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Abstract

Since the beginning of this century, a slowdown of the technology scaling trend
steered the focus of the researchers to investigate alternative avenues to keep the per-
formance improvement trend continue. In addition to a seemingly long-term goal
to find new materials and devices to replace conventional CMOS chips, multi-core
and many-core chips in the meantime have become popular alternatives to improve
throughput through parallel processing. Even though these architectures offer mas-
sive parallelism, writing code for such architectures is not straight forward as the
algorithms need to be modified in accordance with the underlying architecture.

Another important concern that rose during the last two decades is the size and
complexity of data. Applications today are required to execute complex operations
on huge amounts of data. This results in increased resource utilization, e.g., higher
energy consumptions and greater hardware cost.

Fortunately, a wide variety of applications are intrinsically resilient to the error,
i.e., they can produce acceptable results despite errors in the underlying computa-
tions. This has led to the emergence of approximate computing; a new computing
paradigm that can leverage error resilience to generate faster and more energy or
area efficient solutions.

Automated approximate accelerator synthesis aims for one or more approximate
accelerator instances that offer substantial energy and/or area savings while satisfy-
ing quality requirements. Search-based or analytical methods have been commonly
utilized to generate approximate accelerators whereas the former offers larger set
of possibilities for approximation and is time-costly, the latter however has shorter
runtime but is not as flexible. Moreover, search-based methods mostly face combi-
natorial explosion due to exponential growth of the nodes in the search tree. Existing
works apply heuristic methods that are greatly prone to overlook the paths leading
to the global optimum.

This thesis proposes novel methods for the automated synthesis of approximate
accelerators together with efficient pruning of the design space to allow better ex-
ploration of the approximate solutions. An additional contribution is to overcome
the above-mentioned limitations of both analytical and search-based techniques.
The works presented in the various chapters of this thesis explain in detail how
these goals were targeted. First, an automated framework based on Monte Carlo
Tree Search (MCTS) for efficient design space exploration together with a pruning
strategy is developed. Later, the MCTS-based design space exploration is further
enhanced by combining it with an analytical approximation phase and enabling
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parallel exploration of the search space altogether providing an effective tool for
automated synthesis of approximate accelerators. Finally, fast and accurate deep
learning-based error estimation models are developed to speed up the MCTS-based
synthesis framework. Throughout the thesis, the work is evaluated on practical
benchmark accelerator circuits selected from various domains of applications and
compared with state-of-the-art works to demonstrate the effectiveness of the pro-
posed framework.
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Zusammenfassung

Seit Beginn des Jahrhunderts hat die Verlangsamung des Verkleinerungstrends bei
Halbleiterbauelementen dazu geführt, dass der Fokus von Wissenschaftlern zuneh-
mend auf alternative Ansätze zur Steigerung der Rechenleistung gelenkt wurde.
Zusätzlich zu dem offensichtlich langfristigen Ziel, durch neue Materialien und Fer-
tigungstechniken konventionelle CMOS Chips zu ersetzen, sind Mehr- und Vielkern
Chips in der Zwischenzeit zu beliebten Alternativen geworden, um den Durchsatz
mit paralleler Verarbeitung zu erhöhen. Aufgrund der massiven Parallelität ist es
häufig allerdings aufwändig , Code für solche Rechnerarchitekturen zu schreiben,
da die Algorithmen an die zugrundeliegende Architektur angepasst werden müs-
sen.

Ein weiterer wichtiger Aspekt, der in den letzten zwei Jahrzehnten an Bedeutung
gewonnen hat, ist die Menge und Komplexität der Daten. Heutige Anwendungen
müssen komplexe Operationen auf großen Datenmengen ausführen. Dies führt zu
einem erhöhten Ressourcenverbrauch, z.B. in Bezug auf den Energieverbrauch oder
die Hardwarekosten.

Glücklicherweise besitzen viele Anwendungen eine intrinsische Robustheit ge-
genüber Rechenfehlern, d.h. sie können auch unter Verwendung von fehlerbehafte-
ten Berechnungen akzeptable Ergebnisse liefern. Dies hat zur Entstehung des For-
schungsbereichs Approximate Computing geführt – ein neues Paradigma für Com-
puterarchitekturen, welches die Fehlerresilienz gezielt ausnutzt, um schnellere oder
energieeffizientere Schaltungen zu generieren.

Die automatisierte Synthese approximativer Beschleuniger zielt darauf ab, ap-
proximative Beschleuniger mit substanziellen Energie- und/oder Flächeneinsparun-
gen zu generieren, unter Einhaltung bestimmter Qualitätsanforderungen. Üblicher-
weise werden zur Synthese approximativer Beschleuniger suchbasierte oder analy-
tische Methoden angewandt. Erstere bieten eine größere Palette von Möglichkeiten
zur Approximation und sind zeitaufwändig, während letztere zwar eine geringere
Laufzeit aufweisen, aber dafür auch weniger flexibel sind. Zudem sind suchbasierte
Methoden aufgrund des exponentiellen Wachstums der Knoten im Suchbaum häu-
fig von kombinatorischer Explosion betroffen. Bereits existierende Arbeiten wenden
heuristische Methoden an, welche allerdings sehr anfällig dafür sind, die Pfade zum
globalen Maximum zu übersehen.

Diese Dissertation präsentiert neuartige Methoden zur automatisierten Synthe-
se approximativer Beschleuniger in Kombination mit effizienter Suchraumbeschnei-
dung, um eine verbesserte Erkundung der approximierten Lösungen zu erlauben.
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Ein weiterer Aspekt dieser Arbeit ist die Überwindung der oben genannten Limitie-
rungen analytischer und suchbasierter Methoden. Die Details dieser Beiträge wer-
den in den verschiedenen Kapiteln der Dissertation erläutert. Zuerst wird ein au-
tomatisiertes Framework entwickelt, welches Monte Carlo Tree Search (MCTS) mit
einer Beschneidungsstrategie für eine effiziente Erkundung des Suchraums kom-
biniert. Die MCTS-basierte Erkundung des Suchraums wird anschließend durch
Vorschaltung einer analytischen Approximationsphase, sowie der parallelen Erkun-
dung des Suchraums weiter verbessert, was zusammen ein leistungsfähiges Werk-
zeug für die automatisierte Synthese approximativer Beschleuniger darstellt. Ab-
schließend werden schnelle und genaue Fehlerschätzmodelle präsentiert, welche
auf Deep-Learning Verfahren basieren und genutzt werden, um das MCTS-basierte
Synthese-Framework zu beschleunigen. Die in dieser Dissertation vorgestellten An-
sätze werden durchgängig auf praxisnahen Benchmark-Schaltungen aus verschie-
denen Anwendungsbereichen evaluiert und mit alternativen Ansätze auf dem ak-
tuellen Stand der Technik verglichen, um die Leistungsfähigkeit des entwickelten
Frameworks zu demonstrieren.
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Chapter 1

Introduction

This chapter begins by explaining the aftermath of the slow-down of technology
scaling trend and the ever-increasing demand for computational resources in mod-
ern day computing. It then motivates the reader towards the use of approximate
computing that can provide tremendous improvements in energy consumption and
silicon footprints for a wide range of error-tolerant applications. Finally, the organi-
zation of the rest of the thesis is outlined.

1.1 Challenges for CMOS technology in the Nano-era

The continuous increase in the clock frequencies of commercial processor chips re-
mained a major driving force for performance improvements until the beginning of
this century. This trend has started to slow down due the physical device limitations
that resists the continuation of the correlated trend of power and clock frequency as
the size of transistor shrinks. The slow-down has urged researchers to look for other
alternatives for performance improvements. These efforts have been expanding in
multiple directions such as looking for new architectures, finding new materials
that can replace conventional Complementary Metal Oxide Semiconductor (CMOS)-
based chips, and mix of these two approaches. Figure 1.1 shows the technology scal-
ing trends originating from the current general purpose CMOS-based chips (two
bubbles near the origin of the graph) [1]. Three different directions of research ex-
panding along three axes are shown in Figure 1.1 with names of specific architectures
and devices shown inside the bubbles. Along the x-axis, the bubbles represent dif-
ferent new architectures and packaging schemes to harvest more performance e.g.,
system on chips and reconfigurable computing. Along the y-axis, different new de-
vices and materials in the bubbles represent various endeavors to replace traditional
CMOS-based chips. The bubbles along z-axis however, show different attempts that
are in some way a combination of new devices and architectures to enable gains in
performance.

Although the line of research looking for new materials has shown promising
results and many devices / materials have been experimentally shown to have great
potential, yet there is no single device that can be named as an obvious successor of
the conventional CMOS-based chips [1].
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Figure 1.1: Technology scaling options along three dimensions [1].

In the meantime, other lines of research have attempted to improve performance
via the parallel architectures; the multi-core and many-core architectures (Graphic
Processing Units (GPUs), etc.). Although these architectures provide massive paral-
lelism, programming them is not straight forward since a programmer need to have
an in-depth understanding of the underlying architecture to be able to fully exploit
the parallelism offered by these architectures. Higher power dissipation of such ar-
chitectures is another concern specially for large organizations and data centers that
provides continuous services to the users. In fact, it has been revealed in a couple of
recent papers [2, 3], that a large portion of the silicon chip area in such architectures
cannot be utilized simultaneously due to so-called dark silicon effect. Furthermore,
for a full and fair utilization of heterogeneous architectures consisting of a Central
Processing Unit (CPU), GPU(s) and Field Programmable Gate Array (FPGA) de-
vice(s), extensive expertise are required to develop scheduling algorithms for job
allocations to available resources (architectures).

Besides the limitations of transistor scaling, another performance-limiting factor
is the complexity of the tasks performed by the digital computers. Due to growth of
the data that has to be processed for many complex tasks such as object recognition
and classification, social networking websites, virtual reality and data warehouses,
there is an ever-growing need of performance improvement. In addition to that,
large data centers holding massive amount of information also consume more en-
ergy each year as the amount of data and tasks performed on the data increases [4].
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(a) Resilience profile of various applications [5]

Intrinsic 
resilience

IN ADC OUT

(b) Different sources of resilience [6]

Figure 1.2: Error-resilient applications and various sources of resilience.

1.2 Approximate computing

Approximate Computing (AC) is a new computing paradigm that has recently gained
much attention as an alternative approach for performance improvements and re-
duction in energy consumption and silicon footprints for a wide range of applica-
tions. AC exploits the fact that several applications are error resilient i.e., they can
still produce results with acceptable precision if the underlying computations were
performed in an imprecise manner. Recently, for a set of 12 commonly used applica-
tions from classification, recognition, regression and data mining categories, it was
revealed in [5] that 83% (on average) of the total time was spent in error resilient
parts. Figure 1.2-a lists the applications and their respective resilience percentages.

The resilience might come from multiple sources. Some examples are shown in
Figure 1.2-b. A major source of resilience comes from the noisy and redundant data
that many applications might receive as input from sources such as sensors. Another
noticeable source is the fact that many applications do not have a golden result to
be used as a reference and therefore there can be many solutions satisfying the users
demand and any of them can be acceptable to the user e.g., the results returned
by a recommender system or a search query. Limited human perception can also
cause some imprecision go unnoticed. An example is an image returned as output
by an image processing application where each pixel value slightly diverts from the
golden value but still the visual appearance has no visible artifacts to be noticed.

An example is shown in Figure 1.3 to demonstrate why approximate computing
makes sense. Here, a popular image sharpening algorithm (taken from [7]) is used to
increase the intensity of the input image (shown in Figure 1.3-a). Figure 1.3-b shows
the result obtained by applying the image sharpening filter using the exact opera-
tions where as the in Figure 1.3-c, the result of the same algorithm is shown with
a large proportion of operations replaced by the approximate counterparts (the ap-
proximate version of the image sharpening accelerator circuit was generated by our
automated synthesis flow explained in the Chapter 3). Although the visual impact
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(a) Original (b) Sharpened (exact) (c) Sharpened (approxi-
mate), PSNR=49.72 dB

Figure 1.3: Comparison of exact and approximate image sharpening.

of the approximation is hard to notice, the approximate version takes 67% of the area
as compared to the exact implementation when synthesized for the hardware. The
quality of the approximate image is shown with the Peak Signal-to-Noise Ratio (PSNR)
which is one of the most common metrics to represent the quality of the images. For
image processing applications, higher values of PSNR are associated with higher
quality (typically PSNR > 30dB is considered good quality [4]). The PSNR value of
approximate image in Figure 1.3-c is 49.72 dB which is well above acceptable quality.

1.2.1 Approximate computing at different layers of system stack

Recent years have witnessed an increasing amount of work in the field of approx-
imate computing that ranges from application-level approximations to low-level
transistor logic circuits [4]. Figure 1.4 outlines different approximate computing ap-
proaches applied at different abstraction layers of computing system stack. Some
of the approaches can be applied at multiple levels (such as precision scaling). In
the following, a brief review is presented that summarizes various works applying
approximate computing techniques at different levels of computing system stack.

Application- / Algorithm-level approximate computing techniques mostly deal
with high-level source code transformations. An example is loop perforation [8] that
skips iterations in order to reduce the computations in a loop resulting in overall re-
duction in the energy consumed by the application. Other examples include relaxing
synchronization and skipping tasks in a multi-core architecture [9], and identifying
and reducing precision of the less contributing neurons in the backpropagation step
of a deep neural network [10].

Language- / Compiler-level works develop programming language extensions
enabling programmers to select approximate parts in the code. An example is EnerJ
programming language [11] in which a programmer can select operations via code
annotations that should be mapped to energy efficient hardware. In another work,
Axilog [12] language is proposed that lets a programmer select the operations for
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intfoo (intx,int y) {

approx_intz ;
z = x*x + y;
return(z);

}

intfoo (intx,int y) {

approx_intz ;
z = x*x + y;
return(z);

}

intfoo (intx, inty) {

approx_intz ;
z = x*x + y;
return(z);

}

Application / Algorithm
- Loop perforation
- Task skipping

Language / Compiler
- Language extensions
- Code annotations

Micro-architecture/ RTL
- Arithmetic component substitution

Technology
- Transistor removal
- Approximate processors and memories

Components / Logic
- Logic gate removal
- Boolean transformation s

D
esign

 h
ierarch

y

Figure 1.4: Approximate computing at different layers of computing stack.

which the accuracy requirements may be relaxed. This information is then utilized
by the synthesis phase to approximate the parts of logic that are used in computing
the operation. A compiler-driven error analysis and approximation flow is proposed
in [13] that relies again on code annotations to find instructions in the high-level code
which are then substituted with their approximate counterparts.

Micro-architecture- / RTL-level works mainly employ arithmetic component
substitution as their approximation strategy. In arithmetic component substitution,
parts of original circuit of an accelerator that are amenable to approximation are
identified (often called candidates) and are then replaced with approximate arith-
metic modules in a controlled and systematic way [14, 15, 16, 17, 18]. Various tech-
niques have been proposed in the literature to obtain the approximate arithmetic
modules such as truncating least significant bits, cutting carry chain, etc. Some
open-source libraries provide wide range of approximate arithmetic modules with
characterization of error and target parameters. A large number of available choices
for these modules also uncovers challenges because the design space becomes huge
and selection of components from the library that optimizes the target metric be-
comes non-trivial. A brief review of the approximate arithmetic modules follows in
the next subsection.

A number of systematic methods have been introduced for automated genera-
tion of approximate accelerators from a given original accelerator circuit [14, 15, 16,
17, 18]. Such methods can be categorized on the basis of certain characteristics such
as how they apply approximations or how the design space is explored. One such
classification along with detailed discussion is presented in Section 2.2.
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Components- / Logic-level works employ logic simplification methods for cir-
cuits at the gate/netlist level. Typically, first the parts of circuit logic that do not
contribute much to the output are identified and then either those parts are trun-
cated from the circuit or the nodes in those parts are connected to constant values
to let the subsequent synthesis step simplify the circuit [19, 20]. For instance, in
[19], the largest part of circuit logic is first identified by traversing its labeled direct
acyclic graph representation via an exhaustive search such that removing that part
will not violate the error bounds. The identified part of the logic is then removed
from the circuit and the remaining logic is presented as the approximate circuit.
Other examples are signal substitution [21], gate-level pruning [20], Boolean ma-
trix factorization-based approximations [22], and random gate replacement [23].

Technology-level methods include several ad hoc techniques to create approxi-
mate circuits or systems. Broadly speaking, these works can be categorized as tech-
niques that use manual circuit alteration to create approximate circuits at a lower
level of abstraction, and techniques that are employed to generate approximate cus-
tom hardware architectures. Examples of former group of techniques include man-
ual transistor removal from the transistor-level logic circuit of a gate and then use it
to generate approximate half/full adders [24] or replacing part of adder circuit with
OR gates [25]. These smaller adder modules are then combined to form bigger adder
units and utilized in an image processing application. In other works such as in [26],
approximate multipliers are generated via manipulation of a few entries of K−map
in a 2× 2 multiplier and then this multiplier is used as a building block of a larger
multiplier unit.

Many works have focused on the generation of custom hardware architecture
that includes specialized CPU architectures, approximate memories, and caches to
support approximate computations. A configurable processor with an extended
instruction set architecture is proposed in [27]. The processor contains a hierar-
chical arrangement of processing elements that can monitor quality and perform
dynamic precision scaling to yield different quality-energy trade-offs. Specialized
approximate accelerators for emerging architectures such as coarse-grained recon-
figurable architectures and in-memory computing architectures [28, 29] have also
been targeted. Some other works exploit memory units for approximation such as
approximate caches based on load-value approximation for traditional caches archi-
tecture [30] and for new technologies [31]. For traditional memory units, there has
been DRAMs based on reduced refresh rates [32] and SRAMs based on reduced sup-
ply voltage [33]. Another example is the use of neural networks to achieve code ac-
celeration [34]. It works by off-loading parts of program code to a specialized hard-
ware (neural processing unit) that can efficiently execute those parts. Since neural
networks are inherently approximate, they can save considerable amount of energy
through simplifications of operations.
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1.2.2 Approximate arithmetic blocks

Arithmetic components such as adders and multipliers are the most common targets
for approximations in any application. There has been a plenty of works that imple-
ment approximate adders and multipliers. One of the most common techniques
to generate approximate adders is reducing the hardware complexity of the carry
chain and predict the carry using k less significant bits (where k is less than the out-
put width n). Such adders are known as carry speculative adders [35]. Other works
suggest segmented adders that are constructed from small adder units working in
parallel thereby truncating the carry chain [36, 37, 38].

Approximate multipliers have been mainly developed through three main ap-
proaches. The first approach works by approximating partial products such as the
one proposed by [26] where a 2× 2 multiplier computes the partial product and then
used as a block in a bigger multiplier unit. Second approach targets partial product
tree in an approximate Wallace-tree multiplier augmented with a carry prediction
unit [39]. Third category of works employs approximate adder and compressor units
to compute the partial products [40, 41].

A number of publicly available libraries consisting of approximate adders and
multipliers have been introduced [38, 42, 43, 44, 45]. The application of these mod-
ules in a functional approximation flow is, however, not straight forward since many
of these libraries have been constructed for specific target architectures and are not
generic. Only a limited number of them can be utilized as off-the-shelf libraries
without having to significantly adapt their underlying implementation techniques.
An example is the EvoApproxLib [46] which is a public library of approximate adders
and multipliers. It provides various implementations (such as C/C++, Verilog, Mat-
lab) of adders and multipliers of bit-widths 8,12, and 16 (as of writing this thesis)
generated with Cartesian genetic programming technique. Moreover the compo-
nents are characterized with error, area, and power consumption information that
can be leveraged to constitute heuristics for the Design Space Exploration (DSE).

1.3 The focus of this thesis

This thesis focuses on automated approximate accelerator synthesis at the micro-
architecture- / RTL level. The rationale behind choosing this level of abstraction is
that it offers a wide range of approximation possibilities since the candidates for ap-
proximation i.e., the arithmetic blocks can be identified at this level and the approx-
imation process can also leverage many of the available approximate component
libraries.

Another advantage of this level of abstraction is the relationship of error eval-
uation and the application-level quality information. In most cases the quality of
the implementation can be verified on the application-level e.g., the output gener-
ated by an image sharpening algorithm implemented at RTL-level. On the other
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hand, the approximation techniques applied at the lower level of abstraction i.e.,
components- / logic-level provide less information about the effect of approxima-
tions on the application-level quality. Moreover, the improvements in the target
metric at the components- / logic-level are marginal since the approximations affect
the smaller cells in the circuit e.g., the logic gates and the nets.

Besides the advantages offered at this level of abstraction, efficient DSE is still a
challenge since the availability of large number of possible approximations even for
a moderate number of operators in an accelerator circuit can lead to an explosion
of combinations. Moreover, in presence of multiple objectives for optimization, the
process becomes more complex owing to the fact that some of the objectives are not
correlated and are hard to predict with simple heuristics.

1.4 Contributions of the thesis

The contributions made by this thesis are outlined in the following:

• It proposes and implements a novel synthesis algorithm for approximate ac-
celerator synthesis based on Monte Carlo Tree Search (MCTS), an intelligent
stochastic search algorithm that has been proven successful to problems with
large branching factors such as games. Inspired from the outstanding success
of MCTS in games, we adopted MCTS for approximate hardware synthesis.
However due to various dissimilarities between the two domains, significant
transformations had to be done to fully adapt MCTS for approximate acceler-
ator synthesis. To the best of our knowledge, this is the first work that adapts
MCTS for approximate hardware accelerator synthesis.

• It proposes and implements two pruning schemes to efficiently explore the de-
sign space for approximate accelerator synthesis problem. The pruning schemes
are used to recognize parts of search space that lead to designs with larger er-
rors exceeding the allowed error bounds and truncate those paths early in the
DSE process.

• It proposes and implements a novel hybrid methodology for approximate ac-
celerator synthesis. The proposed methodology combines analytical approxi-
mation techniques and parallel MCTS forest. Through an analytical approx-
imation phase, it prunes a large portion of irrelevant search space without
performing costly quality validations and in the following phase, performs a
parallel search in different parts of the search space thus providing an efficient
DSE methodology.

• It proposes and implements a faster DSE approach based on deep neural net-
works. Through trained learning models, it avoids a large number of time-
costly simulations and achieves similar quality of results in extremely short
runtimes as compared to the simulation-based DSE.
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1.5 Organization of the remainder

The remainder of this thesis is organized as follows:

Chapter 2 explains underlying concepts of approximate accelerator synthesis and
discusses state-of-the-art in the domain of automated approximate accelerator syn-
thesis.

In Chapter 3, an automated framework is proposed that leverages MCTS for syn-
thesis of approximate accelerators. Proposed framework is interfaced together with
commercial synthesis and simulation tools to provide a complete flow. Later in the
chapter, the implementation of MCTS is evaluated on an open-source framework on
a number of practical benchmarks with a wider set of parameters.

Chapter 4 proposes a hybrid methodology that combines analytical approximation
method with a parallel stochastic search-based optimization (based on MCTS) to
perform efficient DSE for approximate accelerator synthesis. The proposed two
phase methodology first samples different parts of the search space using analyti-
cal bit-width estimation phase and then initiates an MCTS search forest where the
designs found in the first phase act as root nodes for the search trees. Phase 2 then
performs a parallel DSE from these pre-sampled points thereby enabling more effi-
cient exploration with considerable reduction in the runtime. Results show that the
hybrid methodology outperforms purely analytical or purely search-based method-
ology by achieving higher area savings.

Chapter 5 presents a faster approach to estimate the error of the intermediate ap-
proximate designs generated during the DSE phase. The approach aims to speedup
the MCTS-based DSE by utilizing fast and accurate deep learning error estimation
models. The proposed approach is capable to explore similar number of nodes in the
design space in extremely shorter runtime as compared to a simulation-based flow.
The quality of results achieved by the proposed approach are equal or even better in
some cases.

Chapter 6 concludes the thesis.

Further details and the preliminary concepts of automated approximate acceler-
ator synthesis are explained in Section 2.1 and a detailed comparison and discussion
on related works follows in Section 2.2.
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Chapter 2

Background and Related Work

This chapter discusses preliminary concepts of the approximate accelerator synthe-
sis and provides an overview of the related work. In the beginning of this chapter,
a simplified view of the automated approximate accelerator synthesis flow is pre-
sented. Later, key steps required for the Design Space Exploration (DSE) of approx-
imate accelerator are discussed. Finally, a comprehensive review of related works
concludes the chapter.

2.1 Automated synthesis of approximate accelerators

Given an exact accelerator circuit description (e.g., a circuit described in any HDL
language or SystemC) and an error constraint set by the designer, obtaining an ap-
proximate accelerator can be described as an optimization problem where the ob-
jective is to find design(s) offering better performance parameters e.g., power, delay,
and / or area subject to error constraint (Eth) i.e., the error at the output must be kept
less than Eth.

min Fit(A) subject to E(A) < Eth (2.1)

where Fit(A) is a function that represents the fitness of the approximate design A in terms
of its circuit parameters such as area, power and delay and E(A) represents the error of ap-
proximate design (computed using any of the error metric defined in Section 2.1.3).

While some of the existing works formulate the approximation and the error
propagation through analytical models [47, 48, 49, 50], the majority of the works
achieve the approximation through a search-based optimization [15, 16, 51, 14, 19,
17, 52, 21, 23, 22]. The former being centered towards particular approximation
method and error metric, offers less flexibility but generally have shorter runtime.
The latter is generally applicable to larger set of accelerator circuit types, is more
flexible and offers much larger set of possible approximations but is more time-
consuming due to large size of solution space.

In a search-based optimization, the original design is incrementally approxi-
mated via iterative refinement process. In each iteration of the process, the design



12 Chapter 2. Background and Related Work

Figure 2.1: Simplified view of the search-based approximate accelerator synthesis
flow.

is further approximated with one of the available approximation methods/trans-
formations until either the design could not be further approximated without vio-
lating error bound, or the stopping criteria is met. Figure 2.1 shows a simplified
view of such flow. The flow starts with the input design (original accelerator circuit
description) and a configuration file (optional and can be used to pass values for dif-
ferent parameters to later steps of the flow) which are provided to a preprocessing
phase. This phase performs steps such as applying common code transformation
e.g., loop unrolling to uncover approximation possibilities and a resilience iden-
tification step (among others) to identify the operators suitable to approximation.
Examples of resilient code parts are the data-path elements such as adders and mul-
tipliers. Parts of code except the data-path elements are marked as control parts and
are not considered for approximation since manipulating them might result in un-
defined behavior of the application. Common methods of resilience identifications
are manual code annotations [53] and variables dynamic range computations [54]
among others.

The next phase is the DSE and is an iterative process that: (1) identifies a can-
didate to approximate, (2) generates an approximate design instance by performing
approximation according the to the selected candidate (3) evaluates the quality of the
solution. The iterative process is typically repeated till the allocated time budget or
number of iterations are exhausted. The result is one or more approximate designs
that offer better quality parameters and are then forwarded to a post-processing
phase which applies further filtration based on some criteria and performs finaliza-
tion steps. The DSE phase is a crucial block of the flow since its steps such as ap-
proximation, quality assurance and search space exploration have a strong impact
on the quality of the results. In the following subsections, these steps are explained
in more detail.
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2.1.1 Approximation instance generation

Generating an approximate instance refers to the process which results in an ap-
proximate accelerator variant where one or more candidates have been replaced
with approximate components. Very often these approximate components are avail-
able to the synthesis framework as a pre-characterized library furnished with the
error, area, delay and power consumption information for all components. Such
library components can be obtained with a variety of approximation techniques.
In fact, state-of-the-art approximate arithmetic components include ones obtained
with rather simpler techniques such as truncating the lower bits of adders and mul-
tipliers [55], cutting the carry chain of the adders [37], replacing lower parts of the
adders with logic or [25], etc. Some publicly available component libraries such as
EvoApproxLib [46] provide even larger number of implementations of arithmetic
units with varying trade-offs among error and performance parameters.

Some frameworks such as [56] generate the approximate components library
on-the-go by transforming the hardware description of the selected candidate to
a suitable representation such as And-Inverter Graphs (AIG) or Binary Decision Dia-
grams (BDDs) and then applying approximation on the selected transformed repre-
sentation. The approximated component is then transformed back to the original
representation and plugged in to the circuit to produce an approximate variant.

With the increased number and a wide range of available approximate compo-
nents, the task of selecting suitable arithmetic components from the library for sub-
stitution during the DSE becomes non-trivial. Moreover in presence of error mask-
ing effects, finding best suited combination of approximate components to optimize
for target metrics (area and /or power) becomes even more challenging task.

2.1.2 Search space exploration

The search-based DSE process relies on massive search to find and validate possible
solutions. The total number of possible solutions i.e., search space is however, very
huge and expands exponentially even for medium-sized accelerator circuits as the
number of candidates and approximate transformations increase. Since majority of
the existing frameworks have represented the search space with a tree where nodes
represent different approximate variants generated during the DSE, we will use here
an example of a tree to explain how big the search space could get. Let us suppose
that the total number of combinations (or approximate variants) that can be realized
for an accelerator circuit (and thus the size of the search space) be N, the number
of candidates be C, and total approximations that can be applied to a candidate be
represented as A, then N would grow as A0 + A1 + A2 + ... + AC as the tree starts
growing in depth, thus resulting in a geometric progression [15]. Mathematically,
total number of combinations or N can be represented as in the following equation.

N =
1− AC+1

1− A
(2.2)
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Figure 2.2: Growth of search tree.

To further elaborate on this in a graphical manner, consider an example acceler-
ator circuit that has nine candidates for approximations and two possible transfor-
mations available (typically the number of approximate transformations are much
higher). Figure 2.2 shows all possible combinations that can be obtained for the ac-
celerator circuit under consideration represented in the form of a search tree. Each
node in the tree is a possible configuration or approximate variant of the original
accelerator circuit where some (or all) of the candidates are approximated. Note that
the search tree grows exponentially in terms of number of nodes as we go down in
the depth. Many of the nodes (like the ones shown as leaf nodes) will more likely
be not good in terms of output quality as their error will exceed the desired error
bound.

With the number of candidates (and the transformations) increasing, evaluating
all possible combinations/nodes in the search tree becomes impractical due to the
exponential growth in the size of tree. Using the formulation from Equation 2.2, in
Figure 2.3 the total number of combinations (or nodes in a tree) against increasing
number of candidates (with only three possible transformations for each candidate)
is shown. It can be seen that the as the number of candidates increases beyond 14, the
total number of nodes rapidly jumps to as high as 21.52× 106. In fact, considering
that the average time taken for a cycle-accurate simulation that applies around 106

test vectors to a medium-sized accelerator circuit under test takes around 5 seconds
on a regular computer system [57], simulating 21.52× 106 nodes will take around
3.14 years of computations.

For a commonly used application from signal or image processing domain, the
number of candidates and approximate transformations are typically higher than
those in the above-mentioned example. Since exploring such a huge search space
exhaustively is not practical in a reasonable time, state-of-the-art methods mostly
rely on heuristic-based search to explore the design space.

2.1.3 Quality evaluation

The quality evaluation is the key step that validates the approximate designs. Based
on the quality evaluation step the DSE can decide in which direction to expand the
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Figure 2.3: Growth of search space.

search space. The exact method to determine the quality of the approximate de-
sign depends on the requirements of designer, the selection of the error metric and
whether or not a formal proof is required for the quality of the design instance. Com-
mon method for quality evaluation for approximate accelerators are formal verifica-
tion and testing.

Formal verification refers to methods that provide a proof of equivalence be-
tween the specification and implementation of the accelerator circuit. For approx-
imate computing context, this means that the property is relaxed to equivalence to
some bound [58]. Although formal verification-based approach can provide strong
statement about the quality of the circuit, it also tends to have longer runtime. A
common example for formal verification involves an approximation miter circuit
that is connected with the outputs of both original and approximate accelerator cir-
cuits [17, 59]. The miter compares the outputs and raises the error flag when the
output of the approximate accelerator circuit diverges from the output of the origi-
nal implementation beyond the allowed threshold. The worst-case runtime for for-
mal verification is substantially longer than the testing-based approach especially
for larger circuits since the input combinations must be exhaustively evaluated to
provide a guarantee over the worst-case error. In addition to that, certain error
metrics such as the average-case error are still hard to be verified using the formal
verification-based approach [60, 59].

On the other hand, a testing-based approach have shorter runtime but does not
provide any proof about the error. This approach works by sampling a reasonably
sized subset of input combinations selected with a known statistical distribution and
then simulating the approximate accelerator circuit with this input sample. Typical
sample sizes used in related works range from 104 to 106 test vectors [23, 61, 15, 59].
As the test sample is applied to the approximate circuit, the output is sampled and
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is then compared with the output of the non-approximated circuit (often referred
to as golden result). Typical average case error metrics such as mean relative error
or mean absolute error can then be evaluated from the comparison to represent the
amount of error rather than providing an upper-bound on the output error.

Despite being faster, the accuracy of the testing-based approach can vary de-
pending on factors such as input data distribution or the size of the test vectors. It
should be noted that the total number of input combinations from which the test
vectors are to be sampled are 2n where n represents the width of the primary inputs.
As an example, consider an adder that performs addition of two 32-bit numbers.
Then the total number of input combinations would be 264 (where each input can
range from 0 to 232 − 1).

In the following, some of the common error metrics used in regard of the approx-
imate accelerator synthesis are defined.

Error metrics

Approximate solutions generated by any of the techniques mentioned in the previ-
ous section need to be characterized in terms of their quality in order to be ranked
in an approximate accelerator synthesis flow. This is done by evaluating the error
generated by them. Different error metrics are used to represent the amount of ap-
proximation error. Generally, the error metrics can be classified as either worst-case
or average-case. The former type is more common in methods that employ formal
verification to evaluate approximate designs. The latter type is obtained typically
through applying test vectors (e.g., 106 randomly generated input combinations) to
the design under test to estimate the value of error. Average-case error metrics are
more often preferred since they are suitable for many application domains of ap-
proximate computing e.g., image processing where the average-case can provide
more insight about the overall quality of the output rather than just providing the
worst-case information. In the following, some of the commonly used error metrics
are defined.

Notations: Consider a Boolean function F with n as the width of primary input and m
as the width of primary output. F is then defined as a mapping of input range Bn to output
range Bm where B = {0, 1}. The approximate version of F is defined similarly and denoted
as F̂. Let O(x) be the output of F and Ô(x) be the output of F̂ on a given input x.

We can then define the following error metrics.

1. Worst case absolute error (Ewce): The worst-case absolute error is computed as
the maximum difference between original and approximate outputs for all in-
put combinations and is defined as the following:

Ewce = max
∀x∈Bn

|O(x)− Ô(x)| (2.3)
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2. Worst case relative error (Ewcre): The worst-case relative error gives the maxi-
mum relative difference between original and approximate outputs for all in-
put combinations and is defined as the following:

Ewcre = max
∀x∈Bn

|O(x)− Ô(x)|
max (1, O(x))

(2.4)

Note that max(1, O(x)) is used to avoid divide by zero when O(x) = 0.

3. Bit-flip error (Eb f ): The bit-flip error is defined as the maximum number of dif-
ferent bits in the output for all input combinations. It is sometimes known as
the worst-case Hamming distance. It is defined as the following:

Eb f = max
∀x∈Bn

(
m−1

∑
i=0

Oi(x)⊕ Ôi(x)

)
(2.5)

4. Mean absolute error (Emae): The mean absolute error is the average of the sum
of absolute differences between original and approximate output for all input
combinations and is defined as the following:.

Emae =
1
2n ∑
∀x∈Bn

|O(x)− Ô(x)| (2.6)

5. Mean relative error (Emre): The mean relative error is the average of the sum
of relative differences between original and approximate output for all input
combinations and is defined as the following:

Emre =
1
2n ∑
∀x∈Bn

|O(x)− Ô(x)|
max(1, O(x))

(2.7)

Note that max(1, O(x)) is used to avoid divide by zero when O(x) = 0.

6. Mean relative error percentage (Emre(%)): The mean relative error percentage is
the normalized Emre over primary output m and expressed as a percentage. It
is defined as following:

Emre(%) =
1

2m Emre × 100 (2.8)

7. Error rate (Eer): The error rate or error probability is the number of approxi-
mate outputs that are different from original output averaged over all input
combinations. It is defined as the following:

Eer =
1
2n ∑
∀x∈Bn

X (2.9)
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where,

X =

{
1 i f O(x) 6= Ô(x)

0 otherwise

}

8. Mean squared error (Emse): The mean squared error is the average of the sum
of the squared differences between original and approximate outputs and is
defined as the following:

Emse =
1
2n ∑
∀x∈Bn

(O(x)− Ô(x))2 (2.10)

9. Peak signal to noise ratio (Epsnr): The peak signal to noise ratio is obtained from
MSE and is very often used in image processing applications and defined as:

Epsnr = 20 · log(10)
(

MAX2

MSE

)
(2.11)

where MAX refers to the maximum value of the output.

The next section provides a review of related works that deals with the approxi-
mate accelerator synthesis problem using different search-based approaches. In the
end of the section, other analytical techniques that do not require search, are also
discussed.

2.2 Related works

This section provides a review of the state-of-the-art in the synthesis of approximate
accelerators. We divide the works in this domain in two main categories i.e., search-
based methods and analytical methods. The former uses arithmetic component sub-
stitution in an iterative refinement process whereas the later focuses on analytical
formulation to determine the approximation parameters without performing itera-
tive search.

2.2.1 Search-based methods

The shared characteristic of previous works is the use of various heuristic-based
search techniques to either explore the best possible approximate transformations
needed for the target accelerator circuit or examine various approximate transforma-
tions via Boolean optimization while maintaining a quality constraint. These include
greedy, branch-and-bound, binary search, and genetic-based algorithms.

The ABACUS framework [15] is an example that uses a greedy approach to ex-
plore the design space to generate approximate accelerators. It picks one approxi-
mate transformation that appears to be the best in the current iteration and expands
the search space from that point. Although it has shorter runtime it is most likely to
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Figure 2.4: Greedy-based search [15].

miss the global optimum as it strictly confines the search space in early steps of the
algorithm and therefore the framework becomes remarkably prone to overlook the
global optimum. Moreover, the quality of the final results heavily depends on the
moves taken in the first few iterations as there is no possibility for a backtrack.

This can be explained with an example in Figure 2.4 where a greedy-based search
space exploration flow is shown. Here, each node represents an accelerator circuit
configuration and the area and error information are shown inside each node. The
greedy process starts with the root node (original circuit) and in each iteration ex-
pands the current node by applying a number of approximate transformations on a
selected candidate. It then picks the node that has best area saving and expand this
node in the next iteration. The greedy process stops when there are no more nodes
having error less than 5% (target error bound for this example) among the children
of current node and reports the current node as the best possible approximate ac-
celerator circuit found. In this example, the path followed by the greedy approach
is shown by the green solid arrows and leads to an approximate accelerator circuit
with an area value of 890 units and 4.7% error. However, the optimal path in this
case is the path shown by the dotted red arrows that could have led to a design
having 875 units of area and 3.5% error.

The extended version of ABACUS [16] uses a mix of greedy and genetic algo-
rithm (NSGA-II). In each iteration, it generates a population of actions and then
selects multiple nodes to expand the search space. This, of course, improves the
quality at the cost of higher computational complexity yet the iterative nature of
ABACUS may cause a set of approximations, belonging to the former generations,
dominate the global search space and hence limit the selection of other promising
approximations that might appear in later generations.



20 Chapter 2. Background and Related Work

Figure 2.5: Branch-and-bound (B&B) search [51].

Barbareschi et al., in [51] implement their synthesis approach with a branch-and-
bound based DSE tool called IDEA. Their algorithm expands search space for one
candidate as deep as possible and then backtracks. In this manner, IDEA iterates
over the possible approximations of each node in the design and performs a depth-
first search until no more approximations are possible and then backtracks. The
performance of this technique to generate an optimal approximate design is lim-
ited since the large portion of the search budget is dedicated to identifying the best
possible approximation of the firstly visited nodes of the design.

Figure 2.5 shows graphically how such a branch-and-bound based approach pro-
ceeds with iterative approximation for two candidates i.e., an adder and a multiplier.
The left branch of each node represents the approximation path of the adder and
right branch shows approximation path of the multiplier. The approximate config-
uration of each node is inside the node. The darker color represents more intensive
approximation level for an operator. This is with regard to the IDEA where the ap-
proximations are applied in the form of precision scaling hence deeper nodes gen-
erally have less precision in one or more of their operations. The backtrack occurs
when the approximation results in the violation of the error bound (shown as red
nodes in Figure 2.5). The algorithm continues to build approximation paths as long
as the computational budget is available. However, when the number of candidates
and possible levels of approximation are considerably larger, a branch-and-bound
approach will spend most of the time in just first few branches and ultimately miss
a large portion of search space.

Chandrasekharan et al. [14] propose approximation technique for Boolean func-
tions represented as AND Inverter Graphs (AIGs). The technique called AIG rewriting
first identifies the critical paths of the circuit and then iteratively selects and replaces
the cuts on the critical paths using a greedy approach. The cut selection scheme
assumes that starting approximation transformations with a smaller size cut can re-
sult in better approximations hence it sorts the cuts in an increasing order before
selection. The error constraint is then formally verified through a SAT solver. With
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a similar objective, circuit carving [19] aims to prune the maximum part of an ex-
act design represented as a Direct Acyclic Graph (DAG) by finding a cut that has the
maximum number of gates. The cut formation relies on a weight labeling step that
follows binary search algorithm to decide whether or not to include a DAG node
in the cut. The approximate design is then obtained by removing that cut from the
design. Circuit carving faces the combinatorial explosion in case of large size circuits
not only for the search but also for the weight labeling of the nodes in the DAG.

The ASLAN framework [17] by Ranjan et al., presents yet another approach for
automated synthesis of sequential circuits. ASLAN introduces a so-called quality
function that encodes quality constraint to measure the precision loss of the multi-
cycle circuits via formal verification. To identify the type of approximation, that
leads to the highest power and area efficiency, a tremendous amount of exploration
over the large space of possible transformations is required. ASLAN uses a gradient-
based search technique which needs a large simulation budget for bigger designs,
and may get stuck in the local optimums for highly non-linear quality constraints of
circuits.

In another work, a substitute-and-simplify method (SASIMI) [21] is proposed
that achieves approximation by determining pairs of circuit nodes that have similar
functionalities and then substituting one with other. As a result, the logic required
for one of the signals can be eliminated. SASIMI uses a heuristic ranking method
based on the area and delay of the signals. The circuit is then constantly simplified
using the ranking heuristics until the error bound is reached.

In a more recent work [23] SCALS framework iteratively exploits three simple
transformations (e.g., adding extra logic gates among the circuit nodes, randomly
changing the type of logic gates, and flipping signal polarities) on the sub-networks
extracted from the original circuit. The candidate nodes for approximation are se-
lected randomly, and Markov Chain Monte Carlo (MCMC) sampling is used to accept
or reject the recently applied transformation.

BLASYS framework [22] by Hashemi et al., uses Boolean matrix factorization
technique to decompose the truth table entries for extracted logic parts of the circuit
to simpler approximate versions and then substitutes them for original parts to yield
approximate instances. The DSE phase relies on a greedy search to find suitable
combinations of the decomposed matrices that provide better error-area trade-offs.

The Jump Search [18] proposes a greedy-like approach to quickly select a path in
the design space based on area and error heuristics followed by a validation step to
find the top quality verified node on the path. The proposed approach is faster than
many other similar greedy-based approaches because it does not invoke synthesis
during the path selection rather relies on a composite heuristics function that com-
bines the error and area impact of the selected candidates on the path. For the very
same reason, the performance improvements can sometimes be suboptimal due to
poor selection sequence of the candidates.
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Table 2.1: Categorization of search-based frameworks

Framework DSE method Approximation method Open-source?

ABACUS [15] Greedy, Greedy+NSGA-II AST transformations Yes

AIG rewriting [14] Greedy AIG rewriting Yes

ASLAN [17] Greedy Precision scaling No

BLASYS [22] Greedy Boolean matrix factorization Yes

Jump Search [18] Greedy Precision scaling Yes

CC [19] Binary Search Logic removal No

IDEA [51] Branch & Bound Precision scaling No

SCALS [23] Metropolis Hasting Logic transformations No

SASIMI [21] Hill-climbing Substitute and simplify No

Table 2.1 lists the DSE methods and approximation techniques used by the men-
tioned frameworks. Only four of the mentioned nine frameworks have been made
open source.

2.2.2 Analytical methods

The second category of works relies on either analytical formulation of the quality
metric or similar techniques to generate approximate accelerators. This category of
techniques does not require massive search and is often faster than the search-based
methods. Nonetheless the applicability of such methods is limited since they are
not much flexible and scalable. In the following, a brief review of state-of-the-art
analytical techniques is provided.

A number of methods in this category exploit statistical properties to model the
effect of error on the overall application quality. For instance, Huang et al., in [47]
use a modified version of interval arithmetic to propagate the intervals of variables
up to the primary outputs. The non-linear behavior of the error propagation is taken
into account by considering the correlation among the variables through affine arith-
metic. This type of error propagation however results in a pessimistic estimation of
the output error.

Another analytical framework is presented in [48] that computes PSNR values of
an image processing applications composed of specific inexact adder types. Three
different adder types were considered, and their error distance (ED) values were
modeled using the proposed framework.

In [49], authors provide a methodology to characterize variance of the output
error in a direct acyclic graph (DAG). The DAG is composed of nodes representing
the imprecise adders having different number of their LSB’s approximated. Then
the output variance is computed from the number of approximated LSBs and their
respective error distributions that were computed with exhaustive simulations.

Sengupta et al. in [50] propose an approach that is more generic and applicable to
larger set of imprecise operators. The approach uses Mellin and Fourier transforms
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to compute the probability mass function (PMF) of the output error for operators in
a DAG representation. For larger benchmarks, the applicability of the approach is
however questionable due to the exponential growth of the computational complex-
ity.

Mrazek et al. [62] employed machine learning techniques in their framework
autoAx to obtain the configurations for the bit-widths of a set of adders and multi-
pliers to be used in an image processing application.

Venkataramani et al. in [52] apply Boolean don’t care optimization via gradient
descent for the approximation of combinational circuits. The proposed framework
SALSA transforms the approximate logic synthesis to a traditional logic synthesis
problem that can use the existing synthesis tools to generate "correct by construction"
approximate circuits. A user-defined quality constraint circuit is to be constructed
for any given circuit to be synthesized. This demands for domain-specific expertise
since the so-called Q-function required to have quality constraints encoded inside it.
The quality constraints are then evaluated exhaustively to recognize the set of don’t
care inputs which can then be simplified via the traditional synthesis tools.
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Chapter 3

MCTS-based Framework for
Approximate Accelerator Synthesis

3.1 Chapter overview

This chapter is organized in two main parts. In the first half, a comprehensive frame-
work for automated synthesis of Approximate Accelerator Circuits (AxACs) from ei-
ther structural or behavioral descriptions is proposed. The framework adapts Monte
Carlo Tree Search (MCTS), as a stochastic search technique, to deal with the large
Design Space Exploration (DSE), which enables a broader range of potential possible
approximations through lightweight random simulations. The proposed framework
is able to approximate the design Pareto set even with low computational budgets.
Experimental results highlight the capabilities of the proposed synthesis framework
by resulting in up to 61.69% energy saving than the exact circuit while maintaining
the predefined quality constraints.

Later in the second half of the chapter, a joint work with other colleagues from
our group on the development of CIRCA (an open-source AxAC synthesis frame-
work) is presented. The motivation behind CIRCA is to provide a framework on
which new approximation, search, and validation techniques can be rapidly devel-
oped and evaluated. To demonstrate the modularity and generality of CIRCA, and
also to show how MCTS algorithm can be plugged in to any generic AxAC syn-
thesis framework, we implemented MCTS as a search method in CIRCA, coupled
it with a formal verification flow, and performed experiments to compare multiple
search techniques and two different approximation methods (precision scaling and
And-Inverter-Graph rewriting) on a larger set of benchmarks. Experimental results
with CIRCA reveal important insights about the role of search and approximation
methods on the quality of the AxACs generated.

The results of CIRCA framework in general show that even with a very small
computational budget (100 iterations), MCTS was able to achieve better performance
than a greedy-based method, and close to the simulated annealing search method in
most cases. However, with too small computational budget, MCTS was not able to
collect sufficient statistics to train its selection policy and thus its performance re-
sembled to that of random sampling. It should be noted that the experimental setup
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of CIRCA was substantially different than the MCTS-based framework proposed in
the first half of this chapter and so were the competing search methods in both cases.
Further, we believe that selecting a reasonable computational budget has strong im-
pact on MCTS’ performance. To this end, we provide some further discussion at the
end of Section 3.3 to discuss the dissimilarities between the two setups and how the
choice of a search budget and other parameters can affect the performance of MCTS.

In the following, the main contributions of this chapter are listed:

• An MCTS-based framework is proposed that presents a new success for effi-
ciently handling the problem of DSE for automated AxAC synthesis even with
a tight computational budget.

• The underlying search technique is modified to prune all the combinations that
are not promising for the target design in terms of quality. Using this, it avoids
the combinatorial explosion of inadequate possible approximations.

• The benefit of using the proposed MCTS-based framework is validated in cir-
cuit energy and area for five widely used benchmark accelerator circuits in var-
ious embedded applications. We also compare the obtained results with that
of other AxAC synthesis tools to illustrate the effectiveness of the proposed
framework.

• The proposed search technique is implemented in a modular and flexible open-
source framework CIRCA and is evaluated with two other search techniques
with two different approximation methods on a larger set of benchmarks.

The remainder of this chapter is organized in three sections. First, Section 3.2
provides the details of the proposed MCTS-based framework and experimental re-
sults. Second, we provide details of the open-source framework CIRCA along-with
comprehensive results of MCTS with other search techniques in Section 3.3. At the
end of this section, we provide a detailed discussion about the impact of search bud-
get on the performance improvement offered by MCTS. At last, in Section 3.4 we
conclude the chapter and discuss future directions.

3.2 Proposed MCTS-based framework for approximate ac-
celerator synthesis

This section explains the proposed framework for synthesis of AxACs. First, we de-
scribe the work-flow of the proposed framework. This is followed by a brief review
of the MCTS algorithm and the explanation of its modifications to be used in the
proposed framework.
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3.2.1 Overview of the framework

The overall flow of the MCTS-based AxAC synthesis framework is illustrated in Fig-
ure 3.1. The framework is fed with the behavioral or structural description of the ex-
act circuit. The framework exploits an HDL parser [63] in order to identify the target
operations and operands for approximation (the preprocessing step in Figure 3.1).
As a result, the obtained parsing tree is later modified by the search engine to gen-
erate a set of AxACs. In our framework, we use the approximate transformations
such as precision reduction for arithmetic operations and memory elements, broken
carry chain (e.g., ACA [37]) for additions and multiplications, operator relaxation
(e.g., partially or completely replacing additions with OR or XOR operations) and
loop unrolling (which uncovers the possibilities for further approximations for be-
havioral descriptions).

The DSE phase of the framework starts with extracted components being config-
ured as the root node of the search tree by the MCTS engine shown in Figure 3.1. A
new approximate design variant is then generated by applying an available approx-
imate transformation that is selected from a component library containing approxi-
mate modules. This design variant is evaluated with a batch of test vectors selected
randomly from the training dataset. At the end of each test, the framework evaluates
the quality of the obtained AxAC through a statistical hypothesis testing using the
student’s T-test [64]. For a user-defined error boundary such as Er and a confidence
level such as Cl, the problem is formulated as the following:H0 : training error > Er

H1 : training error < Er
(3.1)

where H0 and H1 are the null and alternative hypotheses, respectively. To be sure
that the error of the approximation remains within the boundary, the null hypothesis
is evaluated by using a batch from training set. By comparing the probability value
for each batch regarding to the Cl value, we can evaluate that the null hypothesis
remains true or not. In each iteration, we update the result of the search tree based
on the conclusion of hypotheses over each batch. If the design fulfills the quality
criteria, it is added as a node in the search tree. The node keeps the circuit config-
uration of the design variant, the error value and a number of MCTS specific data
fields (explained in the next subsection) that are: reward value, number of visits,
and pointers to the parent and children nodes. The search engine iteratively con-
tinues to build the tree until the computational budget assigned to it is exhausted.
The result of the search engine is the set of approximate variants with various circuit
characteristics. The set of approximate variants is further evaluated using additional
quality metrics to find a set of promising approximate designs (post-processing step
of Figure 3.1). This is done to avoid over-fitting of approximate design to the in-
put data. This process is then followed by circuit synthesis, determining area, delay
and power consumption. The suitable design candidates are presented as the set of
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Figure 3.1: Overview of the proposed framework.

approximated Pareto points to the designer.
In the following section we provide the details of the adapted MCTS-based frame-

work and discuss the modifications to improve the performance of MCTS in AxAC
synthesis domain.

3.2.2 MCTS and its adaptation to the accelerator circuit synthesis

MCTS is a popular learning-based stochastic search algorithm that uses random
lightweight simulations to intelligently build a search tree. In the recent past, MCTS
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has received an ample amount of attraction due to its success in the domain of games
and a wide variety of other search-based problems such as automated story gener-
ation and planning [65, 66]. The ability of MCTS to provide efficient DSE and a
balanced tree selection policy makes it an obvious choice for the synthesis problem
which has a very large branching factor.

However, the conventional MCTS algorithm [65] needs substantial modifications
in order to be applied to the accelerator circuit synthesis problem due to a number
of reasons. First, the simulation time of a circuit instance in comparison to the games
(e.g., Computer Go) is very large. A play-out in Go for example, completes in a few
microseconds where as the cycle-accurate simulation for even a small circuit could
take up to a few seconds. Also, unlike a definitive win or loss reward, the reward
value for a circuit instance is based on circuit characteristics (area or power) or qual-
ity (error). Finally, the design space may contain certain approximation choices that
can lead to large errors and therefore, further approximations from those choices
onward will not provide any benefit. This is not the case in the games where some
initial bad moves can still lead to a win. The modifications done to the conventional
MCTS to use it for accelerator circuit synthesis problem are discussed in detail at the
end of this section.

The detailed flow of the proposed synthesis framework is represented in Algo-
rithm 1. The algorithm initiates with the description of the original circuit and builds
a search tree in which the branches represent different approximation paths and the
leaf nodes specify AxAC instances. In each iteration, a circuit instance is selected in
the search tree (or added if it is the first iteration). One of the exact operators in this
circuit instance is replaced with the approximate operator to produce an approxi-
mate version of the circuit. The new AxAC then is added to the search tree (the blue
node in Figure 3.2).

The next step is circuit simulation in which a random play-out has to be run.
In the game domain, the random play-out means applying actions in random se-
quences to reach a terminal state (the state which finishes the game). The play-out
results in a reward value which in turn is an indication whether the play-out resulted
in a win, loss or draw situation. For a circuit instance though, this means the circuit
instance undergoes a validation with a random test set and then the reward value is
estimated on the basis of its circuit characteristics. The circuit instance is added to
the search tree if the error is under the maximum allowed error εmax(the green nodes
in Figure 3.2); otherwise it is marked as a dead node (the red nodes in Figure 3.2) in
the search tree (Algorithm 1- line 18).

Finally, in the update step the error value (ε) is then updated for the newly added
circuit instance in the search tree (Figure 3.2: Update step). This will complete one
iteration of MCTS and depending upon the computational budget, the search tree
continues to grow with each iteration. The algorithm terminates when the compu-
tational budget assigned to it is exhausted.



30 Chapter 3. MCTS-based Framework for Approximate Accelerator Synthesis

a) Selection b) Expansion

c) Simulationd) Update

or ?

Dead nodeDead nodeRoot nodeRoot node

Active nodeActive node New child nodeNew child node

Selection pathSelection path

Update path

Dead nodeRoot node

Active node New child node

Selection path

Update path

Dead nodeRoot node

Active node New child node

Selection path

Update path

Repeat until search budget expires

+

+

- +

+

+

Approximate
Accurate

Circuit instance

+

+

- +

+

+

Approximate
Accurate

Circuit instance

Figure 3.2: Major steps of the MCTS algorithm in the proposed framework.

To have a control on the number of branches in the search tree, we use a deci-
sion function (explained in the following subsection) that determines the number
of branches to add at each exact operator location by looking at already available
branches and the total number of simulations done at that time. This makes sure
that the computational budget is fairly utilized by allowing a reasonable number of
branches in the search tree (Algorithm 1- line 5). The weighted heuristic for pool
components can guide the expansion step to select promising approximate opera-
tors (Algorithm 1- line 9). In addition, node pruning is used to cut the branches that
violate the error constraint ε (Algorithm 1- line 13).

In the following, we briefly explain the modifications in our MCTS search engine
for the synthesis of AxACs.

Selection policy

The selection policy in the MCTS plays an important role in building the search tree.
The Upper Confidence Bound applied to Trees (UCT) is the most common formula to
select the child node in the search tree [67]. It selects the child node i that has the



3.2. Proposed MCTS-based framework for approximate accelerator synthesis 31

Algorithm 1: The MCTS-based synthesis framework
Input: O= Verilog description of the accelerator circuit , M= Computation

budget ,
εmax = pre-defined quality threshold
Output: S={Approximated Pareto set of approximate accelerator circuits Ai}

1 K← Circuit components;
2 Initialize search tree (root.con f ig← K);
3 while M > 0 do
4 node← root;
5 while ( f (S, L)==0 OR node!=leaf) do
6 node← UCTSelect(node.children);
7 end
8 if (node is not fully approximated AND node is not dead) then
9 a← approximation chosen with weighted random heuristic;

10 add nodenew as a child of the node;
11 nodenew.con f ig← update with a;
12 else
13 backpropogate 0 as reward; // Leaf node reached

14 continue;
15 end
16 ε← Simulate nodenew and compute the error (ε);
17 if (ε > εmax) then
18 mark nodenew as a dead node;
19 else
20 calculate the reward R(ε);
21 SActiveNodes ← SActiveNodes ∪ nodenew;
22 end
23 backpropagate the reward R(ε);
24 M← M− 1;
25 end
26 S← Approximated Pareto points from SActiveNodes;
27 return S

maximum UCT value as defined in the following equation:

UCTi =
Wi

Vi
+ C

√
ln(VN)

Vi
(3.2)

where Wi represents the reward value for the current node, Vi shows the number of
visits for the current node, VN shows the number of visits for the parent node, and
C is the exploration constant which takes a small positive value [65].

The UCT formula has an important feature of keeping a balance between select-
ing nodes that proved promising in the previous iterations and the nodes which
have not been explored yet. This property of UCT suits very well to the DSE of ac-
celerator circuit synthesis since it is equally important to explore the new paths in
the MCTS to find new approximation possibilities (exploration) as well as to expand
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the previously explored paths (exploitation) for further approximations.

Search space expansion policy

Since the size of the search space grows exponentially with increasing number of
candidates and transformations (as explained in Section 2.1.2), any heuristic-based
search space exploration algorithm including MCTS would not able to explore whole
search space even for medium-sized accelerator circuits. Given the testing-based
validation times consuming few seconds for cycle-accurate simulations, exploring a
few thousand nodes could take up to hours of computational time. This puts a prac-
tical limit on the number of nodes/iterations that a search algorithm can explore.

Moreover, the branching factor of the MCTS tree depends on the number of avail-
able approximate transformations. For example, for the FIR filter benchmark, we
used 27 adders, 24 multipliers, and 18 register modules as the approximate transfor-
mations. With this large branching factor, it means that MCTS could not get much
deeper in the search tree since conventional MCTS algorithm fully expands a node
before expanding any of its children node. In AxAC synthesis however, it is more
desirable to have nodes that lie deep in the search tree since this would imply that we
get an AxAC with more approximations applied thus potentially more area savings.
Keeping this in view, we have to find a balance between adding new nodes to the
breadth vs. adding new nodes to the depth of the tree. The formulation should also
consider the allocated search budget so that as the search proceeds, deeper nodes
are preferred for expansion. To this end, we introduce a heuristic decision function
f (S, L) to decide whether a new child node should be added to the search tree. The
decision function has a Boolean output and is defined as:

f (S, L) =

1 if Sα

(L+1) > nc

0 otherwise
(3.3)

where S represents the total number of simulations done (number of nodes in the
tree) so far, L represents the depth of the tree at the current node, α ∈ [0, 1] is the ex-
pansion parameter, and nc represents the number of children nodes for the current
node.

In the above formulation, the parameter α can be used to tune the behavior of
the expansion policy of the MCTS. With lower values of alpha, the expansion step
would expand nodes after every few simulations passed, whereas with higher value
of alpha, expansion happens after larger intervals. The former is suitable for lower
computational budget while the latter supports higher computational budget. More
details on the impact of the α and the exploration parameter C on the quality of the
results is further discussed in Section 3.2.3.
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Table 3.1: Benchmark accelerator circuits

Benchmark I/O Candidates Trans.† Area (µ2)* Power (mW)* QoR metric§

Conv_filter 32/32 29 69 16 192.98 8.73 PSNR(≥ 25)

DCT 22/22 100 44 17 088.92 6.62 MSE(<5%)

FIR 32/64 25 69 15 309.82 6.71 MSE(<5%)

FFT 32/32 200 56 94 944.74 19.47 MSE(<5%)

IIR 32/64 45 69 30 093.63 16.83 MSE(<5%)
† Approximate transformations e.g., precision scaling, carry chain reduction.
§ Error metric used for quality of results.
* The area and power of the accelerator circuits were measured using Synopsys Design compiler using a 22nm

technology library

Selection of approximate transformations

The framework also utilizes weighted random heuristic to intelligently select the ap-
proximate transformations. All the transformations have weights computed using
Equation 3.4 which determines their probabilities for the selection during the search
process.

W = γ× Area + λ× Power Consumption (3.4)

where γ and λ are the coefficients that can be set according to a designer’s prefer-
ence.

The area and power of the individual approximate components were measured
using Synopsys Design Compiler with 22nm industrial technology library where
for the power consumption, a uniformly distributed random input workload was
applied.

Reward function

In MCTS for games, the random playout results in win, loss or a draw state which
is then quantified as a discrete value of 1, -1, or 0. This representation cannot be
directly applied to the synthesis problem at hand since the reward of a node in this
case describes the precision of its computation. So, we need a function to map the
error value to the equivalent reward value. This means that the higher values for
measured error (ε) will have small rewards and the lower error values will result
in large reward values. In this way, the reward value can be obtained by applying a
strictly decreasing function over this interval since we only care about the error value
in the interval [0, εmax]. Without loss of generality, we will use quadratic function to
calculate rewards (i.e., R(ε) = (ε− εmax)2).
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3.2.3 Experimental setup and results

Setup of experiments

To evaluate the proposed framework, we applied it to five benchmark accelerator
circuits selected from several domains of applications. These benchmarks are briefly
explained in the following:

• Conv_filter is a configurable convolution filter commonly used for various im-
age processing operations such as image sharpening or image smoothing. In
our experiments we used it for image smoothing of 256×256 RGB colored im-
ages.

• DCT is an eight-stage pipelined Discrete Cosine Transform block that has an in-
put of 22-bit fixed-point numbers and performs one-dimensional DCT trans-
formation on the input data. The output is also represented as 22-bit wide fixed
point.

• FIR implements an eight-tap Gaussian low-pass Finite Impulse Response filter,
which is commonly used in the domain of signal processing. It takes a 32-bit
wide data input and provides a 64-bit wide output.

• FFT performs an 8-point Fast Fourier Transform operation which is a common
processing block for signal and image processing applications. It accepts eight
data points represented as 32-bit fixed point numbers and provides eight out-
put 32-bit fixed-point values.

• IIR implements an Infinite Impulse Response filter that accepts 32-bit wide input
data and produces 64-bit wide output data.

Detailed characteristics of each benchmark are shown in Table 3.1. Number of
candidates and transformations refer to the total number of exact operators which
are to be targeted for the approximation and the number of available approximate
operators with different energy/area trade-offs, respectively. It also shows the orig-
inal area and power consumption of each benchmark. Each accelerator circuit is
evaluated by a dataset which is used both during synthesis process for quality eval-
uation and after synthesis for design validation purposes. The datasets are gener-
ated through uniform distribution of random numbers over the whole input range.
The quality evaluation is achieved via random sampling, described in Section 3.2,
by using a batch size of 2000 samples for training data in each epoch. This will guar-
antee that the obtained approximate variants do not over-fit to a specific dataset. We
certify the validation results through statistical student’s T-test with a Cl of 95% to
provide the statistical guarantee about the quality of generated circuits.

We implemented the proposed MCTS core in C++. The core wrapped by several
Python-based modules altogether make a custom tool for the synthesis of AxACs.
The modules evaluate the benchmark circuits to identify the candidate nodes for
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Figure 3.3: Energy savings comparison obtained for various benchmarks using the

proposed framework.

approximation, provide approximate instances of the target benchmarks and also
connect the core to a standard CAD tool flow which includes Mentor Graphics Ques-
taSim and Synopsys Design Compiler. Moreover, a 22 nm industrial technology library
was used in our experiments. In our framework, only the computational parts of the
data-path are used for approximation, and the control parts are left unchanged. The
experiments were run on a computer equipped with two Intel® Xeon® X5650 pro-
cessors with 47 GB of memory and running CentOS (release 6.7) operating system.

Results and discussion

Figure 3.3 represents the energy savings of the proposed framework over the five
benchmark accelerator circuits and compares its results with those of three other
competitors (ABACUS, ABACUS+NSGA-II, and IDEA discussed in Section 2.2). All
techniques were given the same computational effort in terms of the number of it-
erations. A total of 10,000 iterations were run for the FIR and IIR designs and 1,000
iterations were run for convolution filter, FFT filter, and DCT block. The average
run time per iteration was 14, 15, 518, 203 and 172 seconds for FIR, IIR, convolution
filter, FFT, and DCT respectively on a 2.67 GHz Intel® Xeon® X5650 processor with
47 GB of RAM. The values of λ and γ are selected as 0.5 each in all experiments.
The hyper parameters C, and α were respectively selected as {2, 1.5, 0.5, 0.5, 0.5} and
{0.35, 0.35, 0.20, 0.15, 0.15} for FIR, IIR, convolution filter, FFT and DCT benchmarks.
This hyper-parameter assignment allows the search to reach the maximum number
of approximations under the predefined quality constraint. The parameter C pro-
vides a balance between exploration and exploitation of the search tree and can be
experimentally found and tuned to get a trade-off between finding new search paths
or to go deeper in the existing paths [65]. The parameter α controls the number
of children nodes at each level. Higher values of alpha would allow the addition
of more children nodes resulting in more approximate candidates to choose from
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in case the computational budget is higher. Lower values, however, can be set to
achieve the same approximation level under a tight computational budget. For ex-
ample, we observed that a higher value of α such as 0.45 would force the MCTS to
add large number of branches to the search tree and the MCTS will not be able to
go deeper in the search tree. On the other hand, a smaller value (such as α = 0.05)
would make the MCTS go deeper quickly in the search tree but reduce the chance of
adding more approximation branches.

The hyper parameters of the other techniques were also selected to achieve the
best results in terms of both the maximum number of possible approximate trans-
formations and energy/area savings. For example, we used 25 generations using
ABACUS for the FIR circuit, which were then followed by 40 approximate trans-
formations in each generation. The results then were selected among the obtained
variants with best energy and area saving. Our proposed framework presents better
energy savings than others by reaching 32.08%, 61.69%, 11.46%, 24.97%, and 9.65%
savings for DCT, convolution filter, FIR, FFT, and IIR, respectively. Figure 3.4 also
represents the area saving of each technique over the five benchmarks. Our tech-
nique outperforms the others by reaching up to 5.51%, 5.09%, 1.99%, 5.34%, and
1.25% area reduction for DCT, convolution filter, FIR, FFT, and IIR, respectively.

Figure 3.5 also shows two representative samples from our training set (first row)
and testing set (second row) used for evaluating the approximated convolution fil-
ter. Here, the filter was configured to generate blurry images. Figure 3.5-a, and d
represent the original images given to the filter. Figure 3.5-b, and e represent the ob-
tained outputs from the original hardware filter. Both cases represent a high PSNR
value (> 60 dB) related to tiny truncations of input data since the filter exploits a 32-
bit fixed point (24 bits for fractional parts) number format. Figure 3.5-c, as a member
of training set, just shows the PSNR value of 42.01 dB for the obtained filter with 29
approximations. Figure 3.5-f also depicts a sample of the test set which results in the
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Figure 3.5: Samples of images from the training (a-c) and testing (d-f) sets for the
convolution filter benchmark.

PSNR value of 25.32 dB.
We also experimentally evaluated the impact of the framework hyper-parameters

on the quality (i.e., error) and the characteristics (i.e., energy consumption and area)
of generated AxACs. For this purpose, we performed experiments with different
values for expansion parameter (α) and exploration constant (C). For each pair of
(α, C), we performed AxAC synthesis for FIR benchmark with the budget of 10,000
iterations. Among the generated circuits, the one with higher number of approxi-
mate transforms, and more power/area saving in the design space was selected as
the outcome of the framework. Figure 3.6 shows the impact of these parameters on
the generated circuits. A larger value of the α (selected form [0, 1]) causes the search
engine to spend more budget to find a better approximate transform for each circuit
node. Therefore, the search budget may exhaust before visiting a large portion of
nodes that could possibly be approximated. Besides, the high value of the C param-
eter forces the framework to increase the number of searches for finding the optimal
transformation of the nodes visited few times so far. For α=0.45 only 17 transfor-
mations among 25 possibilities can be reached even with the minimum C value of
0.5 (Figure 3.6-a). That is why the design space is dedicated to more precise circuits
with lower power and area savings (Figure 3.6-b and c). Alternatively, a smaller
value for the parameter α forces the framework to find approximate transformations
for higher number of circuit nodes with just a small budget. Consequently, more
power and area savings can be obtained at the cost of a larger precision loss. The
designer then can trade off among quality, optimization budget, and circuit charac-
teristics by tuning these parameters.
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Figure 3.6: Impact of hyper-parameters (α and C) on area, power and precision of
FIR benchmark circuit.
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3.3 Towards a modular and flexible framework CIRCA

This section presents a joint work on CIRCA — an open-source framework — done
in collaboration with other colleagues of computer engineering group of Paderborn
university namely: Linus Witschen, Tobias Wiersema, and Hassan Ghazemzadeh
Mohammadi. The contributions made by this thesis in the joint work of CIRCA
framework are given below:

• This work contributed on the discussions leading to the concept of an open-
source, extensible framework for synthesis of AxACs that could facilitate eval-
uation of different approximation and validation methods.

• This work contributed on the integration of the MCTS search method inside
CIRCA.

• This work evaluated MCTS search on CIRCA and compared with two other
search methods, and with two different approximation methods.

CIRCA is an open-source framework for rapid development and evaluation of
AxAC synthesis techniques. CIRCA is modular and flexible so that new approxi-
mation, search and testing/verification techniques can be rapidly prototyped and
evaluated.

3.3.1 Motivation behind development of CIRCA

The analysis of related search-based frameworks in Chapter 2 and the attempt to cat-
egorize them has shown that all these approaches have been developed for specific
accelerator circuit types and limited approximation techniques. In particular, circuit
generation is typically described as a monolithic block with interwoven phases for
approximation, search, and assuring quality. Moreover, only few frameworks are
openly available for experimentation. This situation severely hampers the develop-
ment and evaluation of new techniques for approximating accelerator circuits, and
the comparison to existing ones.

The proposed framework CIRCA aims to overcome these limitations and pro-
vides a flexible environment for AxAC generation. CIRCA is an attempt to provide
a whole set of features that were missing from the existing frameworks. In particular,
CIRCA fulfills the following technical requirements:

• General: The framework is not restricted to certain circuit types, error metrics,
approximation and search techniques, or specific target technologies.

• Modular: The framework architecture enables the exchange of certain process-
ing steps without affecting other steps.
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Figure 3.7: Architecture of the CIRCA approximation framework.

• Compatible: The framework, in particular its inputs and outputs, connect to
other, widely used academic and commercial front-end and back-end tools,
e.g., tools synthesizing accelerator circuits for ASIC or FPGA technology.

• Extensible: The framework facilitates the swift implementation and evaluation
of new techniques.

Additionally, the framework satisfies the community requirement:

• Open-source availability: The framework is publicly available1 and allows other
researchers to use, modify, and extend it.

3.3.2 Concept and architecture of CIRCA

Figure 3.7 shows the architecture of the CIRCA framework. We have developed the
architecture with the key features for a flexible approximation framework in mind,
namely generality, modularity, extensibility, and compatibility. CIRCA divides into
three stages: the input stage, the QUAES stage, and the output stage. The input
and output stages frame the QUAES stage and prepare user-supplied circuits for
approximation, report on the approximation results, and ensure compatibility be-
tween different front-end and back-end tools and the QUAES stage.

Input stage

The input stage fulfills two main tasks, preprocessing the input design for the ap-
proximation process and ensuring compatibility to external formats and tools. In
preprocessing, the input stage has to identify a set of sub-circuits within the original

1CIRCA is available under: https://go.upb.de/circa

https://go.upb.de/circa
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design which is amenable to approximations, e.g., arithmetic components such as
adders and multipliers. This set of sub-circuits is denoted in CIRCA as candidate set.
Suitable candidates can either be identified by a designer through code annotations
in the original design (as indicated in Figure 3.7) or by automated methods. Fur-
thermore, the input stage reads in the user-provided CIRCA configuration file that
specifies the functionality of the stages and blocks as well as the test vector set that
is required for testing-based quality assurance. The input stage also provides com-
patibility between CIRCA’s approximation process in the QUAES stage and formats
used by external tools, e.g., ABC [68] and Yosys [69].

The QUAES stage

The Quality Assurance, Approximation, Estimation, and Search Space Exploration
(QUAES) stage is the main stage for generating AxACs, and is designed to imple-
ment iterative, search-based approximation approaches with different approxima-
tion techniques and both formal verification and testing for circuit validation. In the
QUAES stage, the candidates are subjected to approximation and different approx-
imated versions of the candidates will be generated. We denote an approximated
version of a candidate as variant and the overall circuit with instantiated variants for
the candidates as circuit configuration or node.

Through splitting QUAES into four independent blocks i.e., quality assurance,
approximation, estimation, and search space exploration, CIRCA facilitates the clear
distinction between tasks and allows the exchange of methods in one block without
affecting the other blocks. Since CIRCA targets search-based approximation pro-
cesses, search space exploration acts as the central control block of the QUAES stage,
invoking the other blocks whenever necessary.

In each iteration of the search, the select step receives a set of circuit configura-
tions, each with an annotated vector of estimated parameters, and selects the next
configuration to be further considered, i.e., to be expanded. The selection procedure
relies on a certain search heuristic. The expansion step generates possible approx-
imation variants from the selected nodes through approximation block. The set of
new nodes after expansion step are added to a list that keeps nodes that are yet to be
validated. The evaluate block can then use the statistics provided by the estimation
block to rank the nodes according to the heuristic criteria of the search algorithm.
The search continues with the select step. The termination criteria of search can
be specified according to the algorithm e.g., the greedy algorithm terminates when
there are no more nodes providing less area than the current node.

The quality assurance block provides the validation of the circuit configuration,
denoted as Circuit-under-Test (CUT), sent from the select step of search. Here, ei-
ther formal verification or testing can be employed to decide if the CUT satisfies the
quality constraints and passes the quality assurance check. While approaches based
on formal verification lead to conceptually much stronger statements about quality
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than testing, they also tend to very long run-times. For testing, a set of test vec-
tors can be provided to CIRCA via the input stage. Quality assurance procedures
can then apply all these vectors or a randomly selected subset to a circuit-under-test
(CUT). In the current state of CIRCA, testing has not been implemented yet, there-
fore the results presented in Section 3.3.5 were obtained with formal verification as
the only available validation technique. The testing component however is the part
of the CIRCA concept and is planned to be implemented in future. For formal ver-
ification, we use an approximation miter like the one mentioned in [14]. Following
the terminology of [17], we denote the approximation miter as sequential quality
constraint circuit (SQCC). The quality constraints are provided by the user as inputs
to CIRCA and are defined by appropriate error metrics with corresponding error
thresholds. If the CUT fails the quality assurance check, the select procedure will,
depending on the employed search algorithm, either abort the search or pick the
next best circuit configuration for validation. In the latter case, the search terminates
if there are no more valid configurations. If the CUT passes validation, the expand
procedure grows the search space by calling the approximation block to create new
circuit configurations by applying certain approximation techniques.

The approximation block receives a set of circuit configurations with candidates
indicated for approximations. CIRCA allows multiple approximation techniques
to be employed during the approximation process. Currently, two approximation
techniques are implemented: precision scaling (PS) and approximation-aware AIG
rewriting (AIG) [14]. Both AIG, carefully following the descriptions in [14], and
PS have been implemented into the widely used ABC tool [68] to have both tech-
niques available in a tool which provides a broad range of synthesis, optimization,
and verification functionality. The approximation can also access a component li-
brary with approximated sub-circuits, which is beneficial for two reasons: First, it
is rather likely that one circuit component will be approximated for several times.
This happens when the overall circuit contains identical candidates, e.g., multiple
occurrences of an 8-bit unsigned adder. Storing the approximated versions of such
components, i.e., generating a component library on-the-fly, and retrieving them the
next time can greatly save computations. Second, CIRCA can leverage already ex-
isting libraries of approximated components, e.g., [38, 46]. Such libraries could be
provided as an input to CIRCA by the user.

The circuit configurations are then passed on to the estimation block and, at the
same time, the approximated variants for the candidates are stored in a library of
approximated components for later re-use. The estimation block receives a list of
circuit configurations with newly approximated component variants and estimated
target metrics of interest. Currently, CIRCA uses ABC’s if command to estimate area
parameters for FPGA 4-LUT architectures. The parameters are stored in the circuit
object and can be used for further processing. The evaluation step determines esti-
mated values for parameters of interest. Typically, these parameters cover metrics
related to area, delay, and power consumption but can also include estimates for the
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error metrics.

The output stage

The output stage performs post-processing on these circuit configurations. Depend-
ing on the CIRCA configuration, the output stage either returns the best approxi-
mated circuit, which is the circuit that respects the error constraints and minimizes
some user-defined parameter such as area or energy, or provides an approximated
Pareto-filtered set of approximated circuits for further analysis and consideration.
The output stage also connects to back-end synthesis tools for actual circuit imple-
mentation, such as Synopsis Design Compiler for ASIC technology or Xilinx Vivado
for FPGA implementation.

3.3.3 Search space exploration methods in CIRCA

The modular structure of CIRCA allows developers to implement any heuristic search
algorithm using the abstract classes and method provided in the current implemen-
tation. Currently, the CIRCA framework includes three search methods: hill climb-
ing (HC), simulated annealing (SA), and Monte Carlo tree search (MCTS).

Hill climbing (HC)

Greedy hill climbing (HC) has been used as one of the most common search meth-
ods to solve optimization problems [70, 71]. In CIRCA, HC is implemented as a
greedy method to minimize hardware area. Starting from an initial point in the
search space — in our case the original circuit root — HC iteratively moves in the di-
rection of the most negative difference, i.e., the decisions are only depending on the
current state. In case the most negative node is found to be invalid by the validation
block, it picks the next best node until it finds a valid node to expand. The expand
step then generates all children nodes for the selected node and perform approxi-
mation. The estimate step then provides parameters of interest for each node such
as area and power. HC then reiterates from the select step. HC terminates when no
more valid nodes are available to select from.

An obvious drawback for HC is that the search terminates once it reaches a local
minimum. Thus, it is not guaranteed to find a global minimum.

Simulated annealing (SA)

Simulated annealing (SA) has been adapted from a phenomena from matter physics
involving heating and controlled cooling of a material [72]. SA has been used as
a probabilistic search method to solve combinatorial optimization problems by ap-
proximating a global optimum under a given runtime constraint. In each iteration,
first, a random node from the available nodes is selected in the select step. Then,
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the acceptance of the selected node is determined in the following way: A node im-
proving the target metric is always accepted for selection. Nodes which worsen the
target metric might also be selected to allow for the exploration of the search space.
A worse node is accepted under the criteria:

random[0, 1) < e−
∆D
T . (3.5)

T is the current simulated temperature, and ∆D is the change in the target metric,
where ∆D is positive for a worse new node.

Initially, the simulated temperature T is high, i.e., worse nodes are more likely to
be accepted. During the search, however, the temperature cools down at the rate α.
The temperature is updated after reaching thermal equilibrium ξ at each temperature.
A lower temperature leads to a lower probability of worse nodes being selected,
i.e., SA moves from exploring the search space at the beginning of the search to
moving towards better solutions at the end of the search. Once the temperature TMin

is reached, SA terminates.
We assume that increased error constraints lead to larger savings in the target

metric hardware area. Thus, in the expand step, only the children of the current node
are considered in the open-list which guides the search in the direction of lower qual-
ity constraints or higher error constraints, respectively. The search space is pruned
by prohibiting moving towards the parent nodes; thus, avoiding a search space ex-
plosion.

Monte Carlo tree search (MCTS)

MCTS is an intelligent search algorithm that incrementally builds a search tree with
a balanced selection policy. The current versions of MCTS algorithms, which are
widely used in domains such as games, require a slight modification to be fitted for
the domain of AxAC synthesis (Section 3.2). For instance, the simulation time to
validate the quality of a circuit instance is very long in comparison with the other
domains2. This prohibits the possibility of evaluating the current search node by
knowing the quality of a subset of probable future nodes originating from here. Con-
sequently, the evaluation of each node is performed independently.

The detailed steps of our proposed MCTS are represented in Algorithm 2. We
incrementally form a search tree in which a branch represents an approximate trans-
formation and a node specifies an approximate circuit instance, as before. In the
Selection step the tree is always traversed from the root node, selecting the node with
the maximum Upper Confidence Bound applied to Trees (UCT) value in each level (recall
the UCT formulation from Section 3.2).

2For example, a playout in Computer-Go took just a few micro seconds while the validation of a
small size circuit like FIR could take up to a couple of minutes.
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Algorithm 2: MCTS algorithm in CIRCA framework
Input: O= Verilog description of the accelerator circuit , M= Simulation budget ,
εmax = pre-defined quality threshold
Output: A={Approximated instances satisfying quality constraints}

1 while M > 0 do
/* Selection step */

2 if isEmpty( open_list ) then return A;
3 cn← root;
4 while cn.expanded do
5 if isEmpty( getActiveChildren( cn )) then
6 backpropagate( cn, Nreward ); // Dead end

7 break;
8 else
9 cn← UCTSelect( getActiveChildren( cn ));

10 if !isExpandableNode( cn ) then continue;
11 closed_list.add( cn );
12 open_list.remove( cn );
13

/* Validation step */

14 cn.valid← quality_assurance.validate( cn, εmax );
15 if (cn.valid) then
16 A.add( cn );
17

/* Expansion step */

18 children← generateChildren( cn );
19 filter( children, open_list );
20 filter( children, closed_list );
21 cn.children← children;
22 open_list.add(children);
23 cn.expanded← true;
24

25 approximation.approximate( children );
26 estimation.estimate( children );
27

/* Evaluation step */

28 reward← computeAreaSaving( cn );
29 backpropagate( cn, reward );
30 else
31 cn.active← false;
32 backpropagate( cn, Nreward );

33 return A;

Next, the quality of the selected node is examined in the Validation step to assure
that the required precision is not violated. Otherwise, a negative reward is again back-
propagated from the current node to the root. If the quality constraint is satisfied, the
Expansion step generates the children of the node. Finally, the reward of the current
selected node is calculated in the Evaluation step by taking into account the savings
in the target metric for the current node. This reward value is then back-propagated
up to the root.

Figure 3.8 gives a complete view of how the MCTS algorithm has been imple-
mented inside the CIRCA framework. The MCTS block of Figure 3.8 is explained
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Figure 3.8: MCTS flow in CIRCA approximation framework.

in Figure 3.9. Here, the root node represents the target circuit that has only three
components that can be approximated. Each child represents a circuit configuration
with one stride from the root. For example, the child with label [1, 0, 0] represents
a circuit instance with one approximate transformation (e.g., 1 least significant bit
truncation) on its first component. In every iteration of MCTS, an approximate can-
didate is selected and evaluated in term of precision quality. If the quality check is
satisfied the node is labeled as a valid node (green) otherwise as a dead node (black
striped). Next, the possible children of the current valid node are added to the search
tree for future iteration. Then, the benefit of the applied approximation on the cur-
rent node is calculated as a reward value and back-propagated to the root node. This
process iterates until the simulation budget of the search is exhausted. Finally, the
best nodes within the tree, i.e., with minimum target metric, are reported.

3.3.4 Bounding the search space

To allow for a search space expansion in a controlled manner, CIRCA differentiates
between global and local quality constraints. Global quality constraints apply to the
circuit configurations. Local quality constraints are constraints on error metrics and
apply to generated variants of circuit components, e.g., the worst-case error of the
variant can be bounded. In CIRCA this happens in the approximation block. As a
result, in the course of the approximation process the variants created for one can-
didate will exhibit a step-wise decrease in accuracy. Naturally, these local quality
constraints do not directly relate to the overall circuit’s quality, which is checked in
the quality assurance block.
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Figure 3.9: Major steps in the MCTS algorithm.

The user can bound the search space by controlling its density and dimension-
ality. The density is given by the distance between directly neighboring nodes in
the search space. CIRCA allows the user to determine the density by setting step
sizes for the local quality constraints. For example, a step size of 0.1% for the local
error metric worst-case error will populate the search space with doubled density
compared to a step size of 0.2%

Furthermore, in each iteration of the search process CIRCA approximates n can-
didates C0, . . . , Cn−1 of a circuit configuration by applying to each candidate Ci a
number of ACi different approximation techniques and checking for ECi different
local error metrics. These parameters span the dimensions of the search problem.
Overall, the total number of dimensions D of the search space is given by Equa-
tion 3.6.

D =
n−1

∑
i=0

ACi × ECi (3.6)

By setting appropriate values for n, ACi and ECi the user limits the complexity
of the search problem. For example, for the experiments presented in Section 3.3.5
we use ACi = ECi = 1 ∀i = 1 . . . n with n ranging between 2 and 23, as denoted in
Table 3.2.

3.3.5 Experimental setup and results

CIRCA is an open-source software and mainly being coded in Python, following
the style guide for Python, PEP-8 [73]. The input stage, the output stage, and the
QUAES’ processing blocks (quality assurance, approximation, estimation, and search
space exploration) are implemented as classes or abstract base classes. During the
setup phase, information from the configuration file is either used to set class at-
tributes accordingly or to instantiate the appropriate subclass for the abstract base
class. The concept of abstract base classes and abstract methods is used in CIRCA
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Table 3.2: Sequential benchmark circuits

Benchmark Bit-width # Candidates Area§ QoR

butterfly [74] 32† 7 19 038 WC error (%)
fir_8tap 67 15 12 401 WC error (%)
fir_pipe_16 [75] 18 23 8935 WC error (%)
pipeline_add [76] 40 2 572 WC error (%)
rgb2ycbcr [77] 24‡ 5 4981 WC error (%)
ternary_sum_nine [76] 20 4 1484 WC error (%)
weight_calculator 12 4 2272 WC error (%)

§ Number of 4-LUTs after mapping with ABC.
† Concatenation of real and imaginary part.
‡ Concatenation of three channels, each 8-bit wide.

to guide developers through the implementation of new methods and to highlight
methods required by CIRCA’s approximation flow explicitly.

Setup of experiments

For experimentation, we have selected seven sequential circuits (Table 3.2) from
our compiled publicly available benchmark suite PaderBench3 and manually an-
notated adder and multiplier components in the data path as approximation can-
didates. CIRCA has been set up to vary the worst-case error bound from 0.25% to
5.0%, expressed in percentage of the circuit’s maximum possible output value, to
employ formal verification with ABC’s dprove for assuring quality and the hardware
area as target metric. Moreover, we have systematically experimented with all three
search methods HC, SA, and MCTS in different parametrization and with precision
scaling (PS) and And-Inverter-Graph rewriting (AIG rewriting) as approximation tech-
niques.

We have run the approximation flow five times for each benchmark circuit and
determined the averages as representative results. The experiments have been per-
formed on a compute cluster which runs Scientific Linux 7.2 (Nitrogen), comprises
nodes with an Intel® Xeon E5-2670@2.6GHz (16 cores) and from 64 up to 256 Giga-
byte main memory, of which it provides 2 Gigabyte main memory and one core per
job, i.e., single Benchmark run.

Table 3.2 elaborates on the characteristics of these benchmark circuits, which are
the output bit widths, the hardware area in terms of number of used FPGA 4-LUTs
as reported by ABC [68], and the number of manually identified candidates for ap-
proximation. The selected sequential circuits represent accelerators from various
application domains ranging from small arithmetic blocks to complex data-paths
and are briefly described as follows:

3http://go.upb.de/paderbench

http://go.upb.de/paderbench
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• butterfly is the basic operation in the FFT/DFT, which is used in many signal
processing applications. It takes two 32-bit wide complex numbers and a 32-
bit twiddle factor as input and returns the result of computation as a 32-bit
complex number [74].

• fir_8tap implements an eight-tap Gaussian low-pass FIR filter, which is com-
monly used in the domain of signal processing. It takes a 32-bit wide data
input and provides a 67-bit wide output.

• fir_pipe_16 is a 16-tap FIR filter [75] that uses pipelined blocks to increase the
throughput. Both the input and output are 18-bit values.

• pipeline_add [76] is a pipelined adder circuit that takes two 20-bit numbers as
input and gives a 20-bit sum as output.

• rgb2ycbcr is a module in the JPEG encoder [77] that performs a color space
transformation. It takes a 24-bit RGB value as input and provides a 24-bit wide
output which represents the YCbCr color space value.

• ternary_sum_nine is an adder tree [76] that performs an addition of nine binary
words using four adder chains. Its input comprises nine values to be added,
each 16-bit wide, and the output is a 20-bit value containing the sum.

• weight_calculator is a simplified version of an industrial scale weight calculator
which is used to control the hoppers of a multi-head weigher. It reads an input
value stored in RAM and provides outputs to control the hoppers. For veri-
fication purposes a 12-bit output that represents the combined weight of the
hoppers is used in our experiments.

Results

We evaluated the impact of the search and the approximation methods on the men-
tioned benchmarks. For fair comparison, multiple configurations of the search meth-
ods were generated through setting different values of parameters. The parameters
include for example the exploration parameter of MCTS (C) and Equilibrium for
SA method among others. The area saving results presented in this section repre-
sent the best results obtained for a search method among all configurations. Here
we report the area saving results separately for two different approximation meth-
ods employed i.e., PS and AIG. Furthermore, for current set of experiments, formal
verification was used as a validation technique. In future, it is planned that a testing-
based validation will be added to CIRCA.

Figure 3.10 displays the minimum area obtained normalized to the area of the
original circuit over the worst-case error bounds using the PS method. Similarly, in
Figure 3.11 we show the minimum area obtained normalized to the original for same
benchmarks over the worst-case error bounds using the AIG method. Comparing
the approximation techniques over the experiments, we see that PS could achieve
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area savings of up to ≈55 %, while AIG could only achieve area savings of up to
≈25 %. An explanation for the superiority of PS over AIG in our experiments is that
we have selected arithmetic components as candidates. For such components, PS
degrades the accuracy more gracefully than AIG. AIG targets nodes on the critical
path, which usually affects the carry-chain of a multiplier or adder. Approximat-
ing such nodes leads to large errors and, in turn, to the rejection of the variant if
moderate error bounds are applied. PS introduces smaller errors when operating on
the least significant bits of the output vector of a candidate and thus approaches the
error boundaries more carefully.

Figure 3.10 and 3.11 also reveal the impact of employed search method on the
quality of the approximated outcome. Differences in the results can be observed
among the same search methods when parametrized differently, and also among
the different search methods.

For SA, however, increasing the number of allowed iterations does not lead to
significant differences in area savings. On the one hand, this could be caused by
our implementation’s method for pruning off the search space. On the other hand,
fine-tuning the search parameter might lead to further improvements. However, in
general SA performs very well and achieves higher savings than HC — especially,
for the benchmarks pipeline_add and rgb2ycbcr.

MCTS performance lies between HC and SA. For an improved performance,
MCTS needs to compute more iterations. This will allow MCTS to explore more
branches of the search tree to find better solutions. With higher budgets, MCTS will
also be able to trade off between exploitation and exploration. For example, setting
the exploration constant (C) to a higher value will cause MCTS to explore branches
with low visit counts more often, whereas setting C to a low value will result in
MCTS exploiting nodes which proved to be more rewarding in the previous itera-
tions.

Overall, the experiments show that the quality of the result highly depends on
the approximation technique as well as on the employed search method. This un-
derlines the necessity of conducting extensive experiments with different approxi-
mation and search techniques, which is well supported by CIRCA. Furthermore, our
results also point to the fact that the achievable area savings strongly depend on the
input design. Some benchmarks, e.g., butter f ly or f ir_pipe_16, describe challenging
approximation problems for which all search methods could achieve only very small
area savings.

In Table 3.3 and 3.4, we list the average run-times and the average number of
performed iterations of the employed search methods, again for the PS and AIG
methods, respectively. For instance, the entry for the benchmark butterfly under the
error bound of 0.25 % for MCTS elaborates that the particular experiment took three
hours 58 minutes and 24 seconds on average and performed a total of 95 iterations.
The formal verification employed in the quality assurance block has been identified
as the dominating part in the runtime of the approximation flow. The run-times of
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Figure 3.10: Area savings results for different benchmarks using precision scaling
technique against different error bounds with CIRCA framework (continued on next

page).
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Figure 3.10: Area savings results for different benchmarks using precision scaling
technique against different error bounds with CIRCA framework (continued from

previous page).

the approximation processes range from a few seconds up to several days, depend-
ing on the number of verifications performed and depending on the complexity of
the occurring verification problems. However, due to randomness in the taken path
through the search space as well as in the applied approximations, the complexity
of the occurring verification problems may differ. Thus, the runtime of an approx-
imation process may vary even though the same number of verifications has been
performed for the same benchmark circuit, e.g., the butter f ly benchmark for HC
method.

Comparing the run-times of the three search methods reveals that HC often pro-
vides significantly shorter run-times than SA or MCTS. However, as Figures 3.10
and 3.11 show, the area savings were lower on average as well. Furthermore, HC
performs, in general, significantly less iterations compared to SA and MCTS. There
are two explanations to this: The first relates to the way we count iterations. Basi-
cally, we increase the iteration count once a node gets selected. Compared to HC, SA
tends to accept more nodes which naturally increases its iteration count. MCTS per-
forms an iteration when performing back propagation. This leads to more iterations,
although the runtime is not increased significantly. Second, HC might get stuck in
a local minimum quickly. While HC then terminates the search, SA and MCTS con-
tinue with more iterations.
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Figure 3.11: Area savings results for different benchmarks using AIG-rewriting tech-
nique against different error bounds with CIRCA framework (continued on next

page).
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Figure 3.11: Area savings results for different benchmarks using AIG-rewriting tech-
nique against different error bounds with CIRCA framework (continued from pre-

vious page).

3.3.6 Further Discussion

The main purpose of this section is to explain the differences of two setups of exper-
iments provided in this chapter so far. First setup is explained in Section 3.2 and was
part of our proposed MCTS-based framework whereas the second setup is the open-
source framework CIRCA and it is presented in Section 3.3. Moreover, at the end of
this section, we elaborate the role of setting up a reasonable computational budget
for MCTS and show with experimental results that how it affects the performance
metrics.

In MCTS-based framework, we have utilized a wide range of approximation
techniques to generate approximate modules later to be used in the form of an ap-
proximate transformation library. These library components were obtained with
variety of approximation techniques such as carry chain cutting, truncation, etc.
Moreover, approximate transformations were randomly selected with a weighted
heuristics based on their impact on area and power consumption. The MCTS-based
framework was based on a testing approach to validate the intermediate nodes and
therefore it was possible to allocate larger (up to 100×more than allocated in case of
CIRCA) computational budget to MCTS.

The CIRCA framework on the other hand puts a number of limitations that in
turn do not well align with how MCTS grows the search tree. For one, the CIRCA
framework was based on a formal verification flow for validating the intermediate
approximate variants which is an extremely time consuming task and would not
allow MCTS to complete a reasonably larger number of iterations. Second, CIRCA
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Figure 3.12: Area savings results for FIR filter for different search budgets allocated
for MCTS.

would always allow an incremental approximation of the candidates with a step
size (e.g., for an adder or multiplier, by truncating/masking one more bit from the
least significant side) whereas in case of MCTS-based framework, we selected ran-
dom approximate transformations to quickly sample wide range of rewards. With
random sampling of the approximate transformations, MCTS would be able to ex-
hibit the exploration/exploitation trade-off more efficiently. Finally, selection of can-
didates for approximation in CIRCA is always in the same order which leads to de-
terministic results whereas in MCTS-based framework, we allow random selection
of a candidate in each depth level of the search tree.

Due to the above-mentioned differences in the underlying setups, a direct and
fair comparison of the search techniques in CRICA with the frameworks presented
in Section 3.2 was not possible.

To demonstrate the importance of allocating reasonable computational budget
to MCTS, we ran the MCTS-based framework with varying number of search bud-
gets for the FIR filter and observed how it affects the quality of results which is the
hardware area in this case. We represent the results in Figure 3.12 with five differ-
ent configurations of MCTS with computational budgets of 100, 500, 1000, 5000 and
10000 and are shown as five circles in the graph. Each configuration was run for five
times and the hardware area results were averaged. The area savings values for all
configurations are shown on the y-axis and are relative to the original area of the FIR
filter.

It can be observed quite clearly from Figure 3.12 that for extremely lower bud-
gets i.e, 100 iterations, the area savings achieved by MCTS is significantly lower
than the other configurations. The performance of MCTS starts to improve from 500
iterations and onwards. However, the improvement trend slows down after 1000
iterations and onwards. We believe that the reason why there is much less differ-
ence between the results of 1000 and 10000 iterations is the following: after a certain
number of iterations, MCTS typically has collected enough statistics about the tree
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nodes to form regions of search where potentially good nodes are present but at the
same time it starts to spend most of the upcoming iterations in exploration (finding
nodes in unexplored regions) and thus the rate of performance improvement starts
to slow down. Nonetheless, we believe that although there are other factors affect-
ing the performance metrics in a search-based optimization process such as the size
of the search space, types of approximations that we have in the library, or the sensi-
tivity of the candidates to the error propagation, allocating sufficient search budget
is also one of the most important consideration to configure MCTS and must not be
overlooked.

3.4 Chapter conclusion

In this chapter, the application of MCTS for the synthesis of Approximate Accelera-
tor Circuits (AxACs) is proposed. We show applications of MCTS for synthesis of
AxACs via two set of experiments.

In the first part of this chapter, we propose our MCTS-based framework for syn-
thesis of AxACs. The framework is able to approximate design Pareto points by
exploring large design space of AxACs. The underlying MCTS algorithm is tailored
to suit the AxAC synthesis domain. We note several differences that make AxAC
synthesis a different problem than games where MCTS has been primarily applied
and gained great success. We then propose a pruning scheme, a novel expansion
formula, and a reward formulation for MCTS in AxAC synthesis domain. The prun-
ing scheme helps to cut large portions of unnecessary paths in the search tree. The
expansion formula keeps a balance between new nodes added to the tree and the
levels / depth of the tree. The reward formulations maps the quality of the inter-
mediate nodes of the search tree to appropriate reward value for the nodes which
is later utilized to make selection decisions by the MCTS. The framework is then
evaluated with five Verilog-based benchmarks. The results, in principle show that
MCTS is a potentially promising method for AxAC synthesis and provide reason-
ably good results with limited computational budget. It also reveals the efficiency
of the proposed framework by resulting in average energy reduction of 28.99% and
average area saving of 3.83% than the original circuit for a set of popular benchmark
circuits.

In the second part of the chapter, a joint work with the colleagues of our group
is presented. This work contributes to CIRCA, an open-source framework, for rapid
development and evaluation of different search, approximation and validation tech-
niques for the approximate computing community. Through this work, we inte-
grated MCTS in CIRCA and evaluated its performance. The results of integration
of MCTS in CIRCA show that the quality of results greatly depend on the approx-
imation and search methods. Overall, precision scaling performed very well on all
the benchmarks by reaching up to 55% area savings. The performance of MCTS lies
between hill-climbing and simulated annealing. The main reason why MCTS could
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not perform better is too small computational budget allocated to MCTS. Due to the
extremely time-consuming verifications that CIRCA performs to validate the inter-
mediate AxACs, MCTS was able to only perform 100 iterations. Since MCTS uses a
selection policy based on tree statistics to select nodes in each iteration, it requires
sufficiently large number of iterations to be able to make better selection decisions.

Future directions regarding the MCTS algorithm include adding heuristics to
the MCTS-based framework to make the search more intelligent. This also could
for instance, also employ the error propagation information to predict more suitable
approximate operators or nodes in the search tree for subsequent iterations to yield
better approximations. Further, the dynamic adaptation of the MCTS parameters
such as the expansion parameter (α) and the exploration parameter (C) can be done
to change the way the MCTS builds the tree. This could be performed by considering
the characteristics of the circuits and designer expectations. To improve the runtime
and quality of results for the search, a preprocessing step can be added that could
prune unnecessary portion of the search space even prior to start of the actual search.
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Chapter 4

Hybrid Methodology for Synthesis
of Approximate Accelerators

4.1 Chapter overview

This chapter begins with a motivational example that emphasizes on the effective
pruning of the search space for Approximate Accelerator Circuit (AxAC) synthesis.
Further, it proposes a hybrid synthesis methodology based on Monte Carlo Tree Search
(MCTS) for the synthesis of AxACs that efficiently handles the problem of Design
Space Exploration (DSE) as a two-step process. Following that, a comprehensive re-
sults section evaluates the proposed methodology. The major contributions are listed
below:

• We propose a hybrid technique for the synthesis of AxACs that combines ana-
lytical and search-based approximations techniques.

• We adopt a learning-based stochastic search technique i.e., MCTS to sample
promising points of the search space based on the statistics of the previous se-
lections. Moreover, we provide a forest of parallel MCTS search trees without
any need for synchronization resulting in faster DSE.

• We provide our framework as an open-source contribution and make it flexible
and modular to allow its integration with available commercial synthesis tools.

With our proposed hybrid approach, we provide an efficient parallel MCTS im-
plementation based on standard Message Passing Interface (MPI) that can leverage
any high-performance distributed memory compute facility to speedup the AxAC
synthesis process by building up parallel search forest. In our experiments, we ex-
tensively utilize the high-performance compute facilities available at Paderborn Cen-
ter of Parallel Computing (PC2)1 to run the search-based part of our hybrid AxAC
synthesis flow.

1https://pc2.uni-paderborn.de

https://pc2.uni-paderborn.de
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Figure 4.1: Number of valid and invalid nodes in the search space for two example
accelerator circuits.

4.2 Motivational example

Any conceivable approximate instance in the design space, called as a node, is con-
sidered as a feasible solution if it satisfies the required quality, which is then referred
to as a valid node. We measure the number of valid nodes for two circuits, FIR filter
and Ternary sum, which include 17 and 8 components for approximation respec-
tively, and only 3 approximations for each component. As depicted in Figure 4.1-a
and b, the number of valid nodes decreases exponentially as the number of approx-
imations progresses linearly. Typically nodes with more number of approximations
lead towards optimal performance parameters but at the same time, to get to such
nodes (which lie deeper in the search tree), the search process has to proceed se-
quentially by validating the nodes through testing/verification which often requires
more amount of time [18]. However a great deal of computational time can be saved
by directly sampling the desired nodes without invoking time-costly testing/verifi-
cations for nodes with smaller number of approximations. In order to achieve this,
an efficient DSE methodology is required to prune the non-promising nodes, that en-
compasses a few number of approximations and explore the promising remaining
points toward further enhanced performance parameters.

This idea is further explained in Figure 4.2 with a hypothetical view of the search
space growth when approximating an accelerator circuit with nine candidates and
two possible approximations for each candidate. The nodes in the search space are
all different AxACs. The red nodes are the ones which turned out to be invalid (their
error was above the desired quality threshold) after validation whereas the blue
nodes are valid nodes (their error was less than the desired error threshold). The
gray nodes are part of the search space which have not been checked/validated yet.
We also note that the search space shown in Figure 4.2 is divided in to two regions
i.e., Region-I and Region-II with Region-I nodes being in unexplored state. The rea-
son why nodes in Region-I are unexplored is that there is a high probability that
these nodes will be valid (recall examples of Figure 4.1) so instead of invoking time-
costly verification for nodes in Region-I, nodes in Region-II can be sampled and the
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Invalid nodes
Valid nodesRegion II

Region I Search 
space

Unexplored nodes

Figure 4.2: Hypothetical design space of a circuit with only 2 possible approxima-
tions and 9 candidates. Each node represents an approximate instance. Closer nodes
to the root include fewer number of approximations (Region I), while the deeper
nodes of the tree have more number of approximations (Region II). Parallel explo-
ration of design space targeting nodes in Region II can considerably improve the

runtime of the synthesis process.

search can begin directly from there. Of course, there is no guarantee that a sam-
pled node in Region-II will turn out to be valid and because of the same reason, we
suggest to sample multiple nodes in Region-II (as shown in Figure 4.2) and start the
search process in parallel from these sampled points. The sampled nodes will be first
validated and if they turn out to be valid, the search process uses the node as the root
node of the tree. Furthermore, one can eliminate the need for computationally ex-
pensive inter-tree synchronization owing to the fact that no two paths in two search
trees will be same. Having said that, the questions still remain that how one can sam-
ple the nodes and how to determine the border of regions. For the first question, any
analytical technique such as precision scaling can be leveraged to randomly generate
nodes that have some operators approximated. The answer to the second question
varies depending upon various factors such as desired error threshold and the er-
ror resilience of the benchmark accelerator circuit. However, one straight forward
approach could be to use the operand’s effective data range and assign bit-widths
accordingly so that the chance of overflow/underflow are minimum. Later, in our
proposed methodology, we use an effective statistical technique that provides the
effective range with a desired probability of overflow/underflow.

4.3 Proposed hybrid methodology

This section provides an overview of our hybrid methodology which has been illus-
trated in Figure 4.3. We divide the proposed methodology in two main phases i.e.,
phase 1 and phase 2 and is preceded by a preprocessing phase. In the preprocessing
phase, loop unrolling is performed to uncover further opportunities for approxima-
tions. Then sub-circuits in the given input accelerator circuit which are amenable to
approximations are identified. These sub-circuits are referred to as candidates. The
extracted candidates are then passed on to phase 1.
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Figure 4.3: Overview of proposed hybrid synthesis methodology.

Phase 1 deals with the analytical approximation of the candidates. It performs
circuit simulations using N number of datasets. Each dataset includes input samples
generated from a uniform random distribution. The circuit is simulated multiple
times with a dataset selected from the available datasets. During each simulation,
we record the intermediate values of all candidates and extract the minimum and
maximum of these values at the end of each simulation. Using these minimum/-
maximum values, we estimate the effective bit-widths of each candidate using an
analytical technique explained later in Section 4.4. From the estimated bit-widths, a
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population of approximate instances is generated and added to a container used in
phase 2 for search-based optimization.

Phase 2 performs a parallel search-based optimization adopted from MCTS [65].
A subset of instances is taken from the container, and each instance is exploited as
a root of a search tree. A node in such a search tree represents an AxAC. Since the
search trees start at different roots, it is unlikely to explore similar paths during their
search and accordingly similar AxACs. Therefore, trees are not required to perform
costly synchronization. To build each search tree the root node is validated to make
sure that it satisfies the required quality constraint. If it is not valid, the search pro-
cess is terminated. Then, MCTS starts the search-based optimization and iteratively
performs four main operations: selection, expansion, simulation, and update until the
search budget expires (parallel MCTS based approximation block in Figure 4.3). In
the selection step, a node in the existing tree is selected for approximation via a
selection policy. The node, which already represents an AxAC, takes one more ap-
proximate component from a library and applies it on one of its exact components.
The new obtained approximate instance is added as a child of the current node into
the search tree. In the next step, the quality of the new node is evaluated through
circuit simulation. If the node passes the quality test, it is marked as a valid node
otherwise it is marked as dead. Then a reward value is computed by estimating the
area improvement archived via the last approximation. For a dead node, the reward
is a negative value. This helps the selection step to spend the search budget on the
other parts of the search tree. Finally, the reward is back-propagated up to the root
node.

When the search budget is exhausted, the built trees are traversed and nodes
offering better area savings are selected. The selected nodes are then forwarded for
synthesis that reports the area, delay, and power consumption.

4.4 Analytical bit-width estimation through EVT

This section explains the core part of phase 1 of our methodology. First, the un-
derlying extreme value theory is explained followed by its application in bit-width
estimation in our approach.

4.4.1 Extreme value theory

Extreme Value Theory (EVT) [78] defines a family of statistical models that captures
the behavior of maxima or minima of independently and identically distributed ran-
dom variables. It is very popular in many areas, e.g., risk assessment, where the
behavior of scarce events is entailed to be evaluated. Using a standardized variable
Z = X−µ

α , the Generalized EVT distribution is defined by the following Cumulative
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Distribution Function (CDF):

F(Z; θ) =

exp(−(1 + θZ)
−1
θ ) θ 6= 0

exp(−exp(−Z)) θ = 0
(4.1)

Where µ is the mode of the distribution (sometimes called location parameter),
α is the scales parameter, and θ is the shape parameter that controls the type of the
EVT distribution. For θ = 0, the distribution is known as Gumbel type, which does
not have lower and upper limits and is well suited for identifying the effective range
of operands and operations. For θ > 0, and θ < 0 we get the Fréchet and Weibull
distributions respectively, which are both bounded on one side.

Parameter estimations and model fitting for a given set of generated extreme
points can be performed through several well-known statistical techniques, e.g.,
Maximum Likelihood Estimation (MLE), Moment Matching (MM), or Probability Weighted
Moment (PWM). While MLE and MM can give satisfactory estimations for large sam-
ples, PWM provides unbiased and more accurate estimation for a small to moderate
number of sample points [79].

4.4.2 Analytical bit-width estimation via EVT

This work exploits EVT as an analytical approximation phase prior to the search-
based optimization. In particular, we estimate feasible bit-widths of the candidate
operations in an accelerator circuit based on their maxima values via Gumbel type
EVT distribution since it does not provide lower and upper limits on the data and
thus is well suited for finding the effective data range of operations.

The procedure to estimate the bit-widths starts with the simulation of the target
RTL model. For the workload, N independent sets are exploited, in which each set
contains input values randomly selected from a uniform distribution. The size of N
should be sufficiently large to guarantee that the model parameters are reliable. In
this work, N was set to 104 with each set containing 105 test vectors. The min/max
values of each candidate, in the RTL model, are collected and combined to form a
so-called extreme value set that later used for EVT CDF parameter estimation.

The process is further elaborated in Figure 4.4 for the Ter_sum_nine_8 circuit, one
of the benchmarks that we used to evaluate our methodology. During the simulation
step that is repeated for N iterations, randomly selected test sets are applied to the
inputs of Ter_sum_nine_8. The primary output as well as the intermediate outputs
of the components (in this case adders marked as S1 to S8) are recorded for each test
set. After all the test vectors have been applied, the minimum and maximum value
of each component for the current input test set is extracted.

After N iterations, we collect N minimum/maximum values for each component
in a table as shown in Figure 4.4.

Next, we need to find a threshold value τmax that all possible maxima values
taken by a component (denoted as X) are less or equal to τmax with the probability
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N
S1 S2 S3 S4 S5 S6 S7 S8

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

1 9 505 11 495 11 498 23 507 100 935 73 941 292 1659 354 1817

2 11 507 9 507 6 507 15 505 105 911 115 936 382 1646 459 1824

3 6 497 14 503 4 507 8 493 122 986 69 957 373 1687 535 1811

4 15 497 4 501 3 492 13 498 76 915 44 939 297 1755 452 1945

…

10000 1 501 22 499 4 491 9 509 71 924 91 944 388 1687 445 1761
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Figure 4.4: An example showing how the extreme values are collected for Ternary
sum benchmark.

of ξ as stated in the following equation:

F(Z; θ) = P(
X− µ

α
≤ τmax) = ξ, 0 < ξ < 1 (4.2)

Here ξ states how much of the sample points will be less or equal to τmax. For
instance, if we have ξ = 0.95, this means that the 95% of the sampled maxima values
are expected to be smaller than τmax. This is graphically illustrated in Figure 4.5.

Next, we observe that since the EVT provides an unbounded estimator (beyond
τmax), finding the optimum bit-width of available candidates using EVT estimation
imposes a considerable cost of testing/verification [80]. In fact the bit-width estimate

with 𝜉 probability with (1 − 𝜉) probability

x

𝜏𝑚𝑎𝑥

Figure 4.5: Gumbel distribution.
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obtained through EVT might cause overflow since it is only utilized as an estimate
or in other words as an approximation that might sometimes results in error at the
output of the operations with a probability of 1− ξ. Keeping this in mind, we gen-
erate sufficient configurations of approximate instances having different bit-widths
sampled from the range provided by the EVT, so that later in the search-based op-
timization phase, enough sample points are available to start exploring the design
space. Later on, we only need just one testing/verification prior to the start of the
search to decide whether to continue the search from that point.

The most probable range of each candidate is determined through selected bound-
ary thresholds (τmin and τmax) and the estimated bit-width is computed as follows:

estimatedbit−width =

dlog2(| τmin |) + 1e τmin < 0

dlog2(τmax + 1)e τmin > 0
(4.3)

Where the | τmin | +1 states that the estimated value requires one more bit of sign.

4.5 Parallel search-based optimization

The phase 2 of our hybrid methodology is based on the adaptation of the MCTS.
Since the details of the basic MCTS algorithm have been explained already in Chap-
ter 3, we only explain here the modifications and our parallel implementation of the
MCTS algorithm.

4.5.1 Parallel MCTS

MCTS is a powerful algorithm especially for problems with a large search space
since it modifies the search strategy based on the statistics of already explored nodes
and intelligently prunes the non-promising nodes as the search progresses. How-
ever originally suited for games domain, the MCTS algorithm when applied to the
domain of AxAC synthesis, needs adaptations owing to various characteristics of
hardware synthesis flow. We explained most of the adaptations in detail in Sec-
tion 3.2. Remaining are highlighted in the following as they are discussed in our
proposed DSE algorithm.

Algorithm 3 represents the major steps of the proposed parallel search-based
optimization using MCTS. The algorithm takes a subset of already approximated in-
stances, generated in phase 1, from the container and forms a forest of parallel search
trees, in which each instance is the root of a search tree. The number of parallel trees
is determined by the designer with a parameter i.e., k and the search budget M de-
termines the number of iterations for the search trees and can also be set along with
many other parameters using a configuration text file.

In the parallel search-based optimization, we use a master-slave process model
to handle the search. The master process is responsible to initiate root nodes and
invoke other processes that ultimately grow the search tree. The master process
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Algorithm 3: Parallel search-based optimization
Input: O= Original accelerator circuit(*.c), k = number of search trees,
M = search budget
Output: A={Approximated instances satisfying quality constraints}

1 S← select a subset from the container
2 do in parallel
3 root_node← get root_node from S
4 valid← validate the root_node
5 if valid then
6 while M > 0 do
7 curr_node← select via UCT // Selection

8 if curr_node is not leaf node then // Expansion

9 node_new← a new child node of curr_node

10 else
11 continue

12 valid← simulate(new_noode) // Simulation

13 if !valid then
14 Mark new_node as dead

15 reward← compute_reward(new_node)
16 update(reward, new_node) // Update

17 M← M− 1

18 else
19 take another node from the container and repeat the algorithm from 2

20 end

initially selects a subset of root nodes samples in Phase 1 and populates a list S
which it later distributes to the other processes (Line 1 in Algorithm 3). Following
that, each process gets a root node from S and start building their individual search
tree in parallel (Line 2 to Line 19). Each process performs a quality validation of
their root node prior to expand the search tree to be sure that they do not violate the
quality constraint (Line 4). In case of violation, another instance is taken from the
container until we have k number of valid root nodes (Line 19).

Then the search trees iterate over the selection, expansion, simulation, and up-
date steps in parallel till the simulation budget of each tree, i.e., M, is exhausted. For
selection of a node in the search tree, we use a formulation similar to the UCT with
a slight modification. Instead of starting at root node and iteratively selecting child
nodes based on their UCT scores, we sort all the active nodes in the tree built so-far
based on their UCT score and then select the node with the highest UCT score. The
rationale behind this selection is that the nodes deeper in the search will have higher
average rewards (since their visit count is low) if they turn out to be valid and in
fact they should be preferred than the nodes near the root node. Our experimental
results confirm that this assumption is correct.
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Table 4.1: Benchmark accelerator circuits

Circuit I/O Candidates Trans.† QoR § Area (µ2)* Power (mW)*

Convolution filter 8/8 17 19 PSNR 31 150.44 0.72

FIR filter 16/32 17 21 MRE(%) 29 829.94 13.50

RGB2YCBCR 8/8 17 21 MRE(%) 30 337.18 3.40

Ter_sum_nine_8 8/16 8 10 MRE(%) 950.58 2.16

Ter_sum_nine_16 16/32 8 10 MRE(%) 1007.98 2.16
† Approximate transformations from the EvoApproxLib library [46].
§ Error metric used for quality of results.
* The area and power of the accelerator circuits were measured using Synopsys Design compiler using a

22nm technology library

The expansion step adds a new node to the tree by applying one more approx-
imation on the selected node (Line 9). In case the selected node can not be further
expanded, the current iteration is completed and the algorithm starts a new iter-
ation. The simulation step (Line 12) checks whether the node satisfies the quality
constraint and if found invalid, the node is marked as dead node. The subsequent
step computes a reward for the new node. We use circuit area as the performance
metric for optimization. It is obvious that other metrics such as power consumption
and delay can be utilized as well. For every node, we compute a reward based on its
area saving. To find the area improvement statistics, the synthesis process would be
very costly. Instead, we provide an area saving estimation using pre-computed area
values of the components in the approximate library as follows:

R(newnode) =
| AreaAxC − AreaOri |

AreaOri
(4.4)

Where AreaAxC refers to the area value of the approximation component exploited
in the current node and AreaOri refers to the area of that component without approx-
imation.

For invalid nodes however, the reward is a negative value representing a penalty
for the selected node. The update step then propagates the reward all the way back
up to the root node for all nodes on the selected path. After the allocated search
budget expires, the valid nodes explored by all the processes are analyzed and top
instances are selected and synthesized.

4.6 Experimental results

4.6.1 Setup of experiments

The benchmark accelerator circuits that we used to evaluate our methodology are
shown in Table 4.1. All of the benchmarks were coded in SystemC since it facilitates
rapid high-level design prototyping. In the preprocessing step, all loops were flat-
tened and candidates were extracted from the original circuit using the annotation.
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As the error metric, we use PSNR for Convolution filter. For all other benchmarks, we
use Mean Relative Error Percent (MRE(%)) to evaluate the quality.

We implemented the bit-width estimation phase in Python using scikit learn li-
brary and the search-based optimization phase in C++ via Openmpi v3.1.3 for parallel
execution of multiple search trees. The analytical part of our experiments was per-
formed on a compute cluster running a scientific Linux 7.2 (Nitrogen), comprising
of 16 nodes with an Intel® Xeon E5-2670 @ 2.6GHz and 256 Gigabytes of main mem-
ory, of which it provides 2 Gigabytes per job. For the first phase, we use N = 10000
and each dataset contains 105 random samples from a uniform distribution. We also
chose k = 20 as the number of parallel search trees. The generated approximate
designs were functionally validated with datasets comprising of 105 samples gen-
erated with a uniform distribution for each benchmark, except the Convolution filter
for which we used 500 samples from the test set of CIFAR-10 [81]. The candidates in
Table 4.1 represent only the data-path elements and we do not approximate parts of
circuit contributing to control-path. We used approximate transformations from an
open-source approximate components library EvoApproxLib [46]. Approximate de-
signs were synthesized using Synopsys Design Compiler version K-2015.06 (Synopsys-
DC) with a 22nm target technology library. To evaluate power consumption, we first
obtained the Switching Activity Interchange File (SAIF) of each benchmark via simula-
tion using their corresponding datasets and then injected the SAIFs to Synopsys-DC
for measurement.

Our parallel implementation of MCTS exploits Message Passing Interface (MPI)
to distribute the workloads among the compute nodes. In our implementation, we
used a trivial scenario typically referred to as master-slave in context of MPI. To run
our MPI implementation, we utilized the compute cluster facility of Paderborn Center
of Parallel Computing (PC2), namely OCuLUS which consists of 552 small and 20 large
compute nodes each with two Intel® Xeon E5-2670 processors running at 2.6 GHz
with 64 and 256 GByte of main memory, respectively.

The flow of our MPI implementation is shown in Figure 4.6. Here, the mpirun
command initiates our MPI application to 20 compute nodes hereinafter referred to
as processes numbered from 0 to 19 in this case. All processes perform initialization
in parallel as shown in step 1 in Figure 4.6 after which the execution flow for process
0 (master) and process 1-19 proceeds differently in parallel. Process 0 enters in to a
loop where it continuously assigns jobs (search tree seeds in this case), and receives
results until all the search trees have been completely distributed (step 2, 3, and
4) and finally terminates the processes by sending a die signal (step 5). The slave
processes wait for job allocation from process 0 and start building the search trees
independently once they receive job from process 0. Once they consumed the search
budget, they send back their results to process 0 and then wait for signal from the
process 0. Once receiving a die signal, the processes terminate.
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Figure 4.6: Flow of the MPI implementation for parallel MCTS.

4.6.2 Results and discussion

To evaluate our methodology, we performed experiments for a gird of values for
maximum error bounds of benchmarks. Beside our hybrid methodology (HM), we
implemented two other techniques as the baseline for comparison: 1) MCTS: this is
a single tree MCTS search-based approach and 2) Min_BW: this is the minimum bit-
width instance of the benchmarks. To perform a fair comparison, the search budget
of the single tree MCTS is selected as the sum of the simulation budget of search
trees in HM. The Min_BW is realized via iterative bit-width optimization using the
method we introduced in phase 1.

Figure 4.7 shows the results for area savings of HM and MCTS for 10 configura-
tions of error bounds for the given 5 benchmarks. The HM outperforms MCTS in
all the configurations for all the benchmarks. In particular, HM was able to achieve
a maximum of 10.57× area saving against MCTS for Convolution filter. The mini-
mum saving was in case of RGB2YCBCR where it can still achieve 1.02× saving than
MCTS.

Figure 4.8 highlights the power saving values. Even though the HM targets area
as the main performance metric, it can be depicted from Figure 4.8 that HM is also
capable to reduce the power consumption for most of the error bound values in the
given benchmarks as well. Again, for the Convolution filter, HM achieves maximum
power saving of 2.7× to that of MCTS. For one error bound (1.5%) of FIR filter and
three error bounds (0.5%, 3.0%, and 5.0%) of Ter_sum_nine_8, the power consump-
tion values obtained by HM are up to 4% higher than MCTS. In all other cases, HM
provides at least the same or less power consumption values.
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Figure 4.7: Area savings of HM against MCTS for five different benchmarks on var-
ious error bounds.
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Figure 4.8: Power savings of HM against MCTS for five benchmarks.

In Figure 4.9 and Figure 4.10, the normalized area and power savings of HM
and Min_BW are illustrated, respectively. For HM, we report the maximum savings
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obtained among all error bound values. Again, HM demonstrates its effectiveness
against Min_BW by reaching up to 39.19% more area saving for Ter_sum_nine_16
and 54.63% more power saving for Ter_sum_nine_8. The minimum area and power
savings of HM are 4% and 1% both for Convolution filter, respectively.
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Figure 4.9: Area savings of hybrid approach against purely analytical approach.
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Figure 4.10: Power savings of hybrid approach against purely analytical approach.

The runtime for HM and MCTS are shown in Table 4.2. Although the HM and
MCTS approaches use the same computational budget, HM is able to complete the
exploration in less time since it does not spend much time like MCTS to evaluate
nodes with just a few number of approximations. HM starts the search in depth of
the design space where there are lots of dead nodes, and moreover benefits from
the parallelism, hence it completes the search faster. In particular, HM reaches up to
16.56× speedup against MCTS for Ter_sum_nine_8. The minimum speedup that HM
achieves against MCTS remains 2.77× for Convolution filter.
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4.7 Chapter conclusion

In this chapter, we have presented a hybrid synthesis approach for Approximate Ac-
celerator Circuits (AxACs) that exploits both analytical bit-width estimation as well as
search-based optimization to quickly find feasible AxACs that satisfy the required
quality. Our approach quickly reaches to the interesting areas of the search space
without performing costly validations via analytical bit-width estimation phase and
then fine-tunes the approximations by performing stochastic parallel search in which
the approximate transformations from an open-source library of approximate com-
ponents are applied to get more area savings. We show with experimental results
that the hybrid approach is capable to achieve substantial area savings than both
purely analytical and purely search-based methods. Moreover, with clear separa-
tion of both phases, the proposed approach can allow any analytical and search-
based optimization method to be used in combination to produce AxACs. To this
end, we provide our proposed methodology as an open-source contribution to the
community2.

In future, more analytical approaches will be evaluated for first phase of the pro-
posed hybrid methodology. Furthermore, parallel implementation of the MCTS for-
est can be improved by introducing light-weight inter-tree communication to share
information about the approximate transformations and candidates. For instance, if
a particular transformation turns out to be significantly better than other transfor-
mations, it can be communicated at a global level to let other search tree use this
information. This can potentially improve the overall quality of results.

2https://git.upb.de/ceg_upb/hybrid_axc_synthesis

https://git.upb.de/ceg_upb/hybrid_axc_synthesis
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Chapter 5

Machine Learning-based MCTS

5.1 Chapter overview

In this chapter, an improved MCTS-based Approximate Accelerator Circuit (AxAC)
synthesis flow based on Deep Neural Network (DNN) error estimation models is pre-
sented. The proposed approach avoids time-costly simulations / validations by re-
lying on trained DNN models to obtain the error information and thus provides
tremendous speedup as compared to the traditional simulation based flow.

The first part of this chapter explains the setup and training of DNN error esti-
mation models. In the later part, experimental results are provided that demonstrate
drastic improvements in the runtime over a simulation-based greedy and MCTS
AxAC synthesis baselines. The contributions of this chapter are highlighted in the
following.

• We develop high-accuracy fast DNN-based error estimation models to learn
the error propagation of operators due to approximation in a number of prac-
tical application benchmarks.

• We demonstrate the use of DNN-based error estimation models in a search-
based AxAC synthesis flow driven by MCTS and achieve similar or even better
quality of results for hardware area with considerable reduction in the runtime.

5.2 Motivation and background

As discussed in the Chapter 1, the design space for AxAC synthesis grows exponen-
tially with the increasing number of operators and approximate transformations.
This not only results in very long runtimes but also puts restriction on the num-
ber of iterations performed by the search-based process and hence large part of the
design space remains unexplored.

Majority of existing frameworks handle the Design Space Exploration (DSE) with
a search-based approach [15, 16, 51, 57, 18, 22, 23]. The search-based flow gener-
ally consists of the following main steps: (1) expansion of search space by creating
new approximate instance with incremental approximation on one of the already
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added instances and (2) validation of newly generated design instance by evaluat-
ing the error and impact on the target metric for the generated instance. For (1),
the search method’s policy determines which instances to be selected and expanded
whereas for (2), the validation is mostly achieved via formal verification or testing-
based methods.

Although formal verification-based methods can provide strong guarantee on
the worst-case error of an approximate instance, the runtimes are relatively very
long compared to a testing-based approach which evaluates the error by application
of a reasonably large subset of input vectors to the design under test [18]. Even with
a testing-based approach, the validation times are relatively very high as compared
to the other steps (of search) and dominate the total time spent in the DSE. Due to
this bottleneck, the existing search-based DSE frameworks need to limit the number
of performed iterations leaving a large portion of design space unexplored. Many
existing frameworks have employed heuristic search methods (such as greedy) to
truncate large number of intermediate designs in an effort to reduce the size of the
design space during the process [15, 22, 18, 14]. This however results in subopti-
mal outcome due to discarding many search regions with potentially better solution
quality.

In Chapter 3, we presented an MCTS-based AxAC synthesis framework based on
a balanced tree selection policy allowing it to explore design space with a mix of ex-
ploration and exploitation. In this way, the DSE phase had a lower chance of getting
stuck in a local minimum. Later in Chapter 4, the MCTS-based DSE was combined
with a preceding analytical phase that helps skipping a large number of validations
by sampling multiple design points in the search space. These design points then act
as root nodes for multiple search trees that are then explored in parallel. Although
being able to explore the search space more efficiently and eliminating large number
of unnecessary validations, still the verification time remains a bottleneck for such
approaches putting a limit on the number of iterations.

In general, the mentioned limitations of existing search-based frameworks put
them at disadvantage for two aspects. These frameworks either spend too much
time for too few iterations and are not able to explore large part of the design space
(e.g., MCTS) or they discard a substantial portion of the design space that could
potentially offer better quality of results (e.g., greedy). Nevertheless, both issues are
linked with the validation bottleneck which consumes most of the time in the DSE.
In this chapter, a faster DSE approach is proposed that relies on accurate and fast
error estimation models obtained via DNNs to drastically reduce the runtimes of
the search-based DSE methods.
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5.3 DNN enabled MCTS-based AxAC synthesis framework

This chapter proposes Machine Learning-based MCTS (ML-MCTS) for AxAC synthe-
sis. The objective of ML-MCTS is to improve the runtime efficiency of the MCTS-
based AxAC synthesis framework via DNN-based error estimation. This section
deals with the explanation of the overall flow and the underlying key phases of the
ML-MCTS framework.

The overall flow of the proposed improved framework is depicted in Figure 5.1.
ML-MCTS contains two main phases together with a preprocessing and a post-
processing step. The preprocessing phase performs two jobs. First, it looks for loops
in the source code and if found, unrolls / flattens them. This uncovers more room
for approximations. Second, it extracts the candidates from the source code.

The first main phase of ML-MCTS is called regressor training phase. This phase
accepts the extracted candidates and the original source code from the preprocess-
ing phase and prepares an RTL simulation environment. During the RTL simulation,
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Figure 5.1: Overall flow of the ML-MCTS framework.
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AxACs are repeatedly generated with different configurations with varying approx-
imations degree i.e., number of candidates approximated out of total available can-
didates. Each AxAC instance generated during the simulation phase is evaluated
with a set of random input samples to evaluate the error caused by approximation.
Then, the AxAC’s configurations along with the observed error forms a data sample
which is then added as one row of the training dataset. The RTL simulation process
is repeated for predefined number of iterations and results in a training dataset (as
shown in Figure 5.1). The generation of training dataset is further explained in Sec-
tion 5.3.1. The collected training dataset from the simulation step is then refined if
required through two optional steps. A normalization step for instance might be
required if the range of the observed error does not fully capture the behavior of the
error. Moreover, we employ simple yet powerful classification models such as those
based on random forests to further refine the dataset prior to train the DNN (Train-
ing data refinement step in Figure 5.1). Finally, training of the neural network is
performed using the refined training data and the resultant model is saved for the
next phase.

The second main phase relies on a search-based optimization to find the best
approximate design in terms of the target metric (in this case the hardware area)
while adhering to the given error bounds. This is achieved via Monte Carlo tree
search (MCTS), an intelligent stochastic search technique specially suited to problems
with large branching factor. MCTS performs four main steps iteratively to generate
a search tree where the nodes of the tree represent different AxACs. This phase is
explained in detail in Section 5.3.2. However, it is important to mention here that the
key to reduce the runtime of the DSE phase in the proposed ML-MCTS framework is
the simulation step which invokes fast DNN-based inference engine that was trained
in the previous phase to obtain the circuit error information. This enables extremely
fast quality validation thus reducing the over all runtime drastically as compared to
a testing-based simulation phase. The DSE phase iteratively grows the search tree
until the allocated search budget expires. The result of this phase is the list of active
nodes in the search tree.

The active nodes explored by MCTS phase are then analyzed in a post-processing
step to find a node with best area savings. The node is then synthesized and the area
and power values are reported.

In the following subsections, the two main phases of the ML-MCTS framework
are explained in detail.

5.3.1 Deep neural network based error estimation regressor models

The regressor training phase of ML-MCTS starts by configuring an RTL simulation
environment. During an iterative process, it generates approximate variants of the
original circuit with different configurations of approximations. This iterative pro-
cess is illustrated in Figure 5.2 where as an example, we show how the training data
for RGB2GRAY benchmark accelerator circuit (one of the benchmarks which we later
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Figure 5.2: Example showing how the DNN training data is formed.

use to evaluate the proposed framework) is collected. The benchmark circuit is com-
posed of three multipliers (referred to as m1,m2 and m3) and two adders (referred
to as a1 and a2) in the exact circuit shown in Figure 5.2. An approximate compo-
nent library is available and contains approximate versions of both multiplier and
adder components. In this example, the library provides three approximate versions
of each component with varying characteristics of error and target metrics improve-
ments. The approximate components are enumerated with unique identifier i.e., 1
to 6. For approximate components, we use a subset of 16-bit adders and multipliers
from EvoApproxLib which is an open-source library of approximate components
generated via Cartesian genetic programming approach [46].

In step 1 an approximate version of the original accelerator circuit is obtained by
replacing some (or all) components with one of the available approximate compo-
nents from the library. In this work, we randomly select the number of candidates to
be approximated in each iteration. In the example shown in Figure 5.2, two compo-
nents i.e., the adder a1 and the multiplier m2 is selected for the approximation. We
refer the number of components approximated as length of approximation and use
it as one of the features to be fed to our neural network. The generated approximate
instance is then simulated using a test bench. During the simulation, test vectors
generated with uniform random distribution are applied to the circuit under test.
The size of test vectors is kept sufficiently large enough to capture the output error
behavior. We use one million test vectors for signal processing and arithmetic bench-
marks whereas for image processing benchmarks, we use 500 samples from the test
set of CIFAR [81].

The RTL simulation reveals the quality of the approximate instance (which is in
this case 4.57%). Then, in step 3, we form one sample of the dataset from the AxAC’s
configuration, the length, and the observed error as shown in the table in Figure 5.2.
Here, the first column represents the row number of the data set and goes from 1
to 100, 000. The second column (Length) provides the number of approximations
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applied in that configuration row or in other words, how many candidates (out of
total) are approximated in that row. Following that, there is a column dedicated to
each candidate (in this case a1,a2,m1,m2,m3) and the value in the corresponding cell
either contains a zero which means the candidate is not approximated or it has a
number representing that it is approximated and the number in that case represents
the unique identifier of the approximate component. The last column gives the error
measured with the simulation. It should be noted that with this scheme, the topol-
ogy of training data for all benchmarks remains the same and we do not need to
incorporate this data in the configuration file.

The process continues to generate approximate configurations and updating the
dataset until the required number of samples have been obtained. For each bench-
mark, we generated 100,000 data rows to constitute a dataset (referred as training
data in Figure 5.1).

However, we observe that the training data is not always ready to be directly
used for training purpose because of irregularities in the distribution of the error. For
instance, in case of the image processing benchmark i.e., Gaussian blur, we observed
that the error distribution has two separate and distant regions i.e., one representing
the error distribution for imprecise designs (e.g., PSNR in range of 0− 61) whereas
the other case of error showing a very large value of PSNR (i.e., > 99 including ∞).
This is reflected by the far right bar in the histogram of Figure 5.3).

For such cases, we adopted the strategy of a two-layer error prediction: the input
is first presented to a classifier which provides a binary output showing whether
the design represents a precise case (PSNR > 99 or ∞), in which case the input
design configuration is considered as precise. If the classifier predicts otherwise, a
trained regressor model is invoked which predicts the error magnitude (in this case
the PSNR).

We evaluated different well-known classifier models and obtained significant ac-
curacy with the random forest [82] and stochastic gradient descent classifiers [83].
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Table 5.1: Regressor training parameters

Benchmark Features Prediction setup R2

FIR filter 18 Regressor 97.52%

RGB2GRAY 6 Regressor 72.35%

Ter_sum_nine_16 9 Regressor 99.90%

Gauss_blur 18 Classifier, Regressor 91.13%

For regressors, we used deep convolution neural networks [84] with a maximum of
two hidden layers and trained the networks with 50 epochs. We used gradient de-
scent to learn the hyper parameters of the network. To evaluate the goodness-of-fit
for the developed models, we computed the R2 values for each of the trained model.
The R2 is a commonly used measure to evaluate the fitness of a learning model and
is defined as the following:

R2 = 1−


N
∑

i=1
(yi − fi)

2

N
∑

i=1
(yi − ȳ)2

 (5.1)

where yi represents the observed values, fi represents the measured or predicted
values, ȳ is the mean value of the observed data, and N is the size of the dataset. In
the best case, if the model can predict values exactly as the observed values, then the
numerator term becomes zero resulting in an R2 = 1. On the other hand a value of
R2 = 0 means the predictor always predicts ȳ.

The feature size, model configurations for the inference phase and the corre-
sponding R2 values for all the benchmarks obtained after cross validation are pro-
vided in Table 5.1. More detailed circuit characteristics of these benchmarks are also
provided in Table 5.2.

5.3.2 Design space exploration via MCTS

The second phase of ML-MCTS starts with the original accelerator circuit config-
ured as the root node. The four main steps of MCTS are then iteratively performed
for a defined number of iterations. The select step finds a node in the existing tree
to expand. For selection of the node, we use the classical UCT formula explained in
Chapter 3 and 4. However, given the branching factor and the depth of the search
tree, we observe that the selection phase should avoid expanding all the nodes be-
fore going to the next level. In AxAC synthesis, it makes more sense for the selection
phase to prefer selection of nodes that lie deep in the search tree. In other words, the
nodes with more approximations applied (and thus potentially more area savings).
Keeping this objective in mind, we modify the selection step to consider all the avail-
able nodes in the search tree at once for selection instead of iterating from the root
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Table 5.2: Benchmark accelerator circuits

Circuit I/O Candidates Trans.† Error metric Area(µ2)* Power (mW)*

FIR filter 16/16 17 21 MRE(%) 7485.26 6.06

RGB2GRAY 8/8 5 21 MRE(%) 2427.50 0.10

Ter_sum_nine_16 16/16 8 10 MRE(%) 454.00 1.04

Gauss_blur 8/8 17 21 PSNR 7729.23 0.75
† Approximate transformations from the EvoApproxLib library [46].
* The area and power of the accelerator circuits were measured using Synopsys Design compiler using a

22nm technology library

node and stopping at the first expandable node. The latter would not let the search
algorithm to explore the design space to the depth rather encourages the breadth
exploration. While on the other hand, with selecting a node based on its UCT score
from all available nodes in the tree would encourage selection of the nodes at the
deepest level of the tree.

The selected node is then expanded if it is expandable. This is achieved by first
generating a random candidate from the available candidates and then a random
transformation of that type from the available approximate transformations. With-
out loss of generality, we use approximate transformations from the Pareto frontier
set of components from EvoApproxLib [46]. The selected candidate is then replaced
by the selected approximate transformation. We employ functional approximation
in this work so the approximation process substitutes the C++ code of the selected
candidate’s operator with the C++ code of the selected approximate module. This
results in a new AxAC which is added as a new node in the search tree.

The next step is error checking where the newly generated AxAC is to be checked
for output error. As mentioned earlier, this is the most time dominant step since it in-
volves circuit simulation. We avoid time-costly simulation by invoking our trained
neural network model generated in the previous phase to get the error prediction.
Based on the error magnitude, we see if this node represents a valid circuit configu-
ration or an invalid one. In the latter case, we mark the node as dead node and set a
negative reward for that node.

If the node is valid, we compute an area reward for the node. The reward is
computed by looking at the relative area improvement as a result of the last ap-
proximation. The reward value is then updated for the all predecessor nodes. This
completes one iteration of the MCTS. The DSE phase continue to grow the search
tree by adding new nodes until the allocated search budget is exhausted.
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5.4 Experimental results

5.4.1 Setup of experiments

To evaluate the performance and quality of results for the proposed ML-MCTS ap-
proach, we select number of benchmarks from different applications domains e.g.,
arithmetic, image and signal processing. These benchmarks are detailed in Table 5.2.
All of these benchmarks were coded in SystemC since it facilitates rapid high-level
design prototyping. All loops were flattened in the preprocessing step and candi-
dates were extracted from the original accelerator circuit using the annotation pro-
vided in the source code. As the error metric, we use PSNR for Gauss_blur and for
all other benchmarks, we use Mean Relative Error Percent (MRE%) to evaluate the
quality of the approximate designs. Furthermore, we performed experiments for
a gird of values for maximum error bounds of benchmarks. The error bounds for
the image processing benchmark i.e., Gauss_blur were setup as the PSNR values of
15dB, 25dB, 35dB and 45dB which is in line with existing works in the domain of
approximate computing [24, 4, 85]. For other benchmarks, we used 0.5%, 1.0%, 2.5%
and 5.0% as the maximum error bounds measured in (MRE%).

The evaluation framework was coded in Python whereas for the training of the
DNN models, we used TensorFlow [86], an open-source machine learning model
library with Keras [87] as an interface. The experiments were performed on a com-
pute cluster running a scientific Linux 7.2 (Nitrogen), comprising of 16 nodes with
an Intel® Xeon E5-2670 @ 2.6GHz and 256 Gigabytes of main memory, of which it
provides 2 Gigabytes per job. The generated approximate designs were functionally
validated with datasets comprising of one million samples generated with a uniform
distribution for each benchmark, except the Gauss_blur for which we used 500 sam-
ples from the test set of CIFAR-10 [81]. The number of candidates in Table 5.2 show
only data-path elements and the circuit contributing to control-path is left exact. We
used approximate transformations from an open-source approximate components
library EvoApproxLib [46]. Approximate designs were synthesized using Synop-
sys Design Compiler version K-2015.06 (Synopsys-DC) with a 22nm target technology
library. To evaluate power consumption, we first obtained the Switching Activity In-
terchange File (SAIF) of each benchmark via simulation using their corresponding
datasets and then injected the SAIFs to Synopsys-DC for measurements.

5.4.2 Results and discussion

In this subsection, the results obtained from our proposed ML-MCTS approach and
the comparison with the baseline approaches are discussed. As baseline approaches,
a greedy-based approach similar to [15] and an MCTS-based DSE from our previous
work [57] were implemented as search methods in our framework. Both greedy and
MCTS methods rely on simulations to obtain the approximation error for the inter-
mediate designs. Moreover, these two search methods are also representatives of the
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Table 5.3: Runtimes for greedy, MCTS and ML-MCTS approaches for dif-
ferent error bounds

ERROR BOUNDS
BENCHMARKS 0.5% 1.0% 2.5% 5.0%

GREEDY

FIR filter 0:02:51 (25) 0:02:08 (19) 0:04:17 (36) 0:04:14 (37)
RGB2GRAY 0:02:27 (25) 0:02:25 (25) 0:02:21 (25) 0:02:28 (25)
Ter_sum_nine_16 0:02:29 (20) 0:02:19 (18) 0:02:22 (18) 0:02:34 (20)

15 dB 25 dB 35 dB 45 dB
Gauss_blur 0:21:41 (76) 0:24:44 (85) 0:24:06 (85) 0:24:45 (85)

0.5% 1.0% 2.5% 5.0%

MCTS [57]

FIR filter 1:52:42 (934) 1:52:47 (944) 1:51:14 (951) 2:01:33 (987)
RGB2GRAY 1:09:03 (708) 1:08:12 (695) 1:03:24 (662) 1:00:31 (673)
Ter_sum_nine_16 2:07:02 (908) 2:01:35 (905) 1:59:09 (907) 2:01:02 (909)

15 dB 25 dB 35 dB 45 dB
Gauss_blur 4:28:34 (751) 4:30:44 (840) 3:57:55 (720) 4:29:03 (847)

0.5% 1.0% 2.5% 5.0%

ML-MCTS

FIR filter 0:03:05 (936) 0:03:24 (945) 0:03:04 (938) 0:02:48 (991)
RGB2GRAY 0:01:47 (722) 0:01:43 (703) 0:01:39 (676) 0:01:39 (662)
Ter_sum_nine_16 0:02:41 (907) 0:02:32 (908) 0:02:37 (907) 0:02:31 (908)

15 dB 25 dB 35 dB 45 dB
Gauss_blur 0:33:20 (838) 0:01:30 (793) 0:01:25 (821) 0:10:47 (810)

All runtimes are in h:mm:ss format

two different approaches of DSE whereas the former uses greedy heuristics to find a
solution as quick as possible by selecting the best move in each iteration. The latter
however requires large number of iterations to converge to a better solution since
it can backtrack to different regions of the search space in different iterations and
thus consumes large computational budget due to time-costly simulations. We as-
sign the number of generations and number of random moves to the greedy method
according to [15] and use a computational budget of 1000 for MCTS and ML-MCTS.

As the main objective of ML-MCTS is to speed up MCTS-based DSE, we first
provide the comparison of the runtime for all three approaches. Table 5.3 provides
runtime for all benchmarks against four different error bounds. The runtimes are
provided in hours:minutes:seconds format and for each entry, the number of explored
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Figure 5.4: Runtime comparison for Greedy, MCTS and ML-MCTS for different
benchmarks.

nodes are also shown in the brackets. For instance, the entry under 0.5% error bound
for FIR filter for the greedy shows that it took two minutes and 51 seconds and a total
of 25 nodes were explored during the DSE. It is obvious that the greedy method
generally explores less number of nodes than MCTS or ML-MCTS and as a result,
it could finish earlier. We set up the number of generations for greedy equal to the
number of candidates, allowing the greedy method to apply approximations for all
of the available candidates and therefore getting a fair chance of exploration. The
number of explored nodes for MCTS and ML-MCTS are almost in the same range
since they both use the same selection policy. However, the runtime of ML-MCTS is
drastically shorter than MCTS since it could avoid large number of simulations by
relying on the DNN-based error estimations.

The speedup can be better visualized in Figure 5.4 where the average runtime (av-
eraged over all error bounds and for five runs) for all three approaches is depicted.
Please note that the runtime is shown on a logarithmic scale. The runtime of ML-
MCTS is significantly shorter than the MCTS and almost same or in some cases less
than the greedy method.

Next, we compare the quality of results obtained by all three approaches. We
employ a simple area saving heuristic that takes in to account the area information
provided for the EvoApproxLib components library and then computes the area
improvements for each approximate design generated during the DSE. Afterwards,
all generated approximate designs are ranked on the basis of the area savings and
the best among them is selected for the synthesis. For ML-MCTS, there is an extra
step where the selected design is first validated via simulation and if it violates the
error bounds, the next best design is picked and validated iteratively until finding a
valid design. In Figure 5.5, the area savings results of greedy, MCTS and ML-MCTS
approaches for all benchmarks against the mentioned error bounds are shown. Here,
the area (normalized to the original area) of the best approximate design found by
all approaches is plotted.
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Figure 5.5: Area savings of Greedy, ML-MCTS and MCTS for different benchmarks
on various error bounds.
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Figure 5.6: Power savings of Greedy, ML-MCTS and MCTS for different benchmarks
on various error bounds.
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For benchmarks FIR filter and Ter_sum_nine 16, MCTS and ML-MCTS clearly out-
perform greedy method in all cases by achieving significantly larger area savings. In
case of Gauss_blur and RGB2GRAY, greedy could perform relatively better. Here, the
area savings of greedy were slightly worse than MCTS and ML-MCTS in all cases
of RGB2GRAY and for two cases of Gauss_blur i.e., 15dB and 45dB. For other two
error bounds of Gauss_blur i.e., 25dB and 35dB, greedy, MCTS and ML-MCTS all
could achieve the same area savings. At the same time, ML-MCTS was capable of
achieving almost similar area savings as that of MCTS with slight variations which
mostly result due to the randomness of the approximation process during the DSE
phase. The maximum area saving achieved by greedy, MCTS and ML-MCTS (for
Gauss_blur, error bound 15dB) were 55%, 68%, and 64% respectively.

Similarly we show the power savings results in Figure 5.6. Here again, the
power consumption values are normalized to the original design for each bench-
mark. The results shown in Figure 5.6 are for the same designs shown in the area
saving results. Again, for FIR filter and Ter_sum_nine 16 benchmarks, MCTS and ML-
MCTS achieve much better power savings than the greedy. In case of RGB2GRAY,
greedy was able to achieve better power savings than ML-MCTS and MCTS (for
error bounds of 0.5% and 1.0% respectively) whereas for other two error bounds,
it could achieve less power savings than MCTS and ML-MCTS. For Gauss_blur, all
three approaches achieve similar power savings with only one case i.e., 15dB where
greedy has slightly worse power savings. The maximum power savings achieved
were 55% for greedy (RGB2GRAY at 2.5% MRE%), 67% for MCTS (Ter_sum_nine 16
at 5.0% MRE%) , and 68% for ML-MCTS (Ter_sum_nine 16 at 5.0% MRE%).

5.5 Chapter conclusion

This chapter presented a fast DSE approach that leverages extremely reliable and
high-speed DNN error estimation models to speed up the Approximate Accelerator
Circuit (AxAC) synthesis framework backed by the MCTS. Using trained DNN mod-
els capable of learning the error propagation for different approximate configura-
tions for a given benchmark, the output error can be quickly estimated without in-
voking the cycle-accurate simulation step. This results in huge savings of runtime
and the DSE phase can explore a large number of nodes in the search space in an
extremely short runtime when compared to the simulation-based DSE.

The proposed ML-MCTS approach first generates training data from the RTL
simulation, deploys a DNN architecture, train it and then exploits it during the DSE
phase to evaluate the error of approximate instances. It only invokes simulation in
the post-processing phase to validate the AxAC instance offering best area saving.
In fact, the total number of simulations performed by the ML-MCTS are far less than
MCTS and even the greedy-based method. The runtime is also considerably shorter
and comparable to the greedy-based method.
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The proposed approach shows great potential to improve the runtime and qual-
ity of results for a search-based DSE of AxAC synthesis. However, there are a couple
of avenues where it can be further enhanced. This could include for instance, study-
ing and evaluating the ability of the proposed approach to learn the error behavior of
larger designs and with larger set of approximation transformations. Moreover, the
training phase can be evaluated by incorporating new architectures for the learning
networks.
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Chapter 6

Conclusion

This chapter concludes the thesis. It first summarizes the contributions and main
outcomes of the thesis and then discusses the future work possibilities.

6.1 Summary

Approximate computing has become an effective way to obtain software / hard-
ware implementations that offer more performance and consume less power and
/or hardware area while providing acceptable results. Broadly speaking, approxi-
mate computing techniques can be applied at software or hardware level depending
on the target architecture. The former achieves approximation through algorithmic
techniques such as loop iteration skipping or approximate data types whereas the
latter focuses on hardware logic simplification. Automated approximate accelerator
synthesis techniques leverage pre-built arithmetic component substitution to sys-
tematically generate Approximate Accelerator Circuits (AxACs) typically via iterative
search-based methods or analytical formulation of the approximation problem. Al-
though the search-based methods are more generally applicable to a large class of
circuit representation and allow more possible approximations, they are more time
consuming due to exponential increase in the total number of possibilities an op-
erator or an approximation can take. On the other hand, analytical methods could
complete faster, their flexibility and scalability remains the main limitations.

In this thesis, the problem of automated AxAC synthesis has been handled with
the proposed novel methodology based on an intelligent stochastic search-based op-
timization — Monte Carlo Tree Search (MCTS). MCTS has been previously applied
to several other domains such as Computer Go and achieved tremendous success.
However, this work attempts to use MCTS for the Design Space Exploration (DSE)
of the approximate accelerator synthesis which is, for multiple reasons, not straight
forward. The accelerator synthesis problem has longer simulation times, require ef-
ficient pruning schemes for the search space and has a different reward scheme than
games. The proposed MCTS-based framework handles these challenges by adapting
MCTS policies for selection, expansion and backpropagation. The proposed frame-
work is then compared with other state-of-the-art frameworks with five practical
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benchmarks where it outperformed the other techniques and achieved higher en-
ergy savings.

Later in this thesis, a hybrid methodology is proposed that handles the auto-
mated AxAC synthesis problem as a two-step process. In the first step, an analytical
bit-width estimation phase generates a population of approximate designs that can
represent various regions of the search space. A second step then initiates a parallel
search forest rooted on the design points provided by the step one. The search forest
progresses by exploring multiple regions of the search space in parallel via multiple
MCTS trees. The combination of fast analytical and flexible search-based optimiza-
tion results in faster exploration of the design space while achieving better quality
of results. The results presented have demonstrated that the hybrid methodology is
more effective than the search-based or analytical-based approaches and can achieve
more area savings.

Last but not the least, Chapter 5 has demonstrated the use of high accuracy and
fast deep learning-based error estimation models that are trained to learn the error
propagation of the approximate instances. These models are then integrated in the
MCTS-based AxAC synthesis framework to overcome the bottleneck of time-costly
simulations. As a result, the DSE can perform similar number of iterations as that
of simulation-based flow in a considerably short amount of time and could achieve
similar area savings.

6.2 Future directions

Future directions for the improvement of the proposed work might be envisioned in
multiple directions. These include enhancements for the MCTS algorithm itself e.g.,
adding heuristics, or looking at the DSE problem at a cross-layer level and develop a
flow capable of identifying and applying approximations at multiple layers starting
from the high-level. In the following, we enlist some possibilities that can be fore-
seen at the moment to enhance the proposed work.

1. Heuristics for MCTS: The problem at hand for the synthesis of AxACs tends to
face explosion in terms of combinations that can be obtained during the DSE.
As discussed in detail in Chapter 2 that most state-of-the-art frameworks al-
ways rely on greedy-based heuristics to prune large part of the design space.
Although, it turns out to be effective in reducing the runtime, it often results
in inferior performance improvements e.g., area and/or power consumption.
Even with techniques like MCTS which is capable of exploring larger part of
design space with a possibility of backtracking, it can be infeasible to explore
the whole search space. In this regard, we introduced node pruning in Chap-
ter 3, analytical bit-width scaling and area-based reward in Chapter 4 to help
MCTS explore feasible search regions. Nevertheless, with increasing number
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of candidates and available transformations during the approximation pro-
cess, the design space still grows exponentially while the search algorithm is
limited in terms of number of iterations. One future direction could be to in-
vestigate heuristics that can help MCTS identify regions of search space that
might not lead to feasible solution so that they can be pruned early during the
search process and the available search budget can be utilized to explore po-
tentially feasible areas of the design space. Such heuristics might come from
the structural information of the original circuit which can be obtained prior to
the search with a preprocessing step. For instance, the components of a circuit
that are closer to the output might be more sensitive to the approximations
than the ones closer to the primary inputs. Alternatively, the search algorithm
might spend first few iterations to sample the search space areas to gather use-
ful error propagation information. For this, machine learning (ML) models
such as ones proposed in Chapter 5 can be leveraged.

2. Sensitivity analysis of the candidates: For the majority of the results presented
throughout this dissertation for various benchmarks, we observed that often
the final AxAC identified by the search is not the one with all the candidates
approximated. The approximation affects certain candidates differently as
their sensitivity to the approximation varies. Of course, this has to do with
the type of approximation being applied, but certain other aspects such as sen-
sitivity of the applied input data, the statistical characteristics of the input data,
the spatial relation of a candidate with other candidates inside the circuit also
plays important role in this regard. We envision that a study on how these
aforementioned properties affect a candidate’s sensitivity to the approxima-
tion might reveal interesting results. These results can then be used to deter-
mine the optimal order for selecting candidates for approximation during the
search-based optimization flow.

3. Error masking effects: The behavior of error propagation through the topology
of any given approximate accelerator is nontrivial to model since for some ar-
rangements of the arithmetic components, the error could get masked. Even
though there has been various analytical methods such as those explained in
Chapter 2 that attempt to model the error propagation, they are based on sim-
plistic assumptions and only support combinational circuits. It might be well
worth to look in detail at how the error propagation can be accurately mod-
eled and perhaps state-of-the-art machine learning techniques could assist in
capturing complex behavior of error in a circuit.

4. Improving accuracy and confidence of predictions of ML models: In Chapter 5, we
demonstrated how the ML models trained with sufficient data can speed up
the synthesis process. Although with a great potential to reduce the runtime
of the overall flow, there are cases where the ML models could face decrease
in prediction accuracy. This could for examples, happen in cases when there
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is no sufficient training data available or if available, is highly irregular. We
highlighted such a case in Chapter 5 for a Gaussian blur filter circuit. We also
explained how we handled the inaccuracy by adding a layer of classification
to refine the available training data. There are however, other possible ways to
increase the accuracy or confidence of the predictions made by an ML model.
Besides increasing the amount of training data, one can extract more relevant
features from the hardware description of input circuit and reformat it to a rep-
resentation best suited for the underlying ML models. For instance, convolu-
tion neural networks work better with high-dimensional data such as images.

5. Enhancing the hybrid methodology: Our hybrid methodology proposed in Chap-
ter 4 has shown great potential for efficient DSE. In fact, with a straight forward
approach based on the extreme value theory, a large part of irrelevant design
space could be pruned and later the search-based optimization could spend its
computational budget to explore feasible regions. We believe that the hybrid
methodology could be enhanced by exploring more analytical approaches in
future. To this end, we also deem ML models as an option to act as phase 1
technique in phase 1 to sample design points in the search space.

6. Incorporating MCTS in high-level synthesis flow: Recent years have seen an in-
creasing interest in High-Level Synthesis (HLS) since it allows hardware cre-
ation at a higher level of abstraction and could be used as a mean to increase
the productivity. Just recently, approximate HLS accelerators have also been
attempted by some researchers. Although being able to generate hardware
with less effort than the hardware description languages, still a great deal of
DSE is required to produce high performance hardware with HLS. Adding ap-
proximation as one more knob requires even more extensive exploration of the
design space. Furthermore, one needs to deal with the issues such as decid-
ing loop unrolling factor, resource sharing, etc. In fact, without considering
the effect of resource sharing, often the approximate accelerator might result
in larger resource utilization than the original. Nonetheless, using MCTS in an
HLS flow could potentially be evaluated to deal with the large design space.

7. Cross-layer approximation flow with MCTS: Another direction can focus on the
multi-objective optimization problem at higher level of abstraction such as the
algorithmic level description of the circuits. The macro blocks of the circuit
can be identified, and subsequently local error budgets can be assigned to the
blocks. Then, the approximate component modules can be substituted from a
component library specifically characterized with the delay, power, area, and
error information. Furthermore, the approach can be combined with the micro-
architecture level (or even with lower levels) to obtain a cross-layer approxi-
mation flow.
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