
Automating Network Resource Allocation
for Coflows with Deadlines

by
Asif Hasnain

Submitted to the
Electrical Engineering, Computer Science, and Mathematics
in partial fulfillment of the requirements for the degree of

Doctor rerum naturalium (Dr. rer. nat.)
at the

Paderborn University
September 2021



Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Asif Hasnain
Electrical Engineering, Computer Science, and Mathematics

Thesis Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prof. Dr. Holger Karl
Electrical Engineering, Computer Science, and Mathematics

Second Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prof. Dr. Friedhelm Meyer auf der Heide
Electrical Engineering, Computer Science, and Mathematics

ii



Abstract

The coflow abstraction is used for specifying network resource requirements
of data-parallel applications. It represents correlated flows in data flow mod-
els like MapReduce and partition-aggregate. In this dissertation, I mainly
demonstrate that hand-crafted online coflow schedulers — to allocate data
rates to correlated flows — can be replaced with a reinforcement learn-
ing (RL) based coflow scheduler to automate network resource allocation
of coflows for data-parallel applications. Specifically, an RL-based coflow
scheduler learns scheduling policies to optimize for a high-level perfor-
mance objective of coflows, for example, maximize coflow admissions while
meeting their deadlines.

In this dissertation, I have made three main contributions: I first present
a new coflow heuristic that leverages released network resources of active
coflows finishing before the deadline of a new coflow request. I then show
that flow or coflow heuristics, in general, are prone to under-perform in
maximizing (co)flow admissions because of stochastic flow or coflow arrivals
in data traffic. Next, I demonstrate that an online flow scheduler can learn
a scheduling policy to maximize flow admissions using reinforcement
learning. Finally, I show how a coflow scheduler can learn policies in the
presence of stochastic coflow arrivals to maximize coflow admissions while
meeting their deadlines.

iii





Kurzfassung

Die Coflow-Abstraktion wird zur Spezifikation der Netzressourcenanforder-
ungen von datenparallelen Anwendungen verwendet. Sie repräsentiert
korrelierte Flüsse in Datenflussmodellen wie MapReduce oder Partition-
Aggregate. In dieser Dissertation zeige ich, dass manuell entworfene Online-
Coflow-Scheduler zur Zuweisung von Datenraten an solche Flüsse durch
einen auf Reinforcement Learning (RL) basierenden Coflow-Scheduler er-
setzt werden können. Dies automatisiert die Zuweisung von Netzressourcen
an Coflows über den Entwurf eines Verfahrens hinaus. Konkret lernt ein
RL-basierter Coflow-Scheduler Planungsrichtlinien, um ein Leistungsziel
von Coflows zu optimieren, z. B. die Maximierung der Coflow-Zulassungen
bei gleichzeitiger Einhaltung ihrer Fristen.

In dieser Dissertation habe ich drei Hauptbeiträge geleistet: Zunächst stelle
ich eine neue Coflow-Heuristik vor, die freigegebene Netzressourcen von
Coflows nutzt, die vor Fristablauf einer anderen Coflow-Anforderung enden
und diese an andere, ggf. neue Coflows zuweist. Dann zeige ich, dass Flow-
oder Coflow-Heuristiken im Allgemeinen dazu neigen, bei der Maximierung
der (Co)Flow-Zulassungen schlecht abzuschneiden, wenn im Datenverkehr
stochastische Flows oder Coflows ankommen. Als Nächstes zeige ich, dass
ein Online-Flow-Scheduler mit Hilfe von Reinforcement Learning eine
Scheduling-Politik zur Maximierung der Flow-Zulassungen erlernen kann.
Schließlich zeige ich, wie ein Coflow-Scheduler bei stochastischen Coflow-
Ankünften Strategien erlernen kann, um die Coflow-Zulassungen zu max-
imieren und gleichzeitig ihre Fristen einhalten.

v





Acknowledgements

I would like to thank my advisor Prof. Dr. Holger Karl first for giving me
the opportunity for which I will always remain indebted to you. This dis-
sertation would not be possible without your advice, faith, and continuous
support throughout my research work. I thoroughly enjoyed and learnt
from our discussions on different research ideas.

I am profoundly grateful to Prof. Dr. Friedhelm Meyer auf der Heide for pro-
viding feedback on my thesis. I also want to thank my supportive colleagues
at Paderborn University: Musa, Haitham, and Stefan. I am especially thank-
ful to Musa and Haitham for having discussions and providing me with
feedback on my papers. Likewise, I am grateful to the German Research
Foundation (DFG) for supporting my research through the Collaborative
Research Center “On-The-Fly Computing" (SFB 901).

Most importanly, I would like to express my gratitude towards for my
parents, Asia and Ghulam, my wife, Annam, my children, Ibrahim and
Fajr, my sisters and brothers-in-law for their continuous support and love.
I am especially indebted to my parents for their unconditional love and
motivation: thank you for believing in me.

vii





Previously Published Papers

Chapter 3 revises the published paper [37]: A. Hasnain and H. Karl. Coflow
scheduling with performance guarantees for data center applications. In
2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), pages 850–856, 2020

Chapter 4 revises the published paper [39]: Asif Hasnain and Holger Karl.
Learning flow scheduling. In 2021 IEEE 18th Annual Consumer Communica-
tions Networking Conference (CCNC), pages 1–6, 2021

Chapter 5 revises the published paper [38]: Asif Hasnain and Holger Karl.
Learning coflow admissions. In IEEE INFOCOM 2021 - IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), pages 1–6,
2021

ix





Contents

Acknowledgements viii

Previously Published Papers x

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Coflows as an Abstraction in Networks . . . . . . . . . . . . . 3

1.2 Identified Problems and Contribution . . . . . . . . . . . . . . 3

2 Background and Related Work 7

2.1 Performance Objectives for Coflow Schedulers . . . . . . . . . 8

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Markov Decision Process . . . . . . . . . . . . . . . . . 9

2.2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . 11

2.2.3 Reinforcement Learning for Networking . . . . . . . . 12

2.3 Practical Challenges . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Coflow Scheduling for time-sensitive applications 17

3.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Model definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Motivating Example . . . . . . . . . . . . . . . . . . . . 20

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Optimization problem formulation . . . . . . . . . . . . . . . . 23

3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.3 Decision variables . . . . . . . . . . . . . . . . . . . . . 24

xi



3.4.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.5 Objective functions . . . . . . . . . . . . . . . . . . . . . 25

3.5 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Work-Conserving Resource Allocation . . . . . . . . . . . . . . 27

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . 31

3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Learning Flow Scheduling 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Model definition . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 RL model . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Training algorithm . . . . . . . . . . . . . . . . . . . . . 48

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . 52

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Learning Coflow Admissions 61

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Application Model . . . . . . . . . . . . . . . . . . . . . 65

5.3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Design & Implementation . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 RL model . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.2 Training Algorithm . . . . . . . . . . . . . . . . . . . . . 69

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 71

5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . 74

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusion 79

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xii



References 81

xiii





List of Figures

1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xv



5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xvi



List of Tables

2.1 Notation for coflow and system model . . . . . . . . . . . . . 10

3.1 Percentage of admitted coflows by OLP and NH more than
Varys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Competing flows on a link . . . . . . . . . . . . . . . . . . . . . 39

4.2 Notation for flow and system model . . . . . . . . . . . . . . . 43

4.3 Notation for learning model . . . . . . . . . . . . . . . . . . . . 44

5.1 Notation for learning model . . . . . . . . . . . . . . . . . . . . 66

xvii





Chapter 1

Introduction

Data-parallel applications run large-scale data processing on cluster of
machines in a compute center, where huge volumes of data are generated
and stored. Since multiple machines are involved in parallel data processing,
common tasks of an application trigger different data flows between groups
of machines; for example, shuffle in MapReduce [25, 24, 1] or the partition-
aggregate model [19, 5], as shown in Fig. 1.1 and Fig. 1.2, respectively.
In addition, data-parallel applications have data flows without explicit
barriers (for example, in Dryad [44]); data flows with cycles (for example, in
Spark [111]); and Bulk Synchronous Parallel data flow models (for example,
in Pregel [66]) that do create barriers.

In this dissertation, I mainly consider the partition-aggregate model because
the model is usually associated with the performance objective to meet strict
deadlines, which is quite important in time-sensitive, interactive applica-
tions [119, 118, 18, 34, 47, 77, 120, 6, 23, 28, 96, 26] offered by companies like
Amazon and Google. The model as such is used, for example, in a backend
query of a search engine or news feeds of a social network. Specifically,
the query is partitioned into multiple sub-queries for processing data on
different worker machines and their result (from workers) is timely aggre-
gated back to a frontend server. The aggregation task here creates multiple
correlated flows between groups of machines.

However, despite rapid innovations [32, 14, 39] by network reseachers to
minimize flow completion times based on the flow abstraction, the goal
of optimizing individual flows differs from that of jointly optimizating
correlated flows of data-parallel applications because data-parallel appli-
cations only care about the completion of correlated flows in one or more

1



ReducersMappers Shuffle

Figure 1.1: MapReduce [25] data model

workers

aggregators

partitioner/ aggregator

Figure 1.2: Partition-aggregate [19] data model

2



communication stages [86, 92]. Therefore, data-parallel applications should
be able to specify such diverse network resource requirements to networks.
In literature, one way to explicitly specify such resource requirements is the
coflow network abstraction [19], which enables application-aware network
resource allocation.

1.1 Coflows as an Abstraction in Networks

A coflow [19] represents correlated flows in data models between groups of
machines during different computation stages [56, 86, 92]. A communication
stage is considered complete once all flows within a coflow have finished their data
transimission. Since the network performance of data-parallel applications
depends on completion of all flows within a coflow, these flows are op-
timized together for a common performance objective. For example, the
coflow scheduler — to allocate network resources like data rate to corre-
lated flows — minimizes average coflow completion times (CCTs) for shuffle
in MapReduce [25, 24, 1] or meets strict coflow deadlines in the partition-
aggregate model [19, 5]. In this dissertation, I present different approaches
to optimize coflow scheduling for maximizing coflow admissions while meeting
their deadlines.

1.2 Identified Problems and Contribution

This thesis primarily explores the use of reinforcement learning (RL) to
automate network resource management for coflows of data-parallel applications.
My approaches leverage the coflow abstraction to optimize a common
performace objective of correlated flows. In this thesis, I mainly present
a new coflow heuristic and RL-based flow and coflow schedulers — to
learn desired scheduling policies such that they make informed scheduling
decisions.

Specifically, I design a new coflow heuristic that leverages released resources
after completion of active coflows before the deadline of a new coflow
request and show that it admits more coflows while meeting their deadlines.

3



However, coflow heuristics, in general, face different challenges (Section 2.3);
for example, they are susceptible to stochastic coflow arrivals, that is, they
admit less coflows for the desired performance objective to maximize coflow
admissions while meeting their deadlines. Therefore, I further design RL-based
flow and coflow schedulers to learn scheduling policies from arrival patterns
in data traffic and show that they admit more (co)flows while meeting their
deadlines in the presence of shochastic data traffic.

One of key advantages of the RL-based coflow scheduler, namely learning
coflow scheduling (LCS) in Chapter 5, is that it does not require hand-
crafted features as input and it automatically learns coflow scheduling
policies without human instruction beyond a high-level specification of a
performance objective. In addition, LCS scheduler has a flexible design that
enables us to reformulate the reward function and retrain the scheduling
agent for a different performance objective. For example, LCS can learn
to minimize average CCT instead of maximizing coflow admissions. Even
though in this thesis I focus on only one performance objective, our RL-based
(co)flow scheduling techniques are applicable to different performance
objectives as well as information-agnostic coflow schedulers.

In the next Chapter 2, I will elaborate the background, related work, and
technical challenges of coflow scheduling in detail. In the following para-
graphs, I highlight the research contributions in chronological order of their
publication. The following Chapters 3, 4, and 5 are based on these published
papers and contain verbatim content from them. Even though I am the main
author of these papers, I use terms like “we" and “our" in these chapters
of the thesis to indicate that the presented results are joint work with my
colleagues. In Chapter 6, I then conclude my thesis and describe future
research directions in network resource allocation.

Heuristic to Meet Coflow Deadlines: A. Hasnain and H. Karl. Coflow
scheduling with performance guarantees for data center applications. In
2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), pages 850–856, 2020

This thesis first presents a new heuristic to maximize coflow admissions
while meeting their deadlines. The primary challenge for the heuristic is to
identify key features in network data traffic for higher coflow admissions.
To overcome this challenge, our key insight is to leverage released resources

4



on completion of active coflows before the deadline of a new coflow request.
This insight enables us to admit more coflows. In Chapter 3, we demonstrate
a motivating example and further elaborate on both the heuristic and the
online linear program. In addition, we show that these algorithms admit
more coflows than the competing heuristic Varys [22] through large-scale
trace-driven simulation on production traces.
Learning Flow Scheduling: Asif Hasnain and Holger Karl. Learning flow
scheduling. In 2021 IEEE 18th Annual Consumer Communications Networking
Conference (CCNC), pages 1–6, 2021

This dissertation then demonstrates the usage of deep reinforcement learn-
ing (DRL) to learn network scheduling policies for diverse workloads. In
Chapter 4, we present a new flow scheduler, namely learning flow schedul-
ing (LFS), which learns to make decisions. The key challenge in designing
LFS is that stochastic flow arrivals make it difficult for the flow scheduling
agent to optimize the desired performance objective. In our proposed ap-
proach, the LFS scheduler leverages a new training algorithm to perform
end-to-end training on different network states and learns a flow scheduling
policy through the formulated reward function. We further show in Chap-
ter 4 that the LFS scheduler admits more coflows than greedy heuristics
under varying network load.
Learning Coflow Admissions: Asif Hasnain and Holger Karl. Learning
coflow admissions. In IEEE INFOCOM 2021 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 1–6, 2021

Finally, this dissertation demonstrates that RL-based flow scheduling (which
is discussed in Chapter 4) can be generalized to the big-switch network
model with coflows. Specifically, we propose a new coflow scheduler, namely
learning coflow admissions (LCS), to maximize coflow admissions while meeting
their deadlines in Chapter 5. The key challenges in designing LCS are formula-
tion of a reward function and learning scheduling policies on stochastic data
traffic. To overcome the first challenge, we formulate the reward function on
key features of network states, that is, CCTs and number of active coflows.
The second challenge is addressed by using a separate baseline [101] for
every set of coflow arrival sequences to reduce variance in policy gradient
from learning on different coflow arrival sequences. Chapter 5 further elabo-
rates the reward function and the training algorithm. It also shows that LCS
learns a reasonable scheduling policy to admit higher number of coflows
than the Varys heuristic [22] while meeting their deadlines.

5





Chapter 2

Background and Related Work

The last two decades have seen rapid growth of cluster computating systems
(for instance, Hadoop [25, 1], Spark [112], and Storm [93]) to process massive
amount of data generated by data-parallel applications. These systems often
exhibit different communication patterns (for example, MapReduce [25, 1]
and partition-aggregate [5, 19]), which are depicted by the coflow abstrac-
tion [19, 21] to optimize for common performance objectives of correlated
flows.

In literature, the coflow abstraction has been readily used for improving net-
work performance of data-parallel applications. Specifically, multiple coflow
heuristics [109, 59, 117, 108, 98, 45, 63, 116, 16, 22, 21] are proposed to opti-
mize for different performance objectives of coflows. However, these coflow
heuristics face diverse technical challenges (Section 2.3), which degrades
their overall performance.

The research work presented in this dissertation builds on the past literature
and addresses these technical challenges, which are further elaborated
in the remainder of the chapter. Specifically, the past literature on coflow
scheduling for different performance objectives is presented in Section 2.1. In
Section 2.2, I then discuss Markov decision process, reinforcement learning,
and their usage in automating network resource allocation of (co)flows for data-
parallel applications. In last Section 2.3, I conclude the chapter with the
discussion on new technical challenges for coflow scheduling.

7



2.1 Performance Objectives for Coflow Schedulers

Minimize Average Coflow Completion Times: This performance objective
is common for efficient resource allocation of throughput-sensitive applica-
tions [25, 44, 24], which need to finish data transmission as soon as possible.
In literature, some papers [17, 3, 84, 57] proposed optimization algorithms
to minimize average CCT while other papers [59, 117, 98, 45, 116, 16, 22, 21]
proposed, more practical, heuristics to improve network performance of
data-parallel applications. For example, Sincronia [3] optimizes for aver-
age CCT by employing the primal-dual method while the Stretch [17]
algorithm achieved 2-approximation. In heuristics, Varys [22] employed
shortest-effective-bottleneck-first (SEBF) heuristic to efficiently reduce the
average CCT. Later, RAPIER [116] considered coflow routing and schedul-
ing simulataneously to minimize the average CCT. Recently, Swallow [117]
compresses network traffic to further reduce average CCT than Varys [22].
In addition, Aalo [16] minimized average CCT without prior knowledge
of coflows. Specifically, it separated coflows into multiple priority queues
and demoted them from the highest priority queue to lower priority queues
when coflows sent more data than the pre-defined threshold queue values.
However, Aalo [16] allocates excessive resources to non-bottleneck flows,
which leads to wastage of resources and impacts average CCT. Fai [59]
addressed this problem by identifying the bottleneck flow in a coflow and
limiting data rate of non-bottleneck flows to the data rate of the bottleneck
flow.
Meet Coflow Deadlines: In this performance objective, a coflow comple-
tion is only useful when all of its constituent flows have finished their data
transmission within its deadlines. This performance objective is desired for
predictable coflow completions for data models like partition-aggregate of
time-sensitive applications [119, 118, 34, 47, 77, 120, 6, 23, 96, 26]. Varys [22]
was the first coflow scheduler to maximize coflow admissions while meet-
ing their deadlines and guaranteed coflow completions. Soon afterwards,
Chronos [63] combined priority scheduling with limited multiplexing to
meet coflow deadlines while mixCoflow [109] reduced footprint of net-
work resources used by deadline coflows. In contrast, our heuristic [37] (in
Chapter 3) utilizes released resources on CCTs of active coflows before the
deadline of a new coflow request and successfully admits more coflows

8



than Varys [22].

However, coflow heuristics are suspectible to stochastic coflow arrivals
(Section 2.3) in different network states, which make it difficult for hand-
crafted heuristics to make optimal scheduling decisions. Therefore, in
this dissertation, we solve the coflow scheduling problem using reinforce-
ment learning [91, 51] in which a coflow scheduler directly learns coflow
scheduling policies for the specified, high-level performance objective. In
the next section, we first formulate the coflow scheduling problem as
a Markov decision process (MDP) and then discuss the proposed ap-
proaches [15, 61, 90, 97, 89, 14] to solve the problem using reinforcement
learning.

2.2 Machine Learning

2.2.1 Markov Decision Process

Coflow scheduling is a sequential decision process in which scheduling
decisions (that is, actions) impact not just the immediate reward from the
network environment but also the future network states and their rewards.
Therefore, the problem is formulated as a discrete-time Markov decision
process (MDP). In MDP, the coflow scheduling agent directly interacts with
the network environment at discrete timesteps te, where te is the time of
the coflow scheduling event e ∈ [1, · · · , E] (see notation in Table 2.1 and
Table 5.1). At each timestep te, the coflow scheduling agent takes an action ae
in network state se. For every action ae, the network environment produces
a reward Re and transitions to the next network state se+1. The successive
coflow scheduling decisions form a sequence or trajectory j ∈ [1, · · · , N] of
state sj

e, action aj
e, and reward Rj

e, where N is the total number of trajectories.
Specifically, in this dissertation, we assume that the state transition in
network environment satisfies the Markov property, that is, the current
network state se depends only on the last, preceding state se−1 and the
action ae−1 (taken in state se−1).

9



Table 2.1: Notation for coflow and system model

te Time of the coflow scheduling event e ∈ [1, · · · , E]

C Set of arrived, online coflows

C Set of admitted coflows C ⊆ C, which comprises active and
completed coflows

C̄e Set of active coflows C̄e ⊆ C at time te, not including a new
coflow arriving at te

|C̄e| ≤ u The number of concurrent, active coflows |C̄e| are limited to a
maximum value u

Fc Set of flows within a coflow c ∈ C

αc Arrival time of a coflow c ∈ C

dc Relative deadline of a coflow c ∈ C

αc + dc Absolute deadline of a coflow c ∈ C

l f A new flow f request on link l (the event e causing that new
flow will be clear from context)

f i,j
c A flow in Fc from source i to destination j

v f Total data volume of flow f

v̄ f Remaining data volume of flow f

r f Assigned data rate to flow f

Γ f Flow completion time (FCT) of completed flow f

Γc Coflow completion time (CCT) of completed coflow c

M Set of servers

Km Capacity of link that connects server m ∈ M to the non-
blocking switch

10



Time-Average Reward: Since coflow scheduling is a continuous task in
which the coflow scheduling agent has to make decisions forever without
termination, we consider the time-average reward R̄e in MDP, that is, there
is no discounting — because both immediate and delayed rewards are
important to optimize the time-average reward [91]. Therefore, the network
environment produces a differential reward Re − R̄e for every action ae in
network state se.
Differential Return: In average-reward setting, the objective of a coflow
scheduling agent is to maximize the differential return Ge over time, that is,
sum of differential rewards from state se onwards, formally, Ge = Re − R̄e +
Re+1 − R̄e+1 + · · · or limτ→∞ 1/τ ∑τ

e=0 (Re − R̄e) [91], where τ is the finite
training episode length.

2.2.2 Reinforcement Learning

To solve the formulated MDP (of the coflow scheduling problem), we
employ reinforcement learning (RL). In RL, an agent learns to take actions
through experience of interacting with the environment. Specifically, it learns
a policy πθ(ae|se) to optimize a performance objective J(θ), for example,
optimize variety of tasks in robotics [29, 83, 82, 58, 55], playing games [73],
control tasks [35, 42], or driving autonomous systems [54]. RL is different
from unsupervised learning because it optimizes a performance objective
(for example, maximize rewards through its actions) while unsupervised
learning finds hidden structures in an unlabeled dataset. Importantly, it
maximizes rewards by exploring new actions and exploiting prior experience
from interaction with the network environment.

Like other applications, the coflow scheduling agent learns a policy through
end-to-end RL training on different network states without manual fea-
ture engineering. Specifically, the coflow scheduling policy learns to map
network states to actions, for example, to admit or reject a coflow request.
Formally, the policy πθ(ae|se) is defined as the probability distribution over
actions. Since coflow scheduling is a continuous task with a large num-
ber of network states, storing these states in memory is computationally
expensive. Therefore, RL is combined with function approximators like

11



neural network [7, 36] to generalize learning from prior scheduling experi-
ence. Importantly, in this dissertation, we have developed new RL training
algorithms to successfully learn coflow scheduling policies.

2.2.3 Reinforcement Learning for Networking

Reinforcement learning (RL) has been applied to various aspects of network-
ing, for example, congestion control [49, 64, 76, 113, 106], traffic engineer-
ing [110], routing [107, 60, 95], scaling and placement of virtual network
functions (VNFs) [80, 81]. However, in this section, we only focus on RL-
based proposals for flow and coflow scheduling [15, 61, 90, 97, 89, 14].

RL for Flow scheduling: Although there are many non-RL proposals [43,
96, 105] for flow scheduling to meet their deadlines, we consider only RL
proposals (for flow scheduling) here. Recently, few papers [32, 31, 14, 98,
13] apply RL to maximize flow admissions, for example, [32] and [31]
apply DRL to calculate data rates of active coflows such that they finish
within deadline. However, the policy network outputs discrete data rates,
which can impede convergance of the scheduling policy in a large network.
In addition, it uses Q-learning [100], which is memory-intensive and not
scalable for the continuous flow scheduling task. In contrast, our LFS [39]
maximizes successful flow admissions using a modified Monte-Carlo actor
critic algorithm [104], in which the policy network is based on a scalable
neural network and it outputs a discrete action ae ∈ {0, 1} to either admit
ae = 1 or reject ae = 0 the flow request f in state se (Chapter 4). Unlike
LFS [39], AuTO [14] learns a flow scheduling policy using DRL to minimize
average FCT in a datacenter.
However, unlike coflows, these flow schedulers lack knowledge of the corre-
lated resource requirements in network, which can degrade performance of
data-parallel applications.
RL for Coflow Scheduling: In literature, DeepAalo [97] applies DRL to
coflow scheduling without prior knowledge of coflows; specifically, they
automatically adjust threshold of priority queues to minimize average CCT.
In addition, M-DRL [15] also learns demotion threshold values for multiple
priority queues per port. However, both schedulers use FIFO within priority
queues to avoid starvation of coflows but they miss the opportunity to

12



100 101 102 103 104 105 106

Flow size (KB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cache
Data mining
Hadoop
Web search

Figure 2.1: Flow Size Distributions

further reduce average CCT by first scheduling narrow coflows — which
have flows on a few ports — in the highest priority queue [45]. In contrast,
we employ DRL in LCS [38] for a different performance objective, that is,
maximize coflow admissions while meeting their deadlines. DeepWeave [90]
accelerates job scheduling using RL-based coflow scheduling, however, it
assume that the dependency information between coflows of multi-stage
jobs — which are usually depicted by directed-acyclic graph (DAG) — is
known beforehand. In contrast, we only consider single-stage, single-wave
coflows in our network model [38].

The research work presented in this dissertation builds on this literature
and desire for automating network resource allocation for time-sensitive
data-parallel applications. However, achieving this performance objective
(that is, maximize coflow admissions while meeting their deadlines to optimize
predictable coflow completion times) raises new challenges (Section 2.3), which
are addressed in this thesis.

13



2.3 Practical Challenges

Prior Knowledge: Online inter-coflow scheduling for predictable commu-
nication times is NP-hard [22] even if we have prior information about
coflows, that is, their arrival times, set of constituent flows, and their relative
deadlines are known. Therefore, many coflow heuristics [109, 63, 22] are pro-
posed for guaranteeing timely completion of successfully admitted coflow.
However, state-of-the-art Varys [22] heuristic — to meet coflow deadlines
— does not forsee and use released resources on CCTs of active coflows
before the deadline of a new coflow request. Therefore, in Chapter 3 of
this dissertation, we propose a new heuristic NH [37], which admits more
coflows than Varys [22] while still meeting their deadlines.
Stochastic Network Traffic: The impact of stochastic input process is quite
common in robotics control [29, 83, 82, 58, 55], manufacturing systems [99,
65], autonomous driving [54], and queueing systems [69, 68, 70, 67]. Simi-
larly, stochastic input process in network (that is, flow or coflow arrivals in
different network states) poses the second challenge for network resource
allocation. Specifically, the stochastic (co)flow arrivals make it difficult for
hand-crafted heuristics to make optimal scheduling decisions. For example,
the coflow heuristics Varys [22] or our NH [37] (as described in Chapter 3)
— to maximize successful coflow deadlines — are suspectible to stochastic
coflow arrivals, which usually cause head-of-line blocking for coflows, that
is, a reasonably large, admitted coflow (by either size, width, length, dead-
line, or completion time) blocks admission of upcoming smaller coflows.
Thus, it is important for coflow schedulers to learn policies from stochastic
coflow arrivals. Therefore, in this dissertation, we introduce deep reinforce-
ment learning (DRL)-based flow and coflow schedulers in Chapter 4 and
Chapter 5, respectively. These schedulers enable us to learn policies and
make informed scheduling decisions in the presence of stochastic (co)flow
arrivals in network traffic.
Unknown Flow Size Distribution: The flow size of different production
workloads [78, 5, 33] is usually drawn from an unknown distribution,
as shown in Fig. 2.1. As a result, coflow heuristics [37, 22] find it diffi-
cult to achieve the desired performance objective, that is, maximize coflow
admissions while meeting their deadlines.
Impact of Preemption: A preemptive scheduler can avoid head-of-line

14



blocking of coflows to minimize average CCT [22] but, in the worst case, it
can starve certain coflows under higher network loads. Therefore, in this
dissertation, we learn from coflow arrival patterns to reject a large coflow
(by any criteria) for smaller coflows — to avoid head-of-line blocking of
coflows — and once a coflow is admitted, it is never preempted for its
guaranteed completion within the deadline.
Varying Network Load: Since the network load may increase over time
in production networks, coflow heuristics are usually not able to adapt
to higher network loads [37]. Therefore, in this dissertation, we analyse
the impact of varying network loads and show promising results of our
heuristic [37] as well as DRL-based schedulers [38, 39].
Diverse Data Models: Since data-parallel applications have diverse resource
requirements from the network, a universal coflow scheduler (similar to the
UPS [72, 88]), is a desired solution to emulate any coflow scheduling al-
gorithm. Although there is no universal coflow scheduler yet, in Chapter 5

of the dissertation, we argue that the LCS [38] design is flexible enough
to meet different performance objectives of coflow scheduling algorithms.
For instance, the reward function to maximize successful coflow admissions
can be reformulated to, for example, minimize average CCT and then the
coflow scheduler can be retrained on the reformulated reward function
— for different resource requirements of a data model — to learn a new
scheduling policy.
Formulating the Reward Function: For a given performance objective, the
formation of a reward function is quite challenging because a naive solution
to reward (or penalize) the coflow scheduling agent, for example, +1 and
-1 on a coflow admission or rejection, respectively, can easily be impacted
by admission of a coflow with large completion time (or coflow size, width,
length, or deadline). In contrast, in this dissertation, we show that reward
functions based on key features of network states, for example, CCTs and/or
number of active coflows (in a network state), perform better than the naive
solution.
Since stochastic network traffic adds noise to rewards [70, 69], it impedes
effective training of a coflow scheduler to converge to a reasonable policy.
For example, let us assume that the coflow scheduling agent receives three
rewards 90, 100, and 107 for an action in each of the three different network
states. At first glance, it is difficult to quantify from rewards that whether
those actions are good or bad. One way [101, 67] to reduce the noise in

15



the reward is to subtract the expected, average reward in a network state.
In this example, the differential rewards (Section 2.2) -9, 1, and 8 — after
subtracting the time-average reward 99 — have lower noise. In addition,
input-dependent baseline [70] effectively reduces the noise in rewards from
stochastic network traffic.

16



Chapter 3

Coflow Scheduling for time-sensitive
applications

This chapter of the thesis is based on the revised text of our paper [37]. How-
ever, some portions of the chapter contain verbatim content, for example,
figures and tables used in that very paper:

A. Hasnain and H. Karl. Coflow scheduling with performance guarantees
for data center applications. In 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID), pages 850–856, 2020

In this chapter, we show shortcomings of the Varys [22] heuristic to meet
coflow deadlines. Specifically, we propose a new heuristic and solve an
online linear program for better coflow scheduling that admits more coflows
while meeting their deadlines.

My major contribution in this paper was to design, implement, and evaluate
the performance of both the new heuristic and the online linear program.
Firstly, I sketched a counterexample to admit more coflows for time-sensitive
applications that have to respond within certain deadlines. I then imple-
mented the coflow scheduling algorithms and evaluated their performance
through the trace-driven flow simulator. In addition, I compared results of
both algorithms with the state-of-the-art Varys heuristic on different perfor-
mance metrics, for example, percentage of successful coflow admissions.

The remainder of the chapter is organized as follows. It will first introduce
the problem in Section 3.1 and then describe the network model before
giving a motivating example in Section 3.2. In Section 3.3, we briefly talk
about the shortcomings of existing approaches. After that, the problem

17



of admission control and rate allocation is formulated as an online linear
programming problem in Section 3.4; the proposed solution finds mini-
mum required data rates to complete data transmission of coflows within
their deadlines. In addition, the proposed heuristic is described in Sec-
tion 3.5. Both these scheduling algorithms are non-work-conserving and
lead to unused resources. Therefore, the unused resources are allocated by
a post-processing algorithm to ensure work-conservation (Section 3.6). The
algorithms are evaluated through trace-driven simulation and the results are
presented in Section 3.7. The chapter ends with a few concluding remarks
in Section 3.8.

3.1 Problem Overview

In this chapter, we study the coflow-with-deadlines scheduling problem
and propose a new heuristic (NH) and solve an online linear program
(OLP) to optimize for guaranteed coflow completions within their deadlines.
We develop a new heuristic that admits more coflows than contemporary
schemes [22] without violating the deadlines of admitted coflows. Specif-
ically, for a new coflow request, the heuristic iterates over the earliest
completion times of admitted coflows (earlier than the new coflow’s dead-
line) to find possible data rates for its flows to finish within that deadline.
When a coflow terminates, data rates are reallocated to ongoing flows. This
heuristic is run on arrivals and departures of (co)flows. We also present
a new optimization algorithm OLP that admits even more coflows than
the heuristic but runs slower. The optimization algorithm maximizes coflow
admissions by minimizing the maximum data rates used by active coflows as long
as the coflows finish within deadline. The optimization algorithm is formulated
as an online linear programming problem; it is also solved at (co)flows
arrival and departures using the Gurobi solver [2].

Predictable performace for coflows with deadlines requires guaranteed com-
pletion so we expect our scheduler to satisfy this property. Additionally, the
solution can be work-conserving, that is, it avoids underutilizing the network
and distributes unused resources among admitted, active coflows. Both the
OLP and the heuristic guarantee timely completion of admitted coflows and

18



2

1

3

Ingress Ports Egress Ports

C
1

C
2

2

1

3

DC Fabric

Figure 3.1: Coflow scheduling on a 3*3 datacenter fabric (Based on [37] ©2020 IEEE)

achieve high network utilization through work conservation (Algorithm 3);
the heuristic, however, will reject more coflows than the OLP.

3.2 Model definitions

3.2.1 Network Model

We abstract the datacenter network as a non-blocking switch [6, 48, 10, 27]
that interconnects M servers to the switch, as shown in Fig. 3.1. Now assume
that each server m ∈ M is connected to ingress and egress ports through
a link with capacity Km. Here, a flow f i,j

c from the set of flows Fc in coflow
c ∈ C transfers data volume v f from its ingress port Pin

i to egress port
Pout

j via the switch (see Table 2.1 for notation). For simplicity, these flows

are organized in virtual output queues [71] on ingress ports. A flow f i,j
c is

assigned a data rate r f by the coflow scheduling algorithm. The data rate r f
is constrained by the available data rate on its uplink and downlink.

19



P3

P2

P1

Time	(ms)
16 248

𝚪1

d1 d2

α1 α2

Figure 3.2: Varys coflow scheduling scheme for coflows in Fig. 3.1 admits only c1 (Based
on [37] ©2020 IEEE)

3.2.2 Motivating Example

Consider the example in Fig. 3.1 with two coflows c1 (blue) and c2 (orange).
These coflows arrive at different times, that is, α1 = 0 ms and α2 = 4 ms,
with individual deadlines d1 = 8 ms and d2 = 20 ms, respectively. Each
coflow has a set of flows f i,j

c ∈ Fc on multiple links. The coflow c1 has three
flows (blue) of data size v1,2

1 = 1 MB, v2,1
1 = 1 MB, and v3,3

1 = 1 MB, while
the coflow c2 has a single flow (orange) of data size v2,1

2 = 1.5 MB. All flows
on ingress ports are organized by destination on the non-blocking switch.
Each port connects a server to the switch through a 1 Gbps link.

Varys [22] (Fig. 3.2) admits coflow c1 at time 0 ms and allocates 1 Gbps data

20



P3

P2

P1

Time (ms)

a

16 248

𝚪1 𝚪2

d1 d2

α1 α2

Figure 3.3: Optimal schedule for coflows in Fig. 3.1 admits both c1 and c2 (Based on [37]
©2020 IEEE)

21



rate to finish all flows by the deadline (8 ms). However, it rejects coflow c2
at time α2 = 4 ms because coflow c1 will miss its deadline on admission of
coflow c2, which requires at least 0.6 Gbps from the link capacity K2 to finish
by the deadline (20 ms). In contrast, the optimal schedule (Fig. 3.3) admits
the coflow c2 at α2 = 4 ms because it foresees the coflow completion Γ1 at
8 ms and can commit a data rate r f = 1 Gbps, at which the flow f 2,1

2 can start
sending data from time 8 ms to finish by the deadline (20 ms). Although
flow f 2,1

2 receives no service (that is, zero data rate) between two decision
intervals α2 and Γ1, it is not starved for arbitrarily long times. Therefore, the
optimal schedule avoids starvation and guarantees timely completion after
coflow admissions.

3.3 Related Work

Coflow schedulers for deadline coflows: Literature has many proposals of
coflow scheduling [19] for performance objectives like minimizing average
coflow completion time [3, 22, 84] or meeting coflow deadlines [109, 108,
63, 22]. Our heuristic for coflows with deadlines differs from Varys [22]
in that it finishes non-bottleneck flows in a coflow as soon as possible to
avoid starvation. Chronos [63] combines priority scheduling with limited
multiplexing to meet coflow deadlines and mixCoflow [109, 108] reduces
footprint of resources used by deadline coflows but both approaches does
not foresee and use released resources on completion of active coflows
before the deadline of new coflow.
Flow schedulers: Deadline-aware flow scheduling in networks has been
extensively studied [6, 43, 105] but it is unsuitable (or sub-optimal) for
coflow admissions. For example, PDQ [43] approximates earliest deadline
first algorithm for optimal flow scheduling but it is sub-optimal for coflow
scheduling to meet deadlines [109, 3, 108, 63, 22]. Therefore, lack of knowl-
edge about presence of coflows can degrade performance of data-parallel
applications.

22



3.4 Optimization problem formulation

3.4.1 Overview

The coflow scheduling problem is formulated as an online linear program-
ming (OLP) problem. It is solved whenever, at time te of the scheduling
event e ∈ [1, · · · , E], one of the currently active coflows C̄e ⊆ C (or its flow)
departs after completing its data transmission or a new coflow arrives at
time αc, c ∈ C, c 6∈ C. In the first case, the data rates allocated to existing
flows might be increased. In the second case, if there is a feasible solution
to the problem, the obtained data rates r f , c̄ ∈ C̄e ∪ {c} are allocated to
admitted coflows, otherwise the coflow c is rejected (and data rates al-
ready allocated to admitted flows are not changed). We emphasize that
the resulting rates are not necessarily work-conserving; the output of this
optimization problem is post-processed by the work-conserving algorithm,
which is described in Section 3.6.

We assume that, as input, the OLP only has information about the already
admitted, active coflows C̄e ⊆ C plus the newly arriving coflow; future
coflows’ arrivals are unknown. Each new coflow request c ∈ C, c 6∈ C has an
associated deadline dc and a set of flows Fc. All flows Fc in coflow c share
same arrival time αc and deadline dc. Each flow f i,j

c ∈ Fc in coflow c has
a source i, destination j, and data volume v f , all of which is known upon
coflow arrival. All flows in active coflows C̄e are independent of their sibling
flows in the same coflow and they are backlogged over the non-blocking
switch, which abstracts out a datacenter network (Section 3.2.1).

3.4.2 Input

• Set of active coflows C̄e ⊆ C

• A new coflow request c ∈ C, c 6∈ C with an arrival time αc, a deadline
dc, and a set of flows Fc

• Each flow f i,j
c ∈ Fc has a source i, destination j, and remaining data

volume v̄ f

23



• Each server m ∈ M is connected to the non-blocking switch via a link
of capacity Km

• Current time te of the coflow departure or arrival event e (for simplicity,
we assume that these events do not happen at exactly the same time;
if they did, we process the coflow departure first)

3.4.3 Decision variables

For each flow f i,j
c̄ ∈ Fc̄ in coflow c̄ ∈ C̄e ∪ {c}, a data rate r f is assigned to

flow f i,j
c̄ by the coflow scheduling algorithm. It has a positive real value.

∀c̄ ∈ C̄e ∪ {c}, ∀ f i,j
c̄ ∈ Fc̄, i, j ∈ M : r f ∈ R+ (3.1)

3.4.4 Constraints

Link capacity constraints ensure that the total resource allocation (that is,
data rate r f ) to flows is no more than the link capacity. Here, the constraint

(3.2) ensures that the total data rates allocated to flows f i,j
c̄ on each uplink

from source i to the switch must be less or equal to the uplink capacity Ki.
Similarly, the constraint (3.3) ensures that the total data rates allocated to
flows f i,j

c̄ on each downlink from the switch to destination j must not exceed
the downlink capacity Kj.

∀i ∈ M : ∑
c̄∈C̄e∪{c}

∑
j∈M

r f ≤ Ki (3.2)

∀j ∈ M : ∑
c̄∈C̄e∪{c}

∑
i∈M

r f ≤ Kj (3.3)

Deadline constraints guarantee that the admitted coflows meet their dead-
lines. Constraint (3.4) ensures that each flow f i,j

c̄ ∈ Fc̄ in coflow c̄ ∈ C̄e ∪ {c}
is assigned, at least, minimum data rates r f such that the remaining data

volume v̄ f of flow f i,j
c̄ can be transmitted within its deadline.

24



∀c̄ ∈ C̄e ∪ {c}, ∀ f i,j
c̄ ∈ Fc̄, i, j ∈ M : r f (dc̄ − te) ≥ v̄ f (3.4)

3.4.5 Objective functions

The objective (3.5) is to minimize the maximum data rates used by coflows
(that is, both new and active coflows) as long as all of these coflows finish
within deadline.

min max
i,j∈M

∑
c̄∈C̄e∪{c}

r f (3.5)

3.5 Heuristic

We also propose a new heuristic (NH) for coflow scheduling that runs faster
than the OLP but admits slightly fewer coflows. Like the OLP, the heuristic
makes a decision to either admit or reject a coflow c on its arrival αc and
redistribute dates rates on departure of either a coflow αc + Γc or one of its
flows. It admits a new coflow c ∈ C, c 6∈ C only if it can meet its deadline
without violating deadlines of already admitted coflows.

The algorithm 1, first, filter outs the active coflows S ⊆ C̄e based on their
completion times, such that the completion time of an active coflow in S
is less than or equal to coflow c’s deadline, that is, ΓS[index] ≤ dc (line 1

in Algorithm 1). It, then, iterates (in earliest-completion-first order) over
filtered coflows S to find a minimum data rate r f (Algorithm 2) at each
departure time t = αS[index] + ΓS[index] such that the new coflow c can finish
within its deadline Γc ≤ dc (line 8 in Algorithm 1). It calculates Γc from
the remaining resources, only after providing minimum data rates to active
coflows (line 6 of Algorithm 1) to avoid deadline violation. The Γc is equiva-
lent to t− αc + Γ

′
c where t is the departure time of a coflow in S and Γ

′
c is

the minimum time required to finish data transmission within deadline dc,
only after a flow f i,j

c has started sending data at time t ≥ αc with data rate

25



Algorithm 1 Coflow scheduling to guarantee deadline
Input: active coflows C̄e and new coflow, c

1: S = getCoflowsByB2CT(C̄e, c, te) {filter out competing coflows, which
share links with c}

2: t = te
3: index = 0
4: A = C̄e
5: while true do
6: allocDR(A, te) {refer Algorithm 2};
7: Γc = t− αc + Γ

′
c;

8: if Γc ≤ dc then
9: c.start_time = t {start sending data at time t};

10: C
′

= Enqueue c in C̄e

11: allocDR(C
′
, t) {refer Algorithm 2};

12: Distribute unused data rate to C
′

{refer Algorithm 3};
13:
14: return true
15: end if
16: if index < |S| then
17: t = αS[index] + ΓS[index]
18: remove(A, S[index]) {remove coflow S[index] from A}
19: index+ = 1
20: else
21: Distribute unused data rate to C̄e {refer Algorithm 3}
22:
23: return false
24: end if
25: end while

26



Algorithm 2 Allocate data rate to flows
Input: active coflows C̄e, time
Output: data rates of flows

1: for c ∈ C̄e do
2: for f i,j

c ∈ Fc do

3: r f =
v̄ f

αc + Γc − time
4: Update remaining data rates Rem(Pin

i ) and Rem(Pout
j )

5: end for
6: end for

r f (that is, Γ
′
c = max(maxi

∑j v f

min(Rem(Pin
i ), Req(Pin

i ))
,

maxj
∑i v f

min(Rem(Pout
j ), Req(Pout

j ))
)). Here, Rem(·) and Req(·) are the remain-

ing and required data rates, respectively, on one of the links used by coflow
c (line 7 in Algorithm 1). The unused resources are distributed to active
coflows using Algorithm 3 (lines 12 and 21 in Algorithm 1).

3.6 Work-Conserving Resource Allocation

Work-conserving algorithm avoids idle yet usable network resources, lowers
coflow completion time, and increases coflow admissions. We implement
a new work-conserving algorithm, as shown in Algorithm 3. It distributes
unused resources to active coflows by NH, which only allocate minimum
data rates required to meet the deadline of coflows.

The algorithm first reorders admitted, active coflows in earliest-completion-
first order (line 1 in Algorithm 3), which is defined as the earliest completion
time of active coflows. It then performs a backfilling pass (line 5 in Algo-
rithm 3) to distribute remaining data rates to reordered coflows, C

′
. Here,

Rem(·) is the remaining data rate on ingress link i or egress link j while
Count(j) is the total number of flows on egress link j. The distribution of

27



Algorithm 3 Work-Conserving Algorithm
Input: active coflows, C̄e

1: Reordered C
′

by αc + dc − te

2: for c ∈ C
′

do
3: num = Count(j)
4: for f i,j

c ∈ Fc do
5: r f+ = min(Rem(i), Rem(j))/num);
6: Update remaining data rates of links
7: num− = 1
8: end for
9: end for

unused resources to flows is constrained by the remaining capacity of both
ingress and egress links.

The key insight here is that the coflows with the earliest completion time
are prioritized among active coflows for allocation of remaining unused,
usable resources. This insight enables us to reduce CCTs and admit more
coflows. Since all active coflows are allocated minimum resources before
distribution of unused resources, no active coflow is starved indefinitely
from prioritizing shorter coflows (based on earliest completion time) in
work-conserving algorithm.

3.7 Evaluation

We evaluated both OLP and heuristic through trace-driven simulation on
a machine equipped with a 16-core CPU (Intel Xeon E5-2695) and 128 GB
total memory. Specifically, the experiments were run on a guest VM of
this machine, where the guest VM was allocated 4 CPUs and 8 GB total
memory.

The highlights are:

28



• Simulation results show that our OLP and NH admit 1.1× more
coflows than Varys heuristic (cp. Section 3.7.2) on the original Face-
book trace [20, 22]. Put another way, both algorithms reduce coflow
rejections as much as 10×.

• Futher evaluation on custom traces with varying network load and
number of coflows shows that the NH consistantly outperforms the
Varys heuristic (cp. Section 3.7.2).

3.7.1 Methodology

Workload

Trace: To find concrete parameters for the workload, we use published data
center traces of production traffic from a Facebook Map/Reduce cluster [20,
22]. The cluster connects 3000 servers on 150 racks, which are organized
similarly to Fig. 3.1. The mappers or reducers in the same rack are combined
into single rack-level mapper or reducer, respectively. The trace contains
526 coflows, where a coflow captures information about the arrival time,
number of mappers and reducers with their network port, and the total
data volume. Unfortunately, the trace is not detailed enough to specify the
concrete data volume per flow, but only per reduce task (which generates
multiple flows). We make the simple assumption here that a reduce task
distributes its data equally over all of its flows.
Since the original Facebook trace is limited in certain workload character-
istics (for example, lower network load and fixed number of coflows), we,
additionally, generate custom traces using the coflow workload generator in
Sincronia [3] and study performance of our heuristic on varying network
load and number of coflows.
Deadline: Since this trace represents best-effort data shuffle, there is no
notion of deadline available from this published trace. We consider coflows’
completion time in an empty network as (very optimistic) base case and
look at a relative deadline factor (x) to compute actual deadlines that are
proportionally longer than this optimistic base case (since coflows are likely
to share links, it is highly unlikely that all coflows could be admitted
without any laxity in the deadlines). The simulation is, then, run with

29



different factors to evaluate impact of varying, longer deadlines on coflow
admissions (cp. Section 3.7.2).

Metrics

Percentage of admitted, successfully completed coflows: The primary per-
formance metric for deadline-sensitive coflows is the percentage of coflows
that are admitted and met their deadlines.
Percentage of admitted coflows that missed their deadline: The secondary
performance metric is the percentage of coflows that are admitted but
missed their deadlines. We expect all actually admitted flows to meet their
deadlines; this number should be 0.

Simulator setup

Packet-level simulators like ns-2 are not suitable for coflow scheduling
because of high overhead [116]. Therefore, like [116, 22, 4], we developed a
Python-based, flow-level, discrete-event simulator for this paper. Unlike a
packet-driven simulator, where packet transmission is the natural supplier of
events, a flow-level simulator is driven by the (co)flows arrival and departure
events. Events in this simulator are the arrival and possible admission as
well as termination of (co)flows. The simulator’s model is the set of links
and their nominal data rates; for each flow, its remaining data volume and
its currently assigned data rate as well as the set of links it traverses. The
simulator ensures that the sum of the data rates of all flows using a link is
at most as large as the link’s nominal data rate. Whenever a flow’s data rate
changes, its termination time is recalculated based on the remaining data
volume.

Whenever a coflow arrives, the scheduler admits or rejects coflows using
one of the algorithms above and determines the data rates of flows. The
computed data rates are assigned to flows. Whenever one of the flows or
an admitted coflow completes (or misses deadline), its resources are freed
up. The unused resources are then distributed to active flows of already
admitted coflows. This allows efficient simulations as only very few events

30



1x 1.5x 2x 4x
Relative deadline factor (x)

0

25

50

75

100
A

dm
itt

ed
 c

of
lo

w
s (

%
)

OLP
NH
Varys

Figure 3.4: Percentage of admitted coflows by different scheduling algorithms (Based
on [37] ©2020 IEEE)

per flow needs to be processed; on the downside, it is less accurate than
a packet-level simulator, for example, ignoring TCP congestion control
aspects.

3.7.2 Simulation Results

After running our OLP and NH for guaranteed coflow completion times,
we found some interesting results on coflow admissions, miss rate, and
computational time.

Percentage of admitted coflows

Both our OLP and NH admitted 1.1× more coflows than the state-of-the-art
Varys heuristic, as shown in Fig. 3.4. In the default case (x = 1), 81.18 %
coflows are admitted by the OLP algorithm and all of them met their

31



Table 3.1: Percentage of admitted coflows by OLP and NH more than Varys

Relative deadline factor (x) Increase in coflow admissions (%)

OLP NH

1.1x 6 % 2 %

1.2x 8 % 4 %

1.3x 7 % 7 %

1.8x 9 % 9 %

2x 9 % 9 %

1x

1.
1x

1.
2x

1.
3x

1.
4x

1.
5x

1.
8x 2x 4x

Relative deadline factor (x)

0

25

50

75

100

C
of

lo
w

s (
%

)

O
LP

O
LP

O
LP

O
LP

O
LP

O
LP

O
LP

O
LP

O
LPN
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

V
a
ry

s

V
a
ry

s

V
a
ry

s

V
a
ry

s

V
a
ry

s

V
a
ry

s

V
a
ry

s

V
a
ry

s

V
a
ry

s

Met
Missed
Rejected

Figure 3.5: Percentage of coflows that meet deadline (Based on [37] ©2020 IEEE)

32



deadline as compared to 76.81 % coflows admitted by the Varys heuristic.
We think that the increase in coflow admissions over the Varys heuristic
(in comparison to 75 % admitted coflows quoted in [22]) is because of
the decisions being made at (co)flow arrival and departure events in our
implementation. Unlike the fixed, 10 s long decision intervals in [22], we
expect our approach to give more precise results. Additionally, our variant
of Varys used, like the other two algorithms, our new work-conserving
algorithm (Section 3.6).

Recall that the default deadline of coflows is set to a coflow’s completion
time in an empty network (obviously making it impossible to achieve 100 %
admission rate). Thus, we analyse the impact of slightly longer deadlines,
namely relative deadline factor (x), on coflow admissions. We found that both
our OLP and heuristic NH admitted more coflows than Varys at different
relative deadline factors and guaranteed completion within deadlines, as
shown in Fig. 3.4 and Table 3.1. In addition, our heuristic NH performed
competitively in comparison to the OLP algorithm.

Percentage of coflows that missed their deadline

Like Varys, and as expected, all of the admitted coflows in OLP and heuristic
met their deadline, as shown in Fig. 3.5. For example, in the default case
(x = 1), the OLP in our implementation admitted 81.18 % coflows and all of
them met the deadline.

Network load

Since the original Facebook trace has low network load, we further analyse
the performance of our heuristic NH under varying network loads. For
instance, we generate custom traces with same number of coflows (526) but
two different network loads (that is, 0.9 and 0.5). The result (in Fig. 3.7)
shows that the performance of our heuristic improves as the network load
decreases from 0.9 to 0.5. The higher coflow admissions at lower network
loads is expected because coflows, in general, have lower competition for
resources among themselves. Importantly, NH admits more coflows than

33



1x 1.5x 2x 4x
Relative deadline factor (x)

0

0.5

1

2

8

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e 

(s
)

OLP
NH
Varys

Figure 3.6: Average computation time of different scheduling algorithms (Based on [37]
©2020 IEEE)

1.1x 1.2x 1.3x 1.4x 1.5x
Relative deadline factor (x)

0

25

50

75

100

A
dm

itt
ed

 c
of

lo
w

s (
%

) FB-NH
FB-Varys
L0.5-NH
L0.5-Varys
L0.9-NH
L0.9-Varys

Figure 3.7: Impact of varying network load on coflow admissions (Based on [37] ©2020

IEEE)

34



1.1x 1.2x 1.3x 1.4x 1.5x
Relative deadline factor (x)

0

25

50

75

100

A
dm

itt
ed

 c
of

lo
w

s (
%

) C526-NH
C526-Varys
C1000-NH
C1000-Varys

Figure 3.8: Impact of increase in number of coflows on coflow admissions (Based on [37]
©2020 IEEE)

Varys in all three network loads (that is, FB, 0.5, and 0.9) at different relative
deadline factors (x). Since the greater factor value provides more slack time
to coflows for completion, coflow schedulers admit more coflows at higher
factors, for example, 1.5x than 1.1x.

Impact of more coflows

Similarly, we perform additional analysis of our heuristic against increase
in number of coflows. For example, the result (in Fig. 3.8) uses two custom
traces of different sizes (that is, 526 and 1000 coflows) with same 0.5 network
load. It shows that the contention for network resources increases with the
increase in number of coflows. Importantly, our heuristic NH consistantly
admits more coflows than the Varys heuristic [22] in both custom traces.

3.8 Concluding Remarks

In this chapter, we have presented two algorithms to increase coflow ad-
missions while meeting their deadlines. Specifically, both algorithms have
admitted 1.1× more coflows than the state-of-the-art Varys heuristic in

35



large-scale trace-driven simulations. In addition, our heuristic runs faster
yet performs competitively with the OLP algorithm.

However, coflow heuristics, in general, are susceptible to stochastic coflow
arrivals, that is, they admit less coflows for the desired performance objective
to maximize coflow admissions while meeting their deadlines. For instance,
a large coflow (based on either completion time, size, width or length)
impedes admission of upcoming, smaller coflows. From next chapter, we
further elaborate the problem and propose its solutions.

36



Chapter 4

Learning Flow Scheduling

This chapter of the thesis is based on the revised text of our conference
paper; therefore, some portions of the chapter contain verbatim content, for
example, figures and tables used in the paper:

Asif Hasnain and Holger Karl. Learning flow scheduling. In 2021 IEEE 18th
Annual Consumer Communications Networking Conference (CCNC), pages 1–6,
2021

In this chapter, we study the impact of stochastic network traffic on flow
scheduling heuristics and argue that these heuristics are often susceptible
to stochastic flow arrivals in a network. Specifically, we propose a new
flow scheduler, namely learning flow scheduling (LFS), which learns flow
scheduling policies and adapts scheduling decisions according to network
changes.

My main contribution in this chapter was to design, implement, and evaluate
the LFS scheduler for learning flow scheduling policies. Firstly, I sketched a
counterexample to show that non-preemptive flow schedulers like D3 [105]
are susceptible to stochastic network traffic, that is, they admit less flows
than an optimal schedule (Section 4.1) for the desired performance objective
to maximize flow admissions while meeting their deadlines. Then, I formulated
the flow scheduling problem as a Markov decision process (MDP) and
designed the state space, the action space, and the reward function. The
problem is solved using deep reinforcement learning (DRL) in which the
flow scheduler learns to make decisions by interacting with the environment.
For this, I implemented the flow-level simulator as an environment and

37



a training algorithm to learn a scheduling policy for the specified higher-
level performance objective. In addition, I evaluated the performance of the
trained LFS scheduler through trace-driven simulation and compared its
results with those of the greedy heuristics.

The remainder of the chapter is organized as follows. The first Section 4.1
of the chapter introduces the problem with a motivating example. In the
next Section 4.2, relevant literature is analysed. As a first step to learn a
flow scheduling policy, we describe the model in Section 4.3.1. The LFS
scheduling problem is formulated as an MDP; specifically, the average
reward formulation for continuous flow scheduling tasks is described in
Section 4.3.2. The LFS scheduler uses a policy gradient algorithm for end-
to-end training in a network environment (Section 4.3.3). The proposed LFS
scheduler is evaluated on custom traces, which are generated by sampling
flow information (that is, arrival time, size, and deadline) from different
distributions. Our results (in Section 4.4) show that the trained LFS scheduler
outperforms greedy heuristics under varying network loads. Specifically,
the LFS scheduler learns a policy that admits more smaller flows than long
flows for the specified performance objective (that is, maximize the number of
flow admissions while meeting deadlines). Moreover, it is flexible enough to
quickly adapt to various performance objectives by using different rewards.
In addition, the LFS is compared with greedy heuristics under varying
network load. In Section 4.5, the chapter concludes with a few closing
remarks.

4.1 Introduction

In most non-trivial scenarios, flow scheduling [13, 6, 43, 4] is NP-hard [30].
Hence, flow scheduling is often performed using heuristics, which are opti-
mized for a specific workload. These heuristics are developed by manually
identifying features in network structure [8] or flow arrival patterns, which
is a time-consuming activity with long turn-around time. This problem is
aggravated when workload changes render such hand-crafted heuristics no
longer useful.

38



Table 4.1: Competing flows on a link

Flows Arrival time Size Deadline

f1 0 4 7

f2 1 1 1

f3 4 2 2

To address this challenge, in this paper, we attempt to automate network re-
source management, specifically, flow scheduling for deadline-sensitive flows
using LFS. Like many input-driven applications [69, 70, 67, 87], LFS learns
flow scheduling policies through reinforcement learning (RL). RL is well-
suited for such learning because it automates learning Markov structure in
flows through end-to-end training on network states. The scheduling agent
is based on a neural network [7, 36], which is trained to learn a scheduling
policy by directly interacting with the environment. We focus here on the
flow admissions aspect. That means that the policy takes an action to admit
or reject new flows, arriving online in different network states. On each
action, the environment produces a reward as feedback for the policy to
know how well it is doing on flow admissions. The rewards are based on a
workload-specific performance objective (that is, maximize the number of
flow admissions and meet deadlines for time-sensitive datacenter applica-
tions, for example, web search or social networking). The flow scheduler,
after a flow has been admitted, assumes no preemption and an admitted
flow is assigned a constant data rate from the time a flow starts executing
till its completion. The data rate assigned to flows is computed by a greedy
heuristic within the environment.

One of several challenges in training a policy is learning to make decisions
on stochastic flow arrivals to a network. The stochastic flow arrivals make it
difficult for a policy to learn from rewards because the successive arrival
of smaller flows in an input can produce higher rewards on admission
than large flows for this objective. Consider, for instance, three competing

39



cs
c

Time
52

𝚪1,𝚪3𝚪2

d2 d1

α1 α2 3 α3 9

D
at

e 
ra

te

1

0.5

0
7

d3

Figure 4.1: D3 schedule (Based on [39] ©2021 IEEE)

Time
52

𝚪2

d2 d1

α1 α2 3 α3 9

D
at

e 
ra

te

1

0.5

0

d3

7

𝚪3

Figure 4.2: Optimal schedule (Based on [39] ©2021 IEEE)

40



flows in Table 4.1, that is, f1, f2, and f3 (see Table 4.2 for notation). These
flows have different arrival times, individual sizes and deadlines. They are
competing for resources on a single link with total data rate of 1 unit. When
flow f1 (blue in Fig. 4.1) arrives first at time 0, the non-preemptive D3 [105]
scheduler assigns, at least, minimum data rate to flow f1 to finish within
its deadline (7). However, D3 hogs the link’s resource by admitting flow f1,
which has a large deadline. Consequently, two flows f2 (orange) and f3
(green) fail to meet their deadlines because both flows require, at least, 1/1

and 2/2 units of link resource, respectively, to finish within their deadlines.
But the remaining data rates at time 1 and 4, after minimum allocation
to active flow f1, are 1/2 and 2/3 units, respectively. Unlike the myopic
D3 scheme, the optimal schedule (in Fig. 4.2) rejects large flow f1 at time 0

because it can admit more, smaller flows, that is, f2 and f3, for the desired
performance objective (that is, maximize the number of flows while meeting
their deadlines). It commits, at least, minimum data rates to two flows, that
is, r2 = 1 and r3 = 1, from their arrival times to finish within the deadlines.
Such an optimal schedule can be achieved if LFS scheduler effectively learns
flow arrivals pattern in network states.

4.2 Related Work

Flow scheduling with deadlines: D3 [105] is a non-preemptive scheduler
that serves flows in order of their arrivals. However, it hogs (or blocks)
upcoming smaller flows — based on their short deadlines — by admitting
flows with longer deadlines [43]. In addition, D2TCP [96] reduces the
number of missed flow deadlines; however, under high traffic load, it misses
higher number of flow deadlines [113]. In contrast, the LFS scheduler learns
to reject large flows and admit small flows for the specified performance of
maximizing flow admissions. It differs from deadline-aware flow schedulers
like PDQ [43], which approximates earliest deadline first algorithm, because
it is a non-preemptive scheduler and avoids starvation of flows. In a recent
proposal [31], an RL-based flow scheduler is trained to compute data rates
of deadline flows but it uses a Q-learning lookup table, which is not a
scalable approach.

41



Flow scheduling with and without deadlines: Karuna [13] concurrently sch-
edules mixed flows (that is, flows with and without deadlines) to optimize
for two performance objectives, that is, maximize flow admissions while
meeting deadlines and minimize average FCT, respectively. Since it gives
priority to deadline flows, non-deadline flows have slightly higher average
FCT [98]. Unlike Karuna [13], Aemon [98] is information-agnostic and pri-
orities non-deadline flows over deadline flows to reduce average FCT. In
contrast, we focus only on a single performance objective (to maximize flow
admissions while meeting with deadlines) and leave comparison of both
approaches with the LFS scheduler for future work.
Flow scheduling without deadlines: PIAS [9] utilizes priority queues to im-
plement multi-level feedback queue (MLFQ). Specifically, it demotes a flow
from higher priority queues to lower priority queues based on the data vol-
ume a flow has sent. PIAS effectively emulates SJF flow scheduling without
prior information of flow data volume. Similarly, NUMFabric [74] requires
support of programmable priority queues in switches for resource allocation
and EPN [62] leverages priority queues in commodity switches to reduce
average FCT. In addition, RL-based flow scheduler AuTO [14] automates
traffic optimization in datacenter networks but, unlike LFS scheduler, it only
optimizes for average FCT using strict priority queueing.

4.3 Design

4.3.1 Model definition

We consider a single network link l and, like prior work [6], assume that
the information about a new flow l f ∈ F is known at arrival time α f
(see Table 4.2 for notation). That information includes data volume v f and
relative deadline d f of the flow. If an arriving flow f is admitted, its assigned
data rate r f is calculated using a greedy heuristic and it is constrained by
the data rate of link Kl. The heuristic simply divides flow size v f by the
remaining time to deadline d f to get the data rate r f . It is kept simple to
learn the scheduling policy for higher flow admissions (Section 4.3.2). We
further assume that active flows F̄e are not preempted and they continuously

42



Table 4.2: Notation for flow and system model

F Set of arrived, online flows, where F corresponds to Fc in Ta-
ble 2.1

F Set of admitted flows F ⊆ F, which comprises active and com-
pleted flows

F̄e Set of active flows F̄e ⊆ F at time te, not including a flow
arriving at te

l f A new flow f request on link l (the event e causing that new
flow will be clear from context)

α f Arrival time of flow f

d f Relative deadline of flow f

α f + d f Absolute deadline of flow f

Kl Total available data rate of link l

receive link resource, that is, data rate, from the time a flow starts execution
till completion.

4.3.2 RL model

The problem is formulated as a discrete-time Markov decision process
(MDP) and it is solved using a policy gradient algorithm of deep RL, where
a flow scheduling agent interacts with a single-link l environment. The
scheduling agent can fully observe the state se at time te, that is, information
about active flows F̄e on link l and the new flow request f is available. A
flow departure is processed within the environment and not made visible to
the RL agent; if one of the active flows F̄e completes, it is removed from the
network. On each scheduling event e, the scheduling agent takes an action
ae in state se, collects a reward Re from the environment, and shifts to the
next state se+1, where the next scheduling evente + 1 occurs at time te+1.
Specifically, the state transition is assumed to satisfy the Markov property,

43



Table 4.3: Notation for learning model

Q Number of different flow arrival sequences as defined in
Table 4.2

Fk The kth set of flow arrival sequences, where k ∈
{1, · · · , Q} and Fk corresponds to F in Table 4.2

Ek Number of scheduling events in Fk, where Ek corresponds
to E in Table 2.1

λ Arrival rate of a flow arrival sequence Fk

τ Episode length

N Number of different sample trajectories

se Observed state at time te

ae ∈ {0, 1} Action taken at time te

Re Reward (or penalty) received on action ae in state se

R̄e Time-average reward at time te

Re − R̄e Differential reward

Ge Differential return (sum of differential rewards from state se
to the terminal state sE)

πθ(ae|se) Policy network, learnt by the actor

θ Parameters of the policy network πθ(·)
βθ Learning rate (or step size) of policy network πθ(·)

Vvk(se) State-value function for the flow arrival sequence Fk (critic)

vk Parameters of the state-value network Vvk(·)
βv Learning rate of state-value network Vvk(·)
δe Error in estimation of differential return Ge

P(se+1|se, ae) State transition probability function

J(θ) Performance objective for policy network πθ(·)
∇θ J(θ) Policy gradient

44



that is, the new state se+1 depends only on the current state se and the action
ae taken at time step te.

Since the problem space is large and continuous (the interation between flow
scheduling agent and link environment goes on forever), the scheduling
agent uses a neural network [36] to learn the policy πθ(ae|se), where θ
are parameters of a policy network. The policy πθ(ae|se) is defined as the
probability of taking action ae in state se with parameters θ. After each
action ae, the environment provides a differential reward Re ← Re − R̄e
(Section 4.3.2) to the scheduling agent, where R̄e is the time-average reward
at time te. The scheduling agent uses the reward as signal to improve
the policy πθ(ae|se). The reward is based on a higher-level performance
objective J(θ) to maximize the number of admitted flows while meeting their
deadlines.

The scheduling agent trains the policy network πθ(ae|se) through the RE-
INFORCE algorithm with baseline (sometimes, also called Monte-Carlo (MC)
actor critic) [104]. Although the algorithm is unbiased, it has high variance
in policy gradient. The variance is caused by single-sample estimate and
stochastic flow arrivals, which impede effective learning of a scheduling
policy. The variance is usually reduced by subtracting a state-value func-
tion (critic) as baseline [101] from the actual differential return, where the
state-value function estimates the differential return.

However, a single state-value function as baseline is proven ineffective [70] to
estimate differential return in the presence of different flow arrivals because
training on different flow arrivals adds noise to the reward and makes it
difficult to estimate differential return using a single state-value function.
One way [70] to effectively estimate differential return, with different flow
arrivals, is to train a separate state-value function Vvk(se) for each flow
arrivals sequence Fk, k ∈ {1, · · · , Q}, where vk are parameters of a state-
value network and Q is the total number of flow arrival sequences. These
multiple state-value functions act as critic to evaluate the scheduling policy
πθ(ae|se) and provide feedback to the policy network (which is also called
an actor).

Objective: The high-level performance objective for scheduling policy is
to maximize the number of flow admissions while meeting their deadlines.

45



The objective is defined by an average-reward formulation because flow
scheduling is a continuous task (Section 4.3.2). Specifically, the environment
gives more reward for flows with smaller flow completion time (FCT) than
larger FCT to achieve higher flow admissions.
State space: It represents the fully observed state se at time te of a particular
scheduling event e, that is, a flow arrival. The state information is a flat
feature vector of active flows F̄e ⊆ F and the new flow request f on link
l, where the maximum number of concurrent, active flows is limited to 50

(Section 4.4.2). The feature vector is passed as an input to the policy network
for learning flow structures.

• Each active flow f ∈ F̄e has
– its remaining data volume v̄ f
– its remaining time to deadline α f + d f − te
– its assigned data rate r f

• For data rates of active flows on link l, it always holds that ∑ f∈F̄e
r f ≤

Kl.
• A new flow request f has an arrival time α f , a relative deadline d f , and

a data volume v f

Action space: It is a discrete set ae ∈ {0, 1}, where the actions ae = 1 and
ae = 0 represent the decision to either admit or reject the flow request f in
state se, respectively. The decision is taken by the flow scheduling agent.
Actor: The actor directly learns a softmax paramerterized policy πθ(ae|se),
which outputs probability distribution over all actions A in state se with
parameters θ. The action ae ∈ A, to admit or reject a new flow in state se,
is then sampled from action probabilities using Gumbel-Softmax distribu-
tion [46]. The actor updates policy parameters θ via gradient descent in the
direction (that is, gradient) suggested by the critic (Section 4.3.2). It receives
a feedback from critic, on the performance of its current scheduling policy,
in the form of an estimated error δe (sometimes, also called an advantage).
The actor uses the estimated error δe to update action probabilities such
that it reaches high-valued states with more flow admissions and attempts
to keep error δe positive (that is, collect better-than-time-average reward).
Specifically, it computes the policy gradient ∇θ J(θ) ≈ ∇θ log πθ(ae|se)δe to
update policy parameters such that θ ← θ + βθ∇θ J(θ), where βθ is the con-
stant learning rate (or step size) for policy parameters θ. The policy gradient
∇θ J(θ) on performance objective J(θ) increases probability of taking action

46



ae in state se if the action (for example, to admit a flow) resulted in higher
differential return than the estimated return by critic.
Critic: The critic evaluates the scheduling policy using multiple state-value
networks as baseline. The state-value network Vvk(se) estimates the dif-
ferential return Ge in a particular flow arrival sequence Fk, where Ge =
Re − R̄e + Re+1 − R̄e+1 + · · · is the sum of differential rewards from state se
to the terminal state sE and Fk is the kth set of flow arrivals in Q sequences,
that is, k ∈ {1, · · · , Q}. Intuitively, the critic has a separate state-value func-
tion Vvk(se) for each flow arrival sequence Fk to reduce variance of policy
gradient from training on different flow arrival sequences. It criticizes the
actor’s action, based on actor’s policy, by sending an error δe to actor. The
critic computes error δe from the differential return Ge (as per actor’s policy)
and its estimation of value of (being in) current state Vvk(se). It is given by
δe = Ge − Vvk(se), where a positive error δe means that the actor’s action
was good (so should be repeated) because it led to better-than-time-average
reward. On the contrary, a negative error reflects worse-than-time-average
reward, which means the actor should avoid this, bad action. The state-value
network Vvk(se) uses differential return Ge from policy to improve its pre-
dictive accuracy. It does so by reducing the magnitude of loss in estimated
return close to zero, where the loss function is mean squared error (MSE).
Average reward: Since the flow scheduling problem is a continuous task,
an average reward is better suited than the total reward and it maximizes
limτ→∞ 1/τ ∑τ

e=0 Re [91], where τ is a training episode length. Specifically,
the network environment rewards the scheduling agent with a differential
reward Re ← Re − R̄e, where R̄e is the moving time-average reward at time
te from all previous scheduling events of current and previous training
episodes. The scheduling agent receives a reward for every action ae in state
se, where the reward function is designed as follows:

• We call an action (by scheduling policy) to admit a new flow f a true
positive (TP) decision if it is indeed possible to assign enough rate to
the flow f to meet its deadline. This can be tested immediately by
checking flow deadline, volume, and currently available data rate. A
TP decision for a new flow f , in the confusion matrix, returns higher
reward for a flow with smaller FCT than a flow with large FCT, that is,
Re = 1/Γ f + (1/Γ f ∗ 1/|F̄e|), where |F̄e| is the number of active flows
at time te.

47



• A false negative (FN) decision means that the scheduling policy could
have admitted the new flow f in current state se but did not. It might
be a correct action after enough learning, for example, to reject a flow
with large FCT, for this performance objective J(θ). A FN decision
produces a penalty Re = −1/Γ f , where the actor is penalized more for
rejecting a flow with smaller FCT than large FCT.

• An action is considered a true negative (TN) decision if the scheduling
policy has learnt to correctly reject a new flow f if there is not enough
link resource so that the flow cannot meet its deadline. A TN decision
has zero reward Re = 0.

• The action to admit a new flow f is called false positive (FP) decision if
the flow cannot actually be assigned sufficient rate to meet its deadline.
A FP decision for a new flow f is penalized with Re = −(Γ f + |F̄e|).

4.3.3 Training algorithm

The scheduling policy is trained using algorithm 4. Since the initial schedul-
ing policy is assumed poor, the earlier training episodes (or epochs) are
terminated stochastically at time τ to help learning on online flow arrivals
(line 4). However, the episode lengths are gradually increased during train-
ing (line 15). In each episode, the training algorithm rolls out multiple
trajectories j ∈ [1, · · · , N] on current scheduling policy πθ(ae|se) (line 6),
computes return from differential rewards (line 8), and estimates error in pre-
dicting return (line 9). Based on the estimated error and return, it updates
parameters of the policy and critic networks, respectively (line 10–14).

4.4 Evaluation

We evaluated LFS scheduler through a flow-level simulator as an environ-
ment on a machine with a 16-core CPU (Intel Xeon E5-2695) and 128 GB
total memory. The highlights are:

• The RL-based flow scheduler learns to optimize the specified perfor-
mance objective.

48



Algorithm 4 Monte-Carlo Actor Critic Algorithm for Training
Input: Policy network πθ(·) and state-value networks

{Vv1(·), · · · , VvQ(·)}

1: θ, {v1, · · · , vQ} {Initialize parameters of policy and state-value networks
with Glorot uniform initializer}

2: Initialize learning rates βδ, βv > 0 and the time-average reward R̄e = 0
3: for each episode do
4: Sample an episode length τ from a geometric distribution
5: Sample a new set of flows F for each of the flow arrival sequences

Fk, k ∈ {1, · · · , Q}
6: Rollout multiple trajectories j ∈ [1, · · · , N] on current policy

πθ(ae|se) ∼ {s1, a1, R1, · · · , sE, aE, RE} until te ≤ τ
7: R̄e ← R̄e + 1/(N · E)∑N

j=1 ∑E
e=1 Re; {Update time-average reward}

8: Calculate differential return in each state, that is, Ge = ∑E
e′=e Re′ − R̄e′

9: δe = Ge −Vvk(se) {Calculate the error δe in estimation}
10: for j ∈ [1, · · · , N] do
11: ∇θ J(θ) ≈ ∇θ log πθ(ae|se)δe; {Compute policy gradient using the

error δe}
12: Vvk ← Vvk + βv∇Vvk

Vvk(se)Ge; {Update parameters Vvk of the state-
value network Vvk(·)}

13: end for
14: θ ← θ + βθ∇θ J(θ); {Update parameters θ of policy network}
15: τ ← τ + ε
16: end for

49



• It admits, on average, 1.05× (or 5 %) more flows than the greedy
algorithm on an unseen test dataset.

• It consistently outperforms the competing schemes under varying
network load (Section 4.4.2).

4.4.1 Methodology

Workload

Like prior work [6], we assume that the flow information is known at arrival
and it includes data volume and deadline — relative to the arrival time. The
flow interarrival time α f is sampled from the exponential distribution, where
the flow arrival rate is set to λ = 1. The flow arrival rate λ is varied during
testing to create network loads and compare performance of the LFS flow
scheduler with competing schemes (Section 4.4.2). The LFS flow scheduler
is, however, trained on a single flow arrival rate λ. Since datacenter traffic
has a long-tailed distribution [11, 78, 5], that is, most of the flows are small
but the majority of the data is transmitted by a few large flows, the flow
size v f is sampled from the Pareto distribution, where the pareto shape and
scale is set to 2.0 and 100.0, respectively. In addition, the flow deadline d f is
a uniformly drawn value between 1 and 4 seconds because most flows in
datacenter traffic last less than a few seconds [78].

Environment

Unlike flow simulator in Chapter 3, the new simulator is only driven by flow
arrival and departure events and it is wrapped in an environment to interact
with the flow scheduling agent. Specifically, the environment implements the
gym interface [12] and whenever a new flow arrives α f , the flow scheduler
(that is, LFS or a competing algorithm) either admits or rejects the flow.
The data rate r f for the flow is computed within the environment using a
greedy heuristic. The heuristic simply divides flow size v f by the deadline
d f to get the data rate r f . It is not work-conserving, that is, the excessive
data rate on link l is not distributed, after minimum resource allocation, to
neither the newly admitted nor to already active flows. Whenever one of the

50



active flows completes, the simulator removes the flow from the network.
The incomplete, active flows continue executing at the same, constant data
rate.

Scheduling agent

The scheduling agent consists of a policy network and multiple state-value
networks. For neural networks, we use multilayer perceptrons (MLPs) be-
cause MLPs are suitable for classification problems. Although the selection
of hyperparameters for effective learning of MLPs is quite challenging, the
scheduling agent was able to learn a reasonable policy with the following
set of values. Specifically, each MLPs network has 2 hidden layers, where the
two hidden layers comprise 200 and 128 neurons each and their activation
function is set to ReLU [75]. These networks use Adam [53] optimizer to
update their parameters, where the learning rates βθ and βv for parameters
of policy and state-value networks are set to 7×10−3 and 7×10−3, respec-
tively. In addition, the entropy value for exploring the scheduling policy is
intialized to 1. However, it is gradually decayed during training of the policy
network, that is, it decays with value 1×10−3 until the minimum entropy
value 1×10−4.

Metrics

We primarily measure the flow admissions by various scheduling schemes.
In addition, we measure rewards and flow sizes to answer the following
questions:

• Does the LFS scheduler learn a policy to optimize the performance
objective (Section 4.3.2)?

• What is the behaviour of trained LFS scheduler under varying network
load?

• Do the admitted flows meet their deadline? We expect that all admitted
flows finish within their deadline.

• Why does the LFS scheduler admit more flows?

51



0 200 400 600 800 1000

Episodes

0

100

200

300

400

500

600

700

800

N
u

m
b

er
of

fl
ow

ad
m

is
si

on
s

Ep length

LFS

Figure 4.3: Total flow admissions during training of LFS scheduler (Based on [39] ©2021

IEEE)

4.4.2 Simulation results

Training of the LFS scheduler

The LFS scheduler is trained using algorithm 4. The algorithm runs 1000

episodes and, in each training episode, 1000 flows are generated to train
the LFS scheduler. Each episode is terminated at the maximum time τ,
which is sampled from a geometric distribution. The reset probability of
episode length p = 1×10−2 decays (with value 4×10−6) until the minimum
value p = 5×10−8 during training. In each episode, the training algorithm
rollouts 6 parallel trajectories on the current policy and the differental reward
is enabled by default. In addition, the flow arrival rate λ is set to 1 and the
maximum number of concurrent, active flows is configured to 50.

The results show that the LFS scheduler learns a reasonable policy to
admit flows. Specifically, the total number of flow admissions and and the
average reward received during training of the LFS scheduler are shown

52



0 200 400 600 800 1000

Episodes

0.6

0.8

1.0

1.2

1.4

R
ew

ar
d

s

LFS mean

Figure 4.4: Average reward during training of LFS scheduler (Based on [39] ©2021 IEEE)

in Fig. 4.3 and 4.4, respectively. As expected, the average reward increases
with every training episode. However, after approximately 150 episodes, the
average reward stops increasing, which indicates that the LFS scheduler has
converged to a scheduling policy.

Network load

The trained LFS scheduler is compared with a greedy scheduling algorithm
and its variants. The greedy variants schedule flows based on a value drawn
from binomial distribution with different success probabilities, that is, p ∈
{0.95, 0.9, 0.8, 0.7}. Since the arrival time α f , data volume v f , and deadline d f
of flows are samples of different distributions, the test episodes are passed
different seeds from training episodes to produce unseen, new samples. The
arrival rate λ of flows is varied to produce a wide range of network loads. For
example, Fig. 4.5-4.10 shows flow admissions by various scheduling schemes
at different flow arrival rates, that is, λ ∈ {1, 2, 5, 10, 15, 20}. The result
shows that the LFS scheduler admits more flows than the greedy schedulers,

53



0 5 10 15 20 25

Episodes

650

700

750

800

850

900

950

1000

N
u

m
b

er
of

fl
ow

ad
m

is
si

on
s

Ep length

LFS

G

PG 0.95

PG 0.9

PG 0.8

PG 0.7

Figure 4.5: Flow admissions by various scheduling schemes under different network loads
for example, flow arrival rate λ = 1 (Based on [39] ©2021 IEEE)

0 5 10 15 20 25

Episodes

600

650

700

750

800

850

900

950

1000

N
u

m
b

er
of

fl
ow

ad
m

is
si

on
s

Ep length

LFS

G

PG 0.95

PG 0.9

PG 0.8

PG 0.7

Figure 4.6: Flow admissions at flow arrival rate λ = 2 (Based on [39] ©2021 IEEE)

54



0 5 10 15 20 25

Episodes

500

600

700

800

900

1000

N
u

m
b

er
of

fl
ow

ad
m

is
si

on
s

Ep length

LFS

G

PG 0.95

PG 0.9

PG 0.8

PG 0.7

Figure 4.7: Flow admissions at flow arrival rate λ = 5 (Based on [39] ©2021 IEEE)

0 5 10 15 20 25

Episodes

400

500

600

700

800

900

1000

N
u

m
b

er
of

fl
ow

ad
m

is
si

on
s

Ep length

LFS

G

PG 0.95

PG 0.9

PG 0.8

PG 0.7

Figure 4.8: Flow admissions at flow arrival rate λ = 10 (Based on [39] ©2021 IEEE)

55



0 5 10 15 20 25

Episodes

300

400

500

600

700

800

900

1000

N
u

m
b

er
of

fl
ow

ad
m

is
si

on
s

Ep length

LFS

G

PG 0.95

PG 0.9

PG 0.8

PG 0.7

Figure 4.9: Flow admissions at flow arrival rate λ = 15 (Based on [39] ©2021 IEEE)

0 5 10 15 20 25

Episodes

300

400

500

600

700

800

900

1000

N
u

m
b

er
of

fl
ow

ad
m

is
si

on
s

Ep length

LFS

G

PG 0.95

PG 0.9

PG 0.8

PG 0.7

Figure 4.10: Flow admissions at flow arrival rate λ = 20 (Based on [39] ©2021 IEEE)

56



1 13 26 38 51
Inter arrival rates (λ)

0

250

500

750

1000

A
ve

ra
ge

fl
ow

ad
m

is
si

on
s

Ep length

LFS

G

PG 0.95

PG 0.9

PG 0.8

PG 0.7

Figure 4.11: Average flow admissions under different network loads (Based on [39] ©2021

IEEE)

even under high network loads. In addition, Fig. 4.11 shows average flow
admissions over many test episodes at different network loads. As expected,
we see higher flow admissions under low network loads because it is likely
that multiple flows are concurrently active. Each datapoint in Fig. 4.11 is an
averaged value over 25 test episodes at a particular flow arrival rate λ. The
dataset in each of the test episodes is unseen. We found that, for different
network loads, the LFS scheduler admitted, on average, 1.05× (or 5 %) more
flows than the best greedy scheduler G.

Number of flows that met their deadline

Since all schedulers are non-preemptive schedulers, admitted flows continue
to receive link resources, that is, data rates, from the time they start executing
till their completion. During testing, we found that all flows met their
deadline as per our expectation.

57



0 250 500 750 1000
Flow size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

All

Admitted with LFS

Rejected with LFS

Figure 4.12: CDF of flow sizes of admitted and rejected flows by the LFS scheduler (Based
on [39] ©2021 IEEE)

Performance Gain

We evaluate the gains of the LFS scheduler on a particular network load,
in which the flow arrival rate is set to λ = 5. In the test, we record the size
of both admitted and rejected flows and plot the cummulative distribution
function (CDF). The CDF of flow sizes showed that the trained LFS scheduler
mostly admitted smaller flows in the test. This is evident in Fig. 4.12, which
implies that the policy priortized smaller flows over large flows for the
designated performance objective and, if necessary, rejected large flows to
admit not-yet-arrived smaller flows.

4.5 Concluding Remarks

In this chapter, we have demonstrated that the LFS scheduler automati-
cally learns flow structures using deep RL and outperformed the greedy

58



flow scheduling heuristics under varying network load. In addition, it is
practically feasible to quickly adapt to different performance objectives by
simply retraining the scheduling policy on the redesigned reward function.
For example, with reward Re = −|F̄e|, LFS can learn a scheduling policy
to minimize the average flow completion time or it can maximize the network
utilization with reward Re = ∑ f∈F̄e

r f at each timestep.

In the next chapter, we argue that the LFS scheduler can be generalized to a
network with coflows and a coflow scheduler can learn scheduling policies
for the specified high-level performance objective.

59





Chapter 5

Learning Coflow Admissions

This chapter of the thesis is based on the revised text of our workshop
paper; therefore, some portions of the chapter contain verbatim content, for
example, figures and tables used in the paper:

Asif Hasnain and Holger Karl. Learning coflow admissions. In IEEE
INFOCOM 2021 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 1–6, 2021

In this chapter, we study the impact of stochastic network traffic on suc-
cessful coflow admissions in existing heuristics [37, 22]. Specifically, we
propose a new coflow scheduler, namely learning coflow scheduling (LCS),
to maximize coflow admissions while meeting their deadlines.

My main contribution in this paper was to design, implement, and evaluate
performance of the LCS coflow scheduler. Firstly, I formulated the coflow
scheduling problem as a Markov decision process (MDP) and designed the
necessary state space, action space, and the reward function. The problem
is then solved using deep reinforcement learning (DRL) where the coflow
scheduling agent directly interacts with the environment. For this purpose,
I implemented both the scheduling agent and the flow-level simulator
as environment. Moreover, I evaluated the performance of trained LCS
through large-scale trace-driven simulation and compared its results with
the state-of-the-art heuristic.

Starting from Section 5.1, the chapter first gives a quick overview and
motivation of the problem, going beyond the high-level description of the
introductory chatpers. It then discusses related literature work in Section 5.2.
Both the application and the network model are defined in Section 5.3. In

61



Section 5.4, the coflow scheduling is formulated as a MDP. In addition,
the design and implementation of the LCS coflow scheduler is covered in
Section 5.4. The experimental evaluation of performance is then discussed
in Section 5.5. Finally, the chapter ends with a few concluding remarks in
Section 5.6.

5.1 Motivation

Typically, coflow scheduling is performed by carefully crafted heuristics [37,
59, 22], which assign network resources to the coflow’s constituent flows.
These heuristics optimize for different performance objectives like mini-
mizing average CCTs or meeting coflow deadlines – where a coflow is only
completed once all its constituting flows are completed within that deadline.
Although they exploit communication patterns (or features) inside the net-
work, coflow heuristics are susceptible to stochastic network traffic [37, 22],
that is, they admit fewer coflows and often do not perform well for the
specified performance objective, as shown in Fig. 5.1. In addition, a coflow
heuristic written for one performance objective does not perform well on
another performance objective (for a different workload) [22] and, practi-
cally, developing a universal coflow scheduler to reply majority of coflow
scheduling algorithms is difficult yet a desired solution [72]. Therefore,
in this chapter, we question the common practice of writing handcrafted
coflow heuristics and give a proposal to replace them with a coflow sched-
uler that can automatically learn patterns in network traffic and adapt scheduling
decisions.

Specifically, we consider scheduling for deadline-sensitive coflows without
designing conventional heuristics. In the previous Chapter 4, we looked
at the simpler setting to learn flow scheduling on a single link, where an
RL-based flow scheduler learns to admit more flows than a greedy flow
scheduling heuristic. In this chapter, we argue that such learning can be
generalized to the big-switch network model [37, 22, 27] with coflows. We
propose a new framework, namely Learning Coflow Scheduling (LCS), to
learn admission policies to maximize coflow admissions while meeting their
deadlines. The task is to either admit or reject an arriving coflow. If there are

62



0 5 10 15 20 25 30
Coflow Identifier

100

101

102

103

104

105

106

C
ofl

ow
si

ze
(M

B
)

Admitted

Missed deadline

Rejected

Figure 5.1: Varys admits and finishes 20 coflows within their deadlines (Based on [38]
©2021 IEEE)

insufficient resources for an admitted coflow (where coflows compete for
limited link resources), the admitted coflow will miss its deadline. Hence,
coflow admissions should not be done greedily or by any other obvious
heuristic. Once a coflow finishes or exceeds its deadline, its resources are
released and redistributed to other coflows competing for the same links.

We use a DRL approach to admit coflows; the data rate is assigned to
admitted (co-)flows by the agent’s environment using our heuristic from
Chapter 3. DRL is well suited for learning such policies because it allows a
coflow scheduling agent to directly interact with the network environment.
It automates learning of key coflow patterns through end-to-end training on
the observed network states such that the coflow scheduling agent can adapt
decisions based on the feedback (reward) from the network environment. We
will reward successfully completed coflows and (severely) punish coflows
missing their deadlines. If a coflow is rejected, the environment produces a
reward value of zero for the scheduling agent.

Learning an online admission policy (to maximize coflow admissions) is

63



0 5 10 15 20 25 30
Coflow Identifier

100

101

102

103

104

105

106

C
ofl

ow
si

ze
(M

B
)

Admitted

Missed deadline

Rejected

Figure 5.2: the RL-based scheduling agent LCS admits as much as 23 coflows, which finish
within their deadlines (Based on [38] ©2021 IEEE)

challenging as coflows arrive stochastically and the flow volumes come from
an unknown distribution, for example, the cache workload [78], the data
mining workload[33], the Hadoop workload, or the web search workload [5],
as shown in Fig. 2.1. Consider, for example, the first 30 coflows from the
Facebook trace [22]. In this example, deadlines are set to the time the
coflow would need if it were executed alone in an empty network. The
well-known Varys coflow scheduling scheme – our reference case – admits
and successfully completes only 20 coflows out of total 30 coflows (Fig. 5.1).
On the other hand, the trained coflow scheduler, LCS, admits more coflows
(that is, 23) than Varys while still meeting their deadlines (Fig. 5.2). Such a
better scheduling order for coflows can be achieved for different workloads
if the coflow scheduling agent learns policies from coflow arrival patterns
in different network states.

64



5.2 Related Work

Although there are a few RL-based proposals for coflow scheduling [15, 97,
90], they only minimize average CCT (Chapter 2). In addition, there are
many non-ML proposals [108, 63, 22] to maximize coflow admissions while
meeting their deadlines (as discussed in Chapter 2 and 3), we do not find any
literature work that employs ML techniques to optimize for this performance
objective.

5.3 Model

5.3.1 Application Model

In this chapter, we consider the performance objective to maximize the number
of admitted coflows that meet their deadlines. In general, a data-parallel appli-
cation makes a request to either admit or reject a coflow c ∈ C (Table 2.1).
The coflow request consists of multiple flows Fc, an arrival time αc, and a
relative deadline dc. Each individual flow f i,j

c has a source i, destination j,
and an individual data volume v f . We assume that the information about
flows Fc within a coflow c ∈ C is available on their arrival.

5.3.2 Network Model

Similar to the network model in Section3.2.1, we abstract out the datacenter
network [115] as a non-blocking “big switch” [22, 27]. At any time te,
multiple coflows are competing for resources on multiple links via their
constituting flows. A flow’s data rate r f may vary during execution as
new coflow requests arrive or an active coflow leaves the network upon
completion Γc. We assume that a coflow can have at most one flow between
any (source, destination) pair (multiple flows would simply be aggregated
into one flow). We assume that the coflow scheduler is non-preemptive,
that is, any active coflow continues to receive resources (that is, data rate)
as assigned by the heuristic [37]. Since network resource utilization is

65



Table 5.1: Notation for learning model

Q Number of different coflow sequences as defined in Ta-
ble 2.1

Ck The kth set of coflow arrivals, where k ∈ {1, · · · , Q} and
Ck corresponds to C in Table 2.1

Ek Number of scheduling events in Ck, where Ek corresponds
to E in Table 2.1

τ Episode length

N Number of different sample trajectories

se Fully observed state at time te

ae ∈ {0, 1} Action taken in state se

Re Reward (or penalty) received on action ae in state se

R̄e Time-average reward at time te

Re − R̄e Differential reward

Ge Differential return (sum of differential rewards from state se
to the terminal state sE)

sj
e State sj

e in trajectory j

aj
e Action aj

e in trajectory j

Rj
e Reward Rj

e in trajectory j

πθ(ae|se) Policy network

θ Parameters of the policy network πθ(·)
βθ Learning rate (or step size) of policy network πθ(·)

P(se+1|se, ae) State transition probability function

J(θ) Performance objective for policy network πθ(·)
∇θ J(θ) Policy gradient

66



important for reducing CCTs, we use a work-conserving scheme to distribute
remaining resources (that is, data rate) after minimum resource allocation.

5.4 Design & Implementation

5.4.1 RL model

The coflow scheduling problem is modeled as a discrete-time markov de-
cision process (MDP), which is defined as a sequence of state, action, and
reward, that is, (se, ae, Re), where e is a scheduling event (Table 5.1). Specifi-
cally, the state transition is assumed to satisfy the Markov property, that is,
the probability of the current state se only depends on the action ae taken in
the previous state se−1.

The MDP is solved using DRL where the coflow scheduling agent learns by
directly interacting with the environment.

State space: The fully observed network state se at a coflow arrival event at
time te is a flat feature matrix (that is, no feature reduction by, for example,
Principal Component Analysis [50]) describing both new and active coflows
C̄e. The feature matrix has three dimensions, which are indexed by the
source, destination, and active coflow number (we reuse coflow numbers
once a coflow is finished to limit the size of this matrix). Specifically, an entry
in the feature matrix for a flow f i,j

c describes the following flow features (for
both new and active coflows):

• The flow’s remaining data volume v̄ f ∈ R≥0. For new flows, its remain-
ing data volume of course equals its total data volume v f ∈ R≥0.

• The coflow’s deadline d f ∈ R>0

The number of concurrent, active coflows |C̄e|, at any time te, is limited
by a maximum value. This is justifiable as the number of concurrently
active coflows |C̄e| in the network can vary; datacenters, however, have
reported 10s of concurrently active coflows [78] at most. Since the number
of active flows (and, in general, coflows) is variable, the feature matrix has
zero padding for combinations of source, destination and coflow index that
currently do not exist.

67



Action space: The action space ae ∈ {0, 1} is discrete, with only actions
ae = 1 and ae = 0 representing the decision to either admit or reject a new
coflow in state se. The scheduling decisions for the new coflows are taken
by the policy network (Section 5.4.1).
Rate allocation and reacting to flow/coflow completion (FCT/CCT) events
are handled by the network environment (Section 5.5.1).
Reward function: Since coflow scheduling is a continuous task, an average
reward is better suited than a total reward and it maximizes limτ→∞ 1/τ ∑τ

e=0
Re [91, Ch. 10], where τ is an episode length. Specifically, the network envi-
ronment gives a differential reward Re ← Re − R̄e [91, Ch. 10.3, Ch. 13.6] to
the scheduling agent, where R̄e is the time-average reward at time te. Since
the high-level objective is to maximize coflow admissions while meeting their
deadlines, the reward function is formulated as follows.
On admitting a new coflow c ∈ C, the network environment produces the
reward Re = (1/dc + 1/ ∑ f∈Fc v f + 1/|Fc|+ 1/(max{v1, · · · , v|Fc|})) for the
scheduling agent. The fine-grained reward Re consists of key coflow features,
that is, the deadline dc, the total volume ∑ f∈Fc v f , the number of constituent
flows |Fc|, and the volume of the largest flow max{v1, · · · , v|Fc|}. The recip-
rocal of these feature values indicates that we prefer a coflow with a short
deadline, low total volume, as few flows as possible, and low volume for the
largest flow to maximize coflow admissions. If the network environment did
not provide a fine-grained reward (like above), the scheduling agent would
find it difficult to learn to optimize the desired objective, that is, maximize
coflow admissions. For instance, we noticed that a coarse-grained reward
Re like +1 does not produce a desired policy.
If an active coflow fails to meet its deadline, the network environment
penalizes the scheduling agent with Re = −(1/dc + 1/ ∑ f∈Fc v f + 1/|Fc|+
1/(max{v1, · · · , v|Fc|})). The penalty Re consists of the same coflow features;
however, here the value is negated. The penalty ensures that the scheduling
agent does not converge to a greedy policy in which the coflow scheduling
agent admits all coflows, irrespective of whether a coflow can meet its
deadline or not. If the penalty is scaled up, we noticed that it impacts
overall coflow admissions, which are being maximized. For example, when
the penalty Re is scaled up by multiplying it with a factor (−1,−∞) to
punish it severly for missing a coflow deadline, the scheduling agent often
reduced overall successful coflow admissions.

68



Policy network: Since the state space is large and continuous, learning a
coflow scheduling policy was quite challenging. LCS uses a policy gradi-
ent algorithm [104] to directly learn a coflow scheduling policy πθ(·). The
coflow scheduling policy πθ(ae|se) is defined as the probability of taking
action ae in state se, where θ are the network parameters. The actual action
ae ∈ {0, 1}, to admit or reject a new coflow in state se, is then sampled from
action probabilities using the Gumbel-Softmax distribution [46]. Typically,
policy gradient methods learn by performing gradient descent on the neural
network parameters θ using the loss from differential return in training. If the
action produces better-than-time-average differential return (that is, more suc-
cessful coflow admissions), the scheduling agent increases the probability of
taking action ae in state se, otherwise, it decreases the probability (of taking
action ae in state se). Here, the policy gradient ∇θ J(θ) ≈ ∇θ log πθ(ae|se)
provides the direction to the policy network in parameter space.

5.4.2 Training Algorithm

The policy network is trained using the Monte Carlo [40] policy gradient
algorithm 5. Since the initial scheduling policy is assumed to be poor,
the earlier training episodes are terminated stochastically to help learning
on online coflow arrivals (line 3). In each episode, the training algorithm
rolls out multiple trajectories j ∈ [1, · · · , N] on current scheduling policy
πθ(ae|se) (line 5) and computes return (line 7) from differential rewards.
Based on the differential return, a baseline [101] is computed to estimate the
average differential return (line 8). The baseline is unique for every set of
coflows C to reduce variance in policy gradient from learning on different
sets of coflow arrival sequences Ck, k ∈ {1, · · · , Q}. It is then subtracted
from the differential return (in a particular episode) to estimate the quality of
return in comparison to the average differential return. Specifically, it helps
to reduce variance in the policy gradient from rewards (line 10).

Based on the better-than-time-average or worse-than-time-average differential
return, the training algorithm updates network parameters θ of the policy
network via gradient descent (line 12), where βθ is the learning rate (or
step size) for the network parameters θ. Since the full-batch gradient ∇θ J(θ)
update of the loss from all samples, that is, sequence of (se, ae, Re), of an

69



Algorithm 5 Monte Carlo policy gradient algorithm for training
Input: Policy network πθ(·)

1: Initialize network parameters θ, learning rate βθ > 0, and the time-
average reward R̄e = 0 {θ are initialized with the Glorot uniform initial-
izer}

2: for each episode do
3: Sample an episode length τ
4: Take a set of coflows C in coflow arrival sequences Ck, k ∈ {1, · · · , Q}

5: Rollout multiple trajectories j ∈ [1, · · · , N] on current policy πθ(·) ∼
{sj

1, aj
1, Rj

1, · · · , sj
E, aj

E, Rj
E} until τ

6: R̄e ← R̄e + 1/(N · E)∑N
j=1 ∑E

e=1 Rj
e;

7: Calculate differential return Gj
e = ∑E

e′=e Rj
e′ − R̄e′

8: be = 1/N ∑N
j=1 Gj

e {Compute baseline}
9: for j ∈ [1, · · · , N] do

10: ∇θ J(θ) ≈ ∇θ log πθ(ae|se)(G
j
e − be);

11: end for
12: θ ← θ + βθ∇θ J(θ); {Update network parameters θ}
13: τ ← τ + ε
14: end for

70



episode is memory-intensive (because of large state space), the network
parameters θ are updated using mini-batching.

Although the scheduling agent is trained using the episodic algorithm, it
should work in any production environments where coflows scheduling is
a continuous task.

5.5 Experimental Evaluation

We evaluated LCS using a flow-level simulator as an environment with a
production workload from Facebook [20, 22]. Our experiment results answer
the following questions: (1) Does LCS learn a reasonable coflow scheduling
policy to maximize coflow admissions while meeting coflow deadlines? (2)
How does LCS scheduler perform compared with the heuristics?

5.5.1 Methodology

Workload

Similar to the workload in Chapter 3, we use a production trace from
Facebook [20, 22] for our experimental evaluation. Specifically, we use the
relative deadline factor to provide some slack for the data tranfers (Sec-
tion 3.7.1).However, Varys [22] uses slightly different notion of deadlines:
given a factor between 0.1 and 10, the actual deadline results from multiply-
ing the coflow duration with a random variate from a uniform distribution
U(1, 1 + x). For fair comparison, we use our notion of deadlines for both
coflow schedulers.

Network Environment

In the network environment (as shown in Fig. 5.3), we developed a custom-
tailored flow simulator to represent the network resources and the coflows

71



State

Observation

Reward/Penalty

Topology

Environment

Simulator

Scheduling	Agent

Policy	Network
Rate

Assignment

Data
rates

FCT/
CCT

Action:
Accept/
Reject Traffic	

generator

Figure 5.3: Scheduling agent with environment (Based on [38] ©2021 IEEE)

using them. In addition, we complement the flow simulator by a rate assign-
ment component that deals with the actual resource allocation decisions,
once the RL scheduling agent has admitted a coflow.

Simulator: Similar to the flow simulator in Chapter 3, the simulator in the
network environment is driven by the scheduling decisions on coflow arrival
and coflow/flow departure events. However, when a coflow arrives, the
coflow scheduling agent only makes decision to either admit or reject the
coflow request and then delegates control to the rate assignment component.
In addition, whenever a flow or all flows of a coflow departs, the simulator
delivers the corresponding events to the rate assignment component. The
rate assigment component is then free to reassign those resources as it sees
fits (and to inform the simulator about changes in rate allocation). If a coflow
misses the deadline, all its remaining flows are dropped from the network
and the occupied resources are released.
Rate allocation in the environment: While the LCS agent decides all ad-
missions, the flow rates are computed and assigned within the environment.
These rates of active flows are computed by our (deterministic, non-ML
based) heuristic [37] (in Chapter 3). The heuristic works by iterating over
the earliest completion times of active coflows (earlier than the new coflow’s
deadline) to find possible data rates such that the constituent flows (of the
new coflow) finish within their deadline. We use it in a work-conserving

72



way, that is, when flows complete or coflows are dropped, we reassign the
freed-up resources to other flows competing for those links.
Simulator input: We drive the simulator from production traces as made
available by, for example, Facebook [22].

LCS

We build the LCS admission agent using a multilayered perceptrons (MLPs)
neural network [79, 103] because MLPs are good function approximators
and classifiers. Since the state space in our problem is large and continu-
ous, finding the right number of hidden layers and neurons is challenging
because a large policy network is computationally and memory-intensive.
After trying different numbers of layers and neurons, we are able to learn a
reasonable coflow scheduling policy with a small neural network. Specifi-
cally, there are two hidden layers in the network, with 32 and 16 neurons,
respectively, and their activation function is set to ReLU [75].

The policy network uses Adam optimizer [53] to update its parameters,
where the learning rate βθ for network parameters is set to 10−4. The
gradients of the neural network are updated in mini-batches and the batch
size during training of the trace is set to 128. In addition, the entropy
cofficient for exploring the coflow scheduling policy is intialized to 0.01;
it is gradually decayed with value 10−3 until the minimum value 10−4

during training of the policy network. The policy network outputs action
probabilities, for which an action is sampled using the Gumbel-Softmax
distribution [46].

Since the input feature matrix has zero padding for a fixed length, LCS
passes input through a masking layer to inform the model of zero padding
so that it ignores these invariant values while making scheduling decisions.
With masking turned off, the agent finds it difficult to learn a coflow schedul-
ing policy. In fact, after a few training episodes, it learned to greedily admit
or reject all coflows, depending on the reward function. Since the keras
Flatten layer in policy network does not support masking, we have extended
it to pass input mask through the policy network.

73



0 200 400 600 800 1000

Episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
u

m
b

er
of

co
fl

ow
s

×102

Ep lengths

LCS admissions

LCS missed deadlines

Figure 5.4: Total coflow admissions and missed deadlines during training of LCS scheduler,
where the deadline factor is set to 1.0 (Based on [38] ©2021 IEEE)

5.5.2 Simulation Results

Training

The LCS scheduler is trained using the algorithm 5. The algorithm runs
1000 training episodes and, in each episode, it rollouts 8 parallel trajectories,
that is, sequences of (se, ae, Re). The trajectories are stochastically terminated
after the maximum time τ to limit scheduling to short set of coflows because
the initial coflow scheduling policy is poor (for example, from random
initialization of network parameters) and training algorithm can run into
problems like exploding and vanishing policy gradient. The episode lengths
are gradually increased during training to make challenging decisions for
large set of coflows. Specifically, the reset probability of episode length p =
5 · 10−5 decays (with value 4 · 10−10) until the minimum value p = 5 · 10−8

during training of the policy network. The differential reward is enabled to
reduce noise in rewards and the maximum number of concurrent, active
coflows is set to 10 for fixed input to the MLP networks. The results in Fig. 5.4

74



0

1

R
ew

ar
d

s

×10−4 Time-average reward

0 200 400 600 800
Episodes

−5

0

5

R
ew

ar
d

s

Episode reward

Figure 5.5: Time-average rewards R̄ and episode rewards R received during training of
LCS scheduler (Based on [38] ©2021 IEEE)

show that the LCS scheduler learns a reasonable policy to admit coflows
while meeting their deadlines. Specifically, the percentage of successful
coflow admissions increases during training.

The Fig. 5.5 plots both the time-average reward and per-episode mean
reward received during the training of the LCS scheduler. As expected, the
time-average reward increases during training; however, after approximately
900 episodes, the time-average reward stops increasing, which indicates that
the policy network has converaged to a coflow scheduling policy.

Comparison

We compare our LCS scheduler with the Varys [22] heuristic, which admits
coflows if it can allocate minimum resources (that is, data rates) from remain-
ing resources to meet coflow deadlines. Here, we use the relative deadline
factor to compare both coflow schedulers. The result in Fig. 5.6 shows that
the LCS scheduler successfully admits more coflows than Varys [22]. Each

75



1.0x 1.25x 1.5x 1.75x 2.0x
Relative deadline factor (x)

0

25

50

75

100

S
u

cc
es

sf
u

l
co

fl
ow

ad
m

is
si

on
s

(%
)

LCS

Varys

Figure 5.6: Percentage of successful coflow admissions by the two coflow schedulers under
different network load (Based on [38] ©2021 IEEE)

data point of LCS in Fig. 5.6 is the average over successful coflow admissions
in 25 different test episodes (Fig. 5.7). The percentage of successful coflow
admissions by Varys are surprisingly lower than the successful coflow ad-
missions reported in the paper. When we re-run Varys with their notion of
coflow deadlines, the percentage of successful coflow admissons were still
less than the reported results. For example, for x = 1, Varys successfully
admitted 45.44 % of the total coflows compared to 75 % [22] – even though
they have a lenient criteria for considering a successful coflow admission,
that is, if Γc − dc < 100 holds, the coflow c ∈ C has met its deadline. If
we consider 75 % successful coflow admissions for x = 1 from Varys, LCS
still has higher successful coflow admissions (that is, 94.3 % at the relative
deadline factor 2.0).

Fig. 5.7 plots multiple test episodes at different deadline factors, varied from
1.0 to 2.0. In each test episode, a different seed is used. We see variance
in successful coflow admissions because the actions are sampled from a
distribution (that is, Gumbel-Softmax [46]). As expected, the percentage
of successful coflow admissions increases with the increase in deadline

76



0 5 10 15 20 25

Episodes

50

75

100

S
u

cc
es

sf
u

l
co

fl
ow

ad
m

is
si

on
s

(%
)

1x

1.1x

1.2x

1.3x

1.4x

1.5x

1.8x

2x

Figure 5.7: Percentage of successful coflow admissions by LCS at different relative deadline
factors (Based on [38] ©2021 IEEE)

factors.

5.6 Concluding Remarks

In this chapter, we presented LCS, a DRL-based admission scheme for
coflows with deadlines. Specifically, LCS learned a scheduling policy for the
specified high-level performance objective to maximize coflow admissions
while meeting their deadlines. It outperformed the competing heuristic
Varys on a relevant production workload.

77





Chapter 6

Conclusion

Can a coflow scheduler automatically learn online scheduling policies to
improve network performance of data-parallel applications? This disserta-
tion primarily answers this question by demonstrating the LCS scheduler.
Specifically, the LCS scheduler achieves the desired performance objective
— to maximize coflow admissions while meeting their deadlines — using
reinforcement learning. The presented RL techniques enable us to make
informed decisions in the presence of stochastic coflow arrivals in data
traffic. Besides, we have presented a new coflow heuristic and an RL-based
flow scheduler for the same performance objective and outperformed com-
peting schedulers. In addition, we have evaluated all schedulers through
large-scale trace-driven simulation on production traces.

6.1 Future Work

This dissertation has demonstrated that flow and coflow schedulers can
effectively learn scheduling policies using reinforcement learning. In this
chapter, we revisit the design choices of the LFS and LCS scheduler to
point out their limitations and highlight some of the interesting research
directions for future work.

Learning Information-agnostic Coflow Scheduling: Like many existing pro-
posals [114, 22], our approaches assume that schedulers have prior knowl-
edge (for example, number of flows, flow sizes) at arrival time. However,
in some applications [94, 44], prior knowledge of a coflow is unknown

79



for which various information-agnostic coflow schedulers [102, 59, 20] are
proposed. However, automatically learning these coflow scheduling policies
using RL [15, 97] is an interesting avenue for future research.
Joint Optimization of Job and Coflow Scheduling: While we consider only
single-stage coflows in this dissertation, coflows can have dependencies in a
multi-stage job DAG [20], that is, a coflow starts-after or finishes-before other
coflows. Therefore, DRL-based coflow scheduling policies with dependency
constraints can be further explored (for instance, DeepWeave [90]).
Distributed Coflow Scheduling and Routing: Although we abstract out the
data center network as a non-blocking switch in our approaches, integrating
coflow routing with scheduling has been an interesting research topic [85, 57,
116]. In fact, CoRBA [85] has recently formulated and solved the problem to
reduce the average CCT as a mixed-integer nonlinear program. In addition,
RAPIER [116] has earlier shown that the average CCT can be reduced by
integrating coflow scheduling and routing; however, their approach makes
centralized decisions using global network information, which is not a
scalable approach in large networks. Therefore, learning to make distributed
decisions using multiple RL agents in a large network is an interesting
problem for future research.
In-network Coflow Scheduling: With the recent advances in programmable
packet scheduling [88], providing in-network support to coflow scheduling
at end-hosts is another interesting research topic. For instance, pCoflow [41]
has shown that such integration is effective to reduce average CCT.
Theoratical Evaluation: Although the theoratical analysis of coflow schedul-
ing to minimize average CCT has been extensively studied [3, 84, 52], the
theoretical investigation of coflow scheduling with deadline constraints is an
open research topic for future work. In addition, a near-optimal information-
agnostic coflow scheduler can be designed as future work.

80



References

[1] Apache Hadoop. http://hadoop.apache.org/. Date last accessed
02-June-2021.

[2] Gurobi Solver. http://www.gurobi.com/. Date last accessed 02-June-
2021.

[3] Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agar-
wal, David Shmoys, and Amin Vahdat. Sincronia: Near-optimal net-
work design for coflows. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’18,
pages 16–29, New York, NY, USA, 2018. Association for Computing
Machinery.

[4] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,
Nelson Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling
for data center networks. In Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation, NSDI’10, pages 19–19,
Berkeley, CA, USA, 2010. USENIX Association.

[5] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Mu-
rari Sridharan. Data center tcp (dctcp). In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, pages 63–74, New York,
NY, USA, 2010. ACM.

[6] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. pfabric: Minimal near-
optimal datacenter transport. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, pages 435–446, New
York, NY, USA, 2013. ACM.

81

http://hadoop.apache.org/
http://www.gurobi.com/


[7] Md Zahangir Alom, Tarek M. Taha, Chris Yakopcic, Stefan Westberg,
Paheding Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C.
Van Essen, Abdul A. S. Awwal, and Vijayan K. Asari. A state-of-the-art
survey on deep learning theory and architectures. Electronics, 8(3),
2019.

[8] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. On the
complexity of traffic traces and implications. Proc. ACM Meas. Anal.
Comput. Syst., 4(1), May 2020.

[9] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang.
Information-agnostic flow scheduling for commodity data centers.
In Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, NSDI’15, page 455–468, USA, 2015. USENIX
Association.

[10] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron.
Towards predictable datacenter networks. In Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM ’11, pages 242–253, New York,
NY, USA, 2011. ACM.

[11] Theophilus Benson, Aditya Akella, and David A. Maltz. Network
traffic characteristics of data centers in the wild. In Proceedings of the
10th ACM SIGCOMM Conference on Internet Measurement, IMC ’10,
pages 267–280, New York, NY, USA, 2010. Association for Computing
Machinery.

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[13] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh. Scheduling
mix-flows in commodity datacenters with karuna. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, pages 174–187,
New York, NY, USA, 2016. Association for Computing Machinery.

[14] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. Auto: Scaling
deep reinforcement learning for datacenter-scale automatic traffic
optimization. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, pages 191–205,
New York, NY, USA, 2018. Association for Computing Machinery.

82



[15] Tianba Chen, Wei Li, YuKang Sun, and Yunchun Li. M-drl: Deep rein-
forcement learning based coflow traffic scheduler with mlfq threshold
adaption. International Journal of Parallel Programming, May 2021.

[16] Mosharaf Chowdhury. Coflow: A Networking Abstraction for Distributed
Data-Parallel Applications. PhD dissertation, University of California,
Berkeley, 2015.

[17] Mosharaf Chowdhury, Samir Khuller, Manish Purohit, Sheng Yang,
and Jie You. Near optimal coflow scheduling in networks. In The
31st ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’19, page 123–134, New York, NY, USA, 2019. Association for
Computing Machinery.

[18] Mosharaf Chowdhury, Zhenhua Liu, Ali Ghodsi, and Ion Stoica. Hug:
Multi-resource fairness for correlated and elastic demands. In Pro-
ceedings of the 13th Usenix Conference on Networked Systems Design and
Implementation, NSDI’16, page 407–424, USA, 2016. USENIX Associa-
tion.

[19] Mosharaf Chowdhury and Ion Stoica. Coflow: A networking abstrac-
tion for cluster applications. In Proceedings of the 11th ACM Workshop
on Hot Topics in Networks, HotNets-XI, pages 31–36, New York, NY,
USA, 2012. ACM.

[20] Mosharaf Chowdhury and Ion Stoica. Efficient coflow scheduling
without prior knowledge. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM ’15, pages
393–406, New York, NY, USA, 2015. ACM.

[21] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan,
and Ion Stoica. Managing data transfers in computer clusters with
orchestra. In Proceedings of the ACM SIGCOMM 2011 Conference, SIG-
COMM ’11, page 98–109, New York, NY, USA, 2011. Association for
Computing Machinery.

[22] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow
scheduling with varys. In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, pages 443–454, New York, NY, USA, 2014.
ACM.

83



[23] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications
of the ACM, 56:74–80, 2013.

[24] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI’04: Sixth Symposium on Operating
System Design and Implementation, pages 137–150, San Francisco, CA,
2004.

[25] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, January
2008.

[26] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
highly available key-value store. volume 41, pages 205–220, 10 2007.

[27] N. G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K.
Ramakrishnan, and Jacobus E. van der Merive. A flexible model for
resource management in virtual private networks. In Proceedings of
the Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’99, pages 95–108, New York,
NY, USA, 1999. ACM.

[28] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin,
and Rodrigo Fonseca. Jockey: Guaranteed job latency in data parallel
clusters. In Proceedings of the 7th ACM European Conference on Com-
puter Systems, EuroSys ’12, page 99–112, New York, NY, USA, 2012.
Association for Computing Machinery.

[29] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1126–1135. PMLR, 06–11 Aug 2017.

[30] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA,
1990.

84



[31] D. Ghosal, S. Shukla, A. Sim, A. V. Thakur, and K. Wu. A rein-
forcement learning based network scheduler for deadline-driven data
transfers. In 2019 IEEE Global Communications Conference (GLOBE-
COM), pages 1–6, 2019.

[32] G. R. Ghosal, D. Ghosal, A. Sim, A. V. Thakur, and K. Wu. A deep
deterministic policy gradient based network scheduler for deadline-
driven data transfers. In 2020 IFIP Networking Conference (Networking),
pages 253–261, 2020.

[33] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kan-
dula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen
Patel, and Sudipta Sengupta. Vl2: A scalable and flexible data center
network. In Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication, SIGCOMM ’09, pages 51–62, New York, NY, USA,
2009. ACM.

[34] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M.
Watson, Andrew W. Moore, Steven Hand, and Jon Crowcroft. Queues
don’t matter when you can JUMP them! In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages 1–14,
Oakland, CA, May 2015. USENIX Association.

[35] Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In ICML, 2018.

[36] Martin T. Hagan, Howard B. Demuth, and Mark Beale. Neural Network
Design. PWS Publishing Co., USA, 1997.

[37] A. Hasnain and H. Karl. Coflow scheduling with performance guaran-
tees for data center applications. In 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID), pages
850–856, 2020.

[38] Asif Hasnain and Holger Karl. Learning coflow admissions. In
IEEE INFOCOM 2021 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 1–6, 2021.

85



[39] Asif Hasnain and Holger Karl. Learning flow scheduling. In 2021 IEEE
18th Annual Consumer Communications Networking Conference (CCNC),
pages 1–6, 2021.

[40] W. K. Hastings. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57(1):97–109, 04 1970.

[41] Cristian Hernandez Benet, Andreas J. Kassler, Gianni Antichi,
Theophilus A. Benson, and Gergely Pongracz. Providing In-network
Support to Coflow Scheduling. arXiv e-prints, page arXiv:2007.02624,
July 2020.

[42] Jonathan Ho and Stefano Ermon. Generative adversarial imitation
learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, vol-
ume 29. Curran Associates, Inc., 2016.

[43] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing
flows quickly with preemptive scheduling. In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’12, pages 127–
138, New York, NY, USA, 2012. ACM.

[44] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed data-parallel programs from sequential
building blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys Eu-
ropean Conference on Computer Systems 2007, EuroSys ’07, page 59–72,
New York, NY, USA, 2007. Association for Computing Machinery.

[45] Akshay Jajoo, Rohan Gandhi, and Y. Charlie Hu. Graviton: Twisting
space and time to speed-up coflows. In 8th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 16), Denver, CO, June 2016.
USENIX Association.

[46] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization
with gumbel-softmax. 2017.

[47] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. Silo:
Predictable message latency in the cloud. In Proceedings of the 2015

86



ACM Conference on Special Interest Group on Data Communication, SIG-
COMM ’15, page 435–448, New York, NY, USA, 2015. Association for
Computing Machinery.

[48] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji
Prabhakar, Albert Greenberg, and Changhoon Kim. Eyeq: Practical
network performance isolation at the edge. In Presented as part of the
10th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 13), pages 297–311, Lombard, IL, 2013. USENIX.

[49] Huiling Jiang, Qing Li, Yong Jiang, GengBiao Shen, Richard Sinnott,
Chen Tian, and Mingwei Xu. When machine learning meets conges-
tion control: A survey and comparison. Computer Networks, 192:108033,
2021.

[50] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[51] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
Reinforcement learning: A survey. J. Artif. Int. Res., 4(1):237–285, May
1996.

[52] S. Khuller, Jingling Li, Pascal Sturmfels, Kevin Sun, and Prayaag
Venkat. Select and permute: An improved online framework
for scheduling to minimize weighted completion time. ArXiv,
abs/1704.06677, 2018.

[53] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. International Conference on Learning Representations, 12

2014.

[54] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad
A. Al Sallab, Senthil Yogamani, and Patrick Pérez. Deep reinforcement
learning for autonomous driving: A survey. IEEE Transactions on
Intelligent Transportation Systems, pages 1–18, 2021.

[55] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238–1274, 2013.

87



[56] Wenxin Li, Xu Yuan, Wenyu Qu, Heng Qi, Xiaobo Zhou, Sheng Chen,
and Renhai Xu. Efficient coflow transmission for distributed stream
processing. In IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, page 1319–1328. IEEE Press, 2020.

[57] Yupeng Li, Shaofeng H.-C. Jiang, Haisheng Tan, Chenzi Zhang, Guihai
Chen, Jipeng Zhou, and Francis C. M. Lau. Efficient online coflow
routing and scheduling. In Proceedings of the 17th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’16,
page 161–170, New York, NY, USA, 2016. Association for Computing
Machinery.

[58] Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. CoRR, 09 2015.

[59] L. Liu, H. Xu, C. Gao, and P. Wang. Bottleneck-aware coflow schedul-
ing without prior knowledge. In IEEE INFOCOM 2020 - IEEE Con-
ference on Computer Communications Workshops (INFOCOM WKSHPS),
pages 50–55, 2020.

[60] Wai-xi Liu. Intelligent routing based on deep reinforcement learning
in software-defined data-center networks. In 2019 IEEE Symposium on
Computers and Communications (ISCC), pages 1–6, 2019.

[61] Jinjie Lu, Waixi Liu, Yinghao Zhu, Sen Ling, Zhitao Chen, and Jiaqi
Zeng. Scheduling mix-flow in sd-dcn based on deep reinforcement
learning with private link. In 2020 16th International Conference on
Mobility, Sensing and Networking (MSN), pages 395–401, 2020.

[62] Yuanwei Lu, Guo Chen, Larry Luo, Kun Tan, Yongqiang Xiong, Xiao-
liang Wang, and Enhong Chen. One more queue is enough: Minimiz-
ing flow completion time with explicit priority notification. In IEEE
INFOCOM 2017 - IEEE Conference on Computer Communications, pages
1–9, 2017.

[63] S. Ma, J. Jiang, B. Li, and B. Li. Chronos: Meeting coflow deadlines
in data center networks. In 2016 IEEE International Conference on
Communications (ICC), pages 1–6, May 2016.

88



[64] Yiqing Ma, Han Tian, Xudong Liao, Junxue Zhang, Weiyan Wang, Kai
Chen, and Xin Jin. Multi-objective congestion control. arXiv preprint
arXiv:2107.01427, 2021.

[65] Sridhar Mahadevan and Georgios Theocharous. Optimizing produc-
tion manufacturing using reinforcement learning. In Proceedings of
the Eleventh International Florida Artificial Intelligence Research Society
Conference, page 372–377. AAAI Press, 1998.

[66] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A
system for large-scale graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’10,
page 135–146, New York, NY, USA, 2010. Association for Computing
Machinery.

[67] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth
Kandula. Resource management with deep reinforcement learning.
In Proceedings of the 15th ACM Workshop on Hot Topics in Networks,
HotNets ’16, pages 50–56, New York, NY, USA, 2016. Association for
Computing Machinery.

[68] Hongzi Mao, S. Chen, Drew Dimmery, Shaun Singh, Drew Blais-
dell, Yuandong Tian, M. Alizadeh, and E. Bakshy. Real-world video
adaptation with reinforcement learning. ArXiv, abs/2008.12858, 2020.

[69] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. Learning scheduling algorithms
for data processing clusters. In Proceedings of the ACM Special Interest
Group on Data Communication, SIGCOMM ’19, pages 270–288, New
York, NY, USA, 2019. Association for Computing Machinery.

[70] Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf,
and Mohammad Alizadeh. Variance reduction for reinforcement
learning in input-driven environments. In International Conference on
Learning Representations, 2019.

[71] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achiev-
ing 100% throughput in an input-queued switch. IEEE Transactions on
Communications, 47(8):1260–1267, Aug 1999.

89



[72] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
Universal packet scheduling. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 501–521, Santa
Clara, CA, March 2016. USENIX Association.

[73] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learn-
ing. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceed-
ings of The 33rd International Conference on Machine Learning, volume 48

of Proceedings of Machine Learning Research, pages 1928–1937, New
York, New York, USA, 20–22 Jun 2016. PMLR.

[74] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali,
Mohammad Alizadeh, and Sachin Katti. Numfabric: Fast and flexible
bandwidth allocation in datacenters. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 188–201, New York, NY,
USA, 2016. Association for Computing Machinery.

[75] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10,
pages 807–814, Madison, WI, USA, 2010. Omnipress.

[76] Xiaohui Nie, Youjian Zhao, Zhihan Li, Guo Chen, Kaixin Sui, Jiyang
Zhang, Zijie Ye, and Dan Pei. Dynamic tcp initial windows and
congestion control schemes through reinforcement learning. IEEE
Journal on Selected Areas in Communications, 37(6):1231–1247, 2019.

[77] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. Fastpass: A centralized "zero-queue" datacenter
network. In Proceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, page 307–318, New York, NY, USA, 2014. Association
for Computing Machinery.

[78] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. Inside the social network’s (datacenter) network. In Pro-
ceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, pages 123–137, New York, NY, USA,
2015. Association for Computing Machinery.

90



[79] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning representations by back-propagating errors. Nature,
323(6088):533–536, Oct 1986.

[80] Stefan Schneider, Ramin Khalili, Adnan Manzoor, Haydar Qarawlus,
Rafael Schellenberg, Holger Karl, and Artur Hecker. Self-learning
multi-objective service coordination using deep reinforcement learn-
ing. IEEE Transactions on Network and Service Management, pages 1–1,
2021.

[81] Stefan Schneider, Adnan Manzoor, Haydar Qarawlus, Rafael Schel-
lenberg, Holger Karl, Ramin Khalili, and Artur Hecker. Self-driving
network and service coordination using deep reinforcement learning.
In 2020 16th International Conference on Network and Service Management
(CNSM), pages 1–9, 2020.

[82] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and
Pieter Abbeel. Trust region policy optimization. In Proceedings of
the 32nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, page 1889–1897. JMLR.org, 2015.

[83] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. 07 2017.

[84] M. Shafiee and J. Ghaderi. An improved bound for minimizing the
total weighted completion time of coflows in datacenters. IEEE/ACM
Transactions on Networking, 26(4):1674–1687, Aug 2018.

[85] Li Shi, Yang Liu, Junwei Zhang, and Thomas Robertazzi. Coflow
scheduling in data centers: Routing and bandwidth allocation. IEEE
Transactions on Parallel and Distributed Systems, 32(11):2661–2675, 2021.

[86] Yang Shi, Jiawei Fei, Mei Wen, Qun Huang, and Nan Wu. Metaflow: A
better traffic abstraction for distributed applications. In 2019 IEEE 21st
International Conference on High Performance Computing and Communica-
tions; IEEE 17th International Conference on Smart City; IEEE 5th Interna-
tional Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pages 1123–1130, 2019.

91



[87] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, L Robert
Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap,
Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel,
and Demis Hassabis. Mastering the game of go without human
knowledge. Nature, 550:354–359, 2017.

[88] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh,
Sharad Chole, Shang-Tse Chuang, Anurag Agrawal, Hari Balakrish-
nan, Tom Edsall, Sachin Katti, and Nick McKeown. Programmable
packet scheduling at line rate. In Proceedings of the 2016 ACM SIG-
COMM Conference, SIGCOMM ’16, page 44–57, New York, NY, USA,
2016. Association for Computing Machinery.

[89] Penghao Sun, Zehua Guo, Sen Liu, Julong Lan, Junchao Wang, and
Yuxiang Hu. Smartfct: Improving power-efficiency for data cen-
ter networks with deep reinforcement learning. Computer Networks,
179:107255, 2020.

[90] Penghao Sun, Zehua Guo, Junchao Wang, Junfei Li, Julong Lan, and
Yuxiang Hu. Deepweave: Accelerating job completion time with deep
reinforcement learning-based coflow scheduling. In Christian Bessiere,
editor, Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pages 3314–3320. International Joint
Conferences on Artificial Intelligence Organization, 7 2020. Main
track.

[91] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

[92] Bingchuan Tian, Chen Tian, Haipeng Dai, and Bingquan Wang.
Scheduling coflows of multi-stage jobs to minimize the total weighted
job completion time. In IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications, pages 864–872, 2018.

[93] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy

92



Ryaboy. Storm@twitter. In Proceedings of the 2014 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’14, page 147–156,
New York, NY, USA, 2014. Association for Computing Machinery.

[94] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlas, Muhsen Owaida,
Ce Zhang, and Ankit Singla. Is advance knowledge of flow sizes
a plausible assumption? In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages 565–580, Boston,
MA, February 2019. USENIX Association.

[95] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar.
Learning to route. In Proceedings of the 16th ACM Workshop on Hot
Topics in Networks, HotNets-XVI, page 185–191, New York, NY, USA,
2017. Association for Computing Machinery.

[96] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. Deadline-
aware datacenter tcp (d2tcp). In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM ’12, page 115–126, New York,
NY, USA, 2012. Association for Computing Machinery.

[97] S. Wang, S. Wang, R. Huo, T. Huang, J. Liu, and Y. Liu. Deepaalo:
Auto-adjusting demotion thresholds for information-agnostic coflow
scheduling. In IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 1123–1128,
2020.

[98] Wei Wang, Shiyao Ma, Bo Li, and Baochun Li. Coflex: Navigating the
fairness-efficiency tradeoff for coflow scheduling. In IEEE INFOCOM
2017 - IEEE Conference on Computer Communications, pages 1–9, 2017.

[99] Bernd Waschneck, André Reichstaller, Lenz Belzner, Thomas Alten-
müller, Thomas Bauernhansl, Alexander Knapp, and Andreas Kyek.
Optimization of global production scheduling with deep reinforce-
ment learning. Procedia CIRP, 72:1264–1269, 2018. 51st CIRP Confer-
ence on Manufacturing Systems.

[100] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 8(3):279–292, May 1992.

93



[101] Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-
based reinforcement learning. In Proceedings of the Seventeenth Confer-
ence on Uncertainty in Artificial Intelligence, UAI’01, pages 538–545, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[102] Zhe Wei, Songtao Guo, Guiyan Liu, and Yuanyuan Yang. Coflow
scheduling with unknown prior information in data center networks.
In ICC 2021 - IEEE International Conference on Communications, pages
1–6, 2021.

[103] Paul Werbos. Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Science. Thesis (Ph. D.). Appl. Math. Harvard University.
PhD thesis, 01 1974.

[104] Ronald J. Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Mach. Learn., 8(3–4):229–256,
May 1992.

[105] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
Better never than late: Meeting deadlines in datacenter networks. In
Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
pages 50–61, New York, NY, USA, 2011. ACM.

[106] Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-
generated congestion control. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page 123–134, New
York, NY, USA, 2013. Association for Computing Machinery.

[107] Wai xi Liu, Jun Cai, Qing Chun Chen, and Yu Wang. Drl-r: Deep
reinforcement learning approach for intelligent routing in software-
defined data-center networks. Journal of Network and Computer Applica-
tions, 177:102865, 2021.

[108] Renhai Xu, Wenxin Li, Keqiu Li, and Xiaobo Zhou. Shaping deadline
coflows to accelerate non-deadline coflows. In 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS), pages 1–6, 2018.

[109] Renhai Xu, Wenxin Li, Keqiu Li, Xiaobo Zhou, and Heng Qi. Schedul-
ing mix-coflows in datacenter networks. IEEE Transactions on Network
and Service Management, 18(2):2002–2015, 2021.

94



[110] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang,
Chi Harold Liu, and Dejun Yang. Experience-driven networking: A
deep reinforcement learning based approach. pages 1871–1879, 04

2018.

[111] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), pages 15–28,
San Jose, CA, April 2012. USENIX Association.

[112] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working
sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, page 10, USA, 2010. USENIX Association.

[113] Han Zhang, Xingang Shi, Xia Yin, Fengyuan Ren, and Zhiliang Wang.
More load, more differentiation — a design principle for deadline-
aware congestion control. In 2015 IEEE Conference on Computer Com-
munications (INFOCOM), pages 127–135, 2015.

[114] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf Chowdhury, and
Yanhui Geng. Coda: Toward automatically identifying and schedul-
ing coflows in the dark. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 160–173, New York, NY, USA, 2016.
Association for Computing Machinery.

[115] Mingyang Zhang, Radhika Niranjan Mysore, Sucha Supittayaporn-
pong, and Ramesh Govindan. Understanding lifecycle management
complexity of datacenter topologies. In Proceedings of the 16th USENIX
Conference on Networked Systems Design and Implementation, NSDI’19,
page 235–254, USA, 2019. USENIX Association.

[116] Yangming Zhao, Kai Chen, Wei Bai, Minlan Yu, Chen Tian, Yanhui
Geng, Yiming Zhang, Dan Li, and Sheng Wang. Rapier: Integrating
routing and scheduling for coflow-aware data center networks. In
2015 IEEE Conference on Computer Communications, INFOCOM 2015,
Kowloon, Hong Kong, April 26 - May 1, 2015, pages 424–432, 2015.

95



[117] Qihua Zhou, Peng Li, Kun Wang, Deze Zeng, Song Guo, and Minyi
Guo. Swallow: Joint online scheduling and coflow compression in
datacenter networks. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 505–514, 2018.

[118] Timothy Zhu, Daniel S. Berger, and Mor Harchol-Balter. Snc-meister:
Admitting more tenants with tail latency slos. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, SoCC ’16, page 374–387,
New York, NY, USA, 2016. Association for Computing Machinery.

[119] Timothy Zhu, Michael Kozuch, and Mor Harchol-Balter. Workload-
compactor: reducing datacenter cost while providing tail latency slo
guarantees. pages 598–610, 09 2017.

[120] Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor Harchol-
Balter, and Gregory R. Ganger. Prioritymeister: Tail latency qos for
shared networked storage. In Proceedings of the ACM Symposium on
Cloud Computing, SOCC ’14, page 1–14, New York, NY, USA, 2014.
Association for Computing Machinery.

96


	Acknowledgements
	Previously Published Papers
	List of Figures
	List of Tables
	Introduction
	Coflows as an Abstraction in Networks
	Identified Problems and Contribution

	Background and Related Work
	Performance Objectives for Coflow Schedulers
	Machine Learning
	Markov Decision Process
	Reinforcement Learning
	Reinforcement Learning for Networking

	Practical Challenges

	Coflow Scheduling for time-sensitive applications
	Problem Overview
	Model definitions
	Network Model
	Motivating Example

	Related Work
	Optimization problem formulation
	Overview
	Input
	Decision variables
	Constraints
	Objective functions

	Heuristic
	Work-Conserving Resource Allocation
	Evaluation
	Methodology
	Simulation Results

	Concluding Remarks

	Learning Flow Scheduling
	Introduction
	Related Work
	Design
	Model definition
	RL model
	Training algorithm

	Evaluation
	Methodology
	Simulation results

	Concluding Remarks

	Learning Coflow Admissions
	Motivation
	Related Work
	Model
	Application Model
	Network Model

	Design & Implementation
	RL model
	Training Algorithm

	Experimental Evaluation
	Methodology
	Simulation Results

	Concluding Remarks

	Conclusion
	Future Work

	References

