
Faculty for Computer Science, Electrical Engineering and Mathematics
Department of Computer Science
Research Group The Data Science (DICE) group

PhD DISSERTATION
Submitted to the The Data Science (DICE) group Research Group

in Partial Fullfilment of the Requirements for the Degree of

PhD in Computer Science

Time-Efficient Link Discovery for
Data-Driven Applications

by
Kleanthi Georgala

Thesis Supervisor:
Prof. Dr. Axel-Cyrille Ngonga Ngomo

Paderborn, September 13, 2021

Declaration

Translation from german:
I hereby declare that I prepared this thesis entirely on my own and have not used outside
sources without declaration in the text. Any concepts or quotations applicable to these sources
are clearly attributed to them. This thesis has not been submitted in the same or substantially
similar version, not even in part, to any other authority for grading and has not been published
elsewhere.

Original declaration text in german:
Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen worden ist. Alle Ausführungen, die wörtlich oder sinngemäß übernommen worden
sind, sind als solche gekennzeichnet.

Athens, 26.02.2021

Abstract.
Over recent years, the Linked Data Web has grown to contain billions of facts dis-
tributed over thousands of Knowledge Bases (KBs) [12]. For example, the English
version of the DBpedia Knowledge Base currently describes 4.58 million things, in-
cluding 1.4 million persons, 735 thousand places, 411 thousand creative works, 241
thousand organizations and 251 thousand species. Datasets such as the LSQ [172]
and LinkedGeoData now consist of more than 1.3 billion triples respectively. A direct
consequence of the availability of this large amount of data in Resource Description
Framework (RDF)a is the heightened requirement for efficient and effective Link Dis-
covery (LD) algorithms, which compute links between RDF Knowledge Graphs (KGs).
A plethora of approaches have been developed for this purpose over recent years. These
approaches address the challenge of effectiveness by providing solutions driven by Ma-
chine Learning (ML) techniques ranging from genetic programming to probabilistic
models. In addition to addressing the need for accurate links, Link Discovery frame-
works need to address the challenge of time efficiency. This challenge comes about
because of the sheer size of Knowledge Bases that need to be linked. Under the
declarative representation paradigm, most Link Discovery frameworks rely on atomic
or complex Link Specifications (LSs) to determine candidates.
In this thesis, we focus on the challenge of time efficiency and we propose a set of
approaches towards fast and scalable Link Discovery. We devise two families of ap-
proaches:

1. approaches for optimizing the efficiency of atomic similarities for Link Discovery;
and

2. approaches towards the fast execution of complex similarities and Link Specifi-
cations.

Regarding the first set of approaches, we are motivated by the absence of fast ap-
proaches for linking event data and the current performance of semantic string sim-
ilarities in linking frameworks. The second family is built upon time-efficient Link
Discovery approaches that operate under time and space constraints, and the absence
of planning approaches, which exploit global knowledge about the execution of Link
Specifications.

ahttps://www.w3.org/RDF/

https://www.w3.org/RDF/

Abstrakt.
In den letzten Jahren ist das Linked Data Web zu einer größe von mehreren Milliarden Fakten

angewachsen, die über tausende Wissensbasen verteilt sind [12]. Die aktuelle englische Version
der DBpedia Wissensbasis beschreibt beispielsweise 4.58 Millionen Dinge, darunter 1.4 Millio-
nen Personen, 735 Tausend Orte, 411 Tausend kreative Arbeiten, 241 Tausend Organisationen
und 251 Tausend Spezies. Datensätze wie LSQ [172] and LinkedGeoData bestehen mittler-
weile aus mehr als 1.3 Milliarden Tripeln. Eine direkte Konsequenz der Verfügbarkeit dieser
großen Menge an Daten im Resource Description Framework (RDF)1 ist der wachsende Bedarf
an effektiven und effizienten Link Discovery (LD) Algorithmen, die die Verbindungen (Links)
zwischen den RDF Wissensgraphen (KGs) erstellen. Eine Unmenge an Ansätzen wurde in den
letzten Jahren zu diesem Zweck entwickelt. Diese Ansätze verwenden vor allem Algorithmen des
maschinellen Lernens – von Wahrscheinlichkeitsmodellen bis zu genetischer Programmierung –
um die angestrebte Effektivität zu erreichen. Durch die schiere Größe der Wissensbasen wird
neben der Generierung akkurater Links die Zeiteffizienz zu einer Herausforderung für LD Frame-
works. Die meisten dieser Frameworks basieren auf atomaren oder komplexen Link Specifications
(LSs), um Kandidaten für einen Link zu identifizieren.

Diese Arbeit behandelt die Herausforderung der Erstellung zeiteffizienter Linking Algorith-
men. Wir präsentieren eine Menge von Ansätzen, die schnelles und skalierbares LD ermöglichen.
Wir unterscheiden dabei zwei Untermengen:

1. Ansätze zur Optimierung der Effizienz atomarer LSs und

2. Ansätze zur schnelle Ausführung komplexer Ähnlichkeiten und LSs.

Die Entwicklung der erste Untermenge wird durch das Fehlen von schnellen Ansätzen zum
Verknüpfen von Ereignisdaten und der derzeitigen Performanz von semantischen Ähnlichkeiten
für Zeichenketten in LD frameworks motiviert. Die zweite Menge besteht aus zeiteffizienten LD
Ansätzen, die mit Zeit- und Speicherbeschränkungen umgehen können, sowie Planungsalgorith-
men, die globales Wissen über die Ausführung von LSs verwenden und bisher fehlten.

1https://www.w3.org/RDF/

https://www.w3.org/RDF/

Selected Publications
• Scalable Link Discovery for Modern Data-Driven Applications by Kleanthi Geor-

gala in Proceedings of The 15th International Semantic Web Conference (ISWC2016) 2016,
Doctoral Consortium Track, Kobe, Japan, 17. October - 21. October 2016

• An Efficient Approach for the Generation of Allen Relations by Kleanthi Geor-
gala, Mohamed Ahmed Sherif, and Axel-Cyrille Ngonga Ngomo in Proceedings of the 22nd
European Conference on Artificial Intelligence (ECAI) 2016, The Hague, 29. August - 02.
September 2016

• An Evaluation of Models for Runtime Approximation in Link Discovery by
Kleanthi Georgala, Michael Hoffmann, and Axel-Cyrille Ngonga Ngomo in Proceedings
of the International Conference on Web Intelligence, 2017. Received the “Best Student
Research Paper” award.

• Dynamic Planning for Link Discovery by Kleanthi Georgala, Daniel Obraczka, and
Axel-Cyrille Ngonga Ngomo in The Semantic Web, ESWC 2018, Lecture Notes in Com-
puter Science

• Applying edge-counting semantic similarities to Link Discovery: Scalability
and Accuracy by Kleanthi Georgala, Mohamed Ahmed Sherif, Michael Röder and Axel-
Cyrille Ngonga Ngomo in Proceedings of the 15th International Workshop on Ontology
Matching 2020 (OM-2020), collocated with the 19th International Semantic Web Confer-
ence ISWC-2020, 1. November - 6 November 2020, Virtual Conference

• LIGER - Link Discovery with Partial Recall by Kleanthi Georgala, Mohamed Ahmed
Sherif and Axel-Cyrille Ngonga Ngomo in Proceedings of the 15th International Workshop
on Ontology Matching 2020 (OM-2020), collocated with the 19th International Semantic
Web Conference ISWC-2020, 1. November - 6 November 2020, Virtual Conference

• A Systematic Survey on String Similarity Joins for Link Discovery by Kleanthi
Georgala and Axel-Cyrille Ngonga Ngomo (under review for the Journal of Web Semantics)

• LIMES - A Framework for Link Discovery on the Semantic Web by Axel-
Cyrille Ngonga Ngomo, Mohamed Ahmed Sherif, Kleanthi Georgala, Mofeed Hassan,
Kevin Dreßler, Klaus Lyko, Daniel Obraczka, and Tommaso Soru. KI-Künstliche In-
telligenz, German Journal of Artificial Intelligence - Organ des Fachbereichs "Künstliche
Intelligenz" der Gesellschaft für Informatik e.V. (2021)

Acknowledgments
I would like to thank my supervisor, Dr. Axel-Cyrille Ngonga Ngomo for his continuous guidance
and support through my Ph.D. years. His advice, insight and knowledge helped me shape the
researcher I am today. But most importantly, I want to thank him for being kind, generous and
patient. Axel, if I had to do my Ph.D. all over again, I would never imagine having someone
else apart from you as my supervisor.

I would like to thank my colleagues in AKSW at the University of Leipzig and the Data
Science Group at the University of Paderborn, for their support, advice and feedback. Our
endless talks and discussions helped be through the toughest moments and guided me to become
a better researcher.

Finally, I would like to thank my parents and my brother for their endless love and support.
Thank you for being there for me. Thank you for believing in me.

Acronyms
WWW World Wide Web

SW Semantic Web

LOD Linked Open Data

RDF Resource Description Framework

RDFS Resource Description Framework Schema

URI Uniform Resource Identifier

IRI Internationalized Resource Identifier

OWL Web Ontology Language

LD Link Discovery

OM Ontology Matching

LS Link Specification

ML Machine Learning

KB Knowledge Base

KG Knowledge Graph

RO Refinement Operator

SPARQL SPARQL Protocol and RDF Query Language

W3C World Wide Web Consortium

DAG Directed Acyclic Graph

LSO Least Common Subsumer

SSJ String Similarity Join

CEP Complex Event Processing

OM Ontology Matching

IM Instance Matching

LGD LinkedGeoData

LIGER LInk discovery with Guaranteed Expected Recall

C-RO ReCall with Refinement Operator

RO-MA Refinement Operator with Monotonicity Assumption

CONDOR DynamiC Planning fOr LiNk DiscOveRy

AEGLE Allen’s intErval alGebra for Link discovEry

LCH Leacock and CHodorow

hECATE Edge-Counting semAntic similariTies for Link DiscovEry

hECATE-B hECATE-Baseline

hECATE-I hECATE with Indexing

hECATE-IF hECATE with Indexing and Filtering

RMSE Root-Mean-Square Error

Table of Symbols

Symbol Explanation

(c, p, o)

RDF triple, where
c is the subject of the triple
p is the predicate of the triple
o is the object of the triple

I the set of IRIs
B the set of all RDF blank nodes
L the set of all RDF literals
S a source Knowledge Base

|S| the size of a Knowledge Base S defined as
the number of RDF triples it includes

T a target Knowledge Base

|T | the size of a Knowledge Base T defined as
the number of RDF triples it includes

Rel(s, t) a relation between two instances s ∈ S and t ∈ T
M a mapping as the set {(s, t) ∈ S × T : Rel(s, t)}
P the set of all properties
ps a property of an instance s ∈ S, where ps ∈ P
pt a property of an instance t ∈ T , where pt ∈ P

m(s, t)
a similarity function between s and t,
w.r.t to the properties ps, pt: m(s, t, ps, pt),
if m is atomic: m(ps, pt)

σ(s, t)
a distance function between s and t,
w.r.t to the properties ps, pt: σ(s, t, ps, pt),
if σ is atomic: σ(ps, pt)

θ a similarity threshold
$ a distance threshold

M∗ a mapping as the set {(s, t) ∈ S × T : m(s, t) ≥ θ}
or {(s, t) ∈ S × T : σ(s, t) ≤ $}

L a Link Specification
LS the set of all Link Specifications
[[L]] the mapping of a Link Specification L
L∅ an empty Link Specification

(m(ps, pt), θ)
an atomic Link Specification described using
an atomic similarity function and a threshold

Symbol Explanation

(f, ζ)

a filter, where f is either empty (ε) or,
a similarity measure or,
a combination of similarity measures,
and ζ is a threshold

(f, ζ,X) an atomic Link Specification described
using a filter, with X = S × T

op(L) = ω the specification operator of a complex Link Specification L
(f, ζ, ω(L1, L2)) a complex Link Specification described using a filter
ϕ(L) = (f, ζ) the filter of a Link Specification L

L1
the left sub-specification or left child
of a complex Link Specification L

L2
the right sub-specification or right child
of a complex Link Specification L

|L| the size of a Link Specification L
|[[L]]| the size of the mapping of a Link Specification L

sel(L) the selectivity function that returns the selectivity
of a Link Specification L

ρ(L) a downward refinement operator of a Link Specification L

Λ a Link Specification subsumed by L or a specialization of L,
such that Λ ∈ ρ(L), denoted L v Λ

ρ∗(L) the set of all Link Specifications that can be
reached from a Link Specification L via ρ

k a user-defined minimal expected recall requirement
maxOpt a user-defined refinement time constraint
~S = (|S1|, . . . , |Sn|) vector of sizes obtained by sampling S
~T = (|T1|, . . . , |Tn|) vector of sizes obtained by sampling T
~θ = (θ1, . . . , θn) vector of different threshold obtained by sampling θ

ψ(S, T, θ)
a fitting function, whose value at (|S|, |T |, θ) is
an approximation of the runtime for the Link
Specification with these parameters

~R = (R1, . . . , Rn) a vector of measured runtimes for the parameters ~S, ~T and ~θ

E(~S, ~T , ~θ, ~r) a local minimum of the L2-Loss
ψ1(S, T, θ) a linear fitting function
ψ2(S, T, θ) standard log-linear fitting function
ψ3(S, T, θ) an interpolation of ψ1(S, T, θ) and ψ2(S, T, θ)
V a set of concepts
nV or |V | the number of concepts included in V

Symbol Explanation

ci a concept as a set of synonyms, ∀i ∈ [1, nV]
ejk hypernymy relation from a parent concept cj to a child concept ck
E a set of directed edges ejk = (cj , ck)
nE or |E| the number of edges included in E
G = (V,E) lexical vocabulary as a directed acyclic graph
cj → ck cj is a hypernym of ck
cj ← ck cj is a hyponym of ck
root the unique node of G = (V,E) that has no parent concept
cs(c1, c2) a common subsumer of two concepts c1 and c2

lso(c1, c2) the least common subsumer two concepts c1 and c2

path(c1, c2) a directed path from c1 to c2 via a common subsumer cs(c1, c2)

len(c1, c2) the length of the shortest path(c1, c2) between
two concepts c1 and c2

depthm(ci) the length of the shortest path between root and ci
depthM (ci) the length of the longest path between root and ci
D the maximum depthM (ci) found in G = (V,E), ∀i ∈ [1, nV]
Σ an alphabet
r a string as the finite sequence of characters over an alphabet Σ
Σ∗ the set of all possible strings over Σ
µ(r, g) a string similarity measure between two strings r, g
λ a string similarity threshold
d(r, g) a string similarity metric (distance) between two strings r, g
γ a similarity metric (distance) threshold
τ the Levenshtein distance threshold
δ the overlap similarity threshold
b(s) the beginning time of an event s
e(s) the end time of an event s

bf(s, t) the “before” relation between two events s and t,
that is satisfied if s ends before t begins

bfi(s, t) the “inverse before” relation between two events s and t,
that is satisfied if t ends before s begins

mt(s, t) the “meet” relation between two events s and t,
that is satisfied if s ends at the same time that t begins

mti(s, t) the “inverse meet” relation between two events s and t,
that is satisfied if t ends at the same time that s begins

Symbol Explanation

fin(s, t)
the “finishes” relation between two events s and t,
that is satisfied if t begins before s
and both events end at the same time

fini(s, t)
the “inverse finishes” relation between two events s and t,
that is satisfied if s begins before t
and both events end at the same time

st(s, t)
the “starts” relation between two events s and t,
that is satisfied if s and t begin at the same time
and s ends before t

sti(s, t)
the “inverse starts” relation between two events s and t,
that is satisfied if s and t begin at the same time
and t ends before s

dur(s, t)
the “during” relation between two events s and t,
that is satisfied if s begins later than t
and finishes earlier

duri(s, t)
the “inverse during” relation between two events s and t,
that is satisfied if t begins later than s
and finishes earlier

eq(s, t) the “equal” relation between two events s and t,
that is satisfied if s begins and ends at the same time as t

ov(s, t)
the “overlaps” relation between two events s and t,
that is satisfied if s begins before t and t begins before s ends and
s ends before t ends

ovi(s, t)
the “inverse overlaps” relation between two events s and t,
that is satisfied if t begins before s and s begins before t ends and
t ends before s ends

BBx(s, t))

the “begin-begin” relation between two events s and t that is satisfied if
s begins before t for x = 1
s begins at the same time as t for x = 0
s begins after t for x = −1

BEx(s, t))

the “begin-end” relation between two events s and t that is satisfied if
s ends before t ends for x = 1
s ends at the same time as t ends for x = 0
s ends after t ends for x = −1

EBx(s, t))

the “end-begin” relation between two events s and t that is satisfied if
s ends before t begins for x = 1
s ends at the same time as t begins for x = 0
s ends after t begins for x = −1

Symbol Explanation

EEx(s, t))

the “end-end” relation between two events s and t that is satisfied if
s ends before t begins for x = 1
s ends at the same time as t begins for x = 0
s ends after t begins for x = −1

xvii

xviii

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Research Questions and Contributions . 5
1.3 Thesis Outline . 6

2 Preliminaries 9
2.1 Linked Data . 9
2.2 Link Discovery . 11
2.3 Declarative Link Discovery . 11
2.4 Link Specification . 12

3 Related Work 15
3.1 A Systematic Survey of String Similarity Joins for Link Discovery 15

3.1.1 Motivation . 15
3.1.2 Preliminaries . 16
3.1.3 Systematic Survey Methodology . 17
3.1.4 Related Survey Results . 21
3.1.5 String Similarity Joins . 23
3.1.6 Evaluation of String Similarity Joins for Link Discovery 40

3.2 Time Relations for Link Discovery . 52
3.3 Semantic Similarities for Link Discovery . 53
3.4 Fast Execution of Link Specifications . 53

3.4.1 Executing Link Specifications under Time Constraints 53
3.4.2 Planning for Link Discovery . 54

3.5 Link Discovery Frameworks and Tools . 54

4 Aegle: An Efficient Approach for the Generation of Allen Relations 57
4.1 Allen’s Interval Algebra . 57
4.2 Link Discovery between Events . 57
4.3 The Aegle Approach . 59

4.3.1 Atomic Temporal Relations . 59
4.3.2 Complex Temporal Relations . 60
4.3.3 The Aegle Algorithm . 62

4.4 Evaluation . 65
4.4.1 Evaluation Questions . 65
4.4.2 Evaluation Datasets . 65
4.4.3 Experimental Setup . 66

xix

4.4.4 Experimental Results . 66

5 Semantic Similarities for Link Discovery 71
5.1 Notations . 71

5.1.1 Lexical Vocabulary as Directed Acyclic Graph 71
5.1.2 Edge-Counting Semantic Similarities . 72

5.2 Approach . 73
5.2.1 hECATE . 73
5.2.2 Indexing . 75
5.2.3 Filtering . 76

5.3 Evaluation . 78
5.3.1 Evaluation Questions . 78
5.3.2 Evaluation Datasets . 79
5.3.3 Experimental Setup . 79
5.3.4 Experimental Results . 80

6 An Evaluation of Models for Runtime Approximation in Link Discovery 85
6.1 Selection of Models for Runtime Approximation 85
6.2 Evaluation . 87

6.2.1 Evaluation Questions . 87
6.2.2 Evaluation Datasets . 88
6.2.3 Experimental Set-Up . 88
6.2.4 Experimental Results . 89

7 Liger: Link Discovery with Partial Recall 93
7.1 Linking with Guaranteed Expected Recall . 93

7.1.1 Partial-Recall Link Discovery . 93
7.1.2 Subsumption of Link Specifications . 93
7.1.3 Refinement of a Link Specification for Guaranteed Selectivity 94

7.2 The Liger approach . 96
7.2.1 The Liger Algorithm . 97
7.2.2 Extension of Liger . 99
7.2.3 Example Run . 100

7.3 Evaluation . 102
7.3.1 Evaluation Questions . 102
7.3.2 Evaluation Datasets . 102
7.3.3 Experimental Setup . 103
7.3.4 Experiments Results . 104

8 Dynamic Planning for Link Discovery 113
8.1 The Condor Approach . 113

8.1.1 Planning . 113
8.1.2 Plan Evaluation . 114
8.1.3 Execution . 116
8.1.4 Example Run . 116

8.2 Evaluation of Condor . 119
8.2.1 Evaluation Questions . 119
8.2.2 Evaluation Datasets . 119
8.2.3 Experimental Setup . 120
8.2.4 Evaluation Results . 120

xx

9 Conclusions and Future Work 125

Bibliography 129

Appendix 145
.1 Annex . 145
.2 Publications . 146

xxi

xxii

Introduction
1

Over the last decade, the World Wide Web (WWW) has grown to contain approximately 5.86
billion pages1 and is used daily by 40% of the population worldwide.2 The portion of the Web
made up of web pages connected via links is known as Web 2.0 or Document Web. One of
the most common usages of the WWW is the search for information. Software systems and
named search engines are designed to facilitate a web search by performing web search queries
that access the WWW in a systematic way to find relevant information. For example, the
Google Web Search is able to process, on average, 40, 000 search queries every second.3 Even
though search engines are able to exploit links on the Document Web effectively, they have two
major drawbacks: (1) the relation on the Document Web are not typed. Hence, the meaning
of relations cannot be exploited, and (2) classical Web information retrieval techniques are not
designed to retrieve information collected across web pages as they are designed to return web
pages.

To address this gap, Tim Berners-Lee envisioned the Semantic Web (SW) [24], which is as
an extension of the Document Web existing WWW able to present data in the form of a globally
linked database that can be accessed and processed by smart agents, dubbed the Web 3.0. To
achieve this goal, the data needs (1) to follow common formats and protocols and (2) to be
machine-understandable and accessible so that agents can process information as efficiently as
human operators. The World Wide Web Consortium (W3C) provides the framework for the SW
standardization, which includes syntax, formal description of terms and concepts, vocabularies,
knowledge representation and query languages (see Chapter 2 for more information).4 For
example, facts are represented as triples using RDF (Resource Description Framework) format.5

The materialization of the SW is known as the Linked Data Web or Linked Data, and
has evolved from merely 12 Knowledge Bases (KBs) [12] to more than 10, 000 datasets.6 Re-
cent technological progress in hardware development and network infrastructures has led to the
collection of large amounts of data in scenarios as diverse as life sciences, social networking,7
monitoring industrial plants [120], monitoring open SPARQL endpoints [172], implementing the
Internet of Things (IoT), and Cloud Computing [41]. As a result, Knowledge Bases such as

1https://www.worldwidewebsize.com/
2https://www.internetlivestats.com/internet-users/
3https://www.internetlivestats.com/google-search-statistics/
4https://www.w3.org/
5https://www.w3.org/RDF/
6http://lodstats.aksw.org/
7http://l3s.de/tweetsKB/

1

https://www.worldwidewebsize.com/
https://www.internetlivestats.com/internet-users/
https://www.internetlivestats.com/google-search-statistics/
https://www.w3.org/
https://www.w3.org/RDF/
http://lodstats.aksw.org/
http://l3s.de/tweetsKB/

Figure 1.1: The Linked Open Data cloud

DBpedia, the structural representation of Wikipedia pages, includes 4.58 million facts about
people, places, species and creative works.8 The LSQ dataset [172] consists of more than 1.3
billion facts that describe more than 250 million query events on open SPARQL Protocol and
RDF Query Language (SPARQL) endpoints. LinkedGeoData includes approximately 1.3 billion
triples on geo-spatial entities.9 The Linked Open Data (LOD) Web is a fraction of the Linked
Data Web and consists of Linked Data, which is released under an open license allowing re-use
for free.10 Figure 1.1 depicts the status of the LOD cloud on November 2020.

For data to be published as Linked Data, it must follow a set of practices known as the
Linked Data principles (for more information, see Section 2.1): 11

• Principle 1: Use URIs to name things.

• Principle 2: Use HTTP URIs to look up those names.

• Principle 3: Upon search, provide useful information using standard formats.

• Principle 4: Include links to other URIs allowing more things to be discovered.
8https://wiki.dbpedia.org/about
9http://lodstats.aksw.org/rdfdocs/2267

10https://en.wikipedia.org/wiki/Linked_data#cite_note-DesignIssues-1
11http://www.w3.org/DesignIssues/LinkedData.html

2

https://wiki.dbpedia.org/about
http://lodstats.aksw.org/rdfdocs/2267
https://en.wikipedia.org/wiki/Linked_data#cite_note-DesignIssues-1
http://www.w3.org/DesignIssues/LinkedData.html

Chapter 1. Introduction

In this work, we focus on the fourth Linked Data principle. The essence of this principle
is that given a source set S of RDF resources and a target set T of RDF resources, the aim is
to generate new RDF statements that connect resources from S with resources from T . The
provision of links between Knowledge Bases is of utmost importance during the creation of
Linked Data. Applications such as question answering [187, 204], keyword search [186] and
federated query processing engines [173] are dependent on the availability of links on the Web.
For example, to answer the query

Example 1.1.
Which targets are involved in blood clotting?

using the biomedical portion of the Question Answering on Linked Data benchmark [205], a
question answering framework must utilize links between drugs described in DrugBank and
drugs described in Sider to compute complete results.12

This constant growth of volume and velocity of KBs has led to an increasing need for linking
techniques between resources. There are two main challenges that need to be addressed to allow
for the efficient computation of accurate links between Knowledge Bases: accuracy and runtime
complexity:

1. Linking approaches need to address the accuracy challenge, i.e., they need to generate
correct links. A plethora of methods have been developed for this purpose and contain
algorithms ranging from genetic programming [33, 85] to probabilistic models [31, 70].

2. Linking frameworks need to address the challenge of time efficiency. This challenge is
associated with the mere size of knowledge bases that need to be linked. In this work, we
focus on the latter challenge with the key motivation of making Semantic Web technologies
more amenable to large-scale use, especially (but not only) at industrial scale.

The main focus of this thesis is the implementation of time-efficient and scalable data-linking
approaches for knowledge graphs in RDF. Under the declarative representation paradigm, we
address the Link Discovery time efficiency challenge by presenting a set of novel approaches that
facilitate:

1. the integration of large amounts of data under time or space constraints

2. the scalable execution of complex link specifications to determine candidates for links

3. approaches for linking resources based on temporal or semantic relations that have been
paid little attention

1.1 Motivation
Time-efficient LD is of central importance to implementing the vision of the Semantic Web.
The baseline approach of computing links between two Knowledge Bases would be a brute
force approach. However, this approach would be both time-consuming and computationally
expensive, with a time complexity in O(|S||T |) [91, 225], where |S| and |T | are the sizes of the two
Knowledge Bases. As a result, a notable amount of previous work on fast and scalable LD has
focused on developing approaches that reduce the number of comparisons necessary to compute
all pairs of strings with a similarity higher than a predefined threshold, while maintaining the
completeness of results. State-of-the-art LD frameworks such as SILK [86] and LIMES [137]
rely on string similarities and machine learning to compute links between instances in RDF

12http://qald.aksw.org/index.php?x=task2&q=4

3

http://qald.aksw.org/index.php?x=task2&q=4

1.1 Motivation

KBs. While the use of string similarities has been shown to work well in a large number of
papers (see, e.g.,[134, 5, 56]), string similarities have the major drawback of not considering
the semantics of the sequences of tokens they aim to compare. Hence, most string similarity
measures return low scores for pairs of strings such as (lift, elevator), (holiday, vacation),
(headmaster, principal) and (aubergine, eggplant), although they often stand for the same
real-world concepts. Edge-counting semantic similarities (e.g., [218, 118, 156]) alleviate this
problem by using a dictionary to compute a semantic distance between a sequence of tokens.
The synonymy between aubergine and eggplant would hence lead semantic similarity to assign
the pair (aubergine, eggplant) a similarity score close to 1. The use of semantic similarities
has received little attention in LD for at least two reasons: firstly, semantic similarities scale
poorly and are thus impractical when used on large KBs. Secondly, current works (e.g., [125])
suggest that they lead to no improvement in F-measure.

Event data is increasingly being represented according to the Linked Data principles. The
availability of such large collections of event data in the RDF format, as well as the uptake of
semantic technologies to represent machine events [164] has created a need to interlink these
events. Linking such datasets is essential to support structured machine learning [113, 133, 41,
18] in tasks such as intelligent predictive maintenance for machine data or discovering sequences
of query patterns that a triple store is often faced with. Thus, the need for large-scale machine
learning on data represented in this format has led to the need for efficient approaches to compute
RDF links between resources based on their temporal properties.

While a number of time-efficient approaches for computing links between RDF resources
have been developed over the last few years (see [134] for a detailed overview), dedicated ap-
proaches for linking resources based on temporal relations have been paid little attention. To
the best of our knowledge, only one approach has been developed for computing temporal links
between events [191]. The approach presented in [191] is based on the MultiBlock algorithm
[86] and employs multi-dimensional blocking to reduce the number of comparisons necessary to
compute temporal relations. Throughout detailed evaluation (see Chapter 4 for more details),
the experimental results suggest that this approach does not scale to a larger number of events.

While event data is one example of large RDF datasets needing to be linked, other data, such
as sensor data, is also generated in the RDF format [83]. Sensor data is used in a plethora of
modern applications, including condition monitoring and predictive maintenance in Industry-4.0
applications [25], environmental protection applications, health monitoring systems and traffic
monitoring [78]. As a result, sensor data in RDF format facilitates the implementation of
condition monitoring and predictive maintenance applications as explainable machine learning
solutions, which learn and update OWL axioms periodically to detect (condition monitoring) or
predict (predictive maintenance) errors [25]. A key step for learning axioms that generalize well
is to learn them across several machines. However, single machines generate independent data
streams; hence, time-efficient data integration (in particular LD) approaches must precede ma-
chine learning approaches to render machine learning on streams possible. Given that new data
batches are available periodically (e.g., every 2 hours), practical applications of machine learn-
ing on RDF streams demand scalable data integration solutions that can guarantee complete
computation under constraints such as time (i.e., their total runtime for a particular integration
task) or expected recall (i.e., the estimated fraction of a given LD task they are guaranteed to
complete).

Another approach to improve the scalability of LD frameworks is to use planning algorithms
in a manner akin (but not equivalent to) their use in databases [138]. In general, planners
rely on cost functions to estimate the runtime of particular portions of Link Specifications.
Generally, it has been assumed that this cost function is linear in the planning parameters,
i.e., in the size of datasets and the similarity threshold. However, this assumption has never

4

Chapter 1. Introduction

been verified. Additionally, most LD frameworks rely on complex Link Specifications for this
purpose. To date, most approaches for improving the execution of Link Specifications have
focused on reducing the runtime of the atomic similarity measures used in Link Specifications
(see, e.g., [139, 59, 220]). While these algorithms have led to significant runtime improvements,
they fail to exploit global knowledge about the Link Specifications to be executed. So far, the
execution of Link Specifications has been modeled as a linear process (see [134]), where a Link
Specification is commonly rewritten, planned and finally executed. While this architecture has
its merits, it fails to use a critical piece of information: the execution engine knows more about
runtimes than the planner once it has executed a portion of the specification.

The goal of this work is to address the challenge of time-efficient and scalable LD by providing
means to:

• improve the execution of single measures (especially temporal and semantic); and

• accelerate the execution of whole specification through planning, which demands the pre-
diction of runtimes.

1.2 Research Questions and Contributions
In this section, we present a set of Research Questions derived from Section 1.1, along with our
contributions.

RQ1. How can we accelerate the computation of temporal relations between
events?

We address the problem of efficiently computing temporal relations between events by relying on
Allen’s Interval Algebra [8], as it encompasses all primitive temporal relations between events in
Chapter 4. Our approach, dubbed Aegle (Allen’s intErval alGebra for Link discovEry), relies
on two insights: firstly, the 13 Allen relations can be reduced to 8 simpler relations that all
precisely compare either the beginning or end of an event with the beginning or end of another
event. Secondly, given that time is ordered, we can reduce the problem of detecting such relations
to the problem of finding matching entities in two sorted lists. As this problem has a complexity
of O(n logn), our approach should scale well even for larger datasets. Importantly, our method
achieves 100% precision and recall as it computes all temporal relations between events from a
source and a target set.

RQ2. Can we scale up the execution of semantic similarities?

To overcome the issue introduced in Section 1.1, we study the effect of semantic similarities on
LD, by presenting hECATE, a generic framework for improving the runtime of edge-counting
semantic similarities in Chapter 5. The goal of our work is two-fold: first, we present a means
to accelerate the computation of four popular bounded edge-counting semantic similarities.
We then combine string and semantic similarities using two state-of-the-art machine learning
approaches to observe the influence of semantic similarity in LD.

RQ3. How well can we predict the runtime of link specifications?

As mentioned in Section 1.1, the assumption that the runtime cost function is linear has never
been verified. Therefore, we study linear, exponential and mixed models for runtime estimation
in Chapter 6. The contributions of our work are thus as follows: (1) We present three different
models for runtime approximation in planning for LD. (2) We compare these models on six

5

1.3 Thesis Outline

different datasets and study how well they can approximate runtimes of specifications and how
well they generalize across datasets. (3) We integrate the models with a state-of-the-art planner
for LD as described in [138] and compare their performance using 500 Link Specifications.

RQ4. How well can we compute links under time constraints?

We address the problem of completing the task of link computation under time constraints by
proposing Liger (Link discovery with Guaranteed Expected Recall), an approach for LD with
partial recall. Liger serves as the first partial-recall LD approach. Given a Link Specification
L to be executed, Liger aims to efficiently compute a portion of the links returned by L, while
achieving a guaranteed expected recall (Chapter 7). Our approach relies on a refinement opera-
tor, which allows the exploration of potential solutions to this problem. The main contributions
of our work are thus as follows: (1) We present the formal definition of a downward refinement
operator that allows the detection of subsumed Link Specifications with partial recall. Moreover,
we study its characteristics and provide a novel and efficient approach for partial-recall LD. (2)
We use a monotonicity assumption to extend this algorithm so as to make it more time-efficient.
(3) We provide both a qualitative and quantitative evaluation of our approach using four bench-
mark datasets, as well as three new datasets based on real data. In addition to an intrinsic
evaluation, we also provide an extrinsic evaluation to quantify the effect of partial-recall LD on
machine learning.

RQ5. Can dynamic planning decrease the runtime of link specifications?

We study the execution of Link Specifications in a non-linear process, by proposing and im-
plementing a dynamic flow of information between the engine and the planner so that a LD
framework will execute a Link Specification faster. Our approach, Condor makes use of a
minute but significant change in the planning and execution of Link Specifications (Chapter 8).
The core idea behind our work is to use information generated by the execution engine at runtime
to re-evaluate the plans generated by the planner. To this end, we introduce an architectural
change to LD frameworks by enabling a flow of information from the execution engine back to the
planner. While this change might appear negligible, it has a significant effect on the performance
of LD systems, as shown by our evaluation. The contributions of this work are hence as follows:
(1) We propose the first planner for link specification that is able to re-plan steps of an input
Link Specification L based on the outcome of partial executions of L. By virtue of this behavior,
we dub Condor a dynamic planner. (2) In addition to being dynamic, Condor goes beyond
the state of the art by ensuring that duplicated steps are executed exactly once. Moreover, our
planner can also make use of subsumptions between result sets to further reuse previous results
of the execution engine. (3) We evaluate our approach on 700 Link Specifications and 7 datasets
and show that we significantly outperfom the state of the art.

1.3 Thesis Outline
In this section, we describe the structure of the thesis, which includes 9 chapters. Chapter 1
serves as the introduction of the thesis, and it includes the motivation, research questions,
hypotheses and contributions of the author. Chapter 2 introduces the basic notation and for-
malization used throughout the rest of the thesis. Chapter 3 is dedicated to the state of the art
related to our proposed approaches.

Chapters 4–8 contain the main contributions of this thesis. Each chapter includes one ap-
proach proposed to deal with another aspect of the challenge of fast and scalable Link Discovery.
The said chapters adopt the following structure:

6

Chapter 1. Introduction

• a preliminary section that introduces additional necessary definitions to understand the
rest of the chapter, if necessary.

• an approach section that describes the methodology behind the proposed method.

• an evaluation section in which the approach is evaluated against other approaches that
represented the state of the art at the time of writing.

Chapters 4–5 introduce a set of approaches aiming to optimize the efficiency of atomic
similarities for Link Discovery. Chapter 4 focuses on our approach for fast execution of time
relations in Link Discovery. Chapter 5 introduces an approach towards the efficient computation
of four semantic string similarities.

Chapters 6–8 introduce a set of proposed approaches for the fast execution of complex
similarities and Link Specifications. Chapter 6 presents an evaluation of runtime models for
runtime approximation for Link Discovery. Chapter 7 introduces the first partial-recall Link
Discovery algorithm that operates under time constraints. Chapter 8 describes the first dynamic
planning algorithm for Link Discovery.

Finally, in Chapter 9, we conclude our thesis and present future extensions for our ap-
proaches.

7

1.3 Thesis Outline

8

Preliminaries
2

In this Chapter, we introduce the basic definitions and notations that will be used throughout
this work. We begin by giving an overview of the Linked Data Paradigm in Section 2.1. Then,
we continue with a definition of Link Discovery (LD) in Section 2.2, an overview of declarative
LD in Section 2.3, and the characteristics of a Link Specification (LS) and its means of execution
in Section 2.4.

2.1 Linked Data
The Linked Data Web is a portion of the SW which often serves as an example to illustrate the
principles that should govern a Web of Data. Tim Berners-Lee introduced the “best practices”,
known as the Linked Data principles, which must be followed for data to be published. These
principles are:1

• Principle 1: Use URIs to name things.

• Principle 2: Use HTTP URIs to look up those names.

• Principle 3: Upon searching, provide useful information using standard formats.

• Principle 4: Including links to other URIs allows more things to be discovered.

The rationale behind the first three Linked Data principles is that in order to publish data
on the Web, the “resources” included in the data must be identified using an HTTP Uniform
Resource Identifier (URI) [76]. By using the Web architecture term “resource”, we focus on
things of interest of a particular domain that can refer to both real-world and abstract entities
and concepts. An HTTP URI follows the structure:

[scheme :][//authority][path][?query][#fragment]

The authority tag is divided into three subcomponents:

authority = [userinfo@]host[: port]

For example, the Wikipedia article about the “Adventures and Campaigns” within the “Dungeon
and Dragons” setting looks like:

1http://www.w3.org/DesignIssues/LinkedData.html

9

http://www.w3.org/DesignIssues/LinkedData.html

2.1 Linked Data

Example 2.1.
https://en.wikipedia.org/wiki/Dungeons_And_Dragons#Adventures_and_campaigns

The usage of HTTP URIs is preferred for two main reasons: (1) they are simple so that any
domain owner can create globally unique names, and (2) they can be used to provide access
to the information describing the identified entity [76]. As a result, an HTTP URI should
be de-referencable so that an HTTP client can search the URI using the HTTP protocol and
retrieve a description of the resource that the URI describes [12]. Note that for disambiguation
reasons, different URIs are used to identify a real-world or abstract object and the document
that describes the said object. The description of a resource can be represented either using
HTML, if the end-user is human, or using the Resource Description Framework (RDF) if the
end-user is a machine.

The RDF [99] data model is a W3C specification used to represent knowledge on the Web in
a generic, standardized manner. In RDF, information is represented as statements, called RDF
triples. A triple consists of a subject, a predicate and an object, mimicking the structure of a
simple sentence.
Definition 2.2 (RDF Triple). Given the pairwise disjoint infinite sets of IRIs (I), of blank
nodes (B), and RDF literals (L), a triple (c, p, o) ∈ (I ∪ B)× I × (I ∪ B ∪ L) is called an RDF
triple, where c is the subject, p the predicate and o the object.

The subject of a triple denotes the resource and it can either be an Internationalized Resource
Identifier (IRI) or an unnamed entity (blank node). An IRI is a generalization of URIs allowing
the use of UNICODE. The predicate of an RDF triple describes the type of relation between
the subject and the object and it is allowed to be identified using an IRI. Finally, the object
of the triple can either be an IRI, a blank node or an RDF literal in the form of a UNICODE
string. The following triple serves as an example and states that Steven Erikson is the author
of “Malazan: Book of the Fallen” :
Example 2.3.
subject c: < http : //dbpedia.org/Steven_Erikson >
predicate p: < http : //dbpedia.org/author >
object o: < http : //dbpedia.org/Malazan_Book_of_the_Fallen >

In order to express more complex knowledge using RDF triples, a number of languages are
built on top of RDF and extend it with more expressive semantics. One of these languages
is the Resource Description Framework Schema (RDFS), which includes a set of classes with
certain properties using the RDF data model. It provides RDF vocabularies as shared ter-
minology, intended to structure RDF resources. Another expressive representation language
based on formal logic is Web Ontology Language (OWL). OWL allows logical reasoning to be
performed on the knowledge, and enables access to knowledge which is only implicitly mod-
eled [79]. An example of an OWL term is < http : //www.w3.org/2002/07/owl#sameAs >.
For simplicity reasons, it can be re-written as owl : sameAs, where we substitute the namespace
http : //www.w3.org/2002/07/owl# with the prefix owl. Both RDFS and OWL follow W3C
standardization.

If we combine a set of RDF triples, we have an RDF Graph.
Definition 2.4 (RDF Graph). An RDF Graph is a finite set of RDF triples.

An RDF graph itself represents a resource, which is located at a certain location on the Web
and thus has an associated IRI - the graph IRI [12]. In order to visualize an RDF Graph, we
assign IRIs representing the subject and object of a set of triples as the graph nodes, and the
predicate as the directed edges connecting the subject and object of a triple.

10

Chapter 2. Preliminaries

Definition 2.5 (RDF Knowledge Base). An RDF Knowledge Base (KB) is a finite set of RDF
Graphs.

To publish an RDF Graph or a KB on the Web, we need means for serializations. Since
the RDF model is a data model and not a data format, there have been a set of serializations
following the W3C standards, such as RDF/XML [21], Turtle [20], N-Triples and RDF/JSON.

With the uptake in Semantic Web technologies, a vast amount of data is transformed using
the RDF model described previously, following the first three Linked Data principles. Since
large collection of RDF data is available, there is a need to link those datasets following the 4th
Linked Data principle: “Including links to other URIs allows more things to be discovered”.

The types of links described by the 4th Linked Data principle can be classified into two main
categories:

1. relationship links, where the objective is to find and link resources, also known as Link
Discovery (LD), and

2. vocabulary links, where the goal is to find and link definitions of vocabulary terms, such
as classes and properties, also known as Ontology Matching (OM).

In this work, we focus on the first type of links: relationship links. Therefore, we use the
term “relationship link” and “link” interchangeably throughout this work.

2.2 Link Discovery
Given a set of source RDF resources S and a set of target RDF resources T , the goal of LD is to
identify RDF statements that connect the resources from S with resources from T . Formally:

Definition 2.6 (Link Discovery). Given two sets of RDF resources S and T from two (not
necessarily distinct) KBs, as well as a relation Rel, the main goal of LD is to discover the
mappingM as the set {(s, t) ∈ S × T : Rel(s, t)}.

A relation example can be owl:sameAs, where the LD goal is to identify the set of pairs
of resources that represent the same entities. In that case, the LD task is equivalent to task
deduplication [101] and entity matching [102]. In this work, we use the term “Link Discovery”
as a hypernym for record linkage, deduplication, entity resolution and entity matching. Another
example of a relation is the bf relation, where LD aims to find the set of source events (as RDF
resources) that began and ended before a set of target events (as RDF resources).

The identification of links between resources is of utmost importance in applications such as
question answering [187], condition monitoring and predictive maintenance in Industry-4.0 ap-
plications [25], data intergration [22], environmental protection applications, health monitoring
systems2 and traffic monitoring [78].

2.3 Declarative Link Discovery
Over the years, several solutions have been proposed that address the identification of links
between resources. One approach is to manually detect the set of pairs (s, t) with s ∈ S, t ∈ T
that satisfy the relation Rel. However, the Linked Open Data cloud has evolved from merely
12 KBs [12] into more than 10, 000 KBs. 3 As a result, the manual approach towards LD is an
unscalable and time consuming task.

2https://www.healthcare.siemens.co.uk/magnetic-resonance-imaging/options-and-upgrades/
clinical-applications/interactive-realtime-imaging

3http://lodstats.aksw.org/

11

https://www.healthcare.siemens.co.uk/magnetic-resonance-imaging/options-and-upgrades/clinical-applications/interactive-realtime-imaging
https://www.healthcare.siemens.co.uk/magnetic-resonance-imaging/options-and-upgrades/clinical-applications/interactive-realtime-imaging
http://lodstats.aksw.org/

2.4 Link Specification

Therefore, declarative LD frameworks focus on identifying a set of links,M∗ ⊆ S×T , whose
similarity m(s, t) is equal to or greater than threshold θ. More formally:

Definition 2.7 (Declarative Link Discovery). Given two sets of RDF resources S and T from
two (not necessarily distinct) KBs, a (complex) similarity function m : S × T → [0, 1], and a
similarity threshold θ ∈ [0, 1], the main goal of the declarative LD is to compute the mapping
M∗ as the set {(s, t) ∈ S × T : m(s, t) ≥ θ}.

Additionally, using a distance function σ,M∗ can be computed as {(s, t) ∈ S×T : σ(s, t) ≤
$}, where$ ∈ [0,∞) is a distance threshold. Note that a distance function σ can be transformed
into a similarity function m by setting σ(s, t) = 1

1+m(s,t) . The distance threshold $ can be
transformed into a similarity threshold θ by setting θ = 1

1+$. As a result, distance and similarity
functions are used interchangeably within this work.

A similarity function m is atomic iff it consists of exactly one similarity measure used on
a particular set of properties i.e. ps, pt ∈ P, with P being the set of all properties. We write
m(s, t, ps, pt), to signify the similarity of s and t w.r.t. their properties ps resp. pt, or m(ps, pt)
for simplicity. It can also be complex if it is a combination of two similarity functions using a
metric operator (e.g., max, min).

Declarative LD is one of the families of solutions towards fulfilling the 4th Linked Data
principle. Other approaches include (but are not limited to): statistical models [28], probabilistic
models using Conditional Random Fields (CRF) [107], Machine Learning (ML) classifiers [122]
and inference algorithms [170]. However, in this work we focus on declarative Link Discovery,
therefore the terms declarative Link Discovery and Link Discovery are used interchangeably
throughout the rest of this manuscript. In this work, we only consider declarative LD frameworks
as they are the most commonly used. Other types of frameworks are described in [134]

2.4 Link Specification
Given thatM is generally difficult to compute directly, some declarative LD frameworks compute
the approximation M∗ using Link Specifications (LSs). A LS provides the means to express
the requirements under which the relation Rel holds. Several grammars have been used for
describing a LS in previous works [86].

Based on these grammars, a LS can be divided into two categories:

1. atomic, where the LS is described as a pair L = (m(ps, pt), θ) with θ ∈ [0, 1] ∪ {∅}. We
denote the empty specification with L∅. Additionally, we define a filter as a pair (f, ζ),
where f is either empty (denoted ε), a similarity measure or a combination of similarity
measures and ζ is a threshold. Note that an atomic LS can be regarded as a filter and be
written as a triple (f, ζ,X) with X = S × T .

2. complex, where the LS is described as a triple L = (f, ζ, op(L1, L2)). For L = (f, ζ, ω(L1, L2)),
we call ω = op(L) the operator of L. We call (f, ζ) the filter of L and denote it with ϕ(L).
We call L1 the left sub-specification or left child and L2 the right sub-specification or right
child of L. In this work, we limit ourselves to formalizing the specification operators u, t,
\ (difference), since the remaining operators (e.g., ⊕ (exclusive or)) can be derived from
this subset.

The size of L, denoted |L|, is defined as follows: If L is atomic, then |L| = 1. For complex
LS L = (f, ζ, ω(L1, L2)), we set L = |L1| + |L2| + 1. We denote the semantics (i.e., the results
of a LS for given sets of resources S and T) of a LS L by [[L]] and call it a mapping. Note that
the mapping of an empty LS is [[L]] = ∅. The semantics of LSs are then as shown in Table 2.1.

12

Chapter 2. Preliminaries

Table 2.1: Semantics of Link Specifications

L [[L]]
L∅ ∅

(m(ps, pt), θ)
{
{(s, t) ∈ S × T ∧m(s, t, ps, pt) ≥ θ} if θ ∈ [0, 1]
∅ else.

(f, ζ,X)
{
{(s, t) ∈ [[X]] : m(s, t) ≥ ζ} if f = ε

{(s, t) ∈ [[X]] : f(s, t) ≥ ζ} else.
u(L1, L2) {(s, t)|(s, t) ∈ [[L1]] ∧ (s, t) ∈ [[L2]]}
t(L1, L2) {(s, t)|(s, t) ∈ [[L1]] ∨ (s, t) ∈ [[L2]]}
\(L1, L2) {(s, t)|(s, t) ∈ [[L1]] ∧ (s, t) /∈ [[L2]]}

To elucidate the grammar behind a LS, we present an example LS in Figure 2.1. Based
on the figure, we notice the following: (1) the operator is t, (2) ϕ(L) = (ε, 0.60), (3) L1 is
(trigrams(:title, :name), 0.30), (4) L2 is (cosine(:label, :label), 0.70) and (5) |L| is 3.

(ε, 0.60) t

(cosine(:label, :label), 0.70)

(trigrams(:title, :name), 0.30)

Figure 2.1: Graphical representation of a complex LS

To compute the mapping [[L]] (which corresponds to the output of L for a given pair (S, T)),
LD frameworks implement (at least parts of) a generic, linear architecture consisting of an
execution engine, an optional rewriter and a planner (see [134] for more details). Figure 2.2
gives an overview of the workflow. The rewriter performs algebraic operations to transform
the input LS L into a LS L′ (with [[L]] = [[L′]]) that is potentially faster to execute. The
most common planner is the canonical planner (dubbed Canonical), which simply traverses
L in post-order and has its results computed in that order by the execution engine.4 There are
multiple ways to traverse the L, such as pre-order and in-order, however in this work we use the
semantics of planners introduced in [138].

LS Rewriter Planner Execution Engine Links

Figure 2.2: Linear architecture of the execution of a LS

For the LS shown in Fig. 2.1, the execution plan returned by Canonical consists of the
following steps:

• Step 1: Compute the mapping M1 = [[(trigrams(: title, : name), 0.30)]] for each pair of
resources, whose ps property title and pt property name has a trigrams similarity equal
to, or greater than 0.30.

4Note that the planner and engine are not necessarily distinct in existing implementations.

13

2.4 Link Specification

• Step 2: Compute the mappingM2 = [[(cosine(: label, : label), 0.70)]] of pairs of resources,
whose ps property label and pt property label, has a cosine similarity is equal to, or
greater than 0.70.

• Step 3: Compute M3 = M1 tM2, while abiding by the semantics described in Table 2.1.

• Step 4: Compute M4 by filtering M3 and keeping only the pairs that have a similarity
equal to, or greater than 0.60.

Given that there is a 1-1 correspondence between a LS and the plan generated by the
Canonical planner, we will reuse the representation of a LS devised above for plans. The
sequence of steps for such a plan is then to be understood as the sequence of steps that would
be derived by Canonical for the LS displayed.

14

Related Work
3

In this chapter, we present a set of related state-of-the-art approaches towards fast and scalable
declarative LD. As we explained in Section 2.3, some declarative LD frameworks utilize LSs to
compute an approximation of M, M∗ = {(s, t) ∈ S × T : m(s, t) ≥ θ}. As we explained in
Section 2.4, in order to express more complex relations, many frameworks use metric operators
(e.g. max, min) to combine similarity functions. Therefore, we divide this chapter into two
parts: (1) related state-of-the-art towards the runtime optimization of atomic similarities such
as string similarities (Section 3.1 for syntactic string similarities and Section 3.3 for semantic
string similarities), and time relations (Section 3.2); and (2) related state-of-the-art towards the
runtime optimization of complex similarities focusing on fast execution of LSs (Section 3.4) and
declarative LD frameworks and tools (Section 3.5).

3.1 A Systematic Survey of String Similarity Joins for Link Dis-
covery

Preamble This section is based on the paper “Systematic Survey on String Similarity Joins
for Link Discovery by Kleanthi Georgala and Axel-Cyrille Ngonga Ngomo”, which is currently
submitted in a peer-reviewed journal and is under review. It is the first systematic survey for
String Similarity Joins (SSJs) for LD that covers the time period 2008-2018. The author designed
the methodology, presented and evaluated the algorithms presented therein, and co-wrote the
paper.

3.1.1 Motivation

A large number of Link Discovery (LD) frameworks have been developed to address the need
for links in and across datasets (see [134] for a survey). Most of the existing LD frameworks
rely on combining atomic similarity and distance functions (e.g., the Levenshtein distance, the
Jaccard similarity) to complex similarity or distance functions. These complex functions are
then applied to property values of pairs (s, t) of RDF resources to identify links between these
resources. Since the most frequent data type in RDF datasets is the “string” data type [134],
the majority of LD tools utilize string similarities (amongst others) to carry out comparisons
between pairs of string attributes. In this work, we hence survey the use of string similarities
and distances in LD.

String similarities can be divided into two main categories:

15

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

1. syntactic string similarities, which determine the similarity of two strings based exclusively
on the sequence of characters the strings are made of; and

2. semantic string similarities, which aim to determine the similarity of two strings based on
the likeness of the meaning of said strings.

In both cases, LD frameworks use string similarities to compare attribute values of pairs of
resources (s, t) ∈ S×T with a threshold θ. The similarity score of a pair of strings being higher
or lower than said threshold is then used further in the process of suggesting the existence of
a link between the two resources (s, t) ∈ S × T [5, 56]. In the following, we will say that the
property values of two resources match if their similarity is higher (resp. lower) than θ. By
extension, we will also say that two resources match if their property values match.

As mention in Section 1.1, the baseline approach for computing matches is a brute-force
approach, which iterates over every pair (s, t) ∈ S × T to assess whether the attribute values
of s and t match. Since this approach is infeasible, a notable amount of previous work on fast
and scalable LD has focused on developing approaches that reduce the number of comparisons
necessary to compute all pairs of strings with a similarity higher than a predefined threshold θ,
while maintaining the completeness of results, i.e., while ensuring that they return all matching
pairs of resources (s, t). These methods include but are not limited to: blocking [159, 197],
clustering [227, 175], filtering [179, 33], hashing [70, 193], execution optimization approaches
[65, 138] and string similarity joins (SSJs) [221, 222].

Numerous approaches and evaluations regarding the aforementioned approaches and their
application to identifying links between resources [53, 171, 196, 104, 146] have been published
in the literature. However, to the best of our knowledge, there has been no systematic survey
for SSJs and their application to LD. We address this research gap by surveying and presenting
SSJs that were published between 2008 and 2018. We focus on syntactic string similarity joins
for two reasons: first, previous works ([125]) suggest that semantic string similarities do not
improve the F-measure of the task of matching resources. Secondly, our findings (Section 3.1.3)
suggest that there have been a very small number of works pertaining to the use of semantic
SSJs in LD. 1

Based on the literature, we classify SSJ approaches into two main categories: (1) filter-
verification approaches; and (2) tree-based approaches. We give an overview of the reported
performance of these approaches based on the corresponding papers and address their ability
to produce accurate links in a time-efficient manner. The results we present are not only of
importance for LD but also for its related fields, including record linkage, deduplication and
instance matching.

3.1.2 Preliminaries

We begin by presenting the necessary notations regarding strings, string similarities and string
similarity joins. Then, we describe the relation between LD and SSJs.

Definition 3.1 (String). A string r ∈ Σ∗ is a finite sequence of characters over an alphabet Σ.
The length of a string r is denoted by |r|.

Definition 3.2 (String Similarity Measure). A string similarity measure (or simply string sim-
ilarity) µ : Σ∗ × Σ∗ → R+ maps a pair of strings (r, g) ∈ Σ∗ × Σ∗ to a similarity value. String
similarities are often used against a similarity threshold λ ∈ R+. If µ(r, g) ≥ λ, then r and g
are considered a match.

1For an extensive analysis of semantic string similarities and their application to LD, see Chapter 5.

16

Chapter 3. Related Work

Definition 3.3 (String Similarity Metric). A string similarity metric (or simply string metric)
d(r, g), where r, g ∈ Σ∗ is a function such that d : Σ∗ × Σ∗ → R+2, where Σ∗ is the set of all
possible strings over Σ. A string metric quantifies the distance between two strings. Given a
distance threshold γ ∈ R+, d(r, g) > γ implies that r, g are not considered a match.

Like in the literature [134], we refer to both string similarity measures and string similarity
metrics as string similarities. String similarities have been studied and surveyed extensively over
the years [174, 160, 49, 63, 154]. They can be divided into 3 main categories:

1. Character-based similarities quantify the similarity between two strings r and g by means
of the number of single-character transformations (e.g., deletions, insertions, substitutions,
transpositions) required to transform g into r. An often-used family of character-based
string similarities are the edit distances, of which the Levenshtein distance is the most com-
monly used [114]. Another edit distance metric is the Damerau-Levenshtein distance [42],
which includes the transposition of two adjacent characters to the set of possible opera-
tions between strings. The Jaro [1], Jaro-Winkler [217] and Hamming distances [153] are
other character-based metrics used extensively in linking [52].

2. Token-based similarities (also called term-based)transform input strings into (ordered) sets
of tokens and use the similarity between the two sets of tokens as a proxy for the similarity
between the two initial strings. The computation of the set of tokens is often carried out
by (1) tokenizing the string using special characters (e.g., white spaces) or by (2) using a
sliding window of size q over the string (q − grams). Some well-known and widely-used
methods include (but are not limited to), the overlap similarity, the Jaccard similarity
[88], the cosine similarity, Dice’s coefficient [48] and the Manhattan distance [106].

3. Hybrid similarities, combine the advantages of character and token-based similarities. For
example, the Monge-Elkan similarity measure [129] begins by tokenizing the input strings.
Then, it calculates the Levenshtein or the Jaro-Winkler distance for each pair of tokens,
and computes the similarity of the strings as the average similarity score over all pairs of
tokens. SoftTFIDF [211], the generalized edit similarity (GES) and fuzzy overlap [213] are
further hybrid string similarities found in the literature.

Definition 3.4 (String Similarity Join). Given two sets of strings R ⊆ Σ∗ and G ⊆ Σ∗, a string
measure µ (or string metric d) and similarity threshold λ ∈ R+ (or a metric threshold γ ∈ R+),
the goal of a string similarity join (SSJ) is to find the set of string pairs (r, g) ∈ R × G such
that {(r, g) ∈ R×G | µ(r, g) ≥ λ} (resp. {(r, g) ∈ R×G | d(r, g) ≤ γ}).

In this section, we focus on optimization methods for the execution of atomic similarity
functions, m(s, t, ps, pt). Thus, for a particular set of string properties ps, pt of s and t resp.,
the problem of finding the set of pairs (s, t) with m(s, t, ps, pt) ≥ θ becomes equivalent to the
task of finding the set of pairs (s, t) which, mapped to values ps(s) resp. pt(t), satisfy the SSJ
condition µ(ps(s), pt(t)) ≥ θ. Consequently, efficient execution of SSJ is of central importance
in LD. In the following, we present a survey of SSJs for LD.

3.1.3 Systematic Survey Methodology

Our systematic survey of the literature on SSJs for LD is based on the approaches presented in
[98, 128]. First, we present our methodology for finding surveys related to our survey. Then, we
introduce our systematic survey methodology for identifying SSJs for LD.

2R+ = {x ∈ R|x ≥ 0}. This notation holds for the rest of this work.

17

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Related Surveys

In this section, we introduce our methodology for discovering related surveys to SSJs for LD.

Question Formulation The questions we aimed to answer by conducting a systematic search
for related surveys are the following:

• RS −Q1: What is the current status of systematic surveys for SSJ in LD?

• RS −Q2: On which topics do related surveys for LD focus?

• RS −Q3: What type of surveys have been conducted for SSJs?

Eligibility criteria We created two lists of inclusion/exclusion criteria for related surveys.
The papers had to abide by all inclusion criteria and by none of the exclusion criteria to be part
of our survey:

• Inclusion Criteria

– Work published in English between 2008 and 2018.
– Surveys on algorithms and frameworks that improve the performance of string simi-

larities for LD.
– Surveys on string similarity join approaches for LD.

• Exclusion criteria

– Works that were not peer-reviewed or published.
– Works that were published as poster abstracts.

Search Strategy We defined a set of keywords related to our survey. These were: study,
survey, evaluation, string similarity, string similarity join, link discovery, record linkage, dedu-
plication, entity resolution and entity matching. We used those keywords to derive the following
query:

• (intitle: survey OR intitle: study OR intitle: evaluation) AND (string similarity
OR string similarity joins) AND (link discovery OR record linkage OR deduplication OR
entity resolution OR entity matching)

The intitle tag was used to specify that the keywords survey, study and evaluation should be
present in the title of the paper, where applicable.

Keyword searches were carried out using the following list of search engines, digital libraries,
journals and conferences:

• Google Scholar 3

• IEEE Xplore Digital Library (IEEE Xplore) 4

• ACM DL 5

• Science Direct 6

3http://scholar.google.com/
4https://ieeexplore.ieee.org/Xplore/home.jsp
5http://dl.acm.org/
6http://www.sciencedirect.com/

18

http://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
http://dl.acm.org/
http://www.sciencedirect.com/

Chapter 3. Related Work

• Semantic Web Journal (SWJ) 7

• Journal of Web Semantics (JWS) 8

• Journal of Data and Knowledge Engineering (JDWE) 9

Search Methodology Steps To conduct our systematic literature search of related surveys,
we applied a six-phase search methodology:

1. Apply keywords to the search engine using the time frame 2008-2018.

2. Scan article titles based on inclusion/exclusion criteria.

3. Import the output from step 2 to a reference manager software to remove duplicates. Here,
we used Mendeley 1.19.310 as it is free and has the required functionality for deduplication.

4. Review abstracts according to include/exclude criteria.

5. Read through papers, looking for approaches that fit the inclusion criteria and excluded
papers that fit the exclusion criteria.

6. Retrieve the corresponding papers from references included in the papers of step 5 or
papers that cited the papers of step 5 that fit the inclusion/exclusion criteria.

Table 3.1 provides an overview of the number of papers retrieved in each phase of the search
methodology.

Table 3.1: Number of retrieved related surveys for each phase of the search methodology

Search Steps
Engines 1 2 3 4 5 6
Google Scholar 99 42 41 29 25 34
IEEE Xplore 5 0 0 0 0 0
ACM DL 1 1 0 0 0 0
Science Direct 38 3 2 2 2 5
SWJ 34 3 2 0 0 0
JWS 38 3 0 0 0 0
JDWE 38 3 0 0 0 0

Core Survey

Now that we have introduced our approach for identifying surveys related to our work, we
continue by presenting our core methodology for the literature review of SSJs in LD.

7http://www.semantic-web-journal.net/
8http://www.websemanticsjournal.org/
9http://www.journals.elsevier.com/data-and-knowledge-engineering/

10http://www.mendeley.com/

19

http://www.semantic-web-journal.net/
http://www.websemanticsjournal.org/
http://www.journals.elsevier.com/data-and-knowledge-engineering/
http://www.mendeley.com/

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Question Formulation We begin by formalizing the research questions we aimed to answer
in the evaluation section of our survey:

CS −Q1 : Can SSJs be divided into categories (e.g., based on a common implementation
template?) What are the characteristics of each category?

CS −Q2 : What challenges are associated with SSJs?

CS −Q3 : What trends can be observed across SSJ approaches over the survey time frame?

Eligibility criteria We created two lists of inclusion/exclusion criteria for related publica-
tions. The papers had to abide by all inclusion criteria and by none of the exclusion criteria to
be part of our survey:

• Inclusion Criteria

– Work published in English between 2008 and 2018.
– String similarity join approaches for LD.
– (String) Set similarity join approaches for LD.

• Exclusion criteria

– Work that was not peer-reviewed or published.
– Work that was published as a poster abstract.

Search strategy Based on the research questions and the eligibility criteria, we defined the
following set of related keywords: string similarity, string similarity join, link discovery, record
linkage, deduplication, entity resolution and entity matching. We used those keywords to create
the following query:

• (string similarity OR string similarity joins) AND (link discovery OR record linkage OR
deduplication OR entity resolution OR entity matching)

The query defined by this keyword search was applied to the list of search engines, digital
libraries, journals and conferences shown in Section 3.1.3.

Search Methodology Steps To conduct our systematic survey of SSJs for LD we applied a
seven-phase search methodology:

1. Apply keywords to the search engine using the time frame 2008-2018.

2. Scan article titles based on inclusion/exclusion criteria.

3. Import output from step 2 to a reference manager software to remove duplicates. Here,
we used Mendeley 1.19.311 as it is free and has functionality for deduplication.

4. Review abstracts according to include/exclude criteria.

5. Read through papers, looking for approaches that fit the inclusion criteria and exclude
papers that fit the exclusion criteria.

6. Retrieve new papers from references that cite the papers of step 5.
11http://www.mendeley.com/

20

http://www.mendeley.com/

Chapter 3. Related Work

7. Scan references from the survey papers that passed steps 5 and 6 of the related surveys
methodology from Section 3.1.3 and retrieve new papers that fulfilled the inclusion/exclu-
sion criteria.

Additionally, any new survey that was discovered during our search methodology steps to identify
SSJ papers for LD, were added to the results of the related surveys. Table 3.2 provides an
overview of the number of retrieved papers through each phase of the search methodology. Due
to the large amount of results obtained from Google Scholar, step 2 was applied to the top-1000
relevant results.

Table 3.2: Number of retrieved related surveys for each phase of the search methodology

Search Steps
Engines 1 2 3 4 5 6 7
Google Scholar 2,290 339 318 223 20 18 2
IEEE Xplore 10 9 3 2 0 0 0
ACM DL 13 9 0 0 0 0 0
Science Direct 59 20 15 10 0 0 0
SWJ 28 15 14 6 0 0 0
JWS 59 20 0 0 0 0 0
JDWE 59 20 0 0 0 0 0

3.1.4 Related Survey Results

In this section, we present the results of our systematic search of related surveys for SSJs in
LD from Section 3.1.3. We divide our related work section into two subsections that cover the
basic topics of our research: link discovery and string similarity joins. We begin by answering
RS−Q1 from Section 3.1.3 by stating that during our systematic search for applications of SSJ
to LD, we did not come across any survey (systematic or not), study or evaluation focusing on
that topic, for the time period 2008-2018.

Link Discovery Surveys

Conducting surveys and empirical studies on LD frameworks and systems has drawn a lot of
attention in the scientific community over the past decade. To answer RS−Q2 from Section 3.1.3,
the studies presented as related work for LD are divided into two categories: (1) comparison of
LD frameworks or approaches, where the comparison criteria include (but are not limited to)
efficiency, and (2) comparison of specific runtime improvement approaches. The surveys that
belong to the first category give an overview of the existing LD tools or techniques, including
their ability to reduce the search space and improve efficiency, as part of a wider comparison
schema. The second category of papers includes surveys on blocking, indexing, clustering and
genetic programming that optimize the runtime of the linking process. Our work differs from
the first category because we focus only on the challenge of efficiency in LD, and we differentiate
ourselves from the second category, by specifically focusing on SSJs to reduce the number of
comparisons between strings, and thus, the time complexity.

A detailed comparison and evaluation of some interlinking tools that utilize LOD datasets
can be found in [134]. In that survey, the authors compared 11 state-of-the-art LD frameworks
including LIMES [135], Silk [210], KnoFuss [147], Zhishi.links [149] and AgreementMaker [38].
The comparison of tools was made based on a generic LD architecture and the criteria included

21

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

effectiveness, low configuration, and tuning effort, (apart from efficiency). In a similar manner,
[77] discusses different algorithms for identifying links between ontology instances based on
their ability to handle large-scale datasets. Another related work regarding the evaluation of
interlinking tools for the Web of Data was published in [158]. This paper serves as an empirical
study on three LD frameworks, whose performance was evaluated by human experts based
on the number of links, number of matched records and common terms. Additionally, based
on the finding of [158], the authors conducted a case study on interconnecting an e-Learning
dataset to DBpedia [157]. [131] presents a different comparison approach, by focusing on
various architectural features of the systems, such as linking techniques, domains, interface
characteristics and input/output format types.

In a similar manner, there have been many surveys about different machine learning-based
approaches for LD. [54] provides a comparative study of various unsupervised classification
techniques, such as Support Vector Machines (SVMs), Decision Trees and Bayes classifiers.
[196] provides an extensive comparison of ten supervised approaches for LD on six different
datasets, evaluating both efficiency and effectiveness. The authors of [163] compare various
supervised and unsupervised classifiers for historical census linkage.

In the field of benchmarking Instance Matching (IM) tools, [43] offers a thorough study on
the current state-of-the-art IM benchmarks for Semantic Web data, based on reproducibility
of results, availability and equity among systems. One of the most prominent benchmarks in
IM is the Ontology Alignment Evaluation Initiative (OAEI) [60].12 OAEI provides a two-
fold evaluation: (1) evaluation conducted on real-data to measure the performance of tools
under real linking scenarios, and (2) evaluation using synthetic data for better understanding of
the advantages and disadvantages of each system when presented with heterogeneous datasets.
Another rising benchmark, LANCE 13 (Linked Data instance matching Benchmark Generator)
provides a domain independent structure with the ability to link any provided linked dataset,
supporting complex semantics-aware test cases [178].

Efficiency and scalability in LD has been studied thoroughly in many related publications.
Surveys such as [47, 35, 105, 6] provide an overview of the existing methods and approaches to
improve the linking runtime. Some of those methods include blocking [159, 197, 152, 86, 50, 198],
clustering [53, 227, 175], adaptive windows [224, 126], filtering [179, 33], hashing [70, 193],
genetic programming [85], and rule-based approaches [3, 110].

String Similarity Join Surveys

Due to their numerous applications, SSJs have been the center of attention in many previous
studies. In [91], the authors presented and evaluated 14 SSJs on a variety of datasets, dividing
their experiments into the following categories: (1) experiments on large datasets, (2) exper-
iments on small datasets, (3) scalability experiments, and (4) self-joins (R = G) In a similar
manner, [225] studies a set of SSJs, providing a detailed analysis and categorization. Further-
more, there are four more surveys, [190, 14, 182, 7], that focus on SSJs based on MapReduce [45]
for further improving the time complexity and scalability of some SSJs. To answer RS − Q3
from Section 3.1.3, the aforementioned surveys for SSJs either do not present a comparison or
evaluation of the different SSJs, or they serve as an experimental evaluation on SSJs rather than
a systematic survey.

During our search for related work regarding SSJs for LD, we came across papers that study
fields relevant to SSJs, but differ in the task at hand. One example is a String Similarity Search
(SSS), where a given a set of strings R ⊆ Σ∗ and a query string z ⊆ Σ∗, a string measure µ (or

12http://oaei.ontologymatching.org/
13http://www.ics.forth.gr/isl/lance/

22

http://oaei.ontologymatching.org/
http://www.ics.forth.gr/isl/lance/

Chapter 3. Related Work

string metric d) and similarity threshold λ ∈ R+ (or a metric threshold τ ∈ R+), the goal of an
SSS is to find the set of strings such that {r ∈ R | µ(r, z) ≥ λ} (resp. {r ∈ R | d(r, z) ≤ γ}).
[225, 212] are examples of such surveys. However, even though SSSs and SSJs are closely related,
often studied together and many algorithms are implemented to perform both, SSSs are beyond
the scope of this survey. Such surveys include: [123, 89, 62]. Note that, algorithms that
implement SSJs or Set Similarity Joins and SSSs, and satisfy the eligibility criteria of our survey
are included in our work, such as IndexGram [155], IndexChunk [155], Para-Join [90].

3.1.5 String Similarity Joins

The following presents the results of our systematic survey on SSJs for LD implemented as
laid out in Section 3.1.3. To answer CS − Q1, we divide existing SSJs for LD into two basic
categories: (1) filter-verify approaches, and (2) tree-based approaches. Tables 3.3- 3.12 provide
an overview of the characteristics of the filter-verify and the tree-based approaches, presented
in the following sections. The filter-verify approaches are distributed among different tables
(Tables 3.3- 3.11). We divide the SSJs in multiple tables for readability purposes. The order
in which each SSJ appears in a table is dictated by its corresponding order in the text. We
also present and discuss the parallel version of some SSJ approaches along with supplementary
characteristics. Note that we use the notation introduced in Chapter 2 and Section 3.1 instead
of the symbols used in the publications we surveyed for the sake of improved understandability
and comparability. Also note that several publications on SSJs use the term “edit-distance” to
mean different distances. For the sake of clarity, we use the name of the intended distance (e.g.,
Levenshtein distance) instead of “edit-distance”.

Filter-verify approaches

The filter-verify approach consists of two steps: a filtering step and a verification step. Filtering
aims to produce a set of candidate pairs for the verification step by pruning non-matches,
thus reducing the number of comparisons carried out in the verification step. The first step
in the generation of candidate pairs consists of mapping the input strings to signatures. The
algorithm then aims to pair strings together that share common signatures. The pairs are filtered
thereafter and those pairs that pass the filtering stage are regarded as candidate pairs. Finally,
in the verification step, each candidate pair is verified by computing its real similarity value.

Filter-verify approaches can be divided into three categories based on how they generate
signatures: (1) prefix-based (Tables 3.3- 3.6), (2) partition-based (Tables 3.7- 3.10) and (3)
neighborhood-based (Table 3.11). Before we present SSJs that fall into these categories, we give an
overview of the filters commonly used across the three categories of approaches aforementioned.

Overview of Filters The approaches that implement these filters use q − grams to produce
the set of signatures for each string, unless specified otherwise. In the following equations, τ is
the Levenshtein distance threshold and δ is the overlap similarity threshold.

First, we define a positional q − gram of a string r as a pair (i, r[i . . . i + q − 1], where
r[i . . . i+q−1] is the q−gram of r that starts at position i, counting on the extended string [75].
The set Wr of all positional q− grams of a string r is the set of all |r|+ q− 1 pairs constructed
from all q − grams of r [75].

• Count filtering [75, 176, 115]: here, the underlying assumption is that if two strings r and
g have a distance less than or equal to γ, or their similarity is equal to or greater than
λ, then their signatures must share at least C common signatures. Examples of means to
compute C are as follows:

23

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

C =



|r|+ 1− q − (qτ) for Levenshtein distance

δ for overlap

dδ|r|e for jaccard⌈
δ2|r|

⌉
for cosine⌈

δ
2−δ |r|

⌉
for dice.

(3.1)

• Length filtering [75]: here, the underlying assumption is that if two strings r and g have a
distance less than or equal to γ, or their similarity is equal to or greater than λ, then the
following must hold for their lengths:

|r| − τ ≤ |g| ≤ |r|+ τ, for Levenshtein distance

δ|r| ≤ |g| ≤ |r|
δ
, for jaccard

δ2|r| ≤ |g| ≤ |r|
δ2 , for cosine

δ

2− δ |r| ≤ |g| ≤
2− δ
δ
|r|, for dice

(3.2)

• Positional filtering [75]14: here, the underlying assumption is that if two strings r and g
have a distance less than or equal to γ, or their similarity is equal to or greater than λ,
then a positional q−gram in r cannot correspond to a positional q−gram of g that differs
from it by more than å positions. For the Levenshtein distance, å = τ [75] and for the
overlap similarity, å = δ [221].

• Prefix filtering [30]: assume a global ordering that orders all tokens in the sets of signatures.
Based on [30], a global ordering eliminates higher frequency elements from the prefix
filtering and thereby expects to minimize the number of comparisons.15 If two strings, r
and g have a distance less than or equal to γ, or their similarity is equal to or greater than
λ, then prer ∩ preg 6= ∅, where prer and preg are the prefixes (set of the first v signatures)
of the r and g respectively. Examples of means to compute v are as follows:

v =



qτ + 1 for the Levenshtein distance

|r| − δ + 1 for overlap

b(1− δ)|r|)c+ 1 for jaccard⌊
(1− δ2)|r|)

⌋
+ 1 for cosine⌊

(1− δ
2−δ)|r|

⌋
+ 1 for dice.

(3.3)

Prefix-based approaches Prefix-based approaches build an inverted index, where the sig-
natures serve as the keys, and a list of strings that contain the corresponding signatures serve
as the values.16 Remember that the main idea behind prefix-based approaches is that if two

14In bibliography, “position” and “positional” filtering are used interchangeably.
15A global ordering is a descending or ascending order applied to all tokens of all strings, based on e.g. inverse

document frequency (idf), alphabetical order, token frequency (tf).
16The list can be either ordered or not ordered, depending on the approach

24

Chapter 3. Related Work

strings r and g have a distance less than or equal to γ, or their similarity is equal to or greater
than λ, then they must share a subset of common prefixes, where a prefix is the set of the first
v signatures based on a global ordering.

For each prefix-based SSJ, we present the following:

• the string similarity(ies) supported,

• the algorithm(s) implemented to produce the signatures,

• the type(s) of filtering used,

• the optimization(s) performed at the verification stage (if any), and

• the parameters used in configuration.

We begin our discussion of filter-verify approaches with an SSJ for the Levenshtein distance,
Ed-Join [219]. Remember that τ denotes the threshold for any SSJ which relies on the Leven-
shtein distance. Ed-Join introduces the idea of using the information provided by both shared
and unshared q-grams in the signature list of strings to identify candidate pairs for verification.
The Ed-Join algorithm receives a set of arrays that are ordered based on their length as input.
Each array contains a set of q − grams ordered in decreasing order based on their idf values.
To reduce the size of prefixes needed for comparison, Ed-Join uses minimum prefixes, where a
minimum prefix is the shortest prefix of the q−gram array, such that if all the q−grams in the
minimum prefix are mismatched, it will incure at least τ +1 errors [219]. Hence, if all q−grams
in the minimum prefix are mismatched, it will incur at least τ+1 edit errors [219]. Based on this
idea, the authors proposed a new filter, called location-based mismatch filter, which was used
during the candidate pair generation. For the verification stage, Ed-Join utilizes a set of filters
to speed up the comparisons: (1) count and position filtering, (2) location-based mismatch filter-
ing and, (3) the new content-based mismatch filtering. Content-based mismatch filtering serves
as a complementary filter to the location-based mismatch filtering, based on the observation that
several edit errors actually occur within the same unshared q−grams. Additionally, the authors
of [219] provide an extension of the All-Pairs [19] algorithms for the Levenshtein distance,
named All-Paird-Ed, which they use as the baseline in their experiments. Finally, to study the
effects of each filter individually, they create Ed-Join-I by removing the content-based filter
from Ed-Join.

Ed-Join and especially All-Paird-Ed have inspired the authors of [215] to create the
first chunk-based method for exact Levenshtein similarity join, VChunkJoin. VChunkJoin
proposes a set of tail-restricted Chunk Boundary Dictionary (CBS) schemes, where strings are
divided into non-overlapping, disjoint sub-strings (chunks). Their idea is to minimize the space
needed to create an index and store the signatures. The algorithm uses the location-based
mismatch filtering and content-based mismatch filtering introduced in [219], but also introduces
two new filters: chunk number filtering and virtual CBD filtering. The first new filter aims
to number the signatures associated with a string, and the second stores the resulting chunk
numbers rather than storing and indexing the resulting chunks.

Our next filter-verify SSJ algorithm is an approach that combines both positional and prefix
filtering, dubbed PPJoin [221]. PPJoin improves the efficiency of various string similarities
such as cosine, jaccard, overlap, Hamming distance and Levenshtein distance, along with their
weighted versions. The PPJoin algorithm takes as input a record multiset that is ordered based
on length; each set contains a set of prefixes ordered by ascending order based on their document
frequency (df) values. The authors of [221] propose two novel techniques for optimizing the
effectiveness and efficiency of the filtering phase: first, they store both the tokens and their
position in the prefix set; then they minimize the index size using an upper bound based on the

25

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Table 3.3: Characteristics of prefix-based String Similarity Joins. The ♣ symbol indicates that
the approach also implements a parallel version of its algorithm.

Approach String Signatures Filtering Verification Parameters Year
Similarities Techniques Optimization

Ed-Join [219] Levenshtein q − grams, location-based count+positional τ , q 2008
distance ordering by idf, mismatch filtering filtering and

minimum prefix location-based
mismatch filtering
and content-based
mismatch filtering

Ed-Join-I [219] Levenshtein q − grams, location-based count+positional τ , q 2008
distance ordering by idf, mismatch filtering filtering and

minimum prefix location-based
mismatch filtering

All-Pairs-Ed [219] Levenshtein q − grams, prefix filtering count+positional τ , q 2008
distance ordering by idf filtering

VChunkJoin [215] Levenshtein tail-restricted chunk number content-based τ , q 2012
similarity Chunk Boundary filtering or virtual mismatch filtering

Dictionary schemes CBD filtering, and and [203]
(vchunks), ordering location-based
by idf mismatch filtering

and prefix+
length filtering

PPJoin [221] jaccard tokenization, prefix and comparison λ or τ 2008
cosine ordering by df, positional of suffixes
overlap prefix length filtering
Levenshtein constraints,
distance length
Hamming ordering
distance

PPJoin+ [221] jaccard tokenization, prefix and suffix filtering λ or τ 2008
cosine, ordering by df, positional
overlap prefix length filtering
Levenshtein constraints,
distance length
Hamming ordering
distance

MPJoin♣ [162] jaccard q − grams, min-prefix filtering merge-join q, λ 2011
cosine ordering by (prefix filtering) algorithm,
dice feature comparison

frequency, of suffixes
use overlap and
set size bound

Adapt-Join [214] overlap variable-length prefix filtering l, 2012
dice prefix scheme λ or τ
cosine using a cost model, -
jaccard use of delta
Levenshtein inverted indexes
distance

position of a token in the prefix set (positional filtering). For the comparison phase, PPJoin’s
verification algorithm compares the last tokens of both prefixes, considering that only the suffix
of the smaller token needs to be intersected with the entire other record [221]. As a further
improvement to the verification step, the authors of PPJoin propose a novel suffix filtering
method (PPJoin+), as a generalization of prefix filtering to work with suffixes. Therefore,
any candidate pair that passes the filtering stage needs to be further verified before the actual
comparison happens.

26

Chapter 3. Related Work

Table 3.4: Characteristics of prefix-based String Similarity Joins. The † symbol indicates that
the method is available as a parallel processing algorithm only. The ♣ symbol indicates that
the approach also implements a parallel version of its algorithm.

Approach String Signatures Filtering Verification Parameters Year
Similarities Techniques Optimization

P4Join♣ [180] Tanimoto same as PPJoin same as PPJoin λ 2015
for bit-vectors for bit-vectors: -

length,prefix and
positional filtering

PairWiseMR† [55] Okapi BM25 stemming, stop-words MapReduce’s MapReduce’s df -cut 2008
removal, df-cut mapper reducer thresholds

EFS-S† [209] jaccard, Basic Token prefix, length and Basic Record number of 2010
Tanimoto Ordering (BTO) or positional filtering Join (BSJ) or nodes, λ
cosine One-Phase Token with Basic Kernel One-Phase

Ordering (OPTO) (BK) or Indexed Record Join
Kernel (PK) with (OPRJ)
prefix, positional
filtering

SSJ-2 † [17] cosine same as [209], prefix same as [55], λ 2010
partition filtering and compute
in buckets with load document

balancing similarity once
techniques

SSJ-2R† [17] cosine same as [209] prefix same as [55], λ, 2010
partition filtering and compute number of
in buckets, with load document chunks K
partitioning of balancing similarity once,
remainder file techniques avoid remote
in chunks random access

IndexGram [155] Levenshtein q − grams, naive count τ 2011
similarity prefix filtering or matching

with lower or error -
bound estimation-

based
filtering

IndexChunk [155] Levenshtein q − chunks, naive count τ 2011
similarity prefix filtering or matching

with lower or error -
bound estimation-

based
filtering

PPJoin has become a state-of-the-art approach for optimizing the runtime of many string
similarities. Hence, a series of methods have built upon and extended the PPJoin framework
to solve variants of the similarity join problem. One such approach is MPJoin [162], which
studies the problem of Set Similarity Joins. Set Similarity Joins serve as a subcategory of SSJs by
utilizing only token-based string similarities. MPJoin focuses on minimizing the computational
costs of identifying candidate pairs by introducing a generalization of prefix filtering, the min-
prefix filtering method. PPJoin has been extended in [180] to handle Privacy Preserving
Record Linkage (PPRL). The authors of [180] introduce P4Join, an alternative version of
PPJoin that efficiently compares bit vectors for PPRL. The algorithm uses the set bit positions
(indexes) as tokens, so that the length of a record is the number of set bits in its bit array. Then,
it alters the filters used in PPJoin to fit the encrypted data. To improve the runtime even
further, they introduce a GPU-based version of P4Join and a hybrid version that uses both
GPUs and CPUs.

27

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Adapt-Join [214] is another approach that utilizes prefix filtering. The main difference be-
tween existing approaches and Adapt-Join is that it proposes an adaptive selection of choosing
a prefix scheme, named the variable-length prefix scheme. The algorithm dynamically selects
the length(s) of the prefix(es) of each object, using a cost-based model. To do so, the authors
of [214] use delta inverse indexes to handle the adaptive nature of their algorithm.

The authors of PairWiseMR [55] propose a pairwise similarity approach based on MapRe-
duce to optimize the runtime of comparisons between documents in large collections. First,
the algorithm converts each text into a bag-of-words using stemming. Then, it associates each
term with document ids that include this term, using a standard inverted index. The mapper
emits the term as the key, uses a tuple consisting of the document id and term weight as the
value, groups together the tuples and writes them to the disk (postings). Before the verification
stage, the PairWiseMR algorithm uses df-cut pruning, where the fraction of the terms with
the highest document frequency is excluded. Then, the MapReduce creates 1

2w(w − 1) tuples
with document ids as keys, where w is the average length of a posting. Finally, the reducer sums
up all the individual scores from each pair and generates the final similarity between a pair of
documents.

EFS-S, another approach that utilizes MapReduce for time efficiency, is presented in [209].
EFS-S implements parallel set similarity joins for both self-join and R 6= G. For the self-join
scenario, the authors of [209] propose two global orderings of the tokens: (1) Basic Token
Ordering (BTO), where the tokens are ordered based on frequency by taking advantage of the
“map”, “reduce” and “combine” functions of MapReduce; and (2) One-Phase Token Ordering
(OPTO), which is similar to BTO but the tokens are ordered in memory instead. Once the prefix
sets are produced, the algorithm extracts the prefix tokens from each record and distributes the
document ids (RID) and the join-attribute value pairs to the reducers. The reducers compute the
similarities of the join-attributes and then output the RIDs of matched pairs. The distribution
is performed either by using individual tokens, where each token is a key, or by grouping tokens
together, where an artificial key is created by combining multiple keys. The identification of
matched RIDs is performed by using a nested loop approach to compute the similarity of the
join-attribute values (Basic Kernal - BK) or by using PPJoin+ [221] (Indexed Kernel - PK).
Once each reducer has identified the RIDs of matched pairs, the algorithm proceeds in combining
the individual values into an aggregated result. This is achieved either by Basic Record Join
(BRJ), where the list of RID pairs is provided as input to the map functions, or by One-Phase
Record Join (OPRJ), where the list is sent to all mappers before the input data is consumed
by the mapper. For the R 6= G, the authors used the same ordering methods, with the further
step of excluding any token of G that was not found in R. Additionally, for the identification of
RIDs of matched pairs at each mapper and for the final stage of pairs aggregation, the approach
utilized both same methods as in the self-join case, with small alternations to fit the R 6= G join.
Finally, the authors of [209] propose two alternatives of the main algorithm, for cases where
there is no sufficient memory available to store all data.

Based on the implementation optimizations introduced in PairWiseMR [55] and EFS-
S [209], the authors of [17] propose two new approaches for document similarity self-join. First,
SSJ-2 utilizes prefix filtering and extends [55] by introducing a load balancing technique for
partitioning the data into the MapReduce mappers. In the verification phase, it also improves
the best approach introduced in [209], by allowing the similarity between two documents to be
computed only once, even if they appear in more than one mapper. The authors also introduce
SSJ-2R as an extension of SSJ-2 , which avoids sending the full collection of documents to
every MapReduce node multiple times.

Two other approaches focusing on Levenshtein similarity join are proposed in [155]. The
authors of [155] introduce two methods, IndexGram and IndexChunk, which differ in the

28

Chapter 3. Related Work

Table 3.5: Characteristics of prefix-based String Similarity Joins. The † symbol indicates that
the method is available only as a parallel processing algorithm. The ♣ symbol indicates that
the approach also implements a parallel version of its algorithm. The ♦ symbol refers to the
additional characteristics of the parallel version.

Approach String Signatures Filtering Verification Parameters Year
Similarities Techniques Optimization

Fast-Join [213] fuzzy dice, tokenization, token-sensitive construction of a λ, η 2011
fuzzy cosine, removal of filtering weighted bi-graph
fuzzy jaccard maximum with loose

number of constraints
largest
signatures
(c-1) tokens

Partition- Levenshtein same as [216] Minimal-Edit- construction of a τ , η 2011
NED [213] distance Distance weighted bi- graph

or with loose
Duplication constraints
Pruning

V-SMART- any similarity convert data Online-Aggregation τ or λ 2012
Join† [127] with Shuffling into multisets, - or Look-Up or

Invariant represent Sharding algorithm
Property multisets

as tuples
MGJoin♣ [168] cosine tokenization, multiple prefix multiple global λ, 2013

jaccard multiple global filtering orderings♦ number of
dice orderings: random orderings

selection or random
selection with
reverse order TF1
or TF2

REEDED [194] weighted tokenization length- dynamic τ 2013
Levenshtein aware, programming
distance and character-
other distances aware
of the edit- filtering
distance family

SN-Join [121] full expansion, compute prefix λ 2013
selective signatures filtering
expansion off-line and -

choose best online
based based on
2 estimators

SI-Join [121] full expansion, compute prefix, λ 2013
selective signatures length
expansion off-line and filtering -

choose best online
based based on
2 estimators

SS-J [40] Levenshtein q − grams position, τ 2014
distance length, -

count
filtering

way they produce signatures for strings. IndexGram uses q − grams to extract signatures,
whereas IndexChunk uses q − chunks. q − chunks are substrings of length q, that start at
1 + (iq)-th position of the string. Their idea of using an asymmetric scheme for signatures

29

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

was based on the intuition there is no “one fits all” approach for generating signatures among
different datasets. To minimize the size of the q − grams and q − chunks, they proposed a
lower bound on common signatures by using prefix and count filtering. Finally, they introduced
a new set of filters to help minimize the number of comparisons between candidates. These
are: (1) naive count filtering, (2) matching filtering, which transforms candidate matches into
a bi-partie graph that prunes the least amount of vertices so the final graph does not violate a
set of constraints; and (3) error estimation-based filtering.

Our next algorithm, Fast-Join [213] proposes a new set of string similarities, named fuzzy
similarities, which serve as alternatives to existing string measures and metrics to improve the
effectiveness and efficiency of SSJs. Fast-Join introduces an extension of prefix filtering for
token-based similarities, named the token-sensitive scheme, and an extension of the Partition-
ED [216] method, named Partition-NED, for character-based string metrics. For the verifica-
tion phase, the algorithm performs a comparison of tokens by constructing a weighted bi-graph,
using an upper bound of the maximal weight by relaxing the matching condition.

V-SMART-Join [127] belongs to the MapReduce framework category for SSJs. This
approach accommodates similarities between sets, multisets and vectors using any similarity
that has the Shuffling Invariant Property (SIP), where the order of elements is not known.
The algorithm begins with the joining phase, which transforms the data into multisets; each
multiset is represented using tuples, a tuple for each element of the alphabet that belongs to
the multiset. Therefore, the SSJ problem is transformed into finding the set of multiset pairs
whose similarity is above a predefined similarity threshold. The authors of [127] proposed three
different joining algorithms: (1)the Online-Aggregation algorithm, (2) the Look-up algorithm,
and (3) the Sharding algorithm, a hybrid between the first two techniques. The second and final
step of the algorithm consists of the similarity phase, which computes the similarity between
candidate pairs, utilizing the functionality of the MapReduce framework.

MGJoin [168] introduces a multi-prefix filtering scheme for fast SSJs. The authors of [168]
propose the idea of using a set of different global orderings, which are applied to the input
data to minimize the number of candidate pairs for verification. First, the algorithm uses one
global ordering to create the signature index. Then, for each string and its similarity candidate,
it compares their prefixes generated by another global ordering. MGJoin introduces three
global orderings based on permutations in the token universe: (1) random selection, (2) random
selection with reverse ordering, and (3) term-frequency (TF) ordering as global ordering followed
by (a) a reverse TF ordering(TF1), or (b) a randomly selected global ordering (TF2). MGJoin
has also been extended to incorporate the MapReduce framework (RIDPairsMGJoin), which
utilizes the multi-filtering scheme in the verification stage. Finally, the authors of [168] propose a
hybrid method between PPJoin+ and MGJoin, extending the PPJoin+ approach to utilize
multi-prefix filtering.

REEDED [194] extends the Pass-Join framework to handle weighted edit-distances.
REEDED utilizes a length-aware filter, followed by a character-aware filter, to generate the set
of candidate pairs. At the verification stage, a dynamic programming implementation is used
to guarantee the fast computation of similarities.

The authors of [121] propose an innovative idea of implementing an expansion-based frame-
work for SSJs. Their main idea is to expand the token set of a string with applicable synonyms.
To do so, they propose two expansion methods: (1) full expansion (FE) that uses all possible
synonyms; and (2) selective expansion (SE), which uses a greedy algorithm for the selection of
applicable synonyms, with guarantees pertaining to optimality under certain conditions. The
first algorithm, SN-Join performs prefix filtering using the smallest d(1−λ)|r|e tokens, based on
a global ordering for any string r. Then it performs comparisons between the pairs that passed
the filtering stage. The second algorithm, SI-Join extends SN-Join by applying length fil-

30

Chapter 3. Related Work

tering along with prefix filtering. For comparison reasons, they replaced both pruning methods
with Locality-Sensitive Hashing (LSH) filters to study their effects in an expansion-based system.
To optimize the candidate pairs generation stage, they proposed the calculation of a variety of
signatures off-line, and then selected the best method on-line, based on two different estimators.
The authors of [121] propose four different signature schemes: (1) ITF1, which sorts the tokens
from data tokens and synonyms separately by decreasing itf, and then arranges the tokens from
tables first, followed by those from synonyms; (2) ITF2 that separately sorts the tokens and
synonyms, but arranges the synonyms first followed by the tables; (3) ITF3 that sorts all tokens
together in decreasing itf order; and (4) ITF4 that generates all possibilities of expanded sets
for each string, then sorts the tokens by decreasing itf order in all the expanded sets.

Our next approach presents two methods towards continuous SSJs, where the data is rep-
resented as dynamic streams, in contrast to the previous batch-oriented approaches. Based
on [40], a data stream S = {(str1, ts1), (str2, ts2) . . .} is composed by a series of tuples in the
form of (stri, tsi), where stri represents a string and tsi is its corresponding timestamp. The
authors of [40] propose two methods: (1) SS-J and (2) RSS-J . SS-J incorporates count,
length and position filtering, whereas RSS-J utilizes the two latter filters combined with count
filtering designed for asymmetric signatures [155]. The verification stage of both methods is
based on the idea of a sliding window. A sliding window preserves the constant capacity of a
time interval or the number of tuples from a data stream. Any newly arrived tuple is inserted
into the sliding window and an expired tuple gets evicted according to its capacity. For SS-J ,
the verification is performed between tuples of the recent window and tuples of the older win-
dows. The result of each basic window is an answer set grouped by the older basic window id.
For RSS-J , computing the similarity between two strings r, g is allowed if the following holds:
− (τ−(|r|−|g|)

2 ≤ i− j ≤ (τ+(|r|−|g|)
2 , ∀i ≤ |s|, j ≤ |g| , where i, j are character indexes of r, g resp.

(coordinates based verification).
We continue our discussion with ClusterJoin [177], which provides an SSJ framework for

every metric distance.17 The ClusterJoin algorithm consists of three steps: first, the data
is partitioned to allow parallel processing with MapReduce. To overcome the data skewness
drawback, the authors of [177] implement a non-uniform space-partitioning-based approach by
sampling the data and allowing the sampled set to determine the space partitioning. Then, the
algorithm samples the data to choose anchor points as the centers of the partitions (clusters).
Additionally, it uses a set of filters to determine whether or not query points need to be verified
against the anchor points. The algorithm splits large partitions by using 2D-hashing, to ensure
even-load balancing between partitions. Merging is also allowed if there is a huge overlap between
partitions. The authors of [177] provide a generic filtering prototype for the distance metric,
along with a set of filters for a specific set of metrics (e.g. Euclidean distance, total variation
distance, 1-Norm distance and Hamming distance). The second step of ClusterJoin is named
“the mapping phase”, where the remaining points are mapped to a partition for verification.
The final phase is the verification stage, where each machine performs comparisons between the
data points of each partition in parallel.

The authors of [51] introduce an approach for the efficient execution of the Jaro-Winkler
distance, named BJaWink. To minimize the comparisons between strings, BJaWink includes
a set of length-based, range-based and character-based filters. For the latter, they developed
a trie structure to avoid character-index lookups for every pair of strings. Additionally, they
present a parallel approach to the original algorithm based on a thread-pool-based technique.

PSH [92] is another SSJ approach that focuses solely on the Damerau-Levenshtein distance.
The algorithm begins by generating bitwise signatures for each string using 32-bit unsigned
integers. Each string is transformed into a sequence of 1s and 0s that represent the set of integer

17https://en.wikipedia.org/wiki/Metric_(mathematics)

31

https://en.wikipedia.org/wiki/Metric_(mathematics)

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Table 3.6: Characteristics of prefix-based String Similarity Joins. The ♣ symbol indicates that
the corresponding approach implements a parallel version of its algorithm. The ♦ symbol refers
to the additional characteristics of the parallel version.

Approach String Signatures Filtering Verification Parameters Year
Similarities Techniques Optimization

RSS-J [40] Levenshtein improved version position, coordinates τ 2014
distance of [155] length, verification

count
filtering

ClusterJoin [177] any metric vector space specific filter parallel τ 2014
distance model per metric verification of

each partition
BJaWink♣ [51] Jaro-Winkler ordered permutation length and τ , number 2014

distance of a word based on ranged and - of CPUs♦
any consistent total character-
ordering of letters based

filtering
PSH [92] Damerau- bitwise signatures signature filtering Hash τ 2016

Levenshtein using 32-bit and naive or Neighborhood
distance unsigned integers probabilistic Generation

hashing
MFKC+♣ [207] MFKC [181] k most frequent first frequency λ, k 2017

characters hash - number
filtering intersection of CPUs♦

SSPS [183] any string prefix and prefix and λ or τ 2017
similarity suffix of length and -

strings positional and
count filtering

PBIJoin [169] dice, tokenization, prefix filtering λ 2017
jaccard, prefixes ordered
cosine based on -

tf or alphabetical,
partition-based
inverted index

SAIJoin [169] dice, tokenization, prefix filtering λ 2017
jaccard, prefixes ordered
cosine based on -

tf or alphabetical,
similarity-aware
inverted index

numbers (0 to 9), followed by the latin alphabet. Then, the signature filtering compresses the
signatures into a compact primitive data format, and a hashing (naive or probabilistic) method
indexes the mapping of signatures and strings into hash buckets. Finally, for the verification
stage, a function using bitwise operators is used to calculate the bucket codes that may contain
approximate matches for a string.

We continue our discussion with MFKC+ [207], an approach that focuses on improving the
runtime of MFKC [181], a novel string-distance function based on most frequent k characters.
Each string is associated with a hash map, where the characters are the keys and the frequency
of each character is the value, ordered by frequency in descending order. The algorithm keeps
the most frequent k characters as signatures for each string. To minimize the comparisons of
strings, the MFKC+ algorithm utilizes a set of filters: (1) first frequency filtering, and (2) hash
intersection filtering. A pair of strings that succeeds in both filters is then verified by computing

32

Chapter 3. Related Work

the real MFKC similarity.
Our next approach, SSPS [183] introduces the idea of generating signatures by using both

the prefix and the suffix of a string. Then using a series of filters (count, length and positional), it
identifies the set of candidate pairs that will be sent for comparison. SSPS utilizes MapReduce
at each stage of the filter-verification framework to minimize time complexity.

Our next publication implements and tests two different indexing approaches to support
different similarity thresholds. [169] presents two indexing approaches: (1) Partition-based
inverted index (PBIJoin) that selects some representative values within the threshold interval
and builds incremental inverted indices; and (2) a similarity-aware index (SAIJoin) that utilizes
a threshold upper bound for a token to be selected as a prefix token.

Partition-based approaches Partition-based approaches perform a global ordering on the
strings and then partition them into sets of disjoint segments. After the non-overlapping parti-
tions are generated, the algorithm utilizes a substring selection method that chooses the sub-sets
of segments that will be used to identify the matched pairs for verification. The partition-based
approaches are based on the idea that if g and r are matched against a threshold, then g must
contain a substring that matches a segment of r [117].

For each partition-based SSJ, we study the following characteristics:

• the string similarity(ies) supported,

• the algorithm(s) implemented to produce the signatures,

• the type(s) of substring selection implemented,

• the type(s) of filtering used,

• the optimization(s) performed at the verification stage (if any), and

• the parameters used in configuration.

Pass-Join [117] presents a partition-based method for solving the efficiency problem of
string similarities. The main algorithm starts by ordering a set of strings by length and alpha-
betical order. Then, it partitions each string into τ + 1 disjoint segments, with length greater
than 1. For each segment, Pass-Join builds inverted indices, and for each string r, it selects a
set of its substrings. Then it searches for the selected substrings within the inverted indices. If
a selected substring appears in the inverted index, each string g on the inverted list of this sub-
string is considered a possible match for r. For each string, Pass-Join finds a set of matching
strings using 4 different substring selection techniques that satisfy the completeness criterion:
(1) a length-based method that selects all sub-strings of particular lengths as signatures for
a string; (2) a shift-based method that extends the length-based method by considering the
position of the segments; (3) a position-aware method that extends the previous two selection
methods by limiting the minimum and maximum start positions of sub-strings for signatures;
and (4) a multi-match-aware method that discards a subset of matching sub-strings incase two
strings have multiple matching segments. Based on the experiments carried out in [117], the
multi-match-aware substring selection is the technique with the lowest time complexity. Addi-
tionally, the authors of [117] presented two optimizations for verification: (1) a length-aware
verification, where they used the length difference to estimate the minimum number of edit op-
erations; and (2) an extension-based verification that partitions strings into 3 parts: matching,
left and right, and prunes a pair if the left and right parts do not match.

The same research group has published a set of extensions for Pass-Join. Beginning with
SegFilter [116], this approach focuses on optimizing the normalized Levenshtein distance and

33

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

introduces iterative-aware verification. In contrast to [117], [116] supports R 6= G. Futher-
more, Para-Join [90] extends the partition-based framework by implementing two pruning
techniques: (1) content filtering, which is similar to content-based mismatch filtering but in-
troduces a stronger filter condition, and (2) an effective indexing strategy that indexes longer
strings and chooses sub-strings from shorter strings to find candidate pairs based on the indexes
of longer strings. Additionally, Para-Join offers a parallel version of its original algorithm to
speed up the similarity joins.

[119] proposes 3 extensions of the Pass-Join algorithm. First, Pass-JoinK follows exactly
the same steps as Pass-Join, but instead partitions the strings into τ + K disjoint segments.
Secondly, Pass-JoinKMR combines Pass-JoinK with MapReduce and uses the extension-
based verification method for comparisons. Thirdly, Pass-JoinKMRS combines Pass-JoinK
with MapReduce and uses the length-aware verification method for comparisons. On a similar
note, [223] introduces two methods of parallelizing Pass-Join. The first is ParaLL-Join,18

which splits the alphabet into partitions (joint-tokens) using a Z-Collapse algorithm.19 For each
string, it calculates the joint frequency vector, and for each joint-token, it calculates the range
of the frequency distribution needed to split the data into segments. ParaLL-Join implements
the same verification process as in [117] using a multi-threading technique. The second is Pada-
Join, which introduces a parallel processing version of Pass-Join in distributed systems using
Spark.20

Bi-Filtering JOIN [81] is another method that serves as an extension of Pass-Join. It
proposes a partition approach utilizing a bi-directional filtering that generates the same can-
didate pairs, regardless of the direction of filtering. As it is stated in the paper, the forward
filtering uses segments of short strings to select the sub-strings of current string, and, the back-
ward filtering uses the segments of long strings to select the sub-strings of current string [81].
The intersection of the two aforementioned filters is the set of candidate pairs. The selection
of substrings is carried out using a re-design multi-match-aware selection method [117] and the
comparison of pairs is performed using the extension-based verification method [117].

The authors of [94] propose three partition-based methods, inspired by Pass-Join. The
first method TISM , introduces the idea of partitioning the target dataset G into clusters of
strings with equal lengths (length filtering). Then, the algorithm partitions each cluster into
blocks, using an exemplar string as the representative of each block. Each string g ∈ G is
partitioned into τ + 1 segments, whereas each string of the source dataset, r ∈ R, is partitioned
into segments of a particular size. Then, for each source string, TISM identifies the subset of
strings of G with whom it shares at least one common segment. After that, the algorithm uses
length filtering to determine the candidate pairs for verification. The second method, SM , does
not partition the clusters into blocks but rather assigns a set of strings as candidate pairs based
on length filtering and overlapping segments. The third method SFM enhances the previous
method by introducing the character’s frequency filtering. Finally, for verification, all methods
use dynamic programming to speed up the comparisons.

Another publication proposed a further extension of Pass-Join, named MassJoin [46],
specifically targeting token-based SSJs. Based on the idea that the number of partitions for
token-based string similarities is not straightforward and fixed, MassJoin generates signatures
for the source and target datasets using different strategies. Each set of source tokens r is
partitioned using an even partition scheme into U + 1 segments of similar length, dictated by
a tight upper bound, with U being a function of |r| and the string similarity threshold. Each
set of target tokens g is partitioned using a combination of the position-aware and multi-match-

18The original name of the algorithm was Para-Join, but has been renamed to avoid confusion with [90]
19https://en.wikipedia.org/wiki/Wave_function_collapse
20https://spark.apache.org/

34

https://en.wikipedia.org/wiki/Wave_function_collapse
https://spark.apache.org/

Chapter 3. Related Work

aware method, which guarantees no false negatives. To reduce the number of key-value pairs
generated by MapReduce, the authors of [46] propose a novel merge method, which decreases
the complexity of the task from O(|r|3) to O(|r|) for a single set of source tokens, without
loosening the pruning power of the approach. Also, to reduce the transmission cost of candidate
pairs from the filtering phase to verification, MassJoin includes a light-weight filter unit to
replace the original strings and speed up computations.

An extention of MassJoin is introduced in [199], named MLS-Join, which improves
its Merge+Light technique for self-joins. The MLS-Join algorithm starts by partitioning the
strings in τ + 1 non-overlapping segments, then splits each segment into characters. The algo-
rithm creates a vector that includes the frequency of each character based on a fixed character
order. Due to space limitations, the authors group the characters into n sets and keep the vector
with length of n. MLS-Join uses the multi-match-aware select substring scheme [117], which
eliminates duplicated signatures generated by different segments. For comparison, the algorithm
uses the length-aware verification method [117] and scans the input dataset only once.

We continue our discussion with Landmark-Join [132], an approach that introduces a
hash-join method that partitions the strings into buckets to achieve minimum comparisons.
The proposed technique is named q − bucket partitioning, and for each string, it detects all
bucket labels with length q and assigns the string to all corresponding buckets. Using bucket
label pruning, the algorithm minimizes the number of buckets per string to (τ+q

q). To improve
verification, the authors of [132] propose the local upper bound pruning method. Addition-
ally, they provide a parallel version of Landmark-Join using MapReduce, where the data is
partitioned using the first Map and the Reducer task.

Another partition-based approach is FS-Join [167], which focuses on token-based SSJs.
FS-Join introduces a novel partition method, named vertical partitioning, which divides each
string based on a special set of tokens, called pivots. The segments that belong to the same
partition are called fragments. The selection of pivots is decided randomly, by using an even
interval technique, or by an even token frequency. FS-Join uses the prefix filtering for segment
intersections in each fragment. Also, the algorithm utilizes a set of filters to further minimize
comparisons: (1) string length filtering, (2) segment length filtering, (3) segment intersection
filtering and (4) segment difference filtering. In addition to vertical partitioning, FS-Join im-
plements horizontal partitioning based on the observation that matched strings have similar
lengths.

Neighbor-based approaches The neighborhood-based approaches produce signatures by as-
sociating each string with a set of neighbors. As a result, two strings are considered a match if
their neighbors have an overlap. For each neighbor-based SSJ, we study the following charac-
teristics:

• the string similarity(ies) supported,

• the algorithm(s) implemented to produce the neighbors,

• the type(s) of filtering used,

• the optimization(s) performed at the verification stage (if any), and

• the parameters used in configuration.

The PG-Join [95] approach introduces a method of generating signatures for strings based
on Graph Proximity Cleansing (GPC) [124]. The authors of [95] present the PG-Join al-
gorithm that computes signatures using the notion of τ -neighborhood: given a threshold τ ,
the τ -neighborhood of a string r is determined as the set of strings whose cardinality of the

35

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Table 3.7: Characteristics of partition-based String Similarity Joins. The ♣ symbol indicates
that the corresponding approach implements a parallel version of its algorithm.

Approach String Signatures Substring Filtering Verification Parameters Year
Similarities Selection Techniques Optimization

Pass-Join [117] Levenshtein length and length-based or length-aware or τ 2011
distance alphabetical position-aware extension-based

order, τ + 1 or shift-based - verification
disjoint multi-match-
segments aware

SegFilter [116] normalized length and length-based or length-aware or τ 2011
Levenshtein alphabetical position-aware or - extension-based
distance order, τ + 1 shift-based or iterative-based or

disjoint multi-match- verification
segments aware

Para-Join♣ [90] Levenshtein length and multi-match- content length-aware or τ 2013
distance alphabetical aware filtering and extension-based

order, τ + 1 effective verification
disjoint indexing
segments strategy

Pass-JoinK [119] Levenshtein length and multi-match- length-aware or τ,K 2014
distance alphabetical aware - extension-based

order, τ +K verification
disjoint
segments

Table 3.8: Characteristics of partition-based String Similarity Joins. The † symbol indicates
that the method is available only as a parallel processing algorithm. The “Filtering Techniques”
column has been removed because none of the following partition-based SSJs support filtering.

Approach String Signatures Substring Verification Parameters Year
Similarities Selection Optimization

Pass-JoinKMR† [119] Levenshtein length and multi-match- extension-based τ,K 2014
distance alphabetical aware verification

order, τ +K
disjoint
segments

Pass-JoinKMRS† [119] Levenshtein length and multi-match- length-aware τ,K 2014
distance alphabetical aware verification

order, τ +K
disjoint
segments

ParaLL-Join†[223] Levenshtein length and length-based and extension-based τ , 2017
distance alphabetical position-aware verification number of

order, τ + 1 threads
disjoint
segments and
split data
into partitions

Pada-Join†[223] Levenshtein length and length-based and extension-based τ , 2017
distance alphabetical position-aware verification number of

order, τ + 1 and Spark threads
disjoint
segments and
split data
into partitions
and Spark

36

Chapter 3. Related Work

Table 3.9: Characteristics of partition-based String Similarity Joins. The “Parameters ” column
has been removed since τ is the only configuration parameter of all the following partition-based
SSJs.

Approach String Signatures Substring Filtering Verification Year
Similarities Selection Techniques Optimization

Bi-Filtering JOIN [81] Levenshtein length and re-designed forward, extension-based 2015
distance alphabetical multi-match- backward verification

order, τ + 1 aware filtering
segments

TISM [94] Levenshtein clustering and even partition length, dynamic 2018
distance blocking of count programming

G dataset, use filtering
of exemplars,
τ + 1 segments

SFM [94] Levenshtein clustering even partition length, dynamic 2018
distance of G dataset, count programming

use of exemplars, filtering
τ + 1 segments

SM [94] Levenshtein clustering even partition length, dynamic 2018
distance of G dataset, count programming

use of exemplars, filtering
τ + 1 segments and character’s

frequency
filtering

intersection with r is equal to or greater than τ . They implement the PG-I technique for com-
puting the proximity graph that maps the similarity thresholds τ to the size of the corresponding
neighborhood. As a result, the strings are grouped together in GPC clusters and the verifica-
tion happens exclusively within each cluster, using a unique threshold suitable for the strings it
includes. Furthermore, PG-Join introduces optimization techniques that overcome the issue
of constantly re-computing the center of the cluster by incrementally adding new strings to a
cluster.

Our next neighbor-based approaches utilize the τ -variant family paradigm to generate the
signatures of a string. Based on [39], given a string r and a Levenshtein distance threshold τ ,
the τ -variant family includes all deletion neighbors of r by deleting no more than τ characters.
The authors of [39] implement a trie structure to store all signatures together (Single Deletion
Neighborhoods Trie - S-DNT). The algorithm removes duplicate paths in the trie, by using a
compress index, which allows the merging of common subtrees that are identical or isomorphic.
Furthermore, they improved S-DNT by using an incremental similarity join algorithm called
ISJ-DNT . To minimize the space requirement, they adopt the non-overlapping length-based
partition strategy.

Tree-based approaches

In contrast to the filter-verify approaches, the tree-based approaches do not follow a common
implementation prototype. Each tree-based approach uses a tree structure to index the data
and perform string comparisons, along with a set of pruning techniques to reduce the number of
pairs. Most tree-based approaches do not differentiate between pruning (filtering) and compar-
ison (verification), but perform both simultaneously. For each SSJ that follows the tree-based
approach, we study the following characteristics:

• the string similarity(ies) supported,

37

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Table 3.10: Characteristics of partition-based String Similarity Joins. The ♣ symbol indicates
that the corresponding approach implements a parallel version of its algorithm. The ♦ symbol
refers to the additional characteristics of the parallel version. The † symbol indicates that the
method is available only as a parallel processing algorithm.

Approach String Signatures Substring Filtering Verification Parameters Year
Similarities Selection Techniques Optimization

MassJoin† [46] jaccard length and source: tight length and one-time scan λ or τ , 2014
cosine alphabetical upper bound, positional of sets, number of
dice order, U + 1 target: position- filtering duplicates nodes
Levenshtein disjoint aware and multi- and merge- removal
distance segments match-aware based method

and light-
weight
filter unit

MLS-Join† [199] Levenshtein τ + 1 disjoint multi-match- length and one-time scan λ or τ 2014
distance segments, aware positional of sets,

character filtering duplicates
frequencies, removal
character and length-
vectors aware
of length n verification

Landmark- Levenshtein q disjoint q − buckets prefix local upper τ, q 2014
Join♣ [132] distance segments partitioning filtering bound number of

with bucket pruning nodes♦
label pruning

FS-Join† [167] dice same as [209] vertical and prefix and
jaccard horizontal string length, λ 2017
cosine partitioning segment length, -

segment
intersection,
segment
difference
filtering

Table 3.11: Characteristics of neighbor-based String Similarity Joins. The “Verification” column
was omitted because none of the following neighbor-based SSJs performed any optimization(s).

Approach String Similarities Neighbors Filtering Parameters Year
PG-Join [95] normalized τ -neighborhood: comparison of strings τ , q 2011

q − gram PGC clusters with within PGC cluster
distance incremental update

of centers and
insertion of
new strings

ISJ-DNT [39] Levenshtein τ -variant family: non-overlapping τ 2014
distance all deletion neighbors length based

of r by deleting partition
no more than τ
characters

• the tree structure implemented,

• the type(s) of pruning used, and

• the parameters used in configuration.

38

Chapter 3. Related Work

We begin with Bed-tree [226], which provides an indexing structure based on B+-tree, 21 for
both Levenshtein distance and normalized Levenshtein distance. Based on the indexing scheme
of the B+-tree, the authors of [226] introduce three different mapping functions (or string orders)
that project the string domain to the integer domain: dictionary order, gram counting order,
and gram location order. All three mapping functions follow a set of properties (comparability,
pairwise lower bounding and length bounding), to ensure the efficiency of the string similarity
join. Regarding the comparison phase, their verification algorithm tests only the entries on the
diagonal of the dynamic programming table, with offset no larger than τ . This idea is based on
the insight that any matching of letters with position offset larger than τ leads to a distance of
at least τ + 1.

The next tree-based approach we study is PeARL [161], which uses compressed tries 22 as
its indexing structure, focusing on Hamming and Levenshtein distance. The algorithm begins by
sorting both input datasets individually in lexicographical order, and partitions them based on
shared prefixes. In each data partition, the strings are inserted into an empty trie using preorder
DFS traversal. Then, during the matching phase, both tries are traversed concurrently and in
cases of unseen nodes, the algorithm proceeds to computing the distance between the nodes. To
improve the effectiveness of their algorithms, they authors of PeARL utilize a set of pruning
algorithms: prefix and edit-distance pruning [184], character frequency pruning [4], and q−gram
filtering [75]. These pruning algorithms are applied before the verification stage. Additionally,
PeARL uses the τ -banded alignment algorithm [61], which computes the distances between
two strings more efficiently. Additionally, the authors of PeARL offer a parallelization with an
in-memory MapReduce [45] version of their algorithm that simultaneously processes each data
partition by assigning it to an independent mapper.

Another family of tree-based approaches that utilize a trie index is Trie-Join [59]. The
authors of [59] propose a novel approach based on the assumption that iff a string is not
considered a match to a node, then it will not be matched with the strings under that node.
Thus, further search and comparison can be avoided. Trie-Join consists of a set of algorithms:
(1) Trie-Search, which utilizes sub-trie pruning, (2) Trie-Traverse, utilizing dual sub-trie
pruning to avoid the duplicate computation of Trie-Search, (3) Trie-Dynamic that avoids
the redundant active node computation introduced in Trie-Traverse, (4) Trie-PathStack,
which minimizes the memory consumption introduced in Trie-Dynamic, and (5) Bi-Trie-
PathStack, an extension of Trie-PathStack that handles large Levenshtein distance thresh-
olds. These algorithms were proposed as part of solving the self-join problem (R = Q), but can
be easily extended to support R 6= Q. To further improve the performance of their algorithms,
the authors introduced three pruning techniques to reduce the size of the active nodes: (1)
length pruning, (2) single-branch pruning, and (3) count pruning. Additionally, the Trie-Join
family of algorithms provides support for dynamic updates in the trie.

Our final tree-based method, PreJoin [71], introduces the idea of combining dynamic pre-
order traversal [59] with an active node generation method. The authors of [71] avoid latter
pruning by forcing heuristics early on the algorithm to minimize the size of the generated active
nodes. In contrast to Trie-Traverse, PreJoin uses a non-fixed traversal order that prioritizes
significant sub-tries over sub-tries imposed by the trie order. For the dynamic re-ordering of
sub-tries, PreJoin introduces three different ordering methods: (1) based on the size of the
sub-trie rooted at each child, (2) based on the fan-out value of each child of a traversing node,
and (3) based on the depth of the sub-trie rooted at each child of a traversing node. Additionally,
the authors of [71] propose an extension of the main algorithm, named PreJoinPlus, which
partitions the search string space to speed up the computations for large Levenshtein distance

21https://en.wikipedia.org/wiki/B%2B_tree
22https://en.wikipedia.org/wiki/Trie

39

https://en.wikipedia.org/wiki/B%2B_tree
https://en.wikipedia.org/wiki/Trie

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

thresholds based on [30].

Table 3.12: Characteristics of tree-based String Similarity Joins. The ♣ symbol indicates that
the corresponding approach implements a parallel version of its algorithm. The ♦ symbol refers
to the additional characteristics of the parallel version.

Approach String Similarities Tree Type Pruning Parameters Year
Bed-tree [226] Levenshtein B+-tree τ 2010

distance,
normalized -
Levenshtein
distance

PeARL♣ [161] Hamming Trie prefix, edit-distance and τ , 2011
distance character frequency pruning, number of
Levenshtein q − gram filtering threads♦
distance

Trie-Join [59] Levenshtein Trie length pruning, τ 2012
distance single-branch pruning,

count pruning
PreJoin [71] Levenshtein Trie early rules for active τ 2017

distance node generation, dynamic
pre-ordering of sub-tries,
investigation of relatively
deeper sub-tries

PreJoinPlus [71] Levenshtein Trie early rules for active τ 2017
distance node generation, dynamic

pre-ordering of sub-tries,
investigation of relatively
deeper sub-tries and
partition of string search
space based on [30]

3.1.6 Evaluation of String Similarity Joins for Link Discovery

After presenting the results of our systematic survey for SSJs for LD in Section 3.1.5, we now
address the research question CS − Q3 posited in Section 3.1.3, by discussing and analyzing
the evaluation results found in the corresponding papers. Note that we are interested in the
comparison of the different SSJs approaches, and thus, we do not include results of (1) string
similarity searches, (2) hyper-parameter optimizations, (3) comparisons between the different
filtering/pruning/index/verification strategies of the same method. In case of the latter, we do
mention the strategies used for the method to be compared with other SSJs when available.

To answer the research question CS − Q3 presented in Section 3.1.3, we divide the SSJs
introduced in Section 3.1.5 based on the category of string similarities they target. We report
experimental results of the runtime of SSJs for a particular string similarity and threshold, unless
specified otherwise in parenthesis. For each SSJ J1, the runtime results were either obtained
from the corresponding paper of J1, or from the publication of an SSJ J2, where the SSJ J2
was compared against J1 (Tables 3.14- 3.35). Incase of the latter, we include an extra column
with the vs. tag to show the name of the SSJ J2 and indicate the publication from which
the values were extracted. We include the specific values when they are available (number in
italics), otherwise we approximate the values based on the corresponding plots. The authors of
some SSJs have presented results for only a subset of the string similarities that their approach
improves. Published results that do not include runtime experiments for any string similarity

40

Chapter 3. Related Work

are not presented. Note that the experiments were carried out using datasets that vary in
nature and size, different string similarities and experimental set-ups. All SSJ experiments were
conducted for the self-join case, unless otherwise specified. Finally, we include only runtime
results of SSJs presented throughout Section 3.1.5.

Results for Token-based String Similarities To avoid repetition, we present the datasets
that were used throughout the evaluation of the token-based SSJs in Table 3.13 and provide a
short description of their characteristics. For a dataset to be included in our list, it needs at
least 2 SSJs from Section 3.1.5 compared against it.

We collected and present the experimental results for numerous SSJs for a set of token-
based string similarities in Tables 3.14- 3.24. Our first general observation is that PPJoin
and PPJoin+ are considered state of the art when it comes to token-based string similarity
joins. Introducing positional and suffix filtering and combining it with prefix filtering has been
a novel idea that served as inspiration to many newer SSJs (e.g. [162, 214]), and has been used
extensively in LD frameworks [134]. Based on [221] and Tables 3.14, 3.15, 3.18 and 3.20,
PPJoin+ outperforms PPJoin in most experimental set-ups, since the suffix filtering prunes
candidate pairs further, and thus minimizes the verification step runtime.

Beginning with the jaccard and cosine similarity, we present the results of 3 approaches
that were tested against PPJoin and PPJoin+: (1) MPJoin, (2) MGJoin and (3) Adapt-
Join. As we already mentioned in Section 3.1.5, all these SSJs build upon and extend the
main idea of PPJoin and PPJoin+, and have successfully outperformed their predecessors
in terms of effectiveness (Tables 3.14, 3.15, 3.18). Regarding the scalability of the methods,
we notice that in all datasets, ranging from 10,000 to 7,844,465 records, all 3 methods scale
better than PPJoin and PPJoin+. MPJoin introduced the min-prefix filtering technique as
a generalization of prefix filtering, which keeps the size of the inverted indexes at a minimum
at all times; MGJoin implements multi-prefix filtering with multiple global orderings, and
Adapt-Join utilizes an adaptive selection of prefixes for strings based on the estimation of the
candidate size.

The second group of approaches that have optimized jaccard similarity includes MassJoin,
FS-Join, V-Smart-Join and EFS-S, all implemented using MapReduce. Based on the dis-
cussion in [167], FS-Join was created to address the following issues of the other 3 approaches:
(1) similarity computation of the same strings that appear more than once, and (2) the load
balance problem, where Reduce tasks with the same key have different sizes (discussed earlier
in this chapter). Based on the results in Tables 3.16 and 3.17, we observe that FS-Join out-
performs the other 3 approaches, with V-Smart-Join having the worst runtime performance.
Additionally, V-Smart-Join does not incorporate a filtering technique due to the memory
overhead created by storing large indexes in memory. Additionally, both MassJoin and V-
Smart-Join run out of memory for the experiments of the larger datasets - ENRON0.5M ,
PubMed(Abstract)7.4M and Wiki(Abstract)4.3M . Note that V-Smart-Join outperforms VCL
(PPJoin+) for the jaccard similarity co-efficient (Table 3.22), however the authors of [127]
conducted experiments utilizing 500 Machines with 1GB memory and 10GB disk space each,
(due to the nature and the size of the dataset), while in [167], the experiments were conducted
using 11 nodes with 15GB of memory and 4 virtual cores.

SSJ-2 and SSJ-2R have also conducted a set of experiments using cosine similarity. Both
methods are based on EFS-S and PairWiseMR, using the signature scheme of the first
and the verification optimization of the second. Based on Table 3.19, both approaches have
outperformed their baselines with SSJ-2 and SSJ-2R being 2 and 4.5 times faster resp. than
EFS-S. Based on the results in [17] the exploitation of the remainder file proved to be a
significant improvement, thus SSJ-2R is always more time-efficient than SSJ-2 .

41

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Table 3.13: Evaluation Dataset Characteristics for Token-based String Similarity Joins

Name Type Size Source

DBLP(a+t)0.1M
bibliography records, concatenation of 100,000 [162]
author name(s) and the title of a publication

DBLP(a+t)0.9M
bibliography records, concatenation of 900,000 [221]
author name(s) and the title of a publication

DBLP(a+t)-5GRAM bibliography records, concatenation of 900,000 [221]
author name(s) and the title of a publication

DBLP(a+t)1.1M
bibliography records, concatenation of 1,021,062 [168]
author name(s) and the title of a publication

5xDBLP bibliography records, concatenation of 5,105,310 [168]
author name(s) and the title of a publication

DBLP(author) bibliography records, name(s) of author 613,542 [213]
DBLP(title) bibliography records, title of a publication 10,000 [95]
ENRON0.5M Enron email collection 500,000 [167]
ENRON10K Enron email collection 10,000 [167]

IMDB(title+actor))0.1M
movie records, concatenation of 100,000 [162]
movie names and the actor(s)

IMDB(title+actor))1.5M
movie records, concatenation of 1,568,893 [168]
movie names and the actor(s)

5xIMDB movie records, concatenation of 7,844,465 [168]
movie names and the actor(s)

Twitter tweets 2,753,005 [168]
PubMed(Abstract)2.3M abstracts of medical articles 2,347,362 [46]
PubMed(Abstract)7.4M abstracts of medical articles 7,400,308 [167]
PubMed(Abstract)7.4K abstracts of medical articles 7,400 [167]
Wiki(Abstract)4.3M abstracts from Wikipedia dumps 4,305,022 [167]
Wiki(Abstract)4.3K abstracts from Wikipedia dumps 4,300 [167]
TREC WT10-63K english language documents 63,126 [17]

Oxford Misspellings natural language collection 39,030 [95]
of unique misspellings

Delicious Tags bookmark tags 48,397 [95]
IPs1 internet cookies 133,000,000 [127]
CiteSeer bibliography records 568,237 [169]
CONF conference names 10,000 [160]

USPS person names, street names, - [160]
city names, states, and zip codes

AOL Query Log distinct real keyword queries 1,000,000 [213]

42

Chapter 3. Related Work

Regarding the neighbor-based SSJ approaches, PG-Join was tested using its algorithm PG-
I against the state-of-the-art, PG-Skip [96], using the normalized q − grams distance. Based
on Table 3.21, the idea of introducing an adaptive threshold method that is solely influenced by
underlying data distribution, and using the results of smaller neighborhoods to incrementally
compute larger ones proved to be beneficial. PG-I is 2.5 times faster than PG-Skip on the
largest dataset, since PG-Skip needs to compute the approximate proximity graph in advance,
and not update it incrementally as does PG-I .

On a similar note, [169] also investigated the idea of using different thresholds for each string
by building two different index structures to support their cause. Based on Tables 3.23 and Ta-
bles 3.24, the authors of [169] studied 3 different distributions, Normal, Uniform and Poisson,
and tested both PBIJoin and SAIJoin against PPJoin+ and Adapt-Join. SAIJoin out-
performed all other methods, regardless of the selected distribution and string similarity. This is
mainly due to its similarity-aware inverted index that probes a small part of the related lists and
generates the best performance. The most important observation from [169] is that PPJoin+
and Adapt-Join both order the strings based on their lengths, which does not indicate that
strings with similar lengths require similar thresholds.

Table 3.14: Runtime results for SSJs using jaccard similarity with threshold 0.8, for the 5
variations of the DBLP(a+t) dataset.

SSJ vs. DBLP(a+t)0.1M DBLP(a+t)0.9M DBLP(a+t)-5GRAM DBLP(a+t)1.1M 5xDBLP

PPJoin - 5 33 - -
MGJoin - - - 18 180

PPJoin+
- 4 28 - -

MPJoin 500 - - - -
MGJoin - - - 10 100

MPJoin(q = 2) 200 - - - -
MGJoin - - - 7 60

Table 3.15: Runtime results for SSJs using jaccard similarity with threshold 0.8, for the 3
variations of the IMDB(a+t) dataset, the Twitter dataset and the ENRON0.5M dataset.

SSJ vs. IMDB(a+t)0.1M IMDB(a+t)1.5M 5xIMDB Twitter ENRON0.5M

PPJoin
- - - - 34

MGJoin - 35 400 50 -
Adapt-Join - - - - 200

PPJoin+

- - - - 29
MPJoin 150 - - - -
MGJoin - 32 430 40 -
Adapt-Join - - - - 200

MPJoin(q = 2) 100 - - - -
MGJoin - 28 220 25 -
Adapt-Join - - - - 100

Results for Character-based String Similarities To avoid repetition, we present the
datasets that were used throughout the evaluation of the token-based SSJs in Table 3.13 and
provide a short description of their characteristics. For a dataset to be included in our list, there
needed to be at least 2 SSJs from Section 3.1.5 compared against it.

43

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Table 3.16: Runtime results for SSJs using jaccard similarity with threshold 0.8, for the 3
variations of the PubMed(Abstract) dataset. V-Smart-Join uses the Online Aggregation (OA)
method and MassJoin uses the Merge+Light version of the approach. The G symbols indicate
that the SSJ could not complete the experiment due to running out of memory. The U symbols
indicate that the SSJ could not run successfully or completely on the corresponding datasets.

SSJ vs. PubMed(Abstract)7.4K PubMed(Abstract)2.3M PubMed(Abstract)7.4M

MassJoin (M+L) - 800 -
FS-Join 250 - U

FS-Join 200 - 450

V-Smart-Join (OA) FS-Join U - U

MassJoin - G -

EFS-S FS-Join 200 - 700
MassJoin - 2,000 -

Table 3.17: Runtime results for SSJs using jaccard similarity with threshold 0.8, for the 2
variations of the ENRON dataset and 2 variations of the Wiki(Abstract) dataset. V-Smart-
Join uses the Online Aggregation (OA) method and MassJoin uses the Merge+Light version
of the approach. The G symbols indicates that the SSJ could not complete the experiment due
to running out of memory. The U symbols indicates that the SSJ could not run successfully or
completely on the corresponding datasets.

SSJ vs. ENRON10K ENRON0.5M Wiki(Abstract)4.3K Wiki(Abstract)4.3M

MassJoin (M+L) - 600 - -
FS-Join 300 U 400 U

FS-Join 200 500 100 200

V-Smart-Join (OA) FS-Join 500 U 1,600 U

MassJoin - G - -

EFS-S FS-Join 250 2,600 100 450
MassJoin - 7,000 - -

Table 3.18: Runtime results for SSJs using cosine similarity with threshold 0.8 for the 3 variations
of the DBLP(a+t) dataset and the ENRON0.5M dataset.

SSJ vs. DBLP(a+t)0.9M DBLP(a+t)-5GRAM DBLP(a+t)1.1M ENRON0.5M

PPJoin
13 100 - 120

Adapt-Join - - 100 -
MGJoin - - 110 -

PPJoin+
8 90 - 110

Adapt-Join - - 100 -
MGJoin - - 60 -

Adapt-Join - - 100 -
MGJoin - - 40 -

Similarly to the token-based string similarities, we have collected and present experimen-
tal results for SSJs that target character-based string similarities in Tables 3.26- 3.33. Our
first observation is that all SSJs have focused on optimizing the Levenshtein distance, and only
PSH and REEDED have been tested against Damerau-Levenshtein and weighted Levenshtein

44

Chapter 3. Related Work

Table 3.19: Runtime results for SSJs using cosine similarity with threshold 0.8, unless specified
otherwise. For each SSJ, the results were obtained from either its corresponding original pub-
lication or from the corresponding original publication of another SSJ that the initial SSJ was
compared against (vs. tag).

SSJ vs. TREC WT10-63K
PairWiseMR (λ = 0.9) SSJ-2,SSJ-2R 51,540

EFS-S (λ = 0.9) SSJ-2,SSJ-2R 28,534

SSJ-2 (λ = 0.9) 20,994

SSJ-2R (λ = 0.9,K = 4) 9,745

Table 3.20: Runtime results for PPJoin and PPJoin+ using the weighted cosine similarity
with threshold 0.8. The results for all SSJs were obtained from [221].

SSJ DBLP(a+t)0.9M DBLP(a+t)-5GRAM ENRON0.5M

PPJoin 6.1 98.0 40.1
PPJoin+ 6.0 95.0 40.0

Table 3.21: Runtime results in seconds for PG-Join with PG-I and PG-Skip [96], using
the normalized q − grams distance with adaptive threshold. For the Oxford Misspellings and
Delicious Tags, the parameter q was set to 2, and for DBLP (title), it was set to 3. The results
for all SSJs were obtained from [95].

SSJ Oxford Misspellings Delicious Tags DBLP (title)
PG-I 115 350 280
PG-Skip 165 650 750

Table 3.22: Runtime results for V-Smart-Join and VCL using Ruzicka similarity (Jaccard
similarity coefficient) with threshold 0.8, utilizing 500 machines. The results for all SSJs were
obtained from [127].

SSJ IPs1
V-Smart-Join with Online-Aggregation 800
V-Smart-Join with Lookup 1,000
V-Smart-Join with Sharding 1,300
VCL (PPJoin+) 4,000

distance (Table 3.33). In both publications, the proposed approaches outperformed the corre-
sponding state of the art, showing the importance of implementing more SSJs suitable for other
edit-distance similarities.

Throughout our systematic survey, we notice a set of SSJs whose presence in the experimental
evaluation was more prominent, as many authors of different publications chose to compare their
approaches against them. Ed-Join, the most popular, has served as the state of the art over
the last decade in optimization of the Levenshtein distance. The novel idea of location-based

45

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Table 3.23: Runtime results for SSJs using various jaccard similarity threshold distributions.
The results for all SSJs were obtained from [169].

SSJ CiteSeer ./ DBLP(a+t)1.1M CiteSeer DBLP(a+t)1.1M
Normal Uniform Poisson Normal Uniform Poisson Normal Uniform Poisson

PPJoin+ 15 27 59 54 65 85 12 17 32
Adapt-Join 14 24 51 50 60 80 8 15 28
PBIJoin 12 22 42 38 49 68 7 14 26
SAIJoin 11 18 36 35 40 57 6 12 22

Table 3.24: Runtime results for SSJs using various cosine similarity threshold distributions. The
results for all SSJs were obtained from [169].

SSJ CiteSeer ./ DBLP(a+t)1.1M CiteSeer DBLP(a+t)1.1M
Normal Uniform Poisson Normal Uniform Poisson Normal Uniform Poisson

PPJoin+ 60 120 290 275 300 370 35 60 122
PBIJoin 50 90 200 235 275 340 30 52 108
SAIJoin 25 50 110 100 140 225 22 35 72

mismatch filtering combined with content-based mismatch filtering proved to be a powerful
technique that minimized the set of candidate pairs and sped up the verification process. Over
the years, it has been compared against many filter-verify and tree-based SSJ approaches such
as VChunkJoin, PassJoin and Bed-tree. Based on Tables 3.26, 3.27, 3.31 and 3.32, we
notice that in datasets with short strings, Ed-Join uses small values for q (limited pruning
power). In combination with large thresholds, it creates a larger number of candidate pairs
that negatively affect the verification and overall runtime [213, 117]. In cases of datasets with
long strings, where q is set to values ≥ 4, using large Levenshtein distance thresholds results in
Ed-Join outperforming both Trie-Join and Bed-tree [59, 226].

The second SSJs we investigate are Trie-Join and Bed-tree (Tables 3.26, 3.27, 3.31 and
3.32). The experimental findings of [81, 215, 226] support the existing evidence that tree-based
SSJs are not suitable for datasets with short strings that share a small number of common
prefixes, since it is expensive to traverse the resulting large trie structure. However, in cases
of short strings with many shared common prefixes, both tree-based approaches outperformed
Ed-Join and Adapt-Join in terms of efficiency [214]. To overcome the issue of dealing with
short strings, the authors of Trie-Join showed that for datasets with short strings, where the
threshold values must stay low (τ ≤ 3), it is more suitable to use the Trie-PathStack, and in
case of long strings with larger τ , it is advisable to use the Bi-Trie-PathStack [59]. In addition
to the experiments conducted in [59], the authors of PreJoin extended their experimental set-
up for τ ≥ 4 and showed that prioritizing significant sub-tries over sub-tries imposed by the trie
order leads to more effective pruning and efficient verification [71].

Regarding the partition-based SSJs, we notice that Pass-Join outperforms both prefix and
tree-based approaches, regardless of the lengths of the dataset’s strings [117]. For short strings,
Pass-Join utilizes segments to prune large numbers of mismatched pairs and the segments
are selected across the strings and not restricted to prefix filtering. For long strings, Ed-Join
needed to use a mismatch technique and IndexChunk needed to use an error estimation-based
filter in the verification phase, which were inefficient while Pass-Join’s verification method was
more efficient [117]. As we discussed in Section 3.1.5, most partition-based approaches were

46

Chapter 3. Related Work

Table 3.25: Evaluation Dataset Characteristics for Character-based String Similarity Joins

Name Type Size Source

DBLP(a+t)0.9M
bibliography records, concatenation of 900,000 [117]
author name(s) and the title of a publication

DBLP(a+t)1.1M
bibliography records, concatenation 1,021,062 [214]
author name(s) and the title of a publication

DBLP(a+t)3.2M
bibliography records, concatenation 3,203,996 [199]
author name(s) and the title of a publication

DBLP(author) bibliography records, name(s) of author 613,542 [213]
DBLP(title)-small bibliography records, title of a publication 2,616 [194]
ACM(author) bibliography records, name(s) of author 2,295 [194]
GoogleProducts products name(s) from Google 3,226 [194]
ABT E-commerce products description(s) 1,081 [194]

TEXAS-5GRAM

Broker and Sales licensees database from 150,000 [219]
the Texas Real Estate Commission,
concatenation of 19 attributes,
including person names, addresses, and licence information

TREC-8GRAM TREC-9 Filtering Track Collections, 350,000 [219]
references from the MEDLINE database

UNIREF0.3M protein sequences in flat text format from UNIPROT 377,438 [155]
UNIREF0.5M protein sequences in flat text format from UNIPROT 508,038 [226]
IMDB(actor)1.2M movie records, concatenation of actor(s) names 1,200,000 [215]
IMDB(title)1.5M movie records, concatenation of movie names 1,568,893 [226]
LEXICON Gene/Protein lexicon generated from MEDLINE documents 473,428 [215]

QueryLog-small collection of query strings that were 464,189 [117]
randomly chosen from the AOL Query Log

AOL Query Log distinct real keyword queries 1,208,844 [214]
PhilAdd Philadelphia addresses 547,771 [92]

GBEST gene sequence obtained from the Expressed Sequence 1,020,109 [199]
Tags database of NCBI GenBank

Word english words 146,033 [81]
ENGLISH-DICT english words 150,000 [39]

built upon and extended the Pass-Join framework, including the Bi-Filtering JOIN . Based
on the experimental results of [81], even though Bi-Filtering JOIN ’s bi-directional filtering
created more overhead than forward only filtering, backward filtering reduced the size of the
candidate set, and effectively minimized the time required for comparisons. On a similar note,
based on [119], Pass-JoinK outperformed Pass-Join, proving that a method that partitions
the data even further is beneficial to the efficiency of the algorithm without increasing false
negative pairs. For large thresholds, the multi-threading idea presented in [223] showed the
necessity of using multiple cores for string similarity joins, since ParaLL-Join outperformed
Pass-Join in all experimental settings for τ ≥ 3. Finally, any parallel extension of Pass-
Join, such as Pass-JoinKMR, Pass-JoinKMRS and Pada-Join (Tables 3.28 and 3.29),

47

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

improved the overall runtime of the corresponding filter-verify framework only for large datasets,
and based on [223], should be avoided when the dataset includes less than 1 million strings.

Table 3.26: Runtime results for SSJs using the Levenshtein distance with τ = 2 (unless specified
otherwise), for the 3 variations of the DBLP dataset.

SSJ vs. DBLP(a+t)0.9M DBLP(a+t)1.1M DBLP(author)

Ed-Join

3.00 - -
VChunkJoin 0.85 - -
PassJoin 70.00 - 700.00
SegFilter 1.70 - 2.70
PassJoinK (τ = 4,K = 2) 50.00 - -
TrieJoin (τ = 4, q = 6) 1.95 - (q = 3) 2.30
Adapt-Join - 300.00 -
IndexGram - 1.70 -
PreJoin - - (q = 3) 1.48
Partition-NED - - (τ = 8, η = 0.8) 3.30

Ed-Join-I 3.00 - -

All-Pairs-Ed 6.00 - -
TrieJoin (τ = 4, q = 6) 1.95 - (q = 3) 2.78

Adapt-Join - 200.00 -
IndexGram - 1.60 -

IndexChunk - 0.90 -
SegFilter 1.70 - 3.00

Partition-NED(τ = 8, η = 0.8) - - 2.30

Bed-tree VChunkJoin 2.78 - -
IndexGram 2.95 - -

Trie-Join

(τ = 4) 2.30 - 2.48
PassJoin 80.00 - 50.00
SegFilter 1.70 - 1.30
VChunkJoin - 1.90 -
Adapt-Join - 200.00 -
IndexGram - 1.70 -
PreJoin - - 1.00

PreJoin - - 0.90
PreJoinPlus - - 1.00

Results for Hybrid String Similarities Based on findings in Section 3.1.5, there have been
only two publications that focus on improving the runtime of hybrid string similarities - [121]
and [213].

Begining with [121], the authors conducted three sets of experiments, measuring the ef-
ficiency and effectiveness of (1) the similarity measures, (2) their SSJs and (3) the different
signatures’ selection methods. They compared their methods with a jaccard implementation,
named JaccT [11] rather than other SSJs. For their experiments they used three datasets, and
for each dataset they created one source dataset with 100 strings and a target dataset with
200 strings. Based on Table 3.34, they supported their initial hypothesis that using synonyms
to expand a string’s representation is beneficial for accuracy and generates low overheads in
runtime. This is supported by the fact that SI-Join, with full expansion, scales linearly with
the size of the join data sizes and number of synonyms. Additionally, it achieves the highest
filtering ratio23 and the lowest candidate size and thus, outperforms the other SSJs in both
completeness and efficiency. Furthermore, they conducted a set of experiments incorporating
LSH filtering into the baseline (Table 3.34). Based on their results, LSH filtering is beneficial

23number of pruned string pairs divided by the total number of string pairs

48

Chapter 3. Related Work

Table 3.27: Runtime results for SSJs using the Levenshtein distance with τ = 2 (unless specified
otherwise), for the 2 variations of the AOL Query Log dataset.

SSJ vs. AOL Query Log QueryLog-small

Ed-Join

- -
VChunkJoin - -
PassJoin - 15.00
SegFilter - 1.18
PassJoinK (τ = 4,K = 2) 120.00 -
TrieJoin (τ = 3, q = 2) 3.30 -
Adapt-Join 500.00 -
IndexGram - -
PreJoin (q = 3) 1.00 -
Partition-NED (τ = 8, η = 0.8) 3.85 -

All-Pairs-Ed TrieJoin (τ = 3, q = 2) 3.85 -
Adapt-Join 500.00 -
IndexChunk SegFilter - 1.18
Partition-NED(τ = 8, η = 0.8) 2.70 -

Trie-Join

(τ = 3) 2.95 -
PassJoin - 20.00
SegFilter - 1.18
VChunkJoin - -
Adapt-Join 400.00 -
PreJoin 1.34 -

PreJoin 1.00 -
PreJoinPlus 1.30 -

Table 3.28: Runtime results for SSJs using the Levenshtein distance with τ = 2 (unless specified
otherwise), for the 4 variations of the DBLP dataset.

SSJ vs. DBLP(a+t)0.9M DBLP(a+t)1.1M DBLP(author)

Pass-Join

5.00 - 20.00
ParaLL-Join 50.00 - -
Pass-JoinK(K = 2, τ = 4) 10.00 - -
Bi-Filtering JOIN - 20.00 -

SegFilter 0.70 - 1.30
Pass-JoinK(K = 2, τ = 4) 10.00 - -
Pass-JoinKMR(K = 1, τ = 4) 500.00 - -
Pass-JoinKMRS(K = 1, τ = 4) 250.00 - -
ParaLL-Join 27.00 - -
Pada-Join - - -
Bi-Filtering JOIN - 8.00 -

only for thresholds above 0.8; therefore, LSH filtering has a greater pruning power than prefix
filtering, but comes at the cost of filtering time.

Continuing with the second publication, the authors of [213] conducted a set of experi-
ments using two datasets - DBLP(author) with size of 600,000 and AOL Query Log with size
of 1 million. For their fuzzy token-based string similarities, they compared Fast-Join, with
token-sensitive filtering technique, against prefix-filtering for different fuzzy-jaccard similarity

49

3.1 A Systematic Survey of String Similarity Joins for Link Discovery

Table 3.29: Runtime results for SSJs using the Levenshtein distance with τ = 2 (unless specified
otherwise), for the 2 variations of the AOL Query Log dataset.

SSJ vs. AOL Query Log QueryLog-small

Pass-Join

- 2.00
ParaLL-Join - 23.00
Pass-JoinK(K = 2, τ = 4) 100.00 -
Bi-Filtering JOIN - -

SegFilter - 0.60
Pass-JoinK(K = 2, τ = 4) 80.00 -
Pass-JoinKMR(K = 1, τ = 4) 400.00 -
Pass-JoinKMRS(K = 1, τ = 4) 250.00 -
ParaLL-Join - 14.00
Pada-Join - 100.00

Table 3.30: Runtime results for MassJoin and MLS-Join using the Levenshtein distance with
τ = 2, for the DBLP(a+t)3.2M dataset and the GBEST dataset as published in [199].

SSJ DBLP(a+t)3.2M GBEST (τ = 4)
MassJoin 0.8× 107 0.7× 107

MLS-Join 0.2× 107 0.2× 107

Table 3.31: Runtime results for SSJs using the Levenshtein distance with τ = 2 (unless specified
otherwise), for the TEXAS-5GRAM dataset and the TREC-8GRAM dataset.

SSJ vs. TEXAS-5GRAM TREC-8GRAM UNIREF0.3M UNIREF0.5M

Ed-Join

0.30 1.00 - -
VChunkJoin - (τ = 4) 0.50 - (τ = 4) 0.80
IndexGram - - (τ = 4) 2.26 -
Bed-tree - - - 800.00

Ed-Join-I 0.3 1 - -
All-Pairs-Ed 0.8 1 - -
VChunkJoin - (τ = 4) 0.10 - (τ = 4) 0.10
IndexGram - - (τ = 4) 2.00 -
IndexChunk - - (τ = 4) 1.85 -

Bed-tree - - - 120.00
IndexGram - - (τ = 4) 2.20 -

thresholds. Based on Table 3.35, the token-sensitive filtering generates a smaller amount of
signatures and candidate pairs compared to prefix filtering, and is 3 to 5 times faster. Based
on their experimental results, Fast-Join requires constant time to generate signatures and
compute the set of candidate pairs, whereas the verification time is influenced by the differ-
ent threshold values. However, for the largest dataset (AOL Query Log), the verification time
decreases significantly as the threshold values increase.

50

Chapter 3. Related Work

Table 3.32: Runtime results for SSJs using the Levenshtein distance with τ = 2 (unless specified
otherwise), for the 2 variations of the IMDB dataset, the LEXICON dataset, the Word dataset
and the ENGLISH-DICT dataset.

SSJ vs. IMDB(actor)1.2M IMDB(title)1.5M LEXICON Word ENGLISH-DICT

Ed-Join
VChunkJoin 2.90 - - - -
Bed-tree - 200.00 - -
Trie-Join - - - - (τ = 1, q = 3) 1.00

All-Pairs-Ed Trie-Join - - - - (τ = 1, q = 3) 1.00
VChunkJoin 1.85 - 1.04 - -

Bed-tree - 2,000.00 - - -
VChunkJoin - - 2.95 - -

Trie-Join
- - - - 0.80

VChunkJoin 2.30 - 1.70 - -
ISJ-DNT - - - - 1.30

Table 3.33: Runtime results for PassJoin and REEDED using the weighted Levenshtein dis-
tance with τ = 2, for the DBLP(title)-small, ACM(author), GoogleProducts and ABT datasets
as published in [194]. Runtime results for PSH and Trie-Join using Damerau-Levenshtein
edit distance with τ = 2, for the PhilAdd dataset as published in [92].

SSJ DBLP(title)-small ACM(author) GoogleProducts ABT SSJ PhilAdd
REEDED 15.27 8.54 20.43 27.71 PSH 216,889

PassJoin 30.74 18.53 62.31 140.73 Trie-Join 82,660

Table 3.34: Runtime results for JaccT, SN-Join and SI-Join for the CONF and USPS datasets
as published in [121]. All experiments were carried out using the jaccard similarity with thresh-
old 0.8. JaccT-L, SN-Join-L and SI-Join-L incorporate the LSH filtering technique. The
LSH filtering parameters for the CONF dataset are k=3, l=3, and for the USPS dataset are
k=4, l=3. The runtimes are reported in seconds, for the maximum join data size, 10 and 1,000
for the CONF and USPS datasets resp.

Method CONF USPS Method CONF USPS
JaccT 27 450 JaccT-L 15 320
SN-Join with FE 18 350 SN-Join-L with FE 12 250
SN-Join with SE 22 370 SN-Join-L with SE 13 270
SI-Join with FE 3 40 SI-Join-L with FE 2 40
SI-Join with SE 6 70 SI-Join-L with SE 4 60

Based on our analysis for SSJs for hybrid similarities, as well as Tables 3.34 and 3.35, we
make two important observations: (1) introducing synonyms into existing string similarities is
proven to be beneficial without sacrificing the effectiveness of the SSJ; and (2) building upon and
extending the existing prefix filtering technique leads to improvements regarding the pruning
power of an SSJ while maintaining low overheads. Even though the results of [121] and [213]
are encouraging and have shown that hybrid string similarities are able to successfully capture
both syntactic and semantic variations of strings, they have been little investigated.

51

3.2 Time Relations for Link Discovery

Table 3.35: Runtime results for Fast-Join (token-sensitive) against prefix filtering for the
DBLP(author) and AOL Query Log datasets as published in [213]. All experiments were
carried out using the fuzzy jaccard similarity with threshold 0.8. The runtimes are reported in
seconds and η was set to 0.8.

DBLP(author) AOL Query Log
Fast-Join (token-sensitive) 30 100
prefix filtering 135 550

3.2 Time Relations for Link Discovery

The first LD framework that provided temporal LD for RDF datasets was Silk, and it did so by
incorporating the recently published work of Smeros et al. [191]. The authors of this paper used
MultiBlock to develop an approach for the efficient computation of temporal links. As shown in
Section 4.4, Aegle was able to outperform this approach by 4 orders of magnitude.

In the field of stream reasoning and Complex Event Processing (CEP) on Linked Data, there
has been a notable amount of research into querying temporal data. For example, Continuous
SPARQL (C-Sparql) [18] provides a syntactic and semantic extension of SPARQL to query
RDF temporal data by defining a time window for processing events. C-Sparql is able to
incrementally re-materialise the input data, using partial static background knowledge. The
novel idea behind C-Sparql is the author’s contribution to add an expiration date to each RDF
triple in order to support fast deletion of events that are no longer valid. However, the use of
time window frames for linking events prohibits the opportunity to link previous events with
current or future events. Similarly, Streaming SPARQL [26] provides an extension of semantics
and algebraic functions of SPARQL, which translates queries into logical algebra plans.

Etalis is an open-source engine that is able to detect and report changes over events in
near real time, by combining both static and streaming knowledge. It incorporates the Etalis
Language for Events (ELE) and Event Processing SPARQL (Ep-Sparql) [10]. The core of
Etalis is implemented in Prolog and incorporates the fundamentals of logic programming: an
event is modeled by ELE using logic facts and Prolog-style rules. In addition, Ep-Sparql was
used to assist real-time complex event detection. In contrast to C-Sparql, using this framework,
the user is able to define time windows in the past.

A novel approach in the area of query processing over Linked Stream Data is C-Quels [108].
In this work, the authors propose a white-box approach for querying stream data efficiently. To
this end, they define and use techniques such as query optimisation, caching and indexing.
Similarly, Instans [165] (which is based on the Rete-algorithm) is able to process streams of
RDF data and cache the data after the processing is over. Moreover, Instans is the only
approach that supports the simultaneous processing of SPARQL queries, where the immediate
results of a query can be used from other queries once stored. Additionally, another SPARQL
query extension language is described in [200], where the authors propose τ -SPARQL, which,
combined with an index structure for temporal intervals, achieves better runtime performance.

Most of these approaches focus on extending the semantics and functions of SPARQL. To the
best of our knowledge, the only SPARQL extension that incorporates Allen’s Interval Algebra
is T-Sparql [74]. T-Sparql is a temporal extension of SPARQL using the multi-temporal
RDF database model of [73], using similar design characteristics as [192]. To query an event
KB, T-Sparql enhances the FILTER field in order to identify links between mono-dimensional
temporal data. T-Sparql utilizes operators that explicitly define the bf , eq, ov, mt and dur
relations.

52

Chapter 3. Related Work

3.3 Semantic Similarities for Link Discovery

Over the past few years, semantic similarities have been utilized extensively in OM [166, 201].
In this context, concepts in two ontologies O1 and O2 are often matched based on a third
ontology, e.g., WordNet. This ontology can be viewed as a background knowledge source or
a mediating ontology [37]. Frameworks such as AgreementMaker [38], Zhishi.links [150]
and RuleMiner [148] utilize semantic similarities in this way to improve structural matching in
ontology level. While these enhancements have a positive effect on their resource-level matching,
no resource linking tool, to the best of our knowledge, has used semantic similarities directly and
shown an improvement of the overall linking results. [125] compares the effect of a predefined
set of combinations of string and semantic similarities for label comparison and suggests that
semantic similarities do not improve the F-measure of the instance matching task. Our results
suggest the contrary by showing that dataset-specific combinations of measure actually can
achieve this fit.

There have been a number of surveys on semantic similarities such as [27], which performs
a comparison of five different measures. [16] presents an overview of different existing measures
and finally, [125] compares the effect of a predefined set of combinations of string and semantic
similarities for label comparison. In contrast to our study, they do not observe or evaluate the
effect of syntactic and semantic similarity within LD, but perform comparisons in class level.

3.4 Fast Execution of Link Specifications

3.4.1 Executing Link Specifications under Time Constraints

The problem of identifying appropriate LSs using ML techniques has been explored in various
previous papers. The approach in [85] focuses on generating LSs using genetic programming.
Many approaches propose alternative methods to address the problem of minimizing the need
for training examples. Eagle [141], Raven [140], and Agp [44] are some of the approaches that
have used active learning in order to maintain a high level of accuracy by requesting less labeled
examples by training. Wombat [188] uses only positive examples for finding accurate LSs. Addi-
tionally, unsupervised methods and tools such as Paris [144], Euclid [142] and KnoFuss [145]
require no training data but are based on specific assumptions about the characteristics of the
matching pairs. Except Euclid, the other approaches have been proven not to be determin-
istic. To the best of our knowledge the only method that focuses on identifying informative
link candidates for training is Coala [143]. To this end, Coala uses the correlations between
unlabelled examples. Based on their result evaluation, the authors proved the importance of
identifying informative links to be used as training examples for LSs learning. Frameworks such
as Febrl [32] and Marlin [9] rely on models such as Support Vector Machines and Decision
Trees to identify appropriate classifiers. The main drawback of all previous approaches is that
they assume that there are no time limitations in acquiring the desired data. To the best of our
knowledge, we are the first to address the problem of partial-recall LD.

There has been significant work in the field of learning with Refinement Operator (RO),
especially in the area of Inductive Logic Programming. The most notable work has been the
Model Inference System [185], where Saphiro describes how a refinement operator can be used
to adapt a hypothesis to a sequence of examples. Additionally, [208] presents a complete but
improper upward refinement operator, and proves that locally finite, complete and proper refine-
ment operators for unrestricted search spaces ordered by θ-subsumption do not exist. One of the
most significant papers published in this field is [112], which analyzed the desirable properties
of refinement operators and later extended to possible abstract property combinations in [113].

53

3.5 Link Discovery Frameworks and Tools

Finally, refinement operators have been introduced in many Description Logic languages such
as ALER [15], ALN [57] and EL [111].

3.4.2 Planning for Link Discovery

The task of execution optimization using runtime approximations in LD frameworks is similar to
the task of efficient query execution in database systems. Efficient and scalable data management
has been of central importance in database systems [72]. Over the past few years, there has
been extensive work on query optimization in databases, which is based on statistical information
about relations and intermediate results [189]. The author of [29] gives an analytic overview
regarding the procedure of query optimization and the different approaches used at each step of
the process.

A novel approach in this field is presented in [84], in which the proposed approach introduces
the concept of parametric query optimization. In this work, the authors provide the necessary
formalization of the aforementioned concept and present a set of experiments in which they
used the buffer size as parameter. In order to minimize the total cost of generating all possible
alternative execution plans, they used a set of randomized algorithms. In a similar manner, the
authors of [202] introduce the idea of Multi-Objective Parametric query optimization (MPQ),
where the cost of a plan is associated with multiple cost functions and each cost function is asso-
ciated with various parameters. Their experimental results show however that the MPQ method
performs an exhaustive search of the solution space which makes this approach computationally
inefficient.

Another set of approaches in the field of query optimization have focused on creating dy-
namic execution plans. Dynamic planning is based on the idea that the execution engine of a
framework knows more than the planner itself. Therefore, information generated by the exe-
cution engine is used to re-evaluate the plans generated by the optimizer. There have been a
vast amount of approaches for dynamic query optimization, such as query scrambling for initial
delays [206], dynamic planning in compile-time [34], genetic programming [23], cost-based and
heuristic optimizers [93], adaptive query operators [87] and re-ordering of operators [13].

The main difference between the task at hand and query optimization for databases is that
databases can store elaborate statistics on the data they contain and use these to optimize their
execution plan. LD frameworks do not have such statistics available when presented with a novel
LS as they usually have to access remote data sources. Thus, planners must rely on statistics
that can be computed efficiently while reading the data. Moreover, planning approaches for
LD also has to rely on generic approximations for the costs and selectivity of plans. Still, we
reuse the concepts of selectivity, rewriting and planning as known from query optimization in
databases. Condor is the first dynamic planner for LD and dynamic approaches for query
planning were the inspiration for the work presented herein.

3.5 Link Discovery Frameworks and Tools

Since this work is a contribution to the research area of LD, we begin by giving an overview of
existing frameworks that were developed to assist scalable and time-efficient solutions towards
LD. These frameworks commonly rely on scalable approaches for computing simple and complex
specifications. For example, a lossless framework that uses blocking is Silk [86], a tool relying
on rough index pre-matching and multi-dimensional blocking. KnoFuss [145] on the other
hand implements classical blocking approaches derived from databases. These approaches are
not guaranteed to achieve result completeness. Zhishi.links [150] is another framework that
scales (through an indexing-based approach) but is not guaranteed to retrieve all links. Codi

54

Chapter 3. Related Work

uses a sampling-based approach to compute anchor alignments to reduce its runtime [82]. The
completeness of results is guaranteed by the Limes framework, which combines time-efficient
algorithms such as Ed-Join [219] and PPJoin+ [221] with a set-theoretical combination strategy.
The execution of LSs in Limes is carried out by means of the Canonical [137], Helios [138]
and Condor [66] planners. Given that Limes was shown to outperform Silk in [138], we chose
to implement our approaches throughout Chapters 5- 7 in Limes.

55

3.5 Link Discovery Frameworks and Tools

56

Aegle: An Efficient Approach for
the Generation of Allen Relations

4
Preamble This chapter is based on [68], which was one of the first papers that focused on the
scalability of time relations in LD. The author has co-designed, implemented and evaluated the
algorithm presented herein, and co-wrote the said paper.

In this Chapter, we consider the efficient computation of temporal relations between events.
Hence, we assume that each of the resources in S and T considered in the subsequent portion of
this Chapter describes an event v with a beginning time denoted b(v) and an end time denoted
e(v). Note that we assume that b(v) < e(v) throughout this Chapter.

4.1 Allen’s Interval Algebra

Allen’s Interval Algebra [8] is a widely known time interval calculus, which provides a set of 13
“distinct, exhaustive, and qualitative” relations between time intervals [8]. Table 4.1 illustrates
this set of relations and shows a set of six relations between two time intervals X and Y , their
corresponding symbols along with the symbols of their inverse relation. The equal relation is
symmetric.

4.2 Link Discovery between Events
An event can be modelled as a time interval because we assume that its description always
includes a begin time property and an end time property, Thus, an event instance s can be
described as pair of time points (b(s), e(s)), where b(s) < e(s). Formally, computing the temporal
relations between events can thus be reduced to computing the following mappingsM:

• if Rel = bf , thenM = {(s, t) ∈ S×T : (b(s) < b(t))∧(b(s) < e(t))∧(e(s) < b(t))∧(e(s) <
e(t))}

• if Rel = bfi, thenM = {(s, t) ∈ S×T : (b(s) > b(t))∧(b(s) > e(t))∧(e(s) > b(t))∧(e(s) >
e(t))}

• if Rel = mt, thenM = {(s, t) ∈ S×T : (b(s) < b(t))∧(b(s) < e(t))∧(e(s) = b(t))∧(e(s) <
e(t))}

• if Rel = mti, thenM = {(s, t) ∈ S×T : (b(s) > b(t))∧(b(s) = e(t))∧(e(s) > b(t))∧(e(s) >
e(t))}

57

4.2 Link Discovery between Events

Table 4.1: Allen’s Interval Algebra

Relation Notation Inverse Illustration

X before Y bf(X,Y) bfi(X,Y)

X

Y

X meets Y mt(X,Y) mti(X,Y)

X

Y

X finishes Y fin(X,Y) fini(X,Y)

X

Y

X starts Y st(X,Y) sti(X,Y)

X

Y

X during Y dur(X,Y) duri(X,Y)

X

Y

X equal Y eq(X,Y) eq(X,Y)

X

Y

X overlaps with Y ov(X,Y) ovi(X,Y)

X

Y

• if Rel = fin, thenM = {(s, t) ∈ S×T : (b(s) > b(t))∧(b(s) < e(t))∧(e(s) > b(t))∧e(s) =
e(t)}

• if Rel = fini, thenM = {(s, t) ∈ S×T : (b(s) < b(t))∧(b(s) < e(t))∧(e(s) > b(t))∧e(s) =
e(t)}

• if Rel = st, thenM = {(s, t) ∈ S×T : (b(s) = b(t))∧ (b(s) < e(t))∧ (e(s) > b(t))∧ e(s) <
e(t)}

• if Rel = sti, thenM = {(s, t) ∈ S×T : (b(s) = b(t))∧ (b(s) < e(t))∧ (e(s) > b(t))∧e(s) >
e(t)}

• if Rel = dur, thenM = {(s, t) ∈ S×T : (b(s) > b(t))∧(b(s) < e(t))∧(e(s) > b(t))∧e(s) <
e(t)}

• if Rel = duri, thenM = {(s, t) ∈ S×T : (b(s) < b(t))∧(b(s) < e(t))∧(e(s) > b(t))∧e(s) >
e(t)}

• if Rel = eq, thenM = {(s, t) ∈ S×T : (b(s) = b(t))∧ (b(s) < e(t))∧ (e(s) > b(t))∧ e(s) =
e(t)}

• if Rel = ov, thenM = {(s, t) ∈ S×T : (b(s) < b(t))∧ (b(s) < e(t))∧ (e(s) > b(t))∧ e(s) <
e(t)}

• if Rel = ovi, thenM = {(s, t) ∈ S×T : (b(s) > b(t))∧ (b(s) < e(t))∧ (e(s) > b(t))∧e(s) >
e(t)}

58

Chapter 4. Aegle: An Efficient Approach for the Generation of Allen Relations

4.3 The Aegle Approach

The main goal of Aegle (Allen’s intErval alGebra for Link discovEry) is to efficiently compute
all Allen’s interval relations, as described in Section 4.1, between two sets of atomic events. The
main principle underlying this work is that we can reduce the computation of the 13 relations
to the computation and combinations of a mere 8 atomic relations, and thus reduce the overall
computation time of Allen relations. We use this insight to devise a means to compute all
interval relations efficiently. To do so we reduce Allen’s relations to re-usable atomic relations,
which can then be computed efficiently. We further combine the results of these atomic relations
to compute Allen’s relations. While doing so, we ensure 100% accuracy in retrieving all possible
Allen relations between resources in the given sets of resources S and T .

4.3.1 Atomic Temporal Relations

The main idea behind our approach is to represent each relation of Table 4.1 as a Boolean
combination of atomic relations. By computing each of the atomic relations only once and
only if needed, we can decrease the overall runtime of the computation of a given set of Allen
relations.

As described in Section 4.2, each atomic event s can be described using two time points
b(s) and e(s). To compose the atomic interval relations, we define all possible binary relations
between the begin and end points of two event resources s = (b(s), e(s)) and t = (b(t), e(t)), as
follows:

• Atomic relations between b(s) and b(t):

– BB1(s, t)⇔ (b(s) < b(t))

– BB0(s, t)⇔ (b(s) = b(t))

– BB−1(s, t)⇔ (b(s) > b(t))⇔ ¬(BB1(s, t) ∨BB0(s, t))

• Atomic relations between b(s) and e(t):

– BE1(s, t)⇔ (b(s) < e(t))

– BE0(s, t)⇔ (b(s) = e(t))

– BE−1(s, t)⇔ (b(s) > e(t))⇔ ¬(BE1(s, t) ∨BE0(s, t))

• Atomic relations between e(s) and b(t):

– EB1(s, t)⇔ (e(s) < b(t))

– EB0(s, t)⇔ (e(s) = b(t))

– EB−1(s, t)⇔ (e(s) > b(t))⇔ ¬(EB1(s, t) ∨ EB0(s, t))

• Atomic relations between e(s) and e(t):

– EE1(s, t)⇔ (e(s) < e(t))

– EE0(s, t)⇔ (e(s) = e(t))

– EE−1(s, t)⇔ (e(s) > e(t))⇔ ¬(EE1(s, t) ∨ EE0(s, t))

59

4.3 The Aegle Approach

4.3.2 Complex Temporal Relations

Out of Table 4.1, we can derive how each of Allen’s relations can be reduced to a Boolean
combination of a subset of the relations above, as follows:

• bf(s, t) ⇔ BB1(s, t) ∧ BE1(s, t) ∧ EB1(s, t) ∧ EE1(s, t). Now given that b(s) < e(s) and
b(t) < e(t), and by virtue of the transitivity of <, we get

1. e(s) < b(t)⇒ b(s) < b(t),
2. e(s) < b(t)⇒ b(s) < e(t) (by virtue of 1.) and
3. e(s) < b(t)⇒ e(s) < e(t) .

Hence bf(s, t) = EB1(s, t).

• bfi(s, t)⇔ BB−1(s, t)∧BE−1(s, t)∧EB−1(s, t)∧EE−1(s, t). Now given that b(s) < e(s)
and b(t) < e(t), and by virtue of the transitivity of <, we get

1. b(s) > e(t)⇒ b(s) > b(t),
2. b(s) > e(t)⇒ e(s) > b(t) (by virtue of 1.) and
3. b(s) > e(t)⇒ e(s) > e(t) .

Hence bfi(s, t) = BE−1 = ¬(BE1(s, t) ∨BE0(s, t)).

• mt(s, t)⇔ BB1(s, t) ∧BE1(s, t) ∧ EB0(s, t) ∧ EE1(s, t). Now given that b(s) < e(s) and
b(t) < e(t) and, by virtue of the transitivity of <, we get

1. e(s) = b(t)⇒ b(s) < b(t),
2. e(s) = b(t)⇒ e(s) < e(t) and
3. e(s) = b(t)⇒ b(s) < e(t) (by virtue of 1.).

Hence mt(s, t) = EB0(s, t).

• mti(s, t)⇔ BB−1(s, t) ∧BE0(s, t) ∧EB−1(s, t) ∧EE−1(s, t). Now given that b(s) < e(s)
and b(t) < e(t), and by virtue of the transitivity of <, we get

1. b(s) = e(t)⇒ b(s) > b(t),
2. b(s) = e(t)⇒ e(s) > e(t) and
3. b(s) = e(t)⇒ e(s) > b(t) (by virtue of 1.).

Hence mti(s, t) = BE0(s, t).

• fin(s, t) ⇔ BB−1(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE0(s, t). Now given that b(s) < e(s)
and b(t) < e(t), and by virtue of the transitivity of <, we get

1. b(s) > b(t)⇒ e(s) > b(t) and
2. e(s) = e(t)⇒ b(s) < e(t)

Hence fin(s, t) = {EE0(s, t) ∧BB−1(s, t)} = {EE0(s, t) ∧ ¬(BB0(s, t) ∨BB1(s, t))}.

• fini(s, t) ⇔ BB1(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE0(s, t). Now given that b(s) < e(s)
and b(t) < e(t), and by virtue of the transitivity of <, we get

1. b(s) < b(t)⇒ b(s) < e(t) and

60

Chapter 4. Aegle: An Efficient Approach for the Generation of Allen Relations

2. e(s) = e(t)⇒ e(s) > b(t)

Hence fini(s, t) = {BB1(s, t) ∧ EE0(s, t)}.

• st(s, t)⇔ BB0(s, t) ∧BE1(s, t) ∧EB−1(s, t) ∧EE1(s, t). Now given that b(s) < e(s) and
b(t) < e(t), and by virtue of the transitivity of <, we get

1. b(s) = b(t)⇒ b(s) < e(t) and
2. e(s) < e(t)⇒ e(s) > b(t)

Hence st(s, t) = {BB0(s, t) ∧ EE1(s, t)}.

• sti(s, t) ⇔ BB0(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE−1(s, t). Now given that b(s) < e(s)
and b(t) < e(t), and by virtue of the transitivity of <, we get

1. b(s) = b(t)⇒ e(s) > b(t) and
2. b(s) = b(t)⇒ b(s) < e(t)

Hence sti(s, t) = {BB0(s, t) ∧ EE−1(s, t)} = {BB0(s, t) ∧ ¬(EE0(s, t) ∨ EE1(s, t))}.

• dur(s, t) ⇔ BB−1(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE1(s, t). Now given that b(s) < e(s)
and b(t) < e(t), and by virtue of the transitivity of <, we get

1. b(s) > b(t)⇒ e(s) > b(t) and
2. e(s) < e(t)⇒ b(s) < e(t)

Hence dur(s, t) = {EE1(s, t) ∧BB−1(s, t)} = {EE1(s, t) ∧ ¬(BB0(s, t) ∨BB1(s, t))}.

• duri(s, t)⇔ BB1(s, t) ∧ BE1(s, t) ∧ EB−1(s, t) ∧ EE−1(s, t). Now given that b(s) < e(s)
and b(t) < e(t), and by virtue of the transitivity of <, we get

1. e(s) > e(t)⇒ e(s) > b(t) and
2. b(s) < b(t)⇒ b(s) < e(t)

Hence duri(s, t) = {BB1(s, t) ∧ EE−1(s, t)} = {BB1(s, t) ∧ ¬(EE0(s, t) ∨ EE1(s, t))}.

• eq(s, t)⇔ BB0(s, t)∧BE1(s, t)∧EB−1(s, t)∧EE0(s, t). Now given that b(s) < e(s) and
b(t) < e(t), and by virtue of the transitivity of <, we get

1. e(s) = e(t)⇒ e(s) > b(t) and
2. b(s) = b(t)⇒ b(s) < e(t)

Hence eq(s, t) = {BB0(s, t) ∧ EE0(s, t)}.

• ov(s, t)⇔ BB1(s, t)∧BE1(s, t)∧EB−1(s, t)∧EE1(s, t). Now given that b(s) < e(s) and
b(t) < e(t), and by virtue of the transitivity of <, we get

1. b(s) < b(t)⇒ b(s) < e(t).

Hence ov(s, t) = {BB1(s, t)∧EB−1(s, t)∧EE1(s, t)} = {(BB1(s, t)∧EE1(s, t))∧¬(EB0(s, t)∨
EB1(s, t))}.

• ovi(s, t)⇔ BB−1(s, t) ∧BE1(s, t) ∧ EB−1(s, t) ∧ EE−1(s, t). Now given that b(s) < e(s)
and b(t) < e(t), and by virtue of the transitivity of <, we get

1. e(s) > e(t)⇒ e(s) > b(t).

61

4.3 The Aegle Approach

Hence ovi(s, t) = {BB−1(s, t) ∧ BE1(s, t) ∧ EE−1(s, t)} = {(BE1(s, t) ∧ ¬(BB0(s, t) ∨
BB1(s, t))) ∧ ¬(EE0(s, t) ∨ EE1(s, t))}.

Clearly, we hence only need to compute the 8 atomic relations EB0, EB1, EE0, EE1, BB0, BB1, BE0

and BE1 to be able to generate all of Allen’s relations. In the following, we explicate our ap-
proach to computing these 8 relations efficiently.

4.3.3 The Aegle Algorithm

Given a set AIR of Allen relations that are to be computed, the basic idea behind our approach
is to begin by detecting the subset of the 8 atomic relations that needs to be computed, and to
compute each of these relations exactly once. Algorithm 1 describes how the idea is implemented.
Our approach, Aegle, takes two sets of events, S and T , and the set AIR as input. The
algorithm returns a set of mappings M . Each mapping corresponds to exactly one of the
relations in AIR.

We begin by initialising the final set of mappings M in line 1 and the map A in line 2. A
includes the labels of atomic relations as keys and their corresponding mapping as values. During
the first step of our algorithm, for each rel ∈ AIR, Aegle retrieves the set of required atomic
relations in line 4 by calling the function getAtmRelations(rel). This function is responsible for
retrieving the set of atomic relation labels required to compute rel based on the rules defined
in Section 4.3.2. For each required atomicRel of the current rel, the algorithm checks if the
mapping is already computed (line 7). If not, it invokes the function computeAtmRelation to
compute the appropriate atomic relations in line 8 and places the resulting mapping along
with the atomic relation label in A. Then, it retrieves the mapping from A and places it in the
atomics(rel) map needed to compute the mapping of rel. Each Allen’s relation described inAIR
constructs its own atomics(rel) map, which has the labels of the requisite atomic relations as
keys and their corresponding mappings as values. Finally, the algorithm computes the mapping
tempM of rel by calling the function computeRelation (line 11) and adds the resulting set of
links in M (line 12).

The time-critical portion of the execution lies in the computation of atomic relations. The
idea underlying our approach to computing these relations is that one can reduce their compu-
tation to the problem of finding pairs of matching elements in two sorted lists. For example, to
compute BB0, one needs to (1) sort the list of elements of S and T according to the time at
which they began (guaranteed time complexity: O(|S| log |S|) resp. O(|T | log |T |)), (2) search
for the elements of the smaller set in the larger set (O(min(|S|, |T |) log(max(|S|, |T |))). This
leads to an overall complexity of O(n logn). The complexity is the same for the computation of
all relations.

To illustrate the main procedure of Algorithm 1 (lines 3- 12), consider AIR = {st, sti} as an
example. The other relations are computed analogously. In line 8 of Algorithm 1, Aegle calls
computeAtmRelations in order to generate the mappings for the required atomic relations for
rel, where rel = st and requiredRelations = BB0, EE1. Since A is empty and the condition in
line 7 holds, Algorithm 1 will call the function computeAtmRelation for BB0 and then for EE1.

For BB0, Algorithm 2 describes the necessary steps to compute the mapping of BB0. To
begin with, Algorithm 2 invokes the function orderByDate for the source S and the target
T datasets, to order both complex event resources using the property beginDate. Algorithm 4
illustrates the procedure of ordering a complex event S given the value of a property dateType
- in this case beginDate. The main idea of this function is to assert each atomic event s ∈ S to
the appropriate time-bucket, given its dateType value. orderByDate returns a map that has
the unique dateType values of the input KB S as keys and the set of events that correspond
to each dateType as values. Once sources and targets are retrieved (lines 2, 3 resp. of Algo-

62

Chapter 4. Aegle: An Efficient Approach for the Generation of Allen Relations

Algorithm 1: Aegle
Input: source S, target T , set of Allen relations AIR
Output: Set of mappingsM

1 M ←− ∅
2 A ←− ∅
3 foreach rel ∈ AIR do
4 requiredRelations←− getAtmRelations(rel)
5 atomics(rel)←− ∅
6 foreach atomicRel ∈ requiredRelations do
7 if A does not contain atomicRel then
8 X ←− computeAtmRelation(atomicRel, S, T)
9 A.put(atomicRel,X)

10 atomics(rel).put(atomicRel,A.get(atomicRel))
11 tempM ←− computeRelation(atomics(rel))
12 M.add(tempM)
13 Return M

Algorithm 2: computeAtmRelations(atomicRel, S, T) for atomicRel = BB0

Output: mapping of BB0 AM
1 AM ←− ∅
2 sources←− orderByDate(S, beginDate)
3 targets←− orderByDate(T, beginDate)
4 AM ←− mapEvents(sources, targets, concurrent)
5 Return AM

Algorithm 3: computeAtmRelations(atomicRel, S, T) for atomicRel = EE1

Output: mapping of EE1 AM
1 AM ←− ∅
2 sources←− orderByDate(S, endDate)
3 targets←− orderByDate(T, endDate)
4 AM ←− mapEvents(sources, targets, predecessor)
5 Return AM

Algorithm 4: orderByDate(S, dateType)
Output: O

1 foreach s ∈ S do
2 timeStamp←− s.getDate(dateType)
3 tempO ←− ∅
4 if O contains timeStamp then
5 tempO ←− O.get(timeStamp)
6 tempO ←− tempO ∪ s
7 O.put(timeStamp, tempO)
8 Return O

63

4.3 The Aegle Approach

Algorithm 5: mapEvents(sources, targets, eventType)
Output: mapped events Events

1 Events←− ∅
2 foreach sourceT imeStamp ∈ sources do
3 if eventType == concurrent then
4 tempT ←− targets.get(sourceT imeStamp)
5 else
6 tempT ←− targets.getHigher(sourceT imeStamp)
7 if tempT ! = ∅ then
8 foreach s ∈ sources.get(sourceT imeStamp) do
9 Events.put(s, tempT)

10 Return Events

Algorithm 6: computeRelation(atomics) for st
Output: mapping M

1 M ←− ∅
2 foreach s ∈ atomics.get(BB0) do
3 M1←− atomics.get(BB0).get(s)
4 tempEE1←− atomics.get(EE1)
5 if tempEE1 contains s then
6 M2←− tempEE1.get(s)
7 M.put(s,M1 ∩M2)

8 Return M

rithm 2), computeAtmRelations calls the function mapEvents using the label concurrent, which
is responsible for matching each source event s with the set of target events with the same b(s).
In the function mapEvents (Algorithm 5), for each source event s that belongs to a time-bucket
with time-stamp sourceT imeStamp, the algorithm retrieves the appropriate subset of target
events that have the same time-stamp (line 4), if any (line 7). Then, it constructs a mapping
between each s and the matching set of target events (line 9). Finally, the mapping is returned
to Algorithm 1 and placed in A in line 9.

To continue, Algorithm 1 again calls computeAtmRelations, since the mapping of EE1 is not
also contained in A, following the procedure described in Algorithm 3. For EE1, computeAtm-
Relations orders S and T by invoking the orderByDate function that orders the event sources
using the endDate property. Once both sources and targets are retrieved (lines 2, 3 resp. of
Algorithm 3), mapEvents will be called with eventType = predecessor, in order to match each
source s ∈ S with the target events that were terminated after the source event s ended (line 6
of Algorithm 5). Finally, the mapping is returned to the main algorithm and is placed in A in
line 9.

Once both mappings of BB0 and EE1 are retrieved and placed in atomics(rel), Algorithm 1
calls computeRelation for st. Algorithm 6 illustrates the procedure of computing st. For each
source event s, the algorithm retrieves the set of targets with the same b(s) from the atomics
set (line 3). Then, Algorithm 6 checks if a set of targets exist with endDate higher than e(s)
(line 5). If the condition holds, then computeRelation retrieves the aforementioned set of targets
(line 6) and, based on the equation in Section 4.3.2, it computes the intersection between the two

64

Chapter 4. Aegle: An Efficient Approach for the Generation of Allen Relations

sub-sets of targets. The procedure is performed for each source instance and the final mapping
M is returned in Algorithm 1 and placed in M .

Then, Aegle computes the sti relation, following the steps described above. However, since
sti(s, t) = {BB0(s, t)∧¬(EE0(s, t)∨EE1(s, t))}, the algorithm will only have to compute EE0

and retrieve the mappings for BB0 and EE1.

4.4 Evaluation

4.4.1 Evaluation Questions

The aim of our evaluation was to address the following questions:

• Q1: Does the reduction of Allen relations to 8 atomic relations influence the overall runtime
of the approach?

• Q2: How does Aegle perform in comparison with the state of the art in terms of time
efficiency?

To the best of our knowledge, only one other Link Discovery framework implements an approach
for the discovery of temporal relations. In [191], the blocking approach underlying Silk is
extended to deal with spatio-temporal data. We thus compared our approach with the Silk LD
framework.

4.4.2 Evaluation Datasets

We evaluated our approach on two different sets of datasets (see Table 4.2 for their characteris-
tics):

• The first set of datasets (3KMachines, 30KMachines, 300KMachines) was created by
generating synthetic event data using information obtained from real logs generated by
production machinery. To this end, we retrieved 30,000 events from production machines,
which covered a full day of event generation.1 Then, we computed the probability that
an event began or ended at any given point in time. Finally, we constructed our synthetic
datasets by generating a fixed number of events that maintained the probability of an event
beginning or ending at a particular point in time. For both 3KMachines and 300KMachines
datasets, the distribution of unique begin and end date combinations found within the
resources of the 30KMachines dataset was the same as in the 30KMachines dataset. The
number of events within each unique time frame was decreased and increased by 10% for
3KMachines and 300KMachines resp.

• The second set of datasets (3KQueries, 30KQueries, 300KQueries) was obtained by col-
lecting real event data from query logs of triple stores exposed on the Web. The data
was retrieved from the SPARQL endpoint of the LSQ project [172].2 For each dataset, we
performed a SPARQL query against the LSQ endpoint and obtained a set of events from
a set of consecutive days.

All 6 datasets were pre-processed in order to comply with implementation requirements of
both Aegle and Silk.

1The source of the events cannot be disclosed due to legal reasons.
2More information can be found at http://aksw.github.io/LSQ/

65

http://aksw.github.io/LSQ/

4.4 Evaluation

Table 4.2: Characteristics of data sets. Size stands for the number of events contained in the
dataset.

Log Type Dataset name Size Unique b(s) Unique e(s)

Machinery
3KMachines 3,154 960 960
30KMachines 28,869 960 960
300KMachines 288,690 960 960

Query
3KQueries 3,888 3,636 3,638
30KQueries 30,635 3,070 3,070
300KQueries 303,991 184 184

4.4.3 Experimental Setup

As evaluation measure, we computed the runtime of each of the atomic relations, the time
required by our implementation to perform the computeRelation for each Allen Relation (Algo-
rithm 6) and the total runtime required for computing all 13 relations. For Silk, we measured
the time it required to compute each Allen relation.3

We set the value of Silk’s block size to 1ms.4 Each temporal relation implemented in Silk
was given a maximum runtime of 6 hours. We will use the symbol NA to signify that a run did
not terminate within 6 hours. For the sake of comparison, we also implemented a naive baseline
for the eq relation. This naive implementation performs an exhaustive comparison of the events
of S and T to compute eq. For each experiment, we linked each data source with itself, i.e., we
set S = T . All experiments for all implementations were carried out on the same 20-core Linux
Server running OpenJDK 64-Bit Server 1.8.0_74 on Ubuntu 14.04.4 LTS on Intel(R) Xeon(R)
CPU E5-2650 v3 processors clocked at 2.30GHz. Each experiment was run on exactly one core
using 64 GB of RAM. We implemented Aegle using Java 1.8.0_60 and the sorting algorithm
described in orderByDate (Algorithm 4) was performed using the MergeSort algorithm [100] as
implemented in Java 1.8.0_60 with a guaranteed time complexity O(n logn).

4.4.4 Experimental Results

To address Q1, we computed the execution runtime of all 8 atomic relations as described in
Section 4.3. Table 4.4 shows the runtimes of the atomic relations as well as the total runtime
required to run the full set of atomic relations. For our largest dataset 300KQueries, our
approach needed only 84.83 s to compute all atomic relations. The maximum required runtime
is reached on the 300KMachines dataset, while our algorithm needs approximately 7min. As
expected, the atomic relations which rely on equality (i.e., BB0, BE0, EB0, EE0) require less
time than the rest of the atomic relations.

Another interesting observation derived from Table 4.4 is the relation between the size of
the data, the number of the unique b(s) and e(s) among the event sources and the execution
runtime of each relation. In the Machines datasets, the distribution of beginning and end times
is equal among the different sizes of data. As expected by virtue of the complexity of our
approach, the total runtimes grow in accordance with O(n logn) as the data increases. From
Query datasets, we notice that the number of unique b(s) and e(s) has a significant impact on the

3To measure this time, we contacted the author of [191], who informed us that measuring the duration of the
“Match Task” was the way to measure the runtime of his approach.

4We contacted the authors of Silk’s temporal relation extension and were informed that this setting should
return the best results.

66

Chapter 4. Aegle: An Efficient Approach for the Generation of Allen Relations

Table 4.3: Total runtime of Allen Relations for all datasets for Aegle and Silk. All runtimes
are presented in seconds.

Log Type Dataset Name Total Runtime
Aegle Aegle * Silk

Machine
3KMachines 11.26 5.51 294.00

30KMachines 1,016.21 437.79 29,846.00
300KMachines 189,442.16 78,416.61 NA

Query
3KQueries 26.94 17.91 541.00

30KQueries 988.78 463.27 33,502.00
300KQueries 211,996.88 86,884.98 NA

runtime of our approach. For example, even though 300KQueries includes 10 times more data
than 30KQueries, 30KQueries has a significantly higher number of unique b(s) and e(s) than
300KQueries. Hence, Aegle requires 15 secs less for 300KQueries than for the 30KQueries
dataset. The benefits of our implementation can be noticed clearly when comparing Aegle
with the baseline (see Table 4.6). For the eq relation, we see that Aegle is 470 times faster
than the brute-force approach. We can thus answer Q1 by stating that (1) both the number
of unique events and the distribution of events across time have a significant influence on the
overall runtime and (2) our approach improves the overall runtime of the computation of Allen
relations significantly.

Table 4.4: Execution runtime of all 8 atomic relations for all datasets. All runtimes are presented
in seconds.

Log Dataset
BB0 BB1 BE0 BE1 EB0 EB1 EE0 EE1 Total

Type Name Runtime

Machine
3KMachines 0.02 0.41 0.02 0.41 0.02 0.41 0.02 0.42 1.73

30KMachines 0.19 5.55 0.19 5.51 0.19 5.48 0.18 5.49 22.78
300KMachines 2.70 95.55 2.14 92.26 3.39 115.66 2.13 94.4 408.23

Query
3KQueries 0.03 2.93 0.03 3.04 0.02 2.89 0.03 2.90 11.87

30KQueries 0.19 24.5 0.19 26.28 0.21 23.85 0.19 23.80 99.22
300KQueries 2.52 12.11 1.98 12.57 3.89 25.41 1.93 24.42 84.83

Tables 4.3, 4.5 and 4.6 provide us with the insights necessary to answer Q2. They show
clearly that Aegle outperforms Silk on all datasets in terms of time efficiency while achieving
100% precision and recall, i.e., while computing all the links that can be found. Therefore, our
idea proves to be beneficial and time-efficient for the task of linking temporal data of various
sizes.

In more detail, Aegle requires 211, 996.88 s to run the complete computation of Allen rela-
tions on our largest dataset (300KQueries), whereas Silk is unable to produce full results for
any of the relations within the time frame of 280, 800 s (3.25 days). 30KQueries is the largest
dataset for which Silk was able to produce links for the given time limit. Here, we observe that
Aegle is more than 33 times faster than Silk. Furthermore, Table 4.5 suggests that the most
costly operations are carried out for inverse relations. However, by relying on the semantics of

67

4.4 Evaluation

Table 4.5: Execution runtime of the 13 Allen Relations for all datasets for Aegle and Silk and
baseline. The runtimes reported for Aegle are the times required to perform the set operations
necessary to compute each relation. The overall runtimes (i.e., computation of required sets plus
times for set operations) are presented in Table 4.6. All runtimes are presented in seconds.

Machine Query
Relation Approach 3KMachines 30KMachines 300Machines 3KQueries 30KQueries 300KQueries

bf
Aegle 0.00 0.00 0.05 0.00 0.00 0.03

Silk 22.00 2,511.00 NA 43.00 2,794.00 NA

bfi
Aegle 1.52 127.37 27,103.19 2.37 127.37 32,023.10

Silk 24.00 2,547.00 NA 42.00 2,961.00 NA

mt
Aegle 0.00 0.00 0.03 0.00 0.00 0.00

Silk 23.00 2,219.00 NA 41.00 2,466.00 NA

mti
Aegle 0.00 0.00 0.03 0.00 0.00 0.00

Silk 23.00 2,290.00 NA 44.00 2,584.00 NA

fin
Aegle 0.73 77.88 13,775.31 1.18 70.53 16,280.24

Silk 23.00 2,306.00 NA 41.00 2,531.00 NA

fini
Aegle 0.42 47.07 7,837.04 0.62 40.04 8,600.89

Silk 23.00 2,305.00 NA 43.00 2,535.00 NA

st
Aegle 0.21 29.48 4,849.29 0.34 22.70 5,796.87

Silk 21.00 2,166.00 NA 40.00 2,613.00 NA

sti
Aegle 0.74 76.14 14,063.02 1.19 69.69 16,270.20

Silk 21.00 2,226.00 NA 43.00 2,533.00 NA

dur
Aegle 1.14 125.20 24,094.20 1.84 107.60 26,213.64

Silk 24.00 2,363.00 NA 41.00 2,546.00 NA

duri
Aegle 1.20 125.04 24,083.00 1.83 108.50 26,149.58

Silk 23.00 2,293.00 NA 41.00 2,476.00 NA

eq
Aegle 0.01 0.40 45.01 0.00 0.06 344.10

Silk 23.00 2,250.00 NA 41.00 2,473.00 NA
baseline 2.05 171.10 23,436.30 3.15 196.09 31,452.54

ov
Aegle 1.70 182.04 35,244.48 2.68 163.16 38,165.31

Silk 22.00 2,181.00 NA 39.00 2,487.00 NA

ovi
Aegle 1.87 202.80 37,939.27 3.02 179.90 42,068.13

Silk 22.00 2,189.00 NA 42.00 2,503.00 NA

Allen relations, we can refrain from computing inverse relations and have them inferred by any
forward or backward chaining system. The results under Aegle∗ in Table 4.3 show that overall,
the total runtime for computing the seven Allen relations bf,mt, fin, st, dur, eq and ov amounts
to less than half of Aegle’s runtime.

To conclude our answer for Q2, we studied what would happen if we computed each of the
Allen relations individually, i.e., we ran 13 experiments where we set AIR to contain exactly
one Allen relation. We used this setting to allow for a fine-grained comparison of our runtimes
with Silk’s. The results of this experiment are shown in Table 4.6. Overall, we manifestly
outperform Silk, even when computing each of the Allen relations on its own. This suggests
that our core implementation for the computation of atomic relations is superior to the generic
blocking scheme followed by Silk. This is especially clear when looking at the results on large
datasets in more detail.

For 30KQueries for example, Silk needs 2,473 seconds while Aegle only needs 0.45. The

68

Chapter 4. Aegle: An Efficient Approach for the Generation of Allen Relations

answer to Q2 is hence that Aegle outperforms the state of the art in all our experimental
settings. Note that the total runtime of a relation is increased by the number of atomic relations
involved in its computation when computed using Aegle. As a result, Aegle needs more time
for the ovi relation (which is derived by combining 5 atomic relations) than for eq (2 atomic
relations).

Table 4.6: Execution runtime of all Allen Relations if computed individually. All runtimes are
presented in seconds.

Machine Query
Relation Approach 3KMachines 30KMachines 300Machines 3KQueries 30KQueries 300KQueries

bf
Aegle 0.41 5.48 115.71 2.89 23.86 25.44

Silk 22.00 2,511.00 NA 43.00 2,794.00 NA

bfi
Aegle 1.95 133.42 27,197.59 5.58 153.84 32,037.64

Silk 24.00 2,547.00 NA 42.00 2,961.00 NA

mt
Aegle 0.02 0.19 3.42 0.02 0.21 3.89

Silk 23.00 2,219.00 NA 41.00 2,466.00 NA

mti
Aegle 0.02 0.20 2.17 0.03 0.19 1.98

Silk 23.00 2,290.00 NA 44.00 2,584.00 NA

fin
Aegle 1.20 84.18 13,875.70 4.20 95.67 16,296.80

Silk 23.00 2,306.00 NA 41.00 2,531.00 NA

fini
Aegle 0.85 53.74 7,934.73 3.57 64.78 8,614.93

Silk 23.00 2,305.00 NA 43.00 2,535.00 NA

st
Aegle 0.66 35.23 4,946.39 3.29 46.70 5,823.81

Silk 21.00 2,166.00 NA 40.00 2,613.00 NA

sti
Aegle 1.20 83.71 14,162.25 4.13 94.39 16,299.07

Silk 21.00 2,226.00 NA 43.00 2,533.00 NA

dur
Aegle 2.10 138.55 24,286.85 7.69 156.87 26,252.70

Silk 24.00 2,363.00 NA 41.00 2,546.00 NA

duri
Aegle 2.15 138.47 24,275.08 7.67 157.75 26,188.04

Silk 23.00 2,293.00 NA 41.00 2,476.00 NA

eq
Aegle 0.05 0.79 49.84 0.05 0.45 348.51

Silk 23.00 2,250.00 NA 41.00 2,473.00 NA
baseline 2.05 171.10 23,436.30 3.15 196.09 31,452.54

ov
Aegle 2.96 199.73 35,553.48 11.42 236.87 38,231.15

Silk 22.00 2,181.00 NA 39.00 2,487.00 NA

ovi
Aegle 3.16 222.27 38,226.32 11.97 257.59 42,121.68

Silk 22.00 2,189.00 NA 42.00 2,503.00 NA

69

4.4 Evaluation

70

Semantic Similarities for Link Dis-
covery

5
Preamble This chapter is based on [67]. It is the first approach to the efficient and scalable
computation of four well-known edge-counting semantic similarities for LD. The author co-
designed, implemented and evaluated the algorithm presented herein, and co-wrote the said
paper.

5.1 Notations

In this section, we begin by defining the notation necessary to model a lexical vocabulary as
a Directed Acyclic Graph (DAG). Then, based upon these definitions, we introduce the edge-
counting semantic similarities that we use in this work.

5.1.1 Lexical Vocabulary as Directed Acyclic Graph

We define a lexical vocabulary as a DAG G = (V,E), where:

• The set of vertices V is a set of concepts ci, were each ci stands for a set of synonyms. We
denote |V | with nV .

• E ⊆ V × V is a set of directed edges ejk = (cj , ck). We denote |E| with nE .

• The edge ejk stands for the hypernymy relations from a parent concept cj to a child concept
ck. We write cj → ck and say that cj is a hypernym of ck. We also define the hyponymy
relation as a directed relation from a child concept ck to a parent concept. We write
cj ← ck and we say that cj is a hyponym of ck. Hypernymy and hyponymy are transitive.

• The node root is the unique node of dictionary that has no parent concept.

• A leaf concept ci is a concept node with no children concepts.

• A concept is a common subsumer of c1 and c2 (denoted cs(c1, c2)) iff that concept is a
hypernym of both c1 and c2.

• The least common subsumer (LSO) of c1 and c2 (denoted lso(c1, c2)) is “the most specific
concept which is an ancestor of both c1 and c2” [218].

71

5.1 Notations

• We define the directed path from c1 to c2 via a common subsumer cs(c1, c2) as: path(c1, c2) =
{c1 ← ci ← . . .← cs(c1, c2)→ cj → . . .→ c2 : i, j, k ∈ N, i, j, k ≤ nv}. Note that there are
multiple path(c1, c2) between two concepts.

• len(c1, c2) is the length of the shortest path(c1, c2) between two concepts c1 and c2. Note
that len defines a metric. Hence, it is symmetric and abides by the triangle inequality,
i.e., len(c1, c2) ≤ len(c1, c3) + len(c2, c3) for any (c1, c2, c3) ∈ V 3.

• We define depthm(ci) as the length of the shortest path between root and ci. Analogously,
depthM (ci) is defined as the maximum depth(ci). We set D = max

c∈V
depthM (c).

Note that the following holds:

• depthm(root, ci) = len(root, ci)

• depthm(lso(c1, c2)) ≤ min(depthm(c1), depthm(c2))

• depthM (lso(c1, c2)) ≤ min(depthM (c1), depthM (c2))

• (triangle inequality) |len(root, c1)−len(root, c2)| ≤ len(c1, c2)⇔ |depthm(c1)−depthm(c2)| ≤
len(c1, c2)

5.1.2 Edge-Counting Semantic Similarities

We present normalized versions of common edge-counting similarities.

Shortest Path Similarity

The Shortest Path (Shortest Path) similarity [156] between two concepts c1 and c2 is defined
as Shortest Path
(c1, c2) = 2D−len(c1, c2). Given that Shortest Path(c1, c2) ∈ [0, 2D], we used the normalized
formulation of Shortest Path, i.e.,

Shortest Path(c1, c2) = 2D − len(c1, c2)
2D . (5.1)

Leacock and Chodorow

The Leacock and Chodorow metric (LCH- Leacock and CHodorow) takes both the path between
two concepts and the depth of the hierarchy into consideration [109]:

LCH(c1, c2) = − log
(
len(c1, c2)

2D

)
. (5.2)

where LCH(c1, c2) ∈ (0, log(2D)] for c1 6= c2. The normalized version of LCH is hence

LCH(c1, c2) =


1 if c1 = c2

− log
(
len(c1,c2)

2D

)
log(2D) else.

(5.3)

72

Chapter 5. Semantic Similarities for Link Discovery

Wu Palmer

The Wu and Palmer similarity (Wu Palmer) takes both the path between two concepts and
the depth of LSO into consideration [218]:

Wu Palmer(c1, c2) = 2depthM (lso(c1, c2))
2depthM (lso(c1, c2)) +N1 +N2

(5.4)

where N1 = len(lso(c1, c2), c1) and N2 = len(lso(c1, c2), c2). This similarity function is normal-
ized.

Li

The Li et al. metric (Li) is another take on using the path between two concepts and their LSO
to define a similarity [118]:

Li(c1, c2) = e−αlen(c1,c2) e
βdepth(lso(c1,c2)) − e−βdepth(lso(c1,c2))

eβdepth(lso(c1,c2)) + e−βdepth(lso(c1,c2)) (5.5)

where Li(c1, c2) ∈ (0, 1). We set depth(lso(c1, c2)) = depthM (lso(c1, c2)), since the original
specification does not state which depth(lso(c1, c2)) to use.

5.2 Approach

To show that semantic similarities can indeed help achieve better F-measures than the state of
the art, we first had to devise a scheme to reduce the runtimes of semantic similarities within
the framework of LD. In hECATE (Edge-Counting semAntic similariTies for Link DiscovEry),
we provide such a formal framework for edge-counting similarity, which we use to reduce the
runtime of our subsequent experiments.

Fundamentally, hECATE aims to compute the setM∗ = {(s, t) ∈ S×T : m(s, t, ps, pt) ≥ θ},
where m represents an edge-counting semantic similarity. To achieve this goal, the approach
makes use of upper bounds, which can be derived from the formulation of this family of mea-
sures. Take the Shortest Path similarity for example: for any two concepts c1 and c2,
Shortest Path(c1, c2) ≥ θ implies len(c1, c2) ≤ 2D(1 − θ). Formally, this means that we
can discard all comparisons of pairs (c1, c2) with len(c1, c2) > 2D(1− θ) without compromising
the computation ofM∗. Note that the computation of len(c1, c2) can be carried out online or
offline, which affects the total runtime of our approach as discussed in Section 5.3. As similar
bounds can be derived for the other edge-counting measures, hECATE generalizes the compu-
tation ofM∗ for edge-counting semantic similarities by using Algorithm 7.

5.2.1 hECATE

The hECATE approach takes (1) two sets of resources, S and T , (2) an atomic LS L =
((m(ps, pt), θ), where m is one of the four semantic similarities described in Section 5.1.2, and
(3) a lexical vocabulary structured as DAG (Section 5.1.1) as input. Our goal is to compute
the mapping M = [[L]] (see line 29 of Algorithm 7). For each pair (s, t), hECATE retrieves
and pre-processes the property values for ps resp. pt (lines 6, 5). The pre-processing consists of
tokenizing and extracting all stop-words from the objects of the triples (s, ps, os) and (t, pt, ot).
In order to include a pair (s, t) in M , the algorithm compares each set of source tokens from
os (sTokens) to each set of target tokens of ot (tTokens). The pair of objects (os, ot) with the
highest similarity abiding by the bounds derived for each measure (see paragraph above for an

73

5.2 Approach

example) is used to compute the similarity between s and t and then, the algorithm decides
whether or not this pair should be added to M .

To do so, for each token sToken ∈ sTokens, we find the tToken ∈ tTokens that is most
similar to each sToken (lines 12- 21). First, the algorithm checks if sToken and tToken have
been compared before (line 12) by checking the set mapSim. If the tokens are being compared
for the first time (line 13), the algorithm checks if the tokens are identical and assigns the value
of 1 to TTSim. Or, it calls the function compare(sToken, tToken, V DAG), which compares
the corresponding sets of concepts obtained from the input V DAG (line 16). In both cases, the
mapSim is updated accordingly. Then, TTSim is compared to the maximum token-to-token
similarity and maxTTSim is updated. The procedure continues until the highest similarity
between the current sToken and a tToken is found or the loop stops if the maxTTSim is equal
to 1 (line 21).

The algorithm aggregates the highest similarities maxTTSim of all sToken ∈ sTokens
(line 23), takes their average (line 24), compares with the current highest similarity, and replaces
it accordingly (line 25). The loops continues by comparing all pairs of (sTokens,tTokens). In
cases where the similarity of a set of (sTokens,tTokens) is equal to 1, the comparison of the
set of tokens is terminated. Once the final maxSimilarity is found, our algorithm decides if the
pair (s, t) can be added to the final mapping M (line 29).

The key behind hECATE lies in the token comparison algorithm - compare(sToken, tToken, V DAG)
(line 16 of Algorithm 7). So, for a pair of tokens (sToken, tToken), we retrieve the set of concepts
they belong to in the V DAG. If both sets of concepts are not empty, we compare each source
sCon with target concept tCon and define the maximum similarity of two tokens as the highest
similarity of the corresponding concept pair. To do so, Algorithms 8 and 9 describe our im-
plementation of the edge-counting semantic similarities as part of the hECATE algorithm. For
all similarities, we first retrieve the set of all hypernym paths of each concept to the root of the
V DAG (lines 2, 3 of Algorithm 8, and lines 1, 2 of Algorithm 9). The getPaths(concept, V DAG)
algorithm traverses the V DAG by utilizing the hypernym relation. It starts from the concept
node and explores as far as possible along each path before backtracking.

For Shortest Path and LCH, we retrieve the maximum depth D found in the V DAG
(line 1), the len(sCon, tCon) (line 4), and we proceed in calculating the corresponding similarity
as described in Equation 5.1 and 5.2 resp. in line 5. Algorithm 10 describes the process of
identifying the len(sCon, tCon) by considering the set hypernym paths of the concepts. The
algorithm begins by iterating over both paths hp1 and hp2 simultaneously, from top to bottom,
until they do not share any common nodes (line 5). Then, it proceeds in calculating the length
of the newly found path(sCon, tCon) (line 7), as the number of concepts that the two paths do
not have in common. Finally, the algorithm compares the size of the newly found path with
the existing one and replaces it accordingly (line 8). This procedure is repeated for all pairs of
hypernym paths until the len(sCon, tCon) is found.

For Wu Palmer and Li, we retrieved the depth of LSO between sCon and tCon (depth(lso
(sCon, tCon)), and N1 and N2 (line 3) by calling the function getLSO (hps1, hps2). Algo-
rithm 11 describes the procedure of identifying the aformentioned values by considering the set
of hypernym paths of the concepts. The algorithm begins by iterating over both paths hp1
and hp2 simultaneously, in a similar manner as in Algorithm 10. Then, it proceeds in cal-
culating the length of the newly found path(sCon, tCon) (line 8) and replaces the values of
depth(lso(sCon, tCon)), N1 and N2 iff there is no LSO found, or the new LSO is located deeper
in the hierarchy than the current LSO, or the new LSO has the same depth with the current
LSO but the new path(sCon, tCon) is smaller (line 5). This procedure is repeated for all pairs
of hypernym paths until the depthM (lso(sCon, tCon) and the corresponding N1 and N2 are
found. Once Algorithm 11 returns, we proceed in calculating the corresponding similarity as

74

Chapter 5. Semantic Similarities for Link Discovery

Algorithm 7: hECATE(S, T, L, V DAG)
Input: source KB S, target KB T , a LS L = ((m(ps, pt), θ) and a vocabulary DAG

V DAG
Output: a mapping M

1 M ← ∅
2 foreach (s, t) ∈ S × T do
3 maxSimilarity ← 0
4 simMap← ∅
5 newTargets← preprocess(t, pt)
6 foreach sTokens ∈ preprocess(s, ps) do
7 foreach tTokens ∈ newTargets do
8 similarity ← 0
9 foreach sToken ∈ sTokens do

10 maxTTSim← 0
11 foreach tToken ∈ tTokens do
12 TTSim← checkSimilarity(simMap, sToken, tToken)
13 if TTSim == −1 then
14 if sToken == tToken then
15 TTSim← 1
16 else
17 TTSim← compare(sToken, tToken, V DAG)
18 update(simMap, sToken, tToken, TTSim)
19 if TTSim > maxTTSim then
20 maxTTSim← TTSim

21 if maxTTSim == 1 then
22 break

23 similarity ← similarity +maxTTSim

24 similarity ← similarity/sTokens.getSize()
25 if similarity > maxSimilarity then
26 maxSimilarity ← similarity

27 if maxSimilarity == 1 then
28 break

29 if maxSimilarity ≥ θ then
30 M ←M ∪ (s, t)

31 Return M

described in Equation 5.4 and 5.5 resp. in line 4.

5.2.2 Indexing

Our first extension of hECATE is based on the idea of pre-computing and storing a set of val-
ues that are used often in our algorithm. For edge-counting similarites, these are the hypernym
paths. Consequently, the extension hECATE-I (hECATE with Indexing) of hECATE precom-
putes all hypernym paths for all concepts included in the V DAG, using the getPaths(concept, V DAG)

75

5.2 Approach

Algorithm 8: compare(sCon, tCon, V DAG) for Shortest Path or LCH
Input: source concept sCon, target concept tCon, and a vocabulary DAG V DAG
Output: a similarity value

1 D ← V DAG.getMaxDepth(sCon)
2 hps1 ← getPaths(sCon, V DAG)
3 hps2 ← getPaths(tCon, V DAG)
4 minLength← getMinLength(hps1, hps2)
5 Return computeSimilarity(D,minLength)

Algorithm 9: compare(sCon, tCon, V DAG) for Wu Palmer or Li
Input: source concept sCon, target concept tCon, and a vocabulary DAG V DAG
Output: a similarity value

1 hps1 ← getPaths(sCon, V DAG)
2 hps2 ← getPaths(tCon, V DAG)
3 depth,N1, N2 ← getLSO(hps1, hps2)
4 Return computeSimilarity(N1, N2, depth)

function. Therefore, every time the getPaths(concept, V DAG) is invoked (lines 2, 3 of Algo-
rithm 8 and lines 1, 2 of Algorithm 9), instead of computing all the hypernym paths of concept
on the fly, we retrieve them from an index.

5.2.3 Filtering

Our second extension of hECATE, hECATE-IF (hECATE with Indexing and Filtering), com-
bines hECATE-I with the idea of minimizing unnecessary comparison between concepts by
filtering out pairs of source and target concepts that do not satisfy a condition for each semantic
similarity. The filtering is performed inside compare(sToken, tToken, V DAG) for each pair of
concepts sCon and tCon. Given a semantic similarity, if a pair of concepts satisfies the corre-
sponding filtering condition, then the algorithm proceeds normally as described in Section 5.2.1.
This check is performed before line 2 in the compare(sToken, tToken, V DAG) function for
Shortest Path or LCH, and before line 1 in the compare(sToken, tToken, V DAG) function
for Wu Palmer or Li. If the condition is not met, then the algorithm does not compute the
similarity between the two concepts.

For the Shortest Path similarity, two concepts will be considered for comparison if the
following holds:

Shortest Path(c1, c2) ≥ θ ⇔
2D − len(c1, c2)

2D ≥ θ ⇒

|depthm(c1)− depthm(c2)| ≤ 2D(1− θ)

(5.6)

76

Chapter 5. Semantic Similarities for Link Discovery

For the Wu Palmer similarity, the following must hold:

WU(c1, c2) ≥ θ ⇔
2depthM (lso(c1, c2))

2depthM (lso(c1, c2)) +N1 +N2
≥ θ ⇔

2depthM (lso(c1, c2)) ≥ θ(N1 +N2) + 2θdepthM (lso(c1, c2))⇔

N1 +N2 ≤
2depthM (lso(c1, c2))(1− θ)

θ
⇒

N1 +N2 ≤
2min(depthM (c1), depthM (c2))(1− θ)

θ

(5.7)

Based on the triangle inequality and Section 5.1.2, Equation 5.7 can be written as:

len(c1, c2) ≤ 2min(depthM (c1), depthM (c2))(1− θ)
θ

⇒

|depthm(c1)− depthm(c2)| ≤ 2min(depthM (c1), depthM (c2))(1− θ)
θ

(5.8)

For the LCH similarity, two concepts will be considered for comparison if the following holds:

LCH(c1, c2) ≥ θ ⇔

−log len(c1,c2)
2D

log(2D) ≥ θ ⇔

log(2D)− log(len(c1, c2))
log(2D) ≥ θ ⇔

1− log(len(c1, c2))
log(2D) ≥ θ ⇔

log(len(c1, c2))
log(2D) ≤ (1− θ)⇔

log(len(c1, c2)) ≤ log(2D)(1− θ)⇔
len(c1, c2) ≤ 2log(2D)(1−θ) ⇒

|depthm(c1)− depthm(c2)| ≤ 2log(2D)(1−θ)

(5.9)

When considering the Li similarity, we make the following variable replacements for the sake
of legibility: x = depthM (lso(c1, c2)), y = min(depthM (c1),depthM (c2)) and z = len(c1, c2).
Then, two concepts will be considered for comparison, iff:

77

5.3 Evaluation

Li(c1, c2) ≥ θ ⇔

e−αz
eβx − e−βx

eβx + e−βx
≥ θ ⇔

eαz ≤ eβx − e−βx

eβx + e−βx
θ ⇔

eαz ≤
(e2βx−1)
eβx

(e2βx+1)
eβx

θ
⇔

eαz ≤ (e2βx − 1)
(e2βx + 1)θ ⇒

eαz ≤ (e2βy − 1)
(e2βy + 1)θ ⇔

αz ≤ ln(e2βy − 1)− lnθ − ln(e2βy + 1)⇔

|depthm(c1)− depthm(c2)| ≤ ln(e2βy − 1)− lnθ − ln(e2βy + 1)
α

(5.10)

Based on Equations 5.6, 5.8, 5.9 and 5.10, each filtering condition requires the knowledge
of depthm(sCon), depthM (sCon), depthm(tCon) and depthM (tCon). To do so, we traverse the
V DAG in the same manner as in the getPaths(sCon, tCon, V DAG) function, obtain all paths
for a concept and find the one with the maximum and minimum lengths.

Algorithm 10: getMinLength(hps1, hps2)
Input: two sets of hypernym paths, hps1 and hps2
Output: len(sCon, tCon)

1 size←MAX_V ALUE
2 foreach hp1 ∈ hps1 do
3 foreach hp2 ∈ hps2 do
4 l1 ← 0, l2 ← 0
5 while l1 < hp1.size() ∧ l2 < hp2.size() ∧ hp1.get(l1) == hp2.get(l2) do
6 l1 ← l1 + 1, l2 ← l2 + 1
7 newSize← hp1.size() + hp2.size()− 2l1
8 if newSize < size then
9 size← newSize

10 Return size

5.3 Evaluation

5.3.1 Evaluation Questions

The aim of our evaluation was to address the three research questions:

• Q1: How do our strategies for improving the runtime of semantic similarities compare to
each other w.r.t. runtime?

• Q2: How do the different edge-counting semantic similarities compare w.r.t. runtime?

• Q3: Can semantic similarities improve the F-measure of LD systems?

78

Chapter 5. Semantic Similarities for Link Discovery

Algorithm 11: getLSO(hps1, hps2)
Input: two sets of hypernym paths, hps1 and hps2
Output: depthM (lso(sCon, tCon)), N1 and N2

1 dLSO ← 0, N1 ← 0, N2 ← 0
2 foreach hp1 ∈ hps1 do
3 foreach hp2 ∈ hps2 do
4 l1 ← 0, l2 ← 0
5 while l1 < hp1.size() ∧ l2 < hp2.size() ∧ hp1.get(l1) == hp2.get(l2) do
6 l1 ← l1 + 1
7 l2 ← l2 + 1
8 newSize← hp1.size() + hp2.size()− 2l1
9 oldSize← N1 +N2

10 if condition is met then
11 dLSO ← l1
12 N1 ← hp1.size()− l1
13 N2 ← hp2.size()− l2

14 Return dLSO,N1, N2

5.3.2 Evaluation Datasets

We evaluated our approach against five benchmark data sets: Abt-Buy, Amazon-GP and
DBLP-ACM described in [103], DailyMed-Drugbank (dubbed DM-DB) and DB-Movies de-
scribed in [141]. We used WordNet1 as a V DAG. WordNet is a “large lexical database of
English, where nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms
(synsets), each expressing a distinct concept” [58].

Table 5.1: Characteristics of data sets

Dataset Source (S) Target (T) |S| × |T | Source Property Target Property
Abt-Buy Abt Buy 1.20× 106 description description
Amazon-GP Amazon Google 4.40× 106 description description
DBLP-ACM ACM DBLP 6.00× 106 title title
DM-DB DailyMed DrugBank 1.09× 106 name name
DB-Movies DBpedia LinkedMDB 1.11× 106 title title

5.3.3 Experimental Setup

To address Q1 an Q2, we conducted a set of experiments using the basic hECATE algorithm
(dubbed hECATE-B) as a baseline as well as hECATE-I and hECATE-IF. All methods
were implemented in LD framework Limes [137]. For hECATE-IF, we enhanced the Indexing
extension described in Section 5.2.2, by additionally pre-computing and storing the depthm(ci)
and depthM (ci) for every concept found in the V DAG by traversing the graph in a BFS manner.
For hECATE-B and hECATE-I, we created one atomic LS for each semantic similarity, where
m was the name of the edge-counting similarity, θ = 0.1. The source and target properties (ps,

1https://wordnet.princeton.edu/

79

https://wordnet.princeton.edu/

5.3 Evaluation

pt resp.) for each dataset were derived from Table 5.1. For hECATE-IF, we used the same
values for m, ps and pt as before, but θ was derived from the interval [0.1, 1] with an increment
step of 0.1, since the θ is given as a parameter to the filtering functions (Section 5.2.3). For
each dataset, we performed the aforementioned LSs against 2v instances from the source and
target datasets, starting with v = 2, and we incremented v until all instances were covered.2 We
allowed each LS to run up to 2hrs. Each experiment was executed 3 times and we present the
average values.3

The second goal of this work was to evaluate edge-counting semantic similarities in LD in
terms of accuracy. Consequently, for Q3, we used the hECATE extension with the best runtime
performance based on the results of Q1 and we executed a set of experiments using 2 machine
learning (ML) algorithms: Wombat [188] and Dragon [151]. We performed a 10-fold cross
validation by allowing Wombat and Dragon to use as input only string similarities (StrSim),
only semantic similarities (SmtSim) and a combination of both (StrSmtSim). We used the
levenshtein, cosine and qgrams as string similarity measures, implemented in Limes [137].
For each dataset, we used all properties apart from those that corresponded to numeric values.

Wombat was configured as presented in [188], and Dragon was configured as presented
in [151]. We used two termination criteria for Wombat: either a LS with F-measure of 1
was found, or a maximal refinement depth of 10 was reached. For string similarities, Wombat
produced LSs with minimum θ value of 0.4, and for the semantic similarities, the minimum θ
value was set to 0.7. Dragon terminated either when no new nodes were found, or when the
maximum height = 3 of the decision tree was reached. All runtime experiments were carried out
on a 64-core Linux Server running OpenJDK 64-Bit Server 1.8.0_121 on Ubuntu 16.04.3 LTS
on Intel(R) Xeon(R) CPU E5-2698 v3 processors clocked at 2.30GHz.

5.3.4 Experimental Results

As expected, hECATE-B achieved the lowest performance compared to hECATE-I and hECATE-
IF (Figure 5.1) in all datasets, except DM-DB. It is obvious that introducing the filtering and in-
dexing extensions improves the runtime of all semantic similarities, making them more amenable
for LD and scalable for larger datasets. Precisely, LCH’s, Wu Palmer’s and Shortest Path’s
runtimes improve by 71% and 57% on average when hECATE-I and hECATE-IF strategies are
used resp. Li has the least improvement by 65% and 50%. Comparing the two extensions, in all
datasets and for all semantic similarities, hECATE-I outperforms hECATE-IF by an average
of 30%. A detailed analysis of the runtimes shows that even though hECATE-IF reduces the
number of comparisons between semantically different concepts and thus the comparison time,
the additional runtime cost of filtering creates an overhead that results in a worse total execution
time than hECATE-I (Table 5.2). Regarding the DM-DB dataset, the only property for both
source and target datasets, name, consists of only one value, which corresponds to the official
name of a drug. That value can only be associated with one concept. As a result, introducing
an indexing and/or filtering technique produces an unnecessary overhead. We can now clearly
answer Q1: our best strategy for semantic similarities is hECATE-I.

Our answer to Q2 is based on Figure 5.1: the semantic similarity with the worst runtime
performance is Li. For the DB-Movies dataset, we notice that hECATE-I requires 100K more
token comparisons than the other similarities (Table 5.2). The reason behind this is twofold:
(1) in our implementation, we check if the similarity of two tokens/concepts is 1 and stop any
further comparison of tokens/concepts resp. (2) based on Equation 5.5, it is not possible to
add this break point since the Li similarity can never be 1. However, based on Figure 5.1 and

2For the Amazon-Google dataset, the maximal value of v was set to 9.
3All results are available at https://hobbitdata.informatik.uni-leipzig.de/hECATE/.

80

https://hobbitdata.informatik.uni-leipzig.de/hECATE/

Chapter 5. Semantic Similarities for Link Discovery

Table 5.2: Number of concept comparisons produced for the DB-Movies dataset for hECATE-I
and hECATE-IF. The number of comparisons for hECATE-B is the same as hECATE-I

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Shortest Path hECATE-I 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M
hECATE-IF 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.0M 51.4M 10.3M

Wu Palmer hECATE-I 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M
hECATE-IF 61.8M 61.8M 61.8M 61.7M 61.5M 60.3M 56.7M 44.7M 27.8M 10.3M

LCH hECATE-I 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M 61.8M
hECATE-IF 61.8M 61.8M 61.8M 61.4M 60.4M 56.5M 42.4M 42.4M 28.5M 28.5M

Li hECATE-I 61.9M 61.9M 61.9M 61.9M 61.9M 61.9M 61.9M 61.9M 61.9M 61.9M
hECATE-IF 61.9M 61.4M 59.9M 56.6M 51.5M 42.1M 28.3M 28.2M 10.0M 00.0M

Table 5.2, Li’s runtime shows a great improvement as the values of θ increase in relation to
the other metrics. This justifies the fact that Li has the highest standard deviation, whereas
Shortest Path, LCH and Wu Palmer are less influenced by the different values of θ. This
answers Q2: for all hECATE strategies, Shortest Path is the fastest similarity, whereas Li
is the slowest.

To answer Q3, we added the four edge-counting measures Li, Wu Palmer, Shortest Path,
and LCH to the state-of-the-art algorithms Wombat and Dragon, where we evaluated their
performance with and without string similarity using a ten-fold cross validation. We chose these
two approaches because (1) they achieve state-of-the-art performance while being deterministic,
(2) they are open-source, meaning our experiments can be easily reproduced and (3) they are able
to generate complex LSs with any arbitrary number of measures. Table 5.3 shows the results of
our experiments with machine-learning algorithms. Additionally, in Table 5.3, we reported the
average F-measure score of the string-based LD algorithms Eagle [141], Euclid [136], J48 [80]
reported by [151], and the Multilayer Perceptron (MultiPerc) classifier reported by [195].
Unfortunately, we were not able to include our semantic similarities in the said systems. However,
solely based on the results of the string similarities, we observe that Wombat outperforms
Eagle, Euclid, J48 and MultiPerc in 3 out of 5 datasets (Table 5.3).

Table 5.3: Average F-measure achieved by Wombat, Dragon, Euclid, Eagle, J48 and Mul-
tilayer Perception within a 10-fold cross validation setting. The semantic similarities use the
hECATE-I strategy.

Algorithm Wombat Dragon Euclid Eagle J48 MultiPerc

Similarities StrSim SmtSim StrSmtSim StrSim SmtSim StrSmtSim StrSim StrSim StrSim StrSim
Abt-Buy 0.65 0.65 0.66 0.51 0.02 0.10 0.00 0.56 0.43 0.43
Amazon-GP 0.71 0.60 0.77 0.64 0.06 0.05 0.71 0.73 0.41 0.36
DBLP-ACM 0.97 0.74 0.97 0.93 0.81 0.93 0.98 0.98 0.77 0.97
DM-DB 0.94 0.71 0.97 0.89 0.65 0.89 1.00 1.00 0.94 -
DB-Movies 1.00 0.73 1.00 0.93 0.80 0.93 0.98 0.99 0.84 -

Table 5.4 includes the maximum F-measure achieved by Wombat, Dragon, the Pes-
simistic and the Re-Weighted versions of the work presented at [97]. For comparison rea-
sons, we conducted an additional set of experiments for Wombat and Dragon, following the
experimental setup introduced in [97]. Each experiment was executed 7 times by randomly
selecting 2% of the gold standard as training data and using the remaining 98% for testing.
Since Pessimistic and Re-Weighted are not open-source, we were not able to find and alter
the algorithms to include the edge-counting semantic similarities. However, the results obtained
for string similarities presented in Table 5.4 show that Wombat outperforms both systems in

81

5.3 Evaluation

LCH Li Wu-Palmer Shortest Path
0E00

3E02

5E02

8E02

1E03

1E03

2E03

2E03

2E03

2E03

3E03

O
v
e
ra

ll
R

u
n
ti

m
e
 f

o
r

S
=

1
0

8
1

,
T
=

1
0

9
2

hECATE-B hECATE-I hECATE-IF

(a) Abt-Buy
LCH Li Wu-Palmer Shortest Path

0E00

4E02

7E02

1E03

1E03

2E03

2E03

2E03

3E03

3E03

4E03

O
v
e
ra

ll
R

u
n
ti

m
e
 f

o
r

S
=

5
1

2
,

T
=

5
1

2

hECATE-B hECATE-I hECATE-IF

(b) Amazon-GP

LCH Li Wu-Palmer Shortest Path
0E00

3E02

5E02

8E02

1E03

1E03

2E03

2E03

2E03

2E03

3E03

O
v
e
ra

ll
R

u
n
ti

m
e
 f

o
r

S
=

2
6

1
6

,
T
=

2
2

9
4

hECATE-B hECATE-I hECATE-IF

(c) DBLP-ACM
LCH Li Wu-Palmer Shortest Path

0E00

2E00

4E00

6E00

8E00

1E01

1E01

1E01

2E01

2E01

O
v
e
ra

ll
R

u
n
ti

m
e
 f

o
r

S
=

1
0

4
6

,
T
=

9
3

6

hECATE-B hECATE-I hECATE-IF

(d) DM-DB

LCH Li Wu-Palmer Shortest Path
0E00

2E01

5E01

7E01

1E02

1E02

1E02

2E02

2E02

2E02

2E02

O
v
e
ra

ll
R

u
n
ti

m
e
 f

o
r

S
=

1
0

1
7

,
T
=

1
0

4
2

hECATE-B hECATE-I hECATE-IF

(e) DB-Movies

Figure 5.1: Execution time results of applying hECATE-B, hECATE-I and hECATE-IF on
all evaluation data. The y-axis shows the average runtime in seconds. For hECATE-IF, we
also present the standard deviation among the different thresholds.

80% of cases.
Regarding the comparison of two ML systems that were able to support semantic similarities

- the performance of Dragon remained the same in 60% of cases or even worsened; while
adding semantic similarities to the Wombat algorithm improved its overall performance of
the algorithm in 60% of cases by up to 6% F-measure absolute. As expected, this effect is
most pronounced in datasets that rely on long textual descriptions such as Amazon-GP. A look
into the specifications learned by Wombat suggests that this effect is due to the approach
combining semantic and string similarities using an operator such as t, and learning the correct

82

Chapter 5. Semantic Similarities for Link Discovery

threshold for each of these measures. Improvement on the DM-DB datasets is achieved using
the \ operator, not allowing semantically similar concepts to be matched together. This refutes
current results (see [125]) and suggests that the refinement operators can combine semantic and
string similarities in a way that improves the F-measure.

Table 5.4: Maximum F-measure achieved by Wombat, Dragon, Pessimistic and Re-
Weighted achieved using 2% of the data for training over 7 iterations [97]. The semantic
similarities use the hECATE-I strategy.

Algorithm Wombat Dragon Pessimistic Re-Weighted

Similarities StrSim SmtSim StrSmtSim StrSim SmtSim StrSmtSim StrSim StrSim
Abt-Buy 0.35 0.39 0.34 0.24 0.10 0.24 0.36 0.37
Amazon-GP 0.53 0.33 0.43 0.45 0.13 0.35 0.39 0.43
DBLP-ACM 0.91 0.55 0.91 0.90 0.66 0.90 0.93 0.95
DM-DB 0.94 0.71 0.97 0.94 0.71 0.96 - -
DB-Movies 0.97 0.33 0.97 0.96 0.33 0.96 - -

83

5.3 Evaluation

84

An Evaluation of Models for Run-
time Approximation in Link Dis-
covery

6
Preamble This chapter is based on [64] and is the first study of exponential and mixed models
for the estimation of the planner runtimes. The author co-designed, implemented and evaluated
the algorithm presented herein, and co-wrote the said paper.

6.1 Selection of Models for Runtime Approximation

Planners aim to estimate the cost of the leaves of a plan, i.e., the runtime of atomic LS. So
far, linear models [138] have been used for this purpose but the appropriateness of other models
has never been evaluated. Hence, in this work, we compare non-linear models with linear
models to approximate the runtime of an atomic LS. Like in previous works, we follow a
sampling-based approach. First, given a particular similarity measure m (e.g., Levenshtein) and
an implementation of the said measure (e.g., Ed-Join [219]), we begin by collecting samples
of runtimes for a given measure with varying values of |S|, |T | and θ.1 These samples can be
regarded as the output of a function, which can predict the implementation runtime of m, for
which we were given samples. The major question to be answered is hence, what is the shape of
the runtime evaluation function?

We tried fitting functions of different shapes to the previously measured runtimes in order to
compare their performance when planning the execution of link specifications. Formally, these
functions are mappings ψ : N×N× (0, 1] 7→ R, whose value at (|S|, |T |, θ) is an approximation of
the runtime for the link specification with these parameters. If ~R = (R1, . . . , Rn) are the mea-
sured runtimes for the parameters ~S = (|S1|, . . . , |Sn|), ~T = (|T1|, . . . , |Tn|) and ~θ = (θ1, . . . , θn),
then we constrain the mapping φ to be a local minimum of the L2-Loss:

E(~S, ~T , ~θ) := ‖~R− φ(~S, ~T , ~θ)‖2, (6.1)

writing ψ(~S, ~T , ~θ) = (ψ(|S1|, |T1|, θ1), . . . , ψ(|Sn|, |Tn|, θn)).
Within this paper, we consider the following parametrized families of functions:

ψ1(S, T, θ) = a+ b|S|+ c|T |+ yθ (6.2)
ψ2(S, T, θ) = exp (a+ b|S|+ c|T |+ yθ + hθ2) (6.3)
ψ3(S, T, θ) = a+ (b+ c|S|+ y|T |+ h|S||T |) exp (zθ + xθ2) (6.4)

1We also experimented with the number of trigrams contained in S and T but found that they do not affect
the models we considered.

85

6.1 Selection of Models for Runtime Approximation

The parameters are then determined by

a∗, b∗, · · · = argminE(~S, ~T , ~θ, ~R)(a, b, . . .) (6.5)

for some local minimum. In the case of ψ1 and ψ2 this problem is linear in nature and we
solved it using the pseudo-inverse of the associated Vandermonde matrix. For ψ3 we used the
Levenberg-Marquardt Algorithm [130] for nonlinear least squares problems, using 1 as an initial
guess for all parameters.

We chose ψ1 as the baseline linear fit. ψ2 was the standard log-linear fit, except for the θ2

term. We included this term during a grid search for polynomials to perform a log-polynomial
fit. Higher orders of |S| or |T | or θ did not contribute to a better fit. ψ3 can be interpreted as
an interpolation of ψ1 and ψ2 with a constant offset a.

To exemplify our approach for ψ2, assume we have measured ~S = (458, 458, 358, 58), ~T =
(512, 404, 317, 512) and ~θ = (0.5, 0.9, 0.6, 0.7). Inserting into Equation 6.1 and taking the loga-
rithm, one arrives at the optimization problem

min
a,b,c,y,h

‖


1 458 512 0.5 0.52

1 458 404 0.9 0.92

1 358 317 0.6 0.62

1 58 512 0.7 0.72



a
b
c
y
h

−


log(67)
log(4)
log(4)
log(1)

 ‖2

The solution to this least squares problem also is the unique solution of its normal equations:
1 1 1 1

458 458 358 58
512 404 317 512
0.5 0.9 0.6 0.7
0.52 0.92 0.62 0.72




1 458 512 0.5 0.52

1 458 404 0.9 0.92

1 358 317 0.6 0.62

1 58 512 0.7 0.72



a
b
c
y
h



=


1 1 1 1

458 458 358 58
512 404 317 512
0.5 0.9 0.6 0.7
0.52 0.92 0.62 0.72




log(67)
log(4)
log(4)
log(1)


By multiplying and inverting matrices, we arrive at the linear equation

a
b
c
y
h

 =


1 458 512 0.5 0.52

1 458 404 0.9 0.92

1 358 317 0.6 0.62

1 58 512 0.7 0.72


+

log(67)
log(4)
log(4)

0

 ,

where A+ denotes the Moore-Penrose pseudo inverse of A [36]. Multiplying the matrices, we
arrive at 

a
b
c
y
h

 =


−1.028
0.009
0.010
9.821
−9.053

 .
Thus we have found the coefficients of the fit function.

86

Chapter 6. An Evaluation of Models for Runtime Approximation in Link Discovery

6.2 Evaluation

6.2.1 Evaluation Questions

Each of our experiments consisted of two phases: During the training phase, we trained each of
the models independently. For each model, we computed the set of coefficients for each of the
approximation models that minimized the Root-Mean-Square Error (RMSE) on the training
data provided. The aim of the subsequent test phase was to evaluate the accuracy of the
runtime estimation provided by each model and the performance of the currently best LD
planner, Helios [138], when it relied on each of the three models for runtime approximations.
Throughout our experiments, we used the algorithms Ed-Join [219] (which implements the
Levenshtein string distance) and PPJoin+ [220] (which implements the jaccard, overlap, cosine
and trigrams string similarity measures) to execute atomic specifications. For the threshold θ,
we used random values between 0.5 and 1.

The aim of our evaluation was to answer the following set of questions regarding the perfor-
mance of the three models: exp, linear and mixed. 2

• Q1: How do our models fit each class separately?
To answer this question, we began by splitting the source and target data of each of our
datasets into two non-overlapping parts of equal size. We used the first half of each source
and each target for training and the second half for testing.

– Training: We trained the three models on each dataset. For each model, dataset and
mapper, we a) selected 15 source and 15 target samples of random sizes from the
first half of a dataset, and b) compared each source sample with each target sample 3
times. Note that we used the same samples across all models for the sake of fairness.
Overall, we ran 675 training experiments to train each model on each dataset.

– Testing: To test the accuracy of each model, we ran the corresponding algorithm
(Ed-Join and PPJoin+) with a random threshold between 0.5 and 1 and recorded
the real runtime of the approach and the runtimes predicted by our three models.
Each approach was executed 100 times against the whole of the second half of the
same dataset.

• Q2: How do our models generalize across classes, i.e., can a model trained on data from
one class be used to predict runtimes accurately on another class?

– Training: We trained each model in the same manner as for Q1 on exactly the same
five datasets, with the sole difference that the samples were selected randomly from
the whole dataset.

– Testing: As in the previous series of experiments, we ran Ed-Join and PPJoin+ with
a random threshold between 0.5 and 1. Each of the algorithms was executed 100
times against the remaining four datasets.

• Q3: How do our models perform when trained on a large dataset?

– Training: We trained in the same fashion as to answer Q1, with two differences: (1)
we used 15 source and 15 random target samples of various sizes between 10, 000 and
100, 000, and (2) the target samples used to train our model came from English labels
of DBpedia.

2For Q1 and Q2 we did not conduct experiments using the dataset derived from DBPedia’s English labels,
since it includes labels from multiple classes.

87

6.2 Evaluation

– Testing: We learned 100 LSs for each dataset using the unsupervised version of the
Eagle algorithm [141]. We chose this algorithm because it was shown to generate
meaningful specifications that return high-quality links in previous works. For each
dataset, we ran the set of 100 specifications learned by Eagle on the given dataset
by using each of the models during the execution, in combination with the Helios
planning algorithm [138]. This algorithm was shown to outperform the canonical
planner w.r.t. runtime while producing exactly the same results.

6.2.2 Evaluation Datasets

We evaluated the three runtime estimation models using six datasets. The first three are the
benchmark datasets for LD dubbed Amazon-GP, DBLP-ACM and DBLP-Scholar described in
[103]. We also created two larger additional datasets (MOVIES and VILLAGES, see Table 6.1)
from the datasets DBpedia, LinkedGeoData (LGD) and LinkedMDB.3 4 The sixth dataset was
the set of all English labels from DBpedia 2014. Table 6.1 describes the characteristics of the
datasets and presents the properties used when linking the retrieved resources for the first four
datasets. The mapping properties were provided to the LD algorithms underlying our results.

6.2.3 Experimental Set-Up

Throughout our experiments, we configured Eagle by setting the number of generations and
population size to 20, mutation and crossover rates were set to 0.6. All experiments for all
implementations were carried out on the same 20-core Linux Server running OpenJDK 64-Bit
Server 1.8.0_74 on Ubuntu 14.04.4 LTS on Intel(R) Xeon(R) CPU E5-2650 v3 processors clocked
at 2.30GHz. Each train experiment and each test experiment for Q3 was repeated three times.
As evaluation measure, we computed RMSE between the expected runtime and the average
execution runtime required to run each LS. We report all three numbers for each model and
dataset.

Table 6.1: Entity matching characteristics of datasets

Dataset Source (S) Target (T) |S| × |T | Source Property Target Property

Amazon-GP Amazon 4.40× 106

product name product name
Google description description
Products manufacturer manufacturer

price price

DBLP-ACM ACM DBLP 6.00× 106 title, authors title authors
venue, year venue, year

DBLP-Scholar DBLP Google 0.17× 109 title, authors title, authors
Scholar venue, year venue, year

MOVIES DBpedia LinkedMDB 0.17× 109

dbp:name dc2:title
dbo:director/dbp:name movie:director/movie:director_name
dbo:producer/dbp:name movie:producer/movie:producer_name
dbp:writer/dbp:name movie:writer/movie:writer_name
rdfs:label rdfs:label

VILLAGES DBpedia LGD 6.88× 109
rdfs:label rdfs:label
dbo:populationTotal lgdo:population
geo:geometry geom:geometry/agc:asWKT

3http://www.linkedmdb.org/
4The new datasets as well as a description of how they were constructed are available at https://hobbitdata.

informatik.uni-leipzig.de/LIGER/newDatasets/.

88

http://www.linkedmdb.org/
https://hobbitdata.informatik.uni-leipzig.de/LIGER/newDatasets/
https://hobbitdata.informatik.uni-leipzig.de/LIGER/newDatasets/

Chapter 6. An Evaluation of Models for Runtime Approximation in Link Discovery

6.2.4 Experimental Results

To address Q1, we evaluated the performance of our models when trained and tested on the
same class. We present the results of this series of experiments in Table 6.2. For PPJoin+ (in
particular the trigrams measure), the mixed model achieved the lowest error when tested upon
Amazon-GP and DBLP-Scholar, whereas the linear model was able to approximate the expected
runtime with higher accuracy on the MOVIES and VILLAGES datasets. On average, the linear
model was able to achieve a lower RMSE compared to the other two models. For Ed-Join, the
mixed model outperformed linear and exp in the majority of datasets (DBLP-Scholar, MOVIES
and VILLAGES) and obtained, on average, the lowest RMSE. As we observe in Table 6.2, for
both measures, the exp model retrieved the highest error on average and is thus the model least
suitable for runtime approximations. Especially for Ed-Join, exp had the worst performance in
four out of the five datasets and retrieved the highest RMSE among the different test datasets
for VILLAGES. This clearly answers our first question: the linear and mixed approximation
models are able achieve the smallest error when trained on the class on which they are tested.

Table 6.2: Average expected runtime, average execution time and root mean square error for
the first five datasets for training and testing on the same class. All runtimes are presented in
milliseconds.

Measures Model Amazon-GP DBLP-ACM DBLP-Scholar
expected execution RMSE expected execution RMSE expected execution RMSE

PPJoin+
exp 7.33 14.45 2.78 8.36 14.56 2.43 177.02 124.88 8.02

linear 8.37 16.24 3.28 7.45 15.81 2.97 222.55 147.33 9.48
mixed 6.09 13.45 2.70 6.12 16.83 3.56 129.63 149.82 6.69

Ed-Join
exp 22.81 27.33 3.89 34.33 36.84 3.49 428.93 324.79 12.31

linear 17.99 26.04 2.60 25.29 35.85 3.35 354.97 404.06 9.65
mixed 18.34 26.45 2.78 27.68 41.20 3.54 338.55 339.31 7.30

Measures Model MOVIES VILLAGES AVERAGE
expected execution RMSE expected execution RMSE

PPJoin+
exp 134.90 146.39 5.44 211.89 135.53 9.36

PPJoin+
exp 5.61

linear 38.60 33.10 2.95 158.89 131.64 5.23 linear 4.78
mixed 48.45 49.89 3.17 214.15 201.17 8.13 mixed 4.85

Ed-Join
exp 59.57 45.47 3.76 1,225.57 1,556.04 35.23

Ed-Join
exp 11.74

linear 43.02 44.46 3.52 509.71 294.35 22.53 linear 8.33
mixed 45.55 43.26 2.88 377.02 286.91 10.89 mixed 5.48

To continue with Q2, we conducted a set of experiments in order to observe how well
each model could generalize among the different classes included in our evaluation data. Ta-
bles 6.3, 6.4, 6.5, 6.6 and 6.7 present the results of training on one dataset, and testing resulting
models on the set of remaining classes. The highest RMSE error was achieved when both mea-
sures were tested using the exp model in all datasets except VILLAGES. However, Table 6.7
shows that the fitting error when trained on VILLAGES is relatively low in all three models.
Additionally, we observe that the exp model’s RMSE increased exponentially as the quantity
of the training data decreased, which renders this model inadequate and unreliable for runtime
approximations. By observing Tables 6.4 and 6.5, we see that the RMSE of the exp model
increased by 38 orders of magnitude for Ed-Join.

For both measures, on average, the linear model outperformed the other two models when
trained on the Amazon-GP, DBLP-ACM and DBLP-Scholar datasets, and achieved the lowest
RMSE when trained on MOVIES for Ed-Join, in comparison to exp and mixed. Both linear
and mixed models achieved minuscule approximation errors compared to exp, but linear was
able to produce at least 35% less RMSE compared to mixed. Therefore, we can answer Q2 by
stating that the linear model is the most suitable and sufficient model that can generalize among
different classes.

For our last question, we tested the performance of the different models when trained on
a bigger and more diverse dataset. Table 6.8 shows the results of our evaluation, where each

89

6.2 Evaluation

Table 6.3: Average expected runtime, average execution time and root mean square error for
training on the Amazon-GP dataset, and testing on DBLP-ACM, DBLP-Scholar, MOVIES and
VILLAGES. All runtimes are presented in milliseconds.

Measures Model DBLP-ACM DBLP-Scholar AVERAGE
expected execution RMSE expected execution RMSE

PPJoin+
exp 18.24 64.02 8.61 1.84E+17 1,609.71 1.84E+16

linear 25.42 87.68 12.23 409.98 474.82 20.59
PPJoin+ exp 8.42E+35mixed 44.67 137.54 18.72 270.33 339.06 20.02 linear 24.68

Ed-Join
exp 62.62 142.76 15.67 5.34E+19 834.11 5.34E+18 mixed 90.07linear 37.19 131.68 19.26 663.07 837.88 27.30

mixed 38.36 140.25 16.87 770.51 861.72 21.91
Measures Model MOVIES VILLAGES

expected execution RMSE expected execution RMSE

PPJoin+
exp 8.79E+05 95.28 8.79E+04 3.37E+37 352.77 3.37E+36

linear 133.06 202.34 11.32 853.58 331.61 54.62
Ed-Join exp 8.43E+41mixed 136.17 98.58 6.37 3,507.19 360.03 315.15 linear 28.01

Ed-Join
exp 1.26E+07 143.93 1.26E+06 9.75E+42 6,108.37 9.75E+41 mixed 54.49linear 209.13 142.45 9.14 1,379.12 864.31 56.32

mixed 332.13 145.46 19.83 7,258.82 5,973.70 159.37

Table 6.4: Average expected runtime, average execution time and root mean square error for
training on the DBLP-ACM dataset, and testing on Amazon-GP, DBLP-Scholar, MOVIES and
VILLAGES. All runtimes are presented in milliseconds.

Measures Model Amazon-GP DBLP-Scholar AVERAGE
expected execution RMSE expected execution RMSE

PPJoin+
exp 21.51 61.69 9.93 1.29E+16 3,741.58 1.29E+15

linear 15.73 46.13 8.95 346.71 3,674.06 341.87
PPJoin+ exp 3.99E+15mixed 44.09 120.62 12.82 534.41 1,833.07 139.71 linear 101.82

Ed-Join
exp 85.53 92.78 8.02 2.82E+18 888.50 2.82E+17 mixed 531.95linear 56.95 90.10 7.91 950.61 883.01 25.97

mixed 58.29 96.63 8.48 1,472.52 881.22 63.72
Measures Model MOVIES VILLAGES

expected execution RMSE expected execution RMSE

PPJoin+
exp 8.05E+05 108.16 8.05E+04 1.47E+37 356.93 1.47E+36

linear 127.07 132.62 7.64 819.98 368.86 48.82
Ed-Join exp 9.3E+42mixed 159.36 120.74 8.92 2.14E+04 1,783.72 1,966.38 linear 53.95

Ed-Join
exp 3.58E+07 156.97 3.58E+06 3.72E+44 6,329.54 3.72E+43 mixed 1,105.15linear 373.99 156.72 23.23 2,440.64 870.15 158.72

mixed 1,246.20 155.42 109.39 4.87E+04 6,411.76 4,239.01

Table 6.5: Average expected runtime, average execution time and root mean square error for
training on the DBLP-Scholar dataset, and testing on Amazon-GP, DBLP-ACM, MOVIES and
VILLAGES. All runtimes are presented in milliseconds.

Measures Model Amazon-GP DBLP-ACM AVERAGE
expected execution RMSE expected execution RMSE

PPJoin+
exp 79.32 65.28 8.03 47.42 69.70 8.74

linear -364.95 38.47 40.61 173.40 88.48 15.39
PPJoin+ exp 4.56E+04mixed -41.05 50.27 11.00 -148.99 88.14 26.03 linear 85.07

Ed-Join
exp 113.56 80.90 8.67 113.43 139.78 16.74 mixed 427.54linear 44.49 79.97 10.67 37.70 144.33 22.36

mixed 40.13 73.76 8.98 40.94 141.33 18.84
Measures Model MOVIES VILLAGES

expected execution RMSE expected execution RMSE

PPJoin+
exp 110.41 94.69 6.31 1.82E+06 1,546.07 1.82E+05

linear 394.74 104.19 29.99 3,158.25 621.84 254.30
Ed-Join exp 1.10E+04mixed 66.96 85.61 6.76 1.82E+04 1,591.24 1,666.38 linear 54.57

Ed-Join
exp 341.02 128.33 22.66 4.46E+05 6,069.92 4.41E+04 mixed 82.52linear 360.47 127.76 24.51 2,418.34 818.14 160.73

mixed 280.77 125.19 16.86 3,670.31 820.85 285.43

model was trained on DBpedia english labels and tested on the four evaluation datasets. The
linear model error was 1 order of magnitude less than the RMSE obtained by exp and 3 orders

90

Chapter 6. An Evaluation of Models for Runtime Approximation in Link Discovery

Table 6.6: Average expected runtime, average execution time and root mean square error for
training on the MOVIES dataset, and testing on Amazon-GP, DBLP-ACM, DBLP-Scholar and
VILLAGES. All runtimes are presented in milliseconds.

Measures Model Amazon-GP DBLP-ACM AVERAGE
expected execution RMSE expected execution RMSE

PPJoin+
exp 19.53 71.55 7.89 46.89 127.70 15.90

linear -45.99 42.58 10.51 57.73 120.70 23.93
PPJoin+ exp 8.42E+06mixed 16.97 39.64 5.84 17.43 66.84 9.77 linear 51.34

Ed-Join
exp 15.57 80.95 9.37 16.24 135.66 17.93 mixed 37.99linear 1.71 84.53 10.82 3.56 138.18 19.89

mixed 4.33 85.70 10.95 6.99 140.99 19.65
Measures Model DBLP-Scholar VILLAGES

expected execution RMSE expected execution RMSE

PPJoin+
exp 3,636.56 318.89 332.11 3.37E+08 634.17 3.37E+07

linear 372.82 1,315.61 102.21 1,064.96 389.93 68.69
Ed-Join exp 1.46E+06mixed 75.49 702.11 67.82 989.17 311.60 68.54 linear 25.91

Ed-Join
exp 4,060.80 811.77 325.48 5.85E+07 767.66 5.85E+06 mixed 42.85linear 259.61 805.29 57.92 696.29 753.35 15.04

mixed 178.93 796.16 65.09 1,522.63 777 .00 75.74

Table 6.7: Average expected runtime, average execution time and root mean square error for
training on the VILLAGES dataset, and testing on Amazon-GP, DBLP-ACM, DBLP-Scholar
and MOVIES. All runtimes are presented in milliseconds.

Measures Model Amazon-GP DBLP-ACM AVERAGE
expected execution RMSE expected execution RMSE

PPJoin+
exp 93.41 67.44 5.08 35.07 62.53 8.36

linear -192.27 24.57 21.87 -133.03 61.10 21.09
PPJoin+ exp 10.16mixed 16.37 32.66 3.40 41.57 61.83 9.20 linear 22.91

Ed-Join
exp 68.00 53.36 4.50 326.05 143.84 26.53 mixed 30.59linear -123.44 55.03 18.20 -677.4 133.63 82.36

mixed 231.61 50.46 18.51 136.49 139.30 15.95
Measures Model DBLP-Scholar MOVIES

expected execution RMSE expected execution RMSE

PPJoin+
exp 92.10 272.40 21.78 56.74 82.92 5.43

linear -39.98 277.56 34.10 -54.33 84.08 14.57
Ed-Join exp 21.59mixed 84.22 451.80 40.04 -26.91 651.50 69.71 linear 54.56

Ed-Join
exp 316.66 784.70 49.85 138.63 114.50 5.46 mixed 32.75linear 159.75 753.00 61.23 -438.84 122.89 56.44

mixed 1,737.75 945.09 81.94 255.96 116.42 14.61

of magnitude less than the mixed error. In all four datasets, the mixed model produced the
highest RMSE. For the VILLAGES dataset, the mixed model’s error was 1, 916 and 214 times
higher than linear and exp resp. Figures. 6.2 and 6.3 present the plans produced by Helios for
the LS illustrated in Figure 6.1 of the Amazon-GP dataset, if the planner used the exp model
and the linear or the mixed models resp. For the left sub-specification

AND(l e v en sh t e i n (x . d e s c r i p t i on , y . d e s c r i p t i o n) | 0 . 5 0 4 5 ,
t r ig rams (x . t i t l e , y . name) | 0 . 4 8 7 1) >= 0.2925

the linear and themixed models chose to execute only trigrams(x.title, y.name)|0.4871
and use the other sub-specification as filters. Moreover, the plan retrieved by using the exp model
for runtime approximations aims to execute both children LSs, which results in an overhead in
the execution of the LS. It is obvious that, on average, the linear model achieved by far the
lowest RMSE compared to the other two models, which concludes the answer to Q3.

91

6.2 Evaluation

Table 6.8: Average expected runtime, average execution time and root mean square error for
training on DBPedia english labels and testing on Amazon-GP, DBLP-ACM, MOVIES and
VILLAGES. All runtimes are presented in milliseconds.

Model Amazon-GP DBLP-ACM AVERAGE
expected execution RMSE expected execution RMSE

exp 5,242.09 3,618.99 3,164.86 308.14 365.46 126.42
linear 300.51 3,043.97 966.99 8.07 361.53 192.12

exp 4,577.58mixed -7.27E+06 4,512.82 6.78E+05 -7.26E+04 310.49 4.38E+04
linear 512.35Model Amazon-GP DBLP-ACM
mixed 9.82E+05expected execution RMSE expected execution RMSE

exp 584.27 1,061.67 160.05 4.61E+04 3,775.54 1.48E+04
linear 323.04 995.04 258.55 2,626.41 3,832.52 631.72
mixed -3,417.80 1,600.81 2,042.45 7.15E+06 3,891.05 3.20E+06

(ε, 0.29) \

(ε, 0.29) u
trigrams(x.title, y.name), 0.49

levenSim(x.desc, y.desc), 0.50

(ε, 0.29) t
trigrams(x.title, y.name), 0.49

levenSim(x.desc, y.desc), 0.50

Figure 6.1: Example LS from the Amazon-GP dataset. Note that we used desc for description
and levenSim for the Levenshtein similarity.

(ε, 0.29) \

(ε, 0.29) u
trigrams(x.title, y.name), 0.49

levenSim(x.desc, y.desc), 0.50

(ε, 0.29) t
trigrams(x.title, y.name), 0.49

levenSim(x.desc, y.desc), 0.50

Figure 6.2: Plan returned from Helios using the exp model. Note that we used desc for
description and levenSim for the Levenshtein similarity.

(ε, 0.29) \

(ε, 0.29) t
trigrams(x.title, y.name), 0.49

levenSim(x.desc, y.desc), 0.50

(ε, 0.29) ϕ(levenSim(x.desc, y.desc), 0.50) trigrams(x.title, y.name), 0.49

Figure 6.3: Plan returned from Helios using the linear and mixed model. Note that we used
desc for description and levenSim for the Levenshtein similarity.

92

Liger: Link Discovery with Par-
tial Recall

7
Preamble This chapter is based on [69]. It is the first approach that addresses the problem
of partial-recall for LD. The author co-designed, implemented and evaluated the algorithm
presented herein, and co-wrote the paper.

7.1 Linking with Guaranteed Expected Recall
In this section, we present our approach to achieve a guaranteed expected recall when provided
with an input LS L. We begin by giving a formal definition of the selectivity function and partial-
recall Link Discovery. We continue by presenting observations related to a quasi-ordering for
a LS. Thereafter, we present an operator for link specifications, which allows Link Discovery
with guaranteed partial selectivity, and prove some of its theoretical characteristics. We later
use these characteristics to provide an efficient implementation of our operator.

7.1.1 Partial-Recall Link Discovery

A selectivity function sel : LS → [0, 1], where LS is the set of all LSs, encodes the predicted value
of |[[L]]| as a fraction of |S×T |. This is akin to the selectivity definition often used in the database
literature. A specification L′ is said to achieve a recall k w.r.t. to L if k× |[[L]]| = |[[L]]∩ [[L′]]|.
If [[L′]] ⊆ [[L]], then the recall k of L′ abides by the simpler equation k × |[[L]]| = |[[L′]]|. A
specification [[L′]] ⊆ [[L]] is said to achieve an expected recall k w.r.t. to L if k×sel(L) = sel(L′).

Definition 7.1 (Partial-Recall Link Discovery). Given a specification L, the aim of partial-recall
LD is to detect a rapidly executable LS L′ v L with an expected recall of at least k ∈ [0, 1], i.e.
a LS L′ with sel([[L′]]) ≥ k× sel([[L]]), where k ∈ [0, 1] is a minimal expected recall requirement
set by the user.

7.1.2 Subsumption of Link Specifications

Definition 7.2 (Subsumption of Link Specifications). The LS L is subsumed by the LS L′

(denoted L v L′) when [[L]] ⊆ [[L′]] for all fixed pair of sets S and T .

Note that v is a quasi-ordering (i.e., reflexive and transitive) on LS. A key observation that
underlies our approach is the following:

Proposition 1. ∀θ, θ′ ∈ [0, 1] θ > θ′ → (m(ps, pt), θ) v (m(ps, pt), θ′).

93

7.1 Linking with Guaranteed Expected Recall

Proof. This is due to the definition of the subsumption relation as m(ps, pt) ≥ θ∧ θ > θ′ implies
that m(ps, pt) ≥ θ′ by virtue of the strict ordering on numbers in R.

This observation can be extended to specifications as follows:

1. L1 v L′1 → (L1 t L2) v (L′1 t L2)

2. L1 v L′1 → (L1 u L2) v (L′1 u L2)

3. L1 v L′1 → (L1\L2) v (L′1\L2)

4. L2 v L′2 → (L1\L′2) v (L1\L2)

Proposition 2. v is a quasi-ordering (i.e., reflexive and transitive) on LS.

Proof. v being a quasi-ordering is a direct consequence of the reflexivity and transitivity of
⊆.

7.1.3 Refinement of a Link Specification for Guaranteed Selectivity

Definition 7.3 (Refinement Operator). In the quasi-ordered space (LS,v), we call any function
h: L → 2LS an (LS) operator. A downward refinement operator ρ is an operator such that for
all L ∈ LS we have L′ ∈ ρ(L) implies L′ v L. L′ is called a specialisation of L. We denote
L′ ∈ ρ(L) with L ρ L

′.

The idea behind our approach is to use a refinement operator to transform the input LS L
into a LS L′ v L with at least a given expected recall k. We define the corresponding refinement
operator over the space (2LS ,v) as follows:

ρ(L) =



∅ if L = L∅,

L∅ if L = (m(ps, pt), 1),
(m(ps, pt), next(θ)) if L = (m(ps, pt), θ) ∧ θ < 1,
(ρ(L1) t L2) ∪ (L1 t ρ(L2)) if L = L1 t L2,

(ρ(L1) u L2) ∪ (L1 u ρ(L2)) if L = L1 u L2,

ρ(L1)\L2 if L = L1\L2.

(7.1)

This operator works as follows:

• If L is the empty specification L∅, then we return an empty set of specifications, ergo, L
is not refined any further.

• If L is an atomic specification with a threshold of 1, our approach returns L∅. By these
means, we can compute refinement chains from L = L1 t L2 to {L1, L2}. If θ < 1, our
approach alters the threshold θ by applying the next function. This function is based
on the insight that for θ < 1 and any pair of datasets S and T , if there is the smallest
threshold θ′ > θ that leads to [[(m(ps, pt), θ′)]] ⊂ [[(m(ps, pt), θ)]], then θ′ is a finite non-
zero positive real number. This is exactly the value that next(θ) returns for each metric if
θ′ exists. If θ′ does not exist, [[(m(ps, pt), θ)]] is the same as [[(m(ps, pt), 1)]]. Then, next
returns ∅, which is evaluated like L∅. Formally, for a given set of input datasets S and
T and any θ, next always returns values from N(m(ps, pt)) = {n : ∃(s, t) ∈ S × T : n =
m(ps, pt)} ∪ {∅}. Given a threshold θ, ∅ is returned if L is to be refined to the empty
specification. Otherwise, next returns the smallest value from N(m(ps, pt)) that is larger
than θ. Note that (m(ps, pt), next(θ)) v (m(ps, pt), θ) always holds. For example, for the
right sub-specification of the LS shown in Figure 7.1, next(0.7) would return 1.

94

Chapter 7. Liger: Link Discovery with Partial Recall

• If L is complex, then the refinement depends on the operator of the specification and
always ensures that L′ ∈ ρ(L) → L′ v L. To explicate the set of LSs returned by ρ, we
extend the semantics of op(ρ(L1), L2) resp. op(L1, ρ(L2)) to be the set of all specifications
that can be computed by using op on all L′ ∈ ρ(L1) resp. L′ ∈ ρ(L2).

– If op = u or op = t, then ρ returns the union of all specifications that can be
generated by applying ρ to one sub-specification of L and combining these with the
other sub-specification.

– If op = \, then we combine L’s right sub-specification with all refinements of L’s
left sub-specification. The reason we do not do this the other way around for this
particular operator is simply that ρ would not be a refinement operator if we did so,
as we could not guarantee that ρ(L) v L.

(ε, 0.60) t
(cosine(:label, :label), 0.70)

(trigrams(:title, :name), 0.30)

Figure 7.1: Tree representation of a complex LS

A refinement operator % over the quasi-ordered space (S,4) can abide by the following
criteria.

Definition 7.4 (Finiteness). % is finite iff %(s) is finite for all s ∈ S.

Definition 7.5 (Properness). % is proper if ∀s ∈ S, s′ ∈ %(s)⇒ s 6= s′.

Definition 7.6 (Completeness). % is said to be complete if for all s and s′, s′ 4 s implies that
there is a s′′ with s′′ 4 s′ ∧ s′ 4 s′′ such that a refinement chain between s′′ and s exists.

Definition 7.7 (Redundancy). A refinement operator % over the space (S,4) is redundant if
two different refinement chains can exist between s ∈ S and s′ ∈ S.

Having defined our refinement operator, we now show that ρ is finite, incomplete, proper
and redundant if L, S and T are finite.

Proposition 3. ρ is finite if the input specification is finite.

Proof. This is a direct consequence of next(θ) being finite. The number of elements in ρ(L) is
at most equal to the |L|. Now if |L| is finite as required in the premise of this proof, then |ρ(L)|
must also be finite.

Proposition 4. ρ is proper.

Proof. This is a direct consequence of next(θ) returning a θ′ which alters the result of the
specification to which it is applied and is thus different from θ. Hence, ρ(L) 6= L, which implies
that ρ is proper.

Proposition 5. ρ is incomplete.

Proof. Given any specification L, ρ cannot generate L u L′ although (L u L′) v L clearly
holds.

95

7.2 The Liger approach

This is not a restriction for our purposes given that we aim to find specifications that run
faster. Thus we do not want to extend the input specification L by combining it with other
specifications L′ that might make our implementation of the operator slower. Note that our
operator can simplify specifications by removing t by virtue of ∅ in the definition of the next
function. Moreover, given a specification L, our operator can generate all specifications that
differ from L solely w.r.t. the thresholds in their leaves and lead to different mappings. This is
simply due to our definition of the next function.

Proposition 6. ρ is redundant.

Proof. Given any specification L = (m1(ps, pt), θ1) u (m2(ps, pt), θ2), there are two refinement
chains to L′ = (m1(ps, pt), next(θ1)) u(m2(ps, pt), next(θ2)). These are:

1. L ρ(m1(ps, pt), θ1) u (m2(ps, pt), next(θ2)) ρ L
′ and

2. L ρ(m1(ps, pt), next(θ1)) u (m2(ps, pt), θ2) ρ L
′.

The meaning of the other characteristics for our implementation of ρ is as follows: given that
ρ is finite, we can completely generate ρ for any chosen node in our implementation. ρ being
redundant means that after a refinement, we need to check whether we have already seen the
newly generated specifications. Hence, we need to keep a set of seen specifications. Finally, the
operator being proper means that while checking for redundancy, there is no need to compare
specifications with any of their parents.

7.2 The Liger approach

Let L0 be a LS and ρ∗(L0) represent the set of all LSs that can be reached from L0 via ρ. The
basic goal behind Liger (LInk discovery with Guaranteed Expected Recall) is to find the LS
Λ ∈ ρ∗(L0) that achieves the lowest expected run time while (1) being subsumed by L0 and (2)
achieving at least a predefined expected recall k ∈ [0, 1].

We denote this selectivity constraint with k ∈ [0, 1], which is formally the minimal fraction of
the selectivity of L0 that Λ must achieve. To achieve this goal, we use the downward refinement
operator ρ described in Section 7.1.3 to search through the space of LS subsumed by L0 while
only refining LSs that abide by the conditions above.

In simple terms, for any LS L, Liger assumes that it can (1) approximate its run time using
a linear model described in Chapter 6, and (2) estimate its selectivity as follows:

• For an atomic LS, the selectivity values were computed using |[[L]]|
|S|×|T | , where |[[L]]| is the

size of the mapping returned by the LS L, |S| and |T | are the sizes of the source and target
data. To do so, we pre-computed the real selectivity of atomic LSs that were based on a
set of measures 1 using the methodology presented in [138] for thresholds between 0.1 and
1.

• For complex LSs, which are binary combinations of two LSs L1 (selectivity: sel(L1)) and
L2 (selectivity: sel(L2)), the run time approximation was computed by summing up the
individual run times of L1,L2, in addition to a constant value of 1 for each operator. The
selectivity of operators was computed based on the selectivity of the mappings that served

1(1) cosine, levenshtein, qgrams, trigrams, jaccard and overlap for string properties, (2) euclidean for
numeric properties and (3) geomean and hausdorff for geometric properties in the form of point sets

96

Chapter 7. Liger: Link Discovery with Partial Recall

as input for the operators. We assumed the selectivity of a LS L to be the probability
that a pair (s, t) is returned after applying L. Based on these assumptions, we derived the
following selectivities:

– op(L) = ∩ → sel(L) = 1
2sel(L1)sel(L2),

– op(L) = ∪ → sel(L) = 1
2(1− (1− sel(L1))(1− sel(L2))) and,

– op(L) = \ → sel(L) = 1
2sel(L1)(1− sel(L2)).

Note that we used a correction factor of 0.5 to correct for the dependence of the selectivity
across properties like in previous works [2].

The approach starts by initializing a refinement tree with the given LS L0. Then, it selects
the previously unvisited LS of the tree that:

1. has the lowest expected run time, and

2. abides by the settings provided by the user.

Liger then computes the complete refinement of the selected LS by virtue of ρ’s finiteness.
Redundant refinement results are subsequently detected (as ρ is redundant) and not added into
the tree. These steps are carried out until the refinement tree has been explored completely or
a time threshold for running the refinements is met. In the following, we present the approach
in detail as well as a variation on the approach that makes use of the potential monotonicity of
specification run times.

7.2.1 The Liger Algorithm

Algorithm 12 shows the steps of the basic Liger implementation. We dub this implementation
C-RO (ReCall with Refinement Operator). Our approach takes (1) a LS L0, (2) one input source
KB S and one input target KB T , (3) the minimal expected recall k and (4) a refinement time
constraint maxOpt as input. We begin by retrieving the estimations of the selectivity of L0 for
the given S and T (selL0 , see line 1 of Algorithm 12). The algorithm computes the desired
selectivity value (seldes) as a fraction of L0’s selectivity (line 2). We then initialize the best
subsumed LS Λ with L0 and the best run time rtΛ with L0’s runtime estimation for a particular
S and T (line 3, line 4). Then, we add L0 to the set Buffer (line 5). This set serves as a buffer
and includes LSs obtained by refining L0 that have not yet been refined. All LSs generated
through the refinement procedure, as well as the input LS L0 are stored in Total (line 6). By
keeping track of these LSs, we avoid refining a LS more than once and address the redundancy
of our refinement operator.

The main loop starts in line 7 and runs until the termination criterion is met, i.e., until the
refinement time has exceededmaxOpt, the refinement tree cannot be explored further (Buffer =
∅) or the selectivity of Λ is equal to seldes. We define the refinement tree as follows: (1) it has
L0 as its root, (2) at each iteration of Algorithm 12, the set of refined LSs are added as children
nodes to the currently refined LS, and (3) a leaf node is as a LS that cannot be refined any
further. At the beginning of each iteration, the algorithm selects the next node for refinement by
calling the function getNextNode(Buffer, S, T)(line 8). getNextNode(Buffer, S, T) computes
a complete ordering of Buffer with respect to runtime estimations. Algorithm 13 illustrates
the steps of the algorithm. Initially, the getNextNode(Buffer, S, T) algorithm retrieves the
run time estimation (rtL) of each LS L ∈ Buffer (line 3) and adds the pair (L, rtL) to the
set Nodes. Then, if Nodes is not empty, it orders the LS of Nodes based on the run time
scores in ascending order and sets to Lnext the first element of the set (line 7, line 8 resp. of
Algorithm 13). If Nodes is empty, then Algorithm 12 terminates (line 10 of Algorithm 12).

97

7.2 The Liger approach

Next, Algorithm 12 checks if the current LS L receives a better run time score, the algorithm
assigns L as the new value of Λ and changes rtΛ accordingly (line 14).

Algorithm 12: Liger Algorithm
Input: a link specification L0; two input KBs S and T ;
minimal expected recall k
Output: subsumed link specification Λ

1 selL0 ← getSelectivity(L0, S, T)
2 seldes ← selL0 ∗ k
3 Λ← L0
4 rtΛ ← getRuntime(L0, S, T)
5 Buffer ← {L0}
6 Total← {L0}
7 while termination criterion not met do
8 L← getNextNode(Buffer, S, T)
9 if L == null then

10 break;
11 rtL ← getRuntime(L, S, T)
12 if rtL < rtΛ then
13 Λ← L
14 rtΛ ← rtL

15 newLSs← refine(L)
16 if newLSs 6= ∅ then
17 update(newLSs, Total, Buffer, seldes, S, T)
18 Buffer ← Buffer \ L
19 Return Λ

In line 15, the algorithm calls the function refine(L), which implements ρ. The results of
the refinement are stored in newLSs. Algorithm 14 illustrates the steps towards the refinement
of a LS L. First, it checks whether L is atomic and if its threshold θ is less than 1 (line 2). If
the condition is fulfilled, the algorithm calls the next(θ) function (line 3) to retrieve the new
threshold θ′, then it creates a new LS L′ that has the same similarity function as L and θ′ as
threshold (line 4). Finally, the L′ is added to the set newLSs and returned to the main Liger
algorithm. If L is not atomic, Algorithm 14 calls the function refine(L) recursively for the
left child of L in line 7. If the returned set of refined LSs obtained from the left child is not
empty, the algorithm proceeds in merging all LSs of Lref1 with the right child, which was not
refined based on Equation 7.1 (line 10). The new LSs obtained from the merge are then added
to newLSs in line 11. Once the left child of L has been refined, the algorithm checks if op(L) is
equal to \. If the condition does not hold, the algorithm performs the same procedure of refining
the right child of L as it did with the left child (lines 13- 17).

Once newLSs has been retrieved (line 15), Algorithm 12 must check which subsumed LS(s)
of newLSs can be refined in the future. To this end, it calls the function update(newLSs, Total,
Buffer, seldes, S, T) (line 17 of Algorithm 12). This methods checks that each LS L′ ∈ newLSs
has not been explored before by checking if it already exists in set Total (line 2). Therewith, we
ensure that Liger does not explore LSs that have already been seen before. If L′ is a new node,
it is added to Total (line 3) and the algorithm proceeds in computing L′’s selectivity (line 4).
If selL′ is higher or equal to the desired selectivity, the algorithm updates Buffer by adding

98

Chapter 7. Liger: Link Discovery with Partial Recall

Algorithm 13: getNextNode(Buffer, S, T) for C-RO
Input: set of unrefined nodes Buffer; two input KBs S and T
Output: a node for refinement Lnext

1 Nodes← ∅
2 Lnext ← null
3 foreach L ∈ Buffer do
4 rtL ← getRuntime(L, S, T)
5 Nodes← Nodes ∪ (L, rtL)
6 if Nodes 6= ∅ then
7 Nodes← order(Nodes)
8 Lnext ← Nodes.getTop()
9 Return Lnext

L′ (line 6)2. Finally, in Algorithm 12, after L has been refined, it is excluded from Buffer
(line 18), so it will not be refined in the future.

7.2.2 Extension of Liger

One key observation pertaining to the run time of L′ ∈ ρ∗(L) is that by virtue of L′ v L,
rtL′ ≤ rtL will most probably hold. By virtue of the transitivity of ≤, L1 ∈ ρ(L) ∧ L2 ∈
ρ(L) ∧ rtL1 ≤ rtL2 → ∀L′ ∈ ρ∗(L1): rtL′ ≤ rtL2 also holds. We call this assumption the
monotonicity of run times. Since the implementation of Algorithm 13 for Liger does not take
this monotonicity into consideration, we wanted to know whether this assumption can potentially
improve the run time of our approach. A direct consequence of this assumption would be the
following:

Proposition 7. Let L1 be a leaf of the refinement tree at the distance l from the root of ρ’s
refinement tree, then for all leaves L2 at a distance l′ > l from the root, rtL1 ≥ rtL2.

Proof. rtL1 ≥ rtL2 is a direct consequence of the approach behind Liger. If the distance l′ of
L2 from the root of the refinement tree is larger than l, then L2 must have an ancestor L′2 in
the refinement tree at the distance l of the root. Now if L1 is a leaf, then L′2 was preferred
over L1 when refining, hence rtL1 ≥ rtL2′ . By virtue of the monotonicity, rtL2′ ≥ rtL2 , hence
tL1 ≥ tL2

To integrate it into Liger, we created the extension of Liger dubbed RO-MA (Refinement
Operator with Monotonicity Assumption) (Refinement Operator with Monotonicity Assump-
tion). RO-MA overwrites the getNextNode (Buffer, S, T) function with getNextNode(Total,
Buffer, S, T) (line 8 of Algorithm 12) by using a hierarchical ordering on the set of unrefined
nodes. By incorporating RO-MA as a search strategy, the refinement tree is expanded using
a “top-down” approach until there are no nodes to be further explored in a particular path.
Algorithm 16 describes the procedure used to find the next node for refinement. Initially, the
algorithm retrieves the level (i.e., the distance from the root of the refinement tree, denoted
lvlLr) of the most recently defined LS Lr and increases it by 1. The first time Algorithm 16
is called, the only node included in Total will be L0 with lvlLr = 0, since it is the root of the
refinement tree. In this case, the algorithm will return L0 to be refined (line 3). The main loop
begins in line 8 and continues until lvl is equal to 0 (i.e., until the level of the root). Then,

2Total is passed by reference and updated within the update function

99

7.2 The Liger approach

Algorithm 14: refine(L)
Input: the LS L that will be refined
Output: a set of new LSs newLSs obtained by refining L

1 newLSs← ∅
2 if L = (m(ps, pt), θ) and θ < 1.0 then
3 θ′ ← next(θ)
4 L′ ← (m(ps, pt), θ′)
5 newLSs← newLSs ∪ L′

6 else
7 Lref1 ← refine(L.leftChild)
8 L2 ← L.rightChild
9 if Lref1 6= ∅ then

10 tempD1 ← merge(Lref1, L2)
11 newLSs← newLSs ∪ tempD1

12 if L.operator 6= \ then
13 L1 ← L.leftChild
14 Lref2 ← refine(L.rightChild)
15 if Lref2 6= ∅ then
16 tempD2 ← merge(Lref2, L1)
17 newLSs← newLSs ∪ tempD2

18 Return newLSs

we find the set of nodes at level lvl, that have not be refined before (line 11). If such a subset
exists (line 13), then the algorithm retrieves the run time estimation of each LS L ∈ SubTree,
and adds it to the set Nodes. Then, it orders the LSs of Nodes based on the run time scores in
ascending order (line 18) and sets to Lnext the first element of the set (line 19). If all the nodes
of lvl have been refined before, then the search for the next LS continues at a level higher. If
the root’s level has been reached, then Algorithm 12 terminates.

7.2.3 Example Run

To elucidate the workings of C-RO and RO-MA further, we use the LS described in Figure 7.1
as a running example. Table 7.1 shows the estimated runtime (rt) and selectivity (sel) for each
subsumed LS. For our example, each call of the next(θ) function will return the θ increased by

Algorithm 15: update(newLSs, Total, Buffer, seldes, S, T)
Input: set of new nodes newLSs, set of unrefined nodes Buffer; set of all nodes

Total; the desired selectivity seldes; two input KBs S and T ;
1 foreach L′ ∈ newLSs do
2 if L′ /∈ Total then
3 Total← Total ∪ L′
4 selL′ ← getSelectivity(L′, S, T)
5 if selL′ ≥ seldes then
6 Buffer ← Buffer ∪ L′

100

Chapter 7. Liger: Link Discovery with Partial Recall

Algorithm 16: getNextNode(Total, Buffer, S, T) for RO-MA
Input: set of all nodes Total; set of unrefined nodes Buffer; two input KBs S and T
Output: a node for refinement Lnext

1 Lr ← Total.getLatestNode()
2 lvlLr ← Total.getLevel(Lr)
3 if lvlLr == 0 then
4 Lnext ← Buffer.getTop()
5 Return Lnext
6 lvl← lvlLr + 1
7 Lnext ← null
8 while lvl 6= 0 do
9 SubTree← ∅

10 foreach L ∈ Buffer do
11 if lvlL == lvl then
12 SubTree ∪ L

13 if SubTree 6= ∅ then
14 Nodes← ∅
15 foreach L ∈ SubTree do
16 rtL ← getRuntime(L, S, T)
17 Nodes← Nodes ∪ (L, rtL)
18 Nodes← order(Nodes)
19 Lnext ← Nodes.getTop()
20 break;
21 else lvl← lvl − 1 ;
22 Return Lnext

0.1. The k is set to 0.6 and maxOpt = 10s.
The Liger algorithm begins by assigning the LS of Figure 7.1 to Λ, and then adding it

to both Buffer and Total sets (lines 5 and 6). Then, we set the values for rtΛ = 50
and seldes = 0.57. After that, the main loop begins, and for both C-RO and RO-MA, the
getNextNode(Buffer, S, T) or getNextNode(Total, Buffer, S, T) resp. function will return
the initial LS (0 from Table 7.1). Since 0 is not null and its estimated runtime is not less
than the rtΛ, the main algorithm will invoke the refine(L) function that will fill the set newLSs
with 1 and 2 . Since both LSs are new, they are going to be added to the Total set. Also,
both LSs will be added to the set Buffer, because their estimated selectivity (0.94 and 0.92
resp.) is above seldes = 0.57. Finally, 0 is extracted from the Buffer set. The optimization
time required for this iteration was 3 seconds.

For the second iteration of the main loop of Liger, the getNextNode(Buffer, S, T) func-
tion for C-RO will set to L the 2 LS since it has the lowest estimated runtime in Buffer.
Please note that for RO-MA, both 1 and 2 are not refined, have the same level in the re-
finement tree and were produced from the same recent refined LS, 0 . As a result, RO-MA’s
getNextNode(Total, Buffer, S, T) will also choose the same LS to refine as C-RO. Now in the
main algorithm, rtΛ will be set to 35 and Λ to 2 . Then Liger will invoke the refine(L)
function that will fill the set newLSs with 3 and 4 . Since both LSs are new, they are going
to be added to the Total set. Also, both LSs will be added to the set Buffer, because their
estimated selectivity (0.85 and 0.80 resp.) is above seldes = 0.57. Finally, 2 is extracted from

101

7.3 Evaluation

Table 7.1: Estimated runtime (rt) and selectivity (sel) for each subsumed LS. Estimated runtime
is in seconds.

Label LS rt sel

0 (ε, 0.6,t(levenSim(: label, : label), 0.7), (trigrams(title, name), 0.3)) 50 0.95
1 (ε, 0.6,t(levenSim(: label, : label), 0.8), (trigrams(title, name), 0.3)) 36 0.94
2 (ε, 0.6,t(levenSim(: label, : label), 0.7), (trigrams(title, name), 0.4)) 35 0.92
3 (ε, 0.6,t(levenSim(: label, : label), 0.8), (trigrams(title, name), 0.4)) 37 0.85
4 (ε, 0.6,t(levenSim(: label, : label), 0.7), (trigrams(title, name), 0.5)) 40 0.80
5 (ε, 0.6,t(levenSim(: label, : label), 0.9), (trigrams(title, name), 0.3)) 10 0.71
6 (ε, 0.6,t(levenSim(: label, : label), 0.9), (trigrams(title, name), 0.4)) 8 0.73
7 (ε, 0.6,t(levenSim(: label, : label), 0.8), (trigrams(title, name), 0.5)) 6 0.73

the Buffer set. The optimization time required for this iteration was 4 seconds.
For the third iteration of the main loop of Liger, the getNextNode(Buffer, S, T) function

for C-RO will set to L the 1 LS since it has the lowest estimated runtime in Buffer. For RO-
MA, the getNextNode(Total, Buffer, S, T) function will choose the next LS to refine based on
the last refined LS, 2 . As a result, LS 3 will be chosen since it has the lowest estimated runtime
compared to 4 . Please note that 1 has the same level as 2 and it will not be considered as
a candidate, following the monotonicity of run times assumption. Now in the main algorithm,
rtΛ for C-RO will be set to 36 and Λ to 1 , and for RO-MA rtΛ will be set to 37 and Λ to 3 .

Then Liger will invoke the refine(L) function that will fill the set newLSs with 5 and
3 for C-RO, and with 6 and 7 for RO-MA. For C-RO, only 5 will be added to the Total
and Buffer sets since 3 has been introduced in the previous main loop. For RO-MA both
6 and 7 will be added to the Buffer and Total sets. Finally, 1 and 3 will be extracted
from Buffer for C-RO and RO-MA. The optimization time required for this iteration will be
4 seconds and the main loop of Liger algorithm is going to be terminated. As a result, C-RO
will return 1 as the best subsumed LS whereas, RO-MA will choose 3 .

7.3 Evaluation

7.3.1 Evaluation Questions

The aim of our evaluation was to address the following questions:
• Q1: Is the combined run time of the search for the best subsumed LS Λ and the execution

of said LS more time-efficient than the execution of the LS L0?

• Q2: To what extent do the different values of maxOpt influence the overall run time of
partial-recall Link Discovery?

• Q3: How do the strategies C-RO and RO-MA compare to each other?

• Q4: How much does the sampling of links influence supervised machine learning for Link
Discovery?

7.3.2 Evaluation Datasets

We evaluated our approach on seven datasets. The first four were the benchmark datasets
for Link Discovery dubbed Abt-Buy, Amazon-GP, DBLP-ACM and DBLP-Scholar described

102

Chapter 7. Liger: Link Discovery with Partial Recall

in [103]. These are manually curated benchmark datasets collected from real data sources such
as the publication sites DBLP and ACM. We used three additional datasets (MOVIES, TOWNS
and VILLAGES) from the real datasets DBpedia3, LinkedGeodata4 and LinkedMDB5 to explore
the scalability of the approach presented herein.6 Information about the characteristics of the
datasets and the LSs used during our experiments can be found in Table 7.2.

Table 7.2: Entity matching characteristics of datasets

Dataset Source (S) Target (T) |S| × |T | Source Property Target Property

Abt-Buy Abt Buy 1.20× 106

product name product name
description description
manufacturer manufacturer
price price

Amazon-GP Amazon 4.40× 106

product name product name
Google description description
Products manufacturer manufacturer

price price

DBLP-ACM ACM DBLP 6.00× 106 title, authors title authors
venue, year venue, year

DBLP-Scholar DBLP Google 0.17× 109 title, authors title, authors
Scholar venue, year venue, year

MOVIES DBpedia LinkedMDB 0.17× 109

dbp:name dc2:title
dbo:director/dbp:name movie:director/movie:director_name
dbo:producer/dbp:name movie:producer/movie:producer_name
dbp:writer/dbp:name movie:writer/movie:writer_name
rdfs:label rdfs:label

VILLAGES DBpedia LGD 6.88× 109
rdfs:label rdfs:label
dbo:populationTotal lgdo:population
geo:geometry geom:geometry/agc:asWKT

7.3.3 Experimental Setup

All LSs used during our experiments were generated automatically by the unsupervised version
of the genetic-programming-based ML approach Eagle [141], as implemented in LIMES [137].
The number of generations and population size was set to 20, mutation and crossover rates
were set to 0.6. Unsupervised Eagle constructed 100 independent LSs for the datasets Abt-
Buy, Amazon-GP, DBLP-ACM and MOVIES. For the datasets DBLP-Scholar, TOWNS and
VILLAGES, Eagle was executed 5 times, and for each run we selected the output of all 20
generations. All experiments were carried out on a 40-core Linux server running OpenJDK 64-
Bit server 1.8.0.66 on Ubuntu 14.04.3 LTS with Intel(R) Xeon(R) CPU E5-2650 v3 processors
clocked at 2.3GHz. Each experiment was repeated three times. We report the minimum run
times of each of the algorithms.

We conducted partial-recall experiments with all seven datasets described previously to an-
swer Q1 – Q4. We set the values of k to 0.1, 0.2 and 0.5 while the maximum times (maxOpt)
for finding a partial-recall LS were set to 100, 200, 400, 800 and 1600ms.

Finally, in all of our experiments, we used the open-source LD framework Limes as reference
framework. Limes was used to execute both the input LS L0 and the partial-recall LS Λ.
The results achieved with L0 were our Baseline. We used Limes as our baseline since it has

3http://wiki.dbpedia.org/
4http://linkedgeodata.org/
5http://www.linkedmdb.org/
6The new datasets, as well as a description of how they were constructed and the full set of results are available

at https://hobbitdata.informatik.uni-leipzig.de/LIGER/.

103

http://wiki.dbpedia.org/
http://linkedgeodata.org/
http://www.linkedmdb.org/
https://hobbitdata.informatik.uni-leipzig.de/LIGER/

7.3 Evaluation

outperformed state-of-the-art approaches in previous publications [137]. The main goal of
running Baseline was to compare Liger’s performance with a LD strategy that is not influenced
by time and selectivity constraints.

7.3.4 Experiments Results

Scalability Improvement through Partial Recall

To answer the questions mentioned in Section 7.3.1, we evaluated the performance of Liger (i.e.,
C-RO and RO-MA) in terms of execution time (see Table 7.3). For the sake of comparison, we
present results of the Baseline for all seven datasets alongside Liger. As expected, all variations
of Liger require less execution time than Baseline. This clearly answers our first question Q1:
Liger produces more time-efficient LSs, even when maxOpt is set to a high value. Table 7.3
also shows clearly that Liger performs best on VILLAGES for k = 0.1 and maxOpt = 0.4 s,
where it can reduce the average run time of the 100 LSs we considered by 88%. On the smaller
BDLP-ACM dataset, RO-MA performs best and achieves a time reduction of the run time by
77.5%.

Figures 7.2, 7.3 and 7.4 illustrate an initial LS and the subsumed LSs obtained by executing
C-RO and RO-MA resp. for the Abt-Buy dataset, for k = 0.1 and maxOpt = 100. The
resulting subsumed LSs for both Liger alternative methods require 402ms and 130ms to be
executed, compared to the Baseline method that requires 753ms. This observation supports our
aforementioned conclusion that Liger is able to achieve a better performance than the Baseline
method.

(ε, 0.52) t
(levSim(x.descr, y.descr), 0.41)

(cosine(x.name, y.name), 0.40)

\

(eucl(x.price, y.price), 0.90)

(ε, 0.59)

t(ε, 0.69)

(ε, 0.52) t

(cosine(x.name, y.name), 0.40)

(ε, 0.58) t

(ε, 0.59) \

(eucl(x.price, y.price), 0.90)

(ε, 0.52) t
(eucl(x.price, y.price), 0.86)

(levenSim(x.descr, y.descr), 0.41)

(ε, 0.52) t
(levenSim(x.descr, y.descr), 0.41)

(cosine(x.name, y.name), 0.40)

Figure 7.2: Tree of a LS produced by Eagle for the Abt-Buy dataset. Note that we use desc
for description, eucl for euclidean and levenSim for the Levenshtein similarity.

Table 7.3 also allows us to study the influence of maxOpt and k on total runtimes. The
behavior of our approaches on the datasets varies and depends on a combination of the size of
LSs (smaller LSs are easier to optimize and execute), and the difference between the execution
times of the optimized specifications and the original specification. For the Amazon-GP, DBLP-
Scholar, MOVIES and VILLAGES datasets, we notice that for the same value of maxOpt,
the runtime of both RO-MA and C-RO increases as k receives larger values. This is due to
the LS set for these datasets consisting mostly of large complex LSs. For the DBLP-ACM
and TOWNS datasets, we noticed that the behavior of Liger is not highly influenced by the
different combinations of our parameters. The observation is based on the fact that the set of
LSs for both datasets consists of a more balanced proportion of atomic and complex LSs, where

104

Chapter 7. Liger: Link Discovery with Partial Recall

(ε, 0.69) t

(cosine(x.name, y.name), 0.52)

(ε, 0.59) \

(eucl(x.price, y.price), 0.90)

(ε, 0.52) t
(levSim(x.descr, y.descr), 0.50)

(cosine(x.name, y.name), 0.50)

Figure 7.3: Tree of a LS produced by C-RO for the Abt-Buy dataset. Note that we use desc
for description, eucl for euclidean and levenSim for the Levenshtein similarity.

(ε, 0.69) t
(cosine(x.name, y.name), 0.58)

(cosine(x.name, y.name), 0.70)

Figure 7.4: Tree of a Link Specification produced by RO-MA for the Abt-Buy dataset

the complex LSs are not large in size compared to the previous 4 datasets. And finally, for the
Abt-Buy dataset, both RO-MA and C-RO have a less uniform performance for the different
values of k and maxOpt. The Abt-Buy’s LS set consists mostly of atomic LSs. Consequently,
the runtimes of the specifications are lowest for k = 0.2. Overall, maxOpt = 200ms produces
the best execution times on average for both C-RO and RO-MA.

To address Q3, we studied the overall run times for all experimental configurations (see
Table 7.3). Our average results suggest that RO-MA outperforms C-RO. The statistical sig-
nificance of these results is confirmed by a paired t-test on the average run time distributions
(significance level = 0.95). Our intuition that the monotonicity of run times can potentially
improve the run time of our approach is supported by the results on three out of the seven
datasets (Abt-Buy, DBLP-ACM and Amazon-GP). On the remaining four datasets, RO-MA
outperforms C-RO on average. Still, when C-RO outperforms RO-MA, the absolute differences
are minute. Figures 7.3 and 7.4 show that the subsumed LSs obtained by RO-MA outperform
the refined LSs obtained by C-RO, since RO-MA creates 3 times less execution overhead for
maxOpt = 100. Additionally, both subsumed LSs received the same selectivity. Hence, when
the available refinement time is limited, RO-MA should be preferred when aiming to carry out
partial-recall LD.

The highest absolute difference between C-RO and RO-MA is achieved on the DBLP-Scholar
dataset, where RO-MA is 1179.59 s faster than C-RO, while the highest relative gain of 776.28%
by C-RO against Baseline is achieved on VILLAGES (k=10%, maxOpt = 400), which is the
largest dataset of our experiments. A particularity of DBLP-Scholar is that the LSs generated by
Eagle are large, which leads to small optimization times being sufficient to find good specifica-
tions. The different strategies followed by C-RO and RO-MA lead to different atomic measures
being modified during the refinement process. Especially for DBLP-Scholar, RO-MA achieves
this highest absolute difference because RO-MA is able to find subsumed LSs for complex LSs
more efficiently. Overall, we can answer Q3 by stating that RO-MA is to be preferred over
C-RO.

We also studied how well our expected recall approximates real recall (see Figures 7.5- 7.11).
In most cases, our approximation correlates well with the real recall achieved by the specifications
(see, e.g., Figures 7.5, 7.6, 7.7, 7.9). Table 7.4 shows the root mean square error (RMSE) for
Baseline, C-RO and RO-MA between the estimated selectivity and real selectivity obtained by
executing our 100 LSs. It is obvious that the RMSE between the real and estimated values is

105

7.3 Evaluation

Table 7.3: Average execution times of Baseline, C-RO and RO-MA for the different combinations
of k and maxOpt over 100 LSs per dataset. All times are in seconds.

Abt-Buy Amazon-GP DBLP-ACM DBLP-Scholar

k
=

0.
1

maxOpt Baseline C-RO RO-MA Baseline C-RO RO-MA Baseline C-RO RO-MA Baseline C-RO RO-MA
0.1 0.66 0.52 0.52 5.71 3.91 3.82 1.08 0.25 0.25 792.81 596.53 598.44
0.2 0.66 0.55 0.54 5.71 3.81 2.89 1.08 0.26 0.26 792.81 545.22 546.01
0.4 0.66 0.45 0.44 5.71 3.04 2.91 1.08 0.26 0.25 792.81 589.72 587.87
0.8 0.66 0.55 0.53 5.71 3.27 3.15 1.08 0.28 0.26 792.81 598.54 599.03
1.6 0.66 0.54 0.51 5.71 3.47 3.18 1.08 0.33 0.28 792.81 554.82 557.06

MOVIES TOWNS VILLAGES
maxOpt Baseline C-RO RO-MA Baseline C-RO RO-MA Baseline C-RO RO-MA

0.1 4.05 1.89 1.89 44.52 31.15 31.20 123.58 15.32 15.26
0.2 4.05 1.75 1.76 44.52 32.23 32.19 123.58 15.65 15.71
0.4 4.05 1.91 1.90 44.52 34.21 34.09 123.58 14.10 14.12
0.8 4.05 1.77 1.76 44.52 34.08 34.10 123.58 14.69 14.52
1.6 4.05 1.93 1.89 44.52 34.38 34.00 123.58 15.65 15.17

Abt-Buy Amazon-GP DBLP-ACM DBLP-Scholar

k
=

0.
2

maxOpt Baseline C-RO RO-MA Baseline C-RO RO-MA Baseline C-RO RO-MA Baseline C-RO RO-MA
0.1 0.66 0.35 0.35 5.71 4.07 3.92 1.08 0.26 0.26 792.81 593.66 581.86
0.2 0.66 0.34 0.34 5.71 3.38 3.23 1.08 0.26 0.26 792.81 590.91 587.89
0.4 0.66 0.29 0.28 5.71 3.38 3.36 1.08 0.29 0.28 792.81 561.93 566.74
0.8 0.66 0.33 0.32 5.71 3.17 3.15 1.08 0.29 0.26 792.81 579.14 580.28
1.6 0.66 0.40 0.37 5.71 3.57 3.37 1.08 0.33 0.29 792.81 551.14 549.08

MOVIES TOWNS VILLAGES
maxOpt Baseline C-RO RO-MA Baseline C-RO RO-MA Baseline C-RO RO-MA

0.1 4.05 1.98 1.99 44.52 34.49 34.42 123.58 20.60 20.64
0.2 4.05 1.99 1.99 44.52 32.28 32.36 123.58 20.01 19.98
0.4 4.05 2.01 1.98 44.52 32.56 32.46 123.58 19.40 19.42
0.8 4.05 1.97 1.97 44.52 33.65 33.79 123.58 21.23 20.97
1.6 4.05 1.99 1.99 44.52 33.98 34.04 123.58 21.15 20.80

Abt-Buy Amazon-GP DBLP-ACM DBLP-Scholar

k
=

0.
5

maxOpt Baseline C-RO RO-MA Baseline C-RO RO-MA Baseline C-RO RO-MA Baseline C-RO RO-MA
0.1 0.66 0.42 0.42 5.71 4.55 4.23 1.08 0.28 0.28 792.81 602.49 603.92
0.2 0.66 0.44 0.43 5.71 4.02 3.64 1.08 0.28 0.28 792.81 554.38 555.24
0.4 0.66 0.42 0.41 5.71 3.95 3.65 1.08 0.27 0.27 792.81 637.66 629.34
0.8 0.66 0.42 0.41 5.71 3.66 3.63 1.08 0.29 0.27 792.81 590.48 581.50
1.6 0.66 0.48 0.45 5.71 3.79 3.67 1.08 0.34 0.29 792.81 595.17 591.91

MOVIES TOWNS VILLAGES
maxOpt Baseline C-RO RO-MA Baseline C-RO RO-MA Baseline C-RO RO-MA

0.1 4.05 2.83 2.81 44.52 32.05 31.96 123.58 25.50 25.43
0.2 4.05 2.81 2.78 44.52 34.79 34.59 123.58 29.231 29.23
0.4 4.05 2.81 2.84 44.52 34.57 34.08 123.58 25.60 25.58
0.8 4.05 2.92 2.89 44.52 31.84 31.87 123.58 29.21 29.17
1.6 4.05 2.91 2.91 44.52 34.69 34.57 123.58 28.49 28.52

rather small. Consequently, our results suggest that our recall estimation function is reliable.
The dataset on which our expected recall is the furthest away from the real recall is the DBLP-
Scholar dataset. We assume that this is due to the heterogeneous distribution of characters in
the datasets, which leads to a poor approximation of intermediate results. We will investigate
this behavior in future works.

Applications to Supervised Learning

As pointed out in our introduction, one of the main reasons for using partial-recall Link Discovery
is its application in areas of machine learning where approaches must be executed on samples due
to time constraints, or where seeding is regarded as viable during the initialization phase of the
algorithms. One of these areas is link discovery itself, as predictive maintenance approaches learn
link specifications to integrate data across a whole industrial plant. In this extrinsic evaluation,
we aim to measure the loss of F-measure of a machine-learning approach when presented with

106

Chapter 7. Liger: Link Discovery with Partial Recall

Table 7.4: Root mean square error (RMSE) for Baseline, C-RO and RO-MA between the
estimated selectivity and real selectivity for k = 0.2 and maxOpt = 1600.

Dataset RMSE for Baseline RMSE for C-RO RMSE for RO-MA
Abt-Buy 3.04E-04 6.26E-05 6.26E-05
Amazon-Google 4.41E-04 4.24E-04 4.23E-04
DBLP-ACM 7.40E-04 7.47E-05 1.25E-04
DBLP-Scholar 6.29E-04 1.59E-04 1.59E-04
MOVIES 1.22E-04 4.05E-05 4.05E-05
TOWNS 1.18E-05 4.03E-06 4.03E-06
VILLAGES 1.44E-06 2.16E-07 2.16E-07

10 20 30 40 50 60 70 80 90 100
1E−06

1E−05

1E−04

1E−03

1E−02

1E−01

Estimated Selectivity
Real Selectivity

(a) Baseline

10 20 30 40 50 60 70 80 90 100
1E−07

1E−06

1E−05

1E−04

1E−03

1E−02

Estimated Selectivity
Real Selectivity

(b) C-RO

10 20 30 40 50 60 70 80 90 100
1E−07

1E−06

1E−05

1E−04

1E−03

1E−02

Estimated Selectivity
Real Selectivity

(c) RO-MA

Figure 7.5: Real selectivity and estimated selectivity results for Baseline, C-RO and RO-MA
on Abt-Buy data. The x-axis represents the number of specifications, the y-axis represents the
selectivity in logarithmic scale for k = 0.2 and maxOpt = 1600.

the results of partial-recall Link Discovery in comparison with the F-measure it would achieve
using the full results. To this end we use Wombat, which is currently the only approach for
learning LSs from positive examples. Figure 7.12 shows the results achieved by Wombat when
presented with the complete set of links generated by Eagle, as well as the results generated by
partial linking. Our results clearly show that with an expected partial recall of 50%, Wombat
achieves at least 76.6% of the F-measure that it achieves when presented with all the data
generated by Eagle (recall = 100%). As expected, the overall loss in F-measure is on datasets
where the achievable F-measure is smaller, (e.g., on Amazon-GP). Still, in the best case, we
achieve more than 95% of the maximal F-measure with k = 0.1. This gives us a clear answer
to Q4, namely that while the sampling of links leads to smaller F-measures, the ratio between
expected recall and portion of F-measure achieved speaks in favor of using partial-recall Link
Discovery in machine-learning applications with time constraints.

107

7.3 Evaluation

10 20 30 40 50 60 70 80 90 100
1E−08

1E−07

1E−06

1E−05

1E−04

1E−03

1E−02

1E−01

Estimated Sel Baseline
Real Sel Baseline

(a) Baseline

10 20 30 40 50 60 70 80 90 100
1E−08

1E−07

1E−06

1E−05

1E−04

1E−03

1E−02

1E−01

Estimated Sel C-RO
Real Sel C-RO

(b) C-RO

10 20 30 40 50 60 70 80 90 100
1E−08

1E−07

1E−06

1E−05

1E−04

1E−03

1E−02

1E−01

Estimated Sel RO-MA
Real Sel RO-MA

(c) RO-MA

Figure 7.6: Real selectivity and estimated selectivity results for Baseline, C-RO and RO-MA on
Amazon-GP data. The x-axis represents the number of specifications, the y-axis represents the
selectivity in logarithmic scale for k = 0.2 and maxOpt = 1600.

10 20 30 40 50 60 70 80 90 100
1E−21

1E−18

1E−15

1E−12

1E−09

1E−06

1E−03

Estimated Sel Baseline
Real Sel Baseline

(a) Baseline

10 20 30 40 50 60 70 80 90 100

1E−21

1E−18

1E−15

1E−12

1E−09

1E−06

1E−03

Estimated Sel C-RO
Real Sel C-RO

(b) C-RO

10 20 30 40 50 60 70 80 90 100

1E−21

1E−18

1E−15

1E−12

1E−09

1E−06

1E−03

Estimated Sel RO-MA
Real Sel RO-MA

(c) RO-MA

Figure 7.7: Real selectivity and estimated selectivity results for Baseline, C-RO and RO-MA on
DBLP-ACM data. The x-axis represents the number of specifications, the y-axis represents the
selectivity in logarithmic scale for k = 0.2 and maxOpt = 1600.

108

Chapter 7. Liger: Link Discovery with Partial Recall

10 20 30 40 50 60 70 80 90 100

1E−14

1E−12

1E−10

1E−08

1E−06

1E−04

1E−02

Estimated Sel Baseline
Real Sel Baseline

(a) Baseline

10 20 30 40 50 60 70 80 90 100
1E−16

1E−14

1E−12

1E−10

1E−08

1E−06

1E−04

1E−02

Estimated Sel C-RO
Real Sel C-RO

(b) C-RO

10 20 30 40 50 60 70 80 90 100
1E−16

1E−14

1E−12

1E−10

1E−08

1E−06

1E−04

1E−02

Estimated Sel RO-MA
Real Sel RO-MA

(c) RO-MA

Figure 7.8: Real selectivity and estimated selectivity results for Baseline, C-RO and RO-MA on
DBLP-Scholar data. The x-axis represents the number of specifications, the y-axis represents
the selectivity in logarithmic scale for k = 0.2 and maxOpt = 1600.

10 20 30 40 50 60 70 80 90 100
1E−09

1E−08

1E−07

1E−06

1E−05

1E−04

1E−03

1E−02

Estimated Sel Baseline
Real Sel Baseline

(a) Baseline

10 20 30 40 50 60 70 80 90 100
1E−10

1E−08

1E−06

1E−04

1E−02

Estimated Sel C-RO
Real Sel C-RO

(b) C-RO

10 20 30 40 50 60 70 80 90 100
1E−10

1E−08

1E−06

1E−04

1E−02

Estimated Sel RO-MA
Real Sel RO-MA

(c) RO-MA

Figure 7.9: Real selectivity and estimated selectivity results for Baseline, C-RO and RO-MA
on MOVIES data. The x-axis represents the number of specifications, the y-axis represents the
selectivity in logarithmic scale for k = 0.2 and maxOpt = 1600.

109

7.3 Evaluation

10 20 30 40 50 60 70 80 90 100
1E−06

1E−05

1E−04

1E−03

Estimated Sel Baseline
Real Sel Baseline

(a) Baseline

10 20 30 40 50 60 70 80 90 100
1E−06

1E−05

1E−04

1E−03

Estimated Sel C-RO
Real Sel C-RO

(b) C-RO

10 20 30 40 50 60 70 80 90 100
1E−06

1E−05

1E−04

1E−03

Estimated Sel RO-MA
Real Sel RO-MA

(c) RO-MA

Figure 7.10: Real selectivity and estimated selectivity results for Baseline, C-RO and RO-MA
on TOWNS data. The x-axis represents the number of specifications, the y-axis represents the
selectivity in logarithmic scale for k = 0.2 and maxOpt = 1600.

10 20 30 40 50 60 70 80 90 100
1E−07

1E−06

1E−05

1E−04

1E−03

Estimated Sel Baseline
Real Sel Baseline

(a) Baseline

10 20 30 40 50 60 70 80 90 100
1E−07

1E−06

1E−05

1E−04

Estimated Sel C-RO
Real Sel C-RO

(b) C-RO

10 20 30 40 50 60 70 80 90 100
1E−07

1E−06

1E−05

1E−04

Estimated Sel RO-MA
Real Sel RO-MA

(c) RO-MA

Figure 7.11: Real selectivity and estimated selectivity results for Baseline, C-RO and RO-MA
on VILLAGES data. The x-axis represents the number of specifications, the y-axis represents
the selectivity in logarithmic scale for k = 0.2 and maxOpt = 1600.

110

Chapter 7. Liger: Link Discovery with Partial Recall

Abt-Buy DBLP-ACM Amazon-GP
0.0

0.2

0.4

0.6

0.8

1.0
Baseline
C-RO (50%)
RO-MA (50%)
C-RO (20%)
RO-MA (20%)
C-RO (10%)
RO-MA (10%)

Figure 7.12: F-measures achieved by Wombat, when provided with the results of Liger as
training data. The expected recall values set for C-RO and RO-MA are in brackets.

111

7.3 Evaluation

112

Dynamic Planning for Link Dis-
covery

8
Preamble This chapter is based on [65] which is the first work on dynamic planning for
LD. The author co-designed, implemented and evaluated the algorithm presented herein, and
co-wrote the said paper.

8.1 The Condor Approach

The goal of Condor (DynamiC Planning fOr LiNk DiscOveRy) is to improve the overall execu-
tion time of LSs. To this end, Condor aims to derive a time-efficient execution plan for a given
input LS L. The basic idea behind state-of-the-art planners for LD (see [138]) is to approximate
the costs of possible plans for L, and to simply select the least costly (i.e., the presumable fastest)
plan to improve the execution costs. The selected plan is then forwarded to the execution engine
and executed. We call this type of planning static planning because the plan selected is never
changed. Condor addresses the planning and execution of LSs differently: given an input LS L,
Condor’s planner uses an initial cost function to generate initial plans, of which each consists
of a sequence of steps that are to be executed by Condor’s execution engine to compute L.
The planner chooses the least costly plan and forwards it to the engine. After the execution of
each step, the execution engine overwrites the planner’s cost function by replacing the estimated
costs of the executed step with its real costs. The planner then re-evaluates the alternative plans
previously generated, and alters the remaining steps to be executed if the updated cost function
suggests better expected runtimes for this alteration of the remaining steps. We call this novel
paradigm for planning the execution of LSs dynamic planning.

8.1.1 Planning

Algorithm 17 summarizes the dynamic planning approach implemented by Condor. The algo-
rithm (dubbed plan) takes a LS L as input and returns the plan P with the smallest expected
runtime. The core of the approach consists of (1) a cost function re, which computes expected
runtimes as described in Chapter 6, and (2) a recursive cost evaluation scheme. Condor’s
planner begins by retrieving a map with LSs as keys and their corresponding plans as values
(line 2).1 Then it checks whether the input L has already been executed within the current run
(line 3). If L has already been executed, there is no need to re-plan the LS. Instead, plan returns

1The map returned from function getExecutedP lans() has global scope and is updated in the execute(P, S, T)
function

113

8.1 The Condor Approach

the known plan P . If L has not yet been executed, we proceed by first checking whether L is
atomic. If L is atomic, we return P = run(m(ps, pt), θ) (line 7), which simply computes [[L]] on
S × T . Here, we make use of existing scalable solutions for computing such mapping [134].

If L = (f, ζ, ω(L1, L2)), plan derives a plan for L1 and L2 (lines 11 and 12), then computes
the possible plans given op(L). It then decides for the least costly plan based on the cost
function. The possible plans generated by Condor depend on the operator of L. For example,
if op(L) = u, then plan algorithm evaluates three alternative plans:

1. The canonical plan (lines 22, 24, 28, 32), which consists of executing the plans of L1
and L2 (P1 and P2 resp.), performing an intersection between the resulting mappings and
then filtering the final mapping using (f, ζ);

2. The filter-right plan (lines 25, 33), where the best plan P1 for L1 is executed, followed
by a filtering operation run on the results of P1 using (f2, ζ2) = ϕ(L2). Then the final
mapping is filtered using (f, ζ);

3. The filter-left plan (lines 29, 33), which is a filter-right plan with the roles of L1 and L2
reversed.

Condor’s planning function re-uses results of previously executed LSs and plans. Hence, if
both P1 and P2 have already been executed (re(P1) = re(P2) = 0), then the best plan is the
canonical plan, where Condor will only need to retrieve the mappings of the two plans and
then perform the intersection and the filtering operation (line 21). If P1 resp. P2 have already
been executed (see line 23 resp. 27), then the algorithm decides between the canonical and the
filter-right resp. filter-left plan. If no information is available, then the costs of the different
alternatives are calculated based on our cost function described in Section 8.1.2 and the least
costly plan is chosen. Similar approaches are implemented for op(L) = \ (lines 13- 19). In
particular, in line 18, the plan algorithm implements the filter-right plan by first executing the
plan P1 for the left child and then constructing a “reverse filter” from (f2, τ2) = ϕ(L2) by calling
the getReverseFilter function. The resulting filter is responsible for only allowing links of the
retrieved mapping of L1 not returned by L2. For op(L) = t (line 37) the plan always consists
of merging the results of P1 and P2.

8.1.2 Plan Evaluation

One important component of Condor is the cost function required to estimate the costs of
executing the corresponding plan. Based on [64] and Section 6, we used a linear plan evaluation
schema as introduced in [138]. A plan P is characterized by one basic component, re(P), the
approximated runtime of executing P .

Approximation of re(P) for an atomic LS

We compute re(P) by assuming that the runtime of L = (m(ps, pt), θ) can be approximated in
linear time for each metric m using the following equation:

re(P) = κ0 + κ1|S|+ κ2|T |+ κ3θ , (8.1)

where |S| is the size of the source KB, |T | is the size of the target KB and θ is the threshold of
the specification. The next step of our plan evaluation approach was to estimate the parameters
κ0, κ1, κ2andκ3. However, the size of the source and target KBs was unknown prior to the linking
task. Therefore, we used a sampling method, where we generated source and target datasets
of sizes 1, 000, 2, 000, . . . , 10, 000 by sampling data from the English labels of DBpedia 3.8. and

114

Chapter 8. Dynamic Planning for Link Discovery

Algorithm 17: plan Algorithm for Condor
Input: a link specification L
Output: Least costly plan P of L

1 P ← ∅
2 executedP lans← getExecutedP lans()
3 if executedP lans.contains(L) then
4 P ← executedP lans.get(L)
5 else
6 if (L == (m(ps, pt), θ)) then
7 P ← run(m(ps, pt), θ)
8 else
9 L1 ← L.leftChild

10 L2 ← L.rightChild
11 P1 ← plan(L1)
12 P2 ← plan(L2)
13 if (op(L) == \) then
14 if executedP lans.contains(L2) then
15 P ← merge(minus, P1, P2)
16 else
17 Q0 ← merge(minus, P1, P2)
18 Q1 ← merge(getReverseF ilter(ϕ(L2)), P1)
19 P ← getLeastCostly(Q0, Q1)

20 else if (op(L) == u) then
21 if (executedP lans.contains(L1) ∧ executedP lans.contains(L2)) then
22 P ← merge(intersection, P1, P2)
23 else if (executedP lans.contains(L1) ∧ ¬executedP lans.contains(L2)) then
24 Q0 ← merge(intersection, P1, P2)
25 Q1 ← merge(ϕ(L2), P1)
26 P ← getLeastCostly(Q0, Q1)
27 else if (¬executedP lans.contains(L1) ∧ executedP lans.contains(L2)) then
28 Q0 ← merge(intersection, P1, P2)
29 Q1 ← merge(ϕ(L1), P2)
30 P ← getLeastCostly(Q0, Q1)
31 else
32 Q0 ← merge(intersection, P1, P2)
33 Q1 ← merge(ϕ(L2), P1)
34 Q2 ← merge(ϕ(L1), P2)
35 P ← getLeastCostly(Q0, Q1, Q2)

36 else
37 P ← merge(union, P1, P2)

38 Return P

stored the runtime of the measures implemented by our framework for different thresholds θ
between 0.5 and 1. Then, we computed the κi parameters by deriving the solution of the
problem to the linear regression solution of K = (ΠTΠ)−1ΠTΞ, where K = (κ0, κ1, κ2, κ3)T , Ξ is
a vector in which the ξi-th row corresponds to the runtime retrieved by running ith experiment
and Π is a four-column matrix in which the corresponding experimental parameters (1, |S|, |T |, θ)
are stored in the πi-th row.

115

8.1 The Condor Approach

Approximation of re(P) for a complex LS

For the canonical plan, re(P) is estimated by summing up the runtime estimations of all plans
that correspond to children specifications of the complex LS. For the filter-right and filter-left
plans, re(P) is estimated by summing up the re(Pi), i = 1, 2 of the children LS whose plan
is to be executed along with the filtering function runtime approximation performed by the
other child LS. To estimate the runtime of a filtering function, we compute the approximation
analogously to the computation of the runtime of an atomic LS.

Additionally, we define a set of rules if ω = u or ω = \:

1. re(P) includes only the sums of the children LSs that have not yet been executed.

2. If both children of the LS are executed then re(P) is set to 0. Therefore, we force the
algorithm to choose canonical over the other two options, since it will create a smaller
overhead in total runtime of Condor.

8.1.3 Execution

Algorithm 18 describes the execution of the plan that Algorithm 17 returned. The execute
algorithm takes as input a LS L, a source KB S and a target KB T , and returns the corresponding
mappingM once all steps of P have been executed. The algorithm begins in line 4, where execute
returns the mappingM of L from the map results, if L has already been executed and its result
cached.2 If L has not been executed before, we proceed by checking whether a LS L′ with
[[L]] ⊆ [[L′]] has already been executed (line 8). If such a L′ exists, then execute retrieves
M ′ = [[L′]] and runs (f, ζ, [[L′]]) where (f, ζ) = ϕ(L) (line 10). If such a L′ does not exist, the
algorithm checks whether L is atomic. If this is the case, it calls the function plan(L) (line 13)
that returns the plan P = run(m(ps, pt), θ) and then it computes [[L]]. If L = (f, ζ, ω(L1, L2)),
execute calls the plan function described previously.

8.1.4 Example Run

To elucidate the workings of Condor further, we use the LS described in Figure 8.1 as a running
example. Table 8.1 shows the runtime cost returned by the function re for each possible plan
that can be produced for the specifications included in L, for the different calls of the plan
function for L. The runtime value of a plan for a complex LS additionally includes a value
for the filtering or set operations, wherever present. Recall that plan is a recursive function
(lines 11, 12) and plans L in post-order (bottom-up, left-to-right). Condor produces a plan
equivalent to the canonical plan for the left child due to the t operator. Then, it proceeds in
finding the least costly plan for the right child. For the right child, plan has to choose between the
three alternatives described in Sect. 8.1.1. Table 8.1 shows the approximation runtime of each
plan for (u((cosine(label, label), 0.40), (trigrams(name, name), 0.80)), 0.50). The least costly
plan for the right child is the filter-left plan, where (trigrams(name, name), 0.80)) is executed
and the resulting mapping is filtered using (cosine(label, label), 0.40)), and then (ε, 0.50). Before
proceeding to discover the best plan for L, Condor assigns an approximate runtime to each
child plan of L: 3.5 s for the left child’s plan P1 and 1.5 s for the right child’s plan P2.

Once Condor has identified the best plans for both children of L, it proceeds to find the
most efficient plan for L. Since both children have not been previously executed, plan goes
to line 16. There, it has to chose between two alternative plans, i.e., the canonical plan with
re(P) = 6.2 s and the filter-right plan with re(P) = 5.2 s. It is obvious that plan is going to

2The result buffer results has global scope.

116

Chapter 8. Dynamic Planning for Link Discovery

Algorithm 18: execute Algorithm
Input: a link specification L; a source KB S; a target KB T
Output: Mapping M of L

1 M ← ∅
2 executedP lans← getExecutedP lans()
3 results← getResults()
4 if executedP lans.contains(L) then
5 M ← results.get(L)
6 else
7 L′ = checkDependencies(L)
8 if L′ 6= null then
9 M ← results.get(L′)

10 M ← filter(ϕ(L),M ′)
11 else
12 if L == (m(ps, pt), θ) then
13 P ← plan(L)
14 M ← run(P, S, T)
15 else
16 P ← plan(L)
17 L1 ← P.getSubSpec(0)
18 M1 ← execute(L1, S, T)
19 P ← plan(L)
20 if P.operator 6= ∅ then
21 L2 ← P.getSubSpec(1)
22 M2 ← execute(L2, S, T)
23 M ← runOperator(P.operator,M1,M2)
24 else
25 if (op(L) == \) then
26 M ← filter(getReverseF ilter(ϕ(L2)),M1)
27 else
28 M ← filter(ϕ(L2),M1)

29 M ← filter(ϕ(L),M)

30 update(L,P, executedP lans)
31 addResults(L,M)
32 Return M

assign the filter-right plan as the least costly plan for L. Note that this plan overwrites the right
child filter-left plan, and it will instead use the right child as a filter.

Once the plan is finalized, the plan function returns and assigns the plan shown in Fig-
ure 8.2 to re(P) in line 16. For the next step, execute retrieves the left child (t((cosine
(label, label), 0.40), (trigrams(name, name), 0.80)), 0.50) and assigns it to L1 (line 17). Then,
the algorithm calls execute for L1. execute repeats the plan procedure for L1 recursively, and
returns the plan illustrated in Fig. 8.4. The plan is executed and finally (line 18) the resulting
mapping is assigned to M1. Remember that all intermediate mappings, the final mapping, and
the corresponding LSs are stored for future use (line 31). Additionally, we replace the cost value
estimations of each executed plan with their real values and update the executed plans map
executedP lans in line 30. Now, the cost value of (cosine(label, label), 0.40) is assigned to 2.0 s,
the cost value of (trigrams(name, name), 0.80) is assigned to 1.0 s and finally, the cost value of
the left child is replaced by 4.0 s.

Given the runtimes from the execution engine, the algorithm re-plans the further steps of
L. Within this second call of plan (line 19), Condor does not re-plan the sub-specification

117

8.1 The Condor Approach

(ε, 0.50) \

(ε, 0.50) u
trigrams(name, name), 0.80

cosine(label, label), 0.40

(ε, 0.50) t
trigrams(name, name), 0.80

cosine(label, label), 0.40

Figure 8.1: Graphical representation of an example LS

Table 8.1: Runtime costs for the plans computed for the specification in (Fig. 8.1) by the two calls
of the plan in lines 16 and 19. All runtimes are presented in seconds. The 1st column includes
the initial runtime approximations of plans. The 2nd column includes (1) a real runtime value
of a plan, if the plan has been executed (�); (2) a 0.0 value if all the subsequent plans of that
plan have been previously executed (•) or have an estimation of zero cost in the current call of
plan (∗); (3) a runtime approximation value, which includes only runtimes of subsequent plans
that have not yet been executed (�).

P
re(P)

1st 2nd

(cosine(label, label), 0.40) 1.8 2.0�
(trigrams(name, name), 0.80) 0.5 1.0�

ϕ(cosine(label, label), 0.40) 0.8 0.8�
ϕ(trigrams(name, name), 0.80) 0.6 0.6�

canonical plan: merge(u, (cosine(label, label), 0.40), (trigrams(name, name), 0.80)) 3.5 0.0•
filter-right plan: merge(ϕ(trigrams(name, name), 0.80), (cosine(label, label), 0.40)) 2.6 0.8�
filter-left plan: merge(ϕ(cosine(label, label), 0.40), (trigrams(name, name), 0.80)) 1.5 1.0�

canonical plan: merge(t, (cosine(label, label), 0.40), (trigrams(name, name), 0.80)) 3.5 4.0�

canonical plan for L 6.2 0.0∗
filter-right plan for L (see Fig. 8.2) 5.2 1.7�

that corresponds to L1, since its plan (Figure 8.4) has been executed previously. Initially,
plan had decided to use the right child as a filter. However, both (cosine(label, label), 0.40)
and (trigrams(name, name), 0.80) have already been executed. Hence, the new total cost of
executing the right child is set to 0.0. Consequently, plan changes the remaining steps of the
initial plan of L, since the cost of executing the canonical plan is now set to 0.0. The final plan
is illustrated in Figure 8.3.

Once the new plan P is constructed, execute checks if P includes any operators. In our exam-
ple, op(L) = \. Thus, we execute the second direct child of L as described in P , L2 = (u((cosine
(label, label), 0.40), (trigrams(name, name), 0.80)), 0.50). Algorithm 18 calls the execute func-
tion for L2, which calls plan. Condor’s planning algorithm then returns a plan for L2, which
is similar to the plan for the left child illustrated in Fig. 8.4 by replacing the t operator with
the u operator, with re(P2) = 0 s.

When the algorithm proceeds to executing P2, it discovers that the atomic LSs of L2 have
already executed. Thus, it retrieves the corresponding mappings, performs the intersection
between the results of (cosine(label, label), 0.40) and (trigrams(name, name), 0.80), filters the

118

Chapter 8. Dynamic Planning for Link Discovery

(ε, 0.50) t((cosine(label, label), 0.40), trigrams(name, name), 0.80)) (ε, 0.50) t

cosine(label, label), 0.40

trigrams(name, name), 0.80

Figure 8.2: Initial plan of LS from Figure 8.1

(ε, 0.50) \

(ε, 0.50) t

(ε, 0.50) u

cosine(label, label), 0.40

trigrams(name, name), 0.80

Figure 8.3: Final plan of LS from Figure 8.1

resulting mapping of the intersection with (ε, 0.50) and stores the resulting mapping for future
use (line 31). Returning to our initial LS L, the algorithm has now retrieved results for both
L1 and L2 and proceeds to perform the steps described in lines 23 and 29. The final plan
constructed by Condor is presented in Fig. 8.3.

If the second call of the plan function for L in line 19 had resulted in not altering the
initial plan (Figure 8.2), then execute would have proceeded in applying a reverse filter (i.e.,
the implementation of the difference of mappings) on M1 by using (u((cosine(label, label),
0.40), (trigrams(name, name), 0.80)), 0.50) (line 26). Similarly, operations would have been
carried out if op(L) = u in line 28.

Overall, the complexity of Condor can be derived as follows: for each node of a LS L,
Condor generates a constant number of possible plans. Hence, the complexity of each iteration
of Condor is O(|L|). The execution engine executes at least one node in each iteration, meaning
that it needs at most O(|L|) iterations to execute L completely. Hence, Condor’s worst-case
runtime complexity is O(|L|2).

8.2 Evaluation of Condor

8.2.1 Evaluation Questions

The aim of our evaluation was to address the following questions:

• (Q1) Does Condor achieve better runtimes for LSs?

• (Q2) How much time does Condor spend planning?

• (Q3) How do the different sizes of LSs affect Condor’s runtime?

8.2.2 Evaluation Datasets

To evaluate the performance of Condor, we performed a set of experiments against seven data
sets. The first four are benchmark data sets for LD dubbed Abt-Buy, Amazon-GP, DBLP-ACM

(ε, 0.50) t
trigrams(name, name), 0.80

cosine(label, label), 0.40

Figure 8.4: Plan of the left child for the LS in Fig. 8.1

119

8.2 Evaluation of Condor

and DBLP-Scholar described in [103]. These are manually curated benchmark data sets collected
from real data sources, such as the publication sites DBLP and ACM, as well as the Amazon
and Google product websites. To assess the scalability of Condor, we used three additional
data sets (MOVIES, TOWNS and VILLAGES, see Table 8.2) from the data sets DBpedia, LGD
and LinkedMDB.3 4 Table 8.2 describes their characteristics and presents the properties used
when linking retrieved resources. The mapping properties were provided to the link discovery
algorithms underlying our results.

Table 8.2: Entity matching characteristics of datasets

Dataset Source (S) Target (T) |S| × |T | Source Property Target Property

Abt-Buy Abt Buy 1.20× 106

product name product name
description description
manufacturer manufacturer
price price

Amazon-GP Amazon 4.40× 106

product name product name
Google description description
Products manufacturer manufacturer

price price

DBLP-ACM ACM DBLP 6.00× 106 title, authors title authors
venue, year venue, year

DBLP-Scholar DBLP Google 0.17× 109 title, authors title, authors
Scholar venue, year venue, year

MOVIES DBpedia LinkedMDB 0.17× 109

dbp:name dc2:title
dbo:director/dbp:name movie:director/movie:director_name
dbo:producer/dbp:name movie:producer/movie:producer_name
dbp:writer/dbp:name movie:writer/movie:writer_name
rdfs:label rdfs:label

VILLAGES DBpedia LGD 6.88× 109
rdfs:label rdfs:label
dbo:populationTotal lgdo:population
geo:geometry geom:geometry/agc:asWKT

8.2.3 Experimental Setup

We generated 100 LSs for each dataset by using the unsupervised version of Eagle, a genetic
programming approach for learning LSs [141]. We used this algorithm because it can detect
LSs of high accuracy on the datasets at hand. We configured Eagle by setting the number
of generations and population size to 20; mutation and crossover rates were set to 0.6. All
experiments were carried out on a 20-core Linux Server running OpenJDK 64-Bit Server 1.8.0.66
on Ubuntu 14.04.3 LTS on Intel Xeon CPU E5-2650 v3 processors clocked at 2.30GHz. Each
experiment was repeated three times. We report the average runtimes of each of the algorithms.
Note that all three planners returned the same set of links and that they hence all achieved
100% F-measure w.r.t. the LS to be executed.5

8.2.4 Evaluation Results

We compared the execution time of Condor with that of the state-of-the-art algorithm for
planning - Helios [138], and also with the canonical planner implemented in Limes. We chose

3http://www.linkedmdb.org/
4The new data and a description of how they were constructed are available at https://hobbitdata.

informatik.uni-leipzig.de/LIGER/newDatasets/
5Our complete experimental results can be found at http://titan.informatik.uni-leipzig.de/kgeorgala/

condor_results.zip. Our open source code can be found at http://limes.sf.net

120

http://www.linkedmdb.org/
https://hobbitdata.informatik.uni-leipzig.de/LIGER/newDatasets/
https://hobbitdata.informatik.uni-leipzig.de/LIGER/newDatasets/
http://titan.informatik.uni-leipzig.de/kgeorgala/condor_results.zip
http://titan.informatik.uni-leipzig.de/kgeorgala/condor_results.zip
http://limes.sf.net

Chapter 8. Dynamic Planning for Link Discovery

Limes because it is a state-of-the-art declarative framework for link discovery that ensures result
completeness. Figure 8.5 shows the runtimes achieved by the different algorithm in different set-
tings. As shown in Figures 8.5, 8.6, 8.7 and 8.8, Condor outperforms Canonical and Helios
on all datasets. A Wilcoxon signed-rank test on the cumulative runtimes of the approaches (sig-
nificance level = 99%) confirms that the differences in performance between Condor and the
other approaches are statistically significant on all datasets. This observation and the statistical
test clearly answer question Q1: Condor outperforms the state of the art in planning by being
able to generate more time-efficient plans than Helios and Canonical.

Abt-Buy Amazon-GP DBLP-ACM DBLP-Scholar MOVIES TOWNS VILLAGES
10 1

100

101

102

103

104

0.81

6.37

1.33

803.96

4.49

45.58 124.18

0.77

11.10

1.44

318.99

4.29

45.23 112.97

0.52

1.38
1.08

208.31

4.24

42.23
67.57

CANONICAL
HELIOS
CONDOR

Figure 8.5: Mean and standard deviation of runtimes of Canonical, Helios and Condor for
all LSs. The y-axis shows runtimes in seconds on a logarithmic scale. The numbers on top of
the bars are the average runtimes.

Figure 8.5 shows that our approach performs best on Amazon-GP, where it can reduce the
average runtime of the set of specifications by 78% compared to Canonical, making Condor
4.6 times faster. Moreover, for the same dataset, dynamic planning is 8.04 times more efficient
than Helios. Note that finding a better plan than the canonical plan on this particular dataset
is non-trivial (as shown by the Helios results). Here, our dynamic planning approach pays off
by being able to revise the original and altering this plan at runtime early enough to achieve
better results than both Canonical and Helios. The highest absolute difference is achieved on
DBLP-Scholar, where Condor reduces the overall execution time of the Canonical planner
on the 100 LSs by an average of approximately 600 s per specification. On the same dataset,
the difference between Condor and Helios is approximately 110 s per LS.

The answer to our second question is that the benefits of the dynamic planning strategy are
far superior to the time required by the re-planning scheme (as showed by Figure 8.5). Condor
spends between 0.0005% (DBLP-Scholar) and 0.1% (Amazon-GP) of the overall runtime on
planning. The specifications computed for the Amazon-GP dataset have, on average, the largest
size in contrast to the other datasets. On this particular dataset, Condor spends less than 10ms
planning. We regard this result as particularly good, as using Condor brings larger benefits
with growing specifications. Answer to Q2: in our experiments, Condor invests less than 10ms
in planning.

121

8.2 Evaluation of Condor

10 20 30 40 50 60 70 80 90 100
0.00E00

1.00E01

2.00E01

3.00E01

4.00E01

5.00E01

6.00E01

7.00E01

8.00E01

9.00E01 CANONICAL
HELIOS
CONDOR

(a) Abt-Buy

10 20 30 40 50 60 70 80 90 100
0.00E00

1.00E02

2.00E02

3.00E02

4.00E02

5.00E02

6.00E02

7.00E02

8.00E02

9.00E02

1.00E03

1.10E03

1.20E03
CANONICAL
HELIOS
CONDOR

(b) Amazon-GP

Figure 8.6: Comparison of runtimes of Canonical, Helios and Condor on the Abt-Buy and
Amazon-GP datasets of our evaluation data. The x-axis represents the number of specifications,
the y-axis represents the cumulative execution times in seconds.

10 20 30 40 50 60 70 80 90 100
0.00E00

2.00E01

4.00E01

6.00E01

8.00E01

1.00E02

1.20E02

1.40E02

1.60E02
CANONICAL
HELIOS
CONDOR

(a) DBLP-ACM

10 20 30 40 50 60 70 80 90 100
0.00E00

1.00E04

2.00E04

3.00E04

4.00E04

5.00E04

6.00E04

7.00E04

8.00E04

9.00E04

1.00E05
CANONICAL
HELIOS
CONDOR

(b) DBLP-Scholar

Figure 8.7: Comparison of runtimes of Canonical, Helios and Condor on the DBLP-ACM
and DBLP-Scholar datasets of our evaluation data. The x-axis represents the number of speci-
fications; the y-axis represents the cumulative execution times in seconds.

To answer Q3, we also computed the runtime of LSs depending on their size (see Figures 8.9
and 8.10). For LSs of size 1, the execution times achieved by all three planners are most
commonly comparable (difference of average runtimes = 0.02 s), since the plans produced are
straight-forward and leave no room for improvement. For specifications of size 3, Condor is
already capable of generating plans that are, on average, 7.5% faster than the canonical plans.
The gap between Condor and the state of the art increases with the size of the specifications.
For specifications of sizes 7 and more, Condor plans only necessitate 30.5%, resp. 55.7% of the
time required by the plans generated by Canonical, resp. Helios.

A careful study of the plan generated by Condor reveals that the re-use of previously
executed portions of a LS and the use of subsumption are clearly beneficial to the execution
runtime of large LSs. However, the study also shows that in a few cases, Condor creates a
filter-right or filter-left plan where a canonical plan would have been better. This is due to some
sub-optimal runtime approximations produced by the re(P) function. Answer to Q3: Condor’s

122

Chapter 8. Dynamic Planning for Link Discovery

10 20 30 40 50 60 70 80 90 100
0.00E00

5.00E01

1.00E02

1.50E02

2.00E02

2.50E02

3.00E02

3.50E02

4.00E02

4.50E02

5.00E02
CANONICAL
HELIOS
CONDOR

(a) MOVIES

10 20 30 40 50 60 70 80 90 100
0.00E00

5.00E02

1.00E03

1.50E03

2.00E03

2.50E03

3.00E03

3.50E03

4.00E03

4.50E03

5.00E03

CANONICAL
HELIOS
CONDOR

(b) TOWNS

10 20 30 40 50 60 70 80 90 100
0.00E00
1.00E03
2.00E03
3.00E03
4.00E03
5.00E03
6.00E03
7.00E03
8.00E03
9.00E03
1.00E04
1.10E04
1.20E04
1.30E04
1.40E04

CANONICAL
HELIOS
CONDOR

(c) VILLAGES

Figure 8.8: Comparison of runtimes of Canonical, Helios and Condor on the last three
datasets of our evaluation data. The x-axis represents the number of specifications; the y-axis
represents the cumulative execution times in seconds.

performance gain over the state of the art grows with the size of the specifications.

123

8.2 Evaluation of Condor

Abt-Buy Amazon-GP DBLP-ACM DBLP-Scholar MOVIES TOWNS VILLAGES
10 1

100

101

102

103

104

2.98

10.48

2.10

855.24

8.93

51.10
206.42

2.81

18.50

2.68

339.31

7.02

48.89
184.69

1.30 2.02
0.88

221.56

6.49

28.76
97.37

CANONICAL
HELIOS
CONDOR

Figure 8.9: Mean and standard deviation of runtimes of Canonical, Helios and Condor for
all LSs with size greater or equal to 3. The y-axis shows runtimes in seconds on a logarithmic
scale. The numbers on top of the bars are the average runtimes.

Abt-Buy Amazon-GP DBLP-ACM DBLP-Scholar MOVIES TOWNS VILLAGES
10 1

100

101

102

103

104

3.17

11.86

2.74

909.46

11.12

111.02 251.14

2.95

21.15

4.19

358.96

9.69

105.36 222.08

0.96

2.10

0.99

233.18

8.75

55.15 105.60

CANONICAL
HELIOS
CONDOR

Figure 8.10: Mean and standard deviation of runtimes of Canonical, Helios and Condor for
all LSs with size greater or equal to 5. The y-axis shows runtimes in seconds on a logarithmic
scale. The numbers on top of the bars are the average runtimes.

124

Conclusions and Future Work
9

The goal of this thesis was to address the challenge of time-efficient LD by providing means to:

• improve the executing runtime of single measures, and

• accelerate the execution of whole specifications through planning, which demands the
prediction of runtimes.

For the first aspect, we focused our research on two types of single measures: (1) temporal,
and (2) string semantic similarities. In Chapter 4, we presented a time-efficient approach for the
computation of temporal relations based on the reduction of Allen relations to 8 atomic relations
that can be computed efficiently. We showed that by using simple sorting, we can reduce the
complexity of computing any of these relations to O(nlogn). Our experiments showed that our
approach outperforms the state of the art, which is based on multidimensional blocking. In
future work, we will extend the scalability of our approach by providing dedicated solutions
for load balancing within a parallel execution setting. Moreover, we will study the incremental
computation of temporal links on streams of data.

For the string semantic similarities, in Chapter 5, we presented hECATE, a generic frame-
work for improving the runtime of edge-counting semantic similarities. Our evaluation of the
framework shows that there is still a lot of potential in improving the runtime of semantic simi-
larities for LD. We used hECATE to evaluate the performance of string similarities in LD on five
datasets. Our evaluation shows that combining semantic similarities with string similarities can
indeed increase the F-measure achieved by LD algorithms. This result is of central importance
as it goes against current assumptions. The reason why we are indeed able to use semantic simi-
larities for improving the F-measure of LD in some cases lies in the refinement operator employed
by Wombat. In future works, we will investigate means that will allow improving the runtimes
of semantic similarities, emphasize on how semantic similarities can handle homonyms, extend
our works beyond edge-counting similarities and aim to classify datasets w.r.t. how suitable
they are for semantic similarities.

Based on our findings for the two types of single measures, we performed a systematic
survey on String Similarity Joins for Link Discovery, closing this research gap by presenting 54
SSJs that were published between 2008 and 2018. We divided our research scope into two main
categories: (1) studies related to our systematic survey, and (2) published papers of SSJs for LD.
For both categories, we stated the inclusion and exclusion criteria, and we followed a structured
methodology of searching for corresponding publications, for which we presented in detail the
different steps of our search along with numerical evidence. For the first category, we discussed

125

our findings and showed the lack of systematic surveys regarding SSJs and their role in LD.
For the second category, we presented our categorization criteria and the research questions we
aimed to answer throughout our survey.

We divided the SSJs into two main categories: (1) filter-verify, and (2) tree-based approaches.
The filter-verify approaches were further partitioned into 3 sub-categories based on signature
generation technique they used. We showed the basic features of each SSJ such as the string
similarities it targets, its signature scheme, the filtering/pruning techniques or tree structures
used to minimize the set of candidate pairs, and any optimizations proposed for verification. In
the evaluation section, we divided the SSJs based on the string similarity group they main to
optimized (token-based, character-based or hybrid). For each group, we showed the basic trends
followed over the past decade and how ideas involved to further optimize the efficiency of string
similarities.

Throughout our systematic research, we identified three main challenges associated with
SSJs—therewith answering CS −Q2:

1. completeness vs. efficiency;

2. space vs. time complexity;

3. scalability.

The first challenge refers to the ability of each SSJ approach to maintain a low number of
false positives/negatives by taking into consideration the computational costs required for high
filtering/pruning power. For the filter-verify approaches, this challenge includes the decision
of choosing the appropriate signature scheme. The current literature suggests that filter-verify
approaches are not suitable for short string comparisons, since they are not able to select high-
quality signatures [226, 117]. Choosing a single token as signature with low selectivity leads to
mismatched pairs sharing the same tokens. As a result, the number of false positives increases.
Regarding the tree-based approaches, using a trie structure for index leads to expensive traversals
of complexity O(B × Z), where is B is the number of strings and Z is an average length of a
string, which makes them inadequate for long strings. Additionally, in case of large Levenshtein
distance thresholds, the produced tree structure becomes enormous with more active nodes that
need further pruning. The Bi-Trie-PathStack method introduced in [59] and PreJoin [71]
tried to solve the issue of tree structures for large edit-distance thresholds. Partition-based
approaches are proven to be able to find good quality signatures for both short and long strings
[117].

The second challenge involves the trade-off between having fast and time-efficient solutions
for string similarities that come at the cost of space requirements, and vice versa. Some tree-
based approaches overcome this issue by using of trie structures to index data strings that
minimizes the index size, and perform string similarity joins efficiently without the cost of the
verification stage. However, as explained before, inserting and searching nodes in a trie structure
comes at the cost of efficiency. On the other hand, the filter-verify approaches need to store both
the signatures and the original strings, since the verification step is performed in string level.
Approaches such as Ed-Join [219], PPJoin [221], VChunkJoin [215] and MPJoin [162] tried
to minimize the index space by proposing various bounds to minimize the size of signatures index.
Furthermore, both categories of SSJs need to consider whether they keep the sets of signatures
or indexes in memory for faster the storing/loading operations, or transfer everything to disk,
risking performance deterioration. Longer signatures and larger indexes have a greater pruning
power but lead to higher filtering time and space requirements, whereas shorter signatures and
smaller indexes needs less space but make the comparisons slower.

126

Chapter 9. Conclusions and Future Work

The third challenge refers to the ability of each approach to deal with large amounts of data,
while maintaining a low time complexity. Many SSJ approaches deal with this issue by imple-
menting parallel approaches utilizing MapReduce, such as MPJoin [162] and PeARL [161].
However, parallel processing comes with two main considerations. First, data skewness among
partitions might lead to pairs of strings to be processed more than once. Second, avoiding
segmenting and replicating the data among partitions might not be a trivial issue. Therefore,
many SSJ methods, such as SSJ-2 [17], have focused on implementing additional techniques to
overcome these problems by creating partition methodologies that consider the underlying data
distribution.

The observations above led us to the following conclusions:

• The work that has been carried out in the field of SSJs for LD focuses on syntactic string
similarities. Based on the evaluation results of Section 3.1.6, implementing and combining
SSJs for both semantic and syntactic string similarities could be prove beneficial for the
effectiveness of LD.

• Apart from providing theoretical guarantees for the runtime improvement of the edit-
distance family, there has been limited experimental evaluation on any other metric of the
aforementioned same family, apart from Levenhstein.

• Partition-based approaches provide a good solution for both short and long strings com-
parisons. Prefix-based approaches perform better in the presence of large strings, whereas
tree-based approaches need further optimizations to deal with enormous tree structures.

• Parallel versions of SSJs are suitable for large datasets. Using MapReduce or Spark for
small datasets creates an unnecessary overhead without improving the efficiency of SSJs
significantly. Other distributed processing schemes remain an open research field.

For the second aspect, in Chapters 6, 7 and 8, we presented (1) a study of three different
approximation functions that allow predicting the runtime of LSs, (2) the first dynamic planner
for Link Discovery, Condor, and (3) the first (to the best of our knowledge) partial-recall LD
approach. As we explained in Chapter 6, the selection of accurate runtime approximation models
is a first necessary step towards the fast execution of LSs. The goal of Condor and Liger was
to efficiently execute LSs, focusing on planning and LD under time constrains resp. Based on
our findings from Section 6.2, we showed that on average, linear models are indeed the approach
to chose to this end as they seem to overfit the least. Still, mixed models also perform in a
satisfactory manner. Exponential models either fit very well or not at all and are thus not to be
used. In future work, we will study further models for the evaluation of runtime and improve
upon existing planning mechanisms for the declarative Link Discovery. In particular, we will
consider other features when approximating runtimes, e.g., the distribution of characters in the
strings to compare.

In Chapter 7, we provided a formal definition of a downward refinement operator with which
we can detect subsumed LS with partial recall. We studied its characteristics and prove that
our operator is finite, redundant, proper and incomplete. We used this operator to develop an
algorithm for partial-recall Link Discovery. Additionally, we introduced an extension of said
algorithm that takes into consideration the monotonicity of run times. Then, we evaluated
our approach on 7 datasets derived from real data and showed that our approach scales to large
datasets. Our results show that by using a downward refinement operator and insights pertaining
to the subsumption of LS, we are able to detect a LS with guaranteed expected recall efficiently.
Our extension of the original Liger algorithm with a monotonicity assumption pertaining to
the run time of the LS was shown to be slightly better than the basic Liger implementation.

127

Also, we demonstrate that the results of partial-recall LD can be used to initialize supervised
LD approaches without worsening their recall. In future work, we will build upon Liger to
guarantee the real selectivity and recall of our approaches with a given probability.

Based on the results from Section 8.2, we showed how our approach combines dynamic
planning with subsumption and result caching to outperform the state of the art static planners
by up to two orders of magnitude. A large number of questions were unveiled by our results.
First, our results suggested that Condor ’s runtimes can be improved further by improving the
cost function underlying the approach. Hence, we will study the use of most complex regression
approaches for approximating the runtime of metrics. Moreover, the parallel execution of plans
will be studied in future.

128

Bibliography

[1] M. A. Jaro. Probabilistic linkage of large public health data files. Statistics in Medicine,
14:491 – 498, 03 1995.

[2] S. Abiteboul, R. Hull, and V. Vianu, editors. Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1995.

[3] H. Abu Ahmad and H. Wang. An effective weighted rule-based method for entity resolu-
tion. Distributed and Parallel Databases, 36(3):593–612, Sep 2018.

[4] S. A. Aghili, D. Agrawal, and A. El Abbadi. Bft: Bit filtration technique for approximate
string join in biological databases. In M. A. Nascimento, E. S. de Moura, and A. L. Oliveira,
editors, String Processing and Information Retrieval, pages 326–340, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[5] J. L. Aguirre, B. C. Grau, K. Eckert, J. Euzenat, A. Ferrara, R. W. Van Hague, L. Hollink,
E. Jiménez-Ruiz, C. Meilicke, A. Nikolov, et al. Results of the ontology alignment eval-
uation initiative 2012. In Proc. 7th ISWC workshop on ontology matching (OM), pages
73–115. No commercial editor., 2012.

[6] S. R. Alenazi and K. Ahmad. Record duplication detection in database: A review. Interna-
tional Journal on Advanced Science, Engineering and Information Technology, 6(6):838–
845, 2016.

[7] K. F. Alfatmi and A. S. Vaidya. Survey of scalable string similarity joins. International
Journal of Computer Science and Information Technologies, 6:194–197, 2015.

[8] J. F. Allen. Maintaining Knowledge About Temporal Intervals. Commun. ACM,
26(11):832–843, Nov. 1983.

[9] R. J. and Mooney. Adaptive duplicate detection using learnable string similarity mea-
sures. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, August 2003.

[10] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language for
event processing and stream reasoning. In Proceedings of the 20th International Conference
on World Wide Web, WWW ’11, pages 635–644, New York, NY, USA, 2011. ACM.

[11] A. Arasu, S. Chaudhuri, and R. Kaushik. Transformation-based framework for record
matching. In Proceedings of the 2008 IEEE 24th International Conference on Data Engi-
neering, ICDE ’08, pages 40–49, Washington, DC, USA, 2008. IEEE Computer Society.

129

[12] S. Auer, J. Lehmann, and A.-C. Ngonga Ngomo. Introduction to Linked Data and Its
Lifecycle on the Web, pages 1–75. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[13] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’00, pages 261–272, New York, NY, USA, 2000. ACM.

[14] A. Badarneh, A. Abdi, S. Shboul, and H. Najadat. Survey of similarity join algorithms
based on mapreduce. MATTER: International Journal of Science and Technology, 2(1),
2016.

[15] L. Badea. Perfect Refinement Operators Can Be Flexible. In Proceedings of the 14th
European Conference on Artificial Intelligence, ECAI’00, pages 266–270, Amsterdam, The
Netherlands, The Netherlands, 2000. IOS Press.

[16] A. Banu, S. S. Fatima, and K. U. R. Khan. A Survey and Comparison of WordNet Based
Semantic Similarity Measures. International Journal of Computer Science And Technology,
42(3):456–461, 2013.

[17] R. Baraglia, G. De Francisci Morales, and C. Lucchese. Document similarity self-join with
mapreduce. In 2010 IEEE International Conference on Data Mining, pages 731–736, Dec
2010.

[18] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. Incremental Reason-
ing on Streams and Rich Background Knowledge. In Proceedings of the 7th International
Conference on The Semantic Web: Research and Applications - Volume Part I, ESWC’10,
pages 1–15, Berlin, Heidelberg, 2010. Springer-Verlag.

[19] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In Proceedings
of the 16th International Conference on World Wide Web, WWW ’07, pages 131–140, New
York, NY, USA, 2007. ACM.

[20] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers. Rdf 1.1 turtle. World
Wide Web Consortium, 2014.

[21] D. Beckett and B. McBride. Rdf/xml syntax specification (revised). W3C recommendation,
10(2.3), 2004.

[22] D. Ben-David, T. Domany, and A. Tarem. Enterprise data classification using semantic
web technologies. In International Semantic Web Conference, pages 66–81. Springer, 2010.

[23] K. Bennett, M. C. Ferris, and Y. E. Ioannidis. A Genetic Algorithm for Database Query
Optimization. In Proceedings of the fourth International Conference on Genetic Algo-
rithms, pages 400–407, 1991.

[24] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):34–43, 2001.

[25] S. Bin, P. Westphal, J. Lehmann, and A. Ngonga. Implementing scalable structured
machine learning for big data in the sake project. In 2017 IEEE International Conference
on Big Data (Big Data), pages 1400–1407. IEEE, 2017.

[26] A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL - Extending SPARQL to Pro-
cess Data Streams. In Proceedings of the 5th European Semantic Web Conference on The
Semantic Web: Research and Applications, ESWC’08, pages 448–462, Berlin, Heidelberg,
2008. Springer-Verlag.

130

Chapter 9. Conclusions and Future Work

[27] A. Budanitsky and G. Hirst. Evaluating WordNet-based Measures of Lexical Semantic
Relatedness. Computational Linguistics, 32(1):13–47, 2006.

[28] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyper-
links. In Proceedings of the 1998 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’98, pages 307–318, New York, NY, USA, 1998. ACM.

[29] S. Chaudhuri. An overview of query optimization in relational systems. In Proceedings of
the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, PODS ’98, pages 34–43. ACM, 1998.

[30] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data
cleaning. In Proceedings of the 22Nd International Conference on Data Engineering, ICDE
’06, pages 5–, Washington, DC, USA, 2006. IEEE Computer Society.

[31] P. Christen. Probabilistic data generation for deduplication and data linkage. In IDEAL,
2005.

[32] P. Christen. Febrl - an open source data cleaning, deduplication and record linkage system
with a graphical user interface. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2008.

[33] A. Cimmino and R. Corchuelo. A hybrid genetic-bootstrapping approach to link resources
in the web of data. In F. J. de Cos Juez, J. R. Villar, E. A. de la Cal, Á. Herrero,
H. Quintián, J. A. Sáez, and E. Corchado, editors, Hybrid Artificial Intelligent Systems,
pages 145–157, Cham, 2018. Springer International Publishing.

[34] R. L. Cole and G. Graefe. Optimization of Dynamic Query Evaluation Plans. In Pro-
ceedings of the 1994 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’94, pages 150–160, New York, NY, USA, 1994. ACM.

[35] G. Costa, A. Cuzzocrea, G. Manco, and R. Ortale. Data De-duplication: A Review, pages
385–412. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[36] P. Courrieu. Fast computation of moore-penrose inverse matrices. arXiv preprint
arXiv:0804.4809, 2008.

[37] V. Cross, P. Silwal, and D. Morell. Using a Reference Ontology with Semantic Similarity
in Ontology Alignment. In Proceedings of the 3rd ICBO, 2012.

[38] I. F. Cruz, F. P. Antonelli, and C. Stroe. AgreementMaker: Efficient Matching for Large
Real-World Schemas and Ontologies. PVLDB, 2:1586–1589, 2009.

[39] J. Cui, D. Meng, and Z.-T. Chen. Leveraging deletion neighborhoods and trie for efficient
string similarity search and join. In A. Jaafar, N. Mohamad Ali, S. A. Mohd Noah, A. F.
Smeaton, P. Bruza, Z. A. Bakar, N. Jamil, and T. M. T. Sembok, editors, Information
Retrieval Technology, pages 1–13, Cham, 2014. Springer International Publishing.

[40] J. Cui, W. Wang, D. Meng, and Z. Liu. Continuous similarity join on data streams. In
2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS),
pages 552–559, Dec 2014.

[41] C. H. Dagli, N. Mehdiyev, J. Krumeich, D. Enke, D. Werth, and P. Loos. Complex
Adaptive Systems San Jose, CA November 2-4, 2015 Determination of Rule Patterns
in Complex Event Processing Using Machine Learning Techniques. Procedia Computer
Science, 61:395 – 401, 2015.

131

[42] F. J. Damerau. A technique for computer detection and correction of spelling errors.
Commun. ACM, 7(3):171–176, Mar. 1964.

[43] E. Daskalaki, G. Flouris, I. Fundulaki, and T. Saveta. Instance matching benchmarks in
the era of linked data. Journal of Web Semantics, 39:1 – 14, 2016.

[44] J. de Freitas, G. Pappa, A. da Silva, M. Gonçalves, E. Moura, A. Veloso, A. Laender,
and M. de Carvalho. Active learning genetic programming for record deduplication. In
Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1–8, July 2010.

[45] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In OSDI’04: Sixth Symposium on Operating System Design and Implementation, pages
137–150, San Francisco, CA, 2004.

[46] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng. Massjoin: A mapreduce-based method
for scalable string similarity joins. In 2014 IEEE 30th International Conference on Data
Engineering, pages 340–351, March 2014.

[47] Dhivyabharathi G V and S. Kumaresan. A survey on duplicate record detection in real
world data. In 2016 3rd International Conference on Advanced Computing and Commu-
nication Systems (ICACCS), volume 01, pages 1–5, Jan 2016.

[48] L. R. Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, 1945.

[49] C. F. Dorneles, R. Gonçalves, and R. dos Santos Mello. Approximate data instance
matching: a survey. Knowledge and Information Systems, 27(1):1–21, Apr 2011.

[50] U. Draisbach and F. Naumann. A generalization of blocking and windowing algorithms
for duplicate detection. In Proceedings - 2011 International Conference on Data and
Knowledge Engineering, ICDKE 2011, pages 18 – 24, 10 2011.

[51] K. Dressler and A.-C. N. Ngomo. Time-efficient execution of bounded jaro-winkler dis-
tances. In Proceedings of the 9th International Conference on Ontology Matching - Volume
1317, OM’14, pages 37–48, Aachen, Germany, Germany, 2014. CEUR-WS.org.

[52] K. Dreßler and A.-C. Ngonga Ngomo. On the efficient execution of bounded jaro-winkler
distances. Semantic Web, 8(2):185–196, 2017.

[53] V. Efthymiou, K. Stefanidis, and V. Christophides. Benchmarking blocking algorithms for
web entities. IEEE Transactions on Big Data, pages 1–1, 2018.

[54] M. Ektefa, F. Sidi, H. Ibrahim, M. Jabar, and S. Memar. A comparative study in classi-
fication techniques for unsupervised record linkage model. Journal of Computer Science,
7:341–347, 01 2011.

[55] T. Elsayed, J. Lin, and D. W. Oard. Pairwise document similarity in large collections with
mapreduce. In Proceedings of the 46th Annual Meeting of the Association for Computa-
tional Linguistics on Human Language Technologies: Short Papers, HLT-Short ’08, pages
265–268, Stroudsburg, PA, USA, 2008. Association for Computational Linguistics.

[56] J. Euzenat, A. Ferrara, C. Meilicke, A. Nikolov, J. Pane, F. Scharffe, P. Shvaiko, H. Stuck-
enschmidt, O. Šváb-Zazamal, V. Svátek, et al. Results of the ontology alignment evaluation
initiative 2010. Technical report, University of Trento, 2011.

132

Chapter 9. Conclusions and Future Work

[57] N. Fanizzi, S. Ferilli, N. Di Mauro, and T. M. A. Basile. Spaces of Theories with Ideal Re-
finement Operators. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence, IJCAI’03, pages 527–532, San Francisco, CA, USA, 2003. Morgan Kaufmann
Publishers Inc.

[58] C. Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.

[59] J. Feng, J. Wang, and G. Li. Trie-join: a trie-based method for efficient string similarity
joins. The VLDB Journal, 21(4):437–461, Aug 2012.

[60] A. Ferrara, A. Nikolov, J. Noessner, and F. Scharffe. Evaluation of instance matching
tools: The experience of oaei. Journal of Web Semantics, 21:49 – 60, 2013. Special Issue
on Evaluation of Semantic Technologies.

[61] J. Fickett. Fast optimal alignment. Nucleic Acids Research, 12:175–179, 01 1984.

[62] F. Fier, N. Augsten, P. Bouros, U. Leser, and J.-C. Freytag. Set similarity joins on
mapreduce: an experimental survey. Proceedings of the VLDB Endowment, 11:1110–1122,
06 2018.

[63] N. Gali, R. Mariescu-Istodor, and P. Fränti. Similarity measures for title matching. In
2016 23rd International Conference on Pattern Recognition (ICPR), pages 1548–1553, Dec
2016.

[64] K. Georgala, M. Hoffmann, and A.-C. N. Ngomo. An evaluation of models for runtime
approximation in link discovery. In Proceedings of the International Conference on Web
Intelligence, WI ’17, pages 57–64, New York, NY, USA, 2017. ACM.

[65] K. Georgala, D. Obraczka, and A.-C. Ngonga Ngomo. Dynamic planning for link discovery.
In A. Gangemi, R. Navigli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai, and
M. Alam, editors, The Semantic Web, pages 240–255, Cham, 2018. Springer International
Publishing.

[66] K. Georgala, D. Obraczka, and A.-C. Ngonga Ngomo. Dynamic Planning for Link Discov-
ery. In A. Gangemi, R. Navigli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai,
and M. Alam, editors, The Semantic Web, pages 240–255, Cham, 2018. Springer Interna-
tional Publishing.

[67] K. Georgala, M. Röder, M. A. Sherif, and A.-C. Ngonga Ngomo. Applying edge-counting
semantic similarities to Link Discovery: Scalability and Accuracy. In Proceedings of On-
tology Matching Workshop 2020, 2020.

[68] K. Georgala, M. A. Sherif, and A.-C. N. Ngomo. An efficient approach for the generation
of allen relations. In Proceedings of the Twenty-second European Conference on Artificial
Intelligence, ECAI’16, pages 948–956, Amsterdam, The Netherlands, The Netherlands,
2016. IOS Press.

[69] K. Georgala, M. A. Sherif, and A.-C. Ngonga Ngomo. LIGER – Link Discovery with
Partial Recall. In Proceedings of Ontology Matching Workshop 2020, 2020.

[70] M. Gollapalli, X. Li, I. Wood, and G. Governatori. Approximate record matching using
hash grams. In 2011 IEEE 11th International Conference on Data Mining Workshops,
pages 504–511, Dec 2011.

133

[71] K. Gouda and M. Rashad. Efficient string edit similarity join algorithm. Computing and
Informatics, 36(3):683–704, 2017.

[72] G. Graefe. Query Evaluation Techniques for Large Databases. ACM Comput. Surv.,
25(2):73–169, June 1993.

[73] F. Grandi. Multi-temporal RDF Ontology Versioning. In International Workshop on
Ontology Dynamics. CEUR-WS, 2009.

[74] F. Grandi. T-SPARQL: A TSQL2-like Temporal Query Language for RDF. In M. Ivanovic,
B. Thalheim, B. Catania, and Z. Budimac, editors, ADBIS (Local Proceedings), volume
639 of CEUR Workshop Proceedings, pages 21–30. CEUR-WS.org, 2010.

[75] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Sri-
vastava. Approximate string joins in a database (almost) for free. In Proceedings of the
27th International Conference on Very Large Data Bases, VLDB ’01, pages 491–500, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[76] T. Heath and C. Bizer. Linked data: Evolving the web into a global data space. Synthesis
lectures on the semantic web: theory and technology, 1(1):1–136, 2011.

[77] J. Heflin and D. Song. Ontology instance linking: Towards interlinked knowledge graphs.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pages
4163–4169. AAAI Press, 2016.

[78] A. Hinze, D. M. Eyers, M. Hirzel, M. Weidlich, and S. Bhowmik, editors. Proceedings of
the 12th ACM International Conference on Distributed and Event-based Systems, DEBS
2018, Hamilton, New Zealand, June 25-29, 2018. ACM, 2018.

[79] P. Hitzler, M. Krtzsch, and S. Rudolph. Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 1st edition, 2009.

[80] G. Holmes, A. Donkin, and I. H. Witten. Weka: a machine learning workbench. In
Proceedings of ANZIIS ’94, pages 357–361, Nov 1994.

[81] Y. Huang, B. Niu, and C. Song. A partition-based bi-directional filtering method for string
similarity joins. In X. L. Dong, X. Yu, J. Li, and Y. Sun, editors, Web-Age Information
Management, pages 400–412, Cham, 2015. Springer International Publishing.

[82] J. Huber, T. Sztyler, J. Nößner, and C. Meilicke. Codi: Combinatorial optimization for
data integration: results for oaei 2011. In OM, 2011.

[83] M. F. Huber, M. Voigt, and A.-C. N. Ngomo. Big data architecture for the semantic
analysis of complex events in manufacturing. Informatik 2016, 2016.

[84] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric Query Optimization. In
Proceedings of the 18th International Conference on Very Large Data Bases, VLDB ’92,
pages 103–114, San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[85] R. Isele and C. Bizer. Active Learning of Expressive Linkage Rules using Genetic Pro-
gramming. Web Semantics: Science, Services and Agents on the World Wide Web, 23(0),
2013.

[86] R. Isele, A. Jentzsch, and C. Bizer. Efficient Multidimensional Blocking for Link Discovery
without losing Recall. In WebDB, 2011.

134

Chapter 9. Conclusions and Future Work

[87] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld. An Adaptive Query
Execution System for Data Integration. In Proceedings of the 1999 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’99, pages 299–310, New York,
NY, USA, 1999. ACM.

[88] P. Jaccard. Étude comparative de la distribution florale dans une portion des alpes et des
jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–579, 1901.

[89] L. Jia. A survey on set similarity search and join. International Journal of Performability
Engineering, 14, 02 2018.

[90] Y. Jiang, D. Deng, J. Wang, G. Li, and J. Feng. Efficient parallel partition-based algo-
rithms for similarity search and join with edit distance constraints. In Proceedings of the
Joint EDBT/ICDT 2013 Workshops, EDBT ’13, pages 341–348, New York, NY, USA,
2013. ACM.

[91] Y. Jiang, G. Li, J. Feng, and W.-S. Li. String similarity joins: An experimental evaluation.
Proc. VLDB Endow., 7(8):625–636, Apr. 2014.

[92] J. Jupin, J. Y. Shi, and E. C. Dragut. Psh: A probabilistic signature hash method with
hash neighborhood candidate generation for fast edit-distance string comparison on big
data. In 2016 IEEE International Conference on Big Data (Big Data), pages 122–127,
Dec 2016.

[93] C.-C. Kanne and G. Moerkotte. Histograms reloaded: The merits of bucket diversity. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,
pages 663–674. ACM, 2010.

[94] A. Karampelas and G. A. Vouros. Time and space efficient large-scale link discovery using
string similarities. In Proceedings of the 8th International Conference on Web Intelligence,
Mining and Semantics, WIMS ’18, pages 26:1–26:9, New York, NY, USA, 2018. ACM.

[95] M. Kazimianec and N. Augsten. Pg-join: Proximity graph based string similarity joins. In
J. Bayard Cushing, J. French, and S. Bowers, editors, Scientific and Statistical Database
Management, pages 274–292, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[96] M. Kazimianec and N. Augsten. Pg-skip: Proximity graph based clustering of long strings.
In J. X. Yu, M. H. Kim, and R. Unland, editors, Database Systems for Advanced Applica-
tions, pages 31–46, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[97] M. Kejriwal and D. P. Miranker. Semi-supervised instance matching using boosted classi-
fiers. In F. Gandon, M. Sabou, H. Sack, C. d’Amato, P. Cudré-Mauroux, and A. Zimmer-
mann, editors, The Semantic Web. Latest Advances and New Domains, pages 388–402,
Cham, 2015. Springer International Publishing.

[98] B. Kitchenham. Procedures for Performing Systematic Reviews. Technical report tr/se-
0401, Keele University, Department of Computer Science, Keele University, UK, 2004.

[99] G. Klyne. Resource description framework (rdf): Concepts and abstract syntax.
http://www. w3. org/TR/2004/REC-rdf-concepts-20040210/, 2004.

[100] D. Knuth. The Art of Computer Programming. Addison-Wesley, United States, 1968.

[101] L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient deduplication with hadoop. Proceedings
of the VLDB Endowment, 5(12):1878–1881, 2012.

135

[102] H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data &
Knowledge Engineering, 69(2):197–210, 2010.

[103] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on real-
world match problems. PVLDB, 3(1):484–493, 2010.

[104] H. Kopcke, A. Thor, and E. Rahm. Learning-based approaches for matching web data
entities. IEEE Internet Computing, 14(4):23–31, July 2010.

[105] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on real-
world match problems. PVLDB, 3:484–493, 09 2010.

[106] E. F. Krause. Taxicab geometry: An adventure in non-Euclidean geometry. Courier Cor-
poration, 1986.

[107] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning, ICML ’01, pages 282–289, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[108] D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A Native and Adaptive
Approach for Unified Processing of Linked Streams and Linked Data. In Proceedings of
the 10th International Conference on The Semantic Web - Volume Part I, ISWC’11, pages
370–388, Berlin, Heidelberg, 2011. Springer-Verlag.

[109] C. Leacock and M. Chodorow. Combining local context and wordnet similarity for word
sense identification. In WordNet: An Electronic Lexical Database, volume 49, pages 265–,
01 1998.

[110] S. Lee, J. Lee, and S.-w. Hwang. Scalable entity matching computation with material-
ization. In Proceedings of the 20th ACM International Conference on Information and
Knowledge Management, CIKM ’11, pages 2353–2356, New York, NY, USA, 2011. ACM.

[111] J. Lehmann and C. Haase. Ideal Downward Refinement in the EL Description Logic. In
Proceedings of the 19th International Conference on Inductive Logic Programming, ILP’09,
pages 73–87, Berlin, Heidelberg, 2010. Springer-Verlag.

[112] J. Lehmann and P. Hitzler. Foundations of Refinement Operators for Description Logics.
In H. Blockeel, J. Ramon, J. W. Shavlik, and P. Tadepalli, editors, Inductive Logic Pro-
gramming, 17th International Conference, ILP 2007, Corvallis, OR, USA, June 19-21,
2007, volume 4894 of Lecture Notes in Computer Science, pages 161–174. Springer, 2007.
Best Student Paper Award.

[113] J. Lehmann and P. Hitzler. Concept Learning in Description Logics Using Refinement
Operators. Machine Learning journal, 78(1-2):203–250, 2010.

[114] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10:707, Feb. 1966.

[115] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering algorithms for approximate string
searches. In 2008 IEEE 24th International Conference on Data Engineering, pages 257–
266, April 2008.

[116] G. Li, D. Deng, and J. Feng. A partition-based method for string similarity joins with
edit-distance constraints. ACM Trans. Database Syst., 38(2):9:1–9:33, July 2013.

136

Chapter 9. Conclusions and Future Work

[117] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A partition-based method for similarity
joins. Proc. VLDB Endow., 5(3):253–264, Nov. 2011.

[118] Y. Li, Z. A. Bandar, and D. McLean. An approach for measuring semantic similarity
between words using multiple information sources. IEEE Trans. on Knowl. and Data
Eng., 15(4):871–882, July 2003.

[119] C. Lin, H. Yu, W. Weng, and X. He. Large-scale similarity join with edit-distance con-
straints. In S. S. Bhowmick, C. E. Dyreson, C. S. Jensen, M. L. Lee, A. Muliantara, and
B. Thalheim, editors, Database Systems for Advanced Applications, pages 328–342, Cham,
2014. Springer International Publishing.

[120] M. Loskyll, J. Schlick, S. Hodek, L. Ollinger, T. Gerber, and B. Pîrvu. Semantic service
discovery and orchestration for manufacturing processes. In Emerging Technologies Factory
Automation (ETFA), 2011 IEEE 16th Conference on, pages 1–8, Sept 2011.

[121] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String similarity measures and joins
with synonyms. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 373–384, New York, NY, USA, 2013. ACM.

[122] Q. Lu and L. Getoor. Link-based classification. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages 496–503, 2003.

[123] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation of set similarity join
techniques. Proc. VLDB Endow., 9(9):636–647, May 2016.

[124] A. Mazeika and M. H. Böhlen. Cleansing databases of misspelled proper nouns. In
CleanDB, 2006.

[125] J. P. McCrae and P. Buitelaar. Linking Datasets Using Semantic Textual Similarity.
CYBERNETICS AND INFORMATION TECHNOLOGIES, 18(1):109–123, 2018.

[126] D. G. Mestre, C. E. Pires, and D. C. Nascimento. Adaptive sorted neighborhood blocking
for entity matching with mapreduce. In Proceedings of the 30th Annual ACM Symposium
on Applied Computing, SAC ’15, pages 981–987, New York, NY, USA, 2015. ACM.

[127] A. Metwally and C. Faloutsos. V-smart-join: A scalable mapreduce framework for all-pair
similarity joins of multisets and vectors. Proc. VLDB Endow., 5(8):704–715, Apr. 2012.

[128] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and T. P. Group. Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS
Medicine, 6(7):1–6, 07 2009.

[129] A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In Proceedings of the SIGMOD 1997 Workshop
on Research Issues on Data Mining and Knowledge Discovery, pages 23–29, Tuscon, AZ,
May 1997.

[130] J. J. Moré. The levenberg-marquardt algorithm: implementation and theory. In Numerical
analysis, pages 105–116. Springer, 1978.

[131] F. Nafis and D. Chiadmi. Methods and systems for the linked data. In A. El Oualkadi,
F. Choubani, and A. El Moussati, editors, Proceedings of the Mediterranean Conference on
Information & Communication Technologies 2015, pages 587–592, Cham, 2016. Springer
International Publishing.

137

[132] K. Narita, S. Nakadai, and T. Araki. Landmark-join: Hash-join based string similar-
ity joins with edit distance constraints. In A. Cuzzocrea and U. Dayal, editors, Data
Warehousing and Knowledge Discovery, pages 180–191, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[133] M. Nashaat, A. Ghosh, J. Miller, S. Quader, C. Marston, and J.-F. Puget. Hybridization
of active learning and data programming for labeling large industrial datasets. 2018 IEEE
International Conference on Big Data (Big Data), pages 46–55, 2018.

[134] M. Nentwig, M. Hartung, A.-C. Ngonga Ngomo, and E. Rahm. A survey of current link
discovery frameworks. Semantic Web, 8(3):419–436, 2017.

[135] A.-C. N. Ngomo and S. Auer. Limes: A time-efficient approach for large-scale link discovery
on the web of data. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence - Volume Volume Three, IJCAI’11, pages 2312–2317. AAAI Press,
2011.

[136] A.-C. N. Ngomo and K. Lyko. Unsupervised learning of link specifications: deterministic
vs. non-deterministic. In OM, 2013.

[137] A.-C. Ngonga Ngomo. On Link Discovery using a Hybrid Approach. Journal on Data
Semantics, 1(4):203–217, 2012.

[138] A.-C. Ngonga Ngomo. Helios – execution optimization for link discovery. In The Semantic
Web – ISWC 2014, pages 17–32, Cham, 2014. Springer International Publishing.

[139] A.-C. Ngonga Ngomo and S. Auer. LIMES - A Time-Efficient Approach for Large-Scale
Link Discovery on the Web of Data. In Proceedings of IJCAI, 2011.

[140] A.-C. Ngonga Ngomo, J. Lehmann, S. Auer, and K. Höffner. RAVEN – Active Learning
of Link Specifications. In Proceedings of OM@ISWC, 2011.

[141] A.-C. Ngonga Ngomo and K. Lyko. EAGLE: Efficient Active Learning of Link Specifi-
cations Using Genetic Programming, pages 149–163. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[142] A.-C. Ngonga Ngomo and K. Lyko. Unsupervised learning of link specifications: deter-
ministic vs. non-deterministic. In Proceedings of the Ontology Matching Workshop, 2013.

[143] A.-C. Ngonga Ngomo, K. Lyko, and V. Christen. Coala—correlation-aware active learning
of link specifications. In Proceedings of ESWC, 2013.

[144] S.-H. Nienhuys-Cheng, P. R. J. van der Laag, and L. W. N. van der Torre. Constructing
refinement operators by decomposing logical implication, pages 178–189. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1993.

[145] A. Nikolov, M. d’Aquin, and E. Motta. Unsupervised learning of link discovery configu-
ration. In 9th Extended Semantic Web Conference (ESWC 2012), 2012.

[146] A. Nikolov, A. Ferrara, and F. Scharffe. Data linking for the semantic web. Int. J. Semant.
Web Inf. Syst., 7(3):46–76, July 2011.

[147] A. Nikolov, V. Uren, and E. Motta. Knofuss: A comprehensive architecture for knowledge
fusion. In Proceedings of the 4th International Conference on Knowledge Capture, K-CAP
’07, pages 185–186, New York, NY, USA, 2007. ACM.

138

Chapter 9. Conclusions and Future Work

[148] X. Niu, S. Rong, H. Wang, and Y. Yu. An Effective Rule Miner for Instance Matching in
a Web of Data. In Proceedings of the 21st ACM International Conference on Information
and Knowledge Management, CIKM ’12, pages 1085–1094, New York, NY, USA, 2012.
ACM.

[149] X. Niu, S. Rong, Y. Zhang, and H. Wang. Zhishi.links results for oaei 2011. In Proceedings
of the 6th International Conference on Ontology Matching - Volume 814, OM’11, pages
220–227, Aachen, Germany, Germany, 2011. CEUR-WS.org.

[150] X. Niu, S. Rong, Y. Zhang, and H. Wang. Zhishi.links results for OAEI 2011. Ontology
Matching, page 220, 2011.

[151] D. Obraczka and A.-C. N. Ngomo. Dragon: Decision tree learning for link discovery. In
19TH International Conference On Web Engineering. Springer, 2019.

[152] G. Papadakis, G. Papastefanatos, T. Palpanas, and M. Koubarakis. Scaling entity resolu-
tion to large, heterogeneous data with enhanced meta-blocking. In EDBT, pages 221–232,
2016.

[153] U. Pfeifer, T. Poersch, and N. Fuhr. Retrieval effectiveness of proper name search methods.
Information Processing and Management, 32(6):667–679, 1996.

[154] D. D. Prasetya, A. P. Wibawa, and T. Hirashima. The performance of text similarity
algorithms. International Journal of Advances in Intelligent Informatics, 4(1):63–69, 2018.

[155] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. Efficient exact edit similarity query pro-
cessing with the asymmetric signature scheme. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’11, pages 1033–1044, New
York, NY, USA, 2011. ACM.

[156] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric
on semantic nets. IEEE Trans. Systems, Man, and Cybernetics, 19:17–30, 1989.

[157] E. Rajabi and S.-M.-R. Beheshti. Interlinking Big Data to Web of Data, pages 133–145.
Springer International Publishing, Cham, 2016.

[158] E. Rajabi, M. Sicilia, and S. Sanchez-Alonso. An empirical study on the evaluation of
interlinking tools on the web of data. Journal of Information Science, 40, 06 2014.

[159] B. Ramadan and P. Christen. Unsupervised blocking key selection for real-time entity
resolution. In T. Cao, E.-P. Lim, Z.-H. Zhou, T.-B. Ho, D. Cheung, and H. Motoda,
editors, Advances in Knowledge Discovery and Data Mining, pages 574–585, Cham, 2015.
Springer International Publishing.

[160] G. Recchia and M. M. Louwerse. A comparison of string similarity measures for toponym
matching. In Proceedings of The First ACM SIGSPATIAL International Workshop on
Computational Models of Place, COMP ’13, pages 54:54–54:61, New York, NY, USA,
2013. ACM.

[161] A. Rheinländer and U. Leser. Scalable sequence similarity search and join in main memory
on multi-cores. In M. Alexander, P. D’Ambra, A. Belloum, G. Bosilca, M. Cannataro,
M. Danelutto, B. Di Martino, M. Gerndt, E. Jeannot, R. Namyst, J. Roman, S. L. Scott,
J. L. Traff, G. Vallée, and J. Weidendorfer, editors, Euro-Par 2011: Parallel Processing
Workshops, pages 13–22, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

139

[162] L. A. Ribeiro and T. Härder. Generalizing prefix filtering to improve set similarity joins.
Inf. Syst., 36(1):62–78, Mar. 2011.

[163] L. Richards, L. Antonie, S. Areibi, G. Grewal, K. Inwood, and J. A. Ross. Comparing
classifiers in historical census linkage. In 2014 IEEE International Conference on Data
Mining Workshop, pages 1086–1094, Dec 2014.

[164] M. Rinne, E. Blomqvist, R. Keskisärkkä, and E. Nuutila. Event processing in RDF. In
Proceedings of the 4th International Conference on Ontology and Semantic Web Patterns-
Volume 1188, pages 52–64. CEUR-WS. org, 2013.

[165] M. Rinne, E. Nuutila, and S. Törmä. INSTANS: High-Performance Event Processing
with Standard RDF and SPARQL. In Proceedings of the International Semantic Web
Conference (ISWC) 2012 Posters & Demonstrations Track, Boston, USA, November 11-
15, 2012, 2012.

[166] M. A. Rodríguez and M. J. Egenhofer. Determining semantic similarity among entity
classes from different ontologies. IEEE transactions on knowledge and data engineering,
15(2):442–456, 2003.

[167] C. Rong, C. Lin, Y. N. Silva, J. Wang, W. Lu, and X. Du. Fast and scalable distributed
set similarity joins for big data analytics. In 2017 IEEE 33rd International Conference on
Data Engineering (ICDE), pages 1059–1070, April 2017.

[168] C. Rong, W. Lu, X. Wang, X. Du, Y. Chen, and A. K. H. Tung. Efficient and scalable
processing of string similarity join. IEEE Trans. on Knowl. and Data Eng., 25(10):2217–
2230, Oct. 2013.

[169] C. Rong, Y. N. Silva, and C. Li. String similarity join with different similarity thresholds
based on novel indexing techniques. Frontiers of Computer Science, 11(2):307–319, Apr
2017.

[170] A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labeling by relaxation operations.
IEEE Transactions on Systems, Man, and Cybernetics, 6:420–433, 1976.

[171] A. Saeedi, E. Peukert, and E. Rahm. Comparative evaluation of distributed cluster-
ing schemes for multi-source entity resolution. In M. Kirikova, K. Nørvåg, and G. A.
Papadopoulos, editors, Advances in Databases and Information Systems, pages 278–293,
Cham, 2017. Springer International Publishing.

[172] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A.-C. N. Ngomo. LSQ: The Linked
SPARQL Queries Dataset, pages 261–269. Springer International Publishing, Cham, 2015.

[173] M. Saleem and A.-C. Ngonga Ngomo. HiBISCuS: Hypergraph-based source selection for
SPARQL endpoint federation. In Extended Semantic Web Conference (ESWC 2014), 2014.

[174] S. Sami and L. George. A comparative study for string metrics and the feasibility of joining
them as combined text similarity measures. The Scientific Journal of Koya University
(ARO), 5:6–18, 10 2017.

[175] A. Samiei and F. Naumann. Cluster-based sorted neighborhood for efficient duplicate
detection. In 2016 IEEE 16th International Conference on Data Mining Workshops
(ICDMW), pages 202–209, Dec 2016.

140

Chapter 9. Conclusions and Future Work

[176] S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In Proceedings
of the 2004 ACM SIGMOD International Conference on Management of Data, SIGMOD
’04, pages 743–754, New York, NY, USA, 2004. ACM.

[177] A. D. Sarma, Y. He, and S. Chaudhuri. Clusterjoin: A similarity joins framework using
map-reduce. In Proceedings of International Conference on Very Large Databases (VLDB),
September 2014.

[178] T. Saveta, E. Daskalaki, G. Flouris, I. Fundulaki, M. Herschel, and A.-C. N. Ngomo.
Lance: Piercing to the heart of instance matching tools. In M. Arenas, O. Corcho,
E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin,
K. Thirunarayan, K. Thirunarayan, and S. Staab, editors, The Semantic Web - ISWC
2015, pages 375–391, Cham, 2015. Springer International Publishing.

[179] R. Schnell, T. Bachteler, and J. Reiher. Privacy-preserving record linkage using bloom
filters. BMC Medical Informatics and Decision Making, 9(1):41, Aug 2009.

[180] Z. Sehili, L. Kolb, C. Borgs, R. Schnell, and E. Rahm. Privacy preserving record linkage
with ppjoin. In Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fach-
tagung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 4.-6.3.2015
in Hamburg, Germany. Proceedings, pages 85–104, 2015.

[181] S. E. Seker, O. Altun, U. Ayan, and C. Mert. A novel string distance function based on
most frequent k characters. International Journal of Machine Learning and Computing,
4(2), 2014.

[182] P. Selvaramalakshmi, S. H. Ganesh, and J. J. Manoharan. Survey of string similarity join
algorithms on large scale data. Int. J. Innov. Eng. Technol.(IJIET), pages 100–104, 2016.

[183] P. Selvaramalakshmi, S. H. Ganesh, and F. Tushabe. A novel ssps framework for string
similarity join. International Journal of Computer Applications, 160(1):32–38, Feb 2017.

[184] H. Shang and T. h. Merrettal. Tries for approximate string matching. IEEE Trans. on
Knowl. and Data Eng., 8(4):540–547, Aug. 1996.

[185] E. Y. Shapiro. Inductive inference of theories from facts. In J. L. Lassez and G. D.
Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson, pages 199–255.
The MIT Press, 1991.

[186] S. Shekarpour, S. Auer, A.-C. Ngonga Ngomo, D. Gerber, S. Hellmann, and C. Stadler.
Keyword-driven sparql query generation leveraging background knowledge. In Interna-
tional Conference on Web Intelligence, 2011.

[187] S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer. Question answering on interlinked
data. In Proceedings of the 22nd international conference on World Wide Web, pages
1145–1156. ACM, 2013.

[188] M. Sherif, A.-C. Ngonga Ngomo, and J. Lehmann. WOMBAT - A Generalization Approach
for Automatic Link Discovery. In 14th Extended Semantic Web Conference, Portorož,
Slovenia, 28th May - 1st June 2017. Springer, 2017.

[189] A. Silberschatz, H. Korth, and S. Sudarshan. Database Systems Concepts. McGraw-Hill,
Inc., New York, NY, USA, 5 edition, 2006.

141

[190] Y. N. Silva, J. Reed, K. Brown, A. Wadsworth, and C. Rong. An experimental survey of
mapreduce-based similarity joins. In L. Amsaleg, M. E. Houle, and E. Schubert, editors,
Similarity Search and Applications, pages 181–195, Cham, 2016. Springer International
Publishing.

[191] P. Smeros and M. Koubarakis. Discovering Spatial and Temporal Links among RDF Data.
In Proceedings of the 25th World Wide Web Conference Workshop, 2016.

[192] M. D. Soo and R. T. Snodgrass. Temporal Data Types. In The TSQL2 Temporal Query
Language, pages 119–148. Springer, 1995.

[193] T. Soru, E. Marx, and A.-C. Ngonga Ngomo. ROCKER – a refinement operator for key
discovery. In Proceedings of the 24th International Conference on World Wide Web, WWW
2015, 2015.

[194] T. Soru and A.-C. N. Ngomo. Rapid execution of weighted edit distances. In Proceedings
of the Ontology Matching Workshop, 2013.

[195] T. Soru and A.-C. N. Ngomo. A comparison of supervised learning classifiers for link
discovery. In Proceedings of the 10th International Conference on Semantic Systems, pages
41–44, New York, NY, USA, 2014. ACM.

[196] T. Soru and A.-C. Ngonga Ngomo. A comparison of supervised learning classifiers for link
discovery. In SEMANTICS, volume 2014, 09 2014.

[197] K. Stefanidis, V. Christophides, and V. Efthymiou. Web-scale blocking, iterative and
progressive entity resolution. In 2017 IEEE 33rd International Conference on Data Engi-
neering (ICDE), pages 1459–1462, April 2017.

[198] R. C. Steorts, S. L. Ventura, M. Sadinle, and S. E. Fienberg. A comparison of blocking
methods for record linkage. In J. Domingo-Ferrer, editor, Privacy in Statistical Databases,
pages 253–268, Cham, 2014. Springer International Publishing.

[199] D. Sun and X. Wang. Mls-join: An efficient mapreduce-based algorithm for string simi-
larity self-joins with edit distance constraint. In ICCCS, 2018.

[200] J. Tappolet and A. Bernstein. Applied Temporal RDF: Efficient Temporal Querying of
RDF Data with SPARQL. In Proceedings of the 6th European Semantic Web Conference
on The Semantic Web: Research and Applications, ESWC 2009 Heraklion, pages 308–322,
Berlin, Heidelberg, 2009. Springer-Verlag.

[201] R. Tous and J. Delgado. A vector space model for semantic similarity calculation and
OWL ontology alignment. In International Conference on Database and Expert Systems
Applications, pages 307–316. Springer, 2006.

[202] I. Trummer and C. Koch. Multi-objective Parametric Query Optimization. Proc. VLDB
Endow., 8(3):221–232, Nov. 2014.

[203] E. Ukkonen. Algorithms for approximate string matching. Information and Control,
64(1):100 – 118, 1985. International Conference on Foundations of Computation Theory.

[204] C. Unger, L. Bühmann, J. Lehmann, A.-C. N. Ngomo, D. Gerber, and P. Cimiano.
Template-based Question Answering over RDF data. In Proceedings of the 21st inter-
national conference on World Wide Web, pages 639–648, 2012.

142

Chapter 9. Conclusions and Future Work

[205] C. Unger, C. Forascu, V. Lopez, A.-C. Ngonga Ngomo, E. Cabrio, P. Cimiano, and
S. Walter. Question Answering over Linked Data (QALD-4). In L. Cappellato, N. Ferro,
M. Halvey, and W. Kraaij, editors, Working Notes for CLEF 2014 Conference, Sheffield,
United Kingdom, Sept. 2014.

[206] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based Query Scrambling for Initial Delays.
In Proceedings of the 1998 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’98, pages 130–141, New York, NY, USA, 1998. ACM.

[207] A. Valdestilhas, T. Soru, and A.-C. Ngonga Ngomo. A high-performance approach to string
similarity using most frequent k characters. In Ontology Matching Workshop (co-located
with ISWC 2017), 10 2017.

[208] P. R. J. van der Laag and S.-H. Nienhuys-Cheng. Existence and nonexistence of complete
refinement operators, pages 307–322. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.

[209] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using mapreduce.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’10, pages 495–506, New York, NY, USA, 2010. ACM.

[210] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and maintaining links on the
web of data. In International Semantic Web Conference, 2009.

[211] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string metrics for
matching names and records. Proc of the KDD Workshop on Data Cleaning and Object
Consolidation, 10 2003.

[212] S. Wandelt, D. Deng, S. Gerdjikov, S. Mishra, P. Mitankin, M. Patil, E. Siragusa,
A. Tiskin, W. Wang, J. Wang, and U. Leser. State-of-the-art in string similarity search
and join. SIGMOD Rec., 43(1):64–76, May 2014.

[213] J. Wang, G. Li, and J. Feng. Fast-join: An efficient method for fuzzy token matching
based string similarity join. Data Engineering (ICDE), pages 458–469, 04 2011.

[214] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: An adaptive framework
for similarity join and search. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12, pages 85–96, New York, NY, USA,
2012. ACM.

[215] W. Wang, J. Qin, C. Xiao, X. Lin, and H. T. Shen. Vchunkjoin: An efficient algorithm for
edit similarity joins. IEEE Transactions on Knowledge and Data Engineering, 25(8):1916–
1929, Aug 2013.

[216] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient approximate entity extraction with edit
distance constraints. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’09, pages 759–770, New York, NY, USA, 2009. ACM.

[217] W. E. Winkler. String comparator metrics and enhanced decision rules in the fellegi-sunter
model of record linkage. In Proceedings of the Section on Survey Research, pages 354–359,
1990.

[218] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Proceedings of the 32Nd
Annual Meeting on Association for Computational Linguistics, ACL ’94, pages 133–138,
Stroudsburg, PA, USA, 1994. Association for Computational Linguistics.

143

[219] C. Xiao, W. Wang, and X. Lin. Ed-join: An efficient algorithm for similarity joins with
edit distance constraints. Proc. VLDB Endow., 1(1):933–944, Aug. 2008.

[220] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate
detection. In Proceedings of the 17th International Conference on World Wide Web, WWW
’08, pages 131–140, New York, NY, USA, 2008. ACM.

[221] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity joins for near-
duplicate detection. ACM Trans. Database Syst., 36(3):15:1–15:41, Aug. 2011.

[222] C. Xiao, Y. Wang, and X. Lin. Ed-join: An efficient algorithm for similarity joins with
edit distance constraints. PVLDB, 1:933–944, 08 2008.

[223] C. Yan, X. Zhao, Q. Zhang, and Y. Huang. Efficient string similarity join in multi-core
and distributed systems. PLOS ONE, 12(3):1–16, 03 2017.

[224] S. Yan, D. Lee, M.-Y. Kan, and C. Lee Giles. Adaptive sorted neighborhood methods
for efficient record linkage. Proceedings of the ACM International Conference on Digital
Libraries, pages 185–194, 01 2007.

[225] M. Yu, G. Li, D. Deng, and J. Feng. String similarity search and join: a survey. Frontiers
of Computer Science, 10(3):399–417, Jun 2016.

[226] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava. Bed-tree: An all-purpose
index structure for string similarity search based on edit distance. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10,
pages 915–926, New York, NY, USA, 2010. ACM.

[227] J. Zhu, X. Wu, X. Lin, C. Huang, G. P. C. Fung, and Y. Tang. A novel multiple layers name
disambiguation framework for digital libraries using dynamic clustering. Scientometrics,
114(3):781–794, Mar 2018.

144

Chapter 9. Conclusions and Future Work

.1 Annex
The following equations define some well-known string similarities between two strings r and g.
tokens(r) and tokens(g) represent the tokens sets of r and g resp.

overlap: simoverlap(r, g) = |tokens(r) ∩ tokens(g)|

jaccard: simjaccard(r, g) = |tokens(r) ∩ tokens(g)|
|tokens(r) ∪ tokens(g)|

cosine: simcosine(r, g) = |tokens(r) ∩ tokens(g)|√
|tokens(r)| ∗ |tokens(g)|

dice: simdice(r, g) = 2|tokens(r) ∩ tokens(g)|
|tokens(r)|+ |tokens(g)|

The Levenshtein distance (distanceLevenshtein) between two strings r and g is the minimum
number of single-character edits (insertions, deletions or substitutions) required to change g into
r. Using dynamic programming, we calculate the distance as follows: Given two strings r and
g, we define a matrix V with |r|+ 1 rows and |g|+ 1 columns that is used to compute their edit
distance, where |r| and |g| is the length of r and g resp. as the number of characters included
within each string. A cell V [i][j] is the Levenshtein distance between the prefix of r with length
i and the prefix of g with length j. Initially, we set V [i][0] = 0 and V [0][j] = 0 for 0 ≤ i ≤ |r|
and 0 ≤ j ≤ |g|. Each value of the matrix is computed using the following equation:

V [i][j] = min(V [i− 1][j] + 1, V [i][j − 1] + 1,M [i− 1][j − 1] + z)

where z = 0 if the i−th character of r is equal to the j−th character of g, and z = 1 otherwise.
Once each value of the matrix is computed, the Levenshtein distance between r and g is:

distanceLevenshtein(r, g) = V [|r|+ 1][|g|+ 1]

The normalized Levenshtein distance is computed as follows:

simNormLevenshtein(r, g) = distanceLevenshtein(r, g)
max(|r|, |g|)

The Levenshtein similarity is be computed as follows:

simLevenshtein(r, g) = 1− distanceLevenshtein(r, g)
max(|r|, |g|)

The Hamming distance between two strings r and r′ of equal length is the number of positions
at which the corresponding characters are different. Assuming that Vr and Vr′ are two arrays
of equal length |r| = |r′|, each cell Vr[i] and Vr′ [j] (0 ≤ i ≤ |r|, 0 ≤ j ≤ |r′|) corresponds to
the character at position i and j of r and r′ resp., the Hamming distance (distanceHamming) is
calculated as follows:

simHamming(r, r′) =
|r|∑

i,j=0
1Vr[i] 6=Vr′ [j]

where 1Vr[i] 6=Vr′ [j] is the indicator function equal to 1 when Vr[i] 6= Vr′ [j] and equal to 0 otherwise.

145

.2 Publications

.2 Publications

• Scalable Link Discovery for Modern Data-Driven Applications by Kleanthi Geor-
gala in Proceedings of the The 15th International Semantic Web Conference (ISWC2016)
2016, Doctoral Consortium Track, Kobe, Japan, 17. October - 21. October 2016

• An Efficient Approach for the Generation of Allen Relations by Kleanthi Geor-
gala, Mohamed Ahmed Sherif, and Axel-Cyrille Ngonga Ngomo in Proceedings of the 22nd
European Conference on Artificial Intelligence (ECAI) 2016, The Hague, 29. August - 02.
September 2016

• MOCHA2017: The Mighty Storage Challenge at ESWC 2017 by Kleanthi Geor-
gala, Mirko Spasić, Milos Jovanovik, Henning Petzka, Michael Röder, and Axel-Cyrille
Ngonga Ngomo in Semantic Web Evaluation Challenge

• An Evaluation of Models for Runtime Approximation in Link Discovery by
Kleanthi Georgala, Michael Hoffmann, and Axel-Cyrille Ngonga Ngomo in Proceedings of
the International Conference on Web Intelligence, 2017

• MOCHA2018: The Mighty Storage Challenge at ESWC 2018 by Kleanthi Geor-
gala, Mirko Spasić, Milos Jovanovik, Vassilis Papakonstantinou, Claus Stadler, Michael
Röder, and Axel-Cyrille Ngonga Ngomo in Semantic Web Evaluation Challenges

• Dynamic Planning for Link Discovery by Kleanthi Georgala, Daniel Obraczka, and
Axel-Cyrille Ngonga Ngomo in The Semantic Web, ESWC 2018, Lecture Notes in Com-
puter Science

• Applying edge-counting semantic similarities to Link Discovery: Scalability
and Accuracy by Kleanthi Georgala, Mohamed Ahmed Sherif, Michael Röder and Axel-
Cyrille Ngonga Ngomo in Proceedings of the 15th International Workshop on Ontology
Matching 2020 (OM-2020), collocated with the 19th International Semantic Web Confer-
ence ISWC-2020, 1. November - 6 November 2020, Virtual Conference

• LIGER - Link Discovery with Partial Recall by Kleanthi Georgala, Mohamed Ahmed
Sherif and Axel-Cyrille Ngonga Ngomo in Proceedings of the 15th International Workshop
on Ontology Matching 2020 (OM-2020), collocated with the 19th International Semantic
Web Conference ISWC-2020, 1. November - 6 November 2020, Virtual Conference

• LIMES - A Framework for Link Discovery on the Semantic Web by Axel-
Cyrille Ngonga Ngomo, Mohamed Ahmed Sherif, Kleanthi Georgala, Mofeed Hassan,
Kevin Dreßler, Klaus Lyko, Daniel Obraczka, and Tommaso Soru. KI-Künstliche In-
telligenz, German Journal of Artificial Intelligence - Organ des Fachbereichs "Künstliche
Intelligenz" der Gesellschaft für Informatik e.V. (2021)

• Systematic Survey on String Similarity Joins for Link Discovery by Kleanthi
Georgala and Axel-Cyrille Ngonga Ngomo (under review for the Journal of Web Semantics)

• Using Machine Learning for Link Discovery on the Web of Data by Axel-Cyrille
Ngonga Ngomo, Daniel Obraczka, and Kleanthi Georgala. Demos at the European Con-
ference on Artificial Intelligence. 2016.

• Spam Filtering: an Active Learning Approach using Incremental Clustering
by Kleanthi Georgala, Aris Kosmopoulos, and George Paliouras. 2014. In Proceedings of

146

Chapter 9. Conclusions and Future Work

the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS14)
(WIMS ’14). ACM, New York, NY, USA, Article 23, 12 pages.

• Record linkage in medieval and early modern text by Kleanthi Georgala, Benjamin
van der Burgh , Marvin Meeng and Arno Knobbe. (2015). In Population Reconstruction
(pp. 173-195). Springer, Cham.

147

.3 Curriculum Vitae

.3 Curriculum Vitae

Kleanthi Georgala
Filonos 29B

172 36, Dafni, Greece
(+30) 6982786194

georgala@informatik.uni-leipzig.de
http://aksw.org/KleanthiGeorgala.html

Personal Data
Name: Kleanthi Georgala
Birth date: February 15th, 1989
Birth place: Cholargos, Greece
Nationality: Greek

Education & Work
2020 - Present
Intracom Telecom (Attica, Greece)
Product Marketing Engineer / Data Scientist

2018 - 2020
University of Paderborn (Paderborn, Germany)
Ph.D., Faculty for Computer Science, Electrical Engineering and Mathematics, Department of
Computer Science.
Thesis title: Fast and Scalable Link Discovery for Modern Data-Driven Applications.

2015 - 2018
University of Leipzig (Leipzig, Germany)
Ph.D., Faculty of Mathematics and Computer Science, Department of Computer Science.
Thesis title: Fast and Scalable Link Discovery for Modern Data-Driven Applications.

2015 - 2014
Leiden University (Leiden, Netherlands)
Scientific Programmer, Leiden Institute of Advanced Computer Science, Faculty of Science

2014
Leiden University (Leiden, Netherlands)
Guest Lecturer at the Data Mining course (3rd year-Bachelor), Leiden Institute of Advanced
Computer Science, Faculty of Science

2014
Leiden University (den Haag, Netherlands)
Instructor at “Big Data for Peace” Summer School for Peace Informatics, Leiden Institute of
Advanced Computer Science, Faculty of Science

2014
University of Edinburgh (Edinburgh, United Kingdom)
Teaching Tutor at “Informatics 2B - Algorithms, Data Structures and Learning”, College of
Science and Engineering, School of Informatics

148

http://aksw.org/KleanthiGeorgala.html

Chapter 9. Conclusions and Future Work

2012 - 2013
University of Edinburgh (Edinburgh, United Kingdom)
MSc in Artificial Intelligence, College of Science and Engineering, School of Informatics
MSc Thesis: Relevance Feedback with minimal training Data

2009-2011
Institute of Informatics and Telecommunications of the NCSR “Demokritos” (Athens, Greece)
BSc thesis: Active learning spam filter with incremental clustering.

2006-2011
National and Kapodistrian University of Athens (Athens, Greece)
BSc (Ptychion) in Informatics and Telecommunications, School of Science, Department of In-
formatics and Telecommunications
Grade: 7.97/10 - Very Good

2006
Athens Model School “Protipo” (Athens, Greece)
“Apolytyrion of Lyceum”
GPA : 19.2/20.0 - Excellent

Awards and Nominations

• Best Student Paper Award WI 2017, IEEE/WIC/ACM International Conference on Web
Intelligence 2017
for An Evaluation of Models for Runtime Approximation in Link Discovery by
Kleanthi Georgala, Michael Hoffmann, and Axel-Cyrille Ngonga Ngomo
Leipzig, Germany

• ISWC 2016 Travel Award, International Semantic Web Conference
for Scalable Link Discovery for Modern Data-Driven Applications by Kleanthi
Georgala
Kobe, Japan

• Informatics UK/EU Master’s Scholarship, University of Edinburgh
Informatics UK/EU Master’s Scholarship - University of Edinburgh for MSc Degree in
Artificial Intelligence
Edinburgh, United Kingdom

• High School - Lyceum Award
Awards for being at the 10% top students of the school
Athens, Greece

Research Interests
• Semantic Web
• Artificial Intelligent
• Machine Learning
• Data Mining

Technical and Programming Skills

149

.3 Curriculum Vitae

• Programming Languages Skills:

– C++, Java, Python
– C,
– HTML, PHP
– Prolog
– Matlab, R
– SQL, SPARQL
– Bash

• Software Applications

– Netbeans, Eclipse, Weka
– Oracle, MySQL, MongoDB, SQL Server
– Kibana
– Various triple stores: Virtuoso, Graph DB, Apache Jena Fuseki, Blazegraph
– LateX, OpenOffice.org, Microsoft Office, LibreOffice

• Operating Systems

– Ubuntu Linux
– Unix
– Microsoft Windows
– Mac OS

Projects
• HOBBIT: aksw.org/Projects/HOBBIT.html

Holistic Benchmarking of Big Linked Data.
Funded by EU H2020 Research and Innovation Program
Duration: 12/2015–11/2018

• LIMES: http://aksw.org/Projects/LIMES
Link discovery framework for metric spaces.

• SAKE: http://aksw.org/Projects/SAKE.html
With RDF and Machine Learning Getting Results Faster.
Funded by BWMi (Federal Ministry for Economic Affairs and Energy)
Duration: 12/2014 - 12/2017

• Traces Through Time: https://gtr.ukri.org/projects?ref=AH%2FL010186%2F1
A new tool for finding linked records across our collections.
Funded by AHRC (Arts and Humanities Research Council, United Kingdom)
Duration: 01/2014 - 03/2015

Language Skills
• Greek: Native
• English: Advanced (Proficiency of Cambridge)
• German: Advanced (C1 Certificate)
• Familiar with Dutch and Spanish.

150

aksw.org/Projects/HOBBIT.html
http://aksw.org/Projects/LIMES
http://aksw.org/Projects/SAKE.html
https://gtr.ukri.org/projects?ref=AH%2FL010186%2F1

Chapter 9. Conclusions and Future Work

Research Community Service

• Chair: MOCHA2018 Challenge (ESWC 2018),

• Program Committee: GeoLD2018 (ESWC 2018), KESW 2017, MOCHA2017 Challenge
(ESWC 2017), CSCUBS 2016, KESW 2016, NLIWoD 2015, AISI 2015

• Organizer for MOCHA2018 and MOCHA2017 Challenges at ESWC

• Reviewer for GeoLD2018 (ESWC 2018), CSCUBS 2016,NLIWoD 2015, AISI 2015

• Presenter for ESWC 2018, WI 2017, ISWC 2016, ECAI 2016, WIMS 2014

• Founding member and translator of FOSS UoA, the Free and Open Source Software com-
munity of University of Athens

151

	Introduction
	Motivation
	Research Questions and Contributions
	Thesis Outline

	Preliminaries
	Linked Data
	Link Discovery
	Declarative Link Discovery
	Link Specification

	Related Work
	A Systematic Survey of String Similarity Joins for Link Discovery
	Motivation
	Preliminaries
	Systematic Survey Methodology
	Related Survey Results
	String Similarity Joins
	Evaluation of String Similarity Joins for Link Discovery

	Time Relations for Link Discovery
	Semantic Similarities for Link Discovery
	Fast Execution of Link Specifications
	Executing Link Specifications under Time Constraints
	Planning for Link Discovery

	Link Discovery Frameworks and Tools

	 Aegle: An Efficient Approach for the Generation of Allen Relations
	Allen's Interval Algebra
	Link Discovery between Events
	The Aegle Approach
	Atomic Temporal Relations
	Complex Temporal Relations
	The Aegle Algorithm

	Evaluation
	Evaluation Questions
	Evaluation Datasets
	Experimental Setup
	Experimental Results

	Semantic Similarities for Link Discovery
	Notations
	Lexical Vocabulary as Directed Acyclic Graph
	Edge-Counting Semantic Similarities

	Approach
	hECATE
	Indexing
	Filtering

	Evaluation
	Evaluation Questions
	Evaluation Datasets
	Experimental Setup
	Experimental Results

	An Evaluation of Models for Runtime Approximation in Link Discovery
	Selection of Models for Runtime Approximation
	Evaluation
	Evaluation Questions
	Evaluation Datasets
	Experimental Set-Up
	Experimental Results

	Liger: Link Discovery with Partial Recall
	Linking with Guaranteed Expected Recall
	Partial-Recall Link Discovery
	Subsumption of Link Specifications
	Refinement of a Link Specification for Guaranteed Selectivity

	The Liger approach
	The Liger Algorithm
	Extension of Liger
	Example Run

	Evaluation
	Evaluation Questions
	Evaluation Datasets
	Experimental Setup
	Experiments Results

	Dynamic Planning for Link Discovery
	The Condor Approach
	Planning
	Plan Evaluation
	Execution
	Example Run

	Evaluation of Condor
	Evaluation Questions
	Evaluation Datasets
	Experimental Setup
	Evaluation Results

	Conclusions and Future Work
	Bibliography
	Appendix
	Annex
	Publications

