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1. Abstract

We study two classes of singular stochastic systems: stochastic spikes appearing as
scaling limits of the solutions of specific stochastic differential equations with applications
in quantum mechanics and Fleming-Viot-type particle systems used as approximation
algorithm in mathematical statistics. In the case of the stochastic spikes we generalize
results of [5] regarding the convergence to a homogeneous Poisson process using classi-
cal probabilistic tools and apply the obtained abstract criteria to two example classes.
Fleming-Viot-type particle systems may exhibit singular behavior in the sense that there
are possibly infinitely many particle jumps in finite time. Establishing structural results
throughout the analysis of the problem we deduce a sufficient condition to decide whether
this happens and are thereby able to give new insights in the case of three moving particles.

Zusammenfassung

Wir studieren zwei Klassen singularer stochastischer Systeme: Stochastische Spikes,
die als Skalierungslimiten von Loésungen gewisser stochastischer Differenzialgleichungen
auftreten und in der Quantenmechanik Anwendung finden sowie Fleming-Viot-artige
Partikelsysteme, die als Approximationsalgorithmen in der mathematischen Statistik
verwendet werden. Im Falle der stochastischen Spikes verallgemeinern wir Ergebnisse
von [5] beziiglich der Konvergenz gegen einen homogenen Poisson-Prozess unter Verwen-
dung klassischer wahrscheinlichkeitstheoretischer Methoden und wenden die gefundenen
abstrakten Kriterien auf zwei Beispielklassen an. Fleming-Viot-artige Partikelsysteme
kénnen in dem Sinne singulédres Verhalten aufweisen, dass es moglicherweise zu unendlich
vielen Spriingen in endlicher Zeit kommt. Wéhrend der Analyse des Problems stellen
wir strukturelle Resultate auf und leiten eine hinreichende Bedingungen her, um zu
entscheiden, ob dies passiert; dadurch sind wir in der Lage, neue Einsichten in den Fall
von drei sich bewegender Partikel zu geben.
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2. Introduction

We analyze random phenomena where different notions of singularities may apply. In the
case of the first example class we consider solutions to stochastic differential equations
(SDEs) parameterized by A < oo and € > 0. Loosely speaking, the limit processes A — oo
and € — 0 may be thought of being competitive: The parameter A acts as an acceleration
in the time scale and increases the speed of the movement of the stochastic process; as
long as € > 0 is positive there is a drift enforcing the process to stay in the positive
half-line — as ¢ becomes small so does the drift and near the origin the diffusion coefficient
tends to 0 which may be seen as the singularity in this model. A game is initiated
between wandering around quickly and sticking near the origin. On a suitable curve a
non-trivial limiting process is exhibited.

In the case of the Fleming-Viot N-particle system the parameter v € R being smaller
corresponds to drifting the positive particles stronger towards the origin. Here, capturing
the particles in the positive half-line is accomplished by discrete jumps as antagonist.
We use generalized Bessel processes driven according to the SDE

v—1

dX, = dB; + —2— dt
t t+Xt

where B; denotes Brownian motion. Equivalently, one considers squared Bessel processes
with differential

dX? =2X,;dW; +vdt

where W; represents Brownian motion; note, that again the diffusion coefficient becomes
small near the origin. This also connects the singularity phenomenon of the Fleming-Viot
particle system to the one raised by the stochastic spikes. An important reason for
investigating (generalized) Bessel processes is the anticipation of a phase transition: For
the parameter v sufficiently small a singularity may occur in the sense that there might
be infinitely many jumps in finite time whereas this can not happen for v large. For
another work in which a particle system with singular behavior is studied exhibiting a
phase transition similar to the case of Bessel diffusions we refer to [32].

2.1. Stochastic spikes

Motivated by applications in Quantum Mechanics Bauer and Bernard investigated in
the recent contribution [5] scaling limits A — oo and € — 0 for classes of stochastic
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differential equations of the form

dX; = );(Ebl(Xt) —bQ(Xt)) dt—|—>\'0'(Xt) dB; (21)

with functions b1, by and o. More precisely, in case of constant b; > 0 and linear by and
o, i.e. for stochastic differential equations of the form

2

Bauer and Bernard rigorously study the non-trivial scaling limit of the process (X)¢>0
in the regime A\ — oo and € — 0 such that A\2e’! is constant and conjecture the validity
of similar assertions for a larger class of stochastic differential equations of the type ([2.1)).
In this scaling limit the first hitting time of a level z for the diffusion started at
x < z converges in distribution to a mixture of a point mass in zero and an exponential
distributed random variable.
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Figure 2.1.: Solution samples to the SDE for different parameters obtained using the
R package sde: https://CRAN.R-project.org/package=sde. The source
code can be found in Section in the Appendix. The images should be
thought of as conceptual visualization aids rather than robust numerical
simulation results.

Related questions for a slightly different model have previously been physically motivated
and then analyzed by Bauer, Bernard and Tilloy in [47] and [6]. Observe that the diffusion
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2.1. Stochastic spikes

given by is scale invariant, a fact which allows specific arguments and simplifies
several calculations. Bauer and Bernard in particular proved that in the scaling limit
A — oo and € — 0 with A\2c®*1 = J constant the first hitting time of a level z with
start from z < z converges in distribution to a convex combination of a exponential
distributed random variable and the trivial random variable which is constant equal to
zero. These results are called large noise limits. Furthermore, the authors also deduce a
Poisson approximation for the number of hits above the level z. The analytic approach of
Bauer and Bernard allows to cover also certain types of stochastic differential equations
which are different from but still share the property of scale invariance. Using
non-rigorous arguments the authors of [5| come to the conjecture that the results will
carry over to a larger rather general class of stochastic differential equations and they
provide certain natural but not always precisely formulated conditions, under which the
results are expected to hold. Our main aim is to provide a different rather elementary
approach to the results of Bauer and Bernard, which allows to prove analogous results for
general classes of stochastic differential equations, which do not necessarily satisfy a form
of scale invariance. In particular we can extend the results to a ’linearized version’ of the
stochastic differential equation describing the homodyne detection of Rabi oscillations.
The resulting stochastic differential equation has a clear quantum mechanical background
which is in more detail described in [5]. As a fact we will mainly rely on classical methods
from probability theory such as Poisson approximation and some further mainly basic
properties of diffusion processes. This is in contrast to the tools used by Bauer and
Bernard which are analytic i.e. based on analysis of differential equations and basic 1t6
theory for diffusions. Apart from extending the validity of the results to a larger class of
stochastic differential equations we believe that our approach helps to put the results in
a clear probabilistic perspective.

Let us stress that the results are related to known assertions about hitting times of
large levels for diffusion processes such as e.g. [42] and [11]. There the authors consider
the behavior of hitting times of a high level and deduce that in an appropriate scaling
limit this hitting time is exponentially distributed. We want to point out that in the
case of a non scale-invariant diffusion it does not seem possible to directly use known
theorems concerning the extreme value behavior of hitting of large sets as given e.g. in
[42] and [11]. In the case of equation it is possible to connect the hitting of a fixed
level z when started from e into the question of hitting z/e with start in 1. For this
situation one can make direct use of known results on asymptotic exponentiality, see
e.g. [11] and [42, paragraph 2, section V]. For start in a fixed point = and for more non
scale-invariant equations this does not seem possible. In any case due to the connections
to the theory of quantum systems under continuous measurement we believe that our
results and methods - which might not be that well known in the physics community -
are of sufficiently broad interest and are useful in order to derive results for the most
interesting higher dimensional situation.

Let us also mention the preprint [§] containing further results concerning the fine structure
of the spikes in large noise limits of general classes of SDE’s.

For the sake of having a compact overview let us summarize our new results:
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e We facilitate probabilistic tools and methods and recover e.g. [5, Corollary 3].

e With our approach we are able to generalize the assumptions on the SDE coefficient
functions and give abstract criteria (Al) to (A3), (B1) to (B2) in order for the
generalized scaling limit to exhibit a Poisson process. (Cf. Theorem )

e We apply the theorem to two classes of SDEs. The first one is a narrower gen-
eralization of |5, Equation (3)] and the second one is motivated by a quantum
mechanical problem.

e The results are also published as a journal article in [36].

2.2. Fleming Viot particle systems

In [15], the authors investigate the following model which was introduced in [16] and is
related to many known ideas in probability and physics as laid out in |15 Section 3]:
Consider a fixed open connected subset of the Euclidean space as domain and a system
of particles starting at some deterministic point. As long as no particle hits the boundary
of the domain they move independently according to Brownian motion. If a particle does
hit the boundary, it jumps to the position of some independently uniformly randomly
chosen other one keeping the number of particles constant. Then, they again move
independently according to Brownian motion, and so on. In [15] different limit theorems
for bounded domains are proven, among them one states, as the number of particles
grows, the empirical measure at some finite time converges to the law of Brownian motion
conditioned to stay inside the domain. Letting the time tend to infinity the distribution
converges to the quasi-stationary distribution. Thus, the Fleming Viot particle system
may also serve as a numerical approximation algorithm as e.g. in [39].

Crucial for the model to be well-defined is the particle system not jumping infinitely often
in finite time. This is also referred to as blow up or explosion when viewed as Markov
process or extinction if interpreted as particle system or population model. The proof of
the corresponding assertion [15, Theorem 1.1] was delivered later on in |9, Theorem 5.4]
with additional constraints on the domain’s boundary. Another attempt can be found in
[40, Theorem 7]. Sufficient criteria for non-extinction in different directions of generality
concerning regularity conditions of the domain’s boundary, the underlying random motion
and the jumping mechanism not necessarily to be uniformly have been proven. They
include [9, Theorem 5.4] for Lipschitz domains, [28, Theorem 1] with certain abstractly
defined conditions on the domain, the underlying diffusion processes and the jumping
mechanism and [48, Theorem 2.1] where the diffusion processes which drive the particles
between the jumps may depend on the particles and their coefficients are not necessarily
bounded.

As proposed in [10] we consider the case of generalized Bessel processes on (0, 00) with one
common real parameter value v and uniform jumping. [10, Theorem 1.1(i)] states that in
the case of only N = 2 particles the system explodes almost surely if and only if v < 0.
This indicates that the drift parameter really may impact the particle system’s behavior
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in terms of non-extinction. As a second part [10, Theorem 1.1(ii)] entails that for v > 2/N
there is no explosion almost surely. In light of the discussed case of two particles the bound
2/N is seen to be not sharp. Our aim is to achieve a better understanding in the situation
of three or more particles and this gap. Arguments valid for general diffusion processes
such as suitable couplings as in e.g. [48, Section 2.3], [28, Proposition 3] or [9, proof of
Theorem 5.4] do not seem to suffice for a finer analysis. Instead, we use the model’s
symmetry due to the uniformly jumping mechanism and properties specific to generalized
Bessel processes, especially the self similarity analogous to Brownian scaling, to obtain
a structural result on the limit of jump times (cf. Corollary implying a sufficient
condition for that limit to be infinite almost surely and one for it to be finite almost
surely (cf. Theorem . Then, in the application to the case of three moving particles,
explicit calculations with the generalized Bessel transition probabilities are carried out to
estimate a certain functional where the very influence of the jumps is rediscovered in the
formulas (cf. remark[5.74). In view of [10, Open Problem 1.5] Theorem in some sense
gives an affirmative answer to the converse question: There exists a Fleming-Viot-type
process with extinction almost surely, for the 2-particle system, but non-extinction with
probability one for the 3-particle system. This illustrates that generally speaking adding
another particle to the system potentially does cause non-extinction.

Models where the underlying random motion is a continuous time Markov chain on a
countable state space have also been investigated, for instance in [26], [2], [3], [30] and
[21]. In our setting the jump times are determined by the positions of the particles
referred to as hard killing. In the soft killing case random times are invoked in order to
realize the jump times. Fleming-Viot-type processes form an active research area. Recent
works include: [20], [33], [18], [19], [29], [7] and [43].

Let us again give a list of our new contributions:

e We manipulate the problem and analyze the underlying structure exhibiting an
ergodic Hidden Markov Model. (Cf. Proposition [.65)

e We manage to give sufficient conditions for explosion and non-explosion. (Cf.
Theorem [5.71] )

e Using the criterion we infer that in the case of three moving particles there are
negative values for the drift parameter such that there is no explosion almost surely.
This particularly shows that even v > 0 is not a sharp boundary for general N.

e We submitted a manuscript of our work to the Electronic Journal of Probability.






3. One-dimensional time-homogeneous
SDEs

The aim of the third chapter is to collect basic propositions on one dimensional time-
homogeneous SDEs as can be found in the literature. We use a unified notation and later
on we want to calculate certain expectation values of some functionals of hitting times.
We mainly orient ourselves by the book [34] of Ioannis Karatzas and Steven E. Shreve.
Let (Q, F,P, F;) a filtrated probability space and let us start with a basic definition.

Definition 3.1. A Brownian motion (B:)i>0 with respect to the filtration (Fi)i>0 or
Fi-Brownian motion for short, is a Brownian motion adapted to F; with the increment
B, — B independent of F; for all 0 < s < ¢.

3.1. Notions of solution and uniqueness

We follow [34], Section 5.2] to lay out the theoretical framework. In order to develop
the concept of strong solution, we choose a probability space (2, F,P) as well as a
one-dimensional Brownian motion (By):>0 with respect to its natural filtration on it. We
assume also that this space is rich enough to accommodate a real random variable &
independent of o(Bs;s > 0) with given distribution. We consider the left-continuous
filtration

G =0(§,Bs;0<s<t); 0<1t< oo,

goo =0 Ugt

t>0

as well as the collection of null sets
N ={N CQ:3G € Gy with N C G and P(G) = 0}

and create the augmented filtration

Fr=0(GiUN), 0<t<o0; Foo'i=0 U]:t . (3.1)

>0

The process B; is a Brownian motion also with respect to G; by the assumed independence
of £ and is furthermore a Brownian motion with respect to F; since adding null sets does
not disturb the independency of the increments. It can be shown that F; is continuous
and therefore satisfies the usual conditions.
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Definition 3.2. (Cf. [34] Definition 5.2.1].) A strong solution of the stochastic differential
equation

dX; = b(Xt) dt + U(Xt) dB; (32)

with Borel-measurable real functions b(z) and o(z), on the given probability space
(Q, F,P) and with respect to the fixed Brownian motion B; and initial condition &, is a
process (X¢)i>0 with continuous sample paths and with the following properties:

(i) X, is adapted to the filtration F; of (3.1)),

(i) Xo=¢ holds P-a.s.

(iii) fo |b(Xs)| + 0?(Xs)ds < oo holds P-a.s. for every t € [0, 00) and
(iv) X¢ = Xo+ [y b(Xs)ds + [3 0(X,)dBs; Vt€[0,00) holds P-as.

From now on we always assume the functions b(x) and o(z) to be measurable.
We cite the following existence theorem from [34] where we also use the result of [34,
Problem 5.2.12]. The proofs are omitted.

Theorem 3.3. (Cf. [34, Theorem 5.2.9].) Suppose that the coefficients b(x), o(x) satisfy
the global Lipschitz and linear growth conditions

[b(2) = b(y)| + |o(z) — o (y)] < Kz -y,
b(x)? + 0*(x) < K*(1+ %),

for every x,y € R, where K is a positive constant. On some probability space (2, F,P),
let £ be a real random variable, independent of the one-dimensional Brownian motion By
with respect to its natural filtration. Let F; be as in , Then there exists a continuous,
Fi-adapted process Xy which is a strong solution of equation relative to By, with
initial condition &.

Definition 3.4. (Cf. [34, Definition 5.3.1].) A weak solution of equation (3.2)) is a triple
(X, By), (Q, F,P), Fi, where

(i) (92, F,P) is a probability space and F; is a filtration of sub-o-fields of F satisfying
the usual conditions,

(ii) X is a continuous, Fi-adapted real valued process, By is a one-dimensional Brownian
motion with respect to F; and

(iii), (iv) of Definition are satisfied.

The probability measure P(Xg € -) is called the initial distribution of the solution.
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Definition 3.5. (Cf. |34, Definition 5.3.2].) Suppose that whenever (X, By), (2, F,P),
Fy and (X4, By), (Q, F,P), F; are weak solutions to with common Brownian motion
B, (relative to possibly different filtrations) on a common probability space (2, F,P)
and with common initial value, i.e. P(Xy = Xo) = 1, the two processes X; and X, are
indistinguishable: (),50{X; = X;} holds P-a.s. We say then that pathwise uniqueness

holds for equation (3.2)).

The following uniqueness result is also taken from [34] taking into account [34, Re-
mark 5.3.3]. Again, we omit the proofs.

Theorem 3.6. (Cf. [34, Theorem 5.2.5].) Suppose that the coefficients b(z) and o(x)
are locally Lipschitz-continuous, i.e. for every integer n > 1 there exists a constant
K,, > 0 such that for every |z| <n and |y| < n:

b(x) = b(y)| + [o(z) — o(y)| < Knlz —yl.
Then pathwise uniqueness holds for equation (3.2]).

There is also the following relation. For a more detailed description and the proof we
refer to [34].

Theorem 3.7. (Cf. /34, Corollary 5.2.23].) The existence of a weak solution and
pathwise uniqueness imply the existence of a strong solution on any sufficiently rich
probability space.

Definition 3.8. (Cf. [34] Definition 5.3.4].) We say that uniqueness in the sense of
probability law holds for equation (3.2) if, for any two weak solutions (X¢, By), (2, F,P), F
and (X¢, By), (92, F,P), F; with the same initial distribution, i.e.

P(XoeT)=P(X,el), T eB(R),
the two processes (X;) and (X;) have the same law.

We cite the following result due to Yamada and Watanabe (1971) and omit the proof
which can be found in [34].

Theorem 3.9. (Cf. [34, Proposition 5.3.20].) Pathwise uniqueness implies uniqueness
in the sense of probability law.

Notation 3.10. For a,b € R we denote as a A b := min{a, b} and a V b := max{a, b} the
minimum and maximum of a and b.

Definition 3.11. For [ < a < b < r we define the exit time
Top =inf{t > 0: X; ¢ (a,b)}.

Definition 3.12. (Cf. [34] Definition 5.5.20].) A weak solution in the interval I = (I, 1)
of equation (3.2)) is a triple (Xy, By), (2, F,P), F;, where
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(i) (Q,F,P) is a probability space, and F; is a filtration of sub-o-fields of F satisfying
the usual conditions,

(ii) X is a continuous, Fi-adapted, [I, r]-valued process with X € I a.s., and B, is a
one-dimensional Brownian motion with respect to F,

(iii) with (I,,)nen and (7,,)nen strictly monotone sequences satisfying [ < I, < r, <,
lim, so0 lp =1, limy, oo 7, = 1 and

Sp, = Tln,rna n €N,

it holds
tASh
/ b(X,)| + 02(Xs)ds < 0o P-as. for every t € [0,00),n € N
0

and for every n € N it holds P-a.s.
¢ ¢
Xins, = Xo +/ b(Xs)]l{SSSn} ds + / U(Xs)ﬂ{sgsn} dBs; Vit € [07 OO)
0 0

We refer to
S=inf{t>0:X; ¢ (l,r)} = ILm Sh,

as the exit time from I. A weak solution in the interval I with the property that S = co
holds P-a.s. is a weak solution in the sense of Definition with the feature that X, is
I-valued P-a.s. In the case of S < oo we stipulate that the processes freezes from S on,
that is X :== Xg for t € [S,00), so that the notion of uniqueness in law carries over to
weak solutions in the interval (I, r) with solutions being [I, r]-valued.

There is the following important existence and uniqueness result. The assertion is a
consequence of |34, Theorem 5.5.15] and the proof is omitted here.

Theorem 3.13. Assume that I = (l,r) is an interval and the coefficient functions
o:I >R andb: 1 — R of the SDE (3.2)) fulfill the conditions

(i) 0%(x) >0 for allx € I.

(ii) For all x € I there exists € > 0 such that f;f; 1?:2“2%)‘ dy < oo.

Then the equation (3.2) has a weak solution in the interval I and this solution is unique
in the sense of probability law.

10



3.2. Scale function

3.2. Scale function

The following discussion is based on [34, Section 5.5 B. The Method of Removal of Drift].
We consider equation (3.2)) on an interval I = (I,r) C (—o0, 00).

Definition 3.14. For real-valued, twice continuously differentiable functions f € C2([)
on I we define the second order differential operator Lf as

1

(L)(@) = 5o*(@)" (@) + b(z) (@), (3.3)

For a suitable subclass of functions f € C?(I) the relation

o Bl (1) = £(@)]
tl0 t

= (L)), wel

holds and therefore the operator L is referred to as the infinitesimal generator. Later, we
will not strictly require the function f to be twice continuously differentiable but that
f has absolutely continuous derivative on compact subintervals of I. There, f” exists
almost everywhere and the Lebesgue-null set where it does not will not play a substantial
role.

Lemma 3.15. Let (X, Bt) be a weak solution in the interval I of equation (3.2)) and
let f: 1 — R be a function whose derivative is absolutely continuous on any compact

subinterval of I. Then for any T, 3, | < a < b <r it holds

tAT, s tATab
F(Xenr, ) = £(Xo) + /0 Lf(X.)ds + /0 f/(X.) 0(X.) dB,

in the sense that Lf(x) may be chosen arbitrary on the Lebesgue-null set where f" does
not exist.

Proof. Even though f may fail to be twice continuously differentiable we may still apply
a generalized version of Ito’s formula (cf. [34, Problem 3.7.3]) and obtain

ATy b t
Fur) = £+ [ P ax o+ g [ e a,

tAT, b 1

tAT, b ATy p
—fo+ [ g s+ [ P e aB g [ ) e ds

tAT, b ATy p
= f(Xo) —i—/o Lf(Xs)ds—i—/O f(X,)o(Xs)dBs.

O

In what follows we impose a nondegeneracy condition (ND) on the coefficients o : I — R
and b: I — R:
o%(x) >0 forallzel (ND)

11
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as well as a local integrability condition (LI) :

T+e 1 b
for all « € I there exists ¢ > 0 such that / L+ by)] dy < oo. (LI)

e 02(Y)

These conditions are sometimes also referred to as the Engelbert-Schmidt conditions. We
have already met them in Theorem [3.13

Definition 3.16. Under the assumptions (ND) and (LI) we define for ¢ € I the scale
function
¢ s b(¢)
o(x) = -2 d¢ ) d
o= oo (= [ ) o

The scale function is strictly increasing and due to (LI) the integrand exp (—2 ff UbQ((Cg) d¢ )

for x € 1.

is continuous in the integration variable £&. Therefore, the scale function is continuously
differentiable with derivative

sy =ew (-2 [ 2 ac)

which is a strictly positive function on I and absolutely continuous on compact subintervals
of I. The second derivative s/ exists almost everywhere on I and satisfies

o1 5] (142) B0

Henceforth, whenever we write s/, we shall mean the function defined by

(o) =~ 2 ).

x el (3.4)

We further extend s, to [—[,7] by

se(l) = linlfll Se(r) e RU{—o0} and s.(r):=lims.(z) € RU{oco}.

ztr
Lemma 3.17. (Cf. [34, Problem 5.5.12]) For a,c € I it holds
sa(x) = sq(c) + s),(c)sc(z).
Particularly, the finiteness neither of s.(l) nor of s.(r) does depend on the choice of c.

Proof. Tt holds
5.(c) - se(z) = exp <—2/: :2((% dg) /z exp <—2 /j :2(8) d§> de
~ [ (2 [ ) o

12



3.2. Scale function

and

i~ [[on (4 5650) - o 25 )
[l f )

which shows the asserted equation

sa(x) = 84(c) + 8, (c)se(x).

Particularly, s,(x) is an affine transformation of s.(x) with positive coefficient s/,(¢) > 0
and therefore s.(l) = —oo implies s.(a) = —oco and also s.(r) = oo implies s,(r) = occ.
Since the choice of ¢,a € I was arbitrary the assertion follows. O

Lemma 3.18. For allc,x € I it holds (Ls.)(x) = 0 in the sense that the second derivative
of sc needed to apply the operator L is taken by (3.4)).

Proof. By definition (3.4) it holds for x € I

sh(z) = —
After multiplication with ¢?()/2 the equation reads
1
iaz(x)sg(x) + b(x)sL(x) = 0.
The left hand side is (Ls.)(z) and the assertion follows. O
Lemma 3.19. For (X, B;) a weak solution in the interval I of equation (3.2)) with

starting point Xo = xo € I under (ND) and (LI) for any Toyp, | < a < b <1 the process
(8e(XiaT,,))t>0 is a local martingale.

Proof. By continuity of s. : I — R the paths t — Sc(Xt/\T,Lb) are continuous. Combining
Lemma [3.15] and Lemma [3.18 we obtain

tATap
se(Xinr, ) = selao) + [ sL(X) 0(X.) B (3.5)
0

which corresponds to [34, Expression (5.5.49)]. The assertion follows, since Ito integrals
with respect to Brownian motion are local martingales. O

Lemma 3.20. For (X, B;) a weak solution in the interval I of equation (3.2) with
starting point Xo = x € I under (ND) and (LI) for any Top, | < a < b < r the exit
probabilities are given by

sc(b) — sc(z) and Pw(XTavb:b):M- (3.6)

Se(b) — sc(a) Se(b) — sc(a)

These expressions do not depend on the particular choice of ¢ € I.

]P)Z(XTa,b = a) =

13



3. One-dimensional time-homogeneous SDEs

Proof. In the next subsection we will establish that under the given assumptions E,[Tg 5] <
oo which particularly implies 75, ;, < oo a.s. We will already use the latter fact in this
proof and refer to Proposition Let

t
™ ::inf{tZO:/ UQ(XS)dSZ’I’L}, n € N. (3.7)
0

As in equation ({3.5)) it holds for n € N

tAT, b ANTn
se(Xenty pnme) = sela0) + / S(X.) o(X.) dB..
0

The function s, is continuous on the compact interval [a, b] and therefore bounded and
we deduce

t/\Ta,b/\Tn
E, [/ sh(Xs) o(Xs) dBS] =0
0

whence Eg[sc(X¢aT, yar,)] = Sc(w0) holds for any n € N. Since s, is continuous and
bounded as function on [a, b] we may pass to the limit n — oo and infer Eq[s.(XiaT, )] =
s¢(xo). With the same argument and using T, < oo a.s. (cf. Proposition we may
pass to the limit ¢ — oo so that finally

se(wo) = Eg [SC(XTa,b)] = Pm(XTa,b =a)-sc(a) + Px(XTa,b =b) - 5c(b).
It follows

Sc(b) — se(x)
sc(b) — sc(a)

The independency of ¢ is a consequence of Lemma 3.1 O

P.(Xr,, =a) = and P.(Xr,, =0) =

3.3. Speed measure and Green function

We still work under the framework of a weak solution (X¢, Bt) in an interval I = (I,7) C R
of equation ([3.2]) assuming (ND) and (LI) to hold.

Definition 3.21. (Cf. |34, Expression (5.5.51)].) Under those assumptions we introduce
the speed measure

me(dr) = —————dx
for x € 1.
The density m is locally integrable by the positivity and continuity of 2/s..(z) and
the local integrability assumption on 1/02(x).
Definition 3.22. (Cf. |34, Expression (5.5.52)].) Furthermore the Green function on
[a,b] C I is given by

(Sc(x Ay) = sc(a))(sc(b) — sc(x Vy))
sc(b) — sc(a) ,

Ga,b,c(SUa y) = X,y € [CL, b]

14



3.3. Speed measure and Green function

Since the scale function is strictly increasing for all z,y € [a,b] the Green function
Gap.c(z,y) > 0 is nonnegative.

Notation 3.23. We will consider locally integrable distributions f as generalized func-
tions on (a,b) as usually by identifying them with the linear functional

b
b / f(x) 6(z) da

for infinitely differentiable and in (a,b) compactly supported supported test functions

¢ € C2(a,b).

In particular, if for two distributions f and g on (a,b) it holds

b
/ (f(2) — g()) (x) dz = 0, &€ C(a,b),

we will say f = g in the sense of distributions.

Definition 3.24. We denote § for the Dirac Delta distribution such that
b
[ 3=y 6(w)de = o).y € (@.0).6 € C2(a.b)

Definition 3.25. The derivative f’ of the distribution f is defined to be the distribution
satisfying
b b
[ F@oade=- [ f@)é@ds oecxab)
Lemma 3.26. Let y € (a,b). The mapping © +— x Ay on x € (a,b) has first derivative

1, T <y,

0
= ey ]IZB s =
5,2 M@ y) <y(7,9) {o, 25y

and second derivative
? 0
a2t A l@y) = o locy(2,y) = —0(z —y)

in the sense of distributions.

Proof. The function (a,b) = (a,b), v — x Ay is continuous and has classical derivatives
1 for x < y and 0 for = > y. Therefore,

- /b(x Ay)d (x) de = — /y v/ (x) dz — /b yd'(z) de

a Y

Y Yy b
= [ (@) da - [zd()]E=Y — o(@)E= = / o) d = / Lyey(z,y) 6(z) de.

15



3. One-dimensional time-homogeneous SDEs

For the second derivative

—/ab]lm<y(:n y) / ¢ (x o(y) Z—/ab5(:v—y)¢(l‘)d$-

Lemma 3.27. Let y € (a,b). In the sense of distributions the following equations hold

O]

LGopc(sy)(@) me(dy) = —6(x —y)dy, = € (a,b),
Ga,b,c(av y) = Ga,b,c(bv y) =0.

Proof. By Lemma [3.26] in the sense of distributions

5z e (@A y) = se(a)l(wy) = se(z Ay) - Lacy(@,y) = se(@)Lacy (2, y)

and

s (0) - oy () ,9) = $2(2) Ly ,9) — 5420z — ).

Since z Vy = x +y — (z Ay) it similarly holds

L 1560) = eV Y)I(,) = 5t V) Ly (2,) = 5]y (2, )

and

51[82(93) Aasy(z,y))(2,y) = s¢(2) - Lasy(2,y) + s(2)0(z — ).

Therefore, the mapping « — Gy (z,y) has derivative

%Ga,b,c(l', y) = S/c(m)]]-m<y($, ) (se(b) — se(y)) — is

and second derivative using equation ([3.4))

9? 1
@Ga,b,c(% y) = 52(0) — su(a)
x ((se(2)  Tocy(@,y) — se(@)d(@ — y)) (5c(b) — sc(y))
= (se(y) = 5c(a)) (58 (2) - Lasy(x,y) + sc()d(z — y)))
Se (@) Lacy (2, y) (sc(b) — 5c(y)) — (sc(y) — sc(a))se (@) Lasy (2, y)
se(b) — sc(a)
2b(x)

- %Gmb,c(:n, y) — s.(2)0(z — ).

— se(2)d(x — y)
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3.3. Speed measure and Green function
Again multiplying with o2(z)/2 yields
LGy o)) = L0y W),
whence it holds
LG ) @meldy) = ~ 20T 500 gy, () = o ) dy.

The other assertions Gy p (@, y) = Gapc(b,y) = 0 are immediate. d

Definition 3.28. (Cf. [34, Expression (5.5.55)].) We also define for [a,b] C I and a
bounded continuous function f : [a,b] — R the Green measure of f with start in x € [a, b]
as

) Gape(T,y) m0<dy)
SC(Q)
/ 2<y> !

Sc(ﬁf sc(a) Sc — sc(y)
R G s()/f ()dy. (3.9)

We omitted the notation of ¢ € I in the definition of M cf »(x) since as consequence of
Lemma the value of M ({ »(x) does not depend on the choice of c.

By the nonnegativity of the Green function also M, ;(x,y) > 0 is nonnegative for all
x,y € [a,b] provided that the function f(z) > 0 is nonnegative for all = € [a, b].

Lemma 3.29. (Cf. [34, Ezpression (5.5.53) and Expression (5.5.54)].) In the sense of
distributions the following equations hold

LM/ (z) = —f(x), =€ (a,b),
M/ (a) = M, (b) = 0.

Proof. By the previous Lemma it holds
LMf (/ f abc )mc dy) / f LGabc )( )mc(dy)

- / @) 6z — y)dy = —f(x)

and the assertions M({b(a) = Mjb(b) = 0 follows from G pc(a,y) = Gape(b,y) =0. O

Remark 3.30. In the classical sense, in view of equation (3.8) the function M f p May

2

fail to be differentiable since o“ is not necessarily continuous. Still, M/ b 18 absolutely
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3. One-dimensional time-homogeneous SDEs

continuous and therefore M C{ , exists except possibly on a set of Lebesgue measure zero
and satisfies

o (Pt [ ol

Again, the second derivative J%M ({ , exists except possibly on a set of Lebesgue measure
zero and satisfies

it~ s (L 10 i - [0 )

4 f(w)

dp” ab

4 ael) =) ) = sle) o sle) = sla)

- b) / O T R A Oy EA i ror e
Se ) SC(b)_Sc(y) Se(x) — sc(a) Se(b) — se(x)

+2s0<b> " / 1) s@(y)a?(y) W2 ) sc<a>f” 1 (2)0?(x)

~—
»
o
A

5ely) = 5e(a) dy> . (3.9)

st y 02(9)

% " s5c(b) — s ()+Sc()—sc(a

s¢(b) — sc(a) < ut ) s(y)o2(y) > (3.10)
2 (z) dz " 1er\ ) = Gay (@)

In other words, we agam see LM f p(T) = — f (a:) where the expressions are well defined

and taking equation (3.9) and equatlon as definition the assertion of the lemma
holds everywhere. ThlS is in the same splrlt as we have done before in (3.4)) and the way
the authors of [34] follow.

The following proposition justifies the labeling of M j »(z) to be the Green measure of f
with start in x € [a, b].

Proposition 3.31. (Cf. [34, Ezxercise 5.5.39].) Assume that (ND) and (LI) holds and
let (X, By), (Q,F,P), F; be a weak solution in I = (I,r) of (3.2) with nonrandom

initial condition Xo = x € I. Then for [a,b] C I and a bounded continuous function
f i [a,b] — R we have the following stochastic representation:

M\ (z) = E, [ /0 e F(X) ds.]

Particularly, X; exits from every compact subinterval of I in finite expected time.

Proof. As we did with equation (3.7) we define

t
Tn::inf{tZ():/UQ(XS)dSZn}, n e N.
0

18



3.3. Speed measure and Green function

By a generalized version of Ito’s lemma such as Lemma [3.15| combined with Lemma |3.29
it holds

7 7 tATR AT p d 7
M, y(Xinrant,,) = My (@) — (E A0 ATop) + /O <dxMa7b(Xs)> o(X,) dBs.

After taking expectations on both sides we deduce
f f t/\Tn/\Ta’b
Ba M (Kinn ) = ML) B | [ p(x)as].
0

We may pass to the limit n — oo as we can use Lebesgue’s theorem since M L{ , and f are
bounded continuous functions on [a, b] and derive

tAT b
E.[M!,(Xint, )] = MI,(2) — E, [ /0 F(Xs) ds] : (3.11)

Applied to the function f(z) := 1 this entails rearranged the inequality
b b
Bt A Tual = [ Gunelasn)meld) = Bx | [ GupeXina o) meld)

b
< [ Gunelavy) meldy) < .

From monotone convergence as t — oo it follows that

b
E, [T < / Gape(e, y) mel(dy) < oo.

Particularly, X; exits from every compact subinterval of I in finite expected time.
Consequently, Xr,, exists and by Lebesgue’s theorem combined with the boundary

values Mib(a) = Mib(b) =0 in Lemma it follows
tligglo Em [Ma{b(Xt/\Ta,b)] - Ex [M({;b(XTa,b)] =0.

In view of equation ({3.11]) together with the fact that

tATq
/ f(Xs)ds
0

this implies by Lebesgue’s theorem

Ta,b
< / F(X)|ds € L!
0

tATq Tap
s L : B :
M, ,(x) = tlggoEx [/0 f(Xs) ds] =E, [/0 f(Xs) ds]

and finishes the proof. O
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3. One-dimensional time-homogeneous SDEs

3.4. Feller’'s Test for Explosions

In this section we conclude the discussion following [34, Section 5.5 C. Feller’s Test for
Explosions|. We still consider an interval I = (I,7) C R and impose conditions (ND) and
(LI) on the coefficients of SDE (3.2)). The next theorem gives a characterization to the
question whether the event {S = oo} has full probability, i.e. there is no explosion in
finite time a.s.

Definition 3.32. (Cf. [34, Expression (5.5.65)]) Let us define the Feller test function
forz € I as

ve(T) = /cxsé(y)Lydedy: /st,c(z)ig(z)/:slc(y)dydz
= [ sele) = sl mef).

Theorem 3.33 (Feller’s test for explosions). (Cf. [34, Theorem 5.5.29]) In the setting
of Proposition it holds P(S = o0) =1 or P(S = 00) < 1, according to whether

ve(l) = lilirll ve(x) = ve(r) = li{n ve(z) = 00

or not. This in independent of the particular choice of c € I.

Proof. The proof is omitted here and can be found in |34, Theorem 5.5.29] together with
[34, Problem 5.5.28]. O

There is the following sufficient criterion.

Lemma 3.34. (Cf. [34, Proposition 5.5.22(a)]) In the setting of Proposition if

Se(l) = —00  and  sq(r) = oo, (3.12)
then
P.(S =00) =P, (021<poo X, = r) =P, <0<i?<foo X; = l> =1. (3.13)
In particular, the process Xy is recurrent: for everyy € I, we have
P, (Xt =y for somet € [0,00)) = 1. (3.14)
Moreover, in the setting of Pmposition the equations (3.13)) already imply .
Proof. The proof is omitted here and can be found in the book of [34]. O

Remark 3.35. Diffusion processes with the property are referred to as being
reqular. A boundary point where the scaling function is not finite is called not attracting
or repulsive and is particularly not attainable anonymously not accessible, i.e. the Feller
test function is infinite there and the diffusion process will not reach this point in finite
time a.s. Boundary points may further be classified; the interested reader is referred to
[35, Table 6.2] where the terminology due to Feller as well as the classification scheme
due to Russian probabilists, e.g. Gikhman and Skorokhod, is summarized and compared.
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3.4. Feller’s Test for Explosions

Definition 3.36. Let us still assume (ND) and (LI) to hold. For b,c € (I,r) ora,c € (I,7),
respectively, we define the one sided Green functions

Gl,b,c(xay) = SC(b) - Sc(.’IJ \4 y)? T,y € (la b)

or
Ga,r,c(fa y) = Sc(x A y) - Sc(a)a T,y < (CL, T)v
respectively. For b,c € (I,r) and f € Cy[l,b] under the hypothesis that

/lbmc(dy) <00

or for a,c € (I,r) and f € Cpla,r] under the hypothesis that

/ar me(dy) < oo

b
Mz{b(@ ::/z f() Gipe(x,y)me(dy), =z € (1,b)

respectively, we define

or

2= [ 10) Gurclocg) meldy). @ € (ar),
respectively.
Definition 3.37. Let T, :=inf{¢t > 0 : X; = 2z} the first hitting time of z € R.

Proposition 3.38. In the setting of Proposition and under the assumptions for
defining fb or MJ,T, respectively, it holds assuming limg; sq(x) = —oo for x € (I,b) the
following analogues to Proposition|3.31:

Ty

My (z) = E, [ ) ds}

or assuming limgy, s.(x) = oo for x € (a,r) it holds
Ta

e as).

respectively.

Proof. Let us consider the case where b,c € (I,7), f € Cp[l,b], lim,; sc(z) = —oo and
€ (I,b). The other assertion of the other case follows completely analogously. We have

already seen in Proposition [3.31| that Mf UO “b f(X } ie.

b Tb
/ ]l(a,b) (y) f(y) Ga,b,c(xa y) mc(dy) =E, |:/ ]l(O,Ta)(S) f(Xs) d5:| : (3'15)
l 0
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3. One-dimensional time-homogeneous SDEs

The idea is to pass to the limit a | [ on both sides. The left hand side in (3.15)) equals

b
/z Loy () f(y) Gape(x,y) me(dy)

— (5B — s.(x scy) = sela)
- ( c(b) c( )) l f(y) ]l(a,x)(y) Sc(b) — sc(a c(dy)

b

Se(x) — sc(a)
T 5e0) = sela) /. F(y) (5c(b) = sc(y)) me(dy). (3.16)

Since s is a increasing function it holds

sc(y) — sc(a)
Se(b) — sc(a)

for y € (I,z) and by f € Cp[l,b] we may use |f(y)| < sup,ep ) |f(z)| and combined with

0< ]l(a,z) (y) <1

the assumption [;* m.(dy) < flb me(dy) < oo Lebesgue’s theorem implies

. sc(y) —scla) Sc(y) = se(a)
lcll?ll/ f(y ]l(aa: Sc(b) —sc(a) c(dy) = / fly hm]l az)( )mmc(d?/)

For y € (I, ) due to limg); s.(z) = —oo it holds

sc(y) — sc(a)

léirll]l(a,z) (y) 5.(b) — se(a) =1
and therefore
5c(y) — se(a
/ 0) i Ly () = / £(y) me(dy)

is the overall limit of the first integral in (3.16|) as a | I. For the second summand in
(3.16) we again use lim,; s.(x) = —oo to obtain

1u[sc ~su(2) /f e (y)—sc(a) me(dy)
el =) [ 1) ) - <>>mc<dy>]
= (s0(b) — 5:(a)) /l £ meldy) + / F ) (50(0) = 50()) me(dy)
-/ " Pl (5e(8) — selar v ) me(dy) = / " F(y) G, meldy) = M) < oo

since f € Cy[l,b] and fl me(dy) < oo and f |sc(y)| me(dy) < co. We now turn to the
right hand side of (3.15) - As preparation to apply Lebesgue’s theorem we consider that
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3.4. Feller’s Test for Explosions

as a | [ the random variables T, A T}, are non-negative and non-decreasing. Therefore, by
the monotone convergence theorem

HmE, [T, A Ty] = E, [lim T, A Tb] € [0, 00].
all all

In light of Remark the assumption limg,; s.(x) = —oo implies lim,; T, = oo with
P.-probability 1. Using Proposition and the already shown convergence of the left
hand side of ([3.15)), i.e. limgy, M({b(m) = leb(x), it follows
E.[Ty] = im B, [T, A Ty] = im B, [T, 3] = lim M () = M5 (z) < oo.
all all all ’

a,

Upon using the P,-a.s. domination

< sup |f(2)|Tp € !
z€[l,b]

Ty
/0 Loz (5) F(X,) ds

it then follows by Lebesgue’s theorem

a

Ty Ty
liiIZlEa; |:/ ]l(O,Ta)(S) f(Xs) d5:| = Ex |:h?ll/ ]l(O,Ta)(S) f(XS) ds| .
a 0 0
We may use Lebesgue’s theorem once again since

L0 (5) F(Xs)| < sup |f(z)] < oo
z€(l,b]

and E,[Tp] < oo implies IP’gC(fOTb ds =Ty < o) =1 to obtain

e

T, T Ty
E, |:1Hfl1/0v ]l(O,Ta)(S) f(Xs) d5:| =E, |:/0 1(11&1]1(0,%)(5) f(Xs) d5:| =E, |: f(Xs) d8:| .

0

This shows the asserted convergence of the right hand side of Equation(3.15]) and thereby
finishes the proof. O

Theorem 3.39 (Generalized Kac’s moment formula). (Cf. [41, Theorem 4.1].) In the
setting of Proposition with [a,b] C T and c € I if f:]0,00) = R is a differentiable
function such that the mapping [a,b] — R, x — B [f'(T,)] is continuous, it holds

b
Bulf(Tut)) = J(O) + [ BF/(Tus)) Ganela,y) me(dy).

Proof. Even though the setting and assumptions in [41] are sligthly different the assertion
still applies to our situation. We refer to the [41, proof of Theorem 4.1]. O

Corollary 3.40. (Cf. [41, Display between Equations (4.4) and (4.5)].) In the setting
of Proposition with [a,b] C I and ¢ € I it holds

b
Eo[(Tan)?] = 2 / Ey[To ) Gape(e, ) me(dy).
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3. One-dimensional time-homogeneous SDEs

Proof. Either by using f(¢) := t in Kac’s moment formula or by Proposition it holds

b
E.[Tos) = MZy (2) = / Gupel,y) me(dy).

This quantity is continuous in z € [a,b] by the form of the Green function and the
continuity of the scale function s, and we may therefore use Kac’s moment formula for
f(t) = t? which shows the assertion. O

Proposition 3.41. (Cf. [/1, Proposition 4.2].) In the setting of Proposition m
and under the assumptions for defining leb or M({r, respectively, it holds assuming
limy; sc(z) = —oo for x € (1,b) the following analogues to Corollary|3.40

b
E,[(T)?] =2 /l E,(Ty) Glpe(z, y) me(dy)

or assuming limgy, sc(x) = oo for x € (a,r) it holds

Ew[(Ta)z] =2 /T Ey[Ta] Garc(x,y) me(dy),

respectively.

Proof. The assertion follows from Corollary in the spirit as did Proposition follow
from Proposition One considers a | [ or b 1 r, respectively, and uses Lebesgue’s
theorem. The details are omitted. O

3.5. Approach using Sturm-Liouville theory

There is also an approach using Sturm-Liouville theory which we want to sketch briefly.
We follow [49, Chapter 13]. Let again I = (I,7) C R an open real interval. Throughout
the section we assume conditions (ND) and (LI) to hold for the coefficients of SDE (3.2]).

Definition 3.42. For c € I let

pe(r) == exp (2 /Cx :2(2) dz) >0, zel

and

ro(z) = pe()

= 1.
T o2(2) >0, ze

It then holds s.(z) = [ ﬁ(y) dy and m.(dy) = 2r.(y) dy. Recall from equation (3.3|) that

the formal generator of the SDE is given by

(L)) = 50> (@) (@) + () (o).
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3.5. Approach using Sturm-Liouville theory

Since a.e.
T bz b(x b(x
st = (2 [ i ae) 2 <o) 227
it holds a.e.
(L1)6@) = 5 (0e) ) + 25 o))
1 1

(pe() " (x) + pi(2) f'(x)) (pe(@) f'(2))"

- 2rq(x) - 2r.(z)

The latter is a Sturm-Liouville (differential) expression in the sense of [49, Section 13.1].
There, some assumptions are invoked which are particularly fulfilled in our situation due
to (ND) and (LI). In [49] a solution f to Lf = 0 is demanded to be absolutely continuous
with = — p.(z)f'(x) also absolutely continuous in order to ensure that f’ and (p.f’)
exist properly. If one considers the exit time of some interval = € [a,b] C I solutions are
given by

! b1
v(z) = dz = s.(x) — sc(a) and wm::/ dz = s.(b) — sc(x
@)= [ = suo) = sfa) @)= [ e = st = sulo)
with the additional property that v(a) = w(b) = 0. Since as functions on [a, b] both v, w €
L?(m.) amongst other results [49, Satz 13.21] entails the assertion of Proposition m
In the terminology of [49, Satz 13.18] the condition

b
/l s2(x) me(dz) = oo (3.17)

ensures the Sturm-Liouville expression to be in the limit-point case at . The same
nomenclature applies respectively for the boundary point r. Together with the assumption
flb me(dy) < oo condition particularly implies lim,; s.(z) = —oo. Indeed, the
assertion of Proposition is also covered by [49, Satz 13.21] and the solutions with
proper boundary conditions v(a) = 0 or w(b) = 0, respectively, are given by

v(z) =1 and w(z) = s.(b) — sc(x)

v(z) = sc(x) — sc(a) and w(z) =1,

respectively. In either one of the three situations the general form of the Green function
is given by

Gloy) = v(x ?/Viz;u,(f)v y)
where
= de w(x) v(x = wl\T ZC’U,.'E_ .:U'U)/x v\x
Wotwo)=det (0 ) ) =)o) o o) = o) ') vle)
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3. One-dimensional time-homogeneous SDEs

is independent of x € I and denotes the modified Wronskian. (Cf. [49, Proof of
Korollar 13.3].) It holds

We(se(b) = sc(+), sc(+) — sc(a))

1
= (sc(b) = sc(@)) pe() Do)

) (30(2) — 50(0)) = 56(b) — se(a)

and Wo(se(b) — se(+), 1) = 0 — pe(z) (—%@)) =1 or Wa(L, () — sc(a)) = 1, respectively.

3.6. h-transformation in the sense of Doob

We follow [46, Chapter 4.1 The h-transform]. Let again I = (I,7) C R an open real
interval.

Definition 3.43. For k € Ny and a € (0,1] let C*%(I) denote the space of functions
which are continuously differentiable up to order k and the k-th derivative is a-Holder
continuous on any compact subinterval of I.

Definition 3.44. Let again

(L)) = 50*@)f" (@) +ba) ' (2)

the formal generator associated to the SDE (3.2)) as in equation (3.3)). Let h € C%<(I)
satisfy h > 0 and Lh = 0 on I. The operator L" defined by

1
L"f = —L(hf)
h
is called the h-transform of the operator L. Written out explicitly, one has

(th)(:c) _ L(hf)(xz)  (Lh)(x)- f(x) + o®(2)h/ (z)f'(x) + h(z) - (Lf)(x)

h(z) h(z)

= (Lf)(x) + o*(x)

Remark 3.45. Suppose (ND) and (LI) holds and (X, By), (92, F,P), F; is a weak
solution in I of SDE (83.2) with nonrandom initial condition Xy = x € (a,b) C I and
additionally the coefficient functions b,0 € C!(I) are continuously differentiable and
—00 < sc(a) < sc(b) < oo are finite. Then the function

sc(b) — se()

h:la,b) = [0,1], h(z) =P (T, =a)= 5e(0) — 50(a)

is stricly decreasing with h(a) = 1 and h(b) = 0 and three times continuously differentiable.
Particularly it holds h € C?%((a,b)) in the sense of Definition and h(z) > 0 and
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3.6. h-transformation in the sense of Doob

(Lh)(z) =0 on x € (a,b) since Lh = Wlscm)l"% = 0 due to Lemma The SDE

corresponding to the h-transform L" of the operator L reads

xt = (000 + () ) ) de+ ol B

fulfills the assumptions (ND) and (LI) and gives rise to the diffusion X} up to time T}
with law
P (X! €+) =Pu(X; €+ | Tup = a).

The process X/ exhibits for ¢, z € (a,b) a scale function sl (z) = [ 1/p"(y) dy and speed
measure m”(dz) = 2r(z) dx accordingly with

z b(2) + o%(z
pe(z) = exp 2/ ) J%i))h(z) dz

mew (2 [ oo [G) =nio- (55)
o= 5 - L (M) - ()

Lemma 3.46. In the setting of the previous Remark if c € (a,b) and fab me(dy) < oo
then ff ml(dy) < oco.

and

Proof. According to the assumptions it holds

[ = [[ana0 (585) < e [ metan <o

which shows the assertion. O

Lemma 3.47. In the setting of the previous Remark if ¢ € (a,b) then sP(b) = oco.
Proof. According to the assumptions it holds

o= [t [ i (i) o= [ 40 (=55)

z=b
= (s¢(b) — Sc(C))2 [M] = 00 — (8¢(b) — s¢(c)) = 00

which shows the assertion. O
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4. Stochastic Spikes

4.1. Notation

Let us give some basic definitions and notations. With parameters A, e > 0 and measurable
functions by (z), b2(z),0(z) on = € [0, 00) we write (X});>o for the solution to the SDE

2
dX} = %(5 by (X)) = bo(XD)) dt 4+ X - o(X}) dB; (4.1)

upon employing as standing assumption:

(A1) For all sufficiently small € > 0 and A = 1 there exists a solution to the SDE (4.1
in the interval I = (0, 00) in the sense of Definition with the boundary point 0
being not attainable and which is unique in law in the sense of Definition for
any deterministic starting value Xy :=z > 0.

Definition 4.1. For = > 0, we denote as P, the probability measure for the diffusion
process conditioned to start at x and write E, for the corresponding expectation.

4.2. Discussion of the parameter )\

The parameter A acts as a constant time acceleration by the factor A? in the following
sense:

Lemma 4.2. For arbitrary deterministic starting value x > 0 the process (X{)i>o is
distributed as (X}\Qt)tzo.

Proof. Using the substitution A% = s it holds

A%t
|5 Eenexd —px) as = [

By the time change formula for It integrals [44, Theorem 8.5.7] in accordance to [44,
Expression (8.5.14)] the processes

t
1
5 (E01(Xa,) = ba(X3e,)) dr

A2t
/ o(X;) dB;
0
and

t
/ o(X1a,) VA2dB,
0
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4. Stochastic Spikes

are equal in distribution. Therfore, it follows the equality of distribution of the processes

A2t
Xm—/o %(sbl(XS)—bg( ))ds+/ (X)) dB

0

t]. t
2)\2/ = (eb1(X32,) — ba( X3 dr—i—)\/ o
0o 2 0

The process (X )5,)¢>0 is the unique solution of the SDE

)\2
dXy = 7 (b1 (Xe) = b2(Xy)) dt + Ao(Xy) dB,

and the assertion follows. O

In the following to deduce properties of Xt it suffices to consider X1,, which is the reason

why we use the notation X; = X}.

A2t

Definition 4.3. We set X; := X} for the diffusion process with parameter A = 1 and
the hitting time for the process (X¢)¢>0 of some level z > 0 will be denoted as

T, =inf{t >0: X; = z}.

4.3. An embedded approximate Poisson process

In [5], the distribution of the first hitting time 7 is deduced by calculating the Laplace
transform of T, i.e. the expectation

Ex[e_STZ], s>0,0<z<2z

making use of the fact that they solve certain ordinary differential equations. Our
approach has a somewhat different more probabilistic flavor. We are using the following
rather classical strategy:

e Starting the diffusion near zero, we introduce stopping times, which decompose the
path up to an arbitrary time T into cycles.

e During every cycle, the diffusion reaches with a small probability the level z.

e Counting only the hits of level z now up to a time A\?>7 results in an approximate
Poisson process.

Assumption 4.4. From now on we require the existence of two functions 0 < «a(e) < S(¢)
for small ¢ > 0 which are differentiable in 0 with lim. o 8(¢) = lim. g a(e) = 0.

For the moment being we call a cycle a path from a(e) to f(e) and back to a(e) when
A is set to equal 1. Later we will alter the definition. If we speed up the time scale
which is done by introducing the large time scale factor A?> we have many cycles in a time
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4.3. An embedded approximate Poisson process

interval [0, \2T] and in each cycle we hit the level z with small probability. This is the
standard situation, where the Poisson heuristic should apply. We recall that the Poisson
distribution exactly occurs in a scaling limit of many independent trials each having
small success probability. The waiting time until the first event in a simple Poisson
process is exponential. This connects the Poisson heuristic to the assertion of the main
Theorem we are aiming for.

4.3.1. A thinned renewal process

Definition 4.5. For the motivation to be more formal we introduce the following
quantities:

o0=0,7:=inf{t >0: Xy =0()}, oy =inf{t > : Xy = ale)};
furthermore, for ¢ > 2 we define:

i =inf{t > 0,1 : Xy = B(e)}, oy =nf{t > 7, : Xy = a(e)}.

(Xt)

Figure 4.1.: Illustration of the stopping times 7; and o;. The image is not the result of an
exact simulation but a conceptual visualization only and is due to Gabriel
Cicek.

Definition 4.6. Let us furthermore define the counting variable
N(T) :=max{i e Ng: 0; <T}.

The involved quantities do depend on € > 0 even though this is not explicit in the
notation.
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4. Stochastic Spikes

Definition 4.7. Moreover, we consider the probability

Pez = Ppe) (T < Tae))
of reaching the level z > 0 before falling back to a(e) when started at 5(¢) < z.

The quantity N(T') encodes the number of cycles completed up to time 7. For given
z > 0 we are actually not interested in the number of completed cycles up to time T’
but in the number of cycles up to time 7T, which do cross the level z. Thus we have to
delete those cycles which do not cross the level z and we observe that this happens with
probability 1 — p, ..

As a first motivation we consider the thinned-rescaled point process obtained by re-
taining every point of N with probability p. . independently of the other points and of
the point process N(T'), and then replacing the retained point at time instant ¢; by a
point at A~2 - ¢;. This gives rise to a counting process

gﬁpsm)\(T), T>0
with
Mpe o n(T) = &1+ + Enrerys

where the random variables &1, &, ... are independent and identically distributed with
P& =1) =p.., P(& =0) =1 — p. . and independent of the process (N(¢))>0. This
thinned counting process converges to a Poisson process in the total variation norm, but
the independent thinning does not precisely describe what we are really interested in:
The number of completed cycles in some given time interval is not independent of the
success probability to cross the level z.

4.3.2. Poisson Limits in the high noise regime
We investigate the probability
Pa(g) (Tz > AQT) = Pa(s) sup Xy <z
0<t<A2T

that starting at a small positive value the process does not cross level z in the time interval
at all. Since it holds A>T € [O'N( A2T)5 ON( x27)+1) We yield an adequate approximation by
truncating the time interval to the last fully completed cycle, i.e. we consider

Py o) ( sup X; < z) = ZPQ(E)(N()\QT) =k V1<i<k: sup X;<2)
k=0

OStSUNoﬂT) T <t<o;

= Poy(N(N°T) =k, VI <i<k: sup X;<2)
k=0

7, <t<o;

32



4.3. An embedded approximate Poisson process

For k € Ny we may decompose as

Po@o(NNT) =k, V1<i<k: sup X;<2)

7 <t<o;
=Puo(V1<i<k: sup Xy <z) Poo(NONT)=k|VI<i<k: sup X;<2z).

T <t<o; 7 <t<o;
Using the strong Markov property along the sequence (Ti)le of stopping times we deduce
k
Pa(VI<i<k: sup X, <z)= [IPx., (T < T2) = Pyo) (Tage) < To)F.
7, <t<o; i=1

It is now for the conditional probability where the stochastic dependency enters the
framework.

Definition 4.8. Starting at 3(c) < z we define the stochastic process X' as the process
obtained by conditioning the process X; to hit a(e) prior to z. This is performed by a
h-transform in the sense of Doob as outlined in Section [3.6| using h(x) = Py (Ty(e) < T).

Definition 4.9. We can now adjust the definition of the cycles. Without loss of generality
we may only consider € > 0 small so that () < z. For X; always starting at a(e) and
X} always starting at 3(e) let

50 = 0, ;1 = inf{t >0: X, = 5(6)}, 51 = inf{t > ’7/:1 : Xth = 04(6)};
furthermore, for ¢ > 2 we define:

Tio=1inf{t > 5,1 : X; = B(e)}, 3; == inf{t > 7; : X' = a(e)}.

(X,) A(xh 51 t

Figure 4.2.: Illustration of the cycle decomposition given by 7; and ;.
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4. Stochastic Spikes

Now we run the process starting from «(e) until it reaches (g). Then, we condition to
fall back to «a(e) again before reaching the level z > 0. Then, the first cycle is completed
and again starting from «a(e) the second cycle starts by letting the unconditioned process
X; run and so on. The i-th cycle starts at random time o;_1, lasts until time o; and
consists of a first phase lasting from o;_1 to 7; where no condition is put on the process
and a second phase lasting from 7; to o; where the process is forced to never reach z.

Definition 4.10. The process counting the number of completed cycles up to time T’
becomes B
N(T) =max{i € Ny : 0, <T}.

The construction is built to allow for writing

Py (N(NT) =k |[V1<i<k: sup X;<z) =Py (NONT)=k)

7 <t<o;

Now, by the considerations in the beginning of the section it holds:

Pa(a)( sup Xt<2> ZP ) (N )=k, V1<i<k: sup X;<2z)
A2T)

OgtgaN( 7 <t<o;

:ZPQ(E)(Vlgigk: sup Xy < 2) Poo(N(N’T) =k |VI<i<k: sup X;<z)

7 <t<o; 7 <t<o;
= ZPB 5) a(e) <T, ) a(s) (j\vf()\2T) = k‘)

Defining

Ny . A(T) = gl +o Tt g1\7(>\2T

with (51)1>1 being an independent family of Bernoulli distributed random variables with
P(& = 1) = pe,» and independent of the counting process N (T') we may rewrite as

ZPB ) < T)F ooy (NONPT) = k) = P(R,,_ A(T) = 0).

Again, since N grows linearly we are perfectly in the picture of classical Poisson approx-
imation and the appropriate curve on which we scale A\ — oo and p. . — 0 should be
the one with A\? - De,» €qual to some positive finite constant. We fix this formally in the
following.

Definition 4.11. We call the (generalized) scaling limit the limit process of letting
A — oo and € — 0 such that A\? - p., = J € (0,00). This particularly entails that € — 0
must imply p. . — 0 for the scaling limit to be well defined. When useful we write

lim [] as shorthand notation for lim [}
scaling >\—>%o
E—

Az'pa,z:J
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4.3. An embedded approximate Poisson process

Let us pose two additional assumptions.

(A2) The expected cycle duration converges to some positive real number independent
of z:
Eo()[71] — £ € (0, 00).
a(e) [01] =10 K ( ,OO)

(A3) For small € > 0 the cycles have finite second moment uniformly in e:

lim sup E, ) (73] < 0.
el0

Remark 4.12. Technically, (A3) may be weakened by limsup, o E,. )[ TP < oo for
some positive p > 0. That is, only (1 4 p)-th moment is actually needed. The conditions
(A1), (A2) and (A3) are rather natural and not too restrictive.

Assumption (A2) and (A3) are used in order to control the renewal structure uniformly
in € > 0.

Proposition 4.13. Under the assumptions (A1) to (A3) for fized T > 0 it holds

lim Py ( sup X; < z) =T,

scaling OStSJN(/\QT)

Proof. In view of

Py ( sup  X; < z) = P(glpsyw\(T) =0)

0<t<on(r2r)

we may apply standard results on Poisson approximation as e.g. [50, Equation (23)] that
state

dry (M, , A(T), Poixsr) < ﬁ + Eo(o)[ |, NOA2T) — £JT]
- Ve,z
where
dry(X,Y) =sup |P(X € A) —P(Y € A)| Zyp P(Y = k)|
A

denotes the total variation distance of measures essentially supported in Ny. Therefore,
in order to conclude the assertion it suffices to show the convergence

lim Eq()[|pe-N(\T) - kJT|] =

scaling

With ke == 1/Eyo)[01] € (0,00) we obtain

lim E, Hpaz N(\°T) — kJT|] =J- lim Eq( H)\*QN()\ZT) — &T|]

scaling scaling
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4. Stochastic Spikes

and
Eoro) [N 2NONPT) = KT|] < Eor) [N 2N(NPT) — k:T)] + |6 — ke| - T

The vanishing of |k — k.| — 0 is a reformulation of (A2) and due to (A2) together with (A3)
we can apply a suitable version of the uniform renewal theorem such as [37, Theorem 10]
in order to conclude for § > 0 sufficiently small such that sups- .o Eq(e) [07] < 00

N(A2T)

Scl(ig}lg Eq(e) [})\72]?()\21’) — IQETH <T- liﬁs;p 5?250 Eo(e) HW — HEH
: NV
=T-1 Eoo) ||—— — =0.
msup sup, Eago) |5 — el
This finishes the proof. O

In order to describe the event {T, > T'} we need to consider the events

{NONT) =k, sup X; <z},

oK <t<T

this means we also have to ensure that during the cycle started before time T" but not
completed before this time the level z has not been hit.

Corollary 4.14. Under the assumptions (A1) to (A3) for fived T > 0 it holds

Hm Po (T: > NT) = /7.

scaling

Proof. From the fact ony2r) < NT < ON(A2T)+1 We see
Po(e)(T: > onper)i1) < Pae)(Te > XN°T) < Py (T > onprer))

and by the previous Proposition the upper bound has the asserted scaling limit. For
the lower, we may define

+ ot e+
Mo (D) =80+ 5N(A2T)+1

with (£);>1 being an independent family of Bernoulli distributed random variables
with P(& = 1) = p.. and independent of the counting process N(T') and repeat the
argumentation as in the proof of Proposition [£.13}

D P <N()\2T) =kVI<i<k+1: sup X} < z)
k=0

7, <t<o;

(T) = 0).

= ZI%(E) (Ta < Tz)k+1 Pa(a) (N()\2T) = k) = P(éjt;;z,)\
k=0
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4.3. An embedded approximate Poisson process

Then, in the scaling limit

lim Eu [|pe: (N(NT) + 1) — kJT|] =0

scaling

still holds and the assertion is shown.
O

Let us now start the diffusion process from a point 0 < x < z and derive the law of T,
with respect to P,. Starting at = there are two cases to consider:

e The diffusion reaches «a(e) before hitting z.
e The process hits z before visiting a(e).

Definition 4.15. Let
T} =inf{t>0: X)) = 2}

denote the stopping time of the first hitting of level z > 0 for the diffusion process X}.
In our notation it holds T} = T, which corresponds to X} = X;. By Lemma the
hitting time T is distributed as A~27%.

The previous result entails the exponential behavior of the hitting of a fixed level z, when
started very close to zero. In order to deduce the result when started from a fixed level
0 < x < z we assume the following conditions:

(B1) In the generalized scaling limit for any z > 0 and 0 < = < z, under P,,

scaling

converges in distribution to the point mass in zero.

(B2) Furthermore, the limit
Py (T < T2) — ag. € (0,1)
e—0

exists for all z > 0,0 < z < z.

Remark 4.16. Our assumptions (Al) — (A3) and (B1) — (B2) are natural and related
but not fully comparable to the conditions formulated by Bauer and Bernard. We point
at some similarities. [5, Condition ix)] essentially corresponds to (A3) and the assumption
Pe,» — 0 is related to [5, Condition ii)]. [5, Condition i)] is encoded in the example below
as (E2) and (E3).

Lemma 4.17. Assumptions (B1) and (B2) imply that for any z >0 and 0 < z < z in
the generalized scaling limit the law of Toi‘(s) under Py (+ | TO’[\(E) < T)) converges to the
point mass in zero:

Po(Toe € | Toey <T2) —L . 5.

scaling
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4. Stochastic Spikes

Proof. Lemma [4.2| implies for a(e) < z < z to hold
Po(Toe) < T2) = Pu(Too) (X)) < T2((X)0)) = Pa(Tae) (Xoze)t) < To((Xoz)r)
=P\ To o) (Xo)t) < ATPT((Xe)t)) = Po(Tage) < T). (4.2)

Convergence in distribution to the Dirac measure of the constant 0 is equivalent to
convergence in probability to the constant random variable 0. Let ¢ > 0 arbitrarily small.

Then by equation (4.2)), (B1) and (B2)

Po(Th . > 6, T2 ANT2 =T )
P(Ta(s>t| a(s<Tz)\): © )\() N ©
IP’gC(Ta(s) <T)
A A A A A A
_ Pz(Ta(s) /\TZ > t7Ta(s) /\TZ - Ta(e)) < P ( al(e) /\T > t) 0 0
Po(Toe) < T) T Po(Tae) <T:) 00 og

which shows that T o):( c) converges to 0 in probability with respect to the probability
measure Py (¢ | Té‘(s) < T?). Therefore, the assertion follows. O

Due to assumption (B1) the probability of neither having hit a(¢) nor z by some finite
time 7" > 0 vanishes in the scaling limit. Assumption (B2) on the other hand allows us
to control P, (Té‘(s) < T?) in the scaling limit. Let us give another Lemma as preparation
for the main result.

Lemma 4.18. Let (pn)nen and (Vn)nen sequences of probability measures on the mea-
surable space (R, B(R)) with

D
Hn Y
n—00

and

D
Vp — U,
n—oo

both p and v probability measures on (R, B(R)) as well. Then, the convolution of measures
D
M, ¥ Uy —— [V
n—o0

converges in distribution to the convolution of the limit objects.

Proof. The essential proof idea is to use Levy’s continuity theorem: Let

o0

ou:R=C, ¢ut) = / e pu(dx)

—00

denote the characteristic function of a real probability measure p. From the assumed
convergence (i, — p it follows ¢, (t) = ¢, (t) for any ¢t € R and likewise ¢y, (t) = ¢, ().
Since it generally holds

0= [ G xvn) = [ [ 0 ) vy
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4.3. An embedded approximate Poisson process
o0 . oo
— [ adn)- [ ) = g, (0 00, (0
—o0 —00

from the assumed convergences ¢,,, (t) = ¢, (t) and ¢, (t) = ¢, (t) if follows
Ppinvn (1) = Ppp () - 0, (8) = @u(t) - 00 (t) = Qs (1)
This in return implies p, * vy, SICAN 1 * v which finishes the proof. O
n—oo

We are now ready to state our main result.

Theorem 4.19. Assume that the conditions (A1) to (A3), (B1) and (B2) are satisfied,
then in the scaling limit A\ — 0o, € — 0 with A\*p. , = J € (0,00) the law of the hitting
time T when started at 0 < x < z equals

(1 — ) do+ ag.Expy, .

Remark 4.20. In the special case of equation (2.2)) this result corresponds to [5, Corol-
lary 3].

Proof of Theorem[[.19. Let 0 < z < z, T > 0 and € > 0 sufficiently small. It holds

Po(T) > T) = Pu(Tooy AT > T) + Po(T2 > T > Ty )

[0}

From (B1) it follows, that the first summand vanishes in the scaling limit and writing
Po(T2 > T > T) ) = Puol(T2 > T) ) - Bu(T2 > T > Ty | T2 > T)

we see by equation (4.2)) in combination with (B2) that the first factor of this product
has the scaling limit

lim P, (T2 > Ty.y) = lim Py(Tye) <Tb) = g,

scaling scaling

For the second factor
]P)I(Tz)\ >T > Toi\(a) | Tz>\ > Toi\(a))

we use the strong Markov property at the first hitting time of level a(e) under the
condition {TO/(\(E) < T2} and obtain

PI(TZ/\ >T = T/\ ’ a(s < Tz)\) = / Pa(s) (Tz)\ >T - Ta(s)( )) ]P)$(dw ‘ Ta)\(e) < Tz/\)
[0, <T}
- /Pa(a)(Tz)\ >T - Ta)\(s)(w))Px(dw ’ Ta)\(s) < Tz)\) - / dw ’ a(s < Tz)\)

{TQw >T}

M A <Tj). (4.3)

— / Po(e) (T (@) + T2 > T) Py(dw | Tooy < T2) = Pu(Thy > T | T2
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4. Stochastic Spikes

Since the strong Markov property entails the independence of the future from the past
given the present at time Ta)‘(s) (w) the last integral in equation (4.3) may be seen as a
probability of the convolution

/Pa(s) (Ta)‘(s) (W) + T2 > T)Py(dw | Ta)‘(s) <TM

= [(Pa(Ty € - 1 T2 <)+ (Page (T2 € 9)] (T,00)).
Lemma states the convergence

P, (T) 2 <T) —2— &g

a(a ’ scaling

and by Corollary

- D
Po(e)(T2 € ) = Poie)(A?T% € ) —— Expy,..

scaling

As a consequence of the previous Lemma [4.18] it holds

lim |(Po(T)) € - | T <TA>) (Pa<e)<Tze->)}((T,oo»:e—””.

scaling

Again by Lemma it holds for the remaining last term in equation (4.3))

lim P, (1)

scaling

>T| T, <T2) =0,

a(e)

Summarizing, we have shown

[0}

lim P,(T}>T)= lim (IP’ (TN AT) > T) + Bo(T) > T > Tg(g)))

scaling scaling

. A A A 2 N \
=07 501‘111319 Pe (T2 > Ta(e)) P (T2 >T 2 Ta(s) |72 > Ta(s))
— e lim IP) (T >T>T(a | a(s <Tz>\)

scaling

=0z lilrn (/ IP)oz(e) (T(i\(a) (w) + T;\ > T) Px(dw | T(i\(e) < Tz)
scaling
~ (T > T | Ty < T2))

. (efﬁJT —rJT

=y, — O) = Qg .€

which finishes the proof. O

Theorem [4.19| can be interpreted in the following way, which has also been observed in
[5]. If the diffusion process starts at the point z and wants to reach level z then there
are two options: Either the process reaches level z without coming close to zero and in
the scaling limit this takes no time or it first reaches a neighborhood of zero. Once it has
reached the neighborhood of 0 it needs many trials to get up to level z and each trial has
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4.3. An embedded approximate Poisson process

low success probability (see e.g. [14]). The latter follows from the form of the stochastic
differential equation; the drift is weak near zero and the diffusion is slowed down near zero.

The asymptotic of p. ., — 0, as ¢ — 0 may depend on the value of z. We want to consider
the z-free scaling limit.

Definition 4.21. For z € (0, 00) define
1- 21, z < 1)
q(2) = o
(I—-oz)™, z>1

Corollary 4.22. Assume that all conditions (A1) to (A3), (B1) and (B2) are satisfied,
then in the z-free scaling limit A\ — oo, € — 0 with \®p.1 = J € (0,00) the law of the
hitting time T when started at 0 < x < z equals

(1-— Oéx,z) do + Oz z EXan/q(Z) :

Remark 4.23. The choice of the normalized level one in p.; and in the definition of
q(z) respectively is of course rather arbitrary.

Proof. As always, we assume ((¢) < z. By the strong Markov property, it holds in the
case z > 1
Poe)(Tz < Tare)) = Py (T1 < Tae)) - Pr(Te < Tie))

and in the case z <1 it holds
Pae)(Ts < To(e)) = Ppe) (T < Toe)) - Po(Th < Tage))-
In summary, we obtain
Psiey(Tivz < Tage)) = Poe)(Tinz < Tae)) - Piaz(Tivz < Tyaqe))-
Using again the notation p. . = Pg(o)(T: < Ty()) we find
Peivz = Peinz (1 = Piaz(Toe) < Thvz))-

For ¢ > 0 sufficiently small it follows from condition (B2)

pE,Z _ {(1 - PZ(TQ(S) < j—’l))fl7 z S 17

Pe1 1-— Pl(Ta(e) < TZ), z>1,

1-— -1 <1

( aZ,l) ) z > 1, _ q—l(z). (44)
e=0 |1 — aqz, z>1,

We will now use equation (4.4]) to deduce the assertion. For T' > 0 arbitrary it holds

lim P, (T)>T)= lim P,(\ 2T, >7T)=1lmP, (227, > =2p
)\%%o )\a%o e—0 J Pe1
E—r E—>

Apea=J Npe1=J
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4. Stochastic Spikes

= )\li_{go P, (TZA > iE’ZT> = scl;lrgl P, <TZ’\ > <q_1(z) + gs—’z - q_l(z)) T) .
e e, 1 g el
Pe,z=

Pez  g71(2) —— 0 as consequence of
Pe1 e—0

Theorem this shows for § > 0 arbitrarily small

In view of the already proven convergence

lim sup IP’I(T;‘ >T) < awyze—nJT(q*l(z)—é)
A—00
e—0

)\st,lzv]
and 1
liminf Py(T? > T) > ay e "/ T@ (2)+9),

A—00
e—0

)\27;6’1:]
Therefore, it must hold
lim P (T} > T) = a.e /T4 ()
A—00

e—0
)‘2ps,1:J

which shows the assertion. O

Remark 4.24. In both examples worked out below the scaling limit relation /\2p5,1 =
const is essentially (meaning up to some arbitrary positive multiplicative constant)
equivalent to choosing the curve \2Z. = const which is used in [5] in order to formulate
the general conjecture. There,

<1 el b1
Ze = —e ———+ == | dz.
‘ /0 zt Xp( 3 a3 2:1;2>
denotes the total mass of some invariant measure, cf. [5, Condition vii) in Section 5.1
main conjectures]. Also, ¢(z) in that article is the same as our ¢(z) here if the limit
in (B2) has the form as in the examples. Note, that our main result corresponds to [5,
Conjecture B (i) and (ii)].

4.4. Applications

In the section we present two important classes of examples which illustrate our approach.
We recall that the general SDE for the process (X;)i>0, Xo =z € (0,00) has the form

dx, %@ bu(X)) — ba(X0)) dt + 0(X) dBy (4.5)

where by,ba,0 : [0,00) — [0,00) are measurable functions. In the following the first
example class is related to [5, Equation (3)] and the second example is motivated by a
specific quantum mechanic situation.

42



4.4. Applications

4.4.1. Asymptotic linear stochastic differential equations
As first example class let us pose the following assumptions.
(E1) The function b; is continuously differentiable and a := b1(0) > 0.
(E2) The function by is twice continuously differentiable with b3(0) = 0 and b := b5(0) > 0
(E3) The function o is twice continuously differentiable with

a) o(x) =0<z =0,

b) o :=c'(0) > 0.
This example class can be viewed as generalization of the specification

bi(z) =1, ba(z) =0b-x, olx) =u (4.6)

in the sense that at the origin the coefficients exhibit the same behavior.
Remark 4.25. e Due to (E3) a) condition (ND) is fulfilled.

e Also (LI) holds, since the function

1+ §lebi(y) = ba(y)]
2

v o2 (y)

is continuous on y € (0,00) and therefore bounded on compact subintervals of
I = (0,00) and particularly integrable.

e The scale function for ¢,z € (0,00) is given by

Se(z) = /j exp <— /Cy Wdl) dy.

e The speed measure for ¢,z € (0,00) is given by

L2 e b
meldt) = e o) p</ o2(0) dl)'

e As in Definition we set for ¢,z € (0,00)

pe(r) = exp (/j 6b1(f7)2(l)b2(l) dl)

re(z) = 02190) exp (/j €b1(la)2zl)bg(l) dl) :

and
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4. Stochastic Spikes

e By Taylor’s theorem, there is dg, M > 0 such that
|bi(x) —a|] < Mz, |bo(z) — bx| < M2z?, |o*(z) — o?x?| < Ma? (4.7)
for all 0 < x < dg.

For the rest of the discussion of the example class (E1) to (E3) we now fix some arbitrarily
chosen level z € (0,00). We always assume € > 0 to be sufficiently small such that a(e)
and () exist with f(g) < 2.

Definition 4.26. With dp, M > 0 from the last remark (4.7) we set

aANbAT? 2
For all z € [0, §] it holds
bi(x) € (a/2,3a/2), ba(z) € (bx/2,3bx/2), o?(x) € (02x?/2,30%2%/2).

As it will turn out, close to the origin, in many aspects the process exhibits the same
qualitative behavior as the process belonging to the SDE

1
dX; = 5(6a —bX})dt + 0 X dB;. (4.8)

Lemma 4.27. It holds [ ms(dy) < oo.

Proof. By the continuity of the integrand it holds

Using Lemma in the appendix we bound

I 2 Yeby (1) — bo(l) L) 3 by (1) — ba(l)
|, s </5 =0 dl) W= [ o (‘/ =0 dl) W
5 9 5 1g 3pl
§/0 @exp <—/y &7%;212 - %ZQZQ dl) dy
5oy a (1 1 5\ 2
- [ e (e (5-3)) () @
4§3b/° ae g 1 ae
=2 =P <302 . 5)/0 y2tav/o? P <_3g2.y> dy
463b/0° ae o0 1 ae
o2 P (302 . 5) /0 y2+3b/0? P <_302 . y> dy

453()/02 ae 352 1+3b/0? ,
o exp(%?.é) <a€) (1 + 3b/0?) < co.

This finishes the proof. O
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4.4. Applications

Lemma 4.28. For the example class (E1) to (E3) it holds (A1), i.e. the boundary point
0 is not attainable.

Proof. We show that 0 is not even attracting by verifying s5(0) = —oo:

0 Yeby (1) — by(l) J 8 by (1) — bo(1)
s5(0) :/5 exp (/5 702@) dl) dy = /0 exp </y —02(1) dl> dy
’ o fa 30l ’ a (1 1 e
< EELENS LI d:—/ <<—>>d
- /0 P (/y 5%0'2l2 %0212 ) Y 0 P\ 352 y 0 (6) y

1
_ _ ag —3b/02 3b/0’2 ae
= exp< 7302-5>5 /0 Y exp <302'y) dy

oo

. _ae _apjo? (G \1+3b/0” e o
= e ( 302.5>5 (302) o srem 8= oo

302.6

ae
302.y"

In the second last equation we used the substitution s =
use the estimate

Alternatively, one can

k [3b/02]+1
fe'e) ae ag
ae (302-3/) (30’2-y>
= >
P (302-y> kzzo K = ([3b/o2] + 1)
to show the infiniteness of the integral. The proof is finished. O

In the situation of (4.8) a strong form of scale invariance holds, i.e. Y; := X, /e fulfills
the SDE

1 1 /1 1 X X
dYy = ~dX; = - (s(ea—b-X;)dt + 0X;dB; ) = ~(a—b- =LY dt + 0 =L dB,
€ e \2 2 € €
1
zé(a—b-Yt) dt + oY; dB;

making it plausible to choose () and f(e) of linear order. Our next goal is to perform
the needed calculations for showing (A2), (A3), (B1) and (B2) where we set a(e) :=¢
and f(g) = 2e.

Definition 4.29. Throughout the discussion of this example class let us fix a(e) = ¢
and B(e) = 2e.

Lemma 4.30. For e — 0 the limit p. . .—0+ 0 holds.
E—r

Proof. In view of Lemma [3.20] it holds

55(22) = s5(e) _ J271/pa(y) dy
s5(2) —ss(e)  [Z1/ps(y)dy

DPe,z = PQ&(TZ < Ta) -
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4. Stochastic Spikes

In the following we investigate numerator and denominator separately to see that the
former vanishes whereas the latter is bounded from below.

It holds for e < /2

2e 2 y bl ,

[ i oo [ ) [ )

€ c 5 ] o2
* Y 3a/2 y bl /2

< —

_/E exp< 8/6 o212/2 dl> < 30222 l> dy
2e

- / exp (3ca/o” - (1/y —1/6)) (y/8)"/ ) dy (4.10)
1 -3 2e

= §0/Go7) P < 2; 5) / exp (35@/02 1/y)y b/ (307 ) dy

1 -3a
BRER eXp( 525 > e 3”)/ exp (3a/o” - 1/y) 47 dy — 0.

In the denominator for € < § we have

[ umstoras= [ o (<< [0 @Yoy ([ 20 ) ay
> /:exp <5 /5" g;(z ) < 322() dl) -
oo M) ([ )

In order to prove the validity of (A2) we investigate E.[o;] for small ¢ > 0, i.e. the
expected amount of time it takes to complete a cycle. To do so, we split the cycle path
into two pieces: The first one is the path of X; starting at a(¢) = ¢ until the first time
hitting the level §(¢) = 2¢ and the subsequent second piece of the cycle path of returning
back to ¢ is produced under the condition of not reaching the fixed level z. Formally,

O

Ec[o1] = Ec[Toe] + Eoc [T | T2 < T%].
For later usage we want to be slightly more general and consider
EaelTse] + Epe[Toe | Tae < T%]
with positive finite constants co > 8 > a > 0.

Lemma 4.31. It holds for 0 < a < 8 < oo the following formula:

a B B8 rB
B [Tpe] = 22 /0 | rstwerimstueydwdy -+ 22 [ [ sty stwe) dw dy
« (64 Yy
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4.4. Applications

Proof. Using the function f : [0, ] — R, f(z) := 1 by Proposition we may use the
one sided Green function to deduce

Eae[Tse] = Eae [ /OT"E ds] :E%[ OTﬂEf(Xs) ] M. (a)

Be Be
= () Gae,pe s (s, y) ma(dy):/ (s5(Be) — ss((ae) V y)) ms(dy)

0
Be Be
/ / 1/ps(w) dw 2r5(y) dy = 2/ / (y)/ps(w) dw dy
ag)Vy (ae

_pr /0 / o) ms(we) oy
o 7] " o{ye) ps(ae) duody + 267 / ’ / " o) /s awe) duw dy.

O]

In order to handle the quantity Eg:[Toe | Tae < 17| where B¢ < z we consider the process
X[ obtained as h-transform of X, in the interval (ae, z) C (0, 00) using

hiloe ] — (0.1, h(z) = Pp(Toe < T.) = / 1 /ps(y) dy / / sty dy.  (412)

We are in the situation of Remark with X} = Be and

(X}
h(X})

dXl = <;(sbl (X)) = bo(XP)) + o%(X]) ) dt + o(X]) dB;.

The coefficient functions z +— (%(51)1 (z) — ba(z)) + o%(z) ]Z((j))) and x +— o2(z) fulfill

(ND) and (LI) and exhibit for ¢ € (ag, z) scale function s”, speed measure m” w1th
pl and 7! accordingly. Furthermore it holds [7 m/(dy) < oo due to Lemma and
S¢(z) = oo due to Lemma As analog to Lemma it holds the following formula
for the expected time of the second cycle phase.

Lemma 4.32. It holds for 0 < a < f < 00 and &€ < 6/ the following formula:

B ry z/e B
Epe[Toe | Tae < T = 262 / / P (ye) /ol (we) duw dy + 262 /ﬁ / P(ye) /ol (we) duw dy.

Proof. We again use Proposition this time with the function f : [ag,z] — R,
f(z) =1 and the other one sided Green function to deduce that for

Th =inf{t >0: X! = ag} = T (X))
using the suggestive notations

Goczo(Be,y) = s5((Be) Ny) — sh(ag), y € (ag,2)
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4. Stochastic Spikes

and

Be
ML (Be) = | f(y) Ghe..5(Be,y) mi(dy), [ € Clae, 7]

acg

it holds

Th,
Ege[Toe | Toe < T:] = EﬁE[Tcﬁs] = Ep: !/ f(X;L) dS] Mgshz(ﬁg)
0

z z/e rBA
= [ nw - shiaenmbtan =22 [ [ vbe) i we) dway

£

B [y zfe B
=22 [ [ bty o we) dudy + 222 /B [ bt e dw .

As preparation and for later use we collect some explicit estimates
Lemma 4.33. For ¢ > 0 the following assertions hold true:

a) For 0 < ye < we < 0 the following estimates hold

g2 re(ye) >
<

pe(we)

1 (02 F Mwe y>i5M(a+02)/04 §

02 y2+ My3e \ 02 F Mye w
b/o2 2 14b/0?
a w 0%+ Mye
w1 (© 0% & Mye
xexp(gQ( /w=1/y) <y) <J2:I:Mw5>

b) For 0 < we < ye < ¢ it holds

22 re(ye) > 1 0% £ Mwe Yy FeM(ato®)/o! "
pe(we) < o2 -y2 £ Myde \ 02+ Mye w
b/o? 2 1+b/0?
w 0% F Mye
1/w—-1 ) _
<o (Gw-10) (2) (G )
c) For 0 < ye <we <6 and for 0 < we < ye < § we have
2
lim e27eWe) _ 1 e qju-1yy) W w/
=0 pe(we) o2 yb/o? 42’

Proof. In the case a) we obtain the estimates

ey = ([ e ) oo ([ 2t

2
— e (¢ /yw x ) o /yw i ) (4.13)
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1 . /yf at ML N /ws bl — MI? il
o2 (ye)? + M(ye)? e we 0212 — MI3 P ye O+ MI3

and analogously

< 1 o /yE a— Ml . / b+ Ml dl
X X .
pe(we) — o2 - (ye)? — M(ye)? P o2 + Ml3 P e 02— MI?

By assumption it holds Mwe < M§ < 0%/2; we therefore do not run into problems
regarding singularities in the denominators. We now employ the technique of partial
fraction decomposition to solve for the integrals:

o (e /yf ax Ml
N _at Ml
P\® ) o2+ M

v& M?(a+0?)  M(a+0?)
= + dl
P (E /wE o4(a? F M) a4l + 02l2 )

M(a + o —ye , M(a+o0? a
= exp (6 <$(Jj:) [lm(a2 F Ml)];zis + (j;)lng) —2(1/w - 1/y)>

(o)

_ ( 0.2 T Myé‘ ) ZFEI\/[(OLJrO'Q)/o-4 ( y ):I:sM(a+O'2)/O'4

2 T Mwe w

exp (Z5(1/w—1/y))

el0
— exp ( (1/w— 1/y)>
(4.14)
and for the other
we hx Ml B b b +0?) dl
) e ®) =P\ on T 22 )
(4.15)

w\"7 [ o + Mye L+b/o? elo [w b/a
=|— —-— = - .
Yy 02+ Mwe Yy

Put together this shows part a) of the lemma and combined with

e? _ 1 1
02 y2. .24+ Myded  02-y2 4+ Myde e=0 o2 -y2

the assertion of part c) is derived for the case 0 <y <w < d/e.

The other case of 0 < w <y < d/¢ is treated in a very similar fashion. Firstly, in view
of the expression in the second line of equation the directions of the integration
domain are switched; we must estimate in the opposite directions to attain

2 re(ye) > g? . g/ys aF ML\ /ws bEML
pe(we) < 02 - (ye)? £ M(ye)? P we 0212+ MI3 P ye O F MI? ’
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4. Stochastic Spikes

Next, we may reuse the integral formulas (4.14]) and (4.15)) with M having opposite sign;
namely,

o / F_axMl
*PAE ). 22 £ M

0.2 + Myf': :I:EM(a+02)/U4 y :FEM(CL+O’2)/O'4 a (416)
= <02 T ng) () exp (5 (01/w=1/y))
and
we b/o? 2 14+b/0?
exp </ fi]del) - <w> (W) . (4.17)
ve O lF Ml Y 0% F Mwe

Putting the calculations together yields

€) > g2 o2+ Mye w FeM(ato?)/o!
€ - < > X

02 (ye)2 £ M(ye)3 \ o2+ Mwe y

co (Spm-1) (1) (GZME) ™

Yy 02 F Mwe

s e (01w = 1/y) (Z’)W .

—
e—=0 O

This shows part b) of the lemma and also affirms the same limit for ¢ — 0 in the case
0 <w <y < /e as posed in part ¢) and thereby finishes the proof. O

We are now ready to investigate the limit ¢ — 0 and thereby showing that (A1) holds
true.

Proposition 4.34 (implying (A2) under (E1) to (E3)). Let 0 < a < 8 < oo. Under
(E1) to (E3) the expected time of going from ae to Be and back again without hitting z is
well behaved in the sense, that

hin Eae [Ul] = hm (EQE[T,BE] + Eﬁe[ ae ’ Toe <T. ]) = lslﬁ)l <Eae [Tﬁs] + Ege [Tas])

02{/ /exp (1/w=1/y)) w/b/:; dwdy]e(o,oo).

Proof. Throughout the proof we use the formulas given in Lemma and Lemma [4.32
facilitate the upper bounds in Lemma a) and b) in order to apply Lebesgue’s theorem
to deduce the limit € — 0 with Lemma c).

Let us start by citing Lemma It holds

st =2 [* [ S awars [ [} ity
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4.4. Applications

Lemma m part a) entails for ¢ < §/3 the upper bound

E 7'6(3/5) - 1 o2 + Mye w eM(a+o?) /ot )
ps(we) ~o?-y? — My3e \ o2+ Mwe vy
b/a’2 2 1+b/0’2
a w 0° — Mye
(1 w—1 ) - el i
<o (Gw-1n) (2) (G

on 0 < y < w < §/e, which particularly covers
(y,w) € D= (0,a) X (a, B) U{(y,w) : a« <y < B, y < w < f}.

To find an integrable majorant on 0 < y < w < §/e we may assume € < 6/ and use the
estimates

1 1 2
< <
o y2 — Myde — 02 y2 — My25 — o2 y2’

0% + Mye < 0% + Mwe B
02+ Mwe ~ 02+ Mwe '

M(a+0%)/0" < 5M(a+0%)/(B0%) < (a+02)/(280%)
and

02— Mys _0>-0
< J—

=2
02— Mwe — 02/2
to conclude
g a 0'2 0'4
0.2 rs(ye) < 2 o? + Mye w Mato®)/ "
ps(we) ~o?-y? — My3e \ o2+ Mwe y
b/o? 2 14+b/0?
a w 0 — Mye
“(1/w—1 ) Z_ T I=
<o (Gw-10) (2) (G
4 w (a+0?)/(2802) a w b/a? b /o?
<77 (5) o (o) (5) 2

(4.18)

In this upper bound the limit variable € does not appear anymore. For it to be a
proper majorant we need to show integrability. For this to end we introduce the shorthand
notations ¢ := 237%/9° /62 > 0, d == (a + 02)/(2802) + b/o® > 0 and ¢ := a/0> > 0; using
those abbreviations we need to show that the integral

BBy w) (ate?)/(280%) a w\ 7’ )
- el _ > +b/a?
/0 /y PR <y> exp(a2(1/w 1/y)) <y> 2 dw dy
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4. Stochastic Spikes

BB il
[ [ e i ewlafu— oy duwdy
0 Y Yy

is indeed finite. Since the domain y € [0, ] is a compact space and the mapping
(0,8] = [0,00), y cfy’B yld”% exp(q/w — q/y) dw is continuous it suffices to show that

the limit
i Fwd ( q q> J
im ——exp| —— = w
y10 y yd+2 w Y

exists and is finite. Following L’Hopital’s rule to analyze the limiting behavior of the
fraction

/,3 w <q q> fyﬁ wed/™ dw
——exp|———) dw="———,
Y w

ya+2 y yd+2 ed/y

we investigate numerator and denominator separately:

B aly o Lw
lim/ wle?™ dw = lim (q/w)e? %dw = ¢! / €d+2 =00
yl0 Jy w0 Jg/p w a/p W
and
B
9 / wle?V dw| = —yedlv,
oy |y ’
lim y?+2e?/Y = oo
yd0
and
0
3 [y 2enly ] = (d o+ 2yl 4yt R (g fy?) = e (d+2)y — q).
It follows
B, d,q/w d d q/
we w _yded/y
lim fy i ye =1/¢g< >

S ——
vl ydt2edly ul0 ylea/v - ((d+2)y — q)

exists and is finite. By the pursued argumentation, we have now shown that the majorant
given in is integrable over 0 < y < w < B and particularly on the domain D and
we therefore may apply Lebesgue’s theorem. The pointwise limit in the last line of the
following equations is given by Lemma part c) to be

. s r5(ye) . rs(ye)
tm Bl T3] =l | 555ty ) = [ i O )

2 o jweryy w7
= ; g I d(y,w) < 00,

(4.19)
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where the finiteness in the last calculation step is a direct consequence of the existence of
an integrable majorant.
We now turn to Ege[The | Tae < T%]. Recalling Lemma we are equipped with

Eg[Toe | Toe < To] = [// dd+/ / g dwdy]. (4.20)

Here we have

rh(ye)  rslye) ( <ya>>2

pg‘(ws) ~ ps(we)  \ h(we)

e (L) ([0 ) ()

Since on the integration domains the relation w < y holds and since by (4.12)) the
harmonic function A is non-increasing, it holds

(2&3)2 <1 (4.21)

uniformly on all of the integration domain. For o < w < y < z/e one obtains

h(ye) _ hlye) _ S 1/ps(1) dl V0L

h(we) = hlae) — [Z1/ps(Ddl — ~ [Z1/ps()di

Now, similarly to (4.10)) and (4.11)) we can infer for e < §/y

ye
/ 1/ps(1) dI

1 —3a o2 Y o2
S 5b/(3‘72) exp < 025 €> €1+b/(3 )/a exp (3 a/0_2 1/[) lb/ (3 )dl m 0

an in the denominator for ¢ < (0/a) A6

Agl/pa()dl>/6 exp< 5/ ZLL >exp</5[s22((:?)dm> dl > 0.

This shows the convergence

—1 (4.22)

for arbitrary a < w <y < z/e.

The expression (4.20)) is a sum of two integrals. The first one may be handled by means
as is in the first cycle phase. More explicitly, by Lemma part b) for ¢ < §/f there is
the bound

h
9¢2 7”2 (ye) < 9¢2 rs(ye)
p(we) ps(we)
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4. Stochastic Spikes

X

< 2
~ 0?2 y?— Mye

2 o2 — Mwe vy
02— Mye w

) eM(a+o?)/o*

w>b/a2 (0_2 + MyE)ler/Uz

X exp (%(1/11) - 1/9)) (y o2 + Mwe

On the domain o < w <y < 8 for € < §/F we may combine the estimates

2 4
o2 yZ — Myde = o2 y2’

o2 — Mwe o2

< =2
02— Mye ~ 0?/2

)

eM(a+ %) /0" < (a+0%)/(2607)
and

o2 + Mye < ol +0%/2
02+ Mwe — o2

to obtain the majorant as upper bound in

2 oM
<a we y "

o2 y? — My3e w

b/o? ;2 1+b/0?
a w o+ Mye
*exp (;(1/10 B 1/y)> <y> <02 + Mws)

4 (2 @teD/@80%) . w\ 7 )
<— (= _ w (1+b/02)
< g ( ) exp( (1/w 1/y>> ) (3/2)

w 02

eM(a+o?)/o*
0?2 — Mye w>

The majorant is integrable as a continuous function over the compact domain o < w <
y < . Another application of Lebesgue’s theorem thus yields incorporating the pointwise

limits (£.22)) and Lemma [4.33] part c)

B ry ph B ry
lim 252/ / s (ve) dw dy = lim 252/ / s (ye) dw dy
h
e—0 a Ja D§(we) e—=0 a Ja ps(we)

b/o?

2 By a w
:(72[/04 /a exp((ﬂ(l/w—l/y)>yb/02+2dwdy] < 00.

For the second integral in the main difficulty is not in the fraction of A-functions
but in the fact the integration variable y reaching values up to z. While the functions
are continuous so are their compositions and the domain (ae, z] might be splitted in
(e, §) where we have good estimation controls and in [, z] where we then have uniform
continuity; e.g. 1/0%(y) attains its finite maximum and positive minimum. But what we

(4.23)
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4.4. Applications

would really like to see, is a limit independent of the point z. This accounts for the fact
that starting from Se the chance of hitting z before ae tends to 0. That is to say, e.g.
fora=1,=2:p., —+0ase—0.

Therefore, we decompose the second integral in (4.20)) into two parts

/ / ’ Tgl dw dy = I(e) + Ix(e) (4.24)

where

d0/e rB ..h
Li(e) = 252/ s (ye) dw dy,
B a

P} (we)
z/e B ,.h
I(e) = 252/ 7“2 (ve) dw dy.
5le Ja Pg ('wE)

In view of Lemma part b) the integrand in

- [ b2 2 (RS

is bounded on its integration domain for € < o*/(M(a + 02)) by

rs(ye) ( hlye)\”
ps(we) <h(w5)> < Lgy<sse) 2¢2

9 o2 — Muwe y eM(a+o2)/o*
GQ-yZ—My36< ' )

Lgy<syey 267

= Lyy<s/ey o~ Mye w

cow (S0 pw—1) ()7 (Gt )

y 02 + Mwe

<1 2 co-0 y
= Hy<d/e} o2y —y202/2 \ o2 — 02/2 w

o (S 1m) (£)7 ()T

o240

2 2
8 y a w b/o 3 1+b/o
< Fo%w exp (;(1/10 - 1/9)) <y> (2> .

The last estimate is an integrable majorant due to

0o poo b/o? 14+b/0?
8 3
[ o G (5)7 () v
8 (3\TYW B o0 2 a
_ 2 (2 — /o . —1-b/c - d
o2 <2> f e () /5 ! eXp( 02-y> !
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4. Stochastic Spikes
and

/oo “1-b/o? _a p </0<> “1-bje? _B—b/zﬂ 3
5 Y Xp 702.1/ Y= p ) y—ib/(ﬂ Q.

From Lebesgue’s Theorem it follows using 1,5/ m T{y<oc}, Part c) of Lemma

and (1:22)

2 rs(ye) [ h(ye)\?
glgcl)]l / /ig%]l{yd/e}% ps(we) (h(we) dw dy

L () ()

We still need to show Iz(e) — 0. As first step we bound for e < 1 A (/)
e—

Be
/ / 7“5 v) dwdy
Qe p5 w

£) = 262

d/e

Be
<2// rs(y
oE

:Aamfm<4w%a;@w> e ([ ) e

[ e ([ ) o [ o (< [ 2 o) o

4.33

(4

25)

as product where the first factor is finite and constant. For the second factor, we further

estimate the innermost integral according to

4 0 0
b (0) / a+ Ml / a+ Ml
dl < ——————=dl < ———— dl
/w a?(ly  — J, o2-12—-MI3 — J, o%/21?

1w —1/8) +

M
(Ind — Inw).

2/2( 2/2

This implies for the outer integral
pe bi(l

/ exp(a/ 1()dl) dw
ae w 02(0)

S/:Eexp< < ;‘/21/(a5) ng(lné n(a )))) dw

:exp< 2/21/a+6< %2@5 lna)> —sln5~0]2\4/2> (B a)e —0

since elne —— 0.
e—0
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4.4. Applications

With the decomposition in (4.24) recalling (4.25]) we have proven

zfe B .h
lim 252/ / 7“2 (ve) dw dy
e—0 8 o p(S (wg)

= lim 2¢2 / / s (ye) dw dy.
e—0 p(;(we

In combination with the result (4.23)) in view of (4.20) we obtain

lim Eﬁs[Tas | Toe < T3] = ;l_rf(l) Eﬁs[Tae]
wb/02
= [/ / exp 1/w 1/y)) T dwdy]
b/o?
/ / .1 v dw dy.
y 262 ° 02 woy Yy

Together with (4.19)) it follows

hin <Eaa [Tﬁs] + E,Bs[ ae | Toe <T. ]) = lelg)l (Eaa [Tﬂs] + Eﬂe[TaE]>

[/ /eXp (1/w~ 1/1/)) z;b/jjzdwdy]e(o,oo).
O

This gives the required property of the first moment of the cycle duration. As preparation
to formulate the uniform boundedness of the second moment we will thereafter establish
we introduce the notation of time shifts.

Definition 4.35. For s € R and a random process (X¢)i>0 let 05 : (Xt)i>0 — (Xstt)e>0
denote the time shift.

Proposition 4.36 (A3). The cycle durations have finite second moment uniformly in
e > 0: For arbitrary 0 < o < 8 < o0 it holds

lim sup Eaa[(ﬁl)Q] = limsup Eq.[(T3: + ng o HT&)Q] < 00.
el0 el0

Proof. For the rest of the proof let us fix some arbitrarily chosen «, 8 > 0. Since for
x,y € R the inequality

(z+y)?=22" 42" — (z —y)* <2(* + %)

holds, we may estimate for € > 0 using the strong Markov property

Eael(Tpe+Toeo0r,.)%] < 2 (Bacl(The)?] + Bacl(The 0 07,)%]) = 2 (Bacl(Tpe)?] + Eael(TE)7]) -
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4. Stochastic Spikes

It therefore suffices to show the finiteness of both lim sup, o Eac[(Tj)?] and lim sup, g Eg.[(TL.) 2]
separately. (And the finiteness of both of them is also even necessary.)

With the help of Proposition we infer

Be
Bl (@) =2 | B[] G sl ) mildy).
0
Together with reusing Lemma [£.31]for 0 < y < BE

y/e
TBE_%[/ /T‘sygder A]
y/e p6 w5 y/e
y/e y/e ryle o (D
< 9¢2 [/ / rs(ve) S 4o dg +/ / ”(ys) d@d§+/ / rs(ve) dzﬁdﬂ}
y/e Ds(We yje Jg ps(e) o Jy ps(e)

=% / / ;ﬁ((ff) ay

which is a bound independent of y this yields reprocessing Proposition [3.38

Be
Eaa[(TBa)Z] = 2/ Ey [Tﬂa] GO,,B&,&(O‘& y) mﬁ(dy)

7 rs(ge) pe
<2 = dwdy-2 G ae,y) ms(d
/ /y ps(We) v 0,8, (g, y) ms(dy)
B8 rB ~
= 2¢* 150E). 455 d7 - 2B [Tse]
o Jy ps(we)

s(ye

B rB 2
<2 [252 / / dw dy]
0 Jy p5(

2 BB a wb/02 2
— 2| (— 1/w—1 )
where the application of Lebesgue’s theorem in the last step is justified by reusing

majorant (4.18)).

Estimating the quotients of A-functions by 1, the second moment of the second cycle
phase is bounded by

Eﬂe[ ) Eﬁé[( )2 | Toe < T < EB:—: )2]

[ Lmmaaar [0

The factor 4 in the formula above stems from the fact that the density function mg(dy) =
2r5(y) dy of the speed measure contributes a factor 2 and so does Kac’s moment formula.
Since on ae <y < fe

L@ @,
¢ [T“€]2[L5L5p5<a>d a+ | [ oy dy] (4.21)

<

Ey Toe| dw dy} . (4.26)
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4.4. Applications

o| 2[5 e

—~ dw dy = Ege[Th)

it holds

Be ry Be ry
/‘/T” Mmmwnmﬂma/ /T@me<mﬁnm
ae p5 w as Jae P (w)

We have already seen that the last expectation remains bounded as € | 0. Therefore the
first integral in the right hand side of is finite uniformly in € > 0. On ae <w <y
which particularly covers the domain of the second double integral in the following
inequality holds:

iy = 0o ([P ) 2 wen (< [ Ziga)

On ae < w < y < z there are the two cases y < d and y > §. In the first case ae <y < d
we estimate in the spirit of (4.10) and obtain

_ Y by (1) 1 b1 (1)
2 1 1
< di
e (- [ 55 0) < amame (- [
2 3 3a/2 2 3¢ (1 1 2 3a
< e T=_Z))< 22
<o () e (5 (e 5)) = e (3)
In the second case § < y < z assuming € < (§/a) A 1 we obtain
_ Y by (1) i A0 Z (1)
2 1 2 1
o “(y) exp 5/ dl) < sup o “(u)-exp (5/ dl | exp z-:/ dl
e (= [ Sxggar) < w070 =0 s o)
_ 3a Zb1(1)
< sup o 2uexp(>exp(/ dl].
u€(d,z] ( ) oo 6 02(1)

Merging both cases together, we compactly write on ae < w <y < z for e < (§/a) A 1

< fly) =

{cly or y < 9, (4.28)

2 for y € [6, 2],
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4. Stochastic Spikes

Turning back to the second integral in (4.26]) we attain

Be
/ / TJ y Toe dey </ / Toe dey
e (w) e

=B-a)-¢ ; f(y)Ey[Tae] dy. (4.29)

Applying the estimate (4.28)) on the formula (4.27) for the expectation E,.[Ti.] yields
forae <y <z

NG S
Ey [TO!E] =2 [/as /as p5(y) i dy " /y /as p5(u/}) i dy]
Yy [y z oy
<9 [ / (@) dodg + / /@) d@d@]
ae Jae y Jae

=2 Mi(z?—ae)f(z?)dz7+/yz(y—as)f@)dz?] <2 [/;yf<z7)dz7+/yzyf@>da]

Plugging in expression (4.29) leads to

z

z y z
0= [ SOIE Ty < 205 - e /ﬁ ) [ [as@i+ /y v F(5) dy} dy

— 25— a>e< [ 1w [ [ as@ai+ / i@ d@] dy+ (4.30)
-/ if(y) | vt@azays (4.31)
-/ 5 ) [ [ as@ai+ / "y £ da} dy) (432)

In the following we will for all of (4.30)), (4.31]) and (4.32) show that the expressions stay
finite as € — 0. For y > 0 we bound according to definition given in (4.28)) by

Y z ) z

v f(9)dy ) dy v f(0)dy 1) dy
f(y)UaEyf(y) y+/y v £(5) y} s@[/asyf(y) “/5 v £(5) y}

) z
S@[/Qﬁ;d@Jr/ yCQdy] = cac1In ((f ) + 3y(z —6) < cacy In <Cf > + c2zy.

It follows for (4.30))

2(5 - ) [ 1w {/ f@)d§+/: I >dy} dy

i
i )
<2(B8—a)e [ ccrln e + c2zydy
0
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4.4. Applications

<2(B—a)e <0201 In <6> z+chz 22/2> — 0.
(075 e—0
Analogously for (4.31])

0

2(6 - ) [ " ) / i@ gy <20 - e

c [* N
— [ yeadydy
Be Be Y~ Js

é
C1 5
<2p-ake [ Gueszdy=25-aicacin(5) 0

e—0

On the other hand we have for (4.32))

2(6 - ) [ ) { / 7@ g+ / )£ da} dy

€

§ Y d
< 28— a)e "1[/ yi;cm/ yigdy] dy
ac Y y Yy

ﬁsy2
25— ate [ A ferm L+ LoDV ay<28-a) /61[1y+1}d
= —a)e — |c1Iln— al|l—=— = —a)cle — |In —
5 2 1 e ya R Y= 1 5 2 e Y
5/

1 Y 1 Y
= — J— = < —
2(8 a)cl/ﬁ " [ln + 1} dy < 2(8 a)cl/ﬂ .2 [ln + 1} dy < o0,

which is a finite bound independent of €. Summing up, we have shown that for the
second integral in (4.26)) it holds

z prBe
lim sup/ / rs(y) Ey[Toe) dw dy < oo.
€l0 e Jae p5(w)

It follows limsup, |y Eg[(T}%)?] < oo and limsup, o Eac[(Tpe + Th 0 07, )%] < oco. This
was to be proven. ]

It remains to consider an arbitrary starting point > 0. In other words: proving (B1)
and (B2). We will show the asserted convergence in (B1) even in the corresponding
L'(P,) spaces which particularly implies the convergence in distribution. Let us start
with the following preparation:

Lemma 4.37. In the scaling limit A\ — 0o, € — 0 with A?p. . = J € (0,00) we have

In particular, lim l;l—f =0.
scaling

Proof. By the calculations (4.11)) in the fraction (4.9)) given by

J251/ps(y) dy

Pe,z = PQ&(TZ < TE) =
JZ 1/ps(y) dy
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4. Stochastic Spikes

the denominator is bounded away from 0 as € approaches 0. For the numerator, assuming
£ < /2 we are entirely in the regime, where the approximations of coefficient functions
given in equation (4.7) hold. It follows

2e 2 é §
b (1) ba (1)
1/ps(y) d 28/ exp <z~:/ dl) exp (—/ dl) d
/g / (y) Y 1 ye UQ(Z) ye 02(1) Y
2 § s
a+ Ml b— Ml
< ———dl — ———=dl | dy.
= 8/1 P (g /ya o212 — M3 ) xp ( /ya o2l + MI2 ) 4

With the integral formulas (4.16]) and (4.17)) steaming from the computations carried out
in (4.14) and (4.15)) this evaluates to

2 0 4
a+ Ml b— Ml
[ ew (5 /y a2l2—Ml3dl> e (‘ /y J2Z+Ml2dl) o
B /2 0% — Mye eM(ato?)/o* 5 eM(at+o?)/o*
— 1 \ 02— Ms ye

2
a (1 = yeb/o? [ o + M5\ T
X exp (02 (y B 5)) (5) (e @Y

By the identity Inz < x — 1 for z > 0 it follows for € > 0

o (o) zon(o(L 1)) st e s

We can therefore estimate still assuming & < §/2

2 02 . Mye’;‘ eM(a+o?)/o* S eM(a+c?)/o*
S G G
X exp <a2 <1 — 5)) (yg>b/g2 (UQ + Mo )b/OQH dy.
o2 \y ¢ 5 o2+ Mye

SM(a+0c2)/(20* a+to? p
< €1+b/0'2 /2 02 B O ( - )/( ) é v 1 5M( * )/(2 )e(sM(a+o'2)/(20'4)
- 1 \o?—0?/2 y

2
a 1Y\ fy\be? (o2 + Ms\Yo T
X exp <02'y> (5) <02+o dy.

This indeed shows p. , € O(e¥ "2“). It particularly follows

I Ine . DPezlne 0
im — =lim———— =0.
Aooo A2 e—0 J
e—0
)\2p£,z—J
All assertions are shown and the proof is finished. O
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Proposition 4.38 (B1). It holds

lim B [TAATY =0 for0<z < 2.
scaling
Proof. For the rest of the proof let us fix some arbitrarily chosen 0 < x < 2. Again
exploiting the Green function approach, this time with

2
Gezs(2,y) = mgul@ Ay)u(z Vy).
where K = f P w)

tion B.31] states that

dw, u(z) = [F1/ps(w)dw and v(z) = [ 1/ps(w)dw Proposi-

1
A A
E[T2 AT = IE$[T5ATZ] 7oy / Gz 5(m,y) ms(dy)
Yors y y
K/\Q[ / /6 ps () dwdy+u (w) }

<% [/ A p5<i)> wwdy + [ / pa(w) d“’dy]

with integrand
1 Y bi(l Y bo(l
ps(w)  o*(y) w 02(1) y o2(1)
Since on the integration domain of the second integral w > y holds, the exponential with
the € term in it is bounded by exp(0) = 1 and the integral is overall bounded by

s [ [ e[ s

which is a constant independent of € and A. It follows that the second integral will vanish
in the scaling limit due to the multiplication with the time scaling factor A=2. The first
integral may be decomposed in

/ [ wnens= [ [ e (<) e (] i) e

._lx_/

T ONx
1 Y by (1)
—|—/ / exp (5 dl> dw dy+ (4.34)
oNx Je 0'2(?/) w 02(l)
T Y
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4. Stochastic Spikes

The last term in (4.34]) is bounded, since the e-exponential is monotonically decreasing:

[ sty [ 2 i [ [ o ([ ) s

w o2(0)

for € < 1 which again is a constant independent of €. Therefore,

Y by(l)
m = dl) dwdy = 0.
Jdm 3 // eXp<5/w o2(1) > wdy =0

For the second term in (4.34)) we estimate
ONzx Y b (1
/ / exp(/ 1()dl)d dy
Nz Je (l)
SNz
< sup o~ / / exp( / b (0) dl) dw dy
z€[0Nx,x] oNx Je o (l)

= Ze[s;igﬂ o %(2) - exp (6 /5 ix Ob,lg((ll)) dl) (z— (6 Aw)) / o exp <a /w e Obf ((ll)) dl> dw.

Again, the factor exp ( f Shz 02 (l) is monotonically decreasing in . Assuming e < §Ax
and applying integral formula 1_' we furthermore by using the fact

1
lslﬁ)lg—s = 18%1 exp (—elne) = exp(—0) =1

find the bound

INT ONx ONx INT
M
/ exp 5/ bi(l) dl | dw S/ exp z-:/ lel dw
2.72
€ w g (l) € w ol

— M3
AT 02— Mw ONT eM(ato®)/o" a (/€ €
. o2 =M@ Az) w o?\w SNz

oAz 2 eM(a+02)/c*
oc—0 J0Az a (€ €
< . 2 (z
_/a (02 —02/2  w ) P (02 (w (5/\x>) dw
SAx eM(a+o?)/o*
< <2- )

- €

exp (%) ((6Nz)—e) — - (6 Ax)exp(a/o?) < oco.

—0

It follows by the boundedness of the second term in (4.34) the convergence with respect
to the scaling limit

ONT
lim —
scalmg)\ SAx Je

2 ONx (a+a2)/a4
< lim — (2 . > exp

scaling A2 3
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4.4. Applications
The first term in (4.34]) is not bonded but the scaling limit will still vanish. Since for

€ < 8 A x we are entirely in the approximation regime we may again use integral formula
(4.16)) and estimate according to

[ Ly

w

(6nx)/ ye Ml
/ / V{OBE exp <5/ a;;;_ dl) dw dy

we - M3

/6/\:0 / o2 — Muwe eM(a+o?)/o*
Mye y? — Mye
1\4(a+<72)/<7 1 1
X (y)E exp (a/(r2 (—)) dw dy
Yy

w

(5Az) /e 1 o2 eM(a+o?)/o?
<[ [ i (= )

— M Nz)

Y eM(a+o?)/at 91 1
X ( ) exp | a/o w dw dy
2 (6Az)/ Y q eM(a+02)/c*
< — / / < ONe > dw dy
o?
2
- 7

a/0'2 ( ((SA ))EM(Q+0' )/‘7 /(5/\x)/5 y— 1
—— dy.
€ 1 Y

Recalling (4.33)) we may further estimate still assuming € < § A x

iea/UQ <2(5 A $))5M(a+02)/g4 /(am)/g y—1
1

o2 € 32

< %exp (a/o® + M(a—|—02)/04) (2(0 A x)

dy

v 1)0ra)M(a+a®) /o (1 (5 A 2) — Ine).

By the last part of the previous lemma it holds limcging

1;1—; = 0. It therefore follows for
the first term in (4.34)
SNz Y bl(l)
e / / o (¢ [ g ) dot
< lim — exp (a/a + M(a+0%) /") 2(6 Ax) V 1)(6/\36)]\/[(‘““‘72)/‘74 (In(6 Ax) —1Ine)
scaling )\2 o2
= 0.
Summing up, we have shown limgeging Ez[T: A T2] = 0 which was to be proven
O

We now complete the discussion of the example class with
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4. Stochastic Spikes

Proposition 4.39 (B2). It holds
z z ba(l)
J2 exp (— fy 022(l) dl) dy
Ser T
Proof. For the rest of the proof let us fix some arbitrarily chosen 0 < = < z. We first
recall that by the scale function approach Lemma [3.20] it holds

f exp (fz sb1(0)2() 2(1) dl) dy
fs exp (fz b () —b2(l) )6)2( ) dl) dy

P.(T. < T,) for0<x < z.

P.(T: < T,) =

By Lebesgue’s theorem

laiﬁ)l : exp (/yz W dl> dy = /; exp <— /yz 322((?) dl) dy. (4.35)
)

Similarly it holds

lim ;exp </yzwdl> dy:/;exp (‘/yg((lz)) di

Since for e < ¢

1(c,5)(y) exp < /y ) W dl> < L) (y) exp ( /y ) ijzl((ll)) dl)

— L) (y) exp ( /y ' 5:21 ((ll; dl> exp ( /6 ) f,j((ll)) dl)
< (26 A1) - )P ME@HeD)/ot o0 76) exp <5 /5 31((?) dl>

we may also apply Lebesgue’s theorem for the lower part of the denominator’s integration
domain:

lim / exp < / Wdl) dy = /0 " esxp (- /y 32((?) dl> dy.  (4.37)

The limits (4.36)) and (4.37) may be combined to

z # Ebl(l) - bg(l)
iy exp(/ Uz—a)dl %
b ( l b1(l) — ba(l
_hm exp( ebi(l 21 ()dl> dy+hm/ exp< 81()22()0%) dy
o

o2(1)
Lol [y [on(- [ )

o?(l)
? ba(l) )
exp / dl
/ ( y o%(1)
(4.38)
Both assertions (4.35]) and (4.38|) together imply the Proposition. O
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4.4.2. Homodyne detection of Rabi oscillation

As is carefully described in [5] an analysis of homodyne detection of Rabi oscillations
leads to the following stochastic differential equation on the state space © = (0, 27)

df; = —\?sin 01;(1 — Cos Gt) dt + )\(1 — Cos Ht)dBt. (4.39)

Following a suggestion of [5, sections 2.3, 5.2] we investigate a ’linearized’ version of

(4.39)), i.e. the case where in (4.5
bi(z) =1, ba(z) =0 x, o(x) =22,

with b > 0 some positive real number. Note, in this model o%(z) = z*. The corresponding
SDE reads

1
ng:Eﬂs—bXUdt+(XU2dBp (4.40)

Remark 4.40. e Conditions (ND) and (LI) are fulfilled.

e The scale function for ¢,z € (0,00) is given by

v Yeby(l) — ba(l v Ye—-0l
sc(ac):/ exp (—/ 1(0)2(1)2()dl> dy:/ exp (—/ l4dl> dy
_/x E(L_LIN_o(L 1Y),

. FPA\3 y o3 2 \y2 2 4
_ I O I
TP 22 T 32 . P 3y 2y? v

e The speed measure for ¢,z € (0,00) is given by

22 (e () —ba()
meld) = ey a@) — o2a) p</ o2(0) C”)

C
2 e (1 1 b /1 1
=—expl=-|ls—-—=]-=5=-=]].
xt P 3\cd a3 2\c2 22

e As in Definition we set for ¢,z € (0, 00)

v ([ #0540 5 (3 )3 (- )

and
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4. Stochastic Spikes

Lemma 4.41. For any deterministic starting value Xg := > 0 and all € > 0 there
exists a strong solution to the SDE in the sense of Deﬁnition which is pathwise
unique in the sense of Definition and does neither attain 0 nor oo in finite time.
Particularly Assumption (A1) is met.

Proof. By Theorem 3.6 pathwise uniqueness holds. Since (ND) and (LI) hold in I = (0, oc)
by Theorem there is a weak solution of in the interval I in the sense of
Definition which is unique in the sense of probability law by means of Definition
(Uniqueness in the sense of probability law is generally implied by pathwise uniqueness as
stated in Theorem ) We still need to show that indeed neither 0 nor oo are attainable.
It will then follow that any weak solution in I is actually a weak solution in the sense of
Definition [3.4] and Theorem [3.7] even shows the existence of a strong solution in the sense
of Definition In the following we even show the repulsiveness of the boundary points
by verifying s.(0) = —oo and s.(c0) = co. For ¢ = ¢/(3b) it holds

b 0 b
s¢(0) = exp <202 - 3503) /C exp <3€y3 - 2y2> dy
b € ¢ b 2¢
~e (3 50) o (o (g 1))
<—exp<b—€> /Cexp< b ) dy——exp(b—€>/00l)eydy:—oo
- 2¢2 33 )y 2y? 2¢2 3c3 2 (2y)3/2

. beY
since 557 m oo and
(00) = ¢ b € / °°e € b i
Ssc(c0)=exp | =— — —= xp | —= — =— =0
¢ Ploz ™ 33 . P 33 292 4
since 555 — b2 —— 0. This finishes the proof. O
Y 2y yooo

Lemma 4.42. It holds [;° m.(dy) < oo
Proof. For ¢ > 0 it holds

o 2 e (1 1 b /1 1
f, et = | wexp<3<c3‘y3>‘z(c2‘y2>)dy
oo €XpP W @)
= 2exp (363 262)/ " dy
b ¢
=200 (555 g) [ e (7 (3-50)) o
b
£ b 2+ VAT
_2exp(33 202)( yexp(y (2—3y>> dy
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|-

The prefactor 0 < 2exp (55 — 52

v3(2+1) b
O</ y?exp | 4° f—iy dy < 0.
0 2 3

For the second integral we estimate using the gamma function

e} b c o0
/ e <y2 < - y)) dy < / ye v dy <T(3) = 2.
1vE(L+1) 2 3 IVEIERD))

This finishes the proof. O

) < 00 is just some positive finite constant as is

[\
|

(SIS

For the rest of the discussion of the example class we now fix some arbitrarily chosen
level z € (0,00). We always assume £ > 0 to be sufficiently small such that «(e) and S(¢)
exist with f(¢) < 2.

Remark 4.43 (Heuristics for the choice of @ and ). One way to guess the form of the
functions a and 8 appearing in the cycle decomposition is the following. First it is of
course natural to assume that the point, where the drift changes sign does play a specific
role. Therefore, let us define a(e) :=¢/b. In order to get an idea, of how to choose 3(¢)
one can e.g. first transform the stochastic differential equation using a transformation
going back at least to Feller (compare |25, Expressions (7.1), (7.8) and (7.9)]). We replace
X by Y, == F(X;), where F(z) == [ ﬁ du = —1/x. According to It6’s lemma the

SDE then becomes using F’(z) = 1/2? and F"(z) = —2/3

_ 1
=

1 1
(2(8 — bX;)dt + deBt> + - = Xtat

1
dY, = F'(X))dX; + =F"(X,) d(X —
t ( t) t+2 ( t) < >t 2X153

— (5 2;? — Xt> dt +dB, = (;Yt(wem) + ;t) dt + dB;.
Thus we end up with diffusion process with unit diffusion coefficient. For the diffusion
X started from a(e) to complete a cycle it has to get from «a(e) = /b to (e) > ae
and back which translates for the diffusion process Y; into traveling from F'(«(e)) to
F(B(g)) and back. During a downcrossing from F'(f3(¢)) to F(a(e)) one takes advantage
of the fact that the drift always points in towards F'(a(e)) and it turns out that the
deterministic part is strong enough to get finite expectation for this phase of the cycle.
The diffusion Y; also has to perform an upcrossing from F'(a(e)) to F(5(¢)) during a
cycle of X;. During such an upcrossing the drift in the equation of Y; is of order € near

F(a(e)) since
() (e ()5

and therefore the Brownian part has to be essential to complete this part of the cycle
sufficiently fast. Therefore, it seems reasonable to take 3(g) = a(e) + € as this results in
a distance of heights of

FOE) - Fla(@) =~ + 2 = £ (0

£4e2 e ¢

< b2

b _lb+b25—b_ b2
e 1l4+bs  14eb—

o 1+be)
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4. Stochastic Spikes

to overcome. The exit times of Brownian motion from bounded sets have moments of
all order, thus this might be a reasonable first guess. Working with §(¢) = a(e) + ¢ in
contrast leads to a distance

2
.ﬂmme@D=l@1iQ:¥uZw

which is of order e~ and therefore the expected time to complete this phase of the cycle
can then be expected to diverge with £ — 0.

We now show, that Theorem applies to this situation, which means that we need to
prove (A2),(A3),(B1) and (B2) for

ale) =¢/b, B(e) ==¢e/b+ &%
Before we start we show two preparatory lemmas.

Lemma 4.44. For x > 1/b it holds

1 b (EE 1\?
<t [zx=-= 4.41
323 22 = 6+2(x b) (441)
and 5 s ) 6 5
1 b b b 1 4b 1
B AT (P . (P 4.42
375 227 = 6+2<x b) 3<x b) (4.42)
Proof. We observe that for positive x > 0 the function
1 b
1) =33~ 502
has k-th derivative
1(k+2)! 1(k+1)!
k _ k E+1
F9@) = (043 + (R

and the series expansion at = 1/b computes to

1 b R, kg o DPTE 1\"
35~ g2~ 2V DT (oo

b1, 1\* 45, 1\* 1\*

By Taylor’s theorem we may rewrite

1 b | N2 [*(@-t)2/ 20 12b
L A A A - 222 a
35 22 6 2 <x b) +/1/b 2 ( TIRE )

70
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This provides an upper bound for > 1/b as by partial integration technique

/f (“7_2”2 <—20+126> dtz—(“_;/W@bB_gbf”H/x (x— 1) <4 3b> dt

Jb IR 1 AT
(x —1/b)% /I 1 b (x—1/b)2 o 1 b b
= - —— _— _ t = - _— _
2 b+1/b t4+t3 d 2 b+3x3 222 76
~ 3(xb)® — 6(xb)" +2(xb)* +3xb—2  (x—1/b)**(2 + 3bx + 3b%2?) <0
N 623 N 623 -
hence
323 222 - 6 2 b
Analogously
1 b ¥l 1\? 4 1\*
—— W (=) =z
32 22 6 2 <x b> 3 <‘” b)
since

1 b ¥l 1\? 4 1\N®  [* (x—1t)® (120 60b
— e =+ W (- (- / ) dt
35 222 6 2 <x b> 3 <$ b> T 6 < T )

and by the calculation carried out earlier

/lf (x — 1) (120_606> dt:—W-(—8b6)+/lz (z —t)? <—2O+1fsb> "

n 6 tr 18 6 no 2 t6
(@ —1/b)3b%(8(xb)® — 3(bx)? — 3bx — 2)  (x — 1/b)*b*(2 + 5bx + 8b?x?) -0
N 623 N 623 -

As additional preparation for the following proofs we show:

Lemma 4.45. For !l > 0 it holds

as € 0.

1 b3> fol exp (§w2> dx

P T, <T.p) ~clexp | ———
(T < T~ e (<3 ) e
Proof. For the rest of the proof let us fix some arbitrarily chosen [ > 0. It holds

ng//bb+l€2 1/pc(:L‘) de'

fgz/b 1/pc(zc) dx

1 ¢1 T
o) = exp (6/3} t4dt> exp <b/c t3dt>

P,y (T: < Tepp) =

where
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4. Stochastic Spikes

B ef1 1 b1 1
ezl a))elsla 2))
Plugging in and reducing the fraction yields

fsé//bb-i-leQ 1/pc(x) de fg&//bb—l-laZ exp (L B 2%) "
3}

faz/b 1/pe(z)de f;/b exp (555 — 22) da

(4.43)

For the numerator in the last fraction (4.43]) we use the estimates (4.41)) and (4.42):
1/b+le 1 1 b 1/b+le 1 b3 1 1 2
[ < i I A _Z
/1/b exp <€2 <3x3 2372)) dx < /1/b exp = 5 + 2b <x b) dx
1 b3 le 1 1 b3 l b5
= exp <_€26> /0 exp <€2 bx 2) dx = exp < = 6> 8/0 exp <2m2> dx

and for the opposite direction

/1/b+l€ 1 L b p
1/b P2\ 328 7 222 “
3

(4.44)

The asymptotic estimates (4.44)) and (4.45)) together imply

1/b+le 1 1 b 153 l 1
S - 2 Y de~ -2 —po2? ) dx.  (4.46
o o (G () e (-a5)e fow (g0) an a0

For the denominator of the aforementioned fraction (4.43)) we may write

z € b i € b
/E/b exp (3:03 23:2) dx = /0 Liose vy exp (3333 29:2> dx.

€ b 1

Due to
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being non-positive for z > 2¢/(3b) which particularly covers €/b < x < z, the integrand
is bounded in-between 0 and 1 allowing to apply Lebesgue’s theorem which results in

, z € b # b
il_r)r(l) ; Liz>e/py €Xp <3x3 2x2> dac—/o exp( o 2) dx.

In combination with the already analyzed asymptotic (4.46]) of the numerator in (4.43))
this yields

fll//bbJrls exp (%2 (% o ﬁ)) dr exp( 1 bS) fo exp(bS 2) dr

~

Jopexp (555 — o22) d Jo exp (—5%) da

as € | 0, finishing the proof. O

Proposition 4.46 (implying (A2)). It holds

oo rl bo
. ~ . 4 2
lalﬁ)lEs/b[O'l] = lelﬁ)lEs/b[Ul] = 4b /o /0 exp < 5 (w* —y )) dw dy.

Proof. Using again the approach with the corresponding Green function we infer analo-

gously to Lemma
1/b 1/b+a 1/b+e  p1/b+e r (ya)

] = 2¢? / / d d+/ / L dwdy | (4.47

E/b[ 6/b+€2 [ Y 1/b ) pc(wg) Yy ( )

where we can explicitly write

o = e o <a~12 ((3;3 ) 222) ) (3;3 ) 222)» -

Observe that the right hand side of expression factorizes in a function of w and
a function of y. To calculate the limit ¢ — 0 of the first term in , we consider
the asymptotic behavior of both factors given by the integral with respect to y and w,
respectively. We have

/b p1/bte .
25/ / yg)
1/b WE)
1/b 1/b+a 1 1 1 b 1 b
=2 [, e (5 (G o) - (5 3p))) o
_/l/bex 1 _L+L p // (L b\
R T Pz 3y 2y? Y 1/b Pl \3uwd ~ 202

(4.49)

_ 1/y—b
Upon using the substitution u = ~~—

implying du = —Ed?% it follows
[ oo (3 (o) o

—exp| 5| —53 y
o ¥ e2\ 3y 2
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4. Stochastic Spikes

i / ~ (ue + b2 b2 Su3) a
=exp|—=—5]¢ Ue exp | —=u u.
Pl6ez ) © Pl 7" T3
We may apply Lebesgue’s theorem since assuming € < 1 the majorant
2 b o 2, 32 b o
(u+b)*exp —u < 2(u” + b*) exp —gu

is integrable: With substitution ¢ = %uQ we observe

> b 2 (% +0?)
2(u® 4+ b e (—u2> du —/ ZAb T exp(—t) dt
|2+ yen (< [T expl-)

9 3/2
- <b> T'(3/2) + V263 T(1/2) < oo.

We therefore find

oo

: 2 b o €3 9 b o
lim (ue +b)exp | ——u” — -u’ | du = boexp | —=u” | du
Eio 0 2 3 0 2
o 5 (4.50)
:/ b* exp (—u2> du.
0 2
Making use of (4.46]) with [ := 1 inserted shows
L/bte 1/ 1 b b ! bPw?
/1/b exp (62 (3103 — 2u12>) dw ~ exp <_6€2) 5/0 exp < 5 ) dw.  (4.51)
In view of the factorization in - ) the assertions and (4.51)) imply

1/b 1/b+6 oo rl bo
2¢? / / dwd — 2b4/ / exp < (w2 — y2)> dw dy. (4.52)
€l0 0 2

To handle the second summand in expression (4.47)), the integral

1/b4+e  pl/b+e
2¢? / / re(ye) dw dy
Y

pe(we)

1/b+e 1 1 1 b 1/b+e 1 1 b dwd
B /1/b y‘*exp<€2 <_3y3+2y2>>/y exp<82 (3w?’_2wz>> o

we proceed in a similar fashion. Note, that taking account for the first exponential term
the corresponding Taylor series has just opposite sign. We derive

2 [lbte q 1 1 b 1/bte 1/ 1 b s d
BN T <e2 <3y3+y2>)/y eXp(sQ (3w32w2>> o
2 € 1 1/ 1 4 € 1 o1
< — - — | — — 7b5 2 ,b6 3 / P b5 2 dw d
—52/0 (y+1/b)4eXp<52(6 T30y , P& 6 32 v
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! 1 ! 1
—9 —4)52 b63 / “vPw? ) dwd
/0 ye—i—l/b) < y—l—e yexp 5 w w dy
—>2b4//exp( w —y)) dw dy
e—0
and accordingly
92 1/b+e 1 1 1 b 1/b+¢ 1 1 b dud
=1y yp((‘sﬂzy))/ o (5 (s = 5uz) ) o
2 (€ 1 1 /b3 1., ¢ L/ 15 44 5
> = e J - R B H _ =
25 f e (3 (5 -27)) o (G (5 0 g pp) ) v
! 1 1 ! 1 4
—9 - —*b5 2 / *b5 2 7()6 3 dw d
/0 (e +1/0)8 xp< 5 ) yexp<2 w 53 w w dy
——>2b4/ / exp< w —y)> dw dy.
e—0

In summary, combined with the already deduced limit (4.52)) of the first summand in

(4.47) we obtain

a/b[ 5/b+z—:2 _—_>2b4/ / exp( w? -y )> dw dy
4 b5 2 2
+ 2b exp (w —y) dw dy < 0.
0 Jy 2

To infer the expected cycle duration of the second phase, where the process starts from
B(e) = e/b+¢? and is conditioned to hit a(e) = /b prior to some arbitrary level z > 3(g),
we will again use a h-transform in the sense of Doob in order find the dynamics of the

conditioned process. We find
I )
dw dy + / / 3 dwdy| ,
%-i-& % Pe (U)E)

Ee+€2[5/b‘ /b<T —28 [/ /
b
(4.54)

where the integrand is given by

ro(ye) (h(y€)>2_ re(ye)
h(we) ) pe(we)’

(4.53)

pl(we)

We recall that the harmonic function under consideration is h(s) = Ps(T;/, < T%). Let
us start with the first summand. Because on the integration domain w < y holds, the
estimate

re(ye)

pe(we)

rh(ye)
pl(we)

<
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4. Stochastic Spikes

allows us use a strategy very similar to the situation of the first cycle phase. In particular,
we have

1/b+e 1/b+e
25/ / c(v2) 4, dy<2€/ /
1/b pc (we) 1/b pe(w
e e ! L s+ 53 / ! L b dwd
_ Cexp [ = [ exp | — _
g2 oyt P 3y3 2y /b Plez \3u8 ™ 202 4
2 [ 1 1 /¥ 1 y 1 o1
< 2 - - b5 2 b6 3 / 7 *b5 2 dw d
_52/0 (y+1/b)4exp<€2(6 + 0exp 2 6—1—2 w w dy
—2/11 P ety /y Lp5w?) duwd
= . et 1/b) exp Y 5 ; exp 5 w w dy
b5
——>2b4/ / exp< w? —y )> dw dy.
e—0

In order to derive a matching result for the opposite direction of approximation we use
our standard estimates to find

2= /UHE //b P (w
2

>2 ; 7@6_1_1/1)) exp | —=b Oy —h((ws—l-l/b)s) exp §b w —5§b y° | dwdy.

> / < 5 2)/ <h((95+1/b)5)> <1 5,2 416 3)

By the bounded convergence theorem we can interchange the limit and the integrals and
using Lemma [4.45( to observe h((le + 1/b)e) _I0—> 1,1 € [0,1] we conclude
€.

1/b+e 1/b+¢
lim 2¢2 / / dw dy = lim 2¢2 / /
el0 1/b pc el0 1/b Ppe(w
2b4/ / exp( w —y)) dw dy.

We now consider the second term in equation (4.54). We rewrite this term as

Vbte z/e2=1/(be) 1 rh((y&“ +1/b)e)
o e [ [ e
1/b+e p( Y 1 o Pi((we+1/b)e) !
_2/ / . ] h((ye + 1/b)e)? 1
{y<z/e2—1/(be)} h((we + 1/b)e)? (ye + 1/b)*

1 b
&P <52 <3(w£ T1/6)3  2(we + 1/b)2 T3+ 1P | 2(ye + 1/b)2>> dw dy.
(4.56)

(4.55)
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Elementary algebra with results in

1 1 b 1 b

2 (3(11)6 +1/b)3  2(we +1/b)2  3(ye +1/b)3 + 2(ye + 1/b)2>

1 (2(ye +1/b)® — 3b(ye + 1/b)*(we + 1/b) — 2(we + 1/b)* + 3b(we + 1/b)3(ye + 1/b)
T ez ( 6(we +1/b)3(ye + 1/b)3 )
b (2(bye + 1)3 — 3(bye + 1)3(bwe + 1) — 2(bwe + 1)3 + 3(bwe + 1)3(bye + 1)

B ( 6(bwe + 1)3(bye + 1)3 )

b® [ (bye + 1)3(2 — 3bwe — 3) + (bwe + 1)3(3bye + 3 — 2)

2 ( 6(bwe + 1)3(bye +1)3 >

b [ (bwe + 1)3(3bye + 1) — (bye + 1)3(3bwe + 1)

2 < 6(bwe + 1)3(bye + 1)3 > ‘

(4.57)

Using the abbreviating notations s := bwe and ¢ := bye the numerator in (4.57) may be
written as

(bwe + 1)3(3bye + 1) — (bye + 1)*(3bwe + 1)

=(s+1)32Bt+1)— (t+1)33s+1)

=353 + 952t + 9st + 3t + 55 + 352 + 35+ 1 — 3t3s — 9t?s — 9st — 35 — 3 — 3t — 3t — 1
=353t + 952t + 53 + 352 — 3t3s — 9t2s — t3 — 32

= 3st(s® — 1?4+ 35 — 3t) + 57 — 13 + 3(s* — 12).

If follows turning back to expression (4.57)

b® [ (bye +1)3(2 — 3bwe — 3) + (bwe + 1)3(3bye + 3 — 2)
2 ( 6(bwe + 1)3(bye + 1)3 >
b3 [ 3st(s? —t2 + 35— 3t) + 53 — 3 + 3(s% — t?)
T2 ( 6(s+ 1)3(t+ 1) )
b (30%w3e?y — 3b2wey> + bwde + dbw?ey — wey? — bey® + 3w? — 3y?)

- 6(bwe + 1)3(bey + 1)3 - (4.58)

We observe that on the domain of integration in (4.56]) we have 0 < w < y and therefore
0 < s <t It follows 3st(s? =12 +35s —3t) <0, s> =t < Oand (s + 1)3(t+1)* > 1
implying for the integrand in (4.56])

1 h((ye +1/b)e)? 1 X
{y<Z/52_1/(b5)} h((ws —|— 1/b)5)2 (y5 + ]‘/b)4

1 1 b 1 b
X exp (52 (3(w5 TP 2we+1/0)°  3(ye+ 10 | 2(ye+ 1/b)2>>
1 b [ 3st(s? —t2 +3s—3t) + s — 13 4+ 3(s? — t?)

(5( )

S WP\ 2 6(s + )3t + 1)°
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Since this is an integrable majorant we may apply Lebesgue’s dominated convergence
theorem on the integral (4.56). Consequently, using the representation (4.58|)

1/b+s 1/b+6
1im25/ / d dy—hm25/ /
el0 1/b+e el0 1/b+e
[ [ ol
1 Jo (1/b)

l b2 (3b2w3e%y — 3b2we?y? + bwde + dbw?ey — Ybwey? — bey® + 3w? — 3y?)
lm €x
P 6(bwe + 1)3(bey + 1)3

—2b4/ /exp( w—y)>dwdy.

This gives together with (4.55)) the required limit for the cycle phase and adding (4.53))
therefore finishes the proof. O

) dw dy

Proposition 4.47 (A3). It holds

lim sup Ea/b[(gl)z] < 0.
el0

Proof. Analogously to the proof of Proposition we use Kac’s moment formula and
start with showing lim sup, o E. /[(T /p42)?] < 0c.

On the second double integral in

Ef/b[Tg/bJre?] =L +1IL
1 S 1y 1,
2| [t [T relve) / / re(ye)
E,.|T< dwd E, [T dw d
[/0 /117 pc(ws) ye[ b+a2] way + f \ yg[ b+€2] w ay

1 pe(we)

we may estimate Ey [T, ] < E:[Te 2] which is justified by an enlargement of the
integration domain as in (4.27)) and therefore finiteness follows by the convergence of the

first moment shown in Proposition as by using (4.47))

limsup II; < limsup2 (E a/b[Ts/b+52])2 < 0. (4.59)
el0 el0

For the first integral I. we need to show

hHelfoupE / / / / (~ )) dw dy dw dy < oo (4.60)

Ll plie Wl 7
limsup64/b /b /b /b re(ye) rc(gis) dw dy dw dy < oo. (4.61)
€0 0o Ji v 7 Pe(we) pe(we)

E

and
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Using (4 and ( with [ := 1 and writing f(z) := 3;:3 — % we conclude

iy //

1 1 1 b 1 + b n 1 b 1 + b 45 7 dw d
yiyed Pl \3ud ™ 2u2 3y 292 3w? 2?3y 2y 4 4

; [j:b*fexpl(;(gfﬁ w)) / s /

/// T (1(—62 F) + £(@) - f@))mgdy.

Substituting every variable to the rec1procal translating by b and enlarging the integration

domain accordingly to the fact — lljrlf > —b%c implies

S / row (5 (-5 - 1) +1@) - @) ) i diay
LT () () oo

((y+b)(y+b)>

w+b

(3 () o) () e
) (e

(4.62)

By the identity

1 _1 3 b 2_1 3 2 2 13 b 2 2 b3

f(y+b)—3(y+b) 5 (U +0)" =gy +yTb bt + b - oyt -yt —
= fb —f==)-=b
=3y gy - f( y) 6
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it follows

1, N b "
_g(w3_y3_y3)+§( _y _y2)
For —b25<w<yand ,y > 0 it holds
@ — 3 <0, —7° <0 and @2 —y? < b2

Consequently,

b 1 1 b,
51 () 1 (5) 7 () <97+

We continue our estimation of (4.62]) with extending the integration domain as
{(y, ) : 0 <y <oo,—b* <@ <y} C{(y,@): —b* <y < 00, —b* <w <y}
= {(y, ) : —b* <w <y < oo}

and using Fubini’s and Lebesgue’s theorem to deduce
/ / / (y +b) y—l—b)
b2e w+b
1/ b 1 o
oo (3 (51 () + 1 (553) 7 (55))) o
L[> [ (Y ((y+b)(T+D)\> 1 b, b
— = — dw dy d
eS/OL/bz< @+ b P U g ) | dwdydy
b’ o y ye + b) ye—i—b) b\ - -
—— dwdyd
VL () e (g daavan
R e y b)( b) b
)/ / <y€+ (e + ye + ) exp< 7 +) )dwdgdy
0 0 b2 w€+b 2
e °° ye + b)(ye + ye + b) b o
—= dydy d
)/2/0 < Gt D )eXp< 2(y+y y dy dw

> + @e + b)(Je + ye + We + b))\ b _
/ / (ye + we +b)(ye + ye + we +b) exp (=2 (F+y+ @)
0 0 ’U)E‘i‘b 2

IN

dy dyj dw

ﬂ>exp( )bQ/ / / exp(— y+y+w))dydydw<oo
b2

which shows (4.60). Proving (4 can be performed very similar to (4.60): Reusing the
transformation x — % yields the bound

ye +b)(ye + b b _ o
/ /b?/m( we+b )> exp<2(w2_g2_y2) dw dy dy.
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Noting w? — 7 < b* and again using Fubini’s theorem on the extended integration do-
main we end up with the same expression with y and y switched which is the same quantity.

We now move on to the second cycle phase, i.e. proving

limisoup Ee/pye2 [Tf/b | Tepp < T2] < o0
€.

In the spirit of (4.59)) it reduces to consider one summand and the analoga to (4.60|) and

[L51) are
. v Tc )
limsup e? dw dy dw dy < oco.
el0 +s b )
and

£ ite rZ oy T
lim sup 64/ /b / / re(ye) rc(@is) dw dy dw dy < o0o.
£10 e Ji Sy Jr pe(we) pe(ye)

Again using (4.46)) and enlarging the domain of integration it is sufficient to show with
1 b

familiar abbreviation f(z) == 535 — 5.2

© ry Ly 3
imsup S0 ®exp (612 (—1’6 CF) + 1) - f@)) 4 di dy < oo

(4.63)
and
00 00 3
limisoup;gﬁ / /1y(y;ﬁ4exp <512 (—%—f(y)—i—f(@)—f@))) dw dy dy < oo.
€ v YY B
(4.64)

We use similar techniques resulting in

i,/“’//y;)xp (5 (-5 - s+ 1@ - 5@)) ) dvdyay
LY () )
/// ()
exp (512 (—b; g <y1+b> iy (@ib> g (gib») 07 dj dy
L[ U A2 ()
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4. Stochastic Spikes

L L (3 ()1 (2) 1 ()

Due to f being monotonously increasing on [1/b,00) which is seen by calculating the
derivative to be

1 b bxr — 1
fll@)=——"+3=—"1 (4.65)

the difference f(1/y) — f(1/w) < 0 is non-positive which combined with the fact
F(1/y) =y /3 = by /2 < by? /3 — by? /2 = ~by? /6

ST e (G0 (G) 1 () 1 (5))) amavas
L[ (Y o (4 (1)) amagan

b/e b—ye)(b—ye >2 < )
= dw dy dy
NG
ble ry ¥ _ 2
A = ( ) i
b—ye
b/e b/s 2 b
/ / (b — ye) exp( —y ) dy %(b—yE)Q exp (—6y2> dy
< — ex _bp dy < oo.
2 J, y p 6y Y
showing (4.63).
Analogously for (4.64)

53/ [ [ wiee (2 (-5 1010 -5@) ) dwaga
A= S RIEUORIORIO)
/Ob/s/yb/e/ (b ge Zs ys)) exp (_b§2> i dijdy
/Ob/e /yb/e e ( _
I

IN

b
6
b/E b/E b 1 1 1
((b—ye)(b— Ry [ — =~ ) dyd
/O ye) (b — ge))” exp( 6y>5< . b> ydy
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4.4. Applications

b/e rb/e b
:/ / (b —ye) (b — 7e)? exp <—§Q> gal'g]dy
y 6 b
< b2/ / Y - exp <—y ) dy dy.
y

As by Hospital’s rule

o b _ —exp (—2y?
lim y exp | —=9% ) dy = lim Lgy) =0
Y—00 6 Y—>00 —1/y

we may further compute with partial integration

2 [ [T bo\ ~ o 9 [T y? b o
b y-exp | —=vy° | dydy = —b — .| —exp|—=y dy < oo.
0o Jy 6 0o 2 6
This finishes the proof. O

Proposition 4.48 (B1). It holds

lim E,[T, /b/\T’\]—OforO<x<z

scaling

Proof. As in the first example class we are in the situation

ittt | [ [ ity anare [ [ it ana

with the second integral being bounded. By Lemma for € > 0 sufficiently small it
holds in the scaling limit

)‘_2 = pe,z/J < 627

Yy Z Y
/ / re(y) dw dy < 252/ / re(y) dw dy.
/b Je b Pe(w) e /b Je /b Pe(w)

Using equation (4.48) we infer

= //b//bpc o dy—Q//b //by < <—b§—|—f(w)—f(y)>) dwdy

with notation

whence

1 b
33 212
By f’ > 0 due to equation it follows the function f is monotonously increasing.
Therefore, it holds

//b //by <1 <_b63+f(w)—f(y)>) dw dy

f:[1/bjoo) = R, f(z):=
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4. Stochastic Spikes

e/e v v 1 B\ [*Fy—1/b
< 2/ / — exp (—) dwdy = 2exp (—)/ ——dy
i Jip vt 6 & 6e2) i Y
v 1 > 1 b1y
< _—— —_— = —_——_—— .
_2exp< 662>/1/b 7 dy exp( 652)b —>6_>0 0

This finishes the proof. O

Proposition 4.49 (B2). It holds

f; exp (—ﬁ) dy
e—0 fOZ exp (_ﬁ) dy
Proof. The scale function approach leads to
f;exp <% — #) dy .

f;/b exp (# — ﬁ) dy

forO<z <z

IP)gc(Te:/b < Tz)

Px(Ta/b < Tz) = (4'66)

dominated convergence theorem may be applied to numerator and denominator separately
finishing the proof. For the denominator observe that

€ b 15 b b

= = T
3y3  2y? T 3y?e/b 2y? 612

holds. O

4.5. Conclusion

This work was mainly motivated by [5] of M. Bauer and D. Bernard. Using a clear
probabilistic heuristic we prove a version of Conjecture B under general abstract conditions
and demonstrate their usability in the example sections. We believe that the approach
presented above is flexible enough to cover most one-dimensional examples of interest. As
already discussed in [5] the natural question of extending the results to multi-dimensional
situations remains unanswered, even though numerical simulations seem very promising
in the sense that a point process could be obtained in an appropriate scaling regime. The
tools and key concepts used throughout our approach appear relatively general and it
would be clearly interesting to see, whether the approach of this work can be extended
to higher dimensional situations.
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5. Fleming-Viot particle Systems

In this chapter we investigate a system of particles of constant size. Each particle evolves
independently from each other according to a generalized Bessel process with one common
drift parameter until one of them hits the origin. At this time the particle at the origin
jumps uniformly distributed to one of the other positive particles and afterwards the
particles evolve independently from each other again until one particle hits the origin
and so on. Our overall goal is to understand for which particle sizes and drift parameters
there are infinitely many jumps in finite time almost surely.

5.1. Notation and basic properties

In this section we use the observation that we only need to know the positions of the
particles at jump times and how long it took for the next jump to occur. Without loss of
generality the positive positions of the particles not jumping may be indexed in ascending
order. Next, by a scaling property of generalized Bessel processes, we may transform the
problem to polar coordinates and see that the next position only depends on the angles
of the old positions. The dependency structure is expressible as Hidden Markov Model
and entails us to give an alternative expression for the extinction probability. This will
imply an abstract criterion in Section 4.

Throughout the constructions and transformations we will perform, different labeled
processes will occur. Even though some of them live on different state space for readability
and convenience we use in most cases the same notation P for the underlying probability
measure and [E, for the expectation, correspondingly. In the context of Markov chains
(P;), denotes the family of probability measures with P, obtained by conditioning
the corresponding process X,, Y,, Z,, etc. to start in x: P, = P(- | Xo = z) or
P, =P(- | Yo = x) etc.

5.1.1. Problem formulation

Let us start by giving a more formal description of the problem under investigation:
We consider a system (X;)i>0 = (X}, ..., X{¥)i>0 of N € N, N > 2 particles starting in
Xo = xg € (0,00)Y. We will generally use the superindex to distinguish components
and denote the time in the subindex. P, (-) and E, [-] represent probabilities and
expectations regarding events and functionals of X; starting in xg. As long as no particle
reaches 0, they move independently according to the generalized Bessel processes with
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5. Fleming-Viot particle Systems

parametrization

. . —-1)/2
t

Here, (Bf )t>0 are independent Brownian motions. The stopping time

=z

71 = mininf{¢t > 0: lim X/ = 0}
j=1 stTt

denotes the first time any of the particles would hit 0. Note, that P, (71 < oo) = 1 if and
only if v < 2 and in that case there is some unique j with 71 = inf{¢ > 0 : limy; X7 = 0}
almost surely. This particle with superindex j will be set independently and uniformly
to the position of one of the other N — 1 particles at time 7. Therefore, the system
stays in the state space (0,00)" and the jump is implemented in a fashion, the paths
of all particles being cadlag. After the jump the particles again move as independent
generalized Bessel processes until time m where 7, :== 7,1 + 711 06,, , for n > 2 and 6,
denotes the time shift 05((X¢)i>0) == (Xs+¢)r>0 with the process Xi(w) == w(t) assumed
to be in the canonical representation. The mechanism is repeated inductively; the system
(X:) is a Markovian process in continuous time 0 < ¢ < lim,_,o 7, and state space
(0,00)N with cadlag paths.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
1
1 T2 t

Figure 5.1.: Symbolic illustration of a sample path of the particle system X; started in
Xo = (y},y3,y3) with jump times 7 and 7o.

Since there is no natural way to define the process for time points ¢ > lim,_ .o 7 = Too
the question arises if that limit in fact diverges (i.e. no extinction occurs) almost surely.
Without loss of generality we may assume v < 2 since otherwise almost surely the origin
is never reached, c.f. |34, Example 5.5.25].
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5.1. Notation and basic properties

Problem 5.1. For which particle sizes N € {3,4,...} and drift parameters v < 2 does
it hold
Too = 00

almost surely?
We are able to deduce the following partial answers:

e We will give a criterion for 7, = 0o to hold almost surely, respectively, for 7o, < oo
to hold almost surely (Theorem . In order to fully exhaust the abstract
criterion and to obtain the numerical results for general N and v one needs to work
with a density function of some stationary distribution of which the author is not
able to infer an analytical explicit closed form expression.

e Still, the method will prove strong enough to explicitly exhibit slightly negative
values of v < 0 such that for N = 3 it almost surely holds 7o = co (Theorem [5.78).
This is in contrast to the result |10, Theorem 1.1 (i)] for the case of N = 2 where
v < 0 implies 7o < oo almost surely.

5.1.2. Symmetry of the model

In what follows we want to take advantage of the symmetry that is inherent in the model.
Before we start, let us give some basic intuition and motivation.

Despite the underlying stochastic process X; having continuous time parameter ¢ € [0, 7o)
the random sequence 7, under investigation has discrete parameter n € Ny. For arbitrary
n € Np, given the positions

)N

lim X, € {z € [0,00)" : 27 = 0 for exactly one j}

sT7n

of the particles immediately ahead of a jump there is a Markovian transition to the
positions immediately ahead of the next jump. We are interested in the random time
Tn+1 — Tn it takes for the next jump to occur and we must keep track of the positions of
the particles immediately ahead of jump times. But we do not need to know the whole
time continuous trajectories in between the jumps, only the positions at jump times
matter to us. In this sense, the problem is reduced to the analysis of a Markov chain in
discrete time n € Ng.

There is more redundant information to abandon. Given the positions limg,, X as a
N-tuple actually only the values limgy,,, X g, j€{l,...,N} are relevant to us but not
the way they are ordered since the drift parameter v is constant and identical for all
particles. So we only need to know the ordered values

lim Xﬁl) > lim X§2) > ... > lim XgN)

sT7n ST ST

of the particles immediately ahead of jump times 7,, to retrieve the distribution of the
increment 7,1 —7,. Since a priori in this ordering limgy, ng) >0forje{l,..., N-1}
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5. Fleming-Viot particle Systems

(N)

are the positive values while limg,, X
from the N — 1 first values.

In order to give an overview of the notations of the (Markov) processes constructed in
the course of this procedure there is the Table The full definitions of the processes
will be given later in the next subsections (cf. Definition Definition where
denotes the equivalence relation induced by the permutations of the coordinates and
A/« is the corresponding set of equivalence classes and Definition where At is
the set of elements of A put in ascending order).

= 0, all relevant information can be recovered

Name Notation State Space
Fleming-Viot N

particle system (Xt)ezo0 (0,00)

jump time chain o o H = {x €[0,00)" :
(Definition (Xn)neno = (mtr, Xolnero 5 g gop exactly one j}
jump time chain . i

modulo permutations (Zy)nen, = (Xn/e)nen, H/ e~

(Definition [5.15)

positive ascending v

jump time chain (Yo)netig (0, oo)N*1$

()1 e\ N—1
(Definition [5.16]) = (K)o s (Xa) ™ neno

Table 5.1.: Markov processes constructed in this subsection for adapting to the relevant
information to Problem @

Embedded Jump Time Chain
Notation 5.2. Let X;_ = limyy X denote the limit from the left.
Definition 5.3. We set

H = {z €0, oo)N : 27 = 0 for exactly one Jt

={zec0,00)V:|[{j€{l,...,N}: 27 =0} =1}
(5.2)

= |+ (0,00)77! x {0} x (0,00)ij

so that it holds X, € H for n € N.

In the definition of H we use the convention A° = () for sets A, i.e. specifically in our
situation

(0,00)° x {0} x (0,00)N "1 = {0} x (0, 00)N "
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5.1. Notation and basic properties

and
(0, oo)N_1 x {0} x (0, oo)0 = (O,oo)N_1 x {0}.

Convention 5.4. For the sake of concise and consistent notation let us formally set
Xo- = o € H for some deterministic starting configuration x¢o— € H infinitesimally
ahead of the 0-th jump meaning that if j € {1,..., N} is the unique index with z}_ =0
it holds for all 1 € {1,..., N} \ {j}

Py (XO = (x(l)_,...,xézl,xé_,xétl,...,xév_)> =1/(N—-1).

Definition 5.5. Upon setting 7y := 0 we may consider the jump time chain

o

(Xn)neno = (Xr—)neNy

as discrete time Markov chain on state space H.

Permuting the Coordinates

In the following we want to neglect the order of the particle’s indices which essentially is
no loss of information.

Definition 5.6. For z € H and a permutation 7 € Sy on {1,..., N} let us introduce
the notation
™= (™D 2"
which means (z7)7 = ™) and for subsets A C H let us define
AT :={d" :a € A}.

log =qon™1 = dgy Ny -

Furthermore, 7—! denotes the permutation inverse to m, i.e. 7~
Example 5.7. For N = 3, (1) = 2, 7(2) = 3, m(3) = 1 it holds (22, 2!,0)™ = (x!,0, 2?).

For general N > 2, if ', 72,..., 7N € Sy are permutations satisfying 7/(j) = N,
je{l,...,N}, it holds

N J
H= U ((0,00)N =1 x {O})™ .

Definition 5.8. For x € H there is an uniquely defined m(z) € {1,..., N} with 2™ = 0.
Furthermore let for x € H and [ € {1,..., N} \ {m(z)}

y(z,1) = (.. am@ 7 gl pm@H Ny (0, 00)N. (5.3)

Example 5.9. For N = 3 and ', 2% € (0,00) it holds y((22,2',0),1) = (22, 2!, 2?)

which is in general not the same as (22, 2!, z1).
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5. Fleming-Viot particle Systems

Lemma 5.10. The mapping x — y(z,l) is positively homogeneous in the sense that for
xeH,le{l,...,N}\ {m(x)} and a > 0 it holds

yla-z,l) =a-y(z,l).
Proof. 1t holds m(« - ) = m(x) and by definition

m(z)—1

y(Oé ’ $7l) = ((Oé ’ x):l? SR (a ’ [E) 7(a ’ x)la (Oé ’ x)m(x)—i-l’ SUR) (a ’ x>N)
1 m(z)—1 .1 (z)+1

m
=a-(z,...,x , T, T e, T

Lemma 5.11. Forzg € H, 1l € {1,...,N} \ {m(zo)}, vo == y(x0,l), A € B(H) and
m € Sy it holds

Py, (Xr— € A) = Pyr (X7 € A). (5.4)
Proof. 1t holds
N N N
Pyy(Xro € A) =) By (X, € Ar=7"0) =) "B, (XT_ cA () {> T”U)})
j=1 j=1 k=1
k#n(j)
N 00 ] ) N
_ Z/ P, ((Xg,...,Xf(”1,0,X;T(J)“,...,X5V) e A, () {r" >t} | Py (r™D € at).
j=1 k=1
k#m(j)

Now Py, (770) € dt) is the density of the O-hitting time of a one-dimensional Bessel
process with start in

v = W)
thereby identical to Pyr (77 € dt). Similarly, for k € {1,..., N} and AF € B((0,00)) it
holds

Py, (leC c Ak rF > t) =Py <Xt”1(k) e Ab 77 () 5 t>.

In view of Carathéodory’s extension theorem we may assume A = ><an:1 A™ to be a
product set since they constitute a [)-stable generator of B(H). Then, the integrand is
given by

N
Py, ((Xs,...,xf”)1,o,Xf“>“,...,XzV>eA, N {Tk>t}>

k=1
k#n ()
N N o B
=14:00(0) J] Pyo <th e Ak 7k > t) =1 45 (0) Pys (Xt’r *) ¢ gk ) 5 t)
k=1 k=1
k#7(5) k#m(5)
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5.1. Notation and basic properties

N
=Pys ((Xt”_l(l), o ,er‘l(W(J)—l)’O’Xtrr‘l(w(J)Jrl)’ . ,er_l(N)) € A, ﬂ{Tk > t}),

k=1
k#j

N oo , . N .
Z/O P, ((th, XD o xO L x Ny e A, () 47> t}) Py, (r"9) € dt)
k=1
k()
N 00 3 3 ) 3 ) _ N
:2/0 P, ((ng WX D gy 0 xm N0y e (Y (rk >t}>
k=1
ki
Pyx (77 € dt)

N N
= Z]P)yg (X;r_l €A, ﬂ{Tk > Tj}> = ]P)yar(X;r:l S A)

1

<.
I

k=1
k#j

This shows equation (5.4)).
O

Lemma 5.12. For starting values o € H, permutations m € Sy, measurable sets
A € B(H) and time indices n € Ny it holds

o o 7'('_1 o
P,, (Xn e A) — P, (Xn e A) =P,y (Xn e Aw) .

Proof. Let us employ the technique of induction over n € Ny. As base cases we show the
assertion for n = 0 and n = 1 and then perform the induction step n — 1 — n for n > 2.
For n = 0 it holds

Bry (X € 4) = By (o € 4) = La(wo) = La((F)™ ) = Bag (X7 € 4)
o 7_(71 . o ﬂ_fl T ™ o "
= ng(Xn € A) = Pzg((Xn ) €A ) = ng(Xn cA )

The last two equalities hold for all n € Ny showing the second equality of the assertion.

Now we consider the case n = 1: Let us specially denote m := m(zy).

Due to xg(m(wg)) = (27)™®8) = 0 it holds 7(m(zf)) = m(zo) = m which we may write
as

m(xd) = 7 (m). (5.5)
Since for yo = y(xo,1) with [ € {1,..., N} \ {m} it holds

(W) = o) = . w(G) #£m _ o, AT (m)
b, (i) =m |5 j=mn"1(m)
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5. Fleming-Viot particle Systems

it follows
s m(r~ Y (m)— m(r~Hm s
(@0, )T = o = (af D, @™ = e D) )
7~ (m)— w1 T 7~ Hm e I —
= (D) @)™ T @)™ O @) T @)Y =y (1),

(5.6)

Using equations (5.6) and (5.5)) it follows with equation (5.4) the assertion for n = 1:

N N
o 1 1 B
PolXr€d) =57 — Pyao i) (Xr- € A) = 5 ; Py(zoy (X7 € A)
l;zm l;zm
1 N 1 N
a1 _ .
“=N_1 ;Py(xgm—l(l))(XT €A = 1 ; Py 1) ( X7 € A)
l;m l?éﬂ'jl(m)
1 N
71 o 71
“N_1 > Puapn(X7- € A) =Pug(XT € A).
=1
I#m(x])

Let us turn to the induction step n — 1 — n: By the Markov property it follows

Py (X, € A) = By, [P)%l (Xny € A)} = .z []P’)%Tl (Xny € A)]

o -1 o -1 o -1
= Ezg |:]P)<)%ir1>ﬁ(Xn—1 € A):| = Efg [P)%l (Xn—l € A)] = PEZ{ (Xn € A)

This finishes the proof. O

The result of the previous lemma gives rise to the following definitions:

Definition 5.13. For z,y € H let the equivalence relation z«~y hold, if and only if
y = ™ for some m € Sy. Let [z] := {z™ : 7 € S,,} denote the equivalence class of z € H.
For subsets A C H let A/« = {[a] : a € A} the corresponding set of equivalence classes.

The set B(H)/e~ == {A/e~: A€ B(H)} is a o-field. To ensure the well-definedness of
the Markov kernel on the quotient sets the following two assertions will help us.

Lemma 5.14. (i) From A/e~s = B/ew it follows U, cg, A" = Ures, B™
(ii) From [x] = [y] it follows k(z,|U, cgs, A™) = £y, U es, A™) where
K H x (B(H)) = [0,1], #(z,A) =P, (5’(1 € A)

o

denotes the one step transition distribution of the jump time chain (Xy)nen,-
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5.1. Notation and basic properties

Proof. (i) Let x € U,cg, A™- Then, there is a € A and 7 € S, with = a™. This
means [z] = [a] € A/ «~w= B/ «~. Consequently, it must exist b € B with [b] = [z].
This implies the existence of o € Sy withz =07 € J, g, B". Since z € U, g, AT
was arbitrary it follows z € (J . S AT C B™. Upon relabeling the other
direction of argumentation follows as well.

TESN

(ii) For y = z7 it holds according to Lemma

o1

P | X, € U 47| =P, X, € U 4" —p, [ X ¢ U 4"

TESN TeESN TeSN

as desired.

Definition 5.15. We can therefore define the Markov chain

(Zn)nENO = (Xn/w)nENo

on state space H /e~ with probability measures (Qz)zep/. Via

Qo) (én € A/ew») =Py, X, € U AT

TeESN

as jump time chain modulo permutations.

Neglecting the 0
For z € H let x* the uniquely determined representative of [z] with
x12x22...2xN:0

and for A C H let At := {a*: a € A}. Using this notation it holds

Qg (Zn = A/«w») =P, [ Xne [ 47| =P, ()%g € A¢> .

TESN

We might as well consider the Markov chain ()%%)nENo on {x € (0,00)V "1 x {0} : 2! >
22 > ...x"N = 0}. This suggests to neglect the redundant 0 in the last N-th component.
Finally, we may define

Queo)(Zn € Afe) = Q1 v10y(Zn € {l(a",....a" 7 0)] s a € 4))
—P(zm e )(?Ofne{(a,.-.,aN L0) rae A e Sy))
N—-1
N_1 ]P’ (22N 1 2 (X'rn— S {(al,. . .,aNfl,O)ﬂ- ca€ A,me SN})

=1
This leads to

93
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Definition 5.16. Let us call the Markov chain
(Yn)n€N0 = ((Xin7)17 s (Xi’nf)N_l)neNo

on the state space (0, oo)N_l‘L the positive ascending jump time chain.

5.1.3. Self-similarity of generalized Bessel processes

Notation 5.17. For an Euclidean vector element z = (z!,...,2") € R", n € N, let
o 1/2
Izl = | D ()
j=1

denote the Euclidean norm of z.

Conceptual idea

Let us describe some of the basic ideas in this subsection. The precise definitions will
formally be repeated later. In what follows we substantially want to exploit the scaling
property of generalized Bessel processes stopped at the origin which behaves like Brownian
scaling:

If (X;) is a generalized Bessel process and ¢ > 0 a real number,
then (c - Xy /Cz) is again a generalized Bessel process.

This distributional invariance will imply that certain random variables do not depend on
the Euclidean magnitude || X;| = (Zjvzl(th )2)1/2 of the Fleming-Viot particle system
read as Euclidean vector element. More specifically, let us for example consider one
Markov transition of the chain Y, given in Definition Let us suppose it holds
Yo = yo € (0,00) ~1* which in correspondence with Convention |5.4] means for some
xo— € H with ((aﬁé_)l, e (a;é_)Nfl) = yp it holds Xo_ = zp_ and Xy denotes the

random positions after the 0-th jump, i.e. the 0-element in xg_ is uniformly replaced by
1 N

one of the N — 1 positive values. Let us consider the particle system X; = (X;,...,X; )
with start in X 0— = xg— where this time X is obtained by a jump based on the
scaled value || ”, i.e. the 0-element in HL:H is uniformly replaced by one of the N — 1

positive values of ”x T Then again, given X, the particles of X; move as independent
generalized Bessel process until random time
N N —j
T = mi 11r17'J = ml?mf{t >0:X;_ =0}
=
when the first one of them touches the origin. By Lemma it holds the equality in

distribution Xy 2 |zo_|| Xo and moreover with the scaling property of Bessel processes
we will show the equality in distribution of the processes

’D PR
(Lo, (1) Xt) = (Lo jzo_ 27 () o1l Xt jzo_i2) -
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This particularly implies the equalities in distribution

D P—
X 2 g || Xr

and 5
T = |lzo- |7

from which we see that the distribution of the direction

_ w4 w4 - —
Y, ((Xi—)lv”'v(Xi—)N 1) D <(X?7)17"'7(X?7)N 1) ) Y1
Ml (oo (o oy Il
and of the factor by which the magnitude changes
Yl _ [1Xo—l p [[llvo- ]| X7—]] H( + <+ V-1 v
- Z o (GBIt eBha] E)el
Yol flzo-|| [lzo—|
does not depend on the value of || Yy|| = ||yo|| given ||YoH W In other words, given
— w4 w4 _
vy (®oh. (KoM,
UO = — = —\L —\L = N
1Yol H((XO_)l, o (KGN H ol

the random variables Uy = Y Ry = ||Y1]| and T} :=7 — Ty = T are independent of

Y,
— I
Ry = ||Yo|| and Ty := 79 — 0 = 0 and they can be appropriately scaled back in order
to retrieve the distribution of HQII’ Hg”
illustrated in Figure
Due to the underlying Markovian structure of the jump time chain we essentially may

repeat the multiplicative scaling at each jump by letting X, the particle system where

and 7 — 79 = 7. The dependency structure is

the n-th jump at time 7,, is based on the quantity I~ "’” and use the random scaling

factor T[7_[|X=,_,~[. More explicitly, we find

n
’D JR— —
- = HHXF]'fliH - X7, -
Jj=1
and

n — Tn— 1_HHXT] 1— n— Tn— 1 H

Denoting the Markov chain

v, (XL L. (XL )N )
Un neNg = X = ~ - - -
(Un)nen <|1Yn\>neNo <||<<Xin>1,...,<xin>N—1>H o

on state space

S = {z € (0,00 |z = 1}
the Markov transitions from (U,, Ry, Ty) to (Un+1, Rnt1, Tnt1) rely on U, only.
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5. Fleming-Viot particle Systems

Example 5.18. To give an illustration let us consider the case of N = 3 moving particles.

0.6

0.4

0.2

Figure 5.2.: Illustration of the Markov transition from U, to U,yi. The image was
created using GeoGebra: https://www.geogebra.org/.

Suppose the chain is located somewhere at U, € S. Then the three particles of X=,
will have the values U} and U2, with equal probability either one of them taken for two

particles:
-+ 177l 772 ~ 1772 772 1

IP)(XFn = (Uanann)) = ]P)(X?n = (Un’Un)Un)) = 5
Next, the three particles of X; run independently as generalized Bessel processes until
one of them touches zero. The two positions of the surviving particles in ascending order
build up Y, 411 = (?}LH, YEJFI), and the projection on S is the next value U,11 = ”?Lﬁ”.
Further, we obtain R, 1 as the magnitude ||Y . 1| (length of the dashed line in the
picture) and T}, 41 = Tp41 — Ty, as time how long this procedure took.

The state space

S = {(2!,2%) € (0,00) : 2} > 22, (&1)? + (22)% = 1}
of directions may be identified with the state space (0, 7/4) of angles. This parametrization

is actually used later when further analyzing the case N = 3.

In the case N = 2 the state space S is the singleton {1} and the idea of our construction
is in essence the same as the one given in the beginning of the proof of [10, Theoream 1.1

(1)]-
Formal implementation

We are now ready to be more formal. Let again H = U;VZI (0,00)7 71 x {0} x (0,00)N =7
as in (5.2)) denote the subspace of [0,00)" where exactly one component equals 0 and
let m: H— {1,..., N}, m(z) = arg{j : #/ = 0} the mapping picking that component
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5.1. Notation and basic properties

as in Definition [5.8 and moreover, recall that for x € H and [ € {1,..., N} \ {m(z)} we
defined in equation (5.3])

y(x,1) = (z',... @)L gl gm@)+ ,zV) € (0,00)V.

We now describe given N € N, N > 2, a “normed” Fleming-Viot N-particle process
(X¢)i>0 to the parameter v < 2 on the state space (0,00)"V. In a nutshell, ahead of each
jump time, we normalize the (N — 1) positive particles by dividing by their norm || X7, _||.
Just after the jump, their norm will then be strictly larger than 1.

Definition 5.19. Let (V;)nen, a family of independent random variables uniformly
distributed on {1,..., N — 1} independently from anything else. Let

N iy
70 =0, ?n:mi{linf{t>Fn_1 :Xi_ =0} for n € N.
J:

For Xo_ = zo_ € H denoting b, : {1,...,N —1} — {1,..., N} \ {m(X=,_)} for the
unique order preserving bijection we set

— X=-_ -
X?»n —y<T",bn(Vn)> N nGNQ.
X7,

During time points ¢t € (Tp—1,75n), n € N, the components (Y@), j=1,...,N move
independently from (V) and independently from each other according to a Bessel process
starting in Y%kl and global parameter v < 2 in the sense of (5.1)).

Remark 5.20. The difference to the original process X; is the normalizing at jump
times 7. For n € Ny neither X7, _ nor Xz must have unit norm, the latter in fact has
magnitude strictly larger than one. Letting (V;,)nen, @ family of independent random
variables uniformly distributed on {1,..., N — 1} independently from anything else and
denoting b, : {1,...,N} — {1,...,N} \ {m(X;,-)} for the unique order preserving
bijection we could have constructed
Xr, = y(Xr,— 0n (V)
for n € Ng. In the following we use this notation.

In order to facilitate an alternative problem formulation we must relate the normed
Fleming-Viot process X; with the original process X, i.e. we must be able to properly
scale it back so we have no loss of information:

Definition 5.21. We define for n € Ny the backscaled (series of) jump times

n k
Trlz)s = Z HHY@A—HQ (Th — Tr-1)

k=1 j=1

and the backscaled process

o0 n
bs .__ B Y
Xp* =Y Apwe O | TIIG o l Xy %,
n=1 j=1
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5. Fleming-Viot particle Systems

Example 5.22. The first backscaled jump times are
00 =0, 1 =|Xo-[’T1, = [Xo- 1’71+ Ko [ X7~ 1P (T2 — 71)

and the definition of the backscaled process starts with

HXO |- X t/||X0 129 0<t< HYO—”271
<. % + [ Xo—|*71 < t < [|[ Xo—|*T1+
XP = Xo-IX7 -l - X_ ez N
(b I — X o-[|°1 X7, - [I*(T2 — 71)

9

Remark 5.23. Just ahead of the n-th jump, n € Ny, the backscaled process is located
at

n
= X- _|-X X7 _,—
11” Tj—1 ” <7n71+(7'7t{s—7'bs 1)/1—[;1 1HX7J - ” H” Tj—1 ||

and jumps to
n+1

= H Hyﬂ'—l—u ) Y’Fn
j=1

Due to
n+1
1115 1f||—H||XTJ Xl = X5
J=1
and
_ X. _ "X | XE -
X?n = < 7bn(vn)> H] 1|7|L+1T] = H o 7bn(vn)
HXrn—H [T 5 1 X7 -l
szs o
= s 5 n V
||X7—bs
it holds

n+1 o o sz o o
=H|1Xm||-X7n=||XE§S_||-y< (T )) v (X8 Bu(V)).
iy X5l
(5.7)

The jump dynamics of the backscaled process (XP®) is therefore the same as the one of
the original process (X;).

Following the Brownian scaling property of generalized Bessel processes the law of (X;)
and (X®) also agree with each other in between the jumps and we attain:
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5.1. Notation and basic properties

Proposition 5.24. (Cf. the alternative construction of the Fleming-Viot process in the
beginning of the proof of [10, Theorem 1.1 (i)].) Let Xo_ := xo— € H arbitrary and set
Xo_ == x0_. Then the processes (X;) and (X}*) are identically distributed.

Proof. Let us give a step by step explanation on how we apply the scaling property of
generalized Bessel processes stopped at the origin.
Application to a generalized Bessel process with deterministic scaling factor and starting
value. As direct consequence of the scaling property, for all ¢, xg € (0,00) it holds for X
and X; independent generalized Bessel processes starting from Xy = z¢ and X = o /c
and

T=1inf{t > 0: X, =0}

and
T=inf{t >0: X; =0}

denoting their respective hitting times of the origin that the processes (]1[077) (t) X¢) and
(Ljo,c27)(t) ¢ - X/2) are identically distributed, i.e.

P ((Ljo.r(t) Xz) € »

Xo=x0) =P ((Ljg,e27)(t) c Xyye2) €+

YO = .%'Q/C) .

Application to N independent generalized Bessel processes with deterministic scaling
factor and starting value. Since the minimum operator complies with a scaling factor as

multiplicative constant in the sense that for ¢ > 0 and = = (z!,...,z") it holds
N . N .
min (02 x]) = ¢? min 2’
j=1 j=1

we may apply the scaling property to N Bessel processes simultaneously as follows.
Let again ¢ € (0,00) and let xg = (z},...,2)) € (0,00)Y and X; = (X},..., X)
denote N independent generalized Bessel processes with starting values z¢ € (0, oo)N
and independent of X; consisting of NV independent generalized Bessel processes starting
in x9/c = (z}/c, ..., 2 /c). Then writing 77 = inf{t > 0: X/ =0} and 7 := inf{t >0 :
X,_ =0} for
N . .
T mi1117'3 = mirllinf{t >0:X/]_ =0}
Jj= J=

=

and

=z
=z

min7’/ = mininf{t > 0: Yi, =0}
j=1 j=1

T

it holds

P ((Lio,r)(t) X3) €+

Xo = IO) =P <(]l[0,min§\7:1frj)(t) Xi) €+ [ Xo= 950)

—P ((n[oyminN e ()X €+ | Ko = :Uo/c) — P ((Lgen(t) Xy) €

j=1

YO = xQ/C) .

Application to N independent generalized Bessel process with random scaling factor and
starting value. Let us now suppose again the processes X; and X; are independent each
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5. Fleming-Viot particle Systems

consisting of N generalized Bessel processes which are independent given their starting
values Xy and X, this time X, following some random distribution supported on
(0,00)" and (C, X;) following some random distribution supported on (0, 00) x (0, 00)™
independently from the process X; and such that given X the process X; is independent

of C' and the equality in distribution C' - X = XO holds. Then

P ((Ljor(t) Xi) €+) = / P ((Lio,r)(t) Xi) € + | Xo = 20) P(Xo € dxo)

(0,00)N

= /(0 v P ((]]'[O,T)(t) Xt) (S | Xo = xo) P(C . Yo S dmo)
= / P ((1[0,7)(t) Xt) S ‘ Xo = CEO) P((07Y0) € d(C, EO))
(0,00) % (0,00) ¥
= / L (Lo, 27 (t) ¢ Xyye2) € | Xo = To) P((C, Xo) € dc,Tp))
/0 / ]1[0027' )CYUCQ) €'|Y0:fo) P(CEdC|Y0:fo>P(YQGd$O)

_/(0 )NP((ﬂ[oczT)()C Xt/cz) - | Xo =79) P(Xo € do)

=P ((Lp,c2m () C - Xyye2) €+) -

Application to the Fleming-Viot particle system. The jump dynamic complies with a
scaling factor as multiplicative constant in the sense of Lemma [5.10} For ¢ >0, x € H
and [ € {1,..., N} \ {m(z)} it holds

y(cx,l) = cy(z,l).

In order to finish the proof let us inductively show for M € N:

M
S d
(St s3] £ (St o)
t>0 n=1 t>0

Start of induction (M = 1): Firstly, by definition
X5 = X%S)s = | X7l - X7 = [ Xo- || - y(Xo- /| Xo-1II,00(V0))
= llwo-]l -y (w0~ /llzo-II,50(V0)) = y(xo—, bo(V'0)) = y(xo—, bo(Vo)) = Xo.
Since
m(Xz,_ ) =m(Xo-) = m(xo-) = m(Xo-) = m(Xr—)
the mappings b and b coincide. Thus,

Xo = Xry = y(Xrp— /| Xz, 00(V0)) = y(Xo- /[ Xo-1l, 00(V0))
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5.1. Notation and basic properties

= y(xo—/[lzo-l,bo(Vo)) = y(zo—,bo(V0))/llzo—|.-

It therefore holds

Xo = y(@o—, b0(Vo))/lwo- | 2 y(zo—, bo(Vo))/ lzo- || = y(Xo—, bo(V))/lzo-|
= y(Xro—, b0(Vo))/l|lzo-Il = Xr/lz0-1l = Xo/||wo-]-

As a consequence, we may apply the scaling property with ¢ := ||zo_| > 0 to obtain
b
(L ey (O X1 S>t>0 = (Lo xa- j2r) O 1o Ky, 2)

= (Lo o 1220) () 201l - Ko 12) g = (Lirour) () Xe) 5

t>0

Inductive step (M — M + 1) By induction hypothesis, 708 = TM and X 2 Xry—-
]\/I
Hence using equation (5.7)) it holds

X, =y (X% (VM))z (X5 Bar(Van)) 2y (X, bar (Van) = Xy

™
and again by scaling with C = ||X _ || > 0 and proportional starting distributions
XE}?; =C- X7, 2 X, we finally attaln

bs\ __ bs ~
(1[7;;,7;;+1)(t) X ) = ( b, ) O 1K 20 I X oy o /XS, 2)

D
(]1[71\17711\)/15"’02 (Tmt1— TM))( )C XTM+(t b )/02) = (1[7A177M+1)(t) Xt)'

M+41 J M+41
(3t ) (St o)
t>0 n=1 t>0

and concludes the induction finishing the proof. O

This shows

Remark 5.25. Definition and Definition [5.21] may be regarded to as generalization
of the construction given in the beginning of the proof of |10, Theoream 1.1 (i)] where
the scaling invariance of generalized Bessel processes was used as well. Demanding
|Xo—| = 1 in the notation of the paper’s authors «; corresponds to || X7,—| and o;
corresponds to 7; — 7;_1. We use a slightly different normalization scheme which does
not entail a principal difference. Our construction can be seen as straight generalization;
in our setting N > 2 the sequence of random variables (Yin,/ ||Xin7||)n€No are random
directions that are not deterministically equal to (1,0) anymore.

We are now ready to consider the normed process written with descending ordering and
introduce some new letters for sequences of random variables to be used later on.
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5. Fleming-Viot particle Systems

Definition 5.26. Let us change to polar coordinates upon defining

_ —1 — -
(Yna Tn)nGNo = (((X?n—)la R (XFn—)N 1)’ Tn — T(n—l)\/(])nGNo
Y _
- ( uynu,Tn) = (Un, B, To)neny.
1Y 0] neNo

Corollary 5.27. Under the assumptions of Proposition the following picture il-
lustrates the dependency structure implied by Proposition[5.24): Given the direction U,
of the particles immediately ahead of a jump, there is a Markovian transition kernel to
the direction Uy,y1 tmmediately ahead of the next jump, the factor R,11 by which the
magnitude will change and the scaled amount of time Ty 11 it will take. The marginals of
(Up+1, Rnt1, Tnt1) given U, are not independent.

1:1<1

Figure 5.3.: Illustration of the dependency structure of the chain (U, Ry, T},).

Proof. For n € Ny it holds

(X5, ) (X, _
X

)
N (KON X ()N
p (X3 ). (X )N
XL (X N
and for n € N it holds

N-1y ((ngj_)l, o (Xf;j_)N—l)

- X251 o 1%, |

< 4+ \N— »
R =((X7,0)" - (X5, )Y = 1X7,-]l = X 1 Xl
Tnil_ b
and 7bs _ bs _
n n—1 D Tn — Tn—1

T, =Tn—Tn-1= =
" " ! ||X7k_)l:s)51_||2 H)(Tnfl_H2
n—

justifying the labels direction, magnitude changing factor and scaled amount of time for
U,, R, and T,, respectively. By definition for n € Ny

_ X=- _ - _
X?n =Y <Tnvbn(vn)>
[ X7l
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5.1. Notation and basic properties

meaning that at time 7, the process X; loses the information about its previous norm
X7, Il Thus,

((Y%ﬁl—)l? ce (Y%ﬁl—)N_l’?nJrl - ?n) = (RnJrl : Un+1a Tn+1)

is conditionally independent of (| X7,—|l,7n — T(n—1)vo) = (Rn,Ty) given Uy,. Since
(Upn+1, Rnt1) is a measurable function of R, 41 - Up41 this shows conditional independence
of (Un+1, Rnt1,Tny1) and (R, T,) given U,,.

O]

Corollary 5.28. Under the assumptions of Proposition [5.24] the bivariate discrete time
process

(Mn)neNo = ((Una Un+1)a (Rn—l—la Tn—H))nGNO

is a hidden Markov model (HMM) with hidden chain (Uy,Upt+1) and observed chain
(Rpi1,Tni1) on the product space S? x (0,00)? endowed with the associated Borel o-
algebra where

Si={z=(z',....,2N) € (0,00)" . || = 1}. (5.8)

Proof. In the construction of M, the dependency structure is altered to:

Figure 5.4.: Illustration of the dependency structure of (U, Up+1), (Rn+1, Tnt1))-

This complies with the notion of HMMs, cf. [17, Fig 1.1 and Subsection 2.2.1]: Condi-
tionally on the hidden chain (Uy, Up+1)nen,, the observations (Ry,t1,Tn+1) are indepen-
dent, and for each n the conditional distribution of (R,+1,T,+1) depends on (Uy, Up+1)
only. O
Corollary 5.29. Under the assumptions of Proposition it holds

oo k-1

7o 2 R3S [] B2 T

k=1 j=1

Proof. We directly compute

n k
Too = lim 7, 2 lim 755 = lim Z HHY@A_HQ Tk — Tk—1)
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oo k—1

:Z To— HQHHXTJ-—HQ Th—Tk—1) ZRgZHRJZ-Tk.
k=1 j=1

k=1 j=1

5.2. Transition densities

This chapter is devoted to the computation of several density functions for later usage.
Some of the technical aspects are outsourced to the appendix.

Lemma 5.30. The Markov chain (Yy) from Definition[5.16] admits a density function
hy,(y) of the form

N-1 -
hyo(y):%Z > /0 5 (t) Fulyd,y™ Hfty y" ) d

1,j=1 m€SN_1
(j)<m (i) =

where
g (t) =P (inf{t > 0: X} = 0} € dt) (5.9)
is the density function of the hitting time of O of a generalized Bessel process and
fi(x,y) == Py(X} € dy,min{X,:s <t} >0) (5.10)

is the transition density of a generalized Bessel process stopped in the origin starting at
x > 0 and moving to y > 0 at time t > 0.

Proof. Let yy € (O,OO)N_l‘L and A € B ((O,OO)N_N) arbitrary. By independence the
transition density of ((Xti)l, e (Xti)N_l) up to the first jump is given by

N-1
! {
Pyy(V1 € 4) = - 2 Prp i1 (X7 € A)
1 -1
= m Z P(ym 7y0 ,y('])(XT— c {(a17 . ,G,N7170)7T ‘ac€ A,T{' c SN})
=1
-1
N 12:1 </ /UAWHftyO’ ygy()
TESN 1
N-1
" Z / / U ar filwiy ') ! ¥ y*) dy 9,4 (¢) dt)
e i
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5.2. Transition densities

N-1
“N— 12(/ /UAwatyO’ ) dy g, (¢) dt

TESN_1

+Z/ /UA7r yo
#Z

TESN_1

For 7 # w9 € Sy_1 the set

N—-1 (5.11)
) 11 s, v) dy g, (1) dt) :

s=1
s#j

—1
A™ A A™ C (0,00)Y " 10,00V € U {a e (0,00)¥"!: ' = o)

3,j=1
i#£]j

is a null set with respect to the (N — 1)-dimensional Lebesgue measure and therefore it

holds for arbitrary ¢ > 0

/UA Hftyo, yay= 3 / Hftyo,

TESN_1

- ¥ /Hftyo,

7TESN 1

and for additional arbitrary i # j € {1,...,

TI'GSN 1

(5.12)

N — 1} using that 7(¢) # w(j) for 7 € Sy_1

N—-1

/ ) Fewb ) T Fiwssv®) dy = / Felvbsy f(yé,ys)dy
WESL]JV 1 z;l :
= /ft Yo " ” f( ™) dy

TESN_1

N-1

= 3 [ fbr ) TT oo™y (5.13)

TESN_1 s=1
= > /ftyoy”)ftyoy Hftym

TESN_1

(i) <m ()

S¢{i,j}

N-1
+ > /ft o "N fuwo, ™) T filws, v™) dy.

TESN_1

m()>m(j)

s=1
s#{i.j}
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Each m € Sy_; with 7(7) < 7(j) can be mapped to 7 := 7(m) € Sy_1 via

7(s), for s ¢ {i,j}

7(s) = ¢ 7(j), for s = 1, (5.14)
(i), for s=j
and it holds
{meSnor:m(t) >n(j)y={mre Sny_1:7(i) <7(j)} (5.15)
As a consequence,
N-1
Z /ft yo, ft yo, ()) H ft(?/87y7r(s))dy
TESN_1 s=1
w(i)>m(5) s¢{ig}
N-1 N
Z / fi( yo, ft y(]v ()) H ft(yé,y“(s))dy
TESN_1 s=1
()< (j) s¢{ig}
- > / Fowo, ™) Fuwo, ™) T £ ws v™) dy.
Tes s=1
(i) st (i.0}

In view of the sum in the last expression of (5.13|) this implies

N-1

[ o) T sty

UAW s=1
TESN_1 876‘7

(5.16)

=2 Z /ftyo yﬂ(] ftyoy Z) H Je(ygs y™

ﬂ'ESN 1

w(8)<m(5) £

Plugging equations (5.12)) and ([5.16)) into expression (5.11)) finally yields

</ /UA Hftyo’ ) dy g, (t) dt

TESN_1
+Z/ / fe(vbsy Hft Yoy dyga()dt>
j;ﬁl WESN 1 875‘7

:N </ > /Hftyo, ) dy g, (1) dt

ﬂ'ESN 1
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5.2. Transition densities

N-1
/ > / Fo(, ™) fiy y™™) ft(y(s),yﬂ(s))dygyg(t) dt)
Jj=1 TESN_1 s=1
J#i (i) <7 (j) s¢{ing}

N-—1
TN 1Z</ > /ft Yo:Y f(yS,y“(s))dygyg(t)dt
=1

TESN_1 *1
1

;
+ Z/ > / Fuwh, y”(” f( y")dy g, (t )dt>
TESN_1 L
]?51 7r(1)<7r(j) 57@
_12/ > /ftym Hftyo, V) dy g, (t) dt.
,)= 1 71—GSN 1
m(j) < (i) &
An application of Fubini’s theorem finishes the proof.
O
Remark 5.31. e Accounting for the time length and using polar coordinates the

Markov transition from (U,) to (Up+1, Rn+1, Tht1) as in Definition is thereby
given by the density

B _9 N—-1 N—-1
P (u, 7, ) _1 Z Z g, ] t) fe(ud,r - u™0)) H fr(ud,r-u™®) (5.17)

7.] 1 7TGSN 1 8:1

m(i)<m(j) 577

for ug,u € S as in Definition and r,t € (0,00) with the factor r~2 accounting
for the functional determinant of the coordinate transformation.

e The index i accounts for the position Ayé that is replicated in the beginning and
the index j accounts for the position 3} from which the one (out of possibly two if
j = 1) particle starts from that will be the first to be killed upon touching 0.

1, fori=j
0;j = . .
0, for i # j

e Writing

for the Kronecker-Delta the representation

9, (t
hyo (y 1/ ZZH&U :

TeESN-1 1,J=1

)ft yOa
() y™

N
II yO? dt

inherits the fact
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for any yo,y € (0, oo)N_1¢ and 7o, ™ € Sy_1. (Since we knew this by the previous
analysis and construction we actually defined the transition kernel h,, for yo €

(0, oo)N_l‘L and on (0, oo)N_l‘L only.)

Definition 5.32. Let 0 < w = 1 — v/2 an alternative representation of the drift
parameter in the generalized Bessel processes.

Lemma 5.33. (Cf. [45, Theorem 8 (ii)].) Using the parameterization with w > 0 the
density function hy,(y) in Lemma may be computed to

(15 ) TS & [r(<w+1>N—1+2zN1k)

hyo (y) = (N — 1)1—1(w) klw',kZN_l:O H?;El [P(ks + w + 1)k5!]

2w N2k 1, N-1 a(s)\ 2Ks
( ) Z Zﬂ'ESN 1 (yO) ") H (yo( )>
N— N-1 w (1) <m(j) s=1 %
—1
SIS o |
- — 9 _ (wH+1)N=14+2 3Nk,
- () + 2 @) + ) 1
Proof. According to [12, Appenix 1.21] for w > 0 the transition density of a generalized

Bessel process stopped in the origin starting at > 0 and moving to y > 0 at time ¢t > 0
is given by

P.(X} € dy,min{X, : s <t} > 0)
2y z? —|—y Q—y)ﬂ€ (5.18)
= fi(z,y) = 2wtw+1xp< )Zk'l“ w)

and according to |38, Proposition 2.9] or to [27, Expression (15)] which is true for v < 0
also, the density of the hitting time of 0 is given by

) w?w m2

Using monotone convergence theorem we generally rearrange expressions of the form
fooo j 1 Ly ( ,yj) g~ (t) dt with all variables positive:

J j = J=
/ Hft oy) g (1) dt = 2NuT ()
.\ 2 _ N} 1 oo xIyd 2k
/OOtN(w“)ex —Z;V:l @)+ 55 ) 7 1Z<2?>dt
0 P 2t e ET(k+w+1)

2N (w)

A 2w _ . . .
(Hj\;l xj) H;\[:ll y /OO [tN(erl) exp <— Z;VZI (x])z * Z;\Sl (yj)2> X
0
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5.2. Transition densities

- N—1 (ijj)2kj
2t
X E dt
A .
PR ket kT (kj +w+1)

X

[T, 7 " AT % N-1 adyi \ 2
UL O (v

ki,...kny_1=0L “j

[e'e) N i\ 2 N-—1 i\ 2
x/ N2 (_ijl (=) + 255 () ) dt].
0

2t

Applying Lemma results for the last integral in

00 N i 2 N—1 N 2
/ t—N(w+1)—2Z;V_11k- <2j=1 (:ch) ‘1'23':1 (yj) ) gt
0

ooexp 2t
N-1 5 —14+N(w+1)+2 3Nk
T —1+N(w+1)+2;/€j (Zjil TS i (yj)2> :
whence
(Hé\le xj) 2w H;‘V:El Y 0 N-1 (xﬂéyj ) 2kj
2N (w) kl,...,%\,:_lzo <]1;[1 kT (kj +w+ 1)) %
X /OO N2k <_ o (2)" ;Zj‘vll (yj)2> dt]
0

A 2w .
X
I(w) bt 120 125" T(kj +w + 1)k;!
H?lel (x]y]) J ]

X — ” N-T
(Zé\le ($])2 _’_Z‘A;V:ill (y])2> 1+N( +1)+2Z]:1 k]

In view of Lemma this implies for the transition density using the identity Hi,v: _11 y() =
Hé\gl y® for arbitrary m € Sy_1

5 N1 o . _N-1
) = 71 2 2 il TT 50507 g0

1,j=1 meSN_1 =1
m(i)<m(j) 7

2w
_ i N—1 N—-1 n
TN_1Z T(w) x
4,j=1 meSN_1
(i) <m(4)
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5. Fleming-Viot particle Systems

o0 T«w+DN—1+2ZN1k>
[ T2 D (ks + w + 1)k]] .
(yéy”‘”)gijTgéll(ysy“‘@) ]
57#]
(8 + 25 g + (o)) R
2N (Hiv 11 90)2 Hiv 11 y°
(N — T (w)

T((w+)N—1+23 5k,
D> Z[(;_l FRN )

t,j=1 meSy_1 ki,....kn-1=0 [L= [T(ks +w + 1)k!]
m(1)<m(4)

X

X

()™ [(yé/yé)ijllﬁ“zl(yayﬂ<@)2ks}
(@@2+§iif[@@2+(yﬂ]>@*nN 2 sk

] (5.20)

Permuting the order of {k1,...,kn_1} by m € Sy_1 features

DSBS

i,j=1 m€Sn_1 ki,....kn—_1=0
7 (1) <7 ()

F((w+1)N—1+2ZN lk)
X
[ 15 D (ks + w + 1)k

0™ | (s/8)™ T ()™ ]
(0 + 225 [+ o))
Yy ¥ [F((“’“)N””Zu ).

1=0

N-1
i1 sy bty =0l Tsmt [Tk + 0+ D!

9w N 2k 3 »
00 |(so/) " TR () ]
A (wAD)N-14+2 3Nk
((yé)Q + Zé\/:—ll |:(y8)2 + (ys)2:|) + + 1 (s)

N-1 00 I‘((w—i—l) _1+22N 1k>
) [ 5 Ok +w+ Dk

4,5=1 m€SN_1 ki,..kn_1

(i) <m(4)

110



5.2. Transition densities

i) 2 i\ 2kr(j) TTN—1 2% (s N—-1 2k
0™ )™ T e TR 2

5#J

X N—-1
(wH)N—=142 3777 ks

() + 205 [9)? + 7))

00 [F((w—{— DN —1+25 Y lk)N 1
N

IT &)™ =

[ (ks +w + 1)k i

w(i)<w(5) s#m(j

= ((%)2 +300 [(y8)2 + (ys)ﬂ ) (N

X

v O S e [0 TP, (6 I(S))%S]]

(5.21)

Again using definition ([5.14)) it holds for i,7 € {1,...,N — 1}

Z zkm) H ( )ka _ Z 21%(1) H (% )27%

TESN_ TESN_
7r(2€')>]\7,r(]1') s770) ,T(f);fr(;-) simti)
i\2kx(i) i\ 2Kkn(s) gy 7 1(s) 2ks
- Z (%) (wo) """ H (Z/o )
TeESN_1 s=1
w(i)>m(j) s@{m(i),m(4)}
= Z Qkﬂ'(ﬂ) H 2ks
TESN -1 ( )
n(i)>m(5) L s;ém)

and therefore by the identity ([5.15]) it follows

Z 2km> H ( )%s

TESN_1

7(8) <7 (5) s#w(y)
1+5i,j 2k,r() 7= 1(s) 2ks
= 2 2 ' H ( >
e sa i)
N-1
1+ 6; N2k 1, 2(s)\ 2Fs
- Z — L (i) ot H <y0()>
mes L)
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5. Fleming-Viot particle Systems

— Z (yi)%wflm ]ﬁl (yn(s)>2ks (5.22)
O 0 . .

TESN_1 s=1

OR0)) s#m 1 (5)

Turning back to expression (5.20]) and inserting equations (5.21)) and ([5.22]) we can finally

transform to

oN (HN 11 yo)2 Hév 11 y°
o (9) = (N — )T (w) 8

FN —1+23Y 1k>
N

N-1 00 I‘((w
D IED VDY [ TV D (ks + 1w + ks

4,j=1 m€SNn_1 ki1,....kn_1=0
(1)< (5)

X

()™ [(y@/yé)%j s <y5y”<5)>2k5} ]
((yi)2+2i31 {(QS)Q‘F(QS)Q])WH)N 112N g,
2N(H§11y0) Moy = [P (w+ DN -1+250 k)
- (N = 1)T(w) k%o[ 5 Tk twt DY
w i\ 2kr(;j - w1 (s)) 2k
) Jﬁl - N1 (¥ )2 Z ZW(E)SN o {(?Jo)% v Hi:zjl(lj) (yo | )> ]]
== () IS 6+ @)
N (5 w) TSy lr (w+ DN 14253 k)

S, 2 | I e Dk

2] ) (w+)N-1+2 1 ks

y 2ks Z (1)< (j) s#m1(j)
A _ (wH)N-142 3N 1 kg
S () R v (T RE OO ) 1

N—l N— 1( )2wz ZWESN 1 [(yé)Qk,,lm HN_slzl (yg(S))QkS]]

O]

Remark 5.34. Let us quote [45, Theorem 8|: "Let Z1, Zs, ..., Z, be independent BESQ
processes of dimensions —#61, ..., —6,, where each 6; > 0. Assume that Z;(0) = z;(0) > 0,
for every 7. The distribution of (7, Z(7)) is supported on the set (0,00) x U ; H;, where
H; is the subspace orthogonal to the ¢th canonical basis vector e;. That is,

H’i = {(y17y27"'7yn) ‘Y= O}
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5.2. Transition densities

(i) Let G;,i = 1,2,...,n be independent Gamma random variables With parameters
0;/2+ 1 =1, 2, ,n. The law of 7 is the same as that of min; 2G and
G; Gy
IP(T:T,-):IP<Z>]f0raHj7éi>,
Z3 Z]'

where T; is the first hitting time of H;.

(ii) The restriction of the law of the random vector Z(7), restricted to the hyperplane
H;, admits a density with respect to all the variables y;’s, j # 4, which is given by

Ggl—fo/2—2n

== 0;/2+1 G B e

TIE/2 1) 1 NZOF(HO/H%HN 1)5
(y52))

X Z Hklr9/2+2+k)

> jpi kj=N j#i

(5.23)

Here

S = Z(yi +2), ¥i=0, 6= 297;-”
i=1 i=1

For reference we may call the restricted density (5.23) given in (ii)

i,(01,-..,0n
qzz(liwzn) )(ylv e Yi—1,Yi+1, - 7yn),

in the notation of the quoted theorem it holds

Z/ 1(91’ O (1, it it Yn) dyn - dyi So(dys) dyi—1 -+ dyy
H;N[0,00)™

317 Zn)

E 07 *y
B / 1 1 )(yla-o'ayiflvyiJrlv'~~ayn>dyn"'dyi+ldyi71"'dyl:1-
0,00)7—

(217 7Z7L)
The author of [45] considered squared Bessel processes, so we transform

iv(elz---ven)

g(ZL.--,Zn) (yla ce Yi—1, Yitds - 7yn) = Q(Z% 22) )(y%) s 7yi2—17 yi2+17 s >yi) (2y8)

it

Accounting for the change of parametrization in Definition to -0 =—v=2w-1)
it can be verified by explicit calculation that it holds

N-1 N

hyo Z Z Z yw “iyé\ll)vl ,0() —-1)) (yﬂ')’

7
1meSN_1

which is carried out in the appendix.
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5. Fleming-Viot particle Systems

Definition 5.35. Let 0 :== ¢V ~2 the (N — 2)-dimensional Riemannian measure on the
sphere as (N — 2)-dimensional manifold in RV~1.

Lemma 5.36. The transition density of the chain (Uy)nen, from Definition[5.26 with
respect to the Riemannian measure o may be expressed as

p(ug, u) == Py, (U1 € du)/do(up) / / (u,r,t)dtdr —/ N2 by (r - u) dr
0
2w
2V (I ) IS v

= X
(N = 1)l (w)
o0 L (SN ks + Nw Nk + N —2)1N-1
5 e e,
T2 [T (ks + w + 1)k]] e

k1,....kn—1=0

w ; —1/ — (s 2ks
N—-1 ( )2 Z ZTI’GSN 1 |:(u%))2k7r @) HZ\;SI%() (’LLO( )) :|]
sET (g

us)%s X

% m(i)<m(j)
. i\Sl ks+Nw
=1 (1+ (ug)Q)Z 1

Proof. By applying Lemma in the Appendix we attain

/ N2 by (r - u) dr
0

N—132

/OOTN22N<HS=1 u0>wHéV=1 (r-u®) s I‘((w+1) _1+22N 1,{))(
i W= D) ol TS Dk +w + DY

o A - (a0 2K
(“6)2 Eévzll > TESN_1 (“0)% @ H <u0( )>
N-1 N-1 (1) <7 (j) s;éﬂ*_l(j)
X (r - u®)%s

(wH)N-142 35N 1 kg ] dr

i=1 j=1 weSNn_1 Sf%
(1) <7 (j) s#T1(5)
00 P2N=3+23 1 ks
></ (w+1)N-14235 N1k dr
. w - s— s
0 ((u6)2—|—1+7’2) =
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5.2. Transition densities

- N-1 N-1
2N1(H31“0> [Tz v’

- (N — DI(w) 8
SR HISSEOT P
X U S X
b o T2 [D(ks + w + 1)k ] o

7 () <7 (5)

(1 (4)°)

X

2 N2k 4, N—1 2ks
ot () T S e ) 0TI (6)"]
s#n 1 (j)
S kst Nw '
O
Remark 5.37. By construction, the index ¢ € {1,..., N — 1} indicates which particle

replicates and from the position u, one (out of at most two if j = i) particle dies.
Particularly, the mappings

2w
N-—1 N-1_s N—1 s
2 <Hs:1 UO) Hs:l u

P (ug,u) — Py, (Uy € do(u), particle i replicates)/do(u) = (N = D)) X
00 D (SN ko4 Nw) (SN ke + N —2)1 N
x Z [ ( 1 o ) ( : ) H (u )2ks
k1,....,kn_1=0 Hs:l [F(ks +w+ 1)k5] s=1

2w iN2k_—1.; — s 2ks
(ud) §: 1S esn. 1[(u0) =16 [TV L, (Uo()) ]

y r()<r()) 1) ]

2 SN ke Nw
(1+ (uh)*)

define transition densities to subkernels with total mass 1/(IN — 1): For u,up € S it holds

N-1

u07 E p UO’

=1

and for up € Sand i € {1,..., N — 1} it holds

/pi(uo,u) du=1/(N —1).

S

Remark 5.38. If we define given indexes i,j € {1,..., N — 1}, a permutation 7 € Sy_1
and ug € S the symbol ug, ; = U, ji(uo) by

., {u?”, s # 7 1(j),

Uo = ; .
T s=m"(j),
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5. Fleming-Viot particle Systems

and additionally given u € S define xr j; == 2 ji(ug, u) by

Lo i = ) (405 ;)"

F(z)=F(',... a1 = FV (N, N = Lw+Lw+1,...,w+1; ()5

where FéNfl) denotes the C-type Lauricella hypergeometric series as exploited in Defini-
tion in the appendix, we find the alternative representation

2w
N 1F(Nw)FN =
Pluo: ") = TR TYE ()| (H“o) [[1“
N

-1 (u) N—-1
x> — s O 2 Fleni(uou).
=1 (1—1— (uh) ) j=1 ;r(f)i]jr(;)

We see that p is a positive continuous function in (ug,u) € S? as F' is continuous on
{z e RN=1 . V1 /]as] < 1}, The latter is discussed in Proposition in the
appendix.

Example 5.39. In the case of N = 3 the expression in Lemma reads
2 (1) (ug) "

(N = DI (w)

i T (k1 + ko + 3w) - (ky + ko + 1) ()™ (w2)*
Fki+w+1)T(ke+w+1) kq! ks!

p(ug,u) =

X
k1,k2=0

<<ua>2w )™ () ) ()4 ()™ ()]
(1 . (u(l))2> k1+ko+3w
() ()™ )+ ()™ ()4 ()™ ()™

k1+k:
(1+03)?)"

These six summands with their plus sign bold faced correspond to the following cases:
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5.3. Markov chains in general state space

0 u% u(l) [0,00) 0 u,f) u[lJ [0,00)

0 3 up [0.00)
nj)/—c v‘)/—c
0 ud ud [0, 00) 0 ul ud [0, 00)

=3

0 u} up [0,00)

The figures in the first line illustrate ¢ = j = 1 where in the left one the surviving particles
preserve their order and on the right they switch. The figure in the second line of the
display shows the situation ¢ = 1,7 = 2. In the third line, the particle from position u%
replicated (i = 2) and also one of the two particles starting in uZ dies (j = 2). Finally, in

last figure, 1 =2, j = 1.

5.3. Markov chains in general state space

We work in the framework of Markov chains in uncountable state space as laid out in
[22, Chapters 9 to 11, 15]. From there we collect some definitions and theorems for
later reference. We omit the proofs and refer to the book [22]. Some of the notions and
concepts the reader may be familiar with in the context of (discrete time) Markov chains
on finite or countable state spaces can be adjusted to properly fit to our situation of a
more general space.

Notation 5.40. (Cf. |22, Definition 3.1.8, Definition 3.2.2 and Definition 4.2.1].) In this
section we write (X, X) for an arbitrary measurable space, 6 : XNo — XNo for the shift
operator

w = (wo, w1, w3, ...) — O(w) = (w,wa,...)

and for A € X, the first hitting time 74, the return time o4 and the number of visits N4
to the set A by the process (X,)nen, are defined, respectively, by

T4 = inf{n € Ny : X, € A},

o =inf{n e N: X, € A}
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5. Fleming-Viot particle Systems

and

Na=Y 1a(Xp).
k=0

The definition of a set to be called accessible can be transferred literally.
Definition 5.41. (Cf. [22, Definition 3.5.1].) Let P be a Markov kernel on X x X.
(i) A set A € X is said to be accessible if Py(04 < 00) > 0 for all z € X.
(ii) The collection of all accessible sets is denoted by Xz .

In order to apply Birkhoff’s ergodic theorem it is desirable to have a sufficient criterion
for ergodicity which is given by the next theorem. As remarked in |22, page 107] the
uniqueness of the invariant probability measure is a sufficient but not a necessary condition
for ergodicity (see |22, Exercise 5.8]).

Theorem 5.42. (Cf. [22, Theorem 5.2.6].) Let P be a Markov kernel on Xx X admitting
a unique invariant probability measure w. Then the dynamical system (XNo, x®No P_ )
s ergodic.

With further integrability assumptions we can finally formulate Birkhoff’s theorem for
Markov chains (on general state space) yielding a law of large numbers.

Theorem 5.43 (Birkhoff’s theorem for Markov chains). (Cf. [22, Theorem 5.2.9].) Let
P be a Markov kernel on X x X and assume P admits an invariant probability measure
7 such that (XNo, x&No P 0) is ergodic. LetY € L'(P,). Then for m-almost all x € X,

n—1

1
Y Yoby=EY] Py—as
k=0

lim —
n—oo N

If a set has positive measure under the unique invariant probability it should be visited
infinitely often almost surely from almost every start point. The next theorem states
this precisely.

Theorem 5.44. (Cf. [22, Theorem 5.2.13].) Let P be a Markov kernel on X x X
admitting a unique invariant probability measure w. Let A € X be such that w(A) > 0.
Then,

P,(Ny = o0) =1,
for m-almost every x € X.

We need the following concept which generalizes the notation of what sometimes is
referred to as an atom. It gives some regeneration control so that upon entering certain
sets we do not need to know where we are exactly within this set.
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5.3. Markov chains in general state space

Definition 5.45. (Cf. |22, Definition 9.1.1 (small set)].) Let P be a Markov kernel on
Xx X. Aset C e X is called a small set if there exist m € N and a nonzero measure p
on (X, X) such that for all x € C and A € X,

P"(z, A) > p(A). (5.24)
The set C is then said to be an (m, p)-small set.

As outlined in |22 page 191], the definition entails that u is a finite measure and
0 < p(X) < 1. Hence it can be written p = u(X) v and v is a probability measure. If
w1(X) = 1, then equality must hold in equation .

For small sets we introduce the following.

Definition 5.46. (Cf. [22, Definition 9.1.2].) An (m, u)-small set C' is said to be
o strongly aperiodic if m =1 and p(C) > 0;
e positive if Ez[oc] < oo for all z € C.

In analogy as one would define irreducibility for Markov chains on discrete spaces we
may replace accessible states by accessible small sets.

Definition 5.47. (Cf. |22, Definition 9.2.1 (irreducible kernel)].) A Markov kernel P on
X x X is said to be irreducible if it admits an accessible small set.

As described in [22, page 194], the assumption of irreducibility may seem to be weak, but
has some important consequences. The definition guarantees that a small set is always
reached by a chain with some positive probability from any starting point.

There is also an equivalent characterization of irreducibility in terms of measures. It will
turn out to justify the following nomenclature.

Definition 5.48. (Cf. [22, Defintion 9.2.2 (irreducibility measure)].) Let P be a Markov
kernel on X x X'. Let ¢ be a nontrivial o-finite measure.

e ¢ is said to be an irreducibility measure if ¢p(A) > 0 implies A € X}.

e ¢ is said to be a maximal irreducibility measure if ¢ is an irreducibility measure
and A € X/ implies ¢(A) > 0.

As mentioned above there is the following result in the theory.

Theorem 5.49. (Cf. [22, Theorem 9.2.4].) From any given irreducibility measure a
mazximal irreducibility measure can explicitly be constructed. All irreducibility measures
are absolutely continuous with respect to every maximal irreducibility measure, and all
mazimal irreducibility measures are equivalent.

There is also the following important result which has the subsequent corollary.

Theorem 5.50. (Cf. [22, Theorem 9.2.15].) Let P be an irreducible Markov kernel. An
invariant probability measure for P is a maximal irreducibility measure.
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Corollary 5.51. (Cf. |22, Corollary 9.2.16].) If P is irreducible, then it admits at most
one invariant probability measure.

For irreducible Markov kernels we can now adapt the notion of periodicity to our situation.

Definition 5.52. (Cf. |22, Defintion 9.3.5 (period, aperiodicity, strong aperiodicity)].)
Let P be an irreducible Markov kernel on X x X.

e The common period of all accessible small sets is called the period of P.
e If the period is equal to one, the kernel is said to be aperiodic.

e If there exists an accessible (1, u)-small set C with p(C') > 0, the kernel is said to
be strongly aperiodic.

The concept of small sets may even further be generalized as follows.

Definition 5.53. (Cf. |22, Definition 9.4.1 (petite set) and Definition 1.2.10 (Sampled
kernel)].) A set C' € X is called petite if there exists a probability a on Ny, that is, a
sequence (ap)nen, such that a, > 0 for all n € Ny and Z?:o ar = 1, and a nonzero
measure p such that for all z € C' and A € X

> an P (w, A) > p(A).
n=0

The set C'is then said to be an (a, p)-petite set.

An (m, p)-small set is a (0, p)-petite set where ¢, is the Dirac delta distribution in
m € N.
We now collect some results.

Lemma 5.54. (Cf. [22, Lemma 9.4.8 (ii)].) Let P be an irreducible Markov kernel
on X x X, and C a petite set. Let r be a nonnegative increasing sequence such that
limy, 00 7, = 00. Then every set B € X such that sup,cp Ey[rr.] < 00 is petite.

Theorem 5.55. (Cf. [22, Theorem 9.4.10].) If P is irreducible and aperiodic, then
every petite set is small.

As it will turn out later, the following notion of recurrence is well suited to our situation.
For general state spaces one can consistently define the concept of recurrence but it turns
out that this only implies an infinite number of visits to a set when started from this set
in expectation. We use a stronger definition by requiring the infinite number of visits
even almost surely.

Definition 5.56. (Cf. |22, Definition 10.2.1 (Harris recurrence)].) Let P be a Markov
kernel on X x &.

(i) A set A € X is said to be Harris recurrent if for all z € A, P,(N4 = c0) = 1.
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(ii) The kernel P is said to be Harris recurrent if all accessible sets are Harris recurrent.

There is the following sufficient criterion for Harris recurrence which will turn out to be
useful for us.

Proposition 5.57. (Cf. [22, Proposition 10.2.4].) Let P be an irreducible Markov kernel
on X x X. If there exists a petite set C' such that Py(cc < 00) =1 for all x ¢ C, then P
is Harris recurrent.

We now state an important existence and uniqueness result for invariant measures of
irreducible and recurrent (particularly Harris recurrent) Markov chains.

Theorem 5.58. (Cf. [22, Proposition 11.2.5].) Let P be an irreducible and recurrent
Markov kernel on X x X. Then P admits a nonzero invariant measure X, unique up to
multiplication by a positive constant and such that \(C) < oo for all petite sets C.

We have already seen in Theorem that an invariant probability measure is a maximal
irreducibility measure. This property extends to possibly nonfinite measures.

Corollary 5.59. (Cf. [22, Corollary 11.2.6].) Let P be an irreducible and recurrent
Markov kernel on X x X. Then an invariant measure is a mazximal irreducibility measure.

In the following we address the existence of an invariant probability measure instead of
merely an invariant measure. We begin with a definition.

Definition 5.60. (Cf. |22, Definition 11.2.7 (positive and null Markov kernel].) Let P
be a Markov kernel on X x X. If P is irreducible and admits an invariant probability
measure 7, the Markov kernel P is called positive. If P does not admit such a measure,
then we call P null.

Theorem 5.61. (Cf. [22, Corollary 11.2.9].) If P is an irreducible Markov kernel on
X x X and if there exists a petite set C' such that

sup E;[oc] < oo,
zeC

then P is positive.

One may also consider the rate of convergence. In our situation the convergence will
turn out to be quite robust and fast. To be more precisely, we introduce to following
definition. The subsequent theorem will be used later on.

Definition 5.62. (Cf. |22 Definition 15.2.1 (uniform geometric ergodicity)].) Let P a
Markov kernel on X x X.

(i) The Markov kernel P is said to be uniformly ergodic if P admits an invariant
probability measure 7 such that there exists a nonnegative sequence ((y)nen, such
that lim, _,- (, = 0 and

SupdTV(Pn(‘T7 ')77T) < Cn
zeX

in the total variation distance.
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(ii) The Markov kernel P is said to be uniformly geometrically ergodic if P is uniformly
ergodic and there exists constants ( < co and 8 > 1 such that for all n € Ng,

G <G

Theorem 5.63. (Cf. (22, Theorem 15.5.1].) Let P be a Markov kernel on X x X with
invariant probability w. The following statements are equivalent:

(i) P is uniformly geometrically ergodic.

(i) P is a positive aperiodic Markov kernel, and there exists a small set C and > 1
such that

supE;[37¢] < oo.
zeX

(iii) The state space X is small.

5.4. (Non-)extinction criterion

The main result of this chapter is Theorem which may be seen as simplification of
the original problem in question. It would be highly desirable to compute or approximate
the invariant probability measure 7 in Definition in order to state more precise
results.

5.4.1. Markov chain analysis

The basic proof idea for Proposition is that in the critical regime of the state space
in question, at least one component is close to zero. But then by the model under
consideration the time-continuous moving has only a small amount of time to emerge
and the process is dominated by the jump mechanism. This allows at least for a positive
probability 1/(N — 1) to make one small particle large by jumping to the largest of the
(N — 1) others, which is at least at 1/v/N — 1. Iterating this N — 2 times ensures all
particles to be sufficiently large even at a geometric rate.

Technically, the transition function p of the chain of directions U,, on S may be written
in terms of Lauricella series (cf. Definition in the Appendix). Starting at up € S
with uév ~1 close to zero means the particles are scarcely given time to evolve and
the discontinuous jump mechanism dominates. The density p(ug, -) becoming singular
corresponds to the arguments of the Lauricella series approaching the boundary of the
domain of convergence.

Intuitive reasoning for three particles

To illustrate our approach let us consider the case of N = 3 moving particles. As depicted
in Figure for the compactification of the set

S = {(z',2?) € (0,00)% : 2! > 22, (") + (2*)? =1}
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5.4. (Non-)extinction criterion

only the singelton {(1,0)} is missing in S. If U,, has a value near this boundary point

this means Y,, = (?;,?i) is a 2-tuple with ?,11 € (0,00) a relatively large value and
Vi € (0,00) a relatively small value. With probability 1/2 the large value ?,11 is dupli-
cated. In this scenario, after the jump, the system X, consists of one particle relatively
close to the origin and two particles starting equally from a high value. Shortly after,
most likely the particle close to the origin will even touch the origin and the other two
particles will have values which are not too far away from each other. The situation
is illustrated in the figure in Example case iii). This prevents the chain U, from
escaping to the boundary point (1,0). Instead, in light of Proposition this indicates
the chain U, to be Harris recurrent. As it will turn out, the argument even shows that
for a given neighborhood of (1/4/2,1/1/2) there is a universal positive probability £ > 0
independently of the current state of the chain to jump to this neighborhood. Particularly,
Theorem [5.61] can be applied and U,, will be shown to be positive.

More specifically, still having fixed N := 3, we may set

._ 2
Cg._{ues.u 22\@/\/5}
which is a compact set implying that the continuous density function p of U, is positive
on Cpy. Moreover, Cy will be shown to be a small set, particularly the set Cy is petite.
The Markov kernel of the chain U,, will be shown to be irreducible with the spherical
measure ¢ on the Euclidean unit sphere restricted to S as maximal irreducibility measure.
The kernel will even be shown to be positive by considering the set

0 ={ueS:u?<d}

for small § > 0. Starting from wug € C’f corresponds to one particle starting from at most
. Replicating the particle at the position at least at 1 — § has probability 1/2 and gives
rise to a subkernel p! as described in Remark [5.37} One can show that for sufficiently
small 6 > 0 it holds 1
sup p'(uo, S\ Co) < 5/2

’u,()GCiS
It then follows

k= inf Py (oc, =1) >0

ug€S

which means that there is a universal positive probability x > 0 uniformly in the
starting point to return to Cp. The return time o¢, is consequently dominated by a ge-
ometric random variable with success parameter x and specifically has finite first moment.

Let us now return to the general case of N > 3 moving particles.

Proposition 5.64. The Markov chain (Uy,) is irreducible with the (N — 2)-dimensional
spherical measure o as mazimal irreducibility measure, strongly aperiodic, positive Harris
and uniformly geometrically ergodic. The unique invariant probability measure admits a
density with respect to o which is strictly positive o— a.e.

123
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Proof. In view of Lemma m the transition density p : S* — (0,00) is a positive
continuous mapping and therefore has a positive minimum on the compact set

Co = {u €S:uN > (2\1/§>N_2/\/m};

ie.
i =:4>0.
i, P10 ) =0 >
Consequently, Cp is an (1,£)-small set for the kernel of the Markov chain (U,) in the
sense of Definition [5.45] where

£:B(S) = [0,00), &(A):=30(ANCy).

Due to £(Cp) = 60 (Cp) > 0 we further see, that Cp is strongly aperiodic in the sense of
Definition [5.46] Moreover, any set A € B(S) with o(A) > 0 is accessible in the sense of
Definition :5.41 since for arbitrary ug € S for the return time o4 = inf{n e N: U,, € A}
it holds

Py (04 < 00) > Py (U € A) = /Ap(uo,u) dor(u) > 0.

Particularly, the set Cy is accessible and the kernel of (U,,) is seen to be irreducible by
means of Definition The argument also exhibits ¢ to be an irreducibility measure in
the sense of Definition Conversely, consider a set A € B(S) with o(A) = 0. Then,

Py (04 < 00) =Py, (D{Un € A}) < i]P’uO(Un €A < i sup P, (Ur € A)

n=1 n=1 n—1v0€S
o o0
= Z sup / Py, (U1 € du) = Z sup / p(ug, u) do(u) =0
n—1 UoES /A n—1UoESJA

for ug € S. This shows that o is a maximal irreducibility measure, that is, the set of
accessible sets is given by {A € B(S) : 0(A) > 0}. Following Definition not only the
set Cp but also the kernel of (U,) is strongly aperiodic.

We now turn to Harris recurrence and positivity properties of (U,,). Observe, that for
compact sets K C S, it holds

inf Py, (U1 € Co) = min / p(uo, ) dor () > 0, (5.25)
Co

ugeK ugeK

since the mapping S — (0, 1],up fCo p(ug,u) do(u) is continuous and p is strictly
positive. The space K := S is not compact, but still we will show

inf P,,(UN-2{U, € Co}) > 0.

ug €S
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5.4. (Non-)extinction criterion

For this to end, define given an index j € {1,..., N — 1}, a permutation = € Sy_; and

ug € S the symbol ug, j == ug, j(uo) by

and additionally given u € S define xr ; = z j(uop, u) by
s . (us)2 . (Ns )2

Further, for k € {0,..., N — 2} we consider the sets

1 N—-2—k
Cr = {uES:uN_l_kZ (M) /\/N—l}.

Claim 1: For all j € {1,...,N —1}, m € Sy_1 and k € {1,..., N — 2} it holds

N-1

sup Z (a:fTJ)l/Q < 1.
uoeCk s=1
uES\Ck,1

Proof of Claim 1: Let (z,y) := fo:—ll x° - y° denote the scalar product on the Euclidean
space RNV~1. By the classical rearrangement inequality [31, Theorem 368]

N-1 —~
N—1 s \1/2 N-1 U0
max max (a:,r j) =max max ( ————,u
j=1 meSn_1 ] k 7j=1 meSn_1 1+ (U(l))Q
1 .1 j—1 j+1 N-1
_rz}'fla%(<(u0,u0,...,u0 U 2,...,u0 ),u>
" 1+ (ug)
In the case j < N — 1 — k we find using (z,y) < ||z| - [|y||
-1 j+1 N-1 —1, j+1 N—-1
sup (ug, udy o yud ™ ud g ),u < sup (ud, ud, o yud ™ ud ™ g Y|
ugECK /1 4 (u[l) 2 uo€CK 14+ (u[l))Q
9 N2\ 1/2 N—2—k 1/2
1+ (ub)” — (uh) (35)  VEI
= sup > <|1- <1
uoeCk 1 + (Ué) 2

and in the case j > N — k we find using (z,v) = (||z]|®> + ||ly||* — ||z — y[|?)/2

1,1 Jj—1  j+1 N-1
(Ug, UGy - - -5 Uy Uy Uy )
sup - U
ug€C 1
weS\Cr 1 1+ (ug)
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5. Fleming-Viot particle Systems

1 1 Jj—1 j+1 N—-1
< sup <H(u(1],u0,... u? : u]0+17...,u?\[—1) ,u>
eC ud, ud, u) LUy .,
ugg\c:,l (up, ug 0 0 o
—1 g+l N-1 2
— sup 1_H (ugsudy .oy ™ ug ) | 2
1 j+1 N-1
ugg\ng H uOJU’Ov" U% 'LL% ye ey Ug )H
k—1
2
uN-k-1
<1-— inf 0 —uNF /2
ug€C 2 j 2
u€S\Cr_1 1+ (uo) - (“0)
N—2—k 2

1 (2f) [N < ! )N_l_k N_1]| ;2
<1-— _
< 7 e / /

1 \N-1-k 2
() ) e
This finishes the proof of Claim 1. |

Let further

F(z)=F(z!,..., 2N 1) = FéN_l)(Nw,N— l,w—i—l,w—l—l,...,w—i—1;(305)?]:_11)

with the C-type Lauricella series as in Definition
Claim 2: For all j € {1,...,N —1}, m € Sy_1, k € {1,..., N — 2} it holds

sup  F(xrx;(ug,u)) < oo.
uoECk
’U,ES\Ck_l

Proof of Claim 2: The mapping o : x — . ' |2°|'/2 is continuous. Therefore, the set
D = {.CUTI—J('LLO,U) cug € Cp,u €S \ Ck:—l} C RN

is contained in the compact space D C K = o~ ([0, sup,cp @(z)]) where by the pre-
vious claim, sup,cpa(z) < 1. Because x — F(z) is continuous on o~ 1([0,1)) 2 K

(Proposition [A.11]) it follows

sup  F(zr;(up,u)) = sup F(z) < sup F(z) = max F(z) < co.
up€C, z€D zeK zeK
uES\C;C,1

This finishes the proof of Claim 2. |

For k€ {1,...,N —2} and 0 > 0 let us introduce the sets

O ={ueC: a1t <4}
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5.4. (Non-)extinction criterion

Claim 3: For k € {1,..., N — 2} it holds

lim sup / p*(ug, 1) do(u) = 0.
00 yyecs JS\Crs

Proof of Claim 3: Using the constant

2N=ID(Nw)T(N — 1)
(N — 1)I(w)T(w + 1)N-1

Cw,N =

depending on w and N only, we find the representation

2w N—1

N—1 (ué)Qw N-1
p' (ug, u) = ey n (H “3) H u® - o\ Nw Z Z F(zr,j(uo, u))
s=1 s=1 <1 + (u[l)) ) j=1 meSn_1
(1)< ()
2w N-1
< cu () F (a0, 0)).
j=1 weSn_1
m(1)<7(4)

It follows by the previous claim

sup / pl(uo,u) do(u) <o(Ck_1) sup pl(uo,u)
upeC? J Cr—1 upeC?
uES\Ck,1

N-1
< 0(Ch_1) cwn 02 Z Z sup  F(zr;(uo,u))

j=1 mweSN_1 quCg
7(1)<m () w€S\Cr—1

N—-1
< 0 (Cr1) Cw v 62 Z > S F(ar j(uo, u)) i 0.
T e vesen
This finishes the proof of Claim 3. |
Claim 4: For k € {1,..., N — 2} it holds

in

f Py, (Ui € Cr_q) > 0.
uf, o(U1 € Cx_1)

Proof of Claim 4: By the previous claim, there exists § > 0 such that

sup / p*(uo, u) do(u) < /2.
upeCy JS\Ci_1 N -1
We then split
inf P, (U € Ck—1)= inf P, (U; € Cx_1) A inf P, (Uy € Ci—_1).
ug€C O( ! F 1) uoECk\Cg O( ! F 1) uoECg O( ! F 1)
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5. Fleming-Viot particle Systems

The first infimum is positive since Cj, \ C,‘g is compact and we may apply (5.25)). For the
second infimum, recalling Remark

inf P, (Uy € Cx—1) > inf / p* (ug, u) do(u)
Cr-1

uOEC% uoeC%
! / ! (ug, u) do(u) > ! /2>0
=—— — sup p (ug, u) do(u) > .
N=1 wecs Js\cn N-1
This finishes the proof of Claim 4. |

Claim 5: For k € {1,..., N — 2} it holds

inf P <k .
u;gck uo(0cy < k) >0
Proof of Claim 5: Let us show the claim by induction over k € {1,..., N —2}. The base
case k = 1 is a consequence of Claim 4. Assuming the assertion for k—1 € {1,..., N —3}
implies

ingk Py, (cc, < k) > uélelgk Py, (U1 € Ci—1) - uélelgk Py, (oc, | U1 € Ck—1)

ugE

> inf Py (U € Cg—1)- inf P <k-1

= U(}Ielck uo( 1€ Cg 1) uoé%k71 uo(UCO ~ )7

where the first factor is positive by Claim 4 and the second factor is positive by induction
hypothesis. This finishes the proof of Claim 5. |

As a consequence of Claim 5, i.e. specifying to the case of k = N — 2,

k= inf Py, (oc, < N —2) > 0;
ugES
for each trial of NV — 2 consecutive transitions, there is at least probability £ > 0 to return
to Cy during this time period. In other words, for G ~ Geo(k) geometrically distributed
supported on N with success parameter , i.e. P(G =1) = r(1 — x)/=1 for I € N, it holds

sup Eyoloc,] <E[(N —-2)-G] = (N —2)/k < . (5.26)

unES
Following Proposition we deduce that the Markov kernel to (U,,) is Harris recurrent
and in view of Theorem m (or by Theorem is further positive. Therefore, by
Theorem (but we could have used Corollary in conjunction with Corollary
the unique invariant probability measure is a maximal irreducibility measure which are
all equivalent. (Theorem We infer, that it admits a positive density function with
respect to 0. By , Lemma shows that the state space S is petite. Since our
kernel is irreducible and aperiodic, every petite set is small (Theorem . Hence, also
S is small and according to Theorem the kernel is uniformly geometrically ergodic
in the sense of Definition [5.62] (Alternatively, one can directly check Theorem (ii)
as for B == (1 +1/(1 — k))/2)Y ¥ =2 > 1 it holds sup,,cs Ey,[87%] < E[BN-2E] =
1+1/(1-k) < o0.) O
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5.4. (Non-)extinction criterion
We use the formalism to transfer Proposition to the enlarged state space applicable
to the HMM.

Proposition 5.65. The Markov kernel K of the HMM M = ((Up, Up41), (Rn+1, Tn+1))nen,
is irreducible with mazimal irreducibility measure 0‘2(25) ® Leb ‘2(2(0,00)), aperiodic, positive
Harris recurrent_and uniformly geometrically ergodic. The invariant probability has
positive density hy, (u2, ro,to) py(u1) with h from equation and py, the invariant
density of (Up,).

Proof. Let d,(x) denote the Dirac-Delta distribution and do(ui,u2) == do(uz) do(uy) for
u = (ug,u2) = ((u%,...,u{v_1> , (u%,...,uév_1>) e s?.

The Markov kernel @ of the hidden chain (Uy, Up+1)nen, on (5%, B(S?)) is given by
Qs V) = Q(ur,1), V) = [ pluva) B (do) doon),
1%

where u € S and V' € B(S?). The transition is independent of u;. Consider the kernel G
from (S?, B(S?)) to ((0,00)%, B((0,00)%)):

. o ahw (e, ) dnt) [y Ty (a2, ) d(r, )
Gl ) A= f(0,00)2 Eul(u%n t)d(r,t) - p(ur, ug) '

The Markov kernel of the HMM M = ((Up, Un+1), (Rn+1, Tnt1))nen, is given by

K(((u17u2)a(T07t0))’D) = /DG(('Ula’UZ)vd(T’t)) Q((ulauZ)vdv)

_/ by, (02,7, t) d(r, t)
D

p(v1, v2)

Ouy (dvr) p(ug, v2) do(vy) = /D Py (v2, 7, t) d(7, ) Oy (dvy) do(va)

as in [17, Equation (2.14)] and is independent of u1, 7, to.
We have seen in the proof of Proposition that the set

Co = {u €S:ulN > <2\1/§>N_2/\/Jﬁ}

is small for the kernel of (U,) because ¢ := miny, uecc, p(uo,u) > 0 is positive. The
measure

u(D) =6 By (w2, p, ) d(p, ) dor (w1, w2)
DN (CoxSx(0,00)2)
on B(S% x (0,00)?) is nonzero as

1w(Co x S x (0,00)%) =4 p(wi, wa) do(wy,ws) = (5/ do(wy) =60(Cp) >0
CQXS CO
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5. Fleming-Viot particle Systems

and the set S x Cp x (0,00)? is (2, u)-small with respect to K: For arbitrary z =
(u1,uz,70,t0) €S x Cy x (0,00)% and D € B(S? x (0,00)?):

K2(z,D) > K*(z, DN (Cp x S x (0,0)?))

- / K(y, DN (Co xS x (0,50)%) K (=, dy)
S2x(0,00)
= /52 ( ) K((Ula/UQapa S);D N (CO X S X (0,00)2)) I(((ul,’UQ,’)"07'1(/'0)7d(’[}l”u2,p7 S))
X (0,00

=/ /~w1(w2,p, d(p, 8) Guy (dwr) do(w2) Ty, (v2, 7, ) d(r, t) Suy (dv1) dor(va)
52x(0,00)2 J/ DN (CoxSx(0,00)2)

/ / Py wg,p, )d(p, $) 8y, (dw1) do(ws) Py (va, 7, ) d(r, t) do(vs)
Sx(0,00)2 J DN(CoxSx(0,00)2

- [ oy (w3, p, ) d(p, 5) S0y (dn) dor(awz) pluiz, v2) dor(v3)
DN(CoxSx(0,00)2)

h’wl (va Ps 8) d(p, 5) /S 51}2 (dwl) p(UQ, 02) dJ(UQ) dO’(wg)

B /Dm(coxsx(o,oo)2)

h’wl (w2,p, 8) d(p, 5) p(UQ’wl) da(wbw?) > M(D>

/Dm(coxsx(o,oo)2)

Next, we show, that sets D € B(S?x (0, 00)?) with [}, d(p, s) do (w1, w2) > 0 are accessible:
Let @ = (u1,u2,70,t0) € S? x (0,00)? arbitrary. Then

P.(op < 00) > Pu(op € {1,2}) > K%(x, D)

= [ P2, 5) (9,9 pluz, wn) (o ).
D

We must check, that the last quantity indeed is positive. Since for arbitrary us,w; € S,
the value p(ug,wi) > 0 is positive and for arbitrary wi,ws € S and p,s € (0,00),
the value ﬁwl (wa, p,s) > 0 is positive and by assumption D has positive measure
¢(D) > 0 with respect to the nontrivial o-finite measure ¢ = 0|§(25) ® Leb ‘2(2(0’00)) we
may proceed as in the proof of |17, Proposition 14.3.1]: Letting D!2 := {(wy, w2, p, s) €
D : hay, (w3, p, 8) plug, wr) > 1/m} we have

D = {(wlvaHOa S) €D: Ew1(w27pa S)p(u27w1) > 0}

= U {(w17w27p7 8) €D: fﬁwl(w%ﬂ S)p(UQ,’U)l) > 1/m} - U D:;f

m=1

If there was not an m € N with ¢(D¥?) > 0 it would follow ¢(D) = ¢(US_; D¥2) <
oo d(D2) = 0. Therefore, there is. Then

/ o (w3, py 8) d(ps 8) pluzs wr) dor(wn, w)
D
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5.4. (Non-)extinction criterion

> [ (w2 p.5) s, wn) d(p, ) dofwn wa) = (D) fm >0,
Dy

The calculation shows, that ¢ is an irreducibility measure and particularly, the small set
S x Cp x (0,00)? is accessible since

#(S x Cy x (0,00)2) = o(S) - o(Cp) - Leb((0, 00))% = 00 > 0.

Therefore K is seen to be irreducible. Let us now consider a set D € B(S% x (0, 00)?) with
¢(D) = 0. From Fubini’s theorem it follows with D, ,; == {va € S: (v1,v2,1,t) € D}

0= (D) = /D d(r, 1) do(v1, v3) = /(0700)2 /S /D o) doo)dirt)
:/(o,oo)Z/SU(Dvlmt)da(vl) d(r,t).

We have previously seen that integrating a positive function over a domain with positive
measure implies a positive integral value. By contraposition, there must exist us €
S,70,t0 € (0,00) such that 0(Dy, ) = 0. Then for x = (u1,u,70,t) with ug € S
arbitrary

o0
P,(tp < 00) < K(z, D) + Z sup  K?(z,D).
n—o T€S52x(0,00)2

Both summands vanish because for the first one
K(z,D) = / Froy (v, 7, 8) (1, 1) O, (dvr) dor(v2)
D

:/ /nD((UMQ,r,t)) Fru (v, 7, ) dor(w2) d(r, 1)
(0,00)2 JS

— / / Ry (V2, 7, t) do(v) d(r, 1)
(0,00)2 Du2,r,t

where the inner integral is equal to zero since o(Dy, r+) = 0 and for the second summand

sup K2($7‘D) = sSup / Ewl(w%pa S)p(u27w1)d(p7 S) dO’(w17w2) =0
€S2 (0,00)? 2€S2x(0,00)2 J D

since ¢(D) = 0. In summary, we have computed ¢ to be a maximal irreducibility measure
for K. Next, we want to show that K is aperiodic. For z = (u1,uz, 7o, t0) € SxCpx (0, 00)?
arbitrary we will have K (z,S x Cg x (0,00)2) > u(Co x S x (0,00)2) > 0:

K (2,5 x Co x (0,00)2) = / o (02,7, 8) d(r, ) Gy (dvy) dor(vs)
SxCpx(0,00)2

_/C pluz, vs) do(vs) > § - 0(Co) > 0.
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As a consequence, inf sy cyx(0,00)2 K (7,5 x Co x (0, x)?) > 60(Cp) > 0 which proves
the asserted aperiodicity.
Writing

op (Mp)nen,) = inf{n e N: M,, € D}

for D € B(S? x (0,00)?) to emphasize that op is a return time for the process (M, )nen,
the random values os, cx (0,00)2 ((Mn)nen,) and o, ((Un)nen,) relate in an easy way:

P(uo,l,uo’g,ro,to) (USXCOX(O,OO)Z((MW')”) € .) = IP)UO,Z (UCO((Un)n) € .) 7 (527)

the straightforward calculation will be carried out below. This then enables us to use
the same machinery as in the proof of Proposition [5.64] to deduce the HMM M to be
positive Harris, uniformly geometrlcally ergod1c with the invariant probability having
positive density with respect to 0‘ B(S) ®Leb ‘ B((0,00))" Moreover, if 17 denotes the invariant

probability measure of the kernel of (U ) and p, 1ts density such that n(du) = py,(u) do(u)

for u € S, the invariant probability measure for K has density Ay, (ug, 70, to) py(u1), since
for D € B(S? x (0,00)?)

/s o) K (((u1,ug), (ro, t0)), D) huy (ug, 70, to) py(u1) d(ro, to) do(uy, ug)
2% (0,00)2

= /52 (0,00)2 / 7L’U1 (1)27 r, t) 6u2 (d'l)l) d(T', t) dO'(UQ) Fl/vLul (UQ, T0, t()) d(TD? tO) da(“?) U(dul)

—/ /ﬁvl(vg,r,t) Oy (dvr) d(r, t) do(ve) p(u1, uz) do(uz) n(duy)
S2JD

and by Fubini’s theorem and

L Bt s wa) doun) ) = [ Guafon) [ plas ) n(dr) doru)

S
_ / Sy (1) 1(duiz) = / 5y (d01) py(2) dor (u3) = py(02) / 5y (dv1) dor(13) = py(01) dor(v1)
S S S

it follows
/ / Ty, (V2,75 ) 8y (dv1 ) d(r, t) do(va) p(uy, ug) do(ug) n(duy)
S2JD
= /Dﬁvl (v2, 7, t) py(v1) d(r,t) do(vi, v2).

To show equation (5.27)), let o = (uo1,u02,70,t0) € S* X (0,00)% and k € N. Then

20 (TS xCox(0,00)2 (M) = k)
Z]P’z (M1 S (S x Cp X (0 OO) ) M4 € (S x Cp X (O,OO)Q)C,Mk €S x (Cy x (0,00)2)
=P, (M; €S x C§ x (0,00)%,...,My_1 €S x C§ x (0,00)%, My, €S x Cy x (0,00)?)

/ / / K(xk,l,dxk) K((L‘kfg,dm'kfl) .. -K((L'(),dxl)
SxC§x SxC§x(0,00)% JSxChx(0,00)2
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:/ / / Py o (k25 Thy th) d(Thy ) Oy o (k1) dor(upe 1, Ug 2)
SxC§x(0,00)2 SxC§x(0,00)2 JSxChx(0,00)2

K(zg_9,dxg—1) - K(x0,dx1)

=/ / / p(ug—1,2, up2) do(ug2) K(xp—2,dry_1) - K(x0,dz1)
SxC§x(0,00)2 SxC§x(0,00)2 JCo

—/ / / / P(up—12,uk2) do(ug2) p(uk—22, uk—12) do(ug—_12)
SxC§x(0,00)2 SxC§x(0,00)2 JC§ JCo

K(xp—3,dxp_2)- - K(xo,dxy)
/ / / (Uk—1,2, U2) do(ug2) p(ug—2.2, Uk—12) do(ug—12) - - - p(uo,2, u1,2) do(ui2)
c Co
= UO,Q(Ul ¢ Cos .-, U1 ¢ Co, Uk € C) - uo,z(aco((Un)) = k)
O

Definition 5.66. Let 1 denote the invariant probability of U, on S and p denote the
invariant probability of M, on $? x (0, 00)?.
5.4.2. Integrability of the ergodic elements

We use some calculation techniques already used before to show some quantities under
consideration are in L!(u). Together with Lemma this can be seen as preparation
in order to use Birkhoff’s ergodic theorem in the proof of this chapter’s main result
Theorem [5.71]

Lemma 5.67. The expectation E,[|In R1|] < oo is finite and for arbitrary ug € S the
expectation Ey,[|In R1|] < oo is finite.

Proof. Define the interval I := [1/2,2+/2] and I¢ := (0,00) \ I = (0,1/2) U (2v/2, 00).
Then

E,[In R[] = / |10 7| By (w, 7, £) Py () d(r, ) dor(ug, )
$2%(0,00)2

= / ]1nr|rN72 o (7 - w) dr py(ug) do(up, w)

2v2
= / / 7| 7V 72 By (7 - w) dr py (uo) do(ug, u)
s2.J1/2 (5.28)
—|—/ 7| 7V 72 By (7 - w) dr py (uo) do(ug, u).
S2 JJe

The first summand in equation (5.28)) is finite since

2v2
/ / 7| 7V 72 by (7 - w) dr py (uo) do(ug, u)
s2.J1/2
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5. Fleming-Viot particle Systems

VAN

<  max |1n7“]/ / N2 By (7 - ) dr py(uo) do(ug, w)
1/2<r<2v2 52

max _|Inr| / / N2 By (7 - w) dr py(uo) do(ug, )
1/2<r<2v2 s2Jo

IN

IN

max |Inr| < oo.
1/2<r<2v2

Let us turn to the second summand in equation (5.28). For ug,u € S, r > 0 by

Lemma [5.33]

2w
N—1o9N N—-1 N-1 s
r 2 (Hs:l uO) Hs:l u

g (7 - 1) = N —TT() y
y i [F((w+1) —1+22N1k>1h -
b macol TR MR +w+ DAY
v (U )2“’2 P reso [(ug)%w—m HN—S% | (ug(8)>2k1
X (i) <m(5) sAT1(5) ]
E () 14 g2) TN TEEETE

By the Legendre duplication formula for the Gamma function,
N-1
r <(w+1)N—1+QZkS)

o(w+1)N=242 3151 ks DN — 1 N—-1 1N
= NG I (w+2) +D ks |T w+ +Z’“5

s=1

Given indices i,j € {1,..., N — 1}, a permutation 7 € Sy_1 and uy € S, we define the
symbol Uy j; = Uorji(uo) by

(s) —1(;
s Uy, s#ET ,
Uor ji = { ? Fr U)

ué, s =7n"1(j),

and additionally given r» > 0 and u € S define z j;, = = jir(uo,u) by

— 2
5 2r ug, iU’
xf = ——
ﬂ',j,’L,T‘ (u6)2 + 1 + ’]“2
and let

LN -1 N
F((xS)gV:f) o 1)<< 2) ,(w+2> ,w+1,...,w+1,(x5)§_—11>
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5.4. (Non-)extinction criterion

the corresponding Lauricella series to write

— N-1 N-1 .
TN 12N (Hs 1 uO) Hs 1 u® N-1 (u6)2w

huo (7“ : U) = (N _ 1) I‘(w) — ((u6)2 14 TQ) (w+1)N-1

T U0, j,i U

i Nl((()ﬁmz))
xS e; > T|(w+1) —1+22k>51[ NOESTES N

2ks
]

Jj=1m N-1 ki,..,kny—1=0
(i) <7 ()
2w
FN—1o(w+2)N—2 (Hi\f:—ll US) Hév Ly N (u6)2w
a ) T'(w) Z

X
T — w+1)N—

x]fl > i;(w Zk) <W+§k8>x

2ks
21”‘1’55#,3',1"“5
N\ () +1402)

[C(ks + w + 1)ky)]

FN-1g(w+2)N -2 (HN—l ug) 2w Hiv 11 sT ((w+12)N71> r (M)

s=1
) VAN~ DT T DY x
- ()™
CE () Z o, Feretarsd
()<7T(J)
Abbreviating

o(w+2)N-2 ((w+12)N71) r ((w+21)N>
Cu = V(N = 1)T(w)T(w+ 1)N-1
we bound the second summand in equation (5.28) according to

/52 |7 7V 72 By (7 - w) dr py (uo) do(ug, u)

,_\

|1n7“\ oN—-3 N-1N-—
< Cu, /52 /c —1+Nw Z (27,0, (ug, w)) drpy(uo) do(uo,w).
i=1 j=1 weSn_1
m(i)<m(j)
Note,
N-1
Sup { Z (xfr,j,i,r(uoau))lﬂ cug,u € S,m € Sy_1,reli,j=1,...,N — 1}
s=1
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5. Fleming-Viot particle Systems

2 —
= sup Q—T<uow7j7i,u>:uo,ues,ﬂeSN_l,TEIC,i,jzl,...,N—l
(ud)" 4+ 1412
2r4/1
pd ZVITE e g rerel
E+ 1412

Since the derivative
a[zrmyﬂ%&(ﬁﬂw%—?rm_ r(r?—1-¢)
9 [E+1+12] (€ +1+712)° VI FE(E+1+1r2)?

does not change its sign for any fixed r € I on the interval £ € [0,1] due to 1 + & €
[1,2] % r? it follows

2ry/1+ €
p{w

£0

rele 1412 re£2+7"2

2 24/2
€€ [O,l],rEIC} §max{sup r \[r}

For a € {1,2} it holds

d T _(a+7“2)—2r2_ a—r? L0,
dr la+7r2]  (a+72)2  (a+1r2)?
with unique roots r = \/a outside the domain, lim, # = limypoo alﬁ = 0 and

21 2v/2Z _
a+2 >0 and T = oy =

Consequently,

re[c1+r2 re[c2—|-’l“2

2 2v/2
max{sup i,sup v2r } <1

Turning back to the integral, we finally achieve using the argument along the lines of the
proof of Claim 2 in the proof of Proposition [5.64]

|ln7"| IN=3 =
Cu, /52 /C g e Z Z Z (@ ji.r (o, w)) dr py(uo) do(ug, u)

i=1 j=1 7I'€SN 1
(@) <m(j)

—1N-1 |2N3

Inr
< const - Cy, N Z Z Z / / | — 3w 47 Py(uo) do(uo, u)

i=1 j=1 weSyn
7r(1)<7r

(N—l)/m [ Inr|r2V—3
o (1

2 +T2)N71+Nw

dr < oo.

< const - Cyy N -

This shows the finiteness of the second summand in equation ([5.28)) also, and there-
fore finishes the proof of the first assertion E,[|In R;|] < oo. The second assertion
Ey[|In Ry|] < 0o for ug € S arbitrary, follows along the lines. O
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5.4. (Non-)extinction criterion

Definition 5.68. Let us denote the mapping

0, x <1,

In* : (0,00) = [0,00), z+ InT(x):=max{0,Inz} =
Inz, x> 1,

as positive part of the natural logarithm.
Lemma 5.69. The expectation E,[In* T] < oo is finite.

Proof. According to [10, Equation (2.1)], the hitting time of the origin of a Bessel process

started at « > 0 is distributed as % where G ~ Gamma(w) is Gamma-distributed, that

is
1
P(G € dt) = ——t*"te7tdt, t>0.

I'(w)
Letting (G, G, ...,Gn—1) independent and I'(w)-distributed we bound
- . N1 )
E,In*71] < [ In* [ min{ Y20 V% 0 <E|ln" —
plln 7] —/S nt\ming oG aG  2ay () T4 SE T o

e 1 1 1 ee
=/ It —— et dt = / cexp (—s-w—e"°/2) d :
/0 n <2t> Tw) 2T w) o s-exp(—s-w—e*/2) ds < 0

5.4.3. Application of Birkhoff’s ergodic theorem

Definition 5.7 0 Let P, denote the probability measure associated to the density 71%
from equation (5 and E,, the corresponding expectation. Let B[] = [¢ Ey[] n(duo).

Theorem 5.71. (for the second part cf. (13, Theorem 9.1.1].) If En[lan] > 0 then
Too = 00 @.5. and if Ey[ln Ri] < 0 then 7o < 00 a.s.

Proof. In view of Corollary .29 it is desirable to use Cauchy s Toot test on the series.

By Proposition [5.64] combined with Theorem [5.42] Lemma [5.67] and Lemma .69 tell us,
that we may apply Birkhoff’s theorem for Markov chains Theorem 3lon the the HMM

M to deduce for p-almost all z = (u, uz,r,t) € S% x (0, 00)?

k
1 -
— E InR; = E,[InRy] = / Inr - hyy(ug,r,t)d(r,t) do(ur) n(dug)
k = 52 (0,00)2

= /SEUO [In R1] n(dug) = Ey[In Ry]

P,-a.s. Similarly,

Zln"’T Lazas, E,[In™ 7] < oo

k—00
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5. Fleming-Viot particle Systems

Thus, if E,[In R1] < 0 then a.s.

k—1 L/k k—1
limsup | Tk H R = exp | limsup lngk + % In R;
k—00 j=1 k—o0 j=1
nt7, 2%
< exp lig:sip 3 ko T ]Z;ln R;
1t = g k-1
= exp liiri)sotip kalln+1}—kalln+1}+k;lnRj

=exp (2E,[In Ry]) < 1,

which by Cauchy’s root test implies 7o, < 00 a.s.
On the other hand, Theorem implies that for p-almost all z € S? x (0, 00)?, P,-almost
surely, for A .= {l € N : T} > 1} it holds |A| = co. In other words, there exists an

increasing subsequence (k;);en such that {k; : | € N} = A and we infer in the case
E,[In Ri] > 0

1/k
k—1

InT; 2
lim sup TkHR2 =exp | limsup u

k—o0 j=1 k—o0

||bﬂ?T
:U

k E
ky—1 o kil
InT; 2
> exp | limsup 1 Mg ZlnR > exp (hmsup —ZlnRj

=00 Ky kz =00

=exp (2E,[In Ry]) > 1

This finishes the proof. O

5.4.4. Computation of the integrand In R, in Theorem [5.7]]

With the intention to use Theorem more explicitly, let us give an explicit formula
for Ey,[In R1]. We will then rederive |10, Theorem 1.1 (ii)] and in chapter 5 we will
show that for v > —0.03 the particle system does almost surely not become extinct in
Theorem As in Definition in the appendix let ¥ denote the Digamma function.

Lemma 5.72. The integrand in Theorem |5.71| is given by

N— 1
- 2 (0
2( 51U0> 00 F(wN+ZN 1k:)
(N D(N =1 (w) %1 JHN T (ks +w+1)
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5.4. (Non-)extinction criterion

N-1 (’LL )Qw N-1 ok N-1 (®) 2%
0 i =105 (s s
X ) ’LUN+ZN_11 ks Z Z (UO) (@) H (’U,O ) X
i=1 ( = j=1 m€SN_ s=1
(64" +1) " R0) s )
¢< N-1+3N 1k) w(wN+ZN 1k)]
X .
2
Proof. Applying Lemma [5.33] and Fubini’s theorem results in
Ey[ln Ry] = / Inr - V"2 hyy (r - w) dr do(u)
Sx(0,00)
N (TTN—-1 N-1
.2 (H =1 u0> [[= v
:/ Iny - p2N=3
Sx(0,00) (N =1 (w)
o0 F((w—i—l)N—l—i—QZle)N—l
> S I v
K1k 1=0 Hs:l [D(ks +w + 1)ks!] s=1
2w i2k _— (s)) 2ks
N (ud) Z ZwesN ) [(UO) o VL, (Uo( )) ]
y w(i)<m(4) s#m 1 (j) dr do(u)
(wH)N-1+2 3N kg

i=1 ((u6)2 +1+ 7“2>
N (Hf—lug)m 00 [I‘((w—i—l) N-1+2%2N, lk:
N

(ks +w + 1)ks!] /H YR dou)x

Nl N . N-1 ok,
<37 () S @) ] (ug(8)> »
i=1 j=1 meSn_1 s=1
(1)< (j) #11(j)
oo 2N-3+23 N kg 1
X r L — (5.29)
0 -\ 2 (w+1)N_1+225:1 ks
((ug) +1+ 7’2)

By the constructed symmetry and |4, Equation (8)] it holds

N-1

[T ot = /{ [T "+

s=1 ue(0,00)NHiflufl=1} S5

B ; u 2k5+1 J

2NN — 1>!/{ ERN-1:|Ju|=1} 1_[1 ot

- IS (kD)

- e (5.30)
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5. Fleming-Viot particle Systems

By Lemma in the Appendix
/oo P2N=3+2 5 ks )
‘ (wH)N-14+2 3N 1 kg
0 ((u1)2 +1+ 7“2)

n ((uh)® +1) + ¢ (N =1+ 205 k) = v (wN + 05 k)

dr

- 4 ((%)2 + 1)wN+Z“1 & ’
r( N-1+NM, 1k:) (wN+ZN 1k)
: F((w+1) —1+2ZN1k>
:ln<(u6)2+1)+1/1< —1+22N Uhe) = (wN + 25 1k)x
0 P2N=3+2 300 ks
X/ 9 (wH)N-142 3N 1k, dr
O () 1+ 02)
ln<(ui)2+1> oo J2N-3+2 N5k,
) 02 /0 ((uz‘)2+1+7«2>(w+1)N_1+225—11k5 o
) (o)
) r( —1+ M 1k> (wN+ZN 1k) R~

2((ug)2+1)w Dt SF((w+1)N—1+22N 1k:)

Plugging (5.30) and (5.31)) into (5.29), recalling Remark [5.37] this implies

2w
2N(HN11UO) %0 [r((w+1)N—1+2ZN1k /H S
ol TG (ks +w + 1)k

(N=DP(w) 4~ _
Nl N-l - N-1 2%,
<3 ()™ (wp) o T (u) | >
=1 j=1 WESN_l s=1
HOR0)) s#m ()
o0 P2N=3+23 00 ks ) e
></ o dr
0 .9 (w+D)N—142 5N 1k,
((uf)) +1+r2)

S @?) 2 (Sw) T e [ (wN SR )
T awen ey eomw, & [T rer)
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5.4. (Non-)extinction criterion

(u0>2w pl i\2k. -1 7(s) 2ks
a o wN+ N ks Z (up) ™0 <u0 ) %
- ((%) +1> o~ ( ") ssﬁfri(j)

wN+ZN 11{:)]

<
/—\

|

—_

+

N

2
§
N
/\/\m

As first application, we immediately obtain
Corollary 5.73. For v > 2/N the particle system does almost surely not become extinct.

Proof. In view of Theorem it suffices to show E,,[In R1] > 0 uniformly for all uy € S.
This is the case by Lemma Since the digamma function restricted to (0,00) is
strictly monotonously increasing, for v > 2/N < w < (N —1)/N the difference

w( —1+ 3N 1k) w<wN+ZN 1k>

>
5 >0
is non negative and it holds
. (SN @))  wme
Jnf EuolIn 1] 2 inf 2(N — 1) “aN—1)

O]

Remark 5.74. Corollary [5.73| recovers [10, Theorem 1.1 (ii)]. There, the argumentation
suffices if each particle is only reflected upon hitting 0 instead of performing an actual
jump. The basic idea is to use the fact that for Z = (Z!,..., Z") consisting of N — 1
independent Bessel processes of parameter v, the process || Z|| is a Bessel process with
parameter N -v. Setting v := 2/N leading to a Bessel process with parameter N -2/N = 2
has the law of (B!, B?)|| with two independent Brownian motions and thereby never
hits 0. Observe, also by Lemma for v :== 2/N it holds with notation Xo_ = ug

Ey,[In Ry] = Zln” udy - udud, - ud | = By [Inf| Xo|] > 0

as expected since by the explanation above In|| X¢|| 2 In||(BY, B%)|| for v = 2/N is a local
martingale.

If the particles actually do jump (and therefore interact) this generally may be taken
into account by considering inf,, es E,[In R;] instead where the contributions of different
p*’s might outweigh each other. This approach still neglects the ratios of the particles
infinitesimally ahead of the jump times 7, so we do not need to know the stationary
distribution 77 any more explicit.
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5. Fleming-Viot particle Systems

5.5. Three particles

In this section we fix N := 3 and in the same fashion as in the proof of Corollary
we want to find regimes of parameter values v with inf, esEy [In R;] > 0. Then
Criterion [5.71] implies non-extinction. For this purpose we may without loss of generality
assume w > 2/3 in what follows. Lemma m specifies for N = 3 using the angle
parametrization cos ¢o = uj and sin pg = u3 to

In(1 + cos? o) + In(1 + sin? pg) N
4

(cos g sin pg) 2™ i I'(Bw + k1 + k2) "
2T (w) OI‘(kl +w+ (ks +w+1)

E‘Po [hl Rl] =

k1,ka=

9 cos?(pp) (24 k1 + k2) — P(Bw + Ky + ko)
(1 + cos? pg)> Ttk 2

2ko 2k1

©o cos?k2 goo) +
sin2w(g00) . ¢(2 + k1 + kg) — ¢(3’w + k1 + kg)
(1 + sin? )1k 2

. (2 cog?F o sin“*? g + cos

. (2 cos2k1 o sinZk2 wo + sinZk1 ©o sinZk2 cpo)> .

2k1 2ko

(o Sin“*? g in it corresponds

potoi=1and j =2.

Let us recall Example |5.39 e.g. the summand with 2 cos
to the situation i = j = 1, the one with cos?*! ¢q cos?#2
Since the first term In(1 +cos? “Oo)zln(prsm? %0) > 0 is non-negative which corresponds to the
particle system performing a jump, we can allow the remainder to be slightly negative
accordingly which corresponds to the continuous drift to be more negative.

020 0.20 \
0.15 015
£ o0 € ow0
2 — W= 0.666667 2 —— phi0 = 0.0
i w=0.777778 B phi0 = 0.1309
0051 —— w = 0.888889 0.05 1 —— phi0 = 0.261799
— w=10 —— phi0 = 0.392699
w=111111 phi0 = 0.523599
0001 w=122222 0001 —— phio = 0.654498
w=133333 phi0 = 0.785398
D0 01 02 03 04 05 06 07 08 07 08 08 1o 11 1z 13
phid w

Figure 5.5.: The functional E[In R;] is plotted for different values of ¢y € (0, 7/4] and
w € [2/3,4/3]. The exact numerical values may be inaccurate but the coarse
shapes seem to be reasonable. The python code can be found in Section
in the Appendix.
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5.5. Three particles

For w not much larger than 2/3 the negative drift is rather small so starting more balanced
results in In Ry having larger expectation since then the conditioning on survival heavily
affects the distribution of the particles. If w is sufficiently large the plotted functional
o — Egy[In Ry] should be monotonously decreasing as from a more balanced start the
negative drift has more time to take effect. Unfortunately, the author was not able to give
a concise proof. For ¢y | 0 the expectation must be lim, g Ego[In Ry] = 3 - Inv/2 = h‘TQ ~
0.173287 for any w > 0. For g > 0 small which corresponds to an highly unbalanced
ratio there are the competing effects that a more negative drift generally shrinks the
particles more but on the other hand shortens the time for the drift to take affect. Thus,
the expectation Ey[In R;] as a function of w has a minimum somewhere strictly in
between w € (2/3,4/3). For ¢q sufficiently large the time shortening effect of the more
negative drift is negligible and w — E[In R] is decreasing. Numerical approximations
suggest that the root of w + E  4[In Ry] is located in the interval (1.20355,1.20365) and
therefore the particle system does almost surely not become extinct for v > —0.4071.
Our analytical treatment is not quite this fine but still we are able to deduce almost sure
non-extinction for slightly negative values of v.

Lemma 5.75. For v > 0.2404 the particle system does almost surely not become extinct.

Proof. Because the derivative of the digamma function, the trigamma function, is strictly
decreasing when restricted to (0, 00), the difference ¢’ (3w + k) —¢/(2 + k) is negative for
all k > 0. Thereby the function k — (3w + k) — ¥ (2 + k) is recognized to be strictly
decreasing yielding the uniform bound

(2 + k1 + k) — (3w + ky + k2) > 1(2) — ¢ (3w)

whence

In(2 + sin® 2 2) — In2  (2) —
inf By, [In By > inf RS0 Pocos"0o) | $(2) — 9(3w) 2 $(2) — $(3w)
%0 %0 4 2 4 2

Here, in spirit of Remark we have used that

(cos g sin pg) ¥

2T (w)

> TBw+ k1 + k
3 F( ( 1+ ko)

X
o oo ki +w+ Dk +w+1)

y ( cos” (o)
(

Tt co? )3w+k1+k2 : (2 cos?k1 g sin?*2 @ + cos® g cos? g00>>
cos? ¢

 (cosppsinpg)® o I'(Bw + k1 + k2) «
B 2T (w) C(ky +w+ D0 (ky +w + 1)

k1,ka=0

2w
sin“* (i) ( 2k . 2k . 2k .2k 1
% - | 2cos™! g sin“"2 g + sin“*! g sin“"*? cpo) = —,
( (1 + sin2 ¢0)3w+k1+k2 2

This shows the assertion for w < 0.8798, respectively, v = 2 - (1 —w) > 0.2404. O
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In order to achieve finer estimates we split the domain of summation (k1, k) € NZ into
{(0,0)} and N2\ {(0,0)}. With the following definition we measure the contribution
B(w, sin? ¢p) induced by the term with k; = ko = 0.

Definition 5.76. Let
B :(0,00) x [0,1/2] — [0,1];
. 3T(3w) w (=€ " €\
5.9 = g €9 ((eer) + (5e) ):

Lemma 5.77. For v > 0 the particle system does almost surely not become extinct.

Proof. Firstly according to Definition and by using
V(24 k1 + ko) —Y(Bw + k1 + ko) > ¥(3) — ¢(Bw + 1)
for k1 + k2 > 1 and for the equality the identity ¢)(x + 1) — ¢ (x) = 1/x for positive x > 0:

In(2 2 pnsin?
Eqo[In RY] = 2B, [In Ry > w2t o 2800 = 900)+

+ Blw,sin o) - (1$(2) — (3w)) + (1 — Blw,sin® g0)) - ((3) — (3w + 1))

+9(3) — (3w + 1) + B(w,sin? ) - <?ju — ;) )

~ In(2 + cos? pg sin? ¢p)
B 2

(5.32)

By introducing the abbreviation ¢ := sin® ¢ and by using the generalized Bernoulli’s
inequality (14+2)" <1+7r-zforz>—1,0<r <1 it follows

e (15 8) - s (49" (4552

(5.33)
D(3w) 1-9% (0-9¢
>~ g, T (2200w (5~ er)).

Writing ¢ i= (1 — &) - &€ = cos? @g sin? ¢y we infer

(1_5)25 (1_5)62 (1_5)(14_6)3_’_{(2_5)3
(2-6)? i (1+¢)3 =1-8¢ (2—=6)-(1+9))3
:(1_5)5.1+3§+3€2+§3—§—3§2—3§3—§4+8§_12§2+6§3_54
@+26-¢- &P

1+ 10¢ — 1262 + 467 — 2¢ 1+ 10¢ — 2¢2
S 2+E- &) = a0y (5.34)
2+ 6¢2 +12¢ + 8) +22(C2 + 4¢ +4) — 63(C + 2) + 54

(¢ +2)3
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5.5. Three particles

L =2(C+2)%+22(C+2)? - 63(C+2) + 54

(C+2)?
whence
Bl > P2 i) (3w 4 1)
I'(3w) —2(¢C+2)* +22(¢C+2)? — 63(C+2) + 54
—(3w—2)-4r(w+1)3(2—2w+w~ B )-.h(C).
(5.35)

In the relevant domain w € [0.8798,1],( € [0,1/4] differentiating with respect to ¢
computes to

d 1 I'(3w) —22(¢ +2)% +126(¢ + 2) — 162
O =3arg B2 g, T C+oy )
1 (3w . F(Bw) [ —11(¢+2)? +63(¢C+2) — 81
= garg (B2 C+2y ) G
It holds
0<(Bw—-2)-w<l (5.37)
and by
d T(3w)
dwT(w+1)3
3IVBw) (w4 1)3 —=3TBw) D(w + 12T (w+1)  3T(3w)
- Ttw s 1 = w1y V6w —(@+1) >0
also

I'(3w) < INGEND)
MNw+1)2 ~T(1+1)3

=2, (5.38)

Furthermore, due to

d —11(¢+2)* +63(C+2) —81  11(¢+2)* - 126(¢ +2) + 243

“ (C+2)? B C+2°
DN (. 126, 2 23\ 0 (5 N\
— g (@ racra- - B - (- ) a- 050

we achieve the estimate
—11(C+2)° +63(C+2) —81 _ —11-(9/4)° +63-9/4 — 81
(C+2)° - (9/4)3 (5.39)
= —11-4/9+7-4%/9 —43/9 = 4/9.
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5. Fleming-Viot particle Systems

Using (5:37), (5:38) and (5:39) in (5:36) we deduce

d 1 L(3w) [ —11(¢+2)?+63(C+2) — 81
0= 5rg (1 o= w 3 C+2p ))
Zm(1—2-4/9) >0

and therefore by recalling the bound given in (5.35)) and equation ([5.34])

Ey, [In R?]

2 In(2 + () I'(3w) L4100 — 22
Z2+w(3)_¢(3“’“>_(3w_2)‘4r<w+1>3(2‘27““"4‘W,)
Zln(2)/2+w(3)—1/1(3w+1)—(3w_2).(1_w),m.

Because the gamma function I'(z) is strictly increasing for values larger than x > 1.46163..,
the unique positive root of the digamma function, it holds TI'(3w)/(2l'(w + 1)3) <
['(1.8798)~3 and we may further estimate:

Eyo[In R3] > In(2)/2 + 9(3) — (3w + 1) — (3w — 2) - (1 — w) /T(1.8798)% = a(w).
Differentiating with respect to w leads to

2w —5/3

o/ (w) = =3¢ (Bw+1) = (3- (1 —w) — (3w — 2))/T(1.8798)" = 3 (F(1-8798)3 -

' (3w + 1)) :

Differentiating once again results in

" 2 /
a (w)—9-<w—w(3w+l)> > 0,

because " (z) < 0 for all x > 0. Due to o/(0.8798) =~ —0.627691 < 0 < 0.296638 ~ /(1)
in the interval w € [0.8798,1] there is an unique global minimum of « in the interior
(0.8798,1). By /(0.9611) ~ —0.000299177 < 0 < 0.000466669 ~ «'(0.9612) we can
narrow down more and estimate

a(w) > (2)/2+ ¥(3) — ¥(3-0.9612) — (3-0.9612 — 2) - (1 — 0.9611) /T(1.8798)°
~ 0.00736878 > 0.

We have now shown E,[In R?] > 0 uniformly in (w, o) € [0.8798,1] x [0, 7/4], which
shows the assertion. O

In the case of N = 2 particles there is a critical parameter value v = 0 (cf. [9, Theorem 1.1
(1)]). This is not longer true for N = 3 particles as the following main result shows. The
assumption v > 0 in the preceding lemma was of technical nature only; we may replace
Bernoulli’s inequality adequately by the estimate 2% + y* < (z + y)¥ valid for w > 1
and z,y > 0.
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5.6. Open problems

Theorem 5.78. For v > —0.03 the particle system does almost surely not become extinct.

Proof. We want to recycle a few computations from the proof of Lemma and again
write £ i= sin? g and ¢ = & - (1 —&).

Firstly, again by (5.32)) and (5.33))

In(2 + 2 i 02
ES@O [ln R%] = IEarcsin \/E[ln R%] > n( o 2()00 o QOO) + ¢(3) - w(?’w + 1)_

-oe-2 gt () + () )

For w > 1 we may now apply the inequality z% + y* < (x + y)" for z,y > 0 and attain

with calculation
_ )2 w _ 2\ W A2 - 2\ W 92\ W
(L-96)", (U098 (-0, (08" (( 1rloc_acy”

(2-¢)? (1+¢)? 2-¢7°  (1+¢°? 2+¢)?
Due to ¢ - % < % . %8)/;} = 7/64 < 1 we further estimate
1410¢ —2¢2\" 1+ 10¢ —2¢2 14 10¢ — 2¢2
(cHatgr) < Targ v Natg
and altogether
BB > P2 ) 3w+ 1)
I'(3w) 1+ 10¢ — 2¢?

This expression read with respect to ¢ is the same as the already analyzed bound ([5.35))
up to some additive constant; we can directly transfer, that the minimum is attained in

¢=0:
Ego[In RY] > In(2)/2 4 9(3) — ¢ (3w + 1).

The unique root is located at w ~ 1.01565264025354... . O

5.6. Open problems

It is clear that the bound of Theorem [5.78| can not be sharp. With the same method
of requiring In Ry to be positive uniformly for all ¢y € [0, /4], numerical approxima-
tions suggest that the critical value is at w ~ 1.20360229090196 which corresponds to
v ~ —0.40720458180392; there, the minimum is attained for ¢9 = 7/4. There are several
related directions of possible further studies and conjectures.
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5. Fleming-Viot particle Systems

The almost surely extinction for v sufficiently small. Even for the case of only N =3
particles the almost sure explosion for extremely negative drift parameters has not been
proven. Intuitively, it seems very plausible that there exists v, sufficiently small, such
that the particle system becomes extinct almost surely for all v < v,. For the criterion
Theorem to be useful in proving so, since the integrand In R; will be negative only in
some regime of S near (1,0) and positive near (1/v/2,1//2), it seems to be a reasonable
strategy to partition S = L:Jj S; properly and to show bounds for In Ry with ug € S;
and for 7(S;). The latter might be achieved even in considering only one-step transition
probabilities. For general N, there should at least exist such v,(NN) possibly depending
on N.

A threshold value v, = v,(N). One would guess that the problem of extinction in finite
time is monotone in the drift parameter in the sense that if for given v it holds 7o, = o0
almost surely, respectively, 7o, < oo almost surely, it must also hold 7., = co almost
surely, respectively, 7., < oo almost surely for greater, respectively, smaller values of
v. This montonicity property is less obvious as one might think at a first glance. The
more negative drift will impact the system in jumping more often which results in being
pushed further away from the origin at least temporarily and thus it seems difficult to
achieve proper coupling arguments. Despite the technical involvement, in analogy to the
case of N = 2 moving particles it is reasonable to conjecture the existence of some sharp
threshold value v, (V) depending on N with v > v, (IN) implying non-extinction almost
surely and v < v, (N) implying extinction almost surely.

The limit case N — oco. Another concern addresses asymptotics for N — oo. The
result Theorem [5.78| shows that adding particles potentially really enlarges the domain of
parameter values where non-extinction occurs almost surely. It would be very interesting
to know, whether for all v € R there exists N, such that for all N > N, the particle
system does not become extinct almost surely. So far, it is only known that the answer
is affirmative for positive values of v.
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A. Properties of Hypergeometric Functions

In this Appendix we collect some explicit properties of special functions which are used
during this thesis.

The Gamma function T'(x) for x > 0 may be represented by the integral I'(z) =
JoT e tt*=1dt. as in [1, Expression 6.1.1]. This implies the following integral formula:

Lemma A.1. Fora > 0,b>1 it holds
/ et dt =T(b—1)/ab".
0

Proof. Substituting s := a/t, we derive

/ t_be_a/tdt:/ (s/a)’ e *a/s?>ds =T(b—1)/a’".
0 0

Definition A.2. For x > 0 we denote by

k—1

(2)g = H(a:+j) =TI(x+k)/T(x), keNy
=0

the Pochhammer symbol (rising factorial) as in [1, Expression 6.1.22].

Definition A.3. For a,b,c¢ > 0 the Gausian hypergeometric function (cf. |1, Expres-
sion 15.1.1]) is defined for |z| < 1 as

= (a P
oF (a,b;¢;2) == Z ( 212)(:)kk'

k=0

Lemma A.4. The hypergeometric function obeys for a,b > 0 and x < 1 the identity
oF1 (a,b;a;x) = (1 —x)7° (A.1)
and according to (25, 2.12 (5)] has the following integral representation.:

2F1(a,b;c;1 —2) = T (c—b) /0°° S 1L+ 8) (L + 52) " ds, (A.2)

c>b>0.
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A. Properties of Hypergeometric Functions

Lemma A.5. Fora,c, > 0,7 > %‘5 > 0 it holds

N ’ ns T (E2) D (y— L2
[t (@ LENEE)

Proof. By (A.2)) and (A.1)

/°° v ay="" 2 d
Ty Ay = — Q7 dz
o (cta-y) BJo (1+2-2)

1+6 149
c*VF(E)F - E) 1+96 a
:7 T P (v, 51— —

/N

Definition A.6. Let
¢ = (Inol') =T'/T

denote the Digamma function (Psi function) as in |1, Expression 6.3.1].

Lemma A.7. Fora,c,3 > 0,7 > 1%;5 > 0 it holds

() yé‘lny
= dy
o (ct+a-yf)

e (C)?.FW)FS)”‘?) (o (250) o (5= 150))

00 y‘s-lny o oo y6
0 (c+a-yP) 9 Jo (c+a-yP)

o T ey ()

=57 (g ;

Definition A.8. For a,b,cq1,...,c, > 0 let

i (@kstcthin Okl by ke

F(n)a,b,c,...,c,x,...,x =
o ( 1 ns L1 n) :O(Cl)kl"'(cn)knkll"'kn! 1 n

150



denote the C-type Lauricella hypergeometric series as can be found e.g. in [24, Equa-
tion (2.1.3)].

Definition A.9. We call f(z) and g(z) asymptotically equivalent (with respect to the
limit process © — xg), written f(x) ~ g(x), if

o 1) _
A3 9(a)

we require g(z) # 0 in a neighborhood of zy. If the the limit point xq is clear from
context we may omit the explicit statement of z — xg and just write f(x) ~ g(z).

Lemma A.10. For «, 3 € R real numbers it holds
T(a+k)/T(B+Ek)~k* P ask— oco.

Proof. Stirling’s formula for the Gamma function states that
Z\ %
N(z+1) ~V2rz (7>
e

as z — oo. It further holds

. a+k . -
lim —— =1+ lim —— =1
kgl;o,@—f-k? +k—>n;oﬁ

and

exp(x) = hm ( %)k

for z € R. We combine these facts to deduce

Dla+1+k) 2r(a+k)((a+k)/e)**™  Jatkel (a+k)*

T(B+1+k) 2 (B+ k) (B + k)/e)f+k — \| B+kex (B+ k)FtF

ot k) (L4 B/ (a+ k)R (k4 B)F (a+ K)*TE (at k)
e (B+E)PE (L +a/k)k (B+k)FHE (k+a)k (B+k)5FE — (B+k)%

It holds ngg;; ~ k%P from which the assertion follows since
)a
> 1.

)5 k—o0

—

a+k)* 5 (1+
=k —
(8 + k) (1+

> (=R

O]

Proposition A.11. (Cf. [24, Section 2.2 Convergence of the Lauricella Series] The
C-type Lauricella series converges absolutely on

{2 + .+ 2|2 < 1}

and is continuous on this domain.
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A. Properties of Hypergeometric Functions

Proof. Let a,b,c1,...,c, > 0 arbitrary positive real numbers. In order to apply the
previous lemma we transform according to

(@kytotbn Okitotk,  Dla+ k4. + k)0 + ki + ... 4+ kn)I(c1) -+ T(en)
(Cl)kl oo (Cn)knkl' k! N F(a)F(b)F(c1 + k‘l) oo F(Cn + k‘n)kl' k!
CD(e1)--T(ey) T(at+ki+...4k)) TO+ki+...+k)

T T(@)I(b) TA+ki+...4ky) D(A+k+...+kn)
T tk) T k) .<(k1+...+k:n)!>2

If either of kq, ..., k, tends to infinity, so does the sum k = k; + ...+ k, and we find

T(a+ki+...+kn)
T(L+Fk+...+ k)

~ (kA k)t
as k1 + ...+ ky, — oo. Therefore, there must exist A € N such that for all i € {1,...,n}
the relation k; > A implies

Tla+ki+...+kpn)
F(l—i—k‘l—l-...-l-kn)

<2ky 4. A k)L

Analogously, there is B € N such that

Fb+ki+...+k,)
F(l—i—kl—l-...-‘rkn)

<2ky+ .. 4 k)bt

as soon as k; > B for any ¢ € {1,...,n}. Furthermore, there are constants M., for
i =1,...,n such that
I'(1 ; .
( + kl) S 2]{2'1—01
F(CZ‘ + kz)

for k; > C;. We now define M := max{A, B,C4,...,C,} to be the maximum of the
constants we have found. In the sum

o0

@)kt 4k (D)l 4. 4k, :
F @ biesenlail ool = 32 ((S )) 1.+.Ic )< )k:wl.fk o]
ki,okn=0 \ 1/k1 n )k F1° !

each summand is positive and by Fubini’s theorem we may add up in arbitrary order.
Defining Ay :={0,...,M —1} and Ay = {M, M +1,...} we may partition Ny = Ag A;
in two disjunctive sets. Regarding all of the n sums we then partition according to

6= (AgwA)" = - A X x Ay,
z=(z1,...,2n)€{0,1}7

resulting in

kl...,xn,kn

1]

i (@) byt ..t kn (O)ky .. 4k

R O RER OISRy
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1

- (@t Ok + 4k k1 kn
= Z Z ()i - (o) For! - - Koy |z1 | ||

Zl,..‘,ZnZO kleAzl 7...7kn6Azn

M-—1
- (@)ks . tkn (O ks e Ky k
-y 5 O
rE{O,...,n} kil""’kin—r:Okjl""7kjr:M 1k n)kn 1 n:
{17" 7”} {7’1 Sin—r,J1,- 7j7'}
741<Z2< <Zn r
J1<g2<...<jr
- > > 1
rE{O,...,n} kil""’kin—r:O <Cil)kil e (cinfr)kin ”

{L---an}.’:{?l7---7infhjl ----- Jr}
11<12<...<lp—r

J1<j2<...<jr
o

% Z (@) kst ..k D)yt 1k I

(i )y, (i )y, B hod nl™

k.il?"'7kj7-:M J1 71 Jr /) Kj, n
In the following we show that each of the sums

oo

Z (ks ctbn Bkt EALRA e

g Gy o (g, Rt R

T

[

with fixed k;,,...,k;, _, is finite. Since there are only finitely many of them the overall

sum still remains finite. By construction of M € N it holds

00
b

Z (a)kl-l-----l—kn( )k1+ +l€n ‘$1|k1 . ‘In‘k"

k

oy Gy e (G g, Rt

Ky seeekj =
_ i D(cjy)Dlej,) Tlatki+...+kn) T(b+ki+... +kn)
P’ I'(a)L'(b) T(L+ki 4. +kn) T(I+k+...+ k)
Jr—

kjlv--'7

(14 kj) T(1+k;) (it +k)N\ | N
F(Cj1 + kjl) F(er + kjr) kil k!

L(cj)---Tlejn)
[(a)L(b)

20k k) 2k LK)
k; kj.=

- ey (k4o k)
< 2k, ) 2 J)'< pr ) el el

I(cj,)---T(cj) ° B
— 22+T J1 Jr Z (k]_ +. .+ k )Ur‘rb 2
Lk

fare 4,
& ¢ (k N2
> (kjl1 11 . 1 Jr < 1 + ) ) \:m]kl ‘l’n‘k”
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A. Properties of Hypergeometric Functions

. . . 1—¢; —¢; 2
To obtain further estimates we consider the factors (k;, a1y (k]lr “7) and (W)

separately. Since c;j,,...,c;. > 0 are all positive it holds

gy ) (i) S gy oy, < G+ Ry, )T < (bt )

For the second factor using the notation of binomial coefficients we may expand according
to

(U | N (I (ka4 ...+ k)2 (kp—1 + k)% k12
ki!---kp! B k1‘2(k‘2—|——|—kn)'2 k2'2(k3++kn)'2 l{in,1'2kn'2 ]{In'2

R A P A IR A
B k1 ko kn—1 '

With the convention (x) = 0 whenever z < y, Vandermonde’s identity states that for any

u, v,m € Ny it holds !
u+v " (u v
() -2 06")

This implies for u,t € Ny the inequality

() =) G = () - (o) = ()

Piecewisely applied to the product we are given the bound
R AN T ¥ A Sy
< k1 ) < k2 ) ( kn—1 )
< <2(k1 + ...+ k:n)> ' (Q(kig + ...+ kn)) o <2(k:n_1 + kn))
- 2kq 2ko Q(kn_l)
(2(k1+ ...+ kn))! (2(ka + ...+ kn))! (2(kp—1 + kn))!
(2k0)!(2(ka + ..+ k) (2k2)!2(ks + . + k) (2kp_1)!(2Kkn)

RGNS )]
(2k1)! - (2ky)!

Now turning back to the overall expression we achieve

22+7‘F(le) - D(ej,.) i (ki 4+ ...+ kn)a+b72

T'(a)I'(b) iy
1 l—ec; ki + ..o+ k)2
X (kj, 1) (R, ]T)'(< Tyl o] )> E e L
T(cj,)---Tle,) _
< 22+r J1 Jr (k1+...+kn)a+b+r 2
r@re) ;M
J1o Jr
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(2(k1+ ...+ kn))!

(2k1)!- - (2ky)! o]

.

.

As next step we want to use the multinomial theorem: For m € N real numbers

21, .,2m € R it holds for any nonnegative integer power k € Ny
k k! ky &
(214 ... +2z2p)" = Z ———2y ez
kil k!
k1,....,km€Np
E1tetkm=k

As preparation we first enlarge the summation domain twice.

E a+b+r— 2(k1++kn))|
k kn btr 2( k’l,_. n
G100 K= 2
= g —+ + +b+r— 2(k1++k‘n))'
= n atbtr 2( k1 n k
1yeerykn=

s o 20k + .. k)

= Bt ko2l B g, [k
kzok geN (k1 + +kn) (2k1)! - - (2ky)! |1 |Zn|
= 1yeeeshm 0

Ky kn—k
D
2%)!
— ka+b+r—2 ( |.7}1|k1 . ’33 |kn
2 A, ER
21+t 2hin =2k
o
) (2k)!
<2 ETTE D g el
k=0 ki, kn€Ng VL n):
ker oo =2k

ka+b+r—2(|$1‘1/2+n_+‘xn‘1/2)2k'

M

B
Il
o

The last sum is finite if |21|Y2 + ... 4+ |2,]"/? < 1 since exponential decay rules out
polynomial growth. To summarize, we have seen that for |z,|V/2 + ... 4 |z,|/? < 1 it
holds

Fé'n)(aﬂb?clr ..,Cn,flj‘l,...,xn) S Fc(‘n)(a7b7clv"’ » Cny ’$1|,.. < ‘1'71’)
M-—1 1
< >
re{0,...,n} iy seonskis, =0 (Cz’1)k¢1 e (cin—’r)kin_T

{L,on}={i1, . in—rj1,.00r }
11<12<..<lp—p
J1<g2<...<jgr

T']'_‘C‘ '-‘FC'T > a r—
e DL (TR T

k=0

o0
k
_ Zpgﬂ (@b, 1. Cn |71, . ., [Zn]) < 00
=0
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A. Properties of Hypergeometric Functions

where
(n)k .
Fe7(a,b,c1y. 00 Cn, 21,0, X)) =
M-—1 1
2. P P
re{O,...,n} kilrnvkin_r:o ( Zl)kzl ( ’Lnf'r)kzn_r

{17”-7"7'}‘:{?17-~~»inf7‘7j17"’7j7“}
11<12<...<lp—r
J1<j2<...<jr

T(cj,) - -T(ej,) —2, 1/2
92+r J1 Jr ka—i—b—‘r’r 2 o 1/2 219.
X (T 0) (" +...+z,/9)

In the following we further want to show continuity of the Lauricella series. We denote
the mapping p : R” — [0,00), (21,...,2n) — v/|z1] + ... + /|zn|. Now let

z2=(21,...,20) €{z €R" : ]z + ... +V]za] < 1} = p71([0,1))

arbitrary. For all k& € Ny and uniformly on 2 € D = p~1([0, (p(2) + 1)/2]) it holds

k
’Fé'n)7 (a/y b) Cl; . -acnaxh ttt ,xn)‘
M-1 1
<
7”6{02,--:-771} kip---vkzi,;r—o (Cil)kil o (Ci"_’")ki"*T

{Lm:”}:{?l7--~7infr)jlv-~~7jr}
11.<22‘<--~<Zn'—r
71<92<...<Jr

TF(C]'I)”'F(CJ}) a r— .
x 22F T(@T() kAT =2((p(2) 4+ 1)/2)%F = M.

Due to "2 M}, < oo by the Weierstrass M-test the series

F(n)vk

(n)
Fo'(a,bcry. . cn, @1y, ) = o (a,byer, . en, i, X))

WK

e
Il

0

converges absolutely and uniformly on D. Because for each of k € Ny the function

T Fgl)’ (a,b,c1,...,¢Cn, 21, ..., Ty,) is continuous the finite sum

K

(n)k
ZFC (CL,b,Cl,...,Cn,l'l,...,fﬂn)
k=0

is a continuous function in z as well. Together with the uniform convergence as K — oo
the uniform limit theorem implies the function Fén)(a,b7 Cly«veyCny X1,y ..., Tpn) tO be
continuous on z € D. Particularly the Lauricella series is seen to be continuous in z € D.
Since z was arbitrarily chosen in p~1([0, 1)) the continuity on this domain follows. [
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B. Proof omitted in Remark 5.34

This part of the appendix is devoted to the proof of a statement posed in Remark
This is needed for verifying that a density we calculated earlier complies with the formula
given in [45, Theorem 8 (ii)]. There, the authors considered squared Bessel processes
with individual drift parameters. More specifically, the theorem entails the following
statement.

Let Z = (Z',72%,...,2") independent squared Bessel processes with drift parameters
—61,...,—0, <0 and assume they start deterministically at Zy = 29 € (0,00)™. Let

T = Ir;i{linf{t >0:Z =0}

the first hitting time of the origin by any one of the n components. Then fori € {1,...,n}
the law of the random vector Z, restricted to the event {Z. = 0} admits a density for all
the variables y;, j € {1,...,n} \ {i¢} which is given by

Q(Z1 77777 Z") )(y1)° s Yi—1,Yi4+1, - 7yn) - ]P)ZU(ZT S d(yla ey Yi—1,Yi+ 1, - - 7?/71)7271— - 0)

G1-00/2—2n 6, /241
== } ['(60/2 4 2n + 2N — 1)S72N
@:/2+1) {47 NZO (Bo/2 42 + )5
(y;2))
<D Hkvr9/2+2+i<;)

Z];éz kJ_N -]¢
(B.1)

where
n

S = Z(yz +2z), vy =0, and 6= Zn:&.
i=1

i=1
Since the authors of [45] considered squared Bessel processes instead of Bessel processes
we use the transformation

i,(01,-,0n . 01,...0n
gzz(li.-,Zn) )(y17 e 7yi—17 yi-‘rlv s 7yn) = ql (21 )

(Zl7 R n)

n
(y 7"'7yz 17yz+17"'7yn H 2y5
=
Recall from Lemma that the transition density function h,,(y) of the Markov chain
(Y,,) given in Definition may be expressed as

N (5 ) TSy [r(<w+1>N—1+2zN1k)
X

hyo (y) = (N — 1)I‘(w) kl’m,kZN_I:U Hé\;jl [F(ks +w + 1)]{5!]
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B. Proof omitted in Remark

(y )Q“JZ LS sy (y )Qk —107) H ( (s) >2k5

N-1 o N—-1 (i) <n(7) s;éw’l(J)
< 1] @) Z N1l o1 (wHDN=14+2 3205 ks ]
S () [+ o))

What we want to show is formulated in the following lemma. It may be regarded as a
check if our calculations are correct.

Lemma B.1. In the previous notations it holds
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For the sum it follows
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Defining 7 := 7(7) € Sy—_1 by
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B. Proof omitted in Remark
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Turning back to equation (B.2) this shows using the fact that (i) # 7(j) implies i # j
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Reusing the definition ((5.14) and the identity (5.15) it holds switching k; and k;
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B. Proof omitted in Remark
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With respect to eqution (B.3)) we can therefore reunite the sums to obtain
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B. Proof omitted in Remark

what was to be shown.
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C. Source Codes

C.1. Large noise limits
The following is the R code which was used to produce the SDE samples in Figure [2.1

# We want to simulate the SDE
dX_t = lambda~2/2*(epsilon-b*x) dt + lambda B_t dB_t

with start in X_0 = 1 as toy model.

To do so, we use the CRAN package sde; c.f.

H OH H H H K H H R

https://CRAN.R-project.org/package=sde

library(sde)

# Let us define a generic function

plotToySDE <- function (lambda, epsilon, b) {
set.seed(12345)

d <- as.expression(bquote(. (lambda)**2/2*(.(epsilon)-. (b)*x)))
s <- as.expression(bquote(. (lambda)*x))

sde.sim(X0=1, drift=d, sigma=s) -> X

plot(X,main=paste("lambda =", lambda, ", epsilon =", epsilon, ", b =", b),
ylim=c(-1,8))

}

# We want to exhibit the scaling limit on the curve
#
# lambda~2 * epsilon”(b+1) = J.
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C. Source Codes

#
# Let us fix b := 1 so that lambda and epsilon
# must be inversely proportional.

par (mfrow=c(2,2))
plotToySDE(1/2,2,1)
plotToySDE(2,1/2,1)

plotToySDE(5,1/5,1)
plotToySDE(10,1/10,1)

C.2. Plot of E, [In R,]

The following is the python code which was used to produce the plots in Figure [5.5
# We want to plot the expectation E_{phi_0}[1n R_1] for

# parameters O < phi_O <= pi/4 and 1/3 <= w <= 4/3

import mpmath as mp
import matplotlib.pyplot as plt

def summand(w, phiO, k1, k2):
factorl = mp.gamma(3*w+k1+k2)/mp.gamma(kl+w+1)/mp.gamma (k2+w+1)

f2sifactorl = mp.cos(phiO)**(2*w)/(1+mp.cos (phi0)**2)** (3xw+k1+k2)
f2s1factor2 = (mp.digamma(2+k1+k2) - mp.digamma (3*w+k1+k2))/2
f2sifactor3 = 2 * mp.cos(phi0)**(2xkl) * mp.sin(phiO)**(2xk2)

+ mp.cos(phi0) ** (2%k1) *mp. cos (phi0) ** (2*k2)
f2s2factorl = mp.sin(phi0)**(2*w)/(1+mp.sin(phi0)**2)** (3*xw+kl+k2)
f2s2factor2 = (mp.digamma(2+k1+k2) - mp.digamma (3*w+k1+k2))/2
f2s2factor3 = 2 * mp.cos(phi0)**(2xkl) * mp.sin(phiO)**(2xk2)

+ mp.sin(phiO) ** (2%k1) *mp.sin (phi0) ** (2*k2)
f2suml = f2slfactorl * f2sifactor2 * f2slfactor3

f2sum2 f2s2factorl * f2s2factor2 *x f2s2factor3

factor2 = f2suml + f2sum?2
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C.2. Plot of Ey[In Ry]

return(factorl * factor2)

def EphiO_1nR(w,phiO):
summandl = (mp.ln(l+mp.cos(phiO)**2) + mp.ln(l+mp.sin(phi0)**2))/4

factorDoubleSum = (mp.cos(phiO)*mp.sin(phiO))**(2*w)/(2*mp.gamma (w))
doubleSum = mp.nsum(lambda k1,k2: summand(w, phiO, k1,k2), [0,mp.inf], [O,mp.inf])

return(summandl + factorDoubleSum * doubleSum)

# for several fixed w, plot with respect to phiO:
PhiO = mp.linspace(0, mp.pi/4, 32)
plt.xlabel(’phi0O’)

plt.ylabel(’EphiO_1nR’)

legend = []

for w in mp.linspace(2/3,4/3,7):
E = [EphiO_1nR(w,phiO) for phiO in PhiO]
plt.plot(PhiO,E)
legend.append(’w = > + mp.nstr(w))

plt.legend(legend)
plt.show()

# for several fixed phiO, plot with respect to w:
W = mp.linspace(2/3, 4/3, 32)

plt.xlabel(’w’)

plt.ylabel(’EphiO_1nR’)

legend = []

for phiO in mp.linspace(O,mp.pi/4,7):
E = [EphiO_1nR(w,phiO) for w in W]

167



C. Source Codes

plt.plot(W,E)
legend.append(’phi0 = ’ + mp.nstr(phi0))

plt.legend(legend)
plt.show()
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