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Abstract

This work examines various systems of parabolic differential equations with nondiagonal
diffusion matrices inter alia originating in biology. The destabilizing nature of the nondi-
agonal entries, the so-called cross-diffusion terms, is well-known; in fact, for none of the
systems covered here, unconditional global existence results for classical solutions should be
expected.

The low regularity of cross-diffusive systems can essentially be dealt with in two ways, both
of which we explore for certain examples in this thesis. While the first one consists of
rigorously showing that certain classical solutions blow up in finite time, thereby putting
limits to the extent of potential global existence theorems, the second one aims to construct
global solutions despite these challenges, either under certain additional assumptions (say,
on the initial data) or in a more generalized sense.

In a second step, we then proceed to ask further qualitative and quantitative questions
concerning these solutions. In particular, we describe their behavior at large times (if they
are global-in-time) or near their blow-up time (if they are not).

Zusammenfassung

Die vorliegende Arbeit untersucht verschiedene Systeme parabolischer Differentialgleichun-
gen mit nichtdiagonalen Diffusionsmatrizen, welche ihren Ursprung unter anderem in der
Biologie haben. Der destabilisierende Effekt der Nichtdiagonal-Eintrége, also der sogenann-
ten Kreuz-Diffusions-Terme, ist wohlbekannt; insbesondere kann fiir keines der hier betrach-
teten Systeme ein bedingungsloses Globales-Existenz-Resultat erwartet werden.

Der Problematik geringer Regularitit in kreuz-diffusiven Systemen lésst sich im Wesent-
lichen auf zwei Wegen ndhern, welche wir beide fiir gewisse Beispiel-Probleme verfolgen.
Wiéhrend der erste aus dem Nachweis von in endlicher Zeit explodierenden Lésungen be-
steht, also daraus, Grenzen moglicher Resultate betreffend globaler Existenz aufzuzeigen,
versucht der zweite nichtsdestotrotz globale Losungen zu konstruieren, sowohl unter zusatzli-
chen Annahmen (beispielsweise an die Anfangsdaten) als auch in gewissen verallgemeinerten
Sinnen.

In einem zweitem Schritt fragen wir dann nach weiteren qualitativen and quantitativen Ei-
genschaften dieser Losungen. Insbesondere beschreiben wir deren Verhalten fiir grofie Zeiten
(sofern sie global existieren) beziehungsweise nahe ihrer Explosionszeit (falls das nicht der
Fall ist).
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1. Introduction

Parabolic differential equations can be used to describe a variety of natural phenomena
such as pattern formation in E. coli colonies, embryogenesis or population dynamics, to
just name a few examples from biology. Accordingly, there is a desire to understand these
systems mathematically, both in order to be able to give predictions for the future and to
validate the assumptions the models are based on.

Many of these equations approximatively take the form
U =V-(AU)VU) + F(U),

where U is a vector-valued (unknown) function whose components may for instance represent
densities of biological organisms or chemical substances, U; denotes its time derivative, A is
the so-called diffusion matriz and F' models local kinetics and external forces.

Let us discuss the influence of the diffusion matrix A. Positive diagonal entries model
diffusive processes such as heat dissipation or random motion of organisms. If only these
effects are present—that is, if A is a (positive definite) diagonal matrix—, the corresponding
equations are known to be quite regular. For instance, in cases where F' is bounded, global
well-posedness of associated initial-boundary-value-problems follows from straightforwardly
applying well-known energy methods.

However, many natural processes are not adequately described by such diffusion matrices.
To give an example, apart from undergoing random motion, bacteria (with density U ) may
also be partly attracted by higher concentrations of a chemical substance (whose density is
denoted by Us). This can be modelled by the so-called attractive taxis term —V - (U3 VUs)
in the first subequation; that is, by choosing a nontrivial nondiagonal entry in A, namely
A12(U) = —U;. Such an effect, where the gradient of a concentration influences the flux of
another (chemical or biological) species, is called cross-diffusion.

While in certain situations desirable from a modeling perspective, cross-diffusive terms gen-
erally lead to lower regularity, making such systems particularly challenging to handle. Even
questions of global existence are already quite delicate; in contrast to, say, systems with di-
agonal diffusion matrices, no general global existence theory seems to be available. Worse,
for all problems treated in this thesis, unconditional global existence of classical solutions,
that is, of functions solving the equations pointwise, cannot be expected.

There are two ways out of this apparent dilemma, both of which we explore for certain
example problems in this thesis. The first one consists of embracing the low regularity
and rigorously showing that global classical solutions may fail to exist. Accordingly, in the
first part of this thesis, we concern ourselves with one the most drastic forms of pattern
formation: finite-time blow-up. Classical solutions becoming unbounded in finite time are
known to exist for instance for the simplified Keller—Segel system

ur =V - (Vu—uVo)
0=Av—mt)+u, m) = ﬁ Joul-t)
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with nondiagonal diffusion matrix

()= )

describing the behavior of bacteria attracted by a chemical they produce themselves. A
(formerly) long-standing open question asks whether introducing a logistic term Au — pu?
with positive A and g in the first equation, modeling intrinsic bacteria growth and death,
already guarantees that solutions remain locally bounded. Despite its brevity, Chapter 2
is able to provide a (negative) answer: For five and higher dimensional balls, A > 0 and
w € (0, ”7_4), we are able to construct solutions blowing up in finite time.

In the next two chapters, we then concern ourselves with qualitative and quantitative prop-
erties of nonglobal solutions, including but not limited to the ones constructed in Chapter 2.
Also allowing for nonlinear diffusion terms and taxis sensitivities, we show the existence of
blow-up profiles for finite-time blow-up solutions of

{ut =V - (D(u,v)Vu — S(u,v)Vv),

v =Av—v+u

and similar systems in Chapter 3; that is, we prove that (u(-,t),v(+,t)) converges in a suitable
sense as t approaches the maximal (finite) existence time. This result is accompanied by
pointwise upper estimates of the first component (of both the solution and the blow-up
profile), which not only quantitatively describe the behavior of such solutions blowing up in
finite time, but also provide a useful tool for constructing them in the first place. Indeed,
these findings have already been used as a key ingredient in further articles detecting finite-
time blow-up, which we reference in the introduction of that chapter.

Moreover, in Chapter 4, we ask the question when one can guarantee optimality of the
estimates obtained in Chapter 3. The main result states that if u is bounded in an optimal
L? space (a concept defined in the introduction of that chapter), then these upper estimates
are also essentially optimal. In addition, we also provide estimates of similar flavor as in
Chapter 3 for chemotaxis systems with nonlinear signal production.

The second way of dealing with low regularity in cross-diffusive systems reflects the desire
to obtain global solutions (for instance, in order to be able to discuss the behavior at large
times) even in situations where unconditional existence results for global classical solutions
seem to be out of reach or are, as corresponding finite-time blow-up results show, impossible
to obtain. This way again junctions into two further paths: One can aim to construct global
solutions either under additional conditions or in some generalized sense.

With these ideas in mind, we analyze (variants of) the so-called pursuit—evasion model

uy =V - (Vu—uVo) + f1(u,v),
v =V - (Vu+oVu) + fa(u,v)

in the second part of this thesis. This system describes the interaction between predators
and their prey, whose densities are denoted by u and v, respectively. The key feature of this
problem is that cross-diffusion is not only present in one but in both equations; that is, both
nondiagonal entries of the diffusion matrix

Q-
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are nontrivial. While that is very sensible from a modeling perspective—after all, predators
desire to move towards prey-rich regions and the prey seeks to avoid its predators—, from
a mathematical point of view, such fully cross-diffusive systems pose even more challenges
than their ‘merely’ single cross-diffusive counterparts.

Nonetheless, we are able to prove two global existence results. The first one is obtained
in Chapter 5, where we establish the existence of global classical solutions for initial data
being sufficiently close to homogeneous steady states. As already alluded to, global existence
results can be seen as a prerequisite for analyzing the large time behavior and we are indeed
able to go beyond these findings and additionally show convergence towards the equilibria
and describe the rate of convergence.

In Chapter 6, we then extend this model to also allow for nonlinear diffusion and saturated
taxis sensitivities. Under certain parameter assumptions, we are able to construct global
weak solution for widely arbitrary (and possibly large or even unbounded) nonnegative initial
data.

Further biological motivation for these systems, comparisons to as well as discussion of rele-
vant literature and the precise statements of our theorems are given in the introductions of
the corresponding chapters. While especially in these sections, we aim to avoid unnecessary
repetition and instead refer to the introduction of another chapter whenever that is sensible,
the avoidance of recurrences of similar arguments (which due to the rather different nature
of the methods employed are quite rare in any case) is not taken to an extreme, allowing us
to ensure that the chapters can still be read independently from each other.

1.1. Previous publications

Except for small modifications mainly in the introductory sections, the succeeding chapters
coincide with the following publications. Accordingly, quotations from these works will not
be marked separately.

Chapter 2:
[23]: FugsT, M.: Approaching optimality in blow-up results for Keller—Segel systems with
logistic-type dampening. Nonlinear Differ. Equ. Appl. NoDEA, 28(2):16, 2021.

Chapter 3:
[20]: FUEST, M. Blow-up profiles in quasilinear fully parabolic Keller—Segel systems. Non-
linearity 33(5):2306-2334, 2020.

Chapter 4:
[25]: FUEST, M. On the optimality of upper estimates near blow-up in quasilinear Keller—
Segel systems. Appl. Anal., to appear.

Chapter 5:
[22]: FuesT, M. Global solutions near homogeneous steady states in a multidimensional
population model with both predator- and prey-taxis. SIAM J. Math. Anal., 52(6):5865—
5891, 2020.

Chapter 6:
[24] FUEST, M.: Global weak solutions to fully cross-diffusive systems with nonlinear diffu-
sion and saturated taxis sensitivity. Preprint, arXiv:2105.12619, 2021.


https://doi.org/10.1007/s00030-021-00677-9
https://doi.org/10.1088/1361-6544/ab7294
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2. Approaching optimality in blow-up
results for Keller—Segel systems
with logistic-type dampening

2.1. Introduction

A considerable amount of the literature on chemotaxis systems deals with detecting crit-
ical parameters distinguishing between global existence and finite-time blow-up. Such a
dichotomy is already present in the minimal Keller—Segel system

(2.1.1)
v =Av—v+u

{ut =Au—V - (uVv),
proposed by Keller and Segel to model chemotactic behavior of bacteria attracted by a
chemical substance they produce themselves [46]. Considered in two-dimensional balls, the
mass of ug is critical: If the initial datum wug is sufficiently regular, radially symmetric and
satisfies [, ug < 8, then the corresponding solutions are global in time and bounded [68]
while for any mg > 87, there exists uy € C°(Q) with fQ ug = myg leading to finite-time blow-
up [34, 62]. (See also [66] for corresponding results in a parabolic—elliptic simplification
of (2.1.1).) Let us note that this specific critical mass phenomenon is limited to the two-
dimensional setting: While solutions to (2.1.1) are always global in time and bounded if
considered in one-dimensional domains [71], in the spatially higher dimensional cases, finite-
time blow-up has been detected even for arbitrary positive initial masses [97].

Other dichotomies between boundedness and blow-up include critical exponents both for
nonlinear diffusion as well as nonlinear sensitivity [37] and nonlinear signal production [102].
Moreover, for a chemotaxis system with indirect signal production, another critical mass
phenomenon has been detected in [84], this time distinguishing between boundedness and
blow-up in infinite time. Instead of presenting these findings in detail here, we refer to the
surveys [4] and [53] for a broader overview of chemotaxis systems and related results.

Aiming to further enhance our understanding of the exact strength of the destabilising taxis
term, in this chapter, we present another critical parameter distinguishing between global
existence and finite-time blow-up, namely the exponent k£ = 2 in Keller—Segel systems with
logistic-type degradation.

Before stating the main result of this chapter, let us introduce systems featuring such damp-
ening terms and recall some of the corresponding results. That is, we will first consider the
Keller—Segel system with logistic source

Ay . 2
{utAu V- (uVv) + Au — pu?, (21.2)

U, = Av—v+u



2. Finite-time blow-up in Keller-Segel systems with logistic-type dampening

in smooth, bounded domains 2 C R™, n > 2, and given parameters A\ € R, y > 0 and
7 > 0. (We note that in view of the global existence result for A = = 0 in one-dimensional
domains mentioned above, at least for the question whether finite-time blow-up occurs,
we may confine ourselves to the assumption n > 2.) The system (2.1.2) and variations
thereof describe several biological processes such as population dynamics [36, 78], pattern
formation [109] or embryogenesis [73] (see also [36] for an overview).

Already in 2007, Tello and Winkler showed that for 7 = 0, any A € R, pu > "T*Q and
any reasonably smooth initial data, the system (2.1.2) possesses global, bounded classical
solutions [87]. Moreover, for n > 3 and g = =2 (and again 7 = 0 and at least A > 0)
solutions to (2.1.2) are global in time [43], but to the best of our knowledge it is unknown
whether these are also always bounded. For the parabolic—parabolic case, that is, for 7 > 0,
the situation is similar: In the two-dimensional setting, assuming merely g > 0 suffices
to guarantee global existence of classical solutions [70], even for dampening terms growing
slightly slower then quadratically [116]. Moreover, for higher dimensional convex domains,
global classical solutions have been constructed for p > pug for some pg > 0 in [95], where
explicit upper bounds of 19 then have been derived in [65, 115] and the convexity assumption
has been removed in [113] at the cost of worsening the condition on p. In all these settings,
however, the known upper bounds for p are larger than 22

However, if one resorts to more general solution concepts, further existence results are avail-
able. Under rather mild conditions, global weak solutions have been constructed in [87] and
[50] for the cases 7 = 0 and 7 = 1, respectively. Moreover, if the degradation term —pu?
in (2.1.2) is replaced by a weaker but still sufficiently strong superlinear dampening term,
global generalized solutions have been obtained, again both for the parabolic—elliptic [92]
and the fully parabolic case [105, 107, 117].

On the other hand, it has been observed that despite the presence of quadratic dampening
terms, structures may form on intermediate time scales which even surpass so-called popu-
lation thresholds to an arbitrary high extent (cf. [43, 49, 98] for the parabolic—elliptic and
[100] for the parabolic—parabolic case).

While these findings already show that the destabilising effect of the chemotaxis term is

strongly countered although not completely nullified by quadratic degradation terms, the

question arises whether the most drastic form of spatial aggregation—finite-time blow-up—

still occurs in Keller—Segel systems with superlinear degradation terms. A first partial (and

affirmative) answer has been given in [96]: There, the compared to (2.1.2) with 7 = 0 slightly
simplified system

ug = Au — V- (uVv) + Au — pu®,

o o 1 (2.1.3)

{O =Av—m(t) +u, M) =g Joul(-t)

is considered in balls € R™, n > 5 and, for any A > 0 and « € (1,% + ﬁ), initial
data leading to finite-time blow-up are constructed. The second important finding in this
direction transfers this result to physically meaningful space dimensions. More concretely,
[103] detects finite-time blow-up even in the system (2.1.2) with 7 = 0 (inter alia) for balls

QER",n€{3,4},/\EOand/@'E(l,%).

Recently, the regime of exponents allowing for finite-time blow-up in (2.1.3) has been further
widened to xk € (1, %) and k € (1, %) in the three- and four-dimensional settings, respec-
tively [5]. Moreover, in planar domains, chemotactic collapse can be obtained if one replaces
the term —u” in (2.1.3) with certain heterogeneous dampening terms such as —|z|*u? [21].

10
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Let us additionally note that similar finite-time blow-up results are also available for systems
with nonlinear diffusion [5, 60, 80] or sublinear taxis sensitivity [80, 81].

Main results. At least in the four- and higher dimensional settings, the journey of de-
tecting finite-time blow-up in (2.1.3) for ever increasing values of k£ comes to an end with the
results from the present chapter; we obtain the corresponding result up to (and for n > 5
even including) the optimal exponent xk = 2.

More precisely, the main result of this chapter reads

Theorem 2.1.1. Suppose

n>3, kE€ (1,min {2, g}) and >0 (2.14a)

—4
or n>>5 k=2 and ue(O,nn ) (2.1.4b)

Moreover, let R > 0, Q := Bgr(0) C R"™, mg >0, m; € (0,mg) and A > 0. Then there exists
r1 € (0, R) such that whenever

ug € CH(Q) s positive, radially symmetric as well as radially decreasing (2.1.5)

and fulfills
/ ug = mg as well as / ug > mq, (2.1.6)
Q By, (0)

the following holds: There exist Tinax < 00 and a classical solution

2

(u,v) € (C°(Q % [0, Timax)) N CHH (2 x (0, Trnax))) (2.1.7)
of
ug = Au — V- (uVv) + Au — pu® in QX (0, Tmax),
0=Av—m(t)+u, m) = ﬁ Jou(,t) in Q x (0, Thax), (2.18)
du=39,v=0 on 082 X (0, Tinax), o
u(+,0) = ug in Q,

which blows up at Trax in the sense that lim; ~7, u(0,t) = oo.

Main ideas. Following Jéger and Luckhaus [39], we rely on the mass accumulation func-
tion given by w(s,t) = fO% " Yu(p,t) dp, which transforms (2.1.8) to a scalar equation,
see Lemma 2.3.1. The predecessors [5] and [103] of this chapter, which deal with (variations
of) the system (2.1.3), then proceed to show that the function ¢ defined by

d(s0,t) = /050 s (so — s)w(s,t)ds (2.1.9)

cannot, at least not for certain initial data, so € (0, R™) and v € (0,1), exist globally in
time, implying that u must blow up in finite time. One of the most challenging terms
to estimate arises from the degradation term; one essentially has to control the integral

11



2. Finite-time blow-up in Keller-Segel systems with logistic-type dampening

f;o w?(s,t)ds. At this point, pointwise estimates for w, come in handy, which due to the

identity ws(s,t) = %u(s%,t) are available once pointwise estimates for u are known. These
in turn can for instance be obtained by analyzing general parabolic equations in divergence
form (cf. [106] and Chapter 3) or by arguments similar to Lemma 2.3.3 below. In fact,
one of the main points in [5] is to discuss how pointwise upper estimates for u of the form
u(z) < Clz|~P influence the possibility to detect finite-time blow-up.

However, a natural limitation of this approach is the exponent p = n since for fixed C' > 0
and p < n, nonnegative functions ug € C°(Q) with ug(z) < C|z|~P cannot have their mass
concentrated arbitrary close to the origin; that is, depending on the value of C' and p, none
of these functions may fulfill (2.1.6). However, as seen in [5], even the choice p = n, implying
an estimate of the form wy < %, ‘only’ yields finite-time blow-up in the system (2.1.3) for
certain Kk < %

Thus, in the present chapter, where we handle exponents up to k = 2, we choose a slightly
different path. At the basis of our analysis stands Lemma 2.3.3: There, we derive the key
estimate w, < %, which due to w(0,-) = 0 actually improves on w, < % Its proof is
surprisingly simple: As already observed in similar contexts (cf. [5, 21, 102]), for radially
decreasing initial data, w(-,t) is decreasing for all times ¢, see Lemma 2.3.2. The desired
estimate is then just a consequence of the mean value theorem.

Another major difference of our methods compared to [5] and [103] is that we do not limit
our analysis of (2.1.9) to v € (0,1) but also allow for parameters v being larger than 1.
In the five- and higher dimensional settings, this will then allow us to obtain finite-time
blow-up even for x = 2. (In 3D and 4D, the term stemming from the diffusion forces v to
be smaller than 1 and hence we cannot employ the same method as in higher dimensions.)
We also note that the realization of the idea of taking v > 1 is made possible by the new
crucial estimate w, < %

The remainder of the chapter is organized as follows: After stating some preliminary results
in Section 2.2, in Section 2.3 we derive w, < % in Lemma 2.3.3. Section 2.4 then starts with
the definition of the function ¢ and a calculation of its derivative, see Lemma 2.4.1, Next,
in the Lemma 2.4.2, we suitably estimate the term originating in the logistic source, before
dealing with the remaining terms and the initial datum of ¢ in the subsequent lemmata. In
Lemma 2.4.6, we then finally prove finiteness of the maximal existence time Ty, ,x.

2.2. Preliminaries

In the remainder of the chapter, we henceforth fix n > 3, R > 0, Q := Bg(0) C R", x € (1,2],
A>0and p > 0.

Lemma 2.2.1. Suppose that ug complies with (2.1.5). There exists Tmax € (0,00] and
a unique pair (u,v) of reqularity (2.1.7) which solves (2.1.8) classically and is such that
if Tmax < 00, then limy »r, |lu(-,t)||p) = oo. Moreover, both u and v are radially
symmetric and u is positive in Q x [0, Tiax)-

PRrROOF. This is contained in [96, Lemma 1.1]. O

Given ug as in (2.1.5), we denote the solution given in Lemma 2.2.1 by (u,v) and its maximal
existence time by T,ax. Moreover, we always set m(t) == Wll Jou(-,t) for t € [0, Tinax)-

12



2.3. The mass accumulation function w

Since the zeroth order term in the first equation in (2.1.8), Au — pu”, grows at most linearly
in u, we can easily control the mass of the first solution component.

Lemma 2.2.2. Suppose that ug satisfies (2.1.5). Then

/ u(,t) < e)‘t/ Ug for allt € (0, Timax)-
Q Q

PROOF. This immediately follows from integrating the first equation in (2.1.8) and using
that p > 0. O

As used multiple times in the sequel, let us also state the following elementary

Lemma 2.2.3. Given a > —1, there is B € (0,00) such that for any so > 0, the identity

so
/ 5%(s9 — s)ds = Bsa™?
0

holds.
PrOOF. We substitute s — sgs and take B = fol s%(1 —s)ds € (0,00). O
2.3. The mass accumulation function w

Given ug as in (2.1.5) (and thus (u,v) as in Lemma 2.2.1), we denote the mass accumulation
function by

3=

w(s, t) = /Os " tu(p, t) dp, (s,t) € [0, R"] x [0, Tnax) (2.3.1)

which has been introduced in the context of chemotaxis systems in [39]. In this section, we
prove some of its properties, most notably the crucial estimate ws < % in Lemma 2.3.3.

We start, however, by noting that w solves the following scalar equation.

Lemma 2.3.1. For every ug satisfying (2.1.5), the function w given by (2.3.1) belongs to
CO([0, R™] % [0, Tiax)) N C%1([0, B™] x (0, Twax)) and fulfills

1
n,t
ws(s,t) = “(Sn’ ) foran (5,t) € [0, R"] x [0, Tuax) (2.3.2)
as well as
wy = n2s> T wg, + nww, — nm(t)sws + Aw — n“flu/ wh(o,t)do (2.3.3)
0

in (0, R™) x (0, Tynax)-

PrOOF. This can be seen by a direct calculation. In fact, the asserted regularity is a
consequence of Lemma 2.2.1, the identity (2.3.2) follows from the chain rule, and [96, equa-
tion (1.4)] asserts that (2.3.3) holds. O

Next, as a major step towards proving w, < %, we show that for initial data fulfilling (2.1.5),
the first solution component is radially decreasing throughout evolution.

13



2. Finite-time blow-up in Keller-Segel systems with logistic-type dampening

Lemma 2.3.2. Suppose ug complies with (2.1.5). Then u, <0 in (0, R) X (0, Tax)-

PrROOF. This can be shown as in [5, Lemma 5.1] or [21, Lemma 3.7] (which in turn both
follow [102, Lemma 2.2]). However, due to the importance of this lemma for showing the
crucial estimate w, < * in the succeeding lemma, we choose to at least sketch the proof
here. First, by an approximation argument as in [102, Lemma 2.2], we may assume u, €

CO([0, B] x [0, Tinax)) N C*1((0, R) x (0, Tinax))-
Furthermore, the second equation in (2.1.8) asserts

T ), = wpvy +urt T (0" ) = wp, — u? Wt in (0, R) x (0, Tyax)
and hence, with f(z) = Az — pz" for z > 0,

e = (P17 (7 = ), + F),

n—1 n—1
= Uprr + Upyr — 2 Up — UppVp — UpVpp + 20Ul — m(t)ur + f/(u)uT

= Uppp + a(1, ) tpp + b(r, ), in (0, R) X (0, Trnax);

where

- vp(ryt) and  b(rt) = _nrz — Ve (1, t) + 2u(r, t) — m(t) + f (u(r,t))

a(r,t) = n

for (r,t) € (0, R) X (0, Tnax)-

As can be rapidly seen by writing the second equation in (2.1.8) in radial coordinates (and
has been argued in more detail in [21, Lemma 3.6], for instance), —v,, < u holds throughout
(0, R) x (0, Tnax), so that for fixed T € (0, Tinax), We can estimate

sup b(r,t) < 3llull Lo ((0.8)x (0.7)) + 11220 (0, ull oo 0.7y x (0.29)) < OO
re(0,R),te(0,T)

An application of the maximum principle (cf. [75, Proposition 52.4]) then gives u, < 0 in
(0, R) x (0,T), which upon taking T' 7 Ty« implies the statement. O

As already advertised multiple times, this lemma now allows us to rapidly obtain the im-
portant estimate wy < %

Lemma 2.3.3. Assume that ug satisfies (2.1.5). For all s € [0, R"] and t € [0, Thax),

w(s,t)

ws(s,t) < < wg(0,t) (2.3.4)

holds. In particular, for all tg € (0, Tmax) there is C > 0 such that

% <w(s,t) < Cs for s € [0,R"] and t € [0, to]. (2.3.5)
ProOF. For fixed ¢t € [0, Thax) and s € [0, R"], the mean value theorem provides us with
& € (0,s) such that w(s,t) = sws(&,t), which already proves (2.3.4) since w, is decreasing
by Lemma 2.3.2 and (2.3.2). Moreover, a consequence thereof is (2.3.5), since wjy is positive
and bounded in [0, R™] x [0, %] for any tg € (0, Tax) by Lemma 2.2.1 and (2.3.2). O
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2.4. A supersolution to a superlinear ODE: finite-time blow-up

2.4. A supersolution to a superlinear ODE: finite-time
blow-up

We will construct initial data leading to finite-time blow-up and hence prove Theorem 2.1.1
in this section. As already mentioned in the introduction of this chapter, our argument is
based on constructing a function ¢ which cannot exist globally, implying that the solution
of (2.1.8) also can only exist on a finite time interval. In fact, we define ¢ as in [5] or [103];
that is, for given g as in (2.1.5) and ~ € (0,2), we set

@(s0,t) = /050 s77(s0 — s)w(s,t)ds, s0 € (0, R™),t € (0, Trax)- (2.4.1)

However, as the parameter 7 herein may be larger than 1 (unlike as in [5] or [103]), some
care is needed for calculating the time derivative of ¢. This is done in the following
Lemma 2.4.1. Suppose that ug complies with (2.1.5). Let v € (0,2) and ¢ be as in (2.4.1).
For every so € (0, R™), ¢(s0,-) belongs to C°([0, Tmax)) N C1((0, Timax)) and fulfills
S0 5
oi(s0,t) > nz/ §27 7T (59 — 8)wss ds
0
S0
+n/ s (so — s)wws ds
0

—nﬁ(t)/ 17 (59 — 8)w, ds

0
So S
—n“_lu/ s (s —s)/ wh(o,t)dods
0 0
= Il(So,t) + IQ(So,t) + ,[3(807t) + I4(So,t) for allt € (O,Tmax). (242)

PROOF. We first fix s € (0, R") and note that ¢(sg,-) € C°([0, Tiax)) because of (2.3.5)
and 1 —v > —1. Letting 0 < ty < t1 < Thax, we then make use of Lemma 2.3.1 and
Lemma 2.3.3 to obtain cq, co, c3,c4 > 0 such that

w(s,t) <crs, ws(s,t) <co, |wss(s,t)] <ez and m(t) < ey
for (s,t) € [0, s0] X [to, t1]. Recalling (2.3.3), we obtain
4
dit
= (n252_5w55 + nwws — nm(t)sws + Aw — n“_lu/os wh(o,t) do) s (so—8)

(8_7(80 - s)w)

for s € (0, sp) and ¢ € (0, Tyax), so that

d 2
T (s77(so — s)w(s,t))’ < <n263s(1) " 4 ncpeg + negey + ey + n“_lucg) s (sg — )

for all s € (0,s0) and t € (to,t1). Again due to 1 —~ > —1, we therefore have ¢(sg,-) €
CY((0, Thax)) and

50
¢t(50,t) = Il(So,t) + 12(80,75) + 13(5(), t) + )\/ 5_7(80 — 8)’LU ds + I4(So,t)
0

for all ¢t € (0, Tinax), which due to A > 0 implies (2.4.2). O

15



2. Finite-time blow-up in Keller-Segel systems with logistic-type dampening

Aiming to derive that ¢ is a supersolution to a superlinear ODE, we now estimate the
terms Iy,...,I4 in (2.4.2) and begin with I, the term stemming from the logistic source.
In the following proof, we will crucially make use of the estimate (2.3.4) to improve on
corresponding results obtained by the predecessors [5] and [103].

Lemma 2.4.2. Let Iy and Iy be as in (2.4.2).

(i) If s =2, v> 1 and ug fulfills (2.1.5), then

Ii(s0,t) > —

H llg(so,t) for all so € (0,R™) and t € (0, Tnax)- (2.4.3)

(i) Let k € (1,2) and v € (2(’:1),1). There exists Cy > 0 such that whenever ug fulfills
(2.1.5), then

IQ% (so,t) for all so € (0,min{1, R"}) and t € (0, Tiyax)-
(2.4.4)

2—K
I4(s0,t) > Cysy°

PrOOF. We let v € (0,00) \ {1} and also fix ug as in (2.1.5) but will make sure that Cy can
be taken independently of ug. By Fubini’s theorem, we first observe that

S0 S
I4(s0,t) = —n“_lu/ (8o — s)/ (o, t)dods

_ < / Y50 — 8 ds> 5(o,t) do
(

s ”ds) so — o)ws(o,t)do

(3 - ) (so — s)wh(s,t)ds (2.4.5)

for all sp € (0, R") and t € (0, Tinax)-

In the case of v > 1 and k = 2, we drop a positive term and employ (2.3.4) in calculating

S0
I4(s0,t) > — e / 517 (sg — s)w? ds
v—=1Jo

nu /80 _
> — s (so — s)wws ds
v=1Jo

- _Wﬁ Ca(s0.1)  forall so € (0,R") and ¢ € (0, T,

which already implies (2.4.3).

If on the other hand v € (0,1) and « € (1,2), going back to (2.4.5) and making use of
(2.3.4), we see that

nnflu — S0
Iy(sg,t) > — l So 7/ (so — s)wh(s,t)ds
-7 0
k—1 S0 )
> —nli'uR"(l_") / 572 (59 — 8)(ww,)? ds (2.4.6)
-7 0
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2.4. A supersolution to a superlinear ODE: finite-time blow-up

for all sg € (0, R") and t € (0, Tjax)- By Holder’s inequality (with exponents 52—, 2), we

- 2—K’ K
have therein
S0
/ S_
0

/30 _-vn
= S 2
0
2—K K
S0 (4 = 5
< (/ sT T (89— 9) ds> (/ s (s — s)wws ds> (2.4.7)
0 Q

(r=1)

vl

(50 — 8)(wws) % ds

(50 — 8) (s Yww,)? ds

for all s € (0, R") and t € (0, Tjpax). We assume now moreover that 5 > 2 — and hence
y—1> “772 as well as a == % > —1, so that applying Lemma 2.2.3 (with B as in that
lemma) gives
S0 (1—y)k
/ s 7w (sg—s)ds = Bsat? < Bsy for all sp € (0, min{1, R"}). (2.4.8)
0

Finally, combining (2.4.6)—(2.4.8) and the definition of I3 yields (2.4.4) for some Cy > 0
independent of uyg. O

The remaining integrals in (2.4.2) can be estimated as in [103] or [5]. However, at least
for the statement concerning I, we would like to give a full proof here in order to show
the basis of the restriction on s in Theorem 2.1.1. Indeed, while in Lemma 2.4.2 above,
~ has to be taken sufficiently large, for estimating I7, we need v to be suitably small. We
will obtain finite-time blow-up precisely in the cases where the set of admissible « for both
these lemmata is nonempty. Moreover, compared to [103], the proof below makes use of the
estimate (2.3.4) and is hence somewhat shorter.

Lemma 2.4.3. Let v € (0,2 — 2). There is Cy > 0 such that whenever uqg satisfies (2.1.5)
and I, Iy are as in (2.4.2), then

33—~ 2
n

Ii(so,t) > —C1sy% ‘12% (s0,t) for all sg € (0,R™) and t € (0, Tinax)-

PROOF. For convenience, we fix up as in (2.1.5), albeit we emphasize that the constants
below do not depend on up. An integration by parts gives

S0 5
/ §27n Y (59 — 8)wgs ds
0

2 S0 5 S0 9 5 S0
=- (2 - — = fy) / s1TR T (59 — s)ws ds + / 27w g ds + |52 (59 — s)ws]
n 0 0 0

in (0, Tiax). Herein, the second term on the right-hand side is positive and the last one is
zero because of vy < 2 — % <2-— %

Setting ¢ == 2 — % — v > 0, we hence infer from (2.3.4) and Holder’s inequality that
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2. Finite-time blow-up in Keller-Segel systems with logistic-type dampening

S0
> —cl/ s%_%_"’(so - s)(wws)% ds
0

> —c (/ 81777%(30 —3) ds) (/ s 7(sg — s)wws ds) holds in (0, Tynax)-
0 0

Since v < 2 — % and hence a =1 —~v — % > —1, Lemma 2.2.3 asserts that (with B as in
that lemma)

S0 4 % 1 2y 2
(/ s'TTTw (sg — s) dS) =B2s,> » forallso € (0,R"),
0

so that the statement follows by the definitions of I; and I5. O

Next, for estimating the integrals I and I3 in (2.4.2), we basically recall the corresponding
results from [103].

Lemma 2.4.4. There exist Ca,Cs > 0 such that for ug satisfying (2.1.5), we have
Iy(so,t) > Casg O™ ¢2(s0, 1) for all so € (0,R™) and t € (0, Tmay)  (2.4.9)

and

3—v

I5(s0,t) > —C3 </ uo> SOTIQ% (s0,1) for all sg € (0,R"™) and t € (0, Thax), (2.4.10)
Q

where ¢ is in (2.4.1), Iz, Is are defined in (2.4.2) and Trax = min{l, Thax}-

PROOF. Arguing as in [103, Lemma 4.4], we obtain

3=

d(s0,t) <182 Izé(so,t) for all sg € (0, R") and t € (0, Tinax) (2.4.11)

for some ¢; > 0 independent of ug. Taking both the left- and the right-hand side therein to
the power 2 already yields (2.4.9). Moreover, as

Ls(s0, 1) = —nmi(t) /0 " 1 (50 — s)wa(s, £) ds > —ﬁ ( /Q u0> Mo (s0,1)

for (so,t) € (0, R™) X (0, Tynax) by Lemma 2.2.2 and (2.3.4), another consequence of (2.4.11)
is (2.4.10). O

As a final preparation, we note that, under certain circumstances, ¢(sp,0) can be shown to
be sufficiently large.

Lemma 2.4.5. For every my > 0, there exists Cy > 0 with the following property: Let
1
so € (0, R"™), set 51 1= °¢ as well as r1 = s and suppose that ug fulfills (2.1.5) as well as

fBrl (0) 4o = m1. Then #(s0,0) > Cosg_v.

PROOF. See [103, estimate (5.5)]; the main idea is to use the monotonicity of wy which in
turn is implied by nonnegativity of ug. O

A combination of the results obtained above now reveals that for initial data whose mass is
sufficiently concentrated near the origin, the corresponding solution cannot exist globally in
time. Again, the argument is not too different from [96] or [103], but we choose to give it
nonetheless in order to show that sy and ug can be chosen in such a way that ¢ would blow
up in finite time if (u,v) were a global solution.
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2.4. A supersolution to a superlinear ODE: finite-time blow-up

Lemma 2.4.6. Let mg > my > 0 and suppose that (2.1.4) holds. There exists r1 € (0, R)
such that whenever ug fulfills (2.1.5) and (2.1.6), then Tyax < %

PROOF. Let us begin by fixing some parameters. If (2.1.4a) holds, then x € (1, %) and
hence

2k —1 4 2.0=2 9y _9
. )_(2_>< 2 _ 2 )20-
K n ) n

As additionally £ < 2, we may hence choose vy € (@, min{2 — £,1}). We moreover fix
an arbitrary € > 0 and apply Lemma 2.4.2 (ii) as well as Young’s inequality (with exponents

52—, 2) to obtain €} > 0 with

2—K’ K

Li(so,t) > ——FIy(s0,t) — Cliso (2.4.12)
7

o +e€
for all so € (0, min{1, R"}) and ¢ € (0, Tinax), whenever ug satisfies (2.1.5) and where I and
I, are as in (2.4.2).

We now suppose that on the other hand (2.1.4b) holds. Because of p € (0,2=%), we may
then choose v € (1 + u,2 — %) Setting moreover € := v — 1 — u > 0, an application of
Lemma 2.4.2 (i) reveals that (2.4.12) holds also in this case (with C} = 0 and for all ug
complying with (2.1.5)).

In both cases, the definition of v entails 0 < v < 2— %, hence by Lemma 2.4.1, Lemma 2.4.3,
(2.4.10), (2.4.12), Young’s inequality and (2.4.9), there are ¢1, ¢z > 0 such that

¢t(80,t) 2 Il(So,t) + IQ(So,t) + I3(807t) + I4(So,t)

3=y _ 2 3—v 1

> Iy(sog,t) — [ Cisg> ™ +Csmgsy® | 12 (sg,t) — Cys

= [ Te 2( 0 ) ( 190 31709 ) 2 ( 0 ) 4°0

> c113(s0,t) — cngﬁn{&”f%’S”’l}

2 026155(3_7)¢)2(80, t) — €25 (2413)
for all so € (0,min{1, R"}), t € (0, min{1, Tinax}) and ug satisfying (2.1.5) as well as [, ug =
mg, where ¢, I, ..., 14 are as in Lemma 2.4.1, C is as in Lemma 2.4.3 and Cs, C3 are as in
Lemma 2.4.4.

For sg > 0, we set c3 := Cacq,

dl(SQ) = 0355(3_7), dQ(So) = C28p, d3(50) =

<d2(80)
dl(So)

where Cj is as in Lemma 2.4.5. We observe that dq(sg) — oo for sg N\ 0 since 3—~ > 1> 0.
Therefore, noting further that

) and  ¢o(so) i= Cosy 7,

1

5
“(143-7)=2-L>2_
2( +3-7) 5 > 277

we may also fix so € (0,min{l, R"}) so small that

¢o(s0) > ds(so) + (2.4.14)

dl(SO) ’
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2. Finite-time blow-up in Keller-Segel systems with logistic-type dampening

Moreover, we now fix ug not only complying with (2.1.5) but also with (2.1.6) for r; == (%’)%

and will show that the corresponding solution given by Lemma 2.2.1 blows up in finite time.
From (2.4.13) and Lemma 2.4.5, we infer that ¢(so,-) satisfies

(2.4.15)

(bt(So,t) > d1 (80)¢2(80,t) — dg(So) for all t € (O,min{l,Tmax}),
$(50,0) > ¢o(s0)-

Since (2.4.14) implies ¢o(s0) > d3(so) and because of dy(sg)d3(s0)? — da(so) = 0, the com-
parison principle and (2.4.15) assert ¢(so,t) > ds(so) for all ¢t € (0, min{1, Tinax}), so that
by (2.4.15), we have

b1(s0,t) > di(s0) (¢#*(s0,t) — d5(50)?)
> dy(so) (¢(s0,t) — ds(s0))®  for all ¢ € (0, min{1, Tomax }).-

Dividing by the right-hand side therein yields upon an integration in time

t b (s0,t) do 1 00 1
t:/ 1ds S/ < |- < =
0 6(s0,0) d1(50)(0 — ds(s0))? d1(s0)(0 = ds(50)) | so(s0) ~ 2
for all ¢ € (0, min{1, Tryax}), implying Tiax < % O

Finally, we conclude that Theorem 2.1.1 is now merely a direct consequence of the lemmata
above.

PROOF OF THEOREM 2.1.1. Lemma 2.4.6 asserts that there is r1 € (0, R) such that under
the conditions of Theorem 2.1.1, the maximal existence time Ty, is finite. By Lemma 2.3.2
and Lemma 2.2.1, this then implies u(0,t) = [|u(-,t)|| Lo () — 00 as t  Tipax. O
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3. Blow-up profiles in quasilinear fully
parabolic Keller—Segel systems

3.1. Introduction

The possibility of (finite-time) blow-up constitutes one of the most striking features of the
quasilinear system

ug =V - (D(u,v)Vu — S(u,v)Vo), in Q x (0,7,

vy = Av — v+ u, in Qx (0,7), (3KS)
(D(u,v)Vu — S(u,v)Vv) -v=39,v =0, on 9 x (0,7),

u(+,0) = up,v(+,0) = vo, in Q,

proposed by Keller and Segel [46] to model chemotaxis, that is, the directed movement of
bacteria or cells towards a chemical signal, and attracting interest of mathematicians for
nearly half a century (see for instance [4] for a recent survey).

Therein Q@ C R", n € N, is a smooth, bounded domain, T € (0, 00] and ug,vo: Q — [0,00)
as well as D, S: [0,00]? — [0, 00) are sufficiently smooth given functions, the most classical
choices being D =1 and S(u,v) = u.

For these selections, namely, solutions blowing up in finite time have been constructed in
two- [34] and higher- [97] dimensional balls. On the other hand, if n = 1 [71], if n = 2
and [,ug < 4m (or [,uo < 8 in the radially symmetric setting) [68] or if n > 3 and
||u0||L%(Q) + [[vo[win () is sufficiently small [7], all solutions are global in time and remain

bounded. We should also note that if one replaces the second equation in (3.KS) by a
suitable elliptic counterpart, finite-time blow-up results have been achieved already in the
1990s [33, 39, 66].

Motivated inter alia by the desire to model volume-filling effects, it has been suggested to
consider certain nonlinear functions D = D(u) and S = S(u) instead [36, 72, 110] and,
in order to account for immotility in absence of bacteria [19, 57] or receptor-binding and
saturation effects [36, 42], one might also (need to) choose functions D and S explicitly
depending on v.

For the sake of exposition, we will for now confine ourselves with the choices D(u,v) =
(u+1)™" L and S(u,v) = u(u+ 1)?7! for certain m,q € R, but remark that all the works
cited below allow for more general functions D and S as well. From a mathematical point of
view, these are the most prototypical choices, as they generalize D = 1, S(u,v) = u, which
are obtained upon setting m = ¢ = 1, and since estimates of the form D > u™~ ! |S| < u?,
u > 1, come in handy at several places (see for instance the proofs of the present chapter).
Moreover, even these prototypical functions directly appear in biologically motivated models;
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

by choosing m > 1 and ¢ = 1 we arrive at (a nondegenerate version of) system (M5) in [36]
while the choices m =1 and ¢ = 0 lead to model (M3b) in [36].

Regarding the question of global-in-time boundedness, the number "T_z is critical: If Q@ C R™,
n € N, is a smooth, bounded domain and m — ¢ > ”T_Q, then all solutions to (3.KS) are
global in time and bounded [37, 38, 83]. (We also refer to [77] for earlier partial results in this
direction and to [47] for existence results in the case of degenerate diffusion). Conversely, if
QCR" n>2 isaballand m—q < "T_Q, there exist initial data such that the corresponding
solution blows up in either finite or infinite time [37, 93].

If in addition to m — ¢ < ”;2 one assumes n > 3 as well as either m > 1 (and hence
q > % > 0) or m € R and ¢ > 1, finite-time blow-up is possible [11-13], while for ¢ < 0
solutions are always global in time [104]. Whether solutions may blow up in finite time given
m—q < "T_Q and ¢ > 0 but ¢ < 1 or m < 1 is, to the best of our knowledge, still an open

question. (For finite-time blow-up in the one-dimensional case, see [10].)

The picture is more complete if one replaces the second equation in (3.KS) with a suitable
elliptic equation. Again solutions are global and bounded provided that m —¢q > "7_2 and in
the radial symmetric setting there exist unbounded solutions if m — ¢ < "T_z Additionally,
it is known for which parameters finite-time blow-up may occur: If ¢ < 0, these solutions are
always global, while for ¢ > 0 finite-time blow-up is possible [52, 108]. (Let us also reference
the earlier partial results [6] and [14].) An obvious conjecture, stated for instance in [104],

is that the same holds true for the fully parabolic system (3.KS).

Similar results are also available for functions D and S decaying exponentially fast in u (see
[15] for boundedness in 2D, [93] for the existence of unbounded solutions and [101] for the
possibility of infinite-time blow-up, for instance).

A natural next step is to examine the qualitative behavior of (finite- or infinite-time) blow-
up solutions in more detail. While far from exhaustive, some results in this regard have
been obtained for the classical Keller—Segel system, that is, for D =1 and S(u,v) = w.

In the two-dimensional settings some blow-up solutions collapse to a Dirac-type singularity
(see [34, 67] or also [76] for similar results for the parabolic—elliptic case). Additionally, for
all n > 2, temporal blow-up rates (even for S(u,v) = u?,q € (0,2)) have been established
[61] and it is known that {u?(-,#): t € (0, Timax)} cannot be equi-integrable, where Tiyax
denotes the blow-up time [§].

Quite recently, the questions whether spatial blow-up profiles exist, that is, whether U =
limg »p . u(-,t), Timax again denoting the blow-up time, is meaningful in some sense, and,
if this is indeed the case, properties of U have been studied.

Choosing €2 to be a ball in two or more dimensions, D = 1 and S(u,v) = u, it has been
shown in [106] that for all nonnegative, radially symmetric solutions blowing up at Tiax < 00
there exists a blow-up profile U in the sense that u(-,t) — U in C2 _(Q\ {0}) as t  Trax-
Moreover, an upper estimate for U is available: For any 1 > 0 one can find C > 0 with

Ulz) < Cla|mn=H-n for all x € Q.

If one simplifies (3.KS) by not only setting D = 1 and S(u,v) = u but also replacing the
second equation therein with 0 = Av — ﬁ fQ ug + u, more detailed information is available.

In [79], the authors consider Q := Br(0) C R”, R > 0,n > 3, and construct a large class of
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3.1. Introduction

initial data for which the corresponding solutions (u,v) blow up in finite time. The blow-up
profile U := lim; 7, u(-,t) exists pointwise and

Uz) < Clz| ™2 for all x € Q

holds for some C' > 0, wherein the exponent 2 is optimal. Furthermore, the same paper also
provides certain lower bounds for U.

Up to now, however, in the case of nonlinear diffusion there seems to be nearly no information
available regarding behavior of finite-time blow-up solutions to (3.KS) at their blow-up time.
The present chapter aims to be a first step towards closing this gap.

Main results. At first, we will deal with (a slight generalization of) the first subproblem
in (3.KS) and derive pointwise estimates for its solutions.

Theorem 3.1.1. Let Q C R", n > 2, be a smooth, bounded domain with 0 € Q as well as
m,q < R,KD,l,KDQ,Ks,Kf,M,L,ﬁ >0,0>n,p>1 (311)

be such that
n—2p

m_qe([p_;liz’[g_'_ﬁ[p—[p and m > (3.1.2)

Then for any

a> (3.1.3)

B
m—q-+

38
Sl

we can find C > 0 with the following property:

Suppose that for some T € (0,00, the function u € C°(Q x [0,T)) N C*X(Q x (0,T)) is
nonnegative, fulfills

sup /ufng (3.1.4)
te(0,T) JQ

and is a classical solution of

uy < V- (D(xz,t,u)Vu+ Sz, t,u) f(z,t), inQx(0,T),
(D(z,t,u)Vu+ S(x,t,u)f) v <0, on 9Q x (0,T), (3.1.5)
u(,O) < up, in Qv

where
D,S e CHQx (0,T) x [0,00)), fe€C QX (0,T);R") and uyecC°Q) (3.1.6)
satisfy (with Qr = Q x (0,T))

inf  D(z,t,p) > Kp1p™ *, (3.1.7)
(z,t)eQr

sup D(z,t,p) < Kpomax{p, 1}, (3.1.8)
(z,t)€QT

sup |S(x,t,p)| < Kgmax{p, 1}7 (3.1.9)
(z,t)€QT
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

for all p >0 and

sup / 2| f(z,1)|° dz < K (3.1.10)
te(0,7) JQ
as well as
ug(z) < Llz|™¢ for all x € Q. (3.1.11)
Then
u(z,t) < Cla|™¢ forallz € Q and t € (0,T). (3.1.12)

Remark 3.1.2. For p = 1, the condition (3.1.4) in Theorem 3.1.1 can be replaced by

/U()SM
Q

as integrating the PDI in (3.1.5) over  and integrating by parts (all boundary terms are
nonpositive because of the second condition in (3.1.5)) assert [, u(-,t) < [ uo for all t €
(07 Tmax) .

As a second step, we then apply this result to radially symmetric solutions to (3.KS) and
obtain

Theorem 3.1.3. Letn >2, R >0 and Q := Br(0) as well as

m,qER,KD,l,KD,g,KS,>0,M,L>O (3113)
such that
1 n—2 -2
m—gq¢€ (—, z } and m > —=. (3.1.14)
n.n n
For any
-1
o>am= 0D (3.1.15)
(m—q)n+1

and any B > n — 1, there exists C > 0 with the following property: Let T € (0,00]. Any
nonnegative and radially symmetric classical solution

(u,v) € (C°( x [0,T)) N C> (€ % (0,T)))
of (3.KS) fulfills (3.1.12) and |Vv(z,t)| < Clz|=? for allx € Q and t € (0,T), provided

D,S € CH[0,00)%), wup€C’Q) and vy € WH>(Q) (3.1.16)
satisfy
inf D(p,0) > Kpip™ ™, (3.1.17)
sup D(p,0) < Kpomax{p,1}™! and (3.1.18)
o>0
sup|S(p,0)| < Kgmax{p, 1}¢ (3.1.19)
o>0

for all p >0 as well as (3.1.11),

/ ug < M and ||'UO||W1,:><>(Q) < L. (3120)
Q
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3.1. Introduction

Remark 3.1.4. (i) Let us briefly discuss the conditions in (3.1.14). On the one hand,
observe that m — ¢ \, —% implies & * co. On the other hand, [83] proves that all
solutions to (3.KS) for a large class of functions D, S are global in time and bounded,
provided m, ¢ € R satisfy m —q > "T_2 In both cases a statement of the form (3.1.12)
would not be very interesting. (However, for m — g > "T_Q the statement still holds if
one sets a = n because if (3.1.9) is fulfilled for some ¢ € R then also for all larger q.)

The second condition in (3.1.14), however, is purely needed for technical reasons and we
conjecture that Theorem 3.1.3 holds even without this restriction, albeit the constant
C may then depend on T' as well.

(ii) In [17, Corollary 2.3], it has been shown that (3.1.12) cannot hold for any

“<a:mm{<1+q2—m>y(q—1m>+}'

Asm—q < ”7’2 implies & > n > @, we do not know whether (3.1.15) is in general
optimal. However, in the case of m — ¢ = ”T_Q (and m > "7_2) we have o = n = @,
hence at least in this extremal case the condition o« > @ is, up to equality, optimal.

The third and final step will then consist of proving that lim; ~r, . u(-,t) and limy ~7 . v(-,t)
exist in an appropriate sense provided the diffusion mechanism in the first equation in (3.KS)
is nondegenerate.

Theorem 3.1.5. Let n > 2, R > 0, Q := Bgr(0) and suppose that the parameters in
(3.1.13) and the functions in (3.1.16) comply with (3.1.11), (3.1.14) and (3.1.17)—(3.1.20).
Furthermore, suppose also that there is n > 0 with

D>n  in[0,00)°. (3.1.21)

Then for any nonnegative and radially symmetric classical solution (u,v) blowing up in finite
time in the sense that there is Ty < 00 such that

lim sup ||u(-, t)[| L~ (@) = oo,

max

there exist nonnegative, radially symmetric U,V € C?(Q\ {0}) such that
u(t) = U and v(-t) =V  inCE.(QA\{0}) ast 7 Thax. (3.1.22)

Moreover, for any a > « (with « as in (3.1.15)) and any B > n—1, we can find C > 0 with
the property that

U(z) < Clz|™® and |VV(x)| < Clz|™? for all x € Q. (3.1.23)

Remark 3.1.6. Obviously, Theorem 3.1.5 is only of interest if, given S and D, there are
indeed initial data leading to finite-time blow-up. Therefore, we stress that, for instance,
the choices D(p,0) :== (p+ 1)t and S(p,c) :== p(p+1)?~! for p,c > 0and m € R,q¢ > 0
satisfying (3.1.14) as well as ¢ > 1 or m > 1 not only comply with (3.1.16)—(3.1.19) and
(3.1.21) for certain parameters but also allow for finite-time blow-up [11, 13]. That is,
there exist initial data (ug,ve) € C°(Q) x W1H°°(Q) such that the corresponding solution
to (3.KS) blows up in finite time. As (3.1.11) and (3.1.20) are then obviously fulfilled for
certain L, M > 0, we may indeed apply Theorem 3.1.5.

25



3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

Moreover, let us emphasize that our results can indeed be applied to models stemming from
a biological motivation, for instance to (a nondegenerate version of) the system (M5) in [36],
that is, to (3.KS) with m > 1 and ¢ = 0. Furthermore, even the degenerate case is covered
by Theorem 3.1.3.

Remark 3.1.7. Let us also point out that Theorem 3.1.5 includes the result in [106, Corol-
lary 1.4], as in the case of m =1 and ¢ = 1, we have a = n(n — 1).

Remark 3.1.8. As already briefly mentioned in the introduction of Chapter 2, pointwise
estimates of the above flavor may be used to detect finite-time blow-up in chemotaxis sys-
tems with logistic-type dampening. This has first been observed in [103], where pointwise
estimates derived in [106] for the special case m = ¢ = 1 have been employed.

A systematic analysis of the question how estimates of this type affect the possibility to
establish finite-time blow-up also in quasilinear chemotaxis systems is then given in [5],
where an important corollary combines the main result of that paper with Theorem 3.1.1
in order to indeed obtain finite-time blow-up for certain parameter ranges. In [80], these
results have been further extended to systems with saturated taxis sensitivities, again making
crucial use of Theorem 3.1.1.

Plan of the chapter. The reasoning from [106], where estimates on blow-up profiles to
solutions to (3.KS) with D =1 and S(u,v) = u have been derived, is to consider w := (*u
with ((z) ~ |z| and to make use of semigroup arguments as well as LP-L? estimates in
order to derive an L° bound for w which in turn implies the desired estimate of the form
(3.1.12) for u. However, through their mere nature, these methods are evidently inadequate
to handle equations with nonlinear diffusion.

The present chapter is built upon the belief that, generally, an iterative testing procedure
should be as strong as semigroup arguments. While the latter method may be quite elegant,
the former has the distinct advantage of being applicable not only to equations with linear
diffusion but also to (3.1.5).

Indeed, iteratively testing with wPs~! for certain 1 < p;j * oo allows us to obtain an
L*> bound for w at the end of Section 3.2—provided the critical assumption (3.1.3) is
fulfilled.

Applying Theorem 3.1.1 to solutions of (3.KS) mainly consists of adequately estimating
f = —Vwv. To that end, we may basically rely on the results in [106]. It probably should
also be noted that this is the only part where we explicitly make use of the radially symmetric
setting.

Finally, the existence of blow-up profiles is shown in Section 3.4 by considering global
solutions (us,ve), € € (0,1), to suitably approximative problems which converge (along
a subsequence) on all compact sets in Q \ {0} x (0,00) to (4,?) for certain functions
u,0: Q x [0,00) — [0,00). We then prove that these functions coincide which u and v
on Q) x [0, Tihax) such that we may set U := (-, Tiax) as well as V = (-, Tinax) and make
use of regularity of ¥ and .

In order to identify (u,v) with (u,v), we crucially need uniqueness of solutions to (3.KS)
which we show in Lemma 3.5.1—provided that the first equation is nondegenerate. As this
might potentially be of independent interest, we choose to prove uniqueness for a class of
systems slightly generalizing (3.KS).
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3.2. Pointwise estimates for subsolutions to equations in divergence form

3.2. Pointwise estimates for subsolutions to equations
in divergence form

Unless otherwise stated, we assume throughout this section that Q@ C R™, n > 2, is a
smooth, bounded domain with 0 € €2, set R := sup,q, || and suppose that the parameters
(all henceforth fixed) in (3.1.1) as well as a comply with (3.1.2) and (3.1.3). Moreover, we
may also assume

(m —q)a < B, (3.2.1)
since whenever (3.1.10) is fulfilled for some S > 0, then also for all 8> 8 (provided one
replaces Ky by max{R,1}/~PK}).

In order to simplify the notation, we also fix T' € (0, 00] and functions in (3.1.6) satisfying
(3.1.4) and (3.1.7)—(3.1.11) as well as a nonnegative classical solution u € C°(Q x [0,7)) N
C?1(Q x (0,7)) of (3.1.5), but emphasize that all constants below only depend on the
parameters in (3.1.1) as well as on a.

Our goal, which will be achieved in Lemma 3.2.10 below, is to prove an L* bound for the
function

w: Qx[0,T) = R, (x,t) — |z|“u(z,t) (3.2.2)

which in turn directly implies the desired estimate (3.1.12).

To this end, we will rely on a testing procedure to obtain L? bounds for all p € (1, 00). Due
to an iteration technique, this will then be improved to an L* bound—hence the constants
in the following proofs need also to be independent of p.

In order to prepare for said testing procedure, we first state

Lemma 3.2.1. Let s € R and 0 < g € C°(Q x (0,T) x (0,00)) with

sup g(z,t,p) < Kgmax{p,1}* (3.2.3)
(z,t)eQx(0,T)

for all p > 0 and some K4 > 0.

For any p € R, v € R and k > 0, there exist pg > 1 and C > 0 such that for all p > pgy, we
have

/Q(g(:c,uu)\xwwpﬂ)ﬁ <C (1 +/Q (x|u_0tswp+’)’+s)n> in (0.7). (3.2.4)

ProoF. For any p > p; = —y + %, all integrals in (3.2.4) are finite by (3.2.2).
As in the case of s < 0 the statement follows directly from (3.2.3) and (3.2.2) (for py =
max{1,p;} and C = K;), we may assume s > 0. Then (3.2.3) only implies
[ G twlepur) < x| (aperom ), [ (e
Q {u>1} {u<1}

for all p > p; in (0, 7).
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

ptyts p+7+5) to

Since s > 0, we may therein employ Young’s inequality (with exponents PR

obtain

/ <|x|uwp+'y)" < P+ / (|x‘u-%wp+’y+s)ﬁ+ S [9)
{u<1} p+v+s/a P+y+s

for all p > p; in (0, 7).
As

. p+y+s
lim g ——

=uU>Uu—os
p.'o0 P+ p=h
pEY+s

PR > — as for all p > po.

since a > 0 and s > 0, we may find po > 1 such that y -

Therefore, for € B1(0) and p > po,

|x‘(u-pﬁis)n < |x|(u—115)'-€7

while for z € Q\ B1(0) and any p > 1,

|$|(”'p;rlf,s)n < max {LR(/Lm;rljsm} <c < maX{LR—(M—as)me‘(u—as)n

for some ¢; > 0.

Since p_’;‘:j_s <1land p+fy+s < 1, we arrive at (3.2.4) by setting po := max{p1,p2} and C > 0

appropriately. O

We may now initiate the aforementioned testing procedure and obtain a first estimate for
the quantity & [ w? in (0, 7).

Lemma 3.2.2. There exist C1,Cy > 0 and pg > 1 such that for all p > pg,

1d —(m—1a« +m—3 2
2l pr—i-C’l/Qm (m—T)ay,p |[Vw]|
: =
<Gy (/ (le‘”iwpﬂi)”’i) +Cy  in (0,7), (3.2.5)
i=1 \/E

where

pr=m—-Na+2, p=02¢—-m-Da+28, puz=(@-a+l+08, (3.2.6)

Y =m—1, V2= 2g —m — 1, vz =q-1, (3.2.7)
0 0
K1 = 17 Ro = m and R3 = ﬁ. (3.2.8)
PROOF. As

Vu = V(2| %w) = |2|"*Vw — alz| " wV|z|,
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3.2. Pointwise estimates for subsolutions to equations in divergence form

in Q x (0,7T), testing the PDI in (3.1.5) with |z|*wP~! and integrating by parts gives

pdt/ p_/wtwp 1
Q

=" / (D(z,t,u)Vu+ S(z,t,u) f) - V(|z[*wP ™)
Q
+/ |z|*wP™(D(z, t,u)Vu + S(x, t,u)f) - v in (0,7),
o0

wherein the boundary term is nonpositive because of the second line in (3.1.5). Therefore,

1d

o5 Lo <=1 [ D@t vuf

+a(p—1) /Q D(z,t,u)|z| 'wP ' Vw - V]z|
—a/QD(:r,t,u)|x\_1wp_1Vw - V||
—l—oz2/QD(ac,t,u)|:lc|_2wp|V|ch2
—(p-1) /Q S(z,t,u)|x|*wP 2 f - Vw
—a/QS(sr:,t,u)mO‘_lwp_lf -V|z| in (0,7).
Therein is by Young’s inequality
a(p — 2) /Q D(z,t,u)|z| 'wP 'V - V]z|
;1/ D(z,t,u)wP?|Vwl|? + M/ D(z,t,u)|z| " 2w?|V]z||? in (0,7).
Q 20—1) Jo

As |V|z|| =1 for all x € Q\ {0} and using (3.1.7), we may therefore find ¢1,co,c3,¢c4 > 0
such that for all p > 2

1d

th ’wp<*01/ |I’| (m— l)awp+m 3|Vw|2

+02/D(ac,t,u)|sc\*2wp

Q

s / 1S(, )l [2]*w? 2| f - V]
Q

—|-C4/ IS (z, t,u)||z|* twP £ holds in (0, 7). (3.2.9)
Q

By Lemma 3.2.1 (withs =m—1,g=D, p=—-2,7v=0, K =1) and (3.1.8) there are ¢c5 > 0
and p; > 1 such that

/D(m,t,u)\x|_2wp < 05/ ||~ (m—Da=2yptm=1 4 . (3.2.10)
Q Q
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

for all p > p; in (0, 7).

Furthermore, by employing Young’s inequality we may find ¢ > 0 such that
/ |S(, t, u)||x|awp—2|f : Vw'
Q

< o [ fal STl e [ (Gt el T R (3:2.)
263 Q Q

for all p > 1 in (0,7). Therein is by Holder’s inequality (with exponents g, %5 note that
6 >n >2 by (3.1.1)) and (3.1.10)

/Q 1, ) | D mL 2

_0_ [
< 17 ([ (186t 0ot o) 72 S
Q

for all p>11in (0,7).
Herein, we again make use of Lemma 3.2.1 (with s = 2¢, g = S%, u = (m + 1)a — 28,

y=-m—1, k= z%) and (3.1.9) to obtain p, > 1 and ¢; > 0 such that

_6
/ (|S(x,t,u)\z\xl(mH)“_Qﬁwp_m_l)972
Q
o
S C7/ (|1-|7(2Q*mfl)a72ﬂwp+2(Z*M7l> -2 +C7 (3213)
Q
holds for all p > po in (0,7).

Once more employing Holder’s inequality, (3.1.10), Lemma 3.2.1 (with s = ¢, g = |5,
p=a—1—-p~v=-1, k= %) and (3.1.9), we see that

6—1
L o\ 7
/ 1S, ) |22 w1 f] < K (/ (S(x,t,m|m|a-1-ﬂwp‘1)egl)
O Q

6—1

_0 N\ To
<cs (/ (le“q1>a+1+ﬁlwp+q1)“> ' +cs (3.2.14)
Q

holds for all p > p3 in (0,7 for certain ps > 1 and cg > 0.

Finally, by plugging (3.2.10)—(3.2.14) into (3.2.9), we obtain the desired estimate (3.2.5) for
po = max{p1,p2, p3} and certain C1,Cs > 0. O

Before estimating the terms on the right-hand side of (3.2.5) against the dissipative term
therein, we have a deeper look at the parameters in (3.2.6)—(3.2.8). Precisely due to (3.1.3),
our condition on «, they allow for the following

Lemma 3.2.3. Leti € {1,2,3} as well as p; and k; as in (3.2.6) and (3.2.8), respectively.

Then
ap

ki — (m = 1)a) (3:2:15)
fulfills
2/€i/\i 2n
i 1 .
Ai € (1,00) as well as JV— <
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3.2. Pointwise estimates for subsolutions to equations in divergence form

PRrROOF. Plugging (3.2.6) into (3.2.15) yields

=Py, = P and  As = ap
! 2k1’ 2 k2(26 —2(m — q)a)+ s k3(14+ 5 —(m—q)a);’

hence \; < oo since (m — ¢)a < f and k; > 0 by (3.2.1) and (3.2.8), respectively, for
i€ {1,2,3}.

Asm—q <B4 2P by (3.1.2), we furthermore have

B >5 n
Q> —— P_P = Bp

by (3.1.3).
Since A\; = <P and o > %, we immediately obtain A; > 1 and

2k1A1  2ap < 2n
M—1 ap—2 n—-2

By (3.1.3), we have a > quf%

|

and thus due to (3.1.2) also

(m—q)a>ﬁ—a—[p+a[p

0
Therefore, we may further compute
ap ap nf
)\ - > = R
P98 T a(m—q)a ~ 2(%2 — 2B) ~ 2(0—n)
hence Ay > ;(?;fzg > ;EZ:;; = 1 since n > 2 and (as (kg,00) 2 £ — jé_l is strictly
)
decreasing)
2kada  2K2A2 2n6 2n6 2n
Ag—1  rmda g ‘%TzntQ(an)
Ko

n@—2)—20+2n n-—2

Similarly, we see that

g —204n n@—1)—-20+n

ap ap ap no
K3)\3 - > ap ap > 2a ap
1+8-(m—qoa  1+SF-F " 2B_°B 20-n
since1<°‘7"°,thus)\3>%2§g—:gzland
26303 2K3)3 2n6 2n6 2n
Ag =1 mds

n—2"

This clearly proves the lemma.

Another important ingredient will be
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

Lemma 3.2.4. Throughout (0,T),

/ ||~ PwP < M
Q
holds.

PRrROOF. This is an immediate consequence of (3.2.2) and (3.1.4). O

As further preparation, we state a quantitative Ehrling-type lemma. Since this will be also
used in the proof of the quite general Lemma 3.5.1 below we neither require n > 2 nor
0 €.

Lemma 3.2.5. Let QQ C R"™, n € N, be a smooth, bounded domain and 0 < s <r < (Tﬁi’;”

Then there exist a € (0,1) and C > 0 such that for all e > 0, we have

el < el Velle@) + Cmin{l,e} T gl ) for all € WH2(Q).

Here and below, we set ||¢| pa) = ([, l¢l?)* even for g € (0,1).

PRrROOF. The conditions s < r < (nz’;)+ imply that
%—% = 2nr — 2ns r—3s
O=T""1T 1= 2ngos—ns = n—2
s+a—3 SESs—ns 2nr + 2rs — nsr s

satisfies a € (0,1).

Hence, we may invoke the Gagliardo—Nirenberg inequality (which holds even for r, s € (0, 1),
see for instance [58, Lemma 2.3]) to obtain ¢; > 0 with the property that

Lo forall o € WH2(Q).

lellzr@) < el Vellfe) el + eillel

Therein we have by Young’s inequality (with exponents %, ﬁ) for all e € (0,1) and all

peWh2(Q),
a - 1—a
£ & @
<acl||v§0||L2(Q)> ' ((acl> lll Ls(ﬂ))

13 __a_
a”v%’HLzm) + coe” T ||

IVelIg2 oyl

IN

L (9)»

where ¢y = (1 —a)(acy) e .
This already implies the statement for C = ¢1(1 + c2). O
In order to be able to apply Lemma 3.2.5, we first rewrite the dissipative term in (3.2.5).

Lemma 3.2.6. There are c1,co > 0 and pg > 1 such that for all p > py we have

(m—Da  ptm—1

(Q S |z|T T 2 wf(x,t)) e Wh3(Q) for allt € (0,T)
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3.2. Pointwise estimates for subsolutions to equations in divergence form

and

p2 / |x|—(7n—1)awp+m—3|v,w|2
Q

_(m-Da  pim-1 |2 - Hyp | F1 i .
S _Cl/ ’v (‘x| 2 w 2 )’ + c2 / (|,:E| lep ’Yl) m (O7T),
Q Q

where p1, y1 and K1 are as in (3.2.6), (3.2.7) and (3.2.8), respectively.

PRrOOF. We first note that for z € Q and ¢t € (0,T'), we have

(m ) m— @ m—
2|~ T T (1) = |2 T (2 t)
and hence
(m— 1)(1 ptm—1 1= 1.2
(QSIBI—>|x| w3 (x,t))eC(Q)CW’(Q)

for all p > py = max{2,3 —m} and all t € (0, Trnax)-

Thus, for p > p;, making use of the elementary inequality (a + b)? < 2a% +2b%, a,b € R, we
may calculate

7 / |$|7(m71)awp+m73|vw|2

,M pim-1 2
p—l—m /’V =] )‘

m—1)
A= D [t gl 0.7

Because of |V|z|| =1 in Q\ {0} and by the definition of p1,v; and &1, we have therein

/ |x‘—(m—1)a—2wp+mfl‘v|z|‘2 _ (/ (|xmwp+%)m) k1 - (O,T)
Q Q
for all p > 1.

Moreover, setting ps := 2|m — 1|, we have %pQ >(p+m-—1)22> %pQ for all p > po, so that
the statement follows for ¢; = %, cz2 = 4((m — 1)a)? and pg :== max{1,p1,pa} + 1. O

A first application of Lemma 3.2.4 and Lemma 3.2.5 now shows that the dissipative term

m-1)a  ptm—1\ |2
fﬂ ‘V (\J;|_( EaTE )) can be basically turned into fQ wP. This is the only place where

we (directly) need the second condition in (3.1.2), namely that m > 22

Lemma 3.2.7. For given ¢ > 0 and s € (0,2), we may find C >0 and po > 1 such that

m—1)a m— 2 m—1)a me1\ 8 2
/wpgg/ ‘V(|x|_%w¥>’ +C(/ (| — *)) +C (3.2.16)
Q Q

for all p > po in (0,T).
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

PROOF. We fix £ > 0, s € (0,2) and po as given by Lemma 3.2.6. We divide the proof in
two parts.

Case 1: m > 1. Young’s inequality and Lemma 3.2.5 (with r = 2 < %) imply

/wpg/wp+m—l+|9|
Q Q

m — (3 m— 2
SR(’”‘”“/ (uri( T ) +19|
Q

2
(m—1)a  ptm— 2 (m—1)a m—1\5\
Ss/‘V(|x|_ Tl 1)’ +ca </ (\x|_ T 1)) + 19|
Q Q

in (0,7 for some ¢; > 0 and thus (3.2.16) for C' := max{eci, ||}

Case 2: m < 1. Since (3.1.2) and n > 2 assert m > "_Tzfp >1—p, we have r == m—2$+[p €
(2,-2%) and A == 12~ € (1,00). We then obtain

Al
ap PA—D A
wp<( |1‘| a[Dw> </|xA Ty A 1>
=t
< M ( [ (=50 ) (3.2.17)

for all p > 1 in (0,7") by Holder’s inequality as well as Lemma 3.2.4 and because of

ap .<( 2 >(m—1)a|p.m—1+[p

A—1 m— 1)ar m—1+p (m—1ap
as well as
pA—p 2 _m-DGE R m-14p
A—-1 (p+m—1)r m—1+p p+m—-1)p

Noting that @ = 2, we again employ Lemma 3.2.5 to see that

(A=1

(m—1a ptm—1\T A
</ <|x‘*fwf) )
Q
2
_(m—1a  ptm-1\T\"
AVACRE
Q
2
(m— l)a p+m 1 (m— 1)(1 p+7‘n 1 s
i/\v 2| )\ o (/ @ )) (3.2.18)
Mx Jo Q

holds in (0, ) for some ¢y > 0. The desired estimate (3.2.16) is then a direct consequence
of (3.2.17) and (3.2.18). O

We are now prepared to prove

Lemma 3.2.8. For any 0 < s < s¢ :== mln{n 50 (e 1)+} we can find C >0, po > 1 and
v > 1 such that for all p > po,

;t wP + / wP < Cp” + Cp” </ w(p+m_1)s_1) in (0,T). (3.2.19)
Q
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3.2. Pointwise estimates for subsolutions to equations in divergence form

PrROOF. By Lemma 3.2.2 and Lemma 3.2.6, there are ¢;,co > 0 and p; > 1 such that for

all p > P1,
d (m—1)a m— 2
— [ wP —l—cl/ ‘V (|x|_fw¥>‘

3 o
< cop? Z (/Q (|:v|_“iw”+%)m> + cop? (3.2.20)
i=1

holds throughout (0, T'), where p;, v;, x4, € {1,2, 3}, are given by (3.2.6), (3.2.7) and (3.2.8),
respectively.

Our goal is to estimate the terms on the right-hand side in (3.2.20) against the dissipative
term therein. As a starting point, we use Holder’s inequality and Lemma 3.2.4 to compute
for \>1,p>1and i€ {1,2,3},

1

([ ey

Q

B (/ |$|_%w§ . |9C|_“m'i+(¥’w(17+%)ni_§>m
Q

1 —piridtap  (pHy)riA—p %
O B e e T in (0,7). (3.2.21)
Q
For p € (1,00) and i € {1,2,3}, we set

app < oo

N () e wilp(pi — (m —D)a) + (m — 1) (i — avi)]4’ ’

1(]?) T ap
b = o,

Ri(pi = (m —1)a)y’
which entails that lim, ~ Ai(p) = Aj(00). Lemma 3.2.3 asserts A;(00) € (1, 00), hence there
is p2 > p; such that also A\;(p) € (1,00) for all p > py and i € {1,2,3}.

Setting furthermore

ap — (s — avi) .
bi(p) =2 LTV 1,2,3},
(v) - ie{1,2,3)
and choosing A = A;(p) in (3.2.21), we obtain

</Q ($|#iwp+7i)“i) "
Ai(p)—1

—(neva  prmo1y Xighegbi@) ) TP .
< max{M,1} /(m e ) n (0.7) (52.22)
Q

for all p > ps and ¢ € {1,2,3} since

—pikiNi(p) + ap ) 2(Xi(p) — 1)
Ai(p) — 1 —(m — ak;Xi(p)bi(p)
—Hi m?\tfp(p) ap

—(m—=1a  ap— (u —ay)
_ —Hiap +afp(ui — (m — o) + (m — (ui —av)] _
—(m —Da(ap — (pi — avi))
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

and
(p+i)kidi(p) —p 2(Ai(p) — 1)
Ai(p) — 1 (p+m — 1)k Ai(p)bi(p)
(p+) — m%(p) ap

p+m—1  ap— (i —ay)
_ (p)ap = [p(pi = (m = 1)a) + (m = 1)(ui —am)] _
(p+m—1)(ap — (pi — avi))

for all p > po and i € {1,2,3}.

Lemma 3.2.3 further asserts
lim 2k M\i(p) _ 2K\ (00) < 2n
pooo Ai(p) =1 A(oo)—1  n—2

for all i € {1,2,3}. As moreover (3.2.6) and (3.2.7) entail

2, i=1,
Hi — Q) = 26) =2,
1+8, i=3
and hence S;(p) < 2 for all p > 1 and 7 € {1,2,3}, we may choose p3 > ps and r € (s, n2_”2)

such that still

KiXi(p)

T i) <
Ai(p) =1 (v)
for all i € {1,2,3} and all p > ps.

By Holder’s inequality and the elementary inequality €4 < 14+£8 for € >0and 0 < A < B,
we have

Xi(p)—1

iNi Y
_(m=Da  ptm-1 ;i(p)(f)lbi(p) iri(P)
[ T
Q

bi(p)

m—1)a pt+m— r "'
< max{|Q|, 1} (/ <|m\7( = w + 1) )
Q

_(m—la  ptm-—1 : .
§03+63(/m(x|12w2) ) in (0,7) (3.2.23)
Q

for all p > ps and ¢ € {1,2,3}, where ¢3 := max{|Q|,1}.

Herein, we may now finally apply Lemma 3.2.5 together with Young’s inequality to obtain

¢4 > 0 such that
2
_(m—1a  ptm—-1\T\T"
Q

< al / [V (ja= w5
= 6egegp? max{M,1} Jq

2
FeapTs <j/ (kn|“”2”azyp*?1)‘> in (0,7) (3.2.24)
Q

36



3.2. Pointwise estimates for subsolutions to equations in divergence form

for all p > p3.

By combining (3.2.20), (3.2.22)(3.2.24) and Lemma 3.2.7 (with ¢ = ), we may find ¢5 > 0
such that

d a a m—1)a m— s\ ®
—/ wp+/ wP < espT + expToT (/ <|x|_%w¥) ) in (0,T) (3.2.25)
dt O Q Q

for all p > ps.

The assumption s <
and Lemma 3.2.4,

2
</ <|x(m21)awp+gbl)s> < (/ x|("w> </ x|(m1)as+aw(17+m1)sl>
Q Q Q

< M%|Q|%Ra—(m—1)a$/ w(p—&-m—l)s—l in (O,T),

ﬁ implies a — (m — 1)as > 0, thus again by Holder’s inequality

Q
which together with (3.2.25) implies (3.2.19) for some C' > 0, po := p3 and v = 14_—‘1(1. O
A direct consequence thereof is
Lemma 3.2.9. For all p € (1,00), there exists C > 0 such that
/ wP(,t) <C forallt € (0,T). (3.2.26)
Q

PRrROOF. Let pg > 1 and sy > 0 be as in Lemma 3.2.8. By Holder’s inequality we may
without loss of generality assume that p > pg with (p+m — 1)sg — 1 > 1.

Choosing s € (0, so) such that (p +m — 1)s — 1 = 1 and noting that
/w < Ra/ |z "w < Ra/ z|"*w < R°M3|Q|  in (0,7)
Q Q Q

by Holder’s inequality and Lemma 3.2.6, we may apply Lemma 3.2.8 to obtain

d

— wpgf/wp+Cp in (0,7)

for some C, > 0 and hence [, w? < max{[,w(-,0)?,Cp}. Since moreover [,w(-,0)P <
1] - ||w(-,0)||1£oo(g) < |Q|LP by (3.2.2) and (3.1.11), we may conclude (3.2.26). O

Due to a well-established Moser-type iteration technique (see [2] and [64] for early examples
or also [83, Lemma A.1] for an application relevant to quasilinear Keller—Segel systems), we
can also obtain an L* bound for w.

Lemma 3.2.10. There is C > 0 such that

|wl| Lo (x (0,7)) < C. (3.2.27)

PrROOF. We set s := %min{ﬁ, 1} < 22, Then Lemma 3.2.8 asserts the existence of
+ n

p>1,c; >0 and v > 1 such that

1 !
7/ P +/ WP < et +erp” (/ w<p+m1>sl> in (0,7) (3.2.28)
dt Q Q Q
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

for all p > p.
We further set

po = max{p,1 — (m — 1)s} (3.2.29)

and

1 (m—1
pyom Bimt 1= (m=Ds (3.2.30)

S

for j € N\ {0}.

As s < ﬁ and s < %, a straightforward induction gives

py >t > Zi? > %py >2  for j € Ny, (3.2.31)
s s
in particular the sequence (p;);en, is increasing. On the other hand, by (3.2.29) and another

induction,

-~ i 2\’
?; Spg 1S+Po < P; L (s> Do for j € N. (3.2.32)

Since (3.2.30) is equivalent to p;_1 = (pj+m—1)s—1, j € N, an ODE comparison argument
and (3.2.28) (with p = p;) yield

/ ij<'>t) S max / ij('70)7 Clp;'/ + Clp; sup (/ ijl('aT)>
Q Q 7€(0,T) Q

for all ¢ € (0, 7] and all j € N. We note that Lemma 3.2.9 asserts finiteness of the right-hand
side therein.

Therefore, A; := sup;e o7y [|w(- )| ri (), J € No, fulfills

1
1 pi—1\ Bj
A; < max {||w(~,0)||ij(Q), (crp) i <1 +4; > ’ } for all j € N.

To make sure that C' will indeed only depend on the parameters in (3.1.1) and on «, similarly
as in the proof of [26, Lemma 2.11], we also set By := max{L, 1} max{|2|,1} and

Pj

1 1\ 7
Bj = max {BO, (clpj’f)”j (1 + B, > } for all j € N. (3.2.33)

Since [[w(-,0)|| e (o) < L\Qﬁ < By by by (3.1.11) and (3.2.2) for all p € [1,00), we conclude
1

1 Pj—1

Ag < By and, as (0,00) 3 & = (c1p¥)™ (1—|—£ s )E is increasing for all 7 € N, also
Aj S Bj for allj € N.

We first suppose that there is a strictly increasing sequence (jx)ren C N such that B;, < By
for all £k € N. As then

lw(-,t)||Le () = lem [w(, )l e () < limsup A, < limsup B;, < By
oo k—o0 k— o0
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3.3. Pointwise estimates in quasilinear Keller—Segel systems

for all ¢ € (0,T) since limy_,00 pj, = 00 by (3.2.31), this already implies (3.2.27) for C' := By.

Hence, we now suppose that on the contrary there is jo € N such that B; > By for all j > jo.
Since then also B; > 1 for all j > jo and because of % > 1 for all j € Ny, we conclude from
(3.2.33) that

Pj—1

1 A= .
Bj < (2c1p%) 7% Bji’l for all j > jo.

As (3.2.31) entails ppf—f; < 1, we further obtain

1
Bj < (Czp;)pj Bj—l for all] > jo,
where ¢g := 2¢1, and hence by induction and (3.2.32),
Bi< | T (@) | Biy <o 7 () 2mon By forall j> iy
i=jo+1
with ¢z == capj.

As therein by (3.2.31),

i I = iv
Z ;S Z f§27::04<00 for all j > jo,

we conclude

2 o
sup ||w(:,t)||pee(q) < limsup A; < limsup B; < <03> Bj, < o0,
te(0,T) j—o0 j—o0 s

which in turn directly implies the statement. O
The main result of this section now follows immediately.

PROOF OF THEOREM 3.1.1. Combine Lemma 3.2.10 and (3.2.2). O

3.3. Pointwise estimates in quasilinear Keller—Segel
systems

We suppose henceforth that n > 2, R > 0 and Q := Bg(0).

In order to apply Theorem 3.1.1 to the system (3.KS)—and hence prove Theorem 3.1.3—,
we need some integrability information about Vuv. This is provided by

Lemma 3.3.1. Let K,L,M >0,a>3>n—1 and 6 € (1,00]. Then there is C > 0 with
the following property:

Suppose that T € (0,00], g € C°(Q x [0,T)) is radially symmetric and nonnegative with

g )l <M forallt € (0,T),
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

that vg € W1°°(Q) is radially symmetric and nonnegative with
[vollwiee(a) < L
and that, if 0 = oo,

g(z,t) < Kl|z|™® forallz € Q and t € (0,T).

Then any classical, radially symmetric solution v € C°(Q x [0,7)) N C**(Q x (0,T)) to

vy =Av—v+g(x,t), inQx(0,T),

0,v =0, in 00 x (0,T),

v(+,0) = v, in Q
fulfills

sup / 2|8 |Vo(z, )| de < C
te(0,T) JQ
if 0 < oo and
sup |Vu(z,t)| < Clz|~? forall z € Q
t€(0,T)

if = co.

PROOF. See [106, Lemma 3.4]. (Let us also remark that certain generalizations of this
lemma will be proven in Chapter 4.) O

We are now indeed able to employ Theorem 3.1.1 in order to obtain pointwise estimates
for solutions to systems slightly more general than (3.KS). (The generality is needed as
the following lemma will be used not only to prove Theorem 3.1.3 but also in the proof of
Lemma 3.4.3 below.)

Lemma 3.3.2. Suppose that the parameters in (3.1.13) comply with (3.1.14) and set K, > 0.
Then for any o > a, with a as in (3.1.15), and any 8 > n — 1, there exists C > 0 with the
following property:

Given functions in (3.1.16) and g € C°([0,00)) complying with (3.1.11), (3.1.17)—(3.1.20)
and

9(p) < Kgp  for p =0, (3.3.1)

any nonnegative and radially symmetric classical solution (u,v) € C°(Q x [0,T)) NC%(Q x

(0,T)) of

ug =V - (D(u,v)Vu — S(u,v)Vo), inQx(0,T),

vy = Av — v + g(u), in Qx (0,7T), (33.2)
dyu = dyv = 0, on 0 x (0,T), o
u(+,0) = up,v(+,0) = v, in

fulfills (3.1.12) and |Vv(z,t)| < Clz|=" forx € Q and t € (0,T).
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3.4. Existence of blow-up profiles

PROOF. We fix such a solution (u,v) and functions in (3.1.16) as well as g € C°([0, 00)),
but emphasize that all constants below only depend on the parameters in (3.1.13) as well
as on Ky, and 3.

Setting p := 1 and noting that

=

lim lim b = n(n—1) =
fan-10/00cm—q+ 2 -8 (m—qn+1

we can choose 3 € (n — 1, 8) small enough and 6 > n large enough such that still

o >

=+ |

3e

m—q

\
Sl

Setting

D(x,t,p) = D(p,v(z,t)), S(z,t,p)=D(p,v(x,t)) and f(z,t):=—Vo(z,t)

for p > 0,z € Q and t € (0,T), we see that (3.1.6)—(3.1.9) are satisfied (for D, S instead
of D,S), while (3.1.4) follows by (3.1.20) and Remark 3.1.2. Furthermore, the boundary
conditions in (3.3.2) imply

(b(;v,uu)Vu—i—S’(x,t,u)f) v=0<0 on 00 x (0,7).

As also

K;:= sup /|x|05|f(z,t)\9dx: sup /|x|05|Vv(x,t)|9da:<oo
tc(0,T) JQ te(0,T) JQ2

by Lemma 3.3.1, we may indeed invoke Theorem 3.1.1 to obtain C' > 0 such that (3.1.12)
holds. Once more applying Lemma 3.3.1, now with § = oo, yields

[Vo(z, t)| < C”|a:|7B < ' max{R, 1}573\:£|7ﬁ forx € Qand t € (0,7T)
for some C’" > 0. 0
An immediate consequence thereof is Theorem 3.1.3.

PRrROOF OF THEOREM 3.1.3. Choosing g = id (and, say, K, = 1) in Lemma 3.3.2, we see
that (3.3.2) reduces then to (3.KS). O

3.4. Existence of blow-up profiles

Throughout this section, we suppose n > 2, R > 0, Q = Bg(0), and that (3.1.11) and
(3.1.17)—(3.1.19) are fulfilled for certain parameters and functions in (3.1.13) and (3.1.16),
respectively. In addition—and in contrast to the preceding sections—, we also assume
(3.1.21), that is, that D > 5 for some 7 > 0.

Furthermore, we fix Tiax < 00 and a solution (u, v) of (3.KS) (with Tihax instead of T') with
the property limsup, ~7, |lu(-,t)|| L~ (@) = oo.
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

We now examine whether and in which form lim; 7,
that end, we may moreover assume

u(-,t) and limy 7, v(-,t) exist. To

max

ug, v € C3(Q) as wellas u,v € C21(Q x [0, Thax))

since the behavior of (u,v) at Tiax may be directly inferred from that of (@, ) at
where

Tmax
2 )

(1,9) = (e, T ul, -+ Byg) € (C1(@x [0, Tp=))’

Furthermore, for € € (0,1), we fix henceforth G. € C*>([0,00)) satisfying G(§) = ¢ for all
€e0,]and 0< G-(¢§) < 2 forall £ > 0.

‘e
The main idea is to construct solutions (u.,v.), € € (0,1) to certain approximative problems
which converge along a subsequence to, say, (u,v). We will then see that these functions
coincide with v and v in Q \ {0} x (0, Tynax) such that, for instance, lim; ~p,, u(-,t) =
ﬁ(~, ,Armax) .

Lemma 3.4.1. For any ¢ € (0,1), there exists Tmax,e and a pair of nonnegative functions
(ue,ve) solving

Ut = V - (D(ug,ve) Ve — S(Ge(ue), ve)Ve), in QX (0, Thax.e),

Vet = Ave — v + Ge(ue), in QX (0, Tmax,e), (3.4.1)
Oyue = 0,v. =0, on O X (0, Timax,e)s o
ue(+,0) = ug, ve(+,0) = vy, in Q

classically and having the property that if Tiax,e < 00 then

limsup [[uc(:, 1)z (o) = 0.
t/‘Tmax,s

PROOF. Local existence and extensibility can be proved as in [51, Lemmata 2.1-2.4], which
essentially relies on regularity theory for nondegenerate parabolic equations and Schauder’s
fixed point theorem—while nonnegativity follows by the maximum principle. O

For all € € (0,1), we henceforth fix u.,v. and Thax. as given by Lemma 3.4.1. Quite
standard methods now allow us to conclude that the regularized solutions are global in
time.

Lemma 3.4.2. Let ¢ € (0,1). Then the solution (u.,ve) constructed in Lemma 3.4.1 is
global in time; that is, Tax,e = 00.

PROOF. Since G, is bounded, LP-L4 estimates (cf. [94, Lemma 1.3 (ii)]) rapidly yield

= sup  lue(st)|[wre () < 0.
tE(O,Tmax,a)

Testing the first equation in (3.4.1) with u2=1, p > 2, gives
1d
pdt Jo

=—(p-— 1)/ uP ™2 D(ue, v )| Vue|* + (p — 1)/ uP~2S(G(ue), v:)Vue - Voo
Q Q

p
Ug

< —n(p-— 1)/Qu§_2|VuE\2 + crea(p — 1)/Qu§_2|Vua| in (0, Tax,e), (3.4.2)
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3.4. Existence of blow-up profiles

where ¢y = H5||L<>o((o,§)x(o,oo))-

Therein is by Young’s inequality

P21y | < /p*QV 2+0102/ p—2
[asivut < 2 [ arvaf + 22 [

n p—2 2, C1C2 c1c2|9 .
Vue —_— b I e— 07Tmax e)s
deico /QuE Ve ‘ " 2n /Qua " 2n mn { ’ )

IN

so that integrating (3.4.2) along with an ODE comparison argument yields

sup [Ju(-,t)|[zr (o) < o0 for all finite T' € (0, Tinax,]- (3.4.3)
t€(0,T)

By [83, Lemma A.1], this implies (3.4.3) also for p = oo, so that the extensibility criterion
in Lemma 3.4.1 indeed asserts Tiax,e = 00. O

Parabolic regularity allows us to obtain the following

Lemma 3.4.3. For each § € (0,R) and 0 < 7 < T < oo, there exist C > 0 and v € (0,1)
such that for all e € (0,1)

||U8H02+«/,1+%(K) <C and HUEHCQ+“"1+%(K) <C, (3.4.4)
where K = Q\ Bs(0) x [1,T).

ProoF. This can be shown as in [106, Lemma 4.3]. We briefly recall the main idea.

We start by fixing a cutoff function ¢ € C*(Q x [0, 00)) such that
(=1 in K,
(=0 i (E% (0) x [0, oo)) U (@ x [0,%]) and
0,(=0 on 99 x [0, 00)
and set, for £ € (0,1),

we = Cu. as well as  z. = (v..

By Lemma 3.3.2, there exist c¢1,«, 8 > 0 such that
luc(z,t)] < er]z|~® and  |Vo.(x,t)| < ez

forallz € Q,t € (0,7 +1) and ¢ € (0,1). In particular,

sup(w (S =+ ||z (S )<oo.
302 (el miatom + loelm@ieio)

Basically, the statement follows then by parabolic regularity theory, applied to w. and z.
for € € (0,1). We sketch the main steps.
At first, [74, Theorem 1.3] gives 71 € (0,7) and 1 € (0,1) such that

sup ||wel| < 00.

c€(0,1) M @x[r )

43



3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

In a second step, one uses this information along with [48, Theorem IV.5.3] to obtain

sup ||z, <o

c€(0.1) 12234 F @x [r,7))
for some 19 € (71,7) and y2 € (0,71).

Finally, by employing first [59, Theorem 1.1] and then again [48, Theorem IV.5.3], we may
find 75 < 73 <74 <7 and 0 < y4 < y3 <2 such that

. <
868}1013)1) ||w€||cl+73>1+273 (Qx[73,T7]) >
and
E:H)I,)U ||w5||02+v4,1+774(5><[T47T]) <o
Going back to u. and v, this indeed gives (3.4.4). )

Lemma 3.4.4. There exist u,v € C%(Q\ {0} x (0,00)) and a sequence (¢;)jen C (0,1) with
g5 \( 0 as well as

us, >4 and v., >0  in CL(Q\ {0} x (0,00)) as j — occ.

Proor. This follows directly from Lemma 3.4.3, the Arzela—Ascoli theorem and a diago-
nalization argument. O

Lemma 3.4.5. There exists g > 0 such that
1. =
T. :=sup {T € (0, Thax): u < Z in 0 x [O,T]}
is well-defined for all e € (0,20) and for all € € (0,eq)

Ue =u and ve =0 holds in Q x [0,T).

PrROOF. As ug = 0 would imply u = 0 by Lemma 3.5.1, we may without loss of generality
assume ug = 0. Then g¢ == is positive, and as wu is continuous, 7. is indeed

well-defined for all € € (0, ).

2[luollLoe ()

Let € € (0,e0). In Q x [0,7%), both (u,v) and (ue,v.) are solutions to (3.KS) with 7' = T¢,
such that the statement follows due to uniqueness, see Lemma 3.5.1 below. O

With these preparations at hand, we may now prove Theorem 3.1.5.

PrOOF OF THEOREM 3.1.5. Let @,v be given by Lemma 3.4.4. Since also u. — u and
ve — v pointwise (as € \, 0) by Lemma 3.4.5, we have u = @ and v = ¥ in 2\ {0} X [0, Tiax)-

Because of 4,0 € C°([0, Trax); C2. (2 \ {0})), a consequence thereof is (3.1.22) if we set
U :=u(-, Tmax) and V := 0(-, Thyax). Finally, (3.1.23) follows by Theorem 3.1.3. O
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3.5. Uniqueness in nondegenerate quasilinear Keller—Segel systems

3.5. Uniqueness in nondegenerate quasilinear
Keller—Segel systems

In this section, we prove the uniqueness result used in Lemma 3.4.5 above. As most of
the works on quasilinear Keller—Segel systems cited in the introduction of this chapter do
not state whether the solution is unique, a uniqueness result for quite general systems,
also accounting for cell proliferation or consumption of chemicals, for instance, might be of
independent interest.

Since these generalizations do not drastically complicate or enlarge the proof, we choose to
prove a version slightly more general than actually needed for our purposes.

Lemma 3.5.1. Suppose Q C R™, n € N, is a smooth, bounded domain. Let n > 0,
p > max{2,n}, T € (0,00] as well as D, S, f,g € C1([0,00)?) with D > n. Furthermore,
assume also that ug,vo € WHP(Q) are nonnegative.

Then there exists at most one pair of nonnegative functions

(u,v) € (C>1(@ x (0,T)) N CO([0, T); WP (2)))

solving
up =V - (D(u,v)Vu — S(u,v)Vo) + f(u,v), in Qx(0,T),
v = Av + g(u,v), in Qx(0,7),
dyu = 0,v =0, on 99 x (0,T),
u(+,0) = up,v(+,0) = vo, in
classically.

PrOOF. We suppose that (u1,v1) and (ug,v2) are two such solutions and let 7" € (0,7).
Due to the supposed regularity and the embedding W'?(Q) < C°(Q), we can find L > 0
such that uy,ug,v1,v2 < Lin Q x [0,7T7].

As then
(ur —u2)e = V- (D(u1,v1)Vur — S(ur,v1)Vor) + fur,v1)
—V . D(’UQ7 UQ)VUQ + S(UQ, UQ)VUQ) - f(UQ, UQ)
=V (D(u1,v1)V(ur —u2)) + V- ((D(u1,v1) — D(uz,v2))Vuz)
=V - (S(u1,v1)V(vy —v2)) = V- ((S(u1,v1) — S(uz,v2))Vus)
+f(u1,v1) — f(ug,v2) in Q x (0,77),
testing with u; — ug and integrating by parts gives
pai 0 =02 = = [ Dl o)V — )
9 dt 0 Uy —uz) = o U1, V1 Uy — U2

— /Q[D(U1,U1) — D(UQ,UQ)]VUQ . V(u1 - UQ)
+ . S(ul,vl)V(vl — UQ) . V(u1 — ’LLQ)

+/Q[S(U1,U1) - S(UQ,UQ)]VUQ . V(Ul — UQ)
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3. Blow-up profiles in quasilinear fully parabolic Keller-Segel systems

+ / [ (ur, 1) — iz, v9)](us — us)
Q
=L +L+Is+1,+ I5 in (O,T/)

Therein we make first use of the nondegeneracy, that is, the crucial assumption that D > n,
to see that

L < *T]/ |V (u1 — us)|? holds in (0,7").
Q

Also, by Young’s inequality
I < g/ IV (ur — ug)? +c1/ V(o1 — )2 holds in (0,77,
Q Q

I151E000.012)

7
By the mean value theorem, we can find &1,&: Q x (0,77) — [0, L] such that

where ¢ =

|D(u1,v1) — D(ug,v2)| < |D(u1,v1) — D(ug,v1)| + |D(u2,v1) — D(ug, v2)|
= |Dy(&1,v1)(ur — ug)| + [Dy(uz, §2)(v1 — v2)]
< IDllerqo,2p2) (Jur — ua] + v — val) in Q x (0,77),

where ||¢llc1(po,£12) = max{||¢l|co(o,L]2)s |ullcoo,z2): [|@vllco(o,n2) } for ¢ € CH([0, L]?).

Thus, by Young’s and Hoélder’s inequalities (with exponents £, pp 5)5

I, < ﬂ/ IV (ur —uz)|* + c2 (/ [Vus | (u1 — u2)? +/ |Vug|?(v1 — U2)2>
8 Ja Q Q
p=2 p=2
Sﬂ/ |V (u1 — u2)|® + 3 </(u1—u2)p—p2) +c3 </(v1—v2)p—p2)
8 Ja Q Q
in (0,7") with cg == M and c3 == 02||Vuz||%x((O’T,);W1,p(Q)).
As our assumptions on p imply r = pzfpz < (nzg”, we may invoke Lemma 3.2.5 to find

c4 > 0 with the property that

([1or) < [1wek+e [ ranpewta)

Q 8cs Ja Q

/\V (up — ug) |2 /|V v1—02)| +C5/(u1—u2) —|—c5/(v1—v2)2
Q Q

n (0,7”), where c5 = czcq.

hence

Similarly, we see that

/‘V Ul—UQ |2 /|V Ul—U2)|2+C6/(U1—Ug) —|—CG/(1}1—U2)
Q Q
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3.5. Uniqueness in nondegenerate quasilinear Keller—Segel systems

in (0,7") for some cg > 0.
As again by the mean value theorem
[f (w1, v1) = fluz, v2)| < [ fllorqo,zp2) (Jur — ua| +or —v2f)  in Qx (0,7),

we conclude
Is < 07/(u1 —ug)? +cg / (v —w2)?  in (0,T),
Q Q

Where Cr ‘= %HfHCl([(LL]Q) and Ccg ‘= %Hf”Cl([O,L]z)-

Moreover,

33 o=l <= [ Vo= e)P + [ (g(u,00) = gl 02) (01 = 2

in (0,7”). Therein we make once more use of the mean value theorem to see that

lg(u1,v1) — g(uz,v2)| < llgllerqo,Lpz) (Jur — ua| + |vr —v2])  in Q@ x (0,77),

hence
| t.01) = gz ) = ) < o /Q (ur — u2)? + 10 /Q (i —w)? i (0.7,

Where Cg ‘= %||g||cl([07L]2) and C1o ‘= %”gHCl([O,L]?)'

By combining the above estimates, we obtain with A :=c¢; + g and some cj; > 0 that

i(/@(ul—ug)Q—I—)\/Q(vl —v2)2> <en (/Q(u1 —uz)QH/Q(ul—vg)?)

in (0,7”) and thus

= w43 [ o= ) < e ( [ w0 = w0+ [ (wn - >) 0.

for t € [0,7"] by Gronwall’s inequality.

Since w1, uz,vi,ve € C°(Q x [0,T"]), this implies u; = us and vy = vy in Q x [0,7”]. The
statement follows upon taking 77 " T. O
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4. On the optimality of upper
estimates near blow-up in
quasilinear Keller—Segel systems

4.1. Introduction

Inter alia motivated by the desire to improve on the pointwise estimates derived in the
preceding chapter, we now have a closer look at (generalizations of) the second subproblem
in (3.KS). That is, in the first and main part of the present chapter, we establish pointwise
upper gradient estimates for solutions to

Top=Av—v+4+g inQx(0,T),
Oyv =0 on 002 x (0,7, (4.P)
v(,0) =vo if >0 inQ,

where 2 = Bgr(0), R > 0, is an n-dimensional ball, 7 > 0, T' € (0,00) and vy and g are
sufficiently smooth given functions on Q and €2 x (0,T), respectively.

Elliptic or parabolic regularity theory (cf. Lemma 4.2.1 and Lemma 4.4.1 below) and em-
bedding theorems warrant that, if ¢ is uniformly-in-time bounded L%(f2) for some q € [1,n],

then v is uniformly-in-time bounded in W'?(Q) for all p € [1, ;7).

An estimate of the form
|Vo(z,t)| < Cglaz| = forall z € Q and ¢t € (0,7) (4.1.1)

for some < #=4 would imply

R
sup / [Vo(-, t)]P < C’gwn_l/ P dr < oo
te(0,T) Ja 0

for all p € (0, %) and hence in particular for p = ﬁ% > -2 Thus, assuming that
the uniform-in-time bounds discussed above are optimal, such an estimate should not be

obtainable if one only requires sup,c (o 1y [/9(+,t)||La(e) to be finite. However, we achieve

(4.1.1) for all g > %. We conjecture that this estimate, possibly up to equality regarding
the exponent therein, is optimal.

In the elliptic case, the corresponding proof is quite short: In Section 4.2, we first derive an
LY bound for Av and then make use of the symmetry assumption to obtain the following
result.
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Proposition 4.1.1. Letn >2, R >0, Q:=Br(0) CR", M >0, q € [1,n] and § > %.
There is C > 0 such that whenever g € C°(Q) is a radially symmetric function fulfilling

lgllLa) <M (4.1.2)

and v € C%(Q) solves

=Av— in Q
0 v—v+g infl, (4.1.3)
dv=0 on 082,
then
|Vo(z)| < Claz| = for all z € Q. (4.1.4)

In principle, one could argue similarly in the parabolic setting, although one would at least
need to require vy € W2%(Q) with d,v9 = 0 on J9 in the sense of traces—or v cannot be
uniformly-in-time bounded in W24(Q). Not wanting to impose such an unnatural require-
ment, we argue differently and rely on various semigroup estimates, which are introduced
in Section 4.3, instead.

For q € (1, %], we can follow [106, Section 3], where corresponding estimates have been
derived for q = 1. The main idea is to notice that z = (%v, where ((x) ~ |z, solves a
certain initial boundary value problem and then make use of several semigroup estimates to
obtain an L* bound for Vz—which in turn together with pointwise upper bounds for v (cf.
Lemma 4.4.2) implies (4.1.1).

However, these arguments rely in several places on the fact that q € (1, 5] and 3 > ";Tq
imply 8 > 1 and hence (¥ € C*(Q). Switching to radial notation, this for instance means
that 2,(0,-) = 0. For g € (§,n] and thus possibly 8 € (0,1), this is no longer the case. We
overcome this problem by considering (for ¢ € (%, n])

2(z,t) = P (x)(v(x, t) — v(0,1)), (x,t) € Q% [0,7T), (4.1.5)

instead. Due to uniform-in-time Holder bounds (see Lemma 4.4.3), we then obtain z,(0, ) =
0 and an L> bound for Vz again implies (4.1.1). On the other hand, compared to (v, a
new problem arises for z defined as in (4.1.5): The time derivative of z now additionally
includes ¢(%v;(0,-). In order to handle this term, we first derive time Hélder bounds for v in
Lemma 4.4.5 and then apply more subtle semigroup arguments as in the case of q € (1, 5]
in Lemma 4.4.6.

Finally, we arrive at

Theorem 4.1.2. Letn > 2, R > 0, Q := Bgr(0) C R™. For every M > 0, q € (1,n],
8> % and py > max{%, 1}, there is C > 0 with the following property: Suppose T > 0,
T € (0,00] and that

Vo € c° (ﬁ) is radially symmetric and nonnegative with (4.1.6)
[vollwvo () + |||~T|’8Vvo||Loo(Q) <M o

as well as

g€ C'(Q x [0,7)) is radially symmetric with sup ||g(-,t)||pa(q) < M. (4.1.7)
te(0,T)
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Then
|Vo(z,t)| < Clz| = forallz € Y and t € 0,T), (4.1.8)
provided v € C°(Q x [0,T)) N C*1(Q x (0,T)) is a nonnegative classical solution of

T =Av—v+g inQx(0,T),
O,v=0 on 9 x (0,T), (4.1.9)
v(+,0) = vg in €.

Remark 4.1.3. (i) In [106, Lemma 3.4], corresponding estimates have been derived for
7 =1and q = 1 (provided that in addition to (4.1.7), certain pointwise upper estimates
of |g| are known). This is the reason why we concern ourselves only with ¢ > 1 in
Theorem 4.1.2.

(ii) The constant C in Theorem 4.1.2 evidently needs at least to depend on |||z Vg || < (q)
and we avoid further dependencies on the initial data as much as possible; in partic-
ular, we do neither rely on a W?29(£2) bound nor on fulfillment of certain boundary
conditions. For technical reasons, however, we need to require (4.1.6), which is nearly
optimal in the sense that a bound of |||z Vvo|| e (q) implies bounds for ||[Vug||1r (o)
for all p € [1, 3).

Next, we apply Proposition 4.1.1 and Theorem 4.1.2 to the solutions (or, more precisely, to
their second components) of the quasilinear chemotaxis system

ug =V - (D(u,v)Vu — S(u,v) Vo), in Q x (0,7,

T = Av — v + f(u,v), in Q x (0,7,

(D(u,v)Vu — S(u,v)Vo) -v=0,v =0, on 90 x (0,T), (4.KS)
u(+,0) = ug in Q,

v(-,0) =wvg if 7 > 0, in Q,

where again € is an n-dimensional ball, 7 > 0, T € (0,00] and ug, v, D, S, f are given
functions. Such systems aim to describe chemotaxis, the partially directed movement of
organisms u towards a chemical stimulus v and have (for certain choices of parameters) first
been proposed by Keller and Segel [46]. In certain biological settings, the functions D and
S need to be nonlinear—accounting for volume-filling effects [36, 72, 110], immotility of the
attracted organisms [19, 57] or saturation of the chemotactic sensitivity [42], for instance.

For known results regarding (4.KS), especially concerning questions of boundedness, global
existence and finite-time blow-up, we refer to the introduction of Chapter 3. Let us also
recall that Theorem 3.1.3, proved in the preceding chapter, contains the following statement:
In n-dimensional balls, n > 2, and for arbitrary m > ”;2, m—q € (—%, nT_QL a > %

and 8 > n — 1, solutions (u,v) of (4.KS) with 7 = 1 blowing up at Tinax € (0, 00) fulfill

u(z,t) < Clz|~* and w(x,t) < Clz|™? for all x € Q and ¢ € (0, Tiax)

for some C' > 0. (The special case m = ¢ = 1 has already been treated in [106].) Apart
from certain corner cases, however, it is to the best of our knowledge not known whether
the exponents « and ( therein are (essentially) optimal.

However, we now apply Proposition 4.1.1 and Theorem 4.1.2 in order to improve on these
estimates—provided that the first solution component is uniformly-in-time bounded in
LP(Q) for some p > 1.
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Theorem 4.1.4. Letn>2, R >0, Q:= Br(0) C R" and
m,q€R,s>0,7>0,Kp1,Kpo2,Ks, Ky >0,M>0,p € [max{s, 1}, ns]
be such that

-2 -2
m—gq¢€ (—[p, ns[p} and m> L (4.1.10)
n n n
For any
a>g::M and (> ns—|p7 (4.1.11)
[(m —q)n + plp P

we can find C > 0 such that whenever (u,v) € (C°(Q x [0,T)) N C*(Q x (O,T)))Q, T €
(0, 00], with

sup |u(- )|l o) < M (4.1.12)
te(0,T)

is a nonnegative, radially symmetric solution of (4.KS), where
D,S € C([0,00)?), fe€C%0,00)%), 0<ugecC’Q) and 0<vyeC'Q)
Sulfill
. > m—1
;ngD(pJ) > Kpap"

sup D(p,0) < Kpomax{p, 1}
a>0

sup|S(p,0)| < Kgmax{p,1}? and
o>0

sup |f(p,0)| < Kfmax{p,1}*

for all p >0 as well as
ug(x) < M|z|™ for allz € Q and |jvollwi=) < M,
then
u(z,t) < Clz|= and |Vo(z,t)| < Clz|=? forallz € Qandt e (0,7). (4.1.13)

As a first application of Theorem 4.1.4, let us state

Remark 4.1.5. To the best of our knowledge, the results above give the first estimates of
type (4.1.713) for chemotaxis systems with nonlinear signal production. For instance, letting
up € CVQ), vg € WH(Q), m=q=1,7>0,p=1,s¢€ (%,1] and e > 0, solutions of

ug =Au— V- (uVv), inQx(0,T),

TUr = Av — v + u®, in Q x (0,7,

oyu = 9,v=0, on 092 x (0,T),

u(70) = Ugp, in Q,

v(,0) =vo if 7>0, in§
fulfill

w(x,t) < Clz|™Ms=V=¢  forallz e Qand t e (0,T)

for some C' > 0.
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4.2. Pointwise estimates for Vv: the elliptic case

Next, we show that Theorem 4.1.4 implies a certain (essentially) conditional optimality for
pointwise upper estimates of solutions to (4.KS).

Remark 4.1.6. Suppose s =1 and

n—2

m—qé€ (—1, ] aswellas ¢>0 (4.1.14)
and that (4.1.12) holds for
p= %(lf(m*Q)) € [1,ns). (4.1.15)

Then

n —2p P n—2p
m—q= € Ty T |
n n n

hence (4.1.10) is fulfilled. This implies that for « (4.1.11), we have

n—p n %+7(m—2q)n n 2

n
o=+ — = _——_—
~ p (m—gn+p P %4_@ p 1—(m—gq)

so that [17, Corollary 2.3] asserts that condition (4.1.11) is (up to equality) optimal. Fur-
thermore, we note that requiring (4.1.12) for any p > % (1 — (m — ¢)) already implies global
existence (cf. [17, Theorem 2.2]), while, to the best of our knowledge, even a solution blowing
up in finite time might fulfill (4.1.12) for p = (1 — (m — q)).

To sum up, optimal LP bounds imply essentially optimal pointwise upper estimates.

Notation. Henceforth, we fix n > 2, R > 0 and Q := Br(0). Moreover, with the usual
slight abuse of notation, we switch to radial coordinates whenever convenient and thus write
for instance v(|z|) for v(z).

4.2. Pointwise estimates for Vu: the elliptic case

We first deal with the much simpler elliptic case; that is, we set 7 := 0 in this section. As a
starting point, we obtain an L% bound for Av by a straightforward testing procedure. For
the parabolic case, which we will deal with in Section 4.4, one cannot expect a similar result
to hold if one only wants to assume that the initial datum satisfies (4.1.6) and not, say,
vo € W22(Q) with 9,v9 = 0 in the sense of traces and ||vo||w2.2(0) < M.

Lemma 4.2.1. Let M > 0 and q € [1,00). If g is as in (4.1.2) and v € C%(Q) is a classical
solution of (4.1.3), then

AV zago) < 2M.

PROOF. Testing (4.1.3) with v9~! and making use of Young’s inequality gives

-1 1
/qu/vq_lAv—s—/vq_lgS —(<Dl—1)/vq_2|Vv|2+(Dli/v“"—kf/gq1
Q Q Q Q q Q aJa
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and hence

[ faeam
Q Q

For q = 1, this already implies

/ A] < / (o] + |g]) < 2,
Q Q

while for g > 1, we further test (4.1.3) with —Av|Av|972 and use Young’s inequality to
obtain

-1 2@1*1 2@1*1
/ Auft < / (Io] + gy Ava—t < 21 / |Acfd + / jof + / 914,
Q Q q Q q Q q Q

which also implies

/ Aft < 2971 / o] 4 2971 / gl < 207,
Q Q Q

as desired. ]

Making crucial use of the radial symmetry, we now show that the bound obtained in
Lemma 4.2.1 implies the desired estimate (4.1.4).

Lemma 4.2.2. Let M >0, q € [1,n) and § > %. There is C > 0 such that if g satisfies
(4.1.2) and v € C%(Q) is as a classical solution of (4.1.3), then (4.1.4) holds.

PROOF. By the fundamental theorem of calculus, Holder’s inequality and Lemma 4.2.1, we
may calculate

T n—1 —(n— 1—7q
o ()] = / e A P N V!
0
Ao 4 T _aMn
< w </ pnfl dp) < vn % . ’r‘n_(ﬂl (421)
Y1 \Jo Ywn—1

n—q

for all r € (0, R). In view of 7"~ (=Y = »=*5" < RP="5" =8 for r € (0, R), dividing by
r"~1 on both the left- and the right-hand side in (4.2.1) implies (4.1.4) for an appropriately
chosen C' > 0. O

4.3. Intermission: semigroup estimates

The proof of a parabolic counterpart to the preceding section will in multiple places rely on
certain semigroup estimates, which we collect here for convenience. As we will apply them
in both © and (0, R), we consider arbitrary smooth bounded domains G C RY, N €N, in
this section.
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Lemma 4.3.1. Let G CRY, N € N, be a smooth bounded domain, and p € (1,00). Set
WP (G) = {o e W*P(G) : 0 =0 on 9Q in the sense of traces }
and define the operator A on LP(G) by
Ap=App:=—-Ap+¢  forpeD(A) =Wy Q).

Define moreover the fractional powers A", i € (0,1), of the operator above as in [88, Sec-
tion 1.15]. Then there are Cy,Cy > 0 such that

lellweerqy < CiLllA* @l Ly (@) for all ¢ € D(A*) and all u € (0,1)

and

1+
1A%¢l| o ey < Collpllwanr(@y — for all p € W?P(G) and all p € (07 5 p>~

PRrROOF. Let p € (0,1). From [88, Theorems 1.15.3 and 4.3.3], we infer that D(A*) =
[LP(G), WaP (@], C H2M(G) with equality if 2p < 1+ % (Herein, [, ], and H2*(G) are
as in [88, Convention 1.9.2] and [88, Definition 4.2.1], respectively.) Since G is smooth,
(88, Theorem 4.6.1 (d)] moreover asserts that H2*(G) coincides with W*P(G). Thus, we
obtain the desired estimates by noting that A* is an isomorphism between D(A") and LP(G)
(cf. [88, Theorem 1.15.2 (e)]). O

Lemma 4.3.2. Let G C RN, N €N, be a smooth bounded domain.

(i) Suppose o € {0,1}, u € R, g € (1,00), p € [q, 0] and

>
s
>

are such that pn+ 2= > 0. For any A € [0, + =] N[0, 3 + %) and 6 € (0,1), we
can then find C' >0

N
-

< lzalz

p <00,
pb=00

)

o _ _,_ots _
Vo Are™ || oy < C 72 e gl lwara(a)

for allt > 0 and ¢ € W?4(G), where A = A, is as in Lemma 4.5.1. (Here and
below, V°® =id and V! = V.)

(ii) In particular, for any o € {0,1}, p € R with p+3% >0, A € [0, p+%]N[0,3), 6 € (0,1)
and € € (0,2N), there is C' > 0 such that

IV7 Ak e ] Lo (@) < CPTHTE %[0l con

for allt > 0 and p € C?**(G), where A = A, for a certain q € (1,00) is again as in
Lemma 4.3.1.

PROOF. Let us first prove part (i) for s < 1. To that end, we begin by fixing some constants:
By [88, Theorem 4.6.1 (c) and (e)], there is ¢; > 0 such that

1Vl e ) < cll¥llweace for all i» € W*9(G).
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4. On the optimality of upper estimates near blow-up in quasilinear Keller-Segel systems

Moreover, noting that o +s < 2, 2A < 1+ é and g € (1,00), Lemma 4.3.1 asserts that we
can find co, c3 > 0 with

[ llwesrae < 2l AF Yllpae  forall € D(AT)
as well as
1AM Loy < eslldllwarae) for all ¢ € WM(@)
and [32, Theorem 1.4.3] provides us with ¢4 > 0 such that
|A7e 4| Loy < cat™ Ve [¢l|pa(ey  for all ¥ € LY(G),
where 7= = A+ pu+ UTH > 0 by the assumption on .

Moreover noting that Ate tAp = e~ 54 Ale= 340 € D(AF ) N W*4(G) for all ¢ € LP(G),
we may therefore estimate

V7 Ate™ 0| oc) < 1] V7 AFe™ollweaq)
< cr|| At ol wotea(a)

ats _
< cref| AT e tAQDHLq(G)

— C1CQ||A_)‘+“+G§S e_tAA)\

<PHL«(G)

< crezeat ™| ANl Lo

< 6102C3C4t77||g0||w2/\,q(g) for all ¢ > 0 and p e WQ)\’q(G),
which proves part (i) if s < 1. Ifse [1,00) and p < o0, we fix k € Nand p =pg > p1 >

- > pr, = q such that s; == ZI)V_ < 1. Furthermore, we set

PJl

Sj .
= 27 I<k, for j
= 1. . 7€{1,...,k
" {mzf_fz, =k ek}

and choose A to be § or 0 (depending on whether the operator V is involved) in first & —1
steps below. By the case already proven, we obtain then c¢; > 0 such that

HVUAMG_M(PHLP(G)

k
o ie— kA
\Y jl:[l(A"e )(p

LP(G)

k
SCSG_%t H (AHJG %A)

We:r1(Q)

< cse k[ [|we ﬁ (A”je_%A) ® H (A“Je ® )
j=2 e =2

LP1(G)

+ (k= DllARE | || 4+ ety

Sclg—le,(kfkl)é (HvaAuke I Qﬁ’

for all t > 0 and ¢ € WM(Q),

LPE=1(G)

< (L (k= D) Ap 2, )er ="
= cE(1+ (k= 1) 4p2,])

o [ e
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4.4. Pointwise estimates for Vv: the parabolic case

where in the last two steps we have made use of u+ UTH = ug+ ‘TEJ Finally, for s € [1,00)
and p = oo, the desired estimate follows from a similar iterative argument.

Ad (ii): Due to £ € (0,2N), we have ¢ := 2% € (1,00) and hence s := % = . We set
moreover p = oo and \ == A\ — 5. Then the statement follows from part (i) (with A replaced

by A) and the embedding W?2*4(G) < C?**¢(G), which in turn directly follows from the
fact that || - |lw2x.q(e) is equivalent to the norm given in [88, 4.4.1 (8)]. O

While Lemma 4.3.2 is quite general, its main shortcoming is the lack of L*°-L> estimates.
These are provided by the following lemma, at least for the special case p = A = 0.

Lemma 4.3.3. Letting G C RY, N € N, be a smooth bounded domain and defining the
operator A as in Lemma 4.3.1, we can find C' > 0 such that

HV"e_tAgoHLoo(G) < Ce 'Vl L () forallt >0, ¢ € Wo°(G) and o € {0,1}.

PrOOF. This immediately follows from the maximum principle and [63, formula (2.39)]. O

4.4. Pointwise estimates for Vu: the parabolic case

In this section, we deal with the remaining case 7 > 0 and first argue that we may without
loss of generality assume 7 = 1. If v € C°(Q x [0,T))NC?1(Q2 x (0,T)) is a classical solution
of (4.1.9) for some 7 > 0, T € (0, 00], vg € C°(Q) and g € C°(Q x [0,T)), then the function
¥ defined by 9(z,t) == v(z, L) for (z,t) € Q x [0,T7) solves

Dy =A0—0+g inQx(0,T7),
0,0=0 on 90 x (0,T7),
0(+,0) = v in Q

classically, where §(z,t) == g(x, L) for (z,t) € Q x [0,T7). Since Theorem 4.1.2 requires C
to be independent of 1" and sup,¢ o, rry 9(, )| La(q) = supse(o,r) 190, 1)l La(q) for all g > 1,
we may thus henceforth indeed fix 7 = 1 and prove Theorem 4.1.2 only for this special

case.

Moreover, given M > 0, let us abbreviate X := C°(Q x [0,7)) N C%1(Q x (0,T)) and

{vo and g comply with (4.1.6) and (4.1.7), (4.4.1)

v € X is a nonnegative classical solution of (4.1.9).
Before proving Theorem 4.1.2 in Lemma 4.4.6 below, we first collect several estimates,
starting with an W1?(Q) bound for certain p > 1.

Lemma 4.4.1. Let M >0, q € [1,n], po > 1 and p € (l,n”—_@fq) N (1,po]. There is C > 0
such that if (4.4.1) holds, then

IVu(, t)|lry < C for allt € (0,T). (4.4.2)
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4. On the optimality of upper estimates near blow-up in quasilinear Keller-Segel systems

PROOF. Letting A be as in Lemma 4.3.1, we apply Lemma 4.3.2 (with o :== 1, p := 0, ¢ == p,
s::O,)\::%andazzl,u::(),q:zq,s::%—%,)\:zo) to obtain ¢1,¢o >0 and 6 >0
such that

Ve ™ol ey < c1e™ ||V Lo for all t > 0 and ¢ € WHP(Q),

and

1 n(l 1

HveitAQDHLp(Q) SCQt 2732

a0 % pllagy  forallt >0 and ¢ € L9(Q).

Hence, assuming (4.4.1), we make use of the variation-of-constants formula, (4.1.6) and
(4.1.7) to see that

ds
Lr(Q)

t
IVo(, Olle) < [[Ve™ 00 1oy +/O [emt=24g(.,5)

t
< 01675t||VU0||Lr(Q) Jr62||9||Loo((o,T);Lq(Q))/ (t—s) 272
0

< M01|Q|P§7EP + MCQ/ 572357 p)e05 g for all t € (0, 7).
0

The last integral therein is finite because the assumption p < n"f@fq warrants
1 1 1 1 —
BRSNS N A N S R A S -
2 2\q p 2 2 \nq nq

If g € [1, 3], then the gradient bound obtained in Lemma 4.4.1 implies certain pointwise
upper bounds for v. For the special case q = 1, this has already been proven (similarly as
below) in [97, Lemma 3.2].

Lemma 4.4.2. Given M >0, q € [1,5], po > 1 and x € (—oo, ,n—2a:1) N (—o0, —2=Eo],

q Po

there is C' > 0 with the following property: If T € (0,00] and (4.4.1) holds, then
v(z,t) < Clz|” forallz € Q and t € (0,T).

PRrROOF. For fixed k < f”;% with

-2 —q) — n—3"q
e =2 _ (n-a)-a_ ha
q q n—q

we may choose p € (1, ;25) N (1, po] such that £ < —*72. Then Lemma 4.4.1 warrants that

there is ¢; > 0 such that (4.4.2) (with C replaced by ¢) is fulfilled whenever (4.4.1) holds.
Moreover, we let

po—1

Co = Mmax{\m »0 ,|Q|qT?1} as well as ¢z ==

Bi(0)\ By (0
and now assume (4.4.1). Since

po—1
lvoll L1 () < 182 P [lvollwiro (@) < c2
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4.4. Pointwise estimates for Vv: the parabolic case

and

a-1
91l o< (0,721 () < 175 llgllzee((0,1);za(0)) < c2

by (4.1.6), (4.1.7) and the definition of ¢y, the comparison principle asserts [, v(-,t) < ¢o
for all t € [0,T).

Thus, assuming that there is ¢ € [0,7') such that v(r,t) > ¢ for all 7 € (£, R) would lead
to the contradiction

co > / v(-,t) > / v(-,t) > / c3 = ca,
Q BR(O)\Bg 0) BR(O)\B% (0)

and therefore, for all ¢ € [0,T'), we may choose ro(t) € (£, R) with v(ro(t),t) < c5. We then
calculate

" n—1 _n—1
v(r,t)—v(ro(t),t):/ p P u(pt)-p P dp
ro(t)

/ )i
ro(t)
r n—1
L™
To(t)

As p € (1,n) because of q < & and % < n and since ro(t) > & >
t € (0,T), we have therein

r _n—1
[
To(t)

p—1

P

Vol Dllzr ey

Wn—1

&1

</ Wn—1

IA

for all r € (0,R) and t € (0,T).

for all € (0, R) and

r
2

p=1 p—1

S (L)
< port
min{r,ro(t)}

—1

(p -1 > o min{r, ro(t)} "7

n—p

p—1

n—p -1\ » n—p

<277 (p ) r- e for all r € (0,R) and t € (0,T).
n—p

Moreover noting that v(ro(t),t) < ¢ < csR 7 r~ 5 for all 7 € (0,R) and t € (0,T), we
obtain the statement. O

2g—n

Since ¢ > 4 implies > 0, one cannot expect that Lemma 4.4.2 holds for any q > 3.
However, we have the following analogon of said lemma.

Lemma 4.4.3. For M >0, q € (§,n], po > 1 and s € (0, Q?T*”)H(O, pfg”], there is C' > 0
such that if T € (0,00] and (4.4.1) holds, then

[v(z,t) — v(0,t)] < C|z|* for allz € Q and t € [0,T).

PRrROOF. Let k € (0, %). The assumption q € (4, n] implies x € (0,1), hence p == - €
(1, n”f@fq) N (1,po]. Thus, the statement follows from Lemma 4.4.1 and Morrey’s inequality,
which because of k =1 — 7 asserts that WLP(Q) embeds into C*(£2). O
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4. On the optimality of upper estimates near blow-up in quasilinear Keller-Segel systems

Lemma 4.4.3 now allows us to show that a function resembling |x|%v solves a suitable initial
boundary value problem. In Lemma 4.4.6 below, we then apply semigroup arguments to
obtain certain gradient bounds for this function implying (4.1.8).

Lemma 4.4.4. Let M >0, q € [1,n], 8 > %,
¢ € C*([0,R]) with ((r) =r for allr € [0, %], ¢ >0 in (0,R) and (,(R) =0  (4.4.3)
and
. {1, a € [L, 5],
amirayy U€ (5.0
There exist by, bs,bs € C°((0, R)) and C > 0 such that
by (r)| < CrP=2, lba(r)] < CrP1 and lbs(r)] < CrP (4.4.4)

for all r € (0, R) and, moreover, the following holds: Let T € [0,00), vo,g,v be as in (4.4.1)
and

|3

o(r,t) = {ZE;: 2’_ 2(0.1), 2 i Eléﬂg}’ forr € [0,R] and t € [0,T). (4.4.5)

Then the function z = (% belongs to C°([0, R] x [0,T)), CY1([0,R] x (0,T)) as well as
C?1((0,R) x (0,T)) and solves

2 = Zpr — 2 + b10 4 bov, + byg — [sign(q — 2)]+¢Pvi(0,¢), in (0,R) x (0,T),

zp =0, in {0,R} x (0,T), (4.4.6)
classically. (Here and below, [sign&]y =1 for £ > 0 and [sign&]; =0 for £ <0.)
¢(r)

r

PROOF. Since the assumptions on ¢ warrant [|([c2(jo,r)) < o0 and sup,.¢ (g, g)
there is C' > 0 such that the functions

bl = *5(/3 - 1)4672@? - /Bgﬁilgrr
by = —28¢P1¢ + "8 and
b3 = Cﬁ

< o0,

r

comply with (4.4.4). As direct calculations give

Zr = Bgﬂ_lgrﬁ + <B’U’r‘7
zrr = [B(B — 1)CB_2CTQ + 5C’8_1Crr]f) + 28 ¢ v, + Py and

n—1

Vi = Upp + v —V+g

in (0, R) x (0,T), we moreover obtain

-1
¢Pvr = P+ = CPur = (P + (P
r

-1
BB v, — 2+ Py
.

=z = [B(B =172 + BTG 04 |28+
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4.4. Pointwise estimates for Vv: the parabolic case

in (0, R) x (0, 7). Thus,

zi(r,t) = CP(r)v(r,t) — [sign (q - g)} N ¢P(r)ue(0,t) for all (r,t) € [0,R) x [0,T),

implying that the first equation in (4.4.6) holds.

Since the third equation in (4.4.6) is a direct consequence of the definition of z, and as
¢-(R) =0 and v,.(R,) = 0 and ((R) > 0 imply z.(R,-) = 0, it only remains to be shown
that 2.(0,-) = 0 in (0,7). For g € [1,%] and hence § > 1, this holds because then
lim,~ 0 ¢?~(r) = 0. Thus, we suppose now that q € (%,n]. Due to %fT_” > max{l — 3,0}
and 2= > max{1 — 3,0}, we may choose k € (max{1 fﬂ,O},min{z‘lﬁ—;", pop—:"}) and apply

Po
Lemma 4.4.3 to obtain ¢; > 0 such that |v(r,t) —v(0,t)| < ey for all (r,t) € (0, R) x (0,T).
Thus, [¢P1(r)o(r, t)] < cirP71F = 0as & > 1\, 0. O

For q € (%,n], we need to handle the term (“v;(0,-) in the first equation in (4.4.6) if we
want to apply semigroup arguments to the problem (4.4.6). To that end, we argue similar
as in [91, Lemma 3.4] and derive sufficiently strong time regularity in

Lemma 4.4.5. Suppose M >0, q € (§,n], po > n and 6 € (0, min{ 2‘3&”, pg;O" ). Then

there exists C > 0 such that for T € (0,00] and vy, g,v complying with (4.4.1), we have

[0(0,t1) — v(0,t2)] < Clty —ta|®  for all ty,ty € [0,T). (4.4.7)

PROOF. Since 0 < 0 < %— ﬁ, we can choose p € (1,po) and € > 0 such that § = %— % —e€.

Letting A be as in Lemma 4.3.1, by Lemma 4.3.1 and Lemma 4.3.2 (i) (with o =0, p := 3,
q=1p,pi=00,8:= 3 +¢&, A:=0), we find ¢, ¢y > 0 such that

1A2 0]l Logay < cillellwrngy for all o € WHP(Q2) (4.4.8)
and

HA%e*tAgoH < CQt_%_%_EHQOHLP(Q) for all ¢ > 0 and ¢ € LP(Q). (4.4.9)

L>=(Q)

For p € {1,2}, we may again employ Lemma 4.3.2 (i) (with o :=0, p == g, ¢ == q, p := o0,
5:=2(1-0), A= 0, noting that 2(1 — #) > 2) in order to obtain c5 > 0 with

[A4#e™ || g < et gl ey forallt>0and p € LU(Q).  (4.4.10)

Henceforth fixing 0 < ¢; < to < T and assuming (4.4.1), we then obtain by the variation-of-
constants formula

[o(:,t2) = v(s )]l L ()

t2 tl
< He*tzAvO - e*tlAvoHLx(Q) + H/ ef(trs)Ag(', s)ds — / ef(tlfs)Ag(y s)ds
0 0

L (Q)
= He_tQAUO - e_tlAUOHLOC(Q)
t t
+/ ’ e*(tzfs)Ag(,vs)H d5_|_/ ' [e*(tzfs)A _ e*(hfs)A} g(.,s)H ds
t1 Lo () 0 Lo ()

= 11 +12—|—13
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4. On the optimality of upper estimates near blow-up in quasilinear Keller-Segel systems

Firstly, due to the fundamental theorem of calculus, since Aze~ 4 = e~*4 A2 on D(A) for
all t > 0, and because of (4.4.9), (4.4.8), the definition of 8 and (4.1.6), we have therein

to
Ae %4y ds
t1

</

h-|

L>(Q)

A%G_SAA%’U()H ds
Lo (Q)

po—pP
crcz|vollwieo Meyeo|Q 7o
< fp()(tz —11)" < %(b —1,)?,

secondly, (4.4.10), the fundamental theorem of calculus and (4.1.7) imply

sz/

and thirdly, from (4.4.10), the fundamental theorem of calculus, (4.1.7) and the fact that

ty > t1, we infer
t1 pta
A
t1

MCg

to
<w§cg/<m—wﬁ”wmn@mﬂmds§ (ty — 1,)?

Lo () t

e*(tH)Ag(-,S)H

Ae—(0=9)4g(. H do d
e g(-,s) L) ods

<c / [ o= 2t Sl o
/ to — 8) — (¢t — 5)971] ds
Me
= Ty —t)! =)+ 0] < —=_(ts — ty)".
9(1—9)[(2 V' =t 1] < Gy (2 =)
Together, this implies (4.4.7). O

We now combine the estimates gathered above to prove Theorem 4.1.2.

Lemma 4.4.6. Let M >0, q € (1,n], 8 > ”([;lq and py > max{%, 1}. There exists C > 0
such that whenever T € (0,00] and v, g,v satisfy (4.4.1), then (4.1.8) holds.

Proor. For q € (1, %] and q € (§,n], we assume without loss of generality 5 € [1,n) and
B € (0,1), respectively. Moreover, the assumptions on the parameters allow us to choose

pE (max{%7 1},min{%,po}) and

e (1—5,min{2‘z_rﬁw}). (4.4.11)

Po

Noting that p > max{7, 1} and hence

B-p—(n-1) 1-p
-1 p-l

62



4.4. Pointwise estimates for Vv: the parabolic case

hold, that x > 1— 3 implies 3 —2+x > —1 and that the main assumption, 8 > %, asserts

fa—(n—1) _—(a-1)

e —1’
q-—1 q—1
we can find p € (1, min{p, q}) such that still
M= -24+rp>-1, (4.4.12)
(-1
PP (el Gl ) S R (4.4.13)
p—p
(-1
BV e el )/ Y (4.4.14)
q-—p
Letting now A be as in Lemma 4.3.1 with G = (0,R) and setting v, = —% — %,
Lemma 4.3.3 and Lemma 4.3.2 (i) allow us to fix ¢1, ¢y > 0 and 7 > 0 such that
18re™" A0l Lo (0,R)) < cre”Tllpr Lo ((0,m)) for all p € WH((0,R))  (4.4.15)
and
10re ™"l Lo (0,R)) < 2T e Tl Lo0,ry  for all € LP((0, R)), (4.4.16)

and 7 > 0. (We note that % > % because of p > 1 so that Lemma 4.3.2 is indeed
applicable.) Since p > 1, we have 77 > —1 and hence

t o)
c3 = sup / (t —s)Me d1lt=s) 5 = / sMe %1% ds < oo. (4.4.17)
te(0,00) J0 0

Moreover, by Lemma 4.4.1, Lemma 4.4.2 and Lemma 4.4.3, there are ¢4, c5 > 0 such that
IVo(-,t)|lLry < ca and |0z, t)| < cslz|” forallz € Qand t € [0,7), (4.4.18)

whenever (4.4.1) is fulfilled and where © is given by (4.4.5).

If q € (§,n], due to 2‘%" +§ > 2%;” + 54 = %, we may also choose € € (0,2) and

0 € (0, 2‘3&") sufficiently small and large, respectively, such that
g 3
=0+=— = — —1.
V2 + 5 3 g >
Since q € (%,n] implies 8 € (0,1), an application of Lemma 4.3.2 (ii) then yields ¢ > 0

and dy > 0 such that for p € {0,1},

. Byl c sy
18, Ate™ 40| oo (0,m)) < €672 HTE 52Tl s po. ) (4.4.19)

for all ¢ € W*°((0,R)) and all 7 > 0. Furthermore, again only in the case q € (%,n],
Lemma 4.4.5 allows us to fix ¢; > 0 such that

[v(0,t2) — v(0,t1)| < erlta — t1]°  for all t1,t5 € (0,7) (4.4.20)
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4. On the optimality of upper estimates near blow-up in quasilinear Keller-Segel systems

and (provided q € (§,n]) we set

o0
cg = / se 2% ds + sup t12Te % < oo (4.4.21)
0 t€(0,00)

As a last preparation, regardless of the sign of q — &, we fix an arbitrary ¢ as in (4.4.3).
Hence there are cg, c19,c11 > 0 with

r
o <{(r) <ecor, |¢(r)] <cio and ||Cﬁ|\ca([0’R]) < e forall r € (0,R) (4.4.22)

and, by Lemma 4.4.4, there is moreover ¢15 > 0 such that (4.4.4) holds (with C replaced by
c12), where by, ba, bs are also given by Lemma 4.4.4.

We now suppose (4.4.1). Noting that g > %, we may infer from Lemma 4.4.4 that z == (A%

is a classical solution of (4.4.6). By the variation-of-constants formula, we may therefore
write

20 (- )| e (0, m)) < 110" 2(-, 0| Lo ((0,R))

t
+/ [0re™ = Ab15(-, 8) + bavr (-, 8) + b3g (-, )]l L= (0, 1)) A5
0

t
: n —(t—s)A
+ {Slgn (q’ §>]+/0 [0re™ AP0 (0, 5) = (0,1 s

= 11 (t) + Ix(t) + I3(t) for t € (0,T).

Next, we estimate the terms I;—I5 therein. Starting with the first one, we apply (4.4.15),
(4.4.22), (4.4.18) (4.1.6) and (4.4.11) to obtain

Li(t) < ere” M |(¢PB(-,0))rll Lo (0,R))
< e1 (1¢Pvor |l o= ((0,)) + BIC° 1 G(-, 0) || o< ((0,R)) )
<c (CQHTﬁUOTHLOO((O,R)) + CSC‘B_HClOﬂHT671+H||L°°((0,R)))
<c (CgM + C5cgﬁ71‘cloﬁRﬂ+K_l) for t € (O,T) (4423)
By (4.4.16), we moreover have
t
I(t) < ¢ / (t =)™ byd(-, 8) + bovy (-, 8) + bag(-,8) | Loqomy ds (4.4.24)
0
for t € (0,T"). Therein are

16155 )10 (0, 1Y)

R R R)\1+1
<, / rO=2P(G)P (r, 5) dr < ek, / P dr = ey < o0, (4.4.25)
0 0 1+
||b2Ur('a3)||Z£p((o,R))
R P —D)p—(n—1)]p
<dy [ unlnol) T
0
& V(- 9|7, R 5 Aol 2
< 12IVo(, )l7s ) / 2 gy < iy (R ) . (4.4.26)
Wn—1 0 Wn—1 \ Az +1
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4.4. Pointwise estimates for Vv: the parabolic case

and

||b3g('75)||]£p((0,R))

[Ba—(n—1)]p

R p
< 011)2/0 (r"_lgq(r, s))E ra  dr
a=p

&gt ). R T Mr, (RN
el ISRl ) [rear) < M (R ) < o0 (1.4.27)
Wn—1 o /\3—1—1

for all s € (0,7) by (4.4.4), (4.4.18), (4.1.7) and (4.4.12)—(4.4.14). Combining (4.4.24) with
(4.4.17) and (4.4.25)—(4.4.27) then yields

RMALN ¥ ¢4 Rrat1\ T M (Rt
I (1) < eqese s | — | + + e+ 1
2(t) < cacscin 5<)\1+1> o ()\2+1> m(&;—%l)

(4.4.28)
for all t € (0, 7).

Moreover, as [sign(q — 5)]+ = 0 for g < &, for estimating I3 we may assume q > % (and
hence make use of (4.4.19)-(4.4.21)). Using linearity of e™ for 7 > 0, integrating by parts
and applying (4.4.20), (4.4.19) and (4.4.21), we then obtain

t
I;(t) = /o dpe~ (=4 (¢P0,0(0,5)) ds

Le>=((0,R))

t
= / ds[v(0, 5) — v(0,1)]0e~F=94¢F ds
0
t

L= ((0,R))
< / (0, 5) — (0, ]9, Dye— =48 ds
0 L>((0,R))
s=t
n ‘ [[v(o, 5) — (0, t)]are*@*s)f‘gﬁ}
s=0llLe<((0,R))

¢
< 07/0 (t—s)? H@rAe_(t_s)ACBH ds + c7t? H@Te_tACBHLOO((OﬁR))

L=((0,R))
t
< cgCr </ s0+5—3—egm02s g5 +t6+§é5e52t> ||CB||CB([07R])
0
< cgeresert for all t € (0,T). (4.4.29)

Combining (4.4.23), (4.4.28) and (4.4.29) shows that ||z 1 (0,r)x(0,1)) < c13 for some
c13 > 0 only depending on 2, M, q, 8 and pg. Thus, due to the definitions of ¢ and z,
(4.4.18), (4.4.22) and (4.4.11),

v, (r,8)| = [0 (r, 1)]
=1¢P(r)z(r,t) = BC P (r) G (r)2(r, 1)
< Pz (r )] + BCTH )G (r)|[B(r, )]
< fe13r™P 4 eseqerofriTE

< (cgclg + 05090106}2/”“*1) rP holds for all (r,¢) € (0, R) x (0,7,

so that we finally arrive at (4.1.8). O
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4. On the optimality of upper estimates near blow-up in quasilinear Keller-Segel systems

4.5. Proofs of the main theorems

Finally, let us prove Proposition 4.1.1, Theorem 4.1.2 and Theorem 4.1.4.

PROOF OF PROPOSITION 4.1.1 AND THEOREM 4.1.2. The corresponding statements have
been shown in Lemma 4.2.2 and Lemma 4.4.6. O

PrROOF OF THEOREM 4.1.4. For p = 1, this has already been shown in Theorem 3.1.3.
Moreover, in the case of p > 1, we set q = £ as well as g(z,t) = f(u(z,t),v(z,t)) for z € Q

n—q

n(ns—p) _ 3 —q —
and t € (0,7T) and, for « >~[(m—q)n+[p][p = m72+%, we Choosia g >4 = %pfp as well as
6 > n such that o > m and m—gqe (§ -2 5+ @], Since we may without
loss generality assume 8 < 3, the statement follows immediately from Theorem 4.1.2 and
Theorem 3.1.1. O
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Part II.

Global existence in fully
cross-diffusive systems
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5. Global solutions near homogeneous
steady states in a multi-dimensional
population model with both
predator- and prey-taxis

5.1. Introduction

In the second part of this thesis, we move away from solutions blowing up in finite time
and instead aim to construct global-in-time solutions despite the challenges indicated by
finite-time blow-up results such as the one proven in Chapter 2. In particular, we concern
ourselves with global solvability of (variants of) the fully cross-diffusive system
ug = D1Au+ V- (S1(u,v) Vo) + f(u,v), (5.1.1)
ve = DaAv + V- (S2(u, v)Vu) + g(u,v), o

which describes migration-influenced interaction between predators and prey whose densities
are denoted by u and v, respectively.

Apart from growth, death or intra-species competition, the functions f and g model preda-
tion: Encounters are beneficial for the predators and harmful to the prey. Moreover, the
species are not only assumed to move around randomly (terms DjAu and DyAv), but also
to be able to direct their movement toward (attractive taxis, negative S;) or away from
(repulsive taxis, positive S;) higher concentration of the other species.

The relevance of attractive prey-taxis (‘predators move towards their prey’, negative S7) has
first been biologically verified in [44]. It has been observed that such an effect may actually
reduce effective biocontrol, contradicting intuitive assumptions [54]. Moreover, the presence
of (sufficiently strong) prey-taxis may actually lead to a lack of pattern formation [55].

Among systems of the form (5.1.1), those with only attractive prey- but no predator-taxis
(81 < 0 and Sy = 0), have been studied most extensively—perhaps because they resemble
attractive chemotaxis systems from a mathematical point of view, which in turn have been
studied in comparatively great detail; see for instance the survey [4].

For Si(u,v) = —xu and several f,g, namely, the existence of globally bounded classical
solutions to (5.1.1) has been proved in [111], provided x > 0 is sufficiently small. In two
space dimensions, the smallness condition on x is, again for various choices of f and g, not
necessary [40, 114], while in the three-dimensional setting, one may overcome this restriction
by either assuming the prey-taxis to be saturated at larger predator quantities [30, 82] or
by considering weak solutions instead [99].
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

Moreover, a repulsive predator-taxis mechanism (‘prey moves away from their predators,
positive S3) has, for instance, been detected for crayfish seeking shelter [27, 35, 54].

While less extensively studied than those with prey-taxis, such systems have been mathe-
matically examined as well: Now without any smallness assumptions on x, globally bounded
classical solutions to (5.1.1) have been constructed for S; = 0, S2(u,v) = xv and certain
f,g in [112]. The same article also considered pattern formation and shows that a strong
taxis mechanism (large x) leads to the absence of stable nonconstant steady states.

Combining both these effects (S < 0, Sz > 0) leads to the study of so-called pursuit—
evasion models which have been proposed in [89] (see also [28, 90] for the modeling of
related systems featuring different taxis mechanisms). There, propagating waves differing
from those in taxis-free predator—prey systems have been detected numerically.

Main results. In the present chapter, we handle a system including both predator- and
prey-taxis and take the prototypical choices Si(u,v) = —x1u, Sa(u,v) = xav, f(u,v) =
u(A — pru + aqv) and g(u,v) = v(Ay — pov — aqu) for u,v > 0 in (5.1.1). That is, we
consider

uy = D1Au — x1V - (uVv) + u(A — pru + aqv)  in Q x (0, 00),
vy = DaAv 4 x2V - (vVu) + v(Ag — pov — agu)  in © x (0, 00),
Ou=0,v=0 on 990 x (0, 00),
u(+,0) = ug,v(-,0) = vg in Q

(5.P)

in smooth, bounded domains ) for Dy, Da, x1, x2 > 0 and A1, Ao, pi1, 2, a1, as > 0.

From a mathematical point of view, such systems are much more challenging than those
containing a taxis term in ‘only’ one equation, which are in turn already highly nontrivial.
For instance, if x2 = 0 then the L>°-L! bound for the first equation obtained by integrating
a suitable linear combination of the first two equations in (5.P) can be used to obtain certain
a priori estimates even for the gradient of the second equation by straightforward semigroup
arguments. However, for (5.P), bounds for one of the first two equations therein generally
do not ‘automatically’ imply bounds for the other one. As another example, suppose that
one could derive L estimates for both solution components (ignoring for a moment the
fact that these are definitely not easy to obtain): How does one then proceed to obtain, say,
Holder bounds? At least, classical results for scalar parabolic equations are not applicable.

We also remark that, apart from (5.P), several other fully cross-diffusive systems have been
examined, of which the one proposed by Shigesada, Kawasaki and Teramoto to model spatial
segregation [78] probably has gained the most attention among mathematicians (at least if
one limits the systems of interest to those where the diffusion matrix does not give raise
to a monotone operator). Indeed, there is some quite general global solution theory for
such cross-diffusive systems available, both for weak [41] and renormalized [9, 16] solutions.
Unfortunately, however, the results obtained there are not applicable to the system (5.P)
(with x1,x2 > 0), the main reason being that although (5.P) allows for an entropy-like
inequality (cf. the introduction of Chapter 6 and especially (6.1.6)), stronger versions thereof
would be needed.

Instead, constructing weak solutions for variants of (5.P) with nonlinear diffusion and sat-
urated sensitivity via alternative methods will be the topic of Chapter 6, where we extend
on results in the spatially one-dimensional setting derived in [85, 86]. Apart from these
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5.1. Introduction

findings, however, no global existence results regarding (5.P) appear to be available, which
in turn further indicates the difficulty of that problem.

In order to overcome the obstacles outlined above, we thus need to substantially make use of
the special structure in (5.P). To that end, we carefully design certain functionals in such a
way that, in calculating their derivatives, favourable cancellations occur. We will introduce
them in a moment, but before we would like to state the main result of the present chapter.
Making a first step towards extending the knowledge about such systems also in the higher
dimensional setting, we analyze the stability of homogeneous steady states for (5.1.1) and
obtain

Theorem 5.1.1. Suppose Q C R"™, n € {1,2,3}, is a smooth, bounded domain, and let

D17D27X17X2 >0 and mi,ma 20 (512)
Suppose either
)\1:>\2:/L1:M2:a1:a210 (5H1)
or
)\1,)\2 >0 and ai,ag, f1, o > 0. (5H2)

Then there exist € > 0 and Ky, Ko > 0 with the following properties: For any

0 < ug,vo € WR(Q)  with [,uo =my and [, vo = ma if (5.H1) holds, (5.1.3)

where
W) = {p € W>2(Q): 0,90 = 0 in the sense of traces}, (5.1.4)

and fulfilling

luo — usllw22(0) + [vo — villw22() <e, (5.1.5)

where

(%, %) : if (5.H1) holds,

(tty, v,) = (ﬁiggigfg;, jjg;;jig;) . if (5.H2) holds and Aapy > Aas, (5.1.6)

(%70) : if (5.H2) holds and Mgy < Ayas,

there exist a unique pair

(u,0) € (€°(10,00): WEP(@) N C=(@ x (0,00)))

solving (5.P) classically. Moreover, each solution component is nonnegative and (u,v) con-
verges to (u,vy) in the sense that

u(-t) = usllwzz2) + [[v( 1) — vellw22(q)

(= + Kat)~', if (5.H2) holds and Aoy = Aag,
< (5.1.7)
Kqee K2t else

for allt > 0.
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

Remark 5.1.2. Let us give some heuristic arguments why we believe that the rates in (5.1.7)
are, up to the values of K7 and K5 therein, optimal.

For the heat equation, convergence is exponentially fast (take for instance an eigenfunction as
initial datum) and adding taxis terms (but no terms of zeroth order) should not dramatically
speed up the convergence. Moreover, in the around (uy, vy ) linearized ODE system, (uy, v4)
is a stable fixed point, provided (5.H2) with Aop; # Ajas holds. Hence, also here, ‘only’ an
exponential convergence rate can be expected.

The case (5.H2) with Aap; = Ajaq is different. As u converges to %, one might expect that
v behaves similarly as the solution ¥ to

A
7 =0 <A2 — p20 — ag - 1> = —pu2(9)?,
M1

which is given by

1
o) = ————\ >0
Foy + ot

Main ideas. After obtaining local-in-time solutions by Amann’s theory in Lemma 5.2.1,
we will focus our analysis on estimates holding in 2 x [0,T},) for n > 0 to be fixed later,
where T, € [0, 00] is the maximal time up to which [[u — u.|| Lo (q) + [|[v — il L) < .

In the case of (5.H1), that is, without any cell proliferation, one formally computes

1d

—— [ (u—uy)?+ Dl/ |Vul|? = Xl/ uVu - Vo in (0, Thax)-

The key idea is that one can rewrite the problematic term on the right-hand side as
X1 / uVu - Vv = x1 / (u —uy)Vu - Vo + X1U*/ Vu - Vv in (0, Tinax)
Q Q Q

and note that, as the signs for the taxis terms in (5.P) are opposite, two problematic terms
cancel out in calculating

d v u
a [ X2V« /(’U,—U*)2+ X1t /(U—U*)z +X2D1U*/ |VU|Q+X1DQU*/ |VU\2

= X1X2Ux / (u — uy)Vu - Vo — x1X2Ux / (v —v,)Vu- Vo in (0, Tinax)-
Q Q

If n > 0 is chosen small enough, the remaining terms on the right-hand side can be absorbed
by the dissipative terms—at least in (0,T;)).

Fortunately, for higher order terms, one can proceed similarly and thus see that the sum of
(norms equivalent to) the W22()) norms of both solution components is decreasing, which
implies T}, = Tiax, provided n > 0 is small enough and assuming 7}, > 0, which can be
achieved by choosing € > 0 in Theorem 5.1.1 sufficiently small. Due to the blow-up criterion
in Lemma 5.2.1, one then also sees that Ty,.x = co. Convergence to the mean (g, 7g) as
well as the convergence rate are then merely corollaries of the estimates already gained.
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5.1. Introduction

For (5.H2), however, this idea alone is insufficient. For instance, if u, > 0 and v, > 0,
arguing similarly as above, for any Ay, A > 0 there is > 0 such that

i(‘?/ﬁ(u—u*)%é?/g(v—v*)?)

A A A.D AsD
+ 1u1/(u—u*)2—|— 2“2/(u_v*)2+¥/ \vu|2+ﬂ/ IVol[?
2 Ja 2 Ja 2 Ja 2 Ja

< (Arar1us — Asasvy) / (u—u) (v —vy) + (Arx1us — AQXQU*)/ Vu - Vo (5.1.8)
Q Q

in (0,T,), see Lemma 5.3.2 and (the proof of) Lemma 5.4.3.

For the special case that (a1,a2) = v(x1,x2) for some v > 0, taking A; = xov, and
As = xiu, already implies that the right-hand side in (5.1.8) is zero. Alternatively, if
D, and D- are sufficiently large compared to a1, as, X1, X2, ux and v, the dissipative terms
in (5.1.8) can be used to absorb the terms on the right-hand side. In both these special cases,
higher order terms can be handled similarly again so that we can conclude as above.

For arbitrary parameter values, such shortcuts are apparently unavailable and hence we
need to argue differently. Actually, this is the reason for considering (5.P) with so many
parameters: We want to emphasize that our approach does not rely on certain relationships
between them.

Quite miraculously, appropriately choosing positive linear combinations of the six function-
als

d 2 d 2 d 2

= - ~ [ v = [a

dt Q(u u*) ’ dt o | u| ) dt o ‘ U| I

d o d 2 d 2

— - — \Y% d — A 5.1.9
dt Q(U U*) ) dt o | Ul an dt o ‘ U| ( )

still allows for a cancellation of all problematic terms, see Lemma 5.4.3.

The remaining case, (5.H2) with Aop1 < Ajag, is handled in Subsection 5.4.2. In a desire
to keep the introduction of this chapter at reasonable length, we just note here that the
proofs also rely on the functionals in (5.1.9), albeit in a somewhat different fashion as in the
first case, and refer for a more detailed discussion to (the beginning of) Subsection 5.4.2.
Moreover, the in some sense degenerate case (5.H2) with Aoy = Ajas deserves additional
special treatment. We introduce a new functional in Lemma 5.4.6 and discuss directly
beforehand why that seems to be necessary.

As a last step, in Lemma 5.5.1, we bring all these estimates together and prove global
existence as well as convergence to (u4, vs). Moreover, we discuss possible generalizations
of Theorem 5.1.1 in Section 5.6.

Finally, we collect certain Gagliardo—Nirenberg-type inequalities used throughout the pre-
sent chapter in Section 5.7. They may potentially be of independent interest and differentiate
themselves from more often seen inequalities in two ways: Firstly, although we assume 2
to be bounded, we get rid of the additional additive term on the right-hand side. Sec-
ondly, instead of | D?¢||1s(q) and || D3| e, our versions only contain [|A¢l|rso) and
[VA@]|Lr(q) (for certain values of p € (1,00)).
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

5.2. Preliminaries

Local existence. For systems with a taxis term in just one equation, for instance, for
(5.P) with either x; = 0 or x2 = 0, it suffices to make use of parabolic regularity theory for
scalar equations (see for instance [37] and [51], which rely on the concept of mild solutions as
well as Banach’s fixed point theorem and on Schauder’s fixed point theorem, respectively).
Apparently, for fully cross-diffusive systems such as (5.P) this is no longer fruitful—at least if
we want to consider both arbitrary nonnegative parameters and large initial data. Therefore,
we resort to the abstract existence theory by Amann instead.

Lemma 5.2.1. Suppose that @ C R", n € N, is a smooth, bounded domain, and let
D1,Ds,x1,x2 > 0 as well as Ay, Ag, p1, o, a1,a2 > 0. Moreover, let p > n and ug,vg €
WP() be nonnegative.

Then there exist Tyax € (0,00] and uniquely determined nonnegative
u,v € CO([0, Tinax); WHP(€2)) N C®(Q x (0, Tinax)) (5.2.1)

such that (u,v) is a classical solution of (5.P) and, if Tyax < 00, then

lim sup ([|u(-, t)||ca(q) + [v(- t)]lca(n)) = o0 for all a € (0,1). (5.2.2)
Moreover, this solution further satisfies
u,v € CO([0, Tmax); WH2(9Q)), (5.2.3)

provided ug, vy satisfy (5.1.3).
ProoFr. We will construct a solution U to

U=V -(AU)VU)+ FU) inQx (0,Tmax),
v-A(U)VU =0 on 99 x (0, Tynax)s (5.2.4)
U(-,0) = U in Q,

where

AlY) = Di —xau F(Y) = (A1 — pau + a1v) and U= [ "°
v) xev Do )’ v) '’ v(Ag — Hov — agu) 0 o
for u,v € R. Here and below, V(u,v)T == (Vu, Vo), v-(a,b)T == (v-a,v-b)T ete. for, say,
u,v € CY(Q) and a,b € R™.

If u,v > 0, then tr A((u,v)T) = Dy + Dy > 0 and det A((u,v)T) = D1 Dy + x1x2uv > 0,
hence by continuity of the trace and the determinant, we may fix an (open) neighborhood
Dy of [0,00)? in R? such that the real parts of all eigenvalues of A((u,v)?) are still positive
for all (u,v) € Dy. Thus, defining the operators A, B by A(n)U = V - (A(n)VU) and
B(n) = v-A(n)VU for n € Dy and U € (W?P(Q))?, we see that (A(n), B(n)) are of separated
divergence form and hence normally elliptic for all n in Dy (cf. [3, Example 4.3(e)]).

Therefore, we may apply [3, Theorem 14.4, Theorem 14.6 ind Corollary 14.7] to obtain
Tmax > 0 and a unique U € CO([0, Tynax); (WHP(2))2) N (C(Q % (0, Tiax)))? solving (5.2.4)
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5.2. Preliminaries

classically. Moreover, since both components of U are nonnegative by the maximum principle
(for scalar equations), [3, Theorem 15.3] asserts that in the case of Ti,ax < 0o we have

limsup [|U (-, £)[] g @my)z = 00 for all @ € (0,1).
t

max

Thus, (u,v) = U7 satisfies the first, second and fourth equations in (5.P), if Tihax < 00, then
(5.2.2) holds and, moreover, D19,u = x1ud,v and D20,v = —x2vd,u on 9 X (0, Tynax). As
u and v are nonnegative, d,u = ig—llu&,v = —%uv&,u on 90 x (0, Tipax) implies d,u =0
on 90 x (0, Tinax)- Analogously, we also obtain d,v = 0 on 92 X (0, Tiyax), hence (u,v) is
the unique solution of regularity (5.2.1) to (5.P) in Q x [0, Tiax)-

Since [3, Theorem 4.1] further asserts that, for all ¢ € (0, Tmax), the operator A(U(t)) in
(L2())? with D(A(U(t))) = (Wx*(2))? generates an analytical semigroup on (L*())?, we
may employ [3, Theorem 10.1] to obtain (5.2.3) for ug, vy € Wa>(5). O

Fixing parameters. In what follows, we fix Q C R", n € {1,2,3}, parameters as in
(5.1.2) and (5.H1) or (5.H2), and define (u4,v,) as in (5.1.6). Moreover, we henceforth set

D= \ﬁll Jo @ for ¢ € L*().

As we will see later in the proofs of Lemma 5.4.1 and Lemma 5.4.4, W2?2(Q) continuity of
both solution components up to ¢t = 0 will turn out to be crucial. By Lemma 5.2.1, this
can be achieved if one supposes that ug, vy satisfy (5.1.3). Given such initial data, we will
denote the solution to (5.P) constructed in Lemma 5.2.1 by (u(-, -;ug,vo), v(-, -; ug, vo)) and
its maximal existence time by Tiax(uo,vo). After fixing (ug,vo), we will often for the sake
of brevity write (u,v) and Tyax, respectively, instead. We also note that all constants below
(for instance the ¢;, i € N, in several proofs) depend only on the parameters fixed above,
not on ug and vyg.

The functions f and g. Furthermore, we abbreviate
flu,v) =u(A — pru+arv) and  g(u,v) = v(Aa — pov — agu) for u,v > 0.

We note that f(us,ve) =0 = g(usvy) and

(fu(u,v) fo(u, v)) _ (/\1 —2umu+ arv aru ) for u,v > 0,

gu(ua U) v (U7 U) —a2v Ao — 20U — asu

that is,

<O 0) ) if (5.H1) holds,

Su (s, vy) fv(u*7v*)> —[1Usx AU .
= , if (5.H2) holds and Aap1 > Aiag,
<gu(u*7v*) gv(u*,v*) —a2Vx — U2V« ( ) 2 e

5\
< 0 alu@z) , if (5.H2) holds and Azp1 < Maa.
,_ Mo

M1
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

Thus,
fulus,vi) <0 as well as gy (us, v4) <0 (5.2.5)
and

if (5.H2) holds and Agp1 # Ajag, then fy(uy, ve) < 0 as well as g, (ux, v4) < 0. (5.2.6)

5.3. Estimates within [0,7))

For ug, vg satisfying (5.1.3) and n > 0, we set

E(t;up,v0) = |lu(-, t;u0,v0) — || Lo () + [0(+, 5 20, v0) — il o= ()
and
Ty (uo, vo) = sup { t € (0, Tax (o, v0)) : E(t;uo,v0) < n forall t € (0,t) } (5.3.1)
(with the convention sup () := —o0). When confusion seems unlikely, we abbreviate T, :=
Tn(uo, ’Uo).

We now derive several estimates within (0,7;,). Obviously, if (0,7;) = 0, the statements
below are trivially true. Thus upon reading the proofs, the reader might as well always
assume that (0,T;) is not empty. The only exception is Lemma 5.5.1, where we finally
choose € > 0 in (5.1.5) sufficiently small and guarantee positivity of T}, for certain n > 0.

We note that T,,, < T, for n; < 1. Moreover,
[u =l Lo (0) < |lu— il Lo (@) + [T — us|| L= (a)

1
= |lu = uu| Lo () + 9] ‘/ (u—uy)| <27 in (0,7},) (5.3.2)
Q

and likewise
[v = Loy < 27 in (0,75,) (5.3.3)

for all n > 0, where (u, v, Timax) = (u(uog, vo), v(uo, Vo), Tmax (o, Vo)) for any ug, vy complying
with (5.1.3).

In the remainder of this section, we derive estimates in (0, 7},) for positive linear combinations
of

d
dt Jo

d

el _ 2
dt gl(v U*) ’

(u —uy)® and

d 2 d 2
— — 3 11 3
T /Q |[Vul?  and a /., [Vl as well as

d d
— [ |Auf? — | |Av)% 3.4
dt/ﬁ\ 2 and dt/Q| . (5.3.4)

We begin by treating the first pair in
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Lemma 5.3.1. There is ng > 0 such that if ug,vy comply with (5.1.3) and (u,v) =
(u(ug,vo),v(ug,vg)) denotes the corresponding solution, then

d D
%& Q(u_ )2 + 3 1/|V I + (= fulus, v.) = nlay -s—m))/g(u_u*)Q

galu*/(u—u*)(v—v*)—i—xlu*/ Vu - Vo + 2 / |Vo? (5.3.5)
Q Q
and

1d 3D

L8002+ 222 [ 190 4 (—gu (e vs) — nlas + 1)) / (0 v,)?

2dt Jq 4 Jq Q

< —agv*/(u—u*)(v—v*)—xgu*/ V- o+ 2 / e (5.3.6)
Q

hold in (0,T,) for all n € (0,10), where Ty, is given by (5.3.1).

PROOF. We let

1 D, D
Mo = 5 min { L2 } . (5.3.7)
2 X1 X2

Fixing wug, vy satisfying (5.1.3), by a direct calculation, we see that

1d
—— (ufu*)2+D1/ \Vu|2:X1/uVu~Vv+/f(u,v)(ufu*)
2dt Jq Q ) 0

holds in (0, Tiax)-

For any 1 > 0, we have therein by Young’s inequality
Xl/ uVu -V = Xlu*/ Vu-Vo+x1 / (u—uy)Vu - Vo
Q
§X1u*/ Vu - Vo + XL / |Vu|? + i / |Vo|? in (0,T5).
Q
Moreover, as f(u, vy) =0,
/fuv U — Uy) /fuv* u—u*)—i-al/ w(v — ve)(u — uy)
_ fu(u*’v*)/(u_u*)2 + M/(U—u*)?’
Q 2 Q
+a; / (u—uy)? (v — v,) + ayu, / (u—uy) (v — vy) in (0, Tinax)-
Q

Q

Since fyuu(us,vs) = —2u1, we may further estimate

M / (u—ue)® < / (u—u.)®  in (0,T;) for all >0
Q Q
and

a1 / (u—uy) (v — vy) < mag / (u — uy)? in (0,7;,) for all n > 0.
Q Q

Noting that (5.3.7) implies D; — 2% > 3Dy, we may combine these estimates to obtain
(5.3.5), while (5.3.6) follows from an analogous computation. O
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

For sufficiently small 1 and suitable linear combinations of (5.3.5) and (5.3.6), the terms
2 [ [Vol? and 2 [, [Vul? can be absorbed by the dissipative terms therein.

Lemma 5.3.2. For any Ay, As > 0, there is g > 0 such that whenever ug, vg satisfy (5.1.3),
then the corresponding solution (u,v) = (u(ug, vo), v(ug, vo)) satisfies

d A1 2 Ag 2 A1D1 2 AQDQ/ 2
dt<2/9(u u*)+2/ﬂ(v ve)? ) + 5 /Q|Vu|+ 5 Q|Vv|

AL (= fultin, 02) — 1@y + ) /Q (1 — w2)? + Ay (g (1, 02) — 1(az + ) /Q (0 v.)?

< (Arajuy — Asasuy) / (u—uy) (v —ve) + (A1 x1Ux — Agxgv*)/ Vu- Vo (5.3.8)
Q Q
n (0,Ty,) for all n < no, where T,, is as in (5.3.1).

PROOF. Lemma 5.3.1 allows us to choose 1; such that (5.3.5) and (5.3.6) hold in (0,75,).
We let moreover Aq, Ay > 0, fix 12 > 0 sufficiently small such that

Aamaxe <A1D1 and A1max1 <A2D2
2 - 4 2 - 4

and set 79 = min{ny, N2}

The statement then immediately follows upon multiplying (5.3.5) and (5.3.6) with A; and
A, respectively, and adding these inequalities together. O

Next, we handle the second pair in (5.3.4), this time only in a coupled version.

Lemma 5.3.3. Let B1,Bs > 0. There is n > 0 such that for any ug,vg complying
with (5.1.3) we have

d B, 2 B2/ 2 BlDl/ 2 BQDQ/ 2
S [P+ 22 [ v TP A+ 2222 [ A
G (5 [vap+ B2 [ o)+ 220 [ jaue o 222 [ a
< (Blalu*—Bgagv*)/Vu~Vv+(BlX1u*—nggv*)/ AuAv in (0,T5,),
Q Q

where again (u,v) = (u(uo, vo), v(ug,vo)) and T, = T, (ug,vo)) is given by (5.3.1).

PROOF. We begin by fixing some parameters: By the Gagliardo—Nirenberg inequality 5.7.3,
there is ¢; > 0 such that

/Q IVl <cillg — EH%W(Q) /Q |Ap|? for all ¢ € C*(Q) with 9,0 = 0 on 9. (5.3.9)

We choose 1 > 0 so small that

_ Bipa | Banxe | 2B1m?x}e1 N 2Boyn* X3¢
2 2 D, D,

BiCpain  ByCpasgn
2 + 2

Mi(n) :

+B10P7](2[L1 + al) +

and

_ Bipa | Banxe | 2Bin’xier | 2Bande
2 2 D, D,

BiCpayn | BCpaszn
> T2

Ma(n) :

+BQCP77(2M2 + ag) +
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5.3. Estimates within [0, T,)

where Cp is as in Lemma 5.7.1, fulfill

B1D, By Dy

Ml(’I?) < 1 and MQ(T]) < 1

(5.3.10)

Fixing ug, vp as in (5.1.3), we calculate

2dt/ |Vu|2+D1/ |Aul?

le/uAuAv—i—Xl/ Vu~VvAu+/ fu(u,v)|Vu|2+a1/uVu~Vv
Q Q Q Q

= 11+I2—|—13—|—I4 in (OaTmax)-

Therein is
I, = 1u*/ AulAv + x1 / (u — uy) Aulv

gxw*/mmﬁm/m 2+ ”X1/|Av|2 in (0,T;,).
Q
Furthermore, by (5.3.9), (5.3.2) and Young’s inequality,
D 2
I, < 71/ |Au|2+£/ V|2 V|2

D ,
< —
<2 [ 1aa [vupt+ A [

D 2 2 2 2
Sil/ Auf? 4 2! chl/|Au|2+7n G2 [ i (0.1;).
4 Jo D, Q D, Q

Vol

Moreover, due to (5.2.5), by the mean value theorem, as f,, = 211 and f,, = a1 and
because of the Poincaré inequality 5.7.1 (with Cp > 0 as in that lemma),

I < / (Fultt, 0) = fultin, 0,))|Vuf?
< /Q (1 fuwll oo ((0,00)2) [t = w4 [| fuw || Lo ((0,00)2) [0 = 04 ]) [V

<n(2m + al)CP/ [Aul’  in (0,Ty).
Q

Finally, by Young’s inequality and the Poincaré inequality 5.7.1 (again with Cp > 0 as in
that lemma),

I, = au, Vu Vv+a1/(u—u*)Vu Vv

<a1u*/Vu Vv +nale (/ |A |2 /|AU2> in (O,Tn).

79



5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

Along with an analogous computation for v, these estimates imply

d (B 9 DBo / 2)
Vul"+ — [ [Vv
dt < sz' T Q el
3B1D 3By D
(P52 - ann) [+ (P22 anm) [ Ao
Q Q

< (Biajuy — Bgagv*)/ Vu-Vu+ (Bix1us — nggv*)/ AulAv in (0,T5).
Q Q

The statement follows due to (5.3.10). O
At last, we deal with the third pair in (5.3.4).

Lemma 5.3.4. For any Ci,Cy > 0, there exists n > 0 such that with T, as defined in
(5.3.1), (u,v,T,) = (u(ug,vo),v uo,vo) T, (uo, vo)) satisfies

C 1D CiD
dt<1/|2+/|A|2) GO [ waup+ S22 [ o

< (Craru, — C’gagv*)/ AuAv + (Crx1us — C’gxgv*)/ VAu-VAv in (0,T,),
Q Q

provided ug, vo fulfill (5.1.3).

PrOOF. Fix C1,C5 > 0. Let us again begin by fixing some constants: By Lemma 5.7.4 and
Lemma 5.7.2, there is ¢; > 0 such that

2
6 max { ;;11 , 222 } /Q |V|®
<ale-— @Hioo(m /Q |V Ap|? for all € C*(Q) with 9, = 0 on 99 (5.3.11)
as well as
12max{l>§1 D, }/ |D?p|?
<cille = Pllre(a) /Q |V Ap|? for all ¢ € C?(Q) with 9, = 0 on 99 (5.3.12)
and Lemma 5.7.3 provides us with ¢ > 1 such that
/Q IVol* < el — Bl 7o (o /Q |Ag?  for all p € C%(Q) with 9,0 =0 on 9. (5.3.13)

We fix furthermore Cp as in Lemma 5.7.1 and choose 17 > 0 so small that

Cinx1 . Canxe

Mi(n) = =57 + =57 + (C1+ Co)ea (20 + 160")
C1CP0277(9G1 + 14/1,1) 502013@20277
+ +
2 2
and
C C
Ma(n) = XL L Z21X2 (04 4 Cy)ey (20 + 16077)

2 2
CQCPCQ'I](gaQ + 14,[12) 5010130,10277
+ 2 + 2

80



5.3. Estimates within [0, T,)

satisfy

ClDl

CQDl
1 .

Mi(n) < 1

and Ms(n) <

(5.3.14)

We also fix ug, vo complying with (5.1.3). Since d,u = 0 on JQx (0, Tinax) implies (0, u); = 0
on 9N x (0, Trax) and as |Ag| < y/n|D?p| for all ¢ € C%(2), we may calculate

A2
2dt/| |

= 7/ Vut~VAu+/ (Opu)tAu
Q o9

:—Dl/ |VAu|2+X1/ V(uAv—i—Vzer)'VAu—/V(f(u,v))~VAu
Q Q Q

IA

-D; / |V Au? - / V(f(u,v)) - VAu
Q Q

+><1/ uVAu - VAv + x1/(|D2u||W| + (1 4+ v/n)|D%v||Vu|) |V Au| (5.3.15)
Q Q

in (0, Tiax). Herein is by Young’s inequality,

X1 / uVAv - VAuy

Q

= XlU*/ VAv-VAu+ x1 / (u—uy)VAv - VAu

:Xlu*/VAvoVAqunXl/\VA 1 + nX1/|VAv\2 in (0,T).
Q

Again by Young’s inequality combined with /n < 2, (5.3.11), (5.3.12), (5.3.2) and (5.3.3),
we further estimate

u / (1Du][ Vo] + (1 + v/m) [ D] Va]) |V Au

1 2, 2Xl/ 2 2 4 18X% 212 2
< VAu D Vv D
< [ vau?+ 3L [ prupver+ 28 [ prva
D 4 2 12 6
< 1/|VA |2 Xl / |D2 ‘3 Xl / |v ‘6 X1/|D2 ‘3 X1/|v |6
< ( +2¢c1m + 16c1m )/ |VAu|? + (2¢1m + 16¢17* / |V A2 in (0,75).

4

(We note that we estimated y/n < 2 only to keep the expressions as simple as possible. After
possibly enlarging certain constants, the same estimates also hold in the higher dimensional
settings; that is, no restriction on the dimension is imposed here.)

Regarding the remaining term in (5.3.15), we first note that

aq 0

D2f(u,v):<_2’“ al) in (0, Tonae)
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

and that (5.2.5) implies

Sulu,v) = fu(u,vy) + a1(v — vy)
Ju(ts, Vi) + fuu (s, ve) (U — uy) + a1 (v — vy)
< =2pu1(u—uy) +ar(v—oy) in (0, Trax)-

—~~

Therefore, an integration by parts and applications of Young’s inequality as well as Poincaré’s
inequality 5.7.1 yield

—/QV(f(u,v))'VAu
:—/qu(u,v)Vu~VAu—/ﬂfU(u,v)Vv-VAu
Z/qu(u,v)MuF—&-/quu(u,v)|Vu|2Au+2/Qfm,(u,v)Vu-VvAu

+/va(u,v)AuAv+/wa(u,v)NvPAu
Sn(al+2,u1)/Q|Au\2+2,u1/Q\Vu\2\Au\+2a1/QVu-VUAu

+a1/ﬂ(u—u*)AuAv+a1u*/QAuAv

< Cpn(ay +2u1)/ |V Aul? +a1u*/ AuAv
Q Q

+W1/ IAU\2+&/ |Vul®
Q n Jo

vam [ 8P+ 35 [ vait+ 3 [ vl

Q 2n Jo 2n Jo
+M/ \Au\2+M/ Av[?
2 Ja 2 Ja
< —Cpn(5a1+6“1)/ ‘VAUF-I—LPC“”/ |VAv\2+a1u*/ Aulv
2 Q 2 Ja Q
2u1 + a1 4 a1 / 4 .
_— — T,).

+ o /Q\Vu\ + 2 ) V| in (0,7})

Herein we make use of (5.3.13), (5.3.2) and Poincaré’s inequality 5.7.1 to further conclude
[ vul < callu =l [ 80P < aCecar® [ (VAP (0.T,)
Q Q Q
and, likewise, now using (5.3.3) instead of (5.3.2),
/ |Vol* < 4Cp02772/ |V A in (0,75,).
Q Q
Thus, due to co > 1,
- [ V() vau
Q

C 9 14 5C
< pean( a21+ Ml)/WAulz_i_y/ |VAU\2+a1u*/AuAv
Q Q Q
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5.4. Deriving W22(Q) bounds for u and v

holds in (0,7},).

As usual, we now combine the estimates above with analogous computations for v to obtain

d C’l/ 9 Cg/ 2>
— = | |Au]"+ — Av
3 (5 fraue+ 2 [1a0
3C1D 3CyD
(252 - anw) [ 1vaue+ (2222 - anm) [ s

< (Craruy, — Caagvy) | Aulv + (Crxius — nggv*)/ VAu-VAv in (0,7},),
Q Q

which in virtue of (5.3.14) implies the statement. O

5.4. Deriving W%?(Q2) bounds for « and v

In this section, we will make use of the estimates gained in the previous section to eventually

obtain W22(Q) bounds for both solution components. That is, we aim to bound the quantity

lu — wi|lw2200) + [[v = villw22() by, say, 5 in (0,T,) (for a certain n > 0), as then T, =

Timax = o0 can be concluded—provided T3, > 0 which in turn can be achieved by requiring
||’LLO — U*HWQvQ(Q) + ||110 — 'U*HWQ‘Q(Q) to be sufficiently small.

In what follows, we will distinguish between multiple cases. More concretely, we will han-
dle

e (5.H1) in Lemma 5.4.2,
5.H2

(
(
. (5.H2
(
(

)
) with Aapiy > Ajag in Lemma 5.4.3,
) with Aapi1 < Ajag in Lemma 5.4.4 and Lemma 5.4.5

o (5.H2) with Agp1 = Ajag and A\; > 0 in Lemma 5.4.7 (ii) and Lemma 5.4.8 as well as

5.H2) with Ay = Ay = 0 in Lemma 5.4.9.

These five cases can be divided into two groups, the first of which we deal with in the
following subsection.

5.4.1. The cases (5.H1) and (5.H2) with \yuy > Ajay

If either (5.H1) holds with mq,mo > 0 or (5.H2) holds with Aap; > Ajag, then w, and v,
are positive—which is the reason these cases can be handled in a similar fashion. In both
cases, we aim to apply the following elementary lemma.

Lemma 5.4.1. For A,B,C >0 and ¢ € W?2(Q), set

A B C
sancle) =5 [+ [1VeP+ T [ 1Ak (5.4.1)
2 Q 2 Q 2 Q

and let Al,AQ,Bl,B2701,CQ >0, n > 0 and K5 > 0.
There is K1 > 0 such that, if uo,vo comply with (5.1.3), T,, is as in (5.3.1) and

y: [07T17) - R, tw ¢A17317C1 (u("t) - U’*) + ¢A2,Bz702 (U('?t) - U*) (542)
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

fulfills
y'(t) < —2K5(t) in (0,T),), (5.4.3)
then
l[u(-;t) = usllwz2) + [[o( 1) = vellw22(0)
< K1e7 %2 (Jlug — willwz(a) + [[vo — vellw22 () for allt € (0,T5,). (5.4.4)

PROOF. As W22(Q) continuity of 4 and v up to t = 0 is ensured by (5.2.3), we may make
use of an ODE comparison argument to obtain

y(t) < e 22y(0)  forallt € (0,T,).

The statement then follows by taking square roots on both sides and noting that ||¢|| =
V¢4 B,c(p) defines for A, B,C' > 0 a norm on W]%,’2(Q), which is equivalent to the usual
one by Lemma 5.7.2. O

For both cases covered in this subsection, we now choose Ay, Az, By, By, C1,Cy > 0 appro-
priately so that Lemma 5.4.1 is applicable.

Lemma 5.4.2. Suppose (5.H1). Then there are n > 0 and K1, Ky > 0 such that (5.4.4)
holds for all ug, vy satisfying (5.1.3).

PRrROOF. In the case of (5.H1) with m; = 0 or my = 0, that is, if at least one of the initial
data is trivial, the uniqueness statement in Lemma 5.2.1 asserts that one solution component
is constantly zero while the other solves the heat equation. As in that case the statement
becomes trivial, we may assume mj > 0 and mg > 0.

Then uy, v, > 0 and hence A; = By = Cp = xov, as well as Ay = By = (5 = x1u, are
positive as well. Because of

Arxius — Aaxavs =0,  Bixius — Baxove =0,  Cixius — Caxave =0
and (5.H1), Lemma 5.3.2, Lemma 5.3.3 and Lemma 5.3.4 assert that there is n > 0 such
that

d

a (¢A1’B1,C1 (u(’ t) - u*) + ¢A2;B2,CQ (’U(-, t) - U*))

D D
L4 1/|VAu|2+@/ IV Avl?
Q 2 Ja

2
< (Aixaus — A2X2v*)/ Vu-Vou+ (Brxius — BQXQU*)/ AuAv
Q Q
+(Crx1us — C2x204) / VAu-VAv
Q
=0 in (0,75,),

whenever ug, vg comply with (5.1.3), where ¢ and T, are as in (5.4.1) and (5.3.1), respectively.

As integrating the first two equations in (5.P) implies u, = Uy = w and v, = g = T in
(0, Trmax), we further obtain by Poincaré’s inequality 5.7.1 that (5.4.3) is fulfilled for some
K5 > 0, hence the statement follows from Lemma 5.4.1. O
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5.4. Deriving W22(Q) bounds for u and v

Somewhat surprisingly, also in the case (5.H2) with Aapq > Ajag, suitably choosing A;, As,
By, By, (1, C5 in Lemma 5.3.2, Lemma 5.3.3 and Lemma 5.3.4 allows for a cancellation of
all problematic terms.

Lemma 5.4.3. Suppose (5.H2) holds with Aap; > Ajas. Then we can find n > 0 and
K1, Ky > 0 with the property that (5.4.4) holds whenever ug, vy satisfy (5.1.3).

PRrROOF. Positivity of u, and v, implies that the constants

Ay = asvy, As = au,,

By = (a2 + x2)vx, Ba:= (a1 + x1)ux,

C1 = xovx and Co = x1Uy
are all positive, so that we may apply Lemma 5.3.2, Lemma 5.3.3 and Lemma 5.3.4 to obtain
11 > 0 such that

d
a (¢A1731,Cl (u(v t) - u*) + ¢A2,B2,C2 (U('v t) - ’U*))

C.D CyD
+4 1/|VAu|2+ﬂ/ IV Av|?
2 Ja 2 Ja

+A1 (= fu(us, vi) = n(ar + p1)) /Q(U —u,)? + Az (—go(us, vi) — n(az + p2)) /Q(U —v,)?

< (Araguy — Asaguy) /Q(u — Uy ) (U — V)

+[(A1x1 + Bia1)us — (Aaxa + Baas)vy] / Vu - Vv
Q
+[(B1X1 + C’lal)u* — (B2X2 + Czag)’(}*]/ AulAv
Q
+(Crx1us — C’gxgv*)/ VAu-VAv holds in (0,T;,) for all n < ny,
Q

provided ug, vy satisfy (5.1.3), where again ¢ and T, are defined in (5.4.1) and (5.3.1),
respectively.

—fu(Us,vs)  —gu(usx,vy)
2(a1+p1) 7 2(a2+p2)

Setting further 7o = Inin{ }, which is positive by (5.2.6), and noting

that
Aiaiuy, — Asasv, = 0,
(Aix1 + Biar)u. — (A2x2 + Baaz)v. =0,
(Bix1 + Crar)uy — (Baxa + Coaz)v, =0 as well as
Cix1ux — Cax2v, = 0,
we obtain

(5000 (1) — ) - b, 0, (00 1) )

dt
1D CyD
+2 1/|VAu|2+g/|VAv\2
2 9] 2 Q
,M/(ufu)sz/(va)z
2 O * 2 Q )

<0 in(0,T})
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

for n :== min{ny, n2}, provided ug, vy comply with (5.1.3).

In virtue of Poincaré’s inequality 5.7.1, this first asserts (5.4.3) for some K5 > 0 and then
also (5.4.4) for some K; > 0 by Lemma 5.4.1. O

5.4.2. The case (5.H2) with \yuy < A\ay

The condition (5.H2) with Aopq < Ajag implies v, = 0, hence for any choice of A, Ay, By,
By, Cq, Cy > 0 in Lemma 5.3.2, Lemma 5.3.3 and Lemma 5.3.4, unlike as in the previous
subsection, no cancellation of problematic terms can occur (except if also u, = 0, but then
we will rely on a different functional, see Lemma 5.4.9 below).

However, the disappearance of v, can also be used to our advantage. As the coefficients of
the problematic terms no longer depend on As, By and Cs, we can choose (one of) these
parameters comparatively large and thus obtain stronger dissipative terms. This idea first
manifests itself in the following

Lemma 5.4.4. Suppose (5.H2) holds with Aap; < A1as. There are n > 0 as well as K > 0
and Cy > 0 such that whenever ug, vy comply with (5.1.3) and T,, is as in (5.3.1),

/ |Au(-, t)[? +C2/ |Av(-, t)|]> < e K7 (/ | Aug|? +C2/ |Av0|2) for allt € (0,T),).
Q Q Q Q

PROOF. Set K = W >0, C; =1 and

~ 16max{CZa?, x7}(u. +1)?

Cy:
2 Dy D,

>0,

where Cp > 0 denotes the constant given by Lemma 5.7.1.

By Lemma 5.3.4, there is n > 0 with the property that
d
4 (/ Auf? + 02/ |Av2> + Dl/ VAU + 02D2/ VA
dt \ Jg Q Q Q
< 2a1u*/ AulAv + 2X1u*/ VAu-VAv in (0,T,),
Q Q

provided the (henceforth fixed) initial data ug,vg satisfy (5.1.3).

Therein are by Young’s inequality and Poincaré’s inequality 5.7.1, with Cp > 0 as in that

lemma,
2a1u /AuAv< &/ |Au|2+W/ |Av|?
1 Q - 4CP Q D1 9}
D CyD
<D |VAu\2+g/ VAP in (0, o)
Q 4 Q
and, again by Young’s inequality,
D 4 2,2
2X1u*/ VAu-VAv < Tl/ |VAu|2+%/ |V Av|?
Q Q 1 Ja

D CyD
< 71/ |VAu|2+ﬂ/ VAU in (0, Toas).
4 Jo 4 Jo
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Thus, the statement follows upon an integration over (0,7},) due to (5.2.3), the W?22(Q)
continuity of v and v up to t = 0. O

In the case (5.H2) with Aoy < Ajag, by a similar argument, we also obtain bounds for
Jo(u—u)? and [, v°.

Lemma 5.4.5. If (5.H2) holds with Aap1 < Aiasg, then there aren >0, K > 0 and Az > 0
such that

/(u —w)? Ag/ 02 < e Kt (/ (ug — uy)? + AQ/ v%) for allt € (0,T),).
Q Q Q Q

provided ug, vy satisfy (5.1.3) and T), is as in (5.3.1).

PROOF. Since Aap; < Arag, both fy(u, vi) and g, (uy, v ) are negative according to (5.2.6),
hence there is 77 > 0 such that

K = min {— fu (us, v) = m(a1 4+ p1), —go (s, vi) — mi(ag + p2)} > 0.

Set moreover A; =1 and

2 2
. ar _Xa 2
Ag.—max{ 2D, 2}u*>0.

Then Lemma 5.3.2 provides us with 5 € (0,7;) such that

([ wrten [ )

—|—D1/ |VU|2 + AQDQ/ ‘V’U|2
Q Q
—|—2K/(u— . )? +2A2K/ v?
Q Q
< 2ajuy / (u—u)v+2x1us | Vu-Vo in (0,7T5),
Q Q

whenever g, vp comply with (5.1.3).
Henceforth fixing such initial data, two applications of Young’s inequality give

2 ajui 2 Y 2
(u—uy ) + 7 vV <K [ (u—uy)*+AK [ v

2a1 U, / (u—u)v <K
Q Q Q Q

Q

and

2,,2
2X1u*/ Vu~Vv§D1/ |vu|2+M/ Vo2 ng/ |Vu|2+A2D2/ IVo?
Q Q Dy Jq Q Q

in (0, Thax), so that the statement follows by the comparison principle for ordinary differ-
ential equations. O

The case (5.H2) with Aopq = A\jag cannot be handled in a similar fashion as then g, (u, v4)
vanishes, resulting in the term Aa(—gy (ux, v4) —n(az + p2)) o v? in (5.3.8) having an unfa-
vorable sign. Similarly, if A\; = 0, then fy,(ux,v4) = 0 and A1 (—fu(us, vs) —n(as +p1)) < 0.
Thus, we introduce an additional functional to counter these terms.
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Lemma 5.4.6. Suppose that ug, vy comply with (5.1.3). If Ay =0, then

d

— [ u= —Ml/ u? + al/ uv in (0, Trax) (5.4.5)
dt Jo Q Q

and if (5.H2) holds with Aapi1 = A1az, then

d
— [ v= —ug/ v? — ay / (U — uy)v in (0, Tmax)- (5.4.6)
dt Jo Q Q

PROOF. The first statement immediately follows by integrating the first equation in (5.P).
Furthermore, the assumptions (5.H2) and Agpy1 = Ajag imply (us,vs) = (%,O) = (;\—3,0)
and hence

g(u,v) = v(Aa — pov — asu)
= v(Ag — p2v — agty) + az(u, — u)v

= —pgv? — as(u — uy)v in (0, Tinax)-
Thus, the second statement follows also due to integrating. O

With the help of this lemma, we can now handle the remaining case, namely (5.H2) with
Aopt1 = Arag. The proof is split into three lemmata; before dealing with the (in some sense)
fully degenerate case, in the following two lemmata, we first handle the half-degenerate case,
where at least u, > 0 and f,(u4,v4) > 0.

Lemma 5.4.7. Suppose (5.H2), Aap1 = Mag as well as Ay > 0 and, forn >0, let T, be as
in (5.3.1).

(i) There are n >0 and K1, K3 > 0 such that

. —1
lv(-t)|lzr ) < (K1 (lluo — uall 1) + llvollr)) ~ + th)

for allt € (0,T,), whenever ug, vy are such that (5.1.3) holds.
(i) We can find 7’ > 0 and K{, K} > 0 such that
1 -1
lo(-, t)[[w22) < (Ki (Jluo — usllw22() + lvollwzz20)) — + Két)
for allt € (0,T,) if up,vo comply with (5.1.3).

PROOF. Setting A; = 1, Xp = %% > 0, Ay = g?ﬁ > 0, by Lemma 5.3.2 and
Lemma 5.4.6, we find 79 > 0 such that

i (3 [ 3 [ )
— | = U — Uyp)” + — + X v
dt<2 Q( 5 0 % Jq

AD AyD
+2t 1/|Vu|2+—2 2/|W|2
Q 2 Q

2

+ (= A1 fu(tr, vi) — Ainlar + Ml))/

(u—ue)? + (Xopz — Asn(az + p2)) / v?
Q

Q

< (Ajaruys — X2a2)/

(u—us)v + A1 x1Us / Vu - Vo (5.4.7)
Q Q
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5.4. Deriving W22(Q) bounds for u and v

in (0,7},) for all n < 79, whenever ug, vy comply with (5.1.3).

o Arfu(us,vy) . Xopo R 4c1 2c¢o (&)
We set ¢ = 5 >0, co = =42 >0, c3 = min 54T 342 X2 > 0 as well as

. _1 C1 Co
= min < 1, 79, |2 é, , } >0
! { o, [ Ai(ar 4 p1) " As(az + p2)

and fix ug, vg satisfying (5.1.3).

As the term Ajajuy — Xsao vanishes due to the definitions of A; and X5, and Young’s
inequality as well as the definition of Ay imply

Alxlu*/VUong A1D1/|Vu|2+@/ \Vu|2 in (0, Tax),
Q Q 2 Ja

2

we may conclude from (5.4.7) that
d (A 9 Ag/ 9 /
— (2 —u, 22 X
dt<2/9(u u)+29 +29v
< - / (u—uy)? — 62/ v? holds in (0,7},).
Q Q

Since 7 < Q=% implies [,,(u — us)? < 1 as well as [, v? < 1in (0,7;) and due to Holder’s
inequality as well as the elementary inequality (a + b+ ¢)? < 3(a® + b% + ¢?) for a,b,c € R,
we further obtain

i(él/ﬂ(u—u*)z+é2/gv2+)(g/gv>
§fcl/ﬂ(u7u*)2*%2/gv2f%2/9v2
(o) 2 g ()
—c3 (él/ﬂ(u—u*)Q—FéQ/ﬂ 2+X2/Qv>2 in (0,T5,).

Because of n < 1 and since without loss of generality both [[ug — w4 () and |lvol ()
are smaller than 7, this implies

Xallv(-,t)[|L1 (o)

A A -

< (1/(uo—u*)2+2/ 3+X2/U0> +cst
2 Q 2 Q Q
A A - -

< (1/ [uo — uy| + (2 + X2> / Uo) +cst for all ¢ € (0,7)
2 Jo 2 Q

and hence proves part (i) for certain Ki, Ko > 0.

IA

Part (ii) follows then from Lemma 5.4.4, part (i) and the observation that

[vllwz2) < [lv—"llw22@) + 17]lL2 ()
< C||Av| 2 + Q72 0]l iy holds in (0, Thax)
due to Lemma 5.7.2 (with C' > 0 as in that lemma). O
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

Next, we proceed to gain similar estimates also for the first equation.

Lemma 5.4.8. Assume (5.H2) holds and Aop1 = Aias as well as Ay > 0. Then there are
n >0 and Ky, Ko > 0 such that

. -1
||u(-,t) — U*HW2,2(Q) < (K1 (Huo — U*HWQ,Z(Q) + ||1)OHW2,2(Q)) + Kzt)
for allt € (0,T5,) if uo,vo satisfy (5.1.3) and T, is as in (5.3.1).

PROOF. We choose 77 > 0 so small that ¢; == Ay — (a1 + p1)m > 0 and set

2,,2 2,2

ajui 2X1u*
Co ‘= max s + .
2 { C1 3D1 Xl}

By Lemma 5.3.1 and Lemma 5.4.7, there are moreover 72,73 > 0 and c3, ¢4 > 0 such that

d —Uu 2 @ U2 — Usy Uy ) — a uUu—mu 2
G [ 22 [Vl 2=t o) = ntar-+ ) [ ()

< 2a1uy / (u—u)v+ 2X1u*/ Vu- Vv +nx1 / |Vo|? in (0,7,) for all n € (0, 2]
Q Q Q
and

1 -2
o) Ryezga) < (Vezes (luo = wdllwea) + lvollwaaiey) ™ + vezeat)
in (0,T,,), provided ug, vy comply with (5.1.3).

Thus, fixing n = min{n,n2, 73,1} as well as ug, vy satisfying (5.1.3) and noting that
fu(u*7v*) = —)\1, we obtain

4
dt Jq

3D
_Tl/ |Vul? — 2¢; / (u— ue)® + 2a1uy / (u — uy)?v
Q Q Q

(u — uy)?

IN

+2x1u*/ Vu~Vv+17X1/ |Vu|2
Q Q
2.2 2.2
2 | ArUy 2 2xquy 2
_ —u, $1M v
o [z M [ (B0 0) [ e
S—cl/(u—u*)2+02 (/ 02+/ |Vv|2>
Q Q Q

-1 —2 .
< —c / (’LL — u*)Z 4 (03 (H’LLO - U*HWQJ(Q) + ”UOHWQ*Q(Q)) + C4t> n (O’Ty]),
Q

IN

which by the variation-of-constants formula implies

[ =

t
<e ! /Q(uo —u)?(, 1) —I—/O e =) (e I5 1 + ¢45) 72 ds for all t € (0,7},),
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5.4. Deriving W22(Q) bounds for u and v

where we abbreviated Iy = |ug — u«|lw2.2(q) + [|[vollw22(). Noting that [0,00) > s —
(epIyt + co5)~2 is decreasing, we further calculate

t
/ e =) (eaI + eq5) 2 ds
0

t

t/2
= / e =) (eI + eq8) 72 ds + / e~ =) (eI 4 ¢q5) 72 ds
0 ¢

/2
72 ot ¢ -2 t/2
< —g e “1%ds 4+ <03IO_1 + 64) / e *ds
C3 Ji/2 2 0
B, 1
< e Tl 4 for all t € (0,T,,).
= '

Combining these estimates with Lemma 5.4.4 and Lemma 5.7.2 yields the statement for
certain K1, Ko > 0. O

Finally, we deal with the aforementioned fully degenerate case.

Lemma 5.4.9. Suppose (5.H2) and \y = Ay = 0. Then there are n > 0 and Ky, Ky > 0
such that

lu(-, ) llw220) + lv(- O)llw22)
. -1
S (Kl (HUOHWZ,Q(Q) + HU0||W2,2(Q)) + th) (548)
for allt € (0,T5,), where T,, is defined in (5.3.1), provided ug, vy satisfy (5.1.3).

ProOOF. We set ¢; == % and fix ug, vg complying with (5.1.3).

By multiplying (5.4.5) and (5.4.6) with as and a4, respectively, we obtain

d
— <a2/u—|—a1/ v) = —ulag/ u2—u2a1/ v? in (0, Tinax)-
dt Q Q Q Q

Hence, along with Holder’s inequality this implies

d 2
— <a2/u+a1/v) < - <a2/u—|—a1/v) in (0, Thnax),
dt Q Q Q Q

which upon integrating results in

—1

ag/Qu(.,t)Jral/Qv(.,t) < <(a2/ﬂu0+a1/gvo)_1+clt> (5.4.9)

for all t € (0, Tynax)-

As in the proof of Lemma 5.4.7, we now apply Lemma 5.7.2 (with C' > 0 as in that lemma)
to see that

— — _1
lellwz2) < lle = Pllwz2) + [1Pll2) < CllA@lL2) + 122 ¢l )

for all ¢ € C?(Q) with 9, = 0, which when applied to ¢ = u and ¢ = v and combined
with (5.4.9) and Lemma 5.4.4 implies (5.4.8) for certain K7, K5 > 0 and n > 0. O
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

5.5. Proof of Theorem 5.1.1

The various lemmata from Section 5.4 allow us now to find € > 0 such that if ug, vy satisfy
((5.1.3) and) (5.1.5), then Tyax = 00 and (u,v) converges to (s, vy).

Lemma 5.5.1. Fore >0 and Ky, Ky > 0, define

(%16 + Kot)™Y, if (5.H2) holds and Aaji1 = Ajas,
Ye. K1 K5 [0,00) = R, t+—
Kiee K2t else.

Then there are € > 0 and Ky, Ko > 0 such that Tyax(ug,vo) = 00,
[[(w(uo, v0)) (-, t) — usllwz2(0) + [[(v(uo, v0)) (-, ) — vellwz2() < Ye Ky K, (E)
for allt > 0, whenever ug, vy satisfy (5.1.3) and (5.1.5).

PROOF. Lemma 5.4.2, Lemma 5.4.3, Lemma 5.4.4, Lemma 5.4.5, Lemma 5.4.7 (ii), Lem-
ma 5.4.8 and Lemma 5.4.9 imply that there are n > 0 and K;, Ko > 0 with the following
property: Let ¢’ > 0. If ug, vo comply with (5.1.3) and (5.1.5) with & replaced by &', then

[u( 1) = willwzz2 ) + [[0( 1) = villw22() < ver x5 (8) (5:5.1)
for all ¢t € [0, 7)), where (u,v) = (u(uo, vo),v(uo,vo)) and T;, = T (ug, vo) is as in (5.3.1).

Thanks to the restriction n < 3, Sobolev’s embedding theorem asserts that there are a €
(0,1) and ¢; > 0 such that

Iellce ) < ctlplweei  forall o € W22(Q).

Fix an arbitrary ¢ € (0 and ug, vy complying not only with (5.1.3) but also

with (5.1.5). As then

EETTrR i enyy,
> ¢y max{Ki,1}

luo — usl| oo (@) + [[v0 — il Lo ()

< e (Jluo — usllw22(0) + [[vo = vellw22(0)) < ere <,
we infer T,, > 0 from u,v € C°(Q x [0, Tnax)). Moreover,

[u(,t) = usllLe (@) + [[0( 1) = vall Lo (@)
< ul ) = il oy + 100 ) = il gy
< e ([lut) = wllwzz@) + 00 8) = vallwz2()
< C1Ye, iy, K5 (1)
< €1Ye, K, 1, (0)
=Kicie <n for all t € (0,T;,), (5.5.2)
hence the definition (5.3.1) of T}, asserts T,, = Tiax. In that case, (5.5.2) further implies

Tmax = 00 because of the blow-up criterion (5.2.2). Finally, as then T;, = Tihax = 00, the
statement is equivalent to (5.5.1). O

Theorem 5.1.1 is now a direct consequence of already proved lemmata.

Proor oF THEOREM 5.1.1. Local existence and the regularity statements were already
part of Lemma 5.2.1, while global extensibility, convergence to (u4, v4) as well as the claimed
convergence rates were the subject of Lemma 5.5.1. O
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5.6. Possible generalizations of Theorem 5.1.1

Having proven Theorem 5.1.1, let us discuss whether the methods used in this chapter could
potentially be used to derive more general versions thereof.

Remark 5.6.1. We recall that the limitation on the space dimension, namely that n €
{1,2,3}, has only been used at one place: In the proof of Lemma 5.5.1 we made use of
the embedding W22(Q) — C*(Q) (for some a € (0,1)), which only holds in said space
dimensions. Thus, it is conceivable that replacing W22(Q) by W™2(Q) for suitable m € N
in Theorem 5.1.1 allows for certain generalizations of the main result of the present chapter.

Indeed, if n = 1, Theorem 5.1.1 remains correct if one replaces W22(Q) by W12(Q) in
all occurrences (and W]%Q(Q) also by Wb2(Q)). This can be seen by a straightforward
modification of the proofs above: Combine Lemma 5.3.2 only with Lemma 5.3.3 and not
also with Lemma 5.3.4. However, a detailed proof would lead to either a considerably longer
or a unreasonably more complicated exposition (or to both) and is hence omitted.

At first glance, similar arguments as above appear to imply an analogon of Theorem 5.1.1
(with W22(Q) replaced by W™2(Q) for sufficiently large m € N) even for higher dimensions.
The main problem, however, is, that during the computations several boundary terms would
appear, which apparently cannot be dealt with easily. Let us emphasize that the question
whether (a suitably modified version of) Theorem 5.1.1 holds also in the higher dimensional
setting is purely of mathematical interest. The biologically relevant dimensions are covered
in Theorem 5.1.1.

Remark 5.6.2. The prototypical choices of Sy, Ss, f and ¢ in (5.1.1) are mainly made for
simplicity. We leave it to further research to determine more general conditions on these
functions allowing for a theorem of the form of Theorem 5.1.1.

Still, the methods employed should be robust enough to also allow for (certain) nonlinear
taxis sensitivities, for instance. At least for the case (5.H2) with Ayp1 > Ajas, however, the
signs of S; and S, are important: Our approach demands, that, roughly speaking, predators
move towards their prey and the prey flees from them.

The case (5.H2) with Aop1 < Ajag is even less sensitive to such changes. In fact, as the
proofs above clearly show, the conclusion of Theorem 5.1.1 remains true for different signs
of x1,x2 (with the exception that for x; > 0 > x2 or x1 < 0 < X2, one has to do some
additional work at the level of local existence).

Likewise, the methods presented here should, in general, also work for different functional
responses. Again, there is one caveat: The species moving towards (away from) the other
one needs to benefit from (be harmed by) inter-species encounters.

5.7. Gagliardo—Nirenberg inequalities

At last, we prove various inequalities which have been used several times in the proof of Theo-
rem 5.1.1. Throughout this section, we fix a smooth, bounded domain 2 C R™, n € N, define

- llwm.p (o)

7= [y for o € L'(Q) and set WP (Q) = {p € C®(Q) : 0o =0 0n 90 } for
m € N and p € [1,00). (As can be easily seen, for m = p = 2, this definition is consistent
with the definition of Wx?(€) given in (5.1.4).)
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5. Stability of homogeneous steady states in fully cross-diffusive predator—prey systems

We begin by stating the Poincaré inequality and straightforward consequences thereof.

Lemma 5.7.1. There exists Cp > 0 such that
fe=vr<ce [ |96l forapew'x(@
/Q|V<p|2 < CP/Q |Ap|? for all p € Wi(Q)  and
/Q IAG2 < Cp /Q VAG?  forall p € WH(Q).

PROOF. Since (2 is assumed to be smooth and bounded, Poincaré’s inequality (cf. [56, Corol-
lary 12.28]) asserts that there is Cp > 0 such that

Je-or<ce [ 9ol wralpewo. (5.7.1)
Q Q

By straightforward approximation and normalization arguments, it is sufficient to prove the
remaining two inequalities for all ¢ € C'*°(Q2) with fQ ¢ =0 and d, = 0 on 9. Thus, we
fix such a .

An integration by parts, Holder’s inequality and (5.7.1) give

/|V¢I2:*/ @As0+/ PO,
Q Q o0

(L) (o) 0
< (e [1ver) ([ 1aee)”.

hence, in both cases [, [Vp|? =0 and [, [Ve]* >0,

/|V<p|2§0p/ Ap]?.
Q Q

Similarly, we have

/|A<P|2=—/ V@-VAWr/ Apd, o
Q Q Q

< (cp / |A90|2) ( / VAW) 0
Q Q

gcp/ |VAp|?. O
Q

The following lemma should also be well-known. However, failing to find a suitable reference,
we choose to give a short proof.

Lemma 5.7.2. Let p € (1,00). There exists C > 0 such that

e —Bllw2o) < ClAQ| oy for all o € WRP(Q).
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PROOF. Suppose this is not the case. By an approximation/normalization argument, there
would exist (¢r)ren C C(Q) with [, or = 0 as well as 9, = 0 on Q and

lorllwzeo) > k| ApklLr@) — forallk €N

Without loss of generality, we may assume ||¢g|lw2.rq) = 1 for all & € N. Thus, there are
Yoo € W2P(Q) and (kj)jen C N with k; — oo for j — oo such that

Ok; = Poo in WP(Q) as j — oc.
Since W2P(Q) << LP(Q), this implies
Pk; = Poo in LP(Q) as j — oo

and thus also [, ¢ = 0.
As

/v%o.vw' = lim /v% .vzp’ — lim '/ Aapqup’
Q j—oo | Jq ji—oo | Jq

1
< limsup — ¢
joo K

LTy = 0 for all ¥ € C*°(2)

by Holder’s inequality, we further conclude that ¢, is constant and because of fQ Yoo =0
we have ¢, = 0.

However, as [18, Theorem 19.1] asserts
1Vllw2r ) < CllAY|| Loy + CllYl e @) for all ¢ € C*(Q) with 8,1 = 0 on 99
for some C > 0, we derive

1= lim [Jox, [lw2r) < Climsup ([[Agk, ||y ) + [k, Lr@)) =0,
j—o0 FENSS

a contradiction. O

These lemmata immediately imply the following version of the Gagliardo—Nirenberg inequal-
ity.

Lemma 5.7.3. Let j € {0,1} and suppose p,q € [1,00],r € (1,00) are such that

1_J_1 j
o=t—5—tc|in)
r n q
Then there exists C > 0 such that
Y = Pllwir@) = ellLr @Y = @llpaq oT ail ]%IT(Q) (5.7.2)
lo = Blwinie) < ClAGIG @lle =Bkl forall pe W,

In particular, for any r € (1,00), we may find C' > 0 such that

Vel Far) < CNAGN L @) lle = Pllim(qy — for all o € WRT(Q). (5.7.3)
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PRrROOF. The usual Gagliardo—Nirenberg inequality [69] gives ¢; > 0 such that

le = Pllwin) <l D@l (@lle = Bllzaa +ello =Pl for all p € WT(Q).

As Holder’s inequality asserts
1Vl ) < cal|¥]

for some ¢y > 0, we find c¢3 > 0 such that

i"'(Q)HwHi;(GQ) for all ¢ € L"(2) N LY(Q)
le = Bllwr) < calle = Blyar@lle = Bllaf — for all o € W>7(Q).
In conjunction with Lemma 5.7.2, this proves (5.7.2).

Moreover, for any r € (1,00), letting j :== 1, p := 2r and ¢ := oo, we see that

1_J_1 1 .
p_n q:217‘_n:16|:]1)
T2 1 1_2 5S|[3t)"
T n q T n
Hence, (5.7.3) follows from (5.7.2). O

In order to avoid any discussions how [, [D%p[? and [, |VAgp|? relate for ¢ € W*(Q), we
choose to prove the following Gagliardo—Nirenberg-type inequalities, which have been used
in the proof of Lemma 5.3.4, by hand.

Lemma 5.7.4. There exists C > 0 such that for all ¢ € Wi,’z (Q) the estimates

/Q Vel® < Cllg — Bl o /Q VApP

and

/ Agl® < Cllo - Bl =@ / VA
Q Q
hold.

PrROOF. By Lemma 5.7.3, there is ¢; > 0 such that

/Q Vel® < e1llp — Bl /Q Al for all p € W2 (Q). (5.7.4)

Let ¢ € C3(Q) with d,¢ = 0 on 9. Noting that (|¢|¢)" = 2|¢| for ¢ € R, by an integration
by parts, Holder’s inequality and (5.7.4) we obtain

/\A¢I3=/IA<@IA@A¢
Q Q

— - [ V(a4lag) - Ve
Q

= *2/ |Ap|Vp - VAp
Q

<2([1aer) ([1ver)" ([ waee)

Q Q Q

< 2f g~ Pl ( / |A<PI3> ( / IVA<PI2> ,
Q Q
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hence

/ Agl® < eallp — il / VAR,
Q Q

1
where ¢o = 4¢; . Plugging this into (5.7.4) yields
[ 196l° < cxcallo = liiey [ 1980

The statement follows by an approximation procedure and by setting C' := max{cy, cico}
O
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6. Global weak solutions to fully
cross-diffusive systems with
nonlinear diffusion and saturated
taxis sensitivity

6.1. Introduction

In the present chapter, we continue our study of variants of the so-called pursuit—evasion
model

{Ut =V (dyVu— x1uV) + fi(u,v), (6.1.1)

v =V - (d2Vu + x20Vu) + fa(u,v),

which has been proposed in [89] for modeling predator—prey interactions. Herein, u and v
correspond to the predator and prey densities, dy,ds, X1, x2 > 0 are given parameters and
f1, fo relate to certain functional responses.

While systems of ordinary differential equations essentially assume a spatially homogeneous
setting, the simplest way to account for nontrivial spatial behavior is to assume that the
species move around randomly. However, sufficiently intelligent predators and prey may
also partially orient their movement towards or away from higher concentrations of the
other species—abilities intended to be captured by positive values of y; and xs.

For further motivation regarding the system (6.1.1) and especially for an overview of results
treating the single cross-diffusive cases, that is, when either x; = 0 or x2 = 0, we refer to
the introduction of Chapter 5.

Nonlinear diffusion and saturated taxis sensitivities. We now extend the system
(6.1.1) to also allow for nonlinear diffusion and saturated taxis sensitives. By doing so, we
follow various precedents regarding the minimal Keller-Segel system

(6.1.2)

ug = V- (d1Vu — x1uVo),
v = doAv — v + u,

which has been proposed in [45] to describe the behavior of the slime molds Dictyostelium
discoideum u, which are attracted by the chemical substance v they produce themselves,
and variants of which we have analyzed in the first part of this thesis.

Indeed, among the various modifications proposed for (6.1.2), particular prominent examples
include replacing the linear diffusion term with a quasilinear one and allowing for saturated
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taxis sensitivities (see also [36] for a (non-exhaustive) list of further possible changes). While
in part this has already been suggested by Keller and Segel in [45], the need for these
adjustments has been further emphasized by the desire to account for volume-filling in [72]
(see also [36, 110]).

Apart from biological motivations, suitable nonlinearities may also improve the regularity of
the system, as already thoroughly discussed in the introduction of Chapter 3. Accordingly,
we transfer these ideas to the model (6.1.1) and consider the system

ur = V- (D1(u)Vu — S1(u) Vo) + fi(u,v) in £ x (0, 00),
ur = V- (Da(v)Vo + Sa(v)Vu) + fa(u,v) in £ x (0, 00),

y v=0 on 99 x (0,00),
u(+,0) = ug, v(-,0) = vo in

(6.P)

in smooth bounded domains 2 C R™, n € N. Although the methods established below
would allow for more general choices, mainly for the sake of clarity we confine ourselves to
certain prototypical functions in (6.P); that is, we set

Di(s) :=di(s +1)™ ! and Si(s) = yis(s +1)%! (6.1.3)
for s > 0 and i € {1, 2}, and where the parameters therein are such that
dl,dQ,Xl,XQ >0, mai, Mo GR, q1,q2 € (—0071]. (614)

Moreover, we choose to either neglect zeroth order kinetics altogether or assume a typical
Lotka—Voltera-type predator—prey interaction; that is, we further set

fi(s1,82) = Aisi — MS? + (—1)”1@2‘5182 (6.1.5)
for s1,89 > 0 and i € {1,2}, where

either A1, Ao, i1, o, a1, a2 = 0 (6.H1)
or )\1,)\2,#1,#2,(11,&2 > 0. (6H2)

The entropy-like identity. Our goal is to construct global weak solutions of (6.P) for
widely arbitrary initial data. Thus, conditional estimates valid only as long u and v are
close to certain steady states (such as those derived in Chapter 5) are evidently insufficient
for our purposes. Instead, we will rely on the following unconditional entropy-like identity
which has already been made use of in [85, 86] for related systems. Setting

s o
Gi(s) = /1 /1 Sia) dodp for s > 0 and 7 € {1, 2},

a sufficiently smooth and positive global solution (u,v) to (6.P) satisfies

i(/ﬂ Gl(U)+/QG2(v)> +/Q ?11((3))|Vu|2+ ng((s))|Vv|2

- [ (-2 e ves [ Glnwa+ [ Gopwn 610

in (0, 00). This functional inequality constitutes the main—if not essentially the only—source
for a priori estimates. In order to indeed gain any useful bounds from (6.1.6), however, we
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6.1. Introduction

have to control the right-hand side therein. Evidently, the first term there just vanishes;
the functions GG; and G2 have been chosen precisely to guarantee a cancellation of the
cross-diffusive contributions.

Moreover, the last two summands on the right-hand side in (6.1.6) also simply vanish if
(6.H1) holds and they can be easily controlled if there are Cy,Cy > 0 such that

G’l(Sl)fl(Sl, 82) + GIQ(SQ)fQ(Sl, 52) < —015% Ins; — C’lsg Insy + Cy (6F1)

for all s1,s9 > 1. (We note that, while for bounding the right-hand side in (6.1.6) it would
suffice to take C; = 0, positive values of Cy guarantee uniform integrability of f;(u,v)
which in turn will allow us to undertake certain limit processes in approximative problems.)
Unfortunately, (6.F1) cannot hold unconditionally. Indeed, suppose ¢1 = ¢2 = ¢ < 1 and
that (6.F1) holds for C; = 0 and some Cy > 0. Taking s; = s = s > 1 in (6.F1) then
implies

Cy > G (s) (M5 — 8% + a15%) + Gh(s)(A\as — pas® — ags?)

s 1—q _ _ _
Z/ (0 +1) da< u1+a1+ H2 a2>s27
1 g X1 X2

where the right-hand side diverges to co as s oo, provided - > ;—1 + % + 2. Still,
in the case of ¢ = g2 = ¢ < 1, Young’s inequality shows that (6.F1) holds provided a; is
sufficiently small or x; is sufficiently large compared to the other parameters, for instance.

Of course, instead of (6.F1) one may also rely on the dissipative terms in (6.1.6) for con-
trolling the right-hand side in (6.1.6) and this idea will allow us to derive another sufficient
condition for bounding the right-hand side in (6.1.6). As integrating certain linear combi-
nations of the first two equations in (6.P) provides us with a locally uniform-in-time L' (£2)
bound for both v and v, combining the Gagliardo—Nirenberg and Young inequalities shows
that requiring

2n—2 (B-@)2-—q)-B-a)2—¢q) 2n—2

my > + or mo >
n 2—q

+ (2 —q1) (6.F2)

suffices to estimate the right-hand side in (6.1.6) against the dissipative terms therein (cf.
Lemma 6.4.8). We note that if ¢, = go, then (6.F2) is equivalent to max{my,my} > 222

=
Next, one could discuss more refined approaches and for instance also make use of the L?
space-time bounds (which in the case of (6.H2) result as a by-product when obtaining L*(£2)
bounds). However, here we confine ourselves to the conditions (6.F1) and (6.F2), mainly
because treating the most general case possible would lead to several technical difficulties
which we would like to rather avoid here. Still, the important special cases that either a; is
small or x; is large (condition (6.F1)) or m; or my are large (condition (6.F2)) are included
in our analysis and, as the examples above show, at least qualitatively, these conditions seem
to be optimal.

Obtaining further a priori estimates. With the right-hand side of (6.1.6) under con-
trol, we then make use of (a corollary of) the Gagliardo—Nirenberg inequality to obtain
space-time bounds for u,v, Vu and Vov. That is, assuming

m; —q; > —1 for i € {1,2}, (617)
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6. Global weak solutions to fully cross-diffusive systems

we can obtain estimates in LP* LP2 L™ and L™, respectively, where

i1 2@=a) 9 g;}, if (6.H1) hold
pi = {ma"{m tioat e}, 1 (6.HL) holds =0 or (618)

max{m; +1—q; + 2(2 w ,3—¢q;}, if (6.H2) holds
and

. 2p; } .
r; ‘= min 20, for i € {1,2}, 6.1.9
{pi_(mi_%’_l) 1.2} ( )

see Lemma 6.4.11 and Lemma 6.4.12. Lacking any other sources of helpful a priori bounds,
these estimates need to be strong enough to inter alia assert convergence of the corresponding
approximative terms to

/ S1(w)Vu-Ve and / / Sa(v)Vu -V, 0 € C(Q x [0,00)).
o Ja o Ja

This is the case when p; and r; are sufficiently large. More precisely, we need to require

""31—-; < 17 qi < 07
ﬂ+# <1, 0<gq <1, for i € {1,2} (6.1.10)
' + 7"3 P 1a q; = 17

(In the case of ¢; = 1, we obtain slightly stronger bounds than outlined above so that equality
n (6.1.10) is sufficient for that case.) We remark that if m; = m € R and ¢; = ¢ € (—o0, 1]
for i € {1,2}, then ¢ < 0 implies (6.1.10) while for ¢ € (0,1) and if (6.H1) holds, (6.1.10) is
equivalent to

(6.1.11)

2 1)g—2
m>min{(n+)q74q—1}

n

Moreover, in the case of (6.H2) (and again g € (0,1)), (6.1.10) is not only implied by (6.1.11)
but also by m > 4q — 2.

Under these assumptions, we are then finally able to construct global weak solutions of the
problem (6.P).

Theorem 6.1.1. Let Q C R™, n € N, be a smooth, bounded domain. Suppose that (6.1.3),
(6.1.4), (6.1.5), (6.1.7), either (6.H1) or (6.H2), (6.F1) or (6.F2), as well as (6.1.10) (with
p; and r; as in (6.1.8) and (6.1.9), respectively) hold and that

L?>7%(Q , i < 1,
U, Vg € (@), are nonnegative a.e. (6.1.12)
LIOgL(Q)7 ¢ =1

Then there exists a global nonnegative weak solution (u,v) of (6.P) in the sense of Defini-
tion 6.5.1.

Structure of the chapter. A challenge not yet addressed is the construction of global
solutions to certain approximative problems. For systems similar to (6.P) but where either
S1 =0 or Sy =0, this is usually a straightforward task. For the fully cross-diffusive system
(6.P), however, even if all given functions are assumed to be bounded, the question of global
existence is already highly nontrivial, even for a weak solution concept.
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6.2. Global weak W'-2-solutions to approximative systems

Thus, Section 6.2 is devoted to the construction of so-called weak W' 2-solutions to systems
suitably approximating (6.P). The corresponding proof then relies on an additional approx-
imation; we make use of fourth-order regularization terms. The general strategy is described
more thoroughly at the beginning of Section 6.2, so we do not go into much more detail at
this point. However, it seems worth emphasizing that apart from obtaining these solutions,
we also prove a corresponding version of the entropy-like identity (6.1.6).

Next, in Section 6.3, we fix the final approximation functions used and rely on the results in
the preceding section to obtain a global weak W '2-solution fulfilling a certain entropy-like
inequality, see Lemma 6.3.2.

Section 6.4 then makes use of this inequality and the hypotheses of Theorem 6.1.1 in order to
guarantee sufficiently strong convergence towards a function pair (u,v), which in Section 6.5
is then finally seen to be a weak solution of (6.P).

Notation. Throughout the chapter, we fix n € N and a smooth bounded domain £ C R".
For p € (1,00), we set W2P(Q) = { o € W*P(Q) : d,¢0 = 0 in the sense of traces }.

Additionally, we use the following notation for Sobolev spaces involving evolution triples.
For an interval I C R and an evolution triple V < H < V* we set WY2(I; V. H) =
{0 € AL V) : ¢ € LA(I;V*) } and W2 (LV, H) = U yyer W2 ((a, b); V, H). Also, we

loc

abbreviate W\ (I; Wh2(Q)) = W2 (I; WH2(Q), L*(Q)).

Moreover, for a set X, a function ¢: X — R and A € R, we abbreviate {z € X : p(z) < A}
by {¢ < A}, the set X being implied by the context. Similarly for other order relations.

6.2. Global weak W!2-solutions to approximative
systems

In this section, we prove the following quite general global existence theorem, which we will
then use in Section 6.3 to obtain solutions to certain approximate problems. In contrast to
the hypotheses of Theorem 6.1.1, here we also assume that all given functions are bounded.
That is, in this section, we do not need to assume any of the conditions introduced in the
introduction of this chapter but instead require that (6.2.1)-(6.2.6) below are fulfilled.

Theorem 6.2.1. Suppose that, fori € {1,2},

D; € C°([0,00)) N L*>((0, 00)), (6.2.1)
S; € C1([0,00)) NWE((0,00)) and (6.2.2)
fi € C°([0,00)%) N L™ ((0, 00)?) (6.2.3)
fulfill
inf D;(s) >0, inf > 0, inf Si(s) >0 and S;(0)=0 (6.2.4)
s€[0,00) s€(0,1) S s€[1,00)

as well as

Slligo 52112% |fi(s1,82)Ins1| =0 and Slzigo Ssluz% |f2(s1,82)Inss| =0 (6.2.5)
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6. Global weak solutions to fully cross-diffusive systems

and assume that
ug,vg € C°(Q)  are positive in Q. (6.2.6)

Then there exists a global nonnegative weak W2-solution (u,v) of (6.P), meaning that u
and v belong to the space Wli’cz([O, 00); WH2(Q)), satisfy

u(-,0) =wuo as well as v(-,0) = vy a.e. in ) (6.2.7)
and fulfill
/ / Ugp = —/ / Di(u)Vu -V +/ / S1(u)Vu -V +/ / fi(u,v)p (6.2.8)
o Ja o Jao 0o Jo o Ja
as well as

/OOO/QWZ‘/OOO/QDZ(“)W'W—/OOO/QSQ(u)VwV<p+/ooo/ﬂf2(u,v)gp (6.2.9)

for all p € L2 _([0,00); WH2(Q)).

loc

In what follows, we fix D;, S;, fi, i € {1,2} fulfilling (6.2.1)—(6.2.4) as well as ug, vy as in
(6.2.6).

As already alluded to in the introduction of this chapter, a cornerstone for gaining a priori
bounds for these solutions is the following theorem, which shows that the solutions con-
structed in Theorem 6.2.1 fulfill an inequality reminiscent of (6.1.6).

Theorem 6.2.2. Denote the weak W'2-solution of (6.P) given by Theorem 6.2.1 by (u,v)
and let

S P 1
Gi(s) ::/1 /1 e dodp  forseRandie{l,2}

as well as

Dy (v(:,1))
o S2(v(-,1))

R(t) = [ Gi(u(1) f1(U(wt),v(wt))+/QG’z(v(wt))fz(ﬂ(wt),v(ut))

|Vo(-,t)]>  and

fort € [0,00). (We remark that D and R are to be understood as functions in L°((0,00));
that is, they are only well-defined up to modifications on null sets.) Then

E(T)C(T) + /0 D()C(t) dt < E(0)C(0) + /O R()C(H) dt + /0 EHCM At (6.2.10)

for all T € (0,00) and 0 < ¢ € C*([0,T)).

Next, we describe our approach of proving the theorems above. Similar to [85, 86], where
one-dimensional relatives of (6.P) have been studied, our general approach is approximation
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6.2. Global weak W'-2-solutions to approximative systems

by a fourth order regularization. That is, for ,§ € (0,1), we will first construct global
solutions to

Uest = V - Fi5(tes, ves) + f15(ues, ves)  in Q x (0, 00),
Ueét:V‘F26(u567v66)+f26(u65avs(§) in Q x (O;OO),

(6'P55)
8VA’LL€5 = &,ua; = 81,A’U€5 = auvsé =0 on 0N x (O7 00)7
“55('70) :u07v€5('70) = g in
with fluxes
Fi5(tes, ves) = —€515(ues)V Aties + D1 ([ues|) Vies — S15(ues) Vves)  and
Fo5(tes, Ves) = —€525(0es) VA5 + Da(|ves|) Vves + Sas(ves) Vues)
and where
Sis(s) = Si(|s]) + ¢ for se R, 6 €(0,1) and ¢ € {1,2} (6.2.11)
and
fis(s1,82) = fi((s1)+,(52)+) for s1,80 € R, 6 € (0,1) and ¢ € {1,2}. (6.2.12)

We note that (6.2.5) entails f1(0,-) = 0 and hence f15(p,0) = 0 for all p < 0 and o € R.
Likewise, fo5(p,0) =0 for all p € R and o < 0.

For convenience, let us introduce several abbreviations. For i € {1,2}, we set

— — —

D = |[Dill=((0,00))s Si = [1Sille((0,00) + 1 and S; =[]l Lo~ ((0,00))
as well as

D.:= inf D; d S = inf S; L1 1].
D= nf (s) and S, ﬁgm)(ﬁKs M0,1)(s) + 1]

Due to continuity of S; up to 0, the definition of S, entails that S;(s) > ;s for all s € [0,1),
ie{1,2}.

The rest of this section is organized as follows. The first step towards proving Theorem 6.2.1
and Theorem 6.2.2 consists of constructing solutions to (6.P.s) and is achieved by a Galerkin
approach. To that end, non-degeneracy of the fourth order terms in (6.P.s) is of crucial
importance, which is the reason for introducing the parameter 4.

A general problem for equations of fourth-order is the lack of a maximum principle; that
is, ucs,ves might become negative even for strictly positive initial data. Following [29],
however, we see in Subsection 6.2.2 that suitably constructed limit functions wu.,v. are
indeed nonnegative. Here, degeneracy for § = 0 actually comes in handy.

In contrast to Section 6.4, where we aim to argue similarly but only assume the hypotheses
of Theorem 6.1.1, the assumptions (6.2.3) and (6.2.5) allow us to rather easily obtain certain
a priori bounds from a version of the entropy-like identity (6.1.6). These allow us to so finally
let € N\, 0 in Subsection 6.2.3 and then to prove Theorem 6.2.1 and Theorem 6.2.2.
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6. Global weak solutions to fully cross-diffusive systems

6.2.1. The limit process k — oo: existence of weak solutions to
(6.P.s) by a Galerkin method

To prepare the Galerkin approach used below for constructing solutions to (6.P.s), we briefly
state the well-known

Lemma 6.2.3. There exists an orthonormal basis {p; : j € N} of L*(Q) consisting of
smooth eigenfunctions of —A with homogeneous Neumann boundary conditions.

PRrROOF. The existence of an orthonormal basis consisting of eigenfunctions of —A with ho-
mogeneous Neumann boundary conditions is given by [31, Theorem 1.2.8] and their smooth-
ness is proved by iteratively applying [18, Theorem 19.1]. O

For the Galerkin approach, we first construct local-in-time solutions to certain finite-dimen-
sional problems.

Lemma 6.2.4. Let (¢;) en be as in Lemma 6.2.3 and set Xj, =span{y; : 1 < j <k} for
keN. Fore, §d € (0,1) and k € N, there exist Tynax sk € (0,00] and functions

Uesk, Vesk € Coo(ﬁ X [07 Tmax,s&k)) (6213)
with
Oucsr = 0L AUest = Ok = O, Avesi, = 0 (6.2.14)
fulfilling
d
d*/ Ueskt) = 6/ S15(tesk) VAugsy - Vb — / D1 (Jugsk|) Vesk - Vi
t Ja Q Q
+ / S16(1tes) Voesk - Vi) + / Frs(tes vesk ) (6.2.15)
Q Q
and
d
— | vesk) = 6/ So5(Vesk) VAVs - VO */ Dy (|vesk|) Vvesk - VY
dt Jo Q Q

*/ Sza(vssk)vus5k'vw+/ fo5(Uss, Veor )Y (6.2.16)
Q 0

in (0, Tmax,e5k) for all ¢ € Xy, as well as

/Q“eék('70)¢:/QU0¢ and /stgk(-,O)w:/Qvoz/J for all ¢ € Xj. (6.2.17)

Additionally, if Tinax,esk < 00, then

limsup ([Jucsn (1)l 22 (0) + [[vesk (-5 )l £2(0)) = o0 (6.2.18)
t/‘Tmax,eﬁk
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6.2. Global weak W'-2-solutions to approximative systems

PRrOOF. We fix £,6 € (0,1) and k € N. For w,z € R¥, we define Fy(w, z), Fo(w, z) € R* by

(R =)= [ 15 (Shwies) VA (Sirwes) - Ve
- [ D1 (|Shawe|) ¥ (S - Ve
+ [ 515 (Shwies) V (Shazies) - Ve
+/Qf15( —1WjPjs D f 123901) ®;
and
(Fa(w,2)s == | Sas (Sh_1zi5) VA (Shoizies) - Vo

5

Zg 1ZJ90JD (Z?:lzj@j) Vi

k
j= 1'3]%) (Zj:ﬂ”j@j)'v%

_|_

"
>

(=
(
(=
(Seames Xiazies) o

fori e {1,...,k}.

As Fy} and Fy are locally Lipschitz continuous, the Picard-Lindel6f theorem asserts the
existence of Tyax.esx € (0,00] and w, z € CO([0, Trax.cs)) N CH((0, Tinax.csx)) which solve

w' = Fy(w, 2) in (0, Tiax,esk),
7 = Fy(w, ) in (0, Tinax,e5k )
w(0) = [, uoeyp,

2(0) = [ voes

classically and, if Tinax,e5k < 00, then

limsup (Jw(t)| + |2(t)]) = . (6.2.19)

t ’Tmax,srik

According to Lemma 6.2.3, the functions

k
Uesk (T, 1) ij Jpj(x) and  vesp(w,t) sz x € Q,t €10, Tmax,e5k),
Jj=1

satisfy (6.2.13) and (6.2.14). Moreover, they fulfill

d

k
d k
&/Quszik@i = a/ﬂ (Zj:le@j) Yi = jz_:lw;'/ﬂ%@j = wj = (Fi(w, 2));

in (0, Tax,esk) for i € {1,...,k}. Thus, (6.2.15) is fulfilled for ¢ = ¢, for all s € {1,...,k}
and, due to linearity, also for all ¢ € X}, as desired. Likewise, we obtain that (6.2.16) is
also fulfilled for all ¢ € Xj.
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From [, pip; = 0;; for i,j € {1,..., k}, we further infer

2

k k k
2 2 2 2 :

E Weskj = E /weskj%' :/ E Weskj Py :/usék in (0, Timax,cok)

3=0 j=079 2\ j=0 Q

and, likewise,

k
2 2 .

E Zeskj :/Uaak in (0, Tiax,esk)-

7=0 @

Thus, if (6.2.18) is not fulfilled, then (6.2.19) is also not satisfied, implying Tax cs6 = 00. O

In the following lemma, we show that the solutions (ucsk, vesr) constructed in Lemma 6.2.4
are global in time. Moreover, in order to prepare the application of certain compactness
theorems, we also collect several k-independent a priori estimates.

As opposed to [29], however, these bounds may depend on 4, the reason being that in our
situation the terms stemming from the possibly nonlinear diffusion terms D; and Dy can
no longer be controlled independently of §, at least not in all situations covered by Theo-
rem 6.2.1. This problem will then be circumvented by deriving appropriate d-independent
estimates in Lemma 6.2.11 below, which are, however, weaker than those obtained in the
present subsection.

Lemma 6.2.5. For all ¢,§ € (0,1) and k € N, let (ues,Ves) and Tiax,eox be as given by
Lemma 6.2.4. Then Thaxes = 0o for all €,6 € (0,1) and k € N and, moreover, for all
€,0 € (0,1) and all T € (0,00), there exists C > 0 such that for all k € N, the estimates

sup /u?tgk(~,t)+ sup /vgék(-,t) <C, (6.2.20)
te(0,1) Jo te(0,1) Jo

sup /|Vu€5k(~,t)|2+ sup /\Vvsgk(~,t)|2§0 and (6.2.21)
te(0,7) JQ te(0,7) JQ

T T
/ / |V Aucsi|? + / / |VAv 52 < C (6.2.22)
0 Q 0 Q

PROOF. According to the Poincaré inequality (cf. Lemma 5.7.1), there is Cp > 0 such that

hold.

/Q|A¢|2 < Cp /Q IVAY|2  for all ¢ € Wy*(Q). (6.2.23)

We then fix £,§ € (0,1), take ucsx as test function in (6.2.15) and apply Young’s inequality

to obtain
1d / ,
-— [ u
2dt Q edk
=c | Sis(ucs)VAUSsE - VUucsy — / D (|uesk]) | Vuesk|*
Q Q

+/ S15(Uest) Vesk - Vs +/ J16(Uesk, Vesk ) Uesk
Q Q
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£ _ S
< 1/ Sis(uest )|V Aucsr|* + (851 -D, + 21> / |Vuesy|?
o Q

K 1 2117 (70,00
+71/ |Voesk|? + */ ulsy + L% ({0.00)%)
2 Jo 2 Jo 2

n (0, Thax,esr) for all k& € N. Moreover, as the Laplacian leaves the space X}, defined in
Lemma 6.2.4 invariant, we may also use —Au,s € X as a test function in (6.2.15), which
when combined with Young’s inequality, (6.2.12), (6.2.23) and (6.2.11) gives

2
2dt/ [Vises|

- / S5 (t1es) [V Atiegi]? + / Dy(Juesk)V Auesy - Varess
Q Q

—/ S15(Uesr) VAU - Vs —/ J16(Uesk, Vesk) Aesk
Q

3e 20
S e e e
2D 2cp 0
=1 / |Vuesk|? + 7/ Vv 56k|2 ‘ |||f1||L°°([O 00)2)
< 75 s VAusi|? — 22 [ 1V Aussi|?
<-7 16 (Uesk) |V Atesi| 4 | Uesk|

2D 2Cp |0
1/|Vu€5k|2+—/lv con|” + P‘ |||f1||L°°([Ooo)2)

in (0, Tyax,esk) for all k € N.

Along with analogous computations for the second equation, we see that there are ¢1,co > 0
such that for all k£ € N, the function

1
y(t) = / 55[9 / |vu55k| + = /Ugﬁk; + 5/ |VU€§]€|2’ te [07Tmax,£6k>7
Q Q

solves the ODI

y'(t) < —01/ |V Aucsy|* — 61/ |VAvsk|? + coy+co in (0, Tnax,eok)-
Q Q

According to Gronwall’s inequality and as y(0) is finite and bounded independently of k
by (6.2.6), the estimates (6.2.20)—(6.2.22) are then valid for all finite T' € (0, Tinax,cs%] and
certain C' > 0 (depending on ¢, and T but not on k). Due to the extensibility criterion
(6.2.18), this then implies Tiax esx = 00 for all k& € N and then that (6.2.20)-(6.2.22) indeed
hold for all T' € (0, 00) (and corresponding C' > 0). O

Having an application of the Aubin—Lions lemma in mind, we next collect a priori estimates
for the time derivatives.

Lemma 6.2.6. Fore,0 € (0,1) and k € N, we denote the solution given by Lemma 6.2.4
by (uesk, Vesk)- For all e,0 € (0,1) and T € (0,00), there exist Cy,Co > 0 such that

l[uesktll 2 (o,mywr2@))%) + 1veskellL2(0,m)sw12(0))) < Ch (6.2.24)

109



6. Global weak solutions to fully cross-diffusive systems

and
IVtesrtll 2o, rywz 2 @) + 1V ekl L2, rywz 2 @) = C2 (6.2.25)
for all k € N.

PROOF. Let €, € (0,1) and T € (0,00). Letting X be as in Lemma 6.2.4, we denote the
orthogonal projection from W12(Q) onto X; by P,. Applying Lemma 6.2.4 and Holder’s

inequality shows that
/ usakth50’
Q

/ Us&kt@‘ =
Q

/ S16(tesk)V Auesy, 'VPW‘ + ’/ D1 (Juesk|) Vuesk 'VPW‘
0 Q

<e

+ ‘/Qslé(uaék)vvsék - VPW’ + ‘/wa(uaé,vaa)PW’
< (€§1||VAU55k||L2(Q) + D1||Vuesk| L2 o)
+81[Vvesnll 2 @) + (llflllLoc([o,oo)z))ml%) [ Pepllwr 2
for all ¢ € W2(Q2) and k € N. Upon integrating this inequality over (0,T) and in conjunc-

tion with an analogous argument for vesx¢, we then infer (6.2.24) from (6.2.22), (6.2.21) and
(6.2.3).

Since for all ¢ € W]%,’Z(Q;R”) and k € N, we have

/ vusékt : 90‘ = ‘/ usJktv : 90‘
Q Q

< HNueske | w2+ IV - @llwr2 )

< lueskell (w2« lellwz2@rn)
(and likewise for Vusit), a consequence thereof is (6.2.25). O

The bounds obtained above now allow us to obtain convergences of u.sr and v.s; along
certain subsequences of (k)ken-

Lemma 6.2.7. Foralle,é € (0,1), there exist a subsequence (k;)jen of (k)ren and functions

Ues, Ve € Wigz ([0, 00); W (€2), WH2(Q)) N L, ([0, 00); W2(€2)) 1 C°([0, 00); WH2(92))

such that
Uesk; — Uss and Vesk; — Ves pointwise a.e., (6.2.26)
Uesk; — Ues and Vesk; = Ves in C°([0,00); L*(Q)), (6.2.27)
Vuesk, — Ves and Vvesk; — Ves in LIQOC (2 x [0,00); R™), (6.2.28)
VAugsk; = VAuess  and VAuvgsy, — VAuvgs n LIQOC (Q x [0,00); R™), (6.2.29)
Uesk,t — Uest and Vesk;t — Vest in LZ,.([0,00); (WH2(Q))*)  (6.2.30)
as j — oo.
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6.2. Global weak W'-2-solutions to approximative systems

PROOF. As the claims for the second solution component can be shown analogously, it
suffices to prove (6.2.26)—(6.2.30) for the first one. According to (6.2.20)—(6.2.22), (6.2.24)
and (6.2.25), the sequence (uesx)ken is bounded in the space W,22([0, 00); W22(Q), WH2(Q))
so that by a diagonalization argument, we obtain a sequence (k;);jen C N with k; — oo and
a function u.s € WL2([0, 00); W22(Q), WH2(Q)) such that

uesh; = e in WigZ (10, 00); Wi (€2), WH2(9) as j — oo,

which directly implies (6.2.29) and (6.2.30) and together with the Aubin-Lions lemma also
(6.2.28).

Thanks to (6.2.21) and (6.2.24), another application of the Aubin-Lions lemma yields
(6.2.27) and thus also (6.2.26), possibly after switching to subsequences. O

We conclude this subsection by showing that the pair (ues, ves) constructed in Lemma 6.2.7
indeed solves (6.P.s) in a weak sense.

Lemma 6.2.8. Let ¢, € (0,1). The tuple (uegs,ves) constructed in Lemma 6.2.7 is a weak
solution of (6.Pcs) in the sense that

Ues (-, 0) =ug  as well as  ves(+,0) = v hold a.e. in £ x (0, 00), (6.2.31)

and, for all T € (0,00) and ¢ € L*((0,T); W+2(€)), we have

T T T
/ /U56t<P:5/ /Slé(ueﬁ)VAueﬁ'vSo_/ /D1(Iugal)Vuga~V<p
0 Q 0 Q 0 Q

T T
+/ /Sla(uaé)VUas'VsO+/ /fm(ueé,vsa)@ (6.2.32)
0 Ja 0o Jao
as well as
T T T
/ /veat<p=6/ /Sza(vea)VAvas-Vap—/ /Dz(lveal)Vvea~Vsa
0 Q 0 Q 0 Q
T T
—/ /525(v55)Vu55-Vg0+/ /fzg(ua;,vas)go. (6.2.33)
0o Jo 0o Ja

PROOF. We fix T € (0,00) as well as ¢ € L?((0,T); W%(Q)), denote the orthogonal pro-
jection on Xj by Py (where X} is as in Lemma 6.2.4) and set (Pyp)(x,t) == (Prp(-,t))(z)
for (z,t) € Q x (0,T). Moreover, let (ucs,ves1) and (kj);en be as given by Lemma 6.2.7.
According to Lemma 6.2.4 and Lemma 6.2.5, we then have

T T T
/ / Ueskt Prip = 6/ / S15(uest) VAU - V P —/ / D1 (|uesk|) Vuesk - VP
0o Jo 0o Jo o Ja

T T
+/ /515(u55k)vveak~vpk<ﬁ+/ /f15(u55k7055k)Pk50
o Jo o Jo

for all k € N. Since Py — ¢ in L2((0,T); W12(Q)) for k — oo, we infer
T T
lim / / Ueok;tPr; 0 = / / UestP
J7eo o Ja o Ja
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6. Global weak solutions to fully cross-diffusive systems

from (6.2.30). Moreover, as fi5 is bounded, (6.2.26) asserts fi5(uesk,, Vesk;) — f16(tes, Ves)
in L2(Q x (0,T)) as j — oo and hence

_lim/ /f15 Uesk; > Vesk, ) Pr; 0 = / /f15 Ues, Ves)p
j*)OO

Boundedness of Si5, (6.2.26) and Lebesgue’s theorem imply
1515 (uesr; )V Pr; 0 — Sis(uesk; )Vl L2 ax 0,1))
< I[S1s(uesk,;) — S1s(ues) Vol L2 x 1)) + 1515 (Uesr; ) VIPr, 0 — ¢lllL2ox0,1)) — 0
as j — oo and hence

T T
lim / / S16(Uesi; )V AUesk; - V Py, = / / S15(ues)VAuzs - Vi
Q 0 Q

J—00 0

due to (6.2.29).
A similar reasoning, relying on (6.2.28) instead of (6.2.29), gives

T T
,lim/ /Sw(%akj)Vueakj'VPkM:/ /315(U55)VU55~V<P
1= Jo Ja 0o Ja

and

T T
lim / / D1(|u55kj|)Vu55kj VP p= / / D1(|u56kj )Vues - Vi
Q 0 Q

J—00 0

so that indeed (6.2.32) holds, while (6.2.33) can be derived analogously.

Finally, we note that (6.2.27) implies u.sp, (-,0) — ucs(-,0) in L*(Q) as j — oo so that
(6.2.17) asserts

/uag(-,O)ﬂ) = lim | wes, (-, 0) Pyt = / upyp  for all ¢ € L*(Q).
Q Iz Ja Q

This implies uc5(+,0) = ug a.e. and, by combining this with an analogous argument for the
second solution component, we arrive at (6.2.31). O

6.2.2. The limit process § \ 0: guaranteeing nonnegativity

As opposed to the problem solved by (uesk,vesr) for k € N, where (6.2.15) and (6.2.16)
require that ¢(-,t) € X}, for all ¢ € (0,00), in the weak formulation for the problem (6.P.s),
(6.2.32) and (6.2.33), all ¢ € L ([0, 00); W12(Q)) are admissible test functions. In partic-
ular, we may now test with anti-derivatives of Sm(lua;) and 5o (11)55), allowing us to obtain
estimates independent of both € and § in Lemma 6.2.10. These bounds not only form the
basis for the limit processes ¢ N\, 0 and £ \, 0 (which are finally performed in Lemma 6.2.14
and Lemma 6.2.17, respectively) but are also important for showing that the later obtained
limit functions u., v, are nonnegative (see Lemma 6.2.15).

To further prepare these testing procedures, we state the following lemma which should
essentially be well-known.
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6.2. Global weak W'-2-solutions to approximative systems

Lemma 6.2.9. Let T € (0,00), w,z € WH2([0,T); WH2(Q)) and ¢ € C1([0,T]).
(i) For H € C*(R?) with D*H € L*(R*R?**?), the functions H,(w,z) and H,(w,z)
belong to L?((0,T); W12(Q)) and

T
_/ 0 H(wv'z)@t"' H(’LU(-,T),Z(~,T))(,O(-,T) - H(’LU(,O),Z(,O))QO(,O)

Q
:/OT/thHw(w,Z)QO+/0T/taHz(w,z)cp (6.2.34)

holds.
(ii) Let H € C2(R) with H" € L°(R). Then H'(w) € L2((0,T); W'2(2)) and

-/ ! [ Bwyecs [ By~ [ B0 = [ ' [l

PrOOF. We first fix (wg)en, (2¢)een € C®(Q x [0,T]) with w, — w and 2z, — 2 in
WL2([0,T); W12(Q)) as j — oo. Hence, for X := L?((0,T);WH2(Q)) and thus X* =
L2((0,T); (WH2(Q))*), we have wy — w and 2z, — z in X, wy — w; and 2z — 2 in X* as
well as wy — w and zp — z in C°([0, T]; L3(Q)).

Then
t=T
/ /H (we, z2)pt + [/ H(w(- ))so(nt)]
/ / (we, ze) ]t = / /wetH (we, 2¢) <p+/ /ZetH (we, ze)p

By Taylor’s theorem for multivariate functions and Young’s inequality, we obtain

1 e

/ DY H (w(-,t), 2(-, t )|[w(_’t) —we(,t), 2(,t) — ze(-, )]

Ia\ 1

N Z max)g|=|q| ||DBH||L°°(R2) /[w( ) —we(-,t), 2(-, ) — ze(-, )]

la|=2 Q

<o), 2O [ i) = )]+ o026 0)] [ [2(020) = 200)

D2 H | o) /2 (w(-+t) = 2(,£))? + D2 H | o (rava) /1 (2(8) — 20 1))

—0 asf—ooforalltel0,T]

Since moreover

| Hu(w, 2) — Hyp(we, 2¢)|| L2 (2% (0,7))
< Hw(w, ze) — Huw(we, 2¢)|| 220 (0,7)) + [[Hw(w, 2) — Hy(w, ze) || L2(0x (0,1))
SN Huwwll o @2)llw — well 22 (@x (0,7)) + [ Hwz Lo ®2) |2 — 2ell 222 (0,1))
—0 as £ — 00 (6.2.35)
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6. Global weak solutions to fully cross-diffusive systems

by the mean value theorem and

T
Sup/ /|VHw(wg,24)|2
teNJo Ja

T
= Sup/ / | Hoo (Wi, 20) Vg 4 Hopz (we, 20)V 2]
teNJo Ja

T T
< sup <2||wa||%m<Rz> [ v+ 2o e, [ |v,z£|2> < o0
LeEN 0 Q 0 Q

by the chain rule, we conclude supyey [|Huw(we, 20)||% < oo. Therefore, after switching to
subsequences if necessary, we have

H,(we,z¢) = 0 inX asf— o0 (6.2.36)

for some w € X. From (6.2.35), we infer @ = H,,(w, z) so that (6.2.36) and the convergence
wg — wy in X* imply

T T
/ / wer Hyy (we, 20)p — / / wiHy (w, 2)p as £ — oo.
0 Ja o Jao

Likewise, we obtain

/ /zetH U)g,Zng—)/ /th (w, 2) as { — 0o

and thus (6.2.34).
Finally, the second part follows from the first one by setting H(p, o) = H (p) for p,oc e R. O

With Lemma 6.2.9 at hand, we are now able to prove an analogue to the entropy-like
inequality (6.2.10).

Lemma 6.2.10. Let €, € (0,1) and u.s,ves be as in Lemma 6.2.7. Set moreover

s pp 1 ‘
)—/l/lmdadp forie{1,2}

/Gw Ues (- /G25 Ves (-
Des(t) ::5/ |Au55(-,t)|2+5/ | Aves (- )2
Q Q

+ Dl(‘u€5('7t)|)|vus ( )|2 DQ(‘,UEZS( )|)

Slg(ug(;( t)) 525 1)65( t))
/ G15 u55 flﬁ(UES( 'Uai / G25 U€5 f25(u65( t)y /UE(S(.? t))

fort € [0,00). (Here, similarly as on Theorem 6.2.2, D.s and Res are to be understood as
functions in L°((0,00)).) Then
T
+/ Da(s(t)C(t) de

T
< E:(0 / Res(®)C(t) dt + / Es(t)C(t) dt (6.2.37)

holds for any T € (0,00) and 0 < ¢ € C*([0,T7).

as well as

|Vues(-,t)|?  and
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6.2. Global weak W'-2-solutions to approximative systems

PRrROOF. As S%é is continuous, positive and bounded, we may apply Lemma 6.2.9 (ii) and
Lemma 6.2.8 to obtain

| st ) = [ Grstunrco) - [ ) | Gstusc
-/ ' | wesGistucs)c
_ . / / |Ags ¢ — / l;;'““‘ Vuesl?¢
" /O | s Vst + /O | Gotueo) istus.ves)C (6.2.38)

for all ,6 € (0,1). Since the signs of the cross-diffusive terms in the first two equations in
(6.P.s) are opposite, (6.2.38) and a corresponding identity for the second solution component
already yield (6.2.37). O

Aiming to derive (g,0)-independent a priori estimates from (6.2.37) with ¢ = 1, we next
estimate the right-hand side therein and obtain

Lemma 6.2.11. Let T € (0,00) and G5, 6 € (0,1) i € {1,2} be as in Lemma 6.2.10. Then
there is C' > 0 such that

sup (/ G1s(ues(- / Gas(ves (- ) <C, (6.2.39)
te(0,7)
e/ / |Au55|2+€/ /|Av55|2 <C, (6.2.40)
0 Q 0 Q
T T
/ / |Vues|? —|—/ / |Vues)> < C and (6.2.41)
0o Jo 0o Ja
T T
/ /u§5+/ /1@5 <C (6.2.42)
0 Q 0 Q

for alle,6 € (0,1), where u.s and ves are as in Lemma 6.2.7.
PROOF. Since the definition of S; entails that

518,

Sis(s) > Si(|s]) + 6 > {S’ : : i for all s >0 and d € (0,1),
=1 -

we may estimate

1
In u,
|Gl (ues)| = / Sli((ja) < o Sl [0 <u < 1) forall 0 € (0,1)
u 21

and

uss g —1
1G5 (ues)| = / 51;(70) < “fg in {1 < ues) for all £, € (0, 1).
1 2]

Due to fi5(tes,ves) = 0 in {ues < 0} and because of (6.2.3) and (6.2.5), we thus obtain
c1 > 0 such that

t ¢
/ / J16(tes, Vo) G (ues) < / /(1 + ug(;) forall t € (0,7) and &,6 € (0,1).
0 Ja 0 Jo
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6. Global weak solutions to fully cross-diffusive systems

Moreover, positivity of ug and vy implies finiteness of

sup </ Glg(uO)+/ G25(v0)) .
6€(0,1) Q Q
Ag DRilsD D;

s (5) > 5 i € {1,2}, for all s € R, along with an analogous computation for the

second solution component and choosing ( =1 in (6.2.37), we obtain ¢y > 0 such that

/Gw (ues (- /G25 (ves (-
t D t
—|—€/ / \Au55|2+5/ /|Av55\2+;1/ /|w86|2+;2/ /|w55|2
0 Ja o Ja S1Jo Ja Sa Jo Ja

t t
<eco+ cz/ / u?s + 02/ / vZs for all t € (0,7T) and €,0 € (0,1). (6.2.43)
0o Jo 0o Jo

1 ed
19(tes) / /516 7 _S/ (p=1)dp
>

1 /1 1
=z D) > — (22— =
~ 5 (2 0T g ~ (es - )> S1 (4u55 2>
in Qx (0,7) for all £, € (0,1) and hence

Since

t t
/ / u?s < 4?1/ / Gis(ues) +2|1QT forallt € (0,7) and €, € (0,1), (6.2.44)

a consequence of (6.2.43) is

/Gw uas /026 Usé
< c3+4eo max{§17§2}/ (/ G1s(ues) +/ G25(Ueé))
o \Jo Q

forallt € (0,T), e,8 € (0,1) and c3 := co +4co|QT. Gronwall’s inequality thus asserts that

/ Ghs(ues(- / G1s(ves (-, 1)) < cetezmax{51,52}T
holds for all ¢t € (0,T") and €, € (0,1), implying (6.2.39). Finally, (6.2.40)-(6.2.42) follow
from (6.2.43), (6.2.44) and (6.2.39). O

Again seeking to apply the Aubin—Lions lemma, we complement the bounds (6.2.39)—(6.2.41)
by estimates for the time derivatives in the next two lemmata. However, in contrast to
Lemma 6.2.6 and owing to the fourth-order regularization terms, we have to settle for
bounds in L2((0,7T); (W”HQ(Q))*) instead of L2((0,T); (W12(Q))*).

Lemma 6.2.12. For T € (0,00), there exists C > 0 such that

/ /U55t§0+/ /Dl |u56‘ Vs - v‘ﬂ
—/ /Sl(uss)Vva5-Vso—/ /f1<u567U€6)90
0 Q 0 Q

< 05%||90||L2((0,T);W"+112(Q)) (6245)
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and

T T
/ / vesip + / / Da([v25]) Vs - Vi
0 Q 0 Q
T T
+/ /SQ(USJ)vueé VSD*/ /fZ(Us&UE(;)(P
0 Q 0 Q

S Ce%||50||L2((0,T);W”+1’2(Q)) (6246)

foralle,§ € (0,1) and p € L*((0,T); W™12(Q)), where u.s and ves are as in Lemma 6.2.7.

PROOF. Since n+ 1> 5 + 1, Sobolev’s embedding theorem allows us to fix ¢; > 0 with
IVellLe@) < erllellwnirzg — forall p € WHH2(Q).

Moreover, we fix T € (0, 00) and choose ¢z > 0 such that (6.2.40) and (6.2.41) hold (with C

replaced by c3). Then

T
/ / S16(tes)VAugs - Vo
o Jao

< +

T
//515(1&55)AU55A<P
o Ja

< | Aucs|lz2(@x 0,1)) (§,1||Vuaa||L2(Qx(o,T))||V%0||Lw(9x(o,T)) +§1||A<P”L2(Q><(O,T)))

T
/ / Sis(ues) AussVues - Vi
0 Q

< g_% . 02(0102§11 + gl)||<p||L2((O’T);val,z(g)) for all g, b€ (O, 1).
Combined with (6.2.32), this already implies (6.2.45), while (6.2.46) can be shown analo-
gously. O
Lemma 6.2.13. Lete € (0,1), T € (0,00) and (ues, ves) be as in Lemma 6.2.7 for § € (0,1).
Then there exists C' > 0 such that
||’u5§t||L2((()7T);(W71+1.2(Q))*) + H’Uegt||L2(((),T);(WnJrl,Z(Q))x) < C fOT all § € (O7 1). (6247)

PrOOF. This immediately follows from Lemma 6.2.12 and the bounds provided by Lem-
ma 6.2.11. O

With the estimates above at hand, we are now able to obtain convergence of certain subse-
quences of (ues, Veg).

Lemma 6.2.14. Let ¢ € (0,1). For § € (0,1), let ucs,ves be as given by Lemma 6.2.7.
There are functions ue,ve: Q% (0,00) = R and a null sequence (0;)jen C (0,1) along which

Ues; — Ue and Ves; — Ve pointwise a.e., (6.2.48)
Ues, — Ue and Ves, = Ve in LE.(Q x [0,00)), (6.2.49)
e, (- t) = u(-t) and v, (-, t) = v(-,t) in L*(Q) for a.e. t € (0,00), (6.2.50)
Vues;, = Vu.  and Vv, = Vo in L. (Q x [0,00); R™), (6.2.51)
Ues,;t — Uet and Vst — Vet in L2 ([0, 00); (W™TH2(Q))*),  (6.2.52)

as j — oo.
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PROOF. Due to the bounds in (6.2.41), (6.2.42) and (6.2.47), by means of the Aubin—Lions
lemma and a diagonalization argument, we can obtain a null sequence (d;);en C (0,1)
and functions u., ve: £ x (0,00) — R such that (6.2.49), (6.2.51) and (6.2.52) hold. Upon
switching to subsequences, if necessary, (6.2.48) and (6.2.50) follow then from (6.2.49). O

As already alluded to, the main reason for introducing the parameter § in (6.P.s) is to be
able to establish a.e. nonnegativity of the functions u. and v, constructed in Lemma 6.2.14.
This will inter alia assure that each component of the solution (u,v) to (6.P) obtained
in Subsection 6.2.3 below is nonnegative and hence may be interpreted as a population
density.

Lemma 6.2.15. For alle € (0,1), uc > 0 and v > 0 a.e. in Q x (0,00), where u. and v
are given by Lemma 6.2.14.

PROOF. This can be shown similarly as in [29, pages 554-555]. However, since the solutions
considered there fulfill regularity properties going beyond those stated in Lemma 6.2.14, we
give a (slightly different) proof here.

Let us fix € € (0,1) as well as T € (0,00) and for the sake of contradiction assume that
(a henceforth fixed representative of) wu. is not nonnegative a.e. in Q x (0,7'). That is,
[{ue < 0}] > 0 so that by the sigma additivity of the Lebesgue measure, there is n > 0 such
that A == {(x,t) € Q x (0,T) : uc(z,t) < —n } has positive measure.

For § € (0,1), we now let uss and G5 be as in Lemma 6.2.7 and Lemma 6.2.10, respectively,
and denote by (d;) jen the sequence given by Lemma 6.2.14. Thanks to (6.2.48) and Egorov’s
theorem, we then obtain a measurable A’ C A with |[A\ 4’| < % such that wues, — u.
uniformly in A" as j — oo; in particular, there is jo € N with ugs, (z,t) < —g' for all
(z,t) € A" and j > jo.

Thanks to nonnegativity of S5, since Si(|s|) < —?;s for s < 0 (due to the mean value
theorem and as S1(0) = 0 by (6.2.4)) and by Fatou’s lemma (we note that lims\ o(—Ind +
In(—p + §)) = oo for all p < 0), we then have

T Ues; (1,’ t)
lim inf/ / Gis;(uzs;) > hmlnf/ / / da dpd(z,t)
j—=oo  Jy Q j—00 , 515

1
> li flA’ ——————dod
B IJIELI.} | | _727/)0 Sl(|g|)+5 aap
> liminf ———— / / dadp
oo maX{Shl} g
A/
= lim inf 4]

_ —Ind; + In(—p+46,))dp = o0,
min max{shl}/; i +In(—p+ )

contradicting (6.2.39). The same argument is also applicable for the second solution com-
ponent. O

Let us close this subsection by discussing in which way the pair (ue,v.) obtained in Lem-
ma 6.2.14 can be seen as a solution to the problem obtained by formally setting § = 0
n (6.P.5). Within a similar context, in [29, pages 552-553] it is shown that the limit
functions solve the corresponding problem in a certain generalized sense. However, as already
remarked in the preceding subsection, due to the possibly nonlinear diffusion terms D; and
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D5, the convergences obtained in Lemma 6.2.14 are slightly weaker than those established
in [29]; that is, the methods developed in [29] are not directly applicable to our situation.

Nonetheless, we are able to prove that (u.,v:) is up to an error term of order £% a weak
solution of that problem, which, having the limit process € \, 0 in mind, turns out to be
more convenient for our purposes in any case.

Lemma 6.2.16. Let ¢ € (0,1), ue,v. be as in Lemma 6.2.14 and T € (0,00). Then there
is C' > 0 such that

‘—ATAugwt—/(lqu(',0)+/()TADl(us)vus'V(p

T T
—/ Sl(uE)VUE ~V<,0—/ fl(uaave)w
o Ja 0 JQ

< Ce? el 20,1y, wn+1.2(0)) (6.2.53)

‘_/OT/QUE%—/Qvogo(-,o)+/OT/QD2(vE)Vvs-Vs0
+/OT/QSQ(%)VUE.W/OT/sz(ue,vs)so

< Cet|ol|L2(o.rywntr2 @) (6.2.54)

and

for all p € C°(Q x [0,00)).

ProOOF. Ford € (0,1), we let (ues, ves) be as in Lemma 6.2.7 and we denote the null sequence
given by Lemma 6.2.14 by (J;);en. The convergences (6.2.49), (6.2.51) and (6.2.48) imply

that
T T
’—/ /uacpt—/uogo(~,0)+/ /Dl(ug)Vu5~V<p
o Ja Q o Jo
T T
*/ / Sl(us)vvs : vSof/ / fl(us,vs)w
0o Jo o Jo
T T
[ [ [wwetor+ [ [ Dalues ) Vues, - T
0o Ja Q 0o Jo
T T
—/ /Swj(ueéj)vvasj -W)—/ /fwj(ueéj,vaéj)@
0o Ja 0o Ja

for all p € C°(2 x [0,00)). As Lemma 6.2.9 (ii) and (6.2.31) assert

= lim
Jj—oo

T T
—/ / Ues,; Pt — / uop(+,0) :/ / Ues ;1 for all p € C2°(Q x [0,00)) and j € N,
0o Ja Q 0o Ja

we see that (6.2.53) (with C as in Lemma 6.2.12) follows from (6.2.45). An analogous
argumentation yields (6.2.54). O
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6.2.3. The limit process ¢ \ 0: proofs of Theorem 6.2.1 and
Theorem 6.2.2

Since Lemma 6.2.11 and Lemma 6.2.13 already contain e-independent estimates, there are
no further preparations necessary in order to undertake the final limit process of this section,
namely € N\, 0.

Lemma 6.2.17. Let u.,v. be as in Lemma 6.2.14. There are nonnegative functions u,v €
L2 ([0,00); Wh2(Q)) and a null sequence (¢;);en C (0,1) such that

Ue, = U and Ve, = U pointwise a.e., (6.2.55)
U, — U and Ve, =V in L3 .(Q x [0,00)), (6.2.56)
e, (- t) = u(-t) and v (-,t) — v(-,t) in L*(Q) for a.e. t € (0,00), (6.2.57)
Vues,, = Vu  and Vv, = Vo in L3 .(Q x [0,00); R™) (6.2.58)
as j — oo.

PROOF. As the estimates (6.2.41) and (6.2.42) do not depend on ¢ and the right-hand sides in
(6.2.45) and (6.2.46) are bounded in ¢, the existence of u,v € L ([0, 00); W12(Q2)) and a null
sequence (&;);en C (0, 1) such that (6.2.55) (6.2.58) hold can be shown as in Lemma 6.2.14.
Moreover, nonnegativity of u and v follow from Lemma 6.3.2 and (6.2.55). O

Next, we show that the convergences asserted by Lemma 6.2.17 are sufficiently strong to
imply that the pair (u,v) constructed in that lemma at least solves (6.P) in the following
sense, which is yet somewhat weaker than the solution concept imposed by Theorem 6.2.1.

Lemma 6.2.18. The pair (u,v) constructed in Lemma 6.2.17 fulfills

[ - [t
_ / /D1 1T w+/ /Qsl(u)w-vW/Om/Qfl(u,v)w (6.2.59)

—/OOO/QU%—/QUOLP("O)
—/OOO/QDQ(u)VU~ch—/OOO/QSQ(u)Vu-V(p—i—/ooo/ﬂfg(um)go (6.2.60)

for all p € C°(Q x [0,00)).

and

PROOF. Since Dy, S; and f;, ¢ € {1,2}, are bounded, the statement immediately follows
from Lemma 6.2.16 and Lemma 6.2.17. O

In order to prove Theorem 6.2.1, in addition to Lemma 6.2.18, we need to make sure that u, v
are sufficiently regular; that is, that they belong to Wﬁj’f([O, 00); W12(Q)). To that end, the
e-independent estimates of the time derivatives obtained in Lemma 6.2.13 are insufficient.
However, we can obtain the desired regularity by testing directly at the ¢ = 0 level.

Lemma 6.2.19. The functions u,v constructed in Lemma 6.2.17 are contained in the space

WL2([0,00); WH2(Q)) and satisfy (6.2.8) and (6.2.9) for all p € L} ([0,00); WH2(Q)).

loc
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6.2. Global weak W'-2-solutions to approximative systems

PROOF. We fix T € (0,00). From Lemma 6.2.18 and Holder’s inequality, we infer that

L fef =\ e
/OT/Qm(u)vu.w /OT/Qsl(u)Vv.Vga /()T/Qfl(uw)@

— - 1
< (D1HVU||L2(Qx(o,T)) + S11IVvl| 22 x 0,1)) + ||f1HLoc([o,oo)2)(|Q\T)2) llell L2 0,7);w1 2 (0))

< + +

for all p € C°(Q x (0,T)), so that since u,v € L2((0,T); W2(Q)) by Lemma 6.2.17 and as
C(Qx(0,T)) is dense in L2((0,T); W2(Q)), we can conclude u; € (L2((0,T); W2(Q))* =
L2((0,T); (W12(Q))*). Thus, u, and by the same reasoning also v, indeed belongs to
W ([0, 7): WH(0).

As therefore

/Ol/ﬂwz —/Ol/gusot—/gu(w())w(»o) for all p € C(Q x [0,1))  (6.2.61)

by Lemma 6.2.9 (ii), we infer from (6.2.59) and the regularity of u and v that there is ¢; > 0
such that

[0 —Uo)sﬂ('ao)’

< (luellz2 o, 0y;0w12(09)) + [1D1(w) Vu = S1(w) Vol 2ax 0,1))
+Hf1(u7v)||L2(Q><(O,1))) el L2(0,0);w2(0))
<allellzoaywrz@)  forall p € CZ2(Q x [0,1)).

Taking here ¢ supported near Q x {0}, we further conclude
/(u(~,0) —ug)Yp =0 for all ¢ € C(Q),
Q

which due to density of C*°(Q) in L?(Q) implies u(-,0) = ug a.e. in Q and hence the
first assertion in (6.2.7). Therefore, (6.2.8) follows from (6.2.59) and (6.2.61); first for all
0 € C(Q x [0,00)) and thus by a density argument also for all p € LZ ([0,00); W12()).
The remaining statements for the second solution component can be derived analogously. [

Finally, we show that an analogue to the entropy-type inequality (6.2.37) also holds for the
limit functions u, v.

Lemma 6.2.20. Let G;, i € {1,2}, £, D, R be as in Theorem 6.2.2, T € (0,00) and
0<¢eC>®(0,T]). The functions u, v given by Lemma 6.2.3 then satisfy (6.2.10).

ProOF. Fore,d € (0, 1), we denote the pairs constructed in Lemma 6.2.7 and Lemma 6.2.14
by (ues,ves) and (ue,ve), respectively, and let the sequences (¢;);en and (J;7);en be as in
Lemma 6.2.14 and Lemma 6.2.17. Moreover, again for ¢, € (0,1), we let G5, i € {1, 2},
&5, D.s and R.5 be as in Lemma 6.2.10.

In order to prove (6.2.10), we essentially need to ensure that the inequality (6.2.37) survives
the limit processes € = ¢; \, 0 and = J; \, 0. To that end, we first note that for any
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6. Global weak solutions to fully cross-diffusive systems

n > 0, the family

( D1(|u5] IG D C)
S16, (ess, ) F07) e
is bounded in L>®(2 x (0,7)) and, as first j — oo and then j' — oo, converges a.e. in

Q% (0,T) to sﬁﬁﬁ)n@ thanks to (6.2.48) and (6.2.55). Thus, combined with (6.2.51) and

(6.2.58), we see that

Di(fuc,s )\ (D )é
<Sl§]./(ugj5j/)+7]<> VUEJ' IG (Sl(u)‘i’nc Vu

in L2(Q x (0,T);R™) as first j* — oo and then j — oo for all > 0. Consequently,

hmmfhmmf/ / Da(u 6]61 |) |V | ¢=> / / | ¢
j—oo  j'—oo 515 v Uajé v tesdy S

for all n > 0 by the weakly lower semicontinuity of the norm. Since n > 0 and by Fatou’s
lemma, we can conclude that

! D
hmlnfhmmf/ / 1 (e, — |Vu5] LP¢> / / 1(4) |V K¢
j—oo  j/—o0 S1s, (Uejs,,) ! (u)

Next, we show that

T
lim lim / / Gl (e, ) a (o5 )4 (06,5, )4)C = / / W) fi(u,0)C. (6.2.62)
Jj—ooj'—o0 J Q J J 77 i J

To that end, we first establish pointwise a.e. convergence to 0 of the integrand; that is, we
prove that

lim lim G16 (ueys,) f1((ues, )+ (Vejs,,)+) = G(u) fi(u, v) (6.2.63)

Jj—00 j'—o0

a.e. in Q x (0,00). We first prove convergence on the set

A::{(x,t)EQX(O, 00) : lim lim wu.js, (ac,t):u(az,t)>0}.

j—00 j'—o00

For (z,t) € A and arbitrary n € (0, u(;’t)), there is jo € N such that for j > jo, we can find

Jjo(4) € N with the property that [uc,s, (z,t) — u(z,t)| < n and hence uc s, (v,t) > w

for all 3/ > j{(j) and j > jo. Since s% is bounded on ("(;’t),oo)7 Lebesgue’s theorem gives

* Lues, @0)(0) = L s, (@.0)1)(0)

J%JI%G”(“WS (2,1)) = lim lim_ o Si(o)+o; 7
% L (1,u(z,0)) (0) = Liu,n,1)(0) )
_ u(z, 1), do =G ).
/(; Sl(O') o l(u(‘r> ))

As fy is continuous and u,v > 0, we thus obtain (6.2.63) for all points in A. Next, we
consider points in space-time where u vanishes and set

B:= {(m,t)éQX(O, o0) : lim lim ucs, (:E,t):u(x,t):()}.

]*)OO_] e el
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6.2. Global weak W'-2-solutions to approximative systems

Similarly as above, we can see that |u5j57,,\ < 1 for sufficiently large j, ;' € N. Since

Ues 1
———do
[ 51(0')4‘5

for all ,6 € (0,1), the assumption (6.2.5) and the fact that fi((ues)+,(ves)+) = 0 in
{ues < 0} imply that (6.2.63) also holds for points in B. As (6.2.48), (6.2.55) and the
nonnegativity of u assert that (Q x (0,00))\ (AU B) is a null set, we indeed obtain (6.2.63)
a.e. in 2 x (0,00).

AN 1
<—/ fdcff—|ln(u55)\ in {0 < ugs <1}

G5 (ues)| =
16 S] S]

Again thanks to (6.2.5), there is ¢; > 0 such that

|G (tes) 1o (tes, Ve, )¢

¢llz=@xcor
< O (i) £1 () -+ (08,4l Lo<usss)
=1

1 f1ll oo ((0,00)2) (ues — 1)]1{1<u€5})
< e1(1+ |uesl) in 2 x (0,7T) for all €,0 € (0,1)

so that (6.2.63), Vitali’s theorem as well as the bound (6.2.42) assert (6.2.62).

As moreover 0 < Gis(ues) < ca(l+u2;) in Q x (0,7)) for all €,6 € (0,1) and some ¢y > 0
and since lim;_, o0 limj/ oo (1 + u?jé_,) = (14 u?) in LY(2 x (0,T)) is contained in (6.2.49)
and (6.2.56), Pratt’s lemma asserts that

T T
lim lim / / Gis, (ue,s., )¢ :/ / G (u)¢’ for all T € (0, 00).
j%ooy’—)oo 0 Q J J 0 Q
Likewise, now relying on (6.2.50) and (6.2.57) instead of (6.2.49) and (6.2.56), we also obtain

lim lim Gis,, (ueso, (T / G1(u T) for a.e. T € (0, 00).
Q

j—o0 j'—o0
Finally,

G1s(ug) = / / mdadp%/ / S0 dodp G1(up) as 0 \,0

by Beppo Levi’s theorem so that according to Lebesgue’s theorem,

/Gw(uo)g(om/al(uo)g(m as 6\, 0,
Q Q

Combined with analogous arguments for the second solution component, these conver-
gences show that (6.2.10) holds for a.e. T € (0,00). Since u,v € C°([0,00); L?(2)) N
L2 .([0,00); W12(Q)) by Lemma 6.2.19, the inequality (6.2.10) holds indeed for all T €
(0, 00). O

Finally, we note that the previous two lemmata already contain the main results of this
section.

PrROOF OF THEOREM 6.2.1 AND THEOREM 6.2.2. Theorem 6.2.1 and Theorem 6.2.2 are
direct consequences of Lemma 6.2.19 and Lemma 6.2.20, respectively. O
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6. Global weak solutions to fully cross-diffusive systems

6.3. Approximative solutions to (6.P)

In the remainder of the chapter, we will construct global weak solutions (in the sense of
Definition 6.5.1 below) of (6.P). To that end, we henceforth suppose that (6.1.4), either
(6.H1) or (6.H2), (6.F1) or (6.F2), (6.1.7), (6.1.10) (with p; and r;, ¢ € {1,2}, as in (6.1.8)
and (6.1.9)) as well as (6.1.12) hold and that D;,S;, fi;, ¢ € {1,2} are as in (6.1.3) and
(6.1.5).

Sections 6.3-6.5 are organized as follows. In the present section, we will define approxima-
tions of Dy, S;, fi, i € {1,2} as well as of ug and vy so that Theorem 6.2.1, which has been
proven in the preceding section, becomes applicable and thus provides us with global weak
solutions (uq, va), @ € (0,1), to the corresponding approximative problems.

The main part of Section 6.4 then consists of deriving a-independent bounds from the
entropy-like inequality given by Theorem 6.2.2. This will then allow us to obtain solution
candidates (u,v) of (6.P) in Lemma 6.4.14. Finally, in Section 6.5, we show that under
the hypotheses of Theorem 6.1.1, these convergences are sufficiently strong to conclude that
(u,v) is indeed a global weak solution of (6.P).

Having an application of Theorem 6.2.1 in mind, we now define approximative functions for
each henceforth fixed « € (0,1). We begin by setting

xis(s + 1)

s+1 m =

for s > 0 and i € {1,2}.
We also fix £ € C°(R) with £(s) =1 for s <0 and £(s) =0 for s > 1 and set
fia(s1,82) = fi(s1,52)€1a(51)&2a(s2)

1
where £ (s) = {(aT={a.e2T s — 1) for s € R; in particular,

1, s< a_4—mi"%f11><12}, )
Cials) = { - for all @ € (0,1) and i € {1,2}. (6.3.1)
0, s>2a *—minfar.a2}

As a last yet undefined component, let us construct initial data uge, Voo approximating ug, vg
in a suitable sense as o N\ 0.

Lemma 6.3.1. There are families (uoa)ac(0,1)s (Voa)ac(0,1) C C>(Q) such that uge, > 0 and
Voo > 0 in Q for all a € (0,1), (o u0)(fouoa) = (Jquo)? and (fov0)([ov0a) = (fgv0)?

for all a € (0,1),
(Uoa, Voo ) = (ug,vo) a.e. and in X1 X Xo as a \0, (6.3.2)
where X; = L*79%(Q) if ¢; < 1 and X; :== Llog L(Q) if ¢ = 1 for i € {1,2}, as well as

; P _ : P _
513{% al[uoall7pq) =0 and 33{% al[voallzeq) =0, (6.3.3)

where p == 3 — min{q1, ¢2}.
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6.3. Approximative solutions to (6.P)

PROOF. As C>(Q) is dense in X; (cf. [1, Theorem 8.21] for X; = Llog L(f2)), and since ug
belongs to X; and is nonnegative by (6.1.12), there is a sequence of nonnegative functions
(ipj)jen C C°°(Q) with @ip; — up in X; as j — oo. Since we may without loss of generality
assume that ug # 0, v; = ([, uo)(fg(ﬂoj—f—%))*l is positive for all j € N so that the functions
ug; = v, (toj + %) not only fulfill ug; — o in X as j — oo but also [, ug; = [, uo and
Uug; > A;—J > 0 for j € N. Since X; — L'(Q), after switching to a subsequence if necessary,
we may without loss of generality also assume that @y; — ug a.e. as j — oo.

For a: € (0,1), we observe then that

1 1
Ay =4 jeN:j< = and |ug|tl, <= Ul
o= {d N < S ity < 5 fU )
is nonempty and finite, so that
Jo =maxA, and uga = uoj,, a € (0,1),

are well-defined. Because j, — 0o as a \, 0 and a|ug;,

o) < o}~ for all o € (0,1)
with j, > 1, we obtain the statement given an analogous definition of and argumentation
for (’an)ae(o’l). O

With these preparations at hand, we are now able to apply Theorem 6.2.1 to obtain global
weak W12-solutions of certain approximative problems.

Lemma 6.3.2. Let o € (0,1), D;n, Sias fias © € {1,2} be as defined above and woq,voq be
as given by Lemma 6.3.1. Then there exists a global nonnegative weak Wt-2-solution (in the
sense of Theorem 6.2.1) (U, vs) € (WE2([0,00); WH2(Q)))? to

loc

Ut = V + (D16(ta) Vg — S1a(ta)VVa) + fla(ta,ve) in Q x (0,00)
Vot = V + (D20(Va) Vg + S20(Va)Va) + foa(tia,ve) in Q x (0,00)

6.3.4
81/”(1 = auva =0 on 0f) x (O, OO) ( )
ua(,O) ZU,O@,U(X(',O) = Voo in Q.
Setting
s prp 1
Gin(s) = /1 /1 SNE) do dp fors >0 and i€ {1,2}, (6.3.5)

this solution moreover satisfies

r Dla(ua) 2 r DQa(ua) 2
/QGla(ua(~,T)) —&—/QGQQ(UQ(-,T))—I—/O Qism(ua) [Vl —l—/o 975204(%1) [Vua|

SLGMWJ+LGMMM+Aaé@J%m4%WJ+Ajé%J%mJMWJ
(6.3.6)

for all T € (0,00).

PROOF. As ugq, voo belong to C*° (ﬁ) and are positive in by Lemma 6.3.1, the statement
follows from Theorem 6.2.1 and Theorem 6.2.2 (with ¢ = 1) once we have shown that
(6.2.1)—(6.2.5) hold for D;, S;, f; replaced by Dia, Sia, fia, © € {1,2}.
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6. Global weak solutions to fully cross-diffusive systems

Indeed, by definition D;q, Sia belong to C'°([0, 00)) with

1=m; 1 —4qi .
a < Dia(s) < d; {? 1 )7:-_—0147_‘_ i i 17 and 0 < Sin(s) < xq {((l 1 7)(1. € Z 8’
o/ @, M= THa/) @i >
as well as
[Sia(s)l o (A +]g —1)(s+ D)% |gilov(s + 1)
Xi 14+ a(s+1))= (1+ afs + 1))+l

O‘_qia qi > 07
< (1+ g — 1 +|gile) _
(H%)ql7 q: <0

for s > 0 and 7 € {1,2}. Also, for i € {1,2}, the function

Sia(s)  xi(s+ 1)1t
0,1]5 5= s (I+als+1)

is continuous and positive and, as s > s;l for all s > 1,

l+a(s+1)) =~ 2 la%,  ¢<

i 1 Qi 9 = qi7 ) 0)
inf S;a(s) > Xt <S+> > X {(H%‘) %> for i € {1, 2}.
s>1 ) <0

That is, (6.2.1), (6.2.2) and (6.2.4) hold.

As fio is continuous with supp fia C [0,20474*“1‘“%121@2}]2 = K, [|fiallLo=((0,00)2) €quals
| fiallco (k) and is thus finite, implying that (6.2.3) is fulfilled for ¢ € {1,2}. Moreover, the
definitions of f; and f1, entail that [0,00)? > (s1,52) — %11‘52) is also continuous and
supported in K, implying limg,\ 0 sup,,>g [fia(s1,52) Ins;| = 0. The second statement in
(6.2.5) follows analogously. O

6.4. The limit process a \, 0: obtaining solution
candidates

Apart from assumptions made at the beginning of the preceding section, throughout this
section, for a € (0,1), we also let Djn, Sia,&ia, ¢ € {1,2}, as introduced in Section 6.3,
Upa, Voo as Well as ug, v, as given by Lemma 6.3.1 and Lemma 6.3.2, respectively, and G4,
i € {1,2}, as in (6.3.5).

In order to prepare taking the limit o N\, 0, we collect several a priori estimates. As already
alluded to in the introduction of this chapter, the main ingredient will be an entropy-like
inequality; that is, we will heavily rely on (6.3.6).

6.4.1. Preliminary observations

To streamline later arguments, in this subsection, we first collect several elementary state-
ments regarding the parameters and nonlinearities involved in Theorem 6.1.1.
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6.4. The limit process a \, 0: obtaining solution candidates

Lemma 6.4.1. Set 3; :=m; —q; — 1 fori € {1,2}. Then the inequalities

2 (mi —1- %) <pi, Bi>—-2 and p;>0 (6.4.1)

hold.
PRrOOF. Recalling that p; > 8; +2 + @ by (6.1.8) and ¢; <1 < 2 by (6.1.4), we have

i 22—4¢q; .
2(mi—1—62>=ﬁi+2qz‘<ﬁi+2%‘+(nq)SPi for i € {1,2},
which shows that the first inequality in (6.4.1) is fulfilled. The second one therein is equiv-
alent to the assumption (6.1.7), upon which the third one follows by the definition of p; as

q; < 2. O

As further preparation, we estimate the functions G, defined in (6.3.5) and their derivatives
both from above and from below.

Lemma 6.4.2. Set

1 <1
L,(s) = {1’ a o fors>0andg<1. (6.4.2)
ns, g=1

and let G;o be as in (6.3.5) for i € {1,2} and o € (0,1). Then there are C1,Ca,C3,Cyq,> 0
such that

e (R c

Gia(s){ =1 (1+‘¥(3+1)> qﬁ(s +e) =G for s >0, (6.4.3)
< Cas¥ % L, (s) + Coas® ™9 + Oy
> Csl

Gla(s) {_ Calns fors € (0,1) and (6.4.4)
<0
> Gl(s) — Cras?~ %

Gi , >1 6.4.5

m(S) {S G;(S) + C4as2*‘h' Jors > ( )

for a € (0,1) and i € {1,2}.
Proor. We fix i € {1,2}. Since

el als 11| = a1+ oo+ DI+ 1) < s 1)

for all s > 0 and « € (0, 1), the mean value theorem implies that

XilGia(s) — Gi(s)] = sign(s — 1) /1 : +ao(é<§0++1)13i]qi1_ -

1 2-q;
1 qi
< ag;| sign(1 —5)/ uda
s o

do

for all s > 0 and « € (0,1). Estimating here 0 +1 < 2 and 0 + 1 < 20 for ¢ € (0,1) and
o > 1, respectively, for all a € (0, 1), we obtain

1
1
XilGlin(s) — Gi(s)] < 22_(“04%\/ p do = 2*"%alg||In 5| for all s € (0,1)
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6. Global weak solutions to fully cross-diffusive systems

and
2—q; .

2574 a|ql| 52—qi
2—q

As moreover G}, (s) <0 for s € (0,1) and o € (0,1) and

1 1—gq;
1 qi
X1|G;(S)| :/ (0’+ ) do < 21*Qi
s g

consequences thereof are (6.4.4) and (6.4.5) for a certain C3, Cy > 0.

XilGln(8) — Gi(s)] < 22_qia|qi\/1 o' 7% do < for all s > 1.

In s| for all s € (0,1) and « € (0, 1),

Furthermore, again making use of the fact that s +1 < 2s for s > 1, a direct computation
shows that
s orp 11—
_ / / w dodp

< 2= ql/ / o T dodp

9l-ai / -
S———— [ p TLg(p)dp
1=glig<1y 1 /

21-4:
T (2-g)(1 = qilyg<1y)

In a similar vein, we obtain ¢, co > 0 such that

(I+a(o+1)%
/ / o(o+1)a-1 dodp
X P
> (1+a(s+1))mm{q'iv°}/ / o % dodp
1 1
c152 % Ly, (5)
= (1+a(8+1))max{—qi,0}

c18” ULy (s+e)  caln(l+ e)lg,<1ys” %
= (1 T a(s + 1))n1ax{—q71,0} (1 4 Oé(S + 1))maX{—qi,O}

s*7U L, (s) for s > 1. (6.4.6)

— C28

— C2S8

for s > 1 and a € (0,1), where in the last step we have made use of the fact that In(s+e) —
Ins=1In % <In(1+e) for s > 1. Since the first term on the right-hand side herein grows
faster than the other two, there is moreover ¢z > 0 such that

2—qi

18" 1 L, (s +e)
iGia >

X () 2(1 + a(s + 1))max{-a:,0}

—c3

e s 2—qi
>af__ 5 L. _
=9 <1+a(5+1)> (s te)—c

2—q;
1
c1 ( s+ )) L, (s+e)—cs for s > 1 and a € (0, 1),

>
274 \14+a(s+1

which, when combined with (6.4.4)—(6.4.6), implies the existence of C1,Cs > 0 such that
(6.4.3) holds for all s > 1 and « € (0,1).

Finally, by integrating (6.4.4), we see that there is ¢y > 0 such that —cy < G4 (s) < ¢4 for
all s € [0,1) and a € (0,1) so that, possibly after enlarging C; and Cs, (6.4.3) is indeed
valid for all s > 0 and a € (0,1). O
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6.4. The limit process a \, 0: obtaining solution candidates

The estimates obtained in Lemma 6.4.2 and the definitions of D;, and S;, now allow us to
infer the following from the entropy-like inequality (6.3.6).

Lemma 6.4.3. Let T € (0,00). Then there exists Cy,Cy > 0 such that

Cl/QBi*ql(ua(wt))qu(ua(, )+e)+01/ BL % (va (1)) Loy (va(-, 1) +€)

d t
+—1/ /Bg“““‘l ) Vua|? + //Bm2 271 ()| Vg |2
X1 Jo Ja

§C’g+/Ot/QG’m(ua)fla(ua,va)+/o /QG'Qa(va)fga(ua,va) (6.4.7)

for allt € (0,T) and all a € (0,1), where Ly, is as in (6.4.2) and

s+1

B,(s) = TTaGT D) s>0,a€(0,1). (6.4.8)

PROOF. As according to (6.3.2) and (6.3.3), there is ¢; > 0 such that

/ ug Ly, (ton) + a/ up +/ ver ® Ly, (Voa) + a/ Ve < ¢y for all a € (0,1),
Q Q Q Q

an application of (6.4.3) gives ¢ > 0 such that

/ G1a(ton) —|—/ Gaa(Voa) < co for all o € (0,1),
Q Q

Moreover,

Dio(s) > d; B (s) and  Sia(s) < xiBZ(s)

and hence g;z(( )) > 4 SBatT %=1(s) for s > 0, a € (0,1) and i € {1,2}. Also making use of

the first inequality in (6.4.3), we can then infer (6.4.7) from (6.3.6) for certain C;,Cs > 0. O

6.4.2. Controlling the right-hand side of (6.4.7)

In order to obtain a-independent a priori estimates from (6.4.7), we need to obtain an upper
bound for the terms on the right-hand side therein. Restricted to the set where u, and v,
are at least 1, we will bound the corresponding integrand using one of the assumptions
(6.F1) and (6.F2). This is complemented by the following observation essentially showing
we may indeed focus on that regime.

Lemma 6.4.4. There is C' > 0 such that

G/ (ua)fla(ua7va) + Glza(voc)féa(uayva)
<C+ (G (Ua)fl (uav UO&) + GQ(Ua)fQ(uom Ua)) 51&(“&)52&(”&)1{ua>1}r‘|{va>1} (649)

a.e. in Q x (0,00) for all a € (0,1).
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6. Global weak solutions to fully cross-diffusive systems

PROOF. For a € (0,1), we fix representatives of u, and v, in LL _(Q x [0,00)) so that sets
such as {uy < 1} or {v, < 1} are well-defined.

According to (6.4.4), there is ¢; > 0 such that
cilns <G, (s) <0  forallse(0,1), a€(0,1)and i€ {1,2}.

Recalling the definition of f;, and that u,, v, are nonnegative, this implies

ia(ua)fla(umvoz) <ci|ln “a‘ﬂluigla(ua)&a(va) in {u, <1} and

/Qa(va)fZa(uaa Vo) < c1]In Ua|(ﬂ2”§ + a2uaVa)810 (Ua)§20 (Va) in {v, <1}

for all @ € (0,1). Since (0,1) 3 s — slns is bounded, there is ¢o > 0 such that
Lo (o) fia(Ua, va) < co in {u, <1} and (6.4.10)
e (Va) foo (Uas Vo) < co + Cotia€1a(ta)E2q (V) in {v, < 1}. (6.4.11)
for all & € (0,1) and thus (6.4.9) holds on the set {u, < 1} N {v, < 1} for some C > 0.

Moreover, by (6.4.5), there is ¢5 > 0 such that

|G, (5) — Gi(s)| < czas® 4 forall s > 1, a € (0,1) and 7 € {1,2}.
As (6.3.1) entails that u, and v, are bounded by 2a wwlaa on supp &1a(uq) and
supp €24 (Va ), respectively, and hence
auiiql |f1a(ua7 Ua)| < auiiql ()\lua + ,ului + aluava)fla (uoz)an (er)
< 24—q1()\1 + 1+ al) =cy4 in {ua > 1} for all o € (0, 1),

we can conclude

aa(ua)floz(uom Ua) S Gll (ua)fl (uam va)fa(va)fa(va) + C3C4 in {ua Z 1} (6412)
for all @ € (0,1). Likewise, there is ¢5 > 0 such that
lza(va)fQQ(ua7va) S G/Q(Uoz)fQ(uom Ua)ga(va)ga(va) + C3Cs5 in {'Uoz Z 1} (6413)

for all @ € (0,1). Therefore, after enlarging C' if necessary, (6.4.9) holds also in the regime
{ue > 1} N{v, > 1}.

Furthermore,

1 H1 o M1 9 . Ug, A+ ag
o Va) <t (A — Srug + )—— < -t n 2>y, <1
filua,va) <u (1 2u ay 2u 2ua i {2 = } {v }

for all @ € (0,1) so that since G (s) > 0 for s > 1, we have
G’ (ta) f1(tas Va)é1a(ta)é2a(va) < c6 — %Uggla(ua)&a(va) in {uq > 1} N{va <1}

for all a € (0,1), wherein ¢g == |G f1(-, 1)||Loc(0’2@1“+a1>) is finite as G f1(+, 1) is continuous
1

on [0,00). Combined with (6.4.11) and (6.4.12), and possibly after further enlarging C, this
shows that (6.4.9) holds also on the set {uq > 1} N{vy < 1},

Finally, for the remaining subset {u, < 1} N{vy4 > 1} of  x (0, 00), we can argue similarly
as above. O
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6.4. The limit process a \, 0: obtaining solution candidates

If (6.F1) holds, the preceding lemma immediately allows us to bound the integrands on the
right-hand side of (6.4.7).

Lemma 6.4.5. Let T € (0,00) and suppose that (6.F1) holds. Then we can find Cy,Cs > 0
such that

/Gla Uy fla uouva / G2a Vo f2a uaava)

< Cl—Cg/ /ui lnua—Cg/ /Ui Inv, (6.4.14)
0o Ja o Ja

a.e. in ) x (0,00) for all a € (0,1).
PRrROOF. This directly follows from combining (6.F1), (6.4.7) and (6.4.9). O

In the majority of the remainder of this subsection, we will show that (6.4.14) also holds if
we assume (6.F2) instead of (6.F1). To that end, we may assume that (6.H2) holds since
the right-hand side of (6.4.7) is trivially bounded in the case of (6.H1). The key ingredient
to the corresponding proof will be the Gagliardo—Nirenberg inequality whose application we
prepare by obtaining locally uniform-in-time L'(£2) bounds in the following

Lemma 6.4.6. Let T € (0,00) and suppose that (6.H2) holds. There is C > 0 such that

/ U (1) —|—/ V() < C forallt € (0,T) and a € (0,1). (6.4.15)
Q Q

PROOF. Testing the first equation in (6.3.4) with the constant function as > 0, recalling
the definition of fi, and applying Young’s inequality give

a2/ (,t)—az/u()a—ag//uat
—a2>\1/ /Uafla (ta)é2a(va) a2ﬂ1/ /U €10 (ta)é2a(va)

+ajas / /Q Ua"Mfla(“a)fZa (Ua)
0

2 t
< Cz127,:\1|Q|T+ a1a2/ / ua’l)a£1a(ua)£2a(0a) for t (O’T) and a € (07 1)
1 0 JQ

As likewise

aiA ¢
a1/va(-,t)—a1/v0a < = 2IQIT—a1a2/ /uava&a(ua)&a(va)
Q Q Q

for t € (0,7T) and « € (0,1), we conclude

as\? a1 A2
a2/ua('at)+al/va('at)§a2/u0a+a1/u0a 2 1\Q|T+ - 2|Q|T
Q Q Q Q

fort € (0,T) and a € (0,1). In view of (6.3.2), this implies (6.4.15) for a certain C > 0. O

Lemma 6.4.7. Let T € (0,00), n > 0, p; == m; —q; — 1 for i € {1,2} and suppose that
(6.H2) holds. For p € (0, W), there is Ch > 0 such that

/U’é('»t)&a(ua(vt)) < 77/ B2 (ug (-, 1)) Vua (-, t)]* + Cy (6.4.16)
Q Q
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6. Global weak solutions to fully cross-diffusive systems

for allt € (0,T) and o € (0,1) and, for p € (0, W), there is Cy > 0 such that

/vp( )20 (Val- t <n/352 Va (1)) VUa (- 1) + Cs (6.4.17)
Q

forallt € (0,T) and o € (0,1), where By, is as in (6.4.8); that is, B, (s) =
s>0 and « € (0,1).

1+a(s+1) for

PROOF. As B,(s) < s+1forall s>0and a € (0,1), Lemma 6.4.6 allows us to fix ¢; > 0
such that

/QBa(ua(~7t)) —&—/QBa(va(~7t)) <a for all t € (0,T) and € (0,1).

The definitions py = 2((@11%2%;:2) and ¢ = ﬁ imply
b T _ (BB 2Dnt2n— (B + 2]
TITRE T B2 (Bt 2+ n— (n—2)((B + 2In +2)
(B1+2)n((B1+1n +2) (B1+2)n

TGy Dn+2)((Bit2m+2) Btont2 (0,1).

Since %b =1, an application of the Gagliardo-Nirenberg inequality (cf. [58, Lemma 2.3] for
a version allowing for merely positive ¢;) gives ¢o > 0 such that

p1(1=b) p1
/90’31 < ey (/ IVwIQ) (/ <pﬁ12+2) RIP (/ sof*l2+2> Y forall p e WH2(Q),
Q Q Q Q

o P1(1—b)
Thus, setting ¢ == (/3-;1) ¢; ™ ¢ and noting that |B.|(s) =

€ (0,1), we conclude

(B1+2)n+2
/Q Ba T (ua(1))

- [ (5 <ua<o,t>>)ﬁ1

B1+2

[ [vBa” Lt

mﬁlforSEOand

m(l b)

o (fmeon) ™ (i)

<63/Bﬁ1 o (s )| Bl (1 ) 2|Vt (- )2 + 1 ¢

<62

P1

<03/Bﬁl Ue (-, 1))Vt (-, )2 + ¢f* e for allt € (0,7) and a € (0,1).

Wenowﬁxn>0andp€(0,(ﬁl+2%)

that

. By Young’s inequality, we then obtain ¢4 > 0 such

[ Brtatt) < [ B2 ) Fua )P e (6.415)
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6.4. The limit process a \, 0: obtaining solution candidates

for all t € (0,7) and a € (0,1). Moreover, as for « € (0,1) and s € supp&1a C
[0, 20t/ (=minfa,a2D)] < [0, 201, we have

s=1+a(s+1)) < 4B,(s),

1+a(s+1) —

the monotonicity of [0,00) 3 s — sP asserts

a8’ P (. (- r nd a
/Q< 1 ) gla(ua(-’t))S/QBO[(U@(,LL)) for all t € (0,T) and « € (0, 1).

Together with (6.4.18), this implies (6.4.16) for Cy := 4P¢4. By an analogous argumentation,
we also obtain the corresponding statement for the second solution component. O

If 81 and B are sufficiently large compared to g; and g2, one might hope that the estimates
obtained in Lemma 6.4.7 are strong enough to control the right-hand side of (6.4.7). This
idea can be quantified as follows.

Lemma 6.4.8. Let T € (0,00) and suppose that (6.F2) and (6.H2) hold. Then there are
C1,Cs > 0 such that (6.4.14) holds.

Proor. We will crucially rely on the assumption (6.F2) which asserts that m; > m4 or
mg > Moy, Where

Mm—2 B-g@)2-—q)-B-q)2- 20 — 2
m, = 20 L B870C-0)-6-0)C2-¢) my = 2"
n 2-q

+ (2 — q1)-

Setting again §; :=m; — ¢; — 1 for i € {1,2}, these definitions imply

Nn + 2 2 (B-q)(2—
M>ml—m+1+*:w if my >m; and
n n 2—q
2)n +2 2
%>%_q2+1+;:3—q1 if mg > my,

whence there is ) € (0, 1) such that still

(B1+2)n+2 S (B—q)2—q1+n)

- S if my >m; and (6.4.19)
2 2 3-

(Bo+2n+2  3—a if my > m,. (6.4.20)
n 1—n

For s > 1, we have 1 € [1,2] and hence s'~% < (s 4 1)17% < 217495174 for i € {1,2}
which due to x;G}(s) = [ W do for s > 1 and ¢ € {1,2} implies that
1—qif, l—qigl—qif,
S0 L (s). < xiGi(s) < 270 0 Lg,(s) for s > 1 and i € {1,2}.
I —qilgg, <1y 1 —qilyg,<1y

(We recall that Ly(s) = Lygc1y + Lig=13Ins for s > 1 and ¢ < 1 by (6.4.2).) Combined
with the facts that In(s +¢) —Ins = In*£¢ <In(1+e¢) and Ins < s7 for s > 1 and Young’s
inequality, we thus obtain ¢, cy > 0 such that

[Gll (ua)fl(uou va) + G/Q(Ua)f2(uou voz)] 5104(“(1)52@('004)

< [clui_‘“Jr"va — 2cQu‘Z_q1Lq1 (ug +€) — 20211;1_‘12[412 (Ve + e)] E1a(Ua)é2a(va) + €1
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6. Global weak solutions to fully cross-diffusive systems

in {uq > 1} N{vy > 1} for all a € (0,1).
We now distinguish between the cases m; > m; and mg > m,. In the former one, we first

employ Young’s inequality to obtain c3 > 0 such that

Cc1 ui—fh +17Uo¢£1a (ua)£2a (Ua)
(B—ag2)(2—q1+m)

<cgug " Ela(ta) + 203 2E () Ean (Va) in Qx (0,T) for all @ € (0,1)

and then make use of the assumption mq > m; which allows us to apply (6.4.19) and
Lemma 6.4.7 to obtain ¢4 > 0 such that

8= (12)(724;1+’I) dy T 5 )
3 €alug) < — BSY (ug)|Vual® + ca for all e € (0,1),
2x1Jo Ja

If on the other hand mgy > m,, then we again make first use of Young’s inequality to obtain
c5 > 0 such that

3 q1
Cluz ernerEla(uoe)gQa(Ua) < C2u3 qlgla(ua)éba(va) + CS'Uoz §2a(va)

in Q x (0,T) for all & € (0,1). According to Lemma 6.4.7 (which is applicable thanks to
(6.4.20)), there is then ¢g > 0 such that

65/ /va o0 (Vo) < —/ B2 (1v,)|Vua|? + cs for all @ € (0,1).
Q Q

In both cases my > m; and my > ms,, we then conclude from the estimates above that there
is ¢z > 0 such that

/ / Uoz fl Uomva) +G2(Ua)f2(uayva)] §1a(uoz)§2a(Ua)]l{ua>1}ﬁ{va>1}

< Bﬁ1 (Uq Vug|? + — / /BB2 Vo) Vg |?
o |, v+ 5 Ve

702/ /Quzﬂthl (Ua + €)&1a(Ua)é2a(va) — c2/ /QvgiqZqu (Ua + €)&1a(ua)é2a(va)
0 0

+er for all a € (0,1),
which in conjunction with (6.4.7) and (6.4.9) gives the claim. O

This concludes our journey of controlling the right-hand side in (6.4.7). As a consequence,
we obtain the following a priori bounds.

Lemma 6.4.9. Let T € (0,00). There is C1 > 0 such that

up ( [ B0 ) Ly (1) )

te(0,T)

+/QBZ"“(va(-vt))qu(va(nt) +e)> <G (6.4.21)

T T
/ / B2 (u)| Ve + / / B2 (va)|Vva|? < Oy (6.4.22)
0 Q 0 Q

and
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6.4. The limit process a \, 0: obtaining solution candidates

for all a € (0,1), where again B; == m; —¢q; — i for i € {1,2}, and L,, and B, are as in
(6.4.2) and (6.4.8), respectively. Moreover, if (6.H2) holds, then we can find Cy > 0 with
the property that

T T
/ / u? In(ug + ) —I—/ / v2 (v, +e) < Cy for all o € (0,1). (6.4.23)
0o Ja 0o Jo

PrOOF. According to Lemma 6.4.3, Lemma 6.4.5 and Lemma 6.4.8, there are ¢1,co > 0 and
cg > 0 such that cg is positive if (6.H2) holds and

“ / B2 (uq (-, 1)) L, (ua () +¢) + &1 / B2 % (v4(, 1)) Ly, (va (-, 1) + )

Bﬁ1 (u0)| Vg 24 / /BB"‘ Ve )| Vo 2

2X1 / / Vool + 2X2 Vel

<cg— 03/ / u? In(ug +e) — 03/ / v In(v,y + €) for t € (0,T) and a € (0, 1),
o Jo 0o Ja

as desired. ]

6.4.3. Space-time bounds and the limit process

As a next step, we derive further space-time bounds from (6.4.21) and (6.4.22). To that
end, we make use of the following interpolation inequality which is both a refinement and a
consequence of the Gagliardo—Nirenberg inequality and has been proven by Tao and Winkler
in [86].

Lemma 6.4.10. Let 0 < g <p < (nzﬁ and suppose that A € C°(R) fulfills A > 1 on R.
Then there exist C > 0 and 6 € (0,1] such that
P
o ([ 1oae)

[1erator < c ([ 190) : ([1ema6) :

for all o € WH2(Q), where

| |-

b= € (0,1).

Q=
+ |~
3=
N|—=

ProoF. This is a direct consequence of [86, Lemma 7.5]. O

Lemma 6.4.11. For all T € (0,00), there are C > 0 and 01,05 € (0,1] such that

/ / BE (ua) LY (Ba(ua) + €) / / BE?(0a) L% (Ba(va) +€) < C (6.4.24)

for all o € (0,1), where p1 and pa are as in (6.1.8), and Ly, and B, are as in (6.4.2) and
(6.4.8), respectively.

ProoOF. We fix T' € (0,00). As usual, it suffices to show the statement for the first solution
component.
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6. Global weak solutions to fully cross-diffusive systems

Let us first assume p; = 3 — ¢; and that (6.H2) holds. Then (6.4.23) already contains
(6.4.24). Moreover, if p; = 2 — ¢, then (6.4.21) and an integration in time also show
(6.4.24). According to (6.1.8), it remains to be shown that (6.4.24) also holds for 2 — ¢; <
pL=p1+2+ @, where again 51 = m; — q1 — 1. As already alluded to, the main

ingredients for this proof are (6.4.21) and (6.4.22) which assert that there are ¢1,ca > 0 such
that

T
sup / Bi_ql (ua(-,t))Lg, (ua(-t) +€) <c1  and / / Bgl (ua)|Vua|2 < cs.
te(0,7) JQ 0o Jo

Preparing an application of Lemma 6.4.10, we set ¢ = 2(;1:_‘121) ,

is contained in (6.4.1). Moreover,

9 ~ ~ 9 2 2(2—q1)
b= (n+Q1):2 1430 (Br+2+7=7)  2p >
n n B1+ 2 p1+2

which is positive as 1 > —2

thanks to p; > 2 — ¢;. Thus, p; < 2ntP1) apd hence "T_Qﬁl < 2 which in turn implies

n

P < (nzigp Therefore, we may indeed apply Lemma 6.4.10 to obtain ¢35 > 0, 6; € (0,1]
and b € (0,1) such that with A(s) == qu(sﬁ +e), s >0,

p1(1-b) 2

- %b 2(2—qy) a1 2(2—4q1) ﬁ
[ < ( / |w|2) ( |5 A(s@)) te ( [ A(so))
Q Q Q Q

for all nonnegative ¢ € W12(Q). Taking here ¢ = B! (u,(+,t)), t € (0,T), and integrating
in time yield

[ B a2 (Batua) + o
0 Q

T B1t2 % 0 B1+2
:/ Q(Ba’" (ua)> A% (BaT (ua))

p1b _
£ p1(1-b)

2) | </QB<2qu(ua)qu(ua+e)) 0
e /O ’ ( /Q B2 (ug) L, (0 +e))f§1

A, 92 T o
< 1 035161"‘ ) /0 /QBgl(ua)|B/(ua)‘2|vua|2_’_Tcgl;l/qlcg

_ 01151/516203(51 + 2)2
- 4

B1+2

VBa? (Uq)

+ Tc‘fl/qlcg for all o € (0,1),

where in the last step we have used that B, (s)| = m <1fors>0andae€(0,1).

Thus, (6.4.24) indeed holds in all cases treated by this lemma. O

As an application of Young’s inequality reveals, (6.4.22) and (6.4.24) allow us to also obtain
gradient space-time bounds.

Lemma 6.4.12. Let T € (0,00) and r1,r2 be as in (6.1.9). Then there is C' > 0 such that
T T
/ / [Vue|™ —|—/ / [Vue|™ < C for all a € (0,1). (6.4.25)
0 Q 0 Q
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6.4. The limit process a \, 0: obtaining solution candidates

PROOF. Again, it suffices to prove the bound only for u,, o € (0,1). We first assume that

r1 < 2 and hence r; = pfflﬂl by (6.1.9), where 81 :==mj —q; — 1. With B, as in (6.4.8), we

then make use of Young’s inequality to obtain

T T Biry _Bim
/ /|VUQ|T1 :/ /Boc2 (Uoz)|vua|TlBoé 2 (ua)
0 Q 0 Q
T T B1m
9 _Bim
< E/ /Bgl(ua)|Vua|2+Tﬁ /Ba T (4)
Q

for all a € (0,1) which due to (6.4.24) and

- S -
2_7«171_171?1—51717;,517291
T1 P1 P1

implies (6.4.25) for some C > 0.

If, on the other hand r; > 2 and hence r; = 2 < pf_% by (6.1.9), then 8; > 0 since

positivity of p; is contained in (6.4.1). Thus, in this case the estimate (6.4.22) directly
implies (6.4.25). O

As a last preparation before obtaining limit functions v and v by applying several compact-
ness theorems—in particular, the Aubin—Lions lemma—, we derive estimates for the time
derivatives uqa: and vag, o € (0, 1).

Lemma 6.4.13. Let T € (0,00). Then there exists C > 0 such that
||uat||L1((07T);(Wn+1,2(9))*) + ||vat||L1((0,T);(W”+1’2(Q))*) <C for all a € (07 1) (6426)

PROOF. Since u, € L2((0,T); W2(Q)) by Lemma 6.3.2, the weak formulation (6.2.8) en-
tails that

[ a0 =~ [ Drafuale1)Val.0) V64 [ Sralua D)Vl W
Q @ ’
+/Qf1a(ua('vt)7va('7t))¢

for a.e. t € (0,7), all v € WH2(Q) and all a € (0,1). Thus, recalling that Dy, (us) <
diB™ Y u,) + 1 and S1a(ua) < x1B3 (uy) for a € (0,1) if B, as in (6.4.8), we may

estimate
/ uat<-,t)w‘
Q

/Q(Dm(ua(o,t))Vua(-,t) . Vw‘ +

<

/QSla(ua(~,t))Vva(~,t) -V

_|_

/ f1a<ua(-7t>,va<-,t>>¢\
<a [ (BZ“*“?(ua<~,t>>+1>2|w||mm

+d1/9 ((Bc?(ua(-,t)) + 1) |Vua(~7zt)|)2 VY| L ()
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6. Global weak solutions to fully cross-diffusive systems

o ([ B2l FT 4 [ 90600 ) 196
([ 11alua. 000001 ) Wol=ce

for a.e. t € (0,T), all p € W1°°(Q) and all « € (0, 1), wherein as usual 8 == m; — q; — 1.
As according to (6.4.1) and (6.1.10), both 2(m; —1—21) and mxgijf}” are at most p1, the

bounds (6.4.24), (6.4.22), (6.4.25) and (6.4.23) along with the embeddings W +1.2(Q) —
Whee(Q) — L*°(Q) and an integration in time yield ¢; > 0 such that

T
/ sup
0 ¢6W1L+1,2(Q)

1Pllwnt1,2(q)<1

/ uat@/}‘ <c for all o € (0,1),
Q

which together with analogous considerations regarding v, implies (6.4.26). O

The a priori bounds gained in the lemmata above now allow us to conclude that (uq,vs)
converge in certain spaces along some null sequence (&) en.

Lemma 6.4.14. Set

17 i)y i<1,
p,— J i) g
[17pi]7 QZZI

Then there exists a null sequence (a;)jen C (0,1) and nonnegative u,v € Li (€ x [0, 00))
such that

Ug; — U pointwise a.e., (6.4.27)

Vo, — U pointwise a.e., (6.4.28)

By (ta,;) —»u+1 in LY (Q x [0,00)) for all p € P, (6.4.29)
Ba(va,) v +1 in LY (€2 x [0,00)) for all p € P, (6.4.30)
Ug; = U in L ([0, 00); WH™(Q)), (6.4.31)

Va, =V in Lj. ([0, 00); WHT (), (6.4.32)
fra(Ua, Vo) = fi(u,v) in L. (Q x [0,00)) and (6.4.33)
( )

fQOz(uomva) %fQ(ufU) in Llloc(ﬁx [0,00))
as j — 0, where B, is as in (6.4.8) for a € (0,1).

PRrROOF. Thanks to (6.4.25) and (6.4.26), the Aubin-Lions lemma (along with a diago-
nalization argument) provides us with a null sequence (a;)jen C (0,1) and functions
u,v € Li (2 x [0,00)) such that ua, — u and va, — v in L (Q x [0,00)) as j — oo. After
switching to a subsequence if necessary, we may thus assume that (6.4.27) and (6.4.28) hold.
Thus, nonnegativity of u and v is inherited from nonnegativity of u,, and va,, j € N, which
in turn is asserted by Lemma 6.3.2. Due to the bound (6.4.24), and because B, (uq) — uq+1
and B, (vs) — vq + 1 pointwise a.e. as a N\, 0 by (6.4.27) and (6.4.28), Vitali’s theorem
asserts that (6.4.29) and (6.4.30) hold.

Moreover, possibly after switching to further subsequences, (6.4.31) and (6.4.32) follow from
(6.4.25). (We note that (6.4.27) and (6.4.28) guarantee that the corresponding limit func-
tions coincide.)
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6.5. Existence of global weak solutions to (6.P): proof of Theorem 6.1.1

Finally, additional consequences of (6.4.27) and (6.4.28) are (6.4.33) and (6.4.34): For fixed
€ (0,00), the complement, of

]*)OO

A= {(a:,t) € Qx(0,T) :u(x,t),v(x,t) <ooand lim (uq,,vea,)(z,t) = (u,v)(x,t) }

in Q x (0,7) is a null set (since the inclusions u,v € L*(Q x (0,T)) imply u,v < oo a.e.).
Given (z,t) € A, there is M > 0 with max{u(x,t),v(x,t)} < M. Thus, we can find j; € N
such that max{uq,(v,t),va,(2,t)} < 2M for all j > j;. Taking moreover j» € N so large
that 2M < a}l/(4_min{q1’q2}) for all j > ja, we see that &, (u(z,t)) = &, (v(2,t)) = 1 and
hence flotj (uaj (iL’, t), Vo (l‘, t)) = fl (uaj (l‘, t)a Vo (.fb, t)) for all Jjz maX{jlan} so that

flaj (uaj (xat)vvaj (mvt)) — fl(u(mvt)7v('rat)) as j — oo

by the continuity of f;. Since (x,t) € A was arbitrary, fio,(ta,,va;) — fi(u,v) a.e. as
j — oo. In the case of (6.H1), (6.4.33) is trivially true while for (6.H2), we make first use of
Young’s inequality to obtain ¢; > 0 such that | f1(s1,52)| < c1(s? + 35 +1) for all 51,52 >0
and a € (0,1) and then employ Vitali’s theorem along with (6.4.23) and the just obtained
pointwise convergence of fi, to also obtain (6.4.33) in that case. As usual, (6.4.34) can be
shown analogously. O

6.5. Existence of global weak solutions to (6.P): proof of
Theorem 6.1.1

In this final section, we show that the pair (u,v) constructed in Lemma 6.4.14 is a solution
to (6.P) in the following sense.

Definition 6.5.1. A pair (u,v) € L{ (Q x [0,00)) is called a global nonnegative weak
solution of (6.P) if u,v > 0,

D1 (u)Vu, S1(u) Vv, Da(u)Vv, So(v)Vu, fi, f2 € Li (2 x [0,00))

and
[ [ oo
— / /D1 )W - VgaJr/ /Qsl(tt)VstOJr/ooo/Qfl(u,v)@ (6.5.1)

[ fpee foveo
— / /D2 )Wo -V — /w/gsz(u)vu-Vso+/ooo/gfz(u7v)cp (6.5.2)

hold for all ¢ € C2°(Q x [0, 00)).

as well as

Lemma 6.5.2. The tuple (u,v) constructed in Lemma 6.4.14 is a weak solution of (6.P)
in the sense of Definition 6.5.1.
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6. Global weak solutions to fully cross-diffusive systems

PROOF. Both the required regularity and nonnegativity of w and v are contained in Lem-
ma 6.4.14.

In order show that (6.5.1) holds, we first fix p € C°(Q2 x [0,00)). For all a € (0, 1), the pair
(U, Vo) given by Lemma 6.3.2 solves (6.3.4) weakly so that by (6.2.8) and an integration
by parts,

Ila + I2a

/ /ua% /U()a@('ao)
= / /Dm (Ua) Vg - Vgo—i—/oo/gsla(ua)vva'V@+/Om/s2fla(uaava)¢

= I3o + L40 + I54 for all « € (0, 1) (653)

Mainly relying on the convergences provided by Lemma 6.4.14, we now take the limit o =
aj \ 0 in each term herein. First,

oo
Do, — —/ upp(-,0) and Isq, —>/ / filu,v)p as j — oo
Q o Ja

are direct consequences of (6.3.2) and (6.4.33). Moreover, as r; > 1 by (6.1.10), we infer
from (6.4.31) that uq, — w in L{ (Q x [0,00)) and thus

o0
IM].—>—/ /wpt as j — oo.
0o Jao

Regarding I3, we first note that in the case of m; <1,

T1

Bl Huay) = (w+1)™"1 in L7 (2 x [0,00)) as j — 00 (6.5.4)

loc

by Lebesgue’s theorem and (6.4.27), where B, is as in (6.4.8) for a € (0,1). We now show
that (6.5.4) also holds for m; > 1. If additionally r = pfflﬂl with 81 := m; — ¢1 — 1, then
(m1 — 1) = (m1 — 1)p1+51 < py since 0 < 2(my — 1) < p1 + B is entailed in (6.4.1).
If on the other hand (m; > 1 and) r # pfjﬁl and thus r; =2 > pfplﬁ by (6.1.9), then
B1 < 0 so that (6.4.1) asserts 2(mq — 1) < p1 and hence also (m1 —1);5 < p1. Therefore,
(6.4.29) asserts that (6.5.4) indeed also holds for m; > 1. Combined Wlth (6.4.31), (6.5.4)

then implies

/ /Bmllua] Vg, - V(p—>/ /u—i—lm1 V- Vo as j — 0o,

and since additionally o [ [, Vg, - Vo — 0 as j — oo by (6.4.31), we conclude

I3, — 7/ / Dy (u)Vu -V as j — oo.
0o Ja

Finally, we concern ourselves with the term stemming from the cross-diffusion: Precisely
due to our main condition (6.1.10), we can choose p > 1 such that

[1700)7 q1 < 0,
1 1
—+—=1 and pe[,B), 0<q <1,
P 8 q1

[1ap1]7 q1 = 1.
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6.5. Existence of global weak solutions to (6.P): proof of Theorem 6.1.1

As also 0 < S1a(s) < xaBZ'(s) for all s > 0 and « € (0,1) as well as Siq, (ta;) — S1(ta,)
a.e. as a N\, 0, Pratt’s lemma and (6.4.29) assert that ST, (ua;) — S7(u) in Li (2% [0,00))

loc
as j — oo, provided that ¢; > 0. For ¢; < 0, the same conclusion can be reached by

Lebesgue’s theorem. Combined with (6.4.32), this entails that Sia; (ta,)VVa; — S1(u)Vv

in Ll _(Q x [0,00)) as j — oo and thus

Ly, — / / S1(u)Vu -V as j — oo.
o Ja

In combination, these convergences and (6.5.3) prove (6.5.1), and since (6.5.2) can be shown
analogously, (u,v) is indeed a weak solution of (6.P). O

This lemma already contains the main theorem of the present chapter.

PROOF OF THEOREM 6.1.1. All claims have been proven in Lemma 6.5.2. O
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