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Abstract

This work examines various systems of parabolic differential equations with nondiagonal
diffusion matrices inter alia originating in biology. The destabilizing nature of the nondi-
agonal entries, the so-called cross-diffusion terms, is well-known; in fact, for none of the
systems covered here, unconditional global existence results for classical solutions should be
expected.

The low regularity of cross-diffusive systems can essentially be dealt with in two ways, both
of which we explore for certain examples in this thesis. While the first one consists of
rigorously showing that certain classical solutions blow up in finite time, thereby putting
limits to the extent of potential global existence theorems, the second one aims to construct
global solutions despite these challenges, either under certain additional assumptions (say,
on the initial data) or in a more generalized sense.

In a second step, we then proceed to ask further qualitative and quantitative questions
concerning these solutions. In particular, we describe their behavior at large times (if they
are global-in-time) or near their blow-up time (if they are not).

Zusammenfassung

Die vorliegende Arbeit untersucht verschiedene Systeme parabolischer Differentialgleichun-
gen mit nichtdiagonalen Diffusionsmatrizen, welche ihren Ursprung unter anderem in der
Biologie haben. Der destabilisierende Effekt der Nichtdiagonal-Einträge, also der sogenann-
ten Kreuz-Diffusions-Terme, ist wohlbekannt; insbesondere kann für keines der hier betrach-
teten Systeme ein bedingungsloses Globales-Existenz-Resultat erwartet werden.

Der Problematik geringer Regularität in kreuz-diffusiven Systemen lässt sich im Wesent-
lichen auf zwei Wegen nähern, welche wir beide für gewisse Beispiel-Probleme verfolgen.
Während der erste aus dem Nachweis von in endlicher Zeit explodierenden Lösungen be-
steht, also daraus, Grenzen möglicher Resultate betreffend globaler Existenz aufzuzeigen,
versucht der zweite nichtsdestotrotz globale Lösungen zu konstruieren, sowohl unter zusätzli-
chen Annahmen (beispielsweise an die Anfangsdaten) als auch in gewissen verallgemeinerten
Sinnen.

In einem zweitem Schritt fragen wir dann nach weiteren qualitativen and quantitativen Ei-
genschaften dieser Lösungen. Insbesondere beschreiben wir deren Verhalten für große Zeiten
(sofern sie global existieren) beziehungsweise nahe ihrer Explosionszeit (falls das nicht der
Fall ist).
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1. Introduction

Parabolic differential equations can be used to describe a variety of natural phenomena
such as pattern formation in E. coli colonies, embryogenesis or population dynamics, to
just name a few examples from biology. Accordingly, there is a desire to understand these
systems mathematically, both in order to be able to give predictions for the future and to
validate the assumptions the models are based on.

Many of these equations approximatively take the form

Ut = ∇ · (A(U)∇U) + F (U),

where U is a vector-valued (unknown) function whose components may for instance represent
densities of biological organisms or chemical substances, Ut denotes its time derivative, A is
the so-called diffusion matrix and F models local kinetics and external forces.

Let us discuss the influence of the diffusion matrix A. Positive diagonal entries model
diffusive processes such as heat dissipation or random motion of organisms. If only these
effects are present—that is, if A is a (positive definite) diagonal matrix—, the corresponding
equations are known to be quite regular. For instance, in cases where F is bounded, global
well-posedness of associated initial-boundary-value-problems follows from straightforwardly
applying well-known energy methods.

However, many natural processes are not adequately described by such diffusion matrices.
To give an example, apart from undergoing random motion, bacteria (with density U1) may
also be partly attracted by higher concentrations of a chemical substance (whose density is
denoted by U2). This can be modelled by the so-called attractive taxis term −∇ · (U1∇U2)
in the first subequation; that is, by choosing a nontrivial nondiagonal entry in A, namely
A12(U) := −U1. Such an effect, where the gradient of a concentration influences the flux of
another (chemical or biological) species, is called cross-diffusion.

While in certain situations desirable from a modeling perspective, cross-diffusive terms gen-
erally lead to lower regularity, making such systems particularly challenging to handle. Even
questions of global existence are already quite delicate; in contrast to, say, systems with di-
agonal diffusion matrices, no general global existence theory seems to be available. Worse,
for all problems treated in this thesis, unconditional global existence of classical solutions,
that is, of functions solving the equations pointwise, cannot be expected.

There are two ways out of this apparent dilemma, both of which we explore for certain
example problems in this thesis. The first one consists of embracing the low regularity
and rigorously showing that global classical solutions may fail to exist. Accordingly, in the
first part of this thesis, we concern ourselves with one the most drastic forms of pattern
formation: finite-time blow-up. Classical solutions becoming unbounded in finite time are
known to exist for instance for the simplified Keller–Segel system{

ut = ∇ · (∇u− u∇v)
0 = ∆v −m(t) + u, m(t) := 1

|Ω|
∫

Ω u(·, t)

1



1. Introduction

with nondiagonal diffusion matrix

A

(
u
v

)
=
(

1 −u
0 1

)
,

describing the behavior of bacteria attracted by a chemical they produce themselves. A
(formerly) long-standing open question asks whether introducing a logistic term λu − µu2

with positive λ and µ in the first equation, modeling intrinsic bacteria growth and death,
already guarantees that solutions remain locally bounded. Despite its brevity, Chapter 2
is able to provide a (negative) answer: For five and higher dimensional balls, λ ≥ 0 and
µ ∈ (0, n−4

n ), we are able to construct solutions blowing up in finite time.

In the next two chapters, we then concern ourselves with qualitative and quantitative prop-
erties of nonglobal solutions, including but not limited to the ones constructed in Chapter 2.
Also allowing for nonlinear diffusion terms and taxis sensitivities, we show the existence of
blow-up profiles for finite-time blow-up solutions of{

ut = ∇ · (D(u, v)∇u− S(u, v)∇v),
vt = ∆v − v + u

and similar systems in Chapter 3; that is, we prove that (u(·, t), v(·, t)) converges in a suitable
sense as t approaches the maximal (finite) existence time. This result is accompanied by
pointwise upper estimates of the first component (of both the solution and the blow-up
profile), which not only quantitatively describe the behavior of such solutions blowing up in
finite time, but also provide a useful tool for constructing them in the first place. Indeed,
these findings have already been used as a key ingredient in further articles detecting finite-
time blow-up, which we reference in the introduction of that chapter.

Moreover, in Chapter 4, we ask the question when one can guarantee optimality of the
estimates obtained in Chapter 3. The main result states that if u is bounded in an optimal
Lp space (a concept defined in the introduction of that chapter), then these upper estimates
are also essentially optimal. In addition, we also provide estimates of similar flavor as in
Chapter 3 for chemotaxis systems with nonlinear signal production.

The second way of dealing with low regularity in cross-diffusive systems reflects the desire
to obtain global solutions (for instance, in order to be able to discuss the behavior at large
times) even in situations where unconditional existence results for global classical solutions
seem to be out of reach or are, as corresponding finite-time blow-up results show, impossible
to obtain. This way again junctions into two further paths: One can aim to construct global
solutions either under additional conditions or in some generalized sense.

With these ideas in mind, we analyze (variants of) the so-called pursuit–evasion model{
ut = ∇ · (∇u− u∇v) + f1(u, v),
vt = ∇ · (∇v + v∇u) + f2(u, v)

in the second part of this thesis. This system describes the interaction between predators
and their prey, whose densities are denoted by u and v, respectively. The key feature of this
problem is that cross-diffusion is not only present in one but in both equations; that is, both
nondiagonal entries of the diffusion matrix

A

(
u
v

)
=
(

1 −u
v 1

)
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1.1. Previous publications

are nontrivial. While that is very sensible from a modeling perspective—after all, predators
desire to move towards prey-rich regions and the prey seeks to avoid its predators—, from
a mathematical point of view, such fully cross-diffusive systems pose even more challenges
than their ‘merely’ single cross-diffusive counterparts.

Nonetheless, we are able to prove two global existence results. The first one is obtained
in Chapter 5, where we establish the existence of global classical solutions for initial data
being sufficiently close to homogeneous steady states. As already alluded to, global existence
results can be seen as a prerequisite for analyzing the large time behavior and we are indeed
able to go beyond these findings and additionally show convergence towards the equilibria
and describe the rate of convergence.

In Chapter 6, we then extend this model to also allow for nonlinear diffusion and saturated
taxis sensitivities. Under certain parameter assumptions, we are able to construct global
weak solution for widely arbitrary (and possibly large or even unbounded) nonnegative initial
data.

Further biological motivation for these systems, comparisons to as well as discussion of rele-
vant literature and the precise statements of our theorems are given in the introductions of
the corresponding chapters. While especially in these sections, we aim to avoid unnecessary
repetition and instead refer to the introduction of another chapter whenever that is sensible,
the avoidance of recurrences of similar arguments (which due to the rather different nature
of the methods employed are quite rare in any case) is not taken to an extreme, allowing us
to ensure that the chapters can still be read independently from each other.

1.1. Previous publications

Except for small modifications mainly in the introductory sections, the succeeding chapters
coincide with the following publications. Accordingly, quotations from these works will not
be marked separately.

Chapter 2:
[23]: Fuest, M.: Approaching optimality in blow-up results for Keller–Segel systems with
logistic-type dampening. Nonlinear Differ. Equ. Appl. NoDEA, 28(2):16, 2021.

Chapter 3:
[20]: Fuest, M. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems. Non-
linearity 33(5):2306–2334, 2020.

Chapter 4:
[25]: Fuest, M. On the optimality of upper estimates near blow-up in quasilinear Keller–
Segel systems. Appl. Anal., to appear.

Chapter 5:
[22]: Fuest, M. Global solutions near homogeneous steady states in a multidimensional
population model with both predator- and prey-taxis. SIAM J. Math. Anal., 52(6):5865–
5891, 2020.

Chapter 6:
[24] Fuest, M.: Global weak solutions to fully cross-diffusive systems with nonlinear diffu-
sion and saturated taxis sensitivity. Preprint, arXiv:2105.12619, 2021.
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2. Approaching optimality in blow-up
results for Keller–Segel systems
with logistic-type dampening

2.1. Introduction

A considerable amount of the literature on chemotaxis systems deals with detecting crit-
ical parameters distinguishing between global existence and finite-time blow-up. Such a
dichotomy is already present in the minimal Keller–Segel system{

ut = ∆u−∇ · (u∇v),
vt = ∆v − v + u

(2.1.1)

proposed by Keller and Segel to model chemotactic behavior of bacteria attracted by a
chemical substance they produce themselves [46]. Considered in two-dimensional balls, the
mass of u0 is critical: If the initial datum u0 is sufficiently regular, radially symmetric and
satisfies

∫
Ω u0 < 8π, then the corresponding solutions are global in time and bounded [68]

while for any m0 > 8π, there exists u0 ∈ C0(Ω) with
∫

Ω u0 = m0 leading to finite-time blow-
up [34, 62]. (See also [66] for corresponding results in a parabolic–elliptic simplification
of (2.1.1).) Let us note that this specific critical mass phenomenon is limited to the two-
dimensional setting: While solutions to (2.1.1) are always global in time and bounded if
considered in one-dimensional domains [71], in the spatially higher dimensional cases, finite-
time blow-up has been detected even for arbitrary positive initial masses [97].

Other dichotomies between boundedness and blow-up include critical exponents both for
nonlinear diffusion as well as nonlinear sensitivity [37] and nonlinear signal production [102].
Moreover, for a chemotaxis system with indirect signal production, another critical mass
phenomenon has been detected in [84], this time distinguishing between boundedness and
blow-up in infinite time. Instead of presenting these findings in detail here, we refer to the
surveys [4] and [53] for a broader overview of chemotaxis systems and related results.

Aiming to further enhance our understanding of the exact strength of the destabilising taxis
term, in this chapter, we present another critical parameter distinguishing between global
existence and finite-time blow-up, namely the exponent κ = 2 in Keller–Segel systems with
logistic-type degradation.

Before stating the main result of this chapter, let us introduce systems featuring such damp-
ening terms and recall some of the corresponding results. That is, we will first consider the
Keller–Segel system with logistic source{

ut = ∆u−∇ · (u∇v) + λu− µu2,

τvt = ∆v − v + u
(2.1.2)

9



2. Finite-time blow-up in Keller–Segel systems with logistic-type dampening

in smooth, bounded domains Ω ⊂ Rn, n ≥ 2, and given parameters λ ∈ R, µ > 0 and
τ ≥ 0. (We note that in view of the global existence result for λ = µ = 0 in one-dimensional
domains mentioned above, at least for the question whether finite-time blow-up occurs,
we may confine ourselves to the assumption n ≥ 2.) The system (2.1.2) and variations
thereof describe several biological processes such as population dynamics [36, 78], pattern
formation [109] or embryogenesis [73] (see also [36] for an overview).

Already in 2007, Tello and Winkler showed that for τ = 0, any λ ∈ R, µ > n−2
n and

any reasonably smooth initial data, the system (2.1.2) possesses global, bounded classical
solutions [87]. Moreover, for n ≥ 3 and µ = n−2

n (and again τ = 0 and at least λ ≥ 0)
solutions to (2.1.2) are global in time [43], but to the best of our knowledge it is unknown
whether these are also always bounded. For the parabolic–parabolic case, that is, for τ > 0,
the situation is similar: In the two-dimensional setting, assuming merely µ > 0 suffices
to guarantee global existence of classical solutions [70], even for dampening terms growing
slightly slower then quadratically [116]. Moreover, for higher dimensional convex domains,
global classical solutions have been constructed for µ > µ0 for some µ0 > 0 in [95], where
explicit upper bounds of µ0 then have been derived in [65, 115] and the convexity assumption
has been removed in [113] at the cost of worsening the condition on µ. In all these settings,
however, the known upper bounds for µ0 are larger than n−2

n .

However, if one resorts to more general solution concepts, further existence results are avail-
able. Under rather mild conditions, global weak solutions have been constructed in [87] and
[50] for the cases τ = 0 and τ = 1, respectively. Moreover, if the degradation term −µu2

in (2.1.2) is replaced by a weaker but still sufficiently strong superlinear dampening term,
global generalized solutions have been obtained, again both for the parabolic–elliptic [92]
and the fully parabolic case [105, 107, 117].

On the other hand, it has been observed that despite the presence of quadratic dampening
terms, structures may form on intermediate time scales which even surpass so-called popu-
lation thresholds to an arbitrary high extent (cf. [43, 49, 98] for the parabolic–elliptic and
[100] for the parabolic–parabolic case).

While these findings already show that the destabilising effect of the chemotaxis term is
strongly countered although not completely nullified by quadratic degradation terms, the
question arises whether the most drastic form of spatial aggregation—finite-time blow-up—
still occurs in Keller–Segel systems with superlinear degradation terms. A first partial (and
affirmative) answer has been given in [96]: There, the compared to (2.1.2) with τ = 0 slightly
simplified system {

ut = ∆u−∇ · (u∇v) + λu− µuκ,
0 = ∆v −m(t) + u, m(t) := 1

|Ω|
∫

Ω u(·, t)
(2.1.3)

is considered in balls Ω ⊂ Rn, n ≥ 5 and, for any λ ≥ 0 and κ ∈ (1, 3
2 + 1

2(n−1) ), initial
data leading to finite-time blow-up are constructed. The second important finding in this
direction transfers this result to physically meaningful space dimensions. More concretely,
[103] detects finite-time blow-up even in the system (2.1.2) with τ = 0 (inter alia) for balls
Ω ∈ Rn, n ∈ {3, 4}, λ ≥ 0 and κ ∈ (1, 7

6 ).

Recently, the regime of exponents allowing for finite-time blow-up in (2.1.3) has been further
widened to κ ∈ (1, 4

3 ) and κ ∈ (1, 3
2 ) in the three- and four-dimensional settings, respec-

tively [5]. Moreover, in planar domains, chemotactic collapse can be obtained if one replaces
the term −uκ in (2.1.3) with certain heterogeneous dampening terms such as −|x|2u2 [21].

10



2.1. Introduction

Let us additionally note that similar finite-time blow-up results are also available for systems
with nonlinear diffusion [5, 60, 80] or sublinear taxis sensitivity [80, 81].

Main results. At least in the four- and higher dimensional settings, the journey of de-
tecting finite-time blow-up in (2.1.3) for ever increasing values of κ comes to an end with the
results from the present chapter; we obtain the corresponding result up to (and for n ≥ 5
even including) the optimal exponent κ = 2.

More precisely, the main result of this chapter reads

Theorem 2.1.1. Suppose

n ≥ 3, κ ∈
(

1,min
{

2, n2

})
and µ > 0 (2.1.4a)

or n ≥ 5, κ = 2 and µ ∈
(

0, n− 4
n

)
. (2.1.4b)

Moreover, let R > 0, Ω := BR(0) ⊂ Rn, m0 > 0, m1 ∈ (0,m0) and λ ≥ 0. Then there exists
r1 ∈ (0, R) such that whenever

u0 ∈ C1(Ω) is positive, radially symmetric as well as radially decreasing (2.1.5)

and fulfills ∫
Ω
u0 = m0 as well as

∫
Br1 (0)

u0 ≥ m1, (2.1.6)

the following holds: There exist Tmax <∞ and a classical solution

(u, v) ∈
(
C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax))

)2 (2.1.7)

of 
ut = ∆u−∇ · (u∇v) + λu− µuκ in Ω× (0, Tmax),
0 = ∆v −m(t) + u, m(t) := 1

|Ω|
∫

Ω u(·, t) in Ω× (0, Tmax),
∂νu = ∂νv = 0 on ∂Ω× (0, Tmax),
u(·, 0) = u0 in Ω,

(2.1.8)

which blows up at Tmax in the sense that limt↗Tmax u(0, t) =∞.

Main ideas. Following Jäger and Luckhaus [39], we rely on the mass accumulation func-
tion given by w(s, t) :=

∫ n
√
s

0 ρn−1u(ρ, t) dρ, which transforms (2.1.8) to a scalar equation,
see Lemma 2.3.1. The predecessors [5] and [103] of this chapter, which deal with (variations
of) the system (2.1.3), then proceed to show that the function φ defined by

φ(s0, t) :=
∫ s0

0
s−γ(s0 − s)w(s, t) ds (2.1.9)

cannot, at least not for certain initial data, s0 ∈ (0, Rn) and γ ∈ (0, 1), exist globally in
time, implying that u must blow up in finite time. One of the most challenging terms
to estimate arises from the degradation term; one essentially has to control the integral

11



2. Finite-time blow-up in Keller–Segel systems with logistic-type dampening

∫ s0
0 wκs (s, t) ds. At this point, pointwise estimates for ws come in handy, which due to the
identity ws(s, t) = 1

nu(s 1
n , t) are available once pointwise estimates for u are known. These

in turn can for instance be obtained by analyzing general parabolic equations in divergence
form (cf. [106] and Chapter 3) or by arguments similar to Lemma 2.3.3 below. In fact,
one of the main points in [5] is to discuss how pointwise upper estimates for u of the form
u(x) ≤ C|x|−p influence the possibility to detect finite-time blow-up.

However, a natural limitation of this approach is the exponent p = n since for fixed C > 0
and p < n, nonnegative functions u0 ∈ C0(Ω) with u0(x) ≤ C|x|−p cannot have their mass
concentrated arbitrary close to the origin; that is, depending on the value of C and p, none
of these functions may fulfill (2.1.6). However, as seen in [5], even the choice p = n, implying
an estimate of the form ws ≤ C

s , ‘only’ yields finite-time blow-up in the system (2.1.3) for
certain κ < 3

2 .

Thus, in the present chapter, where we handle exponents up to κ = 2, we choose a slightly
different path. At the basis of our analysis stands Lemma 2.3.3: There, we derive the key
estimate ws ≤ w

s , which due to w(0, ·) ≡ 0 actually improves on ws ≤ C
s . Its proof is

surprisingly simple: As already observed in similar contexts (cf. [5, 21, 102]), for radially
decreasing initial data, ws(·, t) is decreasing for all times t, see Lemma 2.3.2. The desired
estimate is then just a consequence of the mean value theorem.

Another major difference of our methods compared to [5] and [103] is that we do not limit
our analysis of (2.1.9) to γ ∈ (0, 1) but also allow for parameters γ being larger than 1.
In the five- and higher dimensional settings, this will then allow us to obtain finite-time
blow-up even for κ = 2. (In 3D and 4D, the term stemming from the diffusion forces γ to
be smaller than 1 and hence we cannot employ the same method as in higher dimensions.)
We also note that the realization of the idea of taking γ > 1 is made possible by the new
crucial estimate ws ≤ w

s .

The remainder of the chapter is organized as follows: After stating some preliminary results
in Section 2.2, in Section 2.3 we derive ws ≤ w

s in Lemma 2.3.3. Section 2.4 then starts with
the definition of the function φ and a calculation of its derivative, see Lemma 2.4.1, Next,
in the Lemma 2.4.2, we suitably estimate the term originating in the logistic source, before
dealing with the remaining terms and the initial datum of φ in the subsequent lemmata. In
Lemma 2.4.6, we then finally prove finiteness of the maximal existence time Tmax.

2.2. Preliminaries

In the remainder of the chapter, we henceforth fix n ≥ 3, R > 0, Ω := BR(0) ⊂ Rn, κ ∈ (1, 2],
λ ≥ 0 and µ > 0.

Lemma 2.2.1. Suppose that u0 complies with (2.1.5). There exists Tmax ∈ (0,∞] and
a unique pair (u, v) of regularity (2.1.7) which solves (2.1.8) classically and is such that
if Tmax < ∞, then limt↗Tmax ‖u(·, t)‖L∞(Ω) = ∞. Moreover, both u and v are radially
symmetric and u is positive in Ω× [0, Tmax).

Proof. This is contained in [96, Lemma 1.1].

Given u0 as in (2.1.5), we denote the solution given in Lemma 2.2.1 by (u, v) and its maximal
existence time by Tmax. Moreover, we always set m(t) := 1

|Ω|
∫

Ω u(·, t) for t ∈ [0, Tmax).

12



2.3. The mass accumulation function w

Since the zeroth order term in the first equation in (2.1.8), λu−µuκ, grows at most linearly
in u, we can easily control the mass of the first solution component.

Lemma 2.2.2. Suppose that u0 satisfies (2.1.5). Then∫
Ω
u(·, t) ≤ eλt

∫
Ω
u0 for all t ∈ (0, Tmax).

Proof. This immediately follows from integrating the first equation in (2.1.8) and using
that µ > 0.

As used multiple times in the sequel, let us also state the following elementary

Lemma 2.2.3. Given a > −1, there is B ∈ (0,∞) such that for any s0 > 0, the identity∫ s0

0
sa(s0 − s) ds = Bsa+2

0

holds.

Proof. We substitute s 7→ s0s and take B :=
∫ 1

0 s
a(1− s) ds ∈ (0,∞).

2.3. The mass accumulation function w

Given u0 as in (2.1.5) (and thus (u, v) as in Lemma 2.2.1), we denote the mass accumulation
function by

w(s, t) :=
∫ s

1
n

0
ρn−1u(ρ, t) dρ, (s, t) ∈ [0, Rn]× [0, Tmax), (2.3.1)

which has been introduced in the context of chemotaxis systems in [39]. In this section, we
prove some of its properties, most notably the crucial estimate ws ≤ w

s in Lemma 2.3.3.

We start, however, by noting that w solves the following scalar equation.

Lemma 2.3.1. For every u0 satisfying (2.1.5), the function w given by (2.3.1) belongs to
C0([0, Rn]× [0, Tmax)) ∩ C2,1([0, Rn]× (0, Tmax)) and fulfills

ws(s, t) = u(s 1
n , t)
n

for all (s, t) ∈ [0, Rn]× [0, Tmax) (2.3.2)

as well as

wt = n2s2− 2
nwss + nwws − nm(t)sws + λw − nκ−1µ

∫ s

0
wκs (σ, t) dσ (2.3.3)

in (0, Rn)× (0, Tmax).

Proof. This can be seen by a direct calculation. In fact, the asserted regularity is a
consequence of Lemma 2.2.1, the identity (2.3.2) follows from the chain rule, and [96, equa-
tion (1.4)] asserts that (2.3.3) holds.

Next, as a major step towards proving ws ≤ w
s , we show that for initial data fulfilling (2.1.5),

the first solution component is radially decreasing throughout evolution.

13



2. Finite-time blow-up in Keller–Segel systems with logistic-type dampening

Lemma 2.3.2. Suppose u0 complies with (2.1.5). Then ur ≤ 0 in (0, R)× (0, Tmax).

Proof. This can be shown as in [5, Lemma 5.1] or [21, Lemma 3.7] (which in turn both
follow [102, Lemma 2.2]). However, due to the importance of this lemma for showing the
crucial estimate ws ≤ w

s in the succeeding lemma, we choose to at least sketch the proof
here. First, by an approximation argument as in [102, Lemma 2.2], we may assume ur ∈
C0([0, R]× [0, Tmax)) ∩ C2,1((0, R)× (0, Tmax)).

Furthermore, the second equation in (2.1.8) asserts

r1−n(rn−1uvr)r = urvr + ur1−n(rn−1vr)r = urvr − u2 +m(t)u in (0, R)× (0, Tmax)

and hence, with f(z) := λz − µzκ for z ≥ 0,

urt =
(
r1−n (rn−1(ur − uvr)

)
r

+ f(u)
)
r

= urrr + n− 1
r

urr −
n− 1
r2 ur − urrvr − urvrr + 2uur −m(t)ur + f ′(u)ur

= urrr + a(r, t)urr + b(r, t)ur in (0, R)× (0, Tmax),

where

a(r, t) := n− 1
r
− vr(r, t) and b(r, t) := −n− 1

r2 − vrr(r, t) + 2u(r, t)−m(t) + f ′(u(r, t))

for (r, t) ∈ (0, R)× (0, Tmax).

As can be rapidly seen by writing the second equation in (2.1.8) in radial coordinates (and
has been argued in more detail in [21, Lemma 3.6], for instance), −vrr ≤ u holds throughout
(0, R)× (0, Tmax), so that for fixed T ∈ (0, Tmax), we can estimate

sup
r∈(0,R),t∈(0,T )

b(r, t) ≤ 3‖u‖L∞((0,R)×(0,T )) + ‖f ′‖L∞(0,‖u‖L∞((0,R)×(0,T ))) <∞.

An application of the maximum principle (cf. [75, Proposition 52.4]) then gives ur ≤ 0 in
(0, R)× (0, T ), which upon taking T ↗ Tmax implies the statement.

As already advertised multiple times, this lemma now allows us to rapidly obtain the im-
portant estimate ws ≤ w

s .

Lemma 2.3.3. Assume that u0 satisfies (2.1.5). For all s ∈ [0, Rn] and t ∈ [0, Tmax),

ws(s, t) ≤
w(s, t)
s

≤ ws(0, t) (2.3.4)

holds. In particular, for all t0 ∈ (0, Tmax) there is C > 0 such that

s

C
≤ w(s, t) ≤ Cs for s ∈ [0, Rn] and t ∈ [0, t0]. (2.3.5)

Proof. For fixed t ∈ [0, Tmax) and s ∈ [0, Rn], the mean value theorem provides us with
ξ ∈ (0, s) such that w(s, t) = sws(ξ, t), which already proves (2.3.4) since ws is decreasing
by Lemma 2.3.2 and (2.3.2). Moreover, a consequence thereof is (2.3.5), since ws is positive
and bounded in [0, Rn]× [0, t0] for any t0 ∈ (0, Tmax) by Lemma 2.2.1 and (2.3.2).
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2.4. A supersolution to a superlinear ODE: finite-time blow-up

2.4. A supersolution to a superlinear ODE: finite-time
blow-up

We will construct initial data leading to finite-time blow-up and hence prove Theorem 2.1.1
in this section. As already mentioned in the introduction of this chapter, our argument is
based on constructing a function φ which cannot exist globally, implying that the solution
of (2.1.8) also can only exist on a finite time interval. In fact, we define φ as in [5] or [103];
that is, for given u0 as in (2.1.5) and γ ∈ (0, 2), we set

φ(s0, t) :=
∫ s0

0
s−γ(s0 − s)w(s, t) ds, s0 ∈ (0, Rn), t ∈ (0, Tmax). (2.4.1)

However, as the parameter γ herein may be larger than 1 (unlike as in [5] or [103]), some
care is needed for calculating the time derivative of φ. This is done in the following

Lemma 2.4.1. Suppose that u0 complies with (2.1.5). Let γ ∈ (0, 2) and φ be as in (2.4.1).
For every s0 ∈ (0, Rn), φ(s0, ·) belongs to C0([0, Tmax)) ∩ C1((0, Tmax)) and fulfills

φt(s0, t) ≥ n2
∫ s0

0
s2− 2

n−γ(s0 − s)wss ds

+n
∫ s0

0
s−γ(s0 − s)wws ds

−nm(t)
∫ s0

0
s1−γ(s0 − s)ws ds

−nκ−1µ

∫ s0

0
s−γ(s0 − s)

∫ s

0
wκs (σ, t) dσ ds

=: I1(s0, t) + I2(s0, t) + I3(s0, t) + I4(s0, t) for all t ∈ (0, Tmax). (2.4.2)

Proof. We first fix s0 ∈ (0, Rn) and note that φ(s0, ·) ∈ C0([0, Tmax)) because of (2.3.5)
and 1 − γ > −1. Letting 0 < t0 < t1 < Tmax, we then make use of Lemma 2.3.1 and
Lemma 2.3.3 to obtain c1, c2, c3, c4 > 0 such that

w(s, t) ≤ c1s, ws(s, t) ≤ c2, |wss(s, t)| ≤ c3 and m(t) ≤ c4

for (s, t) ∈ [0, s0]× [t0, t1]. Recalling (2.3.3), we obtain

d
dt
(
s−γ(s0 − s)w

)
=
(
n2s2− 2

nwss + nwws − nm(t)sws + λw − nκ−1µ

∫ s

0
wκs (σ, t) dσ

)
s−γ(s0 − s)

for s ∈ (0, s0) and t ∈ (0, Tmax), so that∣∣∣∣ d
dt
(
s−γ(s0 − s)w(s, t)

)∣∣∣∣ ≤ (n2c3s
1− 2

n
0 + nc1c2 + nc2c4 + λc1 + nκ−1µcκ2

)
s1−γ(s0 − s)

for all s ∈ (0, s0) and t ∈ (t0, t1). Again due to 1 − γ > −1, we therefore have φ(s0, ·) ∈
C1((0, Tmax)) and

φt(s0, t) = I1(s0, t) + I2(s0, t) + I3(s0, t) + λ

∫ s0

0
s−γ(s0 − s)w ds+ I4(s0, t)

for all t ∈ (0, Tmax), which due to λ ≥ 0 implies (2.4.2).

15



2. Finite-time blow-up in Keller–Segel systems with logistic-type dampening

Aiming to derive that φ is a supersolution to a superlinear ODE, we now estimate the
terms I1, . . . , I4 in (2.4.2) and begin with I4, the term stemming from the logistic source.
In the following proof, we will crucially make use of the estimate (2.3.4) to improve on
corresponding results obtained by the predecessors [5] and [103].

Lemma 2.4.2. Let I2 and I4 be as in (2.4.2).

(i) If κ = 2, γ > 1 and u0 fulfills (2.1.5), then

I4(s0, t) ≥ −
µ

γ − 1I2(s0, t) for all s0 ∈ (0, Rn) and t ∈ (0, Tmax). (2.4.3)

(ii) Let κ ∈ (1, 2) and γ ∈ ( 2(κ−1)
κ , 1). There exists C4 > 0 such that whenever u0 fulfills

(2.1.5), then

I4(s0, t) ≥ C4s
2−κ

2
0 I

κ
2

2 (s0, t) for all s0 ∈ (0,min{1, Rn}) and t ∈ (0, Tmax).
(2.4.4)

Proof. We let γ ∈ (0,∞) \ {1} and also fix u0 as in (2.1.5) but will make sure that C4 can
be taken independently of u0. By Fubini’s theorem, we first observe that

I4(s0, t) = −nκ−1µ

∫ s0

0
s−γ(s0 − s)

∫ s

0
wκs (σ, t) dσ ds

= −nκ−1µ

∫ s0

0

(∫ s0

σ

s−γ(s0 − s) ds
)
wκs (σ, t) dσ

≥ −nκ−1µ

∫ s0

0

(∫ s0

σ

s−γ ds
)

(s0 − σ)wκs (σ, t) dσ

= −n
κ−1µ

1− γ

∫ s0

0

(
s1−γ

0 − s1−γ
)

(s0 − s)wκs (s, t) ds (2.4.5)

for all s0 ∈ (0, Rn) and t ∈ (0, Tmax).

In the case of γ > 1 and κ = 2, we drop a positive term and employ (2.3.4) in calculating

I4(s0, t) ≥ −
nµ

γ − 1

∫ s0

0
s1−γ(s0 − s)w2

s ds

≥ − nµ

γ − 1

∫ s0

0
s−γ(s0 − s)wws ds

= − µ

γ − 1I2(s0, t) for all s0 ∈ (0, Rn) and t ∈ (0, Tmax),

which already implies (2.4.3).

If on the other hand γ ∈ (0, 1) and κ ∈ (1, 2), going back to (2.4.5) and making use of
(2.3.4), we see that

I4(s0, t) ≥ −
nκ−1µ

1− γ s
1−γ
0

∫ s0

0
(s0 − s)wκs (s, t) ds

≥ −n
κ−1µ

1− γ R
n(1−γ)

∫ s0

0
s−

κ
2 (s0 − s)(wws)

κ
2 ds (2.4.6)
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2.4. A supersolution to a superlinear ODE: finite-time blow-up

for all s0 ∈ (0, Rn) and t ∈ (0, Tmax). By Hölder’s inequality (with exponents 2
2−κ ,

2
κ ), we

have therein ∫ s0

0
s−

κ
2 (s0 − s)(wws)

κ
2 ds

=
∫ s0

0
s−

(1−γ)κ
2 (s0 − s)(s−γwws)

κ
2 ds

≤
(∫ s0

0
s−

(1−γ)κ
2−κ (s0 − s) ds

) 2−κ
2
(∫

Ω
s−γ(s0 − s)wws ds

)κ
2

(2.4.7)

for all s0 ∈ (0, Rn) and t ∈ (0, Tmax). We assume now moreover that γ > 2(κ−1)
κ and hence

γ − 1 > κ−2
κ as well as a := (γ−1)κ

2−κ > −1, so that applying Lemma 2.2.3 (with B as in that
lemma) gives∫ s0

0
s−

(1−γ)κ
2−κ (s0 − s) ds = Bsa+2

0 ≤ Bs0 for all s0 ∈ (0,min{1, Rn}). (2.4.8)

Finally, combining (2.4.6)–(2.4.8) and the definition of I2 yields (2.4.4) for some C4 > 0
independent of u0.

The remaining integrals in (2.4.2) can be estimated as in [103] or [5]. However, at least
for the statement concerning I1, we would like to give a full proof here in order to show
the basis of the restriction on κ in Theorem 2.1.1. Indeed, while in Lemma 2.4.2 above,
γ has to be taken sufficiently large, for estimating I1, we need γ to be suitably small. We
will obtain finite-time blow-up precisely in the cases where the set of admissible γ for both
these lemmata is nonempty. Moreover, compared to [103], the proof below makes use of the
estimate (2.3.4) and is hence somewhat shorter.

Lemma 2.4.3. Let γ ∈ (0, 2− 4
n ). There is C1 > 0 such that whenever u0 satisfies (2.1.5)

and I1, I2 are as in (2.4.2), then

I1(s0, t) ≥ −C1s
3−γ

2 −
2
n

0 I
1
2
2 (s0, t) for all s0 ∈ (0, Rn) and t ∈ (0, Tmax).

Proof. For convenience, we fix u0 as in (2.1.5), albeit we emphasize that the constants
below do not depend on u0. An integration by parts gives∫ s0

0
s2− 2

n−γ(s0 − s)wss ds

= −
(

2− 2
n
− γ
)∫ s0

0
s1− 2

n−γ(s0 − s)ws ds+
∫ s0

0
s2− 2

n−γws ds+
[
s2− 2

n−γ(s0 − s)ws
]s0

0

in (0, Tmax). Herein, the second term on the right-hand side is positive and the last one is
zero because of γ < 2− 4

n < 2− 2
n .

Setting c1 := 2− 2
n − γ > 0, we hence infer from (2.3.4) and Hölder’s inequality that∫ s0

0
s2− 2

n−γ(s0 − s)wss ds

≥ −
(

2− 2
n
− γ
)∫ s0

0
s1− 2

n−γ(s0 − s)ws ds
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2. Finite-time blow-up in Keller–Segel systems with logistic-type dampening

≥ −c1
∫ s0

0
s

1
2−

2
n−γ(s0 − s)(wws)

1
2 ds

≥ −c1
(∫ s0

0
s1−γ− 4

n (s0 − s) ds
) 1

2
(∫ s0

0
s−γ(s0 − s)wws ds

) 1
2

holds in (0, Tmax).

Since γ < 2 − 4
n and hence a := 1 − γ − 4

n > −1, Lemma 2.2.3 asserts that (with B as in
that lemma) (∫ s0

0
s1−γ− 4

n (s0 − s) ds
) 1

2

= B
1
2 s

3−γ
2 −

2
n

0 for all s0 ∈ (0, Rn),

so that the statement follows by the definitions of I1 and I2.

Next, for estimating the integrals I2 and I3 in (2.4.2), we basically recall the corresponding
results from [103].

Lemma 2.4.4. There exist C2, C3 > 0 such that for u0 satisfying (2.1.5), we have

I2(s0, t) ≥ C2s
−(3−γ)
0 φ2(s0, t) for all s0 ∈ (0, Rn) and t ∈ (0, Tmax) (2.4.9)

and

I3(s0, t) ≥ −C3

(∫
Ω
u0

)
s

3−γ
2

0 I
1
2
2 (s0, t) for all s0 ∈ (0, Rn) and t ∈ (0, T̂max), (2.4.10)

where φ is in (2.4.1), I2, I3 are defined in (2.4.2) and T̂max := min{1, Tmax}.

Proof. Arguing as in [103, Lemma 4.4], we obtain

φ(s0, t) ≤ c1s
3−γ

2
0 I

1
2
2 (s0, t) for all s0 ∈ (0, Rn) and t ∈ (0, Tmax) (2.4.11)

for some c1 > 0 independent of u0. Taking both the left- and the right-hand side therein to
the power 2 already yields (2.4.9). Moreover, as

I3(s0, t) = −nm(t)
∫ s0

0
s1−γ(s0 − s)ws(s, t) ds ≥ − n

|Ω|

(∫
Ω
u0

)
eλtφ(s0, t)

for (s0, t) ∈ (0, Rn)× (0, Tmax) by Lemma 2.2.2 and (2.3.4), another consequence of (2.4.11)
is (2.4.10).

As a final preparation, we note that, under certain circumstances, φ(s0, 0) can be shown to
be sufficiently large.

Lemma 2.4.5. For every m1 > 0, there exists C0 > 0 with the following property: Let
s0 ∈ (0, Rn), set s1 := s0

4 as well as r1 := s
1
n
1 and suppose that u0 fulfills (2.1.5) as well as∫

Br1 (0) u0 ≥ m1. Then φ(s0, 0) ≥ C0s
2−γ
0 .

Proof. See [103, estimate (5.5)]; the main idea is to use the monotonicity of w0 which in
turn is implied by nonnegativity of u0.

A combination of the results obtained above now reveals that for initial data whose mass is
sufficiently concentrated near the origin, the corresponding solution cannot exist globally in
time. Again, the argument is not too different from [96] or [103], but we choose to give it
nonetheless in order to show that s0 and u0 can be chosen in such a way that φ would blow
up in finite time if (u, v) were a global solution.
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2.4. A supersolution to a superlinear ODE: finite-time blow-up

Lemma 2.4.6. Let m0 > m1 > 0 and suppose that (2.1.4) holds. There exists r1 ∈ (0, R)
such that whenever u0 fulfills (2.1.5) and (2.1.6), then Tmax ≤ 1

2 .

Proof. Let us begin by fixing some parameters. If (2.1.4a) holds, then κ ∈ (1, n2 ) and
hence

2(κ− 1)
κ

−
(

2− 4
n

)
<

2 · n−2
2

n
2

− 2(n− 2)
n

= 0.

As additionally κ < 2, we may hence choose γ ∈ ( 2(κ−1)
κ ,min{2 − 4

n , 1}). We moreover fix
an arbitrary ε > 0 and apply Lemma 2.4.2 (ii) as well as Young’s inequality (with exponents

2
2−κ ,

2
κ ) to obtain C ′4 > 0 with

I4(s0, t) ≥ −
µ

µ+ ε
I2(s0, t)− C ′4s0 (2.4.12)

for all s0 ∈ (0,min{1, Rn}) and t ∈ (0, Tmax), whenever u0 satisfies (2.1.5) and where I2 and
I4 are as in (2.4.2).

We now suppose that on the other hand (2.1.4b) holds. Because of µ ∈ (0, n−4
n ), we may

then choose γ ∈ (1 + µ, 2 − 4
n ). Setting moreover ε := γ − 1 − µ > 0, an application of

Lemma 2.4.2 (i) reveals that (2.4.12) holds also in this case (with C ′4 := 0 and for all u0
complying with (2.1.5)).

In both cases, the definition of γ entails 0 < γ < 2− 4
n , hence by Lemma 2.4.1, Lemma 2.4.3,

(2.4.10), (2.4.12), Young’s inequality and (2.4.9), there are c1, c2 > 0 such that

φt(s0, t) ≥ I1(s0, t) + I2(s0, t) + I3(s0, t) + I4(s0, t)

≥ ε

µ+ ε
I2(s0, t)−

(
C1s

3−γ
2 −

2
n

0 + C3m0s
3−γ

2
0

)
I

1
2
2 (s0, t)− C ′4s0

≥ c1I2(s0, t)− c2s
min{3−γ− 4

n ,3−γ,1}
0

≥ C2c1s
−(3−γ)
0 φ2(s0, t)− c2s0 (2.4.13)

for all s0 ∈ (0,min{1, Rn}), t ∈ (0,min{1, Tmax}) and u0 satisfying (2.1.5) as well as
∫

Ω u0 =
m0, where φ, I1, . . . , I4 are as in Lemma 2.4.1, C1 is as in Lemma 2.4.3 and C2, C3 are as in
Lemma 2.4.4.

For s0 > 0, we set c3 := C2c1,

d1(s0) := c3s
−(3−γ)
0 , d2(s0) := c2s0, d3(s0) :=

(
d2(s0)
d1(s0)

) 1
2

and φ0(s0) := C0s
2−γ
0 ,

where C0 is as in Lemma 2.4.5. We observe that d1(s0)→∞ for s0 ↘ 0 since 3−γ > 1 > 0.
Therefore, noting further that

1
2(1 + 3− γ) = 2− γ

2 > 2− γ,

we may also fix s0 ∈ (0,min{1, Rn}) so small that

φ0(s0) ≥ d3(s0) + 2
d1(s0) . (2.4.14)
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2. Finite-time blow-up in Keller–Segel systems with logistic-type dampening

Moreover, we now fix u0 not only complying with (2.1.5) but also with (2.1.6) for r1 := ( s04 ) 1
n

and will show that the corresponding solution given by Lemma 2.2.1 blows up in finite time.
From (2.4.13) and Lemma 2.4.5, we infer that φ(s0, ·) satisfies{

φt(s0, t) ≥ d1(s0)φ2(s0, t)− d2(s0) for all t ∈ (0,min{1, Tmax}),
φ(s0, 0) ≥ φ0(s0).

(2.4.15)

Since (2.4.14) implies φ0(s0) ≥ d3(s0) and because of d1(s0)d3(s0)2 − d2(s0) = 0, the com-
parison principle and (2.4.15) assert φ(s0, t) ≥ d3(s0) for all t ∈ (0,min{1, Tmax}), so that
by (2.4.15), we have

φt(s0, t) ≥ d1(s0)
(
φ2(s0, t)− d3(s0)2)

≥ d1(s0) (φ(s0, t)− d3(s0))2 for all t ∈ (0,min{1, Tmax}).

Dividing by the right-hand side therein yields upon an integration in time

t =
∫ t

0
1 ds ≤

∫ φ(s0,t)

φ(s0,0)

dσ
d1(s0)(σ − d3(s0))2 ≤

[
− 1
d1(s0)(σ − d3(s0))

]∞
φ0(s0)

≤ 1
2

for all t ∈ (0,min{1, Tmax}), implying Tmax ≤ 1
2 .

Finally, we conclude that Theorem 2.1.1 is now merely a direct consequence of the lemmata
above.

Proof of Theorem 2.1.1. Lemma 2.4.6 asserts that there is r1 ∈ (0, R) such that under
the conditions of Theorem 2.1.1, the maximal existence time Tmax is finite. By Lemma 2.3.2
and Lemma 2.2.1, this then implies u(0, t) = ‖u(·, t)‖L∞(Ω) →∞ as t↗ Tmax.
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3. Blow-up profiles in quasilinear fully
parabolic Keller–Segel systems

3.1. Introduction

The possibility of (finite-time) blow-up constitutes one of the most striking features of the
quasilinear system

ut = ∇ · (D(u, v)∇u− S(u, v)∇v), in Ω× (0, T ),
vt = ∆v − v + u, in Ω× (0, T ),
(D(u, v)∇u− S(u, v)∇v) · ν = ∂νv = 0, on ∂Ω× (0, T ),
u(·, 0) = u0, v(·, 0) = v0, in Ω,

(3.KS)

proposed by Keller and Segel [46] to model chemotaxis, that is, the directed movement of
bacteria or cells towards a chemical signal, and attracting interest of mathematicians for
nearly half a century (see for instance [4] for a recent survey).

Therein Ω ⊂ Rn, n ∈ N, is a smooth, bounded domain, T ∈ (0,∞] and u0, v0 : Ω → [0,∞)
as well as D,S : [0,∞]2 → [0,∞) are sufficiently smooth given functions, the most classical
choices being D ≡ 1 and S(u, v) = u.

For these selections, namely, solutions blowing up in finite time have been constructed in
two- [34] and higher- [97] dimensional balls. On the other hand, if n = 1 [71], if n = 2
and

∫
Ω u0 < 4π (or

∫
Ω u0 < 8π in the radially symmetric setting) [68] or if n ≥ 3 and

‖u0‖Ln2 (Ω) + ‖v0‖W 1,n(Ω) is sufficiently small [7], all solutions are global in time and remain
bounded. We should also note that if one replaces the second equation in (3.KS) by a
suitable elliptic counterpart, finite-time blow-up results have been achieved already in the
1990s [33, 39, 66].

Motivated inter alia by the desire to model volume-filling effects, it has been suggested to
consider certain nonlinear functions D ≡ D(u) and S ≡ S(u) instead [36, 72, 110] and,
in order to account for immotility in absence of bacteria [19, 57] or receptor-binding and
saturation effects [36, 42], one might also (need to) choose functions D and S explicitly
depending on v.

For the sake of exposition, we will for now confine ourselves with the choices D(u, v) =
(u + 1)m−1 and S(u, v) = u(u + 1)q−1 for certain m, q ∈ R, but remark that all the works
cited below allow for more general functions D and S as well. From a mathematical point of
view, these are the most prototypical choices, as they generalize D ≡ 1, S(u, v) = u, which
are obtained upon setting m = q = 1, and since estimates of the form D ≥ um−1, |S| ≤ uq,
u ≥ 1, come in handy at several places (see for instance the proofs of the present chapter).
Moreover, even these prototypical functions directly appear in biologically motivated models;
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3. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems

by choosing m > 1 and q = 1 we arrive at (a nondegenerate version of) system (M5) in [36]
while the choices m = 1 and q = 0 lead to model (M3b) in [36].

Regarding the question of global-in-time boundedness, the number n−2
n is critical: If Ω ⊂ Rn,

n ∈ N, is a smooth, bounded domain and m − q > n−2
n , then all solutions to (3.KS) are

global in time and bounded [37, 38, 83]. (We also refer to [77] for earlier partial results in this
direction and to [47] for existence results in the case of degenerate diffusion). Conversely, if
Ω ⊂ Rn, n ≥ 2, is a ball andm−q < n−2

n , there exist initial data such that the corresponding
solution blows up in either finite or infinite time [37, 93].

If in addition to m − q < n−2
n one assumes n ≥ 3 as well as either m ≥ 1 (and hence

q > 2
n > 0) or m ∈ R and q ≥ 1, finite-time blow-up is possible [11–13], while for q ≤ 0

solutions are always global in time [104]. Whether solutions may blow up in finite time given
m − q < n−2

2 and q > 0 but q < 1 or m < 1 is, to the best of our knowledge, still an open
question. (For finite-time blow-up in the one-dimensional case, see [10].)

The picture is more complete if one replaces the second equation in (3.KS) with a suitable
elliptic equation. Again solutions are global and bounded provided that m−q > n−2

2 and in
the radial symmetric setting there exist unbounded solutions if m− q < n−2

2 . Additionally,
it is known for which parameters finite-time blow-up may occur: If q ≤ 0, these solutions are
always global, while for q > 0 finite-time blow-up is possible [52, 108]. (Let us also reference
the earlier partial results [6] and [14].) An obvious conjecture, stated for instance in [104],
is that the same holds true for the fully parabolic system (3.KS).

Similar results are also available for functions D and S decaying exponentially fast in u (see
[15] for boundedness in 2D, [93] for the existence of unbounded solutions and [101] for the
possibility of infinite-time blow-up, for instance).

A natural next step is to examine the qualitative behavior of (finite- or infinite-time) blow-
up solutions in more detail. While far from exhaustive, some results in this regard have
been obtained for the classical Keller–Segel system, that is, for D ≡ 1 and S(u, v) = u.

In the two-dimensional settings some blow-up solutions collapse to a Dirac-type singularity
(see [34, 67] or also [76] for similar results for the parabolic–elliptic case). Additionally, for
all n ≥ 2, temporal blow-up rates (even for S(u, v) = uq, q ∈ (0, 2)) have been established
[61] and it is known that {un2 (·, t) : t ∈ (0, Tmax)} cannot be equi-integrable, where Tmax
denotes the blow-up time [8].

Quite recently, the questions whether spatial blow-up profiles exist, that is, whether U :=
limt↗Tmax u(·, t), Tmax again denoting the blow-up time, is meaningful in some sense, and,
if this is indeed the case, properties of U have been studied.

Choosing Ω to be a ball in two or more dimensions, D ≡ 1 and S(u, v) = u, it has been
shown in [106] that for all nonnegative, radially symmetric solutions blowing up at Tmax <∞
there exists a blow-up profile U in the sense that u(·, t)→ U in C2

loc(Ω \ {0}) as t↗ Tmax.
Moreover, an upper estimate for U is available: For any η > 0 one can find C > 0 with

U(x) ≤ C|x|−n(n−1)−η for all x ∈ Ω.

If one simplifies (3.KS) by not only setting D ≡ 1 and S(u, v) = u but also replacing the
second equation therein with 0 = ∆v− 1

|Ω|
∫

Ω u0 +u, more detailed information is available.
In [79], the authors consider Ω := BR(0) ⊂ Rn, R > 0, n ≥ 3, and construct a large class of
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3.1. Introduction

initial data for which the corresponding solutions (u, v) blow up in finite time. The blow-up
profile U := limt↗Tmax u(·, t) exists pointwise and

U(x) ≤ C|x|−2 for all x ∈ Ω

holds for some C > 0, wherein the exponent 2 is optimal. Furthermore, the same paper also
provides certain lower bounds for U .

Up to now, however, in the case of nonlinear diffusion there seems to be nearly no information
available regarding behavior of finite-time blow-up solutions to (3.KS) at their blow-up time.
The present chapter aims to be a first step towards closing this gap.

Main results. At first, we will deal with (a slight generalization of) the first subproblem
in (3.KS) and derive pointwise estimates for its solutions.

Theorem 3.1.1. Let Ω ⊂ Rn, n ≥ 2, be a smooth, bounded domain with 0 ∈ Ω as well as

m, q ∈ R,KD,1,KD,2,KS ,Kf ,M,L, β > 0, θ > n,p ≥ 1 (3.1.1)

be such that

m− q ∈
(
p

θ
− p

n
,
p

θ
+ βp− p

n

]
and m >

n− 2p
n

. (3.1.2)

Then for any

α >
β

m− q + p

n −
p

θ

, (3.1.3)

we can find C > 0 with the following property:

Suppose that for some T ∈ (0,∞], the function u ∈ C0(Ω × [0, T )) ∩ C2,1(Ω × (0, T )) is
nonnegative, fulfills

sup
t∈(0,T )

∫
Ω
up ≤M (3.1.4)

and is a classical solution of
ut ≤ ∇ · (D(x, t, u)∇u+ S(x, t, u)f(x, t)), in Ω× (0, T ),
(D(x, t, u)∇u+ S(x, t, u)f) · ν ≤ 0, on ∂Ω× (0, T ),
u(·, 0) ≤ u0, in Ω,

(3.1.5)

where

D,S ∈ C1(Ω× (0, T )× [0,∞)), f ∈ C1(Ω× (0, T );Rn) and u0 ∈ C0(Ω) (3.1.6)

satisfy (with QT := Ω× (0, T ))

inf
(x,t)∈QT

D(x, t, ρ) ≥ KD,1ρ
m−1, (3.1.7)

sup
(x,t)∈QT

D(x, t, ρ) ≤ KD,2 max{ρ, 1}m−1, (3.1.8)

sup
(x,t)∈QT

|S(x, t, ρ)| ≤ KS max{ρ, 1}q (3.1.9)
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3. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems

for all ρ > 0 and

sup
t∈(0,T )

∫
Ω
|x|θβ |f(x, t)|θ dx ≤ Kf (3.1.10)

as well as

u0(x) ≤ L|x|−α for all x ∈ Ω. (3.1.11)

Then

u(x, t) ≤ C|x|−α for all x ∈ Ω and t ∈ (0, T ). (3.1.12)

Remark 3.1.2. For p = 1, the condition (3.1.4) in Theorem 3.1.1 can be replaced by∫
Ω
u0 ≤M

as integrating the PDI in (3.1.5) over Ω and integrating by parts (all boundary terms are
nonpositive because of the second condition in (3.1.5)) assert

∫
Ω u(·, t) ≤

∫
Ω u0 for all t ∈

(0, Tmax).

As a second step, we then apply this result to radially symmetric solutions to (3.KS) and
obtain

Theorem 3.1.3. Let n ≥ 2, R > 0 and Ω := BR(0) as well as

m, q ∈ R,KD,1,KD,2,KS , > 0,M,L > 0 (3.1.13)

such that

m− q ∈
(
− 1
n
,
n− 2
n

]
and m >

n− 2
n

. (3.1.14)

For any

α > α := n(n− 1)
(m− q)n+ 1 (3.1.15)

and any β > n − 1, there exists C > 0 with the following property: Let T ∈ (0,∞]. Any
nonnegative and radially symmetric classical solution

(u, v) ∈
(
C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T ))

)2
of (3.KS) fulfills (3.1.12) and |∇v(x, t)| ≤ C|x|−β for all x ∈ Ω and t ∈ (0, T ), provided

D,S ∈ C1([0,∞)2), u0 ∈ C0(Ω) and v0 ∈W 1,∞(Ω) (3.1.16)

satisfy

inf
σ≥0

D(ρ, σ) ≥ KD,1ρ
m−1, (3.1.17)

sup
σ≥0

D(ρ, σ) ≤ KD,2 max{ρ, 1}m−1 and (3.1.18)

sup
σ≥0
|S(ρ, σ)| ≤ KS max{ρ, 1}q (3.1.19)

for all ρ ≥ 0 as well as (3.1.11),∫
Ω
u0 ≤M and ‖v0‖W 1,∞(Ω) ≤ L. (3.1.20)
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3.1. Introduction

Remark 3.1.4. (i) Let us briefly discuss the conditions in (3.1.14). On the one hand,
observe that m − q ↘ − 1

n implies α ↗ ∞. On the other hand, [83] proves that all
solutions to (3.KS) for a large class of functions D,S are global in time and bounded,
provided m, q ∈ R satisfy m− q > n−2

n . In both cases a statement of the form (3.1.12)
would not be very interesting. (However, for m− q > n−2

n the statement still holds if
one sets α := n because if (3.1.9) is fulfilled for some q ∈ R then also for all larger q.)

The second condition in (3.1.14), however, is purely needed for technical reasons and we
conjecture that Theorem 3.1.3 holds even without this restriction, albeit the constant
C may then depend on T as well.

(ii) In [17, Corollary 2.3], it has been shown that (3.1.12) cannot hold for any

α < α := min
{

2
(1 + q −m)+

,
1

(q −m)+

}
.

As m − q < n−2
n implies α > n > α, we do not know whether (3.1.15) is in general

optimal. However, in the case of m − q = n−2
n (and m > n−2

n ) we have α = n = α,
hence at least in this extremal case the condition α > α is, up to equality, optimal.

The third and final step will then consist of proving that limt↗Tmax u(·, t) and limt↗Tmax v(·, t)
exist in an appropriate sense provided the diffusion mechanism in the first equation in (3.KS)
is nondegenerate.

Theorem 3.1.5. Let n ≥ 2, R > 0, Ω := BR(0) and suppose that the parameters in
(3.1.13) and the functions in (3.1.16) comply with (3.1.11), (3.1.14) and (3.1.17)–(3.1.20).
Furthermore, suppose also that there is η > 0 with

D ≥ η in [0,∞)2. (3.1.21)

Then for any nonnegative and radially symmetric classical solution (u, v) blowing up in finite
time in the sense that there is Tmax <∞ such that

lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) =∞,

there exist nonnegative, radially symmetric U, V ∈ C2(Ω \ {0}) such that

u(·, t)→ U and v(·, t)→ V in C2
loc(Ω \ {0}) as t↗ Tmax. (3.1.22)

Moreover, for any α > α (with α as in (3.1.15)) and any β > n− 1, we can find C > 0 with
the property that

U(x) ≤ C|x|−α and |∇V (x)| ≤ C|x|−β for all x ∈ Ω. (3.1.23)

Remark 3.1.6. Obviously, Theorem 3.1.5 is only of interest if, given S and D, there are
indeed initial data leading to finite-time blow-up. Therefore, we stress that, for instance,
the choices D(ρ, σ) := (ρ+ 1)m−1 and S(ρ, σ) := ρ(ρ+ 1)q−1 for ρ, σ ≥ 0 and m ∈ R, q ≥ 0
satisfying (3.1.14) as well as q ≥ 1 or m ≥ 1 not only comply with (3.1.16)–(3.1.19) and
(3.1.21) for certain parameters but also allow for finite-time blow-up [11, 13]. That is,
there exist initial data (u0, v0) ∈ C0(Ω) ×W 1,∞(Ω) such that the corresponding solution
to (3.KS) blows up in finite time. As (3.1.11) and (3.1.20) are then obviously fulfilled for
certain L,M > 0, we may indeed apply Theorem 3.1.5.
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3. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems

Moreover, let us emphasize that our results can indeed be applied to models stemming from
a biological motivation, for instance to (a nondegenerate version of) the system (M5) in [36],
that is, to (3.KS) with m > 1 and q = 0. Furthermore, even the degenerate case is covered
by Theorem 3.1.3.

Remark 3.1.7. Let us also point out that Theorem 3.1.5 includes the result in [106, Corol-
lary 1.4], as in the case of m = 1 and q = 1, we have α = n(n− 1).

Remark 3.1.8. As already briefly mentioned in the introduction of Chapter 2, pointwise
estimates of the above flavor may be used to detect finite-time blow-up in chemotaxis sys-
tems with logistic-type dampening. This has first been observed in [103], where pointwise
estimates derived in [106] for the special case m = q = 1 have been employed.

A systematic analysis of the question how estimates of this type affect the possibility to
establish finite-time blow-up also in quasilinear chemotaxis systems is then given in [5],
where an important corollary combines the main result of that paper with Theorem 3.1.1
in order to indeed obtain finite-time blow-up for certain parameter ranges. In [80], these
results have been further extended to systems with saturated taxis sensitivities, again making
crucial use of Theorem 3.1.1.

Plan of the chapter. The reasoning from [106], where estimates on blow-up profiles to
solutions to (3.KS) with D ≡ 1 and S(u, v) = u have been derived, is to consider w := ζαu
with ζ(x) ≈ |x| and to make use of semigroup arguments as well as Lp-Lq estimates in
order to derive an L∞ bound for w which in turn implies the desired estimate of the form
(3.1.12) for u. However, through their mere nature, these methods are evidently inadequate
to handle equations with nonlinear diffusion.

The present chapter is built upon the belief that, generally, an iterative testing procedure
should be as strong as semigroup arguments. While the latter method may be quite elegant,
the former has the distinct advantage of being applicable not only to equations with linear
diffusion but also to (3.1.5).

Indeed, iteratively testing with wpj−1 for certain 1 ≤ pj ↗ ∞ allows us to obtain an
L∞ bound for w at the end of Section 3.2—provided the critical assumption (3.1.3) is
fulfilled.

Applying Theorem 3.1.1 to solutions of (3.KS) mainly consists of adequately estimating
f := −∇v. To that end, we may basically rely on the results in [106]. It probably should
also be noted that this is the only part where we explicitly make use of the radially symmetric
setting.

Finally, the existence of blow-up profiles is shown in Section 3.4 by considering global
solutions (uε, vε), ε ∈ (0, 1), to suitably approximative problems which converge (along
a subsequence) on all compact sets in Ω \ {0} × (0,∞) to (û, v̂) for certain functions
û, v̂ : Ω × [0,∞) → [0,∞). We then prove that these functions coincide which u and v
on Ω × [0, Tmax) such that we may set U := û(·, Tmax) as well as V := v̂(·, Tmax) and make
use of regularity of û and v̂.

In order to identify (û, v̂) with (u, v), we crucially need uniqueness of solutions to (3.KS)
which we show in Lemma 3.5.1—provided that the first equation is nondegenerate. As this
might potentially be of independent interest, we choose to prove uniqueness for a class of
systems slightly generalizing (3.KS).
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3.2. Pointwise estimates for subsolutions to equations in divergence form

3.2. Pointwise estimates for subsolutions to equations
in divergence form

Unless otherwise stated, we assume throughout this section that Ω ⊂ Rn, n ≥ 2, is a
smooth, bounded domain with 0 ∈ Ω, set R := supx∈Ω |x| and suppose that the parameters
(all henceforth fixed) in (3.1.1) as well as α comply with (3.1.2) and (3.1.3). Moreover, we
may also assume

(m− q)α < β, (3.2.1)

since whenever (3.1.10) is fulfilled for some β > 0, then also for all β̃ > β (provided one
replaces Kf by max{R, 1}β̃−βKf ).

In order to simplify the notation, we also fix T ∈ (0,∞] and functions in (3.1.6) satisfying
(3.1.4) and (3.1.7)–(3.1.11) as well as a nonnegative classical solution u ∈ C0(Ω× [0, T )) ∩
C2,1(Ω × (0, T )) of (3.1.5), but emphasize that all constants below only depend on the
parameters in (3.1.1) as well as on α.

Our goal, which will be achieved in Lemma 3.2.10 below, is to prove an L∞ bound for the
function

w : Ω× [0, T )→ R, (x, t) 7→ |x|αu(x, t) (3.2.2)

which in turn directly implies the desired estimate (3.1.12).

To this end, we will rely on a testing procedure to obtain Lp bounds for all p ∈ (1,∞). Due
to an iteration technique, this will then be improved to an L∞ bound—hence the constants
in the following proofs need also to be independent of p.

In order to prepare for said testing procedure, we first state

Lemma 3.2.1. Let s ∈ R and 0 ≤ g ∈ C0(Ω× (0, T )× (0,∞)) with

sup
(x,t)∈Ω×(0,T )

g(x, t, ρ) ≤ Kg max{ρ, 1}s (3.2.3)

for all ρ ≥ 0 and some Kg > 0.

For any µ ∈ R, γ ∈ R and κ > 0, there exist p0 ≥ 1 and C > 0 such that for all p ≥ p0, we
have ∫

Ω

(
g(x, t, u)|x|µwp+γ

)κ ≤ C (1 +
∫

Ω

(
|x|µ−αswp+γ+s)κ) in (0, T ). (3.2.4)

Proof. For any p > p1 := −γ + |µ|
α , all integrals in (3.2.4) are finite by (3.2.2).

As in the case of s ≤ 0 the statement follows directly from (3.2.3) and (3.2.2) (for p0 :=
max{1, p1} and C := Kg), we may assume s > 0. Then (3.2.3) only implies∫

Ω

(
g(x, t, u)|x|µwp+γ

)κ ≤ Kg

∫
{u≥1}

(
|x|µ−αswp+γ+s)κ +Kg

∫
{u<1}

(
|x|µwp+γ

)κ
for all p ≥ p1 in (0, T ).
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3. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems

Since s > 0, we may therein employ Young’s inequality (with exponents p+γ+s
p+γ , p+γ+s

s ) to
obtain ∫

{u<1}

(
|x|µwp+γ

)κ ≤ p+ γ

p+ γ + s

∫
Ω

(
|x|µ·

p+γ+s
p+γ wp+γ+s

)κ
+ s

p+ γ + s
|Ω|

for all p ≥ p1 in (0, T ).

As

lim
p↗∞

µ · p+ γ + s

p+ γ
= µ > µ− αs

since α > 0 and s > 0, we may find p2 > 1 such that µ · p+γ+s
p+γ > µ− αs for all p > p2.

Therefore, for x ∈ B1(0) and p ≥ p2,

|x|(µ·
p+γ+s
p+γ )κ ≤ |x|(µ−αs)κ,

while for x ∈ Ω \B1(0) and any p > 1,

|x|(µ·
p+γ+s
p+γ )κ ≤ max

{
1, R(µ· p+γ+s

p+γ )κ
}
≤ c1 ≤ c1 max{1, R−(µ−αs)κ}|x|(µ−αs)κ

for some c1 > 0.

Since p+γ
p+γ+s ≤ 1 and s

p+γ+s ≤ 1, we arrive at (3.2.4) by setting p0 := max{p1, p2} and C > 0
appropriately.

We may now initiate the aforementioned testing procedure and obtain a first estimate for
the quantity d

dt
∫

Ω w
p in (0, T ).

Lemma 3.2.2. There exist C1, C2 > 0 and p0 > 1 such that for all p ≥ p0,

1
p2

d
dt

∫
Ω
wp + C1

∫
Ω
|x|−(m−1)αwp+m−3|∇w|2

≤ C2

3∑
i=1

(∫
Ω

(
|x|−µiwp+γi

)κi) 1
κi

+ C2 in (0, T ), (3.2.5)

where

µ1 := (m− 1)α+ 2, µ2 := (2q −m− 1)α+ 2β, µ3 := (q − 1)α+ 1 + β, (3.2.6)

γ1 := m− 1, γ2 := 2q −m− 1, γ3 := q − 1, (3.2.7)

κ1 := 1, κ2 := θ

θ − 2 and κ3 := θ

θ − 1 . (3.2.8)

Proof. As

∇u = ∇(|x|−αw) = |x|−α∇w − α|x|−α−1w∇|x|,
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in Ω× (0, T ), testing the PDI in (3.1.5) with |x|αwp−1 and integrating by parts gives
1
p

d
dt

∫
Ω
wp =

∫
Ω
wtw

p−1

=
∫

Ω
ut(|x|αwp−1)

≤ −
∫

Ω
(D(x, t, u)∇u+ S(x, t, u)f) · ∇(|x|αwp−1)

+
∫
∂Ω
|x|αwp−1(D(x, t, u)∇u+ S(x, t, u)f) · ν in (0, T ),

wherein the boundary term is nonpositive because of the second line in (3.1.5). Therefore,
1
p

d
dt

∫
Ω
wp ≤ −(p− 1)

∫
Ω
D(x, t, u)wp−2|∇w|2

+α(p− 1)
∫

Ω
D(x, t, u)|x|−1wp−1∇w · ∇|x|

−α
∫

Ω
D(x, t, u)|x|−1wp−1∇w · ∇|x|

+α2
∫

Ω
D(x, t, u)|x|−2wp|∇|x||2

−(p− 1)
∫

Ω
S(x, t, u)|x|αwp−2f · ∇w

−α
∫

Ω
S(x, t, u)|x|α−1wp−1f · ∇|x| in (0, T ).

Therein is by Young’s inequality

α(p− 2)
∫

Ω
D(x, t, u)|x|−1wp−1∇w · ∇|x|

≤ p− 1
2

∫
Ω
D(x, t, u)wp−2|∇w|2 + α2(p− 2)2

2(p− 1)

∫
Ω
D(x, t, u)|x|−2wp|∇|x||2 in (0, T ).

As |∇|x|| = 1 for all x ∈ Ω \ {0} and using (3.1.7), we may therefore find c1, c2, c3, c4 > 0
such that for all p ≥ 2

1
p2

d
dt

∫
Ω
wp ≤ −c1

∫
Ω
|x|−(m−1)αwp+m−3|∇w|2

+c2
∫

Ω
D(x, t, u)|x|−2wp

+c3
∫

Ω
|S(x, t, u)||x|αwp−2|f · ∇w|

+c4
∫

Ω
|S(x, t, u)||x|α−1wp−1|f | holds in (0, T ). (3.2.9)

By Lemma 3.2.1 (with s = m−1, g = D, µ = −2, γ = 0, κ = 1) and (3.1.8) there are c5 > 0
and p1 ≥ 1 such that∫

Ω
D(x, t, u)|x|−2wp ≤ c5

∫
Ω
|x|−(m−1)α−2wp+m−1 + c5 (3.2.10)
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for all p ≥ p1 in (0, T ).

Furthermore, by employing Young’s inequality we may find c6 > 0 such that∫
Ω
|S(x, t, u)||x|αwp−2|f · ∇w|

≤ c1
2c3

∫
Ω
|x|−(m−1)αwp+m−3|∇w|2 + c6

∫
Ω
|S(x, t, u)|2|x|(m+1)αwp−m−1|f |2 (3.2.11)

for all p ≥ 1 in (0, T ). Therein is by Hölder’s inequality (with exponents θ
2 ,

θ
θ−2 ; note that

θ > n ≥ 2 by (3.1.1)) and (3.1.10)∫
Ω
|S(x, t, u)|2|x|(m+1)αwp−m−1|f |2

≤ K
2
θ

f

(∫
Ω

(
|S(x, t, u)|2|x|(m+1)α−2βwp−m−1

) θ
θ−2
) θ−2

θ

(3.2.12)

for all p ≥ 1 in (0, T ).

Herein, we again make use of Lemma 3.2.1 (with s = 2q, g = S2, µ = (m + 1)α − 2β,
γ = −m− 1, κ = θ

θ−2 ) and (3.1.9) to obtain p2 ≥ 1 and c7 > 0 such that∫
Ω

(
|S(x, t, u)|2|x|(m+1)α−2βwp−m−1

) θ
θ−2

≤ c7
∫

Ω

(
|x|−(2q−m−1)α−2βwp+2q−m−1

) θ
θ−2 + c7 (3.2.13)

holds for all p ≥ p2 in (0, T ).

Once more employing Hölder’s inequality, (3.1.10), Lemma 3.2.1 (with s = q, g = |S|,
µ = α− 1− β, γ = −1, κ = θ

θ−1 ) and (3.1.9), we see that∫
Ω
|S(x, t, u)||x|α−1wp−1|f | ≤ K

1
θ

f

(∫
Ω

(
|S(x, t, u)||x|α−1−βwp−1) θ

θ−1

) θ−1
θ

≤ c8
(∫

Ω

(
|x|−[(q−1)α+1+β]wp+q−1

) θ
θ−1
) θ−1

θ

+ c8 (3.2.14)

holds for all p ≥ p3 in (0, T ) for certain p3 ≥ 1 and c8 > 0.

Finally, by plugging (3.2.10)–(3.2.14) into (3.2.9), we obtain the desired estimate (3.2.5) for
p0 := max{p1, p2, p3} and certain C1, C2 > 0.

Before estimating the terms on the right-hand side of (3.2.5) against the dissipative term
therein, we have a deeper look at the parameters in (3.2.6)–(3.2.8). Precisely due to (3.1.3),
our condition on α, they allow for the following

Lemma 3.2.3. Let i ∈ {1, 2, 3} as well as µi and κi as in (3.2.6) and (3.2.8), respectively.

Then

λi := αp

κi(µi − (m− 1)α)+
(3.2.15)

fulfills

λi ∈ (1,∞) as well as 2κiλi
λi − 1 <

2n
n− 2 .
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3.2. Pointwise estimates for subsolutions to equations in divergence form

Proof. Plugging (3.2.6) into (3.2.15) yields

λ1 = αp

2κ1
, λ2 = αp

κ2(2β − 2(m− q)α)+
and λ3 = αp

κ3(1 + β − (m− q)α)+
,

hence λi < ∞ since (m − q)α < β and κi > 0 by (3.2.1) and (3.2.8), respectively, for
i ∈ {1, 2, 3}.

As m− q ≤ p

θ + βp−p
n by (3.1.2), we furthermore have

α >
β

m− q + p

n −
p

θ

≥ β
βp
n

= n

p

by (3.1.3).

Since λ1 = αp
2 and α > n

p
, we immediately obtain λ1 > 1 and

2κ1λ1

λ1 − 1 = 2αp
αp− 2 <

2n
n− 2 .

By (3.1.3), we have α > β
m−q+ p

n−
p

θ
and thus due to (3.1.2) also

(m− q)α > β − αp

n
+ αp

θ
.

Therefore, we may further compute

κ2λ2 = αp

2β − 2(m− q)α >
αp

2(αpn −
αp
θ ) = nθ

2(θ − n) ,

hence λ2 > (θ−2)n
2(θ−n) ≥

2(θ−2)
2(θ−2) = 1 since n ≥ 2 and (as (κ2,∞) 3 ξ 7→ 2ξ

ξ
κ2
−1

is strictly
decreasing)

2κ2λ2

λ2 − 1 = 2κ2λ2
κ2λ2
κ2
− 1

<
2nθ

θ−2
θ nθ − 2(θ − n)

= 2nθ
n(θ − 2)− 2θ + 2n = 2n

n− 2 .

Similarly, we see that

κ3λ3 = αp

1 + β − (m− q)α >
αp

1 + αp
n −

αp
θ

>
αp

2αp
n −

αp
θ

= nθ

2θ − n

since 1 < αp
n , thus λ3 >

(θ−1)n
2θ−n ≥

2θ−2
2θ−2 = 1 and

2κ3λ3

λ3 − 1 = 2κ3λ3
κ3λ3
κ3
− 1

<
2nθ

θ−1
θ nθ − 2θ + n

= 2nθ
n(θ − 1)− 2θ + n

= 2n
n− 2 .

This clearly proves the lemma.

Another important ingredient will be

31



3. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems

Lemma 3.2.4. Throughout (0, T ), ∫
Ω
|x|−αpwp ≤M

holds.

Proof. This is an immediate consequence of (3.2.2) and (3.1.4).

As further preparation, we state a quantitative Ehrling-type lemma. Since this will be also
used in the proof of the quite general Lemma 3.5.1 below we neither require n ≥ 2 nor
0 ∈ Ω.

Lemma 3.2.5. Let Ω ⊂ Rn, n ∈ N, be a smooth, bounded domain and 0 < s < r < 2n
(n−2)+

.

Then there exist a ∈ (0, 1) and C > 0 such that for all ε > 0, we have

‖ϕ‖Lr(Ω) ≤ ε‖∇ϕ‖L2(Ω) + C min{1, ε}− a
1−a ‖ϕ‖Ls(Ω) for all ϕ ∈W 1,2(Ω).

Here and below, we set ‖ϕ‖Lq(Ω) :=
(∫

Ω |ϕ|
q
) 1
q even for q ∈ (0, 1).

Proof. The conditions s < r < 2n
(n−2)+

imply that

a :=
1
s −

1
r

1
s + 1

n −
1
2

=
r−s
rs

2n+2s−ns
2ns

= 2nr − 2ns
2nr + 2rs− nsr = r − s

r − n−2
2n · rs

satisfies a ∈ (0, 1).

Hence, we may invoke the Gagliardo–Nirenberg inequality (which holds even for r, s ∈ (0, 1),
see for instance [58, Lemma 2.3]) to obtain c1 > 0 with the property that

‖ϕ‖Lr(Ω) ≤ c1‖∇ϕ‖aL2(Ω)‖ϕ‖
1−a
Ls(Ω) + c1‖ϕ‖Ls(Ω) for all ϕ ∈W 1,2(Ω).

Therein we have by Young’s inequality (with exponents 1
a ,

1
1−a ) for all ε ∈ (0, 1) and all

ϕ ∈W 1,2(Ω),

‖∇ϕ‖aL2(Ω)‖ϕ‖
1−a
Ls(Ω) =

(
ε

ac1
‖∇ϕ‖L2(Ω)

)a
·

((
ε

ac1

)− a
1−a

‖ϕ‖Ls(Ω)

)1−a

≤ ε

c1
‖∇ϕ‖L2(Ω) + c2ε

− a
1−a ‖ϕ‖Ls(Ω),

where c2 := (1− a)(ac1) a
1−a .

This already implies the statement for C := c1(1 + c2).

In order to be able to apply Lemma 3.2.5, we first rewrite the dissipative term in (3.2.5).

Lemma 3.2.6. There are c1, c2 > 0 and p0 ≥ 1 such that for all p ≥ p0 we have(
Ω 3 x 7→ |x|−

(m−1)α
2 w

p+m−1
2 (x, t)

)
∈W 1,2(Ω) for all t ∈ (0, T )
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3.2. Pointwise estimates for subsolutions to equations in divergence form

and

−p2
∫

Ω
|x|−(m−1)αwp+m−3|∇w|2

≤ −c1
∫

Ω

∣∣∣∇(|x|− (m−1)α
2 w

p+m−1
2

)∣∣∣2 + c2

(∫
Ω

(
|x|−µ1wp+γ1

)κ1

) 1
κ1

in (0, T ),

where µ1, γ1 and κ1 are as in (3.2.6), (3.2.7) and (3.2.8), respectively.

Proof. We first note that for x ∈ Ω and t ∈ (0, T ), we have

|x|−
(m−1)α

2 w
p+m−1

2 (x, t) = |x|
αp
2 u

p+m−1
2 (x, t)

and hence (
Ω 3 x 7→ |x|−

(m−1)α
2 w

p+m−1
2 (x, t)

)
∈ C1(Ω) ⊂W 1,2(Ω)

for all p > p1 := max{ 2
α , 3−m} and all t ∈ (0, Tmax).

Thus, for p ≥ p1, making use of the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, a, b ∈ R, we
may calculate

−
∫

Ω
|x|−(m−1)αwp+m−3|∇w|2

≤ − 2
(p+m− 1)2

∫
Ω

∣∣∣∇(|x|− (m−1)α
2 w

p+m−1
2

)∣∣∣2
+ ((m− 1)α)2

(p+m− 1)2

∫
Ω
|x|−(m−1)α−2wp+m−1|∇|x||2 in (0, T ).

Because of |∇|x|| ≡ 1 in Ω \ {0} and by the definition of µ1, γ1 and κ1, we have therein∫
Ω
|x|−(m−1)α−2wp+m−1|∇|x||2 =

(∫
Ω

(
|x|−µ1wp+γ1

)κ1

) 1
κ1

in (0, T )

for all p ≥ 1.

Moreover, setting p2 := 2|m− 1|, we have 9
4p

2 ≥ (p+m− 1)2 ≥ 1
4p

2 for all p ≥ p2, so that
the statement follows for c1 := 8

9 , c2 := 4((m− 1)α)2 and p0 := max{1, p1, p2}+ 1.

A first application of Lemma 3.2.4 and Lemma 3.2.5 now shows that the dissipative term∫
Ω

∣∣∣∇(|x|− (m−1)α
2 w

p+m−1
2

)∣∣∣2 can be basically turned into
∫

Ω w
p. This is the only place where

we (directly) need the second condition in (3.1.2), namely that m > n−2p
n .

Lemma 3.2.7. For given ε > 0 and s ∈ (0, 2), we may find C > 0 and p0 ≥ 1 such that∫
Ω
wp ≤ ε

∫
Ω

∣∣∣∇(|x|− (m−1)α
2 w

p+m−1
2

)∣∣∣2 + C

(∫
Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)s) 2
s

+ C (3.2.16)

for all p ≥ p0 in (0, T ).
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3. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems

Proof. We fix ε > 0, s ∈ (0, 2) and p0 as given by Lemma 3.2.6. We divide the proof in
two parts.

Case 1: m ≥ 1. Young’s inequality and Lemma 3.2.5 (with r = 2 < 2n
n−2 ) imply∫

Ω
wp ≤

∫
Ω
wp+m−1 + |Ω|

≤ R(m−1)α
∫

Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)2
+ |Ω|

≤ ε
∫

Ω

∣∣∣∇(|x|− (m−1)α
2 w

p+m−1
2

)∣∣∣2 + c1

(∫
Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)s) 2
s

+ |Ω|

in (0, T ) for some c1 > 0 and thus (3.2.16) for C := max{c1, |Ω|}.

Case 2: m < 1. Since (3.1.2) and n ≥ 2 assert m > n−2p
n ≥ 1 − p, we have r := 2p

m−1+p ∈
(2, 2n

n−2 ) and λ := p

1−m ∈ (1,∞). We then obtain∫
Ω
wp ≤

(∫
Ω
|x|−αpwp

) 1
λ
(∫

Ω
|x|

αp
λ−1w

pλ−p
λ−1

)λ−1
λ

≤M 1
λ

(∫
Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)r)λ−1
λ

(3.2.17)

for all p ≥ 1 in (0, T ) by Hölder’s inequality as well as Lemma 3.2.4 and because of

αp

λ− 1 ·
(
− 2

(m− 1)αr

)
= (m− 1)αp
m− 1 + p

· m− 1 + p

(m− 1)αp = 1

as well as

pλ− p
λ− 1 ·

2
(p+m− 1)r =

(m− 1)( pp
m−1 + p)

m− 1 + p
· m− 1 + p

(p+m− 1)p = 1.

Noting that r(λ−1)
λ = 2, we again employ Lemma 3.2.5 to see that(∫

Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)r) (λ−1)
λ

=
(∫

Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)r) 2
r

≤ ε

M
1
λ

∫
Ω

∣∣∣∇(|x|− (m−1)α
2 w

p+m−1
2

)∣∣∣2 + c2

(∫
Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)s) 2
s

(3.2.18)

holds in (0, T ) for some c2 > 0. The desired estimate (3.2.16) is then a direct consequence
of (3.2.17) and (3.2.18).

We are now prepared to prove

Lemma 3.2.8. For any 0 < s < s0 := min{ 2n
n−2 ,

1
(m−1)+

}, we can find C > 0, p0 > 1 and
ν ≥ 1 such that for all p ≥ p0,

d
dt

∫
Ω
wp +

∫
Ω
wp ≤ Cpν + Cpν

(∫
Ω
w(p+m−1)s−1

) 1
s

in (0, T ). (3.2.19)
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Proof. By Lemma 3.2.2 and Lemma 3.2.6, there are c1, c2 > 0 and p1 > 1 such that for
all p ≥ p1,

d
dt

∫
Ω
wp + c1

∫
Ω

∣∣∣∇(|x|− (m−1)α
2 w

p+m−1
2

)∣∣∣2
≤ c2p2

3∑
i=1

(∫
Ω

(
|x|−µiwp+γi

)κi) 1
κi

+ c2p
2 (3.2.20)

holds throughout (0, T ), where µi, γi, κi, i ∈ {1, 2, 3}, are given by (3.2.6), (3.2.7) and (3.2.8),
respectively.

Our goal is to estimate the terms on the right-hand side in (3.2.20) against the dissipative
term therein. As a starting point, we use Hölder’s inequality and Lemma 3.2.4 to compute
for λ > 1, p ≥ 1 and i ∈ {1, 2, 3},(∫

Ω

(
|x|−µiwp+γi

)κi) 1
κi

=
(∫

Ω
|x|−

αp
λ w

p

λ · |x|−µiκi+
αp
λ w(p+γi)κi− p

λ

) 1
κi

≤M
1
κiλ

(∫
Ω
|x|
−µiκiλ+αp

λ−1 w
(p+γi)κiλ−p

λ−1

)λ−1
κiλ

in (0, T ). (3.2.21)

For p ∈ (1,∞) and i ∈ {1, 2, 3}, we set

λi(p) :=


αpp

κi[p(µi − (m− 1)α) + (m− 1)(µi − αγi)]+
, p <∞,

αp

κi(µi − (m− 1)α)+
, p =∞,

which entails that limp↗∞ λi(p) = λi(∞). Lemma 3.2.3 asserts λi(∞) ∈ (1,∞), hence there
is p2 ≥ p1 such that also λi(p) ∈ (1,∞) for all p ≥ p2 and i ∈ {1, 2, 3}.

Setting furthermore

bi(p) := 2 · αp− (µi − αγi)
αp

, i ∈ {1, 2, 3},

and choosing λ = λi(p) in (3.2.21), we obtain(∫
Ω

(
|x|−µiwp+γi

)κi) 1
κi

≤ max{M, 1}
(∫

Ω

(
|x|
−(m−1)α

2 w
p+m−1

2

) κiλi(p)
λi(p)−1 bi(p)

)λi(p)−1
κiλi(p)

in (0, T ) (3.2.22)

for all p ≥ p2 and i ∈ {1, 2, 3} since
−µiκiλi(p) + αp

λi(p)− 1 · 2(λi(p)− 1)
−(m− 1)ακiλi(p)bi(p)

=
−µi + αp

κiλi(p)

−(m− 1)α · αp

αp− (µi − αγi)

= −µiαp+ α[p(µi − (m− 1)α) + (m− 1)(µi − αγi)]
−(m− 1)α(αp− (µi − αγi))

= 1

35
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and
(p+ γi)κiλi(p)− p

λi(p)− 1 · 2(λi(p)− 1)
(p+m− 1)κiλi(p)bi(p)

=
(p+ γi)− p

κiλi(p)

p+m− 1 · αp

αp− (µi − αγi)

= (p+ γi)αp− [p(µi − (m− 1)α) + (m− 1)(µi − αγi)]
(p+m− 1)(αp− (µi − αγi))

= 1

for all p ≥ p2 and i ∈ {1, 2, 3}.

Lemma 3.2.3 further asserts

lim
p↗∞

2κiλi(p)
λi(p)− 1 = 2κiλi(∞)

λi(∞)− 1 <
2n
n− 2

for all i ∈ {1, 2, 3}. As moreover (3.2.6) and (3.2.7) entail

µi − αγi =


2, i = 1,
2β, i = 2,
1 + β, i = 3

and hence βi(p) < 2 for all p ≥ 1 and i ∈ {1, 2, 3}, we may choose p3 ≥ p2 and r ∈ (s, 2n
n−2 )

such that still
κiλi(p)
λi(p)− 1bi(p) ≤ r

for all i ∈ {1, 2, 3} and all p ≥ p3.

By Hölder’s inequality and the elementary inequality ξA ≤ 1 + ξB for ξ ≥ 0 and 0 < A < B,
we have (∫

Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

) κiλi(p)
λi(p)−1 bi(p)

)λi(p)−1
κiλi(p)

≤ max{|Ω|, 1}
(∫

Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)r) bi(p)
r

≤ c3 + c3

(∫
Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)r) 2
r

in (0, T ) (3.2.23)

for all p ≥ p3 and i ∈ {1, 2, 3}, where c3 := max{|Ω|, 1}.

Herein, we may now finally apply Lemma 3.2.5 together with Young’s inequality to obtain
c4 > 0 such that (∫

Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)r) 2
r

≤ c1
6c2c3p2 max{M, 1}

∫
Ω

∣∣∣∇(|x|− (m−1)α
2 w

p+m−1
2

)∣∣∣2
+c4p

2a
1−a

(∫
Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)s) 2
s

in (0, T ) (3.2.24)
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3.2. Pointwise estimates for subsolutions to equations in divergence form

for all p ≥ p3.

By combining (3.2.20), (3.2.22)–(3.2.24) and Lemma 3.2.7 (with ε = c1
2 ), we may find c5 > 0

such that

d
dt

∫
Ω
wp +

∫
Ω
wp ≤ c5p

4a
1−a + c5p

4a
1−a

(∫
Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)s) 2
s

in (0, T ) (3.2.25)

for all p ≥ p3.

The assumption s ≤ 1
(m−1)+

implies α − (m − 1)αs ≥ 0, thus again by Hölder’s inequality
and Lemma 3.2.4,(∫

Ω

(
|x|−

(m−1)α
2 w

p+m−1
2

)s)2
≤
(∫

Ω
|x|−αw

)(∫
Ω
|x|−(m−1)αs+αw(p+m−1)s−1

)
≤M

1
p |Ω|

p−1
p Rα−(m−1)αs

∫
Ω
w(p+m−1)s−1 in (0, T ),

which together with (3.2.25) implies (3.2.19) for some C > 0, p0 := p3 and ν := 4a
1−a .

A direct consequence thereof is

Lemma 3.2.9. For all p ∈ (1,∞), there exists C > 0 such that∫
Ω
wp(·, t) ≤ C for all t ∈ (0, T ). (3.2.26)

Proof. Let p0 > 1 and s0 > 0 be as in Lemma 3.2.8. By Hölder’s inequality we may
without loss of generality assume that p > p0 with (p+m− 1)s0 − 1 > 1.

Choosing s ∈ (0, s0) such that (p+m− 1)s− 1 = 1 and noting that∫
Ω
w ≤ Rα

∫
Ω
|x|−αw ≤ Rα

∫
Ω
|x|−αw ≤ RαM

1
p |Ω|

p−1
p in (0, T )

by Hölder’s inequality and Lemma 3.2.6, we may apply Lemma 3.2.8 to obtain

d
dt

∫
Ω
wp ≤ −

∫
Ω
wp + Cp in (0, T )

for some Cp > 0 and hence
∫

Ω w
p ≤ max{

∫
Ω w(·, 0)p, Cp}. Since moreover

∫
Ω w(·, 0)p ≤

|Ω| · ‖w(·, 0)‖pL∞(Ω) ≤ |Ω|Lp by (3.2.2) and (3.1.11), we may conclude (3.2.26).

Due to a well-established Moser-type iteration technique (see [2] and [64] for early examples
or also [83, Lemma A.1] for an application relevant to quasilinear Keller–Segel systems), we
can also obtain an L∞ bound for w.

Lemma 3.2.10. There is C > 0 such that

‖w‖L∞(Ω×(0,T )) < C. (3.2.27)

Proof. We set s := 1
2 min{ 1

(m−1)+
, 1} < 2n

n−2 . Then Lemma 3.2.8 asserts the existence of
p̃ > 1, c1 > 0 and ν > 1 such that

d
dt

∫
Ω
wp +

∫
Ω
wp ≤ c1pν + c1p

ν

(∫
Ω
w(p+m−1)s−1

) 1
s

in (0, T ) (3.2.28)
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3. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems

for all p ≥ p̃.

We further set

p0 := max{p̃, 1− (m− 1)s} (3.2.29)

and

pj := pj−1 + 1− (m− 1)s
s

(3.2.30)

for j ∈ N \ {0}.

As s ≤ 1
(m−1)+

and s ≤ 1
2 , a straightforward induction gives

pj ≥
pj−1

s
≥ p0

sj
≥ 2jp0 ≥ 2j for j ∈ N0, (3.2.31)

in particular the sequence (pj)j∈N0 is increasing. On the other hand, by (3.2.29) and another
induction,

pj ≤
pj−1 + p0

s
≤ 2pj−1

s
≤
(

2
s

)j
p0 for j ∈ N. (3.2.32)

Since (3.2.30) is equivalent to pj−1 = (pj+m−1)s−1, j ∈ N, an ODE comparison argument
and (3.2.28) (with p = pj) yield∫

Ω
wpj (·, t) ≤ max

{∫
Ω
wpj (·, 0), c1pνj + c1p

ν
j sup
τ∈(0,T )

(∫
Ω
wpj−1(·, τ)

) 1
s

}

for all t ∈ (0, T ] and all j ∈ N. We note that Lemma 3.2.9 asserts finiteness of the right-hand
side therein.

Therefore, Aj := supt∈(0,T ) ‖w(·, t)‖Lpj (Ω), j ∈ N0, fulfills

Aj ≤ max
{
‖w(·, 0)‖Lpj (Ω), (c1pνj )

1
pj

(
1 +A

pj−1
s

j−1

) 1
pj

}
for all j ∈ N.

To make sure that C will indeed only depend on the parameters in (3.1.1) and on α, similarly
as in the proof of [26, Lemma 2.11], we also set B0 := max{L, 1}max{|Ω|, 1} and

Bj := max
{
B0, (c1pνj )

1
pj

(
1 +B

pj−1
s

j−1

) 1
pj

}
for all j ∈ N. (3.2.33)

Since ‖w(·, 0)‖Lp(Ω) ≤ L|Ω|
1
p ≤ B0 by by (3.1.11) and (3.2.2) for all p ∈ [1,∞), we conclude

A0 ≤ B0 and, as (0,∞) 3 ξ 7→ (c1pνj )
1
pj

(
1 + ξ

pj−1
s

) 1
pj is increasing for all j ∈ N, also

Aj ≤ Bj for all j ∈ N.

We first suppose that there is a strictly increasing sequence (jk)k∈N ⊂ N such that Bjk ≤ B0
for all k ∈ N. As then

‖w(·, t)‖L∞(Ω) = lim
k→∞

‖w(·, t)‖Lpjk (Ω) ≤ lim sup
k→∞

Ajk ≤ lim sup
k→∞

Bjk ≤ B0
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3.3. Pointwise estimates in quasilinear Keller–Segel systems

for all t ∈ (0, T ) since limk→∞ pjk =∞ by (3.2.31), this already implies (3.2.27) for C := B0.

Hence, we now suppose that on the contrary there is j0 ∈ N such that Bj > B0 for all j ≥ j0.
Since then also Bj ≥ 1 for all j ≥ j0 and because of pjs > 1 for all j ∈ N0, we conclude from
(3.2.33) that

Bj ≤ (2c1pνj )
1
pj B

pj−1
pjs

j−1 for all j > j0.

As (3.2.31) entails pj−1
pjs
≤ 1, we further obtain

Bj ≤ (c2pνj )
1
pj Bj−1 for all j > j0,

where c2 := 2c1, and hence by induction and (3.2.32),

Bj ≤

 j∏
i=j0+1

(c2pνi )
1
pi

Bj0 ≤ c
∑j

i=j0+1
1
pi

3 ·
( 2
s

)∑j

i=j0+1
iν
pi ·Bj0 for all j > j0

with c3 := c2p
ν
0 .

As therein by (3.2.31),

j∑
i=j0+1

1
pi
≤

j∑
i=j0+1

iν

pi
≤
∞∑
i=1

iν

2i =: c4 <∞ for all j ≥ j0,

we conclude

sup
t∈(0,T )

‖w(·, t)‖L∞(Ω) ≤ lim sup
j→∞

Aj ≤ lim sup
j→∞

Bj ≤
(

2c3
s

)c4
Bj0 <∞,

which in turn directly implies the statement.

The main result of this section now follows immediately.

Proof of Theorem 3.1.1. Combine Lemma 3.2.10 and (3.2.2).

3.3. Pointwise estimates in quasilinear Keller–Segel
systems

We suppose henceforth that n ≥ 2, R > 0 and Ω := BR(0).

In order to apply Theorem 3.1.1 to the system (3.KS)—and hence prove Theorem 3.1.3—,
we need some integrability information about ∇v. This is provided by

Lemma 3.3.1. Let K,L,M > 0, α̃ > β > n− 1 and θ ∈ (1,∞]. Then there is C > 0 with
the following property:

Suppose that T ∈ (0,∞], g ∈ C0(Ω× [0, T )) is radially symmetric and nonnegative with

‖g(·, t)‖L1(Ω) ≤M for all t ∈ (0, T ),
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3. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems

that v0 ∈W 1,∞(Ω) is radially symmetric and nonnegative with

‖v0‖W 1,∞(Ω) ≤ L

and that, if θ =∞,

g(x, t) ≤ K|x|−α̃ for all x ∈ Ω and t ∈ (0, T ).

Then any classical, radially symmetric solution v ∈ C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T )) to
vt = ∆v − v + g(x, t), in Ω× (0, T ),
∂νv = 0, in ∂Ω× (0, T ),
v(·, 0) = v0, in Ω

fulfills

sup
t∈(0,T )

∫
Ω
|x|θβ |∇v(x, t)|θ dx ≤ C

if θ <∞ and

sup
t∈(0,T )

|∇v(x, t)| ≤ C|x|−β for all x ∈ Ω

if θ =∞.

Proof. See [106, Lemma 3.4]. (Let us also remark that certain generalizations of this
lemma will be proven in Chapter 4.)

We are now indeed able to employ Theorem 3.1.1 in order to obtain pointwise estimates
for solutions to systems slightly more general than (3.KS). (The generality is needed as
the following lemma will be used not only to prove Theorem 3.1.3 but also in the proof of
Lemma 3.4.3 below.)

Lemma 3.3.2. Suppose that the parameters in (3.1.13) comply with (3.1.14) and set Kg > 0.
Then for any α > α, with α as in (3.1.15), and any β > n− 1, there exists C > 0 with the
following property:

Given functions in (3.1.16) and g ∈ C0([0,∞)) complying with (3.1.11), (3.1.17)–(3.1.20)
and

g(ρ) ≤ Kgρ for ρ ≥ 0, (3.3.1)

any nonnegative and radially symmetric classical solution (u, v) ∈ C0(Ω× [0, T ))∩C2,1(Ω×
(0, T )) of 

ut = ∇ · (D(u, v)∇u− S(u, v)∇v), in Ω× (0, T ),
vt = ∆v − v + g(u), in Ω× (0, T ),
∂νu = ∂νv = 0, on ∂Ω× (0, T ),
u(·, 0) = u0, v(·, 0) = v0, in Ω

(3.3.2)

fulfills (3.1.12) and |∇v(x, t)| ≤ C|x|−β for x ∈ Ω and t ∈ (0, T ).
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3.4. Existence of blow-up profiles

Proof. We fix such a solution (u, v) and functions in (3.1.16) as well as g ∈ C0([0,∞)),
but emphasize that all constants below only depend on the parameters in (3.1.13) as well
as on Kg, α and β.

Setting p := 1 and noting that

lim
β̃↘n−1

lim
θ↗∞

β̃

m− q + p

n −
p

θ

= n(n− 1)
(m− q)n+ 1 = α,

we can choose β̃ ∈ (n− 1, β) small enough and θ > n large enough such that still

α >
β̃

m− q + p

n −
p

θ

.

Setting

D̃(x, t, ρ) := D(ρ, v(x, t)), S̃(x, t, ρ) := D(ρ, v(x, t)) and f(x, t) := −∇v(x, t)

for ρ ≥ 0, x ∈ Ω and t ∈ (0, T ), we see that (3.1.6)–(3.1.9) are satisfied (for D̃, S̃ instead
of D,S), while (3.1.4) follows by (3.1.20) and Remark 3.1.2. Furthermore, the boundary
conditions in (3.3.2) imply(

D̃(x, t, u)∇u+ S̃(x, t, u)f
)
· ν = 0 ≤ 0 on ∂Ω× (0, T ).

As also

Kf := sup
t∈(0,T )

∫
Ω
|x|θβ̃ |f(x, t)|θ dx = sup

t∈(0,T )

∫
Ω
|x|θβ̃ |∇v(x, t)|θ dx <∞

by Lemma 3.3.1, we may indeed invoke Theorem 3.1.1 to obtain C > 0 such that (3.1.12)
holds. Once more applying Lemma 3.3.1, now with θ =∞, yields

|∇v(x, t)| ≤ C ′|x|−β̃ ≤ C ′max{R, 1}β−β̃ |x|−β for x ∈ Ω and t ∈ (0, T )

for some C ′ > 0.

An immediate consequence thereof is Theorem 3.1.3.

Proof of Theorem 3.1.3. Choosing g = id (and, say, Kg = 1) in Lemma 3.3.2, we see
that (3.3.2) reduces then to (3.KS).

3.4. Existence of blow-up profiles

Throughout this section, we suppose n ≥ 2, R > 0, Ω := BR(0), and that (3.1.11) and
(3.1.17)–(3.1.19) are fulfilled for certain parameters and functions in (3.1.13) and (3.1.16),
respectively. In addition—and in contrast to the preceding sections—, we also assume
(3.1.21), that is, that D ≥ η for some η > 0.

Furthermore, we fix Tmax <∞ and a solution (u, v) of (3.KS) (with Tmax instead of T ) with
the property lim supt↗Tmax ‖u(·, t)‖L∞(Ω) =∞.

41



3. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems

We now examine whether and in which form limt↗Tmax u(·, t) and limt↗Tmax v(·, t) exist. To
that end, we may moreover assume

u0, v0 ∈ C2(Ω) as well as u, v ∈ C2,1(Ω× [0, Tmax))

since the behavior of (u, v) at Tmax may be directly inferred from that of (ũ, ṽ) at Tmax
2 ,

where

(ũ, ṽ) :=
(
u(·, ·+ Tmax

2 ), v(·, ·+ Tmax
2 )

)
∈
(
C2,1(Ω× [0, Tmax

2 ))
)2
.

Furthermore, for ε ∈ (0, 1), we fix henceforth Gε ∈ C∞([0,∞)) satisfying Gε(ξ) = ξ for all
ξ ∈ [0, 1

ε ] and 0 ≤ Gε(ξ) ≤ 2
ε for all ξ ≥ 0.

The main idea is to construct solutions (uε, vε), ε ∈ (0, 1) to certain approximative problems
which converge along a subsequence to, say, (û, v̂). We will then see that these functions
coincide with u and v in Ω \ {0} × (0, Tmax) such that, for instance, limt↗Tmax u(·, t) =
û(·, Tmax).

Lemma 3.4.1. For any ε ∈ (0, 1), there exists Tmax,ε and a pair of nonnegative functions
(uε, vε) solving

uεt = ∇ · (D(uε, vε)∇uε − S(Gε(uε), vε)∇vε), in Ω× (0, Tmax,ε),
vεt = ∆vε − vε +Gε(uε), in Ω× (0, Tmax,ε),
∂νuε = ∂νvε = 0, on ∂Ω× (0, Tmax,ε),
uε(·, 0) = u0, vε(·, 0) = v0, in Ω

(3.4.1)

classically and having the property that if Tmax,ε <∞ then

lim sup
t↗Tmax,ε

‖uε(·, t)‖L∞(Ω) =∞.

Proof. Local existence and extensibility can be proved as in [51, Lemmata 2.1–2.4], which
essentially relies on regularity theory for nondegenerate parabolic equations and Schauder’s
fixed point theorem—while nonnegativity follows by the maximum principle.

For all ε ∈ (0, 1), we henceforth fix uε, vε and Tmax,ε as given by Lemma 3.4.1. Quite
standard methods now allow us to conclude that the regularized solutions are global in
time.

Lemma 3.4.2. Let ε ∈ (0, 1). Then the solution (uε, vε) constructed in Lemma 3.4.1 is
global in time; that is, Tmax,ε =∞.

Proof. Since Gε is bounded, Lp-Lq estimates (cf. [94, Lemma 1.3 (ii)]) rapidly yield

c1 := sup
t∈(0,Tmax,ε)

‖vε(·, t)‖W 1,∞(Ω) <∞.

Testing the first equation in (3.4.1) with up−1
ε , p > 2, gives

1
p

d
dt

∫
Ω
upε

= −(p− 1)
∫

Ω
up−2
ε D(uε, vε)|∇uε|2 + (p− 1)

∫
Ω
up−2
ε S(G(uε), vε)∇uε · ∇vε

≤ −η(p− 1)
∫

Ω
up−2
ε |∇uε|2 + c1c2(p− 1)

∫
Ω
up−2
ε |∇uε| in (0, Tmax,ε), (3.4.2)
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3.4. Existence of blow-up profiles

where c2 := ‖S‖L∞((0, 2ε )×(0,∞)).

Therein is by Young’s inequality∫
Ω
up−2
ε |∇uε| ≤

η

4c1c2

∫
Ω
up−2
ε |∇uε|2 + c1c2

η

∫
Ω
up−2
ε

≤ η

4c1c2

∫
Ω
up−2
ε |∇uε|2 + c1c2

2η

∫
Ω
upε + c1c2|Ω|

2η in (0, Tmax,ε),

so that integrating (3.4.2) along with an ODE comparison argument yields

sup
t∈(0,T )

‖u(·, t)‖Lp(Ω) <∞ for all finite T ∈ (0, Tmax,ε]. (3.4.3)

By [83, Lemma A.1], this implies (3.4.3) also for p = ∞, so that the extensibility criterion
in Lemma 3.4.1 indeed asserts Tmax,ε =∞.

Parabolic regularity allows us to obtain the following

Lemma 3.4.3. For each δ ∈ (0, R) and 0 < τ < T < ∞, there exist C > 0 and γ ∈ (0, 1)
such that for all ε ∈ (0, 1)

‖uε‖C2+γ,1+ γ
2 (K)

≤ C and ‖vε‖C2+γ,1+ γ
2 (K)

≤ C, (3.4.4)

where K := Ω \Bδ(0)× [τ, T ].

Proof. This can be shown as in [106, Lemma 4.3]. We briefly recall the main idea.

We start by fixing a cutoff function ζ ∈ C∞(Ω× [0,∞)) such that

ζ = 1 in K,

ζ = 0 in
(
B δ

2
(0)× [0,∞)

)
∪
(
Ω× [0, τ2 ]

)
and

∂νζ = 0 on ∂Ω× [0,∞)

and set, for ε ∈ (0, 1),

wε := ζuε as well as zε := ζvε.

By Lemma 3.3.2, there exist c1, α, β > 0 such that

|uε(x, t)| ≤ c1|x|−α and |∇vε(x, t)| ≤ c1|x|−β

for all x ∈ Ω, t ∈ (0, T + 1) and ε ∈ (0, 1). In particular,

sup
ε∈(0,1)

(
‖wε‖L∞(Ω×[0,T ]) + ‖zε‖L∞(Ω×[0,T ])

)
<∞.

Basically, the statement follows then by parabolic regularity theory, applied to wε and zε
for ε ∈ (0, 1). We sketch the main steps.

At first, [74, Theorem 1.3] gives τ1 ∈ (0, τ) and γ1 ∈ (0, 1) such that

sup
ε∈(0,1)

‖wε‖
Cγ1,

γ1
2 (Ω×[τ1,T ])

<∞.
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3. Blow-up profiles in quasilinear fully parabolic Keller–Segel systems

In a second step, one uses this information along with [48, Theorem IV.5.3] to obtain

sup
ε∈(0,1)

‖zε‖
C2+γ2,1+ γ2

2 (Ω×[τ2,T ])
<∞

for some τ2 ∈ (τ1, τ) and γ2 ∈ (0, γ1).

Finally, by employing first [59, Theorem 1.1] and then again [48, Theorem IV.5.3], we may
find τ2 < τ3 < τ4 < τ and 0 < γ4 < γ3 < γ2 such that

sup
ε∈(0,1)

‖wε‖
C1+γ3,

1+γ3
2 (Ω×[τ3,T ])

<∞

and

sup
ε∈(0,1)

‖wε‖
C2+γ4,1+ γ4

2 (Ω×[τ4,T ])
<∞.

Going back to uε and vε, this indeed gives (3.4.4).

Lemma 3.4.4. There exist û, v̂ ∈ C2(Ω\{0}× (0,∞)) and a sequence (εj)j∈N ⊂ (0, 1) with
εj ↘ 0 as well as

uεj → û and vεj → v̂ in C2
loc(Ω \ {0} × (0,∞)) as j →∞.

Proof. This follows directly from Lemma 3.4.3, the Arzelà–Ascoli theorem and a diago-
nalization argument.

Lemma 3.4.5. There exists ε0 > 0 such that

Tε := sup
{
T ∈ (0, Tmax) : u ≤ 1

ε
in Ω× [0, T ]

}
is well-defined for all ε ∈ (0, ε0) and for all ε ∈ (0, ε0)

uε = u and vε = v holds in Ω× [0, Tε).

Proof. As u0 ≡ 0 would imply u ≡ 0 by Lemma 3.5.1, we may without loss of generality
assume u0 6≡ 0. Then ε0 := 1

2‖u0‖L∞(Ω)
is positive, and as u is continuous, Tε is indeed

well-defined for all ε ∈ (0, ε0).

Let ε ∈ (0, ε0). In Ω× [0, Tε), both (u, v) and (uε, vε) are solutions to (3.KS) with T = Tε,
such that the statement follows due to uniqueness, see Lemma 3.5.1 below.

With these preparations at hand, we may now prove Theorem 3.1.5.

Proof of Theorem 3.1.5. Let û, v̂ be given by Lemma 3.4.4. Since also uε → u and
vε → v pointwise (as ε↘ 0) by Lemma 3.4.5, we have u = û and v = v̂ in Ω\{0}× [0, Tmax).

Because of û, v̂ ∈ C0([0, Tmax];C2
loc(Ω \ {0})), a consequence thereof is (3.1.22) if we set

U := û(·, Tmax) and V := v̂(·, Tmax). Finally, (3.1.23) follows by Theorem 3.1.3.
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3.5. Uniqueness in nondegenerate quasilinear Keller–Segel systems

3.5. Uniqueness in nondegenerate quasilinear
Keller–Segel systems

In this section, we prove the uniqueness result used in Lemma 3.4.5 above. As most of
the works on quasilinear Keller–Segel systems cited in the introduction of this chapter do
not state whether the solution is unique, a uniqueness result for quite general systems,
also accounting for cell proliferation or consumption of chemicals, for instance, might be of
independent interest.

Since these generalizations do not drastically complicate or enlarge the proof, we choose to
prove a version slightly more general than actually needed for our purposes.

Lemma 3.5.1. Suppose Ω ⊂ Rn, n ∈ N, is a smooth, bounded domain. Let η > 0,
p > max{2, n}, T ∈ (0,∞] as well as D,S, f, g ∈ C1([0,∞)2) with D ≥ η. Furthermore,
assume also that u0, v0 ∈W 1,p(Ω) are nonnegative.

Then there exists at most one pair of nonnegative functions

(u, v) ∈
(
C2,1(Ω× (0, T )) ∩ C0([0, T );W 1,p(Ω))

)2
solving 

ut = ∇ · (D(u, v)∇u− S(u, v)∇v) + f(u, v), in Ω× (0, T ),
vt = ∆v + g(u, v), in Ω× (0, T ),
∂νu = ∂νv = 0, on ∂Ω× (0, T ),
u(·, 0) = u0, v(·, 0) = v0, in Ω

classically.

Proof. We suppose that (u1, v1) and (u2, v2) are two such solutions and let T ′ ∈ (0, T ).
Due to the supposed regularity and the embedding W 1,p(Ω) ↪→ C0(Ω), we can find L > 0
such that u1, u2, v1, v2 ≤ L in Ω× [0, T ′].

As then

(u1 − u2)t = ∇ · (D(u1, v1)∇u1 − S(u1, v1)∇v1) + f(u1, v1)
−∇ ·D(u2, v2)∇u2 + S(u2, v2)∇v2)− f(u2, v2)

= ∇ · (D(u1, v1)∇(u1 − u2)) +∇ · ((D(u1, v1)−D(u2, v2))∇u2)
−∇ · (S(u1, v1)∇(v1 − v2))−∇ · ((S(u1, v1)− S(u2, v2))∇v2)
+f(u1, v1)− f(u2, v2) in Ω× (0, T ′),

testing with u1 − u2 and integrating by parts gives

1
2

d
dt

∫
Ω

(u1 − u2)2 = −
∫

Ω
D(u1, v1)|∇(u1 − u2)|2

−
∫

Ω
[D(u1, v1)−D(u2, v2)]∇u2 · ∇(u1 − u2)

+
∫

Ω
S(u1, v1)∇(v1 − v2) · ∇(u1 − u2)

+
∫

Ω
[S(u1, v1)− S(u2, v2)]∇v2 · ∇(u1 − u2)
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+
∫

Ω
[f(u1, v1)− f(u2, v2)](u1 − u2)

=: I1 + I2 + I3 + I4 + I5 in (0, T ′).

Therein we make first use of the nondegeneracy, that is, the crucial assumption that D ≥ η,
to see that

I1 ≤ −η
∫

Ω
|∇(u1 − u2)|2 holds in (0, T ′).

Also, by Young’s inequality

I3 ≤
η

4

∫
Ω
|∇(u1 − u2)|2 + c1

∫
Ω
|∇(v1 − v2)|2 holds in (0, T ′),

where c1 :=
‖S‖2

C0([0,L]2)
η .

By the mean value theorem, we can find ξ1, ξ2 : Ω× (0, T ′)→ [0, L] such that

|D(u1, v1)−D(u2, v2)| ≤ |D(u1, v1)−D(u2, v1)|+ |D(u2, v1)−D(u2, v2)|
= |Du(ξ1, v1)(u1 − u2)|+ |Dv(u2, ξ2)(v1 − v2)|
≤ ‖D‖C1([0,L]2) (|u1 − u2|+ |v1 − v2|) in Ω× (0, T ′),

where ‖ϕ‖C1([0,L]2) := max{‖ϕ‖C0([0,L]2), ‖ϕu‖C0([0,L]2), ‖ϕv‖C0([0,L]2)} for ϕ ∈ C1([0, L]2).

Thus, by Young’s and Hölder’s inequalities (with exponents p
2 ,

p
p−2 ),

I2 ≤
η

8

∫
Ω
|∇(u1 − u2)|2 + c2

(∫
Ω
|∇u2|2(u1 − u2)2 +

∫
Ω
|∇u2|2(v1 − v2)2

)
≤ η

8

∫
Ω
|∇(u1 − u2)|2 + c3

(∫
Ω

(u1 − u2)
2p
p−2

) p−2
p

+ c3

(∫
Ω

(v1 − v2)
2p
p−2

) p−2
p

in (0, T ′) with c2 :=
4‖D‖2

C1([0,L]2)
η and c3 := c2‖∇u2‖2L∞((0,T ′);W 1,p(Ω)).

As our assumptions on p imply r := 2p
p−2 < 2n

(n−2)+
, we may invoke Lemma 3.2.5 to find

c4 > 0 with the property that(∫
Ω
|ϕ|r

) 2
r

≤ η

8c3

∫
Ω
|∇ϕ|2 + c4

∫
Ω
ϕ2 for all ϕ ∈W 1,2(Ω),

hence

I2 ≤
η

4

∫
Ω
|∇(u1 − u2)|2 + η

8

∫
Ω
|∇(v1 − v2)|2 + c5

∫
Ω

(u1 − u2)2 + c5

∫
Ω

(v1 − v2)2

in (0, T ′), where c5 := c3c4.

Similarly, we see that

I4 ≤
η

4

∫
Ω
|∇(u1 − u2)|2 + η

8

∫
Ω
|∇(v1 − v2)|2 + c6

∫
Ω

(u1 − u2)2 + c6

∫
Ω

(v1 − v2)2
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in (0, T ′) for some c6 > 0.

As again by the mean value theorem

|f(u1, v1)− f(u2, v2)| ≤ ‖f‖C1([0,L]2) (|u1 − u2|+ |v1 − v2|) in Ω× (0, T ′),

we conclude

I5 ≤ c7
∫

Ω
(u1 − u2)2 + c8

∫
Ω

(v1 − v2)2 in (0, T ′),

where c7 := 3
2‖f‖C1([0,L]2) and c8 := 1

2‖f‖C1([0,L]2).

Moreover,

1
2

d
dt

∫
Ω

(v1 − v2)2 ≤ −
∫

Ω
|∇(v1 − v2)|2 +

∫
Ω

(g(u1, v1)− g(u2, v2))(v1 − v2)

in (0, T ′). Therein we make once more use of the mean value theorem to see that

|g(u1, v1)− g(u2, v2)| ≤ ‖g‖C1([0,L]2) (|u1 − u2|+ |v1 − v2|) in Ω× (0, T ′),

hence∫
Ω

(g(u1, v1)− g(u2, v2))(v1 − v2) ≤ c9
∫

Ω
(u1 − u2)2 + c10

∫
Ω

(v1 − v2)2 in (0, T ′),

where c9 := 1
2‖g‖C1([0,L]2) and c10 := 3

2‖g‖C1([0,L]2).

By combining the above estimates, we obtain with λ := c1 + η
4 and some c11 > 0 that

d
dt

(∫
Ω

(u1 − u2)2 + λ

∫
Ω

(v1 − v2)2
)
≤ c11

(∫
Ω

(u1 − u2)2 + λ

∫
Ω

(v1 − v2)2
)

in (0, T ′) and thus∫
Ω

(u1 − u2)2(·, t) + λ

∫
Ω

(v1 − v2)2(·, t) ≤ ec11t

(∫
Ω

(u0 − u0)2 + λ

∫
Ω

(v0 − v0)2
)

= 0.

for t ∈ [0, T ′] by Grönwall’s inequality.

Since u1, u2, v1, v2 ∈ C0(Ω × [0, T ′]), this implies u1 ≡ u2 and v1 ≡ v2 in Ω × [0, T ′]. The
statement follows upon taking T ′ ↗ T .
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4. On the optimality of upper
estimates near blow-up in
quasilinear Keller–Segel systems

4.1. Introduction

Inter alia motivated by the desire to improve on the pointwise estimates derived in the
preceding chapter, we now have a closer look at (generalizations of) the second subproblem
in (3.KS). That is, in the first and main part of the present chapter, we establish pointwise
upper gradient estimates for solutions to

τvt = ∆v − v + g in Ω× (0, T ),
∂νv = 0 on ∂Ω× (0, T ),
v(·, 0) = v0 if τ > 0 in Ω,

(4.P)

where Ω = BR(0), R > 0, is an n-dimensional ball, τ ≥ 0, T ∈ (0,∞) and v0 and g are
sufficiently smooth given functions on Ω and Ω× (0, T ), respectively.

Elliptic or parabolic regularity theory (cf. Lemma 4.2.1 and Lemma 4.4.1 below) and em-
bedding theorems warrant that, if g is uniformly-in-time bounded Lq(Ω) for some q ∈ [1, n],
then v is uniformly-in-time bounded in W 1,p(Ω) for all p ∈ [1, nq

n−q ).

An estimate of the form

|∇v(x, t)| ≤ Cβ |x|−β for all x ∈ Ω and t ∈ (0, T ) (4.1.1)

for some β < n−q
q

would imply

sup
t∈(0,T )

∫
Ω
|∇v(·, t)|p ≤ Cpβωn−1

∫ R

0
rn−1−pβ dr <∞

for all p ∈ (0, nβ ) and hence in particular for p =
n
β+ nq

n−q
2 > nq

n−q . Thus, assuming that
the uniform-in-time bounds discussed above are optimal, such an estimate should not be
obtainable if one only requires supt∈(0,T ) ‖g(·, t)‖Lq(Ω) to be finite. However, we achieve
(4.1.1) for all β > n−q

q
. We conjecture that this estimate, possibly up to equality regarding

the exponent therein, is optimal.

In the elliptic case, the corresponding proof is quite short: In Section 4.2, we first derive an
Lq bound for ∆v and then make use of the symmetry assumption to obtain the following
result.
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Proposition 4.1.1. Let n ≥ 2, R > 0, Ω := BR(0) ⊂ Rn, M > 0, q ∈ [1, n] and β ≥ n−q
q

.
There is C > 0 such that whenever g ∈ C0(Ω) is a radially symmetric function fulfilling

‖g‖Lq(Ω) ≤M (4.1.2)

and v ∈ C2(Ω) solves {
0 = ∆v − v + g in Ω,
∂νv = 0 on ∂Ω,

(4.1.3)

then

|∇v(x)| ≤ C|x|−β for all x ∈ Ω. (4.1.4)

In principle, one could argue similarly in the parabolic setting, although one would at least
need to require v0 ∈ W 2,q(Ω) with ∂νv0 = 0 on ∂Ω in the sense of traces—or v cannot be
uniformly-in-time bounded in W 2,q(Ω). Not wanting to impose such an unnatural require-
ment, we argue differently and rely on various semigroup estimates, which are introduced
in Section 4.3, instead.

For q ∈ (1, n2 ], we can follow [106, Section 3], where corresponding estimates have been
derived for q = 1. The main idea is to notice that z := ζβv, where ζ(x) ≈ |x|, solves a
certain initial boundary value problem and then make use of several semigroup estimates to
obtain an L∞ bound for ∇z—which in turn together with pointwise upper bounds for v (cf.
Lemma 4.4.2) implies (4.1.1).

However, these arguments rely in several places on the fact that q ∈ (1, n2 ] and β > n−q
q

imply β > 1 and hence ζβ ∈ C1(Ω). Switching to radial notation, this for instance means
that zr(0, ·) ≡ 0. For q ∈ (n2 , n] and thus possibly β ∈ (0, 1), this is no longer the case. We
overcome this problem by considering (for q ∈ (n2 , n])

z(x, t) := ζβ(x)(v(x, t)− v(0, t)), (x, t) ∈ Ω× [0, T ), (4.1.5)

instead. Due to uniform-in-time Hölder bounds (see Lemma 4.4.3), we then obtain zr(0, ·) ≡
0 and an L∞ bound for ∇z again implies (4.1.1). On the other hand, compared to ζβv, a
new problem arises for z defined as in (4.1.5): The time derivative of z now additionally
includes ζβvt(0, ·). In order to handle this term, we first derive time Hölder bounds for v in
Lemma 4.4.5 and then apply more subtle semigroup arguments as in the case of q ∈ (1, n2 ]
in Lemma 4.4.6.

Finally, we arrive at

Theorem 4.1.2. Let n ≥ 2, R > 0, Ω := BR(0) ⊂ Rn. For every M > 0, q ∈ (1, n],
β > n−q

q
and p0 > max{nβ , 1}, there is C > 0 with the following property: Suppose τ > 0,

T ∈ (0,∞] and that

v0 ∈ C0(Ω) is radially symmetric and nonnegative with
‖v0‖W 1,p0 (Ω) + ‖|x|β∇v0‖L∞(Ω) ≤M

(4.1.6)

as well as

g ∈ C0(Ω× [0, T )) is radially symmetric with sup
t∈(0,T )

‖g(·, t)‖Lq(Ω) ≤M. (4.1.7)
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Then

|∇v(x, t)| ≤ C|x|−β for all x ∈ Ω and t ∈ [0, T ), (4.1.8)

provided v ∈ C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T )) is a nonnegative classical solution of
τvt = ∆v − v + g in Ω× (0, T ),
∂νv = 0 on ∂Ω× (0, T ),
v(·, 0) = v0 in Ω.

(4.1.9)

Remark 4.1.3. (i) In [106, Lemma 3.4], corresponding estimates have been derived for
τ = 1 and q = 1 (provided that in addition to (4.1.7), certain pointwise upper estimates
of |g| are known). This is the reason why we concern ourselves only with q > 1 in
Theorem 4.1.2.

(ii) The constant C in Theorem 4.1.2 evidently needs at least to depend on ‖|x|β∇v0‖L∞(Ω)
and we avoid further dependencies on the initial data as much as possible; in partic-
ular, we do neither rely on a W 2,q(Ω) bound nor on fulfillment of certain boundary
conditions. For technical reasons, however, we need to require (4.1.6), which is nearly
optimal in the sense that a bound of ‖|x|β∇v0‖L∞(Ω) implies bounds for ‖∇v0‖Lp(Ω)
for all p ∈ [1, nβ ).

Next, we apply Proposition 4.1.1 and Theorem 4.1.2 to the solutions (or, more precisely, to
their second components) of the quasilinear chemotaxis system

ut = ∇ · (D(u, v)∇u− S(u, v)∇v), in Ω× (0, T ),
τvt = ∆v − v + f(u, v), in Ω× (0, T ),
(D(u, v)∇u− S(u, v)∇v) · ν = ∂νv = 0, on ∂Ω× (0, T ),
u(·, 0) = u0 in Ω,
v(·, 0) = v0 if τ > 0, in Ω,

(4.KS)

where again Ω is an n-dimensional ball, τ ≥ 0, T ∈ (0,∞] and u0, v0, D, S, f are given
functions. Such systems aim to describe chemotaxis, the partially directed movement of
organisms u towards a chemical stimulus v and have (for certain choices of parameters) first
been proposed by Keller and Segel [46]. In certain biological settings, the functions D and
S need to be nonlinear—accounting for volume-filling effects [36, 72, 110], immotility of the
attracted organisms [19, 57] or saturation of the chemotactic sensitivity [42], for instance.

For known results regarding (4.KS), especially concerning questions of boundedness, global
existence and finite-time blow-up, we refer to the introduction of Chapter 3. Let us also
recall that Theorem 3.1.3, proved in the preceding chapter, contains the following statement:
In n-dimensional balls, n ≥ 2, and for arbitrary m > n−2

n , m−q ∈ (− 1
n ,

n−2
n ], α > n(n−1)

(m−q)n+1
and β > n− 1, solutions (u, v) of (4.KS) with τ = 1 blowing up at Tmax ∈ (0,∞) fulfill

u(x, t) ≤ C|x|−α and v(x, t) ≤ C|x|−β for all x ∈ Ω and t ∈ (0, Tmax)

for some C > 0. (The special case m = q = 1 has already been treated in [106].) Apart
from certain corner cases, however, it is to the best of our knowledge not known whether
the exponents α and β therein are (essentially) optimal.

However, we now apply Proposition 4.1.1 and Theorem 4.1.2 in order to improve on these
estimates—provided that the first solution component is uniformly-in-time bounded in
Lp(Ω) for some p > 1.
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Theorem 4.1.4. Let n ≥ 2, R > 0, Ω := BR(0) ⊂ Rn and

m, q ∈ R, s > 0, τ ≥ 0,KD,1,KD,2,KS ,Kf > 0,M > 0,p ∈ [max{s, 1}, ns]

be such that

m− q ∈
(
−p
n
,
ns− 2p

n

]
and m >

n− 2p
n

. (4.1.10)

For any

α > α := n(ns− p)
[(m− q)n+ p]p and β >

ns− p
p

, (4.1.11)

we can find C > 0 such that whenever (u, v) ∈
(
C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T ))

)2, T ∈
(0,∞], with

sup
t∈(0,T )

‖u(·, t)‖Lp(Ω) ≤M (4.1.12)

is a nonnegative, radially symmetric solution of (4.KS), where

D,S ∈ C1([0,∞)2), f ∈ C0([0,∞)2), 0 ≤ u0 ∈ C0(Ω) and 0 ≤ v0 ∈ C0(Ω)

fulfill

inf
σ≥0

D(ρ, σ) ≥ KD,1ρ
m−1,

sup
σ≥0

D(ρ, σ) ≤ KD,2 max{ρ, 1}m−1

sup
σ≥0
|S(ρ, σ)| ≤ KS max{ρ, 1}q and

sup
σ≥0
|f(ρ, σ)| ≤ Kf max{ρ, 1}s

for all ρ ≥ 0 as well as

u0(x) ≤M |x|−α for all x ∈ Ω and ‖v0‖W 1,∞(Ω) ≤M,

then

u(x, t) ≤ C|x|−α and |∇v(x, t)| ≤ C|x|−β for all x ∈ Ω and t ∈ (0, T ). (4.1.13)

As a first application of Theorem 4.1.4, let us state

Remark 4.1.5. To the best of our knowledge, the results above give the first estimates of
type (4.1.13) for chemotaxis systems with nonlinear signal production. For instance, letting
u0 ∈ C0(Ω), v0 ∈W 1,∞(Ω), m = q = 1, τ ≥ 0, p = 1, s ∈ ( 2

n , 1] and ε > 0, solutions of

ut = ∆u−∇ · (u∇v), in Ω× (0, T ),
τvt = ∆v − v + us, in Ω× (0, T ),
∂νu = ∂νv = 0, on ∂Ω× (0, T ),
u(·, 0) = u0, in Ω,
v(·, 0) = v0 if τ > 0, in Ω

fulfill

u(x, t) ≤ C|x|−n(ns−1)−ε for all x ∈ Ω and t ∈ (0, T )

for some C > 0.
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Next, we show that Theorem 4.1.4 implies a certain (essentially) conditional optimality for
pointwise upper estimates of solutions to (4.KS).

Remark 4.1.6. Suppose s = 1 and

m− q ∈
(
−1, n− 2

n

]
as well as q > 0 (4.1.14)

and that (4.1.12) holds for

p = n

2 (1− (m− q)) ∈ [1, ns). (4.1.15)

Then

m− q = n− 2p
n

∈
(
−p
n
,
n− 2p
n

]
,

hence (4.1.10) is fulfilled. This implies that for α (4.1.11), we have

α = n

p
· n− p

(m− q)n+ p
= n

p
·
n
2 + (m−q)n

2
n
2 + (m−q)n

2

= n

p
= 2

1− (m− q)

so that [17, Corollary 2.3] asserts that condition (4.1.11) is (up to equality) optimal. Fur-
thermore, we note that requiring (4.1.12) for any p > n

2 (1− (m− q)) already implies global
existence (cf. [17, Theorem 2.2]), while, to the best of our knowledge, even a solution blowing
up in finite time might fulfill (4.1.12) for p = n

2 (1− (m− q)).

To sum up, optimal Lp bounds imply essentially optimal pointwise upper estimates.

Notation. Henceforth, we fix n ≥ 2, R > 0 and Ω := BR(0). Moreover, with the usual
slight abuse of notation, we switch to radial coordinates whenever convenient and thus write
for instance v(|x|) for v(x).

4.2. Pointwise estimates for ∇v: the elliptic case

We first deal with the much simpler elliptic case; that is, we set τ := 0 in this section. As a
starting point, we obtain an Lq bound for ∆v by a straightforward testing procedure. For
the parabolic case, which we will deal with in Section 4.4, one cannot expect a similar result
to hold if one only wants to assume that the initial datum satisfies (4.1.6) and not, say,
v0 ∈W 2,2(Ω) with ∂νv0 = 0 in the sense of traces and ‖v0‖W 2,2(Ω) ≤M .

Lemma 4.2.1. Let M > 0 and q ∈ [1,∞). If g is as in (4.1.2) and v ∈ C2(Ω) is a classical
solution of (4.1.3), then

‖∆v‖Lq(Ω) ≤ 2M.

Proof. Testing (4.1.3) with vq−1 and making use of Young’s inequality gives∫
Ω
vq =

∫
Ω
vq−1∆v +

∫
Ω
vq−1g ≤ −(q− 1)

∫
Ω
vq−2|∇v|2 + q− 1

q

∫
Ω
vq + 1

q

∫
Ω
gq
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and hence ∫
Ω
vq ≤

∫
Ω
gq ≤Mq.

For q = 1, this already implies∫
Ω
|∆v| ≤

∫
Ω

(|v|+ |g|) ≤ 2M,

while for q > 1, we further test (4.1.3) with −∆v|∆v|q−2 and use Young’s inequality to
obtain∫

Ω
|∆v|q ≤

∫
Ω

(|v|+ |g|)|∆v|q−1 ≤ q− 1
q

∫
Ω
|∆v|q + 2q−1

q

∫
Ω
|v|q + 2q−1

q

∫
Ω
|g|q,

which also implies ∫
Ω
|∆v|q ≤ 2q−1

∫
Ω
|v|q + 2q−1

∫
Ω
|g|q ≤ 2qMq,

as desired.

Making crucial use of the radial symmetry, we now show that the bound obtained in
Lemma 4.2.1 implies the desired estimate (4.1.4).

Lemma 4.2.2. Let M > 0, q ∈ [1, n) and β ≥ n−q
q

. There is C > 0 such that if g satisfies
(4.1.2) and v ∈ C2(Ω) is as a classical solution of (4.1.3), then (4.1.4) holds.

Proof. By the fundamental theorem of calculus, Hölder’s inequality and Lemma 4.2.1, we
may calculate

rn−1|vr(r)| =
∣∣∣∣∫ r

0
ρ
n−1
q ρ1−n(ρn−1vr)r · ρ−(n−1) 1−q

q dρ
∣∣∣∣

≤
‖∆v‖Lq(Ω)

q

√
ωn−1

(∫ r

0
ρn−1 dρ

)q−1
q

≤ 2Mn−
q−1
q

q

√
ωn−1

· rn−
n
q (4.2.1)

for all r ∈ (0, R). In view of rn−
n
q
−(n−1) = r−

n−q
q ≤ Rβ−

n−q
q r−β for r ∈ (0, R), dividing by

rn−1 on both the left- and the right-hand side in (4.2.1) implies (4.1.4) for an appropriately
chosen C > 0.

4.3. Intermission: semigroup estimates

The proof of a parabolic counterpart to the preceding section will in multiple places rely on
certain semigroup estimates, which we collect here for convenience. As we will apply them
in both Ω and (0, R), we consider arbitrary smooth bounded domains G ⊂ RN , N ∈ N, in
this section.
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Lemma 4.3.1. Let G ⊂ RN , N ∈ N, be a smooth bounded domain, and p ∈ (1,∞). Set

W 2,p
N (G) :=

{
ϕ ∈W 2,p(G) : ∂νϕ = 0 on ∂Ω in the sense of traces

}
and define the operator A on Lp(G) by

Aϕ := Apϕ := −∆ϕ+ ϕ for ϕ ∈ D(A) := W 2,p
N (G).

Define moreover the fractional powers Aµ, µ ∈ (0, 1), of the operator above as in [88, Sec-
tion 1.15]. Then there are C1, C2 > 0 such that

‖ϕ‖W 2µ,p(G) ≤ C1‖Aµϕ‖Lp(G) for all ϕ ∈ D(Aµ) and all µ ∈ (0, 1)

and

‖Aµϕ‖Lp(G) ≤ C2‖ϕ‖W 2µ,p(G) for all ϕ ∈W 2µ,p(G) and all µ ∈
(

0,
1 + 1

p

2

)
.

Proof. Let µ ∈ (0, 1). From [88, Theorems 1.15.3 and 4.3.3], we infer that D(Aµ) =
[Lp(G),W 2,p

N (G)]µ ⊂ H2µ
p (G) with equality if 2µ < 1 + 1

p . (Herein, [·, ·]µ and H2µ
p (G) are

as in [88, Convention 1.9.2] and [88, Definition 4.2.1], respectively.) Since G is smooth,
[88, Theorem 4.6.1 (d)] moreover asserts that H2µ

p (G) coincides with Wµ,p(G). Thus, we
obtain the desired estimates by noting that Aµ is an isomorphism between D(Aµ) and Lp(G)
(cf. [88, Theorem 1.15.2 (e)]).

Lemma 4.3.2. Let G ⊂ RN , N ∈ N, be a smooth bounded domain.

(i) Suppose σ ∈ {0, 1}, µ ∈ R, q ∈ (1,∞), p ∈ [q,∞] and

s

{
≥ N

q −
N
p , p <∞,

> N
q , p =∞

are such that µ + σ+s
2 ≥ 0. For any λ ∈ [0, µ + σ+s

2 ] ∩ [0, 1
2 + 1

2q ) and δ ∈ (0, 1), we
can then find C > 0

‖∇σAµe−tAϕ‖Lp(G) ≤ Ctλ−µ−
σ+s

2 e−δt‖ϕ‖W 2λ,q(G)

for all t > 0 and ϕ ∈ W 2λ,q(G), where A = Aq is as in Lemma 4.3.1. (Here and
below, ∇0 = id and ∇1 = ∇.)

(ii) In particular, for any σ ∈ {0, 1}, µ ∈ R with µ+ σ
2 ≥ 0, λ ∈ [0, µ+ σ

2 ]∩ [0, 1
2 ), δ ∈ (0, 1)

and ε ∈ (0, 2N), there is C ′ > 0 such that

‖∇σAµe−tAϕ‖L∞(G) ≤ C ′tλ−µ−
σ
2−εe−δt‖ϕ‖C2λ(G)

for all t > 0 and ϕ ∈ C2λ(G), where A = Aq for a certain q ∈ (1,∞) is again as in
Lemma 4.3.1.

Proof. Let us first prove part (i) for s < 1. To that end, we begin by fixing some constants:
By [88, Theorem 4.6.1 (c) and (e)], there is c1 > 0 such that

‖ψ‖Lp(G) ≤ c1‖ψ‖W s,q(G) for all ψ ∈W s,q(G).
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Moreover, noting that σ + s < 2, 2λ < 1 + 1
q and q ∈ (1,∞), Lemma 4.3.1 asserts that we

can find c2, c3 > 0 with

‖ψ‖Wσ+s,q(G) ≤ c2‖A
σ+s

2 ψ‖Lq(G) for all ψ ∈ D(A
σ+s

2 )

as well as

‖Aλψ‖Lq(G) ≤ c3‖ψ‖W 2λ,q(G) for all ψ ∈W 2λ,q(G)

and [32, Theorem 1.4.3] provides us with c4 > 0 such that

‖AγetAψ‖Lq(G) ≤ c4t−γe−δt‖ψ‖Lq(G) for all ψ ∈ Lq(G),

where γ := −λ+ µ+ σ+s
2 ≥ 0 by the assumption on λ.

Moreover noting that Aµe−tAϕ = e− t2AAµe− t2Aϕ ∈ D(Aσ+s
2 ) ∩W s,q(G) for all ϕ ∈ Lp(G),

we may therefore estimate

‖∇σAµe−tAϕ‖Lp(G) ≤ c1‖∇σAµe−tAϕ‖W s,q(G)

≤ c1‖Aµe−tAϕ‖Wσ+s,q(G)

≤ c1c2‖A
σ+s

2 +µe−tAϕ‖Lq(G)

= c1c2‖A−λ+µ+σ+s
2 e−tAAλϕ‖Lq(G)

≤ c1c2c4t−γ‖Aλϕ‖Lq(G)

≤ c1c2c3c4t−γ‖ϕ‖W 2λ,q(G) for all t > 0 and ϕ ∈W 2λ,q(G),

which proves part (i) if s < 1. If s ∈ [1,∞) and p < ∞, we fix k ∈ N and p = p0 ≥ p1 ≥
· · · ≥ pk = q such that sj := N

pj
− N

pj−1
< 1. Furthermore, we set

µj :=
{
− sj2 , j < k,

µ+
∑k−1
i=1

si
2 , j = k

for j ∈ {1, . . . , k}

and choose λ to be σ
2 or 0 (depending on whether the operator ∇σ is involved) in first k− 1

steps below. By the case already proven, we obtain then c5 > 0 such that∥∥∇σAµe−tAϕ
∥∥
Lp(G)

=

∥∥∥∥∥∥∇σ
k∏
j=1

(
Aµje− t

kA
)
ϕ

∥∥∥∥∥∥
Lp(G)

≤ c5e− δk t
∥∥∥∥∥∥
k∏
j=2

(
Aµje− t

kA
)
ϕ

∥∥∥∥∥∥
Wσ,p1 (G)

≤ c5e− δk t


∥∥∥∥∥∥∇σ

k∏
j=2

(
Aµje− t

kA
)
ϕ

∥∥∥∥∥∥
Lp1 (G)

+

∥∥∥∥∥∥
k∏
j=2

(
Aµje− t

kA
)
ϕ

∥∥∥∥∥∥
Lp1 (G)


≤ ck−1

5 e−
(k−1)δ
k t

(∥∥∥∇σAµke− t
kAϕ

∥∥∥
Lpk−1 (G)

+ (k − 1)‖A−
σ
2

pk−1‖
∥∥∥Aµk+σ

2 e− t
kAϕ

∥∥∥
Lpk−1 (G)

)
≤ ck5(1 + (k − 1)‖A−

σ
2

pk−1‖)tλ−µk−
σ+sk

2 e−δt‖ϕ‖Wσ,pk (G)

= ck5(1 + (k − 1)‖A−
σ
2

pk−1‖)tλ−µ−
σ+s

2 e−δt‖ϕ‖Wσ,q(G) for all t > 0 and ϕ ∈W 2λ,q(G),
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where in the last two steps we have made use of µ+ σ+s
2 = µk+ σ+sk

2 . Finally, for s ∈ [1,∞)
and p =∞, the desired estimate follows from a similar iterative argument.

Ad (ii): Due to ε ∈ (0, 2N), we have q := 2N
ε ∈ (1,∞) and hence s := 2N

q = ε. We set
moreover p :=∞ and λ̃ := λ− ε

2 . Then the statement follows from part (i) (with λ replaced
by λ̃) and the embedding W 2λ,q(G) ↪→ C2λ+ε(G), which in turn directly follows from the
fact that ‖ · ‖W 2λ,q(G) is equivalent to the norm given in [88, 4.4.1 (8)].

While Lemma 4.3.2 is quite general, its main shortcoming is the lack of L∞-L∞ estimates.
These are provided by the following lemma, at least for the special case µ = λ = 0.

Lemma 4.3.3. Letting G ⊂ RN , N ∈ N, be a smooth bounded domain and defining the
operator A as in Lemma 4.3.1, we can find C > 0 such that

‖∇σe−tAϕ‖L∞(G) ≤ Ce−t‖∇σϕ‖L∞(G) for all t ≥ 0, ϕ ∈Wσ,∞(G) and σ ∈ {0, 1}.

Proof. This immediately follows from the maximum principle and [63, formula (2.39)].

4.4. Pointwise estimates for ∇v: the parabolic case

In this section, we deal with the remaining case τ > 0 and first argue that we may without
loss of generality assume τ = 1. If v ∈ C0(Ω× [0, T ))∩C2,1(Ω× (0, T )) is a classical solution
of (4.1.9) for some τ > 0, T ∈ (0,∞], v0 ∈ C0(Ω) and g ∈ C0(Ω× [0, T )), then the function
ṽ defined by ṽ(x, t) := v(x, tτ ) for (x, t) ∈ Ω× [0, T τ) solves

ṽt = ∆ṽ − ṽ + g̃ in Ω× (0, T τ),
∂ν ṽ = 0 on ∂Ω× (0, T τ),
ṽ(·, 0) = v0 in Ω

classically, where g̃(x, t) := g(x, tτ ) for (x, t) ∈ Ω× [0, T τ). Since Theorem 4.1.2 requires C
to be independent of T and supt∈(0,Tτ) ‖g̃(·, t)‖Lq(Ω) = supt∈(0,T ) ‖g(·, t)‖Lq(Ω) for all q ≥ 1,
we may thus henceforth indeed fix τ = 1 and prove Theorem 4.1.2 only for this special
case.

Moreover, given M > 0, let us abbreviate X := C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T )) and{
v0 and g comply with (4.1.6) and (4.1.7),
v ∈ X is a nonnegative classical solution of (4.1.9).

(4.4.1)

Before proving Theorem 4.1.2 in Lemma 4.4.6 below, we first collect several estimates,
starting with an W 1,p(Ω) bound for certain p > 1.

Lemma 4.4.1. Let M > 0, q ∈ [1, n], p0 > 1 and p ∈ (1, nq
n−q ) ∩ (1, p0]. There is C > 0

such that if (4.4.1) holds, then

‖∇v(·, t)‖Lp(Ω) ≤ C for all t ∈ (0, T ). (4.4.2)
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Proof. Letting A be as in Lemma 4.3.1, we apply Lemma 4.3.2 (with σ := 1, µ := 0, q := p,
s := 0, λ := 1

2 and σ := 1, µ := 0, q := q, s := n
q −

n
p , λ := 0) to obtain c1, c2 > 0 and δ > 0

such that

‖∇e−tAϕ‖Lp(Ω) ≤ c1e−δt‖∇ϕ‖Lp(Ω) for all t > 0 and ϕ ∈W 1,p(Ω),

and

‖∇e−tAϕ‖Lp(Ω) ≤ c2t−
1
2−

n
2 ( 1

q
− 1
p )e−δt‖ϕ‖Lq(Ω) for all t > 0 and ϕ ∈ Lq(Ω).

Hence, assuming (4.4.1), we make use of the variation-of-constants formula, (4.1.6) and
(4.1.7) to see that

‖∇v(·, t)‖Lp(Ω) ≤
∥∥∇e−tAv0

∥∥
Lp(Ω) +

∫ t

0

∥∥∥e−(t−s)Ag(·, s)
∥∥∥
Lp(Ω)

ds

≤ c1e−δt‖∇v0‖Lp(Ω) + c2‖g‖L∞((0,T );Lq(Ω))

∫ t

0
(t− s)−

1
2−

n
2 ( 1

q
− 1
p )e−δ(t−s) ds

≤Mc1|Ω|
p0
p0−p +Mc2

∫ ∞
0

s−
1
2−

n
2 ( 1

q
− 1
p )e−δs ds for all t ∈ (0, T ).

The last integral therein is finite because the assumption p < nq
n−q warrants

−1
2 −

n

2

(
1
q
− 1
p

)
> −1

2 −
n

2

(
n

nq
− n− q

nq

)
= −1.

If q ∈ [1, n2 ], then the gradient bound obtained in Lemma 4.4.1 implies certain pointwise
upper bounds for v. For the special case q = 1, this has already been proven (similarly as
below) in [97, Lemma 3.2].

Lemma 4.4.2. Given M > 0, q ∈ [1, n2 ], p0 > 1 and κ ∈ (−∞,−n−2q
q

) ∩ (−∞,−n−p0
p0

],
there is C > 0 with the following property: If T ∈ (0,∞] and (4.4.1) holds, then

v(x, t) ≤ C|x|κ for all x ∈ Ω and t ∈ (0, T ).

Proof. For fixed κ ≤ −n−p0
p0

with

κ < −n− 2q
q

= − (n− q)− q
q

= −
n− nq

n−q
nq
n−q

,

we may choose p ∈ (1, nq
n−q )∩ (1, p0] such that κ ≤ −n−pp . Then Lemma 4.4.1 warrants that

there is c1 > 0 such that (4.4.2) (with C replaced by c1) is fulfilled whenever (4.4.1) holds.
Moreover, we let

c2 := M max
{
|Ω|

p0−1
p0 , |Ω|

q−1
q

}
as well as c3 := c2∣∣∣BR(0) \BR

2
(0)
∣∣∣

and now assume (4.4.1). Since

‖v0‖L1(Ω) ≤ |Ω|
p0−1
p0 ‖v0‖W 1,p0 (Ω) ≤ c2
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and

‖g‖L∞((0,T );L1(Ω)) ≤ |Ω|
q−1
q ‖g‖L∞((0,T );Lq(Ω)) ≤ c2

by (4.1.6), (4.1.7) and the definition of c2, the comparison principle asserts
∫

Ω v(·, t) ≤ c2
for all t ∈ [0, T ).

Thus, assuming that there is t ∈ [0, T ) such that v(r, t) > c3 for all r ∈ (R2 , R) would lead
to the contradiction

c2 ≥
∫

Ω
v(·, t) ≥

∫
BR(0)\BR

2
(0)
v(·, t) >

∫
BR(0)\BR

2
(0)
c3 = c2,

and therefore, for all t ∈ [0, T ), we may choose r0(t) ∈ (R2 , R) with v(r0(t), t) ≤ c3. We then
calculate

v(r, t)− v(r0(t), t) =
∫ r

r0(t)
ρ
n−1
p vr(ρ, t) · ρ−

n−1
p dρ

≤
‖∇v(·, t)‖Lp(Ω)

p
√
ωn−1

∣∣∣∣∣
∫ r

r0(t)
ρ−

n−1
p−1

∣∣∣∣∣
p−1
p

≤ c1
p
√
ωn−1

∣∣∣∣∣
∫ r

r0(t)
ρ−

n−1
p−1

∣∣∣∣∣
p−1
p

for all r ∈ (0, R) and t ∈ (0, T ).

As p ∈ (1, n) because of q ≤ n
2 and nq

n−q ≤ n and since r0(t) > R
2 ≥

r
2 for all r ∈ (0, R) and

t ∈ (0, T ), we have therein∣∣∣∣∣
∫ r

r0(t)
ρ−

n−1
p−1

∣∣∣∣∣
p−1
p

≤

(∫ ∞
min{r,r0(t)}

ρ−
n−p
p−1−1

) p−1
p

=
(
p− 1
n− p

) p−1
p

min{r, r0(t)}−
n−p
p

≤ 2
n−p
p

(
p− 1
n− p

) p−1
p

r−
n−p
p for all r ∈ (0, R) and t ∈ (0, T ).

Moreover noting that v(r0(t), t) ≤ c3 ≤ c3R
n−p
p r−

n−p
p for all r ∈ (0, R) and t ∈ (0, T ), we

obtain the statement.

Since q > n
2 implies 2q−n

q
> 0, one cannot expect that Lemma 4.4.2 holds for any q > n

2 .
However, we have the following analogon of said lemma.

Lemma 4.4.3. For M > 0, q ∈ (n2 , n], p0 > 1 and κ ∈ (0, 2q−n
q

)∩ (0, p0−n
p0

], there is C > 0
such that if T ∈ (0,∞] and (4.4.1) holds, then

|v(x, t)− v(0, t)| ≤ C|x|κ for all x ∈ Ω and t ∈ [0, T ).

Proof. Let κ ∈ (0, 2q−n
q

). The assumption q ∈ (n2 , n] implies κ ∈ (0, 1), hence p := n
1−κ ∈

(1, nq
n−q ) ∩ (1, p0]. Thus, the statement follows from Lemma 4.4.1 and Morrey’s inequality,

which because of κ = 1− n
p asserts that W 1,p(Ω) embeds into Cκ(Ω).
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Lemma 4.4.3 now allows us to show that a function resembling |x|βv solves a suitable initial
boundary value problem. In Lemma 4.4.6 below, we then apply semigroup arguments to
obtain certain gradient bounds for this function implying (4.1.8).

Lemma 4.4.4. Let M > 0, q ∈ [1, n], β > n−q
q

,

ζ ∈ C∞([0, R]) with ζ(r) = r for all r ∈ [0, R2 ], ζr ≥ 0 in (0, R) and ζr(R) = 0 (4.4.3)

and

p0 >

{
1, q ∈ [1, n2 ],

n
min{1,β} , q ∈ (n2 , n].

There exist b1, b2, b3 ∈ C∞((0, R)) and C > 0 such that

|b1(r)| ≤ Crβ−2, |b2(r)| ≤ Crβ−1 and |b3(r)| ≤ Crβ (4.4.4)

for all r ∈ (0, R) and, moreover, the following holds: Let T ∈ [0,∞), v0, g, v be as in (4.4.1)
and

ṽ(r, t) :=
{
v(r, t), q ∈ [1, n2 ],
v(r, t)− v(0, t), q ∈ (n2 , n]

for r ∈ [0, R] and t ∈ [0, T ). (4.4.5)

Then the function z := ζβ ṽ belongs to C0([0, R] × [0, T )), C1,1([0, R] × (0, T )) as well as
C2,1((0, R)× (0, T )) and solves

zt = zrr − z + b1ṽ + b2vr + b3g − [sign(q− n
2 )]+ζβvt(0, t), in (0, R)× (0, T ),

zr = 0, in {0, R} × (0, T ),
z(·, 0) = ζβ ṽ(·, 0) in (0, R)

(4.4.6)

classically. (Here and below, [sign ξ]+ = 1 for ξ > 0 and [sign ξ]+ = 0 for ξ ≤ 0.)

Proof. Since the assumptions on ζ warrant ‖ζ‖C2([0,R]) < ∞ and supr∈(0,R)
ζ(r)
r < ∞,

there is C > 0 such that the functions

b1 := −β(β − 1)ζβ−2ζ2
r − βζβ−1ζrr

b2 := −2βζβ−1ζr + n− 1
r

ζβ and

b3 := ζβ

comply with (4.4.4). As direct calculations give

zr = βζβ−1ζrṽ + ζβvr,

zrr = [β(β − 1)ζβ−2ζ2
r + βζβ−1ζrr]ṽ + 2βζβ−1ζrvr + ζβvrr and

vt = vrr + n− 1
r

vr − v + g

in (0, R)× (0, T ), we moreover obtain

ζβvt = ζβvrr + n− 1
r

ζβvr − ζβv + ζβg

= zrr −
[
β(β − 1)ζβ−2ζ2

r + βζβ−1ζrr
]
ṽ +

[
−2βζβ−1ζr + n− 1

r
ζβ
]
vr − z + ζβg
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in (0, R)× (0, T ). Thus,

zt(r, t) = ζβ(r)vt(r, t)−
[
sign

(
q− n

2

)]
+
ζβ(r)vt(0, t) for all (r, t) ∈ [0, R)× [0, T ),

implying that the first equation in (4.4.6) holds.

Since the third equation in (4.4.6) is a direct consequence of the definition of z, and as
ζr(R) = 0 and vr(R, ·) ≡ 0 and ζ(R) > 0 imply zr(R, ·) ≡ 0, it only remains to be shown
that zr(0, ·) ≡ 0 in (0, T ). For q ∈ [1, n2 ] and hence β > 1, this holds because then
limr↘0 ζ

β−1(r) = 0. Thus, we suppose now that q ∈ (n2 , n]. Due to 2q−n
q

> max{1− β, 0}
and p0−n

p0
> max{1−β, 0}, we may choose κ ∈ (max{1−β, 0},min{ 2q−n

q
, p0−n

p0
}) and apply

Lemma 4.4.3 to obtain c1 > 0 such that |v(r, t)−v(0, t)| ≤ c1rκ for all (r, t) ∈ (0, R)×(0, T ).
Thus, |ζβ−1(r)ṽ(r, t)| ≤ c1rβ−1+κ → 0 as R

2 ≥ r ↘ 0.

For q ∈ (n2 , n], we need to handle the term ζβvt(0, ·) in the first equation in (4.4.6) if we
want to apply semigroup arguments to the problem (4.4.6). To that end, we argue similar
as in [91, Lemma 3.4] and derive sufficiently strong time regularity in

Lemma 4.4.5. Suppose M > 0, q ∈ (n2 , n], p0 > n and θ ∈ (0,min{ 2q−n
2q , p0−n

2p0
}). Then

there exists C > 0 such that for T ∈ (0,∞] and v0, g, v complying with (4.4.1), we have

|v(0, t1)− v(0, t2)| ≤ C|t1 − t2|θ for all t1, t2 ∈ [0, T ). (4.4.7)

Proof. Since 0 < θ < 1
2−

n
2p0

, we can choose p ∈ (1, p0) and ε > 0 such that θ = 1
2−

n
2p−ε.

Letting A be as in Lemma 4.3.1, by Lemma 4.3.1 and Lemma 4.3.2 (i) (with σ := 0, µ := 1
2 ,

q := p, p :=∞, s := n
q + ε, λ := 0), we find c1, c2 > 0 such that

‖A 1
2ϕ‖Lp(Ω) ≤ c1‖ϕ‖W 1,p(Ω) for all ϕ ∈W 1,p(Ω) (4.4.8)

and ∥∥∥A 1
2 e−tAϕ

∥∥∥
L∞(Ω)

≤ c2t−
1
2−

n
2p−ε‖ϕ‖Lp(Ω) for all t > 0 and ϕ ∈ Lp(Ω). (4.4.9)

For µ ∈ {1, 2}, we may again employ Lemma 4.3.2 (i) (with σ := 0, µ := µ, q := q, p :=∞,
s := 2(1− θ), λ := 0, noting that 2(1− θ) > n

q
) in order to obtain c3 > 0 with∥∥Aµe−tAϕ

∥∥
L∞(Ω) ≤ c3t

−µ−(1−θ)‖ϕ‖Lq(Ω) for all t > 0 and ϕ ∈ Lq(Ω). (4.4.10)

Henceforth fixing 0 ≤ t1 < t2 < T and assuming (4.4.1), we then obtain by the variation-of-
constants formula

‖v(·, t2)− v(·, t1)‖L∞(Ω)

≤
∥∥e−t2Av0 − e−t1Av0

∥∥
L∞(Ω) +

∥∥∥∥∫ t2

0
e−(t2−s)Ag(·, s) ds−

∫ t1

0
e−(t1−s)Ag(·, s) ds

∥∥∥∥
L∞(Ω)

≤
∥∥e−t2Av0 − e−t1Av0

∥∥
L∞(Ω)

+
∫ t2

t1

∥∥∥e−(t2−s)Ag(·, s)
∥∥∥
L∞(Ω)

ds+
∫ t1

0

∥∥∥[e−(t2−s)A − e−(t1−s)A
]
g(·, s)

∥∥∥
L∞(Ω)

ds

=: I1 + I2 + I3.
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Firstly, due to the fundamental theorem of calculus, since A 1
2 e−tA = e−tAA 1

2 on D(A) for
all t ≥ 0, and because of (4.4.9), (4.4.8), the definition of θ and (4.1.6), we have therein

I1 =
∥∥∥∥∫ t2

t1

Ae−sAv0 ds
∥∥∥∥
L∞(Ω)

≤
∫ t2

t1

∥∥∥A 1
2 e−sAA 1

2 v0

∥∥∥
L∞(Ω)

ds

≤ c2‖A
1
2 v0‖Lp(Ω)

∫ t2

t1

s−
1
2−

n
2p−ε ds

≤
c1c2‖v0‖W 1,p(Ω)

θ
(t2 − t1)θ ≤ Mc1c2|Ω|

p0−p
p0

θ
(t2 − t1)θ,

secondly, (4.4.10), the fundamental theorem of calculus and (4.1.7) imply

I2 =
∫ t2

t1

∥∥∥e−(t2−s)Ag(·, s)
∥∥∥
L∞(Ω)

ds ≤ c3
∫ t2

t1

(t2 − s)θ−1 ‖g(·, s)‖Lq(Ω) ds ≤ Mc3
θ

(t2 − t1)θ

and thirdly, from (4.4.10), the fundamental theorem of calculus, (4.1.7) and the fact that
t2 > t1, we infer

I3 =
∫ t1

0

∫ t2

t1

∥∥∥Ae−(σ−s)Ag(·, s)
∥∥∥
L∞(Ω)

dσ ds

≤ c3
∫ t1

0

∫ t2

t1

(σ − s)θ−2‖g(·, s)‖Lq(Ω) dσ ds

≤ −Mc3
1− θ

∫ t1

0

[
(t2 − s)θ−1 − (t1 − s)θ−1] ds

= Mc3
θ(1− θ)

[
(t2 − t1)θ − tθ2 + tθ1

]
≤ Mc3
θ(1− θ) (t2 − t1)θ.

Together, this implies (4.4.7).

We now combine the estimates gathered above to prove Theorem 4.1.2.

Lemma 4.4.6. Let M > 0, q ∈ (1, n], β > n−q
q

and p0 > max{nβ , 1}. There exists C > 0
such that whenever T ∈ (0,∞] and v0, g, v satisfy (4.4.1), then (4.1.8) holds.

Proof. For q ∈ (1, n2 ] and q ∈ (n2 , n], we assume without loss of generality β ∈ [1, n) and
β ∈ (0, 1), respectively. Moreover, the assumptions on the parameters allow us to choose
p̄ ∈ (max{nβ , 1},min{ nq

n−q , p0}) and

κ ∈
(

1− β,min
{

2q− n
q

,
p0 − n
p0

})
. (4.4.11)

Noting that p̄ > max{nβ , 1} and hence

(β − 1)p̄− (n− 1)
p̄− 1 >

1− p̄
p̄− 1 = −1
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hold, that κ > 1−β implies β−2+κ > −1 and that the main assumption, β > n−q
q

, asserts

βq− (n− 1)
q− 1 >

−(q− 1)
q− 1 = −1,

we can find p ∈ (1,min{p̄,q}) such that still

λ1 := (β − 2 + κ)p > −1, (4.4.12)

λ2 := [(β − 1)p̄− (n− 1)]p
p̄− p

> −1 and (4.4.13)

λ3 := [βq− (n− 1)]p
q− p

> −1. (4.4.14)

Letting now A be as in Lemma 4.3.1 with G := (0, R) and setting γ1 := − 1
2 −

p+1
4p ,

Lemma 4.3.3 and Lemma 4.3.2 (i) allow us to fix c1, c2 > 0 and δ1 > 0 such that

‖∂re−τAϕ‖L∞((0,R)) ≤ c1e−τ‖ϕr‖L∞((0,R)) for all ϕ ∈W 1,∞((0, R)) (4.4.15)

and

‖∂re−τAϕ‖L∞((0,R)) ≤ c2τγ1e−δ1τ‖ϕ‖Lp((0,R)) for all ϕ ∈ Lp((0, R)), (4.4.16)

and τ > 0. (We note that p+1
2p > 1

p because of p > 1 so that Lemma 4.3.2 is indeed
applicable.) Since p > 1, we have γ1 > −1 and hence

c3 := sup
t∈(0,∞)

∫ t

0
(t− s)γ1e−δ1(t−s) ds =

∫ ∞
0

sγ1e−δ1s ds <∞. (4.4.17)

Moreover, by Lemma 4.4.1, Lemma 4.4.2 and Lemma 4.4.3, there are c4, c5 > 0 such that

‖∇v(·, t)‖Lp̄(Ω) ≤ c4 and |ṽ(x, t)| ≤ c5|x|κ for all x ∈ Ω and t ∈ [0, T ), (4.4.18)

whenever (4.4.1) is fulfilled and where ṽ is given by (4.4.5).

If q ∈ (n2 , n], due to 2q−n
2q + β

2 > 2q−n
2q + n−q

2q = 1
2 , we may also choose ε ∈ (0, 2) and

θ ∈ (0, 2q−n
2q ) sufficiently small and large, respectively, such that

γ2 := θ + β

2 −
3
2 − ε > −1.

Since q ∈ (n2 , n] implies β ∈ (0, 1), an application of Lemma 4.3.2 (ii) then yields c6 > 0
and δ2 > 0 such that for µ ∈ {0, 1},

‖∂rAµe−τAϕ‖L∞((0,R)) ≤ c6τ
β
2−µ−

1
2−εe−δ2τ‖ϕ‖Cβ([0,R]) (4.4.19)

for all ϕ ∈ W 1,∞((0, R)) and all τ > 0. Furthermore, again only in the case q ∈ (n2 , n],
Lemma 4.4.5 allows us to fix c7 > 0 such that

|v(0, t2)− v(0, t1)| ≤ c7|t2 − t1|θ for all t1, t2 ∈ (0, T ) (4.4.20)
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and (provided q ∈ (n2 , n]) we set

c8 :=
∫ ∞

0
sγ2e−δ2s ds+ sup

t∈(0,∞)
tγ2+1e−δ2t <∞. (4.4.21)

As a last preparation, regardless of the sign of q − n
2 , we fix an arbitrary ζ as in (4.4.3).

Hence there are c9, c10, c11 > 0 with
r

c9
≤ ζ(r) ≤ c9r, |ζr(r)| ≤ c10 and ‖ζβ‖Cβ([0,R]) ≤ c11 for all r ∈ (0, R) (4.4.22)

and, by Lemma 4.4.4, there is moreover c12 > 0 such that (4.4.4) holds (with C replaced by
c12), where b1, b2, b3 are also given by Lemma 4.4.4.

We now suppose (4.4.1). Noting that β > n−q
q

, we may infer from Lemma 4.4.4 that z := ζβ ṽ

is a classical solution of (4.4.6). By the variation-of-constants formula, we may therefore
write

‖zr(·, t)‖L∞((0,R)) ≤ ‖∂re−tAz(·, 0)‖L∞((0,R))

+
∫ t

0
‖∂re−(t−s)A[b1ṽ(·, s) + b2vr(·, s) + b3g(·, s)]‖L∞((0,R)) ds

+
[
sign

(
q− n

2

)]
+

∫ t

0
‖∂re−(t−s)Aζβvt(0, s)‖L∞((0,R)) ds

=: I1(t) + I2(t) + I3(t) for t ∈ (0, T ).

Next, we estimate the terms I1–I3 therein. Starting with the first one, we apply (4.4.15),
(4.4.22), (4.4.18) (4.1.6) and (4.4.11) to obtain

I1(t) ≤ c1e−t‖(ζβ ṽ(·, 0))r‖L∞((0,R))

≤ c1
(
‖ζβv0r‖L∞((0,R)) + β‖ζβ−1ζrṽ(·, 0)‖L∞((0,R))

)
≤ c1

(
c9‖rβv0r‖L∞((0,R)) + c5c

|β−1|
9 c10β‖rβ−1+κ‖L∞((0,R))

)
≤ c1

(
c9M + c5c

|β−1|
9 c10βR

β+κ−1
)

for t ∈ (0, T ). (4.4.23)

By (4.4.16), we moreover have

I2(t) ≤ c2
∫ t

0
(t− s)γ1e−(t−s)δ1‖b1ṽ(·, s) + b2vr(·, s) + b3g(·, s)‖Lp((0,R)) ds (4.4.24)

for t ∈ (0, T ). Therein are

‖b1ṽ(·, s)‖pLp((0,R))

≤ cp12

∫ R

0
r(β−2)p(ṽ)p(r, s) dr ≤ cp5c

p
12

∫ R

0
rλ1 dr = cp5c

p
12
Rλ1+1

λ1 + 1 <∞, (4.4.25)

‖b2vr(·, s)‖pLp((0,R))

≤ cp12

∫ R

0

(
rn−1|vr(r, s)|p̄

) p
p̄ r

[(β−1)p̄−(n−1)]p
p̄ dr

≤
cp12‖∇v(·, s)‖pLp̄(Ω)

ωn−1

(∫ R

0
rλ2 dr

) p̄−p
p̄

≤ cp4c
p
12

ωn−1

(
Rλ2+1

λ2 + 1

) p̄−p
p̄

<∞ (4.4.26)

64



4.4. Pointwise estimates for ∇v: the parabolic case

and

‖b3g(·, s)‖pLp((0,R))

≤ cp12

∫ R

0

(
rn−1gq(r, s)

) p
q r

[βq−(n−1)]p
q dr

≤
cp12‖g(·, s)‖pLq(Ω)

ωn−1

(∫ R

0
rλ3 dr

)q−p
q

≤ Mpcp12
ωn−1

(
Rλ3+1

λ3 + 1

)q−p
q

<∞ (4.4.27)

for all s ∈ (0, T ) by (4.4.4), (4.4.18), (4.1.7) and (4.4.12)–(4.4.14). Combining (4.4.24) with
(4.4.17) and (4.4.25)–(4.4.27) then yields

I2(t) ≤ c2c3c12

c5(Rλ1+1

λ1 + 1

) 1
p

+ c4
p
√
ωn−1

(
Rλ2+1

λ2 + 1

) p̄−p
pp̄

+ M
p
√
ωn−1

(
Rλ3+1

λ3 + 1

)q−p
pq


(4.4.28)

for all t ∈ (0, T ).

Moreover, as [sign(q − n
2 )]+ = 0 for q ≤ n

2 , for estimating I3 we may assume q > n
2 (and

hence make use of (4.4.19)–(4.4.21)). Using linearity of eτA for τ > 0, integrating by parts
and applying (4.4.20), (4.4.19) and (4.4.21), we then obtain

I3(t) =
∥∥∥∥∫ t

0
∂re−(t−s)A (ζβ∂sv(0, s)

)
ds
∥∥∥∥
L∞((0,R))

=
∥∥∥∥∫ t

0
∂s[v(0, s)− v(0, t)]∂re−(t−s)Aζβ ds

∥∥∥∥
L∞((0,R))

≤
∥∥∥∥∫ t

0
[v(0, s)− v(0, t)]∂r∂se−(t−s)Aζβ ds

∥∥∥∥
L∞((0,R))

+
∥∥∥∥[[v(0, s)− v(0, t)]∂re−(t−s)Aζβ

]s=t
s=0

∥∥∥∥
L∞((0,R))

≤ c7
∫ t

0
(t− s)θ

∥∥∥∂rAe−(t−s)Aζβ
∥∥∥
L∞((0,R))

ds+ c7t
θ
∥∥∂re−tAζβ∥∥L∞((0,R))

≤ c6c7
(∫ t

0
sθ+

β
2−

3
2−εe−δ2s ds+ tθ+

β
2−

1
2−εe−δ2t

)
‖ζβ‖Cβ([0,R])

≤ c6c7c8c11 for all t ∈ (0, T ). (4.4.29)

Combining (4.4.23), (4.4.28) and (4.4.29) shows that ‖z‖L∞((0,R)×(0,T )) ≤ c13 for some
c13 > 0 only depending on Ω, M , q, β and p0. Thus, due to the definitions of ṽ and z,
(4.4.18), (4.4.22) and (4.4.11),

|vr(r, t)| = |ṽr(r, t)|
= |ζ−β(r)zr(r, t)− βζ−β−1(r)ζr(r)z(r, t)|
≤ ζ−β(r)|zr(r, t)|+ βζ−1(r)|ζr(r)||ṽ(r, t)|
≤ cβ9 c13r

−β + c5c9c10βr
−1+κ

≤
(
cβ9 c13 + c5c9c10βR

β+κ−1
)
r−β holds for all (r, t) ∈ (0, R)× (0, T ),

so that we finally arrive at (4.1.8).
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4.5. Proofs of the main theorems

Finally, let us prove Proposition 4.1.1, Theorem 4.1.2 and Theorem 4.1.4.

Proof of Proposition 4.1.1 and Theorem 4.1.2. The corresponding statements have
been shown in Lemma 4.2.2 and Lemma 4.4.6.

Proof of Theorem 4.1.4. For p = 1, this has already been shown in Theorem 3.1.3.
Moreover, in the case of p > 1, we set q := p

s as well as g(x, t) := f(u(x, t), v(x, t)) for x ∈ Ω
and t ∈ (0, T ) and, for α > n(ns−p)

[(m−q)n+p]p =
n−q
q

m−q+ p

n
, we choose β̃ > n−q

q
= ns−p

p
as well as

θ > n such that α ≥ β̃
(m−q)+ p

n−
p

θ
and m − q ∈ (pθ −

p
n ,

p
θ + β̃p−p

n ]. Since we may without
loss generality assume β ≤ β̃, the statement follows immediately from Theorem 4.1.2 and
Theorem 3.1.1.
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Global existence in fully
cross-diffusive systems
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5. Global solutions near homogeneous
steady states in a multi-dimensional
population model with both
predator- and prey-taxis

5.1. Introduction

In the second part of this thesis, we move away from solutions blowing up in finite time
and instead aim to construct global-in-time solutions despite the challenges indicated by
finite-time blow-up results such as the one proven in Chapter 2. In particular, we concern
ourselves with global solvability of (variants of) the fully cross-diffusive system{

ut = D1∆u+∇ · (S1(u, v)∇v) + f(u, v),
vt = D2∆v +∇ · (S2(u, v)∇u) + g(u, v),

(5.1.1)

which describes migration-influenced interaction between predators and prey whose densities
are denoted by u and v, respectively.

Apart from growth, death or intra-species competition, the functions f and g model preda-
tion: Encounters are beneficial for the predators and harmful to the prey. Moreover, the
species are not only assumed to move around randomly (terms D1∆u and D2∆v), but also
to be able to direct their movement toward (attractive taxis, negative Si) or away from
(repulsive taxis, positive Si) higher concentration of the other species.

The relevance of attractive prey-taxis (‘predators move towards their prey’, negative S1) has
first been biologically verified in [44]. It has been observed that such an effect may actually
reduce effective biocontrol, contradicting intuitive assumptions [54]. Moreover, the presence
of (sufficiently strong) prey-taxis may actually lead to a lack of pattern formation [55].

Among systems of the form (5.1.1), those with only attractive prey- but no predator-taxis
(S1 < 0 and S2 ≡ 0), have been studied most extensively—perhaps because they resemble
attractive chemotaxis systems from a mathematical point of view, which in turn have been
studied in comparatively great detail; see for instance the survey [4].

For S1(u, v) = −χu and several f, g, namely, the existence of globally bounded classical
solutions to (5.1.1) has been proved in [111], provided χ > 0 is sufficiently small. In two
space dimensions, the smallness condition on χ is, again for various choices of f and g, not
necessary [40, 114], while in the three-dimensional setting, one may overcome this restriction
by either assuming the prey-taxis to be saturated at larger predator quantities [30, 82] or
by considering weak solutions instead [99].
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Moreover, a repulsive predator-taxis mechanism (‘prey moves away from their predators,
positive S2) has, for instance, been detected for crayfish seeking shelter [27, 35, 54].

While less extensively studied than those with prey-taxis, such systems have been mathe-
matically examined as well: Now without any smallness assumptions on χ, globally bounded
classical solutions to (5.1.1) have been constructed for S1 ≡ 0, S2(u, v) = χv and certain
f, g in [112]. The same article also considered pattern formation and shows that a strong
taxis mechanism (large χ) leads to the absence of stable nonconstant steady states.

Combining both these effects (S1 < 0, S2 > 0) leads to the study of so-called pursuit–
evasion models which have been proposed in [89] (see also [28, 90] for the modeling of
related systems featuring different taxis mechanisms). There, propagating waves differing
from those in taxis-free predator–prey systems have been detected numerically.

Main results. In the present chapter, we handle a system including both predator- and
prey-taxis and take the prototypical choices S1(u, v) = −χ1u, S2(u, v) = χ2v, f(u, v) =
u(λ1 − µ1u + a1v) and g(u, v) = v(λ2 − µ2v − a1u) for u, v ≥ 0 in (5.1.1). That is, we
consider 

ut = D1∆u− χ1∇ · (u∇v) + u(λ1 − µ1u+ a1v) in Ω× (0,∞),
vt = D2∆v + χ2∇ · (v∇u) + v(λ2 − µ2v − a2u) in Ω× (0,∞),
∂νu = ∂νv = 0 on ∂Ω× (0,∞),
u(·, 0) = u0, v(·, 0) = v0 in Ω

(5.P)

in smooth, bounded domains Ω for D1, D2, χ1, χ2 > 0 and λ1, λ2, µ1, µ2, a1, a2 ≥ 0.

From a mathematical point of view, such systems are much more challenging than those
containing a taxis term in ‘only’ one equation, which are in turn already highly nontrivial.
For instance, if χ2 = 0 then the L∞-L1 bound for the first equation obtained by integrating
a suitable linear combination of the first two equations in (5.P) can be used to obtain certain
a priori estimates even for the gradient of the second equation by straightforward semigroup
arguments. However, for (5.P), bounds for one of the first two equations therein generally
do not ‘automatically’ imply bounds for the other one. As another example, suppose that
one could derive L∞ estimates for both solution components (ignoring for a moment the
fact that these are definitely not easy to obtain): How does one then proceed to obtain, say,
Hölder bounds? At least, classical results for scalar parabolic equations are not applicable.

We also remark that, apart from (5.P), several other fully cross-diffusive systems have been
examined, of which the one proposed by Shigesada, Kawasaki and Teramoto to model spatial
segregation [78] probably has gained the most attention among mathematicians (at least if
one limits the systems of interest to those where the diffusion matrix does not give raise
to a monotone operator). Indeed, there is some quite general global solution theory for
such cross-diffusive systems available, both for weak [41] and renormalized [9, 16] solutions.
Unfortunately, however, the results obtained there are not applicable to the system (5.P)
(with χ1, χ2 > 0), the main reason being that although (5.P) allows for an entropy-like
inequality (cf. the introduction of Chapter 6 and especially (6.1.6)), stronger versions thereof
would be needed.

Instead, constructing weak solutions for variants of (5.P) with nonlinear diffusion and sat-
urated sensitivity via alternative methods will be the topic of Chapter 6, where we extend
on results in the spatially one-dimensional setting derived in [85, 86]. Apart from these
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findings, however, no global existence results regarding (5.P) appear to be available, which
in turn further indicates the difficulty of that problem.

In order to overcome the obstacles outlined above, we thus need to substantially make use of
the special structure in (5.P). To that end, we carefully design certain functionals in such a
way that, in calculating their derivatives, favourable cancellations occur. We will introduce
them in a moment, but before we would like to state the main result of the present chapter.
Making a first step towards extending the knowledge about such systems also in the higher
dimensional setting, we analyze the stability of homogeneous steady states for (5.1.1) and
obtain

Theorem 5.1.1. Suppose Ω ⊂ Rn, n ∈ {1, 2, 3}, is a smooth, bounded domain, and let

D1, D2, χ1, χ2 > 0 and m1,m2 ≥ 0 (5.1.2)

Suppose either

λ1 = λ2 = µ1 = µ2 = a1 = a2 = 0 (5.H1)

or

λ1, λ2 ≥ 0 and a1, a2, µ1, µ2 > 0. (5.H2)

Then there exist ε > 0 and K1,K2 > 0 with the following properties: For any

0 ≤ u0, v0 ∈W 2,2
N (Ω) with

∫
Ω u0 = m1 and

∫
Ω v0 = m2 if (5.H1) holds, (5.1.3)

where

W 2,2
N (Ω) := {ϕ ∈W 2,2(Ω): ∂νϕ = 0 in the sense of traces }, (5.1.4)

and fulfilling

‖u0 − u?‖W 2,2(Ω) + ‖v0 − v?‖W 2,2(Ω) < ε, (5.1.5)

where

(u?, v?) :=



(
m1
|Ω| ,

m2
|Ω|

)
, if (5.H1) holds,(

λ1µ2+λ2a1
µ1µ2+a1a2

, λ2µ1−λ1a2
µ1µ2+a1a2

)
, if (5.H2) holds and λ2µ1 > λ1a2,(

λ1
µ1
, 0
)
, if (5.H2) holds and λ2µ1 ≤ λ1a2,

(5.1.6)

there exist a unique pair

(u, v) ∈
(
C0([0,∞);W 2,2

N (Ω)) ∩ C∞(Ω× (0,∞))
)2

solving (5.P) classically. Moreover, each solution component is nonnegative and (u, v) con-
verges to (u?, v?) in the sense that

‖u(·, t)− u?‖W 2,2(Ω) + ‖v(·, t)− v?‖W 2,2(Ω)

≤

( 1
K1ε

+K2t)−1, if (5.H2) holds and λ2µ1 = λ1a2,

K1εe−K2t, else
(5.1.7)

for all t > 0.
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Remark 5.1.2. Let us give some heuristic arguments why we believe that the rates in (5.1.7)
are, up to the values of K1 and K2 therein, optimal.

For the heat equation, convergence is exponentially fast (take for instance an eigenfunction as
initial datum) and adding taxis terms (but no terms of zeroth order) should not dramatically
speed up the convergence. Moreover, in the around (u?, v?) linearized ODE system, (u?, v?)
is a stable fixed point, provided (5.H2) with λ2µ1 6= λ1a2 holds. Hence, also here, ‘only’ an
exponential convergence rate can be expected.

The case (5.H2) with λ2µ1 = λ1a2 is different. As u converges to λ1
µ1
, one might expect that

v behaves similarly as the solution ṽ to

ṽ′ = ṽ

(
λ2 − µ2ṽ − a2 ·

λ1

µ1

)
= −µ2(ṽ)2,

which is given by

ṽ(t) = 1
1
ṽ(0) + µ1t

, t ≥ 0.

Main ideas. After obtaining local-in-time solutions by Amann’s theory in Lemma 5.2.1,
we will focus our analysis on estimates holding in Ω × [0, Tη) for η > 0 to be fixed later,
where Tη ∈ [0,∞] is the maximal time up to which ‖u− u?‖L∞(Ω) + ‖v − v?‖L∞(Ω) < η.

In the case of (5.H1), that is, without any cell proliferation, one formally computes

1
2

d
dt

∫
Ω

(u− u?)2 +D1

∫
Ω
|∇u|2 = χ1

∫
Ω
u∇u · ∇v in (0, Tmax).

The key idea is that one can rewrite the problematic term on the right-hand side as

χ1

∫
Ω
u∇u · ∇v = χ1

∫
Ω

(u− u?)∇u · ∇v + χ1u?

∫
Ω
∇u · ∇v in (0, Tmax)

and note that, as the signs for the taxis terms in (5.P) are opposite, two problematic terms
cancel out in calculating

d
dt

(
χ2v?

2

∫
Ω

(u− u?)2 + χ1u?
2

∫
Ω

(v − v?)2
)

+ χ2D1v?

∫
Ω
|∇u|2 + χ1D2u?

∫
Ω
|∇v|2

= χ1χ2v?

∫
Ω

(u− u?)∇u · ∇v − χ1χ2u?

∫
Ω

(v − v?)∇u · ∇v in (0, Tmax).

If η > 0 is chosen small enough, the remaining terms on the right-hand side can be absorbed
by the dissipative terms—at least in (0, Tη).

Fortunately, for higher order terms, one can proceed similarly and thus see that the sum of
(norms equivalent to) the W 2,2(Ω) norms of both solution components is decreasing, which
implies Tη = Tmax, provided η > 0 is small enough and assuming Tη > 0, which can be
achieved by choosing ε > 0 in Theorem 5.1.1 sufficiently small. Due to the blow-up criterion
in Lemma 5.2.1, one then also sees that Tmax = ∞. Convergence to the mean (u0, v0) as
well as the convergence rate are then merely corollaries of the estimates already gained.
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For (5.H2), however, this idea alone is insufficient. For instance, if u? > 0 and v? > 0,
arguing similarly as above, for any A1, A2 > 0 there is η > 0 such that

d
dt

(
A1

2

∫
Ω

(u− u?)2 + A2

2

∫
Ω

(v − v?)2
)

+A1µ1

2

∫
Ω

(u− u?)2 + A2µ2

2

∫
Ω

(v − v?)2 + A1D1

2

∫
Ω
|∇u|2 + A2D2

2

∫
Ω
|∇v|2

≤ (A1a1u? −A2a2v?)
∫

Ω
(u− u?)(v − v?) + (A1χ1u? −A2χ2v?)

∫
Ω
∇u · ∇v (5.1.8)

in (0, Tη), see Lemma 5.3.2 and (the proof of) Lemma 5.4.3.

For the special case that (a1, a2) = γ(χ1, χ2) for some γ ≥ 0, taking A1 := χ2v? and
A2 := χ1u? already implies that the right-hand side in (5.1.8) is zero. Alternatively, if
D1 and D2 are sufficiently large compared to a1, a2, χ1, χ2, u? and v?, the dissipative terms
in (5.1.8) can be used to absorb the terms on the right-hand side. In both these special cases,
higher order terms can be handled similarly again so that we can conclude as above.

For arbitrary parameter values, such shortcuts are apparently unavailable and hence we
need to argue differently. Actually, this is the reason for considering (5.P) with so many
parameters: We want to emphasize that our approach does not rely on certain relationships
between them.

Quite miraculously, appropriately choosing positive linear combinations of the six function-
als

d
dt

∫
Ω

(u− u?)2,
d
dt

∫
Ω
|∇u|2, d

dt

∫
Ω
|∆u|2,

d
dt

∫
Ω

(v − v?)2,
d
dt

∫
Ω
|∇v|2 and d

dt

∫
Ω
|∆v|2 (5.1.9)

still allows for a cancellation of all problematic terms, see Lemma 5.4.3.

The remaining case, (5.H2) with λ2µ1 ≤ λ1a2, is handled in Subsection 5.4.2. In a desire
to keep the introduction of this chapter at reasonable length, we just note here that the
proofs also rely on the functionals in (5.1.9), albeit in a somewhat different fashion as in the
first case, and refer for a more detailed discussion to (the beginning of) Subsection 5.4.2.
Moreover, the in some sense degenerate case (5.H2) with λ2µ1 = λ1a2 deserves additional
special treatment. We introduce a new functional in Lemma 5.4.6 and discuss directly
beforehand why that seems to be necessary.

As a last step, in Lemma 5.5.1, we bring all these estimates together and prove global
existence as well as convergence to (u?, v?). Moreover, we discuss possible generalizations
of Theorem 5.1.1 in Section 5.6.

Finally, we collect certain Gagliardo–Nirenberg-type inequalities used throughout the pre-
sent chapter in Section 5.7. They may potentially be of independent interest and differentiate
themselves from more often seen inequalities in two ways: Firstly, although we assume Ω
to be bounded, we get rid of the additional additive term on the right-hand side. Sec-
ondly, instead of ‖D2ϕ‖Lp(Ω) and ‖D3ϕ‖Lp(Ω), our versions only contain ‖∆ϕ‖Lp(Ω) and
‖∇∆ϕ‖Lp(Ω) (for certain values of p ∈ (1,∞)).
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5.2. Preliminaries

Local existence. For systems with a taxis term in just one equation, for instance, for
(5.P) with either χ1 = 0 or χ2 = 0, it suffices to make use of parabolic regularity theory for
scalar equations (see for instance [37] and [51], which rely on the concept of mild solutions as
well as Banach’s fixed point theorem and on Schauder’s fixed point theorem, respectively).
Apparently, for fully cross-diffusive systems such as (5.P) this is no longer fruitful—at least if
we want to consider both arbitrary nonnegative parameters and large initial data. Therefore,
we resort to the abstract existence theory by Amann instead.

Lemma 5.2.1. Suppose that Ω ⊂ Rn, n ∈ N, is a smooth, bounded domain, and let
D1, D2, χ1, χ2 > 0 as well as λ1, λ2, µ1, µ2, a1, a2 ≥ 0. Moreover, let p > n and u0, v0 ∈
W 1,p(Ω) be nonnegative.

Then there exist Tmax ∈ (0,∞] and uniquely determined nonnegative

u, v ∈ C0([0, Tmax);W 1,p(Ω)) ∩ C∞(Ω× (0, Tmax)) (5.2.1)

such that (u, v) is a classical solution of (5.P) and, if Tmax <∞, then

lim sup
t↗Tmax

(
‖u(·, t)‖Cα(Ω) + ‖v(·, t)‖Cα(Ω)

)
=∞ for all α ∈ (0, 1). (5.2.2)

Moreover, this solution further satisfies

u, v ∈ C0([0, Tmax);W 2,2
N (Ω)), (5.2.3)

provided u0, v0 satisfy (5.1.3).

Proof. We will construct a solution U to
Ut = ∇ · (A(U)∇U) + F (U) in Ω× (0, Tmax),
ν ·A(U)∇U = 0 on ∂Ω× (0, Tmax),
U(·, 0) = U0 in Ω,

(5.2.4)

where

A

(
u
v

)
:=
(
D1 −χ1u
χ2v D2

)
, F

(
u
v

)
:=
(
u(λ1 − µ1u+ a1v)
v(λ2 − µ2v − a2u)

)
and U0 :=

(
u0
v0

)
for u, v ∈ R. Here and below, ∇(u, v)T := (∇u,∇v)T , ν · (a, b)T := (ν · a, ν · b)T etc. for, say,
u, v ∈ C1(Ω) and a, b ∈ Rn.

If u, v ≥ 0, then trA((u, v)T ) = D1 + D2 > 0 and detA((u, v)T ) = D1D2 + χ1χ2uv > 0,
hence by continuity of the trace and the determinant, we may fix an (open) neighborhood
D0 of [0,∞)2 in R2 such that the real parts of all eigenvalues of A((u, v)T ) are still positive
for all (u, v) ∈ D0. Thus, defining the operators A,B by A(η)U := ∇ · (A(η)∇U) and
B(η) := ν ·A(η)∇U for η ∈ D0 and U ∈ (W 2,p(Ω))2, we see that (A(η),B(η)) are of separated
divergence form and hence normally elliptic for all η in D0 (cf. [3, Example 4.3(e)]).

Therefore, we may apply [3, Theorem 14.4, Theorem 14.6 and Corollary 14.7] to obtain
Tmax > 0 and a unique U ∈ C0([0, Tmax); (W 1,p(Ω))2)∩ (C∞(Ω× (0, Tmax)))2 solving (5.2.4)
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classically. Moreover, since both components of U are nonnegative by the maximum principle
(for scalar equations), [3, Theorem 15.3] asserts that in the case of Tmax <∞ we have

lim sup
t↗Tmax

‖U(·, t)‖(Cα(Ω))2 =∞ for all α ∈ (0, 1).

Thus, (u, v) := UT satisfies the first, second and fourth equations in (5.P), if Tmax <∞, then
(5.2.2) holds and, moreover, D1∂νu = χ1u∂νv and D2∂νv = −χ2v∂νu on ∂Ω× (0, Tmax). As
u and v are nonnegative, ∂νu = χ1

D1
u∂νv = − χ1χ2

D1D2
uv∂νu on ∂Ω× (0, Tmax) implies ∂νu ≡ 0

on ∂Ω × (0, Tmax). Analogously, we also obtain ∂νv ≡ 0 on ∂Ω × (0, Tmax), hence (u, v) is
the unique solution of regularity (5.2.1) to (5.P) in Ω× [0, Tmax).

Since [3, Theorem 4.1] further asserts that, for all t ∈ (0, Tmax), the operator A(U(t)) in
(L2(Ω))2 with D(A(U(t))) = (W 2,2

N (Ω))2 generates an analytical semigroup on (L2(Ω))2, we
may employ [3, Theorem 10.1] to obtain (5.2.3) for u0, v0 ∈W 2,2

N (Ω).

Fixing parameters. In what follows, we fix Ω ⊂ Rn, n ∈ {1, 2, 3}, parameters as in
(5.1.2) and (5.H1) or (5.H2), and define (u?, v?) as in (5.1.6). Moreover, we henceforth set
ϕ := 1

|Ω|
∫

Ω ϕ for ϕ ∈ L1(Ω).

As we will see later in the proofs of Lemma 5.4.1 and Lemma 5.4.4, W 2,2(Ω) continuity of
both solution components up to t = 0 will turn out to be crucial. By Lemma 5.2.1, this
can be achieved if one supposes that u0, v0 satisfy (5.1.3). Given such initial data, we will
denote the solution to (5.P) constructed in Lemma 5.2.1 by (u(·, ·;u0, v0), v(·, ·;u0, v0)) and
its maximal existence time by Tmax(u0, v0). After fixing (u0, v0), we will often for the sake
of brevity write (u, v) and Tmax, respectively, instead. We also note that all constants below
(for instance the ci, i ∈ N, in several proofs) depend only on the parameters fixed above,
not on u0 and v0.

The functions f and g. Furthermore, we abbreviate

f(u, v) := u(λ1 − µ1u+ a1v) and g(u, v) := v(λ2 − µ2v − a2u) for u, v > 0.

We note that f(u?, v?) = 0 = g(u?v?) and(
fu(u, v) fv(u, v)
gu(u, v) gv(u, v)

)
=
(
λ1 − 2µ1u+ a1v a1u

−a2v λ2 − 2µ2v − a2u

)
for u, v ≥ 0,

that is,

(
fu(u?, v?) fv(u?, v?)
gu(u?, v?) gv(u?, v?)

)
=



(
0 0
0 0

)
, if (5.H1) holds,

(
−µ1u? a1u?

−a2v? −µ2v?

)
, if (5.H2) holds and λ2µ1 > λ1a2,

(
−λ1 a1u?

0 λ2 − λ1a2
µ1

)
, if (5.H2) holds and λ2µ1 ≤ λ1a2.
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Thus,

fu(u?, v?) ≤ 0 as well as gv(u?, v?) ≤ 0 (5.2.5)

and

if (5.H2) holds and λ2µ1 6= λ1a2, then fu(u?, v?) < 0 as well as gv(u?, v?) < 0. (5.2.6)

5.3. Estimates within [0, Tη)

For u0, v0 satisfying (5.1.3) and η > 0, we set

E(t;u0, v0) := ‖u(·, t;u0, v0)− u?‖L∞(Ω) + ‖v(·, t;u0, v0)− v?‖L∞(Ω)

and

Tη(u0, v0) := sup
{
t ∈ (0, Tmax(u0, v0)) : E(t̃;u0, v0) < η for all t̃ ∈ (0, t)

}
(5.3.1)

(with the convention sup ∅ := −∞). When confusion seems unlikely, we abbreviate Tη :=
Tη(u0, v0).

We now derive several estimates within (0, Tη). Obviously, if (0, Tη) = ∅, the statements
below are trivially true. Thus upon reading the proofs, the reader might as well always
assume that (0, Tη) is not empty. The only exception is Lemma 5.5.1, where we finally
choose ε > 0 in (5.1.5) sufficiently small and guarantee positivity of Tη for certain η > 0.

We note that Tη1 ≤ Tη2 for η1 ≤ η2. Moreover,

‖u− u‖L∞(Ω) ≤ ‖u− u?‖L∞(Ω) + ‖u− u?‖L∞(Ω)

= ‖u− u?‖L∞(Ω) + 1
|Ω|

∣∣∣∣∫
Ω

(u− u?)
∣∣∣∣ ≤ 2η in (0, Tη) (5.3.2)

and likewise

‖v − v‖L∞(Ω) ≤ 2η in (0, Tη) (5.3.3)

for all η > 0, where (u, v, Tmax) = (u(u0, v0), v(u0, v0), Tmax(u0, v0)) for any u0, v0 complying
with (5.1.3).

In the remainder of this section, we derive estimates in (0, Tη) for positive linear combinations
of

d
dt

∫
Ω

(u− u?)2 and d
dt

∫
Ω

(v − v?)2,

d
dt

∫
Ω
|∇u|2 and d

dt

∫
Ω
|∇v|2 as well as

d
dt

∫
Ω
|∆u|2 and d

dt

∫
Ω
|∆v|2. (5.3.4)

We begin by treating the first pair in
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Lemma 5.3.1. There is η0 > 0 such that if u0, v0 comply with (5.1.3) and (u, v) =
(u(u0, v0), v(u0, v0)) denotes the corresponding solution, then

1
2

d
dt

∫
Ω

(u− u?)2 + 3D1

4

∫
Ω
|∇u|2 + (−fu(u?, v?)− η(a1 + µ1))

∫
Ω

(u− u?)2

≤ a1u?

∫
Ω

(u− u?)(v − v?) + χ1u?

∫
Ω
∇u · ∇v + ηχ1

2

∫
Ω
|∇v|2 (5.3.5)

and
1
2

d
dt

∫
Ω

(v − v?)2 + 3D2

4

∫
Ω
|∇v|2 + (−gv(u?, v?)− η(a2 + µ2))

∫
Ω

(v − v?)2

≤ −a2v?

∫
Ω

(u− u?)(v − v?)− χ2u?

∫
Ω
∇u · ∇v + ηχ2

2

∫
Ω
|∇u|2 (5.3.6)

hold in (0, Tη) for all η ∈ (0, η0), where Tη is given by (5.3.1).

Proof. We let

η0 := 1
2 min

{
D1

χ1
,
D2

χ2

}
. (5.3.7)

Fixing u0, v0 satisfying (5.1.3), by a direct calculation, we see that
1
2

d
dt

∫
Ω

(u− u?)2 +D1

∫
Ω
|∇u|2 = χ1

∫
Ω
u∇u · ∇v +

∫
Ω
f(u, v)(u− u?)

holds in (0, Tmax).

For any η > 0, we have therein by Young’s inequality

χ1

∫
Ω
u∇u · ∇v = χ1u?

∫
Ω
∇u · ∇v + χ1

∫
Ω

(u− u?)∇u · ∇v

≤ χ1u?

∫
Ω
∇u · ∇v + ηχ1

2

∫
Ω
|∇u|2 + ηχ1

2

∫
Ω
|∇v|2 in (0, Tη).

Moreover, as f(u?, v?) = 0,∫
Ω
f(u, v)(u− u?) =

∫
Ω
f(u, v?)(u− u?) + a1

∫
Ω
u(v − v?)(u− u?)

= fu(u?, v?)
∫

Ω
(u− u?)2 + fuu(u?, v?)

2

∫
Ω

(u− u?)3

+a1

∫
Ω

(u− u?)2(v − v?) + a1u?

∫
Ω

(u− u?)(v − v?) in (0, Tmax).

Since fuu(u?, v?) = −2µ1, we may further estimate
fuu(u?, v?)

2

∫
Ω

(u− u?)3 ≤ ηµ1

∫
Ω

(u− u?)2 in (0, Tη) for all η > 0

and

a1

∫
Ω

(u− u?)2(v − v?) ≤ ηa1

∫
Ω

(u− u?)2 in (0, Tη) for all η > 0.

Noting that (5.3.7) implies D1 − η0χ1
2 ≥ 3

4D1, we may combine these estimates to obtain
(5.3.5), while (5.3.6) follows from an analogous computation.
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For sufficiently small η and suitable linear combinations of (5.3.5) and (5.3.6), the terms
ηχ1

2
∫

Ω |∇v|
2 and ηχ2

2
∫

Ω |∇u|
2 can be absorbed by the dissipative terms therein.

Lemma 5.3.2. For any A1, A2 > 0, there is η0 > 0 such that whenever u0, v0 satisfy (5.1.3),
then the corresponding solution (u, v) = (u(u0, v0), v(u0, v0)) satisfies

d
dt

(
A1

2

∫
Ω

(u− u?)2 + A2

2

∫
Ω

(v − v?)2
)

+ A1D1

2

∫
Ω
|∇u|2 + A2D2

2

∫
Ω
|∇v|2

+A1 (−fu(u?, v?)− η(a1 + µ1))
∫

Ω
(u− u?)2 +A2 (−gv(u?, v?)− η(a2 + µ2))

∫
Ω

(v − v?)2

≤ (A1a1u? −A2a2v?)
∫

Ω
(u− u?)(v − v?) + (A1χ1u? −A2χ2v?)

∫
Ω
∇u · ∇v (5.3.8)

in (0, Tη) for all η < η0, where Tη is as in (5.3.1).

Proof. Lemma 5.3.1 allows us to choose η1 such that (5.3.5) and (5.3.6) hold in (0, Tη1).
We let moreover A1, A2 > 0, fix η2 > 0 sufficiently small such that

A2η2χ2

2 ≤ A1D1

4 and A1η2χ1

2 ≤ A2D2

4
and set η0 := min{η1, η2}.

The statement then immediately follows upon multiplying (5.3.5) and (5.3.6) with A1 and
A2, respectively, and adding these inequalities together.

Next, we handle the second pair in (5.3.4), this time only in a coupled version.

Lemma 5.3.3. Let B1, B2 > 0. There is η > 0 such that for any u0, v0 complying
with (5.1.3) we have

d
dt

(
B1

2

∫
Ω
|∇u|2 + B2

2

∫
Ω
|∇v|2

)
+ B1D1

2

∫
Ω
|∆u|2 + B2D2

2

∫
Ω
|∆v|2

≤ (B1a1u? −B2a2v?)
∫

Ω
∇u · ∇v + (B1χ1u? −B2χ2v?)

∫
Ω

∆u∆v in (0, Tη),

where again (u, v) := (u(u0, v0), v(u0, v0)) and Tη := Tη(u0, v0)) is given by (5.3.1).

Proof. We begin by fixing some parameters: By the Gagliardo–Nirenberg inequality 5.7.3,
there is c1 > 0 such that∫

Ω
|∇ϕ|4 ≤ c1‖ϕ− ϕ‖2L∞(Ω)

∫
Ω
|∆ϕ|2 for all ϕ ∈ C2(Ω) with ∂νϕ = 0 on ∂Ω. (5.3.9)

We choose η > 0 so small that

M1(η) := B1ηχ1

2 + B2ηχ2

2 + 2B1η
2χ2

1c1
D1

+ 2B2η
2χ2

2c1
D2

+B1CPη(2µ1 + a1) + B1CPa1η

2 + B2CPa2η

2
and

M2(η) := B1ηχ1

2 + B2ηχ2

2 + 2B1η
2χ2

1c1
D1

+ 2B2η
2χ2

2c1
D2

+B2CPη(2µ2 + a2) + B1CPa1η

2 + B2CPa2η

2 ,
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where CP is as in Lemma 5.7.1, fulfill

M1(η) < B1D1

4 and M2(η) < B2D2

4 . (5.3.10)

Fixing u0, v0 as in (5.1.3), we calculate

1
2

d
dt

∫
Ω
|∇u|2 +D1

∫
Ω
|∆u|2

= χ1

∫
Ω
u∆u∆v + χ1

∫
Ω
∇u · ∇v∆u+

∫
Ω
fu(u, v)|∇u|2 + a1

∫
Ω
u∇u · ∇v

=: I1 + I2 + I3 + I4 in (0, Tmax).

Therein is

I1 = χ1u?

∫
Ω

∆u∆v + χ1

∫
Ω

(u− u?)∆u∆v

≤ χ1u?

∫
Ω

∆u∆v + ηχ1

2

∫
Ω
|∆u|2 + ηχ1

2

∫
Ω
|∆v|2 in (0, Tη).

Furthermore, by (5.3.9), (5.3.2) and Young’s inequality,

I2 ≤
D1

4

∫
Ω
|∆u|2 + χ2

1
D1

∫
Ω
|∇u|2|∇v|2

≤ D1

4

∫
Ω
|∆u|2 + χ2

1
2D1

∫
Ω
|∇u|4 + χ2

1
2D1

∫
Ω
|∇v|4

≤ D1

4

∫
Ω
|∆u|2 + 2η2χ2

1c1
D1

∫
Ω
|∆u|2 + 2η2χ2

1c1
D1

∫
Ω
|∆v|2 in (0, Tη).

Moreover, due to (5.2.5), by the mean value theorem, as fuu ≡ 2µ1 and fuv ≡ a1 and
because of the Poincaré inequality 5.7.1 (with CP > 0 as in that lemma),

I3 ≤
∫

Ω
(fu(u, v)− fu(u?, v?))|∇u|2

≤
∫

Ω

(
‖fuu‖L∞((0,∞)2)|u− u?|+ ‖fuv‖L∞((0,∞)2)|v − v?|

)
|∇u|2

≤ η(2µ1 + a1)CP

∫
Ω
|∆u|2 in (0, Tη).

Finally, by Young’s inequality and the Poincaré inequality 5.7.1 (again with CP > 0 as in
that lemma),

I4 = a1u?

∫
Ω
∇u · ∇v + a1

∫
Ω

(u− u?)∇u · ∇v

≤ a1u?

∫
Ω
∇u · ∇v + ηa1CP

2

(∫
Ω
|∆u|2 +

∫
Ω
|∆v|2

)
in (0, Tη).
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Along with an analogous computation for v, these estimates imply

d
dt

(
B1

2

∫
Ω
|∇u|2 + B2

2

∫
Ω
|∇v|2

)
+
(

3B1D1

4 −M1(η)
)∫

Ω
|∆u|2 +

(
3B2D2

4 −M2(η)
)∫

Ω
|∆v|2

≤ (B1a1u? −B2a2v?)
∫

Ω
∇u · ∇v + (B1χ1u? −B2χ2v?)

∫
Ω

∆u∆v in (0, Tη).

The statement follows due to (5.3.10).

At last, we deal with the third pair in (5.3.4).

Lemma 5.3.4. For any C1, C2 > 0, there exists η > 0 such that with Tη as defined in
(5.3.1), (u, v, Tη) := (u(u0, v0), v(u0, v0), Tη(u0, v0)) satisfies

d
dt

(
C1

2

∫
Ω
|∆u|2 + C2

2

∫
Ω
|∆v|2

)
+ C1D1

2

∫
Ω
|∇∆u|2 + C1D2

2

∫
Ω
|∇∆v|2

≤ (C1a1u? − C2a2v?)
∫

Ω
∆u∆v + (C1χ1u? − C2χ2v?)

∫
Ω
∇∆u · ∇∆v in (0, Tη),

provided u0, v0 fulfill (5.1.3).

Proof. Fix C1, C2 > 0. Let us again begin by fixing some constants: By Lemma 5.7.4 and
Lemma 5.7.2, there is c1 > 0 such that

6 max
{
χ2

1
D1

,
χ2

2
D2

}∫
Ω
|∇ϕ|6

≤ c1‖ϕ− ϕ‖4L∞(Ω)

∫
Ω
|∇∆ϕ|2 for all ϕ ∈ C3(Ω) with ∂νϕ = 0 on ∂Ω (5.3.11)

as well as

12 max
{
χ2

1
D1

,
χ2

2
D2

}∫
Ω
|D2ϕ|3

≤ c1‖ϕ− ϕ‖L∞(Ω)

∫
Ω
|∇∆ϕ|2 for all ϕ ∈ C3(Ω) with ∂νϕ = 0 on ∂Ω (5.3.12)

and Lemma 5.7.3 provides us with c2 ≥ 1 such that∫
Ω
|∇ϕ|4 ≤ c2‖ϕ− ϕ‖2L∞(Ω)

∫
Ω
|∆ϕ|2 for all ϕ ∈ C2(Ω) with ∂νϕ = 0 on ∂Ω. (5.3.13)

We fix furthermore CP as in Lemma 5.7.1 and choose η > 0 so small that

M1(η) := C1ηχ1

2 + C2ηχ2

2 + (C1 + C2)c1(2η + 16η4)

+C1CPc2η(9a1 + 14µ1)
2 + 5C2CPa2c2η

2
and

M2(η) := C1ηχ1

2 + C2ηχ2

2 + (C1 + C2)c1(2η + 16η4)

+C2CPc2η(9a2 + 14µ2)
2 + 5C1CPa1c2η

2
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satisfy

M1(η) < C1D1

4 and M2(η) < C2D1

4 . (5.3.14)

We also fix u0, v0 complying with (5.1.3). Since ∂νu = 0 on ∂Ω×(0, Tmax) implies (∂νu)t = 0
on ∂Ω× (0, Tmax) and as |∆ϕ| ≤

√
n|D2ϕ| for all ϕ ∈ C2(Ω), we may calculate

1
2

d
dt

∫
Ω
|∆u|2

= −
∫

Ω
∇ut · ∇∆u+

∫
∂Ω

(∂νu)t∆u

= −D1

∫
Ω
|∇∆u|2 + χ1

∫
Ω
∇(u∆v +∇u · ∇v) · ∇∆u−

∫
Ω
∇(f(u, v)) · ∇∆u

≤ −D1

∫
Ω
|∇∆u|2 −

∫
Ω
∇(f(u, v)) · ∇∆u

+χ1

∫
Ω
u∇∆u · ∇∆v + χ1

∫
Ω

(|D2u||∇v|+ (1 +
√
n)|D2v||∇u|)|∇∆u| (5.3.15)

in (0, Tmax). Herein is by Young’s inequality,

χ1

∫
Ω
u∇∆v · ∇∆u

= χ1u?

∫
Ω
∇∆v · ∇∆u+ χ1

∫
Ω

(u− u?)∇∆v · ∇∆u

= χ1u?

∫
Ω
∇∆v · ∇∆u+ ηχ1

2

∫
Ω
|∇∆u|2 + ηχ1

2

∫
Ω
|∇∆v|2 in (0, Tη).

Again by Young’s inequality combined with
√
n ≤ 2, (5.3.11), (5.3.12), (5.3.2) and (5.3.3),

we further estimate

χ1

∫
Ω

(
|D2u||∇v|+ (1 +

√
n)|D2v||∇u|

)
|∇∆u|

≤ D1

4

∫
Ω
|∇∆u|2 + 2χ2

1
D1

∫
Ω
|D2u|2|∇v|2 + 18χ2

1
D1

∫
Ω
|D2v|2|∇u|2

≤ D1

4

∫
Ω
|∇∆u|2 + 4χ2

1
3D1

∫
Ω
|D2u|3 + 2χ2

1
3D1

∫
Ω
|∇v|6 + 12χ2

1
D1

∫
Ω
|D2v|3 + 6χ2

1
D1

∫
Ω
|∇u|6

≤
(
D1

4 + 2c1η + 16c1η4
)∫

Ω
|∇∆u|2 +

(
2c1η + 16c1η4) ∫

Ω
|∇∆v|2 in (0, Tη).

(We note that we estimated
√
n ≤ 2 only to keep the expressions as simple as possible. After

possibly enlarging certain constants, the same estimates also hold in the higher dimensional
settings; that is, no restriction on the dimension is imposed here.)

Regarding the remaining term in (5.3.15), we first note that

D2f(u, v) =
(
−2µ1 a1
a1 0

)
in (0, Tmax)
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5. Stability of homogeneous steady states in fully cross-diffusive predator–prey systems

and that (5.2.5) implies

fu(u, v) = fu(u, v?) + a1(v − v?)
= fu(u?, v?) + fuu(u?, v?)(u− u?) + a1(v − v?)
≤ −2µ1(u− u?) + a1(v − v?) in (0, Tmax).

Therefore, an integration by parts and applications of Young’s inequality as well as Poincaré’s
inequality 5.7.1 yield

−
∫

Ω
∇(f(u, v)) · ∇∆u

= −
∫

Ω
fu(u, v)∇u · ∇∆u−

∫
Ω
fv(u, v)∇v · ∇∆u

=
∫

Ω
fu(u, v)|∆u|2 +

∫
Ω
fuu(u, v)|∇u|2∆u+ 2

∫
Ω
fuv(u, v)∇u · ∇v∆u

+
∫

Ω
fv(u, v)∆u∆v +

∫
Ω
fvv(u, v)|∇v|2∆u

≤ η(a1 + 2µ1)
∫

Ω
|∆u|2 + 2µ1

∫
Ω
|∇u|2|∆u|+ 2a1

∫
Ω
∇u · ∇v∆u

+a1

∫
Ω

(u− u?)∆u∆v + a1u?

∫
Ω

∆u∆v

≤ CPη(a1 + 2µ1)
∫

Ω
|∇∆u|2 + a1u?

∫
Ω

∆u∆v

+ηµ1

∫
Ω
|∆u|2 + µ1

η

∫
Ω
|∇u|4

+a1η

∫
Ω
|∆u|2 + a1

2η

∫
Ω
|∇u|4 + a1

2η

∫
Ω
|∇v|4

+a1η

2

∫
Ω
|∆u|2 + a1η

2

∫
Ω
|∆v|2

≤ CPη(5a1 + 6µ1)
2

∫
Ω
|∇∆u|2 + CPa1η

2

∫
Ω
|∇∆v|2 + a1u?

∫
Ω

∆u∆v

+2µ1 + a1

2η

∫
Ω
|∇u|4 + a1

2η

∫
Ω
|∇v|4 in (0, Tη).

Herein we make use of (5.3.13), (5.3.2) and Poincaré’s inequality 5.7.1 to further conclude∫
Ω
|∇u|4 ≤ c2‖u− u‖2L∞(Ω)

∫
Ω
|∆u|2 ≤ 4CPc2η

2
∫

Ω
|∇∆u|2 in (0, Tη)

and, likewise, now using (5.3.3) instead of (5.3.2),∫
Ω
|∇v|4 ≤ 4CPc2η

2
∫

Ω
|∇∆v|2 in (0, Tη).

Thus, due to c2 ≥ 1,

−
∫

Ω
∇(f(u, v)) · ∇∆u

≤ CPc2η(9a1 + 14µ1)
2

∫
Ω
|∇∆u|2 + 5CPa1c2η

2

∫
Ω
|∇∆v|2 + a1u?

∫
Ω

∆u∆v
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5.4. Deriving W 2,2(Ω) bounds for u and v

holds in (0, Tη).

As usual, we now combine the estimates above with analogous computations for v to obtain

d
dt

(
C1

2

∫
Ω
|∆u|2 + C2

2

∫
Ω
|∆v|2

)
+
(

3C1D1

4 −M1(η)
)∫

Ω
|∇∆u|2 +

(
3C2D2

4 −M2(η)
)∫

Ω
|∇∆v|2

≤ (C1a1u? − C2a2v?)
∫

Ω
∆u∆v + (C1χ1u? − C2χ2v?)

∫
Ω
∇∆u · ∇∆v in (0, Tη),

which in virtue of (5.3.14) implies the statement.

5.4. Deriving W 2,2(Ω) bounds for u and v

In this section, we will make use of the estimates gained in the previous section to eventually
obtainW 2,2(Ω) bounds for both solution components. That is, we aim to bound the quantity
‖u − u?‖W 2,2(Ω) + ‖v − v?‖W 2,2(Ω) by, say, η2 in (0, Tη) (for a certain η > 0), as then Tη =
Tmax = ∞ can be concluded—provided Tη > 0 which in turn can be achieved by requiring
‖u0 − u?‖W 2,2(Ω) + ‖v0 − v?‖W 2,2(Ω) to be sufficiently small.

In what follows, we will distinguish between multiple cases. More concretely, we will han-
dle

• (5.H1) in Lemma 5.4.2,

• (5.H2) with λ2µ1 > λ1a2 in Lemma 5.4.3,

• (5.H2) with λ2µ1 < λ1a2 in Lemma 5.4.4 and Lemma 5.4.5

• (5.H2) with λ2µ1 = λ1a2 and λ1 > 0 in Lemma 5.4.7 (ii) and Lemma 5.4.8 as well as

• (5.H2) with λ1 = λ2 = 0 in Lemma 5.4.9.

These five cases can be divided into two groups, the first of which we deal with in the
following subsection.

5.4.1. The cases (5.H1) and (5.H2) with λ2µ1 > λ1a2

If either (5.H1) holds with m1,m2 > 0 or (5.H2) holds with λ2µ1 > λ1a2, then u? and v?
are positive—which is the reason these cases can be handled in a similar fashion. In both
cases, we aim to apply the following elementary lemma.

Lemma 5.4.1. For A,B,C > 0 and ϕ ∈W 2,2(Ω), set

φA,B,C(ϕ) := A

2

∫
Ω
ϕ2 + B

2

∫
Ω
|∇ϕ|2 + C

2

∫
Ω
|∆ϕ|2 (5.4.1)

and let A1, A2, B1, B2, C1, C2 > 0, η > 0 and K2 > 0.

There is K1 > 0 such that, if u0, v0 comply with (5.1.3), Tη is as in (5.3.1) and

y : [0, Tη)→ R, t 7→ φA1,B1,C1(u(·, t)− u?) + φA2,B2,C2(v(·, t)− v?) (5.4.2)
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5. Stability of homogeneous steady states in fully cross-diffusive predator–prey systems

fulfills

y′(t) ≤ −2K2(t) in (0, Tη), (5.4.3)

then

‖u(·, t)− u?‖W 2,2(Ω) + ‖v(·, t)− v?‖W 2,2(Ω)

≤ K1e−K2t
(
‖u0 − u?‖W 2,2(Ω) + ‖v0 − v?‖W 2,2(Ω)

)
for all t ∈ (0, Tη). (5.4.4)

Proof. As W 2,2(Ω) continuity of u and v up to t = 0 is ensured by (5.2.3), we may make
use of an ODE comparison argument to obtain

y(t) ≤ e−2K2ty(0) for all t ∈ (0, Tη).

The statement then follows by taking square roots on both sides and noting that ‖ϕ‖ :=√
φA,B,C(ϕ) defines for A,B,C > 0 a norm on W 2,2

N (Ω), which is equivalent to the usual
one by Lemma 5.7.2.

For both cases covered in this subsection, we now choose A1, A2, B1, B2, C1, C2 > 0 appro-
priately so that Lemma 5.4.1 is applicable.

Lemma 5.4.2. Suppose (5.H1). Then there are η > 0 and K1,K2 > 0 such that (5.4.4)
holds for all u0, v0 satisfying (5.1.3).

Proof. In the case of (5.H1) with m1 = 0 or m2 = 0, that is, if at least one of the initial
data is trivial, the uniqueness statement in Lemma 5.2.1 asserts that one solution component
is constantly zero while the other solves the heat equation. As in that case the statement
becomes trivial, we may assume m1 > 0 and m2 > 0.

Then u?, v? > 0 and hence A1 = B1 = C1 := χ2v? as well as A2 = B2 = C2 := χ1u? are
positive as well. Because of

A1χ1u? −A2χ2v? = 0, B1χ1u? −B2χ2v? = 0, C1χ1u? − C2χ2v? = 0

and (5.H1), Lemma 5.3.2, Lemma 5.3.3 and Lemma 5.3.4 assert that there is η > 0 such
that

d
dt

(
φA1,B1,C1(u(·, t)− u?) + φA2,B2,C2(v(·, t)− v?)

)
+C1D1

2

∫
Ω
|∇∆u|2 + C2D2

2

∫
Ω
|∇∆v|2

≤ (A1χ1u? −A2χ2v?)
∫

Ω
∇u · ∇v + (B1χ1u? −B2χ2v?)

∫
Ω

∆u∆v

+(C1χ1u? − C2χ2v?)
∫

Ω
∇∆u · ∇∆v

= 0 in (0, Tη),

whenever u0, v0 comply with (5.1.3), where φ and Tη are as in (5.4.1) and (5.3.1), respectively.

As integrating the first two equations in (5.P) implies u? = u0 = u and v? = v0 = v in
(0, Tmax), we further obtain by Poincaré’s inequality 5.7.1 that (5.4.3) is fulfilled for some
K2 > 0, hence the statement follows from Lemma 5.4.1.
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Somewhat surprisingly, also in the case (5.H2) with λ2µ1 > λ1a2, suitably choosing A1, A2,
B1, B2, C1, C2 in Lemma 5.3.2, Lemma 5.3.3 and Lemma 5.3.4 allows for a cancellation of
all problematic terms.

Lemma 5.4.3. Suppose (5.H2) holds with λ2µ1 > λ1a2. Then we can find η > 0 and
K1,K2 > 0 with the property that (5.4.4) holds whenever u0, v0 satisfy (5.1.3).

Proof. Positivity of u? and v? implies that the constants

A1 := a2v?, A2 := a1u?,

B1 := (a2 + χ2)v?, B2 := (a1 + χ1)u?,
C1 := χ2v? and C2 := χ1u?

are all positive, so that we may apply Lemma 5.3.2, Lemma 5.3.3 and Lemma 5.3.4 to obtain
η1 > 0 such that

d
dt

(
φA1,B1,C1(u(·, t)− u?) + φA2,B2,C2(v(·, t)− v?)

)
+C1D1

2

∫
Ω
|∇∆u|2 + C2D2

2

∫
Ω
|∇∆v|2

+A1 (−fu(u?, v?)− η(a1 + µ1))
∫

Ω
(u− u?)2 +A2 (−gv(u?, v?)− η(a2 + µ2))

∫
Ω

(v − v?)2

≤ (A1a1u? −A2a2v?)
∫

Ω
(u− u?)(v − v?)

+[(A1χ1 +B1a1)u? − (A2χ2 +B2a2)v?]
∫

Ω
∇u · ∇v

+[(B1χ1 + C1a1)u? − (B2χ2 + C2a2)v?]
∫

Ω
∆u∆v

+(C1χ1u? − C2χ2v?)
∫

Ω
∇∆u · ∇∆v holds in (0, Tη) for all η ≤ η1,

provided u0, v0 satisfy (5.1.3), where again φ and Tη are defined in (5.4.1) and (5.3.1),
respectively.

Setting further η2 := min
{
−fu(u?,v?)
2(a1+µ1) ,

−gu(u?,v?)
2(a2+µ2)

}
, which is positive by (5.2.6), and noting

that

A1a1u? −A2a2v? = 0,
(A1χ1 +B1a1)u? − (A2χ2 +B2a2)v? = 0,
(B1χ1 + C1a1)u? − (B2χ2 + C2a2)v? = 0 as well as

C1χ1u? − C2χ2v? = 0,

we obtain
d
dt

(
φA1,B1,C1(u(·, t)− u?) + φA2,B2,C2(v(·, t)− v?)

)
+C1D1

2

∫
Ω
|∇∆u|2 + C2D2

2

∫
Ω
|∇∆v|2

−A1fu(u?, v?)
2

∫
Ω

(u− u?)2 − A2gv(u?, v?)
2

∫
Ω

(v − v?)2

≤ 0 in (0, Tη)
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for η := min{η1, η2}, provided u0, v0 comply with (5.1.3).

In virtue of Poincaré’s inequality 5.7.1, this first asserts (5.4.3) for some K2 > 0 and then
also (5.4.4) for some K1 > 0 by Lemma 5.4.1.

5.4.2. The case (5.H2) with λ2µ1 ≤ λ1a2

The condition (5.H2) with λ2µ1 ≤ λ1a2 implies v? = 0, hence for any choice of A1, A2, B1,
B2, C1, C2 > 0 in Lemma 5.3.2, Lemma 5.3.3 and Lemma 5.3.4, unlike as in the previous
subsection, no cancellation of problematic terms can occur (except if also u? = 0, but then
we will rely on a different functional, see Lemma 5.4.9 below).

However, the disappearance of v? can also be used to our advantage. As the coefficients of
the problematic terms no longer depend on A2, B2 and C2, we can choose (one of) these
parameters comparatively large and thus obtain stronger dissipative terms. This idea first
manifests itself in the following

Lemma 5.4.4. Suppose (5.H2) holds with λ2µ1 ≤ λ1a2. There are η > 0 as well as K > 0
and C2 > 0 such that whenever u0, v0 comply with (5.1.3) and Tη is as in (5.3.1),∫

Ω
|∆u(·, t)|2 + C2

∫
Ω
|∆v(·, t)|2 ≤ e−Kt

(∫
Ω
|∆u0|2 + C2

∫
Ω
|∆v0|2

)
for all t ∈ (0, Tη).

Proof. Set K := min{D1,D2}
2 > 0, C1 := 1 and

C2 := 16 max{C2
Pa

2
1, χ

2
1}(u? + 1)2

D1D2
> 0,

where CP > 0 denotes the constant given by Lemma 5.7.1.

By Lemma 5.3.4, there is η > 0 with the property that

d
dt

(∫
Ω
|∆u|2 + C2

∫
Ω
|∆v|2

)
+D1

∫
Ω
|∇∆u|2 + C2D2

∫
Ω
|∇∆v|2

≤ 2a1u?

∫
Ω

∆u∆v + 2χ1u?

∫
Ω
∇∆u · ∇∆v in (0, Tη),

provided the (henceforth fixed) initial data u0, v0 satisfy (5.1.3).

Therein are by Young’s inequality and Poincaré’s inequality 5.7.1, with CP > 0 as in that
lemma,

2a1u?

∫
Ω

∆u∆v ≤ D1

4CP

∫
Ω
|∆u|2 + 4CPa

2
1u

2
?

D1

∫
Ω
|∆v|2

≤ D1

4

∫
Ω
|∇∆u|2 + C2D2

4

∫
Ω
|∇∆v|2 in (0, Tmax)

and, again by Young’s inequality,

2χ1u?

∫
Ω
∇∆u · ∇∆v ≤ D1

4

∫
Ω
|∇∆u|2 + 4χ2

1u
2
?

D1

∫
Ω
|∇∆v|2

≤ D1

4

∫
Ω
|∇∆u|2 + C2D2

4

∫
Ω
|∇∆v|2 in (0, Tmax).
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Thus, the statement follows upon an integration over (0, Tη) due to (5.2.3), the W 2,2(Ω)
continuity of u and v up to t = 0.

In the case (5.H2) with λ2µ1 < λ1a2, by a similar argument, we also obtain bounds for∫
Ω(u− u?)2 and

∫
Ω v

2.

Lemma 5.4.5. If (5.H2) holds with λ2µ1 < λ1a2, then there are η > 0, K > 0 and A2 > 0
such that∫

Ω
(u− u?)2 +A2

∫
Ω
v2 ≤ e−Kt

(∫
Ω

(u0 − u?)2 +A2

∫
Ω
v2

0

)
for all t ∈ (0, Tη).

provided u0, v0 satisfy (5.1.3) and Tη is as in (5.3.1).

Proof. Since λ2µ1 < λ1a2, both fu(u?, v?) and gv(u?, v?) are negative according to (5.2.6),
hence there is η1 > 0 such that

K := min {−fu(u?, v?)− η1(a1 + µ1),−gv(u?, v?)− η1(a2 + µ2)} > 0.

Set moreover A1 := 1 and

A2 := max
{
a2

1
K2 ,

χ2
1

D1D2

}
u2
? > 0.

Then Lemma 5.3.2 provides us with η ∈ (0, η1) such that

d
dt

(∫
Ω

(u− u?)2 +A2

∫
Ω
v2
)

+D1

∫
Ω
|∇u|2 +A2D2

∫
Ω
|∇v|2

+2K
∫

Ω
(u− u?)2 + 2A2K

∫
Ω
v2

≤ 2a1u?

∫
Ω

(u− u?)v + 2χ1u?

∫
Ω
∇u · ∇v in (0, Tη),

whenever u0, v0 comply with (5.1.3).

Henceforth fixing such initial data, two applications of Young’s inequality give

2a1u?

∫
Ω

(u− u?)v ≤ K
∫

Ω
(u− u?)2 + a2

1u
2
?

K

∫
Ω
v2 ≤ K

∫
Ω

(u− u?)2 +A2K

∫
Ω
v2

and

2χ1u?

∫
Ω
∇u · ∇v ≤ D1

∫
Ω
|∇u|2 + χ2

1u
2
?

D1

∫
Ω
|∇v|2 ≤ D1

∫
Ω
|∇u|2 +A2D2

∫
Ω
|∇v|2

in (0, Tmax), so that the statement follows by the comparison principle for ordinary differ-
ential equations.

The case (5.H2) with λ2µ1 = λ1a2 cannot be handled in a similar fashion as then gv(u?, v?)
vanishes, resulting in the term A2(−gv(u?, v?)− η(a2 +µ2))

∫
Ω v

2 in (5.3.8) having an unfa-
vorable sign. Similarly, if λ1 = 0, then fu(u?, v?) = 0 and A1(−fu(u?, v?)− η(a1 +µ1)) < 0.
Thus, we introduce an additional functional to counter these terms.
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Lemma 5.4.6. Suppose that u0, v0 comply with (5.1.3). If λ1 = 0, then

d
dt

∫
Ω
u = −µ1

∫
Ω
u2 + a1

∫
Ω
uv in (0, Tmax) (5.4.5)

and if (5.H2) holds with λ2µ1 = λ1a2, then

d
dt

∫
Ω
v = −µ2

∫
Ω
v2 − a2

∫
Ω

(u− u?)v in (0, Tmax). (5.4.6)

Proof. The first statement immediately follows by integrating the first equation in (5.P).

Furthermore, the assumptions (5.H2) and λ2µ1 = λ1a2 imply (u?, v?) = (λ1
µ1
, 0) = (λ2

a2
, 0)

and hence

g(u, v) = v(λ2 − µ2v − a2u)
= v(λ2 − µ2v − a2u?) + a2(u? − u)v
= −µ2v

2 − a2(u− u?)v in (0, Tmax).

Thus, the second statement follows also due to integrating.

With the help of this lemma, we can now handle the remaining case, namely (5.H2) with
λ2µ1 = λ1a2. The proof is split into three lemmata; before dealing with the (in some sense)
fully degenerate case, in the following two lemmata, we first handle the half-degenerate case,
where at least u? > 0 and fu(u?, v?) > 0.

Lemma 5.4.7. Suppose (5.H2), λ2µ1 = λ1a2 as well as λ1 > 0 and, for η > 0, let Tη be as
in (5.3.1).

(i) There are η > 0 and K1,K2 > 0 such that

‖v(·, t)‖L1(Ω) ≤
(
K1
(
‖u0 − u?‖L1(Ω) + ‖v0‖L1(Ω)

)−1 +K2t
)−1

for all t ∈ (0, Tη), whenever u0, v0 are such that (5.1.3) holds.

(ii) We can find η′ > 0 and K ′1,K ′2 > 0 such that

‖v(·, t)‖W 2,2(Ω) ≤
(
K ′1
(
‖u0 − u?‖W 2,2(Ω) + ‖v0‖W 2,2(Ω)

)−1 +K ′2t
)−1

for all t ∈ (0, Tη′) if u0, v0 comply with (5.1.3).

Proof. Setting A1 := 1, X2 := a1u?
a2

> 0, A2 := χ2
1u

2
?

D1D2
> 0, by Lemma 5.3.2 and

Lemma 5.4.6, we find η0 > 0 such that

d
dt

(
A1

2

∫
Ω

(u− u?)2 + A2

2

∫
Ω
v2 +X2

∫
Ω
v

)
+A1D1

2

∫
Ω
|∇u|2 + A2D2

2

∫
Ω
|∇v|2

+ (−A1fu(u?, v?)−A1η(a1 + µ1))
∫

Ω
(u− u?)2 + (X2µ2 −A2η(a2 + µ2))

∫
Ω
v2

≤ (A1a1u? −X2a2)
∫

Ω
(u− u?)v +A1χ1u?

∫
Ω
∇u · ∇v (5.4.7)
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in (0, Tη) for all η ≤ η0, whenever u0, v0 comply with (5.1.3).

We set c1 := A1fu(u?,v?)
2 > 0, c2 := X2µ2

2 > 0, c3 := min
{

4c1
3A2

1
, 2c2

3A2
2
, c2

6X2
2 |Ω|

}
> 0 as well as

η := min
{

1, η0, |Ω|−
1
2 ,

c1
A1(a1 + µ1) ,

c2
A2(a2 + µ2)

}
> 0

and fix u0, v0 satisfying (5.1.3).

As the term A1a1u? − X2a2 vanishes due to the definitions of A1 and X2, and Young’s
inequality as well as the definition of A2 imply

A1χ1u?

∫
Ω
∇u · ∇v ≤ A1D1

2

∫
Ω
|∇u|2 + A2D2

2

∫
Ω
|∇u|2 in (0, Tmax),

we may conclude from (5.4.7) that
d
dt

(
A1

2

∫
Ω

(u− u?)2 + A2

2

∫
Ω
v2 +X2

∫
Ω
v

)
≤ −c1

∫
Ω

(u− u?)2 − c2
∫

Ω
v2 holds in (0, Tη).

Since η ≤ |Ω|− 1
2 implies

∫
Ω(u− u?)2 ≤ 1 as well as

∫
Ω v

2 ≤ 1 in (0, Tη) and due to Hölder’s
inequality as well as the elementary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for a, b, c ∈ R,
we further obtain

d
dt

(
A1

2

∫
Ω

(u− u?)2 + A2

2

∫
Ω
v2 +X2

∫
Ω
v

)
≤ −c1

∫
Ω

(u− u?)2 − c2
2

∫
Ω
v2 − c2

2

∫
Ω
v2

≤ −c1
(∫

Ω
(u− u?)2

)2
− c2

2

(∫
Ω
v2
)2
− c2

2|Ω|

(∫
Ω
v

)2

≤ −c3
(
A1

2

∫
Ω

(u− u?)2 + A2

2

∫
Ω
v2 +X2

∫
Ω
v

)2
in (0, Tη).

Because of η ≤ 1 and since without loss of generality both ‖u0 − u?‖L∞(Ω) and ‖v0‖L∞(Ω)
are smaller than η, this implies

X2‖v(·, t)‖L1(Ω)

≤

((
A1

2

∫
Ω

(u0 − u?)2 + A2

2

∫
Ω
v2

0 +X2

∫
Ω
v0

)−1
+ c3t

)−1

≤

((
A1

2

∫
Ω
|u0 − u?|+

(
A2

2 +X2

)∫
Ω
v0

)−1
+ c3t

)−1

for all t ∈ (0, Tη)

and hence proves part (i) for certain K1,K2 > 0.

Part (ii) follows then from Lemma 5.4.4, part (i) and the observation that

‖v‖W 2,2(Ω) ≤ ‖v − v‖W 2,2(Ω) + ‖v‖L2(Ω)

≤ C‖∆v‖L2(Ω) + |Ω|− 1
2 ‖v‖L1(Ω) holds in (0, Tmax)

due to Lemma 5.7.2 (with C > 0 as in that lemma).
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Next, we proceed to gain similar estimates also for the first equation.

Lemma 5.4.8. Assume (5.H2) holds and λ2µ1 = λ1a2 as well as λ1 > 0. Then there are
η > 0 and K1,K2 > 0 such that

‖u(·, t)− u?‖W 2,2(Ω) ≤
(
K1
(
‖u0 − u?‖W 2,2(Ω) + ‖v0‖W 2,2(Ω)

)−1 +K2t
)−1

for all t ∈ (0, Tη) if u0, v0 satisfy (5.1.3) and Tη is as in (5.3.1).

Proof. We choose η1 > 0 so small that c1 := λ1 − (a1 + µ1)η1 > 0 and set

c2 := max
{
a2

1u
2
?

c1
,

2χ2
1u

2
?

3D1
+ χ1

}
.

By Lemma 5.3.1 and Lemma 5.4.7, there are moreover η2, η3 > 0 and c3, c4 > 0 such that

d
dt

∫
Ω

(u− u?)2 + 3D1

2

∫
Ω
|∇u|2 + 2 (−fu(u?, v?)− η(a1 + µ1))

∫
Ω

(u− u?)2

≤ 2a1u?

∫
Ω

(u− u?)v + 2χ1u?

∫
Ω
∇u · ∇v + ηχ1

∫
Ω
|∇v|2 in (0, Tη) for all η ∈ (0, η2]

and

‖v(·, t)‖2W 2,2(Ω) ≤
(√

c2c3
(
‖u0 − u?‖W 2,2(Ω) + ‖v0‖W 2,2(Ω)

)−1 +√c2c4t
)−2

in (0, Tη3), provided u0, v0 comply with (5.1.3).

Thus, fixing η := min{η1, η2, η3, 1} as well as u0, v0 satisfying (5.1.3) and noting that
fu(u?, v?) = −λ1, we obtain

d
dt

∫
Ω

(u− u?)2

≤ −3D1

2

∫
Ω
|∇u|2 − 2c1

∫
Ω

(u− u?)2 + 2a1u?

∫
Ω

(u− u?)2v

+2χ1u?

∫
Ω
∇u · ∇v + ηχ1

∫
Ω
|∇u|2

≤ −c1
∫

Ω
(u− u?)2 + a2

1u
2
?

c1

∫
Ω
v2 +

(
2χ2

1u
2
?

3D1
+ χ1

)∫
Ω
|∇v|2

≤ −c1
∫

Ω
(u− u?)2 + c2

(∫
Ω
v2 +

∫
Ω
|∇v|2

)
≤ −c1

∫
Ω

(u− u?)2 +
(
c3
(
‖u0 − u?‖W 2,2(Ω) + ‖v0‖W 2,2(Ω)

)−1 + c4t
)−2

in (0, Tη),

which by the variation-of-constants formula implies∫
Ω

(u− u?)2(·, t)

≤ e−c1t
∫

Ω
(u0 − u?)2(·, t) +

∫ t

0
e−c1(t−s)(c3I−1

0 + c4s)−2 ds for all t ∈ (0, Tη),
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where we abbreviated I0 := ‖u0 − u?‖W 2,2(Ω) + ‖v0‖W 2,2(Ω). Noting that [0,∞) 3 s 7→
(cbI−1

0 + ccs)−2 is decreasing, we further calculate∫ t

0
e−c1(t−s)(c3I−1

0 + c4s)−2 ds

=
∫ t/2

0
e−c1(t−s)(c3I−1

0 + c4s)−2 ds+
∫ t

t/2
e−c1(t−s)(c3I−1

0 + c4s)−2 ds

≤ I2
0
c23

∫ t

t/2
e−c1s ds+

(
c3I
−1
0 + c4t

2

)−2 ∫ t/2

0
e−s ds

≤ I2
0

c1c23
e−

c1
2 t + 1

(√c1c3I−1
0 +

√
c1c4t
2 )2

for all t ∈ (0, Tη).

Combining these estimates with Lemma 5.4.4 and Lemma 5.7.2 yields the statement for
certain K1,K2 > 0.

Finally, we deal with the aforementioned fully degenerate case.

Lemma 5.4.9. Suppose (5.H2) and λ1 = λ2 = 0. Then there are η > 0 and K1,K2 > 0
such that

‖u(·, t)‖W 2,2(Ω) + ‖v(·, t)‖W 2,2(Ω)

≤
(
K1
(
‖u0‖W 2,2(Ω) + ‖v0‖W 2,2(Ω)

)−1 +K2t
)−1

(5.4.8)

for all t ∈ (0, Tη), where Tη is defined in (5.3.1), provided u0, v0 satisfy (5.1.3).

Proof. We set c1 := min{µ1,µ2}
2 and fix u0, v0 complying with (5.1.3).

By multiplying (5.4.5) and (5.4.6) with a2 and a1, respectively, we obtain

d
dt

(
a2

∫
Ω
u+ a1

∫
Ω
v

)
= −µ1a2

∫
Ω
u2 − µ2a1

∫
Ω
v2 in (0, Tmax).

Hence, along with Hölder’s inequality this implies

d
dt

(
a2

∫
Ω
u+ a1

∫
Ω
v

)
≤ −c1

(
a2

∫
Ω
u+ a1

∫
Ω
v

)2
in (0, Tmax),

which upon integrating results in

a2

∫
Ω
u(·, t) + a1

∫
Ω
v(·, t) ≤

((
a2

∫
Ω
u0 + a1

∫
Ω
v0

)−1
+ c1t

)−1

(5.4.9)

for all t ∈ (0, Tmax).

As in the proof of Lemma 5.4.7, we now apply Lemma 5.7.2 (with C > 0 as in that lemma)
to see that

‖ϕ‖W 2,2(Ω) ≤ ‖ϕ− ϕ‖W 2,2(Ω) + ‖ϕ‖L2(Ω) ≤ C‖∆ϕ‖L2(Ω) + |Ω|− 1
2 ‖ϕ‖L1(Ω)

for all ϕ ∈ C2(Ω) with ∂νϕ = 0, which when applied to ϕ = u and ϕ = v and combined
with (5.4.9) and Lemma 5.4.4 implies (5.4.8) for certain K1,K2 > 0 and η > 0.
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5.5. Proof of Theorem 5.1.1

The various lemmata from Section 5.4 allow us now to find ε > 0 such that if u0, v0 satisfy
((5.1.3) and) (5.1.5), then Tmax =∞ and (u, v) converges to (u?, v?).

Lemma 5.5.1. For ε > 0 and K1,K2 > 0, define

yε,K1,K2 : [0,∞)→ R, t 7→

( 1
K1ε

+K2t)−1, if (5.H2) holds and λ2µ1 = λ1a2,

K1εe−K2t, else.

Then there are ε > 0 and K1,K2 > 0 such that Tmax(u0, v0) =∞,

‖(u(u0, v0))(·, t)− u?‖W 2,2(Ω) + ‖(v(u0, v0))(·, t)− v?‖W 2,2(Ω) ≤ yε,K1,K2(t)

for all t ≥ 0, whenever u0, v0 satisfy (5.1.3) and (5.1.5).

Proof. Lemma 5.4.2, Lemma 5.4.3, Lemma 5.4.4, Lemma 5.4.5, Lemma 5.4.7 (ii), Lem-
ma 5.4.8 and Lemma 5.4.9 imply that there are η > 0 and K1,K2 > 0 with the following
property: Let ε′ > 0. If u0, v0 comply with (5.1.3) and (5.1.5) with ε replaced by ε′, then

‖u(·, t)− u?‖W 2,2(Ω) + ‖v(·, t)− v?‖W 2,2(Ω) ≤ yε′,K1,K2(t) (5.5.1)

for all t ∈ [0, Tη), where (u, v) := (u(u0, v0), v(u0, v0)) and Tη := Tη(u0, v0) is as in (5.3.1).

Thanks to the restriction n ≤ 3, Sobolev’s embedding theorem asserts that there are α ∈
(0, 1) and c1 > 0 such that

‖ϕ‖Cα(Ω) ≤ c1‖ϕ‖W 2,2(Ω) for all ϕ ∈W 2,2(Ω).

Fix an arbitrary ε ∈ (0, η
c1 max{K1,1} ) and u0, v0 complying not only with (5.1.3) but also

with (5.1.5). As then

‖u0 − u?‖L∞(Ω) + ‖v0 − v?‖L∞(Ω)

≤ c1
(
‖u0 − u?‖W 2,2(Ω) + ‖v0 − v?‖W 2,2(Ω)

)
≤ c1ε < η,

we infer Tη > 0 from u, v ∈ C0(Ω× [0, Tmax)). Moreover,

‖u(·, t)− u?‖L∞(Ω) + ‖v(·, t)− u?‖L∞(Ω)

≤ ‖u(·, t)− u?‖Cα(Ω) + ‖v(·, t)− u?‖Cα(Ω)

≤ c1
(
‖u(·, t)− u?‖W 2,2(Ω) + ‖v(·, t)− v?‖W 2,2(Ω)

)
≤ c1yε,K1,K2(t)
≤ c1yε,K1,K2(0)
= K1c1ε < η for all t ∈ (0, Tη), (5.5.2)

hence the definition (5.3.1) of Tη asserts Tη = Tmax. In that case, (5.5.2) further implies
Tmax = ∞ because of the blow-up criterion (5.2.2). Finally, as then Tη = Tmax = ∞, the
statement is equivalent to (5.5.1).

Theorem 5.1.1 is now a direct consequence of already proved lemmata.

Proof of Theorem 5.1.1. Local existence and the regularity statements were already
part of Lemma 5.2.1, while global extensibility, convergence to (u?, v?) as well as the claimed
convergence rates were the subject of Lemma 5.5.1.
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5.6. Possible generalizations of Theorem 5.1.1

Having proven Theorem 5.1.1, let us discuss whether the methods used in this chapter could
potentially be used to derive more general versions thereof.

Remark 5.6.1. We recall that the limitation on the space dimension, namely that n ∈
{1, 2, 3}, has only been used at one place: In the proof of Lemma 5.5.1 we made use of
the embedding W 2,2(Ω) ↪→ Cα(Ω) (for some α ∈ (0, 1)), which only holds in said space
dimensions. Thus, it is conceivable that replacing W 2,2(Ω) by Wm,2(Ω) for suitable m ∈ N
in Theorem 5.1.1 allows for certain generalizations of the main result of the present chapter.

Indeed, if n = 1, Theorem 5.1.1 remains correct if one replaces W 2,2(Ω) by W 1,2(Ω) in
all occurrences (and W 2,2

N (Ω) also by W 1,2(Ω)). This can be seen by a straightforward
modification of the proofs above: Combine Lemma 5.3.2 only with Lemma 5.3.3 and not
also with Lemma 5.3.4. However, a detailed proof would lead to either a considerably longer
or a unreasonably more complicated exposition (or to both) and is hence omitted.

At first glance, similar arguments as above appear to imply an analogon of Theorem 5.1.1
(withW 2,2(Ω) replaced byWm,2(Ω) for sufficiently largem ∈ N) even for higher dimensions.
The main problem, however, is, that during the computations several boundary terms would
appear, which apparently cannot be dealt with easily. Let us emphasize that the question
whether (a suitably modified version of) Theorem 5.1.1 holds also in the higher dimensional
setting is purely of mathematical interest. The biologically relevant dimensions are covered
in Theorem 5.1.1.

Remark 5.6.2. The prototypical choices of S1, S2, f and g in (5.1.1) are mainly made for
simplicity. We leave it to further research to determine more general conditions on these
functions allowing for a theorem of the form of Theorem 5.1.1.

Still, the methods employed should be robust enough to also allow for (certain) nonlinear
taxis sensitivities, for instance. At least for the case (5.H2) with λ2µ1 > λ1a2, however, the
signs of S1 and S2 are important: Our approach demands, that, roughly speaking, predators
move towards their prey and the prey flees from them.

The case (5.H2) with λ2µ1 ≤ λ1a2 is even less sensitive to such changes. In fact, as the
proofs above clearly show, the conclusion of Theorem 5.1.1 remains true for different signs
of χ1, χ2 (with the exception that for χ1 > 0 > χ2 or χ1 < 0 < χ2, one has to do some
additional work at the level of local existence).

Likewise, the methods presented here should, in general, also work for different functional
responses. Again, there is one caveat: The species moving towards (away from) the other
one needs to benefit from (be harmed by) inter-species encounters.

5.7. Gagliardo–Nirenberg inequalities

At last, we prove various inequalities which have been used several times in the proof of Theo-
rem 5.1.1. Throughout this section, we fix a smooth, bounded domain Ω ⊂ Rn, n ∈ N, define
ϕ :=

∫
Ω ϕ for ϕ ∈ L1(Ω) and set Wm,p

N (Ω) := {ϕ ∈ C∞(Ω) : ∂νϕ = 0 on ∂Ω }
‖·‖Wm,p(Ω) for

m ∈ N and p ∈ [1,∞). (As can be easily seen, for m = p = 2, this definition is consistent
with the definition of W 2,2

N (Ω) given in (5.1.4).)
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We begin by stating the Poincaré inequality and straightforward consequences thereof.

Lemma 5.7.1. There exists CP > 0 such that∫
Ω

(ϕ− ϕ)2 ≤ CP

∫
Ω
|∇ϕ|2 for all ϕ ∈W 1,2(Ω)∫

Ω
|∇ϕ|2 ≤ CP

∫
Ω
|∆ϕ|2 for all ϕ ∈W 2,2

N (Ω) and∫
Ω
|∆ϕ|2 ≤ CP

∫
Ω
|∇∆ϕ|2 for all ϕ ∈W 3,2

N (Ω).

Proof. Since Ω is assumed to be smooth and bounded, Poincaré’s inequality (cf. [56, Corol-
lary 12.28]) asserts that there is CP > 0 such that∫

Ω
(ϕ− ϕ)2 ≤ CP

∫
Ω
|∇ϕ|2 for all ϕ ∈W 1,2(Ω). (5.7.1)

By straightforward approximation and normalization arguments, it is sufficient to prove the
remaining two inequalities for all ϕ ∈ C∞(Ω) with

∫
Ω ϕ = 0 and ∂νϕ = 0 on ∂Ω. Thus, we

fix such a ϕ.

An integration by parts, Hölder’s inequality and (5.7.1) give∫
Ω
|∇ϕ|2 = −

∫
Ω
ϕ∆ϕ+

∫
∂Ω
ϕ∂νϕ

≤
(∫

Ω
ϕ2
) 1

2
(∫

Ω
|∆ϕ|2

) 1
2

+ 0

≤
(
CP

∫
Ω
|∇ϕ|2

) 1
2
(∫

Ω
|∆ϕ|2

) 1
2

,

hence, in both cases
∫

Ω |∇ϕ|
2 = 0 and

∫
Ω |∇ϕ|

2 > 0,∫
Ω
|∇ϕ|2 ≤ CP

∫
Ω
|∆ϕ|2.

Similarly, we have ∫
Ω
|∆ϕ|2 = −

∫
Ω
∇ϕ · ∇∆ϕ+

∫
Ω

∆ϕ∂νϕ

≤
(
CP

∫
Ω
|∆ϕ|2

) 1
2
(∫

Ω
|∇∆ϕ|2

) 1
2

+ 0

≤ CP

∫
Ω
|∇∆ϕ|2.

The following lemma should also be well-known. However, failing to find a suitable reference,
we choose to give a short proof.

Lemma 5.7.2. Let p ∈ (1,∞). There exists C > 0 such that

‖ϕ− ϕ‖W 2,p(Ω) ≤ C‖∆ϕ‖Lp(Ω) for all ϕ ∈W 2,p
N (Ω).
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Proof. Suppose this is not the case. By an approximation/normalization argument, there
would exist (ϕk)k∈N ⊂ C∞(Ω) with

∫
Ω ϕk = 0 as well as ∂νϕk = 0 on ∂Ω and

‖ϕk‖W 2,p(Ω) > k‖∆ϕk‖Lp(Ω) for all k ∈ N.

Without loss of generality, we may assume ‖ϕk‖W 2,p(Ω) = 1 for all k ∈ N. Thus, there are
ϕ∞ ∈W 2,p(Ω) and (kj)j∈N ⊂ N with kj →∞ for j →∞ such that

ϕkj ⇀ ϕ∞ in W 2,p(Ω) as j →∞.

Since W 2,p(Ω) ↪→↪→ Lp(Ω), this implies

ϕkj → ϕ∞ in Lp(Ω) as j →∞

and thus also
∫

Ω ϕ∞ = 0.

As ∣∣∣∣∫
Ω
∇ϕ∞ · ∇ψ

∣∣∣∣ = lim
j→∞

∣∣∣∣∫
Ω
∇ϕkj · ∇ψ

∣∣∣∣ = lim
j→∞

∣∣∣∣∫
Ω

∆ϕkjψ
∣∣∣∣

≤ lim sup
j→∞

1
kj
‖ψ‖

L
p
p−1 (Ω)

= 0 for all ψ ∈ C∞(Ω)

by Hölder’s inequality, we further conclude that ϕ∞ is constant and because of
∫

Ω ϕ∞ = 0
we have ϕ∞ ≡ 0.

However, as [18, Theorem 19.1] asserts

‖ψ‖W 2,p(Ω) ≤ C‖∆ψ‖Lp(Ω) + C‖ψ‖Lp(Ω) for all ψ ∈ C2(Ω) with ∂νψ = 0 on ∂Ω

for some C > 0, we derive

1 = lim
j→∞

‖ϕkj‖W 2,p(Ω) ≤ C lim sup
j→∞

(
‖∆ϕkj‖Lp(Ω) + ‖ϕkj‖Lp(Ω)

)
= 0,

a contradiction.

These lemmata immediately imply the following version of the Gagliardo–Nirenberg inequal-
ity.

Lemma 5.7.3. Let j ∈ {0, 1} and suppose p, q ∈ [1,∞], r ∈ (1,∞) are such that

θ :=
1
p −

j
n −

1
q

1
r −

2
n −

1
q

∈
[
j

2 , 1
)
.

Then there exists C > 0 such that

‖ϕ− ϕ‖W j,p(Ω) ≤ C‖∆ϕ‖θLr(Ω)‖ϕ− ϕ‖
1−θ
Lq(Ω) for all ϕ ∈W 2,r

N (Ω). (5.7.2)

In particular, for any r ∈ (1,∞), we may find C ′ > 0 such that

‖∇ϕ‖2rL2r(Ω) ≤ C
′‖∆ϕ‖rLr(Ω)‖ϕ− ϕ‖

r
L∞(Ω) for all ϕ ∈W 2,r

N (Ω). (5.7.3)
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Proof. The usual Gagliardo–Nirenberg inequality [69] gives c1 > 0 such that

‖ϕ− ϕ‖W j,p(Ω) ≤ c1‖D2ϕ‖θLr(Ω)‖ϕ− ϕ‖
1−θ
Lq(Ω) + c1‖ϕ− ϕ‖L1(Ω) for all ϕ ∈W 2,r(Ω).

As Hölder’s inequality asserts

‖ψ‖L1(Ω) ≤ c2‖ψ‖θLr(Ω)‖ψ‖
1−θ
Lq(Ω) for all ψ ∈ Lr(Ω) ∩ Lq(Ω)

for some c2 > 0, we find c3 > 0 such that

‖ϕ− ϕ‖W j,p(Ω) ≤ c3‖ϕ− ϕ‖θW 2,r(Ω)‖ϕ− ϕ‖
1−θ
Lq(Ω) for all ϕ ∈W 2,r(Ω).

In conjunction with Lemma 5.7.2, this proves (5.7.2).

Moreover, for any r ∈ (1,∞), letting j := 1, p := 2r and q :=∞, we see that
1
p −

j
n −

1
q

1
r −

2
n −

1
q

=
1
2r −

1
n

1
r −

2
n

= 1
2 ∈

[
j

2 , 1
)
.

Hence, (5.7.3) follows from (5.7.2).

In order to avoid any discussions how
∫

Ω |D
3ϕ|2 and

∫
Ω |∇∆ϕ|2 relate for ϕ ∈W 3,2

N (Ω), we
choose to prove the following Gagliardo–Nirenberg-type inequalities, which have been used
in the proof of Lemma 5.3.4, by hand.

Lemma 5.7.4. There exists C > 0 such that for all ϕ ∈W 3,2
N (Ω) the estimates∫

Ω
|∇ϕ|6 ≤ C‖ϕ− ϕ‖4L∞(Ω)

∫
Ω
|∇∆ϕ|2

and ∫
Ω
|∆ϕ|3 ≤ C‖ϕ− ϕ‖L∞(Ω)

∫
Ω
|∇∆ϕ|2

hold.

Proof. By Lemma 5.7.3, there is c1 > 0 such that∫
Ω
|∇ϕ|6 ≤ c1‖ϕ− ϕ‖3L∞(Ω)

∫
Ω
|∆ϕ|3 for all ϕ ∈W 2,3

N (Ω). (5.7.4)

Let ϕ ∈ C3(Ω) with ∂νϕ = 0 on ∂Ω. Noting that (|ξ|ξ)′ = 2|ξ| for ξ ∈ R, by an integration
by parts, Hölder’s inequality and (5.7.4) we obtain∫

Ω
|∆ϕ|3 =

∫
Ω
|∆ϕ|∆ϕ∆ϕ

= −
∫

Ω
∇(|∆ϕ|∆ϕ) · ∇ϕ

= −2
∫

Ω
|∆ϕ|∇ϕ · ∇∆ϕ

≤ 2
(∫

Ω
|∆ϕ|3

) 1
3
(∫

Ω
|∇ϕ|6

) 1
6
(∫

Ω
|∇∆ϕ|2

) 1
2

≤ 2c
1
6
1 ‖ϕ− ϕ‖

1
2
L∞(Ω)

(∫
Ω
|∆ϕ|3

) 1
2
(∫

Ω
|∇∆ϕ|2

) 1
2

,
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5.7. Gagliardo–Nirenberg inequalities

hence ∫
Ω
|∆ϕ|3 ≤ c2‖ϕ− ϕ‖L∞(Ω)

∫
Ω
|∇∆ϕ|2,

where c2 := 4c
1
3
1 . Plugging this into (5.7.4) yields∫

Ω
|∇ϕ|6 ≤ c1c2‖ϕ− ϕ‖4L∞(Ω)

∫
Ω
|∇∆ϕ|2.

The statement follows by an approximation procedure and by setting C := max{c1, c1c2}.
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6. Global weak solutions to fully
cross-diffusive systems with
nonlinear diffusion and saturated
taxis sensitivity

6.1. Introduction

In the present chapter, we continue our study of variants of the so-called pursuit–evasion
model {

ut = ∇ · (d1∇u− χ1u∇v) + f1(u, v),
vt = ∇ · (d2∇v + χ2v∇u) + f2(u, v),

(6.1.1)

which has been proposed in [89] for modeling predator–prey interactions. Herein, u and v
correspond to the predator and prey densities, d1, d2, χ1, χ2 > 0 are given parameters and
f1, f2 relate to certain functional responses.

While systems of ordinary differential equations essentially assume a spatially homogeneous
setting, the simplest way to account for nontrivial spatial behavior is to assume that the
species move around randomly. However, sufficiently intelligent predators and prey may
also partially orient their movement towards or away from higher concentrations of the
other species—abilities intended to be captured by positive values of χ1 and χ2.

For further motivation regarding the system (6.1.1) and especially for an overview of results
treating the single cross-diffusive cases, that is, when either χ1 = 0 or χ2 = 0, we refer to
the introduction of Chapter 5.

Nonlinear diffusion and saturated taxis sensitivities. We now extend the system
(6.1.1) to also allow for nonlinear diffusion and saturated taxis sensitives. By doing so, we
follow various precedents regarding the minimal Keller–Segel system{

ut = ∇ · (d1∇u− χ1u∇v),
vt = d2∆v − v + u,

(6.1.2)

which has been proposed in [45] to describe the behavior of the slime molds Dictyostelium
discoideum u, which are attracted by the chemical substance v they produce themselves,
and variants of which we have analyzed in the first part of this thesis.

Indeed, among the various modifications proposed for (6.1.2), particular prominent examples
include replacing the linear diffusion term with a quasilinear one and allowing for saturated
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6. Global weak solutions to fully cross-diffusive systems

taxis sensitivities (see also [36] for a (non-exhaustive) list of further possible changes). While
in part this has already been suggested by Keller and Segel in [45], the need for these
adjustments has been further emphasized by the desire to account for volume-filling in [72]
(see also [36, 110]).

Apart from biological motivations, suitable nonlinearities may also improve the regularity of
the system, as already thoroughly discussed in the introduction of Chapter 3. Accordingly,
we transfer these ideas to the model (6.1.1) and consider the system

ut = ∇ · (D1(u)∇u− S1(u)∇v) + f1(u, v) in Ω× (0,∞),
ut = ∇ · (D2(v)∇v + S2(v)∇u) + f2(u, v) in Ω× (0,∞),
∂νu = ∂νv = 0 on ∂Ω× (0,∞),
u(·, 0) = u0, v(·, 0) = v0 in Ω

(6.P)

in smooth bounded domains Ω ⊂ Rn, n ∈ N. Although the methods established below
would allow for more general choices, mainly for the sake of clarity we confine ourselves to
certain prototypical functions in (6.P); that is, we set

Di(s) := di(s+ 1)mi−1 and Si(s) := χis(s+ 1)qi−1 (6.1.3)

for s ≥ 0 and i ∈ {1, 2}, and where the parameters therein are such that

d1, d2, χ1, χ2 > 0, m1,m2 ∈ R, q1, q2 ∈ (−∞, 1]. (6.1.4)

Moreover, we choose to either neglect zeroth order kinetics altogether or assume a typical
Lotka–Voltera-type predator–prey interaction; that is, we further set

fi(s1, s2) := λisi − µis2
i + (−1)i+1ais1s2 (6.1.5)

for s1, s2 ≥ 0 and i ∈ {1, 2}, where

either λ1, λ2, µ1, µ2, a1, a2 = 0 (6.H1)
or λ1, λ2, µ1, µ2, a1, a2 > 0. (6.H2)

The entropy-like identity. Our goal is to construct global weak solutions of (6.P) for
widely arbitrary initial data. Thus, conditional estimates valid only as long u and v are
close to certain steady states (such as those derived in Chapter 5) are evidently insufficient
for our purposes. Instead, we will rely on the following unconditional entropy-like identity
which has already been made use of in [85, 86] for related systems. Setting

Gi(s) :=
∫ s

1

∫ ρ

1

1
Si(σ) dσ dρ for s ≥ 0 and i ∈ {1, 2},

a sufficiently smooth and positive global solution (u, v) to (6.P) satisfies

d
dt

(∫
Ω
G1(u) +

∫
Ω
G2(v)

)
+
∫

Ω

D1(u)
S1(u) |∇u|

2 +
∫

Ω

D2(v)
S2(v) |∇v|

2

=
∫

Ω

(
S1(u)
S1(u) −

S2(v)
S2(v)

)
∇u · ∇v +

∫
Ω
G′1(u)f1(u, v) +

∫
Ω
G′2(v)f2(u, v) (6.1.6)

in (0,∞). This functional inequality constitutes the main—if not essentially the only—source
for a priori estimates. In order to indeed gain any useful bounds from (6.1.6), however, we
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have to control the right-hand side therein. Evidently, the first term there just vanishes;
the functions G1 and G2 have been chosen precisely to guarantee a cancellation of the
cross-diffusive contributions.

Moreover, the last two summands on the right-hand side in (6.1.6) also simply vanish if
(6.H1) holds and they can be easily controlled if there are C1, C2 > 0 such that

G′1(s1)f1(s1, s2) +G′2(s2)f2(s1, s2) ≤ −C1s
2
1 ln s1 − C1s

2
2 ln s2 + C2 (6.F1)

for all s1, s2 ≥ 1. (We note that, while for bounding the right-hand side in (6.1.6) it would
suffice to take C1 = 0, positive values of C1 guarantee uniform integrability of fi(u, v)
which in turn will allow us to undertake certain limit processes in approximative problems.)
Unfortunately, (6.F1) cannot hold unconditionally. Indeed, suppose q1 = q2 = q ≤ 1 and
that (6.F1) holds for C1 = 0 and some C2 > 0. Taking s1 = s2 = s ≥ 1 in (6.F1) then
implies

C2 ≥ G′1(s)(λ1s− µ1s
2 + a1s

2) +G′2(s)(λ2s− µ2s
2 − a2s

2)

≥
∫ s

1

(σ + 1)1−q

σ
dσ
(
−µ1 + a1

χ1
+ −µ2 − a2

χ2

)
s2,

where the right-hand side diverges to ∞ as s ↗ ∞, provided a1
χ1

> µ1
χ1

+ µ2
χ2

+ a2
χ2

. Still,
in the case of q1 = q2 = q ≤ 1, Young’s inequality shows that (6.F1) holds provided a1 is
sufficiently small or χ1 is sufficiently large compared to the other parameters, for instance.

Of course, instead of (6.F1) one may also rely on the dissipative terms in (6.1.6) for con-
trolling the right-hand side in (6.1.6) and this idea will allow us to derive another sufficient
condition for bounding the right-hand side in (6.1.6). As integrating certain linear combi-
nations of the first two equations in (6.P) provides us with a locally uniform-in-time L1(Ω)
bound for both u and v, combining the Gagliardo–Nirenberg and Young inequalities shows
that requiring

m1 >
2n− 2
n

+ (3− q2)(2− q1)− (3− q1)(2− q2)
2− q2

or m2 >
2n− 2
n

+ (q2 − q1) (6.F2)

suffices to estimate the right-hand side in (6.1.6) against the dissipative terms therein (cf.
Lemma 6.4.8). We note that if q1 = q2, then (6.F2) is equivalent to max{m1,m2} > 2n−2

n .

Next, one could discuss more refined approaches and for instance also make use of the L2

space-time bounds (which in the case of (6.H2) result as a by-product when obtaining L1(Ω)
bounds). However, here we confine ourselves to the conditions (6.F1) and (6.F2), mainly
because treating the most general case possible would lead to several technical difficulties
which we would like to rather avoid here. Still, the important special cases that either a1 is
small or χ1 is large (condition (6.F1)) or m1 or m2 are large (condition (6.F2)) are included
in our analysis and, as the examples above show, at least qualitatively, these conditions seem
to be optimal.

Obtaining further a priori estimates. With the right-hand side of (6.1.6) under con-
trol, we then make use of (a corollary of) the Gagliardo–Nirenberg inequality to obtain
space-time bounds for u, v,∇u and ∇v. That is, assuming

mi − qi > −1 for i ∈ {1, 2}, (6.1.7)
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6. Global weak solutions to fully cross-diffusive systems

we can obtain estimates in Lp1 , Lp2 , Lr1 and Lr2 , respectively, where

pi :=
{

max{mi + 1− qi + 2(2−qi)
n , 2− qi}, if (6.H1) holds

max{mi + 1− qi + 2(2−qi)
n , 3− qi}, if (6.H2) holds

for i ∈ {1, 2} (6.1.8)

and

ri := min
{

2pi
pi − (mi − qi − 1) , 2

}
, for i ∈ {1, 2}, (6.1.9)

see Lemma 6.4.11 and Lemma 6.4.12. Lacking any other sources of helpful a priori bounds,
these estimates need to be strong enough to inter alia assert convergence of the corresponding
approximative terms to∫ ∞

0

∫
Ω
S1(u)∇v · ∇ϕ and

∫ ∞
0

∫
Ω
S2(v)∇u · ∇ϕ, ϕ ∈ C∞c (Ω× [0,∞)).

This is the case when pi and ri are sufficiently large. More precisely, we need to require
1

r3−i
< 1, qi ≤ 0,

qi
pi

+ 1
r3−i

< 1, 0 < qi < 1,
1
pi

+ 1
r3−i
≤ 1, qi = 1,

for i ∈ {1, 2} (6.1.10)

(In the case of qi = 1, we obtain slightly stronger bounds than outlined above so that equality
in (6.1.10) is sufficient for that case.) We remark that if mi = m ∈ R and qi = q ∈ (−∞, 1]
for i ∈ {1, 2}, then q ≤ 0 implies (6.1.10) while for q ∈ (0, 1) and if (6.H1) holds, (6.1.10) is
equivalent to

m > min
{

(2n+ 1)q − 2
n

, 4q − 1
}

(6.1.11)

Moreover, in the case of (6.H2) (and again q ∈ (0, 1)), (6.1.10) is not only implied by (6.1.11)
but also by m > 4q − 2.

Under these assumptions, we are then finally able to construct global weak solutions of the
problem (6.P).

Theorem 6.1.1. Let Ω ⊂ Rn, n ∈ N, be a smooth, bounded domain. Suppose that (6.1.3),
(6.1.4), (6.1.5), (6.1.7), either (6.H1) or (6.H2), (6.F1) or (6.F2), as well as (6.1.10) (with
pi and ri as in (6.1.8) and (6.1.9), respectively) hold and that

u0, v0 ∈

{
L2−qi(Ω), qi < 1,
L logL(Ω), qi = 1

are nonnegative a.e. (6.1.12)

Then there exists a global nonnegative weak solution (u, v) of (6.P) in the sense of Defini-
tion 6.5.1.

Structure of the chapter. A challenge not yet addressed is the construction of global
solutions to certain approximative problems. For systems similar to (6.P) but where either
S1 ≡ 0 or S2 ≡ 0, this is usually a straightforward task. For the fully cross-diffusive system
(6.P), however, even if all given functions are assumed to be bounded, the question of global
existence is already highly nontrivial, even for a weak solution concept.
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Thus, Section 6.2 is devoted to the construction of so-called weak W 1,2-solutions to systems
suitably approximating (6.P). The corresponding proof then relies on an additional approx-
imation; we make use of fourth-order regularization terms. The general strategy is described
more thoroughly at the beginning of Section 6.2, so we do not go into much more detail at
this point. However, it seems worth emphasizing that apart from obtaining these solutions,
we also prove a corresponding version of the entropy-like identity (6.1.6).

Next, in Section 6.3, we fix the final approximation functions used and rely on the results in
the preceding section to obtain a global weak W 1,2-solution fulfilling a certain entropy-like
inequality, see Lemma 6.3.2.

Section 6.4 then makes use of this inequality and the hypotheses of Theorem 6.1.1 in order to
guarantee sufficiently strong convergence towards a function pair (u, v), which in Section 6.5
is then finally seen to be a weak solution of (6.P).

Notation. Throughout the chapter, we fix n ∈ N and a smooth bounded domain Ω ⊂ Rn.
For p ∈ (1,∞), we set W 2,p

N (Ω) := {ϕ ∈W 2,p(Ω) : ∂νϕ = 0 in the sense of traces }.

Additionally, we use the following notation for Sobolev spaces involving evolution triples.
For an interval I ⊂ R and an evolution triple V ↪→ H ↪→ V ?, we set W 1,2(I;V,H) :=
{ϕ ∈ L2(I;V ) : ϕt ∈ L2(I;V ?) } and W 1,2

loc (I;V,H) :=
⋃

[a,b]⊂IW
1,2([a, b];V,H). Also, we

abbreviate W 1,2
(loc)(I;W 1,2(Ω)) := W 1,2

(loc)(I;W 1,2(Ω), L2(Ω)).

Moreover, for a set X, a function ϕ : X → R and A ∈ R, we abbreviate {x ∈ X : ϕ(x) ≤ A }
by {ϕ ≤ A}, the set X being implied by the context. Similarly for other order relations.

6.2. Global weak W 1,2-solutions to approximative
systems

In this section, we prove the following quite general global existence theorem, which we will
then use in Section 6.3 to obtain solutions to certain approximate problems. In contrast to
the hypotheses of Theorem 6.1.1, here we also assume that all given functions are bounded.
That is, in this section, we do not need to assume any of the conditions introduced in the
introduction of this chapter but instead require that (6.2.1)–(6.2.6) below are fulfilled.

Theorem 6.2.1. Suppose that, for i ∈ {1, 2},

Di ∈ C0([0,∞)) ∩ L∞((0,∞)), (6.2.1)
Si ∈ C1([0,∞)) ∩W 1,∞((0,∞)) and (6.2.2)
fi ∈ C0([0,∞)2) ∩ L∞((0,∞)2) (6.2.3)

fulfill

inf
s∈[0,∞)

Di(s) > 0, inf
s∈(0,1)

Si(s)
s

> 0, inf
s∈[1,∞)

Si(s) > 0 and Si(0) = 0 (6.2.4)

as well as

lim
s1↘0

sup
s2≥0
|f1(s1, s2) ln s1| = 0 and lim

s2↘0
sup
s1≥0
|f2(s1, s2) ln s2| = 0 (6.2.5)
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and assume that

u0, v0 ∈ C∞(Ω) are positive in Ω. (6.2.6)

Then there exists a global nonnegative weak W 1,2-solution (u, v) of (6.P), meaning that u
and v belong to the space W 1,2

loc ([0,∞);W 1,2(Ω)), satisfy

u(·, 0) = u0 as well as v(·, 0) = v0 a.e. in Ω (6.2.7)

and fulfill∫ ∞
0

∫
Ω
utϕ = −

∫ ∞
0

∫
Ω
D1(u)∇u · ∇ϕ+

∫ ∞
0

∫
Ω
S1(u)∇v · ∇ϕ+

∫ ∞
0

∫
Ω
f1(u, v)ϕ (6.2.8)

as well as∫ ∞
0

∫
Ω
vtϕ = −

∫ ∞
0

∫
Ω
D2(u)∇v · ∇ϕ−

∫ ∞
0

∫
Ω
S2(u)∇u · ∇ϕ+

∫ ∞
0

∫
Ω
f2(u, v)ϕ (6.2.9)

for all ϕ ∈ L2
loc([0,∞);W 1,2(Ω)).

In what follows, we fix Di, Si, fi, i ∈ {1, 2} fulfilling (6.2.1)–(6.2.4) as well as u0, v0 as in
(6.2.6).

As already alluded to in the introduction of this chapter, a cornerstone for gaining a priori
bounds for these solutions is the following theorem, which shows that the solutions con-
structed in Theorem 6.2.1 fulfill an inequality reminiscent of (6.1.6).

Theorem 6.2.2. Denote the weak W 1,2-solution of (6.P) given by Theorem 6.2.1 by (u, v)
and let

Gi(s) :=
∫ s

1

∫ ρ

1

1
Si(σ) dσ dρ for s ∈ R and i ∈ {1, 2}

as well as

E(t) :=
∫

Ω
G1(u(·, t)) +

∫
Ω
G2(v(·, t)),

D(t) :=
∫

Ω

D1(u(·, t))
S1(u(·, t)) |∇u(·, t)|2 +

∫
Ω

D2(v(·, t))
S2(v(·, t)) |∇v(·, t)|2 and

R(t) :=
∫

Ω
G′1(u(·, t))f1(u(·, t), v(·, t)) +

∫
Ω
G′2(v(·, t))f2(u(·, t), v(·, t))

for t ∈ [0,∞). (We remark that D and R are to be understood as functions in L0((0,∞));
that is, they are only well-defined up to modifications on null sets.) Then

E(T )ζ(T ) +
∫ T

0
D(t)ζ(t) dt ≤ E(0)ζ(0) +

∫ T

0
R(t)ζ(t) dt+

∫ T

0
E(t)ζ ′(t) dt (6.2.10)

for all T ∈ (0,∞) and 0 ≤ ζ ∈ C∞([0, T ]).

Next, we describe our approach of proving the theorems above. Similar to [85, 86], where
one-dimensional relatives of (6.P) have been studied, our general approach is approximation
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by a fourth order regularization. That is, for ε, δ ∈ (0, 1), we will first construct global
solutions to 

uεδt = ∇ · F1δ(uεδ, vεδ) + f1δ(uεδ, vεδ) in Ω× (0,∞),
vεδt = ∇ · F2δ(uεδ, vεδ) + f2δ(uεδ, vεδ) in Ω× (0,∞),
∂ν∆uεδ = ∂νuεδ = ∂ν∆vεδ = ∂νvεδ = 0 on ∂Ω× (0,∞),
uεδ(·, 0) = u0, vεδ(·, 0) = v0 in Ω

(6.Pεδ)

with fluxes

F1δ(uεδ, vεδ) := −εS1δ(uεδ)∇∆uεδ +D1(|uεδ|)∇uεδ − S1δ(uεδ)∇vεδ) and
F2δ(uεδ, vεδ) := −εS2δ(vεδ)∇∆vεδ +D2(|vεδ|)∇vεδ + S2δ(vεδ)∇uεδ)

and where

Siδ(s) := Si(|s|) + δ for s ∈ R, δ ∈ (0, 1) and i ∈ {1, 2} (6.2.11)

and

fiδ(s1, s2) := fi((s1)+, (s2)+) for s1, s2 ∈ R, δ ∈ (0, 1) and i ∈ {1, 2}. (6.2.12)

We note that (6.2.5) entails f1(0, ·) ≡ 0 and hence f1δ(ρ, σ) = 0 for all ρ ≤ 0 and σ ∈ R.
Likewise, f2δ(ρ, σ) = 0 for all ρ ∈ R and σ ≤ 0.

For convenience, let us introduce several abbreviations. For i ∈ {1, 2}, we set

Di := ‖Di‖L∞((0,∞)), Si := ‖Si‖L∞((0,∞)) + 1 and S
′
i := ‖S′i‖L∞((0,∞))

as well as

Di := inf
s∈[0,∞)

Di(s) and Si := inf
s∈(0,∞)

Si(s)[( 1
s − 1)1(0,1)(s) + 1].

Due to continuity of Si up to 0, the definition of Si entails that Si(s) ≥ Sis for all s ∈ [0, 1),
i ∈ {1, 2}.

The rest of this section is organized as follows. The first step towards proving Theorem 6.2.1
and Theorem 6.2.2 consists of constructing solutions to (6.Pεδ) and is achieved by a Galerkin
approach. To that end, non-degeneracy of the fourth order terms in (6.Pεδ) is of crucial
importance, which is the reason for introducing the parameter δ.

A general problem for equations of fourth-order is the lack of a maximum principle; that
is, uεδ, vεδ might become negative even for strictly positive initial data. Following [29],
however, we see in Subsection 6.2.2 that suitably constructed limit functions uε, vε are
indeed nonnegative. Here, degeneracy for δ = 0 actually comes in handy.

In contrast to Section 6.4, where we aim to argue similarly but only assume the hypotheses
of Theorem 6.1.1, the assumptions (6.2.3) and (6.2.5) allow us to rather easily obtain certain
a priori bounds from a version of the entropy-like identity (6.1.6). These allow us to so finally
let ε↘ 0 in Subsection 6.2.3 and then to prove Theorem 6.2.1 and Theorem 6.2.2.
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6. Global weak solutions to fully cross-diffusive systems

6.2.1. The limit process k →∞: existence of weak solutions to
(6.Pεδ) by a Galerkin method

To prepare the Galerkin approach used below for constructing solutions to (6.Pεδ), we briefly
state the well-known

Lemma 6.2.3. There exists an orthonormal basis {ϕj : j ∈ N } of L2(Ω) consisting of
smooth eigenfunctions of −∆ with homogeneous Neumann boundary conditions.

Proof. The existence of an orthonormal basis consisting of eigenfunctions of −∆ with ho-
mogeneous Neumann boundary conditions is given by [31, Theorem 1.2.8] and their smooth-
ness is proved by iteratively applying [18, Theorem 19.1].

For the Galerkin approach, we first construct local-in-time solutions to certain finite-dimen-
sional problems.

Lemma 6.2.4. Let (ϕj)j∈N be as in Lemma 6.2.3 and set Xk := span{ϕj : 1 ≤ j ≤ k } for
k ∈ N. For ε, δ ∈ (0, 1) and k ∈ N, there exist Tmax,εδk ∈ (0,∞] and functions

uεδk, vεδk ∈ C∞(Ω× [0, Tmax,εδk)) (6.2.13)

with

∂νuεδk = ∂ν∆uεδk = ∂νvεδk = ∂ν∆vεδk = 0 (6.2.14)

fulfilling

d
dt

∫
Ω
uεδkψ = ε

∫
Ω
S1δ(uεδk)∇∆uεδk · ∇ψ −

∫
Ω
D1(|uεδk|)∇uεδk · ∇ψ

+
∫

Ω
S1δ(uεδk)∇vεδk · ∇ψ +

∫
Ω
f1δ(uεδk, vεδk)ψ (6.2.15)

and

d
dt

∫
Ω
vεδkψ = ε

∫
Ω
S2δ(vεδk)∇∆vεδk · ∇ψ −

∫
Ω
D2(|vεδk|)∇vεδk · ∇ψ

−
∫

Ω
S2δ(vεδk)∇uεδk · ∇ψ +

∫
Ω
f2δ(uεδk, vεδk)ψ (6.2.16)

in (0, Tmax,εδk) for all ψ ∈ Xk as well as∫
Ω
uεδk(·, 0)ψ =

∫
Ω
u0ψ and

∫
Ω
vεδk(·, 0)ψ =

∫
Ω
v0ψ for all ψ ∈ Xk. (6.2.17)

Additionally, if Tmax,εδk <∞, then

lim sup
t↗Tmax,εδk

(
‖uεδk(·, t)‖L2(Ω) + ‖vεδk(·, t)‖L2(Ω)

)
=∞. (6.2.18)

106



6.2. Global weak W 1,2-solutions to approximative systems

Proof. We fix ε, δ ∈ (0, 1) and k ∈ N. For w, z ∈ Rk, we define F1(w, z), F2(w, z) ∈ Rk by

(F1(w, z))i := ε

∫
Ω
S1δ

(∑k
j=1wjϕj

)
∇∆

(∑k
j=1wjϕj

)
· ∇ϕi

−
∫

Ω
D1

(∣∣∣∑k
j=1wjϕj

∣∣∣)∇(∑k
j=1wjϕj

)
· ∇ϕi

+
∫

Ω
S1δ

(∑k
j=1wjϕj

)
∇
(∑k

j=1zjϕj

)
· ∇ϕi

+
∫

Ω
f1δ

(∑k
j=1wjϕj ,

∑k
j=1zjϕj

)
ϕi

and

(F2(w, z))i := ε

∫
Ω
S2δ

(∑k
j=1zjϕj

)
∇∆

(∑k
j=1zjϕj

)
· ∇ϕi

−
∫

Ω
D2

(∣∣∣∑k
j=1zjϕj

∣∣∣)∇(∑k
j=1zjϕj

)
· ∇ϕi

−
∫

Ω
S2δ

(∑k
j=1zjϕj

)
∇
(∑k

j=1wjϕj

)
· ∇ϕi

+
∫

Ω
f2δ

(∑k
j=1wjϕj ,

∑k
j=1zjϕj

)
ϕi

for i ∈ {1, . . . , k}.

As F1 and F2 are locally Lipschitz continuous, the Picard–Lindelöf theorem asserts the
existence of Tmax,εδk ∈ (0,∞] and w, z ∈ C0([0, Tmax,εδk)) ∩ C1((0, Tmax,εδk)) which solve

w′ = F1(w, z) in (0, Tmax,εδk),
z′ = F2(w, z) in (0, Tmax,εδk),
w(0) =

∫
Ω u0εϕ,

z(0) =
∫

Ω v0εϕ

classically and, if Tmax,εδk <∞, then

lim sup
t↗Tmax,εδk

(|w(t)|+ |z(t)|) =∞. (6.2.19)

According to Lemma 6.2.3, the functions

uεδk(x, t) :=
k∑
j=1

wj(t)ϕj(x) and vεδk(x, t) :=
k∑
j=1

zj(t)ϕj(x), x ∈ Ω, t ∈ [0, Tmax,εδk),

satisfy (6.2.13) and (6.2.14). Moreover, they fulfill

d
dt

∫
Ω
uεδkϕi = d

dt

∫
Ω

(∑k
j=1wjϕj

)
ϕi =

k∑
j=1

w′j

∫
Ω
ϕiϕj = w′i = (F1(w, z))i

in (0, Tmax,εδk) for i ∈ {1, . . . , k}. Thus, (6.2.15) is fulfilled for ψ = ϕi for all i ∈ {1, . . . , k}
and, due to linearity, also for all ψ ∈ Xk, as desired. Likewise, we obtain that (6.2.16) is
also fulfilled for all ψ ∈ Xk.

107



6. Global weak solutions to fully cross-diffusive systems

From
∫

Ω ϕiϕj = δij for i, j ∈ {1, . . . , k}, we further infer

k∑
j=0

w2
εδkj =

k∑
j=0

∫
Ω
w2
εδkjϕ

2
j =

∫
Ω

 k∑
j=0

wεδkjϕj

2

=
∫

Ω
u2
εδk in (0, Tmax,εδk)

and, likewise,

k∑
j=0

z2
εδkj =

∫
Ω
u2
εδk in (0, Tmax,εδk).

Thus, if (6.2.18) is not fulfilled, then (6.2.19) is also not satisfied, implying Tmax,εδk =∞.

In the following lemma, we show that the solutions (uεδk, vεδk) constructed in Lemma 6.2.4
are global in time. Moreover, in order to prepare the application of certain compactness
theorems, we also collect several k-independent a priori estimates.

As opposed to [29], however, these bounds may depend on δ, the reason being that in our
situation the terms stemming from the possibly nonlinear diffusion terms D1 and D2 can
no longer be controlled independently of δ, at least not in all situations covered by Theo-
rem 6.2.1. This problem will then be circumvented by deriving appropriate δ-independent
estimates in Lemma 6.2.11 below, which are, however, weaker than those obtained in the
present subsection.

Lemma 6.2.5. For all ε, δ ∈ (0, 1) and k ∈ N, let (uεδ, vεδ) and Tmax,εδk be as given by
Lemma 6.2.4. Then Tmax,εδk = ∞ for all ε, δ ∈ (0, 1) and k ∈ N and, moreover, for all
ε, δ ∈ (0, 1) and all T ∈ (0,∞), there exists C > 0 such that for all k ∈ N, the estimates

sup
t∈(0,T )

∫
Ω
u2
εδk(·, t) + sup

t∈(0,T )

∫
Ω
v2
εδk(·, t) ≤ C, (6.2.20)

sup
t∈(0,T )

∫
Ω
|∇uεδk(·, t)|2 + sup

t∈(0,T )

∫
Ω
|∇vεδk(·, t)|2 ≤ C and (6.2.21)∫ T

0

∫
Ω
|∇∆uεδk|2 +

∫ T

0

∫
Ω
|∇∆vεδk|2 ≤ C (6.2.22)

hold.

Proof. According to the Poincaré inequality (cf. Lemma 5.7.1), there is CP > 0 such that∫
Ω
|∆ψ|2 ≤ CP

∫
Ω
|∇∆ψ|2 for all ψ ∈W 3,2

N (Ω). (6.2.23)

We then fix ε, δ ∈ (0, 1), take uεδk as test function in (6.2.15) and apply Young’s inequality
to obtain

1
2

d
dt

∫
Ω
u2
εδk

= ε

∫
Ω
S1δ(uεδk)∇∆uεδk · ∇uεδk −

∫
Ω
D1(|uεδk|)|∇uεδk|2

+
∫

Ω
S1δ(uεδk)∇uεδk · ∇vεδk +

∫
Ω
f1δ(uεδk, vεδk)uεδk
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≤ ε

4

∫
Ω
S1δ(uεδk)|∇∆uεδk|2 +

(
εS1 −D1 + S1

2

)∫
Ω
|∇uεδk|2

+S1

2

∫
Ω
|∇vεδk|2 + 1

2

∫
Ω
u2
εδk +

|Ω|‖f1‖2L∞([0,∞)2)

2

in (0, Tmax,εδk) for all k ∈ N. Moreover, as the Laplacian leaves the space Xk defined in
Lemma 6.2.4 invariant, we may also use −∆uεδk ∈ Xk as a test function in (6.2.15), which
when combined with Young’s inequality, (6.2.12), (6.2.23) and (6.2.11) gives

1
2

d
dt

∫
Ω
|∇uεδk|2

= −ε
∫

Ω
S1δ(uεδk)|∇∆uεδk|2 +

∫
Ω
D1(|uεδk|)∇∆uεδk · ∇uεδk

−
∫

Ω
S1δ(uεδk)∇∆uεδk · ∇vεδk −

∫
Ω
f1δ(uεδk, vεδk)∆uεδk

≤ −3ε
4

∫
Ω
S1δ(uεδk)|∇∆uεδk|2 + εδ

8

∫
Ω
|∇∆uεδk|2 + εδ

8CP

∫
Ω
|∆uεδk|2

+2D2
1

εδ

∫
Ω
|∇uεδk|2 + S1

ε

∫
Ω
|∇vεδk|2 + 2CP|Ω|

εδ
‖f1‖2L∞([0,∞)2)

≤ −ε4

∫
Ω
S1δ(uεδk)|∇∆uεδk|2 −

εδ

4

∫
Ω
|∇∆uεδk|2

+2D2
1

εδ

∫
Ω
|∇uεδk|2 + S1

ε

∫
Ω
|∇vεδk|2 + 2CP|Ω|

εδ
‖f1‖2L∞([0,∞)2)

in (0, Tmax,εδk) for all k ∈ N.

Along with analogous computations for the second equation, we see that there are c1, c2 > 0
such that for all k ∈ N, the function

y(t) := 1
2

∫
Ω
u2
εδk + 1

2

∫
Ω
|∇uεδk|2 + 1

2

∫
Ω
v2
εδk + 1

2

∫
Ω
|∇vεδk|2, t ∈ [0, Tmax,εδk),

solves the ODI

y′(t) ≤ −c1
∫

Ω
|∇∆uεδk|2 − c1

∫
Ω
|∇∆vεδk|2 + c2y + c2 in (0, Tmax,εδk).

According to Grönwall’s inequality and as y(0) is finite and bounded independently of k
by (6.2.6), the estimates (6.2.20)–(6.2.22) are then valid for all finite T ∈ (0, Tmax,εδk] and
certain C > 0 (depending on ε, δ and T but not on k). Due to the extensibility criterion
(6.2.18), this then implies Tmax,εδk =∞ for all k ∈ N and then that (6.2.20)–(6.2.22) indeed
hold for all T ∈ (0,∞) (and corresponding C > 0).

Having an application of the Aubin–Lions lemma in mind, we next collect a priori estimates
for the time derivatives.

Lemma 6.2.6. For ε, δ ∈ (0, 1) and k ∈ N, we denote the solution given by Lemma 6.2.4
by (uεδk, vεδk). For all ε, δ ∈ (0, 1) and T ∈ (0,∞), there exist C1, C2 > 0 such that

‖uεδkt‖L2((0,T );(W 1,2(Ω))?) + ‖vεδkt‖L2((0,T );(W 1,2(Ω))?) ≤ C1 (6.2.24)
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6. Global weak solutions to fully cross-diffusive systems

and

‖∇uεδkt‖L2((0,T );(W 2,2
N

(Ω))?) + ‖∇vεδkt‖L2((0,T );(W 2,2
N

(Ω))?) ≤ C2 (6.2.25)

for all k ∈ N.

Proof. Let ε, δ ∈ (0, 1) and T ∈ (0,∞). Letting Xk be as in Lemma 6.2.4, we denote the
orthogonal projection from W 1,2(Ω) onto Xk by Pk. Applying Lemma 6.2.4 and Hölder’s
inequality shows that∣∣∣∣∫

Ω
uεδktϕ

∣∣∣∣ =
∣∣∣∣∫

Ω
uεδktPkϕ

∣∣∣∣
≤ ε

∣∣∣∣∫
Ω
S1δ(uεδk)∇∆uεδk · ∇Pkϕ

∣∣∣∣+
∣∣∣∣∫

Ω
D1(|uεδk|)∇uεδk · ∇Pkϕ

∣∣∣∣
+
∣∣∣∣∫

Ω
S1δ(uεδk)∇vεδk · ∇Pkϕ

∣∣∣∣+
∣∣∣∣∫

Ω
f1δ(uεδ, vεδ)Pkϕ

∣∣∣∣
≤
(
εS1‖∇∆uεδk‖L2(Ω) +D1‖∇uεδk‖L2(Ω)

+S1‖∇vεδk‖L2(Ω) + (‖f1‖L∞([0,∞)2))|Ω|
1
2

)
‖Pkϕ‖W 1,2(Ω)

for all ϕ ∈W 1,2(Ω) and k ∈ N. Upon integrating this inequality over (0, T ) and in conjunc-
tion with an analogous argument for vεδkt, we then infer (6.2.24) from (6.2.22), (6.2.21) and
(6.2.3).

Since for all ϕ ∈W 2,2
N (Ω;Rn) and k ∈ N, we have∣∣∣∣∫

Ω
∇uεδkt · ϕ

∣∣∣∣ =
∣∣∣∣∫

Ω
uεδkt∇ · ϕ

∣∣∣∣
≤ ‖uεδkt‖(W 1,2(Ω))?‖∇ · ϕ‖W 1,2(Ω)

≤ ‖uεδkt‖(W 1,2(Ω))?‖ϕ‖W 2,2(Ω;Rn)

(and likewise for ∇vεδkt), a consequence thereof is (6.2.25).

The bounds obtained above now allow us to obtain convergences of uεδk and vεδk along
certain subsequences of (k)k∈N.

Lemma 6.2.7. For all ε, δ ∈ (0, 1), there exist a subsequence (kj)j∈N of (k)k∈N and functions

uεδ, vεδ ∈W 1,2
loc ([0,∞);W 2,2

N (Ω),W 1,2(Ω)) ∩ L2
loc([0,∞);W 3,2(Ω)) ∩ C0([0,∞);W 1,2(Ω))

such that

uεδkj → uεδ and vεδkj → vεδ pointwise a.e., (6.2.26)
uεδkj → uεδ and vεδkj → vεδ in C0([0,∞);L2(Ω)), (6.2.27)
∇uεδkj → ∇uεδ and ∇vεδkj → ∇vεδ in L2

loc(Ω× [0,∞);Rn), (6.2.28)
∇∆uεδkj ⇀ ∇∆uεδ and ∇∆vεδkj ⇀ ∇∆vεδ in L2

loc(Ω× [0,∞);Rn), (6.2.29)
uεδkjt ⇀ uεδt and vεδkjt ⇀ vεδt in L2

loc([0,∞); (W 1,2(Ω))?) (6.2.30)

as j →∞.
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6.2. Global weak W 1,2-solutions to approximative systems

Proof. As the claims for the second solution component can be shown analogously, it
suffices to prove (6.2.26)–(6.2.30) for the first one. According to (6.2.20)–(6.2.22), (6.2.24)
and (6.2.25), the sequence (uεδk)k∈N is bounded in the spaceW 1,2

loc ([0,∞);W 2,2(Ω),W 1,2(Ω))
so that by a diagonalization argument, we obtain a sequence (kj)j∈N ⊂ N with kj →∞ and
a function uεδ ∈W 1,2

loc ([0,∞);W 2,2(Ω),W 1,2(Ω)) such that

uεδkj ⇀ uεδ in W 1,2
loc ([0,∞);W 2,2

N (Ω),W 1,2(Ω)) as j →∞,

which directly implies (6.2.29) and (6.2.30) and together with the Aubin–Lions lemma also
(6.2.28).

Thanks to (6.2.21) and (6.2.24), another application of the Aubin–Lions lemma yields
(6.2.27) and thus also (6.2.26), possibly after switching to subsequences.

We conclude this subsection by showing that the pair (uεδ, vεδ) constructed in Lemma 6.2.7
indeed solves (6.Pεδ) in a weak sense.

Lemma 6.2.8. Let ε, δ ∈ (0, 1). The tuple (uεδ, vεδ) constructed in Lemma 6.2.7 is a weak
solution of (6.Pεδ) in the sense that

uεδ(·, 0) = u0 as well as vεδ(·, 0) = v0 hold a.e. in Ω× (0,∞), (6.2.31)

and, for all T ∈ (0,∞) and ϕ ∈ L2((0, T );W 1,2(Ω)), we have∫ T

0

∫
Ω
uεδtϕ = ε

∫ T

0

∫
Ω
S1δ(uεδ)∇∆uεδ · ∇ϕ−

∫ T

0

∫
Ω
D1(|uεδ|)∇uεδ · ∇ϕ

+
∫ T

0

∫
Ω
S1δ(uεδ)∇vεδ · ∇ϕ+

∫ T

0

∫
Ω
f1δ(uεδ, vεδ)ϕ (6.2.32)

as well as∫ T

0

∫
Ω
vεδtϕ = ε

∫ T

0

∫
Ω
S2δ(vεδ)∇∆vεδ · ∇ϕ−

∫ T

0

∫
Ω
D2(|vεδ|)∇vεδ · ∇ϕ

−
∫ T

0

∫
Ω
S2δ(vεδ)∇uεδ · ∇ϕ+

∫ T

0

∫
Ω
f2δ(uεδ, vεδ)ϕ. (6.2.33)

Proof. We fix T ∈ (0,∞) as well as ϕ ∈ L2((0, T );W 1,2(Ω)), denote the orthogonal pro-
jection on Xk by Pk (where Xk is as in Lemma 6.2.4) and set (Pkϕ)(x, t) := (Pkϕ(·, t))(x)
for (x, t) ∈ Ω × (0, T ). Moreover, let (uεδ, vεδk) and (kj)j∈N be as given by Lemma 6.2.7.
According to Lemma 6.2.4 and Lemma 6.2.5, we then have∫ T

0

∫
Ω
uεδktPkϕ = ε

∫ T

0

∫
Ω
S1δ(uεδk)∇∆uεδk · ∇Pkϕ−

∫ T

0

∫
Ω
D1(|uεδk|)∇uεδk · ∇Pkϕ

+
∫ T

0

∫
Ω
S1δ(uεδk)∇vεδk · ∇Pkϕ+

∫ T

0

∫
Ω
f1δ(uεδk, vεδk)Pkϕ

for all k ∈ N. Since Pkϕ→ ϕ in L2((0, T );W 1,2(Ω)) for k →∞, we infer

lim
j→∞

∫ T

0

∫
Ω
uεδkjtPkjϕ =

∫ T

0

∫
Ω
uεδtϕ
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from (6.2.30). Moreover, as f1δ is bounded, (6.2.26) asserts f1δ(uεδkj , vεδkj )→ f1δ(uεδ, vεδ)
in L2(Ω× (0, T )) as j →∞ and hence

lim
j→∞

∫ T

0

∫
Ω
f1δ(uεδkj , vεδkj )Pkjϕ =

∫ T

0

∫
Ω
f1δ(uεδ, vεδ)ϕ.

Boundedness of S1δ, (6.2.26) and Lebesgue’s theorem imply

‖S1δ(uεδkj )∇Pkjϕ− S1δ(uεδkj )∇ϕ‖L2(Ω×(0,T ))

≤ ‖[S1δ(uεδkj )− S1δ(uεδ)]∇ϕ‖L2(Ω×(0,T )) + ‖S1δ(uεδkj )∇[Pkjϕ− ϕ]‖L2(Ω×(0,T )) → 0

as j →∞ and hence

lim
j→∞

∫ T

0

∫
Ω
S1δ(uεδkj )∇∆uεδkj · ∇Pkjϕ =

∫ T

0

∫
Ω
S1δ(uεδ)∇∆uεδ · ∇ϕ

due to (6.2.29).

A similar reasoning, relying on (6.2.28) instead of (6.2.29), gives

lim
j→∞

∫ T

0

∫
Ω
S1δ(uεδkj )∇uεδkj · ∇Pkjϕ =

∫ T

0

∫
Ω
S1δ(uεδ)∇uεδ · ∇ϕ

and

lim
j→∞

∫ T

0

∫
Ω
D1(|uεδkj |)∇uεδkj · ∇Pkjϕ =

∫ T

0

∫
Ω
D1(|uεδkj |)∇uεδ · ∇ϕ

so that indeed (6.2.32) holds, while (6.2.33) can be derived analogously.

Finally, we note that (6.2.27) implies uεδkj (·, 0) → uεδ(·, 0) in L2(Ω) as j → ∞ so that
(6.2.17) asserts∫

Ω
uεδ(·, 0)ψ = lim

j→∞

∫
Ω
uεδkj (·, 0)Pkjψ =

∫
Ω
u0ψ for all ψ ∈ L2(Ω).

This implies uεδ(·, 0) = u0 a.e. and, by combining this with an analogous argument for the
second solution component, we arrive at (6.2.31).

6.2.2. The limit process δ ↘ 0: guaranteeing nonnegativity

As opposed to the problem solved by (uεδk, vεδk) for k ∈ N, where (6.2.15) and (6.2.16)
require that ϕ(·, t) ∈ Xk for all t ∈ (0,∞), in the weak formulation for the problem (6.Pεδ),
(6.2.32) and (6.2.33), all ϕ ∈ L2

loc([0,∞);W 1,2(Ω)) are admissible test functions. In partic-
ular, we may now test with anti-derivatives of 1

S1δ(uεδ) and 1
S2δ(vεδ) , allowing us to obtain

estimates independent of both ε and δ in Lemma 6.2.10. These bounds not only form the
basis for the limit processes δ ↘ 0 and ε↘ 0 (which are finally performed in Lemma 6.2.14
and Lemma 6.2.17, respectively) but are also important for showing that the later obtained
limit functions uε, vε are nonnegative (see Lemma 6.2.15).

To further prepare these testing procedures, we state the following lemma which should
essentially be well-known.

112



6.2. Global weak W 1,2-solutions to approximative systems

Lemma 6.2.9. Let T ∈ (0,∞), w, z ∈W 1,2([0, T );W 1,2(Ω)) and ϕ ∈ C1([0, T ]).

(i) For H ∈ C2(R2) with D2H ∈ L∞(R2;R2×2), the functions Hw(w, z) and Hz(w, z)
belong to L2((0, T );W 1,2(Ω)) and

−
∫ T

0

∫
Ω
H(w, z)ϕt +

∫
Ω
H(w(·, T ), z(·, T ))ϕ(·, T )−

∫
Ω
H(w(·, 0), z(·, 0))ϕ(·, 0)

=
∫ T

0

∫
Ω
wtHw(w, z)ϕ+

∫ T

0

∫
Ω
ztHz(w, z)ϕ (6.2.34)

holds.

(ii) Let H̃ ∈ C2(R) with H̃ ′′ ∈ L∞(R). Then H̃ ′(w) ∈ L2((0, T );W 1,2(Ω)) and

−
∫ T

0

∫
Ω
H̃(w)ϕt +

∫
Ω
H̃(w(·, T ))−

∫
Ω
H̃(w(·, 0)). =

∫ T

0

∫
Ω
wtH̃

′(w)ϕ

Proof. We first fix (w`)`∈N, (z`)`∈N ⊂ C∞(Ω × [0, T ]) with w` → w and z` → z in
W 1,2([0, T );W 1,2(Ω)) as j → ∞. Hence, for X := L2((0, T );W 1,2(Ω)) and thus X? =
L2((0, T ); (W 1,2(Ω))?), we have w` → w and z` → z in X, w`t → wt and z`t → zt in X? as
well as w` → w and z` → z in C0([0, T ];L2(Ω)).

Then

−
∫ T

0

∫
Ω
H(w`, z`)ϕt +

[∫
Ω
H(w`(·, t), z`(·, t))ϕ(·, t)

]t=T
t=0

=
∫ T

0

∫
Ω

[H(w`, z`)]tϕ =
∫ T

0

∫
Ω
w`tHw(w`, z`)ϕ+

∫ T

0

∫
Ω
z`tHz(w`, z`)ϕ.

By Taylor’s theorem for multivariate functions and Young’s inequality, we obtain∣∣∣∣∫
Ω
H(w(·, t), z(·, t))−

∫
Ω
H(w`(·, t), z`(·, t))

∣∣∣∣
≤
∑
|α|=1

∫
Ω

|DαH(w(·, t), z(·, t))|
α! [w(·, t)− w`(·, t), z(·, t)− z`(·, t)]α

+
∑
|α|=2

max|β|=|α| ‖DβH‖L∞(R2)

α!

∫
Ω

[w(·, t)− w`(·, t), z(·, t)− z`(·, t)]α

≤ |Hw(w(·, t), z(·, t))|
∫

Ω
|w(·, t)− w`(·, t)|+ |Hz(w(·, t), z(·, t))|

∫
Ω
|z(·, t)− z`(·, t)|

+‖D2H‖L∞(R2×2)

∫
Ω

(w(·, t)− z(·, t))2 + ‖D2H‖L∞(R2×2)

∫
Ω

(z(·, t)− z`(·, t))2

→ 0 as `→∞ for all t ∈ [0, T ].

Since moreover

‖Hw(w, z)−Hw(w`, z`)‖L2(Ω×(0,T ))

≤ ‖Hw(w, z`)−Hw(w`, z`)‖L2(Ω×(0,T )) + ‖Hw(w, z)−Hw(w, z`)‖L2(Ω×(0,T ))

≤ ‖Hww‖L∞(R2)‖w − w`‖L2(Ω×(0,T )) + ‖Hwz‖L∞(R2)‖z − z`‖L2(Ω×(0,T ))

→ 0 as `→∞ (6.2.35)
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by the mean value theorem and

sup
`∈N

∫ T

0

∫
Ω
|∇Hw(w`, z`)|2

= sup
`∈N

∫ T

0

∫
Ω
|Hww(w`, z`)∇w` +Hwz(w`, z`)∇z`|2

≤ sup
`∈N

(
2‖Hww‖2L∞(R2)

∫ T

0

∫
Ω
|∇w`|2 + 2‖Hwz‖2L∞(R2)

∫ T

0

∫
Ω
|∇z`|2

)
<∞

by the chain rule, we conclude sup`∈N ‖Hw(w`, z`)‖2X < ∞. Therefore, after switching to
subsequences if necessary, we have

Hw(w`, z`) ⇀ w̃ in X as `→∞ (6.2.36)
for some w̃ ∈ X. From (6.2.35), we infer w̃ = Hw(w, z) so that (6.2.36) and the convergence
w`t → wt in X? imply∫ T

0

∫
Ω
w`tHw(w`, z`)ϕ→

∫ T

0

∫
Ω
wtHw(w, z)ϕ as `→∞.

Likewise, we obtain∫ T

0

∫
Ω
z`tHz(w`, z`)ϕ→

∫ T

0

∫
Ω
ztHz(w, z)ϕ as `→∞

and thus (6.2.34).

Finally, the second part follows from the first one by setting H(ρ, σ) = H̃(ρ) for ρ, σ ∈ R.

With Lemma 6.2.9 at hand, we are now able to prove an analogue to the entropy-like
inequality (6.2.10).

Lemma 6.2.10. Let ε, δ ∈ (0, 1) and uεδ, vεδ be as in Lemma 6.2.7. Set moreover

Giδ(s) :=
∫ s

1

∫ ρ

1

1
Siδ(σ) dσ dρ for i ∈ {1, 2}

as well as

Eεδ(t) :=
∫

Ω
G1δ(uεδ(·, t)) +

∫
Ω
G2δ(vεδ(·, t)),

Dεδ(t) := ε

∫
Ω
|∆uεδ(·, t)|2 + ε

∫
Ω
|∆vεδ(·, t)|2

+
∫

Ω

D1(|uεδ(·, t)|)
S1δ(uεδ(·, t))

|∇uεδ(·, t)|2 +
∫

Ω

D2(|vεδ(·, t)|)
S2δ(vεδ(·, t))

|∇vεδ(·, t)|2 and

Rεδ(t) :=
∫

Ω
G′1δ(uεδ(·, t))f1δ(uεδ(·, t), vεδ(·, t)) +

∫
Ω
G′2δ(vεδ(·, t))f2δ(uεδ(·, t), vεδ(·, t))

for t ∈ [0,∞). (Here, similarly as on Theorem 6.2.2, Dεδ and Rεδ are to be understood as
functions in L0((0,∞)).) Then

Eεδ(T )ζ(T ) +
∫ T

0
Dεδ(t)ζ(t) dt

≤ Eεδ(0)ζ(0) +
∫ T

0
Rεδ(t)ζ(t) dt+

∫ T

0
Eεδ(t)ζ ′(t) dt (6.2.37)

holds for any T ∈ (0,∞) and 0 ≤ ζ ∈ C∞([0, T ]).
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Proof. As 1
S1δ

is continuous, positive and bounded, we may apply Lemma 6.2.9 (ii) and
Lemma 6.2.8 to obtain∫

Ω
G1δ(uεδ(·, T ))ζ(T )−

∫
Ω
G1δ(u0)ζ(0)−

∫ T

0

∫
Ω
G1δ(uεδ)ζ ′

=
∫ T

0

∫
Ω
uεδtG

′
1δ(uεδ)ζ

= −ε
∫ T

0

∫
Ω
|∆uεδ|2ζ −

∫ T

0

∫
Ω

D1(|uεδ|)
S1δ(uεδ)

|∇uεδ|2ζ

+
∫ T

0

∫
Ω
∇uεδ · ∇vεδζ +

∫ T

0

∫
Ω
G′1δ(uεδ)f1δ(uεδ, vεδ)ζ (6.2.38)

for all ε, δ ∈ (0, 1). Since the signs of the cross-diffusive terms in the first two equations in
(6.Pεδ) are opposite, (6.2.38) and a corresponding identity for the second solution component
already yield (6.2.37).

Aiming to derive (ε, δ)-independent a priori estimates from (6.2.37) with ζ ≡ 1, we next
estimate the right-hand side therein and obtain

Lemma 6.2.11. Let T ∈ (0,∞) and Giδ, δ ∈ (0, 1) i ∈ {1, 2} be as in Lemma 6.2.10. Then
there is C > 0 such that

sup
t∈(0,T )

(∫
Ω
G1δ(uεδ(·, t)) +

∫
Ω
G2δ(vεδ(·, t))

)
≤ C, (6.2.39)

ε

∫ T

0

∫
Ω
|∆uεδ|2 + ε

∫ T

0

∫
Ω
|∆vεδ|2 ≤ C, (6.2.40)∫ T

0

∫
Ω
|∇uεδ|2 +

∫ T

0

∫
Ω
|∇vεδ|2 ≤ C and (6.2.41)∫ T

0

∫
Ω
u2
εδ +

∫ T

0

∫
Ω
v2
εδ ≤ C (6.2.42)

for all ε, δ ∈ (0, 1), where uεδ and vεδ are as in Lemma 6.2.7.

Proof. Since the definition of S1 entails that

S1δ(s) ≥ S1(|s|) + δ ≥

{
S1s, |s| < 1,
S1, |s| ≥ 1

for all s ≥ 0 and δ ∈ (0, 1),

we may estimate

|G′1δ(uεδ)| =
∫ 1

uεδ

dσ
S1δ(σ) ≤

| ln uεδ|
S1

in {0 < uεδ ≤ 1} for all ε, δ ∈ (0, 1)

and

|G′1δ(uεδ)| =
∫ uεδ

1

dσ
S1δ(σ) ≤

uεδ − 1
S1

in {1 < uεδ} for all ε, δ ∈ (0, 1).

Due to f1δ(uεδ, vεδ) = 0 in {uεδ ≤ 0} and because of (6.2.3) and (6.2.5), we thus obtain
c1 > 0 such that∫ t

0

∫
Ω
f1δ(uεδ, vεδ)G′1δ(uεδ) ≤ c1

∫ t

0

∫
Ω

(1 + u2
εδ) for all t ∈ (0, T ) and ε, δ ∈ (0, 1).
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Moreover, positivity of u0 and v0 implies finiteness of

sup
δ∈(0,1)

(∫
Ω
G1δ(u0) +

∫
Ω
G2δ(v0)

)
.

As Di(|s|)
Siδ(s) ≥

D
i

Si
, i ∈ {1, 2}, for all s ∈ R, along with an analogous computation for the

second solution component and choosing ζ ≡ 1 in (6.2.37), we obtain c2 > 0 such that∫
Ω
G1δ(uεδ(·, t)) +

∫
Ω
G2δ(vεδ(·, t))

+ ε

∫ t

0

∫
Ω
|∆uεδ|2 + ε

∫ t

0

∫
Ω
|∆vεδ|2 + D1

S1

∫ t

0

∫
Ω
|∇uεδ|2 + D2

S2

∫ t

0

∫
Ω
|∇vεδ|2

≤ c2 + c2

∫ t

0

∫
Ω
u2
εδ + c2

∫ t

0

∫
Ω
v2
εδ for all t ∈ (0, T ) and ε, δ ∈ (0, 1). (6.2.43)

Since

G1δ(uεδ) =
∫ uεδ

1

∫ ρ

1

1
S1δ(σ) dσ dρ ≥ 1

S1

∫ uεδ

1
(ρ− 1) dρ

= 1
S1

(
1
2u

2
εδ −

1
2 − (uεδ − 1)

)
≥ 1
S1

(
1
4u

2
εδ −

1
2

)
in Ω× (0, T ) for all ε, δ ∈ (0, 1) and hence∫ t

0

∫
Ω
u2
εδ ≤ 4S1

∫ t

0

∫
Ω
G1δ(uεδ) + 2|Ω|T for all t ∈ (0, T ) and ε, δ ∈ (0, 1), (6.2.44)

a consequence of (6.2.43) is∫
Ω
G1δ(uεδ(·, t)) +

∫
Ω
G2δ(vεδ(·, t))

≤ c3 + 4c2 max{S1, S2}
∫ t

0

(∫
Ω
G1δ(uεδ) +

∫
Ω
G2δ(vεδ)

)
for all t ∈ (0, T ), ε, δ ∈ (0, 1) and c3 := c2 + 4c2|Ω|T . Grönwall’s inequality thus asserts that∫

Ω
G1δ(uεδ(·, t)) +

∫
Ω
G1δ(vεδ(·, t)) ≤ c3e4c2 max{S1,S2}T

holds for all t ∈ (0, T ) and ε, δ ∈ (0, 1), implying (6.2.39). Finally, (6.2.40)–(6.2.42) follow
from (6.2.43), (6.2.44) and (6.2.39).

Again seeking to apply the Aubin–Lions lemma, we complement the bounds (6.2.39)–(6.2.41)
by estimates for the time derivatives in the next two lemmata. However, in contrast to
Lemma 6.2.6 and owing to the fourth-order regularization terms, we have to settle for
bounds in L2((0, T ); (Wn+1,2(Ω))?) instead of L2((0, T ); (W 1,2(Ω))?).

Lemma 6.2.12. For T ∈ (0,∞), there exists C > 0 such that∣∣∣∣∣
∫ T

0

∫
Ω
uεδtϕ+

∫ T

0

∫
Ω
D1(|uεδ|)∇uεδ · ∇ϕ

−
∫ T

0

∫
Ω
S1(uεδ)∇vεδ · ∇ϕ−

∫ T

0

∫
Ω
f1(uεδ, vεδ)ϕ

∣∣∣∣∣
≤ Cε 1

2 ‖ϕ‖L2((0,T );Wn+1,2(Ω)) (6.2.45)
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and ∣∣∣∣∣
∫ T

0

∫
Ω
vεδtϕ+

∫ T

0

∫
Ω
D2(|vεδ|)∇vεδ · ∇ϕ

+
∫ T

0

∫
Ω
S2(vεδ)∇uεδ · ∇ϕ−

∫ T

0

∫
Ω
f2(uεδ, vεδ)ϕ

∣∣∣∣∣
≤ Cε 1

2 ‖ϕ‖L2((0,T );Wn+1,2(Ω)) (6.2.46)

for all ε, δ ∈ (0, 1) and ϕ ∈ L2((0, T );Wn+1,2(Ω)), where uεδ and vεδ are as in Lemma 6.2.7.

Proof. Since n+ 1 > n
2 + 1, Sobolev’s embedding theorem allows us to fix c1 > 0 with

‖∇ϕ‖L∞(Ω) ≤ c1‖ϕ‖Wn+1,2(Ω) for all ϕ ∈Wn+1,2(Ω).

Moreover, we fix T ∈ (0,∞) and choose c2 > 0 such that (6.2.40) and (6.2.41) hold (with C
replaced by c22). Then∣∣∣∣∣

∫ T

0

∫
Ω
S1δ(uεδ)∇∆uεδ · ∇ϕ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫
Ω
S′1δ(uεδ)∆uεδ∇uεδ · ∇ϕ

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
Ω
S1δ(uεδ)∆uεδ∆ϕ

∣∣∣∣∣
≤ ‖∆uεδ‖L2(Ω×(0,T ))

(
S
′
1‖∇uεδ‖L2(Ω×(0,T ))‖∇ϕ‖L∞(Ω×(0,T )) + S1‖∆ϕ‖L2(Ω×(0,T ))

)
≤ ε− 1

2 · c2(c1c2S
′
1 + S1)‖ϕ‖L2((0,T );Wn+1,2(Ω)) for all ε, δ ∈ (0, 1).

Combined with (6.2.32), this already implies (6.2.45), while (6.2.46) can be shown analo-
gously.

Lemma 6.2.13. Let ε ∈ (0, 1), T ∈ (0,∞) and (uεδ, vεδ) be as in Lemma 6.2.7 for δ ∈ (0, 1).
Then there exists C > 0 such that

‖uεδt‖L2((0,T );(Wn+1,2(Ω))?) + ‖vεδt‖L2((0,T );(Wn+1,2(Ω))?) ≤ C for all δ ∈ (0, 1). (6.2.47)

Proof. This immediately follows from Lemma 6.2.12 and the bounds provided by Lem-
ma 6.2.11.

With the estimates above at hand, we are now able to obtain convergence of certain subse-
quences of (uεδ, vεδ).

Lemma 6.2.14. Let ε ∈ (0, 1). For δ ∈ (0, 1), let uεδ, vεδ be as given by Lemma 6.2.7.
There are functions uε, vε : Ω× (0,∞)→ R and a null sequence (δj)j∈N ⊂ (0, 1) along which

uεδj → uε and vεδj → vε pointwise a.e., (6.2.48)
uεδj → uε and vεδj → vε in L2

loc(Ω× [0,∞)), (6.2.49)
uεj (·, t)→ u(·, t) and vεj (·, t)→ v(·, t) in L2(Ω) for a.e. t ∈ (0,∞), (6.2.50)
∇uεδj ⇀ ∇uε and ∇vεδj ⇀ ∇vε in L2

loc(Ω× [0,∞);Rn), (6.2.51)
uεδjt ⇀ uεt and vεδjt ⇀ vεt in L2

loc([0,∞); (Wn+1,2(Ω))?), (6.2.52)

as j →∞.
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Proof. Due to the bounds in (6.2.41), (6.2.42) and (6.2.47), by means of the Aubin–Lions
lemma and a diagonalization argument, we can obtain a null sequence (δj)j∈N ⊂ (0, 1)
and functions uε, vε : Ω × (0,∞) → R such that (6.2.49), (6.2.51) and (6.2.52) hold. Upon
switching to subsequences, if necessary, (6.2.48) and (6.2.50) follow then from (6.2.49).

As already alluded to, the main reason for introducing the parameter δ in (6.Pεδ) is to be
able to establish a.e. nonnegativity of the functions uε and vε constructed in Lemma 6.2.14.
This will inter alia assure that each component of the solution (u, v) to (6.P) obtained
in Subsection 6.2.3 below is nonnegative and hence may be interpreted as a population
density.

Lemma 6.2.15. For all ε ∈ (0, 1), uε ≥ 0 and vε ≥ 0 a.e. in Ω× (0,∞), where uε and vε
are given by Lemma 6.2.14.

Proof. This can be shown similarly as in [29, pages 554–555]. However, since the solutions
considered there fulfill regularity properties going beyond those stated in Lemma 6.2.14, we
give a (slightly different) proof here.

Let us fix ε ∈ (0, 1) as well as T ∈ (0,∞) and for the sake of contradiction assume that
(a henceforth fixed representative of) uε is not nonnegative a.e. in Ω × (0, T ). That is,
|{uε < 0}| > 0 so that by the sigma additivity of the Lebesgue measure, there is η > 0 such
that A := { (x, t) ∈ Ω× (0, T ) : uε(x, t) ≤ −η } has positive measure.

For δ ∈ (0, 1), we now let uεδ and G1δ be as in Lemma 6.2.7 and Lemma 6.2.10, respectively,
and denote by (δj)j∈N the sequence given by Lemma 6.2.14. Thanks to (6.2.48) and Egorov’s
theorem, we then obtain a measurable A′ ⊂ A with |A \ A′| < |A|

2 such that uεδj → uε
uniformly in A′ as j → ∞; in particular, there is j0 ∈ N with uεδj (x, t) ≤ −η2 for all
(x, t) ∈ A′ and j ≥ j0.

Thanks to nonnegativity of S1δ, since S1(|s|) ≤ −S′1s for s ≤ 0 (due to the mean value
theorem and as S1(0) = 0 by (6.2.4)) and by Fatou’s lemma (we note that limδ↘0(− ln δ +
ln(−ρ+ δ)) =∞ for all ρ < 0), we then have

lim inf
j→∞

∫ T

0

∫
Ω
G1δj (uεδj ) ≥ lim inf

j→∞

∫
A′

∫ uεδj (x,t)

1

∫ ρ

1

1
S1δj (σ) dσ dρd(x, t)

≥ lim inf
j→∞

|A′|
∫ 1

− η2

∫ 1

ρ

1
S1(|σ|) + δj

dσ dρ

≥ lim inf
j→∞

|A′|
max{S′1, 1}

∫ 0

− η2

∫ 0

ρ

1
−σ + δj

dσ dρ

= lim inf
j→∞

|A′|
max{S′1, 1}

∫ 0

− η2
(− ln δj + ln(−ρ+ δj)) dρ =∞,

contradicting (6.2.39). The same argument is also applicable for the second solution com-
ponent.

Let us close this subsection by discussing in which way the pair (uε, vε) obtained in Lem-
ma 6.2.14 can be seen as a solution to the problem obtained by formally setting δ = 0
in (6.Pεδ). Within a similar context, in [29, pages 552–553] it is shown that the limit
functions solve the corresponding problem in a certain generalized sense. However, as already
remarked in the preceding subsection, due to the possibly nonlinear diffusion terms D1 and
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6.2. Global weak W 1,2-solutions to approximative systems

D2, the convergences obtained in Lemma 6.2.14 are slightly weaker than those established
in [29]; that is, the methods developed in [29] are not directly applicable to our situation.

Nonetheless, we are able to prove that (uε, vε) is up to an error term of order ε 1
2 a weak

solution of that problem, which, having the limit process ε ↘ 0 in mind, turns out to be
more convenient for our purposes in any case.

Lemma 6.2.16. Let ε ∈ (0, 1), uε, vε be as in Lemma 6.2.14 and T ∈ (0,∞). Then there
is C > 0 such that ∣∣∣∣∣−

∫ T

0

∫
Ω
uεϕt −

∫
Ω
u0ϕ(·, 0) +

∫ T

0

∫
Ω
D1(uε)∇uε · ∇ϕ

−
∫ T

0

∫
Ω
S1(uε)∇vε · ∇ϕ−

∫ T

0

∫
Ω
f1(uε, vε)ϕ

∣∣∣∣∣
≤ Cε 1

2 ‖ϕ‖L2((0,T );Wn+1,2(Ω)) (6.2.53)

and ∣∣∣∣∣−
∫ T

0

∫
Ω
vεϕt −

∫
Ω
v0ϕ(·, 0) +

∫ T

0

∫
Ω
D2(vε)∇vε · ∇ϕ

+
∫ T

0

∫
Ω
S2(vε)∇uε · ∇ϕ−

∫ T

0

∫
Ω
f2(uε, vε)ϕ

∣∣∣∣∣
≤ Cε 1

2 ‖ϕ‖L2((0,T );Wn+1,2(Ω)) (6.2.54)

for all ϕ ∈ C∞c (Ω× [0,∞)).

Proof. For δ ∈ (0, 1), we let (uεδ, vεδ) be as in Lemma 6.2.7 and we denote the null sequence
given by Lemma 6.2.14 by (δj)j∈N. The convergences (6.2.49), (6.2.51) and (6.2.48) imply
that ∣∣∣∣∣−

∫ T

0

∫
Ω
uεϕt −

∫
Ω
u0ϕ(·, 0) +

∫ T

0

∫
Ω
D1(uε)∇uε · ∇ϕ

−
∫ T

0

∫
Ω
S1(uε)∇vε · ∇ϕ−

∫ T

0

∫
Ω
f1(uε, vε)ϕ

∣∣∣∣∣
= lim
j→∞

∣∣∣∣∣−
∫ T

0

∫
Ω
uεδjϕt −

∫
Ω
u0ϕ(·, 0) +

∫ T

0

∫
Ω
D1(|uεδj |)∇uεδj · ∇ϕ

−
∫ T

0

∫
Ω
S1δj (uεδj )∇vεδj · ∇ϕ−

∫ T

0

∫
Ω
f1δj (uεδj , vεδj )ϕ

∣∣∣∣∣
for all ϕ ∈ C∞c (Ω× [0,∞)). As Lemma 6.2.9 (ii) and (6.2.31) assert

−
∫ T

0

∫
Ω
uεδjϕt −

∫
Ω
u0ϕ(·, 0) =

∫ T

0

∫
Ω
uεδjtϕ for all ϕ ∈ C∞c (Ω× [0,∞)) and j ∈ N,

we see that (6.2.53) (with C as in Lemma 6.2.12) follows from (6.2.45). An analogous
argumentation yields (6.2.54).

119



6. Global weak solutions to fully cross-diffusive systems

6.2.3. The limit process ε↘ 0: proofs of Theorem 6.2.1 and
Theorem 6.2.2

Since Lemma 6.2.11 and Lemma 6.2.13 already contain ε-independent estimates, there are
no further preparations necessary in order to undertake the final limit process of this section,
namely ε↘ 0.

Lemma 6.2.17. Let uε, vε be as in Lemma 6.2.14. There are nonnegative functions u, v ∈
L2

loc([0,∞);W 1,2(Ω)) and a null sequence (εj)j∈N ⊂ (0, 1) such that

uεj → u and vεj → v pointwise a.e., (6.2.55)
uεj → u and vεj → v in L2

loc(Ω× [0,∞)), (6.2.56)
uεj (·, t)→ u(·, t) and vεj (·, t)→ v(·, t) in L2(Ω) for a.e. t ∈ (0,∞), (6.2.57)
∇uεj ⇀ ∇u and ∇vεj ⇀ ∇v in L2

loc(Ω× [0,∞);Rn) (6.2.58)

as j →∞.

Proof. As the estimates (6.2.41) and (6.2.42) do not depend on ε and the right-hand sides in
(6.2.45) and (6.2.46) are bounded in ε, the existence of u, v ∈ L2

loc([0,∞);W 1,2(Ω)) and a null
sequence (εj)j∈N ⊂ (0, 1) such that (6.2.55)–(6.2.58) hold can be shown as in Lemma 6.2.14.
Moreover, nonnegativity of u and v follow from Lemma 6.3.2 and (6.2.55).

Next, we show that the convergences asserted by Lemma 6.2.17 are sufficiently strong to
imply that the pair (u, v) constructed in that lemma at least solves (6.P) in the following
sense, which is yet somewhat weaker than the solution concept imposed by Theorem 6.2.1.

Lemma 6.2.18. The pair (u, v) constructed in Lemma 6.2.17 fulfills

−
∫ ∞

0

∫
Ω
uϕt −

∫
Ω
u0ϕ(·, 0)

= −
∫ ∞

0

∫
Ω
D1(u)∇u · ∇ϕ+

∫ ∞
0

∫
Ω
S1(u)∇v · ∇ϕ+

∫ ∞
0

∫
Ω
f1(u, v)ϕ (6.2.59)

and

−
∫ ∞

0

∫
Ω
vϕt −

∫
Ω
v0ϕ(·, 0)

= −
∫ ∞

0

∫
Ω
D2(u)∇v · ∇ϕ−

∫ ∞
0

∫
Ω
S2(u)∇u · ∇ϕ+

∫ ∞
0

∫
Ω
f2(u, v)ϕ (6.2.60)

for all ϕ ∈ C∞c (Ω× [0,∞)).

Proof. Since Di, Si and fi, i ∈ {1, 2}, are bounded, the statement immediately follows
from Lemma 6.2.16 and Lemma 6.2.17.

In order to prove Theorem 6.2.1, in addition to Lemma 6.2.18, we need to make sure that u, v
are sufficiently regular; that is, that they belong to W 1,2

loc ([0,∞);W 1,2(Ω)). To that end, the
ε-independent estimates of the time derivatives obtained in Lemma 6.2.13 are insufficient.
However, we can obtain the desired regularity by testing directly at the ε = 0 level.

Lemma 6.2.19. The functions u, v constructed in Lemma 6.2.17 are contained in the space
W 1,2

loc ([0,∞);W 1,2(Ω)) and satisfy (6.2.8) and (6.2.9) for all ϕ ∈ L2
loc([0,∞);W 1,2(Ω)).
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6.2. Global weak W 1,2-solutions to approximative systems

Proof. We fix T ∈ (0,∞). From Lemma 6.2.18 and Hölder’s inequality, we infer that∣∣∣∣∣
∫ T

0

∫
Ω
utϕ

∣∣∣∣∣ =
∣∣∣∣∣
∫ T

0

∫
Ω
uϕt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫
Ω
D1(u)∇u · ∇ϕ

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
Ω
S1(u)∇v · ∇ϕ

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
Ω
f1(u, v)ϕ

∣∣∣∣∣
≤
(
D1‖∇u‖L2(Ω×(0,T )) + S1‖∇v‖L2(Ω×(0,T )) + ‖f1‖L∞([0,∞)2)(|Ω|T ) 1

2

)
‖ϕ‖L2((0,T );W 1,2(Ω))

for all ϕ ∈ C∞c (Ω× (0, T )), so that since u, v ∈ L2((0, T );W 1,2(Ω)) by Lemma 6.2.17 and as
C∞c (Ω×(0, T )) is dense in L2((0, T );W 1,2(Ω)), we can conclude ut ∈ (L2((0, T );W 1,2(Ω))? =
L2((0, T ); (W 1,2(Ω))?). Thus, u, and by the same reasoning also v, indeed belongs to
W 1,2([0, T );W 1,2(Ω)).

As therefore∫ 1

0

∫
Ω
utϕ = −

∫ 1

0

∫
Ω
uϕt −

∫
Ω
u(·, 0)ϕ(·, 0) for all ϕ ∈ C∞c (Ω× [0, 1)) (6.2.61)

by Lemma 6.2.9 (ii), we infer from (6.2.59) and the regularity of u and v that there is c1 > 0
such that ∣∣∣∣∫

Ω
(u(·, 0)− u0)ϕ(·, 0)

∣∣∣∣
≤
(
‖ut‖L2((0,1);(W 1,2(Ω))?) + ‖D1(u)∇u− S1(u)∇v‖L2(Ω×(0,1))

+‖f1(u, v)‖L2(Ω×(0,1))
)
‖ϕ‖L2((0,1);W 1,2(Ω))

≤ c1‖ϕ‖L2((0,1);W 1,2(Ω)) for all ϕ ∈ C∞c (Ω× [0, 1)).

Taking here ϕ supported near Ω× {0}, we further conclude∫
Ω

(u(·, 0)− u0)ψ = 0 for all ψ ∈ C∞(Ω),

which due to density of C∞(Ω) in L2(Ω) implies u(·, 0) = u0 a.e. in Ω and hence the
first assertion in (6.2.7). Therefore, (6.2.8) follows from (6.2.59) and (6.2.61); first for all
ϕ ∈ C∞c (Ω× [0,∞)) and thus by a density argument also for all ϕ ∈ L2

loc([0,∞);W 1,2(Ω)).
The remaining statements for the second solution component can be derived analogously.

Finally, we show that an analogue to the entropy-type inequality (6.2.37) also holds for the
limit functions u, v.

Lemma 6.2.20. Let Gi, i ∈ {1, 2}, E, D, R be as in Theorem 6.2.2, T ∈ (0,∞) and
0 ≤ ζ ∈ C∞([0, T ]). The functions u, v given by Lemma 6.2.3 then satisfy (6.2.10).

Proof. For ε, δ ∈ (0, 1), we denote the pairs constructed in Lemma 6.2.7 and Lemma 6.2.14
by (uεδ, vεδ) and (uε, vε), respectively, and let the sequences (εj)j∈N and (δj′)j′∈N be as in
Lemma 6.2.14 and Lemma 6.2.17. Moreover, again for ε, δ ∈ (0, 1), we let Giδ, i ∈ {1, 2},
Eεδ, Dεδ and Rεδ be as in Lemma 6.2.10.

In order to prove (6.2.10), we essentially need to ensure that the inequality (6.2.37) survives
the limit processes ε = εj ↘ 0 and δ = δj ↘ 0. To that end, we first note that for any
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6. Global weak solutions to fully cross-diffusive systems

η > 0, the family (
D1(|uεjδj′ |)

S1δj′ (uεjδj′ ) + η
ζ

)
j,j′∈N

is bounded in L∞(Ω × (0, T )) and, as first j → ∞ and then j′ → ∞, converges a.e. in
Ω × (0, T ) to D1(u)

S1(u)+η ζ, thanks to (6.2.48) and (6.2.55). Thus, combined with (6.2.51) and
(6.2.58), we see that(

D1(|uεjδj′ |)
S1δj′ (uεjδj′ ) + η

ζ

) 1
2

∇uεjδj′ ⇀
(

D1(u)
S1(u) + η

ζ

) 1
2

∇u

in L2(Ω× (0, T );Rn) as first j′ →∞ and then j →∞ for all η > 0. Consequently,

lim inf
j→∞

lim inf
j′→∞

∫ T

0

∫
Ω

D1(|uεjδj′ |)
S1δj′ (uεjδj′ ) + η

|∇uεjδj′ |
2ζ ≥

∫ T

0

∫
Ω

D1(u)
S1(u) + η

|∇u|2ζ

for all η > 0 by the weakly lower semicontinuity of the norm. Since η > 0 and by Fatou’s
lemma, we can conclude that

lim inf
j→∞

lim inf
j′→∞

∫ T

0

∫
Ω

D1(|uεjδj′ |)
S1δj′ (uεjδj′ )

|∇uεjδj′ |
2ζ ≥

∫ T

0

∫
Ω

D1(u)
S1(u) |∇u|

2ζ.

Next, we show that

lim
j→∞

lim
j′→∞

∫ T

0

∫
Ω
G′1δj′ (uεjδj′ )f1((uεjδj′ )+, (vεjδj′ )+)ζ =

∫ T

0

∫
Ω
G(u)f1(u, v)ζ. (6.2.62)

To that end, we first establish pointwise a.e. convergence to 0 of the integrand; that is, we
prove that

lim
j→∞

lim
j′→∞

G′1δj′ (uεjδj′ )f1((uεjδj′ )+, (vεjδj′ )+) = G(u)f1(u, v) (6.2.63)

a.e. in Ω× (0,∞). We first prove convergence on the set

A :=
{

(x, t) ∈ Ω× (0,∞) : lim
j→∞

lim
j′→∞

uεjδj′ (x, t) = u(x, t) > 0
}
.

For (x, t) ∈ A and arbitrary η ∈ (0, u(x,t)
2 ), there is j0 ∈ N such that for j ≥ j0, we can find

j′0(j) ∈ N with the property that |uεjδj′ (x, t) − u(x, t)| < η and hence uεjδj′ (x, t) >
u(x,t)

2
for all j′ ≥ j′0(j) and j ≥ j0. Since 1

S1
is bounded on (u(x,t)

2 ,∞), Lebesgue’s theorem gives

lim
j→∞

lim
j′→∞

G′1δ(uεjδj′ (x, t)) = lim
j→∞

lim
j′→∞

∫ ∞
0

1(1,uεjδj′ (x,t))
(σ)− 1(uεjδj′ (x,t),1)(σ)
S1(σ) + δj

dσ

=
∫ ∞

0

1(1,u(x,t))(σ)− 1(u(x,t),1)(σ)
S1(σ) dσ = G′1(u(x, t)).

As f1 is continuous and u, v ≥ 0, we thus obtain (6.2.63) for all points in A. Next, we
consider points in space-time where u vanishes and set

B :=
{

(x, t) ∈ Ω× (0,∞) : lim
j→∞

lim
j′→∞

uεjδj′ (x, t) = u(x, t) = 0
}
.
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6.2. Global weak W 1,2-solutions to approximative systems

Similarly as above, we can see that |uεjδj′ | < 1 for sufficiently large j, j′ ∈ N. Since

|G′1δ(uεδ)| =
∣∣∣∣∫ uεδ

1

1
S1(σ) + δ

dσ
∣∣∣∣ ≤ 1

S1

∫ 1

uεδ

1
σ

dσ = 1
S1
| ln(uεδ)| in {0 < uεδ ≤ 1}

for all ε, δ ∈ (0, 1), the assumption (6.2.5) and the fact that f1((uεδ)+, (vεδ)+) = 0 in
{uεδ ≤ 0} imply that (6.2.63) also holds for points in B. As (6.2.48), (6.2.55) and the
nonnegativity of u assert that (Ω× (0,∞)) \ (A∪B) is a null set, we indeed obtain (6.2.63)
a.e. in Ω× (0,∞).

Again thanks to (6.2.5), there is c1 > 0 such that

|G′1δ(uεδ)f1δ(uεδ, vεjδj′ )ζ|

≤
‖ζ‖L∞(Ω×(0,T ))

S1

(
| ln(uεδ)f1((uεδ)+, (vεjδj′ )+)|1{0<uεδ≤1}

+‖f1‖L∞([0,∞)2)(uεδ − 1)1{1<uεδ}
)

≤ c1(1 + |uεδ|) in Ω× (0, T ) for all ε, δ ∈ (0, 1)

so that (6.2.63), Vitali’s theorem as well as the bound (6.2.42) assert (6.2.62).

As moreover 0 ≤ G1δ(uεδ) ≤ c2(1 + u2
εδ) in Ω × (0, T )) for all ε, δ ∈ (0, 1) and some c2 > 0

and since limj→∞ limj′→∞(1 + u2
εjδj′

) = (1 + u2) in L1(Ω × (0, T )) is contained in (6.2.49)
and (6.2.56), Pratt’s lemma asserts that

lim
j→∞

lim
j′→∞

∫ T

0

∫
Ω
G1δj′ (uεjδj′ )ζ

′ =
∫ T

0

∫
Ω
G1(u)ζ ′ for all T ∈ (0,∞).

Likewise, now relying on (6.2.50) and (6.2.57) instead of (6.2.49) and (6.2.56), we also obtain

lim
j→∞

lim
j′→∞

∫
Ω
G1δj′ (uεjδj′ (·, T ))ζ(·, T ) =

∫
Ω
G1(u(·, T ))ζ(·, T ) for a.e. T ∈ (0,∞).

Finally,

G1δ(u0) =
∫ u0

0

∫ ρ

0

1
S1(σ) + δ

dσ dρ→
∫ u0

0

∫ ρ

0

1
S1(σ) dσ dρ = G1(u0) as δ ↘ 0

by Beppo Levi’s theorem so that according to Lebesgue’s theorem,∫
Ω
G1δ(u0)ζ(0)→

∫
Ω
G1(u0)ζ(0) as δ ↘ 0.

Combined with analogous arguments for the second solution component, these conver-
gences show that (6.2.10) holds for a.e. T ∈ (0,∞). Since u, v ∈ C0([0,∞);L2(Ω)) ∩
L2

loc([0,∞);W 1,2(Ω)) by Lemma 6.2.19, the inequality (6.2.10) holds indeed for all T ∈
(0,∞).

Finally, we note that the previous two lemmata already contain the main results of this
section.

Proof of Theorem 6.2.1 and Theorem 6.2.2. Theorem 6.2.1 and Theorem 6.2.2 are
direct consequences of Lemma 6.2.19 and Lemma 6.2.20, respectively.
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6. Global weak solutions to fully cross-diffusive systems

6.3. Approximative solutions to (6.P)

In the remainder of the chapter, we will construct global weak solutions (in the sense of
Definition 6.5.1 below) of (6.P). To that end, we henceforth suppose that (6.1.4), either
(6.H1) or (6.H2), (6.F1) or (6.F2), (6.1.7), (6.1.10) (with pi and ri, i ∈ {1, 2}, as in (6.1.8)
and (6.1.9)) as well as (6.1.12) hold and that Di, Si, fi, i ∈ {1, 2} are as in (6.1.3) and
(6.1.5).

Sections 6.3–6.5 are organized as follows. In the present section, we will define approxima-
tions of Di, Si, fi, i ∈ {1, 2} as well as of u0 and v0 so that Theorem 6.2.1, which has been
proven in the preceding section, becomes applicable and thus provides us with global weak
solutions (uα, vα), α ∈ (0, 1), to the corresponding approximative problems.

The main part of Section 6.4 then consists of deriving α-independent bounds from the
entropy-like inequality given by Theorem 6.2.2. This will then allow us to obtain solution
candidates (u, v) of (6.P) in Lemma 6.4.14. Finally, in Section 6.5, we show that under
the hypotheses of Theorem 6.1.1, these convergences are sufficiently strong to conclude that
(u, v) is indeed a global weak solution of (6.P).

Having an application of Theorem 6.2.1 in mind, we now define approximative functions for
each henceforth fixed α ∈ (0, 1). We begin by setting

Diα(s) := di

(
s+ 1

1 + α(s+ 1)

)mi−1
+ α and Siα(s) := χis(s+ 1)qi−1

(1 + α(s+ 1))qi

for s ≥ 0 and i ∈ {1, 2}.

We also fix ξ ∈ C∞(R) with ξ(s) = 1 for s ≤ 0 and ξ(s) = 0 for s ≥ 1 and set

fiα(s1, s2) := fi(s1, s2)ξ1α(s1)ξ2α(s2)

where ξiα(s) := ξ(α
1

4−min{q1,q2} s− 1) for s ∈ R; in particular,

ξiα(s) =
{

1, s ≤ α−
1

4−min{q1,q2} ,

0, s ≥ 2α−
1

4−min{q1,q2}
for all α ∈ (0, 1) and i ∈ {1, 2}. (6.3.1)

As a last yet undefined component, let us construct initial data u0α, v0α approximating u0, v0
in a suitable sense as α↘ 0.

Lemma 6.3.1. There are families (u0α)α∈(0,1), (v0α)α∈(0,1) ⊂ C∞(Ω) such that u0α > 0 and
v0α > 0 in Ω for all α ∈ (0, 1), (

∫
Ω u0)(

∫
Ω u0α) = (

∫
Ω u0)2 and (

∫
Ω v0)(

∫
Ω v0α) = (

∫
Ω v0)2

for all α ∈ (0, 1),

(u0α, v0α)→ (u0, v0) a.e. and in X1 ×X2 as α↘ 0, (6.3.2)

where Xi := L2−qi(Ω) if qi < 1 and Xi := L logL(Ω) if qi = 1 for i ∈ {1, 2}, as well as

lim
α↘0

α‖u0α‖pLp(Ω) = 0 and lim
α↘0

α‖v0α‖pLp(Ω) = 0, (6.3.3)

where p := 3−min{q1, q2}.
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6.3. Approximative solutions to (6.P)

Proof. As C∞(Ω) is dense in X1 (cf. [1, Theorem 8.21] for X1 = L logL(Ω)), and since u0
belongs to X1 and is nonnegative by (6.1.12), there is a sequence of nonnegative functions
(ũ0j)j∈N ⊂ C∞(Ω) with ũ0j → u0 in X1 as j →∞. Since we may without loss of generality
assume that u0 6≡ 0, γj := (

∫
Ω u0)(

∫
Ω(ũ0j+ 1

j ))−1 is positive for all j ∈ N so that the functions
u0j := γj(ũ0j + 1

j ) not only fulfill u0j → u0 in X1 as j → ∞ but also
∫

Ω u0j =
∫

Ω u0 and
u0j ≥ γj

j > 0 for j ∈ N. Since X1 ↪→ L1(Ω), after switching to a subsequence if necessary,
we may without loss of generality also assume that ũ0j → u0 a.e. as j →∞.

For α ∈ (0, 1), we observe then that

Aα :=
{
j ∈ N : j ≤ 1

α
and ‖u0j‖p+1

Lp(Ω) ≤
1
α

}
∪ {1}

is nonempty and finite, so that

jα := maxAα and u0α := u0jα , α ∈ (0, 1),

are well-defined. Because jα → ∞ as α ↘ 0 and α‖u0jα‖
p
Lp(Ω) ≤ α1− p

p+1 for all α ∈ (0, 1)
with jα > 1, we obtain the statement given an analogous definition of and argumentation
for (v0α)α∈(0,1).

With these preparations at hand, we are now able to apply Theorem 6.2.1 to obtain global
weak W 1,2-solutions of certain approximative problems.

Lemma 6.3.2. Let α ∈ (0, 1), Diα, Siα, fiα, i ∈ {1, 2} be as defined above and u0α, v0α be
as given by Lemma 6.3.1. Then there exists a global nonnegative weak W 1,2-solution (in the
sense of Theorem 6.2.1) (uα, vα) ∈ (W 1,2

loc ([0,∞);W 1,2(Ω)))2 to
uαt = ∇ · (D1α(uα)∇uα − S1α(uα)∇vα) + f1α(uα, vα) in Ω× (0,∞)
vαt = ∇ · (D2α(vα)∇vα + S2α(vα)∇uα) + f2α(uα, vα) in Ω× (0,∞)
∂νuα = ∂νvα = 0 on ∂Ω× (0,∞)
uα(·, 0) = u0α, vα(·, 0) = v0α in Ω.

(6.3.4)

Setting

Giα(s) :=
∫ s

1

∫ ρ

1

1
Siα(σ) dσ dρ for s ≥ 0 and i ∈ {1, 2}, (6.3.5)

this solution moreover satisfies∫
Ω
G1α(uα(·, T )) +

∫
Ω
G2α(vα(·, T )) +

∫ T

0

∫
Ω

D1α(uα)
S1α(uα) |∇uα|

2 +
∫ T

0

∫
Ω

D2α(uα)
S2α(uα) |∇vα|

2

≤
∫

Ω
G1α(u0α) +

∫
Ω
G2α(v0α) +

∫ T

0

∫
Ω
G′1α(uα)f1α(uα, vα) +

∫ T

0

∫
Ω
G′2α(vα)f2α(uα, vα)

(6.3.6)

for all T ∈ (0,∞).

Proof. As u0α, v0α belong to C∞(Ω) and are positive in Ω by Lemma 6.3.1, the statement
follows from Theorem 6.2.1 and Theorem 6.2.2 (with ζ ≡ 1) once we have shown that
(6.2.1)–(6.2.5) hold for Di, Si, fi replaced by Diα, Siα, fiα, i ∈ {1, 2}.
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6. Global weak solutions to fully cross-diffusive systems

Indeed, by definition Diα, Siα belong to C∞([0,∞)) with

α ≤ Diα(s) ≤ di

{
α1−mi + α, mi > 1,
( 1

1+α )mi−1 + α, mi ≤ 1
and 0 ≤ Siα(s) ≤ χi

{
α−qi , qi > 0,
( 1

1+α )qi , qi ≤ 0

as well as

|S′iα(s)|
χi

≤ (1 + |qi − 1|)(s+ 1)qi−1

(1 + α(s+ 1))qi + |qi|α(s+ 1)qi
(1 + α(s+ 1))qi+1

≤ (1 + |qi − 1|+ |qi|α)
{
α−qi , qi > 0,
( 1

1+α )qi , qi ≤ 0

for s ≥ 0 and i ∈ {1, 2}. Also, for i ∈ {1, 2}, the function

[0, 1] 3 s 7→ Siα(s)
s

= χi(s+ 1)qi−1

(1 + α(s+ 1))qi

is continuous and positive and, as s ≥ s+1
2 for all s ≥ 1,

inf
s≥1

Siα(s) ≥ χi
2 inf
s≥1

(
s+ 1

1 + α(s+ 1)

)qi
≥ χi

2

{
( 2

1+2α )qi , qi > 0,
α−qi , qi ≤ 0

for i ∈ {1, 2}.

That is, (6.2.1), (6.2.2) and (6.2.4) hold.

As fiα is continuous with supp fiα ⊂ [0, 2α−
1

4−min{q1,q2} ]2 =: K, ‖fiα‖L∞((0,∞)2) equals
‖fiα‖C0(K) and is thus finite, implying that (6.2.3) is fulfilled for i ∈ {1, 2}. Moreover, the
definitions of f1 and f1α entail that [0,∞)2 3 (s1, s2) 7→ f1α(s1,s2)

s1
is also continuous and

supported in K, implying lims1↘0 sups2≥0 |f1α(s1, s2) ln s1| = 0. The second statement in
(6.2.5) follows analogously.

6.4. The limit process α↘ 0: obtaining solution
candidates

Apart from assumptions made at the beginning of the preceding section, throughout this
section, for α ∈ (0, 1), we also let Diα, Siα, ξiα, i ∈ {1, 2}, as introduced in Section 6.3,
u0α, v0α as well as uα, vα as given by Lemma 6.3.1 and Lemma 6.3.2, respectively, and Giα,
i ∈ {1, 2}, as in (6.3.5).

In order to prepare taking the limit α↘ 0, we collect several a priori estimates. As already
alluded to in the introduction of this chapter, the main ingredient will be an entropy-like
inequality; that is, we will heavily rely on (6.3.6).

6.4.1. Preliminary observations

To streamline later arguments, in this subsection, we first collect several elementary state-
ments regarding the parameters and nonlinearities involved in Theorem 6.1.1.
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6.4. The limit process α↘ 0: obtaining solution candidates

Lemma 6.4.1. Set βi := mi − qi − 1 for i ∈ {1, 2}. Then the inequalities

2
(
mi − 1− βi

2

)
< pi, βi > −2 and pi > 0 (6.4.1)

hold.

Proof. Recalling that pi ≥ βi + 2 + 2(2−qi)
n by (6.1.8) and qi ≤ 1 < 2 by (6.1.4), we have

2
(
mi − 1− βi

2

)
= βi + 2qi < βi + 2qi + 2(2− qi)

n
≤ pi for i ∈ {1, 2},

which shows that the first inequality in (6.4.1) is fulfilled. The second one therein is equiv-
alent to the assumption (6.1.7), upon which the third one follows by the definition of pi as
qi < 2.

As further preparation, we estimate the functions Giα defined in (6.3.5) and their derivatives
both from above and from below.

Lemma 6.4.2. Set

Lq(s) :=
{

1, q < 1,
ln s, q = 1

for s ≥ 0 and q ≤ 1. (6.4.2)

and let Giα be as in (6.3.5) for i ∈ {1, 2} and α ∈ (0, 1). Then there are C1, C2, C3, C4, > 0
such that

Giα(s)

≥ C1

(
s+1

1+α(s+1)

)2−qi
Lqi(s+ e)− C2

≤ C2s
2−qiLqi(s) + C2αs

3−qi + C2
for s ≥ 0, (6.4.3)

G′iα(s)
{
≥ C3 ln s
≤ 0

for s ∈ (0, 1) and (6.4.4)

G′iα(s)
{
≥ G′i(s)− C4αs

2−qi

≤ G′i(s) + C4αs
2−qi

for s ≥ 1 (6.4.5)

for α ∈ (0, 1) and i ∈ {1, 2}.

Proof. We fix i ∈ {1, 2}. Since∣∣∣∣ ∂∂α [1 + α(s+ 1)]qi
∣∣∣∣ = |qi|[1 + α(s+ 1)]qi−1(s+ 1) ≤ |qi|(s+ 1)

for all s ≥ 0 and α ∈ (0, 1), the mean value theorem implies that

χi|G′iα(s)−G′i(s)| = sign(s− 1)
∫ s

1

[1 + α(σ + 1)]qi − 1
σ(σ + 1)qi−1 dσ

≤ α|qi| sign(1− s)
∫ 1

s

(σ + 1)2−qi

σ
dσ

for all s > 0 and α ∈ (0, 1). Estimating here σ + 1 ≤ 2 and σ + 1 ≤ 2σ for σ ∈ (0, 1) and
σ ≥ 1, respectively, for all α ∈ (0, 1), we obtain

χi|G′iα(s)−G′i(s)| ≤ 22−qiα|qi|
∫ 1

s

1
σ

dσ = 22−qiα|qi|| ln s| for all s ∈ (0, 1)
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6. Global weak solutions to fully cross-diffusive systems

and

χi|G′iα(s)−G′i(s)| ≤ 22−qiα|qi|
∫ s

1
σ1−qi dσ ≤ 22−qiα|qi|

2− qi
s2−qi for all s ≥ 1.

As moreover G′iα(s) ≤ 0 for s ∈ (0, 1) and α ∈ (0, 1) and

χi|G′i(s)| =
∫ 1

s

(σ + 1)1−qi

σ
dσ ≤ 21−qi | ln s| for all s ∈ (0, 1) and α ∈ (0, 1),

consequences thereof are (6.4.4) and (6.4.5) for a certain C3, C4 > 0.

Furthermore, again making use of the fact that s + 1 ≤ 2s for s ≥ 1, a direct computation
shows that

χiGi(s) =
∫ s

1

∫ ρ

1

(σ + 1)1−qi

σ
dσ dρ

≤ 21−qi
∫ s

1

∫ ρ

1
σ−qi dσ dρ

≤ 21−qi

1− qi1{qi<1}

∫ s

1
ρ1−qiLqi(ρ) dρ

≤ 21−qi

(2− qi)(1− qi1{qi<1})
s2−qiLqi(s) for s ≥ 1. (6.4.6)

In a similar vein, we obtain c1, c2 > 0 such that

χiGiα(s) =
∫ s

1

∫ ρ

1

(1 + α(σ + 1))qi
σ(σ + 1)qi−1 dσ dρ

≥ (1 + α(s+ 1))min{qi,0}
∫ s

1

∫ ρ

1
σ−qi dσ dρ

≥ c1s
2−qiLqi(s)

(1 + α(s+ 1))max{−qi,0}
− c2s

≥ c1s
2−qiLqi(s+ e)

(1 + α(s+ 1))max{−qi,0}
−
c1 ln(1 + e)1{qi<1}s

2−qi

(1 + α(s+ 1))max{−qi,0}
− c2s

for s ≥ 1 and α ∈ (0, 1), where in the last step we have made use of the fact that ln(s+ e)−
ln s = ln s+e

s ≤ ln(1 + e) for s ≥ 1. Since the first term on the right-hand side herein grows
faster than the other two, there is moreover c3 > 0 such that

χiGiα(s) ≥ c1s
2−qiLqi(s+ e)

2(1 + α(s+ 1))max{−qi,0}
− c3

≥ c1
2

(
s

1 + α(s+ 1)

)2−qi
Lqi(s+ e)− c3

≥ c1
23−qi

(
s+ 1

1 + α(s+ 1)

)2−qi
Lqi(s+ e)− c3 for s ≥ 1 and α ∈ (0, 1),

which, when combined with (6.4.4)–(6.4.6), implies the existence of C1, C2 > 0 such that
(6.4.3) holds for all s ≥ 1 and α ∈ (0, 1).

Finally, by integrating (6.4.4), we see that there is c4 > 0 such that −c4 ≤ Giα(s) ≤ c4 for
all s ∈ [0, 1) and α ∈ (0, 1) so that, possibly after enlarging C1 and C2, (6.4.3) is indeed
valid for all s ≥ 0 and α ∈ (0, 1).
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6.4. The limit process α↘ 0: obtaining solution candidates

The estimates obtained in Lemma 6.4.2 and the definitions of Diα and Siα now allow us to
infer the following from the entropy-like inequality (6.3.6).

Lemma 6.4.3. Let T ∈ (0,∞). Then there exists C1, C2 > 0 such that

C1

∫
Ω
B2−q1
α (uα(·, t))Lq1(uα(·, t) + e) + C1

∫
Ω
B2−q2
α (vα(·, t))Lq2(vα(·, t) + e)

+ d1

χ1

∫ t

0

∫
Ω
Bm1−q1−1
α (uα)|∇uα|2 + d2

χ2

∫ t

0

∫
Ω
Bm2−q2−1
α (vα)|∇vα|2

≤ C2 +
∫ t

0

∫
Ω
G′1α(uα)f1α(uα, vα) +

∫ t

0

∫
Ω
G′2α(vα)f2α(uα, vα) (6.4.7)

for all t ∈ (0, T ) and all α ∈ (0, 1), where Lqi is as in (6.4.2) and

Bα(s) := s+ 1
1 + α(s+ 1) , s ≥ 0, α ∈ (0, 1). (6.4.8)

Proof. As according to (6.3.2) and (6.3.3), there is c1 > 0 such that∫
Ω
u2−q1

0α Lq1(u0α) + α

∫
Ω
u3−q1

0α +
∫

Ω
v2−q2

0α Lq2(v0α) + α

∫
Ω
v3−q2

0α ≤ c1 for all α ∈ (0, 1),

an application of (6.4.3) gives c2 > 0 such that∫
Ω
G1α(u0α) +

∫
Ω
G2α(v0α) ≤ c2 for all α ∈ (0, 1),

Moreover,

Diα(s) ≥ diBmi−1
α (s) and Siα(s) ≤ χiBqiα (s)

and hence Diα(s)
Siα(s) ≥

di
χi
Bmi−qi−1
α (s) for s ≥ 0, α ∈ (0, 1) and i ∈ {1, 2}. Also making use of

the first inequality in (6.4.3), we can then infer (6.4.7) from (6.3.6) for certain C1, C2 > 0.

6.4.2. Controlling the right-hand side of (6.4.7)

In order to obtain α-independent a priori estimates from (6.4.7), we need to obtain an upper
bound for the terms on the right-hand side therein. Restricted to the set where uα and vα
are at least 1, we will bound the corresponding integrand using one of the assumptions
(6.F1) and (6.F2). This is complemented by the following observation essentially showing
we may indeed focus on that regime.

Lemma 6.4.4. There is C > 0 such that

G′1α(uα)f1α(uα, vα) +G′2α(vα)f2α(uα, vα)
≤ C + (G′1(uα)f1(uα, vα) +G′2(vα)f2(uα, vα)) ξ1α(uα)ξ2α(vα)1{uα≥1}∩{vα≥1} (6.4.9)

a.e. in Ω× (0,∞) for all α ∈ (0, 1).
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6. Global weak solutions to fully cross-diffusive systems

Proof. For α ∈ (0, 1), we fix representatives of uα and vα in L1
loc(Ω× [0,∞)) so that sets

such as {uα < 1} or {vα < 1} are well-defined.

According to (6.4.4), there is c1 > 0 such that

c1 ln s ≤ G′iα(s) ≤ 0 for all s ∈ (0, 1), α ∈ (0, 1) and i ∈ {1, 2}.

Recalling the definition of fiα and that uα, vα are nonnegative, this implies

G′1α(uα)f1α(uα, vα) ≤ c1| ln uα|µ1u
2
αξ1α(uα)ξ2α(vα) in {uα < 1} and

G′2α(vα)f2α(uα, vα) ≤ c1| ln vα|(µ2v
2
α + a2uαvα)ξ1α(uα)ξ2α(vα) in {vα < 1}

for all α ∈ (0, 1). Since (0, 1) 3 s 7→ s ln s is bounded, there is c2 > 0 such that

G′1α(uα)f1α(uα, vα) ≤ c2 in {uα < 1} and (6.4.10)
G′2α(vα)f2α(uα, vα) ≤ c2 + c2uαξ1α(uα)ξ2α(vα) in {vα < 1}. (6.4.11)

for all α ∈ (0, 1) and thus (6.4.9) holds on the set {uα < 1} ∩ {vα < 1} for some C > 0.

Moreover, by (6.4.5), there is c3 > 0 such that

|G′iα(s)−G′i(s)| ≤ c3αs2−qi for all s ≥ 1, α ∈ (0, 1) and i ∈ {1, 2}.

As (6.3.1) entails that uα and vα are bounded by 2α−
1

4−min{q1,q2} on supp ξ1α(uα) and
supp ξ2α(vα), respectively, and hence

αu2−q1
α |f1α(uα, vα)| ≤ αu2−q1

α (λ1uα + µ1u
2
α + a1uαvα)ξ1α(uα)ξ2α(vα)

≤ 24−q1(λ1 + µ1 + a1) =: c4 in {uα ≥ 1} for all α ∈ (0, 1),

we can conclude

G′1α(uα)f1α(uα, vα) ≤ G′1(uα)f1(uα, vα)ξα(vα)ξα(vα) + c3c4 in {uα ≥ 1} (6.4.12)

for all α ∈ (0, 1). Likewise, there is c5 > 0 such that

G′2α(vα)f2α(uα, vα) ≤ G′2(vα)f2(uα, vα)ξα(vα)ξα(vα) + c3c5 in {vα ≥ 1} (6.4.13)

for all α ∈ (0, 1). Therefore, after enlarging C if necessary, (6.4.9) holds also in the regime
{uα ≥ 1} ∩ {vα ≥ 1}.

Furthermore,

f1(uα, vα) ≤ uα
(
λ1 −

µ1

2 uα + a1

)
− µ1

2 u2
α ≤ −

µ1

2 u2
α in

{
uα
2 ≥

λ1 + a1

µ1

}
∩ {vα < 1}

for all α ∈ (0, 1) so that since G′1(s) ≥ 0 for s ≥ 1, we have

G′1(uα)f1(uα, vα)ξ1α(uα)ξ2α(vα) ≤ c6 −
µ1

2 u2
αξ1α(uα)ξ2α(vα) in {uα ≥ 1} ∩ {vα < 1}

for all α ∈ (0, 1), wherein c6 := ‖G′1f1(·, 1)‖
L∞(0, 2(λ1+a1)

µ1
) is finite as G′1f1(·, 1) is continuous

on [0,∞). Combined with (6.4.11) and (6.4.12), and possibly after further enlarging C, this
shows that (6.4.9) holds also on the set {uα ≥ 1} ∩ {vα < 1},

Finally, for the remaining subset {uα < 1} ∩ {vα ≥ 1} of Ω× (0,∞), we can argue similarly
as above.

130
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If (6.F1) holds, the preceding lemma immediately allows us to bound the integrands on the
right-hand side of (6.4.7).

Lemma 6.4.5. Let T ∈ (0,∞) and suppose that (6.F1) holds. Then we can find C1, C2 > 0
such that ∫

Ω
G′1α(uα)f1α(uα, vα) +

∫
Ω
G′2α(vα)f2α(uα, vα)

≤ C1 − C2

∫ T

0

∫
Ω
u2
α ln uα − C2

∫ T

0

∫
Ω
v2
α ln vα (6.4.14)

a.e. in Ω× (0,∞) for all α ∈ (0, 1).

Proof. This directly follows from combining (6.F1), (6.4.7) and (6.4.9).

In the majority of the remainder of this subsection, we will show that (6.4.14) also holds if
we assume (6.F2) instead of (6.F1). To that end, we may assume that (6.H2) holds since
the right-hand side of (6.4.7) is trivially bounded in the case of (6.H1). The key ingredient
to the corresponding proof will be the Gagliardo–Nirenberg inequality whose application we
prepare by obtaining locally uniform-in-time L1(Ω) bounds in the following

Lemma 6.4.6. Let T ∈ (0,∞) and suppose that (6.H2) holds. There is C > 0 such that∫
Ω
uα(·, t) +

∫
Ω
vα(·, t) ≤ C for all t ∈ (0, T ) and α ∈ (0, 1). (6.4.15)

Proof. Testing the first equation in (6.3.4) with the constant function a2 > 0, recalling
the definition of f1α and applying Young’s inequality give

a2

∫
Ω
uα(·, t)− a2

∫
Ω
u0α = a2

∫ t

0

∫
Ω
uαt

= a2λ1

∫ t

0

∫
Ω
uαξ1α(uα)ξ2α(vα)− a2µ1

∫ t

0

∫
Ω
u2
αξ1α(uα)ξ2α(vα)

+a1a2

∫ t

0

∫
Ω
uαvαξ1α(uα)ξ2α(vα)

≤ a2λ
2
1

4µ1
|Ω|T + a1a2

∫ t

0

∫
Ω
uαvαξ1α(uα)ξ2α(vα) for t ∈ (0, T ) and α ∈ (0, 1).

As likewise

a1

∫
Ω
vα(·, t)− a1

∫
Ω
v0α ≤

a1λ
2
2

4µ2
|Ω|T − a1a2

∫ t

0

∫
Ω
uαvαξ1α(uα)ξ2α(vα)

for t ∈ (0, T ) and α ∈ (0, 1), we conclude

a2

∫
Ω
uα(·, t) + a1

∫
Ω
vα(·, t) ≤ a2

∫
Ω
u0α + a1

∫
Ω
u0α + a2λ

2
1

4µ1
|Ω|T + a1λ

2
2

4µ2
|Ω|T

for t ∈ (0, T ) and α ∈ (0, 1). In view of (6.3.2), this implies (6.4.15) for a certain C > 0.

Lemma 6.4.7. Let T ∈ (0,∞), η > 0, βi := mi − qi − 1 for i ∈ {1, 2} and suppose that
(6.H2) holds. For p ∈ (0, (β1+2)n+2

n ), there is C1 > 0 such that∫
Ω
upα(·, t)ξ1α(uα(·, t)) ≤ η

∫
Ω
Bβ1
α (uα(·, t))|∇uα(·, t)|2 + C1 (6.4.16)
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for all t ∈ (0, T ) and α ∈ (0, 1) and, for p ∈ (0, (β2+2)n+2
n ), there is C2 > 0 such that∫

Ω
vpα(·, t)ξ2α(vα(·, t)) ≤ η

∫
Ω
Bβ2
α (vα(·, t))|∇vα(·, t)|2 + C2 (6.4.17)

for all t ∈ (0, T ) and α ∈ (0, 1), where Bα is as in (6.4.8); that is, Bα(s) = s+1
1+α(s+1) for

s ≥ 0 and α ∈ (0, 1).

Proof. As Bα(s) ≤ s+ 1 for all s ≥ 0 and α ∈ (0, 1), Lemma 6.4.6 allows us to fix c1 > 0
such that∫

Ω
Bα(uα(·, t)) +

∫
Ω
Bα(vα(·, t)) ≤ c1 for all t ∈ (0, T ) and α ∈ (0, 1).

The definitions p̃1 := 2((β1+2)n+2)
(β1+2)n and q̃1 := 2

β1+2 imply

b :=
1
q̃1
− 1

p̃1
1
q̃1
− n−2

2n
= (β1 + 2)((β1 + 2)n+ 2)n− (β1 + 2)n2

(β1 + 2)((β1 + 2)n+ 2)n− (n− 2)((β1 + 2)n+ 2)

= (β1 + 2)n((β1 + 1)n+ 2)
((β1 + 1)n+ 2))((β1 + 2)n+ 2) = (β1 + 2)n

(β1 + 2)n+ 2 ∈ (0, 1).

Since p̃1b
2 = 1, an application of the Gagliardo–Nirenberg inequality (cf. [58, Lemma 2.3] for

a version allowing for merely positive q̃1) gives c2 > 0 such that

∫
Ω
ϕp̃1 ≤ c2

(∫
Ω
|∇ϕ|2

)(∫
Ω
ϕ

2
β1+2

) p̃1(1−b)
q̃1

+ c2

(∫
Ω
ϕ

2
β1+2

) p̃1
q̃1

for all ϕ ∈W 1,2(Ω).

Thus, setting c3 := (β+1)2

4 c
p̃1(1−b)
q̃1

1 c2 and noting that |B′α|(s) = 1
(1+α(s+1))2 ≤ 1 for s ≥ 0 and

α ∈ (0, 1), we conclude∫
Ω
B

(β1+2)n+2
n

α (uα(·, t))

=
∫

Ω

(
B
β1+2

2
α (uα(·, t))

)p̃1

≤ c2
∫

Ω

∣∣∣∣∇B β1+2
2

α (uα(·, t))
∣∣∣∣2(∫

Ω
Bα(uα(·, t))

) p̃1(1−b)
q̃1

+ c2

(∫
Ω
Bα(uα(·, t))

) p̃1
q̃1

≤ c3
∫

Ω
Bβ1
α (uα(·, t))|B′α(uα(·, t))|2|∇uα(·, t)|2 + c

p̃1
q̃1
1 c2

≤ c3
∫

Ω
Bβ1
α (uα(·, t))|∇uα(·, t)|2 + c

p̃1
q̃1
1 c2 for all t ∈ (0, T ) and α ∈ (0, 1).

We now fix η > 0 and p ∈ (0, (β1+2)n+2
n ). By Young’s inequality, we then obtain c4 > 0 such

that ∫
Ω
Bpα(uα(·, t)) ≤ η

4p
∫

Ω
Bβ1
α (uα(·, t))|∇uα(·, t)|2 + c4 (6.4.18)
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for all t ∈ (0, T ) and α ∈ (0, 1). Moreover, as for α ∈ (0, 1) and s ∈ supp ξ1α ⊂
[0, 2α−1/(4−min{q1,q2})] ⊂ [0, 2α−1], we have

s = (1 + α(s+ 1)) s

1 + α(s+ 1) ≤ 4Bα(s),

the monotonicity of [0,∞) 3 s 7→ sp asserts∫
Ω

(
uα(·, t)

4

)p
ξ1α(uα(·, t)) ≤

∫
Ω
Bpα(uα(·, t)) for all t ∈ (0, T ) and α ∈ (0, 1).

Together with (6.4.18), this implies (6.4.16) for C1 := 4pc4. By an analogous argumentation,
we also obtain the corresponding statement for the second solution component.

If β1 and β2 are sufficiently large compared to q1 and q2, one might hope that the estimates
obtained in Lemma 6.4.7 are strong enough to control the right-hand side of (6.4.7). This
idea can be quantified as follows.

Lemma 6.4.8. Let T ∈ (0,∞) and suppose that (6.F2) and (6.H2) hold. Then there are
C1, C2 > 0 such that (6.4.14) holds.

Proof. We will crucially rely on the assumption (6.F2) which asserts that m1 > m1 or
m2 > m2, where

m1 := 2n− 2
n

+ (3− q2)(2− q1)− (3− q1)(2− q2)
2− q2

and m2 := 2n− 2
n

+ (q2 − q1).

Setting again βi := mi − qi − 1 for i ∈ {1, 2}, these definitions imply

(β1 + 2)n+ 2
n

> m1 − q1 + 1 + 2
n

= (3− q2)(2− q1)
2− q2

if m1 > m1 and

(β2 + 2)n+ 2
n

> m2 − q2 + 1 + 2
n

= 3− q1 if m2 > m2,

whence there is η ∈ (0, 1) such that still

(β1 + 2)n+ 2
n

>
(3− q2)(2− q1 + η)

2− q2
if m1 > m1 and (6.4.19)

(β2 + 2)n+ 2
n

>
3− q1

1− η if m2 > m2. (6.4.20)

For s ≥ 1, we have s+1
s ∈ [1, 2] and hence s1−qi ≤ (s + 1)1−qi ≤ 21−qis1−qi for i ∈ {1, 2}

which due to χiG′i(s) =
∫ s

1
(σ+1)1−qi

σ dσ for s ≥ 1 and i ∈ {1, 2} implies that

s1−qiLqi(s)
1− qi1{qi<1}

≤ χiG′i(s) ≤
21−qis1−qiLqi(s)

1− qi1{qi<1}
for s ≥ 1 and i ∈ {1, 2}.

(We recall that Lq(s) = 1{q<1} + 1{q=1} ln s for s ≥ 1 and q ≤ 1 by (6.4.2).) Combined
with the facts that ln(s+ e)− ln s = ln s+e

s ≤ ln(1 + e) and ln s ≤ sη for s ≥ 1 and Young’s
inequality, we thus obtain c1, c2 > 0 such that

[G′1(uα)f1(uα, vα) +G′2(vα)f2(uα, vα)] ξ1α(uα)ξ2α(vα)
≤
[
c1u

2−q1+η
α vα − 2c2u3−q1

α Lq1(uα + e)− 2c2v3−q2
α Lq2(vα + e)

]
ξ1α(uα)ξ2α(vα) + c1
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in {uα ≥ 1} ∩ {vα ≥ 1} for all α ∈ (0, 1).

We now distinguish between the cases m1 > m1 and m2 > m2. In the former one, we first
employ Young’s inequality to obtain c3 > 0 such that

c1u
2−q1+η
α vαξ1α(uα)ξ2α(vα)

≤ c3u
(3−q2)(2−q1+η)

2−q2
α ξ1α(uα) + c2v

3−q2
α ξ1α(uα)ξ2α(vα) in Ω× (0, T ) for all α ∈ (0, 1)

and then make use of the assumption m1 > m1 which allows us to apply (6.4.19) and
Lemma 6.4.7 to obtain c4 > 0 such that

c3

∫ T

0

∫
Ω
u

(3−q2)(2−q1+η)
2−q2

α ξα(uα) ≤ d1

2χ1

∫ T

0

∫
Ω
Bβ1
α (uα)|∇uα|2 + c4 for all α ∈ (0, 1),

If on the other hand m2 > m2, then we again make first use of Young’s inequality to obtain
c5 > 0 such that

c1u
2−q1+η
α vαξ1α(uα)ξ2α(vα) ≤ c2u3−q1

α ξ1α(uα)ξ2α(vα) + c5v
3−q1
1−η
α ξ2α(vα)

in Ω × (0, T ) for all α ∈ (0, 1). According to Lemma 6.4.7 (which is applicable thanks to
(6.4.20)), there is then c6 > 0 such that

c5

∫ T

0

∫
Ω
v

3−q1
1−η
α ξ2α(vα) ≤ d2

2χ2

∫ T

0

∫
Ω
Bβ2
α (vα)|∇vα|2 + c6 for all α ∈ (0, 1).

In both cases m1 > m1 and m2 > m2, we then conclude from the estimates above that there
is c7 > 0 such that∫ T

0

∫
Ω

[G′1(uα)f1(uα, vα) +G′2(vα)f2(uα, vα)] ξ1α(uα)ξ2α(vα)1{uα≥1}∩{vα≥1}

≤ d1

2χ1

∫ T

0

∫
Ω
Bβ1
α (uα)|∇uα|2 + d2

2χ2

∫ T

0

∫
Ω
Bβ2
α (vα)|∇vα|2

−c2
∫ T

0

∫
Ω
u3−q1
α Lq1(uα + e)ξ1α(uα)ξ2α(vα)− c2

∫ T

0

∫
Ω
v3−q2
α Lq2(uα + e)ξ1α(uα)ξ2α(vα)

+c7 for all α ∈ (0, 1),

which in conjunction with (6.4.7) and (6.4.9) gives the claim.

This concludes our journey of controlling the right-hand side in (6.4.7). As a consequence,
we obtain the following a priori bounds.

Lemma 6.4.9. Let T ∈ (0,∞). There is C1 > 0 such that

sup
t∈(0,T )

(∫
Ω
B2−q1
α (uα(·, t))Lq1(uα(·, t) + e)

+
∫

Ω
B2−q1
α (vα(·, t))Lq2(vα(·, t) + e)

)
≤ C1 (6.4.21)

and ∫ T

0

∫
Ω
Bβ1
α (uα)|∇uα|2 +

∫ T

0

∫
Ω
Bβ2
α (vα)|∇vα|2 ≤ C1 (6.4.22)
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for all α ∈ (0, 1), where again βi := mi − qi − i for i ∈ {1, 2}, and Lqi and Bα are as in
(6.4.2) and (6.4.8), respectively. Moreover, if (6.H2) holds, then we can find C2 > 0 with
the property that∫ T

0

∫
Ω
u2
α ln(uα + e) +

∫ T

0

∫
Ω
v2
α ln(vα + e) ≤ C2 for all α ∈ (0, 1). (6.4.23)

Proof. According to Lemma 6.4.3, Lemma 6.4.5 and Lemma 6.4.8, there are c1, c2 > 0 and
c3 ≥ 0 such that c3 is positive if (6.H2) holds and

c1

∫
Ω
B2−q1
α (uα(·, t))Lq1(uα(·, t) + e) + c1

∫
Ω
B2−q2
α (vα(·, t))Lq2(vα(·, t) + e)

+ d1

2χ1

∫ T

0

∫
Ω
Bβ1
α (uα)|∇uα|2 + d2

2χ2

∫ T

0

∫
Ω
Bβ2
α (vα)|∇vα|2

≤ c2 − c3
∫ T

0

∫
Ω
u2
α ln(uα + e)− c3

∫ T

0

∫
Ω
v2
α ln(vα + e) for t ∈ (0, T ) and α ∈ (0, 1),

as desired.

6.4.3. Space-time bounds and the limit process

As a next step, we derive further space-time bounds from (6.4.21) and (6.4.22). To that
end, we make use of the following interpolation inequality which is both a refinement and a
consequence of the Gagliardo–Nirenberg inequality and has been proven by Tao and Winkler
in [86].

Lemma 6.4.10. Let 0 < q < p < 2n
(n−2)+

and suppose that Λ ∈ C0(R) fulfills Λ ≥ 1 on R.
Then there exist C > 0 and θ ∈ (0, 1] such that

∫
Ω
|ϕ|pΛθ(ϕ) ≤ C

(∫
Ω
|∇ϕ|

) pb
2
(∫

Ω
|ϕ|qΛ(ϕ)

) p(1−b)
q

+ C

(∫
Ω
|ϕ|qΛ(ϕ)

) p
q

for all ϕ ∈W 1,2(Ω), where

b :=
1
q −

1
p

1
q + 1

n −
1
2
∈ (0, 1).

Proof. This is a direct consequence of [86, Lemma 7.5].

Lemma 6.4.11. For all T ∈ (0,∞), there are C > 0 and θ1, θ2 ∈ (0, 1] such that∫ T

0

∫
Ω
Bp1
α (uα)Lθ1q1(Bα(uα) + e) +

∫ T

0

∫
Ω
Bp2
α (vα)Lθ2q2(Bα(vα) + e) ≤ C (6.4.24)

for all α ∈ (0, 1), where p1 and p2 are as in (6.1.8), and Lqi and Bα are as in (6.4.2) and
(6.4.8), respectively.

Proof. We fix T ∈ (0,∞). As usual, it suffices to show the statement for the first solution
component.
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Let us first assume p1 = 3 − q1 and that (6.H2) holds. Then (6.4.23) already contains
(6.4.24). Moreover, if p1 = 2 − q1, then (6.4.21) and an integration in time also show
(6.4.24). According to (6.1.8), it remains to be shown that (6.4.24) also holds for 2 − q1 <

p1 = β1 + 2 + 2(2−q1)
n , where again β1 := m1 − q1 − 1. As already alluded to, the main

ingredients for this proof are (6.4.21) and (6.4.22) which assert that there are c1, c2 > 0 such
that

sup
t∈(0,T )

∫
Ω
B2−q1
α (uα(·, t))Lq1(uα(·, t) + e) ≤ c1 and

∫ T

0

∫
Ω
Bβ1
α (uα)|∇uα|2 ≤ c2.

Preparing an application of Lemma 6.4.10, we set q̃1 := 2(2−q1)
β1+2 , which is positive as β1 > −2

is contained in (6.4.1). Moreover,

p̃1 := 2(n+ q̃1)
n

= 2
(

1 + q̃1

n

)
=

2(β1 + 2 + 2(2−q1)
n )

β1 + 2 = 2p1

β1 + 2 > q̃1

thanks to p1 > 2 − q1. Thus, p̃1 < 2(n+p̃1)
n and hence n−2

n p̃1 < 2 which in turn implies
p̃1 <

2n
(n−2)+

. Therefore, we may indeed apply Lemma 6.4.10 to obtain c3 > 0, θ1 ∈ (0, 1]
and b ∈ (0, 1) such that with Λ(s) := Lq1(s

2
β+2 + e), s ≥ 0,∫

Ω
ϕp̃1Λθ1(ϕ) ≤ c3

(∫
Ω
|∇ϕ|2

) p̃1b
2
(∫

Ω
ϕ

2(2−q1)
β1+2 Λ(ϕ)

) p̃1(1−b)
q̃1

+ c3

(∫
Ω
ϕ

2(2−q1)
β1+2 Λ(ϕ)

) p̃1
q̃1

for all nonnegative ϕ ∈ W 1,2(Ω). Taking here ϕ = Bp1
α (uα(·, t)), t ∈ (0, T ), and integrating

in time yield ∫ T

0

∫
Ω
Bp1
α (uα)Lθ1q1(Bα(uα) + e)

=
∫ T

0

∫
Ω

(
B
β1+2

2
α (uα)

) 2p1
β1+2

Λθ1(B
β1+2

2
α (uα))

≤ c3
∫ T

0

(∫
Ω

∣∣∣∣∇B β1+2
2

α (uα)
∣∣∣∣2
) p̃1b

2 (∫
Ω
B2−q1
α (uα)Lq1(uα + e)

) p̃1(1−b)
q̃1

+c3
∫ T

0

(∫
Ω
B2−q1
α (uα)Lq1(uα + e)

) p̃1
q̃1

≤ c
p̃1/q̃1
1 c3(β1 + 2)2

4

∫ T

0

∫
Ω
Bβ1
α (uα)|B′(uα)|2|∇uα|2 + Tc

p̃1/q̃1
1 c3

≤ c
p̃1/q̃1
1 c2c3(β1 + 2)2

4 + Tc
p̃1/q̃1
1 c3 for all α ∈ (0, 1),

where in the last step we have used that |B′α(s)| = 1
(1+α(s+1))2 ≤ 1 for s ≥ 0 and α ∈ (0, 1).

Thus, (6.4.24) indeed holds in all cases treated by this lemma.

As an application of Young’s inequality reveals, (6.4.22) and (6.4.24) allow us to also obtain
gradient space-time bounds.

Lemma 6.4.12. Let T ∈ (0,∞) and r1, r2 be as in (6.1.9). Then there is C > 0 such that∫ T

0

∫
Ω
|∇uα|r1 +

∫ T

0

∫
Ω
|∇vα|r2 ≤ C for all α ∈ (0, 1). (6.4.25)
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Proof. Again, it suffices to prove the bound only for uα, α ∈ (0, 1). We first assume that
r1 < 2 and hence r1 = 2p1

p1−β1
by (6.1.9), where β1 := m1− q1− 1. With Bα as in (6.4.8), we

then make use of Young’s inequality to obtain∫ T

0

∫
Ω
|∇uα|r1 =

∫ T

0

∫
Ω
B
β1r1

2
α (uα)|∇uα|r1B

− β1r1
2

α (uα)

≤ r1

2

∫ T

0

∫
Ω
Bβ1
α (uα)|∇uα|2 + 2− r1

2

∫ T

0

∫
Ω
B
− β1r1

2−r1
α (uα)

for all α ∈ (0, 1) which due to (6.4.24) and

− β1r1

2− r1
= −β1

2
r1
− 1

= −β1
p1−β1
p1
− 1

= −β1
−β1
p1

= p1

implies (6.4.25) for some C > 0.

If, on the other hand r1 ≥ 2 and hence r1 = 2 ≤ 2p1
p1−β1

by (6.1.9), then β1 ≥ 0 since
positivity of p1 is contained in (6.4.1). Thus, in this case the estimate (6.4.22) directly
implies (6.4.25).

As a last preparation before obtaining limit functions u and v by applying several compact-
ness theorems—in particular, the Aubin–Lions lemma—, we derive estimates for the time
derivatives uαt and vαt, α ∈ (0, 1).

Lemma 6.4.13. Let T ∈ (0,∞). Then there exists C > 0 such that

‖uαt‖L1((0,T );(Wn+1,2(Ω))?) + ‖vαt‖L1((0,T );(Wn+1,2(Ω))?) ≤ C for all α ∈ (0, 1). (6.4.26)

Proof. Since uα ∈ L2((0, T );W 1,2(Ω)) by Lemma 6.3.2, the weak formulation (6.2.8) en-
tails that∫

Ω
uαt(·, t)ψ = −

∫
Ω
D1α(uα(·, t))∇uα(·, t) · ∇ψ +

∫
Ω
S1α(uα(·, t))∇vα(·, t) · ∇ψ

+
∫

Ω
f1α(uα(·, t), vα(·, t))ψ

for a.e. t ∈ (0, T ), all ψ ∈ W 1,2(Ω) and all α ∈ (0, 1). Thus, recalling that D1α(uα) ≤
d1B

m1−1
α (uα) + 1 and S1α(uα) ≤ χ1B

q1
α (uα) for α ∈ (0, 1) if Bα as in (6.4.8), we may

estimate ∣∣∣∣∫
Ω
uαt(·, t)ψ

∣∣∣∣
≤
∣∣∣∣∫

Ω
(D1α(uα(·, t))∇uα(·, t) · ∇ψ

∣∣∣∣+
∣∣∣∣∫

Ω
S1α(uα(·, t))∇vα(·, t) · ∇ψ

∣∣∣∣
+
∣∣∣∣∫

Ω
f1α(uα(·, t), vα(·, t))ψ

∣∣∣∣
≤ d1

∫
Ω

(
B
m1−1− β1

2
α (uα(·, t)) + 1

)2
‖∇ψ‖L∞(Ω)

+d1

∫
Ω

((
B
β1
2
α (uα(·, t)) + 1

)
|∇uα(·, t)|

)2
‖∇ψ‖L∞(Ω)
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+χ1

(∫
Ω

(Bq1α (uα(·, t)))
r2
r2−1 +

∫
Ω
|∇vα(·, t)|r2

)
‖∇ψ‖L∞(Ω)

+
(∫

Ω
|f1α(uα(·, t), vα(·, t))|

)
‖ψ‖L∞(Ω)

for a.e. t ∈ (0, T ), all ψ ∈ W 1,∞(Ω) and all α ∈ (0, 1), wherein as usual β1 := m1 − q1 − 1.
As according to (6.4.1) and (6.1.10), both 2(m1−1− β1

2 ) and max{q1,0}r2
r2−1 are at most p1, the

bounds (6.4.24), (6.4.22), (6.4.25) and (6.4.23) along with the embeddings Wn+1,2(Ω) ↪→
W 1,∞(Ω) ↪→ L∞(Ω) and an integration in time yield c1 > 0 such that∫ T

0
sup

ψ∈Wn+1,2(Ω)
‖ψ‖Wn+1,2(Ω)≤1

∣∣∣∣∫
Ω
uαtψ

∣∣∣∣ ≤ c1 for all α ∈ (0, 1),

which together with analogous considerations regarding vαt implies (6.4.26).

The a priori bounds gained in the lemmata above now allow us to conclude that (uα, vα)
converge in certain spaces along some null sequence (αj)j∈N.

Lemma 6.4.14. Set

Pi :=
{

[1, pi), qi < 1,
[1, pi], qi = 1.

Then there exists a null sequence (αj)j∈N ⊂ (0, 1) and nonnegative u, v ∈ L1
loc(Ω × [0,∞))

such that

uαj → u pointwise a.e., (6.4.27)
vαj → v pointwise a.e., (6.4.28)

Bα(uαj )→ u+ 1 in Lploc(Ω× [0,∞)) for all p ∈ P1, (6.4.29)
Bα(vαj )→ v + 1 in Lploc(Ω× [0,∞)) for all p ∈ P2, (6.4.30)

uαj ⇀ u in Lr1loc([0,∞);W 1,r1(Ω)), (6.4.31)
vαj ⇀ v in Lr1loc([0,∞);W 1,r1(Ω)), (6.4.32)

f1α(uα, vα)→ f1(u, v) in L1
loc(Ω× [0,∞)) and (6.4.33)

f2α(uα, vα)→ f2(u, v) in L1
loc(Ω× [0,∞)) (6.4.34)

as j → 0, where Bα is as in (6.4.8) for α ∈ (0, 1).

Proof. Thanks to (6.4.25) and (6.4.26), the Aubin–Lions lemma (along with a diago-
nalization argument) provides us with a null sequence (αj)j∈N ⊂ (0, 1) and functions
u, v ∈ L1

loc(Ω× [0,∞)) such that uαj → u and vαj → v in L1
loc(Ω× [0,∞)) as j →∞. After

switching to a subsequence if necessary, we may thus assume that (6.4.27) and (6.4.28) hold.
Thus, nonnegativity of u and v is inherited from nonnegativity of uαj and vαj , j ∈ N, which
in turn is asserted by Lemma 6.3.2. Due to the bound (6.4.24), and because Bα(uα)→ uα+1
and Bα(vα) → vα + 1 pointwise a.e. as α ↘ 0 by (6.4.27) and (6.4.28), Vitali’s theorem
asserts that (6.4.29) and (6.4.30) hold.

Moreover, possibly after switching to further subsequences, (6.4.31) and (6.4.32) follow from
(6.4.25). (We note that (6.4.27) and (6.4.28) guarantee that the corresponding limit func-
tions coincide.)

138



6.5. Existence of global weak solutions to (6.P): proof of Theorem 6.1.1

Finally, additional consequences of (6.4.27) and (6.4.28) are (6.4.33) and (6.4.34): For fixed
T ∈ (0,∞), the complement of

A :=
{

(x, t) ∈ Ω× (0, T ) : u(x, t), v(x, t) <∞ and lim
j→∞

(uαj , vαj )(x, t) = (u, v)(x, t)
}

in Ω × (0, T ) is a null set (since the inclusions u, v ∈ L1(Ω × (0, T )) imply u, v < ∞ a.e.).
Given (x, t) ∈ A, there is M > 0 with max{u(x, t), v(x, t)} < M . Thus, we can find j1 ∈ N
such that max{uαj (x, t), vαj (x, t)} < 2M for all j ≥ j1. Taking moreover j2 ∈ N so large
that 2M ≤ α

−1/(4−min{q1,q2})
j for all j ≥ j2, we see that ξαj (u(x, t)) = ξαj (v(x, t)) = 1 and

hence f1αj (uαj (x, t), vαj (x, t)) = f1(uαj (x, t), vαj (x, t)) for all j ≥ max{j1, j2} so that

f1αj (uαj (x, t), vαj (x, t))→ f1(u(x, t), v(x, t)) as j →∞

by the continuity of f1. Since (x, t) ∈ A was arbitrary, f1αj (uαj , vαj ) → f1(u, v) a.e. as
j →∞. In the case of (6.H1), (6.4.33) is trivially true while for (6.H2), we make first use of
Young’s inequality to obtain c1 > 0 such that |f1α(s1, s2)| ≤ c1(s2

1 + s2
2 + 1) for all s1, s2 ≥ 0

and α ∈ (0, 1) and then employ Vitali’s theorem along with (6.4.23) and the just obtained
pointwise convergence of f1α to also obtain (6.4.33) in that case. As usual, (6.4.34) can be
shown analogously.

6.5. Existence of global weak solutions to (6.P): proof of
Theorem 6.1.1

In this final section, we show that the pair (u, v) constructed in Lemma 6.4.14 is a solution
to (6.P) in the following sense.

Definition 6.5.1. A pair (u, v) ∈ L1
loc(Ω × [0,∞)) is called a global nonnegative weak

solution of (6.P) if u, v ≥ 0,

D1(u)∇u, S1(u)∇v,D2(u)∇v, S2(v)∇u, f1, f2 ∈ L1
loc(Ω× [0,∞))

and

−
∫ ∞

0

∫
Ω
uϕt −

∫
Ω
u0ϕ(·, 0)

= −
∫ ∞

0

∫
Ω
D1(u)∇u · ∇ϕ+

∫ ∞
0

∫
Ω
S1(u)∇v · ∇ϕ+

∫ ∞
0

∫
Ω
f1(u, v)ϕ (6.5.1)

as well as

−
∫ ∞

0

∫
Ω
vϕt −

∫
Ω
v0ϕ(·, 0)

= −
∫ ∞

0

∫
Ω
D2(u)∇v · ∇ϕ−

∫ ∞
0

∫
Ω
S2(u)∇u · ∇ϕ+

∫ ∞
0

∫
Ω
f2(u, v)ϕ (6.5.2)

hold for all ϕ ∈ C∞c (Ω× [0,∞)).

Lemma 6.5.2. The tuple (u, v) constructed in Lemma 6.4.14 is a weak solution of (6.P)
in the sense of Definition 6.5.1.
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6. Global weak solutions to fully cross-diffusive systems

Proof. Both the required regularity and nonnegativity of u and v are contained in Lem-
ma 6.4.14.

In order show that (6.5.1) holds, we first fix ϕ ∈ C∞c (Ω× [0,∞)). For all α ∈ (0, 1), the pair
(uα, vα) given by Lemma 6.3.2 solves (6.3.4) weakly so that by (6.2.8) and an integration
by parts,

I1α + I2α

:= −
∫ ∞

0

∫
Ω
uαϕt −

∫
Ω
u0αϕ(·, 0)

= −
∫ ∞

0

∫
Ω
D1α(uα)∇uα · ∇ϕ+

∫ ∞
0

∫
Ω
S1α(uα)∇vα · ∇ϕ+

∫ ∞
0

∫
Ω
f1α(uα, vα)ϕ

=: I3α + I4α + I5α for all α ∈ (0, 1). (6.5.3)

Mainly relying on the convergences provided by Lemma 6.4.14, we now take the limit α =
αj ↘ 0 in each term herein. First,

I2αj → −
∫

Ω
u0ϕ(·, 0) and I5αj →

∫ ∞
0

∫
Ω
f1(u, v)ϕ as j →∞

are direct consequences of (6.3.2) and (6.4.33). Moreover, as r1 > 1 by (6.1.10), we infer
from (6.4.31) that uαj → u in L1

loc(Ω× [0,∞)) and thus

I1αj → −
∫ ∞

0

∫
Ω
uϕt as j →∞.

Regarding I3α, we first note that in the case of m1 ≤ 1,

Bm1−1
αj (uαj )→ (u+ 1)m1−1 in L

r1
r1−1
loc (Ω× [0,∞)) as j →∞ (6.5.4)

by Lebesgue’s theorem and (6.4.27), where Bα is as in (6.4.8) for α ∈ (0, 1). We now show
that (6.5.4) also holds for m1 > 1. If additionally r1 = 2p1

p1−β1
with β1 := m1 − q1 − 1, then

(m1 − 1) r1
r1−1 = (m1 − 1) 2p1

p1+β1
< p1 since 0 < 2(m1 − 1) < p1 + β1 is entailed in (6.4.1).

If on the other hand (m1 > 1 and) r1 6= 2p1
p1−β1

and thus r1 = 2 > 2p1
p1−β1

by (6.1.9), then
β1 < 0 so that (6.4.1) asserts 2(m1 − 1) < p1 and hence also (m1 − 1) r1

r1−1 < p1. Therefore,
(6.4.29) asserts that (6.5.4) indeed also holds for m1 > 1. Combined with (6.4.31), (6.5.4)
then implies∫ ∞

0

∫
Ω
Bm1−1
αj (uαj )∇uαj · ∇ϕ→

∫ ∞
0

∫
Ω

(u+ 1)m1−1∇u · ∇ϕ as j →∞,

and since additionally αj
∫∞

0
∫

Ω∇uαj · ∇ϕ→ 0 as j →∞ by (6.4.31), we conclude

I3αj → −
∫ ∞

0

∫
Ω
D1(u)∇u · ∇ϕ as j →∞.

Finally, we concern ourselves with the term stemming from the cross-diffusion: Precisely
due to our main condition (6.1.10), we can choose p > 1 such that

1
p

+ 1
r1

= 1 and p ∈


[1,∞), q1 ≤ 0,
[1, p1

q1
), 0 < q1 < 1,

[1, p1], q1 = 1.
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6.5. Existence of global weak solutions to (6.P): proof of Theorem 6.1.1

As also 0 ≤ S1α(s) ≤ χ1B
q1
α (s) for all s ≥ 0 and α ∈ (0, 1) as well as S1αj (uαj ) → S1(uαj )

a.e. as α↘ 0, Pratt’s lemma and (6.4.29) assert that Sp1αj (uαj )→ Sp1 (u) in L1
loc(Ω× [0,∞))

as j → ∞, provided that q1 ≥ 0. For q1 < 0, the same conclusion can be reached by
Lebesgue’s theorem. Combined with (6.4.32), this entails that S1αj (uαj )∇vαj ⇀ S1(u)∇v
in L1

loc(Ω× [0,∞)) as j →∞ and thus

I4αj →
∫ ∞

0

∫
Ω
S1(u)∇v · ∇ϕ as j →∞.

In combination, these convergences and (6.5.3) prove (6.5.1), and since (6.5.2) can be shown
analogously, (u, v) is indeed a weak solution of (6.P).

This lemma already contains the main theorem of the present chapter.

Proof of Theorem 6.1.1. All claims have been proven in Lemma 6.5.2.
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