
G UA R A N T E E I N G P R O P E RT I E S O F
R E C O N F I G U R A B L E H A R D WA R E C I R C U I T S W I T H

P R O O F - C A R RY I N G H A R D WA R E

D I S S E RTAT I O N

A thesis submitted to the
faculty for computer science , electrical engineering and

mathematics

of
paderborn university

in partial fulfillment of the requirements
for the degree of Dr. rer. nat.

by

T O B I A S W I E R S E M A

Paderborn, Germany
Date of submission: May 2021



supervisor:
Prof. Dr. Marco Platzner

reviewers:
Prof. Dr. Marco Platzner
Prof. Dr. Heike Wehrheim
Prof. Dr. David Andrews

oral examination committee:
Prof. Dr. Marco Platzner
Prof. Dr. Heike Wehrheim
Prof. Dr. David Andrews
Prof. Dr. Friedhelm Meyer auf der Heide
Prof. Dr. Juraj Somorovsky

date of submission:
May 2021

Tobias Wiersema: Guaranteeing Properties of Reconfigurable Hardware
Circuits with Proof-Carrying Hardware, Dr. rer. nat., © May 2021



A B S T R A C T

Previous research in proof-carrying hardware has established the feasi-
bility and utility of the approach, and provided a concrete solution for
employing it for the certification of functional equivalence checking
against a specification, but fell short in connecting it to state-of-the-art
formal verification insights, methods and tools. Due to the immense
complexity of modern circuits, and verification challenges such as
the state explosion problem for sequential circuits, this restriction of
readily-available verification solutions severely limited the applicabil-
ity of the approach in wider contexts.

This thesis closes the gap between the PCH approach and current
advances in formal hardware verification, provides methods and tools
to express and certify a wide range of circuit properties, both func-
tional and non-functional, and presents for the first time prototypes
in which circuits that are implemented on actual reconfigurable hard-
ware are verified with PCH methods. Using these results, designers
can now apply PCH to establish trust in more complex circuits, by
using more diverse properties which they can express using modern,
efficient property specification techniques.

Z U S A M M E N FA S S U N G

Die bisherige Forschung zu Proof-Carrying Hardware (PCH) hat des-
sen Machbarkeit und Nützlichkeit gezeigt und einen Ansatz zur Zerti-
fizierung der funktionalen Äquivalenz zu einer Spezifikation geliefert,
jedoch ohne PCH mit aktuellen Erkenntnissen, Methoden oder Werk-
zeugen formaler Hardwareverifikation zu verknüpfen. Aufgrund der
Komplexität moderner Schaltungen und Verifikationsherausforderun-
gen wie der Zustandsexplosion bei sequentiellen Schaltungen, limitiert
diese Einschränkung sofort verfügbarer Verifikationslösungen die An-
wendbarkeit des Ansatzes in einem größeren Kontext signifikant.

Diese Dissertation schließt die Lücke zwischen PCH und modernen
Entwicklungen in der Schaltungsverifikation und stellt Methoden und
Werkzeuge zur Verfügung, welche die Zertifizierung einer großen
Bandbreite von Schaltungseigenschaften ermöglicht; sowohl funktio-
nale, als auch nicht-funktionale. Überdies werden erstmals Prototypen
vorgestellt in welchen Schaltungen mittels PCH verifiziert werden, die
auf tatsächlicher rekonfigurierbarer Hardware realisiert sind. Dank die-
ser Ergebnisse können Entwickler PCH zur Herstellung von Vertrauen
in weit komplexere Schaltungen verwenden, unter Zuhilfenahme einer
größeren Vielfalt von Eigenschaften, welche durch moderne, effiziente
Spezifikationstechniken ausgedrückt werden können.

iii





P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

[1] Tobias Wiersema. “Schedulding Support for Heterogeneous
Hardware Accelerators under Linux.” English. Master’s Thesis.
Paderborn University, Nov. 2010. 60 pp.

[2] Tobias Beisel, Tobias Wiersema, Christian Plessl, and André
Brinkmann. “Cooperative Multitasking for Heterogeneous Ac-
celerators in the Linux Completely Fair Scheduler.” In: 22nd In-
ternational Conference on Application-specific Systems, Architectures
and Processors. ASAP 2011 (Santa Monica, CA, USA, Sept. 11–14,
2011). Ed. by Joseph R. Cavallaro, Milos D. Ercegovac, Frank
Hannig, Paolo Ienne, Earl E. Swartzlander Jr., and Alexandre
F. Tenca. IEEE, 2011, pp. 223–226. doi: 10.1109/ASAP.2011.
6043273.

[3] Tobias Beisel, Tobias Wiersema, Christian Plessl, and André
Brinkmann. “Programming and Scheduling Model for Sup-
porting Heterogeneous Accelerators in Linux.” In: Proccedings
of the Third Workshop on Computer Architecture and Operating
System Co-design. CAOS 2012 (Paris, France, Jan. 23–25, 2012).
Jan. 2012, pp. 28–36. url: http://projects.csail.mit.edu/
caos/caos_2012.pdf.

[4] Marie-Christine Jakobs, Marco Platzner, Tobias Wiersema, and
Heike Wehrheim. “Integrating Software and Hardware Verifica-
tion.” In: 11th International Conference on Integrated Formal Meth-
ods. iFM 2014 (Bertinoro, Italy, Sept. 9–11, 2014). Ed. by Elvira
Albert and Emil Sekerinski. Vol. 8739. Lecture Notes in Com-
puter Science. Springer, 2014, pp. 307–322. doi: 10.1007/978-
3-319-10181-1_19.

[5] Tobias Wiersema, Arne Bockhorn, and Marco Platzner. “Em-
bedding FPGA Overlays into Configurable Systems-on-Chip:
ReconOS meets ZUMA.” In: 2014 International Conference on
ReConFigurable Computing and FPGAs. ReConFig’14 (Cancun,
Mexico, Dec. 8–10, 2014). IEEE, Dec. 2014, pp. 1–6. doi: 10.
1109/ReConFig.2014.7032514.

[6] Tobias Wiersema, Stephanie Drzevitzky, and Marco Platzner.
“Memory Security in Reconfigurable Computers: Combining
Formal Verification with Monitoring.” In: 2014 International
Conference on Field-Programmable Technology. FPT 2014 (Shanghai,
China, Dec. 10–12, 2014). IEEE, Dec. 2014, pp. 167–174. doi:
10.1109/FPT.2014.7082771.

v

https://doi.org/10.1109/ASAP.2011.6043273
https://doi.org/10.1109/ASAP.2011.6043273
http://projects.csail.mit.edu/caos/caos_2012.pdf
http://projects.csail.mit.edu/caos/caos_2012.pdf
https://doi.org/10.1007/978-3-319-10181-1_19
https://doi.org/10.1007/978-3-319-10181-1_19
https://doi.org/10.1109/ReConFig.2014.7032514
https://doi.org/10.1109/ReConFig.2014.7032514
https://doi.org/10.1109/FPT.2014.7082771


[7] Tobias Wiersema, Sen Wu, and Marco Platzner. “On-The-Fly
Verification of Reconfigurable Image Processing Modules Based
on a Proof-Carrying Hardware Approach.” In: Applied Re-
configurable Computing. 11th International Symposium, ARC
2015 (Bochum, Germany, Apr. 15–17, 2015). Ed. by Kentaro
Sano, Dimitrios Soudris, Michael Hübner, and Pedro C. Diniz.
Vol. 9040. Lecture Notes in Computing Science. Springer, 2015,
pp. 377–384. doi: 10.1007/978-3-319-16214-032.

[8] Tobias Wiersema, Arne Bockhorn, and Marco Platzner. “An
Architecture and Design Tool Flow for Embedding a Virtual
FPGA into a Reconfigurable System-on-Chip.” In: Computers
and Electrical Engineering 55 (2016). Ed. by Manu Malek, pp. 112–
122. doi: 10.1016/j.compeleceng.2016.04.005.

[9] Tobias Wiersema and Marco Platzner. “Verifying worst-case
completion times for reconfigurable hardware modules using
proof-carrying hardware.” In: 11th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip. ReCoSoC
2016 (Tallinn, Estonia, June 27–29, 2016). IEEE, 2016, pp. 1–8.
doi: 10.1109/ReCoSoC.2016.7533910.

[10] Tobias Isenberg, Marco Platzner, Heike Wehrheim, and Tobias
Wiersema. “Proof-Carrying Hardware via Inductive Invari-
ants.” In: Transactions on Design Automation of Electronic Systems.
TODAES 22.4 (July 2017), 61:1–61:23. doi: 10.1145/3054743.

[11] Qazi Arbab Ahmed, Tobias Wiersema, and Marco Platzner.
“Proof-Carrying Hardware versus the Stealthy Malicious LUT
Hardware Trojan.” In: Applied Reconfigurable Computing. 15th
International Symposium, ARC 2019 (Darmstadt, Germany,
Apr. 9–11, 2019). Ed. by Christian Hochberger, Brent Nelson,
Andreas Koch, Roger Woods, and Pedro Diniz. Vol. 11444.
Lecture Notes in Computer Science. Springer, 2019, pp. 127–
136. doi: 10.1007/978-3-030-17227-5_10.

[12] Linus Witschen, Tobias Wiersema, and Marco Platzner. “Mak-
ing the Case for Proof-carrying Approximate Circuits.” 4th
Workshop on Approximate Computing. WAPCO 2018 (Manch-
ester, England, Jan. 22, 2018). Workshop without proceedings.
2018. url: https://api.semanticscholar.org/CorpusID:

52228901.

[13] Linus Witschen, Tobias Wiersema, Hassan Ghasemzadeh Mo-
hammadi, Muhammad Awais, and Marco Platzner. “CIRCA:
Towards a Modular and Extensible Framework for Approxi-
mate Circuit Generation.” Third Workshop on Approximate
Computing. AxC 2018 (Bremen, Germany, May 31–June 1,
2018). Workshop without proceedings. 2018.

vi

https://doi.org/10.1007/978-3-319-16214-0 32
https://doi.org/10.1016/j.compeleceng.2016.04.005
https://doi.org/10.1109/ReCoSoC.2016.7533910
https://doi.org/10.1145/3054743
https://doi.org/10.1007/978-3-030-17227-5_10
https://api.semanticscholar.org/CorpusID:52228901
https://api.semanticscholar.org/CorpusID:52228901


[14] Linus Witschen, Muhammad Awais, Hassan Ghasemzadeh
Mohammadi, Tobias Wiersema, and Marco Platzner. “CIRCA:
Towards a Modular and Extensible Framework for Approxi-
mate Circuit Generation.” In: Microelectronics Reliability. MER
99 (2019), pp. 277–290. doi: 10.1016/j.microrel.2019.04.003.

[15] Linus Witschen, Tobias Wiersema, and Marco Platzner. “Proof-
carrying Approximate Circuits.” In: Transactions on Very Large
Scale Integration (VLSI) Systems. TVLSI 28 (9 2020), pp. 2084–
2088. doi: 10.1109/TVLSI.2020.3008061.

[16] Qazi Arbab Ahmed, Tobias Wiersema, and Marco Platzner.
“Malicious Routing: Circumventing Bitstream-level Verification
for FPGAs.” In: Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition. DATE 2021 (Virtual Conference,
Feb. 1–5, 2021). IEEE, Feb. 2021, pp. 1490–1495.

[17] Linus Witschen, Tobias Wiersema, Masood Raeisi Nafchi, Arne
Bockhorn, and Marco Platzner. “Timing Optimization for Vir-
tual FPGA Configurations.” In: Applied Reconfigurable Comput-
ing. Architectures, Tools, and Applications. 17th International Sym-
posium, ARC 2021 (Virtual Conference, June 29–30, 2021). Lec-
ture Notes in Computing Science. Springer, 2021.

vii

https://doi.org/10.1016/j.microrel.2019.04.003
https://doi.org/10.1109/TVLSI.2020.3008061




Not by might,
nor by power,

but by my Spirit,
says the Lord of hosts.

— Zechariah 4:6

A C K N O W L E D G M E N T S

Like any sizable project, the realization of this thesis has only been possible
thanks to the help and support of many incredible people that I have been
blessed with on this journey. I thus want to humbly express my thanks to
some of these people in particular in the next lines, and to assure all of
my colleagues, friends and family that remain unmentioned that I feel very
grateful for their support nonetheless.

First I would like to thank Marco Platzner for his guidance and invaluable
support throughout the entire process, for always being considerate, fair, and
practical in everyday matters as well as the grand strategic choices. Drawing
from your experience and example has allowed me not only to finish this
project, but also to learn important lessons about leadership that values
the human in the process. I would furthermore like to thank him, Heike
Wehrheim, and David Andrews for the time and effort they spent to review
this thesis, as well as all members of the committee for evaluating my work.

I am very grateful for the people that I got to work with over the duration
of the process in the CEG, who made working there a lighthearted experience.
A special thanks to my office buddies, Tobias Beisel, Server Kasap, Andreas
Agne, and Muhammad Awais, that they endured my ramblings and taught
me Urdu. I would also like to thank the ones I got to work with closely, Chris-
tian Plessl, Alexander Boschmann, Achim Lösch, Marie-Christine Jakobs,
Linus Witschen, and Qazi Ahmed, for their professionalism and support. A
special thanks also to Paraskewi Antoniou-Dahmann and Jennifer Lohse for
their patience and huge support in the plentiful administrative issues that
arose. My thanks also goes to all the unmentioned colleagues, cake bakers,
the PC2 and its staff for the compute cluster access and support, and the
students whose theses or work supported mine, with Arne Bockhorn in
particular, since his dedication and commitment surpassed his contractual
obligations by far, which has helped me tremendously. I am also grateful for
the support of the staff of the CRC 901 "On-the-Fly-Computing", especially
Ulf Schröder, Marion Hucke, and the K-Team that I was part of, as well as the
DFG for their financial support in the form of the grant of said project, and
also to the university for facilitating the realization of the CRC and providing
the infrastructure.

Last but foremost I would like to thank my families for their unwavering
support, both, the one I was born into and that raised me and the one that I
married into. Special thanks to my wife Iris and children Eliane and Simeon
for their enduring patience of my absent periods of plentiful work, as well
as their abundant love and the warm home and joy they have provided me
with to counterbalance said efforts. Not even a year of continuous homeoffice
could lessen our love for each other and I pray that it will remain this way
for a long time.

ix





C O N T E N T S

1 introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . 5

2 background 7

2.1 Reconfigurable Hardware . . . . . . . . . . . . . . . . . 7

2.2 Hardware verification . . . . . . . . . . . . . . . . . . . 16

2.3 Proof-carrying Hardware . . . . . . . . . . . . . . . . . 38

2.4 Tools and Platforms . . . . . . . . . . . . . . . . . . . . . 45

3 realizing bitstream-level pch 53

3.1 Proof-carrying Reconfigurable Hardware . . . . . . . . 53

3.2 Generalized Bitstream-level PCH Flow . . . . . . . . . . 61

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 virtual field-programmable gate arrays 67

4.1 Virtualizing FPGAs . . . . . . . . . . . . . . . . . . . . . 68

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Extending ZUMA . . . . . . . . . . . . . . . . . . . . . . 76

4.4 ZUMA-based PCH Evaluation Platform . . . . . . . . . 95

4.5 Timing Analysis and Optimization . . . . . . . . . . . . 104

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5 proving properties with pch 121

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Property classification . . . . . . . . . . . . . . . . . . . 123

5.3 Sequential Property Checking . . . . . . . . . . . . . . . 128

5.4 Monitor-based Property Checking . . . . . . . . . . . . 150

5.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6 non-functional property checking 171

6.1 Worst-case Completion Time . . . . . . . . . . . . . . . 172

6.2 Information Flow Security . . . . . . . . . . . . . . . . . 185

6.3 Approximation Quality . . . . . . . . . . . . . . . . . . 207

6.4 General Self-Composition Miters . . . . . . . . . . . . . 222

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7 pch demonstrators 227

7.1 Demonstrator 1: Certified Image Filters . . . . . . . . . 227

7.2 Demonstrator 2: Certified PSL Guard Dogs . . . . . . . 234

8 conclusion 243

9 outlook 245

a tables 247

bibliography 271

xi



L I S T O F F I G U R E S

Figure 2.1 Abstract FPGA overview. . . . . . . . . . . . . . 11

Figure 2.2 BLE layout. . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.3 Island-style FPGA structure details. . . . . . . 13

Figure 2.4 Hardware verification environment. . . . . . . 22

Figure 2.5 Formal Hardware verification environment. . . 25

Figure 2.6 Formal Hardware verification flow. . . . . . . . 26

Figure 2.7 Boolean Equivalence Miter. . . . . . . . . . . . 27

Figure 2.8 Property verification circuits. . . . . . . . . . . 28

Figure 2.9 Unrolled sequential PVC. . . . . . . . . . . . . 31

Figure 2.10 PDR frames. . . . . . . . . . . . . . . . . . . . . 33

Figure 2.11 Runtime verification PVC. . . . . . . . . . . . . 35

Figure 2.12 Memory reference monitor example. . . . . . . 36

Figure 2.13 Abstract PCH flow. . . . . . . . . . . . . . . . . 40

Figure 2.14 Combinational miter PVC. . . . . . . . . . . . . 42

Figure 2.15 Sequential miter PVC. . . . . . . . . . . . . . . 43

Figure 2.16 First prototypical PCH flow. . . . . . . . . . . . 43

Figure 2.17 The ReconOS architecture. . . . . . . . . . . . . 51

Figure 3.1 Virtual and physical FPGA layers. . . . . . . . 58

Figure 3.2 General bitstream-level PCH flow. . . . . . . . 62

Figure 4.1 VFPGA as overlay of an FPGA. . . . . . . . . . 69

Figure 4.2 Basic ZUMA overlay layout. . . . . . . . . . . . 77

Figure 4.3 Original ZUMA tool flow. . . . . . . . . . . . . 79

Figure 4.4 Current ZUMA tool flow. . . . . . . . . . . . . 81

Figure 4.5 ZUMA configurable logic block. . . . . . . . . 82

Figure 4.6 Distributed memory block diagram. . . . . . . 83

Figure 4.7 ZUMA ordering layer overview. . . . . . . . . . 86

Figure 4.8 Area cost of the ordering layer. . . . . . . . . . 88

Figure 4.9 Delay penalty of the ordering layer. . . . . . . . 89

Figure 4.10 Clos network-based intra-cluster routing. . . . 91

Figure 4.11 Area benefit of the Clos network-based IIBs. . 92

Figure 4.12 Area benefit of using all ZUMA extensions. . . 94

Figure 4.13 Area penalty of virtualizing with ZUMA. . . . 95

Figure 4.14 ZUMA overlay embedded in a ReconOS HWT. 97

Figure 4.15 ZUMA configuration process. . . . . . . . . . . 98

Figure 4.16 SDF I/O path delays. . . . . . . . . . . . . . . . 110

Figure 4.17 Timing change with swappable CLBs. . . . . . 115

Figure 4.18 Timing change with timing-driven P&R. . . . . 117

Figure 5.1 Combinational property verification circuits. . 122

Figure 5.2 Taxonomy of hardware properties. . . . . . . . 125

Figure 5.3 Sequential property verification circuits. . . . . 129

Figure 5.4 Sequential equivalence types. . . . . . . . . . . 129

xii



list of figures xiii

Figure 5.5 Unrolled sequential PVC. . . . . . . . . . . . . 131

Figure 5.6 Runtime verification PVC example for BMC. . 132

Figure 5.7 WCCT protocol example. . . . . . . . . . . . . . 133

Figure 5.8 Synchronous sequential circuits C. . . . . . . . 135

Figure 5.9 Example of a sequential PVC. . . . . . . . . . . 138

Figure 5.10 Example of a circuit’s state space. . . . . . . . . 139

Figure 5.11 Generic PCH flow. . . . . . . . . . . . . . . . . . 143

Figure 5.12 Workload shift in SPC. . . . . . . . . . . . . . . 149

Figure 5.13 Memory monitor miter. . . . . . . . . . . . . . . 152

Figure 5.14 Guard dog miter. . . . . . . . . . . . . . . . . . 153

Figure 5.15 Runtime verification PCH flow. . . . . . . . . . 155

Figure 5.16 Memory access monitor in ReconOS arbiter. . 158

Figure 6.1 Abstract PCH flow for WCCT proofs. . . . . . 173

Figure 6.2 Circuit model for WCCT analysis. . . . . . . . 175

Figure 6.3 WCCT and HW module interaction. . . . . . . 178

Figure 6.4 WCCT protocol filtering examples. . . . . . . . 179

Figure 6.5 PCH flow for WCCT proofs. . . . . . . . . . . . 181

Figure 6.6 A multihead weigher. . . . . . . . . . . . . . . . 183

Figure 6.7 Flow runtimes for both WCCT case studies. . . 184

Figure 6.8 GLIFT HW Trojan detection flow. . . . . . . . . 190

Figure 6.9 Two-sided PCH GLIFT flow. . . . . . . . . . . . 191

Figure 6.10 Non-interference miter. . . . . . . . . . . . . . . 193

Figure 6.11 Port boundary shift for PCHIFT. . . . . . . . . 198

Figure 6.12 The PCAC flow. . . . . . . . . . . . . . . . . . . 211

Figure 6.13 CIRCA approximation flow overview. . . . . . 213

Figure 6.14 Sequential quality constraint circuit. . . . . . . 215

Figure 6.15 Quality evaluation circuit. . . . . . . . . . . . . 215

Figure 6.16 PCAC sequential circuit types. . . . . . . . . . 216

Figure 6.17 General structure of distributed TMR. . . . . . 223

Figure 6.18 SCM for redundancy. . . . . . . . . . . . . . . . 224

Figure 6.19 Fault injection. . . . . . . . . . . . . . . . . . . . 224

Figure 7.1 Image processing application overview. . . . . 228

Figure 7.2 Screenshot of Demonstrator 1. . . . . . . . . . . 228

Figure 7.3 ZUMA-augmented filtering HWT. . . . . . . . 230

Figure 7.4 PCH flow for the first demonstrator. . . . . . . 232

Figure 7.5 PSL-based monitoring in video pipeline. . . . . 236

Figure 7.6 ZUMA-augmented filtering pipeline stage. . . 237

Figure 7.7 PCH flow for the second demonstrator. . . . . 239

Figure 7.8 Miter function for Demonstrator 2. . . . . . . . 240

Figure 7.9 Booth setup of Demonstrator 2. . . . . . . . . . 240



L I S T O F L I S T I N G S

SDF Excerpt 4.1 Xilinx file header. . . . . . . . . . . . . . . . . . 109

SDF Excerpt 4.2 I/O path delays. . . . . . . . . . . . . . . . . . 109

SDF Excerpt 4.3 Interconnect delays. . . . . . . . . . . . . . . . 110

Listing 6.1 Protocol filtering example. . . . . . . . . . . . 180

Listing 7.1 Image processing filter example. . . . . . . . . 230

Listing 7.2 Combinational PSL filter example. . . . . . . . 237

Listing 7.3 Sequential PSL filter example. . . . . . . . . . 238

Listing 7.4 Producer output example. . . . . . . . . . . . . 241

Listing 7.5 Consumer output example. . . . . . . . . . . . 242

Listing 9.1 PRNG verification example. . . . . . . . . . . . 246

L I S T O F TA B L E S

Table 4.1 Area and speed of ReconOS with 3× 3 overlay. 100

Table 4.2 Area breakdown of a HWT with overlay. . . . 102

Table 4.3 ZUMA on ReconOS synthesis measurements. . 103

Table 4.4 ZUMA bitstream sizes. . . . . . . . . . . . . . . 103

Table 4.5 Timing extraction method comparison. . . . . 111

Table 5.1 Benchmark circuits for SPC. . . . . . . . . . . . 145

Table 5.2 Comparison of BMC and IND for SEQ-RM. . . 146

Table 5.3 Comparison of BMC and IND for SEQ-MC. . . 147

Table 5.4 Peak memory comparison (BMC, IND). . . . . 148

Table 5.5 Runtime comparison for guard dog PCH. . . . 159

Table 5.6 Guard dog prototype versions. . . . . . . . . . 160

Table 5.7 Prototype overheads. . . . . . . . . . . . . . . . 161

Table 5.8 CEC for Multipliers. . . . . . . . . . . . . . . . 164

Table 5.9 Benchmarks for scalability evaluation. . . . . . 166

Table 5.10 Runtime and workload shift for SCAL. . . . . 167

Table 5.11 PCH flow comparison 2017–2020. . . . . . . . . 168

Table 6.1 PCH runtimes for GLIFT. . . . . . . . . . . . . 201

Table 6.2 Trojan detection using GLIFT. . . . . . . . . . . 203

Table 6.3 PCH runtimes for non-interference miters. . . 204

Table 6.4 Trojan detection using non-interference miters. 206

Table 6.6 CIRCA runtimes for PCAC. . . . . . . . . . . . 220

Table 6.7 PCAC PCH flow runtimes. . . . . . . . . . . . . 221

Table 7.1 Area and timing of Demonstrator 1. . . . . . . 233

Table 7.2 PCH times for Demonstrator 1. . . . . . . . . . 234

Table 7.3 Area and synthesis times of Demonstrator 2. . 241

Table 7.4 PCH times for Demonstrator 2. . . . . . . . . . 242

xiv



A C R O N Y M S

#SAT Counting Boolean Satisfiability. Pages: 126, 127, 215

AC Approximate Circuit. Pages: 208–217

AES Advanced Encryption Standard. Pages: 36–38, 199, 202, 203

AIG And-inverter-graph. Pages: xix, 45, 144, 165, 210, 214, 218, 219

ALU Arithmetic Logic Unit. Page: 12

ASCII American Standard Code For Information Interchange. Page:
79

ASIC Application-specific Integrated Circuit. Pages: 1, 2, 15, 16, 59, 71,
173, 223

AxC Approximate Computing. Pages: 207–209, 214, 215, Glossary:
Approximate computing

AXI Advanced Extensible Interface. Pages: 96, 162, 235–237, 241

BDD Binary Decision Diagram. Pages: 24, 26

BLE Basic Logic Element. Pages: 11, 77, 99, 160, 162, 236

BLIF Berkeley Logic Interchange Format. Pages: 46, 47, 86, 87

BMC Bounded Model Checking. Pages: 27, 30, 31, 42, 46, 55, 122, 128,
130–134, 142–144, 146–149, 155, 168, 169, 179, 182, 210, 217,
223, 225

CAD Computer-aided Design. Pages: 9, 14, 15, 45, 46, 58, 60, 69, 118

CDMA Code Division Multiple Access. Page: 199

CEC Combinational Equivalence Checking. Pages: xx, xxii, 5, 26, 27,
30, 41, 44, 62, 65, 152, 163

CEX Counterexample. Pages: 26, 27, 32, 189, 195

CLB Configurable Logic Block. Pages: xxi, 9, 11–14, 69, 77, 78, 80, 87,
89–91, 99, 100, 106, 112–114, 116, 118, 119, 160, 231, 232, 236,
245

CNF Conjunctive Normal Form. Pages: 26, 27, 32, 42, 47–50, 130, 143,
155, 156, 181, 205, 231

COI Conflict-of-interest. Pages: 37, 38, 158

COTS Commercial Off-the-shelf. Pages: 1, 2, 104, 165, 225

CPC Combinational Property Checking. Pages: 31, 128, 142

CPU Central Processing Unit. Pages: xxi, xxiii, 12, 16, 36, 51, 96, 99,
144, 182, 228, 232

CTI Counterexample To Induction. Pages: 33, 139–141

CUT Circuit Under Test. Pages: 213, 214, 216, 217

DES Data Encryption Standard. Page: 188

DMA Direct Memory Access. Page: 35

DMG Distributed Memory Generator. Pages: 78, 101, 118

DNF Disjunctive Normal Form. Page: 26

xv



xvi Acronyms

DSL Domain Specific Language. Pages: 27, 28

DSP Digital Signal Processing. Page: 74

DT Delegate Thread. Pages: 50, 96, 97, Glossary: Delegate thread
DUV Design Under Verification. Pages: xxii, 18–26, 28–35, 47, 63, 122,

128, 150, 151, 153, 154, 163, 175, 177, 188, 189, 192–201, 203,
205–207, 217, 243

EDA Electronic Design Automation. Pages: 2, 3, 14, 15, 17, 24, 44, 45,
59, 60, 70, 73, 75, 80, 81, 93, 100, 101, 104, 105, 118, 123, 244,
245

EDM Elmore Delay Model. Page: 107

eLUT Embedded Lookup Table. Pages: 76, 78, 80–84, 90, 91, 94, 101,
Glossary: Embedded lookup table

FEC Functional Equivalence Checking. Pages: 25, 46, 121–124, 126–128,
133, 137, 144, 152, 153, 155, 194, 195, 197, 198, 208, 231, 244,
Glossary: Functional equivalence checking

FF Flip-flop. Pages: xxiii, 9, 11, 17, 31, 42, 77, 78, 82–84, 99, 106, 130,
134, 135, 137, 141, 160, 164, 200, 236, Glossary: Flip-flop

FIFO First In, First Out. Pages: 50, 96, 229

FPGA Field-programmable Gate Array. Pages: xx–xxiii, 1–3, 5, 6, 9–16,
35, 36, 42–44, 46, 47, 54–60, 65, 67–80, 83–85, 87, 88, 92, 93, 95,
101, 104–106, 109, 112, 113, 116, 119, 120, 153, 155, 162, 163,
171, 199, 218, 225, 229, 230, 232–234, 243–245

FSM Finite State Machine. Pages: 20, 23, 24, 27, 32, 37, 38, 101, 132,
135, 155, 156, 173, 200, 205, 229

FV Formal Verification. Pages: xix, xxi, xxii, 4, 10, 17–20, 23–26, 28–30,
34, 39, 40, 44, 45, 49, 57, 62–64, 123, 124, 150, 151, 159, 163, 169,
177, 188–190, 202, 207, 243, 244

GLIFT Gate-level Information Flow Tracking. Pages: 186–192, 198–203,
205–207

GSM Global System For Mobile Communications. Page: 182

HDL Hardware Description Language. Pages: 16, 18, 21, 23, 27–29, 38,
41, 42, 44–47, 58, 68, 78, 102, 108, 118, 121, 122, 154, 189, 238

HLS High-level Synthesis. Page: 209

HPC High-performance Computing. Pages: 154, 162

HVL Hardware Verification Language. Pages: 6, 23, 29, 124, 243, 245

HW Trojan Hardware Trojan. Pages: 4, 44, 66, 188–190, 195, 196, 199–
206

HWMCC Hardware Model Checking Competition. Pages: 30, 32, 46,
63, 144, 163–165, 167, 219, 243

HWT Hardware Thread. Pages: xx, 50, 96–99, 101–103, 131, 132, 157,
160–163, 228, 229

I/O Input / output. Pages: xxii, 9, 12, 13, 15, 20, 22, 27, 31, 77, 84–87,
89, 92, 96, 98–101, 112, 114, 115, 153, 185, 189, 192, 194, 205,
230–232, 235, 236



Acronyms xvii

IC Integrated Circuit. Pages: 1–3, 8, 9, 84, 85

IC3 Incremental Construction Of Inductive Clauses For Indubitable
Correctness. Pages: 30, 32, 33, 46, 66, 128, 134, 141, 142, 146

IFS Information Flow Security. Pages: 127, 172, 185–187, 189–195, 198,
200, 203–205, 207, 223, 225

IFT Information Flow Tracking. Pages: 185, 188, 191, 199, 202, 207

IIB Input Interconnect Block. Pages: 77, 90–92, 94, 99–101, Glossary:
Input interconnect block

IP-core Intellectual Property Core. Pages: 1–3, 15, 16, 19, 20, 23, 33, 36,
39, 41, 44, 58, 60, 78, 80, 96, 188, 189, 199, 200, 202, 205, 211,
217, 225, 235, 236, Glossary: Intellectual property core

IS Inductive Strengthening. Pages: 128, 140–143, 148, 190, 202, 205,
217, Glossary: Inductive strengthening

ISA Instruction Set Architecture. Page: 22

LDM Linear Delay Model. Page: 107

LUT Lookup Table. Pages: xx, xxi, 9, 11, 13–15, 46, 72, 76–78, 80–84,
87, 90, 92, 93, 99, 101, 160, 162, 218, 230, 232, 236, 240

LUTRAM Lookup Table Random Access Memory. Pages: 72, 78–83,
87, 92–94, 98–102, 110, 115, 118, 119, 162, 232, 240, Glossary:
Lookup table random access memory

MC Model Checking. Pages: 23–26, 30, 44

MEMIF Memory Interface. Pages: 50, 96, 97, 229, 235

MMU Memory Management Unit. Pages: 50, 51, 161, 235

MUX Multiplexer. Pages: 11, 15, 87, 88, 90–93, 99, 101, 106, 109, 113

NFS Network File System. Page: 98

NIM Non-interference Miter. Pages: 192–194, 198, 204, 205, 207, 222,
223

ODG Overlay Description Graph. Pages: 78, 79, 83, 106–110, 112–115

OS Operating System. Pages: xx, 7, 50, 51, 96, 98, 120

OSIF Operating System Interface. Pages: 50, 96, 229

PCAC Proof-carrying Approximate Circuit. Pages: 208, 211, 212, 218,
219, 222

PCB Proof-carrying Bitstream. Pages: 39, 41, 42, 155, 156, 160, 181, 193,
239

PCC Proof-carrying Code . Pages: 3, 38, 39, 44, 53, 57, 58, 61, 62, 64,
66, 121, 244

PCH Proof-carrying Hardware. Pages: 3–7, 10, 17, 20, 25, 27, 30, 33,
36, 38–41, 44, 45, 47–50, 53–55, 57–67, 69, 71, 73, 75, 76, 82, 95,
104, 120–124, 126–128, 130, 132, 133, 136, 137, 140–142, 144,
146, 147, 149–154, 157–160, 163–165, 167, 168, 171, 172, 175,
180–182, 184–188, 190, 191, 194–198, 200–205, 207–209, 211,
213, 214, 217, 218, 220–222, 225, 227, 229–235, 238, 241–246,
Glossary: Proof-carrying hardware



xviii Acronyms

PCHIP Proof-carrying Hardware Intellectual Property. Pages: 44, 45,
55, 61, 122, 123, 188, 199, 205

PDR Property-directed Reachability. Pages: 30, 32, 33, 46, 128, 134,
142, 165, 169, 217–221, 239, 243

PIP Programmable Interconnect Point. Pages: xxii, 11–13, 81, 82, 86,
90, 92, 104, 108

PL Programmable Logic. Pages: 96, 99, 102, 162, 235

POSIX Portable Operating System Interface. Pages: 50, 96

PrC Property Checker. Pages: xxii, 6, 26, 28, 32, 39, 42, 62, 63, 122, 123,
126–130, 133, 136, 137, 142, 144, 152, 172, 175–180, 184, 188,
189, 192, 196, 214, 242, 243, Glossary: Property checker

PRNG Pseudo Random-number Generator. Pages: 245, 246

PS Processing System. Pages: 96, 97, 99, 235, 240

PSL Property Specification Language. Pages: 28, 29, 154, 163, 227, 234,
237, 238, 241–243

PVC Property Verification Circuit. Pages: 28, 31, 32, 41, 62, 63, 66, 121,
122, 126, 128, 130, 132–137, 139–144, 150, 155, 165, 172, 176–179,
181, 182, 184, 190–194, 198, 200–202, 204–207, 210, 214, 217,
222–225, 239, 243, Glossary: Property verification circuit

QBF Quantified Boolean Formula. Pages: 194–196

QBVF Quantified Bit-vector Formula. Page: 196

QEC Quality Evaluation Circuit. Page: 214

RAM Random Access Memory. Pages: xxi, 12, 17, 72, 78, 82, 93, 98,
99, 109, 157, 165, 167, 182, 200, 232

RFEC Relaxed Functional Equivalence Checking. Pages: 208, 209, 214,
217, 222, 225, Glossary: Relaxed functional equivalence check-
ing

RR-graph Routing Resource Graph. Pages: 74, 78, 80, 93, 106, 107,
112–114

rSoC Reconfigurable System-on-chip. Pages: 5, 6, 69, 70, 74, 76, 81, 96,
97, 99, 120, 131, 132, 172, 228, 231–235, 240, 243

RTL Register-transfer Level. Pages: 14, 44, 47, 55, 60, 122, 124, 188, 189

SAT Boolean Satisfiability. Pages: 27, 31, 32, 41, 42, 44, 45, 48, 49, 65,
121, 122, 126–128, 130, 133, 142, 143, 155, 158, 163, 179–182,
189, 190, 195, 210, 215, 217, 231, 239

SCM Self-composition Miter. Pages: 172, 192, 196, 222, 225, 245, 246

SDF Standard Delay Format. Pages: 88, 106, 108–113, 115

SEC Sequential Equivalence Checking. Pages: xx, xxii, 27, 128, 133,
152

SERE Sequential Extended Regular Expression. Page: 29

SMT Satisfiability Modulo Theories. Pages: 196, 245

SoC System-on-chip. Pages: 12, 35, 67, 71, 73, 74, 84, 101, 157, 233, 235,
239, 241

SPC Sequential Property Checking. Pages: 31, 128–130, 134, 142, 144,
146, 148, 150, 171, 172, 176, 177, 179, 182, 190, 210, 222



SQCC Sequential Quality Constraint Circuit. Pages: 210, 214–219

SSC Synchronous Sequential Circuit. Pages: 65, 84, 120–122, 127–132,
134, 135, 142, 149, 150, 168, 173, 175, 176, 185, 193, 198, 209,
225, 243, Glossary: Synchronous sequential circuit

STA Static Timing Analysis. Pages: 80, 88, 105, 176

SWT Software Thread. Pages: xx, 50, 96, 98, 228

TCB Trusted Computing Base. Pages: 41, 45, 53–60, 65, 66, 73, 123, 128,
131, 157, 175, 177, 191, 192, 207, 238, 242, Glossary: Trusted
computing base

TCL Tool Command Language. Page: 119

TLB Translation Lookaside Buffer. Pages: 51, 161

TMR Triple Modular Redundancy. Page: 223

TRNG True Random-number Generator. Page: 246

UCF User Constraint File. Page: 108

vFPGA Virtual Field-programmable Gate Array. Pages: xx, xxi, 5, 45,
55, 58–61, 65, 67–77, 79, 80, 84–91, 95–98, 100, 101, 103–105,
110, 115–121, 157, 158, 160, 163, 225, 227, 229, 231, 233, 235,
240, 243, 245, Glossary: Virtual field-programmable gate array

VPR Versatile Place And Route. Pages: 46, 47, 71, 73, 78–80, 85, 86, 89,
90, 93, 105–107, 112–118

VTPR Virtual Time Propagation Register. Pages: 74, 104, 117, 118

VTR Verilog-to-routing. Pages: 7, 42, 43, 46, 47, 60, 69, 71–74, 76–78,
80, 84–86, 88, 90, 93, 113, 114, 155, 230, 238

WCCT Worst-case Completion Time. Pages: 127, 133, 172, 174–177,
179, 180, 182–185, 208, 225

WCET Worst-case Execution Time. Pages: 173, 174

XML Extensible Markup Language. Pages: 46, 78, 93, 113

G L O S S A RY

AIGER is a file format for and-inverter-graphs (AIGs) defined by
Armin Biere. Pages: 47, 144, 190, 239

Approximate computing denotes any form of computing that is per-
formed deliberately at less than full precision, which is usually
done to reduce some metric like energy consumption while
exploiting some inherent error-resiliency in the target domain.
Pages: xv, 207

Checkable proof is the result of a formal verification in form of a
transcript or certificate, which can be checked for correctness

xix



xx Glossary

afterwards in order to verify the verification. Pages: xxi, 38,
39, 48, 54, 63, 65, 130, 141, 148, 165, 167, 168, 190, 197, 210, 213,
225

Combinational circuit is a circuit whose outputs solely depend on
the current inputs, i. e., it saves no internal state that would
affect the observable behavior. Pages: 26, 27, 31, 33, 41, 42, 55,
78, 82, 101, 121, 122, 126, 129, 130, 142, 143, 152, 155, 175, 179,
195, 210–212, 216, 231, Compare: Sequential circuit

Covert channel denotes an unintended flow of information between
two circuit elements through existing ports, i. e., a hidden new
information channel within existing ones. Pages: 185, 192, 195,
198, 199, 204, 206, 207

Delegate thread is a special kind of software thread (SWT) in ReconOS
that is acting on behalf of a hardware thread (HWT), thus
constituting the gateway by which the HW can have access
to, e. g., operating system (OS) services, virtual memory, and
shared memory. Pages: xvi, 50, 51, 96, 97, 158

Embedded lookup table is the term used by ZUMA to denote the
virtual lookup tables (LUTs), i.e., the LUTs of the ZUMA
virtual field-programmable gate array (vFPGA), in contrast to
the physical lookup tables of the physical host FPGA. Pages:
xvi, 76

Extra-functional property Pages: 124, 127, see Non-functional prop-
erty

Flip-flop is a volatile sequential circuit element which can stably store
a single bit as long as it is supplied with power. Pages: xvi,
xxiii, 9, 11, 17, 31, 77, 78, 82, 130, 131, 135, 200, 236

Functional equivalence checking is a formal HW verification tech-
nique that, depending on the circuit types, employs either
combinational equivalence checking (CEC) or sequential equiv-
alence checking (SEC) to verify that a given circuit exhibits
the same observable behavior as another one, which usually
is a so-called golden model of the circuit. Pages: iii, xvi, 25,
46, 121, 128, 152, 194, 197, 208

Functional property is a property of a circuit that concerns its func-
tionality, i.e., the observable behavior at the primary outputs.
Pages: 40, 55, 56, 123, 124, 127, 171

Golden model is a model or instance of a circuit which has been
defined by someone as the correct reference design that im-
plements the original design intent. Pages: xx, 19, 55, 123, 124,
151, 152, 244

Hard-core describes a hardware circuit which is implemented in ac-
tual, physical hardware (e. g., silicon) and that usually forms



Glossary xxi

a functional block, e. g., a CPU. Pages: 16, 50, 96, 99, Compare:
Soft-core

Inductive strengthening is a circuit property which has the following
three characteristics: initiation, i. e., it holds for all initial states,
consecution, i. e., if it holds in one state then also in all of its
immediate successors, and strengthen, i. e., compared to a base
property, this one holds for the same or fewer states. Pages:
xvii, 128, 140, 142, 190, 202, 266, 267

Input interconnect block is the ZUMA notation for the configurable
routing network that connects the inputs of a configurable
logic block (CLB) to the inputs of its lookup tables (LUTs), as
well as all outputs of the LUTs as feedback to the LUT inputs,
such that any CLB input or LUT output can be used as input
for any LUT. Pages: xvii, 77, 90–92

Intellectual property core is a tradable hardware module, usually
containing the encoded netlist of a (potentially quite sizable)
circuit that can be included as a building block in other hard-
ware designs. Pages: xvii, 1, 15, 19, 33, 39, 58, 78, 188, 235

Island-style describes a regular layout style for reconfigurable hard-
ware devices (such as FPGAs), where the actual configurable
logic blocks (CLBs) are “islands” in the regular lattice of hori-
zontal and vertical routing channels. Pages: 12, 14, 77, 78

Lookup table random access memory is RAM made of lookup tables
(LUTs), that can also be used as regular LUTs in data paths at
the same time, which immediately lends itself to their use in
virtual field-programmable gate arrays (vFPGAs). Typically
only a fraction of all LUTs on an FPGA are usable as RAM
(e. g., half of them). Pages: xvii, 72, 78

Non-functional property is a property of a circuit that is not part of its
observable behavior, i.e., two circuits which are functionally
equivalent could still differ in these properties (e.g., area,
latency). Pages: 6, 40, 56, 59, 124, 127, 133, 171–173, 175, 176,
182, 185, 208, 222, 225, 244, Synonym: Extra-functional property

Overlay is a circuit that is implemented on field-programmable gate
arrays (FPGAs), which itself is implementing a configurable
circuit that can be used to implement simpler circuits. Pages:
xxiii, 5, 6, 55, 58–60, 67–108, 110–120, 157, 158, 160, 162, 163,
182, 229–233, 235, 238, 240, 241, 245

Proof-carrying hardware denotes a distributed just-in-time verifica-
tion technique between two parties who exchange a hardware
module in trade and leverage a checkable proof, i. e., an arti-
fact of a formal verification, to establish a guarantee for the
trustworthiness of the consigned representation in terms of



xxii Glossary

some a priori agreed-upon properties at a much lower com-
putational cost than performing the formal verification. Pages:
iii, xvii, 3–7, 10, 17, 38–40, 43, 48, 53, 55, 61, 62, 64, 67, 69, 73,
104, 120, 121, 127, 128, 142, 143, 150, 151, 154, 155, 159, 163,
165, 171, 181, 186, 191, 200, 214, 222, 225, 227, 229, 232–234,
239, 242–245, 261, 270,

Property checker is a piece of circuitry that has only one output
and can evaluate whether or not another circuit has the en-
coded property, by observing the other circuit’s primary I/Os
(black-box verifications) or even its internal signals (white-
box verifications); the checker’s output error evaluates to true
whenever the design under verification (DUV) violates the
property. Pages: xviii, xxii, 28, 31, 32, 42, 43, 63, 122, 128, 129,
133, 136, 142, 144, 172, 176, 177

Property verification circuit is a composite circuit description that
is meant to be an input to a verification engine to prove
its unsatisfiability; it combines a design under verification
(DUV) and a property checker (PrC), distributes the exact
same primary inputs to them every cycle (which are driven by
the verification engine), forwards the DUV’s primary outputs
to the PrC and evaluates whether or not the PrC indicates
a property violation at its error output. Pages: xviii, 28, 31,
41–43, 62, 63, 121, 122, 126, 128, 129, 131, 138, 139, 142, 145,
150, 152, 155, 171, 172, 176, 177, 190, 191, 210, 214, 215, 223,
239, 243, 254

Relaxed functional equivalence checking is a formal HW verifica-
tion technique that, depending on the circuit types, employs
either combinational equivalence checking (CEC) or sequen-
tial equivalence checking (SEC) to verify that a given circuit
exhibits the same observable behavior as another one, relaxed
by a certain amount of error tolerable in the target domain
of the design under verification (DUV). Pages: xviii, 208, 215,
217, 222

Routing resource are all the wires and programmable interconnect
points (PIPs) that form the interconnection network on an
FPGA, which is used to route signals of the design to the logic
components. Pages: 15, 70, 76, 80, 85, 87, 88, 91–95, 100, 106,
113, 160

Sequential circuit is a circuit whose outputs depend on its current
inputs and its internal state, i. e., it retains a continuously
updated state that (usually) affects the observable behavior.
Pages: xxiii, 24, 27, 28, 31, 33, 42, 55, 63, 66, 76, 82, 84, 122,
128–132, 134, 144, 146, 149, 152, 155, 173, 175, 176, 209–212,
214, 216–218, 222, 223, 243, Compare: Combinational circuit



Glossary xxiii

Soft-core describes a hardware circuit which is implemented in recon-
figurable hardware (e. g., FPGAs) and that usually forms a
functional block, e. g., a CPU. Pages: 36, 50, 73, 200, 228, 232,
240, Compare: Hard-core

Synchronous sequential circuit is a sequential circuit where all se-
quential elements (e. g., flip-flops (FFs)) are clocked to one
global clock. Pages: xix, 65, 84, 120, 121, 127, 128, 131, 134, 135,
142, 150, 168, 173, 175, 185, 193, 198, 209, 225, 243

Trusted computing base is the set of files and tools that need to
be trusted by a user to perform a verification, i. e., this set
constitutes the root of trust of the verification process. Pages:
xix, 41, 53, 59, 65, 66, 73, 123, 128, 131, 175, 191, 207, 238, 242

Virtual field-programmable gate array is a special FPGA overlay that
implements a fine-grained reconfigurable array itself. Pages:
xix–xxi, 5, 45, 55, 58, 60, 61, 65, 67, 69, 71, 76, 84, 119–121, 163,
225, 227, 231, 243, 245,





1
I N T R O D U C T I O N

This chapter will outline and motivate the broad academical context
in which this thesis exists in Section 1.1, detail the specific contribu-
tions to the body of research that our subsumed work represents in
Section 1.2, and explain the structure of the entire thesis document in
Section 1.3.

1.1 motivation

Reconfigurable hardware devices have gained increasing attention in
academia as well as industry over the past few decades. Their software-
like flexibility, combined with their spatial computation paradigm, i. e.,
spreading out computations in space rather than time, allow them
to adapt to new challenges by becoming highly parallel or deeply
pipelined application-specific compute units. For actual workloads,
this ability enables them often to solve specific tasks much more en-
ergy efficient than any other type of computing device, which makes
them highly attractive for environments that have to be mindful of
how they spend their energy budget, like low-energy battery-powered
devices, or high-energy warehouse-scale computers. field-program-
mable gate arrays (FPGAs), the most prominent representatives of the
reconfigurable hardware device category, are in fact already deployed
in many diverse areas such as avionics, supercomputing, video analy-
sis, high-throughput cryptography, intrusion detection and prevention,
and even on Mars [1, 2]. In all of these environments they perform a
variety of functions, some of which are also mission critical.

When compared to traditional general-purpose integrated circuits
(ICs) or application-specific ICs (ASICs), reconfigurable hardware
devices tend to have much faster design cycles, due to high potential
and good market support for design reusage in the form of so-called
third-party intellectual property cores (IP-cores), and due to the fact
that FPGAs are readily available as commercial off-the-shelf (COTS)
devices and do not have to be physically manufactured as part of
the design process. These faster cycles enable a significantly lowered
time-to-market, which especially helps in markets that mainly work
in a winner-takes-it-all fashion.

With the increased interest in these devices, came a growing market
for them, especially when big international players made their moves,
such as Intel buying Altera, or Microsoft outfitting whole data centers
with FPGAs. A growing market, however, also has the downside of
making reconfigurable hardware increasingly attractive as a target for

1



2 introduction

criminal elements and espionage, be it industrial or between nations,
and hence research into reconfigurable hardware security has also
gained a lot of traction over the past decades. The differences between
ASICs and reconfigurable hardware devices also result in different
attack vectors which could render devices susceptible to malicious
modifications.

On the one hand, FPGA base arrays are indeed traditional ICs
themselves, and thus inherit their attack possibilities, of which the
untrusted offshore foundry is the most commonly assumed weak link
in the fabrication chain. Trimberger [3] points out, however, that these
base arrays do not hold complete designs yet, as they are missing the
runtime device configuration, which is an essential component of the
final device functionality. A potential adversary hence cannot target
their attack based on the final circuit and would have to spread it
as a probabilistic attack over the whole fabric, significantly lowering
their chance of success. And especially for COTS devices Trimberger
elaborates that adversaries have no way of knowing which device will
end up being bought by whom, and to reliably attack the interesting
targets they thus have to modify all produced base arrays, which
will submit their malicious design changes to the inadvertent thor-
ough testing of every customer that uses such a device in the future,
resulting in a significantly elevated chance of exposure.

Although these factors lower the attractiveness of subverting the
reconfigurable part of the base array, traditional IC security research
is also not irrelevant for FPGAs devices, since there are many fixed-
function building blocks on modern devices, which could be targeted
instead of the programmable logic; in fact, such attacks have actually
been observed in the wild [4]. The main threat to design security of the
actual reconfigurable part, however, are attacks on the configuration
instead of the base array. The device configuration, which is usually
stored in a file called configuration bitstream, or simply bitstream1, can
be compromised by several means (cp., e. g., [3, 5]):

IP-cores : The design can be attacked through the inclusion of un-
trusted IP-cores. These could be modified either by their respec-
tive creator, or even by third parties during their creation or by
intercepting them in transit.

EDA tools : Compromised electronic design automation tools can
modify the result of the translation from the design’s source
code to the device configuration, unbeknownst to their user.

direct tampering : An FPGA configuration in storage or trans-
mission can also be directly changed by powerful adversaries
who can interpret their proprietary content, e. g., most recently

1 We will use the term bitstream in this thesis to refer to a device configuration in
general, meaning it can be either stored in a file using a special format, or distributed
to the corresponding configuration points on an FPGA device.



1.1 motivation 3

demonstrated by Ender, Moradi, and Paar [6] who even cir-
cumvented the encryption and authentication mechanisms for
bitstreams.

physical access : Since FPGAs are typically reprogrammable in
the field by design, any attacker with physical access can po-
tentially exchange the current configuration with a modified
one.

Companies or engineers looking to create a design that benefits
from the promise of a very fast time-to-market with FPGAs are thus
facing a dilemma: To reach competitive productiveness they have to
heavily rely on third-party IP-cores for large parts of their design, and
they have no other choice than to use the electronic design automation
(EDA) tool chain provided by the FPGA device vendor, but any of
these could contain malicious modifications by an attacker. Such a
creator thus has no way of knowing if their bitstream will implement
(only) their intended behavior or will be modified before it reaches
their customers, which could jeopardize their reputation. By following
this process, which is indeed today’s standard process to create new
hardware, regardless whether it is an IC or reconfigurable hardware
device, the creator thus implicitly trusts all involved third parties and
transmission channels to be secure and non-malicious, just as the final
customer trusts the creator and all intermediate parties who handle
the design and device.

Since a trustworthy creator may thus actually sell maliciously mod-
ified hardware without realizing it, the only way to establish that a
design or IP-core deserves trust is to verify it. A thorough verifica-
tion is quite cumbersome and lengthy, however, especially if it is a
black-box verification, i. e., one without knowing anything about the
interior layout of the design / device, which is counterproductive to
achieving a low time-to-market. The creator can moreover only verify
all entities they receive themselves, but cannot make sure that their
final design is not modified on its way to their customer, as in the
attack presented by Ender, Moradi, and Paar [6], where the final user
receives a valid encrypted and authenticated bitstream that is com-
pletely under the control of the attacker. This means that to establish
full trust, the final user would have to perform their own verification
of the creator’s design, which is usually not a valid option due to, e. g.,
lack of resources.

With the proposal of proof-carrying hardware (PCH), Drzevitzky,
Kastens, and Platzner [7] have introduced a method to overcome this
dilemma of how to establish trust where thorough design verifications
would have to be performed by parties who are ill equipped for them,
or under considerable time pressure to meet market demands. Anal-
ogous to a software verification concept called proof-carrying code
(PCC), they have devised a scheme, where the sending party verifies



4 introduction

their own design and send a certificate of compliance to some prede-
fined set of rules along with it. The recipient can then easily validate
the certificate just-in-time and make sure that it belongs to the received
design, and thereby gains the benefits of a thorough verification with
just a fraction of its original cost in time and computational effort. As
the name proof-carrying hardware implies, the certificate is meant to be
evidence of a formal proof which has been shown for the design.

The original authors have defined the concept and have also created
a first tool flow to showcase the successful utilization of the approach
with some benchmarks. They have implemented a way to apply the
PCH method, by having the sender create a certificate for the design
implementation’s functional equivalence to its original specification.
This procedure is popular in the functional verification of hardware
designs, and will catch any and all bugs in a design that alter its
functionality, as it is a formal verification (FV) method. Unfortunately,
eliminating all bugs is not quite enough to establish trust in a design,
as we additionally have to consider the intent of an attacker who could
undermine that trust. Vosatka [8] writes that a “malicious modification
of a circuit that is designed to alter the circuit’s behavior in order to
accomplish a specific objective” should not be considered to be the
same as unintentional design bugs, since only the latter are bounded
by the original specification, whereas the former deliberately goes
beyond that bound.

As is true for most attack and defense environments, proof-carrying
hardware is thus part of an arms race with ever more sneaky and
subtle malicious modifications, today usually called hardware Trojans,
versus a growing arsenal of verification, detection, prevention and
design hardening methods. This thesis reflects our efforts to increase
PCH’s clout in this race, by enabling studies of real PCH-protected
circuits and increasing the expressiveness and applicability of the
method.



1.2 thesis contributions 5

1.2 thesis contributions

This thesis adds to the body of research about proof-carrying hardware
(PCH) and defines a new state of the art for its application to the
verification of reconfigurable hardware device configurations:

1. As main contribution, we significantly extend the scope of PCH –
from a theoretic concept with a proof-of-concept flow that is lim-
ited to abstract FPGAs and one safety policy, i. e., combinational
equivalence checking, to a more practical version with a wide
range of verifiable properties and more complex safety policies
(Chapters 5 and 6).

2. As secondary contribution, we introduce our adaption, extension
and embedding of a fine-grained FPGA overlay, i. e., a virtual
field-programmable gate array, that is capable of bringing PCH-
certified circuits onto actual modern reconfigurable hardware
(Chapter 4).

3. We underline the feasibility of applying our research by provid-
ing a Linux-based reconfigurable system-on-chip (rSoC) testbed
for PCH (Section 4.4) and supplementing it with two com-
plete demonstrator setups that we successfully employed in live
demonstrations to showcase the complete remote verification
flow (Chapter 7).

4. To complement these contributions and to fully leverage their
potential, we furthermore present an advanced tool flow which
comprises powerful state-of-the-art tools for verification and
synthesis (Section 3.2).

1.3 thesis organization

This document is structured as follows. In Chapter 1, the current
one, we introduce the research field and motivation for this thesis,
the specific contributions and explain the thesis structure. Chapter 2

explains all relevant concepts and generally related work, first for
reconfigurable hardware, then for functional verification in general
and PCH specifically, and then concludes with a brief introduction of
all tools and platforms used within the thesis.

In Chapter 3 we explain in detail why we chose the bitstream level
for our research, despite the obvious disadvantage of not being able
to understand the vendor’s file format.

Chapter 4 discusses our contribution of a complete rSoC based on
the combination of ReconOS, a powerful Linux-based architecture
and execution environment for hybrid HW / SW systems, and ZUMA,
a state-of-the-art fine-grained virtual field-programmable gate array
which we have significantly extended, e. g., by devising a means to



6 introduction

perform timing-driven routing for circuits in the overlay which is
rooted in the actual physical properties of the underlay. We have
also defined a complete Linux-based rSoC with the overlay that we
introduce in this chapter, which can be used as testbed and rich
environment for bitstream-level verifications, as it leverages an open
configuration bitstream format.

We discuss and elaborate the main contribution of this thesis, i. e.,
how we extended the scope of proof-carrying hardware to certify a
wider range properties, in Chapter 5 for property checking, and in
Chapter 6 for non-functional properties. The range of new possibilities
using our proposed mechanisms include partial functional verification,
verification without golden model or specification, and certification of
non-functional properties, i. e., circuit properties that do not directly
affect the observable behavior, such as a guarantee that some secret
data will never be leaked.

Chapter 7 presents the PCH demonstrators, i. e., prototypes which
have been developed to showcase the application of the research from
the other chapters, such as the ability to generate PCH certificates from
assertions formulated in the powerful hardware verification language
(HVL) SystemVerilog. The demonstrators furthermore show successful
applications of our comprehensive flow for PCH and its interaction
with the overlay to include PCH-certified designs in modern FPGAs.

The last two chapters, Chapter 8 and Chapter 9 conclude the thesis
and present a brief outlook on possible future work in the area of
proof-carrying hardware.



2
B A C K G R O U N D

2.1 Reconfigurable Hardware . . . . . . . . . . . . . . . . . 7

2.1.1 Field-Programmable Gate Arrays . . . . . . . . 10

2.1.2 Design Flow . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Characteristics . . . . . . . . . . . . . . . . . . . . 15

2.2 Hardware verification . . . . . . . . . . . . . . . . . . . 16

2.2.1 Functional Verification . . . . . . . . . . . . . . . 17

2.2.2 Simulation-based Verification . . . . . . . . . . . 20

2.2.3 Formal Verification . . . . . . . . . . . . . . . . . 23

2.2.4 Model Checking . . . . . . . . . . . . . . . . . . 30

2.2.5 Monitoring and Enforcement . . . . . . . . . . . 33

2.3 Proof-carrying Hardware . . . . . . . . . . . . . . . . . 38

2.3.1 Early Bitstream-Level Proof-carrying Hardware 39

2.3.2 Register-transfer Level PCHIP . . . . . . . . . . 44

2.4 Tools and Platforms . . . . . . . . . . . . . . . . . . . . . 45

2.4.1 ABC . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.2 VTR . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.3 Yosys . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.4 PicoSAT and Tracecheck . . . . . . . . . . . . . . 48

2.4.5 CaDiCaL . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.6 DRAT-trim . . . . . . . . . . . . . . . . . . . . . . 49

2.4.7 Gratgen and Gratchk . . . . . . . . . . . . . . . . 49

2.4.8 ReconOS . . . . . . . . . . . . . . . . . . . . . . . 50

This chapter shall serve as a reference to relevant work which is
related to the entirety of the thesis. Research related only to small
aspects will be presented within the context of that aspect of the
thesis, but in this chapter we will discuss the general research fields of
reconfigurable hardware and computing in Section 2.1, challenges and
general approaches to the verification thereof in Section 2.2, the body
of research on proof-carrying hardware (PCH) which came before this
thesis in Section 2.3, and some of the tools and platforms used within
this thesis, such as ReconOS, the Linux-based operating system (OS)
for reconfigurable HW / SW systems, or the Verilog-to-routing (VTR)
tool flow, in Section 2.4.

2.1 reconfigurable hardware

The focus of this thesis is to create formally verified guarantees for
properties of circuits that are implemented on reconfigurable hard-
ware, which is a special type of programmable hardware; a class of
devices whose function can be changed after fabrication. The idea

7



8 background

of flexibly adaptable hardware is commonly attributed to Estrin [9],
who proposed the concept in 1960 to “permit computations which are
beyond the capabilities of present systems” by temporarily rearrang-
ing the hardware into “a problem oriented special purpose computer.”
Actual devices that follow this idea have been around for roughly
half a century by now, first in the form of masked programmable
gate arrays (MPGAs) that comprise of a regular array of transistors,
gates, or blocks, and which can be produced in bulk, and hence at a
rather low price [10]. The devices are programmed by adding chan-
nels between the blocks in a final, application-specific production step,
that can happen at a later point in time, thus enabling cost-efficient
low-volume manufacturing of integrated circuits (ICs), but without
the option to later reprogram the device. The main benefit of MPGAs
is thus the significantly shortened time-to-market, as the generic array
itself can be manufactured in advance and then stored, and the adap-
tion of the generic structures with the application-specific channels
can be achieved in a matter of weeks, giving such devices a significant
advantage over traditionally produced ICs. This shorter lead time can
have a large impact in a situation where there is competition for ICs
of that functionality, as arriving six months later at the market can
then result in a loss of revenue of about one third over the lifetime of
the product [10], as in IC design, a disproportionate amount of said
revenue goes to the product that is first available at the market [11].

Around the same time as MPGAs, another family of programmable
devices was introduced, usually grouped together as simple program-
mable logic devices (SPLDs), that typically have a size equivalent
to roughly 1000 logic gates [10]. Devices of this type usually consist
of two or several arrays of logic, offering fixed functions with pro-
grammable connection points: A programmable logic array (PLA) for
instance has a programmable AND-plane followed by a programmable
OR-plane, allowing a designer to program the device to calculate any
Boolean function that is small enough as sum of products over the
available inputs by just enabling or disabling the junctions in the
wiring of both planes. Over the course of a decade, SPLDs evolved
into field-programmable devices (FPDs), which, according to Brown
et al. [12], is “a device that can be configured by the user with sim-
ple electrical equipment,” in contrast to the high effort and special
equipment that was necessary to reprogram the earlier devices. One
example of this development is read-only memory (ROM), which
evolved from programmable ROMs (PROMs) over UV light erasable
PROMs (EPROMs) to electrically erasable PROMs (EEPROMs), which
can be updated more or less instantly without any special tools by any
user in the field.

Programmable logic devices (PLDs) continued to grow in size and
complexity, especially when complex PLDs (CPLDs) were introduced
in the beginning of the 1980s which combined several SPLDs into



2.1 reconfigurable hardware 9

one IC by arranging them as macro cells or logic array blocks (LABs)
around a central programmable interconnect [10], thereby also greatly
increasing the complexity of the functionality that can be implemented
in this kind of devices. The abundance of logic resources available
on CPLDs, their ability to store their configuration in non-volatile
memory, and their predictable and fast timing, i. e., small I/O pin to
I/O pin delay, make them a viable choice even today, for specific tasks
where these features are necessary [10]. Since complex datapaths often
require much storage, however, and not only many logic resources in
a sea-of-gates as CPLDs offer, a new device type called field-program-
mable gate array (FPGA) was introduced a few years later, seeking to
strike a different balance between the availability of logic and registers
while adopting the programmable interconnect of CPLDs. FPGAs
aim to combine the flexible programmability of PLDs with the high
efficiency of MPGAs, by replacing the individually fabricated channels
of the latter with a programmable interconnect, and the prefabricated
fixed-function cells with programmable logic [10].

The main differences of CPLDs and FPGAs derive from their respec-
tive basic building blocks: where CPLDs consist of a number of SPLDs,
and thus large and wide matrices of AND and OR-planes, FPGAs
are much more fine-grained and are built from small configurable
logic blocks (CLBs), which in turn are realized with a number of very
narrow lookup tables (LUTs) (typically at most 6 : 1) and registers, i. e.,
flip-flops (FFs) [10]. The CLBs of FPGAs lend themselves to complex
sequential algorithms, but these also induce a high realization effort
within the computer-aided design (CAD) flow, as the actual timing
of the signals depends on the configuration of the logic and the inter-
connect, and it can thus be quite challenging to find a combination
that is fast enough for a given problem. CPLDs on the other hand can
be most advantageous for applications that are mostly combinational
in nature and require little to none internal state information, as for
these the fixed, unsegmented pathways within the device allow for a
very fast and predictable signal propagation that is not dependent on
the current circuit configuration, unless it introduces long feedback
loops [10].

With their capability to be reprogrammed many times in the field,
both device types surpass the original meaning of programmable HW,
which is why their current programming is often referred to as con-
figuration, to reflect its malleable nature. Miyazaki [13] distinguishes,
i. a., the following configurable types of devices:

configurable logic is configurable exactly once in a destructive
process, e. g., burning a fuse, which prevents further reconfigu-
rations. This type thus also describes the early programmable
hardware such as MPGAs.

reconfigurable logic is reconfigurable many times, but only
by using a special setup or system which sets the device in



10 background

a reconfiguration mode. This is also referred to as "in-system
programming", and would for instance encompass EPROMs.

dynamically reconfigurable logic provides the capability to
be reconfigured on-the-fly, also denoted as "in-circuit reconfigu-
ration". Devices of this type can be reconfigured in their regular
operation environment and often from within the circuit itself,
and are typically based on static random access memory (SRAM)
cells that store the current hardware configuration in a volatile
way. Hutchings and Nelson [14] subdivide this category even
further in devices capable of global or local runtime reconfigu-
ration, where the former would reset the whole device, while
the latter would allow configured circuit parts to be left running
undisturbed, while another area of the chip is being reconfig-
ured.

Field-programmable devices, and thus CPLDs and FPGAs, fall into
the reconfigurable categories. The technology used for the storage of
their current configuration is usually the discriminating factor between
reconfigurable and dynamically reconfigurable logic. CPLDs tend to
employ non-volatile memory for this purpose, such as EEPROMs or
Flash, which would thus fall into the former category, whereas FP-
GAs nowadays mostly use volatile SRAM cells, which is dynamically
reconfigurable at runtime, but requires a reload of the configuration,
and thus a warm-up phase, after every power cycle [15].

In the context of this thesis we are interested in proving properties
of circuits in a dynamic and changing environment, where the poten-
tial benefits of proof-carrying hardware (PCH) are most pronounced
for the consumers, as it enables them to gain trust into a received
circuit comparable to a full formal verification (FV) at a significantly
lower computational cost. As these dynamics are most present in
the category of dynamically reconfigurable logic, and since FPGAs
are much better equipped than CPLDs to implement applications
requiring complex datapaths with large internal states, enabling far
more interesting scenarios, we will focus on the configurations of
such field-programmable gate arrays for the remainder of this thesis.
Going forward, we will now furthermore treat the terms reconfigurable
hardware and FPGA as synonymous.

2.1.1 Field-Programmable Gate Arrays

An FPGA consists of two types of programmable resources: Logic and
interconnect [16]. A common concept for the logic resources is their
encapsulation into blocks that define the underlying array structure,
which are thus the basic building blocks used to implement any logic
function in an FPGA, either combinational or sequential [12]. Figure 2.1
shows an abstract overview of such an array, with internal logic blocks,



2.1 reconfigurable hardware 11

generic interconnect between them, and special connection blocks on
the boundaries.

Figure 2.1: Regular array structures of an FPGA.

The programmable interconnect is typically arranged in logical chan-
nels of individual tracks which enable a design to connect two arbitrary
logic elements to each other by configuring several programmable
interconnect points (PIPs) between them, although an FPGA might
also offer less routing flexibility to save chip area. The parameters of
FPGA architectures are, according to Wannemacher [10]:

• Its granularity, i. e., the number and size of the contained logic
blocks,

• the architecture of the logic blocks,

• the number and types of interconnect channels,

• the layout of the cells and channels, i. e., the array structure, and

• the employed programming technology, which usually is SRAM-
based.

In their most basic form, the logic blocks of FPGAs comprise one
lookup table (LUT) (nowadays typically 6 : 1) and one bypassable
flip-flop (FF), as well as potentially some carry logic, which together
is called a basic logic element (BLE) [15], cp. Figure 2.2. In modern
Xilinx devices, a BLE has two FFs, but there are restrictions on the
number and combinations of FFs that can be used simultaneously by
a design [17]. FPGA architectures usually group several of these BLEs
into a larger block denoted as configurable logic block (CLB), which thus
contains several LUTs, registers, and intra-CLB interconnect. In Xilinx
devices, there is an additional intermediate level called a slice, which
comprises four BLEs, some MUXs, and dedicated high-speed carry
logic for arithmetic calculations; the CLB then consists of two of such
slices [17].

Architectures built from these blocks as their primary logic re-
sources, and hence with a path width of one bit, are also called fine-
grained reconfigurable logic. The granularity of an FPGA’s logic blocks



12 background

Cout
carry
logic

Cin

4-LUT

I1 I2 I3 I4

DFF

out

Figure 2.2: Typical layout of a BLE of an FPGA. Taken from [15].

can, however, also be quite diverse, and today’s devices usually have a
larger range of blocks that can be used to implement functionality. The
other types found in modern devices are, e. g., more coarse-grained
optimized fixed-function blocks, such as multipliers, fast carry chains
as in Xilinx’ slices, cryptography cores, arithmetic logic units (ALUs),
special RAM, or even entire CPUs embedded into the programmable
logic [15–17].

The purpose of the programmable interconnect between the individ-
ual logic blocks is to allow a design to connect multiple CLBs to form
functions which would not be possible with just one, and to route
signals from and to the I/O blocks of the FPGA. These I/O blocks
are themselves also an important type of interconnect, shown in dark
gray on the perimeter of the device in Figure 2.1, whose purpose is
to allow an FPGA to connect to off-chip resources or, in the case of
systems-on-chip (SoCs), to other on-chip resources of a different kind,
e. g., a CPU or a transceiver [10, 16]. The internal routing resources
are typically arranged in channels with a certain bit width, which are
built from individual tracks, that in turn are made of individual wire
segments that connect programmable interconnect points (PIPs). Pro-
grammable switches, or switch boxes, allow individual signals to take a
different route wherever two channels intersect, and connection blocks
connect the I/Os of CLBs with the tracks of the adjacent channels [10,
12]. Figure 2.3 shows the relationship of these blocks and boxes on a
typical island-style FPGA.

Since device designers had realized that full connectivity is much too
costly in chip area and usually not required in logic designs, each of
the connectivity blocks does not implement a fully connected crossbar
nowadays, but is rather sparse in the available PIPs, to save area. The
measure of sparseness is usually called the flexibility of a connection
block or switch box, and it indicates to how many other tracks one
incoming track can connect to. The sum of the routing resources
and their specific amount, layout, and flexibility parameters is also
referred to as the routing architecture of the FPGA [12]. The choice of
the flexibilities is connected to the important trade-off between chip



2.1 reconfigurable hardware 13

Logic
Block

Switch
Box

Connect
Block

Connect
Block

Logic
Block

Connect
Block

Switch
Box

Connect
Block

Logic
Block

Switch
Box

Connect
Block

Connect
Block

Logic
Block

Connect
Block

Switch
Box

Connect
Block

Figure 2.3: More detailed view of the basic structures found on an FPGA with
island-style layout: Logic blocks floating on a sea of interconnect.
Taken from [15].

area and routability, which is “the percentage of required connections
successfully completed after routing,” [12] i. e., a measure on how
good a certain routing architecture can avoid congestion of channels
or individual tracks. According to the experiments of Brown et al.
[12] the connection block flexibility, i. e., how many tracks the CLB
I/Os connect to, has to be at least half the channel width to be able
to achieve full routability. Moreover, these CLBs, that typically have a
more or less rectangular shape, have the possibility to route the output
pins of their contained LUTs to each of their four sides, or only to a
subset of them, which further affects the routability. Brown et al. also
found that the flexibility of the switch boxes influenced the measure,
but their topology also had a significant impact, i. e., for switch boxes
it is not only important how many tracks one track can connect to, but
moreover exactly to which other ones.

There are several ways to arrange all these resources mentioned
above on FPGAs [16]. The interconnect can, for instance, just connect
each nearest neighbors to one another, such that each CLB has one
to four directional channels available, which has the benefit of few
PIPs but the disadvantage of having to involve logic blocks in the
routing of signals. The structures used in the descriptions above,
i. e., wire segments, tracks, channels, switch boxes and connection
blocks, together form a so-called segmented interconnect, which has to



14 background

sacrifice lots of chip area for its adaptability, but can route signals all
through the FPGA without involving logic resources. To help with the
increasingly large propagation delays of signals that have to travel far,
FPGAs with segmented interconnect usually also provide long lines
that span larger sections or even the entire array in one step. One of
the most prominent layout options for FPGAs that usually makes use
of this segmentation is the so-called island-style, which is depicted
in Figure 2.3 and called like that, as it looks as if “logic block islands
float in a sea of interconnect” [16].

Another possibility to arrange the interconnect is to organize it
hierarchically, i. e., forming larger structures out of smaller, local ones.
This style takes the idea of the CLBs one step further, by encouraging
a clustering of the implemented design into areas that communicate
much to each other over the short local connections, thus avoiding con-
gestion on the main lines that connect different parts of the hierarchy.
Whether or not a design can make good use of an FPGA organized like
this, heavily depends on whether its internal communication patterns
can be arranged accordingly.

2.1.2 Design Flow

To actually be able to use the reconfigurable structures described in
the last section, we have to be able to create new configurations for
them. To this end, one can employ what is usually called a computer-
aided design (CAD) flow, for which each vendor has their own set
of electronic design automation (EDA) tools. These tools help the
circuit designers to convert between the different abstraction levels
involved in programming the hardware: a) The algorithmic level, b) the
register-transfer level (RTL), c) the logic or gate level, and d) the circuit
level [10].

This requires a synthesis of the design, i. e., a transformation of
behavioral into structural descriptions, on each abstraction level [10]:
First, the designer performs a system synthesis in which he partitions
the system into its components, along with their target environment,
e. g., software or hardware. Afterwards, the first EDA tool executes
the algorithm or high-level synthesis, which transforms algorithmic
descriptions to data and control paths in RTL. These paths will then be
converted to registers and connections that realize Boolean functions,
often referred to as logical netlist, by the RTL synthesis. The logic (or
gate) synthesis transforms the Boolean functions into gates, and the
final circuit level synthesis (technology mapping) packs and maps
these gates to LUTs [18, 19], thereby creating a final network of logic
blocks which implements the original functionality [12], often called
the physical netlist.

At this point the synthesized design exclusively uses technology
that is available on the hardware device and the remaining steps



2.1 reconfigurable hardware 15

of the CAD flow then deal with actually physically arranging the
components on the FPGA. To this end, the EDA tools try packing the
components into local clusters, placing all of them on the FPGA and
then routing all required connections between them using the routing
resources, iterating these steps until a suitable solution is found or
some time budget expired. For the actual routing step, however, the
EDA tools typically work on an abstract model of the FPGA. The
widely used PathFinder routing algorithm, e. g., works on a Circuit
Graph Model, in which the vertices are electrical nodes or wires in the
FPGA architecture, and the edges are the switches that connect these
nodes [20]. The resulting placed and routed netlist of FPGA logic blocks
directly indicates how each configuration bit of the affected area has
to be set to implement the original circuit.

The final result of all synthesis steps is then this new set of config-
uration bits for every programmable resource of the FPGA, or just a
subset of them. This set is denoted as configuration bitstream of the
FPGA, and it contains, e. g., information about all LUT contents, as
well as all the configuration bits for the routing MUXs that the switch
boxes and connection blocks are made of, the direction of each I/O
block, and the contents of all embedded memory structures [19]. The
file formats used to store these bitstreams are usually proprietary, and
can hence only be created, modified and written by the EDA tools
of the FPGA vendor [19]. This circumstance is the main reason for
Chapter 4 of this thesis, as we will discuss in Section 3.1.

2.1.3 Characteristics

According to Hutchings and Nelson [14], the main strengths of FPGAs
are their advantage in time-to-market, which the authors measure
at approximately six to twelve months earlier when compared to
application-specific ICs (ASICs), as well as their low cost per device
due to their mass production, which can only be met by ASICs if these
are also produced in very large quantities. The main weaknesses of
FPGAs are the comparably high power consumption, which is the
result of the many transistors required for the programmability of
the devices, and the long delays which a sizable circuit suffers. The
question of whether to use an ASIC or an FPGA is thus mostly decided
by the target number of units and their required speed [10], if the
added flexibility of using reconfigurable hardware in the field is not a
concern.

Since a design that is transformed into a configuration will go
through the different abstraction levels mentioned above, FPGAs offer
several chances for design reuse, which lowers the design complexity
of new designs and thus the time-to-market even further. Reused
designs are typically called intellectual property cores (IP-cores) and
there is an ever growing market for them nowadays. Wannemacher



16 background

[10] distinguishes three types of IP-cores:

soft-ip-cores are stored and exchanged as synthesizable hardware
description language (HDL).

firm-ip-cores are (structurally and topologically) optimized soft-
IP-cores with constraints for implementing them on specific
FPGA families, potentially even including placement constraints.

hard-ip-cores (also called hard-cores) are stored as placed and
routed netlist-level description for one specific FPGA family.

The main computational benefit of FPGAs is their spatial computa-
tions, i. e., functions are computed in space and not in time, as would
be the case for regular CPUs [10]. This implies a few characteristics of
target applications, which are very well suited for FPGAs [14]. Data
parallel applications, i. e., the ones performing simple calculations on
large amounts of independent data, pipelined algorithms, as well as
applications with simple control requirements, i. e., only little to no
branching, and those which require a non-standard or even dynamic
bit width between their components.

Compared to ASICs and their design flow, an FPGA, or more specif-
ically the functionality of an FPGA determined by its configuration,
remains malleable, even after its deployment in the field. This can
help to greatly reduce the costs of finding an error in a given design,
which otherwise follows the rule of ten [10], i. e., it is ten times more
costly to find a hardware bug only in the adjacent step of the product
cycle. While it is thus cheap to fix a bug in the specification of a de-
sign, it is increasingly costly if it is only discovered during simulation,
synthesis, in the bitstream or on the circuit board, in the final system,
and most costly if it is first encountered in the field by a customer,
which would likely also require refunds and hurt the public image
of the company [11]. Making sure that the total cost induced by such
malfunctions is kept at a minimum is the goal of hardware verification,
which is the topic of the next section.

2.2 hardware verification

The purpose of verification is to ascertain whether some artifact indeed
exhibits a set of assumed properties. For software and hardware alike,
these properties predominantly concern the functionality, i. e., the
question if the artifact behaves as expected in all relevant situations.
The goal of the corresponding functional verification is thus to discover
misbehavior where the function does not match the original intent,
so-called bugs, which can be the result of faults in the design, the
implementation, or, additionally for hardware, the device fabrication,
where the process is called test verification.



2.2 hardware verification 17

In this section, which is heavily based on a book by Wile, Goss, and
Roesner [11], we will give a brief overview of the field of functional
hardware verification. We will start with some fundamental obser-
vations about functional verification at design time in Section 2.2.1,
which is a vital aspect of hardware design, because verification has, of
all the design flow steps, the most significant impact on the three main
constraints that HW designers have to balance: 1. Time-to-market ,
2. cost, and 3. quality. We will then first consider simulation-based
verification in Section 2.2.2, which was the prevalent form of functional
verification until the mid 1990s, and usually applied using electronic
design automation (EDA) simulation engines. After a period of in-
house development of automatic test generation by hardware design
companies, today EDA industries dominate the market again with
advanced verification engines. These engines are not only capable of
sophisticated simulation of hardware circuits, but can also perform
formal verification (FV), which we will cover more extensively in Sec-
tion 2.2.3, as this is the form of verification to which proof-carrying
hardware (PCH) methods almost exclusively belong to, as their name
indicates.

Since the reconfigurable hardware targeted in this thesis is im-
plementing a circuit once it is configured, the traditional hardware
verification methods do also apply here. The dynamics of systems
employing reconfigurable hardware, however, call for fast functional
verification solutions that do not jeopardize the time-to-market ad-
vantage or rapid prototyping capabilities that these devices have (cp.
Section 2.1). PCH specifically addresses this verification speed require-
ment, and is the topic of Section 2.3. Towards the end of this section,
we will also introduce the concept of runtime verification through mon-
itoring and enforcement in Section 2.2.5, which can also greatly help
to cope with the involved dynamics of reconfigurable hardware fast
enough.

2.2.1 Functional Verification at Design Time

For functional verification, the “verification engineer faces two major
challenges: Dealing with enormous state space size and detecting
incorrect behavior.” [11] In the case of hardware verification, the first
challenge, the state space size, is tied to the combined capacity of
all storage elements of the circuit, i. e., flip-flops (FFs), latches, and
RAMs that can store bits between the cycles of their clock: With n
storable bits the state space encompasses 2n possible states. As the
output and next state of the circuit are calculated from the current
state and the current input set in each clock cycle, the total verification
complexity usually grows exponentially in both, the number of inputs
and the number of storable bits. Since this exponential growth quickly
prohibits the verification of designs that are large in any of the two



18 background

metrics, most verifications that go beyond toy examples employ as
restrictive limitations as possible on the circuit states: The number of
states that actually need to be verified can be reduced significantly by
only considering the reachable states of the circuit, i. e., the states which
the circuit can actually reach during normal operation by applying
sequences of the considered inputs, which usually is only a fraction
of the total 2n encodable states. If restricting the states still does
not render the verification tractable, the verification engineer usually
divides the circuit into smaller subcomponents which are verified
separately with their interfaces.

For the second challenge, the identification of incorrect behavior
where the design functionality does not match the design intent,
the verification engineer requires a method to compare the actual
behavior to the intended one. There are different ways to achieve
this comparison, but most result in the verification engineer requiring
either a complete model of the circuit behavior, or a set of rules
describing the important aspects. A model is typically given at a higher
abstraction level than the circuit itself, e. g., a thorough description in
a natural language as part of a design document, or the behavioral
description in a hardware description language (HDL) given by the
original circuit description, and then transformed into a model suitable
for the chosen verification form. For both versions, the consideration
of the circuit at the higher abstraction level has the advantage that
relationships between inputs are much clearer, e. g., if and how they
belong to a bus of signals, which is useful since the input space is
also exponential in the number of circuit inputs, also adding to the
verification complexity. The verification engineer can then, for instance,
divide the input space into legal and illegal commands and data sets
for the circuit, and if the circuit is only used in an environment that
prevents illegal inputs, the circuit verification only needs to consider
the legal ones. From a set of rules, and indirectly also from a circuit
model, an engineer can derive checks for internal components of the
circuit, which will not only flag incorrect behavior, but also aid in
debugging the circuit by providing a hint for the bug location.

To address these central challenges, all approaches for functional
verification have two fundamentals in common, according to [11]:

1. They drive the state transitions and input scenarios.

2. They flag any incorrect behavior exhibited by the design.

These can be accomplished by either simulating the operation of the de-
sign under verification (DUV) using a simulation model, as described
in Section 2.2.2, or by applying formal methods and proof techniques,
as discussed in Section 2.2.3. The main operational difference between
the two methods is that performing one single simulation will make
sure that all desired properties of the circuit hold for one specific input
sequence, whereas performing one formal verification will guarantee



2.2 hardware verification 19

that one specific property holds for all possible input sequences. To
gain a measure of confidence in the DUV, simulation-based verifi-
cation thus needs to perform a very large number of well-chosen
simulations, while FV needs to carefully select the subcomponents
to verify in order to stay within viable verification time and memory
limits. The main difference in the quality of the verification results is
a direct consequence of their main method to gain insight into the
behavior of the DUV, i. e., testing versus formal proofs, as Dijkstra al-
ready remarked in 1970 that “testing can be used to show the presence
of bugs, but never to show their absence!” [21]

Both types of functional verification internally rely on a model of
the DUV that describes its specific behavior. Note that this point of
reference has a key role for the verification, regardless of whether
it is a high-level model or a set of properties, as it defines what
constitutes correct behavior for the DUV. Should this definition, often
also called golden model, circuit or reference, not correctly represent the
architect’s design intent, then a successfully verified DUV will inherit
the same flaws. The flawed model could even prevent a correctly
implemented circuit from being successfully verified, yielding a false
negative as verification result. Obtaining a bug-free point of reference
which is true to the actual intent is hence imperative for any functional
verification. This might require an iterative process to home in on the
final verification model that actually captures the desired behavior.
Most of these models try to describe the involved logic as accurately as
possible, while abstracting away most or all of the timing complexity,
by discretizing all time related events according to the clocks present
in the system. Any verification we describe or use here in this thesis
also follows this principle and is thus a discrete time verification.

To cope with the growing complexity of modern hardware designs
a verification engineer can apply a divide-and-conquer strategy such
as the compositional reasoning described by McMillan [22]. Large and
complex systems are broken down into their components, i. e., their
intellectual property cores (IP-cores) or even smaller modules, and the
overall verification split into subgoals for each such subcircuit, yielding
tractable verification problems. This way, already verified guarantees
for lower-level modules can be used as simplifying verification as-
sumptions for higher-level components, but the latter verification has
to also verify the correct connectivity and usage of the pre-verified
components (e. g., interface protocols). Care has to be taken, however,
to balance the size of the subproblems against their number, to reach
a feasible overall verification.

A particular challenge when dealing in IP-cores is to verify them
well enough to earn and keep a reputation for their quality, or as
Wile, Goss, and Roesner [11] put it: “How do I gain my customer’s
confidence?” Preferably the own verification effort should be made
transparent enough in this case to aid hardware designers who in-



20 background

corporate the core as a module in their design with the verification
steps for their resulting system, as otherwise the usage of a third-party
IP-core requires extensive system-level simulation with decreased vis-
ibility, removed assertions, and typically no easy debug path. This
can be remedied to a degree by verifying the IP-core with a well-
documented process with regression suite, and enriching the package
with a well-documented specification, coverage items, and verification
scenarios. Since the IP-core creator also has to protect their trade se-
cret, however, this step might require a very delicate balance of both
interests [23], and oftentimes the available IP-cores lack specifications
that could be used as reference or integrity proofs which could help
to build trust [24]. PCH offers a powerful alternative here, where
the customer can assure themselves of the IP-core’s quality through
a low-cost formal functional verification at a fraction of the regular
computational complexity, by leveraging a verification certificate of
the creator.

2.2.2 Simulation-based Verification

When the complexity of the average hardware design grew too large
for the designers to handle verification implicitly while creating it,
designs studios introduced verification performed by verification engi-
neers as an extra step in the flow. This verification was first executed
using software models of the hardware, i. e., simulating the actual
versus the intended signal flow in software. It is highly desirable
for the verification team to be as productive as possible, i. e., to find
as many bugs in as short of time as possible, since the verification
impacts the hardware design schedule. Longer verification times will
lengthen the time-to-market and increase the design cost, indirectly
over the schedule and directly via the discovery of bugs that cost far
less the earlier they are found, which also impacts the quality of the
design. To ensure a certain quality level, it is also imperative that all
bugs that conflict with this level are found during the verification, and
hence verification engineers try to execute the verification in ways that
expose higher quality bugs first, such that the final product will at
most contain less severe and insignificant bugs.

To be able to plan a simulation-based verification, which consists
of a vast number of carefully selected single simulation runs, the
verification engineer requires a detailed understanding of the DUV’s
specification and implementation (functionality). The specification
constitutes the design intent and describes, e. g., the main behavior or
overall architecture, the timings and protocols for the I/O ports, or
performance requirements in terms of throughput, processing speed or
bandwidth. The implementation consists of individual constructs, such
as finite state machines (FSMs), pipelines, or data and control flows,
that implement the specification, which is therefore also known as the



2.2 hardware verification 21

microarchitecture of the design. The verification engineer leverages this
knowledge to identify interesting cases and scenarios which should be
tested, and then creates corresponding simulation runs by generating
input sequences that lead to them. The goal of verifying this way is
to cover all important aspects and cases with simulation runs that
ensure they work correctly. A typical verification flow comprises the
following elements:

functional specification of the design, i. e., a specification of
the interfaces and functionality of the design. Designers typi-
cally implement this specification in an HDL, and verification
engineers incorporate it into the verification environment as a
cross check.

verification plan scheduling and coordinating each part of the
verification and the resources, i. e., team members and compu-
tational ones. As indicated above, the goal here is to ensure a
certain verification coverage of the DUV.

verification environment encompasses all models, project spe-
cific code and generic software tools needed to drive the ver-
ification process. The verification team independently builds
their own reference model against which the implementation
is checked, so as to also expose misconceptions the designers
might have had when interpreting the architect’s intent for their
implementation. This reference model is then the central stimuli
response predictor for the verification. The verification complex-
ity and available resources dictate how elaborate the environ-
ment will be, with a simple test bench being the most basic, and
a complete re-implementation of every functionality in software
a much stronger environment. Realizing a suitable environment
is both, time consuming and vital for the success of the overall
verification and thus the engineers typically spend the majority
of their time here.

debug hdl and environment while the simulations are running,
as every uncovered misbehavior of the hardware indicates a bug
in the design, the environment, or both, which is why they are
also debugged concurrently. This is hence an iterative process to
bring both as near as possible towards the original design intent.

regression of found bugs, i. e., after the first easily discovered ones,
run many more simulations to find higher quality bugs.

tape-out denotes the fabrication of the hardware device, which
should only be performed once the verification team is reason-
ably sure that all severe bugs have been eliminated.



22 background

debug fabricated hw using the first produced devices to make
sure that the hardware performs as expected in its final environ-
ment and packaging.

escape analysis is the key to improve the quality of the verifica-
tions performed by a team of verification engineers. Should the
fabricated device still exhibit a bug, a thorough investigation
into the reasons why it escaped discovery in all previous steps
should be executed, to prevent a repetition of the incident for
future designs.

Figure 2.4 shows a typical environment of a hardware verification
with the design under verification (DUV) in the center. The verification
engine drives the simulation using stimulus initiators that implement
the test cases of the verification plan, compares the result to the pre-
dicted response from the stimulus responder, e. g., a reference imple-
mentation in software, and uses the scoreboard to record all response
mismatches. The three types of entities supervising the behavior of
the DUV are thus 1. the scoreboard that evaluates matching stimulus
responses, 2. self-contained (and thus reusable) monitors that provide
small checks of internal or external DUV signals, and 3. higher-level
checkers that also consider the context of the DUV for the verification.
Examples of typical context sources for checkers are 1. the I/Os of a
design with their signal flow directions, expected value ranges, etc.,
2. the design’s context, e. g., a real-time system or a safety-critical chain
of applications, 3. its microarchitecture rules and dependencies, if they
are available, and 4. the design’s architecture which may derive from
a well-documented specification such as a microprocessor, instruction
set architecture (ISA) or bus protocol specification.

Stimulus 
initiator A

Stimulus 
initiator B

DUV

Stimulus 
responder

Monitor

Checker

Scoreboard

Figure 2.4: Typical setup of a verification environment for simulation-based
hardware verification. Taken from [11].

Depending on the availability and accessibility of the implementa-
tion model the process can be a white, gray, or black-box verification,



2.2 hardware verification 23

where in white-box style the engine can fully access and monitor all
internal signals and thus provide exact insight into the source of the
found bugs, while in gray-box verification only some internal signals
are available, and in black-box style none, i. e., only external signals
are available. It is vital for the verification engineer to understand the
specification and the internal microarchitecture of the DUV to be able
to make the most out of the added potential of white-box verifications.
White and gray-box styles can be further aided by assertions in the
HDL code, which designers can place there to express the design
intent, can be modularized by checking assertions and / or subcom-
ponents separately, and are able to accurately track the verification
coverage of the design. This coverage is a measure for the visited and
checked fraction of the DUV’s reachable state space and is therefore a
quality metric for the verification, thus enabling quality control of the
entire quality assurance process. Black-box verifications cannot make
use of such powerful mechanics and have to rely on the observable
behavior of the DUV, which only allows the engine to accept or reject
the design in full.

Since the simulation of one specific instance is independent of all
others, the stimulus driving and response checking can usually be
parallelized, so that, after the elimination of the bugs in the environ-
ment, the verification can be rolled out to a simulation farm during
the regression phase, to perform a massively parallel search for the
harder-to-find bugs. Other ways to increase the chances to find elusive
behavior mismatches are to reuse established monitors or checkers
from previous in-house verifications, to instantiate standardized verifi-
cation components from libraries such as the Open Verification Library
(OVL) [25], and to leverage the powerful features of today’s hardware
verification languages (HVLs) such as SystemVerilog, e, OpenVera, or
SystemC. Particularly useful checking or monitoring components are
sometimes also sold separately as reusable verification IP.

2.2.3 Formal Verification

Where simulation-based verification is more akin to testing, able to
reveal bugs but not able to verify if a design is free of errors, formal
verification (FV) methods approach the challenge with mathematical
rigor and formal reasoning, which, if successful, can actually prove
that an assertion, a set of properties, or a design rule holds true for
a given design under any future circumstance. There are two main
concepts which are used to carry out FVs [22]: 1. Automatic theorem
proving, which usually has to be closely guided by an expert user,
and 2. model checking (MC), which typically models the design under
verification (DUV) as a finite state machine (FSM) and then performs
an automated reachability analysis on the states of that model. The



24 background

latter technique has been used in different variants over the past
decades:

explicit model checking enumerates all states explicitly and is
thus only viable for very small state spaces.

symbolic model checking [26] encodes the FSM and its state
transition functions indirectly, for instance as binary decision dia-
grams (BDDs), and then reasons over sets of states and functions
instead of explicitly enumerating them, enabling it to handle far
more complex designs.

bounded model checking (bmc) limits the path length of con-
sidered signal traversals in sequential designs and thus indirectly
also limits the verification complexity, thus again helping the
verification engineer to cope with large or long running designs
(for more details see Section 2.2.4.1).

Since FV reasons over all possible input patterns, sequences and
circuit states, which grow exponentially in the number of input ports
and storage bits, respectively, it can consume many resources during
the verification process, and is thus mostly applied to small designs, or
small pieces of larger designs. Nevertheless with the growing efficiency
and capabilities of modern EDA tools, FV has secured its place in
typical hardware verification flows over the past decades. Especially
for the MC variants, the underlying state space exploration of the
reachable circuit states has come a long way since the early FV engines,
and the range of circuits continues to expand for which a fix point of
the exploration can be found, i. e., a representation of the reachable
states in which applying further circuit cycle transition steps generates
no more new insights for the current verification. As (symbolic) MC
facilitates fully automated and yet powerful functional verification, it
mostly forms the backbone of the automated verifications presented
in this thesis, and we will thus discuss some of its aspects in more
detail in Section 2.2.4.

Even more than with simulation-based functional verification, for-
mal verification engines have to constrain the involved spaces as much
as possible to be able to successfully solve the intractable verification
problem. It is hence also imperative for FV environments to include
input drivers, which eliminate false fails of the verification that derive
from misuse of the DUV by providing erroneous inputs. By leveraging
the engineer’s knowledge about the domain and environment of the
circuit, the input driver can be refined iteratively, by catching and
eliminating false negatives from the environment. The engineer has
to be extremely careful not to over-constrain the inputs, however, as
the resulting false positives cannot be easily discovered in this pro-
cess and could invalidate the verification result. Figure 2.5 shows an
overview of a complete verification environment for formal functional
verification.



2.2 hardware verification 25

DUVFV
driver

Property
checker fails()

Figure 2.5: Typical setup of a verification environment for formal hardware
verification. Taken from [11].

Just as simulation-based verification, FV requires a reference to
compare the stimulus responses of the DUV to. For formal verification,
there are two main forms in which these specifications are given to the
verification engine: High-level models of the hardware, or formally
specified properties. The first form, i. e., the high-level models, enable
a functional verification by ensuring that the observable behavior
of the DUV is equivalent to the model (black-box verification). This
method, typically called functional equivalence checking (FEC), was
the first type of FV that has been successfully applied to the domain
of industrial applications.

The second form of formal specifications for FV are properties, i. e.,
formal rules that describe (functional) aspects of the DUV, thereby
providing a potentially incomplete specification of the design. Prop-
erties can be static, i. e., invariant rules that have to hold true in each
and every reachable state, or dynamic, i. e., stateful themselves such
that the actually evaluated condition for a state depends on the path
of states that have lead there, which in turn depends on the inputs for
each of the states on that path. Formally, dynamic properties verify
event sequences as postcondition of certain precondition event se-
quences. Dynamic properties are usually further classified into liveness
and safety properties. Liveness denotes properties which are more or
less the opposite of deadlocks, i. e., these properties demand for some
activity to happen at some point in the future such that the circuit may
never enter a state after which all activity ceases. Since such properties
are not bound in time due to their very nature, they are usually not
easy to prove, unless the MC can find a fix point of the state explo-
ration. Safety properties on the other hand, encode universal rules
which have to hold in each state, and whose validity can be decided
for each state using just the state itself and its predecessor states on the
computational path leading to it, without regarding future states. A
liveness property can be converted to a safety property by limiting the
required future activity to a specific cycle window instead of having it
unbounded in time. Throughout this work we will only consider safety
properties. As the concretization of the transition from using PCH
with functional equivalence checking to a broader range of properties
is one contribution of this thesis (cp. Chapter 5), we will elaborate
more on them and their different types in Section 5.2.



26 background

Since properties offer the flexibility to verify everything from very
small aspects of the DUV to also verifying its complete functional
equivalence to a reference model, formal functional verification is often
considered to be synonymous with property checking. Typically the
correctness proofs for properties of combinational logic, i. e., stateless
circuits, are based on the Boolean algebra and its axioms. The formal
specifications of the circuit behavior and the property are transformed
into a Boolean formula and then verified at this level (symbolic MC).
To check the functional equivalence of a DUV to a reference model, the
engine can simply compare the canonical forms of their corresponding
Boolean formulae, i. e., reduced ordered BDDs, conjunctive normal
forms (CNFs), or minimized disjunctive normal forms (DNFs), which
would match in case of equivalent functions due to the canonicity
of the representation. For generic properties, the resulting combined
formula encodes the checking of the DUV for the property and has
to be evaluated, e. g., by determining if it is satisfiable, a tautology,
or a contradiction. If the verification fails, the engine will produce a
counterexample (CEX) for the Boolean representation of the property,
as depicted in Figure 2.6, which can then be back-annotated to a
sequence of inputs for the higher-level representation, i. e., an error
trace that describes how the model can be driven to produce the
erroneous behavior.

Functional formal verification tool

Property
specification RTL model FV driver

Correct?

Error trace Witness trace

No Yes

Figure 2.6: Formal verification flow for property checking of circuits. Taken
from [11].

As an example, consider combinational equivalence checking (CEC)
of two circuits as a generic property, i. e., not solved by comparing
canonical representations. Both designs should be given in an appro-
priate model, e. g., as gate-level circuit descriptions. To transform the
check for this property into a corresponding Boolean problem, we
form a so-called miter function [27] of both circuits as depicted in Fig-
ure 2.7: We compare each of their primary output pairs to one another
using XOR gates and collect the potential mismatches with a large
OR gate. Using the Tseitin transformation [28], we convert this circuit



2.2 hardware verification 27

description into a satisfiability equivalent (equisatisfiable) Boolean for-
mula in CNF, thus encoding the verification problem of proving the
equivalence of the circuit descriptions as a Boolean satisfiability (SAT)
problem. A SAT solver can evaluate the satisfiability of the formula,
either proving it unsatisfiable or returning a CEX. An unsatisfiable
miter-encoding formula implicates, because of the equisatisfiability,
that the miter itself is also unsatisfiable, meaning that there is no
input pattern which would cause a mismatch in any output pair of
the circuit versions, i. e., they are functionally equivalent. Should the
SAT solver return a CEX, we can use the assignments for the variables
that encode original circuit inputs to obtain an input pattern for both
circuits which produces a mismatch in at least one output pair.

Implementation
n

Specification
=1

≥1

=1

mn

m

Figure 2.7: Miter function [27] implementing a behavioral equivalence prop-
erty for combinational equivalence checking.

This technique can also be extended to checking the functional
equivalence of sequential circuits, typically given as FSM model, by
breaking the feedback loops of the storage elements and adding their
connections to the I/Os of the circuit. The resulting model will then
use the original inputs and old state of the circuit as primary inputs
to compute the original outputs and new state. This encoding enables
sequential equivalence checking (SEC) using the same method as CEC,
but restricts the notion of sequential functional equivalence to circuits
that use the exact same states and state holding elements. Since this
obviously over-constrains the equivalence notion by, e. g., demanding
also the exact same behavior in all non-reachable circuit states, we
consider a broader definition of sequential equivalence in this thesis,
which also allows for different state encodings, or even different timing
behaviors. Our definition and its relation to PCH will be detailed in
Section 5.3. There is also a similar method that transforms a sequential
circuit into a combinational one for BMC by creating circuit copies and
rewiring the feedback wires to connect the copies, see Section 2.2.4.1
for details.

To implement other properties, a verification engineer can either
turn to domain specific languages (DSLs) or simply encode the prop-
erty in a hardware description language (HDL), just like the original
circuit. Using an HDL has the disadvantage of having to re-implement
the actual circuit functionality, as reusing the original design would



28 background

introduce a redundancy to the verification process which would fail
to validate the step from the original specification document to the
implementation. The actually verified model would then be a property
verification circuit (PVC), as depicted for a black-box verification in Fig-
ure 2.8, which uses an HDL to describe the DUV and its connections
to a so-called property checker (PrC) that implements the actual check
for the property and raises an error flag in case of a violation. Since
the new implementation does not have to be optimized for any metric
like area or delay, this step can usually be achieved with moderate
effort, and can actually result in a benefit for the verification itself:
Kuehlmann, Ganai, and Paruthi [29] pointed out that designs gener-
ated from HDLs typically have 30% to 50% redundancy in them, e. g.,
due to conflicting optimization goals during synthesis. This number
will be even higher in cases where the DUV and HDL-generated PrC
are combined into one PVC. The resulting redundancy enables the
verification engine to cut down on the complexity by applying struc-
tural optimizations before running the actual verification; in fact the
advanced academic logic synthesis and verification tool ABC [30] is
built around this synergy of these two domains and, e. g., its multiple
engine solver dprove puts the PVC through quite thorough sequential
synthesis before performing even the first verification steps.

DUV

Property checker

in
out

error
n

n
m

Figure 2.8: A property verification circuit for a black-box verification, com-
prising the circuit implementation of the design under verification
and a property checker. Taken from [31].

To increase the reusability of properties and their elements, and
thereby the productiveness of the verification team, the engineers can
leverage standardized HDL verification component libraries such as
Accellera’s Open Verification Library (OVL) [25] for this option, which
offer predefined components for assertion monitors and building
blocks for a wide range of properties.

As alternative to formalize circuit properties many different DSLs
have been proposed in the 1990s following the increased adoption of
FV, which lead to the standardization of the property specification
language (PSL) [32] by Accellera in 2005. PSL consists of four layers
which the designer can leverage to express a circuit property:

boolean layer : Allows for Boolean formulae over circuit elements.



2.2 hardware verification 29

temporal layer : Contains operators for time step sequences us-
ing sequential extended regular expressions (SEREs) and thus
enables the definition of multi-cycle properties.

verification layer : Enables linking properties that are defined
with lower level operators to specific DUV elements, e. g., using
assert to specify that a multi-cycle property should hold for one
specific signal.

model layer : HDL extensions to support the definition of other
verification environment elements like input drivers, scoreboards,
and checkers.

Using all four layers, the verification engineer can formulate dynamic
properties, which match patterns of event sequences in the reachable
state space, or complete verification environments that can also be
turned into reusable stand-alone verification units. Nowadays, PSL
can be used in hardware verification languages like SystemVerilog that
allow designers to describe design assertions (intent) alongside the
functionality (implementation) in the same files, thus correlating both
in one place which can serve as basis for the actual hardware synthesis
and the formal model against which it can be checked.

Should the verification engine fail to deliver a result within an
appropriate amount of time or space, the engineer has several options
to combat the state space explosion and thus extend the applicability
of FV even further:

• Apply multiple properties in sequence, proving only one of
them at a time, balancing the state space size against the added
runtime of several verification runs.

• Split case distinctions within the DUV or property to distinct
verification runs, e. g., verifying only a small part of a command
set per each run.

• Reduce the data path widths to significantly trim down all spaces
and then quickly eliminate all errors that do not depend on the
width. Typically this technique does not loose much verification
coverage when compared to the full verification.

• Perform a cone-of-influence reduction on the logic before verifi-
cation of the property to remove all combinational and sequential
parts of the circuit that do not contribute to the success or failure
of the property. Since this can be applied in a fully automated
way, many, if not all, modern verification engines perform this
step behind the scenes.

• Cut parts of the circuit, leaving their outputs completely open
or replacing them with a set of assumptions, to reduce the state
space by localizing the verification to the parts of the circuit that



30 background

actually control whether the property holds true. A verification
engine can also try to apply this technique automatically to some
extent by performing and refining random circuit cuts.

The employment of one or more of these techniques significantly ex-
tends the reach of FV, and in fact most formal industrial verifications
run on very constrained portions of the reachable states. The applicabil-
ity of each technique is dependent on the actual verification problem,
and sometimes even greater results can be achieved through a combi-
nation. When considering CEC, for example, instead of proving the
functional equivalence of all outputs at once, the verification can be
split into one verification per output pair, each allowing potentially
large state and input space constraints by employing cone-of-influence
reductions before starting the verification.

2.2.4 Model Checking

As we have seen in Section 2.2.3, model checking (MC) is a powerful
method for the automated formal verification (FV) of hardware circuits,
and since explicit MC is not really a viable option for any circuit that
is more complex than a toy example, model checking is today usually
used as synonym for symbolic model checking; we will also use it in
that sense throughout this thesis. Over the past few decades, model
checking techniques have become efficient enough to actually tackle
industrial size problems, and their popularity for hardware verification
even prompted several researchers to set up an annual competition of
model checkers used for that purpose in academia and industry, the
hardware model checking competition (HWMCC) (see, e. g., [33, 34]).

From the vast body of research concerning MC (e. g., [22, 26, 35–37]),
we will briefly present two approaches here that have interesting appli-
cations with PCH: Bounded model checking (BMC), and incremental
construction of inductive clauses for indubitable correctness (IC3). We
will introduce the latter in its very efficient implementation called
property-directed reachability (PDR).

2.2.4.1 Bounded Model Checking

To counter the state space explosion problem, BMC follows the simple
idea to limit the maximum length of paths through the space, i. e., the
length of state sequences the DUV can go through from the initial state.
Depending on the verified circuit, this significantly limits the state
space, which can yield a much more tractable verification problem
than the unbounded one. The obvious downside of this approach
is the loss of the definitiveness of the result that FV usually yields,
by explicitly not considering behavior mismatches that happen only
on paths that are longer than the artificially imposed state sequence
length. There are, however, many designs in which a maximum path



2.2 hardware verification 31

length can be concluded such that no paths longer than this threshold
have to be considered, and BMC is nowadays also an established
preprocessing step for many comprehensive verification approaches,
which can uncover bugs quite fast and cheaply if they influence the
early behavior of the DUV.

Bounded model checking can furthermore help to reduce sequen-
tial to combinational property checking (CPC) by transforming the
sequential PVC into a combinational one. For this technique the verifi-
cation engine creates one copy of the PVC per cycle up to the bound
n, as depicted in Figure 2.9 with the DUV I and its specification S for
3 cycles, which will also create as many sets of primary I/Os, also one
set per cycle. The sequential elements of the base model (e. g., latches,
FFs) are then rewired to be the connectors between the copies; instead
of feedback connections they are turned into feedforward connectors
from one cycle copy to their respective instance in the next one. The
resulting circuit is thus free of feedback connections, and hence purely
combinational, but allows the tool to argue over the sequence of the
first n cycles by creating a regular PVC and SAT proof as in the com-
binational case. The immense number of circuit copies required for
this method obviously also impacts the proof size and thus indirectly
also the verification complexity, making this approach only viable for
small circuits, or properties whose validity can be proven by unrolling
the circuit for only a small number of cycles, as the proof will only
be able to argue about the cycles that are actually represented in the
PVC.

Property
checker

S1 S2 S3

I1 I2 I3

=1 =1 =1
FF0

≥1
error

in1 in2 in3

in1 in2 in3

outS1

outI1

outS2

outI2

outS3

outI3

FFS1 FFS2

FFI1 FFI2

Figure 2.9: An exemplary sequential property verification circuit that is un-
rolled for 3 cycles. The gray area is the property checker part. FF0
denotes the set of initial values for all flip-flops. Taken from [31].



32 background

2.2.4.2 Property Directed Reachability

This introduction of IC3 / PDR is partly taken from [31], where it was
written by my co-authors, who in turn followed the description in Eén,
Mishchenko, and Brayton [37].

Eén, Mishchenko, and Brayton’s property-directed reachability [37] is
a very efficient implementation of the concept and reference imple-
mentation of Bradley’s incremental construction of inductive clauses for
indubitable correctness [36]. Since its inception in 2011, IC3 has achieved
great successes in hardware verification: Since 2011 every winner of
every single one of the HWMCC’s (e. g., [33, 34]) SINGLE property
tracks has been using IC3 or PDR in some form; in fact, disregarding
the new word-level form of the competition 2019, since then each and
every tool that scored a place among the top three in this track is a
multiple engine tools that also employs a variant of IC3.

The main idea of the underlying algorithm was to create the complex
proof required for checking a functional verification model in much
the same way as humans would: By proposing a sequence of simpler
lemmas that build on each other to prove the overall problem. This
leads to a proof generation which is efficient, both regarding runtime
and memory, and produces small results in the form of inductive
strengthenings. The model check performed by IC3, on a given PVC as
an FSM model, is to prove that the encoded property checker (PrC)
describes a so-called inductive invariant, i. e., an inductive property
that holds true for all reachable states of the DUV. To this end the
algorithm first tries to prove the property to be an inductive invariant
itself, which it usually is not, and then refines the property into a
stronger formulation (called a strengthening of the property) by cutting
away non-inductive parts with the supporting lemmas. The final proof
is hence an induction over the DUV’s states, while the construction
and verification of the individual lemmas on the way are all encoded
as Boolean satisfiability problems. IC3 is thus a SAT-based algorithm
that incrementally computes an inductive strengthening, if one exists,
using a large number of small UNSAT queries which involve at most
one transition step.

IC3’s UNSAT queries are systematically and automatically derived
by the algorithm and given to a SAT solver. The queries check for po-
tential counterexamples (CEXs), i. e., steps for reaching a state where the
property is not satisfied. For these queries, the SAT-formulae ‖S0‖,‖T‖
and ‖ϕ‖ are created encoding the initial states and the transition
relation of the PVC’s FSM model, as well as the safety property ϕ,
respectively. The algorithm now iteratively builds and refines sets of
states F0, . . . , Fk for some k. These sets, called frames, are maintained
as propositional formulae in CNF. Figure 2.10 shows the frames for
k = 2 and their relationship to the set of initial states S0 and the set
of states satisfying the property ϕ. Initially, F0 is set to S0 and F1
to ϕ, unless there is already a counterexample of length 0 or 1. The



2.2 hardware verification 33

algorithm’s main loop roughly consists of four steps: a) For the frontier
of the frames, i. e., Fk with the largest current k, it is checked whether
a state violating ϕ is reachable from Fk within one transition step.
If yes, this produces a counterexample to induction (CTI). b) the CTI is
checked against all smaller frames as to determine which frames to
refine. c) the CTI is generalized, i. e., weakened, as to potentially block
not just this counterexample but also other, similar ones. And d) a new
frame is created. The refinement procedure recursively finds states
that hinder induction and blocks these in some of the frames. If, dur-
ing this process, a state needs to be blocked from the smallest frame
which equals the initial states, a counterexample trace has been found
and the property ϕ has been proven not to be invariant. Otherwise,
the algorithm progresses and eventually terminates with two of the
frames being equal, which indicates that an inductive strengthening
of ϕ has been found.

S0 F1 F2 . . . ϕ

Figure 2.10: IC3’s iteratively constructed frames and their relationships to
the set of initial states S0 and the property ϕ. Taken from [31].

Once IC3 has successfully computed an inductive strengthening, this
presents a sound proof: all states reachable from the initial state satisfy
the property ϕ. This applies to sequential as well as combinational
circuits. For PCH, we have employed PDR as a means to extend the
verifiable range of property and sequential circuit combinations into
far more complex ones than before, which we detail in Section 5.3.

2.2.5 Runtime Verification through Monitoring and Enforcement

If a component like an intellectual property core (IP-core) cannot or
will not be fully verified at design time, another way to ensure its
compliance to a set of properties is to devise and instantiate a runtime
monitoring and enforcement unit for these properties. This strategy
provides a runtime verification of the design under verification (DUV),
which is conceptually different from the design time verifications
which we discussed in the previous sections, but also shares some sim-
ilarities. The monitoring part of such a watchdog circuit works exactly
like the monitors and checkers from classical functional verification,
and can in fact be likely used for both, if it is synthesizable to hard-
ware. Together with the added enforcement part, such a unit can be
as effective at ensuring that some predefined form of illegal behavior
will never be allowed to harm the overall system as pre-verifying the



34 background

circuit; sometimes even more effective. When compared to simulation-
based and formal verification (FV), runtime verification shares the
strong guarantee of FV to never miss a single bug in an actual exe-
cution, while being even significantly less computationally complex
to perform than simulation-based functional verification. Unlike both
design time variants, however, runtime verification will consume re-
sources on the actual hardware, as the watchdog circuit will have to be
actually instantiated to operate, and will most importantly not help to
save design costs by discovering bugs while they are still inexpensive
to fix [25].

The performed verification of monitoring and enforcement, depicted
in Figure 2.11, is conceptually more similar to simulation-based func-
tional verification in that they both examine actual executions, i. e.,
state transitions in exactly the sequence as they do happen in the
real hardware. Their differences lie in a) the point in time when they
examine this path–a priori (design time) versus just in time (runtime),
b) the selection of paths to explore, and c) their effect on the usability
and availability of the system. Since the simulation happens at design
time, there are neither real hardware nor actual executions to explore,
which is in fact the whole point of simulation, and the verification
engineer thus has to make a very careful selection of what test cases to
explore, cp. Section 2.2.2. The advantage of this method, if successful,
is that the DUV will be practically free of bugs afterwards, ensuring
high system availability and usability, as no unforeseen states should
be entered at runtime. The runtime verification, on the other hand,
does have real hardware to monitor and simply has to follow the
current, actually performed execution, rather than guessing which one
might be relevant in the future, which makes sure that each and every
execution, i. e., sequence of DUV states, will actually be examined for
bugs and there is no chance for one to go unnoticed. The drawback,
however, lies in the enforcement of the correct behavior in case of
a bug, which is a potentially disruptive action that influences the
normal circuit behavior. Depending on the DUV and its environment,
the enforcement can be a soft error mitigation that simply corrects
some data and resumes normal operation afterwards, but if there is
no implemented way of resolving the issue, the enforcement unit will
have to stop all actions of the DUV to prevent it from harming the
overall system, in effect acting as a kill switch. Simulation-based func-
tional verification thus has to solve a much more complex verification
challenge, but can afterwards also guarantee that the DUV is usable
according to the original functionality intent, albeit only with a high
confidence. Runtime verification, on the other hand, can give an abso-
lute guarantee that no bug or design flaw will influence the execution,
or harm the rest of the system, but can give no guarantee whatsoever
about the usability or availability of the DUV; a bug-ridden circuit
may just end up being killed by the enforcement unit right away.



2.2 hardware verification 35

Watchdog

Monitor
Enforcement

unit

in
DUV

out

Figure 2.11: Property ensurance circuit for runtime verification using a watch-
dog comprising a monitor and an enforcement unit.

A unique caveat of runtime verification with watchdogs derives
from the monitoring and enforcement units’ physical presence on
the device, as even the best watchdog is useless if it can be simply
bypassed. To address this issue, Huffmire et al. have devised an isola-
tion strategy called Moats and Drawbridges [1, 38, 39], which arranges
possible interaction points between individual modules of a design
following the principle of its medieval namesakes. Each module is
either physically (gap method) or logically (inspection method) isolated
from all other modules, i. e., they are placed with moats between them,
and the only allowed connections between modules are well-defined
interaction points, i. e., the drawbridges. To verify the correct com-
munication via these predefined interaction points, Huffmire et al.
[38] have defined a tool that works directly on the bitstream to trace
connections from and to drawbridge end points, to ensure that only
legal connections exist in the configuration. Applying this method to
runtime verification yields a DUV with isolated modules and watch-
dog, where a verification engineer can make sure that no module
may bypass the monitoring or enforcement by defining appropriate
drawbridges.

There have been many combinations of systems and properties
proposed, in which the flexibility of runtime verification greatly out-
weighs its drawbacks, especially in the domain of reconfigurable
hardware, and hence there have been many proposals for such watch-
dog modules. For example, Crenne et al. [40] discuss data integrity
and confidentiality and propose a special security core for protection
of application loading and secure execution. Eckert, Podebrad, and
Klauer [41] present a malware scanner and filter for direct memory
access-copied (DMA) data implemented by a watchdog module. The
malware scanner can be adapted by partial reconfiguration. Basile,
Carlo, and Scionti [42] considered the execution of code in an un-
trusted environment and used an FPGA within this environment as a
core of trust. This core relies on hardware monitors to verify the in-
tegrity of the transmitted code before and during execution. Cotret et
al. [43] looked at the bus system in a multi-core system-on-chip (SoC)



36 background

and proposed to add watchdogs or firewalls to cores and memory in
a distributed fashion to protect them.

2.2.5.1 Memory Reference Monitors

Huffmire et al. [44] proposed the idea of memory reference monitors
for dynamic reconfigurable systems in 2006 and later refined it in
several follow-up papers [39, 45, 46]. We will present the basic idea of
their approach briefly here, as we have successfully employed it in the
context of PCH, which we will present in Section 5.4.4. The following
introduction is mostly taken from [47], where it was written by me.

Memory reference monitors, as presented by Huffmire et al. [44],
allow for the specification and enforcement of arbitrary memory ac-
cess policies between a number of cores, i. e., CPU cores or hard-
ware modules / IP-cores. The monitor circuit is the only module in
the system that has direct memory access. All other cores have to
route their memory accesses via the memory reference monitor, as
is shown in Figure 2.12, where the white and the hatched soft CPU
cores share a common physical memory which is logically isolated by
a monitor, and one advanced encryption standard (AES) core, whose
time-multiplexing is also enforced through the monitor.

µBlaze0

OPB w/ Reference Monitor

Authentication
Module

µBlaze1

RS232
DDR

SDRAM
AES Ethernet

To Network

Figure 2.12: Example system which is separated into two domains sharing
one AES core and RAM and isolated in their usage thereof by a
reference monitor. Taken from [46].

The reference monitor either grants or denies memory accesses,
according to a predefined memory access policy between the cores.
In order to describe such memory access policies, Huffmire et al. de-
signed a formal language in which a policy is defined by the memory
accesses it allows, and each of the accesses is described by a 3-tuple of
a module, a memory range, and an access type. Modules denote the
cores mapped to the FPGA that request memory access of a certain



2.2 hardware verification 37

access type, e. g., read, write, or scrub, and ranges are segments of the
memory.

As an example, a policy for the static isolation of two modules as
required in the monitor depicted in Figure 2.12, where Module1 has
complete access (read and write) to only Range1, and Module2 to only
Range2, can be expressed using the following policy grammar:

rw −→ r | w;

Range1 −→ [0x8e7b008,0x8e7b00f];

Range2 −→ [0x8e7b018,0x8e7b01b];

Access −→ {Module1, rw, Range1} | {Module2, rw, Range2};

Policy −→ (Access)*;

This policy grants Module1 an unlimited amount of read and write
accesses to Range1, but no access to Range2, and vice versa. The
specified ranges are an arbitrary choice for the example’s sake.

Besides static policies, the formal language developed by Huffmire
et al. also allows designers to describe more complex dynamic policies.
One example would be the chinese wall policy, which encodes so-called
conflict-of-interest (COI) classes. In the system shown in Figure 2.12,
assume for instance that both modules require the AES crypto core
for their operation, but must never be allowed to access each other’s
data. In such a setup, the AES core requires access to the memory
areas of both modules, but never simultaneously, i. e., the two modules
belong to one COI class. A designer might thus specify that while the
AES core serves one module’s requests, it must be prevented from
accessing data of the other module.

To give a more elaborate example of this, consider a system with five
modules, Module1 to Module4 and ModuleAES, and corresponding
memory ranges Range1 to Range4. Further, consider two COI classes,
one with Module1 and Module2 and another one with Module3 and
Module4, i. e., ModuleAES may never have access to Range1 and
Range2 at the same time, nor simultaneously to Range3 and Range4.
The AES core may, however, serve the requests of two modules at the
same time if they do not belong to the same COI. Omitting the range
and rw definitions for brevity, the policy the AES core has to adhere to
during one encryption / decryption task can be formalized as follows:

Access1 −→ {ModuleAES, rw, (Range1 | Range3)}∗;

Access2 −→ {ModuleAES, rw, (Range1 | Range4)}∗;

Access3 −→ {ModuleAES, rw, (Range2 | Range3)}∗;

Access4 −→ {ModuleAES, rw, (Range2 | Range4)}∗;

Policy −→ Access1 | Access2 | Access3 | Access4;

If the first access of ModuleAES is to Range3, any subsequent access
to Range4 will be blocked by the monitor, i. e., the control FSM within
the monitor will go into a superstate allowing only accesses of type
Access1 and Access3. Accesses to Range1 and Range2 are still valid,



38 background

but the first one will lock the FSM into a specific state for type Access1
or Access3, respectively. Expressed like this, the policy is hence in-
deed dynamic, but results in dead ends, forever locking the memory
accesses of ModuleAES into one specific pattern. From here, the mem-
ory access policy thus has to be augmented with a protocol of how
to transfer access between the modules belonging to the same COI,
which can be achieved, e. g., by defining control registers in memory,
which allow modules to request and relinquish access to the AES core.
The resulting access patterns can also be described using this formal
language, but presenting the final version here would add no real
insight, and we thus refer interested readers to [44, 46] instead.

In addition to the formal language, Huffmire et al. also presented a
method for synthesizing a policy into a monitor circuit in the HDL Ver-
ilog [45]. To this end, they compile the policy by first building a syntax
tree, expanding it into a regular expression, converting that expres-
sion into a non-deterministic finite automaton, and then constructing
a minimized state machine from it. Using a sequence of tools, this
policy compilation can be fully automated. They have implemented
prototypes for several example policies, differing in complexity of the
policy, number of modules, and number of memory ranges.

As runtime verification, the memory reference monitors can guar-
antee the adherence of a complete dynamic system of cores to a
predefined memory access policy, by preventing illegal accesses to the
memory. This technique is very well suited to deal with the dynamics
of reconfigurable hardware, since any new module for this system
will not be able to violate the access policy, even it is not verified,
as long as the reference monitor is still the only module with direct
memory access. Using this technique, the system can also adapt to new
computational demands, by reloading the monitor with a different
access policy, without the need to stall the system for more than the
required partial reconfiguration time, or for any new verifications of
the involved modules.

2.3 Proof-carrying Hardware

Proof-carrying hardware (PCH) denotes a distributed just-in-time ver-
ification technique between two parties who exchange a hardware
module in trade and leverage a checkable proof, i. e., an artifact of a
formal verification, to establish a guarantee for the trustworthiness of
the consigned representation in terms of some a priori agreed-upon
properties at a much lower computational cost than performing the
formal verification. The concept, which is modeled after the software
domain’s proof-carrying code (PCC), was devised by Drzevitzky, Kas-
tens, and Platzner in 2009 [7, 48] and forms the foundation of all
verification approaches presented in this thesis. We will thus present
the method itself and the body of research prior and parallel to this



2.3 Proof-carrying Hardware 39

thesis in greater detail in this section. We will follow the many expla-
nations of the topic from our own papers [31, 47, 49–53], where it was
mainly explained by me with revisions of the respective co-authors.

2.3.1 Early Bitstream-Level Proof-carrying Hardware

Drzevitzky, Kastens, and Platzner [7] proposed PCH as the recon-
figurable hardware equivalent of proof-carrying code, an approach
introduced 1996 by Necula and Lee [54]. Just like PCC, the PCH
concept distinguishes two parties, a producer, e. g., an intellectual
property core (IP-core)1 vendor, and a consumer, e. g., a hardware
designer, who would like to embed a purchased IP-core into their
own circuit design, as shown in Figure 2.13. Since the method is ap-
plicable for any circuit size that fits the target device, however, the
module could just as well be a complete device bitstream, containing a
ready-to-run design. PCH is a method to overcome the inherent trust
issue that is associated with such an exchange, where the recipient
usually has no way of knowing whether it is safe to use the module;
challenging designers and verification engineers on the buying side,
as well as IP-core creators and distributors on the selling side [11]. A
successful application of PCH allows a consumer to gain a level of
confidence in the safety of the received module implementation which
is as strong as that of a full, rigid in-house formal verification (FV),
but at a significantly, potentially orders of magnitude lower cost in
terms of computing power and time.

The typical or basic proof-carrying hardware scenario assumes a
contract-work model between both parties: In addition to preparing a
design specification, the consumer specifies a safety policy describing
the rules and conditions under which they deem it safe to use a
HW module in their designs or on their devices. To translate this
policy into a language suitable for hardware verification, it needs to
be transformed into a circuit property or a set thereof (cp. property
checking in Section 2.2), or the consumer needs to directly specify the
policy in this form.

The producer’s task is then to generate not only the module but
also a certificate for a formal proof of the properties that make up
the consumer’s safety policy, and transmit both to the consumer. The
combination of the module implementation and the proof certificate is
usually denoted as proof-carrying bitstream (PCB) in this context. The
consumer then verifies if the proof corresponds to the transmitted
module and is correct. For many proof principles that generate check-
able proofs, the check of a given proof requires considerable less work
than its creation, and hence the effort in runtime and computational

1 We will use the terms IP-core and hardware module interchangeably in the PCH context,
to denote a black-box circuit part of arbitrary size with well-defined input / output
interface.



40 background

resources for the employed verification should be much larger for the
producer than for the consumer. Considering that the alternative to
establishing the same level of trust in the module would be for the
consumer to undertake a full FV of their safety policy’s properties
in the module implementation themselves, such a pre-verification by
the producer is regarded as a shift of workload from the consumer to
the producer, and it is one of the hallmarks of the PCH approach.
Proof-carrying hardware is thus well-suited for consumers with low
resources or who use dynamic reconfiguration and thus cannot in-
vest the substantial runtime required for a full FV of new modules
regarding their implications to system safety (cp. Section 2.2.3). The
method can help verification engineers to keep up with the dynamics
of systems which rely on prompt instantiation of untrusted hard-
ware modules transmitted trough untrusted communication channels,
which would otherwise require extensive system-level simulation,
while suffering from the decreased design visibility in third-party
cores [11]. In the extreme case of on-the-fly computing [55, 56], the con-
sumer can even execute their validation steps just-in-time, i. e., just
before using the module.

Hardware module 
consumer

Hardware module 
producer

Module Proof

Design specification 
and constraints 

(PCH safety policy)

Figure 2.13: High-level overview of the interactions between proof-carrying
hardware consumer and producer. The untrusted components
are depicted in gray.

Proof-carrying hardware as a concept can theoretically work with
many different hardware verification methods as back end, and can
thus be leveraged for many different functional or non-functional
circuit properties. For a consumer, PCH can establish the trustwor-
thiness of a received HW module without relying on any previously
established trust in the producer, his tools, or the communication
channels, i. e., anything depicted in gray in Figure 2.13. The approach
is even robust against man-in-the-middle attacks by malicious third
parties, even when circumstances require the consumer’s safety policy
to be public. Since the consumer always knows the original policy
and the resulting circuit properties, and leverages them to verify the
applicability of the received proof, the consumer-side check would
fail if a producer would use a different or modified set of properties
to create a false proof. Likewise, the consumer would automatically



2.3 Proof-carrying Hardware 41

detect if either section of the transmitted PCB, i. e., the implemented
hardware module or the certificate, had been accidentally damaged or
intentionally tampered with. A success of all checks on the consumer
side therefore implies a guarantee that a) the proof matches the de-
sign specification, module implementation, and the consumer’s safety
policy and b) the implemented module has the circuit properties that
constitute the policy. To carry out these checks, the consumer requires
a set of trusted tools, which form the so-called trusted computing base
(TCB) of the PCH method [57].

In their works [7, 48, 57–59], Drzevitzky, Kastens, and Platzner de-
fined the trust and threat model for PCH as indicated above: All black
components of Figure 2.13 are trusted, i. e., the consumer themselves,
their physical reconfigurable hardware devices, the artifacts generated
by them, such as the design and safety policy specifications, and the
set of tools they use to execute the proof checks, while everything
depicted in gray is untrusted, i. e., the producer, their synthesis and
verification tools, the generated module, proof, and certificate, as well
as the transmission channel over which the consumer receives the
PCB. The threat to the consumer lies in the potential breach of their
required safety policy by the received IP-core, i. e., that it is not safe to
instantiate the module in their reconfigurable hardware and allow it
to run.

Drzevitzky, Kastens, and Platzner applied the technique prototypi-
cally to runtime combinational equivalence checking (CEC) as rather
generic safety policy which demands that the module implementa-
tion behaves exactly like their own circuit model in every (functional)
aspect. They modeled the property verification circuit (PVC) for the
combinational equivalence of a circuit implementation with its hard-
ware description language (HDL) specification using a reduction to a
SAT problem, as discussed in Section 2.2.3, and proposed to use the
resolution trace of the SAT solver as transmittable proof certificate.
From a verification engineer’s point of view, the resulting distribution
of work actually makes a lot of sense, as the verification environment
will be created by the same party as the design specification, who are
much more likely to capture the correct design intent in the verifica-
tion, and the module implementation will be done by another party,
meaning that a misconception of the implementation about the intent
cannot taint the verification environment. Breaking the redundancy
path, which Wile, Goss, and Roesner [11] explained to be required for
a solid verification, is thus inherently realized in CEC with PCH.

The PVC for verifying functional equivalence corresponds to the
miter function, which subsumes the pairwise check for differences in
corresponding outputs as error flag (cp. Section 2.2.3). If this flag can
be satisfied for any input vector, the specification and implementation
are not equivalent, which means that proving the unsatisfiability of
the miter guarantees functional equivalence. Figure 2.14 shows a



42 background

combinational miter function, split into the circuit implementation
and, in gray, the resulting property checker (PrC), which combines the
specification and the pairwise miter checks.

Property
checker

Circuit implementation

in

out

n

n m

error

Circuit specification
=1

≥1

=1

out' m

Figure 2.14: Property verification circuit implementing a combinational miter
by including a property checker that implements combinational
equivalence checking. Taken from [31].

For sequential circuits, Drzevitzky employed bounded model check-
ing (BMC) (cp. Section 2.2.4.1), unrolling circuits for 1000 cycles. Fig-
ure 2.15 depicts a combinational miter that results from unrolling a
sequential circuit specification and its corresponding implementation
for three clock cycles. In each of the unrolled cycles, the combina-
tional parts of the specification and the implementation receive the
current inputs, and the first copies of both furthermore receive the FF
initialization signals. All subsequent copies are connected via their
corresponding FF signals, as explained in Section 2.2.4.1. The pair-
wise miter checks can be performed and subsumed per unrolled copy,
generating one local error flag per considered cycle, which are then
summed up over all cycles to form the global error flag, or the pair-
wise checks can be directly fed into one global error signal generator.
Figure 2.15 depicts the latter version and again displays the PrC as
gray area.

Drzevitzky, Kastens, and Platzner also implemented the prototypi-
cal tool flow shown in Figure 2.16 for this policy / property check and
based it on the open-source hardware synthesis tool flow Verilog-to-
routing (VTR) [60]. The producer mainly follows the VTR tool flow,
synthesizing, technology mapping, packing, placing and routing the
circuit to a customizable abstract FPGA, and uses the tool ABC [30] to
create the miter function [27] in conjunctive normal form (CNF) for
proving functional equivalence between the behavioral HDL design
specification and the synthesized module implementation. Using the
SAT solver PicoSAT [61] the producer then proves the unsatisfiability
of the CNF formula and saves the proof trace in a file, which a custom
tool combines with the FPGA configuration (abstract bitstream) into
a PCB. On the consumer side a second custom tool decomposes the
bitstream again into configuration and proof certificate (trace). The
consumer also uses ABC to formulate the miter function themselves,



2.3 Proof-carrying Hardware 43

Property
checker

S1 S2 S3

I1 I2 I3

=1 =1 =1
FF0

≥1
error

in1 in2 in3

in1 in2 in3

outS1

outI1

outS2

outI2

outS3

outI3

FFS1 FFS2

FFI1 FFI2

Figure 2.15: Property verification circuit implementing a sequential miter
by unrolling for 3 cycles and including a property checker that
implements sequential equivalence checking. Taken from [31].

and then checks whether the proof is sound and the producer used
the correct proof basis, by employing the tool Tracecheck to verify that
the trace matches the consumer’s miter, and its steps actually lead to
the unsatisfiability result, i. e., the empty clause.

ConsumerProducer

Test
function

Match and check proof
(TraceCheck)

Form miter
(ABC)

Form miter
(ABC)

DeComPose

.cnf

Front-end synthesis
(ODIN)

CEC
(PicoSAT)

ComPose

Tech. mapping and logic
optimization (ABC)

Packing
(T-VPack)

Place and route
(VPR)

.trace

.trace

.cnf

.verilog

.blif

.blif .blif

.blif

.net

.p, .r .bitstream

Yes/no

Figure 2.16: First prototype of a complete combinational equivalence check-
ing flow for proof-carrying hardware. Taken from [58].

Unfortunately, the academic VTR tool flow cannot produce bit-
streams for commercially available FPGAs, since the device vendors
safeguard their proprietary bitstream formats, and hence the proto-
type was limited to target abstract FPGA architectures, i. e., artificial



44 background

architectures that were not actually deployable as such on real re-
configurable hardware devices. To demonstrate the feasibility of the
overall approach, Drzevitzky, Kastens, and Platzner experimented
with adders and multipliers of varying complexities and showed that
the producer actually bore the majority of the workload for runtime
CEC, and that the consumer was left with a comparatively easy prob-
lem for the validation of the proof. Multipliers with large bit widths
led to excessive proof generation times, however, which is the expected
behavior of the underlying FV techniques due to the state explosion
problem, as explained in Section 2.2.3. Experiments with benchmarks
from the SAT race 2008 confirmed that the workload shift towards the
producer is also noticeable for more complex circuits.

2.3.2 RTL Proof-carrying Hardware Intellectual Property

From 2011 on, Love, Jin, and Makris [62–67] shifted the focus of the
PCH analysis away from only considering the post-synthesis bitstream
level to also include the presynthesis register-transfer level (RTL)
with the introduction of proof-carrying hardware intellectual property
(PCHIP). To this end, they have modeled a subset of the Verilog HDL
in the Coq language, thus turning the underlying verification away
from automated model checking to human-assisted theorem proving,
which also formed the basis of the original PCC. They demonstrated
the functionality of their approach, but did not analyze runtime and
memory consumption. Using the register-transfer level for verification
implies that the purchased IP-core will have to be transfered between
producer and consumer in the subset of Verilog mentioned above, i. e.,
as source code instead of a synthesized bitstream, which furthermore
implies that the consumer will have to synthesize it for their device
after verification, using the FPGA back-end tools.

This last step, however, undermines the method’s usefulness to a
consumer, since they have no guarantee that their FPGA vendor’s
electronic design automation (EDA) tools would faithfully synthesize
the RTL code in a way that does not break the proven properties of
their safety policy; or as Thompson [68] has famously put it: “No
amount of source-level verification or scrutiny will protect you from
using untrusted code.” Research such as the work from Krieg, Wolf,
and Jantsch [69] actually shows specifically for FPGAs and their tool
chains the general vulnerability of such source-code level verifications
by describing an attack that stealthily inserts hardware Trojans into
modules after they have been successfully verified, thus infecting
the bitstream undetected. In [51] we have shown that PCH at the
configuration bitstream level can indeed detect such stealthy HW
Trojans and thus mitigate this form of attack.

Jin addressed these security concerns about subverted vendors’ EDA
tools in [67]. He proposed a method to evaluate the information flow



2.4 tools and platforms 45

before and after the synthesis by introducing a gate-level information
assurance scheme, which can be used to validate the data secrecy
property “no internal sensitive information will be leaked through
primary outputs of the target design” [67] for the EDA tool under
test. Under the assumption that a malicious EDA tool chain would
indiscriminately modify any circuit it synthesizes, one example that
can be successfully verified as not modified could thus establish trust in
the tool chain. Hence, this work introduced the means for a consumer
to extend the TCB of PCHIP with trustworthy EDA tools, so that they
can at least reasonably assume that a Coq-verified property would still
hold in the synthesized circuit.

Following the initial proposal, Jin and Makris [64, 66] have contin-
ued the research on PCHIP, and have, e. g., proposed a framework
aiming towards the certification of genuineness and trustworthiness of
microprocessor cores. To this end, they directly derive proofs based on
a new formal HDL. The language is again based on Coq and includes
several conversion rules in order to transform other HDL code.

2.4 tools and platforms

For the large number of prototypes that we have developed to show-
case and evaluate our proposed PCH methods, we have leveraged
many existing tools and platforms. In this section, we will introduce
the largest and most important ones, with the notable exception of
the virtual field-programmable gate array (vFPGA) ZUMA, which we
have not only employed, but also significantly modified and extended,
which is why it is discussed in greater detail in Chapter 4.

2.4.1 ABC

ABC2 [30, 70] is a sophisticated sequential synthesis and formal verifi-
cation suite developed by the Berkeley Logic Synthesis and Verification
Group. Development on the tool began in 2005, when the authors real-
ized the potential of abandoning multi-valued logic synthesis in favor
of employing and-inverter-graphs (AIGs) with 2-input AND gates and
inverters at the core of most of their algorithms. Quickly the new
computer-aided design (CAD) system outperformed all of their previ-
ous tools and since then it has been constantly augmented, extended
and revised. One of the key insights that the authors gained when
creating ABC was the huge potential for synergies between sequential
synthesis and FV. This insight has manifested itself in many different
commands within the tool that mix both worlds to achieve powerful
effects, e. g., by employing SAT solving to identify equivalent latches
or signals during logic optimization, or by preprocessing a circuit with
an array of synthesis commands before starting a verification, in order

2 https://github.com/berkeley-abc/abc

https://github.com/berkeley-abc/abc


46 background

to reduce the verification complexity as much as possible. In recent
years, ABC’s verification techniques dominated the single property track
of the HWMCC [33, 34] where verification problems from industry
had to be solved, proving ABC’s performance and scalability.

We leverage ABC, e. g., for the following purposes:

• Logic optimization, i. e., reduction of redundant hardware dur-
ing both, sequential synthesis for virtual reconfigurable hard-
ware and as preprocessing step for complex verifications.

• Technology mapping to lookup table (LUT) networks with a
fixed LUT input size.

• Functional equivalence checking during synthesis to make sure
that the results match the original intent.

• Automated cycle unrolling for BMC.

• Miter generation from two circuit descriptions.

• Sequential verification, especially using its very efficient IC3

implementation PDR, cp. Section 5.3.2.

2.4.2 VTR

The Verilog-to-routing (VTR)3 flow [60, 71–73] is the de facto standard
academic open-source CAD flow that is capable of synthesizing a
circuit from its description in an HDL to a packed, placed & routed
design for a specific architecture. These architectures can belong to ac-
tually existing hardware devices or fictional ones to facilitate research
into new FPGA architectures. To this end, VTR defines a powerful
and flexible mechanic to describe arbitrary FPGA architectures in
files using extensible markup language (XML) notation, even existing
commercial ones.

As its name implies, the project contains tools for every step of a
CAD flow: ODIN II is the front-end synthesizer capable of transform-
ing circuits from behavioral Verilog into a structural file in Berkeley
logic interchange format (BLIF). ABC (described above) then optimizes
the generated BLIF file and transforms it into a k-feasible netlist, ready
to be mapped onto LUTs. VPR takes this netlist and an architecture
description of an FPGA and iterates the three CAD steps packing,
placement and routing. Upon success, the VTR flow yields three result
files: A netlist in terms of the architecture file, a placement and a
routing file, each describing the respective flow result for the nets of
the netlist.

In its latest version, VTR 8, the flow now fully supports defining
a circuit’s area or its delay as optimization targets. Thanks to signif-
icantly extended timing analysis and delay annotation capabilities,

3 https://github.com/verilog-to-routing/vtr-verilog-to-routing

https://github.com/verilog-to-routing/vtr-verilog-to-routing


2.4 tools and platforms 47

VPR now includes a timing-driven routing mode that can be fed with
enough data to make meaningful choices in its minimization efforts.

We leverage VTR, e. g., for the following purposes:

• Front-end synthesis of circuits (using ODIN II).

• Back-end synthesis of circuits, e. g., technology mapping for
FPGAs (using ABC).

• Transforming HDL descriptions into verification model files in
AIGER [74] format (using both).

• Architecture description of arbitrary FPGAs.

• Packing, placing and routing of circuits to described architectures
(using VPR).

• Analyzing and and optimizing the timing behavior of a circuit
in a described architecture.

Mostly we thus employ the VTR flow in its entirety to be able to
synthesize circuits for non-existing FPGAs, i. e., virtual ones, and to
transform HDL descriptions into verification model AIGER files.

2.4.3 Yosys

Yosys4 [75], the Yosys Open SYnthesis Suite, has been created by Wolf
to be an open-source Verilog RTL synthesis framework that supports a
much larger portion of the Verilog-2005 standard than was previously
available in tools for academic researchers and hobbyists. Today, it cov-
ers this Verilog standard almost completely and furthermore supports
various SystemVerilog statements, such as assume and assert. Yosys has
built-in support for equivalence and property checking that is strongly
coupled with the synthesis commands, thus enabling great insight
into the design under verification while processing it. Just as VTR,
the framework also includes ABC as a back end, leveraging its great
power also in its synthesis flows. Since Yosys supports exporting to a
BLIF file, an AIGER file or even directly in CNF it can be transparently
used as a replacement for ODIN II and ABC within the VTR flow,
bringing its language coverage and SystemVerilog capabilities into the
PCH flow.

We leverage Yosys, e. g., for the following purposes:

• Front-end synthesis of circuits (replacing ODIN II and potentially
ABC).

• Generating miter circuits from SystemVerilog assumes and as-
serts.

• Transforming HDL descriptions into verification model AIGER
files.

4 http://www.clifford.at/yosys/

http://www.clifford.at/yosys/


48 background

2.4.4 PicoSAT and Tracecheck

PicoSAT5 [61] is a SAT solver created by Armin Biere that won a Silver
and Gold medal in the Industrial category of the SAT 2007 Competition
and that implements many low-level optimizations to greatly speed
up the solving. The tool is able to generate and store propositional
resolution proofs compactly in memory, and also to export them in a
condensed form in the Tracecheck format, enabling the tool of the same
name6 to check them afterwards. PicoSAT hence not only is capable of
efficiently determining the unsatisfiability of a formula in CNF, but
also to create a checkable proof for this fact, which we can leverage for
proof-carrying hardware. Mostly due to this last reason, PicoSAT has
been the main SAT solver for PCH approaches for many years, but has
since been surpassed by CaDiCaL, which in turn greatly outperforms
PicoSAT.

Specifically we leverage PicoSAT and Tracecheck for the following
purposes:

• Generating unsatisfiability proofs for hardware verification mod-
els that were translated into a CNF formula.

• Proving the satisfiability of models that encode property viola-
tions.

• Validating previously generated proof traces in order to match
them to given CNF formulae and check whether they actually
prove the unsatisfiability.

2.4.5 CaDiCaL

The CaDiCaL7 simplified satisfiability solver started out as a project
by Armin Biere to obtain a state-of-the-art Conflict-Driven Clause
Learning (CDCL) [76] SAT solver that is easy to understand. Since
its inception, it has become much more than that, although it is still
missing some rather elemental preprocessing steps, and is today one
of the fastest available SAT solvers, as is evidenced by the three gold
medals it has won in the SAT 2017 and 2018 competitions. As is
mandatory now for these competitions, CaDiCaL can export any proof
in the DRAT format (cf. Section 2.4.6), thus providing checkable un-
satisfiability proofs, which we require in the PCH context. This fact,
together with the tool’s great success in the recent SAT competitions
lead to its adoption into the current PCH tool flow. Today CaDiCaL
is, in fact, about to be superseded again by the Kissat SAT solver [77],
which is already even more powerful in many aspects while it, on
the other hand, still lacks some important features that CaDiCaL has.

5 http://fmv.jku.at/picosat/

6 http://fmv.jku.at/tracecheck

7 http://fmv.jku.at/cadical/

http://fmv.jku.at/picosat/
http://fmv.jku.at/tracecheck
http://fmv.jku.at/cadical/


2.4 tools and platforms 49

This ongoing development is a testament to the unbroken creative
energy that still transforms the landscape of SAT solving to this day,
extending the range of modern FV further with each new tool and
improvement.

We leverage CaDiCaL for the following purposes:

• Generating unsatisfiability proofs for hardware verification mod-
els that were translated into a CNF formula.

• Proving the satisfiability of models that encode property viola-
tions.

2.4.6 DRAT-trim

DRAT-trim8 is a proof checker employed by today’s SAT competitions
to validate the clausal unsatisfiability proofs for propositional formulae
that modern SAT solvers generate. It defines its own format, the
DRAT format, which also allows for some other techniques than just
resolution steps, since modern SAT solvers often employ them. DRAT-
trim has been developed with a focus on keeping the computational
effort of validating a received proof as low as possible, making it well
suited as a proof checking tool on the PCH consumer side, which
is why it is also employed as one alternative in this capacity in our
current PCH tool flow. The general nature of the DRAT format, and
the popularity of the checker in the SAT competitions ensures that
this will likely remain a valid and efficient choice, even if we need to
change to a different solver on the producer’s side in the future.

Specifically we leverage DRAT-trim for the following purpose:

• Validating a previously generated proof trace in order to match
it to a given CNF formula and check that it actually proves the
unsatisfiability.

• Generating optimized (size-reduced) unsatisfiability certificates
from the basic proof traces of the SAT solvers in DRAT format.

2.4.7 Gratgen and Gratchk

DRAT-trim is used, e. g., in SAT competitions to verify that a computed
result, either SAT or UNSAT, is actually sound, as the solver would
otherwise contain a bug. This checking procedure is important in such
scenarios, but optimized for low computational resources and not too
much for speed, nor is it formally verified, both of which would be
highly beneficial for the PCH environment, where this check will be
performed by the consumer and where its result is the base of trust for
the consumer’s decision to accept or reject the received module. This is

8 https://github.com/marijnheule/drat-trim

https://github.com/marijnheule/drat-trim


50 background

exactly the purpose for which the GRAT tool chain9 has been created
by Lammich [78], which makes it a perfect match for a PCH flow. The
chain consists of the two tools gratgen and gratchk. Of these, gratgen
can transform a DRAT certificate into a GRAT certificate and thus
has to be run on the producer’s side to compute the actual certificate
that will be transfered to the consumer. The consumer can then run
the formally verified tool gratchk to perform a speed-optimized and
formally verified check of the received GRAT certificate. The only
downside of this tool chain is an increased memory requirement,
which is, however, tolerable in most environments.

Specifically we leverage gratgen and gratchk for the following pur-
poses:

• Generating unsatisfiability certificates in GRAT format from
given certificates in DRAT format.

• Quickly validating a GRAT certificate in a formally verified
manner, in order to match it to a given CNF formula and check
that it actually proves the unsatisfiability.

2.4.8 ReconOS

ReconOS10 is an architecture and execution environment for hybrid
HW / SW systems, first developed by Lübbers and Platzner and grow-
ing more complete and feature rich since 2007 [79–82]. As depicted in
Figure 2.17 it features a multithreaded programming model which al-
lows for the co-existence and collaboration of regular POSIX software
threads (SWTs) as well as hardware threads (HWTs).

These HWTs are basically circuits in reconfigurable hardware that
can interact with other threads and operating system (OS) services,
such as semaphores, through a first in, first out-based (FIFO) OS in-
terface (OSIF). To enable this interaction in a fully transparent way,
ReconOS instantiates one delegate thread (DT) in software per run-
ning HWT. The DT can access the operating system’s services and
communicate with other threads on behalf of the HWT. This approach
simplifies the distribution of tasks in hardware and software to a point
where both versions can be used interchangeably at runtime, adapting
to the current system, speed, or energy requirements and available
resources. ReconOS is able to run on soft-core or hard-core processors
and can use, for instance, Linux or eCos as base operating system.

To allow for fast hardware implementations in the HWTs, ReconOS
provides its own virtual memory manager for them, so that they can ac-
cess the memory directly and without going through the OS, as shown
in Figure 2.17. All memory accesses from HWTs are routed through
the internal FIFO-based memory interface (MEMIF), which consists

9 https://www21.in.tum.de/~lammich/grat/

10 http://www.reconos.de

https://www21.in.tum.de/~lammich/grat/
http://www.reconos.de


2.4 tools and platforms 51

OSIF

CPU
ReconOS

Linux

Software 
Thread

Delegate 
Thread

Delegate 
Thread

OSIF

Hardware 
Thread

Hardware 
Thread

MEMIF

MEMIF

Memory
Subsystem

Arbiter

MMU

Burst 
Generator

System Bus

Memory ICAP Ethernet
other 

peripherals 
(USB, UART, …)

Figure 2.17: ReconOS architecture with a Linux-based OS and two hardware
threads and their delegate threads within the CPU context. Taken
from [82].

of several specialized cores (memory access arbiter, burst generator,
and a memory management unit (MMU) for address translation, with
translation lookaside buffer (TLB)).

Using ReconOS as a platform for our prototypes provides us with a
mature, Linux-based infrastructure for implementing HW / SW sys-
tems, including a CPU core, memory controller, peripherals and a
standard software OS.





3
R E A L I Z I N G P C H AT T H E B I T S T R E A M L E V E L

3.1 Proof-carrying Reconfigurable Hardware . . . . . . . . 53

3.1.1 Abstract FPGAs . . . . . . . . . . . . . . . . . . . 55

3.1.2 Bitstream Format Reverse Engineering . . . . . 56

3.1.3 Raising the Abstraction Level . . . . . . . . . . . 57

3.1.4 Employing FPGA Overlays . . . . . . . . . . . . 58

3.1.5 Conclusion And Choice . . . . . . . . . . . . . . 60

3.2 Generalized Bitstream-level PCH Flow . . . . . . . . . . 61

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 65

In Section 3.1 of this chapter we will contemplate and explain the
options concerning the realization of bitstream-level proof-carrying
hardware (PCH) on modern reconfigurable hardware, which lead to
the research that is now reflected in this thesis; and in Section 3.2 we
will also present our version of proof-carrying hardware together with
our condensed base tool flow, which we have used to create all of our
PCH methods.

3.1 proof-carrying reconfigurable hardware

Proof-carrying hardware as a concept is rooted in a software world’s
distributed verification scheme called proof-carrying code (PCC) (cp. Sec-
tion 2.3) that employs a theorem prover assisted program verification
of assembly-language software code as proof of a user’s safety policy,
thereby minimizing the trusted computing base (TCB), which is the
set of files and tools that need to be trusted by a user to perform
a verification, i. e., this set constitutes the root of trust of the verifi-
cation process. Necula and Lee, who invented the original method,
wrote that the safety proof’s “validation is quick and driven by a
straightforward algorithm. It is only the implementation of this simple
algorithm that the consumer must trust in addition to the soundness
of its safety policy.” [83] For reconfigurable hardware, the level which
comes closest to this abstraction level is the bitstream level, in the
sense that no more tools are used after this level to transform the
“executable” representation. In the interest of minimizing the TCB,
this is thus the best-suited level to perform any verification of the
hardware configuration.

53



54 realizing bitstream-level pch

To be able to apply PCH at the bitstream level, several prerequisites
have to be met:

1. Consumer and producer of the exchanged hardware modules
need binary1 compatible reconfigurable hardware.

2. The verification performed by the producer needs to employ
a checkable proof mechanism in order to yield a transmittable
certificate, which actually allows the consumer to validate the
correctness of the proof at a significantly lower cost than the
producer’s original verification, to enable PCH and preserve its
main strength.

3. The consumer needs to be able to match the certificate to the
bitstream, i. e., able to interpret the bitstream as placed and
routed netlist.

4. The consumer has to have the validation or proof-checking coun-
terpart of the producer’s verification tool in their TCB, as they
need to use it in order to validate the received certificate.

Requirements two and four impose restrictions on the employed
verification and validation methods, while numbers one and three
constrain the platforms we can use when applying PCH.

Especially requirement three, the interpretable bitstream, leads us
to the main disadvantage of the bitstream abstraction level, since the
hardware configuration for field-programmable gate arrays (FPGAs) is
stored in a proprietary, vendor-specific format that does not allow us
to infer the netlist of the circuit from the bitstream file [19]. This stark
contrast to the well-documented assembly language instructions from
the software world unfortunately prevents us from realizing PCH
in a transparent way for modern FPGA devices within the context
of their regular tool flows, which would be the most natural and
applicable way of realizing PCH for all involved parties. The situation
is furthermore unlikely to change in the foreseeable future, as that
would require FPGA vendors to publicly disclose their bitstream
formats, which from today’s market conditions is quite unrealistic.

1 Note that the module could also be transmitted as relocatable placed and routed
netlist, as these abstraction levels have a 1:1 correspondence to each other, but we
choose the bitstream level here to underline the minimum possible level of abstraction.



3.1 proof-carrying reconfigurable hardware 55

This leaves us with the following options to realize proof-carrying
hardware for reconfigurable hardware configurations, and thus enable
further research into a wider range of provable properties:

1. Explore the method only in theory or with abstract (i. e., non-
existent) hardware, as Drzevitzky, Kastens, and Platzner did in
their work [58], cp. Section 2.3.1.

2. Work around the limitation of the proprietary bitstream formats
by reverse engineering them, a method whose feasibility, among
others, Note and Rannaud have shown in [84].

3. Raise the abstraction level, e. g., to the register-transfer level
(RTL), and therefore include more proprietary, closed-source
tools into the TCB; a path that is pursued by the alterna-
tive approach proof-carrying hardware intellectual property
(PCHIP) [63], see Section 2.3.2 for details.

4. Add a general abstraction layer between the FPGA and the
untrusted circuit, which behaves exactly like an FPGA. This
layer, that is usually denoted as virtual field-programmable gate
array (vFPGA) or simply overlay, would be added to the TCB
and would use an open bitstream format, allowing the (virtual)
configuration to be directly verified using PCH.

We will now discuss each of these options over the next sections
and conclude our decision for vFPGAs in Section 3.1.5.

3.1.1 Abstract Field-programmable Gate Arrays

The first of the four options, i. e., to leave proof-carrying hardware
in the abstract domain, and to only theoretically argue about it, is
the one that minimizes the TCB. This, however, has to some extent
already been covered by Drzevitzky’s approach, who has created the
complete tool flow for PCH depicted in Figure 2.16, which operates on
an abstract simplistic FPGA model that she has created. As discussed
in Section 2.3.1, this tool flow is capable of proving the functional
equivalence of a circuit implementation to its specification (combina-
tional or bounded sequential). Here, the implementation is a textual
representation of the technology-mapped placed and routed netlist for
the abstract FPGA, and the specification is the result of the very first
front-end synthesis of the initial circuit. Since any functional property
of a circuit can be verified by proving the functional equivalence of
the circuit to an appropriate specification, which is known to have that
property, this approach constitutes a (more or less) catch-all property
prover for functional properties of circuits that have a so-called golden
model to check against.



56 realizing bitstream-level pch

While furthering the research into new properties would be possi-
ble with option one, actually applying the approach to circuits and
gathering insights from prototypes on real reconfigurable hardware,
for whom also non-functional properties would be meaningful and
thus worthwhile to be researched, would not be possible. This direc-
tion would leave the whole approach theoretical in nature, which is
a significant hindrance to its acceptance in the scientific community
of reconfigurable hardware research, which tends to perceive such
concrete but non-realizable research as irrelevant.

3.1.2 Bitstream Format Reverse Engineering

For reversing the bitstream format of a specific device (option two),
Xilinx states that details “of how a bitstream is generated are propri-
etary. In fact, FPGA manufacturers have no tools that can be used
to recover a netlist from a bitstream. Given the sheer size of modern
FPGAs and the number of configuration bits involved, recovering
an entire design from a bitstream is unlikely” [85]. However, such a
recovery has in fact been successfully demonstrated for a number
of commercial devices, e. g., by Note and Rannaud [84] for Xilinx
Spartan-3 and Virtex-2–5 devices, and by Wolf and Lasser [86] for
Lattice iCE40 FPGAs; for a recent overview see Yu et al. [87]. Moreover,
results such as the one from Pham, Horta, and Koch [88] show that
even just a partial understanding of the bitstream format can be lever-
aged to implement powerful analysis and manipulation capabilities in
third-party tools. Building on these results, or reversing the bitstream
ourselves, would enable us to actually prove properties of real circuits
on real hardware, with no additional tools. We would thus have a way
to capture all relevant functional and non-functional properties of the
circuit, since the properties would be proven directly on the bitstream
which actually represents the circuit that will be configured on the
device. The TCB could thus also be considered unchanged for this
option, however, since the reversal process is tedious and quite specific
to the involved devices, our understanding of the bitstream format
would build on potentially limited and flawed insights, instead of
well-documented and standardized concepts as in the software world.
We could thus hardly be sure that our model of the format is sound
and indeed complete, which would render our proofs, that are based
on this model, at a rather high, but not ultimate trust level of being
"verified to the best of our knowledge". This restriction weighs even
heavier when we consider that the non-disclosed format is actually
internal to the proprietary closed-source device vendor tools, which
means that it could be changed, enhanced, or restricted at any time
at the vendor’s convenience. Any such change would then have the
potential to undermine the current proofs or even the entire proving
mechanism without us realizing it, which in essence means that with



3.1 proof-carrying reconfigurable hardware 57

option two we would obtain an unchanged TCB, but at the expense
of a level of uncertainty pertaining the foundation that we build our
proofs on.

This uncertainty is obviously quite prohibitive for formal verification
(FV), since we are aiming to automatically guarantee properties of cir-
cuits; a process that requires a solid foundation. Adding a third-party
bitstream reversal tool to the TCB instead of reversing it ourselves
would improve the situation at first glance, but since this tool would
also face the complications and restrictions mentioned above, there is
no way to actually justify this trust. There are also some additional
issues with reverse engineering the proprietary format, which further
reduce the attractiveness of option two:

a) The involved formats might be quite specific to a device vendor
and often even to a FPGA-family or even only a single model,
requiring a new reversal for each new model, family, or vendor,

b) the effort to enable the usage of new devices in such a way is
quite high, potentially locking us in to only a few devices for
which our method can be readily applied, and

c) depending on the country, there might be additional legal issues
involved in purposefully reverse engineering a non-disclosed
proprietary format of a commercial vendor without their consent.

The first two options for realizing bitstream-level PCH are thus both
not really viable going forward, although they technically do not add
to the TCB. Since both remaining options involve adding something to
the TCB, we have to determine the best trade-off between this increase
and the added benefits.

3.1.3 Raising the Abstraction Level

Raising the abstraction level away from the bitstream to some higher
representation (option three) would allow us to rigorously model the
effects of each line of source code using some calculus, just as PCC
does for assembly-language level software code. Within this calculus,
we could then derive formal proofs for properties described using its
languages, e. g., using semi-automatic theorem provers such as Coq,
which would build on the whole foundation of theoretical research
that already went into the definition and extensions of said calculus.
This option would also lift requirements one and three from page 54,
since there is no binary to run or bitstream to interpret in this case.



58 realizing bitstream-level pch

The downside of this approach, however, is that the property could
only be verified for this higher abstraction level, which would:

1. Put all closed-source computer-aided design (CAD) tools re-
quired to generate the bitstream from this abstraction level into
the TCB, or cancel the trustworthiness of the method, as shown,
e.g., by Thompson [68] and Krieg, Wolf, and Jantsch [69].

2. Require the involved intellectual property core (IP-core) vendors
to disclose the unencrypted source code along with their cores,
forcing them to rely on strategies such as hardware description
language (HDL) watermarking [23] to protect their trade secrets.

Choosing option three for the future development of PCH would thus
deviate significantly from the original PCC idea, since Necula and
Lee tried to specifically build proofs for the bottom-most abstraction
level [54], such that the code that was executed and the code that was
used to prove the properties were one and the same, or at the very
least in direct correspondence to each other, as assembly language and
machine code instructions are.

3.1.4 Employing FPGA Overlays

Using virtual field-programmable gate arrays (option four) would
mean that we use a circuit on our FPGA, which implements such
a vFPGA as an overlay, much like a virtual machine running as a
software program on an actual machine. The circuit to which we
apply PCH would be the virtual circuit, which is implemented using
a specific overlay configuration, as depicted in Figure 3.1. At runtime
we would thus need to configure the physical FPGA with the overlay,
and then the overlay with the PCH-certified circuit.

Figure 3.1: Underlay (physical layer, black and yellow) and overlay (virtual
layer, blue) on a field-programmable gate array. Any element of
the virtual field-programmable gate array is implemented using
one or many elements of the physical layer. Taken from [89].



3.1 proof-carrying reconfigurable hardware 59

Aside from the added complexities, this approach would have the
benefit that every aspect of the flow we use for guaranteeing properties
of the virtual circuit would actually work almost exactly like the
envisioned transparent flow for the physical circuit, or in other words:
should the FPGA device vendors at some point decide to disclose their
bitstream formats, all results achieved using option four would be
immediately applicable to regular, physical FPGA bitstreams, making
this the perfect model to research the impact PCH could have without
the vendor-imposed restrictions. In particular, choosing this option
would allow us to fulfill requirement three by choosing an overlay
whose bitstream format we can interpret.

As a research model, vFPGAs would thus offer high similarity to the
actual research target, with the added benefit of a very low required
effort for requirement one, i. e., to support the model on new devices,
which basically only requires a regular synthesis of the overlay for
the new device and no transformation whatsoever of any previously
generated virtual bitstreams or proofs. The downside, or cost, of this
model is the addition of the overlay to the trusted computing base,
which implicitly also trusts the electronic design automation (EDA)
tools of the underlay. However, maliciously modified EDA tools that
attempt to attack the fabric of the overlay to gain access to all future
virtual circuits, would face the same difficulties that Trimberger [3] has
enumerated for attackers who try to subvert an FPGA base array in the
foundry, e. g., they would have a hard time guessing the correct places
of the FPGA to infect, as they would have no way of knowing where
exactly on the overlay some interesting sensitive signals might end
up. Additionally, the non-functional properties of the virtual circuit
would be subject to an indirection with option four, as they would not
only be influenced by the device, but also by the implementation of
the overlay.

If we employ this kind of virtualization as a tool and accept the
increased TCB, however, we obviously also inherit the advantages and
disadvantages of virtualizing a resource. The advantages, specifically
for more fine-grained FPGA overlays, include (cp. [90–93]):

• Bringing the benefits of PCH and (partial) reconfigurability even
to devices that do not natively support it, such as application-
specific integrated circuits (ASICs) with an overlay.

• Achieving bitstream portability and reusability through the
added abstraction layer and thus also being vendor indepen-
dent, as the overlay can be easily synthesized for a number
of different vendors, thus solving requirement one for binary
compatibility.

• Enabling faster design cycles for the virtual circuits, and thus
higher design productivity, which is also quite helpful in an
academic context.



60 realizing bitstream-level pch

• Being able to use third-party open-source CAD tool chains like
the Verilog-to-routing (VTR) [60] flow or Yosys [75] for easily
accessible and reproducible research results.

The main disadvantage of this approach is, quite obviously, the in-
duced timing and area overhead of the virtualization, which has been
reported to be in the range of 100× to 40× [49, 93–95].

3.1.5 Conclusion And Choice

In conclusion, options one, the abstract FPGAs, and two, reverse
engineering proprietary bitstream formats, would avoid adding to
the TCB, but the former does not hold much potential for relevant
novel insights for PCH and the latter would require high effort for
comparatively weak results. Options three, applying PCH at a higher
abstraction level, and four, using virtual field-programmable gate
arrays, both add to the TCB and bring many novel aspects to the
PCH research; the former models a world where IP-cores are being
traded as unencrypted source-code and the latter one where the
bitstream format can be interpreted by the recipient. While both of
these scenarios are not likely to come to pass in the near future, as
IP-core vendors prevent the model of option three from becoming a
reality and FPGA device vendors that of option four, studying them
has its respective own merits, as outlined above.

From these remaining two options I have chosen the latter, op-
tion four, for my thesis, for the following reasons:

1. Weighing the main disadvantages against each other, i. e., the
involved overheads when working with vFPGAs versus the trust
gap when only verifying the safety policy at the register-transfer
level, I value the latter as being more prohibitive: While overlay
overheads are subject to research and optimization and thus
malleable, the trust gap is inherent to the respective abstraction
level and hence immovable.

2. The accompanying additions to the TCB, follow that pattern:
Both trust the device vendor’s EDA tools, but for option four this
corresponds to trusting in the fabrication process of FPGA base
arrays and can thus, according to Trimberger [3], be assumed to
be safer than for option three, where it corresponds to trusting a
compiler to faithfully translate a verified source code, which was
shown to be a fundamentally bad idea, e. g., by Thompson [68].

3. I think that it is much more likely for a device vendor to dis-
close their proprietary bitstream format than for many IP-core
vendors to disclose their source code, since reverse engineer-
ing the bitstream format has been shown to be indeed possible



3.2 generalized bitstream-level pch flow 61

multiple times by now, and has not been met with harsh conse-
quences by the affected vendors, and it therefore does not seem
to immediately threaten their business model.

4. If a device vendor decides to disclose their format, or it is thor-
oughly reverse engineered with a high enough degree of con-
fidence, PCH will be immediately applicable to all hardware
modules for that device, whereas for option three each vendor
would have to make that decision individually to enable PCH
just for their cores.

5. Despite its shortcomings, a PCH variant following option three
was already being actively researched by Love, Jin, and Makris
with the PCHIP approach [62] when this thesis project started,
whereas combining proof-carrying hardware and virtual field-
programmable gate arrays was still completely uncharted terri-
tory, with the promise of bringing all the virtualization benefits
to the world of formal distributed two-party hardware verifica-
tion.

Due to this choice of option four, we will first detail our research and
efforts concerning virtual field-programmable gate arrays in Chapter 4,
and then Chapters 5 and 6 will explain how we used the fruits of that
work to further the body of research for PCH.

3.2 generalized bitstream-level pch flow

Research into actually applicable proof-carrying hardware (PCH) tech-
niques obviously requires tool flows as support. Since some of our
actually employed tools depend on other research choices, such as
our concrete vFPGA, and some others are themselves subject of our
research concerning their applicability to PCH, we will not present a
concrete flow with specific tools here, as Drzevitzky did with the one
depicted in Figure 2.16. We will rather try to combine and generalize
the previous research to transform the abstract flow from Figure 2.13

into the more detailed, but generalized flow for bitstream-level PCH in
Figure 3.2. Although this section is a thoroughly revised and general-
ized version, it is partly based on the flow generalization we presented
in [31], which was a collaborative effort between the involved authors.

Bitstream-level PCH uses the same differentiation between the cir-
cuit producer and the circuit consumer that is present in all PCH varia-
tions, as it was inherited from proof-carrying code (PCC), just as the
same basic scenario, which is best explained using the contract-work
model (cp. Section 2.3). Before engaging in trade, the consumer and
producer have to agree on formalisms in which to specify the mod-
ule (circuit) functionality and properties, and then the consumer can
start the overall flow shown in Figure 3.2 by first defining a) a design
specification stating the desired functionality of the circuit, and b) the



62 realizing bitstream-level pch

desired PCH safety policy which the implementation should adhere
to, and then sending both to the producer.

ProducerConsumer
Define design

specification and 
safety policy

Implement design

Synthesize

Generate property 
verification circuit

Extract netlist from 
implementation

Extract netlist from 
implementation

Generate 
certificate

Generate property 
verification circuit

Is the proof valid 
for this PVC?

netlist

netlist

specification
& policy

bitstream

HDL files

PVC

certificate

PVC

Accept bitstreamRefuse bitstream

yes
no

Figure 3.2: Overview of the generalized bitstream-level proof-carrying hard-
ware flow for both involved parties, producer and consumer. The
consumer starts the overall flow by defining the design specifica-
tion and the PCH safety policy.

The term safety policy here reflects the fundamental challenge which
PCC, and hence also PCH, originally set out to solve: The consumer’s
uncertainty about whether or not it is safe to execute a binary they
receive from the producer. The safety policy is thus a set of rules by
the consumer that define what constitutes a safe execution for them.
To verify such a policy for the reconfigurable hardware targeted by
PCH, it would be most beneficial to translate it into a set of circuit
properties that can be processed by hardware verification through
property checking, i. e., by verifying a property verification circuit
(PVC) as model for the safety policy. This is the reason why the major
effort of this thesis was spent on the results from Chapters 5 and 6,
i. e., into researching what kind of properties can already be used
for PCH and how to expand these limits. Drzevitzky, Kastens, and
Platzner [58] had already introduced a working prototype for com-
binational equivalence checking (CEC) with PCH, but we have seen
in Section 2.2.3 that performing black-box verifications of complete
models using formal verification (FV) is rather limited in its scope due
to the state explosion, and we thus need more precise tools to extend
the status quo to larger modules and more complex scenarios. For our
flow, consumer and producer will need to agree on a method to derive
the correct circuit properties from a safety policy, which can be easily



3.2 generalized bitstream-level pch flow 63

done, e. g., by requiring the consumer to directly formulate the policy
in terms of circuit properties.

On the other side of the flow, after receiving the specifications from
the consumer, the producer implements the module by transforming
the design specification into a source code representation and then
synthesizing it into a binary hardware configuration format, as we
choose to apply PCH at the bitstream level. To prepare the verifica-
tion environment, they furthermore form a PVC (cp. Figure 2.8 in
Section 2.2.3) that implements a property checker (PrC) for the safety
policy and contains the module implementation. The producer has
to re-extract this implementation from the hardware configuration
bitstream in order to base their proof on the same input that is later
available to the consumer. This is therefore the step of the verifica-
tion flow where we require a bitstream format that we can interpret.
The concrete forms of the PVC and PrC depend on the employed
verification and the safety policy. As a next step, the producer has to
verify the PVC and create a checkable proof certificate, which holds
the guarantee that the module is in compliance with the policy.

Inspired by the great verification successes of ABC [30] in the hard-
ware model checking competitions (HWMCCs) of the previous years,
which is in no small part due to their consistent exploitation of syn-
ergies between sequential synthesis and FV, we now also allow the
verification engine to perform various sequential synthesis steps as
preprocessing of the property verification circuit. Since PVCs often
exhibit a high degree of redundancy (cp. Section 2.2.3), this approach
can lead to dramatic reductions of the verification complexity, allow-
ing us to process larger and more complex designs under verification
(DUVs) and properties. For concrete measurements of this effect, see
Section 5.5. In order not to break the PCH flow, the producer has
to restrict themselves to synthesis and optimization steps which the
consumer allows, since the consumer has to mirror the exact prepro-
cessing sequence in order to be able to validate the certificate for
most checkable proof techniques. To account for the considerable
verification power of this flow extension, we now also allow PCH
instances in which no certificate is being transfered between the two
parties, if the producer can guarantee that the PVC can be reduced to
an empty miter structure using no more than the allowed synthesis
preprocessing steps.

Returning to the flow depicted in Figure 3.2, the producer then
sends the hardware module binary and the certificate both back to the
consumer, who also has to extract the module implementation from
the bitstream and, using the same steps as the producer, generate the
PVC from it. Then, the consumer can verify that a) their own PVC
and the certificate match, i. e., the proof is actually about the PVC
and thus covers both, the specified design functionality and the safety
policy, and b) the proof is sound, i. e., the certificate can be validated



64 realizing bitstream-level pch

with a proof check. If both steps are successful, then the module
is indeed trustworthy, and the consumer can go ahead and use the
supplied binary module to configure their reconfigurable hardware
device without additional or future checks.

The evaluation criteria applied to gauge the adequacy of a specific
flow instantiation with concrete underlying verification method and
circuit properties remain the same as indicated in Section 2.3.1:

shift of verification workload from the consumer to the pro-
ducer is the primary measure of how well the flow instance is
suited for a PCH approach, which is characterized by a high
shift, indicating that the producer carries the major burden of
verification and hence the main portion of the cost of trust.
Since the alternative to PCH would be a FV on the consumer’s
side, just as the one the producer is performing, we assume
the original cost of trust CoT to be the producer’s verification
runtime: CoT = Vprod with Vx being the verification runtime
of party x. The shift is then calculated from the fraction of
their difference in verification runtime and the cost of trust,
i. e., shift = (Vprod − Vcons)/CoT . Thus, if both parties have
the same runtime then this signifies a 0% shift of workload,
and if the consumer would have no runtime at all, this would
correspond to a 100% shift. Proof-carrying hardware’s goal is to
shift the computational burden of verification as much as pos-
sible from the consumer to the producer, and it is hence much
more concerned with the consumer’s effort, i. e., reducing the
complexity of the consumer’s proof validation is more important
than reducing the complexity of the proof generation for the
producer.

consumer runtime and peak memory consumption are pri-
mary criteria as well, since we cannot assume for a PCH / PCC
interaction that the consumer would have ample computing
resources and / or time for involved computations.

producer runtime and peak memory consumption are sec-
ondary criteria since we envision producers with sufficient time
and compute power to not only implement the design but also
create the certificate.

certificate size is another secondary criteria that on the one hand
determines the amount of data to transmit between consumer
and producer and on the other hand contributes to the memory
and runtime demands at the producer and, more importantly,
the consumer.

A note on the runtimes: For the direct runtime criteria, i. e., con-
sumer’s and producer’s runtime, we include all performed steps by
either party, unless noted otherwise, and we measure the processes



3.3 conclusion 65

user time instead of wall time for better comparison and robustness
against undeterministic system behavior. For the shift of workload,
however, we want to use the cost of trust as a baseline and thus only
consider the verification runtimes, which comprise building the miter,
structurally optimizing it as a pre-verification, and then proving its
unsatisfiability on the producer’s side. For the consumer the last step
is then replaced with the certificate validation, i. e., their verification
runtime encompasses miter generation, optimization, comparison to
the producer’s, and the certificate validation. Since the consumer per-
forms no steps that are not directly linked to the validation of the
certificate, both runtime notions (complete or only verification) are
equal for them. Obviously the criteria above should be evaluated over
a range of benchmarks to gain enough insight into emerging patterns
for a flow instance, e. g., consistently high or load workload shifts.

The flow depicted in Figure 3.2 together with these adequacy criteria
are the basis for all PCH methods presented and evaluated within this
thesis.

3.3 conclusion

With the choice of virtual field-programmable gate arrays, elaborated
in Section 3.1, the general flow presented in Section 3.2 and the con-
crete tools introduced in Section 2.4 we are now equipped with every-
thing we need to fulfill requirements one through four that we have
identified in the beginning of Section 3.1:

1. The consumer and producer can easily use binary compatible
reconfigurable hardware for all hardware modules, since they
can just generate a matching pair of vFPGAs, regardless of their
employed host FPGA.

2. The currently available verifications performed by the producer,
i. e., combinational equivalence checking (CEC) based on Boolean
satisfiability (SAT) solving of miter circuits, can make use of
checkable proofs by using either PicoSAT and Tracecheck as back-
end tools, or the combination of CaDiCaL, DRAT-trim, and the
GRAT tool chain. In Section 5.3 we will furthermore detail how
we can employ ABC in that capacity for synchronous sequential
circuits (SSCs).

3. To ensure that they can match the certificate to the bitstream,
the consumer can simply choose a vFPGA with open bitstream
format that they can interpret as placed and routed netlist.

4. The validation counterparts of the generators for the check-
able proofs are trustworthy enough to be added to a trusted
computing base (TCB): gratchk is actually formally verified and
ABC is open-source, so that a consumer can validate the correct



66 realizing bitstream-level pch

implementation of the employed certificate check. Since the se-
quential proofs will ultimately be using the method incremental
construction of inductive clauses for indubitable correctness (IC3), the
consumer could alternatively use IC3’s reference implementation
to implement their own checking mechanism, as suggested for
PCC by Necula [83].

Considering all previous research, the advantages of employing
PCH are also universal for all instances of the generalized flow, as
elaborated in Section 2.3. There is, for instance, no need for the con-
sumer to trust the module producer, their tools, or the transmission
channel. As a trusted computing base, the consumer only has to trust
their own safety policy and self-built PVC, as well as proof validation
procedures that are all entirely under their own control. All malicious
attempts to manipulate the final module or the proof, either at the pro-
ducer’s site or in transit, will be detected by the tools of the consumer.
This also covers purposely added circuitry such as hardware Trojans,
as long as they affect the adherence to the safety policy.



4
V I RT UA L F I E L D - P R O G R A M M A B L E G AT E A R R AY S

4.1 Virtualizing FPGAs . . . . . . . . . . . . . . . . . . . . . 68

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Extending ZUMA . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 ZUMA Overview . . . . . . . . . . . . . . . . . . 76

4.3.2 Sequential Virtual Circuits . . . . . . . . . . . . . 82

4.3.3 Virtual-physical Interface . . . . . . . . . . . . . 84

4.3.4 Further Extensions to the ZUMA Tool Flow . . 90

4.3.5 Comparison . . . . . . . . . . . . . . . . . . . . . 94

4.4 ZUMA-based PCH Evaluation Platform . . . . . . . . . 95

4.4.1 ZUMA as a ReconOS Hardware Thread . . . . . 96

4.4.2 Experimental Evaluation . . . . . . . . . . . . . . 99

4.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Timing Analysis and Optimization . . . . . . . . . . . . 104

4.5.1 Virtual Timing Analysis . . . . . . . . . . . . . . 105

4.5.2 Physical Timing-Driven Virtual Synthesis . . . . 112

4.5.3 Virtual Fabric Optimization . . . . . . . . . . . . 116

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Realizing proof-carrying hardware (PCH) at the bitstream level is
challenging, as it involves arguing about structures that are encoded
in files whose formats are not publicly disclosed. In Section 3.1 of
the last chapter we have motivated and explained our choice of the
bitstream level and virtual field-programmable gate arrays (vFPGAs)
to further the research of PCH despite this fact.

We will begin this chapter with a general introduction to the vir-
tualization of FPGAs, i. e., vFPGAs or FPGA overlays, in Section 4.1,
followed by a discussion of related work in Section 4.2. We will then
detail the characteristics of and contributions to ZUMA, our cho-
sen vFPGA, in Section 4.3, introduce its embedding into a complete
system-on-chip (SoC) environment where PCH can be directly ap-
plied in Section 4.4, highlight the challenges and advances in ensuring
timing closure and obtaining good timing analyses of vFPGAs in
Section 4.5, and then conclude the chapter in Section 4.6.

This chapter is mainly based on results published in [49, 96] for
Sections 4.3 and 4.4, and also in [97], mainly for Section 4.5. The
co-author Arne Bockhorn, who was employed as a student research
assistant, contributed substantially to the generated source code and
the execution of several analyses in this chapter, which is actually the
reason why he was included as a co-author on these publications.

67



68 virtual field-programmable gate arrays

4.1 virtualizing field-programmable gate arrays

Virtualization of resources has a long tradition in computing. Gener-
ally, virtualization is an abstraction technique that presents a different
view on the resources of a computing system than the physically
accurate one. Virtualization is mostly used to emulate complete and
exclusive access to a shared resource, to isolate users of a resource
and guarantee their non-interference, to optimize resource usage, or
to simplify application development by abstracting away from the in-
dividual details of physical devices. Interest in FPGA virtualization in
particular has been fueled by several objectives over the past decades,
which Vaishnav, Pham, and Koch list as follows in a recent survey [98]:

multi-tenancy, i. e., to allow multiple users to use one fabric at
the same time.

resource management, where the overlay is employed as abstrac-
tion layer to facilitate the scheduling of tasks to an FPGA.

flexibility which can be provided since the virtual synthesis can
be adapted to accept a wide range of different input formats,
and because the overlay does not necessarily share the same
limitations as the underlay. Features such as (partial) reconfig-
urability of the virtual resources can be achieved even if the
physical device itself does not support it.

isolation, reflecting the ability of vFPGAs to completely isolate a
user from the actual FPGA resources; closely related to multi-
tenancy.

scalability, since an overlay can potentially span even multiple
physical FPGAs, or more users can be accommodated by instan-
tiating more overlays.

performance , which typically is a major issue for any virtualiza-
tion effort because of potentially large virtualization costs.

security, which is an important consideration especially in multi-
tenant environments.

resilience , which is an implication of the abstraction from phys-
ical devices – if the actual computation is independent of the
underlay, then it can be resumed elsewhere in case of a device
failure.

programmer’s productivity, which is especially an objective of
virtualization when using coarse-grained structures, as program-
ming these typically requires less knowledge and effort than
writing efficient hardware description language (HDL) code for
fine-grained resources. For vFPGAs, the increased productivity



4.1 virtualizing fpgas 69

is mostly due to the abstraction provided by overlays, which
allows designers to create implementations that run on a mul-
titude of different physical devices that implement the same,
binary-compatible overlay. In both cases, the productivity can be
further boosted by providing additional resources for the overlay,
such as a means to easily (re-)configure it and for it to interface
with the other, non-virtualized resources surrounding it.

Since we are looking to enable bitstream-level proof-carrying hard-
ware for reconfigurable devices, we are interested in the FPGA virtual-
ization class that Vaishnav, Pham, and Koch have named the resource
level in which we describe overlays, also denoted as fine-grained recon-
figurable arrays or virtual field-programmable gate arrays in related
work. At this level the virtual architecture differs from the underlay’s
and can thus be configured using a known or open bitstream format.
Figure 4.1 shows an example of such an overlay (blue) configured
on top of a physical FPGA (yellow), such that a single virtual config-
urable logic block (CLB) is realized using several physical CLBs. Today
vFPGAs can provide an experimental testbed for FPGA architecture
and computer-aided design (CAD) tool research, help to bring partial
reconfiguration capabilities at really fast configuration rates to FPGAs
that do not support it themselves, or be employed to implement cir-
cuits using open-source tool flows like Verilog-to-routing (VTR) [60]
on real FPGAs. Section 4.2 details existing research on this level.

Figure 4.1: Virtual field-programmable gate array as fine-grained overlay on
top of a physical FPGA as underlay. Taken from [89].

Of the considered objectives in related work, this thesis’ contribu-
tions mainly address two main issues of employing vFPGAs:

1. To minimize the overheads of the overlays with respect to area
and speed, i. e., the performance objective, and

2. to embed virtual reconfigurable fabrics into complete reconfig-
urable systems-on-chip (rSoCs), i. e., to increase the programmer’s
productivity by providing a rich set of additional resources that
is immediately available.



70 virtual field-programmable gate arrays

Regarding the overheads involved in virtualizing an entire FPGA,
newer architectures have achieved great reductions there; for instance
by instantiating LUTRAMs as virtual LUTs in modern FPGAs that sup-
port this, as ZUMA [95] does, or by using the physical wires as virtual
routing resources through runtime reconfiguration, as described by
Koch, Beckhoff, and Lemieux [93]. Both advances are attempts to ad-
dress one major issue of instantiating a vFPGA, which is the mapping
of the virtual resources to physical ones, since this a) influences the
timing behavior of the virtual resources profoundly as it warps virtual
wires with a transformation of the lengths (and thus delays) that is
not metric preserving, and b) dictates how fast the physical circuit,
i. e., the overlay itself, can be run. In this thesis, we tackle the resulting
issues for minimizing the virtualization overhead, i. e., the difficulty
to estimate a valid virtual clock frequency, and the challenging maxi-
mization of the involved clock frequencies, from three different angles,
which we discuss in Section 4.5:

1. We introduce a flow to thoroughly analyze the timing properties
of the virtual overlay to accurately predict the achievable virtual
clock frequencies of given virtual configurations (Sections 4.5.1.1
to 4.5.1.3).

2. We propose a means to back-annotate the physical post-synthesis
properties of an overlay to its model for the virtual synthesis,
thus enabling timing-driven synthesis with the virtual electronic
design automation (EDA) tools (Section 4.5.2).

3. We discuss methods to exploit the highly regular structure of the
overlay to force a mapping that strives to preserve the relative
distances (and wire lengths) of the virtual fabric within the
physical one (Section 4.5.3).

The main observation of the research concerning issue two, i. e.,
embedding virtual reconfigurable hardware into complete rSoCs, is
that circuits configured onto vFPGAs cannot perform meaningful
tasks if they exist in isolation, and that they thus require interfaces
to other, non-virtualized resources. We will discuss in Sections 4.3
and 4.4 how we have embedded an extended version of the ZUMA [95]
overlay (cp. Section 4.2 and Section 4.3.1) into a complete rSoC to
facilitate this access, in order to fully harness the potential of vFPGAs.
For our proposed solution, we employ the open-source ReconOS
architecture and operating system (cf. Section 2.4.8); in particular we
provide virtual circuits access to main memory and operating system
services, and thus enable concurrent and interdependent operation
of virtualized and non-virtualized circuitry, as well as hardware and
software threads. For the creation of new overlay configurations we
have implemented, adapted, and leveraged a range of tools to form a
complete flow, which is capable of performing all necessary steps to
operate the resulting reconfigurable SoC.



4.2 related work 71

Since one of the goals of this thesis was to bring the power of PCH
to modern, state-of-the-art FPGAs, the ecosystem of tools and tool
flows surrounding the involved research and engineering has also
undergone a significant evolution over the course of the project. For a
brief description of the base tools, see Section 2.4. In the beginning,
we generated the virtual side (ZUMA) using VTR 1.0 (based on VPR 6

internally), and the physical side with the Xilinx ISE Design Suite
targeting a Xilinx Virtex-6 ML605 FPGA. From there we moved to
a Zedboard based on a Xilinx Zynq SoC, using VTR 7 (featuring
VPR 7) for the virtual configurations. Finally, we have adapted our
tools to work with the Xilinx Vivado Design Suite for the physical side,
which supersedes ISE for all new Xilinx boards, allowing us again
to target the most advanced FPGAs available today. For the virtual
synthesis, we have reworked the ZUMA generator scripts, as described
in Section 4.3.4.3, to also work with the freshly released VTR 8 which
breaks backwards compatibility in several places that are relevant to
the generation of the overlays. Merging this newest version from our
fork into the official GitHub repository [99] is ongoing work at the
time of this writing.

4.2 related work

Early concepts of reconfigurable hardware virtualization drew an
analogy to virtual memory and proposed to load and remove reconfig-
urable hardware modules from an FPGA similar to pages of memory
that can be swapped in or out of main memory frames, e. g., Brebner
[100] in 1997 or Fornaciari and Piuri [94] in 1998. The main motiva-
tion of their work was to overcome the limited hardware resources of
FPGAs.

Some years later, Lagadec et al. [89] introduced a definition of virtual
field-programmable gate arrays as a separate overlay on top of a physi-
cal FPGA, as depicted in Figure 4.1. The authors discussed advantages
of having an overlay that is not limited by the constraints of the un-
derlaying physical FPGA. The main advantages were described as the
portability of circuits, and, provided the virtual architecture is open
and adaptable, as providing a means to investigate and experiment
with new FPGA architectures – in FPGAs and application-specific in-
tegrated circuits (ASICs) alike, virtual overlays can introduce features
which the underlaying hardware does not have, most notably fast
partial and dynamic reconfiguration. Lagadec et al. also mentioned
potential disadvantages of using overlays, namely the area overhead,
the reduced maximum clock frequency fmax, and a lack of tool chains
for synthesizing circuits to vFPGAs. They presented one example over-
lay using 8 bit virtual cells capable of simple arithmetic operations,
i. e., not quite as fine-grained as the vFPGAs we employ for this thesis,
and recorded an area demand of 65 Virtex-1000 slices for one virtual



72 virtual field-programmable gate arrays

cell, but unfortunately did not compare this to a direct non-virtualized
implementation of the functionality.

The concept of vFPGAs has also been used by researchers from the
domain of evolvable hardware, e. g., Sekanina [101] or Glette, Tørresen,
and Yasunaga [102]. Evolutionary circuit design requires very frequent
synthesis and evaluation of evolved circuit candidates. Synthesis and
reconfiguration times for commercial fine-grained FPGAs have been
found to be far too slow. Hence, most approaches in evolvable hard-
ware leverage some form of coarse-grained reconfigurable architecture
and reconfigure this overlay through the setting of multiplexers, a
process denoted as virtual reconfiguration.

In 2004, Plessl and Platzner [103] published a survey of approaches
for virtualization of hardware. One of the approaches, which is de-
noted as virtual machine [104], uses an abstract overlay with a different
architecture than the underlay. In this approach, the virtual machine is
a runtime system that adapts and synthesizes the configuration for an
abstract FPGA to an actual reconfigurable device. The configuration
was termed hardware byte code.

Lysecky et al. [105] presented in 2005 first measurements of an
actual vFPGA, reporting a 100× area overhead and a 6× decrease
in circuit performance through virtualization. They concluded that
virtualization is only viable if circuit portability is of paramount im-
portance.

Brant and Lemieux later improved on these findings by presenting
ZUMA [95], a fine-grained FPGA overlay that lowers the area overhead
to a reported 40× through careful architectural choices. ZUMA uses
a simple island style for the vFPGA by default, with configuration
options for the number of logic blocks, lookup tables (LUTs) per block,
connections to and inside the block, track width and wire length. Its
switch boxes are not fully connected, in a trade-off between FPGA
area and routability. The critical architectural choice, however, was to
store the virtual configuration not in flip flops but in distributed RAM
called lookup table random access memory (LUTRAM) by Xilinx,
because it is built from LUTs, which are by far the most abundantly
available resource on FPGAs. Modern devices allow designs to use
these LUTRAM LUTs both as RAM and in data paths at the same time,
making them ideal building blocks for vFPGAs. Brant and Lemieux
also addressed the lack of tool chains for vFPGAs and used the well-
known open-source tool flow VTR [60] to generate the virtual fabric
and its configurations. The generator source code for ZUMA vFPGAs
has been released as open-source1.

In order to further reduce the area requirements reported in [95],
Koch, Beckhoff, and Lemieux have proposed in [93] to implement not
only the virtual LUTs efficiently in physical ones, but to also realize the

1 The official ZUMA GitHub repository at https://github.com/adbrant/zuma-fpga
includes many of the extensions described in this thesis.

https://github.com/adbrant/zuma-fpga


4.2 related work 73

virtual routing resources using the physical switch boxes directly. Their
approach requires several stages; in the first stage the virtual resources
are placed and then a custom tool that exploits undocumented Xilinx
features is employed to generate an extensive reservation graph for
all physical paths that might be needed to implement some future
overlay configuration. With all these resources blocked, the remaining
underlay configuration is placed and routed into free areas of the
FPGA. At each point, where the virtual configuration influences which
of two or more alternative sources (or sinks) are connected to each
other, i. e., signal junctions, the reservation graph can be adjusted to
implement either functionality. To actually configure the overlay, the
custom tool thus has to bridge a specific set of junctions with the
correct set of edges, and then use the vendor’s EDA tools to partially
configure the overlay area with this new configuration – thus mixing
virtual and physical reconfiguration.

In a case study, Koch, Beckhoff, and Lemieux have managed to
gain an area advantage over ZUMA of 3.7×, which they argued could
be optimized to up to 11×, while achieving a mapping of virtual to
physical wires that in the worst case assigned a delay of three times
that of a physical long wire to a single virtual wire. Consequently,
the speed with which they could operate their overlay was one third
of the physical device. Although the authors managed to achieve
outstanding results that significantly improved the performance of
ZUMA, they had to rely on undocumented features from ISE, which
are no longer supported in Vivado, and their whole process required
manual placement and routing of resources, with a potentially huge
number of attempts and retries due to congestion issues. As there has
been no further development in this regard targeting new devices or an
automated flow, and since the approach requires adding custom EDA
tools that rely on undocumented features to the trusted computing
base (TCB), it is not very well suited for a proof-carrying hardware
environment.

Hübner et al. [106] introduced a SoC with an Arm Cortex M1 soft-
core processor and a vFPGA on one physical FPGA. They described
their vFPGA and a supporting tool chain, which uses SIS, the pre-
decessor of ABC [30], and VPR, the place & route tool at the heart
of the VTR [60] flow. Unfortunately, Hübner et al. did not include a
quantitative analysis of the area overhead for their vFPGA and the
architecture is not openly available to the research community, but
judging by some of the technological details, such as using flip-flops
to store the configuration, ZUMA presumably is the more advanced
architecture.

Coole and Stitt presented a slightly different approach to FPGA
overlays called intermediate fabrics [91]. They did not address the
advantages and disadvantages of overlays discussed in earlier work,
but instead focused on FPGA synthesis times. Placing and routing



74 virtual field-programmable gate arrays

sophisticated designs on high density devices using vendor tools
can take hours or days, which Coole and Stitt consider a weakness.
Consequently, they came up with intermediate fabrics as general
concept for virtual overlays built from more coarse-grained building
blocks than lookup tables. These intermediate fabrics should greatly
simplify the placement and routing steps, speeding them up by a
factor of up to 800×. Fine-grained vFPGAs such as ZUMA can be seen
as special case of this approach, albeit not a very interesting one for
their chosen metric, as place & route would not be significantly faster
than for usual FPGAs of the same size as the overlay.

Jain et al. [107] also proposed an embedding of an overlay into a
Zynq SoC and reported on the resulting area and timing overhead. In
contrast to the work presented in Section 4.4, however, the authors
used much more restricted functional units that implement only a few
operators. The resulting DySER overlay is thus rather coarse-grained,
sacrificing generality and flexibility for performance. As the authors
used the exact same Xilinx SoC as we did in our experiments, the
maximum overlay size of 6× 6 is directly comparable to our overlay
sizes, only differing in the type of the constraining resource of the
underlay. As their overlay can use special digital signal processing
(DSP) blocks to implement the small set of operators, and is coarse-
grained, and thus does not include the combinational loops found in
ZUMA, the authors can actually determine a feasible safe operating
frequency for the overlay. The high performance of the otherwise less
optimized overlay shows that the first pessimistic timing results we
obtained (see Section 4.4.2) were a direct consequence of ZUMA’s
flexibility and fine-grained nature.

With virtual time propagation registers (VTPRs) in ARGen overlays,
Bollengier et al. [108] have introduced an approach to achieve timing
closure even for fine-grained overlays such as ZUMA, by proactively
breaking up the potential combinational loops inherent in such vFP-
GAs with artificially introduced registers. To accommodate these, the
virtual clock needs to be divided from the physical one by a factor
depending on the maximum number of VTPRs that a combinational
virtual signal has to cross in a specific overlay configuration. Hence,
the concept does help with reaching timing closure during physical
synthesis, but “brings no improvement in term of performances of the
synthesized” overlay, as the authors state. The authors also presented a
complete flow for an rSoC with an embedded ARGen overlay in [109],
which is quite similar to ZUMA’s flow, and also depends on, e. g.,
VTR’s architecture description and routing resource graph generation.
Our work mainly targets maximizing the achievable fmax of the vir-
tual circuits by using the timing back-annotation for which they could
still claim that it “has never been implemented in practice”. Hence,
their results do not directly benefit us, but we nonetheless briefly



4.2 related work 75

discuss in Section 4.5.3 how combining this and other approaches
might help to optimize ZUMA beyond our current results.

From the virtualization aspects listed in [98] that drive research
into FPGA virtualization today, many current publications focus on
the aspect of multi-tenancy and related issues in an effort to facilitate
the usage of FPGAs in data centers and cloud environments. Knodel,
Genssler, and Spallek, for instance, propose in [110] a way to virtualize
circuits to achieve good scalability using an FPGA hypervisor that
manages several homogeneous vFPGAs. The slots for these vFPGAs
partition the available chip area outside of the hypervisor, i. e., they
span all available columns of the FPGA and are stacked vertically,
such that all slots are homogeneous. Just as in traditional system
virtualization, the guest circuits will then run bare-metal on the FPGA
itself, which alleviates most, if not all, virtualization costs, since it only
constricts the implemented circuit to the shape of the vFPGA slots and
to the provided guest–host interface. Knodel, Genssler, and Spallek
achieve scalability by allowing guests to use multiple slots at the same
time. Zha and Li follow in [111] the same idea, i. e., partitioning the
available space on the FPGA only in row-direction. Where Knodel,
Genssler, and Spallek leverage the capabilities of modern EDA tools
to generate a separate configuration for a number of reconfigurable
regions, however, Zha and Li leverage the tool RapidWright [112]
instead to rapidly relocate a generically synthesized version of the
circuit into the correct slot. This way, they only have to synthesize
the circuit with the host FPGA’s EDA tools once to obtain a runtime-
relocatable version. Since the concrete virtualization for these works
happens at the multi-node level and not at the resource level (cf. [98]),
they require the (partial) bitstreams for the guest circuits to be in the
exact proprietary format that the device vendor employs. Approaches
such as these are thus not a viable choice for researching bitstream-
level PCH, since we need to be able to interpret the bitstream format.

In summary, we can identify a number of reasons why researchers
have been looking into vFPGA architectures. First, portability of syn-
thesized hardware designs across FPGA devices, families or even
vendors is a long term goal and would help reduce dependence on
single manufacturers and lower costs of migrating to new hardware.
In addition, the overlay can provide architectural features the underlay
lacks, for example, dynamic and partial reconfigurability. However,
hardware portability still remains an active research topic rather than
a practically used feature given the huge overheads in area and de-
lay as well as the rather limited virtual architectures presented so
far. Second, when speeding up place & route or the reconfiguration
process is the main motivation, then the overheads of current overlays
might be bearable. Third, FPGA overlays are excellent experimental
environments to study new reconfigurable architectures and design
tool flows. This holds especially true if researchers have open access



76 virtual field-programmable gate arrays

to virtual architectures and their bitstream formats, as well as to the
corresponding tool flows.

In our work we follow the definition of a vFPGA provided by
Lagadec et al. [89] and use an extended version of the original ZUMA
[95, 99, 113] vFPGA architecture and tool flow. The remaining sections
of this chapter now detail our concrete adaptions and extensions of
ZUMA.

4.3 extending zuma

When we started working with vFPGAs to implement PCH methods,
the newly released ZUMA was, to the best of our knowledge, the
most advanced resource-level FPGA overlay freely available; to this
day it remains one of the very few open-source overlays available for
research. ZUMA is designed for a low virtualization overhead and the
availability on GitHub2 helps others to integrate it easily into any given
design. Since the original reference implementation was too limited
in scope and features to showcase our methods, we have significantly
extended ZUMA’s concept, implementation and tool compatibility
over the last years. In an effort to give back to the community, we have
provided the original authors with all of our developments, and the
most current version available on GitHub at the time of this writing is,
in fact, our extended version.

In this section we will present and detail our modifications, starting
in Section 4.3.1 by elaborating on ZUMA’s features and inner workings
in more detail than in Section 4.2, as far as these details are relevant
for this thesis. We will then discuss the major extensions to the ZUMA
flow implementation, which enabled us to later embed the overlay into
a complete HW / SW rSoC platform that we could use as a testbed for
our PCH methods. Section 4.3.2 deals with the addition of sequential
elements into the virtual fabric, Section 4.3.3 with the interface between
the virtual and the physical circuitry, and Section 4.3.4 will detail how
we enabled ZUMA to work with arbitrarily large routing resources.

4.3.1 ZUMA Overview

ZUMA is a fine-grained resource-level FPGA overlay, and hence a
virtual field-programmable gate array, which means that its smallest
configurable units are actually virtual LUTs that are called embedded
lookup tables (eLUTs) there. It was introduced in 2012 by Brant and
Lemieux, and then provided with a reference implementation and
used in the master’s thesis of Brant [113].

The structure of the overlay is strongly tied to the open-source
VTR [60] flow, which is at the core of the reference implementation for
the generation of both, the overlay fabric and configuration bitstream.

2 https://github.com/adbrant/zuma-fpga

https://github.com/adbrant/zuma-fpga


4.3 extending zuma 77

Drawing on the expressive power of VTR’s FPGA architecture descrip-
tions, ZUMA’s basic layout is defined as a template architecture file,
consisting of a two-dimensional regular island-style grid of tiles that
feature one configurable logic block (CLB) and one switch box each,
as depicted in Figure 4.2. Each CLB comprises several basic logic ele-
ments (BLEs), each of which contains one LUT, but no flip-flops (FFs).
The architecture is parameterized, so that overlays can be instantiated
with different configurations of tile grid sizes, number of BLEs per
CLB, number of inputs per LUT, tracks between the islands, and con-
nections between each CLB and its surrounding tracks. The number
of the provided vFPGA I/Os depends solely on the grid size, since
the architecture models two general purpose I/Os per I/O pad and
covers the CLB island-grid edges with these pads. Hence, an n×m
ZUMA overlay provides 2 · (2 ·n+ 2 ·m)= 4 · (n+m) I/Os that can
each be configured by the virtual bitstream to be either an input or an
output.

IO

S

CLB

Figure 4.2: Basic layout of an exemplary 3× 3 ZUMA overlay with tiles
consisting of one configurable logic block and one switch box each.
Twelve input / output pads surround the perimeter, providing 24
general purpose I/Os. Taken from [97].

Although the ZUMA introduction paper [95] clearly features virtual
flip-flops in its architecture description, the reference implementation
did not include them. The same is true for the presented new Clos
network-based [114] input interconnect blocks (IIBs) which should
have replaced the simple fully-connected crossbars that the reference
implementation employs for the CLB-internal routing, i. e., to cross-
connect all CLB inputs and BLE outputs on the one side to all BLE
inputs on the other side.

ZUMA’s main feature, however, that is indeed reflected in the
reference implementation, is the way in which the virtual configuration
is stored, which actually sets it aside from all other vFPGAs available
at that time. Prior to Brant and Lemieux’s work, overlay designers



78 virtual field-programmable gate arrays

used the FPGA’s flip-flops in order to store the configuration bits in
such a way that they could actually influence (configure) the virtual
logic elements. This was indeed often the limiting factor in scaling
the virtual fabric, as overlays tend to require a tremendous amount of
configuration bits. ZUMA, on the other hand, leverages a mechanic
known (in the Xilinx world at least) as lookup table random access
memory (LUTRAM), which enables a designer to turn a portion of an
FPGA’s LUTs into runtime rewritable RAM. For Xilinx devices, using
their distributed memory generator (DMG) intellectual property core
(IP-core), these blocks of RAM can be generated in a wide variety of
sizes and layouts, e. g., as a single or dual-port block with the storage
size of a single LUT. By using dual-port LUTRAM, Brant and Lemieux
managed to connect all resulting entities to a global configuration
manager that can write the configuration bits to all LUTRAMs, and
use the other port to still use the unit as a regular LUT in data paths,
by connecting the input bits of that port’s read address to the outputs
of several other LUTRAMs. This way, the authors could connect all
LUTRAMs instances together in exactly the same way as the virtual
fabric, and then rewrite their RAM content to reflect the correct virtual
configuration at runtime. This not only constitutes a clever solution
to the previous lack of configuration storage, but also significantly
reduces the area overhead through virtualization by coinciding the
physical and virtual configurations of the eLUTs, as, e. g., one virtual
LUT could now be implemented using exactly one LUTRAM block,
which takes up only a few slices on the physical FPGA. For more
architectural details, cf. [95, 113].

Figure 4.3 depicts the ZUMA tool flow of the original reference
implementation for both sides, i. e., to generate configurations for
the underlay (yellow) and the overlay (blue). This ZUMA generator
consists of a set of Python scripts, which take as inputs a behavioral
description of the virtual circuit in the HDL Verilog and parameters
for the template description of the regular island-style overlay, which
is then translated to a concrete VTR [60] architecture file in extensible
markup language (XML) format. The scripts leverage the VTR flow
tools (ODIN II, ABC [30] and VPR) to synthesize, technology map,
and pack, place & route the circuit on the virtual hardware. Since
the original reference implementation featured no FFs, the circuit had
to be combinational for these steps. For the virtual synthesis, VPR
transforms the outer routing resources of the described overlay archi-
tecture into an abstract routing resource graph (RR-graph), which can
be dumped into a file. From this graph, together with the description
of the inner routing resources (everything inside a CLB), the Python
scripts generate a complete internal representation of all the resources
that are required to implement the overlay. For the purposes of this
thesis we will call the resulting structure the overlay description graph
(ODG). The scripts will furthermore parse the virtual circuit’s netlist



4.3 extending zuma 79

and placement & routing files that VPR has generated, and create
the virtual configuration bitstream from this information, which can
be used to configure the overlay to implement the virtual circuit. By
traversing and translating the ODG, the ZUMA generator scripts then
export a behavioral description of the overlay hardware itself, also in
Verilog, and ready to be included into a design for a physical FPGA.
This is the final target for the physical side of the tool flow that can
later be synthesized using regular FPGA back-end tools, which will
yield the underlay configuration bitstream.

Parameters & 
Templates

ZUMA script

Architecture 
(XML)

VTR flow

Routing resource 
graph (Text dump)

Virtual circuit

Netlist

Placement

Routing
ZUMA script

Virtual 
configuration 

(ZUMA bitstream)

Overlay 
description 
(Verilog)

Host FPGA 
synthesis

Virtual layerPhysical layer Tools

Combinational 
virtual circuit 

(Verilog)

Physical 
configuration

(FPGA bitstream)

Figure 4.3: Original tool flow to create a ZUMA overlay and configurations
for it.

After the ZUMA generator flow has concluded, the user thus gets
the two output files that are depicted at the bottom of Figure 4.3:
For the physical side one Verilog or host-FPGA bitstream file that
describes the fabric of the vFPGA, and for the virtual side one ASCII
file containing the configuration bitstream in a hexadecimal text rep-
resentation. This latter bitstream is composed in a way that ZUMA’s
configuration controller can configure a specific amount of LUTRAMs
simultaneously. If it is, for example, tuned to operate on 32 LUTRAMs
in parallel, then each row of the ASCII bitstream file holds, aside
from control data and checksum, one configuration bit for each of
the 32 targets. The amount of rows required to fully configure these
32 LUTRAMs simultaneously depends on the configurable number



80 virtual field-programmable gate arrays

of inputs per LUT, which is also used to determine the width of the
LUTRAMs; the default amount would be 26 = 64 rows.

Figure 4.4 depicts our extended ZUMA tool flow with optional
parts shown in dashed outlines. The differences of this flow to the
previous one will be the main subject of the subsequent sections of
this chapter. The inputs remain unchanged for the first run, but on
subsequent runs for the same overlay we allow for the inclusion of
the back-ported timing information from the post-implementation
static timing analysis (STA) of the FPGA back-end tools, albeit only
for Xilinx at the moment. To achieve this, we leverage a new capability
of VPR 8, which allows it to parse an existing, previously generated
RR-graph, so that it can restart from this point, without having to
regenerate the fabric with each run, like the previous flow did. This re-
imported RR-graph can be augmented with the timing information of
the global routing resources between the runs; the information about
the internal resources have to be input via an augmented architecture
file, however. These changes allow us to run VPR in timing-driven
rather than area-driven mode for the virtual packing, placement &
routing, by providing enough information about a specific synthesized
overlay and how its wires were mapped to the physical FPGA. With
this information, the ZUMA scripts can then also determine the critical
path of an overlay configuration for a specific implemented version
of the vFPGA, and thus also deduce the maximum frequency fmax
with which the combination of both could be run on a host FPGA.
In addition to the VTR flow tool ODIN II we now also support front-
end synthesis using the popular Yosys [75], which is significantly
more powerful and supports a wider range of Verilog keywords and
constructs.

One of the most relevant measures for any virtualization is the
cost it induces over the non-virtualized version, and since the most
significant cost measures on FPGAs are a circuit’s area and its timing
(i. e., its critical delay or the related maximum operating frequency
fmax), we have evaluated all of our ZUMA modifications also in this
regard. Since evaluating the impact of changes in the virtual timing
behavior on the physical one is non-trivial for vFPGAs, we will discuss
it in its own Section 4.5. This section will hence mostly detail the cost
of virtualization with ZUMA in terms of circuit area.

For this cost measure, we have employed the same approach as
Brant and Lemieux in [95], which is to evaluate the factor of area
expansion due to the virtualization, given by the ratio of the physical
LUTs used to implement an overlay to the number of eLUTs it provides.
The authors of [95] have reported this ratio to be roughly 40× for one
tile (i. e., one CLB and its switch box) of a ZUMA overlay, using the
concrete results of a physical synthesis to calculate the cost. However,
as these results highly depend on the IP-core used to generate the
LUTRAM blocks and the employed EDA tool chain, we will rather



4.3 extending zuma 81

Parameters & 
Templates

ZUMA script

Architecture 
(XML)

Yosys &
VTR flow

Routing resource 
graph (XML)

Virtual circuit

Netlist

Placement

Routing
ZUMA script

Virtual 
configuration 

(ZUMA bitstream)

Overlay 
description 
(Verilog)

Host FPGA 
synthesis

Virtual layerPhysical layer Tools

Virtual circuit 
(Verilog)

Physical 
configuration

(FPGA bitstream)

Existing
RRG (XML)

Timing information
(E.g., SDF)

Figure 4.4: Current version of the tool flow to create a ZUMA overlay and
configurations for it. Dashed outlines denote optional parts of the
flow. Taken from [49].

compare the overlays in a more technology-independent way. To
this end, we observe that any vendor’s EDA tool chain will have to
instantiate the LUTRAM macro for each configurable entity, i. e., for
each programmable interconnect point (PIP) and for each eLUT, which
will require at least one primitive LUT per instance on the host device.
Hence the programmability of the overlay induces a minimum area
requirement of host LUTs given by the number of ZUMA’s LUTRAM
macro instantiations, irrespective of the EDA tools’ efficiency. We will
thus use this measure as the best case any current or future EDA
tool chain could achieve for the presented overlay configurations. In
Section 4.4, where we have combined the overlay with a Linux-based
rSoC, we will also see results for some concrete technology and device.

Moreover, since normalizing the reported area to that of just one
ZUMA tile, as Brant and Lemieux did, would completely hide the area
cost of our new virtual-physical interface presented in Section 4.3.3,
since it is not part of any tile, we will always measure the full virtual
device instead.



82 virtual field-programmable gate arrays

4.3.2 Sequential Virtual Circuits

One of the most obvious shortcomings of the original ZUMA [95]
reference implementation was the lack of sequential elements, which
limited the capabilities of the overlay to only support combinational
circuits, although the ZUMA concept always featured an optional FF
after each LUT. Since the extension of PCH to sequential circuits was
especially promising, as described in Section 5.3 of this thesis, we
augmented the overlay generator to support them, carefully trying to
stay faithful to the concept presented in [95] (cp. Figure 4.5).

Logic Cluster

Switch
Box

Input Block

Two Stage 
Crossbar 
Network

K-LUT FF

Figure 4.5: The original ZUMA tile layout, showing one configurable logic
block with its associated global routing switch box. Each LUT is
followed by one bypassable flip-flop. Taken from [95].

The basic building blocks of ZUMA are LUTRAM macro instan-
tiations, which implement every configurable functionality of the
virtual fabric, i. e., each PIP and each eLUT. From the configuration
controller’s perspective they work as RAMs that store the configu-
ration bits, and within the context of the overlay fabric they act as
LUTs. On the Xilinx side of the ZUMA implementation, these macros
are generated using the Distributed Memory Generator v8.0 [115], by
requesting a block of distributed memory per routing multiplexer
and eLUT. Each of these blocks uses k address signals, matching the
number of inputs for the eLUTs configured in ZUMA (cp. Figure 4.5),
to provide 2k bits of storage for the virtual configuration. Figure 4.6
shows the available ports of one such block of distributed memory.
The configuration controller writes the configuration bitwise into this
RAM, using a combination of the address (a), data (d), clock (clk), and
write enable (we) ports. During normal operation of ZUMA, the LUT
inputs, i. e., the multiplexer data input and select signals or the eLUT
input signals, are connected to the dual-port read address port (dpra)
which directly controls the non-registered dual-port output bus port
(dpo) with the corresponding propagation delay.



4.3 extending zuma 83

Distributed 
Memory 

Generator

a

dpra

spra

d

clk

qdpo_clk

we

i_ce

qspo_ce

qdpo_ce

spo

dpo

qsdpo

qdpo

qspo_rst

qdpo_rst

qspo_srst

qdpo_srst

Figure 4.6: Block diagram of distributed memory generated by the Xilinx
distributed memory generator, which is used as the basic building
block of ZUMA’s virtual fabric. Ports leveraged by ZUMA are
depicted in black. Taken from [115].

To create virtual FFs in the most area-conserving manner, we have
created a special version of the LUTRAM macro that makes better
use of the already available ports. The new macro is only used for
the eLUTs, i. e., the physical distributed memory blocks containing
a virtual LUT, and not for any of the multiplexers of the virtual
routing fabric. The latter are still implemented using the original
(combinational) LUTRAM macro described above. The new macro
additionally uses the registered dual-port output bus port (qdpo),
which is synchronized to the clock signal fed into its corresponding
clock port (qdpo_clk, cp. Figure 4.6). Once the virtual configuration
for the eLUT is fully written to the internal LUTRAM storage, the
resulting distributed memory block can then be used as a regular
(virtual) LUT, by setting dpra and reading dpo, or as a LUT and FF
combination, by providing a clock signal to qdpo_clk and then setting
dpra and reading qdpo. To make the usage of the FF optional and
configurable, as required by the ZUMA architecture, we also add a
virtual 2-input multiplexer node in the ODG after each eLUT, which
can be configured to forward the registered or the unregistered output,
and derive its configuration in the ZUMA generator automatically
from the netlist and routing of the virtual circuit.

The introduction of the second clock for the registered outputs
allows the configuration of the overlay and its regular operation to
be driven by different clocks, and thus at different speeds. We have
leveraged this circumstance by assigning an actual clock network of the
physical FPGA to be used as clock network for the overlay operation,
allowing for fast clock signals that are synchronized with the underlay,



84 virtual field-programmable gate arrays

as these dedicated clock lines are highly optimized for clock signals
and thus much better suited for their uniform distribution than logic
lines. Accordingly, we instruct the VTR flow to treat the clock of the
ZUMA overlay as external network, which does not have to be routed
using virtual resources.

With these changes to the generator scripts, our version of the
ZUMA flow is thus capable of transparently synthesizing synchronous
sequential circuits (SSCs) to ZUMA overlays. Since the new macro
and multiplexer combination is used for each eLUT of the overlay, the
virtual synthesis can effectively use a virtual FF at each LUT location,
such that now the original ZUMA architecture depicted in Figure 4.5 is
actually realized. One obvious possible further enhancement would be
to introduce the capability to use multiple clocks for the virtual circuit,
thus enabling all sequential circuits and not only synchronous ones,
but this would require either a separate clock network description
with a physical resynthesis of the overlay, or the distribution of the
clock signal in a runtime-reconfigurable way, i. e., via logic channels,
which would negate the current method’s timing advantages of the
overlay in terms of both, fast and uniform clock distribution, as well
as analyzability of the virtual delay propagation.

4.3.3 Virtual-physical Interface

As stated in Section 4.1, well-defined interfaces between the virtual
and physical circuits are a necessary prerequisite for performing any
meaningful task within the virtual fabric, just as any two physical cir-
cuits need an interface between each other to successfully collaborate.
For a physical FPGA, this interface is usually fixed by the (develop-
ment) board on which the actual IC is located, as the wiring of the
board physically connects the I/O pins of the FPGA to additional
modules of the board, thus fixing the direction of the pin, the required
load, protocol, and other parameters. Despite the reconfigurability
of the FPGA’s internal logic, any implemented design will have to
obey the rules of this interface between the IC and its environment, as
it is physically fixed at manufacturing time of the board: the correct
behavior of the board’s components depends on both sides’ adherence
to these a priori defined rules.

For virtual field-programmable gate arrays, the very same logic
applies, only the roles change. The FPGA now fills the role of the
development board, containing all the SoC’s components. The circuit
that describes the virtual fabric is analogous to the IC implementing
the FPGA, and the interface between this circuit and its environment
is fixed at synthesis time of the SoC. Hence, just as before, any virtual
circuit must adhere to this interface, despite the reconfigurability of the
virtual fabric, as the connections between that fabric and the remaining
SoC components are unaffected by the reconfigurations of the virtual



4.3 extending zuma 85

side. It is thus imperative to fix the wiring (and thus interpretation) of
the virtual I/O pins of the vFPGA, in order to be able to access the
physical side from the virtual circuit and vice versa.

The original ZUMA reference implementation deferred the I/O pin
distribution and assignment to VPR, which is responsible for the pack-
ing, placement and routing at the heart of the VTR [60] flow. As an
academic research tool for new FPGA synthesis algorithms, however,
VPR is mainly intended for usage without any surrounding logic,
i. e., VPR assumes that the actual I/O pin placement is irrelevant and
can be arbitrarily changed and swapped at any given moment to be
most opportune for the current virtual logic distribution. As a conse-
quence, the I/O pins in the original ZUMA reference implementation
kept changing location (and thus interpretation) for each new virtual
synthesis, thus preventing any static embedding of the overlay into
another circuit.

To remedy this shortcoming, we have considered two options, which
both incur significant costs in terms of physical area:

1. Prevent VPR from changing I/O pin locations by fixing them a
priori, thus mimicking the fixed interface between an FPGA IC
and its board.

2. Reorder the mixed-up pins outside of the virtual fabric into a
fixed interface.

VPR offers the parameter fix_pins as a means to control the I/O
pin locations during synthesis, which enables us to choose from three
different modes: a) the default, unrestricted mode, where the pins are
moved as needed by the current packing and placement, b) a random
mode, in which the locations are randomized in the beginning, but
then kept unchanged throughout the synthesis, and c) one mode
where the user supplies the I/O pin locations in terms of the virtual
circuit and the grid locations of the vFPGA through a special file,
usually called iopads.p.

This last mode provides us with a means to implement choice one
in a way that would actually be a direct translation of the physical
interfacing into the virtual world, fixing the interface at synthesis
time of the virtual fabric and forcing the subsequent synthesis of the
virtual circuits to route the primary inputs and outputs from and to
the resulting pin locations. For VPR 7, which was current at the time
of our implementation, the file needs to be custom tailored for each
circuit, as it cannot deal with unconnected interface components.

Our preliminary experiments have shown, however, that this option
significantly reduces VPR’s ability to successfully synthesize circuits
for the overlay, as it severely limits the freedom VPR has in the
implementation, forcing it to distribute the inputs and outputs from
their fixed pin locations throughout the circuit, which is quite taxing
for the virtual routing resources, often leading to congestion. These



86 virtual field-programmable gate arrays

findings are in line with the results presented by Khalid and Rose
[116] who also reported that fixed pin constraints have a significant
impact on the routability and in some cases also on the maximum
delay of a circuit, which may lead to routing failures of designs that
could otherwise fit on the device. To maintain a decent routability
that is comparable to the vFPGA without pin location restrictions,
the overlay thus requires more routing channels, whose PIPs then
consume much more physical area. Unfortunately, this added area
cost is somewhat unpredictable, as it depends on the location of the
I/O pins, the virtual circuit and the randomness that is involved in
VPR’s synthesis algorithms.

For choice two, i. e., reordering the randomized interface through
additional permutation logic, there is also an added area cost, but
it is outside of the vFPGA and thus does not require the same over-
provisioning of virtual resources, leading to a more predictable per-
formance of the overlay in terms of compatible virtual circuits. As
shown in Figure 4.7, we can use an ordering logic layer between the
underlay (yellow) and the overlay (blue) to permute all of the I/O
pins from their randomly assigned virtual locations to the physical
ones in which the designer expects them, i. e., wrap the whole vFPGA
in an outer interface that is a sorted permutation of the inner one.

Figure 4.7: The ordering layer we have introduced in ZUMA contains config-
urable permutation connections between the unordered virtual
I/Os (blue) and the ordered module ports (yellow).

The ordering layer itself consists of a series of large multiplexers
for all the virtual I/O pins which the ZUMA script automatically
inserts in place of the vFPGA I/Os after the VTR tools’ results have
been read back in. The generation scripts track the I/O signals from
the input file in Berkeley logic interchange format (BLIF) through the
placement and routing in VPR to the resulting vFPGA I/O pins, which
gives us the required permutation so that we can deduce the required
multiplexer control signals. We have added the configuration bits of
the permutation multiplexers also to ZUMA’s bitstream format, so



4.3 extending zuma 87

that a bitstream still represents a complete configuration of the overlay,
now including a fixed outer interface to attach other logic components
to. The overall process and mechanics of the I/O reordering is thus
transparent to the overlay designer, as everything happens automat-
ically in the background, if it is enabled, and they will just obtain a
valid fine-grained FPGA overlay with a fixed interface, i. e., the driver
of the nth input signal of the BLIF file has to be connected to the nth
input pin, and likewise for the outputs.

To estimate the actual cost of adding the I/O ordering layer to the
vFPGA, we have generated a series of increasingly large quadratic
overlays and have recorded the total amount of LUTRAM macro
instantiations required to implement the overlay on the physical FPGA,
thus applying the area cost measure explained in Section 4.3.1. We
have created three different sets of overlays, modeled after the ones
employed by Brant and Lemieux to showcase ZUMA’s capabilities
in [95]: Clusters of n = 8 6-LUTs on a host FPGA with khost = 6, i. e.,
also k = 6-input LUTs on the physical side, each cluster having an
absolute input flexibility of 6, a fractional output flexibility of 3/8,
a switch box flexibility of 3, and wire length cl = 4. For a detailed
overview on the effect of each of these parameters see [71, 72, 95]. Our
overlays differ in the amount of their internal routing resources with
the following three variations:

few resources , i. e., 10 cluster inputs (i = 10) and a width of
56 parallel tracks per routing channel (cw = 56),

medium resources , i = 28 and cw = 112, which is the configura-
tion closest to the one used in the original ZUMA paper (i. e.,
i = 27, cw = 112) that is compatible to our Clos network imple-
mentation (see Section 4.3.4), and

many resources , i. e., i = 40 and cw = 168.

Figure 4.8 depicts the area cost of adding the ordering layer for
each of these sets in percent of the original area. We can identify
two conflicting trends in the data of all three overlay sets: First a
logarithmic increase in the relative size of the ordering layer, which
is dominating, and thus most evident, for the edge sizes 65. For
these sizes, the MUX trees for the permutation of the I/Os quickly
grow in depth, which adds much area, e. g., the 5× 5 overlay has
40 I/Os, requiring trees of depth 3 with MUXs that are quite under-
utilized. On the other hand, we can also observe a linear decrease
of the costs which begins to dominate for edge lengths >5. This de-
crease is due to the fact that the total area of the ZUMA overlay is
roughly quadratic in the edge length, whereas the number of I/Os,
on which the size of the ordering layer mainly depends, grows strictly
linear (4 sides×2 I/Os per edge CLB×edge length). We thus have one
increase that is logarithmic in a linear variable against the quadrati-



88 virtual field-programmable gate arrays

cally increasing total area, and hence the relative cost is decreasing
with larger edge lengths, as is evident in Figure 4.8.

22 33 55 77 1010 5050 100100

Edge length of quadratic overlay
[√

CLBs
]

3

4

5

6

7

8

9

10

A
re

a
ex

pa
ns

io
n

[%
]

few RR (i=10, cw=56)
medium RR (i=28, cw=112)
many RR (i=40, cw=168)

Figure 4.8: Area increase of the ZUMA overlay fabric on the physical FPGA
due to the permutating I/O ordering layer (lower is better). Ex-
tended table on Page 249.

Although non-quadratic overlay shapes might exhibit different
slopes, the general dependency of the area-growth factors also holds
there, if the vFPGA area is increased in both grid dimensions. Other
architectural factors of ZUMA only seem to matter as far as they
affect the internal area, emphasizing or de-emphasizing the previously
described effect: The ordering layer has the highest relative area cost
for the overlay set with only few routing resources, which has the
smallest total area, while the set with many routing resources has a
very large area itself and thus only a small relative area cost of the
interface layer.

The ordering layer can furthermore incur a delay penalty for virtual
circuits by extending the longest virtual paths of a ZUMA configu-
ration by a few more MUXs. To gauge the resulting increase in the
delay costs of virtualization, we have quantified this penalty for a few
benchmark circuits using the SDF-based STA technique for virtual
circuits that we describe in Section 4.5. As underlying test platform,
we have synthesized a 3× 3 overlay with medium routing resources
onto a Xilinx FPGA so that we can obtain concrete timing information
to import back into the virtual synthesis (cf. Figure 4.4 and Section 4.5).
The resulting fmax values, i. e., the estimated frequencies with which
this particular ZUMA overlay could be operated when configured
with the given virtual circuit, are very sensitive to the random nature
of VTR’s packing, placement, and routing algorithms. We have there-



4.3 extending zuma 89

fore repeated each experiment as many times as necessary to generate
a stable average fmax value that was not changing significantly any-
more with each new run, which required between 100 and 350 runs
for the circuits and data shown in Figure 4.9.

NOT gate

6 bit adder

8 bit adder

4 bit multiplier

8 bit RCA

MulAdd

5 bit multiplier

MulAdd-2

0

20

40

60

80

f m
ax

[M
H

z]

-1
6.

0%

-1
2.

0%

-1
0.

5%

-5
.0

%

-6
.6

%

-4
.2

%

-4
.2

%

-4
.7

%

Original ZUMA

ZUMA + ordering layer

Figure 4.9: Changes in the maximum frequency fmax (higher is better) of
the ZUMA overlay fabric on the physical FPGA due to the delay
penalty of adding a permutating I/O ordering layer. The percent-
ages denote the relative fmax change of the average case w.r.t. the
original ZUMA, and the black lines indicate the observed fmax
range for all respective virtual synthesis runs.

Bearing in mind that there is a direct correlation between a circuit’s
critical path length and the maximum operating frequency fmax with
which it can be safely run, we can also observe a diminishing relative
penalty for the addition of the ordering layer on average in Figure 4.9,
much like for the area costs. The benchmarks in the figure are sorted
by increasing CLB utilization from left to right. Hence, starting with a
delay penalty of roughly 16% for an almost empty circuit that consists
of a single inverter, the penalties settle on moderate values between 4%
to 5% for circuits that occupy more than 50% of the logic resources of
the small overlay.

In conclusion, the I/O ordering layer, i. e., the new virtual-physical
interface described in this section, gives users of ZUMA the possibility
to use the overlay with VPR 7 and provides a stable interface that
can be connected to other, fixed components outside of the vFPGA,
while giving VPR the freedom to rearrange the virtual I/Os internally
to ensure maximum routability of virtual circuits. This new layer
does come with area and delay costs, but for reasonable architectural



90 virtual field-programmable gate arrays

choices for ZUMA, as elaborated by Brant and Lemieux [95], this
overhead is limited to 3% to 6% of the overlay area, as depicted in
Figure 4.8 with the label medium RR, and a 615% lower fmax value
for more realistic virtual circuits, as shown in Figure 4.9. For most
projects that use a ZUMA overlay in combination with other logic,
this layer will thus enable the usage of a wider range of circuits on
the vFPGA with only a moderate impact on the performance. We will
therefore employ this layer for all relevant experiments of this thesis
and favor it over the uncertain additional area requirements induced
by employing fixed virtual interfaces through the fix_pins parameter
of VPR.

4.3.4 Further Extensions to the ZUMA Tool Flow

Here we will briefly mention all further enhancements and upgrades
which we made to the ZUMA overlay generation and usage, in order
to a) reduce the area consumption, b) enable new capabilities, and
c) ensure future tool and circuit compatibility.

The changes discussed in this section are the following:

1. Clos network-based input interconnect blocks.

2. Decomposition of arbitrarily large routing multiplexers.

3. Ongoing compatibility with new VTR releases.

4.3.4.1 Clos network-based IIBs

The last mismatch between the ZUMA vision and its original reference
implementation is the employed IIB inside the CLBs, which is respon-
sible for providing the routing network that enables ZUMA to route
any CLB input signal to any eLUT. The most simple version of an IIB
is a fully connected crossbar, which is exactly what was implemented
in the original ZUMA generator scripts, connecting each CLB input
(forward connections) and each LUT output of the CLB (feedback
connections) to each LUT input in a bitstream-configurable way. While
this is highly flexible and provides great routability of the signals, it
also consumes much area, as it introduces many PIPs within each
CLB, which is an issue as it adds to the already large area explosion
due to virtualization.

For this reason, Brant and Lemieux proposed to use an IIB based
on a Clos network [114], in an effort to balance area requirements,
routability and compatibility to VTR. The resulting structure is de-
picted in Figure 4.10, and we have adapted the ZUMA generation to
now also be able to produce overlays with such Clos network-based
IIBs. By choice of the Clos network parameters, ZUMA is still able
to route any of the inputs to any eLUT this way, but since the last
ordering layer of a regular Clos network was omitted, it cannot route a



4.3 extending zuma 91

signal to a specific pin position of the eLUT. Since the ordering of the
eLUT input pins is not relevant, however, and can always be corrected
by adjusting the virtual configuration accordingly, Brant and Lemieux
concluded that this omission could save additional area. Since the
internal implementation of each routing crossbar is made up of reg-
ular k : 1 MUXs, k being the ZUMA parameter for number of eLUT
inputs, the newly implemented Clos network-based IIB can also be
transparently used as a drop-in replacement of the formerly available
fully connected crossbars. Due to current implementation restrictions,
we only use these new IIBs when they can be fully populated with

signals, i. e., when ((i+n) mod k) !
= 0 (cp. Figure 4.10).

Reduced Two Stage Network
1 1

k k

1 1

k k

1 1

k k

1 1

P N

1 1

P N

1 1

P N

K-LUT
1

k

K-LUT
1

k

K-LUT
1

k

ZUMA
eLUTs

N LUTsP k × k
LUTRAMs

k P × N
LUTRAMs

I+N
Inputs

N × k
OutputsP=(I+N)/k

Figure 4.10: Clos network-based input interconnect block, replacing the fully
connected crossbar inside a ZUMA configurable logic block.
Taken from [95].

To evaluate the impact of this change, we have taken the same
quadratic overlays as in Section 4.3.3 once with the original fully con-
nected crossbar-IIBs and once with the new Clos network-based ones,
and have calculated the area savings for each one. Figure 4.11 shows
that across all three sets, i. e., irrespective of the amount of routing
resources, the area savings are increasing with the overall overlay size,
ranging from ≈ 36% to 46% of the original reference implementation’s
area. Since the IIB style has no influence on the amount of CLBs and
there is a fixed size difference per such cluster between the two styles
depending solely on i, we know that for each set the size difference
should be quadratic in the edge length with this constant in the same
manner as the overall growth of the routing resources. This, however,
would lead to a constant (relative) size reduction that only depends
on i, which is not reflected in Figure 4.11. We can therefore conclude
that the rate at which the cluster-internal and cluster-external routing
resources of the vFPGA grow with increased edge size is not equal, but



92 virtual field-programmable gate arrays

following a saturation curve like the depicted ones. Due to Amdahl’s
law, the area-saving effect of our constant relative reduction is limited
by the size ratio of that logarithmically growing portion of the overall
resources, leading to the behavior depicted in the figure. Since the
relative area savings thus depend only on the ratio of intra-cluster vs.
inter-cluster routing resources, and not on the actual amount of them,
the two larger sets of overlays (medium RR and many RR) actually
result in almost exactly the same area gains, as they seem to have the
same ratio.

22 33 55 77 1010 5050 100100

Edge length of quadratic overlay
[√

CLBs
]

36

38

40

42

44

46

A
re

a
re

du
ct

io
n

[%
]

few RR (i=10, cw=56)
medium RR (i=28, cw=112)
many RR (i=40, cw=168)

Figure 4.11: Relative area decrease of the ZUMA overlay fabric on the physi-
cal FPGA due to the replacement of the fully connected crossbar
input interconnect blocks with Clos network-based ones (higher
is better). Extended table on Page 249.

4.3.4.2 Decomposition of arbitrarily large routing MUXs

In two of the previously mentioned extension contexts, i. e., the order-
ing layer for the overlay I/Os, and the Clos network-based IIB, we
had to lift one additional limitation of the reference implementation,
which was its upper limit for the number of MUX inputs that the
generator script could decompose into ZUMA’s basic building blocks.
The original version limited this to the square of the number of LUT
inputs of the physical FPGA k2host, e. g., 36 for modern FPGAs with
6-input LUTs. By introducing a decomposition of the source MUX into
a tree of arbitrary depth, using only the regular ZUMA kvirtual : 1

LUTRAMs, the generator script can now also work with an adapted
ZUMA fabric that has more implementation flexibility for the routing
fabric, or specifically, the PIPs.



4.3 extending zuma 93

One possible future work in this regard could be the introduction
of packing into the resulting MUX trees, i. e., reducing the number
of levels by merging the LUTs with underutilized ones of the levels
above, to dampen the sharp increase in area requirements for small
overlays visible in Figure 4.8. On the other hand, this area increase is
measured in number of LUTRAM macro instantiations, as explained
in Section 4.3.1, which will be exposed to the optimization strategies
of the vendor’s EDA tools before it ends up on an actual FPGA. Since
these packable instances translate to RAM that has too few address
bits to address its complete content, however, it is rather likely that it
will be somehow reduced during physical synthesis, removing much
of the benefit of making this an explicit preprocessing step in the
generation phase. We will in fact see evidence of such vendor tool
optimizations in Section 4.4, where we present several measurements
from concrete instantiations of an overlay.

4.3.4.3 Ongoing compatibility with new VTR releases

Originally released in 2012, ZUMA was largely relying on the VTR [60]
flow to create the regular routing structures needed for the virtual
fabric and to actually synthesize a virtual circuit for the overlay. The
ZUMA reference implementation came with a patch for the Make-
file of VPR 6 that activates a debug switch to enable the necessary
extraction of the RR-graph, VPR’s main routing resource description
data structure. Since then, two new VTR versions (7 and 8) have been
officially released. VTR 7 included VPR 7, which was still mostly
backwards compatible with version 6, and thus required only minor
adaptions to the ZUMA flow, but VTR 8 introduced many changes that
required new file formats and other compatibility-breaking changes.
Due to our efforts in the context of this thesis, the current3 ZUMA
version available on GitHub [99] has always been compatible to the
latest VTR flow. One of the most exciting new changes in VTR 8 was
the overhaul of the timing analysis and timing-driven routing in VPR,
which our ZUMA overlay generation flow can make good use of, as we
will discuss in Section 4.5. Another change that simplifies the interface
between ZUMA and VPR is the new support for the RR-graph, which
now, instead of requiring a debug switch at compile time to enable
a raw text file dump, is actually available as a sophisticated XML de-
scription of every resource. This graph can now furthermore not only
be dumped, but also loaded at program start. These changes give us
the freedom to, e. g., augment the graph with timing information, but
also to save the RR-graph as overlay description, enabling us finally to
decouple the creation of the virtual fabric from the synthesis of the
virtual bitstream, which up to now was always running interwoven,
requiring users to recreate the virtual fabric for each new bitstream.

3 GIT pull request pending at the time of this writing



94 virtual field-programmable gate arrays

4.3.5 Comparison

The extended version of ZUMA, whose details we discussed in the
previous sections, has more features and a smaller area footprint
than the original reference implementation. When we compare the
required area for an overlay without and with all of the extensions, as
is depicted in Figure 4.12, we see that the area reduction trend of the
Clos network-based IIB extension also dominates the overall trend, as
it is far more pronounced than the slight area increase of the ordering
layer. For smaller edge lengths (65) though, the rapid increase of the
ordering layer’s area dampens the reduction by the new IIBs. Since
the area increase of the ordering layer is less for overlays with more
routing resources, while the savings from the IIBs mostly depend on
the ratio between cluster-internal and cluster-external resources, the
overall area reduction shows a clearer increase of the savings with
more routing resources than the one for only the Clos network-based
IIBs, while also having a more significant gap between the two curves
with similar ratio (medium and many RR) and the one which differs
(few RR).

2 3 5 7 10 50 100

Edge length of quadratic overlay [
√

CLBs]

30

32

34

36

38

40

42

A
re

a
re

du
ct

io
n

[%
]

few RR (i=10, cw=56)
medium RR (i=28, cw=112)
many RR (i=40, cw=168)

Figure 4.12: Overall area decrease of the ZUMA overlay fabric on the physi-
cal FPGA with all extensions enabled over the original ZUMA
(higher is better). Extended table on Page 249.

For the cost of virtualization, we have compared the area increase
of the overlay, i. e., the ratio of LUTRAMs macro instantiations on
the underlay to the provided eLUTs of the overlay, as explained in
Section 4.3.1. For the cost in terms of circuit delay, see Section 4.5.
Measuring the virtualization cost of the extended and original ZUMA
overlays, we were able to actually support the numbers from Brant



4.4 zuma-based pch evaluation platform 95

and Lemieux [95], who reported a 40× area increase factor when
normalizing to just one ZUMA tile. For our measure, which includes
the whole vFPGA, this factor is also possible for a ZUMA overlay
using the original reference implementation and few routing resources,
as shown in Figure 4.13. With an increasing number of resources,
however, the penalty for virtualizing a circuit can get much worse,
with factors between 100 to 120 for vFPGAs of decent size. Since the
general area costs for the extended version presented in this chapter
are much lower than the original costs, the penalty factor also is much
lower, e. g., between 60 to 80× for the same overlay configurations.

2 3 5 7 10 50 100

Edge length of quadratic overlay
[√

CLBs
]

40

60

80

100

120

A
re

a
pe

na
lt

y
(

vi
rt

ua
lL

U
Ts

ph
ys

ic
al

LU
Ts

)

Routing resources
few RR (i=10, cw=56)

medium RR (i=28, cw=112)
many RR (i=40, cw=168)

ZUMAOrg ZUMAExt

Figure 4.13: Overall area penalty of using virtualization with the ZUMA
overlay with all extensions enabled (lower is better). Extended
table on Page 249.

4.4 zuma-based evaluation platform for pch

The main purpose of using ZUMA in the context of this thesis was to
give us an environment that closely resembles working with configu-
ration bitstreams of FPGAs while enabling us to prove properties of
the encoded circuits using bitstream-level PCH, as we have complete
control over the involved tools and file formats, without loosing the
benefit of being able to use actual modern reconfigurable HW devices.
The extensions described in Section 4.3 serve to ensure that we can
employ ZUMA in such setups in a predictable manner for a much
wider variety of circuits than would have been possible with the basic
reference implementation, and also in state-of-the-art contexts, i. e.,
with modern FPGAs and current versions of the open-source synthesis
tools. In this section we present our primary evaluation platform and



96 virtual field-programmable gate arrays

bridge the gap between the virtual and physical world by embedding
the vFPGA into a Linux-based rSoC, enabling the virtual circuit access
to operating system (OS) features like inter-task communication and
virtual / shared memory. As base rSoC we will use ReconOS [81],
which we already introduced in Section 2.4.8. As detailed there, Re-
conOS features a multithreaded programming model allowing HW
modules in the reconfigurable fabric to act as POSIX threads, seam-
lessly interacting with the OS, other hardware threads (HWTs), as well
as traditional software threads (SWTs). Using ReconOS for embed-
ding a vFPGA provides us with a mature, Linux-based infrastructure
for implementing HW / SW systems, including a CPU core, memory
controller, peripherals and a standard software OS (cp. Figure 2.17).

Besides wiring a ZUMA overlay into existing ReconOS HW com-
ponents, like its memory interface (MEMIF) or OS interface (OSIF),
we can also attach it to the system as a new component, either as a
regular IP-core connected to the central AXI bus, or embedded into a
hardware thread. The former two options can yield interesting new
variants of ReconOS, and we have in fact created a version where a
ZUMA overlay is patched into the MEMIF in a way that routes all
memory accesses through the vFPGA in order to enforce their con-
formity to a given memory access policy; for details see Section 5.4.4.
While the two latter embedding options (IP-core and HWT) both have
the potential to make the ReconOS services available to the ZUMA
overlay, the second one actually streamlines this access by exposing
the standard ReconOS interfaces to the connected vFPGA, which is
why we chose it as the basis for our evaluation platform and will
discuss it in detail in this section. All demonstrators presented in this
thesis follow this basic layout.

4.4.1 ZUMA as a ReconOS Hardware Thread

Figure 4.14 shows a diagram of a ZUMA vFPGA embedded into a
ReconOS v3.1 HWT, where the OS is deployed on a Zynq that features
a dual hard-core Arm processor as processing system (PS), and on
the same die reconfigurable fabric (called programmable logic (PL))
connected via AXI buses. The ReconOS components are distributed
and running as a driver in the Linux kernel, as a software library to
instantiate and steer the SWTs and delegate threads (DTs), as well as a
series of interconnected HW modules in the PL, connecting the HWTs
to the other system parts. The first hardware thread, HWT 1, contains a
ZUMA overlay with an ordering layer for the virtual I/Os as described
in Section 4.3.3, a configuration controller including a local buffer
memory, and a block of non-virtualized user logic that implements
the physical side of the virtual-physical interface. Depending on the
intended tasks that shall be run on the vFPGA, the designer can attach
some of the virtual I/O pins to the OSIF, which is based on first in,



4.4 zuma-based pch evaluation platform 97

first out (FIFO) queues. This enables the virtual circuit to interact with
the delegate thread of HWT 1, and therefore with the rest of the Linux
system running in the PS. Attaching some pins of the interface to the
MEMIF grants the overlay access to ReconOS’ memory subsystem,
leveraging the page table of the DT to access virtual memory addresses
from the Linux context directly in hardware.

Processing System / Application Processor Unit

Programmable Logic

SWT 1 SWT n

Operating System / Linux
ReconOS driver

... DT 1 DT m...

HWT 2 HWT m...

General Purpose Bus (AXI)

FIFO to AXI
bridge

Memory subsystem

Memory Bus (AXI)

ACP / High Performance General Purpose

OSIF OSIF

MEMIF MEMIF

OSIF

MEMIF

HWT 1

ZUMA overlay

Configuration
controller

Local 
RAM

User logic

...

Figure 4.14: Xilinx Zynq version of ReconOS [81] with n software threads,
m hardware threads and their corresponding delegate threads, as
well as a 5× 5 ZUMA overlay embedded into the first hardware
thread, HWT 1. Taken from [49].

In order to actually realize our evaluation platform, we have devel-
oped a prototype of the rSoC shown in Figure 4.14 including software
functions for configuring and communicating with the vFPGA. In
our implementation, the software connects to the hardware thread
containing the overlay via ReconOS message boxes and allocates a



98 virtual field-programmable gate arrays

Parser
Block A

Block B
ZUMAConfiguration 

Controller

Local 
RAM

Bitstream

File system CPU Shared memory Programmable logic

Figure 4.15: Configuration process for the ZUMA overlay embedded in a
ReconOS hardware thread. Taken from [49].

shared memory region in the system memory for data exchange. The
subsequent configuration process is depicted in Figure 4.15: The soft-
ware reads a bitstream for the vFPGA from the file system and parses
it to verify its integrity using ZUMA’s line checksums [95]. The file
system in ReconOS versions that use Linux as host OS is either lo-
cal, or on a remote server connected via the NFS protocol. To better
utilize the bandwidth to the ReconOS memory subsystem, and thus
reduce the configuration time of the overlay, the software as well as
the configuration controller for the vFPGA operate on 8KiB blocks
of configuration data. The shared memory region is operated in a
double-buffering scheme: Each time one block of the shared memory
is filled with new configuration data, the software sends a message to
the HWT and continues to parse the bitstream into the second block.
In the meantime, the configuration controller copies the first block into
a local on-chip RAM buffer and from there it feeds the configuration
data into the ZUMA overlay, which shifts them into the LUTRAMs.
Once the configuration data in the local memory blocks have been
completely processed, the HWT sends a message to the software to
request the next block.

Since the software functions can be included in any user-defined
SWT, we have compiled them to an executable that can be called in
ReconOS / Linux with the file system path of a virtual bitstream as a
command line parameter. After configuring the overlay, the software
process remains connected to the HWT containing the overlay. In the
proof-of-concept prototype, new input data is continuously generated
in this phase and sent to the HWT via message-box calls. The HWT
provides these data to the overlay using the I/O ordering layer. The
outputs of the overlay are written to shared memory from where the
executable can read and display them. For the other demonstrators
of this thesis, this runtime part has been adapted for the particular
application.



4.4 zuma-based pch evaluation platform 99

4.4.2 Experimental Evaluation

Since the proof-of-concept setup can actually showcase the integration
of the overlay into ReconOS, we have leveraged it to gather experimen-
tal results for our extended ZUMA overlays embedded into ReconOS.
As described above, we have built the prototype using ReconOS v3.1
on an Avnet Zedboard that contains a Zynq integrated PS with two
hard-core Arm Cortex-A9 MPCore application CPUs and PL (i. e.,
reconfigurable fabric) on a single die. The ZUMA layout we have
synthesized is similar to the one we have employed to evaluate the
extensions described in Section 4.3:. Each of ZUMA’s 3× 3 CLBs com-
prises 8 BLEs, and each BLE consists of one 6-input LUT and one
bypassable FF (cp. Figures 4.2 and 4.5). Each CLB receives 28 inputs
from outside the cluster and 8 feedback connections from the internal
BLE outputs, connecting to the Clos network-based IIBs described
in Section 4.3.4. Each cluster input and output can connect to 6 dif-
ferent virtual wires of the surrounding routing channels, which are
112 virtual wires wide. We have generated all bitstreams, virtual and
physical ones, on a machine with an Intel Xeon CPU E5-1620 v2 @
3.70GHz with 16GiB RAM.

Table 4.1 lists hardware area and speed for different system configu-
rations. We have used the number of LUTs and LUTRAMs reported
by the Xilinx ISE Design Suite to measure the hardware area, where
the LUTRAM count is also included in the LUT measure. Nonetheless,
LUTRAMs are listed separately, since only 50% of the LUTs avail-
able in the Zynq PL can act as LUTRAM, thus creating a tighter area
restriction for larger overlays than the one induced by the available
LUTs. The first data row of Table 4.1 presents, as a baseline, data for a
ReconOS system with one empty HWT, i. e., no actual user logic and
no embedded ZUMA overlay. All following rows refer to a ReconOS
rSoC with an extended 3× 3 ZUMA overlay embedded into HWT 1.
The second and third data row show the size and speed of the 3× 3
overlay when using the simple, fully-connected crossbars of the orig-
inal reference implementation as IIB, while the fourth and fifth row
show the measures of that same overlay when implemented with Clos
network-based IIBs. As the labels indicate, the second and fourth data
rows show the data for overlays that employ our ordering layer at
their virtual-physical interface, while the ones listed in the third and
fifth row have unordered, randomized I/Os.

The data show that our I/O ordering layer leads to a rather small
area overhead with a 5.7% increase in area for the simple IIBs and 3.7%
for the Clos network-based ones, each compared to their respective
overlay with unordered I/Os. The change is mainly due to added
LUTRAMs that are needed for the permutation MUXs. This is a very
moderate increase in area, bearing in mind that this layer provides a
stable virtual-physical interface, which is a necessary requirement for



100 virtual field-programmable gate arrays

actually using the vFPGA in any application, and it is absolutely in
line with the findings on the virtual side, presented in Section 4.3.3.

Moreover, we can confirm that the numbers presented in Sec-
tion 4.3.4, Figure 4.11 are also holding after the physical synthesis,
albeit a bit lower. Comparing the overlays with ordering layers in
size, i. e., the one with fully connected IIBs against the one with Clos
network-based ones, we observe a 30.82% reduction in the number of
required LUTRAMs. Doing the same for the unordered case yields
an area reduction of 29.46%, which means that both cases exhibit
less savings than the best case of ≈40% reduction identified for 3× 3
overlays with medium routing resources in Section 4.3.4, where we
measured only the virtual side. Part of the reason for this reduced
effect is again Amdahl’s law, which limits the global effect of our area
changes in the overlay to the area ratio between it and the remaining
ReconOS. According to Table 4.1, the overlay makes up for roughly
98% of the area in both cases when considering only the LUTRAMs.

Table 4.1: Area and speed measurements for ReconOS system with and
without a 3× 3 overlay. Partly taken from [96].

area fmax

[LUTs] ⊇ [LUTRAMs] [MHz]

ReconOS without ZUMA

bare HWTs 3270 181 102.05

ReconOS with ZUMA, simple IIBs and

ordered I/Os 14 337 10 075 0.79

unordered I/Os 13 564 9595 0.82

ReconOS with ZUMA, Clos network-based IIBs and

ordered I/Os 9919 5877 0.71

unordered I/Os 9568 5557 0.83

Furthermore, the difference indicates that there is indeed some area
optimization potential that the Xilinx EDA tools exploit when synthe-
sizing the overlay, which then limits the area savings we can achieve
by optimizing the IIBs. We can actually clearly observe this effect
in Table 4.1, when we compare the increase in LUTRAM cell usage
against the LUTRAM macro instantiations added for the ordering
layer. For a 3× 3 ZUMA overlay, the number of available I/Os is:

|IO3×3| = |sides| ·CLBs per side · I/Os per edge CLB

= 4 · 3 · 2
= 24



4.4 zuma-based pch evaluation platform 101

A MUX tree to filter one out of 24 signals requires 5 MUXs with
khost = 6 inputs. Each of the I/Os can be configured to be an input
or an output by the virtual bitstream, and thus we need to prepare
one signal vector for up to 24 inputs and one for up to 24 outputs,
where each of these signals requires one full MUX tree to connect to
the complete vFPGA I/Os. Hence the number of required LUTRAM
macro instantiations for the ordering layer is:

|LR
ordering layer
3×3 | = |IO3×3| · LRMUX tree per I/O · |I/O arrays|

= 24 · 5 · 2
= 240

Comparing these 240 macro instantiations against the actual ob-
served difference in the LUTRAM counts in Table 4.1, we find that
for the simple, fully-connected IIBs the difference is actually 480. This
factor of two is expected, since the Xilinx tools require two actual phys-
ical LUTRAMs to implement each of our current DMG macro calls.
For the Clos network-based overlays however, the difference between
the ordered and unordered version is only 320 LUTRAMs, meaning
that the EDA tools have implemented the layer with 240 macro in-
stantiations using 160 fewer physical LUTRAMs in this case. We thus
conclude that there is no need to optimize the DMG macro calls at our
Verilog level, as the tools will actually perform these optimizations
when they synthesize the overlay for a concrete device.

The last column of Table 4.1 reports the maximum clock frequency
for the ReconOS SoC; as will be discussed in Section 4.5 this is an
overly pessimistic timing estimation by ISE, as it handles the inevitable
combinational loops contained in a ZUMA overlay very poorly. These
impractical timing estimates actually lead to the work described in
Section 4.5.

We have also compared the area required for implementing the
overlay in the physical FPGA to the number of eLUTs it provides
to assess the cost of virtualization in terms of circuit area. The 72-
eLUT extended ZUMA overlay used for Table 4.2 needs 4787 LUTs
to implement in actual hardware, so we have to pay a 66× increase
in area even without the ordering layer, compared to the somewhat
optimistic 40× reported area overhead for the original ZUMA [95],
which was measured using just the area of one tile – thus neglecting
the area consumption of, e. g., I/O and reconfiguration controller logic.
The other rows of Table 4.2 display the area requirements for the
configuration controller and the HWT communication logic finite state
machine (FSM) responsible for interacting with the software side of
ReconOS. This FSM implements only some basic functionality such
as receiving new inputs from the software side and sending back the
outputs. Together with the configuration controller, this part of the
HWT needs about 1/7th of the size of the overlay.



102 virtual field-programmable gate arrays

Table 4.2: Area breakdown of a ReconOS hardware thread containing a 3× 3
ZUMA overlay without ordering layer. Partly taken from [96].

area

HWT component [LUTs] ⊇ [LUTRAMs]

connection & communication 580 0

configuration controller 99 0

ZUMA overlay 4787 4784

Table 4.3 shows for differently sized overlays the area requirements,
synthesis and reconfiguration times. The left hand part of the table
details the ZUMA synthesis and reconfiguration, i. e., the one of virtual
circuits onto the overlay. The right hand part contains the synthesis
time and LUTRAM count for the overlay itself, as reported by ISE.
The area requirements in the last column state the percental LUTRAM
utilization on our Zynq PL fabric. Using the ZUMA architecture
parameters detailed above, we can only fit overlays with a size of
5× 5 clusters on our Zedboard, before running out of LUTRAMs. The
synthesis of a new overlay configuration is quite fast; the runtimes in
the second column of Table 4.3 comprise the complete tool flow from
Figure 4.4 up to the virtual configuration, as well as the mentioned
overhead of re-creating the HDL file for the whole overlay every time.
The overlay reconfiguration times in the third column include every
step from Figure 4.15, measured as wall time on the software side.
As the hardware side still spends about 95% to 99% of the virtual
reconfiguration cycles receiving, sending or waiting for messages
from / to the software side, this number could probably be improved
upon by using even more streaming or pipelining techniques for
the reconfiguration process. The time for synthesizing a ReconOS
system with a HWT containing an x× x-overlay depends on the size
and complexity of the overlay, and is listed in the fourth column of
Table 4.3. In our experiments the time increased steadily from about
8minutes to well over half an hour for a system using large amounts
of LUTRAMs.

In our ZUMA tool flow setup, bitstream sizes depend only on
the virtual architecture and not on the encoded virtual circuit. Ta-
ble 4.4 lists the virtual bitstream sizes and, in the last column, the
sizes after compression using standard ZIP. On average the textual
representation of ZUMA bitstreams allows for a 75% size reduction
using compression. As expected the virtual bitstream sizes are quite
small compared to the bitstream for the physical Zynq fabric, which
amounts to 3.9MiB.



4.4 zuma-based pch evaluation platform 103

Table 4.3: Synthesis speed and Zedboard area measurements of ReconOS
with overlays of different sizes. Taken from [49].

ZUMA Xilinx

Size synth. [s] reconf. [s] synth. [s] LUTRAMs [%]

1× 1 0.30 0.01 521.50 4

2× 2 0.44 0.03 591.55 14

3× 3 0.74 0.07 794.89 29

4× 4 1.12 0.13 1298.80 49

5× 5 1.70 0.19 2183.01 76

6× 6 2.36 — 1316.76 >100

Table 4.4: Bitstream sizes, compressed and uncompressed, for ZUMA over-
lays of different sizes. Taken from [49].

ZUMA

Size bitstream[KiB] compressed bitstream[KiB]

1× 1 13 2.3

2× 2 53 13.0

3× 3 118 30.0

4× 4 206 53.0

5× 5 317 85.0

6× 6 452 121.0

4.4.3 Conclusion

The successful implementation of a prototype for our evaluation plat-
form shows that realizing a system such as the one depicted in Fig-
ure 4.14 is feasible using ZUMA and ReconOS. We have implemented
a fully functional Linux-based ReconOS system that enables easy con-
figuration and runtime reconfiguration of the embedded overlay. The
vFPGA can be connected to any ReconOS facility using the regular
HWT interfaces, thus enabling us to realize meaningful circuits within
ZUMA that can even be a part of complex HW / SW co-designs, as
we will later see in Demonstrator 1 (cf. Section 7.1).

The only downside of the approach is the steep cost of virtualization,
which significantly limits the realizable virtual circuits in terms of
area, and even more so in terms of their maximum delay, which
we will discuss for Demonstrator 2 (cf. Section 7.2). However, at
area expansion factors of around 100× this cost is not prohibitive for
modern devices – especially for an evaluation platform that serves
as a proof-of-concept model for another scenario, i. e., in this case for



104 virtual field-programmable gate arrays

having open access to the bitstream formats of commercial off-the-
shelf (COTS) FPGAs. Leveraging the open ZUMA bitstream format
allows us to protect any circuit for the vFPGA with bitstream-level
proof-carrying hardware, just as we could do for physical devices if
we would know the bitstream format, which is precisely what we
were looking to achieve by employing an FPGA overlay. We will
thus leverage the described prototype as base evaluation platform for
our experiments, and especially for the demonstrators presented in
Chapter 7.

4.5 timing analysis and optimization

One of the most challenging issues with vFPGAs is their timing
performance, i. e., it is hard to perform either, an accurate analysis
or optimization thereof. When ISE or Vivado synthesize a design
that includes a ZUMA overlay, Xilinx’ routing algorithms will run
into an issue when trying to optimize the timing of the design, as
the vFPGA naturally contains a multitude of possible combinational
loops because of its virtual PIPs. As the delay of a loop is obviously
potentially infinite, the EDA tools for the host FPGA need to break up
the loops for the timing optimization, so that they can at least optimize
the timing of the resulting paths that then have distinct (but arbitrary)
endpoints. Since the Xilinx tools lack insight into the structure of
the overlay, these artificial breakpoints will be selected at random.
The placement and routing step will thus optimize the timing of a
random subpath of each loop of the vFPGA, which can cluster the
resources forming the virtual fabric in unexpected ways that do not
reflect the actual overlay structure appropriately, effectively warping
and bending the fabric in a randomized fashion. Furthermore, by
their very nature, the virtual routing resources can form very long
combinational paths, as their purpose is to allow the connection of two
arbitrary sources and sinks of the virtual fabric with one another. Since
the virtual clock period of the design has to allow for a signal to reach
from any primary input or register to any primary output or register
via any possible combinational path between the two, the existence
of these potentially possible really long paths actually prevents the
Xilinx tools from predicting a meaningful value for the maximum
operating frequency fmax, which is the reason for the extremely low
values reported in Table 4.1 for designs including an overlay.

As we have already seen when discussing the related work in the
field of fine-grained reconfigurable overlays in Section 4.2, this aspect
has, as a consequence, often been left unsolved or has not even been
evaluated for a number of publications, with the notable exception of
the ARGen approach: Bollengier et al. have introduced virtual time
propagation registers (VTPRs) in [108], which are not designed to
increase the performance of the overlay, but to facilitate its timing



4.5 timing analysis and optimization 105

closure for the EDA tools of the physical FPGA by breaking up all
combinational loops with added registers in advance. For a brief intro-
duction to the approach, refer to Section 4.2. Similar to most related
work, the ZUMA tool flow also lacked a timing analysis for the virtual
circuit and hence also any timing optimization features. Since the
EDA tool’s fmax estimates are basically bound by the longest possible
combinational path in the synthesized representation of the overlay
without taking into account the actual circuit configuration, we have
implemented several ways to propagate the timing information from
the underlay’s synthesis tools back to the ZUMA flow to derive more
meaningful bounds on the clock frequency for specific configurations
of the overlay. We will discuss our virtual timing analysis approaches
in Section 4.5.1.

To tackle the issue of virtual circuit timing not only reactively, we
have furthermore leveraged the capabilities of VPR 8 to use the back-
annotated timing information to actually optimize the critical path
delay of virtual circuits, which we will detail in Section 4.5.2 and
have published as one of the contributions in [97]. For that work,
researching this virtual timing aspect was my contribution, while our
research assistant Arne Bockhorn contributed most of the explorative
programming that realized our vision for VPR’s new version. The
introduction and combination of these techniques ensures that we
can harness the full potential of an overlay, once its fabric is fully
synthesized and the timing analyzed with a post-implementation STA,
for instance by implicitly favoring virtual wires that have been mapped
to shorter physical paths.

Another angle that we have attempted to exploit in order to increase
the performance of the overlays is to actually optimize the achiev-
able fmax of a vFPGA by guiding the physical synthesis tool Vivado
to generate better ZUMA implementations with the help of Rapid-
Wright [112]. This effort is the topic of Section 4.5.3 and constitutes
another contribution of [97], where it was mainly orchestrated by my
co-author Linus Witschen with me in an advisory role.

4.5.1 Virtual Timing Analysis

Meaningful timing estimations for vFPGAs can only be derived when
considering both, the physical implementation of the synthesized fab-
ric and the virtual circuit, as already motivated in the introduction of
this section. To determine a good operating frequency for an employed
overlay, the system designer thus has to actually implement it on a
physical device, perform a post-implementation static timing analysis
of it, and then use the resulting information to determine a safe fmax
for a set of virtual circuits running on this specific overlay instance.
For our ZUMA version, this requires including the generated Verilog
file in a design, synthesizing and implementing it using Xilinx’ tools,



106 virtual field-programmable gate arrays

extracting the timing information from the result, and then applying
it to the timing analysis of a virtual configuration.

Recall from Section 4.3.1 that VPR describes extra-CLB routing re-
sources in its RR-graph and the intra-CLB wiring only as one master
copy in its architecture file, while ZUMA aggregates both descrip-
tions into one large overlay description graph (ODG). This ODG first
contains one node per programmable entity of the overlay and is
later transformed to be k-feasible, such that each node has at most k
inputs and exactly one output. Since we have extended the routing
resource description provided by VPR with MUX trees for any MUX
with an input size larger than khost, as well as MUX and FF pairs and
a permutation layer for the new extensions described in Section 4.3,
any node of VPR’s RR-graph can be implemented using the same or a
larger amount of nodes described in the ODG. To enable an accurate
timing analysis of the overlay, we thus aim to completely annotate
the k-feasible ODG with enough timing information on its edges to
derive a meaningful bound for fmax. In the descriptions of the process
we will now only refer to the k-feasible version of the ODG, unless
explicitly stated otherwise.

The actual extraction and analysis of timing information consists
of several steps, each with their own challenges. First, we have to
generate a mapping between physical and virtual paths, so that we
can identify virtual resources in the physical design. Second, we have
to measure the delay of the virtual paths by measuring their physical
counterparts. Finally, we can use the obtained information to identify
the physically critical virtual path, i. e., the physical path with the
maximum delay that represents an actually used virtual path of the
current overlay configuration. Due to the warping of the overlay in
the place & route step of the Xilinx tools, this is not necessarily the
critical path of the overlay configuration without timing information,
because the optimization of randomly broken-up paths may well have
produced an overlay in which the triangle inequality does not hold
for the virtual delays.

As the large number of possible combinational loops in the overlay
allows for arbitrarily long connections between two nodes in it, and
since we do not want to rerun the Xilinx tool flow for each new overlay
configuration, we cannot use the naive approach and let the Xilinx
tools determine the correct delay of all virtual paths. Instead, we
have devised two different methods of timing information extraction:
The first one extracts the delays of the virtual wires by introducing
dummy timing constraints for the underlay, and the second one by
parsing a special file in standard delay format (SDF) [117] that contains
detailed timing information. We have modified the ZUMA tool flow
into the flow shown in Figure 4.4 to leverage the extracted timing
information in both cases. In it, we feed the extracted propagation
delays from the host FPGA’s synthesis and implementation back into



4.5 timing analysis and optimization 107

the second stage of the ZUMA scripts for subsequent runs, so that
the generator script can apply the information to the ODG and then
find the physically critical path in the results of the virtual synthesis.
The total propagation delay along the critical path then implies the
minimum clock period for the overlay configuration on that particular
implementation of the fabric, and thus also the maximum frequency
fmax.

We are, however, limited to use the linear delay model (LDM) in-
stead of the Elmore delay model (EDM) for this analysis, since all
delay times are obtained as raw numbers in picoseconds and not as a
wire resistances and capacitances. Betz, Rose, and Marquardt argue
against this model in [118] and strongly favor the EDM instead for
their own analyses within VPR, because there are several cases where
it captures the physical reality of propagating signals in the fabric
much better than the LDM, as it also takes the neighboring capacitative
loads of a wire into account. In our case, however, the graph model
in which we do the routing and analysis, by design does not really
reflect the physical reality of the wires, which means that even if we
had approximations for the resistance and capacitance of the virtual
wires, we could not consider the actual capacitance of the physically
neighboring wires, thus defeating most of the advantage of the Elmore
delay model. For these two reasons, i. e., lack of data and benefit, we
always employ the linear delay model in our timing analyses.

As the virtual architecture lacks the timing information before we
annotate the ODG, we operate VPR in the area driven place & route
mode to synthesize virtual circuits and then afterwards run our own
timing analysis of the overlay, using the physical timing information
for all overlay edges. An alternative way to use the extracted delays
for VPR would be to annotate the ZUMA architecture description
with it, by combining and averaging (or taking the worst case of) the
fine granular times until we obtain the delays for the coarse granular
structure elements of the VPR architecture file. This way we could
launch VPR in the timing-driven clustering and packing mode in order
to give a meaningful timing analysis of the virtual circuit. For VPR 7,
however, we would loose most of the potential timing accuracy present
in the physical data, because we can, e. g., only give VPR 7 the details
of one deterministically used wire type, and only one switch box delay
for the whole overlay, as well as only one cluster delay per column
of clusters. We therefore decided against this option for VPR 7 and
used the first one with our own separate timing analysis instead. For
VPR 8, which greatly extended the possibilities of working with delay
information, we have, however, implemented a working version of this
timing-driven virtual synthesis, which we will cover in Section 4.5.2.

We will now explain both approaches to obtain the physical timing
of the virtual fabric in detail in the next sections.



108 virtual field-programmable gate arrays

4.5.1.1 Timing Extraction Using Dummy Timing Constraints

For this timing analysis approach we generate in the ZUMA script
not only the overlay description as Verilog file, but also a Xilinx user
constraint file (UCF) that creates aliases for wire endpoints and sets
up a trivially achievable time constraint per virtual wire, so that
Xilinx’ place and route tool can all but ignore the constraints for the
timing closure in most cases. These dummy constraints will allow
us to identify all physical paths that correspond to virtual wires,
since a post-implementation timing report of the design that uses this
UCF will then include detailed delay information for each of these
constrained paths.

The constraints for one ODG edge could, e. g., be expressed as fol-
lows, when using the embedding described in Section 4.4 as example:

INST "hwt_static_1/hwt_static_1/zuma_i/mux_840/LUT"

TNM = "Tmux_840";

INST "hwt_static_1/hwt_static_1/zuma_i/mux_654/LUT"

TNM = "Tmux_654";

TIMESPEC "TS_mux_840_mux_654" =

FROM "Tmux_840" TO "Tmux_654" 1000ms;

The identifier string up to zuma_i here depends on the ReconOS
structure and the part thereafter only on the ODG. As we know
both structures beforehand, we can generate these constraints before
using any Xilinx tool. Since ZUMA employs Wilton routing [119] in
the switch boxes and uses Clos networks instead of fully connected
crossbars inside the logic clusters, there are many virtual PIPs that
are not really programmable but just pass-through connections, i. e.,
several nodes in the ODG have fanin = fanout = 1. In these cases
the incident edges are actually contracted to a single edge in the HDL
representation of the overlay by the ZUMA scripts. Since the Xilinx
synthesis tools thus view these segments as one, we cannot obtain
separate timing information for them on the physical side, but as
we also cannot use them separately in the virtual routing inside the
overlay, this poses no problem. Unfortunately, the delays in the timing
report of Xilinx are given as a list of worst case delays for connections
between the endpoints of the virtual wire, and there is no easy way
to enforce the restriction of the possible paths only to the physical
counterparts of the virtual wire (mapped wires). The path delays
obtained this way can hence still be quite pessimistic.

4.5.1.2 Timing Extraction Using SDF files

The other method to extract the timing information leverages the fact
that the Xilinx tools can export an SDF file for the placed and routed
netlist of the underlay, which includes detailed delay information for
each physical component. The naming scheme of the components in
the file allows us to map the physical components back to the virtual



4.5 timing analysis and optimization 109

ones, so that we can use the information to annotate the complete
ODG with accurate aggregated timing information.

Xilinx uses a picosecond timescale for the timings listed in their SDF
files, which they announce in the file header exported by Vivado, as
visible in the example in Excerpt 4.1. Within the SDF file, all elements
are listed as cells with their complete hierarchy using an identifier,
where the different levels are separated by the divider announced in
the header (‘/’). From this identifier, we can immediately retrieve the
node number of the virtual equivalent within the ODG; compare for
example the cell in Excerpt 4.2, which is describing the second port of
the dual port RAM on the actual FPGA (dpo), and on the virtual side
the routing MUX that corresponds to a node with id 843.

SDF Excerpt 4.1: Xilinx file header.

(DELAYFILE

(SDFVERSION "3.0"1 )

(DESIGN "zuma_wrapper")

(DATE "Tue Feb 11 19:17:52 2020")

(VENDOR "XILINX")

(PROGRAM "Vivado")

(VERSION "2019.2")

(DIVIDER /)

(TIMESCALE 1ps)

SDF Excerpt 4.2: RAMD64E cell I/O path delays.

(CELL

(CELLTYPE "RAMD64E")

(INSTANCE XUM/MUX_843/LUT/U0/ ... /ram_reg_0_63_0_0/DP)

(DELAY

(ABSOLUTE

(IOPATH CLK O (763.0:951.0:951.0) (763.0:951.0:951.0))

(IOPATH RADR5 O (84.0:105.0:105.0) (84.0:105.0:105.0))

(IOPATH RADR4 O (84.0:105.0:105.0) (84.0:105.0:105.0))

(IOPATH RADR3 O (84.0:105.0:105.0) (84.0:105.0:105.0))

(IOPATH RADR2 O (84.0:105.0:105.0) (84.0:105.0:105.0))

(IOPATH RADR1 O (84.0:105.0:105.0) (84.0:105.0:105.0))

(IOPATH RADR0 O (84.0:105.0:105.0) (84.0:105.0:105.0))

)

)

...

)

Within the cell, this SDF snippet specifies the cell-internal timings
that describe how a signal will be delayed when traveling from one of
the input ports (RADRx) to the output port (O = dpo), as depicted in
Figure 4.16. Xilinx provides these signal propagation times as absolute
delays, and thus we can use them directly, i. e., without preprocessing
or conversion, to annotate our graph. The first triplet of numbers (e. g.,
(84.0:105.0:105.0)) is the delay for a rising edge and the second



110 virtual field-programmable gate arrays

one for a falling edge. Each triplet consists of three separate delays in
picoseconds, the first one is the minimum, the second one the typical
and the third the maximum delay. By parsing the SDF file we can thus
learn the worst-case propagation delay for each node of the overlay
description graph, for any incoming edge to the outgoing one. We
take the maximum delay to obtain guaranteed values for fmax.

x.y.z

i1 o1
i2
i3 o2

Figure 4.16: Cell-internal I/O path delays described by the standard delay
format. Taken from [117].

For the delays of the edges of the graph, Xilinx provides another
cell, partly shown in Excerpt 4.3, which is named after the hierarchy
element that contains the overlay as cell type. The cell of this type
contains the complete information about all virtual wires, i. e., the
edges of the ODG in the form of interconnect elements. They also
contain absolute delays, but this time for the paths starting at the
output port of a LUTRAM macro instance and ending at the input
port of another, thus directly describing the edge that connects the
corresponding nodes in the graph. In Excerpt 4.3, this is the virtual
wire connecting the output of node 1174 with the fifth input (RADR4)
of node 843.

SDF Excerpt 4.3: zuma_wrapper cell interconnect delays.

(CELL

(CELLTYPE "zuma_wrapper")

(INSTANCE )

(DELAY

(ABSOLUTE

...

(INTERCONNECT

XUM/MUX_1174/LUT/U0/ ... /ram_reg_0_63_0_0/DP/O

XUM/MUX_843/LUT/U0/ ... /ram_reg_0_63_0_0/DP/RADR4

(269.5:325.5:325.5) (269.5:325.5:325.5))

...

)

)

)

Aggregating all of this information as back-annotated propagation
delays into the overlay description graph allows us to perform our
own timing analysis for configurations of the overlay for this particular
implementation of the vFPGA.



4.5 timing analysis and optimization 111

4.5.1.3 Comparison of Timing Extraction Methods

Comparing the two different variants of extracting the timing infor-
mation from the Xilinx tools, i. e., using dummy time constraints or
parsing an exported SDF file, we can clearly see that, as expected, the
latter dominates the former in Table 4.5. The test setup is again a 3× 3
ZUMA overlay as in Section 4.4, and the baseline of the experiments
is the fmax estimation of 0.732MHz done by ISE itself, thus disre-
garding any actual overlay configuration. We compare the estimated
frequency always to a fixed clock frequency of 102.05MHz, which we
can achieve with the test design if we omit the overlay. The ratio of
the estimated fmax to this fixed clock is always reported in the table
as slowdown factor; the baseline thus corresponds to a slowdown of the
clock by a factor of roughly 140×.

Table 4.5: Comparison of the two timing extraction methods for different
virtual circuits in a 3× 3 ZUMA overlay in a ReconOS hardware
thread. Taken from [49].

fmax slowdown favg slowdown

[MHz] factor [MHz] factor

Baseline

Xilinx tools 0.732 139.35×
Constraints method

NOT gate 1.235 82.63×
6 bit adder 0.605 168.68×
8 bit adder 0.666 153.23×
8 bit RCA 0.591 172.67×
4 bit multiplier 0.408 250.12×

SDF method

NOT gate 42.544 2.40× 91.752 1.11×
6 bit adder 26.445 3.86× 56.173 1.82×
8 bit adder 19.813 5.15× 43.442 2.35×
8 bit RCA 12.967 7.87× 28.098 3.63×
4 bit multiplier 11.579 8.81× 24.827 4.11×

The other two categories of the table, one per method, list other
test circuits in five rows each. Using the constraints method, which
can only give us a worst-case delay and thus fmax, we were able to
increase the estimate of a safe fmax by a factor of up to 1.68, or in
other words to show a virtualization slowdown factor of only 83×
instead of 140× for a very simple single-gate overlay configuration.
For all other, also quite simple, test circuits, however, the method fails
to improve upon the baseline estimation, due to the lack of a direct



112 virtual field-programmable gate arrays

relationship between the list of worst-case path delays per dummy
constraint and the actual physical path of a virtual wire. We therefore
conclude that the method itself might have some potential for working
with overlays, but would still need improvement to identify the actual
wire paths.

The bottom rows of Table 4.5 show the analysis results of the SDF
parsing method, with the worst-case results in columns two and three,
and the average-case results in columns four and five. Using the
detailed knowledge base of the Xilinx tools allows us to show a much
better bound for the simple test circuits, improving the best slowdown
factor from about 83× to only 2.4× with this approach. We can now
also show that in the average case (favg), the Xilinx tools predict that
we can safely operate the overlay with up to nearly 92MHz, compared
to the original speed which was 102.05MHz.

Although we have only tested our timing back-annotation approach
with Xilinx tools and devices, in principle the approach should also
work for FPGAs from the Intel Programmable Solutions Group (Intel
PSG, formerly Altera). Citing from the Quartus Verification handbook,
there is a “Standard Delay Format Output File (.sdo)” which “contains
the delay information of each architecture primitive and routing ele-
ment in your design”, which is exactly what we need for the second
extraction method.

4.5.2 Physical Timing-Driven Virtual Synthesis

For VPR 7 we have implemented the timing extraction and standalone
analysis as explained above, but the new features of VPR 8 actually
allow us to go beyond this solution, as it adds the possibility to not
only load an annotated architecture file, but also a RR-graph with
back-annotated timing into the program at the beginning. The main
disadvantage of annotating only the architecture file is its coarse
granularity, as it only describes each element type of which the overlay
fabric is built. As discussed above VPR expands and instantiates
these architecture primitives when generating the RR-graph, until it
arrives at a detailed representation of all routing resources outside
of the ZUMA’s CLBs. Within ZUMA, we combine the global and
local descriptions into one complete overlay description graph, which
has the exact same granularity as the overlay itself and we can thus
annotate these elements without loss of timing accuracy.

To feed this accurate data back into VPR 8, to enable it to leverage
the timing for virtual synthesis, we thus have to split the ODG into
its extra-CLB and intra-CLB components and have to annotate the
corresponding file with the parsed and aggregated data, as shown in
Figure 4.4. For the global, extra-CLB resources this is quite straightfor-
ward, since we can only attribute the delay to edges of the RR-graph.
Hence we add each I/O path delay of an ODG node v, i. e., the worst-



4.5 timing analysis and optimization 113

case propagation time of a signal from a node input port Ix to the
node’s output port O and the interconnect delay of the virtual wire
incident to Ix together as the delay of the RR-graph edge that corre-
sponds to this wire. Note that in the case where an RR-graph node v
is implemented using subnodes (e. g., MUX trees) in the ODG, we will
therefore assign to the RR-graph edge incident to Ix the accumulated
delays of the physical path implementing the virtual wire incident to
Ix, as well as all the total delay of the singular path between the physi-
cal subnodes of v that connects Ix with O. By applying this pattern to
the complete graph, we can map all extra-CLB overlay delays from the
SDF file to edges of the RR-graph, which will allow us to determine
the total delay of the physical paths between two virtual nodes just by
adding the edge delays on the path in the RR-graph.

Since VPR instantiates the intra-CLB routing resources from only
one copy, however, just annotating it with delays for each connection
will only enable us to assume the worst-case delay for each such
virtual wire over all CLBs. This will yield correct, albeit pessimistic,
estimates for fmax, but it will not be accurate enough to enable mean-
ingful timing-driven placement and routing that actually considers
the concrete topology of a synthesized overlay in VPR 8. To overcome
this limitation, we push the expansion of the intra-CLB resources from
the ODG back into the architecture file, by building an augmented
architecture that contains individualized CLB resources instead of only
the master copy. We prepare this architecture file with empty timing
information before even the first run of VPR, to make sure that we
only have to add the delay data for subsequent runs and thus preserve
the binary compatibility of the architectures with and without timing
information.

This preprocessing enables us to later recognize the individual
architecture component instances in the generated SDF files and parse
their delay data similar to the RR-graph augmentation described
above. On the one hand, we can thus accurately back-annotate the
timing information from our ODG into the individualized architecture
XML for future runs of VPR, but on the other hand, we cannot avoid
one significant downside of this approach with current versions of
VTR unless the capabilities of VTR’s architecture descriptions would
change: VTR models FPGA architectures in a way that considers timing
information to be solely tied to logical blocks (i. e., the CLBs), while the
tiles (i. e., the slots of the grid into which blocks can be placed) remain
perfectly homogeneous. To port the timing information back to VTR in
a meaningful manner, we thus have to annotate the logical blocks with
the delays, instead of attributing it to tiles. This requires us, however,
to move away from modeling a generic CLB that fits into any tile
towards individual logic clusters that have a fixed correspondence to
locations in the grid. Obviously this fixed mapping renders the virtual
placement step with significantly reduced swapping opportunities



114 virtual field-programmable gate arrays

that are basically limited to rearranging the I/O pads, which means
that the actual placement will already have been determined by the
packing algorithm without chance of further improvement by the
placer.

We have attempted to alleviate this issue by declaring all individu-
alized logic clusters interchangeable for the placement step, but this
only enables the placer to perform swaps that it cannot evaluate prop-
erly, since VTR will always swap the timing information along with
the CLBs. Figure 4.17 shows the limited impact of this change for a
range of benchmark circuits on our standard overlay. The blue bars in
the figure depict the individualized architecture version in which the
placer cannot change anything, and the green bars the changed version
with swappable CLBs that (incorrectly) take their delay information
with them when swapped. Note that the results were calculated by
ZUMA and not VPR, so that the swapped timings did not affect the
accuracy of the results, just their quality by affecting the placer. We
have repeated each experiment as many times as necessary to gener-
ate a stable average fmax value that was not changing significantly
anymore with each new run, which required between 100 and 320
runs for the circuits and data shown in Figure 4.17, since the resulting
fmax values are very sensitive to the random nature of VTR’s packing,
placement, and routing algorithms.

As the figure shows, considering the CLBs as equivalent for the
placer increases the randomness of the virtual synthesis quite a lot
in many cases, which can be seen by the longer black lines on the
green bars. The change can therefore help to find better placements
than before, but on the other hand the data also show that the average
virtual synthesis results will worsen. The results presented in this
thesis thus all suffer from this severe limitation of their placement and
would therefore all benefit from potential future improvements made
to VTR’s modeling capabilities concerning timing information of grid
tiles. To identify the maximum potential of our timing optimization
strategies, we will in the following apply the change, i. e., we will
enable the placer to swap the CLBs even if it cannot properly evaluate
the new placement’s delay.

Using the augmented files together, i. e., the individualized archi-
tecture file and the RR-graph, both annotated with worst-case timing
information, we are thus able to give VPR 8 an accurate idea of the
synthesized ZUMA overlay’s topology. The only resources exempt
from this rule are the ones we added to the outside of the overlay, i. e.,
the ordering layer described in Section 4.3.3, and the ones that we add
to make the ODG k-feasible. The former resources correspond to a
series of new nodes that branch outside of the resources known to
VPR, and hence there is no singular RR-graph edge per ordering layer
edge and node, to which we could transparently add the delay. The
latter ones are the expanded resources required to map the resources



4.5 timing analysis and optimization 115

NOT gate

6 bit adder

8 bit adder

4 bit multiplier

8 bit RCA

MulAdd

5 bit multiplier

MulAdd-2

0

20

40

60

80

100

f m
ax

[M
H

z] +2
.2

%

-4
.5

%

-3
.7

%

+1
.5

%

-1
.2

%

-6
.7

%

-0
.9

%

-0
.5

%

CLBs unique

CLBs equivalent

Figure 4.17: Changes in the maximum frequency fmax (higher is better) of
the ZUMA overlay fabric on the physical FPGA due to consid-
ering the individual CLBs as unique or equivalent, and thus
swappable. The percentages denote the relative fmax change of
the average case, and the black lines indicate the observed fmax
range for all respective virtual synthesis runs.

of VPR to the khost LUTRAMs of the physical device, but we can
easily track the individual routes of the subnodes to combine them
to obtain accurate worst-case delays of the supernode, as described
above.

To account for the added delays of the ordering layer in the (ran-
domized) I/O placement of VPR would require changes to its source
code, which we did not pursue within the context of this thesis. We
do, however, ensure that the estimated fmax values reflect these addi-
tional delays, by not relying on VPR’s frequency estimation but using
our own version, which we already used for VPR 7, as that tool uses
the transformed version of our ODG which ZUMA uses to generate
the vFPGA fabric and bitstream. Since this graph version is closer to
the structures represented in Xilinx’ SDF file, the delay mapping is
more complete and includes all extensions described within this thesis.
Figure 4.9 in Section 4.3.3 shows the impact of the ordering layer on
the timing results.

We can provide VPR 8 thus with full timing information for all
original virtual resources, by parsing the exported SDF file from a
Xilinx implementation of the overlay into our ODG and then back-
annotating it into VPR’s input files. This allows us to run VPR now
not only in the usual area-driven mode, but also in the timing-driven



116 virtual field-programmable gate arrays

packing, placement & routing mode, even if the placer currently has
to operate with one arm tied behind its back, as explained above. The
flow depicted in Figure 4.4 also reflects this new feature. VPR can thus,
using the annotated delay information, look for an implementation
and mapping of the circuit to the virtual resources that minimizes the
critical path delay on the host FPGA, thus actively maximizing fmax
for the first time in ZUMA’s history.

Figure 4.18 shows the effect of this new approach for the same
overlay and benchmarks as in Section 4.5.1.3, as well as some new
ones that use more of the resources on the vFPGA. We have again
repeated each experiment as many times as necessary to generate a
stable average fmax value that was not changing significantly anymore
with each new run, which required between 130 and 280 runs here. The
impact of VPR’s timing-driven mode is clearly visible for most of the
cases, although it seems to be highly circuit dependent whether or not
it can improve upon the area-driven solution, ranging in fmax changes
between a 7% decrease and a 26% increase for the average fmax over
all runs. The factor that seems to impact the achievable improvement
the most is the logic utilization of the benchmark: Measured in the
amount of occupied CLBs, the benchmarks range from 11% to 78% in
their utilization and are arranged in increasing order from left to right.
The largest increases thus occur for circuits that occupy a significant
portion of the available area while still having enough freedom to
ignore some CLBs. For the best synthesis results, however, which
are visible as the upper ends of the black lines in Figure 4.18, the
differences between the area-driven and timing-driven mode are far
less pronounced, which again indicates that the current placement
limitation is preventing our approach from reaching its full potential
by introducing too much randomness in the process.

4.5.3 Virtual Fabric Optimization

In Sections 4.5.1 and 4.5.2 we have now explored how to accurately
analyze and also optimize the achievable fmax by modifying and
augmenting the virtual synthesis of the circuit. This method has,
however, an upper bound in what it can achieve, since we are only
able to fully exploit the potential of a given synthesized overlay this
way, but we cannot reduce the frequency below its current limitations,
which are determined at physical synthesis time. In this section, we
will briefly report on our attempts to perform an optimization of the
vFPGA itself, i. e., approaches to optimize the synthesis of the virtual
fabric to the underlay. While none of the considered approaches was
successful enough to yield a definitive approach for ZUMA yet, we
have gained insights and limited first results that should help the
ZUMA overlay to gain timing closure with some further development.



4.5 timing analysis and optimization 117

NOT gate

6 bit adder

8 bit adder

4 bit multiplier

8 bit RCA

MulAdd

5 bit multiplier

MulAdd-2

0

20

40

60

80

100
f m

ax
[M

H
z]

-5
.3

%

+3
.1

%

+1
4.

8%

+1
5.

9%

+2
5.

8%

+2
3.

7%

+1
3.

0%

-6
.7

%

Area-driven

Timing-driven

Figure 4.18: Changes in the maximum frequency fmax (higher is better) of
the ZUMA overlay fabric on the physical FPGA due to operating
VPR in the timing-driven mode. The percentages denote the rela-
tive fmax change of the average case, and the black lines indicate
the observed fmax range for all respective virtual synthesis runs.

The main issue limiting the achievable fmax from this side is the
inability of the underlay synthesis tools to directly optimize the timing
behavior of the virtual fabric, because the multitude of combinational
loops prevents the application of most optimization strategies and the
vendor tools lack the information to break up the loops in appropriate
locations. There are several possible solutions to this issue, namely
1. break up the loops in advance at suitable wires, an approach used
by Bollengier et al. for ARGen, 2. closely control the information
which the vendor tools have about the virtual fabric, to increase the
quality of the synthesis decisions, or 3. use automation and maybe
additional tools to enforce the regular structure of the overlay also for
its representation on the underlay.

The first solution to raise the achievable overlay frequencies, i. e.,
breaking up the combinational loops proactively with virtual time
propagation registers to reach timing closure for the vFPGA, as in-
troduced by Bollengier et al. for ARGen [108], seems to be a viable
future extension to ZUMA, although it does not directly help increase
the performance of the synthesized overlay according to the authors.
In their experiments, that featured overlays slightly larger than one
of our 4× 4 overlays with the configuration presented on Page 87,
the worst case still achieved a virtual fmax of over 25MHz, which
puts this solution into the same range of the fmax values which our



118 virtual field-programmable gate arrays

analyses determined for very simple benchmark circuits in our experi-
ments, cp. Table 4.5 and Figure 4.18. Combining both approaches, i. e.,
enabling timing-driven placement and routing in a VTPR-augmented
overlay through back-annotation, might take considerable effort, how-
ever, since the clock divider for the virtual clock would interact with
the physical delays of the signals on virtual wires. As the virtual
synthesis tools would not be aware of the additional registers on the
physical side, which furthermore only affect a subset of the virtual
wires, the delay model would have to be carefully chosen and / or
the timing-driven algorithms within VPR adapted to achieve good
synthesis results. While implementing this concept was outside of the
scope of this thesis, we think it could be worthwhile to realize this
extension also for ZUMA in future work.

For the second solution, i. e., controlling the information which
the vendor’s CAD tools have about the overlay, we have had some
successes in preliminary experiments which indicate potential gains
for this approach. The first result concerns the inclusion of the DMG
macro LUTRAM instantiations, where an out-of-context presynthe-
sis of this fundamental ZUMA building block greatly sped up the
synthesis of nested block design projects that contain a vFPGA. The
previous synthesis allows us to include the LUTRAMs as black boxes
in the final synthesis, which removes the combinational loops visible
to the tools in the subsequent runs. The second result concerns the
Verilog representation of the overlay, which is generated by the ZUMA
scripts in a large single file. The typical HDL approach to designate
component structure in such a large design would be to cluster parts
that belong together into hierarchical modules, which in Verilog cor-
responds to separate modules that are instantiated in other modules.
By restructuring the description of the overlay into modules for each
CLB we have managed to achieve a small, but measurable increase
in the achievable fmax. Both of these EDA-informing methods have
thus shown potential, but exploring their limitations, finding the best
parameters to fully leverage them, or applying them automatically are
all unexplored as of yet and left for future work on ZUMA.

The third solution, i. e., leveraging other tools to optimize the un-
derlay’s synthesis process of the overlay, became viable with the in-
troduction of RapidWright [112], a tool that is able to interact with
Vivado at all stages of the design by exporting it as a design check-
point, modifying it externally, and then feeding it back to Vivado. Our
goal was to mirror the architecture expansion of VPR on the Vivado
side by creating a fully synthesized master copy of one CLB and then
instantiating it in several locations of the physical device, thus rapidly
forming an underlay configuration that faithfully reflects the grid
layout of the overlay, thus minimizing the worst-case length expansion
of virtual wires during physical synthesis. The main issue with this
approach, however, is that while VPR can adapt each expanded CLB



4.5 timing analysis and optimization 119

to its specific location details, i. e., if it is a located on a corner, side or
in the middle of the grid, RapidWright cannot mirror this, as it relies
on Vivado to perform the presynthesis. Instead of synthesizing one
master copy, we would hence need to create at least one per corner,
one for each side and one for a middle CLB. This is further aggravated
due to placement constraints, since a presynthesis will lock a CLB into
column ranges of the host FPGA that have the exact same layout as
the original synthesis range. For circuits as large as a vFPGA CLB,
however, the layout of the spanned columns is most often unique
for the whole FPGA, which thus forces us to prepare further master
copies for additional grid location column ranges. While technically
still possible, this approach thus all but looses the rapidness that
should be the hallmark of flows based on RapidWright. Furthermore
Vivado’s own TCL-based floorplanning automation routines could
potentially be leveraged to achieve the same effect in Vivado itself. For
more details on this aspect, see [97].

An additional issue of the rapidly instantiated copies of the CLBs
is currently the way that ZUMA propagates the virtual configura-
tion through the vFPGA. To speed up the virtual reconfiguration
process, ZUMA groups all LUTRAMs macros into groups of up to
32 elements that are programmed simultaneously. To this end, the
configuration controller enables the write ports of the groups succes-
sively, so that they receive their configuration group-by-group. This
method, however, individualizes each LUTRAM, as it has a specific lo-
cation in a specific write-enable group and is thus directly addressable.
RapidWright would thus need to adapt this individual identification
information after instantiating new copies of a master CLB to actually
reflect the correct addressing that was used to generate the virtual
bitstream, which it unfortunately cannot do. This limitation could be
overcome by rewriting ZUMA to connect all LUTRAMs of an overlay
together as one large shift register and then shifting in the configura-
tion one bit at a time, thus sacrificing reconfiguration speed to partly
get rid of the individuality of CLBs. Such a rewrite was, however, also
not in the scope of this thesis and is also left for future work.

We have thus identified three different ways to reach timing closure
for the synthesis of the overlay on the underlay in an effort to increase
the achievable fmax. Within the context of this thesis, where the ZUMA
overlay was not the main research focus, we could not thoroughly
pursue this direction of improvements, but we still managed to gain
considerable insights for many aspects of these optimization strategies,
which we hope will aid future research and development on ZUMA
or other virtual field-programmable gate arrays.



120 virtual field-programmable gate arrays

4.6 conclusion

In this chapter we have seen that virtual field-programmable gate
arrays (vFPGAs) have been the subject of active research for over
two decades by now, with still new advances in recent years. In the
context of this thesis, they provide us with a realistic environment
and help us to showcase our proof-carrying hardware (PCH) methods
on actual modern FPGAs, since we are able to convert their configu-
ration bitstreams into netlists that are interpretable by a verification
engine. In an effort to improve this environment and testbed, we
have augmented the state-of-the-art vFPGA ZUMA [95] with a stable
virtual-physical interface and the ability to run synchronous sequen-
tial circuits (SSCs); we have embedded it into a mature Linux-based
ReconOS reconfigurable system-on-chip (rSoC) that enables a mul-
tithreaded programming model also for HW modules, reduced the
virtualization costs both in terms of area and timing, and updated
its script framework to always work with the current version of the
open-source tool flows they rely on. To give back to the community,
we made all of these extensions and enhancements available to the
original developers of ZUMA, Brant and Lemieux [95], and to the
general public, by pushing them to ZUMA’s official GitHub site [99].

While our experiments have confirmed that FPGA overlays still
come with considerable virtualization overheads in terms of area and
delay, the main result of our work is the greatly simplified experimen-
tation with vFPGAs, which we will leverage in the remaining chapters
of this thesis. Circuits mapped to our version of the ZUMA vFPGAs
are now far less restricted in their nature, can easily call Linux oper-
ating system services and thus communicate with other threads or
machines, and utilize a standard virtual memory subsystem. We have
designed all changes to fit into the existing structures, and they can
thus be transparently used by circuits and the whole overlay can be
configured using a ZUMA bitstream, which we can fully interpret and
understand, as we know its exact design. Altogether, the new ZUMA
version hence allows us to apply PCH directly at the bitstream level
and therefore enables us to make proof-of-concept implementations
that showcase the full potential of the method while actually running
on modern FPGAs.



5
P R O V I N G P R O P E RT I E S W I T H P R O O F - C A R RY I N G
H A R D WA R E

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Property classification . . . . . . . . . . . . . . . . . . . 123

5.3 Sequential Property Checking . . . . . . . . . . . . . . . 128

5.3.1 Bounded Model Checking . . . . . . . . . . . . . 130

5.3.2 Induction-based Property Checking . . . . . . . 134

5.3.3 Flow Integration . . . . . . . . . . . . . . . . . . 142

5.3.4 Comparison . . . . . . . . . . . . . . . . . . . . . 144

5.4 Monitor-based Property Checking . . . . . . . . . . . . 150

5.4.1 Watchdog-Carrying Hardware . . . . . . . . . . 150

5.4.2 Structural Verification . . . . . . . . . . . . . . . 152

5.4.3 Automated Monitor Creation . . . . . . . . . . . 154

5.4.4 Experimental Evaluation . . . . . . . . . . . . . . 154

5.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 168

When Drzevitzky, Kastens, and Platzner presented proof-carrying
hardware (PCH) (see, e. g., [58]), they introduced it as a quite general
concept, which takes the benefits of proof-carrying code (PCC) and
translates them into a method operating on a comparable abstraction
level of the hardware synthesis flow. Within this field defined by them,
they mainly explored proofs based on functional equivalence checking
(FEC) of combinational circuits with concrete proof methods, tool
flows and examples, while advocating the potential of PCH beyond
these concrete choices.

This chapter details the extension of the readily available PCH proof
techniques and tool flows to also cover bounded and unbounded
proofs for synchronous sequential circuits (SSCs) running on virtual
field-programmable gate arrays (vFPGAs), based on the results pub-
lished in [31, 47], as well as on these student theses: [120, 121].

5.1 related work

The early PCH prototypical tool flows presented in [7, 58] employ
Boolean satisfiability-based (SAT) approaches at their core. From the
wide range of expressible PCH safety properties, Drzevitzky, Kastens,
and Platzner required functional equivalence between the circuit imple-
mentation and the design specification. To realize FEC, the property
verification circuit (PVC) corresponds to the so-called miter function
that takes the circuit specification in a hardware description language

121



122 proving properties with pch

(HDL) together with its implementation and checks the outputs pair-
wise for equivalence, raising the error flag on any mismatch. As
detailed in Section 2.3, proving the unsatisfiability of the miter thus
guarantees functional equivalence. Figure 5.1 shows the generalization
of this structure to property checking, using a PVC to verify a circuit
property of a combinational circuit, as described in Section 2.2.3. Recall
that such a PVC implements a black-box verification and comprises
the circuit implementation of the design under verification (DUV)
together with a so-called property checker (PrC) which computes a
flag error from the input in and the circuit implementation’s output
out. If raised, this flag indicates that the property does not hold, i. e., is
violated under the current inputs. The PVC is used as the verification
model of the PCH safety policy and allows the consumer to state any
policy that is expressible as set of circuit properties depending on
the inputs and outputs of the final circuit implementation. In case
the safety policy internally comprises a number of properties, the
resulting PVC can include several PrCs.

DUV

Property checker

in
out

error
n

n
m

Figure 5.1: The property verification circuit for a combinational circuit com-
prises the circuit implementation and a property checker. Taken
from [31].

Drzevitzky also presented first ideas of how to create proofs for
SSCs in her PhD thesis [57], by applying bounded model checking
(BMC) to sequential FEC miters using a time bound of 1000 cycles
(cp. Section 2.2.4.1). The resulting circuit is free of feedback connec-
tions, and hence purely combinational, but allows the verification
engine to argue over the sequence of the first 1000 cycles using a SAT
proof as in the combinational case. The immense number of circuit
copies required for this method obviously also impacts the proof size
and thus indirectly also the verification complexity, making this ap-
proach only viable for small circuits, or properties whose validity can
be proven by unrolling the circuit for only a few cycles, as the proof
will only be able to argue about the cycles that are actually represented
in the miter.

The register-transfer level (RTL) proof-carrying hardware intellec-
tual property (PCHIP) approach presented by Love, Jin, and Makris
[63] (cp. Section 2.3.2) derives proofs using the Coq proof assistant
language for a limited subset of the Verilog HDL for which they
formalized the effects. Properties within this body of work are con-
sequently encoded as Coq expressions. However, this approach has



5.2 property classification 123

the disadvantage of adding the reconfigurable hardware vendor’s
electronic design automation (EDA) tools to the trusted computing
base (TCB), which introduces a significant trust issue, as discussed
in Section 3.1.3, and furthermore requires considerable effort and
human interaction in the proving process, which precludes a fully au-
tomated PCH flow. In line with our choice for realizing bitstream-level
PCH, which we explained in Section 3.1.5, we will hence focus on
model checking-based verification approaches here instead of theorem
prover-backed methods such as PCHIP (cp. Section 2.2.3).

5.2 property classification

As we have seen in Section 2.2, (formal) hardware verification is often
performed using property checking, i. e., by showing that a hard-
ware device or module exhibits some desired property, or that it does
not have some other unwanted properties. In Section 2.3.1 we have
discussed that PCH has been, prior to this thesis project, relatively un-
concerned with specific circuit properties or property types, especially
for bitstream-level PCH. By relying on FEC as primary verification
mechanism in the available prototypes, the tools were theoretically
capable of proving or disproving any functional property of a circuit.
In reality, however, FEC as a hardware verification method is often
too complex to show for a complete circuit, and it is moreover only as
strong as the golden model used in the verification process. A com-
promised model will result in successful verifications of compromised
circuit instances (and only those); a flawed model will carry over the
flaws, while an incomplete model leaves room for malicious insertions,
cp. Section 2.2.

In the context of PCH, the golden model needs to be defined by
the consumer, or at least agreed-upon a priori by both parties. We
therefore cannot assume without restrictions that this model is a
carefully designed and rigorously optimized verification model that
captures all circuit properties, because a consumer who is capable
of developing such a sound and detailed model would probably not
need the services of the producer in the first place. Expecting such a
model from the producer, on the other hand, would violate the PCH
premise of not requiring a trustworthy producer. Consequently we can
only assume, as a minimal requirement, that the golden model used
in a typical PCH process will exhibit the correct observable behavior,
i. e., would translate input stimuli from the system in which it would
be deployed into output stimuli that excite the other components of
that system in a way that the emergent behavior of the overall system
is correct.

The underlying equivalence relation, in which the consumer is
implicitly interested in as their PCH safety policy, is hence as follows:
“Will the deployment of this circuit implementation in my target system



124 proving properties with pch

(instead of my golden model) change the observable behavior of said system?”
In the following, we will call a golden model weak, if we can only
safely assume that it can be used to prove such a minimal version
of functional equivalence. We conclude that in the context of PCH
all employed models have to be assumed to be weak, save for a few
exceptions.

Using the circuit property taxonomy of Jenihhin et al. [122], de-
picted in Figure 5.2, we find that the the properties identified by the
authors as functional properties match the scope of properties that are
verifiable using weak golden models, e. g., the correctness of returned
results (safety, data types), the (non-)termination of a circuit’s execu-
tion (liveness), or the sequence of events (temporal dependencies).

In this sense, the previously available tool flows for bitstream-level
PCH are thus able to make proofs for any functional property of a
circuit, but not for extra-functional properties1. One notable exception
of this rule are properties that cannot be verified by comparing to
one specific circuit instance, e. g., because they involve variability in
the property. If there is, for instance, not one only correct result, but
a range of valid ones, then any one golden model will return one
specific result in that range, and thus a subsequent FEC will only
accept circuits that also return this particular result. This would falsely
reject any circuit that returns another valid result from the correct
range. In general, any property that defines a range of acceptable
circuit behavior cannot be proven for the whole range via FEC to
any one specific circuit instance, even if the property is a functional
property.

To be able to also verify such properties, we have a) extended our
PCH tool flows to accept SystemVerilog (cp. Section 2.2.3), and b) de-
veloped a verification concept based on runtime verification, which
we will present in Section 5.4. Enabling the usage of SystemVerilog to
define the circuit properties that make up the PCH safety policy consti-
tutes a meaningful extension to bitstream-level PCH, which leverages
a large body of existing research and standardization efforts. Employ-
ing this hardware verification language (HVL) in a formal verification
flow is the state-of-the-art method to describe the verification envi-
ronment with its input drivers and property checkers (cp. Figure 2.5),
and is supported by a wide range of commercial and a small range of
academic tools. Most notable among the latter category is Yosys [75]
(cf. Section 2.4.3) which is capable of synthesizing Verilog and a small
subset of SystemVerilog statements into RTL or gate-level netlists
and into combinational or sequential verification miters. Leveraging
especially assume statements to filter inputs and assert statements to
define circuit properties that have to be verified, greatly eases the
safety policy definition that the consumer has to perform. Thus, the

1 We call extra-functional properties by their synonym, non-functional properties, in
the context of this thesis.



5.2 property classification 125

M
ul

tid
im

en
sio

na
l

ve
rifi

ca
tio

n 
as

pe
ct

s
(H

W
 p

er
sp

ec
tiv

e)

Fu
nc

tio
na

l
Ex

tra
-fu

nc
tio

na
l

Sa
fe

ty

Li
ve

ne
ss

Co
m

bi
na

tio
na

l
de

pe
nd

en
ci

es

Te
m

po
ra

l
de

pe
nd

en
ci

es

Da
ta

 ty
pe

s

…

Sy
st

em
 q

ua
lit

ie
s

Se
cu

rit
y

O
th

er
Re

lia
bi

lit
y

In
te

gr
ity

Av
ai

la
bi

lit
y

Co
nfi

de
nt

ia
lit

y

Pr
iva

cy
…

Sa
fe

ty

Te
st

ab
ilit

y

Fa
ul

t-t
ol

er
an

ce
/ R

ob
us

tn
es

s

Av
ai

la
bi

lit
y

Us
ab

ilit
y

Ad
ap

ta
bi

lit
y

…

Li
fe

tim
e

re
lia

bi
lit

y

Ra
nd

om
fa

ul
ts

re
lia

bi
lit

y
…

Sy
st

em
 re

so
ur

ce
 c

on
st

ra
in

ts

Po
w

er
O

th
er

M
ul

ti-
vo

lta
ge

de
sig

n
as

pe
ct

s

po
w

er
do

m
ai

ns
…

Th
er

m
al

M
em

or
y

Se
ns

or
 a

cc
es

s

Ex
te

rn
al

co
m

m
un

ic
at

io
n

…

Ti
m

in
g Re

al
-ti

m
e

co
ns

tra
in

ts

Pe
rfo

rm
an

ce

Th
ro

ug
hp

ut

La
te

nc
y

C
om

m
un

ic
at

io
n

tim
e

W
or

st
-c

as
e

ex
ec

ut
io

n 
tim

e
…

Figure 5.2: Taxonomy of circuit properties for hardware verification. Taken
from [122].



126 proving properties with pch

inclusion of Yosys into the base tools that make up a PCH tool flow
supplements and enriches the circuit property definition methods,
and hence increases the expressiveness of the readily available PCH
tools, such that general property checking is now feasible to perform
using PCH. For instance, creating a property verification circuit that
is a verification miter for a functional circuit property which accepts
a range of circuit behavior, is an easy task using SystemVerilog and
Yosys, while we saw that this is not possible using FEC.

From the related context of software verification, we can further-
more derive another general distinction of properties into two classes
according to the verification problem instances they translate to: Trace
properties and hyperproperties [123]. Since the notion of these properties
was first formulated in the context of software verification, they are
defined using execution traces of program code. The name “trace prop-
erties” thus derives from the fact that they are decidable by looking
at execution traces individually: For these kind of properties, it is
sufficient that the verification engine finds a single counterexample,
i. e., one execution trace in which the software program reaches an
error state. For hardware, this corresponds to a verification which con-
siders each input pattern independently as, e. g., Boolean satisfiability
solving does. For a trace property the question whether it holds for
one particular input pattern is independent of property violations
caused by other input assignments. The problem of guaranteeing a
trace property can hence be formulated as a SAT problem, i. e., a proof
of the non-existence of even a single counterexample.

Counterexamples for hyperproperties, on the other hand, have to
combine several or many traces to disprove the property, for instance
a proof showing that at most a certain fraction of program traces fail
under some metric has to argue directly over the number of violating
individual traces. For such properties, it is thus not sufficient to look
at each computational path individually to verify the property, and
this holds true for software and hardware verifications. Instead, all
computational paths have to be considered to reason about whether
the property holds or not. Obviously, hyperproperties thus translate to
much harder verification tasks, since we have to count or even evaluate
the violating traces instead of proving their non-existence. For the
verification of combinational circuits, for example, this generalizes the
SAT problem, i. e., deciding if a given formula is satisfiable at all, to
a counting SAT (#SAT) problem, i. e., counting how many satisfiable
solutions exist for a given formula. #SAT solving is very challenging
and the problem is known to be a #P-complete. From the existence of
a polynomial time algorithm that solves #SAT we could immediately
deduce that P = NP, as this algorithm could be used to decide SAT in
polynomial time: If the #SAT solver evaluates the number of satisfying
solutions of a formula to be zero, then we know that the formula is



5.2 property classification 127

unsatisfiable, and if the number is larger, then we can deduce that the
formula is satisfiable.

Within this thesis in general, and chapter in particular, our goal is
to further the range of certifiable circuit properties that can be used
with bitstream-level proof-carrying hardware. In this effort, we rely on
the body of research in the field of hardware verification, which has
made great advances in the scope of verifiable properties in the last
decades, yielding ever more powerful verification algorithms and tools.
#SAT solvers, however, which are required to address hyperproperties,
have yet to become efficient enough to be applicable to hardware
verification on a reasonable scale according to Vašíček [124]. Due to
this, we will concentrate on extending the currently certifiable trace
properties here, leaving the hyperproperties for future research, when
#SAT solving has progressed further, like SAT solving has done in the
past decades.

Regarding again the taxonomy of Jenihhin et al. in Figure 5.2, we ob-
serve that the previously considered bitstream-level PCH approaches
left parts of the functional properties, as well as the whole range of non-
functional properties unsolved. With the inclusion of SystemVerilog,
and the research presented in the remainder of this chapter and the
next one, we have substantially extended the range of PCH-provable
properties in several directions:

• In Section 5.3, we describe our realization and extension of se-
quential property checking methods for synchronous sequential
circuits.

• In Section 5.4 we present the runtime verification-based approach
that constitutes our second solution to close the gap of functional
properties that are not provable using FEC.

• In Chapter 6 we propose solutions for the certification of several
non-functional properties (Taxonomy class Extra-functional in
Figure 5.2), e. g.:

– Worst-case completion time (WCCT)
Taxonomy class: Timing

– Information flow security (IFS)
Taxonomy class: System qualities→ Security

– Approximation quality
Taxonomy class: System qualities→ Other→ Accuracy2

– A general approach to certify properties such as Redundancy
Taxonomy class: System qualities→ Other

2 Not explicitly filed by Jenihhin et al., categorization by us.



128 proving properties with pch

5.3 Sequential Property Checking

Drzevitzky has laid the ground work for the application of bounded
model checking (BMC) to the property checking of synchronous se-
quential circuits (SSCs), which reduces the verification to the combi-
national case, i. e., Boolean satisfiability (SAT) solving. In this section,
we will review the limitations and the potential of this approach, as
well as presenting another one that is based on an induction over the
reachable circuit states instead. For the BMC approach, this section is
based on work published in [47, 50], and for the induction method
on work available in [31, 52]. The paper [47] is joint work in which
my part was the translation and realization of the abstract BMC-based
concept to a concrete system as described in Section 4.4. For the joint
work in [31], Isenberg came up with the idea to employ the method
called incremental construction of inductive clauses for indubitable correct-
ness (IC3), cf. [36] and Section 2.2.4.2, for the verification of SSCs.
He proposed to leverage the returned inductive strengthening (IS)
as proof certificate for proof-carrying hardware, and my part was to
integrate his IC3 implementation with our PCH tool flow to create
a complete verification method. Later, we replaced this early custom
version with ABC’s sophisticated property-directed reachability (PDR)
implementation in our flow, which is much faster and allowed us to
reuse tools that were already in the flow, thus reducing the trusted
computing base (TCB).

Just like in the combinational case, sequential property checking
(SPC) makes use of property verification circuits (PVCs) that com-
bine the implementation of a circuit with a property checker (PrC)
to evaluate whether or not the circuit has the property. The main
difference is the introduction of feedback connections within each
subcircuit, allowing each part to save a state that depends on past
states and inputs, as depicted in Figure 5.3. Due to current verification
engine limitations, all sequential elements have to be synchronized
to exactly one global clock signal, thus modeling the PVC as SSC. In
detail, the general structure of a sequential PVC is thus as follows:
The design under verification computes the output out and the next
state next_state based on the primary inputs in and the current internal
state. The property checker determines the error flag error and its next
state next_state’ from the same primary inputs in, the outputs out of
the DUV, and its own current state. The PrC raises the flag error if and
only if the circuit violates the encoded property.

Using this model, we can generate a PVC for any circuit property
which we can encode within the PrC, similar to the combinational ver-
sion. Since the PrC for SPC is also sequential, the range of expressible
properties, and thus their potential complexity, also greatly improves
with this step. For instance, just as functional equivalence checking is
a special case of combinational property checking, sequential equiva-



5.3 Sequential Property Checking 129

DUV

Property checker

in

out
error

n

n m

next_state l

l’
next_state’

Figure 5.3: Generic structure of sequential property verification circuits with
circuit implementation and property checker that both have feed-
back connections. Taken from [31].

lence checking is also a special case of sequential property checking,
where the PrC checks for equivalence to some specification of the
circuit. In the sequential case, however, this equivalence is now more
complex and can be defined in several ways, as we now include time
into the function. As Figure 5.4 depicts, two sequential circuits could
thus be considered functionally equivalent, if they, always for the same
sequence of inputs,

1. compute the exact same outputs in every cycle, also denoted as
cycle-accurate sequential equivalence,

2. output the exact same end result in an arbitrary (but finite)
number of cycles that may differ from one another, e. g., indicated
by a done signal, or

3. the time extended version of this, i. e., the circuits output the
exact same sequence of results, each in an arbitrary (but finite)
number of cycles that may differ from one another, e. g., indicated
by a valid signal.

done

1

1

1
DUV

Spec.

Cycle-accurate

cycles

1

1

done valid

Run-to-completion Sequence

cycles

1

cycles

Equivalent
outputs

Figure 5.4: Different types of sequential equivalence. Partly taken from [52].

Additionally, SSCs also might require a certain protocol for their
proper usage, because of their internal state, e. g., a circuit might
output only meaningless data before a reset signal is asserted for the
first time. Where combinational circuits are just immediately reacting
to input stimuli, and thus the correct response to all possible inputs



130 proving properties with pch

can be evaluated by a SAT solver independent of all other stimuli,
sequential circuits require us to also mind the sequence in which
the stimuli arrive over time. Since a failure to observe the correct
protocol for an SSC will likely result in incorrect or even unpredictable
behavior, their verification obviously is only meaningful under the
assumption that the protocol will be adhered to at runtime, unless we
want to specifically verify the robustness of the circuit against protocol
misuse. For SPC it is thus also of imperative importance to drive
the verification with the correct protocol, either by embedding the
implementation in the PVC in a wrapper which primes the circuit for
operation, or by encoding a protocol filtering mechanism into the PrC,
i. e., an information block for the verification engine which enables
it to filter out and thus disregard all instances where input stimuli
sequences violate the protocol (cp. driving inputs for verification in
Section 2.2).

Since we are looking to extend the capabilities of our PCH tool flow
to also operate on SSCs and their complex, time-dependent properties,
we need to integrate a verification method for sequential circuits into
it which yields a checkable proof artifact that we can use as certificate.
This tandem of verification method and certificate needs to allow for
a much faster validation than generation of the certificate, in order to
shift as much of the cost of trust to the producer as possible, leaving the
consumer with the trust level of a rigid formal verification for the cost
of a fast and simple certificate check. In the remainder of this section,
we will explore two such methods for sequential property checking
and evaluate their respective performance in a PCH setting: Bounded
model checking (BMC) and induction-based property checking.

5.3.1 Bounded Model Checking

The bounded unrolling of the circuit performed by BMC will transform
this sequential PVC back into a combinational one by redirecting
the feedback connections to the next copy of the PVC, as explained
in Section 2.2.4.1. This way, a sequential PVC is unrolled for an a
priori specified number of time frames (n); Figure 5.5 shows again an
example with n = 3. The resulting circuit contains n copies of the PVC,
connected at their flip-flops (FFs). Every time frame thus represents
one clock cycle, and we can change the primary inputs, and observe
the primary outputs at every individual cycle. The miter construction
compares all outputs in each time frame and the FF signals of the last
frame, and raises the error flag if there is a deviation somewhere.

As we have to choose a specific amount of time frames to unroll,
we observe that we have to either make sure that we choose a suffi-
ciently high number, or accept the fact that our proof is incomplete.
Dependent on the number of unrolled cycles, the resulting combina-
tional circuits and their conjunctive normal form (CNF) encodings



5.3 Sequential Property Checking 131

Property
checker

S1 S2 S3

I1 I2 I3

=1 =1 =1
FF0

≥1
error

in1 in2 in3

in1 in2 in3

outS1

outI1

outS2

outI2

outS3

outI3

FFS1 FFS2

FFI1 FFI2

Figure 5.5: An exemplary sequential property verification circuit that is un-
rolled for 3 cycles. FF0 denotes the set of initial values for all
flip-flops. Taken from [31].

can become very large, which in turn can lead to prohibitively long
runtimes for proving their unsatisfiability. With fewer time frames,
however, our proof will only cover the first few cycles of the circuit’s
runtime, effectively leaving the remaining runtime unverified; thus
not yielding a formal proof of the safety property for all cases. As a
consequence, the number of frames to unroll has to be either a) in
the trusted computing base (TCB) of the consumer, b) generated from
insights into the domain or specific design and property, or c) de-
termined using a technique to compute a completeness threshold in
order to gain completeness for bounded verification [35]. Although
such techniques exist, they are costly and add to the immense effort
for using a BMC-based verification for synchronous sequential circuits.

We have successfully applied BMC-based proofs in two different
scenarios that we will very briefly introduce in the following sec-
tions, to showcase two different methods to overcome the apparent
shortcomings of the approach.

5.3.1.1 Memory Access Policy Verification

For this scenario, which will be discussed in more detail in Sec-
tion 5.4.4, we have integrated a memory access policy checker (cp. Sec-
tion 2.2.5.1) into a reconfigurable system-on-chip (rSoC) as described
in Section 4.4. This small circuit constitutes a reference monitor, or
watchdog, and sits between the hardware threads (HWTs) and the
memory of the rSoC, as depicted in Figure 5.6. There, it filters every
memory access (reads and writes) according to a currently configured



132 proving properties with pch

memory access policy. The policies can be dynamic, e. g., allowing
threads temporary exclusive access to certain memory ranges in a
round-robin fashion, which requires the checker to retain state infor-
mation, and thus a sequential monitor circuit.

Watchdog

Monitor
Enforcement

unit

in
HWT 1

address &
data

Memory

Figure 5.6: Example of a property ensurance circuit for runtime verification
using a BMC-verified watchdog to filter memory accesses.

Using a monitor circuit like this, which will then be verified using
a PCH method, turns the formal guarantee of a PCH certificate into
a runtime guarantee, effectively prohibiting illegal memory accesses
at runtime without the need to verify the memory access patterns of
each HWT individually. This advantage will also be discussed further
in Section 5.4. For the verification of SSCs however, this technique
allows us to turn the highly complex and interdependent verification
of multiple sequential hardware modules into the rather simple ver-
ification of a small sequential monitor circuit, comprising only one
finite state machine (FSM). Since there are no further dependencies for
the FSM than only the previous state and current input in each clock
cycle, we know that reaching a state for the second time will yield a
verification state that is indistinguishable from the previous instance
where we reached that FSM state, i. e., the verification challenge only
depends on the current state and not on the sequence of states that
lead to it. Due to this, we can conclude that it is sufficient to unroll
the resulting PVC of the monitor circuit for as many clock cycles as
is given by the length of the longest possible acyclic path within the
state space of the FSM.

We can therefore provide a formal and absolute guarantee of the
adherence of the complete rSoC to the memory access policy encoded
in the monitor circuit for its entire runtime using this combination of
monitor-based verification with BMC. The only drawback compared
to directly proven properties is the reaction of the system to an illegal
memory access: For an rSoC with a directly proven system-wide policy
this could never happen, however, for the monitor-based approach
this might happen and will then shut down either the conflicting
module or the entire system, depending on the implemented conflict
resolution mechanism. But in any case, we can guarantee that no
illegal access will ever reach the memory in either version.



5.3 Sequential Property Checking 133

5.3.1.2 Worst-case Completion Times

This scenario will also be discussed in more detail in Section 6.1. Here,
we have researched the non-functional property worst-case completion
time (WCCT) for a run-to-completion hardware module. This property
is required if not only the correct sequence of signal assertion-based
events (reset → start → result → done) is relevant, but also the maxi-
mum number of clock cycles between two of them (start→ done), as
indicated by the arrow in Figure 5.7. The PCH certificates we have con-
structed for this issue guarantee that the circuit will have completed
the computation for a given maximum number of clock cycles k, even
in the worst case. This constitutes a range check, since any number of
clock cycles actually required in the worst case that is 6 k should not
violate the property, and hence FEC cannot be employed here.

0 5 10 15 20 25 30 35

Cycles reset signal

start signal

computation

done signal

Figure 5.7: Example of possible event sequences during WCCT evaluation.

We have devised a property checker (PrC) that performs some
protocol filtering to ensure the correct sequence of events, and then
counts the number of clock cycles passing after the start signal has
been asserted, i. e., the number of cycles that were already spent on
computing the result. The final comparison of the PrC is a threshold
comparison of the passed cycles, where surpassing k would raise
the error flag. After unrolling the resulting PVC with BMC for k
time frames and some small additional offset for setup and result
propagation, we task a SAT solver with verifying that the error flag
is never asserted, which, if successful, proves that the WCCT of the
circuit is at most k clock cycles.

In conclusion, although bounded model checking (BMC) has ob-
vious limitations in scope and the resulting verification complexity,
there are methods to overcome these limitations which can yield full
formal guarantees for interesting circuit properties solely with BMC.
While the resulting verification can be sequential equivalence checking
(SEC), as in the case of memory access policy verification, it can also
be a custom PVC tailored specifically for the verification at hand, as
for the worst-case completion times.



134 proving properties with pch

5.3.2 Induction-based Property Checking

In contrast to BMC, induction over the reachable states can be used
to reason about the entire sequential circuit by considering just a
single copy. In particular, no unrolling of the sequential circuit is
required. Induction-based SPC is thus not only stronger than the BMC-
based variant, it also holds the potential for faster proof generation
and smaller proofs. As stated above, our work is based on the algo-
rithm IC3 [36] and its efficient implementation by Eén, Mishchenko,
and Brayton [37] dubbed property-directed reachability (PDR), cf. Sec-
tion 2.2.4.2.

Induction-based SPC uses the sequential PVC shown in Figure 5.3
throughout the verification, in contrast to the BMC-based approach
discussed in Section 5.3.1, which starts from this structure but then
performs the actual verification on the combinational PVC that results
from the time frame unrolling. For the purposes of the explanation of
the induction, we will now consider the state space of the sequential
PVC, where the state of the circuit is given by the set of stable sig-
nals stored in each sequential element of the circuit (e. g., FFs). This
obviously again assumes SSCs, i. e., circuits with exactly one global
clock to which everything is synchronized. Implicitly it also assumes
that timing closure can and has been reached for the PVC, i. e., all
combinational signals reach their respective destinations in each clock
cycle soon enough for the destination to stably latch on to this new
value. The latter is, however, not a real issue, since the PVC will only
ever be used for verification, and never really be implemented on
actual hardware, so that this assumption always holds due to the way
the verification evaluates time steps in the circuit.

Since a proof by induction only works with a valid induction anchor,
we have to force the circuit into a known initial state, which, however,
is also common practice for any sequential circuit by asserting a reset
signal before actually working with the circuit, cp. the explanations of
the protocol filtering for SPC above. Starting from this initial state, the
combination of all individual Boolean feedback functions that compute
the next stored value for each FF constitute a transition relation of the
circuit states.

Let us consider for the remainder of this section the synchronous
sequential circuit C depicted in Figure 5.8, with n inputs and m out-
puts which contains l state-holding elements, such as FFs, that can
store one bit each. As long as the precondition of the stable timing
closure is met and C is powered up, it will then always be in one of
the 2l possible states that these elements can store. When the reset
signal is asserted, all of C’s storage elements will assume their fixed
initial state, which will therefore reset the overall circuit state to the
one encoded by this bit pattern. All FFs in C are synchronized to the
signal clock and hence C will enter a new state with each clock pulse.



5.3 Sequential Property Checking 135

To determine all lbits of the new state, C can employ any Boolean
function using all l bits of the old state together with all n input bits,
which obviously means that C can also just remain in the current state
in each cycle.

C
in

out

n

m

next_state l

reset
clock

Figure 5.8: Example synchronous sequential circuit C with n inputs, m out-
puts, and l state bits. The reset signal forces all flip-flops to assume
their respective fixed initial state.

We can obviously model synchronous sequential circuit C as a finite
state machine, for instance as a Moore automaton:

CMoore = (X, Y, S, δ,µ, sI)
Here, X is the set of input symbols, and hence all Boolean numbers

with n bits that could be an input via the in signal and likewise the
set of output symbols Y consists of all Boolean m-bit numbers. S is
the set of all numbered states s = (ff0, ff1, . . . , ffl−1) for any fixed
ordering of the l FFs in C, and sI is the one state among these 2l

many in which each FF is in its respective initial / reset state. The
transition function δ : S×X→ S is the one which C itself encodes for
determining next_state and analogous is µ : S→ Y the output function,
i. e., the part of C that computes the signal out. If we assume that C is
a PVC, then we know that m = 1, since the only output in this case is
the error flag.

Usually not all possible combinations of stored bits actually repre-
sent valid circuit states, as is often exploited in hardware design in the
form of don’t care values. We can therefore identify certain interesting
sets of circuit states, using CMoore as example PVC that encodes the
check for a property ϕ : S→ { 0, 1 }:

initial The well-defined state sI that the circuit enters after asserting
the reset signal.

possible The set S of 2l states that can be encoded using CMoore’s
sequential storage elements. .

reachable The set R of reachable, and thus valid, circuit states
contains all the states into which there exists an actual transition
chain in CMoore that is rooted in the initial state. This can be
defined recursively as follows:

R = { sI }∪ { s ∈ S | ∃r ∈ R, ∃x ∈ X : s = δ(r, x) }



136 proving properties with pch

Any of these states could occur at runtime of the circuit, if we
were to run C on real hardware.

property holds The set Pϕ of states in which the desired prop-
erty ϕ, which is encoded in the PrC of CMoore, actually holds:

Pϕ = { s ∈ S | ϕ(s) = 0 }

The goal of our verification would thus be to attempt to show
that R ⊆ Pϕ, i. e., that the property holds in all reachable states.

property does not hold Since the property checker’s error flag
is a Boolean value, this set Eϕ is equal to the set of possible states
without the ones in which the property holds: Eϕ = S \ Pϕ, i. e.,
the property ϕ partitions the possible states in two disjunct sets.
We will also call this set here “error states”. If R∩ Eϕ 6= ∅ then
our verification will fail with a counterexample that ends in one
of these states.

For the circuit properties, we have furthermore two characteristics,
which are of interest to us in the verification:

inductive A property ϕ is called inductive, if every state in which it
holds has only immediate successor states in which it also holds,
or in other words, a property is inductive if there is no combina-
tion of a state in which it holds and a primary input assignment,
such that the resulting next state is one in which it does not hold.
Formally this is usually expressed as two properties that have to
hold for ϕ:

initiation The property ϕ has to hold for the initial state:

sI
!∈ Pϕ ⇔ ϕ(sI)

!
= 0

consecution For every state in which ϕ holds, it also has
to hold in all immediate successor states (i. e., using any
primary input assignment to reach the new state):

∀s ∈ S, ∀x ∈ X : s ∈ Pϕ
!→ (δ(s, x) ∈ Pϕ)

Obviously, by the regular induction logic, this immediately
means that an inductive property always holds for all reach-
able states.

invariant A property ϕ is called invariant, if it holds for all reach-
able states, i. e., if R ⊆ Pϕ. ϕ can hold for more states than these,
but it has to hold for all actually reachable ones.

The safety properties of interest in the PCH context ask whether
there exists a reachable state of the sequential PVC for ϕ, in which
the error flag is raised, i. e., if R∩ Eϕ 6= ∅. This is the case, if there is
a sequence CEX of inputs that, when starting with the initial state sI,



5.3 Sequential Property Checking 137

can be iteratively applied with the transition function δ to arrive at a
state in which the property does not hold:

δ(. . . δ(δ(sI, CEX0), CEX1) . . . , CEXk−1) ∈ Eϕ
For PCH with sequential PVCs we thus desire, generally speaking
that the property “error flag not raised” (¬error) is invariant, because
then no such sequence of inputs / states exists.

To illustrate this, consider the example from [31], depicted in Fig-
ure 5.9. The goal is to implement a counter with a 2 bit output (o1,o0)
that cyclically counts the sequence 00→ 01→ 10→ 11. Additionally,
the counter should have an input oe that acts as an output enable sig-
nal. The counter should count independently of the oe; if oe is logical
one, the output of the circuit should be the actual count, otherwise 0.
The upper left part of Figure 5.9 shows the specification of this circuit
as binary state-encoded Mealy automaton with the output (oS1,oS0).
The lower left part of Figure 5.9 displays a specific implementation of
this circuit using a one-hot state encoding with a 4-FF shift register
and 2-NAND as logical gate technology. The output of the implemen-
tation is (oI1,oI0). The error flag is formed by an OR over the pairwise
compared outputs of specification and implementation.

Figure 5.9 represents a PVC that splits into the circuit implemen-
tation and a PrC. Here we perform cycle-accurate FEC of the circuit
implementation to the circuit specification as safety property. The PVC
is also a sequential miter function, i. e., if we can find a reachable
state and a value of the primary input oe such that the miter’s output,
i. e., the error flag, is raised, we have shown that implementation and
specification are functionally not equivalent. We are thus interested
in encoding the circumstances under which the error flag is raised
as Boolean formula. The state of the PVC is stored in six FFs, two in
the specification and four in the implementation, which provide for a
state space of 64 states. Figure 5.10 sketches the corresponding state
space S: Each node represents one state, with the contents of the two
specification FFs as top label and that of the four implementation FFs
as bottom label. The possible transitions between circuit states, i. e.,
function δ, are given by the arrows. When considering an initial reset
of the FFs to (sS1, sS0|sI3, sI2, sI1, sI0)= (00|0001), the state marked by
two circles is the initial state sI and thus only four states are actually
reachable at all from this initial state (|R| = 4).

For the sake of explaining the underlying principles, we will now
demonstrate how to manually obtain an invariant from the circuit in
Figure 5.9, while these steps are normally performed automatically
by our tools. First, we determine when the error flag is raised in
dependence of the state bits of the counter specification (sS1, sS0) and
the counter implementation (sI3, sI2, sI1, sI0). As a result, we see that



138 proving properties with pch

s I
0+

&
1 1

&

≥1
s S
1+

s S
0+

s S
1

s S
0

C
L

K

s I
1+

s I
1

s I
0

≥1
e
rr
o
r

o
e

& &
&

s I
2+

s I
3+

s I
3

s I
2

&

&
&

&
&

&

&
&

&

=
1

=
1

P
ro

p
e

rt
y 

ch
e

ck
e

r

D
U

V

S
p

e
ci

fic
a

tio
n

D
Q

>
R

D
Q

>
R

D
Q

>
R

D
Q

>
S

D
Q

>
R

D
Q

>
R

re
se

t

o S
1

o S
0

o I
1

o I
0

Figure 5.9: Example of a sequential property verification circuit depicting a
two bit counter. Taken from [31].



5.3 Sequential Property Checking 139

00
0000

01
0000

10
0000

11
0000

00
0001

01
1000

10
0100

11
0010

00
0010

01
0001

10
1000

11
0100

00
1111

01
1111

10
1111

11
1111

sS1 sS0
sI3 sI2 sI1 sI0

Figure 5.10: Part of the state space of the sequential property verification
circuit example in Figure 5.9. Taken from [31].

the error flag is raised whenever the disjunction of the two middle bits
(_, sI2, sI1, _) of the implementation’s state differs from the first bit
(sS1, _) of the specification’s state, or the disjunction of the last bit and
the second bit (sI3, _, sI1, _) of the implementation’s state differs from
the second bit (_, sS0) of the specification’s state. The error function
error can thus be extracted from the circuit as a Boolean formula:

error := (¬(¬(oe∧¬(¬sI1 ∧¬sI3)))⊕ (oe∧ sS0))

∨(¬(¬(oe∧¬(¬sI1 ∧¬sI2)))⊕ (oe∧ sS1))

This expression can be transformed to the equivalent formula

error := oe∧ (((sI1 ∨ sI3)⊕ sS0)∨ ((sI1 ∨ sI2)⊕ sS1)),

which shows that the error flag depends on the current state and the
primary input oe being logical one. In Figure 5.10, all states marked
in gray raise the error flag. As mentioned above, we denote these
states as error states that belong to Eϕ for ϕ = ¬error. In our example,
none of the reachable states is an error state (R∩ Eϕ = ∅) and, thus,
the safety property, which is the cycle-accurate functional equivalence
of implementation and specification, is met, i. e., the property ¬error

is invariant in the PVC. Observe that we can easily conclude this
from the overview in Figure 5.10, where we already see that the
property is invariant (all reachable states are in Pϕ and hence white),
but not inductive: While the initial state satisfies the property, the
consecution condition is not met, as there exist states in which the
property holds that have violating immediate successor states, i. e.,
there are counterexamples to induction (CTIs) shown as white nodes
with gray successors in Figure 5.10. One example is the transition



140 proving properties with pch

from state (00|0000) to (01|0000). Explicitly constructing the set R of
reachable states and checking for ¬error is, however, infeasible in
most cases due to the potentially huge number of reachable states.

Applying this technique to general PVCs, we are therefore looking
for inductive invariants that correspond to the ¬error function. As we
have seen in the example that invariants are not necessarily inductive,
we typically need to strengthen the (potential) invariant until it becomes
inductive by removing all counterexamples to induction. This leads
us to a third characteristic of circuit properties, which we will use in
the proofs:

Inductive strengthening A property ψ is called an inductive
strengthening (IS) of another property ϕ, if it is inductive and a
stronger version of ϕ, i. e., it is more constrained and thus holds
in the same or fewer states: Pψ ⊆ Pϕ. Most importantly, ψ does

not hold in any state in which ϕ does not hold: Pψ ∩ Eϕ
!
= ∅.

Formally this is usually expressed as three characteristics of ψ:

initiation Like ϕ, ψ has to hold for the initial state:

sI
!∈ Pψ ⇔ ψ(sI)

!
= 0

consecution Also unchanged, ψ has to hold in all immediate
successor states of any state in which it holds:

∀s ∈ S
(
s ∈ Pψ

!→ ∀x ∈ X
(
δ(s, x) ∈ Pψ

))

strengthen For all states in which ψ holds, the weaker ϕ
also has to hold:

∀s ∈ S
(
s ∈ Pψ

!→ s ∈ Pϕ
)

The search for such strengthenings that are inductive can be complex
and computationally costly. However, the final result, i. e., the IS ψ of a
propertyϕ, can be easily validated by checking the three characteristics
(initiation, consecution, and strengthen). The different levels of effort
that are typically required for finding an IS versus checking its validity
conform to the basic principles of PCH. As such, the key component
of employing induction in a PCH flow is the computation of an IS of
the property ¬error for a given PVC.
For our example PVC from Figure 5.9, where ϕ = ¬error is not an
inductive property, we can find the following IS:

ψ = oe∧ ((sI1 ∨ sI2)⊕ sS1)
∧(¬sI3 ∨¬sS1) ∧ (¬sI3 ∨ sS0) ∧ (sI3 ∨ sS1 ∨¬sS0)

∧(¬sI2 ∨ sS1) ∧ (¬sI2 ∨¬sS0) ∧ (sI2 ∨¬sS1 ∨ sS0)

∧(¬sI1 ∨ sS1) ∧ (¬sI1 ∨ sS0) ∧ (sI1 ∨¬sS1 ∨¬sS0)

∧(¬sI0 ∨¬sS1) ∧ (¬sI0 ∨¬sS0) ∧ (sI0 ∨ sS1 ∨ sS0)

For PCH there is an added benefit of using inductive strengthen-
ings as certificates, which follows directly from the mismatch of the



5.3 Sequential Property Checking 141

property space sizes, i. e., the fact that Pψ ⊆ Pϕ: Since the PCH prop-
erties that the producer has to prove are driven by the consumer, the
producer typically has little to no control over the complexity of the
verification, which can easily lead to such complex PVCs that today’s
tools are incapable of producing a checkable proof for them. For IC3,
however, much of this complexity is tied to the size of the state space
in which the property holds, since the method has to uncover and
block all unreachable CTIs that live in the space (S \ R)∩ Pψ of un-
reachable states in which the property holds. When we adapt ψ in a
way that shrinks Pψ, i. e., when we strengthen it, IC3 will thus have
to deal with less states that contradict the inductivity at runtime and
will therefore be able to arrive at an IS faster; theoretically we could
even strengthen ψ a priori so much that it is already an IS of ϕ itself.

A producer can therefore transparently choose to prove a much
tighter property ψ instead of dealing with the consumer’s property
ϕ, as long as ψ is a valid strengthening of ϕ. Any IS of ψ that the
producer can compute in such a way will then automatically also
be an IS of ϕ and thus a valid certificate for the PCH process. The
consumer can then verify that the received certificate fulfills the three
characteristics (initiation, consecution, and strengthen) with regard to
their original property ϕ, and the producer in fact never even needs to
communicate the existence of ψ to the consumer. This key insight has
far reaching consequences concerning the applicability of PCH, since
it allows for an adaptable verification complexity that is somewhat
decoupled from the consumer’s safety property. We will see examples
of this effect in Chapter 6, especially in the highly redundant PVCs
of Section 6.4, where the producer can significantly accelerate their
own verification by adding redundancy constraints to the verification
model, i. e., additional property parts that require certain equivalences
between different elements of the circuit, which in turn allows for the
application of the PCH approach to far more complex circuits.

Such structural hints actually form a special case for this property
strengthening, since they do not technically add new information to
the property, provided that they are actually true. Instead they make
implicit or inherent structural dependencies of the underlying circuit
explicitly available for the verification engine, which thus can establish
interdependencies between the corresponding verification variables
much more quickly. Exploiting this technique especially allows to pre-
serve the shift of workload in circumstances where the property is too
complex to verify by itself, but can be shown with moderate effort by
using a sequence of structural optimization techniques, by leveraging
the results of said optimizations to strengthen the property. The only
limitation here is that the state space has to remain identical between
the involved circuits, which naturally excludes powerful circuit re-
timing techniques which change the amount and distribution of FFs
in the circuit. This could be addressed in future work by establishing a



142 proving properties with pch

mapping function between the original and the optimized circuit that
is adapted with each new optimization and then applied in reverse
to derive a certificate from an inductive strengthening for the final
circuit. Since deriving such a mapping is far from trivial and highly
depends on the nature of the applied optimizations, this would open
up a completely new avenue of research, however, which is outside of
the scope of this thesis.

5.3.3 Flow Integration

We have implemented a proof-carrying hardware tool flow version
capable of using both sequential property checking (SPC) methods,
bounded model checking (BMC) and induction on the reachable circuit
states. As indicated before, we employ IC3 for the induction, which
is quite efficient, both regarding runtime and memory, and produces
small inductive strengthenings (ISs) (cf. Section 2.2.4.2). We can use ei-
ther a custom IC3 implementation or the one called property-directed
reachability (PDR) in ABC [30] with our new flow..

The adapted PCH flow, based on the one from Section 3.2 that is
also depicted in Figure 5.11, works as follows for sequential designs
and circuit properties: The producer executes the steps shown in the
figure exactly as in the combinational case up to the extraction of the
implemented design, and afterwards generates the property verifica-
tion circuit (PVC) from the extracted design functionality, the property
checker, and, if applicable, the received design specification. Depend-
ing on the employed sequential verification technique, the producer
then either a) unrolls the PVC for the previously agreed-upon amount
of time frames, thereby transforming it into a combinational PVC
and then proceeding as in the combinational case, or b) computes
an inductive strengthening of ¬error by running IC3 on the PVC. In
this case the producer can also opt to arbitrarily strengthen the con-
sumer’s property before the verification, as explained in the previous
section. The resulting combinational SAT proof trace or computed
inductive strengthening are shipped as certificate to the consumer,
alongside the hardware binary. Using a locally created PVC, following
the same rules as the producer, the consumer validates the received
proof trace or IS. In the latter case, the consumer has to check for
the three characteristics of an inductive strengthening by issuing SAT
queries encoding initiation, consecution and strengthen to a SAT solver.
If these queries are shown to be unsatisfiable, the certificate is indeed
a valid IS of the encoded property ¬error and the circuit property
thus holds. If, on the other hand, the producer has shipped an invalid
certificate, either not being a valid proof trace / inductive invariant, or
not showing the property, the consumer will detect this and simply
refuse the binary. In this sense, the PCH technique for synchronous
sequential circuits (SSCs) is also tamperproof. The consumer only



5.3 Sequential Property Checking 143

has to trust the soundness of the employed SAT solver, and, in the
case of induction, either their own encoding of the three conditions
on inductive invariants or the validation routine in their verification
engine, such as ABC.

ProducerConsumer
Define design

specification and 
safety policy

Implement design

Synthesize

Generate property 
verification circuit

Extract netlist from 
implementation

Extract netlist from 
implementation

Generate 
certificate

Generate property 
verification circuit

Is the proof valid 
for this PVC?

netlist

netlist

specification
& policy

bitstream

HDL files

PVC

certificate

PVC

Accept bitstreamRefuse bitstream

yes
no

Figure 5.11: Generic version of the complete proof-carrying hardware flow
for both parties, consumer and producer. The first step of the
flow is the top box of the consumer side.

Compared to the BMC-based version, our induction-based approach
requires the consumer to directly or indirectly employ a SAT solver
for checking the validity of the IS, i. e., the consumer now has to create
their own unsatisfiability proofs instead of just retracing existing ones.
Since the induction-based approach typically yields small proofs that
can be checked easily, however, and is complete in the sense that
it reasons over all possible sequences of circuit states, it is usually
superior, although there are still valid niches for employing BMC, as
we have seen in Section 5.3.1. Should the workload necessary to prove
the three characteristics of the IS be too high for a particular consumer,
we can still go one step further and require the producer to also pre-
compute the corresponding combined unsatisfiability proof for the
characteristics, thus further reducing the effort on the consumer’s
side at the cost of an enlarged certificate, which then basically holds
two proofs, one IS and one matching unsatisfiability proof trace. We
have enabled this option with our flow by extending ABC with a new
command named inv_check_cnf that can export the necessary SAT
proof for checking the IS in a CNF format, which our flow can then
treat just like a combinational PVC.



144 proving properties with pch

5.3.4 Comparison

In this section, we experimentally compare the BMC-based verification
with the induction-based one on sequential benchmark circuits to
gauge their potential for performing sequential property checking
with a PCH flow. We evaluate them using the criteria defined in
Section 3.2:

shift of verification workload as the most significant mea-
sure of how well the employed verification is suited for a PCH
approach, which is characterized by the fact that the producer
should carry the major burden of verification.

consumer runtime , which we try to minimize.

producer runtime , although that is a secondary criterion that we
only observe, but not optimize for.

To evaluate the differences between both methods for SPC, we have
used benchmarks from two different sources:

seq-rm This category includes the sequential PVCs resulting from
the dynamic memory monitors mentioned in Section 5.3.1.1. The
protocols, i. e., Chinese Wall, High and Low Watermark, and
their implementations are taken from [45]. The upper part of
Table 5.1 shows the different circuits in this category with their
name and complexity, which is not very high in terms of number
of latches.

seq-mc This category includes sequential circuits representing a
selection of benchmarks from the single safety property track of
the hardware model checking competition (HWMCC) 2014 [33].
These benchmarks are only available in AIGER [74] format, i. e.,
encoded as and-inverter-graphs (AIGs), which is ABC’s native
representation of circuits. The lower part of Table 5.1 lists the
benchmark names and complexities. Benchmarks in this category
vary from rather small to very large sequential circuits.

We have conducted a series of experiments on a machine with an
Intel Xeon CPU with 8 cores @ 3.7GHz and 16GiB RAM running
a 64 bit CentOS 6.6. For the benchmark category SEQ-RM, we have
checked for functional equivalence between the specification and an
implementation, as in previous PCH prototypes. For the benchmark
category SEQ-MC, where benchmark circuits are not available in
source code, we have interpreted the circuits specified in AIGER
format as PVCs, which is a likely assumption, as they were used in
the single property track of HWMCC’14 and hence encode a circuit
together with a single property checker (PrC). This way, we can still
compare the differences in verification time of the BMC-based and



5.3 Sequential Property Checking 145

Table 5.1: Benchmark circuits for sequential property checking evaluation,
with benchmark name and complexity. Each memory access policy
in SEQ-RM has been modeled for different scenarios of varied
complexity to generate different versions. The SEQ-MC bench-
marks from the HWMCC’14 [33] constitute black-box property
verification circuits for our flow. Taken from [31]. Extended tables
on pages 253 to 254.

Name Circuit complexity

[ANDs] [Latches]

Benchmark category SEQ-RM

Memory policy: High watermark

high1.v 18 800 4

high3.v 55 300 6

high6.v 66 100 6

Memory policy: Low watermark

low1.v 19 400 4

low3.v 56 000 6

low6.v 65 700 6

Memory policy: Chinese Wall

chin1.v 40 400 8

chin2.v 64 400 10

chin3.v 119 200 10

chin4.v 359 300 14

Benchmark category SEQ-MC

cmudme2.aig 429 63

nusmvqueue.aig 2376 84

6s291rb77.aig 2555 839

beemptrsn7f1.aig 2673 186

6s407rb034.aig 129 624 11 379

oski1rub03i.aig 133 215 13 594

oski1rub07i.aig 133 215 13 594

6s408rb223.aig 152 987 11 384

6s405rb015.aig 164 004 11 861

oski2ub2i.aig 176 605 13 253

6s221rb14.aig 426 021 42 181



146 proving properties with pch

induction-based SPC although we cannot run the entire PCH tool flow
of Figure 5.11 here. For the BMC-based approach, we have unrolled the
sequential circuits for 100 clock cycles for both categories, and for the
induction-based one we have employed our custom implementation of
IC3. We have run both versions of the PCH tool flow for SPC multiple
times for each benchmark circuit, the producer tool flow for three
times and the consumer tool flow for 10 times. Then we have averaged
the runtimes of these runs for each benchmark circuit to determine
the reported PCH tool flow runtimes for producer and consumer,
respectively.

Table 5.2 compares the BMC-based verification (BMC) with the
induction-based one (IND) by listing the runtimes for both producer
and consumer for all benchmarks from the category SEQ-RM. Table 5.3
shows the corresponding data for SEQ-MC. Focusing first on the
primary criterion consumer runtime, we denote that the induction-
based PCH flow excels in all experiments from SEQ-RM, and all but
two cases from SEQ-MC, with runtime improvements ranging from
1.1× to 79.75×. The lower consumer runtimes of the induction-based
verification for sequential circuits are pronounced and remarkable,
in particular since the BMC-based approach relies on unrolling the
circuit for only 100 clock cycles. Unrolling for higher numbers of clock
cycles will increase the gap between induction-based and BMC-based
technologies even further.

Table 5.2: Comparison of runtime for the bounded model checking-based and
induction-based sequential property checking for the benchmark
category SEQ-RM. Taken from [31]. Extended table on Page 255.

Runtime of the flows [s]

Consumer Producer

benchmarks BMC IND BMC IND

high1.v 0.621 0.110 1.429 0.744

high3.v 2.018 0.116 7.761 3.099

high6.v 2.336 0.121 8.701 3.200

low1.v 0.645 0.111 1.519 0.767

low3.v 1.999 0.118 7.447 2.873

low6.v 2.328 0.121 9.253 3.677

chin1.v 1.286 0.112 4.668 1.648

chin2.v 2.185 0.123 7.575 2.457

chin3.v 4.321 0.145 71.584 8.807

chin4.v 13.674 0.343 801.073 110.591

Looking at the producer runtime, which is a secondary criterion,
we observe that for SEQ-RM in Table 5.2, the induction-based ap-



5.3 Sequential Property Checking 147

Table 5.3: Comparison of runtime for the bounded model checking-based and
induction-based sequential property checking for the benchmark
category SEQ-MC. Taken from [31]. Extended table on Page 256.

Runtime of the flows [s]

Consumer Producer

benchmarks BMC IND BMC IND

cmudme2.aig 0.188 0.171 0.291 200.278

nusmvqueue.aig 0.652 0.447 0.868 117.574

6s291rb77.aig 0.847 0.041 1.050 5.205

beemptrsn7f1.aig 0.867 0.430 1.085 1059.197

6s310r.aig 1.123 0.381 1.452 232.469

6s515rb1.aig 0.805 0.041 0.995 0.062

6s269r.aig 1.186 2.938 1.634 1095.486

6s317b18.aig 1.541 0.060 3.332 8.432

6s421rb083.aig 2.298 0.095 2.901 0.621

6s372rb26.aig 2.711 0.068 3.555 3.221

6s391rb379.aig 4.409 0.093 5.517 0.142

6s313r.aig 3.260 6.393 4.077 25.540

beemndhm2b2.aig 5.575 2.973 7.174 2190.987

6s407rb034.aig 50.977 1.353 63.422 3421.958

oski1rub03i.aig 40.532 1.641 53.089 987.399

oski1rub07i.aig 40.443 1.356 53.779 1.678

6s408rb223.aig 40.674 0.867 51.446 250.414

6s405rb015.aig 50.921 0.962 64.188 8.478

oski2ub2i.aig 56.016 2.351 70.851 518.229

6s221rb14.aig 69.664 5.280 87.850 43.740

proach is consistently superior to the BMC-based one, with runtime
improvements ranging from 1.85× to 8.13×. For circuits in SEQ-MC,
listed in Table 5.3, the situation is undecided with the induction-based
approach being superior in 11 out of 29 benchmarks (cp. also the
full table on Page 256) with runtime improvements of up to 38.99×,
whereas in the other cases the BMC-based producer is faster by up to
976.22×.

For the other main criterion, consumer peak memory consumption,
Table 5.4 shows that the memory requirements of the induction-based
PCH technology is consistently lower than for the BMC-based one,
with improvement factors ranging from 1.14× to 21.63×. For the val-
idation of the BMC certificate, the memory footprint seems to be
dominated by the unrolling step of the miter, since both parties con-



148 proving properties with pch

sistently use very similar peak amounts of memory in all benchmarks.
For the producer, the BMC-based approach only leads to lower peak
memory requirements than the induction-based approach in very
few cases, and higher peak memory requirements for the majority of
benchmarks, with improvement factors ranging from 1.04× to 15.71×.

Table 5.4: Comparison of peak memory consumption for the bounded model
checking-based and induction-based sequential property check-
ing in both benchmark categories SEQ-RM and SEQ-MC. Taken
from [31]. Extended tables on pages 257 to 258.

Memory peaks [MiB]

Consumer Producer

benchmarks BMC IND BMC IND

SEQ-RM

high1.v 383.63 255.50 383.63 255.50

high6.v 657.39 255.50 653.49 264.24

low3.v 590.06 255.50 593.97 264.16

chin4.v 2228.74 255.50 2228.74 271.97

SEQ-MC

cmudme2.aig 288.48 252.81 288.48 844.64

6s291rb77.aig 382.48 252.70 382.48 441.15

6s515rb1.aig 372.63 248.45 372.64 252.59

6s407rb034.aig 6496.90 363.06 6496.90 860.20

oski2ub2i.aig 9023.43 417.25 9023.43 1025.32

6s221rb14.aig 8245.79 577.98 8245.79 870.03

Figure 5.12 shows the evaluation of the two SPC methods with re-
spect to the main criterion shift3 of verification workload, again for both
benchmark categories SEQ-RM, and SEQ-MC. For SEQ-RM, in the up-
per part of the figure, both verification approaches achieve quite high
shifts from ≈50% to 99%, with the induction-based verification clearly
scoring higher. In the lower half of Figure 5.12, however, for SEQ-MC
the induction-based significantly outperforms the BMC-based one in
most of the benchmarks, although there still was one case where the
unrolling technique shifted a slightly larger portion of the workload.
All benchmarks that lead to a shift of 6 70% for the induction re-
quired less than 2 seconds of producer runtime in the experiments,
which is obviously such a low cost of trust that it is hard to improve
upon, even with a checkable proof. In the case of the most pronounced
shift (6s407rb034.aig) the producer required 57 minutes to find an IS

3 Please note that our definition of the shift differs from the one in Isenberg et al. [31].
To better align the measure with the name, our scale ranges from no to full shift with
0% to 100%, which corresponds to the range from 50% to 100% in [31].



5.3 Sequential Property Checking 149

whereas the consumer only needed 1.4 seconds to verify its validity. In
other words, instead of spending 57 minutes to perform a full verifica-
tion, the induction-based PCH scheme allowed the consumer to shift
99.96% of that workload to the producer, leaving only 1.4 seconds of
work for them, without loss of verification strength.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ve
ri

fic
at

io
n

w
or

kl
oa

d
sh

if
t[

%
]

0

25

50

75

100
SEQ RM

0

25

50

75

100
SEQ MC

BMC-based

Induction-based

Figure 5.12: Shift of verification workload from the consumer to the producer
for sequential property checking, for both benchmark categories
(higher is better). Benchmarks are sorted according to their com-
plexity, as given in Table 5.1, with more complex circuits to the
right. Extended table on Page 259.

We summarize the results from our experiments as follows:

1. Both sequential verification techniques have their application
domain within PCH. For most SSCs, the induction-based verifi-
cation excels as it greatly improves runtimes and peak memory
requirements for the consumer, although it can lead to increased
producer runtimes. The latter is, however, not a concern since
the goal of PCH is to relieve the consumer from the burden of
verification by shifting a substantial part of the effort to the pro-
ducer, which is demonstrated by our experiments. Despite this
dominance though, we have also seen that for a smaller number
of sequential circuits a PCH flow with BMC-based verification
can be a good and efficient fit.

2. The shift of workload to the producer was positive for all bench-
marks and both verification methods, which underlines their
basic suitability for a PCH scenario. While the induction-based
approach showed more pronounced workload shifts, BMC-based



150 proving properties with pch

SPC was only slightly subpar in many instances and even just
outperformed the other method in one for the chosen 100 cycles.

In conclusion, we have thus shown that our modified proof-carrying
hardware flows are capable of verifying properties of synchronous
sequential circuits by employing either of the presented verifications
at the producer’s side. We could demonstrate that both resulting
flow versions, if implemented as presented in this section, will be
able to shift the cost of trust significantly to the producer in many
cases, allowing the consumer to gain trust into the received designs
at a fraction of the cost of the actual property verification using the
property verification circuit.

5.4 monitor-based property checking

Checking circuit properties with runtime monitoring and enforcement
units, or watchdogs, falls into the category of runtime verification,
described in Section 2.2.5. As a brief reminder: These techniques do
not verify the properties of a hardware module at design time, but
rather make sure at runtime that the property cannot be violated.
The watchdogs are integral to this approach, as they monitor the
behavior of the design under verification (DUV) while it is fielded and
trigger an enforcement part in case of a deviation. Depending on the
misbehavior and enforcement policy, this can result in anything from
an error counter increase, over a gentle correction of some data path
signal up to a complete emergency shutdown of all circuit operation,
also known as a kill switch. For some runtime verification system
examples, see the list in Section 2.2.5. This section builds on the work
published in [47], which is my own research based on ideas from
Drzevitzky, Kastens, and Platzner, as well as insights gained from one
bachelor’s [121] and two masters’ theses [120, 125] conducted in the
context of this thesis project.

5.4.1 Watchdog-Carrying Hardware

For PCH, monitor-based runtime verification is an attractive addition
due to its guarantee indirection: Instead of having to formally verify
the complete design to create a valid certificate, we can opt to ver-
ify the watchdog instead and thereby indirectly guarantee that the
desired circuit property will not be violated at runtime under any
circumstances. Just as runtime verification itself, this approach has
advantages, but also comes at a cost. The advantages are:

1. The significantly reduced verification effort, which allows us to
completely disconnect the certificate complexity (for creation
and validation) from the DUV’s size and verification complexity.
Since the monitor that has to be verified is typically much smaller



5.4 monitor-based property checking 151

than the verified system, we assume that a consumer could even
create a strong golden model for the former, while we cannot
assume this for the DUV.

2. The potential for dynamically changing reconfigurable hardware
systems, where the one watchdog verification will be enough
to obtain a formal guarantee for a correctly behaving system,
no matter how many new modules from untrusted sources are
added in the future – provided they are forced to obey the
enforcement when instantiated.

3. If the monitoring and enforcement are correctly implemented,
then the guarantee is as sound as one obtained from a formal
design-time verification, i. e., no errant behavior will be allowed
to influence any circuit action or result, irrespective of whether it
originates from an unintentional bug or from a sneakily triggered
intentional malicious modification.

On the other hand, any such PCH approach will also inherit the
shortcomings of runtime verification:

1. Circumventing the watchdog breaks the assurance undetected
and thus has to be avoided at all costs.

2. The watchdog will have to be instantiated in hardware, and thus
will actually consume resources on the reconfigurable hardware
at runtime. Depending on the complexity of the checks and
enforcement, it might even slow down the design itself with its
connections.

3. We loose any guarantee of usability of the design, since the
verification will not guarantee that the DUV is free of bugs, but
only that any bugs will not be allowed to cause harm – which
could theoretically result in completely dysfunctional designs.

The ideal usage scenario for a PCH approach based on monitoring
and enforcement would thus be a very complex and large system,
which regularly reconfigures parts of itself with new untrusted com-
ponents that can be individually shut down by an enforcement unit.
This scenario would combine all strengths, while softening the impact
of the weaknesses by making the watchdog insignificant in scale com-
pared to the whole system, and adding the ability to confine the effects
of the enforcement to just the deviating parts. The correct embedding
of the watchdog still has to be considered separately, though, to make
sure that no module can ever escape its influence.

When using runtime verification with watchdogs, the proof-carrying
hardware idea of replacing the need for trust with proofs and facts
translates to convincing the consumer that a producer’s watchdog ac-
tually enforces the consumer’s safety policy. This, however, is nothing



152 proving properties with pch

but a proof of functional equivalence of an implemented watchdog
circuit with its original specification by the consumer, which is signifi-
cantly easier for the consumer to prepare in a strong way than doing it
for the complete system, and hence we assume a well-defined (and not
weak) golden model in this case. Depending on the dynamics required
to monitor and enforce the safety policy, the watchdog might be a
combinational or sequential circuit, calling for an underlying PCH ap-
proach using combinational or sequential equivalence checking with a
miter such as the one depicted in Figure 5.13.

Property
checker

Monitor implementation

in

out

n

n m

error

Monitor specification
=1

≥1

=1

out' m

Figure 5.13: Property verification circuit for proving the functional equiva-
lence of the monitor’s specification and implementation. Taken
from [47].

In the special case where the monitoring and enforcement unit is
used to protect specific hardware parts from illegal usage by filtering
inputs, we can waive the FEC and instead use the full scope of property
checking for the specific input signals of the protected area in the
fashion depicted in Figure 5.14. This special miter function leverages
the enforcement unit’s filtering of unconstrained input signals that
only allows legal combinations to pass, which means that no illegal,
i. e., property-violating, combinations should be able to reach the right-
hand side of the miter, which obviously can be shown by proving the
miter’s unsatisfiability. To differentiate between the two versions, we
generally call the combination of monitoring and enforcement circuits
a watchdog, and the special case where the enforcement is realized
by filtering the inputs a guard dog, as it acts more like a guard dog
protecting an entrance. The memory reference monitors by Huffmire
et al. described in Section 2.2.5.1 are an example of such a guard dog
circuit.

5.4.2 Structural Verification

In order to trust the monitoring and enforcement implemented by
a producer, a consumer also has to be convinced of the correct cir-
cuit structure and arrangement. A PCH-verified watchdog’s formal
guarantee of upholding the safety policy is invalidated should the



5.4 monitor-based property checking 153

Guard Dog

Monitor

Implementation
Enforcement

in

Property Checker

Monitor

Specificationout error

Figure 5.14: A miter function for the special case of a guard dog, i. e., a
circuit that protects sensitive hardware from ever being exposed
to illegal inputs. Taken from [121].

watchdog be bypassable in the design. In Section 2.2.5, we have de-
scribed a solution by Huffmire et al. to this general issue of runtime
verification called Moats and Drawbridges. Declaring the application of
this scheme to be mandatory for the combination with runtime veri-
fication actually follows the general PCH procedure, as it makes the
producer’s synthesis job harder, while the consumer only has to check
for the correctness of the moats and the drawbridges, by tracing con-
nections in the bitstream. This approach can thus give the consumer
the assurance that the DUV is realized using isolated modules that
only communicate via a few known interaction points, including the
communication with on-chip and off-chip resources that are outside
of the programmable area. The tracing step also makes sure that the
global I/O pads of the FPGA are not connected to some other shadow
circuit, thus bypassing the whole runtime-verified design altogether.

To establish full trust in the design is significantly harder, however,
since the producer could circumvent the restriction by introducing
dummy moats and drawbridges, while the actual circuit functional-
ity is realized intermingled in just one of the declared modules. A
full structural verification of a runtime verification scheme with PCH
thus requires an additional step, which leverages the fact that the
information provided by the drawbridges enable a gray-box verifi-
cation style (cp. Section 2.2.2). First, the producer should provide a
certificate of (weak) functional equivalence for each module, to its
alleged functional specification; at the very least the consumer requires
these for the watchdog and the sensitive / shared design parts. Second,
the producer should provide a series of information flow certificates
(cf. Section 6.2 and [125]) which prove that any information arriving
at the sensitive parts first passed through the watchdog. For guard
dogs these steps suffice, for a more general enforcement, however,
the influence of the enforcement over the individual modules has to
be proven at this point, which requires verification solutions that are
custom tailored towards the individual DUV.

In conclusion we can observe that guard dog circuits are best suited
for automated PCH approaches, as they can effectively be verified
automatically.



154 proving properties with pch

5.4.3 Automated Monitor Creation

The central task of the bachelor’s thesis [121] was to explore the pos-
sibility of creating monitor implementations for runtime verification
with PCH automatically from a property description. We identified the
possibility to automatically compile properties specified in property
specification language (PSL) (see Section 2.2.3) into an HDL using the
method and tool presented by Boulé and Zilic [126] as most promising,
and created a prototypical tool chain implementing this flow. We also
turned this prototype into a full PCH demonstrator using runtime
verification derived from PSL property definitions, an effort described
in Section 7.2.

Since the current flow for PCH, as proposed by this thesis (cp. Sec-
tion 3.2), employs Yosys [75], which is able to synthesize some Sys-
temVerilog statements, the threshold to apply this approach is signifi-
cantly lower today: Any guard dog created from a description in the
supported subset of SystemVerilog can automatically be synthesized
by Yosys, to be put into a DUV and to use as a property specifica-
tion in a guard dog miter, as presented in Figure 5.14. Proof-carrying
hardware with runtime verification using guard dog monitoring and
enforcement units that are automatically derived from SystemVerilog
definitions are thus well within the scope and ability of the state-of-
the-art PCH flow.

5.4.4 Experimental Evaluation

To showcase the general ability of PCH to verify guard dogs in real
application scenarios, we have implemented the memory reference
monitors presented in Section 2.2.5.1 in two different systems. In [47]
we have presented their inclusion in the memory subsystem of our
evaluation platform (see Section 4.4) and we have explored its usage
in a high-performance computing (HPC) environment by conducting
the master’s thesis [120]. The latter successfully proved the feasibility
of introducing the memory reference monitors there, thus highlighting
the wider applicability of the previous work in [47] that was limited
to embedded systems and which the rest of this section is based on.
This paper transferred and implemented ideas from Drzevitzky [57]
over to our ZUMA prototype and its tool flow.

5.4.4.1 Flow

The adapted flow, depicted in Figure 5.15, employs older tools, but
otherwise follows exactly our generic flow from Section 3.2: The
consumer specifies the desired functionality of the memory access
monitor and sends this information to the producer. For specifying the
memory access policy we have used behavioral Verilog for simplicity,
but could also have transferred the formal language of Huffmire et al.



5.4 monitor-based property checking 155

directly. The employed safety policy is functional equivalence of the
monitor to its specification, since the monitors are small and have a
low verification complexity, so that we do not run into issues due to
state explosion.

ProducerConsumer
Monitor design 
specification

Implement monitor

Synthesize

Compute 
equivalence miter

Extract netlist from 
implementation

Extract netlist from 
implementation

SAT solver

Compute 
equivalence miter

Is the trace valid 
for this formula?

netlist

netlist

memory policy

bitstream

HDL files

CNF
formula

unSAT
proof trace

CNF
formula

Accept bitstreamRefuse bitstream

yes
no

Figure 5.15: Complete proof-carrying hardware flow for memory reference
monitors. The consumer starts by sending the design specifica-
tion to the producer, and ends with either accepting or refusing
the design. Taken from [47].

The producer receives the design specification and synthesizes it
into an FPGA bitstream, using the Verilog-to-routing (VTR) [60] flow.
After that, the producer re-extracts the logic function as netlist from
the bitstream and, together with the original design specification,
computes the property verification circuit for functional equivalence,
i. e., a miter function as shown in Figure 5.13. We have used ABC [30] to
construct the miter in CNF and the SAT solver PicoSAT [61] to prove its
unsatisfiability and generate a resolution proof trace as certificate. The
producer then sends the composed proof-carrying bitstream (PCB),
i. e., the bitstream and the proof, to the consumer.

Static memory access policies lead to combinational monitor circuits,
and dynamic policies to sequential ones. We can verify the former by
directly showing the unsatisfiability of the combinational miter, but
for the latter we employ BMC (see Section 2.2.4.1 and Section 5.3.1),
as already indicated in Section 5.3.1.1. We have to choose a specific
amount of unrolling time steps, called frames by ABC, and for that
we observe that the compiled monitors are essentially FSMs, whose
internal transitions only depend on their current state and the new
input, and that we thus can derive a bound U for the maximum length
of state sequences we have to check as follows:



156 proving properties with pch

Suppose there is an input sequence IN = (in0, in1, . . . , ink−1) which
satisfies the miter function in k steps, i. e., it leads to different out-
puts for the implemented circuit and the specification in exactly
time step k when starting from the initial state sI. Assume fur-
thermore that IN leads to state cycles, i. e., that the state transition
path P = (s0 = sI, s1, s2, . . . , sk) induced by the input sequence in the
combined FSM of the miter contains cycles for one or more pairs of
indices:

∃0 6 i, j 6 k (i 6= j∧ si = sj)
By removing sj and all states that appear between si and sj for

each pair of equal states, we can then construct a shorter state se-
quence P ′ =

(
s ′0 = sI, s

′
1, s ′2, . . . , s ′k ′ = sk

)
that is a cycle-free copy of

P, such that in P ′ we have that s ′i 6= s ′j ∀ i, j 6 k ′. This sequence will
then also be a valid state path from the initial state to the diverging
state sk, which means that P ′ also ends with the miter being satisfied,
i. e., with a raised error flag. If we now eliminate all inputs from IN
at the exact same4 indices at which we eliminated states from P to
construct P ′, then we obtain a shorter input sequence IN ′, which will
induce the state sequence P ′ in the FSM of the miter.

We can apply this technique for any state sequence that satisfies the
miter and contains cycles, and can thus always find a corresponding
cycle-free version that also satisfies the miter. We can therefore deduce
that it is sufficient to check all input sequences that do not induce state
cycles in the combined FSM of the miter to prove that it is unsatisfiable
for all input sequences of all lengths. Hence we can simply choose a
number N of frames to unroll which is larger than the number #SM
of miter automaton states, to ensure that every cycle-free sequence
has been considered. Note, however, that the number of miter states
is given by #SM = #SS × #SI, from which the consumer only knows
the exact number #SS of states from their specification, and thus has
to assume that the producer’s implementation actually uses every
encodable state, which would be #SI = 2r for r state-holding elements
in the received bitstream. This implies the bound for the number N of
cycles to unroll that we were looking for:

N
!
> U = (#SS × 2r)

Coming back to the description of the flow in Figure 5.15: When the
consumer receives the PCB for the monitor circuit, they also extract
the monitor’s logic function from the bitstream and form the miter
in CNF in the same way as the producer, but with their own original
specification. The thusly created miter is compared to the miter sent by
the producer, and if they do not match, then the consumer can deduce
that the proof is not based on the desired memory access policy, so
the monitor is refused. If the miters do match, the consumer verifies
the proof by checking each resolution step in the proof trace to see
if they can successfully resolve the empty clause, which proves the

4 The same indices while minding the initial state, compare numbering given above.



5.4 monitor-based property checking 157

unsatisfiability of the miter. Only then, the implementation is shown
to adhere to the safety policy and the monitor can be accepted.

5.4.4.2 Prototype

To demonstrate the feasibility of this PCH-protected memory access
runtime verification, we have built a prototypical system on a Zed-
board containing a Xilinx Zynq-7000 SoC with a dual Arm Cortex-A9

MPCore, and 512MiB RAM. In the prototypical implementation we
leverage ZUMA, so that the syntax and semantics of the resulting
bitstream is known. Since this induces virtualization costs that we
have to keep down, we implement only the guard dog by itself within
the vFPGA, which we place manually into the memory access path,
routing all accesses through it. This way we can show the PCH process
and gain a real executable system, but cannot show the structural
verification part, as the guard dog is already completely isolated in
ZUMA, and we cannot show the correct integration of the overlay into
a Xilinx design. As for the TCB, the only tools the consumer has to
trust here are the one extracting the logic function and the tool which
checks the proof trace. In the following we first describe our prototype
and then present experimental results.

As indicated above, our prototype architecture embeds an extended
ZUMA overlay (cf. Section 4.3) into a ReconOS system as shown in
Figure 5.16, i. e., not as a ReconOS HWT like in our regular evaluation
platform presented in Section 4.4. As shown in Figure 5.16, we have
instead modified the ReconOS arbiter in the memory access path of the
HWTs to include a memory access monitor. The access monitor itself
is implemented in our ZUMA vFPGA overlay. Upon a request from a
hardware thread, the arbiter provides the virtual memory address as
input to the monitor, along with the type of the request (read or write)
and its source, the HWT identifier. This implementation corresponds
to the first alternative described by Huffmire et al. [45, p. 207, Fig. 9]
to embed a reference monitor into a system.

5.4.4.3 PCH Evaluation

We have conducted a series of experiments to investigate different
aspects of our approach and prototype. First, we have evaluated the
feasibility of the PCH-based runtime verification approach using the
criteria laid out in Section 3.2, by retracing some of Drzevitzky’s ex-
periments with our adapted flow and insights, as described above. To
this end, we have generated proofs for a variety of example policies in
different complexities that she selected. Table 5.5 presents the runtimes
for the consumer and producer for different memory access policies
taken from [44, 45]: The Biba (biba) as well as the Low Watermark (low)
models implement data integrity, the Bell and LaPadula (bl) as well
as the High Watermark (high) models realize data confidentiality, the



158 proving properties with pch

Processing System / Application Processor Unit

Programmable Logic

SWT 1 SWT n

Operating System / Linux

ReconOS driver

... DT 1 DT m...

HWT 1 HWT m...

General Purpose Bus (AXI)

FIFO to AXI bridge

Arbiter

MMU

Memory
Controller

Memory Bus (AXI)

ACP / High Performance General Purpose

Virtual FPGA

Monitor

Figure 5.16: Zynq version of ReconOS [81], with n software threads, m hard-
ware threads, their m delegate threads, and an arbiter including
a memory reference monitor in the memory access path of the
hardware threads. Taken from [47].

Isolation (iso) model gives a simple separation of memory ranges for
data isolation and, finally, the Chinese Wall (chin) model enforces
conflict-of-interest (COI) classes. The different versions of each policy
are variations with different number of memory ranges, modules or
COI classes.

The runtimes listed in Table 5.5 for both consumer and producer
are the sum of the runtimes for the necessary steps on the respective
side, as depicted in Figure 5.15. The consumer runtime thus includes
as main parts the computation of the miter function and the check of
the resolution proof trace, while the producer runtime mainly consists
of the synthesis of the monitor to the vFPGA overlay, the computation
of the miter function and the computation of the unsatisfiability proof.
As explained in Section 3.2, the shift of workload is only based on the
verification runtimes, however, to obtain an accurate measure against
the original cost of trust without PCH. This approach differs from the
one used to generate the data shown in [57, Tables 6.8 & 6.9], where
the author did not consider this measure, but a) the ratio between
SAT solving and resolution proof validation as shift of the security
workload, which neglects the necessary cost of the miter generation
and optimization and thus significantly overestimates the actual shift,



5.4 monitor-based property checking 159

Table 5.5: Proof-carrying hardware runtime comparison between consumer
and producer for memory reference monitor prototype. Taken
from [47]. Extended table on Page 261.

Policy Runtimes [s] Workload

Cons. Prod. Miter shift [%]

biba1 0.141 1.043 0.134 0.72

biba6 0.136 1.077 0.126 2.99

bl1 0.132 1.015 0.124 0.79

bl6 0.134 1.076 0.124 4.48

iso1 0.130 1.004 0.124 0.79

iso4 0.195 1.700 0.139 36.76

high1 1.213 2.483 1.192 23.50

high3 3.814 9.509 3.736 53.20

high5 3.092 11.865 3.047 70.93

high6 4.319 11.018 4.242 53.43

low1 1.270 2.600 1.246 21.66

low6 4.350 10.894 4.271 53.79

chin1 2.659 6.645 2.617 52.58

chin2 4.203 6.812 4.127 24.33

and b) the ratio between the complete flow runtimes, which mixes
the cost of module creation with the cost of trust and therefore also
does not allow for a meaningful evaluation of the PCH approach’s
effectiveness.

Table 5.5 clearly shows that the consumer’s runtimes are greatly
dominated by the miter generation and optimization, which is neces-
sary, to avoid having to trust a received miter, while the producer’s
runtime seems to be mainly spent for the actual hardware synthesis.
Contrary to previously published findings, the more accurate defini-
tion of the workload shift revealed that the producer only partially
bears the computational burden of establishing the consumer’s trust in
the module, with the largest shift being almost 71%, and the smaller
ones ranging down to almost 0%. While this is the main criterion
for the success of a PCH approach, thus indicating a low effective-
ness for some results, the presented verification and validation times
underline the great advantage of runtime verification approaches,
where Table 5.5 shows that the we obviously succeeded in bringing
the memory access verification costs for a formal verification of a
large and complex ReconOS system down to manageable runtimes.
The positively correlated scaling of the shift with the complexity of
the memory access monitors indicates that PCH can indeed apply



160 proving properties with pch

its strengths here in general, once we look at circuits that are more
complex, such that the miter generation is no longer the dominating
part of the overall verification effort.

Unsurprisingly, the proof traces for the PCBs were quite small even
in a purely textual representation, barely reaching up to a few hundred
Kilobytes, since the underlying verifications were not very complex.
We thus omitted them from Table 5.5 due to a lack of added insights.

5.4.4.4 Performance Impact Evaluation

In a second series of experiments, we have studied the ReconOS
/ Zynq prototype implementation and its overheads and performance
impact, by comparing the three different versions listed in Table 5.6 to
each other.

Table 5.6: Prototype versions to determine the overheads of employing the
PCH-protected memory access guard dog. Taken from [47].

Identifier MMU Monitor Memory access policy

ProtoRef Yes None None

ProtoZynq Yes Zynq Fixed

ProtoZuma Yes ZUMA Exchangeable

Their characteristics are as follows:

ProtoRef is the baseline for the memory access latency, as it is a plain
ReconOS version using direct memory access from the HWTs
with virtual memory support, but no memory access monitor.

ProtoZynq is a version where we have synthesized monitor circuits
for different policies directly to the Zynq reconfigurable fabric
and included them into the arbiter module. In Table 5.6 we
denote the memory policy for this version as fixed, since in
our experiments we created a full system configuration for each
policy. However, using partial reconfiguration of the Zynq the
policies could also be made exchangeable.

ProtoZuma is the version depicted in Figure 5.16, i. e., employing
the ZUMA vFPGA embedded into the arbiter module. We have
chosen the size of the overlay just large enough to accommodate
the largest of the test circuits of Table 5.5. Thus, ProtoZuma uses
a ZUMA overlay (cf. Section 4.3.1) with 6× 5 configurable logic
blocks (CLBs), each comprising 4 basic logic elements (BLEs),
and each BLE containing one 6-input lookup table (LUT) with
a bypassable FF. The routing resources are 60 wires per track
wide. ProtoZuma enables us to employ our PCH approach and,
in addition, to quickly exchange the memory access policy.



5.4 monitor-based property checking 161

As indicated by Table 5.6 all versions use a memory management
unit (MMU) to enable the HWTs to use the same virtual memory
addresses as the base Linux. The memory access monitors then allow
or disallow accesses to certain memory ranges for each HWT, and
we have instructed the HWT to make sequences of accesses that are
both legal and illegal. The filtering of these guard dogs successfully
protected the memory from all accesses that were illegal according to
their current policy. Due to the filtered memory access requests that
were never answered, the affected HWTs were effectively disabled,
forever waiting for a response to their illegal access. In a system that
needs to be more responsive than our proof-of-concept prototypes,
this enforcement could obviously be more elaborate and gentle.

Table 5.7 shows the performance comparison for the three proto-
type versions. In terms of memory access latency for read and write
accesses, the overheads of the versions with memory access monitors
are rather small. We have averaged the measurements for the access
times over 100 consecutive accesses to level out the effects of ReconOS’
translation lookaside buffers (TLBs) and the MMU. The cycles listed
in Table 5.7 are the number of clock cycles that a HWT is stalled
while waiting for ReconOS’ memory controller. Since memory write
accesses are implemented asynchronously in ReconOS, i. e., the HWT
does not receive or wait for a write confirmation, neither ProtoZynq
nor ProtoZuma adds any delay to writes. For read requests, ProtoRef
needed an average of 37 clock cycles to return the data to the HWT,
while both ProtoZynq and ProtoZuma added 4 cycles due to the in-
clusion of the guard dog; two to drain the command pipeline and feed
the request to the monitor, one to get its result, and one to repopulate
the pipeline.

Table 5.7: Performance measurement results for the three ReconOS-based
prototype versions. Taken from [47].

ProtoRef ProtoZynq ProtoZuma

Latency [cycles]

write access 18 18 18

read access 37 41 41

Area

LUTs 4570 (8%) – 4722 (8%) 9661 (18%)

LUTRAMs 517 (2%) 5393 (30%)

Speed [MHz]

fmax 86.36 – 109.89 1.08

The read access cycles have been measured for single word accesses
which is pessimistic for real application scenarios, where HWTs would
probably read data in bursts. This, however, would also require a more



162 proving properties with pch

sophisticated guard dog implementation that can check the legality
of all memory addresses of a burst request at once. The master’s
thesis [120] actually confirmed a low effect of such a guard dog on
data throughput also in an HPC environment, by implementing a
memory access monitor as AXI core in a Micron HPC system that
uses their Hybrid Memory Cube technology. Using data bursts of 4 kB
we extrapolated only a small drop in the memory throughput from
1.753GB s−1 before to 1.740GB s−1 after adding the guard dog.

Rows 5 to 6 of Table 5.7 list the area requirements for the proto-
types including the access monitors, and how large a fraction of the
programmable logic (PL) of the Zedboard’s Zynq this constitutes. For
ProtoZynq, we have measured the required area on the Zynq for all
policies and give the range from lowest to highest area requirement;
for ProtoZuma the overhead is constant since we have chosen the size
of the overlay to match the largest monitor design. As expected, the
overlay comes with a high area overhead. Compared to the native
Zynq implementation, the overlay more than doubles the number of
required LUTs, mainly because the demand for lookup table random
access memories (LUTRAMs) in ProtoZuma is more than 10-fold com-
pared to ProtoZynq. This underlines our conclusion from Section 3.1.5,
that the price for having a working prototype of our design flow at
the moment is indeed quite high, but that this extra cost would be
nullified and this prototype’s design directly applicable to real recon-
figurable hardware devices, should FPGA vendors give us the means
to directly interpret their bitstream formats.

The greatest disadvantage for the ZUMA overlay seems to be the
clock frequency which, as shown in Table 5.7, reduces to 1.08MHz.
However, as explained in Section 4.5, this maximum clock frequency
corresponds to the delay of the longest combinational path in the
overlay’s circuit as identified by the Xilinx static timing analyzer. This
extremely pessimistic bound of fmax, the maximum safe operating
frequency of the circuit, basically assumes a chain of all virtual BLEs
together in a long path without including any registers, which is a
possible yet nonsensical virtual configuration. For our experiments
we succeeded in running all modules, including the ZUMA overlays,
with 100MHz.

Finally, we have measured the reconfiguration time for our FPGA
overlay, which requires 15 296 cycles in the above-mentioned configu-
ration for a naive, sequential reconfiguration approach. At 100MHz
this will take about 153µs, roughly the time equivalent of 373 read re-
quests by HWTs. As Brant and Lemieux stated in [95], this number can
be made as low as 26 cycles or 640ns per reconfiguration in our case
by using parallel configuration paths. Partial reconfiguration of an area
corresponding to the size of the largest monitor in ReconOS / Zynq
takes around one ms. Since this is the time equivalent of > 2000 read



5.5 scalability 163

requests, our prototype showcases the fast reconfiguration potential
of employing virtual field-programmable gate arrays.

5.4.4.5 Evaluation Summary

The prototypes presented in this section demonstrate the feasibility
of our PCH-protected runtime verification concept. The measured
performance parameters for the FPGA overlay indicate substantial
overheads in area and delay, but this approach allowed us to im-
plement a real system in which we could apply the proof-carrying
hardware method. The implemented guard dogs were able to actu-
ally prevent illegal memory accesses by the hardware threads in the
ReconOS-based evaluation platform. In Section 7.2 we will present our
complete PCH prototype that uses automatically generated watchdogs
from properties formulated in the property specification language.

5.5 scalability

The scalability of the involved designs under verification (DUVs) and
circuit properties is always a major concern when applying formal ver-
ification (FV), as we have already discussed in Sections 2.2.3 and 2.2.4.
In this section, we will therefore discuss the potential and limitations
of the general flow presented in Section 3.2. The experiments and
text are based on the work published in [31], where the former were
exclusively my responsibility, while the latter was written jointly for
the paper. However, since we have modernized the flow since the
publication, we can provide an update and insight into the progress
of our verification engines’ evolution here.

The PCH flows and verification methods defined in Section 3.2 and
this chapter all rely on Boolean satisfiability (SAT) solvers at their core.
Although SAT solving has made great progress in the last decades, as
can be witnessed in the overall progress in annual verification and SAT
solving challenges such as the hardware model checking competition
(HWMCC), the SAT Race, or the SAT competition, there are nonethe-
less circuit instances which translate into Boolean formulae that are
hard to solve. For such instances, SAT solvers either take extraordinar-
ily long runtimes or run out of memory. Consequently, FV and, in turn,
PCH approaches, for such circuit instances are either highly resource-
consuming or even fail due to resource or time constraints. The prime
example for circuits which are hard to formally verify are multipliers.
Table 5.8 lists runtimes for combinational equivalence checking (CEC)
of benchmarks that include multipliers with up to 10 bit wide inputs
using the SAT solving approach from Drzevitzky and the induction-
based approach presented in Section 5.3.2. The results in the table
demonstrate the verification complexity of multipliers: The consumer
runtime using induction rapidly grows from 0.275 s for 6 bit inputs
over 4.118 s for 8 bit inputs to 174.541 s for 10 bit inputs. Generally



164 proving properties with pch

we can observe that the circuit complexity measured in number of
gates and latches is not a useful indication of the verification com-
plexity: Our 10 bit input multiplier has only 1923 AND gates and no
FFs, but needs 174.5 s of consumer runtime, while the large circuit
6s221rb14.aig from the SEQ-MC benchmarks that comprises 426 021
AND gates and 42 181 FFs only needs a consumer runtime of 5.3 s and
a producer runtime of 43.7 s.

Table 5.8: Comparison of runtime for Boolean satisfiability-based and
induction-based combinational equivalence checking for bench-
marks containing circuits for unsigned multiplication. Taken
from [31].

Runtime of the flows [s]

operand Consumer Producer

width SAT IND SAT IND

6 bits 0.193 0.275 1.799 1.877

8 bits 2.024 4.188 6.668 9.377

10 bits 60.442 174.541 133.332 282.552

In order to demonstrate the applicability of our PCH technology, we
have performed a set of scalability experiments with very large circuits
from the single safety property track of the HWMCC 2014 [33], which
are mostly based on IBM’s test set for their internal formal verification
tool SixthSense. We have formed the benchmark category SCAL by
considering the thirty largest benchmarks from this competition. Eight
of these benchmarks are satisfiable and thus not suitable for a PCH
scenario, as this corresponds to a violated property for which no
certificate can be created. Nine out of the thirty benchmarks could not
be solved under the time and memory constraints of the HWMCC
by any participating SAT solver, but to gauge the progress made
on verification engines in the meantime, we have included those as
well. We have chosen a time limit of one hour and a memory limit of
32GiB per verification of the producer (excluding the preprocessing),
which is significantly larger than the 900 seconds and 15GiB that were
granted during the competition. On the other hand, we restricted the
verification to a single core, since our verification engine does not
make use of multithreading techniques, which is much less than the
twelve cores that each solver had available there. Table 5.9 lists all 30
benchmarks with their names, circuit complexities, and their size rank
within the single safety property track of HWMCC’14, as well as the
fraction of the circuit area that lies within the cone-of-influence of the
output. The largest circuit we have experimented with thus comprises
2 471 311 AND nodes and 186 401 latches and perfectly highlights the
benefits of performing a structural optimization as preprocessing
before starting a verification, since only 0.02% of the circuit’s elements



5.5 scalability 165

can actually contribute to a violation of the encoded property. A simple
cone-of-influence reduction regarding the only output, i. e., the error
flag, therefore reduces the benchmark 6s361rb52584.aig down to 404
AND nodes and 64 latches.

We have conducted experiments on a compute cluster with the
induction-based PCH tool flow as described in Section 5.3.4, using
the most modern versions of all involved methods and tools, and
have averaged all results over 10 individual runs. Each node of the
cluster comprises an Intel Xeon E5-2670@2.6GHz processor with 16
cores, 64GiB RAM, of which we allocated 32GiB per verification, and
runs Scientific Linux 7.2 (Nitrogen). From the 30 benchmarks in SCAL,
our PCH tool flow was able to process 23 within our computational
limits using either ABC’s PDR directly or their multiple engine solver
dprove for the harder instances. The issue with the latter is that it is not
built for checkable proofs, and while it pushes the boundaries of the
verifiable circuit complexity for our approach, it can be hit-and-miss
to obtain a usable certificate from it that we could leverage.

Our PCH flow rightfully failed at the producer’s side for all satisfi-
able AIGs (crossed-out entries in Table 5.9) except for 6s299b685.aig,
which could only be solved by one of the solvers participating in
HWMCC’14 and also ran into the time bound for us. All of these
verification failures would successfully prevent a malicious producer
from certifying a failing PVC. Table 5.10 presents the runtimes and
workload shifts for the remaining unsatisfiable benchmarks. For the
very large instances (after the cone-of-influence reduction), such as
6s322rb646.aig with rank 10, the flow required roughly half an hour,
but was able to verify the property encoded in the PVCs.

While 6s332rb118.aig demonstrates that very high shifts of workload
are definitely achievable in this circuit complexity class, the new flow
only achieved a shift of 0% for most other benchmarks, which is
a testament to the efficiency of the employed preprocessing steps
(cp. Section 3.2) that were able to solve these miters on their own, thus
generating no certificate that we could transfer to the consumer. As we
will see shortly, these results have the downside of not shifting work
away from the consumer to the producer, but they are on the other
hand also considerably faster for the consumer than the certificate
validations following an unoptimized producer flow. We can therefore
mainly conclude from Table 5.10 that further research into techniques
to generate checkable proofs is required going forward from the status
quo of proof-carrying hardware, i. e., the results of this thesis, when
we want to extend PCH’s applicability to even larger circuits than
before. Verification runtime seems to be the primary concern here,
however, since the employed memory limit was not exhausted for
any of the considered benchmarks; in fact, both parties stayed below
1GiB for all of them, such that the flow could very well have run on a
commercial off-the-shelf (COTS) PC.



166 proving properties with pch

Table 5.9: The 30 largest benchmarks from the HWMCC’14 [33] with name,
complexity, and area in the error flag’s cone-of-influence. Bench-
marks marked with 7 have not been solved in the competition;
crossed out ones are satisfiable. Based on experiments from [31].

Name Rank Circuit complexity Area in

[ANDs] [Latches] [Level] cone [%]

6s299b685.aig 1 4 904 114 467 369 75 84.24

6s361rb52584.aig 2 2 471 311 186 401 79 0.02

6s281b35.aig 3 2 179 584 177 235 121 2.23

6s382r.aig 7 4 1 788 501 104 830 2752 79.39

6s364rb12666.aig 5 1 697 941 202 686 161 0.00

6s392r.aig 7 6 1 625 899 80 150 538 77.42

6s350rb46.aig 7 1 559 143 243 399 194 66.70

6s332rb118.aig 8 1 238 871 83 717 47 29.47

6s286rb07843.aig 9 898 079 101 639 143 26.61

6s322rb646.aig 7 10 658 407 80 927 108 77.27

6s353rb036.aig 11 633 237 102 390 292 23.09

6s203b19.aig 12 524 688 68 957 65 0.00

6s202b41.aig 13 524 253 68 881 65 0.00

6s205b20.aig 14 523 911 68 842 65 0.00

6s218b2950.aig 15 461 595 58 676 95 12.84

6s221rb14.aig 16 426 021 42 181 60 0.00

6s387rb181.aig 7 17 382 947 29 494 30 80.24

6s387rb291.aig 7 18 382 947 29 494 30 80.53

6s374b114.aig 19 351 902 26 324 150 0.07

6s342rb122.aig 7 20 334 763 56 838 52 12.08

6s316b421.aig 21 299 551 32 922 147 97.86

6s402rb0342.aig 7 22 295 376 13 365 150 69.23

6s402rb2219.aig 23 295 376 13 365 150 69.36

6s348b53.aig 24 239 364 15 560 23 3.63

6s401rb086.aig 25 231 224 12 309 150 79.12

6s301rb527.aig 26 225 694 35 462 29 13.54

intel048.aig 7 27 216 750 17 843 17 849 96.17

bob12s06.aig 7 28 203 005 26 148 422 100.00

bob12s04.aig 29 200 608 43 950 28 506 99.99

6s204b16.aig 30 199 606 28 986 42 12.06



5.5 scalability 167

Table 5.10: Runtime and shift of workload towards the producer for the
induction-based sequential property checking in the benchmark
category SCAL. Benchmarks marked with 7 have not been solved
in the competition. Based on experiments from [31]. Extended
table on Page 262.

Runtime [s] Workload

benchmarks Consumer Producer shift [%]

6s361rb52584.aig 6.481 6.843 4.63

6s281b35.aig 7.564 7.538 −0.45

6s364rb12666.aig 6.006 6.006 0

6s332rb118.aig 7.149 357.323 97.98

6s286rb07843.aig 5.075 5.623 9.13

6s322rb646.aig 7 1815.550 1815.550 0

6s203b19.aig 3.731 3.731 0

6s202b41.aig 4.059 4.059 0

6s205b20.aig 3.508 3.508 0

6s221rb14.aig 0.680 0.680 0

6s387rb181.aig 7 321.451 321.451 0

6s387rb291.aig 7 267.446 267.446 0

6s374b114.aig 0.795 0.795 0

6s316b421.aig 44.769 44.769 0

bob12s06.aig 7 859.687 859.687 0

6s204b16.aig 17.454 17.454 0

Combined, all adaptions of the PCH flow that we described in
Section 3.2 have a profound impact on the scalability in comparison
to the PCH flow IND, published in [31], as presented in Table 5.11,
which lists the speedup factors and memory requirement reductions
of the new flow version compared to the old data. As the table shows,
the main beneficiary of the flow updates is the producer, who can now,
e. g., certify 6s203b19.aig in 3.7 seconds instead of ≈ 36.6 hours using
only 491MiB RAM instead of 4518MiB, which is actually roughly
half of the time that the consumer required under the old flow, i. e.,
the producer can now generate the certificate faster than the consumer
could validate the old one.

Altogether, the new flow successfully verified 16 of the 22 viable
instances of the top 30 HWMCC’14 benchmarks, four of which had
even been unsolved there; three of them even without exceeding the
original competition constraints. We were, however, on the other hand
unable to certify one unsatisfiable instance (6s348b53.aig) with check-
able proofs, even though it had been solved in the competition by other



168 proving properties with pch

verification engines, thus highlighting the advantage of employing
multiple engine solvers for verifications. As we have seen in Table 5.10

the flow improvements often all but reduce the gap between certificate
generation and validation for such complex circuits, which we had
previously exploited to obtain a high shift of workload for PCH.

Table 5.11: Runtime and peak memory consumption comparison of the IC3-
based version of the sequential property checking flow ([31], 2017)
and the modern ABC-based flow (2020).

Speedup Memory reduction [%]

benchmarks Consumer Producer Consumer Producer

6s361rb52584.aig 4.8× 1902× 58.65 86.83

6s332rb118.aig 3.7× 490× 50.17 83.10

6s286rb07843.aig 1.9× 2211× 43.10 86.45

6s203b19.aig 1.9× 35 387× 32.78 89.13

6s221rb14.aig 10.8× 96× 33.85 56.04

6s374b114.aig 4.9× 30× 25.33 41.74

The main result from the scalability experiments are thus:

1. The confirmation that the PCH flow, as defined in this thesis,
can deal with very large circuits, limited only by the capabilities
of the underlying verification engine.

2. The progression of the verification techniques, on which our
PCH methods are build, remains promising to this day, allowing
our concept to be applied to ever more complex circuits.

3. More research into techniques for checkable proofs seems to be
warranted to identify methods that are capable of combining
the benefits of applying powerful preprocessing steps with suit-
able certificates that also enable high shifts of the verification
workload for such heavily modified circuits.

5.6 conclusion

In this chapter, we have presented details on the extension of the
readily available PCH proof techniques and tool flows to also cover
bounded and unbounded proofs for synchronous sequential circuits.
These results enable the direct application of PCH techniques for
any functional property of such a circuit, as long as the verification
complexity allows for the successful certificate generation on the pro-
ducer’s side. The new induction-based verification method addition-
ally yields fundamentally stronger proofs that avoid the testing-like
uncertainty of the result that BMC-based approaches suffer from.



5.6 conclusion 169

The new techniques furthermore allow us to extend the reach of
provable properties by harnessing the immense potential of modern
formal verification tools and their efficient algorithms. We have shown
that the desired shift of verification workload can be achieved for all
introduced variants, i. e., bounded model checking, PDR-based, or
runtime verification, even for very large circuits.





6
N O N - F U N C T I O N A L P R O P E RT Y C H E C K I N G

6.1 Worst-case Completion Time . . . . . . . . . . . . . . . 172

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . 174

6.1.2 Circuit Model . . . . . . . . . . . . . . . . . . . . 175

6.1.3 WCCT Property Verification Circuit . . . . . . . 176

6.1.4 PCH flow . . . . . . . . . . . . . . . . . . . . . . 180

6.1.5 Case Studies . . . . . . . . . . . . . . . . . . . . . 182

6.1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 185

6.2 Information Flow Security . . . . . . . . . . . . . . . . . 185

6.2.1 Background . . . . . . . . . . . . . . . . . . . . . 186

6.2.2 Approach 1: Shadow Logic . . . . . . . . . . . . 189

6.2.3 Approach 2: Non-interference miters . . . . . . 192

6.2.4 Gray / White-box Verification . . . . . . . . . . . 197

6.2.5 Experimental Validation . . . . . . . . . . . . . . 198

6.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 207

6.3 Approximation Quality . . . . . . . . . . . . . . . . . . 207

6.3.1 Related Work . . . . . . . . . . . . . . . . . . . . 209

6.3.2 PCAC Flow . . . . . . . . . . . . . . . . . . . . . 211

6.3.3 Experimental Evaluation . . . . . . . . . . . . . . 218

6.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . 222

6.4 General Self-Composition Miters . . . . . . . . . . . . . 222

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 225

In Chapter 5 we have discussed the extension of the body of provable
functional circuit properties by enabling a designer to also argue about
time with sequential property checking (SPC) and ranges of values,
events, or acceptable instances with monitor-based proof-carrying
hardware (PCH). In the following sections, we will further add to
this by introducing proofs for the class of non-functional properties,
as introduced in Section 5.2. Non-functional properties represent an
interesting challenge for bitstream-level PCH, as the abstraction level
of our method suggests a close proximity to the actual physical effects
which form the basis of many such properties, but the closed-source
nature of the bitstreams of commercially sold FPGAs prevent us
from actually gaining enough insight into the interdependencies of
configuration and underlying hardware to generate any meaningful
proof.

In contrast to the previous extensions, the broad range of and funda-
mental differences between non-functional properties (cp. Figure 5.2)
do not allow for a single proving technique to generate certificates
for all of them, but rather require highly individual approaches. This
chapter therefore represents a collection of circuit properties for which

171



172 non-functional property checking

we have successfully developed a certification mechanism, covering
three of the six individual categories of non-functional properties set
forth by Jenihhin et al. [122], namely “Timing”, “Security”, and “Other
system qualities”. In the following sections we will now describe our
proposed solutions, starting in Section 6.1 with the worst-case comple-
tion time (WCCT) of a circuit (Timing). In Section 6.2 we will explain
how to achieve information flow security (IFS) with bitstream-level
PCH (Security), followed in Section 6.3 by the approximation quality
(Other system quality→ Accuracy). We will then briefly explain how
to extend the approach for certifying IFS, i. e., self-composition miters,
also to other non-functional properties, such as redundancy (Other
system quality→ Fault-tolerance) in Section 6.4.

This chapter is based on the work available in [50, 52, 127, 128] and
on the following student theses: [125, 129].

6.1 Worst-case Completion Time

The basic idea of how to prove this non-functional property, i. e., ver-
ifying the WCCT of a reconfigurable hardware module, has already
been discussed in Section 5.3.1.2 as part of the introduction of sequen-
tial property checking (SPC), but this section will explain it in more
detail and also provide an evaluation afterwards. The goal remains
to achieve a distributed verification of the non-functional property
worst-case completion time (WCCT) in the sense of PCH, i. e., to task
the producer of a hardware module with constructing a proof of the
WCCT, which can then easily be checked by the consumer. This section
is based on the work published in [50].

The property checker (PrC) we present here is therefore intended
to be used in a PCH flow, as depicted Figure 6.1, where a consumer
specifies a target functionality and execution time bound for a pro-
ducer, who will then create such a module and use this PrC within a
property verification circuit (PVC) to create a proof showing that the
worst-case completion time of the module is at most the provided time
bound. The consumer will then be able to quickly validate this proof
certificate to gain full trust into the module’s execution time, as if they
had formally verified it themselves. Due to the application of PCH,
the consumer does not have to trust any of the entities depicted in
gray in Figure 6.1, i. e., neither the producer, nor the created module,
proof, or the transmission channel.

Verifying this non-functional property can be interesting for a num-
ber of applications, such as employing reconfigurable hardware de-
signed by a third party in real-time systems (soft or hard real time),
e. g., reconfigurable systems-on-chip (rSoCs) in a real-time environ-
ment. Such systems could greatly benefit from the energy efficiency
of reconfigurable computing, especially embedded systems, and from
task acceleration through dynamic hardware reconfiguration. The



6.1 Worst-case Completion Time 173

Hardware module 
consumer

Hardware module 
producer

Module
WCCT 
proof

Design specification 
and execution time 

bound

Figure 6.1: High-level overview of the PCH interactions between consumer
and producer when exchanging a worst-case completion time
proof for a module. All gray entities are untrusted. Taken
from [50].

great challenge of real-time computing is rather to execute a function
predictably fast under any circumstances, than to compute as fast
as possible. In such a scenario, a consumer has to be sure that the
non-functional property of adhering to a certain execution time bound,
i. e., a deadline, is established, in addition to the correct functionality
of the software and the hardware.

In software, each program or function has a control flow, most
often visualized as a graph using code blocks as nodes and branch
decisions as edges. A control flow has an entry point and one or
several termination points, where the software stops executing, and
thus real-time system analyses rely on finding the worst-case path
from an entry to a termination point and worst-case timing predictions
or simulations for instructions or code blocks (cp. [130]). In hardware,
however, each circuit component operates in parallel of all others,
without any control flow steering their execution. A typical hardware
module thus does not terminate and the notion of execution time must
hence be carefully defined in this context

The most general form to model a sequential circuit is by a fi-
nite state machine (FSM) with a starting state and one or several
termination states. We assume the circuits in this section to be run-
to-completion synchronous sequential circuits (SSCs), i. e., we assume
that they wait for an external start signal before leaving the starting
state to begin execution and that they raise an external done signal to
indicate the end of their execution in the termination states signify-
ing successful execution. We furthermore also assume the sequential
circuits to be configurations for reconfigurable hardware, as in most
parts of this thesis, as dynamically computing the time bounds for
a hardware module in reconfigurable hardware is challenging, in
contrast to application-specific integrated circuits (ASICs), where the
underlying hardware fabric is static and the involved communication
processes are thus predictable using established worst-case execution



174 non-functional property checking

time (WCET) and hardware timing analysis techniques. In general,
the execution time of such a module is given by the product of latency
and clock period. The clock period at which a circuit can operate is
determined by the design tools through running timing analyses based
on technology data of the actual static hardware structures forming
the reconfigurable fabric. The latency is measured in number of clock
cycles.

6.1.1 WCCT Related Work

Most related work on WCET analysis for real-time systems has been
done for software systems running on static hardware, where the
timing properties of the hardware can hence be statically modeled to
support the analysis of the software tasks’ execution time bounds; for
an overview of formal methods to analyze these systems see for in-
stance [130]. Although reconfigurable real-time systems have also been
considered, the reconfigurability is often restricted to the software side
(cp. [131]) and not the underlying hardware, i. e., dynamic software
systems that can adapt to different situations run on entirely static
hardware. In [132], Kirner, Bünte, and Zolda consider WCET analysis
for reconfigurable embedded systems and argue that the execution
time should be estimated using a measurement-based analysis instead
of using a static one as in our work, since in such a system neither the
number of the deployed modules nor their timing behavior are typi-
cally known in advance. As the approach presented here moves the
analysis from the consumer to the producer however, this considera-
tion is invalidated, as the module producer indeed knows the module,
and the consumer can thus obtain specific static WCCT analysis results
for every module without having to trust the respective producers.
Audsley and Bletsas [133] consider reconfigurable real-time systems
to be running limited parallel HW / SW implementations, by abstract-
ing the reconfigurable area away as a dynamic set of accelerators for
the software. As their considerations depend on the actual runtime
bounds for these accelerators, our work can be seen as a provider for
these analyses, in order to build a complete analysis of the real-time
properties of the overall reconfigurable real-time system.

For the actual analysis of the WCET there are several alternatives
to the examples used in this work. Apart from rather simple static
analysis techniques that might not work on industrial-size reconfig-
urable hardware modules, most modern approaches, such as [134,
135], rely on the closed-source aiT WCET Analyzer [136] to thoroughly
model the timing behavior of complex hardware platforms using a
mechanism they call microarchitectural analysis, in which they use for-
mal models of caches and pipelines to derive upper timing bounds.
Relying on such a tool for concrete upper bounds would obviously



6.1 Worst-case Completion Time 175

add it to the trusted computing base (TCB) of the consumer, however,
which we are explicitly trying to minimize in the PCH context.

There is a also growing body of work (e. g., [137, 138]) on these
techniques to analyze the non-functional properties of hardware or
HW / SW co-designs. Some approaches even consider the integration
of asynchronous circuits into real-time systems (e. g., [139]), which
poses very unique challenges for the timing analysis and may be an
interesting next step for our method as well, when property checking
in PCH evolves to also cover non-synchronous sequential circuits.

6.1.2 WCCT Circuit Model

Obtaining feasible worst-case completion estimations is obviously
only challenging for modules that contain sequential circuits, as com-
binational circuits, by definition, only need one single clock cycle to
compute their result; the length of one cycle is a timing measure that is
known in this context, since the maximum clock frequency fmax only
depends on the delay of the module’s critical path in the combina-
tional case. To focus on the specific challenge of defining a verification
for the non-functional property worst-case completion time, we thus
assume for the remainder of this section that hardware modules are
modeled as the design under verification (DUV) shown in Figure 6.2,
i. e., that they contain a sequential circuit with the following inputs:
1) a reset signal, 2) a start signal, and 3) an input_bus; and the following
outputs: 1) a done signal, and 2) an output_bus. With the adjustable
input and output buses, these assumptions should be general enough
to realize any sequential circuit that performs some run-to-completion
task using this model.

DUV

clock

Verification environment

reset

start

input bus

done

output bus

Figure 6.2: The run-to-completion circuit model we assume throughout our
worst-case completion time analyses. The usage protocol for the
I/Os, i. e., the correct sequence of events, is: reset→ start→ done.
The input_bus has to be driven with valid data while start is
asserted, and accordingly for the output_bus and the done signal.



176 non-functional property checking

We define the completion time of the module to be the time it takes
from the point in time where the start input is raised (external event),
to the point where the module raises the done output signal (internal
event), and thus signals the connected module that it may now in-
terpret the signals on the output_bus, if there are any. To prevent the
producer from cheating, e. g., by raising the done signal prematurely
just before the execution time bound is reached, whether or not the
computation is actually done, a complete proof for the WCCT should
also include a verification of the functionality of the module, which
can be easily achieved using the techniques presented in this and
previous chapters, and will thus not be described here again.

Modules that use pipelining or stream their data cannot be directly
expressed with our circuit model; however, in these cases one is usually
interested in the maximum turnaround time for the data, i. e., the time
it takes certain data in the worst case to “stream” through the module,
or to go through all stages of the pipeline. With this in mind, it is still
possible to prove the real-time behavior of such modules, although not
as readily and automatically as for run-to-completion modules. Again
focusing on the main issue, we assume the latter kind of circuits here.

6.1.3 WCCT Property Verification Circuit

Using this circuit model, we know that our hardware module M
will be an SSC, and we hence have to employ sequential property
checking. We therefore need a sequential property verification circuit
that includes a property checker which encodes the non-functional
property ϕ, with

ϕ = (WCCT(M) 6 T ns)

Here WCCT(M) denotes the worst-case completion time of the mod-
ule M, and T the time bound specified by the consumer. Note that to
simplify the equations we assume all time related expressions to be
given in nanoseconds (ns) here. Using a static timing analysis (STA) as
described in Section 4.5, both parties can quickly determine the min-
imum safe clock period τmin(M) = 1/fmax(M) and use it to validate
a previously agreed-upon actual operating period τ(M) > τmin(M).
This τ(M) can then be leveraged to transform the time bound T into
an upper bound Tc for the number of clock cycles:

Tc =

⌊
T ns

τ(M)ns

⌋

Expressing the evaluated WCCT of M in clock cycles is straight-
forward, as it has to be divisible by τ(M) since it is tied to clock-
synchronous events:

WCCTc(M) =

⌊
WCCT(M)

τ(M)ns

⌋
=

WCCT(M)

τ(M)ns



6.1 Worst-case Completion Time 177

Using these new terms, we can then reformulate ϕ into an equivalent
ϕc arguing only about cycles:

ϕc = (WCCTc(M) 6 Tc) (≡ ϕ)

This equivalent expression now describes a decision problem, and
hence a decidable property, which only uses quantities which are
known or easy to encode in an SPC property verification circuit.

Depending on the complexity of the hardware module and its
interaction with other modules, it may be necessary to consider other
modules’ or communication channels’ WCCTs or turnaround times
as time penalty for the proof. Figure 6.3 shows an example for the
application of such worst-case communication time bounds. Here, the
DUV interacts with external memory through a memory controller,
which can take up to 20 cycles to fetch or store data. In such a case
the PVC would have to consider these additional 20 cycles for each
memory access of the module. Proving ϕc in this scenario would
thus assume the maximum (worst-case) communication time for each
interaction and check if the module can finish in the given time bound
nevertheless. The consumer is responsible to provide a valid time
limit here, since the producer has no access to the other parts of the
consumer’s system outside of the module they provide. Depending
on whether and how the consumer can verify this time bound, this
may even necessitate the addition of third-party design specifications
into the TCB. Ensuring the correct usage of the memory controller,
i. e., waiting for the valid signal before interpreting the data, is part
of the functional verification, not described here. Forcing the PVC to
consider the maximum waiting time, however, is part of the protocol
filtering for formal verification (FV) described in Section 5.3, and
will be encoded into the property checker in a way that informs the
verification engine to consider all possible response times up to the
specified limit for the verification of ϕc.

Note that a producer can also actively augment their portfolio with
time bound proofs, along with associated sub-bounds for interactions
with other modules, since they could easily compute for each of their
modules the actual WCCT to determine the minimum time bound
Tmin = WCCT(M), i. e., the smallest possible worst-case completion
time depending on the potential sub-bounds. Together with the mini-
mum clock period τ(M), this would directly yield the upper bound of
used clock cycles Tcmin for M, which the producer then can go ahead
and prove beforehand. A consumer would then just have to make
sure that their T > Tmin to be able to use the proof in the manner
described above.

To encode the property ϕc now as a PrC for SPC, we have to specify
it as a circuit that receives the primary inputs and additionally the
module’s outputs as inputs, computes a property violation (error) flag
as sole output, and may retain an internal state (cp. property checker



178 non-functional property checking

System-on-chip
Reconfigurable area

DUV
Memory 

controller
RAM

output bus

Module

re
se

t

d
o

n
e

input bus

≤ 20 cycles

sta
rt

Figure 6.3: Example of a hardware module for which a WCCT bound
should be proven, and which has outside interaction with an-
other module inducing a time bound penalty per access to it.
Taken from [50].

in Figure 5.3). At its core this checker circuit will contain a cycle
counter that counts towards the time bound Tc when started with
the start signal, and can be reset with the reset signal of the module.
The property ϕc is violated when the counter is surpassing Tc before
the done signal is asserted. Additionally, we have to encode the pro-
tocol filtering (cp. Section 5.3) for this module in the PrC, depending
on the requirements for the module’s robustness and its potential
communication / interaction delays. These filters are built into the
checker circuit with the assumption that the protocol has to be upheld
for a meaningful computation, and that we thus only verify event
sequences which adhere to it. Following the principle ex falso sequitur
quodlibet, i. e., any conclusion from a false premise is true, we therefore
consider ϕc (the conclusion) to never be violated for a sequence of
events that violates the module’s usage protocol (premise), thereby
removing these instances from contributing to the potential satisfia-
bility of the PVC. Any sequence of input signals found later during
verification, which satisfies the PVC, i. e., results in the error output
being asserted, will thus be a true violation of ϕc that followed the
correct protocol and found a worst-case computation that exceeded
the time bound. The communication / interaction delays can be en-
coded as sub-counters, such that only event sequences will be further
considered for verification, where a number of cycles corresponding to
a potential minimum response have already passed, but no more than
the maximum response time of the other module. Some examples for
other reasonable protocol filters in this case would be: A time bound
can only be exceeded, if a computation has actually been started, a
computation may only be started after the module has been properly
initialized with the reset signal, or the start signal may not be received
during a reset signal.



6.1 Worst-case Completion Time 179

Since we have an upper bound for the interesting number of cycles in
this scenario (Tc), we can apply bounded model checking-based (BMC)
SPC, as already briefly explained in Section 5.3.1.2. With this technique,
the PVC will be unrolled and thus rendered combinational, enabling
us to encode it into a Boolean formula to give to a Boolean satisfiability
(SAT) solver. The resulting PVC, unrolled for n (> Tc) cycles, would
be of a form as depicted in Figure 5.5, i. e., contain n copies of M
and n copies of the PrC, and have all feedback loops transformed
into feedforward connections to the next copy. We formulate a fixed
schedule as protocol filter, requiring an asserted reset signal in the first
and only the first cycle, an asserted start signal with valid inputs on
the input_bus in exactly the second cycle, and no more assertions of
either afterwards, as depicted in Figure 6.4. Applying our knowledge
of Tc, we then know that we only have to unroll for 2+ Tc + 1 cycles
to definitely reach a state which is more than Tc cycles away from the
assertion of the start signal. Unrolling for more cycles than this would
not further strengthen our verification, as any counterexample of a
WCCT bound proof would have already been found previously.

0 5 10 15 20 25 30 35

Unrolled cycles

7

7

7

7

3

C
on

su
m

er
-p

ro
vi

de
d

ti
m

e
bo

un
d

T
c

reset signal

start signal

computation

time bound

Figure 6.4: Examples of possible event sequences during WCCT evaluation.
The instances marked with 7 are sequences that would be re-
moved by protocol filtering.

Listing 6.1 provides an example of the implementation of such a
protocol filter in Verilog. The global error flag is only asserted if the
currently assumed event sequence does not violate the protocol. One
protocol process within the PrC takes note of the relative and absolute



180 non-functional property checking

order of the events, and forces the correct assumptions within the
SAT solver later, by preventing the violating false-negative instances
from generating counterexamples. An alternative way to implement
the filters would be to describe the PrC in SystemVerilog, which
provides additional verification statements and has built-in support to
formulate assumptions like the ones from Listing 6.1.

Listing 6.1: Example Verilog code excerpt to perform some protocol filtering
for the non-functional property WCCT.

assign error = time_exceeded && ~ignore;

always @(posedge clock or posedge reset) begin

if (reset && start) begin

// reset and start should never be high at the same time

ignore <= 1’b1;

end else if (~hasBeenReset && ~reset && clock) begin

// first clock cycle, we never have been reset

ignore <= 1’b1;

end else if (~hasBeenReset && reset && ~ignore) begin

// a reset signal as first signal, good instance

hasBeenReset <= 1’b1;

hasBeenStarted <= 1’b0;

end else if (hasBeenReset && ~hasBeenStarted &&

~start && clock) begin

// first clock cycle after good reset,

// we should have started here

ignore <= 1’b1;

end else if (hasBeenReset && ~hasBeenStarted &&

start && clock && ~ignore) begin

// good instance, started immediately after reset

hasBeenStarted <= 1’b1;

end else if (hasBeenStarted && reset) begin

// instance was reset after starting the computation

ignore <= 1’b1;

end else if (hasBeenStarted && start) begin

// instance was started more than once

ignore <= 1’b1;

end

end

6.1.4 Proof-carrying Hardware Flow

Figure 6.5 depicts the complete PCH flow for exchanging proofs of the
worst-case completion time of a module for both parties along with
their interaction points, where they exchange artifacts. The overall
flow entry is again on the consumer’s side at the upper left box, where
they first need to specify the required design capabilities and the
time constraints for the hardware module. Using the design specifica-
tion, the producer implements a suitable, i. e., fast enough, hardware



6.1 Worst-case Completion Time 181

module and afterwards extracts that module’s logic function from
the bitstream. As input to the SAT solver, they combine the protocol
filters, the timing information of the communication partners and
channels, the time bound Tc and the module’s implementation into
one single Boolean formula in conjunctive normal form (CNF). The
module producer has to iterate on these steps, should the SAT solver
fail to prove the formula, as this indicates a failure on their part to
meet the consumer’s demands, but once they prove the PVC to be
unsatisfiable, they can send the bitstream and the proof certificate as
proof-carrying bitstream (PCB) to the consumer. The consumer also
extracts the logic function from the bitstream, to avoid having to trust
the producer, and derives their own version of the Boolean formula.
Instead of a lengthy satisfiability analysis however, the consumer can
now compare the proof certificate against their own formula, and, in
case they match, retrace the proof steps to validate that the module
indeed meets the time bound even in the worst case.

ProducerConsumer
Hardware module 

and deadline 
specification

Implement design

Synthesize

Derive model and 
unrolling for 
module and 

property

Extract netlist from 
implementation

Extract netlist from 
implementation

SAT solver

Derive model and 
unrolling for 
module and 

property

Is the trace valid 
for this formula?

netlist

netlist

specification
& deadline

bitstream

HDL files

CNF
formula

unSAT
proof trace

CNF
formula

Accept bitstreamRefuse bitstream

yes
no

Figure 6.5: Proof-carrying hardware flow for worst-case completion time
proofs, showing both parties and their interaction points. Taken
from [50].

The flow steps in Figure 6.5 implement the PCH scheme with all
of its benefits, as explained in Section 2.3. Concerning the real-time
properties of the module, the consumer does not have to trust the pro-
ducer, as they never use any received results without validating them.
To completely eliminate the need for trust between both parties, the
method described here should obviously be combined with functional
verification, which can also be achieved using the PCH approach, as
already stated above. Together, the transmitted proofs would allow



182 non-functional property checking

the consumer to verify the relevant functional and non-functional
properties of the hardware module in a tamperproof way.

6.1.5 Case Studies

To show the feasibility of our proposed solution, we have implemented
both sides of the flow depicted in Figure 6.5 to conduct two case stud-
ies, again targeting a ZUMA overlay (cp. Chapter 4) and its synthesis
flow, since the closed-source nature of reconfigurable hardware ven-
dors’ tools and file formats still prevents us from extracting the full
configuration information from these bitstreams. As SAT solver we
employed PicoSAT [61] again for its ability to generate more compact
proof traces that can be validated by the accompanying tool Tracecheck
(see Section 2.4.4). All of our experiments were performed on a ma-
chine with an Intel Xeon CPU E5-1620 v2 @ 3.70GHz processor with
four cores and 16GiB RAM (plus 24GiB swap memory).

6.1.5.1 GSM Speech Synthesis Filter

As a first case study, we have applied our approach to a hardware
implementation of the telecommunication benchmark implementing a
short term synthesis filter used in the decoder of the GSM standard.
The filter is available as software version in the MiBench benchmark
suite [140], and is designed to process several analyzed speech sam-
ples per function call, out of a frame of 160 samples, to decode the
actual speech data from a reconstructed residual signal. Since the
filter processes samples sequentially, and the number k of samples to
analyze per call is a parameter of the filter, and thus an input to our
hardware module, a meaningful runtime bound should be expressed
dependent on k. Trying to prove a WCCT bound independent of k, or
its bit width, would obviously only work for the maximum number
allowed for this parameter, which in this case study would lead to a
quite complex proof. As both parties create the PVC independently
of one another, they have to agree in either case on a specific kmax to
be able to apply the BMC-based PCH method. Using induction-based
SPC, we could also prove a more general relation of k and the WCCT.
For this specific case study the relation would be WCCTsf = 95k+ 3
cycles without communication latencies.

6.1.5.2 Multihead Weigher Controller

For the second case study for this non-functional property we have
chosen an application of the subset sum problem from industrial au-
tomation: The controller of a multihead weigher whose worst-case
timing has an important impact on the surrounding production line.
Figure 6.6 shows an example of such a multihead weigher, which are
often used in the automated packaging of dry, fine-grained foodstuffs



6.1 Worst-case Completion Time 183

to fill each package with an amount whose weight is as close to a
target weight as possible. The weigher uses multiple scales (called
hoppers) which can be individually emptied into the package passing
underneath. The controller calculates for each new package a combina-
tion of hoppers to open, such that the combined weight minimizes the
difference to the target weight of the packages. We are using the hard-
ware implementation of a multihead weigher controller developed in
the master’s thesis [141], which uses 32 adders arranged in a pipeline
that feeds into a simple comparison module storing the subset and
combined weight of hoppers closest to the target weight. Each hopper
is assigned to an adder stage and thus up to 32 hoppers are supported.
Each cycle the controller passes a new bitmask into the pipeline that
specifies which stages should add their hopper’s weight, until every
possible combination of hoppers is processed. Adding a new hopper
to this system hence increases the runtime exponentially. Similar to the
other case study the number h of hoppers is an input to the hardware
module, and thus the WCCT directly depends on the primary inputs
and is bound dependent on the maximum number of hoppers hmax
(up to 32). The complexity for proving the time bound increases, as the
number of combinations grows, and with it the worst-case completion
time: WCCTmw = 39+ h+ 2h cycles.

Figure 6.6: A multihead weigher as used in industrial food automation to
combine fine-grained foodstuffs into packages that are each as
closely to a target weight as possible. Source: Ishida Europe / CC
BY-SA 3.0.

6.1.5.3 Evaluation

Figure 6.7 shows for the sample limits 1 6 kmax 6 10 the correspond-
ing provable WCCT expressed in clock cycles, and the combined
runtime of each side of the flow for both case studies, averaged over
nine runs each. Note that the consumer’s side of the flow does include



184 non-functional property checking

circuit synthesis in this case, as we have provided the PrC in Verilog.
Comparing the execution times of the flows for the producer and the
consumer, it is obvious that the consumer can indeed verify the WCCT
of the module at a fraction of the full verification’s computational cost
without the need to trust the module producer. Note that the y-axis
is in logarithmic scale, so for kmax = 10 in the first case study, the
producer requires 10 404.1 seconds to generate the proof, while the
consumer can validate the certificate in 61.8 seconds, and similarly for
hmax = 9 in the second one, with 1956.4 seconds versus 48.4 seconds.
Hence the runtime data show the pattern that is typical for PCH’s cost
of trust distribution. For hmax = 10 we ran into an out-of-memory er-
ror in the proof generation step, as the unrolled PVC is already rather
complex in this case. The cost of making the method tamperproof
by rebuilding the input formula independently on the consumer’s
side is evident from the third bars in each group in Figure 6.7, which
show the portion of the consumer’s flow runtime that has been spent
on ensuring that the proof has not been tampered with, instead of
only retracing the proof steps. For instance in the first case study at
kmax = 10 the actual trace check of the proof needed only an average
runtime of 22.1 seconds of the total 61.8 seconds flow runtime, and
the remaining 64.28% are tamperproofness overhead.

0.0 0.2 0.4 0.6 0.8 1.0

Parameter bound (kmax / hmax)

0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

ru
nt

im
e

[s
]

1 2 3 4 5 6 7 8 9 10

101

102

103

104

Multihead Weigher Controller

Producer

Consumer

Tamperproofness Overhead

1 2 3 4 5 6 7 8 9 10

101

102

103

104

Speech Synthesis Filter

Figure 6.7: Runtimes of the producer’s and consumer’s flow for both case
studies for WCCT PCH. The y-axis’ scale is logarithmic to be
able to also visualize the instances with smaller kmax /hmax.
Extended tables on pages 264 to 265.



6.2 information flow security 185

6.1.6 Conclusion

In this section we have presented a method for the distributed ver-
ification of the non-functional property worst-case completion time of
run-to-completion hardware modules as a PCH approach that shifts
the majority of the workload to the module producer. Following the
presented flow, the producer would compute a static analysis of the
reconfigurable module’s WCCT using considerable computational
resources and transmit the results as a proof certificate and bitstream
combination to the consumer. The consumer would then check the
validity of the certificate just before utilizing the module, which can
be done with very low computational resources in comparison to the
actual verification, as our data has shown. Our method guarantees
the WCCT of the run-to-completion module, making its execution
time predictable, which is, e. g., a basic requirement for its usage in a
real-time environment.

6.2 information flow security

Information flow security (IFS) denotes the protection against unin-
tended flows of information within software programs or hardware
circuits, for which we have to ensure the absence of such flows and
sometimes also the presence of required ones. IFS is typically asserted
using information flow tracking (IFT) techniques that assign labels or
tags to all data that enter the system and then track the propagation
of these labeled data, by defining and applying rules for the labels
of outputs from operations that work on them, especially for when
the labels do not match. In the most simple cases the data is classified
into two categories, e. g., tainted and untainted, which is why these
approaches are also often referred to as taint analysis.

Concrete IFS rule sets often fall into one of two categories: Con-
fidentiality, i. e., protecting sensitive information from leaking, and
Integrity, i. e., protecting trusted data from being compromised by
untrusted information. Recall that we focus on black-box verification
models of synchronous sequential circuits (SSCs) in our work, and
thus only consider IFS concerning the primary inputs and outputs of a
circuit, which does not include side channels, i. e., leaking information
through unmodeled physical means, such as the power consumption,
temperature, or timing variations that are not synchronous to the
global clock, which would require us to model the physical effects
of every circuit element for the verification. The type of information
leakage prevented by our verifications is typically denoted as a covert
channel, because an attacker would attempt to exfiltrate the data
covertly via existing channels, thus hiding the attack in plain sight.

In this section we will first discuss some related work on IFS and
IFT in Section 6.2.1, and then present two different approaches to



186 non-functional property checking

apply proof-carrying hardware to information flow security that both
have advantages and disadvantages. The first approach, presented in
Section 6.2.2, is based on the work of Hu et al. [142], whose combina-
tion with PCH was proposed and prototyped by a student for their
master’s thesis [125], which we conducted in the context of this thesis
project. The second method, described in Section 6.2.3, is original work
by me. Both methods have not been published in their PCH variant at
the time of writing.

6.2.1 IFS Background and Related Work

The need and necessity to control which information can flow where
in a system is as old as mankind itself, usually employed as a measure
to protect the security or privacy of an entity. It has thus also long
been formalized for the information flows of the modern information
era, where digitized information is ubiquitous, for instance in 1982

by Goguen and Meseguer [143], who defined it in terms of general
security policies which should be verified on security models of systems.
They state that the “purpose of a security policy is to declare which
information flows are not to be permitted. Giving such a security
policy can be reduced to giving a set of non-interference assertions.
Each non-interference assertion says that What one group of users does
using a certain ability has no effect on what some other group of users sees.”
From this and related works, a host of research sprung which has
formalized, evaluated, designed, tracked, and verified information
flows of systems, which in most cases primarily regarded the flows on
the software side, only using hardware to support efficient tracking
of information at runtime. Most of this research is not relevant in
this context, and we will thus not detail any of it here and refer
interested readers instead to, e. g., [144–146]. From [143] we will,
however, leverage their Definition 5, that a “security policy is a set of
non-interference assertions”, and will also construct our PCH policies
mainly from such assertions, but also keep in mind that we might
require a tool to enforce wanted flows.

In 2009, Tiwari et al. [147] took the research on tracking information
in software to a much deeper level, by proposing a microcontroller
constructed entirely from information-tracking gates, and called the
associated logic discipline gate-level IFT (GLIFT) logic. The main
observation of the authors was that all contemporary methods, which
predominantly worked on pure software models, assumed that any
operation that works on trusted and untrusted data will produce
untrusted data, thus tainting it, and that looking at the gate level
would allow them much more precise flow models. They accounted
this fact to the precisely defined logic functions at that level, where,
for instance, a mixed-trust 2-AND gate can block untrusted data from
propagating as long as the trusted input is 0, i. e., the untrusted data



6.2 information flow security 187

can only interfere with subsequent gates here when the trusted input
is 1. To enable a precise tracking according to their more accurate
rule set, they proposed to include shadow tracking logic for each gate,
which assesses the trust value of the data for which the actual gate
processes the logic value. By also adding appropriate trust propagation
shadow registers the entire shadow circuit for the trust evaluation
can be designed to operate synchronously to the original circuit. The
downside of the approach is a high logic overhead that is required
for the precision of the tracking, which is significantly larger than for
conservative approaches that lead to more false positives.

Later Hu et al. complemented GLIFT with a theoretical underpin-
ning in [148] proving the soundness of the approach to actually capture
the information flow. They also addressed the difficulties to apply the
method in a tractable yet precision-preserving way to a given circuit,
since the synthesis into gates generally already introduces a loss of
correlation information that can lead to false positives in reconver-
gent paths, e. g., words that are split into bits and then reconverge at
subsequent gates, when naively applying the method gate-by-gate. In
later work [149] they could even show that generating precise tracking
logic which generates no false positive for any input combination of a
given circuit is in fact an NP-complete problem. Actually generated
GLIFT shadow logic is hence usually only sound, but not precise, i. e.,
yields some false positives, but no false negatives; or it is precise only
for selected small parts of the target circuit and imprecise in all other
areas.

Over the years, GLIFT’s scope has been steadily extended, e. g., away
from the early two-element IFS lattices to multilevel ones in [150].
Such lattices were proposed by Denning [151] as a representation
of a policy’s web of non-interference assertions, by providing an
ordering and dependencies of different security classes, thus also
formalizing the direction in which information is allowed to flow.
Examples for simple two-element lattices are Untainted @ Tainted,
Trusted @ Untrusted, Unclassified @ Secret, Low @ High, each indicating
that information is only allowed to flow from untainted to tainted data
(or trusted to untrusted, unclassified to secret, low to high, . . .), but
never the other way around. Hence, two-element lattices formalize
one non-interference requirement, e. g., tainted data may not interfere
with untainted data, and lattices with more elements then formalize
more than one such requirement. Since GLIFT logic has to be able to
cope with uncovering all forbidden flow directions at runtime, the
shadow logic has to capture the lattice structure of the entire policy
at all times. For PCH we have no such constraint, however, unless
we want to specifically target runtime verification. We can therefore
dissect complex lattice structures into the underlying non-interference
assumptions and prove them one-by-one.



188 non-functional property checking

As an application of GLIFT, Kastner et al. proposed in [152] to
also apply it to reconfigurable hardware systems where intellectual
property cores (IP-cores) from untrusted vendors might induce un-
wanted information flows or leakages. Drawing on other earlier work
as well, they proposed a GLIFT-augmented isolation mechanism that
extends the concept of moats and drawbridges [38] and is able to
detect and prevent illegal flows at runtime. To achieve this effect, they
had to sacrifice a significant amount of resources and some of the
usual dynamics of such a system, however, restricting the potential
for reconfiguration to only specific regions.

In a second, more related application Hu et al. [142] combined GLIFT
shadow logic with formal verification (FV) techniques, i. e., formally
verifying assertions on the propagated trust values, to detect malicious
circuit alterations known as hardware Trojans. For this technique they
thus only created shadow logic for a verification model of the circuit,
in order to be able to reason over the provably sound results of the
information flow tracking with property checking, and could show
that it actually facilitated the detection of HW Trojans that attempted
to leak information. Leveraging this approach for PCH enhances the
scope of the consumer’s safety policies to be able to argue not only
over the functional behavior of a design under verification (DUV), but
also over the non-interference of certain inputs and outputs, which is
why it also became the foundation of the concept and prototype the
student developed in the master’s thesis [125].

Jin and Makris also proposed an IFT and PCH combination in [64],
but for their Verilog-level proof-carrying hardware intellectual prop-
erty (PCHIP) (cf. Section 2.3.2). For their approach they augmented
the Coq model of their subset of Verilog to also propagate security tags
along with the actual information, thus enabling Coq-based proofs of
non-interference assertions. Since PCHIP targets the register-transfer
level (RTL) and thus performs white-box verifications due to the com-
plete availability of the Verilog source code, they could also achieve
some rather interesting results for cryptographic IP-cores: They chose
a core mechanic of the underlying cryptography algorithm, such as the
application of permutations for a data encryption standard (DES) mod-
ule, and allowed it to remove security tags from incoming data. This
way they could show that the secret key could only reach the outputs
of the circuit after being processed by the core mechanic, and hence
only through legal, actual encryption. Black-box verification faces the
challenge here that a leakage of the key through the ciphertext output
ports is virtually undetectable, since the secret key is expected to influ-
ence the encrypted text, as this is the primary function of the circuit.
For a black-box circuit, the verification thus cannot determine through
information flow tracking alone if the key influences the ciphertext in
a legal way, or is being leaked unmodified by a HW Trojan, although



6.2 information flow security 189

it can check whether the key is being bypassed, i. e., not being used at
all to determine the output.

Note that more recently the authors of GLIFT have also extended
their approach to the RTL in [153], a method they hence named RTLIFT.
In contrast to the approach of Jin and Makris, they augmented the
original hardware description language (HDL) description of the
circuit by directly adding the description of the tracking logic to the
source code. They argued that they have much less false positives
when precisely tracking information flows through RTL operations
than with precisely doing so for gates, and have created two Verilog
operation libraries, one precise and one imprecise with less overhead,
containing operations that implement the original functionality along
with tracking shadow logic. They could show that generating the
shadow logic this way resulted in significant speedups of up to 5× for
the verification of security properties.

The disadvantage of this approach, however, is shared with the one
from Jin and Makris: Trusting the tracking of RTLIFT or the Coq model,
irrespective of whether it is only employed as a verification model
or actually synthesized to the hardware, implicitly requires trust in
the synthesis tools that transforms the HDL description into actual
circuits, which obviously again is equivalent to trusting source code,
which Thompson [68] proved to be not secure at all.

6.2.2 Approach 1: Shadow Logic

As indicated in Section 6.2.1, Hu et al. [142] have first proposed in 2016

to employ GLIFT shadow logic to detect HW Trojans in untrusted third-
party IP-cores. Their proposed detection flow is depicted in Figure 6.8,
and works as follows: First, they synthesize the IP-core (the DUV)
into a gate-level netlist representation, which they need as a basis for
GLIFT. Second, they augment the original module with GLIFT shadow
logic, thus obtaining an information-tracking version of the circuit.
Hu et al. then propose to submit this version of the circuit to formal
verification, i. e., property checking using a SAT solver that verifies
the DUV according to a predefined security property, which assigns
taint values to all inputs and outputs of the module. A successful
verification proves that there are no malicious modifications present,
while a failed one will produce a counterexample (CEX) as witness
of the failure and hence of the IFS-violating activity. Leveraging the
information from the CEX, the authors employ functional testing to
exactly determine the behavior (i. e., payload) of the HW Trojan.

Hu et al. have applied their detection method to several benchmarks
from Trust-Hub [154, 155] to showcase its capabilities, and were able
to successfully identify the HW Trojans in those benchmarks that leak
information. Surprisingly they could also detect the HW Trojans that
leak the encryption key through the ciphertext when encountering



190 non-functional property checking

IP core Gate-level 
netlist

Logic 
synthesis GLIFT logicGLIFT logic 

generation

Security 
property

Trojan
free

Pass

Counter 
example

Fail Trojan
behaviour

Functional 
testing

Formal 
verification

Figure 6.8: Flow to detect hardware Trojans in third-party IP-cores, as pro-
posed by Hu et al. Taken from [142].

a specific plaintext, despite employing a black-box verification. This
effect is due to technical reasons of the RSA encryption, however,
where the private part of the key is only the private exponent, but
to actually decrypt a message the algorithm would need to use this
exponent in combination with the modulus, which is also part of the
public key. Since the HW Trojan only leaks the exponent through the
ciphertext, GLIFT can detect the absence of a flow from the modulus to
the ciphertext for the trigger plaintext, and hence prove the existence
of the malicious modification. For all eleven considered benchmarks
from Trust-Hub, Hu et al. report runtimes for the generation of their
GLIFT logic of at most 3 seconds and formal verification times ranging
from 319 to 991 seconds, with an average of ≈ 485 seconds.

Seeing that their approach already allows to accurately track infor-
mation through hardware circuits, disregarding the false positives, and
will yield an unsatisfiable SAT problem instance for the cases where
the security property holds, there is not much missing to convert the
approach from this state into a ready-to-use bitstream-level PCH certi-
fication method, and we have therefore implemented a corresponding
PCH flow as depicted in Figure 6.9. In contrast to a typical instance of
this flow, we first have to match the abstraction level of gates when
starting with a configuration bitstream, to be able to apply GLIFT at all.
We achieve this by reading the reconstructed netlist into ABC [30] that
internally uses the AIGER [74] format, which essentially is a network
of AND gates and inverters. ABC can technology-map such a circuit
to a standard gate library and write it to a structural Verilog file, thus
giving us the required gate-level netlist. From here we add the shadow
logic using a custom Python script that exchanges the mapped gates
and latches by equivalent ones that track the information according
to the GLIFT rules. Finally, we pass the augmented circuit to the cer-
tificate generator on the producer’s side, or to the validator on the
consumer’s side. As underlying mechanism for checkable proofs we
can employ the induction-based SPC to find an inductive strength-
ening of ¬error in the property verification circuit (PVC). Note that



6.2 information flow security 191

the addition of the shadow logic is only required for the verification
model, and not for the actual circuit. After the validation of the se-
curity property, the consumer can discard the augmented circuit and
instantiate the original one, which is then proven to be information
flow secure.

ProducerConsumer
Define design

specification and 
IFS policy

Implement design

Synthesize

Generate property 
verification circuit

Extract gate-level 
netlist from 

implementation
Extract gate-level 

netlist from 
implementation

Generate 
certificate

Generate property 
verification circuit

Is the proof valid 
for this PVC?

netlist

netlist

specification
& IFS policy

bitstream

HDL files

PVC

certificate

PVC

Accept bitstreamRefuse bitstream

yes
no

Add shadow logic
GLIFT
netlist

Add shadow logic

GLIFT
netlist

Figure 6.9: Entire proof-carrying hardware flow for both parties, which em-
ploys GLIFT shadow information tracking logic to certify infor-
mation flow security. Taken from [125].

For the definition of PCH safety policies, which in this case translate
to information flow security policies, we leverage SystemVerilog asser-
tion syntax, as presented in [142]. The IFS property verification circuits
for this approach will thus be automatically generated assertion miters,
which guarantee that all encoded taint assertions hold if the miter can
be shown to be unsatisfiable. Following this PCH flow thus enables
us to harness the powerful information flow tracking capabilities of
GLIFT in the proof-carrying hardware context. In contrast to other
PCH methods, however, this one requires the consumer to augment
the circuit they receive from the producer, thus adding the GLIFT gate
library and application script to their trusted computing base (TCB),
and performing these steps to their required effort. Hu et al. [142] have
reported this overhead as being quite insignificant, however, since we
have to start from reconstructed netlists when adding shadow logic in



192 non-functional property checking

our flow, we experience a slightly larger impact, as we will discuss in
the experimental evaluation of the approach in Section 6.2.5.1.

6.2.3 Approach 2: Non-interference miters

To avoid adding to the TCB compared to the flow from Section 3.2,
as the approach presented in the previous section does, we require a
method to directly prove information flow security for an implemen-
tation of the DUV. As per Definition 5 from Goguen and Meseguer
[143], the most important building block to formulate IFS policies
are non-interference assertions. We thus propose a non-interference
miter (NIM) in this section which can be leveraged during property
checking to certify such policies. Such a miter is a specific application
of self-composition miters (SCMs), whose broader context and appli-
cability we will discuss in Section 6.4. Considering the observation
from Section 6.2.1 that every complex security lattice can be broken
down into multilateral non-interference requirements, we can focus
in our explanations here, without loss of generality, on the simple
two-element lattice Untainted @ Tainted that only imposes one such
requirement.

6.2.3.1 Proving Non-interference

We assume the same I/O port classification style as with GLIFT, since
this is suitable for black-box verifications. Each input and each output
port is thus assigned to one of the two security classes, and we allow
information to flow from inputs classified with Untainted to outputs
classified as Tainted, but we require the non-interference of Tainted
inputs with Untainted outputs. Translating the requirement from [143]
into our context, this means proving that the information from one class
flowing through the circuit elements has no effect on what users can see from
the information flows of some other group. As stated in the beginning of
Section 6.2, this only concerns the observable behavior of the DUV to
prevent covert channels, and does not prevent physical side channels,
i. e., the leakage of information through physical means other than
using the primary outputs of the circuit. The goal is hence to make sure
that the observable behavior at Untainted outputs is not influenced by
Tainted inputs.

To formally assert this non-interference, we propose to employ non-
interference miters as the one depicted in Figure 6.10. As stated before,
these structures are special cases of what we call self-composition
miters (cf. Section 6.4) and as such are based on a composition of the
DUV with itself without modification inside the PVC, since we are
here not interested in behavioral differences due to implementation
dissimilarities, but due to illegal information flows. Note that the
rightmost miter structure is the same as in a regular miter circuit, such
as the one from Figure 2.14, and compares the outputs of both circuit



6.2 information flow security 193

copies to one another, raising the error flag in case of any mismatch.
Instead of providing both implementations with the same inputs in
every cycle, however, we only share the Untainted inputs among them,
and split the Tainted ports such that each copy gets their own version.
Processing this model with a verification engine thus considers all
possible computational paths in which the designs under verification
use the same Untainted input signals, but different Tainted ones. For
the result comparison, we furthermore filter the ports to only compare
the Untainted outputs to their second copy, by ANDing all outputs
with a bitmask that contains a 1 only at each position of such an
output.

Property
checker

DUV

in_untainted

out

n-s

n-s
m

error

DUV’ =1

≥1

=1

out' m
&

&

out_untainted_mask

m

m

in_tainted

in_tainted’ s

s

Figure 6.10: Miter for proving the non-interference of Tainted data with Un-
tainted outputs.

Leveraging this miter structure, we can show the desired non-
interference requirement for synchronous sequential circuits: Since
both DUV copies are sharing the same Untainted input data, any dif-
ference in the behavior observable at the Untainted outputs can only
be due to the difference in the Tainted inputs, and hence the error
flag can only be raised if information can somehow flow from Tainted
inputs to Untainted outputs, explicitly or implicitly. A possible break
or violation of the non-interference requirement will thus manifest as
a satisfying assignment for the NIM, and we can therefore conclude
that showing the unsatisfiability of this miter will prove the absence of
any information flow that would violate the security property, as this
directly proves that it is impossible to influence the Untainted outputs
by setting the Tainted inputs.

A larger security policy can then be constructed by showing each
non-interference assertion separately and packing all resulting certifi-
cates together into the proof-carrying bitstream (PCB). This approach
would allow for arbitrarily complex security lattices in the policies for
the information flow security, allowing the consumer much freedom in
expressing them. Moreover, because of the exact doubling of the DUV
in the PVC, these miters exhibit a high degree of redundancy in the
form of self-similarities, which allows verification engines to greatly re-
duce the problem size through structural optimizations before starting
the actual verification, as explained in Section 2.2.3.



194 non-functional property checking

Especially valid designs with no illegal interference can have two
completely self-similar branches connected to each XOR gate that
feeds into the final OR gate, since any dissimilar behavior here only
affects the outputs which are blocked by the bitmask. This means
that the verification engine can prove that all of the XOR gates will
always be constant zero and can be immediately removed, thus finally
leaving only an unsatisfiable empty miter that outputs a constant
zero as error flag. Designs that adhere to the IFS policy can therefore
often be already proven to be secure just by applying such structural
optimizations that exploit this inherent sequential correlation effects
of the latches and gates.

Obviously an empty miter will not allow for a meaningful certificate
in a PCH context, which can leave the producer with the dilemma that
the property is too complex to prove unmodified, but too self-similar to
leave anything behind to actually verify after structural optimizations.
To deal with this rather typical case for IFS, we have leveraged the
observation from Section 5.3.2 that the producer can transparently
strengthen the property before performing the verification without any
side effect or additional required effort on the consumer’s side. The
producer can thus extract all the sequential correlation information
that the verification engine would exploit during the preoptimization
and apply it as strengthening to the original property. Since all these
correlation effects induce constraints on the circuit behavior which
correlate the state of latches or the values of gates, or even restrict
them to constant values, the state space in which the property holds
shrinks when the producer adds them to the PVC. This can easily
make the difference between a feasible or infeasible verification in
terms of runtime or required memory, as we have observed in our
benchmarks, which we will present in Section 6.2.5. For more details
on this technique, see Section 6.4.

6.2.3.2 Proving Interference

Certifying the inverse property of guaranteed interference, which
proved helpful in the approach presented in Section 6.2.2, is just as
simple in a naive approach, but much harder to achieve for useful vari-
ations, requiring us to resort to quantified Boolean formulae (QBFs).
Since these can neither be solved, certified, nor validated using the
current PCH tool flow, it is for the time being much more convenient
to observe that requiring a specific interference pattern between a set
of inputs and a set of outputs constitutes a partial functional equiv-
alence checking (FEC) problem. Even in cases where full FEC is not
viable due to the size or complexity of the DUV, we can therefore
capture the specific behavioral interdependencies between the I/Os of
interest and then create a partial miter function to check their behavior
in the implementation against this specification. Using this approach
together with the NIMs introduced above would allow us to detect



6.2 information flow security 195

covert channels with the current tools in considerably larger designs
than with using FEC alone, and this could still be extended by using
the shadow logic from the previous section. For the sake of research
and gaining insights into the properties required for ensuring infor-
mation flow security, we will nonetheless identify a path to a future
solution on the following pages.

For the simple case of certifying interference, consider that the
non-interference property, which the miter in Figure 6.10 can prove,
can also be formulated as follows: There is no combination (it1, it2, iu)
of two input sequences for Tainted and one for Untainted inputs, for
which the Untainted outputs of two exact same copies of the design
under verification, I, would differ. Or written as QBF:

@(it1, it2, iu) : untainted(I(it1, iu)) 6= untainted(I(it2, iu))

Note that we omit details such as bit widths and basic sets for visual
clarity here, and that untainted and tainted shall be two simple
helper functions that just apply the corresponding bit mask to the
set of outputs, thus eliminating all but the denoted output signals.
As described above, this property can easily be proven with the non-
existence of a CEX, e. g., by showing the unsatisfiability of a SAT
problem that encodes the inequality of the outputs for combinational
circuits.

General, unconstrained interference between Tainted inputs and
Tainted outputs, i. e., expressing the requirement that information
can indeed flow, can be formalized as follows: There is at least one
combination (it1, it2, iu) of two input sequences for Tainted and one
for Untainted inputs, for which the Tainted outputs of two exact same
copies of the design under verification, I, differ:

∃(it1, it2, iu) : tainted(I(it1, iu)) 6= tainted(I(it2, iu))

Similar to the non-interference case, this can be encoded in a SAT
problem instance, mostly differing from the previous one by inverting
the bitmask for the outputs to consider for the inequality. If the Tainted
signals then indeed are able to influence the Tainted outputs, as should
be the case, then the SAT solver will produce a CEX that can function
as a witness here, i. e., a combination of input sequences that indeed
lead to a difference in the considered outputs. This witness can be
used in exactly the same way as an unsatisfiability certificate in a PCH
flow, enabling a consumer to quickly validate that the property is
indeed true. Unfortunately, this property is rather weak in this form,
and would, for example, not have spotted the RSA key leakage from
the previous section, since in that case the modulus did affect the
output in almost all cases, there was just one specific plaintext pattern
for which it did not. Hence a producer could produce a witness for
the general interference property, but still hide such a HW Trojan in
their design.



196 non-functional property checking

Formalizing a stronger property that would catch such instances
by means of finding information deviation in an SCM is considerably
harder. For instance, one possible tighter security property would be
to demand that every Tainted input bit will always affect the Tainted
output somehow, but its applicability strongly depends on the DUV,
since every circuit that computes a non-injective function at its Tainted
outputs will potentially violate this. Formally, this property could be
expressed as follows: For all subgroups B with at least one of the
Tainted inputs, and for all input sequences iu for Untainted inputs,
there is at least one combination (it1, it2) of two input sequences for
Tainted inputs that leads to an observable difference at the Tainted
outputs of two exact same copies of the DUV, I. Assuming that B is
given as bitmask with Hamming weight of at least 1:

∀B,∀iu, ∃(it1, it2) : tainted(I(i
t
1, iu)) 6= tainted(I(B · it2+B · it1, iu))

This check would ensure that we consider all possibilities to share
also some of the Tainted inputs between the instances, namely the ones
identified by bitmask B, and that the remaining inputs can still be used
to achieve an observable difference in the Tainted outputs. Checks of
this kind represent liveness properties and can be implemented using
SystemVerilog’s cover statement.

The presented RSA key leakage HW Trojan would fail this check,
as when we use B to only consider the modulus, then there is one
specific Untainted trigger plaintext pattern for which any change in
the modulus (it2) will have no impact on the Tainted ciphertext, and
we can therefore not find a pair of Tainted input sequences to achieve
a difference in the output. Applying checks like this would, however,
also require a carefully considered input driver for the verification
environment, as, e. g., the unrestricted consideration of a common reset
signal will likely also violate this property, since it forces the entire
circuit to a known state, irrespective of any other input.

To be able to use such a check in a PCH environment, we would
require automated tool support to verify a QBF, produce a proof
as a certificate of this verification, and then some means to validate
that certificate afterwards. Judging from the development in the past
decade on the theorem prover and satisfiability modulo theories (SMT)
solver Z3 [156], this tool could become a base for such complex tasks
at some point in the future. Wintersteiger, Hamadi, and Moura have
introduced in [157] a means to solve quantified bit-vector formulae
(QBVFs) directly using Z3, without resorting to other theories, making
this a viable and probably efficient verification path for hardware
property checking. With the introduction of the front-end driver Sym-
biYosys [158] for Yosys [75], which bridges the powerful synthesis
capabilities of Wolf’s tool with the highly efficient verification mech-
anisms of Z3, this became even more attractive, since it streamlines
the process of verifying a design, also by leveraging new language
constructs from SystemVerilog.



6.2 information flow security 197

The most important aspect of any verification engine for the con-
sideration of including it into a PCH flow, however, is its capability
to save a checkable proof for later inspection, and provide a means to
quickly validate the integrity and correctness of such a file, when it is
received from untrusted sources, and in this regard, Z3 is sadly still
lacking at the moment. While Moura and Bjørner [159] have included
the capability to store proofs, and we could thus indeed recover and
transfer these artifacts as certificates, the tools lacks the capability to
validate them later in a time-efficient fashion. There is some work
by Böhme et al. [160] that aims to reconstruct bit-vector proofs from
Z3 within the interactive theorem prover HOL1, without actually re-
quiring human input. This can be seen as a first step to address this
shortcoming, however, the authors could only achieve a success rate
of 73.5% with their reconstruction for a set of benchmarks, which
obviously is not sufficient to currently consider this for inclusion in
PCH. They attribute the difficulty of reconstruction to the lack of
theory-specific reasoning within the recorded proof, which seems to
be rather significant especially for the theory of fixed-size bit vectors,
which the proofs in our context would use most likely.

This chain of tools would thus currently come closest to be able to
cope with the above-mentioned formulae, and their development and
collaboration is highly promising, but they are currently not mature
enough in important aspects to be able to support a PCH flow.

6.2.4 Gray / White-box Verification

One noteworthy aspect of Jin and Makris’ work in [64] was their ability
to guarantee that a secret key was only able to reach the ciphertext after
having passed a specific core mechanic of the encryption algorithm.
They achieved this effect by specifically allowing the instances of
this core mechanic circuit parts to remove the taint from the data,
allowing them to prove that all outputs of the encryption DUV are
always classified as Untainted, even though the tainted key was used
to compute the ciphertext.

With a little help from the producer, we can turn the black-box
verification usually employed for bitstream-level PCH into a gray-
box verification, which would allow us to achieve a similar effect: By
having the producer mark the specific logic of each instantiation of
the core mechanic, or some other circuit part, the consumer is able to
reconstruct a hierarchical placed and routed netlist from the bitstream,
with each of these instances separated from the main circuit. Using
regular functional equivalence checking, the producer can generate a
certificate for each instance, proving that the marked area is indeed the
desired circuit part and nothing more, thereby giving the consumer

1 https://hol-theorem-prover.org

https://hol-theorem-prover.org


198 non-functional property checking

the confidence required to allow the outputs of these parts to be
considered as Untainted, irrespective of the data that flows into them.

We can remove the taint from the incoming data in an NIM or a
GLIFT-augmented PVC by logically cutting the identified instances
from all DUV copies, and exposing their outputs as new primary
inputs of the circuit, as shown for circuit part P in Figure 6.11. By
adding all these new ports to the shared, Untainted inputs of the NIM,
or marking them as Untainted for GLIFT, we can make sure that any
difference in the observable behavior of the Tainted outputs cannot be
due to information flows originating from these removed circuit parts.

DUV
out min n

P
k

Figure 6.11: Circuit part P is assumed to obfuscate Tainted data, thus remov-
ing the taint, leaving only Untainted data at their output. By
shifting P logically out of the DUV, this can be modeled as
additional Untainted inputs.

Likewise, we can add all inputs of those parts to the Tainted outputs,
which could be useful to enforce an interference, i. e., to show that the
key indeed arrives there. Should we only try to prove non-interference,
however, we can simply leave the inputs dangling, allowing the verifi-
cation engine to perform structural optimizations on the miter before
solving it, to reduce the verification complexity.

Using this technique, we can thus also prove the very useful property
that the secret key does not interfere illegally with the ciphertext. This
combination of bitstream-level PCH with several small functional
equivalence proofs and one large non-interference proof can thus
quickly and efficiently prove to a consumer that the key is used only
for valid encryption purposes, and is not leaked via a covert channel.

6.2.5 Experimental Validation

We have implemented concrete flows for both approaches to ensure
IFS properties with PCH, and have conducted a series of experiments
using the following benchmarks from Trust-Hub and OpenCores,
with and without illegal information flows: AES-T100, AES-T400,
AES-T1000, AES-T1100, AES-T1200, AES-T1600, AES-T1700, DES, and
PIC16F84-T300. We have modified some benchmarks slightly to create
versions that are synchronous sequential circuits, and thus compatible
with our current general flow. All of our experiments were averaged
over ten runs on a compute cluster with a time limit of seven days
for each complete flow iteration, a verification time limit of ten hours,



6.2 information flow security 199

and a limit of 20GiB main memory per job. The cluster runs Scientific
Linux 7.2 (Nitrogen) and comprises nodes with an Intel Xeon E5-
2670@2.6GHz (16 cores).

The 128-bit AES IP-cores are HW Trojan benchmarks from Trust-
Hub [154, 155], and have also been used by Hu et al. [142] to showcase
GLIFT’s performance at detecting malicious alterations of the infor-
mation flow. The benchmarks with the numbers 100, 1000, 1100, and
1200 are due to Lin et al. [161], and leak the secret key via the device’s
power consumption as a new side channel, by controlling a hidden
leakage circuit with large capacitance. They hide this transmission
from evaluators by spreading the leakage of individual key bits over
many clock cycles via a technique known as code division multiple
access (CDMA), which will render their signal virtually indistinguish-
able from noise for anyone who does not know their own secret HW
Trojan CDMA key. Since our approach, as well as the GLIFT detection,
can only discover covert channels and not new physical side channels,
we follow the assumption from [142] that the leakage circuit is out-
side of the DUV, so that we can inspect the control signal between
them, which contains the CDMA-encoded key. AES benchmarks 400,
1600, and 1700 have been proposed by Baumgarten et al. [162], and
creatively misuse an open pin of the FPGA as antenna to broadcast the
key as modulated RF signal at 1560 kHz, which an attacker can pick
up as audible beeps using an ordinary AM radio within a very short
distance of the device. We have also created a gray-box verification
modification for benchmark AES-T100, as explained in Section 6.2.4,
where we allowed the advanced encryption standard (AES) key ex-
pansion and the first XOR of the plaintext and the key to declassify
the data, such that we can show that no secret information whatsoever
reaches the outputs.

The 56-bit DES IP-core benchmark from OpenCores [163] is, to the
best of our knowledge, the exact same version used by Jin and Makris
in [64], and is thus our attempt to recreate their experiments presented
for IFT with PCHIP. Like them, we have marked the plaintext and key
as secret, but not the subkeys computed inside the module, since our
approach targets black / gray-box verifications. We have created four
different test cases using this scheme: 1) A pristine version in which
we prove that only the ciphertext is affected by the secret inputs, which
is trivial since there is no other output, 2) an infected circuit that leaks
the key through a CDMA covert channel, just as the AES benchmarks,
3) a version that mimics Jin and Makris’ gray-box verification style
and thus considers DES’ initial and final permutations, as well as the
module instantiations as secure enough to declassify the secret data,
enabling us to prove that no secret information reaches any output,
and finally 4) a HW Trojan-infected version similar to theirs, which
leaks a subkey through the ciphertext under rare circumstances.



200 non-functional property checking

For the Trust-Hub benchmark PIC16F84-T300, an infected version
of the RISC 16F84 soft-core from OpenCores [164], we have added
a cryptographic layer, since the HW Trojan was initially just leaking
some static internal signal to the data output ports that connect to
the electrically erasable programmable read-only memory (EEPROM),
which a black-box verification cannot tag as secret. We have therefore
augmented the design with encrypted RAM, patching all received
data from the RAM through an external cryptographic core that is not
included in the benchmark, and the other way around for the data that
should be written. We have then modified the HW Trojan to leak the
secret key used to decrypt the memory instead of the former internal
signal.

Since proving IFS through non-interference policies can be done
trivially when there is not even a possible path from any Tainted input
to an Untainted output, we have furthermore augmented all crypto-
graphic benchmarks with an FSM that contains a feigned leakage as
red herring. This FSM holds a set of flip-flops (FFs), which it first
drives with a ciphertext obtained from a second instance of the crypto-
graphic core, thus tainting them. After a fixed amount of clock cycles,
the FFs are cleared, and therefore untainted again, after which point
the FSM will temporarily drive the leak point with this signal, before
reconnecting the targeted covert channel to its original driver. This
process does not introduce actual leakage, but to verify this fact the
verification engine will have to establish the possible sequence of
events to prove that the signal will have been untainted in every case
before being routed to Untainted outputs, thus generating verification
effort that is primarily determined by the complexity of the copied
cryptographic core.

6.2.5.1 Approach 1: Shadow Logic

Table 6.1 shows the results of the series of experiments for our GLIFT-
based IFS proof-carrying hardware certification flow applied to the
HW Trojan-free benchmark versions for which we can generate an ac-
tual PCH certificate. The table lists all benchmarks we just introduced,
with the average runtime of the consumer and the producer for their
respective relevant efforts, i. e., only the validation and verification.
Our flow could successfully prove the security of each benchmark
for black and also for the gray-box verification. The fourth column
lists the tamperproofness overhead that the consumer has to spend as
percentage of their runtime. For instance, the consumer spends ≈ 95%
of the 434.9 seconds of AES-T100’s certificate validation, i. e., about
415 seconds, just to create the PVC from the reconstructed netlist of
the DUV themselves. This effort encompasses the augmentation of
the DUV with shadow logic, the generation of the assertion miter,
the reduction of the PVC to the error signal’s cone-of-influence, and
the translation into a format readable by the verification engine; the



6.2 information flow security 201

consumer performs these steps independently to ensure that they
will be able to detect any malicious tampering with the proof by the
producer. The last column shows our primary evaluation criterion
for PCH approaches, i. e., the shift of verification workload from the
producer to the consumer, and shows that there can be some benefit
of employing PCH in this environment: With shifts from 25% to 86%,
the producer pays the majority of the necessary cost of trust in some
of the cases, despite the significant overhead that the consumer has
to spend for the tamperproofness of the method. In two cases (gray-
box AES-T100 and PIC16F84-T300) however, the generated PVCs were
trivially unsatisfiable after performing a cone-of-influence reduction,
such that the producer could not perform an induction and could
therefore not pre-compute a certificate for the consumer.

Table 6.1: Flow runtimes of both parties for proving the information flow
security through gate-level IFT. A G indicates a gray / white-box
verification. Averages of 10 runs. Extended table on Page 266.

Benchmark Runtimes [s] Consumer Workload

Cons. Prod. overhead [%] shift [%]

AES-T100

434.910 644.526 95.37 32.52

G 302.432 302.432 99.95 —

AES-T1000 147.599 598.651 98.34 75.34

AES-T1100 441.860 650.057 95.35 32.03

AES-T1200 435.116 649.786 95.37 33.04

AES-T400 424.760 572.077 95.61 25.75

AES-T1600 415.051 568.416 95.43 26.98

AES-T1700 409.884 560.283 95.35 26.84

DES
2.554 19.008 83.17 86.57

G 1.649 2.780 89.35 40.70

PIC16F84-T300 1.561 1.561 91.20 —

In our experiments we have in fact found that each GLIFT asser-
tion miter was effectively reduced to an empty circuit for the HW
Trojan-free benchmarks, since the verification engine could immedi-
ately remove all regular non-shadow logic and propagate the statically
assigned taint from the inputs far into the circuit, leaving only a small
part of the DUV that could be completely optimized away using (some-
what expensive) structural optimizations in most cases. To enable the
producer nonetheless to create a certificate at least for all but the two
benchmarks that completely collapsed, we have applied the property
pre-strengthening technique that we have described in Section 5.3.2,
i. e., we have derived sequential correlation information from the as-



202 non-functional property checking

sertion miter of the benchmark and then applied them as additional
constraints for the verification step, which enabled the producer to
easily verify the unoptimized PVC for all of the benchmarks.

As is evident from Table 6.1, the runtimes for the GLIFT approach
are mostly dominated by creating the PVC with the shadow logic; a
process that requires considerable effort to go from the reconstructed
netlists, which can easily reach sizes of 100MiB and above for the
circuits that contain two AES IP-cores, via gate-level netlists back
down to the abstraction level of the verification engine. For the ten
benchmarks from Trust-Hub considered by them, Hu et al. [142]
report runtimes for the generation of their GLIFT logic of at most
three seconds and FV times ranging from 319 to 991 seconds for the
infected versions, with an average of ≈485 seconds. Our benchmarks
are roughly twice the size due to the feigned information leakage and
our shadow logic augmentation has to operate on the reconstructed
circuit, which is flat and no longer hierarchical. Especially that second
factor dramatically increases the required effort for a GLIFT PVC on
the consumer side. Since the concrete benefit of employing PCH here
thus mostly depends on the a priori unknown difference between the
augmentation and the verification complexity, the payoff is somewhat
uncertain, while the effort on the consumer side is significantly higher
than for any other PCH method that we have explored for this thesis.

Table 6.2 lists the runtimes of the producer for the HW Trojan-
infected versions of the benchmarks, as well as the time needed to
compute the GLIFT-augmented PVC and, where available, the run-
times reported in Hu et al. [142] for the same benchmarks, modulo our
modifications. While optimizing for this property-violation scenario
is outside of PCH’s scope, it provides an interesting insight into our
IFT approaches. For the HW Trojan-infected version, the producer
obviously cannot generate a certificate, as the verification will always
fail, either because the engine times out, runs out of memory, or finds
a witness for the information leakage. This, however, also prevents the
consumer from having to evaluate the circuit, thus technically leaving
100% of the workload for all failed designs with the producer. Should
the producer try to cheat and send an infected version, claiming it
to be verified but not certified, the consumer can simply reject the
design if the verification does not succeed with a small time bound
after performing structural optimizations, thus loosing no more than
roughly the time indicated in the previous Table 6.1.

From the results in Table 6.2 we can clearly see the difference be-
tween our overall verification approach, i. e., computing inductive
strengthenings (ISs) of the “¬error” properties of the PVCs, and the
one used by Hu et al.; the presented GLIFT runtimes are the sum of
the shadow logic generation and proof times presented in [142] and
hence generally comparable to our runtimes for the producer. While
their results exhibit verification times that are mostly unaffected by



6.2 information flow security 203

Table 6.2: Verification runtimes and memory peak to detect hardware Tro-
jans that violate the information flow security through gate-level
IFT versus runtimes from Hu et al. [142] (where available). A G
indicates a gray / white-box verification. Averages of 10 runs for
our flows.

Benchmark Runtimes [s] Memory peak

Prod. PVC GLIFT [MiB]

AES-T100

456.405 397.981 410 3125.16

G 164.561 148.567 — 1213.15

AES-T1000 405.986 350.274 411 3125.49

AES-T1100 406.688 351.756 408 3125.64

AES-T1200 429.931 372.768 412 3127.09

AES-T400 — 351.446 406 > 20 480

AES-T1600 — 396.738 400 > 20 480

AES-T1700 — 375.877 414 > 20 480

DES
5.277 1.702 — 256.61

G 1.986 1.342 — 46.83

PIC16F84-T300 53.875 1.212 — 94.19

the specific design of the HW Trojan, our verification effort for infected
circuits seems to highly depend on the implemented trigger and pay-
load functions. For most of the benchmarks these two were not very
sophisticated and easily detected, but for the AES benchmarks 400,
1600, and 1700 the verification engine actually consequently exceeded
our memory limit of 20GiB while trying to prove or disprove the as-
sertion miter, as listed in the last column of the table. We attribute this
difference to the fact that Hu et al. crafted each verification specifically
by hand for the case study, effectively performing a multistage white-
box verification based on checking combinational circuit parts and
building proofs using their knowledge of the interdependencies, while
we study fully automated induction-based black-box verifications of
the sequential circuits for the PCH context.

From a producer’s point of view, this very high effort might seem
not desirable, but since it is a direct consequence of the DUV’s failure
to comply to the required IFS property, this is no concern for PCH;
correctly implemented secure circuits lead to miter structures which
are mostly redundant or full of propagatable constants by design, thus
inducing very low effort for both parties once they are set up. For
the gray-box verifications, the experiments listed in Table 6.2 were
successful in the sense that our approach, as expected, indeed detected



204 non-functional property checking

the possible leakage of secret information that did not pass any of the
declassification checkpoints.

6.2.5.2 Approach 2: Non-interference Miters

To show the feasibility of our approach using NIMs, we have im-
plemented several such miters for the same set of benchmarks from
Trust-Hub and OpenCores. Table 6.3 shows the results of the experi-
ments for the HW Trojan-free benchmarks, i. e., the PCH flow runtimes
for consumer and producer. The NIMs could also prove the informa-
tion flow security of each design successfully. The columns of Table 6.3
are the same as in Table 6.1 and thus show the required validation ver-
sus verification times, the tamperproofness overhead for the consumer,
as well as the shift of verification workload to the producer.

Table 6.3: Flow runtimes of both parties for proving the information
flow security through non-interference miters. A G indicates a
gray / white-box verification. Averages of 10 runs. Extended table
on Page 267.

Benchmark Runtimes [s] Consumer Workload

Cons. Prod. overhead [%] shift [%]

AES-T100

26.114 97.542 60.42 73.23

G 27.807 133.982 45.17 79.25

AES-T1000 8.568 815.016 85.94 98.95

AES-T1100 27.454 101.461 60.30 72.94

AES-T1200 26.068 98.891 60.63 73.64

AES-T400 23.963 73.216 63.11 67.27

AES-T1600 24.737 74.007 63.20 66.57

AES-T1700 25.043 74.779 63.71 66.51

DES
0.989 3.496 71.86 71.71

G 0.866 2.402 80.36 63.93

PIC16F84-T300 0.871 3.582 67.16 75.67

As indicated above, an NIM for a circuit that does not violate the IFS
is highly redundant and thus usually solvable through structural opti-
mization alone so that we again had to apply the pre-strengthening
technique using sequential self-correlation information. For the NIMs,
the feigned information leakage introduced into the cryptographic
benchmarks prevented the resulting PVCs from being trivially unsatis-
fiable, allowing us to demonstrate an IFS verification in a more realistic
setting than the direct HW Trojan-free versions would have allowed for,
since the introduced HW Trojans originally implement side-channels
and not covert channels. The table shows that this non-interference



6.2 information flow security 205

miter-based approach does not suffer from the same computational
overhead for deriving the PVC as the GLIFT technique does: Both
the absolute time as well as the relative time when compared to the
certificate validation are significantly lower, with most of the bench-
marks requiring between 60% to 70% of the consumer’s runtime to
ensure the tamperproofness. By performing a costly minimization
of the IS on the producer’s side and even pre-solving an exported
CNF version of the consumer’s certificate check with the GRAT tools
(cp. Section 2.4.7) when it lowers the effective runtime, we are able
to convince a consumer of the correctly implemented information
flow security of each benchmark in under 30 seconds. Note that these
optimization overhead times of the invariant are not counted towards
the verification time of the producer in Table 6.3, which would not be
a fair comparison, since they do not technically require these steps
to convince themselves of the unsatisfiability of the miter. Nonethe-
less, the achieved shifts of verification workload range high between
64% to 99% for our benchmark set, despite the total runtime for the
producer’s side of the flow being also significantly lower than for the
GLIFT version in many cases.

For the NIMs, the gray-box benchmarks behave very much like the
black-box verifications, although this is mostly due to the feigned leak-
age FSM embedded into them, since the new and Untainted primary
inputs of the cut-out circuit parts in the middle of the cryptographic
IP-core would otherwise quickly lead to a trivially unsatisfiable PVC.
Compared to the necessary modeling and proof efforts for certifying
IFS for the DES benchmark through PCHIP, as described in [64], we
can thus observe that the same result can be achieved for a larger
version of their benchmark with NIMs in bitstream-level PCH in less
than a second on the consumer’s side, and less than four seconds for
the producer. Unfortunately, the authors have not reported on any
runtimes in their paper to which we could compare our result.

As Table 6.2 did for the GLIFT-based flow, Table 6.4 lists the run-
times of the producer for the HW Trojan-infected versions of the
benchmarks, as well as the times required to set up the PVCs. Note
that Table 6.3 considers successful PCH transactions and thus defines
all preprocessing steps that have to be performed by either party to
ensure tamperproofness as being part of the PVC creation. For NIMs
this mostly includes a comprehensive cleanup of the miter before
computing or applying the certificate. Since the property violations of
the benchmarks in Table 6.4 prevent such a transaction, the listed PVC
creation times are the raw times required to form a non-interference
miter for the verification engine out of two copies of the DUV and a
property description in the form of the taint associated with the pri-
mary I/Os, which can be generated in a matter of seconds, as shown
in the third column of the table.



206 non-functional property checking

Table 6.4: Verification runtimes and memory peak to detect hardware Trojans
that violate the information flow security through non-interference
miters. A G indicates a gray / white-box verification. Averages of
10 runs for the non-interference miters.

Benchmark Runtimes [s] Memory peak

Prod. PVC [MiB]

AES-T100

705.382 0.563 760.88

G 9.541 1.025 262.96

AES-T1000 262.043 0.570 761.22

AES-T1100 1105.760 0.551 761.46

AES-T1200 3597.407 0.565 762.10

AES-T400 — 0.486 > 20 480

AES-T1600 — 0.494 > 20 480

AES-T1700 — 0.487 > 20 480

DES
2.061 0.421 27.63

G 1.731 0.460 24.90

PIC16F84-T300 102.086 0.360 98.93

The active covert channels in this set of benchmarks prevent the
producer from solving the miter by just using structural optimizations,
since the actual HW Trojan logic can obviously not be optimized
away in this case, which also severely limits the usefulness of the
pre-strengthening technique with self-correlation information. Hence,
the producer is left with a rather complex verification problem in most
cases that cannot make good use of any of the verification shortcuts
in place for safe DUVs, which is quite evident from the reported
runtimes, where the three most elaborate HW Trojans even ran into
the imposed memory limits again, as shown in the last column of the
table. Comparing these results to the runtimes of the GLIFT-based
approach listed in Table 6.2, we can observe that the addition of
shadow logic to the circuit seems to act as a rather effective pre-
strengthening of the PVC by itself, smoothing the verification times for
the infected benchmarks quite effectively. This insight underlines the
verification potential of property pre-strengthenings in general and
suggests to widen their scope to arbitrary verification and property
tracking shadow logic for properties that are particularly hard to
verify.



6.3 approximation quality 207

6.2.6 Conclusion

Information flow security is a highly active research area which has
only gained importance in all of the decades it has been studied. En-
abling PCH to make assurances specifically concerning the IFS of a
DUV, e. g., to prove the absence of covert channels, is therefore a con-
siderable extension of the method’s practical usefulness and applica-
bility. The two presented approaches to certify IFS with bitstream-level
PCH each have their own advantages and disadvantages, and we thus
consider them to complement each other.

Gate-level IFT enables true information flow tracking in the tradi-
tional sense, which allows a consumer to express a wide range of
security properties using moderate security class lattices and non-
interference as well as interference assertions implemented in Sys-
temVerilog as building blocks. GLIFT can thus allow us to certify flow
presence properties and to verify much harder IFS properties by acting
as an effective pre-strengthening of the PVC, but it adds the shadow
logic generation to the trusted computing base and thus also imposes
a non-standard workload on the consumer that can be prohibitively
high especially for properties of medium complexity. Furthermore,
the consumer needs to convince themselves of the soundness of the
new logic’s information flow tracking capabilities.

Using non-interference miters, on the other hand, allows for arbi-
trarily complex IFS lattices, does not add to the TCB, and can easily
be verified for instances where the PVC has a very high degree of
self-correlation that we can exploit to pre-strengthen it. Moreover,
due to its typically small invariants this approach can enable very
high shifts of verification workload, as well as a very low absolute
effort required on the consumer side. Especially together with partial
functional equivalence proofs, a set of NIMs can therefore go a long
way to certify the information flow security of a design when the
formal verification of its entire functionality is not tractable, but they
are somewhat limited in their ability to guarantee information flow
presence with today’s tool support.

Both approaches can easily be extended to gray-box verifications,
showing that all secret data pass through certain checkpoints before
reaching any output.

6.3 approximation quality

Approximate computing (AxC) denotes any form of computing that
is performed deliberately at less than full precision, which is usually
done to reduce some metric like energy consumption while exploiting
some inherent error-resiliency in the target domain. Applications
whose final result is meant to be processed by human beings, such
as audio or video processing, may for instance rely on the resiliency



208 non-functional property checking

of the human perception to compensate for a moderate amount of
errors introduced during computation, but other domains like data
analytics or machine learning [165] are also often resilient enough to
allow for AxC. Especially the potential and limitations of deliberately
introducing errors into software programs and hardware circuits to
optimize a cost metric such as energy consumption has been the focus
of more recent research in this field [165, 166].

Since introducing errors into a reconfigurable hardware circuit will
obviously prevent any form of functional equivalence checking be-
tween the new version and the original to succeed, approximate cir-
cuits (ACs) will typically fail in a traditional functional verification
process. We will therefore follow Vašíček [124] and Holík et al. [167],
who have introduced relaxed functional equivalence checking (RFEC) as
“checking that two circuit designs are equal up to some bound”. This
technique thus considers the permissible error of the target domain
as relaxation for the FEC, which immediately yields a meaningful
functional verification in this context: The behavior of an approximate
circuit which is relaxed functionally equivalent to an error-free version
will not be perceived as erroneous in the target domain. Using this, re-
laxed, version of FEC, we then consider the actual error characteristics
of a circuit, i. e., the approximation quality or accuracy2, as attributed
non-functional property of the functional equivalence, since varying
this quality within the allowed range will have no impact on the func-
tionality from the perspective of the target domain. The accuracy as
a circuit property thus behaves much like the worst-case completion
time described in Section 6.1: The WCCT (circuit accuracy) does not
affect the functionality of the circuit as long as it stays within a certain
range, but compromises the correctness of its behavior outside of this
range, and the exact threshold depends on the context in which the
circuit is to be deployed in the future. The taxonomy of Jenihhin et al.
[122] (see Figure 5.2) does not consider this extension, but we would
file this new non-functional property under:
System qualities→ Other→ Approximation Quality.

In this section, we will now present proof-carrying approximate
circuits (PCACs), a method and corresponding tool flows to exchange
proofs of the non-functional property circuit accuracy within a PCH
context, allowing consumers to verify the approximation quality of
a received AC at a fraction of the usually required computational
verification cost. As is true with any PCH method, this approach will
not require the consumer to have to trust in either the producer, their
tool flows, or the communication channels via which they receive
any artifact from the producer. These results are based on the work
published in [52, 127, 128, 168], which mostly focus on the AxC part
of everything, where a number colleagues contributed to. Everything

2 Within this section, we will consider the accuracy of a circuit to denote its approxima-
tion quality.



6.3 approximation quality 209

related to PCH and distributed verification, however, was my part in
these works, as well as supervising the master’s thesis project [129],
whose result was the creation of a preliminary version of the frame-
work CIRCA for synthesizing ACs which are guaranteed to be relaxed
functionally equivalent to their original version. One (achieved) goal
of said thesis was to create a new framework for functional approx-
imation of sequential circuits, modeled after the one published by
Ranjan et al. [169], but extending the verification side to also allow for
proofs via induction for a broader range of approximable circuits. All
descriptions and explanations in this section regarding the AxC parts
(background, algorithm, AxC side of the experiments) are included
here for completeness of the description, but largely follow the papers
referenced above and have thus been written by my co-authors.

6.3.1 Proof-carrying Approximate Circuit Related Work

Approximation techniques can be exploited at different levels of ab-
straction, starting from the system architecture level [170–172] over
high-level synthesis (HLS)) [173] down to logic and gate levels [174].
A comparison of potential savings when applying approximations at
the different levels of abstraction has been done by Xu and Schäfer
[175]. Using the full range of our PCH extensions, we consider the
functional approximation of digital synchronous sequential circuits
(SSCs) here, which can range from basic arithmetic components to com-
plex accelerators. The approximation framework which we employed,
CIRCA, focuses on digital circuits described with register-transfer and
gate-level models.

When performing functional approximation of circuits, an impor-
tant challenge is to determine the actual quality of the resulting circuit,
often expressed as accuracy or error [167, 176, 177]. Many related
works apply testing instead of formal verification, i. e., they subject
the AC to a set of test vectors and take the deviation between the
observed output and the known correct output as basis for an er-
ror metric [178, 179]. A few other works, however, propose formal
verification techniques to guarantee error bounds for an AC [169, 180].

Different error metrics such as the worst-case error [180], the average-
case error [176], the relative error [169], or the bit-flip error [180], have
been applied in related work. To analyze the suitability of an AC
in a specific application context, we need to be able to reason about
bounds for these metrics. For some applications the specified bounds
are soft, for example, when statistical bounds are specified such as the
average-case error. For other applications, however, adhering to the
error bounds is crucial and a guarantee on the error bounds is required.
These scenarios rule out testing-based approaches since exhaustive
testing of all possible input combinations, e. g., when specifying a
worst-case error bound, is clearly infeasible. Rather, formal verification



210 non-functional property checking

methods have to be employed to guarantee the specified error bounds
of the AC. The majority of the existing frameworks that automatically
approximate circuits uses testing-based approaches e. g., [178, 179,
181, 182] and there are only few synthesis frameworks that generate
ACs with guaranteed error bounds, e. g., [169, 174, 180], yet these
frameworks do not utilize checkable proofs and hence do not bundle
a proof certificate with the AC.

A synthesis approach for combinational ACs is presented by Chan-
drasekharan et al. [180]. Starting from a Verilog description, the input
circuit is transformed into its and-inverter-graph (AIG) representation
and approximation-aware AIG rewriting is applied to generate an AC.
In an iterative approach, the critical paths in the AIG are identified.
Cuts on each path are selected and sorted by their size. Starting from
the smallest cut, the cuts are iteratively replaced by constant 0, leading
to reductions in the number of nodes and the depth of the AIG and,
thus, eventually to reductions in hardware area and delay. After each
replacement of a cut by constant 0, the quality of the circuit is verified,
using an approximation miter and a SAT solver, i. e., the authors guar-
antee that the AC adheres to the user-defined quality constraints. The
procedure terminates if the maximum number of specified iterations
has been reached or no more replacements are possible.

The ASLAN framework from Ranjan et al. [169] can also approxi-
mate sequential circuits while providing guarantees for error bounds;
this framework was actually the base model in CIRCA’s design. In a
first step, ASLAN extracts combinational parts amenable to approxi-
mation from the circuit, denoted as candidates. ASLAN then creates
versions for these candidates with varying local error constraints and
estimates their energy consumption. In a second step, ASLAN employs
gradient search in the design space to find an optimal combination of
candidate versions. In each iteration, candidate versions with larger
error bounds are considered and the combination resulting in the
greatest energy savings is selected if the circuit adheres to the global
error bound. Otherwise, the next-best combination of candidates is
picked. Verification relies on a so-called sequential quality constraint
circuit (SQCC) that raises a flag in case the error bound is violated;
much like a property verification circuit for sequential property check-
ing. ASLAN uses a BMC-based approach at its core to deal with the
sequentiality of the SQCC, i. e., it unrolls both the original and the AC
using dynamic time frame expansion until they finish their compu-
tations. The resulting Boolean expression is then verified with a SAT
solver.

Most of the work presented in the past employ testing-based ap-
proaches to verify the quality of an AC. Only some frameworks pro-
vide formal guarantees on the quality constraints. While formal ver-
ification methods tend to have longer runtimes, these methods are



6.3 approximation quality 211

conceptually much stronger, since a guarantee on the quality con-
straints is provided.

6.3.2 Proof-carrying Approximate Circuit Flow

Applying the PCH concept to ACs allows us to formally guarantee
error bounds and allow any recipient of such a circuit to confirm its
trustworthiness without needing to trust the producer, at a fraction of
the cost of a full formal verification. Figure 6.12 shows the general form
of interaction between a producer and a consumer for such PCACs,
depicted under the usual PCH assumption of a two-party contractual
work constellation, where the consumer requests the creation of an
approximated IP-core with a specific error bound. To enable potential
producers to agree to such contract work, the consumer has to provide
both, the design specification and a specification of the error bound.
The producer creates the approximated IP-core, which again can be a
simple combinational circuit or an intricate sequential design, along
with the proof certificate, and sends it off to the consumer. Additionally,
the consumer might want to set constraints on parameters such as area,
delay, or energy consumption that should be achieved by tolerating the
specified error, which is not shown in Figure 6.12. Upon successfully
verifying the proof certificate, the consumer holds a guarantee for the
core’s quality. Note that the requested components are theoretically
not limited in size or scope and can range from simple arithmetic
units, e. g., adders and multipliers, to more complex IP-cores, e. g.,
discrete cosine transform cores [183].

Proof-carrying approximate circuit

IP core 

consumer

IP core

producer

IP core Proof of error bound

Design and

error bound specification

Approximation

framework

Figure 6.12: Abstract version of the PCH flow for proof-carrying approximate
circuits for both parties. Taken from [52].

A precondition for PCACs is that the design and the error bound
are formally specified. As in any PCH scenario, the consumer does
not need to trust the producer in this setting, nor the producer’s
techniques and tool flows, or the transmission of the PCACs (depicted
in gray in Figure 6.12). Due to the PCH approach, any tampering with
the circuit or the proof will be detected on the consumer side. Even
matching modifications of the circuit and the proof will be detected, if
they guarantee a property different from the specified one.



212 non-functional property checking

To successfully implement the PCAC concept, several requirements
have to be met:

1. The employed approximation techniques have to generate cir-
cuits for which definable quality constraints, i. e., error bounds,
can be formally guaranteed.

2. These error bound guarantees must be transformable into proof
certificates, which can be transmitted with the circuit.

3. The verification of the proof certificates (i. e., the consumer’s
workload) should be faster than formally verifying the circuit’s
error bound in the first place (the producer’s workload), enabling
the core benefit of our approach for the consumer: gaining trust
in ACs at a fraction of the verification costs.

6.3.2.1 CIRCA

Proof-carrying approximate circuits are a new concept and their prac-
tical demonstration requires research into suitable approximation and
verification methods. In the following, we will very briefly introduce
the flow on the producer’s side, using an early adoption of the ap-
proximation framework CIRCA [184] as an example. For a detailed
discussion of CIRCA, we refer to [127].

Figure 6.13 depicts a high-level abstraction of CIRCA’s flow, which
is executed by the producer of a PCAC. The approximation flow starts
with an original sequential circuit, created by the producer in Verilog,
and an error bound or quality constraint, respectively, as inputs.

The flow iterates the three main steps Approximation, Search, and
Verification to create an AC that minimizes the targeted metric, e.g.,
area, delay, or energy consumption, subject to the error bound con-
straint.

As any design, the original sequential circuit consists of critical
parts which should not be subjected to approximation, e.g., the control
path, and parts for which approximation can be applied, e.g., the
data path. Within the latter, the producer identifies subcircuits which
are amenable to approximation, typically combinational arithmetic
components.

The approximation step identifies the subcircuits in the design and
employs approximation techniques to generate different approximated
versions for each of them. In each iteration, the approximation flow
generates a version of each subcircuit with slightly lower quality.

The task of the search step is to find a combination of subcircuit
approximations which optimizes the target metric while not leading to
quality constraint violations. In each iteration, the search step replaces
a subcircuit in the latest AC (initially the original circuit) by an approx-
imated version. The search selects the most promising candidate of
all available lower-quality versions, i. e., the one which optimizes the



6.3 approximation quality 213

Original circuit with 
annotated subcircuits

Approximation: 
Create candidates of 

next lower quality

Search:

Choose most 
promising candidate

Verification:

Is overall circuit 
quality sufficient?

No

Approximated
circuit

Set of 
candidates

circuit under 
test (CUT) 

Yes

Evidence of formal 
verification

Figure 6.13: Conceptual flow for CIRCA, the approximate circuit synthesis
framework. CIRCA is employed on the producer’s side exclu-
sively. Taken from [52].

target metric. By slightly reducing the quality of the subcircuits in each
iteration, CIRCA can gradually lower the quality of the overall circuit,
and thus, optimize the target metric for the overall circuit. However,
since a new lower-quality version is installed in the circuit and errors
propagate throughout the overall circuit, we need to verify the quality
of the overall circuit at each step. We denote the approximated yet not
verified circuit as circuit under test (CUT) and the search passes the
CUT to the verification step.

The task of the verification step is to check whether the CUT,
and thus, the newly installed subcircuit version, adheres to the user-
specified quality constraints. If so, the CUT is accepted and forms the
latest AC, subject to further approximations in the next iteration. If the
error bound is violated, the current CUT is discarded and the search
step installs the next-best subcircuit version in the circuit to form a
new CUT. The approximation flow terminates in case there are no
more lower-quality version of subcircuits that can be generated or all
available ones lead to a violation of the error bound.

We have modified the verification step to employ a checkable proof
and always save the latest proof as evidence of the formal verification
in the sense of PCH. In case the proof is very runtime-consuming
to compute or its size grows huge, the producer can opt to only
generate the proof for the final accepted circuit, however. This way,
the runtime and / or resource usage will be reduced. In any case, after
termination the flow yields a valid approximate sequential circuit
which is guaranteed to satisfy the user’s quality constraints, along
with a proof that enables a receiving consumer to quickly verify the
approximation quality with low computational effort.

Our synthesis flow is designed to be extendable and configurable
in the approximation method, the search technique, as well as in the
target and error metrics. For the experiments presented later in this



214 non-functional property checking

section, we have employed representative methods, namely precision
scaling and AIG rewriting [180] as approximation techniques, hill
climbing as search approach, the dprove command of ABC [30] for
(inductive) verification, as well as the hardware area as target metric
and the worst-case error [180] as quality metric.

Compared to ASLAN [169] that also generates approximated se-
quential circuits, the presented CIRCA-based synthesis flow shows
two major differences. First, we incrementally expand the search space
by approximating step-by-step, i. e., only creating another and more
inaccurate version for a subcircuit if the previous candidate has been
accepted. Second, we employ inductive verification (see Section 5.3.2)
which allows us to approximate more types of sequential circuits.
Similar to [176] we have developed an approximation miter for the
verification step, but we do not aim at determining the error pre-
cisely, but to perform a distributed quality threshold verification using
proof-carrying hardware.

6.3.2.2 Verifying Error Bounds

Approximations often target arithmetic components in the data path of
an application. The errors of these individual components propagate
throughout the circuit, however, possibly amplifying or canceling out,
which means that individually verifying the quality of subcircuits is
not sufficient; instead, the overall circuit has to be verified.

To verify whether the overall circuit, or more specifically the circuit
under test, satisfies the error bound, we form a sequential quality
constraint circuit (SQCC) which is a specific property verification
circuit (PVC) for the domain of AxC. The general form of the SQCC is
illustrated in Figure 6.14. In this setup, the PrC is denoted as quality
evaluation circuit (QEC) with a single output flag error’, which is raised
if the comparison indicates that the quality constraints are violated,
e. g., that the error exceeds the worst-case bounds [180]. Consequently,
by proving the unsatisfiability of the error’ flag, we guarantee that the
quality constraints are met, thereby proving the relaxed functional
equivalence of the original circuit and the CUT. The blocks depicted
by dashed boxes in Figure 6.14 perform the protocol filtering for the
AC and the original circuit, such as reseting them at start, or capturing
their respective output in the cycle in which it is generated, indicated
by some valid signal for instance.

As Figure 6.15 shows, the QEC can encode a number of quality
constraints P0, . . . ,PN−1, which are, if needed, ORed to form the
output flag error’. Each of these can apply different error metrics to
any of the primary outputs, the figure shows one example for a worst-
case error bound in P0. If all possible deviations between outOrig and
outCUT are lower than the threshold, the error flag will not be raised,
meaning that the quality constraint is not violated.



6.3 approximation quality 215

valid

out

Original
circuit

valid

out
CUT

Capture
block

validCB

outOrig

outCUT

QEC Output
block

Start
sequence

in

in'

error

error'

Figure 6.14: Overview of a sequential quality constraint circuit, which is
an adapted property verification circuit for relaxed functional
equivalence checking of approximate circuits. Taken from [52].

P0
outOrig

outCUT

error'
P1

PN-1
… ≥1

QEC |a-b| >T

WC

Figure 6.15: Quality evaluation circuit encoding N different quality con-
straints for the approximate circuit. P0 here encodes a worst-case
error threshold constraint. Taken from [52].

In our experiments to showcase our flows we focus on the worst-
case error, one of the most commonly used error metrics in AxC [185].
Other error metrics, for which our verification setup based on the
SQCC can be used, include the bit-flip error and the relative error. The
bit-flip error [180], for example, is determined by counting the number
of differing bits in the two output patterns of outOrig and outCUT. The
relative error additionally involves a division [176] operation in the
SQCC setup, which makes the corresponding SAT problem harder to
solve and, thus, increases the required verification effort.

Evaluations of ACs that rely on simulation or testing also use statis-
tical error metrics, such as the average-case error, the mean relative
error distance, or the error rate. In formal verification, however, such
statistical metrics are extremely hard to guarantee, because the SQCC
needs to be extended to count error information over all input vectors,
see the discussion of trace properties, hyperproperties and counting
SAT (#SAT) in Section 5.2 as to why we avoid this kind of error met-
rics for now. Translating these concepts into the domain of verifying
ACs, we can classify error metrics such as the worst-case error, the
bit-flip error, and the relative error as trace properties. Statistical error



216 non-functional property checking

metrics that require us to count or evaluate all input vectors are clearly
hyperproperties, and thus left for future research.

When inputs are applied to purely combinational circuits, the result
is immediately present at the outputs, since the physical propagation
delays are abstracted away in the verification models. For this circuit
type, the SQCC’s configurable blocks are simply passing through the
signals. For sequential circuits, we distinguish between three different
types, which require different configurations of the protocol filtering
blocks (cp. Figure 6.16), and which correspond to the different possible
notions of sequential functional equivalence introduced in Section 5.3:

(i) Run-to-completion (RTC): This circuit type reads inputs and pro-
duces an output, whose presence is indicated by a valid signal. We
allow the original and the AC to have different latencies. The SQCC
makes sure the error bound verification is conducted at the correct
clock cycles of the original circuit and the CUT, which is sketched in
column RTC of Figure 6.16. The RTC circuit type has also been used
by ASLAN [169].

(ii) Streaming (STR): The second circuit type also covers sequential
circuits with valid signals. However, instead of only comparing one set
of results at the end of the computation, here we allow for an endless
stream of results, each one indicated by a risen valid signal. For this
case we require the valid signals of the original circuit and the CUT to
be checked at the same clock cycles, i. e., both circuits must have the
same latencies, which is a bit more strict than the general formulation
of this equivalence type. This case is exemplified in column STR of
Figure 6.16.

(iii) Cycle-By-Cycle (CBC): Circuits of this type come without a valid
signal indicating the completion of a result; hence, we have to be more
strict when verifying the error bounds and check for quality in every
single clock cycle. The capture and output blocks of the SQCC are
turned into pass-through circuits. Column CBC of Figure 6.16 shows
this case. Although the CBC type can be seen as special case of the
STR type, we have to distinguish them in terms of automating the
verification setup and forming the SQCC.

cycles

valid

1

1

1Original
circuit

CUT

Type RTC Type STR Type CBC
cycles

cycles

1

cycles

1

cycles

cycles

1

valid valid

verify

Figure 6.16: Different types of sequential equivalence and their verification
impact for proof-carrying approximate circuit. Taken from [52].



6.3 approximation quality 217

Depending on the original circuit, the CUT, the error bounds, and
the circuit type, we set up the SQCC according to Figure 6.14. As
with any PVC, the verification task is then to prove that for any input
sequence the SQCC never reaches a state in which the error signal
evaluates to true.

6.3.2.3 Guaranteeing Error Bounds

We now have to transform these error bound guarantees into proof
certificates, that enable a consumer to objectively draw the same con-
clusion as the original verification, only much faster, without having to
trust the producer. The consumer thus has to construct the PVC them-
selves and independently from the producer, by combining their own
design and error bound specifications with the AC’s implementation
extracted from the IP-core’s netlist into the SQCC. The PVC and the
certificate then have to prove the property in a formal way. With the
SQCC (potentially) being a sequential circuit that allows us to perform
relaxed functional equivalence checking, we apply our techniques
from Section 5.3. We employ the dprove command of ABC [30] that
first performs several sequential synthesis preprocessing steps to sim-
plify the sequential circuit and then uses advanced model checking
techniques, such as property-directed reachability (PDR) (cp. Sec-
tion 2.2.4.2). Since dprove’s optimization strategy involves retiming of
the DUV, which transforms the circuit’s state space, the consumer has
to mirror the same optimization sequence in order to apply inductive
invariant to their SQCC so that they can convince themselves that the
three characteristics of an IS are fulfilled, namely that the invariant
1) holds in the initial state, 2) is inductive (i. e., the induction step
holds), and 3) is indeed a strengthening of the property encoded in the
SQCC. Since all three checks translate into quite simple SAT problems,
the consumer’s job should be thus much easier, but yield the same
level of confidence as performing the induction themselves in the first
place.

During its preprocessing, dprove checks whether a quick solution
can be found by employing verification methods which are limited
to small problem sizes, such as bounded model checking (BMC).
If such a solution is found during preprocessing, i. e., the SQCC is
determined satisfiable or unsatisfiable, there is no need to resort to
computationally heavy methods such as PDR. This means there is
no certificate generated in such cases, but, on the other hand, it also
means that the verification problem was easy enough to be solved
in a matter of a few seconds. This is acceptable, as PCH makes most
sense in situations where the producer has to solve computationally
intensive instances, and is of limited use for instances where the full
verification is so easy that the consumer could as well have done it
themselves.



218 non-functional property checking

Consequently, we only compute certificates for instances where
PCH has an actual impact and the method’s benefits outweigh its
static overhead, using dprove to filter such instances: If dprove can solve
the problem in a few seconds without reverting to PDR, we generate
no certificate at all and the consumer has to do the full verification
themselves, which we then already know to be fast. If dprove uses PDR
to solve the instance, we use the computed invariant as certificate. For
scenarios in which this conditional presence of a certificate is not suffi-
cient, the producer could again exploit the high degree of redundancy
that an SQCC can contain and translate the self-symmetries and other
sequential correlations into additional constraints for the verification
problem. Analogous to the effects described in Section 6.2, this would
most likely enable the producer to solve much larger instances without
having to resort to preoptimization techniques.

6.3.3 Experimental Evaluation

To demonstrate the feasibility of the approach of PCACs, we have
implemented the synthesis flow described in Section 6.3.2 and have
performed an experimental evaluation using the seven benchmarks
listed in Table 6.5. These benchmarks are of sequential circuit types
RTC and CBC with areas ranging from 572 to 8768 FPGA 4-lookup
tables (LUTs) as reported by ABC’s if command. Since CBC is more
general than STR, we have focused on circuits of type CBC in our cur-
rent experiments. The approximable subcircuits have been identified
manually, and are all arithmetic subcomponents of the benchmarks.
The weight_calculator listed in the last row corresponds to the multi-
head weigher controller from the second case study of Section 6.1.5.

Table 6.5: Sequential benchmark circuits for the evaluation of the PCAC
method. Taken from [52].

Circuit Name Description #4-LUTs Circuit Type

butterfly? Operation used in FFT 7221 CBC

fir_genq FIR filter 4-tap 5438 CBC

fir_pipe_16
† FIR filter 16-tap 8768 RTC

pipeline_add‡ Pipelined adder 572 CBC

rgb2ycbcro Color-space transformation 4577 RTC

ternary_sum_nine‡ Adder tree 1483 CBC

weight_calculator Industrial scale 1872 RTC

? Reynwar [186]. q Meyer-Baese [187]. † VTR [71].
o OpenCores JPEG Encoder [188]. ‡ Intel PSG [189].

We have used precision scaling and approximation-aware AIG
rewriting as approximation techniques with the error metric of the
worst-case error. We have varied the error bounds from 0.25% to 2.0%



6.3 approximation quality 219

of the available input range for each benchmark, and have used ABC’s
dprove function for the inductive verification of the generated SQCCs.
For each benchmark, we have run the synthesis flow ten times and
determined the median as representative result. The experiments have
been performed on a compute cluster with a time limit of seven days
for each run of the synthesis flow and a limit of 6GiB main memory
per job. The cluster runs Scientific Linux 7.2 (Nitrogen) and comprises
nodes with an Intel Xeon E5-2670@2.6GHz (16 cores).

Approximation-wise, we achieved overall savings in area of up to
≈26%, but, most importantly, we were able to guarantee the specified
error bound. The average runtimes for the entire approximation pro-
cess are shown in Table 6.6. We have identified the verification step
as the dominating part, ranging from a couple of minutes to several
days, depending on the complexity of the verification problem, while
the approximation step and the search step represent only negligible
portions of the runtime. Somewhat against intuition, the results reveal
that more relaxed error bounds do not necessarily lead to longer run-
times, e. g., for fir_gen. This is caused by the randomness involved in
the search which influences the path taken through the search space
which, in turn, determines the number of verifications and the com-
plexity of the verification problem, and thus, influences the runtime.
The complexity of the verification task is in fact determined by the
circuit’s components and structure, rather than its physical parameters,
e. g., circuit size (cp. fir_gen and weight_calculator). The approximations
applied in the approximation flow modify the structure of the subcir-
cuits, and thus, the structure of the circuit, changing the complexity
of the verification task throughout the flow. The butterfly benchmark
constitutes an example for such structural changes. Applying AIG
rewriting to this particular benchmark seems to create much harder
verification tasks since the runtime is considerably longer compared
to the runtimes achieved when employing precision scaling.

The method or tool, respectively, employed to solve the verification
problem has a significant impact on the runtime of the verification, and
thus, on the scalability of our approach. With ABC’s dprove, we have
employed a state-of-the-art verification method, which uses PDR [37]
as an inductive solver. As remarked before, ABC’s verification tech-
niques dominated the single property track of the hardware model
checking competition (HWMCC) [33, 34] in the recent years where
verification problems from industry had to be solved, proving ABC’s
performance and scalability, and thus, the scalability of our approach
to industrial-strength verification problems.

Table 6.7 lists the results for our PCACs flow. For all seven bench-
marks, both approximation techniques, AIG rewriting and precision
scaling, as well as error bounds ranging from 0.25% to 2.00%, the
table presents the runtimes of the producer flow, the consumer flow,
and the reduction of computation time the consumer experiences over



220 non-functional property checking

Table 6.6: Runtimes of the entire CIRCA approximation flow for selected
PCAC benchmarks. Taken from [52]. Extended table on Page 268.

Worst-case error bound [%]
Circuit Name 0.25 0.5 1.0

butterfly aig 03:06:56:03 03:07:25:37 03:06:55:29

butterfly ps 01:11:09 01:15:35 01:21:16

fir_gen aig 01:46:29 01:46:25 01:32:40

fir_gen ps 43:48 46:47 48:24

fir_pipe_16 aig 03:07:08 20:04:20 02:03:12:49

fir_pipe_16 ps 20:12:27 02:11:21:03 02:19:01:34

pipeline_add aig 00:55 00:53 00:56

pipeline_add ps 01:37 01:42 01:49

weight_calculator aig 07:20:30 19:18:20 01:02:20:12

weight_calculator ps 13:12:26 20:24:02 01:03:42:01

Worst-case error bound [%]
Circuit Name 1.5 2.0

butterfly aig 03:07:18:17 03:07:09:03

butterfly ps 01:20:38 01:26:44

fir_gen aig 01:30:16 01:28:33

fir_gen ps 52:09 50:34

fir_pipe_16 aig 02:11:42:27 03:11:43:37

fir_pipe_16 ps 03:18:17:07 04:21:04:29

pipeline_add aig 00:56 00:55

pipeline_add ps 01:48 01:53

weight_calculator aig 01:06:13:30 01:09:30:51

weight_calculator ps 23:00:17 01:04:16:56

Note, that the runtimes are shown in the format days:hours:minutes:seconds.

the producer. Additionally, Table 6.7 indicates where dprove had to
use PDR (3), and thus generated a transferable proof certificate. The
benchmarks for which PDR, and hence, a certificate, was not needed
are butterfly (both), pipeline_add (both), and ternary_sum_nine (PS). For
these benchmarks, the reduction of the consumer’s verification work-
load only ranges from −1.31% to 9.09%, as the instances were deemed
easy enough to be solved by the consumer directly without the need of
the PCH overhead. A negative reduction indicates that the consumer
needed more time for verification with dprove than the producer, an
effect caused by execution time variations between different executions
of the same verification task.



6.3 approximation quality 221

For all other benchmarks where dprove needed to resort to PDR,
the observed workload reductions actually range from 14.57% to
99.14%, averaging to a reduction of about 72.47% of the consumer’s
computational verification cost3. The results underline an important
benefit of the PCH approach: The producer pays for the cost of trust,
unless, as stated above, the cost is already very low.

Table 6.7: Selected results for the proof-carrying approximate circuits flow
for producer and consumer. Taken from [52]. Extended table on
Page 269.

Circuit Error AIG rewriting Precision Scaling
Name Bound Runtime [s] Red. Runtime [s] Red.

[%] Cons. Prod. [%] Cons. Prod. [%]

butterfly
0.25 33.9 34.0 0.32 33.8 33.7 −0.30
1.00 33.7 34.0 1.12 34.1 34.6 1.39
2.00 33.5 33.5 0.03 31.8 32.1 0.81

fir_gen
0.25 40.3 106.4 62.14 3 12.6 13.6 6.93 (3)
1.00 27.1 44.1 38.45 3 12.8 12.7 −0.63
2.00 23.2 34.3 32.52 3 12.3 12.2 −1.31

fir_
pipe_16

0.25 42.9 161.8 73.51 3 67.8 1802.0 96.24 3

1.00 180.4 4582.6 96.06 3 99.5 4369.4 97.72 3

2.00 245.7 5877.1 95.82 3 148.5 4953.8 97.00 3

pipeline_
add

0.25 0.1 0.1 0.00 0.1 0.1 0.00
1.00 0.2 0.2 0.00 0.1 0.1 0.00
2.00 0.1 0.1 9.09 0.1 0.1 0.00

rgb2ycbcr
0.25 8.8 24.7 64.45 3 14.1 18.4 23.34 3

1.00 8.3 17.4 52.29 3 13.2 19.8 33.37 3

2.00 8.5 20.5 58.47 3 12.9 19.5 34.09 3

ternary_
sum_nine

0.25 236.2 850.3 72.23 3 0.3 0.3 3.57
1.00 13.8 86.9 84.13 3 0.3 0.3 0.00
2.00 16.9 61.7 72.60 3 0.3 0.3 0.00

weight_
calculator

0.25 35.4 35.5 0.31 35.1 2436.2 98.56 3

1.25 49.2 3647.1 98.65 3 25.1 1794.1 98.60 3

2.00 54.0 6295.1 99.14 3 25.0 2440.0 98.97 3

3denotes that PDR has been used in all, and (3) in some of the runs.

3 For fir_gen (PS, 0.25%), PDR was only employed for one out of the ten runs. Hence,
instead of the overall reduction of 6.93%, only PDR’s reduction of 33.45% has been
used for the computations.



222 non-functional property checking

6.3.4 Conclusion

In this section we have outlined a method and flow for the automatic
generation of approximate sequential circuits with guaranteed error
bounds, which we call proof-carrying approximate circuit. The dis-
tributed verification at the core of the technique is an application of
the induction-based sequential property checking method presented
in Section 5.3.2 and allows us to support a wide range of sequential
circuit types that differ in their notion of sequential relaxed func-
tional equivalence checking. We have presented experiments where
we trade off accuracy for hardware area for a number of benchmark
circuits and have with them demonstrated the feasibility of PCACs. We
have therefore indeed presented a way to extend the applicability of
proof-carrying hardware also to the non-functional property of circuit
accuracy in particular, and relaxed functional equivalence checking in
general.

6.4 general self-composition miters

With what we call self-composition miters (SCMs) we would like to
highlight one of the techniques from the previous sections, i. e., the
NIMs from Section 6.2.3, as they have potential applications in the PCH
certification of many more properties. Recall from Section 2.2.3 that
a regular miter function is created from two versions of one circuit,
in which the inputs are matched (always equal) and the outputs
compared pairwise. The general idea of an SCM is to create a miter,
in which the structure of the two circuit versions is exactly the same,
since we form the PVC as a composite of the circuit with itself, but
the inputs are not matched, while the outputs are still compared to
each other to see if the changes lead to a divergence of the circuit’s
computational path. By carefully selecting how and when the inputs of
both circuits may differ, we can generate proofs for related properties,
as we have seen in Section 2.2.3, where we tried to prove the lack of an
impact of changes to one set of inputs on some other set of outputs.

In the domain of software verification, a similar approach has been
developed under the name of self-composition, as coined by Barthe,
D’Argenio, and Rezk [190], who have proposed the idea to verify
non-interference properties in software code by forming a composite
program that comprises several copies of the original one and then
arguing over the composite execution trace. Their approach has been
applied to several properties by now (e. g., [191]), and was generalized
into the formulation of k-safety properties [192] which are a subset of the
hyperproperties (cp. Section 5.2) that involve k interacting execution
traces of a program.

In this sense, our SCMs are thus a general means to verify such
k-safety properties for hardware circuits, by forming a property veri-



6.4 general self-composition miters 223

fication circuit that is a composite of k copies of the circuit, where
each copy receives a set of shared and a set of unique inputs and is
then compared on a subset of the outputs to all others. Using this
scheme, we can identify (illegal) divergences in the computational
paths of the circuit copies by attempting to prove the unsatisfiability
of the PVC, just as we did for information flow security with the
NIMs in Section 6.2.3. We will now briefly explain how to transfer the
concept to other contexts, with the example of circuit redundancy in
non-reconfigurable hardware, i. e., triple modular redundancy (TMR)
for ASICs. We first identify a model of the circuit together with a
source of a potential path divergence that the desired property should
protect against. For TMR, an adequate model would be a circuit with
triplicated computational paths, that feed into triplicated stages of
registers, using triplicated sets of majority voters to choose a fault-free
path for each of the registers in each cycle. Such a circuit would then
consist of several fault partitions, where each partition ends at a tripli-
cated set of registers that are protected by a block of voters to ensure
that the partition can mask the effect of a single fault per clock cycle,
cp. Figure 6.17.

S

R

Q

Q

V

V

V

S

R

Q

Q

S

R

Q

Q

S

R

Q

Q

V

V

V

S

R

Q

Q

S

R

Q

Q

V

Figure 6.17: Circuit with a single set of inputs and outputs, but applied
distributed triple modular redundancy in between, triplicating
all combinational paths and registers, with cross-majority voters
in between and a reduction voter at the end.

The potential path divergence would obviously be the occurrence
of a fault anywhere in (the triplicated part of) the system, which
TMR promises to protect against with a tolerance of at most one
error per fault partition at any given time. By observing that for
ASICs the occurring faults will manifest as flips of any one register,
we can transform the model into a sequential property verification
circuit that does not only compare the outputs, but also the resulting
register contents at the end of each clock cycle. This can be achieved
by unfolding the circuit at its feedback connections, like we also do
for BMC, and routing them to the output comparators. Moreover, we
can patch them through a fault injector and then fold them back to
their original destinations, thus closing the feedback loop again, as
depicted in Figure 6.18.

In line with TMR’s fault-tolerance promise, this fault injector takes
random “fault masks” that are limited to contain at most one fault per
fault partition, and leaves all states pass unmodified that correspond



224 non-functional property checking

Property
checker

in

n

n

m

error

m

s

sDUV

out

DUV’ =1

≥1

=1

out'

Fault injector

next_state

next_state’
state’

state

s

s

Figure 6.18: Self-composition miter for the certification of non-diverging
computational paths in the presence of injected faults.

to a zero in the mask, but pass the opposite truth value to both
circuit copies for a one in the mask, leveraging a structure as that in
Figure 6.19.

state

next_state’ s

next_state s

State’
Registers

State
Registers

≥1

&

fault_mask s

state’s

s

s

s

Figure 6.19: Example of a fault injection mechanism that copies inputs for
zero bits, and passes different values for one bits of the fault
mask.

Should the circuit be fault-tolerant as promised, the outputs and
contents of all registers have to be pairwise equal at the end of the next
cycle, despite the difference in the circuit’s starting state. By declaring
the fault mask a global input of the PVC, we can allow the verification
engine to thus consider all possible faults in all possible locations or
time steps and can always compare the computational paths of both
circuit copies to uncover any divergence that we can incite using a
flipped register value.

This can also be extended to faults in reconfigurable hardware, but
just like the miters for certifying positive interference, this requires
a bit preprocessing and more interaction between both parties, since
the producer would need to identify all majority voters in the sys-
tem, and prove them functionally equivalent to a golden voter. With
this preprocessing, however, the consumer could easily compute the
non-overlapping cones of influence of each voter input (up to the



6.5 conclusion 225

previous registers) and then apply a similar fault injection, but instead
of cutting the feedback paths, this miter would cut at the voter inputs
to potentially assume any corrupt input. By grouping the voters ac-
cording to their target registers, the fault mask can then be custom
tailored such that the verification can assume a corrupt output of one
combinational path that affects the three subsequent voters in the same
way – which a correctly triplicated circuit should be able to handle
without divergence of the computational path of both circuit copies in
the SCM.

Similar miters can be constructed for other k-safety properties and
non-functional properties, such as other error mitigation capabilities
or robustness against erroneous inputs / faults in partner IP-cores,
and with a bit more modeling effort also for the absence of a kill
switch from which the system cannot recover, or generally correctly
implemented reset logic, i. e., an absence of influence from the pre-
reset state to the post-reset computations. In summary, this particular
PVC structure, these self-composition miters, could enable much more
promising research into the certification of k-safety properties of cir-
cuits in the future.

6.5 conclusion

In this chapter we have reviewed several techniques to certify non-
functional properties of synchronous sequential circuits, thus proving
that this is feasible to achieve with the current PCH techniques and
flow introduced in this thesis. While physical attributes of the un-
derlying FPGA are currently abstracted away due to the undisclosed
bitstream formats of commercial off-the-shelf (COTS) devices, which
necessitates the employment of virtual field-programmable gate ar-
rays (vFPGAs), non-physical non-functional properties such as the
information flow security or approximation quality, and properties
indirectly related to physical ones, such as the worst-case comple-
tion time, are well within the reach of the approach, as shown in the
previous sections.

We have also seen, however, that the solution approaches for PCH
certificates of non-functional properties wildly differ, from BMC-based
solutions over the addition of shadow logic or leveraging self-com-
position miters to relaxed functional equivalence checking, each of
the properties we tackled required a unique approach to be able to
relay a producer’s verification results to a consumer in a convincing,
checkable way. We thus conclude that this specific aspect of proof-
carrying hardware-related research is still quite interesting and open,
with many of the property classes from Jenihhin et al.’s taxonomy
(cp. Section 5.2) still left for future work.





7
P R O O F - C A R RY I N G H A R D WA R E D E M O N S T R AT O R S

7.1 Demonstrator 1: Certified Image Filters . . . . . . . . . 227

7.1.1 System Design . . . . . . . . . . . . . . . . . . . 227

7.1.2 Verification Flow . . . . . . . . . . . . . . . . . . 231

7.1.3 Experimental Evaluation . . . . . . . . . . . . . . 232

7.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . 234

7.2 Demonstrator 2: Certified PSL Guard Dogs . . . . . . . 234

7.2.1 System Design . . . . . . . . . . . . . . . . . . . 235

7.2.2 Verification Flow . . . . . . . . . . . . . . . . . . 237

7.2.3 Experimental Evaluation . . . . . . . . . . . . . . 239

7.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . 242

Aside from the smaller evaluation implementations mentioned
throughout the previous chapters, we have also created two large
demonstrators for this thesis project that each integrate a complete
proof-carrying hardware flow on an actual embedded platform. In this
chapter, we present system overviews, implementation details, and
experimental results for both.

The first PCH demonstrator, presented in Section 7.1, features an
extension of a ReconOS [81] image processing application with a
ZUMA virtual field-programmable gate array (vFPGA) to exchange
PCH-certified image filters at runtime.

The second demonstrator, which we detail in Section 7.2, showcases
a system’s runtime verification through PCH-certified watchdogs that
are automatically compiled from code in the property specification
language (PSL). Demonstrator 2 has been presented at the Design,
Automation and Test in Europe (DATE) conference’s exhibition in 2019.

7.1 demonstrator 1 : PCH-certified image filters

The first complete demonstrator for proof-carrying hardware is based
on the Image Processing Application introduced in [80, Section 6.3.2] by
Lübbers and Platzner. The application groundwork for our version
was laid down in the bachelor’s thesis [193], which we conducted in
2014. The extension of this scenario into the PCH context is due to me
and has been published in [194].

7.1.1 System Design

Originally, the image processing application’s purpose was to show-
case ReconOS’ ability to transparently react to different usage and
system load scenarios by switching between hardware and software

227



228 pch demonstrators

threads that implement the same functionality with different runtime
characteristics. For our demonstrator, we have fixed one specific layout,
as depicted in the overview in Figure 7.1.

Memory
Microblaze

Host PC

Webcam

network thread (sw)

filter thread (hw)

source 
image

filtered 
image

read

write

write

read

Ethernet

MBox

FPGA

Figure 7.1: Overview of ReconOS’ image processing application with one
hardware filter thread. Taken from [194].

The general idea and flow of the system is as follows: A host PC
continuously captures images from an attached webcam and sends
them to a reconfigurable system-on-chip (rSoC) via Ethernet. The
reconfigurable system runs a listening network software thread (SWT)
on a CPU, e. g., a Xilinx MicroBlaze soft-core, and one or more subse-
quent image filtering hardware threads (HWTs), leveraging ReconOS’
ecosystem. The system’s buffering scheme reserves an image buffer
in memory for the incoming source image and for each output of a
filter stage. At runtime, the listening SWT signals the availability of
a new source image to the first filter thread. A filter thread waits for
this signal, processes the image and then signals the next filter in the
pipeline, while the last thread informs the network thread. That thread
sends the processed images back via Ethernet to the host PC, which
displays the result on an attached monitor, as depicted in Figure 7.2.

Figure 7.2: Example screenshot of the image processing application, showing
an original and processed image side-by-side. Taken from the
poster presentation of [194]



7.1 demonstrator 1 : certified image filters 229

In the original design, the filtering threads were precompiled (SW)
or presynthesized (HW), and then invoked at runtime depending on
the circumstances. ReconOS’ approach for the HWTs back then was
to always create a complete system design as configuration bitstream,
which contains several HWTs that are initially inert. Any of these
prepared threads can then be controlled at runtime (started, stopped)
through the operating system interface (OSIF) of ReconOS. However,
to adapt the functionality of one thread, or to add a new filtering
choice, a user would always have to resynthesize the whole system, a
shortcoming that has since been addressed by leveraging the partial
reconfiguration capabilities of modern FPGAs.

As indicated above, we have augmented the design of the image
processing application in the bachelor’s thesis [193] with a filtering
HWT that features a ZUMA vFPGA, such that the employed image
filter can easily be updated at runtime, even with entirely new designs.
Figure 7.3 shows this embedding in detail. The original ReconOS
image processing HWT comprises a protocol finite state machine
(FSM), an image line buffer and a line width register. The protocol
FSM is connected to the OSIF for communicating with other filter
threads or the network thread on the MicroBlaze, as well as to the
memory interface (MEMIF) for reading and writing image data from
and to memory. Our protocol FSM moreover contains the ZUMA
configuration controller to handle the thread-internal reconfiguration
process for the FPGA overlay.

At runtime, this filter thread receives image lines from the memory,
i. e., horizontal one-pixel rows of the image. Each image line is stored
in the incoming first in, first out (FIFO) buffer of the MEMIF word-by-
word, where each 32-bit word contains information for one pixel, i. e.,
three 8-bit colors and one 8-bit alpha channel. The thread-internal
protocol FSM then serially writes the color data for one pixel and
its line address, i. e., the column, to the overlay that contains the
actual filter module. To support (horizontal) mirroring image filters,
the ZUMA overlay additionally receives the line width as input. The
output of the filter module, and hence of the vFPGA, is the new
line address and modified color data, such that the new color data
is written to the specified column of the newly constructed image
line in the thread’s line buffer. Once a complete image line has been
processed, the protocol FSM writes the line buffer into the target image
in memory via the MEMIF.

The structure of the HWT obviously imposes constraints on the type
of image filters that can be implemented. We can either implement
point filters that operate independently on each pixel, or filters work-
ing on one-dimensional horizontal stencils. Furthermore, since the
filter can access the line width parameter, operations such as mirroring
in horizontal direction can be implemented. Since the main focus of
the demonstrator was to showcase actual proof-carrying hardware cer-



230 pch demonstrators

filter thread (hw)

protocol 
state 

machine

overlay

reconfigure

line buffer
write enable

line address color data

line address color data

color data

OSIF

......

MEMIF

......

line width

set

Figure 7.3: ZUMA overlay embedding into a ReconOS hardware thread for
image processing. Taken from [194].

tificates for an application running on a real modern FPGA, however,
we deemed these inherited shortcomings acceptable.

Since our current PCH and ZUMA flows are based on the open-
source Verilog-to-routing (VTR) [60] flow, the image processing filters
have to be specified in Verilog. Listing 7.1 shows an example filter
that mirrors the image horizontally and permutes the color channels.
Technically all input signals also have to be consolidated into one bus
for ZUMA, just as for the output signals, but we have omitted this
syntactic detail here for readability.

Listing 7.1: Example of a simple mirroring and recoloring Verilog image
processing filter for the ZUMA overlay.

module simple_filter(line_address, line_width, r, g, b, out);

input [10:0] line_address;

input [10:0] line_width;

input [7:0] r;

input [7:0] g;

input [7:0] b;

output [34:0] out;

assign out = {line_width - line_address, b, r, g};

endmodule

Due to the virtualization overhead, we have only implemented
moderately complex filters for our PCH demonstrator to keep the
required area for the FPGA overlay reasonably small. Since we always
filter a whole line of the image in one step, our overlay is I/O-bound
rather than being bound by the available lookup tables (LUTs) or



7.1 demonstrator 1 : certified image filters 231

ZUMA configurable logic blocks (CLBs). Maximizing the number
of I/O pins while minimizing the number of internal clusters leads
to a flat architecture of n× 1 ZUMA CLBs, as shown in Figure 7.3,
where the CLBs are shown in light gray and the I/O pins in a darker
shade within the overlay. We have chosen ZUMA’s grid width n large
enough to fit an interface of at least 70 bits to the I/O pads of the
vFPGA, since we need that many signals as input and output of the
overlay: If we ignore the alpha channel of the image, there are three
8-bit color channels and as the image is filtered using a small local
buffer that only contains one image line at a time, we only need 11
bits for the addresses. We know the maximum pixel width of such a
line, as we scale down the image on the host PC prior to sending it
over the network.

7.1.2 Verification Flow

We have applied the PCH concept to this image processing prototype,
leveraging an early version of the flow detailed in Section 3.2. In our
scenario, we consider the rSoC to be owned by the consumer, and the
PC to be shared between the consumer and the producer, for simplicity
of the physical setup. The strict separation of both parties is thus only
enforced logically by the scripts, with well-defined interfaces to each
other.

Figure 7.4 outlines the steps performed in our PCH demonstrator,
which employs the combinational version of the generic flow, adapted
to the combinational image processing filters implemented on a virtual
field-programmable gate array, as described above. The consumer
specifies the functionality of the image filter by providing Verilog
source code, as well as the PCH safety policy, which in our case is
demanding full functional equivalence between the (golden) Verilog
source and the circuit encoded in the final bitstream. Using the ZUMA
synthesis flow described in Section 4.3.1, the producer synthesizes the
filter for the overlay to obtain a virtual bitstream. The producer then
extracts the logic function from the virtual bitstream, i. e., they translate
hat bitstream back into a valid netlist input for the verification engine,
to combine it with the original specification into a miter function that
they convert into conjunctive normal form (CNF). This CNF formula
is proven to be unsatisfiable by a Boolean satisfiability (SAT) solver,
which proves functional equivalence between the filter’s specification
and implementation. The resulting proof trace together with the virtual
bitstream is sent to the consumer, who also forms the miter with the
extracted logic function in order to compare this miter CNF with the
one that is the basis of the proof trace. By comparing the resulting
CNF clauses to the input clauses of the proof, the consumer can check
if the miters match and can thus know that the provided proof trace
is actually relevant for the specified image processing function. As a



232 pch demonstrators

next step, the consumer validates the proof using the proof trace. If
this step is successful as well, the consumer can safely configure the
FPGA overlay with the virtual bitstream. If any of the two checks fail,
however, the consumer’s user interface will indicate the failure on the
host PC.

ProducerConsumer
Filter

specification

Synthesize filter
to overlay

Compute 
equivalence miter

Extract netlist from 
implementation

Extract netlist from 
implementation

SAT solver

Compute 
equivalence miter

Is the trace valid 
for this formula?

netlist

netlist

Verilog

virtual
bitstream

CNF
formula

unSAT
proof trace

CNF
formula

Accept filterRefuse filter

yes
no

Figure 7.4: Proof-carrying hardware flow for certified image processing filters
in the first complete demonstrator. Taken from [194].

7.1.3 Experimental Evaluation

We have performed an experimental evaluation of the prototype de-
scribed in this section, using an rSoC running a Linux-based ReconOS
system on a MicroBlaze soft-core @ 100MHz on a Xilinx Virtex-6
ML605 FPGA board. The attached host PC in our setup featured an
Intel Core i7-3720QM CPU @ 2.60GHz and 4GiB RAM. In line with
the observations above, we have configured the ZUMA overlay for the
image processing filters as a 20× 1 array of CLBs with 4 LUTs each
and 30 tracks wide routing channels.

In a first experiment, we have determined the area, timing, as well
as synthesis and reconfiguration times for our rSoC without and with
the PCH-enabling overlay. Table 7.1 lists the results and overheads.
Columns two and three show the required area in terms of LUTs and
lookup table random access memories (LUTRAMs) of the complete
design for both versions, i. e., including the MicroBlaze, I/O controllers,
and ReconOS, as percentage of the available resources on the Virtex-6
ML605. As explained in Section 4.3.1, a ZUMA overlay requires mostly
LUTRAMs on a reconfigurable device, as is also evident from row



7.1 demonstrator 1 : certified image filters 233

three, which lists the area necessary to implement only the vFPGA on
its own. The use of the FPGA overlay for filtering thus increases the
total combined area by a factor of only 1.34× for this demonstrator,
due to our choice to limit its size and capabilities.

Table 7.1: Measured area and timing of the first proof-carrying hardware
demonstrator. Numbers given in % express the fraction of resources
available on a Virtex-6 ML605. Taken from [194]. Extended table
on Page 270.

Area [%] fmax Time

Overlay LUT LUTRAM [MHz] Synth. [min] Reconf. [s]

Without 11 3 100.756 ≈ 50 60

With 15 12 0.929 ≈ 50 60

Only 3 9 — � 1 0.16

The fourth column of Table 7.1 presents the maximum safe operating
frequency fmax for the two complete rSoC versions as returned by the
Xilinx ISE Design Suite, which is dramatically lower for the version
with overlay than for the one without, thus again supporting our
findings which lead to the work in Section 4.5. Despite this overly
pessimistic estimate, however, we have found in our experiments that
clock rates of up to 100MHz still produce good results. The synthesis
times listed in the fifth column of Table 7.1 show that synthesizing
the complete rSoC with or without the overlay in ISE took roughly 50
minutes, while the synthesis process for a single overlay configuration
from Verilog to a ZUMA bitstream requires just a few seconds. Finally,
column six shows the times it takes to reconfigure the HW with a new
bitstream. For both complete SoC versions, reconfiguration from the
host PC takes about one minute via a USB programming interface. Just
exchanging the filter module on the overlay, however, can be done in
less than 0.2 seconds. Overall, using a ZUMA FPGA overlay to enable
the application of our PCH flow for on-the-fly verification increases
the area only by a moderate amount, while allowing additionally for
significantly faster filter synthesis and reconfiguration, both mainly
due to the limited size of the vFPGA.

As second experiment, we have evaluated the execution of the PCH
tool flow as shown in Figure 7.4, starting with a filter’s Verilog source
and ending with either accepting or rejecting the implemented filter.
Table 7.2 shows the times required for generating and validating the
proof certificate for three filter types. Note that the absolute times for
creating and checking proofs are rather small which can be attributed
to the relatively small filter circuits being used, as the running times on
both sides were largely dominated by formulating the miter function
from specification and implementation of the circuit. The expected



234 pch demonstrators

PCH workload distribution between producer and consumer is still
evident, albeit barely.

Table 7.2: Proof-carrying hardware verification and validation times for a
selection of filters. Taken from [194].

Filter Proof generation [s] Proof validation [s]

Gray filter 0.111 0.105

Mirror filter 0.129 0.121

Combined filter 0.129 0.121

7.1.4 Conclusion

In this section we have presented a complete prototype for on-the-fly
verification of image processing modules for an rSoC. The prototype
leverages ReconOS and ZUMA with corresponding commercial and
open-source tool flows. On-the-fly verification is established by a
PCH approach that enables the rSoC to guarantee that a downloaded
bitstream implements a partially reconfigurable module which is
actually functionally equivalent to its specification.

Applying the PCH approach to such image processing filters thus
proved to be successful in that we could show how to actually create
the entire flow for both sides in one integrated demonstrator, yielding
easily verifiable proofs for the consumer. Since we had to consider
the virtualization overhead, especially with regards to the timing,
and since the demonstrator was created to showcase the entire flow
in real time, we were however severely limited in the scope of the
certified circuits. The demonstrator can thus prove the feasibility of the
approach, and its applicability to actual hardware on real, state-of-the-
art FPGAs, but could not really show the actual benefit of employing
PCH.

7.2 demonstrator 2 : pch-certified psl guard dogs

For the second demonstrator, we conducted the bachelor’s thesis [121]
in 2018 to create a prototype for a system’s runtime verification
through watchdogs that are automatically compiled from specifica-
tions in the property specification language, as well as a first surround-
ing PCH verification concept. The verification concept’s refinement
and actual implementation was then my part, while the student con-
tinued to work for us as a research assistant to finish the application
side. Demonstrator 2 has been presented as part of the collaborative



7.2 demonstrator 2 : certified psl guard dogs 235

research centre 901 (CRC 901) booth1 at the Design, Automation and
Test in Europe (DATE) conference’s exhibition in 2019. All figures in
this section are taken from the exhibition poster, and some appeared
before in preliminary versions in the bachelor’s thesis [121].

7.2.1 System Design

Like the first PCH demonstrator, the second one implements, in its
entirety, a video processing pipeline capable of manipulating images
of a video stream on-the-fly. In contrast to the first one, however,
Demonstrator 2 is fully embedded, i. e., realized using one reconfig-
urable SoC with no host PC involvement in the pipeline: As depicted
in the system overview in Figure 7.5, the USB webcam and the output
display are directly connected to the rSoC. Leveraging a division of
the SoC into processing system (PS) and programmable logic (PL),
which all Xilinx Zynq devices have, we run a Linux on the PS and
let it operate the webcam, capturing video frames into main memory.
On the PL side, we build an AXI stream of pixels and synchroniza-
tion data from the frames read from memory and feed it through
a pipeline of intellectual property cores (IP-cores) with AXI stream
interfaces, where it is finally consumed by a standard HDMI core that
drives the HDMI connector of the device. In order to facilitate the
communication of both sides and to simplify the exchange of the data
through the main memory, we use ReconOS again as the base for this
HW / SW co-design and leverage its message boxes and MEMIF that
contains a memory management unit (MMU) on the PL.

The author of the thesis [121] has identified and evaluated several
opportunities to place monitoring and enforcement units for runtime
verification, i. e., the watch dog circuits introduced in Section 5.4, into
the system described above. From these options, we have opted for
a pipeline guard dog, i. e., an AXI stream IP-core through which the
video stream has to flow, and that can thus change the complete
transported information in order to protect subsequent pipeline stages
from illegal input data. As described in Section 5.4.1, these guard dogs
are special cases of monitoring and enforcement circuits which are
particularly well suited for PCH verification flows.

The resulting filtering stage is depicted in purple in Figure 7.5, and
shown in more detail in Figure 7.6. To enable the application of PCH,
we have included a ZUMA overlay to hold the monitoring circuit, and
implemented a fixed enforcement unit outside of it, which removes
all color data from offending pixels. To realize the guard dog pattern,
we have connected the 24-bit main pixel color bus of the stream to
24 inputs and 1 output of the vFPGA, which thus requires at least
25 data I/Os and one clock input. The latter is necessary to support

1 https://past.date-conference.com/collaborative-research-centre-901-fly-

computing

https://past.date-conference.com/collaborative-research-centre-901-fly-computing
https://past.date-conference.com/collaborative-research-centre-901-fly-computing


236 pch demonstrators

PLPS

Memory

Capture thread (SW)

Webcam

Bridge Thread (HW)

HDMI Core

frame image

read

write

MBox
AXI Stream

USB
Display

HDMI

Image Processing 
Core

PSL-based Monitor

AXI Stream

AXI Stream

Figure 7.5: Embedding of automatically generated and PCH-certified guard
dogs from sources in the property specification language in a
video stream pipeline. Taken from [121].

dynamic policies within the monitor that can also consider the previ-
ous pixels in a current decision through their internal state. We have
furthermore enabled the monitoring of two sideband synchronization
signals that are generated by the employed Xilinx AXI stream video
IP-core [195], namely tUser which carries the start-of-frame (SOF) sig-
nal, and tLast that contains the end-of-line (EOL) signal. SOF marks
each first pixel of new video frames, while EOL marks the last pixel
of a single scan line, and their monitoring thus allows to determine
the resolution of the images, as well as the top line or leftmost column
of pixels. By counting the pixels since their last occurrence, we can
hence identify any region of the image in the specified monitoring
policies. Since evaluating the conformity of the current pixel to the
encoded property requires one clock cycle for the monitor, the data
bus is delayed along with all AXI control signals for that clock cycle
with the help of a simple buffer. This way, the pixel color information
reaches the enforcement unit in the same cycle as the monitor’s error
signal, allowing the guard dog to let the pixel pass or overwrite it with
a safe value, depending on the monitor’s judgment signal.

The minimum size of a ZUMA overlay which provides the required
amount of pins is 6× 1 CLBs, as this provides 28 I/Os (cf. Section 4.3.1).
To provide enough logic resources in only 6 clusters, we have put 40 ba-
sic logic elements (BLEs) in each of them which comprise one 6-input
LUT and one flip-flop (FF) each. Since the complete input data is only
26 bits wide, we have also provided only 38 tracks per routing chan-



7.2 demonstrator 2 : certified psl guard dogs 237

Monitoring and Enforcement Unit

FPGA Overlay (ZUMA)

Enforcement

tData [24]

PSL Monitor
(FSM) error [1]

configClock [1]

configData [32]

configAddress [32]

B
uffer

tData [24]

AXI Stream
Control Signals

AXI Stream
Control Signals

tData [24]tUser [1]

tLast [1]

tLast [1]

tUser [1]

Figure 7.6: ZUMA overlay embedding into the video processing pipeline to
include the monitor of the guard dog.

Listing 7.2: Example property specification language code to block pixels
whose red channel intensity is above 50%.

// *** Assertions ***

assert always (red[7:0] <= 8’d127);

nel and allowed almost all adjacent 32 virtual routing channels to be
routed as cluster inputs. These small dimensions are designed to keep
the overlay flexible enough for meaningful monitoring circuits, but
small enough to lessen its impact on the achievable pipeline through-
put. In contrast to Demonstrator 1, which can send the processed
frames via network to a host PC at its own convenience, we are much
more constrained here by having to feed an HDMI core with the result
images, which requires a steady stream of pixels within tight time
bounds to correctly drive the attached display.

Apart from the guarded pixel color values, the AXI stream control
signals are left untouched and are only delayed to stay synchronized
to the pixels themselves. The ZUMA overlay obviously also requires a
means to receive a new virtual configuration, just as in the our general
evaluation platform.

7.2.2 Verification Flow

At runtime of the demonstrator, the consumer can define new monitor
definitions in the property specification language, which act on the
stream of pixel colors. By employing a base Verilog file that separates
the color channels, they can write intelligible policies such as the
one in Listing 7.2, which limits the intensity of one channel. The
subsequent enforcement unit will then replace any pixel which violates
the assertion with a black one.



238 pch demonstrators

Listing 7.3: Example property specification language code that requires hori-
zontal drop shadows for areas that are mainly red by enforcing
that each such pixel should be followed by a sequence of at least
ten red or black pixels.

default clock = (posedge clock);

// *** Properties ***
wire black;

wire red_dominant;

wire red_enforced_dominant;

assign black =

(red[7:0] == 8’d0) &&

(green[7:0] == 8’d0) &&

(blue[7:0] == 8’d0);

// dominant color base property

assign red_dominant =

(red[7:0] > (green[7:0] + 8’d70) &&

red[7:0] > (blue[7:0] + 8’d70));

assign red_enforced_dominant =

(red_dominant || black);

// if one pixel has a dominant color, it should stay dominant

// for 10 pixels in the row

property red_sequence =

always ({red_dominant;[*0:10]}|=> {

red_enforced_dominant});

// *** Assertions ***
red_sequence_assertion : assert red_sequence;

In order to realize a fully automated verification flow, the created
PSL units have to be compiled into synthesizable monitor circuits. To
this end, we employed MBAC in [121], a tool and method by Boulé
and Zilic [126, 196] that is capable of transforming a certain subset
of PSL into hardware description language (HDL) descriptions of
monitor circuits. Depending on the capabilities of the tool, dynamic
stateful properties such as the one in Listing 7.3, which specifies that
after any mostly red pixel at least 10 more should follow in the stream,
can also be formulated; MBAC does support these. Since a property
will be evaluated everywhere in an image, this one will create black
lines 10 pixels to the right of any red edge.

Generating the monitor circuit in Verilog from its PSL specification
using MBAC is the first step on both sides of the PCH flow depicted in
Figure 7.7, which obviously puts the tool into the trusted computing
base (TCB) of the consumer. The producer can synthesize this monitor
for the ZUMA overlay using Yosys [75] and the VTR [60] flow, then
re-extract the logic function from it and create the special guard dog



7.2 demonstrator 2 : certified psl guard dogs 239

miter shown in Figure 7.8 from two copies of the monitor and one
enforcement unit in the middle. Provided that enforced pixels do not
violate the property encoded in the monitor, which the consumer has
to make sure when writing them, this miter should be unsatisfiable,
thus proving that the entirety of the guard dog can prevent illegal
signal patterns to flow through it.

ProducerConsumer
Monitor 

specification

Generate Checker 
HDL

Synthesize 
monitor to overlay

Generate property 
verification circuit

Extract netlist from 
implementation

Extract netlist from 
implementation

Induction solver

Generate property 
verification circuit

Invariant valid for 
this PVC?

netlist

netlist

PSL

bitstream

HDL files

AIG

inductive
invariant

AIG

Accept monitorRefuse monitor

yes
no

Generate Checker 
HDL

BLIF

BLIF

Figure 7.7: Proof-carrying hardware flow for automatically generated and
PCH-certified sequential guard dogs from specifications in prop-
erty specification language. Taken from [121].

For combinational miters the demonstrator then employs a SAT
solver to create a proof certificate, but for the more interesting case of
a sequential miter, which is depicted in Figure 7.7, we again leverage
the property-directed reachability (PDR) implementation of ABC [30]
to obtain an inductive invariant that shows the unsatisfiability of the
miter. This invariant constitutes the certificate of the proof and the
producer can send it along with the final bitstream to the consumer as
proof-carrying bitstream (PCB). The consumer can check the validity
of the received certificate by trying to apply the invariant to their own
generated property verification circuit (PVC) file in AIGER [74] format,
as described in Section 5.3.2.

7.2.3 Experimental Evaluation

As indicated above, we have implemented a version of the demonstra-
tor for the exhibition of the DATE conference on an Avnet Mini-ITX
System Kit featuring a Xilinx XC7Z100 Zynq SoC with dual Arm
Cortex-A9, 2GiB RAM, USB 2.0 ports, and an HDMI v1.4-compatible



240 pch demonstrators

Guard Dog

Monitor

Implementation
Enforcement

in

Property Checker

Monitor

Specificationout error

Figure 7.8: Miter function for verifying the guard dog circuit of Demonstra-
tor 2. Taken from [121].

video interface. Our booth setup of the embedded rSoC and the PC,
which hosts the producer’s and consumer’s flows, is shown in Fig-
ure 7.9. Using test color patterns as the one depicted in the front, we
could easily show how intense colors were cut from the result image
or how they received a shadow.

Figure 7.9: Demonstrator 2, as presented for the DATE exhibition. The em-
bedded system with attached webcam and display is on the
right-hand side. Source: Private / Jentzsch.

As is obligatory for a live demonstrator, the turnaround time of
showing all steps was usually well below one minute, with the pro-
ducer’s synthesis steps being the dominant part of their runtime
and the miter recreation for tamperproofness the major part of the
consumer’s runtime. The example output for the producer listed in
Listing 7.4 shows that the ZUMA synthesis outweighs all other steps
by far.

Overall, the synthesis of Demonstrator 2 benefits from the replace-
ment of the MicroBlaze soft-core that Demonstrator 1 used with the
Xilinx Zynq PS, as the overall synthesis time for the whole system
dropped to 5 minutes when compiled without the overlay, as listed in
Table 7.3. Since the vFPGA is also more compact in this demonstrator,
the Xilinx Vivado Design Suite can synthesize the whole system with
all components in about 12 minutes. The area requirements show that
the small ZUMA overlay accounts for roughly two thirds of the overall
logic area, again largely due to the increased demand for LUTs that
can be used as LUTRAM.



7.2 demonstrator 2 : certified psl guard dogs 241

Listing 7.4: Example output of the producer side of Demonstrator 2.

Production

Synthesizing PSL ’TEST_sync_signals’... done ( .011 s)

Synthesizing circuit with ZUMA... done (3.749 s)

Verification

Extracting logic function... done (1.987 s)

Creating the verification miter (M+E -> M)... done (1.003 s)

Searching inductive invariant for the miter...done ( .345 s)

Evaluating the invariant... done ( .061 s)

Finished successfully (Total time: 7.156 s)...

Table 7.3: Measured area and synthesis times for different steps and config-
urations of the second PCH demonstrator. Numbers given in %
express the fraction of resources available on a Xilinx XC7Z100

Zynq SoC.

Area Synthesis

LUT [%] time

System without ZUMA 4329 1.56 ≈ 5 min

System with ZUMA 21 841 7.87 ≈ 12 min

PSL 0.001 s

ZUMA 2.975 s

The remaining two rows show the synthesis steps required to create
a new virtual bitstream from a PSL source code, averaged over our
demonstration filters and at least 10 runs of the tools. The maximum
clock frequencies are not listed here, as we had to tweak the size and
timing behavior of the system to specifically achieve a stable 8MHz
clock for the AXI stream in order to reliably feed the HDMI core
with pixels. A failure to meet this minimal clock resulted in invalid,
i. e., visibly corrupt, video streams for the display attached to the
embedded system.

Listing 7.5 shows an example output of a consumer run, where we
can clearly see that most of the runtime is spent to avoid having to
trust the producer, i. e., for independently constructing the proof base.
Once that base is established, the actual checking is as fast as expected.

In fact, Table 7.4 lists the verification times of the producer and
the certificate validation times of the consumer for several of our
implemented PSL filters, and we can see that the limiting simplicity
of the overlay prevents excessive proof times, but that still even for
these small runtimes the PCH benefit is clearly visible, as checking
the invariant is still faster than generating it.



242 pch demonstrators

Listing 7.5: Example output of the consumer side of Demonstrator 2.

Constructing proof base

Synthesizing PSL ’TEST_sync_signals’... done ( .005 s)

Checking implementation of circuit... done ( .043 s)

Extracting logic function... done (2.119 s)

Creating the verification miter (M+E -> M)... done (1.081 s)

Validation

Is the invariant valid for the computed miter? yes ( .057 s)

Finished successfully (Total time: 3.305 s)...

Table 7.4: Proof-carrying hardware verification and validation times for a
selection of filters. All times in seconds.

Proof Miter

Filter generation validation generation

All cuts & shadows 0.108 0.072 0.179

Cut green & red 0.071 0.050 0.178

Red shadow 0.072 0.045 0.246

Vertical lines 0.044 0.036 0.182

7.2.4 Conclusion

The second proof-carrying hardware demonstrator presented in this
section showcases the new techniques of property checking with
inductive invariants (cp. Section 5.3.2) as well as automated runtime
verification of systems with the help of PCH-certified guard dog
circuits (cp. Section 5.4). Similar to the first demonstrator, we have
employed a video stream pipeline to create a system in which the
runtime reconfigurations result in obvious changes, and we have used
the system to generate on-the-fly exchangeable monitors for the pixel
data.

The PCH effect was again visible in the obtained results, albeit on a
rather small scale due to the clock constraints we had to observe in
order to successfully drive the HDMI output. The larger scenario with
automatically synthesized property specification language descrip-
tions is furthermore a demonstration of a customization opportunity
for PCH, where certain languages that enable consumers to easily
specify their PCH safety policies can be enabled for automatic certifi-
cate generation, if a suitable synthesis tool is added to the consumer’s
trusted computing base.



8
C O N C L U S I O N

With the research presented in this thesis, we have successfully ex-
tended the scope of proof-carrying hardware (PCH) in terms of sup-
ported sizes and types of the designs under verification (DUVs),
pushed the boundaries of expressible and provable circuit proper-
ties, and have devised a method to apply the approach to actual
circuits running on modern field-programmable gate arrays (FPGAs).

Our reference tool flow (cp. Section 3.2) employs some of the most
advanced academical open-source tools available for hardware synthe-
sis and verification, as, e. g., evidenced by their performance in compe-
titions such as the hardware model checking competition (HWMCC),
allowing us to harness all advances of the respective fields to support
circuits that are larger and more complex than ever before with PCH,
as discussed in Section 5.5. The extension of sequential property check-
ing, e. g., by the inclusion of induction-based formal verification (FV)
with property-directed reachability (PDR) presented in Section 5.3.2,
broadens PCH’s applicability to all synchronous sequential circuits
(SSCs) and their properties, even if they are unbounded in time. To
support the verification of such complex combinations, we have pre-
sented verification aids that serve to extend the scope even further,
such as applying pre-strengthening methods to sequential property
verification circuits (PVCs), as we did for example in Section 6.2,
or combining formal design-time and runtime verification using the
techniques described in Section 5.4.

To enable the realization of PCH on modern reconfigurable hard-
ware, we have presented our evaluation reconfigurable system-on-chip
(rSoC) combining the Linux-based ReconOS with the virtual field-
programmable gate array (vFPGA) ZUMA in Section 4.4, along with
our efforts elaborated in all of Chapter 4, to extend and improve ZUMA
into an adequate platform to present our concepts and findings. We
have leveraged our evaluation rSoC to create the two demonstrators
detailed in Chapter 7, whose systems and verification flows show the
complete PCH process for both parties in its entirety and prove the
feasibility of an actual implementation of the presented concepts of
this thesis, when we have an understanding of the bitstream format of
the employed reconfigurable hardware devices.

We have shown the potential of combining the power of the property
specification language (PSL) with runtime verification to be able to
use PCH even for larger, timing-critical FPGA-based video processing
systems in Chapter 7, and extended this capability to the modern hard-
ware verification language (HVL) SystemVerilog with the inclusion of

243



244 conclusion

Yosys in our flow, as presented in Section 6.2.2. This combination en-
ables consumers to precisely formulate their safety policies as narrow
as possible, thereby pushing the limits of the corresponding verifica-
tion due to state explosion much farther than optimizing functional
equivalence checks could. We have also introduced several examples
for certifying non-functional properties of designs in Chapter 6, prov-
ing the feasibility of working with a selection of them even in virtual
environments.

In conclusion, we have chosen a path in this thesis that mimics
the real world through virtualization, to research the true potential
of applying the proof-carrying code (PCC) concept to the domain of
reconfigurable hardware, and have thus been able to successfully im-
prove the clout of proof-carrying hardware by significantly extending
the scope and applicability of its bitstream-level variant to modern
circuits and field-programmable gate arrays without trusting closed-
source electronic design automation (EDA) tools. With the methods
and results presented here, the distributed two-party verification tech-
nique proof-carrying hardware can now be readily applied

• . . .even if there is no specification or golden model of the in-
tended circuit functionality.

• . . .even when checking the full functional equivalence overbur-
dens the verification.

• . . .also for systems and PCH safety policies that cannot be effi-
ciently verified using current state-of-the-art design-time formal
verification tools.

• . . .also for a range of non-functional properties, i. e., circuit prop-
erties that do not directly affect the behavior, such as a guarantee
that some secret data will never be leaked.



9
O U T L O O K

With the IceStorm project [86] for Lattice iCE40 field-programmable
gate arrays (FPGAs) solidifying, the time might be right to revisit the
choice for virtual field-programmable gate arrays (vFPGAs) made in
the beginning of this thesis project and see if it is feasible to create a
combination of the IceStorm electronic design automation (EDA) tools
with a complete proof-carrying hardware (PCH) flow. Our preliminary
research in this direction, presented in [51], indicates the possibility to
do so and hence a full effort to create such a tool chain for this concrete
FPGA family might create the opportunity to observe advanced PCH-
certified designs running directly on the reconfigurable hardware. This
could also greatly amplify the scope of possible PCH demonstrators,
since the smallest Lattice iCE40 FPGAs correspond in logic capabilities
to one of our standard ZUMA overlays with 7× 7 configurable logic
blocks (CLBs), but there are also considerably larger ones supported
by the IceStorm project, with up to the equivalent of 31× 31 of our
CLBs.

Observing Yosys’s ability to interface with satisfiability modulo the-
ories (SMT) solvers now, the richness and expressiveness of circuit
properties formulated as SMT problem instances could now also be
exploited. Properties could now, for instance, be formulated at the
word level instead of the bit level and thus much closer to the algorith-
mic instead of the circuit level. This step would hence considerably
lower the consumer’s threshold for a successful definition of their
safety policy, and could be seen as the logical continuation of our
introduction of properties formulated in SystemVerilog.

The increasing support for other constructs of the hardware veri-
fication language (HVL) SystemVerilog in Yosys, especially the cover
statement, could furthermore open new avenues for PCH, such as
certifying dynamic liveness properties for circuits, i. e., properties en-
suring that some desired behavior will never cease but will always
eventually occur again.

The general miter structure presented in Section 6.4, i. e., the self-
composition miters (SCMs), where two copies of the same design
are driven with two different sets of inputs and their outputs are
compared, can be further augmented to achieve some powerful effects,
especially when combined with the ability to formulate properties
in SystemVerilog. Consider as an illustrative example that we would
like to certify that a pseudo random-number generator (PRNG) passes
a (minimum) k-gap test, which would mean we could consider any
consecutive series of at most k samples of that generator and never

245



246 outlook

find the same random number twice in any such sample series. To
verify this, we could simply instantiate the PRNG’s implementation
two times in a self-composition miter, and prove a claimed minimum
gap of at least k with the short code sequence shown in Listing 9.1.

Listing 9.1: Example SystemVerilog code to verify a pseudo random-number
generator’s minimum gap of at least k.

assume(seed_1 == seed_2);

assume(sample_number_2 > sample_number_1);

assume(sample_number_2 - sample_number_1 < k);

assert(random_number_1 != random_number_2);

The first two lines just prevent differently seeded PRNGs or equal
sample numbers, i. e., the indices of the sample series, from generating
false positives, and simplify the third one without loss of generality.
The third line filters all input pairs that are farther apart than the
minimum gap, and thus expected to be able to produce the same
results. The fourth line then constitutes the actual property, asserting
that no number may appear twice within the gap distance of each other
by asserting that the random numbers corresponding to the chosen
sample numbers do not match. Satisfying the generated miter would
then be equivalent to finding two sample numbers at distance of less
than k of each other, whose generated random numbers are equal, thus
violating the minimum gap. Obviously this would work best if the
PRNG can be queried directly for any sample, but can just as well be
implemented if the design has to be queried in sequence. Such a proof
might be hard to generate, but could be extremely valuable to potential
customers whose design is vulnerable to weak randomness, giving
this scenario exactly the incentives that PCH was designed for. This
approach could also be extended to other measures of randomness,
such as proving that all bit strings of certain length, generated from
concatenated samples, pass a monobit test, an extended gap test for
the periodicity, or have a low autocorrelation.

Much to the same effect, the findings of Section 5.4, i. e., combining
PCH and runtime verification through monitoring and enforcement
circuits, could be applied to ensure the quality of true random-number
generators (TRNGs) in embedded reconfigurable hardware, by lever-
aging existing work such as that of Veljković, Rožić, and Verbauwhede
[197] or Yang et al. [198]. Both author groups present hardware run-
time monitoring implementations of randomness tests that were stan-
dardized by the United States’ National Institute of Standards and
Technology, and which should therefore have great practical value. De-
pending on the verification complexity of the individual implemented
tests from [197, 198], a selection of them might even be leveraged to cre-
ate directly proven PCH certificates for the corresponding randomness
measure.



A
TA B L E S

To support the readability of the main thesis matter, some tables and
figures only show reduced data. To further support the arguments
and claims of this work, and in an effort to provide complete data
for our experiments, this appendix holds extended tables with more
complete data than in the previous chapters. For every table here we
list the table in the thesis which it supplements.

To simplify the lookup, the sections of this appendix correspond to
chapters of the thesis itself.

contents for Appendix A (tables)

a.1 Virtual Field-Programmable Gate Arrays . . . . . . . . 249

a.2 Proving properties with PCH . . . . . . . . . . . . . . . 253

a.2.1 Sequential Property Checking . . . . . . . . . . 253

a.2.2 Monitor-based Property Checking . . . . . . . . 261

a.2.3 Scalability . . . . . . . . . . . . . . . . . . . . . . 262

a.3 Non-functional Property Checking . . . . . . . . . . . 264

a.3.1 Worst-Case Completion Time . . . . . . . . . . 264

a.3.2 Information Flow Security . . . . . . . . . . . . 266

a.3.3 Approximation Quality . . . . . . . . . . . . . . 268

a.4 PCH Demonstrators . . . . . . . . . . . . . . . . . . . . 270

a.4.1 Demonstrator 1: Certified Image Filters . . . . 270

247



248 tables

list of appendix tables

Table A.1 Area impact of ZUMA extensions. . . . . . . . . 249

Table A.2 SPC benchmark category SEQ-RM. . . . . . . . 253

Table A.3 SPC benchmark category SEQ-MC. . . . . . . . 254

Table A.4 SEQ-RM runtime comparison (BMC, IND). . . . 255

Table A.5 SEQ-MC runtime comparison (BMC, IND). . . 256

Table A.6 SEQ-RM memory comparison (BMC, IND). . . 257

Table A.7 SEQ-MC memory comparison (BMC, IND). . . 258

Table A.8 Certificate and workload shift comparison. . . . 259

Table A.9 Runtime comparison for guard dog PCH. . . . 261

Table A.10 Runtime, shift and memory peaks for SCAL. . . 262

Table A.11 Runtimes for first WCCT case study. . . . . . . 264

Table A.12 Mem / Cert. size for first WCCT case study. . . 264

Table A.13 Runtimes for second WCCT case study. . . . . . 265

Table A.14 Mem / Cert. size for second WCCT case study. 265

Table A.15 PCH benchmarks for GLIFT-based IFS. . . . . . 266

Table A.16 PCH benchmarks for NIM-based IFS. . . . . . . 267

Table A.17 CIRCA runtimes for PCAC. . . . . . . . . . . . . 268

Table A.18 PCAC PCH flow runtimes. . . . . . . . . . . . . 269

Table A.19 Area and timing of Demonstrator 1. . . . . . . . 270



A.1 virtual field-programmable gate arrays 249

a.1 virtual field-programmable gate arrays

Table A.1: Overall impact of all ZUMA extensions on the number of LU-
TRAM macro instantiations. Supplements Figures 4.8 and 4.11

to 4.13.

Order. Clos Rout. LUTRAM Area Generation

layer IIBs res. inst. ratio [s]

2× 2 overlays with 32 eLUTs

few 1420 44.38 1.0600

medium 2600 81.25 1.2090

many 3948 123.38 1.4150

3 few 1516 47.38 1.1150

3 medium 2696 84.25 1.2720

3 many 4044 126.38 1.4160

3 few 916 28.63 1.0350

3 medium 1592 49.75 1.1000

3 many 2412 75.38 1.2840

3 3 few 1012 31.63 1.1170

3 3 medium 1688 52.75 1.1660

3 3 many 2508 78.38 1.2840

3× 3 overlays with 72 eLUTs

few 2994 41.58 1.3210

medium 5460 75.83 1.6780

many 8304 115.33 2.2030

3 few 3234 44.92 1.3610

3 medium 5700 79.17 1.7100

3 many 8544 118.67 2.2510

3 few 1860 25.83 1.1880

3 medium 3192 44.33 1.4200

3 many 4848 67.33 1.7120

3 3 few 2100 29.17 1.2030

3 3 medium 3432 47.67 1.4130

3 3 many 5088 70.67 1.6750

Resumed on next page



250 tables

Table A.1: Area impact of ZUMA extensions – resuming from previous page

Order. Clos Rout. LUTRAM Area Generation

layer IIBs res. inst. ratio [s]

5× 5 overlays with 200 eLUTs

few 7954 39.77 2.0660

medium 14 468 72.34 2.9480

many 22 032 110.16 4.0940

3 few 8754 43.77 2.1530

3 medium 15 268 76.34 2.9920

3 many 22 832 114.16 4.2600

3 few 4804 24.02 1.6700

3 medium 8168 40.84 2.2110

3 many 12 432 62.16 2.8950

3 3 few 5604 28.02 1.7880

3 3 medium 8968 44.84 2.3900

3 3 many 13 232 66.16 3.0500

7× 7 overlays with 392 eLUTs

few 15 330 39.11 3.1360

medium 27 860 71.07 5.2440

many 42 448 108.29 7.6630

3 few 16 786 42.82 3.1390

3 medium 29 316 74.79 5.4620

3 many 43 904 112 7.8140

3 few 9156 23.36 2.3940

3 medium 15 512 39.57 3.4690

3 many 23 632 60.29 4.8020

3 3 few 10 612 27.07 2.5420

3 3 medium 16 968 43.29 3.5100

3 3 many 25 088 64 4.7280

Resumed on next page



A.1 virtual field-programmable gate arrays 251

Table A.1: Area impact of ZUMA extensions – resuming from previous page

Order. Clos Rout. LUTRAM Area Generation

layer IIBs res. inst. ratio [s]

10× 10 overlays with 800 eLUTs

few 30 924 38.66 5.8830

medium 56 168 70.21 8.4600

many 85 612 107.02 14.8470

3 few 33 804 42.26 6.0050

3 medium 59 048 73.81 8.9340

3 many 88 492 110.62 13.8780

3 few 18 324 22.91 3.9720

3 medium 30 968 38.71 5.7940

3 many 47 212 59.02 8.4290

3 3 few 21 204 26.51 4.2280

3 3 medium 33 848 42.31 6.2480

3 3 many 50 092 62.62 9.0450

50× 50 overlays with 20 000 eLUTs

few 758 284 37.91 120.6100

medium 1 376 168 68.81 226.1720

many 2 099 052 104.95 313.5340

3 few 823 884 41.19 136.0380

3 medium 1 441 768 72.09 230.4800

3 many 2 164 652 108.23 336.3950

3 few 443 284 22.16 100.0960

3 medium 746 168 37.31 144.8520

3 many 1 139 052 56.95 199.3200

3 3 few 508 884 25.44 102.2020

3 3 medium 811 768 40.59 149.7920

3 3 many 1 204 652 60.23 209.6450

Resumed on next page



252 tables

Table A.1: Area impact of ZUMA extensions – resuming from previous page

Order. Clos Rout. LUTRAM Area Generation

layer IIBs res. inst. ratio [s]

100× 100 overlays with 80 000 eLUTs

few 3 026 484 37.83 659.4850

medium 5 492 168 68.65 1128.6430

many 8 377 852 104.72 1626.4940

3 few 3 285 684 41.07 739.2300

3 medium 5 751 368 71.89 1106.4350

3 many 8 637 052 107.96 1719.9070

3 few 1 766 484 22.08 533.9940

3 medium 2 972 168 37.15 756.4120

3 many 4 537 852 56.72 1057.1980

3 3 few 2 025 684 25.32 591.3170

3 3 medium 3 231 368 40.39 892.6380

3 3 many 4 797 052 59.96 1171.8890



A.2 proving properties with pch 253

a.2 proving properties with Proof-carrying Hardware

a.2.1 Sequential Property Checking

a.2.1.1 Comparison

Table A.2: Benchmark category SEQ-RM for sequential property checking
evaluation, with benchmark name and complexity. Each memory
access policy has been modeled for different scenarios of var-
ied complexity to generate different versions. Taken from [31].
Supplements Table 5.1.

Name Circuit complexity

[ANDs] [Latches]

Memory policy: High watermark

high1.v 18 800 4

high2.v 21 800 4

high3.v 55 300 6

high4.v 18 400 4

high5.v 46 600 6

high6.v 66 100 6

Memory policy: Low watermark

low1.v 19 400 4

low2.v 21 200 4

low3.v 56 000 6

low4.v 18 400 4

low5.v 36 500 6

low6.v 65 700 6

Memory policy: Chinese Wall

chin1.v 40 400 8

chin2.v 64 400 10

chin3.v 119 200 10

chin4.v 359 300 14



254 tables

Table A.3: Benchmark category SEQ-MC for sequential property checking
evaluation, with benchmark name and complexity. These bench-
marks from the HWMCC’14 [33] constitute black-box property
verification circuits for our flow. Taken from [31]. Supplements
Table 5.1.

Name Circuit complexity

[ANDs] [Latches]

cmudme2.aig 429 63

nusmvqueue.aig 2376 84

6s291rb77.aig 2555 839

beemptrsn7f1.aig 2673 186

6s310r.aig 3014 397

6s515rb1.aig 3388 441

6s269r.aig 3549 157

6s317b18.aig 4849 198

6s421rb083.aig 6294 951

6s372rb26.aig 7490 1124

6s391rb379.aig 13 716 2686

6s313r.aig 13 747 461

beemndhm2b2.aig 15 821 252

6s325rb107.aig 17 993 1756

6s327rb19.aig 22 645 3290

6s326rb08.aig 23 122 3342

oski3ub2i.aig 35 765 3523

6s413b299.aig 53 754 4343

6s403rb1342.aig 108 595 5468

6s271rb079.aig 121 021 10 602

6s406rb067.aig 123 785 10 746

6s404rb1.aig 126 011 9801

6s407rb034.aig 129 624 11 379

oski1rub03i.aig 133 215 13 594

oski1rub07i.aig 133 215 13 594

6s408rb223.aig 152 987 11 384

6s405rb015.aig 164 004 11 861

oski2ub2i.aig 176 605 13 253

6s221rb14.aig 426 021 42 181



A.2 proving properties with pch 255

Table A.4: Comparison of runtime for the bounded model checking-based
and induction-based sequential property checking for the bench-
mark category SEQ-RM. Taken from [31]. Supplements Table 5.2.

Runtime of the flows [s]

Consumer Producer

benchmarks BMC IND BMC IND

high1.v 0.621 0.110 1.429 0.744

high2.v 0.727 0.113 1.809 0.937

high3.v 2.018 0.116 7.761 3.099

high4.v 0.618 0.107 1.454 0.715

high5.v 1.600 0.115 6.257 2.386

high6.v 2.336 0.121 8.701 3.200

low1.v 0.645 0.111 1.519 0.767

low2.v 0.746 0.112 1.947 1.055

low3.v 1.999 0.118 7.447 2.873

low4.v 0.643 0.107 1.545 0.818

low5.v 1.203 0.115 6.321 1.616

low6.v 2.328 0.121 9.253 3.677

chin1.v 1.286 0.112 4.668 1.648

chin2.v 2.185 0.123 7.575 2.457

chin3.v 4.321 0.145 71.584 8.807

chin4.v 13.674 0.343 801.073 110.591



256 tables

Table A.5: Comparison of runtime for the bounded model checking-based
and induction-based sequential property checking for the bench-
mark category SEQ-MC. Taken from [31]. Supplements Table 5.3.

Runtime of the flows [s]

Consumer Producer

benchmarks BMC IND BMC IND

cmudme2.aig 0.188 0.171 0.291 200.278

nusmvqueue.aig 0.652 0.447 0.868 117.574

6s291rb77.aig 0.847 0.041 1.050 5.205

beemptrsn7f1.aig 0.867 0.430 1.085 1059.197

6s310r.aig 1.123 0.381 1.452 232.469

6s515rb1.aig 0.805 0.041 0.995 0.062

6s269r.aig 1.186 2.938 1.634 1095.486

6s317b18.aig 1.541 0.060 3.332 8.432

6s421rb083.aig 2.298 0.095 2.901 0.621

6s372rb26.aig 2.711 0.068 3.555 3.221

6s391rb379.aig 4.409 0.093 5.517 0.142

6s313r.aig 3.260 6.393 4.077 25.540

beemndhm2b2.aig 5.575 2.973 7.174 2190.987

6s325rb107.aig 3.338 0.103 6.403 31.313

6s327rb19.aig 6.883 0.166 8.500 0.218

6s326rb08.aig 6.928 0.170 8.614 97.246

oski3ub2i.aig 10.062 0.301 12.785 13.579

6s413b299.aig 42.667 0.535 44.641 80.086

6s403rb1342.aig 15.985 0.374 19.870 2.211

6s271rb079.aig 48.520 0.905 61.662 15.578

6s406rb067.aig 49.747 0.926 63.157 3.930

6s404rb1.aig 49.388 1.104 61.772 182.988

6s407rb034.aig 50.977 1.353 63.422 3421.958

oski1rub03i.aig 40.532 1.641 53.089 987.399

oski1rub07i.aig 40.443 1.356 53.779 1.678

6s408rb223.aig 40.674 0.867 51.446 250.414

6s405rb015.aig 50.921 0.962 64.188 8.478

oski2ub2i.aig 56.016 2.351 70.851 518.229

6s221rb14.aig 69.664 5.280 87.850 43.740



A.2 proving properties with pch 257

Table A.6: Comparison of peak memory consumption for the bounded model
checking-based and induction-based sequential property checking
for the benchmark category SEQ-RM. Taken from [31]. Supple-
ments Table 5.4.

Memory peaks [MiB]

Consumer Producer

benchmarks BMC IND BMC IND

high1.v 383.629 255.500 383.625 255.500

high2.v 409.219 255.504 409.223 255.504

high3.v 597.957 255.504 601.863 264.180

high4.v 382.887 255.504 382.629 255.504

high5.v 550.574 255.504 550.570 264.117

high6.v 657.391 255.500 653.488 264.238

low1.v 388.117 255.504 387.141 255.504

low2.v 411.547 255.504 411.547 255.500

low3.v 590.063 255.500 593.965 264.160

low4.v 386.477 255.504 386.469 255.500

low5.v 491.801 255.504 489.848 264.027

low6.v 651.043 255.500 651.043 264.238

chin1.v 496.359 255.504 494.406 264.051

chin2.v 623.844 255.504 627.746 264.250

chin3.v 926.898 255.504 926.895 255.504

chin4.v 2228.738 255.500 2228.738 271.973



258 tables

Table A.7: Comparison of peak memory consumption for the bounded model
checking-based and induction-based sequential property checking
for the benchmark category SEQ-MC. Taken from [31]. Supple-
ments Table 5.4.

Memory peaks [MiB]

Consumer Producer

benchmarks BMC IND BMC IND

cmudme2.aig 288.484 252.805 288.477 844.637

nusmvqueue.aig 385.555 253.238 385.551 369.195

6s291rb77.aig 382.480 252.703 382.477 441.148

beemptrsn7f1.aig 403.688 253.809 403.688 617.109

6s310r.aig 422.477 255.664 422.480 317.113

6s515rb1.aig 372.633 248.453 372.637 252.590

6s269r.aig 453.691 256.902 453.688 460.684

6s317b18.aig 502.797 252.660 502.543 290.117

6s421rb083.aig 567.035 248.273 567.035 271.977

6s372rb26.aig 628.590 243.887 628.586 307.961

6s391rb379.aig 847.195 243.551 847.195 280.242

6s313r.aig 708.973 285.113 712.879 321.148

beemndhm2b2.aig 1055.570 275.332 1055.570 658.211

6s325rb107.aig 726.051 243.578 726.043 386.340

6s327rb19.aig 1336.902 273.496 1336.902 273.379

6s326rb08.aig 1353.688 273.438 1353.688 472.180

oski3ub2i.aig 2039.289 280.680 2039.289 413.574

6s413b299.aig 2357.273 296.328 2357.273 459.824

6s403rb1342.aig 2404.344 307.477 2404.344 365.832

6s271rb079.aig 6233.504 357.465 6233.504 548.801

6s406rb067.aig 6352.906 361.477 6352.906 473.875

6s404rb1.aig 6196.602 353.125 6196.598 592.801

6s407rb034.aig 6496.898 363.059 6496.895 860.199

oski1rub03i.aig 7361.449 411.855 7361.445 943.664

oski1rub07i.aig 7362.746 410.832 7362.742 468.543

6s408rb223.aig 5242.516 356.473 5242.516 566.922

6s405rb015.aig 6522.270 367.855 6522.270 531.738

oski2ub2i.aig 9023.434 417.250 9023.434 1025.320

6s221rb14.aig 8245.793 577.984 8245.793 870.027



A.2 proving properties with pch 259

Table A.8: Comparison of the size of the transferred certificate and the shift of
workload towards the producer for the bounded model checking-
based and induction-based sequential property checking. Taken
from [31]. Supplements Figure 5.12.

Size of certificate [KiB] Shift of workload [%]

benchmarks BMC IND BMC IND

SEQ-RM

high1.v 0.438 0.024 56.509 85.154

high2.v 0.438 0.024 59.775 87.891

high3.v 3.705 0.057 73.990 96.232

high4.v 0.492 0.024 57.485 84.994

high5.v 3.484 0.048 74.429 95.160

high6.v 1.272 0.048 73.143 96.210

low1.v 0.438 0.024 57.536 85.532

low2.v 0.458 0.024 61.643 89.366

low3.v 2.221 0.060 73.158 95.883

low4.v 0.492 0.024 58.371 86.874

low5.v 0.692 0.036 80.954 92.885

low6.v 2.253 0.084 74.837 96.686

chin1.v 2.194 0.059 72.449 93.175

chin2.v 3.647 0.108 71.146 94.991

chin3.v 14.501 0.097 93.963 98.350

chin4.v 22.317 0.108 98.293 99.690

SEQ-MC

cmudme2.aig 0.603 277.322 35.395 99.915

nusmvqueue.aig 1.815 131.762 24.885 99.620

6s291rb77.aig 0.058 2.097 19.333 99.212

beemptrsn7f1.aig 0.610 253.245 20.092 99.959

6s310r.aig 0.092 156.586 22.658 99.836

6s515rb1.aig 0.058 0.052 19.095 33.871

6s269r.aig 0.149 674.216 27.417 99.732

6s317b18.aig 53.258 1.207 53.752 99.288

6s421rb083.aig 0.439 0.796 20.786 84.702

6s372rb26.aig 0.065 2.062 23.741 97.889

6s391rb379.aig 0.065 0.034 20.083 34.507

6s313r.aig 0.342 0.201 20.039 74.969

Resumed on next page



260 tables

Table A.8: Certificate and shift comparison – resuming from previous page

Size of certificate [KiB] Shift of workload [%]

benchmarks BMC IND BMC IND

beemndhm2b2.aig 2.495 1972.204 22.289 99.864

6s325rb107.aig 0.488 4.152 47.868 99.671

6s327rb19.aig 0.101 0.020 19.024 23.853

6s326rb08.aig 0.101 5.360 19.573 99.825

oski3ub2i.aig 0.099 2.111 21.298 97.783

6s413b299.aig 0.273 3.464 4.422 99.332

6s403rb1342.aig 0.103 0.450 19.552 83.085

6s271rb079.aig 0.090 0.638 21.313 94.191

6s406rb067.aig 0.094 0.114 21.233 76.438

6s404rb1.aig 0.110 8.255 20.048 99.397

6s407rb034.aig 0.110 67.242 19.623 99.960

oski1rub03i.aig 0.072 33.932 23.653 99.834

oski1rub07i.aig 0.072 0.015 24.798 19.190

6s408rb223.aig 0.110 8.167 20.938 99.654

6s405rb015.aig 0.110 0.528 20.669 88.653

oski2ub2i.aig 0.110 12.621 20.938 99.546

6s221rb14.aig 0.178 0.350 20.701 87.929



A.2 proving properties with pch 261

a.2.2 Monitor-based Property Checking

Table A.9: Proof-carrying hardware runtime comparison between consumer
and producer for memory reference monitor prototype. Taken
from [47]. Supplements Table 5.5.

Policy Runtimes [s] Workload Certificate

Cons. Prod. Miter shift [%] size [KiB]

biba1 0.141 1.043 0.134 0.72 10.89

biba2 0.132 1.100 0.126 0.78 11.64

biba3 0.141 1.035 0.132 1.45 20.46

biba4 0.135 1.002 0.129 0.76 8.52

biba5 0.139 1.039 0.130 1.48 15.50

biba6 0.136 1.077 0.126 2.99 25.92

bl1 0.132 1.015 0.124 0.79 10.82

bl2 0.133 1.031 0.126 0.00 11.14

bl3 0.131 1.069 0.123 2.33 18.99

bl4 0.130 1.008 0.124 0.00 8.52

bl5 0.136 1.006 0.128 1.50 15.04

bl6 0.134 1.076 0.124 4.48 24.29

iso1 0.130 1.004 0.124 0.79 7.62

iso2 0.131 1.035 0.124 2.33 13.89

iso3 0.164 1.567 0.135 28.10 100.13

iso4 0.195 1.700 0.139 36.76 186.53

high1 1.213 2.483 1.192 23.50 0.43

high2 1.426 2.872 1.403 23.61 0.49

high3 3.814 9.509 3.736 53.20 3.73

high4 1.216 2.476 1.195 22.17 0.50

high5 3.092 11.865 3.047 70.93 3.38

high6 4.319 11.018 4.242 53.43 3.48

low1 1.270 2.600 1.246 21.66 0.43

low2 1.386 2.829 1.360 24.29 0.43

low3 3.895 9.389 3.821 51.48 2.32

low4 1.243 2.560 1.220 22.15 0.43

low5 2.432 7.220 2.392 60.10 0.69

low6 4.350 10.894 4.271 53.79 2.96

chin1 2.659 6.645 2.617 52.58 2.04

chin2 4.203 6.812 4.127 24.33 1.94



262 tables

a.2.3 Scalability

Table A.10: Runtime, shift of workload towards the producer, and peak mem-
ory consumption for the induction-based sequential property
checking in the benchmark category SCAL. Benchmarks marked
with 7 have not been solved in the competition. Taken from [31].
Supplements Table 5.10.

Runtime [s] Shift Mem. peaks [MiB]

benchmarks Cons. Prod. [%] Cons. Prod.

6s361rb52584.aig 6.48 6.84 4.63 901.83 901.23

6s281b35.aig 7.56 7.54 −0.45 969.61 970.73

6s364rb12666.aig 6.01 6.01 0 719.92 719.92

6s332rb118.aig 7.15 357.32 97.98 674.52 675.71

6s286rb07843.aig 5.07 5.62 9.13 579.05 575.63

6s322rb646.aig 7 1815.55 1815.55 0 683.92 683.92

6s203b19.aig 3.73 3.73 0 491.08 491.08

6s202b41.aig 4.06 4.06 0 491.04 491.04

6s205b20.aig 3.51 3.51 0 489.44 489.44

6s221rb14.aig 0.68 0.68 0 382.36 382.36

6s387rb181.aig 7 321.45 321.45 0 515.43 515.43

6s387rb291.aig 7 267.45 267.45 0 514.13 514.13

6s374b114.aig 0.79 0.79 0 394.93 394.93

6s316b421.aig 44.77 44.77 0 435.73 435.73

bob12s06.aig 7 859.69 859.69 0 513.12 513.12

6s204b16.aig 17.45 17.45 0 371.53 371.53



A.2 proving properties with pch 263



264 tables

a.3 Non-functional Property checking

a.3.1 Worst-case Completion Time

Table A.11: Flow runtimes of both parties for the worst-case completion time
synthesis filter case study for different sample count limits kmax.
Taken from [50]. Supplements Figure 6.7.

WCCT Runtime [s] Overhead

kmax [cycles] Producer Consumer [%]

1 98 10.0 5.2 93.36

2 193 54.0 8.7 82.19

3 288 144.1 15.1 81.70

4 383 426.7 21.4 68.75

5 478 706.6 24.2 74.53

6 573 1535.8 29.4 69.74

7 668 2478.5 37.5 63.68

8 763 3536.2 43.8 61.93

9 858 8001.9 56.8 66.09

10 953 10 404.1 61.8 64.28

Table A.12: Peak memory consumption and trace file sizes of both parties for
the worst-case completion time synthesis filter case study for dif-
ferent sample count limits kmax. Taken from [50]. Supplements
Figure 6.7.

Memory peak [MiB] Overhead Trace size

kmax Producer Consumer [%] [MiB]

1 544.36 544.36 53.48 9.39

2 788.79 788.79 63.44 37.00

3 1043.88 1043.88 68.21 71.66

4 1311.56 1311.56 68.49 156.08

5 1528.72 1528.72 72.44 148.19

6 2084.86 1743.82 70.54 213.30

7 2912.43 1953.05 69.66 317.54

8 4102.05 2275.77 69.02 390.94

9 7172.36 2620.19 65.11 490.57

10 9667.81 2828.60 66.02 541.74



A.3 non-functional property checking 265

Table A.13: Flow runtimes of both parties for the worst-case completion time
multihead weigher controller case study for different hopper
limits hmax. Taken from [50]. Supplements Figure 6.7.

WCCT Runtime [s] Overhead

hmax [cycles] Producer Consumer [%]

1 42 4.2 3.7 98.33

2 45 4.6 3.9 97.86

3 50 5.8 4.7 97.37

4 59 6.3 5.1 97.83

5 76 8.1 5.8 96.62

6 109 13.2 7.3 95.30

7 174 40.0 12.5 92.99

8 303 208.0 20.8 86.00

9 560 1956.4 48.4 78.33

10 1073 — — —

Table A.14: Peak memory consumption and trace file sizes of both parties
for the worst-case completion time multihead weigher controller
case study for different hopper limits hmax. Taken from [50].
Supplements Figure 6.7.

Memory peak [MiB] Overhead Trace size

hmax Producer Consumer [%] [MiB]

1 678.38 678.38 63.56 1.66

2 745.79 745.79 68.13 2.61

3 992.64 992.64 76.05 4.37

4 687.01 687.01 65.35 3.79

5 919.90 919.90 73.18 6.65

6 872.87 872.87 70.92 11.95

7 1185.84 1185.84 76.91 30.04

8 1801.05 1801.05 81.06 90.06

9 3217.36 3217.36 82.54 307.03



266 tables

a.3.2 Information Flow Security

Table A.15: Flow runtimes and memory peaks of both parties for proving
the information flow security through gate-level IFT, as well as
the generated certificates (inductive strengthenings and IS-check
GRAT certificates). A G indicates a gray / white-box verification.
Averages of 10 runs. Supplements Table 6.1.

Benchmark Runtimes [s] Workload

Cons. Prod. PVC shift [%]

AES-T100

434.910 644.526 414.771 32.52

G 302.432 302.432 302.289 —

AES-T1000 147.599 598.651 145.153 75.34

AES-T1100 441.860 650.057 421.324 32.03

AES-T1200 435.116 649.786 414.950 33.04

AES-T400 424.760 572.077 406.111 25.75

AES-T1600 415.051 568.416 396.074 26.98

AES-T1700 409.884 560.283 390.834 26.84

DES
2.554 19.008 2.124 86.57

G 1.649 2.780 1.473 40.70

PIC16F84-T300 1.561 1.561 1.424 —

Benchmark Memory peak [MiB] Certificates

Cons. Prod. IS GRAT

AES-T100

3124.22 3124.22 3 3

G 2520.90 2520.90

AES-T1000 1800.14 1800.14 3 3

AES-T1100 3124.23 3124.23 3 3

AES-T1200 3124.30 3124.30 3 3

AES-T400 3116.55 3116.55 3 3

AES-T1600 3124.17 3124.17 3 3

AES-T1700 3124.13 3124.13 3 3

DES
64.82 85.08 3

G 43.09 43.09 3

PIC16F84-T300 47.96 47.96



A.3 non-functional property checking 267

Table A.16: Flow runtimes and memory peaks of both parties for proving
the information flow security through non-interference miters,
as well as the generated certificates (inductive strengthenings
and IS-check GRAT certificates). A G indicates a gray / white-box
verification. Averages of 10 runs. Supplements Table 6.3.

Benchmark Runtimes [s] Workload

Cons. Prod. PVC shift [%]

AES-T100

26.114 97.542 15.778 73.23

G 27.807 133.982 12.562 79.25

AES-T1000 8.568 815.016 7.363 98.95

AES-T1100 27.454 101.461 16.555 72.94

AES-T1200 26.068 98.891 15.805 73.64

AES-T400 23.963 73.216 15.122 67.27

AES-T1600 24.737 74.007 15.635 66.57

AES-T1700 25.043 74.779 15.956 66.51

DES
0.989 3.496 0.711 71.71

G 0.866 2.402 0.696 63.93

PIC16F84-T300 0.871 3.582 0.585 75.67

Benchmark Memory peak [MiB] Certificates

Cons. Prod. IS GRAT

AES-T100

769.20 769.20 3

G 1573.73 672.39 3 3

AES-T1000 428.45 567.20 3

AES-T1100 769.18 769.18 3 3

AES-T1200 769.19 769.19 3

AES-T400 761.78 761.78 3

AES-T1600 763.48 763.48 3

AES-T1700 763.47 763.47 3

DES
25.93 57.78 3

G 23.56 59.84 3

PIC16F84-T300 26.58 60.77 3



268 tables

a.3.3 Approximation Quality

Table A.17: Runtimes of the entire CIRCA approximation flow for all proof-
carrying approximate circuit benchmarks. Taken from [52]. Sup-
plements Table 6.6.

Worst-case error bound [%]
Circuit Name 0.25 0.5 1.0

butterfly aig 03:06:56:03 03:07:25:37 03:06:55:29

butterfly ps 01:11:09 01:15:35 01:21:16

fir_gen aig 01:46:29 01:46:25 01:32:40

fir_gen ps 43:48 46:47 48:24

fir_pipe_16 aig 03:07:08 20:04:20 02:03:12:49

fir_pipe_16 ps 20:12:27 02:11:21:03 02:19:01:34

pipeline_add aig 00:55 00:53 00:56

pipeline_add ps 01:37 01:42 01:49

rgb2ycbcr aig 02:14:54 02:09:54 02:09:26

rgb2ycbcr ps 42:51 44:45 44:53

ternary_sum_nine aig 01:29:52 53:03 43:57

ternary_sum_nine ps 04:58 05:38 06:34

weight_calculator aig 07:20:30 19:18:20 01:02:20:12

weight_calculator ps 13:12:26 20:24:02 01:03:42:01

Worst-case error bound [%]
Circuit Name 1.5 2.0

butterfly aig 03:07:18:17 03:07:09:03

butterfly ps 01:20:38 01:26:44

fir_gen aig 01:30:16 01:28:33

fir_gen ps 52:09 50:34

fir_pipe_16 aig 02:11:42:27 03:11:43:37

fir_pipe_16 ps 03:18:17:07 04:21:04:29

pipeline_add aig 00:56 00:55

pipeline_add ps 01:48 01:53

rgb2ycbcr aig 02:14:08 02:11:24

rgb2ycbcr ps 47:05 46:40

ternary_sum_nine aig 40:47 29:40

ternary_sum_nine ps 06:43 07:04

weight_calculator aig 01:06:13:30 01:09:30:51

weight_calculator ps 23:00:17 01:04:16:56

Note, that the runtimes are shown in the format days:hours:minutes:seconds.



A.3 non-functional property checking 269

Table A.18: Results for the proof-carrying approximate circuits flow for pro-
ducer and consumer. Taken from [52]. Supplements Table 6.7.

Circuit Error AIG rewriting Precision Scaling
Name Bound Runtime [s] Red. Runtime [s] Red.

[%] Cons. Prod. [%] Cons. Prod. [%]

butterfly

0.25 33.9 34.0 0.32 33.8 33.7 −0.30
0.50 34.0 33.8 −0.59 33.3 33.4 0.21
1.00 33.7 34.0 1.12 34.1 34.6 1.39
1.50 33.1 33.3 0.45 33.6 34.2 1.67
2.00 33.5 33.5 0.03 31.8 32.1 0.81

fir_gen

0.25 40.3 106.4 62.14 3 12.6 13.6 6.93 (3)
0.50 35.0 60.8 42.52 3 13.0 13.0 0.08
1.00 27.1 44.1 38.45 3 12.8 12.7 −0.63
1.50 26.7 31.3 14.57 3 12.5 12.6 0.72
2.00 23.2 34.3 32.52 3 12.3 12.2 −1.31

fir_
pipe_16

0.25 42.9 161.8 73.51 3 67.8 1802.0 96.24 3

0.50 91.3 2702.5 96.62 3 96.8 4830.7 98.00 3

1.00 180.4 4582.6 96.06 3 99.5 4369.4 97.72 3

1.50 146.2 3888.0 96.24 3 130.5 7340.7 98.22 3

2.00 245.7 5877.1 95.82 3 148.5 4953.8 97.00 3

pipeline_
add

0.25 0.1 0.1 0.00 0.1 0.1 0.00
0.50 0.1 0.1 0.00 0.1 0.1 0.00
1.00 0.2 0.2 0.00 0.1 0.1 0.00
1.50 0.1 0.1 0.00 0.1 0.1 0.00
2.00 0.1 0.1 9.09 0.1 0.1 0.00

rgb2ycbcr

0.25 8.8 24.7 64.45 3 14.1 18.4 23.34 3

0.50 8.9 16.6 46.16 3 11.7 18.7 37.59 3

1.00 8.3 17.4 52.29 3 13.2 19.8 33.37 3

1.50 8.6 22.7 61.97 3 13.8 22.2 38.01 3

2.00 8.5 20.5 58.47 3 12.9 19.5 34.09 3

ternary_
sum_nine

0.25 236.2 850.3 72.23 3 0.3 0.3 3.57
0.50 21.6 113.0 80.85 3 0.3 0.3 0.00
1.00 13.8 86.9 84.13 3 0.3 0.3 0.00
1.50 16.4 90.2 81.86 3 0.3 0.3 0.00
2.00 16.9 61.7 72.60 3 0.3 0.3 0.00

weight_
calculator

0.25 35.4 35.5 0.31 35.1 2436.2 98.56 3

0.50 29.0 1359.2 97.87 3 51.5 5260.2 99.02 3

1.25 49.2 3647.1 98.65 3 25.1 1794.1 98.60 3

1.50 27.3 2254.5 98.79 3 20.5 1377.9 98.51 3

2.00 54.0 6295.1 99.14 3 25.0 2440.0 98.97 3

3denotes that PDR has been used in all, and (3) in some of the runs.



270 tables

a.4 Proof-carrying Hardware demonstrators

a.4.1 Demonstrator 1: PCH-certified Image Filters

Table A.19: Measured area and timing of the first proof-carrying hardware
demonstrator when implemented on a Virtex-6 ML605. Taken
from [194]. Supplements Table 7.1.

Area fmax Time

Overlay LUT LUTRAM [MHz] Synth. [min] Recfg. [s]

Without 17 888 2038 100.756 ≈ 50 60

With 23 945 7456 0.929 ≈ 50 60

Only 5512 5418 — � 1 0.16



B I B L I O G R A P H Y

[1] Ted Huffmire, Cynthia Irvine, Thuy Nguyen, Timothy Levin,
Ryan Kastner, and Timothy Sherwood. Handbook of FPGA De-
sign Security. 1st. Springer, 2010. doi: 10.1007/978-90-481-
9157-4.

[2] David Ratter. “FPGAs on Mars.” In: Xilinx Xcell Journal (50

2004), pp. 8–11. url: https://www.xilinx.com/publications/
archives/xcell/Xcell50.pdf.

[3] Steven Trimberger. “Trusted Design in FPGAs.” In: Proceedings
of the 44th Design Automation Conference. DAC 2007 (San Diego,
CA, USA, June 4–8, 2007). IEEE, 2007, pp. 5–8. doi: 10.1145/
1278480.1278483.

[4] Sergei Skorobogatov and Christopher Woods. “Breakthrough
Silicon Scanning Discovers Backdoor in Military Chip.” In:
Proceedings of the 14th International Workshop on Cryptographic
Hardware and Embedded Systems. CHES 2012 (Leuven, Belgium,
Sept. 9–12, 2012). Ed. by Emmanuel Prouff and Patrick Schau-
mont. Vol. 7428. Lecture Notes in Computer Science. Springer,
2012, pp. 23–40. doi: 10.1007/978-3-642-33027-8_2.

[5] Vinayaka Jyothi and Jeyavijayan (JV) Rajendran. “Hardware
Trojan Attacks in FPGA and Protection Approaches.” In: The
Hardware Trojan War: Attacks, Myths, and Defenses. Ed. by Swa-
rup Bhunia and Mark M. Tehranipoor. Springer, 2018. doi:
10.1007/978-3-319-68511-3_14.

[6] Maik Ender, Amir Moradi, and Christof Paar. “The Unpatch-
able Silicon: A Full Break of the Bitstream Encryption of Xilinx
7-Series FPGAs.” In: 29th USENIX Security Symposium. USENIX
Security 20 (Boston, MA). USENIX Association, Aug. 2020. url:
https://www.usenix.org/conference/usenixsecurity20/

presentation/ender.

[7] Stephanie Drzevitzky, Uwe Kastens, and Marco Platzner. “Proof-
Carrying Hardware: Towards Runtime Verification of Reconfig-
urable Modules.” In: International Conference on ReConFigurable
Computing and FPGAs (ReConFig) (Cancun, Mexico). IEEE, Dec.
2009, pp. 189–194. doi: 10.1109/ReConFig.2009.31.

[8] Jason Vosatka. “Introduction to Hardware Trojans.” In: The
Hardware Trojan War: Attacks, Myths, and Defenses. Ed. by Swa-
rup Bhunia and Mark M. Tehranipoor. Springer, 2018, pp. 15–
51. doi: 10.1007/978-3-319-68511-3_2.

271

https://doi.org/10.1007/978-90-481-9157-4
https://doi.org/10.1007/978-90-481-9157-4
https://www.xilinx.com/publications/archives/xcell/Xcell50.pdf
https://www.xilinx.com/publications/archives/xcell/Xcell50.pdf
https://doi.org/10.1145/1278480.1278483
https://doi.org/10.1145/1278480.1278483
https://doi.org/10.1007/978-3-642-33027-8_2
https://doi.org/10.1007/978-3-319-68511-3_14
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://www.usenix.org/conference/usenixsecurity20/presentation/ender
https://doi.org/10.1109/ReConFig.2009.31
https://doi.org/10.1007/978-3-319-68511-3_2


272 bibliography

[9] Gerald Estrin. “Organization of Computer Systems: the Fixed
Plus Variable Structure Computer.” In: International Workshop
on Managing Requirements Knowledge. IEEE, May 1960, pp. 33–
40. doi: 10.1109/AFIPS.1960.28.

[10] Markus Wannemacher. Das FPGA Kochbuch. German. Interna-
tional Thomson Publishing GmbH, 1998. 409 pp.

[11] Bruce Wile, John C. Goss, and Wolfgang Roesner. Comprehen-
sive Functional Verification. The Complete Industry Cycle. Morgan
Kaufmann Publishers, 2005. 704 pp.

[12] Stephen D. Brown, Robert J. Francis, Jonathan Rose, and Zvonko
G. Vranesic. Field-Programmable Gate Arrays. Springer US, 1992.
206 pp. doi: 10.1007/978-1-4615-3572-0.

[13] Toshiaki Miyazaki. “Reconfigurable systems: a survey.” In: Pro-
ceedings of 1998 Asia and South Pacific Design Automation Con-
ference (ASPDAC). ASPDAC (Yokohama, Japan, Feb. 13, 1998).
IEEE, Feb. 1998, pp. 447–452. doi: 10 . 1109 / ASPDAC . 1998 .

669520.

[14] Brad L. Hutchings and Brent E. Nelson. “Chapter 21 - Imple-
menting Applications with FPGAs.” In: Reconfigurable Comput-
ing. The Theory and Practice of FPGA-Based Computation. Ed. by
Scott Hauck and André DeHon. Systems on Silicon. Morgan
Kaufmann Publishers, 2008, pp. 439–454. doi: 10.1016/B978-
012370522-8.50029-7.

[15] Katherine Compton and Scott Hauck. “Reconfigurable Comput-
ing: A Survey of Systems and Software.” In: ACM Computing
Surveys 34.2 (June 2002), pp. 171–210. doi: 10.1145/508352.
508353.

[16] Mark L. Chang. “Chapter 1 - Device Architecture.” In: Re-
configurable Computing. The Theory and Practice of FPGA-Based
Computation. Ed. by Scott Hauck and André DeHon. Systems
on Silicon. Morgan Kaufmann Publishers, 2008, pp. 3–27. doi:
10.1016/B978-012370522-8.50005-4.

[17] 7 Series FPGAs Configurable Logic Block. UG474. Xilinx, Inc. Sept.
2016. url: https://www.xilinx.com/support/documentation/
user_guides/ug474_7Series_CLB.pdf.

[18] Jason Cong and Peichen Pan. “Chapter 13 - Technology Map-
ping.” In: Reconfigurable Computing. The Theory and Practice of
FPGA-Based Computation. Ed. by Scott Hauck and André De-
Hon. Systems on Silicon. Morgan Kaufmann Publishers, 2008,
pp. 277–296. doi: 10.1016/B978-012370522-8.50019-4.

https://doi.org/10.1109/AFIPS.1960.28
https://doi.org/10.1007/978-1-4615-3572-0
https://doi.org/10.1109/ASPDAC.1998.669520
https://doi.org/10.1109/ASPDAC.1998.669520
https://doi.org/10.1016/B978-012370522-8.50029-7
https://doi.org/10.1016/B978-012370522-8.50029-7
https://doi.org/10.1145/508352.508353
https://doi.org/10.1145/508352.508353
https://doi.org/10.1016/B978-012370522-8.50005-4
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://doi.org/10.1016/B978-012370522-8.50019-4


bibliography 273

[19] Steven A. Guccione. “Chapter 19 - Configuration Bitstream
Generation.” In: Reconfigurable Computing. The Theory and Prac-
tice of FPGA-Based Computation. Ed. by Scott Hauck and André
DeHon. Systems on Silicon. Morgan Kaufmann Publishers,
2008, pp. 401–409. doi: 10.1016/B978-012370522-8.50026-1.

[20] Larry McMurchie and Carl Ebeling. “Chapter 17 - Pathfinder: A
Negotiation-Based Performance-Driven Router for FPGAs.” In:
Reconfigurable Computing. The Theory and Practice of FPGA-Based
Computation. Ed. by Scott Hauck and André DeHon. Systems
on Silicon. Morgan Kaufmann Publishers, 2008, pp. 365–381.
doi: 10.1016/B978-012370522-8.50024-8.

[21] Edsger W. Dijkstra. “Notes on Structured Programming.” Cir-
culated privately. Apr. 1970. url: https://research.tue.nl/
files/2408738/252825.pdf.

[22] Kenneth L. McMillan. “A methodology for hardware veri-
fication using compositional model checking.” In: Science of
Computer Programming 37.1 (2000), pp. 279–309. doi: 10.1016/
S0167-6423(99)00030-1.

[23] Gang Qu and Lin Yuan. “Secure Hardware IPs by Digital
Watermark.” In: Introduction to Hardware Security and Trust. Ed.
by M. Tehranipoor and C. Wang. Springer New York, 2012,
pp. 123–141. doi: 10.1007/978-1-4419-8080-9_6.

[24] Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkon-
jak. “Trusted Design in FPGAs.” In: Introduction to Hardware Se-
curity and Trust. Ed. by M. Tehranipoor and C. Wang. Springer
New York, 2012, pp. 195–229. doi: 10.1007/978-1-4419-8080-
9_9.

[25] Harry D. Foster and Claudionor N. Coelho. “Assertions Target-
ing A Diverse Set of Verification Tools.” In: System on Chip De-
sign Languages: Extended papers: best of FDL’01 and HDLCon’01.
Ed. by Anne Mignotte, Eugenio Villar, and Lynn Horobin.
Springer US, 2002, pp. 187–200. doi: 10.1007/978-1-4757-
6674-5_16.

[26] Kenneth L. McMillan. “Symbolic Model Checking. An Ap-
proach to the State Explosion Problem.” CMU-CS-92-131. PhD
thesis. Carnegie Mellon University, May 1992. 212 pp.

[27] Daniel Brand. “Verification of large synthesized designs.” In:
Proceedings of the IEEE/ACM International Conference on Com-
puter-Aided Design. ICCAD ’93 (Santa Clara, California, USA,
Nov. 7–11, 1993). Ed. by Michael R. Lightner and Jochen A. G.
Jess. IEEE, Nov. 1993, pp. 534–537. doi: 10.1109/ICCAD.1993.
580110.

https://doi.org/10.1016/B978-012370522-8.50026-1
https://doi.org/10.1016/B978-012370522-8.50024-8
https://research.tue.nl/files/2408738/252825.pdf
https://research.tue.nl/files/2408738/252825.pdf
https://doi.org/10.1016/S0167-6423(99)00030-1
https://doi.org/10.1016/S0167-6423(99)00030-1
https://doi.org/10.1007/978-1-4419-8080-9_6
https://doi.org/10.1007/978-1-4419-8080-9_9
https://doi.org/10.1007/978-1-4419-8080-9_9
https://doi.org/10.1007/978-1-4757-6674-5_16
https://doi.org/10.1007/978-1-4757-6674-5_16
https://doi.org/10.1109/ICCAD.1993.580110
https://doi.org/10.1109/ICCAD.1993.580110


274 bibliography

[28] Grigory S. Tseitin. “On the Complexity of Derivation in Proposi-
tional Calculus.” In: Automation of Reasoning: 2: Classical Papers
on Computational Logic 1967–1970. Ed. by Jörg H. Siekmann and
Graham Wrightson. Springer, 1983, pp. 466–483. doi: 10.1007/
978-3-642-81955-1_28.

[29] Andreas Kuehlmann, Malay K. Ganai, and Viresh Paruthi.
“Circuit-Based Boolean Reasoning.” In: Proceedings of the 38th
Design Automation Conference (DAC 2001) (Las Vegas, NV, USA,
June 18–22, 2001). ACM, 2001, pp. 232–237. doi: 10.1145/
378239.378470.

[30] Robert K. Brayton and Alan Mishchenko. “ABC: An Academic
Industrial-Strength Verification Tool.” In: Computer Aided Ver-
ification. Ed. by Tayssir Touili, Byron Cook, and Paul Jackson.
Vol. 6174. Lecture Notes in Computer Science. Springer, 2010,
pp. 24–40. doi: 10.1007/978-3-642-14295-6_5.

[31] Tobias Isenberg, Marco Platzner, Heike Wehrheim, and To-
bias Wiersema. “Proof-Carrying Hardware via Inductive In-
variants.” In: Transactions on Design Automation of Electronic
Systems. TODAES 22.4 (July 2017), 61:1–61:23. doi: 10.1145/
3054743.

[32] IEEE. Standard for Property Specification Language (PSL). IEEE
Std 1850-2010. Mar. 2010. url: https://standards.ieee.org/
standard/1850-2010.html.

[33] Gianpiero Cabodi, Carmelo Loiacono, Marco Palena, Paolo
Pasini, Denis Patti, Stefano Quer, Danilo Vendraminetto, Armin
Biere, and Keijo Heljanko. “Hardware Model Checking Com-
petition 2014: An Analysis and Comparison of Solvers and
Benchmarks.” In: Journal on Satisfiability, Boolean Modeling and
Computation 9.1 (2014), pp. 135–172. doi: 10.3233/SAT190106.

[34] Armin Biere, Tom van Dijk, and Keijo Heljanko. “Hardware
Model Checking Competition 2017.” In: Formal Methods in
Computer-Aided Design, FMCAD 2017, Vienna, Austria, October
02-06, 2017. Ed. by Daryl Stewart and Georg Weissenbacher.
IEEE, 2017, p. 9. doi: 10.23919/FMCAD.2017.8102233.

[35] Edmund Clarke, Daniel Kroening, Joël Ouaknine, and Ofer
Strichman. “Computational challenges in bounded model check-
ing.” In: International Journal on Software Tools for Technology
Transfer 7.2 (2005), pp. 174–183. doi: 10.1007/s10009- 004-
0182-5.

[36] Aaron R. Bradley. “SAT-Based Model Checking without Un-
rolling.” In: Verification, Model Checking, and Abstract Interpreta-
tion - 12th International Conference, VMCAI 2011, Austin, TX,
USA, January 23-25, 2011. Proceedings. 2011, pp. 70–87. doi:
10.1007/978-3-642-18275-4_7.

https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1145/378239.378470
https://doi.org/10.1145/378239.378470
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/3054743
https://doi.org/10.1145/3054743
https://standards.ieee.org/standard/1850-2010.html
https://standards.ieee.org/standard/1850-2010.html
https://doi.org/10.3233/SAT190106
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.1007/s10009-004-0182-5
https://doi.org/10.1007/s10009-004-0182-5
https://doi.org/10.1007/978-3-642-18275-4_7


bibliography 275

[37] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. “Effi-
cient implementation of property directed reachability.” In:
Proceedings of the International Conference on Formal Methods in
Computer-Aided Design. FMCAD ’11 (Austin, TX, USA, Oct. 30–
Nov. 2, 2011). Ed. by Per Bjesse and Anna Slobodová. 2011,
pp. 125–134.

[38] Ted Huffmire, Brett Brotherton, Gang Wang, Timothy Sher-
wood, Ryan Kastner, Timothy Levin, Thuy Nguyen, and Cyn-
thia Irvine. “Moats and Drawbridges: An Isolation Primitive
for Reconfigurable Hardware Based Systems.” In: Symposium
on Security and Privacy (Oakland, CA). IEEE, May 2007, pp. 281–
295. doi: 10.1109/SP.2007.28.

[39] Ted Huffmire, Timothy Levin, Thuy Nguyen, Cynthia Irvine,
Brett Brotherton, Gang Wang, Timothy Sherwood, and Ryan
Kastner. “Security Primitives for Reconfigurable Hardware-
Based Systems.” In: ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS) 3 (2 May 2010), pp. 10:1–10:35. doi:
10.1145/1754386.1754391.

[40] Jérémie Crenne, Romain Vaslin, Guy Gogniat, Jean-Philippe
Diguet, Russell Tessier, and Deepak Unnikrishnan. “Config-
urable Memory Security in Embedded Systems.” In: ACM
Transactions on Embedded Computing Systems 12.3 (Mar. 2013),
pp. 71:1–71:23. doi: 10.1145/2442116.2442121.

[41] Marcel Eckert, Igor Podebrad, and Bernd Klauer. “Hardware
Based Security Enhanced Direct Memory Access.” English.
In: Communications and Multimedia Security. Ed. by Bart De
Decker, Jana Dittmann, Christian Kraetzer, and Claus Viel-
hauer. Vol. 8099. Lecture Notes in Computer Science. Springer,
2013, pp. 145–151. doi: 10.1007/978-3-642-40779-6_12.

[42] Cataldo Basile, Stefano Di Carlo, and Alberto Scionti. “FPGA-
Based Remote-Code Integrity Verification of Programs in Dis-
tributed Embedded Systems.” In: IEEE Transactions on Systems,
Man, and Cybernetics Society 42.2 (2012), pp. 187–200. doi: 10.
1109/tsmcc.2011.2106493.

[43] Pascal Cotret, Guy Gogniat, Jean-Philippe Diguet, and Jeremie
Crenne. “Lightweight reconfiguration security services for AXI-
based MPSoCs.” In: 22nd International Conference on Field Pro-
grammable Logic and Applications (FPL) (2012). doi: 10.1109/
fpl.2012.6339233.

[44] Ted Huffmire, Shreyas Prasad, Timothy Sherwood, and Ryan
Kastner. “Policy-Driven Memory Protection for Reconfigurable
Hardware.” In: Computer Security – ESORICS 2006. European
Symposium on Research in Computer Security (Hamburg,
Germany, Sept. 18–20, 2006). Ed. by Dieter Gollmann, Jan

https://doi.org/10.1109/SP.2007.28
https://doi.org/10.1145/1754386.1754391
https://doi.org/10.1145/2442116.2442121
https://doi.org/10.1007/978-3-642-40779-6_12
https://doi.org/10.1109/tsmcc.2011.2106493
https://doi.org/10.1109/tsmcc.2011.2106493
https://doi.org/10.1109/fpl.2012.6339233
https://doi.org/10.1109/fpl.2012.6339233


276 bibliography

Meier, and Andrei Sabelfeld. Vol. 4189. Lecture Notes in Com-
puter Science. Springer, Sept. 2006, pp. 461–478. doi: 10.1007/
11863908_28.

[45] Ted Huffmire, Timothy Sherwood, Ryan Kastner, and Timothy
Levin. “Enforcing Memory Policy Specifications in Reconfig-
urable Hardware.” In: Computers & Security 27.5–6 (2008), pp.
197–215. doi: 10.1016/j.cose.2008.05.002.

[46] Ted Huffmire, Brett Brotherton, Nick Callegari, Jonathan Vala-
mehr, Jeff White, Ryan Kastner, and Tim Sherwood. “Design-
ing Secure Systems on Reconfigurable Hardware.” In: ACM
Transactions on Design Automation of Electronic Systems 13.3 (July
2008), 44:1–44:24. doi: 10.1145/1367045.1367053.

[47] Tobias Wiersema, Stephanie Drzevitzky, and Marco Platzner.
“Memory Security in Reconfigurable Computers: Combining
Formal Verification with Monitoring.” In: 2014 International
Conference on Field-Programmable Technology. FPT 2014 (Shang-
hai, China, Dec. 10–12, 2014). IEEE, Dec. 2014, pp. 167–174. doi:
10.1109/FPT.2014.7082771.

[48] Stephanie Drzevitzky. “Proof-Carrying Hardware: Runtime
Formal Verification for Secure Dynamic Reconfiguration.” In:
International Conference on Field Programmable Logic and Applica-
tions (FPL). PhD Forum Presentation. IEEE, Aug. 2010, pp. 255–
258. doi: 10.1109/FPL.2010.59.

[49] Tobias Wiersema, Arne Bockhorn, and Marco Platzner. “An Ar-
chitecture and Design Tool Flow for Embedding a Virtual FPGA
into a Reconfigurable System-on-Chip.” In: Computers and Elec-
trical Engineering 55 (2016). Ed. by Manu Malek, pp. 112–122.
doi: 10.1016/j.compeleceng.2016.04.005.

[50] Tobias Wiersema and Marco Platzner. “Verifying worst-case
completion times for reconfigurable hardware modules us-
ing proof-carrying hardware.” In: 11th International Sympo-
sium on Reconfigurable Communication-centric Systems-on-Chip.
ReCoSoC 2016 (Tallinn, Estonia, June 27–29, 2016). IEEE, 2016,
pp. 1–8. doi: 10.1109/ReCoSoC.2016.7533910.

[51] Qazi Arbab Ahmed, Tobias Wiersema, and Marco Platzner.
“Proof-Carrying Hardware versus the Stealthy Malicious LUT
Hardware Trojan.” In: Applied Reconfigurable Computing. 15th
International Symposium, ARC 2019 (Darmstadt, Germany,
Apr. 9–11, 2019). Ed. by Christian Hochberger, Brent Nelson,
Andreas Koch, Roger Woods, and Pedro Diniz. Vol. 11444.
Lecture Notes in Computer Science. Springer, 2019, pp. 127–
136. doi: 10.1007/978-3-030-17227-5_10.

https://doi.org/10.1007/11863908_28
https://doi.org/10.1007/11863908_28
https://doi.org/10.1016/j.cose.2008.05.002
https://doi.org/10.1145/1367045.1367053
https://doi.org/10.1109/FPT.2014.7082771
https://doi.org/10.1109/FPL.2010.59
https://doi.org/10.1016/j.compeleceng.2016.04.005
https://doi.org/10.1109/ReCoSoC.2016.7533910
https://doi.org/10.1007/978-3-030-17227-5_10


bibliography 277

[52] Linus Witschen, Tobias Wiersema, and Marco Platzner. “Mak-
ing the Case for Proof-carrying Approximate Circuits.” 4th
Workshop on Approximate Computing. WAPCO 2018 (Manch-
ester, England, Jan. 22, 2018). Workshop without proceedings.
2018. url: https://api.semanticscholar.org/CorpusID:

52228901.

[53] Qazi Arbab Ahmed, Tobias Wiersema, and Marco Platzner.
“Malicious Routing: Circumventing Bitstream-level Verification
for FPGAs.” In: Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition. DATE 2021 (Virtual Conference,
Feb. 1–5, 2021). IEEE, Feb. 2021, pp. 1490–1495.

[54] George C. Necula and Peter Lee. Proof-Carrying Code. Tech. rep.
CMU-CS-96-165. School of Computer Science, Carnegie Mellon
University, Nov. 1996.

[55] Markus Happe, Friedhelm Meyer auf der Heide, Peter Kling,
Marco Platzner, and Christian Plessl. “On-The-Fly Computing:
A novel paradigm for individualized IT services.” In: 9th Work-
shop on Software Technologies for Future Embedded and Ubiquitous
Systems. SEUS 2013 (Paderborn, Germany, June 17–18, 2013).
IEEE, June 2013, pp. 1–10. doi: 10.1109/ISORC.2013.6913232.

[56] Holger Karl, Dennis Kundisch, Friedhelm Meyer auf der Heide,
and Heike Wehrheim. “A Case for a New IT Ecosystem: On-
The-Fly Computing.” In: Business & Information Systems Engi-
neering (Dec. 2019). doi: 10.1007/s12599-019-00627-x.

[57] Stephanie Drzevitzky. “Proof-Carrying Hardware: A Novel
Approach to Reconfigurable Hardware Security.” PhD the-
sis. Paderborn University, Dec. 18, 2012. url: http://nbn-
resolving.de/urn:nbn:de:hbz:466:2-10423.

[58] Stephanie Drzevitzky, Uwe Kastens, and Marco Platzner. “Proof-
Carrying Hardware: Concept and Prototype Tool Flow for
Online Verification.” In: International Journal of Reconfigurable
Computing 2010 (2010). Ed. by Lionel Torres, 11 pages. doi:
10.1155/2010/180242.

[59] Stephanie Drzevitzky and Marco Platzner. “Achieving Hard-
ware Security for Reconfigurable Systems on Chip by a Proof-
Carrying Code Approach.” In: International Workshop on Re-
configurable Communication-centric Systems-on-Chip (ReCoSoC).
IEEE, 2011, p. 8. doi: 10.1109/ReCoSoC.2011.5981499.

[60] Kevin Edward Murray et al. “VTR 8: High Performance CAD
and Customizable FPGA Architecture Modelling.” In: ACM
Transactions on Reconfigurable Technology and Systems 13.2 (May
2020). doi: 10.1145/3388617. url: https://verilogtorouting.
org (visited on 02/10/2020).

https://api.semanticscholar.org/CorpusID:52228901
https://api.semanticscholar.org/CorpusID:52228901
https://doi.org/10.1109/ISORC.2013.6913232
https://doi.org/10.1007/s12599-019-00627-x
http://nbn-resolving.de/urn:nbn:de:hbz:466:2-10423
http://nbn-resolving.de/urn:nbn:de:hbz:466:2-10423
https://doi.org/10.1155/2010/180242
https://doi.org/10.1109/ReCoSoC.2011.5981499
https://doi.org/10.1145/3388617
https://verilogtorouting.org
https://verilogtorouting.org


278 bibliography

[61] Armin Biere. “PicoSAT Essentials.” In: Journal on Satisfiability,
Boolean Modeling and Computation 4 (2008), pp. 75–97. doi: 10.
3233/SAT190039.

[62] Eric Love, Yier Jin, and Yiorgos Makris. “Enhancing security
via provably trustworthy hardware intellectual property.” In:
International Symposium on Hardware-Oriented Security and Trust
(HOST). IEEE, June 2011, pp. 12–17. doi: 10.1109/HST.2011.
5954988.

[63] Eric Love, Yier Jin, and Yiorgos Makris. “Proof-Carrying Hard-
ware Intellectual Property: A Pathway to Trusted Module Ac-
quisition.” In: IEEE Transactions on Information Forensics and Se-
curity 7.1 (1 Feb. 2012), pp. 25–40. doi: 10.1109/TIFS.2011.
2160627.

[64] Yier Jin and Yiorgos Makris. “Proof carrying-based information
flow tracking for data secrecy protection and hardware trust.”
In: 30th VLSI Test Symposium. VTS. IEEE, Apr. 2012. doi: 10.
1109/vts.2012.6231062.

[65] Yier Jin, Eric Love, and Yiorgos Makris. “Design for Hardware
Trust.” In: Introduction to Hardware Security and Trust. Ed. by M.
Tehranipoor and C. Wang. Springer, 2012. Chap. 16, pp. 365–
384. doi: 10.1007/978-1-4419-8080-9_16.

[66] Yier Jin and Yiorgos Makris. “A proof-carrying based frame-
work for trusted microprocessor IP.” In: International Confer-
ence on Computer-Aided Design. ICCAD’13 (San Jose, CA, USA,
Nov. 18–21, 2013). Ed. by Jörg Henkel. IEEE, 2013, pp. 824–829.
doi: 10.1109/ICCAD.2013.6691208.

[67] Yier Jin. “EDA tools trust evaluation through security property
proofs.” In: Design, Automation and Test in Europe Conference and
Exhibition. DATE 2014 (Dresden, Germany, Mar. 24–28, 2014).
Ed. by Gerhard P. Fettweis and Wolfgang Nebel. IEEE, Mar.
2014, pp. 1–4. doi: 10.7873/DATE.2014.260.

[68] Ken Thompson. “Reflections on Trusting Trust.” In: Communi-
cations of the ACM 27.8 (Aug. 1984), pp. 761–763. doi: 10.1145/
358198.358210.

[69] Christian Krieg, Clifford Wolf, and Axel Jantsch. “Malicious
LUT: A stealthy FPGA Trojan injected and triggered by the
design flow.” In: Proceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD). Nov. 2016, pp. 1–8.
doi: 10.1145/2966986.2967054.

[70] Berkeley Logic Synthesis and Verification Group. ABC: A Sys-
tem for Sequential Synthesis and Verification. url: http://www.
eecs.berkeley.edu/~alanmi/abc/ (visited on 02/21/2019).

https://doi.org/10.3233/SAT190039
https://doi.org/10.3233/SAT190039
https://doi.org/10.1109/HST.2011.5954988
https://doi.org/10.1109/HST.2011.5954988
https://doi.org/10.1109/TIFS.2011.2160627
https://doi.org/10.1109/TIFS.2011.2160627
https://doi.org/10.1109/vts.2012.6231062
https://doi.org/10.1109/vts.2012.6231062
https://doi.org/10.1007/978-1-4419-8080-9_16
https://doi.org/10.1109/ICCAD.2013.6691208
https://doi.org/10.7873/DATE.2014.260
https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/2966986.2967054
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/


bibliography 279

[71] Jason Luu et al. “VTR 7.0: Next Generation Architecture and
CAD System for FPGAs.” In: ACM Transactions on Reconfig-
urable Technology and Systems 7.2 (July 2014), 6:1–6:30. doi: 10.
1145/2617593.

[72] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey
Goeders, Andrew Somerville, Kenneth B. Kent, Peter Jamieson,
and Jason Helge Anderson. “The VTR Project: Architecture and
CAD for FPGAs from Verilog To Routing.” In: International
Symposium on Field-Programmable Gate Arrays (FPGA). Ed. by
Katherine Compton and Brad L. Hutchings. ACM, 2012, pp. 77–
86. doi: 10.1145/2145694.2145708.

[73] The VTR Project website. 2020. url: https://verilogtorouting.
org (visited on 02/10/2020).

[74] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9
And Beyond. Tech. rep. 11/2. Altenbergerstr. 69, 4040 Linz, Aus-
tria: Institute for Formal Models and Verification, Johannes
Kepler University, July 2011.

[75] Claire Wolf. Yosys Open SYnthesis Suite. url: http : / / www .

clifford.at/yosys/ (visited on 04/23/2021).

[76] João P. Marques Silva, Inês Lynce, and Sharad Malik. “Conflict-
Driven Clause Learning SAT Solvers.” In: Handbook of Satisfi-
ability. Ed. by Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh. Vol. 185. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009, pp. 131–153. doi: 10.3233/978-
1-58603-929-5-131.

[77] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian
Heisinger. “CaDiCaL, Kissat, Paracooba, Plingeling and Treen-
geling Entering the SAT Competition 2020.” In: Proceedings of
the SAT Competition 2020 – Solver and Benchmark Descriptions.
Ed. by Tomas Balyo, Nils Froleyks, Marijn Heule, Markus Iser,
Matti Järvisalo, and Martin Suda. Vol. B-2020-1. Department
of Computer Science Report Series B. University of Helsinki,
2020, pp. 51–53.

[78] Peter Lammich. “The GRAT Tool Chain - Efficient (UN)SAT
Certificate Checking with Formal Correctness Guarantees.”
In: Proceedings of the 20th International Conference on Theory and
Applications of Satisfiability Testing. SAT 2017 (Melbourne, VIC,
Australia, Aug. 28–Sept. 1, 2017). Ed. by Serge Gaspers and
Toby Walsh. Vol. 10491. Lecture Notes in Computer Science.
Springer, 2017, pp. 457–463. doi: 10.1007/978-3-319-66263-
3_29.

[79] Enno Lübbers and Marco Platzner. “ReconOS: An RTOS sup-
porting Hard- and Software Threads.” In: Proceedings of the 17th
International Conference on Field Programmable Logic and Applica-

https://doi.org/10.1145/2617593
https://doi.org/10.1145/2617593
https://doi.org/10.1145/2145694.2145708
https://verilogtorouting.org
https://verilogtorouting.org
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.1007/978-3-319-66263-3_29
https://doi.org/10.1007/978-3-319-66263-3_29


280 bibliography

tions (FPL) (Amsterdam, Netherlands). IEEE, Aug. 2007. doi:
10.1109/FPL.2007.4380686.

[80] Enno Lübbers and Marco Platzner. “ReconOS: Multithreaded
Programming for Reconfigurable Computers.” In: ACM Trans-
actions on Embedded Computing Systems (TECS) 9.1 (1 Oct. 2009),
pp. 8:1–8:33. doi: 10.1145/1596532.1596540.

[81] Andreas Agne, Markus Happe, Ariane Keller, Enno Lübbers,
Bernhard Plattner, Marco Platzner, and Christian Plessl. “Re-
conOS: An Operating System Approach for Reconfigurable
Computing.” In: IEEE Micro 34.1 (2013). Ed. by Marco Platzner,
pp. 60–71. doi: 10.1109/mm.2013.110. url: http://www.

reconos.de (visited on 02/10/2020).

[82] Marco Platzner, ed. ReconOS – Operating System for Reconfig-
urable Computing. 2014. url: http://www.reconos.de (visited
on 02/10/2020).

[83] George C. Necula. “Proof-Carrying Code.” In: Conference Record
of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’97 (Paris, France,
Jan. 15–17, 1997). Ed. by Peter Lee, Fritz Henglein, and Neil D.
Jones. ACM, 1997, pp. 106–119. doi: 10.1145/263699.263712.

[84] Jean-Baptiste Note and Éric Rannaud. “From the bitstream to
the netlist.” In: Proceedings of the 16th international ACM/SIGDA
symposium on Field programmable gate arrays (Monterey, Califor-
nia, USA). FPGA ’08. ACM, 2008, pp. 264–264. doi: 10.1145/
1344671.1344729.

[85] Steven McNeil. Solving Today’s Design Security Concerns. Tech.
rep. WP365. Version 1.2. Xilinx, Inc., July 2012. url: https:
//www.xilinx.com/support/documentation/white_papers/

wp365_Solving_Security_Concerns.pdf.

[86] Claire Wolf and Mathias Lasser. Project IceStorm. url: http:
//www.clifford.at/icestorm/ (visited on 04/23/2021).

[87] Hoyoung Yu, Hansol Lee, Sangil Lee, Youngmin Kim, and
Hyung-Min Lee. “Recent Advances in FPGA Reverse Engi-
neering.” In: Electronics 7.10 (Oct. 2018), p. 14. doi: 10.3390/
electronics7100246.

[88] Khoa Dang Pham, Edson L. Horta, and Dirk Koch. “BITMAN:
A tool and API for FPGA bitstream manipulations.” In: Pro-
ceedings of the Design, Automation & Test in Europe Conference
& Exhibition. DATE 2017 (Lausanne, Switzerland, Mar. 27–31,
2017). Ed. by David Atienza and Giorgio Di Natale. IEEE, Mar.
2017, pp. 894–897. doi: 10.23919/DATE.2017.7927114.

https://doi.org/10.1109/FPL.2007.4380686
https://doi.org/10.1145/1596532.1596540
https://doi.org/10.1109/mm.2013.110
http://www.reconos.de
http://www.reconos.de
http://www.reconos.de
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/1344671.1344729
https://doi.org/10.1145/1344671.1344729
https://www.xilinx.com/support/documentation/white_papers/wp365_Solving_Security_Concerns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp365_Solving_Security_Concerns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp365_Solving_Security_Concerns.pdf
http://www.clifford.at/icestorm/
http://www.clifford.at/icestorm/
https://doi.org/10.3390/electronics7100246
https://doi.org/10.3390/electronics7100246
https://doi.org/10.23919/DATE.2017.7927114


bibliography 281

[89] Loïc Lagadec, Dominique Lavenier, Erwan Fabiani, and Ber-
nard Pottier. “Placing, Routing, and Editing Virtual FPGAs.” In:
11th on International Conference on Field-Programmable Logic and
Applications. FPL 2001 (Belfast, Northern Ireland, UK, Aug. 27–
29, 2001). Ed. by Gordon J. Brebner and Roger F. Woods.
Vol. 2147. Lecture Notes in Computer Science. Springer, 2001,
pp. 357–366. doi: 10.1007/3-540-44687-7_37.

[90] H. Sidiropoulos, P. Figuli, K. Siozios, D. Soudris, and J. Becker.
“A platform-independent runtime methodology for mapping
multiple applications onto FPGAs through resource virtual-
ization.” In: Field Programmable Logic and Applications (FPL),
2013 23rd International Conference on. Sept. 2013, pp. 1–4. doi:
10.1109/FPL.2013.6645564.

[91] James Coole and Greg Stitt. “Intermediate Fabrics: Virtual Ar-
chitectures for Circuit Portability and fast Placement and Rout-
ing.” In: International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS). Ed. by Tony Givargis and
Adam Donlin. ACM, 2010, pp. 13–22. doi: DOI : 10 . 1145 /

1878961.1878966.

[92] Greg Stitt and James Coole. “Intermediate Fabrics: Virtual
Architectures for Near-Instant FPGA Compilation.” In: IEEE
Embedded Systems Letters 3.3 (Sept. 12, 2011), pp. 81–84. doi:
10.1109/les.2011.2167713.

[93] Dirk Koch, Christian Beckhoff, and Guy GF Lemieux. “An
efficient FPGA overlay for portable custom instruction set ex-
tensions.” In: Proc. IEEE International Conference on Field Pro-
grammable Logic and Applications (FPL’13). 2013, pp. 1–8. doi:
10.1109/FPL.2013.6645517.

[94] William Fornaciari and Vincenzo Piuri. “Virtual FPGAs: Some
Steps behind the Physical Barriers.” In: Parallel and Distributed
Processing Workshops (IPPS/SPDP). Ed. by José Rolim. Vol. 1388.
Lecture Notes in Computer Science. Springer, 1998, pp. 7–12.
doi: 10.1007/3-540-64359-1_665.

[95] Alexander D. Brant and Guy G. F. Lemieux. “ZUMA: An Open
FPGA Overlay Architecture.” In: International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE,
2012, pp. 93–96. doi: 10.1109/FCCM.2012.25. url: https:
//github.com/adbrant/zuma-fpga (visited on 02/10/2020).

[96] Tobias Wiersema, Arne Bockhorn, and Marco Platzner. “Em-
bedding FPGA Overlays into Configurable Systems-on-Chip:
ReconOS meets ZUMA.” In: 2014 International Conference on
ReConFigurable Computing and FPGAs. ReConFig’14 (Cancun,
Mexico, Dec. 8–10, 2014). IEEE, Dec. 2014, pp. 1–6. doi: 10.
1109/ReConFig.2014.7032514.

https://doi.org/10.1007/3-540-44687-7_37
https://doi.org/10.1109/FPL.2013.6645564
https://doi.org/DOI:10.1145/1878961.1878966
https://doi.org/DOI:10.1145/1878961.1878966
https://doi.org/10.1109/les.2011.2167713
https://doi.org/10.1109/FPL.2013.6645517
https://doi.org/10.1007/3-540-64359-1_665
https://doi.org/10.1109/FCCM.2012.25
https://github.com/adbrant/zuma-fpga
https://github.com/adbrant/zuma-fpga
https://doi.org/10.1109/ReConFig.2014.7032514
https://doi.org/10.1109/ReConFig.2014.7032514


282 bibliography

[97] Linus Witschen, Tobias Wiersema, Masood Raeisi Nafchi, Arne
Bockhorn, and Marco Platzner. “Timing Optimization for Vir-
tual FPGA Configurations.” In: Applied Reconfigurable Com-
puting. Architectures, Tools, and Applications. 17th International
Symposium, ARC 2021 (Virtual Conference, June 29–30, 2021).
Lecture Notes in Computing Science. Springer, 2021.

[98] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. “A Survey
on FPGA Virtualization.” In: Proceedings of the 28th Interna-
tional Conference on Field Programmable Logic and Applications.
FPL 2018 (Dublin, Ireland, Aug. 27–31, 2018). IEEE, Aug. 2018,
pp. 131–138. doi: 10.1109/FPL.2018.00031.

[99] Alexander D. Brant. Fine Grain FPGA Overlay Architecture and
Tools. 2020. url: https://github.com/adbrant/zuma-fpga
(visited on 02/10/2020).

[100] Gordon J. Brebner. “The Swappable Logic Unit: A Paradigm
for Virtual Hardware.” In: International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, Apr.
1997, pp. 77–86. doi: 10.1109/FPGA.1997.624607.

[101] Lukáš Sekanina. “Virtual Reconfigurable Circuits for Real-
World Applications of Evolvable Hardware.” In: Proceedings
of the International Conference on Evolvable Systems: From Biology
to Hardware. Ed. by Andrew M. Tyrrell, Pauline C. Haddow,
and Jim Tørresen. Vol. 2606. Lecture Notes in Computer Science.
Springer, 2003, pp. 186–197. doi: 10.1007/3-540-36553-2_17.

[102] Kyrre Glette, Jim Tørresen, and Moritoshi Yasunaga. “Online
Evolution for a High-Speed Image Recognition System Imple-
mented On a Virtex-II Pro FPGA.” In: NASA/ESA Conference
on Adaptive Hardware and Systems (AHS). Ed. by Tughrul Ar-
slan, Adrian Stoica, Martin Suess, Didier Keymeulen, Tetsuya
Higuchi, Ricardo Salem Zebulum, and Ahmet T. Erdogan. IEEE,
Aug. 2007, pp. 463–470. doi: 10.1109/AHS.2007.83.

[103] Christian Plessl and Marco Platzner. “Virtualization of Hard-
ware – Introduction and Survey.” In: Proceedings of the Inter-
national Conference on Engineering of Reconfigurable Systems and
Algorithms. ERSA’04 (Las Vegas, Nevada, USA, June 21–24,
2004). Ed. by Toomas P. Plaks. CSREA Press, June 2004, pp. 63–
69.

[104] Yajun Ha, Patrick Schaumont, Marc Engels, Serge Vernalde,
Freddy Potargent, Luc Rijnders, and Hugo De Man. “A Hard-
ware Virtual Machine for the Networked Reconfiguration.” In:
International Workshop on Rapid System Prototyping (RSP). IEEE,
2000, pp. 194–199. doi: 10.1109/IWRSP.2000.855224.

https://doi.org/10.1109/FPL.2018.00031
https://github.com/adbrant/zuma-fpga
https://doi.org/10.1109/FPGA.1997.624607
https://doi.org/10.1007/3-540-36553-2_17
https://doi.org/10.1109/AHS.2007.83
https://doi.org/10.1109/IWRSP.2000.855224


bibliography 283

[105] Roman L. Lysecky, Kris Miller, Frank Vahid, and Kees A. Vis-
sers. “Firm-core Virtual FPGA for Just-in-Time FPGA Com-
pilation (Abstract Only).” In: Proceedings of the ACM/SIGDA
13th International Symposium on Field Programmable Gate Arrays.
FPGA 2005 (Monterey, California, USA, Feb. 20–22, 2005). Ed.
by Herman Schmit and Steven J. E. Wilton. ACM, 2005, pp. 271–
271. doi: 10.1145/1046192.1046247.

[106] Michael Hübner, Peter Figuli, Romuald Girardey, Dimitrios
Soudris, Kostas Siozios, and Jürgen Becker. “A Heterogeneous
Multicore System on Chip with Run-Time Reconfigurable Vir-
tual FPGA Architecture.” In: International Symposium on Paral-
lel and Distributed Processing Workshops and Phd Forum (IPDPS).
IEEE, 2011, pp. 143–149. doi: 10.1109/IPDPS.2011.135.

[107] Abhishek Kumar Jain, Xiangwei Li, Suhaib A. Fahmy, and
Douglas L. Maskell. “Adapting the DySER Architecture with
DSP Blocks as an Overlay for the Xilinx Zynq.” In: SIGARCH
Computer Architecture News 43.4 (4 2015), pp. 28–33. doi: 10.
1145/2927964.2927970.

[108] Théotime Bollengier, Loïc Lagadec, Mohamad Najem, Jean-
Christophe Le Lann, and Pierre Guilloux. “Soft Timing Closure
for Soft Programmable Logic Cores: The ARGen Approach.”
In: Applied Reconfigurable Computing. 13th International Sym-
posium, ARC 2017 (Delft, The Netherlands, Apr. 3–7, 2017).
Ed. by Stephan Wong, Antonio Carlos Schneider Beck, Koen
Bertels, and Luigi Carro. Vol. 10216. Lecture Notes in Computer
Science. 2017, pp. 93–105. doi: 10.1007/978-3-319-56258-2_9.

[109] Jean-Christophe Le Lann, Théotime Bollengier, Mohamad Na-
jem, and Loïc Lagadec. “An Integrated Toolchain for Overlay-
centric System-on-chip.” In: 13th International Symposium on Re-
configurable Communication-centric Systems-on-Chip. ReCoSoC
2018 (Lille, France, July 9–11, 2018). Ed. by Smaïl Niar and
Mazen A. R. Saghir. IEEE, 2018, pp. 1–8. doi: 10.1109/ReCoSoC.
2018.8449388.

[110] Oliver Knodel, Paul R. Genssler, and Rainer G. Spallek. “Vir-
tualizing Reconfigurable Hardware to Provide Scalability in
Cloud Architectures.” In: The Tenth International Conference on
Advances in Circuits, Electronics and Micro-electronics. CENICS
2017 (Rome, Italy, Sept. 10–14, 2017). Ed. by Alie El-Din Mady,
Timm Bostelmann, and Sergei Sawitzki. IARIA, 2017, pp. 33–38.
url: https://thinkmind.org/articles/cenics_2017_3_10_
68002.pdf.

[111] Yue Zha and Jing Li. “Virtualizing FPGAs in the Cloud.” In:
Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Sys-
tems. ASPLOS ’20 (Lausanne, Switzerland). Ed. by James R.

https://doi.org/10.1145/1046192.1046247
https://doi.org/10.1109/IPDPS.2011.135
https://doi.org/10.1145/2927964.2927970
https://doi.org/10.1145/2927964.2927970
https://doi.org/10.1007/978-3-319-56258-2_9
https://doi.org/10.1109/ReCoSoC.2018.8449388
https://doi.org/10.1109/ReCoSoC.2018.8449388
https://thinkmind.org/articles/cenics_2017_3_10_68002.pdf
https://thinkmind.org/articles/cenics_2017_3_10_68002.pdf


284 bibliography

Larus, Luis Ceze, and Karin Strauss. ACM, 2020, pp. 845–858.
doi: 10.1145/3373376.3378491.

[112] Chris Lavin and Alireza Kaviani. “RapidWright: Enabling Cus-
tom Crafted Implementations for FPGAs.” In: 26th IEEE Annual
International Symposium on Field-Programmable Custom Comput-
ing Machines. FCCM 2018. IEEE, Apr. 2018, pp. 133–140. doi:
10.1109/FCCM.2018.00030. url: https://www.rapidwright.
io (visited on 02/10/2020).

[113] Alexander Dunlop Brant. “Coarse and Fine Grain Program-
mable Overlay Architectures for FPGAs.” English. Master’s
Thesis. The University Of British Columbia (Vancouver), Feb.
2013. url: http://hdl.handle.net/2429/43918.

[114] Charles Clos. “A study of non-blocking switching networks.”
In: The Bell System Technical Journal 32.2 (Mar. 1953), pp. 406–
424. doi: 10.1002/j.1538-7305.1953.tb01433.x.

[115] Distributed Memory Generator v8.0. PG063. Xilinx, Inc. Nov. 2015.
url: https : / / www . xilinx . com / support / documentation /

ip_documentation/dist_mem_gen/v8_0/pg063- dist- mem-

gen.pdf.

[116] Mohammed Khalid and Jonathan Rose. “The Effect of Fixed
I/O Pin Positioning on The Routability and Speed of FP-
GAs.” In: Proceedings of the 3rd Canadian Workshop of Field-
Programmable Devices. FPD 95 (Montreal, Canada, May 29–
June 1, 1995). 1995, pp. 94–102. url: https : / / www . eecg .

utoronto.ca/~jayar/pubs/khalid/fpd95.pdf.

[117] “IEEE Standard for Standard Delay Format (SDF) for the Elec-
tronic Design Process.” In: IEEE Std 1497-2001 (Dec. 2001),
pp. 1–80. doi: 10.1109/IEEESTD.2001.93359.

[118] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Ar-
chitecture and CAD for Deep-Submicron FPGAS. Vol. 497. The
Springer International Series in Engineering and Computer
Science. Kluwer, 1999. doi: 10.1007/978-1-4615-5145-4.

[119] Steven J. E. Wilton. “Architectures and Algorithms for Field-
Programmable Gate Arrays with Embedded Memories.” PhD
thesis. University of Toronto, 1997.

[120] Shoukath Ali Mohammad. “Formally Verified Memory Ac-
cess Monitors in Reconfigurable High-Performance Computing
Systems.” Master’s Thesis. Paderborn University, Dec. 2018.

[121] Felix Paul Jentzsch. “Enforcing IP Core Connection Properties
with Verifiable Security Monitors.” Bachelor’s Thesis. Pader-
born University, Sept. 2018.

https://doi.org/10.1145/3373376.3378491
https://doi.org/10.1109/FCCM.2018.00030
https://www.rapidwright.io
https://www.rapidwright.io
http://hdl.handle.net/2429/43918
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen/v8_0/pg063-dist-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen/v8_0/pg063-dist-mem-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dist_mem_gen/v8_0/pg063-dist-mem-gen.pdf
https://www.eecg.utoronto.ca/~jayar/pubs/khalid/fpd95.pdf
https://www.eecg.utoronto.ca/~jayar/pubs/khalid/fpd95.pdf
https://doi.org/10.1109/IEEESTD.2001.93359
https://doi.org/10.1007/978-1-4615-5145-4


bibliography 285

[122] Maksim Jenihhin, Xinhui Lai, Tara Ghasempouri, and Jaan
Raik. “Towards Multidimensional Verification: Where Func-
tional Meets Non-Functional.” In: 2018 IEEE Nordic Circuits and
Systems Conference, NORCAS 2018: NORCHIP and International
Symposium of System-on-Chip (SoC). ReCoSoC 2018 (Tallinn, Es-
tonia, Oct. 30–31, 2018). Ed. by Jari Nurmi, Peeter Ellervee, Juri
Mihhailov, Maksim Jenihhin, and Kalle Tammemäe. IEEE, Oct.
2018, pp. 1–7. doi: 10.1109/NORCHIP.2018.8573495.

[123] Michael R. Clarkson and Fred B. Schneider. “Hyperproperties.”
In: Journal of Computer Security 18.6 (2010), pp. 1157–1210. doi:
10.3233/jcs-2009-0393.

[124] Zdeněk Vašíček. “Relaxed Equivalence Checking: A New Chal-
lenge in Logic Synthesis.” In: 2017 20th International Sympo-
sium on Design and Diagnostics of Electronic Circuits & Systems.
DDECS. IEEE, Apr. 2017, pp. 1–6. doi: 10.1109/DDECS.2017.
7968435.

[125] Monica Keerthipati. “A Bitstream-Level Proof-Carrying Hard-
ware Technique for Information Flow Tracking.” Master’s The-
sis. Paderborn University, Dec. 2019.

[126] Marc Boulé and Zeljko Zilic. “Automata-based assertion-check-
er synthesis of PSL properties.” In: ACM Transactions on Design
Automation of Electronic Systems 13.1 (Feb. 2008), 4:1–4:21. doi:
10.1145/1297666.1297670.

[127] Linus Witschen, Muhammad Awais, Hassan Ghasemzadeh
Mohammadi, Tobias Wiersema, and Marco Platzner. “CIRCA:
Towards a Modular and Extensible Framework for Approxi-
mate Circuit Generation.” In: Microelectronics Reliability. MER
99 (2019), pp. 277–290. doi: 10.1016/j.microrel.2019.04.003.

[128] Linus Witschen, Tobias Wiersema, and Marco Platzner. “Proof-
carrying Approximate Circuits.” In: Transactions on Very Large
Scale Integration (VLSI) Systems. TVLSI 28 (9 2020), pp. 2084–
2088. doi: 10.1109/TVLSI.2020.3008061.

[129] Linus Witschen. “A Framework for the Synthesis of Approx-
imate Circuits.” Master’s Thesis. Paderborn University, Aug.
2017.

[130] F. Wang. “Formal Verification of Timed Systems: A Survey and
Perspective.” In: Proceedings of the IEEE. Vol. 92. 8. IEEE, Aug.
2004, pp. 1283–1305. doi: 10.1109/JPROC.2004.831197.

[131] F. Krichen, B. Hamid, B. Zalila, and M. Jmaiel. “Design-Time
Verification of Reconfigurable Real-time Embedded Systems.”
In: International Conference on Embedded Software and Systems
(HPCC-ICESS). IEEE, June 2012, pp. 1487–1494. doi: 10.1109/
HPCC.2012.217.

https://doi.org/10.1109/NORCHIP.2018.8573495
https://doi.org/10.3233/jcs-2009-0393
https://doi.org/10.1109/DDECS.2017.7968435
https://doi.org/10.1109/DDECS.2017.7968435
https://doi.org/10.1145/1297666.1297670
https://doi.org/10.1016/j.microrel.2019.04.003
https://doi.org/10.1109/TVLSI.2020.3008061
https://doi.org/10.1109/JPROC.2004.831197
https://doi.org/10.1109/HPCC.2012.217
https://doi.org/10.1109/HPCC.2012.217


286 bibliography

[132] Raimund Kirner, Sven Bünte, and Michael Zolda. “Measure-
ment-Based Timing Analysis for Reconfigurable Embedded
Systems.” In: Reconfigurable Embedded Control Systems. Ed. by
Mohamed Khalgui and Hans-Michael Hanisch. Engineering
Science Reference (IGI-Global), 2011, pp. 110–129. doi: 10 .

4018/978-1-60960-086-0.ch005.

[133] Neil C. Audsley and Konstantinos Bletsas. “Realistic Analysis
of Limited Parallel Software / Hardware Implementations.” In:
10th Real-Time and Embedded Technology and Applications Sym-
posium. RTAS 2004 (Toronto, Canada, May 25–28, 2004). IEEE,
May 2004, pp. 388–395. doi: 10.1109/RTTAS.2004.1317285.

[134] Marvin Damschen, Lars Bauer, and Jörg Henkel. “Extending
the WCET Problem to Optimize for Runtime-Reconfigurable
Processors.” In: ACM Transactions on Architecture and Code Op-
timization 13.4 (Dec. 2016), pp. 1–24. doi: 10.1145/3014059.

[135] Luca Pezzarossa, Martin Schoeberl, and Jens Sparsø. “A Con-
troller for Dynamic Partial Reconfiguration in FPGA-Based
Real-Time Systems.” In: Proceedings of the 20th International
Symposium on Real-Time Distributed Computing. ISORC 2017

(Toronto, ON, Canada, May 16–18, 2017). IEEE, 2017, pp. 92–
100. doi: 10.1109/ISORC.2017.3.

[136] AbsInt Angewandte Informatik GmbH. aiT WCET Analyz-
ers. 2020. url: https://www.absint.com/ait/ (visited on
06/10/2020).

[137] Frédéric Mallet, Marie-Agnès Peraldi-Frati, and Charles André.
“From UML to Petri Nets for non functional Property Ver-
ification.” In: International Symposium on Industrial Embedded
Systems. IES 2006 (Antibes Juan-Les-Pins, France, Oct. 18–20,
2006). IEEE, Oct. 2006, pp. 1–9. doi: 10.1109/IES.2006.357475.

[138] Alexander Viehl, Björn Sander, Oliver Bringmann, and Wolf-
gang Rosenstiel. “Integrated Requirement Evaluation of Non-
Functional System-on-Chip Properties.” In: Forum on Specifica-
tion, Verification and Design Languages. FDL’08 (Stuttgart, Ger-
many, Sept. 23–25, 2008). IEEE, Sept. 2008, pp. 105–110. doi:
10.1109/FDL.2008.4641430.

[139] Markus Ferringer. “On Self-Timed Circuits in Real-Time Sys-
tems.” In: International Journal of Reconfigurable Computing 2011

(Jan. 2011). Ed. by Michael Hübner, 972375:1–972375:16. doi:
10.1155/2011/972375.

[140] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M.
Austin, Trevor Mudge, and Richard B. Brown. “MiBench: A
free, commercially representative embedded benchmark suite.”
In: International Workshop on Workload Characterization (WWC).
IEEE, Dec. 2001, pp. 3–14. doi: 10.1109/WWC.2001.990739.

https://doi.org/10.4018/978-1-60960-086-0.ch005
https://doi.org/10.4018/978-1-60960-086-0.ch005
https://doi.org/10.1109/RTTAS.2004.1317285
https://doi.org/10.1145/3014059
https://doi.org/10.1109/ISORC.2017.3
https://www.absint.com/ait/
https://doi.org/10.1109/IES.2006.357475
https://doi.org/10.1109/FDL.2008.4641430
https://doi.org/10.1155/2011/972375
https://doi.org/10.1109/WWC.2001.990739


bibliography 287

[141] F. Wallaschek. “Accelerating Programmable Logic Controllers
with the use of FPGAs.” Master’s Thesis. Paderborn University,
2015.

[142] Wei Hu, Baolei Mao, Jason Oberg, and Ryan Kastner. “De-
tecting Hardware Trojans with Gate-Level Information-Flow
Tracking.” In: IEEE Computer 49.08 (Aug. 2016), pp. 44–52. doi:
10.1109/MC.2016.225.

[143] Joseph A. Goguen and José Meseguer. “Security Policies and
Security Models.” In: Proceedings of the Symposium on Security
and Privacy (Oakland, CA, USA, Apr. 26–28, 1982). IEEE, Apr.
1982, pp. 11–20. doi: 10.1109/SP.1982.10014.

[144] Andrei Sabelfeld and Andrew C. Myers. “Language-based
information-flow security.” In: IEEE Journal of Selected Areas in
Communications 21.1 (Jan. 2003), pp. 5–19. doi: 10.1109/JSAC.
2002.806121.

[145] Qixue Xiao, Feifei Ren, Jing Zhao, and Lan-lan Qi. “Survey of
Dynamic Taint Propagation for Binary Code.” In: Proceedings
of the First International Conference on Instrumentation, Measure-
ment, Computer, Communication and Control. IMCCC ’11 (Beijing,
China, Oct. 21–23, 2011). IEEE, Oct. 2011, pp. 392–395. doi:
10.1109/IMCCC.2011.105.

[146] Junhyoung Kim, TaeGuen Kim, and Eul Gyu Im. “Survey
of Dynamic Taint Analysis.” In: Proceedings of the 4th Inter-
national Conference on Network Infrastructure and Digital Content.
IC-NIDC 2014 (Beijing, China, Sept. 19–21, 2014). IEEE, Sept.
2014, pp. 269–272. doi: 10.1109/ICNIDC.2014.7000307.

[147] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar
Mysore, Frederic T. Chong, and Timothy Sherwood. “Complete
Information Flow Tracking from the Gates Up.” In: Proceedings
of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS XIV
(Washington, DC, USA, Mar. 7–11, 2009). Ed. by Mary Lou
Soffa and Mary Jane Irwin. ACM, 2009, pp. 109–120. doi: 10.
1145/1508244.1508258.

[148] Wei Hu, Jason Oberg, Ali Irturk, Mohit Tiwari, Timothy Sher-
wood, Dejun Mu, and Ryan Kastner. “Theoretical Fundamentals
of Gate Level Information Flow Tracking.” In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 30.8
(Aug. 2011), pp. 1128–1140. doi: 10.1109/TCAD.2011.2120970.

[149] Wei Hu, Jason Oberg, Ali Irturk, Mohit Tiwari, Timothy Sher-
wood, Dejun Mu, and Ryan Kastner. “On the Complexity of
Generating Gate Level Information Flow Tracking Logic.” In:
IEEE Transactions on Information Forensics and Security 7.3 (June
2012), pp. 1067–1080. doi: 10.1109/TIFS.2012.2189105.

https://doi.org/10.1109/MC.2016.225
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/IMCCC.2011.105
https://doi.org/10.1109/ICNIDC.2014.7000307
https://doi.org/10.1145/1508244.1508258
https://doi.org/10.1145/1508244.1508258
https://doi.org/10.1109/TCAD.2011.2120970
https://doi.org/10.1109/TIFS.2012.2189105


288 bibliography

[150] Wei Hu, Jason Oberg, Janet Barrientos, Dejun Mu, and Ryan
Kastner. “Expanding Gate Level Information Flow Tracking
for Multilevel Security.” In: IEEE Embedded Systems Letters 5.2
(June 2013), pp. 25–28. doi: 10.1109/LES.2013.2261572.

[151] Dorothy E. Denning. “A Lattice Model of Secure Information
Flow.” In: Communications of the ACM 19.5 (May 1976), pp. 236–
243. doi: 10.1145/360051.360056.

[152] Ryan Kastner, Jason Oberg, Wei Hu, and Ali Irturk. “Enforcing
Information Flow Guarantees in Reconfigurable Systems with
Mix-trusted IP.” In: Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms. ERSA’11.
Ed. by Toomas P. Plaks. CSREA Press, Jan. 2011. url: http:
//world-comp.org/p2011/ERS6115.pdf.

[153] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and Ryan
Kastner. “Register transfer level information flow tracking for
provably secure hardware design.” In: Proceedings of the De-
sign, Automation & Test in Europe Conference & Exhibition. DATE
2017 (Lausanne, Switzerland, Mar. 27–31, 2017). Ed. by David
Atienza and Giorgio Di Natale. IEEE, Mar. 2017, pp. 1691–1696.
doi: 10.23919/DATE.2017.7927266.

[154] Hassan Salmani, Mohammad Tehranipoor, and Ramesh Karri.
“On design vulnerability analysis and trust benchmarks de-
velopment.” In: Proceedings of the 31st International Conference
on Computer Design. ICCD 2013 (Asheville, NC, USA, Oct. 6–9,
2013). IEEE, Oct. 2013, pp. 471–474. doi: 10.1109/ICCD.2013.
6657085.

[155] Bicky Shakya, Tony He, Hassan Salmani, Domenic Forte, Swa-
rup Bhunia, and Mark Tehranipoor. “Benchmarking of Hard-
ware Trojans and Maliciously Affected Circuits.” In: Journal of
Hardware and Systems Security 1.1 (Mar. 2017), pp. 85–102. doi:
10.1007/s41635-017-0001-6. url: https://trust-hub.org
(visited on 04/30/2020).

[156] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An
Efficient SMT Solver.” In: Proceedings of the 14th International
Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems. TACAS 2008 (Budapest, Hungary, Mar. 29–
Apr. 6, 2008). Ed. by C. R. Ramakrishnan and Jakob Rehof.
Vol. 4963. Lecture Notes in Computer Science. Springer, 2008,
pp. 337–340. doi: 10.1007/978- 3- 540- 78800- 3_24. url:
https://github.com/Z3Prover/z3.

[157] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo
Mendonça de Moura. “Efficiently solving quantified bit-vector
formulas.” In: Formal Methods in System Design 42.1 (Feb. 2013),
pp. 3–23. doi: 10.1007/s10703-012-0156-2.

https://doi.org/10.1109/LES.2013.2261572
https://doi.org/10.1145/360051.360056
http://world-comp.org/p2011/ERS6115.pdf
http://world-comp.org/p2011/ERS6115.pdf
https://doi.org/10.23919/DATE.2017.7927266
https://doi.org/10.1109/ICCD.2013.6657085
https://doi.org/10.1109/ICCD.2013.6657085
https://doi.org/10.1007/s41635-017-0001-6
https://trust-hub.org
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/Z3Prover/z3
https://doi.org/10.1007/s10703-012-0156-2


bibliography 289

[158] Claire Wolf. SymbiYosys. 2020. url: https : / / github . com /

YosysHQ/SymbiYosys (visited on 04/23/2021).

[159] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Proofs
and Refutations, and Z3.” In: Proceedings of the Knowledge Ex-
change: Automated Provers and Proof Assistants, and the 7th Inter-
national Workshop on the Implementation of Logics. KEAPPA and
IWIL 2008 (Doha, Qatar, Nov. 22, 2008). Ed. by Piotr Rudnicki,
Geoff Sutcliffe, Boris Konev, Renate A. Schmidt, and Stephan
Schulz. Vol. 418. CEUR Workshop Proceedings. CEUR-WS.org,
2008, pp. 123–132. url: https://nbn-resolving.org/urn:nbn:
de:0074-418-5.

[160] Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, and Tjark
Weber. “Reconstruction of Z3’s Bit-Vector Proofs in HOL4 and
Isabelle/HOL.” In: Proceedings of the First International Confer-
ence on Certified Programs and Proofs. CPP 2011 (Kenting, Taiwan,
Dec. 7–9, 2011). Ed. by Jean-Pierre Jouannaud and Zhong Shao.
Vol. 7086. Lecture Notes in Computer Science. Springer, 2011,
pp. 183–198. doi: 10.1007/978-3-642-25379-9_15.

[161] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and
Wayne P. Burleson. “Trojan Side-Channels: Lightweight Hard-
ware Trojans through Side-Channel Engineering.” In: Proceed-
ings of the 11th International Workshop on Cryptographic Hard-
ware and Embedded Systems. CHES 2009 (Lausanne, Switzer-
land, Sept. 6–9, 2009). Ed. by Christophe Clavier and Kris Gaj.
Vol. 5747. Lecture Notes in Computer Science. Springer, 2009,
pp. 382–395. doi: 10.1007/978-3-642-04138-9_27.

[162] Alex Baumgarten, Michael Steffen, Matthew Clausman, and
Joseph Zambreno. “A case study in hardware Trojan design and
implementation.” In: International Journal of Information Security
10.1 (Feb. 2011), pp. 1–14. doi: 10.1007/s10207-010-0115-0.

[163] Rudolf Usselmann. OpenCores: DES IP Core. 2009. url: https:
//opencores.org/projects/des (visited on 05/06/2020).

[164] John Clayton and Sumio Morioka. OpenCores: RISC 16F84 Core.
2018. url: https://opencores.org/projects/risc16f84 (vis-
ited on 05/09/2020).

[165] Sparsh Mittal. “A Survey of Techniques for Approximate Com-
puting.” In: ACM Computing Surveys (CSUR) 48.4 (Mar. 2016),
62:1–62:33. doi: 10.1145/2893356.

[166] Qiang Xu, Todd Mytkowicz, and Nam Sung Kim. “Approxi-
mate Computing: A Survey.” In: IEEE Design & Test 33.1 (2016),
pp. 8–22. doi: 10.1109/MDAT.2015.2505723.

https://github.com/YosysHQ/SymbiYosys
https://github.com/YosysHQ/SymbiYosys
https://nbn-resolving.org/urn:nbn:de:0074-418-5
https://nbn-resolving.org/urn:nbn:de:0074-418-5
https://doi.org/10.1007/978-3-642-25379-9_15
https://doi.org/10.1007/978-3-642-04138-9_27
https://doi.org/10.1007/s10207-010-0115-0
https://opencores.org/projects/des
https://opencores.org/projects/des
https://opencores.org/projects/risc16f84
https://doi.org/10.1145/2893356
https://doi.org/10.1109/MDAT.2015.2505723


290 bibliography

[167] Lukáš Holík, Ondřej Lengál, Adam Rogalewicz, Lukáš Sekan-
ina, Zdeněk Vašíček, and Tomáš Vojnar. “Towards Formal
Relaxed Equivalence Checking in Approximate Computing
Methodology.” 2nd Workshop on Approximate Computing.
WAPCO 2016 (Prague, Czech Republic, Jan. 20, 2016). Work-
shop without proceedings. 2016.

[168] Linus Witschen, Tobias Wiersema, Hassan Ghasemzadeh Mo-
hammadi, Muhammad Awais, and Marco Platzner. “CIRCA:
Towards a Modular and Extensible Framework for Approxi-
mate Circuit Generation.” Third Workshop on Approximate
Computing. AxC 2018 (Bremen, Germany, May 31–June 1,
2018). Workshop without proceedings. 2018.

[169] Ashish Ranjan, Arnab Raha, Swagath Venkataramani, Kaushik
Roy, and Anand Raghunathan. “ASLAN: Synthesis of Approx-
imate Sequential Circuits.” In: Proceedings of the Conference on
Design, Automation & Test in Europe (Dresden, Germany). 2014,
pp. 1–6. doi: 10.7873/DATE.2014.377.

[170] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug
Burger. “Neural Acceleration for General-Purpose Approxi-
mate Programs.” In: Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO 2012 (Van-
couver, B.C., CANADA, Dec. 1–5, 2012). IEEE, 2012, pp. 449–
460. doi: 10.1109/MICRO.2012.48.

[171] Swagath Venkataramani, Vinay K. Chippa, Srimat T. Chakrad-
har, Kaushik Roy, and Anand Raghunathan. “Quality Program-
mable Vector Processors for Approximate Computing.” In: Pro-
ceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture (Davis, California). ACM, 2013, pp. 1–12.
doi: 10.1145/2540708.2540710.

[172] Omid Akbari, Mehdi Kamal, Ali Afzali-Kusha, Massoud Pe-
dram, and Muhammad Shafique. “Toward Approximate Com-
puting for Coarse-Grained Reconfigurable Architectures.” In:
IEEE Micro 38.6 (2018), pp. 63–72. doi: 10.1109/MM.2018.

2873951.

[173] Seogoo Lee, Lizy K. John, and Andreas Gerstlauer. “High-
level synthesis of approximate hardware under joint precision
and voltage scaling.” In: Design, Automation & Test in Europe
Conference & Exhibition. DATE 2017. IEEE, 2017, pp. 187–192.
doi: 10.23919/DATE.2017.7926980.

[174] Swagath Venkataramani, Amit Sabne, Vivek Kozhikkottu, Kau-
shik Roy, and Anand Raghunathan. “SALSA: Systematic Logic
Synthesis of Approximate Circuits.” In: Proceedings of the 49th
Annual Design Automation Conference (San Francisco, Califor-
nia). ACM, 2012, pp. 796–801. doi: 10.1145/2228360.2228504.

https://doi.org/10.7873/DATE.2014.377
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1145/2540708.2540710
https://doi.org/10.1109/MM.2018.2873951
https://doi.org/10.1109/MM.2018.2873951
https://doi.org/10.23919/DATE.2017.7926980
https://doi.org/10.1145/2228360.2228504


bibliography 291

[175] Siyuan Xu and Benjamin Carrión Schäfer. “Exposing Approx-
imate Computing Optimizations at Different Levels - From
Behavioral to Gate-Level.” In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 25.11 (2017), pp. 3077–3088. doi:
10.1109/TVLSI.2017.2735299.

[176] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler.
“Precise error determination of approximated components
in sequential circuits with model checking.” In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). June
2016, pp. 1–6. doi: 10.1145/2897937.2898069.

[177] Rangharajan Venkatesan, Amit Agarwal, Kaushik Roy, and
Anand Raghunathan. “MACACO: Modeling and Analysis
of Circuits for Approximate Computing.” In: Proceedings of
the International Conference on Computer-Aided Design (San Jose,
California). ICCAD ’11. IEEE Press, 2011, pp. 667–673. doi:
10.1109/ICCAD.2011.6105401.

[178] Kumud Nepal, Yueting Li, R. Iris Bahar, and Sherief Reda.
“ABACUS: A Technique for Automated Behavioral Synthesis
of Approximate Computing Circuits.” In: Proceedings of the
Conference on Design, Automation & Test in Europe. Mar. 2014,
pp. 1–6. doi: 10.7873/DATE.2014.374.

[179] Swagath Venkataramani, Kaushik Roy, and Anand Raghu-
nathan. “Substitute-and-simplify: A Unified Design Paradigm
for Approximate and Quality Configurable Circuits.” In: Pro-
ceedings of the Conference on Design, Automation and Test in Eu-
rope (Grenoble, France). 2013, pp. 1367–1372. doi: 10.7873/
DATE.2013.280.

[180] Arun Chandrasekharan, Mathias Soeken, Daniel Große, and
Rolf Drechsler. “Approximation-aware Rewriting of AIGs for
Error Tolerant Applications.” In: Proceedings of the 35th Inter-
national Conference on Computer-Aided Design (Austin, Texas).
ACM, 2016, pp. 1–8. doi: 10.1145/2966986.2967003.

[181] Chaofan Li, Wei Luo, Sachin S. Sapatnekar, and Jiang Hu. “Joint
precision optimization and high level synthesis for approximate
computing.” In: the 52nd Annual Design Automation Conference.
ACM, 2015, pp. 1–6. doi: 10.1145/2744769.2744863.

[182] Gai Liu and Zhiru Zhang. “Statistically certified approximate
logic synthesis.” In: Proceedings of the 36th International Confer-
ence on Computer-Aided Design. ICCAD ’17. IEEE, 2017, pp. 344–
351. doi: 10.1109/ICCAD.2017.8203798.

[183] F. S. Snigdha, D. Sengupta, J. Hu, and S. S. Sapatnekar. “Op-
timal design of JPEG hardware under the approximate com-
puting paradigm.” In: 2016 53nd ACM/EDAC/IEEE Design Au-

https://doi.org/10.1109/TVLSI.2017.2735299
https://doi.org/10.1145/2897937.2898069
https://doi.org/10.1109/ICCAD.2011.6105401
https://doi.org/10.7873/DATE.2014.374
https://doi.org/10.7873/DATE.2013.280
https://doi.org/10.7873/DATE.2013.280
https://doi.org/10.1145/2966986.2967003
https://doi.org/10.1145/2744769.2744863
https://doi.org/10.1109/ICCAD.2017.8203798


292 bibliography

tomation Conference (DAC). June 2016, pp. 1–6. doi: 10.1145/
2897937.2898057.

[184] Linus Witschen, ed. CIRCA – A Modular and Extensible Frame-
work for Approximate Circuit Generation. 2018. url: https://go.
uni-paderborn.de/circa (visited on 03/07/2020).

[185] Yi Wu and Weikang Qian. “An efficient method for multi-level
approximate logic synthesis under error rate constraint.” In: the
53rd Annual Design Automation Conference. ACM, 2016, pp. 1–6.
doi: 10.1145/2897937.2897982.

[186] Ben Reynwar. Decimation-In-Time fast Fourier Transform. url:
https://github.com/benreynwar/fft-dit-fpga (visited on
02/21/2019).

[187] U. Meyer-Baese. Digital signal processing with field programmable
gate arrays. Vol. 65. Springer, 2007. doi: 10.1007/978-3-642-
45309-0.

[188] David Lundgren. OpenCores jpegencode. url: https://github.
com/chiggs/oc_jpegencode (visited on 02/21/2019).

[189] Altera Corporation. Altera Advanced Synthesis Cookbook. url:
https://www.intel.com/content/dam/www/programmable/

us/en/pdfs/literature/manual/stx_cookbook.pdf (visited
on 02/21/2019).

[190] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. “Secure
Information Flow by Self-Composition.” In: Proceedings of the
17th IEEE Computer Security Foundations Workshop. CSFW-17

2004 (Pacific Grove, CA, USA, June 28–30, 2004). IEEE Com-
puter Society, 2004, pp. 100–114. doi: 10.1109/CSFW.2004.
1310735.

[191] José Bacelar Almeida, Manuel Barbosa, Jorge Sousa Pinto, and
Bárbara Vieira. “Formal verification of side-channel counter-
measures using self-composition.” In: Science of Computer Pro-
gramming 78.7 (2013), pp. 796–812. doi: 10.1016/j.scico.2011.
10.008.

[192] Ron Shemer, Arie Gurfinkel, Sharon Shoham, and Yakir Vizel.
“Property Directed Self Composition.” In: Computer Aided Veri-
fication. CAV 2019 (New York City, NY, USA, July 15–18, 2019).
Ed. by Isil Dillig and Serdar Tasiran. Vol. 11561. Lecture Notes
in Computer Science. Springer, 2019, pp. 161–179. doi: 10.
1007/978-3-030-25540-4\_9.

[193] Sen Wu. “Webcam application using virtual FPGA.” Bachelor’s
Thesis. Paderborn University, Dec. 2014.

https://doi.org/10.1145/2897937.2898057
https://doi.org/10.1145/2897937.2898057
https://go.uni-paderborn.de/circa
https://go.uni-paderborn.de/circa
https://doi.org/10.1145/2897937.2897982
https://github.com/benreynwar/fft-dit-fpga
https://doi.org/10.1007/978-3-642-45309-0
https://doi.org/10.1007/978-3-642-45309-0
https://github.com/chiggs/oc_jpegencode
https://github.com/chiggs/oc_jpegencode
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/stx_cookbook.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/stx_cookbook.pdf
https://doi.org/10.1109/CSFW.2004.1310735
https://doi.org/10.1109/CSFW.2004.1310735
https://doi.org/10.1016/j.scico.2011.10.008
https://doi.org/10.1016/j.scico.2011.10.008
https://doi.org/10.1007/978-3-030-25540-4\_9
https://doi.org/10.1007/978-3-030-25540-4\_9


bibliography 293

[194] Tobias Wiersema, Sen Wu, and Marco Platzner. “On-The-Fly
Verification of Reconfigurable Image Processing Modules Based
on a Proof-Carrying Hardware Approach.” In: Applied Re-
configurable Computing. 11th International Symposium, ARC
2015 (Bochum, Germany, Apr. 15–17, 2015). Ed. by Kentaro
Sano, Dimitrios Soudris, Michael Hübner, and Pedro C. Diniz.
Vol. 9040. Lecture Notes in Computing Science. Springer, 2015,
pp. 377–384. doi: 10.1007/978-3-319-16214-032.

[195] AXI4-Stream to Video Out. LogiCORE IP Product Guide. PG044.
Xilinx, Inc. Oct. 2017. url: https://www.xilinx.com/support/
documentation/ip_documentation/v_axi4s_vid_out/v4_0/

pg044_v_axis_vid_out.pdf.

[196] Marc Boulé and Zeljko Zilic. Generating Hardware Assertion
Checkers. For Hardware Verification, Emulation, Post-Fabrication
Debugging and On-Line Monitoring. 1st ed. Springer, 2008. doi:
10.1007/978-1-4020-8586-4.

[197] Filip Veljković, Vladimir Rožić, and Ingrid Verbauwhede. “Low-
cost implementations of on-the-fly tests for random number
generators.” In: Proceedings of the Design, Automation & Test
in Europe Conference & Exhibition. DATE 2012 (Dresden, Ger-
many, Mar. 12–16, 2012). Ed. by Wolfgang Rosenstiel and Lothar
Thiele. IEEE, Mar. 2012, pp. 959–964. doi: 10.1109/DATE.2012.
6176635.

[198] Bohan Yang, Vladimir Rožić, Nele Mentens, Wim Dehaene,
and Ingrid Verbauwhede. “Embedded HW/SW platform for
on-the-fly testing of true random number generators.” In: Pro-
ceedings of the Design, Automation & Test in Europe Conference
& Exhibition. DATE 2015 (Grenoble, France, Mar. 9–13, 2015).
Ed. by Wolfgang Nebel and David Atienza. ACM, Mar. 2015,
pp. 345–350. doi: 10.7873/DATE.2015.0288.

[199] Scott Hauck and André DeHon, eds. Reconfigurable Comput-
ing. Systems on Silicon. Morgan Kaufmann Publishers, 2008.
944 pp.

[200] Swarup Bhunia and Mark M. Tehranipoor, eds. The Hardware
Trojan War: Attacks, Myths, and Defenses. Springer, 2018. doi:
10.1007/978-3-319-68511-3.

[201] M. Tehranipoor and C. Wang, eds. Introduction to Hardware
Security and Trust. Springer New York, 2012. doi: 10.1007/978-
1-4419-8080-9.

https://doi.org/10.1007/978-3-319-16214-0 32
https://www.xilinx.com/support/documentation/ip_documentation/v_axi4s_vid_out/v4_0/pg044_v_axis_vid_out.pdf
https://www.xilinx.com/support/documentation/ip_documentation/v_axi4s_vid_out/v4_0/pg044_v_axis_vid_out.pdf
https://www.xilinx.com/support/documentation/ip_documentation/v_axi4s_vid_out/v4_0/pg044_v_axis_vid_out.pdf
https://doi.org/10.1007/978-1-4020-8586-4
https://doi.org/10.1109/DATE.2012.6176635
https://doi.org/10.1109/DATE.2012.6176635
https://doi.org/10.7873/DATE.2015.0288
https://doi.org/10.1007/978-3-319-68511-3
https://doi.org/10.1007/978-1-4419-8080-9
https://doi.org/10.1007/978-1-4419-8080-9




colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The
style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”. classicthesis is available at:

https://bitbucket.org/amiede/classicthesis/

Final Version as of May 12, 2021 (1.0).

https://bitbucket.org/amiede/classicthesis/



	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Listings
	List of Tables
	Acronyms
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Thesis Contributions
	1.3 Thesis Organization

	2 Background
	2.1 Reconfigurable Hardware
	2.2 Hardware verification
	2.3 Proof-carrying Hardware
	2.4 Tools and Platforms

	3 Realizing Bitstream-level PCH
	3.1 Proof-carrying Reconfigurable Hardware
	3.2 Generalized Bitstream-level PCH Flow
	3.3 Conclusion

	4 Virtual Field-Programmable Gate Arrays
	4.1 Virtualizing FPGAs
	4.2 Related work
	4.3 Extending ZUMA
	4.4 ZUMA-based PCH Evaluation Platform
	4.5 Timing Analysis and Optimization
	4.6 Conclusion

	5 Proving properties with PCH
	5.1 Related Work
	5.2 Property classification
	5.3 Sequential Property Checking
	5.4 Monitor-based Property Checking
	5.5 Scalability
	5.6 Conclusion

	6 Non-functional Property Checking
	6.1 Worst-Case Completion Time
	6.2 Information Flow Security
	6.3 Approximation Quality
	6.4 General Self-Composition Miters
	6.5 Conclusion

	7 PCH Demonstrators
	7.1 Demonstrator 1: Certified Image Filters
	7.2 Demonstrator 2: Certified PSL Guard Dogs

	8 Conclusion
	9 Outlook
	A Tables
	A.1  Virtual Field-Programmable Gate Arrays
	A.2  Proving properties with PCH
	A.3  Non-functional Property Checking
	A.4  PCH Demonstrators

	 Bibliography
	Colophon

