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Abstract

From electric cars to human implants, specialized materials and metals in particular con-
tinue to drive innovation. Any change of electronic structure by chemical composition,
thermodynamic phase stability by temperature, or defect density and grain structure by
mechanical processing can affect the macroscopic material properties. The hierarchical na-
ture of materials enables the adjustment of individual material properties and results in
application-specific materials design. One of the remaining challenges is to purposefully
exploit this structure-property relation and to differentiate long-lasting, energetically stable
configurations from metastable and unstable ones. One approach to address this challenge
are ab initio thermodynamics simulations, which combine parameter free – ab initio – mod-
els, originated in quantum chemistry with physical models for thermodynamics to calculate
temperature, pressure and concentration dependent free energies. Based on these free en-
ergies the phase diagram quantifies which thermodynamic phase is energetically stable at a
given concentration, pressure and temperature. With this theoretical approach the number
of required experimental measurements is reduced, which accelerates the application-specific
materials design. Still, the current limitation of ab initio thermodynamics is the hierarchy
of models as a result of the hierarchical nature of materials. As many of these models are
developed in rather different communities, the combination of two models requires the the-
oretical understanding of both, the practical experience with them and the technical skills
to construct the interface between both of them.

To address this technical complexity, the pyiron integrated development environment
(IDE) for ab initio thermodynamics is developed as part of this thesis. At its core the
pyiron IDE consists of a class of objects, which each connect to the user interface, to the
resources interface and to the data storage interface. As a consequence of this, these py-
iron objects can be combined like building blocks to construct simulation protocols. In
this thesis the pyiron IDE is introduced and applied to three current challenges in ab ini-
tio thermodynamics: (i) The propagation of the uncertainty in density functional theory
(DFT) calculations with finite convergence parameters from the representation of the wave
function to equilibrium material properties. (ii) The automated calculation of melting tem-
peratures for interatomic potentials with the coexistence approach. (iii) The calculation
of a temperature-concentration phase diagram for an interatomic potential with the quasi-
harmonic approximation. These applications cover different approximations to compute
atomistic energies with different levels of precision, the whole temperature range including
the melting temperature and different levels of chemical complexity. Still, they are all based
on the same three steps: (a) rapid prototyping of the simulation protocol, (b) up-scaling
of the simulation protocol for a parameter study and (c) development of a coarse-grained
model for the parameter space. Finally, the resulting coarse-grained models enable studying
trends which were previously inaccessible based on the technical complexity. Thereby, the
development of the pyiron IDE contributes to the understanding of the physical mechanisms
controlling the materials properties at finite temperatures.
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1 Introduction

The continuous development of new materials and in particular new metallic alloys drives
innovation in all areas of life. From thinner laptops, to lighter cars and softer bone im-
plants, a change in material properties extends the spectrum of applications. A thinner
laptop is more portable, a lighter car drives same range with the less fuel and a bone im-
plant which reproduces the elastic properties of natural bones does not need to be replaced
every five to ten years. Therefore, the goal of materials design is not to just aim for light
weight, high strength and durability but moreover metallic alloys are designed for specific
applications. Two examples developed at the Max-Planck-Institut für Eisenforschung are
a flexible non-toxic titanium alloy Ti-Nb for bone implants [1] and a low-cost light-weight
ductile magnesium alloy Mg-1Al-0.1Ca for transportation [2]. Commonly, even different
components of a product are produced from different materials, each specifically chosen
depending on the requirements of the component.

Given the hierarchical nature of materials a small change on one level of the hierarchy
can result in a change of the macroscopic material properties. Ranging from the electronic
structure and chemical bonding of the individual atomistic species to its thermodynamic
phases and the microscopic grain structure, every change of one level has an effect on the
other levels. As a consequence, for a long time new alloys were designed top-down starting
from a known stable alloy and varying individual parameters in the alloy composition or its
processing to create a more suitable alloy for a given application. Still, such a local opti-
mization in parameter space is commonly restricted to remain in the same local minimum.
In contrast, a bottom-up approach which includes all possible configurations is capable of
identifying the global minimum as well as all local minima. Unfortunately, experimentally
this is impractical given the number of possible parameter combinations and the complexity
to realize and synthesize them. Therefore, rather than realizing all possible combinations
experimentally, theoretical models are employed to identify promising candidates. The pre-
dictive capability of such a theoretical model is governed by three factors: (i) the accurate
inclusion of the relevant physics, (ii) the uncertainty propagation within the model and (iii)
the numerical precision of the model.

One commonly used model to predict alloys is the CALculation of PHAse Diagams
(CALPHAD) method [3]. It calculates the Gibbs energy of alloys based on the mixture
of the individual phase constituents. For a given temperature, pressure and concentration
the Gibbs energy of all possible thermodynamic phases is compared and the phase with the
minimal free energy is predicted to be stable. In practise for a specific application, a given
thermodynamic phase is selected based on its material properties and the phase diagram
is used to predict the required concentration of the chemical species, the pressure and the



1 Introduction

Figure 1.1: Overview of existing methods in the field of ab initio thermodynamics. Sorted
by the predictive power of the atomistic engine on the x-axis and the phase
diagram complexity on the y-axis. The different colours indicate separate devel-
opments and the open symbols highlight applications developed in this thesis.
The individual methods are briefly introduced in Sec. 2.4.3.

temperature to stabilize this phase. While the CALPHAD method is widely used [4], its
uncertainty is limited by the uncertainty of the Gibbs energy of the individual components
and the uncertainty of the interpolation. Both of which can be assessed by comparing
properties derived from the predicted Gibbs energy, e.g. the heat capacity, of an existing
alloy to experimental measurements. As a consequence, the collection and curation of
databases of Gibbs energies are the foundation of CALPHAD modelling.

1.1 Ab initio Thermodynamics

The Gibbs energies for CALPHAD modelling are commonly calculated by fitting experi-
mental measurements of the heat capacity, or indirect measurements of derived properties,
e.g. entropy and enthalpy, or more recently computed theoretically. Starting from the laws
of quantum mechanics and including no parameters other than the fundamental constants
the Gibbs energy can be computed using thermodynamics. This combination of parameter
free - ab initio - methods to calculate the atomistic energies and forces with thermodynamic
models to compute the free energy and derive finite temperature properties is referred to
as ab initio thermodynamics [5]. Both the Ti-Nb alloy [1] and the Mg-1Al-0.1Ca alloy [2]
mentioned above were first predicted with ab initio methods, before they were validated
experimentally, which highlights the capability of this approach. In analogy to the hierar-
chical nature of a metallic alloy, also the ab initio thermodynamics models use a hierarchy
of approximations for computing the Gibbs energy. For the calculation of atomistic energies
these include the decoupling of the nuclei and the electron motion, the approximation of
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1.1 Ab initio Thermodynamics

the electron-electron interaction as an interaction of a single electron with the density of all
electrons, the approximation of the core electrons and finally the derivation of a temperature
independent approximation for the interactions between the atoms without explicit calcu-
lation of the individual electrons. These different approximations to compute the atomistic
energies and forces are implemented in specialised simulation codes, which depending on the
community who develops the simulation code use different units, different variables names
and in general a custom structure of input and output formats. Such a simulation code
which calculates energies and forces with a given approximation is referred to as atomistic
engine. In addition to these atomistic engines also the computing of the Gibbs energy, based
on the atomistic energies and forces, requires approximations. These include the quantum
nature of the atomic vibrations, the coupling of the electrons with the atomic vibrations,
the anharmonic contributions to these vibrations, efficient sampling methods to compute
the thermodynamic averages and the Lagrange transformation from the free energy to the
Gibbs energy. These approximation in combination with their technical implementation in
software utilities, are referred to as thermodynamics modules.

In practise the challenge of ab initio thermodynamics is the combination of a given
atomistic engine and a compatible thermodynamics module to compute the temperature
concentration dependent free energy. The visual summary in Fig. 1.1 compares different
approaches based on the accuracy of the atomistic engine on the x-axis and the complexity
of the thermodynamics modules to compute the free energy on the y-axis. The prediction
of the phase diagram from ab initio in the upper right corner is the general aim of ab
initio thermodynamics. Still the colour of the different symbols highlights the segmentation
of the current developments. It is commonly a fixed combination of a single atomistic
engine with a single thermodynamics module. Already the combination of two existing
methods, developed in different communities requires not only a theoretical understanding
of both, but also practical experience with the specific implementation in a given simulation
software and technical expertise to develop a software interface to combine both methods.
While the theoretical foundation of the methods is published in the literature, the details
of the technical implementation are not formally documented. This includes the naming of
variables, their units, recommended defaults values, required consistency checks and error
messages. The required implicit expertise or technical complexity is the limiting factor
for combining existing models. Still the combination is required to calculate the phase
diagram from ab initio and predict new alloys in an automated way, as developing a single
simulation code to include all methods is prohibitive. The open symbols in Fig. 1.1 highlight
the ab initio thermodynamic challenges addressed in this thesis, which cover both a range of
different atomistic engines as well as different thermodynamics modules up to the calculation
of a phase diagram. This demonstrates the transferability of the new approach which is
achieved by reducing the technical complexity.
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1 Introduction

1.2 pyiron – Integrated Development Environment

The challenge of combining various methods developed for ab initio thermodynamics is
addressed in this thesis with the development of the pyiron integrated development envi-
ronment (IDE) for ab initio thermodynamics. The pyiron IDE, like other IDEs, combines a
source code editor, a build automation system and a debugger, still it is particularly focused
on the development of simulation protocols. For this purpose it is based on an abstract class
of objects, the pyiron objects, which can be combined like building blocks. The pyiron ob-
jects provide unified interfaces independent of the atomistic engine or the thermodynamics
module and each of them is connected to the user interface, to the resource interface and
to the data storage interface. With this separation the technical complexity is addressed in
three steps:

Rapid Prototyping: With the pyiron IDE switching simulation engines or thermodynamics
modules is as easy as changing a single variable. So initially, the simulation protocol
is developed with a less accurate computationally affordable method and afterwards
the precision and the complexity are increased iteratively one step at a time. This
dynamic workflow simplifies the process of implementing a first version of a simulation
protocol to test a given hypothesis.

Up-Scaling: The programmatic approach to developing simulation protocols in combination
with data-science methods like map-reduce [6] enables the iteration over a parameter
space with a thousand and more combinations. At the same time these parameter
studies are the perfect test to validate that the implemented simulation protocol covers
all the relevant physics.

Coarse-Grained Models: Based on the data sets from the parameter study new physical
insights are derived to construct coarse-grained models. These models can then either
be used for computationally efficient predictions or the systematic comparison of an
even larger parameter space.

These three steps are independent of the applied atomistic engine or the thermodynamics
module. To highlight the impact of the pyiron IDE and this concept for ab initio thermody-
namics, this thesis is focused on the application of the pyiron IDE for partitioners: Starting
with the theoretical foundation of ab initio thermodynamics in Chap. 2, covering density
functional theory (DFT) and interatomic potentials as two representative atomistic engines,
followed by molecular dynamics and thermodynamics, leading to complex simulation pro-
tocols of ab initio thermodynamics required to compute free energies. This complexity can
be divided in a physical and a technical contribution. Based on identifying the technical
contribution of the complexity as the limiting factor of ab initio thermodynamics, exist-
ing software developments are reviewed in Chap. 3. These software developments range
from simulation codes for atomistic simulation, over high-throughput approaches in com-
putational materials science and finally general developments in scientific computing which
address the increasing complexity in computer simulation. Following the insight, that the
complexity of ab initio thermodynamics is not sufficiently addressed by existing software
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developments in the atomistics community, the pyiron IDE is introduced with the focus on
reducing the technical complexity to a minimum. For this purpose Chap. 4 introduces the
simulation life cycle and the theoretical concepts of the pyiron IDE based on a series of exam-
ples to highlight the application of the pyiron IDE for partitioners. After this introduction
the pyiron IDE is applied to three current challenges of ab initio thermodynamics:

1. The propagation of uncertainties for material properties calculated with DFT at fi-
nite convergence parameters is predicted in Chap. 5 with a coarse-grained model. The
coarse-grained model inverts the classical convergence tests and predicts the compu-
tationally most efficient convergence parameters to achieve a user-defined level of
uncertainty for a given material property. This is achieved in three steps: (a) A
simulation protocol for the calculation of the material property at a specific set of
convergence parameters is developed. (b) The simulation protocol is applied for a
parameter study on a wide range of convergence parameters. (c) Based on the results
of the parameter study the coarse-grained model is developed to predict the conver-
gence. The coarse-grained model is then applied to compare the convergence of the
bulk modulus for different face-centered-cubic (fcc) metals.

2. The melting temperature for interatomic potentials is predicted in Chap. 6. Again
this is achieved in three steps: (a) A simulation protocol is developed to compute
the melting temperature with a high precision using the coexistence method. (b)
The simulation protocol is applied in a parameter study on an existing database of
interatomic potentials. (c) A coarse-grained model is developed for the prediction of
the melting temperature for interatomic potentials.

3. A temperature-concentration phase diagram for an interatomic potential is computed
with the quasi-harmonic approximation in Chap. 7. Once more the same three steps
are applied: (a) A simulation protocol for the quasi-harmonic approximation is devel-
oped. (b) It is up-scaled for a parameter study over the whole concentration range.
(c) The resulting coarse-grained model, the phase diagram, is compared to existing
theoretical predictions and experimental measurements.

While these three applications cover the whole range of atomistic engines and thermody-
namics modules, as illustrated in Fig. 1.1, the three steps of (a) rapid-prototyping, (b)
up-scaling and (c) developing a coarse-grained model remain the same. This highlights how
the pyiron IDE is advancing ab initio thermodynamics towards a systematic prediction of
new materials. Finally the concept of the pyiron IDE extends beyond ab initio thermody-
namics as briefly discussed in the outlook of Chap. 8, which is concluding this thesis.
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2 Theoretical Background

Ab initio thermodynamics is an interdisciplinary field combining quantum chemistry, physics
and mathematics. Following the overview in Fig. 1.1 selected methods for calculating atom-
istic energies and forces (x-axis) as well as approximation to compute the free energy (y-axis)
are introduced. The aim is the reduction of the dependence on experimental measurements
in designing new materials. The methods are compared based on their predictive capability
and their computational efficiency. For this comparison two types of errors are evaluated:

Accuracy/ Intrinsic Errors: Based on the neglection or approximation of selected contri-
butions, the accuracy of a given method in comparison to experiment is intrinsically
limited. For a selected method this error remains constant independent of the avail-
able computational resources. Still it varies for different chemical elements or different
thermodynamics phases depending on the choice of approximation.

Precision/ Controllable Errors: In contrast to the intrinsic errors the controllable errors
can be improved systematically with increasing computational resources. They include
discretisation errors, restricted sampling times, numerical errors and the variation of
different software implementations of the same method. The impact of the controllable
errors and the resulting precision is controlled with convergence parameters. A higher
convergence parameter results in higher computational cost and a higher level of
precision.

An independent measurement of both types of errors is in practise impossible. It would
require the calculation of the sum of intrinsic errors at infinite convergence parameters, by
comparing to experiment and then calculating the error at finite convergence parameters,
in reference to the infinite convergence parameters. Still based on the coupling of the con-
trollable errors to the computational resources, such a calculation would require infinite
computational resources. To separate the two types of errors in practice the controllable
error is approximated to decrease continuously for sufficiently large increases in the con-
vergence parameter. So based of a series of calculation at finite convergence parameters
the controllable error at infinite convergence parameters is extrapolated. The remaining
difference in comparison to experiment is approximated as the sum of intrinsic errors. For
multiple convergence errors they can also be separated by extrapolating the contribution at
infinite convergence parameters, while a separation of the intrinsic errors is only possible in
comparison to other methods, which share selected approximation.



2 Theoretical Background

2.1 Density Functional Theory

As a first method to calculate energies and forces for atomistic structures density functional
theory (DFT) is introduced. The formalism was developed in 1964 by Hohenberg, Kohn
and Sham [7, 8] and has been applied to many material systems including metallic alloys
once sufficient computational resources were available [9]. Its popularity in computational
materials science is accounted to the accuracy of the calculation in comparison to experiment
and other ab initio methods at comparably affordable computational cost [10]. In the
following, DFT is briefly introduced based on the review articles [11–13], with the focus on
the convergence parameters which control the precision of DFT calculation.

2.1.1 Born-Oppenheimer Approximation

Starting with the non-relativistic, time-independent many-body Schrödinger equation for a
system with Nnuc nuclei and Nel electrons and their representative coordinates RI and ri,
the wave function can be written as:

Ψnuc, el(R1,R2, . . . ,RNnuc , r1, r2, . . . rNel) = Ψnuc, el({RI}, {ri}) , (2.1)

and the corresponding Schrödinger equation as:

Ĥnuc, elΨnuc, el({RI}, {ri}) = Enuc, elΨnuc, el({RI}, {ri}) . (2.2)

In this equation Ĥnuc, el is the Hamilton operator for the combined many-body system and
Enuc, el the corresponding energy level for a given electronic state. The Hamilton operator
can be rewritten as:

Ĥnuc, el = T̂el + T̂nuc + V̂el + V̂nuc + V̂e−n , (2.3)

with T̂el being the kinetic energy operator of the Nel electrons, T̂nuc the kinetic energy
operator of the Nnuc nuclei, V̂el the electron-electron repulsion operator and analogous
V̂nuc the nucleus-nucleus repulsion operator and finally V̂e−n the electron-nucleus attraction
operator. They are defined as:

T̂el({ri}) = −
Nel∑
i

~2

2me
∇2
i , (2.4)

T̂nuc({RI}) = −
Nnuc∑
I

~2

2MI
∇2
I , (2.5)

V̂el({ri}) =
1

2

Nel∑
i

Nel∑
j 6=i

e2

4πε0|ri − rj |
, (2.6)
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2.1 Density Functional Theory

V̂nuc({RI}) =
1

2

Nnuc∑
I

Nnuc∑
J 6=I

ZIZJe
2

4πε0|RI −RJ |
, (2.7)

V̂e−n({RI}, {ri}) = −
Nel∑
i

Nnuc∑
I

ZIe
2

4πε0|ri −RI |
. (2.8)

Here MI defines the mass of a nucleus I, me the mass of an electron and ZI the proton num-
ber of nucleus I. The equations are given in international units with the Planck constants
~ and vacuum permittivity ε0. To solve this system, the Born-Oppenheimer approximation
is applied to decouple the motion of electrons and the nuclei. It separates the many-body
wave function Ψnuc, el in a nucleus wave function Ψnuc and an electronic wave function Ψel

based on the assumption that MI � me. The electronic wave function Ψel is calculated at
fixed ionic positions, so the nuclei coordinates are included as parameters, indicated by the
semicolon:

Ψel({RI}, {ri})→ Ψel({ri}; {RI}) . (2.9)

The corresponding electronic Hamilton operator Ĥel is defined as:

Ĥel({ri}; {RI}) = T̂el({ri}) + V̂el({ri}) + V̂e−n({ri}; {RI}) . (2.10)

Finally the Schrödinger equation for the electrons can then be written as:

Ĥel({ri}; {RI})Ψel({ri}; {RI}) = Eel({RI})Ψel({ri}; {RI}) . (2.11)

Here the energy of the electrons Eel({RI}) depends on the position of the nuclei RI and
is defined as the Born-Oppenheimer potential energy surface (PSE). When solving the
Schrödinger equation for the nuclei, the PSE Eel({RI}) is added in the Hamilton operator
of the nuclei Ĥnuc to account for the immediate response of the electrons on changes of the
nuclei positions RI :

Ĥnuc({RI}) = T̂nuc({RI}) + V̂nuc({RI}) + Eel({RI}) , (2.12)

Ĥnuc({RI})Ψnuc({RI}) = EnucΨnuc({RI}) . (2.13)

Still, as only static DFT calculation with fixed ionic positions RI are evaluated in this thesis
the electronic wave function is rewritten as Ψel({ri}) = Ψel({ri}; {RI}).

2.1.2 Kohn-Sham Methodology

To solve the electronic Schrödinger equation with DFT the electronic density n (r) and the
energy functional of the electronic density Eel [n (r)] are introduced:

n (r) =Nel

∫
d3r2 · · ·

∫
d3rNel Ψ∗el ({ri}) Ψel ({ri}) , (2.14)

Eel [n (r)] =Tel [n (r)] + Vel [n (r)] + Ve−n [n (r)] . (2.15)

9



2 Theoretical Background

In analogy to the electronic Hamilton Operator Ĥel the energy functional Eel [n (r)] consists
of three contributions, the kinetic energy contribution Tel [n (r)], the electron-electron re-
pulsion Vel [n (r)] and the attraction of the electrons to the nuclei Ve−n [n (r)]. For this func-
tional the Hohenberg-Kohn theorem [7] states: “The ground-state density of a bound system
of interacting electrons in some external potential determines this potential uniquely.” This
theorem connects the ground state density n0(r) with the external potential V̂ext(r):

V̂ext(r)
HK← n0(r)

↓ ↑
Ψn({ri}) → Ψ0({ri}) .

(2.16)

The external potential V̂ext(r) for a bulk calculation without any external fields, as they are
used in this thesis, is defined by the attraction of the electrons to the nuclei V̂e−n(r):

V̂ext(r) = V̂e−n(r) . (2.17)

To solve the Schrödinger equation for large numbers of electrons Nel Kohn and Sham [8]
introduce an auxiliary system of non-interacting electrons with the density of the non-
interacting electrons in the ground state ñ0 (r) being equal to the density of the ground
state of the interacting electrons:

ñ0 (r) = n0 (r) . (2.18)

The functional of the total energy for the interacting electrons Eel [n0 (r)] can be compared
to the functional of the non-interacting electrons Ẽel [n0 (r)]:

Eel [n0 (r)] = Tel [n0 (r)] + Vel [n0 (r)] + Ve−n [n0 (r)] , (2.19)

Ẽel [n0 (r)] = T̃el [n0 (r)] + Ṽel [n0 (r)] + Ṽe−n [n0 (r)] . (2.20)

Based on the equality of the density of the ground state the attraction to the nuclei is
equal for both the interacting and non-interacting electrons. In contrast the other contri-
butions differ with the advantage that the electron-electron repulsion operator Ṽel [n0 (r)]
for non-interacting electrons, which is identified as the interaction of individual electrons
with an effective potential, can be computed for large numbers of electrons Nel [14]. The
difference of both remaining contributions is summarized as exchange-correlation functional
Exc [n0 (r)]:

Eel [n0 (r)]− Ẽel [n0 (r)] = Tel [n0 (r)]− T̃el [n0 (r)] + Vel [n0 (r)]− Ṽel [n0 (r)] (2.21)

= Exc [n0 (r)] . (2.22)

The exchange-correlation functional Exc [n0 (r)] is unknown and it is one of the intrinsic
errors of every DFT calculation. Multiple approximations for the exchange-correlation
functional Exc [n0 (r)] are introduced in Sec. 2.1.3. Based on the exchange-correlation func-
tional Exc [n0 (r)] the resulting approximation for the functional of the total energy for the
interacting electrons Eel [n0 (r)] can be written as:

Eel [n0 (r)] = T̃el [n0 (r)] + Ṽel [n0 (r)] + Exc [n0 (r)] . (2.23)

10



2.1 Density Functional Theory

With the functional of the total energy for the interacting electrons Eel [n0 (r)] the effective
potential of the non-interacting electrons V̂eff(r), which leads to the equality of the densities
of states for the ground state, is defined as:

V̂eff(r) = V̂ext(r) + Ṽel(r) + Ṽxc(r) (2.24)

= V̂ext(r) +
1

2

∫
n0 (r′)

|ri − r′|
dr′ +

δExc [n0 (r)]

δn0 (r)
. (2.25)

Inserting the effective potential V̂eff(r) in the Schrödinger equation for non-interacting elec-
trons the non-interacting wave functions ϕi(r) are determined:(

− ~2

2me
∇2 + V̂eff(r)

)
ϕi(r) = εiϕi(r) . (2.26)

By summation over the Nel electronic wave functions the ground state density of the non-
interacting electrons ñ0(r) can be calculated, which equals the ground state density of the
interacting electrons n0(r):

ñ0(r) =

Nel∑
i=1

fi|ϕi(r)|2 = n0(r) . (2.27)

Here fi is the electronic “smearing” function for which different approximations are intro-
duced in Sec. 2.1.4. In summary the combination of Eqs. 2.25, 2.26 and 2.27 enables the
self-consistent calculation of the ground state energy. Extensions beyond ground state en-
ergies are available and required for certain ab initio thermodynamics models [15]. Still the
thermodynamic models used in this thesis only require ground state energies to be calcu-
lated with DFT. So the following sections focus on the error contributions to ground state
DFT calculations.

2.1.3 Exchange-Correlation Functional

With the exact exchange-correlation functional Exc [n0 (r)] remaining unknown, different
approximations have been developed for various material systems [9, 16]. They are sorted
by complexity in the Jacob’s ladder [17, 18]. The first level of the Jacob’s ladder is the local
density approximation (LDA), followed by the generalized gradient approximation (GGA),
the Meta-GGA and the hybrid-methods. The later are primarily developed for molecular
system. Still, with increasing complexity also the computational costs increase, which is
the primary limitation for the application in ab initio thermodynamics. As a consequence
commonly, only the first two levels of the Jacob’s ladder, LDA and GGA, are considered.
For selected elements LDA is found to be underbinding and GGA is found to be overbinding.
This applies not only to the equilibrium volume, but also for thermodynamic properties the
two approximations form an upper and an lower bound [19]. Both are briefly introduced in
the following:
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2 Theoretical Background

Local Density Approximation

LDA is the simplest approximation with the exchange-correlation energy derived from an
uniform electron gas:

Exc [n0 (r)] =

∫
εxc (n0 (r))n0 (r) dr . (2.28)

Here εxc is the exchange correlation energy per particle of the uniform electron gas. As
a consequence the LDA is only exact for the uniform electron gas. Still it is widely used
to this day. This accounts for the realization that the LDA obeys the sum rule that ex-
presses the normalization of the exchange-correlation hole and the computational efficiency
in comparison to higher levels of the Jacob’s ladder [11].

Generalized Gradient Approximation

In addition to the density n0 (r) the GGA following the spirit of a Taylor expansion also
includes the density gradient ∇n0 (r):

Exc [n0 (r)] =

∫
εxc (n0 (r) , |∇n0 (r) |)n0 (r) dr , (2.29)

this accounts for the in-homogeneity of the exchange-correlation hole density. One com-
monly used GGA functional is the PBE-GGA [20] named after the authors John P. Perdew,
Kieron Burke and Matthias Ernzerhof. In this thesis the PBE-GGA functional is used for
all calculation, still the derived coarse-grained models are equally applicable to other ap-
proximations of the exchange-correlation functional.

2.1.4 Plane Wave Basis Set

Once the exchange-correlation functional Exc [n0 (r)] is approximated the next challenge is
the computationally efficient representation of the wave functions of the non-interacting
electrons ϕi(r). This is achieved by defining a set of functions {ψα (r)}Mα=1 to represent the
wave functions. Such a set of functions is referred to as basis set:

ϕi(r) =

M∑
α=1

cαψα (r) . (2.30)

Here cα are the coefficients of the basis set and ψα (r) are the basis functions of the basis
set. The choice of basis set depends on the periodicity of the material system. For the
calculations of crystal structures a supercell approach with periodic boundaries is favourable
over an orbital based basis set or a real-space basis set. In the following the plane-wave
basis set is introduced based on the review articles [21, 22].
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2.1 Density Functional Theory

Brillouin Zone

For a periodic crystal lattice, each lattice point R can be identified as a summation over
the lattice vectors ai, multiplied by an integer ni, with the lattice vectors ai spanning the
crystallographic unit cell:

R = n1a1 + n2a2 + n3a3 . (2.31)

In addition based on the periodicity of the crystal structure, the reciprocal lattice is defined
as the Fourier transform of the crystal lattice:

b1 = 2π
a2 × a3

det(a1a2a3)
. (2.32)

With b2 and b3 being defined analogously. Finally the unit cell of the reciprocal lattice is
the Brillouin zone.

Bloch’s Theorem

In accordance with Bloch’s theorem, the wave function in a periodic crystal can be separated
in a cell-periodic part and a wavelike part:

ϕi(r) = ϕn,k(r) = un,k(r)eikr . (2.33)

Here the cell-periodic part un,k(r) is defined by the periodicity requirement un,k(r + R) =
un,k(r). As a consequence it is sufficient to determine the wave function ϕi(r) of a periodic
crystal in the first Brillouin zone.

K-point Mesh

For this determination the cell-periodic part of the wave function un,k(r) is represented in
a plane wave basis set:

un,k(r) =
∑
G

cn,k(G)ψn,k(r) =
∑
G

cn,k(G)eiG·r . (2.34)

Based on the on the finding that close k-points have approximately similar wave functions a
small sampling of k-points is sufficient. In the following the 3-dimensional k-point mesh for
a cubic supercell is denoted as qx×qy×qz with κj k-points along each axis κj = qx = qy = qz
and a total of κ3

j k-points. The k-point mesh with the convergence parameter κj controls
the sampling of the wave function. With increasing κj the Brillouin zone sampling increases
and the controllable error in the wave function and all derived properties decreases.
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2 Theoretical Background

Figure 2.1: k-point mesh and εi: 2D illustration of a 4×4 k-point mesh in each Brillouin zone
(light-grey squares) of a reciprocal lattice. When the energy cut-off is increased
continuously (from the blue circle to the blue dotted circle) additional k-points
are included. The discretisation of the k-point mesh results in a discontinuous
increase in the number of plane waves, which causes fluctuation in the energy.

Energy Cut-off

The summation over all wave vectors G in Eq. 2.34 results in an infinite sum. So to further
increase the computational efficiency a plane wave cut-off or energy cut-off εi is introduced
to restrict the number of wave vectors G in the basis set:

~2

2me
|G + k|2 < εi . (2.35)

Only reciprocal G vectors that fulfil this inequality are considered. With increasing energy
cut-off εi higher frequency contributions to the wave functions are included, which results
in a more complete representation of the wave function ϕi(r). As a consequence of the
increasing completeness of the wave functions the total energy decreases. This decrease
is homogeneous with increasing energy cutoff εi at the cost of increasing computational
resource requirements. The energy cut-off εi is identified as the second convergence param-
eter. Increasing the energy cut-off, improves the the representation of the wave function
in the plane wave basis set and decreases the controllable error related to the limited
number of plane waves.

Plane Wave Jumps

The increase of the k-point mesh convergence parameter κj and the increase of the plane
wave basis set convergence parameter, the energy cutoff εi, both reduce their corresponding
controllable errors contributing to the total controllable error of the wave function. Still
in addition to the individual controllable errors, the coupling of both results in a third
controllable error, the plane wave jumps. The coupling of the energy cutoff and the
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k-point mesh is illustrated in Fig. 2.1. The 2D 4 × 4 k-point mesh in each Brillouin zone
(light-grey squares) is used to evaluate the wave function with the blue circle indicating
the energy cutoff εi and limiting the maximum wave vector G. When the energy cut-off
εi is increased (from the solid blue circle to the dotted blue circle) additional k-points are
included for the representation of the wave function. As the consequence of the discretisation
k-point mesh, the increase in the number of plane wave is discontinuous, even when the
energy cutoff εi is increased continuously. This discontinuous increase in the total number
of plane waves results in fluctuations in the energy - the plane wave jumps [23].

These fluctuations depend on both convergence parameters εi and κj . For a finer k-
point mesh the frequency of the increases in the number of plane waves increases. As a
consequence the amplitude of the plane wave jumps decreases. In the same way an increase
of an already large energy cutoff leads to an inclusion of more discrete k-points, resulting
in more individual jumps, each with a lower amplitude. So the plane wave jumps can
be controlled with both convergence parameters εi and κj independently. In Chap. 5 the
convergence of the three controllable errors is analysed in detail to predict the required
convergence parameters εi and κj to achieve a predefined convergence goal.

Crystal Symmetry

By aligning the k-point mesh with the high symmetry planes and axis of the crystal lattice
the number of k-points which have to be evaluated can be reduced. This is based on the
wave function at symmetrically equivalent k-points being identical, so the calculation of the
wave function at one of the symmetrically equivalent k-points is sufficient. The reduced
set of k-points are commonly referred to as irreducible k-points. For the systematic and
computationally efficient construction of the k-point mesh the Monkhorst Pack method [24,
25] is applied. It defines the positions of the k-points for a cubic crystal lattice with the
lattice constant a and a k-point mesh with a grid of qx × qy × qz by the vector k:

k = (kx,r, ky,r, kz,r)π/a . (2.36)

With the components ki,r for the axis {x, y, z} being a function of the total number of
k-points in the corresponding direction qi and an integer ri from 1 to qi:

ki,r =
2ri − qi − 1

2qi
. (2.37)

The construction is illustrated in Fig. 2.2 for an 2D Monkhorst-Pack k-point mesh for a
hexagonal crystal. The shaded region indicates the irreducible k-point mesh based on the
crystal symmetry. More recently algorithms from informatics [26–29] have been introduced
with the aim to generate computationally more efficient k-point meshes and improve the
convergence of the controllable k-point mesh related error. Still the convergence of the
controllable error remains a manual process, which requires human expertise and has to be
repeated for every material system. To address this a coarse-grained model is developed in
Chap. 5, which for a given convergence goal of the controllable error predicts the required
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Figure 2.2: Monkhorst-Pack mesh: 2D illustration of a 5× 5 k-point mesh for a hexagonal
lattice cell following the Monkhorst-Pack construction, with the shaded region
highlighting the reduced k-point mesh based on symmetry optimisation. Based
on an illustration from [22].

convergence parameters εi and κj . This coarse-grained model is based on Monkhorst Pack
method for comparison with existing studies, still it can be extended to include other method
as well.

Electronic Smearing

The “smearing” function fi is introduced for two purposes: On the one hand it represents
the temperature dependent “smearing” of the electronic occupation and on the other hand
it is introduced to interpolate between the discrete k-points, especially around the Fermi
energy. This interpolation improves the numerical stability related controllable error of the
electronic self consistency field convergence. At the same time it introduces and additional
intrinsic error of the interpolation. For an equilibrium calculation at Tel = 0 K the discrete k-
points represent delta functions δ(k) which sample the product of the occupation represented
by a step function S(εi(k)− EF ) and the band energy εi(k). The step function is 1 up to
the Fermi energy EF and 0 above the Fermi energy. This can be written as integration over
the first Brillouin zone:

Ii =

∫
BZ
εi(k) · S(εi(k)− EF )dk =

∫
BZ
εi(k) · f(εi(k))dk . (2.38)

In this case Ii is the charge of the band εi(k). Still this integration over the step func-
tion S(εi(k) − EF ) is computationally inefficient as the error in the determination of the
Fermi energy EF is directly related to the density of the k-point mesh. So various “smear-
ing” functions f(εi(k)) have been introduced to interpolate between the discrete k-points,
especially around the Fermi energy EF .

One physically motivated approach is the use of Fermi-Dirac distribution to account for
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2.1 Density Functional Theory

the smearing of the electronic occupations at finite electronic temperatures Tel [15, 30]:

f(εi(kj), Tel) =
1

exp ((εi(kj)− EF ) / (kBTel)) + 1
. (2.39)

Based on the normalisation with the product of electronic temperatures Tel and the Boltz-
mann constant kB the width of the smearing around the discrete position is related to the
electronic temperatures Tel. In addition with the normalisation of the Fermi-Dirac distri-
bution the method remains variational with respect to partial occupations. So the Fermi
smearing methods is commonly applied for finite temperature calculations.

For equilibrium calculation at Tel = 0 K the Methfessel-Paxton smearing [31] is com-
monly used. It is replaces the delta function of the discrete k-points with Hermite polyno-
mials. This has the advantage that for a finite width σ of the distribution the results for
σ → 0 can be efficiently extrapolated. In analogy to the Fermi smearing it also remains
variational with respect to partial occupations and is therefore suitable for crystal structure
optimisations, to determine the ground-state structure.

Still for high precision calculation the finite width σ introduces another controllable
error with convergence parameter σ. To address this limitation and alternative approach
is the direct interpolation between the k-points in the first Brillouin zone with the tetrahe-
dron method. This does not remain variational with respect to partial occupations and is
therefore not suitable for the calculation of atomic forces, still by removing the additional
convergence parameter it is the most suitable method for calculating total energies. The
only limitation of the tetrahedron method is that the linear interpolation overestimates pos-
itive curvature and underestimates negative curvatures. This is improved with the Blöchl
correction [32, 33] which leads to faster convergence with increasing convergence param-
eter κj without the requirement of an additional convergence parameter. Based on this
comparison the tetrahedron method with Blöchl correction is selected for the uncertainty
quantification in Chap. 5. In addition this enables the comparison with other high precision
DFT calculation [34], which also use the tetrahedron method with Blöchl correction. A
more detailed discussion of the different “smearing” methods and their various application
is available in the review article [22].

Pseudopotentials

The selection of the irreducible k-points based on the crystal symmetry and the electronic
smearing both decrease the required k-point mesh density controlled by the convergence
parameter κj , still the energy cut-off εi remains unaffected. A high energy cut-off εi is
required to resolve high frequency wave functions. As a consequence, plane wave basis sets
are computationally efficient for the delocalized wave functions of the valence band electrons
but they are less suitable for the core electrons. With decreasing distance from the nucleus
the potential energy decreases and the kinetic energy increases. This increase in kinetic
energy results in high frequency oscillations around the core region, which require a higher
energy cut-off εi. At the same time the contribution of the core region, which requires a
higher energy cut-off εi, to the bulk properties is negligible.
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Figure 2.3: Pseudopotential: Comparing the wave function (upper blue dashed line) of the
Coulomb potential (lower blue dashed line) with the approximated pseudopo-
tential (lower red line), which neglects the high frequency oscillations of the
wave function (upper red line) around the core region indicated by rc.

To address this limitation pseudopotentials are introduced, which reproduce the poten-
tial for the valence and semi-core electrons, while the core electrons are are neglected. Such
a pseudopotential is illustrated in Fig. 2.3. The lower blue line represents the Coulomb po-
tential and the upper blue line is the corresponding wave function. In analogy the lower red
line represents the pseudopotential and the upper red line the corresponding wave function.
For the cut-off radius r > rcut both potentials and their corresponding wave functions agree,
while below the cut-off radius r < rcut the potentials and the corresponding wave functions
differ. The challenging part is to identify the cut-off radius rcut or correspondingly divide
the available electrons in core electrons and semi-core or valence electrons. Commonly DFT
simulation codes provide multiple pseudopotentials with varying number of core electrons.
For the construction of pseudopotentials various approaches are available, two of those are
briefly introduced in the following:

• The linearized augmented plane wave plus local orbitals (LAPW+lo) [35] approach
divides the real space in two distinct regions: Non-overlapping spheres centered around
the positions of the ions, which represent the core region of the potential and are
represented by an atomic like basis. The rest, the area outside the spheres, describes
the smooth crystal wave function and is represented with a plane wave basis set. The
challenge of this approach is to match both wave functions in real space at the edge
of the spheres and in energy space which results in a high computational cost. At the
same time this separation leads to a good agreement with all electron calculation and
the highest accuracy.

• An alternative approach are the projector augmented wave functions (PAW) [36],
which combines three different contributions. Here, the first contribution is the smooth
wave function developed as plane waves over the full crystal. The second contribution
are additional smooth wave functions defined inside the spheres around the positions
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of the ions to cancelled the first contribution. This second contribution is developed in
the same radial basis as the third contribution the strongly oscillating wave function
inside the spheres. By combining the second and the third contribution, which are
both defined inside the sphere and based on the same radial basis the matching of the
wave function in real space and in energy has to be performed only once.

More recently, pseudopotentials that were primarily developed for calculating the self-energy
of many-body systems using the Greens function G and the screened Coulomb interaction
W (GW-Calculation) [37], have been identified empirically to be most accurate even for non-
GW-calculations [34]. So, while no GW-calculation are used in this thesis the PBE-GGA
GW pseudopotentials which were initially parameterized for GW-calculation are selected
as default all DFT calculation.

Kinetic Energy Correction

Even with pseudopotentials, it is empirically observed that the total energy of a single DFT
calculation over energy cut-off εi converges slower than the difference of two total energy
calculations of the same atomistic structure at different volumes. This effect is based on the
contribution of the core region to the convergence of a single DFT calculation, while this
contribution cancels for energy differences. To address this, limitation the kinetic energy
in the atomic limit at a finite energy cutoff is subtracted. This correction accelerates the
convergence of total energy calculations over energy cut-off εi at the cost of the energy cut-
off convergence being no longer homogeneous. Empirically, it is found that this correction
addresses 80% of the total error for free electron metals [38]. As a consequence, this ap-
proximation is also included in all calculations of this thesis even though the improvement
is limited to the convergence of individual energies.

2.2 Interatomic Potentials

Based on the introduction in the previous chapter DFT is widely used for calculation at a
temperature of 0 K. This is the result of a low intrinsic error and low controllable errors
at affordable computational costs in comparison to other ab initio methods [34]. The
controllable errors are studied in more detail in Chap. 5. Still, the cubic scaling with the
number of particles limits the time and length scales of DFT calculations. As a consequence,
the calculation of thermodynamic properties, which requires the sampling of a large number
configuration, as well as the development process of thermodynamic simulation protocols
are limited. An alternative approach is starting from the Born-Oppenheimer approximation,
introduced in Sec. 2.1.1 and predicting the PSE with a coarse grained model based on the
atomic positions. So the explicit calculation of the electrons is neglected and the dynamics
of the atoms are calculated based on classical mechanics rather than quantum mechanics.
One type of these coarse grained models are interatomic potentials, which by restricting the
interaction of the interatomic potential to a maximum real space cut-off Rcut, scale linearly.
This is achieved, as the contributions to the energy EI of atom I is limited to only the
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neighbouring atoms J with:

|RJ −RI | < Rcut . (2.40)

This linear scaling of interatomic potentials enables an atomistic understanding of otherwise
inaccessible processes, like the coupling of material stiffness and hardness under nanoinden-
tation [39]. These nanoindentation calculations require over a million atoms, which makes
them inaccessible for DFT. At the same time the simulation results can be compared to
experimental nanoindentations, even though the time scale of indentation in simulations
is orders of magnitude smaller than the experimental time scale. The complexity of inter-
atomic potentials is differentiated based on three categories:

Atomic Neighbourhood Descriptor: It provides a unique representation of the atomic co-
ordinates while maintaining the crystal symmetries. These descriptors range from
pair interactions to many-body terms [40].

Kernel: It maps the atomic neighbourhood descriptors to the potential energy. The imple-
mentation of the kernels range from analytical functions to neural networks [40].

Number of Fitting Parameters: With increasing number of fitting parameters the flexibil-
ity increases. .

With increasing flexibility it is possible to reproduce a more complex energy surface, while
at the same time the computational cost increases. This results in a Pareto front of precision
over computational cost [41–43]. In order to classify the reference data for the fitting of an
interatomic potential, three levels are defined [44]:

1. Level: These are energies and forces calculated with DFT.

2. Level: These are material properties that can be calculated with DFT, e.g. the equilib-
rium bulk modulus.

3. Level: These are material properties that are inaccessible with DFT, but can be com-
puted with interatomic potentials and measured experimentally, e.g. the hardness
mearured by nanoindentation.

Historically, interatomic potentials were parameterised based on experimental measure-
ments of the second and third level properties. They are referred to as classical interatomic
potentials. In contrast, more recent interatomic potentials are primarily fitted to the first
level and are commonly referred to as machine learning potentials based on the complexity
of their kernels. As a consequence, the intrinsic error of such a machine learning inter-
atomic potential is at best equal to the total error of its DFT reference data, which again
highlights the need of quantifying the DFT controllable error, discussed in Chap. 5.

The primary advantage of the modern machine learning potentials is, that the process
of fitting them is automated. Hence, the selection of the DFT reference calculation, the
degree of many-body terms of the atomic neighbourhood descriptors, the parameterisation
of the kernel and the cut-off radius Rcut, become convergence parameters. So the user of
a machine learning potential fitting method, can adjust the corresponding controllable
errors. In addition the different convergence parameters are coupled to the application of
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the interatomic potential, as the parameterisation of an interatomic potential for a single
thermodynamic phase requires less complexity than the parameterisation of a transferable
interatomic potential, which reproduces the full phase diagram. Opposing to the flexibility
of the machine learning interatomic, classical interatomic potentials are typically param-
eterised once by the author and cannot be easily modified by the user of the interatomic
potential. So for classical interatomic potentials the total error is not controllable and can
be summarized as a combined intrinsic error. While the different types of interatomic
potentials are discussed in more detail below, already the comparison of the different error
types highlights the importance of addressing the technical complexity. By automating the
process of fitting an interatomic potential and providing a systematic basis to extend both
the descriptors of the atomic neighbourhood and the kernels the intrinsic error of classical
interatomic potentials becomes controllable.

2.2.1 Classical Interatomic Potentials

In the subsequent part, selected classes of interatomic potentials for metallic systems are
briefly introduced, following the review article [45].

Pair Potentials

The simplest interatomic potentials are the pair or two-body potentials with the potential
being defined as a function of the distance between two atoms RIJ , respectively. The Morse
type potential [46] is such a pair potential with the advantage that all potential parameters
are level two properties, namely the dissociation energy D0, the equilibrium bond distance
R0 and α, the width of the potential, which is related to the force constant at the equilibrium
bond distance Req:

VMorse(RIJ) = D0

(
e−2α(RIJ−R0) − 2e−α(RIJ−R0)

)
. (2.41)

As a consequence, the Morse type potential can be parameterised directly with experimen-
tal measurements [47]. In addition, the Morse type potential can be used to analyse the
dependence of the simulation result on the dissociation energy, equilibrium bond distance
and equilibrium bond force constant. This enables parameter studies for level three prop-
erties like the hardness measured by nanoindentation [39]. The major limitation of pair
potentials is that by construction the elastic constants C12 and C44 are equal, which is one
of the Cauchy relations [48]. As a result, the cohesive energy equals the vacancy formation
energy [49]. While for inert gases and ionic crystals these approximations are sufficient, they
are incorrect for metals as the metallic nature of the bonds is neglected. Hence, the distance
of surface atoms to the bulk is larger than the lattice distance in bulk for simulation with
pair potentials while experimentally the opposite is true.
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Embedded Atom Method

The embedded atom method (EAM) [50, 51] addresses this limitation of the pair potentials
by adding many-body interactions depending on the electron density ρ̄I to account for the
metallic bonds. The total energy of the system is defined as:

Etot =
1

2

∑
I 6=J

VPair(RIJ) +
∑
I

FI(ρ̄I) . (2.42)

With the embedding function FI being a function of the sum of the electron densities ρ̄I :

ρ̄I =
∑
J 6=I

ρatom(RIJ) . (2.43)

The electron density of the surrounding atoms ρatom(RIJ) as well as the pair-potential
VPair(RIJ) are parameterized depending on the specific type of EAM potential. In partic-
ular, as the electronic structure is not calculated explicitly for interatomic potentials, the
electron density ρatom(RIJ) is approximated as a function of the atomic distances RIJ .
This approach is sufficient for most metals but fails for directional bonds. In particular,
sp-valent semi-conductors and sd-valent transition metals are described inaccurately [45].
In thermodynamic simulations EAM potentials are commonly used to study the tempera-
ture dependence of material properties like elastic constants [52–54] and more recently even
the calculation of phase diagrams [55, 56]. This is enabled by the computationally afford-
able analytical form which is already sufficiently complex to include the required physics to
predict the stability of different phases.

Modified Embedded Atom Method

To take into account the angular-dependence of directional bonds or three-body interactions,
the electron density in the modified embedded atom method (MEAM) is treated as a tensor
quantity [57]. With this, the total energy of the system is defined as:

Etot =
1

2

∑
I 6=J

VPair(RIJ) +
∑
I

UI(nI) , (2.44)

with nI :

nI =
∑
J 6=I

ρatom(RIJ) +
∑

J<KJ,K 6=I
f(RIJ)f(RIK)g[cos(θIJK)] , (2.45)

and θIJK as the angle between the bond of atom I and atom J - RIJ and the bond of atom
I and atom K - RIK . The remaining functions f , g as well as U and the pair potential Vpair

have to be parameterised. The MEAM potentials are an extension to the EAM formalism.
Still, the EAM potentials remain more popular which is indicated by the number of EAM
potentials in existing potential databases compared to MEAM potentials [58–60].
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2.2.2 Machine Learning Potentials

To automate the fitting of interatomic potentials, their construction is abstracted into two
parts: The descriptors of the atomic neighbourhood QI for each atom I based on the atomic
environment of all neighbouring atoms within the cutoff radius Rcut and a kernel EML for
mapping the descriptors onto an energy :

Vtot =
∑
I

EML(QI) . (2.46)

In this formalism the pair potentials, EAM potentials and MEAM potentials can be iden-
tified as analytical kernels of the atomic neighbourhood descriptors: pair distance RIJ ,
electron density ρ̄I and angle θIJK .

Atomic Neighbourhood Descriptors

The atomic neighbourhood descriptors for the interatomic potentials are similar to the struc-
ture descriptors used for structure analysis, like the calculation of the Voronoi volume around
each atom, the common neighbour analysis (CNA) or the Steinhardt parameters [61]. The
aim of the atomic neighbourhood descriptors is to map the 3-dimensional atomistic struc-
ture to a scalar, while accounting for symmetry and still being able to differentiate unique
configurations. So, the atomic neighbourhood descriptors for machine learning potentials
are constructed as basis sets to describe atomic structures with increasing complexity [62].

Kernels

Besides, the more systematic atomic neighbourhood descriptors modern machine learning
potentials also implement a wide range of different kernels ranging from linear regression
models [43, 62–64] over Gaussian processes [65] to neuronal networks [66]. While potentials
are commonly published as a fixed combination of atomic neighbourhood descriptors with
the corresponding kernels in general arbitrary combination are possible.

Active Learning

Based on the automation of the fitting process in combination with the expandability of
the atomic neighbourhood descriptors and the kernels, machine learning potentials enable
the user to control the error of the parameterisation of the interatomic potential. This
process can be further automated, by using the atomic neighbourhood descriptor space
to differentiate between interpolation and extrapolation. Based on this criteria a given
structure can be either evaluated by the interatomic potential or by DFT to extend the
reference data set and reparameterise the interatomic potential. This process of continuously
updating the interatomic potential with additional DFT calculation is referred to as active
learning [67, 68] or on-the-fly force field generation [69].
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The development of machine learning interatomic potentials is commonly referred to
as one of the primary application of machine learning for atomistic simulation. Still this
overview demonstrates that the development of extendable atomic neighbourhood descrip-
tors and the automation of the fitting process also contribute to the success of the machine
learning potentials in addition to their kernels. So the automation of existing simulation
protocols is going to be one focus of this thesis. While the applications in this thesis focus
on classical pair potentials and EAM potentials, the simulation protocols are developed
independently of the type of interatomic potential. So they can also be applied to machine
learning potentials. The only reason to choose classical potentials over machine learning
potentials are their more affordable computational costs.

2.3 Molecular Dynamics

After the introduction of different methods for atomistic engines in the previous two sections,
the focus of the next two sections is the calculation of finite temperature properties. For this
purpose various thermodynamic approximation, along the y-axis of Fig. 1.1 are introduced,
starting with molecular dynamics (MD). Based on the Born-Oppenheimer approximation
introduced in Sec. 2.1.1 the motion of the nuclei is treated independently of the movement of
the electrons. So the movement of the nuclei can then be approximated classically by solving
Newton’s equations of motion. This applies to both, the DFT calculation and the calculation
with interatomic potentials. While the previous two sections covered the calculation of
total energies for atomistic structures, the forces for plane wave DFT calculation can be
calculated, based on the Hellmann–Feynman theorem [70] and for interatomic potentials
based on the derivative of the potential energy surface. This includes interatomic potentials
with complex kernels, e.g. the neuronal network potentials [66]. In the following, molecular
dynamics for the sampling of thermodynamic properties is introduced based on the book of
Marx and Hutter [71].

2.3.1 Verlet Integration

While solving Newton’s equations of motion analytically is not possible for a system with
several hundred atoms, it is possible to solve them numerically. By discretizing time into n
equal timesteps of length ∆t the Verlet integration [72] can be written as:

RI(t+ ∆t) = 2RI(t)−RI(t−∆t) +
FI(t)

MI
∆t2 +O(∆t4) . (2.47)

With FI(t) as the force acting on atom I, which equals a Taylor expansion in time. To
improve the sampling of thermodynamic properties, it is reasonable to explicitly include
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Abbr. Nr. part. Volume Pressure Energy Enthalpy Temperature

NVE fixed fixed fixed

NVT fixed fixed Thermostat

NPT fixed Barostat Thermostat

NPH fixed Barostat fixed

µVT fixed Thermostat

Table 2.1: Comparison of the available ensembles in atomistic simulations, their abbrevia-
tions (Abbr.) and their implementation with barostats and thermostats. Here Nr.
part. defines the number of particles and the enthalpy is defined as H = E+V T .

the velocities vI(t) in the propagation [73]:

RI(t+ ∆t) = RI(t) + vI(t)∆t+
1

2

FI(t)

MI
∆t2 +O(∆t4) , (2.48)

vI(t+ ∆t) = vI(t) +
1

2

[
FI(t) + FI(t+ ∆t)

MI

]
∆t+O(∆t3) . (2.49)

Both variants of the Verlet integration are time invariant [74] and require only the forces
FI(t) to be calculated for a given configuration RI(t). For the calculations in this thesis
the timestep ∆t is set to 1 fs, which results in a cut-off of the normal modes of frequencies
in the THz regime.

2.3.2 Barostats and Thermostats

To equilibrate the atomic system at a finite temperature T , a thermostat is applied and alter-
natively a barostat can be applied to control the pressure p. Finally, the chemical potential
µ can be adjusted by adding or removing atoms. With these, the following thermodynamic
ensembles can be realised: microcanonical ensemble (NVE), canconical (NVT), grandcan-
conical (µVT), isothermal-isobaric (NPT) and isoenthalpic-isobartic (NPH). The different
ensembles and their implementation using barostats and thermostats are summarized in
Tab. 2.1. In the following, the stochastic Langevin method as well as the Nosé-Hoover
method are briefly introduced.

Langevin Thermostat

The Langevin method describes the motion of the atoms as Brownian motion embedded in
a sea of much smaller fictional particles [75]. The momenta pi are defined as:

dRi

dt
=

pi
Mi

. (2.50)

25



2 Theoretical Background

With the derivative of the momenta defined as:

dpi
dt

=
∂V (R)

∂Ri
− γpi + δp . (2.51)

Here the damping constant γ represents the drag of the fictional particles and δp the random
kicks given from the fictional particles to the atoms. These random kicks follow a Gaussian
distribution:

ρ(δp) =
1√

2πσ2
exp

(
−|δp|

2

2σ2

)
. (2.52)

With the standard deviation defined as:

σ2 = 2γMikBT . (2.53)

The stochastic approach of the Langevin method enables efficient computation which lead
to its popularity.

Nosé-Hoover Thermostat

The second and more versatile method is the Nosé-Hoover method [76]. It extends the
Hamiltonian with a heat bath resulting in an additional degree of freedom s. The resulting
Hamiltonian can be written as:

Ĥ =
∑
I

p′I
2

2MIs2
+

1

2

∑
I 6=J

V (R′I −R′J) +
p2
s

2Q
+ gkBT ln (s) , (2.54)

with the virtual coordinates R′I and p′I defined as:

R′I = RI , p
′
I =

pI
s

and t′ =

∫ t dτ

s
. (2.55)

and Q as the effective mass associated with s, g as the number of degrees of freedom, com-
monly 3Nnuc + 1 and ps as the momentum of s. With the additional degree of freedom
the Nóse-Hoover method is often referred as an extended system method. A more detailed
explanation with a focus on the implementation is available in the literature [77]. Following
the constraints listed in Tab. 2.1 both methods can be used to realise either a thermostat or
a barostat. Empirically the Langevin thermostat is found to perform better for small super-
cells, based on the stochastic damping force and the Nosé-Hoover thermostat is preferred
for larger supercells, based on the explicit treatment of the heat bath. As a consequence
the Langevin thermostat is mainly applied for DFT MD calculation while for MD calcula-
tion with interatomic potentials the Nosé-Hoover thermostat is commonly preferred. This
also applies to the MD calculation in this thesis, in particular for the melting temperature
calculation in Chap. 6.
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2.4 Computing Free Energies

With MD methods from the previous section in combination with a atomistic engines to
calculate energies and forces from Sec. 2.1 and Sec. 2.2 it is possible to compute atomistic
trajectories at finite temperatures. Still the comparison of multiple phases in a single MD
calculation is challenging, the more appropriate approach is to compute the free energies of
the individual phases and compare those. This is in analogy to the CALculation of PHAse
Diagrams (CALPHAD) method, which is introduced in Sec. 2.4.3. With thermodynamics
simulation the energy eigenvalues of a given atomic configuration Eξ(V ) are connected with
the free energy F (V, T ). Using the change in the classical partition function Z(V, T ), which
is based on the sum of all energy levels Eξ(V ) in a given volume V at a specific temperature
T , as starting point the free energy F (V, T ) is defined as:

Z(V, T ) =
∑
ξ

e−βEξ(V ) with β = (kBT )−1 , (2.56)

F (V, T ) =− kBT lnZ(V, T ) . (2.57)

The Gibbs energy G(p, T ) is then calculated from the free energy F (V, T ) using a Legendre
transformation to compare phases at given temperatures T and pressures p:

G(p, T ) =F (V, T ) + pV . (2.58)

Still, the limitation of this approach is that the partition function cannot efficiently be
computed directly. Thus, two alternative approaches are introduced in the following par.
Afterwards with the free energy the stability of a given phase at a given temperature T and
pressure p can be derived by comparing the free energy of all relevant phases in the phase
diagram, which is going to be the third part of this section. The phase with the lowest free
energy is the thermodynamically stable one.

2.4.1 Adiabatic Approach

Under the assumption of the adiabatic theorem [78] it is possible to separate the different
contribution of the free energy surface. Following the literature [79, 80] this decoupling can
be written as:

F (V, T ) = E0(V ) + Fel(V, T ) + Fqh(V, T ) + Fah(V, T ) + Fmag(V, T ) + Fcpl(V, T ) . (2.59)

Starting with the equilibrium energy at a temperature of 0 K E0(V ), the electronic con-
tribution Fel(V, T ), the quasi-harmonic contribution Fqh(V, T ), the anharmonic contribu-
tion Fah(V, T ), the magnetic contribution Fmag(V, T ) and finally coupling contributions
Fcpl(V, T ) are added. The different contributions are briefly explained in the following:

Ground State Energy

The ground state energy E0(V ) is evaluated at the equilibrium volume at T = 0 K, which
can either be calculated by optimizing the volume of the supercell iteratively to achieve a
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Figure 2.4: Energy-volume curve for a primitive aluminium supercell. The blue dots rep-
resent seven DFT calculations equally spaced around the initial guess of the
equilibrium volume and the orange dashed line represents the Birch-Murnaghan
fit of the seven DFT calculations.

minimal potential energy or by fitting an equation of state (EOS). Based on the plane wave
jumps introduced in Sec. 2.1 the second option is preferred for cubic cells. The EOS were
initially derived for experimental applications and have been adopted in the DFT community
since then, such that they allow to derive the equilibrium properties, equilibrium energy
E0, equilibrium volume V0, equilibrium bulk modulus B0 and the derivative of the bulk
modulus with respect to the pressure B′0 = dB0

dp , directly from fitting a set of energy-volume
pairs E(V ). This approach has two advantages for plane wave DFT calculation:

• On the one hand, as the total number of plane waves is correlated to the volume of
the simulation cell, the calculations of individual energy volume pairs with varying
number of plane waves reduces the Pulay stresses [81].

• On the other hand with the fitting of multiple energies E(V ) around the equilibrium
volume the plane wave jumps [23] are interpolated, improving the prediction of the
equilibrium properties.

In Fig. 2.4 an energy-volume curve for a primitive aluminium supercell is plotted (blue dots)
in combination with the fit of the EOS. The commonly used EOSs in the DFT community
are the Murnaghan EOS [82], the Birch-Murnaghan EOS [83] and the Vinet EOS [84]:

EMurnaghan(V ) =E0 +B0V0

[
1

B′0(B′0 − 1)

(
V

V0

)1−B′
0

+
1

B′0

V

V0
− 1

B′0 − 1

]
, (2.60)

EBirch-Murnaghan(V ) =E0 +
9B0V0

16
(η2 − 1)2

[
6 +B′0(η2 − 1)− 4η2

]
, (2.61)

EVinet(V ) =E0 + 2 · 2B0V0

(B′0 − 1)2

− 2B0V0

(B′0 − 1)2

[
5 + 3B′0(η − 1)− 3η

]
exp

(
−3(B′0 − 1)(η − 1)

2

)
. (2.62)

With η =
(
V
V0

) 1
3

being a relative measure for the distance from the equilibrium volume.

While for V = V0 all equations result in E(V0) = E0, the same energy-volume pairs E(V )
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fitted with the three EOSs yield similar, but not exactly the same equilibrium parameters
{E0, V0, B0, B

′
0}. This can be identified as intrinsic error of the corresponding EOS, or

a controllable error in case the EOS can be systematically extended, e.g. a polynomial
fit.

On an abstract level the fitting of the EOS is a coarse grained model with a hierarchy
of errors. It has internal errors in calculating the equilibrium parameters from a given set
of energy volume pairs and external errors which are related to the methodology used to
calculate the energies for the energy volume pairs. Finally both error types are coupled,
as fluctuation of the energy volume pairs are interpolated by the fit of the EOS. As a
consequence, already the determination of the intrinsic and controllable errors for the
equilibrium parameters {∆E0,∆V0,∆B0,∆B

′
0} is challenging. At the same time, based on

the hierarchy of the coupling of errors, the calculation of the equilibrium parameters is a
prototypical application, which is computationally affordable compared to free energy calcu-
lation or the fitting of an interatomic potential. In Chap. 5 the different errors contributing
to the uncertainty of the equilibrium parameters are selected to study the propagation of
uncertainty systematically. Starting with the rapid prototyping of a simulation protocol,
followed by a parameter study and finally a coarse grained model is developed to predict the
uncertainty for the equilibrium parameters. With the coarse grained model it is then pos-
sible to compare the convergence of different fcc elements as well as calculate the required
convergence parameters to achieve a user defined convergence goal.

Electronic Contribution

The second contribution to the free energy F (V, T ) is the electronic contribution Fel(V, T ).
With the Fermi “smearing” method [15] the effect of the electronic temperature Tel can be
separated, by comparing the volume dependence of the ground state energy E(V ) at Tel = 0
from the previous section, with the volume dependence of the energy F̃el(V, T ) at a finite
temperature T :

Fel(V, T ) = F̃el(V, T )− E(V ) . (2.63)

The electronic contribution Fel(V, T ) can then be interpolated based on the dependence to
the electronic entropy Sel(T ):

Fel(V, T ) ≈ −TSel(T ) . (2.64)

Here the electronic entropy is parameterised based on the Fermi distribution f(εi(kj), T )
and the density of states D(εi(kj), T ) as [85]:

Sel(T ) = −kB
∫
D(εi(kj), T )sel(εi(kj), T )dε , (2.65)

sel(εi(kj), T ) = [f(εi(kj), T ) ln f(εi(kj), T ) + (1− f(εi(kj), T ) ln(1− f(εi(kj), T ))] (2.66)

Following the discussion in the previous section, the intrinsic error of the electronic con-
tribution is the limitation of the fit of the electronic entropy Sel(T ) and the controllable
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errors are related to the convergence parameters of the fit, the number of volumes V and
temperatures T which are included. These errors again couple with the errors of the in-
dividual total energy calculation for both the ground-state energy and the energy at finite
electronic temperatures. With the separation of the different contributions in the adiabatic
approach it is possible to identify the importance of the electronic contribution for selected
elements in particular for temperatures below T = 100 K [86].

Quasi-Harmonic Contribution

The third contribution of the adiabatic approach is the quasi-harmonic contribution. The
vibrational energy levels are populated following the Bose-Einstein statistics, instead of a
single frequency, like it is used in the Einstein harmonic oscillator, 3N frequencies, with N
being the number of atoms in the supercell, are used. For the quasi-harmonic approximation
the phonons with the frequencies ωi(V ) are non-interacting but temperature-dependent in
contrast to the harmonic approximation which does not contain the volume expansion with
temperature, which affects the resulting phonon frequencies:

Fqh(V, T ) =
1

N

3N∑
i

{
~ωi(V )

2
+ kBT ln

[
1− exp

(
−~ωi(V )

kBT

)]}
. (2.67)

By using the quantum mechanical oscillator rather than the classical oscillator the zero-
point energy is included, the energy levels are quantised and equally spaced. The phonon
frequencies can be calculated using the finite displacement method, which displaces atoms
within the harmonic regime from the equilibrium position at 0 K and measures the resulting
forces. The dynamical matrix Dk,l(V, T ), independent of the electronic excitations, can be
written as:

Dk,l(V, T ) :=
1

M

[
∂2E0(V )

∂Rk∂Rl

]
. (2.68)

To include the electron-phonon coupling non-adiabatic contributions are required. For the
adiabatic approach these are approximated with the coupling term Fcpl(V, T ) [87].

Anharmonic Contribution

Similarly, the explicit anharmonic contribution Fah(V, T ) cannot be calculated directly.
Instead of calculating the explicit anharmonic contributionm, it is necessary to calculate
the full vibrational contribution:

Fvib(V, T ) = Fqh(V, T ) + Fah(V, T ) . (2.69)

The explicit anharmonic contribution is then derived by subtracting the quasi-harmonic
contribution Fqh(V, T ) from the full vibrational free energy Fvib(V, T ). Nevertheless, based
on the complexity to compute the full vibrational free energy Fvib(V, T ) the anharmonic
contributions is commonly neglected. This results in an intrinsic error of the adiabatic
approach [19].
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Magnetic Contribution

This thesis is focused on non-magnetic elements, so the magnetic contributions are also
neglected. A detailed comparison of the currently available methodologies and their appli-
cations is available in the literature [88, 89].

Coupling Term

The coupling terms of electron-phonon coupling, electron-magnon coupling and magnon-
phonon coupling represent the non-adiabatic contribution to the free energy. While it is
possible to compute these coupling terms they are commonly neglected in the adiabatic
approach for non-magnetic elements. Again resulting in an additional intrinsic error of
the adiabatic approach [87].

2.4.2 Thermodynamic Integration

A secondary approach is to derive the free energy directly from an DFT molecular dynam-
ics [90] calculation. While this approach does not allow to separate the different contri-
butions, like the adiabatic approach does, it already includes the coupling terms and the
anharmonic contribution. Still two challenges remain:

• The quantum mechanical contribution to the vibrational free energy Fvib(V, T ) and
its coupling to the other contributions is missing. This is the result of choosing a
classical molecular dynamics approach, introduced in Sec. 2.3, rather than a quantum
mechanical path integral [91].

• The molecular dynamics calculation approximate the internal energy, still the free
energy cannot be computed directly without a reference system.

To address these limitations thermodynamic integration is applied to calculate the free
energy difference Fint(V, T ) of the classical harmonic oscillator and the molecular dynamics
calculation [92]. The free energy is then calculated as:

F (V, T ) = E0(V ) + Fqh, el(V, T ) + Fint(V, T ) . (2.70)

In this case Fqh, el(V, T ) includes both the electronic and the quasi-harmonic contribution
and is computed based on the phonons calculated at finite electronic temperatures.

Method

By mixing the forces according to the coupling parameter λ, the internal energy U(V, T ) as
a function of the coupling parameter can be written as:

Uλ(V, T ) = (1− λ)U0(V, T ) + λU1(V, T ) . (2.71)
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The resulting change of free energy ∆F can be calculated directly from the internal energy
Uλ(V, T ):

∆F =

∫ 1

0
dλ〈dUλ/dλ〉λ =

∫ 1

0
dλ〈U1 − U0〉λ . (2.72)

Combining this with the adiabatic approach the total free energy can be calculated as:

Fint(V, T ) =

∫ 1

0
dλ〈UDFT − Uqh, el〉λ . (2.73)

Here, the DFT internal energy UDFT(V, T ) is calculated with the corresponding Fermi
“smearing” at the corresponding temperature T . It therefore requires a high k-point mesh
sampling.

Upsampled Thermodynamic Integration using Langevin Dynamics

While the thermodynamic integration from the quasi-harmonic internal energy with elec-
tronic coupling Uqh, el to the fully anharmonic DFT internal energy UDFT is in principle
possible, it is computationally very expensive given the number of DFT timesteps ∆t that
have to be computed. The number of timesteps ∆t required for getting the free energy con-
tribution of the thermodynamic integration Fint(V, T ) converged depends on the similarity
of the two internal energy surfaces. Other alternative references for the thermodynamic
integration have been tested like the Einstein crystal [93], still the limitation remains. To
address this inefficiency an intermediate reference system is introduced, which can be com-
puted efficiently and which is as close as possible to the DFT reference. One choice is a
DFT calculation with low convergence parameters. As a consequence, the thermodynamic
integration is divided into two parts [19]:

Fint(V, T ) =

∫ 1

0
dλ〈UDFT, low − Uqh, el〉λ +

∫ 1

0
dλ〈UDFT, high − UDFT, low〉λ . (2.74)

By integrating from the quasi-harmonic internal energy with electronic coupling Uqh, el

first to a reference DFT internal energy with low convergence parameters UDFT, low and
afterwards from this intermediate reference to a DFT internal energy with high convergence
parameters UDFT, high the total computational time can be reduced. The first integration
still requires 104 steps while for the second less than 100 steps are sufficient [19]. In practice,
the second integration is even independent of λ and mainly a constant shift. Therefore, it
is sufficient to calculate the shift based on an average over independent samples:

〈∆E〉up =
1

M

M∑
u=1

(EDFT, low − EDFT, high) , (2.75)

with M , the number of independent structures. In this new approach, the upsampled
thermodynamic integration using Langevin dynamics (UP-TILD) [19], the free energy of a
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phase is finally calculated as:

F (V, T ) =E0(V ) + Fqh,el(V, T ) +

∫ 1

0
dλ〈UDFT,low − Uqh,el〉λ − 〈∆E〉up . (2.76)

With the combination of the thermodynamic integration and the up-sampling the DFT
calculation with the low convergence parameters require the most computational resources.
So the approach can be further improved by identifying an computationally more efficient
reference.

Two-stage Sampled Thermodynamic Integration using Langevin Dynamics

Based on the capabilities of the interatomic potentials introduced in Sec. 2.2 the two-stage
upsampled thermodynamic integration using Langevin dynamics (TU-TILD) method was
introduced [94]. It is using interatomic potentials as a second intermediate reference to
accelerate the thermodynamic integration to the free energy with low convergence DFT
calculation. The free energy is calculated as:

F (V, T ) = E0(V ) + Fqh,el(V, T ) +

∫ 1

0
dλ〈Upot − Uqh, el〉λ

+

∫ 1

0
dλ〈UDFT, low − Upot〉λ − 〈∆E〉up . (2.77)

Here, Upot is the internal energy calculated from the interatomic potential. In order to have
a sufficient agreement of the internal energy at a given temperature, it is necessary to fit an
interatomic potential specifically to the thermodynamic integration of a given phase at a
given concentration. In contrast to other interatomic potentials, these specific interatomic
potentials are not optimised for transferability, but rather for this specific use case only.
To additionally limit the number of required DFT calculations, only DFT calculations at
the highest temperature required for the thermodynamic integration are considered for
the parameterisation of the interatomic potential. As a result the parameterisation is less
accurate at low temperatures or for calculations that only consider small displacements
around the equilibrium position, like the calculation of phonons.

For the parameterisation of the interatomic potential, 1000 uncorrelated DFT snapshots
are used. Thereby, the following thermodynamic integration from the quasi-harmonic in-
ternal energy with electronic coupling Uqh, el to the internal energy of the potential Upot

requires only 150 steps [94], which equals a speed up to a factor 50. Finally, more recently
this methodology has been combined with machine learning interatomic potentials intro-
duced in the Sec. 2.2.2. The increased flexibility of these interatomic potentials enables the
extension of the chemical space beyond unaries and binaries up to five component high en-
tropy alloys [95]. With these extensions – the UP-TILD and TU-TILD method – as well as
combining them with machine learning interatomic potentials, it is now possible to calculate
thermodynamic properties up to the melting point as illustrated in Fig. 1.1. The important
achievement of the TILD methods is that many of the intrinsic errors of the adiabatic
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approach are replaced by controllable errors. This is in analogy to the comparison of
classical interatomic potentials and machine learning interatomic potentials in Sec. 2.2.

2.4.3 Phase Diagrams

Following the calculation of the free energy, the Gibbs energies of different thermodynamic
phases are compared to identify the one with the lowest Gibbs energy as the stable phase
for a given temperature T and pressure p. These ab initio predictions can be compared to
existing predictions of the phase stability based on the CALculation of PHAse Diagrams
(CALPHAD) method [3].

Calculation of Phase Diagrams

The CALPHAD method calculates the Gibbs energy of any phase based on the mixture of
the individual chemical elements. For this the Gibbs energy is approximated as:

Gφm = refGφm + cfgGφm + phyGφm + exsGφm . (2.78)

It combines the reference Gibbs energy refGφm based on the weighted Gibbs energies of the
individual endmembers with the configurational Gibbs energycfgGφm and the physical Gibbs
energy phyGφm which includes physical effects like magnetism and the additional term exsGφm
which includes all other contributions to the Gibbs energy. Based on this interpolation the
solution of two elements can be written as the Redlich-Kister polynomial [96]:

Gφm = xA
◦GA + xB

◦GB +RT {xA lnxA + xB lnxB}+ xAxB

nAB∑
i=0

LA,B:i(xA − xB)i . (2.79)

Here xA is the mole fraction of element A, xB is the mole fraction of element B, ◦GA is the
stability of element A in the sublattice, ◦GB is the stability of element B in the sublattice, R
is the molar gas constant and LA,B:i are the excess parameters. Based on a large database of
experimental measurements, the CALPHAD method has been successfully applied in both
research and industry [4].

Towards ab initio Phase Diagrams

Therefore, one goal of ab initio thermodynamics is to extend the existing experimental
databases, either by adding DFT calculation for metastable phases which are inaccessi-
ble experimentally or ideally by being able to calculate the phase diagram fully from ab
initio [97, 98]. As illustrated in Fig. 1.1 by the different colours the progress towards ab
initio phase diagrams is highly segmented. Each approach is a fixed combination of a given
atomistic engine, a corresponding thermodynamic approximation and a atomistic
structure generator. The approaches range from high precision DFT calculation as part
of the Delta project [34], focusing on the equilibrium parameters, over the TILD approaches

34



2.4 Computing Free Energies

explained in Sec. 2.4.2, to cluster expansion [99] and machine learning interatomic poten-
tials with active learning [68], up to approaches to calculate the full phase diagram with
free energies like variance constrained semi-grand-canonical ensembles [100, 101] or nested
sampling [102–104] and finally calculating the phase diagram with the CALPHAD method-
ology using pycalphad [105]. While the first interatomic potentials are published with their
corresponding phase diagrams [45, 55, 56, 106] a systematic evaluation of the intrinsic and
controllable errors for predicted phase diagrams is hindered by the technical complex-
ity.

Atomistic Structure Generators

In particular the addition of the chemical complexity represented by the atomistic structure
generators remains challenging, as it drastically increases the number of required calcula-
tion. The structure generators already pre select promising candidate structures, either
based on their entropy, e.g. special quasirandom structures (SQS) [107, 108] or based on
their symmetry [109–112]. Still the combination of the remaining candidates for atom-
istic structures with the thermodynamic approximation currently prohibits the systematic
sampling of the phase diagram.

2.4.4 Melting Temperature

To highlight the complexity of comparing the free energy for two thermodynamic phases,
the calculation of the melting temperature for a unary as the comparison of the stability of
the solid and liquid phase is introduced [113]. The melting temperature Tmelt is defined as
the point where the Gibbs energies of the solid and the liquid phase are equal:

Gsolid(V, Tmelt) = Gliquid(V, Tmelt) , (2.80)

G(V, T ) = F (V, T ) + pV with p = −
(
∂F

∂V

)
T

. (2.81)

The challenge of applying the free energy comparison directly is on the one hand the se-
lection of a reference with a known free energy for the liquid phase and on the other hand
the determination of the melting temperature for free energies with similar slopes in the
temperature dependence. For a similar slop already a small uncertainty in the free energy
results in a large uncertainty of the melting temperature. As a consequence, the uncertainty
in the prediction of this approach is commonly in the order of ±100 K [114, 115].

Mechanical Methods

An alternative to calculating the free energy are molecular dynamics simulation, introduced
in Sec 2.3, at different temperatures to identify the phase transition of the solid to the
liquid phase based on the change of mechanical properties and lattice instabilities [116].
Two commonly used criteria are:
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Figure 2.5: The melting temperature TM defined (black dashed line) based on the free energy
(a) and on the volume expansion over temperature (b). The volume expansion
results in a hysteresis with the phase transition from solid to liquid denoting
the superheating temperature (dashed blue line) and the liquid to solid phase
transition denoting the supercooling temperature (dashed orange line).

Lindemann Criterion: It defines the melting temperature TM based on the thermal root
mean square displacement of the atoms in relation to the nearest neighbour dis-
tance [117]. Typically, a ratio of ≈ 12% [118] is defined as the melting condition.
In this case the short range order in the liquid remains similar to the solid, but the
long range order vanishes.

Born Criterion: Three conditions are proposed for the elastic constants at the melting tem-
perature: The shear modulus and the diagonal elastic constant vanishes C44 = 0, the
elastic constants become isotope C11 = C12 like a gel and the sublimation condition
C11 + 2C12 = 0. The first condition was confirmed by Born for a bcc crystal and is
commonly referred to as the Born criterion [119].

The limitation of both of these criteria is, that the solid can be heated beyond the melting
temperature, remains solid and only transitions to the liquid phase at the superheating
temperature. In analogy the liquid can be cooled below the melting temperature, remains
liquid and only solidifies at the supercooling temperature [53]. Both effects are illus-
trated in Fig. 2.5 a) for the free energy with the solid blue line for the solid phase, the
dashed blue line for the solid phase during superheating, the orange line the liquid phase
and the dashed orange line the supercooling and in analogy b) for the hysteresis of the
volume expansion over temperature.

Coexistence Method

With the coexistence approach [120–122], which simulates the interface of a solid and a
liquid phase, this can be addressed. The interface acts as precursor for nucleation [123]
with already a small gradient in the free energy causing the expansion of the phase with
the lower free energy [124]. Finally the coexistence approach can be combined with the
calculation of free energies, based on the UP-TILD and TU-TILD methodology, introduced
in Sec. 2.4.2, resulting in the two-optimized references thermodynamic integration using
Langevin dynamics (TOR-TILD) method [125]. It is based on five steps to calculate an
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absolute free energy surface for the liquid phase, which is constructed from the free energy
of the solid phase at the point of thermal equilibrium with the liquid phase:

Step 0. Following the TU-TILD approach explained in the previous section, TOR-TILD
requires the DFT free energy surface for the solid F solid

DFT(V, T ) to be already calcu-
lated with the corresponding reference free energy surface F solid

ref 1 (V, T ) being calculated
with an interatomic potential Vref 1 as well as the free energy surface for the liquid
F liquid

DFT (V, T ) and the corresponding reference free energy surface F liquid
ref 2 (V, T ) which

is parameterized based on a liquid DFT molecular dynamics trajectory.

Step 1. The interatomic potential for the solid phase Vref 1 can then be used in an coexis-
tence approach [120] to determine an initial guess for the melting temperature Tmelt.
In the coexisting approach a simulation cell is constructed which contains both a solid
and a liquid phase sharing a common interface. The simulation box is then equili-
brated in a NPT ensemble to derive the melting temperature Tmelt

ref at zero pressure
p. This is achieved by applying multiple strains to the interface structure.

Step 2. At the melting point the free energy of both the solid F solid
ref 1 (V, T ) and the liquid

F liquid
ref 1 (V, T ) are the same, while the corresponding volume is different:

V melt, liquid
ref 1 6= V melt, solid

ref 1 . (2.82)

With the free energy of the liquid phase F liquid
ref 1 (V, T ) being calculated with the inter-

atomic potential, parameterised with the solid phase Vref 1: it is not the same as the
free energy of the liquid phase F liquid

lref 2 (V, T ) calculated with the interatomic potential,
parameterised with the liquid phase Vref 2. So, the next step is to calculate the free
energy of the liquid phase with the second reference potential Vref 2:

F liquid
ref 2 (V melt, liquid

ref 1 , Tmelt
ref 1 ) =F liquid

ref 1 (V melt, liquid
ref 1 , Tmelt

ref 1 )

+

∫ 1

0
dλ
〈
U liquid

ref 2 − U
liquid
ref 1

〉
. (2.83)

Step 3. By integrating over temperature and pressure, the full free energy surface F liquid
ref 2 (V, T )

for the interatomic potential, which is parameterised with the liquid phase Vref 2, can
be calculated:

F liquid
ref 2 (V, Tmelt

ref 1 ) = F liquid
ref 2 (V melt, liquid

ref 1 , Tmelt
ref 1 )−

∫ V

V melt, liquid
ref 1

P (V ′, Tmelt
ref 1 )dV ′ , (2.84)

F liquid
ref 2 (V, T )

kBT
=
F liquid

ref 2 (V, Tmelt
ref 1 )

kBT
+

∫ T

Tmelt
ref 1

d

(
1

T ′

)
U(V, T ′) . (2.85)

Both integrations use only interatomic potentials therefore the integrations can be
executed efficiently with high precision.

Step 4. Based on the full free energy surface for the interatomic potential’s the liquid phase
F liquid

ref 2 (V, T ), which is parameterised with the liquid phase Vref 2, thermodynamic in-
tegration can be used following the TU-TILD method to integrate from the reference
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potential to DFT with low convergence parameters:

F liquid
DFT low(V, T ) = F liquid

ref 2 (V, T ) +

∫ 1

0
dλ〈U liquid

DFT low − U
liquid
ref 2 〉λ,T . (2.86)

Step 5. In the last step the UP-TILD method is applied to up-sample the DFT precision
from low convergence parameter to high convergence parameter:

F liquid
DFT high(V, T ) = F liquid

DFT low(V, T ) +
1

M

M∑
u=1

(Eliquid
DFT, low − E

liquid
DFT, high) . (2.87)

The TOR-TILD method has been successfully applied to calculate the melting temperature
for metals with a controllable error within the method of up to ±5K. While the intrin-
sic error of comparing the exchange-correlation functionals LDA and PBE, introduced in
Sec. 2.1.3, to experimental measurements is ±150K in contrast to the experimental precision
of ±5K for comparing different experimental approaches [126]. This difference in complexity
from calculating a single free energy to comparing two free energies, once more highlights
that the current development of new methods in the field of ab initio thermodynamics is
primarily limited by the technical complexity. Many different methods are available, but
a systematic comparison is missing. On the one hand most current methods still require
human expertise to execute them, which prohibits extensive parameter studies and on the
other hand the combination or coupling of two existing methods is not easily possible as a
joined interface is missing.
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The theoretical overview in Chap. 2 highlighted three dimensions of complexity for calcu-
lating ab initio phase diagrams. They range from the complexity of calculating energies
and forces from ab initio with minimal uncertainty, over the complexity of computing free
energies to calculate finite temperature properties, to the chemical complexity. The re-
sulting combination of complexities currently hinders the prototyping of new methods, the
systematic comparison of existing methods and finally the development of coarse-grained
models. This is demonstrated by the complexity of combining two phases, e.g the solid and
liquid phase to calculate the melting temperature, as introduced in Sec. 2.4.4. Still based
on the recent achievements of machine learning interatomic potentials, which automate the
parametrisation of interatomic potentials, as introduced in Sec. 2.2.2, and the thermody-
namic integration using langevin dynamics, which enables the efficient computation of free
energies, as introduced in Sec. 2.4.2, the technical complexity is identified as the limiting
factor. To evaluate existing solutions to address the technical complexity three prototypical
challenges are defined, which are indicated in Fig. 1.1 by open symbols:

• For the complexity of the ab initio calculation with minimal uncertainty a DFT pa-
rameter study is selected to calculate the bulk modulus, from fitting an EOS, as
introduced in Sec. 2.4.1, for a range of combinations of the convergence parameters of
energy cut-off εi and kpoint mesh κj .

• For the thermodynamic complexity the calculation of the melting temperature with
the coexistence method is selected, as introduced in Sec. 2.4.4. To reduce the other
two dimensions, the melting temperature is calculated for interatomic potentials rather
than DFT.

• For the chemical complexity a phase diagram is calculated with the quasi-harmonic
approximation, again for an interatomic potential.

With these three challenges, the three dimensions of complexity, namely the ab initio ac-
curacy, the thermodynamic complexity and the chemical complexity are addressed. At the
same time the challenges are selected as prototypical application, each focused on one aspect
of complexity. The aim is to identify a simulation framework which is capable to address
all three of these challenges.



3 Technical Complexity

3.1 Software Implementation

The three challenges combine methods developed in different fields, from quantum chemistry
over physics to engineering. So the development of a single simulation code which covers
all three fields is prohibitive. Moreover the technical challenge of ab initio thermodynamics
is the combination of multiple simulation codes developed in different communities. The
differences range from different variable names, over different units to different formats for
input and output files. So the coupling of two methods not only requires the theoretical
understanding of both methods, but also practical experience and the technical expertise
to develop an interface. The aim is to identify a software which enables the combination of
existing methods like building blocks.

3.1.1 Integration Levels

The different simulation codes and software frameworks are classified based on their abil-
ity to support the user in rapid prototyping, up-scaling and sharing complex simulation
protocols:

1. Level: The most fundamental feature of a simulation code is the functionality of an
atomistic engine to compute energies and forces.

2. Level: The thermodynamics module takes the energies and forces of a given atomistic
engine as input to compute thermodynamic properties.

3. Level: The simulation framework includes the required logic to construct feedback loops
to dynamically adjust the simulation protocol based on previous results and also
handles the calculation and data management.

Each of these levels increases the user comfort by reducing the technical complexity. While
it is theoretically possible to compute an ab initio phase diagram using just the energies and
forces computed from the atomistic engine, this would require the application-specific imple-
mentation of both the physical approximations to compute the thermodynamic properties
and the technical implementation of the calculation and data management. As a conse-
quence, such a development would be most likely specific to a given application and IT
infrastructure. In contrast a simulation framework enables the separation of the atomistic
engine, thermodynamics module and technical implementation, so a simulation protocol
which is developed on one IT infrastructure can be executed on a different IT infrastruc-
ture ideally without any modification. The typical cases for switching the IT infrastructure
are on the one hand the transition from rapid prototyping on a local workstation com-
puter to up-scaling on an High-Performance-Computing (HPC) cluster and on the other
hand sharing a simulation protocol with a collaborator for reasons of reproducibility and
transferability.
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3.1.2 Software for Atomistic Simulation

In the following section, a selection of existing simulation codes, thermodynamic modules
and simulation frameworks is briefly introduced and classified based on the three levels
defined above. This list is not complete but rather representative based on the software
used in this thesis:

Vienna ab initio Simulation Package

The Vienna ab initio simulation package (VASP) [33, 127, 128] is one of the most popular
plane wave DFT simulation codes, as introduced in Sec. 2.1. It is mainly known for its
combination of computational efficiency in terms of supporting modern computing libraries
and architectures and the user-friendly interface based on human read-able input files con-
sisting mainly of key-value pairs. Beyond the calculation of energies and forces – level one –
VASP also supports structure optimisations and molecular dynamics calculation as well as
other more complex simulation protocols like nudget elastic band calculations – level two.
Each of these can be controlled by specifying additional key-value pairs in the default input
files. Still to implement new simulation protocols the user has to modify the VASP source
code, which is written in the Fortran programming language. There is no possibility to
implement feedback loops or other logical structures directly in the input files. So VASP
can be classified between level one and level two, as it supports selected thermodynamic
properties while others require the user to execute multiple independent calculations.

S/PHI/nX

To address the complexity of modifying the VASP source code, written in Fortran, the
S/PHI/nX [129] DFT code was developed in C++ based on an object oriented imple-
mentation of the underlying quantum mechanical operators. This approach is especially
suitable for method development. Typical examples include the development of new opti-
miser for atomistic structures [130] or the inclusion of charged defects in DFT [131–133].
In contrast to VASP, the S/PHI/nX DFT code does not implement molecular dynamics
or nudget elastic band calculation, but rather an unix pipeline based interface to evalu-
ate atomistic structures and return energies and forces. In addition, the S/PHI/nX DFT
code is available as open-source in contrast to the commercial VASP DFT code. This not
only enables the users to contribute to the S/PHI/nX code but also allows them to reuse
the core functionality of the S/PHI/nX DFT code, the library of mathematical objects, to
address other challenges like the development of an k · p model [134]. As a consequence,
the S/PHI/nX DFT code provides two different interfaces for the users: They can either
control the S/PHI/nX DFT code with a hierachical input file or develop their own simula-
tion code based on the underlying libraries using the C++ programming language. Hence,
the S/PHI/nX DFT code is another simulation code between the levels one and two. In
addition, it demonstrates the advantage of open-source software development for scientific
software by sharing the core library with multiple projects.
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Large-scale Atomic/Molecular Massively Parallel Simulator

Moving from the DFT simulation codes to molecular dynamics with interatomic poten-
tials, the Large-scale Atomic / Molecular Massively Parallel Simulator (LAMMPS) [135]
is the most popular molecular dynamics simulation code for interatomic potentials used
in computational materials science for solid-state simulations. Like the S/PHI/nX DFT
code, LAMMPS is developed in the C++ programming language and released under an
open source software licence. Still, the primary feature of the LAMMPS simulation code is
the versatility of available simulation protocols in combination with its parallel computing
performance. In addition to molecular dynamics with various ensembles, as introduced in
Sec. 2.3.2, and structure optimisations with various minimizers the LAMMPS simulation
code enables the development of complex simulation protocols by providing the necessary
computing logic e.g. if-then statements, loops and the ability to load external files which
include further instructions.

This functionality has been extended recently to support loading the LAMMPS simu-
lation code in other programming languages like C++ or even Python as software library.
Having access to the functionality of the LAMMPS simulation code from a scripting pro-
gramming language like Python standardises the development process as it allows coupling
LAMMPS to other python software libraries. So the LAMMPS simulation code covers the
first two levels and even goes beyond the second level by providing a standard interface to
develop simulation protocols either with the internal logic in the input files or by loading
the simulation code as a software library in another programming language.

If the same version of the LAMMPS simulation code with the same software extensions
is installed on two different IT infrastructures, then a simulation protocol developed on one
infrastructure can also be transferred to another infrastructure without major modifica-
tions. The same applies to the input files of VASP and S/PHI/nX. Still, those simulation
codes require an external software to implement feedback loops which can result in an IT
infrastructure dependence.

Phonopy

Beyond the simulation codes a different approach for the second level is the phonopy [136]
software toolkit to calculate phonons with the finite displacement method, as introduced
in Sec. 2.4.1. Rather than including a specific first level atomistic engine in the phonopy
software toolkit, the code can generate input files for 14 different mainly DFT simulation
codes including VASP. These input files include the required atomistic structures with
the corresponding displacements for a given crystal structure already taking the crystal
symmetry into account. In addition to the atomistic structure, the user then has to add
additional input files to specify parameters like the electronic convergence, kpoint mesh κj ,
energy cut-off εi and pseudopotential to execute the calculation. The required inputs for a
DFT calculation are introduced in Sec. 2.1. After the successful calculation of the forces
with the external quantum engine controlled by the user, phonopy can parse the output
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files of the supported simulation codes to convert the forces of all codes to the same units,
compute the dynamical matrix and calculate the free energy. Phonopy is developed in the
Python programming language and released under an open-source licence, which allows
other projects to reuse components of phonopy e.g. the symmetry library to determine the
required displacements.

Atomic Simulation Environment

The atomic simulation environment (ASE) [137, 138] extends the second level approach by
providing python representations of the individual first level atomistic engines. In total,
ASE supports more than 40 simulation codes. For each of these simulation codes ASE
not only writes the required atomistic structure to the input file like phonopy but also
takes the code-specific input from a set of predefined python variables to include them
in the input files. The simulation code then only computes the energies and forces and
thermodynamic approximations e.g. calculating a molecular dynamics trajectory, are all
implemented as code independent python objects in the ASE. This approach is suitable
for rapid prototyping of new simulation protocols, as the ASE python objects allow the
user to define the simulation protocol in the Python programming language which can be
executed on every IT infrastructure, which has the same ASE version and the required
simulation codes installed. The limitation of this approach is the up-scaling of existing
simulation protocols. On the one hand, ASE provides objects for data storage but these
have to be configured manually and on the other hand, ASE does not provide any interface
to job schedulers which are required for HPC-calculations. So, it is the task of the users to
up-scale their simulation protocols by managing the individual calculation and their data.
Still, with the ASE simulation framework being released under an open-source licence the
components of the framework can be integrated in other frameworks. In particular, the
atomistic structure class of the ASE simulation framework is used in many other second
level thermodynamic toolkits like phonopy.

Ab initio Path Integral Molecular Aynamics

The ASE approach of writing input and output files is insufficient for strong coupling
of existing simulation codes. This is required for thermodynamic integration, when the
forces calculated with two atomistic engines have to be mixed at every timestep of the
molecular dynamics trajectory, as introduced in Sec. 2.4.2. For the calculation of a single
free energy this can result in several thousand files being written during the sampling of
a single trajectory. Such a large number of file writes is prohibitive in particular for IT
infrastructures with shared file systems, e.g. HPC cluster. To address this, ASE supports
the use of Python compatible software interfaces for simulation codes which support those,
e.g. LAMMPS, or the communication via process standard input and output, e.g. VASP.
Still, the supported functionality of the different codes vary, as the LAMMPS software
library supports the full functionality of the LAMMPS simulation code while the VASP
interface is restricted to modifying the atomistic structure and computing energies and
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forces.

In contrast the ab initio path integral molecular dynamics code (ipi-code) [139, 140]
modifies the source code of existing simulation codes to add a socket-based interface for
coupling them. Currently a total of eleven simulation codes is supported including VASP
and LAMMPS. The approach is promising as socket-based communication is faster than
file-based communication and reduces the load on the file system, while at the same time
introducing an open-source standard other simulation codes can follow. With this, the
ipi-code combines the first and second level. Nevertheless, given the technical complexity
implementing a new simulation protocol currently requires the modification of the Python
source code of the ipi-code open-source toolkit. The user interface is limited to a hierar-
chical key-value-based input file. In addition, the communication via sockets is commonly
prohibited on HPC clusters, which enforce the use of the message passing interface (MPI).
As a consequence, the transferability and reproducibility of this solution is limited as it
requires special permissions from the HPC cluster administration.

Materials Project

Besides the rapid prototyping of new simulation protocols as it is supported by the ASE
simulation framework, the up-scaling of existing simulation protocols is a second challenge.
With the available computing power of modern HPC clusters high-throughput DFT calcu-
lations are enabled. The impact of data-driven science as fourth pillar [141] next to exper-
iment, theory and simulation is discussed in the next section. Still, some high-throughput
projects also release their software environment as open-source software. The software stack
of the materials project [142, 143] is such an example. It covers the second and third level,
is written in the Python programming language and available as open source. The software
stack consists of:

pymatgen An extensive parser originally developed for the VASP simulation code input
and output files, which has more recently been extended to other simulation codes, as
an interface to level one [144].

atomate A set of predefined simulation protocols for common materials properties like
fitting an equation of state, calculating the elastic tensor or electronic structure cal-
culations like calculating the electronic bandstructure. This is their implementation
of the second level [145].

fireworks The underlying job and data management – the third level – which handles
the internal logic like restarting a failed calculation with adjusted parameters as it is
required for high throughput calculation. This is implemented by submitting a worker
to the HPC job scheduler and when computing resources are available the worker
executes multiple similar calculations in one allocation of the HPC job scheduler [146].

In direct comparison to ASE the materials project focuses on the up-scaling of comparably
simple simulation protocols to iterate these over the periodic table, while ASE primarily
focuses on the rapid prototyping of new simulation protocols. In practise, the simulation
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ASE Materials
Project

AiiDA pyiron (new)

Area of
Application

Interactive
Development

High-through-
put calculation

High-through-
put calculation

Interactive
Development,
Up-Scaling

User
Interface

Python,
Jupyter

Python,
Command
Line Interface

Python,
Command
Line Interface

Jupyter as
primary
Interface

Code
Interface

Python,
File-based

File-based File-based Python,
Sockets,
File-based

Data
Management

User-defined
SQLite table

MongoDB
(JSON)

SQL table SQL table
HDF5 File

Job
Management

Worker-based Heterogeneous
Job Schedulers

Heterogeneous
Job Schedulers

Package
Distribution

conda, only a
few simulation
codes included

conda,
simulation
codes not
included

conda, only
core package,
no plugins

conda
including
simulation
codes

Table 3.1: Comparison of the simulation frameworks ASE, Materials Project and AiiDA
with the newly developed pyiron framework, which combines both the interactive
development of simulation protocols with the up-scaling towards high-throughput
calculations.

protocol can be developed with ASE and has to be rewritten afterwards to up-scale it for
high-throughput calculations in an HPC environment.

AiiDA

A second high-throughput project which published their software environment as open-
source is the Materials cloud [147] with their software framework AiiDA [148–150]. In
comparison to the materials project, the AiiDA software framework is focused on main-
taining the provenance of each calculation. Like a tree structure the provenance stores the
dependence of individual calculation in a database. With this database it is possible to re-
late existing calculations to each other. This data-centric approach goes beyond just storing
a single number as result of a calculation rather it maintains the whole history which lead
to a given result including all approximations used and all required individual calculations.
For the user of such a high-throughput database, this does not only simplify the comparison
to their own results but it also helps to identify other similar calculations which could be
used for comparison. From the ab initio thermodynamics perspective, AiiDA in analogy
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to the materials project covers the levels two and three. Still, the creation of the prove-
nance requires additional implementation effort on the developer side, which hinders the
rapid prototyping. As a consequence, most simulation protocols are primarily developed by
experts in the field who agreed on a given standard how to calculate a specific materials
property.

3.1.3 Comparison

All three levels defined in the previous Sec. 3.1.1 are covered by the existing simulation
frameworks in the Sec. 3.1.2 above. With a major separation between the first and the
other two levels, as most simulation frameworks provide parsers for existing level one simu-
lation codes rather than re-implementing the underlying atomistic engines. This separation
is also visible in terms of programming languages, the simulation codes for level one are
primarily written in Fortran or C++ with a particular focus on parallelisation to achieve
the optimal performance on a HPC cluster, while the thermodynamic modules of level two
and simulation frameworks of level three which orchestrate the individual calculation are
primarily developed in Python. Still, the combination of rapid-prototyping and up-scaling
remains challenging. Those frameworks which support the user in rapid-prototyping like
ASE lack the ability to up-scale the simulation protocols for parameter studies on HPC
clusters and the high-throughput frameworks commonly require additional effort in the
development of simulation protocols. In addition, the high-throughput simulation frame-
works and their simulation protocols are optimised for a given HPC cluster to achieve the
optimal performance which reduces the transferability and reproducibility. In summary,
this results in two independent developments, rapid prototyping with one framework and
afterwards up-scaling the resulting simulation protocol with another framework. A more
technical overview of the three simulation frameworks ASE, Materials Project and AiiDA
is summarized in Tab. 3.1.

3.1.4 Software for CALPHAD Modelling

Besides these developments on the atomistic scale, also the CALPHAD community in-
troduced in section 2.4.3 is moving towards open source and Python-based software frame-
works. These developments originated in pycalphad [105] which implements the CALPHAD
method, provides plotting routines as well as direct access to existing CALPHAD databases.
The pycalphad approach is extended by the Extensible Self-optimizing Phase Equilibria In-
frastructure (ESPEI) which is primarily used to parameterise CALPHAD databases based
on experimental data sets and Phase Diagram Uncertainty Quantification (PDUQ). This
confirms that the development of open-source Python software frameworks is not limited
to the atomistic community. In addition these tools provide an interface for ab initio
thermodynamics software frameworks to provide their results to a larger audience. As a
consequence, a simulation framework for ab initio thermodynamics should not only bridge
the gap between rapid prototyping and up-scaling, but also work towards an integration
with the CALPHAD community.
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3.2 Towards Data-Driven Science

With the constant increase in computing power, high-throughput DFT studies are now pos-
sible and data-driven science has been established as the fourth pillar next to experiment,
theory and simulation [141]. This is based on the experience that up-scaling from a few hun-
dred calculations to several thousand calculations requires a different approach in terms of
managing the calculation and analysing them. Once more this increases the technical com-
plexity. At the same time these high-through put studies are capable of identifying trends
which are not accessible in smaller data sets. The systematic study of hydrogen diffusion
in fourth row elements is just one example [151]. In the following selected high-throughput
projects in atomistic community are briefly introduced, followed by benchmarking projects
which use high-throughput approaches to validate DFT simulation codes and interatomic
potentials. Both result in the challenge of transferability and reproduciblity and demon-
strate what can be learned from data-driven studies.

3.2.1 High-Throughput DFT

Based on the precision and accuracy of DFT simulations in comparison to other methods
at a comparable small computational cost, DFT is commonly not only used by theoreti-
cal groups, but also experimentalists to compare their measurements. Still, handling the
convergence of a DFT calculation requires human expertise as explained in Sec. 2.1.4 and
using the default convergence parameters is commonly insufficient. This led to the first
high-throughput DFT studies: the virtual materials design framework (VMDF) [152], the
automatic flow (AFLOW) [153] framework, the materials project [142, 143], the automated
interactive infrastructure and database (AiiDA) [148–150] for computational science as part
of the materials cloud [147] and many more [60, 154–158]. Many of these high-throughput
projects provide extensive web interfaces which allow non-experts to browse the available
data. On the one hand these databases addressed the need of experimentalists to get access
to well-converged existing data sets and on the other hand the collected data allows studying
trends over the periodic table. This led to the idea of not only storing individual material
properties calculated from a given set of calculation but moreover creating a repository to
potentially store all calculations, as calculation which are unreasonable for one person might
contribute to a high-throughput study of another person.

The Nomad repository [159] offers this service to the community and provides findable,
accessible, interoperable and reproducible data (FAIR-data) to the community [141]. Users
can share their data on the Nomad repository and the Nomad project even converts the
output files from a code-specific format to a generic simulation code independent format
to improve the interoperability which enables the comparison beyond individual simulation
codes. However, in terms of ab initio thermodynamics at the current stage none of the
existing databases include thermodynamic calculations beyond the harmonic approxima-
tion. So the creation of a database of ab initio phase diagrams with the corresponding free
energies for each phase and temperature could be a valuable extension once the automated
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calculation of ab initio phase diagrams is possible.

3.2.2 Validation Projects

Besides iterating over the periodic table to extend the general understanding of the chem-
ical trends another approach that evolved from the data-driven science perspective is the
systematic validation of existing DFT simulation codes and interatomic potentials.

Delta Project

The Delta project [34] is one of these projects. It compares over 15 different DFT simulation
codes by calculating an energy volume curve, like it is illustrated in Fig. 2.4, for 71 elemental
crystals. Based on seven discrete strains between 94% and 106%, the delta value between
two simulation codes a and b is calculated as:

∆i(a, b) =

√√√√∫ 1.06V0
0.94V0

(Eb,i(V )− Ea,i(V ))dV

0.12V0,i
. (3.1)

With Ea,i(V ) as the Birch Murnaghan fit, introduced in Sec. 2.4.1, of the energy volume
curve for simulation code a and element i and Eb,i(V ) analogous. The equilibrium volume
V0 used to equally distribute the strains is included in the formula for normalisation. For
the most recent pseudo-potentials the delta project finds good agreement between DFT
simulation codes like VASP and all-electron calculations. This demonstrates that the im-
plementation of the VASP DFT simulation code is sufficient to achieve the theoretically
predicted precision of DFT and the accuracy being limited to the unknown exchange cor-
relation functional, as introduced in Sec. 2.1.3.

The convergence parameters in terms of energy cutoff and kpoint mesh used in the
Delta project are higher than the recommendations in the VASP manual and still differ
from the convergence parameters used in the materials project. As even high-throughput
DFT projects, which are focused on high precision DFT calculations, disagree in their
choice of convergence parameters, this raises the question if it is possible to systematically
determine the required convergence parameters for a given convergence goal. This challenge
is addressed in more detail in Chap. 5. At the same time the Delta project is authored by
a total of 70 authors who contributed to the comparison which is another indicator for the
need of human expertise to achieve the optimal convergence with a given DFT simulation
code as well as for the presumably manual work involved in this project. Still, it is an
remarkable example how the community can benefit if the up-scaling of existing simulation
protocols is simplified.

OpenKIM and NIST Repository

The second application is the validation of interatomic potentials to systematically compare
the different types of interatomic potentials introduced in Sec. 2.2. While many interatomic
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potentials are developed, tested and published for a specific application, the community
commonly applies them beyond the application the author intended assuming the inter-
atomic potential is transferable. In order to prevent this and to compare the existing
interatomic potentials the two major databases for interatomic potentials for solid state
simulations the NIST repository [59] and the OpenKIM community [58] started to system-
atically test all interatomic potentials in their databases. This resulted in the develop-
ment of atomman [60] for the NIST repository and the OpenKIM processing pipeline [160].
Rather than iterating over the periodic table, both frameworks iterate over all interatomic
potentials in a given database and compare the same material properties for potentials
which include the same chemical elements. The material properties compared range from
equilibrium properties, e.g. the bulk modulus, which were included in the fitting of most in-
teratomic potentials, to more complex properties e.g. comparing the stability of dislocation
and grainboundary structures.

In analogy to the Delta project these projects benefit from the recent progress towards
the up-scaling of simulation protocols and while all three projects developed their own
software frameworks for their specific application this again highlights the general need. A
framework which supports both the rapid prototyping, the up-scaling and the reproduciblity
of simulation protocols would not only support the data-driven approaches in computational
materials science but also the validation of existing approaches. In particular, the ability to
validate an interatomic potential with a standardized test suite before publication or to test
a new DFT simulation code for consistency with other DFT simulation codes would simplify
the corresponding developments. As a consequence, the transferability and reproducibility
of such a test suite is another essential aspect. Especially given the need of ab initio
thermodynamics to combine both, DFT calculation and interatomic potential calculation,
a simulation framework which covers both would enable a systematic assessment of existing
interatomic potentials in direct comparison to DFT calculations by executing the same
simulation protocol for both.

3.2.3 Transferability and Reproducibility

By comparing the high-throughput DFT studies to the validation projects and existing
parameter studies the similarity in their software frameworks becomes clear, even though
they have different goals. The high-throughput projects and parameter studies are focused
on calculating specific materials properties once for a wide range of different parameter
combinations and their results are published in their database to be accessible to a large
audience. In contrast, the detailed calculation results for the validation projects are less
relevant. They are primarily focused on the comparison of applying the same simulation
protocols on different simulation codes or different interatomic potentials to validate their
functionality. As a consequence, it is less reasonable to store all calculation results as they
can be regenerated at any time. So the primary focus is on storing the simulation protocol
rather than the result of the simulation protocol.

This approach is motivated based on the continuously increasing computing power avail-
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able. Still, it requires the simulation protocols to be developed in an IT infrastructure
independent way by separating the technical complexity from the scientific steps of the sim-
ulation protocol. At the same time this also enables sharing the simulation protocol with
collaborators. While for individual simulation codes it is sufficient to share the input files
and the required version of the simulation code for an simulation framework with multiple
simulation codes used in one simulation protocol the complexity of tracking all dependencies
of the software environment increases. At the current point none of the existing simulation
frameworks support the user in sharing their simulation protocols. Nevertheless, extending
the simulation framework to include the reproducibility in addition to the rapid proto-
typing and up-scaling of the simulation protocol, is the next step to extend the scientific
workflow.

3.3 Scientific Computing

To address the aspects of rapid prototyping, up-scaling and sharing of simulation protocols,
recent developments beyond the computational materials science community are analysed to
identify suitable technologies. These technologies cover interactive computing environments
to document the simulation protocol, the software management to maintain reproducible
and transferable software environment and advanced data storage solutions to efficiently
store large numerical arrays of atomistic trajectories.

3.3.1 Interactive Computing Environments

The Python programming language [161, 162] gained popularity in the scientific commu-
nity including materials science by emphasising code readability and supporting multiple
programming paradigms to enable the programmatic development of simulation protocols.
Today, the majority of simulation frameworks for atomistic simulations are developed in
Python as highlighted in Sec. 3.1.2. These simulation frameworks are commonly based on
the scientific library scipy [163], the numerical library numpy [164] and the plotting library
matplotlib [165] which provide high-level interfaces to underlying mathematical C++ and
Fortran software libraries required by scientists. In the same way the simulation frameworks
themselves can be identified as high-level interfaces to the underlying simulation codes.

Following the same analogy, the jupyter notebooks are the next generation development
interface superseding the development of shell scripts on the command line. They com-
bine an interactive computing interface which can be used with the python programming
language and originated from the interactive python project [166]. The interactive inter-
face supports tab completion to automatically fill partly typed commands, the addition
of markdown text and LaTeX formulas for documentation, and inline visualisation. So in
contrast to a python script with text comments, the documentation of a simulation pro-
tocol in a Jupyter notebook can be nicely formatted and the original output is included
in the document. Like the python programming language, Jupyter notebooks are already
wide spread in the data science community with all the numerical python libraries being
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integrated. In addition also the bioinformatics community adopted the use of Jupyter note-
books on a large scale. This is beneficial for atomistic simulation in materials science, as
tools like NGLView [167], to visualise atomistic structures directly in the Jupyter notebook,
are already available.

By addressing both, the rapid prototyping and the reproducibility, Jupyter notebooks
are suitable to cover a full simulation protocol in a single document. Starting from the
creation of the atomistic structure over the execution of the simulation code to the plotting
of the simulation results all steps can be represented in a single Jupyter notebook to include
it as supplementary material for a publication. This enables the reader to recreate the same
results given that he or she has access to the same software environment. Finally, Jupyter
notebooks can also be edited inside Jupyter lab which is an interactive environment running
inside the users web browser, which allows combining multiple Jupyter notebooks inside one
interactive session. At the same time by accessing the service via a web browser, it is possible
to analyse the data where it was generated rather than transferring it. For the case of a
simulation protocol being executed on an HPC cluster the data transfer is reduced to just
the program code and visualisation in the Jupyter notebook, which also reduces the data
segmentation.

3.3.2 Software Management

To further address the aspects of reproducibility and transferability of simulation protocols
the scientific python community developed the conda package manager. In contrast to the
built-in pip package manager which provides the source files of a given python software
packages and compiles the source code locally the conda package manager provides pre-
compiled binaries. This not only accelerates the installation but also addresses the issue
of linking to C, C++ or Fortran software libraries as these can be distributed as separate
conda packages rather than requiring the user to install these separately.

While the conda package manager was originally developed to distribute the numerical
python library numpy it has been adopted by a growing number of scientific communi-
ties. Most notably the bioinformatics community [168, 169] released over 8000 software
packages specific to bioinfromatics, which makes the conda package manager the default
choice to distribute bioinformatics software. In addition the general community channel
named conda-forge already includes over 14500 software packages for scientific application
and beyond. As a consequence most of the dependencies of the software packages specific to
materials science are already available. Once a software package is available on the conda
package manager, it can be installed with a single command:

conda install -c conda-forge numpy

This downloads the package numpy from the conda community channel and installs it in the
current conda software environment. The conda software environment is a self-contained
installation. On the one hand this enables the user to have multiple environments to com-
pare different software versions and on the other hand an environment can be exported as a
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single environment file environment.yml which lists all packages with their corresponding
versions:

conda env export > environment.yml

In combination with the Jupyter notebooks this enables the distribution of the whole sci-
entific workflow including all software dependencies encapsulated in a single package which
increases the reproduciblity and transferablity of a given scientific workflow. Still, an op-
timised compilation of a simulation code on a given IT infrastructure can accelerate the
execution of the same calculation by a factor of two to three. As a consequence, the use of
conda-forge in a HPC environment is debatable. It is recommended to compile frequently
used simulation codes manually for optimal performance. So the conda packages should be
treated as reference implementation for testing and validation.

3.3.3 Data Storage Solutions

While simulation codes write the data for all simulation parameters on a per time step basis
the analysis at the end of the simulation is based on the change of individual properties
over time. In addition when working with multiple simulation codes the conversion to a
shared generic format in terms of units and variable names is reasonable for comparison.
As a consequence, transforming the simulation code output at the end of the simulation
simplifies the following analysis. The parsing of the simulation output at the end of the
calculation rather than during the analysis is already implemented in the AiiDA simulation
framework and the software environment of the materials project. The AiiDA simulation
framework uses an SQL database for storing the provenance of the simulation input and
output to represent the relationships between the different parameters and the Materials
Project uses a JSON based NO-SQL databases for less structured simulation properties.
Still both approaches are inefficient for storing molecular dynamic trajectories for ab initio
thermodynamics as they are optimised to keep all data in memory rather than storing the
data on disk, which is prohibitive for large molecular dynamics trajectories.

To address this limitation the data-driven science community developed file-based data-
bases to handle up to several petabyte of data [170] and specific data formats for scientific
applications like the Hierarchical Data Format 5 (HDF5) [171]. In contrast to traditional
file formats, the HDF5 format prepends an index of the files content at the beginning of
the file. With this index reading a specific datasets from the file with multiple datasets
does not require reading the whole file, but rather just the individual blocks for the specific
dataset. In addition the datasets in the file can be grouped in groups, to create arbitrary
levels of hierarchy, hence the name Hierarchical Data Format. In combination with the
corresponding Python library h5py compressed data sets are directly saved from memory
to the file and reloaded as compressed data sets from the file directly to memory, which is
faster than uncompressing the data first and loading it to memory afterwards and directly
supports the access from the numerical library numpy [164]. Based on these features, the
HDF5 format has already been adopted in the computational materials science community
with the introduction of the h5md [172] format. It is a specification for the HDF5 format to
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store molecular dynamics trajectories, which is supported by a growing number of molecular
dynamics simulation codes like LAMMPS.

In contrast to only storing selected properties in the database like current high-throughput
frameworks do or alternatively parsing the output file during every iteration like it is done
by interactive frameworks like ASE, a HDF5 based generic file format allows parsing the
code-specific output files only once at the end of the simulation and storing the output al-
ready with the transformed units and variable names. As a consequence, HDF5 is suitable
for both, the rapid prototyping and up-scaling simulation protocols. For rapid prototyping
the whole output of the simulation code is parsed at the end of the calculation providing
the user with the flexibility to compare different output properties to identify correlations,
without the need to explicitly define the properties to store before the simulation. While for
the up-scaling the user benefits from the index of the HDF5 file, as the data aggregation is
not required to load all output properties but rather only selected properties are loaded to
accelerate the post-processing. Still, the whole simulation output is available for debugging
when required.
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Based on the physical complexity of ab initio thermodynamics, introduced in Chap. 2 and
the resulting technical complexity, introduced in Chap. 3, the requirements for a new third
level simulation framework are defined in the following. The simulation framework enables
the combination of level one atomic engines and level two thermodynamics modules like
building blocks to address the whole process of developing a simulation protocol. Starting
from the rapid prototyping, over the up-scaling for parameter studies and the publication
of the simulation protocol in a reproducible format. The whole process is handled in the
same framework.

Leveraging the latest software developments in the general scientific community, the
interactive Jupyter environment is identified as a digital format to represent the whole
simulation protocols in one document: namely the creation of an atomistic structure, the
analysis of the atomistic structures with structure descriptors, the calculation of energies
and forces with an atomistic engine, the propagation of this structure in a thermodynamics
module, the aggregation of calculation results and finally the creation of figures and tables
for publication with the corresponding documentation. The Jupyter notebook can then
be shared as supplementary material of the scientific publication in combination with the
underlying data stored in the HDF5 format and the software dependencies tracked in a
conda environment file. This combination not only enables the readers to reproduce the
results but it also reduces the barrier to apply newly developed methods to other material
systems, hence fostering the collaboration in the scientific community. Given this overview,
the requirements for the new simulation framework are summarized as:

• The ability to scale a simulation protocol from rapid prototyping up to high through-
put parameter studies. This includes switching from interactive execution on the local
workstation computer to submitting to a HPC cluster by accessing the job scheduler
and requires an efficient data format for storing the calculation results like HDF5.

• Defining building blocks based on a standardized generic format, which allows switch-
ing from one simulation code to another one with minimal effort, even if these simula-
tion codes are developed in different communities, use different input/output format,
variable names and units. This enables using a simulation code with lower accu-
racy and more affordable computational costs during the interactive development and
switching to the more accurate simulation code only once the development of the
simulation protocol is finalized.
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• Using the python programming language for coupling simulation codes and leverage
the Jupyter environment to simplify the interactive development process of complex
simulation protocols. This includes reducing the number of software modules the
user has to import, using tab completion to reduce the number of commands the
user has to remember and render objects for visual representation inside the Jupyter
environment.

• Applying a combination of a relational SQL database for structured data and the
HDF5 for unstructured data like the charge density of a DFT calculation or the
positions of a molecular dynamics trajectory.

• Leveraging the functionality of existing software developments, this includes function-
ality which is implemented in the simulation codes as well as functionality of existing
thermodynamic modules to accelerate the development process. Use the conda pack-
age manager to track the environment with all dependencies and allow the user to
publish the dependencies as part of the supplementary material to guarantee the re-
producibility and transferability of the simulation protocol.

Given these requirements, previous developments in the department for computational ma-
terials science at the “Max-Planck-Institut für Eisenforschung” are evaluated. Following
the first release of the S/PHI/nX DFT simulation code, introduced in Sec. 3.1.2, the de-
partment has started to develop multiple prototypes of a simulation frameworks already
in 2008, namely PHInaX [173] and PyCMW [174] to simplify the construction of complex
simulation protocols. PHInaX combines various utilities developed as part of the S/PHI/nX
DFT code with a central database to store the relation between the individual calculation
results. This enables the reduction of duplicate calculations. The limitations of the PHInaX
approach are the development in the C++ programming language and the abstract data
storage based on numerical database identifiers. These hinder the rapid prototyping and
limit the debugging capabilities.

The Python computational materials science workbench (PyCMW) is developed in Python
and uses the Python programming language for constructing simulation protocols. Instead
of a central database a local database on the users workstations computer is used and calcu-
lation results are transferred from the users workstation computer to the HPC cluster and
back. The local data storage is the central connection between the data creation, the data
analysis and the data visualisation. This enables the user to visually inspect the results
of their calculations via the PyCMW graphical user interface (GUI). The GUI in combi-
nation with developing simulation protocols in Python increases the flexibility and having
direct access to the simulation data improves the debugging capabilities in case a calcu-
lation is not executed successfully. Finally by using the HDF5 file format in addition to
a SQL database as central index of all simulations both structured and unstructured data
can be stored efficiently. The limitations of this approach are the requirement to write the
complete simulation protocol before being able to test it instead of step by step interactive
execution, the transfer of each calculation to the HPC cluster, which limits the up-scaling
of simulation protocols and finally the GUI as primary user interface which does not satisfy
the requirements of expert users.
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Figure 4.1: The simulation life cycle illustrates the 12 steps from developing a model, execut-
ing the simulation, analysing the data and finally validating the model. While
the steps 1.–2. and 12. (red boxes) require user input the steps 3.–11. can be
automated by a simulation framework (grey box). The simulation frameworks
(blue boxes) interacts with the simulation code (green boxes) and the data anal-
ysis module (yellow boxes). Finally, the layered boxes for steps 3.–8. indicate
the parallel execution of multiple calculations, while the remaining steps 1.–2.
and 9.–12. can include input and output of multiple calculations. Illustration
based on Fig. 1 in the pyiron release paper [175].

Based on these previous prototypes the current framework – the pyiron, an integrated
development environment (IDE) for ab initio thermodynamics [175], is developed starting
in 2015. The name combining the programming language Python the software is developed
in and iron as reference to the “Max-Planck-Institut für Eisenforschung” (iron research)
where the development originated. Junior scientists and experts alike contribute to the de-
velopment of the pyiron IDE, either with their feedback or by extending the functionality.
Especially with the pyiron IDE being released as open-source softwareand the pyiron project
joining the NumFocus foundation as an affiliated project to promote open practices in re-
search and scientific computing, the world wide pyiron community grows continuously. Still,
for the purpose of this thesis the reproducible simulation protocols, the high-throughput
computing capabilities and the rapid prototyping of simulation protocols are highlighted as
primary features required for ab initio thermodynamics.

4.1 Simulation Life Cycle

Given the complexity of the simulation protocols in ab initio thermodynamics, introduced
in Sec. 2.4 a primary focus of the pyiron IDE is to structure the development of complex
simulation protocols. The simulation protocols should be reproducible, easy to up-scale
for parameter studies and finally the development of the simulation protocols should be as
simple as possible to enable rapid prototyping to address the complexity of ab initio thermo-
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dynamics. To illustrate this iterative approach, the simulation life cycle is introduced, which
describes the process from defining a model, parameterising the simulation, validating the
results and updating the model. Starting with one of the most fundamental simulation pro-
tocols in ab initio thermodynamics, the calculation of an energy volume curve to determine
the equilibrium properties: equilibrium Volume V0, equilibrium bulk modulus B0, derivative
of the equilibrium bulk modulus with respect to the pressure B′ and the equilibrium energy
E0. The energy volume curve, introduced in Sec. 2.4.1, typically contains seven energies
calculated for seven volumes equally spread around the approximated equilibrium volume,
by a uniform deformation of the lattice. The energy volume pairs are fitted with one of the
equations of state, introduced in Sec. 2.4.1 to directly derive the equilibrium parameters as
results of the fit. The simulation life cycle for the calculation of the equilibrium parameters
is illustrated in Fig. 4.1 and it can be structured in the following twelve steps, which can
be executed in multiple iterations to achieve self-consistency.

Step 1. The initial step is the definition of the model. In terms of calculating the energy
volume curve, this is choosing an equation of state, including an initial guess of the
equilibrium volume, specifying the spread of the volume points as well as the parame-
ters for the formalism of calculating the energy. In the case of a DFT calculation, this
would be specifying the energy cutoff, kpoint mesh and other convergence parameters.
Commonly this initial step is less formalized and the reasoning for a specific choice of
parameters is not documented.

Step 2. Given the requirements of the model, a project is defined. The project contains
the definition of the individual calculations. For the energy volume curve these are
calculations with equal convergence parameters at different volumes.

Step 3. The parameter definition in the project is typically done in a generic format, so
the parameters are independent and the choice of the simulation code is just an-
other parameter. This allows iterating over different simulation codes, e.g. the delta
project [34]. For the calculation of the energy volume curve the steps 3.-9. have to be
executed for each volume point individually.

Step 4. The generic input for each volume point is then converted in a code-specific input.
This includes converting the generic variable names and units to the code-specific
variable names and units as well as communicating the parameters to the simulation
code. In the simplest case this is done by writing an input file which is then read from
the simulation code.

Step 5. The simulation code is executed using the code-specific input from the previous
step. Depending on the complexity of the calculation it might be necessary to execute
the steps 4.–8. on a separate computing system. In that case the specification of the
computing resource are additional generic input parameters.

Step 6. After the execution of the simulation code ended, the simulation results are trans-
ferred from the simulation code to the simulation framework. In terms of file based
communication this includes parsing the output files to have the simulation results
available for further processing.
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Step 7. In analogy to step 3. the results of the simulation code are then converted from
the code-specific format to the generic format. As a consequence, the following steps
can be defined independently of the simulation code, which allows the same analysis
methods to be applied to different simulation codes.

Step 8. As a first step of the analysis the output of the individual calculation is analysed
separately. For a DFT simulation code this analysis of the individual calculation
includes confirming that the electronic convergence reached the required precision.

Step 9. The individual calculations are collected and the combined data is aggregated for
further analysis. In terms of the energy-volume curve calculation, this aggregated
data is an array of volumes in combination with a corresponding array of converged
energies for these volumes.

Step 10. The aggregated data is then post processed in the analysis step. For the energy-
volume curve calculation this is fitting the selected equation of state to derive the
equilibrium parameters for the material system in dependence to the other parame-
ters defined, as the energy cutoff, kpoint mesh, exchange correlation functional and
pseudopotential.

Step 11. To gain a qualitative understanding the data can be visualised for the user. In
terms of the energy-volume curve a typical visualisation is plotting the equilibrium
volume and equilibrium energy in combination with the other energy volume pairs to
validate the selected energy volume pairs are well balanced around the equilibrium
volume, as it is shown in Fig. 2.4.

Step 12. Finally, it is the task of the user to validate the results and possibly update the
underlying model to trigger another iteration of the simulation life cycle. For the
energy-volume curve this could be adjusting the initial guess, alternatively adjusting
the convergence parameters energy cutoff and kpoint mesh to analyse the dependence
of the equilibrium parameters on the convergence parameters.

While the steps 1.–2. and 12. require user input, the steps 3.–11. can be automated by a
simulation framework. In particular the steps 4.–6. can be identified as the communication
with the simulation code and the steps 8.–10. as the analysis of the simulation results. Fi-
nally the steps 3.–8. have to be executed for each calculation separately while the remaining
steps can include input and output of multiple calculations.

4.2 Concepts

Based on the simulation life cycle in Fig. 4.1 the pyiron IDE is developed to support the
user during all steps of it. In the following the fundamental concepts of the pyiron IDE
are introduced, starting with comparing it to IDEs for software development in Sec. 4.2.1,
followed by the pyiron objects, the abstract class of objects which defines the building blocks
for the simulation protocols in Sec. 4.2.2 and finally how the pyiron IDE supports analysing
high-throughput parameter studies with an MapReduce [6] based approach in Sec. 4.2.3.

59



4 pyiron – Integrated Development Environment

Figure 4.2: Screenshot of the pyiron IDE running inside Jupyterlab with multiple Jupyter
notebooks being executed in a single session. The left bar shows a list of projects
created by the user. It acts as a file browser and helps to inspect the project
structure visually. The top center figure shows the interactive visualisation of an
hcp Mg2Al structure using the NGLview library [167]. In the top right a table
of content of a Jupyter notebook is listed. The lower center part shows the anal-
ysis of a finite temperature bond distributions, plotted with matplotlib [165].
The center right window shows a terminal inside the Jupyterlab environment
and finally the lower right picture shows the application launcher used to open
additional applications within the session windows. The whole Jupyterlab en-
vironment is accessible directly via the web browser. This applies to both in-
stallations of the pyiron IDE on a local workstation computer or on an HPC
cluster.

4.2.1 Integrated Development Environment

As an IDE for ab initio thermodynamics the pyiron IDE combines a web-based code editor
in the form of Jupyter notebooks with an extensive job management for build automation
and up-scaling simulation protocols from rapid prototyping to high-throughput parameter
studies as well as extensive debugging capabilities. These three components, the code
editor, the build automation and the debugger define an IDE as they are commonly used for
software development. The same components are required for the development of complex
simulation protocols, even though the individual components are different.

Source Code Editor: Jupyter notebooks allow the combination of software source code,
comments in rendered text as well as the inclusion of graphical content. With this
the Jupyter notebooks are similar to lab books used by scientists to document their
process. The functionality of Jupyter notebooks is briefly summarized in Sec. 3.3.1.
In contrast the source code editors of IDEs in the field of software development focus
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only on the source code and in-line comments.

Build Automation: While software developers use the build automation to test and dis-
tribute their software for multiple IT infrastructures, scientists are primarily focused
on the results of their calculation. Still, with increasing simulation protocol complex-
ity in the field of computational materials science workflows commonly scale beyond
just a single computer system. The build automation component of a scientific IDE
has to be focused on up-scaling calculation from the interactive prototyping to high-
throughput parameter studies. This includes submitting calculation to a job scheduler
of an HPC cluster, collecting the results of several individual calculations and finally
summarizing the result.

Debugger: Given the requirements of computing on a distributed IT infrastructure, the
debugger for a scientific IDE is also different from a debugger used for software devel-
opment. It has to be able to collect intermediate results of unsuccessful calculation
from the distributed IT infrastructure and assist the user in identifying the source of
the error. This includes providing access to the input and output files of the specific
simulation code, allowing the user to modify the input of the simulation code beyond
the generic format of the IDE and finally flexible ways to redo previously unsuccessful
parts of a complex simulation protocol.

While existing high-throughput frameworks allow to up-scale simulation protocols, they
require the user to define complex computing pipelines which hinders rapid prototyping
and debugging, as highlighted in Sec. 3.2.1. The core capability of the pyiron IDE is to
support the interactive rapid prototyping of new simulation protocols, the up-scaling to
high-throughput parameter studies and the ability to debug the simulation protocols all
within the same simulation framework. Hence, the name pyiron an integrated development
environment (IDE) for ab initio thermodynamics.

4.2.2 pyiron Objects

To address the challenges that come along with rapid prototyping, up-scaling and debugging
of complex simulation protocols, an abstract class of objects – the pyiron objects – is
introduced. The pyiron objects represent the different components of a simulation protocol,
as the project, the atomistic structure, the computing infrastructure and the simulation
code job objects for the various kinds of calculations. Each pyiron object has built-in
interfaces to the user interface, the data storage and the resources associated with this
object. Finally, pyiron objects can be nested inside each other. For example an atomistic
structure can be nested in a DFT calculation job and a DFT calculation job can be nested
in a job to calculate the energy-volume curve, using the nested DFT calculation job and its
structure as a template for calculations at multiple strains. As a consequence, this hierarchy
of different building blocks simplifies the construction of complex simulation protocols while
maintaining the dependence of the objects.
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User Interface

One of the goals of the pyiron IDE is that the user never has to leave the Jupyter notebook
environment, as introduced in Sec. 3.3.1. The pyiron IDE aims at creating fully reproducible
simulation protocols, which requires recording all the parameters specified by the user, and
to record all user inputs it is essential that all functionality is available within the same
interface. This is in contrast to existing environments to develop simulation protocols like
ASE. While these environments were primarily designed to for the Python programming
language, they can also be used inside Jupyter notebooks. They support the user to create
atomistic structures and define the simulation code to compute energies and forces, but
they do not provide any integration of an HPC job scheduler. So in order, to up-scale a
simulation protocol developed in ASE the user has to submit the python script to the HPC
job scheduler manually. In the same way the user has to define the data storage manually
and specify which data is stored as discussed in Sec. 3.1.2.

In contrast the pyiron IDE addresses this issue by integrating the user interface in each
pyiron object. This includes reducing the number of import statements the user has to
remember and focusing on tab-completion to support the interactive rapid prototyping in
the Jupyter notebook environment. In addition each simulation code job object includes
a server object which is used to specify the computing environment where the calculation
is executed. Finally each object can be rendered in the Jupyter notebook to give the
user a visual representation of the internal structure. This includes the visualisation of
atomistic structures in the Jupyter notebook using the NGLview library [167]. Therefore,
during the whole process of developing the simulation protocol, submitting an initial set
of calculations, analysing these and then continuing the development the user never has
to leave the Jupyter notebook and all steps can be documented. An example screenshot
of an active pyiron IDE session is pictured in Fig. 4.2. It includes multiple windows all
accessible via the Jupyter lab environment with a standard web browser. In particular the
pyiron IDE can be either installed locally on the user’s workstation computer or directly
on the HPC cluster to minimize the data transfer by keeping the simulation results on
the HPC cluster instead of transferring them to the client computer and to maintain the
reproducibility. This approach is beneficial especially within one group of collaborating
researchers who share the same computing infrastructure. By having a single installation
of the pyiron IDE directly on the HPC cluster rather than individual installations on the
collaborators workstation computers the administrative effort can be drastically reduced.
Still, the pyiron IDE supports both configurations for compatibility.

Data Storage Interface

The data storage for ab initio thermodynamics is challenging, because different calculations
have different data storage requirements. On the one hand for computing the energy-volume
curve it is sufficient to store the volumes and the corresponding energies. On the other hand
thermodynamic integration calculation requires the forces to be calculated from two different
simulation codes at each time step of the molecular dynamics trajectory. So, to reproduce
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the thermodynamic integration it is necessary to store not only the averaged free energy
difference but also the forces of all atoms over the whole trajectory. Different simulation
frameworks therefore use different data storage options, compare Tab. 3.1, ranging from
relational Structured Query Language (SQL) databases (ASE and AiiDA) to unstructured
non SQL (NoSQL) databases (Materials Project). The advantage of NoSQL databases being
that they do not require a relational model and are therefore more suitable for unstructured
data. The structured and unstructured data of atomistic simulation codes is defined in the
following:

Structured Data: This is data which is independent of the simulation code and methodol-
ogy used. This includes technical details like the location of the calculation on the file
system, the status of the calculation and the dependency of the calculation to other
calculation as well as physical parameters like the chemical composition. Storing
structured data in an SQL database enables the user to efficiently query the database
of existing calculation.

Unstructured Data: This is data which is code-specific and strongly depends on the calcu-
lation method. It can range from a scalar value of the final energy at the end of an
electronic convergence to an atomistic trajectory of a thermodynamic integration cal-
culation which requires storing all positions and forces at every time step. Storing this
unstructured data in an SQL database is not efficient, as it leads to sparse databases
with poor performance. Instead an unstructured NoSQL database or optimized file
formats like HDF5 are more suitable.

To address the combination of structured meta-data for unstructured datasets object-based
storage is commonly used. Still, the existing object-based storage systems are neither
optimized for scientific data nor for HPC-infrastructures. The pyiron IDE based on the
experience with PyCMW implements such an object store based on the HDF5 format
introduced in Sec. 3.3.3 and an relational SQL database. This has three advantages:

Generic Path: The internal hierarchy of the HDF5 file is used to extend the hierarchy of the
filesystem. This is implemented by using the SQL database as an index of the HDF5
files distributed on the filesystem. The users experience the combined hierarchy as one
continuous generic path. They can place pyiron objects at any position of the generic
path and reload the same objects using the same generic path. In the background the
path is split in a filesystem path and an HDF5 file internal path. A typical example
is a pyiron object nested in another pyiron object. In this case the parent object is
placed in the root of the HDF5 file and the nested object is placed in a subpath of
the same HDF5 file.

Parallel Writes: To prevent multiple compute nodes to write to the same HDF5 file, the
status of the pyiron objects is tracked in the SQL database. This prevents the same
object to be loaded in write-mode twice. Still, in the case a large calculation is
executed in a job scheduler allocation with multiple compute nodes using the message
pathing interface (MPI) then the MPI can be used to coordinate the file access within
the job scheduler allocation, while for all other compute nodes the object remains

63



4 pyiron – Integrated Development Environment

read-only.

HPC-Compatibility: Besides the SQL database, the HPC job scheduler and the shared file
system, the pyiron IDE does not require any additional daemon processes. While
the HPC job scheduler and the shared file system are available on all HPC clusters a
database which is accessible and sufficiently scalable to be accessed from all compute
nodes in the HPC cluster at the same time can be a limitation. In this case pyiron
is backwards compatible and uses the file system meta data to store the calculation
dependence. Still the use of an SQL database is highly recommended as an efficient
index.

With the direct link between the pyiron objects and the HDF5 file, the pyiron IDE can
manage the data storage automatically. So the user never has to save a pyiron object
manually instead the object is automatically saved before the calculation is executed and
once more after the execution of the calculation. In case the execution is not successful this
helps to debug the status of the pyiron object before the execution. By maintaining a direct
relation between the pyiron objects and the data storage in the HDF5 file, the pyiron IDE
benefits from the efficiency of the HDF5 internal index. In summary, this new development
combines the hierarchy of the file system the user is familiar with with the computational
efficiency of an object store optimised for scientific data while maintaining compatibility to
the IT infrastructure of existing HPC clusters.

Resources Interface

Besides the connection to the HDF5 file, pyiron objects can also be connected to external
resources. These external resources can be executables, parameter databases or computing
resources like an HPC cluster. The complexity of a modern DFT simulation code in combi-
nation with the complexity of thermodynamic simulation protocols emphasises the need for
an integrated solution. As a consequence the simulation code interface of the pyiron IDE
not only supports quantum engines to compute energies and forces (level one) but also more
thermodynamics modules (level two) if these are available in the simulation code. This is
required for ab initio thermodynamics to calculate molecular dynamics trajectories com-
putationally efficiently especially for interatomic potential simulation codes like LAMMPS,
which already include highly optimised parallel implementations for molecular dynamics.

In addition the pyiron IDE is focused on shielding the user from the complexity of
interfacing to the simulation code. It uses one central resource configuration directory,
which includes links to the executables, scripts for interfacing with the job scheduler as
well as parameter databases like interatomic potential files or pseudopotential files. So if
multiple users on the same HPC cluster use the pyiron IDE they can share their resources.
Also with the links to these executables as well as to the job scheduler of the HPC cluster
being based on shell scripts, they are easy to modify for advanced users without the need
to modify the source code of the pyiron IDE. At the same time these shell scripts enable
the pyiron IDE to support multiple versions of the same executable which simplifies the
process of debugging newly released versions or own modifications to the source code of
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the simulation code. Finally, all open-source software codes integrated in the pyiron IDE
are released as conda packages in binary format on the conda-forge community channel,
which was introduced before in Sec. 3.3.2. So they can be directly downloaded during the
installation to give new the pyiron IDE users a head start with an already configured system,
with the required simulation codes already set up. The benefit is twofold: On the one hand
this central configuration simplifies the daily use of the pyiron IDE, because the users have
to set up the pyiron IDE only once and afterwards there is no need for him to remember the
location of the parameter database on the file system or the dependencies which need to be
loaded for a specific executable. On the other hand by separating the technical configuration
of the resources from the simulation protocol, the simulation protocol is more transferable,
because it does not contain any information which is specific to the computing resources
used.

It is still possible for malicious users to actively manipulate their own simulation data.
This cannot be stopped, but with reference implementation of the open source executables
being available as part of the conda-forge channel, it is the choice of the user to either use
these executables or validate that their optimized or modified executable agrees with the
reference. Therefore, by separating the configuration of the resources from the simulation
protocol and by providing reference binaries for all open-source executables, the pyiron IDE
offers fully reproducible simulation protocols, which can be added to the publication as
supplementary material to give the readers the option to reproduce the same results if they
are willing to invest the required computing time. This level of reproducibility previously
required a dedicated simulation infrastructure [58] and is now included in the pyiron IDE
out of the box. More details how to publish a simulation protocol with the pyiron IDE are
provided in Sec. 4.4.4.

4.2.3 Interaction of pyiron Objects

While the individual pyiron objects already address the reproducibility of simulation proto-
cols, the interaction of pyiron objects is key to support the up-scaling for high-throughput
parameter studies and especially the rapid prototyping. By being easy to use starting
from the development of an individual simulation protocol up to the execution of a high-
throughput parameter study the pyiron IDE accelerates the productivity of the scientists
using it. Still, it is very difficult to quantify the ease of use, as it strongly depends on
personal preference and previous experience. But what can be quantified is the number of
lines required to reproduce a given simulation protocol, the number of commands a new
user has to learn to construct simulation protocols from scratch and finally the number of
required parameters the user has to remember.

The unix approach [176] of modularity and reusability by using specialist tools is a
perfect example how a set of self-consistent tools can be combined to address a higher level
of complexity. In the same way the pyiron objects are self-consistent and can be combined
to enable the construction of even more complex simulation protocols. For this purpose
the pyiron objects represent the building blocks of simulation life cycle in Fig. 4.1 from the
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atomistic structure over the simulation job up to the project level. The goal is to enable
switching to the pyiron IDE easy for both types of users: users who are already experienced
with python programming as well as those who previously created their simulation protocols
primarily on the command line but encountered limitations when it comes to up-scaling
complex simulation protocols.

Serialization

HPC cluster offer two main challenges: One is to efficiently distribute the computing tasks
and the other is to collect the results from the distributed computing resources after the
calculation finished. For the first part, the pyiron IDE communicates with the HPC job
scheduler via shell scripts, as part of the resources interface, discussed in the previous
section. The second part is commonly addressed in HPC clusters by having one shared
file system which is shared between all computing nodes. So in the case a simulation fails
to execute successful, the input files can be analysed on a separate computing node. But
communication over the file system, by writing input files and parsing output files, is slow
in particular when using a shared file system which is accessed by many computing nodes at
the same time. Therefore, the pyiron IDE in addition to the file-based communication also
supports direct communication of simulation processes and the pyiron objects during the
runtime of the simulation code. While this accelerates the communication, it also makes
debugging an unsuccessful calculation more complicated, because it is difficult to reconstruct
the current state of the calculation at the point when the calculation failed.

To address this issue of distributed memory access on a regular HPC cluster with a shared
file system the pyiron IDE leverages the exception handling capabilities of Python and the
pyiron data storage, introduced in Sec. 4.2.2, for object serialisation. During the execution
of the simulation code, the pyiron IDE maintains a Python process to communicate with
the simulation code and track the progress of the simulation code. This Python process
remains running even in the case the simulation code fails. So, the pyiron IDE is able to
store the current status of the calculation after the failure of the simulation code before
ending the Python process. By storing the full status of any pyiron object in the pyiron
data storage namely serializing it. The advantage of serialisation is that objects can be
stored on one computing node in the pyiron data storage and can be reloaded on another
computing node. Especially in the case of debugging an unsuccessful calculation, this is
helpful because it allows to reconstruct the last state of the pyiron object and the last state
communicated with the simulation code, which might already give an indication for the
reason of the unsuccessful calculation. Commonly this kind of distributed memory requires
special hardware, in the case of the pyiron IDE the object orientation and serialisation
enable this feature on regular HPC clusters with a regular shared file system.

In comparison to the default Python serialisation pickle the pyiron implementation has
two advantages. On the one hand in contrast to storing the full memory footprint the
pyiron IDE only stores the input and output of a given pyiron object while the object
definition is already included in the source code. On the other hand by using the pyiron data
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storage it is possible to deserialise a nested object from a parent object without reloading
the parent object. To achieve this functionality each pyiron object has to implement a
serialisation and deserialisation routine, which is not required for pickle. These serialisation
and deserialisation routines are implemented in the generic pyiron object class so each
object derived from the generic pyiron object class, only needs to adjust the serialisation
slightly when a new class of pyiron objects is implemented. Still, from the user side these
functions are never called, instead when the user submits a calculation, the pyiron IDE
automatically stores the state of the object, hiding this technical complexity. The users can
therefore debug calculations which are executed on an HPC cluster just like they debug
calculations on his local workstation, which is in contrast to existing simulation frameworks
and accelerates the rapid prototyping and up-scaling of complex simulation protocols. This
consistency of distributed memory which is achieved in the pyiron IDE by implementing
serialisation for each pyiron object is commonly called orthogonal persistence [177], because
the object state outlives the process it was created in.

Data Analysis

Reusing the example of calculating the energy-volume curve in Sec. 4.1, the iteration over
different elements, requires the up-scaling of the simulation protocol like it is done in the
Delta project [34] which iterates over both the elements and different simulation codes. The
development of a typical workflow can be divided in three phases:

Rapid Prototying: The first step is to interactively develop the simulation protocol. In the
case of calculating the energy-volume curve this included determining the initial guess
for the equilibrium volume to distribute the volumes around and select a equation of
state to use. A typical initial guess would be the experimental lattice constant and a
equation of state can be selected from Sec. 2.4.1.

Testing: With the initial guess and the equation of state defined, the simulation protocol
can then be tested with a subset of parameters to validate the stability and reduce
the number of corrections required.

Parameter Study: After the testing, the calculation for the parameter study over all pa-
rameters is submitted to a HPC cluster, even when the previous two steps are executed
on a local workstation computer.

After the calculations the user has to address two challenges: the first is aggregating the
data of the calculation which were executed successfully to identify correlations and the
second is handling the calculations which failed to identify patterns which led to failures
in the calculations. Both of these challenges are addressed by the pyiron IDE. For the
aggregation of data the pyiron IDE follows the MapReduce method [6]. The pyirontable
object takes a project object as input, in combination with a series functions. Each of
these functions takes a job object as input and return a parameter. The functions are then
executed on each job object in the corresponding project and the resulting parameters are
stored in a pandas table [178] with one row per job. By aggregating the calculation results
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in one table it is possible to study correlations between the different parameters. In contrast
to other solutions the pyiron IDE is not limited to a specific set of predefined parameters.
Instead, with the flexibility of user-defined functions, the pyiron IDE can be adjusted for
the needs of a specific project. This implementation of the MapReduce model to map a
given set of functions to a series of jobs and afterwards reduce the output to a single object
is therefore one of the core components of the pyiron IDE to up-scale complex simulation
protocols from rapid prototyping to high-throughput parameter studies. In the same way
the pyirontable object can also be used to identify patterns in unsuccessful calculations.
While the pyiron IDE is by default parsing for known error patterns, this can again be
extended by user-defined functions. Parsing the output files is not as efficient as loading
the already parsed datasets from the HDF5 files. Still, the same methodology applies.

Factory Pattern

The previous two features addressed the reproducibility and the up-scaling of simulation
protocols, the third addresses the rapid prototyping of simulation protocols. Instead of
creating the pyiron objects from their classes, which would require the user to import the
classes separately, the pyiron IDE is able to create new pyiron objects from existing pyiron
objects independently of their classes, which is called factory pattern. This not only reduces
the number of lines the user has to write and remember but at the same time it allows the
pyiron IDE to track which pyiron object was used to create another pyiron object. With
this information it is possible to create the provenance graph which tracks the dependency
of the objects, a feature initially proposed in AiiDA, as intoduced in Sec. 3.1.2. In the
pyiron IDE the dependency of the objects is stored as structured data in the SQL database,
which accelerates the resolution of dependencies.

In practice the project object is the only pyiron object which is created from importing
the class. With the project object the users define the location in the file sytem where to
execute the calculation. From the project object the atomistic structure is created as well
as the pyiron job object to execute a calculation. Finally a job object can again be used to
generate more complex job objects. With the factory pattern the hierarchy of the objects is
accessible for the pyiron IDE, while at the same time the required inputs from the user side
are reduced to a minimum. An example how to create the individual objects is discussed
in the next chapter.

The same factory pattern is used when deserialising a job from an HDF5 file. The pyiron
IDE first accesses the HDF5 file with a generic pyiron object class. The HDF5 file then
contains the information which object type is stored inside the root level of the HDF5 file.
So the pyiron IDE automatically loads the required classes in the background to be able to
deserialise the corresponding object. As a consequence, the pyiron object on the one hand
simplifies the user interface as the user explicitly creats one pyiron object from another
one. On the other hand the resulting hierarchy is matched to the pyiron data storage
which simplifies the debugging and the data analysis. So, while the underlying concepts of
the pyiron IDE are complex, they successfully reduce the technical complexity on the user
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side. As a result of this, the users can focus on the scientific complexity of their simulation
protocols.

4.3 Example Workflow

To highlight the concepts introduced in the previous section, they are now applied to demon-
strate the functionality of the pyiron IDE from a practitioner’s perspective. Following the
simulation life cycle in Fig. 4.1 the necessary pyiron commands for the specific steps are
introduced with a focus on the ease of use and the rapid prototyping.

4.3.1 Installation

Comparing the ease of use of a software is always subjective. Still while other software
packages require the user to configure the dependencies and compile their software manually,
the pyiron IDE can be directly installed via the conda package manager from the conda-forge
community channel [168]:

conda install -c conda-forge pyiron

This command not only downloads the pyiron IDE, but also the required dependencies like
spglib for identifying crystal symmetries and h5py the Python interface for the HDF5 file
format as well as several others. The advantage of the conda package manager over the
pip package manager as well as the general concept of the conda package management are
discussed in Sec. 3.3.2. In addition to pyiron also the interatomic potential code LAMMPS
and the DFT code S/PHI/nX are downloaded using:

conda install -c conda-forge lammps sphinxdft

Both of these simulation codes as well as several others and software utilities for computa-
tional materials science have been contributed to the conda-forge community as part of this
thesis. This results in a total of over 250 software packages and over ten million downloads,
which demonstrates the need for lowering the technical barrier in computational materials
science. Another optional step is the installation of the visualisation library NGLview to
visualise atomistic structures directly in the interactive Jupyter environment:

conda install -c conda-forge nglview

With a total of three commands the pyiron IDE is installed and configured for all examples
in this section. The more extensive application in Chap. 5–7 requires additional software
packages. While the conda package manager supports all major operation systems, the
majority of the computational materials science simulation codes are primarly developed
for the Linux operation system, so the corresponding packages are also restricted. For more
advanced configuration options including the addition of the VASP simulation code and the
configuration of HPC clusters are available on the pyiron website. By embracing the use of
the conda package manager for computational materials science, the pyiron IDE on the one
hand enable users to test and compare different simulation codes and on the other hand it
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improves the reproduciblity of simulation protocols. The publication process is discussed
in more detail in Sec. 4.4.4.

4.3.2 Project Object

After the successful installation a folder for pyiron projects is created and the Jupyter
notebook environment is started in this folder:

mkdir -p ~/pyiron/project

cd ~/pyiron/project

jupyter notebook

All the following python commands are then executed in individual cells of the Jupyter
notebook. To create the first pyiron project, the project class Project is imported from
the pyiron module pyiron and afterwards used to create an instance of the project class
Project. The path parameter path="projectname" of the project class Project defines
the folder of this project:

from pyiron import Project

pr = Project(path="projectname" ) # ~/pyiron/procet/projectname

The pyiron IDE has no limits to the number of jobs inside one project and also allows
to access and manipulate the same project with multiple simulation protocols. Still, in
practice the project-based structure including arbitrary levels of subprojects helps the users
to structure their data. It is similar to working with a classical file system-based approach,
which helps to map existing workflows to the pyiron simulation protocols. To be able
to track the modifications of the user and generate a consistent simulation protocol it is
essential for the pyiron IDE that all steps are executed inside the Jupyter notebook and
the data is not manipulated outside the Jupyter notebook. However for the intermediate
process of migrating a simulation protocol to the pyiron IDE or debugging an unsuccessful
calculation the direct access via the file system can be helpful. Following the nomenclature
of the HDF5 format, the project object supports the list function for groups list_groups()
and the list function for nodes list_nodes(). In the HDF5 format a group can contain
both groups and nodes, while nodes only contain datasets. In the same way the pyiron IDE
implements list groups for subprojects and list nodes for pyiron objects. Finally, the path
property of the pyiron project object path returns the current directory on the file system
where the project is located.

pr.list_groups()

>>> [] # ["sub_project_a",...]

pr.list_nodes()

>>> [] # ["calculation_1", ...]

pr.path

>>> "~/pyiron/projects/projectname"

With these very basic commands the user can already navigate through the current folder
and iterate over existing objects, if there are any. In this example there exist no additional
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objects yet. To create a new project object from an existing project, the pyiron IDE
supports the create-group function create_group() in analogy to the HDF5 format. After
the new group is created the user can navigate to this group using the edge bracket notation
which is commonly used in python to access items in another object. To demonstrate this
functionality a subproject for the existing project named “new” is created and then accessed
via the original project object:

pr_new = pr.create_group("new" )

pr_new.path

>>> "~/pyiron/projects/projectname/new"

pr_new_2 = pr["new" ]

pr_new_2.path

>>> "~/pyiron/projects/projectname/new"

Both variables pr_new and pr_new_2 reference the same object. The users are not forced to
keep track of all objects in memory, but instead simply create the pyiron objects they need.
If these objects already exist, the pyiron IDE reloads the existing copy instead of creating
a new one. This flexibility again helps the users to create complex simulation protocols.

4.3.3 Create an Atomic Structure Object

Instead of importing the atoms class to create the atoms object, it is created from the
project object following the factory pattern, introduced in Sec. 4.2.3. As the pyiron atoms
class is derived from the ASE atoms class, it benefits from the utilities ASE provides to
create atomistic structures, with ASE being introduced in Sec. 3.1.2. One of these utilities is
the bulk class which creates bulk structures of the equilibrium phase with the experimental
lattice constants. Only the symbol of the element has to be selected. In this case it is "Al"
for aluminium:

structure = pr.create.structure.ase.bulk("Al" )

This creates a primitive fcc aluminium cell with just a single atom. To create the cubic
supercell the parameter cubic=True is added:

structure_cubic = pr.create.structure.ase.bulk("Al" , cubic=True)

Using the factory pattern for creating the atoms object has two advantages. First the user
does not need to remember the path to import the atoms class from, he can simply use
tab-completion on the project object and second the atoms object inherits the location on
the file system from the project. So, to serialize the atoms object in a separate file path
is not required. This automatic inheritance creates the provenance of the objects. It is
stored in the Jupyter notebook and on the file system based on the hierarchy of the objects.
Finally with the function to create an ASE structure create.structure.ase.bulk() di-
rectly accessible from the project object the user can use the question mark character to
access the built-in documentation. It shows all input parameters, the lattice constant a, the
crystal structure crystalstructure and the ratio of the lattice constants for hcp crystals
c_over_a, as well as short explanations for each input parameter.

71



4 pyiron – Integrated Development Environment

pr.create_ase_bulk?

So in principle, knowing how to create the first project object in combination with tab-
based auto completion and in-line documentation should be sufficient to learn more about
the pyiron IDE while using it. After the creation, the atomistic structure is visualised
in the jupyter notebook using the NGLview [167] library. For this purpose the supercell is
repeated nine times in each direction using the repeat function repeat() and afterwards it is
visualized using the plot 3D function plot3d(). While the repeat function is inherited from
the ASE library the plot 3D function is a pyiron IDE specific extension for compatibility
with the jupyter environment.

structure_repeated = structure.repeat([9,9,9])

structure_repeated.plot3d()

This highlights the pyiron approach of reusing existing open source simulation codes and
utilities rather than reinventing them with a special focus on compatibility with the inter-
active jupyter environment.

4.3.4 Job Object

The pyiron job object interfaces to a simulation code. Depending on the functionality of
the simulation code the job object can either only calculate energies and forces or exe-
cute internal simulation protocols like computing molecular dynamics trajectories. The
simulation code internal implementation is computationally more efficient than the python
implementation in particular for interatomic potential codes.

Calculate Energy and Forces

To calculate the energies and forces, a pyiron job object is defined. Following the factory
pattern the create-job function create.job.Sphinx() of the project object is used to create
a S/PHI/nX simulation job object job. The S/PHI/nX simulation code is introduced in
Sec. 3.1.2. The function only requires one argument, the name of the job, which has to
be unique in the name space of the project to be able to reload the job object later on.
By using tab-completion the job type can be selected without the need to remember the
exact class name. Internally, this loads the S/PHI/nX class and sets it as a type of the job
object. After the creation of the S/PHI/nX job object the atomic structure object which
was created above is assinged and the calculation is executed by calling the run function of
the job object run().

job = pr.create.job.Sphinx(

job_name="sphinx_al"

)

job.structure = structure

job.run()

>>> "The job sphinx_al was saved and received the ID: 1"
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Calling the run function triggers a series of internal steps, namely steps 3.-8. of the simu-
lation life cycle illustrated in Fig. 4.1. First the job object is serialized to the HDF5 file,
which is located in the path given by the project object and according to the name of the
job object. The serialisation also includes the structure object which was assigned to the
job object. It is therefore possible to reload the objects by navigating through the objects
using their generic path, similar to navigating through the file system.

job_reload = pr["sphinx_al" ].to_object()

structure_reload = pr["sphinx_al/input/structure" ].to_object()

Adding the function to_object() returns the object, while by default only a pointer to
the object is returned. By using the pointer it is possible to navigate to a property of the
object and reload just a single property, rather than the full object. This is useful for data
aggregation following the MapReduce methodology [6]. For the user there is no difference
between navigating through the file system and navigating through the HDF5 files, both
are accessible from the project objects. For the example of accessing the structure inside
the job object the generic path is "sphinx_al/input/structure" with the job name of
the job object "sphinx_al" which is represented on the file system by a HDF5 file named
sphinx_al.h5 and inside the group "structure" is accessed which is a subgroup of the
input group "input" . This integration of the HDF5 format as an extension of the file
system is unique in the pyiron IDE as introduced in Sec. 4.2.2.

In analogy to the structure object which is part of the generic input – step 3. in the
simulation life cycle – also the output – step 7. – can be accessed in the generic format.
Starting with the total energy there are three ways to access it: In addition to the HDF5
based access via the job object and the project object, the total energy can be accessed as
an attribute of the output object of the job object job.output.energy_tot.

job["output/generic/energy_tot" ]

>>> array([-57.23744137])

pr["sphinx_al/output/generic/energy_tot" ]

>>> array([-57.23744137])

job.output.energy_tot

>>> array([-57.23744137])

The output object includes the output of the S/PHI/nX calculation in the generic code-
independent format. This generic format in the pyiron IDE uses the International System of
Units while the S/PHI/nX code internally uses atomic units. This is achieved by converting
the units after the calculation to match the generic format. In the same way variable
names are converted to follow the typology of the generic format. For the user the generic
code-independent format has the advantage that analysis methods can be implemented
independent of the simulation code, which enables switching the simulation code during the
development of a simulation protocol. This generic format is another essential feature of
the pyiron IDE which supports the rapid prototyping because users can gradually increase
the complexity of their calculation. They start with an interatomic potential simulation
code and switch to a DFT simulation code afterwards. To demonstrate this the previous
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calculation is repeated with the interatomic potential code LAMMPS:

job_lmp = pr.create.job.Lammps(

job_name="lammps_al"

)

job_lmp.structure = structure

job_lmp.run()

>>> "The job lammps_al was saved and received the ID: 2"

job_lmp.output.energy_tot

>>> array([-3.36000002])

The job type in the create-job function pr.create.job is changed to LAMMPS and the job
name parameter is set to job_name="lammps_al" . As no interatomic potential is defined the
pyiron IDE automatically selects and interatomic potential based on the atomistic species.
In this case the interatomic potential for nickel aluminium [55] is selected. The pyiron IDE
also supports the user in choosing a corresponding potential by providing a list-potentials
function list_potentials() for the LAMMPS interatomic potential code, which lists all
potentials compatible with both the simulation code and the current atomistic structure.
More detailed information about the available interatomic potentials is available via the
view-potentials function view_potentials(), which provides additional information for
each potential. By providing parameter databases for the individual simulation codes,
the pyiron IDE helps new users to get started and at the same time encourages advanced
users to compare different interatomic potentials during the development of their simulation
protocols.

While the difference in total energy for the LAMMPS simulation code and the S/PHI/nX
simulation code demonstrates that the user still has to be careful with his choice of parame-
ters, the following sections are going to show that the energy differences at different volumes
reproduce the same trend even though the total energies are different. Being able to switch
between different methods seamlessly enables rapid prototyping in the pyiron IDE. Finally,
after the successful calculation of the total energy it is confirmed that the atom in the su-
percell is not moving. In analogy to the total energy also the forces of the calculation can
be inspected. For the inspection of the S/PHI/nX calculation the generic path is used:

pr["sphinx_al/output/generic/forces" ]

>>> array([[[-0., -0., -0.]]])

The forces are zero as expected based on the symmetry of the periodic supercell. This
demonstrates another feature of the pyiron IDE. Instead of extracting just a single property
from the output files like the total energy, the pyiron IDE converts the whole output to the
generic format and stores the output in the HDF5 format. This requires more time at the
end of the calculation. Still, it is beneficial for rapid prototyping to validate the physical
consistency without the need of an additional calculation or additional parsing of the output
files.
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Calculate Molecular Dynamics Trajectories

To go beyond the calculation of the energy and forces for a static structure, a second
LAMMPS job object is created to calculate a MD trajectory for a temperature of 800 K.
MD and the corresponding thermodynamic ensembles are introduced in Sec. 2.3. Instead of
the single atom supercell used for the previous calculation the repeated structure from above
is selected. After assigning the structure the generic MD function calc_md() is called with
the parameter for the temperature set to 800 K temperature=800.0. This generic function
is defined for all codes which support MD calculations to allow the user to switch from one
code to another.

job_md = pr.create.job.Lammps(

job_name="lammps_md"

)

job_md.structure = structure_repeated

job_md.calc_md(temperature=800.0)

job_md.run()

>>> "The job lammps_md was saved and received the ID: 3"

Other generic functions include the static calculation function calc_static() which is
used by default, the minimization function calc_minimize() which allows to relax the
structure, as well as DFT specific functions to set the convergence parameters like the
function to set the energy cutoff set_encut() and the kpoint mesh set_kpoints(). A
simulation protocol which uses generic functions can be applied to any simulation code
which implements the necessary functionality by just changing the job type in the create-
job function create.job() as demonstrated above for the LAMMPS interatomic potential
code and the S/PHI/nX DFT code.

Define Computing Resources

With the increased size of the supercell containing 729 atoms in the 9 × 9 × 9 repeated
unit cell, it is reasonable to use multiple CPU cores. For parallel calculation LAMMPS
internally uses the MPI. So the same calculation is repeated using the parallel version of
LAMMPS with 8 CPU cores and executing the calculation in the background. This allows
the user to continue the development of the simulation protocol while the calculation is in
progress. Starting with a copy of the previous calculation by using the copy-to function
copy_to() with the additional parameter to copy only the input and not the calculation
results input_only=True. Afterwards, the number of CPU cores is increased to 8 cores
job_md_para.server.cores = 8 and set run mode to executing the calculation in the
background job_md_para.server.run_mode.non_modal = True. Finally, the job object
is executed using the run method run() in analogy to the previous calculation.

job_md_para = job_md.copy_to(

new_job_name="lammps_md_parallel" ,

input_only=True,
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)

job_md_para.server.cores = 8

job_md_para.server.run_mode.non_modal = True

job_md_para.run()

>>> "The job lammps_md_parallel was saved and received the ID: 4"

By calling the run method the job object is serialised to an HDF5 file, but instead of
executing the job object in the same processes like the python environment it is now sent
to a background process. The ability to modify the way how a calculation is executed
by specifying two additional parameters supports the users in up-scaling their simulation
protocols. Typical examples are calculating larger structures or longer trajectories to achieve
higher sampling rates. When the local CPU cores are no longer sufficient, the pyiron IDE
supports up-scaling the calculation using a HPC job scheduler.

Following the same approach as linking to the executables the pyiron IDE uses shell
scripts to link to the different job queues. This is driven from the experience that while
modern HPC job schedulers support a wide range of options, they are always restricted by
the available hardware. On the hardware side the ratio of available CPU cores to available
memory is fixed. As a consequence instead of supporting all possible job scheduler options
the pyiron IDE uses shell script templates which are accessible directly from the server
object. The list-queues function list_queues() lists the available job queue templates and
afterwards the user can assign one of the available job queues using the queue parameter
of the server object queue. In the case of a pyiron IDE installed on a workstation with
a connection to a pyiron IDE installed on an HPC cluster the queue names of the HPC
cluster are listed and the jobs are transferred automatically in the background.

job.server.list_queues()

>>> # ["queue_small", "queue_big"]

# job.server.queue = "queue_small"

As the configuration of the job scheduler templates is specific to the job schedulers the user
is referred to the pyiron website [179] for more details. In contrast to all previous options
the specification of the queue is IT infrastructure specific, so this setting has to be adjusted
when reusing the same simulation protocol on a different HPC cluster.

Advanced Input and Output

The generic format allows to switch from one simulation code to the next one with minimal
modifications. Still, advanced users might require simulation code-specific functionality
which is not available as a generic function inside the pyiron IDE. To address this limitation
the pyiron IDE extends the generic interface with the ability to access the input and output
files of the simulation code directly. To access the input file of the parallel MD calculation
from above, the input object of the LAMMPS calculation which represents the central
LAMMPS input file job_md_para.input.control is accessed:
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job_md_para.input.control

>>> " Parameter Value"

>>> "0 units metal"

>>> "1 dimension 3"

>>> "2 boundary p p p"

>>> "3 atom_style atomic"

>>> "4 read_data structure.inp"

>>> "5 include potential.inp"

>>> "6 fix___ensemble all nvt temp 800.0 800.0 0.1"

>>> ...

The result of the generic MD function calc_md() is listed in line 6 where the ensemble is
defined as NVT with a constant temperature of 800 K. This LAMMPS-specific input can
be modified using the generic notation of the input object:

job_md_para.input.control["fix___ensemble" ] = \

"all nvt temp 900.0 900.0 0.1"

This notation is generic for all codes but the variables and the units of the variables are
code specific. In addition to the input files also the executable can be modified. This
demonstrated by comparing the job object of the molecular dynamics calculation with the
job object of the parallel molecular dynamics calculation the pyiron IDE automatically
switched from the serial executable to the parallel executable using the message passing
interface (MPI):

job_md_para.executable

>>> "~/resources/lammps/bin/run_lammps_2021.07.01_mpi.sh"

job_md.executable

>>> "~/resources/lammps/bin/run_lammps_2021.07.01.sh"

As explained in Sec. 4.2.2 the pyiron IDE is using shell scripts to link to the executables
because it simplifies the configuration and debugging. Finally, the pyiron IDE provides the
user access to the original output of the simulation code – step 6. of the simulation life
cycle.

job_md_para.decompress()

job_md_para["log.lammps" ]

>>> "LAMMPS (1 Jul 2021)"

>>> "OMP_NUM_THREADS environment is not set. Defaulting to 1 thread."

>>> " using 1 OpenMP thread(s) per MPI task"

>>> "units metal"

>>> "dimension 3"

>>> "boundary p p p"

>>> "atom_style atomic"

>>> "read_data structure.inp"

>>> " triclinic box = (0 0 0) to (25.7 22.32 21.0)"

>>> " with tilt (12.8 12.8 7.4)"
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>>> " 2 by 2 by 2 MPI processor grid"

>>> ...

By default the output is compressed to reduce both the data storage space and the number
of files on the shared file storage, which commonly is a limitation of HPC clusters as more
files increase the complexity of the backup. Inside the pyiron IDE the decompress function
of the job object decompress() is used to access the output files like any other pyiron object
with the edge bracket notation. In the last line of the output of the LAMMPS simulation
code is using a 2 × 2 × 2 MPI processor grid, which totals in 8 CPU cores as specified
above. This validates the parallel execution of the LAMMPS calculation. Still at the same
time this direct access to the output files could also be used to extract properties from the
output which are not yet included in the pyiron IDE. Finally, to get a list of all input and
output files, the list files function list_files() is used. For the parallel LAMMPS MD
calculation the list files function returns the following list of files:

job_md_para.list_files()

>>> ['NiAl.eam.alloy' , 'log.lammps' , 'potential.inp' , 'control.inp' ,

'dump.out' , 'error.out' , 'structure.inp' ]

The combination of modifying the input files, adding new executables via shell scripts and
the ability to manually access the output files from within the pyiron IDe is essential to
address the development process of those who want to modify the simulation code, while
still benefiting from the simulation management, data storage and user interface of the
pyiron IDE.

4.3.5 Data Analysis

After the successful execution of the job object the calculation output can either be inspected
using the job object as demonstrated in the previous section or using the project object. The
second option has the advantage that it enables the separation of executing the calculation
and the analysis of the results. A typical application represents the submission of the
calculation to an HPC cluster and the analysis of them once all calculation are completed.

Inspect the Project

The previous sections introduced the generic functions to navigate the hierarchy of py-
iron objects, namely the list groups function list_groups() and the list nodes functions
list_nodes(). To simplify the navigation for the user, the pyiron objects by default return
a combination of both lists. In the case of the project object pr above, it lists the subproject
as well as the four calculations created in the previous section:

pr

>>> {"groups" : ["new" ],

"nodes" : ["sphinx_al" , "lammps_al" , "lammps_md" ,

"job_md_parallel" ]}
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Again this functionality applies to all pyiron objects, so the reloaded job object for the
S/PHI/nX calculation job_reload returns the same list of groups and nodes like the project
object when accessing the calculation object pr["sphinx_al" ]:

job_reload

>>> {"groups" : ["input" , "output" ],

"nodes" : ["NAME" , "TYPE" , "VERSION" , "server" , "status" ]}

pr["sphinx_al" ]

>>> {"groups" : ["input" , "output" ],

"nodes" : ["NAME" , "TYPE" , "VERSION" , "server" , "status" ]}

By implementing the same functions for all pyiron objects, the usage of the pyiron IDE
is simplified. Depending on the object the way how these functions are implemented in-
ternally differs. Still, to the user they resemble an coherent interface, which extends the
default Python programming language. Following the same principle the project object also
implements the lists file function list_files() introduced above for analysing the output
files of a job object:

pr.list_files()

>>> ["lammps_al.h5" , "lammps_md.h5" , "sphinx_al.h5" ,

"job_md_parallel.h5" ]

Comparing the list of files with the list of nodes of the same project above, it is visible that
by default each job object is associated with a separate HDF5 file to store the unstructured
data.

Jobtable

Besides the file system based access to the pyiron objects the same pyiron objects can also
be accessed via the database interface. To access the database the project object is used:

pr.job_table(

columns=['id' , 'status' , 'job' , 'project' , 'totalcputime' ],

all_columns=False

)

>>> " id status job project totalcputime"

>>> "0 1 finished sphinx_al projectname/ 3.0"

>>> "1 2 finished lammps_al projectname/ 0.0"

>>> "2 3 finished lammps_md projectname/ 2.0"

>>> "3 4 finished lammps_md_parallel projectname/ 1.0"

By default the output of the job table function job_table() is filtered by the path of the
current project, so it only contains the pyiron objects in this project. In addition the number
of columns is restricted in the above example. A list of all available columns follows below.
The job table lists the calculation, with their corresponding database identifier, the status
of the calculation, the name of the object, the location on the file system and the run time.
This is the only SQL database table inside the pyiron IDE. All the remaining unstructured
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data is stored in the HDF5 files. The SQL database provides four core capabilities:

1. It represents an index of all HDF5 files on the file system, so searching for a specific
HDF5 file is accelerated compared to a traditional file system.

2. Based on the job status it is not only visible which calculations are currently in process,
but in addition the job status also highlights job objects which are currently being
written to the file system to prevent multiple write accesses. The serialisation which is
implemented for each pyiron object in combination with this central file index which
tracks the access status of the different objects enables the orthogonal persistence and
handles the object access in the pyiron data storage.

3. The job table also contains the relation of the individual objects, either based on the
path in the file system or by specifying the predecessor and superior object for nested
objects, resulting in the full provenance being accessible to the user.

4. The job table is used to track the resource usage of different simulation codes, specific
versions of a code and the computing environment, which helps users to optimise their
simulation protocols for up-scaling.

To give a more detailed introduction to the job table, the individual columns are explained
below:

• id: It is an integer identifier, which is mainly used internally to load job objects. The
users can load objects based on the job id. Still, the numbering of job ids is continuous
and therefore specific to the pyiron installation. So, a simulation protocol which relies
on job ids is most likely not transferable.

• status: The status of a calculation indicates if a calculation is waiting in the job
scheduler of the HPC cluster, is currently running or already finished. Based on the
job status jobs which are currently being executed on a given compute nodes can
be identified. As a consequence, these cannot be loaded on another compute node.
Again this is important to maintain the orthogonal persistence of the objects inside
the pyiron data storage.

• job: The job column lists the job name defined during the creation of the job object.
The job name has to be a unique identifier in the name space of an existing project,
which allows reloading job objects based on their job names, as demonstrated above.
This has two advantages: first it is more intuitive for the user to remember job
names rather than job ids and second the job names are independent of the specific
installation of the pyiron IDE, which allows the user to transfer the simulation protocol
from one installation to another one.

• projectpath: By default, the project path is pyiron/project as explained above
in the installation Sec. 4.3.1. However, on an HPC cluster the directory structure
might be restricted or users prefer to have separate volumes for different scientific
projects. The pyiron IDE supports this by allowing the users to add multiple paths
to the pyiron configuration.

• project: Inside the project path the pyiron IDE creates projects, like the project
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created above named Project(path="projectname" ). So the project column is di-
rectly related to the path on the file system and represents the location of the HDF5
file.

• subjob: Inside the HDF5 file the subjob column gives the path of the nested job
objects. While for large calculation it is efficient to have one HDF5 file per calcula-
tions this is no longer efficient for very small calculations. Therefore, the pyiron IDE
supports nesting multiple calculations in one HDF5 file to reduce the number of files
on the file system.

• chemicalformula: To quickly obtain an overview of the available data inside a pyiron
project, the chemical formula is stored in the database. This enables filtering by
atomistic species. In particular for up-scaling an existing simulation protocol over the
periodic table, filtering by chemical formula is used as a progress indicator.

• computer: To track the resource used by a given calculation, the pyiron IDE stores
the number of cores and the job queue in the job table. Keeping an overview of the
computational resource usage helps to improve the simulation protocols by addressing
the most expensive calculations first.

• totalcputime: Besides the resources the pyiron IDE also tracks the CPU time. While
the first version of a simulation protocols is commonly not optimised for efficient
resource usage the optimisation is essential for up-scaling simulation protocols from
rapid prototyping to high-throughput parameter studies.

• timestart: The total CPU time is calculated with the difference of start time and stop
time. Still, recording the start time also helps to identify failed calculations, which
have been started but never finished, as well as tracking the influence of software bugs.
To be able to search for all calculations, which were executed in a given time frame,
allows to identify all calculations which might be affected by a software bug no matter
if it is a bug in the simulation code, in the simulation framework or any underlying
software.

• timestop: For completeness also the stop time is recorded in the database.

• hamilton: The hamilton column defines the simulation code used. By filtering the
database by simulation codes helps to identify the resource allocation in a given project
and to enable up-scaling of the simulation protocols.

• hamversion: Based on the simulation code, the hamilton version column defines the
version of the simulation code which was used. This again helps to track bugs in the
simulation codes as well as identify customized executables, which might be required
for the reproducibility of a given pyiron projects.

• parentid: The parent id defines the predecessor of an existing job by referencing its
job id to construct the provenance graph. This allows the pyiron IDE to track the
dependency of individual calculations.

• masterid: Finally, in analogy to the parent id the master id links to wrapper jobs
which execute multiple calculations. Maintaining this relation directly available inside
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the database accelerates the resolution of dependencies of separate calculations. The
use of master jobs is discussed in more detail in the following section.

With the job table the structured data of job objects is directly accessible, while the un-
structured data is stored in the HDF5 file. This combination of two different data storage
solutions is one of the key features which enables the up-scaling of simulation protocols in
the pyiron IDE based on the pyiron data storage. Besides job objects the same job table
could in principle be extended for other object types as well. Still, in practice the primary
use case of the job table is keeping track of the job objects, because these require the most
computing resources and need to be debugged separately when they fail. All other pyiron
objects are directly implemented in the Python programming language, use less computing
resources and can be debugged interactive inside the Jupyter notebook session, so tracking
them in the database is commonly not necessary but technically possible.

Analyse the Project

The analysis is the 10th step of the simulation life cycle in Fig. 4.1. After the successful
execution of the simulation codes and the automatic validation of the calculation, it is the
task of the user to analyse and visualise the calculation results. Starting with the LAMMPS
molecular dynamics calculation, the project object is used to directly access the output of
the calculation, which is stored inside the HDF5 file of the corresponding job object.

e_pot = pr["lammps_md/output/generic/energy_pot" ]

steps = pr["lammps_md/output/generic/steps" ]

In this case both the evolution of the potential energy "energy_pot" over time as well as
the timesteps "steps" are extracted. While the simulation codes typically calculate all
properties at a given time step and write all properties as one object to the corresponding
output files, the pyiron IDE converts this single time series of all parameters to one time
series per parameter. For the user this simplifies the visualisation as the time series of
individual parameters can be directly visualised using the Python plotting package [165].
The potential energy over time steps is plotted, to visualise the evolution of the potential
energy:

import matplotlib.pyplot as plt

plt.plot(steps, e_pot)

plt.xlabel("Steps" )

plt.ylabel("£Energy_{pot}£ [eV]" )

By relying on standard Python packages and interfacing them with both the simulation
codes and the distributed parallel object storage, the pyiron IDE enables the users to up-
scale their simulation protocol from rapid prototyping to high-throughput parameter studies
towards data-driven science. Besides creating time series for each parameter, the pyiron
IDE also converts the code-specific output to a generic format using the international units
system. So the same command used for the LAMMPS calculation can also be executed for
the S/PHI/nX created above:
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e_pot = pr["sphinx_al/output/generic/energy_pot" ]

The S/PHI/nX calculation is a static calculation, so the potential energy time series only
contains a single entry, as it was already demonstrated during the calculation of energies
and forces. Using this generic format in combination with loading job objects by name
rather than job id, creates a generic simulation protocol, which can be transferred from one
installation of the pyiron IDE to another one. This highlights the level of abstraction used
in the pyiron IDE to separate the technical interface to the specific computing hardware
from the physics of the simulation protocol. The technical configuration is stored in the
pyiron configuration files and the simulation protocol is stored in the Jupyter notebook.
The process of transferring and publishing a simulation protocol is discussed at the end of
the next section. While accessing specific datasets from the HDF5 files of the job objects
is already more efficient than loading the job object just to extract a single dataset, this
feature can also be combined with the job database from the previous section. It enables
iterating over all job objects in the current project and plotting the last entry of their
potential energy time series:

for job in pr.iter_jobs():

plt.plot(job["output/generic/energy_pot" ][-1], label=job.name)

plt.ylabel("£Energy_{pot}£ [eV]" )

plt.legend()

In the background the pyiron IDE is accessing the SQL database to select the job ob-
jects from the pyiron data storage to iterate over them. By default the function to iterate
over all job objects in the project iter_jobs() loads the full job objects. So the analy-
sis can be accelerates by adding the parameter to disable the conversion to pyiron objects
iter_jobs(convert_to_object=False). With this additional parameter the pyiron IDE
is only accessing a pointer to the data stored in the pyiron data storage, which can accelerate
the data analysis by an order of magnitude. On the one hand the obligation to add just a
single parameter to accelerate the performance of the analysis is helpful for the user on the
other hand loading the full object by default provides full access for interactive debugging,
which is commonly used during the rapid prototyping. Again the pyiron IDE is focused on
the up-scaling of simulation protocols from rapid prototyping to high-throughput parame-
ter studies which is required for the development of ab initio thermodynamics simulation
protocols and the iteration over the periodic table.

4.4 Energy-Volume Curve Calculation

Using the fundamental pyiron objects discussed before the equilibrium volume V0, the equi-
librium bulk modulus B0, the derivative of the equilibrium bulk modulus BP and the
equilibrium energy E0 are calculated following the simulation life cycle in Fig. 4.1. It is rec-
ommended to execute these calculation in a new Jupyter notebook, so this Jupyter notebook
can be reused later.
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4.4.1 Defining the Simulation Protocol

Starting with the import of the required modules, the plotting library [165], the numerical
library [164] and the pyiron project class are imported.

# Import modules

import matplotlib.pyplot as plt

import numpy as np

from pyiron import Project

Following the import, in the second step the template objects are created, which are copied
afterwards to create multiple calculations with the same settings. The S/PHI/nX DFT
simulation code is selected with the default energy cut off and kpoint mesh. So adjusting
these convergence parameters is not necessary. In addition the element aluminium is selected
and defined as the variable element = "Al" . This keeps the simulation protocol as simple
as possible. A more extensive discussion of the DFT uncertainty and the dependence of
the equilibrium parameter convergence on the energy cut-off and the kpoint mesh follows
in the Chap. 5.

# Create project

pr = Project("application" )

# Parameter

element = "Al"

# Create structure and job reference

structure = pr.create_ase_bulk(element)

job_ref = pr.create.job.Sphinx(

job_name="job_ref"

)

After the creation of the project object, the template job object and the template structure
object, a for loop is created to iterate over eleven strains between 90% and 110% of the
initial volume. For each strain the structure object template is copied and to achieve the
volume deformations from ±10% the simulation cell is equally rescaled in all three directions
with the set cell function set_cell(). Adding the option scale_atoms=True is required
to not only rescale the supercell but also to update the positions within the supercell.
Afterwards the structure is assigned to a copy of the job template object with an updated
job name to include the strain for future reference. Finally, the calculation is executed
using the run function run(). Again, these calculations are calculated in the background
by setting the run mode of the server objects of each job object to non-modal execution
job_strain.server.run_mode.non_modal = True. As a result, the pyiron IDE creates
eleven Python sub-processes, one for each calculation. Depending on the number of available
processor cores this level of parallelisation is more or less sufficient. The details of the
parallelisation are addressed in the next section. For larger calculations it is recommended
to submit each calculation to the job scheduler of an HPC cluster to delegate the job
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management. Still, in this example it is assumed that the user is executing the pyiron IDE
on a local workstation with more than eleven processor cores.

# Loop over different strains

job_lst = []

for strain in np.linspace(0.9, 1.1, 11):

# Strain the simulation cell

structure_strain = structure.copy()

structure_strain.set_cell(

structure.cell * strain ** (1.0 / 3.0),

scale_atoms=True

)

# Calculate Energy

job_strain = job_ref.copy()

job_strain.name = "strain_" + str(strain).replace("." , "_" )

job_strain.structure = structure_strain

job_strain.server.run_mode.non_modal = True

job_strain.run()

job_lst.append(job_strain)

After submitting all the calculations to the background the Python process has to wait
for the calculations to finish. Then the pyiron IDE iterates over all jobs in the project
to wait until all calculations are finished using the iterate over job function in combination
with the wait-for-job function wait_for_job() both of which are available from the project
object.

for job in pr.iter_jobs():

pr.wait_for_job(job)

Following the successful execution of all calculations, the same functionality is used to iterate
over the pointers of the job objects to the pyiron data storage, to collect only the generic
output. This is achieved by adding the parameter path="output/generic" to the iterate
over jobs function, which provides direct access to the HDF5 file and preselects a path in the
HDF5 file to access for each job object. So instead of accessing the entries for the volume
and the total energy separately as it was done in the previous section, the preselecting of
the path simplifies the access of multiple quantities inside the same job object. Afterwards,
the Python plotting library is used again to visualise the energy-volume curve.

# Collect the energy volume pairs

vol, eng = [], []

for job in pr.iter_jobs(path="output/generic" ):

vol.append(job["volume" ])

eng.append(job["energy_tot" ][-1])
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# Fit and plot the energy volume curve

plt.plot(vol, np.poly1d(np.polyfit(vol, eng, 5))(vol), label="fit" )

plt.plot(vol, eng, "x" , label="calculation" )

plt.xlabel("Volume [£ \\ AA^3£]" )

plt.ylabel("Energy [eV]" )

plt.legend()

To relate the individual steps with the simulation life cycle in Fig. 4.1, the definition of
the project and the set up of the calculation up to the waiting for the jobs to finish the
execution represent steps 2 and 3 in the simulation life cylce. After step 3 the pyiron IDE
automatically executes the steps 4 to 8, namely executing the calculation and validating the
successful execution of the calculations. Steps 9 to 11 are described in the last code block,
the data of multiple jobs is collected. Afterwards the energy-volume curve is fitted with a
5th order polynomial fit. Finally, both the calculation of the energy-volume pairs and the
polynomial fit are visualised. Based on the results, the user can update the model and the
project, for example by increasing the DFT convergence parameters to further investigate
the calculation of the energy-volume curve, for the current material system of aluminium.

When the same notebook is executed again the pyiron IDE automatically identifies the
calculations which have been executed before based on the database and loads the existing
calculation results rather than executing the same calculations again. As a consequence it
is not possible to modify the calculation input after the calculation finished to maintain
the persistence of the calculations. To remove existing calculations, the users can either
use the remove-job function remove_job() of the project object which takes a job id or job
name as an input or remove all existing jobs from a selected project with the remove-jobs
function remove_jobs(). The later is reasonable for rapid prototyping after a fundamental
mistake was identified to have a fresh start for the next iteration of the simulation protocol.
Commonly, users of the pyiron IDE focus on reusing existing calculations whenever possible,
so deleting calculations should only be the last option.

4.4.2 Up-Scaling Existing Simulation Protocols

Once a simulation protocol as the one in the previous section is defined in a Jupyter notebook
a separate Jupyter notebook can be used to submit multiple copies of the same Jupyter
notebook. In this example the Jupyter notebook from the previous section is used to
calculate the energy-volume curve of multiple elements. To achieve this, the parameter
section is updated by accessing the get-external-input function get_external_input() of
the project object which provides a dictionary with user-defined input parameters.

# Parameter

input_dict = pr.get_external_input()

element = input_dict["element" ]

In this case, a single parameter the element is provided. Still the same functionality could
be used to iterate over multiple parameters. Finally, a separate Jupyter notebook is created
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to submit the previous Jupyter notebook. To clarify the names of the Jupyter notebooks the
previous Jupyter notebook, which calculates the energy-volume curve for a given element, is
renamed to "evcurve.ipynb" and the second newly created Jupyter notebook is renamed
as "submit.ipynb" . In this second notebook the following lines are added:

# Import modules

from pyiron.project import Project

# Create project

pr = Project("multielements" )

# Loop over different elements

element_lst = ["Al" , "Au" ]

for element in element_lst:

# Set up ScriptJob object

job = pr.create.job.ScriptJob(

job_name=element

)

# Input parameters

job.input["element" ] = element

job.script_path = "evcurve.ipynb"

# Execute job object in background

job.server.run_mode.non_modal = True

job.run()

The submission notebook starts with the import of the pyiron project object, followed by
the creation of a new project object and afterwards a loop over multiple elements. For the
example the number of elements is restricted to two, namely aluminium "Al" and gold
"Au" . Inside the loop a script job object is created which takes a jupyter notebook as
an input as well as a series of user-defined input parameters. In this case the notebook
which calculates the energy-volume curve for an individual element is set as input notebook
"evcurve.ipynb" and the element is added as an additional input parameter. Again the
background execution is used to run the calculation in the background. As the individual
calculation of the energy-volume curve consists of eleven calculation and two of these calcu-
lations are executed in parallel this results in 22 parallel processes, which are most efficiently
executed if more than 22 processor cores are available. More advanced pyiron objects for
the parallel execution of job objects are discussed in the Sup. A. The focus of this example
is the simplicity of up-scaling an existing simulation protocol from rapid-prototyping to a
high-throughput parameter study over the periodic table.
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4.4.3 Analysing Parameter Studies

Before analysing this parameter study the pyiron IDE again has to wait until the execution
is finished. As the calculations are executed in the background the job table function of the
project object job_table() can be utilized to check the current progress of the calculations
interactively or alternatively the same loop implemented above is used to wait until all
calculations are finished. Here the second option is used to guarantee the execution of all
calculations is finished before the next step is executed:

for job in pr.iter_jobs():

pr.wait_for_job(job)

Following the successful execution of the calculation, the MapReduce method [6], which
is implemented in the pyiron table object, is used to analyse the calculation results. The
first step is to filter the job objects to select only the S/PHI/nX DFT calculations. This is
achieved by a filter function which takes a job object as an input and returns true if it is
a S/PHI/nX calculation. The job type can be checked with the name parameter __name__
which returns the name of the job object class.

def get_sphinx_jobs(job):

return job.__name__ == "Sphinx"

Just like the filter function also analysis functions can be defined to be mapped on the
different job objects. In this example a function to extract the total energy from the
generic output is used. The pyiron table object supports all kind of functions with the only
restriction that they take a job object as an input.

def get_energy_tot(job):

return job["output/generic/energy_tot" ][-1]

In addition to user-defined functions the pyiron table object also supports a wide range
of built-in functions. To execute the MapReduce method and to aggregate the output
data of the parameter study, a pyiron table object is created using the create table func-
tion create_table() of the project object. Then the previously created filter function
is assigned, two of the built-in functions are selected, namely the get volume function
get_volume() to obtain the volume of the simulation cells and the get elements function
get_elements() to extract the chemical elements and finally the user-defined function to
extract the total energy from the generic output is added. Afterwards, the data aggrega-
tion is executed by calling the run function run(). The function to get the total energy
from the generic output, which is defined above, is also available as a built-in function
get_energy_tot().

table = pr.create_table()

table.filter_function = get_sphinx_jobs

# table.add.get_energy_tot

table.add.get_volume

table.add.get_elements

table.add["energy_tot" ] = get_energy_tot
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table.run()

The table object internally is based on a job object. Thus, it is also possible to submit the
data aggregation to a job scheduler on an HPC cluster for extended analysis or complex
analysis functions. The pyiron table object then generates a list of job objects currently
available in a given project and maps the assigned functions on these objects. Whenever
new job objects are added to a given project the pyiron table object can be executed again,
it automatically analysis only the newly added jobs. Or if new functions are added to the
pyiron table object additional executions map only the added functions to the job objects to
reduce duplicate executions. This flexible implementation of the MapReduce method is one
of the core features of pyiron, because it allows the dynamic aggregation of data depending
on the needs of a given simulation protocol. The aggregated data is then available as
pandas dataframe [178] which is commonly used for data analysis and machine learning in
the Python community. Therefore, the pyiron table object bridges the gap between the
simulation data and the Python data science tools, just like the pyiron IDE bridges the gap
between the interactive Jupyter notebooks and the simulation codes. To visualise the data
for the user can iterate over the list of elements, select the corresponding subset of the data
and plot the resulting energy volume curves for aluminium and gold using the integrated
plotting library [165].

import matplotlib.pyplot as plt

df = table.get_dataframe()

for element in element_lst:

df_el = df[df[element]=="1" ]

eng = df_el.energy_tot-df_el.energy_tot.min()

plt.plot(df_el.volume, eng, label=element)

plt.xlabel("Volume" )

plt.ylabel("Energy" )

plt.legend()

To plot both energy-volume curves in the same graph the energy scale is normalised with the
corresponding energy minimum. This comparison of two energy-volume curves obviously
does not require the complexity of introducing the script job object and the pyiron table
object. Still, with these objects it is now possible to up-scale the simulation workflow
and iterate over the whole periodic table. In particular, when the underlying model to
calculate the energy-volume curve is extended, for example by adding an optimisation of
the equilibrium volume before calculating the energy volume curve. With the code above
only the simulation workflow for calculating the energy-volume curve has to be adjusted
and all the rest can be reused. In contrast by simply duplicating the notebook for each
of the different elements this modification would require to change each copy once, which
is very error-prone when executed manually. As a consequence, the pyiron IDE helps the
users to up-scale their simulation protocols from the rapid-prototyping to high-throughput
parameter studies.
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4.4.4 Publishing the Simulation Protocol

With the increasing complexity in ab initio thermodynamics calculations it is essential
to develop methods to accelerate not only the development of new methods but also the
knowledge transfer within the community. The pyiron IDE contributes to this twofold:

• First, within the pyiron IDE the process of developing a simulation protocol is sim-
plified for both the rapid prototyping and the up-scaling as discussed above. This
enables the users of the pyiron IDE to implement existing methods faster.

• Second, pyiron supports the users to publish their simulation protocols.

In a traditional software environment for developing the simulation protocol on the com-
mand line it would in principle be possible to document every step. The users could doc-
ument the way they compiled the simulation codes, how they setup their simulation envi-
ronment and finally how they executed their simulations. But the challenging task is to
separate the technical implementation for a specific HPC cluster from the physical simula-
tion protocol. This separation is addressed in the pyiron IDE. Reference implementations
for the open-source simulation codes are provided in the conda package manager via the
conda-forge community channel [168]. The physical steps of the simulation protocol are
documented in the jupyter notebook and finally simulation frameworks like the pyiron IDE
connect the specific interfaces of the individual simulation codes with a generic interface
to improve the readability of the simulation protocol. As a consequence the pyiron sim-
ulation protocols are commonly published in combination with the corresponding conda
environment.

To demonstrate the publication of a pyiron simulation protocol the example of calculating
the energy-volume curve from above is reused. The first step is to download the pyiron
publication repository from the pyiron website. The publication template consists of a folder
named pyiron for additional resources and finished calculation to include in the publication,
an environment file environment.yml which defines the conda environment and an example
Jupyter notebook example.ipynb. In addition to these files the repository also contains a
manual file README.md a software license file LISENCE and scripts for continuous integration
but these are less relevant for scientific purposes. The next step after downloading the
publication template is exporting the conda environment. Using the command line utility
the conda environment can be written to a file using the following command, as introduced
in Sec. 3.3.2:

conda env export > publication/environment.yml

The above command adds all conda packages currently installed in a given environment to
the file. This guarantees all packages are included. Still, to simplify the installation process
for other users it makes sense to reduce the dependencies. For the example of calculating
the energy-volume curve four packages are installed: the python programming language,
the pyiron IDE, the Jupyter notebook environment and finally the S/PHI/nX DFT code.

channels:

- conda-forge
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dependencies:

- python=3.9.5

- pyiron=0.4.4

- notebook=6.4.0

- sphinxdft=3.0.3

It is reasonable to fix the version numbers of the individual packages for maximum re-
producibility, as future changes in one of the packages might require modifications of the
simulation protocol. Alternatively, also specific resource files which are not available on
conda-forge for example modified pseudopotentials could be included in the pyrion folder
under resources. In this example the shell script and the pseudopotential database are used
from the conda package, so the pyiron folder in the publication template can be removed. In
case the user wants to include existing calculation in the publication these can be exported
with the packing function pr.pack() of the project object. It creates an archive of the
existing calculation which can be copied into the publication template. Finally the Jupyter
notebooks submit.ipynb and evcurve.ipynb are copied to the publication template and
the previous example.ipynb notebook is removed.

With these three steps, exporting the environment, adding existing calculations or mod-
ified resources in the pyiron folder and including the Jupyter notebooks the simulation
protocol is ready for publication. When the simulation protocol is released on the Github
service, then the simulation protocol is executed automatically as part of the Github contin-
uous integration environment. This continuous integration helps to identify broken software
dependencies or missing pyiron resources. In addition the same continuous integration is
used to render the Jupyter notebook as HTML website which allows other users to browse it
directly on the web. Finally, in case the continuous integration was successful the notebook
can also be used with the MyBinder cloud service [180], which enables interactive testing for
Jupyter notebooks with limited computing resources. The MyBinder cloud internally, just
like the continuous integration service, uses conda to create the corresponding computing
environment for a given Jupyter notebook. With the publication of a simulation protocol,
as supplementary material for a new scientific method the loop of developing a simulation
protocol which commonly consists of multiple iterations and extensions of the simulation
life cycle is closed.

In addition the pyiron IDE also supports the user in the process of writing the publica-
tion by collecting the corresponding references of the methods used in a given simulation
protocol. The list publications method of the projects object list_publications() returns
the references to be included in a publication.

pr.list_publications()

With this, the pyiron IDE supports the user from rapid prototyping, over up-scaling the
simulation protocol for high-throughput parameter studies to publishing the simulation
protocol. As a consequence, the pyiron IDE reduces the technical complexity for the user
to focus on the physics. More advanced simulation protocols are discussed in Sup. A.
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The theoretical overview in Chap. 2 highlighted that the complexity of ab initio thermo-
dynamics can be divided in three dimensions of complexity, namely to control the ab initio
uncertainty, to evaluate the free energy at finite temperatures and to disentangle the chem-
ical complexity. The first of these challenges is addressed in this chapter, the other follow in
the next two chapters. Controlling the ab initio uncertainty is a prerequisite for any DFT
calculations. To accurately predict materials properties systematic convergence checks are
required. The underlying uncertainty analysis has two purposes:

1. Guarantee the precision of the quantity of interest is below a predefined error bar.

2. Minimise the computational resources without sacrificing (1).

Performing such convergence checks manually, requires human expertise, it is a time-
consuming and monotonous manual job that requires to perform routine calculations again
and again. As a consequence, the chosen convergence parameters therefore often have a hu-
man bias. This is particularly true in large-scale high-throughput DFT simulation projects,
as they were introduced in Sec. 3.2.1. These projects use simple rules to select the conver-
gence parameters, rather than systematically executing convergence tests for each individual
calculation to identify the optimum parameter sets. For qualitatively mapping of a large
chemical compound spaces such a semi-empirical approach may be sufficient. However,
many recently developed machine-learning approaches, as well as thermodynamic approx-
imation to calculate the free energy, as introduced in Sec. 2.4.2 require target errors that
are smaller than commonly used ones and that outliers or larger errors are absent.

For high-throughput calculations, but also for non-experts in DFT-calculations it be-
comes thus more and more important that convergence parameters have not to be provided
by the user. Rather, they should be automatically computed taking as input only the
atomic structure, based on atomic positions, cell size and shape, the exchange-correlation
functional, which defines the intrinsic error, as introduced in Sec. 2.1.3 and the acceptable
error of a given target quantity. In this chapter the fundamental ideas and the mathe-
matical background of uncertainty propagation for plane wave DFT simulation codes are
discussed and based on a parameter study a coarse-grained model is developed to predict
the uncertainty for a given set of convergence parameters. The parameter study and the
coarse-grained model are both realised with the pyiron IDE, introduced in Chap. 4.



5 Uncertainty Propagation

5.1 Convergence Parameters

As outlined in Sec. 2.1 the DFT errors can be classified into (i) controllable ones that
impact directly the precision of the result and (ii) intrinsic errors that affect accuracy, i.e.,
agreement with its experimental counterpart. In principle, also the implementation choices
of the DFT simulation code, such as the used algorithms, mathematical libraries, compiler
for the programming language etc. can affect the result. However, as recently shown in
the Delta project, introduced in Sec. 3.2.2, in a systematic comparison of more than 15
simulation codes these errors are small and can be for typical applications neglected [34].
Only the unknown exchange-correlation functional and its approximation define the intrinsic
error. All other parameters can be systematically improved to reduce the controllable
errors below a predefined target error and are identified as convergence parameters. The
pseudopotentials, introduced in Sec. 2.1.4, fall in between these two categories: While in
principle their performance can be benchmarked against all-electron calculations, in practice
the user has only a limited choice among available ones. In this thesis the focus is on
plane wave DFT calculations with pseudopotential, since these provide a good compromise
between accuracy and computational efficiency for materials science questions.

Critical convergence parameters are the size or completeness of the basis set, e.g. plane
wave energy cut-off, the number of discrete k-points to perform the Brillouin-zone integra-
tion or the smearing parameter in the electronic occupation, as introduced in Sec. 2.1.4.
Other important convergence parameters are related to size convergence, e.g. size of the
supercell for point defects or slab and vacuum thickness for surface calculations or the size
of the Fourier mesh to describe quantities such as charge densities or potentials. Commonly,
the first step in choosing convergence parameters that are optimized both with respect to
sufficiently small errors in the target quantity, while at the same time accounting for the
computational efficiency, is the calculation of simple bulk quantities, such as equilibrium
volume V0, cohesive energy E0, bulk modulus B0 etc. In simulation codes with periodic
boundary conditions, these quantities require only the calculation of the elementary bulk
unit cell, which reduces the computational cost, compared to most other target quantities,
e.g free energies, as introduced in Sec. 2.4.2. In most cases, they can even be calculated
with a cell which consists of only a single, e.g. for fcc, or a few atoms. In the following a
fully automated approach to determine optimized convergence parameters is derived. Both,
the data sets used to derive the algorithm as well as the implementation of resulting coarse-
grained model are done using the pyiron IDE. For the derivation the following choices are
made:

• As DFT simulation code the plane-wave pseudopotential simulation code VASP, as
introduced in Sec 3.1.2, is selected.

• Only cubic bulk systems consisting of a single chemical species will be considered.
For this case, the equilibrium quantities, mentioned above, can be easily computed
from a discrete set of energy-volume points and fitted with an EOS, as introduced in
Sec. 2.4.1.

• As convergence parameters only energy cut-off εi and k-point sampling κj are con-
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sidered. The size convergence is no issue for the perfect bulk and the Fourier mesh is
determined in correlation of the energy cut-off to include all wave vectors up to 2G,
as introduced in Sec. 2.1.4. To avoid having the electronic “smearing” parameter, as
introduced in Sec. 2.1.4, as a third convergence parameter, the tetrahedron method
with Blöchl correction is employed.

As a reference for the following analysis the recommendations suggested by the VASP-
manual [181] are listed:

• Metals require approximately 1000 k-points/per atom for the same accuracy. For
problematic cases (transition metals with a steep DOS at the Fermi-level) it might
be necessary to increase the number of k-points up to 5000/per atom, which usually
reduces the error to less than 1 meV per atom.

• The cut-off which is specified in the POTCAR file will usually result in an error in
the cohesive energy which is less than 10 meV.

• Only volume changes of the order of 5 − 10 % guarantee that the errors introduced
by the basis set incompleteness are averaged out.

• For the calculation of the total energy in bulk materials we recommend the tetrahedron
method with Blöchl corrections (ISMEAR=-5).

• In fact, we have evidence from comparison with all-electron calculations that the GW
potentials are slightly superior even for DFT calculations.

To compare the optimized convergence parameters obtained by the automated approach
derived in the following, a comparison with two references will be performed. The first is
the Delta project that aims at providing a highly accurate description of the energy-volume
curve to compare a large number of popular DFT-codes. In this project exclusively the
PBE exchange correlation functional is used. The VASP calculations performed in the
Delta project follow the above recommendations except for a few changes: k-point mesh
κj and energy cut-off εi are increased beyond the VASP recommendation and non-spherical
contributions from the gradient corrections inside the PAW spheres [36] are included. The
second reference is the materials project [142, 143], is introduced in Sec. 3.1.2. It uses an
element independent energy cut-off εi for comparing different elements in alloys. To improve
computational efficiency regular PBE pseudopotentials, which require a lower energy cut-off,
as well as smaller k-point meshes κj have been employed in this project.

To construct the energy-volume curve two additional choices have to be made: The
number of volume points and the interval over which the are distributed. Interestingly, the
two projects employ very different strategies. The Delta project is fitted based on seven
equidistant volume points with a total spread of ±6 %. In contrast, the materials project
uses a 21 volume points homogeneously distributed over an interval of approx. ±30 %
around the equilibrium volume. The surprisingly large difference in chosen parameters and
strategies for two projects that both aim at high precision indicates that criteria for a
rational choice are highly desirable.
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5.1.1 Magnitude of Errors

Before getting in an in-depth analysis of how the various errors depend on convergence
parameters a simple estimate of their relevance is given. The equilibrium Bulk modulus
B0 is considered as target quantity. As it is related to the second derivative of the energy-
volume curve it is rather sensitive to the choice of the convergence parameters. Two sources
of error are considered: The convergence with respect to the energy cut-off and the choice of
the pseudopotential. To avoid any influence from the other convergence parameters they are
chosen such that their errors are negligible. Specifically, a k-point mesh of 51×51×51 is used
(κj = 51), which is roughly two orders of magnitude higher than the VASP recommendation.
Further, a total of 21 volume points equidistantly spread around ±10% of the equilibrium
volume are selected and a fit with an 11th-order polynomial used, to prevent any bias of
the EOS. The results of these calculations are shown in Fig. 5.1 for a selection of twelve
elements. The pseudopotential related error is given by the difference at maximum energy
cut-off to the all-electron result, as dashed gray line. The experimental value is given by
the horizontal black dashed line.

For all elements the agreement between the all-electron result and the various pseudopo-
tentials agree within 1–2 GPa. This error is generally much smaller than the non-controllable
due to the exchange correlation functional, the difference to the experimental value, which
can be as large as 25 GPa as for Ir. This finding agrees with the general observation that
errors in elastic constants and bulk modulus are on the order of 10% [182]. Thus, the error
due to the pseudopotential is an order of magnitude smaller than the error related to the
unknown exchange correlation functional. With respect to the energy cut-off, the results
summarized in Fig. 5.1 show the behavior expected for a convergence parameter: For too
small values it dominates the error, it is non-monotonous making it difficult to estimate
the error from an extrapolation but converges for high, but computationally highly expen-
sive, values to a constant value. Also, as expected the convergence depends on the specific
pseudopotential, with potentials including energetically low-lying and thus spatially more
localized semi-core states showing with a few exceptions a slower convergence.

5.1.2 Energy Convergence

In the previous discussion the convergence of the equilibrium parameters was analysed.
Here the convergence of the total energy and the energy difference for two different volumes
is analyzed in Fig. 5.2. All results are calculated for a primitive aluminium supercell using
the Al GW PBE pseudopotential, which is also used in the delta project. The top row
shows the convergence over energy cut-off εi with a linear increase in 20 eV steps. In
analogy, the bottom row shows the convergence over k-point mesh κj with a linear increase
in 2 × 2 × 2 steps. In both cases the convergence is compared for the total energy of two
different volumes (left), the energy difference of these (middle), and the relative convergence
for all three (right). The relative convergence is calculated by subtracting the result at the
maximum of the convergence parameters from all other values and is plotted as an absolute
norm on a semi-logarithmic scale.
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Figure 5.1: Comparison of the convergence of the bulk modulus B0 over energy cut-off εi
for a total of twelve elements in dependence of the pseudopotential. In addition
the experimental bulk modulus is given in the title and the grey dotted line is
the all electron reference from the Delta project [34]. The VASP recommended
energy cut-off is indicated as vertical black dashed line.
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Figure 5.2: Total energy convergence and convergence of energy differences over energy cut-
off εi in the upper row and over k-point mesh κj in the lower row. The pictures
left to right, show the convergence of the total energy for two volumes, the
convergence of the energy difference and both combined in an logarithmic plot,
by subtracting the fully converged result at maximum convergence parameters.

In contrast to the previous results, which used a high k-point mesh when computing
the energy cut-off convergence is analysed, here the k-point mesh is fixed to the VASP
recommendation of 11 × 11 × 11 k-point mesh κj = 11 for the energy cut-off convergence.
Vice versa, an energy cut-off of εi = 240 eV is used for the k-point mesh convergence.
With this their results are comparable with classical convergence tests [23]. The above
convergence checks provide two insights:

• On the one hand the semi-logarithmic scale enables a visual quantification of the con-
vergence. It is not a boolean choice of a calculation being converged or not but rather
a relative statement, converged up to energy differences below 1 meV in comparison
to the maximum convergence parameter (grey line). As a consequence the choice of
the maximum convergence parameter impacts the convergence, so it is important to
choose a sufficiently high maximum in comparison to the convergence goal.

• On the other hand the top right figure shows the convergence of the total energy and
the energy difference being very similar. This is contrast to the the general experience
that higher energy plane waves are needed to resolve the energetic states close to the
pseudopotential core. Which would result in the total energies converging slower than
the energy differences. This is achieved by subtracting the kinetic energy of wave
functions in the atomic limit [38], as introduced in Sec. 2.1.4. At the same time this
approximation can lead to non-monotonous convergence. While otherwise a higher
energy cut-off, results in a higher number of plane waves and a higher number could
only result in a lower energy but never a higher energy this is no longer the case with
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Figure 5.3: Dependence of the plane wave jumps on the energy cut-off and k-point mesh.
A change in the total number of plane waves is indicated by switching from
closed symbols to open symbols. With increasing energy cut-off and increasing
k-point mesh the frequency of plane wave jumps increases and the amplitude
decreases as indicated in a). The resulting difference for the energy-volume
curve is illustrated in b) by constructing two energy-volume curves: one based
on the points before the jumps and one based on the points after the jumps.

this correction as introduced in Sec 2.1.4.

5.1.3 Plane Wave Jumps

Another aspect that affects the convergence of energy-volume curve calculation and the
derived equilibrium properties are the plane-wave jumps in dependence of the volume, as
introduced in Sec. 2.1.4. The increase of the volume leads to an increased number of plane
waves for the same energy cut-off, as the reciprocal k-point mesh decreases in relation to the
energy cut-off. Since the k-point mesh is discrete the dependence is not continuously, but
rather results in jumps. The jump frequency and the amplitude are not systematic. Still,
the jump frequency increases with increasing energy cut-off and increasing k-point mesh,
while the amplitude is decreases. The impact of the plane wave jumps is demonstrated in
Fig. 5.3. Following the VASP recommendations first an energy cut-off of εi = 240 eV and an
11× 11× 11 k-point mesh κj = 11 is considered. Then, the energy cut-off is once increased
to εi = 250 eV and the k-point mesh is once increased to 13 × 13 × 13 (κj = 13). In both
cases the frequency of the plane wave jumps increases while the amplitude decreases. To
resolve the plane wave jumps a volume range of ±0.6 % is analysed with 51 energy-volume

pairs E(Vn) resulting in an equidistant spacing of 0.004 �A3
.

Beyond the uncertainty of the total energy at a given volume the jumps also affect the
equilibrium parameters calculated from such a discontinuous energy-volume curve. When
comparing a fit which only includes the points before a jump with a fit, which only includes
the points after a jump this becomes visible, like it is shown on the right. While this is
the most extreme choice of points, it demonstrates the importance of considering the plane
wave jumps. The jumps were regularly considered when the computational resources were
more restricted [23], but have been mainly neglected recently. This raises the question if
the plane wave jumps impact the DFT precision and how the uncertainty of the rough
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Figure 5.4: Bootstrapping of the statistical error: Based on the energy difference between
the fit and the calculated energy-volume curve, the statistical error in the energy
is plotted over volume in a) and as histogram in b). Using bootstrapping the
error distribution in the bulk modulus is calculated based on the statistical error
in the energy in c).

energy surface propagates to the fitting of the equilibrium parameters or other materials
properties.

5.2 Equation of State

To quantify the impact of the plane wave jumps on the derived equilibrium properties the

volume range is increased to ±5 % maintaining the spacing of 0.004 �A3
. This is resulting

in a total of 385 energy-volume pairs. The energy-volume pairs are fitted with the Birch-
Murnaghan EOS, as introduced in Sec. 2.4.1 and the fit energy Efit(Vn) is subtracted from
the energy-volume pairs Ecalc(Vn) to separate the plane wave jumps as ∆Epw-jumps(Vn):

∆Epw-jumps(Vn) =Ecalc(Vn)− Efit(Vn) . (5.1)

In particular for large numbers of energy-volume pairs N → ∞ the smooth fit function
with only four free parameters can be identified as low pass filter, which separates the high
frequency plane wave jumps from the underlying energy-volume curve. While the plane
wave jumps are deterministic, as illustrated in Fig. 5.3 on the left, the sparse sampling of
the energy-volume curve with 21 instead of 385 energy-volume pairs, results in multiple
plane wave jumps between two energy-volume pairs, especially for energy cut-offs and k-
point meshes, above the VASP recommendation. To account for the sparse sampling a
statistical approach is chose, which identifies ∆Epw-jumps(Vn) as fluctuations or noise. It
can be found empirically that this remaining noise follows a normal distribution. This is
illustrated in Fig. 5.4: Starting with the difference ∆Epw-jumps(Vn) over volume, where the
individual plane wave jumps can still be identified, followed by the histogram (center) of
∆Epw-jumps(Vn).
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5.2.1 Bootstrapping

Based on the empirical finding that the sparse sampling of plane wave jump error follows
a normal distribution, it can be identified as a statistical error. Thus, sampling techniques
like bootstrapping can be applied to propagate the error in the energy ∆Epw-jumps(Vn) to
equilibrium parameters and their resulting errors, i.e. errors in the equilibrium energy ∆E0,
volume ∆V0, bulk modulus ∆B0 and pressure derivative of the bulk modulus ∆B′0. Two
common bootstrapping methods are the parametric bootstrap and the re-sampling residuals,
both can be summarised in three steps:

Calculate residuals: Starting by fitting the model – in this case the energy-volume curve:
With the model the energy of a given volume Ecalc(Vn) can be predicted as Efit(Vn)
and the residual can be calculated as ∆E(Vn).

Prediction: The difference in the two approaches is the prediction step. In parametric boot-
strapping the residual distribution ∆E(Vn) is parameterised for efficient re-sampling.
So, in the case of the energy differences ∆E(Vn) the normal distribution is fitted with
a Gaussian model and new samples are drawn from the Gaussian distribution. In con-
trast to this, in the re-sampling residuals the new samples are drawn in a random order
from the existing residuals. With the new sample of residuals ∆Enew(Vn) a synthetic
sample of energy-volume pairs Enew(Vn) = Efit(Vn) + ∆Enew(Vn) is calculated.

Refit: The synthetic sample is fitted with the same model as the original data set Ecalc(Vn).
From this fit the equilibrium parameters are calculated, resulting in a second set of
synthetic equilibrium parameters.

Finally, the prediction and refit step can be repeated several times to calculate a distribution
of the synthetic equilibrium parameters. On the right side of Fig. 5.4 the resulting distribu-
tion for the equilibrium modulus B0 is shown. In this case the number of random samples
equals the number of energy-volume pairs N to compare the distribution of the statistical
error ∆Enew(Vn) with the resulting distribution in the bulk modulus ∆B0. As the number of
energy-volume pairs is typically rather limited, the parametric bootstrap is preferred. The
advantage of these re-sampling approach is that the fitting of the model which is typically
computationally affordable. In contrast the calculation of additional energy-volume pairs
requires additional DFT calculations.

5.2.2 Model Error

In addition to the energy fluctuations, caused plane wave jumps, the fitting of the EOS for
a given energy-volume curve also depends on the parameterisation of the fit. This includes
the number of energy-volume pairs, the volume range and the fitting model used to fit the
energy-volume curve. When comparing existing high-throughput projects like the Delta
project and the materials project, they use rather different parameters, as introduced in
Sec. 5.1.2. The volume range varies from 6 % to 30 % and the number of points vary from
seven points to 21 points. Still, both are typically equidistantly spacing. The model range
from the Birch-Murnaghan equation, introduced in Sec. 2.4.1, used in the Delta project [34]
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Figure 5.5: Dependence of the bulk modulus B0 for volume ranges from ±0.1 % to ±30 %
for three equations of state and a polynomial of degree 11 in a). For a volume
range of 5 % the energy difference ∆E(Vn) is compared for the same equations
of state and the polynomial fit in b).

to a total of eight different equations used in the materials project [143]. As a consequence,
the volume range, the number of points and the choice of the EOS can be identified as
independent parameters for the fitting.

Choice of the EOS: As already discussed in Sec. 2.4.1, those analytical EOS were derived
for experimentally easy to measure parameters. In practice, the equilibrium parameters are
commonly used. So while the analytical form of the different EOS varies, they all have the
same number of fitting parameters and the same polynomial order. This can be confirmed
when comparing the volume range dependence for high convergence parameters. Here, an
energy cut-off εi = 1040 eV and a k-point mesh κj = 91 are selected to minimise the impact
of the plane wave jumps. For volume ranges from ±0.1 % to ±30 % the different equations
of state, which are introduced in Sec. 2.4.1, are compared in Fig. 5.5. Each energy-volume
curve, independent of the volume range, consists of 21 points, so the spacing between the
different energy-volume pairs is continuously increasing and the computational cost remains
the same. In contrast a constant spacing would result in an increasing computational cost.

From ±0.1 % to ±1 % the classical EOS, the Murnaghan equation, the Birch-Murnaghan
equation and the Vinet equation, agree while the 11th degree polynomial fit fluctuates with
an error of ±0.05 GPa. Still in contrast to the classical EOS the more flexible polynomial
fit remains within the ±0.05 GPa error bar over all volume ranges above ±0.1 %. At the
same time the classical EOSs starts to diverge at ±1 %. This results in an error which
increases with increasing volume range. This error is an intrinsic bias of the classical EOSs
and can be identified as the model error. When comparing the energy difference ∆E(Vn)
for the different EOS at the volume range of ±5% this effect can be visualised. For the
polynomial ∆E(Vn) is dominated by high frequency fluctuations in the order of ±0.1 µeV.
In contrast, the classical EOSs show low frequency contribution, which can be identified as
the 4th order term missing in these EOS. As a consequence, the choice between the different
classical EOSs does not matter: All of them are dominated by the same order dependent
model error.

A partitioner can always validate their results by comparing the energy difference ∆E(Vn)
to a 4th order polynomial fit. This also explains the recommendation from the VASP man-
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5.2 Equation of State

Figure 5.6: Dependence of the volume range used to compute the bulk modulus on the de-
gree of polynomial plotted in a). Based on this dependence the optimal volume
range is selected as the volume range when the statistical error equals the sys-
tematic error. Finally the uncertainty phase diagram is constructed for different
polynomials in b) illustrating the dependence of the optimal volume range for a
given polynomial on the standard deviation of the energy noise.

ual to select a volume range between ±5 % to ±10 %. Based on the above analysis, for high
precision DFT calculation these settings are no longer sufficient when used in combination
with classical EOS. It is recommended to use an unbiased polynomial fit rather than the
traditional EOS.

5.2.3 Uncertainty Phase Diagram

In the next step the model error is combined with the noise error. While the impact on the
equilibrium parameters of a fixed noise error in energy decreases with increasing volume
range, the impact of the model error increases. As a consequence for each EOS and a given
noise error in the energy there exists an optimal volume range when the statistical noise
error and the systematic model error are equal in terms of their contribution to the overall
uncertainty to a given equilibrium parameter. This result is summarised on the left side in
Fig. 5.6. For polynomials of degree five, seven and eleven and the Birch-Murnaghan equation
the calculated bulk modulus B0 for the same energy-volume curves with varying volume
ranges are plotted. As previously, the same high convergence parameters for aluminium
are used, compared to Fig. 5.5. Based on these results the bulk modulus B0 is estimated
to be 78.15 ± 0.05 GPa indicated by the black line with the grey line denoting the error
bars. Apart from the smallest volume range of ±0.1 %, the 11th degree polynomial is always
within these error bars (purple line), even when the standard deviation of the statistical
noise is larger than the error bar for volume ranges below ±0.3 %.

In addition, it is worth noting that while the standard deviation for small volume ranges
is expected to increase with an increasing order of the polynomial, this is not the case
when using the numpy [164] library. The standard deviation increases from the third order
polynomial to the fifth order polynomial but remains constant for higher order polynomials.
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This is achieved in the numpy library by minimising the Vandermode matrix. This approach
is highly beneficial, as long as the number of energy-volume pairs N is sufficiently large
and a polynomial of degree d < N

2 is selected. For lower order polynomials, the vertical
lines denote the transition from the statistical error dominated volume range to the model
error dominated volume ranges. For a third order polynomial this is at ±1 %, for a fifth
order polynomial at ±10 %, and for the seventh order polynomial at ±20 %. Again these
boundaries depend on the noise level. As a consequence, a DFT practitioner can either use
a polynomial of degree d < N

2 with N = 21 points and a volume range of ±10 %. This
settings have been empirically found to be sufficient for the energy noise ∆E(Vn) related
to the plane wave jumps. Alternatively, one may continue to use a traditional EOS and
optimise the volume range by comparing the shape of the energy noise ∆E(Vn), with a
higher order polynomial.

To further develop a systematic understanding how the optimal polynomial degree is
related to the volume range and the statistical noise of the energy ∆E(Vn) their depen-
dence for the polynomials with degree three, five and seven is shown on the right side of
Fig. 5.6. For these predictions, rather than using DFT calculation, the energy-volume curve
at a volume range of ±30 % is compute with high convergence parameters (εi, κj) once and
fitted with a polynomial of degree eleven. Afterwards this fit is used to generate synthetic
energy-volume curves at various volume ranges by generating the noise ∆E(Vn) from normal
distributions with varying standard deviations, following the parametric bootstrapping ap-
proach introduced in Sec. 5.2.1. For a given noise the volume range dependence is analysed
as illustrated in Fig. 5.6 on the left, resulting in one volume range point for each polynomial.
At this volume range the statistical noise error is equal to the systematic model error. For
high volume ranges the systematic model error is dominant. As a consequence, for larger
volume ranges a higher degree of polynomial is required. The transition from the statistical
noise error dominated by the volume range can be identified as “phase transition” of the
uncertainty and the diagram can be defined as “uncertainty phase diagram”. With these
“uncertainty phase diagrams” the regions where a given polynomial is dominated by the
statistical error – stable region – can be identified.

Finally the prediction of this uncertainty phase diagram can be compared to the previous
DFT calculations indicated by the vertical lines. While the agreement is slightly off for
the fifth order polynomial the overall predictive capability of this approach is validated.
Still, from a practitioner’s perspective the optimal choice is a polynomial of degree d < N

2
with N = 21 for DFT calculation with the convergence parameters higher than the VASP
recommendation. The uncertainty phase diagram is only required if either the number of
points is restricted, so the polynomial degree cannot be increased or a classical EOS is
required. In these cases the volume range has to be adjusted as additional convergence
parameter depending on the statistical noise error of the energy, which is again coupled to
the other convergence parameters e.g. energy cut-off and k-point mesh.
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Figure 5.7: Graphical illustration of how the uncertainty in the equilibrium properties is
related to the convergence parameters (energy cut-off and k-point mesh) and
the parameters of the energy-volume curve namely the volume range and the
number of energy-volume points. With the plane wave jumps coupling all four
parameters it is not possible to separate the convergence when the uncertainty
of the plane wave jumps is dominant.

5.3 Reconstruction

The uncertainty in the equilibrium parameters can be attributed to two sources:

• The uncertainty of the fit of the energy-volume curve: It depends on the EOS and
its parameterisation in terms of volume range, number of energy-volume pairs N and
the order of the EOS, as introduced in Sec. 5.2.

• The uncertainty in the convergence of the energy-volume curve E(Vi): It is typically
studied with classical convergence tests and depends on the convergence parameters
energy cut-off εi and k-point mesh κj , as introduced in Sec. 5.1.

Both of these are coupled by the plane wave jumps. As the plane wave jumps depend on
the convergence parameters and at the same time the impact of the resulting statistical
noise error ∆Enoise(Vn, εi, κj) to the equilibrium parameters can be controlled by the choice
of the volume range and the number of points N .

This systematic understanding of the different contributions to the uncertainty of the
equilibrium parameters is summarised in Fig. 5.7. The systematic model error only depends
on the volume range and the number of energy-volume pairs E(Vi). It is independent of
the convergence parameters energy cut-off εi and k-point mesh κj . At the same time,
the systematic energy shift only depends on the energy cut-off εi and k-point mesh κj
and is independent of the volume range and the number of points. As both the noise
propagation of the plane wave jumps and the systematic model error are already combined
in the uncertainty phase diagram introduced in Sec. 5.2.3 the next step is to integrate the
systematic shift of the energy-volume curve in dependence of the convergence parameters
energy cut-off εi and k-point mesh κj .
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5.3.1 Singular Value Decomposition

To systematically study the dependence of the equilibrium parameters on the convergence
parameters {E0(εi, κj), V0(εi, κj), B0(εi, κj), B

′(εi, κj)}, a parameter study is conducted with
the pyiron IDE. The k-point mesh κj is varied in steps of 2× 2× 2 starting from κmin = 3
to κmax = 91. With the calculation of the gamma point – a k-point mesh of 1 × 1 × 1 –
being excluded because it is impossible in combination with the tetrahedron method and
the Blöchl correction in the VASP DFT simulation code. Still, for all other calculations
the gamma point is always included as mixing even and uneven k-point meshes, which
either include the gamma point or not, results in much slower convergence. In addition,
the energy cut-off εi is varied from εmin = 200 eV to εmax = 1200 eV in steps of 20 eV.
This results in 2295 combinations. For each combination an energy-volume curve with 21
energy-volume pairs with a volume range of ±10% is calculated resulting in a total of over
48000 calculation for just a single pseudopotential of a single element. Based on this large
data set, the dependence of the bulk modulus convergence on the convergence parameters
is analysed.

To automatically construct the data set, first 21 equally distant volumes are selected
within ±10 % around the experimental equilibrium volume. These selected volumes are
then evaluated at the maximum convergence parameters – energy cut-off εmax = 1200 eV
and k-point mesh κmax = 91. For most cases ±10 % is sufficient to account for the in-
trinsic error of the exchange correlation functional. Thus, the equilibrium volume for the
given pseudopotential should be included in ±10 % of the experimental equilibrium volume,
otherwise the initial volume range has to be extended. Afterwards the equilibrium volume
V0(εmax, κmax) is calculated by fitting an 11th order polynomial to prevent any bias. Based
on the equilibrium volume V0(εmax, κmax), again 21 equally distant volumes are selected
within ±10 %. This second set of volumes is then evaluated for all convergence parame-
ter combinations. By using the same set of volumes for all convergence parameters, the
convergence of individual volumes can be compared.

After the creation of the data set the bulk modulus B0(εi, κj) is calculated, by fitting an
11th order polynomial to the energy-volume pairs E(Vn, εi, κj) at a given combination of the
convergence parameters (εi, κj). The resulting dependence of the bulk modulus B0(εi, κj)
on the convergence parameters in reference to the bulk modulus at maximum convergence
parameters B0(εmax, κmax) is plotted on the right side of Fig. 5.8. The change in colour
illustrates the convergence of the bulk modulus as the relative error in comparison to the
bulk modulus calculated at maximum convergence parameters B0(εmax, κmax). In addition
the coloured lines define two sub-samples: The first blue sub-sample starts with the VASP
recommended convergence parameters of an energy cut-off of εVASP = 240eV and a k-point
mesh of κVASP = 11. This equals more than 1000 k-points per atom and includes the
gamma point. The second sample in orange is using a k-point mesh of κDelta = 21 and an
energy cut-off of εDelta = 400 eV, as recommended by the Delta project [34].

While in general higher convergence parameters improve the convergence of the bulk
modulus B0(εi, κj), the visual comparison on the right side of Fig. 5.8 shows local minima.
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Figure 5.8: Parameter study of the convergence of the bulk modulus in dependence of k-
point mesh on the x-axis and energy cut-off on the y-axis. The bulk modulus is
denoted as the difference to its value at maximum convergence parameters. The
calculation results are displayed in a) and a convex hull reconstruction in b). On
the calculated bulk modulus values before subtracting the bulk modulus at the
maximum convergence parameters or constructing the convex hull is applied
and the SVD eigenvalues are plotted in c). The data set is divided in three
subsets, starting from the whole data set in green, the data set from the VASP
recommended values to the maximum convergence in blue and the data set from
the recommendation of the delta project to the maximum convergence in orange.

This indicates that at selected combinations of the convergence parameters, the local bulk
modulus agrees well with the bulk modulus at maximum convergence parameters. Still to
identify transferable convergence parameters, which also apply to other material properties,
monotonous convergence is required. This is achieved by the construction of a convex hull
over the bulk modulus convergence B0(εi, κj). This convex hull is plotted in the center of
Fig. 5.8. With the convex hull the convergence parameter for a given convergence goal are
indicated by the corresponding contour line.

Beyond this visual inspection of the convergence, singular value decomposition (SVD) is
used to decompose the matrix Mε,κ in the eigenvectors uj(εi) and v∗i (κj) and the matrix of
eigenvalues Σ:

Mε,κ = UεΣV
∗
κ . (5.2)

Here Mε,κ is convergence matrix with the elements m(εi, κj). It is calculated without apply-
ing the convex hull or subtracting the final value at the maximum convergence parameters
m(εmax, κmax). Each element represents the results of one energy-volume curve fit, e.g. the
bulk modulus, with the convergence parameters (εi, κj). For comparison in addition to the
whole data set, two sub sets are defined, which both start at higher minimal convergence
parameters. One starting at the VASP recommended convergence parameters, indicated
as a blue line in Fig. 5.8 and the other at the recommended convergence parameters from
the Delta project indicated as the orange line. When comparing the eigenvalues σi,j of the
eigenvalue matrix Σ, calculated with the SVD, on a semi-logarithmic scale of eigenvalue
over eigenvalue number. The first eigenvalue can be identified as dominant. Already for
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Figure 5.9: Eigenvectors of the SVD in comparison to the convergence at maximum con-
vergence parameters. Starting with the convergence of the bulk modulus over
energy cut-off in a) and following by the bulk modulus convergence over k-point
mesh in b). With the two first eigenvectors and the first eigenvalue the full data
set can be approximated, as illustrated by the reconstruction in c).

the full data set, starting at the lowest convergence, the first eigenvalue is more than one
order of magnitude larger than the following eigenvalues. This effect becomes even more
dominant for the two sub-samples starting at higher convergence parameters (εi, κj). There
the difference of the first eigenvalue in comparison to the higher eigenvalues is more than
one and a half or even two orders of magnitude.

As a consequence, the first eigenvectors u1(εi) and v∗1(κj) seem to contain the most
relevant information to approximate the matrix Mε,κ. The eigenvectors as functions of the
convergence parameters (εi, κj) are plotted in Fig. 5.9. On the left side u1(εi) is plotted over
the energy cut-off εi and in the middle v∗1(κj) is plotted over the k-point mesh κj . Finally,
the matrix Mε,κ can be approximated in first order by:

M̃ε,κ =


u1(εi)

0
...
0



σ1 0 . . . 0

0 0
...

...
. . .

...
0 . . . . . . 0



v1(κj)

0
...
0


∗

≈Mε,κ . (5.3)

The resulting matrix M̃ε,κ is plotted in Fig. 5.9 on the right. In comparison with Fig. 5.8
on the left it is hard to spot any differences visually. This confirms the dominance of the
first eigenvalue. In addition, both eigenvectors can be rescaled to match the convergence of
the bulk modulus, with one convergence parameter fixed at the maximum. More explicitly,
at the maximum k-point mesh κmax the convergence of the bulk modulus only depends on
the energy cut-off:

lim
εi→εmax

B0(εi, κmax) =B0(εmax, κmax) . (5.4)

In analogy the k-point mesh convergence of the bulk modulus at maximum energy cut-off

108



5.3 Reconstruction

only depends on the k-point mesh:

lim
κj→κmax

B0(εmax, κj) =B0(εmax, κmax) . (5.5)

The dominance of the first eigenvalue in the SVD indicates this separation as:

c1,ε · u1(ε) = lim
εi→εmax

B0(εi, κmax) , (5.6)

c1,κ · v∗1(κ) = lim
κj→κmax

B0(εmax, κj) . (5.7)

Here the constants c1,ε, c1,κ are defined based on the eigenvalue σ1 as the product c1,ε ·c1,κ =
σ1. The above analysis thus shows that the convergence of the energy cut-off εi and the
k-point mesh κj can be separated once the initial convergence parameters (εinit, κinit) are
sufficiently high. The lower the initial convergence parameters, the larger the second and
the following eigenvalues in comparison to the first eigenvalue, as illustrated on the right
side of Fig. 5.8 and the less accurate is the prediction based only on the first eigenvectors.

5.3.2 Energy Differences

Based on the approximation of the eigenvectors with the bulk modulus at the maximum of
one convergence parameter in Eq. 5.6 and 5.7, the total convergence of the bulk modulus
can be predicted based on:

∆εB0(κj) =|B0(εmax, κj)−B0(εmax, κmax)| , (5.8)

∆κB0(εi) =|B0(εi, κmax)−B0(εmax, κmax)| , (5.9)

B0(εi, κj) ≈B0(εmax, κmax) + ∆εB0(κj) + ∆κB0(εi) . (5.10)

Still based on the absolute values in the error definition, the error in the bulk modulus is
overestimated. At the same time, without the absolute values the error in the bulk modulus
is underestimated.

To address this limitation, the differences of the energy volume curves are analysed
in the following. Four very special energy-volume curves E(Vn, εi, κj) are considered:
E(Vn, εmin, κmin), E(Vn, εmax, κmin), E(Vn, εmin, κmax), E(Vn, εmax, κmax). Each of these
energy-volume curves is evaluated at the same set of volumes Vn. This enables the cal-
culation of the energy differences by just subtracting the calculated energies:

∆εmaxE(Vn, εi, κj) =E(Vn, εi, κj)− E(Vn, εmax, κj) , (5.11)

∆κmaxE(Vn, εi, κj) =E(Vn, εi, κj)− E(Vn, εi, κmax) . (5.12)

The energy differences keep one of the two convergence parameters fixed, while the other
one is changed, in analogy to Eq. 5.6 and 5.7: For ∆εmaxE(Vn, εi, κj) the k-point mesh κj
is fixed while the energy cut-off dependence is analysed by comparing the energy-volume
curve at εi with the energy-volume curve at εmax. In Fig. 5.10 the four energy-volume curves
are compared, starting with the energy-volume curves followed by the energy differences
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Figure 5.10: Comparison of the energy-volume curves in a), followed by the comparison of
the energy differences. In b) the comparison at constant energy cut-off and in
c) the comparison at constant k-point mesh are plotted. Finally, the difference
of the energy differences are compared in d).

∆κmaxE(Vn, εi, κj) in the second and ∆εmaxE(Vn, εi, κj) in the third plot. The focus here
is the comparison of the energy differences ∆εmaxE(Vn, εi, κmin) with ∆εmaxE(Vn, εi, κmin)
and ∆κmaxE(Vn, εmin, κj) with ∆κmaxE(Vn, εmax, κj). For aluminium both sets of energy
differences are found to agree reasonably well. Further the convergence of the energy-volume
curve in dependence of one convergence parameter is independent of the other convergence
parameter. This again can be related to just a single dominant eigenvalue in the SVD.

Based on the observed separation of energy cut-off εi and k-point mesh dependence κj
it is referred to in the following as orthogonal convergence or additive convergence, as both
contributions added to calculate the convergence at a given set of convergence parameters
(εi, κj). When calculating the difference of the sets of energy differences it can be shown
that the second order differences form a closed loop and are equal:

∆κmax∆εmaxE(Vn, εi, κj) =∆εmaxE(Vn, εi, κj)−∆εmaxE(Vn, εi, κmax) , (5.13)

∆εmax∆κmaxE(Vn, εi, κj) =∆κmaxE(Vn, εi, κj)−∆κmaxE(Vn, εmax, κj) . (5.14)

This second order energy difference is plotted in the fourth picture of Fig. 5.10. In contrast
to the systematic shift or systematic error of the first order energy differences the second
order energy differences show a high frequency noise-like error. This high frequency error
is related to the plane wave jumps of E(Vn, εmin, κmin). As a consequence, the second order
noise like error is again approximated as statistical error. By inserting Eq. 5.11 and
Eq. 5.12, the equality of Eq. 5.13 and Eq. 5.14 can be validated:

∆κmax∆εmaxE(Vn, εi, κj) = ∆εmax∆κmaxE(Vn, εi, κj) . (5.15)

This result can again be related to the SVD as the eigenvalues for the second and all
following eigenvalues are very close, as illustrated on the right side of Fig. 5.8. Only between
the first and the second eigenvalue there is a jump of an order of magnitude. The absence
of further strong components indicates an uncorrelated (noisy) data set, once the effect of
the first eigenvalue is removed. In the following the uncertainty is separated in a systematic
orthogonal contribution Eq. 5.11 and Eq. 5.12 and a remaining statistical contribution
Eq. 5.14.
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Figure 5.11: Convergence of the energy differences over volume for different energy cut-
offs indicated by the different colours in a) and different k-point meshes in
b). Finally c) shows the convergence of the second order energy difference as
standard deviation over k-point mesh with the colours indicating the different
energy cut-offs.

5.3.3 Convergence of Errors

Based on the separation of the systematic and the statistical convergence, the effect on
the resulting energy-volume curve is summarised in Fig. 5.11. Starting with the energy
cut-off convergence at the maximum k-point mesh ∆εmaxE(Vn, εi, κmax) on the left. The
energy difference ∆E is plotted over the set of volumes Vn and coloured depending on the
energy cut-off εi. The energy error ∆E continuously decreases with increasing energy cut-
off εi. Still, the vertical shift only affects the equilibrium energy E0, while the equilibrium
volume V0, equilibrium bulk modulus B0 and its pressure derivative B′ depend on the
curvature of the energy-volume curves. Both the energy shift and the correction to the
curvature decrease homogeneously with increasing energy cut-off εi. This is based on the
general principle that for higher energy cut-offs more plane waves fit in the same volume,
introduced in Sec. 2.1.4.

In contrast to the energy cut-off convergence, the k-point mesh convergence is not ho-
mogeneous. It is in general recommended to either use even or non-even k-point meshes,
which either always include the gamma point or never include the gamma point. However,
the remaining k-points are not fixed with a continuous increase of the k-point mesh by
2 × 2 × 2. Thus, a small increase of the k-point mesh leads to a different set of k-points,
which is not a superset of the previous set of k-points. This is one of the limitations of
the Monkhorst-Pack construction [24] of the k-point mesh, introduced in Sec. 2.1.4, which
causes the non-monotonous convergence in terms of both the shift of the energy-volume
curve as well as its curvature. For the example of aluminium the systematic convergence
over energy cut-off εi and k-point mesh κj is compared in Fig. 5.11 left and center. The
change in terms of the energy shift is in the same order of magnitude. But this depends
on the minimal convergence parameters (εmin, κmin). Choosing the k-point mesh to start
at κmin = 31 the systematic shift of the energy cut-off convergence reduces by one order of
magnitude.
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Finally, the third graph in Fig. 5.11 shows the convergence of the statistical error in
dependence of both the k-point mesh κj on the x-axis and the energy cut-off as colour
gradient. To quantify the statistical error the standard deviation of the statistical error is
plotted on the y-axis. In the double logarithmic plot the standard deviation scales linearly
with the k-point mesh κj . Thus, a given standard deviation can be achieved by adjusting
the k-point mesh or the energy cut-off of both. In contrast to the additive behaviour of the
systematic convergence the statistical convergence can be expressed as multiplication:

σ(εi, κj) =
1

σ(εmin, κmin)
· σ(εi, κmin) · σ(εmin, κj) . (5.16)

As a consequence, it is sufficient to once calculate the convergence of the standard deviation
dependence on the k-point mesh at minimal energy cut-off and once the convergence of the
standard deviation dependence on the energy cut-off at minimal k-point mesh:

lim
εi→εmax

σ(εi, κmin) =σ(εmax, κmin) , (5.17)

lim
κj→κmax

σ(εmin, κj) =σ(εmin, κmax) . (5.18)

This dependence is validated empirically as the k-point mesh convergence of the statistical
error is parallel for the different energy cut-offs.

5.3.4 Coarse-Grained Model

Based on the insights from the systematic convergence in Sec. 5.3.3 in combination with
the uncertainty phase diagram in Sec. 5.2.3 a three step algorithm is proposed to construct
a coarse-grained model. It predicts energy-volume curves for all convergence parameters
(εi, κj) in a computationally highly efficient matter.

Step 1.

As a first step, based on the additive dependence of the systematic convergence error and
the multiplicative dependence of the statistical convergence error, the overall convergence
matrix Mε,κ can be predicted based on a subset of calculations.

• For the systematic convergence the dependence of the energy-volume curve from the
energy cut-off εi is recorded at maximum k-point mesh κmax and the k-point mesh
dependence κj is recorded at maximum energy cut-off εmax. When the other conver-
gence parameter is already at the maximum the contribution of the statistical error
is minimal.

• For the statistical convergence error a second set of energy cut-off convergence εmin

and k-point mesh convergence κmin is recorded to calculate the plane wave jumps
in comparison to the convergence at maximum convergence parameters. While in
principle it would be possible to use the minimal convergence parameters independent
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of the pseudopotential, it is recommended to use the suggestions from the VASP
manual, as otherwise the electronic convergence can be limited.

In total only four convergence series have to be calculated resulting in a sparse convergence
matrix:

M̃ε,κ =



0 . . . 0 εmax, κmin . . . εmax, κmax
...

...
... 0

...
0 . . . 0 εmin, κmin . . . εmin, κmax

0 . . . 0 0 . . . 0
...

...
...

...
0 . . . 0 0 . . . 0


. (5.19)

For a typical convergence analysis this sparse matrix has only ±10% of the entries of the
full matrix M̃ε,κ.

Step 2.

The second step is calculating the predicted energy-volume curves at a given set of con-
vergence parameters (εi, κj). Starting with the systematic convergence, the energy-volume
curve can be calculated as:

Esys(Vn, εi, κj) =E(Vn, εmax, κmax) + ∆sysE(Vn, εi, κj) , (5.20)

∆sysE(Vn, εi, κj) =∆εmaxE(Vn, εi, κmax) + ∆κmaxE(Vn, εmax, κj) . (5.21)

The above expressions are basically the fully converged energy-volume curve at maximum
convergence parameters E(Vn, εmax, κmax) adjusted by the systematic convergence for both
energy cut-off and k-point mesh. Analogously the energy-volume curve with only the sta-
tistical error contribution can be reconstructed:

Estat(Vn, εi, κj) =E(Vn, εmax, κmax) + ∆statE(Vn, εi, κj) , (5.22)

∆statE(Vn, εi, κj) =∆E(Vn, σ(εi, κj)) . (5.23)

Here E(Vn, σ(εi, κj)) is the mapping of the normal distribution constructed around the mean
of 0.0 and the standard deviation σ(εi, κj). This iterative approach enables the separate
evaluation of the uncertainty resulting from the systematic error and the statistical error.
At the same time both contributions can be combined to calculate the total error:

Etot(Vn, εi, κj) =E(Vn, εmax, κmax) + ∆sysE(Vn, εi, κj) + ∆statE(Vn, εi, κj) . (5.24)

With this reconstruction the whole convergence matrix can be approximated.

Step 3.

Finally in the third step the polynomial is fitted to the predicted energy-volume curves
to predict the bulk modulus convergence over the whole parameter space. Based on the
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Figure 5.12: Comparison of error contributions for aluminium in the upper row and copper
in the lower row. The contributions are divided in the statistical error on the
left, the systematic error in the middle and the combination on the right.

experience in the previous section the two error contributions are calculated separately:

B0(εi, κj) =B0(εmax, κmax) + ∆sysB0(εi, κj) + ∆statB0(εi, κj) , (5.25)

∆sysB0(εi, κj) =B0(FFit(Esys(Vn, εi, κj)))−B0(FFit(Esys(Vn, εmax, κmax))) , (5.26)

∆statB0(εi, κj) =σ(B0(FFit(Estat(Vn, εi, κj)))) . (5.27)

Here FFit(E(Vn, εi, κj)) is the polynomial fit of the energy-volume curve E(Vn, εi, κj). From
the polynomial fit the bulk modulus B0(FFit(E(Vn, εi, κj))) is calculated and the statistical
contribution is approximated using bootstrapping as σ(B0(FFit(E(Vn, εi, κj)))) the standard
deviation from a sample of n calculations of the bulk modulus, sampled from the statistical
error in energy predicted for the corresponding convergence parameters.

Comparison of Aluminium and Copper

With these three steps the bulk modulus convergence can be predicted for the full parameter
range but requires only a small sub-sample of data points In Fig. 5.12 the different error
contributions are compared for aluminium in the top row and copper in the bottom row.
For both elements the three errors of the bulk modulus are calculated starting with the
statistical error ∆statB0, followed by the systematic error ∆sysB0 and finally the total error
combining both. All diagrams use a logarithmic colour scale to quantify the error and the

114



5.4 Simulation Protocol

Figure 5.13: Workflow diagram for the uncertainty backwards propagation coarse-grained
model. The user inputs are indicated as red boxes, the generic pyiron objects
as blue boxes, the calculation with external simulation codes in green boxes
and the data analysis steps in yellow boxes.

convex hull reconstruction. The direct comparison of both elements show that the statistical
error of aluminium is significantly smaller than the statistical error of copper. This again
can be related to the aluminium pseudopotential having less sharp edges than the copper
pseudopotential. Thus, less plane waves are required to represent it and the plane waves
with higher energies are not required. As a consequence, the plane wave jump amplitude is
smaller and the resulting uncertainty of the bulk modulus is smaller as well. The systematic
error in the middle of Fig. 5.12 is comparable for both elements with copper requiring
higher k-point meshes to achieve the same level of convergence. The resulting combined
error shows a rather different behavior. For aluminium the statistical error contribution
can be neglected, while for copper it plays a dominant role, in particular for calculations
up to an energy cut-off of εi = 700 eV and a k-point mesh of κj = 41. Commonly these
lower converged calculations are the upper limit for calculating more complex properties
like finite temperature properties. This again highlights the importance of separating the
statistical and the systematic contribution. Only by combining their behaviours over the
entire convergence parameter range of (εi, κj) from a small subset of calculation, it is then
possible to suggest the convergence parameters to achieve a user-defined convergence goal.
This can be regarded as an uncertainty backwards propagation.
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5.4 Simulation Protocol

After the introduction of the uncertainty backwards propagation method for calculating
the equilibrium parameters with a plane wave DFT simulation code the next step is to
implement and up-scale this method with the pyiron IDE. For this a technical perspective
on the method is introduced. While it is in principle possible to run all calculations in serial
and create each job object manually, developing a parallel simulation workflow improves
the computational efficiency in particular on a HPC cluster. The pyiron IDE supports
the user in transitioning from rapid prototyping the simulation protocol to up-scaling it
by providing an abstract layer of building blocks: the pyiron objects, as introduced in
Sec. 4.2.2. The simulation protocol is implemented based on the workflow diagram in
Fig. 5.13. Here, the user input, which indicated in red, consists of the precision goal for one
of the equilibrium parameters, the pseudopotential and optionally an initial guess for the
equilibrium volume. Based on the uncertainty backwards propagation the precision of all
four equilibrium parameters is predicted, so the algorithm is capable of considering multiple
precision goals at the same time. For simplicity reasons, only the precision goal for the bulk
modulus ∆B0 is illustrated here. The second mandatory parameter is the pseudopotential.
It is based on a specific approximation for the exchange correlation functional and the fixed
number of electrons, as introduced in Sec. 2.1.4. Based on the pseudopotential the element,
the ground state crystal structure and the lattice constant are selected from experimental
references. Alternatively, the user can define these as optional inputs.

5.4.1 Equilibrium Volume Initial Guess

To adjust the initial guess of the lattice constant an initial energy-volume curve is calcu-
lated at maximum convergence parameters (εmax, κmax) with a volume range of ±10%. The
resulting energy-volume is required to parameterise the convergence analysis. As a conse-
quence, the pyiron IDE waits initial energy-volume curve is calculated. In the workflow
diagram this is indicated by a blue box, followed by a green and a yellow box. In analogy
to the simulation life cycle in Fig 4.1 the red boxes indicate user input, the blue boxes the
generic interface of the pyiron objects, the green boxes an external simulation code and
finally the yellow box the data analysis. For the calculation of the energy-volume curve it
is defined based on the pyiron objects. The calculations are executed with the VASP DFT
simulation code. Finally the calculation results are aggregated in a pyiron table, introduced
in Sec. 4.3.5, to fit the energy-volume curve and calculate the equilibrium parameters.

5.4.2 Data Aggregation

After calculating the equilibrium volume for the maximum convergence parameters, the
convergence step follows a very similar pattern. It is separated in the energy cut-off con-
vergence and the k-point mesh convergence, both being executed twice, once at the VASP
recommended convergence parameters and once at the maximum convergence parameters.
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Following the successful execution, all results are collected in one pyiron table object. The
pyiron table object enables different analyses as all energies in dependence of volume, en-
ergy cut-off εi and k-point mesh κj are stored in a single table. The workflow diagram
indicates that apart from the adjustment of the initial guess for the equilibrium volume
the calculations in this workflow are independent from each other and suitable for parallel
execution. In addition as only the volume Vn, the energy cut-off εi and the k-point mesh κj
change, it is reasonable to define a template job and then only adjust these parameters for
the individual calculations. At the same time these three parameters Vn, εi, κj , in addition
to the total energy E(Vn, εi, κj) define the four mandatory columns in the pyiron table.

5.4.3 Overview

The focus at the current stage is to demonstrate how the graphical representation of the
simulation workflow helps to select the required pyiron objects. At the same time, by
defining a clear technical implementation, the relevant parameters are visible in the code of
the simulation workflow. This is enabled by the separation of the static parameters which
remain constant during the workflow and are set once during the definition of the template
job and the dynamic parameters which vary between the different calculations and define
the columns of the pyiron table, in addition to the calculated total energy. Such an approach
is computationally efficient for loosely coupled calculations, as all calculations are submitted
to the HPC cluster at once and the HPC job scheduler takes over the distribution of the
computational resources.

5.5 Parameter Study

The implementation of the uncertainty backwards propagation as a pyiron IDE simulation
protocol enables a wide range of different parameter studies. From the comparison of differ-
ent approaches to generate k-point meshes, as introduced in Sec. 2.1.4, over the comparison
of convergence for different crystal structures to the comparison of different classes of pseu-
dopotentials for the same element to provide a quantification of the computational cost.
Still the most relevant question is the dependence of the convergence for a given pseudopo-
tential. Does the convergence depend on the total number of electrons or does the core of
the pseudopotential impact the convergence of the equilibrium parameters? To address this
question nine fcc elements are analysed.

They are all metals ranging from the alkaline earth metal calcium (Ca), from the s-block,
over the transition metals copper (Cu), palladium (Pd), silver (Ag), Iridium (Ir), platinum
(Pt) and gold (Au), in the d-block, to the aluminium (Al) and lead (Pb) in the p-block. In
Fig. 5.14 the predicted absolute uncertainty in the bulk modulus for the different elements
over the convergence parameters (εi, κj) are illustrated as contour plots. The contour lines
for the convergence goals of 5 GPa, 1 GPa, 0.5 GPa and 0.1 GPa are additionally marked
as red lines with different line styles. These convergence goals are selected based on the
reference of 1 GPa used in the delta project to define the DFT precision. On these lines
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Figure 5.14: Convergence study to predict the uncertainty in the bulk modulus for nine
fcc elements using the coarse-grained model. The VASP recommended conver-
gence parameters are marked with a red dot, the recommendation of the delta
project with a blue dot and the recommendation of the materials project with
an orange dot. The predicted convergence parameters from the algorithm are
indicated as open circles on the red lines based on the different convergence
goals.
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the black open circles indicate the convergence parameters suggested by the uncertainty
backwards propagation method. These points are determined by maximising the area of
a rectangle between the contour line and the convergence goal. This area is indicated by
the black dotted lines. Finally, the coloured dots indicate the recommended convergence
parameters by the VASP manual (red), the materials project (orange) and the delta project
(blue).

5.5.1 Relative Convergence

As a first step of the analysis the comparison of the convergence of calcium (Ca) and iridium
(Ir) demonstrates that the convergence of the bulk modulus precision is independent of
the absolute value of the bulk modulus. Calcium (Ca) has the lowest bulk modulus of
the selected elements of 17.50 GPa and iridium (Ir) has the highest bulk modulus with
348.08 GPa. Still, while Calcium (Ca) achieves the highest convergence goal of 0.1 GPa
with the lowest convergence parameters (εi = 500 eV, κj = 25) in comparison to the other
elements, iridium (Ir) scores second following calcium (Ca) with the convergence parameters
(εi = 760 eV, κj = 31).

In contrast copper with the 4th highest bulk modulus of 140.48 GPa requires the highest
convergence parameters (εi = 1180 eV, κj = 75) to achieve the same convergence. With
these parameters being close to the maximum convergence parameters (εi = 1200 eV, κj =
91) it is not even confirmed if the uncertainty backwards propagation is converged for
copper and it would be recommended to further increase the maximum convergence pa-
rameters (εmax, κmax) to validate the convergence goal of 0.1 GPa for copper. The same
applies for silver (Ag) and palladium (Pd). Still, the results are sufficient to confirm that
the convergence of the bulk modulus precision is not related to the absolute value of the
bulk modulus. In contrast the DFT error for the equilibrium volume in reference to the
experimental equilibrium volume is inversely proportional to the bulk modulus [182].

5.5.2 Transition Metals

As a second step the convergence of the transition metals can be related to the quantum
numbers. From copper (Cu) over silver (Ag) to gold (Au) the principle quantum number
increases and in particular the energy cut-off required to achieve a given convergence goal
decreases. The same applies for the orbital quantum number from iridium (Ir) over platinum
(Pt) to gold (Au) the required k-point mesh to achieve a given convergence goal increases,
in correlation to the orbital quantum number. At the same time the number of semi-core
electrons in the selected pseudo potential increases from 17 for iridium (Ir) to 19 gold
(Au). However, while the dependence of the uncertainty on the quantum numbers can be
approximated for the transition metals, the current data set is not sufficient to explain the
convergence for the rest of the periodic table.
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5.5.3 Limitations

As a third result of this parameter study the convergence goal of 0.1 GPa can be identified
as an upper limit for the convergence uncertainty. While for elements like calcium (Ca)
and iridium (Ir) it is possible to reach this limit, for other elements like copper (Cu) it
cannot be confirm that this level of convergence is reached within the selected convergence
parameter space (εmax, κmax). As a consequence the automated algorithm is limited to
minimal convergence goals of 0.1 GPa.

5.5.4 Comparison

The aim of an automated algorithm to predict the uncertainty backwards propagation is
to provide the user with recommendations for convergence parameters (εi, κj) which can
afterwards be used for further calculations. Thus, an important benchmark for such an
algorithm is the comparison to human experts. In Fig. 5.15 the same nine elements are
compared once in terms of energy cut-off on the left and once in terms of the k-point
mesh on the right. In both cases the coloured lines represent the results of the uncertainty
backwards propagation and the black lines are reference calculations from other projects.
In detail the blue line indicates a convergence goal of 5 GPa, the orange line the 1 GPa
convergence goal, the green line the 0.5 GPa convergence goal and the red line the 0.1 GPa
convergence goal. For each colour the dotted lines indicate the results from the previous
contour lines in Fig. 5.14. In addition to the dotted lines the error bars are calculated as
interpolation of a total of 51 convergence goals ranging from 1 GPa to 5 GPa.

For each convergence goal the recommended convergence parameters (εi, κj) are again
constructed by maximising the area of the rectangle to the maximum convergence parame-
ters (εmax, κmax). The series of 51 convergence parameters per element are used to smoothen
fluctuations in the convergence parameters and are then fitted linearly over the inverse con-
vergence goal. The resulting interpolation is then used to flatten fluctuations between the
series of 51 convergence parameters and to construct error bars to fit an interpolation over
all elements. This second interpolation is plotted a as solid line in Fig. 5.15. The x-axis in
Fig. 5.15 is based on the elements sorted by the VASP recommended energy cut-off (dash-
dotted line). When comparing to the delta project (dashed lines) and the materials project
(dotted lines), it becomes clear that the delta project reproduces a similar trend like the
VASP recommendations, with an on average 200 eV higher energy cut-off. In contrast to
the delta project the materials project recommends a constant energy cut-off of 500 eV.
This constant energy cut-off is chosen to enable the comparison of different elements at the
cost of reaching different levels of convergence for different elements.

The VASP recommendation is close to the convergence goal of ±5 GPa and the delta
project recommendation is close to the ±1 GPa convergence goal. The same applies for the
k-point mesh convergence, here both the delta project and the VASP manual recommend a
constant number of k-points for the selected elements. To allow for a direct comparison, the
recommendations of the uncertainty backward propagation is fitted to a constant. In con-
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Figure 5.15: Comparison of the convergence limits for the different elements for the energy
cut-off on the left and the k-point mesh on the right. The convergence limits
are coloured based on the uncertainty in the bulk modulus. For comparison
the recommendations from the Delta Project and the Materials Project are
indicated.

trast to the constant k-point mesh, the k-point mesh in the materials project is normalised
by the equilibrium volume, to maintain a constant k-point mesh density. Still, while the
constant energy cut-off selected by the materials project is higher then the recommenda-
tion from the Delta project (except for copper), the k-point mesh recommendation of the
materials project is lower then that of the Delta project. In general it mainly follows the
recommendation of the VASP manual.

Based on the error bars for both the energy cut-off and the k-point mesh, which are
calculated by a linear interpolation of 51 individual convergence goal 0.1 GPa can again
be identified as an upper boundary. With the error bars reaching beyond ±200 eV in
the energy cut-off and ±20 × 20 × 20 in the k-point mesh the computational efficiency is
limited. In contrast for the three lower convergence goals 5 GPA, 1 GPa and 0.5 GPa
the only calculations with an unproportionally large error bar is copper at 0.5 GPa. This
is most likely related to the limited convergence at the maximum convergence parameters
(εmax, κmax) in combination with the convex hull reconstruction. At the same time, the
large error bar indicates that the interpolation of convergence goals recommends a much
lower k-point mesh.

In summary, the comparison of the uncertainty backwards propagation with existing
high-throughput studies demonstrates that the algorithm achieves the same level of con-
vergence as human experts. The equilibrium parameters calculated as part of the Delta
project agree within the predicted error bars with the results of the uncertainty backwards
propagation. While the uncertainty backwards propagation requires more computational
resources than a human expert, the level of automation enables the integration in high-
throughput calculations. Specifically, it allows to systematically asses the contribution of
the convergence, the plane wave jumps and the model error to the overall DFT uncertainty.
The approach outlined in this chapter is general and can be straightforwardly applied to
other DFT properties.
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Following the calculation of the equilibrium parameters with DFT precision in Chap. 5,
the next dimenson of complexity to address is the thermodynamic complexity, followed by
the chemical complexity in the next chapter. Based on the theoretical overview of ab ini-
tio thermodynamics in Sec. 2.4, the calculation of the melting temperature is selected as a
prototypical example for the thermodynamic complexity, as introduced in Sec. 2.4.4. To ad-
dress the thermodynamic complexity, the melting temperature is calculated for interatomic
potentials using the coexistence method. This is based on the experience that with modern
machine learning potentials, as introduced in Sec. 2.2.2, the DFT free energy can be ap-
proximated with high precision. The extension of the melting temperature calculated with
interatomic potentials to DFT precision, with the TOR-TILD method, is again introduced
in Sec. 2.4.4. In addition the calculation are restricted to unaries, to reduce the chemical
complexity to a minimum.

Based on the achievements of the previous chapter in addressing the technical complexity,
the aim of this chapter is to develop an automated simulation protocol to calculate the
melting temperature for an interatomic potential. This simulation protocol is then applied in
a parameter study to develop a coarse-grained model for predicting the melting temperature
in a computationally efficient way. The pyiron IDE is selected for the development of this
simulation protocol, as it supports both the rapid prototyping of simulation protocols as
well as the up-scaling for high-throughput parameter studies. Afterwards the simulation
protocol can be applied to validate interatomic potentials, by comparing predicted melting
temperatures to experiment, as a first step to calculate ab initio melting temperatures with
the TOR-TILD method, or to identify correlations of the melting temperature with other
material properties.

6.1 Experimental Correlation

As a reference to validate the predictions based on interatomic potentials, a literature study
is conducted on experimental databases, to identify material properties which are corre-
lated with the melting temperature. The experimental databases range from two general
databases, namely the Mendeleev Python package [183] and the Wolfram Alpha knowl-
edge base [184] to specific literature which summarises the thermodynamic results [185].
While more databases are available, the selected ones are accessible within the Python pro-
gramming language and include the most common material properties. Still, the access to
experimental data remains a challenge, which is currently addressed by open data initiatives
in materials science e.g. Nomad [141] as introduced in Sec. 3.2.1.
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Material Property Correlation [-1,1] Nr. of Samples Source

Cohesive energy 0.95 43 [185]
Vaporization heat 0.94 79 [184]
Evaporation heat 0.93 88 [183]
Boiling Temperature 0.90 95 [183]
Heat of formation 0.87 87 [183]
Proton affinity 0.80 32 [183]
Gas basicity 0.80 32 [183]
Young’s modulus 0.75 57 [184]
Bulk modulus 0.72 64 [184]
Shear modulus 0.71 54 [184]
Density 0.67 79 [184]
Liquid density 0.64 64 [184]
Volume -0.58 58 [184]
Density 0.54 94 [183]
Thermal expansion -0.53 59 [184]
...

...
...

...
Volume · Young’s modulus 0.82 48 [184]
Volume · Shear modulus 0.76 48 [184]
Volume · Bulk modulus 0.71 49 [184]

Table 6.1: List of material properties and their correlation with the melting temperature
calculated as Pearson correlation coefficients.

The experimental correlations are summarised in Tab. 6.1. For each material property
the Pearson correlation coefficient ρMP,TM with the melting temperature is calculated using
the following formula:

ρMP,TM =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
. (6.1)

In this case xi is a material property for a given element i, x̄ is the mean of the material
property over all elements, yi is the melting temperature for element i and ȳ is the mean of
the melting temperature. As the Pearson correlation coefficient varies with the number of
samples and not all properties are available for all uniaries, the number of samples is added
as additional column in Tab. 6.1.

The cohesive energy, the vaporization heat, the evaporation heat and the boiling temper-
ature all have a Pearson correlation coefficient above 0.9. While vaporization heat and the
boiling temperature are both related to the transition from the liquid to the gas phase the
evaporation heat just like the melting temperature is related to solid liquid phase-transition.
As a consequence all three properties require extensive calculations and are less suitable to
predict the melting temperature in a computational efficient way. In contrast, the cohe-
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sive energy can be calculated by fitting an EOS, as introduced in Sec. 2.4.1 and discussed
extensively in the previous chapter. Therefore, the cohesive energy is commonly used to
compare ab initio calculation with experimental results [186]. For the same reason the
cohesive energy is typically included in the fitting process of interatomic potentials and it
can be expected that most interatomic potentials are capable of reproducing the cohesive
energy.

Other material properties which are computationally affordable and typically included
in the fitting process of interatomic potentials are the elastic moduli, namely the Young’s
modulus E, the bulk modulus B0 and the shear modulus µ. Each of them is correlated
with the melting temperature with a Pearson correlation coefficient of above 0.7. For the
shear modulus µ and the Young’s modulus E this correlation can be further improved by
multiplying with the equilibrium volume V0, while for the bulk modulus B0 this effect is
negligible.

In the literature for normalising material properties [187, 188] additional correlations
can be found, namely:

E =
cEkBTM

V0
, (6.2)

µ =
cµkBTM
V0

, (6.3)

with the constants cE = 100 and cµ = 44, the Boltzmann constant kB and the melting
temperature TM . Still the limitation of this approach is the assumption of a constant
Poisson’s ratio ν:

ν =
E

2µ
− 1 =

cE
2cµ
− 1 =

3

22
= 0.136 . (6.4)

This is not the case. Therefore these correlations have to be treated carefully. In particular
as the average Poisson’s ratio for the data set above is ν̄ = 0.29 ± 0.07. To improve the
approximation the constants cE and cµ can be calculated directly from the data set by
fitting Eq. 6.2 and 6.3 to the data set. The fitted constants are cE = 90.6 and cµ = 36.2
which then results in a Poisson’s ratio of ν = 0.25. This Poisson’s ratio agrees within the
error bars with the calculated mean.

For the validation of interatomic potentials the cohesive energy and the product of bulk
modulus B0 with the equilibrium volume V0 are selected, as these material properties can
be calculated directly from the energy-volume curve by fitting an EOS as introduced in
Sec. 2.4.1. In addition the equilibrium parameters are typically included in the fitting pro-
cess of interatomic potentials, so a high correlation of the calculated equilibrium parameters
with the experimental measurements is expected.
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6.2 Simulation Protocol

Following the discourse of analysing experimental correlation of material properties with
the melting temperature, the next step is a parameter study on an database of interatomic
potentials to assess the ability of the interatomic potentials to reproduce the correlations
found for experiment.

6.2.1 Simulation Protocol

The coexistence method is implemented in the pyiron IDE to address two challenges. On
the one hand, the dynamic choice of parameters should be automated to remove the need
of human expertise and enable a parameter study over a database of interatomic potentials.
On the other hand, the simulation protocol should be implemented independently of the
simulation code, so it is transferable and can be combined with other methods in the fu-
ture. In analogy to the simulation protocol to predict the DFT uncertainties in Fig. 5.13,
the simulation protocol to calculate the melting temperature is illustrated in Fig. 6.1. Again
the red boxes indicate the user input, the green boxes the calculation, the blue boxes the
generic pyiron objects and the yellow boxes the data analysis, following the simulation life
cycle introduced in Fig. 4.1. In comparison to the DFT uncertainty simulation protocol,
which consists of a linear order of steps, the simulation protocol for the coexistence ap-
proach consists of three feedback loops. With the feedback loops the parameters of the
simulation protocol are dynamically adjusted and the simualtion protocol is restarted from
the beginning.

Step 0. Starting from the interatomic potential and the element as mandatory user in-
puts, the bulk structure is generated based on the experimental crystal structure and
the experimental lattice constant. Based on convergence tests with different types of
interatomic potentials a cubic bulk structure with more than 4000 atoms is recom-
mended [189]. In addition, a first guess of the melting temperature for the interatomic
potential can accelerate the convergence of the melting temperature calculation. If no
suggestion for the melting temperature is provided, the experimental melting temper-
ature for the element is selected as initial guess.

Step 1. As a first calculation, the bulk structure is heated in a NPT ensemble to the
suggested melting temperature, resulting in the volume expansion of the simulation
cell. Under the assumption that the suggested melting temperature is below the
superheating temperature, the structure should remain solid. If this is not the case
and the structure becomes liquid, the first feedback loop is executed and the suggested
melting temperature is reduced by 100 K. The solid structure and the liquid structure
are differentiated using the adaptive common neighbour analysis (CNA) [61]. The
analysis is explained in more detail in the next section.

Step 2. After the heating of the solid structure, it is duplicated along the z-axis and the
duplicated half of the structure is fixed using selective dynamics. Both steps are
executed based on the generic pyiron objects independent of the simulation code. By
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Figure 6.1: Simulation protocol to calculate the melting temperature with the coexistence
approach. The user input is indicated by red boxes, the individual calculation
by green boxes, the generic pyiron objects by blue boxes and the data analysis
by yellow boxes.

fixing half of the structure, the xy-plane is fixed and only the z-axis remains flexible.

Step 3. With half of the structure fixed, the combined structure is heated for 1000 K beyond
the suggested melting temperature, again using a NPT ensemble. This results in the
melting of the part that is not fixed and in an expansion along the z-axis. Afterwards,
the structure is again cooled down to the suggested melting temperature, while the
xy-plane remains fixed, resulting in a stable solid-liquid interface structure, which is
required for the coexistence approach. Again the NPT ensemble is used to relax the
z-axis.

Step 4. After the cooling of the combined structure it is possible that the structure becomes
fully solid. This is the case when the suggested melting temperature is below the su-
percooling temperature, as introduced in Sec. 2.4.4. For this case, the second feedback
loop again uses the adaptive CNA analysis to identify the solidified structures and
increase the suggested melting temperature by 100 K in case of solidification.

Step 5. With the stabilised solid-liquid interface, the selective dynamics option removed, to
again include all atoms in the atomistic simulation. For the next step multiple strains
along the z-axis are applied. While this relaxes the z-axis, the xy-plane remains fixed
until the guess of the suggested melting temperature is updated.

Step 6. For each of the strained structures the NVT ensemble is applied with the volume
defined by the applied strain and the temperature defined by the suggested melting
temperature. A compressive strain results in an increase of the internal pressure, while
the elongation results in a decrease of the internal pressure.
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Step 7. Following the NVT ensemble, the NVE ensemble is applied, while maintaining the
velocities of the simulation. By fixing the total energy the temperature is equilibrated
in addition to the pressure.

Step 8. In the last and final step, the strained structures are evaluated to check if the solid
liquid interface remains stable for the different strains. Afterwards, the temperature is
fitted over pressure to predict the melting temperature at a pressure of 0 GPa. Finally,
a last feedback loop compares the suggested melting temperature with the predicted
melting temperature and repeats the whole simulation protocol if the difference is
larger than 1 K. This repetition relaxes the xy-plane, while the loop over strains
along the z-axis in the steps 5. to 8. only relaxes the z-axis.

While the above workflow addresses the challenge of creating a stable solid-liquid interface
structure by using selective dynamics, the remaining challenge is primarily the last step.
To fit the temperature over the pressure dependence, it is necessary to validate at the end
of the NVT and NVE calculation that both, the solid and the liquid structure, remain. To
address these challenges it is necessary, to quantify the solid-liquid ratio, to identify voids
and finally to adjust the simulation parameters dynamically. These challenges are addressed
in the following section.

6.2.2 Automation

As the simulation of the liquid phase in a periodic simulation cell results in a rough surface
at the edge of the supercell, it is challenging to combine it with the rather sharp surface of
the solid structure even at elevated temperatures. By using selective dynamics to construct
the solid-liquid interface, the process of combining a solid and a liquid supercell is no
longer required. The disadvantage of the selective dynamics is the computational cost of
calculating a supercell double the size as both phases are included in one simulation supercell
rather than calculating them individually [125, 190]. Still, by keeping the solid structure
fixed during the heating of the liquid structure the challenge of combining both after the
heating and cooling of the liquid structure in step 3 is removed. Addressing the challenge of
combining the solid-liquid interface is the kind of rethinking required to automate existing
thermodynamics simulation protocols. Being guided by the experimental setup, of heating
one part of the sample and cooling the other part, in addition to identifying selective
dynamics as the most extreme form of cooling, physical insights are used to automate the
simulation protocol. This is in contrast to the common assumption that automation is only
focused on the technical complexity.

Solid-Liquid Detector

The next step is the validation that the interface remains intact during the simulation.
This requires the development of a solid-liquid detector to track the interface during the
simulation. One option would be to use the Lindemann criterion, introduced in Sec. 2.4.4,
to track the mean-square displacement of the individual atoms to separate the ones that
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Figure 6.2: Cut along the xz-plane of an aluminium solid-liquid interface structure, with
the interface along the xy-plane (top). The right half of the sample is solid,
which can be identified based on the crystalline structure with equally spaced
columns and rows, while the left half is liquid with no crystallographic structure.
Nevertheless, the common neighbour analysis identifies only 19.4% of the atoms
as face centered cubic (fcc). The result can be improved by applying a kernel
density analysis (bottom), in which 46% can be identified as solid.

fluctuate around their lattice sites from those that move freely in the liquid phase. Still,
this would require tracking the position of the atoms over time.

An alternative approach is to only use the final structure of the combined molecular
dynamics simulation at the end of step 7 and quantify the solid-liquid ratio for this structure.
In Fig. 6.2 on the top such a final structure is analysed with the adaptive CNA detector.
Based on the visual inspection the solid structure can be identified as approx. 50 % on the
right and the liquid structure as 50 % on the left. This identification is primarily based on
the long range order of the atoms in the solid phase being aligned along the positions of
the crystal lattice. While the CNA detector is able to identify the face centered cubic (fcc)
structure in the area of the solid phase, it predicts a ratio of only 19.5 % solid fcc marked
in green, 0.1 % solid basis centered cubic (bcc) marked in blue and the remaining 80.4 %
of the atoms are not identified and marked as others in grey. The limitation of the CNA
detector is that over 50 % of the solid atoms are not correctly identified as fcc.

To correct this limitation in the detection of the solid phase and based on the physical
insight that the solid-liquid interface is oriented orthogonal to the z-axis, the kernel density
score is calculated. It interpolates along the xy-plane using Gaussian kernels and reduces
the 3-dimensional problem to a 1-dimensional problem of calculating the density of fcc along
the z-axis. With a cut-off of the kernel density score at 10 % the solid-liquid interface can
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be located as illustrated in the lower part of Fig 6.2. In a range from 41 �A to 74 �A the kernel
density score is above 10 % resulting in a total of 46 % of the structure predicted to be solid,
which agrees well with the visual inspection. In analogy to the creation of the structure,
again the physical insight that the solid-liquid interface is orthogonal to the z-axis enables
the automation of this previously manual inspection to approximate the solid-liquid ratio.
Furthermore, a limit of 25 % is introduced and structures with less than 25 % solid or more
than 75 % solid are excluded from the fitting of the temperature over pressure dependence to
interpolate the melting temperature. In addition to the adaptive CNA detector a diamond
structure detector [191] is used to identify diamond structures in addition to fcc, bcc and
hexagonal close packed (hcp).

Void Detector

Another challenge in automating the coexistence approach is the identification of voids
forming in the simulation cell. Simulation cells which contain voids no longer follow the
pressure strain dependence of structures without voids. Instead of the linear dependence
of pressure with strain as illustrated in Fig. 6.3 (top) for an hcp magnesium solid-liquid
interface structure with strains ranging from −5 % to 1 %, voids cause fluctuations, which
are visible for strains ranging from 1 % to 5 %. Therefore, the structures with voids have
to be removed from the analysis, when fitting the temperature-pressure dependence. As
mentioned before in previous works [125, 190] the selection of suitable structures was a
manual task. To automate the identification of voids at the end of step 7, when the strained
structures are equilibrated in a NVE ensemble, the Voronoi analysis is used. It constructs
the Wigner-Seitz cell [192] for each atom and calculates the volume of each of these cells.
Based on the Voronoi volume of all atoms the maximum is compared with the mean. It is
found empirically that void formation is visible when the maximum Voronoi volume is larger
than twice the mean Voronoi volume. Based on this the following criterion is defined:

max({VVoro.}) ≤ 2VVoro. . (6.5)

Here {VVoro.} as the group of all Voronoi volumes and VVoro. as the mean of those. Once this
condition is no longer fulfilled, the corresponding calculation is excluded from the fitting of
the temperature over pressure interpolation in step 8.

Dynamic Adjustment of Parameters

By separating the convergence along the z-axis in step 5. to 8. and the convergence along
the xy-plane in step 1. to 4., the algorithm typically requires multiple iterations. As a
consequence, the selection of the control parameters for the equilibration namely the time
step length and the total number of time steps have to be adjusted accordingly. In the
beginning a larger time step is used in combination with a smaller number of total time
steps and a larger strain along the z-axis in step 5. Once the simulation is converged,
the time step as well as the strain are reduced to include higher frequencies and measure
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Figure 6.3: Void formation in the liquid phase of the solid-liquid interface structure for
hexagonal close packed (hcp) magnesium. The pressure over strain curve(top)
shows a linear dependence for strains from −5 % to 1 % and is dominated by
fluctuations for strains from 1 % to 5 %. These fluctuations are caused by the
formation of voids as illustrated with the inset and they can be identified by
measuring the Voronoi volume of the individual atoms and comparing the max-
imum with the mean (bottom). Once the maximum reaches the limit of twice
the mean Voronoi volume, these calculations are removed from the analysis.

more precisely around the melting temperature and the length of the trajectory is extended
to improve the convergence. Typical parameters are a time step between 1 fs to 2 fs, a
number of total time steps between 20000 to 40000 and a strain from ±5 % to ±1 %. The
time step and strain are reduced and the number of total time steps is increased when the
melting temperature prediction is within the range of different temperatures achieved by a
given strain in step 8. Increasing the time step beyond 2 fs also increases the risk of atoms
colliding. As a consequence, the maximum time step is material specific.

6.2.3 Implementation

Based on the introduction of the coexistence method in Sec. 6.2.1 and the improvements
required for the automation of the simulation protocol introduced in Sec. 6.2.2, the simula-
tion protocol is implemented in the pyiron IDE. While a human expert is able to select the
physically “reasonable” structures in step 8 manually, for the automation it is necessary to
further define “reasonable” structures. For the interface structures, this includes measuring
the solid-liquid ratio as well as identifying voids. Still, these steps are typically not in-
cluded in scientific publications, which makes it challenging to learn a method based purely
on the scientific publication. To address this limitation, it is recommended to publish the
simulation protocol as supplementary material, as demonstrated in Sec. 4.4.4.

When comparing the simulation protocol to the calculation of DFT uncertainties in
Sec. 5.4.3 there are two major differences: On the one hand the feedback loops in the simu-
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Figure 6.4: Automated analysis during the melting temperature calculation for fcc alu-
minium: upper row inner loop starting with a) solid-liquid interface structure,
b) solid-liquid ratio and c) temperature over time each for a strain of 98.5% and
a temperature of 927.75K. Middle and bottom row outer loop: d) temperature
over strain, e) pressure over strain and f) temperature over pressure to interpo-
late the melting temperature at zero pressure. g) solid-liquid ratio over strain to
validate both the solid and the liquid phase exist independent of the strain, h)
the results of the Voronoi detector for different strains confirming the absence of
voids in the structure and i) the convergence of the outer loop of the predicted
melting temperature and the calculated melting temperature.
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lation protocol, which trigger additional iterations in case the calculation is not converged,
and on the other hand the dependence of the simulation on the previous step. For the DFT
uncertainty propagation the energy cut-off convergence and the k-point mesh convergence
both depend on the calculation of the guess for the equilibrium volume at maximum conver-
gence parameters but the rest of the calculation are independent from each other. They can
all be executed at the same time, as illustrated in Fig. 5.13. In contrast, in the melting tem-
perature workflow in Fig 6.1 only the calculation for the different strains are independent
from each other, while the rest of the calculation depends on the previous steps.

In addition to the interatomic potential calculation even though these are molecular dy-
namics calculations with several thousand time steps they are still computationally more
affordable than the static single atom DFT calculation with high convergence parameters.
As a consequence, rather than submitting all calculations to the HPC job scheduler indi-
vidually the melting temperature simulation protocol for a given set of input parameters is
submitted as one pyiron script job. For this the melting temperature simulation protocol
is implemented in one Jupyter notebook and the Jupyter notebook is submitted with the
pyiron script job object introduced in Sec. 4.4.2 to the HPC job scheduler. In addition
the individual molecular dynamics calculation are executed with eight CPU cores using
the MPI parallelisation in LAMMPS. But there is no parallelisation for the different strain
calculations as this would result in idle computing resources during the other steps, namely
steps 1 to 4. The comparison of the two simulation workflows demonstrates that depending
on the atomistic engine and as a consequence of the computational cost of an individual
calculation different levels of parallelisation are required.

This also explains why frameworks designed for high-throughput DFT calculations are
commonly not suitable for molecular dynamics calculations. Worker-based approaches like
fireworks for the materials project as introduced in Sec. 3.1.2 are optimised for many calcula-
tions with similar computational requirements, but they are less suitable for heterogeneous
computational loads which commonly appear in simulation protocols for ab initio thermo-
dynamics. In the pyiron IDE this challenge is addressed by supporting the job scheduler
of the HPC clusters directly in addition to the ability of submitting simulation protocols
as script jobs. Finally, advantage of using script jobs for simulation protocols is the ability
to follow the execution of the simulation protocol. This is helpful for debugging in case
a calculation failed and at the same time for improving the efficiency of the simulation
protocol.

In Fig. 6.4 the different types of graphs generated from the melting temperature simula-
tion protocol are summarised in one figure. It starts with the solid-liquid ratio calculation
in the top left, once as two dimensional representation of the xz-plane and next to it as
kernel density score over the z-axis. The third plot in the first row shows the equilibration
of temperature over simulation time, with the vertical black line indicating the last 20%
of the simulation time, which is used to calculate the time averaged temperature indicated
by the red line. In the second row the results of step 8 are compared, starting with the
temperature over strain on the left, followed by the pressure over strain and finally the
temperature over pressure. From the last plot in the second row the melting temperature
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is predicted for a pressure at 0 GPa by linear interpolation. The prediction of multiple
iterations is compared to the suggestion of the corresponding iteration in the last figure in
the bottom row. With the suggested temperature in red and the predicted temperature in
blue, already after four iterations both agree with a precision below 1 K. For completeness
the last two figures in the bottom row show the solid liquid ratio for different strains on
the left and the mean Voronoi volume in comparison to the maximum Voronoi volume over
strain in the middle. Both confirm that there is no need to exclude any calculation from
the given fit.

In summary, with the implementation of the simulation protocol in the pyiron IDE it is
not only possible to automate the calculation of the simulation protocol, but at the same
time by including the analysis in the simulation protocol with the corresponding explana-
tion, it becomes an instructive resource for others who want to go beyond just to apply the
method. This level of documentation requires additional time. Still, it is a valuable exten-
sion as it increases the transferability and reproducibility of a given simulation protocol,
which is one of the primary challenges in ab initio thermodynamics. As a consequence, the
pyiron IDE supports the user in all steps of the development process of a simulation pro-
tocol, from the rapid prototyping over the up-scaling to the sharing of the final simulation
protocol. The specific steps for sharing a simulation protocol with pyiron are introduced in
Sec. 4.4.4.

6.3 Parameter Study

With the simulation protocol implemented in the pyiron IDE multiple applications are
enabled:

• The melting temperature can be included in the fitting process of interatomic poten-
tials, as introduced in Sec. 2.2. Previously only selected interatomic potentials were
published including their melting temperatures. [193, 194].

• The calculation of the melting temperature for interatomic potentials is also an essen-
tial step of the TOR-TILD method to calculate the melting temperature with DFT
precision, as introduced in Sec. 2.4.4.

• With a data set of melting temperature calculated for interatomic potentials, the
experimental correlations introduced in Sec. 6.1 can be analysed in more detail, to
develop a systematic understanding of material properties correlated with the melting
temperature.

The focus of this thesis is the third aspect, with the aim to use the systematic understanding
of the correlations to to develop a coarse-grained model for predicting the melting temper-
ature of interatomic potentials. To construct the required data set the simulation protocol
is iterated over the NIST database of interatomic potentials [59]. An alternative option
would be the interatomic potential database of the OpenKIM project [58], as the pyiron
IDE supports both databases. Both databases for interatomic potentials and their work on
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Figure 6.5: Comparison of a) the cohesive energy E0, b) the equilibrium volume V0, c) the
equilibrium bulk modulus B0 and d) the melting temperature TM calculated
for multiple interatomic potentials with experimental results. The interatomic
potentials which agree with the experimental equilibrium parameters (a-c) are
colored by crystalstructure, the rest are marked in grey.

validating interatomic potentials are introduced in Sec. 3.2.2. From the NIST database of
interatomic potentials a subset of 200 interatomic potentials is selected. The interatomic
potentials are sorted by crystal structure with a focus on bcc, fcc and hcp. As interatomic
potentials can implement interaction for more than just a single chemical element, a total
of 260 melting temperatures is calculated from the 200 interatomic potentials. With an
average of five iterations of the melting temperature simulation protocol outer loop over the
relaxation of the xy-plane and over 850.000 molecular dynamics steps in one iteration, this
results in more than a billion molecular dynamics steps in this parameter study.

As a first test, the melting temperatures predicted with the coexistence simulation pro-
tocol for the different interatomic potentials are compared with the experimental melting
temperatures of the corresponding elements. This comparison is shown in the bottom right
of Fig. 6.5. While the different interatomic potentials reproduce the general trend with a
Pearson correlation coefficient of 0.9063, the deviation can still be larger than ±1000 K
for selected elements. Based on the experimental correlations in Sec. 6.1, the interatomic
potentials that are able to reproduce the equilibrium parameters, namely the equilibrium
energy E0, the equilibrium volume V0 and the equilibrium bulk modulus B0, should also
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Figure 6.6: Energy over distance r for three Morse pair potentials depending on the potential
parameters α and D0, with a fixed equilibrium distance R0 = 1.0 indicated by
the black dashed line.

have a higher correlation with the experimental melting temperatures. To validate this hy-
pothesis the correlations for the equilibrium parameters are also included in Fig. 6.5. The
interatomic potentials which reproduce simultaneously the equilibrium energy with an ac-

curacy of ∆E0 = ±0.1 eV, the equilibrium volume with an accuracy of ∆V0 = ±0.1 �A3
and

the bulk modulus with an accuracy of ∆B0 = ±10 GPa are coloured by crystal structure,
while the rest are indicated in grey. This selection improves the correlation for the equilib-
rium parameters, for the equilibrium energy E0 from 0.9265 to 0.9989, for the equilibrium
volume V0 from 0.9990 to 0.9999 and for the equilibrium bulk modulus B0 from 0.8585 to
0.9984. Still, the correlation for the melting temperature only improves slightly to 0.9337.

In addition, when analysing the results in Fig. 6.5 in more detail, there are interatomic
potentials which reproduce the melting temperature with good agreement to the experi-
ment, while they fail to reproduce the equilibrium parameters within the selected parameter
ranges. At the same time there are interatomic potentials which reproduce all equilibrium
parameters within the selected parameter ranges but still result in an error in the melt-
ing temperature of over ±1000 K. Consequently, knowing the accuracy in determining the
equilibrium parameters is not sufficient to predict the accuracy of the melting temperature
calculation. This highlights the importance of including properties like the melting temper-
ature in the fitting process of interatomic potentials to achieve transferability over the whole
temperature range. Fitting an interatomic potential only to the equilibrium parameters is
not sufficient to reproduce the finite temperature properties like the melting temperature.

6.4 Coarse-Grained Models

In addition to improving the computational efficiency in predicting melting temperatures,
the development of coarse-grained models to predict the melting temperature also helps
to develop a systematic understanding of phase transitions in general. Three different
approaches are compared in the following, starting with the prediction of the melting tem-
perature for the Morse pair potential, followed by the prediction based on the temperature
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Figure 6.7: Dependence of the equilibrium volume per atom V0 on the cut-off radius for a
Morse potentials that is not restricted to the next nearest neighbors.

dependence of the elastic constants and finally the prediction based on the superheating
and supercooling temperature.

6.4.1 Morse Potential

The Morse pair-potential introduced in Sec. 2.2.1 is defined by three potential parameters.
Based on the analytical form of the Morse potential the energy contribution E(R) of a
neighbouring atom at distance R is defined as:

E(R) = D0

[
e−2α(R−R0) − 2e−α(R−R0)

]
; with R > Rcut , (6.6)

with R0 as the position of the energy minimum of the interaction, Rcut as the cut-off radius
of the interatomic potential, D0 as the depth of the potential at the minimum R0 and α as
the width of the potential. The potential is plotted in Fig. 6.6 for three combinations of D0

and α at the same position of the energy minimum R0 = 1.0 and without any restriction of
the cut-off radius Rcut. When the α parameter increases, the potential becomes stiffer and
as a result the bulk modulus B0 increases. With this, the potential parameters of the Morse
potential are directly correlated to the equilibrium parameters, which have been identified
to be correlated to the melting temperature for experimental measurements in Sec. 6.1.
Commonly for bulk calculations the Morse potential is cut-off at the nearest neighbour
distance. Still, for calculating the melting temperature, such a sharp cut-off radius at the
the nearest neighbour distance of the solid phase is not sufficient for calculating the liquid
phase. As a consequence, the interactions cannot be fixed to only the nearest neighbours.
By extending the cut-off radius beyond the nearest neighbours the equilibrium volume per
atom V0 is no longer only dependent on R0 but in addition also depends on the cut-off
radius Rcut.

The impact of the cut-off radius Rcut for a fcc crystal with a constant R0 is illustrated
in Fig. 6.7. The equilibrium volume V0 seems to be converged for cut-off radii larger than
6 �A in Fig. 6.7 on the left. But when subtracting the equilibrium volume V0 at a cut-off
radius of 10 �A from the lower cut-off radii, the convergence becomes continuous on a semi-
logarithmic scale in Fig. 6.7 on the right. This effect depends on the stiffness of the Morse
potential defined by the α parameter. In Fig. 6.7 the α parameter is indicated by the colour
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Figure 6.8: Analytical model to predict the melting temperature TM for a Morse potential
based on the parameters D0, α, Rcut and the minimum of the potential R0.

gradient ranging from α = 1.5 in dark blue to α = 2.0 in red. The lower the α parameter,
the more flexible the potential and as a consequence the more the equilibrium volume V0

depends on the cut-off radius Rcut.

Based on this extension of the Morse pair potential to include higher order nearest
neighbours the melting temperature is calculated using the simulation protocol for the
coexistence approach developed in Sec. 6.2.3. A total of 1995 melting temperatures are
calculated for fcc crystals, with the aim to parameterise an analytical model that predicts
the melting temperature TM based on the parameters of the Morse potential. For fixed
positions of the energy minimum at R0 = 2.5 �A and R0 = 3.0 �A, the cut-off radius is varied
from a minimum of Rcut = 6.0 �A to a maximum of Rcut = 10.0 �A, the potential width is
varied from a minimum of α = 1.5 to a maximum of α = 2.0 and finally the potential depth
is varied from a minimum of D0 = 0.1 to a maximum of D0 = 0.3. These parameter ranges
are based on the recommendations for cubic metals [47].

The melting temperature is highly correlated with the potential depth D0, which can
be identified as the primary parameter controlling the cohesive energy, as demonstrated in
Fig. 6.6. As the experimental analysis in Sec. 6.1 suggests a high correlation of the cohesive
energy with the melting temperature, a correlation of the melting temperature calculated
for the Morse potential with the potential depth D0 is expected. A linear correlation is
found as illustrated in Fig. 6.8 on the left for α = 1.9 and R0 = 2.5 �A without any constant
offset. As a consequence, a fictitious Morse potential with a potential depth of D0 = 0.0
has a melting temperature of 0 K or alternatively a Morse potential without an attractive
contribution cannot form a solid phase, not even at 0 K. To construct a coarse-grained
model, this dependence can be summarised as:

TM (α,D0, R0, Rcut) = f(α,R0, Rcut) ·D0 . (6.7)

The melting temperature of a Morse potential TM (α,D0, R0, Rcut) depends linearly on the
potential depth D0 and a function f(α,R0, Rcut), which defines the factor for the linear
scaling. In the next step the dependence of f(α,R0, Rcut) on the potential width α and
the cut-off radius Rcut is analysed in Fig. 6.8 in the middle. While f(α,R0, Rcut) increases
linearly with increasing potential width α, this dependence vanishes for increasing cut-off
radii Rcut. This empirical result can be interpreted as the melting temperature of a Morse
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potential with infinite cut-off radius Rcut =∞ being independent of the potential width α.
Still, for computational efficiency the dependence of potential width α is included as:

f(α,R0, Rcut) = g(R0, Rcut) · α+ h(R0, Rcut) . (6.8)

The function f(α,R0, Rcut) defines the factor for the linear scaling with the potential depth
D0 as a linear function with the factor g(R0, Rcut) and a constant defined by h(R0, Rcut).
Both functions g(R0, Rcut) and h(R0, Rcut) can be parameterised as third order polynomials
of the cut-off radius Rcut with the polynomial parameters depending on R0 as illustrated in
Fig. 6.8 on the right. As a consequence, the melting temperature TM (α,D0, R0, Rcut) can
be calculated as:

TM (α,D0, R0, Rcut) = [g(R0, Rcut) · α+ h(R0, Rcut)] ·D0 . (6.9)

Only the functions g(R0, Rcut) and h(R0, Rcut) need to be parameterised. While the de-
pendence on the minimum position R0 remains challenging, this analysis demonstrates that
an analytical model to predict the melting temperature TM (α,D0, R0, Rcut) can be derived
based on the linear dependence on the potential depth D0 and the potential width α at a
fixed potential minimum r0 and with a fixed cut-off radius Rcut. These results agree with
the experimental results in Sec. 6.1, the melting temperature TM (α,D0, R0, Rcut) depends
primarily on the potential depth D0 and secondarily on the bulk modulus B0 which de-
pends on the potential stiffness α. This is an important result as typically pair potentials
are neglected for metals, as they fail to reproduce the Cauchy criterion, as introduced in
Sec. 2.2.1. Once more this highlights the importance of including the melting temperature
in the fitting of interatomic potentials.

6.4.2 Temperature Dependence of the Elastic Constants

Given the success of predicting the melting temperature TM for the Morse potential in the
previous section, the Born Criterion, introduced in Sec. 2.4.4, is used to predict the melting
temperature based on the temperature dependence of the elastic constants. This coarse-
grained model is computationally efficient, as the temperature dependence of the elastic
constants requires only solid bulk calculations. At the same time predicting a first order
phase transition based on only a single phase should be impossible, unless the descriptor, in
this case the temperature dependence of the elastic constants, includes information of the
second phase.

Method

In the literature [52–54, 195] the temperature dependence of the elastic constants is calcu-
lated with different thermodynamic ensembles. Four different approaches are defined for
comparison. They all start by calculating the thermal volume expansion using a NPT en-
semble at the given temperature T and the pressure 0 GPa. Afterwards, the structure is
strained along one axis, the structure is equilibrated and the elastic constants are calculated
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Figure 6.9: Comparison of multiple approaches of calculating the temperature dependence
of the elastic constants C11 (blue), C12 (orange), C44 (green) and C ′ (red), each
plotting the elastic constants over temperature for a Morse potential.

based on the change in pressure resulting from the strain after equlibration. The difference
in the methods is the equilibration after straining the structure:

(a) At a fixed volume, the positions are minimised to calculate the pressure based on only
the displacement of the atoms rather than their thermal fluctuations.

(b) Without additional equilibration the pressure is measured directly after straining the
supercell. This equals the immediate response of the thermally expanded crystal.

(c) Using a NVE ensemble the energy after the volume expansion is fixed and the pressure
is measured as a response of the strain. As the temperature is not controlled by the
ensemble, it increases under compression and decreases under elongation.

(d) Using a NVT ensemble the temperature is fixed in analogy to the experimental setup
and the dependence of the energy on an external strain is measured.

To compare the different methods a Morse potential is selected with the potential depth
D0 = 0.2 eV, the potential width α = 1.9, the potential minimum distance R0 = 2.5 �A and
the cut-off radius Rcut = 4.5 �A. The elastic constants C11, C12, C44 and C ′ are plotted in
Fig. 6.9 for each method, with C ′ being defined as:

C ′ =
1

2
(C11 − C12) . (6.10)
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Figure 6.10: From the extrapolation of the temperature dependence of the elastic constants
C11(T ) and C12(T ) below the melting temperature, the superheating can be
approximated as the point where C12(T ) > C11(T ). The resulting superheating
temperature is plotted over the melting temperature. Once for the Morse
potential in a) and once for potentials from the NIST database in b).

As already introduced in Sec. 2.4.4 the elastic constants remain stable beyond the melt-
ing temperature indicated by the grey line and the crystal stability only vanishes at the
superheating temperature indicated by the red line. Independent of the ensemble used for
equilibration of the strained supercell this confirms results of previous studies [53]. Still the
various approaches differ in terms of the predicted temperature dependence of the elastic
constants. This also affects the Cauchy relation for pair potentials [48] which is defined
as:

C12

C44
= 1 , (6.11)

with the elastic constants C12 being orthogonal to the applied strain and C44 being diagonal
to the applied strain. This relation is temperature-independent. Thus, the first and the
third approach can be neglected, as they do not reproduce the Cauchy relation. In addition,
the constant energy in the NVE ensemble in the third approach results in an increase of
temperature for the compressed supercell and a decrease of temperature for the strained
supercell. This does not represent the experimental bulk conditions as the time scale of
thermal equilibration is short in comparison to the straining of the sample in experiments.
Finally, as the second approach without equilibration does not fulfill any of the Born criteria,
while for the fourth approach with the NVT ensemble the diagonal elastic constant C44

vanishes as well as C ′. Instead, the second approach only fulfills the combined criteria:

C ′ − C44 = 0 . (6.12)

Based on these findings the fourth approach is selected to calculate the temperature depen-
dence of the elastic constants for a series of interatomic potentials to predict the melting
temperature TM .
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Morse Pair Potential

Based on the results in Sec. 6.3 the prediction of the melting temperature TM based on
the temperature dependent elastic constants is tested for the Morse pair potential. As ex-
plained in Sec. 2.4.4 the Born criterion [119] predicts the superheating temperature T+ [53].
So starting from 100 K the elastic constants are calculated in steps of 100 K and the tem-
perature dependence of the elastic constants is fitted up to the melting temperature TM .
Based on these fits C ′(T ) is extrapolated to predict the superheating temperature T+ as
C ′(T+) = 0. The prediction for superheating temperature T+ of the Morse potentials from
Sec. 6.3 is plotted in Fig 6.10 a). It is correlated with the melting temperature TM as
indicated by the black dotted line in comparison to the black dashed line for the melting
temperature. Still, the error in predicting the superheating temperature T+ from the ex-
trapolation of the elastic constants is in the order of ±1000 K. So for predicting the melting
temperature TM of the Morse potential the analytical model developed in Sec. 6.3 is more
suitable.

EAM Potentials

The advantage of using the temperature dependence of the elastic constants as the coarse-
grained model is that this approach is independent of the type of interatomic potential. In
Fig. 6.10 on the right the same interpolation is used to predict the melting temperature for
interatomic potentials from the NIST database of interatomic potentials [59]. Again the
superheating temperature T+ is correlated with the melting temperature TM as indicated
by the black lines. This applies to all three crystal structures, bcc indicated in blue, fcc in-
dicated in orange and hcp in green. However, in analogy to the Morse potential the primary
limitation of this approach is the prediction of the superheating temperature T+ based on
the elastic constants, which again results in an error in the order of ±1000 K. The physical
explanation for this error is that the temperature dependence of the elastic constants up
to the melting temperature TM contains only limited information about is temperature de-
pendence beyond the melting temperature TM up to the superheating temperature T+. In
analogy to the phonons introduced in Sec. 2.4.1 the temperature dependence of the elastic
constants can be used to measure thermal instabilities [116]. While the extrapolation of
the elastic constants over temperature seems to provide a sufficient prediction in the case
of Fig. 6.9 this does not seem to be the case for all parameter combinations of the Morse
potential a) or interatomic potentials b) in general.

6.4.3 Superheating and Supercooling

The correlation of the superheating temperature T+ and supercooling temperature T− with
melting temperature TM is analysed in the following. As illustrated in Fig. 2.5 on the
right the superheating temperature T+ and supercooling temperature T− are commonly
calculated by measuring the volume expansion over temperature. When the solid structure
transitions to the liquid structure at the superheating temperature T+, the volume increases
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significantly and in analogy the volume decreases when the liquid structure transitions
to the solid structure at the supercooling temperature T−. The advantage of computing
the superheating temperature T+ and supercooling temperature T− to predict the melting
temperature TM rather than calculating the melting temperature TM directly is that they
do not require the same level of complex equilibration as discussed in Sec. 6.2.2.

Based on the previous results for predicting the melting temperature TM from the elastic
constants for the NIST interatomic potentials database [59] the superheating temperature
T+ and supercooling temperature T− are calculated for the same interatomic potentials
and plotted over the melting temperature TM in Fig. 6.11 on the left. The superheating
temperature T+ is indicated by open symbols and the supercooling temperature T− is
indicated by filled symbols, with the colour of the symbols again being based on the crystal
structure. The superheating temperature T+ and the supercooling temperature T− are both
fitted linearly over the melting temperature TM which results in a deviation of ±100 K for
the individual calculation to the fit over all calculations. This error is one order of magnitude
smaller than the error of the prediction, based on the temperature dependence of the elastic
constants. At the same time the comparison to the melting temperature highlights that the
melting temperature TM is not the arithmetic mean of the superheating temperature T+

and the supercooling temperature T− as it is commonly falsely assumed:

T̃ =
T+ + T−

2
. (6.13)

Previous studies for the Sutton Chen many-body interatomic potentials [196] suggest the
melting temperature TM can be predicted as [197, 198]:

TM = T+ + T− −
√
T+ · T− . (6.14)

This construction can be identified as the assumption that the distance of the melting
temperature TM to the arithmetic mean T̃ is equal to the distance of the arithmetic mean
T̃ to the geometric mean

√
T+ · T−:

TM − T̃ = T̃ −
√
T+ · T− . (6.15)

This empirical finding is based only on a single type of interatomic potentials and only
on fcc crystals structures. In addition discrete temperature steps of ∆T = 50 K are used
in contrast to the ∆T = 5 K steps used for the high throughput study in Fig. 6.11 a).
For comparison reasons the results for the Sutton-Cheng interatomic potentials [198] are
included in Fig. 6.11 as black symbols. When the superheating temperature T+ and the
supercooling temperature T− are plotted over the melting temperature TM the difference
between the previous study and the current analysis is negligible.

For a more detailed analysis the superheating coefficient Θ+ is defined as the ratio of
superheating temperature T+ and the melting temperature TM :

Θ+ =
T+

TM
− 1 . (6.16)
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Figure 6.11: Superheating and supercooling temperature over the melting temperature for
all interatomic potentials separated by crystal structure in a) in comparison
to results from the literature. Superheating and supercooling coefficients over
melting temperature, again in comparison to results from the literature in b).

In analogy, the supercooling coefficient Θ− is defined as the ratio of the supercooling tem-
perature T+ and the melting temperature TM :

Θ− = 1− T−
TM

. (6.17)

The superheating coefficients Θ+ and the supercooling coefficients Θ− are plotted in Fig. 6.11
b). The superheating coefficients Θ+ are marked as open symbols and the supercooling co-
efficients Θ− as filled symbols. The superheating coefficients Θ+ for fcc agree with the
previous calculation, as highlighted by the averaged results illustrated by the dotted black
line and the dotted orange line. In contrast to this, the supercooling coefficient Θ− does
not agree. In the previous publication [197] the supercooling temperature T− is defined
as the initial deviation from the liquid phase, while in the current study the solidification
is measured. This difference results in lower supercooling temperatures T− in the current
study and as a consequence higher supercooling coefficients Θ−. When comparing the su-
perheating coefficients Θ+ for the different crystal structures the superheating coefficient
Θ+ for fcc is found to be notably higher than the superheating coefficient of bcc and hcp.
For hcp this is related to the outlier around 2000 K. If this outlier removed the results for
fcc and hcp agree well. In contrast, the shift in bcc is systematic. The lower superheating
coefficient Θ+ is caused by a lower superheating temperature T+ in comparison to the melt-
ing temperature TM . This difference can be related to the lower packing density of the bcc
structure compared to fcc and hcp and the effect is independent of the melting temperature.
Still, for the supercooling coefficient Θ− there is no notable difference between the different
crystal structures.

In summary, the high-throughput study of the superheating temperature T+ and the
supercooling temperature T− by calculating the volume expansion over temperature in
combination with the high precision melting temperature TM calculation provides new in-
sights:
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• Existing approximations can be analysed systematically to confirm that the arithmetic
mean is not sufficient to predict the melting temperature TM .

• The superheating temperature T+ for the bcc structure can be identified to be sys-
tematically lower than the superheating temperature T+ for the fcc and hcp structure.

• Based on the simulation protocol to calculate the temperature dependent volume
expansion, in combination with the results from the high-throughput study for the
precise melting temperature TM calculation, it is now possible to efficiently predict
the melting temperature TM with an uncertainty of ±100 K.

These developments are once more enabled by the pyiron IDE. With the pyiron IDE, it
is possible to rapidly prototype new simulation protocols and encourage researchers to
compare existing methods. Afterwards, these simulation protocols are used for parameter
studies to identify general correlations and finally use the resulting data sets to parame-
terise coarse-grained models. These coarse-grained models provide new insights and enable
computationally efficient calculations, which are required for ab initio thermodynamics.

145





7 Phase Diagram

The uncertainty propagation for plane wave DFT calculations in Chap. 5 and the calculation
of melting temperatures in Chap. 6 both highlight the versatility of the pyiron IDE. As an
outlook, the pyiron IDE is applied to calculate a temperature-concentration phase diagram,
which demonstrates the chemical complexity, as the third dimension of complexity of ab
initio thermodynamics. For computational efficiency an interatomic potential simulation
code is selected for the calculation of the phase diagram, still the simulation protocol can
be extended to DFT later on. As the number of interatomic potentials, which are published
with their corresponding phase diagrams [55, 56, 106], is limited, the nickel-chromium
interatomic potential [56] is selected due to the simplicity of the phase diagram and the
competition of the bcc and the fcc phases for the different endmembers.

As introduced in Sec. 2.4.3, the phase diagram is computed based on the competition
of the different phases in terms of free energy. Based on this introduction, the quasi har-
monic approximation is selected. As a consequence, the calculation of the liquid phase is
excluded from the phase diagram and only the solid phases are considered. However the
simulation protocol is again developed in terms of building blocks, so the approximation for
the free energy can be extended at a later stage. As a consequence, the focus of the current
simulation protocol is the generation of candidate structures and the comparison of their
corresponding free energies. The goal of calculating phase diagrams from ab initio is to
be able to determine the temperature-composition range for the stability of any particular
phase [199, 200] which can lead to the design of new materials [1, 2] and continue to drive
innovation.

7.1 Simulation Protocol

In analogy to the simulation protocol to predict the DFT uncertainties in Fig. 5.13 and
the simulation protocol to calculate the melting temperature in Fig. 6.1, the calculation of
the phase diagram with the quasi-harmonic approximation is illustrated in Fig 7.1. Based
on the introduction of the phase diagram calculation in Sec. 2.4.3 the simulation protocol
can be divided in three general steps: The generation of atomic candidate structures, the
evaluation of a thermodynamic approximation to calculate the free energy and finally an
atomistic engine to compute the required energies and forces.
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Figure 7.1: Overview of the simulation protocol to calculate phase diagrams with the quasi-
harmonic approximation. The user input is indicated in red, the individual
calculation in green, the generic building blocks in blue and finally the data
analysis steps in yellow.

7.1.1 Free Energy Simulation Protocol

For the current algorithm the candidate phases are required as user inputs marked in red
in Fig 7.1. The other user inputs are the chemical elements and the interatomic poten-
tial. Based on the number of elements to consider, special quasi random structures (SQS)
are generated for the individual phases using a SQS structure generator. For each of the
structures the ground state energy E0 as well as the free energy in the quasi-harmonic ap-
proximation Fqh are calculated. For the calculation of ground state energy E0 a simulation
code is used so the step is marked in green, while the calculation of the quasi-harmonic
approximation requires a separate simulation protocol, which is illustrated in Fig. 7.2, so
this step is marked in blue, as it is defined with the simulation code independent generic
pyiron objects. Finally, the calculation results are aggregated in the data analysis steps
in yellow. Starting with the construction of the convex hull and followed by the plotting
of the final phase diagram. Based on the visualisation of the temperature concentration
dependent free energies over temperature in a phase diagram, the calculation results can be
directly compared to the CALPHAD approach based on experimental databases.

7.1.2 Quasi-Harmonic Approximation

To illustrate the full complexity of the phase diagram workflow, the implementation of the
quasi-harmonic simulation protocol is visualised in Fig. 7.2: Starting with the generation
of the strained atomistic structures by straining based on the generic pyiron objects and
followed by the bulk calculations for each strained structure and afterwards the phonon
calculation. As the phonon calculation again requires multiple displacements, especially
for SQS structures with a low degree of symmetry, this again results in multiple structures
for each strained structure. The creation of these structures is implemented based on the
pyiron structure objects and marked in Fig 7.2 in blue. Afterwards, each of these atomistic
displacements is then evaluated with a atomistic engine illustrated in green. Finally, the
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Figure 7.2: Simulation protocol for the quasi-harmonic approximation, starting with the
creation of strained structures, followed by bulk calculations and phonon calcu-
lations. Both the bulk calculation and the phonon calculation are independent of
the atomistic engine. Finally, the data for the individual free energy calculation
is combined in the quasi-harmonic prediction of the free energy.

calculation results of each strained structure based on their individual displacements and
their individual free energies are combined to calculate the quasi-harmonic free energy, in
the analysis steps coloured in yellow.

7.1.3 Implementation

In comparison to the previous simulation protocols, the individual steps of the simulation
protocol require a large number of calculations, but are all encapsulated. As a consequence,
neither the aggregation of all calculations in a pyiron table, as introduced for the DFT
uncertainty propagation workflow in Sec. 5.4, nor the development of the simulation protocol
as script job as it is introduced for the calculation of the melting temperature in Sec. 6.2.3
is suitable. Instead, as introduced in more detail in Sup. A.3, a pyiron pipeline enables this
level of encapsulation. In combination with the interactive interface of the simulation code,
introduced in Sup. A.2, such a pipeline can be implemented in a computationally efficient
way.

The individual steps for the phase diagram calculation simulation protocol are explained
in the following based on the example of calculating the phase diagram for the nickel
chromium interatomic potential [56]:

1. Starting with generating SQS structures for both the bcc phase and the fcc phase
for a total of eleven concentrations each, ranging from 10 % Cr up to 90 % Cr and
accordingly 90 % Ni to 10 % in steps of 10 %. The bcc structures each contain 108
atoms while the fcc structures contain 128 atoms.

2. Optimising the equilibrium volume V0 at 0 K and 0 GPa external pressure for each
concentration and both phases bcc and fcc. It is important to constrain the shape to
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Figure 7.3: In the quasi-harmonic approximation the free energy is calculated in depen-
dence of the volume, the temperature, the phase and the concentration. In a)
the volume and temperature dependence of the free energy for the fcc phase
are calculated for a fixed concentration of 54 Ni atoms and 54 Cr atoms. For
each temperature the optimal volume with the lowest free energy for a given
temperature is determined by fitting the bulk, free energy – marked by black
crosses. In b), the volume optimised free energy for the fcc phase is plotted for
different temperatures and concentrations. Finally, in c) the resulting mixing
energy for both phases, the bcc phase, the fcc phase and the resulting convex
hull, are plotted in dependence of the concentration for a fixed temperature of
850 K.

remain cubic during the optimisation to prevent a phase transition from bcc to fcc
phase even for those concentrations at which the opposing phase is favourable.

3. Calculating the 0 K equilibrium energy E0 at 21 volumes equally spread around the
optimised equilibrium volume V0 at 0 K and 0 GPa external pressure for each concen-
tration and both phases bcc and fcc.

4. Calculating the phonons using the finite displacement approach implemented in the
phonopy software package [136] for each volume for each optimised SQS structure for
the given concentrations and both phases. While for the four uniary phases bcc Ni,
fcc Ni, bcc Cr and fcc Cr only a single displacement is required, given the high degree
of internal symmetry, the SQS structures require many more displacements, resulting
in a total of over 150000 individual displacements.

5. Calculating the vibrational contribution Evib of the free energy dependent on the
volume, the concentration and the temperature using the harmonic approximation
with the force constants determined from the finite displacements in the previous
step.

6. Adding the vibrational contribution of the free energy Evib and the equilibrium energy
E0, following the adiabatic appraoch introduced in Sec. 2.4.1. The resulting free energy
for a fixed concentration of 50 %/50 % for the fcc phase in dependence of the volume
and the temperature is plotted in Fig. 7.3 on the left.
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7. Determining the the temperature-dependent equilibrium volume V0(T ) for a given
phase and concentration following the quasi-harmonic approximation. The resulting
free energy for the temperature-dependent equilibrium volume is plotted for the fcc
phase in dependence of the temperature and concentration in Fig. 7.3 in the middle.

8. Adding the configurational entropy contribution to the free energy for the given phase
and concentration. Afterwards, to calculate the mixing energy by normalising the free
energy with the free energy of the end members.

9. Constructing a convex hull for each temperature to identify the concentrations which
lead to solid solutions and those which lead to phase separation. In Fig. 7.3 on the
right the resulting convex hull is plotted as dashed green line for a temperature of
800 K in addition with the mixing energy for both the fcc phase in orange and the
bcc phase in blue for comparison.

10. Combining the resulting temperature-dependent convex hull reconstructions in a tem-
perature concentration phase diagram. The resulting phase diagram is plotted in
Fig. 7.4 on the left and can be compared to the experimental phase diagram in Fig. 7.4
on the right. Only the points on the convex hull are included in the phase diagram.

This implementation of the simulation protocol to calculate the phase diagram with the
quasi-harmonic approximation highlights how the technical complexity is addressed in the
pyiron IDE by encapsulating the individual steps. On the one hand this enables reusing
them in other simulation protocols and on the other hand it allows replacing specific steps
in a given simulation protocol to compare the accuracy or efficiency of a given method. For
the development of the simulation protocol the LAMMPS simulation code for interatomic
potentials is used but the same workflow could be extended to any simulation code which
calculates energies and forces.

7.2 Comparison to Experiment

The quasi-harmonic phase diagram, is compared to the phase diagram published with the
interatomic potential, to experimental measurements and to a phase diagram calculated
with the CALPHAD method based on the experimental measurements in addition to pre-
vious CALPHAD assessments. For the specific case of the nickel-chromium phase diagram,
experimental measurements and CALPHAD assessments from the literature [201–209] are
combined using the ESPEI [210] framework, which is developed based on pycalphad [105].
In Fig. 7.4 the experimental measurements are marked as blue symbols and the CALPHAD
prediction is marked as orange dotted line. Based on the experimental measurements in
combination with additional experimental measurements for further thermodynamic prop-
erties the Redlich-Kister polynomials [96] are fitted and plotted as yellow and blue dotted
lines representatively. As a second reference the calculation of the phase boundaries in-
cluded in the publication [56], which used the variance constrained semi-grand-canonical
sampling [100, 101], are added in green. In comparison to the experimental measurements,
the solubility limit of bcc in fcc for interatomic potential is extended to higher nickel con-
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Figure 7.4: Comparison of the phase diagram calculated with the quasi-harmonic approx-
imation with the phase diagram published with the corresponding interatomic
potential, the experimental measurements and the phase diagram calculated
with the CALPHAD method.

centrations at high temperatures and the solubility limit of fcc in bcc decreases to nickel
concentrations of up to 40 % already at 1200 K compared to the 1400 K in experiment.
Based on this comparison and the general limitation of quasi-harmonic approximations at
high temperatures the quasi-harmonic calculations are limited to a maximum temperature
of 1500 K.

The results from the quasi-harmonic approximation are included in Fig. 7.4 as red sym-
bols. The solubility limit of bcc in fcc is predicted to be reached at lower nickel concen-
trations for the quasi-harmonic approximation in comparison to the variance constrained
semi-grand-canonical sampling, it is even reached at lower nickel concentrations than pre-
dicted by the CALPHAD model. Still both are the phase boundary predicted from the
CALPHAD model and the quasi-harmonic phase boundary are nearly parallel up to 1000 K.
Nevertheless, the difference between both theoretical predictions illustrates the importance
of a systematic comparison of the different methods. The results for the solubility limit
of fcc in bcc highlight the disagreement even more drastic. This is due to the variance
constrained semi-grand-canonical sampling method already predicting a lower temperature
for the solubility limit of fcc in bcc and the effect is further enhanced by the quasi-harmonic
approximation. The quasi-harmonic approximation predicts the solubility limit of fcc in
bcc for concentrations up to 20 % nickel concentration for a temperature range from 800 K
to 1400 K. In contrast, the variance constrained semi-grand-canonical sampling method
predicts the solubility limit of the bcc phase at 1200 K and finally in the experiment the
stability beyond 10 % nickel concentration is only found at temperatures above 1400 K.

When comparing the experimental measurements indicated as blue and yellow dots, with
the corresponding predictions from the CALPHAD model, then the only visual difference
is the prediction of solubility limit of bcc in fcc for temperatures below 1000 K. For the rest
the CALPHAD model and the experimental measurements agree within the fluctuation
of the experimental measurements. In contrast the quasi-harmonic approximation and
the variance constrained semi-grand-canonical sampling method for the same interatomic
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potential is much larger. This can be related to the intrinsic error of either of the methods
or the controllable errors. An indication for an controllable error in the quasi-harmonic
approximation is the concentration dependence of the mixing energy for both phases in
Fig. 7.3 on the right. This could be related to the supercell size or the displacement distance
during the phonon calculation.

As a consequence, it highlights the need for a systematic comparison of various methods
applied to existing interatomic potentials which are published with the corresponding phase
diagrams. Such a comparison is possible with the pyiron IDE but is beyond the scope of
this thesis, as the above example already demonstrates that the pyiron IDE can be applied
to address the chemical complexity of calculating phase diagrams.
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8 Conclusion

In this thesis, the intrinsic complexity of ab initio thermodynamics is addressed to extend
the use of simulations for materials design. This complexity is the result of the hierarchical
nature of materials and the use of methods developed in different scientific communities.

8.1 Summary

Based on the evaluation of various physical problems, three dimensions of complexity have
been identified in this thesis:

Ab initio Uncertainty To predict material properties from plane wave density functional
theory (DFT) simulations, the hierarchy of uncertainties has been investigated. For
the prototypical calculation of the bulk modulus, the uncertainty has been categorised
as intrinsic and as controllable errors. Based on these categories a coarse-grained
model has been developed to automatically identify the required convergence param-
eters to achieve a predefined convergence goal for the total controllable error. With
the coarse-grained model the dependence of the controllable error on the plane wave
energy cut-off and the k-point mesh has been examined: For the selected transi-
tion metals and their corresponding pseudo potentials, the required energy cut-off has
turned out to depend on the principle quantum number and the required k-point mesh
has turned out to depend on the orbital quantum number. This is consistent with
the physical intuition. In addition, the comparison to convergence tests in the liter-
ature has demonstrated the reliability of the coarse-grained model to automate DFT
convergence tests, which have been executed manually for over 50 years (Chap. 5).

Thermodynamic Complexity The calculation of thermodynamic properties, in contrast to
ground state properties, requires extensive sampling resulting in high computational
costs. To highlight how to resolve this complexity a coarse-grained model has been
developed for the calculation of the melting temperature for interatomic potentials. It
predicts the melting temperature with a precision of ±100 K based on a linear relation
to the superheating and supercooling temperature. Both can be computed efficiently
from the hysteresis of the volume expansion over temperature during a heating and
cooling cycle. Still, the coarse-grained model has to be parameterised in dependence
to the thermodynamic phase, as the ratio of the superheating temperature to the
melting temperature for the bcc phase is found to be systematically lower than for
the close-packed fcc and hcp phases (Chap. 6).

Chemical Complexity In analogy to the complexity of ab initio uncertainties and the com-
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plexity to calculate finite temperature properties, the chemical complexity has been
addressed by the calculation of a temperature-concentration phase diagram. It illus-
trates the competition of the stability for different thermodynamic phases at different
temperatures and concentrations. The phase diagram for an interatomic potential
has been calculated with the quasi-harmonic approximation and compared to other
theoretical predictions and experimental models (Chap. 7).

The physical insights of the relation of the DFT convergence parameters to the quantum
numbers and the relation of the ratio of superheating temperature to melting temperature
to the thermodynamic phase are enabled by the systematic parameter studies. These pa-
rameter studies themselves depend on the automation of the simulation protocols, which
requires an understanding of the underlying physics to disentangle the intrinsic complex-
ity. Finally, the level of automation in the simulation protocols is achieved by the pyiron
integrated development environment (IDE).

From a technical perspective the pyiron IDE implements a class of generic objects which
can be combined like building blocks. Each of these pyiron objects is connected to an
interactive Jupyter notebook based user interface, a resource interface to communicate with
simulation codes as well as high-performance computing (HPC) clusters and a data storage
interface optimised for multi-dimensional arrays (Chap. 4). This combination separates
the technical complexity of rapid prototyping and up-scaling simulation protocols from the
underlying physics and enables new physical insights and the development of coarse-grained
models as summarised above.

8.2 Outlook

Based on the success of the pyiron IDE by addressing the technical complexity of ab initio
thermodynamics and its release as an open-source software, it is applied by a growing
number of users from the atomistic community and beyond. Recent studies which use the
pyiron IDE are briefly introduced to highlight its versatility.

DFT Method Development From the implementation of generalized dipole corrections [133]
over the development of a potentiostat [211, 212] to atomic relaxation around defects
in magnetically disordered materials [213] and the electronic structure in unconven-
tional superconductors [214], the pyiron IDE is commonly used to address the technical
complexity in DFT method development. This includes the construction of feedback
loops to control multiple DFT calculations, parameter studies and the publication of
newly developed methods as self-contained simulation protocols.

Interatomic Potentials From the fitting of interatomic potentials [95, 215] over their val-
idation [44] to parameter studies with them [216], the computational efficiency of
interatomic potentials enables sampling a large parameter space. As a consequence,
the pyiron IDE is applied to address the technical complexity of rapid prototyping
and up-scaling simulation protocols.
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Beyond atomistic simulations and based on the close collaboration with experimental col-
leagues at the Max-Planck-Institut für Eisenforschung, the post-processing pipelines for
experimental methods, e.g. atom probe tomography, are identified to have similar require-
ments as the development of simulation protocols [217]. So, with the ability to implement
interfaces to additional external software, as introduced in Sup. A.4, first prototypes are
currently tested to execute parameter studies for post-processing pipelines of experimental
measurements.

Another aspect of the pyiron IDE is the community service. On the one hand, this
includes the education and training in virtual workshops [218], in which the participants
can use pyiron directly via their web browser. On the other hand, the pyiron IDE joined
the NumFocus foundation to collectively promote open-science principles in the materials
science community and foster the exchange with software developments in other scientific
communities.

In summary, the development of the pyiron IDE has a positive impact for and beyond
ab initio thermodynamics. By disentangling the technical complexity from the physical
complexity, the rapid prototyping and up-scaling of simulation protocols are enabled. This
results in new physical insights and the development of coarse-grained models, which cover
previously inaccessible parameter spaces.
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After the initial release of the pyiron IDE [175] the user feedback led to a constantly growing
number of contributors who not only use the pyiron IDe for their research but also continue
the development of the pyiron IDE by contributing advanced features for other users. Three
of these advanced features, which are developed based on the user feedback, are introduced
in the following. Starting with the automation of commonly used calculations by introducing
separate job classes for parallel calculation, followed by the introduction of an interactive
interface to exchange information between simulation codes during the execution of the
simulation code and finally by simplifying the addition of new simulation codes.

A.1 Parallel Job Objects

In the previous simulation protocol, the calculation of the energy-volume curve can be
replaced with the corresponding parallel job object. The Murnaghan job object, named
after the Murnaghan equation, loops over the different strains and fits the energy-volume
curves after the calculation finished successfully. Just like the previous simulation code job
objects it is created with the create job function create.job() of the project object by
selecting the job type Murnaghan. Alternatively, the Murnaghan job can be directly created
from the reference job by calling the create job method of the reference job. In this case
the reference job is automatically assinged.

# Loop over different strains

murn = job_ref.create.job.Murnaghan(

job_name="murnaghan"

)

By default the Murnaghan job uses eleven strain rates ranging within ±10% just like the
example in Sec. 4.3.4. The users can adjust these by modifying the input object of the
Murnaghan job object. For example to reduce the volume range to ±5% the volume range
parameter murn.input["vol_range" ] can be updated and afterwards the input object is
displayed to validate the change:

murn.input["vol_range" ] = 0.05

murn.input

>>> " Parameter Value"

>>> "0 num_points 11"

>>> "1 fit_type polynomial"

>>> "2 fit_order 3"
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>>> "3 vol_range 0.05"

Besides simplifying the construction of the simulation protocol by reusing existing function-
ality, the parallel job class also supports the users in up-scaling their simulation protocols.
By default only a single calculation is executed at a given time, but by increasing the num-
ber of processor cores assigned to the Murnaghan job object to eleven while maintaining
the number of processor cores for the individual calculation restricted to a single processor
core, the level of parallel execution can be controlled:

murn.server.cores = 11

murn.run()

In contrast to the previous parallel execution of multiple job objects in the background,
the parallel job object is optimised to handle the scheduling of the calculations. So, if the
number of cores for the Murnaghan job is restricted to eight it is going to execute the first
eight calculations followed by another three in a second iteration. Finally, the Murnaghan
job object also provides a built-in plot function murn.plot() to visualise the result for the
user.

# Plot the energy-volume curve

murn.plot()

Alternatively the user can access the aggregated calculation results directly from the Mur-
naghan job object and plot them in a custom routine. For reusing the plotting function
defined in the previous section, the collection of the simulation supercell volume and the
extraction of the last energy is replaced with the following lines.

# Collect the energy volume pairs

vol, eng = murn["output/volume" ], murn["output/energy" ]

This demonstrates how specific job objects can simplify the development of complex simu-
lation protocols by providing a set of default parameters, commonly used functionality like
the rescaling of the simulation cell and finally the technical utilities to handle the parallel
execution of the calculations. These job types which include multiple job objects are called
meta jobs and they are used to define standardised building blocks to construct complex
simulation protocols. Following the methodology of the pyiron IDE, the meta job objects
behave just like regular job objects. This enables nesting multiple meta jobs to construct
pipelines and even more complex simulation protocols. These simulation pipleines are in-
troduced in Sec. A.3.

A.2 Interactive Calculation

By default the pyiron IDE communicates with the simulation codes by writing the code-
specific input files, executing the simulation code and afterwards parsing the code-specific
output files, like discussed above in the simulation life cycle in Fig. 4.1. Still, this level
of overhead is not sufficient for complex thermodynamic simulation protocols like ther-
modynamic integration, which requires coupling two simulation codes at every time step
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during the calculation of a MD trajectory. As a consequence, the pyiron IDE implements
interactive execution modes for all simulation code job objects which enables exchanging
information during the run time. In contrast to other solutions, the pyiron IDE does not
require modifying the executable of the simulation code to enable interactive coupling but
instead it supports a wide range of interactive simulation protocols and can easily be ex-
tended. Preferably, the internal interactive interface is based on Python bindings provided
by the simulation code, e.g. the one implemented for LAMMPS, which simplifies the de-
velopment of the interface. Alternatively, the pyiron IDE also supports communicating via
named pipes which is implemented in the S/PHI/nX code or via the standard process input
and output which is implemented in the VASP code. To demonstrate the advantage of
the interactive coupling the optimisation of an atomistic structure is selected. While most
simulation codes provide internal minimisation routines and external minimizer helps to
compare the different simulation codes. In this case the simulation code is just used as a
atomistic engine, which calculates the energy and forces for a given structure. Starting with
the import of the optimiser class of the scientific Python library [12] and the import of the
pyiron project class:

# Import the scipy optimize module and pyiron

from scipy import optimize

from pyiron import Project

The pyiron project class is then used to create a new pyiron project object:

# Create Project

pr = Project("interactive" )

Inside the project object a cubic aluminium structure is created using experimental param-
eters for the lattice constant. This structure contains a total of four atoms. So the first
atom is displaced by 0.01 �A in x-direction, by adding the displacement to the position of
the atomistic structure object.

# Create structure

structure = pr.create.structure.ase.bulk("Al" , cubic=True)

structure.positions[0,0] += 0.01

Following the creation of the structure object, a LAMMPS job object is created and the
aluminium structure object is assigned. In analogy to the previous LAMMPS calculation the
interatomic potential is selected automatically from the internal database. These settings
are analogue to the configuration of the non-interactive calculation in the previous section.
To enable the interactive execution on the run mode of the server object needs to be set to
interactive job.server.run_mode.interactive.

# Create Lammps job object

job = pr.create.job.Lammps(

job_name="lmp_interactive"

)

job.structure = structure
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# Set run mode interactive

job.server.run_mode.interactive = True

For the user switching from the file based interface to the Python bindings is reduced to
changing a single variable, just like switching from in-line execution to executing the calcu-
lation in the background in Sec. 4.3.4. This principle of reducing complex technical changes
of the simulation protocol to the change of a single variable enables rapid prototyping in
the pyiron IDE. To connect the pyiron job to the scipy minimizer a function to calculate
the total energy for a given set of coordinates x is defined. Internally the function assigns
the updated coordinates to the structure object of the job object and calls the run function
of the job object run(). Afterwards these updated coordinates are communicated to the
simulation codes and the object is updated internally. Finally, the function returns the total
energy of the job object.

# Get energy for positions

def get_energy(x):

job.structure.positions = x.reshape(-1, 3)

job.run()

return job.output.energy_pot[-1]

The transformation of the coordinates is required to be compatible to the multi-dimensional
minimization function of the scientific library. The function for conjugate gradient based
minimization fmin_cg() can access the pyiron job object using the function to calculate
the energy get_energy() defined above.

# Use scipy optimise

_ = optimize.fmin_cg(

x0=job.structure.positions.flatten(),

f=get_energy,

)

Being able to couple simulation codes with existing python libraries interactively by reusing
the same objects used for static calculations previously demonstrates the flexibility of the
pyiron IDE. For the given calculation the output of the minimisation is ignored and instead
the job object is analysed separately in the following. However before the analysis it is
recommended to close the interactive interface to stop the execution of the simulation
code.

# Close interative calculation

job.interactive_close()

After stopping the execution of the simulation code, the change in total energy is inspected
by comparing the first and the last total energy calculated. While the change in total energy
is small, this example demonstrates the flexibility of the interactive interface implemented
in the pyiron IDE.

# Compare first and last total energy

job['output/generic/energy_tot' ][0]
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>>> -13.439

job['output/generic/energy_tot' ][-1]

>>> -13.440

Again it is possible to switch the simulation protocol from the interatomic potential sim-
ulation code LAMMPS to the DFT simulation code S/PHI/nX by just changing the job
type in the create job function create.job(). In the same way the pyiron IDE provides
wrapper classes for the optimisers implemented in the Python scientific library as well as
other wrapper classes which can be used in combination with the interactive simulation
jobs.

# Use Scipy Minimizer object

minim = job.create.job.ScipyMinimizer(

job_name='mini_lmp' )

minim.run()

In comparison to the previous example the Minimizer meta job object behaves like the
Murnaghan job object from Sec. A.1. Just like the Murnaghan job object it is created
from the existing reference job object, so the reference job is automatically assigned. When
calling the run function of the Minimizer object run() it internally couples the Minimizer
of the scientific library with the interactive simulation code object and closes the interactive
simulation code object after the successful minimization. Again the strength of the pyiron
IDE is abstracting the technical complexity and focusing on the physics implemented in the
simulation protocol, using building blocks the user is already familiar with.

A.3 Calculation Pipelines

Combining both the meta job objects and the interactive execution of the job objects even
more complex calculation pipelines can be constructed. These calculation pipelines consist
of a series of job objects and meta job objects and are executed as one joint simulation
protocol by calling the run method run() of the top-level meta job object. In contrast
to simulation protocols defined in Jupyter notebooks which can be reused using the script
job objects, simulation protocols defined in pipelines form a more modular structure at
the cost of a more complex implementation of the individual building blocks. Typical use
cases for calculation pipelines are high-throughput parameter studies of a large number of
individual calculations with a fixed dependence. The detailed implementation of a custom
job class inside the pyiron IDE is demonstrated in the next section. For this section the
focus is on combining existing meta job objects to construct calculation pipelines. While
in principle the same pipeline could be constructed without using the interactive execution,
in practice the interactive execution commonly accelerates the calculation by reducing the
communication overhead in particular when using Python bindings. The quasi-harmonic
approximation for a fcc aluminium structure is selected as an example. This includes three
steps: first the minimization of the structure, followed by the calculation of an energy
volume curve around the optimised volume of the minimisation and finally the calculation
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of the phonon spectrum at each strain of the energy-volume curve calculation. Again, the
new Jupyter notebook is started with the import of the pyiron project class.

# Import pyiron

from pyiron import Project

After the import of the project class the individual steps of the pipeline are defined as
separate functions, so they can be combined later on. Each function takes a job object as
an input and uses the copy to function copy_to() to duplicate the job object as a template
for the internal calculations. In the first step, the minimisation the job object is copied
and afterwards the minimisation function of the job object calc_minimize() is called with
the additional parameter pressure=0 to optimise the simulation lattice with respect to
the external pressure of 0 bar. At the end of the first function the resulting job object is
returned without executing it.

# Define Calculation Functions

# 1. Step: Minimize Structure

def calc_minimize(job):

job_mini = job.copy_to(

new_job_name=job.job_name + '_mini'

)

job_mini.calc_minimize(pressure=0)

return job_mini

The job names of the individual jobs are constructed by adding a suffix to the job name of
the initial job object. The suffix of the minimisation is '_mini' . In analogy the suffix for
the second step the calculation of the energy-volume curve with the Murnaghan meta job
object it '_murn' . In the second step the create job function create.job() function of the
job object is used to create the meta job object which includes the job object. At the end
of the function the Murnaghan meta job object is returned.

# 2. Step: Calculate Energy-Volume Curve

def calc_murnaghan(job):

job_murn = job.copy_to(

new_job_name=job.job_name + '_murn_lmp'

)

return job_murn.create.job.Murnaghan(

job_name=job.job_name + '_murn'

)

In the third and final step the function name includes the for each structure suffix in the
function name for_each_structure which inside the pyiron pipelines corresponds to a
many-to-many relationship. While all other functions are interpreted as a one-to-one re-
lationship. Inside the function the job object is again copied, used to create the meta job
object, for calculating the phonons, the phonopy job PhonopyJob and afterwards the meta
job object is nested in another meta job object, which maps it to a list of structures, the
structure list master meta job StructureListMaster. While these meta job objects have
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not been introduced previously their implementation is analogue to the calculation of the
energy-volume curve with the Murnaghan meta job object. The phonopy job PhonopyJob

calculates the phonons for a given structure with the phonopy thermodyanmics toolkit [136]
and the structure list master StructureListMaster rather than receiving a single atom-
istic structure as input receives a list of atomistic structures and evaluates each of them
with its reference job. In this case for each atomistic structure which is assigned to the
structure list master a separate phonon calculation is executed. The structure list master
StructureListMaster can also be used to calculate energy-volume curves with a list of
strained structures being required rather than a single structure.

# 3. Step: Calculate Phonons in Quasi-harmonic Approximation

def calc_phonons_for_each_structure(job):

job_phono = job.copy_to(

new_job_name=job.job_name + '_phono_lmp'

)

phono = job_phono.create_job(

job_type=pr.job_type.PhonopyJob,

job_name=job.job_name + '_phono'

)

return phono.create_job(

job_type=pr.job_type.StructureListMaster,

job_name='struct_master'

)

After the definition of these functions, the project object is created. While in principle it is
possible to define the functions later, in practice defining the functions in the beginning of
the simulation protocol prevents accidentally overwriting existing functions and simplifies
the migration of the functions from the simulation protocol to an external Python module.
Such a module can then be reused in multiple simulation protocols, which again simplifies
the up-scaling of an existing simulation protocol.

# Create Project

pr = Project('calculation' )

Rather than choosing the default interatomic potential, the potential as well as the element
are defined as variables to modify them later. Here, the interatomic potential for nickel
aluminium alloys [55] is selected and aluminium is selected as atomic species.

# Parameter

potential = "2004--Mishin-Y--Ni-Al--LAMMPS--ipr1"

element = "Al"

Also following the previous example the FCC aluminium structure object with a cubic
supercell is created using experimental lattice parameters.

# Structure

structure = pr.create_ase_bulk(element, cubic=True)
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Following the structure object the LAMMPS job object is created as a template for all
calculations in the pipeline. All calculations are going to use exactly the same parameters
to produce coherent results. Still, it is also possible to modify the job object in the individual
calculation steps, even though it is not recommended. Afterwards the structure object and
the interatomic potential are assigned to the job object.

# Job Template

job = pr.create_job(

job_type=pr.job_type.Lammps,

job_name="lmp"

)

job.structure = structure

job.potential = potential

job.server.run_mode.interactive = True

In addition the interactive interface is enabled by switching the run mode of the server object
to accelerate the calculation and the job object is combined with the functions defined above
using the create pipeline function create_pipeline() of the job object. It connects the
individual functions and constructs the simulation pipeline.

# Construct Pipeline

job_lst_master = job.create_pipeline(

step_lst=[

calc_minimize,

calc_murnaghan,

calc_phonons_for_each_structure,

]

)

Finally the pipeline is executed by calling the run function run() just like any other job
and meta job object. In this example the simulation pipeline is executed directly in-line.
In practice it would be submitted to the job scheduler of a HPC cluster. It again benefits
from the parallel execution implemented at the core of the meta job objects.

# Execute Pipeline

job_lst_master.run()

With the option to start with rapid prototyping by interactively developing a simulation
protocol and then being able to up-scale the same simulation protocol using the same
framework by only slightly modifying the simulation protocol is one of the core features
of the pyiron IDE. It is enabled by implementing a set of object derived from the same
class, the pyiron objects. So the users can extend and accelerate their simulation protocols
depending on their needs.
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A.4 Extendability

To address the expert users who either develop their own simulation codes or want to use
the pyiron IDE with simulation codes which are currently not yet implemented in the pyiron
IDE, the implementation of custom classes is simplified. In this example a simple job object
is created which copies the input from the input file to the output file. Again a new jupyter
notebook is used to develop this example and test it. Afterwards, the migration of the
newly implemented class to a separate module is explained and it is shown how to make it
accessible within the pyiron IDE. Given the simplicity of the task – copying data from the
input to the output – the job template class TemplateJob is used to derive the new class.
This new class includes an input object, an executable object, a server object and the pyiron
data storage interface which is already configured to store the input automatically. For more
complex classes the advanced user is referred to the pyiron website and the implementation
of the simulation codes LAMMPS, VASP and S/PHI/nX which are already included in the
pyiron IDE.

# Import Template Class

from pyiron.base.job.template import TemplateJob

In the first implementation a file-based interface is developed. For this two main functions
are implemented, one to write the input files write_input() and one to collect the output
collect_output(). The write input function just calls write input on the single input
object defined for this class. In a more complex example the write input function could also
include consistency checks for the input values or write multiple input objects. Following
the writing of the input, the executable is executed in the same directory. In this example
this calls a shell script to copy the input to the output file. Again, the executable interface
is extendable and can link to a shell script in the pyiron resources directory. Finally, the
collect output function opens the output file, extracts the value copied from the input file
and stores it in the HDF5 file.

# Create Custom Job Class

class ToyJob(TemplateJob):

def __init__(self, project, job_name):

super(ToyJob, self).__init__(project, job_name)

self.input['input_energy' ] = 100

# Copy input to output in a shell script

self.executable = "cat input > output"

# Write Input Files

def write_input(self):

self.input.write_file(

file_name="input" ,

cwd=self.working_directory

)
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# Collect Output Files

def collect_output(self):

file = join(self.working_directory, "output" )

with open(file) as f:

line = f.readlines()[0]

energy = float(line.split()[1])

with self.project_hdf5.open("output/generic" ) as h5out:

h5out["energy_tot" ] = energy

With this very fundamental definition of a job class and this job class can already be used
in the same notebook. In this example pyiron is imported, a project and a job object are
created, the input of the job object is printed, the execution is triggered and finally the
output stored in the pyiron data storage is printed.

from pyiron import Project

pr = Project('toyclass' )

job = pr.create_job(

job_type=ToyJob,

job_name="toy"

)

print(job.input)

>>> " Parameter Value"

>>> "0 input_energy 100"

job.run()

>>> "The job toy was saved and received the ID: 10"

job['output/generic/energy_tot' ]

>>> "100.0"

In contrast to the previous examples in the create job function create.job() is called
directly with the job class defined as an additional job type parameter job_type. This is
enabled by deriving the job class from the job template class TemplateJob. Encapsulating
custom classes inside pyiron job classes helps to structure the simulation protocols and
provides direct access to the job management system implemented inside the pyiron IDE.
Commonly these custom classes are also used to wrap Python functions which require
submission to the job scheduler of an HPC cluster. For such a pure Python class it is not
efficient to communicate via the file-based interface. Instead of this, the python only job
flag self._python_only_job = True is set and the run static function run_static() is
defined, which executes the calculation and stores the results in the HDF5 file without the
need to write input files and collect output files.

# Create Custom Job Class

class ToyJob(TemplateJob):

def __init__(self, project, job_name):

super(ToyJob, self).__init__(project, job_name)

self.input['input_energy' ] = 100

self._python_only_job = True
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# This function is executed

def run_static(self):

with self.project_hdf5.open("output/generic" ) as h5out:

h5out["energy_tot" ] = self.input["input_energy" ]

self.status.finished = True

In analogy to the previous example above the input values are simply copied to the output.
Finally, to integrate a custom class in the pyiron simulation protocol and have it listed in
the job type list of the project object pr.job_type the newly developed class is moved to
a separate module. In this example a folder named toy is created and the class definition
is placed in a Python file inside this folder "toy/toy.py" . Besides the Python file, the
python module file "__init__.py" is added with the following two lines:

from pyiron.base.job.jobtype import JOB_CLASS_DICT

JOB_CLASS_DICT['ToyJob' ] = 'toy.toy'

These lines import the job type definition from the pyiron base class and extend it by adding
the newly developed job class. This capability of being able to add new job classes inside
the pyiron IDE following the same workflow used for developing simulation protocols, helps
the users of the pyiron to evolve to developers who actively contribute to the development of
the pyiron IDE. The users of the pyiron IDE start by writing simple simulation protocols,
executing one command at a time, then they summarise commonly used commands in
functions, these functions grow to modules and finally they create their own job classes
based on these functions to systematically up-scale their workflow. With this standardised
process the pyiron IDE goes beyond of just publishing existing simulation workflows, because
it enables the users to define higher level interfaces for those who want to reuse an existing
simulation protocol as a building block for a more complex simulation protocols.

A.5 List of Abbreviations

Abbreviation Description

ASE Atomic Simulation Environment
BCC Body-Centered Cubic
CALPHAD CALculation of PHAse Diagrams
CNA Common Neighbour Analysis
DFT Density Functional Theory
DOS Density of States
EAM Embedded Atom Method
EOS Equation of State
ESPEI Extensible Self-optimizing Phase Equilibria Infrastructure

Table A.1: List of Abbreviations (A-E)
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Abbreviation Description

FAIR Findable Accessible Interoperable Reusable
FCC Face-Centered Cubic
FFT Fast Fourier Transform
GGA Generalized Gradient Approximation
GUI Graphical User Interface
GW Greens Function and the screened Coulomb Interaction
HCP Hexagonal Close-Packed
HDF5 Hierarchical Data Format version 5
HPC High-Performance Computing
IDE Integrated Development Environment
KIM Knowledge base of Interatomic Models
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
LAPW+lo Linearized Augmented Plane Wave plus Local Orbital
LDA Local-Density Approximation
MD Molecular Dynamics
MEAM Modified Embedded Atom Method
MPI Message Passing Interface
NIST National Institute of Standards and Technology
NPH Isoenthalpic-Isobaric Ensemble
NPT Isothermal-Isobaric Ensemble
NVE Microcanonical Ensemble
NVT Canconical Ensemble
PAW Projector Augmented Wave Function
PBE Perdew-Burke-Ernzerhof
PDUQ Phase Diagram Uncertainty Quantification
PSE Potential Energy Surface
SQL Structured Query Language
SQS Special Quasi-random Structures
SVD Singular Value Decomposition
TILD Thermodynamic Integration using Langevin Dynamics
TOR-TILD Two-Optimized References TILD
TU-TILD Two-stage Upsampled TILD
UP-TILD Upsampled TILD
VASP Vienna Ab initio Simulation Package
µVT Grandcanconical Ensemble

Table A.2: List of Abbreviations (F-Z)
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Computational Materials Science 187, 110065 (2021).

[190] B.-J. Lee, W.-S. Ko, H.-K. Kim, and E.-H. Kim, Calphad 34, 510–522 (2010).

[191] E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila, and H. Jónsson, Computer
Physics Communications 205, 13–21 (2016).

[192] E. Wigner and F. Seitz, Phys. Rev. 43, 804–810 (1933).

[193] K. Ozaki, S. Fukutani, and K. Honda, JSME International Journal Series A Solid
Mechanics and Material Engineering 44, 199–206 (2001).

[194] G. P. P. Pun and Y. Mishin, Phys. Rev. B 95, 224103 (2017).

[195] J. Lian, S.-W. Lee, L. Valdevit, M. I. Baskes, and J. R. Greer, Scripta Materialia 68,
261–264 (2013).

[196] A. P. Sutton and J. Chen, Philosophical Magazine Letters 61, 139–146 (1990).
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