'L‘ PADERBORN UNIVERSITY

The University for the Information Society

Stefan Schneider

Network and Service Coordination:
Conventional and Machine Learning Approaches

Dissertation
in partial fulfillment of the requirements for the degree of

Doctor rerum naturalium (Dr. rer. nat.)

submitted to

Paderborn University, Germany

Faculty of Electrical Engineering, Computer Science, and Mathematics

Supervisor

Prof. Dr. Holger Karl

Paderborn, November 2021

Referees:

Prof. Dr. Holger Karl, Hasso Plattner Institute, University of Potsdam, Germany
Prof. Dr. Martina Zitterbart, Karlsruhe Institute of Technology, Germany
Jun.-Prof. Dr. Sebastian Peitz, Paderborn University, Germany

Submission: November 2021
Examination: January 2022

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of Paderborn University’s products or services. Internal or personal use
of this material is permitted. If interested in reprinting /republishing IEEE copyrighted material
for advertising or promotional purposes or for creating new collective works for resale or
redistribution, please go to http://www.ieee.org/publications_standards/publications/
rights/rights_link.html to learn how to obtain a License from RightsLink. If applicable,
University Microfilms and/or ProQuest Library, or the Archives of Canada may supply single
copies of the dissertation.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Abstract

Modern services typically consist of interconnected components, e.g., microservices in a service
mesh, Virtual Network Functions (VNFs) in a network service, or machine learning functions
in a pipeline. Examples for service components are video optimizers or web servers for video
streaming or management functions for telecommunication. As these service components are
implemented in software, they can be started, stopped, and scaled on demand on available
compute nodes in the network. This increased flexibility allows reducing costs while improving
service quality. At the same time, it comes with new challenges, requiring dynamic service
scaling and placement as well as flow scheduling and routing. Such dynamic network and
service coordination is a key challenge in Network Function Virtualization (NFV), edge and
cloud computing, and 5G and beyond.

This PhD thesis motivates and precisely states the problem of network and service coordination
and discusses relevant real-world use cases. Such coordination is challenging due to the many
influencing factors, the frequent changes (e.g., in demand), the interdependencies between
different coordination decisions, and the trade-offs between multiple optimization objectives.
The main contributions of this PhD thesis are therefore several coordination approaches,
which solve the problem by coordinating networks and services autonomously. Specifically,
Part I presents three conventional approaches for network and service coordination. Such
conventional approaches are ideal for well-understood scenarios as they build on expert
knowledge and follow hand-crafted algorithms or solve predefined Mixed-Integer Linear
Programs (MILPs). Part II proposes four approaches based on machine learning, either supporting
existing conventional coordination approaches or replacing them entirely with self-learning
using Deep Reinforcement Learning (DRL). These machine learning approaches rely less on a
priori or expert knowledge and instead leverage available data to learn network and service
coordination, self-adapting to unknown and changing scenarios. The proposed approaches
in Parts I and II optimize multiple, even opposing objectives and use varying optimization
techniques. They range from centralized to distributed architectures and focus on different
aspects of network and service coordination, complementing each other. Overall, the proposed
approaches enable automated and highly optimized network and service coordination for
higher service quality and efficiency, leading to better user experience, lower costs, and reduced
resource consumption.

Zusammenfassung

Moderne Dienste bestehen in der Regel aus miteinander verbundenen Komponenten, z.B. aus
untereinander verkniipften Microservices oder Virtual Network Functions (VNFs). Beispiele
fiir solche Komponenten sind Video-Optimierer oder Webserver fiir Videostreaming, Manage-
mentfunktionen fiir Telekommunikation oder Funktionen fiir maschinelles Lernen. Da diese
Komponenten tiblicherweise in Software implementiert sind, konnen sie je nach Bedarf auf
verfiigbaren Rechenknoten im Netzwerk gestartet, gestoppt und skaliert werden. Durch diese
erhohte Flexibilitidt konnen die Kosten gesenkt und trotzdem die Dienstqualitit verbessert
werden. Gleichzeitig birgt diese Flexibilitit neue Herausforderungen und erfordert eine dy-
namische Skalierung und Platzierung von Diensten im Netzwerk sowie eine Zuweisung von
Anfragen in Echtzeit. Eine solche dynamische Netz- und Dienstkoordination ist eine zentrale
Herausforderung in Network Function Virtualization (NFV), Edge- und Cloud-Computing, 5G
und auch in zukiinftigen Anwendungen (z.B. 6G).

In dieser Dissertation wird das Problem der Netz- und Dienstkoordination motiviert und
prézise beschrieben sowie relevante Anwendungsfélle aus der Praxis diskutiert. Das Koordi-
nationsproblem ist komplex und herausfordernd aufgrund der vielen Einflussfaktoren, der
haufigen Anderungen (z.B. der Nachfrage), der Abhingigkeiten zwischen verschiedenen Koor-
dinierungsentscheidungen und der Abwégung zwischen mehreren Optimierungszielen. Als
Hauptbeitrag prasentiert diese Dissertation daher verschiedene Koordinationsansétze, die
das geschilderte Problem durch die autonome Koordination von Netzen und Diensten 16sen.
Im Einzelnen stellt Teil I drei konventionelle Ansétze fiir die Netz- und Dienstkoordination
vor. Solche konventionellen Ansitze sind ideal fiir bekannte und genau analysierte Szenar-
ien, da sie auf Expertenwissen aufbauen und manuell definierten Algorithmen folgen oder
vordefinierte Mixed-Integer Linear Programs (MILPs) l6sen. Teil II présentiert vier weitere Koor-
dinationsansitze, die auf maschinellem Lernen basieren. Diese Ansitze unterstiitzen entweder
bestehende konventionelle Koordinationsanséitze oder ersetzen diese vollstandig durch selb-
ststindiges Lernen auf Basis von Deep Reinforcement Learning (DRL). Dank maschinellen
Lernens stiitzen sich die Ansdtze weniger auf detailliertes Expertenwissen, sondern nutzen
stattdessen verfiigbare Daten, um Netz- und Dienstkoordination zu lernen und sich selbst
an unbekannte und stindig wechselnde Szenarien anzupassen. Die in den Teilen I und II
vorgeschlagenen Ansitze optimieren mehrere, sogar gegensatzliche Ziele und verwenden
unterschiedliche Optimierungstechniken. Sie reichen von zentralisierten bis zu verteilten Ar-
chitekturen, konzentrieren sich auf verschiedene Aspekte der Netz- und Dienstkoordination
und ergdnzen sich gegenseitig. Insgesamt ermoglichen die vorgeschlagenen Ansétze eine au-
tomatisierte und hochgradig optimierte Netz- und Dienstkoordination. Dies fiihrt zu hoherer
Dienstqualitdt und Effizienz und damit zu besseren Nutzererfahrungen, niedrigeren Kosten
und geringerem Ressourcenverbrauch.

Contents

Abstract

1. Introduction
1.1. Contributions e e e
1.1.1. Publications e e
1.1.2. Projects L
1.2. Thesis Structure and Overview i i i i

2. Background
2.1. Network Softwarization e
2.2. Cloud and Edge Computing
2.3. Mobile Networks L

3. Problem Statement
3.1. Problem Parameters o oo
3.1.1. Network L e
3.1.2. SEIVICES . . . v v i e e e e e e e
3.1.3. Traffic. L
3.2. Decision Variables Lo L
3.2.1. Service Scaling and Placement
3.2.2. Flow Scheduling L 0 o
323. Routing
3.3. Optimization Objectives

I. Conventional Coordination Approaches

4. Centralized Coordination

4.1. Introduction L e
4.2. BSP Heuristic Approach
4.2.1. Inmitialization o o oo o
4.2.2. Embedding Procedure
4.2.3. Iterative Improvement 0oL
4.3. Evaluation L e
4.3.1. BvaluationSetup o o oo
4.3.2. Comparison Against the MILP Approach
4.3.3. Scalability and Online Coordination
4.4. Conclusion L e e

5. Hierarchical Coordination
5.1. Introduction oL e
52. Related Work oo o

ANUT W N =

11
11
13
15

17
17
17
18
20
24
24
26
27
27

Vil

Contents

viii

53
5.4.

5:5-

5.6.

5.7

Problem Statement L L e
Hierarchical Coordination Approach
5.4.1. Domains and Hierarchies
5.4.2. Bottom-Up Information Advertisement (Phase1)
5.4.3. Top-Down Coordination Decisions (Phase2)
Mixed-Integer Linear Program (MILP)
5.5.1. Objective e
552 Constraints L o
Evaluation L
5.6.1. EvaluationSetup 0 o
5.6.2. Solution Quality,
5.6.3. Runtime Analysis
5.6.4. Impact of Advertised Information
Conclusion L

Fully Distributed Coordination

6.1.
6.2.
6.3.
6.4.

6.5.

6.6.

Introduction e
Related Work
Problem Statement L
Fully Distributed Coordination Approaches
6.4.1. Greedy Coordination with Adaptive Shortest Paths
6.4.2. Score-Based Coordination with Adaptive Shortest Paths
Evaluation e
6.5.1. EvaluationSetup o oo oo
6.5.2. Solution Quality 0o
6.5.3. Coordination Stability
6.5.4. Scalability
Conclusion L e

Machine Learning Coordination Approaches

Machine Learning for Dynamic Resource Allocation

7.1.
7.2.

7:3
7.4.

7:5-

7.6.

Introduction
Related Work o . o
7.2.1. Approaches Without Machine Learning
7.2.2. Machine Learning Approaches
Problem Statement Lo
Machine Learning Approach,
7.4.1. Overview L e
7.4.2. Performance Profiling
7.4.3. Learning Resource Requirements
7.4.4. Integration with Coordination Approaches
Evaluation L e
7.5.1. Approximation Accuracy
7.5.2. Impact on Network and Service Coordination
7.5.3. Runtime Analysis
Conclusion L e e e e

Contents

8. Self-Learning Coordination 97
8.1. Introduction L 97
82. Related Work 99

8.2.1. Conventional Approaches WithoutDRL 99
8.2.2. Self-Learning DRL Approaches 100
8.3. Problem Statement Lo oo 101
8.4. DeepCoord DRL Approach. 103
8.4.1. Joint Scheduling, Scaling, and Placement 103
8.4.2. Partially Observable Markov Decision Process (POMDP) 105
8.4.3. DRL Coordination Framework 106
8.4.4. Implementation and Deployment 108
85. Evaluation 108
8.5.1. EvaluationSetup oo 109
8.5.2. Self-Adaptation to Varying Scenarios 110
8.5.3. Generalization to Unseen Scenarios 114
8.5.4. Optimizing Multiple Objectives 115
8.5.5. Scalability 118
8.6. Conclusion e 120

9. Self-Learning Distributed Coordination 121
9.1. Introduction L 121
9.2. Related Work L 122
9.3. Problem Statement L Lo L 124
9.4. Distributed DRL Approach o 124

9.4.1. Joint Scaling, Placement, Scheduling, and Routing 125
9.4.2. Partially Observable Markov Decision Process (POMDP) 126
9.4.3. DRL Coordination Framework 129
9.5. Evaluation 133
9.5.1. EvaluationSetup o o 0oL 133
9.5.2. Varying Traffic Patterns 134
9.5.3. Varying Deadlines 136
9.5.4. Generalization to Unseen Scenarios 136
9.5.5. Scalability 138
9.6. Conclusion L e 139

10.Self-Learning Coordination for Mobile Networks 141
10.1. Introductiono o 141
10.2. Related Work oL L 143

10.2.1. Conventional Approaches WithoutDRL 143
10.2.2. Self-Learning DRL Approaches 144
10.3. Problem Statement oo oo o 145
10.3.1. Parameters oo L 145
10.3.2. Decision Variables oL 146
10.3.3. Objective: Optimize Quality of Experience (QoE) 146
10.4. DeepCoMP: Centralized DRL 147
10.4.1. Partially Observable Markov Decision Process (POMDP) 147
10.4.2. DeepCoMP Algorithm 149
10.5. DD-CoMP & D3-CoMP: Distributed DRL 150
10.5.1. Trade-Offs and Design Choices 151
10.5.2. Partially Observable Markov Decision Process (POMDP) 151

Contents

10.5.3. DD-CoMP Algorithm 153

10.5.4. D3-CoMP Algorithm oL 154

10.6. Architecture and Deployment Options 155
10.6.1. Network-Based Deployment 156

10.6.2. UE-Based Deployment 156

10.6.3. Training and Inference in Practice 157

1o.7. Evaluation Lo 157
10.7.1. EvaluationSetup Lo oo 157

10.7.2. Self-Adaption to Varying Scenarios 159

10.7.3. Generalization and Transfer Learning 164

10.7.4. Scalability oL o 166

10.8. Conclusion e 168
11.Future Research and Conclusion 169
11.1. Future Research L 169
11.2. Conclusion e e e e 170
Acknowledgments 173
Acronyms 175
List of Algorithms 177
List of Figures 179
List of Tables 183
Bibliography: Own Work 185
Bibliography: Others’ Work 191

1. Introduction

Modern services often consist of multiple chained components, each with its own functionality.
Such services are relevant in several practical contexts. For example, network services in
Network Function Virtualization (NFV) consist of chained Virtual Network Functions (VNFs),
e.g., firewalls or Intrusion Detection Systems (IDSs) [103, 102]. In cloud or edge computing,
multiple microservices (e.g., web servers or video optimizers) may form a service mesh [150,
114]. Components for data cleaning, augmentation, processing, or training could be parts of a
machine learning pipeline [120]. Nowadays, such components are typically implemented in
software and can run on standard industry servers, which are available at various locations in
the network.

Such softwarization has numerous benefits compared to deployment of physical hardware com-
ponents. For example, in NFV, software-based VNFs replace traditional hardware middleboxes,
which allows easier and faster development, deployment, and maintenance as well as reduced
time-to-market and personnel costs [103, 178, 268]. In contrast to static and expensive mid-
dleboxes running on specialized hardware, softwarized components can be deployed flexibly
on demand, running on standard servers. This is not only cheaper, reducing Capital Expen-
diture (CapEx) and Operational Expenditure (OpEx), but also enables completely new services.
For example, delay-sensitive services (e.g., for vehicular networking [245], cloud gaming [232,
278], smart manufacturing [128, 151], or 5G and beyond [6, 245]) can be realized by flexibly
deploying service components at the edge, i.e., close to user locations, minimizing path delay
and ensuring good Quality of Service (QoS) [192, 51]. To support delay-sensitive services with
hardware middleboxes, they would need to be dimensioned to handle possible peak loads and
installed at all possible edge locations. Since user locations and demand change over time, this
would be a significant waste of resources and far too expensive. Hence, supporting such highly
responsive, delay-sensitive services is only realistically possible with modern services consisting
of softwarized components.

These potential benefits and opportunities of modern, softwarized services in NFV but also in
other use cases come with new challenges regarding network and service coordination [103,
178, 275, 159]. To provide such services to users (or machines), all components of a service need
to be instantiated in the network at compute nodes with sufficient resources. Compute nodes
are distributed geographically and topologically in the network and may represent, for example,
small edge servers at a cell tower or large cloud data centers in the network core. Generally,
compute resources are limited at these nodes and the available data rate on links between nodes
is also restricted. Moreover, propagation delay on these links is non-negligible. These capacities
and delays have to be considered when steering traffic from users through deployed instances
of all service components. In doing so, load needs to be balanced between instances on different
compute nodes and routing paths. As user demand changes over time, instances may need to
be started or stopped and load balancing needs to be adjusted. Deploying sufficient instances
and allocating enough resources is important to satisfy user demand and ensure good service
quality. In turn, running too many instances or allocating too many resources leads to wasted
resources and energy and unnecessary costs. Additional factors or requirements, e.g., short

1. Introduction

delays for Qos or licensing costs for deployed instances, may lead to complex trade-offs and
make coordination even more challenging.

Network and service coordination concerns all online management decisions to ensure services
are available to all users with good quality and low costs. This is crucial for use cases in
NFV, cloud and edge computing, distributed machine learning, and 5G and beyond [110, 255,
120, 8, 148]. In this thesis, I particularly consider four main aspects of network and service
coordination: 1. Service scaling, i.e., how many instances to deploy per component (horizontal
scaling) and how many resources to allocate to them (vertical scaling)? 2. Service placement, i.e.,
at which compute nodes to deploy (or place) these instances? 3. Flow scheduling, i.e., at which
of the placed instances to process incoming flows? 4. Routing, i.e., once a flow is scheduled
for processing at a destination instance, over which links to route the flow for reaching the
instance? Due to interdependencies and trade-offs between these four aspects, it is important to
optimize them jointly together [203, 61]. Solving them sequentially and separately would make
each coordination aspect simpler due to the reduced decision space but possibly also lead to
much worse solutions [131, 61]. Furthermore, such coordination decisions depend on a variety
of influencing factors, which can change frequently over time. Because of this complexity and
fast changes, manual coordination by humans leads to suboptimal results at best or may even
be completely infeasible and break service availability (e.g., if resources are over-subscribed or
delay requirements are exceeded).

To this end, I present several approaches for automated and optimized network and service co-
ordination in this thesis. The proposed approaches automatically ensure services are scaled and
placed properly and traffic is balanced among instances, compute nodes, and paths adequately.
By automating network and service coordination, service scaling and placement as well as flow
scheduling and routing are constantly adjusted to changing demands, avoiding manual errors
and continuously optimizing desired coordination objectives. Most of my approaches support
optimization of multiple, even opposing optimization objectives such as high throughput vs.
short delays. While I have worked on technical aspects of network and service coordination
(see my papers in Section 1.1.1), my approaches presented in this thesis focus on the conceptual
and algorithmic challenges of optimizing network and service coordination.

I group and present my approaches in two parts for conventional and machine learning ap-
proaches. Conventional approaches include Mixed-Integer Linear Programs (MILPs) or heuristic
algorithms, which are based on detailed models of the network and involved services, designed
by human experts. In contrast, machine learning approaches automatically derive useful coordi-
nation policies from previous data or own coordination experience when interacting with the
network environment. Conventional coordination approaches are better understood and consti-
tute the large majority of current state-of-the-art approaches. Machine learning approaches are
often more flexible and, with the raise of deep learning, have recently gained more recognition
and often outperform conventional approaches [162, 273]. Generally, the presented approaches
have different strengths and weaknesses, but all allow automated and highly optimized network
and service coordination.

1.1. Contributions

I designed and developed the approaches presented in this thesis as well as other related work
in the time between May 2017 and November 2021. In this time, I authored or co-authored
over 25 publications in international conferences and journals (Section 1.1.1). I received two

1.1. Contributions

awards for these publications and was invited to speak about one of them at the 110-th meeting
of the Internet Engineering Task Force (IETF)', indicating recognition of my work both inside
and outside of academia. I have been involved in the Internet Research Task Force (IRTF)
NMRG, discussing and documenting challenges of applying artificial intelligence for network
management (intended as Internet draft).> Furthermore, I was involved in three projects and
was responsible for securing a grant and leading one of them (Section 1.1.2).

The following chapters and approaches in Part I and II are directly based on some of these
publications and include verbatim copies. To ease the flow of reading, these verbatim copies of
my own previous work are not quoted explicitly but are clearly mentioned at the beginning
of each chapter. With exception of the approach in Chapter 4, which is included mostly as
background and related work, I am the main author of all presented approaches. For ease of
reading, I consistently write in the singular form of first person (“I” rather than “we”). I further
clarify my contributions in Section 1.2 and at the beginning of each chapter in Part I and II.

1.1.1. Publications

I list my (co-)authored publications grouped into conventional and machine learning coordi-
nation approaches, which are the focus of this thesis. Additional publications, which are not
in the direct scope of this thesis, are grouped into tools and concepts supporting coordination
and more practical aspects on softwarized services for a smart manufacturing use case. Within
each group, the papers are listed in chronological order. The list also contains papers submitted
for publication that are still under review, which is indicated accordingly for these papers.
All source code belonging to these papers is published as open source and referenced inside
the papers and corresponding chapters. To better distinguish my work from work by others,
references to papers or code that I authored or co-authored are prefixed with “S” and listed
separately in the bibliography. Other references do not have any prefix.

Conventional Coordination Approaches

[S2] Sevil Draxler, Stefan Schneider, and Holger Karl. “Scaling and Placing Bidirectional
Services with Stateful Virtual and Physical Network Functions.” In: IEEE Conference on
Network Softwarization (NetSoft). IEEE. 2018, pp. 123-131

[S24] Stefan Schneider, Lars Dietrich Klenner, and Holger Karl. “Every Node for Itself: Fully
Distributed Service Coordination.” In: IFIP/IEEE Conference on Network and Service Man-
agement (CNSM). IFIP/IEEE. 2020

[S18] Stefan Schneider, Mirko Jiirgens, and Holger Karl. “Divide and Conquer: Hierarchical
Network and Service Coordination.” In: IFIP/IEEE International Symposium on Integrated
Network Management (IM). IFIP /IEEE. 2021

TAgenda of the Network Management Research Group (NMRG) session at the IETF 110 meeting;:
https://datatracker.ietf.org/doc/agenda-110-nmrg/ (accessed June 30, 2021)

2Relevant NMRG meeting minutes: https://datatracker.ietf.org/doc/
minutes-interim-2021-nmrg-03-202106221400/ (accessed June 30, 2021)

https://datatracker.ietf.org/doc/agenda-110-nmrg/
https://datatracker.ietf.org/doc/minutes-interim-2021-nmrg-03-202106221400/
https://datatracker.ietf.org/doc/minutes-interim-2021-nmrg-03-202106221400/

1. Introduction

Machine Learning Coordination Approaches

[S35] Stefan Schneider et al. “Machine Learning for Dynamic Resource Allocation in Network
Function Virtualization.” In: IEEE Conference on Network Softwarization (NetSoft). IEEE.
2020, pp. 122-130

[S21] Stefan Schneider et al. “Self-Driving Network and Service Coordination Using Deep Rein-
forcement Learning.” In: IFIP/IEEE Conference on Network and Service Management (CNSM).
¥ Best Student Paper Award % Invited Talk at the IETF 110 Meeting. IFIP/IEEE. 2020

[S34] Stefan Schneider, Haydar Qarawlus, and Holger Karl. “Distributed Online Service Co-
ordination Using Deep Reinforcement Learning.” In: IEEE International Conference on
Distributed Computing Systems (ICDCS). IEEE. 2021

[S19] Stefan Schneider et al. “DeepCoMP: Coordinated Multipoint Using Multi-Agent Deep
Reinforcement Learning.” In: IEEE Transactions on Network and Service Management (TNSM)
(2022). @ Under Review %& Invited Talk at Ray Summit 2021

[S22] Stefan Schneider et al. “Self-Learning Multi-Objective Service Coordination Using Deep
Reinforcement Learning.” In: IEEE Transactions on Network and Service Management (TNSM)
18.3 (2021), pp. 3829-3842

[S38] Stefan Werner, Stefan Schneider, and Holger Karl. “Use What You Know: Network and
Service Coordination Beyond Certainty.” In: IEEE/IFIP Network Operations and Management
Symposium (NOMS). @ Under Review. IEEE /IFIP. 2022

Tools and Concepts Supporting Coordination

[S40] Mengxuan Zhao et al. “Verification and Validation Framework for 5G Network Services
and Apps.” In: IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). 2017, pp. 321-326

[S16] Stefan Schneider, Sevil Dréaxler, and Holger Karl. “Trade-Offs in Dynamic Resource
Allocation in Network Function Virtualization.” In: IEEE Global Communications Conference
(GLOBECOM) Workshops. IEEE. 2018, pp. 1-3

[S8] Manuel Peuster et al. “A Prototyping Platform to Validate and Verify Network Service
Header-based Service Chains.” In: IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). IEEE. 2018, pp. 1-5

[S33] Stefan Schneider et al. “A Fully Integrated Multi-Platform NFV SDK.” In: IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN). IEEE. 2018,
pp. 12

[S32] Stefan Schneider, Manuel Peuster, and Holger Karl. “A Generic Emulation Framework
for Reusing and Evaluating VNF Placement Algorithms.” In: IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN). IEEE. 2018, pp. 1-6

[S37] Peter Twamley et al. “5GTANGO: An Approach for Testing NFV Deployments.” In:
European Conference on Networks and Communications (EuCNC). 2018. por: 10.1109/EuCNC.
2018.8442844

[S10] Manuel Peuster et al. “Introducing Automated Verification and Validation for Virtualized
Network Functions and Services.” In: IEEE Communications Magazine 57.5 (2019), pp. 96—
102

[S36] Stefan Schneider et al. “Specifying and Analyzing Virtual Network Services Using
Queuing Petri Nets.” In: IFIP/IEEE Symposium on Integrated Network and Service Management
(IM). IFIP /IEEE. 2019, pp. 116-124

https://doi.org/10.1109/EuCNC.2018.8442844
https://doi.org/10.1109/EuCNC.2018.8442844

1.1. Contributions

[So] Manuel Peuster, Stefan Schneider, and Holger Karl. “The Softwarised Network Data
Zoo.” In: IFIP/IEEE International Conference on Network and Service Management (CNSM).
® Best Poster Award. IFIP/IEEE. 2019, pp. 1-5

[S6] Askhat Nuriddinov et al. “Reproducible Functional Tests for Multi-scale Network Ser-
vices.” In: IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN). IEEE. 2019, pp. 1-6

Softwarized Services for Smart Manufacturing

[S7] Manuel Peuster et al. “Prototyping and Demonstrating 5G verticals: The Smart Man-
ufacturing Case.” In: IEEE Conference on Network Softwarization (NetSoft). IEEE. 2019,
pp- 236—238
[S30] Stefan Schneider et al. “Putting 5G into Production: Realizing a Smart Manufacturing
Vertical Scenario.” In: European Conference on Networks and Communications (EuCNC). IEEE.
2019, pp. 305-309
[S3] Marcel Miiller et al. “5G as Key Technology for Networked Factories: Application of
Vertical-specific Network Services for Enabling Flexible Smart Manufacturing.” In: IEEE
International Conference on Industrial Informatics (INDIN). IEEE. 2019, pp. 1495-1500
[S1] Daniel Behnke et al. “NFV-Driven Intrusion Detection for Smart Manufacturing.” In: IEEE
Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN).
IEEE. 2019, pp. 1-6
[S5] Marcel Miiller et al. “Putting NFV into Reality: Physical Smart Manufacturing Testbed.”
In: IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-
SDN). IEEE. 2019, pp. 1-6
[S31] Stefan Schneider et al. ““Producing Cloud-Native”: Smart Manufacturing Use Cases on
Kubernetes.” In: IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). IEEE. 2019, pp. 1—2
[S4] Marcel Miiller et al. “Cloud-Native Threat Detection and Containment for Smart Manu-
facturing.” In: IEEE Conference on Network Softwarization (NetSoft). IEEE. 2020, pp. 347-
349
[S39] Anastasios Zafeiropoulos et al. “Benchmarking and Profiling 5G Verticals” Applications:
An Industrial IoT Use Case.” In: IEEE Conference on Network Softwarization (NetSoft). IEEE.
2020, pp. 310-318

1.1.2. Projects

My work was produced and used in the scope of three projects in collaboration with academic
and industry partners. From 2017 to 2020, I was involved in the European 5GPPP H2020 project
5GTANGO [3], where I worked on conventional coordination approaches (Part I) as well as
tools and concepts supporting coordination. I also developed cloud-native softwarized services
and designed architectures for smart manufacturing in the context of 5G and NFv.

From 2018 to 2021, I led my own research project, RealVNF [S20]. For the project, I secured
funding from the German Ministry for Education and Research through the Software Campus
program [237], recruited student assistants, and collaborated with researchers from Huawei
Germany. The project initiated my research on machine learning coordination approaches
(Part II) but also drove further work on conventional coordination approaches.

1. Introduction

From 2020 to 2021, I was involved in a follow-up research project with Huawei Germany,
focusing on self-learning coordination for 5G and beyond.

All code written for these three projects is available publicly as open source. I have been actively
participating in the open-source community, particularly in the context the popular Deep
Reinforcement Learning (DRL) framework Ray RLIib [153, 48], where I serve as maintainer of the
open-source library and spoke at the Ray Summit 2021 with over 10 0oo registered attendees3.

1.2. Thesis Structure and Overview

Following this introduction, I present general background about NFV, cloud and edge computing,
and mobile networks in Chapter 2. All these practical scenarios have structural similarities that
I point out in the chapter and explain how my approaches could be applied for automated and
optimized coordination in these use cases. A more detailed discussion of work related to my
coordination approaches is introduced in each corresponding chapter.

Chapter 3 defines the network and service coordination problem in more detail. It also intro-
duces a common notation for problem parameters and decision variables that is used throughout
the thesis. To address the network and service coordination problem, Part I presents conven-
tional coordination approaches and Part II machine learning coordination approaches. Both
parts start with typical centralized approaches, which assume global knowledge and control
of network and services, and end with highly scalable distributed approaches. In line with
related work [30], I consider an intuitive scalability definition where an approach is scalable
if it performs gracefully with increasing input size, e.g., in terms of load or network size.
I intentionally keep the introduction and problem sections within these chapters brief and
specific to each chapter rather than including and frequently repeating the general introduction,
background, and problem statement, which are detailed in Chapters 1—3. Finally, Chapter 11
discusses potential future work and concludes this thesis.

The following outline provides a brief overview of the approaches presented in Parts I and II. It
also indicates the corresponding publications and the contributions by others, e.g., by students
who I advised for their bachelor’s or master’s theses. The contributions for each approach are
detailed again at the beginning of the corresponding chapters.

Part I: Conventional Coordination Approaches

Chapter 4: Centralized Coordination

Chapter 4 presents the Bidirectional Scaling and Placement Coordination Approach (BSP). BSP is
an example for a typical centralized, conventional approach, which is still a very common (if
not the most common) kind of coordination approaches in the current state of the art. Lever-
aging central knowledge and control of the network and services, BSP finds highly optimized
coordination solutions.

3My talk at Ray Summit 2021: https://www.anyscale.com/ray-summit-2021/agenda/
deepcomp-multi-agent-reinforcement-learning-for-multi-cell-selection-in-5g (accessed
June 30, 2021)

https://www.anyscale.com/ray-summit-2021/agenda/deepcomp-multi-agent-reinforcement-learning-for-multi-cell-selection-in-5g
https://www.anyscale.com/ray-summit-2021/agenda/deepcomp-multi-agent-reinforcement-learning-for-multi-cell-selection-in-5g

1.2. Thesis Structure and Overview

Unlike the following chapters, which are new contributions produced during my PhD, this
chapter is mostly previous, related work based on my master’s thesis [S15]. During my PhD, 1
extended the BSP approach and evaluation and published it together with my colleague Sevil
Dréxler [S2]. Still, the main idea, model, and approach are based on my master’s thesis and are
thus not a contribution of this PhD thesis. I nevertheless present the BSP heuristic algorithm at a
high level in Chapter 4 because it was the starting point of all following research during my
PhD and represents an example of typical state-of-the-art coordination approaches. As I use
BSP as a comparison case for several of the following approaches, its description in a separate
chapter seemed appropriate in addition to the usual discussion of related work within each of
the following chapters.

Chapter 5: Hierarchical Coordination

The centralized BSP approach finds good coordination solutions but requires central knowledge
and control of network and services. In practical, large networks, detailed, up-to-date informa-
tion may not be available centrally. Furthermore, central coordination may be too inefficient to
make frequent coordination decisions at a large network scale. Instead, this chapter proposes
a novel hierarchical coordination approach that splits the network into separate, hierarchical
domains and works in two phases. It aggregates and hides details from lower hierarchical levels
such that higher-level coordinators can efficiently make coarse-grained decisions that are then
refined by lower-level coordinators on each domain (by solving an MILP). This approach reaches
solution quality similar to an equivalent centralized approach but makes faster coordination
decisions based on aggregated information.

This chapter is based on my paper [S18]. The paper relies on concepts, code, and evaluation
results created by Mirko Jiirgens for his master’s thesis [124]. I proposed the initial topic and
idea and advised his thesis, providing feedback in weekly discussions to structure and develop
ideas for approaching the problem. Based on the convincing outcome of the thesis, I also
compiled the results and wrote the published paper.

Chapter 6: Fully Distributed Coordination

Compared to Chapter 5, Chapter 6 goes even further and proposes two fully distributed
coordination approaches. The presented heuristic algorithms are fast and simple and are
executed on each network node in a distributed fashion. Each node only has knowledge of
its neighbors and only controls coordination locally. This architecture for fully distributed,
parallelized coordination makes the approaches highly scalable and suitable for large networks.
Evaluation results show that the approaches even reach comparable coordination quality as a
centralized approach but are much faster.

This chapter is based on my paper [S24]. This paper relies on concepts, code, and evaluation
results created by Lars Klenner for his bachelor’s thesis [141]. Again, I proposed the initial
topic and idea and advised his thesis through weekly discussions and written feedback to
help structure and develop possible ideas. I also compiled the results, performed additional
evaluation experiments, and wrote the published paper.

1. Introduction

Part 1l: Machine Learning Coordination Approaches

Chapter 7: Machine Learning for Dynamic Resource Allocation

Most conventional coordination approaches such as the ones in Part I assume a given model for
the resource requirements of service components. These resource requirements are typically
modeled as a (often linear) function of the load a component instance has to handle. In
practice, the exact function is likely unknown and may even be non-linear. To this end, this
chapter proposes to train machine learning models on available real-world benchmarking data
to learn the true (often non-linear) relationship between required resources and load. The
trained machine learning models can then be integrated into existing conventional coordination
approaches for more precise dynamic resource allocation, leading to good service quality with
fewer wasted resources.

This chapter is based on my paper [S35], for which I developed the ideas and approaches, wrote
code, and produced all experiment results. Some of the work done by Narayanan Puthenpurayil
Satheeschandran for his master’s thesis [222] has contributed to the paper as well. I designed
the topic and work plan of his thesis and advised it closely, providing the main ideas and
strongly guiding the development of solution approaches as well as their evaluation.

Chapter 8: Self-Learning Coordination

This chapter proposes a self-learning network and service coordination approach using DRL.
Unlike the conventional approaches in previous chapters, which follow predefined rules or
algorithms developed by human experts, this model-free DRL approach learns coordination
directly from its own experience through feedback when interacting with the network envi-
ronment. It only has very few built-in assumptions and uses realistically available partial and
delayed information about the network state. It self-adapts to various scenarios with different
traffic patterns, network topologies, or optimization objectives without human intervention.
The proposed approach uses a centralized DRL agent controlling and periodically updating
distributed coordination rules that are deployed and applied locally at each network node.

This chapter is based on my papers [S21, S22], which rely on outcomes of the RealVNF
project [S20]. In the project, student assistants helped with developing prototypes and collecting
evaluation results. I led the Real VNF project over two years, proposed the initial ideas and
strongly guided and contributed to their development, advised the student assistants, discussed
my ideas with the project partners, and wrote the papers.

Chapter 9: Self-Learning Distributed Coordination

This chapter combines ideas from Chapters 6 and 8, proposing DRL for self-learning fully
distributed network and service coordination. After centralized training, separate DRL agents
can be deployed at each node in the network with only local observations and control. The fully
distributed architecture allows fast, local coordination decisions and more fine-grained control
than the centralized DRL approach in Chapter 8. Still, the self-learning coordination using DRL
allows flexible adaptation to varying scenarios without human intervention, unlike the heuristic
algorithms in Chapter 6.

1.2. Thesis Structure and Overview

This chapter is based on my paper [S34]. The paper relies on concepts, code, and evaluation
results created by Haydar Qarawlus for his master’s thesis [207] and later extended in the
Real VNF project [S20]. I proposed the initial topic and idea of his thesis, advised it through
weekly discussions and feedback to develop and improve the ideas, led the Real VNF project,
and wrote the paper.

Chapter 10: Self-Learning Coordination for Mobile Networks

While Chapters 4-9 focus on network and service coordination in wired networks, this chapter
focuses on coordination in wireless mobile networks. I propose three different DRL variants, con-
trolling which users are connected to which cells, allowing multiple connections for Coordinated
Multipoint (CoMP) in 5G and beyond. Again, a challenge is to ensure good connection quality
with limited (radio) resources and adapting to different scenarios and system configurations
with only partial observations. The three proposed DRL variants differ in how training and
inference is performed: The first variant uses centralized training and inference. The second
trains multiple DRL agents centrally but performs inference in a distributed fashion. The third
variant uses multi-agent DRL for both distributed training and inference.

This chapter is based on my paper [S19]. I developed the idea and concepts, discussed them
with project partners, implemented and evaluated prototypes, and wrote the paper.

2. Background

My proposed coordination approaches in Parts I and II are useful for a variety of practical
use cases and scenarios. This chapter introduces relevant background on use cases in network
softwarization (Section 2.1), cloud and edge computing (Section 2.2), and mobile networks
(Section 2.3). In each section, I provide a general, high-level overview of relevant concepts
and how my coordination approaches can be applied in the corresponding use case. Finally, I
highlight structural similarities and common challenges of these and potential future use cases.
On the basis of these similarities, I define the network and service coordination problem in
Chapter 3 and then present my approaches for solving it in Parts I and II. Related work specific
to each coordination approach is detailed in the corresponding chapters.

2.1. Network Softwarization

Network softwarization mainly builds on two independent but highly complementary concepts:
Network Function Virtualization (NFV) and Software-Defined Networking (SDN). As the name
suggests, the general idea of NFV is to virtualize network functions that were traditionally
deployed as hardware middleboxes in the network (e.g., firewalls, Intrusion Detection Systems
(1DSs), or Deep Packet Inspections (DPIs)) [70, 103]. The resulting Virtual Network Functions
(VNFs) are software components that can be executed on commodity servers, typically running on
virtualized resources as illustrated in Figure 2.1. Since VNFs are software, they can be scaled and
deployed flexibly on compute nodes across the network, i.e., starting one or multiple instances
of a VNF according to current demand. Multiple VNFs can be chained together to form network
services (also called Service Function Chainings (SFCs) [102]), e.g., for telecommunication or
video streaming. Overall, this virtualization enables cheaper, faster, easier, and more flexible
development, deployment, and maintenance of network services [70, 103]. The concept of
NFV was originally introduced in a white paper by European Telecommunications Standards
Institute (ETSI) [7o] but has also been adopted and extended by Internet Engineering Task
Force (IETF) [26]. In recent years, NFV has attracted significant amounts of research [103, 178,
152, 110, 268].

Complementary to NFV, SDN facilitates network softwarization and programmability by splitting
the control and data plan of network switches into a (logically) centralized, programmable
control plane and a simple, distributed data plane [143]. A core idea of SDN is the open,
vendor-independent interface of the centralized SDN controller. It enables applications on the
management plane to program the SDN controller via its north-bound Application Programming
Interface (API) (Figure 2.2). Compared to traditional, individually controlled switches, the global
view and control of the SDN control plane allows easier, more flexible and powerful network
control, e.g., for improved traffic engineering. The SDN management and control plane can be
implemented in software and run on commodity servers. At the same time, SDN switches are
simplified to plain data forwarding elements, instructed by the SDN controller via its south-
bound API (typically using the OpenFlow protocol [170]). The abstraction and flexibility provided

11

2. Background

by SDN has considerably affected research on traffic engineering and network coordination [143,
260, 136].

VNF VNF VNF VNF VNF
] q)] ’

(7 V)

Virtual Virtual Virtual

Compute Storage Network
NFV

Management and

Virtualization Layer

Orchestration
(MANO)
‘ Computew ‘ Storage Network ‘
Service
Hardware Resources Deployment
Requests
_ NFV Infrastructure (NFVI) J

Figure 2.1.: Virtualization layers in NFV (figure adapted from [152]; © 2015 IEEE).

Plane App 1 App 2 App 3

_____________ ¢_______¢_______¢_______NortrXFEjlound

Plane

Management ‘ Network ‘ ‘ Network ‘ ‘ Network ‘

¢ ______________ South-Bound
API

Figure 2.2.: Management, control, and data plane in SDN (figure adapted from [231]; © 2019 Wiley).

In combination, NFV and SDN enable network softwarization with more dynamic and pro-
grammable traffic processing (NFV) and steering (SDN) within the network (Figure 2.3). This
allows powerful network optimization and flexible adaptation to fluctuating demand but also
comes with additional challenges. Available compute resources should be utilized but not
over-subscribed, link capacities and delays need to be considered, distributed and changing
user demand as well as additional requirements (e.g., for Quality of Service (QoS)) must be
satisfied. To ensure good service quality without wasting resources, network and services need
to be coordinated properly.

Regarding coordination in NFV, VNFs are typically instantiated, scaled, monitored, and ter-
minated on demand by Management and Orchestration (MANO) systems like Open Source
MANO (0SM) [74], Open Network Automation Platform (ONAP) [156], or 5GTANGO [3]. Service

12

2.2. Cloud and Edge Computing

VNFs

Video Parental
Opfimizer Control

AN A A A
N_J\J N\
Ay 7

Firewall Antivirus

Access
Network

Service Classifier
Service Classifier

NFV Platform

Figure 2.3.: Network softwarization with VNFs for traffic processing and SDN for traffic steering (figure
adapted from [165]).

providers pass descriptors of their network services and involved VNFs to the MANO system
when onboarding new services [86] and then request deployment through the MANO system
(Figure 2.1). If not done manually, coordination approaches inside the MANO system may decide
how to scale each involved VNF and choose suitable compute nodes for deployment (called
placement). Here, my proposed coordination approaches (Parts I and II) come into play and
can be leveraged inside NFV MANO systems for improved and automated scaling and placement
of network services. Similarly, control of flow scheduling and routing paths is programmable
inside the SDN controller (e.g., OpenDaylight [157] or Ryu [218]). Again, my proposed coordina-
tion approaches could be executed on the SDN controller via the SDN management plane for
optimized scheduling and routing of flows between users and instantiated VNFs. NFV MANO
systems often provide interfaces to control not only VNF scaling and placement but also traffic
steering in SDN networks (e.g., through 0sM’s Wide Area Network (WAN) Infrastructure Man-
agers [73]). Executing my coordination approaches on such MANO systems would allow them
to jointly control and optimize both service scaling and placement as well as flow scheduling
and routing.

2.2. Cloud and Edge Computing

The rise of cloud computing has preceded and facilitated the advance of network softwariza-
tion [233]. The main idea of cloud computing is to run compute jobs on pooled and virtualized
compute resources in the network rather than on local and physical on-premise devices [172,
158]. The traditional approach of on-premise computing requires considerable Capital Ex-
penditure (CapEx) to purchase compute hardware and ongoing overhead and Operational
Expenditure (OpEx) for configuration, maintenance, and energy. Furthermore, dimensioning
on-premise hardware is difficult. Since the demand in compute resources typically fluctuates
over time, there are likely either too many or too few compute resources available at a time.
If the purchased compute hardware is underutilized, it signifies waste of unused resources
and thus unnecessary costs. If the on-premise compute hardware is overutilized, compute jobs
take longer to complete and may even fail completely if there are too many jobs or they are
particularly compute-intensive.

13

2. Background

In contrast to on-premise computing, cloud data centers typically have vast amounts of compute
resources that are virtualized and shared by multiple users, e.g., using virtual machines,
Docker [174], or Linux containers [34]. In common public clouds, e.g., Amazon Web Services
(aws) [13], Google Cloud Platform (GCP) [96], and Microsoft Azure [176], these centralized
and virtualized cloud resources are available publicly to any customer as opposed to private
clouds with access limited to individual organizations. These large cloud data centers profit
from the economy of scale and are often located at remote locations with cheap cooling and
energy (e.g., on Iceland) [117]. By multiplexing compute demands from multiple users and
offering cheap preemptive compute units (in addition to more expensive non-preemptive
units), cloud providers can efficiently utilize their compute resources. For customers, cloud
computing is often simpler, cheaper, more flexible, and offers better availability than on-premise
computing [18]. With the typical “pay-as-you-go” pricing model, there is no CapEx, and OpEx
directly corresponds to the actual compute demand. Thus, there are almost no costs during low
demand. For compute-intensive jobs, cloud computing allows flexible scaling to many resources
to accelerate job completion. In addition to compute resources, cloud data centers also offer
all kinds of other resources for processing, short-term memory, or long-term storage [13, 96,
176].

While large, cost-efficient cloud compute centers at the network core or at remote locations
have their benefits, there are also disadvantages. Besides potential privacy issues with data
being stored outside an organization’s premise [262], transmitting all data between users and
remote cloud locations may lead to prohibitive end-to-end delays. Even with high-capacity fiber
connections at the data center, mere propagation delay along long distances and multiple hops
easily adds up to over 100 ms end-to-end delay, which is too much for delay-sensitive applica-
tions like online gaming, Augmented Reality (AR)/Virtual Reality (VR), smart manufacturing,
or vehicular networks [264]. To this end, edge computing proposes the use of small compute
nodes at the network edge, i.e., close to users [234] (Figure 2.4). For example, edge compute
nodes could be servers that are co-located with mobile base stations to allow ultra low delays of
under 1ms (cf. Multi-Access Edge Computing (MEC)) [5]. Following the cloud paradigm, edge
resources may also be virtualized and shared by multiple users. In contrast to remote cloud
data centers, edge compute nodes enable shorter delays but only have very limited compute
resources and are often more expensive since they benefit less from the economy of scale.

aa
(a) Cloud computing (b) Edge computing

Figure 2.4.: Illustration of cloud vs. edge computing.
In cloud and edge computing, compute jobs or services are often built of interconnected

microservices forming a service mesh [150]. Orchestrators like Kubernetes [45], KubeEdge [43],
or Rancher [213] automate resource allocation and coordination of such microservices within

14

2.3. Mobile Networks

and across cloud and edge compute nodes. Again, my coordination approaches could interface
or be applied inside such orchestrators (e.g., as custom Kubernetes scheduler [44]) to improve
coordination of cloud/edge services and optimize the balance between short delays and low cost.
My approaches do not strictly distinguish between tiers like cloud and edge but model network
and compute resources in a generic way such that they can be applied to any scenario.

2.3. Mobile Networks

Network softwarization and cloud and edge computing are also important for mobile networks,
particularly for 5G and beyond. 5G builds on flexible softwarized networks and virtualized
compute resources to scale and deploy required network services for telecommunication and
other vertical industries (e.g., health or manufacturing) according to fluctuating demand [271,
10]. In addition, modern mobile networks need to coordinate radio resources and cell selection
across multiple users and cells. As users move around and connect to different cells, they
compete with other connected users for limited radio resources, e.g., in the form of Physical
Resource Blocks (PRBs) in Long-Term Evolution (LTE) networks. Depending on the required
data rate and the channel quality, users may need considerable radio resources to ensure good
Quality of Experience (QoE). This problem is particularly exacerbated for users at the edge
between multiple cells, where received signals are strongly attenuated, reducing the received
data rate.

Figure 2.5.: Joint transmission from multiple serving cells using CoMP (figure adapted from [212]).

Coordinated Multipoint (CoMP) is one approach to handle increasing demand in mobile data rate,
particularly at the cell edge. CoMP leverages macrodiversity by enabling joint transmissions from
multiple serving cells to individual users, increasing their received data rate [119] (Figure 2.5).
While CoMP was introduced in LTE Release 11 for 4G [1], it will play an increasingly important
role in 5G and beyond where many small, densely deployed cells partially overlap [50, 69]. A
challenge in CoMP is to dynamically select how many and which cells should serve which users
in order to balance competition for limited radio resources and achieve high data rates for all
users. Typically, automated coordination approaches such as the ones presented in this thesis
are used to continuously optimize multi-cell selection in mobile networks. These approaches
could run in the network or even on user terminals for either network-initiated or user-initiated
cell selection.

The presented practical use cases in Sections 2.1-2.3 differ in many aspects but also share
structural similarities. In all cases, users request services in the form of either chained VNFs or

15

2. Background

microservices, compute jobs consisting of consecutive tasks, or for mobile telecommunication.
Providing these services requires resources (compute, radio, or other) that are limited and
distributed to different locations in the network. User demand for these services varies over
time and location. Therefore, all use cases require continuous coordination and optimization of
how resources are allocated to these services. Coordination approaches need to respect limited
resources, adapt to changing demands, and navigate trade-offs between different objectives,
e.g., good service quality vs. low costs.

My proposed approaches solve the underlying generic problem of network and service coordi-
nation, which is relevant in all discussed real-world use cases due to their structural similarities.
Future paradigms will likely also present similar challenges and may therefore profit from
my proposed coordination approaches. For practical application, my approaches clearly need
to focus on details of the corresponding use case. While I have worked on use case-specific
technical aspects [S33, S30, S31], this thesis focuses on the underlying conceptual and algo-
rithmic challenges of optimizing network and service coordination. Most of my approaches
(Chapters 4—9) focus on coordination in wired networks as described in Sections 2.1 and 2.2.
Therefore, the problem description in Chapter 3 also focuses on these use cases. Nevertheless,
in Chapter 10, I also present a problem definition and approaches for coordination in wireless
mobile networks as described in Section 2.3.

16

3. Problem Statement

Following the motivation and background in Chapters 1 and 2, in this chapter, I define the
network and service coordination problem in more detail. In Parts I and II following this chapter,
I present my approaches for solving the problem, each focusing on varying aspects and with
different strengths and weaknesses. This chapter introduces relevant assumptions regarding
problem parameters (Section 3.1), decision variables (Section 3.2), and possible optimization
objectives (Section 3.3). It also establishes a common notation that I use throughout the following
chapters. My intention here is to precisely define the problem; it is not the goal to provide a
full mathematical formalization, e.g., as Mixed-Integer Linear Program (MILP) for feeding into
a solver. I present a possible formalization as MILP as part of my coordination approach in
Chapter 5.

While there are structural similarities between many relevant use cases (Chapter 2), the precise
problem statement varies for coordination in wired vs. wireless networks (e.g., due to differences
in user mobility). Hence, I consider coordination in wired and wireless networks separately,
generally focusing more on coordination in wired networks. Specifically, the problem statement
in this chapter and the following approaches in Chapters 4—9 focus on network and service
coordination in wired networks, e.g., in the context of network softwarization or cloud and
edge computing (Sections 2.1 and 2.2). In Chapter 10, I consider coordination in wireless
mobile networks as motivated in Section 2.3. The following problem statement is based on my
papers [S18, S33, S21, 522, S34] and contains verbatim copies (© 2021 IEEE).

3.1. Problem Parameters

The network and service coordination problem has three main parameters: The underlying net-
work of nodes and links (Section 3.1.1), the services to be deployed in the network (Section 3.1.2),
and the incoming traffic from users or machines requesting these services (Section 3.1.3). Ta-
ble 3.1 provides an overview of all problem parameters and their notation, which I describe in
more detail next.

3.1.1. Network

I model the network as undirected graph G = (V, L) with topologically and geographically
distributed nodes V and links L. For example, Figure 3.1 shows the real-world Abilene network
topology that connects nodes across 11 cities in the United States [142]. Nodes may represent
anything from large data centers to small edge nodes or even nodes without any capacity. I
denote the total capacity of anode v € V as cap, € R>(in terms of a generic (compute) resource,
e.g., Central Processing Units (CPUs). This could easily be extended to a vector cap, € R%,
for modeling n different types of node resources, e.g., memory, storage, Graphics Processing

17

3. Problem Statement

Table 3.1.: Problem parameters

Symbol Definition

G=(V,L) Network with nodes V and links L
Vin, Ve& C V Ingress and egress nodes

Vo, Ly Neighboring nodes and adjoining links of node v
cap, Compute capacity of node v
cap, Maximum data rate of link /
d; Propagation delay along link /
S,C Set of all services and of all components
VSin C yin Subset of ingress nodes for service s
V8 C Ves Possibly empty subset of egress nodes for service s
re(A) Required resources of an instance of ¢ receiving data rate A
ASUE(A) Outgoing data rate of an instance of ¢ receiving data rate A
de Processing delay of instances of ¢
O QoS requirements of service s
F Set of all flows
Sf Service requested by flow f
in €8
vy, o Ingress and egress node of f
i Data rate of f

t}n, of Arrival time and duration of f

Units (GPUs), or Tensor Processing Units (TPUs). A link /| € L connects two nodes v and
v’ bidirectionally, i.e., (v,v') and (v/,v) refer to the same undirected link /. The maximum
data rate cap; € RR.g is shared in both directions over link [. Traversing link [incurs a
propagation delay d; € R, which typically depends on the distance between v and v'. I
assume communication within a node to be unrestricted in terms of data rate and to have
negligible delay.

I define V" C V as set of all ingress nodes where traffic arrives in the network. Similarly,
Ve C V denotes the set of egress nodes where traffic departs. As I elaborate further in
Section 3.1.2, different services may use different ingress and egress nodes. Depending on the
service, egress nodes may be different from or identical to the ingress nodes or there may be
no egress nodes at all. In general, ingress and egress nodes may be located anywhere in the
network, not just at its borders. Furthermore, set V, C V contains all direct neighbors of node v,
which can be reached via a hop over a single link. The corresponding set of links connected to
v is denoted as L, = {l = (v,v') € L|Vv' € V} C L.

3.1.2. Services

I define services abstractly as acyclic, linear chain of components that each provide some
functionality. This definition is in line with the definition by Internet Engineering Task Force
(IETF) for Service Function Chaining (SFC) [102] and therefore seems most relevant in practice.

18

3.1. Problem Parameters

Abilens

Figure 3.1.: The Abilene network topology (figure from Topology Zoo [142]).

Other, more general graph-based service structures can raise considerable questions and issues
(e.g., ambiguous semantics), which I discuss in my paper [S36]. Hence, I define the components
of a service s € S as ordered chain Cs = (¢, ¢, ...) of arbitrary but fixed length. Set S contains
all services and C = |Js;¢g Cs denotes the set of all components over all services.

A component ¢ provides certain functionality and may constitute, for example, Virtual Network
Functions (VNFs) in Network Function Virtualization (NFV), microservices in a service mesh, or
machine learning functions in a pipeline [103, 150, 120]. Each component can be instantiated
zero, one, or multiple times and deployed across different nodes in the network, depending on
the current demand. All instances of ¢ are functionally equivalent but independent of each other.
In line with the current serverless trend [21], I do not explicitly consider intra-node coordination.
Instead, my approaches focus on inter-node network and service coordination, e.g., deciding at
which nodes to instantiate a component c. If my approaches decide to instantiate c at a node v,
internally within v, there may be one or multiple instances of component ¢, depending on the
demand and the resources at the node (e.g., large data center vs. single server). I assume these
intra-node coordination decisions to be handled independently and transparently by the node’s
operating system or systems like Kubernetes [45].

Ve

Firewall VLY
ewa Optimizer
C1 s1 Co
1 Parental
Firewall | Antivirus Control
C1 . CG7) Cs
52

Figure 3.2.: Example services s; and s, share the same component ¢y, here a firewall.
Components may be reused and shared across multiple services, e.g., Cs;, = (c1,¢2) and

Cs, = (c1,¢17,¢5). In the example shown in Figure 3.2, component c; refers to a firewall that is
used in both services s1 and s;. Instances of c; may handle traffic belonging to both s; and s,. If

19

3. Problem Statement

this is not desired, then using a different identifier, e.g., ¢; in 57 and c’1 in s, enforces separate
instances and avoids reuse and sharing across services. The same holds for components that
are used multiple times within a single service. For example, in Cs, = (c1, ¢4, 1, ¢6), a single
instance of component c; could be deployed and used twice in s3. Using distinct identifiers c;
and ¢ to distinguish the component at the two different positions within the service chain, i.e.,
Csy = (c1, 4, C/1/ ce), enforces separate coordination and instances for ¢; and c/l.

When traffic traverses an instance of component c, it incurs a processing delay d. € R>g during
which the instance requires resources as defined by function re(A) € R>p, e.g., to meet a
predefined Service-Level Agreement (SLA). Function r.(A) is monotonically increasing with
the current data rate A of incoming traffic. I discuss options for modeling r.(A) based on
real-world data in Chapter 7. For simplicity, I assume that processing delay d. is a fixed or
randomly distributed value independent of the current load or allocated resources. Furthermore,
instances may modify traversing traffic, affecting its data rate, e.g., through compression or
data augmentation [164]. I therefore define the outgoing data rate as function A2"(1) € R+
for an instance of component ¢ with currently incoming data rate A. Finally, services may
have additional requirements for Qos, which are specified in ®;. For example, ®; = (ds) may
optionally specify a maximally acceptable end-to-end delay ds € R~ U {@} for traffic traversing
service s. If multiple flows traverse s, the delay bound d; applies to all flows. Similarly, when
multiple flows traverse instances of a component c in parallel, they each incur a processing
delay d,, require resources according to function r.(A) for processing, and leave ¢ with a
modified data rate according to function A2"(A). I provide further details and examples in
Section 3.1.3.

Finally, each service s defines its own set of ingress nodes V" and egress nodes Vs ?, where
V' = Jseg Vi and V8 = ;g Ve®. As mentioned in Section 3.1.1, both ingress and egress
nodes may be arbitrary nodes in the network. This allows modeling different kinds of services
and scenarios easily. For example, in telecommunications, ingress and egress may ‘corresgond
to different nodes based on the location of the caller and callee, respectively, i.e., V;" # V; & In
other scenarios, e.g., online gaming, traffic returns to its source after traversing the requested
service, i.e.,, VI" = V. Finally, it is also possible to model traffic that is just processed by
service s but does not have a specific egress. In this case, Vi ® = @ such that traffic traverses the
requested service and ends at the last service component, e.g., for processing and collecting
measurement data in Internet of Things (IoT) scenarios.

3.1.3. Traffic

Traffic arrives in the form of flows at the network’s ingress nodes V" over time steps t =
1,2,..., T. Flows are unsplittable and represent traffic, for example, from users, machines, or
sensors using some service. A flow f = (sf, v}“, v;g, Af, tlf“, (5f) € F is characterized by its
requested service sy € S, its ingress node v}“ € Vsl;‘ and egress node v;g € V;}g U {@}, its
data rate A fr its time of arrival t‘;‘, and its duration (Sf. It holds that Vi* = J fer vi]%‘ and

Ve = User Ujig \ {@}. Figure 3.3 illustrates these flow attributes, which I further discuss in the
following.

I model traffic on the abstraction level of flows as a continuous stream and do not consider
individual packets or bits (cf. fluid approximation [38]). When flows reach an instance of a
component ¢, I assume processing to start directly for each incoming flow, incurring processing

20

3.1. Problem Parameters

Figure 3.3.: Visualization of flow f with data rate Ay and duration 6y arriving at ingress v}“ (at time t}n),

traversing its requested service sy, and departing at egress ”(J;g .

delay d, rather than waiting for the entire flow to arrive completely before processing. The
end-to-end delay dy of a flow f is the time from its arrival t? to time tj’[ut when it starts its

departure, i.e., when reaching U;g or an instance of the last component in Cs, if v = @.1f the
requested service s¢ has QoS requirements O, in form of a maximally acceptable end-to-end

ie, dp =t —fp < d

delay d, (Section 3.1.2), then f must reach its egress within d or it

expires.

Sf/ Sf/

I assume a flow f to have a required (average) data rate A 7 (e.g., in byte/s), which stays fixed
for the entire flow duration J5 (e.g., in seconds) but may be modified by traversed components
according to AUt(A) as described in Section 3.1.2. This model requires a given data rate and
duration per flow and does not allow to specify traffic only in terms of total volume, e.g., to
transmit data as quickly as possible. Still, flow data rate A and duration 6 (and all other flow
attributes) can be chosen arbitrarily to model a wide variety of traffic scenarios. As this model
is very generic and flexible, it is useful to consider two relevant edge cases of possible traffic
scenarios more closely: Few, long flows (Case I) vs. many, short flows (Case II). In the following,
I discuss these two cases and their implications for network and service coordination in more
detail.

Case I: Few, Long Flows

change occurs
. - new coordination decision
tll’l

fi
> t
£ N
JT | few, long flows
£ »
T2 » \7/—/
£
T3

network is static

Figure 3.4.: Case I: Few, long flows with significant time intervals in between flow arrivals or departures,
during which the network is static.

In Case I, I consider scenarios where traffic arrives in the form of few but long flows, e.g.,
representing long video streams, large backups, or aggregated traffic from multiple smaller but
semantically related connections. As illustrated in Figure 3.4, the time between flow arrivals

21

3. Problem Statement

and departures is relatively long, leading to considerable time intervals in which the load is
basically static, i.e., no flow arrives or departs.

viJ? v; v‘}g
B _Hd.
1\ j_ d(vlfn Vs) tout
— f leaves
0 o
t C2 5
\
v | f left

Figure 3.5.: In Case I, flow f is long and continuously utilizes instances and links along its entire path.
Processing and propagation delays are virtually negligible compared to long flow duration 4.

In these static time intervals, traffic continuously flows from ingress to egress and utilizes
resources on all links on the path as well as at instances of all requested service components.
This is visualized in Figure 3.5, showing processing and propagation times of a single long
flow f arriving at its ingress at time t}n and continuously traversing example service s; with
Cs, = (c1,c2) from Figure 3.2. Figure 3.5 shows the total processing times of f at instances
of c1 and c; as yellow boxes. These total processing times depend on flow length §; and
the components’ processing delays d., and d,,, respectively. In Case I, the short processing
delays d., and d, are virtually negligible compared to the long flow duration ;. Similarly,
link delay d

v; to the egress are rather insignificant compared to long flow duration ¢ in Case I. During
processing (shown as yellow boxes in Figure 3.5), instances require compute resources of r¢, (Af)
and r¢,(As) as described in Section 3.1.2. Here, c; may change f’s data rate Ay according to

function A2 (As) before reaching c,, where it may change again according to AZ"(A).

o) for propagation from ingress vi]%‘ to cp at node v; and link delay 4 (0% from

Due the few and long flows and the resulting long time intervals without relevant changes,
coordination decisions are only required infrequently in Case I, i.e., whenever a flow arrives or
departs (shown as yellow lines in Figure 3.4). Hence, in such situations, compute-intensive and
time-intensive coordination approaches are viable, e.g., centralized algorithms or approaches
based on MILPs.

22

3.1. Problem Parameters

Case Il: Many, Short Flows

rapid coordination periodic updates of
decisions coordination rules

> 1 > 1
——> — > —> —> —> —_> > >
— —» — —>
many, short flows many, short flows
=> network is highly dynamic => network is highly dynamic
(a) Frequent coordination decisions (b) Periodic coordination decisions

Figure 3.6.: Case II: Many, short flows arrive, traverse, and depart the network rapidly, making the scenario
highly dynamic. There are different options for coordination in such fast-paced, dynamic
scenarios, e.g., a) rapid decisions at flow arrival and during traversal or b) coordination rules
that are updated periodically.

In contrast to Case I, Case II concerns traffic scenarios with many, small flows that arrive rapidly
in the network. Thus, the two cases represent opposite sides in the spectrum of possible traffic
scenarios. The many, small flows in Case II may, for example, indicate a more fine-grained view
of individual, small Transmission Control Protocol (TCP) connections or represent short-lived
traffic, e.g., for web services. Figure 3.6 illustrates that, in this case, flows arrive and depart
frequently, leading to a highly dynamic scenario. Different coordination options are conceivable
in such a scenario: For example, a coordination approach could make rapid coordination
decisions whenever a flow arrives and again as it traverses the network, e.g., at every hop
(shown as yellow lines in Figure 3.6a). This requires fine-grained, up-to-date information about
the individual flows and fast coordination decisions. Alternatively, a coordination approach
could define coordination rules that are applied to all flows at runtime and are updated in
periodic coordination decisions, independent of flow arrival or departure (Figure 3.6b). In
addition to these two examples, other options for coordination are also conceivable. How and
when coordination decisions are taken depends on the specific coordination approach.

Unlike the long flows in Case I, flow duration in Case II is short compared to propagation
and processing delays, such that a single flow typically does not utilize the entire routing
path and instances of all components at once. Instead, short flows traverse the network and
only occupy some links and instances on their path at a time. This is visualized in Figure 3.7,
showing processing and propagation times of a single short flow f traversing example service s;
(Figure 3.2). Here, flow duration J¢ is rather short compared to processing delays d., and d,,
as well as link propagation delays d (v0,) and d (0,05 Consequently, processing f at c; barely
overlaps with processing at c,. Similarly, f only occupies the links from v}“ to v; and from v; to
v;g for short, only briefly overlapping time intervals. Hence, node and link resource utilization
is highly volatile in Case II, making the scenario very dynamic. Consequently, making per-flow
decisions in Case II (as shown in Figure 3.6a) requires frequent and fine-grained coordination
with highly efficient coordination approaches, e.g., fast heuristics or distributed algorithms.

My approaches in Parts I and II are not strictly limited to either Case I or Case II but support
both. Still, the approaches in Chapters 4 and 5 are comparably compute-intensive and time-

23

3. Problem Statement

Figure 3.7.: Illustration of times and durations for arrival, processing, propagation, and departure of a
short flow f in Case II. (Figure adapted from [S34]; © 2021 IEEE.)

intensive and thus more suitable when considering few and long flows (Case I). The approaches
in Chapters 6-9 focus more on efficient coordination of many short flows (Case II).

3.2. Decision Variables

The purpose of network and service coordination is to ensure that services are deployed
and provided to their users in good quality and without wasting resources or costs. To this
end, I focus on four main aspects of network and service coordination, which I describe in
the following sections: 1. Service scaling, 2. service placement (both in Section 3.2.1), 3. flow
scheduling (Section 3.2.2), and 4. routing (Section 3.2.3). My coordination approaches optimize
multiple (often all) of these four aspects jointly together. Such joint optimization is important due
to interdependencies and trade-offs between the coordination aspects [203, 61]. Solving them
sequentially and separately would make each coordination aspect simpler due to the reduced
decision space but possibly also lead to much worse solutions [131, 61]. I use separate decision
variables to clearly distinguish service scaling and placement, flow scheduling, and routing. Still,
due to the interdependencies between these aspects, the setting of the corresponding decision
variables can often be derived from each other. I explain the four coordination aspects, their
interdependencies, and the corresponding decision variables in the following, using Figure 3.8
as running example. Table 3.2 provides an overview of the main decision variables and their
notation.

3.2.1. Service Scaling and Placement

Service scaling determines how often to instantiate each service component and service place-
ment controls where to deploy (or place) these instances in the network. Since I focus on

24

3.2. Decision Variables

Figure 3.8.: Illustration of decision variables for service scaling and placement (xc,(t)), flow scheduling
(¥£,.(t)), and routing (zf,(t)). For simplicity, the figure only shows some but not all variable
settings and omits parametrization with time ¢. (Figure adapted from [S34]; © 2021 IEEE.)

inter-node not intra-node coordination (Section 3.1.2), service scaling and placement only
concerns whether or not a component ¢ is instantiated and placed at a node v. This scaling
and placement decision can be jointly controlled via binary decision variable x.,(t) € {0,1},
which is 1 if ¢ is placed at v at time ¢ and 0 otherwise. Internally within v, I assume the node’s
operating system or systems like Kubernetes [45] to handle the deployment of ¢ independently
and transparently if x.,(t) = 1. In this case, there may be one or multiple instances of ¢
deployed within v, depending on the load as well as the type and resources of the node (e.g.,
large data center vs. small single-core server). In the example of Figure 3.8, flows f; and f>
traverse example service s; (Figure 3.2) with Cs; = (c1,¢2). At time ¢ shown in the figure, com-
ponent c; is scaled and placed at two nodes v; and v,, and c; is only placed at v3. Accordingly,
Xey,00 (1) = Xey 0, (F) = X¢y,0,(t) = 1. For all other components ¢ and nodes v, x¢,(t) = 0.

Coordinating service scaling and placement is important since deploying all components on

Table 3.2.: Decision variables

Symbol Domain Definition

xeo(t) {0,1} Scaling and placement: Whether or not an instance of compo-
nent ¢ is placed at node v at time ¢

Yre(t) VU{@} Flow scheduling: At which node (if any) to process flow f
requesting an instance of c¢ at time ¢

zfo(t) Vo,U{@} Routing: To which neighbor (if any) to route flow f, whose
head is currently at node v at time ¢

25

3. Problem Statement

all nodes permanently is typically not feasible or desirable. Unused idle instances may still
consume resources, i.e., r.(0) > 0. Even if idle instances only require negligible compute
resources (e.g., lightweight containers, unikernels, or simple processes), they often have non-
negligible memory requirements [Sg]. Deployment also requires an up-to-date image of the
component (e.g., a Docker or virtual machine image) to be available at the node. With many
different components and versions in the network, their combined images likely require
considerable storage space, which is limited for small edge nodes. Even if feasible, deploying
all components at all nodes generally tends to waste resources and may also incur extensive
licensing or other costs. Therefore, it is typically desirable to actively and dynamically control
service scaling and placement according to the current demand. Indeed, I show that flexibly
adjusting scaling and placement to the demand is crucial for good service quality and sensible
resource utilization [S16].

3.2.2. Flow Scheduling

Flow scheduling concerns where to process incoming flows. Particularly, the question is at which
instance of a component ¢ to process a flow f, where ¢ € C;, is a component of the requested
service s¢. As I focus on inter-node scaling and placement of instances, I only consider instances
of c that are distributed across different nodes. Hence, the scheduling decision selects the
node of a suitable instance for processing. Specifically, decision variable y¢.(t) = v € VU {2}
indicates that f should be processed at an instance of ¢ at node v and time t. Note that node v
may be any node in the network, not just neighbors of f’s previously traversed node. If f is not
scheduled for processing at c at time ¢, y¢(t) = &. In the example of Figure 3.8, flow f; and
f2 both arrive at ingress vy and request service s; with Cs; = (c1,c2). Here, fj is scheduled for
processing c; at v1, and f; is scheduled to node vy, i.e., yf, , (t) = v1 and yy, ., (t) = va.

Clearly, there is an interdependency between service scaling and placement and flow scheduling.
Processing f at an instance of c at v is only possible if a corresponding instance is available,
ie., yr(t) = v requires x.,(t) = 1. Depending on x4 (), component ¢ may not be available at
node v when a flow arrives to be processed there. At this point, fetching, installing, and starting
an instance of ¢ on demand could take considerable time, in which the flow may already expire
and get dropped. Hence, jointly coordinating service scaling and placement as well as flow
scheduling is important to avoid expired and dropped flows.

Proper flow scheduling allows to balance load across different instances and nodes according to
the current demand and available compute resources. As described in Section 3.1.2, instances of c
require resources 7. () relative to their handled data rate A. The total resource requirements 7 ()
at a node v at time t add up over all deployed instances and must be within the node’s
capacity:
ro(t) =), xc,v(t)rc(fz Ly, (n=o}Af) < cap, (3.1)
€F

ceC

where 1y, £e()=0} is an indicator variable that is 1 if y;.(f) = v and 0 otherwise. Hence,

optimized flow scheduling ensures that load is distributed across nodes to avoid exceeding
node capacities and resulting dropped flows. At the same time, scheduling flows to instances
close by can reduce the length of routing paths and resulting end-to-end delay, thus improving
QoS.

26

3.3. Optimization Objectives

3.2.3. Routing

Finally, I consider routing as the fourth main aspect of network and service coordination.
Routing a flow f requires deciding its path from its ingress v'f', through the deployed instances

belonging to service s¢, and to its egress v;g (if any). While I consider flow scheduling and

routing as distinct coordination aspects, there is clearly an interdependency between the two:
Flow scheduling determines at which instances to process flow f, and routing decides the path
to and in between these instances.

The routing path is defined as a series of hops starting at v}n. Each hop goes from a node v

to a direct neighbor v € V, via a single link (v,v') € L,. The corresponding decision vari-
able z¢,(t) = v’ € V, U {@} indicates that flow f should be routed from node v to neighbor v’
at time f. Again, z¢,(t) = @ indicates that f is not routed to any neighbor at time ¢. To ensure
that routing decisions are well defined, they always refer to the head to the flow. The remainder
of the flow, which may span across multiple nodes and links (particularly long flows in Case I),
follows the routing path taken by the flow head. In the example of Figure 3.8, flow f; is
processed locally at ingress v1 at component c1, but f, is scheduled to v; (i.e., yf,, (t) = v2).
Consequently, f, is routed along the shortest path via the direct link (v, v;) to neighbor vy, i.e.,
zf, 0, (t) = v2. In principle, f, could also be routed along another path, e.g., from v; via v3 to v;.
This may be helpful if link (v1,v;) is already fully utilized.

Routing f from v to v’ occupies data rate A on the corresponding link I = (v,v') € L.
Consequently, total allocated data rate r;(t) is summed up over all flows routed via I and must
be within the link’s capacity:

l’l(i’) = Z]l{Zf,v(t):U’}Af < capl (32)
feF

where 1, (=0} is an indicator variable that is 1 if z¢,(t) = ¢’ and 0 otherwise. I assume

flows cannot traverse a link if they were to exceed the link’s capacity. Instead, these flows would
need to be routed via a different link or are dropped. Therefore, similar to how flow scheduling
balances load across compute nodes, optimized routing is important to balance load across
different paths to avoid exceeding link capacities and resulting dropped flows. Still, routing via
shorter paths or links with short delay d; helps reduce end-to-end delay and improve Qos.

3.3. Optimization Objectives

There are many reasonable objectives for network and service coordination, depending on
the use case and the individual goals of an operator or service provider. A core objective is
providing the requested services with acceptable quality to as many users (or machines) as
possible. All of my coordination approaches therefore aim at successfully processing as many
flows as possible without exceeding the network’s limited node and link capacities.

In addition, there are often other desirable objectives, for example,

* minimization of end-to-end delay, which is important for Qos,
* minimization of the number of placed instances in order to reduce costs (e.g., for licens-

ing),

27

3. Problem Statement

* minimization of used compute nodes, where completely unused nodes may be turned
off to save energy and costs (e.g., at the network edge).

A challenge with multiple objectives is that these objectives are often competing. For example,
distributing load across nodes and links in the entire network may allow processing more flows
without exceeding capacities, but it also leads to higher end-to-end delays and worse QoS. Vice
versa, processing all flows close to their ingress may reduce end-to-end delay but increases load
at and around the ingress, thus potentially exceeding capacities and dropping more flows.

As optimizing one objective can easily deteriorate another, my coordination approaches allow
to actively optimize multiple desired objectives and to navigate the trade-off between these
objectives. I provide the exact formulation of optimization objectives for each approach in the
corresponding chapters.

28

Part |I.

Conventional Coordination
Approaches

29

4. Centralized Coordination

As discussed in Chapters 1-3, network and service coordination is crucial for many real-world
use cases and requires joint scaling, placement, scheduling, and routing. The large majority of
existing work proposes conventional centralized coordination approaches [110]. Examples are
Mixed-Integer Linear Programs (MILPs) or heuristic algorithms designed by experts that require
global knowledge and control of the network and involved services. In this chapter, I present
such a conventional centralized coordination approach that I refer to as Bidirectional Scaling
and Placement Coordination Approach (BSP).

BSP is mostly previous work based on my master’s thesis [S15], where I developed the main
idea, model, and approach of BSP. I further built on this work during my PhD together with
my colleague Sevil Dréxler to publish it as conference paper [Sz]. Unlike the master’s thesis,
the paper includes the notion of individual flows as defined in Section 3.1.3, an adjusted MILP
formulation to properly distinguish these flows, a proof of NP-hardness, and an updated and
extended evaluation. The MILP approach and NP proof are mostly Sevil Draxler’s contribution,
whereas the heuristic algorithm is mostly my contribution. Since the main idea and approach
were already developed during my master’s thesis [S15] and are also presented in Sevil Dréxler’s
PhD thesis [59], this chapter is mostly intended as background and related work, not as a contribution as
part of my PhD. 1 still provide a high-level overview of the BSP heuristic in this chapter because I
repeatedly compare against it in following chapters. I omit other parts of this work, e.g., the
NP-hardness proof and the MILP formulation, which are not relevant for the remainder of this
thesis but can be found in the corresponding paper [S2]. This chapter contains verbatim copies
of the following paper [S2]: Sevil Dréxler, Stefan Schneider, and Holger Karl. “Scaling and
Placing Bidirectional Services with Stateful Virtual and Physical Network Functions.” In: IEEE
Conference on Network Softwarization (NetSoft). IEEE. 2018, pp. 123-131, © 2018 IEEE. In this
chapter and throughout my dissertation, I consistently write in the first-person singular form
(“I” rather than “we”) for ease of reading. The source code corresponding to this chapter is
publicly available on GitHub [S12].

4.1. Introduction

In this chapter, I present BSP, which is a conventional centralized approach for solving the
network and service coordination problem described in Chapter 3. More specifically, I propose
two approaches for joint scaling, placement, scheduling, and routing: First, an MILP that can
be solved to find optimal solutions but is, in practice, limited to small scenarios. Second,
a heuristic that finds close-to-optimal solutions much faster than the MILP approach and is
thus useful for larger, practical scenarios. Both approaches optimize multiple objectives and
support dynamic reuse of shared instances within a single service or across different services
as discussed in Section 3.1.2. They also support coordination of bidirectional services by
distinguishing upstream and downstream traversal of each component to ensure correct use of
stateful components in such bidirectional services. Since this thesis focuses on more common

31

4. Centralized Coordination

unidirectional services, I omit details about coordination of bidirectional services in this chapter
and refer interested readers to the paper [S2]. Here, I focus on the BSP heuristic (Section 4.2)
and its evaluation, comparing it against the MILP (Section 4.3).

4.2. BSP Heuristic Approach

BSP requires detailed global information of the network (including capacities and delays),
services (including components, resource requirements, etc.), and current traffic (including
information of all active flows and their attributes) as defined in Section 3.1. Given this
information, BSP calculates embeddings that define how to scale and place involved service
components and how to schedule and route incoming flows in the entire network. As it requires
global knowledge of all flows, BSP is most suitable for scenarios with few and long flows as
described in Section 3.1.3, Case I, where it is called to adjust network and service coordination
whenever a flow arrives or departs. It supports dynamic online coordination, taking previous
embeddings into account and adjusting them to the current situation. In general, BSP tries to
accept and serve all incoming flows while optimizing four objectives with decreasing priority:
1. Avoid (or minimize) over-subscription of node and link capacities. 2. Minimize changes
when adjusting an existing embedding in terms of added or removed instances to minimize
overhead and licensing costs. 3. Minimize the total resource consumption of all deployed
services. 4. Minimize the total delay of flows traversing the deployed services. By default, BSP
optimizes a lexicographical combination of these four objectives with the given priorities.

Algorithm 1 provides an overview of the BSP heuristic algorithm, which I simply refer to as BSP.
The algorithm consists of three parts: After an initialization phase (Section 4.2.1), the heuristic’s
embedding procedure (Section 4.2.2) is executed repeatedly, following a destroy-and-repair
approach using tabu search [94] to iteratively improve the solution (Section 4.2.3). In the
following, I describe the algorithm and the three parts in more detail.

4.2.1. Initialization

During initialization, the heuristic computes the shortest paths between all pairs of nodes
in the substrate network based on the Floyd-Warshall algorithm [82] (line 1 in Algorithm 1).
These precomputed paths are stored and can then be accessed in constant time throughout the
heuristic algorithm. To favor paths with high capacity and low delay, each link [is given a weight

w; = —L that is used for path computation, where I assume cap, and d; to be centrally

cap;+ -
known, statlic, and positive. If these link capacities or delays were to change, the paths would
need to be recomputed and updated accordingly. While the assigned weights favor paths with
high capacity, routing via precomputed paths is generally prone to exceeding link capacities
if these capacities are very tight. To this end, the iterative improvement phase repeatedly
tests alternative placements and paths to overcome and avoid potential over-subscription
(Section 4.2.3).

In the initialization phase, BSP removes embeddings from any old services that are no longer
used, i.e., removing any placed instances or allocated resources for these services (line 2). For
the services that are in use, it computes an ordered set Sqoreq containing all active services in
decreasing order of estimated resource requirements (line 3). BSP estimates the total required

32

4.2. BSP Heuristic Approach

Algorithm 1 BSP Heuristic Algorithm

1: Precompute and store all-pairs shortest paths [82] > Initialization
2: Remove embeddings of old, expired services s ¢ S

3: Ssorted <— sort S with decreasing resource requirements

4 tabu < <

5: Init best, incumb, and curr solutions

6: while consecutive non-improving iterations < max. iterations do

7: for all service s € Sqorieq dO > Embedding Procedure
8: curr < place dummy instances of ci, at VSin and of ceg at Ve

9: for all instance i in component order (cin, ¢ € Cs) do
10: if i is tabu or not used then
11: curr < remove i and continue with the next instance
12: curr < map flows to paths; add required instances; avoid tabu
13: tabu < random instance from curr > Iterative Improvement
14: if curr is better than before then
15: Update incumb and best solution
16: else if curr is just slightly worse than before then
17: Update incumb with certain probability
18: curr <— incumb

19: return best

compute resources for deploying each service by taking information about incoming flows
and all service components into account. This sorting helps in the embedding procedure by
embedding resource-heavy services first when there are still enough resources, i.e., before
embedding more light-weight services. Finally, BSP initializes tabu and three initially empty
solutions curr, incumb, and best (line 4 and 5), which are used during iterative improvement
(Section 4.2.3).

4.2.2. Embedding Procedure

After initialization, BSP creates an initial solution curr. Particularly, BSP embeds all active services
in the predefined order Sy, eq, starting with the services that have the highest estimated resource
requirements (line 7). BSP introduces auxiliary ingress and egress components, ci, and ceg, and
places dummy instances of these auxiliary components at all ingress and egress nodes, Vi" and
V8, for each service s (line 8). These auxiliary dummy instances do not consume any compute
resources but enable a more consistent embedding procedure later on. The heuristic then starts
embedding the current service s by iterating through any already existing instances, starting
at the instances of cj, and following with instances according to the order of components in
Cs (line 9). As traffic changes over time, some of the previously existing instances may have
become unused, i.e., have no more incoming flows, and are therefore removed by BSP (lines 10
and 11). Similarly, BSP removes the current instance i if its placement is declared tabu (i.e., i is
tabu), which happens later in the iterative improvement phase.

For active instances with incoming flows, BSP computes the flows” outgoing data rates based

33

4. Centralized Coordination

on A2U(A), which needs to be known for each component c. It uses these calculated data rates
to adjust the scheduling of outgoing flows to instances of the next component ¢’ (according to
Cs) and for mapping them to suitable paths (routing). It deallocates resources for any departed
flows that no longer exist and allocates resources for any new flows (line 12). In the special case

of ¢/ = ceg, BSP schedules and routes each flow f to its egress node U;g . Otherwise, it tries to

schedule new flows to already existing instances of ¢/, routing them via the precomputed paths.
For each new flow f, it considers all available instances of ¢’ that have enough free resources to
process f, taking flow data rate A¢ and resource requirements /(1) into account. Out of these
candidate instances, BSP selects the closest instance in terms of path delay and schedules f to be
processed there. If there are no existing instances of ¢’ or they do not have enough resources to
process f, BSP places a new instance of ¢’ at another node. Again, it selects this node based on
its remaining resources and path delay. In doing so, it avoids selecting nodes that are declared
tabu. Once all flows leaving current instance i are scheduled and routed to instances of the next
component ¢/, BSP repeats the same procedure for the next instance (line 9).

4.2.3. lterative Improvement

While the embedding procedure ensures correct embeddings of all services s € S and tries to
optimize the embedding in terms of the aforementioned objectives, its sequential and somewhat
greedy approach can still lead to suboptimal results. Therefore, BSP modifies the current solution
(curr) iteratively based on tabu search [94] by picking a random instance in curr, excluding
dummy instances of ci, and ceg, and declaring it as tabu (line 13). The curr solution is then
reset and recreated using the embedding procedure again but disallowing to place the tabu
instance at the same location as before (cf. destroy-and-repair principle of large neighborhood
search [202]). This leads to a different distribution of instances and scheduling of flows, possibly
decreasing or avoiding over-subscription and improving the desired objectives.

The heuristic modifies the embeddings of all services in multiple iterations while maintaining
three different solutions, which are updated in lines 14-18: The current solution curr, which is
modified during the embedding procedure, the incumbent solution incumb, which is used to
reset curr after each iteration (line 18), and best, which is the overall best solution found so
far. After each iteration, BSP discards unsuccessful modifications but also enables exploration of
slightly worse solutions without losing the best found solution (lines 16 and 17). Hence, the
tabu-based improvement scheme allows to overcome local optima while reusing the efficient
embedding procedure iteratively. The iterative improvement phase ends when the incumbent
solution (incumb) could not be improved for a predefined number of consecutive iterations
(line 6). At this point, BSP terminates and returns the best solution for scaling and placing all
services and for scheduling and routing all active flows (line 19).

4.3. Evaluation

In this section, I evaluate the previously described BSP heuristic in terms of the four optimization
objectives and compare it against the MILP approach, which is described in the paper [Sz2].
Generally, the MILP approach finds optimal solutions but requires excessive runtimes, whereas
the heuristic is much faster and produces suboptimal yet good solutions. Section 4.3.1 describes
the evaluation setup, Section 4.3.2 compares the BSP heuristic against the optimal MILP approach

34

4.3. Evaluation

in a small scenario, and Section 4.3.3 evaluates its scalability and online coordination capabilities
in a much larger scenario.

4.3.1. Evaluation Setup

I implemented BSP in Python 3.5 and performed all simulations on machines with an Intel
Xeon E5-2695 v3 CPU running at 2.30 GHz, using GNU Parallel [244] for parallelization across
CPU cores. For reproducibility and reuse, all code is publicly available on GitHub [S12]. For
the evaluation, I consider a typical video streaming service consisting of three components,
particularly, a cache, a server, and a video optimizer [72]. Furthermore, I use two real-world
network topologies from the SNDIib library [194] with link propagation delays d; calculated
based on the distances between the geographical locations of the nodes. For comparison against
the MILP approach in Section 4.3.2, I use a very small network with few flows due to the high
complexity and long runtime of the MILP approach. Specifically, I use the western half of the
Abilene network with 6 nodes and 14 directed links and simulate traffic with 1-6 flows arriving
at random ingress nodes. In contrast, I evaluate the scalability and online coordination of the
heuristic in Section 4.3.3 using up to 30 flows arriving randomly at 10 ingress nodes on the
largest network topology from SNDIib, the “Brain” network, with 161 nodes and 664 directed
links. In both networks, flows arrive with unit data rate (A = 1) and node and link capacities
are set uniformly to cap, = 4, cap; = 4 in the Abilene network and cap, = 10, cap; = 10 in the
Brain network. Based on preliminary experiments, I set the hyperparameters of the BSP heuristic
as follows: 1. Maximum number of consecutive non-improving iterations before terminating the
algorithm (line 6 in Algorithm 1): 30. 2. Threshold for considering a solution as just “slightly
worse” and as candidate for the new incumb solution in line 16: 110 % compared to objective
score of the current incumb solution. 3. Probability for accepting such slightly worse solutions
as new incumb solution (line 17): 50 %.

4071 —o— MmILP : 211 —e— mILP

35 Heuristic Heuristic P
S » 181 i
5307 y § .
£ I
225/ B
S £ 421
P20 s /
g 3 91 /
S 15 ° € /
5 26t /
s 1.0 1 "

0.5 371

0.0 L5 : : 0

1 2 3 4 5 6 1 2 3 4 5 6

Number of Flows

(a) Maximum over-subscription

Number of Flows

(b) Number of instances

Figure 4.1.: Comparison between the BSP heuristic and MILP in terms of a) maximum over-subscription
over all nodes and b) number of added instances.

35

4. Centralized Coordination

160 f
- 251 —e— MILP —e— MILP
% Heuristic 140 1 Heuristic
O
o 20 - 120 + B |
g ——a é 100 + e, X
£ 1% & \T
0 © 80t o7
T e
3 10 2 607
5 =
E 51 /‘ o1
©
P ,,/. 20 /
01+ " " " + " oL+ ; ; ; + ;
1 2 3 4 5 6 1 2 3 4 5 6
Number of Flows Number of Flows
(a) Total allocated data rate (b) Total delay

Figure 4.2.: Comparison between the BSP heuristic and MILP in terms of a) total allocated data rate and
b) total delay over all links.

4.3.2. Comparison Against the MILP Approach

I first compare the BSP heuristic against the MILP approach in the small Abilene west network
with 1-6 flows simulating increasing load. Figures 4.1 and 4.2 compare the two approaches
in terms of the four optimization objectives stated in Section 4.2, showing the mean and
95 % confidence interval over 300 repetitions. The objective with highest priority is avoiding
or minimizing over-subscription of available resources (both at nodes and links). While link
capacities are never over-subscribed in the scenario here, Figure 4.1a shows the maximum over-
subscription of nodes’ compute resources with increasing load. Both approaches completely
avoid over-subscription for 1 to 3 flows by distributing the load over different instances and
nodes. With 4 or more flows, the available resources no longer suffice and are over-subscribed
relative to the number of flows. The figure shows that the heuristic matches the optimal results
by the MILP for 1—3 and 6 flows. For 4 and 5 flows, it is slightly worse and finds solutions with
higher over-subscription (up to 67 %).

These observations are similar for the other three objectives: The heuristic finds good solutions
that closely approximate the optimal results of the MILP with similar numbers of deployed
instances (Figure 4.1b), allocated link data rate (Figure 4.2a), and total delay (Figure 4.2b).
However, with 6 flows a special case occurs where the heuristic even outperforms the MILP in
terms of total allocated data rate and total delay (Figure 4.2). Here, the heuristic uses additional
instances compared to the MILP (Figure 4.1b), but places these extra instances closer to the
ingress nodes and routes the flows via shorter paths, allocating less data rate in total and
reducing total delay.

36

4.3. Evaluation

3001 oo 2500 1 Py
L] [)
L []
250 1 o ° @ o °
° c°. © 2000 1 ° % 4
g‘ o0ues’ ° 3 oo °
2 200 . . ? . .
2 o A @ 1500 t iy A
® 150 & “ o, 3 & “ .
3 o 3 o7
5 e . S 1000 1 LS .
3 1001 . . < . R
0.. 8 ‘.0.
50 . ° 2 5001 . (]
& ° & e
[[] [L]
0lee ") ol " $
0 20 40 60 0 20 40 60
Event Event
(a) Total load (b) Total allocated node resources

Figure 4.3.: During online coordination with the BSP heuristic, the allocated node resources closely follow
the current load.

4.3.3. Scalability and Online Coordination

Where the MILP needs minutes to hours, the heuristic finds solutions in milliseconds to seconds.
As an example, the worst case runtimes in the small scenario of Section 4.3.2 with 4 flows
were 137.1 hours for the MILP approach compared to 6.7 s for the heuristic. In this section, I
further evaluate the scalability and online coordination capabilities of the heuristic on the largest
network of the SNDIib library (called “Brain” network) with 161 nodes and 664 directed links.
Here, I apply the BSP heuristic in an initially empty network where the load first increases and
then decreases again, triggering 60 coordination events for each flow arrival or departure.

Figures 4.3 and 4.4 show the results of the BSP heuristic in this large-scale scenario. As shown
in Figure 4.3a, the load first increases and then decreases again over the course of 60 events.
At the same time, the heuristic adapts to the changing load by scaling the involved service
components and allocating resources accordingly. The total compute resources allocated over
all nodes (Figure 4.3b) closely follow the changes in load, indicating that BSP handles changing
load well and accurately adapts its resource allocation.

Figure 4.4 shows an important consequence of the objectives’ prioritization (Section 4.2). With
increasing load, the number of deployed instances and the total delay also increase because
BSP has to distribute the traffic across more nodes to avoid over-subscription, resulting in
longer paths and higher delays. However, the total number of instances and the total delay stay
high even after the load starts decreasing around event 40. This is because, here, minimizing
the number of added or removed instances has a higher priority than minimizing the total
delay to limit overhead of migrating instances. Adhering to this prioritization, the existing
instances (possibly placed farther from the ingress nodes) are still used with reduced load
rather than removing or migrating them closer to the ingress nodes. Intermediate drops in total
delay (Figure 4.4b) are due to BSP optimizing routing paths, adjusting to changed load. This
indicates that the BSP heuristic successfully optimizes the given optimization objectives and

37

4. Centralized Coordination

300 1 L CCCCCCCCCCCCCCCCCCCCC) 50 - Qe +
< o
° ®
250 1
n K4 40
6]
o W 'E'
S 200 1 ° S S
k7] . =304
£ ° E 30
Y we
5 150 & a
9 ° T 20+
o . R o
£ 100] E .
=z (o
@
0l § .o 10 «® e
S («c“’“ we %
01+ ; ; ; 01+ ; ; +
0 20 40 60 0 20 40 60
Event Event
(a) Number of instances (b) Total delay

Figure 4.4.: With fluctuating load (Figure 4.3a), the BSP heuristic dynamically adds new instances, leading
to increasing total delay.

respects their prioritization. Even in this large-scale scenario, it coordinates network and services
successfully, dynamically adapting service scaling and placement as well as flow scheduling
and routing. The average runtime per event in this large scenario was 42.3 s, which is acceptable
in scenarios with few but long flows that arrive and depart sporadically (Section 3.1.3, Case I).
If required, the runtime can be reduced by terminating after fewer non-improving iterations
(see hyperparameter settings in Section 4.3.1). However, a shorter iterative improvement phase
would likely also lead to reduced service quality.

4.4. Conclusion

BSP is my first approach for solving the network and service coordination problem of Chapter 3
by jointly optimizing scaling, placement, scheduling, and routing. As centralized coordination
approach, BSP requires detailed, global knowledge of network, services, and traffic to successfully
control network and service coordination. It leverages its central view and control to find optimal
solutions with the MILP approach or close-to-optimal solutions with the heuristic algorithm.
While the heuristic is much faster than the MILP approach, it still requires detailed, global
knowledge of all active flows in the network. Hence, it is more suitable for few, long flows
(Case I in Section 3.1.3) than for many, short flows (Case II). Furthermore, its complexity grows
with increasing network size. This is a conceptual issue of centralized coordination approaches,
which is particularly true for the MILP approach but also holds for the heuristic (e.g., more
paths to precompute and more candidate nodes to select from). As a consequence, coordination
runtimes of centralized approaches increase with growing network size, possibly limiting their
practical applicability in large networks. How to overcome this inherent scalability issue of
centralized approaches? The following Chapter 5 tries to answer this question by proposing an
alternative coordination approach that does not require global knowledge and control.

38

5. Hierarchical Coordination

Network and service coordination is commonly addressed through centralized approaches,
where a single coordinator knows everything and coordinates the entire network globally (like
the Bidirectional Scaling and Placement Coordination Approach (BsP) in Chapter 4). While
such centralized approaches can reach global optima, they do not scale well to large, realistic
networks. In contrast, distributed approaches scale well, but easily sacrifice solution quality
due to their limited scope of knowledge and coordination decisions. To this end, I propose a
hierarchical coordination approach in this chapter that combines benefits from both centralized
and distributed approaches and tries to find intermediate solutions with good solution quality
and good scalability. In doing so, the approach considers a network that is divided into
multiple hierarchical domains and optimizes coordination in a top-down manner. I compare
this hierarchical approach with a centralized approach in an extensive evaluation on a real-world
network topology. My results indicate that hierarchical coordination can find close-to-optimal
solutions in a fraction of the runtime of centralized approaches. Similar to BSP in Chapter 4,
this hierarchical approach is conventional in that it relies on a detailed procedure designed by
human experts, here including the formulation of a Mixed-Integer Linear Program (MILP).

This chapter is based on my paper [S18], which relies on concepts, code, and evaluation
results created by Mirko Jiirgens for his master’s thesis [124]. I proposed the initial topic and
idea and advised his thesis, providing feedback and discussing ideas in weekly meetings
to structure and develop these ideas for defining and approaching the problem as well as
steering the work into the desired direction. Based on the convincing outcome of the thesis,
I also compiled the results and wrote the published paper. This chapter contains verbatim
copies of the following paper [S18]: Stefan Schneider, Mirko Jiirgens, and Holger Karl. “Divide
and Conquer: Hierarchical Network and Service Coordination.” In: IFIP/IEEE International
Symposium on Integrated Network Management (IM). IFIP /IEEE. 2021, © 2021 IEEE. In this chapter
and throughout my dissertation, I consistently write in the first-person singular form (“I” rather
than “we”) for ease of reading. The source code corresponding to this chapter is publicly
available on GitHub [S17].

5.1. Introduction

Network and service coordination is relevant for a variety of real-world use cases (Chapter 2) yet
challenging due to many influencing factors (Chapter 3). Taking just some of these factors into
account already leads to optimization problems that are NP-hard [61, S2]. Even with heuristic,
non-optimal approaches, practical scalability of centralized coordination approaches is usually
limited to small or medium-sized networks. A natural approach is hence to split large networks
into smaller domains, which are then coordinated independently in a distributed fashion. While
this provides reasonable results within shorter runtimes, solution quality may be sacrificed due
to lack of global knowledge and necessarily suboptimal inter-domain coordination.

39

5. Hierarchical Coordination

To address these issues, I propose a novel hierarchical coordination approach that combines
benefits of both centralized and distributed approaches. The approach follows a divide-and-
conquer strategy where the network can be divided into arbitrary levels of hierarchy. First, in a
bottom-up phase, lower hierarchical levels aggregate and advertise information to the higher
levels (cf. “one big switch” abstraction in Software-Defined Networking (SDN) [129]). In the
following top-down phase, high-level coordinators make inter-domain coordination decisions
based on the advertised information. All child coordinators then refine the coarse-grained
decisions of their parents in parallel.

A challenge here is that node and link capacity constraints must be respected on all hierarchical
levels. Decisions of higher-level coordinators should guide child coordinators by reducing their
decision space but must not keep them from finding a valid solution if any feasible solution
exists. If no feasible solution exists for embedding a flow, e.g., because resources are already
highly utilized, this should be noticed at the top of the hierarchical levels to quickly reject the
corresponding flow without the unnecessary overhead of recursing to lower hierarchical levels.
The information advertised from lower hierarchical levels, e.g., about available resources, needs
to be detailed and relevant enough to enable meaningful decisions at higher hierarchical levels.
Still, it should be aggregated and abstract enough to reduce coordination complexity on higher
levels.

To navigate this trade-off, I define a suitable information advertisement scheme. I then formalize
the hierarchical coordination approach as MILP and optimize it numerically. In the extensive
evaluation on a real-world network topology, I compare the hierarchical approach with an
equivalent centralized approach, using the same MILP formulation for a flat, single-level hierar-
chy. I find that the hierarchical approach achieves comparable solution quality but is more than
10x faster on average than the centralized approach. Overall, the contributions of this chapter
are:

* Section 5.4 proposes a generic, hierarchical coordination approach that works with any
given hierarchical structure.

e Section 5.5 formalizes an MILP that is solved numerically by coordinators on each hierar-
chical level.

* In Section 5.6, I evaluate the approach on a real-world network topology, comparing it
against a centralized approach.

¢ To facilitate reproduction and reuse, the implementation is open source [S17].

5.2. Related Work

Most authors propose centralized approaches to make global decisions for coordinating services
in the entire network [182, 22, 28, 9, 144, S2, 161]. These approaches typically only work in
small networks and do not scale to practical, large-scale networks [28]. For example, Moens and
De Turck [182] propose a centralized optimization approach for placing Virtual Network
Function (VNF) instances in a hybrid setting, coexisting with physical network functions.
Unlike the approach proposed here, the authors do not consider dynamic scaling of services
or traffic routing between component instances. Similarly, other proposed approaches [23,
22, 28, 9, 144] focus on placement of instances and/or traffic routing but disregard flexible
scaling of services according to the current demand. Furthermore, such centralized numerical
optimization approaches are severely limited by their complexity and typically only work
in small networks [28]. Thus, authors typically propose heuristic algorithms that trade off

40

5.2. Related Work

reduced solution quality with faster runtime. I argue that centralized heuristic algorithms are
still inherently limited by their centralized view and decisions when scaling to practical, large
networks. Houidi et al. [115] propose a distributed approach, splitting the network into separate
domains, in which services are coordinated independently in parallel. While this approach
eliminates the scalability issues of centralized approaches, it is also prone to coordinating
services suboptimally since each domain coordinator’s knowledge and decisions are limited
to its own domain. To the best of my knowledge, I propose the first hierarchical approach for
network and service coordination, which solves these inherent limitations. By dividing the
network into hierarchical levels it can be optimized in a scalable and distributed, yet coordinated
fashion.

Nevertheless, authors have proposed hierarchical approaches in related areas [78, 175]. In
particular, Virtual Network Embedding (VNE) is well-studied [79] and closely related to my
problem. Samuel et al. [221] propose a distributed and hierarchical approach that greedily
solves the VNE problem while different domains hide as much information from each other
as possible because they belong to competitors. While this perspective is interesting, I assume
domains to cooperate and share relevant topology information to improve coordination. Due to
limited information sharing and its greedy nature, the approach by Samuel et al. easily gets
stuck at suboptimal solutions or fails to find any feasible solution. In the latter case, embedding
steps are repeatedly reverted and applied differently to find a feasible solution. In my approach,
I ensure that any solution suggested by the top hierarchical level can be refined into a feasible
embedding.

In line with this chapter, Ghazar et al. [9o] assume that domains cooperate. However, the authors
do not aggregate or abstract any information such that computations on high hierarchical levels
become very expensive, comparable to centralized approaches. Hence, the authors skip higher
levels and directly select an intermediate hierarchical level to embed an incoming flow in one
of its sub-domains. If this is not possible because the domains are too small, the process is
repeated on the next higher level. This leads to considerable overhead for large embeddings,
e.g., where ingress and egress are far apart. Their approach is very sensitive to the selection of
the initial hierarchical level in which a flow is handled. Selecting a hierarchical level that is too
low or too high leads to considerable additional overhead, worse solutions, or unnecessarily
rejected flows. If it is too low, its sub-domains are very small and might not be able to embed
the request, leading to many costly, unsuccessful embedding attempts until a sufficiently high
hierarchical level is reached. If the initial hierarchical level is too high, its sub-domains cover
large parts of the substrate network increasing embedding complexity. In contrast, my approach
always starts at the top level and efficiently coordinates across domains by aggregating and
simplifying information of lower hierarchical levels.

In general, the network and service coordination problem addressed here (Section 5.3) is
considerably more complex than VNE. Unlike typical VNE approaches, I consider routing from
ingress to egress but also dynamic reuse of components across (or within) services and dynamic
scaling, i.e., flexible number of instances and resources per instance. Such joint coordination
is important to successfully balance trade-offs [203, 61, S16]. Overall, there is a stronger
interdependence between decisions of different hierarchical levels and domains, making the
problem more challenging than VNE.

Finally, hierarchical approaches are common in traffic engineering, which is a subproblem of
network and service coordination. For example, Multiprotocol Label Switching (MPLS) uses a
Path Computation Element (PCE) to find shortest paths across different hierarchical domains
(called autonomous systems in this context) [137, 55, 58]. Similar to my approach, topology

41

5. Hierarchical Coordination

information from these different domains can be abstracted and aggregated through topology
aggregation mechanisms [36]. Related to the aggregation approach proposed in this chapter,
Secci et al. [229] propose a full mesh aggregation containing the most relevant topology
information. Still, the authors assume that advertised intra-domain paths do not overlap,
i.e., do not share links. In contrast, the approach in this chapter supports overlapping intra-
domain paths and explicitly advertises constraints to avoid overloading shared links. Hence,
my approach allows more paths to be advertised such that better embeddings can be found.

5.3. Problem Statement

I address the network and service coordination problem where users request services consisting
of chained components in a network of distributed nodes as described in Chapter 3. In this
chapter, I assume that flows can be split over multiple paths from ingress to egress, which is
possible in many modern SDN architectures [272]. Alternatively, additional constraints could
be added to the MILP formulation to ensure unsplittable flows [140]. With splittable flows,
the problem of flow scheduling, where each flow is processed by exactly one instance per
component (Section 3.2.2), is turned into a load balancing problem, where a single flow can
be split and processed by multiple instances in parallel. The coordination approach needs to
decide how to split each flow into different portions, which portions of the flow to assign
to which instances, and how to route these flow portions through the network. Hence, the
coordination problem here entails joint scaling, placement, load balancing, and routing. Overall,
the problem and approach of this chapter focuses on scenarios with few and long flows (Case I
in Section 3.1.3) but is not strictly limited to such scenarios.

As discussed in Section 3.1.2, services consist of chained components, which may be reused
across different services or even within a single service. While the proposed hierarchical
coordination approach (Section 5.4) does not require full global knowledge of the entire
network, it does require detailed knowledge of the involved service components, including
their resource requirements and outgoing data rate in terms of functions r.(A) and ASUt(A).
To ensure that the MILP formulation (Section 5.5) indeed only contains linear constraints and
remains solvable, 7.(A) and AS"t(A) must be linear functions. To model the relationship between
traversing data rate and resource requirements or outgoing data rate even more accurately, the
approach could easily be extended to use piece-wise linear functions [60].

The optimization goal in this chapter is to coordinate network and services such that all incoming
flows are processed successfully while minimizing, first, the number of placed instances and,
second, the total delay. This is challenging because processing many flows successfully may
require distributing load across many nodes and instances, also leading longer routing paths
and higher delay. Still, placing fewer instances can be important to reduce costs for licensing
or resources and shorter delays can improve service quality. If a flow cannot be processed
successfully with the given resources, it has to be rejected and is dropped. I formalize this
objective in Section 5.5.1.

42

5.4. Hierarchical Coordination Approach

5.4. Hierarchical Coordination Approach

In this section, I describe the hierarchical coordination approach, first, providing a high-level
overview of the overall design, and then going into detail in Sections 5.4.1-5.4.3. The main idea of
the approach is to divide the network into smaller domains and coordinate them in a hierarchical
manner. Each domain is a part of the network that may recursively consist of sub-domains,
forming a hierarchy. This hierarchical approach allows both efficient parallel coordination of
different domains yet enables coordination between domains for highly optimized results. I
assume that dividing the network into domains and sub-domains may depend on business or
legal aspects (or other aspects like node locality) and is therefore out of scope and happens
before coordination starts. Hence, it is not possible to rely on two levels of hierarchy (or any
other fixed number) when designing the hierarchical coordination approach. Since the approach
cannot rely on a specific number of hierarchical levels, it cannot assign fixed predefined tasks
to specific hierarchical levels, e.g., coarse-grained scaling and load balancing on the higher
level and detailed placement and routing on the lower level. Instead, it is important that the
approach is not tied to any structure but works with any given domains and hierarchical
levels. This also means that each domain may recursively consist of an arbitrary number of
sub-domains, possibly spanning large parts of the substrate network. Hence, aggregating and
hiding unnecessary information of lower-level sub-domains is crucial to reduce the problem
and decision space and keep coordination tractable. The design of the hierarchical approach
ensures a generic coordination procedure that can be applied to any hierarchical level in a
unified way, i.e., without special, hard-coded tasks for individual levels, and focuses on hiding
unnecessary details of lower hierarchical levels. The approach makes no assumptions about
the size or structure of the hierarchy and supports arbitrary numbers of hierarchical levels and
domains per level.

Given a specific hierarchy, the approach consists of two phases: First, domains aggregate
and advertise relevant information to their coordinators in a bottom-up manner (detailed
in Section 5.4.2). Second, based on this information, the coordinators make coordination
decisions in a top-down manner (Section 5.4.3). I choose top-down coordination to allow
high-level coordinators to optimize inter-domain decisions and guide lower-level coordinators.
Higher-level coordinators can leverage their coarse-grained yet wider view of multiple lower-
level domains to distribute load between different domains accordingly. Starting coordination
directly at a lower level can easily lead to worse solutions if coordinators of lower-level domains
coordinate incoming flows independently without guidance from higher-level coordinators
and without being aware of surrounding domains. For example, coordinating a flow with an
egress node in another domain is difficult without knowing about available resources, data
rates, and path delays in the other domain. Should a lower-level coordinator ensure that the
flow is processed completely by processing it in its own domain even if the domain is already
highly loaded and may become over-subscribed with more flows? Or should the coordinator
simply forward the flow to another domain and rely on this domain to process the flow, hoping
that there are sufficient resources? Both decisions are risky without knowledge of the other
domain or guidance from a higher-level coordinator, which is exactly a limitation of common
distributed coordination approaches. Similar questions also arise in terms of available link data
rate and path delays when balancing load and routing flows between different domains.

In contrast, the proposed hierarchical coordination approach facilitates lower-level coordination
decisions through coarse-grained guidance from higher-level coordinators. I ensure that each
high-level coordination decision can be further refined into a feasible solution or directly
reject requests at the top level. There is a general trade-off between accepting vs. rejecting

43

5. Hierarchical Coordination

incoming flows at the top level if it is unsure whether they can be embedded successfully.
Accepting and trying to embed all flows ensures that no flows are rejected unnecessarily but
may incur high overhead: It requires recursing to lower hierarchical levels even for flows that
are infeasible to embed, possibly even jumping up and down between levels to backtrack and
try to fix infeasible embeddings until they are eventually rejected (comparable to type II errors
in statistical hypothesis testing). Instead, only accepting flows at the top level that can surly be
embedded successfully avoids this overhead but risks rejecting some flows that could potentially
be accepted after all (comparable to type I errors). For the proposed hierarchical coordination
approach, I chose the latter design option to avoid frequent and significant overhead of recursing
to lower hierarchical levels for infeasible flows. I still try to avoid type I errors and to accept as
many flows as possible by providing relevant information to top-level coordinators, enabling
them to estimate available resources accurately and make informed coordination decisions. To
enable effective top-down coordination in phase 2, a main challenge is therefore to advertise
enough and relevant yet reduced and aggregated information from lower levels in phase 1.

After introducing the notation for domains and hierarchies in Section 5.4.1, I describe phase 1
in Section 5.4.2 and detail which information is advertised. Section 5.4.3 explains phase 2 in
more detail. Algorithm 2 shows the overall algorithm including both phases.

Algorithm 2 Hierarchical Coordination Algorithm

© fork=1uptok—1do > Phase 1
2 fori € {1,..,n,_1} in parallel do
3: Aggregate sub-domain information as fo’l
4 Advertise D}‘ = {DI"1|Vi} to coordinator j on level k + 1
. for k = k down to 1 do > Phase 2

for j € {1,..., nx} in parallel do
Embed flow f;‘ into D;.‘_l by solving the MILP (Section 5.5)

® N @

Split flow f]k into fik_1 for all coordinators i on k — 1

5.4.1. Domains and Hierarchies

I denote the total number of hierarchical levels as k and a specific level as k < k € Ny, where
k = 0 is the substrate network G = G°. Each domain at a hierarchical level k is coordinated
by a coordinator on the next higher level k + 1. In a typical flat, centralized approach with

k = 1, the entire network forms a single domain at k = 0, which is coordinated by a single
coordinator at k = 1. There are no coordinators at k = 0. This hierarchical approach supports

arbitrarily deep hierarchies with k > 1. In the example of Figure 5.1, the substrate network
G% = (VY,L°) on k = 0 is split into ny = 3 separate domains D?, D9, D§ with DY = (V?,L?).
Each domain DY on k = 0 is coordinated separately by its coordinator on k = 1, in parallel with
the other domains D?. At level k = 1, nodes are grouped again into domains that are handled

by coordinators on k = 2 (a single domain D} in Figure 5.1). This definition recursively extends
to an arbitrary number of k hierarchies.

While T assume that all nodes V* on level k belong to some domain Df.‘ (ie., VK = U?i 1 Vl.k),

44

5.4. Hierarchical Coordination Approach

Figure 5.1.: Example with k = 2 hierarchical levels. Ingress and egress nodes are shown in blue and border
nodes in orange. (Figure from [S18]; © 2021 IEEE.)

not all links L* are part of some domain. In particular, I distinguish between intra-domain and
inter-domain links. Intra-domain links Li-‘ connect nodes within a single domain Df (lighter
in Figure 5.1). Inter-domain links do not belong to any domain but connect nodes across two
different domains (thicker in Figure 5.1). I define border nodes Bf-‘ C Vik as the subset of nodes

that have an inter-domain link to another domain (orange in Figure 5.1). Specifically, Bff]. C VK
are the border nodes of domain Df-‘ with links to domain D;‘. Set Bff = U;Z 1 Bik, j contains all
border nodes of Df‘ with inter-domain links to any other domain (where Bf."i =). For example
in Figure 5.1, Bg = {vs,vg,v7}.

5.4.2. Bottom-Up Information Advertisement (Phase 1)

Each domain’s coordinator scales and places services as well as routes traffic inside the domain.
It needs to know about available compute capacity, data rate limitations, and delays within
the domain. A domain on level k may comprise multiple levels of sub-domains and cover
large parts of the network. Thus, it is crucial to hide unnecessary information of lower levels
from higher-level coordinators to reduce the problem space and ensure scalability. In line with
related work [30], I consider an intuitive scalability definition where an approach is scalable
if it performs gracefully with increasing input size, e.g., in terms of load or network size. To
ensure that the decision space of higher-level coordinators stays manageable even in large-
scale networks with many hierarchical levels or large domains, domains aggregate relevant
information of their sub-domains and advertise it to their coordinators as follows (lines 1— in
Algorithm 2).

Advertised Information
For a sub-domain Df.‘ domain information fo = (V}‘, Ef, Plk, <I>f) is advertised to the coordinator.

The key idea is to advertise a reduced set of nodes V¥ and replace hidden nodes and corre-
sponding links with paths 7311‘ that are annotated with aggregated information about compute

45

5. Hierarchical Coordination

’ \\«\ ll R s, R ~
/ .- > U3 U5 €. s b | 4 . .
1 --" [~.* “ 4 \\
: P U7)} =P (vg J€----=--3 >@
1 @--?2 r 1 pa_yp T8 !
. ~0 MUy € TR o : o
\\‘\—-_1__- - e 2 -7 AN 3 .

Figure 5.2.: Domain information D% advertised to the coordinator on k = 2 in Figure 5.1. (Figure from [S18];
© 2021 IEEE.)

resources of the hidden nodes as well as data rate and delay information of the hidden links. In
doing so, the advertised network topology of Df-‘ is significantly smaller and simpler than the
original, full topology of D;‘ . The simplified topology allows faster computation of coordination
decisions, yet the annotation of paths with aggregated information ensures that coordinators
know about the domain’s compute resources, data rate limitations, and path delays. This infor-
mation is important to determine whether a flow can be accepted and embedded successfully
and enables meaningful coordination decisions that can be refined into valid embeddings. As a
small example, Figure 5.2 illustrates the advertised domain information D! to the coordinator
on k = 2, containing aggregated information about sub-domains D9-DY from Figure 5.1.

Generally, advertised information Df»‘ includes a subset Vik - Vik of the domain’s nodes. Subset
VE={vin N VF} U {Ve N VF} U BF includes all ingress and egress nodes within V¥ as well as
the domain’s border nodes but no intermediate nodes. I selected these nodes to be advertised
because they are most relevant for routing flows from their ingress via different domains
(through the corresponding border nodes) to their egress. The advertised network in Figure 5.2
includes ingress v, and egress v11 as well as border nodes v3—vg but not intermediate nodes
v, 09, and vy, which are not as relevant for routing. In this small example, the majority of
nodes is advertised to the coordinator. However, in larger networks with more intermediate
nodes and additional levels of sub-domains, more nodes would be hidden and excluded
from V¥, simplifying the resulting network topology. To indicate how different domains are
interconnected, domain fo advertises all inter-domain links Ef, which connect a border node
of Df»‘ with a border node of another domain.

Finally and crucially, domain D¥ also advertises annotated intra-domain paths P¥, which replace
hidden nodes and corresponding links within the domain. These annotated intra-domain paths
are complemented by additional restrictions CIDi-‘, which are necessary for overlapping paths
and are discussed later on. For example in Figure 5.2, v can reach v3 via intermediate, hidden
node v, and thus has a path p; to v3. However, to keep the number of advertised intra-domain
paths small, domains do not advertise all possible paths between any two nodes in Vik, eg.,
based on reachability. Instead, it is most relevant for coordinators to know how to forward
and process flows on their way from their ingress to their egress, potentially via intermediate
domains. Hence, for a domain D;‘, I am interested in three kinds of paths inside domain Df-‘ :

1. Paths from an ingress node in D¥ to a neighboring domain D;-‘. For example, for do-

main DY, from ingress v; in DY to neighboring domain DY (via border node v3 or vy) in
Figure 5.1.
2. Paths from a neighboring domain D;-‘ to an egress node in Dl-‘. For example, for domain Dg ,

from Dg (via border node vg) to egress v17 in Dg.

46

5.4. Hierarchical Coordination Approach

3. Paths from a neighboring domain D;‘ traversing fo and going to another neighboring
domain D;.‘/. For example, for domain DY, from D? via Dg to Dg, i.e., paths from border
nodes v5 and vg to vy.

Intra-Domain Path Selection

To find such paths with maximal data rate, the approach solves the corresponding maximum
flow problem using Edmonds-Karp path selection [65] for each of the three described cases,
i.e., using ingress, egress, and border nodes as sources and sinks. Note that the maximum
flow problem, which requires a single source and sink, is applied individually to each ingress
and egress node but not to each border node. When looking for paths to/from a neighboring
domain D;.{, all corresponding border nodes Bff j are grouped together and connected to a single,

auxiliary source/sink node since traffic can be routed via any border node. In contrast, ingress
and egress nodes cannot be grouped together but have to be treated individually since each
flow requests a specific ingress and egress, and the coordination approach cannot freely choose
an ingress and egress node.

Auxiliary L Auxiliary
source A sink

Figure 5.3.: Maximum flow problem for path selection in domain Dg of Figure 5.1 from auxiliary source D?
to auxiliary sink D3, which connect to the corresponding border nodes.

For example, in Figure 5.1, the maximum flow problem is only solved once for domain DY to
find intra-domain paths when routing flows from neighboring domain DY via DY to DY. In
doing so, border nodes v5 and vg are connected to an auxiliary source node and v7 to a sink as
shown in Figure 5.3. The maximum flow problem is then solved once with the auxiliary source
and sink rather than separately for each border node, resulting in two paths p3 and p4 shown in
Figure 5.2. The selected paths can also be reused for the reverse direction from DJ via DY to DY
since all links and paths are symmetric and bidirectional. By default, the approach advertises
all paths selected by the Edmonds-Karp algorithm, but I also consider restricting the number of
advertised paths and evaluate the resulting solution quality and runtime in Section 5.6.4.

By replacing intermediate nodes and links with intra-domain paths, higher-level coordinators
can leverage a smaller and simplified view of the network topology. Solving the maximum flow
problem, intra-domain paths are selected such that coordinators can route traffic from ingress
to egress nodes via intermediate domains with maximal data rate. Furthermore, Edmonds-Karp
path selection [65] favors short paths by using Breadth-First Search (BFS) instead of Depth-First
Search (DFs), which is used by other variants of the Ford-Fulkerson algorithm [83], leading
to paths with fewer links and likely also shorter delay. To support coordination and ensure
coordinators find valid solutions, the selected intra-domain paths p € Plk are annotated with
further information about available compute capacity, data rate limitations, and delay along

47

5. Hierarchical Coordination

each path. All three are necessary for coordinators to decide where to place instances and how
to balance and route traffic within the domain without exceeding capacities and with short
delay.

Specifically, an intra-domain path p is annotated with the maximally allowed data rate caprLJ
along the path obtained from solving the maximum flow problem. The path’s delay d, corre-
spond to the sum of link delays along the path. I do not consider queuing delays, but they
could be added based on the current load along the path. Similarly, compute resources are
advertised as properties of a path rather than of individual nodes since intermediate nodes of
sub-domains are hidden from the coordinator. The compute capacity of path p is denoted as
cap]‘; and represents the sum of compute capacities of all nodes along the path, including the
source and destination node. For domains at level k > 2, the approach works similarly based
on the properties of advertised paths from the domains at k — 1.

Overlapping Intra-Domain Paths

Lastly, domains advertise additional restrictions CD;‘, which are necessary for ensuring valid
embeddings with overlapping intra-domain paths. Intra-domain paths may overlap and share
underlying nodes or links, e.g., paths p; and p; in Figure 5.4 both share nodes v; and v,
and corresponding link [; 1. The previously described, aggregated information about compute
resources and data rates includes resources of shared nodes and links multiple times, once for
each path. For example, both p; and p, are annotated with the total compute capacity along the
path, counting v; and v, twice. With just this information, higher-level coordinators are prone to
overestimating the available resources in the sub-domain, which easily leads to invalid solutions
with overloaded resources. Since, I want to ensure that any suggested, higher-level solution is
indeed valid and does not exceed any capacities (to avoid overhead of backtracking and fixing
invalid solutions), I introduce additional restrictions ® = (®",®!) to consider shared node
and link resources of overlapping paths as follows.

v
\

Figure 5.4.: Intra-domain paths p; and p; of domain D(l] in Figure 5.1 overlap and share nodes v; and v,
as well as link [; ;.

Lest partially overlapping paths overload shared compute resources, domains advertise compute
restrictions ¢” € ®" for each segment of shared compute resources. Such segments resemble
groups of shared nodes for domains on k = 0 or groups of shared sub-domain paths for
domains on k > 0. A restriction ¢ = (cap(‘;, P(;)/) indicates the total compute resources capg
of the segment as well as the set of overlapping paths P())/ that share these resources. In the
example of Figure 5.4, intra-domain paths p; and p; overlap and share the compute resources at

48

5.4. Hierarchical Coordination Approach

nodes v1 and v,. Hence, a restriction ¢ = (cap};l, P(",/1) is advertised with cap ¢ = Cap,, +cap,,

and P(I‘)/1 = {p1, p2}. When advertising the aggregated domain information D! (Figure 5.2), the
annotated paths together with this compute restriction ensure that higher-level coordinators
can make informed decisions without overestimating compute resources. For convenience, I
define @) = {¢p" € ®V[p € Pq‘)/ } C @V as subset of compute restrictions concerning path p

and CDXk ={¢pV € CDXWP € P¥} C @V as subset of compute restrictions concerning paths in

domain Df. Overall, the total compute resources cap;]/ of a path p can thus be represented by
partly exclusive and partly shared compute resources:

cap:: :cap;"d+) cap(‘; (5.1)
pedy

In the example of Figure 5.4, path p; uses v3 exclusively but shares v; and v, with path py, i.e.,

1_ v v o_
cap}© = cap, and cap; = cap,, +cap,, such thatcap, = cap, +cap, +cap, .

Similar to shared nodes, overlapping paths may also share underlying links. Solving the
maximum flow problem ensures that the selected paths do not exceed the available link data
rate. For example, paths p; and p; in Figure 5.4 result from solving the maximum flow problem
from ingress v; to neighboring domain DY (via border nodes v3 and v4) and are calculated such
that they do not overload shared link /1 ;. However, if a domain has multiple ingress or egress
nodes or multiple pairs of neighboring domains, the maximum flow problem is solved multiple
times independently for the different source-sink pairs. The intra-domain paths resulting from
these different, independent maximum flow problems may also overlap and are not guaranteed
to respect link capacities. Indeed, overlapping paths resulting from different maximum flow
problems may exceed the available link capacities. To avoid violating link capacities and to
ensure valid solutions, I introduce routing restrictions &L similar to compute restrictions PV,
which are advertised with the advertised domain information. Whenever multiple paths that
resulted from different maximum flow problems overlap, a routing restriction ¢* € @ is
advertised for the overlapping routing segment. Again, the segment may consist of consecutive
substrate links for domains on k = 0 or of consecutive sub-domain paths for domains on k > 0.
A routing restriction ¢l = (Capé, qu) defines the bottleneck data rate cap(Lp on the segment,

which is shared by all paths in set P(/%. As before, CI)]% ={¢pt edtpe P(/E} C @ is the subset

of routing restrictions concerning path p and dDiL/ = {¢t € @%Np € 7711‘ } C ®! is the subset
of routing restrictions concerning paths in domain Df . Note that no routing restrictions need
to be advertised for overlapping paths that resulted from the same maximum flow problem,
e.g., paths p; and p; in Figure 5.4. Choosing the Edmonds-Karp algorithm for path selection
is also useful here because it favors paths with fewer links (by using BFS instead of DFs),
resulting in fewer overlapping routing segments and thus in fewer routing restrictions. Overall,
o = (CIDXk, <I>£k) are the compute and routing restrictions advertised for domain D¥.

Design Options

As discussed at the beginning of Section 5.4, a key design decision for the hierarchical coordina-
tion approach is to favor rejecting possibly infeasible flows early (at the top hierarchical level)
rather than recursing to lower hierarchical levels, producing potentially invalid embeddings.
This design decision aims at avoiding unnecessary coordination overhead for infeasible flows

49

5. Hierarchical Coordination

that comes from recursing to lower hierarchical levels and potential attempts to fix invalid em-
beddings (e.g., through backtracking) until eventually rejecting the flow (comparable to type 1I
errors). This decision comes at the cost of possibly rejecting flows that could be embedded
successfully after all (cf. type I errors). The presented information advertisement scheme is
designed to both ensure that all embeddings are always valid (or the flow is rejected) but also
accept as many flows as possible.

Other design options for the information advertisement scheme come with different advantages
and disadvantages. Generally, information about compute resources, available data rate, and link
delays is crucial for coordinating scaling and placement as well as load balancing and routing.
The chosen information advertisement scheme is rather expressive, i.e., including ingress,
egress, and border nodes as well as annotated paths and restrictions, to provide detailed enough
information to accept as many flows as possible. Advertising even more information, e.g., also
intermediate nodes and corresponding paths, would mean that the advertised network topology
is almost identical to the true topology without any significant aggregation and simplification,
thus compromising scalability and defying the purpose of phase 1.

But why not simply advertise the aggregated compute resources, data rate, and delay for an
entire domain rather than the proposed sophisticated scheme with annotated paths? Such
a strong aggregation would completely hide the domain-internal topology and significantly
simplify the advertised information and improve scalability. However, to ensure that computed
embeddings are valid, the information needs to be aggregated and advertised in a very
conservative way such that higher-level coordinators do not overestimate and overload the
available resources. For example, this could mean advertising the minimal link data rate within
the entire domain, the maximal path delay, and only the compute resources that are reachable
within this delay. Consequently, coordinators could only rely on routing flows through the
domain that do not exceed the minimal link data rate. Other flows with higher data rates
would be rejected, even though there might be paths with higher data rates (i.e., without the
bottleneck link) that could support these flows but that the coordinators are not aware of due
to the strongly aggregated information. Overall, such a strong aggregation either violates the
original design decision of ensuring valid embeddings (e.g., when advertising the average link
data rate) or is very conservative (e.g., advertising the minimal link data rate), possibly leading
to many unnecessarily rejected flows.

The information advertisement scheme proposed in this section does ensure valid embeddings,
avoiding unnecessary overhead for infeasible flows, but also strikes a good balance between pro-
viding enough information to coordinate flows successfully and still reducing and simplifying
the original network topology for scalability. In Section 5.6.4, I further explore this trade-off and
evaluate solution quality and runtime of the approach when varying the amount of advertised
information.

5.4.3. Top-Down Coordination Decisions (Phase 2)

In phase 2 (lines 5-8 in Algorithm 2), the advertised information from phase 1 is used for
coordination as described in the following. Phase 2 starts at the highest hierarchical level k and
works top-down, where each coordinator optimizes coordination in its own domain using the
MILP formulation in Section 5.5. Inside the MILP formulation, the advertised information is used
in constraints to ensure that solutions of the MILP are indeed valid embeddings that do not
exceed any node or link capacities. The hierarchical coordination approach is generally not tied

50

5.4. Hierarchical Coordination Approach

to this MILP formulation. Alternatively, any other functionally equivalent optimization algorithm,
e.g., a heuristic, could be used by the coordinators without affecting the general hierarchical
coordination framework. Independent of the specific optimization method, a coordinator on
level k + 1 only knows the advertised information Df‘ = (V}‘, Ei-‘, Pl-k, dDi-‘). Hence, the coordinator
scales and places services and routes traffic on the advertised paths rather than directly on
substrate nodes or links.

For example, assume the top-level coordinator on k = 2 in Figure 5.1 needs to handle an
incoming flow for a service s consisting of two components Cs = (c1, cp) with ingress v; and
egress v11. The coordinator only knows the advertised domain D! shown in Figure 5.2. Based
on this information, it may decide to place an instance of c; on path p; close to the ingress and
an instance of ¢ on ps close to the egress. It could then route the traffic from v; in DY through
Dg to v11 in Dg along p1, 11, p3, 13, p5 (Figure 5.2).

Refining Coarse-Grained Coordination Decisions

This coordination decision on k = 2 then needs to be refined by coordinators on k = 1. These
child coordinators decide the specific scaling, placement, load balancing, and routing within
each domain (DY, DY, DY in the example), again by solving the MILP. Using the advertised
information, including the compute and routing restrictions, as input for the MILP, the parent
coordinator ensures that its decisions are feasible and can lead to valid solutions. To build on
and refine the decisions of the parent coordinator, the original flow f]k handled on level k is

adjusted and split into logically separate flows fl-k ~! for all child coordinators on k — 1. In the
aforementioned example, ¢; was placed on p; and traffic routed from ingress vy via p1,v3, [
to domain Dg. Hence, the child coordinator of D(l) on k = 1 would receive a flow for a service
consisting just of Cs = (c;) with ingress node v; and egress v3. Similarly, the coordinator of DJ
would receive a flow that just needs to be routed from vs to v; (without any placement) and the
coordinator of DJ would receive a flow just requesting ¢, with ingress vg and egress v1;.

To support flows that just require routing but no processing by instances of service com-
ponents, I augment all services with auxiliary ingress and egress components ciy, ceg € C.
These components are added at the front and end of a service chain, respectively, and nei-
ther consume resources (r.(A) = 0) nor alter traversing traffic (A%**(1) = A). Hence, a flow f
that purely requests routing would formally require a service sy with an empty component
chain G, = (Cin, Ceg)-

Coordination on the Lowest Hierarchical Level

Coordinators on k = 1 are directly responsible for coordination of parts of the substrate network
on k = 0 and therefore constitute a special case since there are no further sub-domains. To enable
the same consistent coordination workflow with the same MILP used for k > 1, I automatically
generate advertised domains DY for substrate-level domains D! as follows. For each substrate
node v; € V0, 1 advertise a separate sub-domain D]S-“b containing v, an additional dummy
/
j/
on Figure 5.1 would be advertised as D! to its coordinator on k = 1. Intra-domain path pjis
annotated with compute capacity equal to the substrate node’s capacity capy, - Both paths p;

node v}, and intra-domain paths p;, p; between the two nodes. Figure 5.5 shows how domain D

51

5. Hierarchical Coordination

Figure 5.5.: D(l) advertised to the coordinator on k = 1 in Figure 5.1. (Figure from [S18]; © 2021 IEEE.)

and p;- have unlimited data rate and zero delay. In doing so, coordinators on k = 1 can scale,
place, and route on these advertised paths, similar to coordinators on k > 1. Coordination
decisions on k = 1 are then transparently and automatically mapped to placement solutions
on the real substrate network, where any instances placed on paths p;, p;- are mapped to and
deployed on corresponding substrate node v;.

Following this top-down coordination approach, decisions by high-level coordinators are
further refined by child coordinators. Child coordinators solve the MILP (Section 5.5) in parallel,
improving response time, while the parent coordinator’s decisions ensure proper coordination
between domains. Finally, for actual deployment, instances are deployed in the substrate
network as decided by coordinators on k = 1 and the solution is returned to the higher-level
coordinators, which can install routing rules between the different instances (possibly spanning
multiple domains).

5.5. Mixed-Integer Linear Program (MILP)

I formalize the MILP that coordinators on each level k solve for each domain Df‘ based on
advertised information Df-‘ = (V}‘, q‘, Pl-k, be‘) Tables 5.1 and 5.2 summarize the notation, where
Table 5.1 complements and extends the previously introduced problem parameters in Table 3.1.
The scaling and placement-related variables in the first part of Table 5.2 are 0 if no instance of
component c is placed at path p. Similarly, the routing-related variables in the second part of
the table are only defined for components ¢, ¢’ where ¢’ is a direct successor of ¢ in the service
function chain G, requested in f. Otherwise, the corresponding variable is 0. Compared to
typical MILPs, I here need additional constraints for approximating and bounding resources
and data rates and for routing based on the abstract, advertised paths Plk and corresponding
compute and routing restrictions ®¥ = ((D},/k’ <I>Z-L,k). The MILP formulation uses this information
to ensure that node or link capacities are not exceeded, even if multiple paths overlap, such
that any solution to the MILP can be refined into a valid embedding.

5.5.1. Objective

The objective in Equation 5.2 minimizes the number of placed instances, weighted by w;, and
the total delay for processing all flows, weighted by wy. This corresponds to lower costs, e.g.,
for licenses or resources, and better service quality. In the evaluation, I choose a lexicographical

52

5.5. Mixed-Integer Linear Program (MILP)

Table 5.1.: Additional parameters

Symbol Definition

0<k< k Hierarchical level k and top level k

DF = (VF, L) Domain i on hierarchical level k

Df‘ = (Vk, Ef, Pk, k) Advertised information about domain D¥

dp Delay of advertised path p € PF

capt Allowed data rate of path p

capi/ Total compute capacity of path p

Pf = (D}, Ph) Compute and routing restrictions for domain D¥

PV = (cap(‘;, P(;/) € @Xk Overlapping paths in P(},/ share compute resources with
capacity capq‘;

Pt = (capé, P(é) € @}, Overlapping paths in P(IE share links with bottleneck data
rate capé

order, prioritizing the number of instances over total delay. Other objectives can easily be
implemented by choosing suitable weights and possibly including additional decision variables
from Table 5.2.

minw; - Y Xeptwr-) d}"tal (5.2)
ceC,pePk feF

5.5.2. Constraints

I minimize the objective in Equation 5.2 subject to the following constraints.

Ingress Traffic and Chaining

Equation 5.3 states that the total traffic leaving ingress component cj, placed at path pi, (at
the ingress) to any other instance equals the flow’s data rate A;. Equation 5.4 ensures flow
conservation between chained instances. In particular, all outgoing traffic of ¢’ at p’ corresponds
to all incoming traffic modified by function AS*(A).

total _
Y Ay =N VfEE (53)
/' eCpePk
out total _ total
A Y oA Fee oy | =) O 1
ceC,pePk c"eC,p" ePk
k
Vf eF,c € C\{cin ceg} P € P; (5.4)

53

5. Hierarchical Coordination

Table 5.2.: Decision variables

Symbol Domain Definition

Xep {0,1} Is an instance of component ¢ placed on path p?

Acp R>o Total incoming data rate for an instance of c at p

ALY R>o Total outgoing data rate of an instance of c at p

Tep R>o Resource requirements of an instance of c at p

" ppV R>o Path p’s portion of the shared compute resources constrained
by restriction ¢V € q)},/k

y}‘jgf,,p,p,,p,, {0,1} Is traffic of flow f routed via path p” from an instance of ¢
at path p to an instance of ¢’ at p'?

y}“ﬁecr,p P {0,1} Is traffic of f routed via inter-domain link / from an instance
of c at p to an instance of ¢’ at p'?

Aiﬁgf,/p,p,/p,, R>o Data rate of f that is routed via path p” from an instance of
c at p to an instance of ¢’ at p’

Aiﬁzfg,/p/p,/l R>o Data rate of f that is routed via inter-domain link ! from an
instance of ¢ at p to an instance of ¢’ at p’

A}‘f;?cl,,p/p, R>o Total data rate of f from instance ¢ at p to ¢’ at p’

Afecp R>o Data rate of f traversing instances of ¢ or ¢’ on p

AL R>o Data rate upper bound for all traffic of f on p

A R>o Data rate upper bound for all traffic on path p

d}"tal R>o Total delay for processing and routing flow f

Scaling and Placement

Whenever traffic is sent between two instances, Equations 5.5 and 5.6 ensure that both instances
indeed exist and are placed accordingly. Using the Big M method, M is a large constant that
ensures binary variable x. , is set to 1 if any traffic traverses the instance. Since I minimize the
number of instances in the objective (Equation 5.2), the solver sets x,, = 0 if the instance is not
traversed by any traffic.

A}?fcl’,lbp/ <M-xcp VfeFdeCpyp' e Pl‘k (55)
)\tf?fcl’,np/ SM- Xy VfeFcdeCpp e Pik (56)

Equation 5.7 sets variable A, to the total data rate of incoming traffic for an instance of ¢" at p’.
Equations 5.8 and 5.9 set resource requirements and outgoing data rate for the instance accord-
ingly. Equation 5.10 ensures that the shared compute resources constraint by restriction ¢ with
capacity capg are not overloaded by the overlapping paths in P(/‘,/ . Based on this, Equation 5.11

guarantees that the overall compute capacity of path p, consisting of partly exclusive and partly

54

5.5. Mixed-Integer Linear Program (MILP)

shared resources, is not overloaded by the total resource requirements of instances at p.

Aoy =¥ ARE ve' e Cp' e Pf (57)
fEF.ceCpePk

Tep = Te(Aep) VeeCpe P’k (5:8)

/\?};,t _)\?ut(/\c,p) VeeC,pe€ 'Plk (5.9)

Y. 7pev < capy VoY € @) (5.10)

peP(/‘,/

Y rep < CaP(;Xd + Y Thev p € Pf (5-11)

ceC ¢Vedy

Routing

Equations 5.12 and 5.13 ensure that the data rate routed via intra-domain paths or inter-domain
links does not exceed the total data rate between two instances.

A o S A VfeFcd eCpyp,p €Pf (5.12)
i 1 k k
Ao o1 S ALEe VfeFd eCpp ePflel; (5.13)
Equations 5.14 and 5.15 set binary routing variables y}nzr?, P! " and y}“ﬁecr, b, USING the Big M
method, similar to Equations 5.5 and 5.6.
AP o < MCYRES VfeF,cdeCpp, pePf (5.14)
At <My VfeF,cc €Cpyp ePhlech (5.15)

While Equation 5.4 ensures flow is conserved between instances of the whole service chain,
Equation 5.16 ensures flow conservation on intermediate nodes during routing. Particularly,
I consider routing via a node v from an instance of component c at path p to an instance of
¢’ at p/, where the total traffic has data rate)\}O(t:acl, Pl I denote vy as source node and vg4s; as
destination node as illustrated in Figure 5.6.

intra inter
Z A fec ppp” + Z A fec pp'l

p"€Pk pends at v leLk] ends at v
intra inter
N)y A pppr + L Afcc pp'l
p" Pk p'starts at v leLk] starts at v
0 if Vgre = U = Uggt OF Usre 7 U 7# Vgt
=\ }(fcl’,p,p’ if Vsre = 0 7 Vst
;‘?Scl’,p,p’ if Vsre 7 0 = Dast
Yo e VE f e Fe,d € C,p,p € PF (5.16)

55

5. Hierarchical Coordination

c d
— P PWsrc \/\ v \/\'Udst —p'—>

Figure 5.6.: Flow conservation for routing traffic from an instance of component ¢ placed at path p with
data rate At through node v € V}‘ to an instance of ¢’ at p’. (Figure from [S18]; © 2021

fec pp'
IEEE.)

Link Capacities and Delay

Equation 5.17 ensures that the total traffic on inter-domain links does not exceed their capacity.

int P
/\E‘I}c,ecl;,p,p’,l < cap, Vi e ﬁi (5-17)
feFcc eCpp'ePk

The corresponding restriction for intra-domain paths is more complex and thus split into
multiple constraints (Equations 5.18-5.21). Similar to Equation 5.10 for compute resources,
Equation 5.18 ensures that shared routing segments constrained by routing restriction ¢* with
bottleneck data rate Cap(Lp are not overloaded by overlapping paths in Pqe. The compute and
routing restrictions are calculated in phase 1 (Section 5.4.2) and passed as input to the MILP in
phase 2 (Section 5.4.3). Equation 5.19 defines an upper bound for the total data rate on path p
based on traffic routed through p (first part) and traffic being processed by instances on p, which
may modify the data rate of traversing traffic (second part). The latter data rate can be bounded
by considering the maximum data rate on p between any two chained components ¢, ¢’ € C
placed on p (Equation 5.20). In turn, this data rate is calculated in Equation 5.21 based on three
overlapping parts of traffic: Traffic from an instance of ¢ on another path p’ going to ¢’ on p,
traffic within p from ¢, ¢’ instances on p, traffic from c on p to an instance of ¢’ on another
path p’. These bounds slightly over-approximate the actual data rate on intra-domain path p,
which depends on the refined coordination decisions from child coordinators. However, the key
point is that they ensure that link capacities are not exceeded and routing decisions by parent
coordinators can be refined into feasible solutions.

Y, AP < capy vl € ol (5.18)
peP(P
i k
A= Aj{}gca’,p’,p”,p +) AR Vp € P; (5.19)
feFcceC, feF
p/,p//efplk
k
Afy = s Afecp VfeF,peP; (5.20)

_ total total total
)‘f,c,c’,p = Z)‘f,c,c’,p’,p +)\f,c,c’,p,p + Z /\f,c,c’,P,P'
p#p'ePk p#£p Pk

VfeF,ccdeCpePf (5.21)
Finally, Equation 5.22 calculates the total delay based on all traversed instances, intra-domain
paths, and inter-domain links, which is minimized in the objective (Equation 5.2). It is also

possible to bound and minimize the end-to-end delay rather than the total delay using additional
variables and constraints. However, preliminary tests showed that it considerably increases

56

5.6. Evaluation

complexity and yields similar results as minimizing the total delay. Hence, I focus here on
minimizing the total delay rather than the end-to-end delay.

total int; int

A=)\ Xepdet DL Vil pp iy X Vo ppidt | VEF (5.22)
cc'eC, p"ePk leck
p.p' €Pk

5.6. Evaluation

I evaluate the approach based on a prototype implementation with Python 3.6 and Gurobi 8 [193].
The code is publicly available on GitHub [S17] to encourage reproduction and reuse.

5.6.1. Evaluation Setup

I evaluate the approach on the real-world network topology Janos [194], which is a US network
with 39 nodes and 122 links. I set link delays according to the distance and propagation
delay between nodes and chose node and link capacities uniformly at random with cap, €
[8,64],cap; € [20,40]. Furthermore, I consider two services s1,s, consisting of a firewall and
a Deep Packet Inspection (DPI) with Cs; = (cpw, cppr) and Cs, = (cppr). I generate flows for
these services based on a randomly selected subset of 10 ingress and egress nodes and data
rate A¢ € [1,5] GB/s chosen uniformly at random. As evaluation parameter, I increase load by
increasing the number of active flows from 1 to 5.

On these scenarios, I compare the following approaches:

k=1: A typical flat approach with a single centralized coordinator, finding globally optimal
solutions (for comparison).

k = 2: The hierarchical approach with two hierarchies: One coordinator on k = 2 and two on
k=1

k = 3: The hierarchical approach with an additional hierarchy: One coordinator on k = 3, two
onk =2, and four on k = 1.

The centralized approach with k = 1 consists of a single, flat domain containing the entire
substrate network. For the hierarchical approach with k = 2 and k = 3, I selected domains within
a hierarchical level based on node locality, i.e., Global Positioning System (GPS) coordinates,
using the k-means clustering algorithm [121]. Given a desired number of domains, the k-means
algorithm assigns substrate nodes to these domains such that nodes within a domain have
similar (close) GPS coordinates. The top hierarchical level k always consists of a single top-level
domain. For k = 2, 1 configured two sub-domains on the lower hierarchical level. For k=3,
I extended the hierarchy of k = 2 with another hierarchical level below that contains four
sub-domains in total.

I executed the evaluation on machines with an Intel Xeon E5-2670 CPU, allocating 8 cores at
2.6 GHz and 128 GB RAM per experiment run. The results show the mean and 95 % confidence
interval over 25 independent repetitions.

57

5. Hierarchical Coordination

5.6.2. Solution Quality

First, I compare the solution quality of the hierarchical approach (k = 2 and k = 3) with the
centralized approach (k = 1) in terms of number of placed instances and total delay, which are
both minimized in the objective (Section 5.5.1). The centralized approach finds globally optimal
solutions and thus constitutes a lower bound regarding both metrics.

- 35 -
141 —o— k=1 I —o— k=1 [
I2=2 “‘_.... ; 30 I2=2
12) ,i/‘ N 3
~m- k=3 7 @ 251 "W k=3 ;/JL
10 R I
.~'/ e

-
o

Number of Instances
oo
'\
Total Delay [ms]
_ N
(6] o
QK
mx

2 5
ol / / / / ol ; ; ; -
1 2 3 4 5 1 2 3 4 5
Number of Flows Number of Flows
(a) Number of instances (b) Total delay

Figure 5.7.: Comparison of solution quality in terms of placed instances and total delay for increasing
load. The hierarchical approach finds solutions with quality that is close to that of the optimal,
centralized approach. (Figure adapted from [S18]; © 2021 IEEE.)

Figure 5.7a shows the number of placed instances with increasing load for the different
approaches. The hierarchical approach finds close-to-optimal solutions with few additional
instances compared to the optimal, centralized approach. As expected, the hierarchical approach
with k =2 is slightly closer to the optimum (3.7 % on average) than the one with k=3 (8.1 %).
This is because the latter has an additional layer of abstraction where more information is
aggregated and hidden from the top-level coordinator.

Figure 5.7b shows similar results for the total delay. To improve comparability, I here set the
same fixed number of instances (derived from k = 3 in Figure 5.7a) for all three approaches and
only minimize total delay. Hence, k = 1 now has the same number of instances as k = 2 and
k = 3 but represents the optimal lower bound regarding total delay for the given number of
instances. The hierarchical approach achieves short total delay for both k = 2 (within 13 % on
average from optimum) and k=3@17%).

5.6.3. Runtime Analysis

While the solution quality of the hierarchical approach is slightly worse than the optimum,
its reduced complexity and improved scalability enable much faster execution. Figure 5.8a

58

5.6. Evaluation

shows the total wall-clock runtimes for each approach on a logarithmic scale when executing
all coordinators within one hierarchical level in parallel. Hence, the runtime in the hierarchical
approach corresponds to the maximum coordination time of any domain per hierarchical
level, added up over all levels. While numerical optimization with MILPs is generally slow, the
hierarchical approach is much faster than the centralized approach. The additional level of k = 3
leads to even shorter runtimes than k = 2 since it hides more complexity from the top-level
coordinator. On average, k = 2 is 88 % and k = 3 is 470 % faster than k = 1.

105 + — + + + 105
—o— k=1
Ig =2 * T
T T u T T %
4 ° — g ——" 4 o —_—
07 ..m- k=3 1 E 1 10 A []
@ i @
) 5 —] P ,l'J.
5103 ./‘ 2103_/ 4% J-//
e X, c 7. ~
<] = & T —e— k=11l
m = e)
,) P ,.vj'_ —x-- k=3, full
10 10" T o277 R
& [W k=3,2p
I -4 k= 3,1p
10 1 2 3 4 5 10 1 2 3 4 5
Number of Flows Number of Flows
(a) All paths (b) Reduced paths

Figure 5.8.: Comparison of wall-clock runtime (logarithmic scale) with increasing load. a) The hierarchical
approach is significantly faster than the centralized approach. b) Advertising fewer paths
improves scalability considerably. (Figure adapted from [S18]; © 2021 IEEE.)

While the runtime grows with more flows for both the centralized and the hierarchical approach,
the growth in runtime is stronger for the hierarchical approach than the centralized approach.
With more flows, more ingress/egress nodes are included in advertised set Vlk and, consequently,
more intra-domain paths are advertised in 73}‘ and corresponding restrictions in d:{.‘. Hence,
the problem input size and resulting complexity grows in two ways (flows and advertised
information) for the hierarchical approach. Next, I further explore the impact of advertised
information.

5.6.4. Impact of Advertised Information

In Sections 5.6.2 and 5.6.3, domains advertise all paths found by solving the maximum flow
problem (Section 5.4.2), often multiple paths per source-destination pair. With more nodes V{‘,
this drastically increases the number of advertised paths 77}‘ . In this section, I limit the number
of advertised paths per source-destination pair and evaluate the impact on solution quality and
runtime. In particular, I compare k = 3 with all, two, or one advertised paths, denoted as full,
2p, and 1p in the figures, respectively.

59

5. Hierarchical Coordination

35 +
14 ot .
% 30 A1
12 R - R4 I
2 S & +
8 Sy — 25 - I
€ 10 bt 2 SV
© S P
B — T‘/’;"‘ o
E 8) %\ 20 ;»ﬁ'
o i// a 5
2 6 —o— k=1, full 5 " E// —e— k=1, full
. o .
§ 4 ==+ k=3, full F 10 O —x-+ k=3, full
, m- k=3,2p 5 / m- k=3,2p
-4 k=3, 1p - -+ k=3,1p
0 0
1 2 3 4 5 1 2 3 4 5
umber of Flows umber of Flows
Number of Fl Number of Fl
(a) Number of instances (b) Total delay

Figure 5.9.: Solution quality with varying amounts of advertised information. Advertising fewer paths
only leads to minor reductions in solution quality. (Figure adapted from [S18]; © 2021 IEEE.)

Figure 5.9 shows that, even with fewer advertised paths, k = 3 still finds close-to-optimal
solutions. Fewer advertised paths lead to slightly lower solution quality, i.e., more instances
(1.4 % on average with one vs. all paths) or higher delay (2.8 %), since coordinators lack some
information. At the same time, Figure 5.8b shows that advertising fewer paths considerably
reduces complexity and improves runtime. With just one advertised path per source-destination
pair, k=3ison average 3.4x faster than with full advertised paths and 10.7x faster than k=1.
Moreover, runtime grows slower with more flows when advertising fewer paths, indicating
better scalability.

5.7. Conclusion

The hierarchical coordination approach of this chapter mitigates the scalability issues of typical
centralized approaches such as BSP in Chapter 4 but still finds close-to-optimal solutions. Instead
of complete global knowledge and control of the entire network, all services, and all flows, each
coordinator in the hierarchical approach only observes and controls those parts of the network,
services, and flows that belong to its own domain. To control the trade-off between optimal
solution quality and fast runtime, operators can adjust the number of hierarchical levels and the
amount of information advertised from lower to higher levels. While this hierarchical approach
greatly improves scalability compared to centralized approaches, its sophisticated 2-phase
procedure and solving the MILP is still rather compute-intensive and slow. Hence, this approach
is most suitable for scenarios with comparably few and long flows, where coordination decisions
are required infrequently (Case I in Section 3.1.3). To complement this approach, the following
Chapter 6 proposes approaches with dramatically reduced complexity and runtime for frequent
coordination decisions in scenarios with many, short flows (Case II).

60

6. Fully Distributed Coordination

Typical centralized approaches for network and service coordination (e.g., Bidirectional Scaling
and Placement Coordination Approach (BsP) in Chapter 4) require up-to-date global knowledge,
which may be unavailable in large networks. In large networks with many, frequently arriving,
short flows, coordination decisions are required rapidly and even hierarchical coordination
(Chapter 5) may be too slow. To this end, this chapter proposes two fully distributed coordination
approaches. These algorithms are designed to be simple and fast, to run individually at each
node in parallel, and to require only very limited global knowledge. I evaluate and compare both
algorithms against the centralized BSP approach in extensive simulations on a large, real-world
network topology. My results indicate that the two distributed algorithms can compete with
centralized approaches in terms of solution quality but require less global knowledge and are
magnitudes faster (more than 100x). Similar to the other approaches in Part I, the approaches
in this chapter are conventional as they follow predefined and manually designed heuristic
algorithms.

This chapter is based on my paper [S24], which relies on concepts, code, and evaluation
results created by Lars Klenner for his bachelor’s thesis [141]. I proposed the initial topic
and idea and advised his thesis in weekly discussions and written feedback to structure and
develop the approaches. I also compiled and extended the results through additional evaluation
experiments and wrote the published paper. This chapter contains verbatim copies of the
following paper [S24]: Stefan Schneider, Lars Dietrich Klenner, and Holger Karl. “Every Node
for Itself: Fully Distributed Service Coordination.” In: IFIP/IEEE Conference on Network and
Service Management (CNSM). IFIP /1IEEE. 2020, © 2020 IEEE. In this chapter and throughout
my dissertation, I consistently write in the first-person singular form (“I” rather than “we”
for ease of reading. The source code corresponding to this chapter is publicly available on
GitHub [S23].

6.1. Introduction

Current approaches for network and service coordination mostly coordinate services globally,
i.e., they centrally decide service scaling and placement as well as flow scheduling and routing
for all flows in the entire network and rely on global knowledge [22, 9, 144, S2]. Since service
demands of incoming flows and resource utilization can change frequently, up-to-date global
knowledge is often not realistic and would require prohibitive overhead. In many practical
scenarios with large networks and rapidly arriving or departing flows (Case II in Section 3.1.3),
centralized decisions and even hierarchical coordination are too slow. Existing distributed
coordination approaches typically split the network into clusters and still require central
information and coordination within each cluster (Section 6.2).

To address these issues, I go one step further and propose two fully distributed approaches for
online network and service coordination. These approaches can be executed individually by

61

6. Fully Distributed Coordination

each node in the network, are simple and fast, and only require very limited knowledge. As
there is no single coordinator that could fail or become disconnected, they are more robust to
failures than existing centralized approaches. These properties make them ideal for practical
large-scale networks with many flows.

One of the proposed algorithms is greedy in that nodes process incoming flows locally if
possible and forward them along the shortest path to their egress nodes. The other algorithm
leverages more available knowledge, e.g., utilization of neighboring nodes, to identify suitable
nodes for processing incoming flows. Rather than processing all flows on the shortest path
from ingress to egress, it distributes load to avoid congestion. Overall, the contributions of this
chapter are:

® Section 6.4 proposes the two novel, fully distributed approaches for network and service
coordination with many, short flows (Case II). The algorithms can be executed individually
by each node in the network, are simple and fast, and only require limited global
knowledge.

® The evaluation based on a large, real-world network topology shows that the proposed
fully distributed algorithms can compete with BSP, a state-of-the-art centralized coor-
dination approach presented in Chapter 4, but require less global knowledge and are
magnitudes faster (Section 6.5).

¢ The code is publicly available on GitHub [S23] to encourage reproduction and reuse.

6.2. Related Work

Most related work proposes centralized approaches that require global knowledge and make
global decisions, using optimization solvers and/or heuristic algorithms [182, 22, 28, 9, 144, S2,
161, 149, 106, 139]. For example, Luizelli et al. [161] propose an efficient heuristic for large-scale
networks using a variable neighborhood search metaheuristic. Nevertheless, the authors still
rely on centralized knowledge and coordinate services offline, i.e., requiring all problem inputs
ahead of time. These limitations make their heuristic unsuitable for practical scenarios with
large networks and constantly fluctuating load, which require fast coordination decisions. In
contrast, my fully distributed approaches do not have these limitations and are suitable for fast,
online network and service coordination.

Virtual Network Embedding (VNE) is a well researched problem related to network and service
coordination [79], where authors have proposed distributed approaches [76, 115, 235, 239, 24].
Feng et al. [76] combine central coordination with a distributed mapping procedure. Houidi et
al. [115] split the network into different clusters. Similar to the approaches presented in this
chapter, they process multiple incoming flows in parallel. However, they rely on excessive mes-
sage flooding of coordination messages to construct global state. Similarly, Shi et al. [235] split
the network into clusters but aggregate network information centrally. A novel distributed VNE
approach using particle swarm optimization also splits the network into clusters with separate
coordination nodes [239]. Likewise, Beck et al. [24] split the network into different clusters that
are coordinated in parallel by separate coordinators. The aforementioned approaches distribute
and parallelize coordination into clusters, but each cluster is still coordinated centrally. In
contrast, my approaches fully distribute coordination decisions to each node in the network
without any centralized coordinating entity. This allows even more parallelization and faster
processing of flows. It also requires less knowledge and is more robust since there is no single
coordinator that could fail. Moreover, the most common VNE variants only focus on placement

62

6.3. Problem Statement

of already scaled and chained services but disregard scaling and online flow scheduling [79],
which are an important part of network and service coordination (Chapter 3).

Fully distributed approaches have been considered in networking areas such as routing, where
each router makes routing decisions locally in a distributed manner. Indeed, the approaches
proposed in this chapter are related to link-state routing protocols, e.g., Open Shortest Path
First (OsPF) [184], as they also use knowledge about the topology for calculating shortest
paths using Dijkstra’s algorithm. However, in addition to routing, I also consider joint scaling,
placement, and flow scheduling. These additional interdependent tasks make the problem
considerably more challenging.

6.3. Problem Statement

The approaches proposed in this chapter solve the network and service coordination problem
as defined in Chapter 3. They rely mostly on local information of a node v and adjacent links L,
as detailed in Section 6.4. Such local up-to-date information is realistically available, containing
currently utilized resources of node v with r, () < cap, and of link I with 7;(¢) < cap, at time f.
Similarly, each node observes and controls incoming flows locally. For an incoming flow f at
time t, c¢(t) € Cs; U {@} denotes the currently requested component, indicating the flow’s
current processing state inside component chain Cs, (cf. network service header [210]). Once the
flow traversed instances of all components in the requested service, ¢ f(t) = ¢, which implies
that the flow finished processing and needs to be forwarded to its egress node. Furthermore, m¢
denotes metadata of flow f, which the proposed approaches use for coordination, e.g., to define
the next target node for processing f (again, detailed in Section 6.4). Overall, the approaches in
this chapter focus on fast coordination decisions for scenarios with many, short flows (Case II)
but are not limited to such scenarios.

The coordination goal in this chapter is to set decision variables x¢,(t), ¥, (t), and zf(t)
(Section 3.2) such that incoming flows are processed successfully and with short end-to-end
delay. I formalize this high-level goal as primary objective oy and secondary objective 0,:

| Fsuce|
maxof = ~———= 6.1
f |Fsucc‘+‘Fdrop| ()
minoy; = ﬁ Z dc + Z]l{zfﬂ,(t):v/}dl (6.2)
SUCCl feFuee ceCs; (v,0')=I€L,

te{1,.., T}

Maximizing objective 0; means to successfully process as many flows (Fsucc) as possible, avoid-
ing dropped flows (Fgyop), thus maximizing the percentage of successful flows (Equation 6.1).
To avoid dropping flows due to lack of available node or link capacities, load should be bal-
anced across multiple nodes and links according to their capacities. The secondary goal is to
minimize 04, which is the end-to-end delay averaged over all successful flows (Equation 6.2).
The end-to-end delay of a flow f consists of two parts. First, the fixed service-specific sum of
processing delays d. of components ¢ whose instance f traversed. And second, the sum of link
delays d, that f experienced during routing.

63

6. Fully Distributed Coordination

Note that the two objectives 0 and o; may be conflicting. For example, distributing flows
over more nodes and links to balance the load helps with processing more flows successfully
(improves o) but also leads to longer paths and higher end-to-end delays (degrades o,). In
this chapter, I approach this trade-off by optimizing oy and o, in lexicographical order, i.e.,
prioritizing or but still trying to optimize 0, as far as possible.

6.4. Fully Distributed Coordination Approaches

To solve the network and service coordination problem of Section 6.3, I propose two fully
distributed algorithms. In both cases, the algorithm is executed independently in parallel
on each node in the network, where nodes directly decide how to treat incoming flows.
Both algorithms require knowledge of the network topology including link delays, which I
assume to be rather static and globally available. Neither algorithm, however, relies on full,
up-to-date, global knowledge of fast changing information such as the current utilization
of all nodes or links in the network. Instead, Greedy Coordination with Adaptive Shortest
Paths (GCASP) (Section 6.4.1) does not require any further global information and Score-Based
Coordination (SBC) (Section 6.4.2) can be configured to leverage any available useful information.
In practice, these approaches could be deployed using mechanisms for local control such as
dynamic flow rules in Software-Defined Networking (SDN) [257].

6.4.1. Greedy Coordination with Adaptive Shortest Paths

The main design goals for GCASP were to be simple, effective, fast, and frugal, in that it works
without any global up-to-date information about node or link utilization. Instead, each node
only knows the utilization of its own compute resources and outgoing links. Nodes process
flows greedily and forward them along the shortest path to their egress nodes, trying to
minimizing end-to-end delay. To avoid dropping flows due to congestion, GCASP adjusts routes
when a link is congested, i.e., when sending a flow via the link would violate its capacity cap,;.
As GCASP only requires local knowledge and makes local decisions, it does not require any
information exchange between nodes. Information about a flow’s current destination and
path is directly included in its metadata such that no additional communication overhead is
necessary.

Algorithm

Algorithm 3 shows the GCASP algorithm, which is run by a node v once a flow f starts arriving
(passed as arguments in line 1). First, v locally processes as many components of f as possible
(lines 2—4). Specifically, v processes f at an (existing or newly started) instance of requested
component ¢y if there are enough resources available. Here, o (t|xc;0(t) = 1 Ayy,c f(t) = 0)
denotes the total resources required at node v and time ¢ if f were to be processed there,
which can be calculated locally based on function r(A). After processing, c¢ points to the next
requested component in Cs,. Again, v processes f locally at an instance of ¢ if it has sufficient
resources. This local, greedy processing continues until either v’s compute resources are fully
utilized or after f traversed all requested service components (c; =).

64

6.4. Fully Distributed Coordination Approaches

Algorithm 3 GCASP Algorithm

1: procedure GCASP(v, f)

2 while 7y (t[xc,0(t) =1 Ayy.,(t) = v) < cap, and ¢; # & do
3: xcf,v(t) —1

4 yflcf(t) —v

5 ifv= v}{‘ then

6 my.dst < v'}g

7: myg.path < shortest path(v, my.dst, L)
8 if v = my.dest and ¢y # & then

9: my.dst <— random choice(V)
10: m f.path < shortest_path(v, my.dst, L)
11 if cy = & and my.dst # U;g then
12: mf.dst — v;g
13: my.path < shortest path(v, my.dst, L)
14: FORWARD_FLOW(9, f, L)

Algorithm 4 Flow Forwarding Using Adaptive Shortest Paths

: procedure FORWARD_FLOW(v, f, L)

v’ < my.path.pop()

if (0 (1) +Af < cap,) then
Zfo(t) < 0

else
Liree <= L\ {l € Ly|ri(t) + A > cap,;}
my.path <— shortest _path(v, my.dst, Lee)
Zfo(t) my.path.pop()

®Y U W NR

In the former case, f continues processing in a similar fashion on the next node. In the latter
case, f finished processing successfully and leaves the network once it reaches its egress v;g. In

both cases, v tries to forward f to neighbor v’ on the shortest path to f’s egress node. If v is f’s
ingress node, it calculates the shortest path to v;g based on the static topology and weighted by
link delays in L, e.g., using Dijkstra’s algorithm [57] (lines 5—7). The destination and calculated
path are saved in metadata my, which is used when forwarding the flow (line 14).

Forwarding is done in Algorithm 4, which retrieves the next node v’ on the computed path
(line 2 in Algorithm 4). If the link to ¢’ still has enough available data rate, v sends f to v’ (lines 3—
4). Otherwise, v recomputes the shortest path without using any of its currently congested
outgoing links and sends f along the adapted path (lines 5-8). Note that just excluding all
congested links up front (at t = 0) does not suffice since link utilization changes dynamically
over time according to flow arrival and the algorithm’s decisions. In case all outgoing paths are
congested, I assume that v cannot buffer the entire flow f and thus drops it.

If a flow arrives at its egress before being fully processed, it is sent to and processed at

65

6. Fully Distributed Coordination

surrounding nodes and returns to the egress once it finished processing completely. To balance
the load among the surrounding nodes, GCASP randomly chooses a new, temporary destination
node (cf. Valiant Load Balancing [251]), computes the shortest path, and sends f towards
the new destination (lines 8-10 in Algorithm 3). As before, nodes on the path to the new
destination process f greedily. Once f is fully processed, it is no longer sent towards its
temporary destination but is immediately rerouted to its egress node (lines 11-13). In doing so,
remaining processing is done close to the egress node as far as possible, keeping the path delay
low. If nodes surrounding the egress are already fully utilized, f is sent farther away towards
the temporary destination until a node with free capacity is found. If f reaches the temporary
destination and still needs more processing, the same procedure is repeated and a new, random
destination is chosen temporarily. At this point, the previous temg)orary destination becomes
irrelevant as f is forwarded directly to its original egress node v}e(upon complete processing.

In line with the design goal of GCASP to be frugal, this load balancing scheme only requires the
current utilization of local node v and knowledge of the static network topology to choose a
temporary destination and compute the path. If the current utilization of neighboring nodes V,
is also available, GCASP could easily be adjusted to favor neighbors with low utilization for
processing f (comparable to SBC in Section 6.4.2).

Complexity

The most common coordination decisions concern processing an incoming flow (lines 2—4 in
Algorithm 3) and then forwarding it along its path (lines 2—4 in Algorithm 4). Both operations
only take constant time, i.e., O(1). Computation of the initial or adapted shortest path is
more expensive but happens much more rarely. Using Dijkstra’s algorithm, it takes O(|V|?) or
O(|L| +|V|log|V|), depending on the implementation. Selecting a (new) temporary destination
node also happens rather rarely and is dominated by the time complexity for computing the
shortest path towards the destination.

GCASP only relies on the static network topology for computing shortest paths and choosing
temporary destination nodes, leading to a space complexity of O(|V| + |L|). Except for shortest
path calculation, all other decisions only take O(1) space, e.g., based on a node’s local resource
utilization or a flow’s attributes. The flow metadata m holds the assigned destination and
computed path by GCAsSP. The latter may grow with larger networks and higher congestion
but could be limited in size to limit overhead. In huge networks, where the full shortest path
exceeds this size limit, GCASP could just save the next hops of the shortest path that fit into
the size limit and then recompute the remaining hops on demand. This trade-off between
maximum size of my and computational overhead for recomputing paths is mostly relevant in
very large networks and could be further investigated in future work.

Example

Figure 6.1 illustrates GCASP’s adaptive routing for a flow f. In step 1, f is sent along the shortest
path from its ingress towards its egress. On the path, intermediate nodes (omitted in the figure)
process f greedily. At vq, the outgoing link on the shortest path is congested and the path is
recomputed (step 2). In this example, f reaches its egress without being fully processed. Hence,
GCASP randomly selects v3 as new, temporary destination and sends f towards v3 (step 3).
Nodes on the path continue to process f greedily such that f is fully processed when reaching

66

6.4. Fully Distributed Coordination Approaches

intermediate node v,, which is still close to the egress. At that point, f is immediately rerouted
to its egress node and leaves the network successfully (step 4).

Figure 6.1.: Example illustration of GCASP’s adaptive routing. (Figure from [S24]; © 2020 IEEE.)

6.4.2. Score-Based Coordination with Adaptive Shortest Paths

While full, up-to-date global knowledge may be unrealistic, it is likely that some information is
available through monitoring or beaconing. I designed SBC to leverage such available information
for its coordination decisions. In particular, SBC calculates node scores based on the available
information that indicate each node’s suitability to process a given flow. Rather than sending
all flows to their egress nodes along the same shortest path, SBC tries to distribute flows among
different paths and actively selects promising nodes for processing. SBC’s score calculation can
be configured according to metrics that are being monitored by a system like Prometheus [46].
In contrast to centralized approaches, which require global knowledge, SBC also works with
limited information, e.g., just from neighboring nodes. Hence, the amount of collected and
exchanged information to be used by SBC can be adjusted freely.

GCASP . I N

Figure 6.2.: Rather than sending all flows along the same shortest path, SBC avoids congestion by distribut-
ing flows across different nodes based on their calculated score. (Figure from [S24]; © 2020
IEEE.)

Motivating Example

Figure 6.2 illustrates the benefit of SBC over GCASP in an example. GCASP greedily sends all
flows with the same ingress and egress node (here, f1, f) along the same shortest path (dashed
lines). All flows compete for node and link resources on the path which may lead to congestion,
overloaded nodes (e.g., v1), and dropped flows. Instead, SBC can use available monitoring
metrics, e.g., current node utilization or number of dropped flows per node. For each node, SBC

67

6. Fully Distributed Coordination

calculates a score based on the weighted metrics and selects the most suitable destination nodes
(with the highest score) for processing each flow. Here, nodes v,, v3 receive the highest score for
f1, f2, respectively. Processing the flows there avoids congestion and dropped flows.

Algorithm

Algorithm 5 SBC Algorithm

1: procedure SBC(v, f)

2: if v = v then

3 SET_DEST(v, f, V, L)

4 if v = my.dst then

5 if ro(t|xc,0(t) = 1 Ayye,(t) = v) < cap, and ¢5 # & then
6: xcf,v(t) —1
7
8
9

yf,cf(t) —v
SET_DEST(v, f, V, L)
FORWARD_FLOW(?, f, L)

10: procedure SET_DEST(v, f,V, L)
11: if =9 then

12: my.dst < v}efg

13: else

14: Vo f < candidates(v, f,V, L)
15: forall v’ € V, ¢ do

16: 8(v") Yicp,ay wiai(v')
17: my.dst < argmax,[g(v')]

18: my.path < shortest path(v, ms.dst, L)

Algorithm 5 shows the SBC algorithm, which is called when a new flow f starts arriving at a
node v. If v is f’s ingress node, v computes the first destination node for processing f (lines 2-3).
The calculation of the destination node based on available information is the core procedure of
SBC (lines 10-18). If f is already fully processed (c; = @), its egress node is set as destination
(lines 11-12). Once f reaches its egress fully processed, it successfully leaves the network.
Otherwise, SBC chooses a new suitable destination node from a set of candidate nodes based
on their calculated score (lines 15-16). Specifically, for each candidate node v/, it considers
aset A = {ay,..,ar} of k weighted (by w;) node attributes 4; to calculate an overall node
score ¢(v') (lines 15-16). Attributes A and candidate nodes Vy,f can be selected depending on
the available information in the network, e.g., V,, ¢ could be all nodes V or just neighbors V,
(line 14). Attributes a; should be scaled to [0, 1] for comparability and reflect available metrics of
interest that help asses a node’s suitability for processing. Examples are the shortest path delay
to the egress via v/, the current utilization of v/, the amount of successfully processed flows
at v/, etc. The configuration used for evaluation is described in Section 6.5.1. Ultimately, the
candidate v’ with the highest score g(¢v') is chosen as next destination and the shortest path is
calculated, e.g., using Dijkstra’s algorithm [57] (lines 17-18). Similar to GCASP, SBC then forwards

68

6.5. Evaluation

f along the computed path (line 9) using Algorithm 4. Rather than processing f greedily on
the path, f is processed at its selected destination node if it has enough available resources
(lines 4-7). Afterwards, a new destination is selected (line 8).

Complexity

Like GCASP, SBC makes fast forwarding and processing decisions in O(1). Only adapting the
shortest paths due to congestion and setting a new destination require more time. The latter
requires O(|V; ¢|¢) where ¢ is the time complexity of calculating g(v), which depends on the
complexity of computing the chosen node attributes. If all attributes are simple measurements
that can be retrieved in O(1), it results in ¢ = O(k) = O(1) and complexity O(|V, ¢[) for setting
a new destination. Calculation of the shortest path can be done in O(|V|?) or O(|L| + |V|log |V|).
In addition to the static network topology, SBC also relies on k attributes and the computed
score for all candidate nodes V, ;. Hence, SBC’s space complexity is O(|V| + |L| +k|V, ¢|) =
O(IVI+ LI+ [Vas1):

6.5. Evaluation

6.5.1. Evaluation Setup

I evaluate the two proposed algorithms, GCASP and SBC, using extensive simulations on the
real-world DFN network topology [142] with 58 nodes and 87 links, which I consider to
be a representative example of medium to large networks in practice. Link capacities are
cap; = 50VI € L and node capacities are either homogeneous or heterogeneous, depending on
the evaluation scenario. In the homogeneous case, all nodes have capacity cap, = 10. In the
heterogeneous case, cap, € {0,10,50} is picked in a random, weighted manner such that the
average node capacity is similar to the homogeneous case.

Furthermore, I consider three services s; = (CIps, Cproxy, Cweb), 52 = {Cproxy, CIDS, Cweb), and
s3 = (crw, cppr)- Instances of each service component require resources linear in the currently
processed load. Furthermore, they incur a per-flow processing delay that is normally distributed
with A (5ms, 1ms), where values are cut off at 0ms to prevent negative delays. Flows arriving
at the network’s ingress nodes request one of the three services chosen uniformly at random.
For each ingress, flow inter-arrival times vary randomly between 1, 2, 5, and 10 time steps,
flow duration € {1,2}, and flow data rate A f€ {1,2,4,6}, representing scenarios with many,
short flows (Case II in Section 3.1.3). The duration per experiment is T = 1000 time steps.

SBC’s configurability allows numerous different variants of candidate node selection and at-
tributes A. For the variant used in the evaluation, the score of each candidate node ¢’ is
calculated based on k = 3 equally weighted (w; = 1) attributes:

1. The shortest path delay from current node v to v’ and from there to the egress.

2. The number of dropped flows at v’ so far.
3. The total data rate of flows currently being processed or forwarded at v'.

69

6. Fully Distributed Coordination

Candidate nodes V;, ¢ are all nodes other than current node v with sufficient remaining resources
for processing f. This requires frequently recomputing set V; ¢ according to the current node
utilization and requirements of flow f. Consequently, SBC is indeed significantly slower than
GCASP but still much faster than a typical centralized approach (Section 6.5.4).

I compare GCASP and SBC with the centralized coordination algorithm BSP from Chapter 4. I call
BSP once for each new flow entering the network to compute where to process and how to route
the flow. In doing so, BSP requires global knowledge of the current node and link utilization.
Even with up-to-date global knowledge at the time of flow arrival, BSP may choose a currently
free node for processing that is later fully utilized by other flows when the scheduled flow
arrives there. Hence, flows may be dropped when they arrive for processing at an over-utilized
node. Thus, I also consider a variant, BSP+, where I call BSP again to recompute flow processing
and routing when a flow cannot be processed at an overloaded node.

All experiments were repeated 50 times with different random seeds. Figures show the mean and
95 % confidence interval of these repetitions. For running the evaluation, I used machines with
Intel Xeon W-2145 CPU and 32 GB RAM. For reproducibility, I publish the code of both proposed
fully distributed algorithms, the used simulator, and all evaluation results on GitHub [S23].
Similarly, BSP is publicly available [S12].

.‘..

100 &

_— : 100 3 E —————— !
& =¥, @ i&g._._“.;
SWG2 L + B8
95 1 -F 95 \I
= 90 & 90t
g -e- GCASP 2 -e- GCASP
o 851 S 85711
i SBC i . SBC
2 801 _ --m- BSP 2 801 o m- BSP
2 N A ‘M.
o ... -4-- BSP+ o 5. -+-- BSP+
8 791 A, 8 757 T
N @ T
70 1 L 70+ T m..
----- LT
L
6st e - 651 !
10 20 30 40 50 10 20 30 40 50
Amount of Ingress Nodes [%] Amount of Ingress Nodes [%]
(a) Homogeneous node capacity (b) Heterogeneous node capacity

Figure 6.3.: The fully distributed coordination approaches process similar or even more flows success-
fully than the centralized BSP+ approach. GCASP is better with homogeneous and SBC with
heterogeneous node capacities. (Figure from [S24]; © 2020 IEEE.)

6.5.2. Solution Quality

First, I compare the achieved solution quality of the proposed fully distributed coordination
algorithms (GCASP and SBC) and the centralized approach (BSP and BSP+). As evaluation param-
eter, I vary the ingress node percentage, i.e., the percentage of nodes in the network at which
flows arrive. With an increasing ingress node percentage, more nodes are randomly selected

70

6.5. Evaluation

as ingress nodes, leading to increasing overall load. The percentage of egress nodes is fixed to
30 %, to which flows are assigned uniformly at random. I also vary between homogeneous vs.
heterogeneous node capacities. As metrics to evaluate the coordination quality, I consider the
percentage of successfully processed flows oy and their average end-to-end delay o, at the end
of each experiment as defined in Section 6.3. I also consider resource utilization of both nodes
and links since coordination algorithms should use resources economically.

Successful Flows

Figure 6.3 shows the percentage of successful flows achieved by the different algorithms. The
percentage of successful flows decreases with increasing load as the network becomes more
congested and some flows cannot be processed or forwarded. BsP drops comparatively many
flows as it only makes coordination decisions once per flow when flows enter the network, based
on information that may be outdated soon after. This is due to the considered scenario with
many, rapidly arriving, sequential, and partially overlapping flows (Case II), where information
such as resource utilization changes very frequently. In contrast, typical centralized coordination
approaches, including BsSP, are designed to focus mainly on few, long-running flows (Case I).
BsP+, which recalculates flow processing and routing whenever a flow would otherwise be
dropped due to lack of node capacities, performs much better and achieves close to 100 %
successful flows.

70 + + 70 + + +
—@— GCASP —@— GCASP T
— 65 1 — 65 r
m) SBC) SBC @
E ol m- BSP E ol ~m- BsP I/l i
5 -+ BSP+ & | -+- BSP+ T/l
[[
QO 551 A 55 ®
o o l
0 50 v . EE 5 50 T / T I
° -7 e T 3T
5 451 ~FT = o 45 x/‘l‘.-—"' +
c =" @ c .;___-—-""
L R = L 5 o = - Beeeeeenes B
% 40 i-" — % 40 ! | EREEEELLD [P |)
3: | [ERPTTELER e [s | [T | 3:
351 ® 35
i/-/
30 + + + + + 30 + + + + +
10 20 30 40 50 10 20 30 40 50
Amount of Ingress Nodes [%] Amount of Ingress Nodes [%]
(a) Homogeneous node capacity (b) Heterogeneous node capacity

Figure 6.4.: While average end-to-end delay increases with increasing load, the fully distributed coordi-
nation approaches can compete with or even outperform centralized BSP and BSP+. (Figure
from [S24]; © 2020 IEEE.)

Nevertheless, the two fully distributed algorithms process a similar number or even more
flows successfully than BSP+. Clearly, the many fast and individual per-node decisions of these
fully distributed algorithms work well and process close to 100 % of flows successfully. In the
network with homogeneous node capacities (Figure 6.3a), GCASP even outperforms all other
algorithms, even though it uses no global knowledge except for the static network topology.

71

6. Fully Distributed Coordination

This is because, with homogeneous node capacities, there are likely enough compute capacities
on the shortest path from ingress to egress and around the egress node. In contrast, in the case
of heterogeneous node capacities (Figure 6.3b), SBC is slightly better than GCASP and on par with
BSP+ because it leverages available knowledge to actively select nodes with sufficient processing
capacities. Still, GCASP processes more than 90 % of flows successfully even under high load.

End-to-End Delay

Figure 6.4 shows the average end-to-end delay of successfully processed flows. With heteroge-
neous capacities, the approaches have to route along longer paths to reach nodes with sufficient
resources, generally leading to higher delays than in the homogeneous case. While BSP drops
an increasing percentage of flows with increasing load, it ensures relatively low and constant
end-to-end delay for the remaining successful flows. For the other algorithms, average end-to-
end delay increases with increasing load as more flows are rerouted due to congestion, leading
to longer paths. Again, the fully distributed algorithms can compete with and even outperform
the centralized BSP and BSP+ approaches. The figure also confirms that the greedy GCASP is best
in the homogeneous case (Figure 6.4a). In the heterogeneous case (Figure 6.4b), SBC is better
again and achieves lower end-to-end delay.

60 1 60
—8- GCASP —@- GCASP x
— 50 SBC o — 50 SBC /;
S m- BSP /; X -m- BspP gt
s -+ BSP+ g s -+ BSP+ F
S 40 X L 40 e i
© = © o et
N ool | N e e
= O = /1' o |
D 30 F . = 3 A
9° i e N
o = .. o) T
Z 20 S Z 20
. S .
o | o
g | A E
10 1§ 10
0 0
10 20 30 40 50 10 20 30 40 50
Amount of Ingress Nodes [%] Amount of Ingress Nodes [%]
(a) Homogeneous node capacity (b) Heterogeneous node capacity

Figure 6.5.: The fully distributed coordination approaches utilize node resources comparably to centralized
BSP+. (Figure from [S24]; © 2020 IEEE.)

Resource Utilization

Figure 6.5 shows the node resource utilization averaged over all nodes. The node utilization
correlates with the percentage of successful flows in Figure 6.3 as processing more flows
completely (i.e., successfully) requires more node resources. Accordingly, BSP requires less node

72

6.5. Evaluation

—8— GCASP F —8— GCASP
s1
© ~-m- BSP ~ © --m- BSP -
c | -+- BsP+ ¥ c | -+- BsP+ °
o JL o L
g 30 1 R4 ﬁ 30 / L
/
I ; I I
5 ’ 5 4
™ ® -
£ 20 A /+ £ 20
3 , + i
o R @ o
-

z 10 P - ./ B Z 10 ml

- ./- ------- w

0 ol 0
10 20 30 40 50 10 20 30 40 50
Amount of Ingress Nodes [%] Amount of Ingress Nodes [%]
(a) Homogeneous node capacity (b) Heterogeneous node capacity

Figure 6.6.: The fully distributed coordination approaches utilize similar or less link resources than
BSP+. Again, GCASP works best with homogeneous node capacities, whereas SBC excels in
heterogeneous scenarios. (Figure from [S24]; © 2020 IEEE.)

resources than the other algorithms because it drops more flows. The two distributed algorithms
utilize similar percentages of node resources as the centralized BSP+ approach.

Figure 6.6 shows the link resource utilization averaged over all links. Again, by dropping more
flows, BSP reduces the overall load in the network and thus also the link utilization compared
to the other algorithms. More interestingly, the link utilization also reflects how efficiently the
algorithms route traffic. Longer detours lead to more traversed links and higher link utilization.
For homogeneous traffic (Figure 6.6a), both distributed algorithms utilize less than 30 % link
resources and far less than BSP+, which reroutes traffic whenever flows could not be processed.
As discussed before, GCASP performs worse for heterogeneous traffic (Figure 6.6b) and routes
flows along detours to complete processing. Nevertheless, the link utilization of GCASP is not
much higher than of BSP+. SBC uses available information to route traffic more effectively and
outperforms BSP+ in terms of link utilization.

6.5.3. Coordination Stability

The results in Section 6.5.2 show the quality metrics at the end of each experiment, i.e., after
T = 1000 time steps. In this section, I evaluate the coordination stability over these 1000 time
steps during which flows keep arriving randomly as described in Section 6.5.1. I consider the
DFEN network with heterogeneous node capacities and 30 % ingress nodes. Figure 6.7 shows
that both the percentage of successful flows (Figure 6.7a) and the average end-to-end delay
(Figure 6.7b) are very stable over time for all algorithms. The initial jump from f = 0 to + = 100
is simply because all metrics are initialized to 0. While GCASP performs worse on heterogeneous
than on homogeneous node capacities, its achieved end-to-end delay still only increases slightly
in the beginning but then converges and stabilizes.

73

6. Fully Distributed Coordination

60 + s
100 1 e e e e e e
4 b=t fom e o TTT
; f— T T—I—I—.—.—.
| 0 50 —@ 1 1 1 1!
| = -9 L L -~ -
S| T = o S S e
@ [w-w-wEEEReE- & 40 5;2‘-...... R ey |
2 |=] B X - % —% % X X%
o 601 ! a =
T {: 4
|
= , £ 30 5
@ 404 l'_ fe] i
8 I T201 | L
o ¥ —@— GCASP T F —@— GCASP
=) 14 4
?n 204 SBC 919 SBC
f M- BSP Z M- BSP
01 =+-- BSP+ | ol -+:- BSP+
0 250 500 750 1000 0 200 400 600 800 1000

Time Time

(a) Successful flows (b) Average end-to-end delay

Figure 6.7.: The fully distributed coordination approaches are stable in terms successful flows and end-to-
end delay, similar to centralized approaches. (Figure from [S24]; © 2020 IEEE.)

Figure 6.8 shows the average node and link utilization over time. Again, the utilization is fairly
stable for all algorithms. Only for BsP+ the link utilization slowly grows over time as more
and more flows are being rerouted due to congestion. Overall, the results indicate that the two
distributed algorithms not only achieve competitive solution quality but also converge early
and maintain stable coordination over time.

6.5.4. Scalability

In addition to ensuring high and stable service quality, coordination should be fast and scalable
to handle rapidly arriving flows in practical scenarios. To evaluate coordination scalability, I
compare the number of coordination decisions (i.e., algorithm calls) and algorithm runtime
of the different approaches. Again, I consider the DFN network with heterogeneous node
capacities and 30 % ingress nodes. Figure 6.9 shows the algorithms” number of coordination
decisions on a logarithmic scale. The proposed fully distributed algorithms (GCASP and SBC)
coordinate each incoming flow individually at each node. In contrast, BSP and BSP+ are only
called once when a new flow enters the network and, in case of BSP+, when a flow cannot be
processed due to lack of node resources. Hence, the fully distributed algorithms make far more
coordination decisions in total and per flow than the centralized approaches (Figure 6.9a). I
assume that BSP and BSP+ make all decisions at a single centralized node (at least logically). On
the other hand, GCASP and SBC distribute coordination over all nodes in the network such that
they still make significantly fewer coordination decisions per node.

The runtime for these coordination decisions is even more important than the number of

decisions. Due to their simplicity, the runtime (per flow, per node, and in total) of the fully
distributed algorithms is much lower than of BSP and BsP+ (Figure 6.9b). While I do not consider

74

6.6. Conclusion

40 {
T Yy 1 I3 17.5 TTTT'
3Bt TEE G_a—e—e—e—9—%, T 1 —0—0—0
_ I A TY Y 4 T a—0—®
= 30 I/m.l:'“'{ S T A A < 150 I/I/I Y1 I—I*I'
< = 1/ -7
= > T T T T < L -+ J— r
2! E.@-w--bRR-Ren@l o120 Vil
© Ty = + 2 < + 1
N N L L 1
= 20 N 100 4 I
5 5 G - = K= X =X
(] X _ — T
3 15 1 5 . NN --E-E-E
Z 0] —-@— GCASP | 5 -@— GCASP |
2 ~%-- SBC 2 ~%-- SBC
5 ~-m- BSP W BSP
0] ~4- BSP+ +- BSP+
0 200 400 600 800 1000 0 250 500 750 1000
Time Time
(a) Average node utilization (b) Average link utilization

Figure 6.8.: The fully distributed coordination approaches converge quickly to a solution with stable
resource utilization. (Figure from [S24]; © 2020 IEEE.)

this coordination time as part of a flow’s end-to-end delay in Sections 6.5.2 and 6.5.3, it would
still impact overall delay and service quality in practice.

I also tested GCASP and SBC successfully on the large GTS CE network [142] with 149 nodes
and 193 links. Compared to the DFN network, the algorithms’ total decisions and runtimes
were higher, but the numbers per flow and per node were comparable to the ones in the
DEN network. Due to the prohibitive long runtimes of BSP and BSP+, I do not present a full
performance evaluation on GTS CE. Nevertheless, the results on the two networks indicate that
the proposed fully distributed algorithms scale well to practical, large-scale networks.

6.6. Conclusion

The proposed fully distributed algorithms coordinate services well and achieve service quality
comparable to centralized coordination algorithms. At the same time, they require less or no
global network information, are faster, can be massively parallelized, and are more robust to
failures. These attributes make them ideal for fast-paced coordination in large networks with
many, short, and rapidly arriving flows (Case II in Section 3.1.3).

In such scenarios (Case II), centralized approaches like BSP in Chapter 4 are unsuitable since they
rely on global network information, which is quickly outdated or even completely unavailable
due to fast fluctuations. Coordinating all incoming flows centrally also becomes too slow or
even intractable for many, short flows, particularly in large networks. In contrast, centralized
approaches like BSP are well suited for scenarios with fewer, longer flows, which arrive and
depart infrequently and where the network is stable in between (Case I). In scenarios with few
and long flows, global information is realistically available and remains up-to-date for longer

75

6. Fully Distributed Coordination

3 e
9% amd GCASP 10° T R
10t m SBC I 1
27 | Bt ™ 5 iy 0 Hh
@ . s == mm BSP+ == ‘ ==
[®) 1 L iy 11 |
Sk < [T oo [THIEERUA oK ul
= O [Opm| 2 > N T
S | XM o | [THIE-EEIN oK 2qn |
5 10" 7 SO M OFmit S o {> T
SR < [T o | [THI 4 (i
©
o | X S| gk L
o 10 1 B@EE SN | o (> O [
(i (i =3 K x| [0
O] [O [101) SR |
10° 1 J(EN X W HE <
Total Per Flow Per Node Total Per Flow Per Node
Measurement Aggregation Measurement Aggregation
(a) Coordination decisions (b) Coordination runtime

Figure 6.9.: The fully distributed coordination approaches only make few decisions per node and are
magnitudes faster than BSP and BSP+ (logarithmic scale). (Figure from [S24]; © 2020 IEEE.)

time. Here, centralized decisions are feasible and the overhead of more complex coordination
algorithms is justified to reach better coordination results as flows stay in the network longer.

In comparison, the hierarchical coordination approach in Chapter 5 represents an intermediate
approach. It requires less global information, decides faster, and scales to larger networks than
typical centralized coordination approaches. Yet, the sophisticated two-phase procedure still
requires substantial computational effort and may be too slow in scenarios where flows arrive
rapidly (Case II). Instead, it is ideal for intermediate cases with several medium to long flows
in large networks, where centralized approaches are slow and fully distributed coordination
approaches sacrifice solution quality.

In future work, these different techniques could be combined into a hybrid coordination
approach that classifies incoming flows (e.g., elephant and mice flows [42]) and dynamically
selects a suitable coordination technique. Important coordination decisions for long-lasting flows
could be highly optimized by a central coordination approach or, in large networks with more
flows, by a hierarchical coordination approach. Fast, short flows could be coordinated quickly
with low overhead in a fully distributed manner. The fully distributed coordination approaches
could also be used as fallback mechanism if the centralized or hierarchical coordination becomes
too slow, e.g., reaching a timeout before making a coordination decision.

Opverall, the conventional approaches presented in Part I enable efficient and automated network
and service coordination for high service quality with low costs. In principle, the approaches
can be applied to scenarios with any network, services, and traffic as described in Chapter 3.
Still, they follow hard-wired algorithms or solve predefined Mixed-Integer Linear Programs
(MILPs) designed by human experts with certain built-in assumptions, e.g., known resource
utilization (A). Part I complements these conventional approaches with novel coordination
approaches using machine learning, which rely less on human expertise and instead leverage
available data to learn network and service coordination and adapt to any given scenario.

76

Part Il.

Machine Learning Coordination
Approaches

77

7. Machine Learning for Dynamic Resource
Allocation

An important part of network and service coordination is dynamic resource allocation, i.e.,
deciding the amount of allocated resources for each placed instance. Existing coordination
approaches often allocate fixed amounts of resources per instance, which easily leads to either
over-allocation or under-allocation of resources and consequently to either waste of resources
or bad service quality. My coordination approaches in Part I are more flexible and allocate
resources relative to the load that each instance has to process. To do so, these approaches
still rely on a priori knowledge of function r.(A) to model the resource requirements for each
involved service component c. Estimating such resource requirements manually is hard and
prone to errors, even for domain experts, such that human operators often resort to allocating
fixed, large amounts of resources.

To solve this problem, I propose the first machine learning approach in Part II. It trains
machine learning models on data from real service components, comprising measurements of
allocated resources and resulting performance. For each component, the trained models can
then accurately predict the required resources to handle a certain load. I integrate these machine
learning models into the Bidirectional Scaling and Placement Coordination Approach (BSP)
from Chapter 4 and evaluate their impact on resulting service placement. The evaluation
based on real-world data shows that using suitable machine learning models effectively avoids
over-allocation and under-allocation. Compared to typical fixed resource allocation, it reduces
resource consumption by up to 12 times and total delay by up to 4.5 times.

This chapter is based on my paper [S35], for which I developed the ideas and approaches, wrote
code, and produced all experiment results. Narayanan Puthenpurayil Satheeschandran did
some preliminary work on the same topic in his master’s thesis [222] that also contributed to
the paper. I designed the topic and work plan of his thesis and advised it closely, providing the
key ideas and strongly guiding development and evaluation. Based on lessons learned from this
master’s thesis, I reimplemented, extended, and evaluated all ideas and approaches and finally
prepared and wrote the paper. This chapter contains verbatim copies of this paper [S35]: Stefan
Schneider et al. “Machine Learning for Dynamic Resource Allocation in Network Function
Virtualization.” In: IEEE Conference on Network Softwarization (NetSoft). IEEE. 2020, pp. 122-130,
© 2020 IEEE. In this chapter and throughout my dissertation, I consistently write in the first-
person singular form (“I” rather than “we”) for ease of reading. The corresponding source code
is publicly available on GitHub [S14].

7.1. Introduction

Network and service coordination requires service scaling and placement as well as flow
scheduling and routing as described in Chapter 3. For each placed instance, coordination

79

7. Machine Learning for Dynamic Resource Allocation

approaches need to allocate or reserve a suitable amount of resources. Conventionally, each
service component c is instantiated with a fixed amount of resources r. that is predefined
by the developer or operator. For example, in Network Function Virtualization (NFV) where
network services consist of chained Virtual Network Functions (VNFs), VNF developers can
specify fixed resource requirements per instance in the VNF descriptor [71]. These descriptors
are then uploaded to the orchestration system and used for resource allocation. However,
VNFs and other components typically do not require constant resources but need more or less
resources depending on the traffic load [Sg, 252]. Thus, allocating a fixed amount of resources
easily leads to either under-allocation or over-allocation of resources. In case of under-allocation,
placed instances lack resources to process all packets, leading to packet drops and reducing
service quality or even completely disrupting service functionality. Thus, a plausible strategy
for operators is to avoid under-allocation by allocating fixed, large amounts of resources to each
instance. This, in turn, leads to over-allocation, wasting resources, blocking other instances from
using these resources, and resulting in unnecessarily high costs.

To this end, some approaches for network and service coordination [37, 95, 214, 59, S2, 518,
S24], including those presented in Part I, consider resource requirements relative to the load
an instance has to handle. This relationship between load and required resources can be
modeled by a function r.(A) for instances of a component ¢ with incoming traffic of data
rate A (Section 3.1.2), where resources 7.(A) may be required to meet a predefined Service-
Level Agreement (SLA). While this approach allows dynamic and more fine-grained resource
allocation, it relies on accurately defining function r.(A) for all components to model their
resource requirements. Even with domain knowledge of a specific service component, it can
be very difficult to manually estimate its exact resource requirements and to model r.(A)
accurately.

To mitigate these issues and take appropriate resource allocation decisions, an understanding of
the relationship between the load an instance is supposed to handle, the resources dedicated to
it, and the resulting performance is necessary, which can be expressed in a so-called performance
profile. Performance profiling is an approach to measure the performance for instances of a
given component with varying resource configurations [201, 216, 132]. The relationship between
a component’s performance and resource requirements is often non-linear [252] and hard to
extract from raw measurement data, which can contain millions of data points [S9].

These properties make performance profiles ideal candidates for machine learning, automatically
deriving suitable, accurate, and compact models from measurement data. I compare machine
learning approaches from different families of regression algorithms (e.g., linear, tree-based,
kernel-based) as well as neural networks. For each approach, I evaluate the approximation
accuracy and ability to generalize to values that lie between measured data points. Rather than
proposing a completely new coordination approach, I focus on how to model and determine
the required amount of resources per component instance. The derived models can then be
used inside existing or future coordination approaches to accurately approximate resource
requirements for each instance and allocate resources accordingly. This dynamic resource
allocation using machine learning helps to ensure good service quality while avoiding over-
allocation and under-allocation. Overall, the contributions of this chapter are:

¢ I design a modular workflow for deriving trained machine learning models from raw
performance measurements and for using them in coordination approaches to accurately
approximate resource requirements (Section 7.4).

® In Section 7.5.1, I use six different machine learning algorithms on real-world data to
train and compare resulting models for approximating resource requirements.

80

7.2. Related Work

¢] integrate these models for dynamic resource allocation into the existing BSP coordination
approach [S2], evaluate their impact on resulting solution quality, and investigate potential
trade-offs regarding computational runtime (Sections 7.5.2 and 7.5.3).

¢ The corresponding source code and models are publicly available on GitHub [S14] to
encourage reproduction and reuse.

7.2. Related Work

7.2.1. Approaches Without Machine Learning

Most existing coordination approaches consider predefined, fixed resource requirements per
placed instance [160, 47, 88, 56, 91, 189]. While these algorithms may use horizontal scaling, i.e.,
adding or removing instances, to adjust to changing demand, they completely neglect vertical
scaling, i.e., dynamically adjusting the allocated (or reserved) resources per placed instance. As
mentioned before, predefined, fixed resource allocation can easily lead to poor service quality
or wasted resources.

Recent approaches [37, 214, 59, S2] improve this simplistic model of fixed resource requirements
by considering a linear relationship between the amount of allocated resources and the resulting
performance. While this increases the flexibility of the model, the linear function requires proper
parametrization, which is non-trivial. It is often also unrealistic, since components usually do not
have a strictly linear relationship between allocated resources and their performance [252, 60].
To this end, some authors [60, 214, 192] propose the use of piece-wise linear functions instead.
Piece-wise linear functions approximate non-linear functions by splitting them into separate
pieces that are then each approximated by different linear functions. Optimization problems
with piece-wise linear functions (but not with non-linear functions) can still be solved by
standard Mixed-Integer Linear Program (MILP) solvers and are thus useful for MILP approaches,
e.g., in Chapter 5. A major drawback, especially for highly non-linear functions [67], is that
the approximation with piece-wise linear functions either becomes increasingly inaccurate or
increasingly cumbersome as the function has to be split in smaller and smaller pieces. Similarly,
Eramo et al. [68] use a quite complex model considering packet length, flow data rate, and the
traffic state (assuming cycle-stationary traffic) to compute a realistic model for performance and
resource requirements of a given component. Due to complex required a priori knowledge (e.g.,
about the traffic states), such a model is challenging to use.

Overall, most models for resource allocation that are used in existing coordination approaches
are either very simplistic or require human expert knowledge of each used service component.
In contrast, the proposed machine learning approach in this chapter learns accurate models
automatically and directly from real performance measurements. To this end, this chapter builds
on existing work on performance profiling, particularly in the context of NFv [201, 216, 132].
The proposed machine learning approach is complementary to most coordination approaches
as the resulting trained machine learning models can be integrated into existing approaches
with little overhead.

81

7. Machine Learning for Dynamic Resource Allocation

7.2.2. Machine Learning Approaches

As one of the open challenges for machine learning in networking, Ayoubi et al. [20] mention the
mapping from high-level requirements to low-level configurations. This chapter addresses this
challenge by automatically mapping desired performance (i.e., processing a certain data rate)
to required resource configurations. Similarly, other machine learning-based approaches have
been used successfully to predict instances’ processing delays [147] and traffic demands [277,
75]. The approach in this chapter is complementary and could be combined with this related
work.

Other authors have also proposed machine learning for predicting resource requirements [230,
177] but with important limitations: Sembiring et al. [230] only rely on historical data but do
not take traffic load into account for predicting resource requirements. Mijumbi et al. [177]
use graph neural networks to derive a model for resource requirements from the topology
of sub-components within a given component. In contrast to my approach, theirs requires
detailed insight into internals of each component. It also disregards that different instances
of the same component may process different traffic loads and thus may have very different
resource requirements, limiting the accuracy of their model.

Most similar to the approach in this chapter, van Rossem et al. [252] use performance profiling
to collect performance measurements and propose machine learning to learn from these mea-
surements. Compared to my work, van Rossem et al. focus more on the process of performance
profiling but also mention dynamic resource allocation as high-level use case. Complementing
and going beyond their work, I apply machine learning on available performance measurements
and focus on integrating the trained models into existing coordination approaches for dynamic
resource allocation. Additionally, I evaluate the impact of different models on the resulting
service placements.

7.3. Problem Statement

The goal of this chapter is to use machine learning to approximate the required resources for
instances of each service component. The resulting machine learning models can be used inside
existing coordination approaches for improved dynamic resource allocation.

Figure 7.1 illustrates the problem using example data, which is similar to the real-world
Nginx dataset used for evaluation (Section 7.5.1). Here, the true resource requirements increase
superlinearly with increasing traffic load (black, solid line). The typical approach of assigning
fixed resources based on the maximum expected traffic (here, r. = 0.8) leads to severe over-
allocation (red, dotted line). Such severe over-allocation not only wastes resources but may also
affect service placement and resulting Quality of Service (QoS) as illustrated in Figure 7.2. The
figure shows an example with two placement options of two chained instances, depending
on the resource allocation model of Figure 7.1. The true required resources r.(5) = 0.3 would
allow placing both instances close to the user with low delay (dark boxes). However, when
allocating fixed resources r. = 0.8 to each instance, they have to be distributed over different
nodes (here, with cap,, = 1), leading to unnecessary link delay and reduced service quality (red
boxes). This is particularly relevant for network and service coordination in edge computing
scenarios, where nodes have very limited capacities.

82

7.3. Problem Statement

-
o

o
o
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

o
o

Over-Allocation

Resource Req. [e.g., CPU time]

0.4
0.2 — True
' 7) == = |inear
_“ __Under-Allocation .e! Fixed

Cd
P "

3.5 4.0 4.5 5.0 55 6.0 6.5
Traffic Load [e.g., Mbit/s]

o
o

Figure 7.1.: Example of true resource requirements in comparison to fixed and linear resource allocation.
(Figure adapted from [S35]; © 2020 IEEE.)

True resource
requirements

Figure 7.2.: Two example placement options depending on the instances’ resource allocation. Severe
over-allocation leads to placement of instances at separate nodes and additional link delay.
(Figure adapted from [S35]; © 2020 IEEE.)

To overcome the problems of typical fixed resource allocation, coordination approaches need to
allocate resources dynamically by approximating components’ true resource requirements as
closely as possible. The key challenge here is to model resource requirements r.(A) accurately
by choosing a suitable approximation function and to parameterize it correctly. To quantify the
approximation accuracy, I consider the Root Mean Squared Error (RMSE). The RMSE averages all
approximation errors over n samples with y; being the true target value and f; the approximated

1=
indicates more accurate approximation of the true resource requirements.

value (here, required Central Processing Unit (CPU) time): RMSE = " (y’;iy’)z Lower RMSE

Linear functions are simple and commonly used to approximate r.(A) but can still be hard to
parameterize manually. Therefore, I propose to automatically derive suitable parameter settings
from real-world measurement data through automated regression techniques (Section 7.4).
Even with proper parametrization, linear approximation still easily leads to under-allocation
or over-allocation if the true resource requirements are non-linear, e.g., in Figure 7.1. Hence,
I also discuss non-linear approximation models that can be parameterized automatically by
using machine learning on available measurement data. In Section 7.5, I then compare both
approximation accuracy (in terms of RMSE) and resulting service placements when integrating
different approximation models with an approach for network and service coordination.

83

7. Machine Learning for Dynamic Resource Allocation

7.4. Machine Learning Approach

To ensure that the allocated resources closely match the real requirements of each instance, I
propose to use performance profiles derived from measurement data using machine learning.
I provide an overview of the proposed approach in Section 7.4.1 and describe its details in
Sections 7.4.2—7.4.4.

7.4.1. Overview

Figure 7.3 illustrates the proposed overall approach, which consists of four steps. It starts
with profiling a given component (e.g., a VNF in NFV), testing it systematically with different
resource configurations and measuring its corresponding performance (step 1). In step 2, the
resulting raw performance measurements are used to train machine learning models. In doing
so, these machine learning models learn to approximate the amount of resources a specific
component requires to successfully handle a given traffic load. The trained models generalize
the measured data such that it can approximate resource requirements for traffic loads that lie
between measured data points. In step 3, the machine learning models are integrated into a
coordination approach, where they are used to approximate the resource requirements r(\)
for an instance of a component ¢ that needs to process traffic load A. Hence, in step 4, these
coordination approaches can leverage the machine learning models for accurate resource
allocation, mitigating the problem of over-allocation and under-allocation.

1 - — 2 3 @ 4
Performance —r— Service
=
Performance Machine Learning Coordination
Measurements Models AppiaCheS
L G RENS R
HAProxy Linear Reg. VNF-P
Squid SVR BSP
Suricata Decision Tree SPRING
Gradient Boosting CPVNF

MLP

Figure 7.3.: Modular workflow from raw performance measurements to machine learning-based resource
allocation and placement. (Figure adapted from [S35]; © 2020 IEEE.)

The whole process from step 1 to 3 can be performed offline in advance, e.g., directly after
developing and publishing a new component. While the process is time-consuming, it only has
to be performed once per component since trained machine learning models can be saved and
reused later. In scenarios with limited time, e.g., where new services need to be deployed quickly,
limited but relevant data could be collected through time-constrained profiling [200] and be
used for short pretraining. The machine learning models could then be continuously improved
and retrained on more data collected during deployment [256]. In step 4, the coordination
approach loads the trained machine learning models for all requested components and uses
them to dynamically allocate resources to each placed instance. In contrast to training machine

84

7.4. Machine Learning Approach

learning models, inferring approximated resource requirements is very fast (less than 1 ms in
the evaluation) and can be done online.

All elements in the described process are freely exchangeable. In particular, the approach is not
limited to a specific kind of component, machine learning model, or coordination approach
(Figure 7.3). Instead, performance profiling can automatically measure the performance of
any available component and the measurement results can be used for training any machine
learning regression model; I evaluate different options in Section 7.5. Finally, the trained machine
learning models can be integrated into existing coordination approaches with relatively little
overhead.

7.4.2. Performance Profiling

Performance profiling is the process of systematically testing a given component under different
resource (and other) configurations while measuring its performance, e.g., in terms of maximum
sustainable traffic load, when sending as much traffic as possible through an instance of the
component. Particularly in the context of NFv, several authors have proposed how to automate
this process [201, 216, 132] and perform it effectively within limited time [200]. Performance
profiling is typically performed offline, i.e., before deployment of a component, either by the
developer or by the operator directly after onboarding a new component. In principle, more
profiling data could also be collected online during service deployment [185, 89]. There is also a
trend to open datasets of community-created performance profiles [Sg].

Performance profiling leads to massive amounts of raw measurements per component (often
millions of data points [Sg]), reflecting the real behavior and dynamics of a component. These
recorded datasets usually contain many, potentially component-specific configuration parame-
ters and measurement metrics. For the purpose of resource allocation, I am only interested in
metrics related to resource requirements and the corresponding performance. Typically, various
configurations of CPU time (in percent) and memory (e.g., in MB) are tested per component,
recording performance in terms of maximum sustainable traffic load (e.g., in Mbit/s). In addi-
tion, other parameters possibly affecting performance (e.g., configurable thread count) could be
considered.

7.4.3. Learning Resource Requirements

For training machine learning models on performance measurement data, the dataset needs to
be split into a feature set containing the performance measurements (e.g., maximum sustainable
traffic load) and a set of target values containing the resource requirements. Due to possible
errors in the performance profiling process, some values may be missing in the dataset and can
be replaced through imputation (e.g., with the median) [123]. I also found that it is important
to scale all features and targets to values between o and 1, particularly for neural networks,
which are sensitive to the ranges of input data (Section 7.5.1). Without scaling, the measurement
data is often in vastly different value ranges, depending on the unit of recorded data, e.g., data
rate in the thousands of kB/s vs. required CPU time in [0, 1]. Similarly, hyperparameter tuning
can greatly improve approximation accuracy, especially for more complex models with many
hyperparameters, e.g., neural networks (Section 7.5.1).

85

7. Machine Learning for Dynamic Resource Allocation

Generally, any machine learning regression algorithm can be used for training models on
performance measurements. For components with a linear or almost linear relationship between
resource requirements and resulting performance, linear regression or ridge regression [113]
are suitable. Such linear approximation is simple and fast without requiring much (or any)
hyperparameter tuning (Section 7.5.1). If the relationship is clearly non-linear or unknown, other
non-linear approximation techniques are preferred, e.g., Support Vector Regression (SVR) [62],
decision trees, or neural networks. Often, a combination of multiple techniques using ensemble
learning works better than each individual technique [220]. In Section 7.5, I evaluate and
compare four individual regression techniques and two ensemble learning approaches.

Independent of the selected machine learning algorithm, the trained models can be saved and
reused later without retraining. Similarly, the scaler used for preprocessing the data can be
saved and reused to ensure consistent processing of any new data. I suggest to upload the
trained models in an online repository (e.g., extending SNDZoo [S9]) to enable reuse by others.
Orchestration platforms can then retrieve the trained models directly from these repositories
and use them inside their coordination approaches.

7.4.4. Integration with Coordination Approaches

The trained models for all components of interest (e.g., all components C) can be integrated
into an existing or new coordination approach with minor technical overhead. Each service
component ¢ € C could be annotated with the corresponding trained model, which is used
to approximate r.(A). The coordination approach simply needs to load the associated model
into memory and then query the model to approximate the required resources for all instances
depending on their component and total traffic rate. Loading and querying works similarly for
all kinds of models, independent of whether the loaded model is a simple linear function or
a trained neural network (or any other approximation function). In fact, swapping different
machine learning models, e.g., for different components, is simple and completely transparent
to the rest of the coordination approach due to the consistent interface of common machine
learning models using the sklearn Application Programming Interface (API) [33].

As an example for a state-of-the-art coordination approach, I adjust BSP from Chapter 4 to
use machine learning models for dynamic resource allocation. The integration with BSP is
fairly simple and only requires to change less than 100 lines of code (available online [S14]).
Specifically, BSP tries to schedule new flows to existing instances to minimize the number of
placed instances. To avoid over-subscribing node resources, BSP uses the trained models to
approximate and predict the required resources of each instance (within a certain delay bound)
if it were to process the new flow. Among the available instances with sufficient resources,
it chooses an instance that is reachable with short path delay. If no instances have sufficient
resources, it starts a new instance nearby, selecting a node with sufficient resources according to
the approximated total resource requirements. Hence, the resource requirements approximated
by the trained machine learning models directly affect BSP’s scaling, placement, and scheduling
decisions. More details of the BSP embedding procedure are described in Section 4.2.2.

Using machine learning models for approximating resource requirements also enables more
algorithmic improvements of existing coordination approaches. Being aware of the potentially
non-linear relationship between allocated resources and resulting performance, coordination
approaches could actively optimize the total traffic load and resulting resource requirements
per instance through their scheduling and scaling decisions. This an interesting direction for

86

7.5. Evaluation

future research, extending existing work in non-linear resource allocation [198, 250] to the use
of machine learning models.

7.5. Evaluation

To illustrate and evaluate the proposed machine learning approach for dynamic resource
allocation, I use performance measurements of two real-world service components. In particular,
I use performance measurements of the popular Squid cache [240] and the Nginx proxy [188]
from SNDZoo [S9]. Each of these datasets has 4.6 million data points with a subset being
performance measurements under varying resource configurations.

In Section 7.5.1, I use six different machine learning algorithms to learn the relationship between
instances” performance (maximum sustainable traffic load) and resource requirements (CPU)
from these datasets. I illustrate the importance of hyperparameter tuning and compare the
resulting approximation accuracy. In Sections 7.5.2 and 7.5.3, I use the adjusted BSP coordination
approach described in Section 7.4.4 with different machine learning models to approximate
resource requirements and allocate resources accordingly. I evaluate the impact of these different
models on the resulting service placements and on algorithm runtime using machines with an
Intel Xeon W-2145 CPU and 32 GB RAM.

05 B Default T
' Tuned
041

% 0.3

=

m - .
0.21 :|:
0.0

Linear Ridge SVR Forest Boosting MLP Fixed

Figure 7.4.: RMSE of different machine learning models with default and tuned hyperparameters on the
Squid dataset. (Figure adapted from [S35]; © 2020 IEEE.)

7.5.1. Approximation Accuracy

To find the most accurate machine learning algorithm for learning from performance measure-
ments, I test and compare six different algorithms from different families of machine learning
approaches: Linear regression, ridge regression [113], SVR [62], random forest [31], gradient
boosting [84], and neural networks. Random forest and gradient boosting are examples of
commonly used ensemble methods. For the neural network, I consider the common Multi-Layer
Perceptron (MLP) architecture [196] with a single, densely connected hidden layer (128 hidden

87

7. Machine Learning for Dynamic Resource Allocation

1.0 []
A aulapx
A $oxX
0.8 ++++++++++++++++++++++++++++++++++++ﬂ+++++
xxxx)i‘ ,
206)
o ool
0.4 X ® True
anni Xl x Linear
P S o SVR
° M" A Boosting
0.0 o X + Fixed
0 500 1000 1500 2000 2500

Traffic Load [kB/s]

Figure 7.5.: Squid performance measurements and approximations of different machine learning models.
(Figure adapted from [S35]; © 2020 IEEE.)

units). In addition, I compare these machine learning models with the typical fixed model that
always assigns a predefined, fixed amount of resources to all placed instances.

Before being able to train machine learning models, the used measurement data has to be
preprocessed (Section 7.4.3). For faster processing and training, I filter the data to a subset
only containing relevant features, i.e., measurements of maximum sustainable traffic load for
varying CPU configurations. Additionally, I fill any missing values and scale the features, here,
the maximum sustainable traffic load, to a range of [0, 1], similar to the target values (CPU time).
Before scaling, the maximum sustainable traffic load was in the range of [0,3000]kB/s, i.e.,
in a vastly different range than the configured CPU times ([0, 1]). Feature scaling is especially
crucial for neural networks [127] but also for SVR. Without feature scaling, the considered MLP
neural network performs terribly—leading to an RMSE that is roughly 150 times worse than
with feature scaling. For other machine learning algorithms, e.g., linear regression or ensemble
learning, feature scaling only brings negligible benefits.

After preprocessing, I train and evaluate each machine learning model using 5-fold cross
validation [17]. For each model, I optimize the loss in terms of RMSE as defined in Section 7.3.
The figures show the mean RMSE with the 95 % confidence interval as error bars.

Squid Cache

Figure 7.4 shows the RMSE of the six machine learning models for the Squid cache dataset. In
addition to the six machine learning models, the figure also shows the error for the currently
prevailing model of assigning fixed resources to each placed instance (here, configured to
0.8 CPU). Not surprisingly, the fixed model does not approximate the true resource require-
ments of the Squid cache well, which leads to a very high average RMSE of around o.4. All
machine learning models perform significantly better (RMSE between 0.1 and o.2). Figure 7.4

88

7.5. Evaluation

also compares the RMSE of all models with default hyperparameters and after automated hyper-
parameter tuning using grid search. With default hyperparameters, the linear models (linear
and ridge regression) perform best, but after hyperparameter tuning, SVR has a lower average
RMSE, closely followed by MLP. SVR and MLP have many hyperparameters such that tuning can
improve their performance significantly. In contrast, the simpler, linear models only have very
few hyperparameters and do not noticeably benefit from hyperparameter tuning.

As visualized in Figure 7.5, the performance measurements of the Squid cache show a strong
linear relationship between maximum sustainable traffic load and CPU for most measurements
(up to 2000kB/s), explaining the high accuracy of linear models. Figure 7.5 also shows the
approximations of some of the tuned and trained machine learning models as well as the
fixed model. In contrast to the fixed model, all machine learning models fit the data quite well.
SVR fits a non-linear function, which is quite smooth thanks to regularization. Conversely, the
gradient boosting model increases its approximation stepwise, which is due to the decision trees
being used within the model, breaking the data into different parts with similar approximated
value.

05 B Default
’ Tuned
0.4t
L
» 0.3
=
m L.

‘gl Iﬁlil |

Linear Ridge SVR Forest Boosting MLP Fixed

Figure 7.6.: RMSE of different machine learning models with default and tuned hyperparameters on the
Nginx dataset. (Figure adapted from [S35]; © 2020 IEEE.)

Nginx Proxy

Similar to the Squid cache, I train all machine learning models on the Nginx dataset, with and
without hyperparameter tuning, and show their RMSE in Figure 7.6. Again, hyperparameter
tuning mostly improves the performance of the more complex models, here SVR, MLP, and
gradient boosting. For Nginx, the two ensemble methods perform better than all other machine
learning models.

As can be seen in Figure 7.7, Nginx’ true required CPU for increasing maximum sustainable
traffic load first increases roughly linearly but then rises dramatically for traffic loads above
2000 kB/s. While this is also visible for the Squid cache (Figure 7.5), it is much more pronounced
in the Nginx dataset, making linear approximation less suitable here.

89

7. Machine Learning for Dynamic Resource Allocation

1.0 -
AApL
0.8 ++.++;
X
X
® True xy?(
. X
30-6 x Linear XX @
X
% SVR xxxxx -
04 Ao Boosting xxxxx EYVN A J
+ Fixed X pans@ilanad
x> ¢
0.2 _ _ASSM@xxxX
N
xxg‘
001 @ 4x¥

0 500 1000 1500 2000 2500
Traffic Load [kB/s]

Figure 7.7.: Nginx performance measurements and approximations of different machine learning models.
(Figure adapted from [S35]; © 2020 IEEE.)

7.5.2. Impact on Network and Service Coordination

The previous section reveals significant differences in approximation accuracy between different
machine learning models and, in particular, their remarkable advantage over a fixed model. In
this section, I evaluate the impact of different models on network and service coordination when
using them for dynamic resource allocation inside an existing coordination approach. Here, I
consider BSP from Chapter 4 for coordination in the real-world Abilene network topology [142]
with unit compute capacity at each node. Furthermore, I consider three traffic sources with
an increasing number of flows leaving the sources, leading to growing traffic loads. I assume
a web-based network service consisting of the Squid cache and the Nginx proxy chained
together.

I consider the adjusted BSP algorithm in three different variants with different models to
approximate resource requirements and allocate resources for instances of Squid and Nginx,
respectively: In the first variant, BSP uses the currently prevailing fixed model with 0.8 CPU per
instance. In the second, it uses the trained linear models for both components (Squid and Nginx),
which represent the best case, i.e., with proper parametrization, that is achievable with recent
approaches using linear functions for r.(A). In the third variant, BSP uses the best models from
Section 7.5.1, i.e., the trained SVR for approximating Squid’s resource requirements rsquiq(A)
and gradient boosting for Nginx (rNginx (A))-

The true resource requirements of Squid and Nginx are only known for measurements in the
two datasets but not their true function r.(A). Compared to other models, SVR and gradient
boosting achieved the smallest RMSE in Section 7.5.1. Thus, I assume SVR and gradient boosting
to be closest to the true resource requirements of the two components, respectively, with
negligible over-allocation or under-allocation.

In the following, I evaluate the three variants while varying the traffic load. In these experiments,
BSP dynamically scales the number of placed instances, schedules flows to these instances, and
allocates resources according to the different models (Section 7.4.4). I compare the experiment

90

7.5. Evaluation

outcomes in terms of three metrics of interest: The total amount of allocated resources, the
number of placed instances, and the total delay.

Impact on Total Resource Allocation

Figure 7.8 (left) shows the total allocated CPU with increasing traffic load for the three different
algorithm variants. With more traffic to process, BSP places more instances (compared next),
which require more resources in total to properly handle the increasing traffic load (considered
here). The amount of allocated resources depends on the traffic load, but is also strongly
affected by the approximated resource requirements r.(A) of each model. The figure shows that
assigning a predefined, fixed amount of CPU resources to each instance leads to a huge amount
of total allocated resources that grows rapidly with increasing traffic load, quickly filling up
and overloading the network’s resource capacities. Here, allocating a fixed amount of resources
leads to up to 12 times more allocated CPU resources than with SVR and gradient boosting,
signifying massive over-allocation.

" " 6 "
16 o et - = Fixed
+.’ +- 51 == Linear X
5 14 ;+." 1 —#— SVR+Boosting 4
S 12 4
8ol
g + 5]
2 3 .
< N
g 67 21
s |+
F o
1 4
2
O + + + 0 + + +
2000 4000 6000 2000 4000 6000
Traffic Load [kB/s] Traffic Load [kB/s]

Figure 7.8.: Total allocated CPU in resulting service placements computed with different models. Right:
Close-up comparison. (Figure adapted from [S35]; © 2020 IEEE.)

Compared to the fixed model, the differences in total allocated CPU are much smaller between
linear approximation and the combined SVR and gradient boosting. Still, Figure 7.8 (right) shows
that the total allocated CPU resources in resulting service placements with the linear models
is up to 33 % higher or up to 69 % lower than in service placements computed with SVR and
gradient boosting. Since the SVR and gradient boosting models are more accurate than the linear
models (Section 7.5.1), this implies over-allocation and under-allocation for service placements
computed with the linear models.

Impact on Number of Placed Instances

Next, I consider the same experiment outcomes but compare the number of placed instances
instead of the total allocated resources. As described in Sections 7.4.4 and 4.2, BSP tries to mini-

91

7. Machine Learning for Dynamic Resource Allocation

mize the number of used instances by scheduling flows to existing instances if the approximated
resource requirements do not exceed node capacity. In the considered scenario with limited
node capacities, BSP needs to start more and more instances at different nodes to balance the
increasing load. Figure 7.9 shows that this is most clearly visible for the case of fixed resource
allocation, where 2-3 times more instances are placed than in the SVR and gradient boosting
case. Again, the results with the linear models and the combined SVR and gradient boosting are
quite similar with respect to the number of placed instances. For higher load, the slight CPU
over-allocation of the linear models compared to SVR and gradient boosting adds up and forces
BSP to instantiate slightly more instances.

. e e
” N . “‘ .+-
+" +----+l
20 "

7] e
(0] 3
o .
. :
B 15 x
< .
° == X = =
o 10 5 -z =
JED * it i I o
=}
< 5| *+ Fixed

=¥ - Linear

—#— SVR+Boosting

1000 2000 3000 4000 5000 6000 7000
Traffic Load [kB/s]

Figure 7.9.: Model impact on the number of placed instances. (Figure adapted from [S35]; © 2020 IEEE.)

Impact on Total Delay

Finally, Figure 7.10 shows the total link delay of the computed service placements. As before,
service placements with the fixed model lead to much worse results and up to 4.5 times higher
total delay than with SVR and gradient boosting. Here, the higher total delay is caused by the
higher number of instances in the corresponding service placements. The more instances are
placed at different nodes in the network, the more traffic has to be sent via links between
them, leading to higher total delay. Again, the linear models and the SVR and gradient boosting
models lead to similar total delay for low traffic. For higher traffic, the total delay with the
linear models is up to 23 % higher than with SVR and gradient boosting due to more instances
in the service placement with linear approximation.

7.5.3. Runtime Analysis

Short computational runtime is important to quickly react to changes in demand. Training and
hyperparameter tuning can be performed offline up front. In contrast, coordination approaches
may require the trained models to quickly and frequently approximate and predict potential
resource requirements during online operation.

92

7.5. Evaluation

350 + +
-+ Fixed + K
3001 =~ Linear o ey
—#— SVR+Boosting ;b= ssefen= —+
'a' 250 . "1" *
E 4o
% 200
(0] .0
2 150 ¥
E L 2
o R
F1001 - o
50 L =z - -3

1000 2000 3000 4000 5000 6000 7000
Traffic Load [kB/s]

Figure 7.10.: Model impact on the total delay. (Figure adapted from [S35]; © 2020 IEEE.)

Time per Prediction

Figure 7.11 (left) shows the measured time per prediction for each of the trained and tuned
models of Section 7.5.1. The fixed model returns the same predefined value instantly without
any computation. Also, all six machine learning models make very fast predictions within 1 ms
and, except for random forest, even within 0.1 ms. Differences in prediction time reflect the
complexity of the models: The two simple linear models (linear and ridge regression) are fastest
and the two ensemble learning models (random forest and gradient boosting) are slowest.
For each prediction, random forest and gradient boosting need to query multiple (here, 100)
decision trees and merge their approximated values, making them slower than the individual
regression techniques. While random forest allows its decision trees to grow very deep, making
it relatively time expensive, gradient boosting is much faster because it limits the tree depth.
Similarly, the MLP model uses a shallow neural network (1x 128 hidden units), enabling fast
predictions.

Time for Service Placement

Using these models in the adjusted BSP coordination algorithm, Figure 7.11 (right) shows the
algorithm’s total runtime on a logarithmic scale. The roughly 10+ times higher prediction time
of the random forest model compared to other models also leads to much higher algorithm
runtimes of over 1 min. All other machine learning have largely similar algorithm runtimes
between 1s and 2s.

Interestingly, the BSP algorithm runtime is not just affected by the prediction times of the
individual models but also by their approximation accuracy. Models that over-approximate the
required resources force BSP to balance these resources over more instances at different nodes.
As BSP repeatedly iterates over all instances, e.g., to schedule new flows to existing instances,
its total algorithm runtime increases with more instances (algorithm details in Section 4.2).
This effect is most noticeable for the fixed model: Even though it has almost zero prediction

93

7. Machine Learning for Dynamic Resource Allocation

Linear —
Ridge H
SVR H
Forest —
Boosting H
MLP H
Fixed —
0.0 0?2 0t4 0?6 Oj8 1 ’IIO 160
Prediction Time [ms] Total Time [s]

Figure 7.11.: Prediction and placement times for different models. (Figure adapted from [S35]; © 2020
IEEE.)

time, the total algorithm runtime with the fixed model is higher than with many machine
learning models. This is because the fixed model’s severe over-allocation leads BSP to place
many instances, increasing its total runtime. Hence, while there is a trade-off between prediction
time and accuracy, many machine learning models are accurate but still fast, which clearly pays
off in overall service quality and even algorithm runtime.

7.6. Conclusion

This chapter shows how machine learning can be used to automatically learn from real-world
data, deriving models that can accurately approximate components’ resource requirements
depending on the traffic load. Using these models in coordination approaches can significantly
impact the solution quality of resulting service placements: The evaluation shows that using
typical fixed resource allocation can lead to massive over-allocation of resources, many placed
instances, and high delay, potentially leading to high costs and bad service quality. Instead,
using trained machine learning models inside a coordination approach (e.g., the conventional
heuristics from Part I) improves dynamic resource allocation and results in less wasted resources
and better service quality.

In future work, the approach could be extended to also derive and predict other important
parameters from real-world data, e.g., components’ processing delays. When integrating these
machine learning models into existing coordination approaches, the scaling and scheduling
decisions of these approaches could be further improved taking the trained models into account.
This work also opens interesting research directions to reduce the initial training overhead
through transfer learning or continuous retraining.

In general, a key characteristic of this machine learning approach is that it relies less on human
expertise (here, knowledge of components’ resource requirements) than typical conventional
coordination approaches. Instead, it leverages available data to accurately and automatically
derive insights, here, learning components’ resource requirements. The following chapters of

94

7.6. Conclusion

Part II extend this general idea to coordination approaches that learn network and service
coordination entirely by themselves without relying on conventional heuristics or human
instructions.

95

8. Self-Learning Coordination

Network and service coordination is usually solved with custom, expert-designed approaches
such as the conventional approaches in Part I. While this typically works well for the considered
scenario, the models often rely on unrealistic assumptions or on knowledge that is not available
in practice (e.g., a priori knowledge). Chapter 7 partially mitigates this problem by replacing
expert knowledge of service components” resource requirements with automatically derived
machine learning models. This chapter goes one step further and proposes DeepCoord, a novel
Deep Reinforcement Learning (DRL) approach that learns network and service coordination
from its own experience when interacting with the network. It is geared towards realistic
assumptions and relies on available, possibly delayed monitoring information. Rather than
defining a complex model or an algorithm on how to achieve an objective, the model-free
approach adapts to various objectives and traffic patterns. An agent is trained offline without
expert knowledge or human instructions and then applied online with minimal overhead.
Compared to the Bidirectional Scaling and Placement Coordination Approach (BSP) from
Chapter 4, i.e., a state-of-the-art conventional heuristic, DeepCoord significantly improves flow
throughput (up to 76 %) and overall network utility (more than 2x) on real-world network
topologies and traffic traces. It also supports optimizing multiple, possibly competing objectives,
learns to respect Quality of Service (QoS) requirements, generalizes to scenarios with unseen,
stochastic traffic, and scales to large real-world networks.

This chapter is based on my papers [S21, S22], which build upon outcomes of the Real VNF
project [S20]. In the project, student assistants helped with developing prototypes and collecting
evaluation results. I led the Real VNF project over two years, proposed all key ideas, discussed
them with project partners, and drove their development. I closely advised and guided the
student assistants and wrote both published papers. This chapter contains verbatim copies of
these papers [S21, S22]: Stefan Schneider et al. “Self-Driving Network and Service Coordination
Using Deep Reinforcement Learning.” In: IFIP/IEEE Conference on Network and Service Manage-
ment (CNSM). ‘¥ Best Student Paper Award %& Invited Talk at the Internet Engineering Task
Force (IETF) 110 Meeting. IFIP/IEEE. 2020, © 2020 IEEE. Stefan Schneider et al. “Self-Learning
Multi-Objective Service Coordination Using Deep Reinforcement Learning.” In: IEEE Transac-
tions on Network and Service Management (TNSM) 18.3 (2021), pp. 3829-3842, © 2021 IEEE. In this
chapter and throughout my dissertation, I consistently write in the first-person singular form
(“I” rather than “we”) for ease of reading. The DeepCoord source code and the corresponding
simulation environment are publicly available on GitHub [S25, 526].

8.1. Introduction

While network and service coordination has been the focus of intensive study [114, 110], most
existing work (Section 8.2) has three major limitations. First, existing work mostly focuses
on long-/medium-term planning on how to scale and place service components based on
given service deployment requests, (e.g., [182, 179, 28, 144]). In doing so, hard-wired chains of

97

8. Self-Learning Coordination

component instances are placed in the network to process all incoming flows. This is problematic
as operational reality often diverges from any initial plan. For example, actual service demand
by users likely differs from the expected load in a given service deployment request. Hence,
scaling, placement, and flow scheduling should be adjusted dynamically and online according
to the actual service demand.

Second, existing approaches typically use heuristics or numerical solvers (e.g., [182, 91, S2]) and
rely on carefully designed models, tailored to specific scenarios, and build on corresponding as-
sumptions. Applying them to scenarios with slightly different assumptions or new optimization
objectives (e.g., for QoS) may again require time-consuming manual adjustments by experts.

Third, these models often rely on information that is not available in practice, such as a
priori traffic knowledge. In reality, complete knowledge about incoming traffic is not available
instantly or even a priori but only after monitoring, often done periodically (e.g., default 1 min in
Prometheus [204]). Within such a monitoring interval, numerous flows may arrive stochastically
from users at various ingress nodes and need to be processed by service components even before
information about these flows is globally available. This is particularly the case in scenarios
with many, short flows (Case II in Section 3.1.3).

To overcome these limitations, I propose a novel approach for autonomous network and
service coordination using model-free DRL. In the proposed approach, called DeepCoord, a
centralized DRL agent is trained offline through interaction with the network environment, using
its previous actions and experience as feedback. The trained DRL agent then autonomously
provisions services online and controls dynamic flow scheduling. For scalability, the agent does
not decide scheduling of each flow individually. Instead, it selects and periodically updates
scheduling rules that are deployed at each network node in a distributed fashion and applied
purely locally at runtime to incoming flows.

Practical application of DRL is known to be challenging and requires careful design of the corre-
sponding observations, actions, and reward as well as integration into the overall system [64]. To
address these challenges, I formulate a Partially Observable Markov Decision Process (POMDP)
with observations based on realistically available monitoring data that is only intermittently
available and that contains only aggregated, slightly delayed, and uncertain information. In
particular, DeepCoord can be used without expert knowledge and it requires neither a priori
traffic knowledge nor detailed knowledge of the network or involved services. DeepCoord
uses continuous actions to allow fine-grained online control of service scaling and placement
as well as for dynamic flow scheduling. Its reward function is designed to support multiple
objectives, e.g., optimizing flow success and QoS, based on available monitoring data. Finally, I
propose a framework architecture for integrating DeepCoord with a given network environment
through custom adapters and publish an open-source prototype [S25]. While DeepCoord is
trained in a centralized, offline fashion, the trained agent can handle rapidly arriving stochastic
and bursty traffic, generalizes to new and unseen scenarios, and scales to large, real-world
network topologies while making decisions within milliseconds. Overall, the contributions of
this chapter are:

¢ In Section 8.3, I discuss the problem of online network and service coordination based on
delayed monitoring information and propose different methods and example formulations
for optimizing multiple, possibly opposing objectives.

® In Section 8.4, I address network and service coordination by formalizing the correspond-
ing POMDP and designing the framework for DeepCoord, the proposed novel, self-learning
DRL approach based on Deep Deterministic Policy Gradient (DDPG) [155].

98

8.2. Related Work

¢ The evaluation in Section 8.5 shows that DeepCoord consistently outperforms existing
approaches, requiring significantly fewer resources to ensure high success rates on
real-world network topologies. It also generalizes to unseen traffic patterns, learns to
optimize multiple objectives, and scales to networks of realistic size while only relying
on information that is available in practice. Specifically, I observe that DeepCoord reaches
up to 76 % more successful flows and more than 2x higher total utility when optimizing
multiple objectives than BSP.

¢ For reuse and reproducibility, all code is publicly available [S25].

8.2. Related Work

In this section, I discuss related work, first focusing on conventional approaches without DRL,
e.g., heuristics or Mixed-Integer Linear Programs (MILPs), in Section 8.2.1. In Section 8.2.2, I
compare existing approaches that, similar to DeepCoord, use DRL for self-learning network and
service coordination.

8.2.1. Conventional Approaches Without DRL

The large majority of existing research builds on conventional approaches like heuristics or
MILPs, similar to the coordination approaches in Part I. Authors often rely on unrealistic a
priori knowledge and focus on a subset of the full network and service coordination problem
(Chapter 3), which includes online service scaling and placement as well as runtime scheduling
and routing of incoming flows. For example, multiple authors [182, 179, 28, 144] place services
offline, assuming full a priori traffic knowledge. Other authors [85, 91] consider online service
scaling and placement but disregard runtime scheduling of flows. Multiple authors [99, 29,
40] consider runtime scheduling of incoming flows but assume a given fixed placement. More
related to my approach, Zhang et al. [276] consider joint online scaling and placement of
services as well as flow scheduling. Such joint coordination is important to successfully balance
trade-offs [203, 61].

While all aforementioned approaches work well in their considered scenarios, each approach is
tightly bound to its underlying assumptions. As I show in the evaluation (Section 8.5), applying
such conventional approaches to scenarios with slightly different assumptions (e.g., different,
stochastic traffic patterns) can easily lead to significantly decreased performance. Adapting
to new assumptions requires time-consuming manual adjustments by experts. In contrast,
the proposed self-learning and self-adaptive, model-free DRL approach learns joint scaling,
placement, and scheduling in varying scenarios without any prior knowledge.

In recent years, multiple authors proposed machine learning for predicting required re-
sources [219, S35, 211] or upcoming traffic demands [105], which can be combined with
online heuristic algorithms for proactive network and service coordination [75, 277]. I see this
as a promising, complementary research direction that could be combined with DRL in future
work.

99

8. Self-Learning Coordination

8.2.2. Self-Learning DRL Approaches

Luong et al. [162] survey recent self-learning DRL approaches for networking. Related to this
chapter, multiple authors address online service placement under changing load [199, 255,
261, 209], some considering stochastic traffic and QoS [261]. In contrast to my approach, Pei et
al. [199] rely on a simulated copy of the network to quickly test, evaluate, and revert different
actions to ultimately choose the best one in each time step. Furthermore, the final coordination
decisions are made by a separate heuristic. Similarly, Solozabal et al. [238] rely on combining
their DRL approach with a heuristic and restrict their approach to service placement in networks
forming a star topology. Wang et al. [255] focus on scaling and placement of a single service
with unknown background traffic using a multi-armed bandit. They assume up-front traffic
knowledge per time step and equal flow scheduling between all instances, which could lead to
high end-to-end delays and bad service quality. Similar to my approach, Quang et al. [209] place
services online and Xiao et al. [261] consider processing and link delays as well as stochastically
changing traffic. In contrast to DeepCoord, Quang et al. [209] and Xiao et al. [261] process
incoming flows sequentially, making individual decisions per flow and service component.
To address resulting infeasible or suboptimal placements, the authors roll back and undo
previous decisions [261] or apply a separate heuristic algorithm to fix the DRL agent’s proposed
solution [209]. Making such expensive decisions per flow would not work in the problem
considered here, where flows arrive rapidly (Case II in Section 3.1.3) and the DRL agent only
observes delayed, aggregated, and partial network state.

Instead of per-flow decisions and similarly to how DeepCoord schedules incoming flows, Xu
et al. [265] assign different portions of traffic to different paths. However, they focus on traffic
engineering and do not consider service scaling and placement. The authors further assume
traffic knowledge ahead of each time step and assist their DRL agent with a heuristic. Nasir
and Guo [186] do consider delayed and partial observations but focus on power allocation in
wireless networks.

The recent work by Gu et al. [98] is most related to DeepCoord. Similar to DeepCoord, they
consider network and service coordination with flow scheduling, optimize a generic network
utility, and build on DDPG [155], which I shortly describe in Section 8.4.3. Still, there are three
main differences: 1. Gu et al. focus on compute costs but neglect resource and communication
constraints such as node and link capacities and link delays. In contrast, I consider such con-
straints to support QoS optimization and scenarios with limited resources (cf. edge computing).
2. They assume traffic knowledge ahead of each time step. 3. They support their DRL approach
with a custom heuristic to help with action selection and exploration. The authors show that
both too much or too little support by the heuristic degrades performance, making it difficult to
tune correctly.

Opverall, to the best of my knowledge, DeepCoord is the first approach to address online network
and service coordination in realistic scenarios with rapidly arriving flows and delayed, only
partially observed network state. It works without support from a heuristic, which makes it
more versatile and less error-prone. I hence believe the approach to be much better applicable to
real-world systems than existing work, especially since it does not rely on a priori information.

100

8.3. Problem Statement

8.3. Problem Statement

I consider the problem of network and service coordination as described in Chapter 3. Note
that the DRL approach does not require explicit knowledge of the full, detailed network state
including all parameters (Section 3.1). Instead, it observes only partial and delayed information
that is available via monitoring (detailed in Section 8.4.2) and implicitly learns to adapt to a
given scenario through feedback from its actions.

In this chapter, I mainly focus on scenarios with many, short flows (Case II in Section 3.1.3),
potentially with QoS requirements. Particularly, I consider @ = {d5°ft, g4} with optional
soft and/or hard deadlines d°!, g4 ¢ R+ U @. Flows requesting service s must complete
before hard deadline dh*', defined relative to flow arrival t}n, or otherwise are dropped

automatically. Achieving an end-to-end delay within soft deadline d5°f is desirable for best
service quality but not imperative for flow success. The approach is not limited to short, Qos-
sensitive flows but also supports fewer, longer flows (Case I) and flows without QoS requirements
(e, doft = ghard = &),

I assume that a monitoring system collects and synchronously reports metrics about each
node v € V in fixed intervals of A > 1 time steps. As many flows may arrive within A, the
monitoring system only reports aggregated information over the last interval A but no per-flow
details. In particular, I assume the monitored network state to merely include the number and
aggregated rate of incoming, processed, and dropped flows at v and the average end-to-end
delay of completed flows dayg in the last A time steps (from ¢ — A to t). This is in contrast to
most related work, which assumes complete per-flow and often even a priori knowledge in
every single time step.

DeepCoord maximizes the long-term utility Ur over all T time steps, reflecting the desired
coordination goals. Utility Ur may consist of a single optimization objective Ur = 0}, a weighted
(by w;) sum Uy = }; wjo; of multiple objectives, or a more complex custom utility function
based on one or multiple objectives. In the evaluation (Section 8.5), I consider examples of all
three cases, detailed next.

A useful example for a single optimization objective is Ur = of where o is the total amount of
successful vs. dropped flows over T time steps:

_ ‘Fsucc| - |Fclrop’

op =1 TP 111 (8.1)
f ‘Fsucc| + |Fdrop| []

It encourages more successful flows Fsycc, fewer dropped flows Farop and thus higher through-
put.

In practice, operators are often interested in optimizing multiple, possibly competing objectives
at once (e.g., for Qos, energy, costs). Here, the weighted sum of objectives Ur = }_; wjo; is useful. I
consider three additional objectives, each conflicting with o IE

- ZCEC,‘UEV xC,U(t)

0; =2 f1le[-1,1 8.2)
/ cl- V] =11)
. 1

0 =2 20V MEeccrn021} 3 g g (8.3)

\4
—d

04 = max {—1, Ve 4 1} € [-1,1] (8.4)

D¢

101

8. Self-Learning Coordination

Objective 0; minimizes the total number of placed instances (indicated by x,(t)) to minimize
costs, e.g., for licensing. Objective 0, minimizes the number of compute nodes used by at least
one instance, where 1y _ . ()>1) is 1 if an instance is placed at node v and 0 otherwise.
This may reduce costs and energy consumption if unused nodes are turned off, e.g., in an
edge scenario. Objective 0; minimizes the average end-to-end delay dayg per completed flow in
time T for better QoS. If no flow is successful, dayg is undefined, and I set 0o; = —1. To ensure all
objectives are in the same range [—1,1], I scale them by dividing by the respective maximum
value. In 04, I normalize dayg with network diameter D in terms of delay. I further add 1 since
—davg < 0 and cap any values below —1, which may occur if flows traverse the entire network
multiple times back and forth due to bad service coordination (i.e., davyg > Dg). I investigate
trade-offs between these objectives and o as well as the impact of weights w; in Section 8.5.4.
Objectives oy, 0;, 04, and o, are examples for typical optimization goals, but it is also possible
to choose and optimize other objectives based on the desired goals and available monitoring
information.

N o o =
i o e o

Delay Utility Uy

©
(N

©
=}

ds'oft dh'ard
s s
Avg. End-to-End Delay dayqg

Figure 8.1.: DeepCoord supports complex custom utility functions, in the example here, for meeting soft
deadlines. (Figure adapted from [S22]; © 2021 IEEE.)

Finally, as third and most generic option, DeepCoord allows defining and maximizing a custom
utility function Ut based on any available monitoring information. This enables operators to
define arbitrary, complex utility functions based on their business insights. As an example, I
|F succ | .
Fouee] + [Farop] €1[0,1]is
the flow success ratio and Uy € [0, 1] the delay utility shown in Figure 8.1. The delay utility is
maximal for an end-to-end delay within soft deadline d5°f and then gradually diminishes with
increasing delay up to hard deadline 47", In Section 8.5.4, I show that DeepCoord also learns
to optimize such a custom utility function to meet soft deadlines for optimal QoS.

consider a custom utility function Ur = Uy - Uy € [0, 1], where Uy =

102

8.4. DeepCoord DRL Approach

8.4. DeepCoord DRL Approach

I propose DeepCoord to address network and service coordination using model-free DRL.
DeepCoord does not know the network topology, link delays, service or per-flow details.
Instead, it relies on aggregated yet incomplete, slightly delayed, and uncertain information
about incoming flows available through periodic monitoring (updated every A time steps). It
learns network and service coordination without expert knowledge from its own experience.

I describe the coordination approach in Section 8.4.1 and formalize a POMDP in Section 8.4.2.
Section 8.4.3 outlines the DRL coordination framework and algorithm.

8.4.1. Joint Scheduling, Scaling, and Placement

DeepCoord is designed to work in realistic, dynamic networks and to support many rapidly
arriving flows (Case II in Section 3.1.3). Hence, making per-flow coordination decisions centrally
at the DRL agent would be highly inefficient and not scalable for large numbers of flows.
Moreover, it would require up-to-date, per-flow knowledge, which is not available centrally.
Instead, each node schedules incoming flows immediately and locally according to rules that
are installed at all nodes in the network. DeepCoord updates these rules every A time steps,
whenever new monitoring data becomes available.

\f4\

—h s
fi

—_—> c1

v1's scheduling table:
]

S|Cs| vi | v2 | v3 [vg | w5

$1 | c1 |10% |40% [50% | 0% [0% \ / \

s1|ca |0% |0% |0% |0% |100%

C2

~

Vs

U2 V4)

sy | c1 |50% |50% (0% |0% [0%

Figure 8.2.: DeepCoord periodically updates scheduling tables that are deployed at each node in a
distributed fashion. Flows continuously arrive at ingress nodes and are scheduled according
to these scheduling tables at runtime. (Figure adapted from [S22]; © 2021 IEEE.)

To this end, I introduce scheduling tables for each node that indicate where incoming flows
should be processed (similar to Amazon Web Services (AWS) traffic dials [14] but with dynamic
rather than fixed quotas). As illustrated in Figure 8.2, each scheduling table contains entries
for every service s € S and every corresponding component ¢ € Cs (here, S = {s1,52},
Cs, = (c1,¢2), Cs, = (c1)). The table entries specify at which destination node to process c by
means of a probability distribution over all nodes (not just neighbors). For example in Figure 8.2,
incoming flows at node v; requesting component c¢; € Cs, of 51 are scheduled according to

103

8. Self-Learning Coordination

the probabilities in v1’s scheduling table. Here, each flow is processed locally at v; with 10 %
probability, scheduled to be processed at v, with 40 %, and scheduled to vz with 50 %. Flows
belonging to s; that finish processing c; at v; and are then requesting c; are all scheduled to vs.
I assume shortest path routing between nodes, e.g., from v; to vs.

The same component c¢; also appears in service sy, where it could require different scheduling.
Hence, I consider separate scheduling entries for different services in S. If a component c is
used multiple times within a single service, the same scheduling rules are applied for each
appearance of ¢ within the service, i.e., flows are scheduled to the same instances of ¢ with the
same probabilities at each position within Cs. If this is not desired, using distinct identifiers to
distinguish different positions of ¢ within the service (e.g., ¢, ¢/, ¢”, ...) leads to separate instances
and scheduling rules for each position. I assume service set S and components C; to be rather
static and contain all available services and their components, even if some services are not
currently in use. Scheduling table entries for unused services are simply ignored. If sets S or C;
do change, e.g., because a completely new service s or component c is released, the scheduling
tables and DeepCoord’s neural networks have to be restructured to include s or c, respectively.
In principle, the learned weights for S \ s and Cs \ ¢ could be retained in the restructured neural
networks.

By deploying these scheduling tables at each node, incoming flows are scheduled immediately
(in O(log |V])) at runtime according to these probabilities. That means, y.(t) is set to v; with
probabilities given for v; and ¢ € Cs, in a distributed manner. After deciding a destination node
for processing a flow according to the scheduling probabilities, the entire flow is sent there.
Using separate scheduling tables for each node allows to schedule flows differently depending
on where they arrive in the network. In doing so, flows can be scheduled to close-by nodes,
reducing end-to-end delay.

I also derive variable x.,(t) for scaling and placement from the scheduling tables but update
it only every A time steps. To avoid dropped flows, I ensure that instances of component ¢
are available at every node v to which flows may be scheduled. Specifically, DeepCoord
starts at the ingress nodes with the first component ¢; € Cs for each service s and sets
Xc1,0(t) = 1 if there is a non-zero probability for yr., (t) = v based on the scheduling tables.
Since scheduling probabilities sum up to one, DeepCoord always places at least one instance
per service component to process incoming flows. It then continues in a similar fashion for the
next component ¢y, checking the scheduling tables of the nodes where instances of c¢; were
placed. Based on v1’s scheduling table in Figure 8.2, DeepCoord would set x;, o, (t) = X¢, 0, (t) =

Xcq,03 (t) = xCZ/US(t) =1

For routing, DeepCoord uses predefined paths and sets zf,(f) accordingly. Similar to BSP
(Section 4.2.1), I precompute these paths using the Floyd-Warshall algorithm [82] for shortest

paths with link weight w; = Cap%, i.e., favoring paths with high capacity and low delay.
1t

Alternatively, paths could be selected using any other desired metric. Either way, the forwarding
rules are deployed and applied directly at the nodes without DeepCoord being explicitly aware
of these paths. Following this approach, DeepCoord can jointly decide flow scheduling proba-
bilities, scaling, and placement by periodically (every A time steps) updating the scheduling
tables for all nodes. In practice, these updates could be done consistently across the network
using Software-Defined Networking (SDN) technology [225].

104

8.4. DeepCoord DRL Approach

8.4.2. Partially Observable Markov Decision Process (POMDP)

In real networks, the full network state is huge and can only be observed partly through
monitoring. Hence, I design a POMDP to create and periodically update the scheduling tables
as described in Section 8.4.1. Using a POMDP is novel compared to related DRL approaches
(Section 8.2), which mostly assume a fully observable Markov Decision Process (MDP). In a
POMDP, an agent interacts with an environment to obtain rewards, which allows the agent
to learn highly-rewarded behavior. Formally, a POMDP (O, A, P, R) is defined by observation
space O, i.e., parts of the full network state, the agent’s action space A, the environment
dynamics P, which are typically unknown, and the reward function R. In the proposed
approach, described in Section 8.4.1, the agent interacts with the environment every A time
steps. It receives observations from the last A time steps (e.g., through monitoring), applies an
action to update the scheduling tables for the next A time steps, and, after these A time steps,
receives a reward together with the next observation. I define O, A, and R as follows.

Observations O = (Ays|v € V,s € S), where Ay is the data rate summed up over all flows
arriving at ingress node v and requesting service s, averaged over the previous interval of
length A. If v is not an ingress node, A, = 0.

100 e ¥ —r
/‘E/

< 80 /
[2]
5 /
S -
7]
s 40
Q
(&S]
=)
n

20 —4— Observing u,

Not Observing u,
0

10 20 30 40 50 60 70
Total Node Capacity

Figure 8.3.: Delayed observations of node load u; are not useful for DeepCoord. (Figure adapted from [S22];
© 2021 IEEE.)

I also considered adding node load u, = Zlg) € [0,1] at v over the last A time steps to the

observations, where u, = 1 if cap, = 0. While observing u, intuitively seems useful, I found
that it usually does not improve DeepCoord’s performance (Figure 8.3). In fact, the agent can
completely change all scheduling rules with a single action, such that the observed node load u,
from the previous interval is often no relevant indication for the node load in the next interval,
even with constant ingress data rates. This is especially true for scenarios with many, short
flows (Case II), considered here. Even without this observation, the agent implicitly still learns
about the network’s capacities. It is rewarded for successful flows and punished for dropped
flows when scheduling to nodes or links with insufficient capacity. Thus, I do not include u, in
observations O here to avoid unnecessary complexity for DeepCoord and to further reduce the

105

8. Self-Learning Coordination

requirements regarding monitoring. When applying DeepCoord to scenarios with very long
flows that last for multiple intervals (6 > A; cf. Case I), observing u, may become useful and
can be included in the observations without requiring further changes of the approach.

Actions A = (pyscp|v, 0 € V,s € S,c € Cs), where p,s.y € [0,1] is the probability for
scheduling a flow arriving at node v, requesting component c of service s to be processed at
node v'. This results in a probability distribution with } ey pys e = 1. As different scheduling
probabilities are explored in the POMDP, it is unlikely that probabilities are set to exactly 0 %.
To avoid sending small fractions of traffic to many nodes, I further process these probabilities
as follows. I introduce a threshold py,res and set all probabilities p, s < Pthres to 0 during
post-processing. I then normalize each scheduling table row to ensure that the probabilities
again sum up to 1, i.e., flows are still scheduled and processed at nodes other than ¢'. Finally,
I apply these processed scheduling tables to the network and also use them for training
(Section 8.4.3).

Reward R = Up. Here, U can correspond to any of the three types of utility functions defined in
Section 8.3, i.e., optimizing either an individual objective, a weighted sum of multiple objectives,
or a custom utility function. In either case, the reward signal is computed based only on metrics
collected in the last A time steps. In the example of Uy = o7, Us would only consider the
successful and dropped flows in the last monitoring interval A, which are most affected by the
previous action. Internally, DeepCoord maximizes the sum of discounted rewards to optimize
long-term utility. I evaluate DeepCoord with different utility functions for optimizing varying
objectives in Section 8.5.4.

8.4.3. DRL Coordination Framework

DeepCoord is based on DDPG [155], which can handle large, continuous action spaces such as
A in the POMDP, unlike previous algorithms like deep Q-learning [181]. DDPG is an off-policy
actor-critic algorithm, i.e., it learns from buffered batches of previous experience using neural
networks for both actor g and critic Qg. The critic approximates the long-term value Qg (0, a)
of action a after observation o based on immediate reward r and expected future rewards.
Critic Qg is used to train actor py. Actions produced by gy represent the probabilities of each
node’s scheduling table, which should sum up to 1 for each row (Section 8.4.2). To this end,
I split the output layer of yg into separate parts for each row in each scheduling table and
apply the softmax activation separately (Figure 8.4a). In the critic network, I do not apply any
activation function to the output layer (Figure 8.4b).

Observation o Observation o,
Action a
(Hidden Layers (ReLU))
) (Hidden Layers (ReLU) |
Output Output
(Softmax) (Softmax) [Output (linear) }
Action a = pg(0) Qs (0, a)
(a) Actor pg (b) Critic Qyp

Figure 8.4.: Neural network architecture of actor and critic. The actor’s output layer is split into separate
parts for each row in the scheduling tables, applying softmax separately.

106

8.4. DeepCoord DRL Approach

Network monitoring 4 DeepCoord \
) 0, T O @
Q@ Ol o .
/ schedule, § S[H]§
(plament <
\ J —_ J

Figure 8.5.: In the proposed framework, the actor-critic DRL agent iteratively interacts with the network
through an adapter. (Figure from [S22]; © 2021 IEEE.)

To ensure fast, consistent, and good service coordination, I first train DeepCoord offline until
convergence and then apply the trained agent online (inference). Figure 8.5 shows the proposed
framework for training and applying DRL for network and service coordination. The network
provides monitoring data in regular intervals (step 1). In step 2, an adapter processes the
monitoring information, retrieving the relevant observation o and calculating reward r for the
previous interval as described in Section 8.4.2. With this architecture, DeepCoord can connect
to different kinds of networks or monitoring systems (including simulation environments for
training), simply by implementing a new adapter. In step 3, 0 and r are used to train critic Qy
and actor pg and to choose the next action a as defined in Section 8.4.2. During online inference,
0 is directly fed to actor ug to quickly retrieve the next action without computing » and without
any training. In step 4, the adapter uses a to compute the final scheduling tables for all nodes,
derives the scaling and placement, and applies it to the network.

Algorithm 6 DeepCoord Training and Inference

1: k < number of CPU cores available for training > Training
2: for k DRL agents in parallel do

3: Initialize pg, pror, Qgp, Qq,/, B

4 for all A time steps € T do

5: 0,7 < adapter.process(monitoring)

6: B &4 (Oprev, Aprev,7,0)

7: b < sample(B, N)

8: Train Qy minimizing the Bellman error [155]
9: Train py maximizing IE,[Qg (0, pe(0))]

10: Qp < Q¢ + (1- T)Qfl’/

11 Koy < THg + (1 — T)“I/lgl

12 a< pg(0) + N

13: Network +—— 2PPlY <—— adapter.process(a)

14: Select best trained agent (g, Qp) > Inference
15: for all A time steps € T do

16: 0,7 < adapter.process(monitoring)

17: a<— ;49()

18: Network {272 <—— adapter.process(a)

107

8. Self-Learning Coordination

Algorithm 6 shows the resulting DRL algorithm for training and inference. DDPG is known for its
high training variance depending on the random seed [108]. To mitigate this problem, I propose
to train k DRL agents in parallel with different random seeds, e.g., one per available CPU core
(lines 1-2 in Algorithm 6). After training, the best agent can be selected automatically based on
the achieved reward. During training, new experience is added to the buffer B and batches b of
size N are sampled to train critic and actor (lines 5-9). For training stability, target critic Qg
and actor yg are updated slowly according to T (lines 10-11). Then, the next action a is selected
using the trained actor and adding Gaussian noise V' to encourage exploration (line 12). Finally,
a is post-processed as described in Sections 8.4.1 and 8.4.2 to derive the final scheduling, scaling,
and placement decisions (line 13). I store the processed and actually applied actions in buffer B
for training. After training, I use the best trained agent for fast inference during online network
and service coordination (line 14). New observations are directly passed to the trained actor
to obtain the next action (line 17). For best performance during inference, I do not add noise but
exploit the best action. The selected action is then post-processed and applied to the network as
before (line 18).

Offline training of DeepCoord is time-intensive and depends on random exploration. In contrast,
online inference is very fast [107]. Its complexity is defined by the matrix multiplication of the
observations and neural network weights, which depend on the observation and action spaces
(Section 8.4.2). I empirically evaluate training and inference complexity for varying network
sizes in Section 8.5.5.

8.4.4. Implementation and Deployment

A Python prototype of DeepCoord is publicly available as open source [S25]. DeepCoord’s
actor and critic neural networks are built with Keras [100] and TensorFlow [4]. DeepCoord
follows the common OpenAl Gym interface [32] and interacts with the network through an
adapter that collects and computes the required observations and the reward. The adapter
implementation depends on the specific network environment. For training and evaluation, I use
the lightweight open-source simulator coord-sim [S26]. For production deployment, systems
like Prometheus [204] and Kubernetes [45] could be interfaced by the adapter for centralized
monitoring and orchestration. Scheduling rules could be installed and applied in a distributed
fashion at all nodes using SDN [257]. The location of the orchestrator and SDN controller could
be optimized using established approaches [145, 280] to minimize the overhead of collecting
monitoring data and updating scheduling rules in very large scenarios.

8.5. Evaluation

I evaluate DeepCoord through extensive simulations using real-world network topologies
and realistic traffic patterns. I describe the details of the evaluation setup in Section 8.5.1. In
Section 8.5.2, I evaluate how well DeepCoord self-adapts to scenarios with varying load, traffic
patterns, node and link capacities, and QoS requirements. For each scenario, I train DeepCoord
offline from scratch in a training environment and then evaluate the trained agent in a separate
testing environment with different random seeds. The agent adapts to each scenario through
self-learning without human intervention or expertise, simply from experience when interacting
with each environment. Section 8.5.3 investigates DeepCoord’s generalization capabilities,
where it is trained on one scenario and then tested on other new and unseen scenarios without

108

8.5. Evaluation

any additional training. While the aforementioned experiments focus on optimizing a single
optimization objective, Section 8.5.4 explores trade-offs when optimizing multiple competing
objectives. Finally, Section 8.5.5 evaluates the scalability of DeepCoord to large, real-world
network topologies.

8.5.1. Evaluation Setup

Evaluation Scenarios

I perform extensive simulations on real-world network topology Abilene [142], which connects
nodes at 11 cities across the United States. In Section 8.5.5, I also evaluate scalability on three
larger real-world network topologies from Europe, China, and across continents, taken from
the Internet Topology Zoo [142]. These topologies contain information about the position
and interconnection of the network nodes but not about their type (e.g., data center or small
edge server) nor about their compute capacity. Since DeepCoord does not distinguish between
different node types and is only affected by a node’s capacity cap,, I assign heterogeneous
node capacities cap, between o and 2 compute units (e.g., Central Processing Unit (CPU) cores)
uniformly and independently at random. By default, I use very high link capacities cap; = 1000
but also consider scenarios with more restricted link capacities (Section 8.5.2). Link delays
are based on the distance between connected nodes. While I successfully tested DeepCoord
with multiple services, for simplicity, I here focus on and show the results of coordinating
a single service s with components Cs = (cips, Cproxy Cweb)- Instances of each component
require resources that increase linearly with increasing total data rate of flows to process.
Again, DeepCoord is neither explicitly aware of components’ resource requirements nor limited
to linear resource requirements. Instead, it learns service characteristics (including resource
requirements) implicitly through feedback from its actions. I assume all flows requesting this
service to have unit data rate (Ay = 1) and flow length (J + = 1) but consider scenarios with
increasingly complex and realistic flow arrival patterns.

In the evaluation, flows arrive over T = 20000 time steps according to different traffic patterns
at the network’s ingress nodes. Ingress nodes are selected randomly per network and do
not change over time. I further set A = 100 time steps, after which DeepCoord receives new
observations and applies actions. As described in Section 8.4, this means that information in
observations may be delayed by up to 100 time steps. This is more realistic than the common
assumption in related work of having up-to-date information at each time step.

DRL Hyperparameters

For each scenario, I first train k = 10 DRL agents in parallel until convergence (500 episodes).
Then, I automatically select the best DRL agent for inference (Section 8.4.3). I train DeepCoord
from scratch for each scenario but configure fixed values for all hyperparameters that are used
across all scenarios. Thus, no manual adjustments are required for solving different scenarios
with DeepCoord.

For both actor and critic, I train dense neural networks with a single fully connected hidden
layer (64 hidden units, Rectified Linear Unit (ReLU) activation function [93]) using the Adam
optimizer [138]. I further configured the following hyperparameters:

109

8. Self-Learning Coordination

Discount factor ¢ = 0.99.

Soft target updates with T = 0.0001.

Learning rate « = 0.01 with decay 0.001.

Buffer size |B| = 10000 with batch size |b| = 64.

For exploration, I use Gaussian noise with A/ (0,0.2).
Threshold pynes = 0.1 (Section 8.4.2).

Compared Algorithms

I compare DeepCoord against the following algorithms:

¢ BsP from Chapter 4 as an example for a state-of-the-art conventional heuristic, which
jointly optimizes service scaling and placement as well as flow scheduling.

o Shortest Path Coordination Approach (SP): For each ingress, SP places exactly one instance
per component ¢ € Cs. It follows a simplified first-fit strategy by instantiating the first
component at the ingress node and each following component at the neighbor closest
to the previous instance. In doing so, SP favors nodes with fewer existing instances and
skips nodes without any compute capacity (independent of current utilization).

® Load Balancing Coordination Approach (LB): LB instantiates all components at all nodes with
non-zero capacity and schedules flows equally.

SP and LB are similar to the baselines used by Xu et al. [265]. All three algorithms choose actions
from action space A—but, unlike DeepCoord, do not learn from these actions.

Directly applying BsP to the scenarios considered here works poorly. BsP focuses on scenarios
with few and long flows (Case I in Section 3.1.3), where all flows run in parallel and compete for
resources. In the scenarios considered here, many, short flows arrive sequentially at each ingress
and only overlap partially (Case II). For a fair comparison, I adjusted the input processing
of BSP to estimate the overlapping flows per A time steps. This is an example of how built-in
assumptions limit the applicability of a conventional, model-based algorithm, requiring manual
adjustments by experts. I show both the default and adapted version of BSP in the evaluation.
Unlike DeepCoord, related DRL approaches (Section 8.2) are not available publicly. Thus, a
direct comparison is difficult.

Execution & Figures

I repeated all experiments with 30 different random seeds on machines with an Intel Xeon
W-2145 CPU and 32 GB RAM. The figures in this section show the mean over these 30 repetitions.
The error bars depict the 95 % confidence interval.

8.5.2. Self-Adaptation to Varying Scenarios

Here, I focus on maximizing the number of successful flows (Ur = oy; Section 8.3) in the
Abilene network. I systematically vary different problem parameters (traffic, capacities, QoS
requirements) and compare the percentage of successful flows after T time steps for each
algorithm. I train DeepCoord from scratch for each scenario to evaluate how well it adapts itself
to these scenarios.

110

8.5. Evaluation

100 1 100 1 —4— DeepCoord
—¥— BSP
§- 80 1 §- 80+ —— BSP Ad.
= = —— SP
12 [
8 H — LB
E 60 1 E 60 T \\ t
=] =]
D D
$ 401 —a— DeepCoord 2 404 I
Q Q
5 —¥— BSP S
? o = BSPAd 2 ol i
—— SP
—< LB
0 0
1 2 3 4 5 1 2 3 4 5
Number of Ingress Nodes Number of Ingress Nodes
(a) Fixed arrival (b) Poisson arrival
100 7 —&— DeepCoord | 100 1 —A— DeepCoord
—¥— BSP —¥— BSP
= 801 —=— BSP Ad. < 80% —m— BSP Ad.
= —— SP = —— SP
% —<— LB % —<— LB
2 601 S 6ot
> >
b7 b7
@ 4071 $ 401
Q Q
[&] o
> >
n n
0 0
1 2 3 4 5 1 2 3 4 5
Number of Ingress Nodes Number of Ingress Nodes
(c) MMPP arrival (d) Real-world traffic trace

Figure 8.6.: Percentage of successful flows for an increasing number of ingress nodes, i.e., increasing load,
and increasingly realistic flow arrival patterns. Compared to other approaches, DeepCoord
processes most flows successfully. (Figure adapted from [S22]; © 2021 IEEE.)

111

8. Self-Learning Coordination

Varying Ingress Nodes and Traffic Patterns

First, I vary the number of ingress nodes from 1 to 5 and choose increasingly complex flow
arrival patterns. With more ingress nodes, total traffic increases and the network’s capacities
become saturated such that flows have to be dropped (Figure 8.6).

The simplest traffic pattern I consider is fixed flow arrival, where flows arrive in fixed intervals
(10 time steps) at each ingress. Figure 8.6a shows the percentage of successful flows for the
different algorithms. As described in Section 8.5.1, default BSP performs poorly, but the manually
adapted BSP (“BSP Ad.”) does much better and only drops flows with more than 3 ingress nodes.
SP avoids dropped flows up to 2 ingress nodes and LB always drops many flows. DeepCoord
outperforms all other algorithms, processing much more flows successfully in the highly
saturated network with 4 and 5 ingress nodes (up to 76 % more successful flows than adapted
BsP). Figure 8.6b shows the results for Poisson flow arrival (mean inter-arrival time 10 time steps).
Due to the randomness in flow arrival, multiple flows may arrive directly after another in bursts,
which can easily lead to dropped flows. Again, adapted BSP is slightly better than SP and much
better than default BSP. LB still performs worse than the other algorithms and DeepCoord still
outperforms all algorithms. Compared to adapted BsP, DeepCoord processes up to 43 % more
flows. In particular, it learns to deal with Poisson flow arrival by not fully utilizing all resources
of a node but leaving some resources free for handling small bursts.

100 1 100 1
< 80 1 < 80 T
[[
3 3
60 2 601
=) =
‘B ‘®
8 401 —— DeepCoord 8 40t —&— DeepCoord ¢
S BSP 3 BSP
2} 20 —#— BSP Ad. 2 20 —m— BSP Ad.
—— SP —— SP
—<— LB —<— LB
O + + + O + + + +
20 40 60 0.0 25 5.0 7.5 10.0
Total Node Capacity Link Capacity
(a) Varying node capacity (b) Varying link capacity

Figure 8.7.: DeepCoord leverages increasing node and link capacities to process more flows successfully,
outperforming other approaches. (Figure adapted from [S22]; © 2021 IEEE.)

Next, I consider more realistic flow arrival following a Markov-Modulated Poisson Process
(MMPP) [80]. The two-state Markov process randomly switches between flow arrival with
mean inter-arrival time 12 and 8 (50 % higher rate) every 100 time steps with 5 % probability.
Figure 8.6c shows that DeepCoord handles MMPP flow arrival well and, again, outperforms the
other algorithms (up to 41 % better than adapted BSP). Finally, Figure 8.6d shows the results
for flows following real-world traffic traces that were recorded for the Abilene network [194]. To
simulate increasing load, I enable an increasing number of ingress nodes where the trace-driven

112

8.5. Evaluation

traffic arrives. Here, adapted BsP is better with low load (1—2 ingress nodes) and SP is better
with high load (45 ingress nodes). DeepCoord handles this real-world traffic well and again
outperforms all other algorithms (up to 43 % better than adapted BSP and sp).

Varying Node and Link Capacities

I investigate self-adaptation of DeepCoord to scenarios with varying node and link capacity,
again, training from scratch for each scenario. Specifically, I consider MMPP traffic with 4 ingress
nodes on the Abilene network, starting with a total node capacity of 10 compute units (as
before) and then evenly increasing node capacity. Figure 8.7a shows that DeepCoord adapts
well to different node capacities and clearly outperforms all other algorithms. In comparison,
the other algorithms need at least 67 % more resources to reach high success rates of above
95 %.

Next, I consider scenarios with limited link capacity, varying cap; from o to 10 for each link /.
In contrast to all other scenarios, where nodes’ compute resources were the bottleneck, here,
communication between nodes is the bottleneck. Such communication-constraint scenarios are
not the main focus of DeepCoord, which uses fixed (shortest) paths when scheduling flows
between nodes rather than routing them dynamically. Still, DeepCoord achieves more successful
flows than the other algorithms (Figure 8.7b) and is the only approach to achieve success rates
of more than 95 %. This indicates that, even without dynamic routing, it successfully adapts to
varying link capacities by distributing load across nodes and corresponding paths.

100 1 —A— DeepCoord
BSP g
T 807 —#— BSP Ad. ‘;30 r
Y —— SP k]
2 o)
o —< LB 0o
E 60 1 -g
E & 201
® <c,3 —4&— DeepCoord
Q o
8 c BSP
> w o4
a 5 —=— BSP Ad.
z —— SP
—<— LB
= 15 L L
20 25 30 35 40 45 20 25 30 35 40 45
Deadline d@ [ms] Deadline d@ [ms]
(a) Successful flows (b) End-to-end delay

Figure 8.8.: DeepCoord self-adapts to hard deadlines. It leverages higher deadlines to better distribute
load and achieve higher flow success rates. (Figure adapted from [S22]; © 2021 IEEE.)

113

8. Self-Learning Coordination

Varying QoS Requirements (Hard Deadlines)

Here, I explore scenarios with MMPP traffic, 4 ingress nodes, and varying QoS requirements
in terms of hard deadlines d"4. As flows are dropped automatically if a hard deadline is
not met, completing flows that exceed the deadline is not possible. DeepCoord implicitly
learns that flows are dropped when their end-to-end delay is too high—without requiring any
explicit knowledge about these deadlines. Figure 8.8 shows that DeepCoord exploits increasing
deadlines by distributing flows to nodes farther away. This leads to an increasing success rate
(Figure 8.8a) and results in higher end-to-end delay within the allowed deadline (Figure 8.8b).
Similarly, LB exploits increasing deadlines and tries to balance load across all nodes as far as
possible with the given deadlines. Still, it achieves much lower success rates than DeepCoord.
In contrast, adapted BSP and SP do not exploit deadlines beyond 35 ms to increase success rates,
leading to an increasing gap compared to DeepCoord.

8.5.3. Generalization to Unseen Scenarios

For the different scenarios of Section 8.5.2, I always train DeepCoord from scratch but reuse the
same hyperparameter settings. This allows to fully automate training and applying DeepCoord
to different scenarios. In practice, a trained agent still needs to perform reasonably well when
facing a new scenario, e.g., due to changes in load or traffic. Training a new agent optimized
for the new scenario can take hours, during which the old agent is still being used. To support
such generalization, I define observations and reward based on generally-available information
and normalize observations, actions, and rewards to be in a similar range (Section 8.4.2).

1001 === DC.(1in.) mmm D.C.(5in.) | 100 ¢ waN DeepCoord (Fixed)
vam D.C.(2in.) @w#» BSP Ad. EmE DeepCoord (Poission)
gp | mam D.C. (3in.) S»~ SP 80+ mmm DeepCoord (MMPP)
mm DC. (4in.) s BSP Ad.
W SP

Successful Flows [%]
Successful Flows [%]

Algorithms Algorithms

(a) Unseen ingress nodes (b) Unseen traffic pattern

Figure 8.9.: DeepCoord generalizes to new scenarios with previously unseen a) ingress nodes and b) traffic
patterns. (Figure adapted from [S22]; © 2021 IEEE.)

Iinvestigate generalization of DeepCoord to scenarios with unseen load. In particular, I train five

different DeepCoord agents on MMPP traffic with 1—5 ingress nodes, respectively, representing
scenarios with low to high load. Without any additional training, I then test all five DeepCoord

114

8.5. Evaluation

agents on MMPP traffic with 4 ingress nodes. Figure 8.9a shows that, as expected, the DeepCoord
agent trained and tested on 4 ingress nodes (abbreviated as “D.C. (4 in.)”) performs best.
However, also the agents trained on 2, 3, and 5 ingress nodes generalize well to unseen traffic
from 4 ingress nodes. In fact, they achieve a similar percentage of successful flows as the agent
trained and tested on 4 ingress nodes and still outperform adapted BSP and SP. Only the agent
trained on a single ingress node leads to slightly worse results when generalizing to much
higher load with 4 ingress nodes. Still, its performance is comparable with SP’s.

I also study generalization of DeepCoord to scenarios with new traffic patterns. Specifically,
I train one agent on fixed flow arrival and another on Poisson flow arrival and confront
both with previously unseen MMPP flow arrival. Figure 8.9b shows the successful flows for
both cases in the Abilene network with 4 ingress nodes. For comparison, I also show results
of DeepCoord trained on MMPP traffic and of adapted BSP and sP. The figure indicates that
DeepCoord generalizes well to new traffic patterns without significantly reduced successful
flows. The generalized agents still outperform adapted BSP and sP.

8.5.4. Optimizing Multiple Objectives

In Sections 8.5.2 and 8.5.3, I focus on maximizing successful flows (0y) as the only optimization
objective. In practice, operators often want to optimize multiple objectives. Here, in Section 8.5.4,
I evaluate network and service coordination with multiple objectives, investigating the trade-off
between maximizing successful flows and objectives o;, 0,, and o4, defined in Section 8.3. I also
consider a more complex, custom objective function for supporting soft deadlines in addition
to hard deadlines in Section 8.5.4. In all cases, I consider MMPP traffic with 4 ingress nodes on
the Abilene network.

1.00
~ ~ _ 0871 mmm DeepCoord
0.75 - @@ BSP Ad.
0.50 . 0.67 S NN SP
\
. 0.25 I i > 04+t § S
= 0.00 = L W0 = ;& N
5 = 2 021 ’\ 7§
-0.25 0 f& ?& ' s i
0,50 m Total utility 00t N IN é& ey
e Flow utility g§
-0.75 | . N
nstance utility —021 §
0T T 025 05 o075 1 0 025 05 075 1
Few instances « ar; — High throughput Few instances « ar; — High throughput
(a) DeepCoord’s total, flow, and instance utility (b) Algorithms’ total utility

for trade-off ay,

Figure 8.10.: DeepCoord effectively navigates trade-off a ¢ ; between placing fewer instances and higher
throughput. (Figure adapted from [S22]; © 2021 IEEE.)

115

8. Self-Learning Coordination

Weighted Sum of Objectives

First, I consider utility Ur = wyor + w;0; as weighted sum of maximizing successful flows
(objective 0f) and minimizing the number of placed instances (objective o;). The two objectives
are often conflicting as maximizing successful flows may require balancing the load across
more instances. I explore this trade-off by systematically varying af; = wy =1 —w; € [0,1]
and training DeepCoord for each setting. Figure 8.10a shows the results in terms of flow
utility oy, instance utility o;, and total, weighted utility Ur. Clearly, a; affects how DeepCoord
coordinates services. As desired, higher af; leads to better flow utility. At the same time, the
agent manages to maintain high instance utility, i.e., placing few instances. Only for af; = 1, the
agent places more instances (i.e., lower instance utility) for even higher flow utility. In the given
scenario, there are only enough resources to process some but not all flows successfully (of < 1)
such that the total utility decreases with increasing ay;. Compared to the other algorithms,
DeepCoord achieves significantly better total utility for all af; values (Figure 8.10b), indicating
that it learns to navigate this trade-off well.

1.00 ; 1.0 mmm DeepCoord |
075 mmm Total utility | eepLoor
75 = Flow utilty w#s. BSP Ad.
0.50 1 Node utility 0.5 S SP
0.25 1 I o I
- -
=] =] = , JU T
~0.25 N NN N
NNAN
-0.50 -0.5 /§ ﬁ\ 2N
gg N
-0.75 1
-1.004 10 a
' 0 025 05 0.75 1 0 0.25 05 0.75 1
Few nodes « ar, — High throughput Few nodes « af, — High throughput
(a) DeepCoord’s total, flow, and node utility for (b) Algorithms’ total utility

trade-off ay ,

Figure 8.11.: DeepCoord effectively navigates trade-off a s, between utilizing fewer nodes and achieving
higher throughput. (Figure adapted from [S22]; © 2021 IEEE.)

Second, I evaluate the trade-off between maximizing successful flows and minimizing the
number of used compute nodes with Ur = Wfof + Wyoy and Nfy =Wy = 1—w, €1[0,1]. A
compute node can be turned off if no instances are placed there, saving costs and energy. Hence,
to turn off a node v and to optimize o0, DeepCoord has to learn to select actions that do not
schedule any traffic (below threshold pyyes) to any instance at v. Compared to minimizing the
number of instances (objective 0;), optimizing o0, is more challenging since DeepCoord is not
rewarded for removing a single instance as long as there are still other instances placed at the
same node. Still, Figure 8.11a shows that DeepCoord explores actions effectively and does learn
different coordination schemes depending on ay ,. With low &y, (0 or 0.25), DeepCoord drops
all flows (0y = —1) in favor of optimal node utility (0, = 1). As desired, with higher ay ,, it
learns to process more flows successfully at the cost of utilizing more nodes. Compared to the
other algorithms, its overall utility is much higher for all values of a; , (Figure 8.11b). Hence,

116

8.5. Evaluation

while a ¢, has to be chosen carefully, DeepCoord can successfully optimize both objectives and
navigate the trade-off as controlled by a .

1.00 10+
0.75 BN Total utility | = DeepCoord
' mmm Flow utility 08l w## BSP Ad.
0.50 Delay utility N SP
06t
0.25 I 1
> =2
£ 0.00] = 04f1
-} =) ?i
-0.25 1 021 f\ %
NIN K
~0.50 - IANNNWZ<0._ a2
~0.75] 4&
1.00 021
' 0.25 075 1 0 025 05 075 1
Low delay « af,d - High throughput Low delay « ar g — High throughput
(a) DeepCoord’s total, flow, and delay utility for (b) Algorithms’ total utility

trade-off af 4

Figure 8.12.: DeepCoord effectively navigates trade-off a¢ ; between lower delay (thus, better Qos) and
higher throughput. (Figure adapted from [S22]; © 2021 IEEE.)

Finally, I consider the trade-off between maximizing successful flows and minimizing average
end-to-end delay with Uy = wrof + wgoq and apy = wy =1—-wy € [0,1]. Again, o £ and oy are
often opposing objectives as processing more flows successfully may require scheduling them to
nodes farther away, i.e., with higher path and end-to-end delay. Again, Figure 8.12a shows that
DeepCoord learns different coordination schemes corresponding to a 4. As desired, higher a4
leads to better flow but worse delay utility. With decreasing ay 4, it favors shorter delays at the
cost of more dropped flows. The agents trained with a4 = 0 and a4 = 0.25 drop most flows
but process the remaining successful flows with optimal delay. Again, DeepCoord achieves
significantly better total utility for all af4 values than the other algorithms (Figure 8.12b).
Overall, DeepCoord learns to effectively optimize multiple, even competing objectives, where
the trade-off between these objectives can be controlled conveniently via weights ay;, af,, and

“f,d‘

Custom Utility Function (Soft Deadlines)

In addition to optimizing individual objectives or weighted sums of multiple objectives, Deep-
Coord also supports optimizing custom utility functions. These functions may specify any
complex relationship between available monitoring information and resulting utility. As an
example, I here consider the custom utility function defined in Section 8.3. There, the total
utility depends on the successful flows and their delay in terms of meeting QoS requirements.
The utility is high as long as flows” end-to-end delay is below a given soft deadline and then
gradually drops off until a hard deadline is reached (Figure 8.1). Unlike the scenario with hard
deadlines in Section 8.5.2, flows are not dropped automatically if they exceed their soft deadline.
Hence, when only optimizing objective o, DeepCoord would be unaware of and not adapt to
these soft deadlines.

117

8. Self-Learning Coordination

1001 —A— DeepCoord 35.04
BSP A '

o\'? 80 1 —#— BSP Ad. = 32571
@ —— SP]
5 60 —< LB 0 30.01
w 2
s w2751 :
% 401 E 3 E 3 3 : 4 = —4— DeepCoord
3] E 250t BSP T
U:'; R N A N NE— S —m— BSP Ad.

201 22257 —— SP

2001 —<+ LB
00 25 30 35 a0 45 20 25 30 35 40 45
Soft Deadline d:°f [ms] Soft Deadline d3°™ [ms]
(a) Successful flows (b) End-to-end delay

Figure 8.13.: DeepCoord self-adapts to custom utility functions, here the utility function in Figure 8.1
for soft deadlines. As a result, it learns to respect soft deadlines and leverages increasing
deadlines to improve the flow success rate. (Figure adapted from [S22]; © 2021 IEEE.)

Instead, when optimizing the custom utility function, Figure 8.13 shows that DeepCoord does
successfully learn to take these soft deadlines into account. It not only outperforms the other
algorithms in terms of successful flows (Figure 8.13a) but also adapts to ensure the average
end-to-end delay stays below the given soft deadline to maximize utility and Qos. In turn, it
exploits higher soft deadlines to process more flows successfully (15 % more with d5°ft = 45ms
compared to d%°f' = 20 ms). The other algorithms do not support QoS optimization with custom
utility functions and are unaware of the soft deadlines. Hence, they do not adapt to varying
soft deadlines and, overall, process fewer flows successfully than DeepCoord.

8.5.5. Scalability

Finally, I evaluate DeepCoord’s scalability to large-scale networks with many nodes. In addition
to Abilene (11 nodes), I consider real-world network topologies BT Europe (24 nodes), China
Telecom (42 nodes), and TiNet (53 nodes) [142], each with 4 ingress nodes and MMPP flow arrival
(as defined in Section 8.5.2).

Figure 8.14 shows DeepCoord’s learning curves, i.e., the average reward per training episode
when training DeepCoord offline. As action noise enforces exploration, the reward is much lower
during training than when testing the trained agent. Still, the rapid growth of episode reward
within the first 100 episodes indicates that DeepCoord quickly learns a good coordination
policy.

The figure also shows that more training may still increase performance significantly, e.g., the
reward for 42 nodes leaps around episodes 300 and 60o. With much more training, I expect
further leaps in performance. Especially large networks require excessive training to explore the
large action space and to find an optimal policy. The need for excessive training is not specific

118

8.5. Evaluation

-20¢1 24 Nodes
53 Nodes

11 Nodes
-100 t

Episode Reward

-120 1
42 Nodes

-140 ¢

-160 1

0 200 400 600 800 1000 1200 1400
Trainig Episodes

Figure 8.14.: Learning curves of DeepCoord when training on networks of varying sizes. (Figure adapted
from [S22]; © 2021 IEEE.)

to my approach but a well-known problem in deep learning [241]. E.g., DeepMind’s famous
AlphaGo Zero was trained over almost 5 million games [236]. Due to limited time and resources,
I had to restrict training to 1500 episodes (each with T = 20000). One option to improve training
efficiency is with distributed DRL, which I explore in the following Chapter 9.

Despite limited offline training, DeepCoord can compete with or even outperform all baseline
algorithms. Figure 8.15a compares the algorithms’ percentage of successful flows (optimizing
only objective of). As before, adapted BSP performs comparable to sP and considerably better
than the default BSP version. LB performs worse on small networks but processes an increasing
number of flows successfully with increasing network size. This is because LB balances traffic
equally among all nodes with resources, leading to lower load per node and more successful
flows for larger networks. Still, DeepCoord processes as many or even more flows successfully.
The difference is especially large for 42 nodes, where there was a particularly large leap in
performance during training (Figure 8.14). I believe that considerably more training (e.g., in a
commercial setting) could result in similar performance leaps and even better results for 24 and
53 nodes.

In addition to quality, the runtime of online coordination decisions is crucial to quickly adapt
to changes. Figure 8.15b shows the algorithms” average runtime per coordination decision on
a logarithmic scale. While offline training is slow, applying the trained DRL agent for online
inference only requires tens of milliseconds and is much faster than the (adapted) BSP heuristic.
Compared to DeepCoord, the simple SP and LB baselines are even faster but at the cost of
reduced coordination performance. Overall, DeepCoord scales well to large networks while
maintaining reasonable runtimes.

119

8. Self-Learning Coordination

100 1 102 —4— DeepCoord |
- BSP
—] —#— BSP Ad.
< 80 10" 4 sp
[2]
s @, —< LB
E 60 1 g 10 T # § r
=] =
B E 1
&S 401 —&— DeepCoord g 10
8 BSP
> / -2
2} 20 —m— BSP Ad. 10 T
—— SP
—< LB 10°1
0 . }
11 24 42 53 11 24 42 53
Num. Network Nodes Number of Network Nodes
(a) Successful flows (b) Algorithm runtime

Figure 8.15.: Even in large networks, DeepCoord processes a) more flows successfully than existing
approaches and b) maintains short inference runtimes (logarithmic scale). (Figure adapted
from [S22]; © 2021 IEEE.)

8.6. Conclusion

The proposed DRL approach, DeepCoord, goes beyond the machine learning approach of
Chapter 7, which requires integration with an existing coordination approach (e.g., from Part I).
Instead, DeepCoord is a standalone coordination approach and learns autonomous network
and service coordination entirely from interaction with the network environment. In contrast to
existing approaches using a priori knowledge for planning, it relies on realistically available,
partial, and delayed observations with uncertain future traffic and without knowledge of
network topology or service structure. It learns without human intervention or expertise and
flexibly adapts to different scenarios or optimization objectives, even supporting multiple
opposing objectives such as throughput, costs, energy, and QoS. Hence, I believe the approach is
an important step towards truly driver-less, self-learning networks and thus towards higher
efficiency, more flexibility, and improved reliability.

The following Chapter g further extends the idea of self-learning network and service coordina-
tion and proposes a distributed coordination approach using DRL. Its distributed architecture
allows more fine-grained control and even better scalability and applicability to large, real-world
networks.

120

9. Self-Learning Distributed Coordination

Conventional approaches for network and service coordination (e.g., in Part I) typically build
on rigid models and assumptions and require expert knowledge or even a priori knowledge. In
contrast, self-learning approaches using Deep Reinforcement Learning (DRL) such as DeepCoord
from Chapter 8 learn without expert or a priori knowledge and self-adapt to varying scenarios,
making these approaches more flexible and better applicable in practice. Existing self-learning
approaches are promising but still have limitations as they often only address simplified versions
of the network and service coordination problem and are typically centralized and thus may
not scale to practical, large-scale networks. To address these issues, I propose a distributed and
self-learning coordination approach using DRL. After centralized training, a distributed DRL
agent is deployed at each node in the network, making fast coordination decisions locally in
parallel with agents at other nodes. Each agent only observes its direct neighbors and does not
need global knowledge. Hence, the approach scales independently from the size of the network.
In the extensive evaluation using real-world network topologies and traffic traces, I show that
the proposed approach outperforms a fully distributed conventional heuristic from Chapter 6
as well as the centralized DRL approach from Chapter 8 (60 % higher throughput on average)
while requiring less time per online decision (1 ms).

This chapter is based on my paper [S34], which relies on concepts, code, and evaluation results
created by Haydar Qarawlus for his master’s thesis [207]. I proposed the initial topic and idea
and closely advised the thesis through written feedback and weekly discussions. Based on the
good outcomes of the thesis, we further improved the approach and extended the evaluation
as part of the RealVNF project [S20]. I led the RealVNF project, guided the improvements
and extensions, and wrote the published paper. This chapter contains verbatim copies of
this paper [S34]: Stefan Schneider, Haydar Qarawlus, and Holger Karl. “Distributed Online
Service Coordination Using Deep Reinforcement Learning.” In: IEEE International Conference on
Distributed Computing Systems (ICDCS). IEEE. 2021, © 2021 IEEE. In this chapter and throughout
my dissertation, I consistently write in the first-person singular form (“I” rather than “we”
for ease of reading. The source code corresponding to this chapter is publicly available on
GitHub [S11].

0.1. Introduction

Existing work on network and service coordination typically has some major limitations as
discussed in Section 8.1: Existing approaches mostly focus on long-/medium-term planning
based on estimated user demand for an upcoming time interval. Most existing work also
proposes conventional coordination approaches (such as in Part I), which are tailored to specific
scenarios by experts and built on rigid models and assumptions. Operational reality easily
diverges from such constructed scenarios and from estimated user demand, e.g., flows typically
arrive stochastically without following any rigid pattern or with unexpected distributions.

121

9. Self-Learning Distributed Coordination

Then, assumptions may no longer hold and the approaches could perform much worse than
anticipated or even break completely.

Hence, self-learning approaches have been proposed recently for network and service coordi-
nation. These approaches mainly use DRL or contextual bandits to learn coordination directly
from experience rather than following hand-written rules. The hope is that, in this way, they
can self-adapt to new scenarios or optimization objectives without human intervention or
expertise. Most existing DRL approaches, however, consider either complementary or simplified
subproblems of the full network and service coordination problem. As described in Chapter 3,
network and service coordination involves joint scaling, placement, scheduling, and routing.
Furthermore, most DRL approaches are centralized, where a single global DRL agent observes
and controls the entire network. Up-to-date global knowledge of fast-changing information
such as demand or resource utilization as well as fine-grained central control of individual,
rapidly arriving flows are unrealistic in practical large-scale networks.

To address these issues, I propose a self-learning approach that solves the full network and
service coordination problem in a distributed manner. The approach combines ideas from
the DeepCoord DRL approach of Chapter 8 and the fully distributed heuristics of Chapter 6.
Specifically, it deploys separate DRL agents at each node in the network, deciding coordination
individually in parallel. These agents are trained offline in a centralized fashion, leveraging
experience from all agents, and then coordinate network and services independently online in a
fast, fully distributed fashion. Each agent only observes itself and its direct neighbors and only
has local control of how incoming flows are processed and forwarded. Hence, the approach
requires neither global knowledge nor centralized control. In contrast to typical centralized
approaches, the size of observation and action spaces is invariant in the network size and only
depends on the network degree, i.e., the maximum number of neighbors per node. Since the
network degree is typically much smaller than the total number of nodes in the network [142],
the approach scales better to realistic, large-scale networks and allows fast fine-grained control
of individual flows. Furthermore, the approach generalizes to new, unseen scenarios and is also
more robust to failures than typical centralized approaches as there is no single point of failure.
Hence, the presented approach combines the flexibility and self-adaption of DRL (Chapter 8)
with scalability and fast per-flow control of distributed coordination (Chapter 6). The evaluation
shows that it consistently and significantly outperforms both the fully distributed heuristic
from Chapter 6 and the centralized DRL approach from Chapter 8. Overall, the contributions of
this chapter are:

® In Section 9.4, I formalize a Partially Observable Markov Decision Process (POMDP) and
propose a novel self-learning approach using distributed DRL agents for scalable network
and service coordination in practice.

* Section 9.5 evaluates the approach on real-world network topologies and traffic traces,
showing its adaptability, generalization capabilities, and scalability.

¢ For reproducibility, the code is publicly available online [S11].

0.2. Related Work

Existing work mostly proposes conventional optimization approaches without DRL for solving
the network and service coordination problem [166, 114, 110]. Many authors [182, 179, 28, 144]
consider offline coordination with full a priori knowledge of user demand. Related work that
does consider online coordination [85, 91, S2] focuses on scenarios with few and long flows

122

9.2. Related Work

(Case I in Section 3.1.3), assuming traffic to arrive in fixed intervals and to be known a priori
for each interval. Instead, this chapter focuses on scenarios with many, short flows (Case II),
which requires scheduling these rapidly incoming flows quickly at runtime. Blocher et al. [29]
do schedule flows dynamically at runtime but assume a given fixed placement and do not
consider routing. In contrast, this chapter proposes joint scaling, placement, scheduling, and
routing at runtime in a distributed fashion without any a priori knowledge.

In Chapter 6, I propose two algorithms for fully distributed network and service coordination at
runtime, including scaling, placement, scheduling, and routing. Similar to the fully distributed
DRL approach proposed in this chapter, these algorithms only have local observations and
control, making individual coordination decisions at each node in parallel. In contrast to the
approaches in Chapter 6, the approach here explicitly considers potential deadlines that bound
flows” maximum acceptable delay to achieve good Quality of Service (QoS). More importantly,
the algorithms of Chapter 6, as well as all other aforementioned approaches, are hand-crafted
and include built-in assumptions, which may not hold in practice. In contrast, the proposed
model-free DRL approach in this chapter does not follow a hand-crafted algorithm and has
very few built-in assumptions (e.g., about incoming traffic). Instead, it learns from experience
how to effectively deal with different traffic patterns. I evaluate and compare the proposed DRL
approach against a fully distributed conventional heuristic from Chapter 6 in Section 9.5.

Recently, DRL for self-learning coordination has been proposed [279, 199, 255, 209, 261, 265, 98,
S21]. Zhang et al. [279] focus only on placement and use tabular Q-learning, which does not
support large and continuous observations or generalization between observations, limiting
practical applicability. Pei et al. [199] rely on a simulator to test actions and select the best one
in each time step, which would be too slow for online coordination at runtime with rapidly
arriving flows—especially when done in a centralized fashion. Wang et al. [255] schedule
flows equally to all placed instances, which could lead to high end-to-end delays and bad
service quality. More similar to the approach proposed in this chapter, Quang et al. [209]
and Xiao et al. [261] dynamically control individual flows and adjust component placement
accordingly. However, these authors do not consider scaling or routing. Furthermore, they
propose centralized approaches, assuming global up-to-date knowledge and control of the
entire network. In practice, global knowledge can be achieved through monitoring but only
with some monitoring delay (e.g., 1 min in Prometheus by default [204]), making it unsuitable
for fast per-flow decisions at runtime. Such expensive centralized decisions per flow do not
scale to large networks and would be too slow for efficient online control of many rapidly
arriving, time-sensitive flows as considered here (Case II).

DeepCoord proposed in Chapter 8 as well as related approaches [265, 98] consider centralized
DRL but avoid scalability issues by installing scheduling rules at all nodes, which are then applied
to incoming flows in a distributed fashion at runtime. These rules are updated periodically
by the centralized DRL agent. Furthermore, DeepCoord only relies on realistically available,
infrequent, partial, and delayed observations. Compared to the distributed DRL approach
proposed in this chapter, these approaches still have a number of drawbacks: Xu et al. [265] only
consider traffic engineering but not scaling and placement of service components. DeepCoord
(Chapter 8) and the approach by Gu et al. [98] do not support dynamic routing but rely on
routing along predefined paths. Xu et al. and Gu et al. further require support from a hand-
written heuristic. Moreover, all three approaches optimize coarse-grained rules that are applied
to all incoming flows and do not have fine-grained control over individual flows. As shown in
the evaluation (Section 9.5), such fine-grained control is important for precise load balancing
and proper dynamic routing. The distributed DRL approach proposed in this chapter jointly
optimizes scaling, placement, scheduling, and routing, thus explicitly controlling all aspects of

123

9. Self-Learning Distributed Coordination

network and service coordination described in Section 3.2. It does not require support from a
heuristic and it controls individual flows efficiently by distributing decisions over different DRL
agents for each node.

To the best of my knowledge, this is the first distributed self-learning approach for online
network and service coordination. Compared to existing work, the approach is more powerful
as it considers dynamic scaling and placement as well as per-flow scheduling and routing and
it is more efficient due to its fully distributed architecture.

0.3. Problem Statement

I consider the problem of network and service coordination as described in Chapter 3. Similar
to DeepCoord from Chapter 8, the distributed DRL approach of this chapter does not require
explicit knowledge of the full network state and all network parameters (Section 3.1). Instead, it
self-adapts to any given scenario through partial observations and feedback from its actions.
In contrast to the centralized DeepCoord approach (Chapter 8), the fully distributed agents
here observe up-to-date local information rather than delayed global information. For example,
they observe the currently utilized resources r,(t) and r;(t) of neighboring nodes and links and
information about the currently requested component ¢f € Cs; U {@} of an incoming flow f
(detailed in Section 9.4.2). The size of these observations is bounded not by the network size
(i.e., |V] and |L|) but by the network degree A, i.e., the maximum number of neighbors in the
network.

Similar to Chapter 8, this chapter mainly focuses on scenarios with many, short flows (Case II in
Section 3.1.3) but is not strictly limited to such scenarios. These flows may have service-specific
QoS requirements ©; = {d;} in the form of hard deadlines d; that are defined relative to flow
arrival time t}“. The remaining time of a flow f from time ¢ until its deadline is denoted by
de(t) =ds, — (t— t}“) Once df(t) = 0, the deadline is reached, the flow expires and is dropped
automatically, freeing any currently blocked resources.

The goal here is to maximize the percentage of successful flows over all T time steps:

|Psucc‘
maxor = ———— € (0,1 .1
f |Fsucc| + ‘Fdrop| [] (9)

A flow f is successful after routing from ingress v}n to egress 0¥ while traversing instances of all
components of the requested service sy and completing within deadline d, . Hence, maximizing

objective of requires dynamic service scaling and placement as well as flow scheduling and
routing (Section 3.2), taking limited resources and QoS requirements into account.

9.4. Distributed DRL Approach

I propose a DRL approach based on centralized training and fully distributed inference to
coordinate network and services online, maximizing objective oy. The approach consists of
separate DRL agents deployed at each node in the network, where each agent only has local
observations and control. In Section 9.4.1, I explain how these distributed agents jointly scale

124

9.4. Distributed DRL Approach

and place services as well as schedule and route incoming flows at runtime. Section 9.4.2
formalizes the POMDP, specifying the observation and action spaces as well the reward function
for the DRL approach. Finally, the overall framework for training and inference is discussed in
Section 9.4.3.

9.4.1. Joint Scaling, Placement, Scheduling, and Routing

At each node v, a separate DRL agent controls incoming flows independently from agents
located at other nodes. Whenever a flow f arrives at a node v, the DRL agent at v needs to
decide whether to process the flow locally at an instance of requested component ¢y hosted at
v (i.e., yf,c,(t) = v) or to forward f to a neighbor v (ie., zfy(t) = v'). By setting Yf,c;(t) and
zf,(t), the agents directly control flow scheduling and routing (Section 3.2).

Scaling and placement is jointly derived from yy f(t), by setting xco(t) = 1if ys, f(t) =.
Hence, if the agent decides to process f locally at node v, this implies that an instance of ¢
is either already available at v or a new instance is automatically started. Unused instances
of a component ¢y are removed after a manually configured timeout Jc,. If idle instances of
component ¢ consume a lot of resources (i.e., r¢, (0) is large), setting a short timeout is useful
to remove unused instances quickly and avoid wasting resources. Conversely, setting a long
timeout, e.g., for components with negligible idle resource consumption, reduces overhead of
frequently terminating and restarting instances due to fluctuating demand. In future work, the
DRL approach could be extended to also dynamically control timeout &..

Figure 9.1.: Example with separate DRL agents at each node coordinating two incoming flows f, f>. (Figure
from [S34]; © 2021 IEEE.)

Figure 9.1 illustrates the overall process in an example. Here, a flow f; and, shortly after, another
flow f, arrive at ingress node v; and both request service s with C; = (cy,c2). Flow f has
egress v;? = vy and f has egress vig = vs. When f7 arrives at v; at time t1, the node still has
enough free resources to host an instance of ¢y = ¢y, such that v1’s DRL agent decides to process
f1 locally, setting xc,,0, (t1) = 1, yf, ¢, (1) = v1, and zf,, (t1) = &. When f, arrives shortly after
at time fp, v1’s resources are already fully utilized such that v1’s DRL agent decides to forward f,
to its neighbor vy, setting zy, ,, (f2) = v2. At v, the corresponding DRL agent decides to process

f2 locally, i.e., xc;,0,(t3) = 1 and y, o, (t3) = 2.

125

9. Self-Learning Distributed Coordination

In the following, f; finishes processing c; at v1, then requests the next component c, and is
forwarded to neighbor v;. At v3, the corresponding DRL agent decides to instantiate ¢, and
process fi locally. Similarly, f, is sent to process c; at v3. After processing, the DRL agent at v3
sends each flow to its egress node, where the flows depart successfully.

This example illustrates how the distributed DRL agents coordinate incoming flows individually
and in parallel to the other nodes” agents. Depending on their own resource utilization as well
as the utilization and location of their neighbors, they decide for each flow whether to process
it locally or to forward it to a suitable neighbor, setting decision variables x¢(t), yf,(t), and
zf,(t) jointly at runtime.

9.4.2. Partially Observable Markov Decision Process (POMDP)

The complete network state depends on a multitude of parameters (Section 3.1) and cannot be
fully observed by the DRL approach. Instead, each agent only has local and partial observations
that are realistically available in practice. To solve the problem using DRL, I formalize the
corresponding POMDP as tuple (O, A, P, R), consisting of observations O, actions A, typically
unknown environment dynamics P, and reward function R. In contrast to DeepCoord (Chap-
ter 8), which is called periodically and independently from flow arrival, the fully distributed
DRL agents in the approach proposed here obtain observations, take actions, and receive a
reward whenever a flow arrives at their corresponding node. I define O, A, and R accordingly
as follows.

Observations O

An agent’s observations are restricted to local information about the incoming flow f, cur-
rent node v itself, and its neighbors. Specifically, O = (Ff, R%,RX , Dy, fr Xy) consists of flow
attributes Fy, link utilization RL, node utilization RY, delays to egress D, and available
instances X,. I normalize all elements within the vectorized observations to be in range [0, 1]
or [—1,1] as detailed below. Ensuring that all observations are in a roughly similar range is
important for effective training and generalization of deep neural networks [118]. Otherwise,
the DRL agent may become “blind” to the weak signals of observations with a small range,
which are drowned out by stronger signals of other observations with much larger ranges. Next,
I define observations @ = <Ff, REL,RY, Dy f, Xyp) in more detail.

Flow Attributes Vector Fr = (fy, d) consists of two relevant flow attributes. The progress
inside the service chain of a flow f is indicated by p; € [0,1] (cf. service index in Service
Function Chaining (SFC) [210]). It starts at py = 0 when the flow arrives and progresses
towards pr = 1 with every traversed component. With respect to deadlines, the agent observes
d = ddf—(t) [0,1], which is the remaining time d(t) to the flow’s deadline normalized by
°f

deadline d;, itself (defined relative to flow arrival t}“). Hence, it starts at d; = 1 and gradually
decreases towards 0 over time.

126

9.4. Distributed DRL Approach

. . . L _ scap—ri(t)—As
Link Utilization Vector R; = <W

all outgoing links L, of node v, normalized by the maximum capacity of all outgoing links L,.
Subtracting the flow’s data rate A shifts the value to be > 0 if and only if a link can forward
the flow.

|l € Ly) € [—1,1]2¢ contains the free resources on

\f: (By,dy) Ty = 0.7
Ty, =
5 (e —r, =09—(e
U1 V3
AN
r, =1 m, =1 ry, = 0.5
AN
Ty, = —1
.\ cl
p V2

Figure 9.2.: Example observations of the DRL agent at node v; in Figure 9.1. Node v, is a dummy node
to ensure a consistent size of observations across all agents. Time f is omitted for simplicity.
(Figure adapted from [S34]; © 2021 IEEE.)

To allow combining experiences from all agents (details in Section 9.4.3), the size of the
observation and action spaces need to be identical for all agents. Hence, I define |R}| = Ag
according to network degree Ag. If a node has less than Ag neighbors, I add dummy neighbors
ve to V3 and set their link utilization to —1, indicating that they do not exist. Figure 9.2 shows
the observations of the DRL agent at v; in the example network of Figure 9.1. Here, a dummy
node v, is added to v;’s two neighbors to match the network degree Ag = 3.

cap, —r (t[x

eyt (=10 ()=

max_, cap, i

V')
e |v) € V,U{v}) €

[—1,1]4¢*! contains the free compute resources at v and its neighbors if they were to process
the incoming flow f. Hence, elements in R} are > 0 for nodes with enough free resources to
process f and < 0 for nodes with insufficient resources. This helps the agent decide whether
to process flow f locally and to which neighbor to send f next, such that f can be processed
successfully without overloading nodes. As in Section 6.4.1, 7,/ (£]x, 1 (1) =1Ayge ’ (t) ="7')

Node Utilization Similar to R, vector R = (

denotes the total resources required at node v’ at time ¢ if f were to be processed there. This
can be calculated locally, even before making the corresponding scheduling decision y(t),
based on the monitored data rate processed at v’ and knowledge of A and rc(A). Chapter 7
presents how to automatically derive function r.(A) based on real-world data. In case flow f
is already fully processed (cy = &), it does not require further resources for processing, i.e.,

rv’(t‘xcf,v/(t) =1 /\]/f,cf(t) = U/) = rv/(t)'
As before, I ensure |[RY| = Ag + 1 (including v itself) by adding observations of 7y, (t) = —1

for dummy nodes v, if necessary. Similar to Rf, the observation for all non-dummy nodes is
normalized by the maximum node capacity such that it is in [0, 1] if there are enough resources

127

9. Self-Learning Distributed Coordination

for processing the flow and in [—1,0) otherwise. Here, there is a small difference in how values
are normalized compared to R}. Values in R} are normalized by the maximum capacity of
outgoing links L, (not all links L) because flow f must necessarily be routed via one of these
outgoing links L,. In contrast, f can be processed at v and its neighbors V;, but also at any other
node in V. Hence, I normalize values in RY by the maximum capacity over all nodes V (not
just neighbors V). This normalization helps the DRL agent to identify nodes with high available
absolute resources, not just relative to the neighborhood.

de(t)—d_ , eg

G 17 € Vo) € [1,1]%¢ defines the

shortest path delays (denoted by d_, cs) from current node v to flow f’s egress via each
Iy

Delays to Egress Vector D, = (max{ —1,

neighbor v’ in relationship to the remaining time d¢(t) to f’s deadline. This information helps
the agent forward f to neighbors that are in the direction of its egress node. If the observation is
below 0 for a neighbor ¢/, there is no chance that forwarding via v’ will be successful. Assuming
a fixed network topology and link delays, the shortest paths and their path delays dv,v’,vjig can

be precomputed and accessed in constant time during runtime. Again, D, ¢ is padded with —1
to ensure length [D, ¢| = Ag.

Available Instances Binary vector X, = (xcf,vf(t)|v’ € Vo U{v}) € {-1,0,1}2c*! indicates
whether an instance of requested component ¢ is currently available at v and its neighbors based
on variable x, f’-u/<t) (Section 3.2.1). For fully processed flows (i.e., ¢y = @), the corresponding
observation x4 v (t) is always zero. Again, I pad X, with —1 to ensure length |X;| = Ag + 1.

Actions A

The DRL agents take actions whenever a flow f arrives at their node. The action space
{0,1,...,Ag} is the same for all agents depending on network degree Ag. An action a €
{0,1,.., A} by a DRL agent at node v specifies how to set xc,o(t), yf,cf(t), and zs,(t) as de-
scribed in Section 9.4.1. If a = 0, the flow is processed locally, i.e., ¥ f(t) = v. An actiona > 0
sends the flow to v’s a-th neighbor v, € V;, ie., z f,v(t) = v,. An action is only valid for a < |V,].
If a node has fewer neighbors than Ag, an action |V;| < a < Ag points to a non-existing
neighbor and is invalid. In this case, flow f is dropped and the agent receives a high penalty.
Based on the observed —1 values for non-existing dummy neighbors, agents should be aware
of which neighbors really exist and only forward flows there.

If a DRL agent selects 2 = 0 even though flow f is already fully processed (c; = 9), f
stays at the node for one time step and the agent is queried again. Doing so reduces the
remaining time d(#) to f’s deadline and incurs a small penalty. Based on this penalty and on
observation py, agents should learn to forward processed flows directly to their egress without
keeping them unnecessarily.

128

9.4. Distributed DRL Approach

Reward R

Ultimately, the DRL agents should learn a coordination scheme that processes as many flows
successfully as possible. Hence, I give a large positive reward of 410 when a flow completes.
Conversely, I penalize the agent with a reward of —10 when dropping a flow.

Successful completion of a flow requires proper coordination, taking available neighbors,
compute and link resources, link delays, and flow deadlines into account. Hence, when starting
training with a random policy, it is very unlikely that a series of random actions leads to a flow
completing successfully. Consequently, rewards of 410 will initially be very sparse, preventing
effective training.

One way to address the challenge of sparse rewards is through reward shaping [249]. To this
end, I add additional weaker reward signals that indicate whether an action seemed useful
or not—even before a flow is completed or dropped. Specifically, the DRL agents receive a
small positive reward of —0—‘(:1? whenever a flow successfully traverses an instance, where

|Cs f\ is the length of the requested service chain. This encourages the DRL agents to host
component instances and process flows locally when possible. Furthermore, I give a small
penalty of — g—lc whenever a DRL agent sends a flow along a link /. This penalty corresponds to
the link’s propagation delay normalized by the network’s diameter D (in terms of path delay).
It encourages the DRL agents to forward flows along fewer links and links with shorter delays
when possible. I give a similar penalty of *DLG when a DRL agent keeps a flow (y¢ f(t) =)

that is already fully processed.

These additional rewards help nudge the DRL agents towards a useful policy and can improve
training. Yet, it is important that these auxiliary rewards are significantly smaller than the
rewards/penalties for successful and dropped flows. Otherwise, they limit the agents’ ability to
find “creative” but successful policies. Too strong auxiliary rewards can even encourage un-
wanted behavior, e.g., if processing two flows half-way is more rewarding than fully completing
one flow. Hence, the auxiliary rewards are intentionally small compared to the 4/ — 10 rewards
for completed /dropped flows.

9.4.3. DRL Coordination Framework

As defined in Section 9.4.2, this chapter approaches network and service coordination through
local observations and actions that control incoming flows for each node. I propose a DRL
framework with offline training, combining experience from all nodes in a logically centralized
neural network as illustrated in Figure g.3a. After training converges, this single, central neural
network can make decisions for any node in the network. It distinguishes different nodes based
on different observations and takes suitable actions accordingly. Now, separate DRL agents
can be deployed at each network node, copying the neural network to each of these agents
(Figure 9.3b). This allows each agent to locally control incoming flows highly efficiently based
only on local observations. While each DRL agent has a copy of the same neural network and
thus follows the same policy, this policy is trained to distinguish flows at different nodes and
handle them correspondingly.

129

9. Self-Learning Distributed Coordination

~

&; \
\ Parallel Environments y
N Parallel Agents
%

(a) Centralized training (b) Distributed inference

EWAD)
S

Figure 9.3.: a) Centralized training procedure with multiple copies of the network environment and
the DRL agent. b) Fully distributed inference with trained DRL agents at each node. (Figure
from [S34]; © 2021 IEEE.)

Design Choices

Two natural alternatives to this approach are either centralized observations and control for all
network nodes at once or distributed training and inference using different neural networks for
each node. A centralized approach observing and controlling all nodes at once is more in line
with current related work (Section 9.2 and Chapter 8). Yet this would require a significantly
larger observation and action space, e.g., a concatenation of the observations and actions for
each node, which typically requires more training until convergence. Furthermore, centralized
inference decisions per flow would not scale to large networks with rapidly incoming flows,
where thousands of decisions may be necessary per millisecond for the network as a whole.
Besides, it would require up-to-date global knowledge, which is not realistically available,
but at best partial and delayed through monitoring (as assumed in Chapter 8). Distributed
training and inference using separate neural networks is a promising alternative approach,
yet makes training challenging. E.g., when training distributed neural networks, agents at
nodes that are seldom traversed by flows would barely be trained at all, possibly leading
to bad policies for these nodes. Hence, the proposed centralized training with distributed
inference tries to combine the benefits of both approaches, e.g., by leveraging experience from
all agents, providing more data for effective training. To support continuous online training
during inference, DRL agents could update their neural network locally and then synchronize
the gradient updates with all other nodes (cf. federated learning [163]). Lest online inference is
blocked, training and sharing of updates should happen asynchronously.

However, the approach also comes with the challenge of properly designing the POMDP such
that the trained neural network can effectively generalize between similar situations but still
distinguish semantically different situations. For example, to keep the action space small,
action i means selecting neighbor i, not necessarily node i. Hence, the same action i can lead to
very different results when executed by DRL agents at different nodes. To help the DRL agents
distinguish between different neighbors and selecting a suitable one, the observations include
all relevant information about neighbors’ resources, available instances, and distance to the

130

9.4. Distributed DRL Approach

egress node (in terms of shortest path delay). This should help the DRL agents learn to select
neighbors with sufficient resources and towards the egress node—independent from the exact
node IDs and thus generalizing across DRL agents at different nodes.

Algorithm

For training the DRL agents, I leverage the Actor-Critic using Kronecker-factored Trust Region
(ACKTR) algorithm [258]. ACKTR is an extension to the well-known Asynchronous Advantage
Actor-Critic (A3C) [180], which leverages multiple parallel environment copies during training
for more diverse training data. Similar to Trust Region Policy Optimization (TRPO) [227] and
Proximal Policy Optimization (PPO) [228], ACKTR ensures that the learned policy is updated
gradually during training, avoiding abrupt and potentially destructive changes in the learned
behavior. In contrast to Deep Deterministic Policy Gradient (DDPG) [155] used for continuous
actions in Chapter 8, ACKTR is better suited for discrete actions required here.

Algorithm 7 DRL With Centralized Training and Fully Distributed Inference

1: Initialize 7tg, Vi, b > Centralized Training
2: | < number of parallel training environments

3: for | environments in parallel do

4: while t < T do

5: if flow f arrives at node v then
6: ot, 1+ < adapter.process(f,v, Vy, Ly, G)
add

7: b — (0¢—1,8¢-1,71,0¢)

8: ay <— 7'[9(0,3)

9: Xepo(t),Y5,es(t), 2f0(t) 4 adapter.process(a;)
10: if b is full then
11 Train V,, using temporal difference updates [180]
12: Train 719 maximizing E[Y; V' (0444, a¢4i)]
13: Select best agent (779, Vi) > Distributed Inference

14: Deploy a copy 7j of 7y at each node v € V
15: while t < T do

16: if flow f arrives at node v then

17: ot, 1t < adapter.process(f,v, V,, Ly, G)

18: ay < 115(0¢)

19: Xepo(t), Yre; (1), 250(t) < adapter.process(a;)

Algorithm 7 shows the high-level algorithm for centralized offline training (lines 1—-12) and then
for distributed online inference (lines 13-19). ACKTR trains two neural networks for the actor 7ty
and the critic Vj using mini-batches b. The two neural networks are initialized randomly and
trained over [parallel copies of the network environment (lines 1-3). Clearly, I = 1 if the
network environment cannot be duplicated. Whenever a flow arrives at a node (lines 5-9), the
DRL agent obtains current observation o; and previous reward r; from the network through an
adapter. It adds the experience to mini-batch b and selects the next action by passing o; to its

131

9. Self-Learning Distributed Coordination

actor 7ry. Based on selected action 4;, the corresponding coordination decisions are taken as
described in Sections 9.4.1 and 9.4.2.

Once mini-batch b is full, i.e., contains a predefined number of experiences, critic and actor are
trained (lines 10-12). Critic V} estimates the long-term value Vi (0) of observing o and following
the current policy. It is trained using bootstrapping and temporal difference as detailed in [258],
which is a standard technique for reinforcement learning [242]. The value estimate Vj(0) is
necessary to calculate the advantage, i.e., the relative value of each action a after observing o,
which is, in turn, needed to train the actor 7rg. The actor is trained to maximize the long-term
return, i.e., the discounted (by) sum of future rewards, using the natural gradient method [258].
This training procedure is repeated for a configurable number of training episodes until the
agent converges.

As the random training seed can significantly impact convergence [108], I train multiple agents
(in parallel) using k different random seeds. After training, I automatically select the best agent
with the highest reward for online inference (line 13). The neural network of this agent is copied
to each network node to facilitate fast, distributed inference by a local DRL agent at each node
(lines 14-19). While offline training can be time-intensive, depending on the number of training
episodes, online inference is very fast [107]. With a fixed number of hidden units, time and
space complexity for inference is in O(Ag), i.e., linear in the network degree.

Implementation and Target Deployment

Figure 9.4 illustrates the implemented prototype of the DRL approach, which is built on
Tensorflow [4] and the stable-baselines framework [112] using Python. The source code is
publicly available on GitHub [S11]. As light-weight network simulator, I used coord-sim [S26].
Similar to DeepCoord (Section 8.4.3), each DRL agent here also interacts with the network
through adapters, using the OpenAl Gym interface [32]. These adapters interface the network
environment to retrieve relevant observations (e.g., from monitoring data), calculate the reward
during training, and apply the selected actions. In a possible Network Function Virtualization
(NFV) target deployment [110], the DRL agents could be deployed with and interface a distributed
Management and Orchestration (MANO) [215] for Virtual Network Function (VNF) orchestration
and traffic steering.

Critic
TR
Y

-
. Action-

> % adapter
< /

Network)

Observation-
DRL Agent adapter)

AN N\

Figure 9.4.: Implementation consisting of the DRL agent interacting with the network through adapters.
(Figure adapted from [S34]; © 2021 IEEE.)

132

9.5. Evaluation

0.5. Evaluation

I evaluate the proposed fully distributed DRL approach and compare its performance against
state-of-the-art approaches in a variety of different scenarios. In Section 9.5.2, I evaluate how
well the DRL approach adapts to varying ingress nodes and traffic patterns, comparing the
percentage of successful flows (as defined in Section 9.3) over T = 20000 time steps. Similarly,
I evaluate its adaptability to varying flow deadlines in Section 9.5.3, just by retraining the
DRL agent for each scenario but without changing any hyperparameters or making manual
adjustments. In Section 9.5.4, I investigate how well the DRL approach generalizes to previously
unseen scenarios without any retraining. Finally, Section 9.5.5 evaluates the scalability of the
approach on large real-world network topologies.

9.5.1. Evaluation Setup

Base Scenario

I consider different variations of a base scenario using real-world network topology Abi-
lene [142], which connects 11 cities in the United States. In Section 9.5.5, I also consider
larger real-world topologies to evaluate scalability. Compute resources are assigned to nodes
uniformly at random between 0 and 2, link capacities between 1 and 5, and link delay is
derived from the distance between connected nodes. I consider a video streaming service s
with Cs = (cpw, CIDS, Cyideo) and deadline ds = 100 ms. While I successfully tested the approach
with multiple services, this evaluation focuses on a single service for simplicity. All components
¢ € Cs have a processing delay of d. = 5ms and require resources linear to their load. Flows
requesting s have unit data rate (A = 1) and length (6y = 1), but I consider scenarios with
increasingly complex flow arrival patterns (Section 9.5.2) and varying deadlines (Section 9.5.3).
I consider between 1 and 5 ingress nodes (v1-v5) and a single egress vg.

DRL Hyperparameters

I use the following hyperparameter settings for the DRL approach:

* Fully connected neural networks for both actor and critic. Each neural network is config-

ured with two hidden layers, each with 64 hidden units and tanh activation [126], trained

with the RMSprop optimizer [217].

Discount factor 7 = 0.99.

Initial learning rate & = 0.25.

Batch size |b| = 80.

k = 10 training seeds and ! = 4 parallel training environments (Section 9.4.3).

ACKTR-specific parameters: Entropy loss 0.01, loss on Vj 0.25, and Fisher coefficient 1.0,

max. gradient 0.5, Kullback-Leibler clipping 0.001.

¢ Timeout and removal of unused instances after J = 100ms for all components ¢ € C
(Section 9.4.1).

I selected these hyperparameter settings based on the ACKTR default settings [112] and manual
tuning to achieve good performance across scenarios. Tuning hyperparameters automatically

133

9. Self-Learning Distributed Coordination

for each scenario is slow and resource-intensive but could potentially further improve perfor-
mance.

Compared Algorithms

I compare the proposed fully distributed DRL approach against two coordination approaches
from previous chapters, where the code is publicly available, and against a simple greedy
baseline:

e DeepCoord: The centralized DRL approach from Chapter 8, which uses and periodically
updates scheduling rules at all nodes that are applied to incoming flows at runtime. It
handles partial and delayed observations of the global network state, which are available
via periodic monitoring.

* Greedy Coordination with Adaptive Shortest Paths (GCASP): The fully distributed heuristic
algorithm from Chapter 6. In both GCASP and the proposed approach in this chapter, each
node observes and controls incoming flows locally.

o Shortest Path Coordination Approach (sP): A simple greedy baseline, which tries to process
all flows along the shortest path from ingress to egress.

Execution & Figures

All experiments were executed on machines with an Intel Xeon W-2145 CPU and 128 GB RAM.
Figures show the mean and 95 % confidence interval over 30 random seeds.

9.5.2. Varying Traffic Patterns

I evaluate the proposed distributed DRL approach on the base scenario (Section 9.5.1) with
varying flow arrival patterns and an increasing number of ingress nodes (v1—vs) and thus
increasing load. The simplest pattern I consider is fixed flow arrival with flows arriving every
10 time steps at each ingress node. Figure 9.5a shows the corresponding percentage of successful
flows, which naturally decreases with increasing load and limited node and link capacities.
While all approaches process almost all flows successfully with one ingress node, only the self-
learning DRL approaches achieve around 100 % successful flows for up to three ingress nodes.
For four and five ingress nodes, the proposed distributed DRL approach outperforms all other
algorithms and successfully processes up to 35 % more flows than the centralized DeepCoord
approach. While DeepCoord relies on shortest path routing, the distributed DRL approach in this
chapter explicitly optimizes routing jointly with scaling, placement, and scheduling. In doing
so, it takes link capacities into account and balances load across different paths to minimize
dropped flows. The simple sP baseline relies on sufficient resources along the shortest path
and thus easily drops flows. Ingress nodes v1-v3 are co-located in the given network such that
their shortest paths to the egress overlap and compete for shared resources. Ingress v4 and vs
are farther away such that their shortest paths do not overlap and, instead, allow SP to utilize
more resources for more successful flows. Similar to SP, the fully distributed heuristic, GCASP,
favors processing flows along the shortest paths but dynamically reroutes flows when necessary,
avoiding bottlenecks and searching for compute resources.

134

9.5. Evaluation

100 1 100 t F
x 80 = 801 i
[[

5 5
L 60 L 601]
> >
@ 7
§ 40 § 40 + I
S —&— Dist. DRL S —&— Dist. DRL /"“
n 2] DeepCoord 2 201 DeepCoord |
—m— GCASP —#— GCASP
—— SP —— SP
ol + + " ; oL + + + +
1 2 3 4 5 1 2 3 4 5
Number of Ingress Nodes Number of Ingress Nodes
(a) Fixed arrival (b) Poisson arrival

Figure 9.5.: Percentage of successful flows for an increasing number of ingress nodes, i.e., increasing load,
and increasingly realistic traffic patterns (here, fixed and Poisson flow arrival; extended in
Figure 9.6). Compared to other approaches, the distributed DRL approach processes most flows
successfully. (Figure adapted from [S34]; © 2021 IEEE.)

Next, I consider stochastic flow arrival following a Poisson process with exponentially distributed
inter-arrival times (mean 10 time steps). Figure 9.5b shows the corresponding results. Here,
DeepCoord performs worse because its centralized observations are always slightly outdated—
as they would be for any centralized approach in practice! Hence, it cannot effectively react to
small bursts where multiple flows arrive directly after another. Instead, the same scheduling
rules are applied to all incoming flows, which easily leads to dropped flows when considering
stochastic flow arrival. In contrast, the fully distributed architecture based on local observations
and control of both the proposed distributed DRL approach and GCASP lets them control
individual flows quickly at runtime. This allows them to react to short bursts, distributing
individual flows among available resources. Still, the distributed DRL clearly and consistently
outperforms all other algorithms and is 37 % better than GCASP on average.

Figure 9.6a shows very similar results for yet more realistic flow arrival following a Markov-
Modulated Poisson Process (MMPP) [80]. The corresponding two-state Markov process randomly
switches between flow arrival with mean inter-arrival time 12 and 8 (50 % higher rate) every
100 time steps with 5% probability. The distributed DRL approach successfully adapts to this
traffic pattern and outperforms all other approaches (GCASP by 39 % on average).

Finally, Figure 9.6b shows the results for flows following real-world traffic traces that are publicly
available for the Abilene network [194]. Here, DeepCoord and GCASP lead to comparable results.
Again, the distributed DRL is considerably better and even increases its lead over both approaches
with 60 % higher success rates on average.

135

9. Self-Learning Distributed Coordination

1001 100 ¢ —— Dist. DRL
DeepCoord
< 807 < 80% —m— GCASP
X Ea —— SP
[[
s 5
i 60 1 i 60 1
> >
® ®
@ 401 @ 401
Q Q
S —&— Dist. DRL /\" S
n DeepCoord 2
07 _a Gcasp 207 |
—— SP
0 + + + 4 04~ 4 4 4 4
1 2 3 4 5 1 2 3 4 5
Number of Ingress Nodes Number of Ingress Nodes
(a) MMPP arrival (b) Real-world traffic trace

Figure 9.6.: Percentage of successful flows, extending Figure 9.5 with even more realistic traffic patterns
(MMPP and real-world trace). Again, compared to other approaches, the distributed DRL
approach processes most flows successfully. (Figure adapted from [S34]; © 2021 IEEE.)

9.5.3. Varying Deadlines

I now consider the base scenario (Section 9.5.1) with fixed ingress nodes (v1, v2), Poisson flow
arrival and instead systematically vary the deadline for service s (ds € {20, 30,40, 50} ms).
Figure 9.7 shows the resulting percentage of successful flows and corresponding average end-to-
end delay of completed flows. With deadline ds = 20 ms, all flows are dropped since flows need
more than 20 ms to complete, even in the best case where flows are processed along the shortest
paths. Indeed, the SP heuristic attempts to process all flows along the shortest paths, leading to a
fixed average end-to-end delay of 21 ms for deadlines ds = 30 ms and above. Further increasing
the deadline does not increase the percentage of successful flows for SP. In contrast, the other
algorithms exploit increasing deadlines and then also use longer paths to balance load. Overall,
the proposed distributed DRL approach balances the load effectively, taking the given deadlines
into account and processing more flows successfully than any other algorithm (21 % more than
GCASP on average).

9.5.4. Generalization to Unseen Scenarios

In the previous sections, I evaluate how well the distributed DRL approach adapts to changing
scenarios (traffic load, traffic patterns, deadlines) just by retraining but without human inter-
action. Here, I go one step further and investigate how well the trained DRL agent generalizes
to previously unseen scenarios without any retraining. In practice, it is important that the DRL
agent continues to coordinate services reasonably even if the scenario suddenly changes. A
new DRL agent may be retrained periodically (or even continuously) to optimize for the current
scenario. The frequency of periodic retraining depends on the available training resources
and on how frequently the scenario changes, e.g., in terms of flows’ ingress nodes or arrival

136

9.5. Evaluation

100 1
— 30T
£
g 80 1 % 251
. o
0]
‘_% 60 1 0 207
= 2
= |
E 55_, 15
o 4071 >
§ —A— Dist. DRL 5101 —— Dist. DRL
(2} -~ DeepCoord o DeepCoord
—m— GCASP z 97 —m— GCASP
—— SP ol —— SP
20 30 40 50 20 30 40 50
Deadline ds [ms] Deadline ds [ms]
(a) Successful flows (b) Average end-to-end delay

Figure 9.7.: Percentage of successful flows and average end-to-end delay for varying deadlines. The
distributed DRL approach adapts to the given deadlines, outperforming the other approaches.
(Figure adapted from [S34]; © 2021 IEEE.)

pattern. Either way, the incumbent DRL agent still has to coordinate decently until the new,
retrained agent converges. To facilitate generalization, I designed the observation space to
include generally available and useful information and normalized all values to be in a similar
range (Section 9.4.2).

Here, I explore generalization to previously unseen traffic patterns with two ingress nodes in
the base scenario (Section 9.5.1). To this end, I train the distributed DRL approach on fixed flow
arrival and test it without retraining on unseen real-world traces. Similarly, I test generalization
of the DRL agent trained on Poisson and MMPP traffic. Figure 9.8a shows the percentage of
successful flows when generalizing these different DRL agents to unseen trace-driven traffic. For
comparison, the figure also shows the success ratio of DeepCoord trained and tested on these
traces and of the other algorithms. For the proposed distributed DRL approach, the success rates
of the generalizing DRL agents (“Gen.” in Figure 9.8a) are very close to the performance of the
retrained agent (“Retr.”) and still clearly outperform the other algorithms. This indicates that
the proposed distributed DRL generalizes well to unseen traffic patterns.

Next, I investigate generalization to unseen network loads by training the distributed DRL
approach on the base scenario with two ingress nodes (and Poisson traffic) and testing it with
1-5 ingress nodes, representing increasing load. Figure 9.8b shows the resulting successful flows
in comparison with a DRL agent that is retrained for each scenario and with the other algorithms.
Again, the generalizing DRL agent (“Gen.”) processes almost as many flows successfully as the
DRL agent that is retrained for each scenario (“Retr.”) and still clearly outperforms all other
algorithms.

137

9. Self-Learning Distributed Coordination

100 1 1 100 +
— 801 < 8071
X e
—_ [2]
» 2
= o L
E 60 1 T 60
S mmm Dist. DRL (Retr.) % \ ,
@ 4ol == Dist. DRL (Gen., Fixed) ® 40} —A— Dist. DRL (Retr.)
8 Ot zezs Dist. DRL (Gen., Poisson) o —<— Dist. DRL (Gen.)
3 mwu Dist. DRL (Gen., MMPP) n 204 —%— DeepCoord
204 4 DeepCoord (Retr.) s | —m— GCASP
aw GCASP }4 —— SP
i ia) L/ L T A
Algorithms Number of Ingress Nodes
(a) Unseen traffic patterns (b) Unseen network load

Figure 9.8.: The distributed DRL approach generalizes to scenarios with traffic patterns and network load
that were not previously seen during training. (Figure adapted from [S34]; © 2021 IEEE.)

Table g.1.: Real-world network topologies [142]
Network G Nodes |V| Links |[L| Degree (Min./Max. Ag/Avg.)

Abilene 11 14 2/3/ 255
BT Europe 24 37 1/ 13/ 3.08
China Telecom 42 66 1/ 20/ 3.14
Interroute 110 158 1/7/ 287

9.5.5. Scalability

Finally, I evaluate the scalability of the distributed DRL approach on large real-world network
topologies. Specifically, I consider the BT Europe, China Telecom, and Interroute networks
in addition to Abilene [142] (Table 9.1). Particularly the China Telecom network is highly
skewed in terms of node degree, which influences the size of the observation and action spaces
(Section 9.4.2). As before, I consider Poisson traffic at two ingress nodes (with node IDs v; and
V), one egress (vg) and randomly uniform node capacities (between 0 and 2) and link capacities
(between 1 and 5).

Figure 9.9a shows the resulting percentage of successful flows on these networks. Despite
the large size and node degree skewness of these networks, the distributed DRL approach
achieves almost perfect results with close to 100 % successful flows. In the BT Europe network,
link capacities between ingress and egress are scarce leading to more dropped flows for all
algorithms. sP fails completely on BT Europe (24 nodes) and Interroute (110 nodes) since there
are insufficient resources on the shortest paths. The distributed DRL approach outperforms
DeepCoord by 31 % and GCASP by 42 % on average. At the same time, Figure 9.9b (logarithmic
scale) shows that the inference time of the distributed DRL approach is on the order of 1 ms. In

138

9.6. Conclusion

particular, it is magnitudes faster than the central DeepCoord approach and, unlike DeepCoord,
invariant in the network size.

100 1 mmm Dist. DRL
; s , || DeepCoord
— 1 10 W GCASP
1 R A 1Y
eV I E
S eot AN ¢ \ 1
T g g i' f © 10
STIN 1 Iy | ¢
ol Pl c
8 a0t NiN5 NA N
S e b ne ’H! ’H 1o
» 50| 74 DeepCoord 'i' '.
AW GCASP ’E,‘ ii
‘vA”SP ‘ % ~ -1 3
0 24 42 10 ° 11 24 42 110
Number of Nodes Number of Nodes
(a) Successful flows (b) Inference runtime

Figure 9.9.: Percentage of successful flows and inference runtime (logarithmic scale) with increasing
network size. The distributed DRL approach scales well to large networks resulting in high
success rates yet short runtime. (Figure adapted from [S34]; © 2021 IEEE.)

9.6. Conclusion

The presented distributed DRL approach combines ideas and strengths from Chapters 6 and 8:
Similar to Chapter 8, the self-learning coordination approach using DRL self-adapts to varying
scenarios and requires neither expert knowledge nor human intervention. As such, it is more
flexible and better applicable in practice than conventional coordination approaches (Part I).
Inspired by the fully distributed heuristics in Chapter 6, the approach combines centralized
training with fully distributed inference. This allows fast, fine-grained, per-flow control (1 ms
per decision), relying only on local observations and scaling to large real-world networks. As a
result, the evaluation shows that the presented distributed DRL approach is more flexible, better
scalable, and generally more successful than existing solutions. Overall, this makes it a better
approach for autonomous network and service coordination in practice, particularly in large
networks with many, short flows.

The following Chapter 10 explores how self-learning coordination using DRL can be extended
and applied to wireless mobile networks. In comparison to wired networks, considered so
far, there are similarities (e.g., competition for limited resources) but also new challenges in
such wireless scenarios (e.g., user mobility). In these scenarios, Chapter 10 further investigates
benefits and drawbacks of centralized vs. distributed DRL approaches.

139

10. Self-Learning Coordination for Mobile
Networks

In the chapters so far, I consider network and service coordination in wired networks. In this
chapter, I focus on coordination in wireless mobile networks where multiple moving users
compete for limited radio resources. In such mobile networks, macrodiversity is a key technique
to increase the capacity. Macrodiversity can be realized using Coordinated Multipoint (CoMP),
simultaneously connecting users to multiple overlapping cells. Selecting which users to serve by
how many and which cells is NP-hard but needs to happen continuously, in real time as users
move and channel state changes. Existing approaches often require strict assumptions about
or perfect knowledge of the underlying radio system, its resource allocation scheme, or user
movements, none of which is readily available in practice. Instead, I propose three novel self-
learning and self-adapting approaches using model-free Deep Reinforcement Learning (DRL):
DeepCoMP, DD-CoMP, and D3-CoMP. DeepCoMP leverages central observations and control of
all users to select cells almost optimally. DD-CoMP and D3-CoMP use multi-agent DRL, which
allows distributed, robust, and highly scalable coordination. All three approaches learn from
experience and self-adapt to varying scenarios, reaching 2x higher Quality of Experience (QoE)
than other approaches. They have very few built-in assumptions and do not need prior system
knowledge, making them more robust to change and better applicable in practice than existing
approaches.

This chapter is based on my paper [S19]. I proposed the idea and concepts, discussed them with
project partners, developed and evaluated all prototypes, and wrote the paper. This chapter
contains verbatim copies of this paper [S19]: Stefan Schneider et al. “DeepCoMP: Coordinated
Multipoint Using Multi-Agent Deep Reinforcement Learning.” In: IEEE Transactions on Network
and Service Management (TNSM) (2022). @ Under Review %& Invited Talk at Ray Summit 2021
In this chapter and throughout my dissertation, I consistently write in the first-person singular
form (“I” rather than “we”) for ease of reading. The source code corresponding to this chapter
is publicly available on GitHub [S13].

10.1. Introduction

Autonomous coordination is not just relevant for wired networks, discussed in previous
chapters, but also has real-world use cases in wireless mobile networks (Section 2.3). Modern
cellular networks coordinate resources across multiple terminals, base stations, cells, and access
network entities. An example is CoMP, a kind of cooperative Multiple Input and Multiple Output
Radio (MIMO) that leverages macrodiversity by allowing User Equipment (UE) to connect to
and receive data from multiple cells simultaneously. CoMP was introduced in 3GPP Long-Term
Evolution (LTE) Release 11 [1] but will play an even more important role in 5G and 6G with
many small and partially overlapping cells [69].

141

10. Self-Learning Coordination for Mobile Networks

As UEs move around, their channel state continuously changes due to path loss, shadowing,
reflections, etc. Especially UEs at the cell edge experience strong path loss and benefit from
connecting to multiple cells. At the same time, connections must be balanced across different
cells as all UEs served by a cell compete for limited resources, e.g., Physical Resource Blocks (PRBs)
in LTE. With more UEs connected to a cell, its available PRBs per UE decrease. Hence, a UE may
connect to more cells to increase its effective data rate but thereby increases competition at these
additional cells, possibly reducing the available PRBs and consequently the data rate of other
connected UEs. To navigate this trade-off and adapt to UE movement, changing load and channel
state, it is crucial to dynamically select how many and which cells should serve which UEs.

I focus on dynamic multi-cell selection in downlink CoMP with joint transmission and coor-
dinated scheduling [1]. Instead of maximizing mere data rate, my goal is to also support
maximizing QoE for all UEs. QoE depends on the considered scenario and may, for example,
require reaching a certain data rate threshold or show diminishing returns with increasing
data rate [77, 134]. Multi-cell selection is significantly more complex than single-cell selection
and the resulting problem is NP-hard and cannot be reasonably approximated [15]. Despite
this complexity, it must happen quickly online as user movement affects channel state and
achievable data rates.

Existing approaches for multi-cell selection typically use heuristic algorithms or solve Mixed-
Integer Linear Programs (MILPs) (Section 10.2). Often, these approaches build on rigid models or
rely on perfect knowledge of the underlying system, including radio model, resource allocation
scheme (i.e., intra-cell allocation of PRBs to connected UEs), or even user movement [15, 253, 169].
Such detailed knowledge may only be approximated or even be completely unavailable in prac-
tice (e.g., vendor-specific, unknown PRB allocation), limiting applicability of these approaches.
Simpler approaches based on channel measurements and simple rules, e.g., [169, 27], may
require different manual configurations for different scenarios and often lead to suboptimal
results (Section 10.7).

Instead, I propose three novel self-learning and self-adaptive approaches, DeepCoMP, DD-CoMP,
and D3-CoMP, using model-free DRL. DRL excels at sequential decisions to optimize long-term
rewards [242] and is thus particularly useful here, where I want to optimize UEs” long-term
QoE over multiple sequential cell assignments. Moreover, the proposed model-free approaches
require very few built-in assumptions and learn from experience of previous actions. They do
not need explicit and detailed system information but adapt to scenarios with varying and
even heterogeneous resource allocation schemes and cell density. Unlike existing work [39, 270,
281], they support multiple moving UEs and autonomously adapt to varying UE numbers and
movement. The approaches can continuously adapt to ongoing changes in the scenario through
online transfer learning. Similarly, they support transfer learning for fine-tuning pretrained
models to new, unseen situations without requiring expensive retraining from scratch (cf.
Google AutoML [246]). Overall, the DRL approaches are not explicitly aware of the underlying
wireless system details, which they abstract away, and instead self-adapt to any given scenario
through indirect feedback.

In more detail, DeepCoMP is a centralized DRL approach that jointly coordinates all UEs. By
central observation and control, DeepCoMP achieves close-to-optimal solutions but requires
long training for large scenarios, depending on the number of active UEs. To address scenarios
without global observations or with many UEs, I propose two variants: DD-CoMP and D3-CoMP.
Both are multi-agent DRL approaches that observe and control UEs individually, in a distributed
fashion. DD-CoMP trains a single neural network that is later replicated for distributed inference.
D3-CoMP distributedly trains separate neural networks. While the proposed DRL approaches

142

10.2. Related Work

learn without human intervention, designing the underlying Partially Observable Markov
Decision Process (POMDP) is known to be challenging for practical problems [242, 11, 63], which
I solved by applying domain knowledge to the POMDP design. For example, I carefully design
DD-CoMP’s and D3-CoMP’s observation and action spaces to be invariant in the number of
UEs, allowing fast training even in large scenarios. For the observations and reward of each
agent, I also take locally available information of surrounding UEs into account to encourage
cooperative behavior, which is an open challenge in multi-agent DRL [274, 101]. Overall, the
contributions of this chapter are:

¢ Section 10.4 proposes DeepCoMP as a centralized DRL approach, jointly selecting multiple
cells for all UEs.

¢ Section 10.5 proposes DD-CoMP and D3-CoMP as distributed multi-agent DRL approaches
that coordinate UEs individually and converge more quickly.

e Section 10.6 discusses architecture and options for practical deployment of DeepCoMP,
DD-CoMP, and D3-CoMP.

* In Section 10.7, I evaluate adaptability, robustness, and scalability of the three DRL
approaches and show that they consistently and significantly outperform existing ap-
proaches (2x higher QoE).

¢ All code is publicly available to encourage reproduction and reuse [S13].

10.2. Related Work

I first discuss related work proposing conventional approaches such as heuristic algorithms or
MILPs in Section 10.2.1. I then compare related self-learning DRL approaches in Section 10.2.2.

10.2.1. Conventional Approaches Without DRL

Xenakis et al. [259] and Giust et al. [92] survey approaches for mobility management and
dynamic cell selection, which are often addressed together with problems like resource allocation
or power control. While many authors consider selection of a single cell [183, 167, 247], I focus
on approaches that select multiple serving cells for CoMP. Qamar et al. [206] review different
CoMP modes and survey corresponding literature. One of their identified open research issues is
fairness in CoMP, which I encourage by optimizing a logarithmic utility function (representing
QoE) [135]. I focus on CoMP joint transmission (CoMP-]JT) with coordinated scheduling (CoMP-CS)
but expect the proposed approaches to also learn to effectively select cells for other CoMP modes,
e.g., CoMP coordinated beamforming (CoMP-CB), if trained in a corresponding environment.

Liang et al. [154] propose a heuristic algorithm selecting a fixed number of cells for CoMP-
CB. For their heuristic, they assume knowledge of each cell’s resource allocation scheme and
model UE requirements in terms of fixed amounts of radio resources. In contrast, the DRL
approaches proposed in this chapter are agnostic and unaware of cells’ resource allocation and
can adapt to various, even heterogeneous resource allocation schemes. My approaches optimize
a generic utility function, which supports UEs with fixed resource requirements but also allows
maximizing UEs’ QoE, e.g., with diminishing returns for increasing data rate. Finally, Liang et al.
always select exactly three cells for CoMP-CB, whereas my approaches dynamically vary the
number of selected cells according to the current situation.

143

10. Self-Learning Coordination for Mobile Networks

Marsch and Fettweis [169] statically cluster cells into fixed groups of given size, optimizing
CoMP for a priori known UE positions. Vijayarani and Nithyanandan [253] dynamically optimize
the number of serving cells for each UE without selecting the cells as such, but evaluating the
expected throughput for all possible numbers of cooperating cells. All these examples require
detailed knowledge of the underlying system and environment dynamics (e.g., UE positions,
data rates, resource allocation). Similarly, using such detailed knowledge, Nigam et al. [190]
analyze UE coverage for a given set of selected cells.

In contrast, I do neither assume detailed system knowledge or a priori knowledge of UE
positions nor given and fixed group sizes of cooperating cells. The proposed DRL approaches,
without such knowledge, dynamically decide both how many and which cells to select and
consistently outperform algorithms with a fixed number of cells (Section 10.7).

Similar to the approaches proposed here, Amzallag et al. [15] optimize how many and which
cells to select for CoMP and also consider fairness. They use an offline approach that requires
a priori knowledge of UEs, cells, and system details over all time steps. You and Yuan [270]
also dynamically select multiple cells for CoMP and additionally optimize resource allocation.
While their problem is very similar to the one in this chapter, their approach is not. Unlike their
conventional approach, the DRL approaches presented here neither require detailed, possibly
unavailable system knowledge nor are they tied to any specific resource allocation scheme.

Beylerian and Ohtsuki [27] propose a simpler, rule-based approach for multi-cell selection
where users connect to all cells above a Signal-to-Interference-and-Noise Ratio (SINR) threshold.
As I show in Section 10.7, the threshold parameter strongly influences performance and the
best value varies between scenarios, again requiring human expertise for proper configuration.
In contrast, the proposed DRL approaches adapt to different and even heterogeneous schemes
without explicit knowledge of these schemes through self-learning and consistently outperform
this approach.

10.2.2. Self-Learning DRL Approaches

Self-learning approaches, particularly reinforcement learning [162], have become popular
as they can be applied without detailed system knowledge and should adapt to different
scenarios. Nasir and Guo [186] propose multi-agent DRL for dynamic power control. Their
approach is comparable to DD-CoMP (Section 10.5) as it also relies on local observations to
make distributed decisions after centralized training. I also propose D3-CoMP, which supports
distributed training. They assume each UE to be connected to a single fixed cell and then control
transmission power. I do not consider power control but focus on cell selection. The approaches
are hence complementary. Similarly, Ozturk et al. [195] use supervised learning to predict UE
movement, which could be combined with my approaches to focus training on expected UE
positions and movement. Ayala-Romero et al. [19] jointly allocate radio and compute resources
using autoencoders and DRL without requiring a priori system knowledge but adapting to
different and even heterogeneous systems. Their approach could be combined with mine for
self-adaptive multi-cell selection and resource allocation.

More related to the problem in this chapter, Chen et al. [39] use DRL to select base stations for
Multi-Access Edge Computing (MEC) but only consider a single UE and connections to a single
cell. Elsayed et al. [66] use tabular Q-learning for cell selection and interference mitigation
in 5G by connecting UEs to a single cell, ignoring CoMP. Tabular Q-learning does not scale
to large or continuous observations such that their approach is limited to very small and

144

10.3. Problem Statement

simple threshold-based observations, possibly leading to suboptimal results and restricting
applicability to small scenarios. Niyato and Hossain [191] dynamically select a single network
in HetNets (comparable to single-cell selection), rely on tabular Q-learning, and do not consider
user mobility.

The work by Zhou et al. [281] is most related to this chapter. They also consider self-learning
approaches for dynamic cell selection with UEs moving across many small, partially overlapping
cells. Zhou et al. address the non-stationary nature of the problem by proposing a piece-wise
stationary approach using bandits for regret minimization. To this end, they assume that
UEs only move abruptly for short durations and otherwise stand still. In contrast, I support
constantly moving UEs, making a piecewise stationary approach inapplicable. My proposed on-
policy DRL approaches can learn continuously online and adjust to changes in the environment
(unlike typical off-policy approaches [263]). Moreover, the authors focus on a single UE, only
consider connections to one cell at a time, and maximize throughput directly. I support multiple
moving UEs and simultaneous connections using CoMP. My proposed approaches support not
only optimizing throughput but focus on deriving and optimizing UEs” QoE.

In general, I go beyond existing work by proposing three different DRL approaches geared
towards different, realistic scenarios. In particular, the proposed approaches are among the
first in the area to successfully use cooperative multi-agent DRL, which is known to be chal-
lenging [101], as well as online transfer learning. My DRL approaches make fewer limiting
assumptions, e.g., about the number or movement of UEs, and optimize a more generic and
complex utility (supporting QoE in addition to plain throughput), which I believe makes my
approaches more meaningful and generally applicable.

10.3. Problem Statement

The self-learning DRL approaches proposed in this chapter require very few assumptions and
only readily available information about UEs and cells in the area (current connections, SINR, and
QoE per UE as detailed in Sections 10.4.1 and 10.5.2). | intentionally omit a formalization of radio
models or other system details that are irrelevant for the DRL approaches. The example model
used for evaluation is described in Section 10.7.1. Unlike previous chapters, this chapter focuses
on coordinating multi-cell selection in wireless mobile networks rather than coordination in
wired networks. Hence, this section explicitly states the coordination problem in wireless mobile
networks and does not build on the problem statement in Chapter 3.

10.3.1. Parameters

I consider M UEs u; € U and N cells ¢; € C, transmitting in discrete time steps t = 1,2,..., T,
synchronized among cells. I focus on the downlink and assume each cell ¢; € C to schedule
its PRBs (or other units of radio resources) to connected UEs autonomously and transparently
using CoMP coordinated scheduling (CoMP-CS) [168]. Inside one cell, a PRB is assigned to at most
one UE, but one UE can be assigned multiple PRBs from one or several cells. I make no other
assumptions about cells’ resource allocation scheme, i.e., how or how many PRBs they assign
to each connected UE. Considering multi-cell selection for uplink communication (using CoMP
joint processing [119]) is interesting future work, where I expect similar problems and solutions
as described here for downlink.

145

10. Self-Learning Coordination for Mobile Networks

UEs uj € U move around freely with varying direction and velocity, unknown to the system.
Movement affects channels between UEs and connected cells, fluctuating the measured SINR over
time. Here, in the context of cell selection, I focus on fluctuations on the order of seconds and
assume that fast-fading effects on the order of sub-milliseconds are handled and averaged out
in the physical layer. I denote by SINR; ;(#) the measured SINR from cell ¢; to UE u; at time .

UE u; can only connect to and receive data from cell ¢; if the SINR is above a given threshold sur.
Assuming it can connect, the effective downlink data rate ; ;(f) from cell ¢; to UE u; at time ¢
depends on cell-internal resource allocation, e.g., power, PRBs, antennas [146]. The proposed
DRL approaches are neither explicitly aware of r; () nor of the cells’ resource allocation but
learn to adapt to a given scenario through feedback of UEs” QoE.

10.3.2. Decision Variables

I express cell selection by binary decision variable x;;(t) € {0,1}, indicating whether cell ;
serves UE u; at time £. To allow xi,j(t) = 1, the corresponding SINR must be above threshold ysr.
A UE’s total rate is simply the sum of its cell rates (considering CoMP-CS [146]):

N
rj(t) = ;xi,j(t)”i,j(t) (10.1)

Deciding which cells serve which UEs may be driven completely by the network or UEs may
trigger or assist cell connections themselves (Section 10.6). To limit signaling overhead, UEs can
connect to or disconnect from at most one cell per time step. Frequent connection changes
are still possible as time steps are typically quite short, depending on the acceptable signaling
overhead in a given scenario.

10.3.3. Objective: Optimize Quality of Experience (QoE)

Rather than simply maximizing the data rate per UE, as commonly done in related work [253,
281, 66], I am mostly interested in optimizing UEs’ QoE, which better reflects users’ satisfaction
and strongly affects operators’ financial success [122]. UEs’ QoE typically increases roughly
logarithmically with increasing data rate, i.e., with diminishing returns [77, 134]. I quantify QoE
of UE u; by its utility U;(t). Using a logarithmic function as example, U;(t) could be formalized
as

U;(t) = min {U]max,max {U]mi“, wilogu, (w3 +1j(t)) }} (10.2)

where wy, wy, w3 are configurable weights and limits umin ymax engyre that the utility is
finite and well defined. An advantage of using logarithmic utility is that maximizing the sum
of logarithms is equivalent to ensuring a natural concept of fairness, namely proportional
fairness [135]. Nonetheless, logarithmic utility is just an example based on previous studies [77,
134]. The proposed approaches are not tied to this particular utility function but can also
maximize plain data rate or adapt to other utility functions as shown in Section 10.7.2. In fact,
they do not even require the utility function to be known. Instead, it suffices to approximate the
instantaneous QoE of each UE (i.e., their utility), which is possible from the network side without

146

10.4. DeepCoMP: Centralized DRL

relying on UEs reporting their QoE truthfully [173]. The overall goal is, therefore, to maximize
the long-term utility, averaged over all UEs and time steps:

11
Average QoE: max lim —— U;(t) (10.3)
T TM, 18 My
The proposed self-learning DRL approaches approximate and optimize this long-term utility
through typical discounted rewards. I present the details of these DRL approaches next: Deep-
CoMP in Section 10.4, DD-CoMP and D3-CoMP both in Section 10.5, and a discussion of

architecture and deployment options in Section 10.6.

10.4. DeepCoMP: Centralized DRL

DeepCoMP is a centralized DRL approach that simultaneously observes and controls all UEs
in an area with a single DRL agent. While this requires centrally collecting observations of
all UEs as well as centralized control, it enables DeepCoMP to learn close-to-optimal policies.
These observations contain SINR and QoE estimates, but no detailed system information, which
may be unavailable. Section 10.4.1 details DeepCoMP’s observations, actions, and reward and
Section 10.4.2 presents the overall algorithm. In Section 10.6, I discuss how DeepCoMP could
be deployed in practice.

10.4.1. Partially Observable Markov Decision Process (POMDP)

Due to the complexity of the mobile scenario, it is unrealistic to capture the complete environ-
ment state, even for a centralized agent. Instead, I focus on partial observations that could be
available in practice. The POMDP consists of tuple (O, A, P, R) with observations O, actions A,
unknown environment dynamics P, and reward function R, defined next. Figure 10.1 shows
an example of DeepCoMP’s observations, actions, and reward.

DeepCoMP

- Cg
T X, =(1,1,0) X, = 0,01
Esfﬁil — (1,07, 0.4>§ STN\Rz — (0.05,0.9, 1)
W e ((A)) @ L Pe=0sl
6

Figure 10.1.: Illustration of DeepCoMP’s POMDP. (Figure from [S19].)

147

10. Self-Learning Coordination for Mobile Networks

Observations O

In each time step, DeepCoMP only observes the UEs’ current connections, their SINR, and their
utility, which are readily available (Section 10.6). Specifically, the DeepCoMP agent observes
0= <<Xj,sﬁ-\I\R]«, U;)|Vj € {1,..., M}) for each cell ¢; and UE u;. Observations are grouped into
vectors X]-, STN\R]-, and ﬁj for each UE uj, containing elements for each cell ¢; as detailed below.
I normalize all observations to be in range [—1,1] (or [0,1]), which is important for effective
training and generalization of neural networks [118]. Otherwise, stronger observation signals
with a larger range could drown out weaker signals with a smaller range, making the DRL agent
“blind” to such observations.

Current Connections X; = (x;;(t)|Vi € {1,..,N}) € {0,1}" indicates to which cells ¢; a
UE u; is currently connected and directly corresponds x;;(t) (Section 10.3.2). UEs hold their
connections unless they are told explicitly to connect or disconnect or until they move away
from a connected cell.

SINR SINR; = (

cell ¢; and UE u;. Specifically, SINR; ;(¢) is normalized by the maximum SINR of all cells for UE u;
at time ¢. This maps the observed SINR of the strongest cell to 1 and highlights the differences in
SINR between the available cells, simplifying cell selection. In the special case that a UE is far off
any cells (with zero SINR), I set the vector to all zeros to avoid division by zero.

N, (1) 6] Vi € {1,..,N}) € [0,1]" is the normalized SINR; ;(t) between each
j

max; SINRj; ;

uj(t)— u;“i“
max _ umin
]]

scaled to range [—1,1] based on bounds U]I.“i“, U]I.“ax (Section 10.3.3). If these bounds are not

Utility The normalized utility of each UE u; is U; = 2- —1€ [-1,1] ie, Ut)

known explicitly, they can be approximated by keeping track of the lowest and highest U;(t)
over all UEs and time steps so far. Observation lAl]» provides valuable information about each
UE’s current QoE, which is affected by the observed SINR but also by other factors that are
not directly observable, e.g., cells” resource allocation and UE movement. Again, note that the
current utility U;(t) of each UE can be approximated locally without relying on UEs to report
their QoE truthfully [173].

Actions A

To limit protocol overhead, each UE can either connect to or disconnect from at most one cell
per time step. This also simplifies and shrinks the action space considerably compared to
alternatives like choice of arbitrary subsets of cells. I design the corresponding action space
as A = (aj|Vj € {1,..,M}) € {0,1,..., N}*. Hence, DeepCoMP selects for each UE u; either a
specific cell ¢;, where it toggles the connection status, or a no-op. Action a; =i € {1,..,N}
means that u;’s connection to cell ¢; should be toggled, i.e., establishing a connection if #; and c;
are not yet connected or disconnecting otherwise. Alternatively, a; = 0 indicates a no-op, where
all of u;’s connections remain unchanged.

148

10.4. DeepCoMP: Centralized DRL

Reward R

DeepCoMP’s reward in time step ¢ is the average of current utilities over all UEs, using l:lj €

.....

the goal of maximizing the average QoE over all UEs (Section 10.3.3). Internally, the DRL agent
maximizes the sum of discounted rewards to optimize long-term utility.

Varying Number of UEs

Since DeepCoMP observes and controls all UEs, the size of its observation and action spaces
depends on the number of active UEs in the area, which may change over time. Observations
and actions, on the other hand, are used as inputs and outputs of a neural network and, thus,
need to be of fixed size. Even if the number M of active UEs in the area varies over time, the
size of these observations and actions must not change. To this end, I define M™% as the
maximum number of supported active UEs in the area and set the size of the observations and
actions to MM, If M < M™%, related observations are padded with zeros to ensure consistent
size of observations and to indicate which UEs are currently missing. Resulting actions for
je{M+1,.., MM}, ie., for non-existing UEs, are simply ignored. Overall, the observation
and action spaces of DeepCoMP grow linearly with M™#*. The distributed DRL approaches
(Section 10.5) are invariant in M™® and therefore suitable for larger scenarios.

10.4.2. DeepCoMP Algorithm

Algorithm 8 DeepCoMP: Centralized Training and Inference

1: Initialize 79, Vi, b
2 fort€{1,.., T} do
3: foru; € U do

4 0j,1j ¢ get_obs_and r(u;)
5: ot < (0j|Vj € {1, ..., M}) U(0|Vj € {M+1, ..., M™*})
6 T4 21 Lief1, M} 7]
add
7: b <— (04-1,8t-1,71,01)
8: ay <— 77:9(01‘)
9: for a; € a; with j € {1,.., M} do
10: x;j(t) < set_conn(u;, a))
11 if training and b is full then
12 Train Vj using temporal difference updates [242]
13: Train 719 maximizing E[Y; V7 (0441, ar4i)]

I leverage Proximal Policy Optimization (PPO) [228], which is a state-of-the-art actor-critic DRL
algorithm, to train the DeepCoMP DRL agent. Algorithm 8 shows the centralized training
and inference procedure for DeepCoMP. DeepCoMP starts training by initializing stochastic
policy 7y (actor), value function Vj (critic), and mini-batch b (line 1). DeepCoMP then observes

149

10. Self-Learning Coordination for Mobile Networks

and acts in each time step for all UEs simultaneously. First, it collects observations and rewards
and constructs the observation vector and total reward as defined in Section 10.4.1 with function
get_obs_and r(u;) for each UE u; (lines 3-6). It then adds the experience (observation, action,
reward, next observation) to mini-batch b (line 7) and selects an action a; for the observation
vector o; according to policy 7ty (line 8). Action a; is a vector that specifies the cell selection
for all UEs and is applied to the environment by setting decision variable x; ;(t) accordingly
(lines 9-10). Function set_conn(u;, 4;) applies action 4; for UE u; by dis-/connecting from/to
the selected cell ¢; if a; > 0 and the selected cell is in range (a; toggles connectivity).

During training, critic V,’s weights are updated whenever mini-batch b is full (line 12). Using
standard temporal difference updates [242], critic Vj is trained to approximate long-term value
Vi (0) of receiving an observation o and then following policy 7. In turn, V(o) is used to
calculate advantage A(o,a), which is the relative value of taking an action a after receiving
observation o compared to all other actions. Finally, advantage A is used inside the policy
update when training actor 77y to optimize the long-term discounted reward (line 13), which
corresponds to maximizing the average QoE, i.e., the objective defined in Section 10.3.3 [116].

I repeat this procedure over many episodes to train DeepCoMP offline and then switch to
quick online inference upon training convergence. DeepCoMP also supports continuous online
training, which I evaluate in Section 10.7.3. Here, training (lines 11-13) happens asynchronously
to avoid blocking online inference. With a fixed number of hidden units, time and space
complexity for inference with DeepCoMP is in O(M™2* - N) based on the size of the observation
and action spaces (Sections 10.4.1 and 10.4.1).

10.5. DD-CoMP & D3-CoMP: Distributed DRL

DeepCoMP leverages global knowledge and simultaneous control of all UEs to learn highly
optimized policies. In practice, however, observations from all UEs may not be available cen-
trally or only with significant overhead, preventing fast centralized inference. Furthermore, its
observation and action spaces grow with the (maximum) number of active UEs in the network. I
hence propose distributed DeepCoMP (DD-CoMP), which only requires local observations and
control per UE. DD-CoMP is a multi-agent DRL approach that trains a logically centralized neural
network, which is replicated for distributed inference. I also propose D3-CoMP, which trains
separate neural networks for each UE. Table 10.1 summarizes these differences in training and
inference between the three DRL approaches as well as deployment options, which I discuss in
Section 10.6.

Table 10.1.: Proposed DRL approaches

DRL Approach Training Inference Deployment

DeepCoMP (Section 10.4) Centralized Centralized Core network
DD-CoMP (Section 10.5) Centralized Distributed Network or UEs
D3-CoMP (Section 10.5) Distributed Distributed Network or UEs

150

10.5. DD-CoMP & D3-CoMP: Distributed DRL

10.5.1. Trade-Offs and Design Choices

Decisions per Cell vs. per UE

Using multi-agent DRL, an obvious idea would be to assign one agent per cell, controlling
its connections. However, this leads to the same complications as discussed in Section 10.4.1,
where the number of UEs fluctuates but the size of the observation and action spaces are fixed
and thus need to be padded. The alternative of assigning one agent per UE appears more
suitable as the number of cells is rather fixed. As UEs arrive and depart over time, DRL agents
can be spawned/terminated on demand. Using separate agents per UE does not predicate the
networking architecture/location of control (Section 10.6).

Using separate DRL agents for each UE, I can limit each agent’s observations to only observe
a single UE instead of all UEs, where relevant observations are available locally at the UE
(Section 10.5.2). Similarly, the agent’s actions determine the UE’s cell selection, which can be
applied locally without much communication overhead. In large areas with many cells, the
observation and action spaces could be reduced by limiting agents” observations and actions
to each UE’s k closest cells, which are most relevant for cell selection. A remaining challenge
with this approach is that each agent only observes and controls a single UE. This easily leads
to greedy and unfair behavior and ultimately lower average QoE if agents do not consider or
observe other UEs’ utility. To overcome this challenge, I slightly adjust DeepCoMP’s POMDP for
DD-CoMP and D3-CoMP so that it takes other, nearby UEs into account (Section 10.5.2).

DD-CoMP vs. D3-CoMP

DD-CoMP and D3-CoMP only differ in their training architecture. DD-CoMP trains a single,
logically centralized neural network for actor 719 and critic Vj, respectively. It collects experience
from all DRL agents in joint mini-batches. While DD-CoMP’s training is logically centralized, it
could be implemented in a distributed fashion with minimal adjustments. For example, each
agent may update its neural network locally and only share the computed gradient updates to
synchronize the neural network weights across all DRL agents (cf. federated learning [267]).

D3-CoMP trains separate, logically decentralized neural networks for each agent/UE. D3-CoMP
can hence learn individual cell selection policies per UE, allowing DRL agents to adapt to
heterogeneous UE characteristics that affect QoE but are not explicitly observed, e.g., UE velocity
or movement patterns. Furthermore, D3-CoMP does not exchange agents” experiences or
gradients during training, lowering overhead. Training decentralized DRL agents independently
easily leads to greedy or adversarial policies, which I address by coupling the reward of nearby,
competing UEs (cf. best response strategy [109]). In comparison, DD-CoMP’s central neural
network is trained with more diverse data (from all UEs) than each of D3-CoMP’s distributed
DRL agents. Hence, DD-CoMP often learns more robust policies (Section 10.7).

10.5.2. Partially Observable Markov Decision Process (POMDP)

For DD-CoMP and D3-CoMP, I adjust DeepCoMP’s POMDP from Section 10.4.1. Instead of
vectors containing observations and actions for all UEs, agents only observe and control cell
selection for a single UE u;. To allow some awareness of nearby UEs and improve fairness, I
extend the observation space and adjust the reward function.

151

10. Self-Learning Coordination for Mobile Networks

Observations O

For DD-CoMP and D3-CoMP, O = <X]-,Sf\I\R]-, Uj, (18, M) includes X]-,Sf\I\R]-, Uj as defined in
Section 10.4.1. While DeepCoMP receives these observations as a vector for all UEs, DD-CoMP
and D3-CoMP just observe a single UE u;. Additionally, I assume that cells collect and broadcast

aggregated information U8 and M about their connected UEs. Specifically, cells approximate
the instantaneous QoE of their connected UEs [173] (or rely on QoE reported by the UEs) and
calculate their corresponding utility U; as defined in Section 10.4.1. Each cell ¢; then broadcasts

the average utility of all connected UEs as U} ° = M% Y xij(t) - Uy, where M; = Y xij(t)
denotes the number of currently connected UEs at ¢; with j,j’ € {1,..., M}. If no UEs are currently
connected (M; = 0), I set U;"® to zero. Similarly, if the observing UE u; is too far away from
a cell ¢; to receive its broadcast (i.e., SINRi,]-(t) < 7Ysmnr), the UE assumes M; = 0 and U?Vg =0
as observations. Finally, vector U8 = (U;"®|Vi € {1,...,N}) € [-1,1]" contains the observed
average utility of all cells. Hence, vector U?"8 can be observed locally by each DRL agent and
helps the agent to select suitable cells with high lAlng to avoid competing for radio resources at
cells with already low average utility.

To give the DRL agent a better sense of the load at different cells, cells also broadcast the
number of currently connected UEs M; as defined above. Based on the received M; (if not
M;
Yieq,..ny Mi”
setting M; = 0 if M; = 0. It then observes vector M = (M;|Vi € {1,..,N}) € [0,1]N containing
the normalized amount of connected UEs at each cell. This helps to avoid congested cells and
identify free cells without any UEs, i.e., without competition for radio resources. The signaling
overhead for UJ2'8 and M is small and constant (Section 10.6.2). Centralized DeepCoMP does
not require additional observations ('8 and M as it observes all UEs’ connections and their

QoE individually.

received, M; = 0), the DRL agent calculates the normalized load per cell M; =

Actions A

Actions of DD-CoMP and D3-CoMP are similar to DeepCoMP but refer to a single UE. Partic-
ularly, each DRL agent makes an action A = a € {0,1, ..., N}, controlling cell selection for its
UE u; as defined in Section 10.4.1.

Reward R

An obvious choice for the reward function of a DRL agent controlling UE u i would be R = EI-,
i.e., rewarding high utility of the corresponding UE. However, this reward would encourage
agents to greedily optimize their UE’s utility: Agents would tend to increase their UE’s data rate
even if it only marginally increases their utility. As a consequence, this could significantly harm
other UEs” utilities and overall average utility, which is the main objective (Section 10.3.3).

Instead, I define R = Yicr1, N} U8 - M; € [—1,1] as the average utility at all cells in range

(i.e., with received broadcasts), weighted by their normalized amount of connected UEs M;. If
UE u; is connected to some cell(s), its utility is already included in the sum above. Otherwise, if
u; is not connected to any cells, I explicitly include its weighted utility in the reward and define

152

10.5. DD-CoMP & D3-CoMP: Distributed DRL

_ Nave u;
R =Yieq,.. vy U; - Mi+ -

does not dominate the reward. Hence, this reward function encourages DRL agents to maximize
the average utility over all UEs and not just the utility of their own UE.

. The UE’s own utility is therefore always considered but

== \\eighted Cells' Avg. QoE
Own QoE (Greedy)

0 100 200 300 400 500
Training Steps [in thousands]

Figure 10.2.: DD-CoMP learning curves with different reward (figure from [S19]).

Figure 10.2 illustrates the average QoE (Section 10.3.3) for the two reward formulations in an
example scenario. Using just the own UE’s QoE as reward leads to greedy behavior, which is
easier to learn and leads to faster yet clearly suboptimal convergence. The more sophisticated
reward based on weighted average QoE at surrounding cells requires negligible signaling
overhead (Section 10.6.2) and still leads to quick convergence and ultimately to a significantly
better policy (20 % higher QoE).

10.5.3. DD-CoMP Algorithm

DD-CoMP agents observe and control each UE’s connections separately in parallel (Algorithm o,
lines 3—7) rather than jointly for all UEs like DeepCoMP. Still, experiences from all UEs are
added to the same mini-batch b and train a central neural network for actor 77y and critic Vj
(lines 8-10). After logically centralized training, DD-CoMP performs distributed inference with
separate DRL agents, each using a copy of the trained actor network (line 11) for local inference
(lines 12—-16).

To support continuous training, all DRL agents need to continue sending their UEs’ experiences to
central batch b to train the the logically centralized neural network. Again, sharing and training
happens asynchronously to avoid blocking inference. For quick inference, the distributed DRL
agents could regularly update their local copies 775, Assuming a fixed number of hidden units,
space and time complexity of inference itself is in O(N), i.e., it is invariant in the number of
UEs M and linear only in the number of cells N. If N is large, space and time complexity could
further be reduced to be constant by only considering the k closest cells per UE (Section 10.5.1).

If the number of UEs in the area varies over time, the number of DRL agents is adjusted
accordingly. If a new UE arrives, a new DRL agent is instantiated, and removed again when

153

10. Self-Learning Coordination for Mobile Networks

Algorithm 9 DD-CoMP: Centralized Training, Distributed Inference

1: Initialize 7tg, Vi, b > Training
2 fort €{1,..,T} do

3: for u; € U in parallel do

4 ojt-, r]t. < get_obs_and r(u))

dd , 11 4.
b &S (0]; 1gt 1,r]?,0]t.)

]
a; + 19(0})
xj(t) < set_conn(u;, a;)
if b is full then
Train V,, using temporal difference updates [242]

10: Train 77y maximizing [E[Y; ¢ ’ykr(0§+k, a§+k)]

11: Deploy a copy 7y, of 71 for each UE u; € U > Inference
12 fort € {1,..,T} do
13: for u; € U in parallel do

e *® N > 9

14: 0;, r; < get_obs_and r(u))
15: a; < 11,(0%)
16: x;j(t) < set_conn(u;, a;)

the UE leaves the area. All DRL agents access the logically centralized neural network and thus
directly start with a good policy, benefiting from experience of other UEs. Note that, while all
UEs share the same neural network weights, their experiences are never shared with each other
directly.

10.5.4. D3-CoMP Algorithm

Algorithm 10 shows the distributed D3-CoMP training and inference procedure. While the main
procedure is similar to DeepCoMP and DD-CoMP, D3-CoMP directly initializes M different
actor T, and critic V(/,/. networks for each UE u; (line 1). Experiences from different UEs are
added to different mini-batches b; (line 5). Consequently, actor and critic of each DRL agent are
trained only on the corresponding UE’s experiences (lines 8-10). Similar to DD-CoMP, inference
time and space complexity is in O(N).

D3-CoMP also automatically adjusts the number of DRL agents to the number of UEs in the area,
starting new DRL agents when UEs arrive and terminating them once UEs leave. As D3-CoMP
trains separate policies per UE, it typically initializes new neural networks for newly spawned
DRL agents. However, trained neural network weights for a UE could be stored when the UE
leaves the network and loaded again (e.g., based on a UE identifier) when it returns to avoid
retraining from scratch. New UEs (with a previously unseen ID) could start with a trained and
stored policy of another UE (e.g., with similar velocity or movement pattern). A hybrid solution
between DD-CoMP and D3-CoMP is also conceivable, where a shared default policy is trained
centrally up front by DD-CoMP and then used as starting point for new DRL agents in D3-CoMP
when new UEs arrive in the network.

154

10.6. Architecture and Deployment Options

Algorithm 10 D3-CoMP: Distributed Training and Inference
1 Initialize 79, Vy,, b; Vj € {1,..., M}
2 fort€{1,.., T} do
3: for u] G U in parallel do

< get_obs_and r(u))

4:]/]dd
a -

b<——(]

a eng()

xll] (t) set,conn(uj, a;)

1 -1
/4 r]’o])

if training and b]- is full then

Train Vy, using temporal difference updates [242]
btk gtk

10: Train 7tp, maximizing E[}; 7y kr(o

10.6. Architecture and Deployment Options

There are different architectural options for deploying DeepCoMP, DD-CoMP, and D3-CoMP,
summarized in Table 10.1. All three approaches can be deployed in the network for network-
initiated cell selection. Depending on available resources and latency requirements, deployment
could be in the core, edge, or access network [243]. Alternatively, DD-CoMP and D3-CoMP also
support distributed deployment of DRL agents at the UEs, enabling UE-initiated cell selection.
Both network-controlled and UE-based cell selection are supported and relevant in 5G [187]. In
both cases, the DRL approaches can leverage already available data with low overhead. In the
following, I detail the two architectural options (Sections 10.6.1 and 10.6.2), which are illustrated
in Figure 10.3, and discuss training and inference in practice (Section 10.6.3).

2. Derive obs. o U

and reward 74 ((())) 1.cal
—2 U"%, Mi—
«— == 7t
((())) 1. CQl c; 4au (Dis-)connect
S SUt
3. a;: (Dis-)connect 3. Derive obs. o;
C1 and reward 7
(a) Network-based deployment (b) UE-based deployment

Figure 10.3.: Architecture and deployment options: a) DRL agents deployed in the network for network-
initiated cell selection. b) Deployed at each UE for UE-initiated cell selection. (Figure
from [S19].)

155

10. Self-Learning Coordination for Mobile Networks

10.6.1. Network-Based Deployment

The centralized DeepCoMP approach is designed to be deployed on the network side for
network-initiated cell selection. Here, the agent collects available data and exchanges control
messages between cells for centralized observations and actions. The entire network could be
split into different areas (e.g., based on cell coverage or business aspects) that are controlled
independently by separate DeepCoMP agents. Within each area, a single DeepCoMP agent is
deployed, which should be pretrained (e.g., in simulation) as further discussed in Section 10.6.3.
Inside an area, the responsible DeepCoMP agent observes and controls all active UEs.

For the agent’s observations, the network could keep track of each UE’s current connections
and collect the UEs” SINR and QoE (step 1 in Figure 10.3a). I emphasize, again, that this approach
does not assume any predefined, known utility function (e.g., a logarithmic function) but
only requires instantaneous approximations of UEs” QoE. To do so, UEs could either report their
SINR and QoE directly or cells could use already available information, e.g., UEs’ Channel Quality
Indicators (CQIs) and Quality of Service (QoS) measurements, to approximate SINR and QoE
locally [173, 35]. In doing so, cells can locally process available data to derive the necessary
observations (Section 10.4.1) and reward (Section 10.4.1) in step 2. In step 3, the processed
observations are passed through DeepCoMP’s actor neural network to obtain the next action,
which selects suitable cells for all UEs and triggers necessary connections or disconnections.

DD-CoMP and D3-CoMP can also be deployed in the network for network-initiated cell selection.
This works similarly as with DeepCoMP but, here, with multiple DRL agents being deployed
for the different active UEs in the area, spawning and terminating DRL agents on demand (as
discussed in Sections 10.5.3 and 10.5.4). These agents could be deployed at different cells,
where each one only requires observations and reward of its corresponding UE rather than
data from all UEs. If DD-CoMP and D3-CoMP agents are deployed in the network, cells can
locally compute and exchange their average utility I*'8 and load M, which are required as
observations and for the reward (Section 10.5.2), without the need to broadcast them.

10.6.2. UE-Based Deployment

Alternatively, each DRL agent could be deployed directly at a UE for user-initiated cell selection.
Deploying DeepCoMP at the UEs is theoretically feasible but impractical since it requires each
UE to collect observations from all other UEs. Instead, DD-CoMP and D3-CoMP are suitable for
UE-based deployment because they rely on local observations and control. Each cell ¢; still needs
the QoE of its connected UEs, which the cells can approximate locally based on UEs” reported
CQIs [173, 35] (step 1 in Figure 10.3b). In step 2, cells calculate and broadcast their average
utility U?Vg and number M; of connected UEs (from which M can be derived). In step 3, the
DRL agents at each UE derive the current observations and reward (Section 10.5.2) based on the
received broadcasts and locally observed X;, STl\I\Rj, and ﬁj. Finally, each DRL agent uses its actor
neural network to choose an action for its UE and initiates the corresponding connections or
disconnections (step 4).

Cells’ broadcasts of ﬁ?Vg and M; have small, constant size and could be included in existing
System Information Broadcasts (SIBs) [2] without requiring extra signaling messages. Hence,
DD-CoMP and D3-CoMP require negligible signaling overhead; much smaller than existing
approaches that require detailed system knowledge (e.g., [15, 270]). Furthermore, UE-based
deployment allows DRL agents to collect all relevant observations locally at the UEs without

156

10.7. Evaluation

requiring cells to exchange information with each other directly, e.g., for scenarios with cells
of different operators. While UE-based cell selection enables UEs to indicate which cells they
want to connect to, the final connection decision can still be controlled by the network (cf. UEs’
connection requests in 5G [187]).

10.6.3. Training and Inference in Practice

In practice, I suggest to train a reasonable policy in simulations up front and then copy
and deploy the trained neural networks at the network or UE side. The pretrained neural
networks can then be used for fast online inference with low resource requirements. The trained
neural networks are lightweight (less than 5MB in size) and can be further optimized using
TensorFlow Lite for efficient inference with minimal space, compute, memory, and power
consumption [49].

As I show in Section 10.7.3, it is important to train on randomized simulation scenarios for
learning robust policies. To further support bridging the gap from simulation to real deployment
(“simzreal gap” [125]), the proposed DRL approaches support online transfer learning, where
they continuously fine-tune their pretrained policy in the actual deployment scenario. I explore
and evaluate online transfer learning in Section 10.7.3. This online training could happen at
edge computing centers close to the cells as proposed in 5G [243]. To facilitate online learning
in practice, the reward signal for DeepCoMP, DD-CoMP, and D3-CoMP can be directly and
locally derived from the collected observations without requiring additional information or
overhead (Sections 10.4.1 and 10.5.2). During training, DD-CoMP agents periodically share
their experiences and update their copy of the joint neural network, but D3-CoMP agents
train locally without extra communication. To reduce communication overhead for DD-CoMP
during training, agents could locally calculate their gradient updates and only share those
using federated learning [267]. The computed gradients are smaller and therefore require less
communication overhead than sharing the agents’ full experiences, including observations,
actions, and reward. Federated learning is practically feasible on mobile devices and already
being used for commercial applications, e.g., Google Gboard [104]. During inference, no
communication between DRL agents (or UEs) is necessary for either of the approaches.

10.7. Evaluation

I implemented prototypes of DeepCoMP, DD-CoMP, and D3-CoMP using Python 3.8, Tensor-
Flow 2, and RLIib [153]. To encourage reproduction and reuse, the source code is publicly
available [S13]. It also contains the light-weight simulation environment I used for training and
evaluation, which others can use to study and improve their approaches, too.

10.7.1. Evaluation Setup

I evaluate DeepCoMP, DD-CoMP, and D3-CoMP in different scenarios, comparing their average
QoE over T = 100 time steps (Section 10.3.3). In Section 10.7.2, I train the approaches from
scratch in different mobile scenarios and evaluate how well they adapt to each scenario through
self-learning without changing their hyperparameters or making any manual adjustments.
In Section 10.7.3, I investigate how well the pretrained DRL approaches generalize to new

157

10. Self-Learning Coordination for Mobile Networks

scenarios without any further training and how continuous online transfer learning can boost
performance and training efficiency. Finally, Section 10.7.4 compares the scalability of the
different approaches.

Base Scenario

I vary a base scenario with three partially overlapping cells and three moving UEs, using typical
LTE parameters [248] and the Okumura-Hata model [171] for path loss in urban areas, detailed
in Table 10.2. Since I focus on downlink, there is no intra-cell interference. The approaches
control cell selection but not resource allocation, e.g., scheduling of PRBs, which the cells
coordinate transparently themselves using CoMP coordinated scheduling, avoiding inter-cell
interference [168, 206].

Table 10.2.: Evaluation parameter settings

Parameter Value

Carrier frequency 2.5GHz

Bandwidth 9MHz

Thermal noise density —90dBm/Hz

Path loss model Okumura-Hata [171]
Cell transmit power 30dBm

SINR connection threshold ysng —77 dB

Cell tower height 50m

UE height 1.5m

Cell-to-cell distance 100 m

UEs move according to the improved random waypoint model [269] with uniformly distributed
velocity of 1m/s-3m/s and pause 2 time steps at waypoints. Each UE u; has utility U;(t) =

101og;4(7j(t)) with U]mi“ = —10 and U™ = 10, quantifying its QoE [77, 134]. As evaluation
metric, I consider the average QoE over all time steps and UEs as defined in Section 10.3.3, where
positive values close to U]‘-“ax = 10 indicate excellent QoE, values around 0 indicate satisfactory
QoE, and negative values close to umin — 10 indicate bad QoE. The chosen utility function and

limits are examples and could also be chosen differently. In Section 10.7.2, I show that the DRL
approaches also successfully adapt to other objectives and utility functions.

DRL Hyperparameters

To avoid time-intensive and resource-intensive hyperparameter tuning, I used the PPO default
settings [153]:

¢ Fully connected neural networks for both actor and critic. Each neural network is config-
ured with two hidden layers, each with 256 hidden units and tanh activation [126], and
trained with the Adam optimizer [138].

¢ Discount factor v = 0.99.

* Learning ratea =5-107°.

158

10.7. Evaluation

* Mini-batch size |b| = 4000 with 30 training epochs, each using a subset of 128 experiences
sampled from b.

PPO clipping parameter of 0.3.

Kullback-Leibler coefficient initialization of 0.2 and target of 0.01.

Generalized advantage estimation parameter A = 1.

Value function parameter 1 and entropy coefficient 0.

These settings are largely in line with general recommendations for practical DRL [16]. Tuning
hyperparameters automatically for each scenario could further improve performance.

Compared Algorithms

I compare DeepCoMP, DD-CoMP, and D3-CoMP against three other approaches:

* Dynamic: A dynamic UE-centric multi-cell selection heuristic by Beylerian and Ohtsuki [27],

which connects a UE u; to all cells ¢; with SINR; ;(t) > € - SINR}“aX(t), where SINR}“aX(t)

is the SINR of the strongest cell. I consider settings € € {0,0.5,1}. With € = 1, the
heuristic only connects to the strongest cell, similar to common 3GPP-based approaches
for single-cell selection [281].

e Static: A static clustering approach similar to the approach by Marsch and Fettweis [169].
It groups all cells into fixed clusters of size C and then connects UEs to all cells of the
strongest cluster. I consider C € {1,2,3}.

® Per-Step Optimal: A brute-force approach that has full knowledge and checks all actions
to select the best one in each time step. The selected action is optimal per step but not
necessarily in the long term. This approach is clearly impractical and only serves as a
comparison.

All approaches have the same action space, but only the proposed DRL approaches learn through
feedback from their actions.

Execution & Figures

I repeated all experiments with 10 different seeds for training and testing, running on machines
with an Intel Xeon W-2145 CPU and 100 GB RAM. Figures show the mean and 90 % confidence
interval of the average QoE as defined in Section 10.3.3.

10.7.2. Self-Adaption to Varying Scenarios

Varying Resource Allocation

I first consider the base scenario (Section 10.7.1) with varying resource allocation schemes
applied by the cells to allocate their available PRBs to connected UEs. In particular, I consider
scenarios with the following schemes:

* Resource-fair: All cells allocate their available PRBs equally among connected UEs [224].
¢ Rate-fair: Each cell ensures the same downlink data rate for its connected UEs by assigning
more PRBs to UEs that are farther away.

159

10. Self-Learning Coordination for Mobile Networks

* Proportional-fair: Cells allocate PRBs in a proportional-fair way, based on UEs’ instanta-
neous and historical data rates [266].

In addition, I also consider a heterogeneous scenario with all three schemes used in parallel, each

by one of the three cells.

2..
w . w1 1
[e) 1 4 [e) N
S5 '; %* + S ':‘! Llﬁ
.) S { 1
eofAONERLgin £ MARN dha]
D C
0.5 <IN o
: O § = e r
0o <IN of| -1
58822282707 5222222707
%(2883"”"!“999 %(288&3’&_99.9
2 ® £ € € B ® ® 2 1 v € € £ @ ® ®©
2888558560 286858556455
o) 5 0
o o
Algorithm Algorithm

(a) Resource-fair

(b) Rate-fair

Figure 10.4.: The DRL approaches adapt to varying resource allocation schemes, without explicit knowl-
edge of these schemes (here, resource-fair and rate-fair allocation; extended in Figure 10.5).

Compared to other approaches, the proposed DRL approaches lead to significantly higher
average QoE. (Figure from [S19].)

Figures 10.4 and 10.5 show the resulting average QoE under the different schemes. While the
average QoE is mostly satisfactory (around o or above) in these scenarios, there are significant
differences between the algorithms. DeepCoMP’s results are almost identical (within 0.4 % on
average) to the brute-force approach (“Per-Step Opt.” in the figures) and much better than
the heuristics. On average, DeepCoMP is 2x better than the dynamic heuristic (abbreviated as
“Dyn.” in the figures) and 2.3x better than the static heuristic over all parameter settings. In
fact, DeepCoMP is even slightly better (2.5 %) than the brute-force approach for the rate-fair
scheme (Figure 10.4b). Recall that brute force is only optimal per step but not necessarily long-
term. Particularly, DeepCoMP learns to favor actions that may be suboptimal in short-term
(e.g., connecting to a far-away cell) but pay off in long-term QoE. In contrast, the brute-force
approach may get stuck at myopic optima since each UE is limited to at most one connection or
disconnection per time step to limit overhead (Section 10.3.2). With rate-fair allocation, switching

to a far-away cell is very resource-expensive but may pay off when reducing competition at a
closer cell.

DD-CoMP and D3-CoMP only have local observations and control for each UE and are thus
slightly worse than DeepCoMP but still much better than the dynamic and static heuristics.
On average, DD-CoMP is 87 % better than the dynamic heuristic and 107 % better than the
static heuristic. D3-CoMP is comparable to DD-CoMP but learns slightly better policies in
some resource-fair scenarios where different UEs benefit from heterogeneous policies. Note
that the performance of the two heuristics strongly varies with their parameter (¢ and C) and

160

10.7. Evaluation

20 *& % 201 **
L w .
o 4 [e) 1
S 15 " -# S8 " *
21.01 <IN 21.01 | *n
< SR Emn < & N
05 XN 051 <IN I
' Q= § =
0o <IN [0o <IN 0
- R A T - e A T
O ?F T OO O O TTT OO0
EEERAR RS S 333ETL3g:
GE8Es55553 188285555853
s O s O
o o
Algorithm Algorithm
(a) Proportional-fair (b) Heterogeneous
p g

Figure 10.5.: Average QoE under varying resource allocation schemes, extending Figure 10.4 (proportional-
fair and heterogeneous). Again, the DRL approaches adapt to the different resource allocation

schemes and even to heterogeneous schemes, outperforming all other approaches. (Figure
from [S19].)

that the best parameter depends on the specific resource allocation scheme. For example, the
dynamic heuristic works best with € = 1 in the rate-fair case, with € = 0 in the proportional-fair
case, and with € = 0.5 in the other two cases. Similarly, the static heuristic works best with
different parameter settings in different scenarios. Hence, for best results, these heuristics
require knowledge of the resource allocation schemes and corresponding (possibly manual)
configuration. In contrast, the three self-learning approaches autonomously and successfully
adapt to the different resource allocation schemes and even the heterogeneous mix of schemes

from training experience. I emphasize again that the agents have no explicit knowledge about
which resource allocation scheme is employed inside the cells!

Varying Number of UEs

I again consider the base scenario (Section 10.7.1) with heterogeneous resource allocation and
now vary the number of active UEs. Figure 10.6 shows the average QoE for five different scenarios
with 1-5 UEs, respectively. Overall, average QoE decreases with more UEs as competition increases.
With few UEs (1 or 2), there is little competition for radio resources. Here, the static heuristic
with C = 3 works well as it connects UEs to many cells and uses available resources effectively.
Conversely, selecting fewer cells (C = 1) leads to better results in scenarios with higher load (4
and 5 UEs) as it reduces competition among UEs by limiting a UE to a single cell. The dynamic
heuristic works best with € = 0.5 across all scenarios (except for 1 UE) but is still clearly worse
than the DRL approaches (e.g., DeepCoMP is 35 % better on average). The three proposed DRL
approaches self-adapt to the number of UEs and learn cell selection policies that are very close
to the per-step optimal brute-force approach. They consistently and considerably outperform
both heuristics—in low-load as well as high-load scenarios and with any parameter setting.

161

10. Self-Learning Coordination for Mobile Networks

=@= Per-Step Opt. == Dyn. £=0.0 =@= Per-Step Opt. === Static C=1
—— DeepCoMP == Dyn. £=0.5 —— == DeepCoMP w=fe==_ Static C=2
4 <= DD-CoMP Dyn. £=1.0 == DD-CoMP Static C=3

4198 < D3.CoMP 417§ == D3-CoMP

V4
I/
s/

T
Vi A |
0 \‘_ 0 \.
-1
1 2 3 4 5 1 2 3 4 5
Number of UEs Number of UEs
(a) DRL vs. dynamic heuristic (b) DRL vs. static heuristic

Figure 10.6.: Average QoE for varying number of active UEs. The DRL approaches successfully adapt
to scenarios with varying numbers of UEs and outperform all other approaches. (Figure
from [S19].)

Varying Cell Density

I now vary the cell-to-cell distance (80 m-120m) in the base scenario (three UEs, heterogeneous
resource allocation), where cell size is generally small due to strong path loss in the considered
urban scenario (Section 10.7.1). While the average QoE naturally decreases with sparser cells
(from very good to satisfactory), Figure 10.7 shows that varying cell density affects the heuristics
with different parameters differently: The static heuristic works best with C = 1 in denser cells
(80m), where a single serving cell can achieve good QoE, and with C = 3 in sparser cells (120 m),
where multiple connections are required for cell-edge UEs. The dynamic heuristic is also affected
by the cell density (¢ = 0 vs. € = 1) but works best with € = 0.5 across all scenarios and is
comparable to DD-CoMP and D3-CoMP at 80 m. However, the DRL approaches adapt much
better to other cell densities and overall outperform both the dynamic and the static heuristic
by 6 %-73 % on average, depending on the parameter setting (e and C).

Varying Objective and Utility Function

Now, I consider the base scenario (Section 10.7.1) with heterogeneous resource allocation and
investigate the impact of using different utility functions. Instead of the logarithmic utility
function, I first consider maximizing UEs” data rate directly rather than their QoE by setting
U;(t) = rj(t) with U]min = 0 and U™ = 1000. I choose U™ = 1000, i.e., capping data rates
above 1000 Mbit/s, as example supporting even upcoming highly demanding and immersive
services [208]. Figure 10.8a shows UEs’ resulting average data rate for each algorithm. Since
UEs” data rates fluctuate heavily with their movement and distance to connected cells (due
to strong path loss), the error bars are comparably large here. Still, the results clearly show

that the proposed DRL approaches achieve similar average data rates as the per-step optimal

162

10.7. Evaluation

6 ’_I mmm Per-Step Opt. imm Dyn. £=0.5
y ‘ *I wam DeepCoMP Dyn. £=1.0
| * ,I A DD-CoMP e Static C=1
4 R LE B D3-CoMP Static C=2
AN
'S \}. N m=m Dyn. £20.0 Static C=3
s ANEH
: »1 JAQNEE 'w .
< }.Il\ B b4
| Hie=s LN HHﬁH“
-2
80 100 120

Cell-to-Cell Distance [m]

Figure 10.7.: DRL adapts to varying cell density. (Figure from [S19].)

brute force approach and outperform all other algorithms (by 18 %—49 % on average, depending
on € and C). Particularly, they learn to only connect one UE per cell with the highest channel
capacity. While this is unfair towards other UEs, e.g., at the cell edge, it maximizes the overall
data rate and therefore the objective in this case. This illustrates why maximizing only data
rate, as commonly done in related work, often does not reflect user satisfaction and easily leads
to undesired behavior.

As another example, in Figure 10.8b, I consider the case that UEs have a hard data rate re-
quirement (here 1 Mbit/s) that must be met. Hence, the utility follows a step function with
U;(t) = —10if rj(t) < 1Mbit/s and U;(t) = 10 otherwise. Figure 10.8b shows the resulting
average percentage of UEs with satisfied data rate requirement, i.e., with r;(t) > 1 Mbit/s. The
DRL approaches adapt to this scenario exceptionally well and outperform all other approaches,
ensuring that 26 %-38 % more UEs reach their data rate requirements compared to the dynamic
and static heuristic. They learn to select cells such that UEs" data rate is just high enough
(> 1 Mbit/s) and there are sufficient remaining radio resources to satisfy the data rate require-
ments of as many UEs as possible. Note that the DRL approaches are neither explicitly aware of
UEs’ required data rate nor the utility function but learn to adapt through feedback from UEs’
instantaneous utility. The dynamic and static heuristic are also not aware of the required data
rate but, unlike the DRL approaches, do not learn from experience. Instead, they tend to waste
radio resources by either providing unnecessarily high data rates to some UEs or connecting cell
edge users whose data rate still remains under the required threshold. Ultimately, this leads to
many UEs with unfulfilled data rate requirements.

Figure 10.8b shows that the DRL approaches even outperform the brute force approach. Again,
this is possible because the brute force approach is only optimal per step but not necessarily in the
long term. Indeed, brute force leads to suboptimal cell selection in this setting where one cell uses
proportional fair resource allocation, which depends on UEs” historic long-term data rate. While
the DRL approaches are not explicitly aware of the resource allocation schemes at the different
cells, they implicitly learn to select actions with possibly suboptimal instantaneous utility but
that optimize the average QoE in the long term. Overall, the DRL approaches effectively self-adapt
to different objectives and utility functions and outperform all other algorithms. Again, I used
these utility functions merely as examples for evaluation. In practice, the approaches do not

163

10. Self-Learning Coordination for Mobile Networks

require defining a utility function at all and it suffices to approximate UEs’ instantaneous QoE
(e.g., with machine learning [173]).

. £ —

L -

2 360- s

§10" o }‘

o g ".

5 5 1

14 _240 ‘

T] s <

T ° 0 O

S £ 20 [l 2

2 g 5 ; SNE 5

<0. L w ol L
52823225 ¢¢7 ° gggigLogaR
OF3IZITTLYYY 0C22TETTT OV
2QQ QR N WMo g2 2QQ QW MY o9
- QM S £ £ 8 8 += O M S € £ T &8
‘géﬂoé‘ﬁ'é‘wmw ‘géDDS‘S’S‘www
o o

Algorithm Algorithm

(a) Maximizing data rate (b) Hard data rate requirements

Figure 10.8.: DRL adapts to varying objectives and utility functions. (Figure from [S19].)

10.7.3. Generalization and Transfer Learning
Generalization

In Section 10.7.2, I train the DRL approaches from scratch in different scenarios and test how
well they adapt to each scenario, using identical UE positions and movement during training
and testing. Here, I consider pretrained DRL agents and evaluate their capability to generalize
to unseen, randomized UE movement without further training. Note that the approaches are
only indirectly aware of UEs’ position and movement via observed SINR and QoE.

When trained on a single UE movement pattern, Figure 10.9 (“Fixed”) shows that DeepCoMP
and D3-CoMP generalize poorly to new UE movement patterns (bad average QoE indicated
by negative values) while DD-CoMP generalizes much better. This is because DeepCoMP
and D3-CoMP learn cell selection separately for each UE, whereas DD-CoMP combines UEs’
experiences and learns a joint policy for all UEs. Based on the diverse experience from these
UEs, the joint policy is naturally more robust to different UE locations and movement. Accord-
ingly, Figure 10.9 (“Random”) shows that training on randomly varying UE movement greatly
improves generalization for DeepCoMP and D3-CoMP but also for DD-CoMP.

A challenge when training with randomized UE movement is the resulting high variance of
experience collected during training, which is known to negatively affect performance of DRL
approaches [97]. While randomized UE movement during training helps generalization, a simple
option to reduce variance is to increase discounting of rewards by smaller 7y (cf. Algorithm 8,
line 13). This decreases the weight of subsequent rewards and, thus, also reduces impact of
variance in later time steps. Figure 10.9 (“Discounted”) shows that stronger discounting with

164

10.7. Evaluation

v = 0.5 (instead of 7 = 0.99) increases average QoE when training the DRL approaches on
randomized UE movement, significantly outperforming the two heuristics by 40 %—-143 % on
average (“Baselines”).

THEN
4 NN G% :
W BEN RN Mekname:

'S
¢} ‘ﬁ
5—1 ‘ ‘ mmm Per-Step Opt. imm Dyn. £=0.5
ﬂ w4 DeepCoMP Dyn. e=1.0
-2 4 @»> DD-CoMP o Static C=1
3 L mW D3-CoMP Static C=2
B Dyn. £=0.0 Static C=3
-4
Fixed Random Discounted Baselines

Training Method

Figure 10.9.: Generalization to unseen UE movement. (Figure from [S19].)

Online Transfer Learning

As UE movement patterns may change over time, the pretrained DRL approaches can adapt
online to the current pattern using transfer learning. In fact, fine-tuning a pretrained policy to
new UE movement with transfer learning is much more efficient than training a new policy from
scratch, i.e., starting with a randomly initialized neural network. For DeepCoMDP, Figure 10.10
shows that such fine-tuning helps to quickly converge towards a very good policy (similar
to the per-step optimal brute-force approach). Compared to training from scratch, it requires
roughly half the amount of training steps until convergence—both for policies pretrained on
fixed and randomized UE movement.

In practice, a safe and efficient approach would be to pretain a robust policy on randomized
scenarios and then quickly and continuously fine-tune it for highly optimized QoE in the current
scenario (comparable to “Fine-tuned Rand.” in Figure 10.10). This approach quickly reaches and
exceeds the quality of the best heuristic (dynamic with e = 0.5) within just 6 training iterations
or 24k training steps (batch size |b| = 4000; Section 10.7.1). With ongoing transfer learning,
the approach exceeds the best heuristic by ultimately 13 %. DD-CoMP and D3-CoMP converge
even faster than DeepCoMP as shown in following Section 10.7.4. For a production system,
the efficiency of my prototype implementation could be further improved, e.g., through code
optimizations or hyperparameter tuning, leading to even faster online transfer learning.

165

10. Self-Learning Coordination for Mobile Networks

2 L
4 N
O B ” :
|.|J ..
e} 5
e} :
o 2] 3
S : = Per-Step Opt.
< Wl == = Dyn. €=0.5
:- ----- From Scratch
3 :. === Fine-tuned Fixed
‘:. ===+ Fine-tuned Rand.

0 25 50 75 100 125 150 175 200
Training Steps [in thousands]

Figure 10.10.: The DRL approaches support online transfer learning for efficiently fine-tuning pretrained
policies to new scenarios. (Figure adapted from [S19].)

0.0
[| w4 DeepCoMP
05 | @, DD-CoMP
: = mw D3-CoMP
w -
o [| mmm Dyn. €=0.0
G -10 = == Dyn.e=05
2 [| puum Dyn. €=1.0
< - e
-1.5 [| mrm Static C=1
Static C=2
Yere! Static C=3
-2.0

Algorithm

Figure 10.11.: DRL adapts to dynamic arrival of 15 UEs. (Figure from [S19].)

10.7.4. Scalability

Dynamic UE Arrival

I now explore a scenario similar to the base scenario (Section 10.7.1) but with up to 15 UEs
that arrive dynamically over time. Due to the significantly higher number of UEs and the
resulting combinatorial explosion, the brute-force approach becomes intractable and is therefore
omitted. Overall, the average QoE is much lower than in previous scenarios due to the higher
load and increased competition between UEs (Figure 10.11). With dynamically arriving UEs,
DeepCoMP’s observation and action spaces need to be configured for the maximum number of
UEs, here M™& = 15 (Section 10.4.1). In contrast, DD-CoMP and D3-CoMP have much smaller
observation and action spaces that are invariant in the number of active UEs and can simply
spawn new DRL agents whenever a new UE arrives (Sections 10.5.3 and 10.5.4). Consequently,
DD-CoMP and D3-CoMP scale better to many UEs and converge much faster (investigated

166

10.7. Evaluation

further in Section 10.7.4). Still, DeepCoMP also learns a good cell selection policy within
the given training steps (here, 1 million). All three DRL approaches adapt successfully to the
dynamically changing number of active UEs and outperform both heuristics with all parameter
settings by 14 %—67 %.

Large Scenario

I further investigate the scalability of the proposed DRL approaches in a larger scenario with
7 cells and up to 20 moving UEs. Figure 10.12 shows the learning curves of the DRL approaches
for 20 UEs, trained from scratch. DD-CoMP and D3-CoMP converge rapidly even in large
scenarios with many UEs since their observation and action spaces are small and invariant in
the number of UEs. In contrast, DeepCoMP’s observation and action spaces grow linearly with
more UEs, leading to higher complexity for larger scenarios, and indeed to much slower training
convergence. At 1 million training steps, DeepCoMP is still significantly worse than DD-CoMP
and D3-CoMP but keeps learning with more training and eventually catches up with DD-CoMP
and D3-CoMP.

0
)”——wu-uwwu-uwwu-ﬂ'u'ﬁ'é'
21 W
(
L
S 41 1
|
<, i
i DeepCoMP
gl | = = DD-CoMP
== . D3-CoMP

0.00 0.25 050 0.75 1.00 125 150 1.75 2.00
Training steps [in millions]

Figure 10.12.: DRL learning curves in a large scenario with 7 cells and 20 UEs. (Figure adapted from [S19].)

Figure 10.13 shows the final results of the DRL approaches trained for 2 million training steps,
compared to the other algorithms. Again, average QoE decreases from rather good (> 0) to
rather bad (< 0) with more UEs as competition increases. Due to the escalating complexity,
the optimal brute-force approach is intractable and omitted for 10 or more UEs. Thanks to its
global view and control of all UEs, DeepCoMP learns highly optimized cell selection and even
exceeds DD-CoMP and D3-CoMP for 5-15 UEs. As shown in Figure 10.12 for 20 UEs, it reaches
comparable performance within 2 million training steps but is not yet fully converged and
would likely further improve with even more training. In contrast, DD-CoMP and D3-CoMP
converge rapidly and still clearly outperform both heuristics with all parameter settings. For
example, DD-CoMP is 69 % better on average than the best heuristic (Dyn. € = 0.5) at 20 UEs.

167

10. Self-Learning Coordination for Mobile Networks

4 BN Per-Step Opt. imm Dyn. £=0.5
3 y pZam DeepCoMP Dyn. e=1.0
H A% DD-CoMP mmo Static C=1
Ly 2 ‘> * m D3-CoMP Static C=2
s ‘\’.ﬂ }*‘ s Dyn. £=0.0 Static C=3
> el il
AN== AN\ . b (K
<o ity e
2 *
5 10 15 20
Number of UEs

Figure 10.13.: Scalability to 7 cells and 5-20 UEs. (Figure from [S19].)

10.8. Conclusion

The three self-learning DRL approaches proposed in this chapter effectively self-adapt to various
scenarios and objectives. They consistently and considerably outperform existing approaches
without requiring detailed system knowledge or human instructions. DeepCoMP leverages its
global view and control to learn highly optimized results and is useful for network-initiated
cell selection when long training times are acceptable. Alternatively, DD-CoMP and D3-CoMP
are suitable for either network-initiated or mobile-initiated cell selection, converge rapidly, and
are particularly useful in practical large-scale scenarios. DD-CoMP learns a single, robust policy
and D3-CoMP learns separate policies that can adapt to heterogeneous UEs. The source code is
available online [S13] and can be used as a platform by others to study and evaluate their own
solutions.

In future work, DeepCoMP, DD-CoMP, and D3-CoMP could be combined into a hybrid solution
that dynamically switches to the most suitable approach. DD-CoMP and D3-CoMP could be
further improved through recent advances in cooperative multi-agent DRL, e.g., curriculum
learning [101]. Overall, I believe that the proposed DRL approaches are an important step
towards self-adaptive, effective CoMP and higher QoE in practice. This chapter demonstrates
that self-learning coordination techniques from wired networks (Chapters 8 and 9) can be
adjusted and effectively applied to coordination in wireless mobile networks. Hence, I expect
the proposed techniques to also carry over to other network control tasks, paving the way to
zero-touch network and service management [25].

168

11. Future Research and Conclusion

This chapter discusses promising future work (Section 11.1) and finally concludes my disserta-
tion (Section 11.2).

11.1. Future Research

While this PhD thesis covered a wide range of approaches for network and service coordination,
there are many options for interesting future research building upon and complementing my
contributions. My work focused on the underlying generic problem of network and service
coordination (Chapter 3), which is relevant for a variety of real-world use cases. To use the
proposed approaches in practice, they need to be tailored to the specific use case, integrating
with available frameworks to obtain necessary inputs for the approaches and to apply coor-
dination decisions. Chapter 2 discussed options for such integration, e.g., with Management
and Orchestration (MANO) systems for coordination in Network Function Virtualization (NFV)
scenarios.

Apart from these technical challenges, future research could focus on conceptual improve-
ments or extensions of the proposed coordination approaches. For example, the hierarchical
coordination approach (Chapter 5) repeatedly solves Mixed-Integer Linear Programs (MILPs)
for the different domains on each hierarchical level. While this yields good solution quality,
it becomes impractical in large, dynamic scenarios where quick decisions are required. Here,
the proposed two-phase procedure could be combined with a fast heuristic algorithm instead
of solving an MILP. This would maintain the benefit of hierarchical coordination, i.e., limited
global knowledge and control as well as better scalability to large scenarios, but could speed up
coordination significantly. Similarly, with recent progress in hierarchical Deep Reinforcement
Learning (DRL) [197], hierarchical self-learning coordination approaches are an interesting
research direction. Such approaches could strike a balance between centralized and distributed
self-learning coordination approaches proposed in Chapters 8-10. Here, DRL agents on a lower
hierarchical level could handle fast, time-critical coordination decisions locally (e.g., per-flow
scheduling and routing). Medium-level agents could handle service scaling and placement on
slightly longer time scales. Agents on higher hierarchical levels could focus on the bigger picture
and continuously optimize network and service coordination in the long term by maintaining
an overview and parametrizing and constraining lower-level agents. Alternatively, as discussed
in Sections 6.6 and 10.8, the proposed centralized and distributed coordination approaches
(conventional and/or learning-based) could be combined into a single hybrid approach. This
approach could delegate time-critical coordination decisions to the fast, distributed coordination
approaches (e.g., for small mice flows) and highly optimize other decisions with centralized
coordination approaches (e.g., for elephant flows [42]).

To ensure meaningful progress in network and service coordination, the community needs more
standardized procedures for evaluating and comparing proposed coordination approaches.

169

11. Future Research and Conclusion

Similar to widely adopted benchmarks in machine learning (e.g., ImageNet [54] for computer
vision or OpenAl Gym and Atari environments for reinforcement learning [32]), the networking
community needs common and open datasets, simulation environments, baselines, and agreed-
upon metrics for meaningful comparison. Consequently, all my coordination approaches as well
as environments and datasets used for learning and evaluation are publicly available as open
source to encourage reproduction and reuse [S25, 526, S11, S27, 528, S12, S17, 523, S14, S13, S29,
Sg]. Still, more effort is required to agree upon and adopt common processes for evaluation of
both conventional and machine learning approaches.

Generally, I see self-learning coordination as an exciting and promising way forward for
network and service coordination. As I showed in Chapters 8-10, these approaches self-adapt
to varying scenarios and objectives without detailed knowledge or human instruction and
can significantly outperform conventional coordination approaches. Nevertheless, there are a
number of open challenges regarding self-learning coordination that must be solved before
such approaches can be safely deployed in practice. Safe DRL is a field of active research and
focuses on avoiding potentially harmful actions during online training and inference while
still encouraging exploration [87, 223, 12, 41]. To avoid destructive coordination decisions (e.g.,
overloading available resources), safe DRL is also crucial for network and service coordination
and should be considered in future research. Safe deployment of self-learning coordination
approaches also requires bridging the gap from training on simulation to deployment on
production infrastructure, i.e., addressing the “simz2real gap” [125, 111, 130]. Moreover, there
are several other areas that are relevant for self-learning network and service coordination
in practice: Leveraging available expert knowledge to accelerate learning [226, S38], few-shot
transfer learning to quickly adapt to new scenarios [52], encoding and representation learning
for more useful observations [53, 254], explainability of coordination decisions [205], and
automated reward design and techniques for lifelong learning as coordination scenarios and
goals evolve over time [7, 133, 81]. Since my work in this PhD thesis already showed the
potential and benefits of self-learning coordination compared to conventional approaches, I
suggest to next focus more on safe deployment of such self-learning coordination approaches
than on further improving them. At the same time, explainability is important to build trust in
these novel coordination approaches. Once self-learning coordination approaches are deployed
successfully in practice, they can be improved iteratively (e.g., accelerating training, improving
observations, automating reward design), taking insights from use in production into account.
Overall, this PhD thesis significantly advances the state of the art in network and service
coordination but also offers exciting opportunities for even more powerful and better applicable
coordination approaches building upon my work.

11.2. Conclusion

My proposed approaches for network and service coordination each have different strengths
and weaknesses and are therefore suitable for different scenarios: The conventional coordination
approaches in Part I are useful for rather static and well-understood scenarios since they build
on corresponding expert knowledge to coordinate network and services almost optimally. The
centralized Bidirectional Scaling and Placement Coordination Approach (BsP) of Chapter 4
offers good coordination of few and long flows (Case I in Section 3.1.3) whereas the fully
distributed heuristics of Chapter 6 focus on rapid coordination of many, short flows (Case II).
The hierarchical coordination approach (Chapter 5) constitutes an intermediate solution, e.g.,
for medium to long flows in large networks.

170

11.2. Conclusion

To rely less on rigid rules and expert knowledge, a clear trend goes towards coordination
approaches using machine learning (Part II). These approaches leverage available data to
learn network and service coordination and can support existing conventional approaches
(Chapter 7). While manually collecting data is cumbersome and expensive, data collection
can often be automated, e.g., using automated service benchmarking or self-learning with
DRL. DRL approaches can learn network and service coordination entirely by themselves, self-
adapting to varying scenarios and objectives without detailed knowledge or human intervention
(Chapters 8-10). Coordination approaches building on machine learning, particularly DRL, are
therefore suitable for most practical scenarios, which are not perfectly understood and evolve
over time. Again, there is a trade-off between centralized (highly optimized) vs. distributed (fast
and scalable) coordination. This trade-off should be navigated depending on the considered
problem size, pace of change, and available compute resources. If in doubt, I recommend using
the distributed DRL approaches of Chapters 9 and 10 as sensible default approaches. These
approaches incorporate my insights and lessons learned from all previous approaches and
combine very good solution quality with fast, scalable, and self-adaptive coordination.

Overall, my PhD thesis presented approaches for automated and continuously optimized
network and service coordination, significantly improving over existing work. Such improved
coordination is critical to ensure great service quality with higher efficiency, leading to better user
experience, lower costs, and reduced environmental impact. I therefore believe my contributions
to be highly relevant for many real-world use cases and expect them to become even more
important in the future!

171

Acknowledgments

First and foremost, I want to thank Prof. Dr. Holger Karl for his advice over all these years. I
have truly enjoyed working with him and learning from him—be it through critical feedback
for papers or through our numerous fruitful discussions. I also gratefully acknowledge Prof. Dr.
Martina Zitterbart and Jun.-Prof. Dr. Sebastian Peitz for reviewing my dissertation.

Working in the computer networks group at Paderborn University has been great, thanks to the
collaboration and interaction with my colleagues. Particularly, the joint work and discussions
with Manuel, Sevil, Haitham, and Florian were fun and very helpful for my dissertation. I
also want to thank Ramin and Artur at Huawei Munich with whom I collaborated closely
and successfully over the last years. I really enjoyed our joint work and am proud of the
outcomes. I am also very thankful for the fantastic opportunity the Software Campus program
has offered me. Besides introducing the collaboration with Huawei Munich, the program’s
funding allowed me to lead my own research project (RealVNF) over two years. During these
years, I grew significantly, gaining first-hand experience in leadership and project management,
and built a network of friendly and useful connections. I am also thankful for the productive
and pleasant collaboration with Sven, Adnan, Haydar, Rafael, and Stefan, who I recruited
as student assistants for this and for later projects. Previously, I was involved in the 3-year
European project 5GTANGO. Being my first larger project, I learned immensely both about
collaboration in large projects and about good engineering practices. The project meetings
all over Europe were certainly a highlight during my PhD. I am truly thankful for all these
opportunities where I learned so much and where I was fortunate to meet and work with so
many wonderful people. I hope we stay in touch!

Outside of work, I am deeply thankful for the constant support from my family. My parents
motivated me to start a PhD in the first place and have been supporting me in all my decisions
and all phases of life—thank you! Similarly, I want to thank my sister and grandparents for
their constant support. Special thanks go to Elisa for her love, understanding, and support.

Lastly, I want to thank you, dear reader, for your interest and endurance, reading through
the many pages of my dissertation. I hope you have found my research inspiring and I look
forward to receiving feedback.

173

Acronyms

A3C Asynchronous Advantage Actor-Critic

ACKTR Actor-Critic using Kronecker-factored Trust Region
APl Application Programming Interface

AR Augmented Reality

AWS Amazon Web Services

BFS Breadth-First Search

BNG Broadband Network Gateway

BSP Bidirectional Scaling and Placement Coordination Approach (Chapter 4)
CapEx Capital Expenditure

cQl Channel Quality Indicator

CoMP Coordinated Multipoint

cpu Central Processing Unit

DDPG Deep Deterministic Policy Gradient

DFS Depth-First Search

DPI Deep Packet Inspection

DRL Deep Reinforcement Learning

ETSI European Telecommunications Standards Institute
GcAasP Greedy Coordination with Adaptive Shortest Paths (Section 6.4.1)
GCP Google Cloud Platform

GPs Global Positioning System

GPU Graphics Processing Unit

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IRTF Internet Research Task Force

loT Internet of Things

PRB Physical Resource Block

LB Load Balancing Coordination Approach (Baseline in Section 8.5.1)
LTE Long-Term Evolution

MANO Management and Orchestration

MDP Markov Decision Process

MEC Multi-Access Edge Computing

MILP Mixed-Integer Linear Program

MIMO Multiple Input and Multiple Output Radio

MLP Multi-Layer Perceptron

MMPP Markov-Modulated Poisson Process

MPLS Multiprotocol Label Switching

MSC Mobile-Services Switching Center

NFV Network Function Virtualization

NFVI NFV Infrastructure

NMRG Network Management Research Group

ONAP Open Network Automation Platform

175

11. Future Research and Conclusion

OpEx Operational Expenditure

0sM Open Source MANO

0SPF Open Shortest Path First

PCE Path Computation Element

PGW Packet Data Network Gateway

PPO Proximal Policy Optimization

POMDP Partially Observable Markov Decision Process
PRB Physical Resource Block

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

SBC Score-Based Coordination (Section 6.4.2)
SDN Software-Defined Networking

SFC Service Function Chaining

SIB System Information Broadcast

SINR Signal-to-Interference-and-Noise Ratio
SLA Service-Level Agreement

SP Shortest Path Coordination Approach (Baseline in Sections 8.5.1 and 9.5.1)
SVR Support Vector Regression

TCP Transmission Control Protocol

TPU Tensor Processing Unit

TRPO Trust Region Policy Optimization

UE User Equipment

VNE Virtual Network Embedding

VNF Virtual Network Function

VR Virtual Reality

WAN Wide Area Network

176

List of Algorithms

N

A

Bidirectional Scaling and Placement Coordination Approach (BSP) 33
Hierarchical Coordination Algorithm 44
Greedy Coordination with Adaptive Shortest Paths (GCASP) Algorithm 65
Flow Forwarding Using Adaptive Shortest Paths 65
Score-Based Coordination (SBC) Algorithm 68
DeepCoord Training and Inference 107

Deep Reinforcement Learning (DRL) With Centralized Training and Fully Dis-

tributed Inference L 131
DeepCoMP: Centralized Training and Inference 149
DD-CoMP: Centralized Training, Distributed Inference 154
D3-CoMP: Distributed Training and Inference 155

177

List of Figures

. Virtualization layers in Network Function Virtualization (NFV). 12

. Management, control, and data in Software-Defined Networking (SDN). 12
Network softwarization with NFVvand SDN. 13
Mlustration of cloud vs. edge computing. 14
Joint transmission using Coordinated Multipoint (CoMP). 15
The Abilene network topology. 19
Example services. 19

. Visualization of a flow and its attributes. 21
Case I: Few, long flows. 21
Flow times and durationsinCasel. 22
Case II: Many, short flows. 23
Flow times and durationsinCaseIl. 24
Mlustration of decision variables. 25
Comparison between the BSP heuristic and Mixed-Integer Linear Program (MILP)

(over-subscription and number of instances). 0L 35
Comparison between the BSP heuristic and MILP (total allocated data rate and
delay). 36

Scalability and online coordination of the BSP heuristic (load and node resources). 37
Scalability and online coordination of the BSP heuristic (number of instances and

total delay). 38
Example with k = 2 hierarchicallevels. 45
. Advertised information from lower to higher hierarchical levels. 46
. Auxiliary sink and source for the maximum flow problem. 47
Overlapping paths with shared node and link resources. 48
Advertised information on the lowest hierarchical level. 52
Flow conservation for routing traffic between placed instances. 56
Comparison of solution quality. 58
Comparison of wall-clock runtime. 59
Solution quality with varying amounts of advertised information. 60
Mustration of GCASP. e 67
Mustration of SBC o 67
Comparison of successful flows. 70
Comparison of end-to-end delay. 71
Comparison of node resource utilization. 72
Comparison of link resource utilization. 73
Percentage of successful flows and average end-to-end delay over time. 74
. Average node and link resource utilization over time. 75
Coordination decisions and runtimes on a logarithmic scale. 76

179

List of Figures

7.1.
7.2.
73

7.4.

10.1.
10.2.
10.3.
10.4.

10.5.
10.6.
10.7.
10.8.
10.9.

180

True resource requirements vs. fixed and linear approximation. 83
Placement options depending on instances’ resource allocation. 83
Modular workflow from raw performance measurements to machine learning-
based resource allocation and placement. 84
Root Mean Squared Error (RMSE) of different machine learning models on the
Squid dataset. 87
Squid data and approximations with machine learning. 88
RMSE of different machine learning models on the Nginx dataset. 89
. Nginx data and approximations with machine learning. 90
. Model impact on the total allocated CPU. 91
. Model impact on the number of placed instances. 92
Model impact on the total delay., 93
Prediction times and total algorithm runtimes with different models. 94
Custom utility function. L L L L 102
Runtime scheduling of incoming flows according to scheduling tables. 103
Impact of observing nodeload. oL 105
Neural network architecture of actor and critic. 106
DeepCoord framework overview 107
Successful flows over varying traffic patterns.o 111
Successful flows over varying capacities. 112
. Varying hard deadlines. 113
Generalization to new, unseen ingress nodes and traffic patterns. 114
. Trade-off between fewer instances and higher throughput. 115
. Trade-off between fewer nodes and higher throughput. 116
. Trade-off between lower delay and higher throughput. 117
. DeepCoord self-adapts to custom utility functions. 118
. DeepCoord learning curves on networks of varying sizes. 119
. DeepCoord scales to large networks. 120
Example with separate DRL agents at eachnode. 125
Example local observations of a DRL agent atnode vq.. 127
Centralized training and distributed inference. 130
Distributed DRL framework. 132
Successful flows over varying traffic patterns (fixed and Poisson). 135
Successful flows over varying traffic patterns (MMPP and real traffic). 136
The distributed DRL approach adapts to varying deadlines. 137
The distributed DRL approach generalizes to unseen scenarios. 138
The distributed DRL approach scales to large networks. 139
Ilustration of DeepCoMP’s POMDP. 147
Learning curves with different reward. 153
Architecture and deployment options. 0oL 155
Average Quality of Experience (QoE) with resource-fair and rate-fair resource
allocation. 160
Average QoE with proportional-fair and heterogeneous resource allocation. . . . 161
DRL adapts to varying number of User Equipments (UEs). 162
DRL adapts to varying cell density. 163
DRL adapts to varying objectives and utility functions. 164
Generalization to unseen UE movement. 165

List of Figures

10.10DRL support online transfer learning. 166
10.11DRL adapts to dynamic arrival of 15 UEs. 166
10.12DRL learning curves. 167
10.135calability to 7 cellsand 520 UEs. 168

181

List of Tables

3.1. Problem parameters L. 18
3.2. Decision variables L 25
5.1. Additional parameters forthe MILP 53
5.2. Decision variables for the MILP 54
9.1. Real-world network topologies [142] 138
10.1. Proposed DRL approaches for mobile networks 150
10.2. Evaluation parameter settings L .. 158

183

Bibliography: Own Work

[S1]

[S2]

[S3]

[S4]

[S5]

[S6]

[S7]

[S8]

Daniel Behnke, Marcel Miiller, Patrick-Benjamin Bok, Stefan Schneider, Manuel
Peuster, Holger Karl, Alberto Rocha, Miguel Mesquita, and José Bonnet. “NFV-
Driven Intrusion Detection for Smart Manufacturing.” In: IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN). IEEE.
2019, pp. 1-6 (cit. on p. 5).

Sevil Dréxler, Stefan Schneider, and Holger Karl. “Scaling and Placing Bidirec-
tional Services with Stateful Virtual and Physical Network Functions.” In: IEEE
Conference on Network Softwarization (NetSoft). IEEE. 2018, pp. 123-131 (cit. on
PP- 3, 7, 31, 32, 34, 39, 40, 61, 62, 80, 81, 98, 122).

Marcel Miiller, Daniel Behnke, Patrick-Benjamin Bok, Manuel Peuster, Stefan
Schneider, and Holger Karl. “5G as Key Technology for Networked Factories:
Application of Vertical-specific Network Services for Enabling Flexible Smart
Manufacturing.” In: IEEE International Conference on Industrial Informatics (INDIN).
IEEE. 2019, pp. 1495-1500 (cit. on p. 5).

Marcel Miiller, Daniel Behnke, Patrick-Benjamin Bok, Stefan Schneider, Manuel
Peuster, and Holger Karl. “Cloud-Native Threat Detection and Containment for
Smart Manufacturing.” In: IEEE Conference on Network Softwarization (NetSoft).

IEEE. 2020, pp. 347-349 (cit. on p. 5).

Marcel Miiller, Daniel Behnke, Patrick-Benjamin Bok, Stefan Schneider, Manuel
Peustery, and Holger Karl. “Putting NFV into Reality: Physical Smart Manu-
facturing Testbed.” In: IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). IEEE. 2019, pp. 1-6 (cit. on p. 5).

Askhat Nuriddinov, Wouter Tavernier, Didier Colle, Mario Pickavet, Manuel
Peustery, and Stefan Schneider. “Reproducible Functional Tests for Multi-scale
Network Services.” In: IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). IEEE. 2019, pp. 1-6 (cit. on p. 5).

Manuel Peuster, Stefan Schneider, Daniel Behnke, Marcel Miiller, Patrick-
Benjamin Bok, and Holger Karl. “Prototyping and Demonstrating 5G verticals:
The Smart Manufacturing Case.” In: IEEE Conference on Network Softwarization
(NetSoft). IEEE. 2019, pp. 236—238 (cit. on p. 5).

Manuel Peuster, Stefan Schneider, Frédéric Tobias Christ, and Holger Karl. “A
Prototyping Platform to Validate and Verify Network Service Header-based Ser-
vice Chains.” In: IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). IEEE. 2018, pp. 1-5 (cit. on p. 4).

185

Bibliography: Own Work

[S9]

[S10]

[S11]

[S12]

[S13]

[S14]

[S15]

[S16]

[S17]

[S18]

[S19]

186

Manuel Peuster, Stefan Schneider, and Holger Karl. “The Softwarised Network
Data Zoo.” In: IFIP/IEEE International Conference on Network and Service Manage-
ment (CNSM). ® Best Poster Award. IFIP/IEEE. 2019, pp. 1-5 (cit. on pp. 5, 26,
80, 85-87, 170).

Manuel Peuster, Stefan Schneider, Mengxuan Zhao, George Xilouris, Panagio-
tis Trakadas, Felipe Vicens, Wouter Tavernier, Thomas Soenen, Ricard Vilalta,
George Andreou, et al. “Introducing Automated Verification and Validation for
Virtualized Network Functions and Services.” In: IEEE Communications Magazine

57.5 (2019), pp. 96—102 (cit. on p. 4).
Haydar Qarawlus and Stefan Schneider. Distributed DRL Coordination GitHub
Repository. https://github.com/RealVNF/distributed-drl-coordination.
2020 (cit. on pp. 121, 122, 132, 170).

Stefan Schneider. BSP GitHub Repository. https://github.com/CN-UPB/B-
JointSP. 2018 (cit. on pp. 31, 35, 70, 170).

Stefan Schneider. DeepCoMP, DD-CoMP, and D3-CoMP GitHub Repository. https:
//github.com/CN-UPB/DeepCoMP. 2021 (cit. on pp. 141, 143, 157, 168, 170).

Stefan Schneider. Machine Learning for Dynamic Resource Allocation GitHub Repos-
itory. https://github.com/CN-UPB/ml-for-resource-allocation. 2020
(cit. on pp. 79, 81, 86, 170).

Stefan Schneider. “Specifying, Scaling, Placing, and Reusing Bidirectional For-
warding Graphs of Virtual Network Functions.” Master’s Thesis. Paderborn
University, Germany, 2017 (cit. on pp. 7, 31).

Stefan Schneider, Sevil Draxler, and Holger Karl. “Trade-Offs in Dynamic Re-
source Allocation in Network Function Virtualization.” In: IEEE Global Commu-
nications Conference (GLOBECOM) Workshops. IEEE. 2018, pp. 13 (cit. on pp. 4,
26, 41).

Stefan Schneider and Mirko Jiirgens. Hierarchical Coordination GitHub Repository.
https://github.com/CN-UPB/hierarchical - coordination. 2021 (cit. on
PP- 39, 40, 57, 170).

Stefan Schneider, Mirko Jiirgens, and Holger Karl. “Divide and Conquer: Hierar-
chical Network and Service Coordination.” In: IFIP/IEEE International Symposium
on Integrated Network Management (IM). IFIP /IEEE. 2021 (cit. on pp. 3, 7, 17, 39,
45, 46, 52, 56, 58-60, 80).

Stefan Schneider, Holger Karl, Ramin Khalili, and Artur Hecker. “DeepCoMP:
Coordinated Multipoint Using Multi-Agent Deep Reinforcement Learning.” In:
IEEE Transactions on Network and Service Management (TNSM) (2022). @ Under
Review & Invited Talk at Ray Summit 2021 (cit. on pp. 4, 9, 141, 147, 153, 155,
160-168).

https://github.com/RealVNF/distributed-drl-coordination
https://github.com/CN-UPB/B-JointSP
https://github.com/CN-UPB/B-JointSP
https://github.com/CN-UPB/DeepCoMP
https://github.com/CN-UPB/DeepCoMP
https://github.com/CN-UPB/ml-for-resource-allocation
https://github.com/CN-UPB/hierarchical-coordination

Bibliography: Own Work

[S20]

[S21]

[S22]

[S23]

[S24]

[S25]

[S26]

[S27]

[S28]

[S29]

[S30]

Stefan Schneider, Ramin Khalili, Adnan Manzoor, Haydar Qarawlus, Rafael
Schellenberg, Holger Karl, and Artur Hecker. RealVNF Project Website: Improved
Coordination of Chained Virtual Network Functions Under Realistic Conditions. https:
//realvnf.github.io/. 2021 (cit. on pp. 5, 8, 9, 97, 121).

Stefan Schneider, Ramin Khalili, Adnan Manzoor, Haydar Qarawlus, Rafael
Schellenberg, Holger Karl, and Artur Hecker. “Self-Driving Network and Service
Coordination Using Deep Reinforcement Learning.” In: IFIP/IEEE Conference
on Network and Service Management (CNSM). ¥ Best Student Paper Award
% Invited Talk at the Internet Engineering Task Force (IETF) 110 Meeting.
IFIP /IEEE. 2020 (cit. on pp. 4, 8, 17, 97, 123).

Stefan Schneider, Ramin Khalili, Adnan Manzoor, Haydar Qarawlus, Rafael
Schellenberg, Holger Karl, and Artur Hecker. “Self-Learning Multi-Objective
Service Coordination Using Deep Reinforcement Learning.” In: IEEE Transactions
on Network and Service Management (TNSM) 18.3 (2021), pp. 3829—3842 (cit. on
PP- 4, 8, 17, 97, 102, 103, 105, 107, 111-120).

Stefan Schneider and Lars Klenner. Fully Distributed Network and Service Co-
ordination GitHub Repository. https ://github.com/CN-UPB/distributed-
coordination. 2020 (cit. on pp. 61, 62, 70, 170).

Stefan Schneider, Lars Dietrich Klenner, and Holger Karl. “Every Node for Itself:
Fully Distributed Service Coordination.” In: IFIP/IEEE Conference on Network and
Service Management (CNSM). IFIP /IEEE. 2020 (cit. on pp. 3, 7, 61, 67, 70-76, 80).

Stefan Schneider, Adnan Manzoor, Haydar Qarawlus, and Rafael Schellenberg.
DeepCoord GitHub Repository. https://github.com/RealVNF/DeepCoord. 2021
(cit. on pp. 97-99, 108, 170).

Stefan Schneider, Adnan Manzoor, Haydar Qarawlus, Rafael Schellenberg, and
Sven Uthe. coord-sim GitHub Repository. https://github.com/RealVNF/coord-
sim. 2020 (cit. on pp. 97, 108, 132, 170).

Stefan Schneider, Adnan Manzoor, Haydar Qarawlus, and Sven Uthe. Base-
line Algorithms GitHub Repository. https://github.com/RealVNF/baseline-
algorithms. 2020 (cit. on p. 170).

Stefan Schneider, Adnan Manzoor, Haydar Qarawlus, and Sven Uthe. BSP
Adapter GitHub Repository. https://github.com/RealVNF/bjointsp-adapter.
2020 (cit. on p. 170).

Stefan Schneider and Manuel Peuster. Generic Placement Emulation Framework
GitHub Repository. https://github. com/CN-UPB/placement-emulation. 2018
(cit. on p. 170).

Stefan Schneider, Manuel Peuster, Daniel Behnke, Marcel Miiller, Patrick-
Benjamin Bok, and Holger Karl. “Putting 5G into Production: Realizing a Smart
Manufacturing Vertical Scenario.” In: European Conference on Networks and Com-
munications (EuCNC). IEEE. 2019, pp. 305-309 (cit. on pp. 5, 16).

187

https://realvnf.github.io/
https://realvnf.github.io/
https://github.com/CN-UPB/distributed-coordination
https://github.com/CN-UPB/distributed-coordination
https://github.com/RealVNF/DeepCoord
https://github.com/RealVNF/coord-sim
https://github.com/RealVNF/coord-sim
https://github.com/RealVNF/baseline-algorithms
https://github.com/RealVNF/baseline-algorithms
https://github.com/RealVNF/bjointsp-adapter
https://github.com/CN-UPB/placement-emulation

Bibliography: Own Work

[S31]

[S32]

[S33]

[S34]

[S35]

[S36]

[S371

[S38]

[S39]

188

Stefan Schneider, Manuel Peuster, Kai Hannemann, Daniel Behnke, Marcel
Miiller, Patrick-Benjamin Bok, and Holger Karl. ““Producing Cloud-Native”:
Smart Manufacturing Use Cases on Kubernetes.” In: IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN). IEEE. 2019,
pp- 12 (cit. on pp. 5, 16).

Stefan Schneider, Manuel Peuster, and Holger Karl. “A Generic Emulation
Framework for Reusing and Evaluating VNF Placement Algorithms.” In: IEEE
Conference on Network Function Virtualization and Software Defined Networks (NFV-
SDN). IEEE. 2018, pp. 1-6 (cit. on p. 4).

Stefan Schneider, Manuel Peuster, Wouter Tavernier, and Holger Karl. “A Fully
Integrated Multi-Platform NFV SDK.” In: IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN). IEEE. 2018, pp. 1—2 (cit.
on pp. 4, 16, 17).

Stefan Schneider, Haydar Qarawlus, and Holger Karl. “Distributed Online Ser-
vice Coordination Using Deep Reinforcement Learning.” In: IEEE International
Conference on Distributed Computing Systems (ICDCS). IEEE. 2021 (cit. on pp. 4, 9,
17, 24, 25, 121, 125, 127, 130, 132, 135-139).

Stefan Schneider, Narayanan Puthenpurayil Satheeschandran, Manuel Peuster,
and Holger Karl. “Machine Learning for Dynamic Resource Allocation in Net-
work Function Virtualization.” In: IEEE Conference on Network Softwarization
(NetSoft). IEEE. 2020, pp. 122-130 (cit. on pp. 4, 8, 79, 83, 84, 87-94, 99).

Stefan Schneider, Arnab Sharma, Holger Karl, and Heike Wehrheim. “Spec-
ifying and Analyzing Virtual Network Services Using Queuing Petri Nets.”
In: IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
IFIP/IEEE. 2019, pp. 116-124 (cit. on pp. 4, 19).

Peter Twamley, Marcel Miiller, Patrick-Benjamin Bok, George K. Xilouris, Chris-
tos Sakkas, Michail Alexandros Kourtis, Manuel Peuster, Stefan Schneider,
Panagiotis Stavrianos, and Dimosthenis Kyriazis. “5sGTANGO: An Approach
for Testing NFV Deployments.” In: European Conference on Networks and Commu-
nications (EuCNC). 2018. po1: 10.1109/EuCNC.2018.8442844 (cit. on p. 4).

Stefan Werner, Stefan Schneider, and Holger Karl. “Use What You Know: Net-
work and Service Coordination Beyond Certainty.” In: IEEE/IFIP Network Opera-
tions and Management Symposium (NOMS). @ Under Review. IEEE/IFIP. 2022
(cit. on pp. 4, 170).

Anastasios Zafeiropoulos, Eleni Fotopoulou, Manuel Peuster, Stefan Schnei-
der, Panagiotis Gouvas, Daniel Behnke, Marcel Miiller, Patrick-Benjamin Bok,
Panagiotis Trakadas, Panagiotis Karkazis, et al. “Benchmarking and Profiling
5G Verticals” Applications: An Industrial IoT Use Case.” In: IEEE Conference on
Network Softwarization (NetSoft). IEEE. 2020, pp. 310-318 (cit. on p. 5).

https://doi.org/10.1109/EuCNC.2018.8442844

Bibliography: Own Work

[S40] Mengxuan Zhao et al. “Verification and Validation Framework for 5G Network
Services and Apps.” In: IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). 2017, pp. 321—326 (cit. on p. 4).

189

Bibliography: Others’ Work

[1]

[2]

[9]

3GPP. LTE Release 11: 3GPP TR 36.819. Tech. rep. Version 11.1.0. 3rd Gen-
eration Partnership Project (3GPP), 2012. URL: https : / / www . 3gpp . org /
specifications/releases/69-release-11 (cit. on pp. 15, 141, 142).

3GPP. Release 15: NR; Radio Resource Control (RRC); Protocol specification; TS
38.331. Tech. rep. Version 15.13.0. 3rd Generation Partnership Project (3GPP),
2021 (cit. on p. 156).

5GTANGO project consortium. 5GTANGO Development and Validation Platform for
Global Industry-specific Network Services and Apps. https://5gtango.eu (accessed
Jan 21, 2021). 2021 (cit. on pp. 5, 12).

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
“Tensorflow: A system for large-scale machine learning.” In: USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 2016, pp. 265-283 (cit. on
pp- 108, 132).

Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. “Mobile edge comput-
ing: A survey.” In: IEEE Internet of Things Journal 5.1 (2017), pp. 450—465 (cit. on
p- 14).

Sherif Abdelwahab, Bechir Hamdaoui, Mohsen Guizani, and Taieb Znati. “Net-
work function virtualization in 5G.” In: IEEE Communications Magazine 54.4
(2016), pp. 84-91 (cit. on p. 1).

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman.
“Policy and value transfer in lifelong reinforcement learning.” In: International
Conference on Machine Learning (ICML). PMLR. 2018, pp. 20—29 (cit. on p. 170).

Satyam Agarwal, Francesco Malandrino, Carla-Fabiana Chiasserini, and Swades
De. “Joint VNF placement and CPU allocation in 5G.” In: IEEE International
Conference on Computer Communications INFOCOM). IEEE. 2018, pp. 1943-1951
(cit. on p. 2).

Shohreh Ahvar, Hnin Pann Phyu, Sachham Man Buddhacharya, Ehsan Ahvar,
Noel Crespi, and Roch Glitho. “CCVP: Cost-efficient centrality-based VNF
placement and chaining algorithm for network service provisioning.” In: IEEE
Conference on Network Softwarization (NetSoft). IEEE. 2017, pp. 1-9 (cit. on pp. 40,
61, 62).

191

https://www.3gpp.org/specifications/releases/69-release-11
https://www.3gpp.org/specifications/releases/69-release-11
https://5gtango.eu

Bibliography: Others' Work

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

192

Abdelkader Aissioui, Adlen Ksentini, Abdelhak Mourad Gueroui, and Tarik
Taleb. “On enabling 5G automotive systems using follow me edge-cloud con-
cept.” In: IEEE Transactions on Vehicular Technology 67.6 (2018), pp. 5302-5316
(cit. on p. 15).

Mohammad Abu Alsheikh, Dinh Thai Hoang, Dusit Niyato, Hwee-Pink Tan,
and Shaowei Lin. “Markov decision processes with applications in wireless
sensor networks: A survey.” In: IEEE Communications Surveys & Tutorials 17.3

(2015), pp. 1239-1267 (cit. on p. 143).

Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Konighofer,
Scott Niekum, and Ufuk Topcu. “Safe reinforcement learning via shielding.” In:
AAAI Conference on Artificial Intelligence. 2018 (cit. on p. 170).

Amazon. Amazon Web Services (AWS). https://aws.amazon.com/ (Feb 11, 2021).
2021 (cit. on p. 14).

Amazon Web Services (AWS). AWS Docs (Traffic Dials). https://docs . aws.
amazon . com/ global - accelerator /latest /dg/about - endpoint - groups -
traffic-dial.html (March 18, 2020). 2020 (cit. on p. 103).

David Amzallag, Reuven Bar-Yehuda, Danny Raz, and Gabriel Scalosub. “Cell
selection in 4G cellular networks.” In: IEEE Transactions on Mobile Computing 12.7
(2013), pp. 1443-1455 (cit. on pp. 142, 144, 156).

Marcin Andrychowicz, Anton Raichuk, Piotr Stariczyk, Manu Orsini, Sertan
Girgin, Raphaél Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin,
Marcin Michalski, et al. “What Matters In On-Policy Reinforcement Learn-
ing? A Large-Scale Empirical Study.” In: International Conference on Learning
Representations (ICLR). 2021 (cit. on p. 159).

Sylvain Arlot and Alain Celisse. “A survey of cross-validation procedures for
model selection.” In: Statistics surveys 4 (2010), pp. 40—79 (cit. on p. 88).

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
et al. “A view of cloud computing.” In: Communications of the ACM 53.4 (2010),
pp- 50-58 (cit. on p. 14).

Jose A Ayala-Romero, Andres Garcia-Saavedra, Marco Gramaglia, Xavier Costa-
Perez, Albert Banchs, and Juan J Alcaraz. “vrAln: A deep learning approach
tailoring computing and radio resources in virtualized RANs.” In: International
Conference on Mobile Computing and Networking (MobiCom). 2019, pp. 1-16 (cit. on
P- 144).

Sara Ayoubi, Noura Limam, Mohammad A Salahuddin, Nashid Shahriar, Raouf
Boutaba, Felipe Estrada-Solano, and Oscar M Caicedo. “Machine learning for
cognitive network management.” In: IEEE Communications Magazine 56.1 (2018),
pp- 158-165 (cit. on p. 82).

https://aws.amazon.com/
https://docs.aws.amazon.com/global-accelerator/latest/dg/about-endpoint-groups-traffic-dial.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/about-endpoint-groups-traffic-dial.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/about-endpoint-groups-traffic-dial.html

Bibliography: Others’ Work

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slomin-
ski, et al. “Serverless computing: Current trends and open problems.” In: Re-
search Advances in Cloud Computing. Springer, 2017, pp. 1—20 (cit. on p. 19).

Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, Raouf Boutaba, and
Otto Carlos Muniz Bandeira Duarte. “Orchestrating Virtualized Network Func-
tions.” In: IEEE Transactions on Network and Service Management (TNSM) 13.4
(2016), pp. 725—739 (cit. on pp. 40, 61, 62).

Md Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, and Raouf Boutaba.
“On Orchestrating Virtual Network Functions.” In: IEEE Conference on Network
and Service Management (CNSM). IEEE. 2015, pp. 50-56 (cit. on p. 40).

Michael Till Beck, Andreas Fischer, Hermann de Meer, Juan Felipe Botero,
and Xavier Hesselbach. “A distributed, parallel, and generic virtual network
embedding framework.” In: IEEE International Conference on Communications
(ICC). IEEE. 2013, pp. 3471-3475 (cit. on p. 62).

Chafika Benzaid and Tarik Taleb. “Al-driven zero touch network and service
management in 5G and beyond: Challenges and research directions.” In: IEEE
Network 34.2 (2020), pp. 186—194 (cit. on p. 168).

CJ. Bernardos, A. Rahman, JC. Zuniga, LM. Contreras, P. Aranda, and P. Lynch.
Network Virtualization Research Challenges. REC 8568. RFC Editor, 2019 (cit. on
p- 11).

Anthony Beylerian and Tomoaki Ohtsuki. “Multi-point fairness in resource
allocation for C-RAN downlink CoMP transmission.” In: EURASIP Journal on
Wireless Communications and Networking 2016.1 (2016), pp. 1—10 (cit. on pp. 142,
144, 159).

Deval Bhamare, Mohammed Samaka, Aiman Erbad, Raj Jain, Lav Gupta, and
H Anthony Chan. “Optimal virtual network function placement in multi-cloud
service function chaining architecture.” In: Computer Communications 102 (2017),
pp- 1-16 (cit. on pp. 40, 62, 97, 99, 122).

Marcel Blocher, Ramin Khalili, Lin Wang, and Patrick Eugster. “Letting off
STEAM: Distributed Runtime Traffic Scheduling for Service Function Chaining.”
In: IEEE International Conference on Computer Communications (INFOCOM). IEEE.
2020 (cit. on pp. 99, 123).

André B Bondi. “Characteristics of Scalability and Their Impact on Perfor-
mance.” In: ACM International Workshop on Software and Performance (WOSP).
2000, pp. 195203 (cit. on pp. 6, 45).

Leo Breiman. “Random forests.” In: Machine learning 45.1 (2001), pp. 5-32 (cit. on
p- 87).

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. “OpenAl Gym.” In: arXiv preprint
arXiv:1606.01540 (2016) (cit. on pp. 108, 132, 170).

193

Bibliography: Others' Work

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

194

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and
Gaél Varoquaux. “API design for machine learning software: Experiences from
the scikit-learn project.” In: ECML PKDD Workshop: Languages for Data Mining
and Machine Learning. 2013, pp. 108-122 (cit. on p. 86).

Canonical. Linux containers. (accessed Feb 10, 2021). 2021. URL: https ://
linuxcontainers.org/ (cit. on p. 14).

Pedro Casas, Alessandro D’Alconzo, Florian Wamser, Michael Seufert, Bruno
Gardlo, Anika Schwind, Phuoc Tran-Gia, and Raimund Schatz. “Predicting QoE
in cellular networks using machine learning and in-smartphone measurements.”
In: International Conference on Quality of Multimedia Experience (QoMEX). IEEE.
2017, pp- 1-6 (cit. on p. 156).

Mohit Chamania and Admela Jukan. “A Survey of Inter-Domain Peering and
Provisioning Solutions for the Next Generation Optical Networks.” In: IEEE
Communications Surveys & Tutorials 11.1 (2009), pp- 33—51 (cit. on p. 42).

Tzu-Wen Chang, Tung-Wei Kuo, and Ming-Jer Tsai. “Fair VNF Provisioning in
NFV Clusters via Node Labeling.” In: IEEE Global Communications Conference
(GLOBECOM). IEEE. 2020, pp. 1-6 (cit. on pp. 8o, 81).

Hong Chen and Avi Mandelbaum. “Discrete flow networks: Bottleneck analysis
and fluid approximations.” In: Mathematics of operations research 16.2 (1991),
Pp- 408-446 (cit. on p. 20).

Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji, and
Medhi Bennis. “Optimized computation offloading performance in virtual edge
computing systems via deep reinforcement learning.” In: IEEE Internet of Things
Journal 6.3 (2018), pp. 4005-4018 (cit. on pp. 142, 144).

Yang Chen and Jie Wu. “Flow Scheduling of Service Chain Processing in a
NFV-based Network.” In: I[EEE Transactions on Network Science and Engineering
(2020) (cit. on p. 99).

Richard Cheng, Gabor Orosz, Richard M Murray, and Joel W Burdick. “End-
to-end safe reinforcement learning through barrier functions for safety-critical
continuous control tasks.” In: AAAI Conference on Artificial Intelligence. Vol. 33.
01. 2019, pp- 3387-3395 (cit. on p. 170).

Anshuman Chhabra and Mariam Kiran. “Classifying elephant and mice flows
in high-speed scientific networks.” In: International Workshop on Innovating the
Network for Data-Intensive Science (INDIS) (2017), pp. 1-8 (cit. on pp. 76, 169).

Cloud Native Computing Foundation. KubeEdge: An Open Platform to Enable Edge
Computing. https://kubeedge.io/en/ (Feb 11, 2021). 2021 (cit. on p. 14).

Cloud Native Computing Foundation. Kubernetes Documentation: Kubernetes
Scheduler. (accessed Feb 10, 2021). 2021. URL: https://kubernetes.io/docs/
concepts/scheduling-eviction/kube-scheduler/ (cit. on p. 15).

https://linuxcontainers.org/
https://linuxcontainers.org/
https://kubeedge.io/en/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

Bibliography: Others’ Work

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Cloud Native Computing Foundation. Kubernetes: Production-Grade Container
Orchestration. https://kubernetes.io/ (Jan 31, 2020). 2021 (cit. on pp. 14, 19,
25, 108).

Cloud Native Computing Foundation. Prometheus: Monitoring System & Time
Series Database. https://prometheus.io/ (accessed Sep 8, 2020). 2020 (cit. on

p- 67).
Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny Raz. “Near

optimal placement of virtual network functions.” In: IEEE Conference on Computer
Communications (INFOCOM). 2015, pp. 1346—1354 (cit. on p. 81).

Ray Contributors. Ray GitHub Repository. https://github.com/ray-project/
ray. 2021 (cit. on p. 6).

TensorFlow Contributors. TensorFlow Lite. https://www.tensorflow.org/lite.
2021 (cit. on p. 157).

Qimei Cui, Hui Wang, Pengxiang Hu, Xiaofeng Tao, Ping Zhang, Jyri Hamalainen,
and Liang Xia. “Evolution of limited-feedback CoMP systems from 4G to 5G:

CoMP features and limited-feedback approaches.” In: IEEE Vehicular Technology

Magazine 9.3 (2014), pp. 94-103 (cit. on p. 15).

Richard Cziva, Christos Anagnostopoulos, and Dimitrios P Pezaros. “Dynamic,
latency-optimal vINF placement at the network edge.” In: IEEE International

Conference on Computer Communications (INFOCOM). IEEE. 2018, pp. 693-701

(cit. on p. 1).

Christopher R Dance, Julien Perez, and Théo Cachet. “Conditioned Reinforce-
ment Learning for Few-Shot Imitation.” In: International Conference on Machine
Learning (ICML). PMLR. 2021, pp. 2376—2387 (cit. on p. 170).

Tim De Bruin, Jens Kober, Karl Tuyls, and Robert Babuska. “Integrating state
representation learning into deep reinforcement learning.” In: IEEE Robotics and
Automation Letters 3.3 (2018), pp. 1394—1401 (cit. on p. 170).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet:
A large-scale hierarchical image database.” In: 2009 IEEE conference on computer
vision and pattern recognition. Ieee. 2009, pp. 248-255 (cit. on p. 170).

D. Dhody, Y. Lee, D. Ceccarelli, J. Shin, and D. King. Hierarchical Stateful Path
Computation Element (PCE). Internet Request for Comments RFC 8751. IETF,
2020 (cit. on p. 41).

Mouhamad Dieye, Shohreh Ahvar, Jagruti Sahoo, Ehsan Ahvar, Roch Glitho,
Halima Elbiaze, and Noel Crespi. “CPVNF: Cost-efficient proactive VNF place-
ment and chaining for value-added services in content delivery networks.” In:
IEEE Transactions on Network and Service Management 15.2 (2018), pp. 774-786
(cit. on p. 81).

Edsger W. Dijkstra. “A note on two problems in connexion with graphs.” In:
Numerische Mathematik 1.1 (1959), pp. 269—271 (cit. on pp. 65, 68).

195

https://kubernetes.io/
https://prometheus.io/
https://github.com/ray-project/ray
https://github.com/ray-project/ray
https://www.tensorflow.org/lite

Bibliography: Others' Work

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

196

Richard Douville, Jean-louis Le Roux, Jean-louis Rougier, and Stefano Secci. “A
Service Plane Over the PCE Architecture for Automatic Multidomain Connection-
Oriented Services.” In: IEEE Communications Magazine 46.6 (2008), pp. 94—102
(cit. on p. 41).

Sevil Dréxler. “Scaling, Placement, and Routing for Pliable Virtualized Com-
posed Services.” PhD thesis. University of Paderborn, Germany, 2019 (cit. on
pp- 31, 80, 81).

Sevil Dréaxler and Holger Karl. “SPRING: Scaling, Placement, and Routing of
Heterogeneous Services with Flexible Structures.” In: IEEE Conference on Network
Softwarization (NetSoft). IEEE. 2019, pp. 115-123 (cit. on pp. 42, 81).

Sevil Driaxler, Holger Karl, and Zoltdn Adam Mann. “JASPER: Joint Optimiza-
tion of Scaling, Placement, and Routing of Virtual Network Services.” In: IEEE
Transactions on Network and Service Management (TNSM) 15.3 (2018), pp. 946—960

(cit. on pp. 2, 24, 39, 41, 99).
Harris Drucker, Chris JC Burges, Linda Kaufman, Alex Smola, Vladimir Vapnik,

et al. “Support Vector Regression Machines.” In: Advances in Neural Information
Processing Systems 9 (1997), pp. 155-161 (cit. on pp. 86, 87).

Gabriel Dulac-Arnold, Nir Levine, Daniel] Mankowitz, Jerry Li, Cosmin Padu-
raru, Sven Gowal, and Todd Hester. “Challenges of real-world reinforcement
learning: definitions, benchmarks and analysis.” In: Machine Learning (2021),

pp- 1-50 (cit. on p. 143).
Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. “Challenges of real-

world reinforcement learning.” In: International Conference on Machine Learning
(ICML) Workshop on RL4RealLife. 2019 (cit. on p. 98).

Jack Edmonds and Richard M Karp. “Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems.” In: Journal of the ACM (JACM) 19.2
(1972), pp- 248—264 (cit. on p. 47).

Medhat Elsayed, Kevin Shimotakahara, and Melike Erol-Kantarci. “Machine
Learning-based Inter-Beam Inter-Cell Interference Mitigation in mmWave.” In:
IEEE International Conference on Communications (ICC). IEEE. 2020, pp. 1-6 (cit. on
PP- 144, 146).

Kenneth Emancipator and Martin H Kroll. “A quantitative measure of nonlin-
earity.” In: Clinical chemistry 39.5 (1993), pp. 766—772 (cit. on p. 81).

Vincenzo Eramo, Emanuele Miucci, Mostafa Ammar, and Francesco Giacinto
Lavacca. “An approach for service function chain routing and virtual function
network instance migration in network function virtualization architectures.” In:
IEEE/ACM Transactions on Networking 25.4 (2017), pp. 2008-2025 (cit. on p. 81).

Yasser Al-Eryani and Ekram Hossain. “The D-OMA method for massive multiple
access in 6G: Performance, security, and challenges.” In: IEEE Vehicular Technology

Magazine 14.3 (2019), pp. 92—99 (cit. on pp. 15, 141).

Bibliography: Others’ Work

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

ETSI. Network Function Virtualization: Introductory White Paper. https://portal.
etsi.org/NFV/NFV_White_Paper.pdf (accessed on Feb 10, 2021). 2012 (cit. on
p- 11).

ETSI GS NFV-IFA o11 V3.2.1. Network Function Virtualization (NFV) Release 3;
Management and Orchestration; VNF Descriptor and Packaging Specification. 2019
(cit. on p. 80).

ETSI NFV ISG. Network Functions Virtualisation (NFV): Use Cases. Group Specifi-
cation ETSI GS NFV oo1 V1.1.1. 2013 (cit. on p. 35).

ETSI OSM. Open Source MANO Documentation: SDN Controllers/WIMs as Managers
of Software-Defined Network Platforms. (accessed Feb 10, 2021). 2021. URL: https:
//osm.etsi.org/wikipub/index . php/0SM_Scope _and _Functionality#
SDN _Controllers . 2FWIMs _as_managers _of _Software-Defined_Network_
Platforms (cit. on p. 13).

ETSI OSM. Open Source MANO: Open Source NFV Management and Orchestration
(MANO) software stack aligned with ETSI NFV. https://osm.etsi.org (accessed
Feb 10, 2021). 2021 (cit. on p. 12).

Xincai Fei, Fangming Liu, Hong Xu, and Hai Jin. “Adaptive VNF scaling and
flow routing with proactive demand prediction.” In: IEEE International Conference
on Computer Communications (INFOCOM). IEEE. 2018, pp. 486—494 (cit. on pp. 82,
99)-

Min Feng, Jianxin Liao, Sude Qing, Tonghong Li, and Jingyu Wang. “COVE:
Co-operative virtual network embedding for network virtualization.” In: Journal
of Network and Systems Management 26.1 (2018), pp. 79—107 (cit. on p. 62).

Markus Fiedler and Tobias Hofdfeld. “Quality of experience-related differential
equations and provisioning-delivery hysteresis.” In: ITC Specialist Seminar on
Multimedia Applications-Traffic, Performance and QoE. IEICE. 2010 (cit. on pp. 142,
146, 158).

Wiladyslaw Findeisen, Frederic N Bailey, Mieczyslaw Brdys, Krzysztof Mali-
nowski, Piotr Tatjewski, and Adam Wozniak. Control and Coordination in Hierar-
chical Systems. John Wiley & Sons, 1980 (cit. on p. 41).

Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann De Meer,
and Xavier Hesselbach. “Virtual network embedding: A survey.” In: IEEE
Communications Surveys & Tutorials 15.4 (2013), pp. 1888-1906 (cit. on pp. 41, 62,
63).

Wolfgang Fischer and Kathleen Meier-Hellstern. “The Markov-modulated Pois-
son process (MMPP) cookbook.” In: Performance evaluation 18.2 (1993), pp. 149—
171 (cit. on pp. 112, 135).

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter

Abbeel. “Reverse curriculum generation for reinforcement learning.” In: Confer-
ence on Robot Learning. PMLR. 2017, pp. 482—495 (cit. on p. 170).

197

https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://osm.etsi.org/wikipub/index.php/OSM_Scope_and_Functionality#SDN_Controllers.2FWIMs_as_managers_of_Software-Defined_Network_Platforms
https://osm.etsi.org/wikipub/index.php/OSM_Scope_and_Functionality#SDN_Controllers.2FWIMs_as_managers_of_Software-Defined_Network_Platforms
https://osm.etsi.org/wikipub/index.php/OSM_Scope_and_Functionality#SDN_Controllers.2FWIMs_as_managers_of_Software-Defined_Network_Platforms
https://osm.etsi.org/wikipub/index.php/OSM_Scope_and_Functionality#SDN_Controllers.2FWIMs_as_managers_of_Software-Defined_Network_Platforms
https://osm.etsi.org

Bibliography: Others' Work

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

198

Robert W. Floyd. “Algorithm 97: Shortest Path.” In: Communications of the ACM
5.6 (1962), p. 345. ISSN: 0001-0782. DOI: 10.1145/367766.368168. URL: https:
//doi.org/10.1145/367766.368168 (cit. on pp. 32, 33, 104).

Lester Randolph Ford and Delbert R Fulkerson. “Maximal Flow Through a
Network.” In: Classic Papers in Combinatorics. Springer, 2009, pp. 243—248 (cit. on

p- 47)-
Jerome H Friedman. “Greedy function approximation: A gradient boosting
machine.” In: Annals of Statistics (2001), pp. 1189-1232 (cit. on p. 87).

Carlo Fuerst, Stefan Schmid, Lalith Suresh, and Paolo Costa. “Kraken: Online
and elastic resource reservations for multi-tenant datacenters.” In: IEEE Interna-
tional Conference on Computer Communications (INFOCOM). IEEE. 2016 (cit. on
PpP- 99, 122).

Jokin Garay, Jon Matias, Juanjo Unzilla, and Eduardo Jacob. “Service descrip-
tion in the NFV revolution: Trends, challenges and a way forward.” In: IEEE
Communications Magazine 54.3 (2016), pp. 68-74 (cit. on p. 13).

Javier Garcia and Fernando Fernandez. “A comprehensive survey on safe rein-
forcement learning.” In: Journal of Machine Learning Research 16.1 (2015), pp. 1437-
1480 (cit. on p. 170).

Rung-Hung Gau. “Optimal traffic engineering and placement of virtual ma-
chines in SDNs with service chaining.” In: IEEE Conference on Network Softwariza-
tion (NetSoft). IEEE. 2017, pp. 1—9 (cit. on p. 81).

Stefan Geissler, Stanislav Lange, Florian Wamser, Thomas Zinner, and Tobias
Hofsfeld. “KOMon—Kernel-based online monitoring of VNF packet processing
times.” In: IEEE International Conference on Networked Systems (NetSys). IEEE.
2019, pp. 1-8 (cit. on p. 85).

Tay Ghazar and Nancy Samaan. “Hierarchical Approach for Efficient Virtual
Network Embedding Based on Exact Subgraph Matching.” In: IEEE Global
Telecommunications Conference (GLOBECOM). IEEE. 2011, pp. 1-6 (cit. on p. 41).

Milad Ghaznavi, Aimal Khan, Nashid Shahriar, Khalid Alsubhi, Reaz Ahmed,
and Raouf Boutaba. “Elastic virtual network function placement.” In: IEEE
Conference on Cloud Networking (CloudNet). IEEE. 2015, pp. 255260 (cit. on pp. 81,
98, 99, 122).

Fabio Giust, Luca Cominardi, and Carlos] Bernardos. “Distributed mobility
management for future 5G networks: Overview and analysis of existing ap-
proaches.” In: IEEE Communications Magazine 53.1 (2015), pp. 142—149 (cit. on
p- 143).

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neural
networks.” In: Conference on Artificial Intelligence and Statistics (AISTATS). 2011,
pPp- 315-323 (cit. on p. 109).

https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168

Bibliography: Others’ Work

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Fred Glover and Manuel Laguna. “Tabu search.” In: Handbook of Combinatorial
Optimization. Springer, 1998, pp. 2093—2229 (cit. on pp. 32, 34).

Morteza Golkarifard, Carla Fabiana Chiasserini, Francesco Malandrino, and
Ali Movaghar. “Dynamic VNF placement, resource allocation and traffic routing
in 5G.” In: Computer Networks 188 (2021), p. 107830 (cit. on p. 80).

Google. Google Cloud Platform (GCP). https://cloud. google.com/ (Feb 11,
2021). 2021 (cit. on p. 14).

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. “Variance reduction
techniques for gradient estimates in reinforcement learning.” In: Journal of
Machine Learning Research 5.Nov (2004), pp. 1471-1530 (cit. on p. 164).

Lin Gu, Deze Zeng, Wei Li, Song Guo, Albert Y Zomaya, and Hai Jin. “Intelligent
VNF Orchestration and Flow Scheduling via Model-assisted Deep Reinforcement
Learning.” In: IEEE Journal on Selected Areas in Communications (2019) (cit. on

pp- 100, 123).

Lin Gu, Deze Zeng, Sheng Tao, Song Guo, Hai Jin, Albert Y Zomaya, and Weihua
Zhuang. “Fairness-aware dynamic rate control and flow scheduling for network
utility maximization in network service chain.” In: IEEE Journal on Selected Areas
in Communications 37.5 (2019), pp. 1059-1071 (cit. on p. 99).

Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd, 2017
(cit. on p. 108).

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. “Cooperative multi-
agent control using deep reinforcement learning.” In: International Conference
on Autonomous Agents and Multiagent Systems. Springer. 2017, pp. 66-83 (cit. on
PpP- 143, 145, 168).

J. Halpern and C. Pignataro. Service Function Chaining (SFC) Architecture. RFC
7665. RFC Editor, 2015. URL: http://www.rfc-editor.org/info/rfc7665
(cit. on pp. 1, 11, 18).

B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. “Network function virtualization:
Challenges and opportunities for innovations.” In: IEEE Communications Maga-
zine 53.2 (2015), pp. 90—97. ISSN: 0163-6804. DOI: 10.1109/MCOM. 2015.7045396
(cit. on pp. 1, 11, 19).

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Francoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. “Federated learning for mobile keyboard prediction.” In: arXiv preprint
arXiv:1811.03604 (2018) (cit. on p. 157).

Christoph Hardegen, Benedikt Pfiilb, Sebastian Rieger, Alexander Gepperth,
and Sven Reifimann. “Flow-based throughput prediction using deep learning
and real-world network traffic.” In: IFIP/IEEE International Conference on Network
and Service Management (CNSM). IFIP /1IEEE. 2019, pp. 1—-9 (cit. on p. 99).

199

https://cloud.google.com/
http://www.rfc-editor.org/info/rfc7665
https://doi.org/10.1109/MCOM.2015.7045396

Bibliography: Others' Work

[106] Hassan Hawilo, Manar Jammal, and Abdallah Shami. “Network function virtualization-
aware orchestrator for service function chaining placement in the cloud.” In:
IEEE Journal on Selected Areas in Communications 37.3 (2019), pp- 643—655 (cit. on
p- 62).

[107] Robert Hecht-Nielsen. “Theory of the backpropagation neural network.” In:
Neural networks for perception. Elsevier, 1992, pp. 65—93 (cit. on pp. 108, 132).

[108] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Pre-
cup, and David Meger. “Deep reinforcement learning that matters.” In: AAAI
Conference on Artificial Intelligence. 2018 (cit. on pp. 108, 132).

[109] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de
Cote. “A survey of learning in multiagent environments: Dealing with non-
stationarity.” In: arXiv preprint arXiv:1707.09183 (2017) (cit. on p. 151).

[110] Juliver Gil Herrera and Juan Felipe Botero. “Resource Allocation in NFV: A
Comprehensive Survey.” In: IEEE Transactions on Network and Service Management
13.3 (2016), pp. 518-532 (cit. on pp. 2, 11, 31, 97, 122, 132).

[111] Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess,
Alexander Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Ler-
chner. “Darla: Improving zero-shot transfer in reinforcement learning.” In:
International Conference on Machine Learning. PMLR. 2017, pp. 1480-1490 (cit. on
p- 170).

[112] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kan-
ervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex
Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and
Yuhuai Wu. Stable Baselines GitHub Repository. https://github.com/hill-
a/stable-baselines. 2018 (cit. on pp. 132, 133).

[113] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased estimation
for nonorthogonal problems.” In: Technometrics 12.1 (1970), pp. 55-67 (cit. on
pp- 86, 87).

[114] Cheol-Ho Hong and Blesson Varghese. “Resource Management in Fog/Edge
Computing: A Survey on Architectures, Infrastructure, and Algorithms.” In:
ACM Comput. Surv. 52.5 (Sept. 2019). 1SSN: 0360-0300. DOI: 10.1145/3326066.
URL: https://doi.org/10.1145/3326066 (cit. on pp. 1, 97, 122).

[115] Ines Houidi, Wajdi Louati, and Djamal Zeghlache. “A Distributed Virtual Net-
work Mapping Algorithm.” In: IEEE International Conference on Communications
(ICC). IEEE. 2008, pp. 5634-5640 (cit. on pp. 41, 62).

[116] Marcus Hutter. “General discounting versus average reward.” In: International
Conference on Algorithmic Learning Theory. Springer. 2006, pp. 244—258 (cit. on
p- 150).

[117] IBM. Iceland is the coolest location for data centers. (accessed Feb 10, 2021). 2021.
URL: https://www.ibm. com/blogs/nordic-msp/iceland-data- centers/
(cit. on p. 14).

200

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://doi.org/10.1145/3326066
https://doi.org/10.1145/3326066
https://www.ibm.com/blogs/nordic-msp/iceland-data-centers/

Bibliography: Others’ Work

[118]

[119]

[120]
[121]
[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Sergey loffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift.” In: ed. by Francis Bach
and David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France:
PMLR, 2015, pp. 448-456. URL: http://proceedings.mlr.press/v37/ioffelb.
html (cit. on pp. 126, 148).

Ralf Irmer, Heinz Droste, Patrick Marsch, Michael Grieger, Gerhard Fettweis,
Stefan Brueck, Hans-Peter Mayer, Lars Thiele, and Volker Jungnickel. “Coor-
dinated multipoint: Concepts, performance, and field trial results.” In: IEEE
Communications Magazine 49.2 (2011), pp. 102—-111 (cit. on pp. 15, 145).

ITU-T. Architectural framework for machine learning in future networks including
IMT-2020 (Y.3172). Recommendation. ITU-T, 2019 (cit. on pp. 1, 2, 19).

Anil K Jain. “Data Clustering: 50 Years Beyond K-means.” In: Pattern Recognition
Letters 31.8 (2010), pp. 651-666 (cit. on p. 57).

Ramesh Jain. “Quality of Experience.” In: IEEE MultiMedia 11.1 (2004), pp. 96—95
(cit. on p. 146).

Jose M Jerez, Ignacio Molina, Pedro] Garcia-Laencina, Emilio Alba, Nuria
Ribelles, Miguel Martin, and Leonardo Franco. “Missing data imputation using
statistical and machine learning methods in a real breast cancer problem.” In:
Artificial intelligence in medicine 50.2 (2010), pp. 105-115 (cit. on p. 85).

Mirko Jiirgens. “Hierarchical Coordination of Virtual Network Function Chains.”
Master’s Thesis. Paderborn University, Germany, 2020 (cit. on pp. 7, 39).

Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexander Clegg, Erik Wij-
mans, Stefan Lee, Manolis Savva, Sonia Chernova, and Dhruv Batra. “Sim2Real
predictivity: Does evaluation in simulation predict real-world performance?” In:
IEEE Robotics and Automation Letters 5.4 (2020), pp. 6670-6677 (cit. on pp. 157,
170).

Barry L Kalman and Stan C Kwasny. “Why tanh: Choosing a sigmoidal func-
tion.” In: International Joint Conference on Neural Networks (I[CNN. Vol. 4. IEEE.
1992, pp. 578-581 (cit. on pp. 133, 158).

Ioannis Kanellopoulos and Graeme G Wilkinson. “Strategies and best practice
for neural network image classification.” In: International Journal of Remote Sensing
18.4 (1997), pp. 711725 (cit. on p. 88).

Hyoung Seok Kang, Ju Yeon Lee, SangSu Choi, Hyun Kim, Jun Hee Park, Ji Yeon
Son, Bo Hyun Kim, and Sang Do Noh. “Smart manufacturing: Past research,
present findings, and future directions.” In: International Journal of Precision
Engineering and Manufacturing-Green Technology 3.1 (2016), pp. 111-128 (cit. on
p- 1).

Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. “Optimizing
the “One Big Switch” Abstraction in Software-Defined Networks.” In: ACM
Conference on Emerging Networking EXperiments and Technologies (CONEXT). ACM,
2013, pp- 13—24 (cit. on p. 40).

201

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html

Bibliography: Others' Work

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

202

Manuel Kaspar, Juan D Mufioz Osorio, and Jiirgen Bock. “Simz2real transfer
for reinforcement learning without dynamics randomization.” In: IEEE/RS]
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2020,

Pp- 4383—4388 (cit. on p. 170).
Matthias Keller, Christoph Robbert, and Holger Karl. “Template embedding:

Using application architecture to allocate resources in distributed clouds.” In:
2014 IEEE/ACM y7th International Conference on Utility and Cloud Computing. IEEE.
2014, pp- 387-395 (cit. on pp. 2, 24).

Michel Gokan Khan, Saeed Bastani, Javid Taheri, Andreas Kassler, and Shuiguang
Deng. “NFV-inspector: A systematic approach to profile and analyze virtual net-
work functions.” In: IEEE International Conference on Cloud Networking (CloudNet).
IEEE. 2018, pp. 1—7 (cit. on pp. 8o, 81, 85).

Khimya Khetarpal, Shagun Sodhani, Sarath Chandar, and Doina Precup. “Envi-
ronments for lifelong reinforcement learning.” In: arXiv preprint arXiv:1811.10732
(2018) (cit. on p. 170).

Stas Khirman and Peter Henriksen. “Relationship between quality-of-service
and quality-of-experience for public Internet service.” In: Workshop on Passive
and Active Measurement. 2002 (cit. on pp. 142, 146, 158).

Hoon Kim and Youngnam Han. “A proportional fair scheduling for multicarrier
transmission systems.” In: IEEE Communications Letters 9.3 (2005), pp. 210—212
(cit. on pp. 143, 146).

Hyojoon Kim and Nick Feamster. “Improving network management with
software defined networking.” In: IEEE Communications Magazine 51.2 (2013),
pp- 114-119 (cit. on p. 12).

D. King and A. Farrel. The Application of the Path Computation Element Architecture

to the Determination of a Sequence of Domains in MPLS and GMPLS. Internet
Request for Comments RFC 68o5. IETF, 2012 (cit. on p. 41).

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion.” In: International Conference for Learning Representations. 2015 (cit. on pp. 109,
158).

Nahida Kiran, Xuanlin Liu, Sihua Wang, and Changchuan Yin. “VNF Placement
and Resource Allocation in SDN/NFV-Enabled MEC Networks.” In: IEEE
Wireless Communications and Networking Conference Workshops (WCNCW). IEEE.
2020, pp. 1-6 (cit. on p. 62).

Jon M Kleinberg. “Single-Source Unsplittable Flow.” In: IEEE Conference on
Foundations of Computer Science. IEEE. 1996, pp. 68—77 (cit. on p. 42).

Lars Dietrich Klenner. “Fully Distributed Scaling, Placement and Routing in
Network Function Virtualization.” Bachelor’s Thesis. Paderborn University,
Germany, 2020 (cit. on pp. 7, 61).

Bibliography: Others’ Work

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. “The Internet
Topology Zoo.” In: IEEE Journal on Selected Areas in Communications 29.9 (2011),
pp- 1765-1775. I1SSN: 0733-8716. DOI: 10.1109/JSAC.2011.111002 (cit. on pp. 17,
19, 69, 75, 90, 109, 118, 122, 133, 138).

Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. “Software-defined network-
ing: A comprehensive survey.” In: Proceedings of the IEEE 103.1 (2014), pp- 14-76
(cit. on pp. 11, 12).

Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. “Deploy-
ing chains of virtual network functions: On the relation between link and server
usage.” In: IEEE/ACM Transactions on Networking 26.4 (2018), pp. 1562-1576
(cit. on pp. 40, 61, 62, 97, 99, 122).

Stanislav Lange, Steffen Gebert, Thomas Zinner, Phuoc Tran-Gia, David Hock,
Michael Jarschel, and Marco Hoffmann. “Heuristic approaches to the controller
placement problem in large scale SDN networks.” In: IEEE Transactions on
Network and Service Management 12.1 (2015), pp- 4-17 (cit. on p. 108).

Ying Loong Lee, Teong Chee Chuah, Jonathan Loo, and Alexey Vinel. “Recent
advances in radio resource management for heterogeneous LTE/LTE-A net-
works.” In: IEEE Communications Surveys & Tutorials 16.4 (2014), pp. 2142—2180
(cit. on p. 146).

T. Lei, Y. Hsu, I. Wang, and C. Wen. “Deploying QoS-assured Service Function
Chains with Stochastic Prediction Models on VNF Latency.” In: IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN). 2017
(cit. on p. 82).

Khaled B Letaief, Wei Chen, Yuanming Shi, Jun Zhang, and Ying-Jun Angela
Zhang. “The roadmap to 6G: Al empowered wireless networks.” In: IEEE
Communications Magazine 57.8 (2019), pp. 84—90 (cit. on p. 2).

Defang Li, Peilin Hong, Kaiping Xue, and Jianing Pei. “Virtual network function
placement and resource optimization in NFV and edge computing enabled
networks.” In: Computer Networks 152 (2019), pp. 12—24 (cit. on p. 62).

Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao, and Yanbo Han. “Service
Mesh: Challenges, state of the art, and future research opportunities.” In: IEEE
Conference on Service-Oriented System Engineering (SOSE). IEEE. 2019, pp. 122—
1225 (cit. on pp. 1, 14, 19).

Xiaomin Li, Jiafu Wan, Hong-Ning Dai, Muhammad Imran, Min Xia, and
Antonio Celesti. “A hybrid computing solution and resource scheduling strategy
for edge computing in smart manufacturing.” In: IEEE Transactions on Industrial
Informatics 15.7 (2019), pp. 4225—4234 (cit. on p. 1).

Y. Li and M. Chen. “Software-Defined Network Function Virtualization: A
Survey.” In: IEEE Access 3 (2015), pp. 2542—2553 (cit. on pp. 11, 12).

203

https://doi.org/10.1109/JSAC.2011.111002

Bibliography: Others' Work

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

204

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken
Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. “RLIlib: Abstractions
for distributed reinforcement learning.” In: International Conference on Machine
Learning. PMLR. 2018, pp. 3053-3062 (cit. on pp. 6, 157, 158).

Zhe Liang, Yi Bing Li, and Fang Ye. “Cell Selection Algorithm based on Coordi-
nated Beamforming.” In: Advanced Materials Research. Vol. 989. 2014, pp. 1671—

1675 (cit. on p. 143).

Timothy P Lillicrap, Jonathan] Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with deep
reinforcement learning.” In: International Conference on Learning Representations
(ICLR). 2016 (cit. on pp. 98, 100, 106, 107, 131).

Linux Foundation. ONAP: Open Network Automation Platform. https://wuw .
onap.org (accessed Feb 10, 2021). 2021 (cit. on p. 12).

Linux Foundation. OpenDaylight SDN Controller. https://www.opendaylight.
org/ (accessed Feb 10, 2021). 2021 (cit. on p. 13).

Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and
Dawn Leaf. “NIST cloud computing reference architecture.” In: NIST special
publication 500.2011 (2011), pp. 1-28 (cit. on p. 13).

Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep Pal-
lickara. “Serverless computing: An investigation of factors influencing microser-
vice performance.” In: IEEE International Conference on Cloud Engineering (IC2E).
IEEE. 2018, pp. 159-169 (cit. on p. 1).

Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Buriol, Mar-
inho Pilla Barcellos, and Luciano Paschoal Gaspary. “Piecing together the NFV
provisioning puzzle: Efficient placement and chaining of virtual network func-
tions.” In: IFIP/IEEE International Symposium on Integrated Network Management
(IM). IEEE. 2015, pp. 98-106 (cit. on p. 81).

Marcelo Caggiani Luizelli, Weverton Luis da Costa Cordeiro, Luciana S Buriol,
and Luciano Paschoal Gaspary. “A Fix-and-Optimize Approach for Efficient and
Large Scale Virtual Network Function Placement and Chaining.” In: Computer
Communications 102 (2017), pp. 67-77 (cit. on pp. 40, 62).

Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping Wang,
Ying-Chang Liang, and Dong In Kim. “Applications of deep reinforcement learn-
ing in communications and networking: A survey.” In: IEEE Communications
Surveys & Tutorials 21.4 (2019), pp. 3133-3174 (cit. on pp. 2, 100, 144).

WANG Luping, WANG Wei, and LI Bo. “CMFL: Mitigating communication over-
head for federated learning.” In: International Conference on Distributed Computing
Systems (ICDCS). IEEE. 2019, pp. 954—964 (cit. on p. 130).

https://www.onap.org
https://www.onap.org
https://www.opendaylight.org/
https://www.opendaylight.org/

Bibliography: Others’ Work

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

Wenrui Ma, Oscar Sandoval, Jonathan Beltran, Deng Pan, and Niki Pissinou.
“Traffic aware placement of interdependent NFV middleboxes.” In: IEEE Interna-
tional Conference on Computer Communications (INFOCOM). IEEE. 2017, pp. 19
(cit. on p. 20).

Muthucumaru Maheswaran and Trung Vuong Thien. Ginis Documentation.
https://citelab.github.io/ginib/features/service-function-chaining/
(Feb 10, 2021). 2021 (cit. on p. 13).

Zoltan Addm Mann. “Allocation of virtual machines in cloud data centers—a
survey of problem models and optimization algorithms.” In: ACM Computing
Surveys (CSUR) 48.1 (2015), pp. 1-34 (cit. on p. 122).

Yuyi Mao, Jun Zhang, SH Song, and Khaled B Letaief. “Stochastic joint radio
and computational resource management for multi-user mobile-edge computing
systems.” In: IEEE Transactions on Wireless Communications 16.9 (2017), pp- 5994~
6009 (cit. on p. 143).

Andrea Marotta, Dajana Cassioli, Cristian Antonelli, Koteswararao Kondepu,
and Luca Valcarenghi. “Network solutions for CoOMP coordinated scheduling.”
In: IEEE Access 7 (2019), pp. 176624-176633 (cit. on pp. 145, 158).

Patrick Marsch and Gerhard Fettweis. “Static clustering for cooperative multi-
point (CoMP) in mobile communications.” In: IEEE International Conference on
Communications (ICC). IEEE. 2011, pp. 1-6 (cit. on pp. 142, 144, 159).

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. “OpenFlow: Enabling
innovation in campus networks.” In: ACM SIGCOMM computer communication
review 38.2 (2008), pp. 69—74 (cit. on p. 11).

Arturas Medeisis and Algimantas Kajackas. “On the use of the universal

Okumura-Hata propagation prediction model in rural areas.” In: Vehicular
Technology Conference (VTC). Vol. 3. IEEE. 2000, pp. 1815-1818 (cit. on p. 158).

Peter Mell, Tim Grance, et al. “The NIST definition of cloud computing.” In:
(2011) (cit. on p. 13).

Vlado Menkovski, Georgios Exarchakos, and Antonio Liotta. “Online QoE pre-
diction.” In: International Workshop on Quality of Multimedia Experience (QoMEX).
IEEE. 2010, pp. 118-123 (cit. on pp. 147, 148, 152, 156, 164).

Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment.” In: Linux J. 2014.239 (2014). ISSN: 1075-3583. URL:
http://dl.acm.org/citation.cfm?id=2600239.2600241 (cit. on p. 14).

M. D. Mesarovic, D. Macko, and Y. Takahara. Theory of Hierarchical, Multilevel,
Systems, Volume 68. Elsevier Science, 2000 (cit. on p. 41).

Microsoft. Microsoft Azure. https://azure .microsoft.com/en-us/ (Feb 11,
2021). 2021 (cit. on p. 14).

205

https://citelab.github.io/gini5/features/service-function-chaining/
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://azure.microsoft.com/en-us/

Bibliography: Others' Work

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

206

Rashid Mijumbi, Sidhant Hasija, Steven Davy, Alan Davy, Brendan Jennings,
and Raouf Boutaba. “Topology-aware prediction of virtual network function
resource requirements.” In: IEEE Transactions on Network and Service Management
14.1 (2017), pp. 106-120 (cit. on p. 82).

Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,
and Raouf Boutaba. “Network function virtualization: State-of-the-art and re-
search challenges.” In: IEEE Communications surveys & tutorials 18.1 (2015),
pp- 236262 (cit. on pp. 1, 11).

Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,
and Steven Davy. “Design and evaluation of algorithms for mapping and
scheduling of virtual network functions.” In: Conference on Network Softwarization
(NetSoft). IEEE. 2015, pp. 1—9 (cit. on pp. 97, 99, 122).

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous
methods for deep reinforcement learning.” In: International Conference on Machine
Learning (ICML). 2016, pp. 1928-1937 (cit. on p. 131).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. “Human-level control through deep reinforcement learning.”
In: nature 518.7540 (2015), pp. 529-533 (cit. on p. 106).

Hendrik Moens and Filip De Turck. “VNF-P: A model for efficient placement of
virtualized network functions.” In: International Conference on Network and Service
Management (CNSM). IEEE. 2014, pp. 418—423 (cit. on pp. 40, 62, 97—99, 122).

Somayeh Mosleh, Lingjia Liu, and Jianzhong Zhang. “Proportional-fair resource
allocation for coordinated multi-point transmission in LTE-advanced.” In: IEEE
Transactions on Wireless Communications 15.8 (2016), pp. 5355—5367 (cit. on p. 143).

John Moy. OSPF version 2. Internet Request for Comments RFC 2328. IETF, 1998
(cit. on p. 63).

Priyanka Naik, Dilip Kumar Shaw, and Mythili Vutukuru. “NFVPerf: Online
Performance Monitoring and Bottleneck Detection for NFV.” In: Network Func-
tion Virtualization and Software Defined Network (NFV-SDN), 2016 IEEE Conference
on. IEEE. 2016 (cit. on p. 85).

Yasar Sinan Nasir and Dongning Guo. “Multi-agent deep reinforcement learning
for dynamic power allocation in wireless networks.” In: IEEE Journal on Selected
Areas in Communications 37.10 (2019), pp. 2239—2250 (cit. on pp. 100, 144).

Network and Signaling Working Group: Verizon, Cisco, Ericsson, Intel, LG,
Nokia, Samsung, Qualcomm. Verizon 5G TF; Network and Signaling Working
Group; Verizon 5th Generation Radio Access; Overall Description (Release 1). Tech.

rep. 2016 (cit. on pp. 155, 157).

Bibliography: Others’ Work

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

Nginx Developers. NGINX: High Performance Load Balancer, Web Server, and
Reverse Proxy. https://wuw.nginx.com/ (accessed Aug 8, 2021). 2021 (cit. on

p- 87).

Thi-Minh Nguyen, Serge Fdida, and Tuan-Minh Pham. “A comprehensive
resource management and placement for network function virtualization.” In:
IEEE Conference on Network Softwarization (NetSoft). IEEE. 2017, pp. 1—9 (cit. on
p- 81).

Gaurav Nigam, Paolo Minero, and Martin Haenggi. “Coordinated multipoint
joint transmission in heterogeneous networks.” In: IEEE Transactions on Commu-
nications 62.11 (2014), pp- 4134—4146 (cit. on p. 144).

Dusit Niyato and Ekram Hossain. “Dynamics of network selection in heteroge-

neous wireless networks: An evolutionary game approach.” In: IEEE Transactions
on Vehicular Technology (TVT) 58.4 (2008) (cit. on p. 145).

Dejene Boru Oljira, Karl-Johan Grinnemo, Javid Taheri, and Anna Brunstrom. “A
model for QoS-aware VNF placement and provisioning.” In: IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN). IEEE.
2017, pp. 1-7 (cit. on pp. 1, 81).

Gurobi Optimization. Gurobi Solver. https:/ /www.gurobi.com/. 2020 (cit. on
p- 57)-

S. Orlowski, M. Piéro, A. Tomaszewski, and R. Wessdly. “SNDIib 1.0-Survivable
Network Design Library.” In: Networks 55.3 (2010), pp. 276—-286. poI: 10.1002/
net.20371 (cit. on pp. 35, 57, 112, 135).

Metin Ozturk, Mandar Gogate, Oluwakayode Onireti, Ahsan Adeel, Amir Hus-
sain, and Muhammad A Imran. “A novel deep learning driven, low-cost mobility
prediction approach for 5G cellular networks: The case of the Control/Data
Separation Architecture (CDSA).” In: Neurocomputing 358 (2019), pp. 479—489
(cit. on p. 144).

SK Pal and S Mitra. “Multilayer perceptron, fuzzy sets, and classification.” In:
IEEE Transactions on Neural Networks 3.5 (1992), pp. 683-697 (cit. on p. 87).

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. “Hierar-
chical Reinforcement Learning: A Comprehensive Survey.” In: ACM Computing
Surveys (CSUR) 54.5 (2021), pp. 1-35 (cit. on p. 169).

Michael Patriksson. “A survey on the continuous nonlinear resource allocation
problem.” In: European Journal of Operational Research 185.1 (2008), pp. 1—46 (cit.
on p. 87).

Jianing Pei, Peilin Hong, Miao Pan, Jianqing Liu, and Jingsong Zhou. “Opti-
mal VNF Placement via Deep Reinforcement Learning in SDN /NFV-Enabled
Networks.” In: IEEE Journal on Selected Areas in Communications (2019) (cit. on
pp- 100, 123).

207

https://www.nginx.com/
https://doi.org/10.1002/net.20371
https://doi.org/10.1002/net.20371

Bibliography: Others' Work

[200] Manuel Peuster and Holger Karl. “Understand Your Chains and Keep Your
Deadlines: Introducing Time-constrained Profiling for NFV.” In: IEEE/IFIP
International Conference on Network and Service Management (CNSM). IEEE /IFIP.
2018, pp. 240-246 (cit. on pp. 84, 85).

[201] Manuel Peuster and Holger Karl. “Understand Your Chains: Towards Perfor-
mance Profile-based Network Service Management.” In: 5th European Workshop
on Software Defined Networks (EWSDN'16). IEEE. 2016 (cit. on pp. 8o, 81, 85).

[202] David Pisinger and Stefan Ropke. “Large neighborhood search.” In: Handbook of
Metaheuristics. Springer, 2010, pp. 399—419 (cit. on p. 34).

[203] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Ion Stoica. “FairCloud: Sharing the Network in Cloud
Computing.” In: ACM SIGCOMM Conference. 2012, pp. 187-198 (cit. on pp. 2, 24,
41, 99).

[204] Prometheus. Documentation. https : / / prometheus . io/docs / prometheus /
latest/configuration/configuration/ (March 18, 2020). 2020 (cit. on pp. 98,
108, 123).

[205] Erika Puiutta and Eric MSP Veith. “Explainable reinforcement learning: A sur-
vey.” In: International Cross-Domain Conference for Machine Learning and Knowledge
Extraction. Springer. 2020, pp. 7795 (cit. on p. 170).

[206] Faizan Qamar, Kaharudin Bin Dimyati, Mhd Nour Hindia, Kamarul Ariffin Bin
Noordin, and Ahmed M Al-Samman. “A comprehensive review on coordinated
multi-point operation for LTE-A.” In: Computer Networks 123 (2017), pp. 19-37
(cit. on pp. 143, 158).

[207] Haydar Qarawlus. “Deep Reinforcement Learning for Scaling, Placement, and
Routing in Network Function Virtualization.” Master’s Thesis. Paderborn Uni-
versity, Germany, 2020 (cit. on pp. 9, 121).

[208] Yinan Qi, Mythri Hunukumbure, Maziar Nekovee, Javier Lorca, and Victoria
Sgardoni. “Quantifying data rate and bandwidth requirements for immersive 5G
experience.” In: 2016 IEEE International Conference on Communications Workshops
(ICC). IEEE. 2016, pp. 455—461 (cit. on p. 162).

[209] Pham Tran Anh Quang, Yassine Hadjadj-Aoul, and Abdelkader Outtagarts. “A
deep reinforcement learning approach for VNF Forwarding Graph Embedding.”
In: IEEE Transactions on Network and Service Management 16.4 (2019), pp. 1318—
1331 (cit. on pp. 100, 123).

[210] P. Quinn, U. Elzur, and C. Pignataro. Network Service Header (NSH). Internet
Request for Comments RFC 8300. IETF, 2018, pp. 1—40 (cit. on pp. 63, 126).

[211] Sabidur Rahman, Tanjila Ahmed, Minh Huynh, Massimo Tornatore, and Biswanath
Mukherjee. “Auto-Scaling Network Service Chains using Machine Learning and
Negotiation Game.” In: IEEE Transactions on Network and Service Management
(2020) (cit. on p. 99).

208

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

Bibliography: Others’ Work

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

Talha Faizur Rahman. “Broadband Radio Interfaces Design for “4G and Beyond”
Cellular Systems in Smart Urban Environments.” PhD Thesis. Trento University,
Italy, 2015 (cit. on p. 15).

Rancher. Rancher: From datacenter to cloud to edge, Rancher lets you deliver Kubernetes-
as-a-Service. https://rancher.com/ (Feb 11, 2021). 2021 (cit. on p. 14).

Varun S Reddy, Andreas Baumgartner, and Thomas Bauschert. “Robust embed-
ding of VNF/service chains with delay bounds.” In: IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN). IEEE. 2016,
PP- 93—99 (cit. on pp. 8o, 81).

Roberto Riggio, Shah Nawaz Khan, Tejas Subramanya, Imen Grida Ben Yahia,
and Diego Lopez. “LightMANO: Converging NFV and SDN at the Edges of the
Network.” In: IEEE/IFIP Network Operations and Management Symposium (NOMS).
IEEE. 2018, pp. 1—9 (cit. on p. 132).

R. V. Rosa, C. Bertoldo, and C. E. Rothenberg. “Take Your VNF to the Gym:
A Testing Framework for Automated NFV Performance Benchmarking.” In:
IEEE Communications Magazine 55.9 (2017), pp. 110-117. ISSN: 0163-6804. DOL:
10.1109/MCOM.2017.1700127 (cit. on pp. 8o, 81, 85).

Sebastian Ruder. “An overview of gradient descent optimization algorithms.”
In: arXiv preprint arXiv:1609.04747 (2016) (cit. on p. 133).

Ryu Contributors. Ryu: Component-Based Software Defined Networking Framework.
https://ryu-sdn.org/ (accessed Feb 10, 2021). 2021 (cit. on p. 13).

Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Prze-
myslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, et al. “Autopilot: Workload autoscaling at Google.” In: European
Conference on Computer Systems. 2020, pp. 1—16 (cit. on p. 99).

Omer Sagi and Lior Rokach. “Ensemble learning: A survey.” In: Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery 8.4 (2018), e1249 (cit. on
p- 86).

Fady Samuel, Mosharaf Chowdhury, and Raouf Boutaba. “PolyViNE: Policy-
Based Virtual Network Embedding Across Multiple Domains.” In: Journal of
Internet Services and Applications 4.1 (2013), p. 6 (cit. on p. 41).

Narayanan Puthenpurayil Satheeschandran. “Performance Prediction in Virtual
Network Function Placement Using Machine Learning Techniques.” Master’s
Thesis. Paderborn University, Germany, 2019 (cit. on pp. 8, 79).

William Saunders, Girish Sastry, Andreas Stuhlmiiller, and Owain Evans. “Trial
without Error: Towards Safe Reinforcement Learning via Human Intervention.”
In: International Conference on Autonomous Agents and MultiAgent Systems. 2018,
pp- 2067—2069 (cit. on p. 170).

209

https://rancher.com/
https://doi.org/10.1109/MCOM.2017.1700127
https://ryu-sdn.org/

Bibliography: Others' Work

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

210

Ankit Saxena and Ravi Sindal. “Strategy for resource allocation in LTE-A.” In:
International Conference on Signal Processing, Communication, Power and Embedded
System (SCOPES). IEEE. 2016, pp. 29-34 (cit. on p. 159).

Liron Schiff, Stefan Schmid, and Petr Kuznetsov. “In-band synchronization for
distributed SDN control planes.” In: ACM SIGCOMM Computer Communication
Review 46.1 (2016), pp. 37—43 (cit. on p. 104).

Simon Schmitt, Jonathan] Hudson, Augustin Zidek, Simon Osindero, Carl
Doersch, Wojciech M Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zis-
serman, Karen Simonyan, et al. “Kickstarting deep reinforcement learning.” In:
Computing Research Repository (CoRR). 2018 (cit. on p. 170).

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. “Trust region policy optimization.” In: International Conference on Machine
Learning (ICML). 2015, pp. 1889-1897 (cit. on p. 131).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
“Proximal policy optimization algorithms.” In: arXiv preprint arXiv:1707.06347
(2017) (cit. on pp. 131, 149).

Stefano Secci, Jean-Louis Rougier, and Achille Pattavina. “On the Selection of
Optimal Diverse AS-Paths for Inter-Domain IP/(G) MPLS Tunnel Provisioning.”
In: Telecommunication Networking Workshop on QoS in Multiservice IP Networks.
IEEE. 2008, pp. 235—241 (cit. on p. 42).

Krisantus Sembiring and Andreas Beyer. “Dynamic resource allocation for
cloud-based media processing.” In: ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video. 2013, pp. 49-54 (cit. on p. 82).

Nadir Shah, Paolo Giaccone, Danda B Rawat, Ammar Rayes, and Nan Zhao.
Solutions for adopting software defined network in practice. 2019 (cit. on p. 12).

Ryan Shea, Jiangchuan Liu, Edith C-H Ngai, and Yong Cui. “Cloud gaming:
Architecture and performance.” In: IEEE network 27.4 (2013), pp. 16—21 (cit. on
p- 1).

Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. “Making middleboxes someone else’s problem: Net-
work processing as a cloud service.” In: ACM SIGCOMM Computer Communica-
tion Review 42.4 (2012), pp. 13—24 (cit. on p. 13).

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. “Edge com-
puting: Vision and challenges.” In: IEEE Internet of Things Journal 3.5 (2016),
pp- 637-646 (cit. on p. 14).

Xingui Shi, Xiangming Wen, Yong Sun, Linyan Li, and Wenmin Ma. “A novel
distributed VNet mapping algorithm.” In: IEEE International Conference on Com-
munication Technology. IEEE. 2012, pp. 311-316 (cit. on p. 62).

Bibliography: Others’ Work

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. “Mastering the game of go without human knowledge.” In: Nature 550.7676

(2017), pp- 354-359 (cit. on p. 119).

Software Campus. Software Campus: Your Path to Becoming an IT Executive. https:
//softwarecampus.de/en/ (Feb 4, 2021). 2021 (cit. on p. 5).

Ruben Solozabal, Josu Ceberio, Aitor Sanchoyerto, Luis Zabala, Bego Blanco, and
Fidel Liberal. “Virtual Network Function Placement Optimization With Deep
Reinforcement Learning.” In: IEEE Journal on Selected Areas in Communications
38.2 (2019), pp. 292—303 (cit. on p. 100).

An Song, Wei-Neng Chen, Tianlong Gu, Huagiang Yuan, Sam Kwong, and
Jun Zhang. “Distributed Virtual Network Embedding System With Historical
Archives and Set-Based Particle Swarm Optimization.” In: IEEE Transactions on
Systems, Man, and Cybernetics: Systems (2019) (cit. on p. 62).

Squid Developers. Squid Cache: Optimising Web Delivery. http://www.squid-
cache.org/ (accessed Aug 8, 2021). 2021 (cit. on p. 87).

Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and policy
considerations for deep learning in NLP.” In: Annual Meeting of the Association
for Computational Linguistics (ACL). 2019 (cit. on p. 119).

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018 (cit. on pp. 132, 142, 143, 149, 150, 154, 155).

Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta,
and Dario Sabella. “On multi-access edge computing: A survey of the emerging
5G network edge cloud architecture and orchestration.” In: IEEE Communications
Surveys & Tutorials 19.3 (2017), pp. 1657-1681 (cit. on pp. 155, 157).

Ole Tange et al. “GNU parallel — The command-line power tool.” In: The USENIX
Magazine 36.1 (2011), pp. 42—47 (cit. on p. 35).

Sahrish Khan Tayyaba, Hasan Ali Khattak, Ahmad Almogren, Munam Ali Shah,
Ikram Ud Din, Ibrahim Alkhalifa, and Mohsen Guizani. “5G vehicular network

resource management for improving radio access through machine learning.”
In: IEEE Access 8 (2020), pp. 6792-6800 (cit. on p. 1).

Rachel Thomas. Google’s AutoML: Cutting Through the Hype. https://www.fast.
ai/2018/07/23/auto-ml-3/ (accessed June 15, 2021). 2018 (cit. on p. 142).

Antti Tolli, Hadi Ghauch, Jarkko Kaleva, Petri Komulainen, Mats Bengtsson,
Mikael Skoglund, Michael Honig, Eeva Lahetkangas, Esa Tiirola, and Kari Pa-
jukoski. “Distributed coordinated transmission with forward-backward training
for 5G radio access.” In: IEEE Communications Magazine 57.1 (2019), pp. 58-64

(cit. on p. 143).

Antti Toskala and Harri Holma. WCDMA For UMTS: HSDPA Evolution And LTE.
Wiley, 2007 (cit. on p. 158).

211

https://softwarecampus.de/en/
https://softwarecampus.de/en/
http://www.squid-cache.org/
http://www.squid-cache.org/
https://www.fast.ai/2018/07/23/auto-ml-3/
https://www.fast.ai/2018/07/23/auto-ml-3/

Bibliography: Others' Work

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

212

Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. “Keeping
your distance: Solving sparse reward tasks using self-balancing shaped rewards.”
In: Advances in Neural Information Processing Systems (NeurIPS). 2019, pp. 10376~
10386 (cit. on p. 129).

George Tychogiorgos, Athanasios Gkelias, and Kin K Leung. “Towards a fair
non-convex resource allocation in wireless networks.” In: IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications. IEEE. 2011,

pp- 36—40 (cit. on p. 87).
Leslie G. Valiant. “A scheme for fast parallel communication.” In: SIAM Journal
on Computing 11.2 (1982), pp. 350-361 (cit. on p. 66).

Steven Van Rossem, Wouter Tavernier, Didier Colle, Mario Pickavet, and Piet
Demeester. “Profile-based Resource Allocation for Virtualized Network Func-
tions.” In: IEEE Transactions on Network and Service Management (2019) (cit. on
pp- 80-82).

Ramachandran Vijayarani and Lakshmanan Nithyanandan. “Dynamic coop-
erative base station selection scheme for downlink CoMP in LTE-advanced
networks.” In: Wireless Personal Communications 92.2 (2017), pp. 667-679 (cit. on

PP- 142, 144, 146).
Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. “Nervenet: Learning

structured policy with graph neural networks.” In: International Conference on
Learning Representations. 2018 (cit. on p. 170).

Xiaoke Wang, Chuan Wu, Franck Le, and Francis CM Lau. “Online learning-
assisted VNF service chain scaling with network uncertainties.” In: IEEE Interna-
tional Conference on Cloud Computing (CLOUD). IEEE. 2017, pp. 205—213 (cit. on
pp- 2, 100, 123).

Sarah Wassermann, Thibaut Cuvelier, Pavol Mulinka, and Pedro Casas. “Adap-
tive and Reinforcement Learning Approaches for Online Network Monitoring
and Analysis.” In: IEEE Transactions on Network and Service Management 18.2
(2020), pp. 1832-1849 (cit. on p. 84).

Qing Wei, David Perez-Caparros, and Artur Hecker. “Dynamic Flow Rules in
Software Defined Networks.” In: IEEE European Workshop on Software-Defined
Networks (EWSDN). IEEE. 2016, pp. 25-30 (cit. on pp. 64, 108).

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba.
“Scalable trust-region method for deep reinforcement learning using kronecker-
factored approximation.” In: Advances in neural information processing systems
(NeurIPS). 2017, pp. 5279-5288 (cit. on pp. 131, 132).

Dionysis Xenakis, Nikos Passas, Lazaros Merakos, and Christos Verikoukis.

“Mobility management for femtocells in LTE-advanced: Key aspects and survey
of handover decision algorithms.” In: IEEE Communications surveys & tutorials

16.1 (2013), pp. 64—91 (cit. on p. 143).

Bibliography: Others’ Work

[260]

[261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiyong Xie.
“A survey on software-defined networking.” In: IEEE Communications Surveys &
Tutorials 17.1 (2014), pp- 27-51 (cit. on p. 12).

Yikai Xiao, Qixia Zhang, Fangming Liu, Jia Wang, Miao Zhao, Zhongxing
Zhang, and Jiaxing Zhang. “NFVdeep: adaptive online service function chain
deployment with deep reinforcement learning.” In: International Symposium on
Quality of Service. 2019, pp. 1-10 (cit. on pp. 100, 123).

Zhifeng Xiao and Yang Xiao. “Security and privacy in cloud computing.” In:
IEEE communications surveys & tutorials 15.2 (2012), pp- 843-859 (cit. on p. 14).

Annie Xie, James Harrison, and Chelsea Finn. “Deep reinforcement learning
amidst lifelong non-stationarity.” In: International Conference on Machine Learning
(ICML) Workshop on Lifelong ML. 2020 (cit. on p. 145).

Lina Xu. “Context aware traffic identification kit (TriCK) for network selection
in future HetNets/5G networks.” In: IEEE International Symposium on Networks,
Computers and Communications (ISNCC). IEEE. 2017, pp. 1-5 (cit. on p. 14).

Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold
Liu, and Dejun Yang. “Experience-driven networking: A deep reinforcement
learning based approach.” In: IEEE International Conference on Computer Commu-
nications (INFOCOM). IEEE. 2018, pp. 1871-1879 (cit. on pp. 100, 110, 123).

Ji Yang, Zhang Yifan, Wang Ying, and Zhang Ping. “Average rate updating
mechanism in proportional fair scheduler for HDR.” In: IEEE Global Telecommu-
nications Conference (GLOBECOM). IEEE. 2004, pp. 3464—3466 (cit. on p. 160).

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. “Federated machine
learning: Concept and applications.” In: ACM Transactions on Intelligent Systems
and Technology (TIST) 10.2 (2019), pp. 1-19 (cit. on pp. 151, 157).

Bo Yi, Xingwei Wang, Keqin Li, Min Huang, et al. “A comprehensive survey of
network function virtualization.” In: Computer Networks 133 (2018), pp. 212262
(cit. on pp. 1, 11).

Jungkeun Yoon, Mingyan Liu, and Brian Noble. “Random waypoint consid-
ered harmful.” In: IEEE International Conference on Computer Communications
(INFOCOM). Vol. 2. IEEE. 2003, pp. 1312-1321 (cit. on p. 158).

Lei You and Di Yuan. “Joint CoMP-cell selection and resource allocation in
fronthaul-constrained C-RAN.” In: International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt). IEEE. 2017, pp. 1-6

(cit. on pp. 142, 144, 156).
Faqir Zarrar Yousaf, Michael Bredel, Sibylle Schaller, and Fabian Schneider.

“NFV and SDN—Key technology enablers for 5G networks.” In: IEEE Journal on
Selected Areas in Communications 35.11 (2017), pp. 2468—2478 (cit. on p. 15).

213

Bibliography: Others' Work

[272]

[273]

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

214

Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. “Rethinking Virtual
Network Embedding: Substrate Support for Path Splitting and Migration.” In:
ACM SIGCOMM Computer Communication Review 38.2 (2008), pp. 17-29 (cit. on

p- 42).

Chaoyun Zhang, Paul Patras, and Hamed Haddadi. “Deep learning in mobile
and wireless networking: A survey.” In: IEEE Communications Surveys & Tutorials
21.3 (2019), pp. 2224—2287 (cit. on p. 2).

Chongjie Zhang and Victor Lesser. “Coordinating multi-agent reinforcement
learning with limited communication.” In: International Conference on Autonomous
Agents and Multi-agent Systems. 2013, pp. 1101-1108 (cit. on p. 143).

Qi Zhang, Quanyan Zhu, Mohamed Faten Zhani, Raouf Boutaba, and Joseph L
Hellerstein. “Dynamic service placement in geographically distributed clouds.”
In: IEEE Journal on Selected Areas in Communications 31.12 (2013), pp. 762-772
(cit. on p. 1).

Qixia Zhang, Yikai Xiao, Fangming Liu, John CS Lui, Jian Guo, and Tao Wang.
“Joint optimization of chain placement and request scheduling for network
function virtualization.” In: IEEE International Conference on Distributed Computing
Systems (ICDCS). IEEE. 2017, pp. 731—741 (cit. on p. 99).

Xiaoxi Zhang, Chuan Wu, Zongpeng Li, and Francis CM Lau. “Proactive vnf
provisioning with multi-timescale cloud resources: Fusing online learning and
online optimization.” In: IEEE International Conference on Computer Communica-
tions (INFOCOM). IEEE. 2017, pp. 1-9 (cit. on pp. 82, 99).

Xu Zhang, Hao Chen, Yangchao Zhao, Zhan Ma, Yiling Xu, Haojun Huang,
Hao Yin, and Dapeng Oliver Wu. “Improving cloud gaming experience through
mobile edge computing.” In: IEEE Wireless Communications 26.4 (2019), pp. 178—
183 (cit. on p. 1).

Ziyao Zhang, Liang Ma, Kin K Leung, Leandros Tassiulas, and Jeremy Tucker.
“Q-placement: Reinforcement-learning-based service placement in software-
defined networks.” In: IEEE International Conference on Distributed Computing
Systems (ICDCS). IEEE. 2018, pp. 1527-1532 (cit. on p. 123).

Donghao Zhou, Zheng Yan, Yulong Fu, and Zhen Yao. “A survey on network
data collection.” In: Journal of Network and Computer Applications 116 (2018),
pp- 9—23 (cit. on p. 108).

Yiming Zhou, Cong Shen, and Mihaela van der Schaar. “A non-stationary online
learning approach to mobility management.” In: IEEE Transactions on Wireless
Communications 18.2 (2019), Pp. 1434—1446 (cit. on pp. 142, 145, 146, 159).

	Abstract
	Introduction
	Contributions
	Publications
	Projects

	Thesis Structure and Overview

	Background
	Network Softwarization
	Cloud and Edge Computing
	Mobile Networks

	Problem Statement
	Problem Parameters
	Network
	Services
	Traffic

	Decision Variables
	Service Scaling and Placement
	Flow Scheduling
	Routing

	Optimization Objectives

	Conventional Coordination Approaches
	Centralized Coordination
	Introduction
	BSP Heuristic Approach
	Initialization
	Embedding Procedure
	Iterative Improvement

	Evaluation
	Evaluation Setup
	Comparison Against the MILP Approach
	Scalability and Online Coordination

	Conclusion

	Hierarchical Coordination
	Introduction
	Related Work
	Problem Statement
	Hierarchical Coordination Approach
	Domains and Hierarchies
	Bottom-Up Information Advertisement (Phase 1)
	Top-Down Coordination Decisions (Phase 2)

	Mixed-Integer Linear Program (MILP)
	Objective
	Constraints

	Evaluation
	Evaluation Setup
	Solution Quality
	Runtime Analysis
	Impact of Advertised Information

	Conclusion

	Fully Distributed Coordination
	Introduction
	Related Work
	Problem Statement
	Fully Distributed Coordination Approaches
	Greedy Coordination with Adaptive Shortest Paths
	Score-Based Coordination with Adaptive Shortest Paths

	Evaluation
	Evaluation Setup
	Solution Quality
	Coordination Stability
	Scalability

	Conclusion

	Machine Learning Coordination Approaches
	Machine Learning for Dynamic Resource Allocation
	Introduction
	Related Work
	Approaches Without Machine Learning
	Machine Learning Approaches

	Problem Statement
	Machine Learning Approach
	Overview
	Performance Profiling
	Learning Resource Requirements
	Integration with Coordination Approaches

	Evaluation
	Approximation Accuracy
	Impact on Network and Service Coordination
	Runtime Analysis

	Conclusion

	Self-Learning Coordination
	Introduction
	Related Work
	Conventional Approaches Without DRL
	Self-Learning DRL Approaches

	Problem Statement
	DeepCoord DRL Approach
	Joint Scheduling, Scaling, and Placement
	Partially Observable Markov Decision Process (POMDP)
	DRL Coordination Framework
	Implementation and Deployment

	Evaluation
	Evaluation Setup
	Self-Adaptation to Varying Scenarios
	Generalization to Unseen Scenarios
	Optimizing Multiple Objectives
	Scalability

	Conclusion

	Self-Learning Distributed Coordination
	Introduction
	Related Work
	Problem Statement
	Distributed DRL Approach
	Joint Scaling, Placement, Scheduling, and Routing
	Partially Observable Markov Decision Process (POMDP)
	DRL Coordination Framework

	Evaluation
	Evaluation Setup
	Varying Traffic Patterns
	Varying Deadlines
	Generalization to Unseen Scenarios
	Scalability

	Conclusion

	Self-Learning Coordination for Mobile Networks
	Introduction
	Related Work
	Conventional Approaches Without DRL
	Self-Learning DRL Approaches

	Problem Statement
	Parameters
	Decision Variables
	Objective: Optimize Quality of Experience (QoE)

	DeepCoMP: Centralized DRL
	Partially Observable Markov Decision Process (POMDP)
	DeepCoMP Algorithm

	DD-CoMP & D3-CoMP: Distributed DRL
	Trade-Offs and Design Choices
	Partially Observable Markov Decision Process (POMDP)
	DD-CoMP Algorithm
	D3-CoMP Algorithm

	Architecture and Deployment Options
	Network-Based Deployment
	UE-Based Deployment
	Training and Inference in Practice

	Evaluation
	Evaluation Setup
	Self-Adaption to Varying Scenarios
	Generalization and Transfer Learning
	Scalability

	Conclusion

	Future Research and Conclusion
	Future Research
	Conclusion

	Acknowledgments
	Acronyms
	List of Algorithms
	List of Figures
	List of Tables
	Bibliography: Own Work
	Bibliography: Others' Work

