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Abstract

To establish a secure TLS connection between client and server, both parties have to
perform a handshake where they establish a common secret. However, performing
the secret establishment every time is very costly and increases the latency. For
that reason, TLS offers session resumption mechanisms that allow both parties to
reuse a previously established secret. A widely used resumption mechanism is ses-
sion tickets. After the secret has been established, the server issues a session ticket
containing the secret to the client. In the session resumption, the client sends the
ticket back to the server. It is essential for the confidentiality of the sessions that
the server encrypts the ticket with a Server Ticket Encryption Key (STEK). In
2020, Fiona Klute found a vulnerability in GnuTLS where the STEK was initial-
ized with all-zeros allowing an attacker to decrypt recorded sessions retrospectively
[11]. This motivates us to evaluate the TLS session ticket ecosystem in more detail.
Therefore, we present different vulnerabilities that might appear in session ticket
handling of webservers. Next, we implement test suites for the presented vulner-
abilities and evaluate them for the Tranco Top Million hosts in a large-scale scan.
Finally, we present the results for the different evaluated vulnerabilities and other
interesting findings in our thesis. We discovered that similarly to GnuTLS several
thousand domains hosted by AWS used an all-zero STEK to encrypt their session
tickets.
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1 Introduction

TLS (Transport Layer Security) [20] is one of the most used cryptographic protocols
to ensure secure communication on the Internet. One big application area of TLS
is to guarantee the security of web applications in HTTPS. The three main security
goals of TLS are confidentiality, authenticity and integrity of the exchanged data. In
order to set up a secure connection, both communication parties need to establish
a common secret in a so-called handshake. In TLS, there are two different types
of handshakes: First, the communication parties can perform a full handshake, in
which they establish a new secret between both parties. Second, they can do a
session resumption, which means that both parties reuse the common secret they
have established in a previous session.

The main motivation for using session resumption is to reduce latency in a TLS
connection since a full handshake needs time-expensive public key cryptographic
operations. In practice, session resumption consumes less than half of the time of a
full handshake. Moreover, the CPU time consumed on the client is only about 4%
compared to a full handshake, which is especially useful for mobile users with limited
battery power [19]. In order to perform a session resumption, both communication
partners need to remember the session state including the established secret from a
previous session.

The session ticket mechanism is one way to achieve a session resumption without
storing any session state on the server-side. It is defined in the RFC 5077 as an
extension of the TLS protocol [23]. In 2018 78% of the Alexa Top Million of TLS-
enabled websites supported the session ticket mechanism [25]. If the client wants
to perform a session resumption in the future, it asks the server for an encrypted
session ticket containing the session state of the server. The client stores the ticket
of the server along with its session state. When the client then reconnects to the
server, it sends the received session ticket back to the server, which decrypts the
ticket to get the session state. Now both sides are in possession of the session state
again to resume the session. For the security of the resumed session, it is crucial that
the server encrypts the session ticket with a Server Ticket Encryption Key (STEK).
Otherwise, if attackers are able to read the contents of a session ticket, they could
decrypt confidential data transmitted during the session.

The main disadvantage of the session ticket mechanism is that it provides no for-
ward secrecy for TLS connections [10]. Forward secrecy essentially means that prior
sessions remain secret even if an attacker corrupts one party and gets in possession
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of the long-term secret as for example the STEK. If session tickets are used, then
a compromise of the long-term STEK will lead to a compromise of prior sessions.
In order to achieve the properties of forward secrecy while using session tickets, the
RFC 5077 recommends to rotate the STEK at least every 24 hours. This means that
forward secrecy is not fully achieved, but the impact of a compromise is reduced. If
an attacker is able to compromise the STEK, then only sessions using session tickets
protected by the STEK in this 24 hours interval are affected. Besides, the security
impact of a STEK compromise depends on the used TLS version. Sessions in the new
TLS version 1.3 are significantly less affected than in the older TLS version 1.2. In
TLS 1.2, session tickets contain the secret that is used to protect the initial session,
where the ticket is issued, and the resumed session, where the ticket is redeemed.
If an attacker compromises the STEK, then it can decrypt all corresponding initial
and resumed sessions. In TLS 1.3, session tickets typically contain the secret that is
only used to protect the early application data, data send in the very first roundtrip
of the session resumption. If the STEK is compromised, then an attacker can only
compromise the session’s early application data.

In a certain GnuTLS version, Fiona Klute found a bug, which affected the security
of the session resumption mechanism [6, 11]. The server used an all-zero STEK in
the initial key rotation interval, allowing an attacker to decrypt the session tickets
and get in possession of the included session secrets. With them, the attacker can
decrypt the application data of corresponding sessions. This bug indicates that there
might be additional security weaknesses in the area of session tickets. This motivates
us to evaluate the session ticket handling of different TLS libraries and servers in
the wild. We want to evaluate in a large-scale scan if other implementations are
vulnerable to different kinds of attacks.

1.1 Current State of Research

The effects of TLS session tickets on forward security have been studied in sev-
eral articles [10, 19, 27]. Besides, several large-scale evaluations of TLS session
resumption mechanisms including TLS session tickets were performed in the past.
In the following, we describe three different large-scale evaluations of TLS session
tickets.

In 2016, Springall et al. have evaluated how performance enhancement mechanisms
as session tickets weaken the forward secrecy of TLS in practice [24]. Therefore,
they analyzed how often the Alexa Top Million websites rotated their STEK to
achieve the properties of forward secrecy. Only 41% of the websites rotated the
STEK every day as recommended in the RFC 5077. They showed that about
20% from the Alexa Top 100 reused the STEK for at least 30 days. In addition
to that, they evaluated how many servers share their STEK. If the STEK of one
server is compromised, then sessions of all servers sharing the same STEK would
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be affected. The authors conclude that performance enhancement mechanisms as
session tickets reduce the overall forward secrecy property of TLS connections sig-
nificantly in practice. Additionally, the authors provide an overview of how different
TLS-implementations select their STEK identifiers which are included in the session
tickets. They also described that Microsoft webservers encode their session tickets
as ASN.1 objects.

In 2018, Sky et al. evaluated how users can be tracked across the web via TLS
session resumption mechanisms as session tickets [26]. For this, they evaluated the
TLS server configurations of the Alexa Top Million hosts. They found out that
65% of all users can be tracked permanently via TLS session resumption mecha-
nisms.

Valsorda found in 2016 a vulnerability in the session ticket mechanism of the F5
TLS stack that allowed an attacker to extract 31 bytes of uninitialized memory at
a time [9]. Due to the similarity to the Heartbleed bug [8], the vulnerability was
named Ticketbleed. Valsorda performed a large-scale scan of the Alexa Top Million
list to evaluate how many webservers were vulnerable.

1.2 Thesis Goals

Our main goal is to evaluate the session ticket handling of different TLS libraries
and TLS servers in the wild. The recently found bug in GnuTLS [11] indicates that
there might be further vulnerabilities in this area. The evaluation process consists
of several steps:

¢ We do a source code analysis of nine TLS libraries regarding their session ticket
handling. Additionally, we evaluate especially the key rotation mechanisms of
the three libraries OpenSSL, GoTLS! and MbedTLS in more detail. Our goal
is that we get a better understanding of how webservers in the wild handle
their session tickets.

e We propose several possible vulnerabilities that can appear in the session ticket
handling of webservers in the wild.

e We implement test suites for the proposed vulnerabilities into TLS-Scanner in
order to evaluate if a TLS server is vulnerable to our proposals.

e We scan the internet using TLS-Crawler in order to evaluate how many servers
are vulnerable to our implemented proposals.

"https://pkg.go.dev/crypto/tls
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2 Background

In this chapter, we give a detailed background on session resumption mechanisms
and session tickets. We study in more detail the session ticket handling in TLS
1.2 and 1.3 and evaluate the differences between the two versions. Finally, we
give a background to the padding oracle attack which we later need in the the-
sis.

2.1 Session Resumption Mechanisms in TLS

In the RFC 5077 [23] two main mechanisms for session resumption in TLS are
defined.

e Session caches: In this mechanism, the client and server store all the cryp-
tographic parameters of the previous session inside their session cache. When
the client resumes the session, it only needs to send the session identifier to
the server. Then, the server only looks up the cryptographic parameters of the
corresponding session. With the previously established secret, the client and
server are now able to resume the session. The main disadvantage of this mech-
anism is that the server needs to store for every connection all cryptographic
parameters, which becomes for servers with many connections infeasible.

o Session tickets: The session ticket mechanism allows the server to outsource
the storage of cryptographic parameters to the client. In the initial session,
the server sends a session ticket with all necessary cryptographic parameters
to the client and then discards all these parameters. The client stores the
received session ticket and for itself all necessary cryptographic parameters for
the session resumption. In the session resumption, the client sends the session
ticket back to the server, so that both parties are in possession of the secret
again and can securely resume the session. The session tickets are not sent
in plain. The server encrypts it with a symmetric key called Server Ticket
Encryption Key (STEK). It is crucial for the security of the resumed session
that only the server is able to read the contents of the session ticket.
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Client Server

ClientHello Client Server

-SessionTicketExt: empty

ClientHello

- SessionTicketExt: ticket
ServerHello, CERT, SKE, CCS, FIN
-SessionTicketExt: empty

ServerHello, CCS, FIN

CKE, CCS, FIN - SessionTicketExt: empty

NewSessionTicket, CCS, FIN >
CCS, FIN

(a) Ticket issuance in TLS 1.2 (b) Session resumption with session ticket in TLS
1.2

Figure 2.1: Two handshake types in TLS 1.2

2.1.1 Session Tickets in TLS 1.2

Session resumption with session tickets was introduced in TLS 1.2 with RFC 5077
[23]. The RFC describes how the tickets can be issued and redeemed for session re-
sumption. Therefore, two different handshake flows were introduced:

Ticket issuance: The ticket issuance happens in a normal full TLS hand-
shake. If a client wants to perform session resumption in future connections,
it sends its empty session ticket extension after the ClientHello to the server
(see Figure 2.1(a)). If the server supports session tickets, it answers with an
empty session ticket extension. Then, the server sends the NewSessionTicket
message (see Listing 2.2), which contains the issued session ticket, to the client.
The NewSessionTicket message is sent before the ChangeCipherSpec message
which means that the message is not encrypted. The client only needs to store
the received session ticket until the next session resumption.

Session resumption: When a client wants to resume the session, it sends
its session ticket after the ClientHello to the server (see Figure 2.1(b)). If
the server accepts the session ticket, it answers with an empty session ticket
extension. Then, a secure connection is established and both can exchange
securly application data.

struct {
uint32 ticket_lifetime_hint;
opaque ticket<0..2716-1>;

} ticket;

Listing 2.2: TLS 1.2 NewSessionTicket message from RFC 5077
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Recommended Ticket Structure according to RFC The usage and construction
of session tickets in TLS 1.2 are described in the fourth chapter of the RFC 5077
[23]. The RFC recommends to structure the session ticket as following (see Listing
2.3):

struct {
opaque key_name[16];
opaque iv[16];
opaque encrypted_state<0..2716-1>;
opaque mac[32];
} ticket;

Listing 2.3: recommended Session ticket format in RFC 5077

The session ticket contains four different values:

e key_name: a 16-Byte STEK identifier so that the server recognizes the key it
needs to decrypt the encrypted state.

e iv: 16-byte initialization vector which is used in the encryption of the en-
crypted__state.

e encrypted_state: The session state contains all necessary cryptographic pa-
rameters of the server in order to resume the session. This state is encrypted
with the STEK and IV to an encrypted_state since only the server is autho-
rized to read the contents of the session state. The RFC 5077 mentions in the
description of the ticket structure that the size of the encrypted state (2-Byte)
shall also be included inside the session ticket.

e mac: session tickets are also integrity protected. The Message Authentication
Code (MAC) is calculated over all three previously named fields.

It is recommended to use AES-128 CBC as the encryption algorithm and HMAC-
SHA-256 as the authentication algorithm. Thus, the server needs to recognize two
keys for both algorithms in the decryption process.

Additionally, the RFC recommends a structure for the session state.

struct {
ProtocolVersion protocol_version;
CipherSuite cipher_suite;
CompressionMethod compression_method;
opaque master_secret[48];
ClientIdentity client_identity;
uint32 timestamp;

} StatePlaintext;

Listing 2.4: recommended Session ticket format in RFC 5077
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The session state contains all necessary cryptographic parameters of the original
session including the selected protocol_version and cipher_suite The master_-
secret (48 bytes long) is used to derive all necessary key material for the resumed
session. Furthermore, the server uses the timestamp of the state to recognize expired
tickets. However, this structure is only a recommendation. The client does not need
to understand or modify the encrypted session state, so every server implementation
can decide by itself how to structure the session state.

Forward Secrecy in TLS 1.2 The implementation of session resumption with
session tickets in TLS has some important consequences for the security of TLS
sessions[10]. Since the session tickets contain the master secret for deriving the ses-
sion keys, it is crucial that the STEK is only accessible for the server. Otherwise, if
the attackers could retrieve the STEK, they could effectively break all connections
using session tickets. They could also decrypt connections established with perfect
forward secure cipher suites. In case of the compromise of the STEK, this has two
important consequences for sessions in TLS 1.2:

1. Resumed sessions only use the master secret in the session ticket to derive
the session keys. There is no additional key exchange performed in order to
update the session keys as in TLS 1.3. Therefore, resumed sessions do not offer
forward secrecy against compromise of the STEK, which means an attacker is
able to read the whole conversation of the resumed session.

2. In the initial session the master secret is used to derive the session keys. The
session ticket for session resumption is issued with the same master secret.
Thus, initial sessions are not considered as forward secure against the com-
promise of STEK. An attacker could decrypt messages of the resumed session
and additionally of the initial session with a compromised STEK. A straight-
forward solution for this problem could be to issue the session ticket with the
hashed master secret so that the attacker is not able to reconstruct the session
keys of the initial session. However, TLS 1.2 does not use this mechanism, it
was only introduced in TLS 1.3

As described before, a compromise of the STEK has fatal consequences for the
security of the TLS sessions. In order to mitigate the effects of a STEK compromise
and achieve the properties of forward secrecy, the RFC recommends to rotate the
STEK every 24 hours.

2.1.2 Session Tickets in TLS 1.3

The newest TLS protocol version 1.3 [20] is faster and more secure than the predeces-
sor TLS 1.2 [17]. Session resumption with session tickets is still supported in TLS 1.3,
but there are some differences in comparison to TLS 1.2. Especially, sessions in TLS
1.3 are much less affected by a compromise of the STEK.
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Client Server
i Server
ClientHello Client
- keyShare
- PskKeyExchangeModes: [PSK_DHE_KE, PSK_KE] ClientHello
- keyShare
ServerHello, EncExt, Cert,CertVerify, FIN 'PSEEEI‘:“SQ_‘:“_ ket
“eyshare - Pskidentity: ticke
1.,
|
NewsSessionTicket Early data
CCs, FIN ServerHello, EncExt, CCS, FIN
- KeyShare
- PskExtension
NewsSessionTicket
CCSs, FIN
(a) Full handshake with ticket issuance (b) 0-RTT session resumption with session ticket

Figure 2.5: Two handshake types in TLS 1.3

First, we have a look at how session tickets are handled in TLS 1.3:

o Ticket issuance: The ticket issuance in TLS 1.3 (see Figure 2.5(a)) is quite
similar to TLS 1.2. The main difference is that in TLS 1.3 the session tick-
ets are handled by the PSK extension. The client sends initially his supported
PskKeyExchangeModes to the server. There are two types of PskKeyExchange-
Modes: 1. PSK_DHE KFEY: Client and server perform an additional Diffie
Hellman key exchange after resuming the session. 2. PSK KF: Similar to
TLS 1.2 no additional key exchange is performed in the session resumption.
The server can send the NewSessionTicket message (see Listing 2.6) with the
issued ticket either directly after the server Finished message (only allowed
if client authentication is disabled) or after receiving the final client Finished
message. The session ticket contains a pre-shared key, which is derived from
the session’s master secret.

e Session resumption: In the session resumption, the client includes the ses-
sion ticket in the Pre-shared Key(PSK) extension of the ClientHello. Depend-
ing on the the selected PskKeyEzxchangeMode the client also can include a
keyShare. Then, there are two possibilities for the client in the session re-
sumption: First, the client can send early data on the fly to the server which
is called 0-RTT session resumption. The early data is encrypted with the
Pre-shared Key inside the session ticket. The server can decrypt the payload
with the received session ticket. Second, the client performs the resumption
handshake without sending any application data which is called 1-RTT ses-
sion resumption. The session ticket is only used to provide authenticity of the
server so that the certificate verification can be skipped.
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struct {
uint32 ticket_lifetime;
uint32 ticket_age_add;
opaque ticket_nonce<0..255>;
opaque ticket<1..2716-1>;
Extension extensions<0..2716-2>;
} NewSessionTicket;

Listing 2.6: TLS 1.3 NewSessionTicket message from RFC 8446

Forward Secrecy in TLS 1.3 There are three main security differences in compar-
ison to TLS 1.2

1. Session tickets do not contain the master secret of the initial session, they
contain the hashed master secret called pre-shared key. An attacker is not able
to reconstruct the initial master secret so that a compromise of the STEK does
not affect the initial sessions anymore.

2. The pre-shared key inside the session ticket is only used to protect the initial
message (early data) of the client. After that, the client and server can perform
an additional key exchange to update the session keys. Therefore, only the
initial message is not considered as forward secure against a compromise of
the STEK. After updating the session keys, all sent messages are considered
forward secure. Another problem is that an attacker might be able to perform
a replay attack with the early data of the client. Therefore, servers have to
implement countermeasures as described in Chapter 8 [20].

3. In contrast to TLS 1.2, the NewSessionTicket message is sent after the Change-
CipherSpec message which means that the message is encrypted. An attacker
is only able to read the contents of the issued session ticket when the client
resumes the session.

Recommended ticket structure In the RFC 8044 of TLS 1.3, there is no ticket
structure recommended. It only says that the session ticket has to be self-encrypted
and self-authenticated by the server. However, in practice most TLS-implementations
follow the recommendations for session tickets of the RFC 5077.

2.2 Padding Oracle Attack

In this section, we describe the main concept of a padding oracle attack. Before doing
that, we first give a short cryptographic background.
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Block cipher A block cipher is a method to encrypt a block of data with a sym-
metric key. The encryption algorithm

C = Ency(m), ke {0,1}},m e {0,1}°,C € {0,1}°

encrypts a message m of block size b with a symmetric key k£ and outputs a ciphertext
C of size b.

The decryption algorithm

m = Dec(C)

decrypts a ciphertext C with key k and outputs the original message m. AES [3] is
the most used block cipher and allows to encrypt data blocks of size b = 128 bits.
Block ciphers only allow us to encrypt data with a fixed block size. To encrypt data
of arbitrary length we have to process the block cipher using mode of operation and
additionally pad the data.

Mode of Operation A Mode of Operation uses a block cipher to encrypt data of ar-
bitrary length. There are two different types of modes of operation.

The first type of mode of operation is Confidentiality only modes. These modes
only provide confidentiality. Cipher block chaining (CBC) is a popular example. If
we additionally want to provide authenticity and integrity, we have to calculate a
Message Authentication Code (MAC). There are three different ways how we can
combine the encryption with the MAC:

1. Encrypt-then-MAC: First, the message m is encrypted and the MAC is calcu-
lated over the encrypted message: C' = Enc(m)||MAC(Enc(m)).

2. MAC-then-Encrypt: The MAC is calculated over the original message m.
Then, the message m with the appended MAC is encrypted:
C = Enc(m||[MAC(m))

3. Encrypt-and-MAC: The MAC is calculated over the original message m and
appended to the encryption of m: C' = Enc(m)||MAC(m).

The second type is Authenticated encryption with additional data (AEAD) modes.
AFEAD modes provide confidentiality, authenticity, and integrity in combination.
Thus, no additional HMAC algorithm is needed. Galois/Counter (GCM) is a popular
AEAD mode.
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01

02 02

03 03 03

04 04 04 04
05 05 05 05 05

Listing 2.7: PCKS+#7 padding

Padding When block ciphers are used as AES-CBC, then only messages that fit
into multiple 16-byte blocks can be encrypted. Thus, we append a padding to
guarantee that we can encrypt messages of arbitrary length. A widely used padding
scheme is PCKS#7. In the PKCS#7 scheme "the value of each added byte is the
number of bytes that are added" [13]. If for example, 2 bytes are missing, then 2 bytes
with the "02" byte value are added (see Figure 2.7).

2.2.1 Padding Oracle Attack

In the following, we will explain the main principles of a padding oracle attack in
CBC. First, we look in more detail how the CBC mode of operation works. Figure 2.8

Ci—1 Ci
I TT T T T T T T I I e CITTTTITTITTITITITITIT]
Keyk Dec
af [T LT LTI
D X
N
Pl [T LT LTI v

Pe b= ¢y @ Decy(c)
P16= €16 D X16

Figure 2.8: CBC decryption of block C; of block size 16

shows the decryption of two ciphertext blocks. For ciphertext block C; the following
formula is applied to get the resulting plaintext block P;:

P; = Decy,(C;) ® Cim1 = X; @ Ci—1.

The decryption formula for the last plaintext byte pig of block C; looks as following;:
P16 = x16 P c16. One property of CBC cipher suites is that they are malleable.
This means that we can change the original ciphertext in a way that it decrypts
to a related plaintext. It means the following for CBC cipher suites: If we modify
last ciphertext byte ¢jg = c16 @ 2, the decrypted plaintext byte p}s contains the




2.2 Padding Oracle Attack 13

same modification pjg = p1g @ z. If the MAC-then-Encrypt scheme is used, then
the malleability property can be used to perform padding oracle attacks [28]. An
attacker flips arbitrary bits in the second last block C,_1 and sends the ciphertext
to the server. Thereby, the attacker modifies the padding bytes included in the last
ciphertext block. A server using MAC-then-Encrypt first decrypts the ciphertext
and checks if the padding is valid. In one case, the attacker may have created an
invalid padding. In this case, the server will detect it and normally respond with
an alert message. In the other case, the attacker may have created a valid padding.
Then, the server will remove padding to validate the MAC. The MAC validation
will fail since the attacker has altered the ciphertext. In this case, the server may
respond with an alert message. If an attacker can distinguish the responses for both
cases, it can use the padding oracle to reconstruct the original plaintext. We will
explain the main idea of the attack for the ciphertext block C;. We test all 256
possible byte values for ¢j4. For all 256 possibilities, we send block C/ —1 and C; to
the server and evaluate the responses. In one case cjg = | j.1paq’, We Will create a
valid 1-Byte padding at p/s. In this case, the server responds differently than in the
other 255 possibilities. We can reconstruct the original plaintext value p4 with the
following formula:

P16 = Cyatidpad P €16 ® 0201

We can continue this procedure by creating a valid 2-Byte padding to recover pis
and so on until we have recovered all plaintext bytes.

The attack can be prevented by using the Encrypt-then-MAC scheme. In this
scheme, the server first validates the MAC and then decrypts the ciphertext. If
an attacker has flipped bytes in the ciphertext, the MAC validation will always fail
and thus the server will respond uniformly.

'Note that there are edge cases, where we may create more than 1 valid padding.






3 Library Analysis

In this section, we evaluate how different TLS-libraries handle their session tick-
ets. We perform a source code analysis and analyze the libraries for the following
features:

1. Session Ticket Format

2. Authenticated Encryption

©w

Key Rotation
4. Randomness
5. Replay Protection.

In total, we evaluate nine different TLS-libraries. However, we do not evaluate all
TLS-libraries to the same extent for all features. For the first two features, we
evaluate all nine TLS-libraries since we only need to analyze the code superficially.
For the key rotation feature, we evaluate for all TLS-libraries if they implement
a key rotation mechanism. Additionally, we explain the implemented key rotation
mechanisms of three TLS-libraries OpenSSL', GoTLS (crypto/tls package of Go)?
and MbedTLS? in more detail. The Randomness feature is only evaluated for the
three TLS-libraries as well. The final Replay protection feature is only evaluated
for OpenSSL since the majority of the evaluated libraries do not support early data.
Our goal is to get a better understanding of how different webservers in the wild
handle session tickets and if they fulfill the recommendations from the RFC 5077.
Moreover, it may be possible that we find security vulnerabilities directly in the
code.

3.1 Session Ticket Format

In this section, we evaluate the session ticket format of nine TLS-libraries and com-
pare them to the recommended session ticket format in the RFC 5077 (see Listing
2.3). The RFC 5077 mentions in the description of the ticket structure that the size of
the encrypted state (2-Byte) shall also be included inside the session ticket. However,

"https://www.openssl.org/
2https:/ /pkg.go.dev/crypto/tls
3https://tls.mbed.org/
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this is not explicitly shown in their ticket structure listing (see Listing 2.3). Thus, if
webservers do not include the size, but all the other requirements are fulfilled, we say
nevertheless, that the server fulfills the recommendation.

Table 3.1 shows the evaluation results. Four TLS-libraries OpenSSL, GoTLS, Bor-
ingSSL, and MatrixSSL follow the ticket format recommendation. However, they do
not include the size of the encrypted state as the majority of the evaluated libraries.
Only GnuTLS and MbedTLS include the size in their session ticket. The session
ticket format of GnuTLS slightly differs from the recommendation. Only the MAC
size is different because another MAC algorithm is used. The S2N ticket format
also only differs in the MAC size. The MbedTLS ticket format does not fulfill the
ticket format recommendations. The three fields key name, v, and mac all have
a smaller size. The ticket format in RusTLS does not include any key name at all.
Furthermore, the v size is smaller than recommended. BotanSSL uses a totally
different ticket format as it includes new fields such as the 8-byte magic constant
and the 16-byte key seed. Likely, BotanSSL maintains their STEKs in a different
way compared to the other libraries. However, we did not evaluate this in more
detail.

3.2 Authenticated Encryption

In our source code analysis, we evaluate how the different TLS-libraries encrypt and
authenticate their session tickets. First, we describe the used encryption algorithms.
Then, we describe the used authentication algorithms to protect the session ticket.
Finally, we will evaluate if the Encrypt-then-MAC scheme is used.

Encryption algorithm In the RFC 5077, it is recommended to use AES-128-CBC
as the encryption algorithm. Table 3.2 shows the used encryption algorithms for
the evaluated TLS-libraries. In total, five different encryption algorithms are used
across all TLS-libraries. BoringSSL is the only library that uses exactly the recom-
mended encryption algorithm with the suggested key size. GnuTLS, MatrixSSL and
OpenSSL use also AES-CBC but with a larger key (256 bits). BotanSSL, Mbed TLS,
and S2N use the AES-GCM (Galois/Counter Mode) encryption algorithm. More-
over, MbedTLS supports AES-CCM (Counter with CBC-MAC). RusTLS and GoTLS
are the only libraries using ChaCha20Poly1305 and AES-128-CTR.

Authentication algorithm In the following, we will describe the used authentica-
tion algorithms (see Table 3.2). The RFC 5077 recommends the use of HMAC-
SHA-256. Note that encryption algorithms that have the AEAD property do not
have to use an additional authentication algorithm since they offer encryption and
authentication in combination. In total, four TLS-libraries use an AEAD encryption



3.2 Authenticated Encryption

17

Table 3.1: Ticket format of evaluated TLS-libraries. If a ticket format is not conform

with RFC 5077, then we mark the differences with red color.

TLS-library

Session Ticket Format

RFC 5077 conform?

- OpenSSL
- GoTLS

- MatrixSSL
- BoringSSL

key name[16]
iv[16]

enc_ state<...>
mac|32]

v

- GnuTLS

key name[16]

iv[16]

enc_ state_ length[2]
enc_state<...>
mac[20]

- S2N

key_ name[16]
iv[16]
enc_state<...>
mac[16]

- MbedTLS

key_name[4]

iv[12]

enc_state_ length[2]
enc_state<...>
mac[16]

- RustTLS

iv[12]
enc_state<...>
mac[16]

- BotanSSL

magic__constant[8]
key_name[4]
key__seed[16]
iv[16]

enc_ state<...>
mac|16]

algorithm. Thus, we only present the authentication algorithms for all five libraries
that are using a Non-AEAD encryption algorithm. Four of them, do use the recom-
mended HMAC algorithm. Only GnuTLS uses a different authentication algorithm

with HMAC-SHA-1.

Encrypt-then-MAC For Non-AEAD ciphers, we evaluate if the Encrypt-then-MAC
scheme is used. The RFC 5077 mentions to calculate the MAC over the key
name, v and encrypted state which we interpret as the Encrypt-then-MAC scheme.
If an implementation uses the MAC-then-Encrypt or Encrypt-and-MAC scheme,
then the implementation may be vulnerable to different attacks as padding ora-
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Table 3.2: Encryption and authentication algorithms of evaluated TLS-libraries.
Note that encryption algorithms with AEAD property(see column 4),
also automatically provide authentication. Thus, they do not need to
additionally implement an authentication algorithm.

TLS-library | Encryption Algorithm | Authentication Algorithm | AEAD | EtM?
botanSSL AES-256-GCM v
boringSSL | AES-128-CBC HMAC-SHA256 v
GnuTLS AES-256-CBC HMAC-SHA1 v
GoTLS AES-128-CTR HMAC-SHA256 v
matrixSSL | AES-256-CBC HMAC-SHA256 v
mbedTLS | AES-GCM (128/256) v
AES-CCM (128/256)

openSSL AES-256-CBC HMAC-SHA256 v
RustTLS ChaCha20Poly1305 v

S2N AES-256-GCM v

# EtM: Encrypt-then-MAC

cle attacks [28]. Our evaluation has shown that all five libraries that use Non-
AEAD algorithms use the recommended Encrypt-then-MAC scheme (see Table
3.2).

3.3 Key Rotation

In a source code analysis, we evaluate for all nine TLS-libraries if they implement a
key rotation mechanism. The RFC 5077 recommends to rotate the STEKS regularly
to reduce the impact of a STEK compromise.

In Table 3.3, we present results of our evaluation. In total, six TLS-libraries im-
plement a key rotation mechanism. OpenSSL, MatrixSSL, and BotanSSL do not
implement any key rotation mechanism at all. If no key rotation mechanism is imple-
mented, then the STEK is used for the whole server lifetime.

In the following, we look more closely at the implemented key rotations in GoTLS
and MbedTLS. After that, we evaluate how OpenSSL allows the implementation of
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Table 3.3: Evaluation results of TLS-libraries for key rotation mechanism.

Implements Key Rotation

botanSSL

>

boringSSL

GnuTLS

GoTLS

matrixSSL

mbedTLS

openSSL

RustTLS

NSNS N R I NS NN

S2N

a customized key rotation mechanism. We introduce two terms in the context of
key rotation:

1. ticketKeyRotation: This is the interval until the server rotates its STEK. After
the interval passed, the server creates a new STEK and encrypts all newly
issued tickets with that key.

2. ticketKeyLifetime: This is the interval until the server discards the STEK.
Until this interval passes, all session tickets that were issued with the STEK,
can be redeemed by the clients.

MbedTLS always stores two STEKSs at the same time in a key array (see Figure 3.4).
The ticketKeyRotation interval is per default set to 24 hours. The ticketKeyLifetime
interval always is twice as long as the ticketKeyRotation. That means that every 24
hours the oldest STEK is discarded and a new STEK is created.

GOoTLS offers two possibilities to maintain the STEK: 1. We can manually generate
and maintain STEKs. At the server start, we have to input a list of STEKs. The first
key in the list is used for encryption and all others can only be used for the decryption
of redeemed tickets. However, to rotate the keys, the list has to be manually updated.
2. We use the auto-generated and maintained STEKs in GoTLS. Then, GoTLS
generates and rotates automatically the STEKs as we can see in Figure 3.5. Per
default the ticketKeyRotation is 24 hours and the ticketKeyLifetime is 7 days. Thus,
the number of keys stored in parallel can grow up to 7.
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|:| key is active
key is inactive,
:| but still stored for
ticketKeyLifetime = 48 h decrypt‘ion
ticketKeyRotation = 24 h
I—‘—\
keyslo) | STEK, || STEk, || STEK, || STEK, || STEKs |
keys(l] | STEK, || STEK; || STEK; || STEKs || STEKs |
active key 0 1 0 1 0
index

Figure 3.4: Key rotation in MbedTLS

Additionally, we evaluate if the key rotation in MbedTLS and GoTLS is working
correctly. Therefore, we set the ticketKeyRotation interval to 5 seconds and output
the newly generated STEKs for 100 key rotations. As the keys are only rotated
when a client connects to the server, we periodically connect to the server with the
OpenSSL client. Then, we check if the newly generated STEKSs are all different and

that no STEK is initialized with zeros. In the test results, we could not find any
abnormalities.

[ fevisave [ e o cechption ] immextrovstion
ticketkeys (0] | [STEKy| = [BTEKz] = [STEK3]
—
ticketKeys [2]
ticketKeys [6]

Rotation Interval 1 2 3 7 8

wctetteymoation - 241 |
beteptpme -7 oy

Figure 3.5: Key rotation in GoTLS

Customizing Ticket Handling in OpenSSL As described before, OpenSSL does
not implement any key rotation. However, OpenSSL allows customizing the session
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ticket mechanism with call-back functions*. Webservers using OpenSSL can use this
feature to implement a key rotation mechanism. We make a source code analysis of
the three most three popular webservers Apache, Nginx, and OpenLiteSpeed that
use OpenSSL and evaluate if they implement a key rotation. All three webservers
offer the option to input a session ticket key file at the server start. This ticket key file
must contain 48 random bytes: 16 bytes for the key name, 16 bytes for the encryption
key and 16 bytes for the HMAC key (see Listing 3.6).

Apache:
key_name[16] || hmac_key [16] || aes_key [16]

OpenLiteSpeed:
key_name[16] || aes_key [16] || hmac_key [16]

Nginx:
key_name[16] || aes_key [16] || hmac_key [16]

Listing 3.6: 48-byte session ticket file structure in Apache, OpenLiteSpeed and Nginx

If this option is selected, then all webservers use AES-128-CBC to encrypt their
session tickets. Nginx does also support an 80 byte session ticket key file. Then,
32 bytes are used to initialize the encryption key and 32 bytes for the HMAC
key (see Listing 3.7). In this case, AES-256-CBC is used as the encryption al-
gorithm.

Nginx:
key_name[16] || hmac_key [32] || aes_key [32]

Listing 3.7: 80-byte session ticket file structure in Nginx

Interestingly, the order inside the session ticket key file is not equal for all three web-
servers. If a session ticket key file is used, then the keys are not automatically rotated.
In Apache, a rotation of the STEK is only possible when the key file is updated and
the server is restarted. This can be done by using a cron job. In Nginx, to rotate the
key you can reload the server configuration periodically with a cron job. Richard
Fussenegger implemented this in his master thesis [21]. According to Tim Taubert,
both approaches do not come close to a real solution [27]. In OpenLiteSpeed, it
suffices to update the session ticket key file periodically.

If no session ticket key file is provided, then all three webserver implementations
automatically generate their own STEK. Apache and Nginx use the in OpenSSL
generated STEK. However, they do not implement any key rotation mechanism
so that the STEK is used for the whole server lifetime (see Table 3.8). In Open-
LiteSpeed, at server start, three STEKs are generated. Moreover, the STEKSs are

*https://www.openssl.org/docs/man1.0.2/man3/SSL_ CTX_set_ tlsext_ ticket_key_cb.html
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Table 3.8: Evaluation results for key rotation mechanisms of popular webservers
using OpenSSL

Webserver Implements Key Rotation
Apache X
Nginx X
OpenLiteSpeed v

rotated automatically. The rotation interval is configurable and is set per default to
60 hours.

3.4 Randomness

In the following section, we will evaluate the randomness generation of the three
TLS-libraries OpenSSL, GoTLS, and MbedTLS in more detail. First, we will de-
scribe what randomness is used for. In the context of session tickets, we need
randomness in two procedures: 1. Initializing a new STEK. This includes a random
key name. 2. Generating IV for a new session ticket. We evaluate which RNG
function is used for every library:

e MbedTLS: At server start, you can configure the RNG function for session tick-
ets. The example server included in MbedTLS uses the mbedtls ctr _drbg -
random (ctr__drbg.c) function as an RNG for session tickets.

e GOTLS: If no explicit RNG function is configured, GoTLS uses the crypto-
/rand® package as an RNG.

e OpenSSL: OpenSSL uses two different RNG functions for session tickets: The
RNG function RAND_priv_bytes ex® is used for generating the encryption
and HMAC key at server start. The RNG function RAND _bytes ex is used
for generating the key name and the IVs. The difference between both RNG
functions is that RAND_priv_bytes ex is intended to be used for values that
should remain private.

We made a small test to check if the RNG functions are working correctly.
Therefore, we generate 100000 16-byte random values for each RNG function. Then,
we test the generated values for duplicates and the zero vector. In our test results,
we can not see any abnormalities.

Shttps://pke.go.dev/crypto/rand
Shttps://www.openssl.org/docs/manmaster/man3/RAND_ priv_bytes_ ex.html
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3.5 Replay Protection

We only evaluated the replay protection for OpenSSL, because the majority of the
other libraries do not support 0-RTT. In OpenSSL, you can enable replay protection
for the O-RTT data in TLS 1.3 with the SSL_OP_NO_ANTI_REPLAY flag. If the replay
protection is enabled, then the server does not send a stateful session ticket that
includes all cryptographic parameters. Instead, they send a stateless ticket that
includes the corresponding session-id to the client. This is the concept of session
caches as explained in Section 2.1. Thus, the server loses the advantage of using
session tickets and has to store all cryptographic parameters of the sessions by
itself. None of the proposed replay protection mechanisms in the RFC 8446 are
implemented in OpenSSL.






4 Proposal of Possible Security
Vulnerabilities

In this chapter, we propose and explain different security vulnerabilities that may
exist in the session ticket handling of servers. We will implement test suites for each
proposed vulnerability. In the following, we shortly describe our attack model and
the differences in the impact between TLS 1.2 and 1.3:

We assume that an attacker has access to the network and can eavesdrop the traffic.
Therefore, they can eavesdrop and store the sent session tickets. If an attacker
gets in possession of the session secrets stored in the session ticket, they can do the
following depending on the selected TLS version:

e TLS 1.2: An attacker can decrypt all sessions where the leaked session ticket
was either issued or redeemed. Additionally, an attacker can perform a man-
in-the-middle attack and break the authenticity of the server, when the client
resumes the session.

e« TLS 1.3: An attacker can decrypt the 0-RTT data of all sessions where the
leaked session ticket was redeemed. Additionally, an attacker can perform a
man-in-the-middle attack and break the authenticity of the server, when the
client resumes the session.

Additionally, we assume that the attacker can actively modify messages or sent
self-constructed messages by itself to the server.

Next, we describe the different proposed vulnerabilities and their impact:

Repeated Initialization Vectors (IV) An initialization vector is used right along
the symmetric key to encrypt data to prevent repetition in the ciphertext.
Ideally, for every encryption, a new IV has to be chosen randomly. However,
generating randomness is an expensive computational operation for the server,
so it can be possible that servers repeat their IVs.

Impact: An attacker might be able to observe block collisions. If the AES-
GCM (Galois/Counter mode) cipher is used to encrypt the session ticket, then
an attacker could additionally exploit it in two different ways [5]: 1. An
attacker could learn the authentication key and forge session tickets. 2. If an
IV (called nonce in GCM) is used twice with the same key, then an attacker
learns the XOR of the two plaintexts by XORing the encrypted states of the
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received session tickets. It may be possible to learn the session secret included
in the session ticket.

Unencrypted Session Tickets We evaluate whether servers issue session tickets with
an unencrypted session state so that attackers can gain access to the session
secrets.

Impact: A passive attacker can simply extract the session secrets from the
session tickets.

Zero Key We evaluate if servers use an all-zero STEK to encrypt their session tickets
like in GnuTLS [11]. There are two possible ways how a server can use a zero
key:

Zero Encryption Key The server uses an all-zero key to encrypt the session
ticket.

Impact: A passive attacker can decrypt all session tickets encrypted with
an all-zero key and therefore gain access to the session secrets.

Zero HMAC-key The server uses an all-zero key as its HMAC-algorithm.

Impact: The impact is similar to the No-Mac check vulnerability. An
attacker can alter the session ticket and simply append the recalculated

MAC.

Ciphersuite Change The RFC 5077 recommends including the selected cipher suite
of the initial session inside the session ticket. We interpret that as a recom-
mendation to continue the session with the same cipher suite. However, this
is not explicitly stated in the RFC. Thus, we evaluate if webservers in the
wild allow resuming the session with a different cipher suite than in the initial
session.

Impact: This is undefined behavior, but no attacks are known.

Version Change The RFC 5077 recommends including the selected TLS version of
the initial session inside the session ticket. We interpret that as a recommen-
dation to continue the session with the same TLS version. However, this is not
explicitly stated in the RFC. We evaluate if servers allow resuming the session
with a different TLS version than in the initial session.

Impact: This is undefined behavior, but no attacks are known

No MAC check The MAC check may be skipped by the server or not executed
correctly.

Impact: An attacker might be able to forge or alter session tickets to im-
personate another user. Depending on the selected encryption algorithm, the
reconstruction of the included session secret may be possible.
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Padding oracle When using CBC operation mode, the implementation might be
vulnerable to a padding oracle attack. Servers which are using the MAC-
then-Encrypt scheme might be vulnerable to a padding oracle attack [28].
Additionally, servers which are not validating the MAC may also be vulnerable.

Impact: An attacker may reconstruct the session secret stored inside the
session ticket.

Replay attack In TLS 1.3, the client can send early data to the server in the session
resumption. An attacker can replay this early data to the server. Therefore,
the RFC 8446 recommends that servers should implement a countermeasure
against replay attacks. We evaluate if servers in the wild are vulnerable to
replay attacks. In TLS 1.2, replay attacks are not possible since early data is
not supported. Thus, we only evaluate this test suite for TLS 1.3.

Impact: An attacker may change the server’s state by replaying the early
data. For example, an attacker may be able to re-execute a valid financial
transaction a second time.
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In this chapter, we will outline our implementation for the proposed security vulner-
abilities in the TLS-Scanner. First, we will explain the used tools and then we will
describe the implementation of the test suites more in detail. Finally, we will explain
how we verified that our test suites are implemented correctly.

5.1 Used Tools

In order to implement our test suites and scan different TLS servers in the wild,
we use existing tools from the TLS-Attacker project. The project is created and
maintained by the Chair for Network and Data Security from the Ruhr-University
Bochum and the Research Group Systems Security from the Paderborn Univer-
sity.

5.1.1 TLS-Attacker

TLS-Attacker! is a Java based framework that allows us to test the configuration
and functionality of TLS libraries which includes TLS servers. The framework allows
defining and executing custom TLS protocol flows like TLS handshakes. We can
dynamically perform TLS handshakes and adapt our behavior depending on the
server’s response. We can use this feature to test the server configuration or to
perform different kinds of attacks. For our implementation, we use the functionality
of TLS-Attacker to receive and process session tickets issued by servers in the initial
handshake. We can freely modify the issued session ticket before sending it back to
the server and finally analyze the server’s behavior. The TLS-Core module contains
the main functionality of the TLS-Attacker framework.

5.1.2 TLS-Scanner

TLS-Scanner? evaluates the TLS server configurations for a specific host. The tool is
implemented in Java and is based on the TLS-Attacker framework.

"https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Scanner
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The main idea is that TLS-Scanner connects to a TLS server and performs different
Probes. There are two different types of probes:

1. Probes that evaluate the server configuration: for example supported TLS
versions, supported cipher suites, supported extensions

2. Probes that test if the server is vulnerable to different kinds of attacks: for
example Bleichenbacher, Heartbleed, Padding Oracle

Finally, TLS-Scanner generates a report with the probe results of the scanned TLS
server. We can easily add new probes to the TLS-Scanner. In our case, we imple-
ment a SessionTicketProbe to evaluate the server’s behavior according to session
tickets.

5.2 Implementation of SessionTicketProbe

In this section, we will explain in more detail our implementation of the Session-
TicketProbe in the TLS-Scanner. The SessionTicketProbe evaluates the different
test suites for session tickets and outputs the final result to the SiteReport.

5.2.1 SessionTicketProbe

<<abstract>>
TIsProbe

+executeTest(): ProbeResult

+canBeExecuted(): bool

T

SessionTicketProbe

-executeTicketTestsuites( SessionTicketResult result,
bool isTls13, List<SessionTicketTestSuite> testPlan): void

-createTestPlan(bool detailed, bool isTls13): List<SessionTicketTestSuite>

Figure 5.1: Class diagram of SessionTicketProbe

In TLS-Scanner, the T1sProbe implements the basic functionality for executing a
specific probe against a host. We extend it with a new SessionTicketProbe where
we execute the test suites for the presented vulnerabilities (see Figure 5.1). The
method canBeFxecuted defines the precondition for executing the current probe. In
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the case of the SessionTicketProbe, we have to wait until the Pre-Probes, evaluat-
ing the supported protocol versions and cipher suites, are completed. In the method
executeTest we execute all test suites for the proposed vulnerabilities. We will de-
scribe the execution of the test suites later in detail.

For every presented vulnerability, we implement a test suite that evaluates and
outputs if the scanned host is vulnerable. Therefore, we define the abstract class
SessionTicketTestsuite (see Figure 5.2). Every test suite has to implement the
execute Ticket Testsuite function where the test suite is executed and the results are
written to the SessionTicketResult. We categorize the test suites into two differ-
ent types:

<<abstract>>
SessionTicketTestSuite

+executeTicketTestsuite(TicketTestSuiteParameter param, TicketResult result): void

JAN

SessionTicketZeroEncKey SessionTicketUnencryptedTickets
SessionTicketZeroHmacKey SessionTicketCipherChange
SessionTicketIVRepition SessionTicketVersionChange
SessionTicketReplayAttack SessionTicketPaddingOracle

SessionTicketNoMacCheck

Figure 5.2: class diagram of implemented session ticket test suites

1. Passive test suites: IV Repetition, Zero Encryption Key, Zero HMAC-key and
Unencrypted Ticket. These test suites only evaluate the tickets issued by the
server. They do not perform any session resumption. We can compare it to
an passive attacker who sits in the network and eavesdrops the traffic.

2. Active test suites: No Mac Check, Padding Oracle, Ciphersuite Change, Re-
play Attack and Version Change. These test suites actively perform session
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resumptions to find a vulnerability at server side.

We execute all test suites for TLS 1.2 and TLS 1.3 except two test suites: The
Replay Attack test suite can only be executed in TLS 1.3 because TLS 1.2 does
not support early data. The Version Change test suite evaluates vulnerabilities
across different TLS versions and therefore does not belong to any TLS version.
We will give a detailed description of the implemented test suites in the upcoming
sections.

In TLS-Scanner, every probe outputs a ProbeResult which contains the results
of the executed probe (see Figure 5.3). We implement a SessionTicketResult
which stores all results of the executed session test suites. As we are scanning
session tickets for TLS 1.2 and 1.3, we have to store the results for each version
separately in two TicketResult objects ticketResultTls12 and ticketResultTls13. In
our thesis, we refrain from a more detailed description of the result implementa-
tion.

<<abstract>>
ProbeResult

#mergeData(SiteReport):void

i

SessionTicketResult

ticketResultTIs12 ticketResultTIs13

1 1
TicketResult

#write ToSiteReport(SiteReport):void

Figure 5.3: class diagram of implemented SessionTicketResult

Executing test suites for specific TLS version First, we describe how we eval-
uate test suites for a specific TLS version (either TLS 1.2 or TLS 1.3) with the
execute Ticket Testsuites function (see Listing 5.4). The function gets three input pa-
rameters: 1. The selected TLS version. 2. The SessionTicketResult result: The
object where we output the test suite results. 3. List<SessionTicketTestSuite>
testPlan: a list of test suites which shall be executed. Before executing the test
suites, we first have to evaluate if the server supports session tickets for the selected
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TLS version. Therefore, we implement the SessionTicketSupportTest class which
evaluates the following:

private void executeTicketTestSuites(SessionTicketResult sessionTicketResult,
boolean isT1ls13, List<SessionTicketTestSuite> testPlan) {
try {
TicketResult ticketResult = sessionTicketResult.getTicketResult(isT1ls13);
//test if server issues session ticket and resumes sessions with ticket
SessionTicketSupportTest sessionTicketSupportTest = new
SessionTicketSupportTest (handshakeHelper, getParallelExecutor());
sessionTicketSupportTest.testSessionTicketSupport(isTls13,ticketResult);
if (ticketResult.getIssuesTickets()!= TestResult.TRUE){
return;
}
//generate all necessary data for test suites
TicketTestSuiteParameter testSuiteParameter =
new TicketTestSuiteParameter(isTls13, ticketResult.getKeyNameLength(),
sessionTicketSupportTest.getStateList(), supportedSuites, supportedVersions);
//Execute all test suites
for(SessionTicketTestSuite testSuite :testPlan){
testSuite.executeTicketTestsuite(testSuiteParameter, sessionTicketResult);
}
} catch (Exception e) {
LOGGER.error("Anaylze session tickets failed");
}
}

Listing 5.4: execute Ticket TestSuites function in SessionTicketProbe executes test
suites for selected TLS version

1. ISSUES_TICKET: We perform one full handshake and evaluate if the server
issues a session ticket. If yes, we output that the server issues tickets.

2. RESUMES_WITH_TICKET: We perform a session resumption with the is-
sued ticket. If the server accepts the session ticket and performs a resumption
handshake, we output that the server allows resumption.

3. stateList: As default we execute 10 full handshakes and store all 10 sessions
along with the cached session ticket in the stateList. Later, all passive test
suites can evaluate the issued session tickets and do not have to perform hand-
shakes on their own. We evaluate multiple session tickets because a host can
use multiple load balancers. With 10 handshakes, we may hit different load
balancers and therefore we can evaluate if one of them is vulnerable to our test
suites. We execute the 10 handshakes in parallel to improve the performance
of our scan.

4. Additional information: We output some additional information for later ana-
ysis in the SessionTicketResult:

e keyNameLength: We set the length of the key name field as following: The
number of equal bytes from the starting position for two issued session
tickets.
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o ticketList: We store all issued session tickets for later analysis.

We only evaluate the test suites if the server supports session tickets for the selected
TLS version. In the next step, we generate the TicketTestSuiteParameter object
testSuite Parameter. This object contains all necessary data that the test suites need
for execution. For example, the passive test suites need the stateList to evaluate the
session tickets. Finally, we can execute all test suites sequentially. Every test suites
stores the results in the sessionTicketResult object.

Execute Test In the following, we will describe in more detail how we implement
the executeTest function in the SessionTicketProbe. This is the main function that
is called to execute a probe. First, we create a new SessionTicketResult object
ticketResult where we store the results of all test suites (see Listing 5.5). Then,
we generate for both TLS versions 1.2 and 1.3 a list of test suites which we want
to execute. Therefore, we implement the createTestPlan function. The function
generates, dependent on the input parameter PlanDetail, a list with the following
test suites:

public ProbeResult executeTest() {
try {
SessionTicketResult ticketResult = new SessionTicketResult();
List<SessionTicketTestSuite> testPlanTlsl2 = createTestPlan(false/*TLS 1.2%/,
PlanDetail .HIGH);
List<SessionTicketTestSuite> testPlanTlsl13 = createTestPlan(true/*TLS 1.3%/,
PlanDetail.NORMAL) ;
// test tls 1.2 test suites
if (supportedVersions.contains(ProtocolVersion.TLS12)) {
executeTicketTestSuites(ticketResult, false, testPlanTls12);
}
// test tls 1.3 test suites
if (supportedVersions.contains(ProtocolVersion.TLS13)) {
executeTicketTestSuites(ticketResult, true, testPlanTls13); }
// test version change test suite
if (ticketResult.getTls12Results() .getIssuesTickets()==TestResult.TRUE ||
ticketResult.getTls13Results() .getIssuesTickets()==TestResult.TRUE) {
SessionTicketVersionChange versionChange = new
SessionTicketVersionChange (handshakeHelper) ;
versionChange.executeTicketTestsuite (new TicketTestSuiteParameter (supportedSuites,
supportedVersions), ticketResult);
}
return ticketResult;
catch (Exception E) {
LOGGER. error("Could not scan for " + getProbeName(), E);
return new SessionTicketResult(TestResult.ERROR_DURING_TEST);
}

[ue}

}

Listing 5.5: executeTest function in class SessionTicketProbe

e PlanDetail. NORMAL: IV Repetition, Zero Encryption Key, Zero HMAC Key,
Unencrypted Ticket, Ciphersuite Change, Replay Attack (only in TLS 1.3)
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e PlanDetail. HIGH: all test suites from PlanDetai. NORMAL + No Mac Check,
Padding Oracle

In the PlanDetai. NORMAL mode, all test suites are included that do not perform
more than five handshakes at all. In the PlanDetail. HIGH mode, there are addi-
tionally the two test suites No Mac Check and Padding Oracle included. Both test
suites perform on average more than 100 handshakes. Therefore, we only evaluate
by default all test suites in TLS 1.2 which significantly increase the runtime of our
scan. In the next step, we execute the test suites for TLS 1.2 with the previously
described function ezxecuteTicketTestSuites if the server supports TLS 1.2. After
that, we execute the test suites for TLS 1.3 if the server supports TLS 1.3. Then,
we execute the Version Change test suite that does not belong to a specific TLS
version. Finally, we return the ticketResult which contains all results of the executed
test suites.

5.2.2 Handshake Implementation

The implementation and execution of the proposed test suites require the execution
of two different handshake types with a server: 1. The initial full handshake, where
the server issues a new ticket inside the NewSessionTicket message. 2. The resump-
tions handshake, where the client redeems the issued ticket.

<<abstract>>
SessionTicketHandshake

+ prepareFullHandshake(): State
+ prepareResumptionHandshake(State state): State
+ performFullHandshake(): StateResult

+ performResumptionHandshake(State state): StateResult

T

SessionTicketHandshakeTls12 SessionTicketHandshakeTls13

- configureFullHandshake(): Config - configureFullHandshake(bool freshRandom): Config

Figure 5.6: SessionTicketHandshake class diagram

We implement the abstract class SessionTicketHandshake which offers function
that can execute both handshake types (see Figure 5.6). However, the handshakes
are different depending on the TLS version. Thus, we implement for both versions a
handshake class SessionTicketHandshakeTls12 and SessionTicketHandshakeTls13
extending the SessionTicketHandshake. For both handshake types, there are two
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function types: 1. prepare functions which only configure the handshake but do not
execute the handshake. Test suites that want to parallelize the execution of mul-
tiple handshakes use this function type. 2. perform functions which automatically
execute the handshake.

In the following, we describe how we implement the two handshake types. We do not
implement both TLS handshakes from scratch because the TLS-Attacker Core mod-
ule implements both handshakes. The SessionTicketHandshake implements two
functions for configuring and executing a full handshake:

o prepareFullHandshake(): This function configures a full handshake and outputs
a State which is ready for execution.

o performFullHandshake(): First, the function configures a full handshake with
the prepareFullHandshake() function. Then, it executes the full handshake and
outputs a StateResult which contains the resulting state and the handshake
execution result.

Moreover, the SessionTicketHandshake implements two functions for configuring
and executing a resumption handshake: We input a state that has executed a full
handshake and stored the issued session ticket in its cache.

o prepareResumptionHandshake(State state): This function configures and out-
puts a resumeState which is ready for executing a resumption handshake.

o performResumptionHandshake(State state): First, this function calls the prepare-
ResumptionHandshake function to configure a resumeState. Then, the resump-
tion handshake with the resumeState is executed. Finally, the function outputs
the StateResult.

5.2.3 Session Cache: Evaluating and Manipulating Session Tickets

To evaluate the different presented test suites for session tickets, we need to ac-
cess the session cache. The class TlsContext of the TLS-Attacker Core module
implements the session cache. After executing a full handshake for a state, we can
access all necessary information for session resumption in the TlsContext class.
The session cache stores different data depending on the selected protocol ver-
sion.

In TLS 1.2, the session cache consists of the sessionList and the sessionTick-
etTls (see Listing 5.7). If we have performed a full handshake, then the cur-
rent session is entered to the sessionList with the corresponding ID and master-
secret. Additionally, the ticket value in the received NewSessionTicket message is
stored in the sessionTicketTLS. With this information a session resumption is pos-
sible.
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class TlsContext {

List<Session> sessionList;
bytel[] sessionTicketTLS;

}
class Session{
opaque 1ID;
byte[] mastersecret;

}

Listing 5.7: Session cache in class T1sContext for TLS 1.2

In TLS 1.3 the session cache consists of a list pskSets (see Listing 5.8). For every
received NewSessionTicket message a new PskSet is created. The textitPskSet con-
tains the preSharedKeyldentity which is the ticket. The preSharedKey is the secret
used for resuming the session. It is derived from the mastersecret of the current
session and the ticket _monce. The fields ticketAgeAdd and ticketNonce are copied
from the NewSessionTicket message. The ciphersuite of the initial session is stored
as well. A server may send two NewSessionTicket messages in one handshake, but
we only store one PskSet in this case. If we store both tickets, we would send both
tickets in the session resumption. This would sophisticate the test suite results where
we redeem manipulated session tickets.

class TlsContext {
List<PskSet> pskSets;

}

class PskSet{
byte[] preSharedKeyIdentity;
byte[] preSharedKey;
byte[] ticketAgeAdd;
byte[] ticketNonce;
String ticketAge;
CipherSuite cipherSuite;

Listing 5.8: Session cache in TlsContext for TLS 1.3

In order to access the session ticket of the session cache for both TLS versions, we im-
plement two helper functions in the SessionTicketUtil class.

o getSessionTicket(State state): This functions returns the received ses-
sion ticket of the current state. If the selected protocol version is TLS 1.2,
then the sessionTicketTLS value is returned. If the selected version is TLS
1.3, then the preSharedKeyldentity of the stored pskSet (we only store one
pskSet) is returned.

o setSessionTicket(State state, byte[] ticket) This function sets a new
ticket value as the current session ticket so that in the resumption, the new
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ticket value is sent to the server. In TLS 1.2, the sessionTicketTLS is assigned
with the new ticket value. In TLS 1.3, the preSharedKeyldentitiy of the first
PskSet is assigned with the new ticket value.

These two functions allow us to evaluate issued session tickets and to manipulate
and resend them to the server.

5.2.4 IV Repetition

The IV Repetition test suite evaluates if a server uses duplicated IVs in its session
tickets. The test suite works similarly for TLS 1.2 and TLS 1.3 and is implemented
in the SessionTicketIVRepetition class.

The test suite evaluates the issued session tickets from the stateList. Therefore, we
first extract the session tickets from all states included in the stateList (see Figure
5.9). In the next step, we extract the IVs from the session tickets. The main chal-
lenge is that the IV position depends on the customized session ticket format. Our
evaluation in chapter 3 has shown, that the majority of TLS implementations follow
the recommendation for the IV position. Thus, we decide to extract the IVs from
index 16 to 32 according to the recommendation (see Section 2.3). However, we will
overlook servers with duplicating IVs that do not conform with the recommenda-
tion. Furthermore, we may see false positives if a server uses for example longer
key names. After extracting the IVs, we can compare each IV pair (IV;, IV;) in the
testIVRepitionForTicketPair function. If we only see one equal IV pair, then we
will output that the server is vulnerable to IV Repetition.

?

‘ Extract issued sesion tickets from stateList: ’

ticket; = getSessionTicket(state;)

v

[ Extract IVs from session tickets: [V; = ticketj[16 ...32] ]

¥

[ compare each |V pair ]

contains duplicate
pair (1V;, IV)) :
;=1v;

yes
no

Server vulnerable
Server not vulnerable

to IV Repition

® ®

Figure 5.9: Activity diagram of I'V Repetition test suite
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5.2.5 Ciphersuite Change

The Ciphersuite Change test suite evaluates if a server allows resuming sessions with
a different cipher suite. We implement it in the SessionTicketCipherSuiteChange
class. It works analogue for TLS 1.2 and TLS 1.3.

Initially, we perform a full handshake with a default selected cipher suite cipherA and
get a newly issued session ticket (see Figure 5.10). We expect from an invulnerable
server that it stores cipherA in the encrypted state of the issued ticket. Then, we
pick a different cipher suite cipherB from the hosts’ supportedCipherSuites and set it
in the Config via the setDefaultSelectedCipherSuite function. After that, we perform
the resumption handshake with the newly selected cipher suite cipherB. If the server
accepts the session ticket and the ServerHello message contains the newly selected
cipher suite, we output that the server is vulnerable to the Ciphersuite Change test
suite. There are two possibilities why a server may accept a session resumption with
a different selected cipher suite: 1. The server does not store the cipher suite inside
its session ticket. 2. The server does not check if the newly selected cipher suite
matches with the cipher suite stored in the session ticket.

b

[ performFullHandshake with ciphersuite cipherA ]

v
[ select different ciphersuite cipherB from supportedCipherSuites of host ]
v
[ performResumptionHandshake with cipherB ]
no
isExecutedSuccessfully ? N
yes
ServerHello contains no >

cipherB?
yes

Y

Server vulnerable
to Ciphersuite Change

o o

Figure 5.10: Activity diagram of Ciphersuite Change test suite

‘ Server not vulnerable ’
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5.2.6 Replay Attack

The test suite Replay Attack evaluates if a server is vulnerable to a replay attack.
In the real-world scenario, an attacker duplicates the ClientHello and FarlyData
message and replays it to the server. Our test suite performs two consecutive 0-RTT
session resumptions with the same ClientHello and FarlyData. If both EarlyData
messages are accepted, we output that the server is vulnerable. We implement the
test suite in the execute Ticket Testsuite function of the SessionTicketReplayAttack
class. The test suite does only work in TLS 1.3 because TLS 1.2 does not support
0-RTT.

Algorithm 5.11: Replay Attack test suite
Result: TestResult

begin

state «— hsHelper.performFullHSWithTicket(TLS13, firtRandom)
pskSetListCopy < state.copyPskList ()

set fixed time provider

if resumeSessionWithEarlyData(state) = false then

t return NO_EARLY DATA SUPPORT

stateReplay < hsHelper.performFullHSWithTicket(TLS13, fitRandom)
/* Replay early x/
if resumeSessionWithEarlyData(state, pskSetListCopy) = false then

t return NOT REPLAY VULNERABLE

return REPLAY VULNERABLE

Initially, we perform a full TLS 1.3 handshake and cache the received session ticket
in our pskSets (see Algorithm 5.11). With the freshRandom parameter, we configure
the handshake so that a fixed random value in the ClientHello is used. We need this
property because we want to perform two session resumptions that are completely
identical. Then, we copy the ticket with the pskSet out of the session cache, because
we later need to reuse it in the replay attack. The PskKeyExtension contains addi-
tionally to the issued ticket the obfuscated TicketAge, which is the ticket age from the
client’s perspective. The TLS-Attacker sets the obfuscated TicketAge dynamically to
the current system time when the ClientHello is sent. We prevent this behavior with
a FizedTimeProvider that sets the obfuscatedTicketAge to a fixed value. Then, we
can perform the first 0-RTT session resumption with fixed dummy early data for the
initial state. The resumption is only successful if the server accepts the early data
in its Encrypted Extensions with an early data extension. If the 0-RTT resumption
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is not successful, we output NoFarlyDataSupport. If the resumption succeeds, we
test the replayed 0-RTT session resumption. For technical reasons, we first need to
perform another full handshake for the stateReplay. After that, we can finally per-
form the 0-RTT session resumption for stateReplay with the same ticket (included
in pskSetList) and the same early data. The ClientHello and the O-RTT data are
identical to the first resumption. If the server accepts the early data in its Encrypted
Extensions, we output that it is vulnerable.

5.2.7 Unencrypted Ticket

The Unencrypted Ticket test suites evaluates if a server issues unencrypted session
tickets. We can detect a vulnerable server by checking if an issued ticket contains
session secrets. We implement the test suite for TLS 1.2 and 1.3 in the execute-
Ticket TestSuite function of the SessionTicketUnencryptedTickets class (see list-
ing 5.12)

public void executeTicketTestsuite(TicketTestSuiteParameter ticketTestSuiteParameter,
TicketResult ticketResult) {

List<State> statelist = ticketTestSuiteParameter.getStateList();
for (State state : stateList) {
List<byte[]> secretList = ticketHandshake.generateSecretList(state);
byte[]l ticket = ticketHandshake.getSessionTicket(state);
for (bytel[] secret : secretList) {
if (secretCheck(ticket, secret)) {
ticketResult.setContainsPlainSecret(TestResult.TRUE);
return;

¥
}
ticketResult.setContainsPlainSecret (TestResult.FALSE) ;
}

Listing 5.12: executeTicketTestsuite function in SessionTicketUnencryptedTicket

The test suite evaluates issued session tickets from the stateList. We analyze for
every state if the issued ticket contains session secrets. Therefore, we have to collect
the different session secrets in the secret list with the generateSecretList function
(see listing 5.13). In TLS 1.2, we add the preMasterSecret and the masterSecret to
the secretList, because both are used to derive the session keys [7]. The RFC 5077
recommends to use the masterSecret inside the session ticket. In TLS 1.3, we add the
handshakeSecret, the masterSecret, the resumptionMasterSecret and the preShared-
Key to the secretList. These are the different values used in the key derivation (see
Section 7.1 in [20]). Normally, in TLS 1.3 the resumptionMasterSecret is included in
the session ticket. Then, we check if the ticket contains one of the secrets from the se-
cretList with the secretCheck function. We output that the server is vulnerable if one
of the issued tickets contains a secret from the secretList.
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public static List<byte[]> generateSecretList(State state) {

boolean isTls13 = isTls13Selected(state);

List<byte[]> secretList = new LinkedList<>();

TlsContext context = state.getTlsContext();

if (isT1s13) {
secretList.add(context.getHandshakeSecret());
secretList.add(context.getMasterSecret());
secretList.add(context.getResumptionMasterSecret());
secretList.add(context.getPskSets() .get(0).getPreSharedKey());

} else {
secretList.add(context.getPreMasterSecret());
secretList.add(context.getMasterSecret());

}

return secretlList;

}

Listing 5.13: generateSecretList function in SessionTicketUtil

5.2.8 Version Change

The Version Change test suite evaluates if a server allows resuming a session in a
different TLS version than the ticket was issued. We implement the test suite in the
SessionTicketVersionChange class. We implement two different types of the test
suite because the implementation is technically different depending on the selected
TLS versions:

[ performFullHandshake in TLS 1.2 ]

v

[ performResumptionHandshake in TLS 1.0 ]

no

isExecutedSuccessfully ? A

yes

L no
TLS version in

ServerHello = TLS 1.0?

A\ 4

yes

Y

Server vulnerable
to Server not vulnerable

VERSION_CHANGE_TLS12_TLS10

Figure 5.14: Activity diagram of Version Change test suite, Ticket issued in TLS
1.2 and redeemed in TLS 1.0
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Redeem TLS 1.2 session ticket in TLS 1.0/1.1 The session ticket extension works
similarly in TLS 1.0/1.1/1.2. Thus, the test suite is for this case not very com-
plex. In the following, we exemplary describe how the version change works
from TLS 1.2 to TLS 1.0 (see Figure 5.14). The version change from TLS 1.2
to TLS 1.1 works similarly. First, we perform a full handshake in TLS 1.2 and
store the session ticket inside the session cache. In the next step, we resume
the session in TLS 1.0 with the cached session ticket. We use the same state
for the initial handshake and the session resumption because the session ticket
is stored independently of the selected TLS version (except for TLS 1.3). If the
server accepts the ticket in TLS 1.0, we output that the server is vulnerable
to the version change test suite.

Redeem TLS 1.2 session ticket in TLS 1.3 and vice versa As explained in Section
5.2.2 and 5.2.3, the session ticket resumption mechanism including the session
cache works differently for TLS 1.2 and TLS 1.3. Thus, the test suite imple-
mentation is more complex than in the first case because we can not reuse
the state for the session resumption. In the following, we exemplarily describe
how the version change from TLS 1.2 (versionA) to TLS 1.3 (versionB) works.
The version change from TLS 1.3 to TLS 1.2 works analog. First, we perform
a full handshake in TLS 1.2 for stateVersionA (see Algorithm 5.15). The is-
sued TLS 1.2 session ticket is cached inside the state. We can technically only
resume a session in TLS 1.3 for a state if a full handshake has been performed
significantly. Therefore, we perform a dummy full handshake in TLS 1.3 for
stateVersionB. In the next step, we overwrite the session ticket of stateVer-
stonB in the session cache with the session ticket issued in TLS 1.2. Finally,
we perform the session resumption in TLS 1.3 for stateVersionB with the TLS
1.2 session ticket. We expect that servers react in two different ways:

Reject Ticket The server rejects the session ticket and performs a full hand-
shake. Then, we output that the server is not vulnerable.

Accept Ticket If the server accepts the ticket, it will answer with (SH, CCS,
FIN) in TLS 1.2 and with (SH, CCS, ENC_EXT, FIN) in TLS 1.3. The
challenge is that we do not know which secret the server has selected out
of the session ticket. First, we do not know which secret the server has
included in the session ticket. For example in TLS 1.3, the server can
include either the resumptionMasterSecret or the preSharedKey. Second,
the ticket formats between TLS 1.2 and TLS 1.3 may differ, because
the secret sizes can have different lengths. Because we do not know the
selected secret of the server, the client can not decrypt the messages after
the CCS message. In this case, TLS-Attacker displays that it has received
the messages (SSH, CCS, UNKNOWN). Thus, if the serverAnswer is
(SSH, CCS, UNKNOWN), we output that the server is vulnerable to the
Version Change test suite.
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Algorithm 5.15: changeTicketVersionTls12Tls13

Data: versionA, versionB
Result: is server vulnerable to version change
begin

stateVersionA < performFullHandshake(versionA) with cipherVersionA
stateVersionB < performFullHandshake(versionB) with cipherVersionB
ticket VersionA <« stateVersionA.getSessionTicket()
stateVersionB.setSessionTicket(ticket VersionA)

serverAnswer < performResumptionHandshake(stateVersionB, versionB)
with cipherVersionB
if serverAnswer = (SH, CCS, UNKNOWN) then

| return VULNERABLE

return NOT VULNERABLE

5.2.9 No Mac Check

The test suite No Mac Check evaluates if a server includes and verifies the MAC of
the session ticket. We manipulate each byte of the session ticket once and analyze if
the server accepts one of the manipulated tickets. We implement the test suite for
TLS 1.2 and 1.3 in the execute TestSuite function of the SessionTicketNoMacCheck
class.

In the beginning, we have to define the different server answers which indicate that
the server is not validating the MACs. We expect two different responses from a
server that accepts a manipulated ticket:

1. The webserver responds with an acceptFingerprint which is either (SH, CCS,
FIN) in TLS 1.2 or (SH, CCS, EncExt, FIN) in TLS 1.3. In this case, the
client and server have resumed the session with the same session secret.

2. The web server responds with a differentSecretFingerprint (SH, CCS, UN-
KNOWN). In this case, the client and server have resumed the session with
a different session secret. This may happen when we modify the ciphertext
block that is located at the session secrets position. The server will decrypt
the manipulated ticket and resume the session with the modified secret. The
server will answer with the same fingerprint as in case 1, but we are not able
to decrypt the messages after the CCS message. Therefore, we can only see
that an UNKNOWN message type has arrived.

Initially, we perform an initial full handshake and get the issued ticket from the
session cache. For every index i of the session ticket, we do the following: We create
a copy modifiedTicket of the original ticket. Next, we modify the modified Ticket at
index i: modifiedTicket[i] :== modified Ticket[i] & 0x01. After creating modifications
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Table 5.16: Evaluated authentication algorithms

Algorithm MAC size | Key size
HMAC-MD5 16 16
HMAC-SHA1 20 20
HMAC-SHA256 | 32 32
HMAC-SHA384 | 48 48
HMAC-SHA5B12 | 64 64

for all possibles all indexes ¢, we perform a session resumption with every modi-
fiedTicket. To improve the performance, we execute all resumptions in parallel with
the parallelEzecutor. In total, we have to perform for every byte of the session ticket
one session resumption. The ticket sizes of webservers are roughly between 100 and
250 bytes. Finally, we have to evaluate the server’s responses and check if the server
accepted one of the modified tickets. Therefore, we compare all fingerprint responses
with the two fingerprints acceptFingerprint and differentSecretFingerprint. If one
fingerprint response matches with one of the two fingerprints, then we output that
the server is vulnerable.

5.2.10 Zero HMAC Key

We evaluate in the test suite Zero HMAC Key if a server uses an all-zero HMAC
key to calculate the MAC of the session ticket. We implement the test suite in the
SessionTicketZeroHmacKey for both TLS versions TLS 1.2 and 1.3.

We evaluate for every state included in the stateList if the state’s cached session
ticket is protected with an all-zero HMAC key. The RFC 5077 recommends to use
the HMAC-SHA-256 authentication algorithm. However, TLS-implementations can
choose a different authentication algorithm. Thus, we test the zero key for several
popular authentication algorithms (see Table 5.16).

ticketValue ticketMAC

n i
VI

0 1 1

macindex ticketLength

Figure 5.17: Session ticket structure with appended MAC

For every ticket, we recalculate the MAC with all authentication algorithms. The
recalculation for an authentication algorithm hmacAlgo works as following: First,
we have to calculate the macIndex which is the possible starting index of the MAC
inside the session ticket (see Figure 5.17):
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maclIndex = ticketLength — hmacAlgo. MacSize

Then, we extract the MAC ticketMAC of the current ticket. Next, we gener-
ate an all-zero key of size hmacAlgo.keySize. At last, we recalculate the MAC

with the zeroKey for the ticketValue which does not contain the appended tick-
etMAC:

zeroKey = initArray(hmacAlgo.KeySize, 0)
zeroKeyMAC = hmacAlgo. HMAC ,erokey(ticket Value)

If the recalculated zeroKeyMAC is equal to the ticketMAC, then we know that the
server has used an all-zero HMAC key. Thus, we output that the server is vulnerable
to our test suite.

5.2.11 Zero Encryption Key

The test suite Zero Encryption Key evaluates if a web server uses an all-zero key
to encrypt its session tickets. For this, we test different encryption algorithms and
ticket formats. We implement the test suite for TLS 1.2 and 1.3 in the Session-
TicketZeroEncryptionKey class.

The testEmptyKeyTls function implements the test suite for a stateList (see Algo-
rithm 5.18). Each state of the list has performed a full handshake and stored the
issued session ticket inside its session cache. We want to evaluate for every state
if the issued session ticket is encrypted with an all-zero key. The main challenge
is that we do not know the server’s ticket format. To decrypt the session ticket
correctly, we need to guess the position of the v and the encrypted state correctly.
Thus, we use the generateFormat function to generate a list of possible ticket for-
mats for the current ticket. We describe in the next Section in more detail how
this format generation works. Another aspect is that we need to verify if we have
successfully decrypted a session ticket: Therefore, we use the function generateSes-
sionSecrets function to generate a list with the current session secrets (see Section
5.2.7). If the decrypted ticket contains one of these secrets, we know that the de-
cryption was successful. In the next step, we try to decrypt the session ticket for
all generated formats with an all-zero key with the emptyKeyDecryption function.
As we do not know which encryption algorithm the server uses, we test different
algorithms which we have observed in the code analysis. We will describe the algo-
rithms and the decryption process in detail in the upcoming section 5.2.11.2. If the
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decryption is successful for one ticket format, we output that the server is vulnera-
ble.

Algorithm 5.18: testEmptyKeyTls
Data: stateList
Result: is server vulnerable to Zero Encryption Key test suite
begin
for ( state: stateList ) {
ticket <— hsHelper.getSessionTicket(state)
secretList <— hsHelper.generateSecretList(state)
formatList < generateFormats(ticket, NORMAL,keyNameLength)
emptyKeyDecryptor < new SessionTicketFormatDecryptor ()
for ( format: formatList ) {

if emptyKeyDecryptor.emptyKeyDecryption(format) then

| return VULNERABLE

return NOT VULNERABLE

5.2.11.1 Ticket Format Generation

We implement the ticket format generation in the generate TicketFormat function of
the SessionTicketFormat class. As we do not know the session ticket format, we
generate different possible ticket formats for an issued session ticket. We need to
consider that the number of decryptions per session ticket significantly influences the
performance of our scan. Figure 5.19 shows the main idea of our format generation

kns: keyNameSize

key_name iv state

A A
0 kns

kns+ivSize ticketSize
kns+ivSize + stateOffset

Figure 5.19: Different fields of session ticket for generating ticket formats

algorithm. The ticket consists of four different fields: key mname, v, stateOffset,
state. We assume that the order of these fields is fixed, but we allow that fields
are missing. We do not need to locate the MAC field which is typically located at
the end, because it does not interfere with the decryption process. The sizes of the
four different fields are customizable and can be defined by these three parameters:
keyNameSize, iwSize, stateOffsetSize. The keyNameSize and stateOffsetSize can be
arbitrary chosen by the webserver. The ivSize depends on the the selected encryption
algorithm. We assume that wSizes = {0,8,12,16}. These are the different IV sizes
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of the encryption algorithms which we use later for decryption (see next Section).
The zero ivSize means that we try to decrypt the session ticket with an all-zero I'V.
Depending on the required resource power, we define three different ticket format
generations modes (see Listing 5.20). Important to mention is that in all three
modes, the keyNameSizes are extended with the measured key name size of the
scanned host.

FORMAT _DETAIL.LOW:
keyNameSizes = {0, 4, 16} U {measuredKeyNameSize}
ivSizes = {0, 8, 12, 16}
stateOffsets = {0, 2}

FORMAT_DETAIL.NORMAL:
keyNameSizes = {0, 1, ....,32} U {measuredKeyNameSize}
ivSizes = {0, 8, 12, 16}
stateOffsets = {0,2}

FORMAT _DETAIL.HIGH:

keyNameSizes = {0, 1, ...., ticket.length - 32} U {measuredKeyNameSize}
ivSizes = {0, 8, 12, 16}
stateOffsets = {0, 1, .., 16}

Listing 5.20: Different ticket format modes for format generation

The ticket generation function calculates all possible combinations of the three
parameters. For every combination, we extract the v and state from the ses-
sion ticket and intialize a SessionTicketFormat object (see Listing 5.21). Later,
for every of these format objects we try to decrypt it with different encryption
algorithms. For a typical session ticket of 200 bytes, the different modes will
ouput the following number of ticket formats: LOW: 24. NORMAL: 250. HIGH:
25000.

public class SessionTicketFormat{
private bytel[] iv;
private byte[] state;

Listing 5.21: Implementation of SessionTicketFormat class

5.2.11.2 Ticket Decryption

We implement the ticket decryption for one specific SessionTicketFormat in the
emptyKeyDecryption function in the SessionTicketFormatDecryptor class. As we
do not know which encryption algorithm the server uses, we decrypt the ticket format
for different encryption algorithms (see Table 5.22). The selection is mostly based on
the source code analysis of several TLS-libraries (see Section 3.2).
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Table 5.22: Implemented encryption algorithms for Zero Encryption Key test suite

Encryption Algorithm | Key size | IV /nonce size | Block size | AEAD cipher
AES-CBC 16, 32 16 16
DES-CBC 8 8 8
3DES-CBC 24 8 8
AES-CTR 16, 32 16 -
AES-GCM 16, 32 127 16 v
AES-CCM 16, 32 127 16 v
CHACHA20-POLY 1305 32 12 - v

" The nonce size of GCM/CCM is not fixed [22, 29]. The default size is 12 bytes and used in
many implementations. Thus, we only decrypt with 12-byte IVs.

One specific SessionTicketFormat consists of an v and an encrypted state. We
need to consider a few different things before decrypting a state for a specfic encryp-
tion algorithm algo:

o Padding: If the size of the encrypted state is not a multiple of the algorithm’s
block length, we simply pad the state with zeros.

o Zero-IV: If the IV is empty, we use an all-zero array of size algo.getIVSize() as
the decryption IV.

o Invalid IV-size: If the IV size does not match with algo.getIVSize(), we skip
the decryption for the encryption algorithm algo.

o key,..,: We create an all-zero array of size algo.getKeySize(). We use it as the
decryption key. If an algorithm supports multiple key sizes, then we will test
the key,.,, for each key size.

In the next step, we can decrypt the encrypted state with the v and key,.,,. We
distinguish the decryption process between AEAD and Non-AEAD algorithms. The
decryption with the a Non-AEAD algorithm algo is straightforward: We decrypt
the encrypted state with the selected v and key,,,,-

stategec = Decqigo(state, iv, key. .,

The decryption with an AEAD algorithm is more complicated. In contrast to Non-
AEAD algorithms, AEAD algorithms provide additional integrity protection. How-
ever, we only need to decrypt the encrypted state. Verifying the integrity is unneces-
sary in our case. Moreover, we would have to guess where the Associated Data (AD)
is located. Every AEAD-algorithm uses internally a Non-AEAD algorithm for en-
/decryption. Thus, we only decrypt with the internally used encryption algorithm.
In the following, we show how the decryption works for all three AEAD-algorithms
in more detail:



50 5 Implementation

o« AES-GCM: GCM uses internally the AES-Counter Mode stream cipher. Nor-
mally, AES-GCM expects a 12-byte IV per default and the AES-CTR mode
expects a 16-byte IV. We simply append the initial ctriyi = 0002 to the
gem- To get the exact value of the ctrijitiqa, we debugged the GoTLS and
mbedTLS library and extracted the value. The following equation outlines
the decrytion with the AES-CTR mode:

Wetr = Wgem | CtTinitial = 1gem||0002 | tvgem| = 12

= statege. = Decaps.orr(state, ivey, keYyero)

e AES-CCM: CCM uses also internally the AES-Counter Mode stream cipher.
AES-CCM expects a 12-byte IV per default and the AES-CTR mode expects
a 16-byte IV. We construct the 16 byte vy from the (ve, as following [29]:

et = Q||ieem||001 = 2[|i0eem|[001, Q= 15 — |iveem| — 1 = 2
= stategqe. = Decaps.crr(state, e, k€Y,ero)

« CHACHA20-POLY1305: CHACHA20-POLY1305 uses internally the CHA-
CHA20 stream cipher. We select the same 12-byte IV in CHACHA20 as in
CHACHAZ20-POLY1305. Additionally, CHACHA20 expects a counter input.
We evaluated the Bouncy Castle implementation® to find the correct counter
value for the decryption:

= statege. = Deccnacnazo(state, iv, ctr =1, key,.,,)

Finally, we check if the decrypted state stateg.. contains a session secret from the
secretList. If yes, we output that the server is vulnerable.

5.2.12 Padding Oracle

The Padding Oracle test suite evaluates if a server is vulnerable to padding oracle
attacks in the context of session tickets. It is implemented in the SessionTicket-
PaddingOracle class. At the beginning, we will explain how padding oracles are de-
tected in TLS-Scanner and why we can not reuse the implementation. Then, we will
describe the main concepts of our padding oracle test suite.

3https://www.bouncycastle.org/
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Detecting padding oracles in TLS with TLS-Scanner In the past, security re-
searchers have found padding oracle vulnerabilities in several TLS implementations
[4, 16]. These classical vulnerabilities can be used to recover application data en-
crypted with a CBC cipher suite. TLS-Scanner also implements a test suite that
detects TLS padding oracle vulnerabilities. It works as following: The client estab-
lishes a TLS connection with a server using a CBC cipher suite. Then, the client
constructs and encrypts its own malformed records and sends them to the server. If
the server delivers different responses depending on the validity of the padding, we
can assume that the server is vulnerable. However, we can not reuse the implemen-
tation to detect padding oracles in the session ticket context. We will explain the
reasons for that in the following:

e We do not know the symmetric key of the session ticket. Therefore, we can
not construct and encrypt malformed records in the same way.

e We do not know the format of the session ticket. We can only guess where the
last block that includes the padding bytes is located. The location of the last
block is important for us, because that block contains the padding bytes.

e We do not know the authenticated encryption algorithm the server uses to
encrypt the session tickets. Even if a server uses a CBC cipher suite, we do
not know if it uses Encrypt-then-MAC or MAC-then-Encrypt. We do not
have the opportunity to evaluate servers more detailed if they use a CBC
cipher suite.

e We do not know which padding scheme is used.

We conclude that, in the context of session tickets, we have fewer capabilities to
detect padding oracles.

Detecting padding oracles for session tickets In the following, we present our
approach to detect padding oracles for session tickets. One challenge is that we
do not know where the last ciphertext block including padding bytes is located,
therefore we test 6 different positions. At each of these positions, we try to create
a valid 1-Byte padding by resending modified session tickets and evaluating the
server’s responses. We can detect a valid padding, if we get different responses from
the server. If the 1-Byte padding was successful, then we try to create a valid 2-
Byte padding at the same ciphertext block. If the creation of the 2-Byte padding
is successful, we assume that the server is vulnerable. Otherwise, we output that
we created a possible 1-Byte padding. Every time we find a valid padding, we
resend the same modifications several times to the server and evaluate the responses
with a statistical test. In this way, we try to exclude the case that the server only
accidentally responded differently. In the following, we will describe the different
steps in more detail:
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Locating padding bytes In order to detect padding oracles, we need to know where
the last ciphertext block containing the padding bytes is located in the session ticket.
We explain for the different operation modes of CBC where the last block is lo-
cated.

1. MAC-then-Encrypt: If the server uses the MAC-then-Encrypt scheme, it may
be vulnerable to padding oracle attacks [28]. Figure 5.23 shows how the session
ticket will look like for this scheme. First, the MAC is calculated and appended
to the state. Then, the padding is appended and the ciphertext is finally
encrypted. The padding bytes are located at end of the last ciphertext block
which is at the end of the ticket. If the server does not append any MAC at
all, then the padding bytes will be located at the end of the session ticket as
well.

Ciphertext
\

keyName iv Co [ ¢ Cn-1| Cp

State MAC PADDING

Figure 5.23: Session ticket structure when MAC-then-Encrypt is used

2. Encrypt-then-MAC: If the server implements the Encrypt-then-MAC scheme
correctly, it is not vulnerable to padding oracle attacks. However, a wrongly
implemented server may perform an incomplete MAC verification or fully skip
the verification. In this case, the server may be vulnerable to padding oracles
as well. Figure 5.24 shows how a session ticket will look like in this case. The
padding bytes are located at the end of the last ciphertext block directly in
front of the MAC. However, we do not know how large the MAC is, because
the used MAC algorithm is hidden to us. Therefore, we evaluate different
MAC sizes MacSizes = {16, 20, 32,48,64}.

ciphertext
I

keyName iv Co | ¢ w | Cn—1] Cn MAC

State MAC PADDING

Figure 5.24: Session ticket structure when Encrypt-then-MAC is used

3. Encrypt-and-MAC: Depending on the implementation, servers using the Encrypt-
and-MAC approach may also be vulnerable to padding oracle attacks. The
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session ticket structure including the position of the last block is identical
compared to the Encrypt-then-MAC approach (see Figure 5.24).

From the three different scenarios, we combine all six possibilities where the last
block may be located:

LastPaddingByteOffsets = {0, 16, 20, 32, 48, 64 }

We can then calculate for a specific session ticket the possible indexes for the last
padding byte:

lastPaddingBytelndex = ticket.length — lastPaddingByteOffset
lastPaddingByteOffset € LastPaddingByteOffsets

Padding schemes Another important aspect is that we need to know which padding
scheme is used. We assume that the server uses the PKCS#7 padding [12]. We also
include the same padding scheme, but starting with the 1-Byte padding at "00" in-
stead of "01". We refer in the following to the PKCS#7 padding starting with "00"
as Pkcs00 and to the PKCS#7 padding starting with "01" as Pkcs01. The maximum
size of the padding depends on the block size of the encryption algorithm. In our
case, we assume that the block size is fixed to 16 bytes. Typically, most popular
CBC cipher suites use AES which has a block size of 16. The last padding byte can
then consists of 16 different values for each scheme:

padding Valuesp.s00 = {00, 01, 02,03, 04, 05, 06,07, 08, 09, 0a, Ob, Oc, 0d, Oe, Of }
padding Valuespy,.q0; = {01, 02,03, 04,05, 06,07,08,09, 0a, Ob, Oc, 0d, Oe, Of, 10}

Create 1-Byte padding In this section, we describe our approach to create a 1-Byte
padding oracle at a vulnerable server. For simplification, we assume that the server
uses the Pkcs01 padding. Later, we will explain the procedure for Pkcs00 as well.
Additionally, we assume that we know where the last two blocks of the ciphertext
are located. The main idea is that we modify the session ticket at a fixed position
with different values and try to resume the session with the modified tickets. Then,
we analyze if the server responds differently to these modified session tickets so that
we are able to create a padding oracle.

For creating a valid 1-Byte padding, we have to consider the decryption of the last
block P, as we can see in Figure 5.25. The last Plaintext block P, always contains at
least one padding byte. That means that pig contains one of the 16 possible padding
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Cacs

LITTTTTTTTTTTT Josfed

| P, = Cp_1 @ Dec(Cr)
Last block always contains padding P16= C16 @ X16

Figure 5.25: CBC decryption of last two blocks

bytes from padding Valuespy.s;- Our goal is to create a valid 1-Byte padding at p.
Therefore, we have to evaluate which values of z € Zy,01 are needed to create the
1-Byte padding:

ple = P16 ® z = 0201, p16 € paddingValuespy.q1 = {01, ..., 10}
z € Zozo1 ="

If we use the fact that pig € paddingValuespy,.s;, we can calculate all possible
values for z € Zpz01 so that plg = 0201 (see detailed calculation in Section A.1
Table A.1):

Zowor = {00, 02, 03, 04, 05, 06, 07, 08, 09, Oa, Ob, Oc, 0d, Oe, Of, 11}

There is one edge case we need to consider. How do we detect if the original padding
value pig is a 1-Byte padding. In this case, we do not need to modify the session
ticket at all at cjg (see value 0x00 in Zpz01). However, if we send an unmodified
session ticket to the server, it will of course accept it. Therefore, we simply change
the previous ciphertext value ¢}5 = ¢15 @ Ozff so that we make sure that the MAC
check will fail. To simplify the whole process also for the other padding scheme
later, we modify ci5 in the same way for all values of z. In the next step, we have
to modify the last ciphertext byte of the second last block C;_; for all calculated
possibilities of z.

/
¢l = c16 D 2, z € Zozo1

That means that we modify in total 16 session ticket with all 16 possibilities of
z and resend the ticket to the server. A vulnerable server will first decrypt the
session ticket. In one case z = ZzygiidPadding, Pi¢ Will be a correct 1-Byte padding
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and in the other 15 cases the padding will be invalid. A vulnerable server will

respond for one session ticket with the valid padding z = zyaiidPadding differently.
4

If the padding is invalid, we assume that the server responds uniformly. There is one
exception: If the MAC is not validated at all, it may also be possible that the server
responds with two different response types to an invalid padding: 1. We preserve the
session ticket structure after our modification. 2. We destroy the session ticket struc-
ture. For both cases, the server may respond differently. For simplicity, we assume
that the server answers uniformly for an invalid padding. However, we store the num-
ber of different responses for every host and can later perform additional evaluations
for servers which responded in three different ways.

We can reconstruct the original p1g with our created padding oracle :

P16 = ZvalidPadding @ 0201

In the following, we consider the case that the server uses the Pkcs00 scheme.
The procedure is nearly identical only the modification values for Zy.oo slightly
differ. We want to find a z € Zyzo0 which creates a valid 1-Byte padding pjg =
0200:

Ple = P16 ® z = 0200, P16 € padding Valuespy.q.00 = {00, ..., Of}

2 € Zozoo =7

Analog to Zyz01, we calculate all possible z € Zy,o9 for every possible padding byte
value at pjg which may create a valid 1-Byte padding (see detailed calculation in
Section A.1 Table A.2).

Zozoo = {00, 01, 02, 03 , 04, 05, 06, 07, 08, 09, Oa, Ob, Oc, 0d ,0e ,0f}

Now, we combine both padding schemes into one algorithm:

4Note that we found out after all evaluations were completed that we overlooked an edge case in
our padding oracle implementation. We overlooked an edge case that may appear if the session
ticket contains originally a 1-Byte padding. It may happen that we create two valid paddings in
rarely cases. However, this edge case did not occur in our validation of our test suite where we
tested a vulnerable server with all possible paddings inclusive the a 1-Byte padding. It is very
unlikely, that we overlooked vulnerable servers since of this edge case.
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1. We modify the session ticket with all possible z at ¢}y = c16 ® 2,2 € Z;.

Z1 = Zoz00 U Zozo1
= {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, Oa, Ob, Oc, 0d, Oe, Of, 11}

Additionally, we always modify ¢}5 = ¢15 @ Oxff. Then, we send 17 modified
session tickets to the server and evaluate the responses.

2. If the server responds for one z = 2yqiidPadding differently than from the other
16 modifications, we assume that we successfully hit a 1-Byte padding. Next,
we want to reconstruct the original pig value. However, we do not know
the padding scheme of the session ticket. Therefore, we present two different
options for pi1g depending on the used padding scheme:

o Pkcs00 = P16 = ZvalidPadding

e PkcsO1 = p1g = ZvalidPadding © 0201

Create 2-Byte padding After creating a valid 1-Byte padding with the session
ticket, we continue to create a valid 2-Byte padding to confirm that the server is
indeed padding oracle vulnerable. In the 2-Byte padding case, we again have to
distinguish between the two possible padding schemes, because we still do not know
the padding scheme. Therefore, we try to create for both padding schemes a valid
2-Byte padding in a similar way as for the 1-Byte paddings. If the 2-Byte padding
succeeds in one case, we assume that the server is vulnerable to padding oracle
attacks.

First, we assume that the server uses the Pkcs0I scheme. In this case, a valid 2-Byte
padding is "02 02" so that p; = p{s = 0202. Additionally, we assume from the first
step that pi1g = 2patidPadding ® 0201. As we know the value of pig, we construct s
so that the modified plaintext p/s results in "02":

c’1/6 = c16 P 0203
= plg = p16 © 0203 = 0202,

Next, we construct 5 so that we create the 2-byte padding at the second last byte
pYs = 02. Here, we distinguish between two different cases depending on the value

of p16.

e p1g # 0x01: In this case, we assume that pis is also a padding byte. If we
know pig, then we also know pi5. Thus, normally we do not need to test again
different possible values for z to find pi15. However, we use the same procedure
as used in the 1-Byte padding to find the valid 2-Byte padding since we want
to know if the server answers again in one case differently. We use different
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values z € Zy to construct ¢f5 so that we create a valid 2-Byte padding at
/N .
Pis = 0x02:

— Pl = p15 © 2 = 0201, p15 € paddingValuespyegor \ {01} = {02, ...,10}
2 € Zy =7

Then, we calculate the set Zs as following (see detailed calculation in A.1 table
A3):

Z, = {00, 01, 04, 05, 06, 07, 08, 09, Oa, Ob, Oc, 0d, Oe, Of, 12}

Then we modify {5 for all 15 values of z and the 15 modified session tickets
to the server and evaluate the server’s response. If the server responds for
one z = ZyglidPadding2 differently than for the 14 others, we assume that we
have successfully created a valid 2-Byte padding. We reconstruct the original
plaintext value p15 = zyalidPadding2 © 0202. We can confirm that the server
is vulnerable by comparing the padding guess for the last byte p1g with our
current guess for the second last byte p15. If both are equal, we can assume
that the server is indeed vulnerable.

e p1g = 0201: In this case, we assume that the original session ticket contains
a valid 1-Byte padding. We assume that pi5 is not a padding byte and can
contain any possible byte value b € {0, 1,...,255}. Therefore, we have test all
possible byte values Zs = {00,01,...,ff} for {5 to create a valid 2-Byte padding

at pfs:

— plls = p15 ® 2 = 0202, p1s € {00,01, ..., £}
2 € Zy = {00,01, ..., £}

In this case, we send 256 modified session tickets to the server and evaluate
the server’s responses. A vulnerable server may answer differently in one case
when we hit for 2 = 2yuidPadding2 @ valid 2-Byte padding. Then, we can
reconstruct the original plaintext value p15 = zyaiidPadding2 ® 0202.

Second, we assume that the server uses the Pkcs00 padding scheme. The proce-
dure is analog to the Pkcs01 padding, but there are slight differences on how we
manipulate the session ticket. For this scheme a valid 2-Byte padding is "01 01"
so that pis = pis = 01. From step 1, we assume that pig = ZyalidPadding- AS we
know the value of pig, we construct ¢ so that the modified plaintext py results in
"01":
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Clll6 = c16 @ 0201
= plls = p16 ® 0201 = 0201,

Next, we construct ¢5 so that we create the 2-byte padding at the second last byte
pys = 01. Here, we distinguish as for the Pkcs01 scheme between two different cases
depending on the value of py5.

e p1g # 0x00: In this case, we assume that the original session ticket contains
padding larger than 1 byte. Our goal is to modify ¢{5 such that p/y = 0z01:

— Pis = p15 © 2 = 0201, pi5 € paddingValuespyqo \ {01} = {01, ..., 0f}
2 € Jy =7

We see that the problem is nearly identical compared the 1-Byte padding
for the Pkecs01 scheme. Therefore, we use the same values for z € Zy =
Zozo1 \ {0z11}. We only exclude the edge value 0x11, because it belongs to
the byte value 16 which is not allowed in the Pkcs00 scheme.

e p1g # 0200 If the session ticket only contains a 1-Byte padding, we do the
exact same procedure as for the PkcsO1 scheme. We then send 256 modified
session tickets to the server and evaluate if we receive one different answer
for 2 = zyalidPadding2- Then, the only difference is the reconstruction of the
original plaintext byte pi5. It works as follows: p15 = zyalidPadding2 ® 0201.

5.2.13 Implementation Details

In this section, we explain some implementation specific details of our padding oracle
detection algorithm:

e We have to detect different server responses to detect a padding oracle. TLS-
Attacker classifies two server responses as equal if the following properties are
equal:

— number of received messages
— order of received messages
— message types of all received records

— if alert messages are sent, then the content of the alert has to be equal
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— records inclusive fragmentation
— socket state

If one of these conditions does not apply, then the responses are classified as
differently.

e Every time, we hit either a valid 1-Byte or 2-Byte padding, we confirm our
hypothesis with a statistical test. Consider the case that we hit a valid 1-Byte
padding. We have sent 17 different ticket modifications to the server and the
server answered in one case different. To confirm our hypothesis, we resend
each of the 17 modifications 10 times to the server and store the responses.
Then, we use the InformationLeakTest implemented in the TLS-Attacker.
It evaluates whether the server responses are deterministically for our sent
modifications or not.

o Parallel execution: We try to create 1-Byte paddings for 6 different padding
offsets. We execute all the resumption handshakes for the creation of 1-Byte
paddings in parallel. In total, these are 102 handshakes (17 per padding off-
set). All resumption handshakes used for the statistical test (at least 170
handshakes) and the creation of the 2-Byte padding are executed in parallel
as well.

o We store the following information for every position where we try to create a
valid padding in the SiteReport.

— the servers responses

— the number of different server responses to the sent modifications

— if the creation of the padding was successful we additionally store the
* results of the statistical test
% server responses for valid padding
* server responses for invalid padding

*x padding guess for p15 and pig

5.3 Testing

In this section, we describe how we verify that our test suites work correctly. We
modify the GoTLS® implementation so that it is vulnerable to our proposed test
suites. GoTLS implements TLS 1.2 and 1.3 so that we can evaluate most test suites
for both versions. To verify each test suite we do the following. We manually run
the modified GoTLS version which is only vulnerable to the currently tested test

Shttps://pke.go.dev/crypto/tls
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suite and evaluate if our test suite correctly detects it. Additionally, we implement
a modified GoTLS version that is vulnerable to several test suites. Thus, we can
verify that our implementation detects several vulnerabilities at one host as well. For
some test suites, we also verify our test suites with modified versions of OpenSSL
and MbedTLS. In the following, we describe for every test suite how we implemented
the vulnerable test server:

IV Repetition We implement the vulnerability in GoTLS: We edit the code so that
every fourth ticket is issued with the same IV.

Unencrypted tickets We implement the vulnerability in GoTLS: We remove the
encryption of the session state and add the plain session state to the session ticket.
As a result, the session ticket contains the plain mastersecret in TLS 1.2 and the
plain resumption mastersecret in TLS 1.3.

Cipher suite change We implement the vulnerability in GoTLS: In TLS 1.2,
GoTLS checks if the cipher suite in the session resumption is equal to the ci-
pher suite inside the session ticket. We disable the check so that the server al-
lows resumption with other cipher suites. In TLS 1.3, GoTLS does not check if
the cipher suite is equal. Thus, the server is automatically vulnerable to the test
suite.

Version change We implement the vulnerability in GoTLS: Our test suites evalu-
ates two different cases of version change with session tickets:

1. Resume a session in TLS 1.0/1.1 with a ticket issued in TLS 1.2: In this case,
we edit the implementation for TLS 1.2 and older versions in the following
way: GoOTLS checks if the version in the resumption is equal to the version
included in the session ticket. We remove this check.

2. Resume a session in TLS 1.2 with a ticket issued in TLS 1.3 and vice versa:
A vulnerable server for this case is more complex because the ticket struc-
ture of TLS 1.2 and TLS 1.3 differs. We will not explain the details of our
implementation here.

Zero HMAC-key We implement the Zero HMAC-key in OpenSSL and GoTLS.
We replace the default hmac key with an all-zero key. We implement the test suites
for the following HMAC algorithms:

o GoTLS: HMAC-MD5, HMAC-SHA1, HMAC-SHA256(default), HMAC-SHA384,
HMAC-SHAbH12
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« OpenSSL: HMAC-SHA256

Zero encryption-key We test all-zero keys for all three evaluated TLS-implementations
and their implemented encryption algorithms. We implement additional encryption
algorithms in GoTLS which use all-zero keys.

« GoTLS: AES_128 CTR (default), 3DES_CBC, AES_128 CBC, ChaCha20-
Poly1305, AES 128 GCM

e OpenSSL: AES_256_CBC
e MbedTLS: AES GCM and AES CCM (both with 128 and 256 bit keys)

No Mac check We disable the MAC check in the code of OpenSSL and GoTLS. In
Appendix A.2 we can see the test result for a modified GoTLS version.

Padding oracle We implement the padding oracle vulnerability in GoTLS: Nor-
mally, GoTLS uses the AES-Counter mode to encrypt session tickets. We replace
it with the AES-CBC cipher suite to make the webserver padding oracle vulnera-
ble. As explained in 5.2.12, there are different possibilities where the last block of
the ciphertext is located. Therefore, we implement the following vulnerable web-
server:

¢ MAC-then-Encrypt: We implement the MAC-then-Encrypt scheme for session
tickets (see Figure 5.23). If the server receives a session ticket with an invalid
padding, it will throw an exception internally and this will lead to no response.
If the session ticket has a valid padding, the MAC verification will fail. This
leads in GoTLS by default to a full 1-RTT handshake.

o Encrypt-then-MAC: We implement the Encrypt-then-MAC scheme (see Figure
5.24). However, we will decrypt the ciphertext before checking the MAC which
makes the server padding oracle vulnerable. The server responses are identical
to the MAC-then-Encrypt scheme. Additionally, we implement it for the differ-
ent HMAC algorithms HMAC-SHA256, HMAC-SHA384, and HMAC-SHA512
to test the different positions of the last ciphertext block in our test suite.

We implement the two different padding schemes Pkcs00 and Pkcs01 for both
schemes. We also test all possible padding sizes inside the session ticket and espe-
cially the edge case that the session ticket contains a 1-Byte padding.
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Replay attack OpenSSL is the only of the three evaluated TLS-implementations
which support early data. Therefore, we use it to configure a vulnerable server.
We do not edit the code, because we can configure all properties at the server
start. OpenSSL does not support early data per default, so we have to include the
early_data flag. If early data is enabled, OpenSSL turns per default the replay
protection on. Thus, we include the no_anti_ replay flag in the server configura-
tion:

$ openssl s_server -key key.pem -cert cert.pem -early_data -no_anti_replay



6 Large-scale scanning of Internet

In this chapter, we present the result of our large-scale scan. First, we present the
tools that we used for our large-scale scan. Then, we will shortly describe some scan
details as the runtime. Finally, we present the results of the large-scale scan for the
implemented test suites.

6.1 Used Tools

The TLS-Crawler tool allows us to perform large-scale scans on the Internet. The
project is not publicly available and maintained by the Chair for Network and Data
Security from the Ruhr-University Bochum and the Research Group Systems Secu-
rity from the Paderborn University. While TLS-Scanner only allows the scanning
of one specific host, TLS-Crawler spawns several instances of the TLS-Scanner such
that multiple hosts are scanned in parallel. All the results of the implemented
test suites are written to a Mongo Database. We will not explain the function-
ality of the TLS-Crawler in more detail, because it is not relevant for this thesis.
The large-scale scan is executed on the high-performance computer provided by the
RUB-NDS.

6.2 Scan Details

We performed a large-scale scan of the Top Million hosts included in the Tranco
list! [14]. The scan took around 20 days. In order to evaluate the passive test
suites, we evaluate 10 issued session tickets for every host. As explained in Sec-
tion 5.2.11.1, the test suite Zero Encryption Key provides different ticket format
generation modes. In our large-scale scan, we use the NORMAL mode. For per-
formance reasons, we could not execute all test suites for TLS 1.2/1.3. Thus, we
excluded the two most costly test suites NoMacCheck and Padding Oracle test suite
for TLS 1.3. However, we evaluated them later in an additional large-scale scan for
only 30000 randomly selected hosts in TLS 1.3. For some test suites, we performed
additional large-scale scans, but this will be explicitly mentioned in the test suite
results.

! Available at https://tranco-list.eu/list/ KLXW
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6.3 Results

In the following, we will describe the results of our large-scale scans. First, we will
look at the evaluated session ticket support in the Tranco Top Million host list for
TLS 1.2/1.3. Then, we will describe the results of the session ticket sizes and the
used session ticket formats. Finally, we present the results for all implemented test
suites.

6.3.1 Session Ticket Support

First, we evaluate the session ticket support in the scanned Tranco Top million host
list. We evaluate for TLS 1.2/1.3 the following three properties:

1. Number of hosts supporting TLS 1.2/1.3.
2. Number of hosts issuing a session ticket.

3. Number of hosts accepting the issued session ticket in the resumption.

Table 6.1 shows the results for TLS 1.2 ordered by the host ranks. In total, 75.9%
of all webservers support TLS 1.2 and 59.8% have issued a TLS 1.2 session ticket.
54.7% of all hosts accepted the issued session ticket. As we can see, not all servers

Table 6.1: TLS 1.2 Session ticket support results for Tranco Top Million hosts

Tranco rank supports TLS 1.2 1ssued. TLS 1.2 accepted ticket
ticket

Top 1k 898 672 529

Top 10k 8570 6020 4993

Top 100k 81401 60582 54145

Top 1M 759763 (75.9%) 594238 (59.8%) 547159 (54.7%)

that issued a session ticket also accepted it in the resumption. We shortly want
to discuss possible reasons why webservers may reject a session ticket. We tested a
small number of webservers that rejected the session ticket and observed two different
patterns. 1. Webservers always reject the issued session tickets. 2. Webservers
sometimes reject an issued session ticket. In the first case, an explanation is that
the server is not configured correctly and therefore rejects all tickets. In the second
case, an explanation is that we connect to different Load Balancers in the initial and
the resumption session. If the Load Balancers session caches are not synchronized
correctly, then the server may reject the session ticket, because they are not able to
find the corresponding STEK.

Table 6.2 shows the results for TLS 1.3. In total, 44.9% of all webservers support
TLS 1.3 and 39.0% have issued a TLS 1.3 session ticket. 37.2% of all hosts accepted
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the issued session ticket. Interestingly, the session ticket support increases for higher
Tranco ranks. As observed in TLS 1.2, in TLS 1.3 not all webservers that issued
session tickets also accepted it.

Table 6.2: TLS 1.3 Session ticket support results for Tranco Top Million hosts

Tranco rank supports TLS 1.3 1ssued. TLS 1.3 accepted ticket
ticket

Top 1k 453 339 295

Top 10k 4485 3296 3070

Top 100k 45541 38640 36991

Top 1M 441286 (44.9%) 390792 (39.0%) 372906 (37.2%)

6.3.2 Session Ticket Format

In the following, we evaluate the session ticket sizes and formats for the Tranco
Top Million hosts. At the end of the Section, we also describe some interesting
observations.

First, we consider the sizes of the issued session tickets. In Table 6.3, we see the
evaluated session ticket sizes. In TLS 1.2, nearly all-session tickets (99.9%) have
a size between 104 to 260 bytes. In TLS 1.3, 90% of the issued session tickets
are in the same size range. Additionally, around 9.8% of all session tickets have
a size of 32 bytes. This results from the fact that in TLS 1.3 both resumption
mechanisms (session ticket and session-cache) were combined into the Pre-Shared-
Key mechanism. In the session mechanism, a session identifier (typically 32-byte
long) is sent to the client. In TLS 1.2, the session identifier is sent in an additional
SessionID extension . However, in TLS 1.3, the session identifier is sent like the
session ticket via the NewSessionTicket message. Thus, in TLS 1.3, we assume
that all session tickets with a 32-byte size are session identifiers for session resump-
tion. Interestingly, a small number of hosts issue session tickets larger than 260
bytes.

Table 6.3: Session ticket sizes from hosts in Tranco Top 1 Million list

ticket length in TLS 1.2 TLS 1.3
bytes
32 12 (<0.01%) 38506 (9.8%)
104-260 593871 (99.9%) 351986 (90.0%)
261-999 342 (0.06%) 269 (0.06%)
1000-7000 13 (<0.01%) 9 (<0.01%)

In the RFC 5077, it is recommended to include a key name size of 16 bytes. Our
main goal is to evaluate how many servers in the wild follow the recommendation.



66 6 Large-scale scanning of Internet

For this, we calculated the longest common prefix of two issued session tickets by a
server. We assumed that the result is the key name size of the server. However, after
performing the large-scale scan we noticed the following problem: For around 10 %
of all webservers we could not identify a common prefix larger than 0. We randomly
evaluated some of these servers in more detail. For this, we connected several times
to these servers and evaluated their issued session tickets. We describe exemplarily
the pattern we observed for session tickets of many servers. We evaluated four tickets
that were issued directly one after the other. The first and the third ticket contained
the longest common prefix of 16 bytes. The same goes for the second and fourth
tickets. However, the longest common prefix between the first and the second ticket
was zero. One explanation for that scenario is that we connect to different Load
Balancers and each of them may use a different key name. Thus, we reevaluated
all hosts with a zero key name size by calculating the longest common prefix for
any pair of ten issued session tickets. Note that we excluded session tickets with 32
bytes in TLS 1.3 for our evaluation. As explained before, these tickets are used as
session ids and do not include any key name at all. Table 6.4 shows the evaluation
results for the Tranco Top Million hosts. The results for TLS 1.2 and TLS 1.3 are
very similar. The vast majority of hosts (98.7%) use the recommended key name
size of 16 bytes. 0.9% do not use any key name at all. However, it is also possible
that these servers issued ten tickets with ten different key names so that we were
not able to detect the correct size.

Table 6.4: key name sizes from hosts in Tranco Top Million list

KeyName length in TLS 1.2 TLS 1.3
bytes
0 5503 (0.9%) 3946 (0.9%)
4-12 1508 (0.2%) 16 (<0.01%)
16° 586795 (98.7%) 348319 (98.8%)
20 284 (0.04%) 0
107-200 141 (0.02%) 0

# We do not include tickets with a size of 32 bytes in the results. As ex-
plained before, they are used as session IDs and therefore do not contain
any key name at all.

® Recommended key name size in RFC 5077.

The RFC 5077 recommends that the key name consists of random bytes. We de-
tected that some servers only included ASCII values in their key names. Thus, we
evaluated this property for all hosts in TLS 1.2. In total, 14132 hosts used a key
name with only ASCII values.

Moreover, we looked more closely at the 141 hosts with key names larger than 100
bytes. We evaluated the HTTP headers of these servers with Curl? and identified

https://curl.se/
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them as Microsoft IIS 8.5 webservers®. These webservers are integrated into Win-
dows 8.1 and Windows Server 2012 R2. We noticed that these webservers include
an ASN.1 encoded object containing a DPAPT object in their session ticket [24]. We
could see that some Microsoft servers include the path to the corresponding STEK
file in their session ticket. In the appendix A.3, we show two exemplary session
tickets from Microsoft IIS 8.5 webservers.

6.3.3 IV Repetition

In the IV Repetition test suite we evaluate if a webserver sents duplicated IVs for
ten issued session tickets. In the recommended ticket format, the IV is located in
the session ticket from index 16 to 32. We only evaluate this test suite for the
recommended IV position. Our scan results show, that in TLS 1.2 143 webservers
and in TLS 1.3 one webserver may be vulnerable. However, we have to filter out
false-positive webservers which may use a different ticket format. We see in TLS 1.2
that 141 of the 143 detected webservers have a key name length larger than either
107 or 120 (see Table 6.4). As explained in Section 6.3.2, we identified them as
Microsoft webservers that use a totally different session ticket structure. They do
not follow the recommendation for the IV position. Thus, we identify them as false
positives. After filtering out all false positives, we get the final result for the IV
Repitition test suite (see Table 6.5). Three webservers are vulnerable. Since they
use the recommended key name size, we can assume that they use the recommended
IV position as well.

o A Brazilian website repeats an IV vector four times in TLS 1.2.

e A governmental website from the United Arab Emirates repeats an IV vector
three times in TLS 1.2.

e A Finnish website repeats an IV vector twice in TLS 1.3.

Table 6.5: Scan results for the IV repitition test suite
Vulnerable hosts
Tranco rank TLS 1.2 TLS 1.3
Top 1M 2 1

6.3.4 Unencrypted Ticket

The test suite Unencrypted Ticket evaluates if webservers issue unencrypted session
tickets so that the session secrets are sent in plain over the internet. In the Tranco

3https://de.wikipedia.org/wiki/Microsoft_ Internet_ Information_ Services
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Top Million host list, we did not find any webserver that issued unencrypted session
tickets (see Table 6.14).

Table 6.6: Scan results of the Unencrypted Ticket test suite for Tranco Top Million
hosts

Vulnerable hosts
Tranco rank TLS 1.2 TLS 1.3
Top 1M 0 0

6.3.5 Zero Encryption Key

The test suites Zero Encryption Key evaluates if a host uses an all-zero STEK to
encrypt its session tickets. In TLS 1.2, this allows an attacker to passively decrypt
the related sessions even after the STEK is rotated. Additionally in TLS 1.2/1.3, an
attacker is able to perform a Man-In-The-Middle attack while the host is vulnerable.
During our test scans, we discovered that webservers hosted by Amazon Web Ser-
vices (AWS) and Stackpath were vulnerable to our implemented test suite. Because
the security impact of this vulnerability is so high, we immediately informed both
companies. We did not have the time to scan the entire Tranco Top Million hosts
to find all vulnerable hosts related to these companies. In the following, we present
the evaluation results for vulnerable servers hosted by both companies. Finally, we
present the final results of the Tranco Top Million Scan.

6.3.5.1 AWS

In an initial test scan, we evaluated the Alexa Top 1000 hosts and found out that
around 15 hosts used an all-zero STEK to encrypt their session tickets. All of them
were hosted by AWS. The tickets were encrypted with the AES-256-CBC encryption
algorithm and the ticket format was identical to the session ticket format used in
OpenSSL (see Table 3.1). Then, we immediately tried to scan the Tranco Top
Million hosts to learn how many hosts are affected on a larger scale. However,
at that time the runtime of our large-scale scan was too high. For that reason,
we periodically scanned the Tranco Top 100k host list and informed AWS about
our findings. AWS fixed the vulnerability and informed their customers [1]. They
explain that the vulnerability was introduced in September 2020 and entirely fixed
in April 2021. In the following, we will describe the results of our scans in more
detail:

Scan Results In total, we performed seven scans of the Tranco Top 100k hosts
until AWS fixed the problem. Note that one scan (45000 hosts) was not complete.
We performed the scans from the 8th to the 13th of April. One entire scan took
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around 19 hours. In all scans combined, we found 1903 vulnerable AWS hosts in
the Tranco Top 100k list (see Table 6.7). Interestingly, all vulnerable webservers
support TLS 1.2 but not TLS 1.3. Thus, the effect of this security vulnerability is
more severe. In TLS 1.2, after the vulnerability has been closed, it is still possible to
passively decrypt all recorded sessions where vulnerable session tickets were either
issued or redeemed. The only condition for that is that the corresponding traffic has
been recorded.

Table 6.7: Vulnerable AWS hosts found in seven scans for Tranco Top 100k list

Vulnerable AWS hosts
Tranco rank TLS 1.2 TLS 1.3
Top 1k 27 -
Top 10k 302 -
Top 100k 1903 -

In the following, we look at the results of every individual scan run (see Figure 6.8).
On average, we found 645 vulnerable AWS hosts per scan of the Tranco Top 100k
hosts. In every scanning run, we found new vulnerable AWS hosts. Important to
mention is that not every vulnerable AWS host was detected as vulnerable in every
scanning run.
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Figure 6.8: Vulnerable AWS hosts for every seven scans of Tranco Top 100k hosts

Thus, it is very likely that our results do not include all vulnerable AWS servers of
the Tranco Top 100k list. Additionally, we count for every found vulnerable AWS
host, how many times they were vulnerable in our seven scans (see Figure 6.9). On
average, every host was vulnerable 2.1 times. However, AWS webservers in higher
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ranks tend to be vulnerable more often: The average count in the Tranco Top 1k
hosts is 2.5 times, in the Tranco Top 10k hosts 2.3 times and in Tranco Top 100k
2.1 times.
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Figure 6.9: Number of times AWS hosts were vulnerable for seven scanning runs of
Tranco Top 100k

Evaluation of Daily Patterns After we discovered the vulnerability in AWS hosts,
we noticed the following property: If we discovered a vulnerable host at for example
14:00, then the host was vulnerable again the next day at a similar time. Thus,
over an entire day, we periodically scanned a smaller sample of vulnerable AWS
hosts to observe some time-related patterns. Our sample consisted of 138 AWS
hosts from the Tranco Top 10k which we were vulnerable in one of our initial test
scans on the 7th of April between 15:00 and 18:30. We started our scan on the
8th of April at 19:00 and reevaluated the sample about every few hours until 17:00
the next day. Figure 6.10 shows the results of our scans. Initially, at 19:00 around
60% of the scanned hosts were vulnerable. Then, the number decreased so that
around 3:00 to 6:00 only around 20 % of the host were vulnerable. Until 15:00,
the number of vulnerable hosts significantly increased to about 75%. At 18:00 we
observed the same number of vulnerable hosts. From the results we can see the
following pattern: Two days ago we found 138 vulnerable servers, 2 days later a
large amount of these servers is vulnerable at the same time. Only a small amount
of the 138 vulnerable webservers was vulnerable at different times. Likely, many
vulnerable hosts in the Tranco Top 10k are regularly or daily vulnerable around the
same time.

In our seven large-scale scans of the Tranco Top 100k, we evaluated per host 15 issued
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tickets and checked if they are vulnerable. However, at that time, the implemented
test suite did store the number of vulnerable tickets or the tickets themselves. Thus,
we have no data on how many of the issued tickets were vulnerable. We introduced
this feature for the previously described scans of 138 vulnerable servers to evaluate
the daily patterns. If the server was detected as vulnerable, then on average 13.8
tickets were issued with an all-zero STEK. Thus, we have to assume that most
vulnerable hosts issued in their vulnerability period mainly vulnerable tickets. This
means for the vulnerability periods that all sessions may be affected and passive
decryption is still possible.
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Figure 6.10: Results of periodic scan of 138 vulnerable AWS hosts

Redirections AWS informed us that they identified the problem and fixed the
vulnerability. All vulnerable servers were Nginx webservers using OpenSSL. The
vulnerability came up because of a bug in their STEK rotation in Nginx. Addition-
ally, they informed us that many of the found hosts were redirecting to a different
domain (for example website.com redirects to www.website.com). For simplicity, we
will call the domain to which is redirected the final domain. We call the domain
that we access at first the initial domain which may redirect to a final domain. We
observed that in many cases the final domain was not contained in the Tranco Top
100k host list and thus was not scanned during our scans from 8th April to 13th
April.

In the following, we explain the security impact if vulnerable hosts were redirecting.
If the initial domain is a redirector, then in total two TLS handshakes are performed:
First, TLS handshake with the initial domain. Second, TLS handshake with the final
domain. The final session is established with the final domain which means that all
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application data is sent over this connection. If the initial domain was vulnerable
and the final domain was not, an attacker can not decrypt the recorded application
data of these hosts. However, during the time the initial domain was vulnerable,
an attacker could break the authenticity of the server and perform a Man-In-The-
Middle attack. If the final domain was also vulnerable, then passive decryption of
application data still is possible.

As explained before, the final domains were not included in our large-scale scans and
therefore we do not know if they were also vulnerable. Moreover, we learned from
the redirecting after the vulnerability was fixed, so that we could not scan the final
domains with our test suite. Nevertheless, we do additional analysis to estimate
how many final domains were also affected so that we can estimate for how many
hosts passive decryption still is possible. In the first step, we evaluate how many
of 1903 detected vulnerable AWS hosts are redirectors. For this, we write a python
script that sends an HTTPS request to the initial domain and evaluates if we are
redirected to a different final domain. If yes, then we assume that the initial domain
is a redirector. In total, 689 vulnerable AWS hosts do not redirect to a different
domain (see Category 1 in Table 6.11 ). Thus, we assume that passive decryption
for these hosts is still possible. For 48 hosts, the evaluation failed (see Category 5 in
Table 6.11). All remaining hosts were redirectors. In the second step, we evaluate
all redirecting initial domains and their corresponding final domains in more detail.
Our goal is to find out for every host, if the final and the initial domain share their
STEKs. If yes, then it is very likely that the final domain was vulnerable as well.
To evaluate this, we compare the 16-byte STEK identifier for each 250 tickets of
the inital and final domain. If we find one matching STEK identifier pair, then
we assume that both domains share their STEKs. It is very important that we
compare tickets that were issued around the same time because we observed that
vulnerable AWS webservers rotated their STEK very fast. Thus, we do not use
TLS-Crawler for that, because TLS-Crawler randomizes the scanning order and we
cannot determine that the inital and final domain are scanned in parallel. For that
reason, we construct our own bash script that uses the OpenSSL client to connect
to the inital and final domain and stores respectively 250 session tickets. Then, we
use a python script that compares the STEK identifiers of both domains. If we find
a matching identifier, then we assume that both domains share their STEKs. In
our evaluation, we detected that 536 vulnerable AWS hosts share their STEKs with
their final domains. It is very likely, that passive decryption of application data for
these hosts still is possible.

If we do not find a matching STEK identifier, we evaluate if both domains may have
used the same TLS-configuration (OpenSSL+Nginx). We assume that the same
TLS-configuration is used when the ticket sizes of the initial and final domains are
equal. We have observed that most TLS-libraries issue tickets with a different ticket
size as OpenSSL. If the same TLS-configuration was used, it may be possible that
the final domain also issued vulnerable tickets. However, we do not have enough
information to draw a final conclusion. We detected that 297 vulnerable AWS hosts
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Table 6.11: Evaluation results for different categories of vulnerable AWS hosts

Decryption® | MITMP | Number of hosts
Category 1 v v 689 (36.2%)
No redirection
Category 2 (V)° v 536 (28.1%)
Shared STEK
Category 3 7d v 297 (15.6%)
No-Shared STEK
Category 4 X v 333 (17.4%)
Different TLS-configuration
Category 5 ? v 48 (2.5%)
Error

# Decryption of recorded application data for host still possible.

> Host was vulnerable to Man-in-the-middle attack.

¢ Decryption very likely possible.

4 We do not have enough information to decide if decryption is possible.

fall into this category (see Category 3 in Table 6.11). The last category of hosts
is when the initial domain is using a totally different TLS-configuration for session
tickets than the final domain. This is the case when the final domain either does
not issue session tickets at all or issues session tickets with a different size. Then, we
assume that the final domains were not vulnerable. Our evaluation has shown that
333 vulnerable AWS hosts use a different TLS configuration for their initial and final
domain (see Category 4 in Table 6.11). Thus, we assume for these hosts that passive
decryption of recorded application data is not possible.

In total, 68% of the vulnerable AWS hosts are located in category 1 or 2, the
category where we expect that passive decryption of application data still is pos-
sible. It shows us that the redirection weakens the vulnerabilities impact of some
hosts. However, the majority of vulnerable AWS hosts are very likely still fully
impacted.

AWS Vulnerability Cause AWS informed us that the vulnerability was caused by
an incorrectly implemented key rotation mechanism. As explained before, vulnerable
AWS hosts used Nginx webservers with OpenSSL. They used a customized key
rotation mechanism implemented in Nginx. Furthermore, they informed us, that
one of their leads to find the vulnerability cause was that Nginx changed their data
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structure where STEKSs are stored*. In Appendix A.4, we evaluate the vulnerability
cause in more detail and present a possible scenario that may have led to the all-zero

STEKsS.

6.3.5.2 Stackpath

While we were evaluating the AWS vulnerability, we discovered that websites hosted
by Stackpath were also vulnerable. In the seven Tranco Top 100k scans, we discov-
ered 13 Stackpath hosts issuing session tickets with an all-zero STEK. We were able
to distinguish them from vulnerable AWS hosts because they were using the AFES-
128-CBC algorithm to encrypt their session tickets instead of AFES-256-CBC that
was used by vulnerable AWS hosts. We immediately informed Stackpath about our
findings. Additionally, we used the yougetsignal® tool to get all websites hosted on
the same IP address as the vulnerable Stackpath hosts. In total, 171 hosts including
redirectors were hosted on the same IP. On the 27th of April, we scanned this sample
once to find out how many additional Stackpath hosts were vulnerable. The scan
differs in one respect from our large-scale scans of the Tranco Top 100k where we
evaluated 15 tickets per host. Now, we evaluate 1000 issued tickets per host since
we observed that vulnerable Stackpath hosts only issued sporadically vulnerable
tickets.

Table 6.12: Number of Stackpath hosts vulnerable to Zero Encryption key testsuite

Vulnerable Stackpath hosts
Tranco rank TLS 1.2
Top 1k 0
Top 10k )
Top 100k 17
Top 1M 20
Total 90

In total, 90 webservers hosted by Stackpath were vulnerable (see Table 6.12). The
evaluation showed that only a small number of the issued session tickets used an
all-zero STEK. On average 14 (1.4%) out of the 1000 issued session tickets per host
were vulnerable. Interestingly, all vulnerable tickets had the following property:
If we convert the 16-byte STEK identifier value to ASCII, then we see that the
first 14-characters consist of a hex value (see Figure 6.13). The last 2 bytes of
the STEK identifier were always zero. We could not find out which webserver and
TLS-implementation Stackpath is using.

We did not evaluate regular patterns of vulnerable Stackpath hosts as we did it for
vulnerable AWS hosts, because significantly fewer hosts were affected.

“https://github.com/nginx/nginx/commit/c2d3d82ccheal8f0504fbaceceebefb62dagd1d8
Shttps://www.yougetsignal.com/tools/web-sites-on-web-server/
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Key Name Hex: 30 78 37 66 66 _ 61 33 30 00 00
Key Name Ascii: ox 7 £ £ G- 3 ° -

Figure 6.13: key name structure of vulnerable Stackpath webservers

6.3.5.3 Top Million Scan

In the following, we will describe the results of the final Tranco Top Million scan. We
will not include vulnerable webservers which are hosted by one of the two presented
companies. In total, we found three webservers using an all-zero STEK. We enumer-
ate all three vulnerable hosts with additional information:

1. A Japanese webserver issues permanently vulnerable session tickets in TLS 1.2
and 1.3. We evaluated the HT'TP headers and found out that it is an Apache
webserver that very likely uses OpenSSL.

2. A Chinese webserver issues permanently vulnerable session tickets in TLS 1.2.
We did not find out which webserver is used.

3. Another Chinese webserver issues permanently vulnerable session tickets in
TLS 1.2. We evaluated the HTTP headers and found out that it is an Apache
webserver that very likely uses OpenSSL.

All vulnerable webservers have in common that the session tickets are encrypted with
AES-128-CBC. Moreover, not only the STEK consisted entirely of zeros. As in the
GnuTLS bug [6], the STEK identifiers consisted entirely of zeros as well.

Table 6.14: Scan results of the Zero Encryption Key test suite for Tranco Top Million

hosts
Vulnerable hosts
Tranco rank TLS 1.2 TLS 1.3
Top 1M 3 1

6.3.6 Zero HMAC-key

The Zero HMAC-key test suite evaluates if a host uses an all-zero HMAC-key to
protect its session tickets. We recalculate the HMAC with an all-zero key and
compare the result with the appended HMAC in the session ticket. If they do
match, then we assume that the host is vulnerable. The results are closely related
to the test suites result of the Zero Encryption Key test suite. The results of our
evaluation show that no webserver uses an all-zero HMAC key without using an
all-zero encryption key for its session ticket as well. Thus, we will describe which
webservers that were vulnerable to the Zero Encryption Key test suite are also
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vulnerable for the Zero HMAC-key test suite. Initially, we did not evaluate the
AWS hosts using an all-zero STEK for this test suite, because the idea for this
test suite initially came after detecting the vulnerable AWS hosts. For that reason,
we evaluated a small sample of stored vulnerable AWS tickets and recalculated the
HMAC value. As vulnerable AWS hosts are using OpenSSL, we know that the
used HMAC-algorithm is HMAC-SHA-256. Moreover, we know over which fields
the HMAC is calculated. However, the recalculated HMACs did not match with
the HMACSs included in the session tickets. Thus, we assume that all vulnerable
AWS session tickets are not vulnerable for this test suite. However, it is possible
that the HMAC-key was only partially initialized. By partially initialized we mean
that only parts of the key-value are initialized with zeros. We did not evaluate this
further. The Stackpath hosts and the three hosts that were using an all-zero STEK
also used an all-zero HMAC-key to protect their session tickets. All vulnerable hosts
used the recommended HMAC-algorithm HMAC-SHA-256 to protect their session
tickets.

6.3.7 Ciphersuite Change

The Ciphersuite Change test suite evaluates if we can resume a session with a differ-
ent selected cipher suite than in the initial session. Table 6.15 shows the results of
the Tranco Top million scan. In TLS 1.2, we did not detect any vulnerable server.
In TLS 1.3, 6.7% of the Tranco Top million hosts are vulnerable to the evaluated
test suite.

Table 6.15: Scan results o the Ciphersuite change test suite for Tranco Top Million

hosts
Vulnerable hosts
Tranco rank TLS 1.2 TLS 1.3
Top 1k 0 107
Top 10k 0 1000
Top 100k 0 10285
Top 1M 0 (0.0%) 66378 (6.7%)

6.3.8 Version Change

The Version Change test suite evaluates if we can resume a session in a different
version than in the initial session. Table 6.16 shows the results of the Tranco Top
Million scan. We did not find any vulnerable server allowing a version change from
TLS 1.2 to TLS 1.3 or vice versa. However, a small number of web servers allow
resuming a session in TLS 1.0/TLS 1.1 with session tickets issued in TLS 1.2. Almost
all servers which are vulnerable for TLS 1.0 are also vulnerable for TLS 1.1. The
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number of vulnerable servers for TLS 1.1 (1.5%) is slightly higher than for TLS 1.0
(1.4%) because in the Tranco Top million list the support for TLS 1.1 is slightly
higher than for TLS 1.0.

Table 6.16: Scan results of the Version change test suite for Tranco Top Million

hosts
Version change
Tranco rank TLS 1.2to | TLS1.2to | TLS 1.2 to | TLS 1.3 to
TLS 1.0 TLS 1.1 TLS 1.3 TLS 1.2
Top 1k 12 13 0 0
Top 10k 85 85 0 0
Top 100k 928 1004 0 0
14095 15373
Top 1M (1.4%) (1.5%) 0 0

6.3.9 No Mac Check

The test suite No Mac Check evaluates if webservers verify the MAC of a session
ticket in the session resumption. Therefore, we modify each byte of the session ticket
and resend it to the server and evaluate if the server accepts the ticket. We scan
the test suite for all hosts included in the Tranco Top million list. However, for
performance reasons, we only scan the test suite for TLS 1.2. Initially, the scan
results indicated that 90 web servers are vulnerable. We tried to confirm the results
and discovered a minor bug that led to the number of false positives. However, the
bug did not influence the remaining results. After fixing the bug, we rescanned the 90
websites and it turned out that they are not vulnerable (see table 6.18). Table 6.18
shows the results of the scan: No server is vulnerable to the test suite. Additionally,
we evaluated 30.000 randomly selected hosts from the Tranco Top million list in TLS
1.3. Asin TLS 1.2, we did not find any vulnerable host.

Table 6.17: Scan results of the No Mac Check test suite for Tranco Top Million hosts
Vulnerable hosts
Tranco rank TLS 1.2
Top 1M 0

6.3.10 Padding Oracle

The test suite Padding Oracle evaluates if a host is vulnerable to padding oracles
in the context of session tickets. For performance reasons, we only scan the test
suite for TLS 1.2. We sent modified session tickets to the webserver and evaluate
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if the server responds differently to our modifications. With this, we try to create
a valid 2-Byte padding for a session ticket. As we do not know the position of
the last ciphertext block in the session ticket, we try to create the 2-Byte padding
at 6 different positions where the last block may be located. Additionally, we use
statistical tests to confirm our evaluations. In the case, we hit a valid padding we
send all ticket modifications 10 times to the server and evaluate if the server reacts
deterministically to our modifications. It may happen that we only create a 1-Byte
padding, but then the creation of the 2-Byte padding fails. In this case, we output
that we created a 1-Byte padding.

Table 6.18: Scan results of the Padding Oracle test suite for Tranco Top Million

hosts
Vulnerable hosts
Tranco rank TLS 1.2
Top 1M 0

In the Tranco Top Million, we did not find any vulnerable servers. Our evaluation re-
sults only showed that we created 149 1-Byte paddings and no valid 2-Byte padding.
We re-scanned all hosts where we created a 1-Byte padding, but we could not cre-
ate this padding again. We assume that these hosts answered non-deterministically
and the statistical test did not have enough data to detect it. Likely, the num-
ber of repetitions (10) that we perform for our statistical test was too low. As a
consequence, we get a small number of false-positive results. However, we did not
detect any valid 2-Byte padding. Thus, we assume that no vulnerable server was
found.

Our test suite only considered webservers which answered with two different re-
sponses to modified session tickets. However, as explained in section 5.2.12, if the
MAC is not validated at all a vulnerable server may respond with 3 different re-
sponses. Thus, we made some further evaluations. For every webserver we stored
the number of different responses at every position. We evaluate all 117 servers
that responded at exactly one position with three with 3 different responses and
at all other positions uniformly. If the server responded at other positions differ-
ently, then we assume that the server responds non-deterministically. For all 117
webservers, we sent similar ticket modifications to the server and evaluate if the
server responds again differently. If yes, we use a statistical test with 100 repeti-
tions. It turned out none of the evaluated servers responded significantly differently
for ticket modifications. Thus, we assume that they are not padding oracle vulner-
able.

Additionally, we evaluated 30.000 randomly selected hosts in TLS 1.3 for the Padding
Oracle test suite, but we did not detect any vulnerable server.

In the following, we want to discuss possible explanations for why no vulnerable
server was found. One explanation could be that none of the servers is vulnerable
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since all servers which use the CBC mode also use the secure Encrypt-then-MAC
scheme. Our results from the library analysis support this explanation since all of
the evaluated TLS-libraries using CBC also used the Encrypt-then-MAC scheme
(see Section 3.2). Furthermore, the RFC 5077 implicitly recommends using this
scheme. In contrast to that, in TLS CBC cipher suites are used per default with
the MAC-then-Encrypt scheme to protect application data. Another explanation
is that we overlooked vulnerable servers that use a totally different session ticket
format as for example Microsoft webservers (see Section 6.3.2). In this case, we
may have not guessed the correct position of the last ciphertext block and thus
were not able to create a valid padding. One last explanation is that webservers
using the MAC-then-Encrypt scheme, do not offer a padding oracle. We evalu-
ated the source code of OpenSSL to analyze how the server responds if the session
ticket decryption fails. The server responded for an invalid MAC or decryption
fail always identical with a full handshake. Thus, even if OpenSSL would use the
MAC-then-Encrypt scheme, our test suite could not distinguish valid from invalid
paddings.

Creating Padding Oracles for Webservers Vulnerable to the Zero HMAC-key
Test Suite After we found webservers that are vulnerable to the Zero HMAC-key
test suite, we had the following idea. We make a customized padding oracle attack
for these webservers. For this, we modify the session tickets in the same way as in
the original test suite, but we recalculate and append the MAC for every modified
session ticket before sending it back to the server. We can do the recalculation be-
cause we know the value of the all-zero HMAC-key. We rescanned all webservers
which were vulnerable to the Zero HMAC-key test suite. At one Chinese webserver,
we were able to create a valid 2-Byte padding. We were able to confirm our results
by comparing our padding guesses with the padding values inside of the session
ticket. This was possible because the server also used an all-zero encryption key.
The vulnerable server responded in two ways: 1. If the padding was valid, first they
responded with a full handshake. After we sent the CCS and FIN message, they
responded with an Alert Unexepcted Message (see Figure 6.19).

2. If the padding was incorrect, they responded also with a full handshake. How-

TLSv1.2 435 Client Hello

TLSv1.2 1476 Server Hello

TLSv1.2 1369 Certificate, Server Hello Done

TLSv1.2 187 Change Cipher Spec, Encrypted Handshake Message
TLSv1.2 63 Alert (Level: Fatal, Description: Unexpected Message)

Figure 6.19: Vulnerable Chinese webserver responding to a session ticket with a
valid padding

ever, after we sent the CCS and FIN message, they did not respond at all (see Figure
6.20).
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TLSv1.2 435 Client Hello

TLSvi.2 1476 Server Hello

TLSvi.2 1369 Certificate, Server Hello Done

TLSv1.2 187 Change Cipher Spec, Encrypted Handshake Message

Figure 6.20: Vulnerable Chinese webserver responding to a session ticket with an
invalid padding

With this padding oracle, we are able to learn the session secret stored inside the ses-
sion ticket. This allows an attacker to decrypt recorded application data.

6.3.11 Replay Attack

The test suite Replay Attack evaluates if a webserver allows an attacker to replay
early data in TLS 1.3. In our large-scale scan, we evaluate if webservers support
early data. If yes, then we try to replay early data and evaluate if the servers accept
it twice. If yes, then we assume that the server is vulnerable to replay attacks.
Important to mention is that the scan only evaluates replay vulnerability on the
TLS-layer. Webservers may prevent replay attacks on the application layer. In our
initial test scans (around 80k hosts), the scan results showed that 129 webservers
(0.01%) support early data. Because we expected higher early-data support, we
made some additional research. In 2017, Cloudflare announced that it enables O-
RTT support per default for all websites using their free plan. Paid customers
have the option to enable it [18]. According to W3Techs around 10 to 15% of all
websites are using Cloudflare [2]. However, our early data scan results did not
include any popular Cloudflare webserver as for example cloudflare.com. Thus, we
used two different TLS scanner tools to evaluate if Cloudflare webservers support
early-data: SSLabs® and SSLyze”. We scanned a small sample of popular Cloudflare
webservers with both tools. SSLyze displayed that the webservers support early-data
and SSLabs did not. We tried to confirm the SSLyze results with the OpenSSL client
and we observed that the session tickets were issued around ten seconds after the
handshake was finished. Our implementation has a default timeout of two seconds
and therefore our connection reaches the timeout before the issued session ticket
arrives. Without any issued session ticket, we skip the replay attack test suite and
assume that the server is not vulnerable. We fixed the problem by sending a dummy
HTTPS request message after every handshake because then Cloudflare webservers
issue immediately a new session ticket.

Finally, Table 6.21 shows the result of the Tranco Top Million scan with our adapted
implementation. In total, 3.38% of the webservers support early data. Nearly
all of them are vulnerable to replay attacks (3.37%). These results also confirm
the findings of Mihael Liskij in his master thesis. He discovered that the replay

Shttps://www.ssllabs.com /ssltest/
Thttps://github.com/nabla-c0d3/sslyze
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Table 6.21: Scan results of the Replay Attack test suite for Tranco Top Million hosts

Tranco rank early-data support replay vulnerable
Top 1k 42 42

Top 10k 457 454

Top 100k 3972 3958

Top 1M 33898 (3.38%) 33758 (3.37%)

protection in Nginx, which is per default turned on, was not working correctly
[15].






7 Conclusion and Future Work

In this thesis, we first evaluated different TLS-libraries according to their session
ticket handling. In the next step, we presented and implemented different test
suites for vulnerabilities that may appear in the session ticket handling of web-
servers in the wild. Finally, we evaluated in a large-scale scan of the Tranco Top
Million hosts how many webservers were vulnerable to the presented vulnerabili-
ties.

The most severe finding was that several thousand websites hosted by AWS used
around six months regularly an all-zero STEK to encrypt their session tickets in TLS
1.2. The vulnerability was very similar to the mentioned GnuTLS bug [11] which
was the motivation for our thesis. In both cases, an incorrectly implemented key
rotation mechanism caused the vulnerability. Further evaluations have shown that
for at least 68% of the vulnerable AWS websites, likely recorded traffic can still be
decrypted even after the vulnerability was fixed. The all-zero STEK vulnerability
affected a smaller hosting provider and three singular webservers as well. Since we
observed this vulnerability in several different cases, we assume that there is system-
atic risk in different TLS-implementations for this type of vulnerability. How can
we prevent that this vulnerability occurs again on a larger scale again? A counter-
measure against an all-zero STEK is to implement a zero-check before initializing
the STEK. Even if a wrongly implemented key rotation mechanism outputs a zero
value, the check prevents that the STEK is initialized with all-zeros. In future work,
it could be interesting to evaluate if popular TLS-libraries implement this counter-
measure. Moreover, we would like to see that this countermeasure is added in many
TLS-libraries. This feature is especially useful in OpenSSL since it supports the
implementation of customized key rotation mechanisms. Another idea is to extend
the countermeasure to detect if a larger part of the STEK is uninitialized. If for
example only the first byte of the STEK is initialized, then the zero-check will not
detect it. As a consequence, attackers can simply reconstruct the STEK with little
effort.

In our large-scale scan, we only evaluated the all-zero STEK test suite for HT'TPS
webservers. However, TLS is also used in E-Mail Transfer protocols as SMTPS or
IMAPS. Thus, we suggest performing large-scale scans of E-Mail webservers to evalu-
ate if a larger amount of servers also use an all-zero STEK.

Another interesting evaluation result is that nearly all webservers that are supporting
0-RTT session resumption in TLS 1.3 are vulnerable to replay attacks. However, we
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only evaluated the vulnerability on the TLS-layer. Webservers could prevent these
attacks by implementing countermeasures on the application layer. Future work
should evaluate if the detected vulnerable webservers prevent replay attacks on the
application layer. Ideally, this can be automatized in TLS-Scanner.

A novel insight from our large-scale-evaluation is that around 98.7% of all webervers
supporting session tickets in the Tranco Top Million list follow the recommenda-
tion from the RFC 5077 to include a 16-byte STEK identifier in their session tick-
ets. We can use this information in future large-scale evaluations of session tick-
ets.

Another interesting finding is that Microsoft webservers used a totally different
session ticket format than recommended. They encode their session tickets as an
ASN.1 object and include sensitive information as the STEK file path in their session
ticket. In future work, it would be interesting to find out in more detail what
other values are included in the ticket and if servers may be vulnerable to different
attacks.
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A.1 Padding Oracle
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A.2 Testing No Mac Check

|:| Ticket rejected
I:I Ticket accepted

|:| Ticket accepted, session resumed with different secret

encrypted state
1

key_name IV master secret MAC

0 16 32 % was “ 97 129
Figure A.4: GoTls servers answers to manipulated tickets

In order to illustrate how a vulnerable server would react to our requests, we evaluate
a vulnerable modified GoTLS test server in TLS 1.2. GoTLS uses the counter mode
to encrypt session tickets. When we modify the session ticket’s encrypted state
at index i, the StatePlaintext will only be manipulated at index i as well. If the
server uses a different encryption algorithm (for example CBC), several blocks of
the StatePlaintext may be altered. Figure A.4 shows the GoTLS server responses to
our requests. The color at each byte position i of the ticket represents the server’s
answer to a manipulated ticket at index ¢. If we manipulate the key name, the
server does not find any key with the key_ name identifier and rejects the ticket. If
the IV is modified, the decryption of the whole encrypted state fails, because the
IV influences every plain text block in the counter mode. If we modify the session
ticket’s encrypted state, the reactions are different. At some positions, the ticket
is accepted with the same secret and in some positions, the ticket is rejected. If
we modify the encrypted state at the positions, where the master secret is located
(position 46 - 93), the server accepts the ticket and resumes the session with a
different master secret. If we modify the MAC that is not validated, the server
accepts the ticket with the same secret.
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A.3 Microsoft Session Tickets

We examplary show two different session tickets from two Microsoft IIS 8.5 web-
servers (see Listing A.5 and A.6). Both contain an ASN.1 encoded object in their
session ticket.
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SEQUENCE {
OBJECTIDENTIFIER 1.2.840.113549.1.7.3 (envelopedData)
[0] {
SEQUENCE {
INTEGER 0x02 (2 decimal)
SET {
(21 {
INTEGER 0x04 (4 decimal)
SEQUENCE {
OCTETSTRING 41fe455500e2014eal14ba79780c3fdb3
SEQUENCE {
OBJECTIDENTIFIER 1.3.6.1.4.1.311.74.1
SEQUENCE {
OBJECTIDENTIFIER 1.3.6.1.4.1.311.74.1.12
SEQUENCE {
SEQUENCE {
SEQUENCE {
UTF8String ’KeyFile’
UTF8String ’J%ALLUSERSPROFILEY,\Microsoft\Crypto
\TlsSessionTicketKeys\S-1-5-18\SessionTicketKey.key’

}
}
SEQUENCE {
OBJECTIDENTIFIER 2.16.840.1.101.3.4.1.45 (id-aes256-wrap)
}
OCTETSTRING 43439b9b03£f279f1f£9370cd9a339b4cce934d47ebf0278d25
a30d34c38b358dd2f895ef44ad572
}
}
SEQUENCE {
OBJECTIDENTIFIER 1.2.840.113549.1.7.1 (data)
SEQUENCE {
OBJECTIDENTIFIER 2.16.840.1.101.3.4.1.46
SEQUENCE {
OCTETSTRING 5fcb807f75dcaff1710cca50
INTEGER 0x10 (16 decimal)

}

[o]
0263£22062aebbf6b7c1dbd232d7afb54£668a918e£d881176c33a47ef03576986
b1078a0945472a2825e9a7b67a66993963027e81d921928£6b7£8b9ac00cab7d6d
496d839660841ffcd9fbff336468366a79334d78197bae3bdb51cef84c027be006
793cdba7dcfc3868e953b7c14126fde2b1a6d8234£57cab45ea90dcfbbaed15b0f
be6657d92cb388ee8d3cd295454e269c75f0£39b7e3a46e0511063e25938981eb9
24b6b2085d84e£298ddd3c48103d6592d8c407a28da860ae8d73b86ee3151c

}

Listing A.5: Examplary session ticket from Microsoft IIS 8.5 webserver. The session
ticket contains an ASN.1 encoded object. We can see that the path of
the session ticket key file is included in the ticket.
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SEQUENCE {
OBJECTIDENTIFIER 1.2.840.113549.1.7.3 (envelopedData)
[0l {
SEQUENCE {
INTEGER 0x02 (2 decimal)
SET {
[2]1 {
INTEGER 0x04 (4 decimal)
SEQUENCE {
OCTETSTRING
01000000d08c9ddf0115d1118c7a00c04£fc297eb01000000fb4dbc7b7545f
9842be46126ddf9b69130000000002000000000010660000000100002000
0000becb539768acbbde7ffd0a395d7e6£d632207da3cf6ct
77bab66809ce394b5183000000000e80000000020000200000000c047£3a
55b05189dbd3c9ddaef8f33608b96762fdf cbdaOb742296f8be2071a3000
00009924541dbe184c01be0a3a1281c6e9dd9b45460febc7669f86a878f6
fb37007edf2e3e46a08e12dc7017ea2ad45b94d340000000aadeb5ecbfed
6ab4edf5e93917987190cf12269c57e41de3£f35062bc79c3d6befc15152¢
e75dade3elelafad7f75eecd621ddd0e48ec941280fe3ad722f6d268
SEQUENCE {
OBJECTIDENTIFIER 1.3.6.1.4.1.311.74.1
SEQUENCE {
OBJECTIDENTIFIER 1.3.6.1.4.1.311.74.1.8
SEQUENCE {
SEQUENCE {
SEQUENCE {
UTF8String ’LOCAL’
UTF8String ’user’
}
¥
}
¥
}
¥
SEQUENCE {
OBJECTIDENTIFIER 2.16.840.1.101.3.4.1.45 (id-aes256-wrap)
¥
OCTETSTRING 1f9cde9caaBeea9a33f872d6d5c933e622185e9cd19bfb4fh
00ddc8054cdce961007649639£d6£77
}
}
SEQUENCE {
OBJECTIDENTIFIER 1.2.840.113549.1.7.1 (data)
SEQUENCE {
OBJECTIDENTIFIER 2.16.840.1.101.3.4.1.46
SEQUENCE {
OCTETSTRING cadea44f62415f6£94818157
INTEGER 0x10 (16 decimal)
}
}
[0] 153636b9e09201913c4882a046e04d797538cbled3445b9663bdebca
1a15e80851f12d2cafa36d7cb557aa1442be1798bee8b5d4dc99634c0292
f8fcade46c299569d1e142dd9f71£349b74330dd83afab03744c4f24e1f7
5d0efd536df184f34b57e109956bb21d5255cb130b4dd9ef563a95f1£79b
dfbb6ce96cb46d83a932817fde140b9balbabbbea27a15632484f4£8d04a4
e098b6e6£651914010f6a69617f4ad8ac0d74c2cabb41d5bd82899849300
3afa907b151984c6319£7789301£7f4c5deb
}
}
}
}

Listing A.6: Examplary session ticket from Microsoft IIS 8.5 webserver. The session
ticket contains an ASN.1 encoded object. We can see that the user is
encoded in the ticket.
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A.4 AWS Vulnerability - Cause

In the following, we explain in more detail what may have caused the vulnerability
in AWS hosts. As explained before, vulnerable AWS hosts used Nginx webservers
with OpenSSL. Nginx customizes the key rotation of OpenSSL by implementing a
callback function (see Section 3.3). AWS informed us that they use a customized
key rotation mechanism implemented in Nginx to regularly rotate their STEKs.
Important to mention is that their key rotation is directly implemented in Nginx.
They do not use the provided session ticket key files for that. According to AWS,
their key rotation did not work correctly and therefore sometimes initialized the
STEK with all-zeros. They informed us, that one of their leads for causing the
vulnerability was that Nginx changed their data structure where STEKS are stored.
Thus, we evaluate the Nginx source code and code change in more detail and try to
learn what may have caused the vulnerability.

typedef struct { typedef struct {

1
u_ char name[16]; 2 size_t size ;
u_ char aes_ key[16]; 3 u_ char namel[16];
u__char hmac_key[16]; | u__char hmac_ key[32];
} ngx_ssl session_ticket_key_ t; 5 u_ char aes_ key[32];

6 } ngx_ssl_session_ ticket_key_ t;

7

Listing A.7: STEK data structure in

Nginx before December Listing A.8: new STEK

2016 data structure in Nginx
introduced in December
2016

Until 2016, OpenSSL used AES-128-CBC' as the algorithm to encrypt their session
tickets. Then, OpenSSL switched to AES-256-CBC with version 1.1.0!. Nginx
also supported AES-128-CBC for encryption of session tickets until 2016. When
OpenSSL switched to AES-256-CBC, Nginx also added the support for AFES-256-
CBC?. As a result, Nginx now supports both encryption algorithms. If a session
ticket key file is provided, then depending on the key file size the corresponding
encryption algorithm is selected (see Section 3.3).

In the next step, we evaluate the STEK data structure in Nginx and how it was
changed in 2016. Listing A.7 shows the ngz ssl session_ ticket key t structure
which represents one STEK before the code change. It contains a 16-byte key name,
a 16-byte aes key and a 16-byte hmac_key. Listing A.8 shows the data structure
after the code change. They added a size field that should include the size of the
key file. However, there is not any documentation what the exact matter of the

"https://github.com/openssl/openssl/issues/514
2https://github.com/nginx/nginx/commit /c2d3d82ccheal8f0504fbaceeeebefb62dasd1d8
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field is and which values are legal. Furthermore, you can confuse the field with the
key size of the contained key values in the structure. Additionally, they updated
the field sizes of both key values to 32 bytes which means that now keys for AFES-
256-CBC can be stored. Interestingly, they also changed the order of the aes key
and hmac_key inside the struct. The reason for this was to be compatible with
the SSL__CTX _set_tlsext_ticket_keys() function in OpenSSL which allows to set
customized STEKs. However, this function is not documented and we could not un-
derstand the behavior of this function in OpenSSL in the source code analysis. Nor-
mally, webservers customize the key rotation in OpenSSL with a different callback
function?. We evaluated the source code of Apache, Nginx, and OpenLiteSpeed and
none of them are using this function to set their STEKS.

ngx_int_t ngx_ssl_session_ ticket_ keys(...)

{
u__char buf [80];

ngx_ array_t skeys;
keys = ngx_ array_ create(cf—>pool, paths—>nelts, sizeof(ngx_ssl_session_ ticket_key_ t));

for (i =0; i < paths—>nelts; i++) { // read all provided key files

ngx_read_file(&file, buf, size, 0);
ngx_ ssl_session_ ticket_key_tx key = ngx_ array_ push(keys);

if (size == 48) {
key—>size = 48;
ngx_ memcpy (key—>name, buf, 16);
ngx_ memcpy (key—>aes_ key, buf + 16, 16);
ngx_ memcpy(key—>hmac_ key, buf + 32, 16);
} else {
key—>size = 80;
ngx_ memcpy (key—>name, buf, 16);
ngx_ memcpy(key—>hmac_key, buf + 16, 32);
ngx_ memcpy (key—>aes_ key, buf + 48, 32);
}
}
SSL__ CTX_set_ex_ data(ssl—>ctx, ngx_ssl session_ ticket_keys_index, keys); //store keys
array internally in OpenSSL structure

}

Listing A.9: ngx ssl_session__ticket keys function (ngx__event__openssl.c)
initializes the STEK from the provided key files

In the following, we shortly explain how the STEK initialization from a key file works
at server start. We need this to better understand how a key rotation mechanism
may initialize the keys and how Nginx maintains their STEKs (see Listing A.9).

3https://www.openssl.org/docs/man1.0.2/man3/SSL._ CTX_set_ tlsext_ ticket_key_cb.html
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First, a new keys array is created which will store all provided STEKs. Note that
the first key in the array is always used to encrypt session tickets, the other only
can be used for decryption. In the second step, Nginx creates for every provided
key file a new STEK data structure and appends it to the keys array. We explain
this procedure exemplary for one key file. First, the key file is read and stored in
the buf variable. Then, the STEK data structure is initialized with the data stored
inside buf. If the key file only provides 48 bytes, then only the first half aes key and
hmac__key are initialized. Additionally, the size of the key file is stored. After all key
files are parsed, the keys array is stored internally in a OpenSSL data structure?.
We expect that a customized key rotation mechanism works similarly. It creates a
keys array with several STEKSs and the keys array is updated regularly to rotate the
keys.

*https://www.openssl.org/docs/man1.1.1/man3/SSL_ CTX_set_ex_ data.html



W oW N NN NN NNN N
= O © 00 N O U A~ W N o=

%}

A Appendix

static int ngx_ssl_session_ ticket_key_ callback(...)
keys = SSL_ CTX__get_ex_ data(ssl_ctx, ngx_ssl_session_ ticket_keys_ index);
if (enc ==1) { /* encrypt session ticket */
if (key[0]. size == 48) {
cipher = EVP__aes_128_cbe();
size = 16;
} else {
cipher = EVP__aes_ 256_ cbe();
size = 32;
}
if (EVP_Encryptlnit_ex(ectx, cipher, NULL, key[0].aes_key, iv) !=1) {
ngx_ssl_error(NGX_LOG_ALERT, c—>log, 0,
"EVP_ Encryptlnit ex() failed");
return —1;
}
if (HMAC_Init ex(hctx, key[0].hmac key, size, digest, NULL) != 1) {
ngx_ssl_error(NGX_LOG_ALERT, c—>log, 0, "HMAC_Init_ex() failed");
return —1;
}
ngx_memcpy (name, key[0].name, 16);
return 1;
}
Listing A.10: ngx_ssl_session__ticket_key callback function in

ngz__event openssl.c implements the OpenSSL callback function to

customize session ticket handling

Next, we look at the implemented callback function for session tickets in Nginx
(see Listing A.10). The callback function is called before session tickets are en- or
decrypted in OpenSSL. It initializes several parameters that are needed for session
tickets as for example the encryption algorithm with the current STEK. We explain
how the function works if a session ticket has to be encrypted. We use the first
STEK stored in the keys array to encrypt the session ticket. Depending on the size
stored in the STEK structure either AES-128-CBC or AES-256-CBC is selected as
the encryption cipher. As we have seen in the STEK initialization from the key files,
the size should be either 48 or 80 bytes. However, in the else case it is not explicitly
checked if the size is 80 bytes. By default for every size value different than 48
AES-256-CBC is selected. We would prefer that the function returns an error if
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a different size than 48 or 80 bytes is selected because likely the field is misused.
Then, the encryption cipher is initialized along with the IV, the aes key and the
HMAC algorithm with the hmac_ key.

ngx_ ssl_session_ ticket_key_t xkey = malloc(sizeof(ngx_ssl_session_ ticket_key_ t));

//Scenario 1

RAND_ bytes((unsigned char %) key—>name, 16);
RAND_ bytes((unsigned char %) key—>aesKey, 16);
RAND_ bytes((unsigned char %) key—>hmacKey, 16);

//Scenario 2
RAND_ bytes((unsigned char ) key, 48);

//Scenario 3
RAND_ bytes((unsigned char %) key—>name, 48);

Listing A.11: Three possible scenarios how STEK data structure may be initialized

In the following, we describe what may have caused the vulnerability. We look at
three typical scenarios how the STEK structure ngx ssl_session_ticket key t may
be initialized before the code change (see Listing A.11). We use the RandBytes func-
tion of OpenSSL to initialize the struct members with random bytes. In the first
scenario, we initialize each member of the structure individually with respectively
16 random bytes. For scenarios 2 and 3, we can use the fact that struct fields are
stored in the memory one after the other. Thus, we can initialize the whole struct in
one step with random bytes. In Scenario 2, we input the memory address of the key
struct and our struct size of 48 bytes into the RandBytes function. OpenLiteSpeed
is exactly doing that to initialize their STEKSs. In Scenario 3, we can also enter the
memory address of the first member name and initialize the whole struct with ran-
dom bytes. All three scenarios lead to the same result as shown in Figure A.12 that
all members are correctly initialized with random bytes.

- Initialized with random bytes
Field name aes_key hmac_key
Address 0 16 32 48

Figure A.12: Resulting Values for different initialization scenarios of the STEK
struct ngx_ssl_session__ticket key t

Now, we look at what happens if the exact same code is used to initialize the key
struct after the fields in the STEK data structure were adapted (see Listing A.8).
This represents the scenario if AWS did not adapt its key rotation mechanism to the




introduced code change in Nginx. We verified our findings with a small C project
where we rebuilt the old and the updated STEK data structure from Nginx. Then,
we initialized them with the three presented scenarios and evaluated the resulting
values.

Scenario 1 |I| unitialized (all-zeros) - Initialized with random bytes
Field size  name hmac_key aes_key

Address o g 24 56 88

Scenario 2 .
Field size name hmac_key aes_key

Address 0 8 24 56 88

Scenario 3

Field size name hmac_key aes_key

Address o g 24 56 88

Figure A.13: Resulting Values for different initialization scenarios of the STEK
struct ngx_ssl_session__ticket_key t

In Scenario 1, all members are initialized with 16 random bytes. Both key values are
only half initialized (see Figure A.13). However, the size field is not initialized. In
the second scenario, only the first 48 bytes of the struct are initialized. Now, the size
value is accidentally initialized with random bytes. The name and the first 24 bytes
of the hmac_ key are initialized with random bytes as well. However, the last 8 bytes
of the hmac__key and the entire aes key remain uninitialized. In the third scenario,
the two members size and aes_key remain uninitialized. In Scenario 2 and 3, the
aes__key is not initialized and thus the session tickets will be encrypted with an all-
zero key. The size field does not contain 48 in all scenarios and thus AES-256-CBC
always will be used to encrypt the tickets. We see that the missing size check (see
Listing A.10) does not detect the misuse of the size field.

We can conclude that the presented combination of the struct initialization and the
code change may have caused the security vulnerability at AWS hosts. However, we
can not explain why the vulnerability only sometimes occurred.
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