by C. A one-to-one relationship between

the number of eigenvalues of C greater than one and the number of correlated components,

and the between the eigenvectors of C and correlation structure of the correlated components

is theoretically established using tools from graph theory. To deal with the small-sample sup-
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port, a simple extension of the technique is proposed using PCA, where the PCA dimensions

are chosen to keep all correlated components.

I would like to point out that in this thesis I estimate the correlation structure among the

latent signals in the data sets, and not the latent signals themselves. There exist various joint

blind source separation (JBSS) techniques such as mCCA, IVA, joint independent compo-

nent analysis (ICA) [18], [20], [23], [42], [43], which estimate the underlying correlated

(or common) signals. However, it is not always necessary to estimate the correlated sig-

nals first (or to estimate them at all) and later infer their correlation structure. I will show

in the upcoming chapters that under certain assumptions, there is a one-to-one relationship

between certain properties of the data matrices (e.g., the multiset canonical correlations in

the GLRT-based technique in Chapter 5 or the eigenvalues and eigenvectors of the com-

posite coherence matrix in Chapter 6) and the correlation structure among the underlying

components. Therefore, it is desirable and efficient to avoid the challenges and ambiguities

involved in estimating the latent signals if they are not required to characterize the correlation

structure.

Throughout this thesis, extensive simulation examples are provided to demonstrate the effec-

tiveness of the proposed techniques over the competing techniques present in the literature.

However, the results are not limited to just simulations. Since the association between multi-

ple data sets is inherent in several fields, these techniques are applied in diverse applications

of sensory array processing, WASN, sports science and epilepsy, and benefits of quantifying

and utilizing this association are presented. Applying the proposed techniques to real-world

applications was mostly done in joint collaboration with other researchers and I have tried

my best to acknowledge and specify their valuable contributions in the respective chapters.

The application-specific contributions of this thesis are the following.

First, two techniques based on information theoretic criterion (ITC) and GLRT in two data

sets are adapted for determining the dimension of the improper subspace in complex-valued

data. Improper signals are a class of complex-valued signals which are correlated with

their complex conjugate and are useful in numerous applications such as communications,

oceanography and biomedicine [44], [45]. The proposed techniques effectively exploit the

correlation information between the data and its complex conjugate and thus, are able to work

even in presence of additive colored noise, which the competing technique [46] is not able

to handle. I also present numerical results for the application of sensor array processing,

where the number of improper sources, e.g., binary phase-shift keying(BPSK)-modulated

sources, in a sensor array with large number of array elements and small number of samples
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is determined.

I have also applied the developed technique for estimating the complete correlation struc-

ture in WASN to determine the unknown number of active speakers and the cluster of nodes

which dominantly hear each speaker. This is done blindly by only observing the mixture

of signals from multiple speakers. Both these estimates are used to detect the voice activity

pattern of each speaker efficiently. Only the nodes assigned to the cluster of the corre-

sponding speaker are used to detect the voice activity, thus providing a better SNR and an

improved performance compared to the state-of-the-art [47], which uses all microphones at

a time.

In the field of sports science, I apply the existing techniques for two data sets and the devel-

oped techniques for multiple data sets to quantify the changes in association among different

ANS modalities in subjects undergoing two different physical tasks. In the first study, the

subjects underwent through an intense exercise, and in the other, they ran an ultramarathon.

Supported by the fact the the correlation structure of the extracted components and their cor-

relation strength changes after each physical load, the analysis helps in a better understanding

of the ANS central control and its subsystems.

Finally, the techniques are applied to the peripheral ANS data collected from a wearable

sensor in epileptic patients and the association between the modalities is analyzed before

and after a seizure. The number of correlated components, their strength and the modalities

across which they are correlated increase right before the seizure and decrease right after

the seizure, offering a possibility of a potential biomarker for seizure detection and more

importantly seizure prediction.

1.3. Overview of thesis

This thesis is divided into four parts. We will continue the first part of the thesis by discussing

the tools for analyzing linear dependencies between multiple random vectors and the model-

selection techniques in Chapter 2. Specifically, we will discuss CCA, mCCA, and three

different model-selection techniques of ITC, GLRT and bootstrap, all of which are most

relevant for the techniques proposed in this thesis.

In the next part, we will focus on model selection in two data sets. With the goal of making

this thesis as complete as possible for the reader, two existing techniques based on ITC and

GLRT for estimating the model-order jointly in two data sets along with their modifications
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in the sample-poor regime are reviewed in Chapter 3. We will frequently refer to these tech-

niques in the later chapters. In Chapter 4, two novel methods to estimate the number of

improper signals in complex-valued data are proposed. These methods are adaptations of

the techniques described in Chapter 3 and employ substantial modifications due to the fact

that the second-order dependence between a random vector and its complex conjugate is an-

alyzed. The proposed methods are designed specifically for data with small-sample support

and corrupted by white or colored noise. An example of determining the number of sources

impinging on a sensor array with large number of array elements is also presented.

Part 3 of this thesis focuses on characterizing the linear association among multiple (more

than two) data sets. Chapter 5 aims to characterize this association through the model order

identifying the number of components correlated across all data sets. In the first half of this

chapter, it is assumed that the components are either correlated across all pairs of data sets

or are completely uncorrelated. A GLRT-based detector for the model order is designed in

Section 5.3 and is extended for data sets with relatively small number of samples. The second

half of Chapter 5 proposes a new technique based on bootstrap for determining the model

order with arbitrary correlation structure. In this case, the model order only characterizes

the linear dependencies present across all the data sets and ignores the dependencies across

subsets of them. This is tackled in the next chapter of this part, which introduces a more

general model selection problem and includes model-order selection as its subproblem. Two

techniques for estimating the complete correlation structure are proposed in Chapter 6. These

techniques complement each other. The first technique is based on model order estimates

from pairs of data sets while the second technique uses only the joint information from all

the data sets.

The next part focusses on the applications of the proposed techniques on real-world data

from three different fields. In Chapter 7, the joint approach for estimating the complete cor-

relation structure of Chapter 6 is applied in WASN to estimate the number of speakers and

their cluster of nodes. This vital information is then used to detect the voice activity of each

speaker using a group-sparse constraint, which offers a robust solution against impulsive

noise sources in the network. Chapter 8 applies the techniques reviewed in Chapter 3 and

developed in Chapter 6 in the field of sports science to measure the changes in association

between multiple ANS modalities in response to physical stressors. The adapted methods,

results and their implication for a likely reorganization of the ANS after the physical load are

further discussed. Later, the focus of Chapter 9 is in the field of epilepsy. The time evolution

of the overall linear dependency estimated among four different modalities of ANS is ana-

lyzed around an epileptic seizure. The plausibility and challenges of employing the results
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as a promising biomarker for seizure detection and prediction are also briefly discussed. We

will thereafter conclude the thesis and discuss some potential ideas for future research in

Chapter 10.





2. Background

In this chapter, we will introduce the fundamental methods which are used throughout in

this thesis. We will start by describing CCA, which measures the linear dependence among

two different sets of data in Section 2.1. In Section 2.2, we will introduce the extension

of CCA for more than two data sets, commonly referred to as mCCA. Later in Section

2.3, we will discuss about the two commonly used model selection techniques: ITC and

hypothesis testing. Two variants of hypothesis testing, the GLRT and the bootstrap, are also

discussed.

2.1. Canonical correlation analysis

Let us consider two zero-mean random variables x1 and x2. The most commonly used sta-

tistical quantity to measure the linear relationship between these two variables is the Pearson

correlation coefficient [48] defined as

k =
E[x1x2]√
E[x21]E[x22]

, (2.1)

where E[·] denotes the expectation operator. Now let us consider two zero-mean random

vectors x1 ∈ Rn1 and x2 ∈ Rn2 . How do we describe the linear dependence among x1

and x2? One way is to compute and infer the n1 × n2 correlation coefficients between the

variables of x1 and x2. However, this might not lead to the true linear relationship between

x1 and x2 as some of the variables within x1 and x2 might be correlated with each other.

CCA is a powerful tool for finding the canonical linear relationship between x1 and x2 [17].

CCA projects x1 and x2 using a linear transformation and aims to maximize the correlation

between the projections [48]. It thus seeks to find the coordinate system where most of the

correlation between the two random vectors is concentrated in a few dimensions.

13
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Let us define the covariance matrices of x1 and x2 as R11 = E[x1x
T
1 ], and R22 = E[x2x

T
2 ],

where the superscript T denotes the transpose. Similarly, the cross-covariance matrix is

defined as R12 = E[x1x
T
2 ]. CCA seeks vectors w

(1)
1 and w

(1)
2 , such that the correlation

coefficient between the projections ε(1)1 = w
(1)T
1 x1 and ε(1)2 = w

(2)T
2 x2 is maximized [49].

That is,

arg max
w

(1)
1 ,w

(1)
2

w
(1)T
1 R12w

(1)
2√

w
(1)T
1 R11w

(1)
1

√
w

(1)T
2 R22w

(1)
2

. (2.2)

Since the correlation coefficient is scale-invariant, any scaled versions of ε(1)1 and ε(1)2 , will

lead to the same correlation coefficient between them. Therefore, we constrain ε
(1)
1 and

ε
(1)
2 to be of unit-variance, i.e., w

(1)T
1 R11w

(1)
1 = w

(1)T
2 R22w

(1)
2 = 1. Assuming that that

R11 and R22 are non-singular and defining new projection vectors, w̃
(1)
1 = R

1
2
11w

(1)
1 and

w̃
(1)
2 = R

1
2
22w

(1)
2 , the CCA cost function in (2.2) can be redefined as [38]

arg max
w̃

(1)
1 ,w̃

(1)
2

w̃
(1)T
1 R

− 1
2

11 R12R
− 1

2
22 w̃

(1)
2 ,

such that w̃
(1)T
1 w̃

(1)
1 = w̃

(1)T
2 w̃

(1)
2 = 1. (2.3)

The correlation coefficient, k(1) = E[ε
(1)
1 ε

(1)
2 ] is called the first canonical correlation, and ε(1)1

and ε(1)2 are called the first pair of canonical variables. To obtain the next pair of canonical

variables, the same process of maximizing the correlation coefficient with respect to new

projection vectors w
(2)
1 and w

(2)
2 is followed, subject to additional constraints that the canon-

ical variables belonging to the same random vector are uncorrelated [49]. This procedure

can be repeated to compute n12 = min (n1, n2) pairs of canonical variables.

Closed Form Solution: The CCA procedure can be visualized as transforming x1 and x2

to n12-dimensional random vectors ε1 = W1x1 and ε2 = W2x2, as shown in Figure 2.1,

where the projection matrices W1 = [w
(1)
1 , . . . ,w

(n12)
1 ]T and W2 = [w

(1)
2 , . . . ,w

(n12)
2 ]T ,

contain the n12 projection vectors [50]. The random vectors ε1 and ε2 are called canonical

vectors and are constrained to be white, i.e.,

E[ε1ε
T
1 ] = E[ε2ε

T
2 ] = I. (2.4)

Let us define the coherence matrix (or the whitened covariance matrix) C12 [41] and its

singular value decomposition (SVD) as

C12 = R
− 1

2
11 R12R

− 1
2

22 = F1K12F
T
2 . (2.5)
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Figure 2.1.: Principle of CCA.

Here F1 and F2 are the left and right singular vector matrices of C12. The complete solution

to the CCA optimization problem is given by the SVD of C12 with the projection matrices

as

W1 = FT
1 R
− 1

2
11 (2.6)

W2 = FT
2 R
− 1

2
22 , (2.7)

and the canonical correlations as the singular values of C12 [41], i.e., the canonical correla-

tion matrix

K12 = E[ε1ε
T
2 ] = diag(k

(1)
12 , · · · , k

(n12)
12 ). (2.8)

It is interesting to see that the expression of C12 for random vectors in (2.5) is similar to the

expression of the Pearson correlation coefficient for random variables in (2.1).

An important property of CCA is that the canonical correlations are maximally invariant

under non-singular linear transformations of x1 and x2 [48]. Therefore, T1x1 and T2x2 will

also yield the same canonical correlation matrix K12, where T1 ∈ Rn1×n1 and T2 ∈ Rn2×n2

are assumed to be of full rank. This property makes CCA applicable in numerous real-world

applications where the relationship among two sets of underlying latent variables, observed

in the measurement space through linear mixing is typically of interest.

2.2. Multiset canonical correlation analysis

CCA is limited to two random vectors only. There are several ways of extending it to

more than two random vectors which are summarized in [21]. All of these extensions

fall under the common term of multiset CCA. To understand why generalizing CCA for
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multiple random vectors is not unique, let us now consider P zero-mean random vectors,

x1, . . . ,xP . As in CCA, we project these P vectors on to the projections, ε(1)p = w
(1)T
p xp,

for p = 1, . . . , P and aim to jointly maximize the correlation among these P projections

[21]. However, unlike CCA, we now have P (P−1)
2

correlation coefficients among the pair

{ε(1)p , ε
(1)
q }, p, q = 1, . . . , P , p 6= q, to be maximized. Since there is no unique way of jointly

maximizing all of the P (P−1)
2

correlation coefficients, different versions of mCCA exist each

based on a different cost function of these correlation coefficients [51]. Let us constrain each

ε
(1)
p to be of unit variance and define their covariance matrix as

R̃(1) =


1 k

(1)
12 · · · k

(1)
1P

k
(1)
12 1 · · · k

(1)
2P

...
... . . . ...

k
(1)
1P k

(1)
2P · · · 1

 , (2.9)

where k(1)pq is the correlation coefficient of ε(1)p and ε(1)q . [21] presented five different versions

to perform mCCA. These versions are as follows:

1. Maximum variance (MAXVAR),

2. Minimum variance (MINVAR),

3. Generalized variance (GENVAR),

4. Sum of correlations (SUMCORR)

5. Sum of squared correlations (SSQCORR).

To obtain the first set of canonical variables, MAXVAR maximizes the largest eigenvalue

of R̃(1), MINVAR minimizes the smallest eigenvalue of R̃(1) and GENVAR minimizes the

determinant of R̃(1). On the other hand, SUMCORR and SSQCORR maximize the sum of

absolute values and the sum of squared values of the P (P−1)
2

correlation coefficients in R̃(1),

respectively. A useful property of these different mCCA versions is that all five of them

reduce to CCA for P = 2. In the remaining part of this section, we will briefly explain the

MAXVAR version and show how it extends the traditional CCA presented in Section 2.1 in

a natural way. For a complete overview of all the cost functions, the reader is referred to [21]

and [51].

Consider the composite vector x obtained by vertically concatenating the individual random

vectors,

x = [xT1 , . . . ,x
T
P ]T , (2.10)
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and the composite covariance matrix R = E[xxT ]. Let RD = blkdiag(R11, . . . ,RPP ) be

a block-diagonal matrix with Rpp = E[xpx
T
p ]. As in CCA, let us define the new projection

vectors w̃
(1)
p = R

1
2
ppw

(1)
p and the composite projection vector, w̃(1) = [w̃

(1)T
1 , . . . , w̃

(1)T
P ].

The optimization problem of mCCA MAXVAR to obtain the first set of canonical variables

can now be formulated as

arg max
w̃(1)

w̃(1)TR
− 1

2
D RR

− 1
2

D w̃(1),

such that w̃(1)T w̃(1) = 1. (2.11)

The definition of the coherence matrix for two random vectors can be generalized in a natural

way for multiple random vectors as

C = R
− 1

2
D RR

− 1
2

D , (2.12)

where C denotes the composite coherence matrix. Rewriting this problem as a Lagrangian

makes it clear that (2.11) is maximized when w̃(1) is the eigenvector associated with the

largest eigenvalue of C. The canonical variables are obtained as ε(1)p = w̃
(1)T
p R

− 1
2

pp xp. We

refer to them as the first stage canonical variables. Solving (2.11) is equivalent to maximizing

the largest eigenvalue of R̃(1) in (2.9) under the constrains that ε(1)p are of unit variance.

For successive stages, as in CCA, the canonical variables from within a particular data set

are constrained to be uncorrelated, i.e.,

E[ε(j)p ε(k)p ] = 0 (2.13)

for p = 1, . . . , P and for all k < j. This is enforced with a deflationary procedure where

C is recomputed at stage j after projecting each data set onto the orthogonal complement

of its existing canonical variables, [ε
(1)
p , . . . , ε

(j−1)
p ]. The optimization problem (2.11) with

constraints (2.13) is optimized when the jth stage projection vector, w̃(j) is the dominant

eigenvector of this updated C.

We can observe that the cost function for CCA in (2.3) and for MAXVAR mCCA in (2.11)

are very similar. The solution of CCA is obtained via the SVD of the coherence matrix

C12, while for MAXVAR mCCA, the solution is obtained via the eigenvalue decomposition

(EVD) of the composite coherence matrix C. This is why MAXVAR mCCA is commonly

referred as the natural extension of CCA for multiple random vectors.
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2.3. Model selection techniques

Model selection is one of the most fundamental problem in statistical signal processing. For

a given data, how to select a model that best fits the data? One of the most commonly used

example in this context is that of curve fitting. Given a set of data points, how to select a

curve that best describes the underlying function that generated those points? ForM number

of points, one can always chose an (M − 1)th order polynomial function which fits all the

points perfectly. However, such a complex model is usually not accurate as it overfits to the

noise present in the system and does not generalize well for an unseen set of points generated

from the same underlying function. On the other hand, a very simple model (very low-order

polynomial function) might underfit and would also not generalize well for the unseen data.

A preferred model is the one which balances the goodness-of-fit with the model complexity

[52]. There are different techniques in the literature for model selection. We will focus on

the two statistical techniques: the information theoretic criterion (ITC) and the hypothesis

testing.

2.3.1. Information theoretic criterion

The information theoretic criterion introduced by Akaike [53], Schwartz [54] and Rissanen

[55] states that, given a set of observations and a family of models, select the model that

best fits the observation data, while also making sure that the model is not too complex. The

principle of all the criteria is to compute an ITC score, which is the sum of model fit score

and penalty function [24],

ITC = model fit score + penalty function. (2.14)

The first term in (2.14), the model fit score, measures the goodness-of-fit of the observation

data to the model. The second term, the penalty function, is dependent on the number of free

parameters in the parameter space of the model. In general, with an increasing number of

free parameters or the model order, the observation data better fits the model and the model

fit score decreases. This is shown by the blue curve in Figure 2.2. However, if the model

order is increased without any check, the model tends to overfit the data. Overfitting occurs

when a model has too many parameters than required. In this case, the model tends to follow

the random noise in the data rather than the underlying relationship. Hence, to penalize

overfitting, the penalty function always increases with an increase in the model order as
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Figure 2.2.: Principle of information theoretic criterion.

shown by the black line in Figure 2.2. The ITC score is shown using the green line. The

optimal model parameter is chosen as the one which minimizes the ITC score.

Let us now give the terms defined in (2.14) a probabilistic interpretation. Consider M inde-

pendent and identically distributed (i.i.d.) samples of a random vector x, which are stacked

as columns of the data matrix X. The M samples of x are assumed to be generated from one

of the family of probability densities f(X|Θd) parameterized by the parameter space Θd for

some real-valued parameter d which can take values from 1 to n. In signal processing, d is

commonly referred to as the model order [24]. The general expression of ITC in this case

is

ITC(d) = − ln f(X|Θ̂d) + α(M)C(d), (2.15)

where Θ̂d is the maximum likelihood estimate of Θd, C(d) is the number of free parame-

ters in Θd and the term α(M) depends on the chosen ITC. For Akaike information criterion

(AIC), α(M) = 1, for minimum description length (MDL) and Bayesian information crite-

rion (BIC), α(M) = ln(M)
2

. The estimate of the parameter d or the model f(Θd|X) which

best fits the data X, is the one that minimizes (2.15),

d̂ = arg min
d=1,...,n

ITC(d). (2.16)
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2.3.2. Hypothesis testing

Hypothesis testing forms the backbone of statistical detection theory and can also be em-

ployed for model selection as an alternative to the ITC. Given a set of models to choose

from, one way to select the model that best fits the data is using multiple hypothesis test-

ing where each hypothesis supports one model. Thus, for n possible models, n hypotheses

H1, . . . , Hn are defined as

H1 : Model-1

H2 : Model-2
...

Hn : Model-n (2.17)

However, when the hypotheses are nested, i.e., when a model corresponding to one hypothe-

sis is a special case of the model in the other hypothesis, and the model parameter is a scalar,

a sequence of binary hypothesis tests can be applied instead. Although this is suboptimal

compared to the multiple hypothesis tests in (2.17), it prevents the need of strict correc-

tions for controlling the family-wise error rate and false discovery rate required in multiple

hypothesis testing [56], [57].

Let us revisit the problem defined in Section 2.3.1, where from a number of models f(Θd|X)

parameterized by Θd, we need to select one of the model, or in other words, choose the ap-

propriate model order d from the range, 1, . . . , n. In this case, a sequence of binary hypoth-

esis tests can be performed one at a time until a stopping condition is met [27], [28], [58].

This means starting with a counter i = 1 and performing the following binary test of null

hypothesis H0 and alternative H1

H0 : d = i,

H1 : d > i. (2.18)

If H0 is rejected, i is incremented and another test of H0 vs. H1 is run. This is repeated

until H0 is not rejected or i reaches n − 1. The binary test in (2.18) requires a statistic

whose (asymptotic) distribution under H0 is known. We will now explain two methods: the

generalized likelihood ratio test (GLRT), where the distribution of the statistic under H0 is

theoretically derived, and the bootstrap, where the distribution is empirically estimated from

the data.
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2.3.2.1. Generalized likelihood ratio test

WhenH0 andH1 are simple, and the likelihood function under both the hypotheses is known,

the likelihood ratio test (LRT, also known as Neyman-Pearson detector) is the optimal de-

tector. This means that the LRT maximizes the probability of detection for a given value

of probability of false alarm (Pfa). However, in (2.18), H0 is simple and H1 is composite.

Moreover, in most applications, the likelihood functions underH0 andH1 are not completely

known and depend on the unknown parameters. In this case, the GLRT, where the unknown

parameters are replaced by their maximum likelihood estimates, is the most commonly used

detector. The generalized likelihood ratio (GLR) for the test in (2.18) is

η =
f(X|Θ̂i, d = i)

f(X|Θ̂i+, d > i)
, (2.19)

where f(X|Θ̂i, d = i) and f(X|Θ̂i+, d > i) are the maximum likelihood functions under

H0 and H1, respectively, Θ̂i is the ML estimate of Θi assuming H0 is true and Θ̂i+ is the

ML estimate of Θi+ assuming H1 is true.

Wilks’ theorem: An important result which makes GLRT applicable in various scenarios

is the Wilks’ theorem [59]. It states that under some mild conditions, the statistic T (i) =

−2 ln η under H0 is asymptotically (as M → ∞) χ2
ν-distributed when d = i. Here, ν is the

number of degrees of freedom (d.f.) and is equal to the difference between the number of

free parameters under H1 and H0

ν = CH1(i)− CH0(i). (2.20)

If ν is independent of the unknown parameters, the distribution of T (i) can be computed and

a threshold τ(i) can be set to maintain a certain Pfa. This type of detector is also referred

to as the constant false-alarm rate (CFAR) detector since Pfa is independent of the unknown

parameters. However, it is important to note that Pfa is guaranteed (as M →∞) only for the

given test of H0 and H1, and not for the entire sequence of binary tests. The model order d

(and the corresponding model f(Θd|X)) can be selected as the smallest value of i for which

the null hypothesis is not rejected, i.e.,

d̂ = min
i=1,...,n−1

{i : T (i) < τ(i)}. (2.21)

Relationship between ITC and GLRT for model selection: From (2.15), (2.19) and (2.20),

it can be seen that the GLRT and ITC are related to each other. Both of them are based on the
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maximum likelihood functions and require the knowledge of the number of free parameters.

This has also been shown in [60]. However, there is a distinct difference between the two

approaches. The performance of the GLRT-based method depends on the probability of false

alarm, Pfa. In general, if the number of samples is large enough, the detector with smaller

Pfa performs better than the detector with larger Pfa. On the other hand, if the number of

samples is small, the detector with larger Pfa performs better. This is a general rule because a

detector with larger Pfa tends to overfit, whereas a detector with smaller Pfa tends to underfit.

However, the best choice of Pfa for a given number of samples cannot be determined in

general as it depends on the particular scenario. The advantage of the ITC-based method

is that it does not require choosing a value for Pfa because it does the trade-off between

underfitting and overfitting automatically. Nevertheless, this does not mean that the ITC-

based method will always outperform the GLRT-based detector in every scenario. We will

further discuss about the choice of Pfa and compare the performance of ITC and GLRT-based

detectors when we present the numerical results in Sections 3.6 and 4.5.

2.3.2.2. Bootstrap

Both ITC and GLRT-based methods require the likelihood function to be maximized with

respect to the unknown parameters in the parameter space Θd as well as the number of free

parameters in Θd (or the degrees of freedom for the χ2
ν-distribution). This is not always pos-

sible. In many cases, the dependence of the likelihood function on the unknown parameters

might not be explicit, making it difficult to find the maximum likelihood function [33]. In

other cases, determining the number of free parameters which depend on d might be chal-

lenging for complex models or the distribution of the data could be unknown [61]. In all of

these scenarios, ITC and GLRT-based methods cannot be employed.

Bootstrap is a resampling technique which can be used for model selection under the frame-

work of hypothesis testing. In bootstrap, it is assumed that the sample distribution of the

data can be used as a reliable estimate of the true distribution [62]. Under this assumption,

the samples are uniformly drawn from the available sample set with replacement to generate

a bootstrap resample set of the same size as that of the original sample set. This process

is repeated to generate many bootstrap resamples. These resamples are then employed for

estimating the distribution of a parameter, obtaining confidence intervals, and performing

hypothesis testing [63]. We use bootstrap to estimate the unknown distribution of the statis-

tic under the null hypothesis. The advantage of bootstrap is that the true distribution of the

data does not have to be known or estimated. This makes bootstrap a useful tool when only
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a limited number of samples are available or for non-Gaussian distributed data. For these

two scenarios, the traditional ITC and GLRT-based hypothesis test are ill-suited since they

are predominantly based on asymptotic properties of Gaussian distributed data [61].

Let us revisit the binary hypothesis test in (2.18) and define the statistic T (i) with a known

value under the null hypothesis as T0(i). The test in (2.18) can be reformulated as

H0 : T (i) = T0(i)

H1 : T (i) 6= T0(i). (2.22)

To test whether our sample was generated under H0, we estimate the distribution of |T (i)−
T0(i)|. This distribution is estimated via the bootstrap as follows. Given the sample matrix,

compute T (i). Resample the data by randomly choosing M indices from {1, . . . ,M} (with

uniform distribution and with replacement) to create a bootstrap data of the same size as the

original data set. Repeat the resampling procedure B times and compute the test statistic

each time to produce Tb (i) for b = 1, . . . , B. The distribution of |T (i) − T0(i)| under the

null is then approximated by the bootstrap distribution Tb
∗(i) = | Tb (i) − T (i)| [64]. The

algorithm for testing (2.22) is described in Algorithm 1 which is inspired from [61]. The

model order d is estimated as the smallest value of i for which the null hypothesis is not

rejected, i.e.,

d̂ = min
i=1,...,n−1

{i : |T (i)− T0(i)| < Tτ (i)}, (2.23)

where Tτ (i) is the threshold to maintain the desired Pfa.

2.4. Summary

We provided a brief overview about the principle, optimization problem and solution for both

CCA and mCCA. Unlike CCA, the solution for mCCA is not unique and can be found using

different cost functions of the correlation coefficients between the multiset canonical vari-

ables. Three different model selection techniques based on ITC, GLRT and bootstrap were

also presented. Both ITC and GLRT techniques require the expressions for the maximum

likelihood function and the degrees of freedom in the model, and the asymptotic properties

of detectors based on them are well defined. However, when the distributional assumptions

do not hold well, bootstrap provides an alternative by empirically estimating the distribution

of the test statistic to perform the hypothesis test. Specific details about how these model

selection techniques are applied for joint correlation analysis in two and more data sets are
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Algorithm 1 Binary hypothesis testing of (2.22) using bootstrap
1: Input X : observations

B: number of bootstrap resamples

Pfa: probability of false alarm

T0(i): value of the statistic under H0

2: function BOOTSTRAPTEST(X, B, Pfa)

3: T (i)← g(X)

. Compute test statistic from the data using a known function g(·)
4: for b = 1, . . . , B do

. bootstrap resamples indexed by left subscript

5: for l = 1, . . . ,M do
6: jb l ← random integer [1,M ]

. resample indices chosen with replacement

7: Xb ←
[
x( jb 1), . . . ,x( jb M)

]
. Compute the bth resample

8: Tb (i)← g( Xb )

. Compute bootstrap test statistic from the resampled data

9: Tb
∗(i)← | Tb (i)− T (i)|

. estimate distribution of |T (i)− T0(i)| under H0

10: { T(l)
∗(i)}Bl=1 ← sort{ Tb ∗(i)}Bb=1

. s.t. T(1)
∗(i) ≤ . . . ≤ T(B)

∗(i)

11: q ← d(1− Pfa)(B + 1)e
. index to select the threshold

12: Tτ (i)← T(q)
∗(i)

13: if |T (i)− T0(i)| < Tτ (i) then H0 is not rejected

14: else H0 is rejected

provided in the upcoming chapters.
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Model selection in two data sets
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3. A review of model selection in two
data sets

In this chapter, we will review the traditional ITC and hypothesis testing techniques for

determining the number of correlated components in two data sets. This number is sufficient

to completely characterize the linear association between any two data sets. We will also

discuss their extensions in the regime where the number of observations is comparable or

even smaller than the dimensions of the two sets and numerically show their usefulness over

the traditional techniques.

3.1. Introduction

The most common tool for studying and interpreting the association between two data sets

is CCA [17]. As explained in Section 2.1, for any two n1 and n2-dimensional sets of data

denoted by x1 and x2 respectively, CCA provides linear projections from the measurement

space to the so-called canonical space, where the correlation between x1 and x2 is maxi-

mized. The projections ε1 and ε2 are the vectors containing the canonical variables, and the

correlation coefficients among them are referred to as canonical correlations. CCA leads to

a diagonal correlation matrix between ε1 and ε2, i.e., the ith canonical variable of the first

set ε(i)1 is only correlated to the corresponding ith canonical variable of the second set ε(i)2 .

Moreover, the canonical variables are sorted in decreasing order of their canonical correla-

tions. Therefore, knowing the number of non-zero canonical correlations, denoted as d12, is

sufficient to completely characterize the second-order dependence between x1 and x2. This

is because there is no ambiguity about which of the canonical variables are correlated. One

can extract the first d12 canonical variables and stop as the remaining canonical variables are

uncorrelated.

27
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As seen in Section 2.1, the canonical variables and the canonical correlations can be obtained

from the SVD of the coherence matrix of x1 and x2 [41] defined as

C12 = R
− 1

2
11 R12R

− 1
2

22 . (3.1)

In practice, the population covariance matrices, R11,R12,R22, are unknown and have to be

estimated from the samples of x1 and x2. Given M i.i.d. joint samples of x1 and x2, the data

matrices can be constructed as

X1 = [x1(1),x1(2), . . . ,x1(M)]

X2 = [x2(1),x2(2), . . . ,x2(M)]. (3.2)

The term joint samples of x1 and x2 means that the lth sample of x1 is associated with the

lth sample of x2 for l = 1, . . . ,M . This means for example, the lth samples of x1 and x2 are

drawn at the same time point or belong to the same subject. Using (3.2), the sample covari-

ance matrices can be estimated as R̂11 = 1
M

X1X
T
1 , R̂22 = 1

M
X2X

T
2 , and R̂12 = 1

M
X1X

T
2 .

The sample coherence matrix Ĉ12 can then be computed using (3.1) and the sample canoni-

cal correlations and sample canonical variables can be estimated from its SVD as (2.5)-(2.8).

In this case, however, not only d12, but all the sample canonical correlations will be non-zero

and d12 has to be estimated. One method common in the literature is to set a threshold in

a heuristic way and assume that all the sample canonical correlations above the threshold

are significant, while all those below the threshold are insignificant [65], [66]. However,

this method is application- or task-specific and can often fail as the sample canonical cor-

relations are highly overestimated when the number of samples is limited [35]. To reliably

estimate d12, model-order selection techniques such as ITC and hypothesis testing should

be applied. These techniques provide a tradeoff between overfitting and underfitting of the

model with respect to the model order according to a certain statistical criterion (see Section

2.3 for basics of ITC and hypothesis testing), and thus avoid the use of heuristic user-defined

thresholds, which could easily introduce bias in the analysis. There is substantial work on

model-order selection for CCA based on ITC and hypothesis testing [25]–[28], [38], [39],

[67]. However, most of these techniques work, when the number of samples M is large

compared to n1, n2, or in the so-called sample-rich regime.

When M is comparable to n1 and n2, the sample canonical correlations are significantly

overestimated. Moreover, when M < n1 + n2, then at least n1 + n2 −M sample canonical

correlations are equal to one irrespective of the population canonical correlations [35]. We
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call the regime as sample poor when M is not significantly larger than n1, n2. In this regime,

traditional CCA cannot be used to infer the linear relationship between x1 and x2, and a

pre-processing step or some other form of regularization must be incorporated either before

applying CCA or jointly with CCA. Even though various extensions of CCA like regularized

CCA [68], [69], sparse CCA [36], [70] have been proposed in the literature to deal with

the sample-poor regime, most of them do not address the model-order selection problem.

However, a few recent works which have proposed solutions in this context have been using

principal component analysis (PCA) before applying CCA [37], [38], joint PCA-CCA [28],

sparse CCA for model-order selection [39], random projections [29] and cross-validation

[71].

In this chapter, we will briefly review the data model in Section 3.2 followed by the ITC

and hypothesis testing approaches for determining d12 in Sections 3.3 and 3.4, respectively.

We will then discuss their extensions to the sample-poor regime using a joint PCA-CCA

technique proposed in [28]. The technique in [28] compared to the competing techniques, is

shown to be effective in extensive simulation scenarios and has been successfully applied in

numerous real-world applications [72]–[75].

3.2. Data model for two sets

We consider two data sets represented by M i.i.d. samples of two zero-mean real-valued

random vectors x1 and x2 with dimensions n1 and n2, respectively. We assume without loss

of generality that n1 ≤ n2. The random vectors are assumed to be generated by the following

linear mixing of signals with additive noise

x1 = A1s1 + n1,

x2 = A2s2 + n2. (3.3)

The signal vectors s1 ∈ Rm1 , s2 ∈ Rm2 are zero-mean and contain m1(≤ n1), m2(≤ n2)

signal components, respectively. Each signal component is denoted by s(i)p , where the super-

script i denotes the component number and the subscript p denotes the data set. The mixing

matrices A1 ∈ Rn1×m1 , A2 ∈ Rn2×m2 are unknown (but deterministic) with full column

rank. The noise vectors n1 ∈ Rn1 , n2 ∈ Rn2 are zero-mean and uncorrelated with the signal

vectors and with each other.

We assume without loss of generality two kinds of association among the signal compo-
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nents:

1. Intraset independence: signal components within each data set are uncorrelated, i.e.,

Rspsp = E[sps
T
p ] = diag

((
σ(1)
p

)2
, . . . ,

(
σ(mp)
p

)2)
, (3.4)

for p = 1, 2.

2. Interset dependence: between the two data sets, components may be correlated only

pairwise, i.e., component s(i)1 may only correlate with component s(i)2 for 1 ≤ i ≤ m12,

where m12 = min (m1,m2). This means, the signal cross-covariance matrix between

data sets is

Rs1s2 = diag
(
ρ
(1)
12 σ

(1)
1 σ

(1)
2 , . . . , ρ

(m12)
12 σ

(m12)
1 σ

(m12)
2

)
, (3.5)

where ρ(i)12 represents the unknown (possibly zero) correlation coefficient between their

ith components.

The noise covariance matrices

Rnpnp = E[npn
T
p ], (3.6)

for p = 1, 2, are unknown and arbitrary. Thus, we do not make any kind of prior assumption

about the noise. There are d12 signal components correlated between s1 and s2. Thus, d12
correlation coefficients in (3.5) are non-zero, i.e., d12 = |{i : for which ρ(i)12 6= 0}|.

Our aim is to completely characterize the second-order dependence between x1 and x2. As

discussed in Section 3.1, determining d12 is sufficient to characterize this information for two

data sets. We summarize our goal as follows.

Goal: Given M i.i.d. samples of x1 and x2 from the model in (3.3), determine the number

d12 of correlated components.

Since d12 is a model order, determining d12 is a model-order selection problem. We will first

discuss the traditional ITC and hypothesis testing techniques for solving the given model-

order selection problem and later discuss their extensions for the sample-poor regime.

3.3. ITC-based model-order selection

Using (3.3), the cross-covariance matrix of x1 and x2 is

R12 = E[x1x
T
2 ] = A1Rs1s2A

T
2 . (3.7)
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Using (3.7), and under the assumption that A1 and A2 have full rank, the rank of R12 is

equal to the rank of Rs1s2 . Thus, for d12 correlated components,

rank(R12) = d12. (3.8)

Let y1 = R
− 1

2
11 x1 and y2 = R

− 1
2

22 x2 be the whitened versions of x1 and x2. Assuming

that R11 and R22 are non-singular, the canonical correlations of x1 and x2 are same as the

canonical correlations of y1 and y2. We will derive the ITC expression to estimate d12 using

the transformed vectors y1 and y2 as it is simpler to derive the ML function. However,

the ITC has been earlier derived in [26] using x1, x2 and we show an alternative derivation

for the sake of completeness. Under the assumption that x1 and x2 are jointly-Gaussian

distributed, the composite vector, y = [yT1 ,y
T
2 ]T is also Gaussian distributed with zero-mean

and covariance matrix,

Cyy =

[
I C12

CT
12 I

]
. (3.9)

Using (3.8), the rank of C12 is also equal to d12.

The ITC score as explained in Section 2.3.1 depends on the log-likelihood function maxi-

mized with respect to the model order and on the number of free parameters in the model.

The log-likelihood function for M i.i.d samples of y parameterized by Cyy is [48]

ln f (y(1), . . . ,y(M)|Cyy) = C − M

2
ln det (Cyy)−

1

2

M∑
l=1

(
yT (l)C−1yy y(l)

)
, (3.10)

where the constantC is independent of the parameter space Cyy. Let Y = [y(1), . . . ,y(M)].

The maximum-likelihood (ML) estimate of Cyy under the constraint that rank(C12) = d12 is

[26]

Ĉyy =
1

M
YYT =

[
I Ĉ12

ĈT
12 I

]
, (3.11)

where the sample coherence matrix Ĉyy is the ML estimate of Cyy and Ĉ12 has the SVD

Ĉ12 = F̂1K̂12F̂
T
2 , (3.12)

with K̂12 = diag(k̂(1), . . . , k̂(d12), 0, . . . , 0). Substituting (3.11) in (3.10), the maximum log-

likelihood expression, to within a constant, is

ln f(Y|Ĉyy) ∝ −
M

2
ln det(Ĉyy). (3.13)
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Using (3.11) and (3.12), Ĉyy can be partitioned as [76]

Ĉyy =

[
I F̂1K̂12F̂

T
2

F̂2K̂
T
12F̂

T
1 I

]
=

[
F̂1 0

0 F̂2

][
I K̂12

K̂T
12 I

][
F̂T

1 0

0 F̂T
2

]
. (3.14)

The determinant of Ĉyy can thus, be simplified as

det(Ĉyy) = det(F̂1) det(F̂2) det(I− K̂12K̂
T
12) det(F̂T

1 ) det(F̂T
2 ),

= det(I− K̂12K̂
T
12),

=

d12∏
i=1

(
1−

(
k̂(i)
)2)

. (3.15)

Here we have used the fact that det(F̂T
p ) = 1

det(F̂p)
since F̂p is orthogonal for p = 1, 2. The

maximum log-likelihood in (3.13) as a function of d12 is thus [25], [26], [77],

f(Y|Ĉyy, d12) ∝ −
M

2
ln

( d12∏
i=1

1−
(
k̂(i)
)2)

. (3.16)

The number of free parameters in Cyy is equal to the number of free parameters in C12.

That can be determined by counting the number of free parameters in the SVD of C12 as

follows. The number of free parameters in the singular vectors, F1 and F2 is n1d12 and n2d12,

respectively. However, not all of them are freely adjustable. There are d12 and d12(d12−1)
2

constraints on the elements of the singular vectors in both F1 and F2 due to normality and

orthogonality, respectively. The number of free parameters in K12 is d12. The total number

of free parameters C12 is

C12 = n1d12 + n2d12 − 2d12 − d12(d12 − 1) + d12,

= n1d12 + n2d12 − d212. (3.17)

The simplified ITC score using (2.15) is

ITC(d12) =
M

2
ln

( d12∏
i=1

1−
(
k̂(i)
)2)

+
ln(M)

2
(n1d12 + n2d12 − d212), for MDL,

(3.18)

=
M

2
ln

( d12∏
i=1

1−
(
k̂(i)
)2)

+ (n1d12 + n2d12 − d212), for AIC. (3.19)
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The estimate of d12 is the one which minimizes (3.18) for MDL, and (3.19) for AIC.

3.4. GLRT-based model order selection

As discussed in Section 2.3.2, the model order can also can be estimated via a sequence of

binary hypothesis tests. To estimate d12 using hypothesis testing, set s = 0 and perform the

following test

H0 : d12 = s,

H1 : d12 > s, (3.20)

and increment s untilH0 is not rejected or d12 = n1−1. When x1 and x2 are jointly Gaussian

distributed, the GLR for (3.20) is given as

η =
f(Y|Ĉyy, d12 = s)

f(Y|Ĉyy, d12 > s)
, (3.21)

where f(Y|Ĉyy, d12 = s) and f(Y|Ĉyy, d12 > s) is the ML function under H0 and H1,

respectively. Using (3.16), η can be simplified as

η =

(∏s
i=1 1−

(
k̂(i)
)2)−M

2

(∏n1

i=1 1−
(
k̂(i)
)2)−M

2

, (3.22)

where we have used the fact that the parameter space s = n1 is sufficient to parameterize all

the possibilities when d12 > s. Thus,

η =

( n1∏
i=s+1

1−
(
k̂(i)
)2)−M

2

. (3.23)

Wilks’ statistic: According to the Wilks’ theorem, the statistic W (s) = −2 ln η is asymp-

totically χ2
ν distributed when s = d12. The d.f. of this distribution can be computed using
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(2.20) and the number of free parameters computed in (3.17) as

ν = CH1 − CH0

= n2
1 + n1n2 − n2

1 − n1s− n2s+ s2

= (n1 − s)(n2 − s). (3.24)

W (s) approaches the χ2
ν distribution asM →∞. However, for finite sample regime, Bartlett

[58] and Lawley [78] modified W (s) to match the moments of the χ2
ν distribution. The two

statistics,

Bartlett statistic:

B(s) = −
(
M − n1 + n2 + 1

2

)
ln

( n1∏
i=s+1

1−
(
k̂(i)
)2)

, (3.25)

and

Bartlett-Lawley statistic:

C(s) = −

(
M − s− n1 + n2 + 1

2
+

s∑
i=1

(
k̂(i)
)2)

ln

( n1∏
i=s+1

1−
(
k̂(i)
)2)

, (3.26)

provide a better approximation of χ2
ν distribution than W (s) for small sample size. For a

given probability of false alarm Pfa, the threshold τ(s) can be set using the χ2
ν-distribution

and d12 can be estimated as

d̂12 = min
s=0,...,n1−1

{s : W (s) < τ(s)}, (3.27)

whereW (s) can be replaced byB(s) orC(s) when using Bartlett or Bartlett-Lawley statistic,

respectively.

3.5. Joint PCA-CCA detectors

When M is not large compared to the dimensions n1, n2, the sample canonical correlations

are overestimated. Moreover, whenM < n1 +n2, some of the sample canonical correlations

are one irrespective of the true canonical correlations [35]. In this case, CCA gives a false

impression that there exists perfect correlation among the components of the data sets even

though there might be none. To analyze this closely, let us revisit the sample composite



A review of model selection in two data sets 35

coherence matrix defined in (3.14). The largest and smallest eigenvalues of Ĉyy exist in

pairs, and it can be shown using the factorization (3.14), that they are related to the sample

canonical correlations as [79]

Λ(Ĉyy) =
{

1 + k̂(1), . . . , 1 + k̂(d12), 1, . . . , 1, 1− k̂(d12), . . . , 1− k̂(1)
}
, (3.28)

where Λ(Ĉyy) denotes the set of eigenvalues of Ĉyy arranged in the descending order. Thus,

if the smallest eigenvalue of Ĉyy is zero (or correspondingly the largest eigenvalue is two),

at least one sample canonical correlation is one. Since the rank of Ĉyy is minimum of M and

n1 + n2, when M < n1 + n2, at least n1 + n2 −M smallest eigenvalues of Ĉyy are equal to

zero (or correspondingly at least n1 + n2 −M largest eigenvalues are equal to two). Thus,

at least n1 + n2 −M sample canonical correlations are equal to one. The sample canonical

correlations in this regime are commonly regarded as defective [35]. In this case, the ITC

and hypothesis testing techniques based on traditional CCA derived in Sections 3.3 and 3.4

will overestimate d12. A possible solution is to reduce the dimension of the data sets so that

M is large compared to the reduced dimensions. The most common and widely applicable

dimension reduction tool is PCA. However, a complication with PCA is that it selects the

components which have the most variance within a data set and these might not correspond

to the components which are highly correlated among the two sets. Thus, the PCA ranks r1
and r2 corresponding to the dimension-reduced sets should be carefully chosen.

Let the EVD of the covariance matrices be

Rpp = UpΛpU
T
p , p = 1, 2. (3.29)

The reduced rank PCA descriptions for the two sets with reduced dimensions r1 and r2,

respectively is

x̃p = [Up(:, 1 : rp)]
T xp, p = 1, 2, (3.30)

where Up(:, 1 : rp) denotes the first rp columns of Up. Using (3.29) and (3.30), the reduced

rank data model is

x̃1 = [U1(:, 1 : r1)]
T A1s1 + [U1(:, 1 : r1)]

T n1,

= Ã1s1 + ñ1, (3.31)

and similarly,

x̃2 = Ã2s2 + ñ2, (3.32)
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where Ã1 ∈ Rr1×m1 , Ã2 ∈ Rr2×m2 are the mixing matrices and ñ1 ∈ Rr1 , ñ2 ∈ Rr2 are the

noise vectors of the reduced-rank model.

Maxmin MDL ITC - The MDL-ITC expression in (3.18) can be modified for the reduced-

rank model in (3.31) and (3.32) as

ITC(d12, r1, r2) =
M

2
ln

( d12∏
i=1

1−
(
k̂(i)(r1, r2)

)2)
+

ln(M)

2
(r1d12 + r2d12− d212). (3.33)

We choose the MDL-ITC since it results in a consistent estimator of d12 [80]. Note that the

sample canonical correlations now depend on r1 and r2 and would significantly change on

the basis of the choice of r1 and r2. If r1, r2 are small, not all the correlated components

will likely be included in x̃1, x̃2 and d12 will most likely be underestimated. However, if r1,

r2 are large enough to include all the correlated and stronger independent components, d12
will typically be estimated correctly. If r1, r2 are further increased such that even weaker

independent components and noise are added in x̃1, x̃2, then d12 will not be overestimated

since the MDL is consistent. In this case, however, it is possible that d12 is underestimated

if M is not large enough. An effective solution as shown in [28] is to chose the maximum

value of d12 estimated over all possible ranks, i.e.,

d̂12 = max
r1,r2=1,...,rmax

arg min
d12=0,...,min(r1,r2)

ITC(d12, r1, r2). (3.34)

For the technique in (3.34) to work, rmax should be chosen to be small compared to M .

Typically, rmax = min(n1, n2,
M
3

) has been shown to work best using extensive simulations

[28] and also for real-world data [72]–[74]. For more details about (3.34), please refer to

[28].

Maxmin GLRT - The reduced-rank Bartlett-Lawley statistic for the model in (3.31) and

(3.32) is

C(s, r1, r2) = −

(
M − s− r1 + r2 + 1

2
+

s∑
i=1

(
k̂(i)(r1, r2)

)2)
×

ln

(min r1,r2∏
i=s+1

1−
(
k̂(i)(r1, r2)

)2)
, (3.35)

Again, the test statistic C(s, r1, r2) depends on the PCA ranks r1, r2. Assuming that r1, r2
are small compared to M and not large enough to include all the correlated components,

C(s, r1, r2) will approximately be χ2
ν′-distributed with ν ′ = (r1 − s)(r2 − s) for s = d̃12,
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where d̃12 < d12. Thus, d12 will typically be underestimated. However, when r1, r2 are large

enough to include all the correlated components, d12 will typically not be overestimated and

C(s, r1, r2) will be approximately χ2
ν′-distributed for s = d12. [28] proposes the following

decision rule to estimate d12,

d̂12 = max
r1,r2=1,...,rmax

min
s=0,...,min(r1,r2)−1

{s : C(s, r1, r2) < T (s, r1, r2)}, (3.36)

where T (s, r1, r2) is the threshold chosen from the χ2
ν′ distribution with the given Pfa. The

rule (3.36) is motivated by the fact that if r is not chosen optimally, the min-step might return

a number smaller than d12. Because the min-step will not overfit, we can take the maximum

result for all r from 1 up to rmax. As in the maxmin ITC detector, rmax = min(n1, n2,
M
3

)

works well. For more details about (3.36), please refer to [28].

3.6. Numerical results

In this section, we evaluate the performance of the traditional ITC and hypothesis testing

techniques along with the joint PCA-CCA detectors using Monte-Carlo trials. We also com-

pare the performance with the informative CCA (ICCA) technique of [38], where the most

varying components in two data sets are first retained using separate PCA steps followed by

estimating d12 using the Tracy-Widom approximation [81] for the largest canonical correla-

tion due to noise. ICCA proposes [82] to estimate the number of components retained by

the PCA step, which assumes that some noise-only samples of the data are available. Since

we do not assume to have this knowledge, we instead use [83] for the PCA step. We employ

two performance measures defined as follows:

a) Mean accuracy of detecting d̂12 - number of correct estimates of d12 divided by the total

number of trials, and

b) Mean value of d̂12 - average value of d̂12 over all trials.

The results for two different scenarios are presented. The first scenario is the so called

sample-rich regime, where M is large compared to the dimensions n1, n2. To show the

effectiveness of the joint PCA-CCA approach, in the second scenario (sample-poor regime),

M is comparable to n1, n2. The simulation setup common to both scenarios is explained

below.

There are m1 = m2 = 5 signals out of which d12 = 3 signals are correlated with correlation
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coefficients of 0.9, 0.8 and 0.7. All signals are Gaussian distributed with the variance of

independent signals σ2
i = 2 and the variance of correlated signals σ2

c = 1. The mixing

matrices are randomly generated orthogonal matrices. Each data set is corrupted by additive

colored Gaussian noise. The noise is colored by applying the second order autoregressive

(AR) filter with filter coefficients [1, 0.33] to white noise. The variance of the white noise

σ2
n is chosen according to the signal-to-noise-ratio (SNR) which is defined per component

as

SNR (dB) = 10 log10

(
σ2
c

σ2
n

)
. (3.37)

The results are averaged over 500 independent trials.

i. Sample-rich regime, with n1 = 10, n2 = 15: Figure 3.1 shows the mean accuracy

of d̂12 as a function of M for all the techniques. The SNR is 10dB. The traditional

GLRT detector is applied using two different Pfa values. It can be seen that for a small

values of M , the detector with higher Pfa outperforms the detector with smaller Pfa. The

joint PCA-CCA-based detectors and the ICCA technique of [38] need less samples to

correctly estimate d12 compared to the traditional detectors. Both the AIC and MDL-

based ITC detectors are shown to illustrate their differences. The AIC-ITC detector

works well whenM is small compared to the MDL-ITC detector which outperforms the

former for large M . This can be explained with the help of Figure 3.2 which shows the

mean value of d̂12 for all detectors. The AIC overestimates on average and thus works

well for small M , whereas the MDL underestimates for small M and approaches the

true value of d12 = 3 for large M .

Another thing to note in Figures 3.1 and 3.2 is that there is no clear winner between

the ITC and the corresponding GLRT detector. For traditional techniques without any

rank reduction, the GLRT-based detectors outperform the ITC detectors while for the

reduced-rank case, the ITC-based PCA-CCA detector outperforms its GLRT counterpart

for very small M .

Additionally in Figure 3.3, we also see the mean accuracy as a function of the SNR

with M = 250. It can be seen that when M is large enough, all techniques work very

similarly with the PCA-CCA detectors slightly outperforming the other techniques.

ii. Sample-poor regime, with n1 = n2 = 40: The mean accuracy and the mean value of

d̂12 for all detectors can be seen in Figures 3.4 and 3.5, respectively. In this case, the

PCA-CCA detectors significantly outperform the traditional competitors. Even in the

defective regime, i.e., when M < n1 + n2, the PCA-CCA detectors perform reasonably
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Figure 3.1.: Mean accuracy of d̂12 in scenario i) for the traditional and PCA-CCA detectors.
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Figure 3.2.: Mean value of d̂12 in scenario i).

well. Their sample-rich counterparts require M � n1, n2 and therefore, do not work

even for M = 160. Moreover, the PCA-CCA detectors significantly outperform the

ICCA technique. This is due to the fact that the ICCA employs a separate PCA step

before estimating d12. When the data sets contain uncorrelated components with higher

variance compared to the correlated components and/or the additive noise is colored, the

PCA step retains too many components than desired. On the other hand, the PCA-CCA

detectors jointly estimate the PCA ranks and d12 and are not likely to retain the undesired
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Figure 3.3.: Mean accuracy of d̂12 in scenario i) as a function of SNR.

uncorrelated and noise components. Hence, the ICCA technique requires more samples

than the PCA-CCA detectors to correctly estimate d12, as seen in Figure 3.4.
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Figure 3.4.: Mean accuracy of d̂12 in scenario ii).

Finally, the small peaks for the traditional detectors in Figure 3.4 can be explained with

the help of Figure 3.5. When M < n1 + n2, at least n1 + n2 −M sample canonical

correlations are one. In this regime, the traditional detectors highly overestimate d12. As

M increases, the value of their estimates decreases on average and coincidentally they

pick the correct d12 for a certain M .
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Figure 3.5.: Mean value of d̂12 in scenario ii).

3.7. Summary

We have reviewed the traditional techniques based on ITC and GLRT to estimate the model

order jointly in two data sets. However, these techniques assume the number of samples to be

very large compared to the dimensions of the data sets. We also reviewed their modifications

based on the joint PCA-CCA analysis, which is specifically designed to tackle the small-

sample regime. However, there is no free lunch. The joint PCA-CCA detectors assume that

the PCA rank in both data sets required to include all the correlated components is small

compared to the number of samples.





4. Determining the dimension of
improper subspace in complex-valued
data

A complex-valued signal is improper if it is correlated with its complex conjugate. The

dimension of the improper signal subspace, i.e., the number of improper components in a

complex-valued measurement, is an important parameter and is unknown in most applica-

tions. In this chapter, we introduce two approaches to estimate this dimension, one based

on an information-theoretic criterion and one based on hypothesis testing. We also present

reduced-rank versions of these approaches that work for scenarios where the number of ob-

servations is comparable to or even smaller than the dimension of the data. Unlike other

techniques for determining model orders, our techniques also work in the presence of addi-

tive colored noise 1.

4.1. Introduction

Complex-valued signals (or complex random variables) are used in various fields like com-

munications, oceanography, geophysics, speech processing [84]. Modelling two real-valued

signals as one complex-valued signal leads not only to new insights and interpretations but

also to economical and efficient algorithms [44]. For a zero-mean complex random vari-

able x, the variance is defined as rxx = E[xx∗], where x∗ denotes the complex conjugate

of x. However, rxx alone is an incomplete characterization of the second-order statistics of

1This chapter is based on the paper: “Determining the dimension of the improper signal subspace in complex-
valued data, T. Hasija, C. Lameiro, and, P. J. Schreier, IEEE Signal Processing Letters, 2017.”

43
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x. Another second-order moment of x is r̃xx = E[x2], commonly referred to as the com-

plementary variance of x [44]. Both rxx and r̃xx together provide a complete second-order

characterization of x. If r̃xx = 0, i.e., if x and x∗ are uncorrelated, x is called proper, and

otherwise improper. While propriety is a common assumption, improper signals arise in nu-

merous areas in engineering such as communications and also in applied sciences such as

oceanography and biomedicine [44], [45], [85].

Let us now extend our discussion to a zero-mean complex random vector x containing n

complex random variables. The number of improper signals in x is an important parameter

in various applications. For instance, detecting the number of improper signal components

is often a prerequisite before performing further steps like estimating the direction-of-arrival

(DOA) in array processing or blind source separation in biomedicine [86]–[89]. This detec-

tion problem can be solved as part of the more general problem of partitioning the observa-

tion space into signal and noise subspaces. The standard approach to achieve this partition is

based on PCA and ITC [80]. However, this approach is suboptimal when some or all of the

signals in the observed data are improper. This is because this technique only takes into ac-

count the statistics of the covariance matrix Rxx = E[xxH ] and ignores the complementary

covariance matrix R̃xx = E[xxT ].

Noncircular PCA (ncPCA) introduced in [46] improves on PCA by also taking into account

the information about impropriety contained in the complementary covariance matrix. Based

on ITC, [46] determines the dimensions of both the proper and improper signal subspaces

from noisy observations. However, in some applications, we might only be interested in the

dimension of the improper subspace, for instance, when we know that all signal components

are improper [88]. This is the problem we solve in this chapter. Even though the technique

in [46] can be used for this scenario as well, it is to be expected that a specialized technique

works better than a more general one. Indeed, by determining the number of improper

signal components only, we are able to reduce the number of required samples and relax

the assumption on the noise structure. We only need to assume that the noise is proper, but

unlike typical PCA-based methods, it does not have to be white.

We introduce two alternative approaches: one that is based on the MDL-ITC (see Section

4.3), and one that is based on a sequence of GLRTs (see Section 4.4). The proposed ap-

proaches are designed specifically for applications with high-dimensional data but small

number of samples. They build on a more general technique of joint PCA-CCA, which we

have reviewed in Chapter 3 that determines the dimension of the signal subspace correlated

between two different data sets [28]. This chapter specializes these techniques to the case
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where the two data sets are x and its complex conjugate x∗. This, however, is not straight-

forward and requires special care when counting the number of free parameters in the ITC

and deriving the approximating distributions in the hypothesis tests.

4.2. Data model for complex-valued data

Consider a linear signal-plus-noise model for the generation of the observed data vector

x ∈ Cn

x = As + n, (4.1)

where s ∈ Cdi+f is a zero-mean complex Gaussian source vector, A ∈ Cn×(di+f) is an

unknown but fixed mixing matrix with full column rank, and n ∈ Cn is a zero-mean com-

plex Gaussian noise vector independent from the source vector. The following additional

assumptions are made:

1. The source vector contains di improper and f proper signal components. This means

that

rank(E[ssH ]) = di + f,

rank(E[s(s∗)H ]) = rank(E[ssT ]) = di. (4.2)

We also allow f = 0, i.e., all the signal components may be improper. All signal

components are independent, and the dimensions di and f are unknown with di + f ≤
n.

2. The noise vector n is proper and possibly colored with an arbitrary covariance matrix

Rnn. This is a more general noise model than the one used in [46] where the noise

vector is assumed to be white.

Under the above assumptions, the covariance and the complementary covariance matrices of

x are

Rxx = E[xxH ] = AE[ssH ]AH + Rnn,

R̃xx = E[xxT ] = AE[ssT ]AT . (4.3)

Let us define the complex augmented vector x = [xT ,xH ]T obtained by stacking x on top

of its complex conjugate x∗. The covariance matrix of x is the augmented covariance matrix



46 Determining the dimension of improper subspace in complex-valued data

[44]

Rxx = E[x xH ] =

[
Rxx R̃xx

R̃∗xx R∗xx

]
, (4.4)

which is a convenient way of keeping track of both Rxx and R̃xx. In this chapter, we are

interested in estimating the dimension of the improper signal subspace di, which is equal to

the rank of R̃xx.

We consider M independent and identically distributed (i.i.d.) samples of x, arranged as

the M columns of the data matrix X =
[
x(1),x(2), . . . ,x(M)

]
, where x(l) denotes the

lth sample of x. When R̃xx is estimated from X, its rank, in general, will not be equal

to di. In Sections 4.3 and 4.4 we introduce two ways of estimating di, which are both

based on the circularity coefficients of x [44]. These are the canonical correlations between

x and x∗, which can be computed as the singular values of the coherence matrix Cxx =

R
− 1

2
xx R̃xxR

−T
2

xx . The circularity coefficients are normalized to take values between 0 and

1, and they measure the degree of impropriety of each signal component. A maximally

improper component leads to a circularity coefficient of 1, and a proper component to a

zero circularity coefficient. When working with samples, the following complication arises.

Unless the number of samples is significantly greater than the dimension of the data, the

sample circularity coefficients are significantly greater than the (true) population circularity

coefficients. As we would like to be able to handle the sample-poor scenario, this requires

the use of a dimension-reducing preprocessing step.

Note: Another term common in complex-valued signal processing is circularity, which is a

stronger version of propriety. For the Gaussian distribution, propriety implies circularity and

noncircularity implies impropriety. As we have assumed x to be zero-mean Gaussian, the

improper signal subspace is the noncircular signal subspace. However, in general noncircu-

larity does not imply impropriety [44].

4.3. Detector based on ITC

The goodness-of-fit is measured by the likelihood function for M samples of x, which is

parameterized by Rxx

f(X|Rxx) =
M∏
l=1

1

πn
√

det Rxx

exp

[
− xH(l)R−1xxx(l)

2

]
. (4.5)
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Using (2.15), the ITC score is

ITC(di) = − ln f(X|R̂xx) + α(M)C(di), (4.6)

where R̂xx (which is simply the sample augmented covariance matrix) is the maximum like-

lihood estimate of Rxx, and the second term in (4.6) is the penalty function. In our case, the

model order is the number of improper signals di. In the penalty term, C(di) is the number

of free parameters in the parameter space of the model, i.e., in Rxx. The term α(M) depends

on the chosen ITC. We use the MDL criterion as it leads to a consistent estimator of di [80],

for which α(M) = ln(M)
2

. The MDL-ITC chooses the di that minimizes (4.6), that is

d̂i = arg min
di=0,...,n

ITC(di). (4.7)

The ITC expression in (4.6) can be simplified as follows.

Model fit score: The maximization of the log-likelihood is performed under the constraint

that rank(R̃xx) = di. The maximum log-likelihood is [44]

− ln f(X|R̂xx) ∝
M

2
ln

( di∏
i=1

1−
(
k̂(i)
)2)

, (4.8)

where k̂(i) are the sample circularity coefficients of x.

Number of free parameters: Since only the complementary covariance matrix of x, R̃xx,

depends on di, only R̃xx instead of the entire Rxx is considered when calculating the number

of free parameters. To do this, we perform the Takagi factorization for complex symmetric

matrices [76] given as

R̃xx = FKFT . (4.9)

Here, F is a complex unitary matrix that contains the singular vectors, and K = diag(k(1), k(2)

, . . . , k(di), 0, . . . , 0) contains the di non-zero circularity coefficients. Since rank(R̃xx) = di,

there are 2ndi and di free parameters in F and K, respectively. However, not all of these

parameters are freely adjustable. There are di and di(di − 1) constraints on the elements of

the singular vectors in F due to normality and orthogonality, respectively. Therefore,

C(di) = 2ndi + di − (di + di(di − 1)),

= 2ndi − d2i + di. (4.10)
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The simplified MDL-ITC expression is thus given as

ITC(di) =
M

2
ln

( di∏
i=1

1−
(
k̂(i)
)2)

+
lnM

2
(2ndi − d2i + di). (4.11)

4.3.1. Sample poor scenario

Unless the number of samples M is significantly larger than the dimension n, the number

of improper components di cannot be correctly estimated using (4.7) because the sample

circularity coefficients k̂(i) are significantly larger than the population circularity coefficients.

Since in this chapter we are dealing with the correlation between n-dimensional x and x∗,

whenM < 2n, at least 2n−M sample circularity coefficients are equal to one, independently

of the underlying model generating them [35]. This calls for a pre-processing step before or

alongside the estimation of di. We follow the approach of Section 3.5 and use PCA as this

pre-processing step.

The rank-r PCA description of x is

x = UH
r x, (4.12)

where Ur denotes the matrix containing as its columns the first r principal eigenvectors of

Rxx. Of course, PCA retains the signal components that have maximum variance within the

data. These do not necessarily correspond to the most improper signals, which have maxi-

mum covariance between x and x∗. Nevertheless, following the joint PCA-CCA approach

explained in Section 3.5, we can choose r large enough to include all the improper signals,

while eliminating much of the noise and those proper components whose variance is smaller

than that of the weakest improper component. This can be done based on the reduced-rank

version of the ITC shown in the following result.

Result 4.1. The reduced-rank ITC for estimating the number of improper signals in complex-

valued data X with PCA rank r is

ITC(di, r) =
M

2
ln

( di∏
i=1

1−
(
k̂(i)(r)

)2)
+

lnM

2
(2rdi − d2i + di). (4.13)

The circularity coefficients k̂(i)(r) are computed from the rank-r PCA description (4.12) of

the data and thus depend on the rank r. They can change significantly depending on how r

is chosen. The optimal rank is the one that includes all the improper signal components, but

not more than that. The maxmin ITC detector of Section 3.5 allows us to jointly choose the

optimum rank r and estimate di number of improper components [28]. The decision rule for
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di is

d̂i = max
r=1,...,rmax

arg min
di=0,...,r

ITC(di, r), (4.14)

and the r that leads to d̂i is the chosen PCA rank. Here, rmax is the maximum allowable rank

and as in Section 3.5, is chosen to be sufficiently smaller than M (typically M
3

) [28]. This is

a much more relaxed condition than requiring n to be sufficiently smaller than M .

It is to be noted that although the decision rule (4.14) corresponds to maxmin ITC detector

in (3.34), the expression for ITC(di, r) in this chapter differs because the number of free pa-

rameters are different when analyzing correlation between x and x∗ rather than two different

data sets.

4.4. Detector based on GLRT

The number di can also be estimated by performing a series of binary hypothesis tests [58],

[78]. Starting with a counter s = 0, each binary test is:

H0 : di = s

H1 : di > s (4.15)

IfH0 is rejected, s is incremented and another test ofH0 vs. H1 is run untilH0 is not rejected

or s = n − 1. Each binary test is a likelihood ratio test. Since the unknown parameters are

replaced by their ML estimates, this leads to a GLRT. The GLR is

η =
f(X|R̂xx, di = s)

f(X|R̂xx, di > s)
, (4.16)

where f(X|R̂xx, di = s) and f(X|R̂xx, di > s) are the ML functions under the null and the

alternative hypothesis, respectively.

Since the parameter space for di = n is sufficient to parametrize all the possibilities when

di > s, we have

f(X|R̂xx, di > s) ∝
( n∏

i=1

1−
(
k̂(i)
)2)−M

2

, (4.17)

and thus

η =

( n∏
i=s+1

1−
(
k̂(i)
)2)M

2

. (4.18)
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According to Wilks’ theorem, under H0 the statistic W (s) = −2 ln η is asymptotically χ2
ν-

distributed with d.f. ν equal to the difference between the numbers of free parameters under

H1 and H0 [59]. Under H0, the d.f. are given by (4.10). Under H1, the d.f. are obtained

from (4.10) by setting s = n. Hence, for M → ∞, W (s) is χ2
ν-distributed with ν =

(n− s)(n− s+ 1) d.f.

4.4.1. Sample poor scenario

As discussed in Section 4.3.1, sample poor scenarios require rank reduction to correctly

estimate the number of improper signals.

Result 4.2. A reduced-rank version of the test statistic W (s) is the Box statistic [90] given

by

D(s, r) = −(M − r) ln

( r∏
i=s+1

1−
(
k̂(i)
)2)

, (4.19)

and is asymptotically χ2
ν′-distributed with ν ′ = (r−1)(r− s+ 1) d.f. under the true H0, i.e.,

when s = di.

The correction term (M−r) in (4.19) provides a better approximation of the χ2
ν′ distribution

than the Wilks statistic for much smaller number of samples [91]. It can be shown numer-

ically that D(s, r) approximately follows a χ2
ν′ distribution as long as r is large enough to

capture all the improper components and is also sufficiently small compared to M (as in

Section 3.5, r < M/3 seems to work well). A decision rule can thus be formulated as

d̂i = max
r=1,...,rmax

min
s=0,...,r−1

{s : D(s, r) < T (s, r)}, (4.20)

where T (s, r) is the threshold chosen to maintain a specified probability of false alarm Pfa,

which can be obtained from the χ2
ν′-approximation. This is the PCA-CCA GLRT detector

of Section 3.5 specialized to the case of detecting the number of correlated components

between x and x∗. The motivation behind it is similar to the that of (3.36). While the

PCA-CCA detector uses a Bartlett-Lawley approximation of the test statistic W (s), the fact

that here we are analyzing correlations between x and x∗ means that the Box statistic with

different d.f. needs to be used instead [28] [90].
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4.5. Numerical results

In this section, we evaluate the performance of the proposed detectors based on ITC and

GLRT for the application of sensor array processing. We consider the case when f = 0,

i.e. the entire signal subspace is improper. This is the scenario used in [87], [88], [92], [93],

which show that utilizing the complementary covariance matrix for DOA estimation can lead

to significant performance improvement when improper signals such as BPSK-modulated

sources impinge on the sensor array. DOA estimation techniques typically assume that the

dimension of the signal subspace is known. In practice, this is not the case. If it is known

apriori that all sources are improper, then our technique can be employed to find the number

of sources.

The simulation setup is as follows. We use a uniform linear array with n = 60 sensors with

half-wavelength inter-sensor spacing. There are 4 far-field, narrowband Gaussian sources

that impinge on the array at angles Θ = [10◦, 15◦, 20◦, 25◦]. The mth column of the mixing

matrix A is [1, exp (j π
2

cos(θm)), . . . , exp (j π
2
(n− 1) cos(θm))]T for m = 1, . . . , 4. Each

source has variance 5 and the circularity coefficients for the sources are 1, 0.9, 0.8, and 0.6.

Two scenarios are presented: i) the additive noise is white and Gaussian with unit variance;

ii) the noise is filtered through an autoregressive (AR) filter of order 4 and filter coefficients

[1/2,
√

7/4, 1/2, 1/4]. The variance of the noise components before filtering is 1/4.

We compared the performance of our proposed detectors (4.14) and (4.20) with the ncPCA

detector in [46]. Figure 4.1 shows the mean accuracy of d̂i as a function of the number of

samples. For each data point, we ran 500 independent Monte-Carlo trials. For the white

noise case shown in subplot (i), all the detectors perform well for a sufficiently large number

of samples, but our detectors reach their best performance for a smaller number of samples

than the ncPCA detector. In the case of colored noise shown in subplot (ii), the ncPCA

detector fails while our detectors continue to work well. This is because the ncPCA detector

detects both the proper and improper signal subspaces, and hence must assume white noise

to distinguish between signal and noise. Since we only identify improper signal components,

we only need to assume proper noise, but it does not have to be white. As far as we know,

there is no competing detector that works in colored noise.

The performance of the detector (4.20), which is based on hypothesis tests, depends on

Pfa. We observe from the plots that, if the number of samples is large enough, the detector

with smaller probability of false alarm Pfa = 0.001 performs better than the detector with

Pfa = 0.005. On the other hand, if the number of samples is small, the detector with larger
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Figure 4.1.: Mean accuracy of correctly detecting di = 4 improper signal components for the
proposed detectors and the ncPCA detector in [46] when i) the additive noise is
white Gaussian ii) the additive noise is colored AR(4) Gaussian.

Pfa performs better. The advantage of the ITC-based detector (4.14) is that it does not re-

quire choosing a value for Pfa. It automatically does the trade-off between underfitting and

overfitting of the detector. Nevertheless, this does not guarantee that the ITC-based detector

will always outperform the hypothesis-test-based detector in every scenario.



Determining the dimension of improper subspace in complex-valued data 53

4.6. Summary

We have presented two techniques, based on ITC and hypothesis testing, for detecting the

dimension of the improper signal subspace in high-dimensional complex data with additive

noise. There is no assumption made on the structure of the covariance matrix of the noise,

and we have shown that the proposed detectors work well even in the presence of colored

noise. We have also introduced reduced-rank detectors, which work reliably even for small

number of samples.
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Model selection in multiple data sets
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5. Model order selection in multiple data
sets

In this chapter, we address the problem of estimating the model order that identifies the

number of signals correlated across all data sets. We present two different techniques for

estimating the model order. The first technique assumes a special correlation structure among

the underlying components, which enables to derive the GLR and its distribution in closed

form. This technique is further extended for high-dimensional data sets with a small number

of samples, where the PCA rank and the model order are jointly determined. The second

technique works for arbitrary correlation structure and employs bootstrap to estimate the

unknown distribution of the test statistic under the null hypothesis 1.

5.1. Introduction

When dealing with two or more data sets, one particularly important model-order selection

problem is to detect the dimension of the subspace common across multiple data sets. The

main challenge when dealing with multiple data sets is the number of possible correlation

structures among the latent signals. For two data sets, this problem does not arise as the

two data set scenario can be reduced without loss of generality to the pairwise correlation

structure between the latent signals. Thus, the individual signals are either correlated or un-

correlated between the data sets. That is not possible in the multiple-data set case. Even if

we assume that signals are correlated in a pairwise fashion, there are numerous combina-

1Section 5.3 of this chapter is based on the paper: “Detecting the dimension of the subspace correlated across
multiple data sets in the sample poor regime, T. Hasija, Y. Song, P. J. Schreier, and D. Ramírez, IEEE Signal
Processing Workshop, 2016”. Section 5.4 of this chapter is based on the paper: “Bootstrap-based Detection
of the Number of Signals Correlated Across Multiple Data Sets, T. Hasija, Y. Song, P. J. Schreier, and D.
Ramírez, Asilomar conference on Signals, Systems and Computers, 2016”.
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tions how the signals can be correlated. Some signals might be independent among the data

sets, while some are shared only among a subset of all data sets. There can also be signals

correlated across all the data sets. This can be seen in Figure 5.1, which is very similar to

Figure 1.1 introduced in Chapter 1. In this example, the first component is correlated across

all pairs of data sets. The second components of the first and second data sets, and of the

second and third data sets are correlated. The third and fourth components are each pairwise

correlated. All other components are uncorrelated. For more than three data sets, the number

of pairwise combinations combinatorially increases and illustrating the correlation structure

using a figure similar to Figure 5.1 becomes complicated. In this chapter, we are interested

in those signals that are common or correlated across all data sets, i.e., the signals indicated

with red arrows in Figure 5.1.
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Figure 5.1.: Example of a correlation structure for three data sets. Arrows indicate correlated
components, and red arrows indicate components correlated across all data sets.

In the literature, model-order selection for multiple data sets has not yet received the attention

that it deserves. While the problem with two data sets has been dealt with in numerous works,

e.g., [25]–[28], [37], [38], only a few studies have addressed this for multiple data sets [13],

[30], [34], [94]. The paper [94] used an ad hoc approach for detecting the number of sources

in multiple arrays. A detection technique based on ITC was derived in [30] using a similar

data model as in [94].

In this chapter, we first propose and investigate a GLRT-based technique for detecting the

number of correlated source signals in multiple data sets. Like [30], we assume that the

number of correlated signals is the same for any pair of data sets. This enables us to de-

rive the GLR and its distribution, and extend them to the case when the number of samples

is comparable to or even smaller than the dimension of the data sets. In the second part,
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we address the model-order selection problem without assuming any particular correlation

structure between the components. We show that the rank of the product of coherence ma-

trices (normalized cross-covariance matrices) of all possible pairs of data sets is equal to the

number of signals correlated between all the data sets, provided the SNR is sufficiently large.

We then employ bootstrap-based hypothesis testing to estimate the rank of this product of

coherence matrices.

5.2. Data model for multiple data sets

We consider P data sets consisting of zero-mean, real-valued random vectors x1, . . . ,xP

with dimensions n1, . . . , nP , respectively. Without loss of generality, it is assumed that n1 ≤
n2 ≤ . . . ≤ nP . The data sets are generated by an unknown linear mixing of underlying real-

valued signal component vectors s1, . . . , sP with uncorrelated additive noise. The generating

data model is

xp = Apsp + np, p = 1, 2, . . . , P, (5.1)

where Ap ∈ Rnp×mp is an unknown but fixed mixing matrix with full column rank. The noise

vector np ∈ Rnp is zero-mean and uncorrelated with the signal vectors and also with the noise

vectors of other data sets. The signal vector sp contains mp(≤ np) signal components. The

ith signal component of the pth data set is denoted by s(i)p . These components are assumed

to be zero-mean and unit variance without loss of generality, i.e.,

E[s(i)p ] = 0, and (5.2)

E[(s(i)p )2] = 1, for i = 1, . . . ,mp. (5.3)

In the multiset model defined in (5.1), it is common to assume two kinds of association

among the signal components:

1. Intraset independence: signal components within each data set are uncorrelated, i.e.,

Rspsp = E[sps
T
p ] = I, (5.4)

where I is an identity matrix, and

2. Interset dependence: between any two data sets p and q, components may be correlated

only pairwise, i.e., component s(i)p may only correlate with component s(i)q for 1 ≤ i ≤
min(mp,mq). This means, the signal cross-covariance matrix between data sets p and
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q (p 6= q) is

Rspsq = diag(ρ(1)pq , ρ
(2)
pq , . . . , ρ

(min(mp,mq))
pq ), (5.5)

where ρ(i)pq represents the unknown (possibly zero) correlation coefficient between their

ith components.

When analyzing the correlations between two data sets only, Rspsq can be assumed to be di-

agonal without loss of generality. For more than two sets, diagonal cross-covariance matrices

are a restriction on the problem, as they do not represent all possible correlation structures.

However, this assumption is common in the literature since it makes the multiset correlation

structure uniquely identifiable based on observations of linear mixtures [2], [18], [23], [42],

[95]. The noise covariance matrix of the pth data set,

Rnpnp = E[npn
T
p ], for p = 1, . . . , P, (5.6)

is unknown and not necessarily white. However, noise vectors of any two data sets are

assumed to be uncorrelated, i.e., E[npn
T
q ] = 0, for p 6= q.

There is an unknown number dpq of components correlated between the pth and qth signal

vectors corresponding to the dpq nonzero entries of Rspsq . An unknown number of dall com-

ponents are correlated across all the data sets, i.e., dall = |{i : ρ
(i)
pq 6= 0 ∀p, q}|. The goal of

this chapter is the following:

Goal: Given M i.i.d. samples of x1, . . . ,xP from the model in (5.1), determine the number

dall of correlated components.

We determine dall using two different correlation structures as follows:

• In Section 5.3, we assume a special correlation structure where dpq = dall ∀(p, q) ∈
{1, . . . , P}, p 6= q.

• In Section 5.4, we do not make any assumption on the correlation structure, i.e., we

allow dpq to be different for different pairs of data sets and also different than dall.

5.3. Order selection with special correlation structure

In this section, GLRT-based detectors for dall are derived for both sample-rich and sample-

poor regimes by assuming a special correlation structure between the latent signal compo-

nents. Fig. 5.2 illustrates one such example for three data sets. The first two components are

correlated among all pairs of data sets. Therefore, d12 = d23 = d31 = dall = 2.
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Figure 5.2.: Example for three data sets with the special correlation structure. Arrows indi-
cate correlated components. Here, d12 = d23 = d31 = dall = 2.

Let us revisit the composite data vector x = [xT1 , . . . ,x
T
P ]T with composite covariance ma-

trix

R = E[xxT ] =


R11 R12 · · · R1P

R21 R22 · · · R2P

...
... . . . ...

RP1 RP2 · · · RPP

 , (5.7)

where

Rpp = ApA
T
p + Rnpnp , (5.8)

Rpq = ApRspsqA
T
q . (5.9)

Under the assumption that dpq = dall ∀(p, q),

rank(Rpq) = dall, ∀(p, q) ∈ {1, . . . , P}, p 6= q. (5.10)

Similarly, from the definition of coherence matrix of two data sets in (3.1),

rank(Cpq) = dall, ∀(p, q) ∈ {1, . . . , P}, p 6= q. (5.11)

Thus, dall canonical correlations between all pairs of data sets are non-zero. In this case,

dall can also be estimated using any pair of data sets. However, in the upcoming sections,

we will derive a method to estimate dall jointly from all P data sets and show that there is a
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significant performance improvement compared to the techniques in Chapter 3, which work

with only a pair of data sets.

Consider M i.i.d. samples of the composite data vector x, arranged as the M columns of

the data matrix X =
[
x(1),x(2), . . . ,x(M)

]
. We first introduce a GLRT for multiple data

sets in the sample rich regime in Section 5.3.1, and then propose its reduced-rank version for

small sample support in Section 5.3.2.

5.3.1. Sample rich regime

To estimate dall, we use a sequence of binary hypothesis tests starting with s = 0 and per-

forming the test

H0 : dall = s,

H1 : dall > s, (5.12)

and increment s until H0 is not rejected. Under the assumption that x1, . . . ,xP are jointly

Gaussian-distributed, x is also Gaussian distributed with zero-mean and covariance matrix

R. The GLR for the test in (5.12) is

η =
f(X|R̂, dall = s)

f(X|R̂, dall > s)
, (5.13)

where f(X|R̂, dall = s) is the ML function of X under H0 and f(X|R̂, dall > s) is the ML

function of X under H1. The ML function f(X|R̂, dall = s) under the constraints (5.10) is

derived in [30]. It is the product of P − 1 functions and is given by

f(X|R̂, dall = s) ∝
( P−1∏

p=1

s∏
i=1

1−
(
k̂(i)(p)

)2)−M
2

. (5.14)

The term with p = 1 can be interpreted as the ML with respect to the first data set X1

and the remaining data sets Z1 = [XT
2 , . . . ,X

T
P ]T and is a function of their sample canonical

correlations denoted as k̂(i)(1). The maximization of the likelihood function is performed

under the constraint that rank(E[x1z
T
1 ]) = rank([R12, . . . ,R1P ]) = s. The term with p = 2

is similarly a function of the sample canonical correlations k̂(i)(2) between the second data

set X2 and Z2 = [XT
3 , . . . ,X

T
P ]T , and so on.

Since the parameter space s = np is sufficient to parameterize all the possibilities in dall > s,
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the ML function under H1 is

f(X|R̂, dall > s) ∝
( P−1∏

p=1

np∏
i=1

1−
(
k̂(i)(p)

)2)−M
2

. (5.15)

Using (5.14) and (5.15), η can be simplified to

η =

( P−1∏
p=1

np∏
i=s+1

1−
(
k̂(i)(p)

)2)M
2

. (5.16)

Bartlett statistic - According to Wilks’ theorem, the statistic W (s) = −2 ln η is asymptot-

ically χ2
ν distributed when H0 is true, i.e. s = dall [59]. Since the GLR is the product of

P − 1 functions of pairwise canonical correlations, the d.f. for the χ2
ν distribution can also

be expressed as the sum of P − 1 d.f. for two data sets. Using (3.24),

ν =
P−1∑
p=1

(a1(p)− s)(a2(p)− s). (5.17)

Here, a1(p) and a2(p) depend on the dimensions of the data sets used to compute the pth set

of canonical correlations. For p = 1, a1(1) = n1 and a2(1) = n2+n3+. . .+nP . Similarly, for

p = 2, a1(2) = n2 and a2(2) = n3 +n4 + . . .+nP and so on. For small sample size, Bartlett’s

statistic [67] provides a better approximation of the χ2
ν distribution. After applying Bartlett’s

correction to each of the P − 1 terms in (5.16), we obtain the following result.

Result 5.1. The Bartlett statistic for testing s components correlated across all P data sets

is

B(s) = −
P−1∑
p=1

(
M − (a1(p) + a2(p) + 1)

2

)
ln

( a1(p)∏
i=s+1

1−
(
k̂(i)(p)

)2)
, (5.18)

and is asymptotically χ2
ν-distributed under H0 with ν computed in (5.17).

5.3.2. Sample poor regime

As we have seen in Chapter 3, for any pair of data sets xp and xq, when the number of

samples is smaller than the sum of their corresponding dimensions, i.e., M < np + nq, at

least np + nq − M sample canonical correlations will be equal to one, irrespective of the

model from which x1 and x2 are generated [35]. Moreover, even if M > np + nq, but not
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significantly greater, the sample canonical correlations significantly overestimate the true

canonical correlations. This problem further exacerbates in multiple data sets since the GLR

in (5.16) is the function of the canonical correlations computed by concatenating different

data sets. As we have assumed n1 ≤ . . . ≤ nP , the defective regime in this case is defined

by the term p = 1 which computes the canonical correlations between x1 ∈ Ra1(1) and

z1 ∈ Ra2(1) where a1(1) = n1 and a2(1) = n2 + . . . + nP . Let ntotal =
∑P

p=1 np. In this

case, when M < ntotal, at least ntotal −M number of sample canonical correlations are equal

to one. Therefore, it can be seen that for a fixed M , adding another data set to the analysis

leads to a further overestimation of the sample canonical correlations. This calls for rank

reduction either before or alongside the detection of the number of correlated signals.

When the signal vectors contain only the correlated components or in the case when all the

independent components have smaller variance compared to the correlated components, then

the same PCA rank can be applied to all the data sets. This rank is denoted by r. In this case,

r will be sufficient to keep all the correlated components and the reduced-rank version of

Bartlett’s statistic for multiple data sets in (5.18) is

B(s, r) = −
P−1∑
p=1

(
M − (2r + 1)

2

)
ln

( r∏
i=s+1

1−
(
k̂(i)(r, p)

)2)
. (5.19)

Here, the PCA rank r is applied in the pth term to the data sets Xp and Zp = [XT
p+1, . . . ,X

T
P ]T ,

and the source counter s can take values from 0 to r − 1. Similar to B(s), B(s, r) is also

a sum of P − 1 statistics for two data sets. The first statistic for p = 1 involves the sample

canonical correlations of the rank-reduced versions of X1 and Z1. Similarly, the second

statistic for p = 2 in B(s, r) involves the sample canonical correlations of the rank-reduced

X2 and Z2, and so forth.

However, when there is different number of independent components with stronger variance

compared to the correlated components in different data sets, reducing all the data sets to

rank r is suboptimal. In this case, the statistic,

B(s, r1, r̃1, r2, r̃2, . . . , rP−1, r̃P−1) = −
P−1∑
p=1

(
M − (rp + r̃p + 1)

2

)
×

ln

(min(rp,r̃p)∏
i=s+1

1−
(
k̂(i)(rp, r̃p, p)

)2)
, (5.20)

is optimal where every data set has a different PCA rank. Here, rp and r̃p are the PCA
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ranks applied to Xp and Zp, respectively. However, the statistic in (5.20) depends on 2P − 1

parameters and does not computationally scale well even for small P . For this reason, we

will use the statistic B(s, r) and numerically show in Section 5.5 that our proposed detector

withB(s, r) performs well even when different data sets contain different number of stronger

independent components.

Using (5.17), B(s, r) is χ2
ν′-distributed with

ν ′ = (P − 1)(r − s)2. (5.21)

Thus, the reduced-rank version of Result 5.1 is as follows.

Result 5.2. The reduced-rank Bartlett statistic for testing s components correlated across

all P rank-reduced data sets each with PCA rank of r is

B(s, r) = −
P−1∑
p=1

(
M − (2r + 1)

2

)
ln

( r∏
i=s+1

1−
(
k̂(i)(r, p)

)2)
, (5.22)

and is asymptotically χ2
ν′ distributed under H0 with ν ′ computed in (5.21).

It was shown in Section 3.5 that under the null hypothesis s = dall, each of these P − 1

statistics is approximately χ2
ν̃-distributed with ν̃ = (r − s)2, as long as the PCA rank r is

large enough to capture all correlated components, yet sufficiently smaller than the number

of samples M (this is typically the case when r < M/3). As long as M is large with respect

to r, these statistics are close to the χ2
ν̃ distribution. Under the same conditions, B(s, r) is

also approximately χ2
ν′-distributed with ν ′ d.f. computed in (5.21). The χ2

ν′ approximation

for B(s, r) in sample-poor regime is demonstrated in Figure 5.3 for an example of four data

sets with n1 = 40, n2 = 50, n3 = 55 and n4 = 60, and M = 80 samples. The number

of correlated sources is dall = 4, all of which have equal signal power. The correlation

coefficients ρ(1)pq , ρ
(2)
pq , ρ

(3)
pq , ρ

(4)
pq are chosen as 0.9, 0.9, 0.8 and 0.7, respectively, for all data

sets. The noise is white with small power compared to the signal power. The empirical

distribution of B(s, r) is shown in Figure 5.3 along with the χ2
ν′ distribution for s = 4 and

r = 5. It can be seen that when H0 is true, i.e. s = dall = 4, B(s, r) closely follows the χ2
ν′

distribution.

This means that in a series of binary tests of H0 vs H1 based on B(s, r), dall is generally not

overestimated. It is likely, however, to be underestimated if r is not chosen large enough. If

r is too small, then the reduced-rank PCA descriptions do not capture all of the correlated

components and thus the series of binary tests decides for too small a dimension dall. This
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Figure 5.3.: Empirical distribution of B(s, r) for s = dall = 4 and r = 5.

reasoning leads to the decision rule

d̂all = max
r=1,...,rmax

min
s=0,...,r−1

{s : B(s, r) < T (s, r)}, (5.23)

and the r that leads to d̂all is the PCA rank. In (5.23), rmax should be chosen sufficiently

smaller than M/2 (typically M/3) and T (s, r) is the threshold value chosen to maintain a

specific probability of false alarm Pfa. The min-operator choses the smallest s such that

B(s, r) < T (s, r). If there is no such s, it chooses s = r. More details about the detector in

(5.23) for the case of two data sets are provided in Section 3.5.

5.4. Order selection with arbitrary correlation structure

In this section, we do not make any assumption on the correlation structure among the com-

ponents in the data sets defined in Section 5.2. More precisely, we allow dpq to be different

for different pairs of data sets and also different than dall. Let us now consider the scenario in

Figure 5.1, where the correlation structure does not satisfy the assumption made in Section

5.3. In this case, d12 = 2, d23 = 3, d31 = 2 and dall = 1. Thus, the technique proposed in

Section 5.3, which assumes the special correlation structure where dpq = dall ∀p, q, will not

work. As the number of data sets increases, the number of possible correlation structures

increases rapidly, which makes it clear that we require a detector that works for an arbitrary

correlation structure.

In the upcoming subsections, we propose a novel technique to estimate dall. In Section 5.4.1,

we will show that the rank of the product of coherence matrices of all possible pairs of data
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sets is equal to dall, provided the SNR is sufficiently large. The problem thus comes down

to estimating the rank of this product of matrices. For this, we employ a standard procedure

based on a series of binary hypothesis tests [58], [78]. Since the distribution of the utilized

test statistic under the null hypothesis is difficult to derive analytically, we estimate it using

the bootstrap technique in Section 5.4.2.

5.4.1. Product of coherence matrices

The motivation behind the proposed method is that the rank of the product of all possible

signal cross-covariance matrices is equal to the number dall of correlated sources,

rank
(∏

p,q

Rspsq

)
= dall. (5.24)

Here, the indices p and q are chosen in such a way that all P (P−1)
2

signal cross-covariance

matrices are considered at least once, and the dimensions of the matrices match. The proce-

dure of generating the indices p, q to obtain this product for an arbitrary number of data sets

is explained in detail in the appendix in Section 5.7. For instance, for three data sets with

correlation structure shown in Figure 5.1, where dall = 1,

rank
(

Rs1s2Rs2s3Rs3s1

)
= 1.

However, the true signals are unobservable and dall has to be estimated from the observed

data. Let us introduce the following result.

Result 5.3. The rank of the product of coherence matrices for all possible pairs of data sets

is equal to dall, provided that the SNR is large enough. That is,

rank
(∏

p,q

Cpq

)
≈ dall. (5.25)

Here the indices p and q are chosen as described by the procedure in Section 5.7, and the

approximation in (5.25) holds for large SNR values. We will now prove Result 5.3 for three

data sets. For more than three data sets, the proof can be trivially extended. Consider the
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product of three coherence matrices C12, C23 and C31,

C123 = C12C23C31

= R
− 1

2
11 R12R

− 1
2

22 R
− 1

2
22 R23R

− 1
2

33 R
− 1

2
33 R31R

− 1
2

11

= R
− 1

2
11 A1Rs1s2 AT

2 R−122 A2︸ ︷︷ ︸
P

Rs2s3 AT
3 R−133 A3︸ ︷︷ ︸

Q

Rs3s1A
T
1 R
− 1

2
11 . (5.26)

The cross-covariance matrices R12, R23, and R31 do not include any noise terms as the noise

is uncorrelated with the signals and also between any two data sets according to our mod-

elling assumptions in (5.2). Let us expand the expression for matrix P using (5.8) as

P = AT
2 R−122 A2

= AT
2 (A2A

T
2 + Rn2n2)

−1A2. (5.27)

Applying the matrix inversion lemma [96],

P = AT
2 (R−1n2n2

−R−1n2n2
A2(I + AT

2 R−1n2n2
A2)

−1AT
2 R−1n2n2

)A2

= AT
2 R−1n2n2

A2 −AT
2 R−1n2n2

A2(I + AT
2 R−1n2n2

A2)
−1AT

2 R−1n2n2
A2. (5.28)

Let B = AT
2 R−1n2n2

A2. Therefore,

P = B−B(I + B)−1B

= B−B(I + B)−1(B + I− I)

= B−B(I− (I + B)−1)

= B−B + B(I + B)−1

= B(I + B)−1. (5.29)

Typically the matrix B� I when the signal to noise ratio is high. Then, (I + B)−1 ≈ B−1,

hence,

P ≈ I. (5.30)

Using the same derivation, it can be shown that

Q ≈ I. (5.31)



Model order selection in multiple data sets 69

Inserting the approximate values of P and Q in (5.26), we get

C123 ≈ R
− 1

2
11 A1Rs1s2Rs2s3Rs3s1A

T
1 R
− 1

2
11 .

Since all other matrices are full rank, the rank of C123 will be equal to dall when the approx-

imations in (5.30) and (5.31) apply

rank(C123) = dall, when P = I and Q = I. (5.32)

Thus, the singular values of C123 are of the form

γ(1) ≥ γ(2) ≥ . . . ≥ γ(dall) > γ(dall+1) = . . . = γ(n1) = 0, (5.33)

where the dall largest singular values are non-zero and the rest are equal to zero. The matrices

P and Q will approach identity matrices as the SNR approaches infinity. However, when

these approximations are not valid, the rank of C123 will generally be greater than dall.

5.4.2. Hypothesis testing using bootstrap

One approach to estimate dall is to perform a series of binary hypothesis tests as in (5.12).

This approach, however, requires a statistic whose (asymptotic) distribution under the null

hypothesis is known. In Section 5.3, we derived a GLRT by assuming that the signals cor-

related between any two data sets are also correlated across the remaining data sets. This

assumption makes the problem of maximizing the likelihood under the unknown parameters

tractable [30]. However, deriving a GLRT with arbitrary correlation structure among the

signals becomes challenging. The bootstrap is a resampling technique that can be used to

estimate the distribution of a parameter of interest, particularly when the underlying distri-

bution of the data is unknown or is too complicated to derive [61].

Based on the result in (5.33), the null hypothesis H0 checks if the first s singular values of

the product of coherence matrices are non-zero, i.e.,

H0 : γ(1) ≥ γ(2) ≥ . . . ≥ γ(s) > γ(s+1) = . . . = γ(n1) = 0 (5.34)

A test statistic to check this is the difference between arithmetic and geometric mean [97],
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[98]

T (s) =

(
1

n1 − s

n1∑
i=s+1

γ̂(i)

)
−

(
n1∏

i=s+1

γ̂
(i) 1

n1−s

)
for s = 0, . . . , n1 − 1. (5.35)

The value of this statistic under the null hypothesis will be close to zero as the sample sin-

gular values γ̂(i) are close to zero. The distribution of T (s) under the null hypothesis is

estimated using the bootstrap. The complete procedure to test H0 vs H1 using bootstrap is

given in Algorithm 1 on page 24. The estimate of dall is chosen as the minimum value of s

for which H0 is not rejected. If there is no such s, it chooses d̂all = n1.

5.5. Numerical results

In this section, we evaluate the two techniques proposed in Sections 5.3 and 5.4, and com-

pare their performance with the competing approaches in the literature. We will first show

the performance of the techniques in the scenario where the signal components exhibit the

special correlation structure where dpq = dall∀p, q. This scenario is further divided into a

sample-rich and a sample-poor experiment to show the effectiveness of the proposed GLRT-

based detector in Section 5.3 in both cases. In the second scenario, we generate a correlation

structure where the components are also correlated across a subset of data sets. We have

compared the proposed techniques with the following competitors: a) joint PCA-CCA tech-

nique for two data sets [28] reviewed in Chapter 3, b) ITC for multiple data sets of [30] and

c) MCCA knee-point detector (KPD) of [34].

The simulation setup common to all scenarios is explained below. P = 4 data sets are

considered. The number of samples, M = 350 unless otherwise stated. There are np = 7

Gaussian distributed signals in all the sets out of which two are two uncorrelated signals.

The variance of the correlated and uncorrelated signals is one and two, respectively. The

correlation coefficients for the correlated signals are {0.9, 0.85, 0.8, 0.75, 0.7}. Each data

set is corrupted by additive Gaussian colored noise. The noise is colored by applying the

second order autoregressive (AR) filter with filter coefficients, [1, 0.33], to the white noise.

The variance of the white noise, σ2
n is chosen according to the SNR defined in (3.37). The

results are averaged over 500 independent Monte-Carlo trials.

i. Special correlation structure:

A. Sample-rich regime- In this case, the dimensions n1 = 10, n2 = 15, n3 = 15, n4 =
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20 are chosen. There are dall = 5 correlated signals. Figure 5.4 shows the mean

accuracy as a function of SNR. Since dpq = dall, PCA-CCA detectors for two data

sets can also be used to estimate dall. To show a fair comparison, we select the first

two data sets with the smallest dimensions for the PCA-CCA detectors. However,

the proposed multiset GLRT technique performs better than the PCA-CCA detec-

tors since the former incorporates the joint correlation information in all data sets

and not just from any two sets. The ITC multiset technique of [30] also works under

the assumption of special correlation structure but requires higher SNR than all the

other techniques to estimate dall with high accuracy. The proposed product of co-

herence matrices (PCM) detector also estimates dall accurately but requires a higher

SNR compared to the multiset GLRT and PCA-CCA detectors. The MCCA-KPD

technique of [34] performs well at low SNR but is not consistent at medium and

high SNR values. However, it should be noted that the proposed PCM technique and

the MCCA- KPD technique of [34] do not assume an apriori correlation structure

among the signal components.
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Figure 5.4.: Mean accuracy of d̂all as a function of SNR for four data sets in scenario i)A.
There are dall = 5 components correlated across all five sets.

B. Sample-poor regime- In this setup, the data sets are high-dimensional with n1 =

n2 = n3 = n4 = 40. The mean accuracy of dall as a function of M is shown in

Figure 5.5. The SNR is 5dB. In this case, the proposed multiset GLRT and the PCA-

CCA detectors perform well as they are specialized for the sample-poor regime,

while the other techniques do not work. The multiset GLRT technique significantly

outperforms the PCA-CCA detectors in this case. It is able to estimate dall accurately



72 Model order selection in multiple data sets

even in the defective regime when M < ntotal, where ntotal = 160 in this case.

60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Number of samples, M

M
ea

n
ac

cu
ra

cy
of
d̂

al
l

PCA-CCA ITC
PCA-CCA GLRT, Pfa = 0.001

Multiset ITC [30]
Proposed multiset GLRT, Pfa = 0.001

Proposed PCM
MCCA-KPD [34]

Figure 5.5.: Mean accuracy of d̂all as a function of M for four data sets in scenario i)B. The
data set dimensions are n1 = n2 = n3 = n4 = 40. There are dall = 5 components
correlated across all five sets.
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Figure 5.6.: Mean accuracy of d̂all as a function of SNR for five data sets in scenario ii). There
are dall = 2 components correlated across all five sets. The other three correlated
components are only correlated across a subset of data sets.

ii. Arbitrary correlation structure: In this scenario, there are some components that are

correlated only across a subset of data sets. The first two components are correlated

across all data sets, thus dall = 2. The third component is correlated across three sets

and the last two components are correlated across two sets only. Thus the assumption

of special correlation structure is violated. In this case, the multiset GLRT and ITC
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techniques cannot accurately estimate dall as can be seen in Figure 5.6. The peaks in

the figure can be explained using Figure 5.7, which shows the mean values of d̂all. For

small SNR values, these two techniques underestimate dall. As the SNR increases, the

mean value of their estimates also increases and they coincidentally pick the correct dall

for a certain SNR. However, as the SNR further increases, they overestimate dall. In

contrast, the proposed PCM and MCCA-KPD [34] techniques estimate dall correctly for

medium and high SNR values. The MCCA-KPD however, overestimates dall on average

even for high SNR values, explaining its lower accuracy compared to the proposed PCM

technique.
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Figure 5.7.: Mean value of d̂all as a function of SNR for five data sets in scenario ii).

5.6. Summary

In this chapter, two techniques for estimating the number of components correlated across

multiple data sets have been presented. The first technique assumes a special correlation

structure which leads to a GLRT-based solution. It is also modified for the sample-poor

regime. The second technique is based on bootstrap and does not make any assumption on

the correlation structure among the components of different data sets. Both techniques can

be employed to infer the linear dependency described by the components correlated between

all pairs of data sets. When components are either correlated across all pairs of data sets or

completely uncorrelated, the model order estimate from the GLRT-based technique can be

used in the subsequent JBSS framework to only estimate and infer the first d̂all components.
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In case of arbitrary correlation structure, the product of coherence matrices can also be used

to estimate the d̂all components similar to how the coherence matrix is used for estimating

the correlated components in two data sets [99].

5.7. Appendix - Generating the product of coherence

matrices

The indices p and q for generating the product of coherence matrices for P data sets used in

the technique in Section 5.4 are chosen using the following procedure:

• If P is odd, N = (P−1)
2

groups of data pairs are formed.

1. For n = 1, 2, . . . , N , repeat the following steps to generate the nth group:

For r = 1, 2, . . . ,GCD(n, P ), repeat:

B GCD(a, b) denotes the greatest common divisor of a and b.

a) Set p = r.

b) Set q = 0.

c) While q 6= r, repeat:

– Set

q =

mod(p+ n, P ) if p+ n 6= P,

P if p+ n = P.

B mod(a, b) denotes the modulus operator on a and b.

– Include Cpq in the nth group of product of coherence matrices.

– Set p = q.

d) If r < GCD(n, P )

– Include Cr r+1 in the product of coherence matrices.

Elseif r 6= 1

– Include Cr1 in the product of coherence matrices.

2. Combine all n group of matrices to obtain the final product of coherence matrices.
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• If P is even, perform this procedure for P+1 data sets with the following modification:

For each group n, there will be two pairs {p, P + 1} and {P + 1, q}. Remove these

and instead include {p, q} in the product.

For instance, for P = 5, the following N = 2 groups of data pairs can be formed.

• n = 1 : {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}.

• n = 2 : {1, 3}, {3, 5}, {5, 2}, {2, 4}, {4, 1}.

The two groups are combined to generate the indices for the product of coherence matrices.

For P = 4, again the data pairs for P = 5 are generated. In the first group, {4, 5} and {5, 1}
are replaced with {4, 1}, and in the second group, {3, 5} and {5, 2} are replaced with {3, 2}.
Hence,

• n = 1 : {1, 2}, {2, 3}, {3, 4}, {4,1}.

• n = 2 : {1, 3}, {3,2}, {2, 4}, {4, 1}.





6. Complete model selection in multiple
data sets

Detecting the components common or correlated across multiple data sets is challenging due

to a large number of possible correlation structures among the components. Even more chal-

lenging is to determine the precise structure of these correlations. The techniques we have

discussed until now have focused on determining only the model order, i.e., the dimension

of the correlated subspace, a number that depends on how the model-order problem is de-

fined. Moreover, identifying the model order is often not enough to completely characterize

the linear relationship among the components in different data sets. In this chapter, we aim

at solving the complete model-selection problem, i.e., determining which components are

correlated across which data sets. We propose two different techniques to solve this problem
1.

6.1. Introduction

Let us revisit the example of correlation structure between the latent signal components of

three data sets, s1, s2, and s3 illustrated by Figure 6.1. It is exactly the same as Figure 1.1 and

repeated here for better readability. One variation of the model-order selection problem for

multiple data sets is to determine the number of signal components correlated across every

pair of data sets. In Figure 6.1, only the first signal components demonstrate this property, so

1Section 6.3 of this chapter is based on the paper: “Complete model selection in multiset canonical correla-
tion analysis, T. Marrinan, T. Hasija, C. Lameiro, P.J. Schreier, European Signal Processing Conference,
2018”. I specifically contributed in the development of the proposed method along with T. Marrinan. Parts
introducing and analyzing the method have contributions from all authors. Section 6.4 of this chapter is
based on the paper: “Determining the dimension and structure of the subspace correlated across multiple
data sets, T. Hasija, T. Marrinan, C. Lameiro, P.J. Schreier, Signal Processing, 2020”.
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the model order by this definition would be one. Model orders of this type can be identified

using the methods described in Chapter 5 and references therein.
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Figure 6.1.: Revisiting the example in 6.1 showing the correlation structure between latent
signal components of three data sets, s1, s2 and s3.

Alternatively, signal components correlated across a subset of the collection of data sets

might also be of interest. For instance, when tracking an object in videos recorded by spa-

tially separated cameras, the object might not be visible in every frame of each camera [13].

Thus if multiset canonical correlation is used to measure the similarity of frames from the

different views, it would be pertinent for the model order to represent the number of com-

ponents correlated across all data sets or a subset of data sets. Similarly in brain imaging,

estimating the number of signal components activated in the fMRI data of all the subjects is

useful for multi-subject analysis [14], [100]. However, some brain regions may not appear

active for some subjects, due to noise or other factors, even if biological intuition suggests

that they should be. Knowing that correlations exist among the signal components corre-

sponding to these regions is useful even if they are only present in a subset of subjects.

These scenarios suggest that an appropriate definition of the model order should count the

signals that demonstrate correlation across all or a subset of data sets. By this definition the

model order of the example in Figure 6.1 is four. In [13], the authors propose a test statistic

to estimate this model order and showed when this number can be correctly estimated for

different settings of the signal-to-noise ratio (SNR) and the number of samples.

In the end, determining only the model order is insufficient to completely characterize the

correlation structure in multiple data sets. This summary statistic only provides the knowl-

edge that the components exhibit correlation. This knowledge, although sufficient for two

data sets, is incomplete for multiple data sets as it is also required to determine which com-

ponents are correlated across which data sets. For the example in Figure 6.1, the complete

solution is not just determining that the first four components are correlated but also that the
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first component in each data set is correlated, and the successive components are correlated

between data sets 1 and 2, 2 and 3, and 1 and 3, respectively.

In this chapter, we formulate and solve a more general model-selection problem, which in-

cludes model-order selection as a subproblem. We propose two novel techniques in this

chapter. The first technique applies a series of hypothesis tests to pairs of components ex-

tracted using CCA. It first determines the number of pairwise correlations, two data sets at a

time, and amalgamates these detections using joint information from the complete collection

of data sets obtained using mCCA. The second technique solves the model-selection prob-

lem using the eigenvalues and eigenvectors of the coherence matrix (normalized covariance

matrix [41]) of the composite data set. To this end,

• We prove that, under fairly general conditions, the correlation structure in multiple data

sets can be fully characterized from the eigenvector decomposition of the coherence

matrix of the composite data.

• Using this theoretical result, we develop an algorithm that identifies the correlation

structure effectively in practical scenarios.

Our program for this chapter is as follows. After defining the problem in Section 6.2, we

formulate the first technique for complete model selection in Section 6.3. In Section 6.4, we

formulate the second technique. The extensions of the two proposed techniques for high-

dimensional data sets with relatively less number of samples is presented in Section 6.5.

Finally, in Section 6.6, simulations show that our techniques reliably estimate the complete

correlation structure of multiple data sets, and is competitive with the existing state-of-the-art

approaches.

6.2. Noiseless data model for multiple data sets

We consider P data sets consisting of zero-mean, real-valued random vectors x1, . . . ,xP ,

each of dimension n. The data sets are generated by an unknown linear mixing of underlying

signal vectors s1, . . . , sP ∈ Rn. The generating data model is

xp = Apsp, p = 1, 2, . . . , P, (6.1)
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where Ap ∈ Rn×n is an unknown but fixed mixing matrix with full rank 2. The signal vectors

each contain n signal components. The assumptions about the dependence between the

signal components in the multiset model (6.1) are same as defined in Section 5.2. However,

due to notational changes because of square mixing matrices, we will redefine them in this

section for the sake of completeness. The ith signal component of the pth data set is denoted

by s(i)p . These components are assumed to be zero-mean and unit variance without loss of

generality, i.e.,

E[s(i)p ] = 0, and (6.2)

E[(s(i)p )2] = 1, for i = 1, . . . , n. (6.3)

Two kinds of association among the signal components are assumed:

1. Intraset independence: signal components within each data set are uncorrelated, i.e.,

Rspsp = E[sps
T
p ] = I, (6.4)

where I is an identity matrix, and

2. Interset dependence: between any two data sets p and q, components may be correlated

only pairwise, i.e., component s(i)p may only correlate with component s(i)q for 1 ≤ i ≤
n. This means, the signal cross-covariance matrix between data sets p and q (p 6= q) is

Rspsq = diag(ρ(1)pq , ρ
(2)
pq , . . . , ρ

(n)
pq ), (6.5)

where ρ(i)pq represents the unknown (possibly zero) correlation coefficient between their

ith components. We assume that all nonzero correlation coefficients are positive since

their negative sign can be incorporated into the mixing matrix.

The goal of this chapter is:

Goal: Given M i.i.d. joint samples of the data vectors xp, p = 1, . . . , P , our aim is to

completely determine the underlying correlation structure among the signal components sp.

More precisely, we identify the all the components in sp with index i = 1, . . . , n and all the

data sets p, q ∈ {1, . . . , P}, p 6= q, for which ρ(i)pq 6= 0.

Let us define the model order d, which represents the total number of components that

2All the results in this work can be easily extended to the general case where the data sets have different
dimensions and the mixing matrices are non-square with full column rank. We omit the general case as
the extension is trivial when the inverses are replaced by pseudo-inverses, because the more cumbersome
bookkeeping distracts from the actual result.
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ρ
(i)
12 ρ

(i)
13 ρ

(i)
23

i = 1 0.5 0.6 0.6
i = 2 0.7 0 0
i = 3 0 0 0.8
i = 4 0 0.4 0
i = 5 0 0 0

Table 6.1.: Example of the correlation structure in Figure 1.1 with three data sets each with
five signal components. The entries are the correlation coefficients between signal
components of different pairs of data sets.

demonstrate nonzero correlation i.e., d = |{i : ∃p, q for which ρ(i)pq 6= 0}|. We denote the

number of signal components correlated pairwise between data sets p and q as dpq. The num-

ber of signals correlated across all data sets is denoted by dall, i.e., dall = |{i : ρ
(i)
pq 6= 0 ∀p, q}|.

In this thesis, we have until now focused on either determining dpq for two data sets in Chap-

ter 3 or on estimating dall for more than two data sets in Chapter 5. However, as discussed

earlier, even knowing both dpq and dall is not enough to completely determine the underly-

ing correlation structure (except with very special types of correlation structures, e.g., as in

Section 5.3).

Examples: Let us revisit the example in Figure 6.1. Table 6.1 provides one example of

correlation coefficients that match the structure presented in Figure 6.1. The entries are the

correlation coefficients between signal components of different pairs of data sets. In this

case, dpq = 2 for all choices of p and q, dall = 1, and d = 4. Now consider an example of

4 data sets each with 4 signal components as shown in Table 6.2. The first component of

data sets 2, 3, and 4 and the second component of data sets 1, 3, and 4 are correlated. The

third and fourth components of data sets 1 and 2 are correlated. Hence, dall = 0, d = 4 and

dpq is the number of nonzero entries in the corresponding column. In both these examples,

the techniques in [28], [30]–[34] provide solutions for either dpq or dall. The techniques

proposed in this chapter, however, aim to identify which of the entries in Tables 6.1 and 6.2

are nonzero.

6.3. Technique based on pairwise model orders

In Section 2.2, we discussed about mCCA. For P data sets, it provides P sets of canonical

variables which are chosen such that they are highly correlated with those from the other

sets at each stage of the algorithm, but uncorrelated with the canonical variables of different
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ρ
(i)
12 ρ

(i)
13 ρ

(i)
14 ρ

(i)
23 ρ

(i)
24 ρ

(i)
34

i = 1 0 0 0 0.7 0.2 0.8
i = 2 0 0.6 0.4 0 0 0.5
i = 3 0.5 0 0 0 0 0
i = 4 0.5 0 0 0 0 0

Table 6.2.: Example of correlation structure with four data sets each with four signal compo-
nents.

stages from within a set [21]. These multiset canonical variables provides a solution to the

joint blind source separation (JBSS) problem in certain scenarios, where the aim is to extract

the underlying latent signals in (6.1) that exhibit joint information (or correlation) between

them [23].

6.3.1. Sample canonical correlations in mCCA

For Gaussian-distributed sample matrices X1, . . . ,XP , the covariance matrices can be re-

placed with their ML estimates, R̂pp = 1
M

XpX
T
p and R̂pq = 1

M
XpX

T
q . The sample co-

herence matrix can then be estimated using (2.12) and the set of sample canonical vari-

ables, {ε̂(j)1 , . . . , ε̂
(j)
P }, j = 1, . . . , n can be obtained by imposing the constraints defined in

(2.13).

When these sets solve the JBSS problem, the jth set of sample canonical variates will ap-

proximate the ith set of signal components with some ambiguity about which i. This is

commonly referred to as the permutation ambiguity and is inherent in BSS since for an un-

known mixing matrix Ap, different orderings of the signal components in sp leads to the

same data vector xp [101]. Thus with the JBSS solution, the inner products of same-stage

sample canonical variables provide the sample canonical correlations, ρ̂(j)pq = | 1
M
ε̂
(j)
p ε̂

(j)
q |, and

approximate the true correlations ρ(i)pq . The accuracy of this approximation is affected by

numerous parameters of the observed data including the number of data sets, the number of

sets across which a particular signal component is correlated, and the number of observed

samples. To bring this technique into the model-selection paradigm, we determine which

values of ρ̂(j)pq are significant for j = 1, . . . , n.

In the case of two data sets, the sample canonical correlations are ML estimates of the true

correlations. Thus the number of correlated components dpq can be estimated through a series

of binary hypothesis tests as explained in Section 3.4. The distribution of the Bartlett-Lawley
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statisticC(s) is χ2
ν whenH0 is true, i.e., when s = dpq, which can be used to set a threshold to

test each binary test. However, in the multiset scenario, ρ̂(j)pq is not an ML estimate of the true

pairwise correlations because the canonical variables have been jointly estimated for all data

sets at once. This means that C(s) for s = dpq is not guaranteed to follow the χ2
ν distribution,

and a test based on the Bartlett-Lawley statistic will not work. This hurdle is overcome by

pairwise estimating the number of correlated components between each combination of data

sets and then identifying which of the multiset sample canonical variables for those two data

sets have the highest correlations.

6.3.2. Proposed model selection framework

The signal components correlated across any number of data sets can be identified using the

following three-step approach.

1. Compute sample canonical variables {ε̂(j)1 , . . . , ε̂
(j)
P } for stages j = 1, . . . , n using

mCCA.

2. Estimate the pairwise model order for each combination of data sets. This is done

by computing ML estimates of the canonical correlations between xp and xq, and

applying the sequence of hypothesis tests based on the Bartlett-Lawley statistic to find

d̂pq.

3. Identify which sample canonical variables have the largest magnitude for each pair of

data sets. If | 1
M
ε̂
(j)
p ε̂

(j)
q | is one of the d̂pq largest inner products for data set p and data

set q, a nonzero correlation is identified between the ith signal components of xp and

xq. Note that these will not necessarily correspond to stages 1, . . . , d̂pq of the mCCA

method.

In practical situations, estimates of correlation coefficients between the canonical variables

are affected by the number of observed samples. When there are few observations relative

to the number of signal components, canonical correlations are overestimated. However,

pairwise correlation estimates can be improved in small sample scenarios with PCA-CCA

detectors reviewed in Section 3.5. The maxmin GLRT is one such technique, and the pro-

posed algorithm employs this method in Step 2 to provide a better estimate of pairwise model

order over the Bartlett-Lawley statistic without rank reduction.
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6.3.2.1. Computational complexity

We compute the big-O complexity for the proposed technique. The dominating term in

the complexity analysis is Step 2, which runs P (P−1)
2

tests in (3.36) for each pair of n-

dimensional data sets. Each test computes the SVD of the pairwise coherence matrix, which

can be computed (assuming n ≤M ) in O(Mn2) flops. The overall big-O complexity of the

technique is thus, O(MP 2n4) flops.

6.4. Technique based on joint information in all sets

The problem as stated in Section 6.2 requires joint knowledge of the relationships between

all data sets. In this section, our main results demonstrate that the pertinent information can

be found in the eigenvector decomposition of the coherence matrix of the concatenation of

all data sets. We solve this problem by first estimating the model order d and then estimating

the data sets across which these d components are correlated.

6.4.1. Correlated subspace in multiple data sets

Consider the composite data vector x obtained by vertically concatenating the individual

data vectors,

x = [xT1 , . . . ,x
T
P ]T , (6.6)

and the composite covariance matrix R = E[xxT ]. Similarly, the composite signal vector is

defined as s = [sT1 , . . . , s
T
P ]T , and the composite signal covariance matrix as Rss = E[ssT ].

The definition of the coherence matrix for two data sets [41] can be generalized in a natural

way for this composite data as

C = R
− 1

2
D RR

− 1
2

D . (6.7)

Here, RD = blkdiag(R11, . . . ,RPP ) is a block-diagonal matrix with Rpp = E[xpx
T
p ], and

exponent−1
2

on RD denotes the inverse of the matrix square root. The composite coherence

matrix C can be written in a block structure as

C =


I C12 · · · C1P

C21 I · · · C2P

...
... . . . ...

CP1 CP2 · · · I

 , (6.8)
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where the diagonal blocks are identity matrices and the off-diagonal blocks are the coherence

matrices of two data sets. For each pair of data sets xp and xq, the coherence matrix can be

decomposed as

Cpq = R
− 1

2
pp RpqR

− 1
2

qq ,

= (ApRspspA
T
p )−

1
2 ApRspsqA

T
q (AqRsqsqA

T
q )−

1
2 ,

= (ApA
T
p )−

1
2 ApRspsqA

T
q (AqA

T
q )−

1
2 , (6.9)

since Rspsp = Rsqsq = I. Let Āp = (ApA
T
p )−1/2Ap and similarly Āq = (AqA

T
q )−1/2Aq so

that ĀpĀ
T
p = ĀqĀ

T
q = I, and we have

Cpq = ĀpRspsqĀ
T
q . (6.10)

Using (6.8) and (6.10), the composite coherence matrix C can be written as

C = ARssA
T , (6.11)

where A = blkdiag(Ā1, . . . , ĀP ). Based on the assumption that Rspsq is diagonal, the

elements of Rss can be permuted to form a block-diagonal matrix whose ith block is the

covariance matrix formed by the ith components of each data set. That is, there exists a

permutation P where

C = APTPRssP
TPAT ,

= APT R̃ssPAT , (6.12)

such that R̃ss = PRssP
T is a block-diagonal matrix defined as

R̃ss = blkdiag(R(1), . . . ,R(n)), (6.13)

and R(i) ∈ RP×P is the covariance matrix of the ith components of each data set.

6.4.1.1. Eigenvalues of C

We now illustrate an explicit relationship between the dimension of the correlated subspace

d and the eigenvalues of C. It can be observed from (6.8) that C is an identity matrix when

all signal components are uncorrelated, and thus all eigenvalues of C are one. However,
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when some components are correlated, C has eigenvalues that are different from one. More

specifically, when data sets demonstrate correlations across d components, C has at least d

eigenvalues greater than one. A key question then is: when is the dimension of the correlated

subspace, d, exactly equal to the number of eigenvalues of C greater than one?

The answer is not as straightforward as one would hope. However, we can identify a set of

sufficient conditions under which this property holds. The property also often holds when

these conditions are not met and the algorithm proposed in this work is robust to the viola-

tion of these assumptions. The proof of the sufficiency of these conditions relies on three

things:

i) The composite coherence matrix C is similar (through a similarity transformation) to a

block diagonal matrix where each block contains a non-identity matrix corresponding

to a collection of data sets whose ith components are all correlated with each other and

an identity matrix corresponding to data sets whose ith components are uncorrelated.

ii) If the ith components of four or more data sets are correlated with each other, all nonzero

correlations are greater than a prescribed threshold.

iii) All correlations are transitive. That is, if a signal component is correlated between data

sets p and q, and between data sets q and r, then it is also correlated between data sets p

and r.

For simplicity, we prove the following result (Result 6.1) when there is only one block of the

form described in condition i) for the ith components of all data sets, but of course the result

holds for any number of such blocks. We will discuss the requirement of conditions ii) and

iii) during the proof of Result 6.1.

Result 6.1. Let C be the composite coherence matrix of P data sets constructed according

to the linear mixing model in (6.1) with pairwise diagonal signal cross-covariance matrices.

Let k(i) be the number of data sets whose ith components are correlated. Assume that cor-

relations are transitive, and for k(i) ≥ 4, each correlation coefficient is either ρ(i)pq = 0 or

ρ
(i)
pq > ξ(i) = (k

(i)−1
k(i)

)2 for all p, q. Let I = {1, . . . , n} be an index set for the signals. C has

exactly d eigenvalues greater than one if and only if there exists a subset of signals D ⊆ I
with |D| = d, and for each i ∈ D there exists a p 6= q such that s(i)p and s(i)q are correlated.

We begin by showing that if there exists a subset of signals D ⊆ I with |D| = d, and for

each i ∈ D there exists a p, q with s(i)p and s(i)q correlated, C has d eigenvalues greater than

one. Let R̃ss be an nP ×nP matrix with the structure defined in (6.13). The diagonal blocks

of R̃ss can be indexed by the associated signal component. That is, R(i) ∈ RP×P is the
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covariance matrix of the ith components of each data set with the form

R(i) =

[
B(i) 0

0 I

]
. (6.14)

B(i) ∈ Rk(i)×k(i) is a symmetric matrix with diagonal elements equal to one and off-diagonal

elements equal to the correlation coefficients between the correlated ith components. The

indices associated with the subset of data sets whose ith components are correlated areK(i) ⊆
P = {1, . . . P}, and the dimensions of B(i) are the size of this subset |K(i)| = k(i). As R̃ss is

block-diagonal, its eigenvalues are equal to the eigenvalues of the blocks R(i). Since APT is

an orthogonal matrix, the eigenvalues of C are equal to the eigenvalues of R̃ss and therefore,

equal to the eigenvalues of R(i).

Let B(i) be decomposed as B(i) = I + H(i) for each i. H(i) is a hollow (with zeros on the

diagonal) symmetric matrix whose off-diagonal elements are the nonzero correlation coef-

ficients corresponding to the ith component. We show that the matrix H(i) has exactly one

positive eigenvalue for each i as follows:

Case 1 (k(i) = 2): H(i) has exactly one positive eigenvalue for all values of ρ(i)pq > 0, be-

cause

H(i) =

[
0 ρ

(i)
pq

ρ
(i)
pq 0

]
, (6.15)

which has eigenvalues {ρ(i)pq ,−ρ(i)pq }.
Case 2 (k(i) = 3): When the ith components of exactly three data sets, p, q and r, are corre-

lated, H(i) is

H(i) =


0 ρ

(i)
pq ρ

(i)
pr

ρ
(i)
pq 0 ρ

(i)
qr

ρ
(i)
pr ρ

(i)
qr 0

 . (6.16)

The characteristic polynomial of H(i) is

yH(i)(λ) = −λ3 + λ
((
ρ(i)pq
)2

+
(
ρ(i)pr
)2

+
(
ρ(i)qr
)2)

+ 2ρ(i)pq ρ
(i)
pr ρ

(i)
qr . (6.17)

Using Descartes’ rule of sign change, yH(i)(λ) has only one positive root for any ρ(i)pq , ρ
(i)
pr , ρ

(i)
qr >

0 [102]. Therefore, H(i) has only one positive eigenvalue.

Case 3 (k(i) ≥ 4): [103, Theorem 3.5] can be used to show that H(i) has exactly one positive

eigenvalue if all the off-diagonal elements of H(i) are greater than ξ(i) = (k
(i)−1
k(i)

)2. This

result is demonstrated in Appendix 6.8. Without the assumption of transitive correlations,
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H(i) cannot be guaranteed to have all the positive off-diagonal elements as required. Thus,

H(i) has exactly one positive eigenvalue in each case as desired.

Let D ⊆ I be the d values of i for which correlation exists. For each i ∈ D, H(i) has one

positive eigenvalue and k(i) − 1 non-positive eigenvalues. Let H(i) = UΛ(i)UT be the EVD

of H(i) with UUT = I. The EVD of B(i) can be written as B(i) = U(I+Λ(i))UT so that, for

each i ∈ D, B(i) has one eigenvalue greater than one and the remaining k(i) − 1 eigenvalues

less than or equal to one. Using (6.14), the maximum eigenvalue of B(i) is also the maximum

eigenvalue of R(i), implying that R(i) has exactly one eigenvalue greater than one. Hence C

has exactly d eigenvalues greater than one as desired.

We now show that the converse is also true. Let C has d eigenvalues greater than one. There

exists a permutation as described by (6.12) where

R(i) =

[
B(i) 0

0 I

]
, (6.18)

and B(i) is the sum of an identity matrix and a hollow symmetric matrix of correlation co-

efficients, i.e., B(i) = I + H(i), as described above. When no data sets are correlated for a

given i, R(i) = I. Let D′ ⊆ I be the indices for which nonzero correlation exists (and by

assumption is greater than ξ(i) for k(i) ≥ 4). Thus,

R(i) =

[
I + H(i) 0

0 I

]
, (6.19)

for i ∈ D′ and R(i) = I for i ∈ I\D′. Clearly R(i) has no eigenvalues greater than one for

i ∈ I\D′.

Suppose that |D′| < d. Then there exists an i for which H(i) has more than one eigenvalue

greater than zero. However, this contradicts our proof that H(i) has exactly one positive

eigenvalue for each i. Similarly, suppose that |D′| > d. Then there exists an i for which H(i)

has no eigenvalues greater than zero. This also contradicts our proof, and thus |D′| = d and

there are exactly d values of i for which ρ(i)pq 6= 0 for some p 6= q. This concludes our proof

for Result 6.1.

Result 6.1 guarantees that, when d eigenvalues of C are greater than one, d signal compo-

nents are correlated across at least a pair of data sets. Therefore, the number of correlated

signal components can be determined by testing for the number of eigenvalues of C that are

greater than one. Such a test is formulated in Section 6.4.2.1 using bootstrap-based hypoth-
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esis testing.

One of the assumptions in Result 6.1 that needs further discussion is that if the ith compo-

nents of four or more data sets are correlated (i.e., k(i) ≥ 4), then the correlation coefficient

between any pair of ith signal components must be either zero or greater than ξ(i) = (k
(i)−1
k(i)

)2.

This assumption guarantees that only one eigenvalue of C corresponding to the ith compo-

nent is greater than one. The threshold, ξ(i), is derived in the appendix in Section 6.8 and

is a restrictive threshold since limk(i)→∞ ξ
(i) = 1. However, the proof does not claim to

represent all matrices with the desired eigenvalue structure. That is, there is a nonempty set

of real positive hollow symmetric matrices that have exactly one positive eigenvalue but do

not meet this element-wise threshold. One example is the following: Suppose the nonzero

correlation coefficients associated with the ith component are equal for all k(i)(≥ 4) data

sets. That is, ρ(i)pq = ρ(i) ∀p, q ∈ K(i), where K(i) is the subset of indices associated with the

data sets whose ith components are correlated. In this case,

H(i) =


0 ρ(i) · · · ρ(i)

ρ(i) 0
...

... . . . ...

ρ(i) · · · · · · 0

 , (6.20)

This can be simplified as H(i) = ρ(i)11T−ρ(i)I, where 1 ∈ Rk(i) is a vector with all elements

equal to one. The maximum eigenvalue of H(i) is (k(i) − 1)ρ(i) and the remaining k(i) − 1

eigenvalues are −ρ(i). Therefore, H(i) has one positive eigenvalue for any ρ(i) > 0. In

this example, the relationship between the eigenvalues of C and the number of signals with

nonzero correlations described by Result 6.1 holds true for 0 < ρ
(i)
pq ≤ 1.

In the general case, even though ξ(i) is restrictive, an element-wise threshold like this is per-

haps the best that can be hoped for without imposing further constraints on the structure

of the correlation among the components. As noted in [103], for any k ∈ N with k ≥ 3,

there exists a positive hollow symmetric H ∈ Rk×k such that H has only two nonpositive

eigenvalues. That is to say, without the element-wise constraint there will always be feasi-

ble correlation structures for which C has more eigenvalues greater than one than signals

with nonzero correlations. Moreover, as we will see in our numerical examples later, our

hypothesis-test based techniques presented in Section 6.4.2 may still perform satisfactorily

even in cases where the assumptions of Result 6.1 are violated.

As an immediate consequence of Result 6.1, any eigenvalue of C that is equal to the max-
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imum possible value P identifies a signal component where all P data sets are perfectly

correlated. This is shown in Result 6.2.

Result 6.2. If any eigenvalue of C, λ(i), is equal to P , there exists an i ∈ D such that the

correlation between s(i)p and s(i)q is one for all p, q = 1, . . . , P .

Result 6.2 is proved as follows. By Result 6.1, if λ(i) > 1 is an eigenvalue of C, there exists

an R(i) 6= I whose largest eigenvalue is equal to λ(i). The diagonal elements of R(i) are equal

to one by definition, so trace(R(i)) = P =
∑P

j=1 λ
(i)
j , where λ(i)j is the jth largest eigenvalue

of R(i). Since the largest eigenvalue of R(i), λ(i)1 = λ(i) = P , we have λ(i)2 = . . . = λ
(i)
P = 0,

and thus, the rank of R(i) is one.

Let R(i) = wwT be a rank-one matrix, where w = [w1, . . . , wP ]T ∈ RP . The diagonal

elements of R(i) are equal to one, implying that w2
p = 1 for all p. Since the off-diagonal

elements are bounded by zero and one, wp is positive for p = 1, . . . , P . Thus, w1 = w2 =

. . . = wP = 1 is the only solution for w, and R(i) = 11T . Therefore, ρ(i)pq = 1∀p, q and

the ith component of each data set is perfectly correlated with the ith component of all other

data sets.

6.4.1.2. Eigenvectors of C

The eigenvalues of C provide information about the dimension of the correlated subspace,

but identifying exactly which data sets demonstrate correlation in a particular component

requires more information than this summary contains. The eigenvectors of C, on the other

hand, contain as their elements the coefficients for constructing the correlated signals from

each data set that correspond to the associated eigenvalue (that is greater than one). Data sets

connected to the nonzero elements of an eigenvector are then the ones whose components

are correlated among the associated group of components. Let us introduce the following

result.

Result 6.3. Let C be the composite coherence matrix of P data sets constructed according

to the linear mixing model in (6.1) with pairwise diagonal signal cross-covariance matrices.

Let k(i) be the number of data sets whose ith components are correlated. Assume that cor-

relations are transitive, and for k(i) ≥ 4, each correlation coefficient is either ρ(i)pq = 0 or

ρ
(i)
pq > ξ(i) = (k

(i)−1
k(i)

)2 for all p, q. Let Cu(i) = λ(i)u(i) such that λ(i) > 1 is an eigenvalue

with algebraic multiplicity of one, and let the eigenvector u(i) be partitioned into P subvec-

tors, u(i) = [u
(i)T
1 ,u

(i)T
2 , ...,u

(i)T
P ]T , where u

(i)
p ∈ Rn contains the elements of u(i) associated

with the pth data set. Then the ith signal component in the pth data set is among the group
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of correlated ith components if and only if u
(i)
p 6= 0.

To prove Result 6.3, let the ith components of k(i) data sets be correlated, and let K(i) ⊆
P = {1, . . . , P} be the subset of indices associated with these correlated data sets so that

|K(i)| = k(i). Suppose the ith signal component in the pth data set is among the correlated

components, i.e., p is an element of K(i). Then there exists a permutation as described by

(6.12) where R(i) ∈ RP×P 6= I such that

R(i) =

[
B(i) 0

0 I

]
, (6.21)

where B(i) ∈ Rk(i)×k(i) is a symmetric and element-wise positive matrix that contains the

correlation coefficients between the correlated ith components. According to Result 6.1, the

largest eigenvalue of B(i) is greater than one and satisfies B(i)v(i) = λ
(i)
maxv(i), where v(i) is

the eigenvector of B(i) associated with λ(i)max. According to the Perron-Frobenius theorem,

all the entries of v(i) are positive [104]. Since R(i) is block-diagonal with blocks B(i) and I,

λ
(i)
max is also the largest eigenvalue of R(i) with the eigenvector

ṽ(i) =

[
v(i)

0

]
, (6.22)

where 0 is a zero vector of dimensions P − k(i).

R(i) is a block of R̃ss as defined in (6.13), and thus λ(i)max is also an eigenvalue of R̃ss. Each

eigenvector ũ(i) of R̃ss can be partitioned into n subvectors where the elements of the ith

subvector correspond to the ith block of R̃ss. Since λ(i)max has an algebraic multiplicity of one,

the eigenvector of R̃ss associated with λ(i)max has ṽ(i) at the ith position and zeros everywhere

else and can be written as ũ(i) = [0T , . . . , ṽ(i)T , . . . ,0T ]T .

Using (6.12), the eigenvector of C associated with λ(i)max is related to ũ(i) by

u(i) = APT ũ(i). (6.23)

For each p ∈ K(i), the element of ṽ(i) corresponding to the pth data set is strictly positive.

Therefore, from the definition of ũ(i) and (6.23), u
(i)
p 6= 0 as desired.

To show the other implication, suppose that the ith signal component in the pth data set

is uncorrelated among the ith group of components. Thus, p is not an element of K(i).

Therefore, the pth data set is not represented in v(i) but rather corresponds to one of the
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elements in the zero vector of ṽ(i). Using the definition of ũ(i) and (6.23), it is easy to see

that the pth part of u(i),u
(i)
p = 0. This implies that if the pth part of u(i) associated with

λ(i) > 1, u
(i)
p 6= 0, then the ith signal component in the pth data set is among the group of

correlated ith components as desired. This concludes our proof for Result 6.3.

Result 6.3 assumes that any eigenvalue of C that is greater than one has an algebraic mul-

tiplicity of one. This is not a necessary but a sufficient condition. Section 6.4.1.3 discusses

its sufficiency and also scenarios in which the correlation structure can be completely deter-

mined using Result 6.3 even when this assumption is not true.

Due to Results 6.1 and 6.3, if the ith eigenvalue of C is greater than one and is unique as an

eigenvalue, the existence of correlation associated with the ith component of the pth data set

can be determined by testing the hypothesis u
(i)
p = 0. A bootstrap-based hypothesis test for

this purpose is proposed in Section 6.4.2.2.

6.4.1.3. Identifiability of the underlying correlation structure

Results 6.1 and 6.3 state the conditions that allow us to determine the correlated components

along with their correlation structure using the eigenvalue decomposition of C. One addi-

tional assumption in Result 6.3 is that the eigenvalues of C greater than one are distinct, i.e.,

have algebraic multiplicity of one. In this section, we will briefly discuss why this assump-

tion is needed. We will also mention the scenarios in which the correlation structure can still

be completely determined using Result 6.3 even if the assumption is not true.

Let λ(i) and λ(j) be the two eigenvalues of C with λ(i) > 1 and λ(j) > 1. Let u(i) and

u(j) be the eigenvectors associated with λ(i) and λ(j), respectively. Let u = au(i) + bu(j)

be a vector formed by a linear combination of u(i) and u(j), and a and b are scalars. If

λ(i) = λ(j), any linear combination of u(i) and u(j) is an eigenvector of λ(i) or λ(j). In

this case, if the ith and jth group of components are correlated across different data sets,

their correlation structure, i.e., across which data sets the components are correlated, cannot

always be determined using Result 6.3. For instance, if the ith components are correlated

across all data sets except the pth data set, then according to Result 6.3, the pth part of u(i),

u
(i)
p = 0. Similarly, u

(j)
q = 0 if the jth components are correlated across all data sets except

the qth data set. When λ(i) = λ(j), then au(i) + bu(j) can also be an eigenvector of λ(i) or

λ(j) for any a, b. Therefore, u
(i)
p or u

(j)
q are not necessarily equal to zero.

However, if the ith and jth components are correlated across the same subset of data sets,

even when λ(i) = λ(j), their correlation structure can be determined using Result 6.3. This
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is due to the fact that the zeros in u = au(i) + bu(j) are at the same positions as those of u(i)

and u(j) for any a, b.

To conclude, Result 6.3 can completely identify the correlation structure of the components

when the eigenvalues associated with the components that are correlated across different

subset of data sets are distinct.

6.4.2. Bootstrap-based tests for eigenvalues and eigenvectors of C

6.4.2.1. Test for detecting eigenvalues of C associated with the correlated subspace

Result 6.1 gives conditions when the number of eigenvalues of C greater than one is equal to

the dimension of the correlated subspace d. In practice, however, the composite coherence

matrix C is unknown and has to be estimated from the samples. As a result, the number of

eigenvalues of the sample composite coherence matrix that are greater than one will often

not equal the dimension of the correlated subspace d. This inconsistency is addressed in

the related model-order selection literature by setting a threshold for the eigenvalues that is

determined with an ITC or via hypothesis testing.

Using the eigenvalues of a covariance matrix to estimate the dimension of a signal subspace

is a well-studied paradigm [24]. However, most of these techniques are based on one or two

data sets [26], [27], [80], [83]. In these cases, the population eigenvalues that do not belong

to the signal subspace are assumed to satisfy a certain property that is independent of the

unknown parameters. For example, with one data set, it is assumed that the eigenvalues of

the covariance matrix of observed data with a signal subspace dimension of d satisfy

λ(1) ≥ . . . ≥ λ(d) > λ(d+1) = . . . = λ(n),

i.e., all eigenvalues following the largest d eigenvalues are equal (in most cases, assumed

to be the noise variance). In the proposed multiset model, the eigenvalues of C following

the d largest eigenvalues are not equal since some of the eigenvalues are less than one and

the number of such eigenvalues depends on the unknown correlation structure of the d cor-

related components. Thus, there is no immediate generalization of the assumptions used

in standard techniques based on ITC or hypothesis testing and we must formulate a novel

approach.

To fill this void in the literature, we present a novel algorithm for determining d, which
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also uses the hypothesis testing framework. As is common in model-selection literature, a

sequence of binary hypothesis tests is performed one at a time until a stopping condition is

met [27], [28], [58]. In this context, this means starting with a counter s = 0 and performing

the following binary test of null hypothesis H0 and alternative H1

H0 : d = s,

H1 : d > s. (6.24)

If H0 is rejected, s is incremented and another test of H0 vs. H1 is run. This is repeated until

H0 is not rejected or s reaches its maximum possible value. The binary test in (6.24) requires

a statistic whose (asymptotic) distribution underH0 is theoretically known or estimated from

samples. In Section 5.3, the distribution of the statistic is derived by assuming a special

correlation structure where the components are either correlated across all pairs of data sets

or completely uncorrelated. This assumption might be applicable in some tasks, for example,

in sensor array processing as in [30] where the same source vector is received by multiple

arrays. However, in many other applications, this assumption is too restrictive [72], [73].

Since the distribution of the statistic for arbitrary correlation structures is unknown, we use

the bootstrap technique to estimate this distribution. Another advantage of bootstrap is that it

works well when only a limited number of samples are available. It also provides good results

for non-Gaussian distributed data; a scenario for which the traditional ITC and hypothesis

testing methods are ill-suited because they are predominantly based on asymptotic properties

of Gaussian distributed data [61].

Let the eigenvalues of C be arranged in nonincreasing order so that λ(1) ≥ λ(2) ≥ . . . ≥
λ(nP ). For each signal component that is independent of all other signal components, there

is at least one eigenvalue of C equal to one. To estimate d, we propose a statistic based

on the assumption that there is at least one independent component among all of the data

sets. The statistic measures how the (s + 1)st largest eigenvalue of C differs from one, and

we estimate the significance of this deviation to test the null hypothesis, H0 : λ(s+1) = 1.

In order to increase the power and stability of the test, we make the stronger assumption

that each data set has at least one signal component that is completely uncorrelated in this

manner, i.e., dpq < n for all p, q. Therefore, C has at least P eigenvalues equal to one and

the null hypothesis for each test is

H0 : λ(s+1) = λ(s+2) = . . . = λ(s+P ) = 1. (6.25)
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Note that we cannot include all nP −s eigenvalues following the s largest eigenvalues in the

test since an unknown number of them are less than one. The proposed test statistic is

T (s) =
s+P∑
i=s+1

(λ(i) − 1)2, (6.26)

and the null hypothesis is rejected when T (s) is sufficiently greater from zero.

Under the null hypothesis, H0, the statistic T0(s) =
∑s+P

i=s+1(λ
(i) − 1)2 = 0. However, given

our sample coherence matrix, it is unlikely that the sample statistic T (s) is exactly equal to

zero. To test whether our sample was generated underH0 we need to estimate the distribution

of T (s)− T0(s) 3.

This distribution is estimated via the bootstrap as follows. Given the sample matrices, com-

pute T (s). Resample the data by randomly choosing M indices from {1, . . . ,M} (with

uniform distribution and with replacement) to create a bootstrap dataset of the same size as

the original data set. Repeat the resampling procedure B times and compute the test statistic

in (6.26) each time to produce Tb (s) for b = 1, . . . , B. The distribution of T (s) − T0(s)

under the null is then approximated by the bootstrap distribution Tb
∗(s) = Tb (s) − T (s)

[61].

Algorithm 2 describes the complete technique for estimating d. The algorithm takes as input

the sample matrices, the number of bootstrap resamples B and the probability of false alarm

Pfa.

6.4.2.2. Test for eigenvectors of C corresponding to correlated components

In addition to identifying the dimension of the correlated subspace, d, our stated goal is to es-

timate the structure of the correlations between the collection of data sets. As a consequence

of Result 6.3, we need to identify the values of i and p for which the subvector u
(i)
p = 0

in order to determine which data sets have an uncorrelated ith signal component. However,

we still do not have direct access to the composite coherence matrix. When C is estimated

from samples, these subvectors will not be exactly zero. Thus we propose a novel method

for identifying multiset correlation structure that uses a bootstrap-based test to detect zero

subvectors in the eigenvectors of C.

Assuming d correlated components (which can be estimated via Algorithm 2), the technique

3Compared to (2.22), we have omitted the absolute sign here as we are testing H0 against a one-sided H1.
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Algorithm 2 Estimator for the dimension of the correlated subspace of P data sets

1: Input
{
Xp

}P
p=1

: sample matrices
B: number of bootstrap resamples
Pfa: probability of false alarm

2: Output d̂: dimension of correlated subspace
3: function CORRDIM(

{
Xp

}P
p=1

, B, Pfa)

4: R̂D ← 1
M

blkdiag
(
X1X

T
1 , . . . ,XPX

T
P

)
5: X←

[
XT

1 , . . . ,X
T
P

]T
6: R̂← 1

M
XXT

7: Ĉ← R̂
−1/2
D R̂R̂

−1/2
D

8: λ̂̂λ̂λ← eigenvalues
(
Ĉ
)

. s.t. λ̂(1) ≥ · · · ≥ λ̂(nP )

9: for b = 1, . . . , B do
. bootstrap resamples indexed by left subscript

10: for m = 1, . . . ,M do
11: jb m ← random integer [1,M ]

. resample indices chosen with replacement

12: for p = 1, . . . , P do
13: Xb p ←

[
xp( jb 1), . . . ,xp( jb M)

]
14: R̂b D ← 1

M
blkdiag

(
Xb 1 XT

b 1 , . . . , Xb P XT
b P

)
15: Xb ←

[
XT
b 1 , . . . , XT

b P

]T
16: R̂b ← 1

M
Xb XT

b

17: Ĉb ← R̂
−1/2

b D R̂b R̂
−1/2

b D

18: λ̂̂λ̂λb ← eigenvalues
(
Ĉb
)

. s.t. λ̂
(1)

b ≥ · · · ≥ λ̂
(nP )

b

19: smax ← n− 1
20: for s = 0, . . . , smax do
21: T (s)←

∑s+P
i=s+1(λ̂

(i) − 1)2

22: for b = 1, . . . , B do
23: Tb (s)←

∑s+P
i=s+1

(
λ̂
(i)

b − 1
)2

24: Tb
∗(s)← Tb (s)− T (s)

25: { T(i)
∗(s)}Bi=1 ← sort{ Tb ∗(s)}Bb=1

. s.t. T(1)
∗(s) ≤ . . . ≤ T(B)

∗(s)
26: η ← d(1− Pfa)(B + 1)e

. index to select the threshold
27: Tτ (s)← T(η)

∗(s)

28: return d̂← min
{

argmin
s=0,...,smax

T (s) < Tτ (s), n− 1
}
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tests the d eigenvectors associated with the d largest eigenvalues of the sample composite

coherence matrix. For i = 1 . . . d and p = 1 . . . P we test the hypotheses

H0 : u(i)
p = 0,

H1 : u(i)
p 6= 0. (6.27)

The null hypothesis is rejected when the squared Euclidean norm of u
(i)
p ,

T = ‖u(i)
p ‖2, (6.28)

is sufficiently far from zero. Under the null hypothesis, the statistic T0 = ‖u(i)
p ‖2 is zero. We

estimate the distribution of T − T0 using bootstrap. The resampling procedure is the same

as in Section 6.4.2.1, but the bootstrap statistic is the resampled version of (6.28) so that the

distribution under the null is approximated as Tb
∗ = Tb − T . The full procedure is given in

Algorithm 3.

Combining Algorithms 2 and 3 leads to an effective method for determining the correlation

structure among multiple data sets. Algorithm 2 determines how many signal components

d have nonzero correlations, and Algorithm 3 reveals the data sets across which these d

components are correlated. The final output is a binary matrix Z, which is similar to Tables

6.1 and 6.2 except that nonzero correlation coefficients are represented by ones. We refer to

this as a correlation map, an example of which can be seen in Figure 6.2 for the correlation

structure in Table 6.2.

12

(i)

13

(i)

14

(i)

23

(i)

24

(i)

34

(i)

i=1

i=2

i=3

i=4

Figure 6.2.: The correlation map of four components correlated in four data sets with corre-
lation coefficients given in Table 6.2. The white blocks represent nonzero corre-
lation coefficients and the black blocks represent zero correlation coefficients.
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Algorithm 3 Estimator for the correlation structure of P data sets

1: Input
{
Xp

}P
p=1

: sample matrices

d̂: dimension of correlated subspace
B: number of bootstrap resamples
Pfa: probability of false alarm

2: Output Ẑ : correlation map
3: function CORRSTRUC({Xp}Pp=1 , d̂, B, Pfa)

4: Ẑ← [1] ∈ Rd̂×(
P
2)

. rows indexed by signal components, columns by pairs of data sets in lexicographical order
5: R̂D ← 1

M blkdiag
(
X1X

T
1 , . . . ,XPX

T
P

)
6: X←

[
XT

1 , . . . ,X
T
P

]T
7: R̂← 1

MXXT

8: Ĉ← R̂
−1/2
D R̂R̂

−1/2
D

9: for i = 1, . . . , d̂ do
10: û(i) ← eigenvector(Ĉ)

. ordered by associated eigenvalue s.t. λ̂(1) ≥ · · · ≥ λ̂(d̂)

11: û(i) =
[
û
(i)T
1 , . . . , û

(i)T
P

]T
with û

(i)
p ∈ Rn ∀p

12: for b = 1, . . . , B do
. bootstrap resamples indexed by left subscript

13: for m = 1, . . . ,M do
14: jb m ← random integer [1,M ]

. resample indices chosen with replacement

15: for p = 1, . . . , P do
16: Xb p ←

[
xp( jb 1), . . . ,xp( jb M )

]
17: R̂b D ← 1

M blkdiag
(
Xb 1 XT

b 1 , . . . , Xb P XT
b P

)
18: Xb ←

[
XT
b 1 , . . . , XT

b P

]T
19: R̂b ← 1

M Xb XT
b

20: Ĉb ← R̂
−1/2

b D R̂b R̂
−1/2

b D

21: for i = 1, . . . , d̂ do
22: û

(i)
b ← eigenvector( Ĉb )

. ordered by eigenvalue s.t. λ̂
(1)

b ≥ · · · ≥ λ̂
(d̂)

b

23: û
(i)

b =
[
û
(i)T

b 1 , . . . , û
(i)T

b P

]T
with û

(i)
b p ∈ Rn

24: for i = 1, . . . , d̂ do
25: for p = 1, . . . , P do
26: T ← ‖û(i)

p ‖2
27: for b = 1, . . . , B do
28: Tb ← ‖ û

(i)
b p ‖2

29: Tb
∗ ← Tb − T

30: { T(i)
∗}Bi=1 ← sort{ Tb ∗}Bb=1

. s.t. T(1)
∗ ≤ . . . ≤ T(B)

∗

31: η ← d(1− Pfa)(B + 1)e
. index to select the threshold

32: Tτ ← T(η)
∗

33: if T < Tτ then
34: Ẑ(i, j{p, q})← 0 ∀q

. j{p, q} gets linear index of p, q in lexicographical order

35: return Ẑ
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6.4.2.3. Computational complexity

We compute the big-O complexity for the proposed technique. The EVD of Ĉ can be com-

puted using the right singular vectors of the data sets as follows. Let Xp = FpKpG
T
p be

the economy SVD of Xp, which can be computed for all P data sets (assuming n ≤ M ) in

O(MPn2) flops. Let G = [G1, . . . ,GP ]. The eigenvalues of Ĉ are the squared singular

values of G, and the eigenvectors of Ĉ are the right singular vectors of G, which can be

computed in O(MP 2n2) flops. Thus, assuming Pn ≤ M , the eigenvalues and eigenvectors

of Ĉ can be computed inO(MP 2n2 +Pn) flops, where the additional Pn flops are required

for squaring the singular values of G. Since we compute the EVD of Ĉ once for the original

data and once for each bootstrap resample, the final complexity is B + 1 times larger. Re-

porting only the dominant term, the complexity of the proposed technique is O(BMP 2n2).

Finally, it is worth noting that some of the operations, e.g., computing the SVD for P data

sets, bootstrap resamples etc., can be parallelized to reduce the overall complexity of the

technique.

6.5. Towards complete model selection in multiple

high-dimensional data sets

In this section, we will briefly address the problem of estimating the complete correlation

structure when the number of samples M is not large relative to the dimension n and the

number of data sets P . To be concise and clear, from now on we will call the technique

proposed in Section 6.3 as the mCCA-HT technique since it combines multiset CCA and

hypothesis testing for each pair of data sets. We will call the technique proposed in Section

6.4 as the joint-EVD technique since it is based on the eigenvalues and eigenvectors of the

composite coherence matrix which measure the joint-correlation information among all sets.

Both these techniques are based on the composite coherence matrix C.

Let us consider the regime where M < nP . In this case, the sample estimate of C, denoted

by Ĉ and computed in line 7 of Algorithm 2, is not full rank. Since the maximum rank of Ĉ is

min(M,nP ), where min(·) denotes the minimum operator, Ĉ has the maximum rank of M .

Therefore, nP −M smallest eigenvalues of Ĉ are equal to zero. To briefly motivate how this

regime affects the proposed techniques, consider the mCCA-HT technique. If the mCCA-

HT technique uses either the MINVAR or GENVAR cost function to perform mCCA, the

estimates of the canonical variables will be highly unreliable in this regime. This is because
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the MINVAR is based on the smallest eigenvalue of Ĉ while the GENVAR is based on the

determinant of Ĉ [21]. Both these quantities are deterministically zero when M < nP . As

the performance of all mCCA versions is similar as shown in [23], mCCA with MAXVAR,

SUMCORR and SSQCORR will also be unreliable in this regime. It is shown in [13] that the

largest eigenvalue of Ĉ is highly overestimated when M is small compared to nP . Thus, the

joint-EVD technique will also perform poorly when M < nP . It is interesting to see that for

P = 2, this is the same regime where the sample canonical correlations are defective [35].

Similar to CCA, even if M > nP but not significantly large, the sample eigenvalues of Ĉ

will be far from their population counterparts, thus making the correlation structure estimate

unreliable. This calls for rank reduction either before or jointly with the correlation structure

estimation.

In [13], a PCA pre-processing step is proposed before performing mCCA. However, as dis-

cussed before in Chapters 3 and 5, PCA retains the components with most variance within a

data set and these components are not necessarily the ones that are correlated across multiple

data sets. If the components are retained only on the basis of their variance, then the PCA

step before the multiset correlation analysis will most likely retain unnecessary uncorrelated

components which have smaller variance compared to the correlated components.

We propose an improved solution where the PCA rank for each data set is determined us-

ing the joint PCA-CCA technique of Section 3.5. The PCA dimensions for a particular

data set are chosen as the maximum of the estimated PCA ranks using the joint PCA-CCA

technique from all pair combinations for that data set. This approach is based on the fact

that the components correlated across all data sets are also correlated across a given pair of

data sets. Hence, these components are retained in the dimension-reduced data sets using

this approach. The proposed dimension reduction technique is summarized in Algorithm 4.

The mCCA-HT or the joint-EVD technique is applied to the dimension-reduced data sets to

estimate the correlation structure.

The proposed dimension reduction approach, however, is suboptimal as the estimated PCA

rank for each data set is a function of all the PCA ranks estimated in a pairwise fashion

with that data set. Therefore, an inaccurate rank estimation in one pair of data sets can

lead to an inaccurate overall rank and thus, an incorrect correlation structure estimation.

In comparison, a joint approach for estimating the PCA ranks and the correlation structure

could lead to significant performance improvement. However, the two main challenges with

such an approach are a) the number of PCA ranks to estimate increases with the number of

sets, thereby increasing the number of rank combinations to search for the correct correlation



Complete model selection in multiple data sets 101

Algorithm 4 Estimator for the PCA ranks to determine the correlation structure in P high-
dimensional data sets

1: Input
{
Xp

}P
p=1

: sample matrices

2: Output r̂: P -dimensional vector containing estimated PCA rank for each data set
3: function MULTISETRANK({Xp}Pp=1

)
4: rm ← [0] ∈ RP×P

. rows and columns indexed by data sets
5: comb←

(
P
2

)
-dimensional cell

. each cell element is a two-dimensional vector containing indices of a pair of data sets in
lexicographical order

6: for c = 1, . . . ,
(
P
2

)
do

7: p← comb{c}(1)
. first data set in pair c

8: q ← comb{c}(2)
. second data set in pair c

9: r̂p, r̂q ← PCACCADetector(Xp,Xq)
. joint PCA-CCA technique of Section 3.5, r̂p, r̂q are PCA ranks estimated for Xp,Xq that

keep all the components correlated between Xp,Xq

10: rm(p, q)← r̂p
11: rm(q, p)← r̂q

r̂ = Rowmax(rm)
. returns a vector containing the maximum value from each row

12: return r̂

structure, and b) two different rank combinations can lead to the same model order d but a

different correlation structure. Therefore, such a joint approach is left for future work.

6.6. Numerical results

In this section, we use Monte-Carlo simulations to demonstrate the performance of the pro-

posed techniques. Initially, we compare these techniques with those proposed in Chapter 5

and their competitors [30], [34], which aim to estimate the number of components corre-

lated across all data sets, dall. To estimate dall for mCCA-HT and joint-EVD techniques, we

simply count the number of components that are correlated across all the data sets. Next,

we investigate the behavior of the joint-EVD technique when the pairwise correlation coef-

ficients are not above the threshold necessary for the proof of Result 6.1.We show that the

method is robust to the violation of this assumption and that the accuracy remains high for

many correlation structures. Finally, we compare the performance of the mCCA-HT and

joint-EVD techniques for determining the complete correlation structure in multiple data

sets. These comparisons highlight the quantitative and qualitative differences between the

two techniques. We use the MAXVAR cost function for the mCCA-HT technique. This is
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because the solution of MAXVAR mCCA is closed-form and is a function of the eigenvec-

tors of the composite coherence matrix, which are also employed in the joint-EVD technique.

This helps in an accurate analysis of the differences between the two proposed techniques

in principle and eliminates the differences that can arise due to convergence issues in other

mCCA cost functions like GENVAR, SSQCOR and SUMCOR. Moreover, all five MCCA

cost functions are closely linked and perform similarly as reported in [23].

We present results with different correlation structures.The following simulation settings are

common to all of them. The signal components in each data set have unit variance. For all

scenarios except iii) and iv), the signal components are Gaussian distributed. For scenarios

iii) and iv), the signals are generated from a Laplacian distribution to demonstrate that the

techniques also perform well with non-Gaussian signals. The mixing matrices are randomly

generated orthogonal matrices. Each data set is corrupted by additive white Gaussian noise.

The variance of noise components is chosen according to the SNR that is defined per com-

ponent in equation (3.37). The SNR is the same for all data sets. The number of bootstrap

resamples is B = 1000 and the probability of false alarm is Pfa = 0.05. The performance

plots are mostly shown either as a function of SNR, which is varied from−10 dB to 15 dB or

as a function of the number of samples. The results are averaged over 500 independent trials.

The performance of each method for determining model order is measured by the mean ac-

curacy (number of correct estimates divided by number of trials) or the mean value (average

value over all trials). The performance in estimating the complete correlation structure is

measured using precision, i.e., the percentage of correctly detected correlations among all

the detected correlations, and recall, i.e., the percentage of correctly detected correlations

among all actual correlations.

The four different scenarios are the following:

i) Evaluation of model-order selection with special correlation structure, for P = 4

data sets with d = dall = 3: Each data set is of dimension n = 7 and the number of

samples is M = 350. The components are either correlated across all data sets or are

uncorrelated. Thus, the number of components that are correlated between at least a pair

of data sets, d, is equal to the number of components correlated across all data sets, dall.

This type of correlation structure satisfies the special correlation assumption of Section

5.3. The pairwise correlation coefficients for the three correlated components are shown

in Table 6.3, all of which exceed the ξ(i) = (3/4)2 = 0.5625 threshold as assumed by

Result 6.1.

Figure 6.3 shows the mean accuracy of d̂all as a function of SNR for the proposed and
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ρ
(i)
12 ρ

(i)
13 ρ

(i)
14 ρ

(i)
23 ρ

(i)
24 ρ

(i)
34

i = 1 0.63 0.78 0.69 0.81 0.64 0.91
i = 2 0.62 0.67 0.74 0.71 0.82 0.91
i = 3 0.84 0.81 0.72 0.57 0.71 0.62

Table 6.3.: Correlation structure of the three correlated components in four data sets used in
scenario i).
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Figure 6.3.: Mean accuracy of d̂all in scenario i) for the proposed and the competing tech-
niques in detecting three components correlated across all four data sets.

the competing techniques. All the techniques correctly estimate dall when the SNR is

high. When the SNR is low, the joint-EVD approach outperforms all other techniques.

ii) Evaluation of model-order selection with arbitrary correlation structure, for P = 4

data sets with d = 3, dall = 1: In this setting all the parameters are the same as in the

previous scenario except that the first component of each data set is correlated with all

other data sets but the other two components are only correlated across a subset of data

sets. The second component is correlated across all except the first data set and the

third component is correlated between data sets two and four. The pairwise correlation

coefficients are shown in Table 6.4. The proposed multiset GLRT and the multiset ITC

method of [30] are not evaluated as they are inapplicable in this setting.

Figure 6.4 shows that the mCCA-HT and joint-EVD techniques work better than the

PCM and mCCA-KPD technique of [34] in estimating the model order dall for low val-

ues of SNR. It is also worth noting that the PCM and mCCA-KPD techniques estimate

only dall while the methods proposed in this chapter also detect the components corre-
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ρ
(i)
12 ρ

(i)
13 ρ

(i)
14 ρ

(i)
23 ρ

(i)
24 ρ

(i)
34

i = 1 0.63 0.78 0.69 0.81 0.64 0.91
i = 2 0 0 0 0.71 0.82 0.91
i = 3 0 0 0 0 0.71 0

Table 6.4.: Correlation structure of the three correlated components in four data sets used in
scenario ii).
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Figure 6.4.: Mean accuracy of d̂all in scenario ii) for the proposed and the competing tech-
niques in detecting dall = 1 component correlated across all four data sets, in
presence of two signal components correlated across a subset of the data sets,
i.e., d = 3.

lated across subsets of the data sets along with their correlation structure.

iii) Performance of the joint-EVD method when the element-wise threshold is not met,
for P = 5 data sets with d = dall = 2: We also investigate the performance of the

joint-EVD technique for determining the number of correlated components when some

of the pairwise correlation coefficients do not meet the threshold required for Result

6.1. For this, we assume that the first two components in each data set are correlated

across all data sets. Thus, the threshold for the pairwise correlation coefficients given by

Result 6.1 is ξ(1) = ξ(2) = ξ = (4
5
)2 = 0.64. We keep some of the pairwise correlation

coefficients above the threshold ξ and vary the remaining ones. More precisely, we set

ρ
(i)
pq = 0.75 for p > q, p = 2, 3, 4, 5 and q = 3, 4, 5, which exceeds the threshold ξ,

and jointly vary the remaining correlation coefficients ρ(i)12 = ρ
(i)
13 = ρ

(i)
14 = ρ

(i)
15 = ρ, for

i = 1, 2. All the pairwise correlation coefficients are listed in Table 6.5.
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ρ
(i)
12 ρ

(i)
13 ρ

(i)
14 ρ

(i)
15 ρ

(i)
23 ρ

(i)
24 ρ

(i)
25 ρ

(i)
34 ρ

(i)
35 ρ

(i)
45

i = 1 ρ ρ ρ ρ 0.75 0.75 0.75 0.75 0.75 0.75
i = 2 ρ ρ ρ ρ 0.75 0.75 0.75 0.75 0.75 0.75

Table 6.5.: Correlation structure of the two correlated components in five data sets used in
scenario iii).
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Figure 6.5.: Mean accuracy of the joint-EVD technique for estimating d = 2 components
correlated in five data sets as a function of the correlation coefficient ρ in scenario
iii).

To demonstrate the relative robustness of the method against violating the assumption in

Result 6.1, we show the accuracy of d̂ as a function of ρ in Figure 6.5 for different values

of SNR. For ρ < ξ, the performance depends on the SNR. For low SNR, it becomes

increasingly difficult to correctly estimate d for only weakly correlated components. On

the other hand, as long as the SNR is high enough, violating the threshold in Result 6.1

does not present a problem, and d can still be correctly determined.

iv) Evaluation of complete correlation structure,

A. for P = 5 data sets with d = 3, dall = 1: Finally, we compare the performance of

the mCCA-HT and joint-EVD techniques for determining the complete correlation

structure. Each data set has n = 4 components and the number of samples is M =

250. Of the d = 3 correlated components, dall = 1 and the first component of each

data set is correlated with the first component of each other data set. The second

component of each data set is correlated across all the data sets except the fourth

data set. Finally, the third components of data sets one, four and five are correlated.

Each pairwise correlation coefficient is 0.7, thus exceeding the threshold as required
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in Result 6.1.

Figure 6.6a shows the mean accuracy of estimating d for both techniques as a func-

tion of SNR. Both methods perform similarly for low values of SNR when estimat-

ing d. However, for medium and high SNR values the joint-EVD method outper-

forms the mCCA-HT method. The loss in performance can be described by the fact

that the mCCA-HT is based on hypothesis test derived for Gaussian distributed data.

This assumption is violated in this scenario as the signals are Laplacian distributed.

Figure 6.6b shows the mean precision and recall values for determining the complete

correlation structure. The precision of the mCCA-HT method is better at low SNR

while the recall for the joint-EVD method is better at both low and medium SNRs.

The main reason for this difference is tied to the information that each method uses

for hypothesis testing. The mCCA-HT method performs mCCA to extract the sets of

signal components that are highly correlated via a deflationary approach. The com-

ponents are extracted jointly from all data sets. Then, hypothesis tests are conducted

on the extracted signal components from pairs of data sets to detect the underlying

correlation structure. At low SNR values some of the correlations are missed while

testing an individual pair of data sets, so its average recall is small in this regime.

On the other hand, the joint-EVD method detects the components and their corre-

lation structure by applying hypothesis tests to the eigenvalues and eigenvectors of

the composite coherence matrix directly. The eigenvalues and the eigenvectors are

functions of all the pairwise correlation coefficients associated with the component

and thus, this method tests on this joint information.

This is further illustrated in Figure 6.8, which shows heat maps of the average ac-

curacy for the two methods in estimating the complete correlation structure for this

scenario. The average accuracy for correlation structure is computed as the mean

value of each element in the estimated correlation map across all trials. The true

correlation structure is visualized in Figure 6.7 using a binary map. This map mir-

rors the structure of Tables 6.1, 6.2 and 6.3 but represents the nonzero correlation

coefficients with white blocks and the zero correlation coefficients with black blocks.

This binary map can be compared to heat maps of the simulation results to assess

qualitative differences between the two methods. Ideally, these heat maps should

look exactly like the binary map in Figure 6.7. The green star symbols in the heat

maps indicate correlated components.
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Figure 6.6.: Performance of the proposed techniques for determining the complete correla-
tion structure in five data sets in scenario iv)A. a) Mean accuracy of estimating
d, the total number of correlated signal components b) Precision and recall for
determining the complete correlation structure of the detected components.

In the low SNR regime (shown in Figure 6.8a,b at SNR = −7dB), both techniques

detect very few correlations as illustrated by the dark color of the boxes. Some of

the boxes in the second row corresponding to i = 2 in Figure 6.8a that should be

black (boxes without green star symbol) are dark brown, indicating that the joint-

EVD method detects a few false positives, and therefore has low precision value

compared to the mCCA-HT method.

The main differences between performance of the two methods start to appear from
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Figure 6.7.: The correlation map of four components correlated in five data sets in scenario
iv)A.
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Figure 6.8.: Heat maps showing the mean accuracy of detecting individual correlations for
the joint-EVD and mCCA-HT methods at three different SNR values of −7dB,
−4dB and −1dB in scenario iv)A. The true correlation structure is shown in
Figure 6.7. The green star symbols indicate correlated components.

SNR of −4dB. Figure 6.8c,d and 6.8e,f show the heat maps for SNR= −4dB and

SNR= −1dB, respectively. In Figure 6.8d,f, boxes corresponding to the nonzero

correlations of same component number have different colors. This is expected be-

cause mCCA-HT method conducts tests on pairs of data sets so it is possible to

detect the correlation between one pair and miss it between another. On the other

hand, the joint-EVD technique tests the eigenvalues and eigenvectors of the com-

posite coherence matrix, which provides a summary of all the pairwise correlations.

Therefore, the boxes of the nonzero correlations corresponding to components with

same component number are more uniform in color in Figure 6.8c,e.
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At low SNR values, the number of data sets correlated across a particular component

affects the accuracy of the joint-EVD method. The more data sets that are correlated

along a given component, the better the joint-EVD method performs. This can be

observed in Figure 6.8c. The boxes of the first row (i = 1) corresponding to nonzero

correlations are significantly brighter than those of second and third rows (i = 2, 3),

indicating a higher accuracy when detecting the first component. Similarly in Figure

6.8e, there is a contrast between the high accuracy when detecting the correlations of

first and second components and the relatively lower accuracy of detecting the third

component. This is because the eigenvalue associated with the component correlated

across more data sets is significantly greater than one and thus makes its detection

possible even when the noise power is high. This stands in contrast with the mCCA-

HT method where no advantage is gained by the number of data sets across which

a component is correlated. In Figure 6.8d,f, we can see that boxes corresponding to

the nonzero correlations of i = 1, 2, 3 have less variation in color, indicating similar

accuracy across the board.

B. for P = 5 data sets with d = 3, dall = 0: As seen from the previous experiment,

compared to the mCCA-HT technique, the joint-EVD technique benefits from com-

ponents being correlated across more sets. However, when the correlation structure

is sparse, i.e., the components are correlated across a few data sets only, the mCCA-

HT technique which detects pairwise model orders is likely to perform better. This is

due to the fact that for limited number of samples, the benefits obtained from jointly

detecting components correlated across a few data sets in the joint-EVD technique

are outweighed by the disadvantage introduced by estimating large number of pa-

rameters in C and using these unreliable estimates for hypothesis testing. We val-

idate this in the current experiment. The correlation structure for five data sets is

shown in Table 6.6. The mean value of d̂ and the average precision and recall as the

function of number of samples are shown in Figure 6.9a and 6.9b, respectively. The

SNR is 3dB. For low number of samples, the mCCA-HT technique outperforms the

joint-EVD technique in estimating d and the correlation structure. For large number

of samples, however, both techniques perform similarly.

v) Computational complexity for P = 6 data sets with d = dall = 4: The complexity

analysis for the two proposed techniques is explained in Section 6.3.2.1 and Section

6.4.2.3. The complexity of the mCCA-HT technique grows with the dimension of the

data sets at a higher rate compared the complexity of the joint-EVD technique. On the

other hand, the complexity of the joint-EVD technique grows linearly with the number
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ρ
(i)
12 ρ

(i)
13 ρ

(i)
14 ρ

(i)
15 ρ

(i)
23 ρ

(i)
24 ρ

(i)
25 ρ

(i)
34 ρ

(i)
35 ρ

(i)
45

i = 1 0.9 0.9 0 0 0.9 0 0 0 0 0
i = 2 0 0 0 0 0 0 0 0.7 0.7 0.7
i = 3 0 0 0 0 0 0 0 0 0 0.8

Table 6.6.: Correlation structure of the three correlated components in five data sets used in
scenario iv)B.
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Figure 6.9.: Performance of the proposed techniques for determining the complete correla-
tion structure in five data sets in scenario iv)B. a) Mean value of d̂, the total
number of correlated signal components b) Precision and recall for determining
the complete correlation structure of the detected components.
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Figure 6.10.: Average CPU run time for estimating d = 4 components correlated in six data
sets as a function of the dimension of the data sets.

of bootstrap resamples. In this experiment, we compare the complexities of the two

techniques using the average CPU run time. It should be noted that the CPU run time is

an approximate proxy for the computational complexity and our aim here is to compare

the complexities of the two techniques and draw inferences, and not to draw conclusions

on the absolute values of the CPU run time for each technique.

Figure 6.10 shows the average CPU run time in seconds for both techniques as a func-

tion of the dimension of the data sets. In this setting, M = B = 500. For smaller

dimensions, the joint-EVD technique needs more time compared to mCCA-HT tech-

nique due to bootstrapping. For dimensions higher than 50, the mCCA-HT method

needs significantly more computation time compared to the joint-EVD technique. We

also present the precision and recall accuracies in estimating the correlation structure

in Figure 6.11. For this scenario, both techniques perform well as the dimension of the

data sets increase.

vi) Evaluation of complete correlation structure in high-dimensional data sets for P =

5 data sets with n = 50, d = 4, dall = 1: In this setting, the data sets are high-

dimensional and we show the performance of the techniques as a function of the number

of samples M . The correlation structure of d = 4 correlated components is given in Ta-

ble 6.7. There are two uncorrelated components with variance twice than the variance

of the correlated components. The SNR is 10dB.

We applied Algorithm 4 on page 101 to estimate the PCA ranks and then used the

mCCA-HT and joint-EVD techniques to estimate the correlation structure in the rank-
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Figure 6.11.: Mean precision and recall for joint-EVD and mCCA-HT techniques for deter-
mining the correlation structure in scenario v) as a function of the dimension of
the data sets.

ρ
(i)
12 ρ

(i)
13 ρ

(i)
14 ρ

(i)
15 ρ

(i)
23 ρ

(i)
24 ρ

(i)
25 ρ

(i)
34 ρ

(i)
35 ρ

(i)
45

i = 1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
i = 2 0 0 0 0 0.85 0.85 0.85 0.85 0.85 0.85
i = 3 0 0.78 0 0.78 0 0 0 0 0.78 0
i = 4 0 0 0.7 0.7 0 0 0 0 0 0.7

Table 6.7.: Correlation structure of four correlated components in five data sets used in sce-
nario vi).

reduced data sets. The mean value of d̂ and the mean precision and recall are shown in

Figure 6.12. We specifically show the regime M < nP (nP = 250 in this scenario),

where the estimate of C without any rank reduction is highly unreliable. It can be

observed that both techniques work well in this regime after the PCA rank reduction.

However, as pointed out in Section 6.5, the dimension reduction step can be improved

by jointly estimating the PCA ranks across all data sets compared to using a pair of data

sets as in the current approach.

6.7. Summary

We have presented two techniques: the mCCA-HT and the joint-EVD techniques, which

solve the model-selection problem to determine the complete correlation structure in mul-

tiple sets of data, i.e., identifying which components are correlated across which data sets.
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Figure 6.12.: Performance of the proposed techniques for determining the complete corre-
lation structure of d = 4 components in five high-dimensional data sets in
scenario vi). a) Mean value of d̂ b) Precision and recall for determining the
complete correlation structure of the detected components.

For the joint-EVD technique, we also provide the necessary and sufficient conditions under

which the correlation structure can be identified, and justify these conditions theoretically.

Both techniques have shown competitive performance and broad applicability in various

simulation scenarios. The two techniques are complementary in the sense that the mCCA-

HT technique performs well compared to the joint-EVD technique with sparse correlation

structure, i.e., correlation structure with only a few nonzero correlation coefficients. On the

other hand, the joint-EVD technique performs better with dense correlation structures. An

approach to combine the advantages of both these techniques is an interesting avenue for fu-
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ture research. A straightforward solution for applying both techniques in presence of small

number of samples is also presented and empirically evaluated. However, with multiple

data sets, the required number of samples for the techniques to work highly depends on the

number of data sets and correlation structure among the latent components.

6.8. Appendix - Number of positive eigenvalues of a hollow

symmetric matrix

Crucial to the goal of identifying correlated signals via the eigenvalues of C is a requirement

that the correlated subspace of signal components associated with the same component num-

ber correspond to a single eigenvalue. As we see in Result 6.1 on page 86, this requirement

necessitates identifying classes of matrices that have exactly one positive eigenvalue. The

most general result in this domain comes from [103] and characterizes the eigenvalues of

hollow (zero-diagonal) symmetric nonnegative matrices.

To leverage this result, we must first define a generalized Ramsey number. Let {Ga1 , Ga2 , . . .

, Gac} be a collection of simple graphs where ai is the number of vertices of the ith graph.

Suppose we wish to color the edges of a complete graph G with c colors. The generalized

Ramsey number, R(Ga1 , Ga2 , . . . , Gac), is the minimum number of vertices of the complete

graph G such that for any c-coloring of G, there exists an i ∈ {1, 2, . . . , c} such that Gai

is an induced subgraph of G with all edges of color i. By Ramsey’s Theorem [105] such a

number always exists.

Result 6.4. (Charles, Farber, Johnsons, and Kennedy-Schaffer [[103], Theorem 3.5]). Let k

and 2 ≤ j ≤ k − 1 be two positive integers, let Gj+1 be a complete graph on j + 1 vertices,

and let c > 1 be the smallest integer for which

k ≤ R(Gj+1, Gj+1, . . . , Gj+1︸ ︷︷ ︸
c times

).

Let ε = ( j
j+1

)c. Then all hollow symmetric nonnegative matrices of order at least k and with

off-diagonal entries from (ε, 1] have at least j nonpositive eigenvalues.

As an immediate consequence of this result we have the following relevant result.

Result 6.5. Let ε = (k−1
k

)2. If H ∈ Rk×k is a hollow symmetric matrix with off-diagonal ele-

ments from (ε, 1], then the largest eigenvalue of H is positive and the other k−1 eigenvalues

are nonpositive.
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The proof of Result 6.5 is as follows. In the special case of j = k − 1, we are trying find the

smallest value of c > 1 for which the Ramsey number of c copies of Gk is greater than k,

that is, the smallest value of c for which

k ≤ R(Gk, Gk, . . . , Gk︸ ︷︷ ︸
c times

).

For c = 2, the Ramsey number of {Gk, Gk} is the minimum number of vertices needed for a

complete graph such that any coloring results in an isomophic copy ofGk whose edges are all

monochromatic (one color). When k = 2, any 2-coloring of G2 contains a monochromatic

copy of G2, therefore k = R(G2, G2). For k > 2, there exists a 2-coloring of Gk that

does not contain a monochromatic isomorphic copy of Gk. For example, any 2-coloring that

is not monochromatic will not contain a copy of Gk. Thus the number of vertices needed

must be greater than k and k ≤ R(Gk, Gk)∀k. This implies that H will have at least k − 1

nonpositive eigenvalues when the off-diagonal elements are chosen from the interval (ε, 1]

with ε = ( k
k+1

)2. Since the trace of a symmetric matrix is the sum of its eigenvalues, the

eigenvalues of H must sum to zero. This means that k − 1 eigenvalues are nonpositive, but

not all identically zero, implying that the largest eigenvalue must be positive. Thus H has

exactly one positive eigenvalue as desired.





Part IV.
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7. Source enumeration and voice activity
detection in wireless acoustic sensor
networks

In this chapter, we propose a robust technique for multi-speaker voice activity detection and

source enumeration in wireless acoustic sensor networks (WASNs). We adapt the joint-EVD

technique proposed in Section 6.4 to first cluster the nodes that observe the same speaker as

the dominant source. We then estimate the voice activity of each speaker by introducing a

block-sparsity penalizing term in the unmixing problem. The method is scalable in terms of

the number of simultaneously active speakers, does not require setting empirical thresholds

and is robust to impulsive noise sources. The results are validated using a WASN with four

human speakers and two impulsive noise sources observed by 15 nodes 1.

7.1. Introduction

WASNs provide a next generation system with great potential for new services, e.g., in am-

bient assisted living, habitat monitoring, smart cities [106], [107]. They combine many

comparatively low-resource, distributed nodes with sensing, computing and communication

capabilities. Compared to traditional microphone arrays, the spacial field is sampled in a

1This chapter is based on the paper: “Source enumeration and robust voice activity detection in wireless
acoustic sensor networks, T. Hasija, M. Gölz, M. Muma, P.J. Schreier and A.M. Zoubir, Asilomar Confer-
ence on Signals, Systems, and Computers, 2019” and is a result of a joint collaboration between Signal and
System Theory group, Paderborn University and Signal Processing Group, Darmstadt Technical University.
The block-sparse technique of Section 7.4, and its results in Table 7.2, Figures 7.3 and 7.4 are contributed
by M. Gölz. Sections introducing the study, and interpreting and discussing the results have contributions
from all authors.
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larger area, which leads to a significant performance increase. WASNs, however, also pro-

vide new signal processing challenges. This chapter is concerned with multi-speaker voice

activity detection (VAD) for WASNs, which is a prerequisite for many speech enhancement

algorithms [108]. Multi-speaker VAD is challenging because hidden voice activity patterns

must be recovered for all sources, given observed mixtures only.

Existing VAD approaches, e.g., [47], rely on energy separation by means of multiplicative

nonnegative independent component analysis (M-NICA). However, they suffer from a sig-

nificant performance loss as the number of sources increases, making the M-NICA problem

more and more difficult. Further, non-active speech may yield a small but non-zero energy

value, making the detection task non-trivial. Finally, existing methods are non-robust against

impulsive noise.

We propose a multi-speaker VAD approach that addresses the above three challenges. To

provide scalability in terms of the active number of sources, we propose a new method to

identify the so-called dominant source model that has been introduced in [109]. Measure-

ments from nodes that observe the same source are highly correlated. The number of such

sources and their associated node clusters are, therefore, estimated based on correlation in-

formation. We formulate the task as model-selection problem in multiple data sets which we

have addressed in Chapter 6. The joint-EVD technique is applied because it uses joint infor-

mation from all nodes and is better suited for the WASN problem in this chapter compared to

the mCCA-HT technique. This is because the joint-EVD technique can explicitly determine

if a source is observed by a node by testing the eigenvector component corresponding to that

node. Thus, it can be applied to determine i = 1, . . . , d node clusters which observe the same

source. This divides the energy separation problem into d simpler energy separation tasks.

The second challenge of thresholding voice activity has been recently addressed by incorpo-

rating sparseness constraints on the energy signatures [110], [111]. Shrinking small energy

values to zero relieves the practitioner from the necessity of defining a heuristic voice activ-

ity threshold. However, such approaches are not robust against impulsive noise. Therefore,

we introduce a group sparsity constraint that matches the characteristics of human speech

and suppresses impulsive noise in the energy unmixing step. The proposed method outper-

forms existing approaches for a WASN in a 20× 10 m room with four simultaneously active

human speakers and two impulsive noise sources observed by 15 nodes.
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Figure 7.1.: An example of a WASN with 6 sources (A-F) and 15 sensor nodes in a 20m×10m
room.

7.2. Problem formulation

A WASN of P sensor nodes, each equipped with n microphones, is considered. Let q acous-

tic sources be active in the network. We assume there are d(≤ q) clusters of nodes, where for

each cluster, all nodes observe the same source as the dominant source. Figure 7.1 shows an

example of a WASN with 6 sources (A-F, shown in red) and 15 sensor nodes (1-15, shown in

blue). In this case, the cluster of nodes 2,3 and 14 observe speaker A as the dominant source.

Similarly, speaker B is the dominant source for nodes 4,5 and 6, and so on. Thus, there are

unknown number of d dominant sources and their corresponding node clusters in the WASN.

The remaining q − d sources are each observed by only a single sensor node. For example,

in Figure 7.1, sources E and F (generating bulb-flickering noise) are observed by sensors 15

and 8, respectively. Our aim is to robustly estimate the voice activity of the unknown number

of d dominant sources in WASN, given a received mixture at each sensor.

The proposed method consists of two processing steps: first, d along with the associated node

clustering information B is computed. The binary matrix B is of size d × P whose {ij}th
entry is 1 if the ith dominant source is observed by the jth node, and 0 otherwise. Based

on the estimates d̂ and B̂, in the second step, the voice activity pattern (VAP) is determined

separately for the ith dominant source by only using the nodes marked as 1 in the ith row of

B̂. The two steps are explained in detail in Sections 7.3 and 7.4, respectively.
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7.3. Source enumeration and node clustering

7.3.1. Frequency-domain signal model

Let the observed vector xp(f) ∈ Cn at node p and frequency index f be modeled as

xp(f) = Ap(f)sp(f), p = 1, . . . , P, (7.1)

where Ap(f) ∈ Cn×mp is the full column rank mixing matrix (acoustic transfer function),

and sp(f) ∈ Cmp refers to the source vector. We assume an unknown mp(≤ n) number

of uncorrelated and (locally) stationary sources in sp that, without loss of generality, are

assumed to be zero-mean and unit variance. From now on, we will drop the frequency index

(f ) from the sources, observed vectors and their covariance matrices for readability. The kth

signal component of the pth data set is denoted by s(k)p = u
(k)
p + jv

(k)
p , where u(k)p and v(k)p

are real and imaginary parts of s(k)p .

Between any two nodes p and q, sources may be correlated only pairwise, i.e., the source s(k)p
may only correlate with source s(k)q for 1 ≤ k ≤ mpq(= min (mp,mq)). There are two types

of complex-valued correlation coefficients when analyzing the correlation between s(k)p and

s
(k)
q . The standard correlation coefficient is ρ(k)pq = E[s

(k)
p (s

(k)
q )∗], and the complementary

correlation coefficient is ρ̃(k)pq = E[s
(k)
p s

(k)
q ]. We make the following assumptions about these

correlation coefficients.

1. Using s(k)p = u
(k)
p + jv

(k)
p and s(k)q = u

(k)
q + jv

(k)
q , the expression for ρ(k)pq is

ρ(k)pq = E[u(k)p u(k)q ] + E[v(k)p v(k)q ] + j(E[v(k)p u(k)q ]− E[u(k)p v(k)q ]). (7.2)

We assume that covariances of real and imaginary parts of correlated sources are equal,

i.e., E[v
(k)
p u

(k)
q ] = E[u

(k)
p v

(k)
q ]. Thus, using (7.2), ρ(k)pq is real-valued. This assumption

is reasonable since the correlated sources in different nodes are generated from a com-

mon underlying speaker.

2. We assume that the complementary correlation coefficients between all sources are

zero, i.e.,

ρ̃(k)pq = E[s(k)p s(k)q ] = 0, ∀k = 1, . . . ,≤ mpq, p, q = 1, . . . , P, p 6= q. (7.3)

When s(k)p = s
(k)
q , this assumption is equivalent to assuming that all the information
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is contained in the magnitude of s(k)p and its phase carries no information, which is a

common assumption in the speech processing literature [112], [113] 2. Based on this

assumption, the source complementary cross-covariance matrix R̃spsq = E[sps
T
q ] = 0

for all p, q, p 6= q. Thus, all the correlation information is contained in the standard

source cross-covariance matrices.

Using assumption 1, the standard source cross-covariance matrix between nodes p and q

(p 6= q),

Rspsq = E[sps
H
q ] = diag(ρ(1)pq , ρ

(2)
pq , . . . , ρ

(mpq)
pq ), (7.4)

is a diagonal and real-valued matrix. Let x = [xT1 , . . . ,x
T
P ]T be the composite data vector of

P nodes and R = E[xxH ]. Let RD = blkdiag(R11, . . . ,RPP ) be a block diagonal matrix

with Rpp = E[xpx
H
p ]. The standard composite coherence matrix C ∈ CnP×nP is defined

as

C = R
− 1

2
D RR

− 1
2

D , (7.5)

where the exponent−1
2

denotes the square-root matrix inverse (or square-root pseudo-inverse

of a rank-deficient matrix). Let there be d number of dominant sources such that for i =

1, . . . , d, there exist P (i) nodes whose kth sources are correlated with each other. We have

shown in Section 6.4 that the EVD of C can completely characterize the correlation structure

among multiple sets of data. In this context, d is equal to the number of correlated sources

among the nodes, and determining the correlation structure is equivalent to finding the cluster

of nodes for the d sources. However, the results in Section 6.4 are derived for a real-valued

C. Under the assumption that Rspsq is real-valued, Results 6.1 and 6.3 derived in Section

6.4 for a real-valued C can be straightforwardly extended for a complex-valued C. More

specifically,

i) C has exactly d eigenvalues greater than one if and only if there exist d dominant sources

in the WASN, and

ii) Let u(i) be the eigenvector associated with the ith largest eigenvalue of C. u(i) can be

partitioned into P subvectors, u(i) = [u
(i)T
1 ,u

(i)T
2 , ...,u

(i)T
P ]T , where u

(i)
p ∈ Cn contains

the elements of u(i) associated with the pth node. The ith source is observed by the pth

node if and only if u
(i)
p 6= 0.

2However, there is also substantial recent work in the literature that shows that phase is also useful for speech
processing and ignoring it can lead to suboptimal performance [114], [115].
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7.3.2. Bootstrap-based hypothesis testing

LetM available samples of each node form the columns of the sample matrices X1, . . . ,XP .

The sample coherence matrix Ĉ can be computed from the sample estimates of covariance

matrices R̂ and R̂D using (7.5). As stated in Section 6.4.2, the number of eigenvalues of Ĉ

that are greater than one will often not be equal to d. We use the same approach of a sequence

of binary hypothesis tests as used in Section 6.4.2 to estimate d. We propose a statistic based

on the assumption that there is at least one independent source or noise component among

all nodes. This means that at least one eigenvalue of C is equal to one. The null hypothesis

for each binary hypothesis test in (6.24) is

H0 : λ(s+1) = 1 (7.6)

and the proposed statistic is

T (s) = (λ(s+1) − 1)2. (7.7)

We use bootstrap to estimate the unknown distribution of T (s) under H0 since it has been

shown to work well with non-Gaussian data and limited number of samples, both being

relevant to this application [116]. The procedure is the same as in Algorithm 2 on page 96

except that the test statistic here is based on only one eigenvalue following the s eigenvalues

of C. However, as in Algorithm 2, a more robust test statistic based on P eigenvalues of C

can be employed if it is assumed that the WASN contains small number of dominant sources

compared to the total number of nodes and their dimensionality, i.e., if d� nP .

As pointed out in Section 6.4.2, the subvectors u
(i)
p will not be zero when computed using

Ĉ. In this case, the norm of these subvectors is overestimated. In this section, we propose

a more robust test for the eigenvectors compared to Section 6.4.2 by introducing a nonzero

threshold u0. For i = 1 . . . d and p = 1 . . . P we test the hypotheses

H0 : ‖u(i)
p ‖ ≤ u0,

H1 : ‖u(i)
p ‖ > u0. (7.8)

The threshold u0 controls the selection of nodes observing the dominant source. If the ith

source is correlated across all nodes with equal pairwise correlation coefficients, ‖u(i)
p ‖ =

1√
P

, ∀p = 1, . . . , P . However, often in a WASN, a source is not observed by all nodes. Thus,

some of the subvectors in u(i) will be close to zero. Due to the constraint that ‖u(i)‖ = 1,

this will push the subvectors corresponding to the nodes observing the ith dominant source
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to be significantly higher than 1√
P

. For this reason, we chose u0 = 1√
P

. When u0 = 0, the

test in (7.8) is the same as (6.27) tested using the statistic (6.28).

The distribution of the proposed statistic T (i)
p = ‖u(i)

p ‖ under H0 is estimated using the

bootstrap as in Algorithm 3 on page 98 and in this case, T (i)
p −u0 is compared to the threshold

T(η)
∗ in line 33 of Algorithm 3 to reject H0. If H0 is not rejected, B{ip} = 0, otherwise

B{ip} = 1.

7.4. Group sparse voice activity detection

Because of the on/off behavior of human speech, the individual signal energies are block

sparse. Thus, for each of the d̂ clusters of nodes obtained, we employ an SVD on the re-

ceived mixed energies and impose a block-sparsity constraint on the right rotation matrix.

We improve upon recent work [110] that assumed only sparse energy sources. In contrast to

non-sparse methods as M-NICA [47], sparse median-based M-NICA (SMM-NICA) [110]

and also our proposed group-sparse median-based M-NICA (GSMM-NICA) perform VAD

intrinsically as all non-zero entries in the reconstructed energy signature are automatically

labeled as active speech. The entries of reconstructed energy signatures for non-sparse meth-

ods are, in general, all nonzero and an activity threshold τ has to be defined, which heavily

depends on the deployed application scenario.

7.4.1. Time-domain energy model

Let the received energy vector yp(t) ∈ Rn for all n microphones at node p and frame index

t be

yp(t) = Hpe(t) + wp(t), (7.9)

where Hp ∈ Rn×q is the mixing matrix for node p, e(t) ∈ Rq contains the signal energy

from all q speakers in the WASN, i.e., the sum of squared received signal values during time

frame t per speaker, and wp(t) ∈ Rn is additive noise. The individual node observations are

summarized in a network received energy vector y(t) =
[
yT1 (t), . . .yTP (t)

]T . Finally, the

observations at all frame indices t = 1, . . . , N and nodes are expressed as

Y = HE + W, (7.10)
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where Y ∈ RnP×N , the WASN mixing matrix H ∈ RnP×q, energy matrix E ∈ Rq×N and

noise matrix W ∈ RnP×N .

Since the initial source enumeration and node clustering algorithm divides the P nodes into

d̂ clusters, we define cluster-wise received energy matrices

Y(i) = h(i)e(i) + W(i), (7.11)

where Y(i) ∈ Rn(i)×N , h(i) ∈ Rn(i)×1, e(i) ∈ R1×N and W(i) ∈ Rn(i)×N with the number of

nodes P (i) and the number of microphones n(i) = nP (i) per cluster i = 1, . . . , d̂.

7.4.2. Group-sparse singular value decomposition

M-NICA [47] separates sources by applying an SVD to the energy matrix Y, i.e., Y =

UΣVT . Σ contains the singular values of Y on its diagonal, and U and V are composed

of the left and right singular vectors of Y. It is shown in [47] that the matrix V contains

the required information about the time-domain shape of the underlying energies. Due to

the previous decomposition of the WASN into clusters of microphones using the dominant

source approach, we aim to extract exactly one source, the dominant source, from each of

the d̂ clusters. Hence, the SVD provides us with one singular value Σ(i) = σ(i) and one

left/right singular vector U(i) = u(i) and V(i) = v(i), respectively. Since we only work with

cluster-wise quantities in the following, we drop superscript (i) for readability.

To enforce group sparsity in the right singular vector v, we first decompose Y by a standard

SVD to obtain estimates for u, σ and v. Then, we divide the cluster-wise received energy

matrix Y ∈ Rn(i)×N into L groups of frames, each of length Ng and extract the cluster-wise

group received energy matrices Yg,l ∈ Rn(i)×Ng such that Y = [Yg,1, . . . ,Yg,L]. Equiva-

lently, we define vg,l = [vg,l[1], . . . , vg,l[Ng]]
T ∈ RNg . We reformulate the SVD optimization

problem w.r.t. the right singular vector v as

arg min
v

∣∣∣∣∣
∣∣∣∣∣
L∑
l=1

Yg,l − σuvTg,l

∣∣∣∣∣
∣∣∣∣∣+ λvΩ(v), (7.12)

where Ω(v) is a sparsity-inducing penalty term and λv is a tuning parameter that determines

the degree of sparsity of v. In contrast to [110], we work with grouped quantities and define

Ω(v) =
∑L

l=1

√∑Ng
t=1 |vg,l[t]|2 as a mixed `1/`2 norm. The optimization problem (7.12)

is a model-adjusted variant of the problem in [117], whose solution is commonly referred



Source enumeration and voice activity detection in WASN 127

to as the group least absolute shrinkage and selection operator (group LASSO). Since σu

is orthonormal as u is a singular vector, the group LASSO [117] for our data model results

in

vTg,l =


(

1− λv
√
Ng

||uTYg,l||2

)
uTY x ≥ 0,

0 otherwise,
(7.13)

where we iterate until convergence of v over all L groups.

The tuning parameter λv is selected as λv = arg minCN, where Mallows’ CN [118] is

equivalent to the AIC-ITC for our time-domain signal energy model. Thus,

CN =

∣∣∣∣Y − uvT (λv)
∣∣∣∣2

σ2
Y

− n(i) (7.14)

+2
L∑
l=1

(||vg,l|| > 0) +2
L∑
l=1

||vg,l||∣∣∣∣∣∣vLS
g,l

∣∣∣∣∣∣(Ng − 1),

where vLS =
[
vLS

g,1
T
, . . . ,vLS

g,L
T
]T

= ((uTu)uTY)T and σ2
Y is the variance of Y.

Proposed Algorithm- Let us briefly recapitulate our proposed GSMM-NICA. We decom-

pose the cluster-wise received energies initially by a standard SVD. Then, we iteratively

compute (7.13) for all L groups, which provides us with a group sparse energy signature

shape estimate v. λ∗v = arg minλv CN is selected in each iteration individually. We stop iter-

ating when the update on solution v falls below a convergence threshold. We then continue

with de-correlation of Y using σ, u and (group-sparse) v as in SMM-NICA [110].

7.5. Results

We validate the proposed technique on a WASN generated from real speakers in a 20m×10m

room with a reverberation time of 0.3s 3. Each node is equipped with a uniform linear array

of n = 3 microphones sampled at 16kHz. To have the knowledge of the ground truth, all

nodes hear only one speaker at a time, and the observed signals from multiple speakers are

added to generate a mixture of speech signals for each node. Each node is then corrupted

by an additive white uncorrelated Gaussian noise with variance of 0.05. The variance of all

speech signals before mixing is normalized to one. We set the duration of one energy time

3The WASN speech dataset has been generated within the EU FET-Open Project HANDiCAMS (GA no.
323944).
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frame to 30ms, which fits well to speech characteristics. For source enumeration and node

clustering, short-term Fourier transform (STFT) with a Hamming window and frame length

of 1024 with 50% overlap is applied to the data obtained from each microphone. The number

of frequency bins for the STFT is chosen as 32. The proposed technique provides an estimate

of the number of dominant sources and the corresponding clusters for each frequency bin.

The estimated number of sources are averaged over all frequency bins and rounded off to the

nearest integer to obtain the final estimate of d. The top d majority voted clusters from all

frequency bins are selected as the final clusters associated with the d dominant sources. We

provide a brief summary of the selected competitors from the literature.

Competitors- We compare our proposed method with two algorithms from the literature,

namely, the standard M-NICA [47] algorithm and SMM-NICA [110]. The latter one is

deployed on a cluster-wise level, meaning that the presented results for SMM-NICA were

obtained using the dominant source model presented in Section 7.3, to demonstrate the effect

of the group sparsity constraint in GSMM-NICA. Also, for M-NICA, one has to select a

voice activity threshold as all entries of the resulting energy signature are generally nonzero.

To compare our method to the best possible results for M-NICA, we decided to perform

VAD for a grid of possible energy threshold τ and select the one τopt that provides us with the

largest number of correctly classified time samples. In a real-world scenario, the underlying

ground truth VAP is unknown and determining τopt would be impossible. Therefore, we refer

to this competitor as oracle M-NICA.

The results for two different scenarios are presented.

Scenario 1: A total of 10 nodes observe three spatially well-separated speakers for a duration

of 15s as shown in Figure 7.2. The clustering result is shown in Table 7.1 for d̂ = 3 estimated

speakers. The nodes 1, 7 and 8, which are comparatively far away from all speakers are not

selected in any of the clusters.

Dominant Cluster of Nodes Cluster of Nodes
Source (Scenario 1) (Scenario 2)

A 2 and 3 2, 3 and 14
B 4, 5 and 6 4, 5 and 6
C 9 and 10 9, 10 and 11
D Not active 7, 12 and 13

Table 7.1.: The clustering result of the proposed technique for scenarios 1 and 2.

Based on the clustering results in Table 7.1, we run the group sparse VAD as presented in
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Figure 7.2.: An example of WASN with 3 sources (A-C) and 10 sensor nodes in a 20 × 10 m
room.
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Figure 7.3.: Extracted energy signatures (blue) and voice activity patterns (red) for speaker
B in Scenario 1. GSMM-NICA outperforms the competitors and the extracted
VAP is closest to the ground truth VAP.

Section 7.4. As an exemplary result, we plot the obtained energy signatures and VAPs for

speaker B in Figure 7.3. In general, we observed in simulations that a group length Ng
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between 8 and 12 samples at 16 kHz seems to best fit the human speech characteristics.

Thus, we choose Ng = 10 samples.

The proposed clustered group sparse method clearly outperforms the competitors. The re-

sults for speakers A and C are similar to the ones displayed in the figure.

Scenario 2: In a more challenging scenario, a public announcement loudspeaker is intro-

duced at two opposite sides of the room denoted as speaker D in Figure 7.1 along with

two sources E and F which generate uncorrelated bulb-flickering impulsive noise. The six

sources are observed by 15 nodes for 30s duration. The clustering result is listed in Table 7.1.

The proposed technique estimates d̂ = 4 speakers correctly along with their node clusters.

For loudspeaker D, nodes 7, 12 and 13 form one cluster even though they are are spatially

far from each other. Nodes 1, 8 and 15, which either observe impulsive noise or are far from

all speakers do not belong to any cluster.
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Figure 7.4.: Extracted energy signatures (blue) and voice activity patterns (red) for speaker
C in Scenario 2. GSMM-NICA outperforms the competitors and the extracted
VAP is closest to the ground truth VAP.
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Again, we run the group sparse VAD on the cluster observation matrices. In this case, we

suggest using a larger group length, which suppresses the flickering noise most effectively.

The energy signatures and VAPs for speaker C in Figure 7.4 were obtained for Ng = 15

samples. The proposed method again clearly outperforms the competitors, which are not

able to treat the noise as efficiently. The results for speakers A, B and D are similar to the

ones displayed in the figure.

Source
Oracle SMM-NICA Proposed

M-NICA [47] [110] GSMM-NICA

Scenario 1
A 81.4 86.8 84.2
B 83.2 85.0 97.6
C 84.2 86.0 89.8

Scenario 2

A 61.7 67.4 62.7
B 83.3 81.6 81.5
C 79.1 77.7 93.6
D 75.1 71.8 78.7

Table 7.2.: The percentage of correctly labeled frames for all sources.

In Table 7.2, we provide the percentage of correctly labeled (speech/pause) frames for the

two scenarios and all sources. In scenario 1, the proposed technique with group length

Ng = 10 samples outperforms the competitors for speakers B and C and shows similar

performance for speaker A. For the second scenario, we decided for Ng = 15 samples to

completely suppress the flickering noise. However, the resulting VAPs are a bit longer for

speakers that are not strongly disturbed by the flickering. Therefore, we observe a slight

degradation in the performance for speakers A and B. A more sophisticated approach to

determine the ideal group length for each speaker would allow for a general improvement

over M-NICA and SMM-NICA.

7.6. Summary

We have devised a new method to perform multi-speaker voice activity detection and source

enumeration in WASNs. Due to the clustering of nodes according to the dominant source

model, the approach outperforms existing standard procedures that process all nodes in the

network jointly. The sparseness constraint relieves the practitioner from the necessity of

defining a heuristic voice activity threshold. The group sparseness constraint suits better to

the characteristics of human speech than a simple sparseness constraint.





8. Analyzing sports-induced interactions
in multiple modalities of the
autonomic nervous system

In this chapter, we apply the techniques developed in this thesis to characterize the changes

across the modalities of the human autonomic nervous system (ANS) in response to a phys-

ical load. Data from three peripheral modalties of the ANS were recorded in participants

wearing the Empatica E4 wristband and undergoing two different physical stresses. The

three selected modalities were electrodermal activity (EDA), heart rate (HR), and skin tem-

perature at wrist (Temp). Bimodal and multimodal analysis revealed not only an increase

in the number of components correlated across the modalities, but also an increase in their

correlation strength after the physical load pointing towards a reorganization of central ANS

control 1.

8.1. Introduction

ANS is a complex system which regulates the functioning of various internal organs. Its

complex functionality is achieved by task-specific modulation of several organ-specific sub-

1This chapter is based on the papers: “Exercise-induced changes of multimodal interactions within the auto-
nomic nervous network, S. Vieluf, T. Hasija, R. Jakobsmeyer, P. J. Schreier and C. Reinsberger, Frontiers
in physiology, 2019” and “Multimodal approach towards understanding the changes in the autonomic ner-
vous system induced by an ultramarathon, S. Vieluf, V. Scheer, T. Hasija, P. J. Schreier and C. Reinsberger,
Research in Sports Medicine, 2019”. It is a result of a joint collaboration between the Signal and System
Theory group and the Institute of Sports Medicine at Paderborn University. The data was recorded and
preprocessed at the Institute of Sports Medicine. I specifically implemented and presented bimodal and
multimodal data analyses, and generated all the tables and figures used in this chapter. Sections introducing
the study, and interpreting and discussing the results have contributions from all authors.
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networks as well as their interrelation [5], [119]. The ANS consists of a network of cortical

structures, such as left amygdala, right anterior and left posterior insula, and midcingulate

cortices and subcortical structures such as thalamus and brainstem [120], [121]. Typically,

the ANS activity is subject to high day-to-day variations with poor systematics [122]. How-

ever, more systematic central alterations of the ANS due to specific stressors like physical

exercise may perturb organ functions, and thus alter ANS activity [123]. Indeed, the interac-

tions across several ANS subsystems are indicative of various ANS states [124]. Therefore,

the analysis of the interrelation of subsystems of the ANS may provide additional insights

into the alteration of ANS control in response to physical exercise. In the context of sports

and exercise, there are various studies which analyze one ANS subsystem at a time. For

example, changes in the cardiac system are analyzed in [122], and the changes in the electro-

dermal and the thermoregulatory system have been described in [125]. However, a combined

analysis of exercise-induced effects in different ANS subsystems or modalities is rare. [126]

reported changes of heart rate variability (HRV) and EDA in a study on incremental exercise

levels, and reported correlations between EDA and cardiac measures for low exercise intensi-

ties. Nevertheless, systematic approaches to analyze multimodal measures are still missing.

In this study, we aim at detecting sports-induced changes in different ANS subsystems and

the changes in their interactions after a physical exercise. We selected HR, EDA and skin

temperature as relevant measures of ANS subnetworks because physiological mechanisms

as well as practical applications are well described for each subsystem [125], [127], [128].

Moreover, these modalities are easy to measure.

Two different studies which induced different physical stress in participants were conducted.

In the first study, the subjects exercised on a treadmill at different intensity levels. In the

second study, the effect of a bigger physical load on the ANS was studied. In this case,

the subjects completed a 65km ultramarathon. The data and results of the two studies are

presented in Sections 8.2 and 8.3. For both these studies, the data was analyzed before and

after the physical exercise. We hypothesize that the interactions among different modalities

change before and after completing the physical task.

CCA and mCCA are the most common tools to analyze the bimodal and multimodal linear

dependencies. However, the results obtained from these techniques are misleading when the

number of observations (the number of participants in this study) is small compared to the

dimensions of the data sets (the number of time points in the recorded ANS time series).

To overcome this challenge, we applied the PCA-CCA technique of Section 3.5, which can

reliably determine the number of correlated components and their correlation strength among

two different ANS modalities. For the multimodal analysis, we applied the proposed mCCA-
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HT technique of Section 6.3 to estimate the correlation structure among the components of all

modalities after reducing the dimension of the data sets using PCA as proposed in Algorithm

4 on page 101.

8.2. Exercise-induced interactions in the ANS

8.2.1. Participants and dataset

Data of five minutes during rest, before and after exercise from 24 male subjects was recorded.

The subjects ran on a treadmill with different intensity levels measured by VO2max. Two

different intensities of 60% and 95% VO2max were analyzed. 60% VO2max is defined as

the transition zone between aerobic and anaerobic energy supply, which corresponds to the

first ventilatory threshold and therefore represents moderate intensity [73]. 95% VO2max is

defined as a high-demanding intensity close to the maximum load, but at least performable

over a longer period of time [73]. ANS signals were recorded by Empatica E4 multisen-

sor device. The sensor was placed at the participants’ left wrists. Successive data series of

HR (sampling rate 1 Hz), EDA (sampling rate 4 Hz) and Temp (sampling rate 4 Hz) at the

wrist were acquired during five minutes in supine position prior to exercise and 30 minutes

post-exercise. More details about the experiment can be found in [73].

From each measurement, a time window of three continuous minutes was manually selected

to control for data quality and avoid movement artifacts. Based on data quality, five partic-

ipants were excluded from further analysis, either due to loss of sensor connection, an in-

complete HR recording or lack of a movement-free segment. The data sets for each modality

were generated such that the recorded time series from each subject forms a column of the

data matrix. Thus, the size of the data matrix for each modality is the number of time points

times the number of participants.

8.2.2. Bimodal interactions

Proposed analysis- As pointed out earlier, the number of samples (subjects) in this work

is much smaller than the dimensions of the data sets (number of time points). In this case,

as shown in Section 3.5, many estimated canonical correlations are defective, irrespective of

their true values. Therefore, to reliably estimate the number of correlated components dpq
between the pth and qth modalities, we applied the joint PCA-CCA technique of Section 3.5.
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In this work, the GLRT-based PCA-CCA detector was used since the Pfa can be adjusted

which is crucial in such a low-sample regime. The Pfa for the PCA-CCA detector was set to

0.05. The maximum PCA rank for each modality was set to seven, which is approximately

equal to one third of the number of subjects (as proposed in Section 3.5). The complexity

of the interaction between the modalities is linked to the number of correlated components

between them. If the interaction is limited to a linear relationship in a single dimension, this

should indicate a rather simple interaction. On the other hand, multiple correlated compo-

nents would indicate a more complex type of relationship between modalities. However, not

only the number of correlated components but also their strength of correlation is of interest

in this work. This can be measured with an overall correlation coefficient ρc [44], which can

be computed as a function of the nonzero dpq canonical correlations as

ρc = 1−

(
dpq∏
i=1

1−
(
k(i)(rp, rq)

)2)
, (8.1)

where k(i)(rp, rq) denotes the ith canonical correlation for the chosen PCA ranks rp, rq. The

overall correlation coefficient in (8.1) relates to the mutual information between the two data

sets if the two data sets are Gaussian distributed [44]. Thus, high values of ρc indicate that

the two data sets share more information.

Pre-exercise Post-exercise
Modality Exercise Number of Estimated Number of Estimated

pair intensity correlated canonical correlated canonical
components correlations components correlations

EDA-HR
60%

2 0.8, 0.73 1 0.91
HR-Temp 3 0.97, 0.93, 0.84 1 0.88

Temp-EDA 1 0.96 2 0.97, 0.95
EDA-HR

95%
1 0.84 2 0.94, 0.89

HR-Temp 0 0 2 0.86, 0.78
Temp-EDA 1 0.76 2 0.88, 0.82

Table 8.1.: Number of correlated components and their canonical correlation values for each
modality pair during pre- and post-exercise measures at moderate and high inten-
sity.

Results- Model selection using the joint PCA-CCA approach revealed significant correlated

components in all measures for most modality pairs. This is shown in Table 8.1. In the pre-

exercise the number of correlated components differs between modality pairs and between

intensities. For the post-60% intensity, HR shows one correlated component with EDA and

Temp each, while EDA and Temp show two correlated components. For the 95% intensity,
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the number of components increases to two for all modality pairs and the canonical correla-

tions increase for all components from pre to post. This is summarized in Figure 8.1, which

shows how the estimated overall correlation coefficient ρ̂c varies from pre to post-exercise.

The estimate ρ̂c is computed from the canonical correlations in Table 8.1 for each modality

pair, and at both moderate and high intensity. At moderate intensity, as seen in Figure 8.1a,

exercise does not seem to have a clear and specific effect on ρ̂c. However, at high intensity, as

seen in Figure 8.1b, there is a substantial and clear increase in ρ̂c from pre- to post-exercise

for all three modality pairs.
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Figure 8.1.: The overall correlation coefficient ρ̂c estimated for each modality pair at a) 60%
exercise intensity and b) 95% exercise intensity.

8.2.3. Multimodal interactions

Proposed analysis- To jointly estimate the components correlated across multiple modal-

ities, mCCA can be employed [21]. However, mCCA suffers from the same problems as

CCA when the number of samples is small compared to the dimensions of the data sets. The

correlation coefficients for the extracted components are significantly overestimated and do

not reflect the true correlation structure among these components. There is no technique yet

that jointly determines the required PCA dimensions and simultaneously performs mCCA.

Our proposed solution is to estimate the PCA dimensions using Algorithm 4 on page 101,

which although is suboptimal, it provides reasonable performance in the numerical examples

shown in Section 6.6. In this work, the GENVAR cost function is used to perform mCCA.

For GENVAR, the canonical variables are extracted such that they minimize the determinant

of their correlation matrix [21]. We used the GENVAR mCCA since it has been widely ap-

plied in biomedicine, for instance, in analyzing fMRI data [20] and for fusing fMRI, EEG

and structural MRI (sMRI) data [72].
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However, analyzing the estimated correlation coefficients among the extracted components

in mCCA is incomplete without having the knowledge of the correlation structure among

the components. That is because the correlation structure indicates whether the correlation

coefficients between the components are significant and also reveals the modalities across

which the components exhibit those significant correlations. For this application, the mCCA-

HT technique of Section 6.3 was applied to estimate the correlation structure. This is because

the joint-EVD technique (explained in Section 6.4), which also estimates the correlation

structure, employs hypothesis testing based on bootstrap. Since bootstrap resamples from

the given sample set, it leads to inaccurate results as in this study the number of samples is

extremely small.

Results- All the estimated canonical variables extracted in the ith stage of mCCA can be

grouped together to form a source component vector (SCV) denoted by

Ê(i) =


ε̂
(i)
EDA

ε̂
(i)
HR

ε̂
(i)
Temp

 . (8.2)

Here, ε̂(i)EDA ∈ R1×M for example, is the ith stage estimated canonical variable corresponding

to EDA, and M is the number of subjects. The SCV Ê(i) provides a convenient way to

analyze correlations among all the canonical variables of the ith stage. The correlation matrix

of the SCV shows the joint multimodal interactions among the extracted canonical variables.

An example of the correlation matrix of the first SCV from pre-exercise data at 60% intensity

is shown in Figure 8.2. The values are the absolute correlation coefficients between the

canonical variables of different modalities. The corresponding heat map is also shown.

Figure 8.2.: The heat map of the correlation matrix of first SCV showing the absolute cor-
relation coefficient values for pre-exercise data at 60% intensity. Color coding
indicates the strength of correlation between pairs of modalities.

In Figure 8.3, the heat map of the absolute values of the correlation coefficients between the
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first two SCVs from pre-exercise data is shown. The magenta-framed rectangle contains the

correlations among the SCVs, Ê(1) and Ê(2) at 60% intensity. The 3 x 3 off-diagonal blocks

within the magenta rectangle are almost zero as the second stage of canonical variables is

constrained to be uncorrelated with the previous stage of canonical variables within each

modality. Similarly, the green-framed rectangle displays the correlations among the two

SCVs extracted at 95% intensity. In line with bimodal results, the correlations among the pre-

exercise components at both intensities are not uniformly high and quite variable across the

modalities. Finally, the blue-framed rectangle shows the correlation coefficients among the

components at 60% and 95% intensities. These components are almost uncorrelated.
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Figure 8.3.: Illustration of the absolute correlation coefficient values within pre-exercise mea-
sures. On the x and y axis, the first two SCVs Ê(1) and Ê(2) are depicted. High-
lights indicate the correlation of the maximally correlated source components
within (pink and green square) and between (blue square) intensities.

Similarly, Figure 8.4 shows the absolute values of the correlation coefficients between the

extracted components from the post-exercise data. As in the bimodal results, the correlations

between the SCVs at 95% intensity are high. However, the limitation of the bimodal analysis

is that we cannot straightforwardly analyze if the components are correlated across all pairs

of modalities or not. This can be done by the proposed mCCA-HT technique which estimates

the correlation structure among the estimated SCVs. The estimated correlation structure at

95% intensity is shown in Figure 8.5. There are two detected correlated components at post-

95% intensity (shown in Figure 8.5b), which are correlated across all modalities. This is in
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Figure 8.4.: Illustration of the absolute correlation coefficient values within post-exercise
measures.

contrast to to the pre-95% intensity (shown in Figure 8.5a), where the components are only

pairwise correlated. Finally, the first and the second SCVs at 60% and 95% intensities, re-

spectively, have higher correlation coefficients between them (average 0.6) than pre-exercise

SCVs. This can be seen in the blue-framed rectangle in Figure 8.4 and it indicates that these

are related components.

8.2.4. Discussion

The aim of the current study was to elucidate changes between ANS subsystems related to

the physical exercise. To gain insights into those exercise-induced changes, we analyzed time

series data of HR, EDA, and Temp during pre- and post-exercise. We proposed analysis tools

to reveal bimodal and multimodal interactions and presented the results. Bimodal analysis

showed high variations in pre-exercise correlations, while in post-exercise the correlations

were higher especially after high-intensity exercise. The multimodal results indicate that

in measures taken before the exercise, cross-modality interactions exist but do not seem to

follow a specific pattern, while in post-exercise measures the cross-modality interactions

increase and show similarities between the different intensity tests, indicating an exercise-

specific organization of the ANS modalities.
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Ê
(2)

(a)

EDA HR Temp EDA

Ê
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Figure 8.5.: Estimated correlation structure among the SCVs for 95% intensity a) pre-
exercise b) post-exercise.

Thus, in this study we confirmed that physical exercise has an impact on several subsystems

of the ANS. Bimodal analysis confirms the day-to-day variability in a sense that the number

of correlated components differ strongly in the pre-exercise measures. In the post-exercise

measures, the number of correlated components is similar across modality pairs. However,

the strength of correlation differs between modality pairs. Especially EDA and Temp show

strong correlations, which might be the result of common or similar anatomical and func-

tional pathways as well as their contribution to thermoregulation. However, similar correla-

tions between HR and EDA, as well as HR and Temp indicate that post-exercise measures

cannot solely be due to thermoregulatory effects. The results also show intensity effects. In

the post-exercise, the number of correlated components and their strengths are higher for the

high than for the moderate intensity. For the high intensity, all pairwise correlations show

an increase from pre- to post-exercise, while the picture is mixed for the moderate intensity.

Based on the idea of a centrally interconnected regulation of ANS subsystems, a multimodal

approach offers a possibility to characterize the central integration of multiple modalities.

On a descriptive level, the multimodal analysis detects the components correlated across

all three modalities with average correlations higher than 0.8. In the high intensity condi-

tion, the post-exercise correlations increase strongly and are higher than for the moderate

intensity. Moreover, these components are correlated across all modalities as seen from the

estimated correlation structure. This provides a first hint towards the assumed integration of

the subsystems in the central autonomic network (CAN) [120], [121]. The finding that the

post-exercise components correlate across intensities offers an interesting starting point for

further investigations to describe exercise-specific organizations of the ANS.
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8.3. Ultramarathon-induced interactions in the ANS

8.3.1. Participants and dataset

15 male ultramarathon runners participated in this study. All runners completed a 65km

ultramarathon. Immediately before and after the ultramarathon, resting measurements to

determine the ANS function were performed with the Empatica E4 device. The sensor was

placed at the participants’ left wrist. Successive time series data of HR, EDA and Temp was

acquired during 5 minutes in resting, supine position. More details about the experiment can

be found in [74]. From each measurement, three minutes were manually selected to control

for data quality and avoid movement artefacts. We excluded two participants from further

analysis as the sensor was unable to measure their heart rate.

8.3.2. Bimodal and multimodal interactions

Proposed analysis- The proposed analysis for this study is the same as explained in Sections

8.2.2 and 8.2.3. Since the number of subjects in this study is 13, the maximum PCA rank for

the PCA-CCA detector was set to five.

Results- The GLRT-based PCA-CCA detector detected one significant component in pre-

and post-exercise as shown in Table 8.2. The correlation strength of the detected component

increased from pre- to post-exercise for all modality pairs.

Pre-exercise Post-exercise
Modality Number of Estimated Number of Estimated

pair correlated canonical correlated canonical
components correlations components correlations

EDA-HR 1 0.78 1 0.87
HR-Temp 1 0.59 1 0.94

Temp-EDA 1 0.83 1 0.96

Table 8.2.: Pairwise PCA-CCA results for pre- and post-exercise measures.

For the multimodal analysis, the absolute values of the correlation coefficients among the

first two estimated SCVs Ê(1) and Ê(2) obtained from mCCA are shown in Figure 8.6 for

pre-exercise and in Figure 8.7 for post-exercise. Figure 8.6 reveals that in pre-exercise, high

correlations among the extracted SCVs occur mainly pairwise, i.e., there are high correla-

tions between EDA-Temp in Ê(1) and EDA-HR in Ê(2). This can also be seen in Figure 8.8a,
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Figure 8.6.: Illustration of the absolute correlation coefficients within pre-exercise measures.
On the horizontal and vertical axes the first 2 SCVs Ê(1), Ê(2) are depicted.
The green-framed blocks show the correlation within an SCV. The blue-framed
blocks show the correlations among the SCVs.
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Figure 8.7.: Illustration of the absolute correlation coefficients within post-exercise measures.

which shows the estimated correlation structure. These results indicate that the interactions

in the pre-exercise scenario are mainly limited to two modalities and among different compo-

nents. However in post-exercise, the correlation among the first SCV of all three modalities

is high indicating that the components of all three modalities are strongly interacting with

each other. This can also be seen in Figure 8.8b, where the correlation structure is more

dense compared to the pre-exercise and all three modalities contribute to the correlation be-

tween the first group of components as they are correlated between modality pairs EDA-HR

and EDA-Temp.
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Ê
(3)

(a)

EDA HR Temp EDA

Ê
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Figure 8.8.: Estimated correlation structure among the SCVs for a) pre-exercise and b) post-
exercise.

8.3.3. Discussion

In the present study, we described changes across the ANS modalities induced by running an

ultramarathon. We focused on the cardiac, the electrodermal and the thermoregulatory sub-

systems. The interaction between the modalities increased for all modality pairs and across

all modalities, possibly pointing towards a reorganization of central ANS control to restore

the dynamic balance after this intense physical load. We hypothesized that the changes in

the ANS are interconnected since the CAN is the main driver and control mechanism of the

ANS activity across modalities. Consequently, the analysis of interactions between ANS

modalities offers an approach to derive information on CAN activities. Therefore, we pro-

posed bimodal and multimodal analyses as tools to analyze the interactions between different

modalities. Our results confirmed that interactions between the modalities changed after an

ultramarathon. In line with running at high intensities, as in Section 8.2, the strength of

correlations within all modality pairs increased.

8.4. Summary

These studies provide insights into how the ANS holistically responds to intense physical

stressors. In sum, our results indicate that performing a sports activity (an exercise on the

treadmill or running an ultramarathon) affects the ANS activity through the interactions be-
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tween its subsystems. As a response to the physical load, measures of the ANS correlate

more strongly between modalities, which might be indicative for an integrative and centrally

controlled regulation to maintain the internal and dynamic balance in the human body.

Our results suggest that physical activity seems to be a holistic stimulus that alters the overall

interrelation of the subsystems. The effect of physical exercise depends on the intensity. The

analysis methods could be applied to analyze data in the context of training control and

to potentially detect ANS states related to intense stress and overtraining. This might be of

future interest to provide information on what kind of intensity is the best to achieve a certain

ANS state, e.g., for the last training before a race or a match. Furthermore, it would be of

interest to see how sports and physical exercise affect the ANS stress response and if this is

transferable to other stressors.

We would also like to point out the limitations of our studies. By choosing one single device

for the measurement, we were limited in the modality selection. Future studies might add

respiratory rate or blood pressure changes to the analysis. Proving the central origin of the

multimodal changes in peripheral ANS channels might be methodologically challenging but

will be of interest for future studies. Moreover, the number of subjects in both studies was

small. Further studies with larger number of subjects should be performed.





9. Epileptic seizure-induced changes of
interrelations within the autonomic
nervous system

In this chapter, we apply the techniques proposed in this thesis to analyze the multimodal

interactions of the ANS in response to an epileptic seizure. Continuous EDA, HR, skin

temperature and respiratory rate (RR) were measured by Empatica E4 device in two groups

of children. One group of children had epileptic seizures while the other group had no

seizures during the monitoring. In the group having epileptic seizures, significant changes

in the correlation strength and correlation structure between the extracted components were

found right before and after the seizure. This offers an interesting avenue for a potential

biomarker for seizure detection and seizure prediction 1.

9.1. Introduction

Epilepsy is one of the most common neurological disorders which affects around 50 million

people in the world [129]. It is associated with epileptic seizures caused by sudden excessive

electrical discharges from the brain. The side effects of these seizures are both physical such

as frequent injuries, broken bones, and also mental illnesses such as anxiety and depression

1This chapter is based on the paper: “Seizure-induced changes of interrelations within the autonomic nervous
system, S. Vieluf, T. Hasija, P. J. Schreier, R. El Atrache, S. Hammond, F. M. Touserkani, T. Loddenkemper,
and C. Reinsberger, Submitted for review, 2020”. It is a result of a joint collaboration between the Signal
and System Theory group and the Institute of Sports Medicine at Paderborn University, and the Division of
Epilepsy and Clinical Neurophysiology at Boston Children’s Hospital, Harvard Medical School. The data
was recorded and preprocessed at Boston Children’s Hospital. I specifically implemented and presented
the bimodal and multimodal data analyses and generated all the figures used in this chapter. Sections
introducing the study, interpreting and discussing the results have contributions from all authors.

147



148 Epileptic seizure-induced changes of interrelations within the ANS

[130], [131]. Moreover, the uncertainty of when an epileptic seizure will occur is one of

the greatest stresses for the epileptic patients. Therefore, a significant improvement in the

quality of life of patients can be made by developing an accurate system for detection and

prediction of epileptic seizures [132].

EEG is the gold standard in epilepsy detection and diagnostics. However, continuous record-

ing of EEG data on a daily or an hourly basis for seizure detection is far from convenient.

Especially in children in their everyday life, it is essential that the system is easy to use and is

non-invasive. Wearables and wrist-worn sensors that record several modalities of the activ-

ity in the ANS offer one possibility for developing a convenient seizure detection/prediction

system [133].

Epileptic seizures are known to alter the ANS activity in several modalities [4]. These

changes have been observed both preictally, i.e., before a seizure occurs and postictally, i.e.,

after the seizure has occurred. For example, an elevated heart rate in preictal, ictal and pos-

tictal periods was reported in [134], and an increased sweat production resulting in an EDA

peak in postictal periods was reported in [7], [134]. These effects have been most prominent

in patients with generalized tonic-clonic seizures (GTCS) [134]. On the other hand, the ANS

states might also relate to the likelihood of an epileptic seizure [4]. Therefore, it is crucial

to identify markers that provide improved monitoring and characterization of ANS functions

related to an epileptic seizure.

Multimodal approaches can to some degree account for and analyze the large inter- and

intra-individual variability and have been shown to contribute to a better seizure detection

compared to unimodal approaches [7], [135]. Furthermore, studies examining the interac-

tions of the respiratory and the cardiac system on a signal level showed that the information

transmission between systems was altered in relation to occurring seizures [8], [136]. Cur-

rently, there is a paucity of studies focusing on multimodal signal analysis involving other

systems than cardiac or respiratory functions. As cardiac changes have been shown to occur

preictally, multimodal changes might also become apparent prior to seizures. In this study,

we aim to evaluate interactions and changes between multimodal peripheral ANS measures

prior to and after seizures, compared to the baseline and also to a group of children having

no epileptic seizures. We assume that seizure-induced ANS changes have a common source,

and therefore show up in several modalities and in their interaction pattern.
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9.2. Patients and dataset

Continuous EDA, blood volume pressure (BVP), HR and Temp data was collected from 21

patients who had at least one GTCS seizure in Boston Children’s Hospital. The seizure onset

and offset was marked by two board-certified clinical epileptologists. The data was recorded

by Empatica E4 wireless multisensor device. The RR data was calculated from the BVP. The

sampling rate of EDA and Temp is 4Hz and that of HR and RR is 1Hz. We cut data from

45 minutes before the seizure onset to 60 minutes after the seizure offset. Patients with or

without epilepsy who were admitted for EEG monitoring and were enrolled in the study, but

had normal EEG data without seizures during their hospital stay were considered as controls.

Same daytimes were selected for the controls as their corresponding matched patients. More

details about the subjects and the dataset can be found in [75].

9.3. Bimodal interactions

Proposed analysis- To analyze the bimodal relationships, the joint PCA-CCA technique

of Section 3.5 was applied. The preictal and postictal data were divided into consecutive

windows of 15 minutes with an overlap of 10 minutes. This was done to increase the number

of time points to better reflect the course of changes in the bimodal interactions. For each

time window and each modality, a data matrix was generated such that the recorded time

series from each subject forms a column of the data matrix. Thus, the size of the data ma-

trix for each modality is the number of time points times the number of subjects. Matrices

were generated for the patient group and the control group independently, so that the results

are reported on a group level and also allow for the inter-group comparison. In this study,

each subject was regarded as an observation and the number of recorded time points corre-

sponds to the dimension of the data set. As the number of subjects is much smaller than the

number of time points, the data matrices for all modalities are high-dimensional. Thus, the

GLRT-based PCA-CCA detector of Section 3.5 was applied to each pair of modalities. This

detector performs dimension reduction and estimates the strength of association between two

modalities in a joint way [28]. As in Chapter 8, we chose this detector to have an adjustable

probability of false alarm Pfa as the number of subjects is comparably low in our study. The

strength of association between any two modalities was then estimated with an overall corre-

lation ρc computed as in (8.1). We first estimate ρc for all six modality pairs and then average

them to report the total strength of association. The maximum PCA dimension was set to
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seven and the Pfa was set to 0.05.
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Figure 9.1.: ρ̂c value for each modality pair for each 15 minutes block per group a) for patients
and b) for controls.

Results- Bimodal results for all modality pairs show fluctuations in ρ̂c values for both pa-

tients and controls as shown in Figure 9.1. This indicates a high variability in the different

ANS modality pairs. Figure 9.1a shows the pairwise correlations for different modality pairs

for the patients and Figure 9.1b for the controls. The six ρ̂c values are averaged to measure

the total strength of correlation among all modalities and is shown in Figure 9.2. The mean

ρ̂c for the controls fluctuates within a certain limit compared to that of the patients. The

patients demonstrate lower mean values preictally, then increasing values shortly before the

seizure, followed by a postictal drop.
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Figure 9.2.: Mean value of ρ̂c across all modality pairs for each 15 minutes block per group.

9.4. Multimodal interactions

Proposed analysis- The bimodal analysis revealed significant changes in the average cor-

relation across all modality pairs just before the seizure onset and right after the seizure.

However, the limitation of the bimodal analysis is that it is not straightforward to interpret

whether these detected changes are due to several distinct components interacting among

different modality pairs or are associated with a common component (or components) in-

teracting across all modalities. This can be analyzed by estimating the complete correlation

structure. The estimated correlation structure for the preictal data in patients using the rank-

reduced version of the mCCA-HT technique of Section 6.3 is shown in Figure 9.3. This

is similar to the correlation map explained in Figure 6.7, where a white block represents a

nonzero correlation coefficient among a modality pair and the black block represents a zero

correlation coefficient. Since the data sets generated for all modalities are high-dimensional,

PCA is applied to each data set before estimating the correlation structure. The PCA dimen-

sions are estimated using Algorithm 4 on page 101.

Results- It can be seen from Figure 9.3a,b that some time before the seizure, the components

are correlated mainly across two modalities. However, just before the seizure as seen in Fig-

ure 9.3c, not only more components are interacting among different modalities as seen from

an increase in the number of correlated components, but also the first extracted component

is correlated across all pairs of modalities.
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Figure 9.3.: Estimated correlation structure between the extracted omponents of EDA, HR,
Temp and RR in patients for preictal data illustrated using a correlation map.
The white blocks represent nonzero correlation coefficients and the black blocks
represent zero correlation coefficients.

Similarly, the estimated correlation structure for the postictal data in patients is shown in

Figure 9.4. For the first postictal segment in Figure 9.4a, no correlated component was de-

tected and therefore, the correlation map is completely black. For the later segments as seen

in Figure 9.4b,c,d, although components are interacting more among different modalities

compared to Figure 9.4a, these interactions are limited to a few pairs of modalities and no

component was found which is correlated across all modality pairs.

The estimated correlation structure for preictal and postictal data in controls is shown in Fig-

ure 9.5 and Figure 9.6, respectively. There is some variability in the correlation structure

among different time segments. However, compared to the evolution of correlation struc-

ture in patients (in Figures 9.3 and 9.4), no such significant trend across time is observed
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here.
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Figure 9.4.: Estimated correlation structure between the extracted components of EDA, HR,
Temp and RR in patients for postictal data.

9.5. Discussion and summary

Epileptic seizures are complex stressors which challenge the homeostasis within the human

body and evoke responses in the ANS that manifest themselves in multiple subsystems. To

gain deeper insights into the dynamic changes of functional interactions of the ANS subsys-

tems, interactions among HR, RR, EDA and Temp were analyzed. Our sample consisted of a
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Figure 9.5.: Estimated correlation structure between the extracted components of EDA, HR,
Temp and RR in controls for pretictal data.

group of patients with GTCS and a group of controls with normal EEG and no seizures.

Bimodal and multimodal analyses were used to infer the centrally modulated interaction of

subsystems based on changes among processed signals recorded peripherally. When look-

ing at the individual modality pairs in the bimodal analysis, day-to-day variability became

evident by a large variability of correlation values across time windows. Especially when

analyzing control data, the strength of correlation differs between modality pairs. We se-

lected the same 24-hour times as the seizure times to increase the comparability of datasets

in terms of influences of daytime. Taking the complexity and redundancies in the possible

responses to adapt to external stimuli into account, parts of the variability within the ANS

can be reduced by averaging the correlation scores across modality pairs. Our results indicate

a trend after averaging, where the patient group shows moderate values in the early preictal

period followed by an increase before the seizure, and finally reaching the peak just before

the seizure onset. Right after the seizure, the interactions between all modalities are dimin-

ished. As the control group’s average correlations remain in a certain range of variability,
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Figure 9.6.: Estimated correlation structure between the extracted components of EDA, HR,
Temp and RR in controls for posttictal data.

this pattern might be indicative for seizures and would have a predictive potential.

A similar trend was seen in the multimodal analysis, where both the number of correlated

components and the modalities across which they are correlated increase right before the

seizure onset and decrease right after the seizure. Moreover, right before the seizure, the

analysis revealed a component correlated across all pairs of modalities; thus, indicating that

the interactions among the modalities are centrally driven in the ANS. This points towards a

central integration of all subsystems and a possible ANS state change right before the seizure.

These changes are of great interest and may offer potential biomarkers that could contribute

to seizure semiology, detection, reporting and prediction [137].

However, there are also some limitations in our study. One of the challenges is the sample

selection. Since the ANS changes were expected to be most prominent in GTCS rather than
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in other seizure types, only patients with GTCS were analyzed, and thus the sample size

was rather small. It would further be of great interest to utilize a healthy control group.

Transferability and generalizability to real life situations outside the hospital setting, where

different stimuli could lead to additional responses, requires further testing. Finally regarding

the analyses, the selected approaches to jointly analyze ANS signals were so far used in an

explorative way, and therefore offer several possibilities for modifications and expansions

for future applications.



10. Summary

10.1. Conclusions

In this thesis, novel statistical techniques for completely characterizing the linear association

among multiple data sets were developed and applied in various real-world applications.

Each data set was represented as a set of observations (or samples) of a random vector, and

correlation among different data sets was used as the statistical measure of linear associa-

tion. The correlation structure for two data sets can be reduced without loss of generality to

the pairwise correlation structure between the latent components. This means that the indi-

vidual components are either correlated or uncorrelated between the data sets. In this case,

estimating the model order that identifies the number of correlated components provides a

complete summary of the joint-correlation information among the two sets. This, however,

is not possible for more than two sets. Some components can be correlated across all pairs

of data sets, some across different subsets of data sets and some uncorrelated among all data

sets; thus, several possibilities of characterizing the joint-correlation information among the

data sets exist.

A model-order selection problem was posed in Chapter 5 and two techniques to estimate the

number of components that are correlated across all the data sets were developed. If it can be

assumed that the components are either correlated across all data sets or are completely un-

correlated, the model order provides a complete summary of the linear association between

multiple data sets. The first technique in Chapter 5 estimated the model order by assuming

this special correlation structure. The advantage of such an approach is that the GLRT and

its distribution under the null hypothesis were derived in closed form. This enabled to de-

velop a technique for data sets with small number of samples compared to their dimensions,

where the model order and the PCA rank applied to each data set were jointly estimated.

Such a technique offers a substantial benefit over a two-step approach where first a PCA-
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preprocessing is applied to all data sets followed by estimating the model order. Of course

there is no free lunch. The PCA rank required to include all the correlated components is

assumed to be small compared to the number of samples. However, this is a more reason-

able assumption than assuming that the dimensions of the data sets are small compared to

the the number of samples. The second technique in Chapter 5 is able to tackle arbitrary

correlation structure among the components. In this case, the model order only characterizes

the joint-correlation information which exists in all the data sets. Since it is challenging to

derive the ML function with respect to the model order, a completely different approach was

followed. It was derived under reasonably high SNR that the model order corresponds to the

number of non-zero eigenvalues of the product of coherence matrices of all pairs of data sets.

Both proposed techniques outperform the state-of-the-art competitors in various numerical

scenarios.

When the correlation structure is not known apriori, assuming a special correlation structure

is far from optimal as it restricts the degrees of freedom in the model. Moreover, in this

general case, determining only the model order is insufficient. A model-selection problem

was formulated in Chapter 6, and two novel but complementary techniques were proposed

for complete characterization of the second-order association across more than two data sets.

This was done by estimating the complete correlation structure, i.e., the number of correlated

components and the data sets across which they are correlated. The mCCA-HT technique

combined multiset CCA with pairwise model-order estimates, and thus leveraged the recent

results for model-order estimation with two data sets in sample-poor regime. The joint-

EVD technique used the eigenvalues and eigenvectors of the composite coherence matrix

and relied solely on joint information from all of the data sets provided by them. The nec-

essary and sufficient conditions under which the correlation structure can be identified were

theoretically derived using the results from graph theory. Furthermore, extensions of both

techniques for small-sample support were also introduced. It was later numerically shown

that the joint-EVD technique demonstrates superior accuracy in estimating the correlation

structure of components correlated across more data sets, while the mCCA-HT technique

performs better when the components are sparsely correlated. To the best of my knowl-

edge, no competing technique exist in the literature that estimates the complete correlation

structure in multiple data sets without imposing strict assumptions on the correlation struc-

ture.

Throughout this thesis, minimal assumptions, which were necessary to identify the correlated

components and their correlation structure, were made. Therefore, the proposed techniques

can be applied to arbitrary number of data sets with different dimensions and unknown cor-
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relation structure. This flexibility made it possible to employ these techniques in a variety

of applications as follows. In Chapter 4, a detector for the number of improper signals in

complex-valued data was developed and applied to estimate the number of sources imping-

ing on a sensor array with very few observations. In Chapter 7, a new method for source

enumeration and multi-speaker voice activity detection in WASN was developed which sig-

nificantly outperforms the existing standard techniques. Later in Chapter 8, the proposed

techniques were applied in the field of sports science and it was shown that physical exercise

affects the interactions among various subsystems of the ANS, and that these interactions

change depending on the strength of the physical load. Finally, in the field of epilepsy,

specific seizure-induced changes in the interactions of four different ANS modalities were

identified in Chapter 9. These results are promising and will be analyzed in the future to

identify potential biomarkers for seizure detection, and more importantly for the open and

challenging problem of seizure prediction.

The techniques developed in this thesis are not limited to the specific data sets and the ap-

plications shown here. Depending on whether or not an apriori correlation structure seems

a reasonable assumption for an application, one of the proposed techniques can be applied.

For instance, if a common underlying source vector is assumed to be observed by all the data

sets, the GLRT technique of Chapter 5 can be readily employed, whereas the mCCA-HT and

joint-EVD techniques of Chapter 6 can be used when such an assumption is too restrictive

for the application under concern.

10.2. Future work

The techniques developed in this thesis can be directly used, modified or act as a motivation

for developing new methods in the future. I list a few possible directions as follows.

1. Non-linearity and sample-to-sample dependence: In this work, correlation among

different data sets was analyzed. Although correlation is a reliable measure for linear

dependence, it is does not account for non-linear dependencies, which are common

in many applications [138], [139]. One way to analyze non-linear dependencies is

through higher-order moments. IVA is an extension of ICA for multiple data sets

and considers second and higher-order statistics to measure dependencies among dif-

ferent sets [18]. Another advantage of using an IVA framework is that it allows to

exploit the sample-to-sample dependencies when the samples are not i.i.d. [42]. This

is particularly useful for applications involving time-series or images where samples
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are typically not i.i.d. However, model selection in IVA is an open problem even in

the sample-rich regime. Model-selection techniques developed in this thesis can be

adapted for IVA to analyze the dependency structure, i.e., which components in dif-

ferent data sets are dependent with each other. In this context, IVA-G, the IVA model

for Gaussian distributed data sets [140], can act as a good starting point. A similar

approach as in Section 6.4.1 can be followed by examining the eigenvalues and eigen-

vectors of the component covariance matrix extracted using IVA.

2. Correlation vs causation: The fact that correlation does not imply causation limits the

applicability of components that are correlated across multiple data sets [141]. Since

correlation is a bidirectional relationship, it cannot be said whether there is a cause and

effect relationship between the correlated components or if there exists another con-

founding variable driving them. Defining true causality is a challenging task since one

cannot always account for all the confounding variables. However, in many fields in-

cluding econometrics, Granger causality (GC) is commonly used to test for causality.

A time series X Granger-causes time series Y if the past values of X provide statis-

tically significant information about the future values of Y [142]. When X and Y

contain multiple time series, one way to test and measure GC is using partial CCA. In

partial CCA, the correlation between two data sets is maximized in a low-dimensional

space after eliminating the effect of the third data set [143]. Under the assumption

that X and Y are Gaussian distributed, GC can be written as a function of the nonzero

partial canonical correlations between X and Y after eliminating the effect of the past

values of Y [144]. However, there has not been much work on GC when the data

sets are sample poor. The techniques developed in this thesis can be modified for par-

tial CCA to detect and quantitatively measure the causality in Granger-sense in the

sample-poor regime.

3. Correlation structure based joint blind source separation: JBSS tools for multiple

data sets like mCCA [21], IVA [18], group ICA [145] rely on correlation or depen-

dency between the latent (or source) components of different data sets to jointly esti-

mate them. However, these tools are not designed to incorporate any knowledge about

the correlation structure among the underlying sources when estimating them. This

is suboptimal specially when the available number of samples is not large. Typically

not all sources are correlated across all data sets. If some data sets do not include any

correlated sources, including them in the analysis will lead to an inaccurate source

separation. This is because for a limited number of samples, including these data sets

would lead to estimating more parameters, which causes an inaccurate estimation of
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the covariance matrices. A possible solution is to estimate the sources in a deflationary

approach, where the correlation structure for the first set of sources is estimated using

the techniques developed in this thesis, and only the data sets with correlated sources

are used for JBSS. For estimating the next and subsequent sets of sources, the data sets

are recomputed after projecting them on the orthogonal complement of the already es-

timated set of sources and the previous step is repeated. This unified approach where

the correlation structure is determined jointly with the estimation of the correlated

sources could lead to significant improvements, and thus offers an interesting avenue

for applications where the data is limited.
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