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Abstract

This dissertation is devoted to the study of two different hybrid distributed systems,
hybrid networks and hybrid programmable matter.

Hybrid networks are communication networks in which the nodes possess differ-
ent modes of communication. For example, modern mobile phones can typically
communicate both via Bluetooth ad hoc connections as well as the cellular network,
but applications rarely leverage both. To study hybrid networks, in the first part
of this thesis we establish a theoretical model in which nodes have two different
communication modes, a local and a global mode. Whereas the local mode captures
characteristics of a limited-range fixed network, such as an ad hoc network, the
global mode models the nodes’ ability to use a shared infrastructure such as the cel-
lular network. We explore the capabilities and limitations of hybrid networks under
different communication restrictions and present algorithms for various problems.
As a main focus of the first part, we study the computation of graph problems, and
shortest paths in particular, where the input graph is given by the local network.

The second part of this dissertation revolves around hybrid programmable matter.
Hybrid programmable matter refers to a system of minute robots that operate on
a set of tiles, and that can lift and place tiles to alter the structure. The robots
are envisioned to act autonomously and without any global information, only based
on a simple internal program. Therefore, from the outside, the system behaves as
a self-transforming substance. We study two different problems in a simple model
for hybrid programmable matter, shape formation and shape recognition. The main
focus of our work lies in exploring the power of a single robot, and we lay some
foundations to leverage multiple robots that act coordinately.






Zusammenfassung

Diese Dissertation behandelt zwei Typen von hybriden verteilten Systemen, hybride
Netzwerke und hybride programmierbare Materie.

Hybride Netzwerke bezeichnen Kommunikationsnetzwerke in denen Knoten ver-
schiedene Kommunikationsmodi besitzen. Moderne Mobiltelefone kénnen beispiel-
sweise sowohl Bluetooth-Verbindungen aufbauen, als auch {iber das zellulidre Net-
zwerk kommunizieren. Praktische Anwendungen, die beide Kommunikationsmodi
ausnutzen, sind dennoch selten. Im ersten Teil dieser Dissertation stellen wir ein
theoretisches Modell fiir hybride Netzwerke mit zwei verschiedenen Kommunikation-
smodi vor, einem lokalen und einem globalen Modus. Wahrend der lokale Modus
die Eigenschaften von vorgegebenen Netzwerken begrenzter Reichweite, wie ad hoc
Netzwerken, erfasst, beschreibt der globale Modus die Féahigkeit der Knoten iiber
eine geteilte Infrastruktur, wie dem zelluldren Netzwerk, zu kommunizieren. Wir
untersuchen die Moglichkeiten und Grenzen eines solchen hybriden Netzwerkes fiir
unterschiedliche Kommunikationsbeschrankungen und préasentieren Algorithmen fiir
verschiedene Probleme. Einer der Schwerpunkte des ersten Teils dieser Disserta-
tion liegt im Studium von Graphproblemen wie der Berechnung kiirzester Wege im
Graphen der lokalen Kanten.

Der zweite Teil dieser Dissertation behandelt hybride programmierbare Materie.
Hybride programmierbare Materie setzt sich zusammen aus aktiven Elementen, den
Robotern, die sich auf passiven Elementen, den Kacheln, bewegen und diese ver-
schieben kénnen. Die Roboter agieren dabei autonom und ohne globale Informatio-
nen, nur basierend auf einem einfachen gespeicherten Programm, und bilden gemein-
sam mit den Kacheln eine Art programmierbare Substanz. Wir untersuchen zwei
verschiedene Probleme in einem einfachen Modell fiir hybride programmierbare Ma-
terie, das Shape Formation Problem sowie das Shape Recognition Problem. Der
Fokus unserer Arbeit liegt in der Erforschung der Méchtigkeit eines einzelnen Robot-
ers. Dartiber hinaus préasentieren wir grundlegende Erkenntnisse fiir die Forschung
in Systemen, die aus einer Vielzahl von Robotern und Kacheln bestehen.
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Introduction

HIS thesis explores two different kinds of hybrid distributed systems. In the first
part of this thesis, we study hybrid networks. In contrast to classical commu-
nication networks, in hybrid networks nodes can communicate using multiple

modes of communication with different characteristics. The second hybrid system
we investigate is hybrid programmable matter. Such a system consists of small active
elements that act on a set of passive tiles. The active elements are envisioned as
small autonomous robots with the computational capabilities of a finite automaton
that can be used to explore and manipulate any given tile structure. We first give
some motivation and a more detailed explanation of these two concepts and then
provide an overview of the results of this dissertation.

Hybrid Networks The general idea of hybrid communication is to leverage mul-
tiple, but fundamentally different, communication modes instead of relying on a
single mode only. As a matter of fact, virtually all communication we perform daily
is hybrid. Spoken language, as an example, is often accompanied by some form of
nonverbal communication such as gestures or body language. Whereas the former
can be used to directly exchange information, ideas, or desires, the latter often serves
to augment or contextualize the given information. For example, the reputation of a
fisherman clearly depends on how long he can stretch his arms when describing his
latest catch. These two modes of communication exhibit very different characteris-
tics, which we intuitively take into account when speaking to each other. Speech
can, for example, only be heard up to a limited distance, but may also propagate
around corners. Gestures, on the other hand, may be discernible over longer range,
but only help if the gesticulating person can actually be seen.

Although modern computer devices typically possess a multitude of communica-
tion modes, applications that actually make use of a combination of different modes
are seldom. As an example, modern cell phones can, in principle, make use of Blue-
tooth or Wi-Fi ad hoc connections as well as the cellular network infrastructure.
However, a typical messenger application will not dynamically decide upon the ap-
propriate communication mode to carry out a message transmission, depending on
the location of the recipient, for instance. In fact, the 5G communication standard,
which has only recently reached wide-spread usage, is the first mobile standard that
is designed to utilize device-to-device communication in addition to cellular net-
works [KS18]. A promising application of such hybrid networks formed using 5G can
be found in vehicle-to-vehicle communication [SM15].

As another example of hybrid networks that are already used in practice, hybrid
data center networks [FS19] combine traditional electronic packet switching with
dedicated connections between servers. These dedicated connections can be formed
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using optical switches (e.g., [Far+10; Wan+10]), wireless antennas (e.g., [Hal4+11;
Zho+12]), or laser connections (e.g., [Ham+14]). Combining the different communi-
cation modes helps to deliver scalable throughput, or to reduce a system’s complexity,
cost, or power consumption. Other examples of hybrid communication include dy-
namic multipoint VPNs, which leverage a combination of dedicated leased lines with
standard, best-effort VPN connections [RS11], or hybrid WANs, which incorporate
both the internal communication infrastructure of a company, for example, as well
as communication via the Internet [Tel+18].

Although the utility of hybrid networks has been proven in practice, rigorous
theoretical research is still in its infancy. In the first part of this thesis, we try
to advance in this direction. First, we establish a general theoretical model for
hybrid networks that leverage two different communication modes, a local mode and
a global mode. Using the local mode, nodes can send messages to their neighbors
in a fixed communication graph that we call the local network. On the other hand,
the global mode allows nodes to, in principle, send messages to any other node in a
potentially dynamic global network. As the topology of the local network prescribes
which nodes can communicate directly, it may allow nodes to contact many nodes at
the same time. By contrast, the communication graph of the global network, albeit
being much more flexible, only allows the nodes to communicate with very few other
nodes at the same time. The very distinct capabilities and limitations of the two
network types capture characteristic properties of many interesting hybrid networks:
The local network can be used to model a fixed communication infrastructure such as
ad hoc connections of mobile devices or the physical infrastructure of a data center,
whereas the global network captures the ability to establish dedicated connections,
for example, via the Internet or laser connections between servers. Based on this
model, we study multiple aspects of hybrid networks in this thesis.

Hybrid Programmable Matter The second part of the dissertation revolves
around a different kind of hybrid distributed systems, namely hybrid programmable
matter. Programmable matter refers to a collection of minute entities that act in
coordination to achieve some desired goal. We envision the entities to act without
external control, only according to their internal logic and based on their local
information, hence the term programmable. From the outside, single entities are
indistinguishable and almost imperceptible, making the system appear as matter.
The number of potential practical applications of such systems is incalculable. For
example, programmable matter may be used in minimal invasive surgery, where it
could seal wounds, build stents, or capture and disarm cancerous cells. It can also
be helpful in places that are too arduous or dangerous for humans to reach, such as
the outer space, or that are inaccessible to conventional robotic systems, such as in
medical applications.

There exist many models for programmable matter that assume different capa-
bilities and limitations of a system. The models can generally be divided into two
classes, namely models that assume active or passive entities. An example for active
programmable matter is the Amoebot model [Der+14], in which small robots with
the computational capabilities of finite automata move by performing contractions
and expansions. Many interesting problems for programmable matter have been



investigated under this model, for example shape formation [Der+16; Di 4-20], coat-
ing [Der+17; Day+18], hull formation [Day+20], and leader election [Day+17]. The
Amoebot model, as well as similar active models [Woo+13; Hur+15], requires each
entity to perform computations and control its own movement. Whereas this allows
the system to solve complex tasks, realizing the entities may be difficult and costly.

An approach to passive programmable matter is to use DNA tiles [Pat14]. The
tiles are constructed in nanometer scale from DNA, and can bind to each other in
order to assemble larger structures. One of the most prominent models for DNA
tile self-assembly is the abstract tile-assembly model (aTAM) [RW00]. Here, the way
in which the tiles attach to each other is defined by different types of glues rather
than deliberate movements from one position to another. Additional changes to the
structure have to be enforced externally, for example by changing the temperature
or exposing the structure to certain kinds of radiation.

In this thesis, we investigate a hybrid model for programmable matter, in which we
are given a set of passive tiles that are uniform and stateless, and a limited number
of active robots. The robots, which only have the computational power of finite
automata, move on the structure of tiles. By transporting tiles from one position to
another, they are able to rearrange the structure, for example, to form some desired
shape. Compared to the DNA tile-based approach, in our model, all tiles are of the
same type and movements are exclusively performed by the robots. Furthermore, in
contrast to the approaches based entirely on active elements, we believe that many
problems can be solved in our hybrid model using only a few active elements. We
specifically investigate two problems for hybrid programmable matter, namely shape
formation, and shape recognition, where we mostly focus on the single-robot case.

Although the complexity of our model is very restricted, actually realizing such a
system is currently still a challenging task. A promising candidate for a potential
realization of hybrid programmable matter lies in DNA nanomachines, for which
there has been significant progress in recent years. For example, nanomachines have
been demonstrated to be able to act as the head of a finite automaton on an input
tape [RS09], to walk on a one- or two-dimensional surface [Lun+10; OSS09; Wic+12],
and to transport cargo [Thu+17; SP04; WEW12]. We therefore believe that at some
point it may be feasible to build nanomachines with the capabilities assumed in this
dissertation.

Thesis Overview

In the following, we outline the structure of this thesis, summarize the main results
of each chapter, and present the underlying publications. The hybrid network part of
this thesis is prefaced with a prologue in Chapter 2, which describes and discusses the
hybrid network model that underlies the four subsequent chapters. Additionally, the
chapter contains an overview of the definitions and notations used throughout the
first part of this thesis, and provides a summary of recurring concepts and problems.

Chapter 3: Fast Construction of Overlay Networks We begin this thesis
by investigating the case in which the global network is not initially given, but
needs to be constructed. More precisely, we assume that the local network forms
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some connected graph G, and each node initially only knows its neighbors in G.
For the nodes to effectively utilize global communication, we first need to establish
a suitable structure of global edges. This problem is also known as the Owerlay
Construction Problem: Given some connected graph, the goal is to transform it into
some suitable overlay network such as a balanced tree, a butterfly network, or a
sorted ring. To solve the Overlay Construction Problem, the nodes can introduce
neighbors to one another by sending messages that contain node identifiers. Thereby,
additional global edges can be established. However, the nodes are only allowed to
communicate a polylogarithmic number of bits in each round using global edges,
which makes the naive approach of introducing all neighbors to each other until the
network forms a clique infeasible.

Specifically, we want to construct a tree that has constant degree and height
O(logn). It is easy to see that it takes time Q(logn) to construct such a tree
starting from a line, even if unbounded communication was allowed. In this thesis,
we present an algorithm that comes close to this lower bound and only requires
(’)(log3/ 2n) rounds. At the heart of our algorithm lies a deterministic strategy to
group and merge large components of nodes, but we make use of randomized load-
balancing techniques to comply with the communication constraints. The chapter
is based on the following publication, which we adapt to our hybrid network model
and improve to also compute a spanning tree of G as a byproduct.

T. Gotte, K. Hinnenthal, and C. Scheideler. “Faster Construction of
Overlay Networks”. In: International Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO). 2019, pp. 262276
[GHS19]

Chapter 4: Distributed Computation with Node Capacities After dis-
cussing the problem of constructing a suitable global network in Chapter 3, the
focus of Chapter 4 is on the difficulty of distributed computation with node capac-
ities. In contrast to the local network, we impose a communication bound for the
global network at each node rather than limiting the capacity for each edge. There-
fore, although each node can in principle communicate with any other node using
the global network, the total amount of global communication that a node can per-
form in a fixed amount of time is highly limited. To study the effect of nodes having
limited communication capacity on the complexity of distributed computations, we
introduce the node-capacitated cliqgue (NCC) model. The model fully abstracts from
the problem of constructing a global network and simply assumes that the nodes are
arranged as a clique. In each round, every node can exchange messages of O(logn)
bits with at most O(logn) other nodes. When solving a graph problem, the input
graph G is defined on the same set of n nodes, where each node knows which other
nodes are its neighbors in G.

We present distributed algorithms for the Minimum Spanning Tree, BFS Tree,
Single-Source Shortest Paths (SSSP), Maximal Independent Set (MIS), Maximal
Matching, and Vertex Coloring problems. We show that even with only O(logn)
concurrent interactions per node, the MST problem can still be solved in polyloga-
rithmic time. In all other cases, the runtime of our algorithm depends linearly on



the arboricity of G, which is the minimum number of forests into which the edges of
G can be partitioned. For many important graph classes such as planar graphs, the
arboricity is a constant. The chapter is an extension of the following publication.

J. Augustine, M. Ghaffari, R. Gmyr, K. Hinnenthal, F. Kuhn, J. Li,
and C. Scheideler. “Distributed Computation in Node-Capacitated
Networks”. In: Proceedings of the 31st Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 2019, pp. 69-79
[Aug+19]

Chapter 5: Shortest Paths in Sparse Hybrid Networks The previous chap-
ter demonstrates that some problems are difficult to solve if each node can only
perform small global communication. In particular, shortest path problems such
as SSSP or computing the diameter seem to be inherently hard. Therefore, in
Chapter 5 we return to our assumptions made in Chapter 3 and allow small local
communication.

More precisely, we show how to compute SSSP and the diameter very efficiently
in sparse graphs. For these problems, we present exact randomized O(logn) time
algorithms for cactus graphs (i.e., graphs in which each edge is contained in at most
one cycle), and 3-approximations for graphs that have at most n + O(n!/?) edges
and arboricity O(logn). As intermediate steps, we describe deterministic O(logn)
time solutions for these problems in trees, cycles, and pseudotrees (i.e., trees that
have at most one cycle). Our algorithms heavily rely on the tools established in the
previous chapters and techniques known from parallel computing. The chapter is
based on the following publication.

M. Feldmann, K. Hinnenthal, and C. Scheideler. “Fast Hybrid Network
Algorithms for Shortest Paths in Sparse Graphs”. In: Proceedings of
the 24th International Conference on Principles of Distributed Systems
(OPODIS). 2020, 31:1-31:16 [FHS20]

Chapter 6: Shortest Paths in General Hybrid Networks To explore the
full power of hybrid networks, in Chapter 6 we study a hybrid model that combines
the NCC as the global network with a local network that allows unbounded commu-
nication. In contrast to the previous section, in which we focused our attention on
sparse graphs, the increased potential of the model allows us to solve shortest path
problems in general graphs. More precisely, we present two algorithms for the SSSP
Problem. The first algorithm solves SSSP exactly in time O(v/SPD), where SPD is
the so-called shortest-path diameter of G, and the tilde-notation hides all factors that
are polylogarithmic in n. It exploits the capability of the nodes to communicate large
subgraphs to their neighbors, and makes heavy use of the techniques established in
previous sections. Our second contribution is an algorithm that approximates SSSP
up to a multiplicative (1/e)®(1/9)-factor in time O(nf). The algorithm is based on
building a hierarchy of skeleton spanners, which are sparse graphs that are con-
structed in a recursive fashion using the global network. The chapter is based upon
the following publication.
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J. Augustine, K. Hinnenthal, F. Kuhn, C. Scheideler, and P. Schneider.
“Shortest Paths in a Hybrid Network Model”. In: Proceedings of the 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2020,
pp. 1280-1299 [Aug+20b]

The original publication also contains algorithms for All-Pairs Shortest Paths
(APSP), which requires techniques beyond the scope of this thesis. For comprehen-
siveness, we provide an overview of the omitted results and the additional techniques
in the chapter.

Chapter 7: Shape Formation in Hybrid Programmable Matter We begin
our study of hybrid programmable matter with the problem of shape formation. As a
first step towards developing a general framework for these problems, we consider the
problem of rearranging a connected set of hexagonal tiles by a single deterministic
finite automaton. After investigating some limitations of a single-robot system, we
show that a feasible approach to build a particular shape is to first rearrange the
tiles into an intermediate structure by performing very simple tile movements. We
introduce three types of such intermediate structures, each having certain advantages
and disadvantages. Each of these structures can be built in asymptotically optimal
O(n?) rounds, where n is the number of tiles. As a proof of concept, we give an
algorithm to reconfigure a set of tiles into an equilateral triangle through one of
the intermediate structures. Finally, we experimentally show that the algorithm
for building the simplest of the three intermediate structures can be modified to
be executed by multiple robots in a distributed manner, achieving an almost linear
speedup in the case where the number of robots is reasonably small. We further
explain how the algorithm can be used to construct a triangle distributedly. The
chapter is based on the following publication.

R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Schei-
deler, and T. Strothmann. “Forming Tile Shapes with Simple Robots”.
In: Proceedings of DNA Computing and Molecular Programming (DNA ).
2018, pp. 122-138 [Gmy-+18c]

An extended version of the paper has also been published in the Natural Comput-
ing journal.

R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Schei-
deler, and T. Strothmann. “Forming tile shapes with simple robots”. In:
Natural Computing 19.2 (2020), pp. 375-390 [Gmy+20]

Chapter 8: Shape Recognition in Hybrid Programmable Matter In the
final chapter of our thesis, we investigate the problem of detecting the geometric
shape of a given structure by a single robot. In particular, we consider the question
of recognizing whether the tiles are assembled into a parallelogram whose longer side
has length ¢ = f(h) for a given function f(-), where h is the length of the shorter
side. To determine the computational power of the finite-state automaton robot, we
identify functions that can or cannot be decided when the robot is given a certain
number of pebbles. We show that the robot can decide whether ¢ = ah + b for



constant integers a and b without any pebbles, but cannot detect whether ¢ = f(h)
for any function f(x) = w(x). For a robot with a single pebble, we present an
algorithm to decide whether ¢ = p(h) for a given polynomial p(-) of constant degree.
We contrast this result by showing that, for every constant s, any function f(z) =
w(x%72) cannot be decided by a robot with s states and a single pebble. We further
present exponential functions that can be decided using two pebbles. Finally, we
describe a family of functions fi(-) for which the robot needs more than k pebbles
to decide whether ¢ = fi(h). The chapter is based on the following publication.

R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, and C.
Scheideler. “Shape Recognition by a Finite Automaton Robot”. In: Pro-

ceedings of the 43rd International Symposium on Mathematical Founda-
tions of Computer Science (MFCS). 2018, 52:1-52:15 [Gmy+18a]
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Hybrid Networks






Prologue

HE first four publications of this thesis, upon which Chapters 3 to 6 are based,
can all be generalized under the same hybrid network model. Moreover, the
chapters mostly rely on the same set of definitions and often employ similar

techniques, or solve similar tasks under varying assumptions. This preliminary chap-
ter contains a general model definition that combines the assumptions of all chapters
concisely and gives an overview of the specific model assumptions of each chapter.
In Section 2.2, we then provide a basic set of definitions and notations. We conclude
this chapter in Section 2.3 with a summary of some of the recurring problems of the
first part of this thesis.

2.1. Model

Each chapter of the first part of this thesis focuses on a different aspect of hybrid
networks and is therefore based on specific model assumptions. The models can be
generalized under the generic hybrid network model, which we formally introduce in
this section. Our model combines the approach of Augustine et al. [Aug+20b] to
parameterize the communication restrictions for the local and global network with
the idea to view the global network as a dynamic overlay network [Gmy+17a].

To the best of our knowledge, no models comparable to our hybrid network model
have been studied before the above-mentioned publications. Therefore, we forego
a summary of models that are somewhat related to ours at this point, and only
compare ourselves to literature whenever appropriate. In addition to that, each
chapter contains an overview of the specific related work of that chapter.

Local and Global Network We are given a fixed set V' of n nodes, where we
assume the nodes to know an upper bound n > n on n that is polynomial in n.
The nodes are connected via two kinds of edges: local edges and global edges. The
local edges form a fized local network. Formally, we represent the local network by
an undirected, weighted graph G = (V, E,w), where the edge weights are given by
w:E—{1,...,W} CN for some W that is at most polynomial in n. Thus, every
weight and length of any shortest path can be represented using O(logn) bits. The
graph G is said to be unweighted if w: E — {1}.

We assume the standard synchronous message passing model, where time is di-
vided into synchronous rounds. Each node u € V has a unique identifier id(u),
which is a bit string of length O(logn). Let D;(u) be the set of identifiers stored by
a node u at the beginning of round 7. We define the set of global edges in round 4
as D; = {(u,v) |u € V and v € D;(u)}. In contrast to the local network, the global
network is therefore dynamic and may change over time.
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Chapter 2. Prologue

Communication Capacities In each round every node can send distinct mes-
sages of size O(logn) to other nodes using both its local and global edges. Since
id(u) = O(logn) for all u € V, each message can contain a constant number of
node identifiers. If u sends id(w) to v in round i, then (v,w) € D;;1. Therefore,
additional global edges can be set up by sending node identifiers. However, the
number of messages that can be sent over the local and global network is restricted
by parameters A and v: The local capacity A is the maximum number of messages
that can be sent over each local edge in a round, and the global capacity v is the
maximum number of messages any node can send and receive via global edges in a
round. When in some round more than A (or 7) messages are sent over an edge (or
to a node, respectively), we assume that an adversary delivers an arbitrary subset
of these messages and drops the other messages. All algorithms in this thesis ensure,
either deterministically or with high probability, that a node never sends or receives
too many messages.

Note that whereas A imposes a bound on the number of messages that can be sent
over each edge, v effectively restricts the amount of global communication at each
node. This modeling choice is motivated by the idea that local communication rather
relates to physical networks, where an edge corresponds to a physical connection
(e.g., cable- or ad hoc networks), whereas global communication primarily captures
aspects of logical networks that are formed as an overlay on top of some shared
physical infrastructure. In overlay networks, however, the amount of information
that a node can send out in a single round does not scale linearly with the number
of its incident edges. Therefore, it is more reasonable to impose a bound on the
amount of information that a node can send and receive in one round, rather than
imposing a bound on the amount of information that can be sent along each of its
incident edges.

Model Discussion For appropriate choices of A and -y, our model captures various
established network models. For v = 0, the nodes can only use the local edges as in
classical fixed communication networks. If in this case we choose A = oo, our model
corresponds to the LOCAL model of distributed computing. The related CONGEST
model [Pel00], which is used to study the impact of edge capacities, is obtained by
setting A = O(1). If additionally G is a clique, then our model corresponds to the
congested clique, which has initially been proposed as a simple model for overlay
networks [Lot+05]. However, the congested clique allows each node to be in contact
with up to ©(n) other nodes at the same time. As we argue in Chapter 4, this issue
seems to severely limit the utility of the congested clique as a suitable model for
overlay networks.

As a more realistic communication bound that ensures scalability in overlay net-
works, many recent publications assume that each node can only send and receive
a polylogarithmic number of bits in each round [GHS19; GVS19; AS18; Gmy+17a;
DGS16]. Such networks are captured by the global network in our model for A =0
and v = O(1) (recall that O(-) hides factors polylogarithmic in n). The node-
capacitated cligue (NCC) model we propose in Chapter 4 is a simplified model for
overlay networks. It allows each node to only send and receive at most O(logn)
messages, which is small enough to ensure scalability without necessitating overly
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complicated techniques. Furthermore, it abstracts away the necessity to explicitly
establish overlay edges by simply assuming that the network forms a clique. There-
fore, if we additionally assume that every node knows the identifiers of all other
nodes, the generic hybrid model captures the NCC with A = 0 and v = O(logn).

As an intermediate model between these two types of overlay network models,
Augustine et al. [Aug+20a] proposed to study the so-called NCCy model. Instead
of all nodes forming a clique, the model assumes that the nodes initially only know
their neighbors in some input graph H. However, the nodes are still restricted to
only communicate O(logn) messages in each round per node. Clearly, our hybrid
model incorporates the NCCy for A = 0 and v = O(logn) if the initial knowledge
graph of the global network corresponds to H.

Besides the above-mentioned models, our hybrid network model is also somewhat
related to the multimedia network model of Afek et al. [Afe+90], who might have
been the first to propose theoretical research with multiple communication modes.
They consider a combination of a point-to-point message passing network akin to our
local network and a multiaccess channel, which nodes can use to broadcast messages
to all other nodes. This second mode is related to our global network in that it allows
nodes to contact any other node. However, since the multiaccess channel allows
nodes to contact all other nodes, and, on the other hand, only permits a single node
to use the channel at a time, the two models are hardly comparable. This observation
is, for example, supported by the fact that computing simple aggregate functions
such as sums requires time {2(n) in the multimedia model [Afe+90], whereas it only
requires O(logn/loglogn) rounds in the NCC (see Chapter 4).

Model Variants in this Thesis FEach communication model underlying a chapter
of the first part of this thesis can be seen as an instance of our generic hybrid model.
In Chapter 3, we assume a very restricted setting in which A = O(1), v = O(logn),
and each node initially only knows its neighbors in G, i.e., Di(u) = {v | {u,v} € E}
for all w € V. Since this network model can be regarded as a combination of the
CONGEST model for the local network and the NCCy for the global network, we will
refer to it as the CONGEST+NCCy model. As mentioned above, the NCC we study

in Chapter 4 is an instance of our generic model as well.

When we turn our attention to shortest path problems in hybrid networks in Chap-
ter 5, we consider the hybrid model of Chapter 3, but assume that the global network
forms a clique. Since this model corresponds to a combination of the CONGEST and
the NCC model, we refer to it as the CONGEST+NCC model. This simplification
can be justified by our insights on overlay construction in Chapter 3, and allows
us to use our techniques from Chapter 4 mostly as a black box. In fact, as we ar-
gue in Chapter 5, all algorithms of the chapter can be adapted to also work in the
CONGEST+NCCj model with little effort.

While we focus on sparse graphs in Chapter 5, we finally investigate shortest path
problems in general graphs in Chapter 6. However, since dense graphs prove to be
much more difficult with limited local capacity, we allow the nodes to perform an
arbitrary amount of local communication. Consequently, we refer to this model as
the LOCAL+NCC model.

13
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2.2. Preliminaries

We begin this section by introducing some general definitions and concepts from
graph theory and then provide the main probabilistic arguments used in this disser-
tation.

Basic Graph Theory We first review some basic concepts from graph theory.
Let G = (V, E,w) be an undirected graph with positive edge weights w : E — N
(throughout this thesis, N always refers to the set of positive natural numbers and
does not include 0). If w(e) = 1 for all e € E, then we call G unweighted. To
distinguish between the edge sets of different graphs, we will sometimes refer to the
nodes and edges of G as V[G] and E[G], respectively. The neighborhood of a node
u € V is defined as Ng(u) := {v € V | {u,v} € E}, and deggy(u) := |[Ng(u)| denotes
its degree. The degree of a graph G is defined as A(G) := max,ecy degg(u), and
deg(GQ) := 3 ,cy deg(u)/n is the average degree of all nodes. We call two nodes
u,v € V adjacent, if {u,v} € E, and we call two edges adjacent if they share one
endpoint. Furthermore, we call an edge e € E incident to a node v € V if v is one
of the endpoints of e.
For any u,v € P, a path P between u and v is a sequence of edges

P = ({u=wv1,v2},{ve,v3}, ..., {vk_1, v = v}).

Throughout this thesis, we will sometimes refer to a path as the set of its edges
P C FE, or represent P by the sequence of nodes contained in P in the order in which
they are wisited by P, i.e., P = (u = v1,v2,...,v5 = v). If u =, then P is a cycle.
We call a path (or cycle) simple, if each node in P is visited exactly once (and, in a
cycle, u = v is visited only twice).

We say G is connected if there is a path P between any two nodes. The connected
components of G are its maximal connected subgraphs.

We define the length of P as w(P) := Y .cpw(e). The distance between any two
nodes u,v € V is defined as

d = i P).
c(u,v) pmin, w(P)
A path P C E between two nodes u and v such that w(P) = dg(u,v) is called a
shortest path. The diameter of GG is defined as the maximum length of any shortest
shortest path, i.e.,
D(G) = da(u,v).
() = may do(u, v)
Alternatively, the diameter can also be defined as the maximum eccentricity eccg(u)
of any node u € V, which is defined as

eccg(u) := max{d(u,v) | v € V}.

If P contains k edges, i.e., |P| = k, we say P has k hops. The hop-distance between
two nodes u and v is defined as

hopg (u, v) == L P
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In addition to the definition of the (weighted) diameter D(G), we define D(G) as
the hop-diameter
D (@) := max hopg(u,v).

u,veV

The shortest path hop-distance between u and v is

h, = i P
SP G(u’ ’U) shortestnll;il—path P | "

and the h-limited distance from u to v is

dp.c(u,v) ::u_v{gﬁl » w(P).
|P|<h

If there is no u-v path P with |P| < h, then let dj g(u,v) := oco. Finally, the
shortest-path diameter SPD(G) is the minimum number such that dspp(q),q(u,v) =
dg(u,v) for all u,v € V. Since all edge weights are at least 1, we have that D(G) >
SPD(G) > D(G). If G is unweighted, then D(G) = SPD(G) = ©(G); therefore, in
this case we only refer to the diameter D(G) of a graph.

A tree T is a connected graph that does not contain any cycle, and a forest is
a set of trees. It is easy to see that a tree contains |V[T]| — 1 edges and a unique
path between any two nodes. Any node with degree degp(v) < 1 is called a leaf,
otherwise it is called an inner node.

We call a tree T' rooted at some node s € V[T, if each edge in T is assigned a
direction towards the root, i.e., {u, v} is directed from u to v if and only if dr(s,v) <
dr(s,u), in which case we call v the parent of u and w a child of v. If for u,w € VI[T]
there exists a path P = (u = vy, vg,...,v; = w) in T such that {v;,v;11} is directed
from v; to v;41 for all 1 < i < k, then w is an ancestor of v and v is a descendant of
w. By definition, v is both an ancestor and a descendant of itself. We will refer to
the subgraph of T" induced by all of v’s descendants as the subtree of v. The depth of
v is its distance dp (s, v) to s, whereas its height is defined as the maximum distance
from v to any of its descendants D,, i.e., max,ep, d(v,u). The height of T is the
height of its root node.

We parameterize the different graph properties by G whenever we need to differ-
entiate between different graphs. If the graph G is clear from the context, we drop
the parameter in the notations above.

Nash-Williams Forest Decomposition Clearly, if the global capacity in our
hybrid model is very low, nodes can only communicate with few other nodes at the
same time using global edges. For many of our algorithms, the global communication
that needs to be performed is prescribed by some given graph; if this graph has a
high degree, then carrying out the required communication is hard. Therefore, we
often make use of the so-called Nash- Williams forest decomposition technique, which
allows our algorithms to depend on the arboricity of the graph instead of its degree,
which is, in many cases, much lower. Before we describe the Nash-Williams forest
decomposition from a high level, we establish some additional graph theoretical
notions.

Formally, the arboricity a(G) of an undirected graph G is the minimum number of
forests into which its edges can be partitioned (again, if the graph is clear from the
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context, we omit the parameter G). Since the edges of any graph with maximum
degree A can be greedily assigned to A forests, a < A. Furthermore, since the
average degree of a forest is at most 2, and the edges of G can be partitioned into
a forests, deg < 2a. Graphs of many important graph families have small arboricity
although their maximum degree might be unbounded. For example, a tree obviously
has arboricity 1. A cycle can be partitioned into a line and one additional edge, and
therefore has arboricity 2. Pseudotrees and cactus graphs, which we consider in
Chapter 5, obviously have arboricity 2 as well. Nash-Williams [Nas64] showed that
the arboricity of a graph G is given by maxgcg(mp/(ng — 1)), where H C G is a
subgraph of G with at least two nodes and ny and mpy denote the number of nodes
and edges of H, respectively. Since any planar graph has at most 3n — 6 edges by
FEuler’s formula, planar graphs have arboricity at most 3. Moreover, any graph with
genus g, which is the minimum number of handles that must be added to the plane to
embed the graph without any crossings, has arboricity O(,/g) [BE10]. Furthermore,
it is known that the family of graphs that ezclude a fized minor [DLI8| and the
family of graphs with bounded treewidth [DWO07] have bounded arboricity.

An orientation of G is an assignment of directions to each edge, i.e., for every
{u,v} € E either u — v (u is directed to v) or v — wu (v is directed to w). If
u — v, then u is an in-neighbor of v and v is an out-neighbor of u. For u € V define
Nin(u) ={v € V | v — u} and Noy(u) = {v € V | u — v}. The indegree of a node
u is defined as deg;,(u) = |Nin(u)| and its outdegree is degg(u) = | Nout(uw)|. A
k-orientation is an orientation with maximum outdegree k.

For a graph with arboricity a, there always exists an a-orientation: We root each
tree of every forest arbitrarily and direct every edge from child to parent node. As
such a forest is usually not known, the Nash-Williams forest decomposition tech-
nique helps us to construct a (2 + €)a-orientation (see, e.g., [BE10]). The technique
partitions the nodes of the graph into disjoint sets Vi,..., Vi, k = O(logn), in the
following way. In phase i € {1,...,k}, all nodes that have degree at most (2+¢)-a
are removed from the graph and join the set V;. The desired orientation is obtained
by directing each edge {u,v} € E, u € V;, v € V}, fromu tovif i < j, ori =j
and id(u) < id(v). Throughout this thesis, we will use different implementations of
this simple procedure to locally distribute the edges of a graph such that each node
is only assigned at most O(a) edges, which makes our algorithms very efficient in
graphs that have low arboricity.

Aggregate Functions Many of our algorithms rely on aggregate functions. For-
mally, an aggregate function f maps a multiset S = {x1,...,zx} of input values
to some value f(S). For some functions f it might be hard to compute f(S) in a
distributed fashion, so we will focus on so-called distributive aggregate functions: An
aggregate function f is called distributive, if there is an aggregate function g (which
we call sub-aggregate function to f) such that for any multiset S and any partition
Sty 8¢ of S, f(S) = g(f(51), .., f(S0))-

Distributive aggregate functions have the property that they can be computed by
combining subresults, which makes it easy to compute them in a distributed fashion.
Classical examples of distributive aggregate functions are MAX, MIN, and SUM.
For these examples, f and g are the same function. For the COUNT function, as a
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3 4 5 6

Figure 2.1.: A 3-dimensional butterfly network.

different example, f returns the number of elements in S, whereas g takes the sum
of the subresults.

Butterfly Network Some of our algorithms construct butterfly networks using
the global network. Formally, for d € N, the d-dimensional butterfly is a graph with
node set [d+ 1] x [29], where we denote [k] = {0,...,k— 1}, and an edge set E1 U F
with

Er ={{(i,a),(i+ L)} |i € [d], ac 27},

By ={{(i,0), (i+1,8)} [i € [d], o B € [27],
« and S differ only at the (i + 1)-th bit from left to right}.

The node set {(i,) | j € [2%]} represents level i of the butterfly, and node set
{(3,7) | i € [d+ 1]} represents column j of the butterfly. We will refer to level 0 of
the butterfly as the top level, and to level d as the bottom level. An example of a
butterfly network is given in Figure 2.1.

Probability Theory We say an event occurs with high probability (abbreviated
as w.h.p), if it occurs with probability at least 1 —n~¢ for any given constant ¢ > 1.
To show that the correctness and runtime of all randomized algorithms in this thesis
hold with high probability, we make use of different concentration inequalities known
from literature.

Lemma 2.1 (Markov’s Inequality). Let X be a nonnegative random variable and
k > 0. We have that
Pr[X > k] < E[X]/E.

If X is a sum of sufficiently independent random variables, then we can make
use of the following variants of the Chernoff bounds (see, e.g., [SSS95]), which give
exponentially better bounds than Markov’s inequality.

Lemma 2.2 (Chernoff Bound). Let Xi,..., X, be k-wise independent random vari-
ables with X; € [0,b] and let X = Y 1 X;. Then it holds for all § > 1, u > E[X],
and k > [Op]

PI‘[X > (1 +6)/L] <e min[62,6]-p,/(3b).
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Furthermore, for independent binary random wvariables X;, X = > X;, and
0<6<1 andpu < E[X], we have that

Pr[X < (1-—68)pu] < e 92,

Furthermore, the well-known union bound allows us to show that if a polynomial
number of events hold individually w.h.p., then all events occur w.h.p., which is
formalized in the following lemma.

Lemma 2.3 (Union Bound). Let E1, ..., Ey be events, each taking place w.h.p. For
k polynomial in n, the event E := ﬂle E; also takes place w.h.p.

To apply the union bound to our algorithms and argue that they are correct
throughout their entire runtime, w.h.p., they must not run for more than a polyno-
mial number of rounds. To ensure this, we assume that all parameters and variables
introduced in this thesis, if not stated otherwise, are at most polynomial in n.

Shared Randomness Many algorithms in this thesis require the knowledge of
common independent pseudo-random hash functions, which we simply refer to as
random hash functions. To agree on such functions, for simplicity we assume that
the nodes have access to shared randomness. However, it can be shown that in fact
it suffices to use ©(logn)-wise independent hash functions (see, e.g., [Cel+13] and
the references therein). Whenever we aim to show that the outcome of a random
experiment deviates from the expected value by at most O(logn), w.h.p., we can
simply apply Lemma 2.2. However, if the deviation we aim to show is higher, we can
partition events in a suitable way so that we only need ©(logn)-wise independence
for each subset of events, and the sum of the deviations does not exceed the overall
desired deviation. To agree on such hash functions, all nodes that need to agree
on the hash functions have to learn ©(log?n) random bits. Although we do not
explicitly mention it, whenever common hash functions are used in our algorithms,
the required number of bits can easily be broadcast using overlay topologies that
have already been established at that point.

2.3. Problem Definitions

This section formally introduces some of the problems that appear repeatedly
throughout this thesis. Furthermore, we review some of the classical approaches to
solve these problems.

Minimum Spanning Trees First and foremost, many of our algorithms rely on
the computation of spanning trees. A spanning tree of a connected undirected graph
G = (V,E) is a connected subgraph that is a tree and contains all nodes of V.
Clearly, a spanning tree contains n — 1 edges. If G is not connected, then a spanning
forest contains a spanning tree of each component of G. If G is weighted, then a
minimum spanning tree, or MST, is a spanning tree that minimizes the sum of all
edge weights. Formally, an MST M is a spanning tree of G such that there does not
exist a spanning tree M’ of G such that 3 c g w(e) < Xeepp w(e).
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Two classical algorithms to compute an MST are Prim’s algorithm [Pri57] and
Kruskal’s algorithm [Kru56]. In this thesis, we mostly rely on Borivka’s algorithm
[NMNO1], which is one the most famous approaches to the MST problem used in
distributed computing. From a high level, the algorithm works as follows. Initially,
every node forms a component on its own. In each iteration, every component
identifies a lightest outgoing edge, which is a minimum-weight edge incident to a
node of the component whose other endpoint lies in a different component. The
selection of edges induces a forest of components in the graph, where each tree of
components forms a new component in the next iteration. Since the number of
components halves in each iteration, after O(logn) iterations there is only a single
component. Furthermore, the set of all selected edges forms an MST of G.

Shortest Path Problems Several chapters of this thesis revolve around shortest
path problems. The goal of the All-Pairs Shortest Paths (APSP) Problem is to let
each node v € V learn d(v,u) for all w € V. In the Single-Source Shortest Paths
(SSSP) Problem, there is given source node s € V, and each node v € V has to learn
d(s,v). Similarly, in the h-limited SSSP Problem, each node v € V has to learn the
h-limited distance dj (s, v) to v; the SSSP Problem is a special case of this problem
for h = SPD. h-limited SSSP can also be extended to multiple sources S C V', where
the goal of each node v € V' is to learn dp(s,v) for all s € S, which we refer to as
the (h,k)-SSP Problem. In the Diameter Problem, every node wants to learn the
diameter D of G.

We will also consider approximate solutions of some of the above problems. For-
mally, we say an algorithm computes an a-approximation of SSSP, if every node
v € V learns an estimate d(s, v) such that d(s,v) < d(s,v) < a-d(s,v). Similarly, for
an a-approximation of the diameter, every node v € V' has to compute an estimate
lN?suchthathf)Sa-D.

Two of the most famous approaches to shortest path problems are the Bellman-
Ford algorithm [For56; Bel58] and Dijkstra’s algorithm [Dij59]. The former, in par-
ticular, admits a natural distributed implementation, upon which many of our algo-
rithms rely: Start with a source node s € V with d(s,s) = 0, and d(s,v) = oo for
all v € V'\ {s}. In each round, every node sends its current distance value to all
of its neighbors. Whenever a node v receives d(s,u) from wu, it updates d(s,v) to
min{d(s,v),d(s,u) + w({u,v})}. After SPD rounds, every node knows its distance
to s.

Shortest-Path Trees To efficiently solve shortest path problems, many of our
algorithms rely on the computation of shortest-path trees. A breadth-first search
(BFS) tree [Pel00] is a tree that is rooted at a given source node s € V and that
contains for each node v € V' a unique path P from s to v such that |P| = hop(s,v).
We require every node v € V' to know its parent 7(v) in the BFS tree. The weighted
counterpart of a BFS tree is called shortest-path tree. Such a tree contains, for a
given source s € V and any node v € V, a unique path P from s to v such that
w(P) = d(s,v), and each node v € V' knows its parent m(v) in the tree.

A BFS tree can easily be computed using a distributed breadth-first search. In
the first iteration, the source node s sends a token to all of its neighbors. Whenever
a node v € V receives a token for the first time from some neighbor v € N(v), it
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sets u as its parent m(v). Whereas this obviously constructs a BFS tree in O(D)
many rounds, computing a shortest-path tree is more complex. Specifically, tokens
may reach nodes first over paths that contain few hops, but actually have a large
distance. This implies that any naive approach, such as using a variant of the
distributed Bellman-Ford algorithm, requires SPD many rounds. Furthermore, this
also means that, in contrast to a BF'S, nodes may have to send tokens multiple times
if they learn a shorter path.
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Fast Construction of Overlay Networks

0 begin our study of hybrid networks, we consider the most restricted situation
in which each node only knows its neighbors in the local network G. Arguably,
such a network is of limited utility, as the nodes can only rely on their local con-

nections at the beginning. To solve meaningful tasks such as computing aggregates,
monitoring network properties [Gmy+17a], or quickly reconfiguring the network to
cope with churn or adversarial behavior [DGS16; AS18], the global network needs to
form some suitable topology. Our goal is to transform the initial network into such
a topology using the global edges and the fact that the global network behaves like
an overlay network. That is, we can establish new global edges by sending around
node identifiers and, in principle, obtain any desired topology.

In this chapter, we consider the CONGEST+NCCy model, which allows local capac-
ity A = O(1) and global capacity v = O(logn). Under this limited communication,
constructing a suitable overlay becomes an intricate problem. Specifically, we can-
not simply introduce nodes to one another until the network form a clique, which
would require each node to send ©(n) messages over global edges. The problem of
constructing a suitable overlay network under limited communication at each node
is also known as the Overlay Construction Problem. In this chapter, we specifically
aim at constructing a well-formed tree, which is an unweighted rooted tree that has
constant degree and height O(logn). Such a tree can easily be rearranged into many
other classical network topologies such as butterfly networks, path graphs, sorted
rings, or De Bruijn Graphs, which makes it a suitable choice for our desired topology.

The Overlay Construction Problem has already received some attention in the
literature. First of all, there is a fundamental lower bound of (logn) time steps to
construct any overlay of logarithmic diameter even if the nodes were allowed to per-
form an arbitrary amount of communication. To illustrate this, consider an overlay
that forms a linked list. Even if all nodes exhaustively exchange their neighborhoods
in every round as proposed above, this can only halve the diameter in every iteration.
Hence, it takes Q(logn) rounds until the diameter is logarithmic. To the best of our
knowledge, the first algorithm that can be used to solve the Overlay Construction
Problem in our model is an O(log?n) time algorithm by Angluin et al. [Ang+05].
Later, Aspnes and Wu applied the approach to graphs with outdegree 1 and achieve
a runtime of O(logn), w.h.p. [AW07]. More recently, we presented a determinis-
tic O(log? n)-time solution in a model that allows polylogarithmic communication
[Gmy+17a], which, as we point out in Chapter 5, can also be used to compute a
minimum spanning tree (MST) of the initial graph. With little effort, the algorithm
can be adapted to our hybrid model with the same runtime. Even more recently,
we presented an algorithm for the Overlay Construction Problem that takes optimal
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time O(logn), w.h.p., but requires polylogarithmic global communication [G6t+20].
In stark contrast to the previous approaches, the algorithm heavily relies on rapid
random walks to establish random connections until the graph becomes an expander.

In this chapter, we present an algorithm that, starting from an arbitrary connected
graph in the CONGEST+NCC( model, constructs a well-formed tree of global edges in
time O(log*?n), w.h.p. Inspired by the classical approach of grouping and merging
large clusters of nodes (see [Ang+05; AW07; Gmy+17al), our algorithm always
identifies large sets of clusters to merge, which reduces the overall number of phases
required until a single cluster remains. We internally organize each cluster as a low-
diameter butterfly network, which allows us to perform the grouping and merging
operations very efficiently, and from which the final well-formed tree can easily be
derived. Furthermore, we derive a spanning tree of G from the outcome of our
algorithm.

Underlying Publication The chapter is based on the following publication.

T. Gotte, K. Hinnenthal, and C. Scheideler. “Faster Construction of
Overlay Networks”. In: International Colloguium on Structural Infor-
mation and Communication Complexity (SIROCCO). 2019, pp. 262-276
[GHS19]

Note that in the above publication, our algorithm is presented in an overlay net-
work model in which each node can communicate polylogarithmically many bits in
total, including to its neighbors in G. In this chapter, we present all additional
details necessary to translate the algorithm to the CONGEST+NCCy model. Fur-
thermore, the chapter describes a more complex grouping and merging phase that
facilitates the construction of a spanning tree, which cannot be done with the original
algorithm.

We remark that the results of this chapter were published prior to our recent
O(log n)-time algorithm. However, the algorithm presented in this chapter is more
efficient regarding its communication complexity, as it requires global capacity
O(logn) instead of O(log®n). Furthermore, whereas our more recent algorithm in-
herently uses randomization, the algorithm in this chapter may admit a deterministic
implementation.

Outline We begin the technical part of this chapter by introducing two algorithmic
primitives that we heavily use in this chapter, and upon which multiple algorithms in
the upcoming chapters rely. In Section 3.2, we then describe a preliminary step to our
main algorithm. More precisely, we give a distributed algorithm that transforms the
initial graph G into a sparse graph of degree O(logn) based on an efficient spanner
construction [EN18]. We then describe our main algorithm, which is comprised of a
sequence of subphases, from a high level in Section 3.3. The main part of this chapter
is the technical description of a single subphase, which we provide in Section 3.4. The
outcome of this phase will be a spanning tree of our constructed sparse graph, which
may contain global edges that are not actually in G. To obtain a well-formed tree
from this spanning tree, as well as a spanning tree of our actual graph G, we give a
simple protocol in Section 3.5 that applies some additional observations on our main
algorithm. We conclude the chapter with an outlook in Section 3.6.

22



3.1. Algorithmic Primitives

Related Work The problem studied in this chapter relates to research in overlay
networks in general, which started in the early 2000s. Some popular examples for
these early overlays are Chord [Sto+01], Pastry [RDO01], and skip graphs [ASO7].
However, most research on overlay networks focuses on the problem of efficiently
joining and leaving such an overlay, or keeping it in some legal state despite some
potentially heavy churn (e.g., [Aug+15; AS18; GVS19]). Still, adversarial nodes
and churn beyond the limits prescribed in these papers may push an overlay into
a corrupted state from which a valid topology may need to be recovered. If we
are guaranteed that the initial state of the nodes is not corrupted, algorithms for
network constructions like ours may be used [Ang+05; AW07; Gmy+17al. If that
is not the case, however, then solutions for self-stabilizing overlay networks may be
applicable.

There is a rich collection of papers on self-stabilizing overlays (see [FSS20] for a
comprehensive overview). Since it is a difficult problem to recover from arbitrary
initial states, even more so in the asynchronous message passing model that is of-
ten considered for self-stabilization, most existing results do not provide time or
work bounds but instead focus on proving that convergence is possible at all. If
convergence times are proven, however, these are often much higher than polyloga-
rithmic, such as the O(n) time bound for self-stabilizing lists [ORS07] or the O(n?)
time bound for self-stabilizing Delaunay graphs [Jac+12]. Notable exceptions are
[Jac+14; BGP13]: In [Jac+14], the authors show a convergence time of O(log?n)
rounds for the SKIP+ graph, and in [BGP13] the authors present a general frame-
work for the self-stabilizing construction of a large class of overlays that can be
used, for example, to achieve a convergence time of just O(logn) for SKIP+ graphs.
However, no low bounds for the communication work are known; in fact, the work
required for the constructions in [Jac+14; BGP13] can be prohibitively large.

3.1. Algorithmic Primitives

The algorithm in this chapter relies on two primitives, which will be used in dif-
ferent forms throughout the entire thesis. For the primitives, we assume that the
nodes simulate a d-dimensional butterfly in the global network. How the butterfly
is precisely constructed and simulated will depend on the specific algorithm; there-
fore, we present our primitives in a very general form. More precisely, we assume
that the butterfly nodes can send and receive messages to and from their at most
four neighbors in synchronous rounds. For our primitives, we give a bound on the
number of messages each node is required to send in each round, which will allow
us to efficiently simulate the algorithms in the global network.

Aggregate-and-Broadcast Algorithm In an Aggregate-and-Broadcast Problem,
we are given a multiset A of input values to a distributive aggregate function f with
sub-aggregate function g, and every node of the butterfly’s top level (level 0) stores
exactly one input value. The goal is to let every butterfly node learn f(A).

We solve the problem using the following simple Aggregate-and-Broadcast Algo-
rithm. First, every node of the top level that stores an input value x creates a packet
that contains the value g(z). Note that there exists one unique path between any
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Chapter 3. Fast Construction of Overlay Networks

node of the butterfly’s top level and any node of its bottom level. Therefore, we can
easily route each packet from the top level to the first node of the bottom level (i.e.,
the node (d,0)) along the respective path. If two packets with values x and y reach
the same node of level ¢ at the beginning of round ¢+ 1, only one packet that contains
the value g(xz,y) is forwarded to level i + 1. After d rounds, node (d,0) knows f(A).
Finally, we broadcast this value from (d,0) for 2d rounds in the butterfly, whereby
every butterfly node learns f(A).

Theorem 3.1 (Aggregate-and-Broadcast). The Aggregate-and-Broadcast Algorithm
solves any Aggregate-and-Broadcast Problem within 3d rounds. In each round, every
butterfly node sends and receives at most 4 messages.

Route-and-Combine Algorithm In a Route-and-Combine Problem, we are
given a multiset of input values A to a distributive aggregate function f with
sub-aggregate function g. The input values are partitioned into k routing groups
Ry,...,Rr C A. Each input value x € A is stored by some node s, of the butterfly’s
top level such that every node only stores O(logn) many input values of different
routing groups, i.e., |[{z € A | s, = v}| = O(logn) for every butterfly node v. Every
routing group R; has a target t¢;, which is a node of the bottom level of the butterfly,
such that each node is only target of at most O(logn) routing groups. Formally,
{i € {1,...,k} | t; = v}| = O(logn) for every butterfly node v of the bottom level.
The goal is to let each target ¢; learn f(R;).

To solve any Route-and-Combine Problem, we use the following Route-and-
Combine Algorithm. First, every node u of the butterfly’s top level combines all
values of the same routing group R; stored at it and creates a single packet p, ;
using g. We then aggregate all packets p, ; corresponding to the same routing group
R; at some randomly chosen intermediate target t; of the butterfly’s bottom level,
which we choose by using a (pseudo-)random hash function A : {1,...,k} — [24].
For the aggregation, we simply route each packet p,; to its intermediate target ¢
along the unique path towards ¢;. Whenever two packets that correspond to the
same routing group (and, consequently, have the same intermediate target) arrive
at the same node, they are combined into a single packet. After d rounds, every ¢/
receives f(R;).

To route f(R;) to t;, we first move it from ¢, to the topmost node of the same
column in d rounds. From there, it is routed along the unique path to ¢; in an
additional d rounds.

Theorem 3.2 (Route-and-Combine). The Route-and-Combine Algorithm solves any
Route-and-Combine Problem within 3d rounds. In each round, at most one node of
each column sends a message, and all other nodes of the column do not send any
messages. Furthermore, every node sends at most O(logn) many messages in each
round, w.h.p.

Proof. Tt is easy to see that the algorithm solves any Route-and-Combine Problem.
If each node only sends O(logn) messages in each round, packets can always be sent
up and down in the butterfly without ever being delayed, wherefore in each round
solely the nodes of some level i send and receive packets.

24
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It remains to show that each node only sends O(logn) messages. Since initially
each node of the butterfly’s top level stores at most O(logn) messages of different
routing groups, after creating packets p,; every node stores at most clogn many
packets for some constant ¢ € N. Consider some fixed edge e between level i and
level 7+ 1 of the butterfly. Let S be the set of nodes u of level 0 such that the unique
path from u to any node of the bottom level contains e. Since the nodes of each level
i’ > 0 have exactly two neighbors in level ' — 1, S contains 2° nodes. By the same
argument, there are exactly 24~ (1) many nodes T' of the bottom level reachable via
e when only moving downwards. Note that only the paths from S to T' contain the
edge e. Let Ry,..., R; be the routing groups for which at least one packet of each
R; is located at a node of S, and X; be the binary random variable that indicates
whether the intermediate target of R; lies in 7. Since the intermediate target of each
routing group is chosen uniformly at random, Pr[X; = 1] = 24=(+1) /2d — 1/97+1,
Furthermore, since the number of different routing groups in S is [ < 2° - clogn,
X = Zé’:l X is a sum of binary independent random variables with expected value
E[X] <2 clogn/2Tt < clogn. By the Chernoff Bound in Lemma 2.2, we have

Pr[X > (1+d)clogn] < e d0clogn/3 < =dc/3 < pp=c’

for constant 6 > 1 such that § > 3¢//c. Therefore, X = O(logn), w.h.p. Since
packets that correspond to the same routing group are combined, only O(logn)
packets will be sent over e. By taking the union bound over all edges, we obtain
that every node will only send O(logn) messages in each round when routing packets
to their intermediate targets. Since this also implies that every intermediate target
only stores O(logn) packets, every node only has to send O(logn) messages when
sending the results upwards within each column, w.h.p.

Finally, when routing the packet that contains f(R;) to t;, we can apply the
Chernoff argument from above in a very similar way. We fix an edge e, and define
S and T as above. Let Ry,..., R; be the routing groups such that ¢; lies in 7" for all
j €{1,...1}, and let X be the binary random variable indicating whether f(R;) is
stored by some node in S. Since the intermediate targets have been chosen uniformly
at random, we have that Pr[X; = 1] = 2¢/2¢ for every j € {1,...,l}. By assumption,
there exists a constant c such that ¢; is target of at most clogn routing groups, i.e.,
| < 24=(+1) . ¢logn. Therefore, X = 2221 Xj is a sum of binary independent
random variables with expected value E[X] = 240+ . clogn - 2¢/2¢ < clogn. The
Chernoff bound can be applied in the same way as above to argue that at most
O(logn) packets will be sent over e. Taking the union bound over all edges yields
the theorem. O

3.2. Transforming G into a Sparse Graph

As a preliminary step to our main algorithm, G needs to be transformed into a
graph that has degree O(logn) in the global network. Our approach can be divided
into two steps. In Step 1, we compute an O(logn)-spanner Gy = (V, Ey) of G that
has O(nlogn) edges using the algorithm of Elkin and Neiman [EN18]|. Formally,
a subgraph G’ = (V,E'), E/ C E, is called a (multiplicative) a-spanner of G if
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de(u,v) < - dg(u,v) for all u,v € V (we say G’ has stretch «). As a byproduct,
the algorithm yields an O(logn)-orientation in G;. Using this orientation, in Step
2 we redirect the edges of G to obtain a graph Ga = (V, E») in the global network
that has degree O(logn).

Step 1: Construct a Spanner G; For our purpose, the algorithm of Elkin
and Neiman [EN18] can be stated as follows. First, every node u € V samples a
value r, that is exponentially distributed with parameter 5 = 1/2 and sends it to
its neighbors in G. Whenever at the beginning of any subsequent round a node v
receives a message that contains the value r,, it stores my(v) = r, — d(v,u). Note
that since G is unweighted, d(v,u) = hop(v,u) can be inferred from the number of
rounds it takes for r,, to reach v. Let p,(v) denote the neighbor of v from which it first
received r,, breaking ties arbitrarily. To conclude this round, v sends the current
value of m(v) = maxuecy my(v) to all of its neighbors in G. After & = O(logn)
rounds, each node v adds to the spanner (G; the set of edges

Cv) = {{v, pu(v)} | mu(v) = m(v) —1}.

To obtain an orientation of G, each node v directs away all the edges in C'(v). To
break ties, any edge {u, v} that is contained in both C'(u) and C(v) becomes directed
towards the endpoint that has higher identifier.

Lemma 3.3. The algorithm constructs an O(logn)-spanner G1 = (V, Ey) of G
such that |E1| = O(nlogn) in time O(logn), w.h.p. Furthermore, it computes an
O(logn)-orientation of G1, w.h.p.

Proof. Let k := 2clnn = O(logn) for some ¢ > 0 to be determined. To show that
G is an O(logn)-spanner, we prove that the statement of Claim 3 of the analysis
of Elkin and Neiman [EN18] holds, w.h.p. Claim 3 states that r, < k for all u € V.
By the definition of the exponential distribution and by our choice of 8 and k we
have that

PI‘[TU > k] — efﬁk — efQClnn/Q — nfc’

which shows that the statement holds w.h.p. Since the subsequent lemmas of the
analysis up to Lemma 6 are implied by this claim, we conclude that the stretch of
G1 is 2k — 1 = O(logn); in particular, G; is connected.

Finally, we argue that |C(u)| = O(logn) for all v € V, w.h.p. As described in
the proof of Lemma 2 of Elkin and Neiman’s analysis, Lemma 1 of their analysis
implies that the event |C(u)| <t happens with probability at most (1/p)!~!, where
p=(1—eP)"1 ~ 254 > 1. Therefore, by choosing t = ¢ log,n + 1 = O(logn) for
some ¢ > 0, we have that |C(u)| = O(logn), w.h.p. Together with the union bound,
we conclude that |Ep| = O(nlogn) and that we obtain an O(logn)-orientation,
w.h.p. O

Step 2: Construct a Low-Degree Graph G5 To infer a graph G with degree
O(logn) from Gy, we let each node v € V arrange all of its in-neighbors in the com-
puted orientation, of which there can be arbitrarily many, as a list. Additionally, v
keeps one of its incoming edges. This idea is conceptually similar to the construction
of child-sibling trees [Gmy+17a; AW07]. Formally, let vy, ..., vy denote the k(v)

26



3.3. High-Level Algorithm

many in-neighbors of node v € V sorted by increasing identifier. The edge set of Ga
is defined as

Ey={{v,u1} |veV k) >1}U{{vi,vita} |veV,1<i<k(v)}

Note that every node has at most O(logn) out-neighbors in Gy, w.h.p., by
Lemma 3.3, and each node will be assigned at most two neighbors by each of its
out-neighbors. Therefore, the degree of G is at most O(logn). Clearly, this step
can be performed in time O(1), and we conclude the following lemma.

Lemma 3.4. Go = (V, E3) is a connected graph with degree O(logn), w.h.p., and
is computed in time O(logn).

3.3. High-Level Algorithm

Our algorithm to solve the Overlay Construction Problem is divided into consecutive
phases, where each phase relies on a set of invariants maintained after the previous
phase. We first present the algorithm from a high level, and then give the details of
a single phase in Section 3.4.

We organize sets of nodes into supernodes, where initially each node makes up a
supernode on its own. Then, we repeatedly merge supernodes into larger supern-
odes until only a single supernode containing all nodes of V remains. For each
supernode v, we maintain a subtree of G that contains exactly the nodes of v, and
which we refer to as the spanning tree of v. Multiple supernodes merge by selecting
merge edges from Fo that connect their corresponding spanning trees. At the end
of our algorithm, the set of all selected merge edges will form a spanning tree of
Go. Furthermore, we maintain an internal |log |v||-dimensional butterfly network
in each supernode v whose size |v| is not too large (where v’s size |v| is the number of
nodes it contains). The internal butterfly will help us to coordinate communication
between supernodes. As we show in Section 3.4.3, a spanning tree of size k and
degree O(logn) can be rearranged into an O(log k)-dimensional butterfly network
in time O(logk). Therefore, whenever multiple supernodes merge to form a larger
supernode u, we can construct a new butterfly in time O(log |u|). Most importantly,
we always merge large sets of supernodes in a highly coordinated fashion, which,
compared to previous approaches, results in a faster growth of supernodes and fewer
rounds until only a single supernode remains. Once a single supernode remains,
the internal spanning tree can be used to construct a well-formed tree as well as a
spanning tree of GG, which we show in Section 3.5.

More precisely, our algorithm proceeds in phases 0, ..., [loglogn] — 1, where the
goal of phase i is to grow every supernode of size |v| € [22i, 22" _ 1] to a supernode
of size at least 22", To optimally balance the number of phases with the required
runtime of each phase, we further divide each phase ¢ into subphases 0, . . ., [\/?1 —1.
Correspondingly, the goal of subphase j of phase ¢ is to grow every active supernode,

which is a supernode whose size lies in the interval I = [22"+i[V2'] 22'+(G+D[V2T] _q)

22i+(j+1)[\/27'1'

to a supernode of size at least If a supernode is of size at least

92 +(+1V2 already at the beginning of subphase j, we call it inactive. As we
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will later show, our algorithm ensures that there are no supernodes of smaller size
than 22" +31V27] at the beginning of subphase j. Therefore, every supernode is either
active or inactive in each phase.

Technically, this requires the initial supernodes to be of size 2 already. To ensure
this, we can for example let each node v € V simulate an additional node u whose
only neighbor is v, and form a supernode with that simulated node. Our algorithm
can easily be performed in the resulting graph with constant simulation overhead.

Lemma 3.5. If in subphase j of phase i every active supernode grows to a supernode

of size at least 22 +G+DIV2T g time ¢ - 21 for some ¢ > 0, then the algorithm merges
all nodes into a single supernode in time (’)(logg/2 n).

Proof. We only have to prove the overall runtime. Note that phase i consists of
[2¢/2] subphases. Therefore, summing up over all phases from 0 to 7' = [loglogn]—1
results in

T

T
Z[Tﬂl cc-28<c-[vlogn] -ZQi < ¢ [Iogn] -logn = O(log®/? n).
=0

=0

3.4. A Single Subphase

We now describe the details of a single subphase of the algorithm. More specifically,
we consider subphase j of phase i. The subphase is divided into two stages: In the
Ezxpansion Stage, the goal of each active supernode is to get to know at least 9Vl
other active supernodes. In the Merging Stage, we use this information to select a
set of merge edges between the supernodes that results in larger supernodes. As
we will show, each resulting supernode u consists of at least 92 +(+1V2T podes.
Furthermore, the spanning trees of the supernodes that merge into u, together with
the respective merge edges, form a spanning tree of u. If w is not too large, we
can successfully construct a low-diameter butterfly within u, which allows u to act
actively in the next subphase. Otherwise, the stage will prematurely terminate and
leave u as an inactive supernode.

3.4.1. Beginning of the Subphase

Before we present the two stages of the subphase in detail, we first formally describe
the invariants that hold at the beginning of each subphase. It is easy to see that
the invariants hold at the beginning of the first subphase. In the remainder of this
section, we show how the invariants can be established for the next subphase, which
inductively proves the correctness of our algorithm. In the following, we refer to the
nodes contained in a supernode as its members. Our first formal proposition is the
following.

Proposition 3.6 (Size Lower Bound). At the beginning of subphase j of phase i,

every supernode is of size at least min{22i+ﬂ‘/§1,n}. Furthermore, the members of
each supernode v know whether v is active or inactive.
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3.4. A Single Subphase

Internal Spanning Trees Throughout the algorithm’s execution, we maintain
a set of edges & C FE» that is initially set to £ = (). In each subphase, the set is
extended by the merge edges selected between supernodes.

Proposition 3.7 (Internal Spanning Tree). At the beginning of each subphase, the
edges of € C Ey form a forest in Go. For each supernode v (active or inactive), there
is exactly one connected component &£, in € that contains each member of v and no
other node.

We will refer to the component &, as the internal spanning tree of v.

Internal Butterflies To facilitate communication between active supernodes, ev-
ery active supernode is internally organized as a butterfly network. Let v be an
active supernode at the beginning of a subphase, i.e., |[v] < 92 +([+1V2] _ |, The
internal butterfly B, of v is a |log|v||-dimensional butterfly network consisting of
virtual nodes. Note that since |v| < 227", the dimension of B, is in O(27). The
butterfly is simulated by the nodes in the following way. Let o, ...,z -1 = £, be
the members of v in some arbitrary order. For 0 <1 < llog|vl] _ 1, x; simulates the
nodes of column [ of the butterfly (in this case we say z; is a node of B,). To do so,
x; has to know the identifier of every other member of v that simulates a butterfly
node that is adjacent to a butterfly node of column . If |v| is not a power of 2, then
for every 2U°glVll <] < |u| — 1, the node x;, which does not simulate a column of
the butterfly, is connected to the butterfly via a bidirected edge to its helper node
Z;_oliog o) - An example of an internal butterfly can be found in Figure 3.1.

Let ¢, be v’s member of highest identifier, and define v’s identifier id(v) := id(¥,).
For every active supernode, we ensure the following proposition at the beginning of
each subphase.

Proposition 3.8 (Internal Butterfly). Let v be an active supernode at the beginning
of a subphase. v’s members know id(v) and v’s size |v|. The members are enumerated
from 0 to |v|—1, and each member x; knows its index [, as well as the identifier and
index of each member xyp for ! =142t for all t € Ny, if that node exists.

Note that this information enables the members of an active supernode v to sim-
ulate the internal butterfly B, as described above.

The members of an inactive supernode u, on the other hand, do not simulate an
internal butterfly, since they may not possess the necessary information. In fact,
they may not even know id(u) or |u|. The only thing we guarantee for an inactive
supernode is that its members know that the supernode is inactive.

3.4.2. Expansion Stage

In the Expansion Stage, every active supernode v maintains sets of discovered nodes
I'(v). We say two supernodes v # u are adjacent in Ga, if there exist members z and
y of v and wu, respectively, such that {z,y} € Es. Further, we define the adjacency
graph of the supernodes H = (Vi, Exr), where Vi is the set of active supernodes at
the beginning of the Expansion Stage, and Ey contains an edge {u, v} if and only if
u and v are adjacent in Go. At the beginning of the Expansion Stage, I'(v) contains
v and all of v’s neighbors in H. Therefore, the following proposition holds.
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Figure 3.1.: Internal butterfly B, of a supernode v with |v| = 10. The nodes
xo,...,r9 at the bottom are members of v. The first eight nodes
xg, . .., o7 construct the 3-dimensional butterfly by simulating one col-
umn each. The other two nodes xg and xg connect to their correspond-
ing helper nodes. Indicated by the dashed outline, the first four nodes
xo, . .., rs simulate the small butterfly b,, which is described in Section
3.4.2.

Proposition 3.9 (Symmetry of T'). w € I'(v) if and only if v € T'(u) for all active
supernodes u,v.

We will maintain the proposition throughout the entire Expansion Stage. v’s goal
is to expand I'(v) until it contains 2[V27] many active supernodes. This will allow us
to find large clusters of supernodes to be merged in the Merging Stage. To do so, v
performs (\/?] introduction steps, in each of which it introduces all of its discovered
neighbors to one another until I'(v) is large enough.

To carry out the required communication, v utilizes a subgraph of its internal
butterfly which we refer to as v’s small butterfly b, (see dashed outline in Figure 3.1).
More precisely, b, is the (2[v/2¢])-dimensional butterfly that results from taking only
the leftmost 222" columns and bottommost 2[\/?} + 1 rows of B,. Note that b,
must exist as |v| > 92 +j[V27] > 92v27] > 16 for i > 2 (for ¢ = 1 we simply choose
b, = By). We will distributedly store I'(v) within b,, which allows us to perform
each introduction step efficiently. To guarantee that no node of b, ever has to store
too much information, we ensure that I'(v) always contains at most 22[V2'] many
supernodes.

Begin of the Expansion Stage Whereas I'(v) is defined as a set of supernodes,
internally each supernode v actually stores representatives of each supernode u €
I'(v), which are members of u. The representatives are the nodes that actually
carry out the communication between supernodes. We will maintain the following
proposition at all times.

Proposition 3.10 (Degree of Representatives). Every node v € V' stores at most
O(logn) representatives of supernodes. Furthermore, every node is stored as a
representative by at most O(logn) many supernodes.
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In preparation for the first introduction step, v has to retrieve one representative
of each supernode in I'(v), and determine whether |I'(v)| > 2(@], in which case v
has already achieved the goal of the Expansion Stage. To do so, every node y € V
that is a member of an active supernode u sends id(u) to all of its neighbors in
G2. Note that this can be done in the global network since Go has degree O(logn).
Thereby, every member x of supernode v learns which of its neighbors lie in different
active supernodes, and the identifier of the respective supernode. Every neighbor of
x that is contained in a different active supernode is stored as a representative by .
If = is not a node of B, = sends its collected representatives to its helper node.

The remaining preliminary steps of v can be divided into three tasks. First, v
filters the representatives and retains only one representative for each supernode in
I'(v), then moves the remaining representatives into b,, and finally replaces each
representative of a supernode u by a a random node of b,. The first task can be
achieved by performing the Route-and-Combine Algorithm in B, in the following
way. Every member x of v that is a node of B, and that stores some representative
y of a supernode u (either because y is a neighbor of z in Ga, or because y has
been sent to =) contributes id(y) as an input value contained in routing group Riq(y),
and places its input values at the topmost node of its column in B,. Therefore,
each routing group contains the identifiers of members of the same supernode. By
choosing the maximum function MAX as the aggregate function f and sub-aggregate
function g, f(Riq(y)) will yield a node that has highest identifier of all members of
u stored by wv; this node remains as the unique representative of u. The target of
Riq(u) is chosen uniformly at random among the butterfly nodes of the bottom level
using a (pseudo-)random hash function h : {0,1}* — [2l°el*l]] that is known to all
nodes (recall that [k] denotes the set {0,...,k—1}). An illustration of this step can
be found in Figure 3.2a.

Lemma 3.11 (Filtering Representatives). Filtering the representatives takes time
O(2%) and maintains Proposition 3.10, w.h.p.

Proof. Since the degree of Gy is O(logn), Proposition 3.10 clearly holds at the
beginning, and each node contributes at most O(logn) input values to the Route-
and-Combine Problem. Furthermore, since the target of each routing group is chosen
uniformly and independently at random, it follows from a simple application of the
Chernoff bound of Lemma 2.2 that each node of the bottom level of B, is target
of at most O(logn) routing groups, w.h.p., which establishes the preconditions of
Theorem 3.2 and shows that Proposition 3.10 is maintained. Since by Theorem 3.2
at most O(logn) messages are sent and received in total by nodes of the same column
in each round, w.h.p., and every member of v simulates at most one column of B,,
the algorithm can be executed using the global network. The runtime follows from
the fact that the dimension of B, is O(2%). O]

Due to Lemma 3.1, and the fact that each node simulates at most O(logn) butter-
fly nodes, v can compute |I'(v)| by counting the number of remaining representatives
with the Aggregate-and-Broadcast Algorithm. If [T'(v)| > 2[@], v becomes success-
ful, in which case it does not participate in the Expansion Stage anymore. For the
following, assume that v was unsuccessful. As we only wish to introduce unsuccessful
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Figure 3.2.: (a) An abstract representation of B,, where each representative stored at
the top level is labeled with the identifier of its supernode. By routing
all representatives of the same supernode to the same random target
on the butterfly’s bottom level, and combining packets whenever they
reach the same node, only one representative for each supernode in
I'(v) remains. (b) The remaining representatives are moved to random
targets of b, (dark gray). (c) Assigning unique labels from 0 to 3 to the
four representatives of different supernodes (white nodes) stored in b,,.
T is given by the black edges. Each node of T is labeled with an interval
from which the labels of the representatives in its subtree are chosen.

supernodes to one another in each introduction step, v needs to remove all stored
representatives of successful supernodes before proceeding. To do so, every member
of v that stores a representative y of supernode u asks y whether its supernode u has
been successful, which can be done in the global network due to Proposition 3.10.
If u has been successful, y is removed. Let I'V(v) := {u € T'(v) | u is unsuccessful}.
All remaining representatives, which are members of supernodes in I'(v), are now
moved into b, by using the Route-and-Combine Algorithm as follows. Every mem-
ber x of v that stores a representative y contributes id(y) as an input value. id(y) is
the only value contained in routing group Rjq(y), whose target is chosen uniformly

and independently at random from the first 22[V2"] nodes of the bottom level of
B,, which implies that the target is contained in b,. This step is illustrated in
Figure 3.2b.

Lemma 3.12 (Moving Representatives). Moving the representatives into b, takes
time O(2') and maintains Proposition 3.10, w.h.p.

Proof. By Lemma 3.11, every node contributes at most O(logn) input values, w.h.p.
Furthermore, since the target of each packet is chosen uniformly and independently
at random, and the total number of packets is bounded by |IV(v)| < 2V2 | using
a Chernoff bound and the union bound it can easily be shown that each butterfly
node is target of at most O(logn) packets, w.h.p. By the same argument as in the
proof of Lemma 3.11, we can perform the Route-and-Combine Algorithm in time

O(2Y), w.h.p., using the global network. O
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As the last preliminary step, every representative y of some supernode w that is
stored at a member x of v needs to be replaced by a randomly chosen node that
simulates a column of b,. To do so, x sends a request to y, which is answered by a
randomly chosen node of b, with the help of the Route-and-Combine Algorithm.

More precisely, we proceed as follows. Let x be a node of v that received some
requests. If x does not simulate a column of B,, it first sends its requests to its
helper node. Then, each request becomes an input value with its own routing group,
whose target is a node of the bottom level of b, chosen uniformly and independently
at random. After completion of the Route-and-Combine Algorithm, every node z
that simulates a column of b, answers all requests received at its column’s bottom
node with a reference to itself.

Lemma 3.13 (Replacing Representatives). Replacing the representatives takes time
O(2") and maintains Proposition 3.10, w.h.p.

Proof. Clearly, each representative y of some supernode u is replaced by a randomly
chosen node of b,. It remains to show that the preconditions of Theorem 3.2 are
satisfied and that Proposition 3.10 is maintained. Since Proposition 3.10 holds at
the beginning of this step by Lemma 3.11, every node of B, contributes at most
O(logn) input values. Furthermore, the total number of input values is bounded

by |TV(v)] < 2/vV21 gince any supernode that stores a representative of v must be
contained in I'(v). Therefore, a simple application of the Chernoff bound together
with the union bound implies that each node of b, is target of at most O(logn)
routing groups, w.h.p. This also proves that Proposition 3.10 is maintained. O

Introduction Steps Finally, v is ready to perform the first introduction step. It
will continually perform introduction steps until it either declares itself successful
at the end of an introduction step, or after having performed fﬁ} steps. As each
introduction step takes time @(v/2?), the total introduction will take time O(2%).

Throughout each induction step, the sets I'(v) and I'(v) are modified. We en-
sure that all representatives that are contained in I'(v) at the beginning of each
introduction step, and all representatives learned in this step, are stored within b,,.

Furthermore, we keep track of the distance from v to each node u € I'(v) in H by
storing a value d,(u). This value will help us in selecting merge edges that lead to
large components of supernodes. We remark that d,(u) may not actually equal the
distance dg(v,u) between u and v in H. However, it will always give the length of
some path between u and v in H. At the beginning of the first introduction step,
dy(u) =1 for all u € T'(v) (and therefore also for all u € TV(v)).

Proposition 3.14 (Storing Representatives). At the beginning of each introduction
step, every unsuccessful supernode v stores exactly one representative y of each
supernode u € T (v). More precisely, y is a node that simulates a column of by, and
it is stored by a node that simulates a column of b,. Furthermore, y is annotated
with dy(u).

Clearly, the proposition holds at the beginning of the first introduction step.
To introduce all supernodes in IV(v) to one another, of which there can be up

to 2IV21 1 many, v’s goal is to first obtain 2Vl many representatives of each
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supernode u. Afterwards, v will store at most 92[V2'] representatives. We then
compute a relation over the set of stored representatives that describes exactly which
representatives are sent to one another. More precisely, we enumerate the supernodes
stored in I"(v) from 0 to |I'(v)| — 1, and the representatives of the same supernode

stored by v from 0 to oIVl _ 1. Tet pq be the ¢’'th representative of the p’th
supernode stored in I''(v). For all p and ¢ for which both p, and g, exist, v introduces
¢p and p, to one another. It is easy to see that thereby each supernode in I'(v)
will receive exactly one representative of every other supernode in I(v), and each
representative will only be sent to at most one supernode.

To enumerate supernodes and representatives, v assigns each supernode u in IV (v)
a unique label r(u) € [[T'(v)|] as follows. Consider the subtree T' of b, that results
from taking all paths connecting the topmost node of column 0 with all nodes on
the bottom level of b,. By performing one aggregation in 7', every inner node of T
learns the number of representatives stored at its leaves, and can inform its parent
about this value. This allows the root of T" to assign intervals of labels to its children
in T, which further divide the interval according to the values received from their
children, until every leaf of T" that stores a representative receives unique labels for
all representatives stored at it. A small example of such an assignment can be found
in Figure 3.2c.

We now show how v obtains 2/V2'] representatives of each supernode u € I"(v).
Alongside, the process will also assign each representative a of u obtained in that
way a unique label r(a) € [2[\/?1]. Furthermore, a will be annotated with d,(u).

In preparation for this step, each node z that simulates a column of b, first sam-
ples O(logn) many randomly chosen nodes from b, using the Route-and-Combine
Algorithm similar to Lemma 3.13. More precisely, x creates O(logn) requests with
random targets among the bottom nodes of b,, and then answers every request that
reach the bottom node of its column with a reference to itself.

Initially, v only stores a single representative y of each supernode u € I'(v). Let
x be the node of b, that stores the representative y of u. First, z sends a request to
y that contains two of its sampled random nodes of b,. To be able to later locally
associate representatives with their supernodes, the message contains the value r(u)
as well as d,(u) (which x knows by Proposition 3.14). Furthermore, it contains an
empty bit string [ from which the representative’s labels will be constructed. When
y receives the request, it sends a response to both of the contained nodes, each
containing one node of its set of sampled nodes of b,. One of the two responses gets
associated with label 0ol (where o denotes the concatenation of two binary strings),
the other with 1 o/, and both contain r(u) and d,(u). Whenever in a subsequent
round some node of b, receives a response from u associated with label I, it sends a
new request containing r(u), d,(u), I, and two new random nodes of b,, to the node
of b, that was contained in the response. In turn, every response will be answered
by u with two new nodes of b,. In the (\/g]—th iteration, v receives 2[V2'] many
representatives of u. FEach representative a gets stored together with its associated
label 7(a) and u’s label r(u) by its recipient in b,.

Lemma 3.15 (Multiplying Representatives). Fvery unsuccessful supernode v ob-

tains 21V representatives of each supernode u € I”(v), enumerated from 0 to
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2Vl _ 1, in time (’)(\/27) Each representative of u is a random node of b, stored
at a random node of b,, and is annotated by d,(u). Proposition 3.10 is maintained,
w.h.p.

Proof. By previous arguments and due to Theorem 3.2, sampling O(logn) many
random nodes at each node in b, takes time (’)(ﬁ), w.h.p. If each node is always
able answer all requests and responses sent to it, the lemma directly follows.

Therefore, it remains to show that it suffices for each node x that simulates a
column of b, to sample O(logn) many random nodes of b,. In the first request-
response iteration, every representative x of b, that stores representative y of u €
I"(v) sends a request to y. By Proposition 3.10, each node has to send and receive
at most O(logn) requests, and therefore sends out at most O(logn) responses. For
these messages, a set of O(logn) random nodes at each node suffices.

At the beginning of every subsequent request-response iteration, v receives at

most 2/V2] responses from each supernode u € I” (v), and, since |IV(v)| < 2/V2,

the total number of responses received by v is 92[V27] Every response is received by
a node that is chosen uniformly at random among the nodes of b,. We enumerate
all responses received by v throughout all [\/?} iterations, fix some node z of b,,
and define X; as the binary random variable that is 1 if and only if the ¢-th response

is received by x. Let X be the sum of all X;. Since b, is simulated by 22[\/;”
nodes, E[X] < [V2!] = O(logn), and we can apply a Chernoff bound and the union
bound to show that z will receive at most O(logn) responses over the course of all
iterations, w.h.p.

Since |T'(v)| < 2[V21 by Proposition 3.9 at most 2V2' supernodes may store a
representative of v. Therefore, we can symmetrically argue that the total number
of requests received by v in total is (\/?} -22V21 Since each request is sent to a
node chosen uniformly at random from b,, it analogously follows that every node x
of b, will receive at most O(logn) requests over the course of all iterations, w.h.p.
Therefore, it suffices for each node to sample clog n many nodes, where c is a constant
prescribed from the desired success probability. ]

We are now ready to perform the actual introduction. Following our notation from
earlier, we denote the representative y of supernode u € I"(v) such that r(u) = p
and r(y) = q as pg. The goal of v is to send p, as well as d,(p) + dy(q) to ¢, for
all g, p for which both p, and g, exist. To do so, one node of b, needs to learn all
these values and take care of the introduction. More specifically, if p < ¢, then p, is
moved from the top node of z’s column to the bottom node of column h(p, ¢), where
h:[2 Nﬁ]? — [22[\/?]] is a (pseudo-)random hash function known by all nodes; if
p > g, then p, is moved to column h(qg, p) instead. This is done with an application of
the Route-and-Combine Algorithm similar to Lemma 3.12. If g, exists, then either
the bottom node of h(p, q) (if p < q), or the bottom node of h(q,p) (if p > ¢) receives
both p, and gy, which can then send p, annotated by d,(p) + dy(q) to gp.

The following lemma summarizes the outcome of each introduction step. It follows
from the fact that we introduce random representatives of unsuccessful supernodes
such that each representative stored at v is sent at most once, and each supernode
in I(v) receives one random representative of any other supernode in I'(v).
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Lemma 3.16 (Introducing Supernodes). Let u € I"(v) and w € I'(u) be unsuc-
cessful supernodes. v receives a representative of w from w, which is annotated with
the value d,,(v) + dy(w). More precisely, the representative is a node of by, that gets
stored at a node of b,. The introduction takes time O(ﬁ), w.h.p. Proposition 3.10
is maintained, w.h.p.

Proof. Clearly, v receives a representative of w from u as claimed in the lemma.
Since Proposition 3.10 holds before the introduction by Lemma 3.15, every node
contributes at most O(logn) values to the Route-and-Combine Problem, w.h.p,
each having its own routing group. Furthermore, by using the Chernoff and union
bound, it can easily be shown that each node is target of at most O(logn) routing
groups, w.h.p. Since b, has dimension O(v/2¢) and by Theorem 3.2, applying the
Route-and-Combine Algorithm takes time (’)(\/?), w.h.p. This also implies that
Proposition 3.10 is maintained, w.h.p. O

At this point, the set of supernodes discovered by v is extended to

L)« Tw)u |J I'w.

u€el’ (v)

However, the nodes of b, may still store representatives of the same supernode u,
which happens if at least two nodes in I'(v) introduce u to v. We now filter these
representatives such that exactly one representative is stored for each supernode.
Specifically, we want to store the representative with smallest annotated distance
value. This can be done by performing the Route-and-Combine Algorithm as in
Lemma 3.11, but in b, only. By choosing the aggregate function f as the minimum
function MIN, only the representative with smallest distance value of each supernode
in T'(v) remains. Since Proposition 3.10 holds by the previous lemma, this can
be done in time O(ﬁ), and maintains the proposition, w.h.p. Finally, v counts
the number of representatives now stored in b, using the Aggregate-and-Broadcast
Algorithm to determine |I'(v)|. If |T'(v)| > 2/V2'1 becomes successful. Irrespectively,
v declares itself successful if one of its neighbors has become successful in the previous
introduction step, or was successful already before the first introduction step. Finally,
every member of v that stores a representative x asks x whether its supernode u is
now successful, which can be done in the global network due to Proposition 3.10.
If w is successful, z is removed from b,, and I"(v) becomes the set of remaining
unsuccessful supernodes in I'(v).

To complete our analysis of the introduction step, we conclude the following.

Lemma 3.17 (Conclusion of the Introduction Step). The introduction step takes
time O(ﬁ) Propositions 3.9, 3.10, and 3.1} are maintained for the next introduc-
tion step, w.h.p.

End of the Expansion Stage All supernodes stop after having performed at
most fﬁ} introduction steps. If a supernode is unsuccessful until the end of the
last introduction step, but determines that one of its neighbors has become successful
in this step, it also declares itself successful. Note that at the end of the Expansion
Stage, a supernode may still be unsuccessful, and even if is has been successful,
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it might have learned fewer than 9Vl many supernodes (i.e., when it became
successful because of one of its neighbors).

Recall that H is the graph of adjacent active supernodes as defined at the begin-
ning of Section 3.4.2. We make the following observation for the outcome of the
expansion stage.

Lemma 3.18 (Outcome of Expansion Stage). Let C' be a connected component of H.

If|C| > 2(\/?17 then every supernode in C' is successful at the end of the Expansion
Stage. Otherwise, no supernode in C is successful.

Proof. First, if |C| < 2IV2'1then for every v € C we have IT(v)| < 212 after each
introduction step, since any supernode can only discover supernodes of C'. Therefore,
no supernode in C' will ever declare itself successful.

Now let |C| > 2IV21 and consider the hypothetical execution in which the supern-
odes can perform unlimited communication and unceasingly continue to introduce
discovered nodes without declaring themselves successful. We show by induction on
the number of introduction steps that in such an execution I'(v) of every supernode
v of C' contains all supernodes within 2! hops in H after introduction step t.

Before step 1, I'(v) contains all neighbors of v in H. Since none of these supernodes
will initially be successful by assumption, v discovers all neighbors of its neighbors
in H in the first introduction step . Assume that I'(v) contains every supernode
within 2¢ hops in H before introduction step ¢ + 1 for all v in C. Fix some v, and
let w ¢ I'(v) be a supernode within 2/*! hops from v in H. Then there must be
a supernode u € I'(v) such that w lies within 2¢ hops from u, and, consequently,
w € I'(u). Since v € I'(u) by Proposition 3.9, and v,u and w are unsuccessful by
our assumption, u introduces w to v in introduction step ¢t + 1. We conclude that

after [v/27] introduction steps, I'(v) contains all supernodes within distance 2V,

which must be at least 2/V2'] many supernodes.

Therefore, the only way for a supernode v in C' to not be successful after the last
introduction step is if some supernode in C' becomes successful and is subsequently
not introduced any further, leading to v not discovering sufficiently many supernodes.
Assume that this is the case, and compare the actual execution in which v does not
discover 2/V2'] many supernodes due to some supernode becoming successful with
the hypothetical execution described in the previous paragraph. Then, there must
be a first introduction step ¢ in which v does not learn some supernode u in the
actual execution that it would learn if no supernode ever became successful. We
show by induction on ¢ that v will declare itself successful at the end of introduction
step min{t + 1, [v/21]}.

First, let ¢ = 1. Since v does not learn supernode u, some node w € I'(v) must
have removed its representative of u because u was already successful before the first
introduction step. Thus, w declares itself successful after the first step, leading to u
becoming successful at latest after the second introduction step.

Now let ¢ > 1. By the same reasoning, there must be a node w € I'(v) at the
beginning of introduction step t that does not introduce some supernode « to v in
introduction step t. This is because either u was successful before introduction step
t, or because u was not introduced to w in some step ' < t. In the first case, w

37



Chapter 3. Fast Construction of Overlay Networks

becomes successful after step ¢, since v € I'(w) and u became successful before step
t. In the second case, the inductive hypothesis implies that w becomes successful
after step ' +1 < t as well. If t < [V/2i], v becomes successful after step ¢ + 1.
If otherwise ¢ was the last introduction step, v will declare itself successful after w
does so. O

The final lemma of this section follows from Lemma 3.17 and the fact that we
perform [v/2] introduction steps.

Lemma 3.19 (Expansion Stage Runtime). The Expansion Stage takes time O(2%)
and can be performed using global communication, w.h.p.

3.4.3. Merging Stage

After having collected potentially large sets of neighbors in the Expansion Stage, the
goal of each active supernode in the Merging Stage is to select merge edges from
G2 = (V, E3) that connect members of supernodes. We will ensure that the total
number of members contained in each component of supernodes connected by merge
edges (which we call merge component) amounts to at least 22 +(+1[V2T, Therefore,
each resulting supernode u will be sufficiently large to ensure Proposition 3.6 for the
beginning of the next subphase. Additionally, the selected merge edges connect the
internal spanning trees of all supernodes within a merge component to a tree that
contains all nodes of the resulting supernode. This will maintain Proposition 3.7.
Finally, towards Proposition 3.8, we need to show how to establish the internal
butterfly of each supernode that is active in the next subphase.

Let v be a supernode and C, be the component of H that contains v. By
Lemma 3.18, we know that the supernodes within C,, are either all successful or all
unsuccessful. For the selection of merge edges, we consider these cases separately.

Successful Supernodes: Grouping Step 1 First, let v be a successful supern-
ode. We define ¢(v) = ¢ if v became successful at the end of introduction step
i€ {1,...,[V21]}. Further, we define t(v) = 0, if v was successful at the beginning
already, and t(v) = [V/2i] 4 1 if v became successful after the last introduction step
due to a neighbor u that became successful (for which t(u) = [v2¢]). Furthermore,
let ¢(v) := t(v)oid(v). Note that ¢p(u) < ¢(v) if and only if t(u) < t(v), or t(u) = t(v)
and id(u) <id(v). Let m(v) = argmin,cp,) ¢(u).

Successful supernodes select merge edges in two grouping steps, which we refer
to as Grouping Step 1 and Grouping Step 2. For Grouping Step 1, we need the
following observation.

Lemma 3.20. If ¢(m(v)) < ¢(v), then v is adjacent to a supernode u in H such
that m(v) € T'(u) and d,(m(v)) < dy(m(v)).

Proof. We define the introduction path I = (v = vg,v1,...,v, = m(v)) from v to
m(v), where vy is adjacent to v in H, and v;41 has been introduced to v by v; for
all 1 <t <k — 1. Note that multiple nodes may introduce v441 to v. For any t, we
always choose v; as the first node that introduces vi+1 to v. If there are multiple
such nodes, then we let v; be the node such that dy(v;) + dy, (v441) is minimized,
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breaking ties arbitrarily. For any 1 <t < k — 1, let r; > ¢ be the introduction step
in which v learned v411 from v;. Clearly, ry < ryyq for all 1 < ¢ < k — 2. Since
the distance values d,(v¢41) always correspond to lengths of actual paths in H, it is
impossible for v to learn vy in introduction step 7, and obtain a smaller distance
value in a subsequent introduction step. Therefore, for our choice of the nodes of I
we have that dy,(vi41) = dy(vg) + dy, (V1) for all 1 <t <k — 1.

We show by induction on ¢t that (1) at the beginning of introduction step 7y,
v € M(vy), for all 1 <t <k —1,and (2) dy, (v¢) + 1 < dy(v¢) for all 1 < ¢ < k. For
t =1, both statements hold since vy is adjacent to vy, and dy, (v1) +1 = dy(v1) =1
at the beginning of introduction step r1. Now assume that the induction hypothesis
holds for some ¢ < k — 1. Therefore, v € I'(v;), and dy, (v¢) + 1 < dy(vy). Since
m(v) eventually has the minimum ¢-value among all supernodes of I'(v) and becomes
successful no earlier than at the end of introduction step 7,_1, no node vy for t’ < t+1
can be successful before introduction step r;, as otherwise v would know a node with
smaller ¢-value.

Therefore, v; will introduce vy to veyq in introduction step ry. If t4+1 < k — 1,
then v; will also not be finished at the end of introduction step 7, so v will be
included in I (v441) at the beginning of the introduction step 7441, which establishes
Induction Hypothesis (1). Additionally, even if t + 1 = k, we have that

dv(thrl) = dv(vt) + d'Ut (vt+1)
> d'Ul (Ut) +1+ dUt (Ut-i-l)
Z dvl (Ut—i-l) + ]-7

where the first equality holds by our choice of vy, the second inequality holds due
to Induction Hypothesis (2), and the third inequality holds since vy will receive
dy, (Vp41) from vy. O

By the previous lemma, v can select a merge edge according to the following rule.

Grouping Step 1: If ¢(m(v)) < ¢(v), then v selects a merge edge to a
supernode u € I'(v) adjacent to v in H such that m(v) € I'(u) and d,(m(v))
is minimized. More precisely, the merge edge that v adds to £ is an edge
{z,y} € Es, where z is a member of v adjacent to a member y of .

An example of the selection of merge edges in Grouping Step 1 can be found in
Figure 3.3a. Clearly, v knows id(u) for all u € I'(v), and, since each w informed v if
it became successful before or at the end of the last introduction step, can infer ¢(u).
Therefore, each member of v that stores a representative of u knows ¢(u). By using
the Aggregate-and-Broadcast Algorithm, the members of v can easily compute m(v)
and ¢(m(v)) in time O(2%), and determine whether ¢(m(v)) < ¢(v). In this case,
v needs to communicate with its adjacent supernodes in H to determine which of
those supernodes minimizes d,(m(v)).

Let  be a member of v that stores a representative y of an adjacent supernode u
after filtering the representatives before the first introduction step (see Lemma 3.11);
those are the supernodes adjacent to v in H. x sends a request to y and asks for
dy(m(v)). The requests are processed with an application of the Route-and-Combine
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Figure 3.3.: (a) Active successful supernodes select merge edges in Grouping Step 1.
Each active supernode is labeled with its ¢-value (inactive supernodes
are gray). The small number at the side of each supernode v indicates
¢(m(v)); in this example, I'(v) contains all active supernodes within hop-
distance 2 in H. The selection of merge edges results in two components
of supernodes (gray shade). (b) The smaller of the two components did
not grow large enough, and selects a merge edge in Grouping Step 2. As
a result, both components are merged into one large supernode.

Algorithm. More precisely, all requests at u that ask for d,(w) for some w are in
routing group Rjq(,,) and are routed to target ¢iq(,,) on the bottom level of B, chosen

uniformly at random using a (pseudo-)random hash function h : {0, 1}* — [2Lleglull].
Additionally, we let tq(, learn d,(w) by letting the member of u that stores d,(w)
directly send a packet to tiq(.) (clearly, if no such member exists, tid(w) does not
receive any distance value). To answer the requests, the path system formed by
routing all packets to tq(y) (which basically forms a binary tree in B,) is used in
reverse direction to inform all members of u that initially received a request for
dy(w). To be able do so, each butterfly node needs to record all packets that are
routed through it during the execution of the Route-and-Combine Algorithm. It
immediately follows from the proof of Theorem 3.2 that the recipients of requests
for d,(w) learn this value in time O(2%), w.h.p., and can then answer all requests
directly.

After having received all responses, v determines the supernode u adjacent to it
that minimizes d,(m(v)) with the Aggregate-and-Broadcast Algorithm. Similarly,
the members of v can learn the edge {z,y} € E» such that z is a member of v and
y is the member of v and (id(z),id(y)) is minimized, which is then selected as the
merge edge. This implies the following lemma.

Lemma 3.21 (Runtime of Grouping Step 1). Selecting merge edges in Grouping
Step 1 takes time O(2°), w.h.p.

Let Hyperge be the graph that contains all successful supernodes and a directed
edge (u,w) if u selected a merge edge to w, and let C,y be the component of Hyerge
that contains v; the supernodes of C,s will merge to form a new supernode v’. Fur-
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thermore, let E,y C Es be the set of merge edges selected by the supernodes of C.
For the outcome of Grouping Step 1, have the following lemma (recall that &, is the
internal spanning tree of each supernode u).

Lemma 3.22 (Outcome of Grouping Step 1). Cy is a rooted tree whose root has the
smallest ¢-value among all supernodes of Cyr. Furthermore, Ey = Ey U Uuecvl Eu
is a tree that contains all members of v'.

Proof. To show that C\ forms a rooted tree, first note that every supernode selects at
most one merge edge, therefore every supernode of C,s has outdegree at most 1. It re-
mains to show that C,s does not contain a directed cycle. Assume that supernode u of
Cy selected a merge edge to w € T'(u). Therefore, m(u) € I'(w) and thus ¢p(m(w)) <
¢(m(u)). We have that either ¢p(m(w)) < ¢p(m(u)), or ¢(m(w)) = ¢(m(u)), which
implies that m(w) = m(u), but dy,(m(w)) < dy(m(uw)) by Lemma 3.20. Therefore,
if we label each supernode u with I(u) := (¢(m(u)),d,(m(u))) and consider the lex-
icographic order, then [(u) > [(w) for each edge (u,w) in C,. Furthermore, since
the ¢(m(u))-values monotonously decrease along a directed path, and m(r) = r for
the root r of Cy, r has the smallest ¢-value among all supernodes of C.

Since by Proposition 3.7 the internal spanning tree &, of each supernode u is a
tree, the union of all internal trees of C\s together with the merge edges F,s form a
tree that contains all members of v'. O

At the end of Grouping Step 1, our goal is to construct the internal butterfly of
each resulting supernode. To do so, we present a variation of the merging step of
the Ouverlay Construction Algorithm of Gmyr et al. [Gmy+17a]. The algorithm is
based on the well-known Euler tour technique (e.g., [TV85; AV84]), which basically
applies pointer jumping [JAJ92] to trees. Since we do not know exactly how large
the resulting supernodes will be, we control the runtime of our algorithm with a
parameter k. The algorithm may not finish in time within a supernode that is too
large; in this case, the supernode will simply become inactive. Formally, we prove
the following lemma.

Lemma 3.23 (Merging). Let T' be an (undirected) tree with degree O(logn) that
contains N nodes. There is an algorithm that, if k > log(N — 1) + 1 for some
parameter k = O(logn), takes O(k) rounds to let every node of T learn N and the
highest identifier of all nodes in T'. Furthermore, the algorithm arranges the nodes
as a path graph L = (xg,...,xn_1) that contains the nodes in the order in which
they are visited in some depth-first traversal of T starting at the node with highest
identifier. If k < log N + 1, the algorithm fails. After termination, all nodes know
whether the algorithm succeeded or not.

Proof. Our algorithm is divided into the following three steps.

e Step 1: T is transformed into a directed cycle graph C' of wvirtual nodes, in
which each node = of T' simulates degr(x) = O(logn) many virtual nodes.

o Step 2: C is transformed into a path graph L = (zg,...,xy_1) that contains
the nodes of T in the order in which they are visited in some depth-first
traversal of T' starting at the node with highest identifier.
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Figure 3.4.: (a) A tree T' with node identifiers. (b) Each node = simulates degp(x)
many virtual nodes that are connected according to a depth-first traver-
sal of T'. In addition to the identifier of its original node z, each virtual
node z! is annotated with its index ! (small numbers at the side). (c)
The path graph L’ that begins at the node with highest identifier, which
in this case is 7.1. All virtual nodes that are not marked (light gray)
will be removed from the path graph. (d) The path graph L that results
from compressing L’ to its marked nodes and replacing them by the
corresponding nodes of 7.

e Step 3: Each node z; in L learns xy for all ' = [+ 2t ¢t € Ny, if o exists.
Furthermore, z; learns N and the highest identifier of all nodes in T

Clearly, a successful outcome of Step 3 implies the lemma. We will make sure that
all nodes terminate in the same round after having performed O(k) rounds, and can
then easily infer whether the algorithm was successful.

Step 1 For Step 1, we denote the neighbors of each node = in T by ascending
identifier as z(0), ..., z(deg(x) — 1). Consider the (cyclic) depth-first traversal in T
that first traverses an arbitrary edge of T', and, when visiting = from z(l), continues
at x’s neighbor z((I + 1) mod deg(x)). Intuitively, C' is the directed cycle graph that
corresponds to this traversal. More specifically, every node x simulates the nodes
20, ..., xde8r(®) =1 where 2! corresponds to the traversal visiting x from x(l). The
cycle graph C contains all virtual nodes and an edge (z!,%") in C for all ¢, 3" such
that y = 2((l + 1) mod degp(z)) and = = y(I') (see Figure 3.4a and 3.4b for an
example). To accordingly introduce each virtual node to its predecessor in C, every
node x sends the wvirtual identifier id(z') := id(z) ol to x(l) for all I € [degy(z)].
Since T" has degree O(logn), each node only has to simulate O(logn) virtual nodes.
Furthermore, since there are two edges in C' for each edge of T, |C| = 2(N —1).

Step 2 To transform C into a list L that contains every node of T', we perform
pointer jumping in C to establish shortcut edges. Every virtual node z first selects
its successor in C as its left neighbor £1, and its predecessor as its right neighbor ri.
In the first round, every virtual node = establishes {/1,71} as a new shortcut edge
by sending the edge to both ¢; and ri. Whenever at the beginning of some round
t > 1 x receives shortcut edges {y,z} and {z,z} from ¢;,_; and r;_, respectively,
it sets ¢y := y, r, := z and establishes {{;,r;} by informing ¢; and r,. Note that a
shortcut edge established in round ¢ bridges 2° many virtual nodes in C (i.e., there
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is a path with 2! hops from z to £;11 and ry1). After having performed k rounds,
where k is the prescribed runtime parameter, the nodes stop.

Now, the nodes try to determine the virtual node z* that has the highest virtual
identifier, as well as the length d*(x) of the directed path from z* to each virtual
node z in C. If k has not been chosen sufficiently large, this step will fail, which
will be noticed by all nodes. As a first step, every virtual node x sends a message
(id(x),0) to itself. Then, in round ¢t = 1, ..., k, each virtual node selects the message
(id(y), d) with largest identifier received so far, and sends (id(y),d + 2!=1) to 4. It
is easy to see that after round ¢, the identifier of z* has reached all nodes within
2! — 1 many hops from z* in the directed cycle. Therefore, if k > log(N — 1) + 1 =
log(2(N — 1)) = log|C|, after k rounds all virtual nodes store z*. In this case,
z* determines that it is the virtual node with highest identifier by looking at its
predecessor in C, and informs all virtual nodes using the shortcut edges as before
within an additional k£ rounds. Conversely, if the predecessor of C' did not receive z*,
we must have that k£ < log |C|. In this case, z* will not inform all nodes, and after
having received no notification within & rounds, the nodes declare the execution as
unsuccessful.

Assume that the nodes were successful, i.e., k& > log(N — 1) + 1. By letting z*
remove the edge to its predecessor in C, we obtain a path graph L’ that begins at
x* and contains all virtual nodes (see Figure 3.4c). Each node = of T now marks
its virtual node y for which d*(y) is minimal. Let U be a maximal subgraph of L'
that consists of unmarked nodes only. U is adjacent to at most 2 marked nodes,
and we can easily introduce these nodes by performing pointer jumping on the
unmarked nodes for k£ rounds. After removing all unmarked nodes and replacing
each marked node with its corresponding original node, we obtain a path graph
L = (xg,...,xn—1) that contains all nodes of T' (see Figure 3.4d). Furthermore,
since we mark only the nodes that appear first when traversing C' from starting at
z*, and C corresponds to a depth-first traversal of T, L contains the nodes in the
order in which they are visited in a depth-first traversal starting at the node with
highest identifier.

Step 3 By performing pointer jumping on L for k rounds, every node x; learns
ap for I =142 t € [k + 1], if that node exists. By performing a broadcast from
x0, which is the node with highest identifier among all nodes of T, the nodes learn
id(xg) and N. More precisely, zo first sends a message (id(zg),1 + 2!) to zy for
all I € [k + 1], if that node exists. Whenever node x; receives (id(zg), d), it sends
(id(zo),d + 2%) to ;o for all I € [k + 1], if it exists. After k rounds, zy_; knows
both id(xg) and N, which is then sent to all nodes with a final broadcast. O

To construct the internal butterfly of supernode v’ from Lemma 3.22, we use the
algorithm of Lemma 3.23 on &y. By Lemma 3.22, £, is a tree that contains all
members of v/, and since G has degree O(logn), £, has degree O(logn) as well. By
choosing k = 2 + (j + 2)[V2i] + 1 = O(2"), the algorithm is guaranteed to succeed
in o if v/ contains at most 22 +0+2V2T nodes. Tn that case, all members of v’ learn
whether [v/| < 92 +(+V2T _ 1, in which case v’ is supposed to be active in the
next subphase. If the algorithm does not succeed, v" must be too large anyway, and
all nodes can infer that v’ will be inactive.
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Successful Supernodes: Grouping Step 2 If |v/| < 22'+([+2) V21 _ 1, we
might have that v' is too small for the next subphase, which is the case if |[v/| <
min{22'+0 +)IV2T n}. To resolve this problem, the goal of Grouping Step 2 is to let
v’ pick an additional merge edge such that the resulting supernodes are of sufficient
size.

To avoid confusion with the supernodes before Grouping Step 1, in the following
we call each supernode that resulted from supernodes that merged in Grouping Step
1 an intermediate supernode. For each intermediate supernode u', we define ¢(u')
as the ¢-value of the root of C,/ (which is the rooted tree of supernodes that merge
to form v/, see Lemma 3.22). Before we describe how merge edges are selected in
Grouping Step 2, we make the following observation.

Lemma 3.24. Let v’ be an intermediate supernode, and let
| < min{22i+(j+1)[@],n}.

v is adjacent in G to an intermediate supernode u' such that ¢p(u') < ¢(v').

Proof. v' is the result of merging all supernodes of the rooted tree C,/. Let v be the
root of that tree. Since v did not select any merge edge, we have that ¢(v) = ¢(m(v)).
This implies that v did not become successful in the Expansion Stage because of any
supernode u € I'(v); otherwise, we would have ¢(u) < ¢(v) and ¢p(m(v)) < ¢(u) <
¢(v). Since v became successful anyway, we must have that |I'(v)| > 2V, By
Proposition 3.6, each supernode u € TI'(v) is of size |u| > min{22i+ﬂ‘/§1,n}. If
all these nodes were now contained in v/, then [v| > min{22i+(j+1”‘/?],n}, which
contradicts the assumption of the lemma. Therefore, there must be a supernode
u € I'(v) that is not contained in C.y.

First, consider the case that there exists such a supernode u that was adjacent in
H to some w € C, before Grouping Step 1. Since v € I'(u) by Proposition 3.9, we
have that ¢(m(u)) < ¢(v). By Lemma 3.22, for the intermediate supernode v’ that
u merges into we have that ¢(u’) < ¢(m(u)) < ¢(v'). More specifically, since v’ # v/,
which is due to the fact that u is not contained in C,/, we have that ¢(u’) < ¢(v'),
proving the claim.

In the other case, every supernode u € I'(v) that is not contained in C, is also
not adjacent to any supernode in C,. Let P be a shortest path from v to such a
supernode u in H. Let w be the first node on that path from v to w that is not
contained in C,. Since u was introduced to v, but w was not, w must have been
successful before v. Therefore, ¢p(m(w)) < ¢(w) < ¢(v) = ¢(v'). Let w' be the
intermediate supernode into which w merges. From Lemma 3.22 we conclude that

P(w') < ¢(m(w)) < ¢(v'). H

In Grouping Step 2, every intermediate node that is still too small selects an
additional edge to an adjacent intermediate supernode w’. We will show that the
resulting supernode will be sufficiently large. Formally, intermediate supernodes
select merge edges according to the following rule.
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Grouping Step 2: Let v’ be an intermediate supernode for which |v/| <

min{22i+(j+1)[\/27],n}. v’ selects a merge edge to an intermediate supernode
u’ adjacent to v' in Go such that ¢(u') < ¢(v'). More precisely, the merge edge
that v" adds to £ is an edge {z,y} € Es, where x is a member of v' adjacent
to a member y of u’.

An example of the selection of merge edges in Grouping Step 2 can be found in
Figure 3.3b.

To select a viable supernode v/, we remark that v" does not have to know ¢(u').
In fact, if the application of Lemma 3.23 was not successful, which happens if v’
is already too large, then the members of u' themselves do not even learn ¢(u').
However, it suffices to determine a supernode u for which ¢(m(u)) < ¢(v') that is
adjacent to one of the supernodes of C,, but not contained in C\. The existence
of such a supernode follows from the proof of Lemma. 3.24. Therefore, we can select
a merge edge by letting each member x of v/ ask each of its neighbors y in G,
which was previously contained in some supernode u, for ¢(m(u)), and compute the
minimum using the Aggregate-and-Broadcast Algorithm in time O(2¢). This yields
the following lemma.

Lemma 3.25 (Runtime of Grouping Step 2). Selecting merge edges in Grouping
Step 2 takes time O(2%), w.h.p.

Similar to Lemma 3.22, for each resulting supernode v we define C,, as the compo-
nent of v’ in the directed graph that contains an edge (u/,w’) if u’ selected a merge
edge to w’ in Grouping Step 2. Furthermore, let E, C E5 be the set of merge edges
selected by the intermediate supernodes of C,. The outcome of Grouping Step 2
can be summarized as follows.

Lemma 3.26 (Outcome of Grouping Step 2). Fach resulting supernode v has size
lv| > min{222+(j+1)(‘/27],n}. Furthermore, C, is a directed tree and &, == E, U
Uwec, Ew is a tree that contains all members of v.

Proof. 1f v chooses to merge with u, then ¢(u') < ¢(v’), which implies that there
cannot be directed cycles in C,; therefore, C, is a directed tree. Since each inter-
mediate supernode v’ is internally organized as a tree £, by Lemma 3.22, we have
that &, is a tree that contains all members of v.

For the first claim of the lemma, note that the root v’ of C, did not select any
merge edge. Since by Lemma 3.24 it can always select such an edge if it is not of
sufficient size, the only reason for not choosing an edge must be that it is already
large enough. More precisely, |u/| > min{22i+(j+1)[\/§],n}, which directly implies
the lemma. O

To merge each supernode that results from Grouping Step 2, we can therefore
again use the algorithm of Lemma 3.23 with k = 2/4(j+2)[v27]+1. We conclude the
following lemma for all supernodes that result from merging successful supernodes
in the Merging Stage.

Lemma 3.27 (Merging Successful Supernodes). Merging successful supernodes takes
time O(2%), w.h.p. Propositions 3.6, 8.7, and 3.8 are maintained for the next sub-
phase.
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Unsuccessful Supernodes It remains to show how the unsuccessful supernodes
attain a sufficient size. Similar to successful supernodes, every unsuccessful supern-
ode will select at most one merge edge, which forms clusters of supernodes that we
attempt to merge using the algorithm of Lemma 3.23. However, this time only a
single grouping step will suffice for the resulting supernodes to be sufficiently large.

Let v be an unsuccessful supernode. Since v is unsuccessful, by Lemma 3.18 the

component C' of H that contains v must consist of fewer than 9lV27] supernodes,
all of which being unsuccessful. From the proof of the lemma we also infer that
I'(v) contains all supernodes in C. Furthermore, if there still exists an inactive
supernode, one of the supernodes of C' must be adjacent to an inactive supernode
in Go. Conversely, if none is adjacent to an inactive supernode anymore, C' must
contain all remaining supernodes. In the first case, we let a supernode u* of C
merge with an inactive supernode w that u* is adjacent to in G2, and let all other
supernodes in C' merge with v* by forming a BFS tree towards u* in H. In the
second case, all supernodes simply merge with the supernode in C' that has smallest
identifier in a similar way.

More specifically, v does the following: It first determines whether it is adjacent to
an inactive supernode in G2 by performing the Aggregate-and-Broadcast Algorithm,
and, if so, informs all supernodes in I'(v) by sending a message to respective repre-
sentatives. If no supernode receives any notification, there cannot be any inactive
supernodes anymore, and u* is simply chosen as the supernode with smallest identi-
fier. Otherwise, we perform the Aggregate-and-Broadcast Algorithm a second time,
whereby all members of v learn the supernode u* in C that has smallest identifier
among all supernodes in C that are adjacent to an inactive supernode.

If w* is adjacent to an inactive supernode w, then u* selects the edge {x,y} € E»
such that x is a member of v* and y is a member of w such that (id(x),id(y)) is
minimized using the Aggregate-and-Broadcast Algorithm. To let all other supernode
select a merge edge, we first let every supernode v inform its adjacent supernodes
in H about d,(u*), which, as all nodes are unsuccessful, must be equal to dg(u, u*).
Using the Aggregate-and-Broadcast Algorithm, every supernode v # u* selects a
merge edge to the adjacent supernode u in H that minimizes d,(u*). Since the
unsuccessful supernodes form a BF'S tree in H, and merge with an inactive supernode
if there exists one, we conclude the following lemma.

Lemma 3.28 (Merging Unsuccessful Supernodes). Merging unsuccessful supernodes
takes time O(2Y), w.h.p. Propositions 3.6, 8.7, and 3.8 are maintained for the next
subphase.

3.5. Conclusion of the Algorithm

We conclude the algorithm by presenting how a well-formed tree of V' as well as a
spanning tree of G can be obtained from the outcome of the last subphase.

Lemma 3.29 (Outcome of the Last Subphase). At the end of the last subphase,
only a single supernode v that contains all nodes of V' remains. £ forms a spanning
tree of Ga.
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Proof. From Lemmas 3.27 and 3.28 we know that Proposition 3.6 holds after sub-

phase j = [@] of phase i = [loglogn] — 1. Therefore, every remaining supernode

is of size
min{22 T (VR TTED? y s in{glogn/2Hogn/2 iy gy

which implies that there can only remain a single supernode v that contains all nodes

of V. Furthermore, by Proposition 3.7 we know that £ is a spanning tree of Go. [

We finally construct a well-formed tree as a binary tree of height O(logn) by
applying the algorithm of Lemma 3.23 to £. More precisely, we first execute the
algorithm with parameter k& = [logn] + 1, for which it is guaranteed to succeed.
Consider the path graph L = (zy, ..., x,—1) of all nodes constructed by the algorithm
(for simplicity, assume that n is a power of 2). xy becomes the root of our tree, and
establishes Zqgn—1 as it’s only child by sending a message to it. Every node z;
that receives a message at the beginning of each subsequent round [ = {1,logn — 1}
chooses x; slogn—i—1 and ;, glesn—i—1 as its children by forwarding the message to
them. It is easy to see that after the last round, every node has been reached by
exactly one message, which concludes the main theorem of this chapter.

Theorem 3.30 (Well-formed Tree). The algorithm constructs a well-formed tree of
global edges that contains all nodes of V' in time (’)(log3/2 n), w.h.p.

It remains to show how the spanning tree £ of G5 can be transformed into a
spanning tree of the actual graph G. To that end, we again consider the path graph
L constructed in the previous paragraph using the algorithm of Lemma 3.23. As
a byproduct of the algorithm, each node z; learns its index ¢ in L. Furthermore,
recall that since L contains all nodes in the order they are visited in some depth-first
traversal of &, for every ¢ > 0, z; must have at least one neighbor z; in G such that
J < (i.e., ; is visited before 7 in the traversal). Since each edge of Gy either exists
in G, or is the result of an introduction of two nodes with distance at most 2 in G,
there exists a node z; with j <4 within hop-distance 2 of x; in G for every ¢ > 0.

To obtain a spanning tree of GG, in the first step every node x; # xg selects an
edge to a neighbor z; in G such that j < i and j is minimal. If such a neighbor does
not exist, then x; selects one of its incident edges that has not been selected by any
neighbor. Such an edge must exist, because each edge of Fs results from a path of
length at most 2 in G, and thus there is a node with smaller index than ¢ within
distance 2 of x;. It is easy to see that the selected edges do not form any cycle, since
for any edge (z;,z;) of a cycle we either have j < i, or the edge is followed by an
edge (x,xy) such that k < i, leading to a contradiction. Together with the fact that
only zg does not select an edge, we obtain the final result of this chapter.

Theorem 3.31 (Spanning Tree). After performing our algorithm, a spanning tree
of G can be computed within an additional O(1) rounds in the local network.
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3.6. Outlook

To the best of our knowledge, there does not exist an algorithm that solves the
Overlay Construction Problem in the hybrid model in time O(logn) for v = O(logn).
Our recent O(logn)-time solution [G6t+420], which requires polylogarithmic global
capacity w(logn), is based on a completely different approach. Whether there exists
an algorithm that solves the problem in time O(logn) and with global capacity
O(logn) is perhaps the most intriguing question raised in this chapter.

Specifically, it is highly unclear whether one can derive a more efficient algorithm
from the approach of grouping and merging supernodes. Our algorithm, for instance,
does not fully exploit the power of each supernode to its limit, as we only use its
small butterfly for communication. Furthermore, the algorithm does not take into
account the initial graph topology; doing so may lead to more efficient solutions.
The general approach of grouping and merging supernodes has also been used to
compute minimum spanning trees. Therefore, it might be possible to extend our
approach such that it computes an MST of G.

It may also be worthwhile to further investigate this problem in specific graph
classes. For example, our algorithm solves the problem in time O(logn) in trees,
and in the same time the problem can be solved in graphs with outdegree 1 [AW07].
Other interesting classes to investigate might be planar networks or graphs with
bounded arboricity.
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Distributed Computation with Node
Capacities

HEREAS our previous discussion mainly revolved around the problem of set-

ting up a suitable global network, this chapter is dedicated to studying the

communication limitations of such a network. More precisely, we fully abstract

away the issue of designing and maintaining the global network by simply assuming

that the nodes form a clique. Whereas this enables each node to, in principle, con-

tact any other node, we only allow it to send and receive a total of O(logn) messages

in each round. As pointed in Section 2.1, this model is an instance of the generic

hybrid network model for A = 0 and v = O(logn) in which each node knows the
identifiers of all other nodes.

Since the model only captures the global communication aspect of hybrid networks
and therefore lends itself particularly well for the study of overlay networks, we pro-
pose it as a separate model that we refer to as the node-capacitated clique (NCC)
model. As the name implies, the model shares some similarities with the congested
clique model by Lotker, Patt-Shamir, Pavlov, and Peleg [Lot+05], which has also
been proposed as a “simple model for overlay networks” and received a lot of atten-
tion in recent years. The congested clique is an instance of the CONGEST model for
the case that the graph forms a clique, and allows each node to send O(logn) bits
to any other node. In particular, it allows each node to be in contact with up to
©(n) nodes at the same time, which makes the model much more powerful than the
NCC model. For example, the gossip problem (i.e., each node wants to deliver one
message to every other node) can be solved in a single round in the congested clique,
whereas the problem requires at least 2(n/logn) rounds in the NCC model. Even
the simple broadcast problem (i.e., one node wants to deliver a message to every
other node) already takes time Q(logn/loglogn) in our model.

Arguably, the power of the congested clique seems to severely limit its practica-
bility. As already suggested in Section 2.1, for overlay networks in particular, the
amount of communication a single node can perform typically does not scale with
the number of nodes it can reach. Instead, it rather depends on the bandwidth of the
connection of the node to the underlying communication infrastructure as a whole.
Shifting the communication bounds from the graph’s edges to its nodes addresses
precisely this issue. We comment that the capacity bound of O(logn) messages
per node per round is a natural choice: It is small enough to ensure scalability,
whereas any smaller bound would require unnecessarily complicated techniques for
the protocol to ensure nodes do not receive more messages than the capacity bound.

Although the NCC model abstracts away the graph’s topology, which is one of
the main concerns of overlay network research, it is clearly closely related to overlay
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networks. Any distributed algorithm in which overlay edges can be established by
introducing nodes to one another, and which satisfies the node capacity bound of
O(logn) messages, can be simulated in the NCC model without any overhead. As
an example, if we are given an input graph G that has degree O(logn), we can
skip the sparsification step described in Section 3.2 of the previous chapter and
compute a spanning tree of G in the NCC model in time (9(log3/2 n). There is
also a direct relationship between the NCC and models from parallel computing.
In fact, any algorithm for the NCC can be simulated with a multiplicative O(logn)
runtime overhead in the very restrictive EREW PRAM model, in which n processors
can access arbitrary memory cells, but no read or write conflicts are allowed. More
precisely, we assign each processor O (log n) many memory cells, and simulate sending
messages by letting processors write into randomly chosen cells of other processors;
w.h.p., no conflicts will occur. In turn, any n-processor CRCW PRAM algorithm
(which is the most permissive PRAM model that allows read conflicts and resolves
write conflicts) can be simulated with a multiplicative O(logn)-time overhead, for
example using the emulation framework of Ranade [Ran91].

In this chapter, we mainly study the computation of graph problems in the NCC.
More precisely, we assume that some edges of the network are marked as edges of an
undirected and connected input graph G. When regarding the NCC as an instance
of the generic hybrid network model, this graph corresponds to the local network;
however, as A = 0, the edges do not provide any additional communication capacities.
The edges of G can, for instance, be seen as edges of an underlying physical network,
or represent relations between nodes in social networks.

Given an input graph G, we for example show how to compute an MST, or to
solve the SSSP Problem in the node-capacitated clique. Additionally, we consider
local problems such as the Maximal Independent Set (MIS) Problem, in which the
goal is to identify a maximal set of nodes such that no two nodes are adjacent. Such
problems are characterized by the fact that they can typically be computed locally,
i.e., without global knowledge. However, since high-degree nodes cannot directly
communicate with their neighbors in our model, even such simple problems prove
to be difficult. Nonetheless, our results demonstrate that many problems can be
solved efficiently with only global communication, indicating the power of the global
network.

Underlying Publication The chapter is based on the following publication.

J. Augustine, M. Ghaffari, R. Gmyr, K. Hinnenthal, F. Kuhn, J. Li,
and C. Scheideler. “Distributed Computation in Node-Capacitated
Networks” 1In: Proceedings of the 31st Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 2019, pp. 69-79
[Aug+19]

We improve upon some of the results of the original publication; in particular, we
show a more efficient implementation of the MST algorithm, and extend the BFS
tree construction to compute exact and approximate SSSP. Furthermore, we provide
an extension of our vertex coloring algorithm.
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Outline In this introductory section, we review related work, summarize the con-
tribution of this chapter, and present subsequent papers that have carried on research
in the NCC. Similar to the previous chapter, we begin the technical part of this chap-
ter with a description of algorithmic primitives in Section 4.1. The algorithms build
upon the basic ideas of our already established primitives, but use much more elabo-
rate techniques to solve more complex problems. As a first application, in Section 4.2
we show how to efficiently compute (minimum) spanning trees. The other problems
considered in this chapter require the computation of an O(a)-orientation of G, for
which we present an algorithm in Section 4.3. Finally, in Section 4.4, we present a
variety of algorithms to solve shortest path problems and local problems.

Related Work The congested clique model has already been studied extensively
in the past years. Problems studied in prior work include routing and sorting
[Len13|, minimum spanning trees [JN18; GP16; Heg+15; Lot+05], subgraph detec-
tion [Cen+19b; DLP12], shortest paths [Bec+17; Cen+19a; Cen+19b; DP20], local
problems [CPS20; HPS14; Gha+18], or Nash-Williams forest decompositions [GS19;
BK18]. Notably, Barenboim and Khazanov [BK18] show how to solve a variety of
graph problems in the congested clique efficiently given such graphs, e.g., compute
an O(a)-orientation in time O(loga), an MIS in time O(y/a), an O(a)-coloring in
time O(a), and an O(a?**¢)-coloring in time O(log* n), where a is the arboricity of
the given graph. Many other known upper bounds are astonishingly small, such as
the constant-time upper bound for routing and sorting and for the computation of
a minimum spanning tree, demonstrating the power of the congested clique model.

While almost no nontrivial lower bounds exist for the congested clique model (due
to their connection to circuit complexity [DKO14]), various lower bounds have al-
ready been shown for the more general CONGEST model (see, e.g., [Das+12; Nanl4a;
KP98] and the references therein). As pointed out in [KS17], the reductions used in
these lower bounds usually boil down to constructing graphs with bottlenecks, that
is, graphs where large amounts of information have to be transmitted over a small
cut. Applying these constructions to the NCC model is, in most cases, not directly
possible. A notable exception, however, is the Q(n) lower bound for the Diameter
Problem by Frischknecht et al. [FHW12]. As a careful review of the proof reveals,
the lower bound construction is in fact applicable to the NCC and also implies an
Q(n) lower bound here. In contrast to the obvious Q(n) lower bound for APSP in
the NCC, which follows from the observation that each node has to learn 2(n) bits,
the diameter lower bound is somewhat surprising.

The graph problems considered in this chapter have already been extensively stud-
ied in many different models. In the CONGEST model, for example, a breadth-first
search can trivially be performed in time O(®). Computing weighted distances, how-
ever, is much more complicated. For the SSSP Problem, which we also study in this
and the following chapters, there is a lower bound of Q(y/n+9) rounds [PR99], even
for constant factor approximations [Das+12]. This bound is tight, as there is a (1+¢)-
approximation algorithm that runs in O(y/n+®) rounds [Bec+17]. To the best of our
knowledge, the most efficient algorithms for computing exact SSSP in the CONGEST
model are the ones by Ghaffari and Li [GL18] and by Forster and Nanongkai [FN18],
which yield runtimes of O(n?/4®Y4), O(vn- D), and O(y/nD* + n3/°> + D). In
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unweighted graphs, APSP and the diameter can be computed in O(n) rounds in the
CONGEST model [PRT12; HW12], for which, as we pointed out earlier, the lower
bound is tight [FHW12]. Note that this lower bound even holds for very sparse
graphs [ACK16].

There exists an abundance of algorithms to solve local problems such as maxi-
mal independent set, maximal matching, and the coloring problem in the classical
LOCAL and CONGEST models (see, e.g., [Bar+16] for a comprehensive overview).
These, and other problems, can be characterized as problems that rely on sym-
metry breaking. More specifically, neighbors have to agree on different roles
throughout the algorithm, e.g., being added to an MIS or not. Typically, such
problems can be solved in time O(1) both in the LOCAL and CONGEST model.
As an example, in the LOCAL problem the MIS problem can be solved in time
O(log A) + 20(Vloglogn) w1 [Ghal6], which comes close to the lower bound
of Q(min{+/logn/loglogn, log A /loglog A}) that holds for the MIS and maximal
matching problems [KMWO04].

Whereas the running times of the above-mentioned algorithms mostly depend on
n and, potentially, the degree of the graph, there have also been proposed algo-
rithms to solve such problems more efficiently in graphs with small arboricity (e.g.,
[BEK14; BE10; BE11; Bar+16]). Typically, the algorithms make use of the Nash-
Williams forest decomposition technique, which, for example, allows to compute an
O(a)-orientation in the CONGEST model in time O(logn) [BE10]. As an exam-
ple, the framework of Barenboim et al. [Bar+16] together with the algorithm of
Ghaffari [Ghal6] yields an O(loga + v/logn)-time algorithm for the MIS problem.

The MST problem has also been well studied in the CONGEST model. After the
seminal paper of Ghallager et al. [GHS83], who showed that an MST can be com-
puted in time O(nlogn), the first worst-case optimal runtime of O(n) was achieved
by Awerbuch [Awe87]. Although there are graphs that require £(n) rounds, for many
graphs an MST can be computed much more efficiently, which led to a wide variety
of algorithms whose runtimes are characterized by different graph properties [KP98;
GKPY8; EIk06]. However, due to a lower bound of (y/n) that holds for graphs
with hop-diameter Q(logn) [PR99], subpolynomial runtimes can only be achieved in
graphs with even smaller, e.g., constant, diameter [LPP06]. Other approaches aim
at minimizing the required number of messages of an algorithm instead of optimizing
its runtime. Notably, the algorithm of King et al. [KKT15] constructs an MST using
time and messages O(n log?n/loglogn), w.h.p., using a “graph sketching” approach.
In the context of Bortuvka’s algorithm (see Section 2.3), this approach allows us to
identify outgoing edges of components using very few messages, which leads to a
very efficient MST algorithm in the NCC.

Contribution An overview of the results in this chapter can be found in Table 4.1.
Note that for many important graph families such as planar graphs, our algorithms
have polylogarithmic runtime (except when depending on the hop-diameter © or
shortest-path diameter SPD).

Although many of our algorithms rely on existing algorithms from literature, we
point out that most of these algorithms cannot be executed in the node-capacitated
clique in a straight-forward fashion. The main reason for that is that high-degree
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Problem Runtime Section

Minimum Spanning Tree O(log®n/ loglogn) 4.2
Spanning Tree O(log? n) 4.2
BFS Tree (a +® +logn)logn) 4.4.1

SHS)

(
(
Exact SSSP (min{(a + logn) - (SPD + logn), (a +n)logn})4.4.2
(14 o(1))-approx. SSSP  O((a + SPDlogn)log?n) 4.4.2
Maximal Independent Set O((a + logn)logn) 4.4.3
Maximal Matching ((a +logn)logn) 444
O(a)-Coloring ((a + logn) log®? n) 4.4.5
O(alogn)-Coloring (log™/? n) 4.4.5

SECHE

Table 4.1.: An overview of the results in this chapter. We use a for the arboricity of
G, © for the hop-diameter of G, and SPD for the shortest-path diameter
of G (see Section 2.2). All of our results hold with high probability.

nodes cannot efficiently communicate with all of their neighbors directly in our model,
which imposes significant difficulties to the application of the algorithms. To over-
come these difficulties, we present a set of basic tools that still allow for efficient
communication, and combine it with variations of well-known algorithms and novel
techniques. Notably, we present an algorithm to compute an O(a)-orientation of
the input graph G with arboricity a. The algorithm is later used to efficiently con-
struct multicast trees to be used for communication between nodes. Achieving this
is a highly nontrivial task in our model and requires a combination of techniques,
ranging from aggregation and multicasting to shared randomness and coding tech-
niques. We believe that many of the presented ideas might also be helpful for other
applications in the node-capacitated clique.

Although proving lower bounds for the presented problems seems to be difficult,
we believe that many problems require a running time linear in the arboricity. For
the MIS problem, for example, it seems that we need to communicate at least 1 bit
of information about every edge (typically in order for a node of the edge to learn
when the edge is removed from the graph because the other endpoint has joined the
MIS). However, explicitly proving such a lower bound in this model seems to require
more than our current techniques in proving multi-party communication complexity
lower bounds.

Subsequent Work After publication of the original NCC paper, Nowicki [Now18§]
presented some variants and improvements of our communication primitives. To-
gether with a random sampling technique, the author is able to solve the MST prob-
lem in time O(log? nlog A /loglogn), which is faster than the algorithm presented
in this chapter for A < n, but, arguably, much more complicated. Furthermore,
Nowicki describes an (’)(log2 n) time algorithm to compute a spanning tree. In this
chapter, we offer a simple alternative to Nowicki’s approach.

Augustine et al. [Aug+20a] refine the NCC model by distinguishing between the
NCCy (see Section 2.1) and the NCC; model (which corresponds to the NCC). They

53



Chapter 4. Distributed Computation with Node Capacities

consider 6(A)—time algorithms for so-called graph realization problems, in which the
goal is to compute a topology that satisfies certain degree or connectivity properties.
They assume, however, that the networks starts as a line, which, as we point out in
Chapter 3, makes overlay construction very easy.

Finally, Robinson [Rob21] investigates the information the nodes need to learn to
jointly solve graph problems and derives a lower bound for constructing spanners in
the NCC. Interestingly, his result implies that spanners with constant stretch require
polynomial time in the NCC, and are therefore harder to compute than MSTs.

4.1. Algorithmic Primitives

Our algorithms make heavy use of a set of communication primitives, which can be
seen as extensions of the algorithms presented in Section 3.1 of Chapter 3. Similar
to our previous primitives, we rely on a simulation of a butterfly network; however,
in the NCC model we can simply assume that the nodes already know a butter-
fly network that contains all nodes, without needing to construct it explicitly. In
this section, we first describe the simulation in more detail, and explain how the
Aggregate-and-Broadcast Algorithm from Section 3.1 can be used to not only com-
pute aggregates, but also achieve synchronization. We then present multiple prim-
itives to solve more complex aggregation and dissemination problems, which will
allow nodes to send and receive messages to and from specific sets of nodes associ-
ated with them. More specifically, if the number of distinct messages a node needs
to send or receive is comparably low, even if the total number of messages is high,
the algorithms efficiently carry out the required communication by multiplying and
combining messages using the butterfly network. To do so, we use randomized rout-
ing strategies that balance the communication load among the nodes. In contrast
to the Route-and-Combine Algorithm from Section 3.1, the primitives allow to ef-
ficiently communicate arbitrarily many messages in the network, but may require
more rounds to deliver them.

Butterfly Simulation Since every node knows the identifiers of all other nodes,
throughout this chapter we can assume without loss of generality that the node’s
identifiers are from the set {0,...,n—1} = [n]. In our algorithms, every node u € V
with identifier i < 2¢—1 emulates the complete column i of a d-dimensional butterfly
network with d = [logn|. Clearly, each node knows exactly which nodes simulate
the butterfly nodes adjacent to its column. The primitives presented in this section
will only require each butterfly node to send and receive at most a constant number
of messages to and from adjacent butterfly nodes. Since each node simulates at most
d+1 = O(logn) butterfly nodes, we can perform each communication round in the
butterfly network in a single round in the NCC.

We remark that unlike the primitives introduced in Section 3.1, which solve prob-
lems defined for the butterfly network, we formally describe the upcoming problems
as problems in the NCC and rely on the butterfly network simulation to solve them.

Aggregate-and-Broadcast Algorithm As a first primitive, we restate the
Aggregate-and-Broadcast Algorithm from Section 3.1 in a slightly different form.
Recall that as the input of the algorithm, each node of the butterfly’s top level
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stores a data item of a multiset A, and the goal is for each butterfly node to learn
f(A) for some distributive aggregate function f. We generalize this problem for the
NCC by assuming that each node v € V stores an arbitrary number of input values
of A, and wishes to learn f(A). To solve this problem, each node first combines all
of its input values into a single value using the sub-aggregate function g to f. Any
node v with id(v) > 2% — 1 sends its value to the node u such that id(u) = id(v) —2%.
Subsequently, every node v with id(v) < 2¢ — 1 combines its at most two remaining
values into one, and places the resulting packet at the top node of its simulated
butterfly column. We can then directly apply the Aggregate-and-Broadcast Algo-
rithm of Theorem 3.1 to let each butterfly node learn f(A) in time O(logn), and
finally inform each node u € V with id(u) > 2% — 1. We correspondingly restate
Theorem 3.1 for the NCC.

Theorem 4.1 (Aggregate-and-Broadcast). The Aggregate-and-Broadcast Algorithm
solves any Aggregate-and-Broadcast Problem within O(logn) rounds.

In this chapter, we will also use the Aggregate-and-Broadcast Algorithm to achieve
synchronization. Assume that the nodes of the NCC execute some distributed algo-
rithm A that finishes in different rounds at the nodes. In order to start a follow-up
algorithm B at the same round, we perform the Aggregate-and-Broadcast Algorithm
in a slightly different way. Every node v with id(v) > 2¢ — 1 waits until its execution
of A has finished, and then sends a message to node u such that id(u) = id(v) — 2¢.
Any node v with id(v) < 2¢ — 1 also waits until A has finished and until it has
received a message from the node u with id(u) = id(v) + 29, if that node exists,
and then contributes a packet at the top node of its simulated column. As in the
Aggregate-and-Broadcast Algorithm, all packets will be sent towards (d,0) and com-
bined along the way. However, every butterfly node at level ¢ > 0 waits until it has
received packets from both of its neighbors at level ¢ — 1 before sending a packet
in the direction of node (d,0). Once node (d,0) has received packets over both of
its incident edges, it knows that all nodes have finished the execution of A. Since
the subsequent broadcast will reach all butterfly nodes of the top level in the same
round, we conclude the following theorem.

Theorem 4.2 (Synchronization). Assume that the nodes execute some distributed
algorithm A, and let t be the round in which the last node finishes the execution of
A. Using the Aggregate-and-Broadcast Algorithm as described above, the nodes can
collectively begin a follow-up algorithm B in some round t + O(logn).

4.1.1. Aggregation Problem

The other algorithmic primitives are designed to solve different general communica-
tion problems, and rely on similar subroutines. For a comprehensible presentation,
we arrange the problems and primitives in the order of increasing complexity, and
begin with the Aggregation Problem. As we shall see, all other problems in this
section are closely related to this problem.

Formally, in an Aggregation Problem we are given a distributive aggregate func-
tion f and a set of aggregation groups A = {A;,..., Ax}, A; CV,ie{1,...,k}.
Each node holds exactly one input value s, ; for each aggregation group A; of which
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it is a member, i.e., u € A;. Each aggregation group A; has a target t; € V. Note
that a node may be member or target of multiple aggregation groups. The goal is to
aggregate all input values so that eventually ¢; knows f(s,; | u € A;) for all i. We
define L = Zle |A;| to be the global load of the Aggregation Problem, and denote
the local load as ¢ = {1 + l2, where {1 = maxy,cy [{i € {1,...,k} | u € A;}| and
Uy = maxyuey [{7 € {1,...,k} | u=t;}|. Whereas the global load captures the total
number of messages that need to be processed, ¢1 and /5 indicate the work required
for inserting messages into the butterfly, or sending aggregates from butterfly nodes
to their targets, respectively.

We only enumerate the aggregation groups from 1,..., k to simplify the presenta-
tion of the algorithm. Actually, we only require each aggregation group to have a
unique identifier. Throughout the thesis, we will slightly abuse notation and refer
to an aggregation group A; with identifier x as A, and to s, ; and t; as s, , and
t., respectively. We assume that every node v € V knows the identifier and target
of all aggregation groups it is a member of. Furthermore, v has to know an upper
bound EAQ on fs.

In the remainder of this section, we describe the Aggregation Algorithm, for which
we prove the following theorem.

Theorem 4.3 (Aggregation). The Aggregation Algorithm solves any Aggregation
Problem in time O(L/n + (¢1 + £2)/logn + logn), w.h.p.

The execution of the algorithm is divided into three phases, the Preprocessing
Phase, the Combining Phase, and the Postprocessing Phase.

Preprocessing Phase In the Preprocessing Phase, all input values are sent in
batches of size [logn| to butterfly nodes of level 0 chosen uniformly at random.
More specifically, every node u € V transforms each input value s, ; for all A; of
which u is a member of into a packet p,; = (i, s,,;). We enumerate the packets of u
arbitrarily from 1 to k& < ¢; and denote them as p(1),...,p(k). Then, for each j €
{1,...,[k/logn]}, usends the packets p((j — 1)[logn] 4+ 1),...,p(min{j[logn], k})
in communication round j, each to a butterfly node chosen uniformly and indepen-
dently at random among the butterfly nodes of level 0. To achieve synchronization
after this phase, the nodes perform the Aggregate-and-Broadcast algorithm as de-
scribed in Theorem 4.2.

Lemma 4.4 (Preprocessing). The Preprocessing Phase takes time O(¢1/logn). In
each round every node sends and receives at most O(logn) packets, w.h.p.

Proof. The runtime and the bound on the number of packets sent out in each round
are obvious. Hence, it remains to bound the number of packets that are received in
each round.

Fix any butterfly node w of level 0 and round ¢t € {1,...,[¢;/logn]}. Altogether,
at most n[logn] packets are sent out in round ¢, which we denote by p1,...,p, Mogn]-
For each p;, let the binary random variable X; be 1 if and only if p; is sent to node
u in round t. Furthermore, let X = Y% | X;. We have that E[X;] = Pr[X; = 1] =
1/2% and, since 2¢ > n/2, E[X] < (n[logn])/2¢ < 2logn + 2. Since the packets
choose their destinations uniformly and independently at random, it follows from
our Chernoff bound in Lemma 2.2 that X = O(logn), w.h.p. O
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Combining Phase The Combining Phase follows the idea of the Route-and-
Combine Algorithm in Section 3.1, where each packet p,; is routed towards a ran-
domly chosen intermediate target ¢, and packets that correspond to the same aggre-
gation group are combined using the sub-aggregate function g to f. More precisely,
t is a node of the butterfly’s bottom level chosen uniformly and independently at
random using a (pseudo-)random hash function h : {1,...,k} — [29]. However,
since we allow nodes to contribute more than O(logn) packets, we may not always
be able to combine and forward out all packets of the same aggregation group that
reach a butterfly node immediately. Instead, we need to determine an order in which
packets are being sent out.

To do so, we use a variant of the random rank protocol [Ale82; Upf84]: Each packet
Pui = (i, 54,) stored at some butterfly node of level 0 is assigned a rank, which we
denote as rank(py;) = p(i), where p : {1,...,k} — [K] is a (pseudo-)random hash
function known to all nodes, and K = ©(L/n) is to be determined later. All packets
belonging to aggregation group A; are routed towards their target ¢; along the unique
paths on the butterfly, and using the following rules:

1. Whenever a butterfly node stores multiple packets belonging to the same aggre-
gation group A;, it combines them into a single packet of rank p(i), combining
their values using the sub-aggregate function g to f.

2. Whenever multiple packets from different aggregation groups contend to use
the same edge in the same round, the one with smallest rank is sent (preferring
the one with smallest aggregation group identifier in case of a tie), and all
others get delayed.

Note that a packet can never get delayed by a packet belonging to the same aggre-
gation group. Clearly, in each round at most one packet is sent along each edge of
the butterfly, and eventually all (combined) packets have reached their targets.

In order to detect when the Combining Phase has finished, every node of the
butterfly’s top level sends out a token to all neighbors at level 1 as soon as it has
sent out all of its packets. Correspondingly, every butterfly node at level ¢ > 0 that
has sent out all packets and has received tokens from both neighbors at level 7 — 1
sends a token to both its neighbors at level i + 1. By performing the Aggregate-
and-Broadcast Algorithm as described in Theorem 4.2, the nodes detect when all
butterfly nodes of level d have received two tokens, and agree on a round to end the
Combining Phase.

Analysis of the Combining Phase To bound the runtime of the Combining
Phase, we first analyze our variant of the random rank protocol in a more general
setting. A path collection P = {P,..., P} of size k, where P; is a directed path
in a directed graph H = (V, Ey), is a leveled path collection if every node v can
be given a level [(v) € N so that for every edge (v,w) of a path in that collection,
l(w) = l(v) + 1; for example, the (directed) paths from nodes of the butterfly’s
top level to its bottom level form a leveled path collection. Given a leveled path
collection P of size k, our goal is to send a packet p; along each path F;, where every
pi belongs to an aggregation group A(7) such that packets that belong to the same
aggregation group have the same destination. We define the congestion C of P as
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the maximum number of different aggregation groups for which there exist packets
that want to cross the same edge. More formally,

C = ng%x{w?’y | P C P, A(i) # A(j) VP, Pj € P',e € P, VP, € P'}.
€ H

For the following theorem, we define the degree A of P as the maximum number of
edges in P leading to the same node (i.e., the indegree of P), and the depth D of P
as the length of the longest path in P.

Theorem 4.5 (Random Rank Combining). For any leveled path collection P of size
k, where k is polynomial in n, that has congestion C, depth D, and degree A\, the
routing strategy used in the Combining Phase with parameter K > 8C' needs at most
O(C + Dlog A + logn) steps, w.h.p., to finish routing in P.

Proof. We closely follow the analysis of the random rank protocol in [Sch98] and
extend it with ideas from [Lei+94] so that the analysis covers the case that packets
can be combined. In order to bound the runtime, we will use the following delay
sequence argument.

Suppose the runtime of the routing strategy is at least T > D + s. We want to
show that it is very improbable that s is large. For this we need to find a structure
that witnesses a large s, and which should become more and more unlikely to exist
the larger s becomes.

Let p; be a packet that arrived at its destination v; in step 7', and let A(1) be the
aggregation group of p;. We follow the path of p; (or one of its predecessors, if p;
is the result of the combination of two packets at some point) backwards until we
reach an edge e; where it was delayed the last time. Let us denote the length of the
path from v; to e; (inclusive) by I, and the packet that delayed p; by pa; if p1 was
delayed by multiple packets, then po is the last packet that delayed p; (i.e., it has
been sent right before p; was sent). Let A(2) be the aggregation group of ps. From
e1 we follow the path of pa (or one of its predecessors) backwards until we reach
an edge es at which po was delayed the last time, and let p3 bet the packet from
some aggregation group A(3) that last delayed ps. Let us denote the length of the
path from e; (exclusive) to es (inclusive) by lo. We repeat this construction until
we arrive at a packet psy1 from some aggregation group A(s + 1) that prevented
the packet ps at edge es from moving forward, and denote the number of links on
the path of ps from ey (inclusive) to es—1 (exclusive) as l;. Altogether, it holds for
all i € {1,..., s} that a packet p;11 from aggregation group A(i + 1) is sent over e;
at time step T — Z;‘:l(lj + 1) + 1, and prevents at that time step a packet p; from
aggregation group A(i) from moving forward.

The path from eg to v1 recorded by this process in reverse order is called a delay
path. It consists of s contiguous parts of routing paths of length Iy,...,ls > 0 with

5 11; < D. Because of the contention resolution rule it holds that p(i) > p(i + 1)
foralli e {1,...,s}. A structure that contains all these features is defined as follows.
Note that it is deliberately defined in an abstract way to allow for an easy counting
argument.
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Definition 4.6 (s-delay sequence). An s-delay sequence consists of

e s not necessarily different edges e1, ..., e,

e s+ 1 not necessarily different aggregation groups ai,...,asy1 such that there
exists a packet p; that is contained in aggregation group a; and that traverses
both e; and e;_y in that order for alli € {2,...,s}, that traverses e; fori =1,
and that traverses es for 1 = s+ 1,

e s integers ly,...,ls > 0 such that Iy is the number of edges on the path of
p1 from ey (inclusive) to its destination, and for all i € {2,...,s}, l; is the
number of edges on the path of p; from e; (inclusive) to e;_1 (exclusive), and

210l <D, and

o s+ 1 integers ri,...,rs41 with 0 <rgp1 <...<r < K.
An s-delay sequence is called active if for alli € {1,...,s+ 1} we have p(i) = r;.
Our observations above yield the following lemma.

Lemma 4.7. Any choice of the ranks that yields a routing time of T > D + s steps
implies an active s-delay sequence.

Lemma 4.8. The number of different s-delay sequences is at most

NI (D—i—s) ' (s—i—K).
s s+1
Proof. There are at most (D :s) possibilities to choose the [;’s such that 7, [; < D.
Furthermore, there are at most k choices for p;, which will also fix a;. Once v
and [y are fixed, there are at most A" choices for e;. Once e is fixed, there are
at most A choices for es, and so on. Since Yoi 1l < D, there are at most AP
possibilities for eq,...,es. For each edge, there are at most C different aggregation
groups for which there exists a packet that traverses the edge. Therefore, there are
at most C possibilities for each e; to pick a;41, which implies that there are at most
C* possibilities to select as, ..., asr1. Finally, there are at most (S+K ) ways to select

s+1
the r; such that 0 <rgp1 < ... <rp < K. ]

Note that we assumed that there is a unique total ordering on the ranks of the
aggregation groups once p is fixed. Hence, every aggregation group can only occur
once in an s-delay sequence. Since p is assumed to be a (pseudo-)random hash
function, the probability that an s-delay sequence is active is 1/K**!. Thus,

Pr[The protocol needs at least D + s steps]

Lemma 4.7 . .
Pr[There exists an active s-delay sequence]

Lemma 4.8
2 k'AD~CS-<D+S>-<S+K> 1

s s+1) Kt
1
Dlog A D+ +K
T e T
< k. 225+D(logA+1)+K . (O)S )

K
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If we set K > 8C, then

Pr[The protocol needs at least D + s steps]
k- 225+D(log A+1)+K | 9—3s

IA

k. 2—5+D(logA+1)+K.

If £ < n, then Theorem 4.5 follows by setting s = K + D(log A + 1) + (a + 1) log n,
where o > 0 is an arbitrary constant. Otherwise, we choose s = K + D(log A +1) +
(a4 1) log k, and, since k is polynomial in n, obtain the result, w.h.p. O

With the help of Theorem 4.5, we are now able to bound the runtime of the
Combining Phase by determining the parameters of the underlying routing problem.

Lemma 4.9 (Combining). The Combining Phase takes time O(L/n+logn), w.h.p.

Proof. The depth of the butterfly is O(logn) and its degree is 4. Furthermore,
the size of the routing problem is L. Therefore, it only remains to show that the
congestion of the routing problem is O(L/n + logn), w.h.p.

The proof is very similar to the proof of Theorem 3.2. Consider some fixed edge e
from level 7 to ¢ 4 1 in the butterfly. For any A; € A let the binary random variable
X be 1 if and only if there is at least one packet from A; that traverses e. There are
21.24=i=1 — 24 /9 source-destination pairs whose unique path in the butterfly contains
e, where the source is in level 0 while the destination is in level d. Since the source of
every packet is chosen uniformly and independently at random among the butterfly
nodes of level 0, and the destination of each aggregation group is a random butterfly
node of level d, the probability for an individual packet that belongs to A; to pass
through e is (29/2)/(24)% = 1/(29+1). Hence, E[X;] = Pr[X; = 1] < |4;]/2%+1. Let
X =3 4,eaX;. Then

4 e 4l L
E[X] = Z E[X;] < J2d+1 = 9d+l <
AjE.A

L
—
Since the X;’s are independent, it follows from the Chernoff bounds in Lemma 2.2
that X = O(L/n +logn), w.h.p. O

Postprocessing Phase Finally, in the Postprocessing Phase, each intermediate
target ¢, at level d sends f({sy; | u € A;}) to the actual target ¢;. To do so, every
node v of level d assigns a round to each packet it needs to send, which is randomly
chosen from {1,...,[l3/logn]}, and sends out the packet in the assigned round.
The following result can be shown similarly to Lemma 4.4, and, together with the
previous lemmas, concludes the correctness of Theorem 4.3.

Lemma 4.10 (Postprocessing). The Postprocessing Phase takes time O(fy/logn),
w.h.p. In each round every node sends and receives at most O(logn) packets, w.h.p.
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4.1.2. Multicast Tree Setup Problem

Some of our algorithms rely on a structure of precomputed multicast trees, which
enable the nodes to multicast messages to other nodes. Formally, we define a
Multicast Tree Setup Problem as follows. We are given a set of multicast groups
A={Ay,..., A}, A; CV, with sources si, ..., s, € V such that each node is source
of at most one multicast group (but possibly member of multiple groups). The goal
is to set up a multicast tree T; in the butterfly for each ¢ € {1,...,k} with root r;,
which is a node uniformly and independently chosen among the nodes of the bottom
level of the butterfly, and a unique and randomly chosen leaf [, ; in the butterfly’s
top level for each u € A;. Let L =% | |A|, £ = maxyey |{i € {1,...,k} | u € A}
and define the congestion of the multicast trees to be the maximum number of trees
that share the same butterfly node. We require that each node u € V knows the
identifier and source of all multicast groups it is a member of. As with aggregation
groups, we will sometimes refer to a multicast group A; by a unique identifier instead
of its index 1.

The Multicast Tree Setup Algorithm solves the problem similarly to the Aggrega-
tion Algorithm; in fact, the multicast trees stem from the paths taken by the packets
during an aggregation. First, every node u sends a packet p, ; = (i,id(u)) for each i
such that u € A; to a butterfly node of level 0 chosen uniformly and independently
at random, which becomes the leaf [, ;. As in the Preprocessing Phase of the Ag-
gregation Algorithm, packets are sent in batches of size [logn]. Then, for all 7, all
packets of A; are sent towards r; using the same routing strategy as in the Aggrega-
tion Algorithm and an arbitrary distributive aggregate function to combine packets
of the same multicast group. Alongside the algorithm’s execution, every butterfly
node u records for every i € {1,...,k} all edges along which packets from multicast
group A; arrived during the routing towards r;, and declares them as edges of T;.
Again, the intermediate steps are synchronized using the Aggregate-and-Broadcast
Algorithm, and the final termination is determined using a token passing strategy.

The following theorem directly follows from the analysis of the Aggregation Algo-
rithm.

Theorem 4.11 (Multicast Tree Setup). The Multicast Tree Setup Algorithm solves
any Multicast Tree Setup Problem in time O(L/n + £/logn + logn), w.h.p. The
resulting multicast trees have congestion O(L/n + logn), w.h.p.

4.1.3. Multicast Problem

Multicast trees can be used to efficiently multicast messages from a node to a set of
nodes associated with it. We define such a Multicast Problem as follows. We assume
we have constructed multicast trees for a set of multicast groups A = {Ay, ..., Ax},
A; C V, with sources s1,...,8; € V such that each node is source of at most one
multicast group. The goal is to let every source s; send a message p; to all nodes
u € A;. Let C be the congestion of the multicast trees and ¢ = maxy,ecy [{i €
{1,...,k} | u € A;}|. We require that the nodes know an upper bound ¢ on /.

The algorithm multicasts messages by sending them upwards the multicast trees,
performing the routing strategy of the Aggregation Algorithm in “reverse order”.
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More precisely, every source s; first sends p; to the root r; of the multicast tree T;.
Then, in the Spreading Phase, each r; sends p; to all [, ;, u € A;. This is done by
using the multicast trees and a variant of our routing protocol of the Combining
Phase. First, each packet p; is assigned a rank(p;) = p(i). Whenever a multicast
packet p; of some aggregation group A; is stored by an inner node of 7T;, i.e., by
some butterfly node u of level j € {1,...,d}, a copy of p; is sent over each outgoing
edge of u in Tj, i.e., towards one or both of w’s neighbors in level j — 1. If two
packets from different multicast groups contend to use the same edge at the same
time, the one with smallest rank is sent (preferring the one with smallest multicast
group identifier in case of a tie), and the others get delayed. Once there are no
packets in transit anymore, which is determined by using the same strategy as in the
Aggregation Algorithm, all leaves of the multicast trees have received their multicast
packet. Finally, every leaf node [, ; sends p; to u in a round randomly chosen from
{1,...,]¢/logn]}.

The following theorem follows from the discussion of the previous sections and an
adaptation of the delay sequence argument in the proof of Theorem 4.5.

Theorem 4.12A(Multicast). The Multicast Algorithm solves any Multicast Problem
in time O(C +¢/logn + logn), w.h.p.

We remark that similar to the Aggregation Algorithm, the Multicast Algorithm
may be extended to allow a node to be source of multiple multicasts; however, we
will only need the simplified variant in this thesis.

4.1.4. Multi-Aggregation Problem

Finally, our Multi-Aggregation Algorithm combines the previous primitives to allow
a node to first multicast a message to a set of nodes associated with it, and then
aggregate all messages destined at it. We formally define such a Multi- Aggregation
Problem as follows. We are given a set of multicast groups A = {A1,..., Ax}, 4, CV,
with sources si,...,s; € V such that every source s; stores a multicast packet p;,
and every node is source of at most one multicast group. We assume that multicast
trees with congestion C' have already been set up for the multicast groups. The goal
is to let every node u € V receive f({p; | u € A;}) for a given distributive aggregate
function f.

The Multi-Aggregation Algorithm essentially first performs a multicast, then maps
each multicast packet to a new aggregation group corresponding to its target, and
finally aggregates the packets to their targets. More precisely, first every node s;
send its multicast packet to r;. Then, by using the same strategy as in the Multicast
Algorithm, we let each [, ; receive p; for allu € A; and all . Every node [, ; then maps
p; to a packet (id(u), p;) for all u € A; and all i. We randomly distribute the resulting
packets by letting each butterfly node of level 0 send out its packets, one after the
other, to butterfly nodes of the same level chosen uniformly and independently at
random. By using the same strategy as in the Aggregation Algorithm, we then
aggregate all packets (id(u),p;) for all i at some intermediate target h(id(u)), which
is chosen uniformly and independently at random among the nodes of the butterfly’s
bottom level using a (pseudo-)random hash function A : {1,...,k} — [29]. Finally,
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the result f({p; | u € A;}) is sent directly from h(id(u)) to u, which is possible since
each butterfly node stores at most O(logn) results, w.h.p.

The following theorem follows from the discussion of the previous sections and
from the fact that the mapping and random redistribution of packets takes time

o(C).

Theorem 4.13 (Multi-Aggregation). The Multi-Aggregation Algorithm solves any
Multi-Aggregation Problem in time O(C + logn), w.h.p.

For applications beyond the ones described in this thesis, the algorithm may also
be extended to allow nodes to be source of multiple multicast groups, and to receive
aggregates corresponding to distinct aggregations.

4.2. Minimum Spanning Tree

As a first example of graph algorithms for the node-capacitated clique, we de-
scribe an algorithm that computes a minimum spanning tree (MST) in time
O(log®n/loglogn). More specifically, for every edge in the input graph G, one of
its endpoints eventually knows whether the edge is in the MST or not. We assume
that the graph G is weighted, i.e., each edge has a weight w(e) € {1,2,..., W} CN
as described in Section 2.1.

High-Level Description From a high level, our algorithm mimics the classic
approach of Bortivka [NMNO1] with Heads/Tails clustering. Similar to the algorithm
of the previous chapter, the algorithm successively merges components of nodes until
all nodes form a single component. Initially, each node forms a component on its
own. In each of O(logn) phases, every component C first flips a Heads/Tails coin
with probability 1/2. If it flips Tails, it then tries to select its lightest outgoing edge,
i.e., the minimum-weight edge that leads from C to a different component. Note that
we can easily make edge weights unique by concatenating them with the identifiers
of its endpoints. In our algorithm, the selection of the lightest outgoing edge only
succeeds with some constant probability. If C' succeeds to select its lightest outgoing
edge, it learns the coin flip of the component C’ on the other side of the edge. If
C’ has flipped Heads, then the edge connecting C' to C’ is added to the MST, and
component C' merges with component C’ (and whatever other components that are
merging with C’ simultaneously) into a larger component. The following observation
has been used in different forms in literature (see, e.g., [KKT15; GKS17]), and we
prove it for completeness.

Lemma 4.14 (Boruvka’s Algorithm). Assume that each component succeeds to
select its lightest outgoing edge with constant probability. After O(logn) phases, all
nodes form a single component, and the selected edges form a spanning tree of G.

Proof. Since we choose the edges according to Bortivka’s algorithm, at termination
of our algorithm the selected edges form an MST. It remains to bound the number
of phases until the algorithm terminates.

Let 1/« be the constant probability with which a component succeeds to select its
lightest outgoing edge for some o > 1. Fix a current phase and, for each component
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C, let X¢ be the binary random variable that is 1 if C fails to select a component
to merge with, i.e., it either flips Heads, or fails to select its lightest outgoing edge,
or the component on the other side flips Tails (C' may still successfully merge, if it
is selected by a different component; however, we ignore this case). We have that
Pr[X¢c =1] <1—(1/(4a)) =: B. If there are k components, then X = Y~ X has
expected value E[X] < k. We call this phase bad, if X > ek for some arbitrary
constant 1 < & < 1/f. Otherwise, at least a (1 — &f3)-fraction of all components
merge, and we call the phase good. By Markov’s inequality, we have that

Pr[The phase is bad] = Pr[X > ¢kf] < E[X]/(ckB) < 1/e.

Since the number of components reduces by a constant factor in each good phase, we
only need O(logn) (say, plogn) good rounds until all nodes form a single component.

Let ¢ > 0 be a constant to be determined. Note that the probability for each
round to be a good round is independent from the outcome of all previous phases.
Therefore, the probability that we need more than (1—1/¢)2pclogn phases to termi-
nate is bounded by the probability that of (1 — 1/¢)2pclogn independent Bernoulli
trials with success probability at least (1 — 1/¢) less than plogn of these trials are
successful. Let X; be the binary random variable indicating whether the i-th trial
was successful, and let X = Zgizl/e)2p610ani. Clearly, E[X] > 2pclogn. By our
second Chernoff bound in Lemma 2.2 have that

Pr[X < plogn] < Pr[X < (1/2)-2pclogn] < e~relosn/t < p=¢
for pcloge/4 > ¢, which proves the claim. O

Details of the Algorithm Over the course of the algorithm, each component
C C V maintains a leader node [(C) € C whose identifier is known to every node
in the component. Furthermore, we maintain an internal multicast tree for each
component C' with source [(C') and corresponding multicast group C'\ {I(C)}. We
will ensure that the set of multicast trees has congestion O(logn), w.h.p. In each
round of Boruvka’s algorithm with the partition of V into components C,...,Cy,
C; C V, every leader [(C;) flips Heads/Tails and multicasts the result to all nodes in
its component by using the Multicast Algorithm of Theorem 4.12. As the multicast
trees have congestion O(logn), and {=1as every node is in exactly one component,
this takes time O(logn), w.h.p., by Theorem 4.12

If [(C) has flipped Tails, it then learns the lightest edge to a neighbor in V' \ C
in time O(log?n/loglogn) using the approach of King et al. [KKT15], which we
describe later. Afterwards, [(C) multicasts the lightest edge {u,v}, where u € C
and v € V' \ C, to every node in its component, which can again be done in time
O(logn) using Theorem 4.12. Node w now has to learn whether v’s component C’
has flipped Heads, and, if so, the identifier of [(C"). To do so, u joins the multicast
group Ajq(,) with source v, i.e., it declares itself a member of Ajq(,) and participates
in the construction of multicast trees with the help of Theorem 4.11. As every node
is member of at most one multicast group, setting up the corresponding trees with
congestion O(logn) takes time O(logn), w.h.p. By using the Multicast Algorithm,
the endpoints of all lightest edges learn the result of the coin flip and the identifier
of their adjacent component’s leader in time O(logn).
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If for the edge {u,v} the component C’ of v has flipped Heads, then u sends the
identifier of [(C”), which becomes the leader of the resulting component, to its own
leader, which in turn informs all nodes of C' using a multicast. Note that thereby
only u learns that {u,v} is an edge of the MST, but not v. Finally, the internal
multicast trees of the resulting components are rebuilt by letting each node join a
multicast group corresponding to its new leader. As the components are disjoint,
the resulting trees with congestion O(logn) are built in time O(logn), w.h.p.

Finding the Lightest Edge To find the lightest outgoing edge of a component,
we “sketch” its incident edges using an implementation of the algorithm of King et
al. [KKT15]. We outline the main steps of the algorithm and explain how we can
execute them in our model. For the details and proof of the algorithm we refer the
reader to [KKT15].

Let C' be a component. The algorithm relies on the TestOut(j, k) procedure,
which outputs for any given j and k& whether there is an outgoing edge of C whose
weight lies in the interval [j, k]. Whereas the algorithm reliably detects if no edge in
the interval exists, it may fail to report the existence of such an edge with constant
probability. To do so, every node in C' learns a so-called odd hash function h :
{0,1}C0eem) 5 10,1} by letting I(C)) multicast a random value of size O(logn).
The result of TestOut(j, k) is the value

(Z Z h(id(e))) mod 2,

veC e€cE(v,j,k)

where F(v, j, k) is the set of incident edges of v in G whose weight lies in the interval
[7,k], and id({u,v}) = id(u) o id(v) with id(u) < id(v). Note that the hash value
of any internal edge e is contributed twice, which effectively cancels out h(id(e))
from the sum; therefore, only the values of outgoing edges may influence the re-
sult. Clearly, this sum can be computed in time O(logn) using an aggregation in
C. Note that since each subresult of the aggregation is only a single bit, we can ac-
tually perform O(logn) aggregations in parallel. The authors further introduce the
HP-TestOut(j, k) procedure, which solves the same task, but, unlike TestOut(j, k),
is correct w.h.p. This procedure can be used to verify the result of TestOut(j, k),
but since it relies on computing a more complex aggregate whose subresults are rep-
resented using O(logn) bits, only constantly many executions of the algorithm can
be performed in parallel.

King et al. present multiple applications of these procedures; in this section, we
are most interested in the FindMin-C algorithm. Beginning with the whole range of
edge weights {1,..., W}, the idea of the algorithm is to successively narrow down
the interval using a [log n]-ary search, each time “descending” into the interval with
smallest edge weights that contains an outgoing edge. Since W is polynomial in n,
O(logn/loglogn) descends suffice until the remaining interval contains a single edge
weight, which must be the weight of the lightest outgoing edge. However, with some
constant probability the algorithm may fail to narrow down the interval, wherefore
O(logn/loglogn) iterations will only suffice in expectation.

Let [j, k] be the interval considered in some iteration of the search. The interval
is divided into [logn] subintervals, where, for any i € [[logn]], the i-th subinterval
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is given by
k=D (k—j+1)
Rl AR o |
For each subinterval [j, k'], TestOut(j’, k') is invoked, where all executions are per-
formed in parallel. Let [jmin, kmin] be the i-th interval such that ¢ is minimal and
TestOut(j’, k') returns 1, i.e., the interval with smallest edge weights for which an
outgoing edge is reported. Note that the interval is guaranteed to contain an edge;
however, there might still exist edges with smaller weight that the algorithm failed
to detect. Therefore, the algorithm double checks whether the interval [1, jiin — 1]
does not contain an outgoing edge using HP-TestOut(1, jiin — 1). If the result is
0, the interval of potential edge weights is narrowed down to [jmin, kmin]; otherwise,
the algorithm repeats the iteration with the same interval.
The following lemma is an immediate corollary of [KKT15, Lemma 3].

Lemma 4.15 (Lightest Outgoing Edges). With constant probability, the leader
node of each component learns the lightest outgoing edge of its component in within
O(logn/loglogn) iterations.

Since each iteration can be performed in time O(logn), and there are O(logn)
phases of Boruvka’s algorithm by Lemma 4.14, w.h.p., we conclude the following
theorem.

Theorem 4.16 (MST). The algorithm computes a minimum spanning tree of G in
time O(log®n/loglogn), w.h.p.

King et al. [KKT15] also present a simpler variant of their algorithm to com-
pute a (not necessarily minimum) spanning tree of G. The algorithm relies on the
FindAny-C procedure, which determines any outgoing edge of a component C' with
constant probability. To do so, it only performs a constant number of aggregations
and multicasts with messages of size O(logn). Using similar arguments as before,
it can easily be seen that the algorithm can be performed in our model in O(logn)
rounds. By combining the algorithm with our Head/Tails clustering approach to
prevent chains of components from forming, we obtain an O(logn)-time algorithm
to compute a spanning tree. The correctness of the following theorem follows from
our previous discussion, and is very similar to the proof of [KKT15, Lemma 7].

Theorem 4.17 (Spanning Tree). The algorithm computes a spanning tree of G in
time O(log®n), w.h.p.

4.3. Computing an O(a)-Orientation

One of the reasons the MST problem can be solved very efficiently is because we only
require one endpoint of each edge to learn whether the edge is in the MST or not;
otherwise, the problem seems to become significantly harder, as every node would
have to learn some information about each incident edge. We observe this difficulty
for the other graph problems considered in this chapter as well. To approach this
issue, we aim to set up multicast trees connecting each node with all of its neighbors
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in G, allowing us to essentially simulate variants of classical algorithms. As we will
see, such trees can be set up efficiently if G has small arboricity by first computing
an O(a)-orientation of G, which is described in this section.

We present the Orientation Algorithm, which computes an O(a)-orientation in
time O((a + logn)logn), w.h.p. The orientation will allow us to set up multicast
trees in time O(a) rather than O(A), where A is the maximum degree of G. We
construct the orientation using the Nash-Williams forest decomposition technique
described in Section 2.2. Recall that the idea of this technique is to repeatedly
remove nodes of remaining degree O(a), and direct their edges away from them,
until the graph is empty. As in our case we do not know a exactly, we select the
nodes to remove by comparing their remaining degree with the average degree, which
still gives us an O(a)-orientation.

More precisely, let deg;(u) be the number of incident edges of a node u that have
not yet been assigned a direction at the beginning of phase i. Define deg; as the
average degree of all nodes u with deg;(u) > 0, i.e., deg; = 3, deg;(u)/|{u €
V' | deg;(u) > 0}|. In phase i, a node u is called inactive if deg;(u) = 0, active if
deg;(u) < 2deg;, and waiting if deg;(u) > 2deg;. In each phase, an edge {u,v} gets
directed from w to v, if u is active and v is waiting, or if both nodes are active and
id(u) < id(v). Thereby, each node is waiting until it becomes active in some phase,
and remains inactive for all subsequent phases. This results in a partition of the
nodes into disjoint sets Vi,...,Vp, where V; is the set of nodes that are active in
phase i. We will also refer to V; as level i.

Lemma 4.18 (Number of Phases). The Orientation Algorithm takes O(logn) phases
to compute an O(a)-orientation.

Proof. We show that in every phase, at least half of all nodes that are not yet inactive
become inactive. Note that a node u becomes inactive in phase ¢ if it is active in
that phase, i.e., if deg;(u) < 2deg;. Let A; be the set of nodes that are not inactive
at the beginning of some phase 7, and assume to the contrary that more than |A;|/2
nodes have a degree greater than 2deg;. Then we arrive at a contradiction since

> deg;(v) > (|Ail/2) - 2deg; = Y deg;(v
vEA; vEA;

Note that any subgraph of G can be partitioned into at most a forests. Since each
forest has average degree at most 2, we have that deg; < 2a, which implies that the
computed orientation has outdegree at most 4a = O(a). O

It remains to show how a single phase can be performed efficiently in our model.
Here, the main difficulty lies in having active nodes determine which of their neigh-
bors are already inactive in order to conclude the orientations of their incident edges.
We generalize this problem as an Identification Problem, for which we present an
algorithm in the following section. Afterwards, we describe how this algorithm can
be used to efficiently realize each phase of our Orientation Algorithm.

4.3.1. ldentification Problem

In an Identification Problem, we are given a set L C V of learning nodes and a set
P C V of playing nodes, L N P = (). Every playing node knows a subset of its neigh-
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bors that are potentially learning such that all neighbors that are actually learning
are contained in this set. The goal is to let every learning node determine which of
its neighbors are playing. In our application of this problem, the active nodes will
be learning, whereas inactive nodes are playing; thereby, the active nodes will be
able to identify their inactive neighbors, which enables them to assign directions to
the remaining edges.

To solve any Identification Problem, we use the Identification Algorithm, which is
described in the remainder of this section. In this section, we represent each edge
{u,v} by two directed edges (u,v) and (v,u). We assume that all nodes know s
(pseudo-)random hash functions hi,...,hs : E — [q] for some parameters s and
q. The hash functions are used to map every directed edge s times randomly to ¢
different trials. We say an edge e participates in trial ¢ if there exists a j € {1,...,s}
such that hj(e) =t, and denote T} = {e € E | 3j € {1,...,s} : hj(e) =t}.

Let u € L. We refer to an edge (u,v) as a red edge of u, if v is not playing, and
as a blue edge of u, if v is playing. Let E, denote all outgoing edges of u, and let
R, C E, be the red edges and B, C E, be the blue edges of u. We identify each
directed edge (u,v) by the identifiers of its endpoints, i.e., id(u,v) = id(u) o id(v).
For node u, let X(t) := @.cr,np, id(e) be the XOR of the identifiers of all outgoing
edges of u that participate in trial ¢, and XP(t) := @,.cp,np, id(e) be the XOR of
the identifiers of all blue edges of u that participate in trial ¢t. Furthermore, let
x(t) := |T; N E,| be the total number of outgoing edges of u that participate in trial
t, and let 22(¢) := |T; N B,| be the number of blue edges that participate in trial ¢.

Obtain Required Values Our idea is to let u use these values to identify all of
its red edges; from this, it can infer its blue edges, whose other endpoints must be
playing. Before we describe the details of this process, we explain how the values
can be computed. Clearly, the values X (¢) and z(¢) can be computed by w itself for
all £. The other values are more difficult to obtain as v does not know which of its
edges are blue. To compute these values, we use the Aggregation Algorithm. More
precisely, each playing node v is contained in aggregation group Ajq(y)os for every
potentially learning neighbor w and every trial ¢ such that (w,v) participates in trial
t. The input of v for the aggregation group Ajqy)o is (id(w, v),1). The first value of
the input is used to let w compute X2 (t), and the second value is used to compute
xB(t). The aggregate function f combines any two packets that correspond to the
same aggregation group by taking the XOR for the first value and the sum for the
second value. Thereby, u eventually receives both XZ(t) and () for all t € [q].

Lemma 4.19 (Identification Runtime). Let r be an upper bound on the number of
potentially learning neighbors each playing node knows. The required values can be
obtained in time O(rs + q/logn +logn), w.h.p.

Proof. In the Aggregation Problem, each playing node has to contribute rs packets,
one for each aggregation group it is in. Therefore, the total number of packets is at
most L = nrs. Furthermore, the local load ¢; is at most rs. Every playing node
has to receive the results of ¢» = ¢ aggregations, one for each of the ¢ trials. By
Theorem 4.3, this Aggregation Problem can be solved in time O(rs+q/logn+logn),
w.h.p. O
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Identify Red Edges We now show how u can identify its red edges using the
aggregated information. First, it determines a trial ¢ for which z(t) = zB(¢) + 1;
if no such trial exists, the process stops. Since neighbors that are not playing did
not participate in the aggregation, in this case there is exactly one red edge e such
that id(e) is included in X(t) but not in XB(t). Therefore, id(e) can be retrieved by
taking the XOR of both values. Having identified id(e), u determines all trials j in
which e participates using the collectively known hash functions and “removes” id(e)
from X (j) by setting X (j) + X (j) @id(e) and decreasing x(j) by 1. It then tries to
identify another trial ¢ for which () = 2”(t)41 and repeats the above process until
no longer possible. Note that if u always finds a trial ¢ for which z(t) = 2B(¢) + 1,
then it eventually has identified all red edges. Clearly, all the remaining neighbors
must be playing.

Lemma 4.20 (Identification Probability). Let u € L and assume that u is incident
to at most p red edges. Let s be the number of hash functions, and q be the number
of trials. We have that

gk (5-2)k/2
Pr[u fails to identify at least k red edges| < 2 ( >
q

for q > 4esp and s > 4.

Proof. u fails to identify at least k red edges if at some iteration of the above pro-
cedure there are j > k red edges left such that there does not exist a trial in which
only one of the j edges participates. To put it differently, every remaining red edge
e participates only in trials in which at least one other remaining edge participates.
We denote this as event A. The j edges participate in at most |s-j/2| many differ-
ent trials, since otherwise there must be a trial in which only one edge participates.
Therefore, the probability for event A is
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where the last inequality holds because

(28(]+1)>( 2)(3+1)/2
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4.3.2. Details of the Algorithm

Finally, we show how the Identification Algorithm can be used to realize each phase
of our Orientation Algorithm in time O(a + logn), w.h.p. In the algorithm, every
node v learns the direction of all of its incident edges in the phase in which it is active.
However, every neighbor u of v that is still waiting will only learn the direction of
{v,u} in a later phase. Each phase i is divided into three stages: In Stage 1, every
node determines whether it is active in this phase. In Stage 2, every active node
learns which of its neighbors are inactive. Finally, in Stage 3 every active node
learns which of its remaining neighbors, which must be either active or waiting, are
active. From this information, and since every node knows the identifiers of all of
its neighbors, every active node concludes the direction of each of its incident edges.
In the following, we describe the three stages of phase i in detail, and prove the
following lemma.

Lemma 4.21 (Single Phase). In phase i of the algorithm, every node v € L; learns
the directions of its incident edges. The phase takes time O(a + logn), w.h.p.

Stage 1: Determine Active Nodes We assume that all nodes start the stage in
the same round. First, every node u that is not inactive needs to compute deg,(u)
(i.e., deg(u) subtracted by the number of inactive neighbors) to determine whether it
remains waiting or becomes active in this phase. This value can easily be computed
using the Aggregation Algorithm: Every inactive node v, which already knows the
orientation of each of its incident edges, is a member of every aggregation group
Ajq(w) such that v — w. As the input value of each node we choose 1, the aggregate
function f is SUM, and ¢3 < 1 =: b, By performing the Aggregation Algorithm,
u determines the number of inactive neighbors, and, by subtracting the value from
deg(u), computes deg;(u). Afterwards, the nodes use the Aggregate-and-Broadcast
Algorithm to compute deg; and to achieve synchronization. Since in the computation
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of deg;(u) every inactive node is member of at most O(a) aggregation groups, and
every active node is target of at most one aggregation group, Theorems 4.3 and 4.1
imply the following lemma.

Lemma 4.22 (Stage 1). In Stage 1, every node u learns deg;(u) and deg; and can
infer whether it is active in phase i. Stage 1 takes time O(a + logn), w.h.p.

Stage 2: Identify Inactive Neighbors The goal of this stage is to let every
active node learn which of its neighbors are inactive. The stage is divided into two
steps: In the first step, a large fraction of active nodes succeeds in the identification
of inactive neighbors. The purpose of the second step is to take care of the nodes
that were unsuccessful in the first step, i.e., that only identified some, but not all, of
their incident red edges. In both steps we use the Identification Algorithm described
in the previous section, and carefully choose the parameters to ensure that each step
only takes time O(a + logn).

At the beginning of the first step, the nodes compute deg; = maxyer,(deg;(u)) by
performing the Aggregate-and-Broadcast Algorithm. Let deg® = max;<; deg;, which
is a value known to all nodes, and note that deg* = O(a) by the proof of Lemma 4.18.
Then, the nodes perform the Identification Algorithm, where the active nodes are
learning and the inactive nodes are playing. Hence, the endpoints of the red edges
learned by the active nodes must either be active or waiting. If we choose s = clogn
and ¢ = 4ecdeg™ logn for some sufficiently large constant ¢ > 4 as parameters, then
by Lemma 4.20 all nodes would learn all of their red edges, w.h.p., already in this
step. However, by Lemma 4.19 with » = deg™ this would take time O(alogn), since
the total number of packets would be O(nalogn). To reduce this to O(a + logn),
we instead choose s = ¢ and ¢ = 4ecdeg®logn for some constant ¢ > 6, and accept
that nodes fail to identify some of their red edges in this step. More specifically, for
this choice of parameters, Lemma 4.20 implies that each node fails to identify at
most logn red edges, w.h.p., as we show in the following lemma.

Lemma 4.23. In the first step, every active node fails to identify at most logn red
edges, w.h.p. The execution of the Identification Algorithm takes time O(a + logn),
w.h.p.

Proof. Note that every active node can only be adjacent to at most p < deg™ active
or waiting nodes, i.e., it is incident to at most p red edges. Therefore, by Lemma 4.20,
the probability that an active node w fails to identify at least logn red edges is

< 2clogn >(c_2) logn/2 1 1

- < < .
4ec deg” logn = 2(¢/2=1)logn—1 = pc/2-2

Taking the union bound over all nodes implies the first part of the lemma. The
second part follows from Lemma 4.19 with parameters » = deg*, s = ¢, and ¢ =
4ecdeg” logn. O

We now describe how these remaining edges are identified in the second step.
Let U = {u € V | wis unsuccessful}, i.e., U is the set of nodes that failed to
identify at least one of their red edges. We divide U into sets of high-degree nodes
Uhigh = {u € U | deg(u) — deg;(u) > n/logn} and of low-degree nodes Uy, =
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{u e U | deg(u) — deg;(u) <n/logn} and consider the nodes of each set separately.
Note that an unsuccessful node is a high-degree node if and only if it has more than
n/logn inactive neighbors. By dealing with high-degree nodes separately, we ensure
that the global load required to let low-degree nodes identify their red edges using
the Identification Algorithm reduces by a logn factor compared to the execution in
which all unsuccessful nodes participate. We make the following observation.

Lemma 4.24. |Upign| = O(a +logn), w.h.p.

Proof. Let A = {u € L; | (deg(u) — deg;(u)) > n/logn}. Note that since deg < 2a
(see Section 2.2), we have that }°,cy deg(u) < 2an, and therefore |[A| < 2alogn.
For u € A let X, be the binary random variable that is 1, if u is unsuccessful in the
first step, and 0, otherwise. By Lemma 4.20 and since ¢ > 4, we have

2 (c—2)/2 1 c/2—1 1 1
Pr[Xu:1]§2<*) §2< ) < < X
4ecdeg* logn 2logn log®/?~1pn ~ logn

Let X = > ,caXu. X is the sum of independent binary random variables with
expected value E[X] < 2alogn/logn = 2a =: u. Let 6 = max{alogn/u,1} for
some constant o > 3, then by using the Chernoff bound of Lemma 2.2 we get that

Pr[X > (1+6)u] < e @loen/3 < ! ,
nao/3

and thus X = O(a + logn), w.h.p. O

Since there cannot be very many high-degree nodes by the previous lemma, we
can make their identifiers publicly known, and then let the endpoints of their in-
cident red edges contact them directly. More specifically, we first compute |Upig|
by performing the Aggregate-and-Broadcast Algorithm. Then, each node of Upgn
sends its identifier to the node v with identifier 0 in a round that is randomly chosen
from {1,...,|Uhign|}. Afterwards, v broadcasts the received identifiers, one after the
other, to all nodes using the path system of the butterfly. To achieve a runtime of
O(a + logn), we perform the broadcasts in a pipelined fashion, i.e., v does not wait
for the previous broadcast to terminate before starting the next broadcast.

For every node u € A := {u € V | u is active or waiting} we define R, = Up;gn N
N(u), i.e., (v,u) is a red edge of v for all v € R,. Let u € A. For each v € R,
u chooses a round from {1, ..., max{|Upig|,degj }} uniformly and independently at
random and sends its own identifier to v in that round.

Lemma 4.25 (Stage 2: High-Degree). Every high-degree node learns all of its red
edges in time O(a + logn), w.h.p.

Proof. Since |Upign| = O(a +logn), w.h.p., by Lemma 4.24, broadcasting all identi-
fiers of high-degree nodes can be done in time O(a +logn). By a simple application
of our Chernoff bound, we can easily see that node 0 only receives O(logn) messages
in each round, w.h.p.

For the second part, note that max,ea{|Unign|, deg; } = O(a+logn), w.h.p., which
shows that each high-degree node learns all of its red edges in time O(a + logn),
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w.h.p. Since each active or waiting node needs to send at most |Upiqgn| messages,
and each high-degree node receives at most deg; messages, a simple application of
our Chernoff bound shows each node sends and receives at most O(logn) messages
in each round. 0

To let the low-degree nodes identify their red edges, we again use the Identification
Algorithm. First, in order to narrow down its set of potentially learning neighbors,
every inactive node determines which of its neighbors are unsuccessful low-degree
nodes. Therefore, we let every inactive node u join multicast group Ajq(, for all
u — v such that v is not inactive (recall that every inactive node knows the directions
of all of its incident edges, and whether the other endpoint of each edge is inactive or
not). Every node v € Up,, then informs its inactive neighbors about itself by using
the Multicast Algorithm. Since every node is member of at most deg® multicast
groups, which is a value known to all nodes, the nodes know an upper bound on £ as
required by the algorithm. Having narrowed down the set of learning nodes and the
sets of potentially learning neighbors to the unsuccessful ones only, the Identification
Algorithm is performed once again. As the parameters of the algorithm we choose
s = clogn and ¢ = 4eclog® n for some constant ¢ > 6.

Lemma 4.26 (Stage 2: Low-Degree). Every low-degree node learns all of its red
edges in time O(a + logn), w.h.p.

Proof. We first show that every low-degree node learns all of its red edges, w.h.p.
Let u € Ujyy,- Since by Lemma 4.23 u has at most p < logn remaining red edges,
by Lemma 4.20 we have that the probability that w fails to identify at most one of
its remaining red edges is at most

2clogn O (clogn—2)/2 1 1
2| ———— < .

<4eclog2n> — 9clogn/2—2 — pc/2-2
Taking the union bound over all nodes implies the first part of the lemma.

For the runtime, we first consider the multicasts that are used to let inactive
nodes identify which of its neighbors are low-degree nodes. By Theorem 4.11, the
corresponding multicast trees are constructed in time O(a +logn), as every inactive
node joins at most deg* multicast groups, and the resulting trees have congestion
O(ndeg* /n + logn) = (a + logn), w.h.p. Correspondingly, the multicast can be
performed in time O(a + logn), w.h.p., using Theorem 4.12.

For the final execution of the Identification Algorithm, we first prove that
>uety,, (deg(u) — deg;(u)) = O(an/logn + n), w.h.p., which helps us to bound
the total number of packets that participate in the aggregation of Lemma 4.19 a bit
more carefully. Define A = {u € L; | deg(u) — deg;(u) < n/logn} (in contrast to
Ujow, A contains all low-degree nodes, and not only the ones that are unsuccessful
in the first step of Stage 2). For a node u € A, let X, be the random variable that
is deg(u) — deg;(u), if u is unsuccessful in the first step of Stage 2, and 0, otherwise.
Then X = 37, c4 Xy is a random variable that bounds >, ¢, (deg(u) — deg;(u)).
From the proof of Lemma 4.24, we have that Pr[X, = deg(u) — deg;(u)] < 1/logn.
Since deg(u) — deg;(u) < deg(u) for every u € A, and ), oy deg(u) = 2an, X has
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expected value F[X]| < Y - ,(deg(u) — deg;(u))/logn < 2an/logn =: p. Further-
more, since deg(u) — deg;(u) < n/logn for all u € A, X is a sum of independent
random variables from range [0, n/log n], we can use a Chernoff bound of Lemma 2.2
with § = max{an/u, 1} for some constant « > 3, and get

1
na/3’

PI“[X > (1 +6)M] < e—anlogn/(nii) <

Therefore, we have that X = O(an/logn + n), w.h.p.

We are now able to bound the runtime of the final execution of the Identification
Algorithm. Note that a straightforward application of Lemma 4.19 would yield a
runtime of O(rs) = O(alogn), since an inactive node may still be adjacent to deg*
many unsuccessful low-degree nodes. However, we can bound the global load of the
Aggregation Problem more precisely by observing that the number of edges that
participate in any trial is bounded by 3=, ¢, (deg(u) —deg;(u)) = O(an/logn+n),
w.h.p. Since each edge participates in clogn trials, the global load L can therefore
be bounded by O(an + nlogn). Furthermore, every inactive node is a member
of at most deg® clogn aggregation groups, and every node is a target of at most
4eclog? n aggregation groups, which implies that £; = O(alogn) and f5 = O(log® n)
for the Aggregation Problem. By Theorem 4.3, the Aggregation Algorithm takes
time O(a + logn) to solve the problem, w.h.p. O

Stage 3: Identify Active Neighbors Finally, every active node has to learn
which of the endpoints of its red edges are active. In the following, let id(e) =
id(u) o id(v) be the identifier of an edge given by its endpoints u and v such that
id(u) < id(v). The nodes use two (pseudo-)random hash functions h and r, where h
maps the identifier of an edge e to a node h(id(e)) € V uniformly and independently
at random, and r maps its identifier to a round r(id(e)) € {1,...,deg}} uniformly
and independently at random. Every active node u sends an edge-message containing
id(e) to h(id(e)) in round r(id(e)) for every incident edge e leading to an active
or waiting node. Using this strategy, two adjacent active nodes u, v send an edge-
message containing id({u, v}) to the same node in the same round. Whenever a node
receives two edge-messages with the same edge identifier, it immediately responds
to the corresponding nodes, which thereby learn that both endpoints are active.

Lemma 4.27 (Stage 3). In Stage 3, every active node learns which of its neighbors
are active. Stage 3 takes time O(a + logn).

Proof. By using a Chernoff bound, it can easily be shown that every active node v
sends out at most O(logn) edge-messages in each round. Therefore, v only receives
O(logn) response messages in every round. It remains to show that every node
receives at most O(logn) edge-messages in every round, from which it follows that
it only sends out O(logn) response messages in every round. Let A = {{u,v} |
u or v is active} and note that |A] < ndeg;. Fix a node u € V and a round ¢ €
{1,...,deg;} and let X. be the binary random variable that is 1 if and only if
h(id(e)) = w and r(id(e)) = ¢ for e € A. Then Pr[X, = 1] < 1/(ndeg}). X =
> eca Xe has expected value E[X] < 1. Using our Chernoff bound, we get that X =
O(logn), w.h.p., which implies that u receives at most O(logn) edge-messages in
round 7. The claim follows by taking the union bound over all nodes and rounds. [J
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The correctness of Lemma 4.21 follows from the previous lemmas. Together with
Lemma 4.18, we obtain the following theorem.

Theorem 4.28 (Orientation Algorithm). The Orientation Algorithm computes an
O(a)-orientation in time O((a + logn)logn), w.h.p.

4.4. Further Graph Problems

We conclude our initiating study of the node-capacitated clique by presenting a set
of graph problems that can be solved efficiently in graphs with bounded arboricity.
The presented algorithms rely on a structure of precomputed multicast trees. More
specifically, for every node u € V' we construct a multicast tree Tjq(,) for the multicast
group Ajq(,) = N(u). Since such trees enable the nodes to send messages to all of
their neighbors, in the following we refer to them as broadcast trees.

In a naive approach to construct these trees, one could simply use the Multicast
Tree Setup Algorithm, where each node joins the multicast group of every neighbor.
However, as £ = A, the time to construct these trees would be O(deg+ A /logn +
logn), which can be O(n/logn) if G is a star, for example. Instead, we first construct
an O(a)-orientation of the edges as shown in the previous section, and let u only join
multicast groups Ajq(, for every out-neighbor v, which translates to injecting one
packet per out-neighbor into the butterfly. Additionally, for every out-neighbor v it
takes care of v joining u’s multicast group. More specifically, in the application of the
Multicast Tree Setup Algorithm, the packet p, iq(,) that would be contributed by v
to join u’s multicast group is simply sent by u. In case of a star for example (whose
arboricity is one), every node, including the center, injects at most two packets,
which allows us to construct broadcast trees in time O(deg+logn) = O(logn),
w.h.p. In this example, the required orientation can be computed in time O(log®n),
w.h.p. using Theorem 4.28. In general, we obtain the following result, which follows
from Theorems 4.11 and 4.28.

Lemma 4.29 (Broadcast Trees). Given an O(a)-orientation, setting up broadcast
trees takes time O(a +logn), w.h.p. The congestion of the broadcast trees is O(a +
logn), w.h.p.

The corollary below follows from the analysis of Theorem 4.13 and the observation
that, if only some of the nodes for which multicast trees have been set up participate
in the multi-aggregation, the runtime decreases correspondingly.

Corollary 4.30 (Neighborhood Multi-Aggregation). Let S C V. Using the broad-
cast trees, the Multi-Aggregation Algorithm solves any Multi-Aggregation Prob-
lem with multicast groups A;qny = N(u) and sy = u for all uw € S in time
O3 ,egdeg(u)/n +logn), w.h.p.

The corollary above establishes one of the key techniques used in this section. More
precisely, we will exploit the fact that many distributed graph algorithms follow very
simple communication patterns that can be translated into multi-aggregations in our
broadcast trees.
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4.4.1. Breadth-First Search Trees

As a simple example, we show how to compute BFS trees. Recall that the goal of the
BF'S tree problem is to let each node v € V learn its parent 7(v) in a BF'S tree rooted
at a given source node s € V. Additionally, we want v to learn hop(s,v). Using the
broadcast trees, the problem can easily be solved by the following algorithm, which
proceeds in phases. In phase 1, only s is active, and in phase ¢ > 1, all nodes that
have received an identifier in phase ¢ — 1 for the first time are active. In each phase,
every active node sends its identifier to all of its neighbors using the broadcast trees
and the Multi-Aggregation Algorithm. By choosing f as the minimum function,
every node that has an active neighbor thereby receives the minimum identifier of
all active neighbors. Furthermore, in every phase ¢ > 1, every active node u sets
hop(s,u) = i—1 and 7(u) to the node whose identifier it has received in the previous
phase. Clearly, after at most © + 1 phases, where © is the hop-diameter of G, all
nodes have been reached.

Theorem 4.31 (BFS Tree). The algorithm computes a BFS Tree in time
O((a+ D +logn)logn), w.h.p.

Proof. The correctness of the construction of the BFS tree is obvious (see, e.g., [Pel00]).
By Theorem 4.28 and Lemma 4.29, the broadcast trees are constructed in time
O((a + logn)logn), w.h.p. Let S; be the set of nodes active in phase i. By Corol-
lary 4.30, the Multi-Aggregation Algorithm takes time O(3_, g, deg(u)/n+logn) in
phase ¢, w.h.p. Since each node is active only in one phase, we conclude a runtime
of

=1 u€eS;

D+1
(@] ((a—i—logn)logn—i— Z (Z deg* /n+logn)>

((a +logn)logn + (Z deg(u)/n> + (D +1)log n)

=0
ueV

=0((a + 9 +logn)logn), w.h.p. O

4.4.2. Single-Source Shortest Paths

BE'S trees, which contain unweighted shortest paths, can be computed very efficiently
using our techniques because every node effectively only has to send a message to its
neighbors once. As already pointed out in Section 2.3, computing weighted distances
to s is more challenging, since a path between u and v that has fewest hops may
not be a shortest path. In this section, we present some algorithms for the SSSP
Problem, in which each node u wants to learn d(s,u) for a given source node s.
Note that a shortest-path tree, which is the weighted counterpart of a BFS tree,
can easily be obtained afterwards by simply determining the neighbor v of each
node u that minimizes d(s,v) + w({v,u}) using a multi-aggregation, which, given
an O(a)-orientation, can be done in an additional O(a + logn) rounds.

Exact SSSP Our first algorithm for the SSSP Problem is a simple adaptation of
the distributed Bellman-Ford algorithm. From a high level, every node v € V starts
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with a distance value d(s,v), where d(s,s) = 0, and d(s,v) = oo for all v € V' \ {s}.
In each iteration, every node v € V sends d(s,v) +w({v,u}) to every node u € N(v).
Then, u updates d(s,v) to min{d(s,v), min A}, where A is the set of values received
by u in this iteration. After SPD + 1 iterations, where SPD is the shortest-path
diameter of G, we have that d(s,v) = d(s,v) for every node v € V.

The algorithm lends itself for an implementation in the NCC using our techniques.
First, we again compute an O(a)-orientation and construct broadcast trees in time
O((a + logn)logn), w.h.p., using Theorem 4.28 and Lemma 4.29. Each round of
Bellman-Ford translates into a multi-aggregation in which all nodes contribute their
current distance value. However, since a distance value sent from v to u needs to
be augmented by the weight w({v,u}) before being aggregated towards u, the leaf
node [y jq(») of v’s broadcast tree needs to know that weight. Clearly, we can easily
ensure this when constructing the broadcast trees. After receiving the distance value
d(s,v) from v during the multi-aggregation, luid(v) can contribute d(s,v) +w({v,u})
in the aggregation towards u. By Corollary 4.30, the multi-aggregation takes time
O(a +logn), w.h.p.

After each multi-aggregation, we use the Aggregate-and-Broadcast Algorithm to
check whether the distance value of some node changed; once this is not true anymore,
the algorithm terminates. Since the distance values cease to change exactly when
all nodes have obtained their true distance, we conclude the following theorem.

Theorem 4.32 (Bellman-Ford). Using an adaptation of the distributed Bellman-
Ford algorithm, SSSP can be solved exactly in time O((a + logn) - (SPD + logn)),
w.h.p.

Note that by limiting the number of iterations of the algorithm to O(h), we can
also solve h-limited SSSP in time O((a + logn) - (h 4+ logn)), w.h.p. Furthermore,
(h, k)-SSP can obviously be solved in time O((a+logn)-(hk+logn)) by sequentially
performing k executions.

The downside of Theorem 4.32 is the fact that the runtime may be up to ©(n?)
if both the arboricity and the shortest-path diameter of G are high. Here, it may
be more efficient to conduct a “sequential” execution of Dijkstra’s algorithm. In
Dijkstra’s algorithm, each node v € V initializes its distance value ci(s, v) as in the
previous algorithm. However, in each iteration we only pick the node that currently
has smallest distance value, and let this node send messages to their neighbors, which
in turn update their distance value. It is well-known that each node is only picked
once until d(s,v) = d(s,v) for every v € V, which leads to the following theorem.

Theorem 4.33 (Dijkstra). Using an adaption of Dijkstra’s algorithm, SSSP can be
solved exactly in time O((a + n)logn), w.h.p.

Proof. In each iteration, we pick a different node using the Aggregate-and-Broadcast
Algorithm and then perform a multi-aggregation. After n iterations, all nodes have
been considered. From Theorem 4.28, Lemma 4.29, and Corollary 4.30 we conclude
a runtime of

(@] ((a + logn)logn + Z (deg(v)/n + log n)> =0O((a+n)logn), wh.p. O
veV
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By performing both algorithms for exact SSSP in parallel, and determining which
terminates first using the Aggregate-and-Broadcast Algorithm, we can summarize a
runtime of O(min{(a + logn) - (SPD +logn), (a + n)logn}), w.h.p.

Approximate SSSP For some values of a and SPD we can derive more efficient
algorithms by considering approzrimate solutions, as we show in this section. We
use the approach of Nanongkai [Nanl4a], whose idea is to reduce the problem to
O(logn) instances of the unweighted SSSP Problem, which, as we have argued above,
requires much less communication. The approach is based on the following theorem,
which is proven in [Nanl4b].

Theorem 4.34 ([Nanl4b, Theorem 3.3]). Let h € N and ¢ = 1/logn. For any
i € N and edge {z,y} € E, let w'({z,y}) = [M} For any nodes u,v € V, let

€20

- d? . el A
dp,(u,v) = min {(u,;}ie |i€e N :d'(u,v) < (1+ 2/6)h} ,
where d*(u,v) is the distance between u and v in the graph G* in which the weight
of each edge {x,y} is changed to w'({z,y}). Note that dy(u,v) = oo if the above set
is empty. We have that

dp(u,v) < dp(u,v) < (14 €)dp(u,v),
where dp(u,v) is the h-limited distance from u to v as defined in Section 2.2.

Note that for any given i and h, every node v € V knows w'({v,u}) for all
u € N(v). To evaluate the expression of dj(u,v) for a given u, v needs to learn
d*(u,v) for all i € N. However, for sufficiently large i = O(logn), the weights of all
edges reduce to 1; therefore, we actually only need to compute d*(u,v) for O(logn)
many different 1.

Therefore, to solve (1 + o(1))-approximate SSSP, each node v € V needs to
compute di(s,v) for O(logn) different i. As Nanongkai points out, for any given
i the values can be computed by using a simple generalization of the BFS algo-
rithm [Nanl4b, Algorithm 3.2]. The algorithm can be stated as follows. Initially,
every node sets czi(u,v) = oo, and the source node s sends a message with dis-
tance value 0 to itself. In iteration j = 1,...,(1 + 2/e)h + 1, every node updates
d'(s,v) to min{d(s,v),min{¢ € A, | £ < (1 + 2/e)h}}, where A, is the set of
distance values received so far by v. Furthermore, if j = d'(s,v) 4+ 1, then v
sends a message that contains the distance value d(u,v) + w’({v,u}) to each node
u € N(v). After the last iteration, d’(s,v) = d(s,v) if d’(s,v) < (1 + 2/e)h; oth-
erwise, Ji(s, v) = oco. Furthermore, as Nanongkai points out, every node sends out
messages in only one iteration. Therefore, by using multi-aggregations with existing
broadcast trees, an execution of the algorithm for a given 7 can be performed in time
O(alogn+ (14+2/¢)hlogn) = O((a+ hlogn)logn). Since setting up the broadcast
trees takes time O((a + logn)logn), and we need to perform O(logn) executions,
we have the following theorem.

Theorem 4.35 (Approximate h-hop SSSP). The algorithm solves (1 + o(1))-
approzimate h-hop SSSP in time O((a + hlogn)log®n), w.h.p.
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For h = SPD we have the following corollary. Note that the algorithm is much
more efficient than our exact solutions for example if a = SPD = O(y/n).

Corollary 4.36 (Approximate SSSP). The algorithm solves (1 + o(1))-approzimate
SSSP in time O((a + SPDlogn)log®n), w.h.p.

We believe that the above results can also be extended to also approximate (h, k)-
SSP in time O(h + k) by starting the executions from each of the k sources with
some random delay [Nanl4a]. Together with the randomized hitting set construction
[UY91], which has been very popular in recent years (see, e.g., [Aug+20b; Nanl4a;
FN18]), this technique should allow us to approximate SSSP in time O(a + /n).

4.4.3. Maximal Independent Set

In this section, we show how to compute a mazimal independent set (MIS): A set
U CV isan MIS if (1) it is an independent set, i.e., no two nodes of U are adjacent
in G, and (2) there is no independent set U’ C V such that U C U’. The first
distributed algorithms to solve this classical graph problem go back to Luby [Lub86]
and Alon et al. [ABI86]. We use the algorithm of Métivier et al. [Mét+11], which
lends itself for an implementation in our model, and which works as follows. First,
all nodes are active and no node is in the MIS. The algorithm proceeds in phases,
where in each phase every active node wu first chooses a random number r(u) €
[0,1] and broadcasts the value to all of its neighbors. u then joins the MIS (and
becomes inactive) if r(u) is smaller than the minimum of all received values. If so,
it broadcasts a message to all of its neighbors, instructing them to become inactive.

We can easily perform each phase of the algorithm in our model by using two
multi-aggregations, the first to let every node aggregate the minimum of all values
chosen by its neighbors, and the second to let every node that is not in the MIS
determine whether it is adjacent to a node that is in the MIS. This information is
then used to determine whether the nodes have reached an MIS using the Aggregate-
and-Broadcast Algorithm. Since O(logn) phases suffice, w.h.p. [Mét+11], and each
phase can be performed in time O(a + logn) by Corollary 4.30, we conclude the
following theorem.

Theorem 4.37 (MIS). The algorithm computes a maximal independent set in time
O((a +logn)logn), w.h.p.

4.4.4. Maximal Matching

Similar to an MIS, a mazimal matching M C FE is defined as a maximal set of
independent (i.e., node-disjoint) edges. Therefore, a maximal matching of G cor-
responds to an MIS in the line graph L(G), which contains a node for every edge
of G and an edge {u,v} if the corresponding edges of u and v are incident in G.
However, computing a maximal matching by simulating the MIS algorithm in L(G)
is quite technical. Instead, we propose to use the algorithm of Israeli and Itai [1186],
which works as follows. Initially, no node is matched. The algorithm proceeds in
phases, where in each phase every unmatched node u performs the following proce-
dure. First, it chooses an edge to an unmatched neighbor uniformly at random. If
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u itself has been chosen by multiple neighbors, it accepts only one choice arbitrarily
and informs the respective node. The outcome is a collection of paths and cycles.
Each node of a path or cycle finally chooses one of its at most two neighbors. If
thereby two adjacent nodes choose the same edge, the edge joins the matching and
the two nodes become matched. Afterwards, all matched nodes and their incident
edges are removed from the graph.

The algorithm can easily be realized using our communication primitives. First, we
let every unmatched node randomly pick one of its unmatched neighbors by perform-
ing the Multi-Aggregation Algorithm with a slight modification. Here, every node
w that is still unmatched multicasts a packet pjq(,) using its broadcast tree. Recall
that after piq(,) has reached butterfly node I, ;4 for all v € N(u) in the execution
of the Multi-Aggregation Algorithm, it is mapped to a new packet (id(v), pig(u))-
Here, we additionally let [, ;q(,) choose a value r € [0, 1] uniformly at random, and
annotate (id(v), piq(,)) by 7. Whenever thereafter two packets with the same target
are combined, the packet annotated by the minimum value remains. Thereby, every
node that still has an unmatched neighbor receives the identifier of a node chosen
uniformly and independently at random among its unmatched neighbors.

Afterwards, every node that has been chosen by multiple neighbors has to choose
one of them arbitrarily. This can be done by performing the Aggregation Algorithm,
in which we let every node u aggregate the minimum of the identifiers of all nodes
by which it has been chosen in the previous step. In the resulting collection of
paths and cycles, neighbors can directly send messages to each other to determine
which edges join the matching. Finally, the nodes have to determine whether the
matching is maximal, which can be done as described in the previous section. Using
Corollary 3.5 of [II86] and Chernoff bounds, it can be shown that O(logn) phases
suffice. Since each phase takes time O(a + logn) by Corollary 4.30, we conclude the
following theorem.

Theorem 4.38 (Maximal Matching). The algorithm computes a mazimal matching
in time O((a +logn)logn), w.h.p.

4.4.5. O(a)-Coloring

The goal of this section is to compute an O(a)-coloring, in which every node has
to choose one of O(a) colors such that no color is chosen by two adjacent nodes.
Following the idea of Barenboim and Elkin [BE10], we consider the partition of
nodes into levels Vi, ..., T and color the nodes of each level separately. Recall that
after the execution of the Orientation Algorithm in Section 4.3, every node knows
the index of its own level. Furthermore, for all ¢ every node v € V; knows which
of its neighbors are in lower levels V1,...,V;_1, the same level V;, and higher levels
Vit1, ..., Vp, since it knows which of its neighbors were inactive, active, or waiting
in phase 7. First, the nodes use the Aggregate-and-Broadcast Algorithm to compute
4 = maxyecy{max{deg;(u),deg,+(uv)}} = O(a), where deg;(u) is the number of
neighbors of u that are in the same level as u and deg,(u) is the outdegree of u
in the computed orientation. Note that & < 4a, since each node has at most 4a
neighbors in the same or in higher levels (see Lemma 4.18). Furthermore, the nodes
set up multicast trees for multicast groups Ajq(,) = Nin(u) with source siq(,) = u for
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all u € V', where Nj,(u) is the set of u’s in-neighbors. To do so, every node joins the
multicast group of each of its out-neighbors, which, given an O(a)-orientation, can
be done in time O(a + logn), w.h.p., by Theorem 4.11.

Afterwards, the algorithm proceeds in phases 1,...,7T, where in each phase i the
nodes of level Vp_;11 get colored. Throughout the algorithm’s execution, every node
u maintains a color palette C'(u) that is initially set to [(2+¢)a] C [4(1+¢)a] for some
constant £ > 0. After each phase, the color palette of every remaining uncolored
node has been narrowed down to all colors that have not yet been chosen by its
neighbors. Since every u € Vp_;11 has at most a neighbors in higher levels, C'(u)
still consists of at least (1 + ¢)a colors at the beginning of phase 1.

In phase ¢ of the algorithm, the nodes of level Vp_; 1 essentially perform the Color-
Random Algorithm of Kothapalli et al. [Kot+06]. Note that the algorithm requires
that there are no short directed cycles among the participating nodes. Since edges
between nodes of the same level lead from lower to higher identifier, which implies
that there cannot be any cycles in the same level, we can apply the algorithm to
each level. The degree within each level is at most @, and each node starts with a
color palette that contains at least (1 4 €)a colors. Therefore, [Kot+06, Theorem
4.4] implies that at termination of the algorithm each node has picked a color, w.h.p.

It remains to describe how the algorithm works and how long it takes until each
node of the level has chosen a color. First, every node u € Vpr_;;1 chooses a color
¢y, from its remaining color palette uniformly at random. Then, it informs its in-
neighbors about its choice by performing the Multicast Algorithm using the precom-
puted multicast trees and a as an upper bound on £. Thereby, u receives the colors
chosen by its out-neighbors of the same level. If u does not receive its own color ¢,,
it permanently chooses ¢,. In that case, it first informs all of its in-neighbors about
its permanent choice by again performing the Multicast Algorithm. Afterwards, it
informs all of its out-neighbors by performing the Aggregation Algorithm. Here, u is
a member of aggregation groups Ajq(y)oc, for all v € Noyt and target of aggregation
groups Ajq(u)o; for all i € [(2+€)a]. Note that every node is a member of at most &
and a target of at most (2+¢)a aggregation groups. Afterwards, all nodes (including
nodes of lower levels) remove all colors permanently chosen by neighbors from their
color palettes.

The above procedure is repeated until all nodes of level Vr_; 11 have permanently
chosen a color, which is determined by performing the Aggregate-and-Broadcast Al-
gorithm after each repetition. By [Kot+06, Lemma 4.2], after O(y/log n) repetitions
any simple oriented path of length /logn will have at least one colored node, w.h.p.
Therefore, every component of uncolored nodes within Vr_;,; is a directed acyclic
graph with depth at most y/logn, which implies that the nodes of each such compo-
nent will be colored after an additional O(y/logn) repetitions (see [Kot+06, Lemma
4.3]). We have the following theorem.

Theorem 4.39 (Arboricity Coloring). The algorithm computes an O(a)-coloring in
time O((a + logn)log®?n), w.h.p.

Proof. Clearly, there are O(logn) phases. By the analysis of the algorithm of Kotha-
palli et al. [Kot+06], each phase requires O(y/logn) repetitions until all nodes are
colored. To realize each phase, we need broadcast trees that can be set up in time
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O((a+logn)logn), w.h.p., by Theorem 4.28 and Lemma 4.29. Since each multicast
and aggregation can be performed in time O(a + logn), w.h.p., each repetition of a
phase takes time O(a + logn), w.h.p. O

If a = Q(logn), then the algorithm can be improved to compute an O(a)-coloring
in time O(1) by randomly partitioning the graph into low-arboricity components
(see, e.g.,[GS19]). The approach can be summarized in the following lemma.

Lemma 4.40 (Low-Arboricity Partition). Let a* > a(G) be an upper bound on the
arboricity of G with a* = O(a(Q)). Assume that each node v € V' picks a value c(v) €
[a*] independently and uniformly at random. Then the arboricity of the subgraph G;
induced by edges {u,v} such that c(u) = c(v) =1 is at most a(G;) = O(logn), w.h.p.

Proof. Since a* is an upper bound on the arboricity of G, there exists an orientation
of G with outdegree a*. Fix such an orientation, and consider some node v € V.
Let v1,...,v4+ be the out-neighbors of v, and let X; be the random variable that
indicates whether c(v;) = c(v). Clearly, Pr[X; = 1] = 1/a*, and X = Y%, is a
sum of independent binary random variables with expected value E[X] < 1 =: p.
By our Chernoff bound, at most O(logn) out-neighbors of v will choose the same
value as v. By taking the union bound over all nodes, we have that each node has
at most O(logn) out-neighbors with the same value. Therefore, any component of
G; admits an O(logn)-orientation, and G; has arboricity O(logn), w.h.p. O

Therefore, if the nodes know an upper bound on a, they can partition the graph
accordingly, using the fact that given shared randomness each node can infer which of
its neighbors picked the same value. Then, we can construct an O(log n)-orientation
using Theorem 4.28, and establish broadcast trees that connect each node with its
neighbors in the same component using Lemma 4.29 in time O((a + logn)logn) =
O(log?n), w.h.p. The algorithm of Theorem 4.39 computes an O(logn)-coloring in
each component in time O(log5/ 2 n), and, by using a different color palette for each
G;, we can obtain an O(alogn)-coloring for G.

If a is not known, we could of course compute an upper bound by using the
Orientation Algorithm; however, this would require time O(a). Instead, we simply
guess a by starting with a* = 1, and repeat the above process until we actually
obtain an O(logn)-orientation in each component, doubling the value a* after each
unsuccessful repetition. Clearly, this only adds an O(logn) factor to the overall
runtime, leading to the following theorem.

Theorem 4.41 (Polylog Coloring). The algorithm computes an O(alogn)-coloring
in time (9(log7/2 n), w.h.p.

4.5. Outlook

This chapter studies the effect of node-capacities on the complexity of distributed
graph computations. Our ideas to approach the difficulties such limitations impose
might be of interest for other problems as well. Clearly, there is an abundance of
classical problems that may be newly investigated under the NCC model and for
which our algorithms may be helpful. In general, it would be interesting to see
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a classification of graph algorithms that can or cannot be efficiently performed in
this model. We are also very interested in proving lower bounds, which seems to
be highly nontrivial. Particularly, we do not know whether the arboricity or the
average node degree are natural lower bounds for some of the problems considered
in this chapter, although we highly suspect it.

Interestingly, the algorithms presented in this chapter do not fully exploit the
power of the node-capacitated clique. In fact, all algorithms we presented can be
performed only with the help of some suitable overlay such as a well-formed tree.
The capability to communicate with all nodes in the network directly is not actually
required. Since, however, the NCC is a very simple and clean model for global com-
munication, we will use it as the global network model in the upcoming chapters of
this thesis, but never exploit its full power. Beyond the results in this thesis, it might
be interesting to investigate problems for which this power is actually necessary.
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Shortest Paths in Sparse Hybrid Networks

HORTEST path problems are among the most famous and well-studied problems

in distributed computing. They are relevant for a variety of practical applica-

tions such as finding short routing paths, determining distances and delays, or
learning properties of the topology of a network. For hybrid networks, such insights
may be important to select neighbors to forward packets to, or to choose the appro-
priate communication mode to perform tasks most efficiently. From a theoretical
perspective, shortest path problems are particularly interesting because they cap-
ture global graph properties that are usually very hard to compute. As the related
work section of the previous chapter indicates, there is an abundance of research that
revolves around efficiently computing shortest path problems in distributed systems.

In this chapter, we focus on the Single-Source Shortest Paths (SSSP) and the Di-
ameter Problem (see Section 2.3 for a formal definition). In contrast to the APSP
Problem, for which there is a lower bound of Q(,/n) [Aug+20b] that even holds in the
most generous LOCAL+NCC model, in many cases these problems can be computed
very efficiently. More specifically, we consider the CONGEST+NCC model, in which
only A = O(1) messages can be sent over each local edge, and only v = O(logn) mes-
sages can be communicated via global edges at each node in each round. Thereby,
we only grant the nodes very limited communication capabilities for both commu-
nication modes, disallowing them, for example, to gather complete neighborhood
information to support their computation.

In the CONGEST+NCC model, however, computing SSSP and the diameter is
still difficult if the graph G under consideration is very dense. As an example, the
Diameter Problem takes time Q(n!/3) in general graphs (even with unbounded local
communication) [KS20]. This motivates us to study these problems in sparse graphs.
Specifically, we present randomized exact O(logn) time algorithms for the SSSP and
Diameter Problem in cactus graphs. Formally, a connected graph G is a cactus graph
if any two cycles share at most one node. Cactus graphs are relevant for wireless
communication networks, where they can model combinations of star/tree and ring
networks [Ben+12], or combinations of ring and bus structures in LANs [LWO00].
However, research on solving graph problems in cactus graphs mostly focuses on
the sequential setting (e.g., [Ben+12; LW00; BH17; LWS99]). Furthermore, we
present 3-approximate randomized algorithms for SSSP and the Diameter Problem
with runtime O(log? n) for graphs that contain at most n + O(n'/3) edges and have
arboricity O(logn). Our algorithms for sparse graphs are exponentially faster than
the best known algorithms for general graphs [Aug+20b; KS20; CLP20], which
actually require the much more powerful LOCAL4+NCC model.
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Underlying Publication The chapter is based on the following publication.

M. Feldmann, K. Hinnenthal, and C. Scheideler. “Fast Hybrid Network
Algorithms for Shortest Paths in Sparse Graphs”. In: Proceedings of

the 24th International Conference on Principles of Distributed Systems
(OPODIS). 2020, 31:1-31:16 [FHS20]

Related and Subsequent Work To the best of our knowledge, shortest
path problems in our hybrid network model have only been considered for the
LOCAL+NCC variant (for a more comprehensive summary, see the related work
section in Chapter 6). The initial publication of Augustine et al. [Aug+20b], upon
which Chapter 6 is based, considers the APSP and SSSP Problem and presents
both exact and approximate solutions. Notably, the publication shows that even
O(y/n)-approximations of APSP require time Q(y/n), which obviously also holds
for the CONGEST-+NCC model variant considered in this chapter. Furthermore,
the lower bound even holds in trees. For the LOCAL+NCC model, the APSP lower
bound has been shown to be tight by Schneider and Kuhn [KS20], who gave an
O(y/n)-time algorithm.

The Diameter Problem, which only requires the nodes to learn the largest distance
in G, can be solved more efficiently (see [CLP20] for a comprehensive overview). As
Schneider and Kuhn have shown [KS20], there exist graphs in which computing a
(2 — ¢)-approximation of the diameter takes time Q(n'/3). Recently, Censor-Hillel
et al. [CLP20] came close to this lower bound by presenting a 2-approximation with
runtime O(n'/3). As we demonstrate in this chapter, the lower bound can be avoided
by considering sparse graphs.

Censor-Hillel et al. [CLP20] also improve upon various upper bounds for SSSP
and related problems. The best currently known (diameter-independent) algorithm
for exact SSSP takes time O(n'/3) [CLP20]. However, for small shortest-path diam-
eter SPD, the (5(\/SPD)—time algorithm we present in Chapter 6 is more efficient.
Although there does not exist a formal lower bound for SSSP, we believe that a
polynomial runtime is required for general graphs, even more so if the local commu-
nication is restricted.

A problem closely related to SSSP is the computation of short routing paths be-
tween any given nodes. The problem has, for example, been studied in mobile ad hoc
networks [Jun+18], in which constant-competitive routing paths can be computed in
O(log? n) rounds [CKS20]. The authors consider a hybrid network model similar to
[Aug+20b], where nodes can communicate using either their Wi-Fi interface (similar
to the local edges) or the cellular infrastructure (similar to global edges).

Our work also relates to research concerned with overlay construction (see Chap-
ter 3 for an overview). More specifically, our algorithms can be used to construct
well-formed trees deterministically on pseudotrees in time O(logn), which are graphs
that contain at most one cycle. We also heavily use techniques used in overlay net-
works such as the Euler tour technique or pointer jumping as in Chapter 3. Further-
more, we employ the so-called shortest-path diameter reduction technique [Nanl4a).
More precisely, by adding shortcuts between nodes in the global network, we can
bridge large distances quickly throughout our computations.
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As pointed in Chapter 4, the congested clique model is somewhat related to the
NCC model, which we use to model the global network. Among other problems,
shortest paths can be computed remarkably fast in the congested clique [DP20;
Cen+19b; Cen+19a]. We highlight the Multi-Source Shortest Path (MSSP) algo-
rithm of Dory and Parter [DP20], which computes (1 4 ¢)-approximate shortest
path distances from O(y/n) sources, and their (2 + ¢)-approximation for APSP. The
runtime of their algorithms is polynomial in loglogn, which is exponentially faster
than any shortest path algorithm in this thesis. For the Diameter Problem, a (3/2)-
approximation can be computed in time O(log®n/e) [Cen-+19a].

To the best of our knowledge, the best algorithms for exact shortest paths in the
congested clique still have polynomial runtime [Cen+19b; Le 16; CLT20; Cen+19a).
As an example, APSP can be solved exactly in time O(n'/3) [Cen+19b], and in time
O(n"209) "if the weights are constant [Le 16]; to the best of our knowledge, there
is no algorithm that computes the exact diameter faster than that. For exact SSSP,
the best known algorithm has a runtime of O(n!/®) [Cen+19a].

We remark that most shortest path algorithms for the congested clique rely on
efficient matrix multiplications. Our algorithm for sparse graphs also uses matrix
multiplication in order to compute APSP between O(n'/3) nodes in the network in
O(log? n) rounds; however, the communication restrictions of the NCC only allow us
to multiply matrices with O(nQ/ 3) entries in polylogarithmic time. Unsurprisingly,
the much more efficient matrix multiplication techniques for the congested clique
are not directly applicable in our model.

By using a simulation framework, we can apply some of the algorithms for PRAMs
to our model instead of using native distributed solutions. A formal description
of such a simulation is given in the full version of the paper this chapter is based
on [FHS20]. For example, we are able to use the algorithms of [DPZ91] to solve SSSP
and diameter in trees in time O(logn), w.h.p. Furthermore, we can compute the
distance between any pair s and t in outerplanar graphs in time O(log3 n), w.h.p. by
simulating a CREW PRAM. A graph is outerplanar if it admits a planar embedding
in which every node lies on the outer boundary, which particularly includes the
cactus graphs studied in this chapter. For planar graphs, the distance between s
and t can be computed in time O(log®n(1 + M(q))/n), w.h.p., where the nodes
know a set of ¢ faces of a planar embedding that covers all vertices, and M (q) is
the number of processors required to multiply two g x ¢ matrices in O(loggq) time
in the CREW PRAM. We remark that all results obtained by simulating PRAMSs
using our simulation framework are randomized.

For graphs with polylogarithmic arboricity, a (1 + €)-approximation of SSSP can
be computed in polylogarithmic time using [Li20] and the PRAM simulation frame-
work (with huge polylogarithmic terms). For general graphs, the algorithm can be
combined with well-known spanner algorithms for the CONGEST model (e.g., [BS07])
to achieve constant approximations for SSSP in time O(nf) time in our hybrid model.
This yields an alternative to the SSSP approximation algorithm we present in Chap-
ter 6, which also requires time @(na ) but has much smaller polylogarithmic factors.

Contribution and Outline Table 5.1 contains an overview of our results for the
SSSP and Diameter Problem and gives an outline of the chapter. The first part
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Graph Class Runtime  Section Example

Path Graphs O(logn) 5.1 O‘O‘O‘O‘O‘O‘O‘O‘O‘O‘O

(Exact)

Cycle Graphs O(log n) 5.2

(Exact)
Trees O(logn) 5.3
(Exact)
Pseudotrees O(logn) 5.4
(Exact)

Cactus Graphs  O(logn), 5.5
(Exact) w.h.p.

Sparse Graphs*  O(log?n), 5.6
(3-approximate) w.h.p.

Table 5.1.: An overview of the results of this chapter. *Sparse graphs refer to graphs
that contain at most n + O(n'/3) edges and have arboricity O(logn).

of the chapter revolves around computing SSSP and the diameter on cactus graphs
(i.e., connected graphs in which each edge is only contained in at most one cycle).
For a comprehensible presentation, we establish the algorithm in several steps. First,
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we consider the problems in path graphs (i.e., connected graphs that contain exactly
two nodes with degree 1, and every other node has degree 2), then in cycle graphs
(i.e., connected graphs in which each node has degree 2), trees (i.e., connected graphs
that do not contain a cycle), and pseudotrees (i.e., connected graphs that contain at
most one cycle). For each of these graph classes, we present deterministic algorithms
to solve both the SSSP and the Diameter Problem in O(logn) rounds, each relying
heavily on the results of the previous sections. We then extend our results to cactus
graphs and present randomized algorithms for SSSP and the diameter with a runtime
of O(logn), w.h.p. The algorithms rely on a variant of the randomized spanning
tree algorithm of Gétte et al. [G6t+-20].

In Section 5.6, we consider a more general class of sparse graphs, namely graphs
with at most n+ O(n'/3) edges and arboricity O(logn). By using the techniques es-
tablished in the first part and leveraging the power of the global network to deal with
the additional O(n'/?) edges, we obtain algorithms to compute 3-approximations for
SSSP and the diameter in time O(log? n), w.h.p. As a byproduct, we also derive a
deterministic (9(log2 n)-round algorithm for computing a hierarchical tree decompo-
sition of the network. The chapter is concluded with an outlook on future work.

We remark that our algorithms do not fully exploit the power of the NCC for the
global network. In fact, with little effort all algorithms in this chapter can be adapted
to work in the CONGEST+NCCy model by setting up suitable overlay networks and
employing the techniques of Chapter 4. To support this claim, we will occasionally
provide some additional details of the necessary adaptions throughout this chapter.
Therefore, our algorithms do not only require very little communication, but can
also form suitable global network structures as a sideline.

5.1. Path Graphs

To begin with an easy example, we first present a simple algorithm to compute
SSSP and the diameter of path graphs. We use the same idea as in Lemma 3.23 of
Chapter 3 and perform pointer jumping to select a subset of global edges S, which we
call shortcut edges, that have the following properties: S forms a weighted connected
graph with degree O(logn) that contains all nodes of V', preserves the distances of
the path graph G, i.e., dg(u,v) = dg(u,v), and ensures that there is a shortest path
between any two nodes in S that contains O(logn) hops, i.e., SPD(S) = O(logn).
Given such a graph, SSSP can easily be solved by performing a broadcast from s in
S for O(logn) rounds: In the first round, s sends a message containing w(e) over
each edge e € S incident to s. In every subsequent round, every node v € V' that has
already received a message sends a message k + w(e) over each edge e € S incident
to v, where k is the smallest value v has received so far. After O(logn) rounds,
every node v must have received d(s,v), and cannot have received any smaller value.
Further, the diameter of the line can easily be determined by performing SSSP from
both of its endpoints w and v, which finally broadcast the diameter d(u,v) to all
nodes using the global network.

We construct S using the following simple approach, which in the following we
refer to as the Introduction Algorithm. S initially contains all edges of /. Additional
shortcut edges are established by performing pointer jumping: Every node v first
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selects one of its at most two neighbors as its left neighbor ¢7; if it has two neighbors,
the other is selected as v’s right neighbor ;. Note that the node’s notions of left
and right do not have to coincide. In the first round of our algorithm, every node
v with degree 2 establishes {{1,71} as a new shortcut edge of weight w({¢1,r1}) =
w({l1,v}) + w({v,r1}) by sending the edge to both ¢; and 7. Whenever at the
beginning of some round 7 > 1 a node v with degree 2 receives shortcut edges {u, v}
and {v,w} from ¢;_; and r;_1, respectively, it sets ¢; := u, r; := w, and establishes
{¢;, i} by adding up the weights of the two received edges and informing ¢; and r;.
The algorithm terminates after |log(n — 1)| rounds. Afterwards, for every simple
path in G between u and v with 2¥ hops for any k < |log(n —1)] we have established
a shortcut edge e € S with w(e) = d(u,v). Therefore, S has the desired properties,
and we conclude the following theorem.

Theorem 5.1 (Path Graphs). SSSP and the diameter can be computed in any path
graph in time O(logn).

5.2. Cycle Graphs

In cycle graphs, there are two paths between any two nodes that we need to dis-
tinguish. For SSSP, this can easily be achieved by performing the SSSP algorithm
for path graphs in both directions along the cycle, and let each node choose the
minimum of its two computed distances. Formally, let vy, vs,...,v, denote the n
nodes along a left traversal of the cycle starting from s = v; and continuing at s’s
neighbor of smaller identifier, i.e., id(vs) < id(vy,). For any node u, a shortest path
from s to w must follow a left or right traversal along the cycle, i.e., (v, va,...,u) or
(U1, VUn, ..., u) is a shortest path from s to u. Therefore, we can solve SSSP on the
cycle by performing the SSSP algorithm for the path graph on £ := (vi,v2,...,v,)
and R := (v1,Un,Vp_1,...,v2). Thereby, every node v learns dy(s,v), which is the
distance from s to v in £ (i.e., along a left traversal of the cycle), and d, (s, v), which
is their distance in R. It is easy to see that d(s,v) = min{d(s,v),d,(s,v)}.

Using the above algorithm, s can also easily learn its eccentricity ecc(s), as well as
its left and right farthest nodes sy and s,. The left farthest node sy of s is defined as
the farthest node v; along a left traversal of the cycle such that the subpath in £ from
s = v1 to v; is still a shortest path. Formally, sy = argmax,cv,q,(s,0)<|w/2) dy(s,v),
where W =" _cpw(e). The right farthest node s, is the successor of sy in £ (or s,
if sy is the last node of £), for which it must hold that d, (s, s,) < [W/2]. We have
that dy(s, s¢) = d(s, s¢), dr(s,s,) = d(s,s,), and ecc(s) = max{dy(s, s¢),dr(s, Sy)}.

To determine the diameter of G, for every node v € V our goal is to compute
ecc(v); as a byproduct, we will compute v’s left and right farthest nodes vy and v,.
The diameter can then be computed as max,cy ecc(v). A simple way to compute
these values is to employ a binary-search style approach from all nodes in parallel,
and use the load balancing techniques of Chapter 4 to achieve a runtime of (’)(log2 n),
w.h.p. Coming up with a deterministic O(logn) time algorithm, however, is more
complicated, and will be the focus of this section.

Our algorithm works as follows. Let s be the node with highest identifier, which
is known to all nodes in the NCC, but can also easily be computed by performing
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Figure 5.1.: An example of diameter computation in a cycle G. The algorithm begins
with s = v1. In L, sy = wvy4 is the farthest node from s along a left
traversal of GG, and s, = vy is the farthest node along a right traversal.
In L, each node is annotated with its budget ¢. In I, the nodes are
sorted by their budget, and for each node v € A the first node x € B to
its left is its left farthest node vy. For example, for vg, vy = vs.

pointer jumping. First, we perform the SSSP algorithm as described above from
s in £ and R, whereby s learns its left and right farthest nodes sy and s,. Let L
be graph that results from removing the edge {ss, s,} from G (see Figure 5.1). Let
A C V be the set of nodes between s, and s (excluding s), and B C V be the set of
nodes between s and sy (including s).

In its first execution, our algorithm ensures that each node v € A learns its left
farthest node vy; a second execution will then handle all other nodes. Note that v,
for all v € A must be a node of B, since otherwise the path from v to vy along L is
longer than |WW/2], in which case it cannot be a shortest path anymore.

We assign each node v a budget ¢(v), which is |W/2] —d,(s,v) > 0, if v € A,
and dy(s,v), if v € B. Roughly speaking, the budget of a node v € A determines
how far you can move from v beyond s along a left traversal of G until reaching
v’s left farthest node vy. Then, we sort the nodes of L by their budget. Note that
since we consider positive edge weights, no two nodes of A and no two nodes of B
can have the same budget, but there may be nodes u € A, v € B with ¢(u) = ¢(v).
In this case, we break ties by assuming that ¢(u) > ¢(v). More specifically, the
outcome is a sorted list I = (s = v, v4,,...,v;,) with first node s that contains
all nodes of A (and B) in the same order they appear in L, respectively. Such a
list can be constructed in time O(logn), e.g., by using Aspnes and Wu’s algorithm
[AWO07]. We remark that the algorithm of Aspnes and Wu is actually randomized.
However, since we can easily arrange the nodes as a binary tree, we can replace the
randomized pairing procedure by a deterministic strategy and still achieve a runtime
of O(logn); for more details, we refer the reader to [AWO07].

Let v =v;, € A, and let x = v, € B be the node with maximum index j in [
such that j < k (i.e., the last node of B in I that is still before v). Since the nodes
in I are sorted by their potential, among all nodes of B, x maximizes ¢(z) such that
o(z) < ¢(v). By definition of ¢(z) and ¢(v), this implies that

j=max{j € {l,...,n} | v, € B,j <k and d,(s,v;,) + de(s,v;;) < |[W/2]}.
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Lemma 5.2. We have that x = vy.

Proof. By the definition of our algorithm, x € B is the farthest node from v € A
along a left traversal of the cycle such that d,(s,v) + dy(s,x) < |W/2]. Note that
dy(s,v) + de(s,z) = dy(v,x), since s lies between v and z in L. Therefore, = is
also farthest from v along a left traversal such that dy(v,z) < |W/2], which is the
definition of vy. O

Node v can easily learn x, dy(s,z), and the neighbors of x in the cycle (to infer
vy) by performing the Introduction Algorithm on each connected segment of nodes
of A in I. To let all remaining nodes learn their farthest nodes, we restart the
algorithm at node s, as the new source node s. Note that s, has to perform the
algorithm in the same “left direction” as before, which we can easily ensure. Since
de(s,s¢) = dr(se,s) < |W/2], all nodes between s and sy in £ (except s, itself),
which previously were in set B, will be in set A and learn their farthest nodes.
Furthermore, sy clearly learns its left and right farthest nodes at the beginning of
the second execution of our algorithm. We conclude the following theorem.

Theorem 5.3 (Cycle Graphs). SSSP and the diameter can be computed in any cycle
graph G in time O(logn).

5.3. Trees

We now show how the algorithms of the previous sections can be extended to compute
SSSP and the diameter on trees. Similar to Lemma 3.23 of Chapter 3, we use the
Euler tour technique to transform the graph into a path graph L of wvirtual nodes
that corresponds to a depth-first traversal of G (see, e.g., [Gmy+17a]). Every node
of G simulates one virtual node for each time it is visited in that traversal, and two
virtual nodes are neighbors in L if they correspond to subsequent visitations. To
solve SSSP, we assign weights to the edges from which the initial distances in G can
be inferred, and then solve SSSP in L instead. Finally, we compute the diameter of
G by performing the SSSP algorithm twice, which concludes this section.

However, since a node can be visited up to ©(n) times in the traversal, it may not
be able to simulate all of its virtual nodes in L. Therefore, we first need to reassign
the virtual nodes to the node’s neighbors such that every node only has to simulate
at most 6 virtual nodes using a Nash-Williams forest decomposition. More precisely,
we compute an orientation of the edges in which each node has outdegree at most 3,
and reassign nodes according to this orientation (in the remainder of this chapter,
we refer to this approach as the redistribution framework).

Construction and Simulation of . As in Lemma 3.23, we denote the neighbors
of anode v € V by ascending identifier as v(0), ..., v(deg(v)—1). Consider the depth-
first traversal in GG that starts and ends at s, and which, whenever it reaches v from
some neighbor v(), continues at v’s neighbor v((i41) mod deg(v)). L is the directed
path graph of virtual nodes that corresponds to this traversal (see Figure 5.2a and
5.2b). The path graph contains a virtual node for each time a node is visited, and
a directed edge from each virtual node to its successor in the traversal; however, we
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Figure 5.2.: (a) A tree with source node s (black). Each node is labeled with its
identifier and each edge is labeled with its weight. (b) The resulting path
graph L of virtual nodes. In addition to the identifier of its original node
x, each virtual node x; is annotated with its index ¢ (small numbers at
the side). (c) A possible orientation with outdegree 3. According to our
redistribution rule, all virtual nodes of the central node 2, for example,
would be assigned to its neighbors. (d) The edges are assigned weights,
and each virtual node is labeled with its distance to sz, (black node).

leave out the last edge ending at s to break the cycle. More specifically, every node v
simulates the nodes vy, . .., Ugeg(v)—1, Where v; corresponds to the traversal visiting v
from v(i). The first node of L is 51, := S4eg(s)—1, and its last node is the node v; such
that v = s(deg(s)—1), and v((i+1) mod deg(v)) = s. For every node v; in L (except
the last node of L), there is an edge (v;,u;) € L such that u = v((i+ 1) mod deg(v))
and v = u(j). To accordingly introduce each virtual node to its predecessor in L,
every node v sends id(v;) to v(¢) for all i € [deg(v)], where id(v;) := id(v) o7 is the
virtual identifiers of v; as in the proof of Lemma 3.23.

It remains to show how the virtual nodes can be redistributed such that each
node only has to simulate at most 6 virtual nodes. To do so, we first compute a
3-orientation of GG, i.e., an assignment of directions to its edges such that every node
has outdegree at most 3; the orientation will help us to assign at most 6 virtual
nodes to each node. Since the arboricity of G is 1, we can use [BE10, Theorem 3.5]
to compute a partition Vi,...,V; of the nodes such that every node u € V; has at
most 3 edges leading to nodes in U;>; V; (see Section 2.2). We obtain our desired
orientation by directing each edge {u,v} € E, u € V;, v € V}, from u to v if ¢ < j,
or i = j and id(u) < id(v) (see Figure 5.2c for an example).

Now consider some node v € V and a virtual node v; at v, and let u := v(¢). If
{v,u} is directed from v to u, then v; is assigned to v, and, as before, v takes care of
simulating v;. Otherwise, v; gets assigned to u instead, and v sends the identifier of
v; to u. Afterwards, u needs to inform the node w that is responsible for simulating
the predecessor of v; in L that the location of v; has changed. Depending on the
orientation, w is either u itself, a neighbor of u, or a neighbor of one of u’s neighbors.
In either case, w can be informed about the new location of v; within at most 2
rounds using the local network. Since in the orientation each node v has at most
3 outgoing edges, for each of which it keeps one virtual node and is assigned one
additional virtual node from a neighbor, v has to simulate at most 6 virtual nodes.
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We remark that it is possible to combine this technique with the merging algo-
rithm of Lemma 3.23 to establish low-diameter overlays on trees of arbitrary degree
without knowing a designated source node beforehand. For instance, this allows us
to efficiently compute aggregates of values stored at each tree’s nodes, as stated in
the following lemma.

Lemma 5.4 (Aggregates in Trees). Let H be a forest in which every node v € V[H]
stores some value p,, and let f be a distributive aggregate function. Fvery node
v eV can learn f({py | u € Cy}), where Cy, is the tree of H that contains v, in time
O(logn).

Proof. We let each node v € V[H] simulate deg(v) many virtual nodes that cor-
respond to a cyclic depth-first traversal of the component of v as described in
Lemma 3.23, and rearrange the nodes using the Nash-Williams forest decomposi-
tion technique as described above. Since each node has to simulate at most 6 nodes,
the algorithm of Lemma 3.23 can be simulated. As pointed out in Section 3.5, the
algorithm can be used to obtain a well-formed tree within each component, in which
we can obviously compute aggregates in time O(logn). O

Assigning Weights To assign appropriate weights to the edges of L from which
we can infer the node’s distances in GG, we first have to transform G into a rooted tree.
To do so, we simply perform SSSP from sy, (the first node in L) in the (unweighted)
version of L. Thereby, every virtual node = learns its traversal distance, i.e., how
many steps the depth-first traversal takes until it reaches x. Further, every node
v can easily compute which of its virtual nodes v; is visited first by taking the
minimum traversal distance of its virtual nodes. Since the virtual nodes of v are
dispersed among v neighbors in G, the minimum value can be obtained using the
local network. Let v; be the virtual node of v that has smallest traversal distance,
and let u; be the predecessor of v; in L. It is easy to see that u is the parent of v in
the rooted tree, which implies the following lemma.

Lemma 5.5 (Rooting a Tree). Any tree G can be rooted in O(logn) time.

For each virtual node v; of v (except the first node sr), to the edge (u;,v;) € L,
v assigns the weight

w({u,v})  if wis v’s parent
w(u;, v;) =

—w({u,v}) if vis u’s parent.
An example can be found in Figure 5.2d. Note that if v; is assigned to a neighbor
of v, v needs to informs that neighbor about the weight of the respective edge.

To solve SSSP in G, we simply compute SSSP in (the undirected version of) L

using Theorem 5.1. As we prove in the following theorem, the distance of each
virtual node v; of each node v will be d(s,v).

Theorem 5.6 (Tree SSSP). SSSP can be computed in any tree in time O(logn).

Proof. Let v € V, and let dr(sr,v;) denote the distance from sy, to a virtual node
v; at v in the (weighted) graph L. We show that dr (s, vi) = d(s,v).
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Consider the path P from s to v in G. The depth-first traversal from s to v
traverses every edge of P from parent to child, i.e., for every edge in P there is a
directed edge with the same weight between s and v; in L. However, at some of the
nodes of P (including s and v) the traversal may take detours into other subtrees
before traversing the next edge of P. As every edge of L that corresponds to an
edge in the subtree is visited, and the weights of all those edges sum up to 0, the
distance from s to v; equals the sum of all edges in P, which is d(s,v). ]

Similar techniques lead to the following lemma, which we will use in later sections.

Lemma 5.7 (Computing Subtree Aggregates). Let H be a forest and assume that
each node v € V[H] stores some value p,. The goal of each node v is to compute the
value sum,(u) 1= Y ,cc, Pw for each of its neighbors u € Ng(u), where Cy is the
connected component of the subgraph H' of H induced by V[H] \ {v} that contains
u. The problem can be solved in time O(logn).

Proof. Consider a connected component C' of H. Since C' is a tree, we can deter-
mine the node s € V[H| that has highest identifier among all nodes in V[C] using
Lemma 5.4. We construct L exactly as described in the algorithm for computing
SSSP with source s on trees, but choose the weights of the edges differently. More
precisely, to every edge (u;,v;) of L we assign the weight w({u;,v;}) := py, if v is
u’s parent, and 0, otherwise. Further, we assign a value cZ(sL) := ps to sp, (the first
node of L). With these values as edge weights, we perform the SSSP algorithm on L
from sz, whereby every virtual node v; learns the value d(v;) := d(sz) + dr (s, vi).
The sum of all values M := ZUEV[H] py can be computed and broadcast to every
node of C' in time O(logn) using Lemma 5.4.

The problem can now be solved as follows. Consider some node v, let u be a
neighbor of v, and let ¢ be the value such that v = v(i) (recall that v(i) is the
neighbor of v that has the i-th highest identifier, 0 < ¢ < deg(v) — 1). If u is the
parent of v in the tree rooted at s, then 3 o pw = M — (d(Vi—1 mod degv) — d(vy)).
That is, the result is the sum of all values minus the values of all nodes in the subtree
of v (excluding v). If otherwise u is a child of v in the tree rooted at s (unless v = s
and i = deg(s) — 1, which is a special case since Sdeg(s)—1 has no incoming edge),
then > co. Pw = d(v;) — cZ(v(i,l) mod degv)- Finally, if v = s and i = deg(s) — 1, we

have ZwECu pw =M — CZ(U(Z-,l) mod degv)' O

We remark that using more sophisticated techniques, the previous lemma can
be generalized to support the computation of any distributive aggregate function.
For instance, a randomized solution can be obtained by assigning each shortcut
created during pointer jumping the aggregate value of all nodes bridged by the
shortcut. The aggregate of each subtree can then be composed from the values of
only O(logn) shortcuts, which can be retrieved by the root of each subtree using
the techniques of Chapter 4 (see [G6t+20] for a detailed description). In fact, using
a more complicated distributed load balancing scheme, this approach can even be
made deterministic.

Another side result that will be helpful later is given in the following lemma.
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Lemma 5.8 (Computing Heights). Let G be a tree rooted at s. Every node v € V
can compute its height h(v) in G in time O(logn).

Proof. By Theorem 5.6, each leaf node v can learn its distance d(s,v) to s (i.e., its
depth in G) in time O(logn). For v = s, the height is the maximum depth of any
node, which can be computed by performing one aggregation using Lemma 5.4. For
any other node v # s, the height h(v) is the maximum depth of any leaf in its subtree
minus the depth d(s,v) of v.

Instead of proving the above-mentioned generalization of Lemma 5.4 to obtain
the maximum depth of all of v’s descendants, we use the following, much simpler,
approach. First, every leaf node u assigns its virtual node in L the value d(s,u).
We then establish shortcuts on L using the Introduction Algorithm; however, we
begin with each edge having the maximum value assigned to any of its endpoints.
Whenever a shortcut results from two smaller shortcuts being merged, its weight
becomes the maximum weight of the two smaller shortcuts. Thereby, the weight of
each shortcut {u;, vj} (where u; is the endpoint that is closer to sz, in L) corresponds
to the maximum value of any node in G visited by the traversal from wu; to v;.

Slightly changing notation, let s, = xo, 1, ..., Ty(,—1) denote all virtual nodes in
the order they appear in L (note that the index of each virtual node is its traversal
distance, which can easily be computed). Now let v # s, and x; be the virtual node
of v with smallest, and x; be its virtual node with highest traversal distance. Let
k = 2loei=)] Note that the shortcuts {zs, xivr} and {xj_p,x;} exist and overlap,
and therefore span all virtual nodes of the nodes in the subtree of v in G. Therefore,
the value max{w({z;, xi;r}), w({xj—k,2;})} gives the maximum depth of any leaf
node in v’s subtree. Together with the knowledge of d(s, v), v can compute h(v). O

For the diameter, we use the following well-known lemma, which we prove for
completeness.

Lemma 5.9. Let G be a tree, s € V be an arbitrary node, and let v € V' such that
d(s,v) is mazimal. Then ecc(v) = D.

Proof. Assume to the contrary that there is a node u € V' such that ecc(u) > ecc(v).
Then there must be a node w € V such that d(u,w) = ecc(u) > ecc(v) > d(v,w).
Note that d(u,w) > d(u,v) and d(u,w) > d(v,w), as otherwise ecc(u) < ecc(v),
which would contradict our assumption. Let P; be the path from s to v, P» be the
path from v to w, and let ¢ = argmin,p, d(s,z) be the node in P, that is closest
to s, i.e., t is the lowest common ancestor of u and w. We distinguish between the
cases that t ¢ P; (Case 1) and that ¢ € P; (Case 2). For an illustration of these
cases, see Figure 5.3.

For Case 1, let « be the node farthest from s that lies on P;, and also on the path
from s to t (x might be s). Then

d(u,w) < d(u,x) + d(z,w) < d(v,z) + d(z,w) = d(v,w),

where d(u, z) < d(v, x) because v is farthest to s, which contradicts d(u, w) > d(v, w).
In Case 2, i.e., t € Py, t must lie on the path from v to u or on a path from from v
to w. In the first case, d(u,w) = d(u,t) + d(t,w) < d(u,t) + d(t,v) = d(u,v), where
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Figure 5.3.: (a) Case 1 of the proof of Lemma 5.9. (b) Case 2 of the proof. This
image depicts the case that ¢ lies on the path from v to u; for the case
that it lies on a path from v to w, exchange w and u in the image. (c)
Example of a pseudotree, in which the Euler tour technique forms two
rings. The cycle nodes are gray, and tree nodes are white.

d(t,w) < d(t,v) because v is farthest from s, which is a contradiction with d(u,w) >
d(u,v). In the second case, we analogously have d(u,w) = d(u,t)+d(t,w) < d(v,t)+
d(t,w) = d(v,w) < d(v,w), which contradicts d(u,w) > d(v,w). O

Therefore, for the diameter it suffices to perform SSSP once from the node s with
highest identifier, then choose a node v with maximum distance to s, and perform
SSSP from v. Since ecc(v) = D, the node with maximum distance to v yields the
diameter. Together with Lemma 5.4, we conclude the following theorem.

Theorem 5.10 (Tree Diameter). The diameter can be computed in any tree in time

O(logn).

5.4. Pseudotrees

Recall that a pseudotree is a graph that contains at most one cycle. We define a
cycle node to be a node that is part of a cycle, and all other nodes as tree nodes. For
each cycle node v, we define v’s tree T, as the connected component that contains v
in the graph in which v’s two adjacent cycle nodes are removed, and denote h(v) as
the height of v in T),. Before we show how SSSP and the diameter can be computed
in a pseudotree, we describe how the cycle can be identified, if it exists.

For this, we use the same approach as for the construction of the path L in the
tree. We let each node v simulate deg(v) virtual nodes vy, . . ., Udeg(v)—1 and connect
the virtual nodes according to the same rules as described in Section 5.3, with the
exception that we do not leave out the last edge ending at s. If there is no cycle,
then this yields a single ring of virtual nodes, in which case we can use our previous
algorithms. Otherwise, this will create two rings of virtual nodes with the property
that every cycle node must have at least one of its virtual nodes in each virtual ring
(see Figure 5.3c for an example). Note that since nodes may have a high degree,
we also need to redistribute the virtual nodes using the redistribution framework
described in Section 5.3. Since the arboricity of a pseudotree is at most 2, we
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can compute an orientation with outdegree 6 [BE10, Theorem 3.5], and thus after
redistributing the virtual nodes every node simulates at most 12 virtual nodes.

To differentiate the at most two rings of virtual nodes from each other, we first
establish shortcuts by using the pointer jumping approach of the Introduction Algo-
rithm. Afterwards, every virtual node broadcasts its virtual identifier along all of its
shortcuts; by repeatedly letting each node broadcast the highest identifier received
so far for O(logn) rounds, each virtual node learns the maximum of all identifiers
in its ring. Any node whose virtual nodes learned different maxima must be a cycle
node; if there exists no such node, there is no cycle in G. In the NCC, the existence
of a cycle node can can easily be determined using the Aggregate-and-Broadcast
Algorithm; for the NCCy, we can perform a variant of Lemma 5.4. We conclude the
lemma below.

Lemma 5.11 (Determine the Cycle). After O(logn) rounds every node v € V' knows
whether there is a cycle, and, if so, whether it is a cycle node.

Proof. We argue the correctness of our construction by showing that if G contains
one cycle, then (1) the virtual nodes of each tree node are contained in the same
virtual ring, (2) each cycle node has two virtual nodes contained in different virtual
rings. For (1), let v be a cycle node and {v,w} be an edge to some tree node w.
By our construction, there is exactly one virtual node v; of v whose successor is a
virtual node of w and there is exactly one virtual node w; of w whose successor is a
virtual node v; of v. As presented in Section 5.3, this yields a path of virtual nodes
starting at v; that traverses the subtree with root w in a depth-first-search manner
and ends at vj. Therefore, Claim (1) holds for every node in the component of w
that results from removing the edge {v,w} from G, and, consequently, for all other
tree nodes.

Specifically, this shows that the tree nodes do not introduce additional rings to our
construction; therefore, we can disregard them and assume that G forms a single
cycle that does not contain any tree nodes. For this cycle it has to hold by our
construction that every cycle node v has exactly two virtual nodes vy and v; that
are not directly connected to each other. More specifically, the successor of vy is
a virtual node of one of the two neighbors u of v, and the successor of vy is the
virtual node of the other neighbor w of v. If we follow the directed ring, say, from
vg, then we must visit every node of G in the direction of u before returning to v.
However, we cannot reach v via v1, as the only virtual node of w connected to vy is
the successor of v1, and cannot be its predecessor, which implies Claim (2). O

Since we already know how to compute SSSP and the diameter on trees, for the
remainder of this section we assume that G contains a cycle. In order to solve SSSP,
we first perform our SSSP algorithm for tree graphs from source s in the tree T, in
which s lies (note that s may be v itself). Thereby, every node in T}, learns its distance
to s. Specifically, the cycle node v learns d(s,v). After performing SSSP with source
v on the cycle nodes only, every cycle node u # v knows d(s,v)+d(v,u) = d(s,u) and
can inform all nodes in its tree T, about d(s, u) using Lemma 5.4. Finally, u performs
SSSP in T, with source u, whereby each node w € T, learns d(s,u) + d(u,w) =
d(s,w). Together with Theorems 5.6, we obtain the following theorem.
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Theorem 5.12 (Pseudotree SSSP). SSSP can be computed in any pseudotree in
time O(logn).

We now describe how to compute the diameter in a pseudotree. In our algorithm,
every cycle node v contributes up to two candidates for the diameter. The first
candidate for a node v is the diameter of its tree D(Ty). If ecc(v) > h(v), then v
also contributes the value ecc(v)+ h(v) as a candidate. We first show how the values
can be computed, and then prove that the maximum of all candidates, which can
easily be determined using a variant of Lemma 5.4, is the diameter of G.

After v has identified itself as a cycle node, and knows which of its neighbors are
cycle nodes, it can compute its height h(v) in time O(logn) using Lemma 5.5 and
5.8 in T,,. Furthermore, D(7},) can be computed in time O(logn) via an application
of Theorem 5.10.

It remains to show how v can learn ecc(v). We define my(v) := maxyey h(u) —
dy(v,u), and m,(v) := maxyuecy h(u) — d,(v,u). Recall that dy(v,u) and d,(v,u) de-
note the distances from v to u along a left or right traversal of the cycle, respectively.
Here, we require that the nodes agree on a notion of left and right, which we achieve
as a byproduct of the algorithm of Theorem 5.10.

Lemma 5.13 (Eccentricity of Cycle Nodes). Let v € V' be a cycle node and let vy
and v, be the left and right farthest nodes of v, respectively. We have that

ecc(v) = max{dy(v,ve) + my(ve), dr(v,vr) + mye(v,)}.

Proof. Let t € V such that d(v,t) = ecc(v), and let u be a cycle node such that ¢ is a
node of T,,. W.l.o.g., assume that u lies on the right side of v, i.e., d,(v,u) < dy(v,u).
We define dy and d, to be dy(v,vy) and d,.(v,v,), respectively. We show that (1)
dy + my(vy) > ecc(v), and that (2) dy + my(ve) < ecc(v) and d, + my(v,) < ecc(v).
Both statements together immediately imply the claim.

For (1), note that v, will consider u as a cycle node for the computation of my(v,),
and thus my(v,) > h(u) — dg(vy, u). Therefore, we have that

dy + my(vy) > dr — dp(vp,u) + h(u) = dp(v,u) + h(u) = d(v, t).

For (2), we only show that dy+m,(vs) < ecc(v); the other side is analogous. Let w
be the node such that m,(v;) = h(w)—d,(vs, w). First, assume that w lies on the left
side of v, i.e., dp(v,w) < d,(v,w). In this case, we have that d, (v, w) = dy —dy(v, w),
which implies

mr(ve) = h(w) — dy(ve, w)
= h(w) + de(v,w) — dy
< ecc(v) — dy.
Now, assume that w lies on the right side of w, in which case d, (vs, w) = dp+d, (v, w).
Concluding our proof, we have that

my(vg) = h(w) — dy(ve, w)
= h(w) — d,(v,w) — dy
< h(w) + dr(v,w) — dy
< ecc(v) — dy. O
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Once each cycle node v knows my(v) and m,(v), every cycle node u can easily infer
its eccentricity by performing the diameter algorithm for the cycle of Theorem 5.3
to learn its farthest nodes. The corresponding m, and m, values can be obtained
alongside this execution. Therefore, it remains to show how every cycle node v can
compute my(v) and m,(v).

To do so, the nodes first establish weighted shortcuts along a left and right traver-
sal using the pointer jumping approach of the Introduction Algorithm on the cycle.
Having agreed on a common notion of left and right, the node can ensure that their
left and right neighbors correspond to one another (i.e., if u is a right neighbor r;
of v, then v is a left neighbor ¢; of u). Afterwards, every cycle node v computes
mye(v) (and, analogously, m,(v)) in the following way. v maintains a value x,,, which
will obtain the value my(v) after O(logn) rounds. Initially, z, := h(v). In the first
round, every cycle node v sends z, — w({v,r1}) to its right neighbor ;. When v
receives a value z at the beginning of round i, it sets x, := max{z,,z} and sends
xy —w({v,ri}) to r;.

Lemma 5.14. At the end of round [logn| + 1, x, = my(v).

Proof. We show that at the end of round ¢ > 1,

xy, = max (h(u) —dy(v,u)),
u€Vy(v,i)

where Vj(v, i) contains node u € V' if the (directed) path from v to u in G contains
at most 2°=! — 1 hops. The lemma follows from the fact that Vy(v, [logn] +1) = V.

At the end of round 1, z, = h(v), which establishes the base case since v is the
only node within 0 hops from v. By the induction hypothesis, at the beginning
of round ¢ > 1 we have that z, = max,ey,(v,i—1)(h(v) — d¢(v,u)). Furthermore, v
receives

x = max  (h(u) —de(bi—1,u)) — w({li—1,v})

u€Vp(€i—1,i—1)
(h(u) = de(v, u)).

max
uGVZ(Zi,l,ifl)
Since Vy(v,i — 1) U Vp(li—1,i — 1) = Vy(v,4), we conclude that

max{x,,z} = max (h(u) — de(v,u)). O
u€Vp(v,3)
Using the previous results, the nodes can now compute their candidates and de-

termine the maximum of all candidates. It remains to show the maximum of all
candidates actually gives the diameter of G.

Lemma 5.15. Let C be the set of all candidates. max.cc{c} = D.

Proof. First, note that since every candidate value corresponds to the length of a
shortest path in G, ¢ < D for all ¢ € C. Let s,t € V be two nodes such that
D = d(s,t), and let T}, and T, with cycle nodes v and w be the trees of s and ¢,
respectively. We show that v or w chooses D as one of their candidates. First, note
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Figure 5.4.: The blocks of a cactus graph.
Fach block is either a single
edge (dotted edges), or a sim-
ple cycle (outlined by gray

edges). O

that if one of the two nodes s and ¢, say s, is a cycle node, then D = ecc(v) =
ecc(v) + h(v), and ecc(v) > h(v) = 0; therefore, v chooses D as a candidate.
Therefore, assume that both s and ¢ are tree nodes. If s and ¢ belong to the same
tree, i.e., v = w, we have that d(s,t) = D(T,), which is a candidate of v. Otherwise,
we only have to show that ecc(v) > h(v) or ecc(w) > h(w), since either case implies
that v or u contributes d(s,t) as a candidate. Assume to the contrary that ecc(v) =
h(v) and ecc(w) = h(w) (note that ecc(u) > h(u) for every cycle node u). Since
ecc(w) > h(v), we clearly have that ecc(v) = h(v) < ecc(w) = h(w). However, since
v and w are different nodes, we also have that ecc(v) > d(v, w)+h(w) > h(w), which
is a contradiction. O

We conclude the final theorem of this section.

Theorem 5.16 (Pseudotree Diameter). The diameter can be computed in any pseu-
dotree in time O(logn).

5.5. Cactus Graphs

Our algorithms for cactus graphs rely on an algorithm to compute the biconnected
components (or blocks) of G. A block is a maximal biconnected subgraph, where
a graph is called biconnected if the removal of a single node would not disconnect
the graph. Note that for any graph, each edge lies in exactly one block. In case of
cactus graphs, each block is either a single edge that is not contained in any cycle (a
bridge) or a simple cycle (see Figure 5.4). By computing the blocks of G, each node
v € V classifies its incident edges into bridges (if there is no other edge incident to
v contained in the same block) and pairs of edges that lie in the same cycle.

Computing the Blocks of G We compute the blocks by using a variant of the
algorithm of Goétte et al. [G6t+20, Theorem 1.3] for the NCCy under the constraint
that the input graph (which is not necessarily a cactus graph) has constant degree.
We point out how the lemma is helpful for cactus graphs, and then use a simulation
of the biconnectivity algorithm of Tarjan and Vishkin [TV85] akin to the approach
of Gotte et al. [Got+20, Theorem 1.4] to compute the blocks of G. The description
and proofs of the following three lemmas are very technical and mainly describe
adaptions of the algorithm of Gotte et al.

Lemma 5.17 (Variant of [G6t+20, Theorem 1.3]). Let G be any graph with constant
degree. A spanning tree of G can be computed in time O(logn), w.h.p., in the NCCy.

Proof. To prove the lemma, we need a combination of [G6t+20, Theorem 1.1], which
transforms the initial graph into a well-formed tree, w.h.p., and a variant of the
spanning tree algorithm given in [G6t+20, Theorem 1.3].
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In [G6t+20, Theorem 1.1}, a well-formed tree is obtained from an intermediate
graph G that has degree and diameter O(logn). The edges of G are created
by performing random walks of constant length in a graph Gp_i, which again is
obtained from random walks in G _o, where Gy is the graph G extended by some
self-loops and edge copies. More precisely, each edge of G; results from performing
a random walk of constant length in G;_1, and connecting the two endpoints of the
random walk.

A spanning tree of G is obtained as follows. Let B be a BFS tree of G, which
can be computed by a simple breadth-first search since Gy that has degree and
diameter O(logn). Consider a depth-first traversal of B that is rooted at the node
with highest identifier. By using the Euler tour technique as described in Section 5.3,
each node can determine the edge of B over which it is reached first in the traversal
(we can apply the technique since G has degree O(logn), and can therefore use
the redistribution framework using communication in the NCCy only). Furthermore,
we can enumerate the edges in the order they are visited by the traversal. We then
replace each edge of B by the edges of Gr_1. Since each edge of B resulted from
a random walk of constant length in G_1, and each node is traversed by at most
O(logn) random walks in each graph, the nodes of each edge can be informed in
constant time. Specifically, each node can easily infer the edge of Gr_1 over which
it is reached first in the depth-first traversal of B if each edge was replaced by edges
of Gr—1 (see also Theorem 3.31). The union of these first edges in G gives a
spanning tree of G_1. By repeating this process, after O(logn) steps we have a
spanning tree of Gy, which must also be a spanning tree of G. O

Now let G be a cactus graph. To use the previous lemma on cactus graphs, we
need to transform G into a constant-degree graph G’ using the idea of Section 3.2 in
Chapter 3. Then, we compute a spanning tree S’ on G’ using the previous lemma,
and finally infer a spanning tree S of G from S’ using the approach of Section 3.5.
The details can be found in the proof of the following lemma.

Lemma 5.18 (Cactus Graph Spanning Tree). A spanning tree of a cactus graph G
can be computed in time O(logn), w.h.p.

Proof. We first use [BE10, Theorem 3.5] to compute an orientation of G; since the
arboricity of G is 2, each node v will have 6 out-neighbors. By arranging the in-
neighbors of each node as a list as described in Section 3.2, Step 2, we obtain a
graph G’ with degree at most 13 (i.e., each node keeps at most 6 outgoing edges, is
assigned at most 6 new siblings, and keeps at most one incoming edge). By using the
algorithm of Lemma 5.17, we obtain a spanning tree S’ of G’. To infer a spanning
tree S of G, we use the algorithm of Theorem 3.31 that first enumerates the nodes
of S" along a depth-first traversal, and then selects edges in G according to this
enumeration. As described for Theorem 3.31, this yields a spanning tree of G. [

To obtain the blocks of G, we perform a simulation of the algorithm of Tarjan
and Vishkin [TV85] in almost the same way as Gotte et al. [G6t+20, Theorem 1.4].
The algorithm relies on a spanning tree, which we compute using Lemma 5.18, and
constructs a helper graph whose connected components yield the blocks of G. The
only difference from our application to the simulation described by Gotte et al. lies
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in the fact that we do not rely on the complicated algorithm of [G&t+20, Theorem
1.2] for computing the connected components, but use Lemma 5.17 together with
the child-sibling approach of Section 3.2, exploiting the properties of a cactus graph.

Lemma 5.19 (Cactus Graph Blocks). The blocks of a cactus graph G can be com-
puted in time O(logn), w.h.p.

Proof. Let S be a spanning tree of G rooted at the node with highest identifier s
obtained by using Lemmas 5.18 and 5.5, where s is known from the algorithm of
Lemma 5.17. In the biconnectivity algorithm of Tarjan and Vishkin [TV85], a helper
graph G” is constructed that contains a node {u,v} for every edge {u,v} of S, and
nodes are connected according to three rules. We use the simulation described in
[G6t4-20, Section 4.4], where every node v # s simulates the edge to its parent wu,
and the edges of G” are determined by computing some subtree aggregates using a
variant of Lemma 5.7.

The only difference lies in Step 4 of the simulation. Instead of using [G6t+-20,
Theorem 1.2] to compute the connected components of the helper graph G”, we
observe that every node v is only adjacent to at most one node w in G that lies in
a different subtree than v in the rooted spanning tree S of G; otherwise, the edge
from v to its parent u in .S would lie in two different cycles, which is not possible
in a cactus graph. Therefore, the edge {v,u} in S (which becomes a node in G”)
will only create one connection to the parent edge {w,z} of w according to Rule 1
of Step 3 of [G6t+20, Section 4.4]. Rules 2 then adds an additional single edge to
each node of G”, and the connections of Rule 3 can be disregarded completely for
our simulation.

Therefore, the arboricity of G” is constant, and we can again (1) use [BE10,
Theorem 3.5] to compute an O(1)-orientation of G”, (2) transform the graph into
a constant-degree graph using the child-sibling approach of Section 3.2, and (3)
compute a spanning tree on each connected component of the resulting graph using
Lemma 5.17. As Gotte et al. [G6t+20] point out, the simulation of these algorithms
is possible since the local communication required for (1) and (2) can be carried out
using a constant number of local communication rounds in G, and for (3) every node
v € V only simulates a single node with constant degree. Finally, using a simulation
of Lemma 5.4 on the spanning trees, we can distinguish the connected components
from one another, which concludes the lemma. ]

SSSP in Cactus Graphs Using the lemma above, every node can determine
which of its incident edges lie in the same block in time O(logn), w.h.p. Let s be
the source for the SSSP Problem. First, we compute the anchor node ac of each
cycle C' in G, which is the node of the cycle that is closest to s (if s is a cycle
node, then the anchor node of that cycle is s itself). To do so, we replace each cycle
C in G by a binary tree T of height O(logn) as described in [Gmy-+17a]. More
precisely, we first establish shortcut edges using the Introduction Algorithm in each
cycle, and then perform a broadcast from the node with highest identifier in C' for
O(logn) rounds. If in some round a node receives the broadcast for the first time
from /; or r;, it sets that node as its parent in T and forwards the broadcast to
¢; and rj, where j = min{i — 1,0}. After O(logn) rounds, T¢ is a binary tree that
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contains all nodes of C' and that has height O(logn). To perform the execution in
all cycles in parallel, each node simulates one virtual node for each cycle it lies in
and connects the virtual nodes using its knowledge of the blocks of G. To keep the
global communication low, we again use the redistribution framework described in
Section 5.3, which is possible since the arboricity of G is 2.

Lemma 5.20 (Anchor Nodes). Let T be the (unweighted) tree that results from
taking the union of all trees To and all bridges in G. For each cycle C, the node
argmin, .- dr(s,v) is the anchor node ac of C.

The correctness of the lemma above simply follows from the fact that any shortest
path from s to any node in C' must contain the anchor node of C both in G and in
T. Therefore, the anchor node of each cycle can be computed by first performing
the SSSP algorithm for trees with source s in 7" and then conducting a broadcast in
each cycle. Now let v be the anchor node of some cycle C' in G. By performing the
diameter algorithm of Theorem 5.3 in C, v can compute its left and right farthest
nodes vy and v, in C. Again, to perform all executions in parallel, we use our
redistribution framework. Our approach for SSSP is based on the following lemma.

Lemma 5.21 (Shortest-Path Tree). Let S be the graph that results from removing
the edge {vg, v, } from each cycle C with anchor node v. S is a shortest-path tree of
G with source s.

Proof. Since we delete one edge of each cycle, and every edge is only contained in
exactly one cycle, S is a tree. Assume to the contrary that S does not contain a
shortest path from s to some other node, i.e., there exists a path P from s to some
node ¢ in G that is shorter than the (unique) shortest path Pg from s to ¢ in S.
Clearly, if P traverses any cycles, then Pg traverses these cycles in the same order,
and each cycle is entered and left over the same nodes in P and Pg. However, P may
differ from Pg in that it may traverse some cycles over the other side of the cycle,
traversing the deleted edge. Since w(P) < w(Ps), not all subpaths over cycles that
traverse the deleted edge of that cycle can have the same length as the subpath that
goes along the other side of the respective cycle.

More specifically, P must contain an edge e of a cycle C such that the subpath
P’ = (v,...,u) of P that contains only the nodes of C' is strictly shorter than the
subpath P¢ of Pg from v to u in S. Note that v must be the anchor node of C, and
P’ is the (unique) path from v to u in C' that contains e, whereas S contains the
unique path P from v to u that does not contain e (i.e., it goes along the other
side of the cycle). However, by definition of e, P¢ must already be a shortest path
between v and u in G, which contradicts the assumption that P’ is shorter. O

Note that the shortest-path tree of the above lemma can easily be rooted at s
using Lemma 5.5. Therefore, we can perform the SSSP algorithm for trees given in
Theorem 5.6 on S. We conclude the following theorem.

Theorem 5.22 (Cactus Graph SSSP). SSSP can be computed in any cactus graph
in time O(logn), w.h.p.
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Diameter in Cactus Graphs To compute the diameter of GG, we first perform
the algorithm of Lemma 5.21 with the node that has highest identifier as source s,
which yields a (rooted) shortest-path tree S. Note that s is known, e.g., from the
execution of the algorithm of Lemma 5.17. Let Q(v) denote the children of v in S.
Using Lemma 5.8, each node v can compute its height h(v) in S and can locally
determine the value

m(v) = uwe@@r)r}gé#]g(w)(h(u) + h(w) + w(v,u) + w(v,w)),
where B(u) denotes the block of u. Note that m(v) corresponds to the length of
some shortest path of G.

We further define the pseudotree Il of each cycle C as the graph that contains
all edges of C' and, additionally, an edge {v,t,} for each node v # ac of C, where
ty is a node that is simulated by v, and w({v,t,}) = max,cq)c(h(u) + w({v,u})).
Intuitively, each node v of C' that is not the anchor node is attached an edge whose
weight equals the height of its subtree in S without considering the child of v that also
lies in C (if that exists). Then, for each cycle C' in parallel, we perform the algorithm
of Theorem 5.16 on Ilx to compute its diameter D(Il¢) (using the redistribution
framework). We obtain the diameter of G as the value

D= h D(TIo)}.
max{h(s), maxm(v), max D(Ilc)}

By showing that D = D, we conclude the following theorem.

Theorem 5.23 (Cactus Graph Diameter). The diameter can be computed in any
cactus graph in time O(logn), w.h.p.

Proof. We first show that D < D, and then prove D < D.

First, note that h(v) < D for allv € V. Now let v € V and consider h(u)+ h(w)+
w(v,u) + w(v,w) for some u,w € Q(v) such that B(u) # B(w). Clearly, h(u) and
h(w) correspond to the length of a shortest path since S is a shortest-path tree and
u and w are children of v in S. Furthermore, since the edges {v,u} and {v,w} lie in
different blocks, there is no other path between nodes u and w apart from going over
v. This implies that m(v) < D. Finally, the weight of each attached edge {v,t,}
of a cycle C' corresponds to the length of the path from v to some descendant of
v in S, which must be a shortest path. Therefore, for any shortest path in Il¢o, a
shortest path of the same length must exist in G, which implies that D(Il¢) < D.
We conclude that D < D.

To show that D < D, let P = (v1,... ,vr) be a longest shortest path in G. First,
note that each cycle in G is only entered and left at most once by P (if it is left
at some node, it may only be entered again at the same node, which is impossible
since we have positive edge weights). We first slightly change P to ensure that it
does not simultaneously contain the deleted edge and the anchor node of the same
cycle. Consider any (maximal) subpath Po of P that contains edges of a cycle C
in G, and assume that P’ contains the deleted edge ec of C (i.e., the edge that is
incident to the farthest nodes of C’s anchor node a¢ in the cycle). If Po contains
both ec and ac, then the cycle must be symmetric: Po begins at ec and ends at a¢
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(or vice versa), and the other side of the cycle has the same weight as Pr; any other
case would contradict the definition of ec. Therefore, we can simply replace Po by
the other edges of C and obtain a path of the same weight that does not contain ec.
After replacing each subpath Po of P for each cycle C, P either (1) only contains
edges of S, or (2) contains a deleted edge ec. In the second case, P cannot contain
ac, and therefore every other cycle contained in P must be entered over its anchor
node, which implies that no other deleted edge can be contained in P.

Assume that Case (1) holds. In this case, P can be divided into two paths P, =
(vi,...,v;), where {v;,vi41} is directed from v; to viyq for all 1 < i < j, and
Py = (vj,...,v;), where {v;,v;41} is directed from viyq to v; for all j < i < k. If
cither P or Py is empty, then v; = s and D = h(s) < D. Otherwise, if the edges
{vj—1,v;} and {vj,v;41} lie in different blocks, D = w(Py) + w(P,) < my, < D. If
they lie in the same block (more precisely, in the same cycle C'), then there exists a
corresponding shortest path in II, and D < D(Il¢) < D.

Finally, assume that Case (2) holds. Let ec be the single deleted edge of P and P
be the subpath of P contained in C. By the arguments above, P does not contain
ac. Let u and v be the two endpoints of Pg, where u is visited in P before v, and
let P = P, o Pgo P,, where P, is the subpath from P’s first node to u, and P, is the
subpath from v to the last node to P. Since P, and P, do not contain any deleted
edge, nor any edge of C, it holds that w(P,) < w({u,t,}) (recall that the weight of
u’s virtual edge is the height of u in S without the subtree of u’s child in C), and
w(Py,) < w({v,t,}). Let P’ be the path in Il that starts at {u,t,}, then follows
P¢, and ends at {v,t,}. Since Pg is a shortest path in C, P’ is a shortest path in
Il and w(P) < w(P’'), which implies that D = w(P) < w(P') < D(Ilg) < D. O

5.6. Sparse Graphs

In this final section, we present constant factor approximations for SSSP and the
diameter in graphs that contain at most n + @(n!/3) edges and that have arboricity
at most O(logn). Our algorithm for such graphs relies on an MST M = (V, E’) of
G, where E' C E. M can be computed deterministically in time O(log?n) using the
algorithm of Gmyr et al. [Gmy-+17a, Observation 4] in a modified way, as described in
the lemma below. We remark that the original algorithm computes a (not necessarily
minimum) spanning tree, which would actually already suffice for the results of this
chapter. However, if G contains edges with exceptionally large weights, an MST
may yield much better results in practice.

Lemma 5.24 (MST). There is an algorithm that computes an MST of G determin-
istically in time O(log?n).

Proof. Similar to our algorithm of Chapter 3, the Overlay Construction Algorithm
presented by CGmyr et al. [Gmy+17a] constructs a well-formed tree in time O(log? n)
by alternatingly grouping and merging supernodes until a single supernode remains.
As a byproduct, as remarked in [Gmy+17a, Observation 4], the edges over which
merge requests have been sent from one supernode to another form a spanning tree.

To obtain an MST, we change the way a supernode u chooses a neighboring
supernode to merge with. More specifically, we use the same approach as for our
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MST algorithm for the NCC in Section 4.2 and mimic Bortivka’s algorithm. Instead
of choosing the adjacent supernode v that has the highest identifier, and sending a
merge request if v’s identifier is higher than w’s identifier, u simply picks its lightest
outgoing edge. Unlike the grouping stage described by Gmyr et al., this yields
components of supernodes that form pseudotrees with a cycle of length 2 (see, e.g.,
[JM95]). However, such cycles can easily be resolved locally by the supernodes such
that the resulting components form trees.

To perform the merging stage of the algorithm in our model, in which each supern-
ode becomes internally reorganized as a binary tree of depth O(logn), we can use a
combination of our previous techniques. First, we transform the internal spanning
tree of each component, which consists of all previously selected merge edges, into a
constant-degree child-sibling tree. To do so, we first root the tree using Lemma 5.5,
and then let each inner node arrange its children as a list, keeping an edge only to
its first child (see also Section 3.2). Using the strategy of Lemma 3.23, we can easily
establish a binary tree within each component. O

We call each edge e € E'\ E’ a non-tree edge. Further, we call a node shortcut
node if it is adjacent to a non-tree edge, and define ¥ C V as the set of shortcut
nodes. Contrary to the MST algorithm of Section 4.2, after computing M every
node v € ¥ knows that it is a shortcut node, i.e., if one of its incident edges has not
been added to E’. In the remainder of this section, we will compute approximate
distances by (1) computing the distance from each node to its closest shortcut node
in G, and (2) determining the distance between any two shortcut nodes in G. For
any s,t € V, we finally obtain a good approximation for d(s,t) by considering the
path in M as well as a path that contains the closest shortcut nodes of s and ¢.

Our algorithms rely on a balanced decomposition tree Th;, which allows us to
quickly determine the distance between any two nodes in G, and which is presented
in Section 5.6.1. In Section 5.6.2, T, is extended by a set of edges that allow us
to solve (1) by performing a distributed multi-source Bellman-Ford algorithm for
O(logn) rounds. For (2), in Section 5.6.3 we first compute the distance between
any two shortcut nodes in M, and then perform matrix multiplications to obtain
the pairwise distances between shortcut nodes in G. By exploiting the fact that
|| = O(n'/3), and using techniques of Chapter 4, we are able to distribute the
©(n) operations of each of the O(logn) multiplications efficiently using the global
network. In Section 5.6.4, we finally show how the information can be used to
compute 3-approximations for SSSP and the diameter.

For simplicity, in the following sections we assume that M has degree 3. Justifying
this assumption, we remark that M can easily be transformed into such a tree while
preserving the distances in M: First, we root the tree at the node with highest
identifier using Lemma 5.5. Then, every node v replaces the edges to its children by
a binary tree of virtual nodes, where the leaf nodes are the children of v, the edge
from each leaf u to its parent is assigned the weight w({v,u}), and all inner edges
have weight 0. The virtual nodes are distributed evenly among the children of v such
that each child is only tasked with the simulation of at most one virtual node. Clearly,
the virtual edges can be established using the local network. Furthermore, since the
resulting graph has constant degree, any algorithm in this section that relies on local
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communication can actually be performed using global communication only. Note
that the edge weights of this construction are no longer strictly positive; however,
one can easily verify that the algorithms of this section also work with non-negative
edge weights.

5.6.1. Hierarchical Tree Decomposition

In this section, we present an algorithm to compute a hierarchical tree decomposition
of M, resulting in a balanced decomposition tree Th;. Ty will enable us to compute
distances between nodes in M in time O(logn), despite the fact that the diameter
of M may be very high.

Our algorithm constructs Tjs as a binary rooted tree Thy = (V, Ep) of height
O(logn) with root r € V' (which is the node that has highest identifier) by selecting
a set of global edges Er. Each node v € V knows its parent pr(u) € V. To each
edge {u,v} € Ep we assign a weight w({u,v}) that equals the sum of the weights
of all edges on the (unique) path from u to v in M. Further, each node v € V is
assigned a distinct label (v) € {0,1}90°6™) such that I(v) is a prefix of I(u) for all
children u of v in Ty, and I(r) = £ (the empty word).

From a high level, the algorithm works as follows. Starting with M, within
O(logn) iterations M is divided into smaller and smaller components until each
component consists of a single node. More specifically, in iteration i, every remain-
ing component A handles one recursive call of the algorithm, where each recursive
call is performed independently from the recursive calls executed in other compo-
nents. The goal of A is to select a split node x, which becomes a node at depth i — 1
in Ty, and whose removal from M divides A into components of size at most |A|/2.
The split node = then recursively calls the algorithm in each resulting component;
the split nodes that are selected in each component become children of x in Ty (see
the example in Figure 5.5).

When the algorithm is called at some node v, it is associated with a label parameter
l € {0, 1}0(10g ") and a parent parameter p € V. The first recursive call is initiated
at node r with parameters | = € and p = ). Assume that a recursive call is issued at
v € V, let A be the component of M in which v lies, and let A1, A2 and Ag be the at
most three components of A that result from removing v. Using Lemma 5.7, every
node u in A; can easily compute the number of nodes that lie in each of its adjacent
subtrees in A; (i.e., the size of the resulting components of A; after removing ).
There must exist a split node x1 in A; whose removal divides Ay into components
of size at most |V[A1]|/2 (the existence of such a node is shown in Lemma 6.3 of
the following chapter); if there are multiple such nodes, let x1 be the one that has
highest identifier. Correspondingly, there are split nodes z2 in Ay and z3 in As. v
learns z1,x2 and x3 using Lemma 5.4 and sets these nodes as its children in T};.
By performing the SSSP algorithm of Theorem 5.6 with source v in Ay, x1 learns
dpr(x1,v), which becomes the weight of the edge {v,z1} (correspondingly, the edges
{v,x2} and {v,z3} are established). To continue the recursion in Ay, = calls z1 with
label parameter [ o 00 and parent parameter v. Additionally, z9 is called with [ o 01,
and xg with [ o 10.
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Figure 5.5.: (a) The graph M after the first step of the tree decomposition. The
black node is the root r, and the gray nodes are the first split nodes
chosen for each of r’s subtrees. The algorithm will recursively be called
in each connected component of white nodes. (b) A possible resulting
balanced decomposition tree Tyy.

Theorem 5.25 (Balanced Decomposition Tree). A balanced decomposition tree Tyy
for M can be computed in time O(log®n).

Proof. 1t is easy to see that our algorithm constructs a correct balanced decompo-
sition tree. It remains to analyze the runtime of our algorithm. In each recursive
call we need O(logn) rounds to compute the sizes of all subtrees for any node by
Lemma 5.7 and O(logn) rounds to find a split node due to Lemma 5.4. Computing
the weight of a global edge chosen to be in Ep takes O(logn) rounds by Theo-
rem 5.6. Since the component’s sizes at least halve in every iteration, the algorithm
terminates after O(logn) iterations. This proves the theorem. O

Clearly, one can route a message from any node s to any node t in O(logn) rounds
by following the unique path in the tree from s to ¢, using the node labels to find
the next node on the path. However, the sum of the edge weights along that path
may be higher than the actual distance between s and ¢ in M.

5.6.2. Finding Nearest Shortcut Nodes

To efficiently compute the nearest shortcut node for each node u € V, we extend
Ty to a distance graph Dy = (V, Ep), Ep 2 Erp, by establishing additional edges
between the nodes of Tjs. Specifically, unlike T3, the distance between any two
nodes in Dp will be equal to their distance in M, which allows us to employ a
distributed Bellman-Ford approach.

We describe the algorithm to construct Dy from the perspective of a fixed node
u € V (for an illustration, see Figure 5.6). For each edge {u,v} € Ep such that u =
pr(v) for which there does not exist a local edge {u,v} € E’, we know that the edge
{u,v} “skips” the nodes on the unique path between u and v in M. Consequently,
these nodes must lie in a subtree of v in Th;. Therefore, to compute the exact
distance from u to a skipped node w, we cannot simply add up the edges in E7 on
the path from u to w, as this sum must be larger than the distance d(u,w).

To circumvent this problem, wu’s goal is to establish additional edges to some
of these skipped nodes. Let z € V be the neighbor of w in M that lies on the
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Figure 5.6.: Example for the construction of additional edges (indicated by the
dashed lines) going into the node u. Straight black edges are edges
of M, and dotted edges are the edges of Ths, directed from child to
parent. v is a child of w in T, and z is the descendant of v adjacent
to w in M. Starting with v’s child y in T, every descendant of v that
goes in the direction of u in M adds an edge to v in Dy (dashed edges
below). No white node adds an edge to u, since it lies in the direction
opposite to u.

unique path from u to v in M. To initiate the construction of edges in each of its
subtrees, u sends a message to each child v of its at most 3 children in T}; that
skipped some nodes. Such a message to v contains I(x), I(u), id(u) and w({u,v}).
Upon receiving the call from u, v contacts its child node y in T); whose label is a
prefix of [(z), forwarding u’s identifier, [(x) and the (updated) weight w({y,u}) =
w({u,v}) —w({v,y}). y then adds the edge {y,u} with weight w({y,u}) to the set
Ep by informing u about it. Then, y continues the recursion at its child in T
that lies in z’s direction until the process reaches «x itself. Since the height of Ty, is
O(logn), u learns at most O(logn) additional edges and its degree in Dy therefore
is at most O(logn).

Note that since the process from u propagates down the tree level by level, we
can perform the algorithm at all nodes in parallel, whereby the separate construc-
tion processes follow each other in a pipelined fashion without causing too much
communication. Together with Theorem 5.25, we obtain the following lemma.

Lemma 5.26 (Distance Graph). The distance graph Dp = (V, Ep) for M can be
computed in time O(log®n).

From the way we construct the node’s additional edges in Ep, and the fact that
the edges in Ep preserve distances in M, we conclude the following lemma.

Lemma 5.27. For any edge {u,v} € Ep it holds w({u,v}) = dpr(u,v).
The next lemma is crucial for the correctness of the algorithms that follow.

Lemma 5.28 (Shortest Paths in Dr). For every u,v € V we have that dp,(u,v) =
dy(u,v) and SPD(Dr) = O(logn).

Proof. To prove the lemma, we show that (1) every path from u to v in Dy has
length at least dps(u,v), and (2) for every u,v € V there exists a path P from u to
v in Dy with w(P) = dpr(u,v) and |P| = O(logn) that only contains nodes of the
unique path from u to v in Tj. For (1), consider any path P from u to v in Dp. By
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construction of our edges, we have that w({z,y}) = da(z,y) for every edge e € Ep.
Therefore, by triangle inequality, we have that w(P) > dys(u,v).

For (2), let Pr = (u = z9,21,%2,...,Zm = v) be the (unique) path from u to v
in Ths. By the construction of Ty, |Pr| = O(logn). In case that w(Pr) = dps(u,v),
we are done, so let us assume that w(Pr) > dys(u,v). We show that we can replace
subpaths of Pr by single edges out of Ep \ Ep until we arrive at a path that has the
desired properties.

Let w be the node in Py that has smallest depth in T, which is the lowest common
ancestor of w and v in Th;. We follow the right subpath P, = (w = z;,...,z, = v)
of Pp from w to v (the left subpath P, from u to w is analogous). Starting at w, we
sum the weights of the edges of T3, on P, until we reach a node x; such that the
sum is higher than dy(w, z;). In this case, the edge {2;_2,x;_1} must have skipped
the node z;, i.e., z; lies on the unique path from x;_» to x;_1 in M. Continuing
at z;, we now follow P, as long as we only move in the direction of z;_5 in M, i.e.,
we move to the next node if that node is closer to z;_2 in M than the previous
one, until we stop at a node x,. By the definition of our algorithm, there must
be an edge {z;_2,2;} € Ep with w({zj_2,z1}) = dy({zj—2,21}). We replace the
subpath of P, from x;_o to xj, by this edge, after which the length of the subpath of
P, from w to xy equals dps (i, xx). We continue the process starting at zj until we
reach z,,, and obtain that w(P,) = dy(x;, z). After we have performed the same
process at Py (in the other direction), we have that w(Pr) = das(u,v). Finally, note
that |Pr| = O(logn), so Pr has all the desired properties of the path P from the
statement of the lemma. O

For any node v € V, we define the nearest shortcut node of v as o(v) :=
argmin, ¢y, d(v,u). To let each node v determine o(v) and d(v,o(v)), we perform a
distributed version of the Bellman-Ford algorithm that works as follows. In the first
round, every shortcut node sends a message associated with its own identifier and
distance value 0 to itself. In every subsequent round, every node v € V' chooses the
message with smallest distance value d received so far (breaking ties by choosing
the one associated with the node with highest identifier), and sends a message
containing d + w({v,u}) to each neighbor uw in Dp. After O(logn) rounds, every
node v knows the distance dys(v,u) to its closest shortcut node u in M, which we
formally prove below. Since for any closest shortcut node w in G there must be a
shortest path from v to w that only contains edges of M, this implies that u must
also be closest to v in G, i.e., u = o(v), and dps(v,u) = d(v,0(v)).

Note that each node has only created additional edges to its descendants in T,
during the construction of Dy, therefore the degree of Dr is O(logn) and we can
easily perform the algorithm described above using the global network.

Lemma 5.29 (Nearest Shortcut Nodes). After O(logn) rounds, each node v € V
knows id(u) of its nearest shortcut node o(v) in G and its distance d(v,o(v)) to it.

Proof. We first show that v learns id(u) and das(u,v) of its closest shortcut node
w in M (if there are multiple, let u be the one with highest identifier). Due to
Lemma 5.28, we know that v will never receive a message with a smaller distance
value than dps(u,v). Furthermore, there is a path P = (v = z1,...,2, = v) of
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length O(logn) from u to v with w(P) = das(u,v). We claim that a message from
u traverses the whole path P until it arrives at v after O(logn) rounds. Assume to
the contrary that this is not the case. Then there must exist a node x; on the path
P that does not send a message with id(u) and distance value dys(u, x;y1) to Tj1.
This can only happen if x; knows a shortcut node z with dy/(z,2;) < dar(u,z;).
This implies that z is a shortcut node with ds(v,2) < dps(v,u), contradicting the
fact that u is v’s nearest shortcut node. O

Finally, the following lemma, which we will use later, implies that for each node
v there is at most one edge in Ep \ Ep to an ancestor in T)y.

Lemma 5.30 (Constant Ancestor Degree). If our algorithm creates an edge from s to
t in Ep\ E7, where s is an ancestor of t in Tyy, then there is no edge {v,t} € Ep\ Er
from any node v on the (unique) path from s to t in Tyy.

Proof. Assume there exists an edge {s,t} € Ep \ Ep and let P = (s,v1,...,vp = t)
be the unique path from s to ¢ in Th;. Since s established an edge to ¢, the path
P from s to v; in M must contain node ¢t. Furthermore, all nodes v1,...,vg, and
potentially many other nodes, lie in that order on the subpath of P from vy to t.
Specifically, for each node v;, 1 < ¢ < k — 1, the subpath of P from v; to v;41 does
not contain any other node of P. Therefore, our algorithm will not establish any
additional edge in Ep \ Ep from v; to any other node of P, including t. O

5.6.3. Computing APSP between Shortcut Nodes

In this section, we first describe how the shortcut nodes can compute their pairwise
distances in M by using Dp. Then, we explain how the information can be used to
compute all pairwise distances between shortcut nodes in G by performing matrix
multiplications.

Compute Distances in M First, each node learns the total number of shortcut
nodes n. := |X|, and each shortcut node is assigned a unique identifier from [n.].
The first part can easily achieved using Lemma 5.4. For the second part, the nodes
use the strategy depicted in Figure 3.2c of Chapter 3, where all nodes of V' simulate
a butterfly network, and the shortcut nodes are enumerated from 0 to n. — 1 by
performing an aggregation and assigning intervals to the nodes.

Note that it is impossible for a shortcut node to explicitly learn all the distances to
all other shortcut nodes in polylogarithmic time, since it may have to learn Q(n!/?)
many bits. However, if we could distribute the distances of all O(n??) pairs of
shortcut nodes uniformly among all nodes of V, each node would only have to
store O(logn) bits. We make use of this in the following way. To each pair (i, )
of shortcut nodes we assign a representative h(i,j) € V, which is chosen using a
(pseudo-)random hash function & : [n.]?> — V that is known to all nodes and that
satisfies h(i,7) = h(j,i). Note that for a node v € V' there can be up to O(log n) keys
(i,7) for which h(i,j) = v, w.h.p., thus v has to act on behalf of at most O(logn)
nodes. The goal of h(i,j) is to infer dys(i,7) from learning all the edges on the
shortest path from 4 to j in Dyp.
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To do so, the representative h(i,j) first has to retrieve the labels [(i) and [(j)
of ¢ and j in Th;. However, i cannot send this information directly, as it would
have to reach the representatives of every shortcut node pair (i, k), of which there
may be up to Q(n!/?) many. Instead, it performs a multicast using our techniques
from Chapter 4 to inform all these representatives. To that end, h(i,j) first joins
the multicast groups of ¢ and j by participating in the construction of multicast
trees using Theorem 4.11 with parameters £ = O(logn) and L = O(n*?) (since
each node acts for at most O(logn) of the O(n?/3) representatives, w.h.p., and
each representative joins two multicast groups). Therefore, the multicast trees are
computed in time O(logn) and have congestion C' = O(logn), w.h.p. We then use
Theorem 4.12 to let each shortcut node i multicast its label I(7) to all representatives
h(i, k). With parameter / as the maximum number of representatives simulated by
the same node, which can easily be computed using Lemma 5.4 on M, and congestion
C, the theorem gives a runtime of O(logn), w.h.p.

From the knowledge of I(i) and I(j), h(i,j) can easily infer the labels of all nodes
on the path P from i to j in Tjs. Specifically, it knows the label I(z) of the lowest
common ancestor x of ¢ and j in T}y, which is simply the longest common prefix of
I(7) and (). We remark that, technically, h(i,j) can only infer the exact labels of
the nodes of P if it knew the degree of every node in 7. To circumvent this, h(7, j)
simply assumes that the tree is binary, which implies that some nodes of P (apart
from 4, j, and x) may not actually exist. However, as this is not a problem for the
algorithm, we disregard this issue in the remainder of this section.

The goal of h(i, j) is to retrieve the edge from each node v € P\ {z} to its parent
in Ty, as well as v’s additional edge to an ancestor in Dy, of which there can be
at most one by Lemma 5.30. Since by Lemma 5.28 these edges contain a shortest
path from i to j that preserves the distance in M, h(i, j) can easily compute d; (i, j)
using this information.

To retrieve the edges, h(i, j) joins the multicast groups of all nodes of P\ {x} using
Theorem 4.11. Then, each inner node of Th; performs a multicast using Theorem 4.12
to inform all nodes in its multicast group about the edge to its parent in Th;, and the
edge of Ep \ Er to an ancestor, if it exists (see Lemma 5.30). Since each node acts
on behalf of at most O(logn) representatives, and each representative joins O(logn)
multicast groups, all can be done in O(logn) rounds, w.h.p. Since a shortest path
between ¢ and j in D7 must be comprised of a subset of the acquired edges by the
proof of Lemma 5.28, we conclude the following lemma.

Lemma 5.31. Every representative h(i,j) learns dys(i,7) in time O(logn), w.h.p.

Compute Distances in G Let A € Ny be the distance matriz of the shortcut

nodes, where
Y Vda (i, 5) otherwise.

Our goal is to square A for [logn] 4+ 2 many iterations in the min-plus semiring.
More precisely, we define A! = A, and for ¢t > 1 we have that

t t—1 t—1
A?. = min (A%, + A2 ).
1, ke[nc}( i,k k,j )
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The following lemma shows that after squaring the matrix [logn| + 2 times, its
entries contain the distances in G.

logn]+2
Lemma 5.32. A?L-Og "

=d(i,j) for each i,j € X.

Proof. First, note that A’;j > d(i,j) for all 4,5 € ¥ and all ¢ > 1, since every entry
corresponds to the length of an actual path in G. We show by induction on ¢ that
for all ¢ > 2, we have that A?tj < minpep(; j—2) w(P), where P(i, j, 1) is the set of
all paths from i to j in G that contain at most 2° non-tree edges. Since any shortest
path between two shortcut nodes ¢ and j contains at most n — 1 non-tree edges,
Az[.logn'\+2 _ d(’L j)

1] ’ :

To establish the base case, we first show that for ¢t = 2, A;{j < minpep j0) w(P).
Let P be a path from i to j that contains at most 2° = 1 non-tree edge {vi, v}
such that w(P) = minpep(; ;) w(P'). W.lo.g., assume that v; appears first in P
(v1 might be 7). Let P; be the subpath of P from i to v1, and P be the subpath
from vo to j. Note that A}, < w(P;), AL . <w(e), and Al . < w(P;). Therefore,

1,1 V1,02 V2, —

A?,, <w(Py) +w(e) and A, ; < w(P,), which implies that

1,02

4 2 2 _ _ . /
Al <A, AL Sw(Pr) +w(e) +w(Pe) =w(P) = p/e%%?jp)w(P ).

Now let t > 2 and consider a path P € P(i,j,t — 2) such that w(P) =
minpep(;ji—2)- Since P contains at most 2!=2 > 2 non-tree edges, we can di-
vide P at some shortcut node k € ¥ into two paths P; and P» that both contain at
most 2/73 non-tree edges. We have that

2t 2t71 21571
AT <AL HAT

< min ~ w(P )+ min  w(P')

P'eP(ik,t—3) PeP(k,jt—3)
< w(Pl) + UJ(PQ)
= w(P) = i P,
WP = s,y wlP)
which concludes the proof. O

We now describe how the matrix can efficiently be multiplied. As an invariant
to our algorithm, we show that at the beginning of the ¢-th multiplication, every
representative h(i,j) stores A?fjfl. Thus, for the induction basis we first need to
ensure that every representative h(i, j) learns A; j. By Lemma 5.31, h(i, j) already
knows dpz(i,7), thus it only needs to retrieve w({i,j}), if that edge exists. To do
so, we first compute an orientation with outdegree O(logn) in time O(logn) using
[BE10, Corollary 3.12] in the local network. For every edge {i,j} that is directed
from i to j, ¢ sends a message containing w({i,j}) to h(i,j); since the arboricity of
G is O(logn), every node only has to send at most O(logn) messages.

The t-th multiplication is then done in the following way. We use a (pseudo-
Jrandom hash function h : [n.? — V, where h(i,j,k) = h(j,i,k). First, every
node h(i, j, k) € V needs to learn A?;l (we will again ignore the fact that a node
may have to act on behalf of at most O(logn) nodes h(i, j,k)). To do so, h(i,j, k)
joins the multicast group of h(i,j) using Theorem 4.11. By performing a multicast
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using Theorem 4.12, h(i,j) can then send Aﬁgl to all h(i,j,k). Since there are
L < [n]? = O(n) nodes h(i, j, k) that each join a multicast group, and each node
needs to send and receive at most £ = O(logn) values, w.h.p., the theorems imply a
runtime of O(logn), w.h.p.

After h(i, 7, k) has received A?fj_l, it sends it to both h(i, k, j) and h(k,j,i). It is
easy to see that thereby h(i, j, k) will receive A?fk_l from h(i,k,j) and Agj_l from
h(k,7,1). Afterwards, h(i, j, k) sends the value A?fk_l + Azgl to h(i,j) by participat-
ing in an aggregation using Theorem 4.3 and the minimum function, whereby h(i, j)
receives A7;. By the same arguments as before, L = O(n), and £ = O(logn), which
implies a runtime of O(logn), w.h.p. We conclude the following lemma.

Lemma 5.33 (Shortcut Nodes Distances). After [logn]| + 2 many matriz multi-
plications, h(i,j) stores d(i,j) for every i,j € [n.]. The total number of rounds is
O(log?n), w.h.p.

5.6.4. Approximating SSSP and the Diameter

We are now all set in order to compute approximate distances between any two
nodes s,t € V. Specifically, we approximate d(s,t) by

d(s,t) = min{d(s,t), d(s,0(s)) + d(o(s),o(t)) +d(a(t),t)}.

We first show that d(s,t) gives a 3-approximation for d(s,t).

Lemma 5.34 (3-Approximation). For any s,t € V it holds that

d(s,t) <d(s,t) <3-d(s,t).

Proof. Obviously, d(s,t) represents the length of a path from s to ¢, so d(s,t) < d(s,t)
holds. If there exists a shortest path between s and t that does not contain any
shortcut node, then d(s,t) < das(s,t) = d(s,t). Therefore, assume that any shortest
path P from s to t contains at least one non-tree edge. Choose x,y € > such that
d(s,t) =d(s,z) +d(x,y) + d(y,t) (see Figure 5.7 for an illustration).

Since o(s) is the nearest shortcut node of s, we have d(s,o(s)) < d(s,z) and,
analogously, d(o(t),t) < d(y,t). Also, by the triangle inequality, we have that

d(o(s),o(t)) < d(o(s),s)+d(s,z) +d(z,y) + d(y,t) + d(t,o(t))
=d(s,o(s)) +d(s,t) +d(t,o(t)).

Putting all pieces together, we get

d(s,t)

VA

S
—~

VA
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Figure 5.7.: Illustration for the computation of the approximate distance between
nodes s and t. We have that d(s,t) = d(s,z) + d(z,y) + d(y,t). By the
triangle inequality, the length d(s,o(s)) +d(o(s),o(t)) +d(o(t),t) is at
most the length of the dotted path, which, since d(s,o(s)) < d(s,z) and
d(o(t),t) < d(y,t) has length at most 3d(s,t).

SSSP Approximation To approximate SSSP, every node v needs to learn d(s, v)
for a given source s. To do so, the nodes first have to compute dps(s,v), which can
be done in time O(logn) by performing SSSP in M using Theorem 5.6. Then, the
nodes construct Dy in time O(log?n) using Lemma 5.26. With the help of D7 and
Lemma 5.29, s can compute d(s, o(s)), which is then broadcast to all nodes in time
O(logn) using Lemma 5.4. Then, we compute all pairwise distances in G between
all shortcut nodes in time O(log?n), w.h.p., using Lemma 5.33; specifically, every
shortcut node v learns d(o(s),v). By performing a slight variant of the algorithm of
Lemma 5.29, we can make sure that every node ¢t not only learns its closest shortcut
node o(t) in M, but also retrieves d(o(s),o(t)) from o(t) within O(logn) rounds.
Since ¢ is now able to compute d(s, t), we conclude the following theorem.

Theorem 5.35 (Sparse Graphs SSSP). 3-approzimate SSSP can be computed in
graphs that contain at most n 4+ O(n'/3) edges and have arboricity O(logn) in time
O(log®n), w.h.p.

Diameter Approximation For a 3-approximation of the diameter, consider

D = 2maxd d .
max d(s, o(s)) + max d(z, y)

D can be computed using Lemmas 5.26, 5.29, and 5.33, and by using Lemma 5.4 on
M to determine the maxima of the obtained values. By the triangle inequality, we
have that D < D. Furthermore, since d(s, o(s)) < D and max, yex d(z,y) < D, we
have that D < 3D. We conclude the final theorem of this chapter.

Theorem 5.36 (Sparse Graphs Diameter). A 3-approzimation of the diameter can
be computed in graphs that contain at most n + O(n1/3) edges and have arboricity
O(logn) in time O(log®n), w.h.p.
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5.7. Outlook

The results in this chapter indicate that some shortest path problems can be com-
puted very efficiently in sparse graphs. It may certainly be interesting to extend
our results to more general graph classes such as outerplanar or planar graphs, or
to extend the number of edges that the algorithm of Section 5.6 can handle. We be-
lieve that some of the tools and techniques developed in this chapter may be helpful
towards that goal, for example, our redistribution framework to use the Euler tour
technique and other algorithms in high-degree graphs, our extension of the result of
Gotte et al. [G6t+20] to compute spanning trees in the NCCy, or our matrix mul-
tiplication algorithm. Potentially in combination with sparse spanner constructions
(see, e.g., [BS07]) or skeletons (e.g., [UY91]), our algorithms may lead to efficient
shortest path algorithms in more general graph classes. Also, our algorithm to con-
struct a hierarchical tree decomposition may be of independent interest, as such
constructions are used for example in routing algorithms for wireless networks (see,
e.g., [GZ05; Kap+18]).
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Shortest Paths in General Hybrid Networks

FTER having investigated shortest path problems in sparse graphs, we conclude

our study of hybrid networks by considering general graphs. More precisely, we

assume that the local network G can form any graph, and develop efficient
algorithms for the Single-Source Shortest Paths (SSSP) Problem.

Since the algorithms of Chapter 5 crucially rely on the sparsity of the underlying
graph, a straightforward extension of our results to general graphs is, unfortunately,
futile. Although there does not exist a formal lower bound for SSSP, the Q(y/n)
lower bound for APSP [Aug+20b] and the Q(n!/3) lower bound for the Diameter
Problem [KS20] also suggest the difficulty of this problem in general graphs. To
cope with the additional complexity imposed by dense graphs, we allow the nodes
to perform an arbitrary amount of local communication. Formally, we shift our
attention to the LOCAL+NCC model, for which we have A = oo and v = O(logn).
Note that the above-mentioned lower bounds also hold in this model.

From a theoretical perspective, the LOCAL+NCC model, as a combination of
the most permissive LOCAL model for local edges and the very restrictive node-
capacitated clique model for the global edges, is particularly clean and well-suited
to investigate the power of hybrid networks. Moreover, we believe that the practical
relevance of this model is justified by the fact that direct connections between devices
are typically highly efficient and offer a large bandwidth at comparatively low cost,
whereas communication over a shared global communication network such as the
Internet, satellites, or the cellular network, is costly and typically offers only a
comparatively small data rate.

This chapter contains two randomized algorithms for SSSP, an exact algo-
rithm with a runtime of O(v/SPD), and an algorithm that computes (1/¢)?(1/e)-
approximate SSSP in time (5(715), w.h.p. We demonstrate that by making use of
both local and global communication, we can achieve significant runtime improve-
ments for this class of problems compared to using local or global edges alone,
which highlights the importance of exploiting hybrid communication capabilities of
modern networks.

Underlying Publication The chapter is based on the following publication.

J. Augustine, K. Hinnenthal, F. Kuhn, C. Scheideler, and P. Schneider.
“Shortest Paths in a Hybrid Network Model”. In: Proceedings of the 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2020,
pp. 1280-1299 [Aug+20b]
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_ We focus on the second part of the paper, more precisely, on the exact and the
O(nf)-time approximate SSSP algorithms. An overview of the remaining results of
the publication can be found below.

Outline The introductory section of this chapter contains an overview of our re-
sults in comparison to related and subsequent work. The technical part is divided
into the two main results of this chapter. In Section 6.1, we describe an algorithm
for exact SSSP. The algorithm is complemented by an approximation algorithm for
SSSP, which is described in Section 6.2. Both sections first contain a concise descrip-
tion of each algorithm, followed by a detailed description and analysis. An outlook
on future work concludes the hybrid network part of this dissertation.

Contribution We present two randomized algorithms for the SSSP Problem in
the LOCAL+NCC model. In Section 6.1, we show that the SSSP Problem can be
solved exactly in time @(\/SPD), w.h.p. Recall that SPD denotes the shortest-path
diameter, which is the smallest value h such that there exists a shortest path with h
many hops between any pair of nodes in GG. Note that SPD < n, since edge weights
are non-negative. The algorithm combines the local and global network in the fol-
lowing way. Using the local network, every node learns the graph up to a distance
of 24/SPD hops, thus learning the +/SPD neighborhood of any node within +/SPD
hops. This knowledge is used to distribute distance information from the source s in
an iterative fashion over the global network, where in iteration ¢, all nodes that have
a shortest path to s with O(z’z) hops learn their distance to s. An iteration takes
only @(1) rounds, leveraging a divide-and-conquer approach to distribute the infor-
mation in each node’s neighborhood, and the Aggregation Algorithm of Chapter 4.
Note that the best known algorithm that uses only global edges requires Q(SPD)
rounds (see Section 4.4.2 of Chapter 4). For the local network (without global com-
munication), we have an obvious lower bound of Q(®), which, since ® = SPD in
unweighted graphs, also implies a lower bound of Q(SPD). By combining local and
global communication, we obtain an algorithm that substantially improves upon this
runtime.

Our second algorithm, which we describe in Section 6.2, provides an approximate
solution for SSSP. The algorithm is based on recursively building a hierarchy of
O(log, n) skeleton spanners, which are spanners of skeleton graphs, for some a > 1.
Roughly speaking, given some skeleton spanner H, we obtain the next coarser skele-
ton spanner H' by sampling each node of H with probability 1/« and computing a
spanner with a good stretch on the sampled nodes. As a technical result, we show
that given a low arboricity graph H, we can efficiently compute a low arboricity span-
ner H' of H using only global edges. By choosing o = n¢/3 for some & > 0, we show
the hierarchy of skeleton spanners can be used to compute (1/ 6)0(1/ ¢)_approximate
SSSP in time (’3(n€), w.h.p. For any constant € > 0, we get a constant SSSP approxi-
mation, albeit with a potentially large constant. Choosing (1/¢) = /logn/loglogn

to balance time and approximation factor, the algorithm computes a subpolynomial
20Wlognloglogn)_spinroximate SSSP solution in time O(2VIesnloglogn)

Further Results of the Publication In this chapter, we mainly focus on the
second part of the underlying publication [Aug+20b], which revolves around the
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SSSP Problem. The first part of the publication, which we omit, is mostly concerned
with the APSP Problem. However, to solve APSP, we employ a set of techniques
that is substantially different from what we present in this chapter. Since it is of
independent interest, however, we briefly describe the main results in this section.

All results of the publication omitted in this chapter are based on an algorithm
to solve the token dissemination problem. The goal of this problem is to broadcast
a set of tokens of size O(logn), each of which is initially only known by one node.
The main idea behind the algorithm is to duplicate the tokens, and then randomly
disseminate them via global edges. By choosing the parameters of the algorithm
appropriately, the algorithm ensures that a copy of each token lies within a relatively
small neighborhood of each node, and can thus be collected in the local network
within few rounds. Specifically, if £ is the number of distinct tokens and ¢ is the initial
maximum number of tokens per node, the algorithm solves the token dissemination
problem within (5(\/% + ¢) rounds, w.h.p.

The main contribution of the first part of the publication is an APSP algorithm
that combines the token dissemination algorithm with the classical approach of build-
ing skeleton graphs [UY91]. The basic idea is to sample a set of nodes with some
probability 1/z and then compute virtual edges among pairs of sampled nodes con-
nected by a path of at most h = 6(:5) hops in G. Using the token dissemination
algorithm, all virtual edges can be made publicly known. Furthermore, each node
can broadcast the distance to its closest skeleton node, which must lie within A hops,
w.h.p. With the global knowledge gained in this way, each node can compute its
distance to any other node with sufficient hop distance; shorter distances can easily
be handled using the local network instead. The technique has, for example, been
used by Forster and Nanongkai in the CONGEST model [FN18, Lemma 5] and Dory
and Parter in the congested clique [DP20, Lemma 8|.

By balancing the parameter x to optimize the overall runtime, the approach leads
to an exact APSP algorithm with a runtime of (5(n2/ 3), w.h.p. Additionally, we

present a 3-approximate APSP algorithm with runtime O(y/n) for weighted graphs,
and a (1+¢)-approximate APSP algorithm with runtime O(/n/e) that rely on the

same approach. Note that this is significantly faster than the (Z(n) bound if only
either the local or the global network could be used. These bounds immediately
follow from the facts that the diameter of the local network might be Q(n) and
that every node can only receive O(logn) messages over global edges. The APSP
upper bounds are complemented by a lower bound that states that even computing
an a-approximate solution for some o = (7)(\/ﬁ) requires at least ﬁ(\/ﬁ) rounds.
Therefore, the approximate APSP algorithms contained in our publication are tight
up to polylogarithmic factors.

The combination of skeleton graphs and the token dissemination approach also
allows to efficiently simulate algorithms for the broadcast congested clique model
(BCC). The BCC is a weaker variant of the congested clique, in which nodes can
only send the same O(logn)-bit message to all other nodes in each round, but
may receive an arbitrary number of distinct messages. More precisely, using token
dissemination a single round of the BCC in a skeleton that contains (5(712/ 3) nodes
can be performed in time O(n'/3), w.h.p. By using a simulation of the O(1)-time
algorithm for (1 + ¢)-approximate SSSP in the BCC by Becker et al. [Bec+17], we
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can therefore compute approximate distances in the skeleton in time (5(711/ 3), w.h.p.
For every other node, it suffices to learn the h-limited distance to all skeleton nodes
within A hops for h = (5(711/ 3) as well as their distance to s in the skeleton, which
can be done in time 6(n1/ 3) as well. All details of the APSP algorithms, as well as
the (14 ¢)-approximate SSSP algorithm, can be found in the underlying publication
of this chapter [Aug+20b].

Related and Subsequent Work To the best of our knowledge, this chapter’s
original publication [Aug+20b] contains the first rigorous algorithms for shortest
paths in hybrid networks. Since then, several papers for our hybrid model have
been published, some of which considering shortest path problems as well [FHS20;
KS20; CLP20; Got+20]. All of these papers have been discussed already in this
thesis, mainly in Chapter 5. Therefore, we focus on the results that are most closely
related to this chapter, and give a more extensive overview of the results of Kuhn and
Schneider [KS20] and Censor-Hillel et al. [CLP20]. For an overview of shortest path
results in the CONGEST model, specifically the congested clique, and in PRAMs, we
refer the reader to Chapters 4 and 5.

Schneider and Kuhn [KS20] were the first to improve upon the results of this chap-
ter’s publication. First, the O(n?/3)-time algorithm for exact APSP was improved
to achieve a runtime of @(\/ﬁ), w.h.p., matching the lower bound up to polylogarith-
mic factors. At the heart of the algorithm lies an efficient algorithm for token routing
problems, which allows to perform the necessary communication between the nodes
more efficiently than the token dissemination algorithm described above. More pre-
cisely, the APSP algorithm leverages the fact that the nodes do not actually need
to learn all pairwise distances, but only their own distance to all other nodes. Using
the token routing algorithm, this information can be concentrated on the nodes of a
skeleton of size Q(,/n), who subsequently inform all nodes within their local O(y/n)-
hop neighborhood about their APSP information. From this information, the nodes
can easily infer their distances to all other nodes.

Using the token routing scheme, Kuhn and Schneider further provide an efficient
simulation scheme for congested clique algorithms. Using this framework, they derive
constant approximations for the k-Source Shortest Paths (k-SSP) Problem with
runtime (5(\/%), which is optimal up to polylogarithmic factors for large k. For SSSP,
they present an exact O(n2/5)-time algorithm. Additionally, they derive algorithms
to approximate the hop-diameter ® with runtimes O(n!/3 /) and O(n%397 /¢) and
approximation factors (3/2 4 ) and (1 + ¢), respectively. The upper bounds prove
that the hop-diameter can be computed more efficiently than APSP, at least in
the approximate case, and are complemented by a lower bound that shows that
computing the exact diameter takes Q(n!/3) rounds.

Recently, Censor-Hillel et al. [CLP20] improved upon various bounds for distance
computations in the hybrid model (a comprehensive comparison of their contribution
to previous results is provided in their paper). Notably, they present an algorithm
for exact SSSP in time O(n'/3), w.h.p., which is faster than our O(v/SPD)-time
algorithm if SPD > n?/? is comparably large. The algorithm combines the skeleton
approach described above with the idea to simulate an Oracle, which is a single node
that essentially learns the entire skeleton graph. The Oracle is the node that has
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highest degree, which allows all other nodes to distribute information about their
incident edges among the Oracle’s neighbors using a congested clique simulation.
Using the local network, the Oracle can then collect all information.

The Oracle simulation approach is then extended to Tiered Oracles, in which each
node u in a skeleton S learns the messages of all nodes whose degree in S is at most
twice the degree of u. Using this refined approach, the authors present a multitude
of improvements upon previous results. For instance, they show that the @(nl/ 3)-
time algorithm for SSSP can be extended to n'/? sources. Additionally, they derive
an O(n1/3 /e +n®/?)-time algorithm for unweighted (1 + ¢)-approximate n*-SSP; for
weighted graphs, a 3-approximate solution can be found in time (5(n1/3+n“”/2), w.h.p.
Among other results, they also improve upon the hop-diameter results of Kuhn and
Schneider [KS20], proving an O(n!/3/¢) time bound for a (1 + &)-approximation.

As noted before in Chapter 5, we can approximate SSSP by simulating the (1+¢)-
approximate polylogarithmic-time algorithm for PRAMSs by Li [Li20]. To do so, we
first compute a spanner of G, e.g., by using the spanner algorithm of Baswana and
Sen [BS07], and then simulate the PRAM algorithm on the spanner. This way, we
can for example compute constant approximations for SSSP in time (5(nE ), w.h.p.,
which gives an alternative to the approximation algorithm presented in this chapter.
By first computing an O(log n)-spanner with arboricity O(1), we can also compute
O(log n)-approximate SSSP in time 6(1), w.h.p. However, the algorithm of Li is
very complicated and, compared to our approach, hides huge polylogarithmic terms
in its runtime.

6.1. Algorithm for Exact SSSP

Before we give a detailed account of our exact SSSP algorithm in Section 6.1.2; in
the following section we first provide a rather intuitive explanation and state our
main result.

6.1.1. Overview

Throughout the algorithm, every node v maintains a distance estimate cf(v), which
is initialized to d(v) = oo for v € V' \ {s}, and d(s) = 0. Eventually, we will have
that d(v) = d(s,v) for every node v € V.

For each node v € V, let V(v,i) := {u € V | hop(v,u) < i} and let G(v,) be the
subgraph of G induced by all nodes of V (v, 7). Furthermore, let ¢(i) := ;-:1 j denote
the i-th triangular number. The algorithm proceeds in phases i = 1,...,[v2SPD],

and we maintain the following two invariants for each phase.

Proposition 6.1 (Phase Invariants). At the beginning of each phase i, we have that
(1) every node v € V knows G(v,2i —2),
(2) d(v) = d(s,v) for every v € V with sph(s,v) < t(i —1).

Note that Invariant 2 only implies that nodes within a shortest path hop-distance
of at most ¢(i — 1) from s know the correct distance to s; all other nodes may have
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learned distance estimates that are far off. However, since there exists a shortest
path of at most SPD hops between any two nodes, and since

t([V2SPD1) = [V2SPD|([vV2SPD] +1)/2 > SPD,

after [v/2SPD | phases every node knows its exact distance to s. We will later
show that each phase only takes time (5(1), w.h.p., which implies a total runtime of
O(/SPD).

Maintaining Invariant (1) is simple: Every node sends all information it has
learned about the graph so far to its neighbors for two rounds via local edges at
the beginning of each phase. Maintaining Invariant (2) is the main concern of our
algorithm.

If sph(s,v) < t(i) = i + t(¢ — 1) for some node v € V, then there must be a
node on a shortest path from s to v that is within ¢ hops from v (i.e., a node of
G(v,i)) and that knows its correct distance to s already by Invariant (2). Since v
knows dg(y4)(v,u) = dgu,)(u,v) for every u € G(v,1) after Invariant (1) has been
established for the next phase, it would suffice for v to learn the distance estimate
of all nodes in G(v, 1), and could then determine d(s,v) with the equation

d(s,v) = uergl(gz) (d(u) + deu,i (u, v)) (6.1)

Unfortunately, naively exchanging all distance estimates among all pairs of nodes

within ¢ hops of each other over the global network in order to compute Equation 6.1

is not possible in time O(1), as G(v, i) could be of size ©(n). However, we will exploit
the fact that it suffices that node v learns the distance label

dyy := d(u) + dc(u,i) (U, V)

from some node u that minimizes Equation 6.1 and can safely disregard distance
labels of other nodes in G(v, ).

Propagate Distance Labels We define T'(u, ¢) as the shortest-path tree of G(u, 7)
rooted at u, in which the parent of every node v is a neighbor w in G(u, i) such that
da(u,i) (U, v) = dgui(u, w) + w({u,v}). If there are multiple such neighbors, we
choose the one that minimizes sphg, ;) (u,w), breaking ties by choosing the node w
with smallest identifier. Note that of all shortest paths from u to v in G(u, ), T'(u, 1)
contains a shortest path with fewest hops.

Due to Invariant (1), u clearly knows T'(u, 7). Furthermore, since it knows all nodes
within hop-distance 2, it also knows T'(v,4) for every v € V(u,i), and analogously,
every node v € V(u,i) knows T'(u,i). The goal of u is to propagate the distance
label d,,,, to every node v in T'(u, %) for which « minimizes Equation 6.1. To achieve
that, u initiates a recursive divide-and-conquer strategy, where the executions of
all nodes are performed in parallel. An example of the process can be found in
Figure 6.1. First, u starts with the tree 7' := T'(u,7). In each recursion level, T is
divided at a splitting node o whose removal decomposes 1" into subtrees of size at
most |V[T]|/2 (see Figure 6.1a). As we show in Lemma 6.3, such a node can easily
be found deterministically; moreover, since every node v € V(u, i) knows T'(u, i), v
also knows the splitting node of each level of u’s recursion.
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Figure 6.1.: An example of the propagation of distance information within the
shortest-path tree T'(u, i) of a node u. (a) In the first step, u selects the
black node as its splitting node, which subsequently forwards distance
information to its children in 7T'(u,4). Child x receives better distance
information by some node and will not continue the recursion at its sub-
tree; for y and z, however, u’s distance value is still the best, and they
continue the recursion. (b) Recursions are continued in three different
components of T'(u, 1), one that is rooted at u, and two that are rooted
at y and z. y and z choose themselves as splitting nodes, whereas u
chooses its child v. However, v receives a better distance value in the
same step, and does not continue u’s recursion at its children. (c) In
the final step, u chooses itself as a splitting node and informs its child.
Afterwards, all solid nodes have been reached by u, and all dashed nodes
have continued a more promising recursion instead.

Let T, be the subtree of T' rooted at . The root u of T will take care of informing
every node v € V[T]\ VI[T,] about dy, in the next recursion, whereas the task of
informing the nodes v € V[T,,] about d,, is delegated to the children of o. For that
purpose, u informs o about the distance d,, = aAl(u) + dg(u,i) (u, o). Subsequently,
o instructs each of its children ¢ in T to start another recursion in their respective
subtree T, by sending it the distance dy. = dy» +w({c}, ¢) via the local edge {o, c}.
Note that we have to continue the recursion in the subtrees of the children of o
rather than the subtree of o itself, because otherwise we are not able to guarantee
that the trees’ sizes halve in each step; this would only be true if the graph had
constant degree.

Resolve Collisions Since all nodes try to propagate distance information within
their shortest-path trees in parallel, ¢ may have been chosen as a splitting node by
multiple roots. Therefore, sending d, , to o over the global network might require
o to receive more than O(logn) messages. We carefully resolve this by making
every root w of some tree T that intends to send a value d,,, to o participate in
an aggregation towards o using the Aggregation Algorithm described in Chapter 4.
Thereby, o learns the minimum of all values d,, , sent to it, breaking ties by preferring
the message from the node w that minimizes sphp(,, ;) (w, o), or, if there are still ties,
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minimizes id(w). Note that in the aggregation process, the message for o sent by
the root u might be blocked by some other message, which disrupts the recursion
intended by u to be continued at o (this happens at node x in Figure 6.1a). However,
as we will show shortly, continuing only the most promising recursion is sufficient
for z to obtain the distance label minimizing Equation 6.1.

In the subsequent recursion level, every node v has to continue only the most
promising recursion it has received so far, i.e., the recursion of the node w such
that dy, is minimized, breaking ties using sphp(, ;) (w,v) and id(w) as described
above (see Figures 6.1b and 6.1c). Since the subtree of each recursion halves in
each recursion step, the process ends after O(logn) steps. After the recursions have
finished, every node v with sph(s,v) < #(i) has d(v) = d(s,v), which maintains
Invariant (2) for the next iteration ¢+1. We state our main theorem, which we
formally prove in the next section.

Theorem 6.2 (Eziact SSSP). There is an algorithm that solves exact SSSP for any
graph G in time O(VSPD), w.h.p.

We remark that the local capacity required by the algorithm is A = O(n?), since
in the worst case the entire graph needs to be sent over a node’s incident edges.

6.1.2. Detailed Description

The focus of this section lies in a precise description of the propagation pro-
cess outlined in Section 6.1.1 and an analysis of the overall algorithm. Assum-
ing that the invariants in Proposition 6.1 hold at the beginning of some phase
i€ {l,...,[vV2SPD]}, we describe the execution of the phase and prove that the
invariants are maintained for the next phase, inductively establishing the correctness
of our algorithm. Clearly, Invariant (1), which states that each node knows the
subgraph of its 2(7 — 1)-hop distance, and Invariant (2), which states that each node
v with sph(s,v) < (i — 1) knows its correct distance to s, hold at the beginning of
the first phase.

The pseudocode of our algorithm for phase i from the perspective of a node v € V'
can be found in Algorithm 1. The algorithm is divided into five steps, where the last
three steps are repeated O(logn) times. Step 1 ensures Invariant (1) by letting v
introduce all edges of G(v, 2i —2) to its neighbors. After performing the introduction
twice, every node knows G(v, 2i), and, specifically, T'(u, i) for every node u € V (v, 1).
Steps 2 to 5 make sure that Invariant (2) holds at the beginning of the next phase by
employing a recursive divide-and-conquer approach. In the following, we describe
how exactly the recursions are performed from the perspective of v.

Recursion Messages To begin the recursive approach, v first creates a recursion
message (v,d(v),0) in Step 2, which initiates a recursion on T'(v,4). Throughout the
algorithm, v may take over the recursion of some other node by a recursion message
that is sent to v. More precisely, a recursion message (u,dy,, L) corresponds to
a recursion that v currently handles, and is associated with a node u within hop-
distance i to v that originally initiated the recursion on T'(u, %) (u might be v itself).
The reason for v now storing this message is because in some preceding step, u
instructed v to continue the recursion on a subtree T' of T'(u,7) that is rooted at
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Algorithm 1 Exact-SSSP > Phase ¢ executed by a node v
Step 1
1: send G(v,2i — 2) to all neighbors, learn G(v,2i — 1)
2: send G(v,2i — 1) to all neighbors, learn G(v, 2i)

Step 2 A
3: R+ {(v,d(v),0)} > initial recursion message
4: for [logn]+1 steps do > divide-and-conquer on subtrees

5: let R = (u,dyy, L)
: T <+ subtree of T'(u,i) rooted at v without the subtrees of the nodes of L
Step 3
if |V[T]| > 1 then
o < splitting node of T’

9: Reyr + (u,dyy, LU{0}) > continue current recursion at v

10: send splitting message (u, duy + dr(y,i) (v, ), 5Phyp(y 4 (U, o)) to &
Step 4

11: if received splitting message (u, dyy, Sphy(y ;) (u,v)) then

12: d(v) + min{d(v), dy, }

13: send recursion message (u, dy, +w({v, c}), ) to each child ¢ of v in T'(u, )
Step 5

14: let Ryew = (U, duy, 0) be received recursion message with smallest

distance value, breaking ties using smallest sphp(, ;) (u,v) and id(u)
15 d(v) + min{d(v), dyy}
16: R becomes Ry or Ryew, whichever corresponds to the node u that
minimizes dy,, breaking ties using smallest sphp(, ;y(u,v) and id(u)

v (we call T' the corresponding recursion subtree). Further, the recursion message
contains a value dy, = d(u) + dr(u,i) (4, v), which always corresponds to the length
of a path from s to v that contains u. Finally, L is a subset of nodes of T'(u, 1) from
which v can infer T'. More precisely, T" is the subtree of T'(u, ) rooted at v without
all subtrees rooted at any node of L. Note that whereas we cannot efficiently send
T over the global network, 7" can be inferred from v’s knowledge of T'(u,i) (which
is fully contained in G(v,2i)), and the set L, which will contain at most O(logn)
nodes. The initial recursion message (v, ci(v), (), therefore, instructs v to perform a
recursion for v on the complete subtree T'(v,1).

Handling a Recursion FEach recursion is handled through [logn] + 1 recursion
steps, which are performed by Steps 3 to 5 of our algorithm. Let R = (u,dy,, L)
be the recursion message corresponding to the recursion handled in some recursion
step, and T be the subtree of T'(u, i) rooted at v without the subtrees rooted at the
nodes of L. If |V[T]| <1 (i.e., T contains at most one node), then there is no need
to continue the recursion. Otherwise, the goal of Step 3 is to select a splitting node
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o whose removal disconnects 7" into components of size |V[T']|/2; these components
become recursion subtrees in the next recursion step. Before we describe how the
recursions can be continued in the resulting components, we show how the splitting
node can be computed. Note that the computation is handled by v locally without
necessitating any additional communication.

Lemma 6.3 (Splitting Node). Let T be a recursion subtree with |V [T]| > 2. Node v
can compute a splitting node o whose removal disconnects T into trees each of size
at most |V[T]|/2.

Proof. For an inner node u of T' define s(u) as the number of nodes in the subtree
of T rooted at u, and let p(u) = |V[T]| — s(u). The splitting node is computed by
performing a search that descends into 7', starting at its root v (which, as |[V[T]| > 2,
must have at least one child). If the search is currently at some inner node u, then let
w be the child of u that maximizes s(w) (choosing the node with minimum identifier
in case of a tie). If p(w) < |V[T]|/2, then the search continues at w; otherwise, u
is chosen as the splitting node. Note that if p(w) < |V[T]|/2, then w cannot be
a leaf node. Clearly, the search can be performed locally at v and will eventually
terminate at a splitting node o.

Let y be the child of ¢ in S that maximizes s(y). As o is chosen as a splitting node,
p(y) = [V[T]|/2. Therefore, s(y) = [V[T]| - p(y) < [V[T]| - [V[T]|/2 = [V[T]|/2,
and, as y is the child that maximizes s(y), the same holds for all children of o.

If o does not have a parent, then the claim holds immediately. Otherwise, its
parent must have been considered as a splitting node as well. However, as it has not
been chosen, p(s) < |V[T]|/2, which concludes the proof. O

Note that the previous lemma immediately implies that [logn]+ 1 recursion steps
suffice until all recursion trees are of size 1. After having computed the splitting node
o, the recursion has to be continued in (1) 7'\ Ty, which is rooted at v, and (2) all
subtrees of T rooted at a child of o in T' (see the example in Figure 6.1a). To do so,
v needs to send a recursion message to the root of each component.

To continue the recursion (1) in its own component 7'\ T,, v simply sends a
recursion message (u,dy,, L U {c}) to itself. For (2), v needs to send a recursion
message (U, dyc, 0), where dy. = dyy + A7 (u,i) (v,¢), to every child ¢ of o in Tp.
However, o0 may have up to ©(n) children; therefore, instead of sending recursion
messages directly, v instructs o to forward the respective messages to its children by
sending a splitting message (u, dy o, Sphp(y, ) (u, o)) to o, where

dyos = CZ(U) + dT(u,i) (u7 U) = dyy + dT(u,i) (U7 0)

is the length of a path from s to o that contains u and v. Since o can infer T'(u, )
after Step 1 of phase i, ¢ can reconstruct all recursion messages it is supposed to
forward to its children in 7, and send them directly using local edges.

Aggregate Splitting Messages As already pointed out in Section 6.1.1, v cannot
send its splitting message to o directly, as ¢ may be the recipient of many splitting
messages in this recursion step. However, it suffices for every node to only receive
the splitting message that contains the smallest distance value among all splitting
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messages destined at it. If there are several splitting messages with the same distance
value, we prefer the one with smaller shortest path hop-distance value, breaking
ties by choosing the message that contains the node with smallest identifier. In
Lemma 6.4, we will argue that for every node v with sph(s,v) < ¢(i) there must
be a node u such that d(u) + dp(u,iy(u,v) = d(s,v) and every recursion message
corresponding to u that is destined at a node of the branch from u to v in T'(u, ) is
successfully delivered; therefore, v will learn d(s,v) anyway. Thus, the nodes send
all splitting messages of this step using the Aggregation Algorithm of Theorem 4.3.
More specifically, v is contained in the aggregation group Ajq(,), and the aggregate
function takes the minimum of all distance values, breaking ties as described above.
Since each node is member of only one aggregation group, and target of at most one
aggregation, the Aggregation Algorithm terminates within O(logn) rounds, w.h.p.,

Deliver Recursion Messages Thereby, v may receive a splitting message
(U, dyw, SPhp(y i) (1, v)) that corresponds to the recursion of some node u (but not

necessarily from u). In this case, in Step 4 v updates d(v) to min{d(v),dy,} and
sends the corresponding recursion messages to its children in 7T'(u,i), using its
knowledge of T'(u,4) due to Step 1. If v is adjacent to multiple nodes that have re-
ceived splitting messages, then in Step 5 it may receive multiple recursion messages.
However, it again suffices for v to only store the recursion message that contains
the smallest distance value. We again break ties by preferring the recursion mes-
sage associated with the node u that minimizes sphp, ;) (u,v), breaking ties using

the node’s identifiers. Finally, v updates ci(v) considering the received message’s
distance. Furthermore, it decides whether to continue its current recursion, or the
recursion that corresponds to a received recursion message, whichever minimizes
dy, (breaking ties as before).

The next lemma shows that our algorithm maintains Invariant (2).

Lemma 6.4 (Invariant (2)). Let v € V such that sph(s,v) < t(i —1). At the
beginning of phase i we have that d(v) = d(s,v).

Proof. We prove by induction on ¢. The statement obviously holds at the beginning
of the first phase as t(0) = 0.

Now consider phase i > 1 and let v € V such that sph(s,v) < ¢(i). There must
exist a node u that lies on some shortest path from s to v such that sph(s,u) < ¢(i—1)
and sph(u,v) < i. By the induction hypothesis, d(u) = d(s, u). If there are multiple
nodes u that lie on a shortest path from s to v and for which d(u) = d(s,u) hold,
we choose u to be the one that minimizes sph(u,v); if there are also multiple of
those, choose the one with smallest identifier. Note that v lies in T'(u,); further,
sphp(y,) (4, v) = sph(u,v) <i. We argue that every recursion message or splitting
message u intends to send to any node x on the branch P from u to v in T'(u,) is
successfully delivered. Since the branch from u to v is a shortest path from u to v
that contains at most ¢ hops, the value of the recursion message u wants to send to
z is

duz = d(u) + dpp (u,2) = d(s,u) + d(u, ) = d(s,z).
Therefore, x will never receive any message with an even smaller distance value,
since this would imply that there is a shorter path from s to x.
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Thus, assume that some node of P sends a message for u containing the dis-
tance value d,,, but x does not receive the message because a message correspond-
ing to the recursion of a node v’ with the same distance value d, ., = d,, is pre-
ferred. By definition of the algorithm, the message corresponding to the recursion
of u' must have been preferred because (1) sphp(, ;)(u', ) < sphp(,)(u, ), or (2)
sphp(y 4y (W' ) = sphp(, 4 (u, z), but id(u') < id(u). In both cases, u’ lies on a short-
est path from s to x; further, d(u’) = d(s,u’), since dy; = dy, and the shortest path
from s to 2 containing v’ would become even shorter if d(u) would still be too large
in this phase. In Case (1), there is a shortest path from «’ to v over z that contains
fewer hops than the path from u to v in T'(u,v), which contains sph(u,v) < i hops
by definition of T'(u,4). In Case (2), there exist shortest paths from both u and v’
to x that contain the same number of hops, but u' has a smaller identifier. Thus, in
both cases, we must haven chosen 1’ over u, which contradicts our choice of u.

Analogously, we can argue that any node x on P that ceases to continue a recursion
for u does so because it prefers to continue a recursion for some node v’. In this
case, u must either yield a shorter distance from s to x, or must be within smaller
hop-distance to x, leading to a contradiction as above. O

Termination As we do not require the nodes to know SPD, we have to let the
nodes detect when to terminate. We simply stop the algorithm when for the first
time no distance estimate changes at any node, which can be detected by performing
the Aggregate-and-Broadcast Algorithm at the end of every phase. When for the
first time no value changes anymore, all nodes terminate.

Lemma 6.5 (Termination). No distance estimate changes in phase i if and only if
d(v) = d(s,v) for every node v € V.

Proof. First, if d(v) = d(s,v) for every node v, then clearly v will never receive a
smaller distance value in any recursion message anymore, as in that case there would
exist an even shorter path from s to v.

For the other direction, assume that no distance estimate changes in some phase
i. Let v € V. We prove that CZ(U) = d(s,v) already at the beginning of phase i
by induction on sph(s,v). If sph(s,v) = 0, then v = s, and as all edge weights are
positive, aAl(v) = d(s,v) already at the beginning of the first phase, and thus also at
the beginning of phase i. Now let sph(s,v) > 1. Then there exists a neighbor u
of v such that sph(s,u) = sph(s,v) — 1 and d(s,v) = d(s,u) + w({u,v}). By the
induction hypothesis, d(u) = d(s,u) at the beginning of phase i, and by definition
of our algorithm, v must receive d(s,v) as a distance value in a recursion message
throughout the execution of phase i. However, as cf(v) does not change in phase 1,
d(v) = d(s,v) already at the beginning of phase i. O

Lemma 6.6 (Runtime). The algorithm terminates after [v/2SPD]| phases. Every
phase takes time O(log?n), w.h.p.

Proof. As any shortest path has length at most SPD, after phase [v2SPD] every
node u knows d(s,u) by Lemma 6.4. Therefore, Lemma 6.5 implies that no distance
value changes in the subsequent round, in which case the algorithm terminates. In
each of the [logn|+1 recursion steps, each node is member and target of at most one
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aggregation group, and the aggregation takes time O(logn) by Theorem 4.3, w.h.p.
By Theorem 4.1, the Aggregate-and-Broadcast Algorithm to detect termination at
the end of a phase takes an additional O(logn) rounds. O

The lemmas above immediately imply Theorem 6.2. Finally, we remark that the
algorithm can easily be modified to solve (h, k)-SSP for given h and k.

Theorem 6.7 ((h,k)-SSP). The modified algorithm solves (h,k)-SSP in time
OWkh), w.h.p.

Proof. As the shortest-path diameter of G is generally not known, our SSSP algo-
rithm has to incrementally increase the distance at which the nodes learns their
respective neighborhood and propagate their distance information. We modify this
as follows. For a given hop-distance h, we can first let every node v € V learn
G (v,2[vV'kh]) by sending all information about G known so far via its local edges for
2[v/kh] rounds. Then, we separately perform [h/v/kh]| phases of the algorithm for
each k, where in each phase every node v always propagates distance information
by [Vkh] hops. The total runtime amounts to O(/kh + kh/vkh) = O(/kh), which
concludes the theorem. O

6.2. Algorithm for Approximate SSSP

Finally, we present a (log, n)O(loga n)_approximate SSSP algorithm that takes time
(’3(043), w.h.p., for a parameter o > 5. By setting o = n¢/3 for some ¢ > 0, we obtain
a (1/¢)°0/9)_approximation in time O(nf). We first describe the algorithm from a
high level and provide all details in Section 6.2.2.

6.2.1. Overview

The main idea of the algorithm is to recursively construct a hierarchy of graphs
G1,...,Gp, where V[G;] C V[G;-1]. The set M; := V|[G;] contains a node of G;_1
with probability log(n)/a for i = 2, and with probability 1/« for i > 3. The first
spanner (G, which contains all nodes of G, is constructed using only the local network
by simply performing the distributed spanner algorithm of Baswana and Sen [BS07]
with parameter k as a black box, which gives a (2k — 1)-spanner in time O(k?).
The construction of the subsequent spanners Ga,...,Gr relies entirely on the
global network. For ¢ > 2, we construct G; as an h-hop skeleton spanner of G;_1.
Roughly speaking, the skeleton spanner is a spanner of a skeleton of G;_1 rather
than a spanner of G;_1 itself, where the skeleton of G;_1 is a graph that contains
only some of the nodes of GG;_1, and an edge between every two nodes that are
sufficiently close in G;_1. Therefore, a skeleton spanner contains edges that are not
necessarily edges of G;—1. However, we construct these edges such that for every
two nodes in G;_1 that are within hop-distance h, the skeleton spanner contains a
path that gives a good distance approximation. Furthermore, the skeleton spanner
has low arboricity. This allows us to let every edge of the spanner G; be learned
by only one endpoint of the edge while ensuring that no node has to take care of
more than (5(04) edges. On this graph, we can efficiently apply the techniques of
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Chapter 4 using the global network. More specifically, we will prove that we can
construct G; as an O(«)-hop skeleton spanner of stretch O(log, n) of the graph G;_1
in time O(a?) for all i > 2.

Finally, by taking the union of all the graphs G;, we obtain a graph that approxi-
mates all distances well. More precisely, by applying the properties of the skeleton
spanners G;, we show that H has a (log, n)o(loga n)_approximate path consisting of
at most (5(04) hops for every pair of nodes u,v € V. Therefore, every node v learns
a good approximation d(s,v) of d(s,v) by performing a distributed Bellman-Ford
algorithm with source s in H for O(a) iterations. The low arboricity of H allows us
to perform each iteration of Bellman-Ford in the global network in time O(c). The
following theorem results from a careful analysis of the approximation guarantees
and runtime of our recursive spanner construction, and is formally proven in the
following section.

Theorem 6.8 (Approximate SSSP). There is an algorithm that solves
(log,, n)°1o8a ™) _approzimate SSSP in time O(a®), w.h.p.

6.2.2. Detailed Description

In the first part of this section, we present an algorithm to compute a skeleton
spanner, which is the key ingredient for our approximation algorithm. Subsequently,
we describe how this algorithm can be used to compute (log,, n)?(°%a ™)
SSSP by constructing a hierarchy of skeleton spanners.

-approximate

Constructing a Skeleton Spanner We first define skeleton spanners formally in
Definition 6.9 and subsequently describe the algorithm to compute such a spanner
from a high level. As the algorithm is solely based on computing limited-depth
Bellman-Ford computations, we can efficiently execute it in the global network by
using our methods from Chapter 4.

Definition 6.9 (Skeleton Spanner). Let G = (V,E,w) be a weighted graph, let
M CV be a set of marked nodes of G, and let h € N. An h-hop skeleton spanner
H = (M, Ey) with stretch s > 1 is a weighted graph with the following properties:

1. Every edge {u,v} € Ef corresponds to a path P in G between u and v such
that w({u,v}) = w(P).

2. For every two nodes u,v € M, we have dg(u,v) < dg(u,v) < s-dpq(u,v).

Note that an h-hop skeleton spanner approximates nodes within hop-distance h
well, whereas it does not give any guarantees for nodes that are farther away from
each other.

From a high level, our algorithm to construct an h-hop skeleton spanner works as
follows. Assume that we are given a graph G = (V, E,w), a set of marked nodes
M C V, and a hop-distance parameter h > 1. Let us further assume that for all
e € E, we have 1 < w(e) < W/h for some given W > h, so that the length of any
path consisting of at most h hops is between 1 and W. The algorithm further has
two parameters k > 2 and 1 > 1 that control the stretch and the number of edges
of the resulting spanner.
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Algorithm 2 Skeleton-Spanner >n>1,k>2

> Stage i dealing with h-lim. distances € [L;/n, L]

Vo=V > V; is set of nodes active in phase j
for j:=0to k—1do

G, = G[Vj] > subgraph of G induced by V;

for each r € V; N M do > M is set of marked nodes of G

randomly sample r with probability |M ]HTl_l into set R;
for each r € R; do
for each v € Bg,(r,k — j,L;) N M do
add {v,r} of weight dy,,—j) g,(v,7) to En

Vi1 = Vi\ (Urer, Bo, (rh— 5 —1,Ly))

The algorithm consists of [log, W] stages. In the following, we focus on a specific
stage ¢ > 1. For convenience, we define L; := n*. The objective of stage i is to
construct a subset of the edges of H = (M, Ep) that provides a good approximation
for any two nodes u,v € M for which the h-limited distance in G is in the range
[L;/n, L;]. The final spanner is then obtained by taking the union of the edges
computed in the individual stages.

Each stage consists of k phases, which we enumerate by j = 0,1,...,k—1. Initially,
all nodes in M are active. We will show that nodes in M become inactive as soon as it
is guaranteed that all their A-limited distances in the target range are approximated
sufficiently well. In the following, for a node r € G, an integer parameter z > 1, and
a distance L > 1, we define the ball of r as

Bg(r,xz,L) :={v € V[G] | dh.z,c(r,v) < x - L}.

The details of the algorithm for stage ¢ are given in Algorithm 2. We refer to the k
iterations of the outermost for-loop as the k phases j = 0,...,k — 1. Furthermore,
we say a node v € V; gets deactivated in phase j of stage 4 if it is contained in the
ball Bg, (r,k —j —1, L;) of some sampled node 7 € R;. Note that when a node gets
deactivated, it will not participate in any subsequent phase of stage .

The following sequence of lemmas proves that the algorithm constructs an h-hop
skeleton spanner.

Lemma 6.10 (Skeleton Spanner Stretch). When a node u € M gets deactivated in
stage i, for every v € M for which dp c(u,v) < L;, the algorithm has added a path
of length at most 2kL; to the spanner edge set Er. Furthermore, this path consists
of at most 2 edges.

Proof. Let u,v € M be two nodes for which dj, ¢(u,v) < L; and let us show that
the algorithm adds a path between u and v of length at most 2kL; and consisting
of at most 2 edges to the spanner; in the following, we call such a path a (< 2)-hop
path. W.l.o.g., assume that v is deactivated in phase j and that v is deactivated
in a phase j/ > j. If the algorithm has already added a (< 2)-hop path of length
at most 2kL; between u and v prior to phase j, we are done. Otherwise, we show
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that (1) dp,e, < L; in the graph G of the active nodes in phase j, and (2) the
algorithm adds a (< 2)-hop path of length at most 2kL; between w and v to the
skeleton spanner in phase j.

Let P be a path between v and v in G that contains |P| < h hops and has length
w(P) < L;. First assume that all nodes of P are still active in phase j. We then
clearly have dy, g; (u,v) < L;. As node u gets deactivated in phase j, we have that
u € Bg,(r,k—j—1, L;) for some sampled node r € R;. We thus add an edge {u,}
of weight dj,—j_1),g,(r,u) < (k—j—1)L; to Eg. Because u € Bg; (r,k —j — 1, L;)
and dp g, (u,v) < L;, we can further conclude that v € Bg; (r,k—j, L;). We thus also
add an edge (v,r) of weight dj_j) q,(r,v) < (k — j)L; to Ey. Together, the two
edges provide a (< 2)-hop path of length at most (2(k — j) — 1)L; < 2kL; between
u and v.

It remains to consider the case that some nodes of P are deactivated before phase
j. Let j/ < j be the first phase in which some node of P is deactivated, and let
w € V be some node of P that is deactivated in phase j’. This implies that there is
some sampled node " € R; such that w € Bg,, (r,k —j" —1,L;). Because the path
P is completely contained in G/, we have dn,c,, (w,u) < L; and dh,Gj,(w,v) < L;.
Therefore, both nodes u and v are contained in BGj, (r,k—j', L;), and thus in phase
j', the algorithm adds edges {u,r'} and {v,r'} of weight at most (k — j')L; < kL;
to Fp. These edges form a (< 2)-hop path of length at most 2kL; between u and v
in the constructed spanner. O

The next lemma shows that in each phase, every node is only within the ball of a
few random centers. On the one hand, this implies that the spanner algorithm does
not add too many edges; on the other hand, it also allows to execute the algorithm
efficiently by using only global edges. The lemma follows because the radius of the
balls decreases from phase to phase, and the radius in which nodes are deactivated in
phase j is the same as the radius of the ball of nodes to which edges are established
in phase j + 1. Therefore, roughly speaking, if a node v lies within the balls of many
sampled centers in phase j+1 (to which it would establish an edge), the node should
have already been deactivated in phase j. A similar argument has previously been
used by Blelloch et al. [Ble+14].

Lemma 6.11 (Ball Congestion). For phase j of Algorithm 2 and v € Vj}, define
Ry ={r € Rj|v e Bg,(r,k—j,Li)}.
We have that |R, ;| = O(|M|"*logn), w.h.p.

Proof. Consider phase j > 0 and let v € V;. We define R,; = {r € M | v €
Bg,(r,k—j,Li)} and R} ; = {r € M | v € Bg,(r,k—j —1,L;)}. The nodes in R, ;
are the ones to which, if sampled in phase j, v establishes an edge to, whereas R;’j
contains the set of nodes that, when sampled in phase j, deactivate v. In phase j,
nodes of M are sampled with probability p; := |M \%_ . We need to show that,
w.h.p., pj - |Ryj| = O(|M|Y/* .logn) for all v € V and all phases j. Since this value
is an upper bound on the expected size of R, j, which can be modeled as a sum of

independent binary random variables, we can then use a Chernoff bound to show
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that |R, ;| = O(|M|"*logn), w.h.p. The lemma then follows by taking the union
bound over all v and j.

To prove that p; - |R, ;| = O(M|Y* -logn), we show that otherwise, v would
have been deactivated in the previous phase, w.h.p. In the following, let ¢ > 0 be a
constant that will be determined at the end. For a node v € V; and a phase j, let
&v,j be the event that p; - |R;’j] > clnn and that node v is not deactivated in phase
j. Recall that node v is deactivated in phase j if and only if one of the nodes in R; j
is sampled in Algorithm 2. For all v € V}, we therefore have
1

Pr(&,;) < (1 _pj)lRL,jl < e PilBl < et (6.2)
Note that for v € V; for which p; - |R] ;| < clnn, we have Pr(&, ;) = 0. Let us
further define the random variable X, ; as the number of sampled nodes r € R; in
phase j for which node v € Vj is in Bg,(r,k—j, L). That is, X, j counts the number
of sampled nodes from R, ; in phase j. We show that X, ; = O(|M|"*1ogn), w.h.p.

To study the number of sampled nodes from R, ;, observe that R,; C R;vj_l,
which follows from the definitions of R, ; and R;, ; and the fact that G} is a subgraph
of Gj_1. If we condition on the event &, ,_1, we know that pj_l\R;,jfﬂ < clan,
as otherwise v would have been deactivated in phase j — 1 and thus v € V;. The
sampling probabilities increase by a factor | M \1/ k from phase to phase and thus, con-
ditioning on €, ;1 implies that p;|R, ;| < pj|R; ;4| < ¢|M|"¥Inn. We therefore

have E[X, ;] < ¢[M|"/*Inn. The Chernoff bound of Lemma 2.2 implies that

Pr (X, > 2¢|M|*lnn| &, 1) (6.3)
(MP/E>1) 1
<

< 670/3-|M\1/k-lnn
- ne/3’

Let B, j be the event that X, ; > 2¢|M|"/* Inn. By using the law of total probability,
we then get

Pr(By,;) = Pr (By;| £vj-1) - Pr(€vj-1)
+ Pr(Byj|&vj-1) - Pr(&yj-1)
S Pr (Bv,j |§v7j—1) + Pr(&),j_l)
(6-2)7<(6-3) 1 1
- ne/3 ne’

which concludes the proof. ]

We now have everything we need in order to prove the main property of the
described spanner algorithm.

Lemma 6.12 (Correctness of Algorithm 2). Given a weighted graph G = (V, E, w),
a set of marked nodes M C V, as well as parameters h > 1, k > 2, and n > 1, the
described spanner algorithm computes an h-hop skeleton spanner H = (M, Eg) with
the following properties:
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1. H has stretch 2nk.
2. |Eg|=O(k - |[M|**/*logn - log, W).
3. For any two nodes u,v € M such that hopg(u,v) < h we have that
do, i (u,v) < 2nk - dp, g(u,v),
i.e., there ezists a path P with at most 2 hops and length at most 2nk-dp, (u,v).

All properties hold w.h.p.

Proof. First note that by construction, we have dg(u,v) > dg(u,v) for all u,v € M
as the weight of every edge that we add to H corresponds to a path in G. Also note
that at the end of Algorithm 2, all nodes are deactivated. This follows because for
j =k — 1, the sampling probability is set to 1 and therefore in the last phase, each
remaining node in M is a sampled.

To prove the stretch bound, it remains to show that dy(u,v) < 2nk - dj ¢ (u,v).
We will at the same time also show that any two nodes within hop-distance h in G
will be connected by a (< 2)-hop path of this length. We first consider a single stage
1. Lemma 6.10 together with the fact that at the end, all nodes are inactive, implies
that for any two nodes u,v € M for which dj ¢(u,v) < L;, the spanner contains a
(< 2)-hop path of length at most 2kL;. This provides a path of the right stretch for
all node pairs w,v € M for which dj ¢(u,v) € [L;/n, L;]. The stretch bound now

directly follows because the spanner is defined as the union of the parts computed
1 w
in each stage and because ULO%’ ][Li/n, L;] D1, W].

To upper bound the number of edges of the spanner H, we again consider a single
stage 7. In each phase j of stage ¢, each node v € V; N M adds an edge to each node
r € Ryj ={r € Rj | v e Bg,(r,k—j,Li)}. By Lemma 6.11, the size of R, ; is
O(|M|"/*logn), w.h.p. As the stage has k phases, w.h.p., we therefore add at most
O(k|M|"*logn) edges per node v € M and thus at most O(k|M|*+/*logn) edges in
total. The lemma now follows because the total number of stages is O(log, W). [

Realization in the Global Network We will now show how the algorithm can
be performed in the global network using our techniques from Chapter 4. To do
so, we require that the graph G on which we aim to construct an h-hop skeleton
spanner H is known by the nodes in a specific way. Formally, we define a graph G’
to be in d-oriented form, if every edge {u,v} € E[G'] is only known by one of its
endpoints (we say that endpoint is responsible for the edge), such that every node in
V[G'] is responsible for at most ¢ edges. We also construct H in such a form; more
specifically, when v € Bg, (1, k — j, L;) N M for some r € R; in phase j and stage i
of the algorithm, the edge {v,r} is added to Ey by v and without the knowledge of
r, and v becomes responsible for the edge.

To implement the algorithm efficiently in the global network, we perform multi-
aggregations using a variant of Theorem 4.13. More precisely, instead of letting nodes
in G; communicate with their neighbors directly, we only let nodes communicate
via multi-aggregations. To be able to do so, in phase j each node needs to have a
broadcast tree T, ; that connects v with its neighbors in Gj. Using the notation of
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Chapter 4, T, ; is the multicast tree of the multicast group Ajq,) = Ng,(v) with
source v € Vj. Recall that the congestion of the trees indicates the communication
load every node has to perform when using the trees to perform multi-aggregations.
The following lemma shows that, if a graph G; in phase j of Algorithm 2 is in
d-oriented form, broadcast trees with low congestion can be efficiently constructed.

Lemma 6.13 (Realizing a Phase). Let G; be the graph considered in phase j of
Algorithm 2, and suppose that G is in J-oriented form. There is an algorithm that
constructs a multicast tree T, j for every source v € V; with multicast group Ng,(v)
with congestion O(d +logn) in time O(d+logn), w.h.p. The algorithm ensures that
each leaf of Ty, ; that corresponds to v’s neighbor u learns w({u,v}). Additionally,
the algorithm brings Gj41 into é-oriented form.

Proof. We follow the idea of Lemma 4.29 and let every node v € Vj; only contribute a
packet p, q(u) for the aggregation towards u € Ng, (v), if v is responsible for {v, u} €
E[G;]. By additionally inserting a packet p,;q(.,) for the aggregation towards itself,
all broadcast trees are properly constructed. Since each node only contributes §
packets, the construction process takes time O(d+logn), w.h.p. As the total number
of packets is bounded by on, the resulting congestion is O(d + logn), w.h.p (see
Theorem 4.11). By annotating each packet with the weight of the respective edge,
we ensure that the corresponding leaf learns the edge.

It remains to make sure that G4 is in d-oriented form. That is, when a node u
becomes deactivated in phase j, the endpoint that is responsible for every edge inci-
dent to u needs to exclude the edge from the graph. For all edges u is responsible for,
u needs to do nothing; for all the others, it needs to inform the respective endpoints
so that they can exclude the edge. To do so efficiently, we construct a multicast
tree that connects u with all neighbors that are responsible for an edge incident to
u, and use a multicast to inform them about whether u became deactivated. Since
every node needs to join at most ¢ multicast groups, Theorems 4.11 and 4.12 imply
that the multicast can be performed in time O(d + logn), w.h.p. O

We now describe exactly how multi-aggregations can be used to execute Algo-
rithm 2. Specifically, we need to ensure that in phase j of stage ¢ every node v €
Vi N M learns dpx—j),q, (v, r) for each sampled r € R; if dy.—j) @, (v,7) < (k—j)L;.
From a high level, we perform a distributed Bellman-Ford algorithm in G; from
every source r € M that is sampled in phase j. More precisely, in iteration t of the

algorithm, every node v € V; learns dy g, (r,v) for every node r € R, ;, where
Ryt ={u€ Rj | dyc,(r,v) < (k—j)Li}.

Therefore, after h(k — j) iterations, v knows whether it is in Bg,(r, k — j, L;) for all
r € Rj, in which case it adds {v,r} to Fy and becomes responsible for the edge.
Further, v learns whether there exists a node r € R; such that v € Bg; (ryk—j—1,L;),
in which case v becomes deactivated.

In iteration t of the algorithm, every node v performs a (slightly modified) multi-
aggregation to inform each of its neighbors about d;_1 g, (r, v) for every node r € R, ;.
Our algorithm is essentially an extension of the distributed Bellman-Ford approach
described in Section 4.4.2, where every node sends its current distance value to its
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neighbors using a multi-aggregation, and the leaf nodes augment the sent distance
values by the corresponding edge’s weights before aggregating the minimum value
at each node. More precisely, v first sends the value d;—1 g, (r,v) to all leaf nodes in
its broadcast tree T, ;. Using its knowledge of w({v,u}) due to Lemma 6.13, every
leaf node 1, 3q(v) of Tp,; computes d;—1,g,(r,v) + w({v,u}) before aggregating the
minimum value that is sent towards u for r. Thereby, v receives

71}%1‘2 (dt,l,gj (r,u) + w(u,v)) = dic; (r,v)
for each r € R, ;. Unlike the approach of Section 4.4.2, where distances to a single
source are computed, here we have to make sure that the distances for all r €
R, reach v. To do so, we slow down the multi-aggregation by a factor linear in
|Ry.t|, where we exploit the fact that |R, | < |R, ;| = O(M|"*logn), w.h.p., by
Lemma 6.11. Furthermore, distances that grow larger than (k — j)L; will simply be
dropped by the respective leaf node.

More precisely, our modification of the Multi-Aggregation Algorithm described in
Section 4.1.4 works as follows. Instead of sending a single packet of size O(logn) to
the root riq(y) of Ty, ;j, which is then multicast to the leaf nodes of T), ; in the butterfly,
v sends one subpacket for each r € R, ;1 containing the value dt_LGj (r,v). Sub-
packets are forwarded sequentially throughout the multi-aggregation, such that each
round of forwarding packets in the butterfly is “simulated” by performing multiple
rounds of forwarding subpackets. As the number of subpackets a packets consists
of may vary, we synchronize each simulated round by performing the Aggregate-
and-Broadcast algorithm, which introduces an additional O(logn) time overhead
per simulated round. When a packet from v reaches a leaf [, jq(,) of T),; that corre-
sponds to a node u € Ng; (v), luid(v) removes all subpackets whose value, increased
by w({u,v}), exceeds (k — j)L;. The subpackets are then mapped to random nodes
of the butterfly, and subsequently aggregated towards their targets as in the original
Multi-Aggregation Algorithm.

Lemma 6.14 (Realizing Algorithm 2). Let G = (V, E) be a weighted graph given
in §-oriented form, and M C V. There is an algorithm that constructs an h-hop
spanner with the properties described in Lemma 6.12 in O(k - |M|Y/*logn - log, W)-
oriented form. The algorithm takes time

O((8 +logn)| M| *logn - hik? - log, W), w.h.p.

Proof. The correctness of the algorithm follows from the observation that in iteration
t of the Bellman-Ford algorithm, every node v € Vj learns d g, (r, v) for every node
r € R, t. From the proof of Lemma 6.12 it directly follows that every node adds at
most O(k - |M|/*logn - log,, W) edges throughout the entire algorithm’s execution,
w.h.p.

It remains to show the runtime of the algorithm. Consider phase j of stage 3.
By Lemma 6.13, we can ensure that all broadcast trees T, ; are constructed at
the beginning of phase j in time O(0 + logn), w.h.p. If each packet was of size
O(logn), then a single iteration of the Bellman-Ford computation would require
time O(d + logn) by Corollary 4.30. However, this is slowed down by the maximum
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number of subpackets a packet may consist of, which, as argued before, is bounded
by |Ryi| = O(M|"*logn) due to Lemma 6.11, w.h.p. This runtime also covers
the additional O(logn) factor to synchronize each simulated round. Therefore, a
single iteration takes time O((§ + logn)|M|"/*logn), w.h.p. In each phase, up to
hk iterations of message passing are performed. Multiplying this by the number of
phases k and the number of stages ﬂog77 W] gives the stated bound. O

The Recursive Algorithm The sparse skeleton spanner algorithm forms the
basis for our recursive approximate SSSP algorithm. The algorithm is divided into
two stages. The purpose of the first stage is to compute a hierarchical structure
of spanners G1,...,Gr as follows. Let Gy := G, and choose parameters o > 5,
h := ca for a sufficiently large constant ¢, k := log, n, and constant n > 1. We
construct the first sparse spanner GGy, which contains all nodes of G, by performing
the distributed spanner algorithm of Baswana and Sen [BS07] in the local network
with parameter k, where every node becomes responsible for all edges that it adds
to the spanner throughout the algorithm’s execution. By [BS07, Theorem 5.1], we
obtain a (2log, n — 1)-spanner in time O(log? n). Furthermore, a closer inspection
of the proof of [BS07, Theorem 4.1] shows that Gy is in O(log,, n-n/18«") = O(w)-
oriented form, w.h.p. Every other spanner G; (i > 2) is constructed as an h-hop
skeleton spanner of G;_1, where every node in G;_1 joins the set M; of marked nodes
with probability min{1,log(n)/a} for i = 2 and with probability 1/« for i > 3. To
synchronize the executions of the iterative spanner constructions, we use Aggregate-
and-Broadcast Algorithm. When for the first time a spanner Gr1 contains no nodes
anymore, the first stage of the algorithm ends.

After the first stage has finished, in the second stage we simply perform the
distributed Bellman-Ford algorithm with source s in the union of all recursively
constructed spanners H = ;<< Gi for O(alog, n) rounds. Finally, every node
v € V chooses the minimum of all received distance values as its estimate d(s,v) of
d(s,v). In the following, we show that H is a good spanner of the underlying graph
G and that, moreover, between any two nodes of G, there is a path consisting of at
most O(alogn) hops in H whose length gives a good approximation of the distance
between the nodes in G. We first need a technical lemma.

Lemma 6.15 (Short Paths in G;). Assume that P is a shortest path on G between
two nodes of G1 that also has fewest hops. Further consider i > 1 and let u,v € M;
be two nodes on the path P such that hopg, (u,v) = q for some q € [ - oty adl.
For a sufficiently large constant v, u and v are connected in G; by a path that consists
of at most O(a) hops and that has length at most (2nk)" - dg, (u,v).

Proof. We prove the lemma by induction on i. For ¢ = 1, the statement holds directly
as u and v are connected by a path in G; with hop-distance at most v - a = O(«)
by assumption already.

We can therefore focus on the induction step and i > 2. Let P’ be the subpath of
P between v and v. Further, let Mi(P/) be the set of nodes of M; that are on path P’.
Clearly, Mi(P,) contains u and v. Note also that for all 7 > 2, nodes of V' are sampled
to be in M; with probability log(n)/a‘~!. Because P’ contains ¢ > ya'~! hops, for a
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sufficiently large constant v we have that Mi(P,) = Q(logn), w.h.p. Further, because

q is upper bounded by ya?, it also holds Mi(Pl) = O(alogn), w.h.p.

Our goal is to select a subset M, of MZ-(PI) of size O(a) that contains v and v
and such that for any two consecutive nodes x and y of M/ on P’, it holds that the
subpath of P’ connecting x and y contains between ya‘~!/5 and ya'~! hops in Gj.
To see that this is always possible, we partition the path P’ into arbitrary subpaths
that all contain between ya‘~1/5 and va'~!/4 hops. Because P’ contains x-ya'~!/5
hops for some k > 5, we can always partition it into |x| subpaths of the required
range. We then select a maximal set of non-adjacent subpaths that contains the
first and the last of the subpaths (the ones containing u and v). Since each node
of P’ is contained in M] with probability logn/a‘~t, for sufficiently large + each of
the subpaths contains at least one node of Mi(P,), w.h.p. We add v and v and an
arbitrary node from each other selected subpath to M/, which gives a set M/ with
the required properties.

Because the hop-distance between any two consecutive nodes z and y of M/ C M;
in P’ is between ya'~! /5 > va'~2 and ya'~!, we can apply the induction hypothesis
to the subpath between x and y and conclude that z and y are connected in G;_1
by a path consisting of O(a) hops and of total length at most (2nk)~! - dg, (7, y).
Choose the constant ¢ in the definition of h = ca sufficiently large such that this path
contains at most A hops. By Lemma 6.12, « and y are therefore connected in G; by
a path consisting of at most two hops and of length l,, < (2nk)ds q, ,(x,y). Note
that the induction hypothesis then also yields that dp, ;,_, (z,9) < (2nk)""tdg, (x,y),
which implies that l,,, < (2nk)'dg, (z,y). Since P is a shortest path, we can sum up
the lengths of all these subpaths for all  and y and obtain a path between u and v

in G; that has O(«a) hops and length (2nk)‘dg, (u,v), proving the lemma. O

We next prove that in the union spanner graph H, there is a short path between
any two nodes that consists of few hops and approximates distances in G well.

Lemma 6.16 (Stretch of H). Let u,v € V be two nodes of Gy and let P be a shortest
path between u and v in G1. Assume that P consists of ¢ hops and assume that
for the constant v from Lemma 6.15, & is the smallest integer for which q¢ < yaf.
Then graph H contains a path that consists of at most O(alog, n) hops and that has
length at most (2nk)*da, (u,v).

Proof. We prove the lemma by induction on £. First note that for £ = 1, the claim
directly follows because |P| = O(«). Let us therefore consider £ > 2. Recall that the
nodes in M¢ are sampled with probability log(n)/ af~1. Hence, w.h.p., for sufficiently
large 7, every subpath of length at least yaf~!/3 contains at least one node of M.
Specifically, since |P| > ya~!, P contains at least one node of Me.

Let  and y be the first and the last node of M¢ on P when going along the
path from u to v, and let P; be the subpath from u to x, P> be the subpath from
T to y, and P3 be the subpath from y to v. Note that by the above observation,
|Pi| < vaf71/3 and |P3| < vaf~1/3 from v. We will first argue that for P, H
contains a path that has at most O(a) hops and length at most (2nk)¢ - dg, (z,v).

First, note that since |P| < yaf, we clearly also have that |P’| < yaf. Let us first
assume that P’ contains at least ya¢~! many hops. Then Lemma 6.15 implies that
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G¢ (and thus H) contains a path consisting of O(a) nodes and of total length at most
(2nk)¢-dg, (x,y). If otherwise |P'| < yaf~!, we must have that |P/|ya*~1/3 > yat~=3,
since P; and P, contain at most ’yag_l/ 3 hops, and since |P| > 7&5_1, P, must be
larger. Since Mg C M¢_1,  and y must also be contained in M_;. In this case, we
can apply Lemma 6.15 to argue that G¢_; (and thus H) contains a path consisting
of O(a) nodes and of total length at most (2nk)$~! - dg, (z,v).

It remains to consider the subpaths P; and P». For P;, we can inductively argue
that it can be divided into two subpaths, where the first subpath ends at a node
w of M¢_; for some [ > 1, and the second subpath ends at x (which must also
be contained in M¢_;). Whereas the second subpath contains an O(a)-hop path
of length at most (2n7k)$~! - dg, (w, z) using the above argument, the first subpath
needs to recursively be divided further. Whereas this recursion does not worsen the
distance approximation factor, it does add an O(log, n) factor to the number of
hops of the resulting total path. The same argument can be applied to P3, which
proves the claim. O

We are now ready to prove Theorem 6.8.

Proof of Theorem 6.8. First, we show the approximation factor. Let u,v € V be two
nodes. By Lemma 6.16 and since T' = O(log,, n), between any two nodes u,v € V,
the combined spanner H contains a path of length at most

(20k)" - de, (u, v) = O(k) 010%™ - dg, (u, v),

and this path consists of at most O(alog, n) hops. The spanner G, which is com-
puted by using the spanner algorithm of Baswana and Sen [BS07], also contains a
path of at most O(k) hops and with distance stretch O(k) between any two nodes
in V. Therefore, we can conclude that between any two nodes u,v € V, the span-
ner H contains a path of length (log,n)®U°%«™ . dg(u,v), consisting of at most
O(alog,n) = O(a) hops. This particularly shows that by propagating distances
from s for O(alog, n) rounds in H, every node v € V learns a distance estimate
d(s,v) < (log, n)°U°ga™) . d(s v).

Finally, we show the runtime of our algorithm. In the first stage, constructing
the first spanner G takes time O(log? n), which follows from [BS07, Theorem 5.1]
and our choice of k = log,n. The resulting spanner is in @(a)—oriented form,
because the expected number of edges contributed to the spanner by a vertex in
each of the k = log, n iterations of the algorithm is n'/k = o, and thus (5(04), w.h.p.
By our choice of k, every spanner G;, ¢ > 2, that is constructed using our sparse
skeleton spanner algorithm is also in O(«)-oriented form by Lemma 6.14. Therefore,
constructing G; takes time O(a|M|"/1°8"q) = O(a?). Furthermore, we have that
T = O(log,, n), which follows from the fact that the probability for a node to be in
spanner Gy, 1 is logn/a’. Thus, the first stage takes time O(a?), w.h.p.

Now consider the second stage. As every spanner is in @(a)—oriented form, in H
every node is responsible for @(a) edges. Therefore, the broadcast trees necessary
to perform multi-aggregations can be set up in time @(a), w.h.p., and every round
of the Bellman-Ford computation can be realized by performing multi-aggregations
in time O(a) as described in Section 4.4.2, for example. Since we only perform O(a)
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rounds of Bellman-Ford until every node has learned its correct distance, the second
stage takes time O(a?), w.h.p. O

6.3. Outlook

Whereas the APSP Problem can be computed in asymptotically optimal time (up
to polylogarithmic factors), and also the Diameter Problem is almost settled to the
lower bound, no formal lower bound for the SSSP Problem is known so far. Clearly,
coming up with such a lower bound would give valuable insight into the complexity
of the problem. At this point, there is no reason to assume that any of the known
upper bounds for SSSP are tight. It would be worthwhile to investigate whether the
O(+v/SPD)-time algorithm of this chapter, or the O(n!/3)-time solution by Censor-
Hillel et al. [CLP20] can be improved. Furthermore, studying variants of the SSSP
Problem, such as the k-SSP or the (h, k)-SSP Problem, may yield interesting results.

Regarding approximate solutions, an improvement of our 6(n1/ 3)-time algorithm
for (1 + e)-approximate SSSP could be attainable. One of the most intriguing ques-
tion is whether constant factor, in particular (1 + ¢), approximations of SSSP can
be computed in subpolynomial time.
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Shape Formation in Hybrid Programmable
Matter

UR first chapter on hybrid programmable matter studies the problem of shape

formation. Arguably, transforming an initial structure into a specific shape is

among the most important problems for programmable matter. In addition to
the potential applications of shape formation mentioned in Chapter 1, a particularly
interesting usage lies in the construction of space facilities [Nie+20; Abd+20]. Due
to the inhospitable nature of space, and the exceptional costs of erecting and main-
taining facilities by outside intervention, scalable and simple autonomous systems
are of invaluable utility there. In recent years, there have been significant advances
both in the development of light-weight lattice structures and in autonomous robotic
systems to manipulate these structures. To make these systems cost-efficient, scal-
able, and robust, the robots and lattice structures need to be as simple, and the
algorithms as efficient as possible.

In this chapter, we establish some theoretical foundations towards this goal. Specif-
ically, we present a simple two-dimensional model for hybrid programmable matter.
In this model, we show that already a single robot with constant-size memory is able
to solve simple shape formation problems. Our ultimate goal is to investigate how
multiple robots can cooperate to speed up the process of shape formation. To that
end, we present a distributed shape formation algorithm that constructs a line using
multiple robots and evaluate the performance of the algorithm experimentally.

Underlying Publication The chapter is based on the following publication.

R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Schei-
deler, and T. Strothmann. “Forming Tile Shapes with Simple Robots”.
In: Proceedings of DNA Computing and Molecular Programming (DNA ).
2018, pp. 122-138 [Gmy+18c¢]

An extended version of the paper has also been published in the Natural Comput-
ing journal [Gmy+-20].

R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, C. Schei-
deler, and T. Strothmann. “Forming tile shapes with simple robots”. In:
Natural Computing 19.2 (2020), pp. 375-390 [Gmy—+20)]

Some preliminary results of the publication have been presented at the EuroCG
2017 Workshop [Gmy+17b].

Model Before we describe our results and give an outline of the chapter, we for-
mally introduce the model upon which this and the following chapter are based.
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Figure 7.1.: (a) A connected set of tiles positioned on the triangular lattice. The
black dots indicate the position of the robot, and gray contours indicate
tiles that are marked by a pebble. (b) Possible movements of tiles u, v,
and w. Tile w cannot be moved anywhere without violating connectivity.

We assume that a single active agent (a robot) operates on a finite set of n passive
hexagonal tiles. Each tile occupies exactly one node of the infinite triangular lattice
G = (V,E) (see Figure 7.1a). A configuration (T,p) consists of a set T C V of
all nodes occupied by tiles, and the robot’s position p € V. The diameter of a
configuration is defined as the maximal length of a shortest node path between any
two occupied nodes of the triangular lattice. Note that every node u € V is adjacent
to six neighbors, and, as indicated in the figure, we describe the relative positions
of adjacent nodes by the six compass directions N, NE, SE, S, SW and NW.

Whereas tiles cannot perform any computation nor move on their own, the robot
may change its position and carry a tile, thereby modify a configuration. The robot
must stand on or be adjacent to a node occupied by a tile. Additionally, if the robot
does not carry a tile, we require the subgraph of GG induced by T to be connected;
otherwise, the subgraph induced by T'U{p} must be connected. In a scenario where
a tile structure swims in a liquid or floats in space, for example, this restriction
prevents the robot or parts of the tile structure from drifting apart. Some examples
of possible tile moving steps are shown in Figure 7.1b.

Additionally, the robot may carry a set of k > 0 indistinguishable pebbles. Pebbles
can be placed on tiles in order to mark them. A tile can be marked by at most one
pebble (see Figure 7.1a).

Initially, we assume that the robot stands on a tile of a connected structure and
does not carry a tile. Furthermore, the robot carries all of its pebbles, and no tile is
marked by a pebble already.

The robot operates in rounds of Look-Compute-Move cycles. In the Look phase of
a round, the robot can observe its node p and the six neighbors of that node. For
each of these nodes, it can determine whether the node is occupied or not, and if
it is occupied, whether the tile is marked by a pebble. In the Compute phase, the
robot may change its internal state and determines its next move according to the
observed information. In the Move phase, the robot can perform at most one of the
following actions:
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1) Lift a tile from p, if p € T,

2) place a tile it is carrying at p, if p ¢ T,

3) pick up a pebble, if p € T and the tile at p is marked by a pebble,

(1)
(2)
(3)
(4) place a pebble, if p € T, the tile at p is not marked by a pebble, and the robot

still has a pebble at its disposal,

(5) or move to an adjacent node.

Note that whereas the robot can carry at most one tile, it may carry multiple pebbles.

Formally, we model the execution of an algorithm by the robot as transitions of a
deterministic finite automaton (Q,%, 6, qo, F)). @ is a constant-size set that contains
all of the robot’s possible states. 3 = {0, 1, 2}7 represents the set of possible views
of the robot: The first digit of an element in 3 indicates whether p is empty (0),
occupied by a tile (1), or occupied by a tile on which a pebble is placed (2). The
other six digits indicate, in order, the states of the adjacent nodes in direction N,
NE, SE, S, SW, and NW from p. In each round, the robot executes one transition
of a transition function d, which is defined as

d: Q@ xXx{0,1} x{0,...,k}
— @ x {none, liftT, placeT, pickP, placeP, movey}.

The input of 4 is the current state and view of the robot, a bit that indicates whether
the robot carries a tile, and a value that gives the number of pebbles the robot
currently carries. As an output, the transition function determines the robot’s next
state as well as one of the following actions: do nothing (none), lift a tile (liftT),
place a tile (placeT), pick up a pebble (pickP), place a pebble (placeP), or move in
some direction d of the six cardinal directions (moveg). qo € @ is the initial state
of the robot, and F' C @) contains all final states. If in some round the robot is in a
final state, it will not perform any further state transition; in this case we say the
robot has terminated.

Note that we use the above definition to formally argue about the robot’s capa-
bilities and limitations. However, we will present our algorithms from a higher level
by describing their behavior textually and through pseudocode. We remark that all
our algorithms can easily be transformed into actual state machines. Further, note
that even though we describe the algorithms as if the robot knew its global orien-
tation, we do not actually require the robot to have a compass. For the algorithms
presented in this and the following chapter, it is enough for the robot to be able to
maintain its orientation with respect to its initial orientation.

Contribution and Outline In this chapter, we mainly focus on the Triangle
Formation Problem with a single robot, in which the goal is to transform the set
of all tiles into a triangular form. In Section 7.1, we begin by pointing out one of
the limitations of our model: It is in general impossible for a single robot to find a
tile that can be removed without disconnecting the tile structure. We contrast this
result by showing that having a single pebble already suffices to solve this problem.
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We then show how to construct intermediate structures by using simple tile move-
ments that allow for easy navigation and tile removal in Section 7.2. More specifi-
cally, we present three intermediate structures. The simplest among them is a [line
structure; it can be constructed in O(n?) rounds (Section 7.2.1). The second struc-
ture we introduce is a block. It has diameter O(D), where D is the structure’s initial
diameter, and can often be constructed more efficiently than the line, namely in
O(nD) rounds (Section 7.2.2). Finally, we describe a tree structure, which, in con-
trast to the previous structures, can be built completely inside the convex hull of the
original tile set in O(n?) rounds (Section 7.2.3). Using the block structure as an ex-
ample, we argue that each of these intermediate structures can be transformed into
a triangle by performing an additional O(nD’) rounds (D’ being the intermediate
structure’s diameter). This leads to an algorithm that solves the Triangle Formation
Problem in time O(nD) for initial diameter D.

In Section 7.4, we finally discuss how the line algorithm can be transferred to
the multi-robot case. We provide some first simulation results showing that a small
number of robots can speed up line formation by a significant amount. As the
number of robots increases, we observe the anticipated decline in speedup. We then
describe how a triangle can be built from a line in a distributed manner.

Related and Subsequent Work There is a number of approaches to shape for-
mation in the literature that use agents that fall somewhere in the spectrum between
passive and active. As mentioned in Chapter 1, tile-based self-assembly [Pat14] uses
passive tiles that bond to each other to form shapes. A variant of population proto-
cols [Ang+06] proposed by Michail and Spirakis [MS16] uses agents that are partly
passive (i.e., they cannot control their movement) and partly active (i.e., upon meet-
ing one another, they can perform a computation and decide whether they want to
form a bond). Finally, the Amoebot model [Der+14]|, the nubot model [Woo+13], and
the two-dimensional modular robotic model [Hur+15] use agents that are completely
active in that they can compute and control their movement. Shape formation has
also been investigated for practical modular robotic systems (see, e.g., [MKK94;
Tom+99]). Here, the robots typically have much greater computational capabilities
than in our model.

We remark that some of the above models are more powerful than our model and
could therefore easily simulate our algorithms. For example, in the Amoebot model
a set of n active agents could form the initial tile structure and simulate movements
of the active agent by transferring its role from one agent to another. As every agent
is able to move in that model, modifications of the tile structure can, in principle,
also be simulated, although coming up with an actual simulation framework might
still be difficult. In contrast, the simplicity of our model allows us to focus on the
question whether already a single active agent with the power to manipulate the
structure of passive agents suffices for complex tasks such as shape formation.

Recently, Fekete et al. [Fek+21] studied a simplified version of our model, which
considers square tiles and allows the robot to move on unoccupied nodes and create
and destroy tiles at will. Based on this model, they solve geometric tasks such as
computing a bounding box, counting tiles, or scaling and rotating the tile structure.
To do so, they exploit the capability of the robot to essentially construct a Turing
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machine using tiles. Furthermore, the algorithm does not preserve connectivity.
However, using two robots (or, alternatively, one robot and a pebble), the algorithms
can be adapted to maintain connectivity [Nie420; Fek+20].

When arguing about a robot traversing a tile structure without actually moving
tiles, our model reduces to an instance of the ubiquitous agents on graphs model.
Research in this model covers many problems, including Gathering and Rendezvous
(e.g., [Pell2]), Intruder Caption and Graph Searching (e.g., [BN11; FT08]), Graph
Ezploration (e.g., [Dasl3]), or Black Hole Search (e.g., [Marl2]). Other approaches
allow agents to move tiles (e.g., [Dem+03; TMO08]), but these focus on computational
complexity issues or agents that are more powerful than finite automata.

7.1. Finding Safely Removable Tiles

In a naive approach to shape formation, the robot could iteratively search for a tile
that can be fully removed from the structure without disconnecting the tile structure
(a safely removable tile) and then move that tile to some position such that the shape
under construction is extended. More formally, a safely removable tile is a tile that
does not occupy a cut verter v of the subgraph H of G induced by the nodes of
T (i.e., a node whose removal from H does not increase the number of components
in H). Since H is finite, not every node of H can be a cut vertex; therefore, there
always is a safely removable tile. However, the following theorem shows that, in
general, a single robot cannot decide whether a tile is safely removable, which makes
this naive approach infeasible.

Theorem 7.1 (Safely Removable Tiles). There does not exist a deterministic finite
automaton A so that if the robot executes A on any configuration starting on an
occupied node and without carrying a tile, it (1) never performs a tile lift, (2)
terminates on a safely removable tile.

Proof. Suppose that there is such an automaton A, and let s = |Q|. We consider
the configuration H, in which the tiles form a hollow hexagon of side length ¢, and
place the robot on the southernmost tile of the hexagon as depicted in Figure 7.2a
(we call this node the southern vertex of Hy). We define the set of border nodes to
be all vertices (i.e., the corners) of the hexagon, all empty nodes inside the hexagon
that are adjacent to a vertex, and all empty nodes outside the hexagon whose only
neighbor is a vertex (see Figure 7.2a). Consider the finite sequence of system states
(S1,S2,...,S57) through which the robot progresses while executing .4, where S; =
(pi, q;) contains the robots position p; and state g; before executing round i. S
corresponds to the initial system state, and St is the first system state for which
gr € F. We partition this sequence into phases, where we define a new phase to
start whenever the robot visits a border node (i.e., for every phase (S;,...,Sk), p;
is a border node, and for all j, i < j <k, p; is not a border node).

Note that since there are at most 18 border nodes, there can be at most 18s
phases: Otherwise, there must be two phases that begin with system states S;, 5j,
respectively, such that S; = S; (w.lo.g., let i < j). Since the tile structure is never
altered by the robot, S;11 = S;11, and, inductively, S; 1 = Sj4, for all £ > 0, which
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Figure 7.2.: (a) The hollow hexagon of side length ¢ = 4. The border nodes of
the hexagon are marked by dashed frames. (b) An example of the tile

structure 7T'. In both figures, the black dot indicates the initial position
of the robot.

implies an infinite loop and contradicts the assumption that the sequence of system
states is finite.

The way the robot traverses the hexagon depends on the side length ¢. We define
the traversal sequence associated with ¢ as the sequence (S1, S, ..., Sk ) of all system
states a phase begins with when A is executed on Hy (i.e., S; is the first system state
of phase i, and k is the total number of phases). Note that a traversal sequence may
be of length 1, i.e., if the robot never visits a border node except for its initial
position. Since the algorithm takes at most 18s phases to terminate (for any choice
of £), there can only be at most (18s)® distinct traversal sequences for different
choices of ¢. Hence, there is a finite number of traversal sequences and an infinite
number of side lengths, which, according to the pigeonhole principle, implies that
there must be an infinite set L of side lengths corresponding to the same traversal
sequence.

Based on this observation, we now define a tile structure 7 for which the robot
terminates on a tile that is not safely removable. This tile structure essentially
consists of a spiral as depicted in Fig. 7.2b. We start at an arbitrary node of the
triangular lattice and construct an outward spiral consisting of 72s line segments of
tiles. The first line segment of the spiral goes NW and each subsequent line segment
takes a 60° clockwise turn. The lengths of the line segments are chosen from L in
such a way that the smallest side length £,,;, is larger than s+ 2, and such that the
segments stay well-separated. This is possible since L is an infinite set and therefore
we can always choose sufficiently large segment lengths. We initially place the robot
at the last tile of the (36s)-th line segment, which is a tile with neighbors at NW
and NE.

It remains to show that the algorithm fails to find a tile that can be safely removed
when being executed on 7. As above, we subdivide the execution of the algorithm
into phases, where we define a new phase to start whenever the robot visits a border
node of the spiral (which, analogous to the definition for the hexagon, we define
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as the three nodes at each turn of the spiral). Using induction on the phases, we
show that the robot traverses 7 in a way that corresponds to the traversal sequence
associated with the side lengths in L.

More specifically, we show that the i-th border node visited by the robot on T (1)
has the exact same neighborhood as the i-th border node visited by the robot in a
hexagon H, for all £ € L, and (2) is visited in the same state. This initially holds
as the robot is placed on a tile with only NW and NFE neighbors in both structures
and starts in the initial state. For 1 < ¢ < 18s, w.l.0.g., assume that the i-th border
node visited in 7 is occupied and has a tile at NW and NFE (all the other cases are
analogous), and the robot is in state ¢ (note that the robot cannot have reached
either end of the spiral after having visited fewer than 36s border nodes). Let {yg
be the length of the line segment in direction NE from the robot’s current position,
and let ¢y be the length of the line segment in direction NW. By the induction
hypothesis, we have that the i-th border node v visited on Hy is the the southern
vertex of the hexagon for all £ € L, and the robot is in state ¢ when visiting the i-th
border node.

W.lo.g, assume that the next border node visited by the robot on H, is not
adjacent to the south-east vertex of Hy (i.e., the robot does not follow the hexagon
in direction NE). Then, in any hexagon Hy, the robot will never move away from
v in direction NE by more than s steps. Since the length of the line segment in
direction NFE is larger than s+ 2, the robot would otherwise visit two nodes with the
same neighborhood in the same state, which would cause a repetition that leads the
robot to a border node at the south-east vertex, which contradicts our assumption.
Therefore, for every node visited by the robot on Hy,, before visiting a border node
in direction NE, the robot visits a node with the same neighborhood on 7. Therefore,
the next border node visited by the robot on 7 has the same neighborhood as the
next border node visited by the robot on Hy,,, and is visited in the same state.
Since all ¢ € L exhibit the same traversal sequence, we conclude the induction.

Therefore, the (18s)-th visited border node on 7 corresponds to the last border
node visited by the robot on Hy for all £, from where the robot will not move farther
away than by s < £, — 2 steps before terminating on a tile (otherwise, there would
again be a repetition leading the robot to a border node). However, since the robot
has only visited at most 18s border nodes, it cannot have reached either end of
the spiral, and thus terminates on a tile that is not safely removable. This directly
contradicts the assumption that the automaton works correctly and therefore shows
that there is no such automaton. O

In contrast, the problem can be solved by equipping the robot with a single pebble.
We first describe how the robot can use a single pebble to detect whether a given tile
is safely removable. Let S be a maximal set of connected empty nodes given some
tile configuration. If S is finite, then it is a hole; otherwise, it is the infinite set of
empty nodes around the structure. We refer to the subset of S adjacent to occupied
nodes as the boundary of S. Any tile ¢t can be adjacent to at most three different
boundaries (see Figure 7.3a). We define the outline of a boundary as the set of its
adjacent occupied nodes. For a tile ¢, consider the subgraph H of G induced by the
empty nodes adjacent to the node of . H has at most three components, which we
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Figure 7.3.: (a) A tile ¢ (black) that is not safely removable with its three empty
regions (dashed outlines). t is adjacent to two boundaries (black lines).
The dotted path could be extended to a cycle if ¢ was removed. (b) A
local tile movement that preserves connectivity.

call t’s empty regions (see the black tile in Figure 7.3a). Note that every region is
contained in some boundary that we refer to as its corresponding boundary. In the
example of a line segment, all empty regions correspond to the same boundary.

Lemma 7.2. A tile t is safely removable if and only if all of its empty regions
correspond to different boundaries.

Proof. First, assume that ¢ has at least two empty regions that belong to the same
boundary (e.g., the outer boundary in Figure 7.3a). Consider a path P of empty
nodes along the boundary that connects the two regions of ¢ (the dotted path in
Figure 7.3a). After the removal of ¢, we can extend P to a cycle C' using the
remaining empty node of . C consists of empty nodes and surrounds a set of tiles A.
However, as t had at least two empty regions, there must remain a tile ¢’ adjacent
to t that is not connected to any tile of A. Therefore, the configuration cannot be
connected anymore.

Now assume all empty regions of ¢ belong to separate boundaries, and consider two
different outlines containing ¢. The empty regions that are part of the corresponding
boundaries are connected via tiles in t’s neighborhood. Hence, any two outlines
containing ¢ are connected via tiles adjacent to ¢t and thus remain connected after
removing t. Thus, t is safely removable. O

Now we are ready to give our automaton to find a safely removable tile, which, for
simplicity, we describe as an algorithm for the robot. To search for a safely removable
tile, the robot first walks N, NW, and SW (in that precedence) until it reaches a
locally northwesternmost tile t (i.e., a tile with no neighbors at N, NW, and SW). The
empty node NW of t belongs to a boundary whose outline O contains t. It can easily
be seen that O contains a safely removable tile. To find it, the robot traverses O in
clockwise order and checks each tile ¢’ of O separately using the following procedure.
First, it places the pebble on . Then, it traverses each boundary adjacent to t'
and verifies whether it returns to ¢’ within the same region, in which case all empty
regions belong to separate boundaries. Together with Lemma 7.2, we conclude the
following theorem.

152



7.2. Forming an Intermediate Structure

Theorem 7.3 (Safely Removable Tiles with a Pebble). A single robot can find a
safely removable tile in O(n?) rounds with the help of a single pebble.

7.2. Forming an Intermediate Structure

Although the robot cannot always find a safely removable tile (unless being equipped
with a pebble), it can always perform local tile movements that preserve connectivity.
For example, when a tile ¢ only has adjacent tiles at NE and S, removing ¢ from
the structure may potentially disconnect the system (see Figure 7.3b). However, in
this case we can still pickup ¢, move one step SE (where connectivity is preserved
through the carried tile), and reconnect the shape by placing it there. In this section,
we show how to construct intermediate structures by performing such movements.
In the resulting structures the robot can easily navigate and move tiles without
possibly violating connectivity. Therefore, it can easily disassemble such a structure
and rearrange its tiles into the desired shape.

We aim to construct simply connected intermediate structures (i.e., structures
without holes), as removability of a tile can easily be determined locally in such
a structure: A tile is safely removable if and only if it only has one empty region.
Such a tile can always easily be found in a simply connected structure. Note that
although in the presented intermediate structures it is easy to determine a location
where an arbitrarily large shape can be built, a robot may not always be able to find
such a location in any simply connected structure.

We show how to construct three different intermediate structures. As a first simple
example, we demonstrate how to construct a line in time O(n?), which is a sequence
of connected tiles from north to south. Clearly, the main drawback of this algorithm
is that tiles might need to be moved by a distance linear in n. Our second algorithm
avoids this pitfall by building a structure called a block in time O(nD) with initial
diameter D. The algorithm further ensures that no tile is moved farther than by
a distance of D. The last and most complex algorithm builds a simply connected
structure called a tree in time O(n?). The main advantage of this solution is that
no tile is ever placed outside of the convex hull of the initial configuration, which is
the convex hull of the corresponding set of hexagonal tiles in the Euclidean plane.

7.2.1. Forming a Line

To construct a line, the robot first moves S as far as possible, i.e., as long as there
is a tile in direction S. Then, it alternates between a tile searching phase, in which
it moves NW, SW, and N (in that precedence) until there is no longer a tile in any
of these directions, and a tile moving phase, in which it lifts the tile, moves one step
SE, moves S until it reaches an empty node, and then places the tile. The line is
complete once the robot does not encounter any adjacent tiles to the east or west in
the tile searching phase. Figure 7.4 shows the first several steps of this algorithm.

Theorem 7.4 (Line Formation). A single robot can transform any connected tile
configuration into a line and terminate after O(n?) rounds.
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Figure 7.4.: First several steps of line formation. The black tiles are moved to the
positions marked by dashed outlines.

Proof. We define a column as a maximal sequence of connected tiles from N to
S. First, note that the robot always finds a locally northwesternmost tile in the tile
searching phase. Furthermore, each tile movement always preserves connectivity. To
prove that a line is eventually built, we observe that the tile searching phase does not
terminate in the northernmost tile of a locally easternmost column as long as there
is more than one column in the tile configuration. This follows from the fact that
the tile searching phase always starts at the southernmost tile of a column, and that
preference is given to the NW and SW directions when searching. Therefore, if a line
has not yet been constructed, and the robot stops at some locally northwesternmost
tile, there must be tiles east of that position. This observation specifically implies
that no tile is ever moved east of the initially globally easternmost column, unless
the structure already forms a line. Otherwise, the robot will at some point place a
tile east of that column for the first time, at which point the column from which the
tile is taken must be locally easternmost, contradicting the statement above.

To conclude the correctness of the algorithm, we argue that the robot terminates
when a line is formed for the first time. In case that the structure initially forms a
line already, the robot completely traverses the line from south to north in the first
tile searching phase, finds no tile to the east or west, and terminates. Otherwise, the
structure eventually becomes a line after the robot has placed the line’s southernmost
tile, in which case the robot terminates after the next tile searching phase.

Finally, we show that the algorithm takes O(n?) rounds. The first steps of moving
south take O(n) rounds. For the two phases, we first bound the number of times the
robot moves a tile by one step in the tile moving phase. By the above observations,
the tiles of an easternmost column in the initial tile configuration are never moved.
Since furthermore the initial tile configuration is connected, and tiles are exclusively
moved SE and S, each tile is moved at most 2n steps. Therefore, spmove = O(n?)
move steps are performed in total.

Now, consider the tile searching phase. We assign coordinates to each node, where
the z-coordinate grows from west to east and the y-coordinate grows from north to
south. More precisely, the changes of the (z,y) coordinates for movements in the
six cardinal directions are

N=(0,~1), NW=(-1,-1/2), SW=(-1,1/2),
SE=(1,1/2), S=(0,1), NE= (1,-1/2).
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Note that whereas the sum of the coordinates of the robot increases at every step in
the tile moving phase, it decreases at every step in the tile searching phase. More
specifically, in each step of the tile moving phase, the sum of the coordinates of the
robot increases by at most 3/2, and in every step of the tile searching phase, the
sum of the coordinates decreases by at least 1/2. Thus, the total number of steps in
the tile searching phase can be bounded by

Ssearch < 2 - ((3/2) * Smove t Ssouth + (370 + y()) - mlln(xz + yz)) s

where Sgouth is the number of steps the robot initially takes to go south, (xg,yo)
denotes the robot’s initial coordinates, and the value min;(z; + y;) is taken over
all possible placements of all tiles. As the initial tile configuration is connected,
Ssouth < 1, (o + yo) — min;(x; + y;) = O(n), and spmeve = O(n?). Therefore, the
total number of search steps is O(n?). Since each move and search step takes O(1)
rounds, the total number of rounds is O(n?). O

It is not hard to see that €2(n?) rounds are necessary to rearrange an arbitrary
initial tile configuration into a line by a single robot. If starting from an initial
configuration with diameter O(y/n), for example, a constant fraction of the tiles has
to be moved by a distance linear in n. Therefore, a total of Q(n?) move steps are
required to build a line.

7.2.2. Forming a Block

Although a line can be constructed efficiently, its linear diameter might make it
an undesirable intermediate structure. In fact, if both the initial diameter and the
diameter of the desired shape are small, moving tiles by a linear distance to construct
an intermediate structure seems to be an excessive effort. Therefore, we introduce
another intermediate structure, which is called a block: In a block, all tiles except
those farthest to the west have an adjacent tile to the northwest. Therefore, a block
has only one westernmost column, and every row, which we define as a maximal
sequence of connected tiles from NW to SE, begins with a tile from that column
(see right picture in Figure 7.5). Clearly, a line is a special case of a block that only
consists of one column. Our algorithm builds a block in O(nD) time and does not
move any tile farther than by a distance D, where D is the diameter of the initial
structure. An example of the transformation of an initial structure into a block is
shown in Figure 7.5.

We present the algorithm in two steps. First, we describe a non-halting algorithm
by giving simple tile moving rules similar to the rules of the line construction algo-
rithm. The algorithm will eventually build a block structure. We then extend the
algorithm with additional checks to detect whether a block structure has been built.

As in the line algorithm, the robot alternates between a searching and a moving
phase: It first searches for a locally northwesternmost tile by repeatedly moving
NW, SW, or N (in that precedence). The robot then picks up the tile, moves SE
until it reaches an empty node, and places the tile there. Note that at this point,
the algorithm differs from the line algorithm only in that it skips the initial phase
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Figure 7.5.: Transformation of an initial structure into a block. The gray lines indi-
cate some fixed x- and y-coordinates for reference.

of moving south, and that it places each tile at the first empty SE position instead
of moving only one step SE and then placing the tile at the first southern position.

We show the correctness of this simple algorithm through a sequence of lemmas.
As in the proof of Theorem 7.4, we assign coordinates to each node, where the x-
coordinate grows from west to east and the y-coordinate grows from north to south.
For the following three lemmas, let 0 be the maximum z-coordinate of all tiles in the
initial tile configuration, i.e., the z-coordinates of the easternmost tiles are 0 and all
others have negative z-coordinates.

Lemma 7.5. During the algorithm’s execution, any two tiles with x-coordinate 0
are connected via a simple path of tiles whose x-coordinates are at most 0.

Proof. The claim initially holds. Let P be the simple path connecting two tiles u
and v with z-coordinate equal to 0. We show that after the robot has moved any
other tile ¢ # u, v, there remains a path between u and v. If ¢ has z-coordinate less
than 0, placing the tile at the first empty position SE will maintain a simple path
with z-coordinate at most 0. If ¢ has z-coordinate equal to 0, then ¢ cannot lie on
P, as t does not have adjacent tiles at N, NW, and SW. Thus, moving ¢ does not
affect the path. O

Lemma 7.6. If there is a tile with x-coordinate 0, and the robot picks up a tile at
some node v with x-coordinate x,, then x, < 0.

Proof. The node of the first tile the robot picks up has xz-coordinate at most 0. Now
assume that afterwards the robot picks up a tile at some node v of the triangular
lattice with z-coordinate x,. If there is a tile at the southern neighbor of v, then
the next tile the robot will lift has x-coordinate at most x,.

This implies that in order for the robot to lift the first tile o with z-coordinate
greater than 0, it has to have previously lifted a tile ¢; at 0 with no southern neighbor.
At that point, ¢; also had no adjacent tile at SW, NW, and N. Therefore, it could not
have been connected to any other tile at 0 via a path of tiles with z-coordinate at
most 0. Thus, by Lemma 7.5, t; was the only tile at 0 when it was lifted. Therefore,
there is no tile with z-coordinate 0 when ¢ is lifted. O
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Note that in the next lemma we do not yet assume that the algorithm will termi-
nate when a block structure has been built, but only show that a block will eventually
be built.

Lemma 7.7 (Block Correctness). Let the mazimum x-coordinate of the tiles in the
initial tile structure be 0. Then the algorithm rearranges the tiles into a block, in
which the westernmost column of tiles has z-coordinate 1, in O(nD) rounds.

Proof. We first show the correctness of the algorithm. First, note that the robot
always finds a tile to move. By Lemma 7.6, the robot will repeatedly pick tiles with
x-coordinate at most 0 until there is no such tile anymore. At this point, every tile
with z-coordinate at least 2 has a neighbor at NW. This is due to the fact that
each such tile must have had a NW neighbor at the time of its placement, and by
Lemma 7.6 none of these tiles has been moved yet. Therefore, the tiles are arranged
as a block in which the westernmost tiles have x-coordinate at most 1.

We now turn to the runtime of the algorithm, which we prove similarly to The-
orem 7.4. It is easy to see that each tile is moved for at most 2D steps until the
block is established, which implies that at most O(nD) move steps are performed
in total. Note that each time a tile is moved, the sum of the robot’s coordinates
increases by 3/2. On the other hand, each search step decreases this sum by at least
1/2. Using the same argument as in Theorem 7.4, the total number of search steps
is therefore bounded by O(nD). Since each step is performed within a constant
number of rounds, the total number of rounds until a block is built is O(nD). O

Next, we show how the robot can terminate once a block has been successfully
built by performing a series of tests alongside the algorithm’s execution. Note that
according to the above algorithm the robot will move each tile of the westernmost
column of a finished block, starting with the northernmost tile, placing each at the
first empty position SE of it. Thereby, the robot can detect that a block has been
built by verifying the following conditions: (1) after placing a tile, the robot performs
at most one SW movement before it lifts the next tile, (2) while moving a tile ¢, the
robot does not traverse a node (except for the position at which ¢ was lifted) that
has a neighbor at NE, but not at N, or a neighbor at S, but not at SW, (3) the
robot never places a tile at a node that has a neighbor at SE. A test verifying the
above conditions is initiated whenever the robot picks a tile that does not have a NE
neighbor. If thereafter any of the above conditions gets violated, the test is aborted.
If otherwise the robot lifts and places the southernmost tile of a column without
having encountered any violation up to this point, the algorithm terminates.

Theorem 7.8 (Block Formation). A single robot can transform any connected tile
configuration of diameter D into a block and terminate after O(nD) rounds.

Proof. By Lemma 7.7, the robot builds a block within O(nD) rounds. Assume the
robot lifts a tile ¢ that does not have a NE neighbor and initiates the test sequence.
If the structure is a block already, the robot will move its westernmost tiles as
described above and, after moving the last tile of the westernmost column, the test
series finishes without any violation.
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Now assume the structure is not a block at the time ¢ is lifted by the robot. We
show that in this case the test series fails. If a tile s of the column below ¢ has
a neighbor at SW, the test series will fail at the latest when the robot moves the
northern neighbor s’ of s and afterwards takes at least two steps SW to reach s,
thereby violating Condition 1. If otherwise no such tile exists, i.e., no tile in the
column below ¢ has a neighbor at SW, then there must be a tile s farther east than ¢
that has no neighbor at NW and that is adjacent to a tile of a row r of ¢’s column; if
no such tile existed, the structure would be a block already. We distinguish between
the cases that (1) s is a southern neighbor of r, and that (2) s lies NE to a tile of
r. In Case (1), the test series fails at the latest when the robot traverses row r by
Condition 2. If in Case (2) the robot places a tile NW of s (by moving a tile in the
row above r), the test series will fail by Condition 3. Otherwise, the NW neighbor
of s will still be empty when r is traversed by the robot, in which case the test series
fails by Condition 2. O

Note that since tiles are exclusively moved SFE, the resulting block has at most
D rows consisting of at most D tiles each, and therefore diameter O(D). Similar
to the construction of a line, it can be easily seen that the runtime to construct a
block is asymptotically optimal: Consider a line of tiles from SW to NE. In order
to transform the initial structure into a block, a constant fraction of tiles needs to
be moved by a distance linear in D.

7.2.3. Forming a Tree

So far we have been mainly focusing on how to quickly construct suitable intermedi-
ate structures. However, regarding potential practical applications, it may also be
desirable to minimize the required work space. Whereas the previous structures are
in many cases built almost completely outside of the initial configuration’s convex
hull, in this section we present an algorithm that builds a simply connected structure
by exclusively moving tiles inside the structure’s convex hull.

First we introduce some additional notation. An overhang is a set of vertically
adjacent empty nodes such that (1) the northernmost node has a tile at N, (2) the
southernmost node has a tile at S, and (3) all nodes have adjacent tiles at NW and
SW. A tree is a connected tile configuration without an overhang. Examples of an
overhang and a tree can be found in Figures 7.6a and 7.6d, respectively. Since the
westernmost nodes of a hole are part of an overhang, a tree is simply connected. We
define the branches of a column as the column’s western adjacent columns, where
two columns are called adjacent if at least two of their tiles are adjacent. Finally, a
local tree is a column whose connected component, obtained by removing all of its
eastern neighbors, is a tree.

In this section, we present an algorithm that transforms any initial tile configura-
tion into a tree in O(n?) rounds and without ever placing a tile outside the initial
structure’s convex hull. The pseudocode of the algorithm is given in Algorithm 3.
From a high level, the algorithm works as follows. The robot first traverses the tile
structure in a recursive fashion until it encounters an overhang. It then fills the
overhang with tiles and afterwards restarts the algorithm. Once the whole structure
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Figure 7.6.: (a) The traversal of the robot in an arbitrary connected structure, start-
ing from an easternmost column, until detecting an overhang (dashed
outlines). (b) The first three tiles are placed into the overhang. (c) Tiles
(1) and (2) are moved south before (3) is brought into the overhang.
(d) The resulting tree.

can be traversed without encountering any overhang, the tiles are arranged as a tree
and the robot terminates.

Finding an Overhang More precisely, the robot does the following. In the
initialize phase, it first successively moves to eastern columns until it reaches a
locally easternmost column, and then moves to the northernmost tile of that column.
Then the robot starts moving west with the search_next_branch phase. Starting at
the easternmost column, the robot always searches the northernmost branch of each
column by traversing the column from north to south. When it finds a branch, it
moves into it and moves N until it reaches the northernmost tile of the branch, from
where the process is continued. Eventually, the robot reaches a locally westernmost
column that does not have any branches, and turns to the check_overhangs phase.
The purpose of this phase is to check whether the current column has an adjacent
eastern overhang by traversing the column from N to S. If so, the robot fills the
overhang as described in the next paragraph and restarts the algorithm afterwards.
Otherwise, the robot searches for an adjacent eastern column, of which there can be
at most one, in the move_E phase. If there is none, the algorithm terminates. Other-
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Algorithm 3 Tree-Construction

1: phase initialize: 30: phase get_tile_N:

2 move to locally easternmost column 31: move N as far as possible

3:  move N as far as possible 32:  if NW empty or SW occupied then
4 goto search_next_branch 33: goto bring_tile

5. phase search_next_branch: 34 else

branches farther north are local trees 3 goto get_tile W

6 move S until 36: phase get_tile_NW:

7 case NW or SW occupied then 37:  if NW occ., but SW & N empty then
8: move NW (or SW) 38: move NW

9 move N as far as possible 39: else if N occupied then
10: case reached column’s end then 40: goto get_tile N
11: goto check_overhangs 41:  else if SW occupied then

there cannot be a tile at S
12: phase check_overhangs: 42: lift tile and move it S
current column is a local tree 43 if S or SE occupied then
13:  move N until end A4 move NE
14:  move S until 45: goto bring_tile
15: case found eastern overhang then 4. else
16: goto get_tile_N A7: move NE
17: case reached column’s end then 48:  else
18: goto move_E locally northwesternmost tile
49: goto bring_tile

19: phase move_E:
column is local tree without overhang  50: phase bring_tile:

20:  move N until 51:  lift tile and move S, SE (in that

21: case SE or NE occupied then precedence) until there is tile at NE
22: move SE (or NE) 52:  move S until there is no tile at SE
23: if S occupied then 53: move SE and place tile

24: move S 54:  if S occupied then

25: goto search_next_branch overhang was filled

26: else 55: goto initialize

27: goto check_overhangs 56: else

28: case reached column’s end then 5T: move SW

29: terminate 58: goto get_tile N

wise, the robot enters the eastern column at the southernmost tile that is adjacent
to the robot’s current column. If the entered tile has a southern neighbor, which is
consequently not adjacent to the robot’s previous column, there might be branches
to traverse further south, and the robot continues with the search_next_branch
phase. Otherwise, the entered column must be a local tree, and the robot can con-
tinue with the check_overhangs phase. An illustration of such a traversal can be
found in Figure 7.6a.

Filling an Overhang Once the robot has found an eastern overhang, its goal is
to repeatedly find tiles to lift and place into the overhang until it is filled. To do so,
the robot first enters the get_tile_N phase; it will then alternate between this and
the get_tile_NW phase, moving in a way that assures the robot to find its way back
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into the overhang. More specifically, in the get_tile_N phase the robot moves N
as long as there is a tile at N, and in the get_tile_NW phase it moves NW as long
as there is a tile at NW and no tile at SW or N. The robot’s path either ends (1) in
the get_tile_N phase at a tile that does not have a NW neighbor or does have a
SW neighbor, in which case the tile is picked to bring into the overhang (e.g., Tile
1 in Figure 7.6b), (2) in the get_tile_NW phase at a locally northwesternmost tile,
which would also be picked (e.g., Tile 2 in Figure 7.6b), or (3) in the get_tile_NW
phase at a tile ¢ that has a tile at SW (e.g., Tile 1 in Figure 7.6c).

In the third case, the node southern to ¢ must be empty, and ¢ is moved onto that
node. If thereafter ¢t has a neighbor at S or SE, the robot lifts t’'s NE neighbor ¢'.
Otherwise, it moves onto ¢’ and continues its search in the get_tile_NW phase. Both
situations are illustrated in Figure 7.6¢: First, the tile labeled 1 is moved south. As
this tile does not have a neighbor at S or SE, the robot continues at the tile labeled
2, which, after having been moved south as well, has a southern neighbor. Finally,
the robot picks the tile labeled 3.

After having picked a tile to bring into the overhang, the robot returns to its orig-
inating column ¢ by moving S and SF in this order of precedence in the bring_tile
phase. As the robot has never stepped on a tile with a southern neighbor outside of
¢, and has never performed a SW movement, it thereby precisely retraces its search
path, and the first tile it encounters that has a NE neighbor must lie in ¢. The
robot continues to bring tiles as described until the overhang is filled, in which case
it again turns to the initialize phase.

Lemma 7.9 (Finding an Overhang). If the algorithm is executed by the robot starting
on a tree, the robot traverses the tree completely and terminates within O(n) rounds.
Otherwise, the robot finds an adjacent eastern overhang of a local tree within O(n)
rounds.

Proof. We first show the first part of the lemma. Assume a configuration is a tree,
in which case every column has at most one adjacent eastern column. Furthermore,
there is exactly one column that does not have an eastern neighbor. Following the
initialize phase, the robot first moves to the northernmost tile of that column and
then turns to the search_next_branch phase. We show that the robot traverses
the local tree of each column completely in a recursive fashion. Since the local tree
of the easternmost column is the whole tree, this implies the claim.

We claim that upon entering a column c for the first time, (1) the robot first moves
to the northernmost tile of ¢, (2) completely traverses the column’s branches from
north to south, (3) verifies that ¢ does not have any overhang, and then (4) enters
¢’s adjacent eastern column ¢’ via the southernmost tile of ¢’ that is adjacent to c.
If there is no such tile, then the robot has traversed the whole tree and terminates
in Line 29.

First, note that (1) holds due to Line 3 if ¢ is the initial column, or Line 9 if ¢ is
reached via an eastern column ¢’. We prove the other claims by induction on the
depth of the local tree of ¢. For the base case of the induction, assume that ¢ does
not have any branches. Then the robot traverses ¢ from north to south (Line 6)
and immediately turns to the check_overhangs phase (Line 11). It then traverses
the column once more to verify that is has no overhangs. Afterwards, by following
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the move_east phase, the robot traverses ¢ from south to north until it reaches the
southernmost tile of ¢’ adjacent to c.

Now assume ¢ has branches. When first entering ¢, the robot moves to the col-
umn’s northernmost tile, and then enters the northernmost branch of ¢ following
the search_next_branch phase. By the induction hypothesis, it eventually reaches
¢ again via the southernmost tile ¢ of ¢ that is adjacent to that branch in the move_E
phase. If there are branches further south, ¢ must have a southern neighbor and
the robot continues to search for the next branch (Line 23). Following the above
procedure, the robot traverses all branches of ¢ until it eventually reaches the south-
ernmost tile of ¢ and turns to the check_overhangs phase through Lines 11 or 27.
As there are no overhangs, it enters its adjacent eastern branch ¢’ via the southern-
most tile of ¢’ that is adjacent to c. We conclude that if the configuration is a tree,
then the robot moves through the whole structure and eventually terminates in the
easternmost column.

If otherwise the configuration is not a tree, the robot will traverse the structure as
described above until it eventually detects an eastern overhang in some column ¢ dur-
ing the check_overhangs phase. Since the robot must have traversed all branches
of ¢, at this point c is a local tree.

It is easy to see that in any case each tile is visited no more than 6 times. Therefore,
the robot halts within O(n) rounds. O

Lemma 7.10 (Filling an Overhang). After detecting the northernmost eastern over-
hang of a column c in the check_overhangs phase, the robot will fill it and then
turn to the initialize phase. At all times, the structure remains connected and c
remains a local tree.

Proof. First, after encountering the overhang, the robot turns to the get_tile_N
phase in Line 16 and moves to the northernmost tile r» of c¢. If r does not have
a neighbor at NW or does have a neighbor at SW, then the robot lifts r and, by
following the bring_tile phase, places it at the northernmost node of the overhang.
As ¢ has an overhang, and thus consists of at least two tiles, the robot can only
disconnect the tile structure by removing r if there is a tile NE but not SE of r’s
previous position, in which case r is directly placed SFE, reconnecting both parts
(Tile 1 in Figure 7.6b).

If otherwise 7 has a neighbor at NW but not at SW, the robot initiates a search
for a safely removable tile by turning to the get_tile_NW phase in Line 35. First,
the robot moves NW as long as there is a tile at NW, no tile at SW, and no tile
at N. If it reaches a tile that has a neighbor at N (Line 39), it again turns to the
get_tile_N phase and continues as above. Since the robot only moves N and NW,
and the tile set is finite, it eventually faces one of three situations. We show that in
all three situations the robot identifies a safely removable tile.

In the first situation, the robot reaches a locally northwesternmost tile during the
get_tile_NW phase (Line 48, Tile 2 in Figure 7.6b after Tile 1 has been moved).
Since this tile must have been reached via its SE neighbor, it can be safely removed.

In the second situation, the robot encounters a northernmost tile ¢ that has no tile
at NW or a tile at SW during the get_tile_N phase (Line 32, Tile 3 in Figure 7.6b
after 1 and 2 have been moved). As t lies in a branch of ¢, in which there cannot be
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any overhangs by the discussion of Lemma 7.9, ¢t cannot have a neighbor at NFE and
thus can be safely removed.

In the third situation, the robot reaches a tile ¢t that has no neighbor at N, but
at SW, during the get_tile_NW phase (Line 41, Tile 1 in Figure 7.6¢). ¢ must have
been reached via its SE neighbor ¢, which, consequently, cannot have a neighbor at
N nor SW. First, the robot moves ¢ one step south. If ¢ does not have a neighbor at
S nor SE, then the robot moves onto ¢’ and continues with the get_tile_NW phase
(Tile 1 in Figure 7.6¢ after having been moved south). Note that the same situation
might happen again for ¢, and may even repeat for every tile of the corresponding
row, which will be moved south one after the other (Tiles 1 and 2 in Figure 7.6c).

However, the robot must eventually move a tile ¢ south that faces an adjacent
tile at S or SE. In this case, its adjacent tile ¢’ at NE is lifted (Line 45). We
have to show that the structure remains connected and ¢ remains a local tree. We
distinguish two cases. First, if ¢ only has a neighbor at S, then ¢’ # r (Tile 2 in
Figure 7.6¢ after 1 and 2 have been moved south). As there are no overhangs in the
local tree of ¢ and since the robot never moves SW, ¢ cannot have a neighbor at NE.
Furthermore, the tile south of ¢ must be a tile of a different branch than the branch
of r. Therefore, connectivity of the structure is preserved after lifting ¢’. The new
connection established by moving ¢ can also not introduce any overhangs into c’s
local tree. Second, if ¢ has an adjacent tile at SE after having been moved, then its
NE neighbor ' is either r, or it is a different tile that does not have adjacent tiles
at NW, N, and, since ¢ does not have overhangs, NE. In either case, t' can be safely
removed and brought into the overhang.

We finally argue that the tile that the robot picks is correctly placed into the
overhang. If the robot picks a tile in the first or second situation above, then no tile
traversed by the robot can have a tile at NE (except for r), and the robot has never
moved SW. If the robot picks a tile in the third situation, then the same holds for
the search path up to the position of the picked tile. Therefore, moving S and SE
(in that precedence) in the bring_tile phase (Line 51) precisely retraces the robot’s
search path, and brings the robot back into column c. As ¢ has an eastern overhang,
the robot will encounter a tile that with an adjacent tile at NE in ¢ throughout this
traversal, and, since it cannot encounter such a tile before, can safely assume that it
reached column c. To find the overhang, it now simply needs to move south until it
sees an empty node v at SF, and can then place its tile at v. If v has an adjacent tile
at S (Line 54), the overhang has been filled and the initialize phase is entered.
Otherwise, the robot continues until all nodes of the overhang are filled. O

Lemma 7.11 (Convex Hull). Following the algorithm, the robot never places a tile
outside of the convex hull of the initial configuration.

Proof. The robot does not leave the convex hull by placing a tile ¢ into an overhang.
The only other movement of ¢ occurs in Line 42 in the situation depicted in Fig-
ure 7.6c. Here, the robot has reached ¢ by moving a sequence of NW and N steps
starting at the northernmost tile of a column ¢ with an adjacent eastern overhang.
Since ¢ has at least 2 tiles, the robot will not move ¢ outside the configuration’s
convex hull. O
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Using the previous lemmas, we are now ready to prove the following theorem.

Theorem 7.12 (Tree Formation). A single robot can transform any connected tile
configuration into a tree in O(n?) rounds and without placing a tile outside the initial
configuration’s convex hull.

Proof. If the configuration is a tree, then by Lemma 7.9 the robot terminates within
O(n) rounds. Therefore, assume the configuration is not a tree. Lemma 7.9 states
that the robot will find an overhang, which, by Lemma 7.10, will subsequently be
filled. Afterwards, the algorithm will be restarted (Line 55). We define a possible
overhang as a maximal but finite column of vertically adjacent unoccupied nodes
in the initial tile configuration. Nodes that are not part of an overhang from the
beginning can only ever become part of one if they are inside a possible overhang.
Since the robot does not create any new possible overhangs, it can only fill finitely
many overhangs before the tile configuration is arranged as a tree. After performing
a last traversal through the tree, the robot terminates.

We now turn to the runtime of the algorithm. Clearly, there are only O(n) possible
overhangs in an initial configuration. Since traversing the structure before finding
an overhang takes O(n) rounds by Lemma 7.9, and the algorithm is restarted at
most O(n) times, the total number of rounds needed for traversing the structure is
O(n?). Since tiles are only moved S or SE and, by Lemma 7.11, tiles are never moved
outside the initial configuration’s convex hull, each tile is moved at most O(n) steps.
Furthermore, for every search step in direction N and NW in the get_tile_N phase
and get_tile_NW phase, the robot either moves a tile by one step in the opposite
direction, or moves a tile S and takes a single step NE. Therefore, O(n?) rounds
are needed for searching and moving tiles, which implies that the robot terminates
within O(n?) rounds. O

7.3. Forming a Triangle

We will now describe how the robot can transform an intermediate structure, more
precisely a block, into a triangle. A triangle consists of columns whose northernmost
tiles form a row, and each column consists of exactly one tile more than its eastern
adjacent column. Depending on whether n is a triangular number, the westernmost
column of the triangle may only partially be filled (see right picture in Figure 7.7).
In the following, we assume that a block has already been built. It can be easily seen
that a line and a tree can be transformed in a similar way. The triangle is built by
repeatedly taking the easternmost tile of the block’s northernmost row, carrying it
south to the vertex of the forming triangle (i.e., the easternmost column consisting
of one tile), and adding it to the westernmost column of the triangle (see Figure 7.7).

First, the robot creates the vertex of the triangle by placing a tile on the node
v below the westernmost column of the block. A second tile is then placed NW of
v. Every other tile of the triangle is then placed as follows. The robot brings a tile
to the triangle’s vertex, and then walks NW and S (in that precedence) until there
is no tile in any of these directions. If there is a tile at SE, the robot moves one
step S and places the tile. Otherwise, the robot moves N to the top of the column,
takes one step NW, and places the tile. In this manner, the robot continues to
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_9e2e,

Figure 7.7.: Snapshots of triangle formation. If the number of tiles is not triangular,
the final column will not be completely filled.

extend the triangle tile by tile until the block reduces to the triangle’s vertex. From
Theorem 7.8, and since each tile can be brought and placed within O(D) rounds, we
conclude the following theorem.

Theorem 7.13 (Triangle Formation). A single robot can transform any connected
tile configuration with diameter D into a triangle and terminate after O(nD) rounds.

In case that the initial configuration’s diameter is D = O(n'/?), a triangle can be
constructed in O(n?/ 2) rounds. It is not hard to see, using similar arguments as in
the previous sections, that the runtime is asymptotically optimal.

7.4. Towards Multiple Robots

As a first step towards extending our algorithms to the multi-robot case, we show that
multiple robots can cooperatively construct a triangle using a line as an intermediate
structure. We believe that some of our ideas may also be useful to solve more difficult
problems. First, we present and discuss the underlying model assumptions. Then,
we briefly describe how the line formation algorithm can be adapted for multiple
robots. We experimentally show that the construction of a line can be sped up
significantly by using multiple robots. Finally, we describe a simple algorithm to
transform a line into a triangle using multiple robots.

Model Discussion We consider the following extension of our model to incorpo-
rate multiple robots. For brevity, we leave out a formal definition. Each node is
occupied by at most one robot at any time. We adapt our notion of connectivity and
require all robots to be adjacent to occupied nodes, and the subgraph of G induced
by all occupied nodes T and the positions P, of all robots carrying tiles to be con-
nected. Therefore, we may have lines of robots attached to the side of the structure
only if these robots carry tiles. In the Look phase, for each adjacent node a robot
can observe whether the node is occupied by another robot, and determine the state
of that robot. It then uses this information to determine its next state and move
in the Compute phase, and may change the state of each adjacent robot. Finally, in
the Move phase, the robot may either perform one of the five actions described in
the model section, or pass a carried tile to an adjacent robot that does not yet carry
a tile.
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Figure 7.8.: A clockwise boundary traver-
sal that does not pass through
bottlenecks.

We assume an asynchronous model in which robots are activated in an arbitrary
sequence of activations, where a robot performs exactly one look-compute-move cycle
before the next robot is activated (see, e.g., [Day+19]). A round is over when each
robot has been activated at least once. For simplicity, we not only assume that all
robots have the same chirality, but also share a common compass. In fact, lifting
this restriction imposes difficult challenges outside the scope of this thesis, since
symmetry breaking is very hard in our deterministic model. We leave this issue as
a future research question.

Distributed Line Formation In order to extend the line algorithm to work with
multiple robots, we propose three main modifications to the line formation algorithm.
The pseudocode of the algorithm can be found in Algorithm 4. First, a robot r that
carries a tile and is blocked in S or SE direction by a robot that searches for a
tile can pass its tile and state to the blocking robot. If afterwards r stands on a
tile, it turns to the search phase. Otherwise, r has left the tile structure (we say it
is hanging) and subsequently traverses the boundary of the structure in clockwise
order, maintaining its connectivity to the outline of the tile structure until it reaches
an empty tile to step on. We make sure that no hanging robot is disconnected from
the tile structure by a robot picking up a tile by performing additional checks.

Second, we ensure that no hanging robot ever ends up in a deadlock whilst travers-
ing the boundary by avoiding to walk into bottlenecks, i.e., empty nodes with tiles on
two non-adjacent sides. A traversal that avoids bottlenecks is depicted in Figure 7.8.
Finally, in order to eventually let each robot detect that the line has been built, we
slightly modify the way tiles are moved. More specifically, we do not immediately
move a lifted tile SE and place it at the first empty position in the column as in
the single-robot algorithm. Instead, after lifting a tile, a robot first walks S until it
actually encounters a column to its east, and only then moves SE to place its tile in
that column. If there is no such column, the tile is simply placed at the bottom of
the current column. A robot that has placed its tile without encountering a column
to the east or west terminates. Note that a terminated robot r may block a robot r’
coming from N from placing its tile at the bottom of the line. If we want to place all
remaining carried tiles, we can, for example, simply pass the tiles down through the
finished robots and let the southernmost of these robot place the tiles at the bottom
of the line; in this case, final termination has to be detected slightly differently.

Simulation Data Although correctness can be proven for this multi-robot ap-
proach, it is difficult to make any runtime guarantees. This is due to the fact that,
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Algorithm 4 Distributed-Line-Formation

Remark: Whenever the movement of a robot r that carries a tile is blocked by a robot r’
that does not carry a tile, v passes its tile and state to v’ and goes to phase search, if r
stands on a tile, and to phase hanging, otherwise. In the latter case, r sets next_dir
to N. If r is blocked by a robot that also carries a tile, r waits.

1: phase search:
2: find a locally northwesternmost tile by moving NW, SW, and N
3: wait whenever the next tile is already occupied by a robot
4: if removing the tile does not locally disconnect a hanging robot then
5: lift tile
6: is_line + TRUE
7 goto carry_orig_col
8: phase carry_orig_col: > move tile S until an eastern column is reached
9: if there is western or eastern (carried) tile then > not a line yet
10: is_line < FALSE
11: if (carried) tile at NE or SE then > reached eastern column
12: move SE and goto carry_next_col
13: else if (carried) tile at N and not standing on tile then > end of column
14: place tile
15: if is_line then terminate else goto search
16: else if terminated robot at S then > line has been built
17: terminate
18: else
19: move S
20: phase carry_next_col: > move S as far as possible and place tile
21: if standing on tile then
22: move S
23: else
24: place tile and goto search
25: phase hanging: > traverse the boundary until an empty node is reached
26: if adjacent to empty tile then
27: move there and goto search
28: for i in (—=2,—1,0,1,2) do > choose next direction according to clockwise traversal
29: let d (d') be the direction after turning 7 (¢ + 1) steps in clockwise order
starting at next_dir
30: if no tile at d and tile at d’ then
31: next_dir «+ d
32: if no robot at next_dir then
33: move next_dir
34: break

when there are many robots compared to the number of tiles, robots will often be
blocked by others and must wait to make progress. However, as a first step, we
experimentally evaluated the number of rounds until all robots halt. The results
for n = 10000 and a varying number k of robots can be found in Figure 7.9. We
conducted 50 simulations for each k, each initialized with a randomly generated tile
configuration on which the robots were randomly placed. The robots were activated
in a random order, each exactly once in every round.
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Figure 7.9.: Simulation results for 10000 tiles.

Each tile configuration was generated by the following procedure: First, ran-
domly choose 10000 - 162/2.02 nodes of an equilateral parallelogram with side length
4/10000 - 16 to be occupied by a tile. Then, repeat the experiment until the largest
connected component of the generated tile set contains at most 10500 tiles. The final
configuration is obtained by repeatedly removing random tiles from the component
whose removal does not disconnect the structure until 10000 tiles remain.

The simulations show that using a reasonably small number of robots significantly
reduces the required number of rounds compared to using a single robot. The curve
on the left part of Figure 7.9 first decreases rapidly (e.g., going from one to two robots
essentially halves the runtime). However, for a large number of robots the benefit
gained from employing more robots is almost negligible (right part of Figure 7.9).
This phenomenon can likely be explained by the fact that the likeliness of robots
waiting on each other increases with the number of robots. Nevertheless, these
preliminary results suggest that the model indeed allows multi-robot algorithms
whose runtime drastically decreases if the number of robots is reasonably small.

Distributed Triangle Formation If the structure is arranged as a line, a triangle
can easily be built in a distributed manner: In order to retrieve tiles, the robots
traverse the line from south to north. Once a robot reaches the northernmost tile, it
waits until there is no robot north of it anymore, then lifts the tile and carries it to
the triangle by following the boundary of the structure in clockwise order. The next
position to place a tile into the triangle can easily be found, and the robot returns
to the line by moving to the triangle’s vertex. Whenever a robot’s move is hindered
by another robot, it simply waits.

Arguably, this algorithm makes use of multiple robots more effectively than the
distributed line algorithm: No robot is ever forced to leave the tile structure, or to
wait in order to preserve connectivity. This higher degree of coordination between
the robots is facilitated using additional knowledge of the tile structure. However,
coming up with a similar strategy for arbitrary structures seems to be rather difficult.
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7.5. Outlook

This chapter shows that a single robot can solve complex shape formation tasks de-
spite its very limited capabilities. Clearly, the ultimate goal of hybrid programmable
matter is to leverage multiple robots. Whereas our experimental study indicates that
shape formation can, in principle, benefit from the power of multiple robots, thor-
ough theoretical work is yet to be done. Specifically, we believe that for the shape
formation tasks described in this chapter a linear speedup in the number of robots
should be feasible by using a much more coordinated approach. If there are too
many robots compared to the number of tiles, then such a speedup will probably
not be possible; however, as long as k = O(y/n), the utility of each additional robot
should not be diminished by other robots blocking it.

Future work may also involve the formation of more complex shapes. Specifically,
the universal shape formation approach, which has been studied for the Amoebot
model [Der+16; Di +20], should be viable in our model as well. Further algorithms
for hybrid programmable may also exploit the capability of the robots to simulate
binary counters [Day+20] or even Turing machines [Fek+21] using either a collec-
tion of finite automata or by modifying the tile structure. As already indicated
in Section 7.1, another way to increase a robot’s power is to equip it with pebbles.
This possibility is further explored in the following chapter, where we consider shape
recognition problems with pebbles.
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Shape Recognition in Hybrid Programmable
Matter

HEREAS our work on hybrid programmable matter assumes a fully reliable
system in which no errors occur, it is unreasonable to expect that this will
be the case in practice. The before-mentioned DNA tile-based approach to
programmable matter [Pat14] for example, which may at some day be helpful to
realize hybrid programmable matter, is known to be particularly error-prone. Nu-
merous techniques have been studied to reduce the error rates (e.g., [EW13]), but
the research typically focuses on designing DNA tiles or assembly processes that re-
duce the error of incorrect attachments. In our hybrid approach, it may be possible
instead to use robots to make the system more reliable. For the shape formation
problem studied in the previous chapter, for example, the robots may be able to
cope with tiles being torn away from the structure by continuously repairing the
shape under construction. To do so, however, they must be able to detect places
that need repair.

In this chapter, we generalize such problems as shape recognition problems and
investigate their complexity. As before, we focus on a single robot, but may give
the robot additional pebbles to mark positions on the tile structure. Specifically, we
consider the problem of detecting whether the tile structure is a parallelogram with
some given side ratio, and investigate how many pebbles are necessary and sufficient
to correctly determine certain side ratios.

Underlying Publication The chapter is based on the following publication.

R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, and C.
Scheideler. “Shape Recognition by a Finite Automaton Robot”. In: Pro-
ceedings of the 43rd International Symposium on Mathematical Founda-
tions of Computer Science (MFCS). 2018, 52:1-52:15 [Gmy+18a]

A preliminary version of our work has been presented at the EuroCG 2018 Work-
shop [Gmy—+18b].

Contribution and Outline All of our results are achieved in the model described
in Chapter 7 with a single robot and a specific number of pebbles. In Section 8.1,
we begin with testing whether a given tile formation is of a certain simple shape
without any pebble, more precisely, a line, a triangle, a hexagon, or a parallelogram.
Then, we turn to the much more difficult problem of deciding for a given function
f(-) whether the longer side of a parallelogram has length f(h), where h is the
shorter side’s length. An overview of our results is given in Table 8.1, in which we
state functions f(-) the robot is able or not able to decide given a certain number
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Pebbles Possible Impossible Section

0 fx)=ax+0b f(z) = w(z) 8.2.1

1 f(z) =agzx®+ ...+ ag f(z) = w(z%+2) 8.2.2

2 fla)=¢° — 8.2.3
azr+

k fk(:]:') fk+1(:]:') 8.2.4

Table 8.1.: This table summarizes the results for recognizing whether a given par-
allelogram has height h and length ¢ = f(h) given a certain number of
pebbles. The variables a € Q>1, b € Z, ¢,d, o, 8 € Ny, and a; € Z for all
i are constant. s = |@| is the number of the robot’s states.

of pebbles. Our ultimate goal is to investigate the computational capabilities of a
simple robot concerning shape recognition, and to what extent the robot can benefit
from employing pebbles.

As we do not make any assumptions on the length of the shorter side h of the
parallelogram, we cannot assume that a robot with only a constant number of states
can count up to h, even less so evaluate the function f(h). Thus, if the robot does
not have pebbles at its disposal, its only option is to make use of the environment’s
geometry. For example, the robot can “measure” h tiles along the longer side of
the parallelogram by starting in a corner and moving diagonally until reaching the
opposite boundary. Furthermore, the robot can measure 2h, 3h, or even ah tiles, for
any constant a, along the longer side.

In Section 8.2.1, we develop this intuition further and show that the robot can
decide whether the longest side of the parallelogram is £ = ah + b, where a and b
are constants. On the other hand, we show that the robot without pebbles is not
able to recognize any superlinear function. In Sections 8.2.2 and 8.2.3, we show that
we can tremendously increase the robot’s computational power by giving it a single
pebble or two pebbles, respectively. More precisely, having the ability to mark any
tile with a single pebble allows the robot to recognize any polynomial function of
constant degree. Being equipped with two pebbles gives the robot the ability to
recognize power tower functions, where the height of the power tower is constant or
even linear in h. Finally, in Section 8.2.4 we show that for any number & of pebbles
there exists a function that requires k pebbles to be decided by the robot.

Additional Related Work Whereas shape formation has been extensively stud-
ied in various models, to the best of our knowledge, the closely related problem
of shape recognition has never been explicitly considered in our setting. However,
solving problems by traversing a tile structure with simple agents has been investi-
gated in many different areas. For an overview of related work in the two areas of
shape formation and agents on graphs see Chapter 7. Notably, [Sha74] considers
the problem of deciding whether a structure is simply connected.

For many problems for agents on graphs, it has also been investigated whether
pebbles can be helpful. This question is particularly well-studied for the classical
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(a) (b) (c) (@)

Figure 8.1.: The traversal of the robot to detect a line, a triangle, a hexagon, and a
parallelogram. The dashed line is the path of the robot until it reaches
a locally northwesternmost tile, and the solid line is the subsequent
traversal of the complete structure.

Network Exploration Problem (see, e.g., [Das13]). For example, it is known that a
robot cannot explore all planar graphs [Fra+05] unless it can store Q(logn) bits. A
finite automaton can also not find its way out of any planar labyrinth [Bud78], even
if given a single pebble [Hof81]. However, a robot with two pebbles can solve the
problem [BK78].

8.1. Recognizing Simple Shapes

First, we show that a single robot can easily detect whether the initial structure is
a line, a triangle, a hexagon, or a parallelogram. A depiction of the traversal of the
robot in these structures can be found in Figure 8.1.

Line To test if a given tile shape is a line, the robot first moves to a locally
northwesternmost tile by moving NW, N, and SW until no longer possible. From
there, it can determine the (potential) orientation of the line, i.e., whether it is
oriented in direction S, SW, or SE. If, for example, the line is oriented in direction
S as shown in Figure 8.1a, the robot simply traverses the structure in that direction
until no longer possible. If it ever encounters a tile to the west or east of any traversed
tile, the structure is not a line.

Triangle, Hexagon, Parallelogram All other structures are traversed in a
“snake-like fashion”. For a triangle, the robot first moves to a locally northwest-
ernmost tile. After having arrived there, it can determine the orientation of the
triangle, i.e., whether it points westwards or eastwards. W.l.o.g, assume that the
triangle points eastwards as in the example in Figure 8.1b. The robot then traverses
the shape column by column from west to east (recall that a column is a maximal
sequence of tiles from N to S). More precisely, it first moves S as far as possible,
then takes one step NFE, moves N as far as possible, and finally takes an additional
step VE. The procedure is repeated until a NE movement is no longer possible. By
performing local checks when moving through a column and whenever a new column
is entered, the robot can verify whether the tile shape is a triangle. As depicted
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in Figures 8.1c and 8.1d, a hexagon and a parallelogram are traversed in the same
way, only differing in the specific checks that need to be performed.

Observation 8.1 (Simple Shape Recognition). A robot without any pebble can
detect whether the initial tile configuration is a line, a triangle, a hexagon, or a
parallelogram.

8.2. Recognizing Parallelograms with Specific Side Ratio

As noted in Observation 8.1, a single robot without pebbles can verify whether
a given shape is a parallelogram. To investigate the computational power of a
finite automaton, in this section we consider the problem of deciding whether a
parallelogram has a given side ratio. Additionally, we examine how pebbles can be
helpful to decide more complex side ratios.

We assume w.l.0.g. that the robot needs to detect whether the given tile configura-
tion is a parallelogram that is axis-aligned along the north and north-east direction
as shown in Figure 8.1d. Slightly changing our notation from the previous chapter,
we define a row as a maximal sequence of tiles from SW to NE. Let h be the size
of each column, i.e., the parallelogram’s height, and ¢ be the size of each row, i.e.,
the parallelogram’s length. W.l.o.g., we assume that h < /; otherwise we can sim-
ulate our algorithms on a rotated and reflected version of the parallelogram. We
enumerate the columns of the parallelogram from 0 to ¢ — 1 growing in direction NE.

8.2.1. A Robot without any Pebble

First, we point out that a single robot can detect whether the structure is a par-
allelogram in which its length ¢ is a linear function of its height h. Our algorithm
is based on the idea that if the robot moves SFE as far as possible starting at the
northernmost tile of column 0, it will end up at the southernmost tile of column
h — 1. Therefore, if £ is a multiple of h, then the precise factor can be derived from
the number of times such a diagonal movement is possible.

Theorem 8.2 (Linear Functions). A single robot can detect whether the tile config-
uration is a parallelogram with ¢ = ah + b for any constants a,b € N.

Proof. First, the robot verifies whether the structure is a parallelogram. If so, it
moves to the northernmost tile of column 0. The tile structure is then traversed
in two stages, where the first stage measures the distance ah and the second stage
measures b. More precisely, in the first stage the robot moves in a “zig-zag” fashion
as depicted in Figure 8.2 by performing the following movement in a loop: (1) move
SE as far as possible, (2) move N as far as possible, and (3) make one step NE. After
having performed the complete sequence of SE movements a times, the robot moves
on to the second stage, in which it makes an additional b NFE steps.

If the robot reaches the easternmost column before completing the above proce-
dure, or finally halts on a tile with an adjacent tile at NE, it terminates with a
negative result. Otherwise, the test is successful. It is easy to see that ¢ = ah + b if
and only if the robot terminates with a positive test result. O
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. Figure 8.2.: A parallelogram with height

..' 4 and length 10 = 2 -4 +

2. The solid arrows indicate

..8.' the movement of the robot

in the first stage of the al-
gorithm described in Theo-
rem 8.2 to measure a = 2.
The dashed arrow shows the
final NE movement to mea-
sure b = 2.

We remark that the algorithm can be adapted for b € Z, i.e., b can also be a
negative integer. To achieve that, we halt the execution of the first stage once the
robot has performed |b| SE steps, then move SW as far as possible, and continue
the first stage from there. Then, ¢ = ah + b if and only if the robot halts on the
southernmost tile of column ¢ — 1.

Furthermore, the algorithm can be extended to apply in the case of a rational
a € Q>1. Let a = p/q be an irreducible fraction, where p,q € N and p > ¢. Instead
of moving in a zig-zag fashion in the first stage, the robot alternates between moving
p steps NE and q steps S. The second stage is unchanged. To exactly end up at the
southernmost tile of column ¢—1 if and only if £ = ah+b, the robot needs to skip the
very first NE and S step of the first stage. By combining these two modifications,
we get the following corollary.

Corollary 8.3. A single robot can detect whether the tile configuration is a paral-
lelogram with £ = ah 4+ b for any constant a € Q>1 and constant b € Z.

We have shown that a single robot can determine whether the length of a paral-
lelogram is given by a certain linear function of its height. However, that is as much
as one robot can hope for. Indeed, a single robot is not able to decide whether the
length of the parallelogram is given by a superlinear function of its height, as the
following theorem states.

Theorem 8.4 (Superlinear Functions). A single robot without any pebbles cannot
decide whether the tile configuration is a parallelogram with ¢ = f(h) in case that

f(x) = w(z).

Proof. Suppose there is an algorithm that lets the robot decide whether the tiles are
arranged as a parallelogram with ¢ = f(h) for some superlinear function f(z) = w(x).
Let s be the total number of states used by the robot in the algorithm. Choose h
large enough such that £ (th)r;QJ > s, which can be done since f(h) = w(h).

Consider the execution of the algorithm on a parallelogram P with height h and
length ¢ = f(h). We will show that there exists another parallelogram with height h
and length greater than f(h) on which the robot eventually terminates in the same
state as on P, which contradicts the assumption that the algorithm is correct.

We first place the robot on the northernmost tile of column 0. First, observe that

if the robot does not visit column ¢ — 1 during the execution of the algorithm, it
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cannot correctly detect the length of the parallelogram. Thus, the robot visits this
column at least once.

Consider the execution of the algorithm as a sequence (p1,pa,...) of tuples of
nodes and states p; = (u;,¢;). Denote as 7y, ..., T, the subsequences of the execu-
tion of the algorithm, where each subsequence starts whenever the robot leaves a
node of column 0 or £ — 1, and ends when it enters a node of one of those columns.
More specifically, the first and last node of each 7; is a node adjacent to column 0
or £ — 1 and the node immediately before and after each m; is a node of 0 or ¢ — 1.
Note that in each 7; the robot exclusively moves in the columns between column 0
and ¢ — 1.

First, consider a subsequence m; at the beginning of which the robot leaves, and
at the end of which, enters the same column 0 (or ¢ —1). Let p; = (ui,q;) be the
node-state tuple right before the robot enters the subsequence m; when executing
the algorithm on the parallelogram P. W.l.o.g., let u; be a node of column 0, and
let 7 be the index of its row when enumerating the rows from 0 to h + 1 from north
to south, where row 0 refers to the empty nodes above P, and row h+ 1 refers to the
empty nodes below P. Then, the robot would execute exactly the same subsequence
m; on a parallelogram P’ with a larger length than the one of P if it was placed on
the tile at column 0 and row r in P’ in state g;.

Next, consider a subsequence ; at the beginning of which the robot leaves, w.l.o.g.,
column 0, and at the end of which it enters £—1. Since the robot completely traverses
the tile structure from column 0 to £ — 1, there must be a row R; in which the robot
steps on no less than L%J > s nodes between column 1 and ¢ — 2. Therefore,
there will be two nodes u; and v; in row R; in which the robot appears in the same
state. We specifically choose v; in R; as the first node for which there exists a node
u; that has been visited before and in the same state in 7;. Let ¢y, ¢, be the column
indices of u; and v;, respectively. Note that we must have that ¢, > ¢, as otherwise
the robot would repeat its movements between u; and v; until it eventually reaches
column 0, which cannot happen since 7; ends at column £—1. By the same argument,
the robot will repeat its movement between u; and v; until it reaches column ¢ — 1.

We exploit this observation in the following way. Define d; = ¢, — ¢, > 0, and
let (uj,q;) be the node-state tuple of the robot immediately before it enters the
subsequence 7; and (u;, q;) be the node-state tuple of the robot immediately after
the subsequence 7; is finished. Now consider a parallelogram () with height h and
length f(h) + cdj, where ¢ € Ny. If the robot starts in state ¢; on the node in
column 0 and the row of s; in the parallelogram @), it will move entirely between
the westernmost and easternmost column of () until it reaches the node of column
f(h) + cd; in the row of ) in @ in state ¢

Now consider the execution of the algorithm on a parallelogram P’ with height h
and length f(h)+]] ; dj for each subsequence 7; where the robot completely traverses
the parallelogram between column 0 and £ — 1. By the above argument, the robot
will enter and leave those columns on the same tile and in the same state as in
the execution of the algorithm on P. Thus, when executing the algorithm on the
parallelogram P’, the robot will ultimately terminate in the same state as if it was
on P. Therefore, the robot cannot decide whether the initial tile configuration is a
parallelogram with £ = f(h) for any superlinear function f(z) = w(z). O
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Figure 8.3.: A parallelogram with h = 4 and £ = 4?> = 16. The first column in which
the normal zig-zag (solid line) and the truncated zig-zag (dashed line)
both move north is column 11 = h(h—1) —1. After the pebble has been
placed there, the final diagonal movement shifts the robot eastwards by
an additional h columns.

8.2.2. A Robot with a Single Pebble

In the following, we demonstrate that, in contrast to the negative result of Theo-
rem 8.4, a single robot can decide any polynomial of constant degree. As an intro-
ductory example, consider f(z) = x2. Our algorithm is based on a generalization of
the observation that the least common multiple lem(x,z —1) of x and z —1 is simply
their product z(z — 1). Therefore, we can place a pebble at column h(h — 1) in the
following way: First, we place a pebble at the northernmost tile of column 0. Then,
we repeatedly move the pebble one step NE until it is reached with a N movement
both during the zig-zag described in Theorem 8.2 as well as a “truncated zig-zag”
that only moves the robot eastwards by h — 1 instead of h steps (see Figure 8.3).
This can only happen if for the current column index ¢ of the pebble we have that
h|(c+1) (ie., h divides c+1) and (h—1) | (¢+1). Since lem(h,h —1) = h(h — 1),
this is true for the first time when ¢+ 1 = h(h —1). Finally, since h? = h(h — 1) + h,
the robot can perform one additional diagonal move from the northernmost tile of
column h(h — 1) and ends at the southernmost tile of column ¢ — 1 if and only if
0 =h2

Theorem 8.5 (Polynomial Functions). A single robot with a pebble can decide
whether the tile configuration is a parallelogram of height h and length ¢ = f(h)
for any given polynomial f(x) = agz® + ...+ ag, where d € Ny and all a; € Z are
constants.

Proof. We define the falling factorial of x as (z); :=

:13( 1)---(x—i+1), and
transform the input polynomial f(z) into the form f(x) =

a-(@)a+ag—1-(x)g—1+
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...+ ap. Note that since the a; € Z as well as d € Ny are constants, the a;
are also constants from Z. We will show that the robot can move the pebble in
phases, by |a; - (h);| steps in each phase i. Let lem;(z) := lem(x, ...,z — i+ 1) and
gi(x) := (x);/lem;(x). From [HYO08] it follows that lem;(z) | (x);, and that g;(z)
is periodic with period lem(1,...,i — 1), i.e., gi(z) = gi(z + lem(1,...,7 —1)). Let
fi(x) be the sum of the first d — i summands of f(z), i.e., fi(x) = ag - (x)n + an—1 -
(x)n—l +...ton—it1- (w)n—i+1-

Initially, the pebble is located on the northernmost tile of column 0. To test
whether ¢ = f(h), the robot will move the pebble along the northernmost row in
phases, until it is eventually shifted f(h)—1 steps to the NE from its original position.
If upon termination the pebble is located at the northernmost tile of column ¢ — 1,
then f(h) =¢.

The algorithm proceeds in phases d,...,0. We maintain the invariant that after
phase ¢ for all 4 > 0, the pebble is located at the northernmost tile of column f;(h).
That is, in phase 7, the robot moves the pebble |a; - (h);| steps NE, if «; is positive,
and SW, otherwise. In the final phase ¢ = 0, the robot moves the pebble by |ag — 1|
steps NE, if ap > 1, and SW, otherwise. For now, assume that each movement can
be carried out without moving the pebble outside of the parallelogram. We will later
describe how to lift this restriction.

We now describe how the pebble is moved by |«; - (h);| steps. First, note that
a; - (h); = a; - gi(h) - lem;(h). The first factor «; is a constant. The second factor
gi(h) can be determined as follows. We encode all possible values of g;(-) for all
i € {0,...,d} into the robot’s memory, which can be done since d is constant and
gi(+) has a constant period. Before the main algorithm’s execution, the robot can
compute g;(h) for all i by moving through column 0 from north to south: Starting
with g;(1), in every step to the south the robot computes the subsequent function
value until the period of g¢;(-) is reached, in which case it restarts with g;(1). When
it reaches the southernmost tile of the column, it knows g;(h) for all i.

We next show how the robot moves the pebble by lem;(h) steps, which, by re-
peating the movement |«; - g;(h)| times, concludes how the complete movement by
|cvi - (h);| steps is performed. Assume the pebble is in some column ¢ and lem;(h) | ¢
(which we will prove by induction shortly). Following the idea of our introductory
example, the robot alternates between the following two operations: (1) move the
pebble into column ¢ by moving it one step NE, if a; > 0, or SW, otherwise; (2)
verify whether lem;(h) | ¢ as follows. The robot first performs the zig-zag movement
from the proof of Theorem 8.2 to verify whether h | ¢/, i.e., whether a NE movement
moves the robot onto a tile occupied by the pebble. It continues to analogously
verify whether (h — 1) | ¢, (h—2) |, .., (h—i+ 1) | ¢ by performing a modified
zig-zag movement an additional ¢ — 1 times. Here, the zig-zags of the j-th verification
are adjusted accordingly by moving j steps to the south prior to each sequence of
SE movements. The robot stops alternating between the two above operations once
the pebble has been moved to a column ¢’ such that lem;(h) | ¢ for the first time.
Then, the pebble must have been moved by lem;(h) steps.

It remains to prove that when the robot wants to move the pebble, currently
occupying a node of column ¢, by lem;(h) steps for some ¢, then lem;(h) | ¢. The
invariant holds initially for ¢ = 0. Now assume that the pebble lies in column ¢
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and the robot wants to move the pebble by lem;(h) steps. By induction hypothesis,
lem;(h) | . Since lemj(h) | lem;(h) for any j < i, we have that lem;(h) | ¢ & 1lem;(h).
Therefore, and since the robot can only move the pebble by lecm;(h) steps for j <4
in the next iteration, the induction hypothesis holds for the next iteration as well.
Finally, we show how the robot can resolve overflows, i.e., situations in which
the algorithm would move the pebble outside of the parallelogram. First, note that
the execution of the algorithm after an overflow can, in principle, be continued
by the robot by “mirroring” all movements beyond the westernmost or easternmost
column, carrying them out into reverse direction. Let h be sufficiently large such that
laii - (h)i + ...+ ap| < f(h) for all 7. For all small h = O(max;(|a;])), we can encode
the constantly many possible function values into the robot’s state and test them
prior to the algorithm’s execution by traversing the two sides of the parallelogram
once. If throughout the execution of the algorithm the robot ever attempts to move
the pebble into a column west of column 0 or east of “virtual” column 2¢ (while
performing the mirroring method from above), it would subsequently not be able to
ever move the pebble back into column ¢ (following from the assumption that h is
sufficiently large), and consequently ¢ # f(h). Therefore, the robot can prematurely
terminate with a negative result whenever it encounters such a situation. O

The next theorem gives a lower bound on the number of states needed to decide
whether ¢ = h*, a € N, thereby proving that no robot with one pebble can decide
whether ¢ = f(h) for f(z) = w(z®)Va € N.

Theorem 8.6 (Polynomial Lower Bound). A robot with s states and a single pebble
cannot decide whether the tile configuration is a parallelogram of height h and length

0= f(h), f(z) = w(@**?).

Proof. First, we give a brief outline of the following proof. Assuming such a robot
exists, we place the robot with its pebble on the northernmost tile of column 0 of
a parallelogram P with height h and length ¢ = f(h). We begin by subdividing P
horizontally into parallelograms of height A which we will refer to as blocks. We define
the westernmost and easternmost blocks as the outer blocks Oy and O,., respectively,
and denote all other blocks as inner blocks. We choose the length b of all inner blocks
such that when the robot moves through a sequence of inner blocks (from west to
east or from east to west), while either carrying the pebble the entire time or not
visiting it at all, its row and state repeat every b columns. The outer blocks will
have length at least b.

As in the proof of Theorem 8.4, we consider the execution of the algorithm as a
sequence of tuples of nodes and states, and divide it into subsequences 71, ..., .
Subsequence 7; starts with the robot carrying the pebble into some outer block, and
ends when it reaches the opposite outer block while carrying the pebble. The robot
terminates in m,,, and, as this is the final subsequence, before entering the opposite
block while carrying the pebble. We define r,, and ¢, to be the robot’s row and
state at the beginning of m;. By considering where the robot places and picks up
the pebble, we identify a value d such that r,, and g, remain the same if the robot
is executed on a parallelogram P’ of height h and length f(h) + db, and therefore
falsely terminates with a positive result.
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Determine Value b We begin the proof by identifying a value b. Consider the
robot’s execution without the pebble on a parallelogram of height A and infinite
length in both directions, starting in row r and state g. As in the proof of Theo-
rem 8.4, we enumerate the parallelogram’s rows from 1 to h from N to S, and refer
to the empty nodes above and below the parallelogram as rows 0 and h + 1, respec-
tively. If the robot only moves within at most s(h + 2) columns, we define d, , := 1.
Otherwise, by the pigeonhole principle, there are two columns that are visited on a
node of the same row and in the same state. In this case, we define d,, to be the
distance between these two columns. Note that the robot moves arbitrarily far in
this case, its row and state repeating every d,, columns. Let

D:={dq|re{0,...,h+1}, g€ Q}.

Analogously, we consider the execution of the robot if it initially carries the pebble,
and define d; , := 1, if it ever drops the pebble or only moves within s(h+2) columns.
Otherwise, there is a repetition every dy. , columns, and the robot carries the pebble
indefinitely far. Let

D*:={d:,|re{0,....h+1}, g€ Q}.

We now show that |D| < 3s. If the robot ever is in row r in state ¢, or row 7’
in state ¢/, and visits the row 1 or row h in the same state ¢* in both executions,
the executions will be identical afterwards, and therefore we can choose d, 4 = d, .
Hence, there can only be s combinations of rows and states with distinct executions
in which the robot visits the northern- or southernmost row, and these executions
contribute at most 2s distinct distances to D. Now, let ¢, r,r’ such that the robot
does not visit the northern- and southernmost row when starting in state ¢ in row
r or r’. Clearly, the robot performs the exact same actions in both executions.
Therefore, d, , = d, 4, and these executions contribute at most s additional distances.
Therefore, |D| < 3s. Analogously, we have |D*| < 3s.

We set b := [[sepup+0. If b < s(h + 2), redefine b := (s(h + 2))b. Since each
distance value is at most O(sh), and since s is constant, it holds that b = O(h%). We
subdivide P into a maximum number of blocks such that inner blocks have length b
and outer blocks have length greater than b.

Determine Value d We now identify a value d. Consider the subsequence ;,
i < m. W.lo.g., assume that the robot moves the pebble from Oy to O,. Let
(rj,¢j,q5), 3 =1,...,1 be the row, column and state in which the pebble is dropped
during 7;; if it is never dropped, then [ = 0. We distinguish two cases: In the first
case, the robot at some point moves by more than s(h + 2) columns while carrying
the pebble. In this case, it will move until reaching column ¢ — 1 due to having a
repetition in its state and row. Therefore, whenever the pebble was placed before
that, it can only have been previously picked up in a column that is closer than
s(h +2) steps, i.e., |cjy1 —¢j| < s(h+2) for j < 1. In this case, set d; = 1.

In the second case, the robot does never move by more than s(h + 2) columns to
the east while carrying the pebble during 7;. Thus, the pebble is dropped within the
first (i.e., western) s(h + 2) columns of each inner block. P contains Q(f(h)/b) =
w(h?) > 2(sh)? inner blocks, for sufficiently large h. For some column ¢, we denote
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its index inside its block as ¢. Hence, for each inner block, there exists a j such that
cj is in that block and & < s(h + 2). There are at most h - s(h + 2) - s < 2(sh)?
possibilities for (7}, ¢;,¢;). By the pigeonhole principle, there exist a < b such that
co < ¢p and (rq,€q,qq) = (7, Cp, qp). We set d; := (cp — ¢q)/b, i.e., the number of
inner blocks between ¢, and ¢, and d := [/~ d;.

Execution in P’ Let P’ be the parallelogram of height h and length f(h) + db.
Now we show that (rr,,,¢r,,,) is the same in the execution on P and P’ for all
1 < m and that the robot terminates with the same result during 7,,. To that end,
we will again look at a subsequence 7;, ¢ < m where, w.l.o.g, the pebble is carried
from Oy to O, and compare the executions on P and P’. Let (rj,¢;,q5), j=1,...,1
as above. The first [ times the pebble is dropped on P’ are identical to those on P,
since the only difference in the execution between dropping the pebble at a column
¢, j <1, and picking it back up again can be when the robot moves to column ¢ — 1.
As argued above, moving to column ¢ — 1 on P and P’ cannot be distinguished by
the robot due to a repetition in row and state and by our choice of b. Thus, the
pebble is picked up in the same state again.

Next, we need to look at what happens on P’ after the pebble has been picked
up for the I-th time. Here, we distinguish between the two cases from above. In the
first case, the robot carries the pebble by more than s(h 4+ 2) columns to the east on
P before entering O, and, consequently, continues until reaching column ¢ — 1. The
same behavior occurs on P’, only that the robot traverses an additional d blocks
and, by our choice of b, enters O, in the same row and state as on P.

In the second case, the robot never carries the pebble by more than s(h + 2)
columns to the east during m;. We identified a, b such that (74, s, q0) = (75, €, qb),
i.e., the pebble is picked up in the same row, block-column, and state. Note that
after each of these two drops, the robot will return to the pebble (and pick it up) in
the same state in P and in P’. This is clearly true if the robot does not visit column
0 and ¢ — 1 between dropping and placing the pebble in P, which implies that it
also does not do so in P’. Otherwise, the robot would have to traverse more than
s(h + 2) columns without seeing the pebble in P, its row and state repeating every
0 columns for some § € D. By our choice of b, this implies that the robot returns to
the pebble in the same state in P’. Therefore, in both the executions on P and P’
the robot will repeatedly drop and pick up the pebble, each repetition occurring d;
blocks to the east from the previous one. As d; | d, the robot enters O, in the same
row on P and P" and we thus also have identical (77, ., Gr;,,)-

It only remains to show that the robot terminates with the same result during
Tm. W.lo.g, let m,, begin in O; on P, and recall that the pebble does not reach O,
before the robot terminates. As argued before, the executions on P and P’ can only
differ when the robot drops the pebble and moves to the easternmost column of the
respective parallelogram. Due to a repetition in state and row, and by our choice
of b, the robot again enters the respective easternmost columns in the same state
and row, and afterwards picks up the pebble in the same state on both P and P’.
Therefore, the robot ultimately terminates in the same state in P and P’, proving
the theorem. O
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8.2.3. A Robot With Two Pebbles

Next, we show that having two pebbles enables the robot to decide certain expo-
nential functions. Note that by Theorem 8.6, the following result is optimal in the
number of pebbles used.

Theorem 8.7 (Power Tower). A robot with two pebbles can decide whether a given
tile configuration is a parallelogram with height h > 1 and length

=22 | where the power tower is of constant height.

Proof. Let d+1 be the height of the power tower (i.e., there are d twos in the function)
and denote the two pebbles as a and b. Pebble a always resides in the northernmost
row of the parallelogram. We use a’s column index as a register on which we perform
basic arithmetic operations using b as a helper. Note that although the easternmost
column of the parallelogram has index £ —1, we describe the algorithm as if there was
an additional column ¢. A movement from or to column £ can easily be simulated
by the robot.

The algorithm is divided into three stages. The purpose of the first stage is to
verify that £ is a power of 2. In the second stage, we move a from column ¢ to column
log@=1(¢), where log@~1)(.) denotes the application of the logarithm d — 1 times.
In the third stage, we verify that a is in column 2" after the second stage. If in any
of the three stages the robot detects a violation of any assumption, i.e., if according
to the algorithm a would have to be moved beyond column 0 or ¢, or should be in
column 0 or £, but is not, the robot terminates with a negative result.

Before we describe the three stages in more detail, we describe how a’s column
index can be multiplied or divided by any constant ¢ > 1, provided that the result
is integer and between 0 and ¢. We first place b at a tile south of a, and then move
a into column 0. In case of a multiplication, we then alternatingly move a NE by
c steps, and b SW by one step, until b reaches column 0. In case of a division, we
correspondingly move b by c steps and a by one step.

Stage 1 In the first stage, the robot does the following. It first places a at the
northernmost tile of column 1. It then repeatedly multiplies by 2 (i.e., multiplies
a’s column index by 2) using the above-mentioned strategy. If b reaches column 0
immediately after a has reached column /¢, ¢ is a power of 2.

Stage 2 At the beginning of the second stage, a is placed at the northernmost
tile of column ¢. The stage is divided into d — 1 phases, where in each phase a is
moved from column ¢ to column log(i). Note that since d is a constant, the robot
can count the number of phases. Furthermore, after the first phase ¢ is verified to be
a power of 2, and, as we will show later, if a’s column index is 2% at the beginning
of a phase, but z is not a power of 2, then the phase fails. Therefore, a’s column
index is ensured to be a power of 2 at the beginning of each phase.

In each phase, a is moved from some column 2% to column x in a step-wise fashion.
More precisely, in the j-th step it is moved from column 51-1.2¢/27" {5 column
57 . 22/%  This is continued until the resulting column index is not divisible by 4
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anymore, i.e., when it becomes 597 . 2. The general idea is to use the exponent of
5 as a counter on the number of times x needs to be divided by 2 until it becomes
1, which yields its logarithm. This idea is based on [Min67, Section 14].

It remains to show how a single step can be performed. First, the robot moves
a from column 5771 - 22/2 ™" into column 571 - 3¢/ by alternatingly dividing by 4
and multiplying by 3. After each repetition, the robot verifies whether a’s column
index is divisible by 2. This is done by traversing the northernmost row from west
to east until a is reached, and counting the number of steps modulo 2. Note that
if /2771 is even, which is the case if = is a power of 2, then the division by 4 is
always possible. Otherwise, the division by 4 will fail at latest when /277! becomes
1. Once a’s column index is not divisible by 2 anymore, a is in column 571 - 3%/%’,

Analogously, by alternatingly dividing a’s column index by 3 and multiplying by
2 as long as the column index is divisible by 3, the robot afterwards moves a into
column 5771 2%/? By multiplying with 5, a is finally moved into column 57 - 2%/%’.

After each step, the robot verifies whether a’s column index is divisible by 4 (i.e.,
if z/27 > 2). If so, it continues with the next step. Otherwise, #/2/ = 1, and thus
j = logz and @ must be in column 5'°8 . 2. From there, a can easily be moved
into column « by first dividing by 2, and afterwards alternatingly dividing by 5 and
multiplying by 2 until the column index is not divisible by 5 anymore.

Note that if a’s column index is 2 at the beginning of some phase, but z is not
a power of 2, then at some step x/2/~! will be odd, and, as described above, the
algorithm will fail. Further note that for h > 8, which can be verified beforehand,
moving a from column 2% (where, consequently,  must be at least 8) to 5losz . 9
can only decrease a’s column index. Therefore, although a might be moved NFE in
the final steps of a phase, it can easily be seen it will be moved sufficiently far SW
within the first steps such that it is never moved beyond column ¢. If that happens
nonetheless, the robot terminates with a negative result.

Stage 3 Finally, in the third stage, the robot verifies that a is in column 2" by
diving by 2 for h times. To count up to h, b initially resides in row 2 and is moved
one step S after each division. When b reaches a southernmost tile, ¢ must lie in
column 4, which can easily be verified by the robot. O

The algorithm of the previous theorem can also be adapted for any power tower
whose height is a linear function ah + § for constants o, € N. To count the
number of phases in the second stage, we move a south after every « phases, and,
after having reached a southernmost tile, finally count § additional phases. The
highest exponent of the power tower may also be a function linear in A, which can
be handled correspondingly in the third stage.

The algorithm can further be adapted for any other base ¢ € N. Note that if ¢ is
a composite number, we need to apply the operations to its prime factors separately,
taking into account their powers. Since it is well-known that for n > 25 there is
always a prime between n and (1+1/5)n [Nagb2], we can use the two smallest primes
that are no prime factors of ¢ instead of 3 and 5 in the second stage of the algorithm.
We conclude the following corollary.
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Corollary 8.8 (Linear Power Tower). A robot with two pebbles can decide whether
a given tile configuration is a parallelogram with height h > 1 and length

h

c

0 =c° , where the power tower is of height ah + 8, and «, 8, ¢ € Ng are constant.

8.2.4. A Family of Functions Requiring an Increasing Amount of Pebbles

The discussion from the previous sections naturally brings up the question whether
there is a function family whose detection requires an increasing amount of peb-
bles. In this section, we answer that question positively. As the proofs are fairly
straightforward, we mostly state the general ideas, leaving out some details.

In order to simplify analysis, we consider a robot with pebbles operating on a line
segment instead of a parallelogram. We also assume that pebbles are distinguishable
and can be placed onto the same tile. Note that it is easy to simulate colors of a
finite amount of pebbles on a line segment by keeping track of the order of the
pebbles. Furthermore, the robot can simulate placing two pebbles onto each other
by placing the second pebble within constant distance instead and save the offset
from its intended position.

First, we introduce the notion of program machines [Min67, Section 11].

Definition 8.9 (Program Machine). A program machine consists of a finite set
of registers, holding arbitrary numbers from Ng, and a finite program of numbered
instructions from the following instruction set.

e zero(r): Set register r < 0.
e increment(r): Set register r < r + 1.

o decrementOrJump(r,k): If r = 0, jump to instruction k. Otherwise, set
rr—1.

e halt: Stop the execution.

It is well-known that using the instructions of Definition 8.9, it is possible to
simulate instructions to copy the value of register 1 to r2, and to jump if (or unless)
r1 = ro [Min67].

Lemma 8.10. A program machine with 3 registers can simulate a deterministic
Turing machine with T' = ¥ = {0,1}.

Proof. 1t is well known that a Turing machine can be simulated using two stacks
containing the tape’s bits behind and in front of the head, respectively. These stacks
can be viewed as the binary encoding of natural numbers. They will be stored in
registers one and two.

Using the third register as a scratch pad, doubling and halving a register is simple.
To pop a bit from the stack, we divide by two and look at the remainder. To push
a bit onto the stack, we multiply by two and add the bit. For more details, we refer
the reader to [Min67, Section 11]. O
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Since we are interested in a robot moving on a finite space, we now define bounded
program machines.

Definition 8.11 (Bounded Program Machine). A bounded program machine is a
program machine whose first register is initialized to the input x. The other registers
are initialized to 0. No register may exceed x.

The following observation follows from the fact that a robot can easily simulate a
bounded program machine using pebbles, and vice versa.

Observation 8.12 (Pebble Simulation). The computational power of a robot with
k pebbles on a line of length x > k is between that of a k and a k+ 1 register bounded
program machine with input x.

The next two lemmas show that deterministic linear bounded automata are essen-
tially equivalent in their computational capabilities to bounded program machines
and that the number of registers relates to the number of tape symbols needed. This
enables us to apply well-known results from complexity theory to our model. We
use the definition of deterministic linear bounded automata (LBA) from [FOT73] as
Turing machines that never leave the cells in which their input was placed. Inputs
are restricted to {0,1}*.

Lemma 8.13 (LBA Simulation with Bounded Program Machine). A deterministic
linear bounded automaton with |I'| = k and ¥ = {0,1} with input x € ¥* can be
stmulated using a bounded program machine with 1+ 2[log k| registers and with input
' = (1z)s.

Proof. The construction from Lemma 8.10 ensures that no register will be increased
beyond 2’ when simulating the linear bounded automaton. The two stacks will now
contain elements in I'. We encode the symbols in binary and store their representa-
tion using 2[log k| registers. O

Lemma 8.14 (Bounded Program Machine Simulation with LBA). A k register
bounded program machine with input (1z)s, € {0,1}*, can be simulated by a
deterministic linear bounded automaton with 2% tape symbols and input x.

Proof. The tape stores the binary representation of the registers’ values, each symbol
representing one bit of k registers. Operations from Definition 8.9 are now trivial to
perform. ]

Finally, it can be shown that there exists a family of languages requiring determin-
istic linear bounded automata with an increasing amount of tape symbols. These
will directly translate to sets of accepted line lengths.

Lemma 8.15 ([FO73, Corollary 2|). There exists a family of context sensitive lan-
guages Sk C {0,1}* accepted by some deterministic linear bounded automaton, but
not using fewer than k symbols.

Together with Observation 8.12, the previous lemmas imply the following theorem.
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Theorem 8.16 (Pebble Lower Bound). There exists a family Ly C N such that a
robot exists that can detect whether a line has length ¢ € Ly using a finite number of
pebbles but none using less than k pebbles.

To construct a family of functions for deciding side ratios of a parallelogram, we
can set
1, he Ly

Ju(h) = {2 h Ly

Note that the resulting parallelogram differs from the previous examples in that
its length is only 1 or 2. The robot can perform the simulation of the bounded
program machine using the parallelogram’s height, and a length of 2 does not give
it too much power. Furthermore, we can modify the function family such that £ > h
while still requiring k pebbles to decide fi(h).

8.3. Outlook

In this chapter, we have identified some simple functions that can or cannot be
decided with a given set of pebbles. Beyond our study in Section 8.2.4, we are inter-
ested to find functions, such as superexponentials, that require more than only two
pebbles. Furthermore, it is an interesting question whether, instead or in addition to
using pebbles, multiple robots can help in shape recognition problems. For example,
it is still an open question whether two robots, which are activated in an arbitrary
order, are more powerful than a single robot with a pebble. Moreover, there are
many different model assumptions under which our problems can be investigated.

Whereas we primarily focused on detecting parallelograms of certain side ratios,
we are very interested to examine whether our results and algorithms are applicable
to other shapes as well. For example, it may be possible to recognize more com-
plex structures such as irregular hexagons with certain side ratios, or to even come
up with a more general procedure to recognize larger families of shapes. Further-
more, rasterized disks or ellipses might be interesting shapes to consider. Other
intriguing problems related to shape recognition include testing whether a structure
is symmetric or simply connected.
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